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Abstract. Some recent constructions based on LWE do not sample the
secret uniformly at random but rather from some distribution which
produces small entries. The most prominent of these is the binary-LWE
problem where the secret vector is sampled from {0, 1}∗ or {−1, 0, 1}∗.
We present a variant of the BKW algorithm for binary-LWE and other
small secret variants and show that this variant reduces the complexity
for solving binary-LWE. We also give estimates for the cost of solving
binary-LWE instances in this setting and demonstrate the advantage of
this BKW variant over standard BKW and lattice reduction techniques
applied to the SIS problem. Our variant can be seen as a combination
of the BKW algorithm with a lazy variant of modulus switching which
might be of independent interest.

1 Introduction

Learning With Errors (LWE) [20] has received widespread attention from the
cryptographic community since its introduction. LWE-based cryptography is
mainly motivated by its great flexibility for instantiating cryptographic solution
as well as a deep worst-case/average-case connections [20]: solving LWE on the
average is not easier than solving worst-case instances of several famous lattice
approximation problems.

The motivation behind this work comes from the observation that some recent
constructions based on LWE do not sample the secret uniformly at random but
rather from some distribution which produces small entries (e.g. [5,1,13,12,19]).
From a theoretical point of view, this is motivated by the observation that every
LWE instance can be transformed into an instance where the secret follows the
same distribution as the noise [5].1 However, many constructions use secrets

1 Also in [15] for the LPN case.
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which are considerably smaller. For example, binary-LWE samples the secret
from {0, 1}∗ [8] or {−1, 0, 1}∗ [12]. The presence of such small secrets provokes
the question of what implications such choices have on the security of LWE.
Is solving LWE with, say, binary secrets easier than standard LWE? From a
theoretical point of view, [8] proves that their binary-LWE is as secure as LWE.
In this paper, we try to address the question from an algorithmic point of view;
i.e. what is the actual impact of small secrets on concrete parameters.

1.1 Algorithms for Solving LWE

Three families of algorithms for solving LWE are known in the literature. The
most prominent approach is to reduce LWE to a problem that can be solved
via lattice reduction, for example, by reducing it to the Short Integer Solution
(SIS) problem. Indeed, most parameter choices in the literature are based on the
hardness of lattice reduction such as [16,10,17]. These estimates for a given set
of parameters n (number of components of the secret), q (size of the modulus)
and σ (standard deviation of the noise) are usually produced by extrapolating
running times from small instances.

A second approach is due to Arora and Ge who reduce LWE to solving a
system of non-linear equations [6]. This algorithm allow us to solve LWE in
sub-exponential time as soon as the Gaussian distribution is sufficiently narrow,
i.e. α · q <

√
n. Recall that the security reduction [20] for LWE requires to

consider discrete Gaussian with standard deviation α ·q strictly bigger than
√
n.

However, from a practical point of view, the constants involved in this algorithm
are so large that it is much more costly than other approaches for the parameters
typically considered in cryptographic applications [2].

The third family of algorithms are combinatorial algorithms which can all be
seen as variants of the BKW algorithm. The BKW algorithm was proposed by
Blum, Kalai and Wasserman [7] as a method for solving the Learning Parity with
Noise problem, with sub-exponential complexity, requiring 2O(n/ logn) samples,
space and time. The algorithm can be adapted for tackling LWE with complexity
2O(n) when the modulus is taken to be polynomial in n [20]. BKW proceeds by
splitting the n components of LWE samples into a groups of b components each.
For each of the a groups of components the algorithm then searches for collisions
in these b components to eliminate them. The overall complexity of the algorithm

is ≈ (
a2n

) · qb

2 operations, and a · qb

2 memory, where a and b depend on the n, q
and α.

The behaviour of the algorithm is relatively well understood and it was shown
to outperform lattice reduction estimates when reducing LWE to SIS (when q is
small), thus it provides a solid basis for analysing the concrete hardness of LWE
instances [3].

1.2 Organisation of the Paper and Main Results

While none of the algorithms above take advantage of the presence of small
secrets, we may combine them with modulus switching. Recall that modulus
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switching was initially introduced to improve the performance of homomorphic
encryption schemes [9] and was recently used to reduce the hardness of LWE with
polynomially sized moduli to GAPSVP [8]. Modulus switching is essentially the
same as computing with a lower precision similar to performing floating point
computations with a low fixed precision. Namely, let

(
a, c = 〈a, s〉+e

) ∈ Z
n
q ×Zq

be LWE sample where s ∈ Z
n
q is the secret vector, and e ∈ Zq is an error. Let

also some p < q and consider
( �p/q · a� , �p/q · c� ) with⌊

p

q
· c
⌉
=

⌊
p

q

( 〈a, s〉+ q · u+ e
)⌉

, for some u ∈ Z

⌊
p

q
· c
⌉
=

⌊〈
p

q
· a, s

〉
p

+
p

q
· e
⌉
=

⌊〈⌊
p

q
· a

⌉
, s

〉
p

+

〈
p

q
· a−

⌊
p

q
· a

⌉
, s

〉
p

+
p

q
· e
⌉

=

〈⌊
p

q
· a

⌉
, s

〉
p

+

〈
p

q
· a−

⌊
p

q
· a

⌉
, s

〉
p

+
p

q
· e+ e′, where e′ ∈ [−0.5, 0.5]

=

〈⌊
p

q
· a

⌉
, s

〉
p

+ e′′ +
p

q
· e+ e′. (1)

where 〈x,y〉p denotes the modulo p inner product of x and y.
Since p/q · a− �p/q · a� takes values ∈ [−0.5, 0.5] we have that e′′ is small if s

is small. We may hence compute with the smaller ‘precision’ p at the cost of a
slight increase of the noise rate by a ‘rounding error’ e′′.

Modulus switching allows to map a LWE instance modq to a scaled in-
stance of LWE mod p. Thus, modulus switching can be used in the solving of
small secret instances of LWE, a folklore approach which has not been ex-
plicitly studied in the literature. Namely, if we pick p such that e′′ is not
much larger than p/q · e then, for example, the running time of the BKW al-

gorithm improves from (a2n) · qb

2 to (a2n) · pb

2 . Since typically b ≈ n/ logn
this may translate to substantial improvements. Indeed, we can pick p such
that |〈p/q · a− �p/q · a�, s〉| ≈ p/q · |e|. This implies σs · √ n

12 ≈ p/q · σ, or

p ≈ min
{
q, σs

σ ·√ n
12 · q}, where σs is the standard deviation of elements in the

secret s.
In this paper, we refine this approach and present a variant of the BKW algo-

rithm which fuses modulus switching and BKW-style reduction. In particular,
this work has two main contributions. Firstly, in Section 2 we present a modulus
switching strategy for the BKW algorithm in which switching is delayed until
necessary. In a nutshell, recall that the BKW algorithm performs additions of
elements which collide in certain components. Our variant will search for such
collisions in ‘low precision’ Zp but will perform arithmetic in ‘high precision’
Zq. We call rounding error the inner product of the sub-vector of ‘low bits’ of a
with the secret s. Our strategy permits to decrease rounding errors and allows
to reduce p by a factor of

√
a.

Secondly, this perspective enables us to choose reductors in the BKW algo-
rithm which minimise the rounding errors further (Section 3). Namely, we favour
components a with small distance |�p/q · a� − p/q · a| in already reduced com-
ponents, called ‘child components’ in this work. Our strategy ensures that the
probability of finding such elements is highest for those components which are
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considered first by the BKW algorithm, i.e. those components which contribute
most to the noise. We note that the first contribution relies on standard in-
dependence assumptions only, while the second contribution relies on stronger
assumptions, which however seem to hold in practice.

We then discuss the complexity of our variants in Section 4. For typical choices
of parameters – i.e. q ≈ nc for some small constant c ≥ 1, a = log2 n and
b = n/ log2 n – the complexity of BKW as analysed in [3] is O (

2cn · n log22 n
)
.

For small secrets, a naive modulus switching technique allows reducing this com-

plexity to O
(
2
n
(
c+

log2 d
log2 n

)
· n log22 n

)
where 0 < d ≤ 1 is a small constant. If the

secret distribution does not depend on n and if an unbounded number of LWE
samples is available our improved version of BKW allows to get a complexity
of:

O
(
2n
(
c+

log2 d− 1
2

log2 log2 n

log2 n

)
· n log22 n

)
.

We then study the behaviour of this algorithm by applying it to various instances
of LWE with binary secrets. In Section 5, we compare the results with plain
BKW and BKZ under modulus switching and a simple meet-in-the-middle ap-
proach or generalised birthday attack. We show that our lazy-modulus-switching
variant of the BKW algorithm provides better results than applying plain BKW
after modulus reduction. We also demonstrate that under the parameters con-
sidered here this algorithm also – as n increases – outperforms the most opti-
mistic estimates for BKZ when we apply BKZ to the same task as that to which
we apply BKW: finding short vectors in the (scaled-)dual lattice – we obtain
this perspective by viewing the rounding error as an increase in the noise rate
while still finding short vectors in the (scaled)-dual p-ary lattice determined by
our modulus-reduced LWE samples. Indeed, our results indicate that our algo-
rithm outperforms BKZ 2.0 when both are used to find a short vector in the
(scaled)-dual lattice in dimension as low as ≈ 256 when considering LWE pa-
rameters from [20] with binary secret. However, we stress again that we always
assume an unbounded number of samples to be available for solving.

1.3 Notations

To fix the notations, we reproduce below the definition of LWE.

Definition 1 (LWE [20]). Let n, q be positive integers, χ be a probability dis-
tribution on Zq and s be a secret vector in Z

n
q . We denote by Ls,χ the probability

distribution on Z
n
q ×Zq obtained by choosing a ∈ Z

n
q uniformly at random, choos-

ing e ∈ Zq according to χ, and returning (a, c) = (a, 〈a, s〉 + e) ∈ Z
n
q × Zq. We

define Decision-LWE as the problem of deciding whether pairs (a, c) ∈ Z
n
q × Zq

are sampled according to Ls,χ or the uniform distribution on Z
n
q × Zq. Search-

LWE is the problem of recovering s from (a, c) = (a, 〈a, s〉+e) ∈ Z
n
q ×Zq sampled

according to Ls,χ.

The noise follows some distribution χ which is classically chosen to be a
discrete Gaussian distribution over Z with mean 0 and standard deviation
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σ = s/
√
2π = αq/

√
2π, reduced modulo q. In the following, we always start

counting at zero. We denote vectors as well as matrices in bold, vectors in lower
case, and matrices in upper case. Given a vector a, we denote by a(i) the i-th
entry in a, i.e. a scalar, and by A(i,j) the entry at index i, j. For vectors a we
denote by a(a,b) the vector (a(a), . . . , a(b−1)). When given a list of vectors, we
index its elements by subscript, e.g. a0, a1, a2, to denote the first three vectors of
the list. This means that ai,(j) is the j-th component of the vector ai. When we
write (ai, ci) we always mean the output of an oracle which should be clear from
the context. In particular, (ai, ci) does not necessarily refer to samples following
the initial distribution. We write ã instead of a to indicate a has some short
elements. We represent elements in Zq as integers in [− q

2 , . . . ,
q
2 ], similarly for

Zp. We write χα,q for the distribution obtained by considering a discrete Gaus-
sian distribution over Z with standard deviation αq/

√
2π, mean 0, considered

modulo q.

2 A Modified BKW Algorithm: Lazy Modulus Switching

Following [3], we consider BKW – applied to Decision-LWE – as consisting of
two stages: sample reduction and hypothesis testing. In this work, we only modify
the first stage.

2.1 The Basic Idea

We briefly recall the principle of classical BKW. Assume we are given samples
of the form (a, c) following either Ls,χ or U(Zn

q ) × U(Zq). Our goal is to dis-
tinguish between the two cases. BKW proceeds by producing samples (a∗, c∗)
with a∗ being all zero such that statistical tests can be applied to c∗ to decide
whether they follow U(Zq) or some distribution related to Ls,χ. This is achieved
by grouping the n components of all vectors into a groups of b components each
(assuming a and b divide n for simplicity). If two vectors collide on all b entries
in one group, the first is subtracted from the second, producing a vector with at
least b all zero entries. These vectors are then again combined to produce more
all zero entries and so forth until all a groups are eliminated to zero. However, as
we add up vectors the noise increases. Overall, after � addition levels the noise
has standard deviation

√
2�αq. Our algorithm, too, will be parametrized by a

positive integer b ≤ n (the window width), and a := �n/b� (the addition depth).
Recall that the complexity of BKW algorithm is essentially qb. However, b

only depends on the ratio αq/
√
2πq = α

√
2π and thus not on q. Hence, it

is clear that applying modulus reduction before running the BKW algorithm
may greatly improve its running time: b is preserved whilst q is reduced to p.
However, instead of applying modulus reduction in ‘one shot’ prior to executing
BKW, we propose switching to a lower precision only when needed. For this, we
actually never switch the modulus but simply consider elements in Zq ‘through
the perspective’ of Zp. We then essentially only consider the top-most log2 p
bits of Zq.
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Under this perspective, given samples of the form (a, c) we aim to produce(
ã, c̃ = 〈ã, s〉+ ẽ

)
, where ã is short enough, i.e.

|〈ã, s〉| ≈
√
2aαq. (2)

Although other choices are possible, this choice means balancing the noise ẽ after
a levels of addition and the contribution of |〈ã, s〉| such that neither dominates.
We call the term 〈ã, s〉 the rounding error. So, condition (2) is such that after a
levels of additions performed by the BKW algorithm the escalated initial noise
and the noise coming from rounding errors have the same size.

2.2 Sample Reduction for Short Secrets

Let (a0, c0), . . . , (am−1, cm−1) be samples which follow Ls,χ or U(Zn
q ) × U(Zq).

We now explain how to produce samples (ãi, c̃i)i≥0 that satisfy condition (2).
For simplicity, we assume from now on that p = 2κ. 2

The main idea of the algorithm is to search for collisions among the first b
components of samples (ai, ci) by only considering their top log2 p bits. If such a
collision is found, we proceed as in the normal BKW algorithm, i.e. we subtract
the colliding samples to clear the first b components. In our case, we clear the top-
most log2 p bits of the first b components. Hence, instead of managing elimination
tables for every bit of all components, we only manage elimination tables for the
most significant κ bits. Put differently, all arithmetic is performed in Zq but
collisions are searched for in Zp after rescaling or modulus switching.

As in [3], we realise the first stage of the BKW algorithm as a (recursively
constructed) series of oracles Bs,χ(b, �, p). In our case, we have 0 ≤ � < a, where
Bs,χ(b, a−1, p) produces the final output and Bs,χ(b,−1, p) calls the LWE oracle.
We will make use of a set of tables T � (maintained across oracle calls) to store
(randomly-chosen) vectors that will be used to reduce samples arising from our
oracles. However, compared to [3] our oracles Bs,χ(b, �, p) take an additional
parameter p which specifies the precision which we consider. Hence, if p = q
then we recover the algorithm from [3] where we perform no modulus reduction
at all. In particular, Bs,χ(b, �, p) proceeds as follows:

1. For � = −1, we can obtain samples from Bs,χ(b,−1, p) by simply calling the
LWE oracle Ls,χ and returning the output.

2. For � = 0, we repeatedly query the oracle Bs,χ(b, 0, p) to obtain (at most)
(pb − 1)/2 samples (a, c) with distinct non-zero vectors

⌊
p/q · a(0,b)

⌉
. We

use these samples to populate the table T 0, indexed by
⌊
p/q · a(0,b)

⌉
. We

store (a, c) in the table. During this course of this population, whenever

we obtain a sample (a′, c′) from Bs,χ(b,−1, p), if
⌊
p/q · a′(0,b)

⌉
(resp. the

negation) match
⌊
p/q · a(0,b)

⌉
such that the pair (a, c) is already in T 1, we

return (a′±a, c′±c), as a sample from Bs,χ(b, 0, p). Note that, if
⌊
p/q · a(0,b)

⌉

2 While we do not have to restrict our attention to p of the form 2κ, we choose it for
ease of exposition and implementation.
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is zero, we return (a′, c′) as a sample from Bs,χ(b, 0, p). Further calls to the
oracle Bs,χ(b, 0, p) proceed in a similar manner, but using (and potentially
adding entries to) the same table T 0.

3. For 0 < � < a, we proceed as above: we make use of the table T � (constructed
by callingBs,χ(b, �− 1, p) up to (pb−1)/2 times) to reduce any output sample
from Bs,χ(b, �− 1, p) with

⌊
p/q · a(b·�,b·�+b)

⌉
by an element with a matching

such vector, to generate a sample returned by Bs,χ(b, �, p).

Pseudo-code for the modified oracle Bs,χ(b, �, p), for 0 ≤ � < a, is given in the
full version of this work.

2.3 Picking p

Yet, we still have to establish the size of p to satisfy Condition 2. We note that
in our approach we do not actually multiply by p/q. Let σr be the standard
deviation of uniformly random elements in Z�q/p�. Performing one-shot modulus
switching in this setting would mean splitting a into two vectors, a′ with the
‘high order’ bits and a′′ with ‘low order’ bits. The components of the latter would
contribute to the final noise as the rounding error, the components of the former
would be eliminated by BKW. The standard deviation of the components of a′′

is σr. For each component of a(i) one-shot modulus switching would add a noise
with standard deviation σrσs. Hence, after applying BKW to these pre-processed
samples, the standard deviation of the noise contributed by modulus-switching
in the final output would be

√
n · 2a · σ2

rσ
2
s =

√
a b · 2a · σ2

rσ
2
s . (3)

However, as the following lemma establishes, we may consider smaller p because
the final noise contributed by modulus switching in our algorithm is smaller
than in (3). This is because if (ãi, c̃i) are final output samples then the entries
ãi,(b·a−1) will be significantly smaller than ãi,(0).

Yet, to formalise this, we need to make a (standard) simplifying assumption,
namely that the outputs of the BKW algorithm (at every stage) are independent.
That is, we make the assumption that, during the course of the algorithm de-
scribed, all components of each sample from Bs,χ(b, �, p) are independent from
every other sample. We emphasize that similar assumptions are standard in
treatments of combinatorial algorithms for LPN/LWE (cf. [3,11]).

Assumption 1. We assume that all outputs of Bs,χ(b, �, p) are independent.

Assumption 1 allows to establish the following lemma:

Lemma 1. Let n ≥ 1 be the dimension of the LWE secret vector, q be a modulus,
b ∈ Z with 1 ≤ b ≤ n. Let also σr be the standard deviation of uniformly random
elements in Z�q/p�. Under Assumption 1, the components of ã = a− a′ returned
by Bs,χ(b, �, p) satisfy:

Var(ã(i)) = 2�−�i/b�σ2
r , for 0 ≤ �i/b� ≤ �

and Var
(U(Zq)

)
for �i/b� > �.
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Proof. The proof is omitted here but available in the full version of this work.

Using Lemma 1 we may adapt our choice of p, because the noise contributed
by modulus switching for a given p is smaller:

Corollary 1. Let n ≥ 1 be the dimension of the LWE secret vector, q be a
modulus, b ∈ Z with 1 ≤ b ≤ n. Let σr be the standard deviation of uniformly
random elements in Z�q/p� and σs be the standard deviation of the distribution
from which the secret s is sampled. Let (ã, c̃) be an output of Bs,χ(b, a − 1, p).
Under Assumption 1, the noise added by lazy modulus switching in the final
output of Bs,χ(b, a− 1, p), that is |〈ã, s〉|, has standard deviation

√√
√
√b ·

(
a−1∑

i=0

2a−i−1

)

· σ2
rσ

2
s =

√
b · (2a − 1) · σ2

rσ
2
s .

Proof. The proof is omitted here but available in the full version of this work.

Now, compare Corollary 1 with the standard deviation in (3). We see that
the standard deviation obtained using our lazy modulus switching is divided
by a factor

√
a w.r.t. to a naive use of modulus-switching, i.e. as in (3). As a

consequence, we may reduce p by a factor
√
a.

3 Improved Algorithm: Stunting Growth by Unnatural
Selection

Based on the strategy in the previous section, we now introduce a pre-processing
step which allows us to further reduce the magnitude of the noise present in the
outputs of Bs,χ(b, a− 1, p) by reducing rounding errors further. For this, it will
be useful to establish notation to refer to various components of ai in relation
to Bs,χ(b, �, p).

Children: are all those components with index j < b · �, i.e. those components
that were reduced by some Bs,χ(b, k, p) with k < �: they grow up so quickly.

Parents: are those components of ai with index b · � ≤ j < b · � + b, i.e. those
components among which collisions are searched for in Bs,χ(b, �, p): collisions
among parents produce children.

Strangers: with respect to Bs,χ(b, �, p) are all other components j ≥ b · � + b:
they are indifferent towards each other.

3.1 The Basic Idea

For the general idea and intuition, assume b = 1 and that ãi are outputs of
Bs,χ(b, 0, p) and we hence have Var(ãi,(0)) = σ2

r . Now, some of these ãi will be
stored in Table T 1 by Bs,χ(b, 1, p) based on the value in the parent component
ãi,(1). All future outputs of Bs,χ(b, 1, p) which collide with ãi in the parent com-
ponent at index 1 will have ãi added/subtracted to it, we are hence adding a
value with Var(ãi,(0)) = σ2

r in index 0.
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Now, however, if the ãi,(0) happened to be unusually short, all Bs,χ(b, �, p) for
� > 0 would output vectors with a shorter ãi,(0) added/subtracted in, i.e. would
also have unusually small child components (although to a lesser degree). That
is, improving the outputs of Bs,χ(b, 1, p) – i.e. decreasing the magnitude of the
ãi,(0) stored in T 1 – has a knock-on effect on all later outputs. More generally,
improving the outputs of Bs,χ(b, �, p) will improve the outputs of Bs,χ(b, k, p) for
k > �.

On the other hand, improving the outputs of Bs,χ(b, �, p) where � is small, is
easier than for larger values of �. In the algorithm as described so far, when we
obtain a collision between a member of T � and an output (ai, ci) of Bs,χ(b, � −
1, p), we reduce (ai, ci) using the colliding member of T �, retaining this member
in the table. Alternatively we can reduce (ai, ci) using the in-situ table entry,
replace the table entry with (the now reduced) (ai, ci) and return the former
table entry as the output of Bs,χ(b, �, p). If we selectively employ this alternative
strategy using the relative magnitudes of the child components of (ai, ci) and
the table entry as a criterion, we can improve the ‘quality’ of our tables as part
of a pre-processing phase.

That is, in Bs,χ(b, �, p) for each collision in a parent component we may in-
spect the child components for their size and keep that in T � where the child
components are smallest. Phrased in the language of ‘children’ and ‘parents’:
we do not let ‘nature’, i.e. randomness, run its course but intervene and select
children based on their size. As the number of child components is b ·� it becomes
more difficult as � increases to find vectors where all child components are short.

3.2 Algorithms

This leads to a modified algorithm Bsmall,s,χ(b, �, p) given in Algorithm 1 which
acts as a pre-processing phase.

1 begin
2 T � ← table with pb rows maintained across all runs of

Bsmall,s,χ(b, �, p);

3 Find (a′, c′) ← T �
z that collides with a fresh sample (a, c) from

Bs,χ(b, �− 1, p);

4 if
∑b·�−1

i=0

∣∣
∣a′(i)

∣∣
∣ >

∑b·�−1
i=0

∣
∣a(i)

∣
∣ then

5 T �
z ← (a, c);

6 return (a− a′, c− c′);

Algorithm 1. Bsmall,s,χ(b, �, p) for 0 ≤ � < a

3.3 Picking p

It remains to be established what the effect of such a strategy is, i.e. how fast
children grow up or how fast rounding errors accumulate. In particular, given n
vectors xi sampled from some distributionD where each component has standard
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deviation σ, i.e. Var(xi,(j)) = σ2 we are interested in the standard deviation
σn of each component for x∗ = minabs (x0, . . . ,xn−1) where minabs picks that

vector where
∑b·�−1

j=0

∣
∣x(j)

∣
∣ is minimal. At this point we know no closed algebraic

expression for σn. However, we found (as detailed in the full version of this work)
that σn can be estimated as follows:

Assumption 2. Let the vectors x0, . . . ,xn−1 ∈ Z
τ
q be sampled from some distri-

bution D such that σ2 = Var(xi,(j)) where D is any distribution on (sub-)vectors
observable in our algorithm. Let x∗ = minabs (x0, . . . ,xn−1) where minabs picks

that vector x∗ with
∑b·�−1

j=0

∣
∣
∣x∗

(j)

∣
∣
∣ minimal. The stddev σn =

√
Var(x∗

(0)) = · · · =
√
Var(x∗

(τ−1)) of components in x∗ satisfies

σ/σn ≥ cτ
τ
√
n+ (1− cτ )

with cτ as in Table 1 for τ ≤ 10 and

cτ = 0.20151418166952917
√
τ + 0.32362108131969386≈ 1

5

√
τ +

1

3

otherwise.

Table 1. cτ for small values of τ

τ 1 2 3 4 5
cτ 0.405799353869 0.692447899282 0.789885269135 0.844195936036 0.854967912468

τ 6 7 8 9 10
cτ 0.895446987232 0.91570933651 0.956763578012 0.943424544282 0.998715322134

With Assumption 2 we can now estimate the size of the entries of the variance
matrix associated with our elimination tables. That is, a matrix M where the
entry M(i,j) holds the variance of entries (b · j, . . . , b · j+ b− 1) in T i. We give an
algorithm for constructing M in Algorithm 2 which repeatedly applies Assump-
tions 1 and 2. We discuss this algorithm in detail and back up the expectation
that it gives a reasonable approximation of the variances in T � with empirical
evidence the full version of this work.

Using the matrix M computed by Algorithm 2, we can estimate the variances
of components of ãi as output by Bs,χ(b, a−1, p). This result follows immediately
from Assumption 2.

Lemma 2. Let n ≥ 1, q be a modulus, b ∈ Z with 1 ≤ b ≤ n and σr be the
standard deviation of U(Z�q/p�). Define a := �n/b� and pick some p < q and let
M be the output of Algorithm 2 under these parameters. Let (ãi, ci) be samples
returned by Bs,χ(b, a − 1, p). Finally, define v as the a−vector of variances of
the components of ã where v(k) holds the variance of the components ã(b·k) to
ã(b·k+b−1). Under Assumption 2, the components of v satisfy:

v(i) = σ2
r +

a∑

j=i+1

M(j,i).
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1 begin

2 T ← 2 · pb/2; // fudge factor: 2

3 n ← m∗
(a+1)·T + 1;

4 Varred = Var(U(Z�q/p�)) = σ2
r ; // the var. of fresh red. elements

5 M is an a× a matrix;
6 for 0 ≤ r < a do
7 for 0 ≤ c < a do
8 M(r,c) ← Var(U(Zq)); // el. on and above main diag. not red.

9 for 1 ≤ t < a do
// row t = sum of prev. rows + 1 fresh el. for each index

10 for 0 ≤ i < t do

11 M(t,i) ← Varred +
∑t−1

j=i+1 M(j,i);

12 τ ← b · �;
13 for 0 ≤ i < t do

14 M(t,i) ← M(t,i)

(cτ τ√n+1−cτ)2
;

Algorithm 2. Constructing M

This now allows us to given an expression for the noise distribution output by
Bs,χ(b, a− 1, p).

Lemma 3. Let n ≥ 1 be the dimension of the LWE secret vector, q be a modulus,
b ∈ Z with 1 ≤ b ≤ n. Define a := �n/b� and pick some p < q and let v
be as in Lemma 2. Let (ãi, c̃i) be outputs of Bs,χ(b, a − 1, p). We assume that
Assumptions 1 and 2 hold. Then as a increases the distribution of c̃i approaches
a discrete Gaussian distribution modulo q with standard deviation

σtotal :=

√√√
√2aσ + b σ2

rσ
2
s

a−1∑

i=0

v(i) ≤
√
2aσ + (2a − 1) · b · σ2

rσ
2
s .

Proof. The standard deviation follows from Assumption 1 and Lemma 2. Since
the distribution is formed by adding up 2a vectors it approaches a discrete Gaus-
sian distribution when considered over Z as a increases by the Central Limit
Theorem. ��
Assumption 3. We assume that Lemma 3 holds for 128 ≤ n, i.e. the values of
n considered in this work.

4 Complexity

Finally, we analyse the complexity of the presented algorithms. To do so, we
assume that Assumptions 1, 2, and 3 hold. Lemma 3 allows us to estimate
the numbers of samples needed to distinguish the outputs of Bs,χ(b, a− 1, p) if
Bs,χ(b,−1, p) returns LWE samples from uniform. For this, we rely on standard
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estimates [16] for the number of samples required to distinguish. This estimate
provides a good approximation for the advantage obtainable in distinguishing
between U(Zq) and a discrete Gaussian reduced mod q with standard deviation
σtotal. In particular, we compute the advantage as

Adv = exp

⎛

⎝−π

(
σtotal ·

√
2π

q

)2
⎞

⎠ .

We can now state the overall complexity of running the algorithm in Theorem 1.
Remark that the proof of next two results are omitted; they follow by an easy
adaptation of the proof of Lemma 2 in [3].

Theorem 1. Let n ≥ 1 be the dimension of the LWE secret vector, q be a
modulus, b ∈ Z with 1 ≤ b ≤ n and σs the standard deviation of the secret vec-
tor components. Let also σr be the variance of random elements in Z�q/psmall�.
Define a := �n/b� and pick a pair (psmall,m

∗) such that b σ2
rσ

2
s

∑a−1
i=0 v(i) ≤

2aσ, where v(i) is defined as in Lemma 3. Then Bs,χ(b, a − 1, p) will return

(ã0, c̃0), . . . , (ãm−1, c̃m−1) where c̃i has standard deviation ≤
√
2a+1 ·σ. Further-

more, this costs

pbsmall

2
·
(
a(a− 1)

2
· (n+ 1)

)
+ (m+m∗) n a

additions in Zq and a ·
(

pb
small

2

)
+m+m∗ calls to Ls,χ.

The memory requirement for storing each table is established in Corollary 2
below.

Corollary 2. The memory required to store the table T i is upper-bounded by

pbsmall

2
· a · (n+ 1)

elements in Zq, each of which requires �log2(q)� bits of storage.

To clarify the impact of Theorem 1, we consider m∗ = 0 – i.e. the case discussed
in Section 2 – on classical parameters of LWE.

Corollary 3. Let q ≈ nc, for some constant c > 0, and α = n1/2−c such
that σ ≈ αq ≈ √

n. Furthermore, let a = log2 n and b = n/ log2 n be the usual
choices of parameters for BKW. Assume σs does not depend on n. Then, solving
Decision-LWE costs at most

O
(
2n
(
c+

log2 d− 1
2

log2 log2 n

log2 n

)
· n log22 n

)

operations in Zq. We also need to store O
(
2
n
(
c+

log2 d− 1
2

log2 log2 n

log2 n

)
· n log2 n

)

elements in Zq.

Proof. The proof is omitted here but available in the full version of this work.
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5 Parameters

To understand the behaviour of our more careful modulus switching technique
for concrete parameters, we compare it with one-shot modulus switching. Specif-
ically, we consider the “plain” BKW algorithm [7] as analysed in [3]. Furthmore,
to make this work somewhat self-contained we also compare with the BKZ (2.0)
algorithm when applied to SIS instances derived from LWE samples and with a
simple meet-in-the-middle (MITM) approach or generalised birthday attack.

Instances. We choose n ∈ [128, 256, 512, 1024, 2048] and – using [4] – pick
q ≈ n2 and σ = q√

2πn log2
2 n

as in Regev’s original encryption scheme [20]. We

then consider binary-LWE as defined in [12]: s ←$ U({−1, 0, 1}n) (we consider
the case s ←$ U(Zn

2 ) as in [8] in the full version of this work). However, we assume
an unbounded number of samples being available to the attacker to establish the
performance of the algorithms discussed here under optimal conditions.

BKW. For complexity estimates of the plain BKW algorithm we rely on [3].
There the BKW algorithm takes a parameter t which controls the addition depth
a := t log2 n. Here we first pick t = 2(log2 q − log2 σ)/ log2 n which ensures that
the standard deviation of the noise after a levels of additions grows only as large
as the modulus. We then slowly increase t in steps of 0.1 until the performance
of the algorithm is not estimated to improve any further because too many
samples are needed to perform the distinguishing step. Following [3], we translate
operations in Zq into “bit operations” by multiplying by log2 q.

BKZ. To estimate the cost of the BKZ (2.0) algorithm we follow [18,16]. In
[18], the authors briefly examine an approach for solving LWE by distinguishing
between valid matrix-LWE samples of the form (A, c) = (A,As+e) and samples
drawn from the uniform distribution over Z

n
q × Zq. Given a matrix of samples

A, one way of constructing such a distinguisher is to find a short vector u
such that uA = 0 mod q. If c belongs to the uniform distribution over Z

n
q ,

then 〈u, c〉 belongs to the uniform distribution on Zq. On the other hand, if
c = As+e, then 〈u, c〉 = 〈u,As+e〉 = 〈u, e〉, where samples of the form 〈u, ei〉
are governed by another discrete, wrapped Gaussian distribution. Following the
work of Micciancio and Regev [18], the authors of [16] give estimates for the
complexity of distinguishing between LWE samples and uniform samples by
estimating the cost of the BKZ algorithm in finding a short enough vector. In
particular, given n, q, σ and a target distinguishing advantage ε we set s = σ·√2π
and compute β = q/s ·√log(1/ε)/π. From this β we then compute the required

root Hermite factor δ0 = 2log
2
2(β)/(4n log2 q).

Given δ0 we then approximate the running time of BKZ 2.0 in seconds using
two different strategies. Both strategies treat δ0 as the dominant influence in de-
termining the running time. The first strategy denoted “BKZ” follows [16] and
defines log2 Tsec = 1.8/ log2 δ0 − 110. The second strategy denoted “BKZ2” fol-
lows [3] who interpolated data points from [17] as log2 Tsec = 0.009/ log22 δ0 − 27.
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We translate the running time in seconds figure into bit operations by assum-
ing 2.3 · 109 bit operations per second on a 2.3 GHz CPU, which is pessimistic.
Furthermore, for BKZ choosing advantage ε � 1 and running the algorithms
about 1/ε times is usually more efficient than choosing ε ≈ 1 directly, i.e. we
generate a new lattice of optimal sub-dimension each time using fresh LWE
samples.

MITM. One can also solve small secret LWE with a meet-in-the-middle attack
that requires ≈ cn/2 time and space where c is the cardinality of the set from
which each component of the secret is sampled (so c = 2 or c = 3 for binary-
LWE depending on the definition used): compute and store a sorted list of all
As′ where s′ = (s(0), . . . , s(n/2)−1, 0, 0, . . . , 0) for all possible cn/2 choices for s′.
Then compute c − As′′ where we have s′′ = (0, 0, . . . , 0, s(n/2), . . . , sn−1) and
check for a vector that is close to this value in the list.

In Table 2 we give the number of bit operations (“logZ2”), calls to the LWE
oracle (“logLs,χ”) and memory requirement (“logmem”) for BKW without any
modulus reduction to establish the baseline. All costs are given for the high
advantage case, i.e. if ε � 1 we multiply the cost by 1/ε.

Table 3 gives the running times after modulus reductionwith p = q
√
n/12σs/σ.

In particular, Table 3 lists the expected running time (number of oracle calls and
where applicable memory requirements) of running BKWandBKZ after applying
modulus reduction.

Finally, Table 4 gives the expected costs for solving these LWE instances using
the techniques described in this work. We list two variants: one with and one
without “unnatural selection”. This is because these techniques rely on more
assumptions than the rest of this work which means we have greater confidence
in the predictions avoiding such assumptions.

Table 2. Cost for solving Decision-LWE with advantage ≈ 1 for BKW, BKZ and
MITM where q and σ are chosen as in [20] and s ←$ U({−1, 0, 1}n)

MITM BKZ [16] BKZ 2.0 [17] BKW [3]
n log Z2 logmem log ε logLs,χ log Z2 log ε logLs,χ log Z2 t logLs,χ log Z2 log mem

128 105.2 101.4 -18 26.5 65.4 -14 22.5 65.7 3.18 83.9 97.6 90.0
256 206.9 202.9 -29 38.5 179.5 -35 44.5 178.5 3.13 167.2 182.1 174.2
512 409.9 405.8 -48 58.5 390.9 -94 104.5 522.8 3.00 344.7 361.0 352.8

1024 815.8 811.5 -82 93.5 785.0 -265 276.5 1606.2 2.99 688.0 705.5 697.0
2048 1627.5 1623.0 -141 153.6 1523.6 -773 785.4 5100.0 3.00 1369.8 1388.7 1379.9

Table 3. Cost for solving Decision-LWE with advantage ≈ 1 for BKW and BKZ
variants where q, σ are chosen as in [20] and s ←$ U({−1, 0, 1}n) after one-shot modulus
reduction with p = q

√
n/12σs/σ

BKZ [16] BKZ 2.0 [17] BKW [3]
n log ε logLs,χ log Z2 log ε logLs,χ log Z2 t logLs,χ log Z2 logmem

128 -21 29.3 70.2 -16 24.4 69.8 2.85 76.8 90.2 82.4
256 -31 40.3 175.3 -37 46.3 172.8 2.85 150.4 165.6 153.7
512 -50 60.3 365.0 -90 100.2 467.0 2.76 293.8 309.6 301.9

1024 -81 92.3 710.1 -236 247.2 1339.1 2.78 570.3 587.4 579.4
2048 -134 146.3 1342.3 -647 659.2 4006.5 2.71 1149.0 1167.3 1159.1



Lazy Modulus Switching for the BKW Algorithm on LWE 443

Table 4. Cost for solving Decision-LWE with advantage ≈ 1 with the algorithms
discussed in this work when s ←$ U({−1, 0, 1}n)

this work (w/o unnatural selection) this work
n t log p logm∗ logLs,χ log Z2 logmem t log p logm∗ logLs,χ log Z2 logmem

128 2.98 10 0 64.7 78.2 70.8 2.98 6 61 61.0 75.2 46.3
256 2.83 11 0 127.8 142.7 134.9 2.83 5 118 118.0 133.5 67.1
512 2.70 11 0 235.1 251.2 243.1 2.70 8 225 225.0 241.8 180.0

1024 2.59 12 0 477.4 494.8 486.5 2.59 10 467 467.0 485.0 407.5
2048 2.50 12 0 971.4 990.7 907.9 2.50 12 961 961.0 980.2 907.9

Discussion. The results in this section indicate that the variants of the BKW
algorithms discussed in this work compare favourably for the paramters consid-
ered. The results in this table also indicate that the unnatural selection strategy
has little impact on the overall time complexity. However, it allows to reduce the
data complexity, in some cases, considerably. In particular, e.g. considering line 1
of Table 4, we note that applying this technique can make the difference between
a feasible (≈ 80 · 10244 bytes) and infeasible (≈ 1260 · 10246 bytes) attack for a
well-equipped attacker [14]. Finally, we note that our results indicate that lattice
reduction benefits from modulus reduction. However, this seems somewhat im-
plausible judging from the used algorithms. This might indicate that the lattice
reduction estimates from the literature above might need to be revised.

6 Conclusion and Future Work

We investigated applying modulus switching to exploit the presence of a small
secret in LWE instances and demonstrated that it can make a significant impact
on the complexity of solving such instances. We also adapted the BKW algo-
rithm to perform modulus-switching ‘on-the-fly’, showing that this approach is
superior to performing ‘one-shot’ modulus reduction on LWE samples prior to
solving. Our first variant improves the target modulus by a factor of

√
log2 n in

typical scenarios; our second variant mainly improves the memory requirements
of the algorithm, one of the key limiting aspects of the BKW algorithm. Our al-
gorithms, however, rely on various assumptions which, though appearing sound,
are unproven. Our estimates should thus be considered heuristic, as are perfor-
mance estimates for all currently-known algorithms for solving LWE. Verifying
these assumptions is hence a promising direction for future research. Further-
more, one of the main remaining obstacles for applying the BKW algorithm
to cryptographic constructions based on LWE is that it requires an unbounded
number of samples to proceed. Lifting this requirement, if only heuristically, is
hence a pressing research question.
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