
Hugo Krawczyk (Ed.)

 123

LN
CS

 8
38

3

17th International Conference
on Practice and Theory in Public-Key Cryptography
Buenos Aires, Argentina, March 26–28, 2014, Proceedings

Public-Key
Cryptography –
PKC 2014

Lecture Notes in Computer Science 8383
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Hugo Krawczyk (Ed.)

Public-Key
Cryptography –
PKC 2014
17th International Conference
on Practice and Theory in Public-Key Cryptography
Buenos Aires, Argentina, March 26-28, 2014
Proceedings

13

Volume Editor

Hugo Krawczyk
IBM T.J.Watson Research Center
1101 Kitchawan Road, Yorktown Heights, NY 10598, USA
E-mail: hugokraw@us.ibm.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-54630-3 e-ISBN 978-3-642-54631-0
DOI 10.1007/978-3-642-54631-0
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014932835

CR Subject Classification (1998):

LNCS Sublibrary: SL 4 – Security and Cryptology

© International Association for Cryptologic Research 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

PKC 2014, the 17th Annual IACR International Conference on Practice and The-
ory of Public-Key Cryptography, was held in Buenos Aires, Argentina, during
March 26–28, 2014. The conference, sponsored by the International Association
for Cryptologic Research (IACR), focuses on all technical aspects of public-key
cryptography - including theory, design, analysis, cryptanalysis, implementation
and applications. This was the first PKC to be held in South America.

These proceedings contain 38 papers selected by the Program Committee
from a total of 145 submissions - the second highest number in the conference’s
history. The many high-quality submissions made it easy to build a good pro-
gram but also required rejecting good papers. Each submission was judged by
at least three reviewers, or four in the case of submissions by Program Commit-
tee members. The selection process included five weeks of focused independent
review followed by five weeks of lengthy discussions. At the end of the 10-week
review period the reports and discussions produced over 38,000 lines of text, a
testament to the dedication and thoroughness of the Program Committee mem-
bers. This wonderful work would have been impossible without the collaboration
of 150 members of our community that served as external reviewers. To them
and all the members of the Program Committee I am truly grateful. My sincere
gratitude goes also to the hundreds of authors that submitted their excellent
work - without them there wouldn’t be a conference.

The program also featured two excellent invited lectures: “Post-Snowden
Cryptography” by Adi Shamir and “Multilinear Maps and Obfuscation” by Shai
Halevi. On behalf of the Program Committee, I would like to thank Adi and Shai
for kindly accepting our invitation.

The work of a program chair and a successful conference depend on many
people that deserve special thanks. Ariel Waissbein and Juan Garay, the con-
ference general chairs, did a wonderful job organizing the event and managing
its many complexities. Shai Halevi’s excellent submission and review software
was pivotal for the smooth management of the review process, and he was kind
enough to patiently answer my many questions. A special mention goes to the
PKC steering committee for their organization of the PKC conferences for so
many years and for giving us the opportunity to bring cryptography to this part
of the planet. Finally, I want to thank our sponsors: Argentina’s Ministry of Sci-
ence, Technology and Productive Innovation, Fundación Sadosky, IBM Research,
and Microsoft Research.

February 2014 Hugo Krawczyk

PKC 2014
The 17th IACR International Conference on

Practice and Theory of Public-Key

Cryptography

Buenos Aires, Argentina

March 26–28, 2014

Sponsored by the
International Association of Cryptologic Research

General Chair

Ariel Waissbein

General Co-chair

Juan A. Garay Yahoo Labs, USA

Program Chair

Hugo Krawczyk IBM T.J. Watson Research Center, USA

Program Committee

Michel Abdalla École Normale Supérieure and CNRS, France
Masayuki Abe NTT, Japan
Paulo Barreto University of São Paulo, Brazil
Alexandra Boldyreva Georgia Institute of Technology, USA
Colin Boyd NTNU, Norway and QUT, Australia
David Cash Rutgers University, USA
Jung Hee Cheon Seoul National University, Korea
Nelly Fazio City College of CUNY, USA
Sanjam Garg IBM Research, USA
Dov Gordon Applied Communication Sciences, USA
Jens Groth University College London, UK

VIII PKC 201

Nadia Heninger University of Pennsylvania, USA
Amir Herzberg Bar Ilan University, Israel
Alejandro Hevia University of Chile, Chile
Susan Hohenberger Johns Hopkins University, USA
Stanislaw Jarecki UC Irvine, USA
Aggelos Kiayias University of Athens, Greece
Vladimir Kolesnikov Bell Labs, USA
Kaoru Kurosawa Ibaraki University, Japan
Tanja Lange Technische University of Eindhoven,

The Netherlands
Allison Lewko Microsoft Research New England, USA

Vadim Lyubashevsky Inria and École Normale Supérieure, France
Mark Manulis University of Surrey, UK
Ilya Mironov Microsoft Research Silicon Valley, USA
Antonio Nicolosi Stevens Institute of Technology, USA
Jesper Buus Nielsen Aarhus University, Denmark
Kenny Paterson Royal Holloway - University of London, UK
Benny Pinkas Bar Ilan University, Israel

Elizabeth Quaglia École Normale Supérieure, France
Mariana Raykova IBM Research and SRI, USA
Dominique Unruh University of Tartu, Estonia
Yevgeniy Vahlis AT&T Labs, USA
Hoeteck Wee George Washington University, USA
Daniel Wichs Northeastern University, USA

External Reviewers

Gora Adj
Martin Albrecht
Prabhanjan Ananth
Diego F. Aranha
Chung Hun Baek
Manuel Barbosa
Mihir Bellare
Fabrice Benhamouda
Daniel J. Bernstein
Joppe Bos
Charles Bouillaguet
Elette Boyle
Angelo De Caro
Andrea Cerulli
Pyrros Chaidos
Nishanth Chandran
Melissa Chase
Jie Chen

Dong-Pyo Chi
Chongwon Cho
Tung Chou
Dana Dachman-Soled
Daniel Dadush
Ivan Damgaard
Bernardo Machardo
David
Leo Ducas
Frédéric Dupuis
Konrad Durnoga
Stefan Dziembowski
Robert Enderlein
Michele Feltz
Marc Fischlin
Eduarda Freire
Jun Furukawa
Steven Galbraith

Nethanel Gelernter
Rosario Gennaro
Yossi Gilad
Niv Gilboa
Danilo Gligoroski
Sasha Golovnev
Alonso Gonzalez
Louis Goubin
Vipul Goyal
Divya Gupta
Tim Guneysu
Shai Halevi
Fabrice Ben Hamouda
Kristiyan Haralambiev
Carmit Hazay
Francisco

Rodŕıguez Henŕıquez
Ryo Hiromasa

PKC 201 IX

Dennis Hofheinz
Hyunsook Hong
Yuval Ishai
Ioana Elisabeta Ivan
Abhishek Jain
Min Young Jun
Charanjit Jutla
Franziskus Kiefer
Eike Kiltz
Jinsu Kim
Min Kyu Kim
Miran Kim
Sungwook Kim
Taechan Kim
Susumu Kiyoshima
Takeshi Koshiba
Veronika Kuchta
Abishek

Kumarasubramanian
Rasmus Winther

Lauritsen
Chang Min Lee
Moon Sung Lee
Nikos Leonardos
Tancrede Lepoint
Benôıt Libert
Huijia (Rachel) Lin
Helger Lipmaa
Feng-Hao Liu
Alex Malozemoff
Takahiro Matsuda
Alexander May
Sarah Meiklejohn

Daniele Micciancio

Pratyay Mukherjee
Ryo Nishimaki
Gregory Neven
Attrapadung Nuttapong
Adam O’Neill
Miyako Ohkubo
Yossi Oren
Jung Youl Park
Anat Paskin-Cherniavsky
Chris Peikert
Milinda Perera
Ludovic Perret
Christopher Petit
Le Trieu Phong
Bertram Poettering
Joop van de Pol
Carla Ràfols
Ananth Raghunathan
Tom Ristenpart
Ben Riva
Arnab Roy
Katerina Samari
Alessandra Scafuro
Christian Schaffner
Dominique Schroeder
Jacob Schuldt
Sven Schäge
Gil Segev
Minjae Seo
Haya Shulman
Dale Sibborn

Ben Smith
Yongsoo Song
Douglas Stebila
Damien Stehle
Ron Steinfeld
Falko Strenzke
Michael Sudkevitch
Katsuyuki Takashima
Qiang Tang
Sidharth Telang
Aris Tentes
Stefano Tessaro
Enrico Thomae
Mehdi Tibouchi
Roberto Trifiletti
Boaz Tsaban
Yiannis Tselekounis
Manolis Tzortzakis
Damien Vergnaud
Ivan Visconti
Alfredo Rial
Shota Yamada
Bo-Yin Yang
Arkady Yerukhimovich
Kazuki Yoneyama
Aaram Yun
Thomas Zacharias
Mark Zhandry
Bingsheng Zhang
Miaomiao Zhang
Hong-Sheng Zhou

PKC Steering Committee

Ronald Cramer CWI, Amsterdam&Mathematical Institute and
Leiden University, The Netherlands

Yvo Desmedt University of Texas at Dallas, USA
Hideki Imai Chuo University and Research Center for

Information Security (RCIS), AIST, Japan

David Naccache École Normale Supérieure, France
Tatsuaki Okamoto NTT Labs, Japan

David Pointcheval École Normale Supérieure, France

X PKC 201

Moti Yung (Secretary) Google Inc., and Columbia University, USA
Yuliang Zheng (Chair) University of North Carolina at Charlotte, USA

Sponsoring Institutions

Fundación Sadosky, Argentina
IBM Research, USA
Microsoft Research, USA
Ministry of Science, Technology and Productive Innovation, Argentina

Table of Contents

Chosen Ciphertext Security

Simple Chosen-Ciphertext Security from Low-Noise LPN 1
Eike Kiltz, Daniel Masny, and Krzysztof Pietrzak

Leakage-Flexible CCA-secure Public-Key Encryption: Simple
Construction and Free of Pairing . 19

Baodong Qin and Shengli Liu

A Black-Box Construction of a CCA2 Encryption Scheme from
a Plaintext Aware (sPA1) Encryption Scheme . 37

Dana Dachman-Soled

Chosen Ciphertext Security via UCE . 56
Takahiro Matsuda and Goichiro Hanaoka

Re-encryption

Proxy Re-encryption from Lattices . 77
Elena Kirshanova

Re-encryption, Functional Re-encryption, and Multi-hop
Re-encryption: A Framework for Achieving Obfuscation-Based
Security and Instantiations from Lattices . 95

Nishanth Chandran, Melissa Chase, Feng-Hao Liu,
Ryo Nishimaki, and Keita Xagawa

Verifiable Outsourcing

Verifiable Set Operations over Outsourced Databases 113
Ran Canetti, Omer Paneth, Dimitrios Papadopoulos, and
Nikos Triandopoulos

Verifiable Oblivious Storage . 131
Daniel Apon, Jonathan Katz, Elaine Shi, and
Aishwarya Thiruvengadam

Achieving Privacy in Verifiable Computation with Multiple
Servers – Without FHE and without Pre-processing 149

Prabhanjan Ananth, Nishanth Chandran, Vipul Goyal,
Bhavana Kanukurthi, and Rafail Ostrovsky

XII Table of Contents

Efficient Delegation of Zero-Knowledge Proofs of Knowledge in
a Pairing-Friendly Setting . 167

Sébastien Canard, David Pointcheval, and Olivier Sanders

Cryptanalysis I

Rounding and Chaining LLL: Finding Faster Small Roots of Univariate
Polynomial Congruences . 185

Jingguo Bi, Jean-Sébastien Coron, Jean-Charles Faugère,
Phong Q. Nguyen, Guénaël Renault, and Rina Zeitoun

Elliptic and Hyperelliptic Curves: A Practical Security Analysis 203
Joppe W. Bos, Craig Costello, and Andrea Miele

Discrete Logarithm in GF(2809) with FFS . 221
Razvan Barbulescu, Cyril Bouvier, Jérémie Detrey,
Pierrick Gaudry, Hamza Jeljeli, Emmanuel Thomé,
Marion Videau, and Paul Zimmermann

Identity- and Attribute-Based Encryption

Identity-Based Lossy Trapdoor Functions: New Definitions, Hierarchical
Extensions, and Implications . 239

Alex Escala, Javier Herranz, Benôıt Libert, and Carla Ràfols

Bounded-Collusion Identity-Based Encryption from
Semantically-Secure Public-Key Encryption: Generic Constructions
with Short Ciphertexts . 257

Stefano Tessaro and David A. Wilson

A Framework and Compact Constructions for Non-monotonic
Attribute-Based Encryption . 275

Shota Yamada, Nuttapong Attrapadung, Goichiro Hanaoka, and
Noboru Kunihiro

Online/Offline Attribute-Based Encryption . 293
Susan Hohenberger and Brent Waters

Enhanced Encryption

Scale-Invariant Fully Homomorphic Encryption over the Integers 311
Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi

Enhanced Chosen-Ciphertext Security and Applications 329
Dana Dachman-Soled, Georg Fuchsbauer, Payman Mohassel, and
Adam O’Neill

Table of Contents XIII

Signature Schemes

Lattice-Based Group Signature Scheme with Verifier-Local
Revocation . 345

Adeline Langlois, San Ling, Khoa Nguyen, and Huaxiong Wang

Leakage-Resilient Signatures with Graceful Degradation 362
Jesper Buus Nielsen, Daniele Venturi, and Angela Zottarel

On the Lossiness of the Rabin Trapdoor Function . 380
Yannick Seurin

Cryptanalysis II

Solving Random Subset Sum Problem by lp-norm SVP Oracle 399
Gengran Hu, Yanbin Pan, and Feng Zhang

Parallel Gauss Sieve Algorithm: Solving the SVP Challenge over a
128-Dimensional Ideal Lattice . 411

Tsukasa Ishiguro, Shinsaku Kiyomoto, Yutaka Miyake, and
Tsuyoshi Takagi

Lazy Modulus Switching for the BKW Algorithm on LWE 429
Martin R. Albrecht, Jean-Charles Faugère, Robert Fitzpatrick, and
Ludovic Perret

Practical Cryptanalysis of a Public-Key Encryption Scheme Based on
New Multivariate Quadratic Assumptions . 446

Martin R. Albrecht, Jean-Charles Faugère, Robert Fitzpatrick,
Ludovic Perret, Yosuke Todo, and Keita Xagawa

Related-Key Security

Related Randomness Attacks for Public Key Encryption 465
Kenneth G. Paterson, Jacob C.N. Schuldt, and Dale L. Sibborn

Encryption Schemes Secure under Related-Key and Key-Dependent
Message Attacks . 483

Florian Böhl, Gareth T. Davies, and Dennis Hofheinz

Functional Authentication

Functional Signatures and Pseudorandom Functions 501
Elette Boyle, Shafi Goldwasser, and Ioana Ivan

Policy-Based Signatures . 520
Mihir Bellare and Georg Fuchsbauer

XIV Table of Contents

Generalizing Homomorphic MACs for Arithmetic Circuits 538
Dario Catalano, Dario Fiore, Rosario Gennaro, and Luca Nizzardo

Quantum Impossibility

General Impossibility of Group Homomorphic Encryption in the
Quantum World . 556

Frederik Armknecht, Tommaso Gagliardoni,
Stefan Katzenbeisser, and Andreas Peter

Privacy

On Minimal Assumptions for Sender-Deniable Public Key
Encryption . 574

Dana Dachman-Soled

Traceable Group Encryption . 592
Benôıt Libert, Moti Yung, Marc Joye, and Thomas Peters

Practical Covert Authentication . 611
Stanislaw Jarecki

Protocols

Fine-Tuning Groth-Sahai Proofs . 630
Alex Escala and Jens Groth

Cross-Domain Secure Computation . 650
Chongwon Cho, Sanjam Garg, and Rafail Ostrovsky

On the Security of the Pre-shared Key Ciphersuites of TLS 669
Yong Li, Sven Schäge, Zheng Yang, Florian Kohlar, and
Jörg Schwenk

Author Index . 685

Simple Chosen-Ciphertext Security

from Low-Noise LPN

Eike Kiltz1,�, Daniel Masny1, and Krzysztof Pietrzak2,��

1 Horst-Görtz Institute for IT Security and Faculty of Mathematics,
Ruhr-Universität Bochum

2 IST Austria

Abstract. Recently, Döttling et al. (ASIACRYPT 2012) proposed the
first chosen-ciphertext (IND-CCA) secure public-key encryption scheme
from the learning parity with noise (LPN) assumption. In this work we
give an alternative scheme which is conceptually simpler and more effi-
cient. At the core of our construction is a trapdoor technique originally
proposed for lattices by Micciancio and Peikert (EUROCRYPT 2012),
which we adapt to the LPN setting. The main technical tool is a new
double-trapdoor mechanism, together with a trapdoor switching lemma
based on a computational variant of the leftover hash lemma.

1 Introduction

The Learning Parity with Noise (LPN) problem has found a wide range of appli-
cations in symmetric cryptography, including encryption [1] and authentication
[2,3,4]. Public-key primitives seem considerably harder to achieve. In particular,
it is still an open problem to construct a public-key encryption scheme from
the (standard) LPN problem. The LPN problem is very attractive, because of
its similarity to the well-studied syndrome decoding problem and its assumed
hardness in a post-quantum world. Further, many LPN based schemes are very
efficient, such that they can be used even in low-cost RFID devices.

The first step towards a public-key encryption (PKE) scheme from LPN was
made by Alekhnovich [5] who proposed a chosen-plaintext (IND-CPA) secure
PKE based on a low-noise variant of LPN (low-noise LPN). A straightforward
variant of Alekhnovich’s PKE scheme can be seen as the LPN analog of Regev’s
encryption scheme from the learning with errors (LWE) problem. The LPN prob-

lem states that the distribution DLPNn,m,p
= {(A,As + e) | A $← Zm×n

2 , e
$←

Bmp , s
$← Zn2} is indistinguishable from uniform, where Bp is the the Bernoulli

distribution with parameter p, i.e., Pr[x = 1 : x ← Bp] = p. Whereas in stan-
dard LPN the Bernoulli parameter p is constant (p = 0.1 is a typical choice),
in low-noise LPN we have p = Θ(1/

√
n), where n is the dimension of the LPN

� Supported by a Sofja Kovalevskaja Award of the Alexander von Humboldt Founda-
tion and the German Federal Ministry for Education and Research.

�� Supported by the European Research Council, ERC Starting Grant (259668-PSPC).

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 1–18, 2014.
c© International Association for Cryptologic Research 2014

2 E. Kiltz, D. Masny, and K. Pietrzak

secret. When we decrease the Bernoulli parameter p, the LPN problem can only
become easier. Indeed, while the best known algorithm for solving standard LPN
runs in time 2O(n/ log n) [6], low-noise LPN can be solved in time 2O(

√
n). Hence,

for low-noise LPN, the dimension of the LPN secret has to be increased accord-
ingly, which results in less efficient schemes. See also [7] for concrete efficiency
considerations.

CCA-secure encryption from low-noise LPN. Recently, Döttling, Müller-
Quade and Nascimento [8] showed how to extend Alekhnovich’s IND-CPA secure
scheme in order to get a chosen-ciphertext (IND-CCA) secure scheme. Like for
Alekhnovich’s scheme, their security proof is in the standard model (in partic-
ular, no random oracles), and relies on the low noise LPN assumption. During
decryption only a certain part of the secret key is known and a q-ary erasure
code is used to reconstruct the missing parts. Due to the additional overhead of
the erasure code, the scheme has to add matrices B1, . . . ,Bq to the public-key,
where the parameter q is estimated in [8] to be at least 400.1 Hence the com-
plexity of the scheme is estimated to be a couple of hundred times worse than
Alekhnovich’s scheme.

CCA-secure encryption from LWE. In a work predating [8], Micciancio
and Peikert [9] extended Regev’s LWE-based encryption scheme into a simple
and efficient IND-CCA secure encryption scheme. Both schemes are randomness-
recovering, but unlike [8], the scheme from [9] does not use erasure codes which
results in considerably more compact (public and secret) keys.

This raises the question, whether it’s possible to shorten the keys in the LPN
setting by using the techniques from [9]. Unfortunately, it turns out that a
straight forward application of their techniques will not work. Informally, us-
ing the leftover hash lemma as in [9] in the (binary) LPN setting results in an
error that cannot be corrected using error correcting codes.

1.1 Our Contributions

In this work, we propose a simple and efficient IND-CCA secure PKE scheme
from low-noise LPN. Compared to the IND-CPA secure scheme by Alekhnovich,
we only loose roughly a factor two in efficiency.2

At a technical level, we design a new (tag-based) double trapdoor function
which has two independent trapdoors. Each of these trapdoors depends on a
hidden tag. If the function is evaluated with respect to a hidden tag, the corre-
sponding trapdoor disappears and the function is hard to invert. For all other
tags, the function can be inverted efficiently using one of the trapdoors. Our
switching lemma (Lemma 4) shows that, under the LPN assumption, the hidden
tags contained in the trapdoors can be switched without being noticed by any
efficient adversary. The main difference to [9] is that we replace the leftover hash

1 Stating a more exact value for q is difficult as in [8] no upper bound is given and the
analysis is only sketched.

2 Interestingly, the factor two between IND-CPA and IND-CCA security is also ob-
served in the Diffie-Hellman world [10,11] and in the lattice world [12].

Simple Chosen-Ciphertext Security from Low-Noise LPN 3

lemma by a computational variant based on the LPN problem with low noise.
We use this double-trapdoor function to construct a tag-based encryption (TBE)
scheme. (The latter can be efficiently transformed into a CCA-secure encryption
scheme [13].) During the security reduction from low-noise LPN, we replace the
first hidden tag with the challenge tag. Since this step is only computationally
indistinguishable we have to give a security reduction in which the simulator has
no access to the trapdoor being switched to the challenge tag. Here the second
trapdoor is used to answer decryption queries correctly. Once both hidden tags
are switched to the challenge tag, the simulator is not able to decrypt a message
related to this challenge tag which allows us to argue about indistinguishability
of the PKE scheme. We remark that previous LPN or LWE-based switching
techniques (e.g., [9]) relied on purely statistical arguments such that a second
trapdoor was not needed for simulating the decryption queries.

Efficiency. This tag-based encryption scheme directly implies a CCA-secure
PKE scheme [13]. Compared to [8], this results in much smaller key sizes and
comparable ciphertext size. Concretely, our scheme only has to add two matrices
B0,B1 to the public-key and hence we expect the keys of our scheme be to a
couple of hundred times smaller than that of [8]. We remark that our techniques
can be extended to the case of LWE, but the resulting scheme is worse than the
one from [9]. While for LPN replacing the leftover hash lemma is necessary to
decrease the weight of the error, replacing the leftover hash lemma in the LWE
setting actually has the opposite effect.

1.2 Open Problems

Designing an IND-CPA secure PKE from LPN with constant noise remains an
open problem. Already a construction with any noise level ω(1/

√
n) would be

interesting to achieve.

2 Preliminaries

We use bold lower-case letters like a ∈ Zn2 to denote vectors and bold upper-case
letters like A ∈ Zn×n2 for matrices. With |a| we denote the Hamming weight (i.e.,

the number of 1’s) of a. We denote by x
$← X that x is sampled according to

the distribution X . If X is a set, then this denotes that x is sampled uniformly
at random from X . Instead of using ⊕ for addition modulo 2, we use + and −
to get a more generic construction, which adapts more easily to larger fields (for
which addition and subtraction is not the same) as used in the LWE assumption.

2.1 The Bernoulli Distribution

Bp denotes the Bernoulli distribution with parameter 0 ≤ p ≤ 1/2, i.e., x
$← Bp

is the random variable over {0, 1} with Pr[x = 1] = p. To bound the tail of
the sum of independent Bernoulli random variabels, we will use the following
Chernoff bounds.

4 E. Kiltz, D. Masny, and K. Pietrzak

Chernoff bound: For d
$← Bmp and δ > 0:

Pr
d
[|d| > (1 + δ)pm] < e−

min(δ,δ2)
3 pm (1)

in particular, for δ = 1 Pr
d
[|d| > 2pm] < e−pm/3 (2)

2.2 Learning Parity with Noise

Let n ∈ N be the size of the secret solution vector, m > n the number of the
given samples and 0 ≤ p ≤ 1/2 the Bernoulli parameter of the noise distribution.

The LPNn,m,p Problem. The LPNn,m,p problem is the problem of solving a
set of linear equations perturbed by some noise. To define the decision version
of LPN we consider the distribution

DLPNn,m,p
= ((A,As + e) | A $← Zm×n

2 , e
$← Bmp , s

$← Zn2).

The challenge is to distinguish DLPNn,m,p
from uniform (A,b) ∈ Zm×n

2 × Zm2 .
The advantage of an algorithm A in breaking the LPNn,m,p assumption is

AdvLPNn,m,p(A) = |Pr[A(A,b) = 1] − Pr[A(A′,b′) = 1]|,

where (A,b)
$← DLPNn,m,p

and (A′,b′)
$← Zm×n

2 × Zm2 .
The hardness of LPNn,m,p depends on the choice of the secret size n, the

amount of samples m and the error distribution Bp. Whereas in the standard
LPN assumption the Bernoulli parameter p is constant, we use the ”low-noise”
version with p ≈ 1/

√
n.

Below we introduce two variants of LPNn,m,p which we’ll use in our construc-
tion, both variants are basically equivalent to the standard LPNn,m,p
assumption.

Knapsack LPN. The knapsack LPN distribution [14] is

DKLPNm
n,m,p

= ((A,EA) | A $← Zm×(m−n)
2 , E

$← Bm×m
p).

and the advantage of an A is defined as

AdvKLPNm
n,m,p

(A) = |Pr[A(A,EA) = 1] − Pr[A(A,B′) = 1]|,

where (A,EA)
$← DKLPNm

n,m,p
and B′ $← Zm×(m−n)

2 .
Knapsack LPN is as hard as LPN, the reduction stated below loses a factor

of m due to a standard hybrid argument because we directly defined the m-fold
knapsack LPN distribution (i.e., E contains m vectors, not just one).

Lemma 1. For all algorithms B there exists an algorithm A that runs in roughly
the same time as A and AdvLPNn,m,p(A) ≥ 1

mAdvKLPNm
n,m,p

(B).

Simple Chosen-Ciphertext Security from Low-Noise LPN 5

Extended Knapsack LPN. The Knapsack LPN problem remains hard in the
presence of additional leakage Ez about E. The extended knapsack EKLPN
distribution is defined as

DEKLPNm
n,m,p

= ((A,EA, z,Ez) | A $← Zm×(m−n)
2 , E

$← Bm×m
p , z

$← Bmp)

and A’s advantage is

AdvEKLPNm
n,m,p

(A) = |Pr[A(A,EA, z,Ez) = 1] − Pr[A(A,B, z,b) = 1]|,

where (A,EA, z,Ez)
$← DEKLPNm

n,m,p
, B

$← Zm×(m−n)
2 , and b

$← Zm2 .
The following lemma is a special case of [15, Theorem 3.1], who use a more

general notion of the ELWE problem based on LWE and the leakage vector z is
sampled from an arbitrary distribution (not just Bmp).

Lemma 2. For all algorithms B there exists an algorithm A that runs in roughly
the same time as A and AdvLPNn,m,p

(A) ≥ 1
2mAdvEKLPNm

n,m,p
(B).

2.3 Asymptotically Good Codes

In order to state the security of our scheme in asymptotic terms we need asymp-
totically good linear codes, these are [m,Rm, δm] codes with a constant rate R,
constant relative distance δ and arbitrary large block length m. Moreover, we
want the code to be efficiently constructible in order to get a uniform construc-
tion, and of course encoding and decoding need to be efficient to get an efficient
scheme. Such codes exist:

Lemma 3 ([16]). For any rate 0 < R < 1, there exists a binary linear error-
correcting code family which is polynomial time constructible, encodable and de-
codable and can decode from up to 	 δn2
 errors where δ ≈ 1

2 (1 − R).

We emphasis, that for concrete instantiations of the scheme, an arbitrary, suit-
able error correction code can be used and the asymptotic behavior is not
important.

2.4 Game-Based Proofs

We use game-based proofs [17]. A game G consists of an Initialize and a Finalize
procedure, and possibly other procedures. An adversary A is executed in the
game by first calling Initialize. Next, he can make arbitrary calls to the other
procedures, some multiple times, some only once, depending on the specification
of G. Finally, A makes one single call to Finalize which ends the game. The
output of the game, denoted as GA, is defined as the output of Finalize.

2.5 Tag-Based Encryption

A tag-based encryption scheme with tag-space T and message-space M consist
of the following three PPT algorithms TBE = (Gen,Enc,Dec).

6 E. Kiltz, D. Masny, and K. Pietrzak

– Gen(1k) outputs a secret key sk and a public key pk .
– Enc(pk , τ,M) outputs a ciphertext c of M ∈ M with respect to tag τ ∈ T .
– Dec(sk , τ, C) outputs the decrypted message M of ciphertext C with respect

to tag τ ∈ T , or ⊥.

We require the standard correctness condition Dec(sk , τ,Enc(pk , τ,M)) = M
for all τ,M and all (sk , pk) in the range of Gen(·). To define security, let the
advantage of an adversary A in the selective-tag weak CCA game [18] be

AdvTBE(A) =

∣∣∣∣Pr[GA
TBE = 1] − 1

2

∣∣∣∣ ,
where the games defining GTBE are defined in Figure 1. Here the term selective
models the fact that A has to commit to the challenge tag τ∗ in the beginning,
before seeing the public-key.

Initialize(τ∗)

(sk , pk) ← Gen(1k)
Return pk

Challenge(M0,M1) //one time

bM
$← {0, 1};

Return Enc(pk , τ∗,MbM)

Finalize(d)
Return (bM = d)

queryDec(τ, C)//many times
If τ �= τ∗ return Dec(sk , τ, C)
Else return ⊥

Fig. 1. Games constituting GTBE

To construct an IND-CCA secure PKE, it is sufficient to construct a secure
TBE (in the above sense) with tag-space T exponential in n [18]. The overhead
of this transformation is small. It essentially consists of a one-time signature or
a message-authentication code plus a commitment.

3 Tag-Based Encryption

3.1 Double Trapdoor Generator

We use a matrix representation Hτ ∈ Zn×n2 for finite field elements τ ∈ F2n

[19,12]. The structure of a finite field implies certain properties: Hτ + Hτ ′ =
Hτ+τ ′ and 0 = H0 for the zero element of the field. In particular all matrices
Hτ − Hτ ′ = Hτ−τ ′ �= H0 for τ �= τ ′ are invertible.

Let n and m be two parameters and let G ∈ Zm×n
2 be a generator matrix

for an efficiently decodable code. (This was called gadget matrix in [9].) The
trapdoor generator is the following PPT algorithm which takes as input two
tags τ0, τ1 ∈ F2n :

Simple Chosen-Ciphertext Security from Low-Noise LPN 7

Gentd(1
n, τ0, τ1) → (T0,T1, ek). Sample T0,T1

$← Bm×m
p and A

$← Zm×n
2

Let B0 := T0A − GHτ0 , B1 := T1A − GHτ1 and ek = (A,B0,B1)

Initialize(t , τ0, τ1, τ
′)//Greal

(T0,T1, ek) ← Gentd(1
n, τ0, τ1)

z
$← Bm

p ; T
$← Bm×m

p ;
Return (Tt , ek , z,Tz)

Initialize(t , τ0, τ1, τ
′)//Guniform

(T0,T1, ek) ← Gentd(1
n, τ0, τ1);

Parse ek = (A,B0,B1)

B′
t := Bt ; B′

t

$← Zm×n
2 ;

ek ′ := (A,B′
0,B

′
1);

z
$← Bm

p ; T := Tt ;
Return (Tt , ek

′, z,Tz)

Initialize(t , τ0, τ1, τ
′)//Gcorr

τ ′
t := τt ; τ ′

t := τ ′;
(T0,T1, ek) ← Gentd(1

n, τ ′
0, τ

′
1);

z
$← Bm

p ; T := Tt ;
Return (Tt , ek , z,Tz)

Finalize(d) //Greal,uniform,corr

Return d

Fig. 2. Procedures defining games Greal, Guniform, Gcorr. Here ek := (A,B0,B1) =
(A,T0A−GHτ0 ,T1A−GHτ1) as defined in Section 3.1.

Looking ahead, a trapdoor Ti (i ∈ {0, 1}) output by Gentd(1
n, τ0, τ1) can be

used to invert the tag-based trapdoor function

f τ (s, e, e′0, e
′
1) = (As + e, (GHτ +B0)s+ e′0, (GHτ +B1)s + e′1).

whenever τ �= τi (for one i ∈ {0, 1}) and the error Tie + e′i is small enough,
so it can be corrected (using the code given by G) as follows: given (c, c0, c1)
(= f τ (s, e, e′0, e

′
1)), compute

(
Ti I

)
·
(
−c ci

)ᵀ
= GHτ−τis − Tie+ e′i, use error

correction to decode Hτ−τis, and then the invertability of Hτ−τi (recall that we
assume τ �= τi) to reconstruct s The remaining inputs e, e′0, e

′
1 can now easily

be computed.
The ”switching lemma” below states that under the LPN assumption, the

output of the trapdoor generator computationally hides the tags τ0, τ1, even if
there is some additional information about the trapdoor leaked. This lemma
will allow us to switch either τ0 or τ1 to an arbitrary tag τ ′ ∈ Zn2 . During the
switching procedure, we still have access to the other trapdoor. This allows us
to answer decryption queries during a CCA security proof.

Lemma 4. For every PPT algorithm A there exists a PPT algorithm B such
that:

|Pr[GA
real = 1] − Pr[GA

corr = 1]| ≤ 3m · AdvLPNm−n,m,p(B).

where games Greal and Gcorr are defined in Figure 2.

8 E. Kiltz, D. Masny, and K. Pietrzak

Proof. The proof follows by the following two equations combined with Lemma 1
and 2

|Pr[GA
real = 1] − Pr[GA

uniform = 1]| ≤ AdvKLPNm
n,m,p

(B) (3)

|Pr[GA
corr = 1] − Pr[GA

uniform = 1]| ≤ AdvEKLPNm
n,m,p

(B), (4)

where game Guniform is also defined in Figure 2.
To prove (3) we construct an algorithm B which on input a DKLPNm

n,m,p
or a

random sample, simulates GA
real or G

A
uniform, respectively. B(A,B) simulates A’s

view as follows.

Initialize(t , τ0, τ1, τ
′)

z
$← Bmp ; T,Tt

$← Bm×m
p ;

Bt := TtA − GHτt ; Bt := B − GHτt ;
ek := (A,B0,B1);
Return (Tt , ek , z,Tz)

Finalize(d)
Return d

We now analyse B(A,B)’s simulation. A is always uniform, z and Tz are
distributed as in the real and random game. B generates τt , Tt and Bt exactly
as Gentd.

KLPN Case: B = TtA implies that Bt = TtA−GHτt has the same distribu-
tion as in Greal. Hence B simulates Greal and Pr[GA

real = 1] = Pr[B(A,B) =

1 | (A,B)
$← DKLPNm

n,m,p
].

Uniform Case: B is uniform and this implies that Bt is uniform, too. Since
Bt is independent of Tt , Tz has the correct distribution. Hence B simulates
Guniform and Pr[GA

uniform = 1] = Pr[B(A,B) = 1 | (A,B) uniform].

This concludes the proof of (3).
To prove (4) we use the EKLPNmm−n,m,p assumption. We reuse B, now with

input B(A, z,B,b) and change it slightly by setting Bt := B − GHτ ′ and re-
placing Tz by b = Ttz during the Initialize procedure. With almost the same
argument B simulates in the uniform case Guniform and in the LPN case Gcorr

correctly.

3.2 Description of the Scheme

Our scheme uses the following parameters whose concrete choices will be justified
later.

– The dimension n of the LPN secret (with n = Θ(k2)) and m ≥ 2n controlling
the security of the scheme. (See Theorem 2.)

– A constant 0 < c < 1/4 defining:

Simple Chosen-Ciphertext Security from Low-Noise LPN 9

• The Bernoulli parameter p =
√

c/m.
• The bounding parameter β = 2

√
cm to check consistency during

decryption.
• A binary linear error-correcting code G : Zn2 → Zm2 which corrects up
to αm errors for some α with 4c < α < 1.

– Further, we use an efficient error correcting code with generator matrix G2 :
M → Z�2 where the parameter � ≥ m is chosen such that the encoding
scheme is able to correct at least 2�

√
c/

√
m = 2�p errors (note that G must

correct a constant fraction of errors, whereas G2 only needs to correct a
square root fraction).

The following three algorithms describe our TBE = (Gen,Enc,Dec) based on
LPN with tag space T = F2n \ {0}:

Gen(1k) → (sk , pk). The algorithm calls the trapdoor generator Gentd(1
n, 0, 0)→

(T0,T1, (A,B0,B1)) and picks C
$← Z�×n2 . The private and public key is

defined as

sk := (0,T0) ∈ Zn2 × Zm×m
2 , pk := (A,B0,B1,C) ∈ (Zm×n

2)3 × Z�×n2 .

(Recall that Bi = TiA.)
Enc(pk , τ,M) → C = (c, c0, c1, c2). The algorithm picks

e1
$← Bmp ; e2

$← B�p; T′
0,T

′
1

$← Bm×m
p and s

$← Zn2

and defines

c := As+ e1 ∈ Zm2
c0 := (GHτ +B0)s +T′

0e1 ∈ Zm2
c1 := (GHτ +B1)s +T′

1e1 ∈ Zm2
c2 := Cs+ e2 +G2(M). ∈ Z�2

Dec(sk , τ, C) → (M or ⊥). The algorithm parses sk = (τ0,T0) and computes

c̃0 :=
(
T0 I

)
·
(

−c
c0

)
(= GHτ−τ0s+ (T′

0 − T0)e1).

Then it uses the error correction property of G to reconstruct Hτ−τ0s (from
the error (T′

0 − T0)e1), and further computes s = H−1
τ−τ0Hτ−τ0s. If

| c−As︸ ︷︷ ︸
e1

| ≤ β ∧ | c0 − (GHτ +B0)s︸ ︷︷ ︸
T′

0e1

| ≤ αm

2
∧ | c1 − (GHτ +B1)s︸ ︷︷ ︸

T′
1e1

| ≤ αm

2

(5)

is true, compute c2 − Cs = G2(M) + e2 and reconstruct (using the error
correction property of G2) M and output it, otherwise output ⊥.

10 E. Kiltz, D. Masny, and K. Pietrzak

The scheme has a couple of straightforward simplifications which we did not
apply in order to facilitate the proof. First, τ0 = 0 can be omitted from sk and
the description of the scheme. Second, the matrix B1 can be chosen uniformly.
(The latter is shown implicitly in the proof.)

We also remark that that scheme is randomness-recovering and can therefore
also be seen as an adaptive tag-based trapdoor function [13], where the domain
consists of sampling (s, e1,T

′
0e1,T

′
1e1, e2) as in Enc.

A discussion how to transform the TBE scheme into a IND-CCA secure en-
cryption scheme is done in Appendix A.

3.3 Correctness and Equivalence of the Trapdoors

Theorem 1 (Corectness). Let G, G2 be the codes given above. Then with
overwhelming probability over the choice of the public and secret keys and for
all τ ∈ T , M ∈ M, Dec(sk , τ, C) outputs M with overwhelming probability over
C ← Enc(pk , τ,M).

Proof. We start with showing why the chosen β = 2
√
cm, p =

√
c/m are suitable

for our application. The Chernoff bound 2 yields:

Pr
e

$←Bm
p

[|e| > β︸︷︷︸
=2pm

] < e−pm/3 = 2−Θ(
√
m) (6)

The analysis of our choice of the constants 4c < α < 1 is a bit more involved. We
start by upper bounding the probability p′ that the inner product tT e of e with

a vector t
$← Bmp is 1, assuming the Hamming weight of e is at most β. Note

that a necessary condition for tT e = 1 is that t[i] = 1 for at least one of the i’s
where e[i] = 1. We use this in the second step below, the third step follows by
the union bound

p′ = Pr
t
[tTe = 1 | |e| ≤ β] ≤ Pr

t
[∃i : (e[i] = 1) ∧ (t[i] = 1) | |e| ≤ β] ≤ βp = 2c

Let T
$← Bm×m

p . By the Chernoff bound (1) we have with δ = α/(2p′)− 1 (note
that p′ ≤ 2c < α/2)

Pr
T

[
|Te| > α

2
m | |e| ≤ β

]
= Pr

T
[|Te| > (1 + δ)p′m||e| ≤ β] < e−

min(δ,δ2)
3 p′m.

(7)

Now δp′ = α/2 − p′ ≥ α/2 − 2c > 0 and δ = α/(2p′) − 1 ≥ α/(4c) − 1 > 0 are
lower bounded by constants and therefore

Pr
T

[
|Te| > α

2
m | |e| ≤ β

]
< e−

min(δ,δ2)
3 p′m = 2−Θ(m). (8)

As C is a properly generated ciphertext

|e1| ≤ β ∧ |T0e1| ≤ αm

2
∧ |T1e1| ≤ αm

2

Simple Chosen-Ciphertext Security from Low-Noise LPN 11

holds with overwhelming probability 1 − 2−Θ(
√
m) by (6) and (8), assume this

is the case. Then by the error correction property of the code G we decode
the correct s from c̃0 := GHτ−τ0s + (T′

0 − T0)e1 since the error term satisfies
|(T′

0 − T0)e1| ≤ αm. Moreover, the consistency check 5 will pass.
It remains to show that the correct messageM is reconstructed. We use G2 to

deriveM from c2−Cs = e2+G2(M), which gives the correct M if the Hamming

weight of e2
$← B�p lies within the 2�

√
c/

√
m = 2�p bits error correction capacity

of G2. Using the Chernoff bound 2 we can upper bound the probability of this
not being the case (the last step uses � ≥ m, which we assumed is the case)

Pr
e2

[|e2| > 2�p] < e−�p/3 = e−�
√
c/3

√
m = 2−Ω(

√
m)

The next lemma will be central in our security proof. It states that the out-
put distribution of a decryption oracle is basically independent of which of two
possible secret keys the oracle uses to decrypt.

Lemma 5. Let Dec0 = Dec and let Dec1 be defined like Dec, except that c1
instead of c0 is used to reconstruct s. Then, with overwhelming probability over
the choice of the public and secret keys, Dec0 and Dec1 have the same output
distribution: Let (T0,T1, (A,B0,B1)) ← Gentd(1

n, τ0, τ1), sk0 = (τ0,T0), sk1 =

(τ1,T1) and pk := (A,B0,B1,C) with C
$← Z�×n2 . Then

Pr
pk,sk0,sk1

[∀τ0, τ1, τ /∈ {τ0, τ1}, C : (Dec0(sk0, τ, C) = Dec1(sk1, τ, C)] ≥ 1− 2−Θ(m)

Proof. If M = Dec0(sk0, τ, C = (c, c0, c1, c2)), then by the consistency check (5)
of Dec = Dec0 we reconstruct some s where

e := c − As with |e| ≤ β

∧ t0 := c0 − (GHτ +B0)s with |t0| ≤ αm/2

∧ t1 := c1 − (GHτ +B1)s with |t1| ≤ αm/2

Using the above notation, the computation of Dec1(sk1, τ, C) can be expressed
as

c̃1 := c1 − T1c = (GHτ +B1)s+ t1 − T1As − T1e = GHτ−τ1s+ t1 − T1e.

Dec1(sk1, τ, C) reconstructs the same s if the error term |t1 −T1e| is at most
≤ αm. We already know that |t1| ≤ αm/2. Thus, by the triangle inequality it is
sufficient to show |T1e| ≤ αm/2 to guarantee the correct decoding of s. By (8),
the probability that this is the case when we chose some e satisfying |e| = β′

(for any β′ ≤ β) at random, is

Pr
e,|e|=β′,T1

[|T1e| ≤ αm/2] ≥1 − 2−Θ(m),

We need the above to hold fore every small e, not just a randomly chosen one.
Taking the union bound over all 2log(m)O(

√
m) possible e ∈ Zm2 satisfying |e| ≤

β = 2
√
cm = Θ(

√
m) we further get

Pr
T1

[∀e, |e| ≤ β : |T1e| ≤ αm/2] ≥ 1 − 2−Θ(m)+log(m)O(
√
m) = 1 − 2−Θ(m)

12 E. Kiltz, D. Masny, and K. Pietrzak

This shows that with overwhelming probability over the choice of T1 the same
s, and thus also the same message M is computed by Dec1(sk1, τ, C). The proof
that whenever Dec1 outputs some M �= ⊥, then Dec0 must output the same M
(with overwhelming probability over the choice of T0) is symmetric.

3.4 Proof of Security

Theorem 2 (CCA Security). If the LPN assumption holds, TBE from Sec-
tion 3.2 is secure against selective-tag weak CCA adversaries. In particular, for
every PPT algorithm A there exist PPT algorithms B and C with roughly the
same running time, such that:

AdvTBE(A) ≤ 6m · AdvLPNm−n,m,p(B) +AdvLPNn,m+�,p
(C) + negl(n).

Proof. Let A be an adversary attacking TBE. The games used in the proof are
given in Figure 3, where G1 is the same as the original TBE security game from
Figure 1.

Initialize(τ∗) //G1

(T0,T1, ek) ← Gentd(1
n, 0, 0);

e∗ $← Bm
p ; s∗ $← Zn

2 C
$← Z�×n

2 ;
c∗ := As∗ + e∗;
T∗

0
$← Bm×m

p ; c∗0 := (GHτ∗ +B0)s
∗ +T∗

0e
∗

T∗
1

$← Bm×m
p ; c∗1 := (GHτ∗ +B1)s

∗ +T∗
1e

∗

sk = (0,T0);
Return pk := (ek ,C)

Initialize(τ∗) //G2,3

(T0,T1, ek) ← Gentd(1
n, 0, τ∗);

e∗ $← Bm
p ; s∗ $← Zn

2 C
$← Z�×n

2

c∗ := As∗ + e∗;
T∗

0
$← Bm×m

p ; c∗0 := (GHτ∗ +B0)s
∗ +T∗

0e
∗

T∗
1 := T1; c∗1 = T∗

1c
∗;

sk = (0,T0); //G2

sk = (τ∗,T1); //G3

Return pk := (ek ,C)

Initialize(τ∗) //G4,5

(T0,T1, ek) ← Gentd(1
n, τ∗, τ∗)

e∗ $← Bm
p ; s∗ $← Zn

2 ; C
$← Z�×n

2

c∗ := As∗ + e∗; //G4

c∗ $← Zm
2 ; //G5

T∗
0 := T0; c∗0 = T∗

0c
∗

T∗
1 := T1; c∗1 = T∗

1c
∗

sk = (τ∗,T1)
Return pk := (ek ,C)

queryDec(τ, C) //G1−5

If (τ = τ∗) Return ⊥
Return Dec(sk , τ, C)

Finalize(d) //G1−5

Return (bM = d)

Challenge(M0,M1) //G1−4

bM
$← {0, 1};

e∗
2

$← B�
p;

c∗2 := Cs∗ + e∗
2 +G2(MbM)

Return C∗ = (c∗, c∗0, c
∗
1 , c

∗
2)

Challenge(M0,M1) //G5

c∗2
$← Z�

2

Return C∗

Fig. 3. The different procedures of the games 1 to 5. G1 is exactly the same as GTBE,
where the message-independent part of a Challenge query is already pre-computed in
Initialize.

From G1 to G2 we switch the hidden trapdoor tag of trapdoor T1 from 0
to τ∗.

Lemma 6. There exists a PPT algorithm B such that

|Pr[GA
1 = 1] − Pr[GA

2 = 1]| ≤ |Pr[GB
real = 1] − Pr[GB

corr = 1]|
≤ 3m · AdvLPNm−n,m,p

(B),

where games Greal and Gcorr are defined in Figure 2.

Simple Chosen-Ciphertext Security from Low-Noise LPN 13

Proof. We describe algorithm B who simulates G1 in Greal or G2 in Gcorr.

Initialize(τ∗)
(ek ,T0, e

∗,T∗
1e

∗) ← Initialize(0, 0, 0, τ∗);

C
$← Z�×n2 ; s∗

$← Zn2 ;
c∗ := As∗ + e∗;

T∗
0

$← Bm×m
p ;

c∗0 := (GHτ∗ +B0)s
∗ +T∗

0e
∗;

c∗1 := (GHτ∗ +B1)s
∗ +T∗

1e
∗;

Return pk := (ek ,C)

queryDec(τ, C)
If (τ = τ∗) Return ⊥
Return Dec(sk = (0,T0), τ, C)

Challenge(M0,M1)

bM
$← {0, 1};

e∗2
$← B�p;

c∗2 := Cs∗ + e∗2 +G2(MbM)
Return C∗

Finalize(d)
Finalize(bM = d)

The definition of Greal and Gcorr imply the correctness of the output of
Initialize. e∗ and T∗

1e
∗ have the correct distribution, too. Hence B simulates

G1 in Greal or G2 in Gcorr. The Lemma follows using Lemma 4.

In a next lemma we show that the adversary isn’t able to distinguish whether
the simulator uses the trapdoor T0 or T1 to answer decryption queries. To show
this lemma, we use equivalence of the trapdoors shown in Lemma 5.

Lemma 7. |Pr[GA
2 = 1] − Pr[GA

3 = 1]| ≤ negl(n).

Proof. We have to prove that an adversary can’t figure out which trapdoor is
used to answer decryption queries. Otherwise he is able to distinguish G2 from
G3. Lemma 5 already shows that Dec has the same output for two different
trapdoors with overwhelming probability, if the tags related to the trapdoors
are not queried. In our case, τ0 and τ1 are either 0 or τ∗. The adversary is
not allowed to query 0 �∈ T and τ∗. Hence he has only a negligible chance to
distinguish G2 and G3

From G3 to G4 we switch the hidden trapdoor tag of trapdoor T0 from 0 to
τ∗. Its proof is analogue to the one of Lemma 6 and therefore omitted.

Lemma 8. There exists a PPT algorithm B such that

|Pr[GA
3 = 1] − Pr[GA

4 = 1]| ≤ |Pr[GB
real = 1] − Pr[GB

corr = 1]|
≤ 3m · AdvLPNm−n,m,p

(B),

where games Greal and Gcorr are defined in Figure 2.

In game G5, the last game, we make the challenge ciphertext independent of
the plaintexts M0 and M1.

14 E. Kiltz, D. Masny, and K. Pietrzak

Lemma 9. There exists a PPT algorithm C such that

|Pr[GA
4 = 1] − Pr[GA

5 = 1]| ≤ AdvLPNn,m+�,p
(C).

Proof. We give a description of C and show, that he simulates G4 and G5 cor-
rectly. C receives a LPN challenge (A,C), (bA,bC) where (bA,bC) = (As +
e1,Cs+ e2) or uniform.

Initialize(τ∗)

T0,T1
$← Bm×m

p ;
B0 := T0A − GHτ∗ ;
B1 := T1A − GHτ∗ ;
c∗ := bA;
T∗

0 := T0; c∗0 := T∗
0bA;

T∗
1 := T1; c∗1 := T∗

1bA;
Return pk := (A,B0,B1,C)

queryDec(τ, C)
If (τ = τ∗) Return ⊥
Return Dec((τ∗,T1), τ, C)

Challenge(M0,M1)

bM
$← {0, 1};

c2 := bC +G2(MbM)
Return C∗

Finalize(d)
Finalize(bM = d)

Now we analyse if C simulates correctly. First note that A and C are uniformly
distributed, as required.

LPN Case: bA = As + e1 and bC = Cs + e2. To show that G4 is simulated
correctly, we have to show, that the distribution of c∗ is correct. We implicitly
set s∗ = s, e∗1 = e1 and e∗2 = e2.

c∗ := bA = As∗ + e∗
1

c∗0 := T∗
0bA = (GHτ∗ −GHτ∗ +T∗

0A)s∗ +T∗
0e

∗
1 = (GHτ∗ +B0)s

∗ +T∗
0e

∗
1

c∗1 := T∗
1bA = (GHτ∗ +B1)s

∗ +T∗
1e

∗
1

c∗2 := bC +G2(MbM) = Cs∗ + e∗
2 +G2(MbM).

Uniform Case: c∗2 is independent of MbM since bC is uniformly distributed
and hence bC +G2(MbM) is uniform, too. In this case, C simulates G5.

In G5, the challenge ciphertext is independent of the message and hence from
the challenge bit bM . The best, an adversary can do now, is to guess bM and
output the guess.

Lemma 10. Pr[GA
5 = 1] = Pr[GA

5 = 0] = 1
2 .

Simple Chosen-Ciphertext Security from Low-Noise LPN 15

Combining the Lemmas 6–10 concludes the theorem:

AdvTBE(A)

=

∣∣∣∣Pr[GA
TBE = 1] − 1

2

∣∣∣∣
≤
∣∣∣∣Pr[GA

2 = 1] + 3m · AdvLPNm−n,m,p(B) − 1

2

∣∣∣∣
≤
∣∣∣∣Pr[GA

3 = 1] + negl(n) + 3m · AdvLPNm−n,m,p
(B) − 1

2

∣∣∣∣
≤
∣∣∣∣Pr[GA

4 = 1] + negl(n) + 6m · AdvLPNm−n,m,p(B) − 1

2

∣∣∣∣
≤
∣∣∣∣Pr[GA

5 = 1] +AdvLPNn,m+�,p
(C) + negl(n) + 6m · AdvLPNm−n,m,p

(B) − 1

2

∣∣∣∣
≤ 6m · AdvLPNm−n,m,p

(B) +AdvLPNn,m+�,p
(C) + negl(n).

References

1. Gilbert, H., Robshaw, M., Seurin, Y.: How to encrypt with the LPN problem.
In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 679–690. Springer,
Heidelberg (2008) 1

2. Hopper, N.J., Blum, M.: Secure human identification protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001) 1

3. Katz, J., Shin, J.S., Smith, A.: Parallel and concurrent security of the HB and
HB+ protocols. Journal of Cryptology 23(3), 402–421 (2010) 1

4. Kiltz, E., Pietrzak, K., Cash, D., Jain, A., Venturi, D.: Efficient authentication
from hard learning problems. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 7–26. Springer, Heidelberg (2011) 1

5. Alekhnovich, M.: More on average case vs approximation complexity. In: 44th An-
nual Symposium on Foundations of Computer Science, pp. 298–307. IEEE Com-
puter Society Press (October 2003) 1

6. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. In: 32nd ACM STOC Annual ACM Symposium
on Theory of Computing, pp. 435–440. ACM Press (May 2000) 2

7. Damg̊ard, I., Park, S.: Is public-key encryption based on lpn practical? Cryptology
ePrint Archive, Report 2012/699 (2012), http://eprint.iacr.org/ 2

8. Döttling, N., Müller-Quade, J., Nascimento, A.C.A.: Ind-cca secure cryptography
based on a variant of the lpn problem. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 485–503. Springer, Heidelberg (2012) 2, 3, 16

9. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012) 2, 3, 6

10. Kurosawa, K., Desmedt, Y.G.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004) 2

http://eprint.iacr.org/

16 E. Kiltz, D. Masny, and K. Pietrzak

11. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007) 2

12. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010) 2, 6

13. Kiltz, E., Mohassel, P., O’Neill, A.: Adaptive trapdoor functions and chosen-
ciphertext security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 673–692. Springer, Heidelberg (2010) 3, 10

14. Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complexity of
LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 465–484. Springer, Heidelberg (2011) 4

15. Alperin-Sheriff, J., Peikert, C.: Circular and KDM security for identity-based en-
cryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 334–352. Springer, Heidelberg (2012) 5

16. Justesen, J.: Class of constructive asymptotically good algebraic codes. IEEE
Transactions on Information Theory 18(5), 652–656 (1972) 5

17. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006) 5

18. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006) 6

19. Cramer, R., Damg̊ard, I.: On the amortized complexity of zero-knowledge proto-
cols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 177–191. Springer,
Heidelberg (2009) 6

20. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM Journal on Computing 36(5), 1301–1328 (2007) 16

21. Boneh, D., Katz, J.: Improved efficiency for CCA-secure cryptosystems built using
identity-based encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 87–103. Springer, Heidelberg (2005) 16, 17

22. Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 355–374. Springer, Heidelberg (2012) 17

23. Jain, A., Krenn, S., Pietrzak, K., Tentes, A.: Commitments and efficient zero-
knowledge proofs from learning parity with noise. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 663–680. Springer, Heidelberg (2012) 17

A IND-CCA Secure Encryption

There are generic constructions to transform a TBE to an IND-CCA PKE. [20]
is based on one-time signatures (OTS). The other one is based on a message
authentication code (MAC) and a commitment scheme [21].

To transform a TBE to an IND-CCA secure encryption, we do not use a OTS
based on LPN like in [8], since this transformation would be too expensive. This
would cause a large tag, since the the verification key of the OTS is the tag.
Further, the size of the ciphertext grows with a bigger tag and the ciphertext
will be signed with the OTS. In order to use this approach a collision resistant

Simple Chosen-Ciphertext Security from Low-Noise LPN 17

hash function is necessary to shrink the ciphertext to the message size signed by
the signature.

More efficient is the technique based on a commitment scheme and a MAC
[21]. LPN-based euf MACs have a large secret to which we have to commit [22].
This commitment is used as the tag for the TBE. A large secret key will cause
again a large commitment, large tag and even larger ciphertext. The MAC is used
to create a tag for the ciphertext of a TBE. The advantage of this transformation
is, that we do not need a collision resistant hash function.

In the commitment and MAC-based transformation, the MAC has to be
existential unforgeable given one tag query for an arbitrary message. A pair-
wise independent function fulfils this task in a less complex way and with a
smaller secret compared to LPN-based MACs. But now we have to shrink the
size of the ciphertext to the domain of the pairwise independent function. A
collision resistant hash function leads to an efficient transformation of a TBE
to an IND-CCA PKE. As alternative to a collision resistant hash function, we
could also use an almost pairwise independent hash function instead of the pair-
wise independent hash function. As commitment scheme, we use the simple and
efficient construction of [23]. Their commitment scheme is perfectly binding and
computationally hiding.

B An IND-CPA Secure Public Key Encryption Scheme

The following three algorithms describe an IND-CPA-PKE = (Gen,Enc,Dec).
The scheme is a simplified version of the TBE to achieve just IND-CPA security.
An IND-CPA adversary plays the GTBE without having access to qeryDec. This
makes the proof and hence the scheme much easier, since there is no need for
having access to a trapdoor to answer decryption queries. Further an efficient
error correction codeG is required to reconstruct the message. This code corrects
up to αm errors with 4c < α < 1 for Bernoulli parameter p =

√
c/m, and maps

the message space M into Z�2. The dimensions n, m−n of the LPN secrets (with
n = Θ(k2)) controll the security of the scheme.

Gen(1k) → (sk , pk). The algorithm picks A
$← Zm×n

2 , T
$← B�×mp and sets C =

TA. The private key is T and the public key pk := (A,C).

Enc(pk ,M) → C = (c, c2). Sample e1
$← Bmp ; e2

$← B�p and s
$← Zn2 and set

c := As+ e1 and c2 := Cs+ e2 +G(M).

Dec(sk , C) → (M or ⊥). The algorithm computes

c̃ :=
(
T I

)
·
(

−c
c2

)
(= G(M) − Te1 + e2).

Output M , which is reconstructed from c̃ by using G.

18 E. Kiltz, D. Masny, and K. Pietrzak

A Simple Trapdoor Function. By changing the construction a little bit, one
obtains a simple trapdoor function. A trapdoor T ∈ Zm×n

2 output by Gen(1n)
can be used to invert the trapdoor function

f τ (s, e1, e2) = (As + e1, (C+G)s + e2).

s is reconstructed by using the error correction of code G. Details can be seen
in the correctness of the PKE. When s is reconstructed, e1 and e2 are easily
obtained by subtracting As and (C+G)s from the output of the function.

Correctness. The encoding scheme has to correct an error e2 − Te1, for

e1, e2
$← Bmp with overwhelming probability. The correctness follows from the

correctness of the proposed TBE. To give an example, for message space Zn2
and � = m, the generator matrix G of the TBE can be used. This encoding
scheme is stronger than necessary, since it corrects even an error T2e2 − T1e1
for e1, e2

$← Bmp , T1,T2
$← Bm×m

p with overwhelming probability.

Security.

Theorem 3. If the LPN assumption holds, PKE is secure against IND-CPA
adversaries. In particular, for every PPT algorithm A there exist PPT algorithms
B and C with roughly the same running time, such that:

AdvTBE(A) ≤ � · AdvLPNm−n,m,p
(B) +AdvLPNn,m+�,p

(C) + negl(n).

Proof Sketch. First we switch C = TA to a uniform C. If an adversary
has less advantage in the uniform setting, we will break the KLPN�m−n,m,p as-
sumption. Then we switch c∗, c∗2 to uniform by using a LPNn,m+�,p instance
A,C,bA,bC and setting c∗ = bA, c∗2 = bB + G(M). Now the ciphertext is
uniform and the advantage of an adversary is negligible.

Leakage-Flexible CCA-secure Public-Key

Encryption: Simple Construction
and Free of Pairing

Baodong Qin1,2 and Shengli Liu1,�

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China

2 College of Computer Science and Technology, Southwest University of Science and
Technology, Mianyang 621010, China
{qinbaodong,slliu}@sjtu.edu.cn

Abstract. In AsiaCrypt 2013, Qin and Liu proposed a new approach
to CCA-security of Public-Key Encryption (PKE) in the presence of
bounded key-leakage, from any universal hash proof system (due to
Cramer and Shoup) and any one-time lossy filter (a simplified version
of lossy algebraic filters, due to Hofheinz). They presented two instan-
tiations under the DDH and DCR assumptions, which result in leakage
rate (defined as the ratio of leakage amount to the secret-key length) of
1/2 − o(1). In this paper, we extend their work to broader assumptions
and to flexible leakage rate, more specifically to leakage rate of 1− o(1).

– We introduce the Refined Subgroup Indistinguishability (RSI) as-
sumption, which is a subclass of subgroup indistinguishability as-
sumptions, including many standard number-theoretical assumptions,
like the quadratic residuosity assumption, the decisional composite
residuosity assumption and the subgroup decision assumption over
a group of known order defined by Boneh et al.

– We show that universal hash proof (UHP) system and one-time lossy
filter (OT-LF) can be simply and efficiently constructed from the
RSI assumption. Applying Qin and Liu’s paradigm gives simple and
efficient PKE schemes under the RSI assumption.

– With the RSI assumption over a specific group (free of pairing),
public parameters of UHP and OT-LF can be chosen in a flexible
way, resulting in a leakage-flexible CCA-secure PKE scheme. More
specifically, we get the first CCA-secure PKE with leakage rate of
1− o(1) without pairing.

Keywords: Public-key encryption, leakage flexibility, chosen-ciphertext
security.

� Supported by the National Natural Science Foundation of China (Grant
No. 61170229, 61133014 and 61373153), the Specialized Research Fund for the Doc-
toral Program of Higher Education (Grant No. 20110073110016), and the Scientific
innovation projects of Shanghai Education Committee (Grant No. 12ZZ021).

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 19–36, 2014.
c© International Association for Cryptologic Research 2014

20 B. Qin and S. Liu

1 Introduction

Traditional securitymodels (e.g., semantic security [17]) of cryptographic schemes
assume that the secret key or the internal secret state involved in a cryptosystem is
completely unknown to adversaries. However, in the real world, an adversary may
obtain partial knowledge of the secret information via a side channel attack [18].
Side channel attacks gain (secret) information from physical attributions (e.g.,
timing, power consumption, etc.) revealed by a computing device. Inspired by
side channel attacks, many cryptographic researchers have contributed their work
to design of cryptosystems that remain secure even if an adversary obtains some
information on the secret keys, including symmetric-key encryption [11,13,30],
public-key encryption [1,27,2,4,5,31], digital signatures [21,14], identity-based en-
cryption [7,15,24].

To model security against side channel attacks, it is natural to consider an
adversary that only learns a limited amount of information on the secret key.
Otherwise, the security of the system will be compromised completely. A simple
yet general model of key-leakage is the bounded-leakage model [1]. It is formal-
ized by allowing an adversary to adaptively and repeatedly choose functions of
the secret key and gain the outputs of the functions as long as the total amount
of leaked information on the secret key is bounded by some parameter λ (called
the leakage amount). Clearly, from this perspective, the leakage amount must
be strictly smaller than the secret-key length |sk|. We call the ratio λ/|sk| the
relative leakage or the leakage rate of a cryptosystem. An obvious goal of de-
signing a leakage-resilient cryptosystem is to make its leakage rate as close to 1
as possible. There are also other security models for leakage-resilience that con-
sider more complicated scenarios of key leakage, e.g., auxiliary input model [11],
continual-leakage model [5,9] and continual auxiliary input model [33]. Never-
theless, many works from those complicated models rely on the results from the
bounded-leakage model as basic building blocks [19]. In this paper, we consider
the bounded-leakage model in the setting of public-key encryption.

Prior Constructions and Limitations. Inspired by Halderman et al.’s “cool
boot” attacks [18], Akavia et al. [1] formalized the notion of leakage-resilient
chosen-plaintext security (LR-CPA) in the bounded-leakage model. Since then,
many encryption schemes [32,16,3,27,19] have been proved secure in this model.
In particular, Naor and Segev presented a generic construction of LR-CPA secure
PKE schemes from any hash proof system (HPS) [8]. Moreover, they gave some
efficient instantiations based on the DDH and k-linear assumptions, where the
relative leakage is flexibly ranging over [0, 1). We also call such PKE leakage-
flexible. In [27], Naor and Segev also extended the framework of key leakage to
the setting of chosen-ciphertext attacks, i.e., leakage-resilient chosen-ciphertext
security (LR-CCA). They showed how to achieve LR-CCA secure PKE schemes
by relying on the Naor-Yung paradigm which results in (impractical) leakage
flexible PKE schemes or the hash proof systems which result in an efficient
variant of the Cramer-Shoup cryptosystem with leakage-rate 1/6. Later, some
new variants of the Cramer and Shoup cryptosystem [25,26] are showed to be

Leakage-Flexible CCA-secure PKE: Simple Construction and Free of Pairing 21

LR-CCA secure but with a leakage-rate smaller than 1/4. Very recently, Qin and
Liu [31] proposed a novel approach to achieve LR-CCA security by replacing the
universal2 hash proof system in Naor and Segev’s HPS-based framework with a
new primitive called one-time lossy filter. This results in efficient constructions
of LR-CCA secure PKE schemes based on the DDH and DCR assumptions with
leakage rate 1/2 − o(1).

The open problem of constructing a practical LR-CCA secure PKE scheme
with flexible leakage was solved by Dodis et al. [10]. They showed that Naor
and Segev’s generic construction in the Naor-Yung paradigm can be made effi-
cient under the Symmetric External Diffie-Hellman (SXDH) and Decisional Lin-
ear (DLIN) assumptions related to bilinear pairing on elliptic curves. Another
leakage-flexible CCA-secure PKE scheme was due to Galindo et al. [15]. Their
construction is obtained by applying the CHK transform [6] to their identity-
based encryption scheme with master-key leakage flexibility (without rigorous
proof) under the DLIN assumption on pairing-friendly groups. We observe that
all existing leakage-flexible CCA-secure PKE schemes rely on assumptions over
pairing-friendly groups. Moreover, even though they are practical, the construc-
tions are complicated and computations inevitably involve pairings.

Our Contributions. In this paper, we define a class of assumptions called
Refined Subgroup Indistinguishability (RSI) assumptions which are similar to
the Subgroup Indistinguishability (SI) assumptions (due to Brakerski and Gold-
wasser [4]) except for the restriction to cyclic groups. Specifically, a subgroup
indistinguishability problem is defined by a finite commutative multiplicative
group G, which is a direct product of two groups G = Gτ1 × Gτ2 of order τ1,
τ2 respectively. It requires that gcd(τ1, τ2) = 1 and Gτ2 is a cyclic group. The
subgroup indistinguishability assumption states that a random element of G is
computationally indistinguishable from a random element in Gτ1 . Brakerski and
Goldwasser [4] showed that the DCR and QR assumptions are two special cases
of the subgroup indistinguishability assumptions. In the Refined Subgroup In-
distinguishability (RSI) problem, we further require that the subgroup Gτ1 is
also cyclic. Nevertheless, all known instances of SI problems can be modified to
RSI problems. Moreover, the instantiations of RSI assumption under the DCR
and QR assumptions are operated over groups of unknown order. We can also
instantiate the RSI assumption over a specific group of known order (without
pairing).

We further show that the RSI assumption implies efficient construction of
leakage-resilient CCA-secure PKE schemes by presenting simple and efficient
constructions of universal hash proof systems and one-time lossy filters under
the RSI assumption. Here we follow Qin and Liu’s paradigm [31](details in Sec-
tion 4.1) of constructing leakage-resilient CCA-secure PKE from universal HPS
and OT-LF, but we extend their work to the RSI assumption.

When instantiating over a specific group of known order (without pairing),
we obtain a simple and efficient CCA-secure PKE scheme with leakage-rate of
1 − o(1). This is the first leakage-resilient CCA-secure PKE with leakage rate
1 − o(1), but free of pairing.

22 B. Qin and S. Liu

Organization. The rest of this paper is organized as follows. Basic notations
and definitions are introduced in Section 2. The definition of refined subgroup
indistinguishability assumptions and instantiations are presented in Section 3.
Our leakage-resilient CCA-secure PKE schemes from the refined subgroup indis-
tinguishability assumptions are given in Section 4. Finally, we summarize this
paper in Section 5.

2 Preliminary

Notations. Let κ ∈ N denote a security parameter and 1κ denote the string of
κ ones. We say that a function ε(κ) is negligible in κ if for all polynomial ploy
and sufficiently large κ, ε(κ) ≤ 1/ploy(κ). For n ∈ N, we write [n] for the set
{1, . . . , n}. We denote by |s| the length of a bitstring s and by |S| the size of a
set S. Moreover, s ←R S denotes the operation of sampling an element s from
S uniformly at random. We denote y ← A(x) the operation of running A with
input x, and assigning y as the result. We write log s for logarithms over the
reals with base 2.

Statistical Distance. The statistical distance between two random variables X
and Y over a finite set Ω is defined as Δ(X,Y) = 1

2

∑
ω∈Ω |Pr[X = ω]−Pr[Y =

ω]|. A random variable X is called ε-uniform over Ω, if Δ(X,Y) ≤ ε, where
Y is a uniform distribution. Let X and Y be two families of random variables
indexed by a security parameter κ. We say that X and Y are statistically indis-
tinguishable and write X ≈s Y if for all polynomial ploy and sufficiently large κ,
Δ(X,Y) ≤ 1/ploy(κ). If for any PPT algorithm A, its advantage in distinguish-
ing between X and Y defined as |Pr[A(X) = 1]−Pr[A(Y) = 1]| is negligible in κ,
we say that X and Y are computationally indistinguishable and write X ≈c Y .

Min-Entropy and Average Min-Entropy. The min-entropy of a random
variable X is H∞(X) = − log(maxx Pr[X = x]). The average min-entropy X
conditioned on a random variable Y is formally defined by Dodis et al. [12] as

H̃∞(X |Y) = − log
(
Ey←Y [2

−H∞(X|Y=y)]
)
.

Definition 1 (Universal hash). A family of functions H = {h : X → Y } is
called universal if, for all distinct x, x′ ∈ X, Prh←RH[h(x) = h(x′)] = 1/|Y |.

The following lemma shows that a universal hash function can be used as a
randomness extractor.

Lemma 1 ([12]). Let X and Y be random variables such that X ∈ {0, 1}n
and H̃∞(X |Y) ≥ v. Let H = {h : {0, 1}n → {0, 1}m} be a family of uni-
versal hash functions. If m ≤ v − 2 log(1/ε), then for h ←R H it holds that
Δ((Y, h, h(X)), (Y, h, Um)) ≤ ε, where Um is uniform over {0, 1}m.

Public-Key Encryption. A public-key encryption scheme PKE with message
space M consists of three PPT algorithms (Kg,Enc,Dec). For a security parame-
ter 1κ, the randomized key generation algorithm Kg(1κ) produces a public/secret

Leakage-Flexible CCA-secure PKE: Simple Construction and Free of Pairing 23

key pair (PK, SK). For a public key PK, the randomized encryption algorithm
Enc(PK,M) creates a ciphertext C of the message M ∈ M. For a secret key
SK and a ciphertext C, the decryption algorithm Dec(SK,C) returns a mes-
sage M ∈ M or a special rejection symbol ⊥. For consistency, we require that
Dec(SK,Enc(PK,M)) = M always holds, for all κ ∈ N, all (PK, SK) ← Kg(1κ)
and all M ∈ M.

For security, we consider the standard notion of leakage-resilient chosen-
ciphertext (LR-CCA) security in the bounded leakage model [27]. In this model,
the adversary is allowed to query a decryption oracle Dsk(·) which returns
Dec(sk, C) for a query C, and a leakage oracle Oλ

sk(·) which returns fi(sk) for
a leakage function fi : {0, 1}∗ → {0, 1}λi. The adversary can adaptively query
either of these two oracles polynomial times, with the following restrictions: (1)
the total amount of information leaked is bounded by

∑
i λi ≤ λ; (2) after seeing

the challenge ciphertext, the adversary is not allowed to query the decryption
oracle with the challenge ciphertext and query the leakage oracle at all.

Definition 2 (Leakage-resilient CCA-secure PKE). We say that a PKE
scheme PKE = (Kg,Enc,Dec) is λ-LR-CCA secure if, for any PPT adversary,
the following function Advλ-lr-ccaPKE,A (κ) is negligible in κ:

Advλ-lr-ccaPKE,A (κ) :=∣∣∣∣∣∣Pr
⎡⎣γ′ = γ :

(PK, SK) ← Kg(1κ), γ ←R {0, 1},
(M0,M1, St) ← ADsk(·),Oλ

sk(·)(PK) s.t. |M0| = |M1|,
C∗ ← Enc(PK,Mγ), γ

′ ← ADsk(·)(St, C∗).

⎤⎦− 1
2

∣∣∣∣∣∣ .
The leakage rate of a λ-LR-CCA secure PKE scheme is defined as λ/|SK|,

where |SK| denotes the secret-key length. If λ/|SK| can be made arbitrarily
close to 1 by properly choosing the parameter of the scheme, we call such scheme
leakage-flexible.

One-Time Lossy Filters. One-time lossy filter (OT-LF), a simplified lossy
algebraic filter [20], is a special collection of one-way functions. It can be operated
in either an “injective mode”, in which the function is injective (not requiring
efficiently invertible), or a “lossy mode”, in which the function is non-injective.

Definition 3. A collection of (Dom, �LF)-one-time lossy filter consists of three
PPT algorithms (FGen,FEval,FTag). The key generation algorithm FGen(1κ),
on input 1κ, generates an evaluation key ek and a trapdoor td (that allows for
efficiently sampling a lossy tag). The evaluation key ek defines a tag space T =
{0, 1}∗ × Tc that contains the disjoint sets of lossy tags Tloss ⊆ T and injective
tags Tinj ⊆ T . For an evaluation key ek and a tag t ∈ T , the evaluation algorithm
FEval(ek, t, x) maps x ∈ Dom to a unique image y = fek,t(x). For a trapdoor td
and an auxiliary part ta ∈ {0, 1}∗, the lossy tag generation algorithm FTag(td, ta)
computes a core tag tc ∈ Tc such that (ta, tc) ∈ Tloss. We require that OT-LF
has the following properties.

Lossiness. If t is injective, then so is the function fek,t(x). If t is lossy, then
fek,t(x) computes a lossy function, which has only 2�LF possible outputs.

24 B. Qin and S. Liu

Additionally, it is possible to set the evaluation key so that the parameter
�LF is constant even for larger domain.

Indistinguishability. A lossy tag and a random tag are computationally indis-
tinguishable for any PPT adversary A, i.e.,

AdvindLF,A(κ) := |Pr [A(ek, (ta, tc)) = 1] − Pr [A(ek, (ta, t
′
c)) = 1]|

is negligible in κ, where (ek, td) ← FGen(1κ), ta ← A(ek), tc ← FTag(td, ta)
and t′c ←R Tc.

Evasiveness. It is hard to generate a fresh non-injective tag for any PPT ad-
versary A even given a lossy tag, i.e.,

AdvevaLF,A(κ) := Pr

⎡⎣ (t′a, t
′
c) �= (ta, tc) ∧

(t′a, t
′
c) ∈ T \ Tinj

:
(ek, td) ← FGen(1κ),
ta ← A(ek), tc ← FTag(td, ta),
(t′a, t

′
c) ← A(ek, (ta, tc)).

⎤⎦
is negligible in κ.

Hash Proof System. Hash proof system (HPS) was introduced by Cramer and
Shoup [8]. For simplicity, we describe it as a key-encapsulation mechanism, as
did in [22].

Let PK, SK and K be the sets of public keys, secret keys and encapsulated
keys. Let C be the set of (all possible) ciphertexts and V ⊂ C be the set of all
valid ciphertexts. Let W be a set and let χ be an injective map from W to V . If
for any ciphertext c ∈ V , there exists a w ∈ W such that χ(w) = c, we say that
(C,V ,W , χ) is a subset membership problem and w is a witness of c. We require
that there are efficient algorithms for sampling sk ∈ SK, c ∈ V together with a
witness w ∈ W and c ∈ C \ V uniformly at random.

Let Λsk : C → K be a family of hash functions indexed by sk ∈ SK. We say
that Λsk is projective if there exists a projection μ : SK → PK such that μ(sk)
defines the action of Λsk over the subset V . In contrast, nothing is guaranteed for
c ∈ C\V . In a hash proof system, it should be hard to compute Λsk(c) from μ(sk)
and c ∈ C \ V , which is guaranteed by the universal property of HPS (defined
later in Definition 4). A HPS assumes the hardness of the subset membership
problem over C, meaning that for any PPT adversary

Advsmp
HPS,A(κ) = Pr[A(C,V , c) = 1 | c ←R V] − Pr[A(C,V , c) = 1 | c ←R C \ V]

is negligible in κ.

Definition 4 (Universal hash proof system). A hash proof system (HPS)
consists of a tuple of PPT algorithms (Param,Priv,Pub). The parameter gen-
eration algorithm Param(1κ), on input 1κ, generates an instance of param =
(group, C,V ,PK,SK,K, μ, Λ(·)), where group may contain additional structural
parameters. For sk ∈ SK and c ∈ C, the private evaluation algorithm Priv(sk, c)
computes Priv(sk, c) = Λsk(c). For pk = μ(sk) and a witness w indicating that
c ∈ V, the public evaluation algorithm Pub(pk, c, w) computes Pub(pk, c, w) =
Λsk(c).

Leakage-Flexible CCA-secure PKE: Simple Construction and Free of Pairing 25

We say that a hash proof system is ε-universal, if for all pk = μ(sk), all
c ∈ C \ V and all K ∈ K, it holds that Pr[Priv(sk, c) = K | μ(sk) = pk] ≤ ε,
where the probability space is defined by choosing sk ∈ SK uniformly at random.
We sometimes call the above value ε as the error rate of HPS.

Chameleon Hash Function. A chameleon hash function [23] CH is essentially
a keyed and randomized hash function, which consists of three PPT algorithms
(HGen,HEval,HEquiv). The key generation algorithm HGen(1κ), on input a secu-
rity parameter 1κ, returns a key pair (ekch, tdch). Given a preimage x ∈ {0, 1}∗
and a randomness r ∈ R, HEval(ekch, x; r) computes a hash value y. If r is uni-
formly distributed over R, so is y over its range. We require that CH is collision-
resistant, meaning that for any PPT adversary A, the following probability

AdvcrCH,A(1
κ) :=

Pr

[
(x′, r′) �= (x, r) ∧
HEval(ekch, x

′; r′) = HEval(ekch, x; r)
:
(ekch, tdch) ← HGen(1κ)
(x′, r′, x, r) ← A(ekch)

]
is negligible in κ. We further require that given x, r, x′ and the trapdoor tdch,
HEquiv(tdch, x, r, x

′) computes r′ such that HEval(ekch, x
′; r′) = HEval(ekch, x; r)

and the distribution r′ is uniform over R given only ekch and x.

3 Refined Subgroup Indistinguishability Assumption

In this section, we present the formal definition of Refined Subgroup Indistin-
guishability (RSI) assumption and instantiate it under two number-theoretical
assumptions.

Let Gen(1κ) be a group generation algorithm that, on input a security pa-
rameter 1κ, outputs a description of a finite commutative multiplicative group
G = (G, T, g, h), where G is a direct product of two groups: G = Gτ1 ×Gτ2 , such
that each group Gτi is a cyclic group of order τi, and g, h are generators of Gτ1 ,
Gτ2 respectively. We require that: (1) elements in G are efficiently checkable;
(2) gcd(τ1, τ2) = 1. This implies that G is also a cyclic group with order τ1τ2;
(3) an upper bound T ≥ τ1 · τ2 is given in the group description, such that for
x ←R ZT , x mod τ1τ2 is ε-uniform over Zτ1τ2 , where ε = ε(κ) is negligible in κ.
This implies that for x ←R ZT , gx (resp. hx) is ε-uniform over Gτ1 (resp. Gτ2).

Definition 5. Let G = (G, T, g, h) ← Gen(1κ). The refined subgroup indistin-
guishability (RSI) assumption in group G states that for any PPT adversary A,
the advantage

AdvrsiG,A(κ) := |Pr[A(G, x) = 1 | x ←R Gτ1] − Pr[A(G, x) = 1 | x ←R G|

is negligible in κ.

From the above refined subgroup indistinguishability assumption, it is not
hard to derive the following lemma.

26 B. Qin and S. Liu

Lemma 2. Let G = (G, T, g, h) ← Gen(1κ). If the refined subgroup indistin-
guishability assumption in group G holds, then for any PPT adversary B

|Pr[B(G, x) = 1 | x ←R Gτ1]− Pr[B(G, x) = 1 | x ←R G \Gτ1]| ≤ 2AdvrsiG,A(κ) (1)

|Pr[B(G, x) = 1 | x ←R Gτ1]− Pr[B(G, x · h) = 1 | x ←R Gτ1]| ≤ 2AdvrsiG,A(κ) (2)

Finally, we present two instantiations of the refined subgroup indistinguisha-
bility assumptions: one is over groups of unknown order and the other is over
groups of known order.

Example 1 (Instantiation under the QR assumption). Let p, q, p′, q′ be distinct
primes with p = 2p′ + 1 and q = 2q′ + 1. For security parameter κ, p′ and q′

are both at least κ bits in length. Let N = pq and N ′ = p′q′. From [8], Z∗
N has

a unique subgroup JN which is the set of elements in Z∗
N with Jacobi symbol

1. Let QRN be the set of the quadratic residues modulo N and G2 = {±1}.
Then, JN = QRN × G2 and gcd(2, N ′) = 1. Additionally, h = −1 generates
G2, and for a random x ←R Z∗

N , with overwhelming probability g = x2 mod N
generates group QRN . Set T = (N − 1)/4. Then, for x ←R ZT , x mod 2N ′

is O(2−κ)-uniform in Z2N ′ . The quadratic residuosity (QR) assumption states
that it is hard to distinguish a random element in JN from a random element in
QRN . So, the QR assumption is an instantiation of the RSI assumption if we set
(G, T, g, h) ← Gen(1κ), where G = JN , Gτ1 = QRN (with τ1 = N ′), Gτ2 = {±1}
(with τ2 = 2), T = (N − 1)/4, g = x2 mod N (for x ←R Z∗

N) and h = −1.

Example 2 (Instantiation over a group of known order). Let p, p, q be distinct
primes with p = 2pq+1. For security parameter κ, p and q are both at least κ bits
in length. Clearly, Z∗

p has a unique subgroup of order N = pq, denoted by QRp,
which is the set of the quadratic residues modulo p. Moreover, gcd(p, q) = 1 and
QRp can be uniquely decomposed as a direct product QRp = Gp × Gq, where
Gp, Gq are cyclic groups of prime orders p, q respectively. For x, y ←R Z∗

p,
with overwhelming probability g = xq mod p generates Gp and h = yp mod p
generates Gq. The refined subgroup indistinguishability assumption over group
QRp is conjectured to hold if integer factorization of N is hard [28]. So, we
obtain an instantiation of RSI assumption by setting (G, T, g, h) ← Gen(1κ),
where G = QRp, Gτ1 = Gp (with τ1 = p), Gτ2 = Gq (with τ2 = q), T = pq,
g = xq mod p (for x ←R Z∗

p) and h = yp (for y ←R Z∗
p).

4 Leakage-Resilient CCA-secure PKE under the RSI
Assumption

Following Qin and Liu’s generic construction of leakage-resilient CCA-secure
PKE schemes from any universal hash proof systems and any one-time lossy
filters [31], we present an efficient instantiation under the refined subgroup in-
distinguishability assumption in this section.

The rest of this section is organized as follows. In Section 4.1, we give an
overview of Qin and Liu’s approach to leakage-resilient CCA-security. In sec-
tion 4.2 and Section 4.3, we present efficient constructions of universal hash

Leakage-Flexible CCA-secure PKE: Simple Construction and Free of Pairing 27

proof system and one-time lossy filter from any RSI assumption respectively.
Finally, in Section 4.4, we show how to construct a leakage-flexible (with leakage
rate of [0,1)) PKE scheme under a specific RSI assumption.

4.1 Review of Qin and Liu’s Approach to LR-CCA Security

Recently, Qin and Liu [31] proved that a universal hash proof (UHP) system,
combined with a one-time lossy filter (OT-LF), yields a public-key encryption
(PKE) scheme that is secure against key-leakage chosen-ciphertext attacks. This
approach results in a simple and efficient CCA-secure PKE scheme with a higher
leakage rate than those constructions solely from UHPs [27,25].

More precisely, they applied a UHP system as a basic (CPA-secure) encryp-
tion scheme to hide the plaintext and then applied an OT-LF as a message
authentication code (MAC) to verify the well-formedness of the ciphertext. In
fact, the HPS is used as a key encapsulation mechanism and the encapsulated
key is exactly the hash value Λsk(c), which functions in two ways: (1) it is used
as an input of a random extractor to distill a random string for hiding a plain-
text; (2) it is used as a MAC key to authenticate one-time lossy filter’s tag. By
the hardness of the underlying subset membership problem and the universal-
ity property of HPS, Λsk(c) is computationally indistinguishable from a random
variable that has at least log(1/ε) min-entropy if HPS is ε-universal. While in
the security proof, the challenge ciphertext uses a lossy LF tag which results
in a MAC that only reveals a constant amount of information on Λsk(c). Thus,
the PKE scheme can withstand almost log(1/ε)-bit leakage of the secret key.
Suppose that (Param,Priv,Pub) is an ε-universal HPS, (FGen,FEval,FTag) is a
(K, �LF)-one-time lossy filter, H is a family of universal hash functions from K
to {0, 1}m. Then, the PKE scheme (Kg,Enc,Dec) with message space {0, 1}m
from [31] works as follows.

– (PK, SK) ← Kg(1κ). Run Param(1κ) to produce a HPS instance: param =
(group, C,V ,PK,SK,K, μ, Λ(·)). Pick sk ←R SK and set pk = μ(sk). Run
(ek, td) ← FGen(1κ). Return PK = (pk, ek) and SK = sk.

– C ← Enc(PK,M). For M ∈ {0, 1}m, it samples a random c ∈ V together
with its witness w, and then computes K = Pub(pk, c, w). Next, it samples
h ←R H and tc ←R Tc. Finally, it returns

C = (c, h, h(K) ⊕ M,FEval(ek, t,K), tc)

where t = (ta, tc) and ta = (c, h, h(K) ⊕ M).
– M/ ⊥← Dec(SK,C): For C = (c, h, ψ, v, tc), it computes K ′ = Priv(sk, c),

and then checks whether FEval(ek, t,K ′) = v where t = ((c, h, ψ), tc). If not,
it returns ⊥, else returns M = h(K ′) ⊕ ψ.

From [31], the security of the above scheme is established by the following
theorem.

Theorem 1. If there exists an ε-universal HPS and a (K, �LF)-one-time lossy
filter, then there exists a CCA-secure PKE scheme with any leakage of λ bits,

28 B. Qin and S. Liu

as long as λ ≤ log(1/ε) − m − �LF − ω(log κ), where m is the plaintext length.
Additionally, by reducing the error rate ε of HPS, the leakage rate in the above
scheme can be arbitrarily close to log(1/ε)/|sk|.

4.2 Universal Hash Proof System from the RSI Assumption

Let G = (G, T, g, h), where G = Gτ1 × Gτ2 , be a group description returned by
Gen(1κ). We can build a subset membership problem by setting C = G and V =
Gτ1 (with witness set W = ZT). From Lemma 2, this subset membership problem
is hard under the refined subgroup indistinguishability assumption. Next, we
build a universal hash proof system for (C,V).

Construction 1 (UHP). The hash proof system (Param,Priv,Pub) is defined
as follows:

– Param(1κ): run G = (G, T, g, h) ← Gen(1κ), where G = Gτ1 × Gτ2 . Define

C = G, V = Gτ1 , W = ZT , PK = G, SK = ZT , K = G.

Clearly, for c ∈ V, there exists a witness w ∈ W such that c = gw. For
sk = x ∈ SK and c ∈ C, we define

μ(sk) = gx ∈ G, Λsk(c) = cx ∈ G

Finally, Param(1κ) outputs param = (G, C,V ,PK,SK,K, μ, Λ(·)).
– Priv(sk, c): for sk ∈ SK and c ∈ C, compute K = Λsk(c) = cx, where sk = x.
– Pub(pk, c, w): for pk = μ(sk) = gx ∈ G and a witness w ∈ W such that

c = gw ∈ G, compute K = pkw which equals Λsk(c) = cx.

Theorem 2. Suppose that q̃ ≥ 2 is the smallest prime factor of τ2. Then, con-
struction 1 gives a 1/q̃-universal hash proof system.

Proof. Clearly, correctness follows from the definitions of the projection μ and
the projective hash function Λsk(·), and the hardness of the subset membership
follows from the RSI assumption and Lemma 2. It remains to prove its univer-
sality. To do so, it suffices to show that for all pk = μ(sk) ∈ PK, all c ∈ C \V and
all K ∈ K, it holds that Pr[Λsk(c) = K | μ(sk) = pk] ≤ 1/q̃. Recall that g has
order τ1. So, pk = gsk = gsk mod τ1 is determined only by the value sk mod τ1. If
sk is uniform in Zτ1τ2 and gcd(τ1, τ2) = 1, by the Chinese Remainder Theorem,
it holds that sk mod τ2 is still uniform over Zτ2 even for a fixed pk. Moreover,
for any element c ∈ C \ V , it has a non-trivial component of order (at least) q̃
and thus csk has at least q̃ possible values uniformly distributed over its support.
This means that Pr[Λsk(c) = K | μ(sk) = pk] ≤ 1/q̃. ��

Reducing the error rate. As introduced in [8], we can reduce the error rate
of a universal hash proof system from ε to εn by a trivial “n-fold parallelization”.

Leakage-Flexible CCA-secure PKE: Simple Construction and Free of Pairing 29

4.3 One-Time Lossy Filter from the RSI Assumption

In this section, we first propose a variant of one-time lossy filters, namely all-
but-one (ABO) lossy functions. Then, we show how to construct an ABO lossy
function under the refined subgroup indistinguishability assumption. Finally, we
show how to derive a one-time lossy filter from an ABO lossy function with large
tag space, whose size is determined by κ.

All-But-One Lossy Functions. ABO lossy functions are a family of func-
tions parameterized with a tag. All tags are injective, leading to injective func-
tions, except for one lossy tag, leading to a lossy function. ABO lossy functions
are conceptionally simpler than one-time lossy filters. For one-time lossy filters,
a tag consists of an auxiliary and a core tag part; lossy tags are produced via
a trapdoor for any auxiliary tags. For ABO lossy functions, it simply uses arbi-
trary bit strings as tags. There is only one lossy tag which can be predetermined.

Definition 6 (ABO lossy functions). A collection of (Dom, �)-ABO lossy
functions with tag space B consists of two PPT algorithms (ABOGen,ABOEval).
The key generation algorithm ABOGen(1κ, b∗) takes as input a security parameter
1κ and any b∗ ∈ B, and samples an evaluation key ek. The evaluation algorithm
ABOEval(ek, b, x), for b ∈ B and x ∈ Dom, computes fek,b(x). We require the
following properties.

Lossiness. For injective tags (i.e., b �= b∗), ABOEval(ek, b, x) computes an in-
jective function fek,b(x). For the lossy tag b∗, ABOEval(ek, b∗, x) computes
a lossy function fek,b∗(x) which only reveals at most �-bit information of x.
We require that by setting the parameter of evaluation key ek, the size of
domain Dom is flexible even for constant �.

Hidden lossy tag. For any PPT adversary A and for any b∗0, b
∗
1 ∈ B, the

following advantage

AdvABO,A(κ) := |Pr [A(1κ, ek0) = 1] − Pr [A(1κ, ek1) = 1]|

is negligible in κ, where ek0 ← ABOGen(1κ, b∗0) and ek1 ← ABOGen(1κ, b∗1).

The conception of ABO lossy functions is very similar to ABO lossy trapdoor
functions introduced by Peikert and Waters [29]. However, we do not require
efficient inversion. Instead, we require that the lossy function reveals only a
constant amount of information on its input even for flexibly large domain. The
following construction from an ABO lossy function (ABOGen,ABOEval) with a

tag space B (even for B = {0, 1}) results in a new one (˜ABOGen, ˜ABOEval) with
tag space Bñ for any positive integer ñ (the analogous construction for ABO
lossy trapdoor functions are shown in [29]).

Construction 2. Let (ABOGen,ABOEval) be a collection of (Dom, �)-ABO lossy

functions with tag space B. We define (˜ABOGen, ˜ABOEval) as follows.

30 B. Qin and S. Liu

– ˜ABOGen(1κ, b̃∗): for b̃∗ = (b∗1, · · · , b∗ñ) ∈ Bñ, it runs eki ← ABOGen(1κ, b∗i),

i = 1, . . . , ñ, and returns ẽk = (ek1, . . . , ekñ).

– ˜ABOEval(ẽk, b̃, x): for b̃ = (b1, · · · , bñ) ∈ Bñ and x ∈ Dom, it computes

f
ẽk,̃b

(x) = (fek1,b1(x), . . . , fekñ,bñ(x)).

Lemma 3. Construction 2 gives a collection of (Dom, ñ�)-ABO lossy functions
with tag space Bñ.

Proof. The proof is nearly straightforward. First, for a lossy tag b̃∗, all feki,b∗i (x)s
work in lossy mode and thus reveal at most ñ�-bit information of their common
input x. Secondly, for an injective tag b̃ �= b̃∗, there must exist an index i ∈ [ñ]
such that bi �= b∗i . That is, feki,bi(x) computes an injective function and so does
f
ẽk,̃b

(x). ��

From RSI Assumption to ABO lossy functions. We start from a RSI
instance to derive a collection of ABO lossy functions with tag space {0, 1}.

Construction 3. Let G = (G, T, g, h) and G = Gτ1 × Gτ2 be defined as in
Section 3. Let I = (Ii,j) ∈ Gn×n

τ2 be an n × n matrix over group Gτ2 , where
Ii,j = 1 if i �= j and Ii,i = h for all i, j ∈ [n]. Set B = {0, 1} and Dom = Znτ2 .
We define (ABOGen,ABOEval) as follows.

– ABOGen(1κ, b∗): for b∗ ∈ B, it picks r1, . . . , rn, s1, . . . , sn ←R ZT and sets

R =

⎛⎜⎜⎜⎝
gr1

gr2

...
grn

⎞⎟⎟⎟⎠ S =

⎛⎜⎜⎜⎝
gr1s1hb

∗
gr1s2 · · · gr1sn

gr2s1 gr2s2hb
∗ · · · gr2sn

...
...

. . .
...

grns1 grns2 · · · grnsnhb
∗

⎞⎟⎟⎟⎠
Finally, ABOGen(1κ, b∗) returns ek = (R,S) ∈ Gn × Gn×n.

– ABOEval(ek, b, x): for ek = (R,S), b ∈ B and x = (x1, . . . , xn) ∈ Znτ2 , it
computes

fek,b(x) :=
(
x · R, x · (S ⊗ I−b)

)
=
(
g
∑n

i=1 xiri ,
(
gsj ·

∑n
i xiri · h(b∗−b)xj

)n
j=1

)
where ⊗ denotes the component-wise product of matrices over G.

Lemma 4. Construction 3 forms a collection of (Znτ2 , log τ1)-ABO lossy func-
tions with tag space B = {0, 1}.

Proof. It is a straightforward calculation to verify that: (1) for b = b∗, fek,b∗(x)

is completely determined by g
∑n

i=1 xiri which has only τ1 possible values; (2)

for b �= b∗, fek,b(x) completely determines the vector (h(b∗−b)x1 , . . . , h(b∗−b)xn),
hence (x1, . . . , xn). So it is an injective map. The remainder is to show its hidden
lossy tag property. Let S[j, k] denote the entry of matrix S, located by row j and
column k. For any b∗0, b

∗
1 ∈ B, let EKi = (Ri, Si), 0 ≤ i ≤ n, be the distribution on

Leakage-Flexible CCA-secure PKE: Simple Construction and Free of Pairing 31

the function evaluation key, where Ri = R and Si is almost the same as S except
that the first i diagonal elements of Si are now

(
Si[j, j] = grjsjhb

∗
1

)
1≤j≤i while

the last n − i diagonal elements of Si are
(
Si[j, j] = grjsjhb

∗
0

)
i+1≤j≤n. Clearly,

EK0 is the distribution output by ABOGen(1κ, b∗0) and EKn is the distribution
output by ABOGen(1κ, b∗1). It suffices to show that for any 1 ≤ i ≤ n, EKi−1

and EKi are computationally indistinguishable under the RSI assumption. To do
so, we again define two distributions EK′

i−1 = (R′
i−1, S

′
i−1) and EK′

i = (R′
i, S

′
i),

where EK′
i−1 is almost the same as EKi−1 except for the value of R′

i−1[i] and
(S′
i−1[i, k])k∈[n]. Now R′

i−1[i] := grih while Ri−1[i] = gri , and (S′
i−1[i, k])k∈[n] =(

(grih)skhb
∗
0

)
k∈[n]

while (Si−1[i, k])k∈[n] =
(
griskhb

∗
0

)
k∈[n]

. Similarly, EK′
i is al-

most the same as EKi except for the value of R′
i[i] and (S′

i[i, k])k∈[n]. Now

R′
i[i] := grih while Ri[i] = gri , and (S′

i[i, k])k∈[n] =
(
(grih)skhb

∗
1

)
k∈[n]

while

(Si[i, k])k∈[n] =
(
griskhb

∗
1

)
k∈[n]

. It is a straightforward reduction to show that

if there exists a PPT algorithm A that can distinguish EKi−1 and EK′
i−1, we

can construct a PPT algorithm D to distinguish the distributions defined in the
left side of Eq. (2). This also applies to EKi and EK′

i. From Lemma 2, it follows
that

Pr[A(ek) = 1 | ek ←R EKi−1]− Pr[A(ek) = 1 | ek ←R EK′
i−1] ≤ 2AdvrsiG,D(κ) (3)

Pr[A(ek) = 1 | ek ←R EKi]− Pr[A(ek) = 1 | ek ←R EK′
i] ≤ 2AdvrsiG,D(κ) (4)

Additionally, given r1, . . . , rn, s1, . . . , sn ←R ZT , (R′
i−1, S

′
i−1) take exactly the

samevalues as (R′
i, S

′
i) except thatS

′
i−1[i, i] = (grih)sihb

∗
0 butS′

i[i, i]=(grih)sihb
∗
1 .

Next we will show that S′
i−1[i, i] is statistically indistinguishable to S′

i[i, i], given
the value of r1, . . . , rn, s1, . . . , sn.

Observe that the information of si is characterized by gsi in both (R′
i−1, S

′
i−1)

and (R′
i, S

′
i). If si is chosen from Zτ1τ2 uniformly at random, si mod τ2 is uni-

form over Zτ2 even conditioned on the value of si mod τ1, according to Chi-
nese Remainder Theorem. Now that si is ε-uniform over Zτ1τ2 , so si mod τ2
is also ε-uniform over Zτ2 , even conditioned on the value of gsi = gsi mod τ1 .
Consequently,

S′
i−1[i, i] =

(grih)sihb
∗
0 = grisihsi mod τ2+b

∗
0 ≈s g

risihsi mod τ2+b
∗
1 = (grih)sihb

∗
1 = S′

i[i, i].

So, EK′
i−1 ≈s EK′

i. Combined with Eq. (3) and Eq. (4), we have that EKi−1 ≈c

EKi holds for all i. This completes the proof of Lemma 4. ��

Applying the method of Construction 2, we can amplify the tag space {0, 1}
in Construction 3 to space {0, 1}ñ for any positive integer ñ, resulting in a
(Znτ2 , ñ log τ1)-ABO lossy function. However, the information revealed by the
lossy function increases linearly with the extension factor (i.e., ñ) of the tag
space via this method. To solve this problem, we can set R as a global parameter.
That is, each function evaluation key eki has the same R but different Si. As
we proved earlier, for a lossy tag b∗i , feki,b∗(x) is completely determined by the
value x · R = g

∑n
i=1 xiri which has τ1 possible values. Thus, the ñ concatenation

32 B. Qin and S. Liu

fek1,b∗1 (x)|| · · · ||fekñ,b∗ñ(x) in Construction 2 still has τ1 possible values. In this

way, we have a (Znτ2 , log τ1)-ABO lossy function with large tag space B = {0, 1}ñ
for any positive integer ñ.

Next, we show that if the order τ2 ofGτ2 is large enough, it is possible to obtain
ABO lossy function with large tag space directly. For a security parameter κ,
let θ = ω(log κ) be a suitable tag length. We assume that θ ≤ 	log τ2
 − 1. Set
τ ′2 = 	τ2/(2θ−1)
 and thus τ ′2 ≥ 2. We introduce two variants of Construction 3.

Variant I. This variant is the same as Construction 3, except for the tag space
and the domain. In this case, we set B = {0, 1}θ and Dom = Znτ ′

2
. Clearly,

for an injective tag b and an input x = (x1, . . . , xn) ∈ Znτ ′
2
, |(b∗ − b)xi| ≤ τ2

for all i. Since h has order τ2, xi is completely determined by the group
element h(b∗−b)xi and the value (b∗ − b), i.e., xi = (logh h

(b∗−b)xi)/(b∗ − b).
Thus, fek,b(x) computes an injective function. While for the lossy tag b∗,
fek,b∗(x) reveals at most log τ1 bits information of its input x. In this case,
Construction 3 now becomes a collection of (Znτ ′

2
, log τ1)-ABO lossy functions

with tag space B = {0, 1}θ. Additionally, we can amplify the domain size
with large n without increasing the parameter log τ1. Construction 3 is in
fact the special case of θ = 1.

Variant II. If τ2 is a prime or the smallest prime factor of τ2 is larger than 2θ−1,
we can set B = {0, 1}θ and Dom = Znτ2 . In this case, gcd(b∗−b, τ2) = 1, hence
(b∗ − b)−1 mod τ2 always exists. It is not hard to see that Construction 3
now becomes a collection of (Znτ2 , log τ1)-ABO lossy functions with tag space
B = {0, 1}θ.

If τ1 is a prime, we further choose n = 1 and Dom = Zτ1τ2 (note that
the domain is now further enlarged to Zτ1τ2), and reduce the evaluation
key ek to one group element gr1s1hb

∗
. Then, for x ∈ Zτ1τ2 and b �= b∗,

fek,b(x) = gr1s1xh(b∗−b)x is injective, and gives a collection of (Zτ1τ2 , log τ1)-
ABO lossy functions, which is just the case used later in Section 4.4.

From ABO lossy functions to One-time Lossy Filters. We start from a
collection of ABO lossy functions with a large tag space determined by security
parameter κ and a family of chameleon hash functions, to derive a collection of
one-time lossy filters.

Construction 4. Let (ABOGen,ABOEval) be a collection of (Dom, �)-ABO lossy
functions with tag space B and let (HGen,HEval,HEquiv) be a chameleon hash
function from {0, 1}∗ × R to B. We define LF = (FGen,FEval,FTag) as follows.

– FGen(1κ): for a security parameter 1κ, it first runs (ekch, tdch) ← HGen(1κ).
Then, FGen(1κ) selects t∗a ∈ {0, 1}∗ and t∗c ∈ R uniformly at random, and
computes b∗ = HEval(ekch, t

∗
a; t

∗
c); Next, it runs ek′ ← ABOGen(1κ, b∗). Fi-

nally, it returns ek = (ekch, ek
′) and td = (tdch, t

∗
a, t

∗
c). Set T = {0, 1}∗ × R

and Tloss = {(ta, tc) : HEval(ekch, ta; tc) = b∗}.
– FEval(ek, t, x): for t = (ta, tc) ∈ T and x ∈ Dom, it computes

b = HEval(ekch, ta; tc) and fek,t(x) = fek′,b(x).

Leakage-Flexible CCA-secure PKE: Simple Construction and Free of Pairing 33

– FTag(td, ta): for td = (tdch, t
∗
a, t

∗
c) and ta ∈ {0, 1}∗, it computes

tc = HEquiv(tdch, t
∗
a, t

∗
c , ta).

Theorem 3. Construction 4 gives a collection of (Dom, �)-one-time lossy filters.

Proof. The proof is very similar to the concrete DCR-based construction in [31].
Due to space limitation, we give it in the full version of this paper. ��

4.4 An Efficient Leakage-Flexible CCA-secure PKE

In the previous two subsections, we presented the generic constructions of uni-
versal hash proof systems and one-time lossy filters from the refined subgroup
indistinguishability assumptions. According to Theorem 1, we immediately ob-
tain the following theorem.

Theorem 4. Let G = (G, g, h, T) ← Gen(1κ), where G = Gτ1 × Gτ2 . Suppose
that the smallest prime factor of τ2 is q̃ ≥ 2. If the refined subgroup indistin-
guishability assumption holds over group G, then we can construct a λ-LR-CCA
secure PKE scheme with message space {0, 1}m, where the amount of leakage
is bounded by λ ≤ n log q̃ − log τ1 − m − ω(log κ) and n is a positive integer. In
particular, the leakage rate can be made to approach log q̃/ logT .

Next, we instantiate our generic construction under the RSI assumption in-
troduced in Example 2 and obtain a leakage-flexible CCA-secure PKE scheme
without pairing. (However, in our QR-based instantiation both the leakage-rate
and the parameter are rather poor. The main reason is that the universality of
the underlying hash proof system and the lossiness of the underlying one-time
lossy filter are not good. For details, see the full version of this paper.)

Parameters. Recall that in Example 2, p = 2pq+1 is a prime and p, q both are
primes too. So, G = QRp can be decomposed as a direct product of two prime-
order groups: QRp = Gp × Gq. If we choose n = 1, then by Theorem 2, we may
obtain a 1/q-universal hash proof system with secret key space SK = Zpq and
encapsulated key space K = QRp. While by Theorem 3 for Variant II, we can
obtain a (Zpq, log p)-one-time lossy filter. Observe that, every element K ∈ QRp

can be efficiently encoded as an element K ′ ∈ Zpq by setting K ′ := K − 1 if
1 ≤ K ≤ pq and K ′ := p − K − 1 if pq + 1 ≤ K ≤ p − 1. So, by Theorem 4, we
obtain a PKE scheme with leakage λ ≤ log q− log p−m−ω(log κ). Particularly,
the ciphertext only contains two group elements in Z∗

p (ignoring the other length
fixed elements, e.g., the description of a universal hash function and an auxiliary
tag). For a 80-bit security level, we choose m = 80, ω(log κ) = 160, |p| = 512
and |q| ≥ 512. It suffices to guarantee that pq is hard to factor and thus the
refined subgroup indistinguishability assumption in group QRp holds. In this

case, λ ≤ log q − 752 and |SK| ≤ log q+512. Therefore, the leakage rate λ
|SK| =

log q−752
log q+512 = 1− 1264

log q+512 is arbitrarily close to 1 if we choose a sufficiently large q.

34 B. Qin and S. Liu

Finally, we give a parameter comparison (for 80-bit security level) of this
scheme with known leakage-flexible schemes [10,15] in Table 1 where 1 − α de-
notes the leakage rate, “SXDH” denotes the symmetric external Diffie-Hellman
assumption, “DLIN” denotes the decisional linear assumption and “RSI” denotes
the refined subgroup indistinguishability assumption. Assume that elements in
a group of order q can be encoded as bit strings of length |q|. From Table 1, we
can see that the ciphertext size (in bits) in our scheme grows slightly faster than
the other three schemes. Nevertheless, our scheme has some interesting proper-
ties that do not exist in other schemes: simple construction, constant number of
group elements in ciphertext and free of pairing.

Table 1. Parameters of leakage-flexible CCA-secure PKE schemes

Scheme Group Type Assumption Group Size Ciphertext Size Pairing
bits # G

DHLW10 [10] Prime SXDH 160
(2/α)(2 + 1/2)� + 16 Yes
DHLW10 [10] Prime DLIN 160
(3/α)(3 + 1/2)� + 35 Yes
GHV12 [15] Prime DLIN 160 2
4/α� + 6 Yes
Ours Composite RSI
1264/α� 2 No

5 Conclusion

We proposed a simple and efficient construction of LR-CCA secure PKE scheme
based on the Refined Subgroup Indistinguishability (RSI) assumption, which is a
more general group of assumptions and can be instantiated under many number-
theoretical assumptions. Our construction follows a recently proposed approach
for leakage-resilient chosen-ciphertext security [31]. However, the known results
in [31] has only a small leakage rate of 1/2 − o(1). Our construction further
improved the leakage rate to 1 − o(1) under the RSI assumption over a pairing-
free group of known order. As far as we know, this is the first pairing-free LR-
CCA secure PKE with leakage rate of 1 − o(1).

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

2. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key en-
cryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010)

3. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008)

4. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 1–20. Springer, Heidelberg (2010)

Leakage-Flexible CCA-secure PKE: Simple Construction and Free of Pairing 35

5. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole
in the bucket: Public-key cryptography resilient to continual memory leakage. In:
FOCS 2010, pp. 501–510. IEEE Computer Society (2010)

6. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

7. Chow, S.S.M., Dodis, Y., Rouselakis, Y., Waters, B.: Practical leakage-resilient
identity-based encryption from simple assumptions. In: Al-Shaer, E., Keromytis,
A.D., Shmatikov, V. (eds.) CCS 2010, pp. 152–161. ACM (2010)

8. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

9. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: FOCS 2010, pp. 511–520. IEEE Computer Society
(2010)

10. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

11. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In:
Mitzenmacher, M. (ed.) STOC 2009, pp. 621–630. ACM (2009)

12. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

13. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS 2008,
pp. 293–302. IEEE Computer Society (2008)

14. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures. In:
Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Heidelberg
(2010)

15. Galindo, D., Herranz, J., Villar, J.L.: Identity-based encryption with master key-
dependent message security and leakage-resilience. In: Foresti, S., Yung, M., Mar-
tinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 627–642. Springer, Heidel-
berg (2012)

16. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Dwork, C. (ed.) STOC 2008, pp. 197–206. ACM
(2008)

17. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

18. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold boot
attacks on encryption keys. In: van Oorschot, P.C. (ed.) USENIX Security Sym-
posium 2008, pp. 45–60. USENIX Association (2008)

19. Hazay, C., López-Alt, A., Wee, H., Wichs, D.: Leakage-resilient cryptography from
minimal assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 160–176. Springer, Heidelberg (2013)

20. Hofheinz, D.: Circular chosen-ciphertext security with compact ciphertexts. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 520–536. Springer, Heidelberg (2013)

21. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009)

36 B. Qin and S. Liu

22. Kiltz, E., Pietrzak, K., Stam, M., Yung, M.: A new randomness extraction
paradigm for hybrid encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 590–609. Springer, Heidelberg (2009)

23. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000. The Internet
Society (2000)

24. Lewko, A.B., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual
system encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88.
Springer, Heidelberg (2011)

25. Li, S., Zhang, F., Sun, Y., Shen, L.: A new variant of the Cramer-Shoup leakage-
resilient public key encryption. In: Xhafa, F., Barolli, L., Pop, F., Chen, X., Cristea,
V. (eds.) INCoS 2012, pp. 342–346. IEEE (2012)

26. Liu, S., Weng, J., Zhao, Y.: Efficient public key cryptosystem resilient to key leakage
chosen ciphertext attacks. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779,
pp. 84–100. Springer, Heidelberg (2013)

27. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

28. González Nieto, J.M., Boyd, C., Dawson, E.: A public key cryptosystem based
on the subgroup membership problem. In: Qing, S., Okamoto, T., Zhou, J. (eds.)
ICICS 2001. LNCS, vol. 2229, pp. 352–363. Springer, Heidelberg (2001)

29. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Dwork,
C. (ed.) STOC 2008, pp. 187–196. ACM (2008)

30. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

31. Qin, B., Liu, S.: Leakage-resilient chosen-ciphertext secure public-key encryption
from hash proof system and one-time lossy filter. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 381–400. Springer, Heidelberg
(2013)

32. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: Gabow, H.N., Fagin, R. (eds.) STOC 2005, pp. 84–93. ACM (2005)

33. Yuen, T.H., Chow, S.S.M., Zhang, Y., Yiu, S.M.: Identity-based encryption re-
silient to continual auxiliary leakage. In: Pointcheval, D., Johansson, T. (eds.) EU-
ROCRYPT 2012. LNCS, vol. 7237, pp. 117–134. Springer, Heidelberg (2012)

A Black-Box Construction of a CCA2 Encryption

Scheme from a Plaintext Aware (sPA1)
Encryption Scheme

Dana Dachman-Soled

University of Maryland
danadach@ece.umd.edu

Abstract. We present a construction of a CCA2-secure encryption
scheme from a plaintext aware (sPA1), weakly simulatable public key
encryption scheme. The notion of plaintext aware, weakly simulatable
public key encryption has been considered previously by Myers, Sergi
and shelat (SCN, 2012) and natural encryption schemes such as the
Damg̊ard Elgamal Scheme (Damg̊ard, Crypto, 1991) and the Cramer-
Shoup Lite Scheme (Cramer and Shoup, SIAM J. Comput., 2003) were
shown to satisfy these properties.

Recently, Myers, Sergi and shelat (SCN, 2012) defined an extension of
non-malleable CCA1 security, called cNM-CCA1, and showed how to con-
struct a cNM-CCA1-secure encryption scheme from a plaintext aware and
weakly simulatable public key encryption scheme. Our work extends and
improves on this result by showing that a full CCA2-secure encryption
scheme can be constructed from the same assumptions.

Keywords: CCA2-secure encryption, plaintext aware encryption, weakly
simulatable public key encryption, black-box.

1 Introduction

The basic security requirement for public key encryption schemes is Chosen
Plaintext Attack (CPA) security [17] (also known as semantic security), which
ensures security against a passive, eavesdropping adversary. A stronger security
requirement for public key encryption schemes, which ensures that they remain
secure even in the face of an active adversary, is known as Adaptive Chosen
Ciphertext Attack (CCA2) security. More specifically, a CCA2-secure encryption
scheme is guaranteed to be secure even against an adversary who has access to
a decryption oracle and may use it to decrypt any ciphertext of its choice except
for the challenge ciphertext itself. This captures real-life scenarios where the
adversary has control over network traffic which allows the adversary, in effect,
to decrypt all ciphertexts of its choice.

There is a significant body of work on constructing CCA2-secure encryption
schemes from specific computational hardness assumptions (c.f. [10,19,8,20]), as
well as from various lower level primitives (c.f. [14,7,23,29,31,24,32]). Neverthe-
less, the central question in this area remains open: To determine the relationship

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 37–55, 2014.
c© International Association for Cryptologic Research 2014

38 D. Dachman-Soled

between CCA2 and CPA-secure encryption—whether a CCA2-secure encryption
scheme can be constructed assuming only the existence of a CPA-secure encryp-
tion scheme, or whether CCA2-security requires stronger assumptions. Although
a partial answer was given in [16], the larger question remains open for both
black-box and non-black-box constructions. Moreover, several important vari-
ants of the question such as whether a CCA2 secure encryption scheme can be
constructed from a CCA1-secure encryption scheme1 remain open.

In this paper, we consider a strong type of CPA-secure public key encryp-
tion scheme which is also plaintext aware (sPA1), weakly simulatable, and en-
joys perfect correctness2 and show how to construct full CCA2-secure public key
encryption schemes from such a CPA-secure encryption scheme. Moreover, the
CCA2 construction presented is black-box in the underlying CPA-secure scheme,
although our security reduction is non black-box.

Although the required assumptions are strong—we discuss and provide more
details on the assumptions of plaintext awareness and weak simulatability below—
we view our new construction of CCA2 encryption from plaintext aware, weakly
simulatable PKE as meaningful progress since our underlying assumption is an
assumption which was not previously known to imply CCA2 security. Moreover,
to the best of our knowledge, this is the first construction of a CCA2 scheme from
encryption schemes with seemingly weaker or incomparable security to CCA2 and
requiring no additional assumptions. Finally, we present new proof techniques for
proving CCA2 security, which may be useful for constructing CCA2 secure encryp-
tion from other lower-level primitives.

1.1 Our Assumptions

Our work relies on a strong assumption on the underlying CPA-secure encryption
scheme called plaintext awareness. The notion of a plaintext aware encryption
scheme was first introduced in the seminal paper of Bellare and Rogaway [5]
and the notion was further studied by Bellare et al. [2]. Both of these works
dealt with the notion of plaintext awareness in the Random Oracle model. Sub-
sequently, Bellare and Palacio [4] considered extending the notion of plaintext
awareness to the plain model3. In this work, we are also interested in the notion
of plaintext awareness in the plain model without random oracles. Informally,
an encryption scheme is plaintext aware (called sPA1 in [4]) if for every efficient
ciphertext creator, C, there exists an efficient plaintext extractor, C∗, that out-
puts the same value as the decryption algorithm on ciphertexts outputted by C.

1 A CCA1-encryption scheme is one where the adversary has oracle access to the
decryption oracle up to the point that it receives the challenge ciphertext.

2 We can remove the requirement of perfect correctness by using the transformation
of [15] to transform a public key encryption scheme with decryption error to a public
key encryption scheme with perfect correctness. Note that each transformation in
the sequence of transformations given in the proof of Theorem 3 of [15] preserves
both simulatability and plaintext awareness of the underlying encryption scheme.

3 We note that prior to the work of [4], Herzog et al. [21] considered a notion of
plaintext awareness in the key registration model.

A Black-Box Construction 39

This type of assumption is known as a knowledge assumption (other examples of
knowledge assumptions include the knowledge of exponent assumption [18,3] and
extractable collision resistant hash functions [6]) and is thus a non-falsifiable as-
sumption. Despite the strength of the assumption, the notion of plaintext aware-
ness is meant to capture an intuitive property of certain encryption schemes that
an efficient adversary cannot create a valid ciphertext without ”knowing” the
corresponding plaintext.

It is not hard to see that any plaintext aware encryption scheme is itself also
CCA1-secure, since the plaintext extractor can be used to simulate the decryp-
tion oracle in the CCA1 experiment. However, plaintext aware encryption does
not directly imply CCA2-secure encryption since the plaintext extractor is not
guaranteed to work correctly when the ciphertext creator receives a valid en-
cryption as input. Thus, when the adversary queries the CCA2 decryption oracle
after receiving the challenge ciphertext CT ∗ in the CCA2 experiment, the ex-
tractor may not be able to simulate the decryption oracle. In fact, since we are
given no guarantees on the output of the plaintext extractor when the cipher-
text creator receives CT ∗ as input, it would seem that constructing CCA2-secure
encryption from plaintext aware encryption is just as hard as constructing CCA2-
secure encryption from CCA1-secure encryption; we have the extra guarantee of
a plaintext extractor, but the extractor seems useless for queries made after the
challenge ciphertext is received.

Recently, a fascinating result by Myers, Sergi and shelat [26], showed that by
adding an additional assumption that the plaintext aware public key encryption
scheme is also weakly simulatable, the above problem can be partially overcome.
Essentially, they present a new construction and show that the plaintext ex-
tractor can still be useful for simulating the decryption oracle for a constant
number of parallel queries made after the adversary receives the challenge ci-
phertext when the underlying plaintext aware public key encryption scheme is
also weakly simulatable.

The notion of simulatable public key encryption was first introduced by
Damg̊ard and Nielsen [12] in the context of non-committing encryption. Loosely
speaking, [12] define a simulatable public key encryption scheme to be an en-
cryption scheme with special algorithms for obliviously sampling public keys and
random ciphertexts without learning the corresponding secret keys and plain-
texts; in addition, both of these oblivious sampling algorithms should be effi-
ciently invertible. An incomparable notion of simulatable public key encryption
was introduced by [13] and was shown to imply CCA2-secure encryption. Here,
the public key encryption scheme has an invertible algorithm f for obliviously
sampling random ciphertexts (but not public keys) and in addition, f(r), where
r is a random string, and C, where C is an honestly generated ciphertext are
indistinguishable, even when given access to a decryption oracle. The weakly
simulatable encryption schemes used in this work are strictly weaker than both
of the above notions. They are weaker than the [12] notion since only the ci-
phertext and not the public key has an invertible oblivious sampling algorithm

40 D. Dachman-Soled

and they are weaker than the [13] notion since the attacker is not given access
to the decryption oracle.

In their work, [26] defined an extension of non-malleable CCA1 security,
called cNM-CCA1, where an adversary can make c adaptive parallel decryp-
tion queries after seeing the challenge ciphertext. Then, [26] showed how to
construct cNM-CCA1 encryption from plaintext aware and weakly simulatable
public key encryption for any constant c. Similar assumptions of plaintext aware
and weakly simulatable public key encryption were previously made by [13].
Moreover, as shown by Myers, Sergi and shelat [26] natural encryption schemes
such as the D̊amgard Elgamal encryption scheme (DEG) and the lite version of
Cramer-Shoup encryption scheme (CS-lite) satisfy both of these properties under
the DDH assumption and a suitable extension of the Diffie-Hellman Knowledge
(DHK) assumption (see [4] for discussion of the DHK assumption).

Following the work of [26], it is interesting to explore how far we can take the
assumption of the existence of a plaintext aware and weakly simulatable public
key encryption scheme and what the power of this assumption is relative to the
assumption of the existence of a CCA2-secure encryption scheme.

1.2 Our Results

Informally, we show the following:

Theorem 1 (Informal). There is a black-box construction of CCA2-secure en-
cryption from plaintext aware and weakly simulatable public key encryption with
perfect correctness.

Our result extends the work of [26] by showing that plaintext aware and
weakly simulatable public key encryption can, in fact, be used to achieve full
CCA2 security.

Finally, the assumption of a plaintext aware encryption scheme can be viewed
as an assumption that allows us to use strong non-black-box techniques on the
adversary in the security reduction. More specifically, we leverage the code of
the adversary by using it to extract crucial information that the adversary must
”know.” This raises the intriguing question of whether we can present a con-
struction of CCA2 from CPA where the security proof uses non-black-box access
to the adversary. Such reductions are known to be more powerful than black-box
reductions in the setting of multiparty computation as first shown in the seminal
work of Barak [1]. But it has not been clear how to leverage these techniques in
the non-interactive setting of public key encryption.

1.3 Technical Overview

We adapt and combine many of the techniques of [22], [26] and, in addition, we
introduce new techniques as discussed in detail below.

A Black-Box Construction 41

The construction. On security parameter k, the scheme will consist of a one-time
signature as well as both inner and outer ciphertexts, with corresponding public
keys. More specifically, two inner ciphertexts will be encrypted under public
keys pkin0

, pkin1
, and k outer ciphertexts will be encrypted using k public keys

chosen out of k pairs of public keys (pk0
1, pk

1
1), . . . , (pk

0
k, pk

1
k). The selection of

the k public keys pkb11 , . . . , pkbkk will depend on bits of the verification key, vksig,
chosen for the one-time signature (as in [14,26]).

In particular, a ciphertext will consist of the following:

Verification key: A verification key, vksig, for the one-time signature scheme,
generated by GenSig.

Inner ciphertexts: Two ciphertexts CTin0 = Enc(pkin0
, s̃0), CTin1 =

Enc(pkin1
, s̃1) where s̃0, s̃1 are additive secret shares of m||r, m is the mes-

sage to be encrypted, r is the randomness used to encrypt the outer cipher-
texts (as described below), and || denotes concatenation.

Outer ciphertexts: k ciphertexts CT1, . . . , CTk computed the following way:
r1|| · · · ||rk ← prg(r), where prg is a pseudorandom generator. Each CTi =

Enc(pk
vksigi
i , CTin0 ||CTin1 ; ri).

Signature: A signature σ = Sign(sksig, CT1|| · · · ||CTk).

The security reduction. We consider a modified CCA2 experiment where the
decryption oracle is replaced with the plaintext extractor guaranteed by the
plaintext awareness property of the underlying encryption scheme. Note that
once the adversary receives the challenge ciphertext in the CCA2 experiment,
we have no guarantees on whether the plaintext extractor returns messages that
are consistent with the answers of the decryption oracle. Therefore, we define
a bad extraction event as the event that the plaintext extractor and decryption
oracle disagree on a query submitted by the adversary A to the decryption or-
acle. We consider a sequence of hybrids and show that (1) In the first hybrid,
the probability of bad extraction event ocurring is negligible (due to the security
guarantees of the plaintext aware, weakly simulatable encryption scheme) and
(2) In consecutive hybrids the probability of bad extraction event occurring dif-
fers by a negligible amount (since the occurrence of a bad extraction event can
be detected in each hybrid). Put together, these imply that the decryption oracle
and plaintext extractor agree (even for queries after the challenge ciphertext is
received) in the original experiment with all but negligible probability. Further-
more, this implies that the CCA2 experiment can be simulated without knowing
the secret key of the inner encryption scheme (by using the plaintext extractor
to decrypt oracle queries), which immediately implies the CCA2 security of the
scheme. To show (1), we use techniques similar to those of [26]. To show (2), we
build upon the sequence of hybrids used by [22].

The main new technical challenge in this work is showing that property (2)
holds for each pair of consecutive hybrids. More specifically, in the final two
hybrids, which we denote here by H̃0, H̃1, we run the CCA2 experiment with the
CCA2 adversary, but use the plaintext extractor to decrypt the inner ciphertexts
CTin0 , CTin1 . Additionally, in H̃0, the value s̃0 ⊕ s̃1 is set to a random string,

42 D. Dachman-Soled

while in H̃1, value s̃0⊕ s̃1 is set honestly to (r||mβ). Note that if a bad extraction

event does not occur, then the view of the adversary in H̃1 is identical to its
view in the original CCA2 experiment. By previous arguments, we have that
the probability of a bad extraction event is negligible in H̃0. To argue that the
probability of bad extraction event occurring differs by a negligible amount in
these final two hybrids, we must reduce to the semantic security of the inner
encryption scheme. However, a bad extraction event—in which the plaintext
extractor disagrees with the decryption oracle—cannot be detected unless the
adversary has the secret keys corresponding to the inner encryptions and if this
is the case, it seems that we cannot hope to reduce to semantic security.

Thus, we consider a modified experiment where at the beginning of the ex-
periment we fix a bit b←$ {0, 1} and a modified bad extraction event defined as
the event that the plaintext extractor and decryption oracle disagree specifically
on the decryption of CTinb

for a query submitted by the adversary A. Since
b←$ {0, 1} is chosen uniformly at random, independent of all other variables, we
show that the probability that the first bad extraction event occurs on CTinb

is exactly half the probability that the first bad extraction event occurs on ei-
ther CTin0 or CTin1 . Now, a semantic security adversary will choose b←$ {0, 1}
at the outset and will embed its challenge public key and ciphertext in place
of pkin1−b

and CT ∗
in1−b

, respectively. Moreover, the semantic security adversary
will embed an honestly generated public key and ciphertext in place of pkinb

and CT ∗
inb

, respectively. This means that the semantic security adversary can
decrypt ciphertexts encrypted under pkinb

and thus can successfully detect the
occurence of modified bad extraction event.

1.4 Related Work

In their seminal work, Dolev et al. [14] presented the first construction of CCA2-
encryption from the lower-level primitive of enhanced trapdoor permutations.
However, the [14] construction is not black-box and requires the use of generic
non-interactive zero knowledge proofs. Subsequently, Pass et al. [28] presented
a new definition of non-malleability and presented a construction from CPA to
non-malleable CPA requiring non-black box use of the underlying encryption
scheme. Choi et al. [9] gave a black-box version of this result thereafter. Myers
and shelat [27] showed how to construct many-bit CCA2-encryption from single-
bit cca2-encryption and Hohenberg et al. [22] extended their result and showed
how to build CCA2-encryption from any detectable chosen ciphertext (DCCA)
secure encryption scheme. As discussed previously, [26] show how to construct a
cNM-CCA1-secure encryption scheme from a plaintext aware, weakly simulatable
public key encryption scheme.

A different line of work introduced new low-level primitives and showed how
to construct CCA2 encryption from these low-level primtives. Examples are con-
structions of CCA2-secure encryption from the primitives of identity-based en-
cryption [7], tag-based encryption [23], lossy trapdoor functions [29], correlated
products [31], adaptive trapdoor functions [24], and extractable hash proofs [32].

A Black-Box Construction 43

Finally, several works [10,19,8,20] construct CCA2-encryption directly from
various number-theoretic assumptions.

2 Preliminaries

2.1 CCA2 Security

Definition 1 (CCA2 Security). Let E = (Gen,Enc,Dec) be an encryption
scheme and let the random variable CCA2-Expβ(E , A, k) where β ∈ {0, 1}, A =
(A1, A2) are ppt algorithms and k ∈ N, denote the result of the following proba-
bilistic experiment:

CCA2-Expβ(E , A, k)

– (pk, sk)←$Gen(1k)

– (m0,m1, stateA)←$A
Dec(sk,·)
1 (pk)

– y ←$Enc(pk,mβ)

– D ←$A
Dec(sk,·)
2 (y, stateA)

We require that the output of A1 satisfies |m0| = |m1| and that A2 does not
query y to its oracle.

(Gen,Enc,Dec) is CCA2-secure if for any ppt algorithms A = (A1, A2) the
following two ensembles are computationally indistinguishable:

{CCA2-Exp0(E , A, k)}k∈N

c≈ {CCA2-Exp1(E , A, k)}k∈N .

2.2 Plaintext Awareness for Multiple Key Setup

We follow [26] for the following definition.

sPA1�(E,C,C∗, k):

– Let R[C], R[C∗] be randomly chosen bit strings for C and C∗.
– ((pki, ski))i∈[�(k)] ←$Gen(1k)

– st ←
(
(pki)i∈[�(k)], R[C]

)
– CC∗(st,·) ((pki)i∈[�(k)]

)
– Let Q = {(qi = (pkji , ci),mi)} be the set of queries C made to C∗ until it

halted and C∗’s responses to them. Return ∧|Q|
i=1(mi = Decskji (ci)).

In the above experiment, C is a ciphertext creator, and C∗ is a stateful ppt
algorithm called the extractor that takes as input the state information st and a
ciphertext given by the ciphertext creator C, and will return the decryption of
that ciphertext and the updated state st. The state information is initially set
to the public key pk and the adversary C’s random coins. It gets updated by C∗

as C∗ answers each query that the adversary C submits. The above experiment
returns 1 if all the extractor’s answers to queries are the true decryption of those
queries under sk. Otherwise, the experiment returns 0.

44 D. Dachman-Soled

Definition 2 (sPA1�). Let � be a polynomial. Let E = (Gen,Enc,Dec) be an
asymmetric encryption scheme. Let the ciphertext-creator adversary C and the
extractor C∗ be ppt algorithms. For k ∈ N, the sPA1-advantage of C relative to
C∗ is defined as:

AdvsPA1�(E , C, C∗) = Pr[sPA1(E , C, C∗, k) = 0]

The extractor C∗ is a successful sPA1�-extractor for the ciphertext-creator ad-
versary C if for all k ∈ N, the function AdvsPA1�(E , C, C∗) is negligible. The
encryption scheme E is called sPA1� multi-key secure if for any ppt ciphertext
creator there exists a successful sPA1�-extractor.

As shown by [26], both the Damgard Elgamal encryption scheme (DEG) and
the lite version of Cramer-Shoup encryption scheme (CS-lite) are sPA1� secure
under a suitable generalization of the DHK1 assumption.

2.3 Weakly Simulatable Encryption Scheme

As in [26], we consider a notion of simulatability similar to the one of Dent [13],
but where the attacker is not given access to the decryption oracle. If an en-
cryption scheme satisfies this weaker notion of simulatability, we say it is weakly
simulatable.

Definition 3 (Weakly Simulatable Encryption Scheme). An asymmetric
encryption scheme (Gen, Enc, Dec) is weakly simulatable if there exist two poly-
time algorithms (f, f−1) where f is deterministic and f−1 is probabilistic, such
that for all k ∈ N there exists the polynomial function p(·) where l = p(k), we
have the following correctness properties:

– f on inputs of public key pk (in the range of Gen) and a random string r ∈
{0, 1}l, returns elements in C, where C is the set of all possible ”ciphertext”-
strings that can be submitted to the decryption oracle (notice that C ∈ C
might not be a valid ciphertext).

– f−1 on input of a public key pk (in the range of Gen) and an element C ∈ C
outputs elements of {0, 1}l.

– f(pk, f−1(pk, C)) = C for all C ∈ C.

And the following security properties. No polynomial time attacker A has prob-
ability better than 1/2 + μ(k) of winning the following experiment, where μ is
some negligible function.

– The challenger generates a random key pair (pk, sk)←$Gen(1k), and chooses
randomly b ∈ {0, 1}.

– The attacker A executes on the input 1k and the public key pk outputs m ∈
M. The challenger sends A the pair (f−1(pk, c = Enc(pk,m)), c) if b = 0, or
(r, f(pk, r)) for some randomly generated element r ∈ {0, 1}l if b = 1. The
attacker A terminates by outputting a guess b′ for b. A wins if b = b′ and its
advantage is defined in the usual way.

A Black-Box Construction 45

Lemma 1. If E is a weakly simulatable encryption scheme, then E is CPA-
secure.

[26] show that DEG and CS-lite schemes can both be weakly simulatable when
instantiated in proper groups.

2.4 PA1+–An Extension of Plaintext Awareness

[26] additionally consider an augmented notion of plaintext awareness in which
the ciphertext creator has access to an oracle that produces random bits, PA1+.
The extractor receives the answers to any queries generated by the creator, but
only at the time these queries are issued. This oracle is meant to model the fact
that the plaintext extractor might not receive all of the random coins used by the
ciphertext creator at the beginning of the experiment. By introducing this oracle,
we require the extractor to work even when it receives the random coins at the
same time as the ciphertext creator. This modification has implications when
the notion of plaintext awareness is computational. However, in our case, as in
[26], we require statistical plaintext awareness, and as argued by [26], allowing
access to such an oracle does not affect the sPA1� security.

Any encryption scheme that is sPA1� secure is also sPA1+� secure.

Definition 4. Define the sPA1+� experiment in a similar way to the sPA1� exper-
iment. The only difference between the two is that during the sPA1+� experiment,
the ciphertext creator has access to a random oracle O that takes no input, but
returns independent uniform random strings upon each access. Any time the cre-
ator accesses the oracle, the oracle’s response is forwarded to both the creator
and the extractor.

If an encryption scheme would be deemed sPA1� secure, when we replace the
sPA1� experiment in the definition with the modified sPA1+� experiment, then the
encryption scheme is said to be sPA1+� secure.

Lemma 2 (Appeared in [26].). If an encryption scheme E is sPA1� secure,
then it is sPA1+� secure.

2.5 Strong One-Time Signature Scheme

We follow here the definition of [9]. Informally, a strong one-time signature
scheme (GenSig, Sign,Ver) is an existentially unforgeable signature scheme, with
the restriction that the signer signs at most one message with any key. This
means that an efficient adversary, upon seeing a signature on a message m of his
choice, cannot generate a valid signature on a different message, or a different
valid signature on the same message m. Such schemes can be constructed in a
black-box way from one-way functions [25,30], and thus from any semantically-
secure encryption scheme (Gen,Enc,Dec).

46 D. Dachman-Soled

3 The Scheme

We present a CCA2-secure encryption scheme Ecca = (Gencca,Enccca,Deccca) from
any scheme Epa-cpa = (Genpa-cpa,Encpa-cpa,Decpa-cpa) which is a plaintext aware,
weakly simulatable public key encryption scheme with perfect correctness and
any scheme (GenSig, Sign,Ver), which is a strong one-time signature scheme and
any pseudorandom generator prg. See Figure 1.

Encryption Scheme Ecca = (Gencca,Enccca,Deccca)

Key Generation Gencca(1
k):

– [pkinb
, skinb

]b∈{0,1} ←$Genpa-cpa(1
k);

– [pkbi , sk
b
i]b∈{0,1},i∈[k] ←$Genpa-cpa(1

k);

– pk ← ([pkinb
]b∈{0,1}, [pk

b
i]b∈{0,1},i∈[k]);

– sk ← ([skinb
]b∈{0,1}, [sk

b
i]b∈{0,1},i∈[k])

– Return (pk, sk)
Encryption Enccca(pk,m):

– (vksig, sksig)←$GenSig(1k)
– r ←$ {0, 1}k
– s̃0 ←$ {0, 1}�, where � = k + |m|; s̃1 ← (r||m) ⊕ s̃0
– CTin0 ←$Encpa-cpa(pkin0

, s̃0); CTin1 ←$Encpa-cpa(pkin1
, s̃1)

– r1|| · · · ||rk = prg(r)

– For 1 ≤ i ≤ k, CTi ← Encpa-cpa(pk
vksigi
i , CTin0 ||CTin1 ; ri)

– Return CT = (CT1|| · · · ||CTk, vksig, σ = Sign(sksig, CT1|| · · · ||CTk))
Decryption Deccca(sk, (CT = CT1|| · · · ||CTn, vksig, σ))

– If Ver(vksig, CT, σ) = ⊥, output ⊥.

– Otherwise, CTin0 ||CTin1 ← Decpa-cpa(sk
vksig1
1 , CT1)

– s̃0 ← Decpa-cpa(skin0 , CTin0)
– s̃1 ← Decpa-cpa(skin1 , CTin1)
– (r||m) ← s̃0 ⊕ s̃1
– (r1|| · · · ||rk) ← prg(r)

– If for all i, CTi = Encpa-cpa(pk
vksigi
i , CTin0 ||CTin1 ; ri) return m

– Else return ⊥.

Fig. 1. The CCA2-Secure Encryption Scheme Ecca

Theorem 2. Encryption scheme Ecca, presented in Figure 1, is CCA2-secure un-
der the assumptions that Epa-cpa = (Genpa-cpa,Encpa-cpa,Decpa-cpa) is a plaintext
aware, weakly simulatable public key encryption scheme with perfect correctness,
the scheme (GenSig, Sign,Ver) is a strong one-time signature scheme and prg is
a pseudorandom generator.

A Black-Box Construction 47

Note that the Damgard Elgamal encryption scheme (DEG) and the lite ver-
sion of Cramer-Shoup encryption scheme (CS-lite) are plaintext aware, weakly
simulatable and have perfect correctness.

Since strong one-time signature schemes and pseudorandom generators can
be constructed in a black-box manner from CPA-secure public key encryption
we have the following corollary:

Corollary 1. There is a black-box construction of a CCA2-secure public key en-
cryption scheme from any plaintext aware, weakly simulatable public key
encryption scheme with perfect correctness.

4 Security Analysis

We begin by defining an experiment which is different than the regular CCA2
experiment, but will be useful in our analsysis of Ecca:

Nested Indistinguishability Experiment for scheme Ecca:

We define the expriment N-Exp(β, z) for β, z ∈ {0, 1}.
For every adversary A = (A1, A2) participating in a CCA2 experiment, we

consider a corresponding ciphertext creator CA (described below) and cipher-
text extractor C∗ (as guaranteed by the security of the encryption scheme
Epa-cpa), interacting with an oracle O (described below). Let the random vari-
able N-Expβ,z(Ecca, A, k), where β, z ∈ {0, 1} and k ∈ N, denote the result of the
following probabilistic experiment:

N-Expβ,z(Ecca, A, k):

– CA receives public keys [pkinb
]b∈{0,1}, {pkbi}b∈{0,1},i∈[k] from the sPA1+2k+2

experiment
– CA chooses (sksig∗, vksig∗)←$GenSig(1k; rsksig), where rsksig consists of the

first k bits of CA’s random tape.
– CA sets pk = [pkinb

]b∈{0,1}, {pkbi}b∈{0,1},i∈[k].
– CA chooses a random tape for A and begins an emulation of A1 on input

pk.
– Whenever CA receives query CT = (CT1|| · · · ||CTk, vksig, σ) from A, CA

checks Ver(vksig, CT1|| · · · ||CTk, σ) = 1. If not, CA returns ⊥. If so, CA
submits CTi, where i is the first index s.t. vksig∗i �= vksig, to the extractor
to obtain (CTin0 ||CTin1). If there is no such index, CA returns ⊥ and halts.
Otherwise, CA submits CTin0 and CTin1 to the extractor to obtain s̃0, s̃1.
CA computes r||m = s̃0 ⊕ s̃1 and checks that CT1, . . . , CTn were computed
correctly. If not, CA returns ⊥. If so, CA returns m. Eventually A1 returns
(m0,m1, st) and halts. CA outputs (m0,m1).

– CA queries its oracle O and O returns r1, . . . , rk where r1 =

f−1(pk
vksig∗1
1 , CT ∗

1), . . . , rk = f−1(pk
vksig∗k
1 , CT ∗

k) and where CT ∗
1 , . . . , CT ∗

k

are computed in the following way:

48 D. Dachman-Soled

1. r ←$ {0, 1}k, r1, . . . , rn ← prg(r).
2. s̃0 ←$ {0, 1}�
3. If z = 0 then s̃1 ←$ {0, 1}�.
4. Else if z = 1 then s̃1 ← (r||mβ) ⊕ s̃0 .
5. CT ∗

in0
←$Encpa-cpa(pkin0

, s̃0); CT ∗
in1

←$Encpa-cpa(pkin1
, s̃1)

6. For 1 ≤ i ≤ k, CT ∗
i ← Encpa-cpa(pk

vksig∗i
i , CT ∗

in0
||CT ∗

in1
; ri)

– CA computes CT ∗
i = f(ri) for each i and the signature σ∗. CA returns

CT ∗ = (CT ∗
1 || · · · ||CT ∗

k , vksig
∗, σ∗) to A

– Whenever CA receives query CT = (CT1|| · · · ||CTk, vksig, σ) from A, CA
checks Ver(vksig, CT1|| · · · ||CTk, σ) = 1. If not, CA returns ⊥. If so, CA
submits CTi, where i is the first index s.t. vksigi �= vksig∗i , to the extractor
to obtain (CTin0 ||CTin1). If there is no such index, CA returns ⊥ and halts.
Otherwise, CA submits CTin0 and CTin1 to the extractor to obtain s̃0, s̃1.
CA computes r||m = s̃0 ⊕ s̃1 and checks that CT1, . . . , CTn were computed
correctly. If not, CA returns ⊥. If so, CA returns m. Eventually A2 outputs
D and halts.

We require that the output of A1 satisfies |m0| = |m1| and that A2 does not
query CT ∗ to its oracle.

Definition 5 (Nested Indistinguishability). We say that Ecca =
(Gencca,Enccca,Deccca) is nested-indistinguishable if for any ppt algorithms A =
(A1, A2) and for β ∈ {0, 1} the following two ensembles are computationally
indistinguishable:{

N-Expβ,0(Ecca, A, k)
}
k∈N

c≈
{
N-Expβ,1(Ecca, A, k)

}
k∈N

.

Consider the following event:

Definition 6 (The Bad Extraction Event). We say that a bad extrac-
tion event has occurred during an execution of the nested indistinguisha-
bility experiment if at some point A submits a decryption query CT =
(CT1|| · · · ||CTn, vksig, σ) such that one of the following occurs:

– C∗(st, CTi) �= Decpa-cpa(sk
vksigi
i , CTi) where i is the first index such that

vksig∗i �= vksigi.
– C∗(st, CTin0) �= Decpa-cpa(skin0 , CTin0)
– C∗(st, CTin1) �= Decpa-cpa(skin1 , CTin1)

Definition 7 (The Forging Signature Event). We say that a forging sig-
nature event has occurred during an execution of the nested indistinguisha-
bility experiment if at some point A submits a decryption query (CT =
(CT1|| · · · ||CTn, vksig, σ)) such that vksig = vksig∗ and Ver(vksig, CT, σ) = 1.

Our main theorem, Theorem 2, is immediately implied by the following two
lemmas:

A Black-Box Construction 49

Lemma 3. Assume that the scheme Epa-cpa = (Genpa-cpa,Encpa-cpa,Decpa-cpa) is
a plaintext aware, weakly simulatable public key encryption scheme with perfect
correctness. Then encryption scheme Ecca is nested-indistinguishable.

Lemma 4. Assume that the scheme Epa-cpa = (Genpa-cpa,Encpa-cpa,Decpa-cpa) is
a plaintext aware, weakly simulatable public key encryption scheme with perfect
correctness, the scheme (GenSig, Sign,Ver) is a strong one-time signature scheme
and prg is a pseudorandom generator. Then for β ∈ {0, 1} and for every ppt
adversary A:

{N-Expβ,1(Ecca, A, k)}k∈N
s≈ {CCA2-Expβ(Ecca, A, k)}k∈N

Lemma 3 follows by a straightforward reduction to semantic security of Epa-cpa.
Lemma 4 follows in a straightforward manner from the fact that Bad Extraction
Event and Forging Signature Event occur with at most negligible probability
when z = 1 along with the perfect correctness of Epa-cpa.

In what follows, we focus our attention on proving that Bad Extraction Event
occurs with at most negligible probability when z = 1. The proof that Forging
Signature Event occurs with negligible probability is straightforward and can be
found in the full version [11]. To show this we proceed in the following way:

– In Section 4.1 we prove that Bad Extraction Event occurs with negligible
probability in the Nested Indistinguishability Experiment when z = 0.

– In Section 4.2 we use the fact that Bad Extraction Event occurs with negli-
gible probability in the Nested Indistinguishability Experiment when z = 0
to prove that Bad Extraction Event also occurs with negligible probability
in the Nested Indistinguishability Experiment when z = 1.

4.1 Bad Extraction Event When z = 0

In this section we prove the following lemma:

Lemma 5. Bad Extraction Event occurs with negligible probability when z = 0.

We proceed by considering a sequence of hybrids:

Hybrid H0: Proceeds exactly as the nested indistinguishability game for z = 0.

Hybrid H1: Proceeds exactly like H0 except that fresh randomness ri is used to

encrypt each CT ∗
i = Encpa-cpa(pk

vksigi
i , CT ∗

in0
||CT ∗

in1
; ri), instead of the prg.

Claim. The probability of a Bad Extraction Event in H1 and H0 differs by a
negligible amount.

This follows in a straightforward manner from the security of the prg.

Hybrid H2: Proceeds exactly like H1 except the oracle O returns uniformly
random r1, . . . , rk .

Claim. The probability of Bad Extraction Event in H2 is negligible.

50 D. Dachman-Soled

The claim follows due to the fact that the view of CA in the nested indis-
tinguishability experiment in Hybrid H2 is identical to the view of CA in the
sPA1+2k+2 experiment (since in H2 the oracle O simply returns uniformly ran-
dom coins r1, . . . , rk, as does the oracle in the sPA1∗2k+2 experiment). Thus, by

the sPA1+2k+2-secuirty of Epa-cpa, C
∗ is guaranteed to return the same value as

Decpa-cpa on all ciphertexts submitted by CA with all but negligible probability.

Claim. The probability of a Bad Extraction Event in H1 and H2 differs by a
negligible amount.

Proof. Assume towards contradiction that there exists a ppt adversary A such
that a Bad Extraction Event inH1 andH2 differs by a non-negligible amount p =
p(k) when interacting with A,CA, C

∗. We present a ppt adversary B breaking
the weak simulatability of Epa-cpa.

B participates in an external experiment where B plays the security game
of the weakly simulatable encryption scheme Epa-cpa while internally interacting
with the adversary A and the corresponding ciphertext creator CA and extractor
C∗ in the following way:

– B receives p̂k1, . . . , p̂kk from the external simulatability security experiment.
– B chooses a random tape rCA for the ciphertext creator CA.
– B computes (sksig∗, vksig∗)←$GenSig(1k; rsksig), where rsksig consists of the

first k bits of rCA .
– B generates public key, secret key pairs

[pkinb
, skinb

]b∈{0,1}, {pk
1−vksig∗i
i , sk

1−vksig∗i
i }i∈[k] and for i ∈ [k] sets

pk
vksig∗i
i = p̂ki.

– B instantiates CA with random tape rCA on input
[pkinb

]b∈{0,1}, {pkbi}b∈{0,1},i∈[k].
– Eventually CA outputs (m0,m1). At this point, B plays the part of the oracle

O and does the following:
1. Choose s̃0, s̃1 ←$ {0, 1}� and compute CT ∗

in0
←$ Encpa-cpa(pkin0

, s̃0);
CT ∗

in1
←$ Encpa-cpa(pkin1

, s̃1)
2. Submit CT ∗

in0
||CT ∗

in1
to its external challenger.

3. Receives (r1, CT ∗
1), . . . , (rk, CT ∗

k) from its external challenger, where for
each i, ri = f−1(pki, c = Encpa-cpa(pki, CT ∗

in0
||CT ∗

in1
)) if b = 0 or

(ri, f(pki, ri)) for randomly generated ri if b = 1.
B forwards r1, . . . , rk to CA on behalf of oracle O and continues the emula-
tion of CA.

– If at any point during the emulation, Bad Extraction Event occurs (which B

can check by decrypting using [skinb
]b∈{0,1}, {sk

1−vksig∗i
i }i∈[k]), B aborts and

outputs 1.
– Otherwise, B outputs 0.

Note that for β ∈ {0, 1}, B perfectly simulates CA’s view in Hybrid H1 when
b = 0 and perfectly simulates CA’s view in Hybrid H2. Thus, B outputs 1 in the
case that b = 0 in the external experiment with probability p1 and B outputs

A Black-Box Construction 51

1 in the case that b = 1 in the external experiment with probability p2 where
p1 − p2 > p. Since by hypothesis, p is non-negligible, we have that B breaks the
security of the weakly simulatable encryption scheme Epa-cpa.

Lemma 5 follows immediately from Claims 4.1, 4.1 and 4.1.

4.2 Bad Extraction Event When z = 1

In this section we prove the following lemma:

Lemma 6. Bad Extraction Event occurs with negligible probability when z = 1.

To aid in our analysis, we define a second experiment ”Modified Nested Indis-
tinguishability” and a second Bad Extraction Event, ”Modified Bad Extraction
Event”. The Modified Nested Indistinguishability experiment is identical to the
Nested Indistinguishability experiment except that an additional random vari-
able b←$ {0, 1} is chosen at the very beginning of the experiment. The Modified
Bad Extraction Event will then depend on the value of b chosen during the
experiment. Details follow.

Definition 8 (The Modified Bad Extraction Event). We say that a mod-
ified bad extraction event has occurred during an execution of the nested in-
distinguishability experiment if at some point A submits a decryption query
CT = (CT1|| · · · ||CTn, vksig, σ) such that one of the following occurs:

– C∗(st, CTi) �= Decpa-cpa(sk
vksigi
i , CTi) where i is the first index such that

vksig∗i �= vksigi.
– C∗(st, CTinb

) �= Decpa-cpa(skinb
, CTinb

)

Claim. For every ppt adversary A = (A1, A2) and for β ∈ {0, 1}, Modified
Bad Extraction Event occurs in M-N-Expβ,z(Ecca, A, k) with negligible probabil-
ity when z = 0.

This follows immediately from the fact that for every ppt adversary A =
(A1, A2), Bad Extraction event occurs in N-Expβ,z(Ecca, A, k) with negligible
probability when z = 0.

Claim. If for some ppt adversary A = (A1, A2) we have that Bad Extrac-
tion Event occurs with probability p1 in N-Expβ,z(Ecca, A, k) when z = 1
then Modified Bad Extraction Event occurs with probability at least p1/2 in
M-N-Expβ,z(Ecca, A, k) when z = 1.

Proof. Let A be a ppt adversary such that Bad Extraction Event occurs with
probability p1 in the experiment N-Expβ,1(Ecca, A, k). Let event E be the event
that for some query, CT = (CT1|| · · · ||CTk, vksig, σ), one of the following occurs:

C∗(st, CTi) �= Decpa-cpa(sk
vksigi
i , CTi) (1)

where i is the first index such that vksig∗i �= vksigi.

52 D. Dachman-Soled

OR
C∗(st, CTin0) �= Decpa-cpa(skin0 , CTin0) (2)

OR
C∗(st, CTin1) �= Decpa-cpa(skin1 , CTin1) (3)

and this is the first such query made by A during the experiment. Note that the
probability that event E occurs in N-Expβ,1(Ecca, A, k) and the probability that
E occurs in M-N-Expβ,1(Ecca, A, k) is p1.

We consider an experiment,M-N-Exp′beta,z(Ecca, A, k), identical to the Modified
Nested Indistinguishability experiment except the value of b is chosen ”on the
fly” at the first point when event E occurs. It is straightforward to see that
the probability of event E in M-N-Exp′β,1(Ecca, A, k) is also p1 (the same as the
probability of E in the experiment M-N-Expβ,1(Ecca, A, k)).

Now, if event E was triggered by a query CT = (CT1|| · · · ||CTk, vksig, σ)
in M-N-Exp′beta,1(Ecca, A, k) such that (1) occurs, then modified bad extraction
event also occurs. Alternatively, if event E was triggered by a query CT =
(CT1|| · · · ||CTk, vksig, σ) in M-N-Exp′beta,1(Ecca, A, k) such that (2) or (3) occurs,
then modified bad extraction event occurs with probability exactly 1/2. Thus,
modified bad extraction event occurs in M-N-Exp′beta,1(Ecca, A, k) with probabil-

ity at least p1/2. Since the view of CA is identical inM-N-Exp′beta,1(Ecca, A, k) and
in M-N-Expbeta,1(Ecca, A, k) we have that modified bad extraction event occurs
in M-N-Expβ,1(Ecca, A, k) with probability at least p1/2.

Claim. The probability of a Modified Bad Extraction Event when z = 0 and
z = 1 differs by a negligible amount.

Proof. Assume towards contradiction that there is a ppt adversary A such that
the probability of a Modified Bad Extraction Event in M-N-Expbeta,0(Ecca, A, k)
is p0 = p0(k), the probability of a Modified Bad Extraction Event in
M-N-Expbeta,1(Ecca, A, k) is p1 = p1(k) and p(k) = p1(k)−p0(k) is non-negligible.
We present a ppt adversary B that uses A to break the semantic security of
Epa-cpa.

B participates in an external semantic security experiment for encryption
scheme Epa-cpa while internally emulating a run of M-N-Exp with CA, A and
playing the part of the oracle O. More specifically, B receives a public key
pkpa-cpa from the semantic security experiment for the encryption scheme Epa-cpa
and does the following:

– B chooses b←$ {0, 1}. and sets pkin1−b
= pkpa-cpa

– B chooses (pkinb
, skinb

)←$Genpa-cpa(1
k) and

[pkbi , sk
b
i]b∈{0,1},i∈[k] ←$Genpa-cpa(1

k).
– B chooses a random tape rCA for CA and begins an emulation of CA with

input ([pkinb
]b∈{0,1}, [pk

b
i]b∈{0,1},i∈[k]).

– At some point CA outputs m0,m1. At this point, B, playing
the part of the oracle O, returns r1, . . . , rk where (r1, CT ∗

1) =

f−1(pk
vksig∗1
1 , CT ∗

1), . . . , (rk, CT ∗
k) = f−1(pk

vksig∗k
1 , CT ∗

k) and CT ∗
1 , . . . , CT ∗

k

are computed in the following way:

A Black-Box Construction 53

• r ←$ {0, 1}k, r1, . . . , rn ← prg(r).
• (sksig, vksig)←$GenSig(1k)
• Choose s̃b ←$ {0, 1}�, s̃01−b ←$ {0, 1}� and set s̃11−b ← (r||mβ) ⊕ s̃b .
• B returns M0 = s̃01−b,M1 = s̃11−b to its external challenger and receives
ciphertext CTpa-cpa in return.

• B sets CT ∗
inb

←$Encpa-cpa(pkin0
, s̃b) and sets CT ∗

in1−b
= CTpa-cpa.

• For 1 ≤ i ≤ k, CT ∗
i ← Encpa-cpa(pk

vksig
i , CT ∗

in0
||CT ∗

in1
; ri)

– B continues the emulation of CA, A.
– If the event Modified Bad Extraction Event occurs, B aborts and outputs 1.
– Otherwise, B outputs 0.

Note that for β ∈ {0, 1}, B perfectly simulates CA’s view in the experiment
M-N-Exp(β, 0). Thus, B outputs 1 in the case that it receives an encryption ofM1

with probability p1 and B outputs 1 in the case that it receives an encryption
of M0 with probability p2 where p1 − p2 > p. Since by hypothesis, p is non-
negligible, we have that B breaks the semantic security of Epa-cpa.

Together, Claims 4.2, 4.2 and 4.2 immediately imply Lemma 6.

References

1. Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS,
pp. 106–115 (2001)

2. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

3. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 273–289. Springer, Heidelberg (2004)

4. Bellare, M., Palacio, A.: Towards plaintext-aware public-key encryption without
random oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 48–62.
Springer, Heidelberg (2004)

5. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

6. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision re-
sistance to succinct non-interactive arguments of knowledge, and back again. In:
ITCS, pp. 326–349 (2012)

7. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

8. Cash, D., Kiltz, E., Shoup, V.: The twin diffie-hellman problem and applications.
J. Cryptology 22(4), 470–504 (2009)

9. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.M.: Black-box construction of
a non-malleable encryption scheme from any semantically secure one. In: Canetti,
R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 427–444. Springer, Heidelberg (2008)

10. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

54 D. Dachman-Soled

11. Dachman-Soled, D.: A black-box construction of a cca2 encryption scheme from
a plaintext aware encryption scheme. IACR Cryptology ePrint Archive 2013, 680
(2013)

12. Damg̊ard, I.B., Nielsen, J.B.: Improved non-committing encryption schemes based
on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 432–450. Springer, Heidelberg (2000)

13. Dent, A.W.: The cramer-shoup encryption scheme is plaintext aware in the
standard model. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 289–307. Springer, Heidelberg (2006)

14. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Com-
put. 30(2), 391–437 (2000)

15. Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from decryp-
tion errors. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 342–360. Springer, Heidelberg (2004)

16. Gertner, Y., Malkin, T., Myers, S.: Towards a separation of semantic and CCA se-
curity for public key encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 434–455. Springer, Heidelberg (2007)

17. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

18. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer, Hei-
delberg (1998)

19. Hanaoka, G., Kurosawa, K.: Efficient chosen ciphertext secure public key encryp-
tion under the computational diffie-hellman assumption. In: Pieprzyk, J. (ed.) ASI-
ACRYPT 2008. LNCS, vol. 5350, pp. 308–325. Springer, Heidelberg (2008)

20. Haralambiev, K., Jager, T., Kiltz, E., Shoup, V.: Simple and efficient public-key
encryption from computational diffie-hellman in the standard model. In: Nguyen,
P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 1–18. Springer, Hei-
delberg (2010)

21. Herzog, J.C., Liskov, M., Micali, S.: Plaintext awareness via key registration. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 548–564. Springer, Heidelberg
(2003)

22. Hohenberger, S., Lewko, A., Waters, B.: Detecting dangerous queries: A new ap-
proach for chosen ciphertext security. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 663–681. Springer, Heidelberg (2012)

23. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

24. Kiltz, E., Mohassel, P., O’Neill, A.: Adaptive trapdoor functions and chosen-
ciphertext security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 673–692. Springer, Heidelberg (2010)

25. Lamport, L.: Constructing digital signatures from a one-way function. Technical
Report SRI-CSL-98, SRI International Computer Science Laboratory (1979)

26. Myers, S., Sergi, M., Shelat, A.: Blackbox construction of a more than non-
malleable CCA1 encryption scheme from plaintext awareness. In: Visconti, I., De
Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 149–165. Springer, Heidelberg
(2012)

27. Myers, S., Shelat, A.: Bit encryption is complete. In: FOCS, pp. 607–616 (2009)

A Black-Box Construction 55

28. Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a non-malleable encryp-
tion scheme from any semantically secure one. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg (2006)

29. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. SIAM J.
Comput. 40(6), 1803–1844 (2011)

30. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: STOC, pp. 387–394 (1990)

31. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. SIAM J.
Comput. 39(7), 3058–3088 (2010)

32. Wee, H.: Efficient chosen-ciphertext security via extractable hash proofs. In: Rabin,
T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 314–332. Springer, Heidelberg (2010)

Chosen Ciphertext Security via UCE

Takahiro Matsuda and Goichiro Hanaoka

Research Institute for Secure Systems (RISEC),
National Institute of Advanced Industrial Science and Technology (AIST), Japan

{t-matsuda,hanaoka-goichiro}@aist.go.jp

Abstract. Bellare, Hoang, and Keelveedhi (CRYPTO’13) introduced a security
notion for a family of (hash) functions called universal computational extractor
(UCE), and showed how it can be used to realize various kinds of cryptographic
primitives in the standard model whose (efficient) constructions were only known
in the random oracle model. Although the results of Bellare et al. have shown that
UCEs are quite powerful and useful, the notion of UCE is new, and its potential
power and limitation do not seem to have been clarified well. To further widen
and deepen our understanding of UCE, in this paper we study the construction of
chosen ciphertext secure (CCA secure) public key encryption (PKE), one of the
most important primitives in the area of cryptography to which (in)applicability
of UCEs was not covered by the work of Bellare et al.

We concretely consider the setting in which other than a UCE, we only use
chosen plaintext secure (CPA secure) PKE as an additional building block, and
obtain several negative and positive results. As our negative results, we show
difficulties of instantiating the random oracle in the Fujisaki-Okamoto (FO) con-
struction (PKC’99) with a UCE, by exhibiting pairs of CPA secure PKE and a
UCE for which the FO construction instantiated with these pairs becomes inse-
cure (assuming that CPA secure PKE and a UCE exist at all). Then, as our main
positive result, we show how to construct a CCA secure PKE scheme using only
CPA secure PKE and a UCE as building blocks. Furthermore, we also show how
to extend this result to a CCA secure deterministic PKE scheme for block sources
(with some constraint on the running time of the sources). Our positive results em-
ploy the ideas and techniques from the Dolev-Dwork-Naor (DDN) construction
(STOC’91), and for convenience we abstract and formalize the “core” structure
of the DDN construction as a stand-alone primitive that we call puncturable tag-
based encryption, which might be of independent interest.

1 Introduction

Background and Motivation. For the constructions of cryptographic primitives in which
we use a hash function as a building block, if we can view the hash function as a
random oracle [8], then in most cases we can obtain simple and practical constructions.
Moreover, there are some cryptographic primitives whose (efficient) constructions are
known only if we use a random oracle. However, random oracles do not exist in the real
world, and there are several problems for security proofs in the random oracle model
(e.g. [13,23,31]). Therefore, it is in general desirable to consider the constructions of
cryptographic primitives without using random oracles.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 56–76, 2014.
c© International Association for Cryptologic Research 2014

Chosen Ciphertext Security via UCE 57

In CRYPTO 2013, Bellare, Hoang, and Keelveedhi [4] introduced a new security
notion for a family of (hash) functions called universal computational extractor (UCE),
whose main purpose is to “instantiate” and “replace” random oracles used in a wide
class of the constructions of cryptographic primitives with UCEs. The UCE security
is intended to capture the security satisfied by a hash function that “behaves like a
random oracle” as close as possible, and roughly guarantees that outputs of a hash
function (in the family) look random, as long as the inputs to the hash function are
hard-to-find even given the related information (called leakage) of the inputs, and as
long as the inputs are independent of a function index that specifies the function from
the family.1 Bellare et al. [4] showed how UCEs can be used to realize various kinds
of cryptographic primitives in the standard model whose (efficient) constructions were
only known in the random oracle model (such as deterministic public key encryption
[3] and message-locked encryption [7]).

Although the results of Bellare et al. have shown that a UCE is quite powerful and
useful, the notion of UCE is new, and its potential power and limitation do not seem
to have been clarified well. To further widen and deepen our understanding of UCE,
in this paper we study the construction of chosen ciphertext secure (CCA secure) pub-
lic key encryption (PKE) [33,36,19], one of the most important primitives in the area
of cryptography for which we have witnessed the great success in the literature (e.g.
[9,20,21,1,34]) and yet to which (in)applicability of UCE was not covered by the work
of Bellare et al. (In fact, Bellare et al. showed the instantiability of the random oracle in
the OAEP scheme [9], but they only showed the chosen plaintext (CPA) security.) As a
first step towards clarifying the usefulness of UCEs in the context of constructing CCA
secure PKE, in this paper we concretely consider the setting where, other than a UCE,
we only use CPA secure PKE as an additional (and seemingly minimal) building block,
and obtain several negative and positive results.

Our Contributions. In this paper, we investigate the usefulness and (in)applicability
of UCEs in the context of constructing CCA secure PKE. As mentioned above, we
concretely study the setting in which other than a UCE, we only use CPA secure PKE
as an additional building block, and obtain several negative and positive results.

Our starting point is the Fujisaki-Okamoto (FO) construction [20] which constructs
CCA secure PKE from a random oracle and a CPA secure PKE scheme (satisfying
some property on cardinality of ciphertexts). As our negative results, in Section 3, we
show the difficulties of instantiating the random oracle in the FO construction with a
UCE if we simply put a function index of a UCE into a public key. Specifically, we
first show that (assuming that CPA secure PKE and a UCE exist) there exists a pair of
CPA secure PKE and a UCE for which the FO construction instantiated with this pair
is not even CPA secure. This result is shown by designing a pair of a CPA secure PKE

1 Actually, “UCE” is not a single security notion, but a family of security notions for a function
family, from which a particular notion is specified when we specify what class of “sources”
we will consider. For more details, see the explanation and the formal definition in Section 2.1.
For convenience, in the introduction, when we just write “UCE” (resp. “UCE security”), we
mean a function family that satisfies some version of UCE security notions (resp. one of UCE
security notions), and exactly which notion is used will be specified in the formal statements
given in Sections 3 and 5.

58 T. Matsuda and G. Hanaoka

scheme having a “weak randomness” and a UCE having a function-index-dependent
“weak input” so that when this pair is used as building blocks in the FO construction,
the resulting PKE scheme has a public-key-dependent “weak plaintext,” which is weak
in the sense that a ciphertext leaks the information of whether or not this weak plaintext
is encrypted. We then further investigate whether the FO construction can be secure
for “public-key-independent” messages, which could be still useful for example in the
setting where the FO construction is used as a key encapsulation mechanism (KEM) by
encrypting a random message and using it as a session-key (for SKE). We show another
negative result for this case by exhibiting yet another pair of CPA secure PKE and a
UCE such that when used as building blocks, the FO construction is not CCA1 secure
even if we restrict an adversary to choose two uniformly random (and hence public-key-
independent) plaintexts as its challenge plaintexts and allow the adversary to make only
one decryption query. This result is obtained by designing a pair of CPA secure PKE
and a UCE which have a public-key-dependent “critical ciphertext” whose decryption
result reveals the (essential part of) secret key. For more details, see Section 3.

Given the above negative results, we depart from the original FO construction [20].
By employing the ideas and techniques from the classical Dolev-Dwork-Naor (DDN)
construction [19] together with a UCE, we obtain several positive results. Specifically,
in Section 5, as our main positive result we show how to construct a CCA secure PKE
scheme using only a CPA secure PKE scheme and a UCE. We actually construct a CCA
secure key encapsulation mechanism (KEM), but by combining it with a CCA secure
SKE scheme, we obtain a full-fledged CCA secure PKE scheme [17]. Furthermore, we
show how this KEM can be extended to obtain a deterministic PKE (DPKE) scheme that
is CCA secure for block sources (with some additional constraint on the running time
of the sources), using the same building blocks as above. To the best of our knowledge,
our DPKE scheme is the first scheme which achieves CCA security for block sources in
the standard model without using lossy trapdoor functions (TDFs) [35] or related prim-
itives (though we have some non-standard restriction on the running time of sources).
By noting that a CCA secure DPKE scheme (for block sources with bounded running
time) is as it is an injective TDF which satisfies adaptively one-wayness [26], this result
immediately yields an adaptively one-way TDF as well. We also show how to weaken
the assumption on the UCE security if the underlying PKE scheme is additionally a
lossy encryption scheme [6]. The ideas and techniques for our proposed constructions
are explained in more details in “Overview of Techniques” paragraph below.

Our positive results clarify not only a new and important primitive for which UCEs
are useful, but also insights for the “gap” between CPA and CCA security for PKE.
Specifically, our results imply that if there exists a CPA secure PKE scheme and a UCE,
then there exist a CCA secure PKE scheme and a CCA secure DPKE for block sources
(with some constraint on the running time). This could be contrasted with the current
state-of-the-art attempts for constructing PKE schemes that satisfy security which is as
close as CCA security, using only a CPA secure PKE scheme as a building block. The
current best security is bounded CCA security [16] (more precisely, non-malleability
under bounded-CCA [15] and its slightly stronger variant [30]). Therefore, our results
serve as a concrete evidence that a UCE is quite a strong primitive, and has the power
to “jump” the currently known gap between CPA and CCA security for PKE schemes.

Chosen Ciphertext Security via UCE 59

As explained in details below, in our proposed constructions, we employ the ideas
and techniques from the DDN construction [19]. For ease of notation and reducing the
description complexity, we abstract the “core” structure of the DDN construction as
tag-based encryption (TBE) [28,25] with some special property, and formalize it as a
stand-alone primitive which we call puncturable TBE (PTBE). This formalization may
be useful for understanding the security proof of the DDN construction, and future
works that use the ideas and the techniques of the DDN construction in a similar way
to ours, and may be of independent interest. For more details, see Section 4.

Due to space limitation, most of the proofs of the theorems and lemmas in this paper
are omitted and will be given in the full version, and we only give proof sketches or
intuitive explanations.

Overview of Techniques. Our proposed CCA secure KEM is based on the DDN con-
struction [19], which originally constructs a CCA secure PKE scheme using a CPA
secure PKE scheme, a non-interactive zero-knowledge (NIZK) proof, and a one-time
signature scheme. In the original DDN construction, the NIZK proof roughly ensures
that each “component”-ciphertext from the underlying CPA secure PKE scheme is in
a valid form, i.e. it is in the range of the encryption algorithm and encrypts the same
value. Here, if there is another mechanism that ensures the “validity” of component-
ciphertexts, then we can remove the NIZK proof from this construction. This is the
place where a UCE comes into play. Specifically, by relying on the power of UCE,
for the DDN construction we realize the mechanism of the “randomness-recovering
decryption” (also called “witness-recovering decryption”) [20,21,35,10,37,32,24,29],
where (a part of) randomness used to generate a ciphertext is recovered in the decryption
process, and this recovered randomness is used to check the validity of the component-
ciphertexts by re-encryption. This “decrypt-then-re-encrypt”-style validity check works
as an alternative of the NIZK proof in the original DDN construction. Actually, such a
mechanism of recovering randomness in the decryption process usually causes a circu-
larity between a plaintext and a randomness (used to generate the ciphertext itself), but
in our construction this circularity can be overcome by the security of a UCE.

Then, our proposed CCA secure KEM is obtained by applying one more enhance-
ment to this “DDN without NIZK” construction. Specifically, we implement the mech-
anism of preventing the “re-use” of component-ciphertexts in the DDN construction,
which is originally realized by a one-time signature (i.e. the technique of using a verifi-
cation key of the one-time signature as a kind of “non-reusable tag” in each
ciphertext), with a commitment scheme. This change not only leads to smaller ci-
phertexts, but also (by appropriately combining it with a UCE) to a scheme with “full
randomness-recovering,” namely, in the decryption process an entire randomness is re-
covered. Hence, with a similar observation in [10], we also obtain a CCA secure DPKE
scheme for block sources. (However, we need to put some additional constraint on the
sources, due to the requirement on UCE security notions that we use.) For more details
about our constructions, see Section 5.

Related Work. The notion of CCA security for PKE was formalized by Naor and Yung
[33] and Rackoff and Simon [36]. Since the introduction of the notion, CCA secure
PKE schemes have been studied in a number of papers, and thus we only briefly review
constructions from general cryptographic assumptions. Dolev, Dwork, and Naor [19]

60 T. Matsuda and G. Hanaoka

showed the first construction of a CCA secure PKE scheme, from a CPA secure scheme
and a NIZK proof system, based on the construction by Naor and Yung [33] that achieves
weaker non-adaptive CCA (CCA1) security. Canetti, Halevi, and Katz [14] showed how
to transform an identity-based encryption scheme into a CCA secure PKE scheme. Kiltz
[25] showed that the transform of [14] is applicable to a weaker primitive of tag-based
encryption (TBE). Peikert and Waters [35] showed how to construct a CCA secure PKE
scheme from a lossy trapdoor function (TDF). Subsequent works showed that TDFs with
weaker security/functionality properties are sufficient for obtaining CCA secure PKE
schemes [37,26,39]. Myers and Shelat [32] showed that a CCA secure PKE scheme
for 1-bit plaintexts can be turned into one for arbitrarily long plaintexts. Hohenberger,
Lewko, and Waters [24] showed that CCA secure PKE can be constructed from a PKE
scheme with a weaker security notion called detectable CCA security. Lin and Tessaro
[27] showed how to amplify weak CCA security into strong (ordinary) CCA secure one.
Recently, Sahai and Waters [38] showed how (among other primitives) CCA secure
PKE can be constructed using indistinguishability obfuscation [2,22]. Very recently,
Matsuda and Hanaoka [29] showed how to construct CCA secure PKE using obfus-
cation for point functions (with multi-bit output), and Dachman-Soled [18] showed a
construction from PKE satisfying (the standard model) plaintext-awareness as well as
some additional “simulatability” property. We note that our proposed constructions and
these two constructions [29,18] have the properties that they all rely on the ideas and
techniques of the DDN construction [19].

2 Preliminaries

In this section, we review the basic notation and the definitions of primitives.

Basic Notation. N denotes the set of all natural numbers. For m,n ∈ N, we define
[n] := {1, . . . , n}, and “Funcm→n” denotes the set of all functions F of the form
F : {0, 1}m → {0, 1}n. “x ← y” denotes that x is chosen uniformly at random from y
if y is a finite set, x is output from y if y is a function or an algorithm, or y is assigned
to x otherwise. If x and y are strings, then “|x|” denotes the bit-length of x, “x‖y”

denotes the concatenation x and y, and “(x
?
= y)” is defined to be 1 if x = y and 0

otherwise. “(P)PTA” stands for a (probabilistic) polynomial time algorithm. For a finite
set S, “|S|” denotes its size. If A is a probabilistic algorithm, then “y ← A(x; r)”
denotes that A computes y as output by taking x as input and using r as randomness.
AO denotes an algorithm A with oracle access to O. A function ε(k) : N → [0, 1] is
said to be negligible if for all positive polynomials p(k) and all sufficiently large k ∈ N,
we have ε(k) < 1/p(k). Throughout the paper, we use the character “k” for the security
parameter. For an algorithm M, we denote by tM = tM(k) the maximum (worst-case)
running time of M when M is run with security parameter k.

2.1 Universal Computational Extractor (UCE)

Here, we recall the definition of UCE (universal computational extractor) [4], which is
a family of security notions for a (hash) function family. We first recall the syntax of a
function family, and then the definitions of UCE security. We also introduce a property
that we call smoothness which is used in our negative results in Section 3.

Chosen Ciphertext Security via UCE 61

Syntax. Let m,n : N → N be functions of k. A family of functions (function family)
F with input length m and output length n consists of the following two deterministic
PTAs (FKG,F): FKG is the key generation algorithm which takes 1k as input, and
outputs a function index κ.; F is the evaluation algorithm that takes a function index
κ and a string x ∈ {0, 1}m as input, and outputs a string y ∈ {0, 1}n. For notational
convenience, we write Fκ(·) to mean F(κ, ·).

UCE Security. Before giving the formal definitions, we give some overview. As men-
tioned earlier, the UCE security is a family of security notions, from which a particular
notion is specified when we specify a class S of “sources” S. A source is a part of an
adversary’s algorithm that is responsible for computing the inputs to the function Fκ(·)
(that are chosen independently of the function index κ) together with some relevant in-
formation called leakage L, where the independence of the inputs from κ is captured by
allowing S only oracle access to the function. The UCE security for the class S (UCE[S]
security, for short), states that for any PPTA adversary, called distinguisher, who re-
ceives the function index κ and the leakage L, cannot tell whether L is computed by a
source S ∈ S using the function Fκ(·) or using a random function, better than a random
guess. How strong/weak, and how useful UCE[S] security is depends on what restrictions
we put on the class S of sources. The wider the class S is, the stronger UCE[S] security
becomes. In other words, for classes S and S′ of sources, if S ⊆ S′, then UCE[S′] security
implies UCE[S] security.

In the proceedings version [4], Bellare et al. considered a class of computationally
unpredictable sources (which we denote by Scup), which roughly requires that given a
leakage L computed by a source S in the class under the situation S has oracle access
to a random function, it is hard to find any query to the oracle made by S. Bellare
et al. used UCE[Scup] secure function families to achieve a number of positive results.
Unfortunately, however, Brzuska, Farshim, and Mittelbach [12] later showed that if in-
distinguishability obfuscation [2,22] is possible, then UCE[Scup] security is unachievable
(see also [5]). Since Garg et al. [22] recently showed a candidate construction of it, as
mentioned in [5], currently it seems more likely that indistinguishability obfuscation is
possible than UCE[Scup] secure function families exist. To avoid the attack by Brzuska
et al. [12], Bellare et al. [5] suggested several approaches for weakening the UCE[Scup]
security by putting several restrictions on the sources so that the indistinguishability
obfuscation-based attack is not possible (and they re-achieved their results of [4] by us-
ing appropriately weakened versions of UCE security notions). In this paper, we adopt
the two approaches suggested in [5] for weakening UCE[Scup] security: to consider sta-
tistical unpredictability, and to put the restrictions on the running time and the number
of queries of sources.

Now we proceed to the formal definitions. Let F = (FKG,F) be a function family
with input length m = m(k) and output length n = n(k). A source S (for F) is an
oracle PPTA that takes 1k as input, expects to have access to an oracle O ∈ Funcm→n,
and outputs some value L ∈ {0, 1}∗ (called leakage). For a pair of a source S and an
adversary A (called “distinguisher”), consider the UCE experiment ExptUCEF ,(S,A)(k) that
is defined as in Fig. 1 (leftmost).

62 T. Matsuda and G. Hanaoka

ExptUCEF,(S,A)(k) :

κ ← FKG(1k)
O1(·) ← Fκ(·)
O0(·) ← Funcm→n

b ← {0, 1}
L ← SOb(1k)

b′ ← A(1k, κ, L)

Return (b′ ?
= b).

ExptUNPS,P(k) :
O(·) ← Funcm→n

L ← SO(1k)
Let Q be S’s queries

submitted to O.
x′ ← P(1k, L)
Return 1 iff x′ ∈ Q.

ExptCPAΠ,A(k) :
(pk, sk) ← PKG(1k)
(m0, m1, st)

← A1(pk)
b ← {0, 1}
c∗ ← Enc(pk,mb)
b′ ← A2(st, c

∗)

Return (b′ ?
= b).

ExptCCAΓ,A(k) :
(pk, sk) ← KKG(1k)
(c∗,K∗

1)
← Encap(pk)

K∗
0 ← {0, 1}k

b ← {0, 1}
b′ ← AO(pk, c∗,K∗

b)

Return (b′ ?
= b).

Fig. 1. The experiments for defining security. The UCE experiment for a function family F (left-
most), the UNP experiment for a source S (second-left), the CPA security experiment for a PKE
scheme Π (second-right), and the CCA security experiment for a KEM Γ (rightmost).

Definition 1. We say that a function family F is UCE[S]-secure if for all sources S ∈
S and for all PPTAs A, AdvUCEF ,(S,A)(k) := 2 · |Pr[ExptUCEF ,(S,A)(k) = 1] − 1/2| is
negligible.

We next define the classes of the sources that we treat in this paper. For a source S and
a PPTA P (called “predictor”), consider the unpredictability experiment ExptUNPS,P(k)

defined as in Fig. 1 (second-left).2

Definition 2. For polynomials t, q > 0, we say that a source S is (t, q)-computationally
(resp. statistically) unpredictable, denoted by S ∈ S

cup
t,q (resp. S ∈ S

sup
t,q), if (1) S’s run-

ning time is at most t and S makes at most q queries, and (2) for all PPTAs (resp. all
computationally unbounded algorithms) P , AdvUNPS,P(k) := Pr[ExptUNPS,P(k) = 1] is neg-
ligible. Furthermore, we just say that a source S is computationally (resp. statistically)
unpredictable, denoted by S ∈ Scup (resp. S ∈ Ssup), if S is (t, q)-computationally
(resp. statistically) unpredictable for some positive polynomials t, q.

We remark that our definition of (t, q)-computationally/statistically unpredictable
source is simpler than the “parallel sources” introduced in [5], which also considers
some restrictions on the running time, the number of queries (and the output length), and
additionally on how the source is run “parallelly.” We choose not to use the definition of
the parallel sources in [5] as it is, because in this paper we do not need to consider the
“parallel run” of the sources, in which case we believe our definitions are more straight-
forward and simpler. We note that any (t, q)-computationally/statistically unpredictable
sources that we defined above can always be cast as computationally/statistically un-
predictable parallel sources of [5] with appropriate parameters.3

We also remark that we could also consider the restriction on the output length of the
sources (i.e. the length of leakage). In this paper we choose not to do so for simplicity.
However, we note that in each of our results for which we use a UCE security notion as
an assumption, the output length of the sources used in the security proofs will be clear.

2 Bellare et al. [4] introduced two kinds of definitions for unpredictability, (ordinary) “unpre-
dictability” and “simple unpredictability,” and showed their equivalence. The unpredictability
in our paper is the simple unpredictability in [4], which is simpler and easier to work with.

3 More precisely, our definition of the class S
cup
t,q (resp. Ssupt,q) is strictly contained by the class

Scup ∩ Sprl
t,0,q (resp. Ssup ∩ Sprl

t,0,q) in [5].

Chosen Ciphertext Security via UCE 63

Smoothness. To show our negative results in Section 3, it is useful to introduce the
following property of a function family.

Definition 3. Let F = (FKG,F) be a function family with input length m = m(k)
and output length n = n(k). We define the smoothness of F , denoted by SmthF(k), as
SmthF(k) := Eκ←FKG(1k)

[
maxy∈{0,1}n Prx←{0,1}m [Fκ(x) = y]

]
.

The following lemma states a simple fact that a function family satisfying a very
weak form of UCE security has negligible smoothness.

Lemma 1. Let F be a function family with input length m = m(k) and output length
n = n(k) satisfying m,n ∈ ω(log k). If F is UCE[SsupO(m+n+k),1] secure, then SmthF(k)

is negligible.

2.2 Basic Primitives

Public Key Encryption. A public key encryption (PKE) scheme Π consists of the three
PPTAs (PKG,Enc,Dec) with the following interface:

Key Generation: Encryption: Decryption:
(pk, sk) ← PKG(1k) c ← Enc(pk,m) m (or ⊥) ← Dec(sk, c)

where Dec is a deterministic algorithm, (pk, sk) is a public/secret key pair, and c is a
ciphertext of a plaintext m under pk. We require for all k ∈ N, all (pk, sk) output by
PKG(1k), and all m, it holds that Dec(sk,Enc(pk,m)) = m.

For ATK ∈ {CPA, CCA1}, we say that a PKE scheme Π is ATK secure if for all PPTAs
A = (A1,A2), Adv

ATK
Π,A(k) := 2 · |Pr[ExptATKΠ,A(k) = 1] − 1/2| is negligible, where

the experiment ExptCPAΠ,A(k) is defined as in Fig. 1 (second-right), and the experiment
ExptCCA1Π,A(k) is defined as in ExptCPAΠ,A(k), except that A1 has access to the decryption
oracle Dec(sk, ·). In both of the experiments, it is required that |m0| = |m1|.

Here, we recall one of the requirements for the building block PKE scheme for the
original FO construction [20]. We say that a PKE scheme Π = (PKG,Enc,Dec) has
the large ciphertext cardinality property if for all pk output by PKG(1k), it holds that
minm |{Enc(pk,m; r)|r ∈ {0, 1}∗}| ∈ kω(1). (Not all PKE schemes have this property,
but any CPA secure PKE scheme can be turned into one satisfying it [20].)

Key Encapsulation Mechanism. A key encapsulation mechanism (KEM) Γ consists of
the three PPTAs (KKG,Encap,Decap) with the following interface:

Key Generation: Encapsulation: Decapsulation:
(pk, sk) ← KKG(1k) (c,K) ← Encap(pk) K (or ⊥) ← Decap(sk, c)

where Decap is a deterministic algorithm, (pk, sk) is a public/secret key pair, and c
is a ciphertext of a session-key K ∈ {0, 1}k under pk. We require for all k ∈ N,
all (pk, sk) output by KKG(1k), and all (c,K) output by Encap(pk), it holds that
Decap(sk, c) = K .

Wesay thataKEMΓ isCCAsecure if for allPPTAsA,AdvCCAΓ,A(k) :=2·|Pr[ExptCCAΓ,A(k)
= 1]− 1/2| is negligible, where the experimentExptCCAΓ,A(k) is defined as in Fig. 1 (right-
most). In the experiment, the oracle O is the decapsulation oracleDecap(sk, ·), and A is
not allowed to query c∗.

64 T. Matsuda and G. Hanaoka

Commitment Scheme. (We only define a non-interactive commitment scheme that has
a setup procedure, which is sufficient for our purpose.) A commitment scheme C con-
sists of the following two PPTAs (CKG,Com): CKG takes 1k as input, and outputs a
commitment key ck.; Com takes ck and a message m, and outputs a commitment c.

For security of a commitment scheme, we require the standard hiding and binding
properties. We in fact need weaker properties for both: hiding for messages chosen
independently of a commitment key, and binding in which one of the messages needs
to be chosen before a commitment key is given, which we call target-binding. (The
difference between (ordinary) binding and target-binding is similar to the difference
between collision resistance and target collision resistance of a hash function.) Due to
space limitation, we omit the formal definitions. See the full version for them.

We also require the size of a commitment to be k when generated using a com-
mitment key ck output by CKG(1k). This is not a strong requirement if we only con-
sider computational security notions. In particular, a commitment scheme satisfying the
above functionality/security requirements can be constructed from any CPA secure PKE.

3 Uninstantiability of the Fujisaki-Okamoto Construction

In this section, we show our negative results: uninstantiability of the random oracle in
the Fujisaki-Okamoto (FO) construction [20] with a UCE secure function family.

This section is organized as follows: In Section 3.1, we review the FO construction
[20] in which the random oracle is replaced with a function family. In Section 3.2,
we show a pair of a CPA secure PKE scheme (with large ciphertext cardinality) and
a UCE[S] secure function family (for some class S of sources) which, when used as
building blocks, makes the FO construction CPA insecure. This attack is demonstrated
by using a public-key-dependent plaintext. Then in Section 3.3, we show a pair of a
CPA secure PKE scheme (with large ciphertext cardinality) a UCE[S′] secure function
family (for another class S′ of sources) which, when used as building blocks, makes the
FO construction CCA1 insecure. This attack is possible even if an adversary has to use
public-key-independent plaintexts as its challenge plaintexts, and is allowed to make
only one decryption query.

Important Remarks. We would like to emphasize that our results are not showing that
the FO construction is in general insecure in the standard model. Rather, we show that
there are particular pairs of a CPA secure PKE scheme and a function family satisfying
some UCE security notions that make the FO construction insecure. Furthermore, our
result is only about the FO construction [20] in which we instantiate the random oracle
by putting a function index of the used function family into a public key. It would be
interesting and worth clarifying the (im)possibility of instantiating the random oracle in
[20] in a way different from ours, and the random oracles in the “hybrid-encryption”-
style FO construction [21], with UCE secure function families.

Chosen Ciphertext Security via UCE 65

PKGFO(1
k) :

(pk, sk) ← PKG(1k)
κ ← FKG(1k)
PKFO ← (pk, κ)
SKFO ← (sk, pk, κ)
Return (PKFO, SKFO).

EncFO(PKFO,m; r) :
(pk, κ) ← PKFO

α ← (r‖m)
R ← Fκ(α)
CFO ← Enc(pk, α;R)
Return CFO.

DecFO(SKFO, CFO) :
(sk, pk, κ) ← SKFO

α ← Dec(sk, CFO)
If α = ⊥ then return ⊥.
R ← Fκ(α)

Parse α as (r,m) ∈ {0, 1}k+k.
If Enc(pk, α;R) = CFO

then return m else return ⊥.

Fig. 2. The FO construction ΠFO[Π,F] based on a PKE scheme Π and a function family F

3.1 The Fujisaki-Okamoto Construction Using a Function Family

Firstly, for ease of notation, we introduce the following conditions for a pair of a PKE
scheme and a function family that can be used as building blocks of the FO construction.

Definition 4. Let Π = (PKG,Enc,Dec) be a PKE scheme and F be a function family.
We say that the pair (Π,F) is FO-compatible if (1) the plaintext space of Π is {0, 1}2k,
(2) the randomness space of Enc is {0, 1}k, (3) Π has the large ciphertext cardinality
property4, and (4) the input length and output length of F are 2k and k, respectively.

Now, using a FO-compatible pair (Π,F) as building blocks, we define the PKE
scheme ΠFO[Π,F] = (PKGFO,EncFO,DecFO) (with plaintext space {0, 1}k), which we
call the FO construction, as in Fig. 2.

As mentioned earlier, this PKE scheme can be seen as the original FO construction
[20] in which the random oracle is instantiated with the function family F by putting
a function index for F into a public key. There would be several other ways for in-
stantiating the random oracle with a function family. However, since the original FO
construction [20] uses just one random oracle, we believe that the construction in Fig. 2
is the most natural and straightforward instantiation of the random oracle for the origi-
nal FO construction [20].

3.2 Counterexample for Public-Key-Dependent Plaintexts

This subsection is devoted to proving the following result.

Theorem 1. Assume that there exists a FO-compatible pair of a CPA secure PKE scheme
and a UCE[S] secure function family with S

sup

O(k),1 ⊆ S ⊆ Scup. Then, there exists a FO-

compatible pair of a CPA secure PKE scheme Π̃ and a UCE[S] secure function family F̃
such that the FO construction ΠFO[Π̃, F̃] is not CPA secure.

Proof of Theorem 1. Let (Π = (PKG,Enc,Dec),F = (FKG,F)) be a FO-compatible
pair of a CPA secure PKE scheme Π and a UCE[S] secure function family guaranteed
to exist by the assumption of the theorem. Then, we construct another PKE scheme
Π̃ = (P̃KG, Ẽnc, D̃ec) based on Π , and another function family F̃ = (F̃KG, F̃) based
on F , as in Fig. 3 (left-top and left-bottom, respectively). It is straightforward to see

4 This is the property required for the building PKE scheme in the original FO construction [20].
We recall the definition of this property in Section 2.2.

66 T. Matsuda and G. Hanaoka

P̃KG(1k) :
Return (pk, sk) ← PKG(1k).

Ẽnc(pk,m; r) :

γ ← (r
?
= 0k)

c ← Enc(pk,m; r)
Return C ← (γ, c).

D̃ec(sk, C) :
(γ, c) ← C
Return m ← Dec(sk, c).

F̃KG(1k) :
κ ← FKG(1k); v� ← {0, 1}k
Return κ̃ ← (κ, v�).
F̃κ̃(x) :
(κ, v�) ← κ̃
Parse x as (x1, x2) ∈ {0, 1}k+k.

y ←
{
0k if v� ∈ {x1, x2}
Fκ(x) otherwise

Return y.

P̂KG(1k) :
r� ← {0, 1}k
(pk, sk) ← PKG(1k; r�)
(pk′, sk′) ← PKG′(1k)
κ′ ← FKG′(1k)
r′ ← F′

κ′(r�)
c� ← Enc′(pk′, r�; r′)
PK ← (pk, pk′, κ′, c�)
SK ← (sk, sk′)
Return (PK,SK).

Ênc(PK,m; r) :
(pk, pk′, κ′, c�) ← PK

If r = 0k then
Parse m as (m1,m2)

∈ {0, 1}k+k.
r′′ ← F′

κ′(m2)
c2 ← Enc′(pk′,m2; r

′′)
Return C ← (1‖m1‖c2).

Else
c ← Enc(pk,m; r)
Return C ← (0‖c).

End if

D̂ec(SK,C) :
(sk, sk′) ← SK
Parse C as (γ, c) s.t. |γ| = 1.
If γ = 0 then return m ← Dec(sk, c).
Parse c as (m1, c2) ∈ {0, 1}k × {0, 1}∗.
m2 ← Dec′(sk′, c2)
Return m ← (m1‖m2).

Fig. 3. The building blocks for the FO construction used for showing the uninstantiability: The
PKE scheme Π̃ (left-top), the PKE scheme Π̂ (right), and the function family F̃ (left-bottom)

that the pair (Π̃, F̃) is FO-compatible if so is the pair (Π,F). In particular, Π̃ satisfies
correctness, and preserves the large ciphertext cardinality property of Π .

Note that Π̃ is designed to have a “weak randomness” r = 0k, and F̃ is designed
to have a “weak input” v� which appears in the function index. We can exploit these
“weaknesses” from each building block for attacking the CPA security of ΠFO[Π̃, F̃].

The following lemmas, together with Lemma 1, imply Theorem 1.

Lemma 2. If the PKE scheme Π is CPA secure, then so is the PKE scheme Π̃ con-
structed as in Fig. 3 (left-top).

Lemma 3. For any S such that S ⊆ Scup, if the function family F is UCE[S] secure, then
so is the function family F̃ constructed as in Fig. 3 (left-bottom).

Lemma 4. If SmthF̃ (k) is negligible, then the FO construction ΠFO[Π̃, F̃] is not CPA
secure.

Lemma 2 is trivial to see, because in the CPA experiment, the probability that the “weak
randomness” r = 0k is chosen is exponentially small. A high level intuition for the
proof of Lemma 3 is that the “weak input” v� is only in a function index κ̃, chosen
uniformly at random and hidden information-theoretically from a source in the unpre-
dictability experiment, and thus it does not do any harm to the UCE[S] security of the
underlying function family F .

Finally, we provide a sketch for the proof of Lemma 4. Recall that a public key
PKFO of the FO construction ΠFO[Π̃, F̃] is of the form PKFO = (pk, κ̃ = (κ, v�)),

Chosen Ciphertext Security via UCE 67

where v� is the “weak input” of F̃ . Now, let us observe what happens when we encrypt
the “weak input” v� by EncFO(PKFO, ·). By the design of Π̃ , F̃ , and ΠFO[Π̃, F̃], for
any randomness r ∈ {0, 1}k used in EncFO(PKFO, ·), we have

EncFO(PKFO, v
�; r) = Ẽnc(pk, (r‖v�);Fκ̃(r‖v�)) = Ẽnc(pk, (r‖v�); 0k) = (1‖c′),

where c′ = Enc(pk, (r‖v�); 0k), and hence the first bit of EncFO(PKFO, v
�) is always

1. On the other hand, if we encrypt a random plaintext m, then by the smoothness of F̃
(which is guaranteed to be negligible by the UCE[S] security of F̃ , which is in turn based
on the UCE[SsupO(k),1] security of F and Lemmas 1 and 3), the probability that the first bit
of EncFO(PKFO,m) becomes 1 is negligible. This difference can be used to break the
CPA security of ΠFO[Π̃, F̃]. ��

3.3 Counterexample for Public-Key-Independent Plaintexts

Here, we consider whether the FO construction can provide security for public-key-
independent plaintexts (such as uniform random values). If this is possible, then the
FO construction may be still used as a secure KEM by encrypting a random message
and using it as a session-key. Unfortunately, however, we show that this is not the case.
Specifically, this subsection is devoted to proving the following theorem.

Theorem 2. Assume that there exists a FO-compatible pair of a CPA secure PKE scheme
(PKG,Enc,Dec) and a UCE[S] secure function family with S

cup

O(tPKG+tEnc),1
⊆ S ⊆ Scup.

Then, there exists a FO-compatible pair of a CPA secure PKE scheme Π̂ and a UCE[S]

secure function family F̂ such that the FO construction ΠFO[Π̂, F̂] is not CCA1 secure.
Furthermore, the CCA1 attack for ΠFO[Π̂, F̂] succeeds even if an adversary uses two
uniformly random plaintexts as its challenge plaintexts and makes only one decryption
query.

Proof of Theorem 2. Let (Π = (PKG,Enc,Dec),F = (FKG,F)) be a FO-compatible
pair as before. Without loss of generality, we assume that the randomness space of PKG
in Π is {0, 1}k. (This can be freely adjusted by using an appropriate pseudorandom
generator.) To simplify the notation, let us write Π ′ = (PKG′,Enc′,Dec′) to mean Π
in which the plaintext space is restricted to {0, 1}k (say, by defining Enc′(pk,m; r) :=
Enc(pk, (m‖0k); r)). Similarly, let us write F ′ = (FKG′,F′) to mean F in which the
input length is restricted to k-bit (say, as above, by defining5 F′

κ(x) := Fκ(x‖0k)).
Using Π , Π ′, and F ′ as building blocks, we construct the PKE scheme Π̂ =

(P̂KG, Ênc, D̂ec) as in Fig. 3 (right). Furthermore, we will again use F̃ (constructed
based on F as in Fig. 3 (left-bottom)) as the function family F̂ for the proof of this
theorem. It is not hard to see that the pair (Π̂, F̃) is FO-compatible if so is the pair
(Π,F). In particular, Π̂ satisfies correctness, and preserves the large ciphertext cardi-
nality property of Π .

5 Padding inputs by some default value does not destroy the UCE[S] security for S considered
here. Namely, if F is UCE[S] secure, then so is F ′.

68 T. Matsuda and G. Hanaoka

The following lemmas, together with Lemmas 1 and 3, imply Theorem 2.

Lemma 5. Assume that the PKE schemes Π and Π ′ are CPA secure, and the function
family F ′ is UCE[S

cup

O(tPKG+tEnc),1
] secure. Then the PKE scheme Π̂ constructed as in

Fig. 3 (right) is CPA secure.

Lemma 6. If SmthF̃ (k) is negligible, then the FO construction ΠFO[Π̂, F̃] is not CCA1
secure. Furthermore, the CCA1 attack succeeds even if an adversary uses two uniformly
random plaintexts as its challenge plaintexts and makes only one decryption query.

We give intuitive explanations for the proofs of the above lemmas. Regarding Lemma 5,
note that in the PKE scheme Π̂ , an encryption c� of the randomness r� used to gen-
erate the “main” public key pk is publicized as part of a public key of Π̂. Further-
more, the randomness r′ for generating c� is computed also from r� by using the
function family F ′. However, the correlation among r�, pk, and c� is dealt with by
the UCE[S

cup

O(tPKG+tEnc),1
] security of the function family F ′ and the CPA security of Π ′,

and then the CPA security of Π̂ follows from the CPA security of Π .
Regarding Lemma 6, recall that a public keyPKFO of the FO constructionΠFO[Π̂, F̃]

is of the form PKFO = (PK = (pk, pk′, κ′, c�), κ̃ = (κ, v�)). Here, observe that
if we decrypt the following “critical ciphertext” C�

FO = (1‖v�‖c�) which can be con-
structed once PKFO is given, then the decryption result is r� (which is the last k-bit
of D̂ec(SK,C�

FO) and is the randomness used to generate sk). This follows from the
properties of Π̂, F̃ , and ΠFO[Π̂, F̃] such that

(1) D̂ec(SK,C�
FO) = D̂ec(SK, (1‖v�‖c�)) = (v�‖Dec′(sk′, c�)) = (v�‖r�),

(2) F̃κ̃(v
�‖r�) = 0k, and

(3) Ênc(PK, (v�‖r�); F̃κ̃(v�‖r�)) = Ênc(PK, (v�‖r�); 0k)
= (1‖v�‖Enc′(pk′, r�;F′

κ′(r�))) = (1‖v�‖c�) = C�
FO.

Then, from r� we can recover sk, which is the “main” secret key. This means that a
CCA1 adversary can submit the “critical ciphertext” C�

FO as its decryption query, and
obtain sk. Since with overwhelming probability the challenge ciphertext C∗

FO is of the
form C∗

FO = (0‖Enc(pk, (r∗‖mb);Fκ(r
∗‖mb))) due to the negligible smoothness of F̃ ,

knowing sk allows the adversary to decrypt and tell the challenge bit, no matter what
plaintexts are used (and thus even if they are public-key-independent). ��

4 Puncturable Tag-Based Encryption

In our proposed constructions in Section 5, we will use the “core” structure that appears
in the DDN construction [19]. To ease the notation and reduce the description complex-
ity of our proposed constructions, here we introduce and formalize an abstraction of the
structure in the DDN construction as a special type of TBE [28,25], which we call punc-
turable tag-based encryption (PTBE).6 We remark that there would be several possible

6 The name “puncturable” is borrowed from the name of the primitive “puncturable” pseudo-
random function [38].

Chosen Ciphertext Security via UCE 69

ways to formalize the “core” structure of the DDN construction, and our formalization
here is one which is convenient for our purpose.

Intuitively, a PTBE scheme is a TBE scheme that has two modes for decryption: The
normal mode and the punctured mode. The normal mode is just the normal decryption
process of a TBE scheme. In the punctured mode, we can generate a “punctured” secret
key ŝktag∗ which can be used to decrypt all ciphertexts that are generated under tags
tag that are different from tag∗, while the information of plaintexts does not leak from
ciphertexts that are generated under the “punctured point” tag tag∗, even given the
punctured secret key ŝktag∗ . (This is as if we can “puncture” the tag space, and hence
the name of the primitive.)

More formally, a PTBE scheme consists of the five PPTAs (TKG,TEnc,TDec,

Punc, T̂Dec) among which the latter three algorithms are deterministic, with the fol-
lowing interface:

Key Generation: Encryption: Decryption:
(pk, sk) ← TKG(1k) c ← TEnc(pk, tag,m) m (or ⊥) ← TDec(sk, tag, c)

Puncturing: Punctured Decryption:

ŝktag∗ ← Punc(sk, tag∗) m (or ⊥) ← T̂Dec(ŝktag∗ , tag, c)

where (pk, sk) is a public/secret key pair, c is a ciphertext of a plaintext m under pk
and a tag tag ∈ {0, 1}k, and ŝktag∗ is a “punctured” secret key corresponding to a tag
tag∗ ∈ {0, 1}k.

Correctness. We require for all k ∈ N, all tags tag∗, tag ∈ {0, 1}k such that tag∗ �=
tag, all (pk, sk) output by TKG(1k), all m, and all c output by TEnc(pk, tag,m), it

holds that TDec(sk, tag, c) = T̂Dec(Punc(sk, tag∗), tag, c) = m.
We stress that the above correctness is only guaranteed for the case in which a cipher-

text c is generated from TEnc(pk, tag, ·) and tag �= tag∗. We do not specify anything
when these conditions are not guaranteed.

Extended CPA Security: CPA Security in the Presence of a Punctured Secret Key. As
a security requirement for a PTBE scheme, we define extended CPA security (eCPA
security, for short) which requires that CPA security hold even in the presence of a
punctured secret key.

Definition 5. We say that a PTBE scheme T is eCPA secure if for all PPTAs A =
(A0,A1,A2), Adv

eCPA
T ,A(k) := 2 · |Pr[ExpteCPAT ,A(k) = 1] − 1/2| is negligible, where the

experiment ExpteCPAT ,A(k) is defined as follows:

ExpteCPAT ,A(k) : [(tag
∗, st) ← A0(1

k); (pk, sk) ← TKG(1k);

ŝktag∗ ← Punc(sk, tag∗); (m0,m1, st
′) ← A1(st, pk, ŝktag∗); b ← {0, 1};

c∗ ← TEnc(pk, tag∗,mb); b
′ ← A2(st

′, c∗); Return (b′
?
= b).],

where in the experiment it is required that |m0| = |m1|.

70 T. Matsuda and G. Hanaoka

TKG(1k) :
∀(i, j) ∈ [k]× {0, 1} :

(pk
(j)
i , sk

(j)
i) ← PKG(1k)

pk ← (pk
(j)
i)i∈[k],j∈{0,1}

sk ← (sk
(j)
i)i∈[k],j∈{0,1}

Return (pk, sk).
TEnc(pk, tag,m) :

(pk
(j)
i)i∈[k],j∈{0,1} ← pk

Let ti be the i-th bit of tag.
∀i ∈ [k] : ci ← Enc(pk

(ti)
i ,m)

Return c ← (ci)i∈[k].

TDec(sk, tag, c) :

(sk
(j)
i)i∈[k],j∈{0,1} ← sk

(ci)i∈[k] ← c
Let t1 be the first bit of tag.
m ← Dec(sk

(t1)
1 , c1)

Return m.
Punc(sk, tag∗)
(sk

(j)
i)i∈[k],j∈{0,1} ← sk

Let t∗i be the i-th bit of tag∗.

ŝktag∗ ← (t∗i , sk
(1−t∗i)
i)i∈[k]

Return ŝktag∗ .

T̂Dec(ŝktag∗ , tag, c) :

(t∗i , sk
(1−t∗i)
i)i∈[k]

← ŝktag∗

Let ti be the i-th bit of tag.
If ∀i : ti = t∗i then

return ⊥.
(ci)i∈[k] ← c
	 ← min{ i |ti �= t∗i }
m ← Dec(sk

(1−t∗�)
� , c�)

Return m.

Fig. 4. A concrete instantiation of a PTBE scheme T based on a CPA secure PKE Π

Concrete Instantiation of PTBE. Since PTBE is intended to abstract the structure that
appears in the DDN construction [19], the concrete instantiation of PTBE is exactly one
that is used in [19], which is constructed from any CPA secure PKE scheme. Specifically,
given a CPA secure PKE scheme Π = (PKG,Enc,Dec), we construct a PTBE scheme

T = (TKG,TEnc,TDec,Punc, T̂Dec) as in Fig. 4. In the full version of our paper, we
will give the proof for the eCPA security of T .

One of the merits of considering PTBE as a stand-alone primitive would be that it
can be instantiated from other primitives, such as broadcast encryption and a multi-
user PKE scheme/KEM. A potential advantage of instantiations with these alternative
building blocks is that the public key and/or ciphertext size could be much shorter than
the simplest construction from a CPA secure PKE scheme. For example, if we use a
broadcast encryption scheme by Boneh, Gentry, and Waters [11] to instantiate a PTBE
scheme, then a ciphertext consists of a constant number of group elements (in bilinear
groups), regardless of the security parameter k.

5 Chosen Ciphertext Security via UCE

In this section, we show our positive results: Specifically, in Section 5.1, we show the
proposed CCA secure KEM based on a PTBE scheme, a commitment scheme, and a
UCE secure function family (for which we will specify the class of sources shortly).
Since the first two building blocks can be constructed from CPA secure PKE, our KEM
can be constructed only from CPA secure PKE and a UCE secure function family.

Due to space limitations, our result on a DPKE scheme is not included in this pro-
ceedings version, and we refer the reader to the full version. In Section 5.2, we instead
give brief overview of the result, as well as several extensions of our positive results.

5.1 CCA Secure KEM

Let T = (TKG,TEnc,TDec,Punc, T̂Dec) be a PTBE scheme and C = (CKG,Com)
be a commitment scheme. We assume the plaintext/message space of both T and C to
be {0, 1}k, and the randomness space of TEnc in T and Com in C to be {0, 1}� and

Chosen Ciphertext Security via UCE 71

KKG(1k) :
(pk, sk) ← TKG(1k)
ck ← CKG(1k)
κ ← FKG(1k)
PK ← (pk, ck, κ)
SK ← (sk,PK)
Return (PK,SK).

Encap(PK) :
(pk, ck, κ) ← PK
α ← {0, 1}k
β ← Fκ(α)
Parse β as (r, r′, K)

∈ {0, 1}�+�′+k.
tag ← Com(ck, α; r′)
c ← TEnc(pk, tag, α; r)
C ← (tag, c)
Return (C,K).

Decap(SK,C) :
(sk, PK) ← SK; (pk, ck, κ) ← PK
(tag, c) ← C
α ← TDec(sk, tag, c)
If α = ⊥ then return ⊥.
β ← Fκ(α)

Parse β as (r, r′, K) ∈ {0, 1}�+�′+k.
If TEnc(pk, tag, α; r) = c
and Com(ck, α; r′) = tag

then return K else return ⊥.

Fig. 5. The proposed CCA secure KEM Γ

{0, 1}�′, respectively, for some positive polynomials � = �(k) and �′ = �′(k). Let F =
(FKG,F) be a function family with input length k and output length �(k) + �′(k) + k.
Then, our proposed KEM Γ = (KKG,Encap,Decap) is constructed as in Fig. 5.

Alternative Decapsulation Algorithm. To show the CCA security of the proposed KEM
Γ , it is useful to consider the following alternative decapsulation algorithm AltDecap.
For a k-bit string tag∗ ∈ {0, 1}k and a key pair (PK, SK) output by KKG(1k), where
PK = (pk, ck, κ) and SK = (sk, PK), we define an “alternative” secret key ŜKtag∗

associated with tag∗ ∈ {0, 1}k by ŜKtag∗ = (tag∗, ŝktag∗ , PK), where ŝktag∗ =

Punc(sk, tag∗). AltDecap takes an “alternative” secret key ŜKtag∗ defined as above
and a ciphertext C = (tag, c) as input, and runs as follows:

AltDecap(ŜKtag∗ , C): If tag∗ = tag, then return ⊥. Otherwise, run in exactly the

same way as Decap(SK,C), except that “α ← T̂Dec(ŝktag∗ , tag, c)” is executed
instead of “α ← TDec(sk, tag, c).”

The following lemma is easy to see due to the correctness of the underlying PTBE
scheme T and the validity check of c by re-encryption performed at the last step.

Lemma 7. Let tag∗ ∈ {0, 1}k be a string and let (PK, SK) be a key pair output by
KKG(1k). Furthermore, let ŜKtag∗ be an alternative secret key as defined above. Then,
for any ciphertext C = (tag, c) (which could be outside the range of Encap(PK))
satisfying tag �= tag∗, it holds that Decap(SK,C) = AltDecap(ŜKtag∗ , C).

Security of Γ . The security of Γ is guaranteed by the following theorem.

Theorem 3. Assume that the PTBE scheme T is eCPA secure, the commitment scheme
C is hiding and target-binding, and the function family F is UCE[Scupt,1] secure with t =
O(tTKG + tTEnc + tPunc + tCKG + tCom). Then, the KEM Γ constructed as in Fig. 5 is
CCA secure.

Proof Sketch of Theorem 3. Let A be any PPTA adversary that attacks the KEM Γ in
the sense of CCA security. Consider the following sequence of games: (Here, the values
with asterisk (*) represent those related to the challenge ciphertext for A.)

72 T. Matsuda and G. Hanaoka

Game 1: This is the experiment ExptCCAΓ,A(k) itself.
Game 2: Same as Game 1, except that all decapsulation queries C = (tag, c) satisfy-

ing tag = tag∗ are answered with ⊥.
Game 3: Same as Game 2, except that all decapsulation queries C are answered with

AltDecap(ŜKtag∗ , C), where ŜKtag∗ is the alternative secret key corresponding to
(PK, SK) and tag∗.

Game 4: Same as Game 3, except that r∗, r′∗,K∗
1 are picked uniformly at random,

independently of β∗ = Fκ(α
∗). That is, the steps “β∗ ← Fκ(α

∗); Parse β∗ as
(r∗, r′∗,K∗

1) ∈ {0, 1}�+�′+k” in Game 3 are replaced with the step “(r∗, r′∗,K∗
1)

← {0, 1}�+�′+k,” and we do not compute β∗ anymore.

For i ∈ [4], let Si denote the event that A succeeds in guessing the challenge bit
(i.e. b′ = b occurs) in Game i. Note that AdvCCAΓ,A(k) = 2 · |Pr[S1] − 1/2| ≤ 2 ·∑

i∈[3] |Pr[Si]−Pr[Si+1]|+2 · |Pr[S4]− 1/2|. We will show that |Pr[Si]−Pr[Si+1]|
is negligible for each i ∈ [3] and that Pr[S4] = 1/2, which proves the theorem.

Firstly, notice that |Pr[S1] − Pr[S2]| can be upperbounded by the probability of
A making a decapsulation query C = (tag, c) satisfying tag = tag∗, c �= c∗, and
Decap(SK,C) �= ⊥. In the full proof, we will show that such a query can be used
to break the target-binding property of the commitment scheme C, and hence A will
submit a query of this type only with negligible probability, due to the target-binding
property of the commitment scheme C.

It is easy to see that Pr[S2] = Pr[S3] holds, because the behavior of the oracle in
Game 2 and that in Game 3 are identical due to Lemma 7.

To show the upperbound of |Pr[S3]−Pr[S4]|, we need to use the UCE[Scupt,1] security
of the function family F . Define the source S that takes 1k as input, expects to have
access to an oracle O ∈ Funck→(�+�′+k), and computes an output (leakage) L = (pk,

ck, tag∗, ŝktag∗ , c
∗,K∗) in the following way:

SO(1k) : [(pk, sk) ← TKG(1k); ck ← CKG(1k); α∗ ← {0, 1}k; β∗ ← O(α∗);

Parse β∗ as (r∗, r′∗,K∗).; tag∗ ← Com(ck, α∗; r′∗); ŝktag∗ ← Punc(sk, tag∗);

c∗ ← TEnc(pk, tag∗, α∗; r∗); Return L ← (pk, ck, tag∗, ŝktag∗ , c
∗,K∗).].

Defined as above, it is obvious that S satisfies the restrictions on the running time and
the number of queries. Furthermore, due to the hiding property of the commitment
scheme C and the eCPA security of the PTBE scheme T , it is straightforward to see that
S is computationally unpredictable, and thus it holds that S ∈ S

cup
t,1 . Then, in the full

proof, we will show that there exists a PPTA Bu that takes as input a function index κ,
a leakage L = (pk, ck, tag∗, ŝktag∗ , c

∗,K∗) ← SO(1k), where O ∈ Funck→(�+�′+k)
is either Fκ(·) or a random function, simulates Game 3 or Game 4 perfectly for A de-
pending on Bu’s challenge bit, and has the UCE advantage AdvUCEF ,(S,Bu)(k) = |Pr[S3] −
Pr[S4]|. Hence, |Pr[S3] − Pr[S4]| is negligible by the UCE[Scupt,1] security of F .

Finally, in Game 4, the “real” session-key K∗
1 is independent of the challenge cipher-

text C∗ and is a uniformly random value, and thus the challenge bit b is information-
theoretically hidden from A’s view. This implies Pr[S4] = 1/2. ��

Chosen Ciphertext Security via UCE 73

5.2 Further Results and Extensions

CCA Secure DPKE for Block Sources with Bounded Running Time. Note that our pro-
posed KEM has the property that a randomness used to generate a ciphertext is entirely
recovered in the decryption process. Here, by deriving the randomness r and r′ (used
for generating c and tag) from a plaintext m (instead of deriving them from the “seed”
α picked randomly) by the UCE secure function family F , we obtain a DPKE scheme.
We can show that this DPKE scheme is CCA secure for block sources [10] (i.e. each
plaintext sampled from the source has high min-entropy, even conditioned on all the
previous plaintexts), as long as the sources satisfy an additional constraint that their
running time is bounded by some predetermined polynomial t′ = t′(k) (we call such a
block source t′-bounded block source). This additional constraint on the running time
of the sources is due to our security proof in which the source for a UCE secure function
family has to execute a t′-bounded block source for DPKE (that chooses the challenge
plaintexts), and thus we have to rely on UCE[S

cup
t,1] security where t must be large enough

to allow the execution of the t′-bounded block source for DPKE (and other algorithms
that need to be run for the security proof).

Although CCA security for block sources with bounded running time is clearly weaker
than that for ordinary block sources, the constraint on the running time of the sources
would not be a severe limitation in practice, because in most cases messages that are
going to be encrypted will be chosen by honest parties and we do not expect picking
messages to be computationally expensive.7 We stress that we do not put any restriction
on the running time of the “main” adversary who may perform decryption queries and
any computationally heavy operations, as long as it runs in polynomial time.

Function Families with Short Output Length. For our proposed KEM, we use a function
family F with output length �+ �′ + k, which could be long (the actual length depends
on how the PTBE scheme is instantiated). However, by employing a pseudorandom
generator G : {0, 1}k → {0, 1}�+�′+k, we can replace F with a function family with
output length k. This extension is however at the cost of using slightly stronger UCE
security. Specifically, now we have to rely on the UCE[Scupt′,1] security where t′ = t+ tG
and t is as stated in Theorem 3. This extension is also applicable to our DPKE scheme.

Weakening the UCE Assumption Using Lossy Encryption. We notice that in the security
proof of our proposed KEM, if the underlying PTBE scheme is instantiated using a lossy
encryption scheme [6] and the underlying commitment scheme is statistically hiding
(which can be constructed from any lossy encryption scheme), then the source S used
in the proof of Theorem 3 can be modified to show that it is statistically unpredictable.
Specifically, this can be shown by considering an additional game between Game 3 and
Game 4 in which we use lossy public keys for public keys corresponding to tag∗ when
generating a challenge ciphertext. (For this, in the full version of our paper we will also
introduce a lossy-encryption-analogue of PTBE.)

Therefore, at the cost of employing a stronger assumption on the underlying PKE
scheme, we can weaken the assumption on F to be UCE[S

sup
t′,1] security where t′ is

7 This observation is due to one of the anonymous reviewers.

74 T. Matsuda and G. Hanaoka

dependent on the underlying lossy encryption scheme (and other building blocks). (We
will specify t′ in the full version.)

We note that similar tradeoffs about the assumptions among building blocks for con-
structing CCA secure PKE/KEM were shown in [29].

Acknowledgement. The authors would like to thank Pooya Farshim for giving us a
detailed overview of their attack [12] on UCE security using indistinguishability obfus-
cation. The authors would also like to thank Jacob Schuldt, the members of the study
group “Shin-Akarui-Angou-Benkyou-Kai,” and the anonymous reviewers of PKC 2014
for their helpful comments and suggestions. In particular, the authors are grateful to one
of the reviewers for pointing out some issue in the security proof of our DPKE scheme,
and for suggesting considering CCA security of DPKE for block sources with bounded
running time.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and an analy-
sis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 143–158. Springer,
Heidelberg (2001)

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.:
On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

3. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable encryption.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552. Springer, Heidelberg
(2007)

4. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 398–415. Springer, Hei-
delberg (2013)

5. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs. Updated
full version of [4] (2013), http://eprint.iacr.org/2013/424

6. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryption and
commitment secure under selective opening. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 1–35. Springer, Heidelberg (2009)

7. Bellare, M., Keelveedhi, S., Ristenpart, T.: Message-locked encryption and secure dedu-
plication. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 296–312. Springer, Heidelberg (2013)

8. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient
protocols. In: CCS 1993, pp. 62–73 (1993)

9. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

10. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic encryption, and
efficient constructions without random oracles. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

11. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short cipher-
texts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275.
Springer, Heidelberg (2005)

12. Brzuska, C., Farshim, P., Mittelbach, A.: Personal communication (December 2013)

http://eprint.iacr.org/2013/424

Chosen Ciphertext Security via UCE 75

13. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. In: STOC
1998, pp. 209–218 (1998)

14. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption.
In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222.
Springer, Heidelberg (2004)

15. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Black-box construction of a non-
malleable encryption scheme from any semantically secure one. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 427–444. Springer, Heidelberg (2008)

16. Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., Shelat, A., Vaikun-
tanathan, V.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007)

17. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes se-
cure against adaptive chosen ciphertext attack. SIAM J. Computing 33(1), 167–226 (2003)

18. Dachman-Soled, D.: A black-box construction of a CCA2 encryption scheme from a plain-
text aware (sPA1) encryption scheme. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383,
pp. 37–55. Springer, Heidelberg (2014), http://eprint.iacr.org/2013/680

19. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: STOC 1991, pp. 542–552
(1991)

20. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption at mini-
mum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 53–68. Springer,
Heidelberg (1999)

21. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption
schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer,
Heidelberg (1999)

22. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistin-
guishability obfuscation and functional encryption for all curcuits. In: FOCS 2013, pp. 40–49
(2013)

23. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In: FOCS 2003,
pp. 102–113 (2003)

24. Hohenberger, S., Lewko, A., Waters, B.: Detecting dangerous queries: A new approach for
chosen ciphertext security. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 663–681. Springer, Heidelberg (2012)

25. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Rabin, T.
(eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)

26. Kiltz, E., Mohassel, P., O’Neill, A.: Adaptive trapdoor functions and chosen-ciphertext se-
curity. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 673–692. Springer,
Heidelberg (2010)

27. Lin, H., Tessaro, S.: Amplification of chosen-ciphertext security. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 503–519. Springer, Heidelberg (2013)

28. MacKenzie, P.D., Reiter, M.K., Yang, K.: Alternatives to non-malleability: Definitions, con-
structions, and applications. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 171–190.
Springer, Heidelberg (2004)

29. Matsuda, T., Hanaoka, G.: Chosen ciphertext security via point obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 95–120. Springer, Heidelberg (2014)

30. Matsuda, T., Matsuura, K.: Parallel decryption queries in bounded chosen ciphertext attacks.
In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571,
pp. 246–264. Springer, Heidelberg (2011)

31. Maurer, U.M., Renner, R.S., Holenstein, C.: Indifferentiability, impossibility results on re-
ductions, and applications to the random oracle methodology. In: Naor, M. (ed.) TCC 2004.
LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

http://eprint.iacr.org/2013/680

76 T. Matsuda and G. Hanaoka

32. Myers, S., Shelat, A.: Bit encryption is complete. In: FOCS 2009, pp. 607–616 (2009)
33. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext

attacks. In: STOC 1990, pp. 427–437 (1990)
34. Okamoto, T., Pointcheval, D.: REACT: Rapid enhanced-security asymmetric cryptosystem

transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 159–174. Springer,
Heidelberg (2001)

35. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC 2008,
pp. 187–196 (2008)

36. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen
ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444.
Springer, Heidelberg (1992)

37. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. In: Reingold, O.
(ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg (2009)

38. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: Deniable encryption, and
more (2013), http://eprint.iacr.org/2013/454

39. Wee, H.: Efficient chosen-ciphertext security via extractable hash proofs. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 314–332. Springer, Heidelberg (2010)

http://eprint.iacr.org/2013/454

Proxy Re-encryption from Lattices

Elena Kirshanova

Horst Görtz Institute for IT-Security
Faculty of Mathematics

Ruhr University Bochum, Germany
elena.kirshanova@rub.de

Abstract. We propose a new unidirectional proxy re-encryption scheme
based on the hardness of the LWE problem. Our construction is collusion-
safe and does not require any trusted authority for the re-encryption key
generation. We extend a recent trapdoor definition for a lattice of Mic-
ciancio and Peikert. Our proxy re-encryption scheme is provably CCA-1
secure in the selective model under the LWE assumption.

Keywords: Proxy re-encryption, lattices, learning with errors.

1 Introduction

There are a number of applications (distributed file system of [3], email forward-
ing) which require that some data encrypted for Alice has to be re-encrypted to
Bob. A naive way Alice can accomplish this task is to decrypt the data with her
secret key and then encrypt the resulting plaintext under Bob’s public key. But
this approach requires Alice to actively participate to perform the procedures.
Moreover, she needs to repeat the encryption for any further user she wants to
resend the message to. In a proxy re-encryption (PRE) scheme, a proxy is given
a special information (a re-encryption key) that allows it to translate a cipher-
text intended for Alice into a ciphertext of the same message encrypted under
Bob’s key. In this setting we will call Alice the delegator and Bob the delegatee.
The proxy cannot, however, learn either the underlying plaintext or the secret
key of either Alice or Bob.

In 1998, Blaze et al. ([6]) proposed the first proxy re-encryption scheme. Their
construction is based on the ElGamal encryption scheme ([8]): for a group G of
prime order p and g a generator of the group, Alice and Bob choose their key pair
(a, ga) and (b, gb), a, b ← Z∗

p. The encryption of a message m intended for Alice
then has the form c = (c1, c2) = (mgr, (ga)r) for a randomly chosen r ← Z∗

p. The
re-encryption key from Alice to Bob is rk(Alice→Bob) = b/a, and the proxy trans-

lates the ciphertext c to Bob by computing c′ = (c1, c
b/a
2) = (mgr, (gb)r).The

scheme is CPA secure under the Decisional Diffie-Hellman assumption in G.
From the re-encryption key the proxy can easily compute a/b, that allows it to
convert the ciphertexts in the inverse direction. Such PRE schemes are called
bidirectional. More desirable in practice are unidirectional schemes, in which a
re-encryption key works only in one direction.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 77–94, 2014.
c© International Association for Cryptologic Research 2014

78 E. Kirshanova

In the above PRE scheme if the proxy and one of the parties collude, they
can recover the secret key of another party. The second issue is that a proxy
knowing rkA→B = b/a and rkB→C = c/b can compute rkA→C = c/a. Ateniese et
al. in [3] listed desired properties for PRE schemes; among them are:

– Non-interactivity: rk(Alice→Bob) can be generated by Alice alone using Bob’s
public key; no trusted authority is needed.

– Proxy transparency: neither the delegator nor the delegatees are aware of the
presence of a proxy, i.e. a recipient of a ciphertext cannot distinguish whether
the ciphertext is the original encryption or whether it was re-encrypted. The
property is achieved in [6].

– Key optimality: the size of Bob’s secret key remains constant, regardless of
how many delegations he accepts.

– Collusion resilience (also called master key security in [3] and [4]): it is hard
for the coalition of the proxy and Bob to compute Alice’s secret key.

– Non-transitivity: it should be hard for the proxy to re-delegate the decryption
right, namely to compute rkA→C from rkA→B, rkB→C .

1.1 Related Work

Bidirectional proxy re-enryption scheme was proposed by Blaze et al. in [6],
while a unidirectional construction firstly appeared as a building block of a
secure distributed file system in [3], [4]. The formal definition of CCA security
for PRE with a bidirectional scheme is present in [7]. CCA security is achieved
for the unidirectional setting in [12]. Both schemes use bilinear pairings.

The possibility of using lattice-based assumptions for PRE constructions was
shown by Xagawa in [18], but the scheme lacks a complete security analysis. Like
Blaze et al. the scheme modifies the ElGamal encryption scheme adding the re-
encryption key of the form rkA→B = b/a, where a and b are discrete logarithms
of the public keys of Alice and Bob, the scheme of Xagawa and Tanaka is an
analogous modification of Regev’s encryption scheme ([16]). And, as its ElGamal
counterpart, it is bidirectional, it does not provide collusion safeness, neither it
is non-interactive: a trusted party is needed to generate the re-encryption keys.

1.2 Our Contribution

The main contribution of this paper is a unidirectional single-hop proxy
re-encryption scheme based on the hardness of lattice-based problems. Prior to
[10] there was no known construction that is both unidirectional and multi-hop.
But even in [10] this combination comes at the cost of allowing the ciphertext to
grow linearly with respect to the number of re-encryptions. Although Gentry in
[9] mentions that a fully-homomorphic scheme can achieve multi-use and unidi-
rectionality simultaneously, the constructions of FHE are far from practical. We
achieveCCA-1 security in the selective model ([4]). Our scheme is the first lattice-
based construction that achieves collusion resilience and non-interactivity. We
apply the trapdoor delegation technique proposed in [15]. However, we have to
extend the definition of a lattice trapdoor of [15]. The generalization might prove
useful for functionalities other than proxy re-encryption as well.

PRE Scheme Based from Lattices 79

2 Definitions

This section recalls the definition of unidirectional proxy re-encryption and the
game-based definition of security, where we follow the selective model of Ateniese
et al. ([3]), but in the chosen-ciphertext security setting, which was formalized
in [7]. We are interested in the unidirectional case (i.e. a re-encryption key from
pk to pk′ should not provide the ability to re-encrypt from pk′ to pk).

Definition 1 (Unidirectional PRE). A unidirectional, proxy re-encryption
scheme is a tuple of algorithms (KeyGen, ReKeyGen, Enc, ReEnc, Dec):

– (pk, sk) ← KeyGen(1n). On input the security parameter 1n, the key genera-
tion algorithm KeyGen outputs a key pair (pk, sk).

– rkpk→pk′ ← ReKeyGen(pk, sk, pk′). On input a private key sk of a delegator
and a public key of a delegatee pk′, algorithm ReKeyGen outputs a unidirec-
tional re-encryption key rkpk→pk′ .

– c ← Enc(pk,m). On input a public key pk and a message m, algorithm Enc
outputs a ciphertext c.

– c′ ← ReEnc(rkpk→pk′ , c). On input a re-encryption key rkpk→pk′ and a cipher-
text c′, algorithm ReEnc outputs a ciphertext c′ decryptable under the secret
key sk′.

– m ← Dec(sk, pk, c). On input a secret key sk, a public key pk and a ciphertext
c′, algorithm Dec outputs a message m or the error symbol ⊥.

Definition 2 (Multi/Single-hop PRE). A proxy re-encryption scheme is
called multi-hop if a proxy can apply further re-encryptions to already re-encryp-
ted ciphertext. In a single-hop setting a ciphertext can be re-encrypted only once.

The requirements for correctness of decryption depend on whether the scheme
is multi-hop or single-hop. Informally, the decryption algorithm should output
the correct plaintext, no matter whether the ciphertext is “freshly” encrypted
or re-encrypted.

Definition 3 (Single-hop PRE Correctness). A proxy re-encryption
scheme (KeyGen, KeyGen, ReKeyGen, Enc, ReEnc, Dec) correctly decrypts for
the plaintext space M if:

– For all (pk, sk) output by KeyGen and for all m ∈ M, it holds that
Dec(sk,Enc(pk,m)) = m.

– For any re-encryption key rkpk→pk′ output by ReKeyGen(sk, pk, pk′) and any
c = Enc(pk,m) it holds that Dec = (sk′,ReEnc(rkpk→pk′c)) = m.

We give the game-based definition of security for PRE schemes. A discussion
follows the definition.

Definition 4 (Unidirectional PRE-CCA1 Game). Let 1n be the
security parameter, A be any ppt adversary. Consider the following experiment
for a PRE scheme Π = (KeyGen,ReKeyGen, Enc,ReEnc,Dec) with a plaintext
space M, a key space K and a ciphertext space C (the arrows represent interac-
tion between the adversary and the scheme Π):

80 E. Kirshanova

PRECCA1
A,Π (n) A

1.(pk∗, sk∗) ← KeyGen(1n)
Add (pk∗, sk∗) to H 1n, pk∗

2.(pkH , skH) ← KeyGen(1n) Add an honest user
(pkH , skH) ∈ H pkH

3.(pkC , skC) ← KeyGen(1n) Add a corrupted user
(pkC , skC) ∈ C (pkC , skC)

4. If (pk, sk) ∈ H c, pk c ∈ C

m = Dec(c, sk) m

(pk, pk′) (pk, pk′) ∈ K ×K
5. If pk, pk′ ∈ H or pk, pk′ ∈ C
rkpk→pk′ = ReKeyGen(pk, pk′) rkpk→pk′

· · ·
Repeat steps 2-5 poly(n) times· · ·

m0,m1 m0,m1 ∈ M
6. b → {0, 1}

c∗ = Enc(pk∗,mb) c∗

· · ·
Repeat steps 2,3,5 poly(n) times· · ·

If b = b′ output 1 b′ b′ ∈ {0, 1}
else output 0

An adversary A wins the game with advantage ε if the probability, taken over
the random choices of A and of the oracles, that the experiment PRECCA1

A,Π (n)
outputs 1, is at least 1/2 + ε.

To describe the security model we first classify all of the users into honest
(H) and corrupted (C). In the honest case an adversary knows only a public key,
whereas for a corrupted user the adversary has both secret and public keys.

We start by choosing a target user (pk∗, sk∗) and label it as honest. While an
adversary queries for the keys, we disallow any adaptive corruption: the adver-
sary cannot be given a decryption key for any user from H during the game. The
adversary can ask for a decryption of a ciphertext c for any user. The adversary
is given access to a re-encryption key from pk to pk′ forbidding the case when
pk ∈ H and pk′ ∈ C, which is equivalent to an adaptive corruption of pk. Note
that the generation of a re-encryption key from a corrupted to a honest party
can be accomplished by the adversary himself, since he knows the secret key of
a delegator. As long as he can query for the re-encryption key, the adversary can
also perform a re-enryption at any time.

After the challenge ciphertext c∗ has been produced, we still allow the adver-
sary to query for the re-encryption keys, so he can also re-encrypt c∗.

Definition 5 (PRE-CCA1 Security). A unidirectional proxy re-encryption
scheme is CCA-1 secure, if any ppt adversary wins the Unidirectional PRE-
CCA1 Game only with negligible advantage.

PRE Scheme Based from Lattices 81

3 Lattices

We denote column-vectors by lower-case bold letters, so row-vectors are rep-
resented via transposition (e.g., bt). Matrices are denoted by upper-case bold
letters, an additive subgroup of m × n matrices over R is denoted by Mm,n.
For any B ∈ Mm,n we denote σi(B) as decreasingly ordered sequence of singu-
lar values of B. A symmetric matrix Σ ∈ Mn,n is semidefinite, if xtΣx ≥ 0
for all nonzero x ∈ Rn. For any B ∈ Mn,n, the unique matrix B+ is the
Moore-Penrose pseudoinverse, if BB+B = B,B+BB+ = B+ and BB+,B+B
are symmetric. For any matrix B the symmetric matrix Σ = BBt is positive
definite. We denote then B =

√
Σ. A function f : N → R is called negligible,

denoted f(n) = negl(n), if for every c ∈ N there is an integer nc such that
f(n) ≤ nc, ∀n ≥ nc. Throughout the paper the parameter r = w(

√
logn) repre-

sents a fixed function r ≈
√
ln(2/ε)/π that arises from the randomized-rounding

operation from R to Z and corresponds to the so-called smoothing parameter for
Zn (the definition of the smoothing parameter follows).

3.1 Lattice Definition

Let B = {b1, . . . ,bn} ⊂ Rm be a set of n linearly independent vectors. The
lattice Λ of rank n generated by the basis B is the set of vectors

Λ = L(B) = {Bc : c ∈ Zn}.

We will work with full-rank integer lattices, i.e. Λ ⊂ Zm with m = n. The dual
lattice Λ∗ is the set is the set of all vectors y ∈ Rm satisfying 〈x,y〉 ∈ Z for all
vectors x ∈ Λ. If B is a basis of an arbitrary lattice Λ, then B∗ = B(BtB)−1 is a

basis for Λ∗. For a full-rank lattice, B∗ = B−t. We refer to B̃ as a Gram-Schmidt
orthogonalization of B.

So-called q-ary integer lattices are of particular interest in cryptography. These
lattices satisfy the relation qZm ⊆ Λ ⊆ Zm for some integer q. For a matrix
A ∈ Zn×mq , integers q,m, n, we define two full-rank m-dimensional q-ary lattices:

Λ(At) = {y ∈ Zm : ∃s ∈ Znq s.t. y ≡ Ats mod q}

Λ⊥(A) = {y ∈ Zm : Ay ≡ 0 mod q}.

3.2 Gaussians on Lattices

We define the n-dimensional Gaussian function on Rn centered at 0:

ρ(x) = exp(−π · ‖x‖2).

For any matrix B we define a density function of a Gaussian distribution for
x ∈ span(B) and for Σ = BBt ≥ 0:

ρ√Σ = ρ(B+x) = exp(−π · xtΣ+c).

82 E. Kirshanova

Normalizing the above expression by its total measure over span(Σ), we ob-
tain a probability density function of the continuous Gaussian distribution D√

Σ .

The covariance matrix of this distribution is Σ
2π , we ignore the

1
2π factor and re-

fer to Σ as the covariance matrix of D√
Σ.

The continuous Gaussian distribution D√
Σ can be discretized to a lattice (or

to the “shift” of the lattice) as follows: for Λ ⊂ Rn, c ∈ Rn and positive semidef-
inite Σ > 0 such that (Λ + c) ∩ span(Σ) is nonempty, the discrete Gaussian
distribution is

DΛ+c,
√
Σ =

ρ√Σ(x)

ρ√Σ(Λ+ x)
, ∀x ∈ Λ+ c,

where the denominator is merely a normalization factor.
In the definition of the so-called smoothing parameter ηε (originally defined

in [13]) we follow the notion of [15].

Definition 6. For a positive semidefinite matrix Σ and a lattice Λ ⊂ span(Σ),
we say that

√
Σ > ηε(Λ) if ρ√Σ+(Λ∗) ≤ 1 + ε.

We will also use the following tail bound on discrete Gaussians.

Lemma 7 ([5], Lemma 1.5). Let Λ ⊂ Rn be a lattice and r ≤ ηε(Λ) for some
ε ∈ (0, 1). For any c ∈ span(Λ), we have

Pr[‖DΛ+c,r‖ ≥ r
√
n] ≤ 2−n · 1 + ε

1 − ε
.

If c = 0 then the inequality holds for any r > 0, with ε = 0.

3.3 Useful Tools

Here we recall some useful facts about subgaussian random variable and the
singular value of a matrix. A detailed overview on subgaussian probability dis-
tribution is given in [17]. As the name suggests, subgaussian random variable
generalizes the notion of Gaussian random variable in the sense that it has the
property of a super-exponential tail decay.

Definition 8. A random variable X is subgaussian with parameter s, if ∃C such
that ∀t ≥ 0

Pr[|X | > t] ≤ C exp(−πt2/s2).

In [17] it is proved that the above definition is equivalent to the inequality for
the moment-generating function: E[exp(tX)] ≤ exp(12Cs2t2), ∀t ∈ R. Since we
deal with discrete Gaussians, we will use a more loose definition of the so-called
δ-subgaussian variable due to [15]:

Definition 9. For δ > 0 a random variable X is δ-subgaussian with parameter
s > 0 if for all t ∈ R, the (scaled) moment-generating function satisfies

E[2πtX] ≤ exp(δ) · exp(πs2t2).

PRE Scheme Based from Lattices 83

Other than the Gaussian distribution itself, Bernoulli distributed and any
bounded random variable are classical examples for subgaussians. Note that
if we concatenate independent δi-subgaussian random variable with common
parameter s into a vector, we obtain a (Σδi) subgaussian vector with parameter
s. It is easy to see that for a finite number of independent Gaussian random
variables Xi with zero mean, their sum ΣiXi is a Gaussian random variable
with parameter s =

√
Σis2i . This property is called rotation invariance in [17]

and also transfers to the subgaussians. In the security proof of our proxy re-
encryption scheme we will use the following fact.

Fact 10. Let X1, X2, . . . , Xn be independent, zero-mean subgaussian random
variables with parameter s and a = (a1, a2, . . . , an) ∈ Rn. Then Σk(akXk) is
a subgaussian random variable with parameter s‖a‖.

One can view the addition and subtraction of the subgaussians as the inner pro-
duct of a subgaussian vector and a {0,−1, 1}-vector. In our security proof we use
this fact to show that the result of a product of a δ-subgaussian matrix (treated
as a concatenation of δ-subgaussian columns) by a matrix with {0,−1, 1} entries
is a δ-subgaussian matrix with a slightly larger parameter s.

Here we recall two facts about the singular values of a random matrix. The
first lemma from [17] shows an upper bound on the singular value of the matrix
with Gaussian entries adapted to the 0-subgaussian case. The second result ([11])
bounds the singular value of the product of two matrices.

Lemma 11. Let A ∈ Rn×m be a δ-subgaussian random matrix with parameter
s. There exist a universal constant C > 0 such that for any t ≥ 0 we have
σ1(A) ≤ C ·s · (

√
m+

√
n+ t) except with probability at most 2 exp(δ) exp(−πt2).

Lemma 12 (Theorem 3.3.16 in [11]). Let A ∈ Mm,n,B ∈ Mn,m and � =
min{m,n}. The following inequalities hold for the decreasingly ordered singular
values of AB:

σi(AB) ≤ σi(A)σ1(B) for i = 1, . . . , �.

3.4 Hard Problems

There are two lattice-based one-way functions associated with matrix A ∈ Zn×mq

for m = poly(n):

– fA(x) = Ax mod q,x ∈ Zm;
– gA(e, s) = stA+ et mod q for s ∈ Znq and a Gaussian e ∈ Zm.

Given a vector u, finding a short preimage x′ such that fA(x′) = u is an instan-
tiation of the SIS problem, which is at least as hard as solving the of Shortest
Independent Vector Problem (SIVP) on n-dimensional lattices ([1], [13]). The
problem to invert gA(e, s), where e ← Dαq, is known as LWEq,α problem and is as
hard as quantumly solving SIVP on n-dimensional lattices ([16]). The decisional-
LWE problem asks to distinguish the output of gA from uniform.

84 E. Kirshanova

4 G-trapdoor and Algorithms

In this section we briefly describe the main results of [15]: the definition of a
so-called G-trapdoor and the algorithms InvertO and SampleO for the LWE and
SIS problems.

4.1 Trapdoor Generation

In short, a G-trapdoor is a transformation (represented by a matrix R) from
a public matrix A to a special matrix G. G has such a structured form that
solving SIS and LWE problems for this matrix (i.e. inverting gG and fG) can
be done efficiently, while for a uniform A these problems are believed to be
hard. As an example of a matrix G Micciancio and Peikert in [15] consider
G = In ⊗ gt ∈ Zn×nkq , where

gt = [1 2 4 . . . 2k−1] ∈ Z1×k
q , q = 2k.

They also give efficient algorithms for inverting gg(s, e) = s ·gt+ et mod q and
Gaussian sampling from preimages of fg(x) = 〈g,x〉 mod q. By executing these
algorithms n times, one solves the same problems for G.

In order to embed this structured matrix into a (uniformly looking) matrix
A together with a transformation R, one should start with a uniform matrix
A0 and a matrix R and construct A = [A0| − A0R + G]. For an appropriate
choice of dimensions (A,AR) is negl(n)-far from uniform by the Leftover Hash
Lemma. Using R one can transform:

[A0| − A0R+G]
[R
I

]
= G

and, therefore, invert one-way functions gA, fA.
In [15] an invertible matrix H is used as: A = [A0|−A0R+HG] to construct

a CCA-secure encryption scheme. In this case the knowledge of both R and H
is needed to perform the transformation. Note, that if H is a zero-matrix, then

[A0| − A0R]
[
R
I

]
= 0, and solving LWE (or SIS) for A does not longer reduce

to solving the same problems for G. This fact is used to construct a challenge
ciphertext.

To achieve CCA-security for re-encryption, we need to have a pair of trans-
formations (R1, R2) for A: R1 to generate re-encryption keys (i.e. to solve SIS)
and R2 to decrypt (i.e. to solve LWE). Let us define the generalized definition of
a G-trapdoor:

Definition 13. Let A = [A0|A1| . . . |Ak−1] ∈ Zn×mq for k ≥ 2, and A0 ∈
Zn×m̄q , A1, . . . ,Ak−1 ∈ Zn×wq with m̄ ≥ w ≥ n and m = m̄ + (k − 1) · w
(typically, w = n�log q�). A G-trapdoor for A is a sequence of matrices R =
[R1|R2| . . . |Rk−1] ∈ Zm̄×(k−1)w such that:

PRE Scheme Based from Lattices 85

[A0|A1| . . . |Ak−1]

⎡⎢⎢⎢⎣
R1 R2 · · · Rk−1

I 0 · · · 0
...

...
. . .

...
0 0 · · · I

⎤⎥⎥⎥⎦ = [H1G|H2G| · · · |Hk−1G]

for invertible matrices Hi ∈ Zn×nq and a fixed G ∈ Zn×wq .
To generate a pseudorandom matrix A ∈ Zn×mq with a G-trapdoor R ∈

Zm̄×(k−1)w
q one should iteratively execute the algorithm GenTrapD of [15] but

for k − 1 invertible Hi’s and for Gaussian Ri ← Dm̄×w
s for some s ≥ ηε(Z).

4.2 Algorithms

Here we show how to use a generalized trapdoor for the inversion of the function
gA(s, e) = stA + et mod q and preimage sampling for fA(x) = Ax mod q,
where A ∈ Zn×mq has a trapdoor R ∈ Z(m−w)×w that satisfies Def. 13. The

algorithms below generalize the algorithms InvertO and SampleO of [15].

LWE Inversion. We start by showing how to use the extended notion of a
G-trapdoor to invert an LWE sample bt = stA + et mod q. We refer to this
procedure as InvertO(R,A,b,Hi) and emphasize in the input that Hi is an
invertible matrix, while the other Hj , j �= i can be zero. So for A = [A0|H1G−
R1A0|...|HiG − RiA0|...]:

1. Compute b̂
t
= b

⎡⎢⎢⎢⎣
R1 R2 · · · Rk−1

I 0 · · · 0
...

...
. . .

...
0 0 · · · I

⎤⎥⎥⎥⎦ = [H1G|...|HiG|...Hk−1G] ∈ Z(k−1)w
q ;

2. Set b̂
t

1 = b̂
t
[w · (i − 1)...w · i];

3. Obtain (ŝ, ê) by inverting b̂
t

1 for G. So (ŝ, ê) satisfies b̂
t

1 = ŝG+ ê mod q.
4. Compute s = H−t

i ŝ ∈ Znq and e = b − Ats ∈ Zmq . Output (s, e).

The algorithm produces a correct output, if the error vector e is “short enough”:
‖e‖ < q/(2‖B‖s) where B is a basis for Λ⊥(G) and s =

√
σ1(Ri)2 + 1. For the

detailed proof of correctness see theorem 5.4 in [15].

Gaussian Sampling. We show below how to sample a Gaussian vector x ∈ Zmq
for a matrix A = [A0| . . . |Ak−1] ∈ Zn×mq with the generalized trapdoor R ∈
Zm̄×(k−1)w
q and k − 1 invertible Hi’s given a coset u ∈ Znq .
The intuition behind the algorithm SampleO of [15] is the following: for two

distributions X and Y with covariance matrices ΣX and ΣY , the covariance
of their sum is ΣX + ΣY . A spherical Gaussian distribution with a standard
deviation s has covariance matrix s2I. Therefore, having ΣX and a parameter
s as inputs, we can “adjust” ΣY such that X + Y is a spherical Gaussian with
standard deviation s.

So having as input a coset u, a matrix A with a trapdoor R, an invertible
H and a parameter for the output distribution s, we first sample a vector z for

86 E. Kirshanova

the matrix G with fixed parameter r
√
ΣG (for the construction from section

4.1
√
ΣG = 2). Then we multiply x′ =

[
R
I

]
z. The resulting vector x′ satisfies

Ax′ = u, but has covariance matrix Σx′ = [R|I]T (rΣG)[Rt|I]. In order to
output a vector x as spherical Gaussian with parameter s we add a vector p
with covariance Σp = s2I − [R|I]T (rΣG)[Rt|I].

1. Choose p ← D
Zm,r

√
Σp

. View it as pt = [p1|p2| . . . |pk], where p1 ∈ Zm̄,

p2, . . . ,pk ∈ Zw.
2. Compute w1 = A0(p1 − R1p2), wi = −A0Ripi+1 for i = 2, . . . , (k − 1);
3. Compute wi = Gpi+1 for i = 1, . . . , (k − 1);

4. Let v1 = H−1
1 (u − w1) − w1, vi = −H−1

i wi − wi for i = 2, . . . , (k − 1);
5. For each i = 1, . . . , (k − 1) choose zi ← DΛ⊥

vi
(G),r

√
ΣG

. Concatenate the

obtained vectors to get zt = [z1| . . . |zk−1] ∈ Z(k−1)w;

6. Output x = p+

⎡⎢⎢⎢⎣
R1 R2 · · · Rk−1

I 0 · · · 0
...

...
. . .

...
0 0 · · · I

⎤⎥⎥⎥⎦ · z ∈ Zm.

5 Chosen Ciphertext Secure Proxy Re-encryption

In this section we present our main result: the proxy re-encryption scheme that
employs a G-trapdoor with the associated algorithms from the previous section.
Before giving the formal description of the scheme we provide an intuition behind
the generation of the re-encryption keys. The ability to sample short vectors for
any coset can be extended to performing the sampling algorithm for any n × m
matrix in a column-wise fashion, that is for each column (coset) we can output
a Gaussian column-vector and after m samplings concatenate the result into a
matrix. This idea was used in a trapdoor delegation algorithm in [15]. If the in-
put matrix is some public key matrix A′, then the result of sampling (a matrix
X) is a transformation A · X = A′ between two public keys.

In order to accomplish both tasks: re-encyption key generation and decryp-
tion, we propose to use the generalized definition of a G-trapdoor (Def. 13).
Thus, we achieve a re-encryption functionality: we sample small matrices with
oneG-trapdoor (R1), and at the same time we perform the decryption operation
using another G-trapdoor (R2).

5.1 Construction of the Single-Hop PRE

Let 1n be the security parameter and let r refer to a fixed function w(
√
logn).

– The modulus q is defined as a large enough prime power q = pe = poly(n)
and k = O(log q) = O(log n). We define m̄ = O(nk) and the total dimension
of the public key as m = m̄+ 2nk.

PRE Scheme Based from Lattices 87

– G ∈ Zn×nkq is a matrix of a special structure (see section 4.2 for an example),
so there are efficient algorithms to invert gG and to sample for fG.

– the trapdoors Ri’s are sampled from the Gaussian D = Dm̄×nk
Z,w(

√
log n)

, so that

(A0,A0R1,A0R2) is negl(n)-far from uniformly chosen matrices (U1,U2,
U3) ∈ Zn×m̄q × Zn×nkq × Zn×nkq for A0 ← Zn×m̄q and for any R1,R2 ← D.

– All the invertible matrices H ∈ Zn×nq that are used in the scheme, are chosen
from a set with the “unit differences” property (see [15] for an example): for
any two H′,H′′ their difference H′ − H′′ is also invertible.

– the LWE error rate α for single-hop PRE should satisfy 1/α = O((nk)3) · r3.

We encode the message space {0, 1}nk to the cosets of Λ/2Λ for the lattice
Λ = Λ(Gt) using any basis B ∈ Znk of Λ, namely for a message m ∈ {0, 1}nk we
define the encoding function as enc(m) = Bm ∈ Znk. Notice that this mapping
can be efficiently inverted.

– KeyGen(1n): choose A0 ← Zn×m̄q , R1,R2 ← D and an invertible matrix

H ← Znk×nkq . Compose the matrix A = [A0|A1|A2] = [A0| − A0R1| −
A0R2] ∈ Zn×mq and set the public key as pk = (A,H). The secret key is the

matrix sk = [R1|R2] ∈ Zm̄×2nk with small entries. Notice that

[
A0|A1|A2

]⎡⎣R1 R2

I 0
0 I

⎤⎦ =
[
0|0

]
∈ Zn×2nk

q .

– Enc(pk = ([A0|A1|A2], H),m ∈ {0, 1}nk): choose a non-zero invertible
matrix Hu, and a vector s ← Znq . Set Au = [A0|A1 + HG|A2 + HuG].

Sample three error vectors e0 ← Dm̄
Z,αq, e1, e2 ← Dnk

Z,s, where s2 = (‖e0‖2 +
m̄(αq)2) · r2. The composed error vector is a concatenation of the chosen
vectors e = (e0, e1, e2) ∈ Zm. Compute

bt = 2(st[A0|A1 +HG|A2 +HuG] mod q) + et + (0,0, enc(m))t mod 2q,

where the first zero vector has dimension m̄, the second has dimension nk.
Output the ciphertext c = (Hu,b) ∈ Zn×nq × Zm2q.

– Dec(pk = ([A0|A1|A2], H), sk = [R1|R2], c = (Hu,b)): Using matrix Hu

compute Au = [A0|A1 +HG|A2 +HuG].

1. If c has invalid form or Hu = 0, output ⊥.
2. With the secret key call an algorithm InvertO([R1|R2], Au,b,Hu). On

this input the algorithm (section 4.2) computes the product:

[
A0|A1 +HG| − A2 +HuG

] ⎡⎣R1 R2

I 0
0 I

⎤⎦ =
[
HG|HuG

]
∈ Zn×2nk

q .

As output we receive two vectors z ∈ Znq and e = (e0, e1, e2) ∈ Zm̄q ×
Znkq × Znkq that satisfy bt = ztAu + et mod q.

88 E. Kirshanova

3. Check the lengths of the obtained vectors, namely, if ‖e0‖ ≥ αq
√
m̄ or

‖ej‖ ≥ αq
√
2m̄nk · w(

√
logn) for j = 1, 2, output ⊥.

4. Parse v = b − e mod 2q as v = (v0,v1,v2) ∈ Zm̄2q × Znk2q × Znk2q . If
v0 /∈ 2Λ(At

0), output ⊥. Otherwise, compute

vt

⎡⎣R1 R2

I 0
0 I

⎤⎦ mod 2q ∈ Znk2q

and apply enc−1 to the last nk coordinates.

– ReKeyGen(pk = ([A0|A1|A2], H), sk = [R1|R2], pk
′ = ([A′

0|A′
1|A′

2], H
′)):

1. Using the first part of a secret key - the Gaussian matrix R1 - and the
invertible H ∈ Zn×nq from the public key, execute SampleO (section 4.2)

to sample from the cosets of the A′
0. Specifically, we sample column-wise

so that for each column of the A′
0 we obtain an m̄ + nk-dimensional

column of the re-encryption key. After sampling m̄ times we receive an
(m̄ + nk) × m̄ matrix and parse it as two matrices X00 ∈ Zm̄×m̄ and
X10 ∈ Znk×m̄ matrices with Gaussian entries of parameter s.[

A0| − A0R1 +HG
] [X00

X10

]
=
[
A′

0

]
.

2. Continue sampling for the cosets obtained from the columns of the ma-
trix [A′

1 + H′G] of pk′. But this time we increase (as explained in the
Gaussian sampling algorithms in section 4.2), the Gaussian parameter
of the resulting sampled matrix up to s

√
m̄/2

[
A0| − A0R1 +HG

] [X01

X11

]
=
[
A′

1 +H′G
]
.

To achieve a correct re-encryption for the last sampling change the cosets
by adding −A2 = A0R2:[

A0| − A0R1 +HG
] [X02

X12

]
=
[
A′

2 +A0R2

]
,

where X01,X02 ∈ Zm̄×nk, X11,X12 ∈ Znk×nk with entries distributed
as Gaussian with parameter s

√
m̄.

3. The re-encryption key is a matrix with Gaussian entries:

rk =

⎡⎣X00 X01 X02

X10 X11 X12

0 0 I

⎤⎦ ∈ Zm×m.

For any matrix B ∈ Zn×nk the re-encryption key satisfies:

[A0|A1 +HG|A2 +B] ·

⎡⎣X00 X01 X02

X10 X11 X12

0 0 I

⎤⎦ = [A′
0|A′

1 +H′G|A′
2 +B] (1)

PRE Scheme Based from Lattices 89

– ReEnc(rk, c = (Hu,b)): to change the underlying public key in the ciphertext
component b compute b′t =

bt · rk = st[A′
0|A′

1 +H′G|A′
2 +HuG] + ẽt + (0,0, enc(m))t mod2q, (2)

where ẽ = (ẽ0, ẽ1, ẽ2) and ẽ0 = e0X00 + e1X10, ẽ1 = e0X01 + e1X11, ẽ2 =
e0X02 + e1X12 + e2. Finally, output c

′ = (Hu,b
′).

Remark 14. Instead of mapping a message m ∈ {0, 1}nk to the lattice cosets,
one can use a more common encoding for lattice-based schemes: enc(m) = m	 q2
.
In this case one should add an extra syndrome A3 ∈ Zn×nkq to the public key
and sample one more error vector e3 ∈← Dm̄

Z,αq for the encryption, so a ci-

phertext is of the form bt = st[A0|A1 +HG|A2 +HuG|A3] + (e0, e1, e2, e3)
t +

(0,0,0, enc(m))t mod q. For the re-encryption key generation one more sam-

pling is needed:
[
A0| − A0R1 +HG

] [X03

X13

]
=
[
A′

3 − A3

]
, which results in an

extended (columns

[
X03

X13

]
are added) re-encryption key. All the arguments below

on correctness and security can be easily adapted for this case.

5.2 Correctness

In the re-encrypted ciphertext the error terms are larger than in the original
ciphertext (that is the ones that have not been re-encrypted). In the following
lemma we show that with the appropriate choice of the LWE parameters α and
q the decryption algorithm can tolerate the noise growth.

Lemma 15. Our PRE scheme with message space M = {0, 1}nk decrypts
correctly.

Proof. Recall that by Definition 3 we have to show that the decryption algo-
rithm outputs a correct plaintext both for the original and for the re-encrypted
ciphertext. So first of all we describe an original encryption under a public key
pk and then proceed with its re-encryption to another public key pk′.

Let pk = ([A0|A1|A2],H), pk′ = ([A′
0|A′

1|A′
2],H

′) be the public keys output
by KeyGen(1n) together with two trapdoors sk = [R1|R2], sk

′ = [R′
1|R′

2], so the
first pair (pk, sk) will be the delegator’s keys, the second (pk′, sk′) will be for the
delegatee. We run the ReKeyGen(pk, sk, pk′) algorithm to obtain

rkpk→pk′ =

⎡⎣X00 X01 X02

X10 X11 X12

0 0 I

⎤⎦ .

As we apply this re-encryption key to a ciphertext b that encrypts a message
m ∈ {0, 1}nk under the delegator’s public key pk = [A0|A1|A2],H with the
invertible matrix Hu and e = (e0, e1, e2), we have bt · rkpk→pk′ =

(2st[A0|A1 +HG|A2 +HuG] + et + (0,0, enc(m)t) · rkpk→pk′

90 E. Kirshanova

= st[A0X00+(A1+HG)X10|A0X01+A1X11|A0X02+A1X12+A2+HuG]+

(e0X00 + e1X10, e0X02 + e1X11, e0X02 + e1X12 + e2)
t + (0,0, enc(m))t =

= st[A′
0|A′

1H
′G|A′

2 +HuG] + (ẽ0, ẽ1, ẽ2)
t + (0,0, enc(m))t,

where the last equation follows from Eq.(1) of the re-encryption key rkpk→pk′ .
Now we estimate how the re-encryption algorithm affects the noise and justify

the correctness of the decryption for a re-encrypted ciphertext. The arguments
for the original ciphertexts are essentially the same as in [Lemma 6.2] of [15].

In the decryption procedure we multiply a (re-encrypted) ciphertext (and thus
its error term) by sk′ = [R′

1|R′
2] padded with the identity matrix. So in order to

obtain a correct output, we require that in the Eq.(2) both terms ẽ0R
′
1+ ẽ1 and

ẽ0R
′
2 + ẽ2 satisfy the length condition of the decryption algorithm: ẽ0R

′
1 + ẽ1,

ẽ0R
′
2 + ẽ2 ∈ P1/2(q · B−t). The terms expand under the multiplication as

ẽ0R
′
1 + ẽ1 = e0X00R

′
1 + e1X10R

′
1 + e0X01 + e1X11, (3a)

ẽ0R
′
2 + ẽ2 = e0X00R

′
2 + e1X10R

′
2 + e0X02 + e1X12 + e2, (3b)

where (e0, e1, e2) ∈ Zm is the error vector of the original ciphertext b.
Since we are interested in upper bounds for the length of (3a) and (3b), we

should estimate how the length of the Gaussian vectors e0, e1, e2 is affected by
the matrix multiplication. We analyze each term of Eq.(3b) separately (the same
arguments hold for the terms of (3a)).

According to the sampling algorithm, the parameter s for each column of the
X00 (and of X10) is as small as

√
σ1(R1)2 + 1 ·

√
σ1(ΣG) + 2 ·r, where R1 is the

trapdoor that was used in the re-encryption key generation. Combining Lemmas
11 and 12 and the fact that for the G matrix σ1(ΣG) = 4, we obtain

σ1(X00R
′
2) ≤ σ1(X00) · σ1(R

′
2) ≤ C · 4

√
6m̄ ·

√
σ1(R1)2 + 1 · r2,

where C ≈ 1/2π. By Lemma 7, we have ‖e0‖ < αq
√
m̄ and therefore

‖e0X00R
′
2‖ < αq

2
√
6

π
m̄3/2

√
σ1(R1)2 + 1 · r.

Both e1, e2 are sampled from the Gaussian distribution with parameter s,
where s2 = (‖e0‖2 + m̄(αq)2) · r2, so their lengths are bounded as ‖e1‖, ‖e2‖ <
αq

√
2m̄nk · r. Hence, for the second term of Eq. (3b) it holds that

‖e1X10R
′
2‖ < αq

3
√
6

π
m̄

√
2m̄nk ·

√
σ1(R1)2 + 1 · r3.

Now we analyze the singular value for matrix X02 that was sampled with pa-
rameter s

√
m̄/2 (the same holds for X01,X12,X11):

σ1(X02) ≤ 2
√
3m̄ ·

√
σ1(R1)2 + 1 · r,

PRE Scheme Based from Lattices 91

which implies ‖e0 X02‖ ≤ 2
√
3αqm̄ ·

√
σ1(R1)2 + 1 · r and ‖e1X12‖ ≤

√
2αqm̄·√

2m̄nk ·
√

σ1(R1)2 + 1 · r2. By inspecting the remaining term and taking into

account the fact that m̄ = O(nk) and σ1(R1) ≤ O(
√
nk) · r, finally we have

‖ẽ0R′
2 + ẽ2‖ < αq · O(nk)3 · r3.

By taking 1/α = O(nk)3 · r3 we have the desired property for both error
terms, ẽ0R

′
1 + ẽ1, ẽ0R

′
2 + ẽ2 ∈ P1/2(q · B−t).

The security proof for our PRE scheme is essentially an adapted version of [15]
[Theorem 6.3] to the proxy re-encryption model with a generalized G-trapdoor.
As discussed in section 4.2, in order to solve LWE for any matrix A it is necessary
to know both a transformationR and at least one invertibleH embedded into A.
So we construct a simulator in a way that as long as there is a nonzero matrix H
in a ciphertext, we are able to transform it to a G-matrix and decrypt, but once
H equals to the zero matrix, no R-transformation can be applied to a ciphertext
to reduce it to a G-matrix and recover a message. So when no invertible H is
involved, we embed our LWE samples into a ciphertext and hence, decryption of
the challenge helps us in deciding LWE.

Theorem 16. The above scheme is PRE-CCA1-secure assuming the hardness
of decision-LWEq,α′ for α′ = α/3 ≥ 2

√
n/q.

Proof. First, by [[14], Theorem 3.1] we transform the samples from LWE distribu-
tion As,α′ of the form (a, b = 〈s, a〉/q+e mod 1) ∈ Znq ×T to the form (a, 2(〈s, a〉
mod q) + e′ mod 2q) with e′ → DZ,αq via mapping b �→ 2qb +DZ−2qb,s, where
s2 = (αq)2 − (2α′q)2 ≥ 4n ≥ ηε(Z)2. The transformation maps the uniform
distribution over Znq × T to the discretized uniform distribution over Znq × Z2q.

Once the LWE samples are of the desired form, we construct column-wise
a matrix A∗

0 out of these samples and a vector b∗ out of the corresponding
components b’s. A target’s user public key is generated as follows: choose two
invertible matrices H∗

1,H
∗
2 ∈ Zn×nq , the secret R∗

1,R
∗
2 ← D and output pk∗ =

([A∗
0| − A∗

0R
∗
1 − H∗

1G| − A∗
0R

∗
2 − H∗

2G], H∗
1). Since the target user belongs to

the set of honest users (we do not reveal his secret key), the matrix H∗
2 remains

statistically hidden from the adversary.
To generate the public key of an honest user we choose two matrices X00 ∈

Zm̄×m̄
q , X01 ∈ Znk×m̄q from a Gaussian distribution with parameter s and set

A′
0 =

[
A∗

0| − A∗R∗
1

] [X00

X10

]
.

Next we choose R′
1,R

′
2 ∈ Zm̄×nk

q from a distribution B defined over Z that
outputs 0 with probability 1/2 and ±1 with probability 1/4 each. We calculate
the rest of the public key as

A′
0R

′
1 =

[
A∗

0| − A∗R∗
1

] [X00

X10

]
· R′

1, A′
0R

′
2 =

[
A∗

0| − A∗R∗
1

] [X00

X10

]
· R′

2.

92 E. Kirshanova

So the whole public key of a honest user is pk′ = ([A′
0| − A′

0R
′
1| − A′

0R
′
2 −

H∗
2G], H′) for some randomly chosen invertible H′ ∈ Zn×nq . We add −H∗

2G

to each honest key. If we choose m̄ ≥ n lgq + 2nkδ for a small δ, then by ([2]),
A′

0R
′
1 is negl(n)-far from uniform, then again −H∗

2 is hidden from the adversary.

We denote

[
X01

X11

]
=

[
X00

X10

]
· R′

1 and

[
X02

X12

]
=

[
X00

X10

]
· R′

2. Each entry of the

resulting matrices X01,X11,X02,X12 is the inner product of a Gaussian m̄-
dimensional row-vector (of either X00 or X10) and a {0,−1, 1}-vector with half
of the coordinates equal zero, which is equivalent to m̄/2 additions of Gaussians

with parameter s. Since in the scheme we sample

[
X01

X11

]
,

[
X02

X12

]
with parameter

s
√

m̄/2, the simulated re-encryption key

rkpk∗→pk′ =

⎡⎣X00 X01 X02

X10 X11 X12

0 0 I

⎤⎦ (4)

has the same distribution as a re-encryption key in the scheme. We generate the
public keys and secret keys for corrupted users in the same way as in the scheme.

To generate a re-encryption key rkpk′→pk′′ for any two pk′ �= pk∗, pk′′ with
invertible matrices H′,H′′ as corresponding second components, where either

both public keys are corrupted or honest, we sample with H′ a matrix

[
X′

00

X′
10

]
for

a fixed parameter s and

[
X′

01

X′
11

]
,

[
X′

02

X′
12

]
with fixed s

√
m̄/2 as in the scheme. Note

that by fixing the output standard deviation we achieve the same distribution of
the re-encryption keys between two honest and two corrupted users, while the
trapdoor matrices in these two cases have different parameters: r for a Gaussian
R in the corrupted case, and

√
2π for B-distributed R of an honest user.

To answer the decryption queries for a ciphertext c = (bt,Hu), where

bt = st[A′
0| − A′

0R
′
1 +H′G| − A′

0R
′
2 − (H∗

2 − Hu)G] + et + (0,0, enc(m))t

under the honest public key pk′ = [A′
0| − A′

0R
′
1| − A′

0R
′
2 − H∗

2G], H′) we
first check that Hu is invertible. Then we use the fact that H∗

2 − Hu ∈ Zn×nq

is an invertible matrix. So for the second step of our decryption algorithm we
call InvertO on inputs ([R′

1|R′
2],Au = [A′

0| − A′
0R

′
1 + H′G| − A′

0R
′
2 − (H∗

2 −
Hu)G],bt, (H∗

2 −Hu)) and receive z ∈ Znq and e ∈ Zmq such that bt = ztAu+et

mod q. If the length of e is short enough (step 3) and for v = b−e = (v0,v1,v2)
it holds that v0 ∈ Zm̄q and v0 ∈ 2Λ(At

0) (step 4), then v can be expressed as

vt = 2(stAu mod q) + (0,0, enc(m)t mod 2q.

To proceed with the decryption we multiply

vt

⎡⎣R1 R2

I 0
0 I

⎤⎦ = 2(st[H′G|(H∗
2 − Hu)G] mod q) + (0, enc(m)) mod 2q.

PRE Scheme Based from Lattices 93

Applying enc−1 to the last nk coordinates we are able to decrypt with the
message m. To answer the re-encryption query from pk′ = [A′

0| − A′
0R

′
1| −

A′
0R

′
2 − H∗

2G] with H′ ∈ Zn×nq to pk′′ = [A′′
0 | − A′′

0R
′′
1 | − A′′

0R
′′
2 − H∗

2G] with

H′′ ∈ Zn×nq we apply rkpk′→pk′′ =

⎡⎣X′
00 X′

01 X′
02

X′
10 X′

11 X′
12

0 0 I

⎤⎦ generated as in the original.

The re-encryption transforms

bt = st[A′
0| − A′

0R
′
1 +H′G| − A′

0R
′
2 − (H∗

2 − Hu)G] + et + (0,0, enc(m))t

to b′t = st[A′′
0 | −A′′

0R
′′
1 +H′′G| −A′′

0R
′′
2 − (H∗

2 −Hu)G] + ẽt+(0,0, enc(m))t,
decryptable under sk′′ = [R′′

1 |R′′
2].

To answer the decryption query we proceed in the same way as for any honest
user; note that in this case the ciphertext is of the form bt =

2(st[A∗
0| −A∗

0R
∗
1| −A∗

0R
∗
2 − (H∗

2 −Hu)G] modq) + et+(0,0, enc(m))t mod2q.

To summarize, we can answer the decryption queries of a ciphertext c =
(bt,Hu) for any honest user as long as Hu �= H∗

2, which is the case with over-
whelming probability. If Hu = H∗

2 we answer the decryption query with ⊥.
Finally, for the challenge ciphertext that encrypts the message m ∈ {0, 1}nk

under pk∗, we choose Hu = H∗
2, in which case the encryption is of the form

bt = 2(st[A∗
0| − A∗

0R
∗
1| − A∗

0R
∗
2] mod q) + et + (0,0, enc(m))t mod 2q

for some s ∈ Znq and small e. But instead of calculating this vector b, we take
the vector b∗ prepared at the beginning of the game. Notice that if the simulator
receives the LWE distribution, then b∗t = 2(stA∗

0 mod q) + êt0 mod q, where
s ← Znq , ê0 ← DZ,αq. We set the first nk coordinates of bt to b∗t. We set the
last 2nk coordinates of b to

bt1 = bt0R
∗
1 + êt1 mod 2q ∈ Znk2q , (5)

bt2 = bt0R
∗
2 + êt2 + enc(m) mod 2q ∈ Znk2q , (6)

where ê1, ê2 ← Dnk
αq

√
m·r. Then the challenge ciphertext is (b = (bt0,b

t
1,b

t
2),H

∗
2),

which has the same distribution as any ciphertext in the scheme, since êt0R1+ êt1
– the resulting noise terms in bt1 – is according to [[16] Corollary 3.10] within
negl(n)-distance from DZ,s, where s2 = (‖ê0‖2 + m̄(αq)2) · r2 – the parameter
for vectors e1, e2 in the scheme. The same applies for the noise terms in bt2.

Note that (A∗
0,b

∗,A∗
0R

∗
1,A

∗
0R

∗
2,−b∗R∗

1,−b∗R∗
2) is negl(n)-uniform for

R∗
1 ← D, R∗

2 ← D by the leftover hash lemma. So the simulated challenge
ciphertext has the same distribution as any encrypted message.

6 Conclusions

We presented a unidirectional proxy re-encryption scheme based on hard prob-
lems on lattices. It can be seen from the security proof that our generalized G-
trapdoor definition leads to a CCA-1 secure construction, but we cannot achieve

94 E. Kirshanova

CCA-2 security. Another limitation of our construction is that its security is
proved in the selective model only. We leave it as an open problem to construct
a CCA-2 secure lattice-based construction in the adaptive setting.

Acknowledgements. I thank Alex May for careful reading and valuable com-
ments, Chris Peikert for fruitful discussions and S. Aleshnikov for suggesting the
topic.

References
1. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of STOC,

pp. 99–108 (1996)
2. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory

of Computing Systems 48(3), 535–553 (2011)
3. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption

schemes with applications to secure distributed storage. In: NDSS, pp. 29–43 (2005)
4. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption

schemes with applications to secure distributed storage. In: ACM TISSEC,
pp. 29–43 (2006)

5. Banaszczyk, W.: New bounds in some transference theorems in the geometry of
numbers. Mathematische Annalen 296(1), 625–635 (1993)

6. Blaze, M., Bleumer, G., Strauss, M.J.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

7. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Proc. of ACM-CCS 2007, pp. 185–194. ACM Press (2007)

8. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

9. Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity (2009)

10. Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: Katz, J., Yung,
M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007)

11. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press
(1994)

12. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379. Springer,
Heidelberg (2008)

13. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. In: SIAM J. on Computing, pp. 372–381 (2004)

14. Peikert, C.: An efficient and parallel gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010)

15. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

16. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: STOC, pp. 84–93. ACM Press (2005)

17. Vershynin, R.: Introduction to the non-asymptotic analysis of ran-
dom matrices (2011), http://www-personal.umich.edu/~romanv/papers/

non-asymptotic-rmt-plain.pdf
18. Xagawa, K.: Cryptography with Lattices. PhD thesis, Tokyo Institute of Technol-

ogy (2010), http://xagawa.net/pdf/2010Thesis.pdf

Re-encryption, Functional Re-encryption,
and Multi-hop Re-encryption: A Framework

for Achieving Obfuscation-Based Security
and Instantiations from Lattices

Nishanth Chandran1, Melissa Chase1, Feng-Hao Liu2,�,
Ryo Nishimaki3, and Keita Xagawa3

1 Microsoft Research
{nichandr,melissac}@microsoft.com

2 University of Maryland
fenghao@cs.umd.edu

3 NTT Secure Platform Laboratories
{nishimaki.ryo,xagawa.keita}@lab.ntt.co.jp

Abstract. In this work we define multiple relaxations to the definition of cor-
rectness in secure obfuscation. While still remaining meaningful, these relax-
ations provide ways to obfuscate many primitives in a more direct and efficient
way. In particular, we first show how to construct a secure obfuscator for the re-
encryption primitive from the Decisional Learning with Errors (DLWE) assump-
tion, without going through fully homomorphic encryption. This can be viewed
as a meaningful way to trade correctness for efficiency. Next, we show how our
tools can be used to construct secure obfuscators for the functional re-encryption
and multi-hop unidirectional re-encryption primitives. In the former case, we im-
prove upon the efficiency of the only previously known construction that satisfies
the stronger notion of collusion-resistant obfuscation (due to Chandran et al. -
TCC 2012) and obtain a construction with input ciphertexts of constant length.
In the latter case, we provide the first known obfuscation-based definition and
construction; additionally, our scheme is the first scheme where the size of the
ciphertexts does not grow with every hop.

1 Introduction

Program obfuscation. Informally, an obfuscator [6] is an algorithm that converts a
program into another program that has the same behavior but is “completely unintel-
ligible", in that it reveals no information besides what can be learned from observing
the input/output behavior. Most previous works have focused on impossibility results or
constructions for extremely simple programs. In one of the first works on obfuscating
more complex cryptographic functionalities, Hohenberger et al. [25] showed how to
securely obfuscate the re-encryption functionality. The re-encryption functionality (in-
troduced by [7] and more formally defined in [5]) is parameterized by two public keys

� This work was done while the author was an intern at Microsoft Research.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 95–112, 2014.
c© International Association for Cryptologic Research 2014

96 N. Chandran et al.

for an encryption scheme. It takes as input a ciphertext of message m under the first
public key, and outputs a ciphertext of the same message m under the second public
key. Re-encryption has many applications, ranging from secure distributed file servers,
to outsourced filtering of encrypted spam, to the iTunes DRM system.

Why secure obfuscation for re-encryption? The use of obfuscation-based definitions
for re-encryption is particularly appealing for many reasons. First, secure obfuscation
results in a definition of security for re-encryption that is much stronger than several
previous definitions. It simultaneously captures many game-based properties defined
in earlier formalizations of re-encryption and guarantees that the proxy cannot learn
anything beyond what is revealed by the input-output behavior of the re-encryption
functionality (which it must inherently learn). Second, note that if we have a protocol
that is secure when making use of an “ideal" re-encryption functionality, then the se-
curity of the system will be preserved when the untrusted proxy is given a program
that is a secure obfuscation of the same functionality. Finally, the secure obfuscation
definition for re-encryption is clean and easy to use, which is particularly relevant for a
primitive such as re-encryption for which multiple variants of security definitions have
been studied. Additionally, it also makes it easier to define security for the more com-
plex functionalities that we consider, such as multi-hop and functional re-encryption. In
light of these advantages, and given the widespread applications of proxy re-encryption,
obtaining efficient constructions that satisfy the definition of secure obfuscation is very
important from both a theoretical and a practical perspective.

Why re-encryption? Beyond the direct applications mentioned above, studying re-
encryption may help advance the more general study of obfuscation. One of the few
areas in obfuscation which has seen positive results is the case where the output of the
program is encrypted [22, 13]. Since re-encryption is one of the simplest such function-
alities, it makes a good starting place for further study.

Constructing re-encryption schemes. Hohenberger et al. [25] (and also independently
Hofheinz et al. [24]) introduced the notion of average-case secure obfuscation, which
has been the standard definition of obfuscation in these works; it captures the idea that
the obfuscated program reveals nothing to an adversary when the associated encryption
key is chosen at random and unknown to the adversary. The work of Hohenberger et
al. [25] showed how to securely obfuscate the re-encryption functionality under this
definition assuming a bilinear pairing. In the interest of basing primitives on a variety
of assumptions, it is natural to ask: can we construct a secure obfuscator for the re-
encryption functionality based on other types of assumptions? In addition, their scheme
has the limitation that the input and output encryption schemes are different, in other
words, the program takes as input ciphertexts under one encryption scheme and outputs
ciphertexts under not just a different key but a different scheme. While this may be
alright in certain scenarios, many applications (e.g. multi-hop re-encryption) require
input and output schemes to have the same structure to allow for cascading, i.e. taking
a re-encrypted ciphertext and re-encrypting it again.

As noted in [15] the re-encryption functionality can be securely realized given any
fully homomorphic encryption (FHE) scheme [28, 15]; the re-encryption key is simply
Kpk→p̂k = Encp̂k(sk) and the re-encryption program, on input c = Encpk(m), com-
putes Encp̂k(c) and then Evalevk(f, c,Kpk→p̂k), where f is the decryption circuit, to

Re-encryption, Functional Re-encryption, and Multi-hop Re-encryption 97

obtain Encp̂k(m). (This can be generalized to achieve essentially any functionality with
encrypted output.) We know constructions of FHE based on a variety of lattice-based
assumptions [15, 16, 11, 10, 17, 9, 8], so this might give lattice-based constructions for
re-encryption.

There are however two issues with this approach: First, FHE is a very strong prim-
itive, and despite significant progress, it is still very expensive; ideally constructing a
simple functionality like re-encryption should not require such heavyweight tools. More
importantly, by the definition of correctness of program obfuscation, a secure obfusca-
tor for the re-encryption functionality must output ciphertexts that have a distribution
that is statistically close to the distribution output by the ideal re-encryption circuit for
all inputs. In particular, this statistical closeness must hold even for invalid ciphertexts.
The only way we know to achieve such a distribution is through bootstrapping [15],
which is the most computationally expensive part of the FHE constructions (and not
included the more efficient somewhat homomorphic encryption (SHE) schemes).

Challenges in lattice based constructions. Thus one might ask, what about simpler
lattice-based constructions? More concretely, can we achieve an obfuscation-based no-
tion of re-encryption without bootstrapping? Under previous obfuscation definitions,
this seems very challenging, and, interestingly, the challenge arises not from the secu-
rity requirements (VBB obfuscation), but from the correctness property (referred to as
preserving functionality). Intuitively, the issue is as follows: a well-formed ciphertext
is formed by encoding the message and then adding a small amount of random noise;
this is what would be produced by the unobfuscated program, and an obfuscation which
preserves functionality would have to produce ciphertexts that are similarly distributed.
This means that no matter what ciphertext the adversary chooses as input (even an in-
valid ciphertext formed by adding a lot of noise), the obfuscated program must either
recognize that the ciphertext is invalid, or output ciphertexts with small, independently
generated noise. The only way we know to do this is to use bootstrapping, which es-
sentially runs the decryption algorithm under a layer of encryption and thus can detect
poorly formed ciphertexts or remove the noise from the input ciphertext and produce
an output ciphertext with fresh small noise. However, as mentioned above, bootstrap-
ping is very expensive, thus we would like to consider meaningful notions that can be
achieved with simpler techniques.

Our contributions. Definitionally, our first contribution is to examine different weaker
notions of correctness. We propose two new definitions, which are relaxations of the
standard notion of preserving functionality. We then evaluate the implications of these
definitions, focusing for concreteness on re-encryption primitives. Next, we consider
how to construct schemes satisfying these weaker definitions. We define two tools,
which we call blurring and key-switching, essentially formalizing a number of tech-
niques that were used in various FHE constructions. While these techniques are not
new, we provide general definitions, independent of any specific instantiation, thus al-
lowing them to be used abstractly as tools in general constructions. Finally, we con-
sider two additional re-encryption primitives, functional re-encryption and multi-hop
re-encryption, and use our new tools and definitions to solve several previously open
problems.

98 N. Chandran et al.

1.1 Our Results and Techniques

Relaxing correctness in secure obfuscation. We define two relaxations of correctness
for the definition of secure obfuscation that allow more efficient constructions of re-
encryption (and other) schemes. The first relaxation, informally, guarantees only that
the output distribution of the obfuscated program and the ideal functionality are sta-
tistically close on so called “well-formed" inputs (i.e. a subset of all the inputs to the
functionality). The security property (average case VBB) is still the standard notion
(and is guaranteed on all inputs); such a relaxation of the correctness can be viewed
as a form of “correctness in the semi-honest setting", in that correctness is guaranteed
whenever the adversary selects inputs to the obfuscated program honestly. The next
relaxation guarantees that the output of the obfuscator on well-formed inputs is cor-
rect with respect to some algorithm. (For example, they might both decrypt to the same
value in case of a decryption algorithm.) Finally, we consider a correctness guarantee
that says that the output distribution of the obfuscated program is computationally in-
distinguishable from that of the ideal functionality. (We might for example consider an
obfuscator which satisfies this computational correctness over all inputs, and addition-
ally satisfies one of the above notions on the set of well formed inputs.) We view these
three relaxations to correctness of the secure obfuscation definition as important contri-
butions of this work and believe they maybe applicable to other functionalties beyond
re-encryption. Finally, we emphasize that these are relaxations only to the correctness
of the scheme. We still maintain the guarantee that the obfuscated program reveals no
more than what can be computed given black box access to the functionality.

Abstractions for two lattice-based techniques. Our next contribution is to abstract out
two mechanisms that we need for re-encryption from the previous works of [15, 10], and
implement these mechanisms with several instantiations. In particular, we provide ab-
stractions for (1) key-switching and (2) blurring. These two mechanisms are designed
to be used together: the key-switching mechanism is used to transform a ciphertext
Encpk(m) into another ciphertext Encp̂k(m). However the output distribution of this
mechanism might be different from a fresh ciphertext of message m under public key
p̂k; the blurring mechanism is used to smooth out this difference. We define two vari-
ants: a strong blurring and a weak blurring mechanism. At a high level, using strong
blurring helps us achieve the first relaxation of correctness; weak blurring enables us to
achieve the second and third relaxations.

We then proceed to show how to implement the key switching mechanism as well
as the strong and weak blurring mechanisms using: a) Regev’s encryption scheme [27],
and b) the dual Regev encryption scheme [19].

We remark here that while the notions of key switching and blurring are not new, we
provide a formal definition of the properties that we require from these two notions. To
the best of our knowledge, this is the first such definition of these notions and we hope
it will help these techniques to find other applications.

Contribution to lattice-based schemes and secure obfuscation. The problems we en-
counter in satisfying the obfuscation-based definitions of security seem to be funda-
mental to most lattice-based schemes; we hope that our relaxations will also help lead
to lattice-based obfuscations for other functionalities.

Re-encryption, Functional Re-encryption, and Multi-hop Re-encryption 99

1.2 Applications of Our Results

We apply our tools to construct schemes for re-encryption and two useful variants:
functional re-encryption, and multi-hop unidirectional re-encryption.

Re-encryption. We first show that using any fully homomorphic encryption scheme with
a strong blurring mechanism, one can obtain a secure obfuscation of a re-encryption
scheme that satisfies the standard definition of correctness (i.e., the output is statistically
close to the ideal functionality on all inputs).

Given that FHE is overkill, we provide direct, more efficient, constructions based
on the Decisional Learning with Errors (DLWE) assumption [27] via the realizations
of key switching and blurring mentioned above. With strong blurring, the correct-
ness of this scheme is guaranteed on all well-formed inputs (i.e., the output of our
re-encryption program is statistically close to Encp̂k(m) for all honestly generated ci-
phertexts c = Encpk(m)). With weak blurring, we obtain a secure obfuscation whose
output distribution (on all ciphertexts) is computationally indistinguishable from that
of the re-encryption functionality. (Moreover, re-encryptions of honestly generated ci-
phertexts still decrypt correctly.)

All the above constructions provide a tradeoff between using (less efficient but pow-
erful) FHE to achieve the strongest definition of correctness and using efficient specific
lattice-based schemes to achieve slightly weaker notions of correctness. Again, all these
constructions satisfy a strong obfuscation-based notion of security (average case VBB
[25] and collusion resistance [13]).

Functional re-encryption and collusion-resistant obfuscation. Once we construct the
basic re-encryption schemes, we turn our attention towards a more complex prim-
itive, known as functional re-encryption, which incorporates access control into the
re-encryption functionality. The work of Chandran, Chase, and Vaikuntanathan [13] in-
troduced this primitive and showed an obfuscation-based result. Informally, a program
implementing functional re-encryption is parameterized by an input public key pk, n
output public keys p̂k1, · · · , p̂kn, and an access policy F : [D] → [n]. The program
takes as input a ciphertext of message m with tag i ∈ [D] under input public key pk

and outputs a ciphertext of the same message m under p̂kF (i). Functional re-encryption
can be used to implement a server that forwards a user Alice’s email to other recip-
ients, depending on the tag (or the content) of the email, but at the same time hides
the message and the access policy from the server. Chandran et al. also introduced
the notion of collusion-resistant obfuscation in the context of functional re-encryption,
which, informally, guarantees that the obfuscated program remains secure even when
the server can collude with some of the recipients. They gave a pairing-based construc-
tion of functional re-encryption (for access policies with poly-size domain) satisfying
collusion-resistant obfuscation.

Using our framework, we obtain constructions with varied levels of correctness and
efficiency, similar to the tradeoffs in our constructions of the basic re-encryption prim-
itive. All of our constructions satisfy the strong security definition of the collusion-
resistant obfuscation. We remark that in our schemes the size of the input ciphertext is
constant (as opposed to the construction of [13], in which the size of the input cipher-
text is O(D)). Our output ciphertext, on the other hand is of size O(n) (as opposed to

100 N. Chandran et al.

constant in [13]); however, each of the n recipients still only needs to receive a constant
size block of that ciphertext.

Multi-hop unidirectional proxy re-encryption. Traditionally, most re-encryption
schemes are single-hop, in the sense that the ciphertext produced by the re-encryption
process is of a different form and cannot be re-encrypted again. The exception are a
few schemes beginning with [7] which are multi-hop, but bi-directional, which means
that any re-encryption key which allows re-encryption from Alice to Bob also allows
re-encryption from Bob to Alice (and thus both secret keys are necessary to generate
the re-encryption key). In many settings however, this is not desirable - intuitively, Bob
should not need to trust Alice in order for Alice to be able to forward her mail to Bob.
Thus, it seems desirable to have a scheme which allows the output of the re-encryption
process to be re-encrypted again, but which does not require this kind of trust. That is
the problem we consider here (referred to from here on as multi-hop re-encryption).

In this work, we present the first obfuscation based definitions and constructions
for multi-hop unidirectional proxy re-encryption schemes. We remark that the problem
of constructing multi-hop re-encryption schemes was first posed in [5]; a major draw-
back of previous schemes [21, 14] is that the ciphertext size grows linearly with the
number of re-encryptions. Here we construct L-hop re-encryption schemes (where a
ciphertexts can be re-encrypted up to L times) in which ciphertexts do not grow with
re-encryption.1

Our results also translate to the ideal lattice setting based on the ring-LWE assump-
tion [26]. For simplicity, we focus here on the general lattice setting.

2 Definitions for Obfuscation

In this section, we present our relaxed definitions of correctness in average-case secure
obfuscation. We first recall the definition of average-case secure obfuscation with collu-
sion as defined by Chandran et al. [13] and present the relaxed definitions of correctness
with respect to this definition. As the Chandran et al definition is a generalization of the
average case obfuscation definition by Hohenberger et al [25], similar relaxations can
also be applied in that setting.

Informally, average-case obfuscation guarantees that obfuscation hides the program
as long as it is chosen at random from a given family; resistance against collusion
addresses the case where we would like these obfuscation guarantees to hold even when
some types of information about the program being obfuscated may be available to the
adversary. (This for example captures the case where the adversary in a re-encryption
scheme holds both the obfuscated re-encryption program and some of the decryption
keys.)

More formally, we consider families {Cλ} that have the following form. Any
CK ∈ Cλ is parameterized by a set of “secret" keys K = {k1, k2, · · · , k�} (potentially
in addition to any other parameters) that are chosen at random from some specified dis-
tribution. Now, define a (non-adaptively chosen) subset of keys represented through a

1 L-hop re-encryption does not follow from i-hop encryption [18]: the latter allow users to
evaluate multiple functions sequentially and homomorphically only under one public key.

Re-encryption, Functional Re-encryption, and Multi-hop Re-encryption 101

set of indices T ⊆ [�], where [�] denotes the set {1, 2, · · · , �}. We would like to con-
struct an obfuscation of the circuit, denoted by Obf(CK), so that Obf(CK) is a “secure
obfuscation" of CK (in the sense of [25]) even against an adversary that knows the
set of keys {ki}i∈T . More precisely, in addition to their usual inputs and oracles, [13]
give both the adversary and the simulator access to a (non-adaptively chosen) subset
{ki}i∈T ⊆ K of the keys. This can be seen as auxiliary information about the circuit
CK ← Cλ.

Finally, we modify the definition to allow some parts of the circuit to be hidden in
a worst case sense. This was addressed in [13] for the case of functional re-encryption
by adding an additional definition saying that an obfuscation is secure with respect
to a class of functions F if there exists a simulator Sim which satisfies the collusion
resistant average-case black box property for all f ∈ F. It seems more natural and more
general to incorporate this directly into the definition of secure obfuscation, so that
is the approach we will take here. The formal definition of collusion-resistant secure
obfuscation is as follows.

Definition 2.1 (Average-case Obfuscation with Collusion). Let {Cλ} be a family of
circuits CK,w indexed by values from the sets K(λ) and W(λ), where each K ∈ K is of
the form (k1, . . . , k�). A PPT algorithm Obf that takes as input a (probabilistic) circuit
and outputs a new (probabilistic) circuit is a collusion-resistant secure obfuscator for
the family {Cλ} in the average-case over K and in the worst case over W, if it satisfies
the following properties:

Preserving functionality: There exists a negligible function ngl(·) such that for any
input length λ and any C ∈ Cλ:

Pr[∃x ∈ {0, 1}λ : C′ ← Obf(C);Δ(C′(x), C(x)) ≥ ngl(λ)] < ngl(λ),
where Δ(·, ·) denotes statistical distance, and the probability is taken over the random
coins of Obf.

Polynomial slowdown: There exists a polynomial p(λ) such that for sufficiently large
λ, for any C ∈ Cλ, |Obf(C)| ≤ p(|C|).
Average case virtual black-boxness (ACVBB) against collusion with worst-case hiding
over W: For any w ∈ W(λ), let Cλ,w be the set of circuits CK,w ∈ Cλ. (When w is
fixed, we specify a circuit in Cλ,w by CK.) There exists a PPT simulator Sim and a
negligible function ngl(·) such that for all PPT distinguishers D, all sufficiently long
input lengths λ, all w ∈ W(λ), and all subsets T ∈ [�]:∣∣∣∣Pr[CK ← Cλ,w : DCK(Obf(CK), {ki}i∈T) = 1]

−Pr[CK ← Cλ,w : DCK(SimCK(1λ, {ki}i∈T), {ki}i∈T) = 1]

∣∣∣∣ < ngl(λ).

The probability is over the selection of a random circuit of CK from Cλ,w , and the
coins of the distinguisher, the simulator, the oracle and the obfuscator.

Note that in the case where we do not wish to consider collusion-resistance, one
can simply use the same definition as above where T is the empty set and � = 1. Our
relaxations of correctness in secure obfuscation, which we will discuss below, apply to
the non-collusion case as well.

Relaxed correctness in secure obfuscation. We next proceed to show how we can relax
the “preserving functionality" notion defined above. This will enable us to obtain more

102 N. Chandran et al.

efficient constructions for various functionalities related to re-encryption. We shall re-
lax this notion in three different ways: the first relaxation informally guarantees that
the output distribution of the obfuscated program and the ideal functionality are statis-
tically close only on a subset of all the inputs to the functionality; the second relaxation
informally guarantees that on a subset of all the inputs to the functionality, and for some
algorithm Dec (this algorithm would typically be a decryption algorithm), the output of
Dec applied to the output of the program and the output of Dec applied to the output
of the ideal functionality results in the same value; the third relaxation informally guar-
antees that the output of the program and the output of the functionality, on a subset of
all the inputs, are computationally indistinguishable to all PPT adversaries (typically,
this subset is parameterized by the set of corrupted parties in the system and this cap-
tures the idea that on inputs where the ideal functionality produces encryptions under
honest parties’ keys, the adversary shouldn’t be able to distinguish the output of the
obfuscated program from the ideal program). Note that, in most cases, this third prop-
erty only makes sense in combination with one of previous two relaxations, because
we do want some guarantee that the obfuscated program works as expected; in our re-
encryption case, for example, we can combine this with the second relaxed correctness,
to ensure that the program’s output is indistinguishable from random encryptions, and
at the same time honestly generated and re-encrypted ciphertexts decrypt correctly.

Definition 2.2 (Relaxed Average-Case Obfuscation with Collusion). For an obfus-
cation algorithm Obf which satisfies the polynomial slowdown and average-case col-
lusion resistant virtual black-boxness properties as in Definition 2.1, we define the
following relaxations of the correctness property:

Preserving functionality with respect to Π : Let Π be a set of pairs (K, x) where K
is an index for the circuit and x is an input. The obfuscated circuit is guaranteed to
agree with the original circuit only on input pairs in the subset Π . That is, there exists a
negligible function ngl(·) such that for any input length λ and any CK ∈ Cλ, and every
x such that (K, x) ∈ Π: Pr[C′

K ← Obf(CK);Δ(C′
K(x), CK(x)) ≥ ngl(λ)] < ngl(λ),

where the probability is over the random coins of Obf. For inputs outside Π , there is
no guarantee for the output of C′

K(x). When Π is the set of all possible inputs, this
corresponds to the standard notion of “preserving functionality" (Definition 2.1).

Preserving Dec correctness with respect to Π : Let Π be a set of pairs (K, x) where
K is an index for the circuit and x is an input, and Dec(·, ·) be some algorithm. The
obfuscated circuit is guaranteed to agree with the original circuit only on input pairs
in the subset Π , under the algorithm Dec. That is, for all (K, x) ∈ Π , for all C ′

K ←
Obf(CK), we require that Pr[y ← CK(x), y

′ ← C′
K(x) : Dec(K, y) = Dec(K, y′)] =

1 − ngl(λ) for some negligible ngl.

Computationally preserving functionality with respect to ΠT̄ : Let T̄ be a set in [�]
(usually the set T = [�] \ T̄), and let ΠT̄ be a subset (potentially dependent on T) of
pairs (K, x) where K = (k1, . . . , k�) is an index for circuit and x is an input. For any
pair of circuits C,C′, denote by OK,C,C′(·) the program that on input x, outputs C′(x)
if (K, x) ∈ ΠT̄ and C(x) otherwise. Then for all PPT adversaries A, we require that:∣∣∣∣∣Pr

[
CK ← Cλ, C

′
K ← Obf(CK) : A

OK,CK,C′K
(·)
({ki}i∈T) = 1

]
− Pr

[
CK ← Cλ : ACK(·)({ki}i∈T) = 1

] ∣∣∣∣∣ < ngl(λ).

Re-encryption, Functional Re-encryption, and Multi-hop Re-encryption 103

3 Our Framework and Instantiations

In this section, we define and construct several new tools which will be useful for our
applications. First we present two abstract properties, and argue that we can implement
them trivially with FHE. Then we show they can be achieved much more efficiently for
the Regev [27] and dual Regev [19] encryption schemes.

3.1 Notions of Key-Switching and Blurring

Key switching. Let Σ = (Gen,Enc,Dec) be a semantically secure encryption scheme.
The first property we consider is the existence of a key-switching mechanism. Here we
formalize a property based on an idea from Brakerski and Vaikuntanathan [10]: briefly,
a key-switching mechanism allows one to directly convert ciphertexts encrypted under
one public key to ciphertexts encrypted under a second public key. More formally our
definition is as follows:

Definition 3.1 (Key-Switching Mechanism). A key-switching mechanism for an en-
cryption scheme Σ = (Gen,Enc,Dec) consists of two algorithms:

−SwGen(pk, sk, p̂k): Let (pk, sk) be a pair of “source” keys output by Gen, and p̂k be a
“target” public key ((p̂k, ·) is output by Gen). The algorithm takes (pk, sk, p̂k) as input,
and outputs a switch-key Kpk→p̂k that can transform ciphertexts encrypted under pk to

ciphertexts encrypted under p̂k.

−Sw(Kpk→p̂k, c): The algorithm takes a switch-key Kpk→p̂k and a ciphertext c as input,
and outputs a ciphertext ĉ.

The key-switching mechanism is correct if for all (pk, sk), (p̂k, ŝk) ← Gen(1λ), for
all Kpk→p̂k ← SwGen(pk, sk, p̂k), for all m ∈ {0, 1} and for all c ← Encpk(m),
c′ ← Sw(Kpk→p̂k, c), it holds that Decŝk(c

′) = m. More generally, the key-switching

mechanism is correct on set Π = {(pk, sk, c)} if for all (p̂k, ŝk) ← Gen(1λ), for
all Kpk→p̂k ← SwGen(pk, sk, p̂k), and for all c′ ← Sw(Kpk→p̂k, c), it holds that
Decŝk(c

′) = Decsk(c).

Remark 3.2. The idea of a key-switching mechanism was introduced by Brakerski and
Vaikuntanathan [10] to construct fully homomorphic encryption schemes. They used
an approach where the SwGen algorithm is given pk, sk and then samples p̂k, ŝk on its
own, and outputs a switch-key that allows one to transform ciphertexts under pk to p̂k.
This suffices for the construction of fully homomorphic encryption. However, for our
applications we require the switch-key generation algorithm to take the source keys and
the target public key as input, and to output the switch-key without knowing the secret
key ŝk.

To make key-switching an interesting notion, we need some property guaranteeing
at the very least that the switch-key does not allow the holder to decrypt messages. We
require something stronger, essentially that the switch-key reveals nothing at all about
the input public key to anyone who does not hold either of the secret keys. We capture
this with a simulation based definition:

104 N. Chandran et al.

Definition 3.3 (Security of Key-Switching Mechanism). We say the Key-Switching
Mechanism is secure if there exists a simulated key generation algorithm
SimSwGen(p̂k) that only takes as input the target public key (and not the source keys)
and can output a switch-key such that for any PPT adversary the following two distri-
butions are indistinguishable:

{(pk, sk), (p̂k, ŝk) ← Gen(1λ);Kpk→p̂k ← SwGen(pk, sk, p̂k) :

(pk, p̂k,Kpk→p̂k)}

{(pk, sk), (p̂k, ŝk) ← Gen(1λ);Kpk→p̂k ← SimSwGen(p̂k) :

(pk, p̂k,Kpk→p̂k)}

Blurring. The second property that we consider is what we call a blurring mechanism.
At a high level, the goal is to take a ciphertext and produce a new unrelated-looking
ciphertext that encrypts the same message. This kind of re-randomization is hard to
achieve in lattice-based constructions, so we relax this restriction somewhat and con-
sider definitions in which guarantees only hold for a restricted set of ciphertexts, or
against computationally bounded adversaries.

Informally, weak blurring says that if we take any string c and blur it, then this is
indistinguishable from the string produced by taking a new ciphertext of some (perhaps
different) message and blurring it, even given the ciphertext c (but not the secret key).
This is true for all strings c and not just “well-formed" (or honestly generated) cipher-
texts. Furthermore, the blurred ciphertext and c will still decrypt to the same message
for the “well-formed” ciphertexts c. Strong blurring, on the other hand, additionally
says that if we take a “well-formed” ciphertext c and blur it, then this is indistinguish-
able from the string produced by taking a new ciphertext of the same message and
blurring it, even given the secret key sk and the ciphertext c. (This follows from statis-
tical closeness of the two distributions). More formally, we define these properties as
follows:

Definition 3.4 (Blurring). Given an encryption scheme Σ = (Gen,Enc,Dec), we con-
sider the following two blurring properties: Let Π be a set of public-key, secret-key,
ciphertext tuples, i.e. (pk, sk, c). Let Blur(pk, c) be an algorithm which takes as input a
public key and a ciphertext and produces a new ciphertext c̃. Then we can consider the
following two properties:

Weak Blurring: We say Blur is a weak blurring mechanism where the correctness holds
for Π if the following two properties hold.

(1) Hiding: for any PPT adversary A, the following are indistinguishable.
Experiment 0: pk ← Gen(1λ), c ← A(pk), output (pk, c,Blur(pk, c)).
Experiment 1: pk ← Gen(1λ), c ← A(pk), output (pk, c,Encpk(0)).

(2) Correctness: There exists negligible ngl such that, for all (pk, sk, c) ∈ Π ,
Pr[ĉ ← Blur(pk, c) : Decsk(ĉ)) = Decsk(c)] = 1 − ngl(λ).

Strong Blurring: We say Blur is a strong blurring mechanism with respect to Π if it
is a weak blurring mechanism where correctness holds for Π with the following ad-
ditional property: For every (pk, sk, c) ∈ Π , let m = Decsk(c); then we require that
Δ
(
(c,Blur(pk, c)), (c,Blur(pk,Encpk(m)))

)
< ngl(λ).

Re-encryption, Functional Re-encryption, and Multi-hop Re-encryption 105

We note that many existing works consider similar definitions of re-randomization2.
Strong blurring where Π is the set of all ciphertexts and valid key pairs would be equiv-
alent to the definition in [23]. Weak blurring where Π is the set of all ciphertexts and
valid key pairs is very similar in spirit to the definition of semantic security for universal
re-encryption presented in [20].

One direct application of such a blurring mechanism is to achieve function privacy
for any fully homomorphic encryption (FHE) scheme for which we can blur the cipher-
texts produced by the evaluation algorithm. (See the full version.)

Implementations Using Function Private FHE. We note that both of these properties
can be achieved easily given an appropriate FHE scheme. Given a key private and
function private FHE, we can construct a key-switching mechanism by evaluating the
decryption circuit as discussed in the introduction. We can build strong blurring with
respect to all inputs similarly. (See the full version.)

As a consequence, we can use the lattice-based FHE by Brakerski [8] (based on
Regev’s encryption) and our blurring mechanism for Regev-based schemes (see the
next section) to implement an encryption scheme that has: (1) key switching, (2) strong
blurring with respect to all inputs, and, (3) key privacy. In our constructions of func-
tional re-encryption and multi-hop re-encryption, this approach gives the strongest ob-
fuscation results, at the cost of efficiency.

3.2 Implementations Using Regev’s Encryption Scheme

Recall that Regev’s encryption scheme has the following structure: pk = (A, b) where
A ∈ ZN×n

q , b ∈ ZNq , and sk = s ∈ Znq where b = A · s + e for some noise vector
e, sampled from some distribution χN where χ is B-bounded. The encryption has the
following structure: c = (c1, c2) = r� · (A, b) + (0n,m · [q/2]) where r is a random
vector in {0, 1}N . For details, see [27]. In what follows, let Σ = (Gen,Enc,Dec) be
Regev’s encryption scheme.

Key-switching mechanism. As discussed in Remark 3.2, the requirements on key-
switching in the context of re-encryption are slightly different from those in the FHE
application. Thus, the construction from [10] does not work directly. We now show how
we can modify that scheme to obtain a key-switching algorithm which does satisfy our
requirements. Consider the following algorithms:

SwGen(pk, sk, p̂k): Parse sk = s ∈ Znq . For i ∈ [n], τ ∈ [�log q�], compute Ki,τ ←
Encp̂k(0) + (0n, si · 2τ), where si denotes the i-th component of the vector s. Output
Kpk→p̂k = {Ki,τ}i∈[n],τ∈[log q�].

SimSwGen(p̂k): Let n, q be the parameters from p̂k. For i ∈ [n], τ ∈ [�log q�], compute
Ki,τ ← Encp̂k(0), and output Kpk→p̂k = {Ki,τ}i∈[n],τ∈[log q�].

Sw(Kpk→p̂k, c): first parse c = (c1, c2) ∈ Znq × Zq , and Kpk→p̂k =

{Ki,τ}i∈[n],τ∈[log q�]. Denote by c1,i the i-th component of c1, and denote the bit-

2 We remark here, that our blurring technique is similar in spirit to the smudging technique
proposed by Asharov et al. [4]. However, we abstract out the technique and formally define
“blurring," independent of any specific encryption construction.

106 N. Chandran et al.

decomposition of c1,i as {c1,i,τ}τ∈[log q�], i.e. c1,i =
∑
τ∈[log q�] c1,i,τ2

τ , where each
c1,i,τ ∈ {0, 1}. Then output ĉ = (0n, c2) +

∑
i,τ c1,i,τ · Ki,τ

The above construction has the same structure as the one in [10], so the correctness
and security follow from the DLWE assumption. (See the full version.)

Blurring mechanism. Consider the following two blurring algorithms:

SBlur(pk, c;E), where E ∈ Z is a parameter hardcoded into the algorithm defining
an appropriate error distribution (we will consider SBlur with different values for E):
Parse pk = (A, b) ∈ ZN×n

q ×ZNq , sample f ← [−E,E]∩Z, and output c+Encpk(0)+
(0n, f).

WBlur(pk, c): Output c+ Encpk(0).

Our idea for weak blurring is simple. We just add an encryption of 0 to the ciphertext.
Since the distribution of Encpk(0) is pseudo-random for Regev’s encryption scheme,
doing this computationally blurs the output. Also, Regev’s encryption scheme is addi-
tively homomorphic (with a small blow up of noise), so this preserves the correctness
of decryption.

For strong blurring, our idea is to blur the randomness as well. We recall that the
ciphertext c has the form (u, u� · s) + (0n,m · [q/2]) + (0n, z) where z = r� · e is
the error term and u = r� · A. Adding an encryption of 0 will blur our the first term
(u, u� · s) (by a leftover hash lemma argument). The additional error e will blur out
the last term z. For E · λω(1) < q/4, decryption will still be correct. This idea also
allows us to blur a subset sum of polynomially many ciphertexts. Thus, we can blur the
ciphertexts after the key switching algorithm above. For a detailed analysis of weak and
strong blurring see the full version.

3.3 Implementations Using the Dual Regev Encryption Scheme

In this section, we present another implementation of these mechanisms using the dual
Regev encryption scheme. We remark that the dual Regev scheme appeared in [19],
but we make a slight modification to the ciphertext and secret key that allows us to
implement a key-switching mechanism.

The dual Regev encryption scheme we use here has the following structure: pk =
(A, u) where A ∈ Zn×Nq and u ∈ Znq are uniformly random, and sk = S ∈ ZN×N

q

such that S is a short basis of Λ⊥(A). The encryption has the following structure:
c = (c1, c2) = s� · (A, u) + e� + (0N ,m · [q/2]) where s ← χn, e ← χN+1 are noise
vectors, sampled (independently) from some B-bounded distribution χ. For details see
the full version. In what follows, let Σ = (Gen,Enc,Dec) be the dual Regev encryption
scheme.

Key-switching mechanism. Consider the following algorithms:

SwGen(pk, sk, p̂k): Parse pk = (A, uA) ∈ Zn×Nq × Znq , p̂k = (B, uB) ∈ Zn
′×N ′
q ×

Zn
′
q , and sk = S ∈ ZN×N

q . First sample short noise matrices V ← χn
′×n′

, X ←
χn

′×(N ′+1). Let (B̃, ũB) = V ·(B, uB)+X . Then sample some short Z ∈ ZN×N ′
q , z ∈

ZNq such that A · (Z, z) = (B̃, ũB − uA). This can be done by using the sampling

algorithm SampleD(S,A, ·, σz) at each column of the matrix (B̃, ũB − uA), together

Re-encryption, Functional Re-encryption, and Multi-hop Re-encryption 107

with the secret key S, and parameter σz = ω(
√
n logn log q). Finally output Kpk→p̂k =

(Z, z).

SimSwGen(p̂k): Let n, q be the parameters from p̂k and σz = ω(
√
n logn log q) be an

additional parameter of the encryption. Output (Z, z) chosen by taking N ′+1 indepen-
dent samples from DZN ,σz

(a discrete Gaussian on ZN with parameter σz).

Sw(Kpk→p̂k, c): first parse c = (c1, c2) ∈ ZNq ×Zq , and Kpk→p̂k = (Z, z) ∈ ZN×N ′
q ×

ZNq . Output ĉ = (c1, c2) · (Z z
0 1).

The correctness of the construction follows by a direct examination. Take an encryp-
tion of 0 for example: let c = Enc(0) = s�(A, uA) + e�. If we apply the switch key
algorithm, we get a transformed ciphertext:

s�(A · Z,A · z + uA) + e� = s�(B̃, ũB) + e� = s�V · (B, uB) + s� · X + e�

Since V,X and s are short, we can view s�V as another short s′�, and s� ·X+e� as
a slightly larger error e′�. Thus, this transformed ciphertext can be decrypted correctly.

The security argument is slightly trickier. First we observe that the matrix (B̃, ũB) is
computationally indistinguishable from a uniformly random matrix. This is because
the security of DLWE holds even if the secret is sampled from the noise distribu-
tion χn

′
as shown by Applebaum et al. [3]. Thus, the distribution (Z, z) such that

A · (Z, z) = (B̃, ũB) is computationally indistinguishable from the distribution (Z ′, z′)
such that A ·(Z ′, z′) = (U, u) where (U, u) is a uniformly random matrix. As shown by
Gentry et al. [19], (Z, z) can be sampled (up to a negligible statistical distance) by the
SampleD(A,S, ·, σz) as above, and (Z ′, z′) is just the discrete Gaussian on ZN with
parameter σz . Thus, the security holds. For formal statements and proofs see the full
version.

Blurring mechanism. Consider the following two blurring algorithms:

SBlur(pk, c;E), where E ∈ Z is a parameter hardcoded into the algorithm: First parse
pk = (A, u) ∈ Zn×Nq × Znq . Then sample p ← (E · χ)n, and e ← (E · χ)N+1, and
output c+ p� · (A, u) + e�.

WBlur(pk, c): Output c+ Encpk(0).

Our idea for weak blurring is simple. We just add an encryption of 0. Since Encpk(0)
is pseudo-random, it will computationally blur the output. Also, the dual Regev encryp-
tion scheme is additively homomorphic (with a small blow up of noise), so it won’t hurt
the correctness.

For strong blurring, we need to blur the randomness as well. Recall that the ciphertext
is of the form s� · (A, u) + e� for s ← χn, e ← χN+1 where χ is a B-bounded
distribution. Suppose the distribution has the following property: (E ·χ)N is statistically
close to y + (E · χ)N for any y ∈ ZNq such that ‖y‖∞ ≤ B. Then we can simply use
E · χ to blur the randomness. In fact, if χ is the Gaussian distribution (as it is in our
setting) and the parameters satisfy E ≥ B · λω(1), then this property can be achieved.
See the full version for details.

Remark 3.5. We also propose an alternative implementation for key-switching in the
dual Regev encryption scheme. The key observation is that the key-switching mecha-
nism in Regev’s encryption scheme as described in Section 3.2 can be easily adapted

108 N. Chandran et al.

to the dual Regev scheme. Since the dual Regev scheme has the same structure for the
decryption algorithm, (i.e. it computes the inner product of a ciphertext and a secret
key, as Regev’s scheme does for its decryption algorithm), a key-switching mechanism
can be obtained in the same way. On the other hand, we will keep the same the blurring
mechanism as above.

Remark 3.6. The dual Regev encryption scheme can be extended to a variety of
identity-based encryption (IBE) and hierarchical identity-based encryption (HIBE)
schemes as shown in [19, 12, 1, 2]. We further observe that our constructions of key
switching and blurring in the dual Regev scheme can be naturally extended to these
dual Regev based (H)IBE schemes.

4 Applications of Our Tools

In this section, we sketch how we can use the tools developed in the previous section to
construct secure obfuscators for various re-encryption based primitives. More detailed
descriptions appear in the full version. For each primitive we first define an ideal circuit
family whose obfuscation would give a solution to the problem, and then we show how
to obfuscate it.

4.1 Obfuscating Re-encryption

We first construct a simple re-encryption scheme. In re-encryption a user Alice with
public key pk wants to allow an untrusted server to translate ciphertexts encrypted under
her public key into ciphertexts encrypting the same message under the public key p̂k of
another user Bob. She generates a re-encryption program, which the server can use to
perform the translation without decrypting.

The ideal re-encryption circuit family. Each circuit Cpk,sk,p̂k is parameterized by a

source key pair (pk, sk), and a target public key p̂k. On input ciphertext c, it decrypts
using sk, encrypts the result under p̂k, and outputs the resulting ĉ.

Obfuscating re-encryption. Intuitively, if Alice could obfuscate the above circuit, then
she could give the resulting program to the server. The program would have the same
functionality, so it would allow the server to correctly translate ciphertexts from pk to
p̂k. At the same time it would reveal no more information than if the server had access
to a trusted party who would compute re-encryption for it; in particular, this means the
program would not help the server at all in decrypting messages as long as it doesn’t
know Bob’s secret key. (If Bob and the server collude, they can of course decrypt any
messages encrypted for Alice, but this is inherent in the functionality of re-encryption.)

We build on an encryption scheme with a key-switching mechanism and a blur-
ring mechanism. To obfuscate Cpk,sk,p̂k, Obf (1) computes the re-encryption key as

Kpk→p̂k ← SwGen(pk, sk, p̂k), and (2) generates the description of a re-encryption
program that has the re-encryption key Kpk→p̂k hardcoded and on input ciphertext c

computes and outputs ĉ ← Blur(p̂k, Sw(Kpk→p̂k, c)).

Re-encryption, Functional Re-encryption, and Multi-hop Re-encryption 109

Theorem (informal). The above scheme satisfies ACVBB for the re-encryption func-
tionality. With weak or strong blurring (resp.), it preserves functionality with respect
to Π , or computationally preserves functionality and preserves Dec-correctness for Π ,
where Π is the set of honestly generated ciphertexts.

Interpreting the correctness guarantees. First, we note that in many scenarios, a scheme
which satisfies Dec-correctness on the set Π of honestly-generated ciphertexts may
be sufficient. Essentially, this says that whenever the server applies the re-encryption
program to an honest ciphertext, the result will be another ciphertext which will decrypt
to the correct message.

A scheme which computationally preserves functionality with respect to the set of all
ciphertexts essentially guarantees that for any party without Bob’s secret key, the output
of the re-encryption program looks like a fresh random encryption. In particular, any
party who eavesdrops on ciphertexts sent to the server and on the resulting ciphertexts
sent to Bob will not be able to link each re-encrypted ciphertext to the original ciphertext
from which it was formed.

Statistically preserving functionality with respect to the set Π of honestly-generated
ciphertexts means that when the re-encryption program is applied to an honest cipher-
text, even Bob can’t distinguish the result from a freshly generated encryption. For
example, if the server collects a set of ciphertexts, shuffles them, and then sends them
all to Bob, even if Bob saw the original ciphertexts as they were sent to the server, he
won’t be able to link them to the ciphertexts he receives. This might be useful in privacy
applications, e.g. if we want to guarantee that Bob can’t tell who uploaded a particular
message.

Finally, the standard definition of preserving functionality guarantees that the recip-
ient Bob can’t distinguish the output of the re-encryption from a fresh encryption, even
if the initial ciphertext was not well formed.

4.2 Obfuscating Functional Re-encryption

Functional re-encryption, introduced by [13], extends the re-encryption to allow Alice
to include an access policy when forming the re-encryption key, after which the server
(without learning the access policy), can convert any ciphertext encrypted under Alice’s
public key into a ciphertext encrypted for the appropriate recipient (depending on the
message and the access policy).

As in [13], we consider a message space in which each message consists of a short
tag and a potentially longer message, and specify the policy function by defining a
function F which maps tags to the appropriate recipients. For now, we consider the
simple case where each tag is mapped to a different recipient. (The general case results
in a larger re-encryption key; see the full version.)

The ideal circuit family. Each circuit Cpk,sk,p̂k1,...p̂kn,F
is parameterized by an input key

pair, a list of n output public keys, and the function F . On input ciphertext c, it decrypts
c to obtain tag i and message m, then for each recipient j, if F (i) = j it encrypts
m under p̂kj , and otherwise it encrypts ⊥ under p̂kj . It outputs the resulting list of
ciphertexts. In our application above, the server could then forward each ciphertext to
the appropriate recipient, but only the one for which F (i) = j will decrypt to anything

110 N. Chandran et al.

meaningful. (This circuit is somewhat different from the one in [13]; for a discussion,
see the full version.)

Obfuscating functional re-encryption. Again, if we could obfuscate this functionality,
we would obtain a program that Alice could safely give the server that would allow it to
perform the re-encryption without learning anything about the messages. Furthermore,
if we guarantee that our obfuscation worst-case hides the class of policy functions F
then we know that the server will learn nothing about Alice’s access policy; if the ob-
fuscation is collusion resistant then these guarantees hold even if the server colludes
with some subset of the recipients.

We build on a key-private encryption scheme with key-switching and blurring
mechanisms. Roughly, Alice’s public key consists of a public key pki for every
possible i, and encryption of (m, i) for Alice computes Σ.Encpki(m). The recipi-
ents use Σ directly. To obfuscate Cpk,sk,p̂k1,...,p̂kn,F

, Obf (1) computes a switch-key

Ki→F (i) ← SwGen(pki, p̂kF (i)) for each i (all these keys together, sorted based on
F (i), make up the re-encryption key rkF), and (2) generates the description of a re-
encryption program that has this rkF hardcoded and, on input ciphertext c, computes
ĉj ← Blur(p̂kj , Sw(KF−1(j)→j , c)) for each j ∈ [n] and outputs the list of ciphertexts
ĉ1, . . . , ĉn.

Theorem (informal). This scheme satisfies collusion-resistant ACVBB with worst-case
case hiding for F , and correctness depending on the blurring used.

4.3 Obfuscating Multi-hop Re-encryption

In multi-hop re-encryption, there are n users, each with his own key pair. Any of these
users can choose to allow their messages to be re-encrypted to other users. We describe
these choices with a directed graph, where each vertex corresponds to a user, and an
edge from i to j in G means user i wants to allow re-encryption from ciphertexts under
his public key (pki) to ciphertexts under pkj . L-hop re-encryption allows each cipher-
text to be re-encrypted L times. (Formally, we also assume each ciphertext reveals how
many times it has been re-encrypted. We omit this below for simplicity; see the full
version for details.)

The ideal circuit family for G. Each circuit Cpk1,sk1,...,pkn,skn is parameterized by n key
pairs (pki, ski). On input i, j and a ciphertext c, if (i, j) ∈ G it decrypts c using ski,
then encrypts the result under pkj , and outputs the resulting ĉ; otherwise it outputs an
encryption of ⊥ under pkj .

The Obfuscation. If we could design many separate re-encryption programs which to-
gether form an obfuscation of the above functionality, we would obtain programs that
each user could safely give the server that would allow it to perform the re-encryption
without learning anything about the messages. Moreover, since this circuit distinguishes
between an edge from i to j and an edge from j to i (G is a directed graph), the obfus-
cation would give a unidirectional re-encryption scheme.

We build on a key private encryption scheme with a key-switching mechanism
and a blurring mechanism. To form a program using (pki, ski), pkj (for (i, j) ∈ G),
user i will (1) compute a re-encryption key Kpki→pkj ← SwGen(pki, ski, pkj), and

Re-encryption, Functional Re-encryption, and Multi-hop Re-encryption 111

(2) generate the description of a re-encryption program that has the re-encryption
key Kpki→pkj hardcoded and on input ciphertext c computes and outputs ĉ ←
Blur(pkj , Sw(Kpki→pkj , c)).

Theorem (informal). The combined programs satisfy collusion-resistant ACVBB,
where correctness depends on the blurring algorithm used.

References

[1] Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg
(2010)

[2] Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 98–115. Springer, Heidelberg (2010)

[3] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-
secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

[4] Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty
computation with low communication, computation and interaction via threshold FHE. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501.
Springer, Heidelberg (2012)

[5] Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes
with applications to secure distributed storage. In: NDSS. The Internet Society (2005)

[6] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.:
On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

[7] Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryptography.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidel-
berg (1998)

[8] Brakerski, Z.: Fully homomorphic encryption without modulus switching from classi-
cal GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 868–886. Springer, Heidelberg (2012)

[9] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption
without bootstrapping. In: Goldwasser, S. (ed.) ITCS, pp. 309–325. ACM (2012)

[10] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard)
LWE. In: Ostrovsky, R. (ed.) FOCS, pp. 97–106. IEEE (2011)

[11] Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-lwe and secu-
rity for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 505–524. Springer, Heidelberg (2011)

[12] Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis.
Journal of Cryptology 25(4), 601–639 (2012)

[13] Chandran, N., Chase, M., Vaikuntanathan, V.: Functional re-encryption and collusion-
resistant obfuscation. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 404–421.
Springer, Heidelberg (2012)

[14] Chu, C.-K., Tzeng, W.-G.: Identity-based proxy re-encryption without random oracles. In:
Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779,
pp. 189–202. Springer, Heidelberg (2007)

[15] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.)
STOC, pp. 169–178. ACM (2009)

112 N. Chandran et al.

[16] Gentry, C.: Toward basing fully homomorphic encryption on worst-case hardness. In: Ra-
bin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 116–137. Springer, Heidelberg (2010)

[17] Gentry, C., Halevi, S.: Fully homomorphic encryption without squashing using depth-3
arithmetic circuits. In: Ostrovsky, R. (ed.) FOCS, pp. 107–109. IEEE (2011)

[18] Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryption and rerandom-
izable yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 155–172.
Springer, Heidelberg (2010)

[19] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new crypto-
graphic constructions. In: Dwork, C. (ed.) STOC, pp. 197–206. ACM (2008)

[20] Golle, P., Jakobsson, M., Juels, A., Syverson, P.F.: Universal re-encryption for mixnets.
In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 163–178. Springer, Heidelberg
(2004)

[21] Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: Katz, J., Yung, M. (eds.)
ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007)

[22] Hada, S.: Secure obfuscation for encrypted signatures. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 92–112. Springer, Heidelberg (2010)

[23] Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: Constructions
from general assumptions and efficient selective opening chosen ciphertext security. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 70–88. Springer,
Heidelberg (2011)

[24] Hofheinz, D., Malone-Lee, J., Stam, M.: Obfuscation for cryptographic purposes. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 214–232. Springer, Heidelberg (2007)

[25] Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely obfuscating re-
encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 233–252. Springer,
Heidelberg (2007)

[26] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over
rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Hei-
delberg (2010)

[27] Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. Journal
of the ACM 56, Article 34, 6 (2009), A preliminary version appeared in STOC 2005 (2005)

[28] Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomorphisms. In:
Foundations of Secure Computation, pp. 169–177. Academic Press (1978)

Verifiable Set Operations over Outsourced Databases�

Ran Canetti1,2, Omer Paneth1, Dimitrios Papadopoulos1,
and Nikos Triandopoulos3,1

1 Dept. of Computer Science, Boston University, USA
2 Dept. of Computer Science, Tel Aviv University, Israel

3 RSA Laboratories, Cambridge MA, USA

Abstract. We study the problem of verifiable delegation of computation over
outsourced data, whereby a powerful worker maintains a large data structure for
a weak client in a verifiable way. Compared to the well-studied problem of ver-
ifiable computation, this setting imposes additional difficulties since the verifier
also needs to check the consistency of updates succinctly and without maintain-
ing large state. We present a scheme for verifiable evaluation of hierarchical set
operations (unions, intersections and set-differences) applied to a collection of
dynamically changing sets of elements from a given domain. The verification
cost incurred is proportional only to the size of the final outcome set and to the
size of the query, and is independent of the cardinalities of the involved sets. The
cost of updates is optimal (involving O(1) modular operations per update). Our
construction extends that of [Papamanthou et al., CRYPTO 2011] and relies on
a modified version of the extractable collision-resistant hash function (ECRH)
construction, introduced in [Bitansky et al., ITCS 2012] that can be used to
succinctly hash univariate polynomials.

1 Introduction

Outsourcing of storage and computation to the cloud has become a common practice for
both enterprises and individuals. In this setting, typically, a client with bounded com-
putational and storage capabilities wishes to outsource its database to a cloud provider
and, over time, issue queries over the database that are answered by powerful servers.

We consider a client that outsources a dataset D to a server. The client can then
issue to the server informational queries that are answered according to D, or it can
issue update queries that change D, for example by inserting or removing elements.
This model captures a variety of real-world applications such as outsourced relational
databases, streaming datasets and outsourced file systems. We also consider the more
general setting where multiple other clients can issue informational queries to D, while
only one designated source client can issue update queries. For example, consider a
company that outsources its data to a cloud service provider that will also be responsible
for accommodating queries from the company’s multiple customers.

� Research supported in part by the Check Point Institute for Information Security, an NSF
EAGER grant, an NSF Algorithmic foundations grant 1218461, the Simons award for graduate
students in theoretical computer science, and NSF grants CNS-1012798 and CNS-1012910.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 113–130, 2014.
c© International Association for Cryptologic Research 2014

114 R. Canetti et al.

In such outsourcing scenarios, clients may want to verify the integrity of the out-
sourced operations over the dataset D to protect themselves against servers that provide
wrong results because they are themselves malicious or have been compromised by an
external attacker, or simply provide false results (e.g., inaccurate or inconsistent data)
due to bugs. Specifically, when answering a client’s query, the server will also compute
a proof of the integrity of the data used to compute the answer as well as the integrity
of the computation, i.e., that the correct function was computed. For this purpose, we
allow the source client to perform some preprocessing on D before outsourcing it to the
server, and to save a small verification state that allows it to verify the server’s proofs.
Analogously, when issuing an update query, the source client will also update its verifi-
cation state. If the verification state can be made public we say that the server’s proofs
are publicly verifiable, which is particularly important in the multi-client setting.

Several different measures of efficiency can be considered in this setting. First, the
time it takes for the client to verify a proof should be short, ideally some fixed polyno-
mial in the security parameter that is independent of the size of server’s computation
cost and the size of D. Second, the server’s computational overhead in computing proofs
should be kept minimal. Additional efficiency properties include small proof sizes, effi-
cient update queries as well as non-interactive solutions where the client sends a query
and receives back an answer and a proof in one round of interaction.

Set Operations over Outsourced Databases. This work focuses on the problem of
verifying general set operations in the above outsourcing setting. That is, we consider
a dataset D that consists of m sets S1, ..., Sm, where the clients’ queries are arbitrary
set operations over D represented as formulas of union, intersection, and set-difference
gates over some of the inputs S1, ..., Sm. A particularly interesting case is when the
sets appearing at intermediate steps of the computation are much larger than the final
answer (e.g., consider a number of unions, followed by an intersection resulting in the
empty set). The motivation for set operations comes from their great expressiveness
and the range of computations that can be mapped by them. Real-world applications of
general set operations include a wide class of SQL database queries, keyword search
with elaborate queries, access control management and similarity measurement, hence
a practical protocol for verifiable general set operations would be of great importance.

Verifiable Computation - The Generic Approach. The settings considered here are
closely related to the setting of verifiable computation that has been extensively stud-
ied in recent years. In verifiable computation the client outsources a computation to the
server and receives an answer that can be quickly verified. The main difference is that
in verifiable computation it is usually assumed that the input to the computation is short
and known to both parties, while in our settings the server’s answers are computed over
the outsourced dataset that must also be authenticated. This problem was addressed in
the work of [15] on memory delegation with a construction based on Micali’s CS proofs.
One possible approach for designing a practical protocol is based on the memory del-
egation solution where Micali’s CS proofs are replaced by a succinct non-interactive
argument-of-knowledge (SNARK). Good candidates for more practical constructions
of such a SNARK are provided in the recent works of [4, 6, 27].

However, one major obstacle for implementing the generic approach described above
(discussed already in [27]) is that it only considers computations that are represented as

Verifiable Set Operations over Outsourced Databases 115

boolean or arithmetic circuits. For example, in the context of set operations the trans-
formation from formulas of set operations to circuits can be extremely wasteful as the
number of sets participating in every query and the set sizes may vary dramatically
between queries. Here, another source of inefficiency is that the generic approach con-
siders a universal circuit that gets the query, in the form of the set-operation formula,
as input which introduces additional overheads. Overall, while asymptotically the com-
putational overhead of the server can be made poly-logarithmic, in practice the large
constants involved can be an obstacle for using the generic solution for set operations.

Our Result. In this work we propose a new practical scheme for publicly verifiable
secure delegation of general set operations. The verification state is of constant size and
the proof verification time is O(t + δ) where t is the size of the query formula and δ
is the answer set size. That is, a main advantage of our scheme is that the verification
time and the proof length do not grow with the sizes of all other sets involved in the
computation. For instance, the intersection of two unions, each defined over a constant
number of sets each having a large cardinality, may result in intermediate results of size
O(|D|) but only produce the empty set as output; in this extreme case, our scheme pro-
vides optimal, constant-time verification. The dependence on the answer size is inherent
since the client must receive the answer set from the server. Another advantage of our
scheme over the generic approach is that is does not involve translating the problem to
an arithmetic or boolean circuit. In particular, the server will need to perform only 4N
exponentiations in a group with a symmetric bilinear pairing, where N is the sum of
the sizes of all the intermediate sets in the evaluation of the set formula.

For updates, the source client maintains an update state of length O(m), where m is
the number of sets in the dataset, and it can add or remove a single element for every
set in constant time. The source then updates the server and all other clients with a
new verification state. We note that our definitions and construction can be extended to
support also server-assisted updates, where the source client updates a given set in D to
a new set defined as the output of a set operation performed by the server, thus updating
a large number of elements at once—details are deferred to the full version [13].

Overview of Techniques. The starting point for our construction is the scheme of Pa-
pamanthou, Tamassia and Triandopoulos [26] that supports verification of a single set
operation, one union or intersection, over t sets in time O(t+ δ), where δ is the answer
size. The “naive” way to extend that scheme to support general set-operation formulas
is to have the server provide a separate proof for each intermediate set produced in the
evaluation of the formula. However, proving the security of such an extended scheme
is problematic. The problem is that in the scheme of [26] the proofs do not necessarily
compose. In particular, it might be easy for a malicious server to come up with a false
proof corresponding to an incorrect answer set without “knowing” what this incorrect
answer is (if the malicious server would be able to also find the answer set, the scheme
of [26] would not have been secure). Therefore, to make the security proof of the naive
scheme go though, the server would also have to prove to the client that it “knows” all
the intermediate sets produced in the evaluation of the query formula. One way for the
server to prove knowledge of these sets is to send them to the client, however, this will
result in a proof that is as long as the entire server computation.

116 R. Canetti et al.

To solve this problem we need to further understand the structure of the proofs in
[26] which is based on the notion of a bilinear accumulator [24]. We can think of a
bilinear accumulator as a succinct hash of a large set that makes use of a representa-
tion of a set by its characteristic polynomial (i.e., a polynomial that has as roots the set
elements). The main idea in our work is to use a different type of accumulator, a knowl-
edge accumulator, that has “knowledge” properties, i.e., the only way for an algorithm
to produce a valid accumulation value is to “know” the set that corresponds to this value.
This knowledge property of our accumulator together with the soundness of the proof
for every single operation allows us to prove the soundness of the composed scheme.
Our construction of knowledge accumulators is very similar to the previous construc-
tions of knowledge commitments in [6, 20], which are based on the q-PKE assumption,
a variant of the knowledge-of-exponent assumption [16]. We capture the knowledge
properties of our accumulator by using the notion of an extractable collision-resistant
hash function (ECRH), originally introduced in [6]. However, we follow the weaker
definition of ECRH with respect to auxiliary input, for which the recent negative evi-
dence presented in [7] does not apply and the auxiliary-input distributions we consider
here are not captured by the negative result of [11] either.

We also need to change the way a single set operation is proven. Specifically, in
[26], a proof for a single union of sets requires one accumulation value for every ele-
ment in the union. This will again result in a proof that is as long as the entire server
computation. Instead our scheme involves proofs that are independent of the set sizes.

Moreover, in order to verify a proof in our scheme, the client only needs to know
the accumulation values for the sets that participate in a computation. Instead of storing
the accumulation values of all sets in the dataset, the client only stores a constant-
size verification state that contains a special hash of these accumulation values. We
compute this special hash using an accumulation tree, introduced in [25]. This primitive
can be thought of as a special “tree hash” that makes use of the algebraic structure of
accumulators to provide authentication paths of constant length.

Finally we note that our definition of security follows the popular framework of
authenticated data structures introduced in [29].

Related Work. The very recent work of [3] also considers a practical secure database
delegation scheme supporting a restricted class of queries, namely functions expressed
by arithmetic circuits of degree up to 2. This scheme is based on homomorphic MACs
and appears practical while also having a security proof that is based on standard hard-
ness assumptions. However, their solution is only privately verifiable and it does not
support deletions from the dataset. In a sense, the work of [3] is complementary to ours,
as arithmetic and set operations are two desirable classes of computations for a database
outsourcing scheme.

With respect to set operations, previous works focused mostly on the aspect of pri-
vacy and less on the aspect of integrity [2, 10, 18, 21]. There exists a number of works
from the database community that address this problem [22, 30], but to the best of our
knowledge, this is the first work that directly addresses the case of nested operations.

Characteristic polynomials for set representation have been used before in the cryp-
tography literature (see for example [24, 26]) and this directly relates our work with
a line of publications coming from the cryptographic accumulators literature [12, 24].

Verifiable Set Operations over Outsourced Databases 117

Indeed our ECRH construction, viewed as a mathematical object, is identical to a pair
of bilinear accumulators (introduced in [24]) with related secret key values. Our ECRH
can be viewed as an extractable extension to the bilinear accumulator that allows an ad-
versarial party to prove knowledge of a subset to an accumulated set (without explicitly
providing said subset). It also allows us to use the notion of accumulation trees which
was originally defined for bilinear accumulators.

The authenticated data structure (ADS) paradigm, originally introduced in [29],
appears extensively both in the cryptography and databases literature (see for exam-
ple [1, 19, 22, 23, 26, 31, 32]). A wide range of functionalities has been authenticated
in this context including range queries and basic SQL joins.

2 Tools and Definitions

We denote with l the security parameter and with ν(l) a negligible function. We say
that an event can occur with negligible probability if its occurrence probability is upper
bounded by a negligible function. Respectively, an event takes place with overwhelming
probability if its complement takes place with negligible probability. In our technical
exposition we adopt the access complexity model: Used mainly in the memory checking
literature [8, 17], this model allows us to measure complexity expressed in the number
of primitive cryptographic operations made by an algorithm without considering the
related security parameter.

Bilinear Pairings. Let G be a cyclic multiplicative group of prime order p, generated by
g. Let also GT be a cyclic multiplicative group with the same order p and e : G×G →
GT be a bilinear pairing with the following properties: (1) Bilinearity: e(P a, Qb) =
e(P,Q)ab for all P,Q ∈ G and a, b ∈ Zp; (2) Non-degeneracy: e(g, g) �= 1; (3)
Computability: There is an efficient algorithm to compute e(P,Q) for all P,Q ∈ G.
We denote with pub := (p,G,GT , e, g) the bilinear pairings parameters, output by a
randomized polynomial-time algorithm GenBilinear on input 1l.

For cleaner presentation, in what follows we assume a symmetric (Type 1) pairing e.
In [13] we discuss the modifications needed to implement our construction in the (more
efficient) asymmetric pairing case (see [14] for a general discussion of pairings).

Our security analysis makes use of the following two assumptions :

Assumption 1 (q-Strong Bilinear Diffie-Hellman [9]). For any poly-size adversary
A and for q being a parameter of size poly(l), the following holds:

Pr

[
pub ← GenBilinear(1l); s ←R Z∗

p;

(z, γ) ∈ Z∗
p × GT ← A(pub, (g, gs, ..., gs

q

)) s.t. γ = e(g, g)1/(z+s))

]
≤ ν(l)] .

Assumption 2 (q-Power Knowledge of Exponent [20]). For any poly-size adversary
A, there exists a poly-size extractor E such that:

Pr

⎡⎢⎢⎢⎢⎣
pub ← GenBilinear(1l); a, s ←R Z∗

p;σ = (g, gs, ..., gs
q

, ga, gas, ..., gas
q

)

(c, c̃) ← A(pub, σ); (a0, ..., an) ← E(pub, σ)

s.t. e(c̃, g) = e(c, ga) ∧ c �=
n∏

i=0

gais
i

for n ≤ q

⎤⎥⎥⎥⎥⎦ ≤ ν(l) .

118 R. Canetti et al.

Extractable Collision-Resistant Hash Functions. These functions (or ECRH for
short) were introduced in [6] as a strengthening of the notion of collision-resistant hash
functions. The key property implied by an ECRH is the hardness of oblivious sampling
from the image space. Informally, for a function f , sampled from an ECRH function
ensemble, any adversary producing a hash value h must have knowledge of a value
x ∈ Dom(f) s.t. f(x) = h. Formally, an ECRH function is defined as follows:

Definition 1 (ECRH [6]). A function ensemble H = {Hl}l from {0, 1}t(l) to {0, 1}l is
an ECRH if:

Collision-Resistance. For any poly-size adversary A:

Pr
h←Hl

[
x, x′ ← A(1l, h) s.t. h(x) = h(x′) ∧ x �= x′] ≤ ν(l) .

Extractability. For any poly-size adversary A, there exists poly-size extractor E s.t.:

Pr
h←Hl

[
y ← A(1l, h);x′ ← E(1l, h)

s.t. ∃x : h(x) = y ∧ h(x′) �= y

]
≤ ν(l) .

An ECRH Construction from q-PKE. We next provide an ECRH construction from
the q-PKE assumption defined above. In [6] the authors suggest that an ECRH can be
constructed directly from q-PKE (without explicitly providing the construction). Here
we present the detailed construction and a proof of the required properties with respect
to q-PKE for extractability and q-SBDH for collision-resistance.

– To sample from Hl, choose q ∈ O(poly(l)), run algorithm GenBilinear(1l) to
generate bilinear pairing parameters pub = (p,G,GT , e, g) and sample a, s ←R

Z∗
p × Z∗

p s.t. a �= s. Output public key pk = (pub, gs, ..., gs
q

, ga, gas, ..., gas
q

) and
trapdoor information sk = (s, a). It should be noted that the pk fully describes the
chosen function h. Trapdoor sk can be used for a more efficient computation of
hash values, by the party initializing the ECRH .

– To compute a hash value on x = (x1, ..., xq), output h(x) =(∏
i∈[q] g

xis
i

,
∏
i∈[q] g

axis
i
)

.

Lemma 1. If the q-SBDH and q-PKE assumptions hold, the above is a (q · l, 4l)-
compressing ECRH.

Proof. Extractability follows directly from the q-PKE assumption. To argue about
collision-resistance, assume there exists adversary A outputting with probability ε,
(x,y) such that there exists i ∈ [q] with xi �= yi and h(x) = h(y). We denote
with P (r) the q-degree polynomial from Zp[r],

∑
i∈[q](xi − yi)r

i. From the above,

it follows that
∑

i∈[q] xis
i =

∑
i∈[q] yis

i. Hence, while P (r) is not the 0-polynomial,
the evaluation of P (r) at point s is P (s) = 0 and s is a root of P (r). By applying
a randomized polynomial factorization algorithm as in [5], one can extract the (up to
q) roots of P (r) with overwhelming probability, thus computing s. By choosing a to
compute the second part of the public key to run A and then randomly selecting c ∈ Z∗

p

and computing β = g1/(c+s) one can output (c, e(g, β)), breaking the q-SBDH with

Verifiable Set Operations over Outsourced Databases 119

probability ε(1 − ε′) where ε′ is the negligible probability of error in the polynomial
factoring algorithm. Therefore any poly-size A can find a collision only with negligible
probability. The 4l factor follows from the representation cost of elliptic curve points as
a pair of p-bit coefficients. ��

One natural application for the above ECRH construction would be the compact
computational representation of polynomials from Zp[r] of degree ≤ q. A polyno-
mial P (r) with coefficients p1, ..., pq can be succinctly represented by the hash value

h(P) = (f, f ′) =
(∏

i∈[q] g
pis

i

,
∏
i∈[q] g

apis
i
)

.

Authenticated Data Structure Scheme. Such schemes, originally defined in [26],
model verifiable computations over outsourced data structures. Let D be any data
structure supporting queries and updates. We denote with auth(D) some authenticated
information on D and with d the digest of D, i.e., a succinct secure computational
description of D. An authenticated data structure scheme ADS is a collection of six
algorithms shown in Figure 1. Let {accept, reject} = check(q, a(q), Dh) be a method
that decides whether a(q) is a correct answer for query q on data structure Dh (this
method is not part of the scheme but only introduced for ease of notation.) Then an
authenticated data structure scheme ADS should satisfy the following:

1. {sk, pk} ← genkey(1k). Outputs secret and public keys, given the security parameter l.
2. {auth(D0), d0} ← setup(D0, sk, pk): Computes the authenticated data structure

auth(D0) and its respective digest, d0, given data structure D0, the secret key sk and
the public key pk.

3. {auth(Dh+1), dh+1, upd} ← update(u, auth(Dh), dh, sk, pk): On input update u on
data structure Dh, the authenticated data structure auth(Dh) and the digest dh, it out-
puts the updated data structure Dh+1 along with auth(Dh+1), the updated digest dh+1

and some relative information upd. It requires the secret key for execution.
4. {Dh+1, auth(Dh+1), dh+1} ← refresh(u,Dh, auth(Dh), dh, upd, pk): On input up-

date u on data structure Dh, the authenticated data structure auth(Dh), the digest dh
and relative information upd output by update, it outputs the updated data structure
Dh+1 along with auth(Dh+1) and the updated digest dh+1, without access to sk.

5. {a(q),Π(q)} ← query(q,Dh, auth(Dh), pk): On input query q on data structure Dh

and auth(Dh) it returns the answer to the query a(q), along with a proof Π(q).
6. {accept, reject} ← verify(q, a(q),Π(q), dh, pk): On input query q, an answer a(q), a

proof Π(q), a digest dh and pk, it outputs either “accept” or “reject”.

Fig. 1. Authenticated data structure

Correctness. We say that ADS is correct if, for all l ∈ N, for all (sk, pk) output by
algorithm genkey, for all (Dh, auth(Dh), dh) output by one invocation of setup fol-
lowed by polynomially-many invocations of refresh, where h ≥ 0, for all queries q and
for all a(q), Π(q) output by query(q,Dh, auth(Dh), pk), with all but negligible prob-
ability, whenever check(q, a(q), Dh) accepts, so does verify(q, a(q), Π(q), dh, pk).

120 R. Canetti et al.

Security. Let l ∈ N be a security parameter and (sk, pk) ← genkey(1l) and A be
a poly-size adversary that is only given pk and has oracle access to all algorithms of
the ADS. The adversary picks an initial state of the data structure D0 and computes
D0, auth(D0), d0 through oracle access to algorithm setup. Then, for i = 0, ..., h =
poly(l), A issues an update ui for the data structure Di and outputs Di+1, auth(Di+1)
and di+1 through oracle access to algorithm update. At any point during these update
queries, he can make polynomially many oracle calls to algorithms prove and verify.
Finally the adversary picks an index 0 ≤ t ≤ h + 1, a query q, an answer a(q) and a
proof Π(q). We say that an ADS is secure if for all large enough k ∈ N, for all poly-size
adversaries A it holds that:

Pr

[
(q, a(q), Π(q), t) ← A s.t

accept ← verify(q, a(q), Π(q), dt, pk) ∧ reject ← check(q, a(q), Dt)]

]
≤ ν(l)

where the probability is taken over the randomness of genkey and the coins of A. The
above security definition maps the mode of operation of an outsourced computation
protocol where the database used is originally “finger-printed” by a trusted party that is
also solely responsible for dynamically changing it. Clients can trust that the answers
they get are “as-good-as” computed by the trusted party.

Set Representation with Polynomials. Sets can be represented with polynomials, us-
ing the notion of characteristic polynomial, e.g., as introduced in [18, 24, 26]. Given
a set X = {x1, .., xm}, the polynomial CX(r) =

∏m
i=1(xi + r) from Zp[r], where r

is a formal variable, is called the characteristic polynomial of X (when possible we
will denote this polynomial simply by CX). Characteristic polynomials constitute rep-
resentations of sets by polynomials that have the additive inverses of their set elements
as roots. What is of particular importance to us is that characteristic polynomials en-
joy a number of homomorphic properties w.r.t. set operations. For example, given sets
A,B with A ⊆ B, it must hold that CB|CA and given sets X,Y with I = X ∩ Y ,
CI = gcd(CX , CY).

The following lemma characterizes the efficiency of computing the characteristic
polynomial of a set.

Lemma 2 ([28]). Given set X = x1, ..., xn with elements from Zp, characteristic poly-
nomial CX(r) :=

∑n
i=0 cir

i ∈ Zp[r] can be computed with O(n log n) operations with
FFT interpolation.

Note that, while the notion of a unique characteristic polynomial for a given set is well-
defined, from elementary algebra it is known that there exist many distinct polynomials
having as roots the additive inverses of the elements in this set. For instance, recall that
multiplication of a polynomial in Zp[r] with an invertible unit in Z∗

p leaves the roots of
the resulting polynomial unaltered. We define the following:

Definition 2. Given polynomials P (r), Q(r) ∈ Zp[r] with degree n, we say that they
are associate (denoted as P (r) ≈a Q(r)) iff P (r)|Q(r) and Q(r)|P (r).

Thus, associativity can be equivalently expressed by requesting that P (r) = λQ(r) for
some λ ∈ Z∗

p.

Verifiable Set Operations over Outsourced Databases 121

Note that although polynomial-based set representation provides a way to verify the
correctness of set operations by employing corresponding properties of the character-
istic polynomials, it does not provide any computational speedup for this verification
process. Intuitively, verifying operations over sets of cardinality n, involves dealing
with polynomials of degree n with associated cost that is proportional to performing
operations directly over the sets themselves. We overcome this obstacle, by applying
our ECRH construction (which can be naturally defined over univariate polynomials
with coefficients in Zp, as already discussed) to the characteristic polynomial CX : Set
X will be succinctly represented by hash value h(CX) =

(
gCX(s), gaCX(s)

)
(parameter

q is an upper bound on the cardinality of sets that can hashed), and a operation of sets X
and Y will be optimally verified by computing only on hash values h(CX) and h(CY).

Observe that, while every set has a uniquely defined characteristic polynomial, not
every polynomial is a characteristic polynomial of some set. Hence extractability of sets
from hash values is not guaranteed. For our ADS construction, we will combine the use
of the ECRH construction for sets, with an authentication mechanism deployed by the
source in a pre-processing phase over the hash values of the original m sets.

3 Setup and Update Algorithms

An authenticated data structure (ADS) is a protocol for secure data outsourcing in-
volving the owner of a dataset (referred to as source), an untrusted server and multiple
clients that issue computational queries over the dataset. The protocol consists of a pre-
processing phase where the source uses a secret key to compute some authentication
information over the dataset D, outsources D along with this information to the server
and publishes some public digest d related to the current state of D. Subsequently,
the source can issue update queries for D (which depend on the data type of D), in
which case, the source updates the digest and both the source and the server update the
authentication information to correspond consistently with the updated dataset state.
Moreover, multiple clients (including the source itself), issue computational queries q
addressed to the server, which responds with appropriate answer α and proof of correct-
ness Π . Responses can be verified both for integrity of computation of q and integrity
of data used (i.e., that the correct query was run on the correct dataset D) with access
only to public key and digest d.

Here we present an ADS supporting hierarchical set operations. We assume a data
structure D consisting of m sorted sets S1, ..., Sm, consisting of elements from Zp,1

where sets can change under element insertions and deletions; here, p is a l-bit prime
number and l is a security parameter. If M =

∑m
i=1 |Si|, then the total space complexity

needed to store D is O(m + M). The supported class of queries is any set-operation
formula over a subset of the sets Si, consisting of unions and intersections.

In this section we present the scheme algorithms for original setup and updates. The
basic idea is to use the ECRH construction from Section 2 to represent sets Si by the
hash values h(CSi) of their characteristic polynomials. For the rest of the paper, we will
refer to value h(CSi) as hi, implying the hash value of the characteristic polynomial of

1 Actually elements must come from Z \ {s, 1, ..., m}, because s is the secret key in our con-
struction and the m smallest integers modulo p will be used for numbering the sets.

122 R. Canetti et al.

the i-th set of D or the i-th set involved in a query, when obvious from the context.
Recall that a hash value h consists of two group elements, h = (f, f ′). We will refer
to the first element of hi as fi, i.e., for a set Si = (x1, ..., xn), fi = g

∏n
j=1(xj+s) and

likewise for f ′
i .

During the setup phase, the source computes the m hash values h(CSi) of sets Si
and then deploys an authentication mechanism over them, that will provide proofs of
integrity for these values under some public digest that corresponds to the current state
of D. This mechanism should be able to provide proofs for statements of the form “hi
is hash of the i-th set of the current version of D.”

While there exist multiple such mechanisms in the literature (e.g., digital signatures,
Merkle trees), here we will be using accumulation trees, introduced in [25] (and specif-
ically in the bilinear group setting in [26]) as an alternative to Merkle trees that yields
constant time updates and constant size proofs. In our construction, we use the accumu-
lation tree to verify the correctness of hash values for the sets involved in a particular
query. On a high level, the public tree digest guarantees the integrity of the hash values
and in turn the hash values validate the elements of the sets.

An accumulation tree AT is a tree with �1/ε� levels, where 0 < ε < 1 is a parameter
chosen upon setup, and m leaves. Each internal node of T has degree O(mε) and T
has constant height for a fixed ε. Intuitively, it can be seen as a “flat” version of Merkle
trees. Each leaf node contains the (first half of the) hash value of a set Si and each
internal node contains the (first half of the) hash of the values of its children. Since,
under our ECRH construction, hash values are elements in G we will need to map these
bilinear group elements to values in Z∗

p at each level of the tree before they can be
used as inputs for the computation of hash values of higher level nodes. This can be
achieved by a function φ that outputs a bit level description of hash values under some
canonical representation of G (see below). The setup and update algorithms of our ADS
construction can be seen in Figure 2:

The runtime of setup is O(m+M) as computation of the hash values using the secret
key takes O(M) and the tree construction has access complexity O(m) for post-order
traversal of the tree as it has constant height and it has m leaves. Similarly, update and
refresh have access complexity of O(1).

Remark 1. Observe that the only algorithms that make explicit use of the trapdoor s are
update and setup when updating hash value efficiently. Both algorithm can be executed
without s (given only the public key) in time Õ(D).

4 Query Responding and Verification

As mentioned before, we wish to achieve two verification properties: integrity-of-data
and integrity-of-computation. We begin with our algorithms for achieving the first prop-
erty, and then present two protocols for achieving the second one, i.e., for validating the
correctness of a single set operation (union or intersection). These algorithms will be
used as subroutines by our final query responding and verification processes.

Verifiable Set Operations over Outsourced Databases 123

Algorithm {sk, pk} ←genkey(1l). The owner of D runs the sampling algorithm for our
ECRH, chooses an injective2 function φ : G \ {1G} → Z∗

p, and outputs {φ, pk, sk}.

Algorithm {auth(D0), d0} ← setup(D0, sk, pk). The owner of D computes values fi =

g
∏

x∈Si
(xi+s) for sets Si. Following that, he constructs an accumulation tree AT over values

fi. A parameter 0 < ε < 1 is chosen. For each node v of the tree, its value d(v) is computed
as follows. If v is a leaf corresponding to fi then d(v) = f

(i+s)
i where the number i is used to

denote that this is the i-th set in D (recall that, by definition, sets Si contain elements in [m+
1, ..., p−1]). Otherwise, if N(v) is the set of children of v, then d(v) = g

∏
u∈N(v)(φ(d(u)+s)

(note that the exponent is the characteristic polynomial of the set containing the elements
φ(d(u)) for all u ∈ N(v)). Finally, the owner outputs {auth(D0) = f1, ..., ft, d(v) ∀v ∈
AT , d0 = d(r)} where r is the root of AT .

Algorithm{auth(Dh+1), dh+1, upd} ← update(u, auth(Dh), dh, sk, pk). For the case of
insertion of element x in the i-th set, the owner computes x + s and η = fx+s

i . For dele-

tion of element x from Si, the owner computes (x + s)−1 and η = f
(x+s)−1

i . Let v0
be the leaf of AT that corresponds to the i -th set and v1, ..., v�1/ε� the node path from
v0 to r. Then, the owner sets d′(v0) = η and for j = 1, ...,
1/ε� he sets d′(vj) =

d(vj)
(φ(d′(vj−1))+s)(φ(d(vj−1))+s)−1

. He replaces node values in auth(Dh) with the corre-
sponding computed ones to produce auth(Dh+1). He then sets upd = d(v0), ..., d(r), x, i, b
where b is a bit denoting the type of operation and sends upd to server. Finally, he publishes
updated digest dh+1 = d′(r).

Algorithm {Dh+1, auth(Dh+1), dh+1} ← refresh(u,Dh, auth(Dh), dh, upd, pk). The
server replaces values in auth(Dh) with the corresponding ones in upd, dh with dh+1 and
updates set Si accordingly.

Fig. 2. Setup and update operations

Authenticity of Hash Values. We present two algorithms that make use of the accu-
mulation tree deployed over the hash values of Si in order to prove and verify that the
sets used for answering are the ones specified by the query description.

Algorithm π ← QueryTree(pk, d, i, auth(D)) The algorithm computes proof of mem-
bership for value xi validating that it is the i-th leaf of the accumulation tree. Let v0 be
the i-th node of the tree an v1, ..., v1/ε� be the node path from v0 to the root r. For j =

1, ..., �1/ε� let γj = g
∏

u∈N(vj)\{vj−1}(φ(d(u))+s) (note that the exponent is the charac-
teristic polynomial of the set containing the elements φ(d(u)) for all u ∈ N(v) except
for node vj−1). The algorithm outputs π := (d(v0), γ1), ..., (d(v1/ε�−1), γ1/ε�).

Algorithm {0, 1} ← VerifyTree(pk, d, i, x, π). The algorithm verifies membership of
x as the i-th leaf of the tree by checking the equalities: (i) e(d(v1), g) = e(x, gigs);
(ii) for j = 1, ..., �1/ε� − 1, e(d(vj), g) = e(γj , g

φ(d(vj−1))gs); (iii) e(d, g) =
e(γ1/ε�, g

φ(d(v�1/ε�−1))gs). If none of them fails, it outputs accept.
The above algorithms make use of the property that for any two polynomials

A(r), B(r) with C(r) := A(r) · B(r), for our ECRH construction it must be that
e(f(C), g) = e(f(A), f(B)). In particular for sets, this allows the construction of a

2 The restriction that φ is injective is in fact too strong; it suffices that it is collision-resistant. A
good candidate for φ is a CRHF that hash the bit-level description of an element of G to Z∗

p.

124 R. Canetti et al.

single-element proof for set membership (or subset more generally). For example, for
element x1 ∈ X = {x1, ..., xn) this witness is the value g

∏n
i=2(xi+s). Intuitively, for

the integrity of a hash value, the proof consists of such set membership proofs starting
from the desired hash value all the way to the root of the tree, using the sets of children
of each node. The following lemma (stated in [26], for an accumulation tree based on
bilinear accumulators; it extends naturally to our ECRH) holds for these algorithms:

Lemma 3 ([26]). Under the q-SBDH assumption, for any adversarially chosen proof π
with (j, x∗, π) s.t. VerifyTree(pk, d, j, x∗, π) → 1, it must be that x∗ is the j-th element
of the tree except for negligible probability. Algorithm QueryTree has access complexity
O(mε logm) and outputs a proof of O(1) group elements and algorithm VerifyTree has
access complexity O(1).

Algorithms for the Single Operation Case. The algorithms presented here are used to
verify that a set operation was performed correctly, by checking a number of relations
between the hash values of the input and output hash values, that are related to the type
of set operation. The authenticity of these hash values is not necessarily established.
Since these algorithms will be called as sub-routines by the general proof construction
and verification algorithms, this property should be handled at that level.

Intersection. Let I = S1 ∩ ... ∩ St be the wanted operation. Set I is uniquely identified
by the following two properties: (Subset) I ⊆ Si for all Si and (Complement Dis-
jointness) ∩ti=1(Si \ I) = ∅. The first captures that all elements of I appear in all of Si
and the second that no elements are left out.

Regarding the subset property, we argue as follows. Let X,S be sets s.t. S ⊆ X
and |X | = n. Observe that CS |CX , i.e. CX can be written as CX = CS(r)Q(r) where
Q(r) ∈ Zp[r] is CX\S . The above can be verified by checking the equality: e(fS ,W) =

e(fX , g) where W = gQ(s). If we denote with Wi the values gCSi\I(s), the subset
property can be verified by checking the above relation for I w.r.t each of Si.

For the second property, we make use of the fact that CSi\I(r) are disjoint for i =
1, ..., t if and only if there exist polynomials qi(r) s.t.

∑t
i=1 CSi\I(r)qi(r) = 1, i.e. the

gcd of the characteristic polynomials of the the complements of I w.r.t Si should be
1. Based on the above, we propose the algorithms in Figure 3 for the case of a single
intersection:

Algorithm{Π, fI} ← proveIntersection(S1 , ..., St, I, h1, ..., ht, hI , pk).
1. Compute values Wi = gCSi\I(s).
2. Compute polynomials qi(r) s.t.

∑t
i=1 CSi\I(r)qi(r) = 1 and values Fi = gqi(s).

3. Let Π = {(W1, F1), ..., (Wt, Ft)} and output {Π,fI}.

Algorithm{accept,reject} ← verifyIntersection(f1, ..., ft,Π, fI , pk).
1. Check the following equalities. If any of them fails output reject, otherwise accept:

– e(fI ,Wi) = e(fi, g) ∀i = 1, ..., t
–
∏t

i=1 e(Wi, Fi) = e(g, g).

Fig. 3. Intersection proof construction and verification

Verifiable Set Operations over Outsourced Databases 125

Union. Now we want to provide a similar method for proving the validity of a union
operation of some sets. Again we denote set U = S1 ∪ ... ∪ St and let hi be the cor-
responding hash values as above. The union set U is uniquely characterized by the
following two properties: (Superset) Si ⊆ U for all Si and (Membership) For each
element xi ∈ U , ∃j ∈ [t] s.t. xi ∈ Sj . These properties can be verified, with val-
ues Wi, wj for i = 1, ...t and j = 1, ..., |U | defined as above checking the following
equalities (assuming hU is the hash value of U):

e(fi,Wi) = e(fU , g) ∀i = 1, ..., t

e(gxjgs, wj) = e(fU , g) ∀j = 1, ..., |U | .

The problem with this approach is that the number of equalities to be checked for the
union case is linear to the number of elements in the output set. Such an approach would
lead to an inefficient scheme for general operations (each intermediate union operation
the verification procedure would be at least as costly as computing that intermediate
result). Therefore, we are interested in restricting the number of necessary checks. In
the following we provide a union argument that achieves this.

Our approach stems from the fundamental inclusion-exclusion principle of set the-
ory. Namely for set U = A ∪ B it holds that U = (A+B) \ (A ∩ B) where A+B is
a simple concatenation of elements from sets A,B (allowing for multisets), or equiva-
lently, A+B = U ∪ (A ∩ B). Given the hash values hA, hB the above can be checked
by the bilinear equality e(fA, fB) = e(fU , fA∩B). Thus one can verify the correctness
of hU by checking a number of equalities independent of the size of U by checking
that the above equality holds. In practice, our protocol for the union of two sets, con-
sists of a proof for their intersection, followed by a check for this relation. Due to the
extractability property of our ECRH, the fact that hI is included in the proof acts as a
proof-of-knowledge by the prover for the set I , hence we can remove the necessity to
explicitly include I in the answer.

There is another issue to be dealt with. Namely that this approach does not scale well
with the number of input sets for the union operation. To this end we will recursively
apply our construction for two sets in pairs of sets until finally we have a single union
output. Let us describe the semantics of a set union operation over t sets. For the rest of
the section, without loss of generality, we assume ∃k ∈ N s.t. 2k = t, i.e., t is a power
of 2. Let us define as U (1)

1 , ..., U
(1)
t/2 the sets (S1 ∪S2), ..., (St−1 ∪St). For set U it holds

that U = U1 ∪ ... ∪ Ut/2 due to the commutativity of the union operation.

All intermediate results U (j)
i will be represented by their hash values h

U
(j)
i

yielding a

proof that is of size independent of their cardinality. One can use the intuition explained
above, based on the inclusion-exclusion principle, in order to prove the correctness
of (candidate) hash values h

U
(1)
i

corresponding to sets Ui and, following that, apply

repeatedly pairwise union operations and provide corresponding arguments, until set U
is reached. Semantically this corresponds to a binary tree T of height k with the original
sets Si at the t leafs (level 0), sets U

(1)
i as defined above at level 1, and so on, with set

U at the root at level k. Each internal node of the tree corresponds to a set resulting
from the union operation over the sets of its two children nodes. In general we denote

126 R. Canetti et al.

by U
(j)
1 , ..., U

(j)
t/2j the sets appearing at level j. We propose the algorithms in Figure 4

for proof construction and verification for a single union.

We denote by A,B the two sets corresponding to the children nodes of each non-leaf node of
T , by U, I their union and intersection respectively and by F the final union output.
Algorithm{Π, fF } ←proveUnion(S1, ..., St, U, h1, ..., ht, hU , pk).

1. Initialize Π = ∅.
2. For each U

(j)
i of level j = 1, ..., k, corresponding to sets U, I as defined above, compute

U, I and values hU , hI . Append values hU , hI to Π .
3. For each U

(j)
i of level j = 1, ..., k, run algorithm proveIntersection(A, B, hA, hB , pk)

to receive (ΠI , fI) and append ΠI to Π . Observe that sets A,B and their hash values
have been computed in the previous step.

4. Output {Π, fF }. (hF has already been computed at step (2) but is provided explicitly
for ease of notation).

Algorithm{accept,reject} ← verifyUnion(f1, ..., ft,Π, fF , pk).
1. For each intersection argument {ΠI , fI} ∈ Π run verifyIntersec-

tion(fA, fB ,ΠI , fI , pk). If for any of them it outputs reject, output reject.
2. For each node of T check the equality e(fA, fB) = e(fU , fI). If any check fails, reject.
3. For each hash value hU ∈ Π check e(fU , g

a) = e(f ′
U , g) and likewise for values hI . If

any check fails output reject, otherwise accept.

Fig. 4. Union proof construction and verification

Analysis of the Algorithms. Let N =
∑t
i=1 |Si| and δ = |I| or |F | respectively,

depending on the type of operations. For both cases, the runtimes of the algorithms are
O(N log2 N log logN log t) for proof construction and O(t + δ) for verification and
the proofs contain O(t) bilinear group elements. A proof of the complexity analysis for
these algorithms can be found in the full version of our paper [13].

It can be shown that these algorithms, along with appropriately selected proofs-of-
validity for their input hash values can be used to form a complete ADS scheme for
the case of a single set operation. Here however, these algorithms will be executed
as subroutines of the general proof construction and verification process for our ADS
construction for more general queries, presented in the next section. In [13], we present
similar algorithms for the set difference operation.

Hierarchical Set-Operation Queries. We now use the algorithms we presented in
the previous subsection to define appropriate algorithms query, verify for our ADS
scheme. A hierarchical set-operations computation can be abstracted as a tree, the nodes
of which contain sets of elements. For a query q over t sets S1, ..., St, corresponding to
such a computation, each leaf of the tree T contains an input set for q and each internal
node is related to a set operation (union or intersection) and contains the set that results
to applying this set operation on its children nodes. Finally the root of the tree contains
the output set of q. In order to maintain the semantics of a tree, we assume that each
input is treated as a distinct set, i.e., t is not the number of different sets that appear in q,

Verifiable Set Operations over Outsourced Databases 127

but the total number of involved sets counting multiples. Another way to see the above,
would be to interpret t as the length of the set-operations formula corresponding to q.3

Without loss of generality, assume q is defined over the t first sets of D. For reasons
of simplicity we describe the mode of operation of our algorithms for the case where
all sets Si are at the same level of the computation, i.e., all leafs of T are at the same
level. The necessary modifications in order to explicitly cover the case where original
sets occur higher in T , are implied in a straight-forward manner from the following
analysis, since any set Si encountered at an advanced stage of the process can be treated
in the exact same manner as the sets residing at the tree leafs. The algorithms for query
processing and verification of our ADS scheme are described in Figure 5.

Each answer from the server is accompanied by a proof that includes a number of
hash values for all sets computed during answer computation, the exact structure of
which depends on the type of operations. The verification process is essentially split in
two parts. First, the client verifies the validity of the hash values of the sets used as input
(i.e., the validity of sets specified in q) and subsequently, that the hash values included
in the proof respect the relations corresponding to the operations in q, all the way from
the input hash values to the hash value of the returned answer α.

Intuitively, with the algorithms from the previous section a verifier can, by checking
a small number of bilinear equations, gain trust on the hash value of a set computed by
a single set operation. The proof for q is constructed by putting together smaller proofs
for all the internal nodes in T . Let Π be a concatenation of single union and single
intersection proofs that respect q, i.e., each node in T corresponds to an appropriate
type of proof in Π . The hash value of each intermediate result will also be included in
the proof and these values at level i will serve as inputs for the verification process at
level i+1. The reason the above strategy will yield a secure scheme is that the presence
of the hash values serves as proof by a cheating adversary that he has “knowledge”
of the sets corresponding to these partial results. If one of these sets is not honestly
computed, the extractability property allows an adversary to either attack the collision-
resistance of the ECRH or break the q-SBDH assumption directly, depending on the
format of the polynomial used to cheat.

Observe that the size of the proof Π is O(t + δ). This follows from the fact that the
t proofs πi consist of a constant number of group elements and Π is of size O(t) since
each of the O(|T |) = O(t) nodes participates in a single operation. Also, there are δ
coefficients bi therefore the total size of Π is O(t + δ). The runtime of the verification
algorithm is O(t + δ) as steps 2,3 takes O(t) operations and steps 4,5 take O(δ). A
proof of the complexity analysis for these algorithms can be found in the full version
of our paper. We can now state the following theorem that is our main result (full proof
in [13]).

Theorem 1. The scheme AHSO = {genkey, setup, query, verify, update, refresh}
is a dynamic ADS scheme for queries q from the class of hierarchical set-operations
formulas involving unions, intersections and set difference operations. Assuming a data
structure D consisting of m sets S1, ..., Sm, and a hierarchical set-operations query
q involving t of them, computable with asymptotic complexity O(N) with answer size

3 More generally q can be seen as a DAG. Here, for simplicity of presentation we assume that
all sets Si participate only once in q hence it corresponds to a tree.

128 R. Canetti et al.

D is the most recent version of the data structure and let auth(D), d be the corresponding
authenticated values and public digest. Let q be a set-operation formula with nested unions
and intersections and T be the corresponding semantics tree. For each internal node v ∈ T
let R1, ..., Rtv denote the sets corresponding to its children nodes and O be the set that is
produced by executing the operation in v (union or intersection) over Ri. Finally, denote by
α = x1, ..., xδ the output set of the root of T .

Algorithm {α,Π} ← query(q,D, auth(D), pk).
1. Initialize Π = ∅.
2. Compute proof-of-membership πi for value fi by running Query-

Tree(pk, d, i, auth(D)) for i ∈ [t] and append πi, fi to Π .
3. For each internal node v ∈ T (as parsed with a DFS traversal):

– Compute set O and its hash value hO = h(CO).
– If v corresponds to a set intersection, obtain Πv by running proveIntersec-

tion(R1, ..., Rt, h1, ..., ht, O, hO , pk). For each subset witness Wi ∈ Π corre-
sponding to polynomial CRi\O, compute values W̃i = gaCRi\O(s). Let Wv =
{W1, ..., Wtv}. Append Πv,Wv, hO to Π .

– If v corresponds to a set union, obtain Πv by running proveU-
nion(R1, ..., Rt, h1, ..., ht, O, hO, pk). Append Πv, hO to Π .

4. Append to Π the coefficients (c0, ..., cδ) of the polynomial Cα (already computed at step
3) and output {α,Π}.

Algorithm {accept,reject} ← verify(q, α,Π, d, pk). For internal node v ∈ T , let
η1, ..., ηtv denote the hash values of its children node sets ∈ Π (for internal nodes at level 1,
the values ηi are the values fi).

1. Parse each hash value h ∈ Π as h = (f, f ′).
2. Verify the validity of values fi. For each value fi ∈ Π run VerifyTree(pk, d, i, fi, πi). If

it outputs reject for any of them, output reject and halt.
3. For each internal node v ∈ T (as parsed with a DFS traversal):

– Check the equality e(fO, g
a) = e(g, f ′

O). If it does not hold, reject and halt.
– If v corresponds to a set intersection:

(a) Run verifyIntersection(η1, ..., ηtv , Πv, fO , pk), If it rejects, reject and halt.
(b) For each pair Wi, W̃i ∈ Πv , check the equality e(Wi, g

a) = e(W̃i, g). If any
of the checks fails, output reject and halt.

– If v corresponds to a set union, run verifyUnion(η1, ..., ηtv ,Πv, fO , pk). If it out-
puts reject, output reject and halt.

4. Validate the correctness of coefficients c. Choose z ←R Z∗
p and compare the values

δ∑
i=0

ciz
i and

δ∏
i=1

(xi + z). If they are not equivalent, output reject and halt.

5. Check the equality e(
δ∏

i=0

gcis
i

, g) = e(fα, g). If it holds output accept, otherwise reject.

Fig. 5. General set-operations proof construction and verification

δ, AHSO has the following properties: (i) correct and secure under the q-SBDH and
the q-PKE assumptions; (ii) the complexity of algorithm genkey is O(|D|); (iii) that of
setup is O(m+ |D|) (iv) that of query is O(N log2 N log logN log t+ tmε logm) for
0 < ε ≤ 1 and it yields proofs of O(t+δ) group elements; (v) that of verify is O(t+δ);

Verifiable Set Operations over Outsourced Databases 129

(vi) and those of update and refresh are O(1); (vii) the authenticated data structure
consists of O(m) group elements; (viii) the public digest d is a single group element.

Corollary 1. If the server maintains a list of m fresh proofs π1, ..., πm for the validity
of values fi, refresh has complexity O(m2ε logm), in order to update the mε proofs πi
affected by an update, and query has complexity O(N log2 N log logN log t+ t).

Corollary 2. In a two-party setting, where only the source issues queries, proofs con-
sist of O(t) elements.

Proof Sketch. Due to the interactive nature of the security game, extracting directly
from a successful cheating adversary A is not possible. Recall however, that all algo-
rithms of AHSO can be efficiently run with access to pk only. Hence the existence of
A implies the existence of (non-interactive) A′ that upon input pk, runs A internally
providing perfect simulation of the security game and finally outputs the cheating tu-
ple of A. The proof accompanying this cheating answer consists of polynomially many
hash values of our ECRH, therefore there exists corresponding extractor E ′ that upon
the same input outputs the correct pre-image polynomials with overwhelming probabil-
ity. We then proceed to show that each of these polynomials must be an associate of the
characteristic polynomial of the correctly computed set at that point of the computation
(or the q-SBDH can be broken). From this, it immediately follows that this holds also
for set α∗ hence, if it is not the correctly computed set corresponding to query q, the
characteristic polynomial of the correctly computed set α and the characteristic poly-
nomial of α∗ form a collision for the ECRH. ��

References
[1] Atallah, M.J., Cho, Y., Kundu, A.: Efficient data authentication in an environment of un-

trusted third-party distributors. In: ICDE, pp. 696–704 (2008)
[2] Ateniese, G., De Cristofaro, E., Tsudik, G.: (If) size matters: Size-hiding private set inter-

section. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS,
vol. 6571, pp. 156–173. Springer, Heidelberg (2011)

[3] Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on outsourced
data. Cryptology ePrint Archive. Report 2013/469 (2013)

[4] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: Snarks for c: Verifying
program executions succinctly and in zero knowledge. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013)

[5] Berlekamp, E.R.: Factoring polynomials over large finite fields*. In: Proceedings of the
Second ACM Symposium on Symbolic and Algebraic Manipulation, SYMSAC 1971,
p. 223. ACM, New York (1971)

[6] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to
succinct non-interactive arguments of knowledge, and back again. In: ITCS, pp. 326–349
(2012)

[7] Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: Indistinguishability obfuscation vs.
auxiliary-input extractable functions: One must fall. Cryptology ePrint Archive, Report
2013/641 (2013)

[8] Blum, M., Evans, W.S., Gemmell, P., Kannan, S., Naor, M.: Checking the correctness of
memories. Algorithmica 12(2/3), 225–244 (1994)

[9] Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)

130 R. Canetti et al.

[10] Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)

[11] Boyle, E., Pass, R.: Limits of extractability assumptions with distributional auxiliary input.
Cryptology ePrint Archive. Report 2013/703 (2013)

[12] Camenisch, J.L., Lysyanskaya, A.: Dynamic accumulators and application to efficient re-
vocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442,
pp. 61–76. Springer, Heidelberg (2002)

[13] Canetti, R., Paneth, O., Papadopoulos, D., Triandopoulos, N.: Verifiable set operations over
outsourced databases. Cryptology ePrint Archive. Report 2013/724 (2013)

[14] Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric pairings -
the role of psi revisited. Discrete Applied Mathematics 159(13), 1311–1322 (2011)

[15] Chung, K.-M., Kalai, Y.T., Liu, F.-H., Raz, R.: Memory delegation. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 151–168. Springer, Heidelberg (2011)

[16] Damgård, I.B.: Towards practical public key systems secure against chosen ciphertext at-
tacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer,
Heidelberg (1992)

[17] Dwork, C., Naor, M., Rothblum, G.N., Vaikuntanathan, V.: How efficient can memory
checking be? In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 503–520. Springer,
Heidelberg (2009)

[18] Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection.
In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19.
Springer, Heidelberg (2004)

[19] Goodrich, M.T., Tamassia, R., Triandopoulos, N.: Efficient authenticated data structures for
graph connectivity and geometric search problems. Algorithmica 60(3), 505–552 (2011)

[20] Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010)

[21] Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

[22] Martel, C.U., Nuckolls, G., Devanbu, P.T., Gertz, M., Kwong, A., Stubblebine, S.G.: A
general model for authenticated data structures. Algorithmica 39(1), 21–41 (2004)

[23] Naor, M., Nissim, K.: Certificate revocation and certificate update. IEEE Journal on Se-
lected Areas in Communications 18(4), 561–570 (2000)

[24] Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A. (ed.)
CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

[25] Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash tables. In: ACM
CCS, pp. 437–448 (2008)

[26] Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of operations on
dynamic sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 91–110. Springer,
Heidelberg (2011)

[27] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifiable com-
putation. In: IEEE SP Symposium, pp. 238–252 (2013)

[28] Preparata, F., Sarwate, D., I. U. A. U.-C. C. S. LAB: Computational Complexity of Fourier
Transforms Over Finite Fields. DTIC (1976)

[29] Tamassia, R.: Authenticated data structures. In: Di Battista, G., Zwick, U. (eds.) ESA 2003.
LNCS, vol. 2832, pp. 2–5. Springer, Heidelberg (2003)

[30] Yang, Y., Papadias, D., Papadopoulos, S., Kalnis, P.: Authenticated join processing in out-
sourced databases. In: SIGMOD Conference, pp. 5–18 (2009)

[31] Yiu, M.L., Lin, Y., Mouratidis, K.: Efficient verification of shortest path search via authen-
ticated hints. In: ICDE, pp. 237–248 (2010)

[32] Zheng, Q., Xu, S., Ateniese, G.: Efficient query integrity for outsourced dynamic databases.
IACR Cryptology ePrint Archive, 2012:493 (2012)

Verifiable Oblivious Storage

Daniel Apon, Jonathan Katz, Elaine Shi, and Aishwarya Thiruvengadam

University of Maryland, College Park, MD 20742, USA
{dapon,jkatz,elaine,aish}@cs.umd.edu

Abstract. We formalize the notion ofVerifiable Oblivious Storage (VOS),
where a client outsources the storage of data to a server while ensuring
data confidentiality, access pattern privacy, and integrity and freshness
of data accesses. VOS generalizes the notion of Oblivious RAM (ORAM)
in that it allows the server to perform computation, and also explicitly
considers data integrity and freshness.

We show that allowing server-side computation enables us to construct
asymptotically more efficient VOS schemes whose bandwidth overhead
cannot be matched by any ORAM scheme, due to a known lower bound
by Goldreich and Ostrovsky. Specifically, for large block sizes we can con-
struct a VOS scheme with constant bandwidth per query; further, an-
swering queries requires only poly-logarithmic server computation. We
describe applications of VOS to Dynamic Proofs of Retrievability, and
RAM-model secure multi-party computation.

1 Introduction

Oblivious RAM (ORAM) is a notion first proposed by Goldreich and Ostro-
vsky [20] in the context of protecting software from piracy. They consider an
application in which a trusted CPU wishes to hide its memory-access patterns
from an attacker who can view (and possibly modify) the entire contents of
memory. Recently, as cloud computing has gained in popularity, ORAM has
been recast as a means to securely outsource storage to an untrusted server,
while hiding access patterns from the server.

In this paper, we propose Verifiable Oblivious Storage (VOS), which general-
izes the notion of ORAM by allowing the storage medium to perform computa-
tion. In addition, it also explicitly incorporates notions of integrity and freshness.
We will refer to integrity and freshness as verifiability in this paper.

Formally Defining VOS. Our first contribution is to formally define VOS,
and to differentiate the notion of VOS from ORAM. While we are the first to
formalize the VOS notion, VOS has implicitly been used by other researchers
earlier, often being referred to as ORAM. For example, Williams and Sion [35]
recently proposed a scheme that improves round-complexity to O(1) — since
their scheme leverages server-side computation, it is implicitly a VOS scheme.

An important difference between VOS and ORAM schemes is that VOS
schemes can be constructed to achieve asymptotically better bandwidth over-
head than what can be achieved by any ORAM scheme. This is because all

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 131–148, 2014.
c© International Association for Cryptologic Research 2014

132 D. Apon et al.

ORAM schemes are subject to a well-known lower bound result by Goldreich
and Ostrovsky [20]. This result, however, does not apply to VOS.

Several applications where ORAM was previously employed can immediately
achieve asymptotic bandwidth savings if we simply replace the ORAM with
a VOS construction. For example, we know from prior work that RAM-model
secure multi-party computation [24] and Dynamic Proofs of Retrievability [9] can
be built using ORAM as a building block. In both these applications, the party
storing data (or a share of the data) can perform computation. By replacing the
underlying ORAM with a VOS in these constructions [9,24], we can immediately
obtain asymptotic bandwidth savings as illustrated in Section 5.

Asymptotically Efficient VOS Construction. We show that, by allowing
server-side computation, VOS schemes can be constructed that beat the known
logarithmic lower bound on the bandwidth cost for any ORAM scheme [20].
Specifically, we show that there exists a VOS scheme with block size β = Ω̃(λ)
(where λ is the security parameter) having O(β) bandwidth cost for reading or
writing a block; this scheme has O(β) client-side storage, and uses only O(1)
roundtrips and requires only O(β · poly logn) · poly(λ) server-side computation
per data access. This is asymptotically better than what any ORAM scheme can
hope to achieve since, due to the lower bound by Goldreich and Ostrovsky, any
ORAM scheme must have bandwidth cost Ω(β logn) to read or write a block of
β bits. Note that this lower bound holds regardless of the block size β.

1.1 Technical Highlight

Generic ORAM-to-VOS Compiler in the Semi-honest Model. To con-
struct efficient VOS schemes, we rely on fully homomorphic encryption (FHE)
to encrypt and outsource the entire ORAM memory, as well as the ORAM
client’s secret state. The server can now perform computation on behalf of the
client, without learning any secrets. The only occasion when the server needs
to contact the client is to seek the client’s help to decrypt the next physical
address or sequence of physical addresses to read or write. The use of FHE or
PIR to outsource the ORAM client’s computation has been mentioned in earlier
works [16, 26]. The main challenge, however, is how to ensure security when the
server is malicious, and may arbitrarily deviate from the prescribed computation.

Generic ORAM-to-VOS Compiler in the Malicious Model. Achieving
security against a malicious server is much trickier in the VOS setting than in
ORAM. While ORAM achieves integrity and freshness in a straightforward way
by employing standard storage integrity techniques such as message authentica-
tion codes and Merkle hash trees, in VOS, we need to worry about a server that
can arbitrarily deviate from the prescribed computation.

Naive applications of well-known techniques such as SNARKS [3,4,15] result
in server computation that is linear in the size of the dataset. Instead, we lever-
age efficient Verifiable RAM computation (VC-RAM) to enforce honest server
behavior. This allows us to achieve sublinear server computation. In VC-RAM,

Verifiable Oblivious Storage 133

a client outsources a large memory array to a server in a preprocessing step.
Afterwards in an online stage, the client specifies a sequence of inputs, and
asks the server to compute a RAM program over the outsourced memory array
and the inputs. Each query made by the client can result in updates to the
server’s memory array. VC-RAM allows a client to verify the result of these RAM
computations, and meanwhile, the server’s computation overhead is sublinear (in
the data size) for sublinear-time queries.

Although VC-RAM has been informally mentioned in earlier works [2,4,7], we
make the contribution of explicitly formalizing stateful VC-RAM (for repeated
queries) and its security. We also present an efficient VC-RAM scheme with
constant proof size and prover computation that is comparable to the run-time
of the RAM program (as opposed to the dataset size).

Non-generic Optimizations for Specific Schemes. We then apply these
techniques to two existing ORAM schemes, the Path ORAM [33] and the Hier-
archical ORAM by Goodrich and Mitzenmacher [21] that was later improved by
Kushilevitz et al. [25]. The resulting VOS schemes are referred to as Path VOS
and Hierarchical VOS respectively.

Applying Verifiable RAM Computation (VC-RAM) straight out-of-the-box
is not sufficient to achieve the claimed asymptotic bounds for the Path VOS.
We show how to tailor our VC-RAM techniques for the Path VOS to shave a
O(log n) factor off the server computation. Similarly, for the hierarchical VOS,
we propose rebalancing techniques that can shave poly log logn to logn factors
from the bandwidth cost, at increased (but still sublinear) server computation.

While the Path VOS is asymptotically better than the hierarchical VOS, the
hierarchical VOS is necessary for our dynamic PoR application, since the Path
VOS does not satisfy the next-read pattern hiding property [9].

1.2 Related Work

Oblivious RAM (ORAM) was first proposed by Goldreich and Ostrovsky [20],
and later improved in a series of works [13, 14, 16, 19, 21–23, 25, 27–30, 32–36].
Recently, ORAM has been used in outsourcing storage [21,34,36], and in secure
two-party computation to achieve sublinear amortized cost [16, 24].

ORAM with implicit server computation has appeared in several works [16,
35], while still being referred to as ORAM. Williams and Sion rely on server-side
computation to achieve a single-round ORAM scheme [35]. Their scheme en-
sures privacy against a malicious server but not integrity and freshness and has
an asymptotic bandwidth cost of Õ(β log2 n). In comparison, our VOS scheme is
asymptotically more efficient, and ensures both privacy and integrity/freshness
against a malicious server. Gentry et al. [16] proposed using homomorphic en-
cryption to improve ORAM bandwidth cost. However, their scheme is only secure
in the semi-honest model, and is also asymptotically more expensive in band-
width than our construction. Mayberry et al. also proposed to leverage PIR
techniques in combination with ORAM [26]. They too are implicitly using VOS;
their scheme is not secure in the malicious model, and is asymptotically less
efficient than our construction.

134 D. Apon et al.

Private Information Retrieval (PIR) [6, 11, 12, 18] allows a client to access a
dataset on the server obliviously. Single-server PIR techniques can achieve O(β)
bandwidth cost per query using FHE techniques [6] for large enough block sizes
β. However, single-server PIR requires server computation that is linear in the
size of the dataset. Also, PIR works for public datasets; in VOS, we consider a
private dataset owned by the client, which is not exposed to the server.

2 Definitions of Verifiable Oblivious Storage

Weuse ((c out, c state), (s out, s state)) ← protocol((c in, c state), (s in, s state))
to denote a (stateful) protocol between a client and server, where c in and c out
are the client’s input and output; s in and s out are the server’s input and out-
put; and c state and s state are the client and server’s states before and after the
protocol.

We define the notion of Verifiable Oblivious Storage (VOS), in which a client
outsources the storage of data to a server while ensuring privacy of the data and
verifiability and obliviousness of access to that data.

Definition 1 (Verifiable Oblivious Storage). A Verifiable Oblivious Storage
(VOS) scheme consists of the following interactive protocols between a client and
a server.

((⊥, z), (⊥, Z)) ← Setup(1λ, (D,⊥), (⊥,⊥)): An interactive protocol where the
client’s input is a memory array D[1..n] where each memory block has bit-
length β; and the server’s input is ⊥. At the end of the Setup protocol, the
client has secret state z, and server’s state is Z (which typically encodes the
memory array D).

((data, z′), (⊥, Z ′)) ← Access((op, z), (⊥, Z)): To access data, the client starts in
state z, with an input op where op := (read, ind) or op := (write, ind , data);
the server starts in state Z, and has no input. In a correct execution of
the protocol, the client’s output data is the current value of the memory D
at location ind (for writes, the output is the old value of D[ind] before the
write takes place). The client and server also update their states to z′ and Z ′

respectively. The client outputs data := ⊥ if the protocol execution aborted.

We say that a VOS scheme is correct, if for any initial memory D ∈ {0, 1}βn,
for any operation sequence op1, op2, . . ., opm where m = poly(λ), an op :=
(read, ind) operation would always return the last value written to the logical
location ind (except with negligible probability).

2.1 Security Definition

We adopt a standard simulation-based definition of secure computation [8], re-
quiring that a real-world execution “simulate” an ideal-world (reactive) function-
ality F . At an intuitive level, our definition captures the privacy and verifiability
requirements for an honest client, in the presence of a malicious server.

Verifiable Oblivious Storage 135

Ideal World. We define an ideal functionality F that maintains an up-to-date
version of the data D on behalf of the client, and answers the client’s access
queries.

– Setup. An environment Z gives an initial database D to the client. The client
sends D to an ideal functionality F . F notifies the ideal-world adversary
S (of the setup operation, but not of the data contents D). The ideal-world
adversary S says ok or abort to F . F then says ok or ⊥ to the client accordingly.

– Access. In each time step, the environment Z specifies an operation op :=
(read, ind) or op := (write, ind , data) as the client’s input. The client sends
op to F . F notifies the ideal-world adversary S (without revealing to S the
operation op). If S says ok to F , F sends D[ind] to the client, and updates
D[ind] := data accordingly if this is a write operation. The client then forwards
D[ind] to the environment Z. If S says abort to F , F sends ⊥ to the client.

Real World. In the real world, an environment Z gives an honest client a
database D. The honest client runs the Setup protocol with the server A. Then
at each time step, Z specifies an input op := (read, ind) or op := (write, ind , data)
to the client. The client then runs the Access protocol with the server. The
environment Z gets the view of the adversary A after every operation. The
client outputs to the environment the data fetched or ⊥ (indicating abort).

Definition 2 (Simulation-based security: privacy + verifiability). We
say that a protocol ΠF securely computes the ideal functionality F if for any
probabilistic polynomial-time real-world adversary (i.e., server) A, there exists an
ideal-world adversary S, such that for all non-uniform, polynomial-time
environment Z, there exists a negligible function negl such that

|Pr [RealΠF ,A,Z(λ) = 1] − Pr [IdealF ,S,Z(λ) = 1]| ≤ negl(λ)

This definition is simulation-based [8] where the client is honest, and the server
is corrupted. (The client is never malicious in our setting.) The definition also si-
multaneously captures privacy and verifiability. Intuitively, privacy ensures that
the server cannot observe the data contents or the access pattern. Verifiability
ensures that the client is guaranteed to read the correct data from the server —
if the server happens to cheat, the client can detect it and abort the protocol.

3 ORAM to VOS: Generic Compilation Techniques

In this section, we describe how to generically transform any given ORAM
scheme to an efficient VOS scheme. In Section 4, we give two specific VOS
schemes - Path VOS and Hierarchical VOS. These are derived from the two
classes of ORAM schemes, the hierarchical construction [20] and its variants [21,
23, 25, 29, 34–36], and the binary-tree scheme [30] and its variants [13, 16, 33].

136 D. Apon et al.

3.1 Preliminary: Oblivious RAM

In this paper, we use a slightly different formalization of ORAM from that of
Goldreich-Ostrovsky [20] to make notation simpler for our generic compiler.

An ORAM can be defined by a pair of algorithms ORAM := (Init,Next):

– (Do, st) ← Init(1λ, D): Takes in storage array D containing n blocks each of
bit length β, produces storage array Do, and initial ORAM client state st.

– (out, {raddr}, {waddr}, {data}, st) ← Next(op, st, {fetched}): Each ORAM op-
eration op := (read, ind) or op := (write, ind , data) will proceed in multiple
rounds. Each round will invoke the ORAM.Next algorithm with the following
inputs: 1) current read/write operation op; 2) the (secret) ORAM client state
st; and 3) a set of blocks {fetched} fetched from the last round. If this is the
first round for an operation op, this fetched set is empty by convention. The
ORAM.Next function in turn outputs a set of addresses to read in the next
round denoted {raddr}; a set of addresses {waddr} and data {data} to write
in the next round; updates the client state st; and if this is the last round,
ORAM.Next also outputs the block read out.

The Next algorithm performs one round of the ORAM client computation.

Our notation is explained in the table below:

st secret ORAM client state {raddr} physical addr to read from

ind logical index of a block {waddr} physical addr to write to

op := (read, ind) or
a read/write operation

{fetched} data blocks
op := (write, ind , data) fetched from storage

out the last logical block read {data} data blocks to be written

Security is defined in terms of the inability of any PPT adversary to dis-
tinguish the access patterns generated by an honest execution of the ORAM
client, from those output by a simulator that does not see the sequence of logical
operations.

Definition 3 (ORAM security). We say that an ORAM scheme is secure, if
there exists a stateful simulator Sim, such that for any PPT adversary A,∣∣∣Pr [AO[st](·)(1λ) = 1

]
− Pr

[
ASim(1λ,m)(1λ) = 1

]∣∣∣ ≤ negl(λ) (1)

where m is the number of oracle queries made by the adversary A; and O[st](·)
denotes a stateful oracle O, with secret state st. The oracle O takes in an oper-
ation op and outputs a sequence of read and write physical addresses. Formally,

Verifiable Oblivious Storage 137

Oracle O:

Initialization. On input D containing n blocks each of β bits, initialize a
storage arrayDo containing no blocks each of size βo. Initialize the set {fetched}
to be an empty set. Run st := ORAM.Init(1λ, n, β).

Data Access. On the j-th input opj , j ∈ N, perform the following:

– First, initialize the output array Γ := ∅.
– For rnd = 1 to Rj where Rj is the total number of rounds for the j-th

operationa:
• Run (out, {raddr}, {waddr}, {data}, st) ← ORAM.Next(op, st, {fetched})
• Let Do[{waddr}] := {data}, and let {fetched} := Do[{raddr}].
• Append {raddr} and {waddr} to the output set Γ .

– Finally, output Γ .

a In all known ORAM constructions, due to the obliviousness requirement, Rj is
a public value determined by the ORAM scheme description itself, and does not
depend on the input sequence.

We use Do[{waddr}] := {data} and {fetched} := Do[{raddr}] to denote writ-
ing {data} to a set of write addresses {waddr}, and reading from a set of read
addresses {raddr} respectively. We assume that {waddr} and {data} are ordered
sets, and we simply write each block data into each waddr in the specified order.

Deterministic vs. Randomized ORAM. In general, the ORAM client algo-
rithms Init and Next can be randomized. However, the Next algorithm can be
made deterministic by choosing a PRF key k at random and including it in the
client state st. Whenever Next requires random bits, this can be generated pseu-
dorandomly from key k. If the randomized ORAM is secure, then the resulting
ORAM with a deterministic Next algorithm is also secure due to the security of
the PRF. Therefore, without loss of generality, in our generic ORAM-to-VOS
compiler, we will assume an ORAM scheme with a deterministic Next algorithm.

3.2 Compilation in the Semi-honest Model

Intuition. The intuition is to have the client outsource the ORAM memory
encrypted under an FHE scheme to the server. The client can then outsource
all its computation to the server as well, since the server can homomorphically
operate over the encrypted data. In this manner, the server only contacts the
client whenever it is necessary for interaction during the computation.

ORAM-to-VOS Compiler in the Semi-honest Model. Figure 1 describes
how to transform an ORAM scheme to a VOS scheme that is secure under a
semi-honest server.

Theorem 1. Let FHE = (KeyGen,Enc,Dec,Eval) be a semantically secure FHE
scheme and let ORAM = (Init,Next) be a secure ORAM scheme. Then, the
generic compiler in Figure 1 gives a Verifiable Oblivious Storage (VOS)
construction secure under a semi-honest server.

138 D. Apon et al.

– Setup: Client runs (pk , sk) ← FHE.KeyGen(1λ). Client runs (Do, st) ←
ORAM.Init(1λ, D).
For i = 1 to |Do|, the client computes Do[i] := FHE.Encpk (Do[i]). The client also
computes st := FHE.Encpk (st). Finally, the client sends

(
pk, {Do[i]}i∈|Do|, st}

)
to

the server.
– Access: For the j-th operation op, let Rj denote the number of ORAM rounds

necessary for the j-th operation.
First, the client encrypts op := FHEpk (op) and sends it to the server.
For rnd = 1 to Rj :
• If this is not the first round, i.e., if rnd �= 1, the server performs memory

reads and writes:Do[{waddr}] := {data}, and {fetched} := Do[{raddr}], where
{raddr} and {waddr} are the read and write addresses returned by the client
in the previous round, and data is the part of the FHE evaluation outcome
in the previous round.

• The server homomorphically evaluates the ORAM.Next circuit oncea:
(out, {raddr}, {waddr}, {data}, st) ← FHE.Eval(ORAM.Next(op, st , {fetched}))

• Server sends client {raddr}, {waddr}. The client decrypts them using sk , and
sends the clear-text {raddr}, {waddr} to the server.

Finally, server sends out to the client, and the client decrypts it.

a The first round of the first operation does not depend on {fetched}. Therefore
{fetched} need not be provided as an input.

Fig. 1. ORAM-to-VOS generic compiler: semi-honest model

The proof of Theorem 1 reduces to the security of the encryption scheme and the
ORAM scheme in a straightforward manner. We refer the reader to our online
technical report [1] for a detailed proof.

Optimization: Handling Addresses Independent of Secret
Information. In the construction above, the server performs as much compu-
tation as possible and only seeks the client’s help when it needs to decrypt the
next set of physical addresses to read from or write to. In many ORAM schemes,
there are read/write operations whose physical addresses do not depend on se-
cret client state, memory contents, or the logical addresses accessed. Examples
are the reshuffling operations of the hierarchical ORAM scheme [20] and its
variants [21–23, 25, 34, 36] and the eviction operations of the binary-tree based
ORAM [30] and its variants [33]. To achieve better efficiency, such reshuffling
and eviction operations, can be performed by the server (on its own) homomor-
phically, without seeking the client’s help to decrypt the physical addresses.

3.3 Handling Malicious Servers

One way to handle a malicious server is to rely on a Succinct Non-Interactive
Argument of Knowledge (SNARK). However, if done naively, the circuit for the
SNARK will have size that is at least linear in n, i .e., the size of the outsourced
memory D. This requires the server to perform a linear amount of computation
to produce a proof of correctness.

Verifiable Oblivious Storage 139

Instead, we rely on efficient Verifiable RAM Computation (VC-RAM) to en-
force honest server behavior. Verifiable RAM computation has been informally
introduced in the literature by Ben-Sasson et al. [2] and Bitansky et al. [4]. We,
however, need a stateful version of verifiable RAM computation. Braun et al.
also informally proposed and implemented verifiable RAM computation [7].

We define a stateful version of verifiable RAM computation, where each query
can result in updates to the outsourced dataset. Below, we explicitly formalize
this notion of stateful, multi-query VC-RAM. Relying on the same ideas as Ben-
Sasson et al. [2] and Bitansky et al. [4], we show that verifying RAM computation
can be done efficiently, resulting in server computation that is comparable to the
run-time of the RAM program (as opposed to the size of the memory); succinct
proofs of size O(λ); and efficient client verification time that is not too much
worse than simply reading the input and output.

Verifiable RAM Computation. Consider a scenario where a client outsources
a memory array D to a server. Let f denote a RAM program agreed upon by the
client and the server. At each time step t, the client supplies a small input xi,
and the server computes the RAM program f over xi and the current state of
memory D. The RAM program produces an answer which is sent to the client.
It may also update the memory contents outsourced to the server – hence our
notion of VC-RAM is stateful. Verifiability requires that the client be able to
check that the RAM computation results returned by the server are correct.

Definition 4 (Verifiable RAM Computation). A (non-interactive) Verifi-
able RAM Computation (VC-RAM) scheme consists of the following algorithms:

(z, Z) ← Setup(1λ, D, f): Given an initial memory arrary D[1..n] where each
memory word has bit-length �, a RAM program description f , output initial
server state Z (which typically encodes D), and the initial client state z.

(y, Z ′) ← Compute(x, Z): Given a small input x to the RAM program f , the
server’s current state Z, output an encoded answer y, and updated server
state Z ′. 1

(y, b, z′) ← Verify(x, y, z): Given the input x, the client’s current state z, an
encoded answer y, output a decoded answer y, a bit b indicating whether to
accept this answer, and updated client state z′.

Correctness is defined as usual. We require that for any parameters n and �, for
any initial memory array D ∈ {0, 1}�n, for any polynomial-sized RAM program
f which terminates in polynomial time, for any query sequence x1, x2, . . . , xm
where m = poly(λ),

Pr

⎡⎢⎢⎣∃i : (yi �= f(D, x1, x2, . . . , xi))
∨(bi = 0)

∣∣∣∣∣∣∣∣
(z,Z0) ← Setup(1λ, D, f)
∀i ∈ {1, 2, . . . ,m} :

(yi, Zi) ← Compute(xi, Zi−1)
(yi, bi, z) ← Verify(xi, yi, z)

⎤⎥⎥⎦ ≤ negl(λ)

1 In the specific VC-RAM construction we describe, the encoded answer y includes
the answer itself y, a proof vouching for its correctness, and an updated digest of
the outsourced memory.

140 D. Apon et al.

In particular, we use the notation yi := f(D, x1, x2, . . . , xi) to denote the out-
come of the i-th query, starting with an initial memory array of D, and after
computing the RAM program f on queries x1, x2, . . . , xi. Note that each query
is stateful, i.e., may result in updates to the memory array D.

Definition 5 (Verifiability of VC-RAM). We say that a VC-RAM scheme
is verifiable, if for any polynomial time (stateful) adversary A the following holds.

Pr

⎡⎢⎢⎢⎢⎢⎢⎣
∃i : (bi = 1)∧
(yi �= f(D, x1, x2, . . . , xi))

∣∣∣∣∣∣∣∣∣∣∣∣

(D, f) ← A(1λ)
(z, Z) ← Setup(1λ, D, f)
(x1, y1) ← A(Z)
∀i ∈ {1, 2, . . . ,m} :

(yi, bi, z) ← Verify(xi, yi, z)
(xi+1, yi+1) ← A(yi, bi)

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ negl(λ)

Note again that the adversary A is stateful, and we do not write its state ex-
plicitly for simplicity.

Theorem 2. There exists a non-interactive VC-RAM scheme such that for each
query: the server runs in time Õ(τ logn)poly(λ) where τ is the run-time of the
RAM program in the unauthenticated setting; the verifier runs in time O((|x| +
|y|)λ); and the client-server bandwidth cost is |x| + |y| +O(λ).

Note that the client-server bandwidth cost has to be at least |x| + |y|, i.e., the
number of bits necessary to transmit the query x and the answer y. Therefore, the
only additional cost is O(λ) for transmitting an updated digest of the outsourced
memory and a proof vouching for the correctness of the result.

We explain the intuition for the VC-RAM construction. The full construction
can be found in our online technical report [1]. The high level idea is to build a
Merkle tree over all outsourced memory, such that the client keeps the up-to-date
root digest. To verify a RAM computation, we build a “verifier circuit” which
takes in a trace of the computation, including 1) the CPU states before and after
every computation step; 2) the memory contents fetched in every computation
step; and 3) the Merkle-tree digest before and after each computation step.
This verifier circuit checks the trace of the computation: 1) it checks that every
memory read and write is correct using memory checking; and 2) it checks that
every CPU computation step is correct. The server then constructs a SNARK
for this “verifier circuit”. Since this verifier circuit has size that is roughly the
time of the RAM computation, we can achieve prover efficiency, i.e., the prover
time is roughly the time of the RAM computation rather than the size of the
entire dataset.

Relying on VC-RAM to Enforce Honest Server Behavior. In our semi-
honest VOS construction described in Section 3.2, the client essentially out-
sources all of its ORAM memory (encrypted under FHE) to the server, as well
as the ORAM’s secret client state (also encrypted under FHE).

Verifiable Oblivious Storage 141

During each data access operation, in every round of interaction, the server
performs some RAM computation on behalf of the client, and sends a message
to the client to seek its help decrypting certain physical addresses. Using VC-
RAM, the server can attach a succinct proof along with every message sent to
the client, vouching for the correctness of the message. If the message sent to
the client deviates from correct message, the client will surely detect it (except
with negligible probability).

Due to space limits, we state the theorem below, and give the formal presen-
tation of the malicious-model ORAM-to-VOS compiler in our online technical
report [1].

Theorem 3. Assuming existence of SNARKs, collision resistant hash func-
tions, and a semantically secure FHE scheme, the aforementioned VOS con-
struction (described in detail in our online technical report [1]) is secure against
a malicious server.

Proof. (sketch.) Due to the proof of the semi-honest model compiler (Theo-
rem 1), it suffices to show that a malicious server cannot deviate from the pro-
tocol without being detected — this is ensured by the security of the VC-RAM
scheme.

4 Optimizations for Specific ORAM Schemes

4.1 Background on Path ORAM

Stefanov et al. recently proposed the Path ORAM [33]. They formally prove
that to achieve n−α(n) failure probability, the (recursive) Path ORAM construc-
tion achieves O(α(n)β log2 n/ logχ) client-side storage, and O(β log2 n/ logχ)
bandwidth cost — χ is a term related to the block size where the block size
β = χ logn bits. Specifically, to make the failure probability negligible, we can
use any α(n) := ω(1).

Of particular interest is the case when the block size is Ω(λ) — in practical
storage outsourcing applications, this is typically the case. Since n = poly(λ),
the number of recursions would be O(1).

Lemma 1 (Path ORAM [33]). For reasonably large block sizes β = Ω(λ),
Path ORAM achieves bandwidth cost of O(β logn), a client-side storage of
O(α(n)β logn), and O(1) rounds, with a failure probability of n−α(n). Specifi-
cally, to achieve negligible failure probability, it suffices to use any α(n) := ω(1).

We briefly introduce the Path ORAM algorithm below.

Server Data Layout. The blocks on the server are organized into a binary tree.
of height roughly logn. Each node in the tree is a bucket of O(1) capacity. We
use the notation P(x) to denote the path from the leaf node x to the root node,
containing all buckets on the path. Additionally, P(x, �) denotes the bucket in
P(x) at level � in the tree.

142 D. Apon et al.

Access(op):

Let op := (read, ind) or op := (write, ind , data) denote the current operation.

1. Set x := pos[ind]. Pick a fresh new leaf xn. Store pos[ind] = xn.
2. Request all blocks in the path P(x) from the server.
3. Set stash := stash ∪ P(x).
4. Let data∗ be the current block in stash with index ind .

If op is a write operation, set stash := (stash−{(ind , x, data∗)})∪{(ind , xn, data)}.
Else let stash := (stash− {(ind , x,data)}) ∪ {(ind , xn, data)}.

5. For 	 = L to 0 (where L is the leaf level, and 0 is the root), do:
Let S be the set of all {(ind ′, x′, data′)} ∈ stash such that P(x,) = P(x′,).
S := Select min(|S|, bucketsize) blocks from S.
Set stash := stash − S.
If |S| < bucketsize, pad S with dummy blocks to bucketsize.
Client sends S to the server to write in bucket P(x,).

The output to the client is data∗, plus the updated position map pos.

Fig. 2. Access protocol for Path ORAM (non-recursive)

Client Data Layout. The client holds a position map where pos[ind] records
the up-to-date designated leaf node for block ind . A block ind ’s designated leaf
node is x implies that the block resides somewhere along the path P(x).

The client also holds a small stash of size O(α(n) log n) for overflowing blocks,
where any α(n) := ω(1) allows us to achieve negligible failure probability.

Data Access. To perform any data access operation op, where op := (read, ind)
or op := (write, ind , data), the client runs the Access protocol described in Fig-
ure 2. At Step 1, the block being read or written to is randomly remapped to
a new leaf. At Step 2, the client requests a path of data blocks from the server.
At Step 3, the local is merged with the data received from the server. At Step 4,
the read/write operation is performed. At Step 5, the stash is written back into
the tree, greedily pushing data blocks as close to the leaves as possible.

Recursive Path ORAM. The Path ORAM construction above requires the
client to store a position map of O(n logn) bits. However, the client can store
the position map on the server in a smaller ORAM. This is called the recursive
Path ORAM. Particularly, if the block size β := Ω(λ), and n = poly(λ), then
the depth of the recursion is constant.

4.2 Path VOS

We can use the generic compilation techniques described in Section 3 to com-
pile Path ORAM to a VOS scheme — henceforth referred to as the Path VOS
algorithm.

Verifiable Oblivious Storage 143

Path VOS (non-recursive, semi-honest model)

Setup. Given a memory array D, client lays out D into an initial ORAM-tree as in
the Path ORAM algorithm, and creates an initial position map accordingly. The client
encrypts the initial ORAM-tree under FHE, and an empty stash, and outsources both
the FHE-encrypted ORAM-tree and stash to the server. The client keeps the position
map locally.

Access. Let op := (read, ind) or op := (write, ind , data) denote the current operation.

– Client: Looks up its local position map x := pos[ind]. Pick a fresh random new
leaf x′. Compute op := FHE.Enc(op), x′ := FHE.Enc(x′). Send (op, x, x′) to the
server.

– Server: Let WritePath(P , stash, op, x′) denote the circuit (Steps 3 to 5 in Figure 2)
that on inputting a path P , a stash stash, and the current operation op, returns
the current value of the requested block ind , overwrites the block ind ’s designated
leaf tag to x′, overwrites the block ind with new data if this is a write operation,
and write back blocks in P∪stash to the path P , greedily packing them as close to
the leaf as possible. The server homomorphically computes (out,P(x), stash) ←
FHE.Eval(WritePath(P(x), stash, op, x′)). The server sends to the client the FHE-
encrypted result of the read out.

Fig. 3. Path VOS (non-recursive, semi-honest model)

The semi-honest version of the Path VOS protocol is described in Figure 3.
We can use the VC-RAM techniques described in Section 3.3 to compile the
semi-honest protocol to one that is secure against a malicious server.

Recursive Path VOS. In the above (non-recursive) Path VOS protocol, the
client needs to store a position map of size O(n logn) bits. This client-side stor-
age may be avoided by recursively outsourcing the position map to the server
in a smaller VOS scheme. When the block size is β = Ω(λ), the depth of recur-
sion is O(1). The resulting recursive Path VOS scheme will therefore have O(1)
roundtrips for each data access.

Tailored VC-RAM Techniques for Path ORAM. Based on the semi-honest
protocol described above, and the VC-RAM techniques described in Section 3.3,
we immediately obtain a Path VOS protocol with Õ(β log2 n)poly(λ) server com-
putation per data access2, for block sizes β = Ω̃(λ). (The small increase in block
size is due to FHE.)

We observe that by overlaying the Path ORAM tree structure on top of the
Merkle tree, we can shave a logarithmic factor off the server computation. Re-
call that in our VC-RAM construction, the client maintains a Merkle-hash tree
digest of the ORAM-memory outsourced to the server. To prove that any RAM
computation is correct, the server computes a SNARK for a “verifier circuit”
which verifies 1) that every memory access is correct (through the Merkle tree);
and 2) every step of CPU computation is correct. In particular, the extra logn
factor comes from the cost.

2 Throughout this paper, the notation Õ(f(n)) hides log(f(n)) factors.

144 D. Apon et al.

In the case of Path ORAM, since Path ORAM itself is a tree structure, we
can overlay the Merkle tree on top of Path ORAM’s tree structure. In this way,
when Path ORAM accesses a path from the root to a leaf, the underlying memory
checking scheme can vouch for the correctness of the entire path with O(log n)
hashes. This can allow us to shave a O(log n) factor off the server computation
for Path VOS.

Theorem 4 (Path VOS). Assume collision resistant hash functions, the ring
LWE assumption with suitable parametrization [5, 17], and the q-PDH and q-
PKE assumptions [15]. Let α(n) denote any function such that α(n) := ω(1).

There exists a secure VOS scheme for reasonably large block size β = Ω̃(λ),
with O(β) bandwidth cost, Õ(α(n) · β logn)poly(λ) server computation per data
access, O(βn) server-side storage, O(β) client-side storage, and O(β+λ2) client
computation per data access. Furthermore, the failure probability is n−α(n), i.e.,
negligible in n for any α(n) := ω(1).

Proof of security follows in a similar manner as the security proof for the generic
compiler in the malicious model (Theorem 3).

4.3 The Hierarchical VOS

Wepropose a hierarchicalVOS construction based on theGoodrich-Mitzenmacher
ORAM (GM-ORAM) scheme [21] and its variants [25]. Although this hierarchical
VOS construction achieves worse asymptotics than the Path VOS mentioned in
the previous section, it is necessary later for our dynamic proofs of retrievability
scheme — since the Path VOS scheme does not satisfy the next-read pattern hid-
ing property (NRPH) proposed by Cash et al. [9]. (All of our VOS compilers are
NRPH-preserving since they do not alter the sequence of accesses as dictated by
the underlying ORAM.)

Although the basic idea is similar as before, to use FHE to outsource com-
putation to the server, and use SNARK to enforce honest server behavior, we
propose a “read/write (un)balancing” trick that allows us to reduce the band-
width cost. The idea is that if we apply the generic ORAM-to-VOS compiler on
the GM-ORAM scheme, reads will require more bandwidth than writes, since
write is basically a homomorphic shuffling operation which the server can per-
form all on its own without interacting with the client. Therefore, we adjust
the scheme to penalize writes while reducing the cost of reads. Note that in
the traditional ORAM setting, writes cost more bandwidth, and that is why
Kushilevitz et al. [25] propose a read/write balancing trick where they penalize
reads to save on writes — our trick is the opposite of theirs since the read/write
cost comparison is reverse in the VOS setting. Due to space constraints, we only
give our main theorem for the Hierarchical VOS below, and defer the detailed
construction to our online technical report [1].

Theorem 5. Let g(n) denote some function on n. Assume collision resistant
hash functions, the ring LWE assumption with suitable parametrization [5, 17],
and the q-PDH and q-PKE assumptions [15]. Then, there exists a VOS scheme

Verifiable Oblivious Storage 145

for a reasonably large block size β = Ω̃(λ), with O(β log n/ log g(n)) bandwidth
cost, and Õ(βg(n) log3 n/ log g(n))poly(λ) server computation (per data access),
where n is the total number of blocks and λ is the security parameter.

The following table shows some interesting special cases of Theorem 5.

g(n) server computation bandwidth overhead

nε for constant ε < 1 Õ(βnε log2 n)poly(λ) O(β)

logn Õ(β log4 n/ log logn)poly(λ) O(β logn/ log logn)

constant c > 1 Õ(β log3 n)poly(λ) O(β logn)

5 Applications: Efficient Dynamic Proofs of Retrievability

For applications such as Dynamic Proofs of Retrievability, and RAM-model se-
cure multi-party computation where the party storing the data (or a share of the
data) can perform computation, often, just directly replacing the ORAM scheme
with a VOS scheme can reduce the asymptotic communication overhead.

We show how VOS can be useful in Dynamic Proofs of Retrievability, based on
the results of Cash et al. [9]. We note that two recent results have yielded more
practical dynamic PoR schemes [10, 31]. Our dynamic PoR description helps
demonstrate why distinguishing between VOS and ORAM can aid theoretical
understanding. For a practical implementation, the recent schemes by Shi et
al. [31] and Chandran et al. [10] are recommended.

Recently Cash et al. [9] show how to leverage a blackbox ORAM scheme to
construct a dynamic proof of retrievability (PoR) scheme with O(βλ log2 n) cost
(both in terms of bandwidth and server computation) per data access. They
require the underlying ORAM to have a special property which they call “next-
read pattern hiding” (NRPH).

In the dynamic PoR scheme by Cash et al., they assume a passive server which
does not perform any active computation. We observe that if we replaced the
ORAM scheme in their construction with a VOS scheme (which also needs to
satisfy the NRPH property), we would be able to obtain a dynamic PoR scheme
(with server computation), which achieves smaller asymptotic bandwidth cost
than Cash et al. [9].

The Path ORAM algorithm (and hence Path VOS too), however, does not
satisfy the NRPH property, as pointed out by Cash et al. [9]. However, they
showed that the GM-ORAM scheme and its variants indeed satisfy the NRPH
property. Therefore, we rely on the hierarchical VOS described in Section 4.3 to
build our dynamic PoR scheme.

Theorem 6. Let g(n) denote some function on n. Assume collision resistant
hash functions, the ring LWE assumption with suitable parametrization [5, 17],
and the q-PDH and q-PKE assumptions [15]. Then, there exists a dynamic
proof of retrievability scheme for reasonably large block size β = Ω̃(λ), with

146 D. Apon et al.

O(β logn/ log g(n)) bandwidth cost and O(βg(n) log3 n/ log g(n))poly(λ) server
computation for each read operation; O(βλ log n/ log g(n)) bandwidth cost and
O(βλg(n) log3 n/ log g(n))poly(λ) server computation for each write or audit op-
eration; with O(β) client-storage and O(βn) server storage. In the above, n is
the total number of blocks and λ is the security parameter.

Below are some interesting special cases of the above theorem. “R:” stands for
read cost, and “W/A:” stands for write/audit cost.

g(n) server computation bandwidth overhead

nε for constant ε < 1
R: Õ(βnε log2 n)poly(λ) R: O(β)

W/A: Õ(βλnε log2 n)poly(λ) W/A: O(βλ)

log n
R: Õ(β log4 n/ log log n)poly(λ) R: O(β log n/ log log n)

W/A: Õ(βλ log4 n/ log log n)poly(λ) W/A: O(βλ log n/ log log n)

constant c > 1
R: Õ(β log3 n)poly(λ) R: O(β log n)

W/A: Õ(βλ log3 n)poly(λ) W/A: O(βλ log n)

In comparison to Cash et al. [9], using Verifiable Oblivious Storage (VOS),
we can reduce the bandwidth cost to O(β logn/poly log logn) for reads, and
O(βλ log n/poly log logn) for writes, with poly-logarithmic server computation.
Furthermore, we can reduce the bandwidth cost to O(β) for reads, and O(βλ) for
writes, with O(βnε)poly(λ) amount of server computation for a constant ε < 1.

Other Applications. Gordon et al. recently proposed to use ORAM to achieve
amortized sublinear-time secure two-party computation [24]. In their setting,
Alice’s input is a large database, and Bob repeatedly makes queries over the
database. Alice wishes to protect the privacy of her database, while Bob wishes
to protect the privacy of his query. Using ORAM, Gordon et al. show that
the cost of securely querying the database can be sublinear when amortizing
the ORAM setup cost over all future queries. Since both parties (each storing a
share of the data) perform computation in this setting, we can simply replace the
ORAM with VOS, and asymptotically, this gives savings in terms of bandwidth
overhead.

6 Conclusion and Open Problems

This paper separates VOS from ORAM, and shows that VOS need not be subject
to ORAM’s lower bounds, since it is a different model where server computation
is allowed. The constructions proposed in this paper use general primitives such
as FHE and SNARKs. An interesting open question is to see how to construct
a practically efficient VOS scheme (potentially without FHE or SNARKs) that
outperforms the best known ORAM in terms of bandwidth overhead. It would
also be interesting to consider how to construct VOS schemes that are asymp-
totically more bandwidth efficient than ORAM from weaker assumptions, e.g.,
without SNARKs or non-falsifiable assumptions.

Verifiable Oblivious Storage 147

Acknowledgments. This research was funded by NSF under grant number
CNS-1314857, by a Google Faculty Research Award, and by the US Army Re-
search Laboratory and the UK Ministry of Defence under Agreement Number
W911NF-06-3-0001. The views and conclusions contained herein are those of the
authors and should not be interpreted as representing the official policies, either
expressed or implied, of the US Army Research Laboratory, the U.S. Govern-
ment, the UK Ministry of Defense, or the UK Government. The US and UK
Governments are authorized to reproduce and distribute reprints for Govern-
ment purposes notwithstanding any copyright notation hereon.

We thank Hubert Chan, Charalampos Papamanthou, Emil Stefanov, and
Hong-Sheng Zhou for helpful discussions, and the anonymous reviewers for their
insightful comments.

References

1. Apon, D., Katz, J., Shi, E., Thiruvengadam, A.: Verifiable oblivious storage. Online
technical report version of this paper (2013),
http://www.cs.umd.edu/~elaine/docs/vos.pdf

2. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from rams to
delegatable succinct constraint satisfaction problems: extended abstract. In: ITCS
(2013)

3. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision re-
sistance to succinct non-interactive arguments of knowledge, and back again. In:
ITCS (2012)

4. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for snarks and proof-carrying data. In: STOC (2013)

5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic en-
cryption without bootstrapping. In: ITCS (2012)

6. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: FOCS (2011)

7. Braun, B., Feldman, A.J., Ren, Z., Setty, S., Blumberg, A.J., Walfish, M.: Verifying
computations with state. In: SOSP (2013)

8. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13(1), 143–202 (2000)

9. Cash, D., Küpçü, A., Wichs, D.: Dynamic proofs of retrievability via oblivi-
ous RAM. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 279–295. Springer, Heidelberg (2013)

10. Chandran, N., Kanukurthi, B., Ostrovsky, R.: Locally updatable and locally decod-
able codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 489–514. Springer,
Heidelberg (2014)

11. Chor, B., Gilboa, N.: Computationally private information retrieval (extended ab-
stract). In: STOC (1997)

12. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 41–50
(1995)

13. Chung, K.-M., Pass, R.: A simple oram (2013),
https://eprint.iacr.org/2013/243.pdf

14. Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM with-
out random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 144–163.
Springer, Heidelberg (2011)

http://www.cs.umd.edu/~elaine/docs/vos.pdf
https://eprint.iacr.org/2013/243.pdf

148 D. Apon et al.

15. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)

16. Gentry, C., Goldman, K.A., Halevi, S., Julta, C., Raykova, M., Wichs, D.: Opti-
mizing ORAM and using it efficiently for secure computation. In: De Cristofaro,
E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 1–18. Springer, Heidelberg
(2013)

17. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012)

18. Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant
communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg
(2005)

19. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: STOC (1987)

20. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM (1996)

21. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data
via oblivious RAM simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part II. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011)

22. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Oblivious RAM
simulation with efficient worst-case access overhead. In: CCSW (2011)

23. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Privacy-
preserving group data access via stateless oblivious RAM simulation. In: SODA
(2012)

24. Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis,
Y.: Secure two-party computation in sublinear (amortized) time. In: ACM CCS
(2012)

25. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based oblivious
RAM and a new balancing scheme. In: SODA (2012)

26. Mayberry, T., Blass, E.-O., Chan, A.: Efficient private file retrieval by combining
oram and pir (2013), http://eprint.iacr.org/2013/086

27. Ostrovsky, R.: Efficient computation on oblivious RAMs. In: STOC (1990)
28. Ostrovsky, R., Shoup, V.: Private information storage (extended abstract). In:

STOC (1997)
29. Pinkas, B., Reinman, T.: Oblivious RAM revisited. In: Rabin, T. (ed.) CRYPTO

2010. LNCS, vol. 6223, pp. 502–519. Springer, Heidelberg (2010)
30. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O ((logN)3)

worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 197–214. Springer, Heidelberg (2011)

31. Shi, E., Stefanov, E., Papamanthou, C.: Practical dynamic proofs of retrievability.
In: ACM CCS (2013)

32. Stefanov, E., Shi, E., Song, D.: Towards practical oblivious RAM. In: NDSS (2012)
33. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.: Path

oram: An extremely simple oblivious ram protocol. In: ACM CCS (2013)
34. Williams, P., Sion, R.: Usable PIR. In: NDSS (2008)
35. Williams, P., Sion, R.: Single round access privacy on outsourced storage. In: CCS

(2012)
36. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: practical access

pattern privacy and correctness on untrusted storage. In: ACM CCS (2008)

http://eprint.iacr.org/2013/086

Achieving Privacy in Verifiable Computation

with Multiple Servers – Without FHE
and without Pre-processing�

Prabhanjan Ananth1, Nishanth Chandran2,
Vipul Goyal2, Bhavana Kanukurthi1, and Rafail Ostrovsky3

1 Department of Computer Science, UCLA
prabhanjan@cs.ucla.edu, bhavanak@cs.bu.edu

2 Microsoft Research India
{nichandr,vipul}@microsoft.com

3 Departments of Computer Science and Mathematics, UCLA
rafail@cs.ucla.edu

Abstract. Cloud services provide a powerful resource to which weak
clients may outsource their computation. While tremendously useful,
they come with their own security challenges. One of the fundamental
issues in cloud computation is: how does a client efficiently verify the cor-
rectness of computation performed on an untrusted server? Furthermore,
how can the client be assured that the server learns nothing about its pri-
vate inputs? In recent years, a number of proposals have been made for
constructing verifiable computation protocols. Unfortunately, solutions
that guarantee privacy of inputs (in addition to the correctness of com-
putation) rely on the use of fully homomorphic encryption (FHE). An
unfortunate consequence of this dependence on FHE, is that all hope of
making verifiable computation implementable in practice hinges on the
challenge of making FHE deployable in practice. This brings us to the
following question: do we need fully homomorphic encryption to obtain
privacy in verifiable computation protocol which achieves input privacy?

Another drawback of existing protocols is that they require the client
to run a pre-processing stage, in which the work done by the client is
proportional to the function being outsourced and hence the outsourcing
benefit is obtained only in an amortized sense. This brings us to our
next question: can we build verifiable computation protocols that allow

� The first, fourth and fifth authors were supported in part by NSF grants CNS-
0830803; CCF-0916574; IIS-1065276; CCF-1016540; CNS-1118126; CNS-1136174;
and in part by the Defense Advanced Research Projects Agency through the U.S.
Office of Naval Research under Contract N00014-11-1-0392. The fifth author was also
supported US-Israel BSF grant 2008411, OKAWA Foundation Research Award, IBM
Faculty Research Award, Xerox Faculty Research Award, B. John Garrick Founda-
tion Award, Teradata Research Award, and Lockheed-Martin Corporation Research
Award. This material is also based upon work supported by the Defense Advanced
Research Projects Agency through the U.S. Office of Naval Research under Contract
N00014-11-1-0392. The views expressed are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 149–166, 2014.
c© International Association for Cryptologic Research 2014

150 P. Ananth et al.

the client to efficiently outsource even a computation that it wishes to
execute just once?

In this paper, we consider a model in which the client outsources his
computation to multiple (say n ≥ 2) servers. In this model, we construct
verifiable computation protocols that do not make use of FHE and that
do not have a pre-processing stage. In the two-server setting, we present
an extremely practical protocol based only on one-way functions. We also
present a solution, based on the DDH assumption, for the multi-server
model for any arbitrary n. All these protocols are secure as long as at
least one server is honest. Finally, even in the n-server model, we present
a solution based solely on one-way functions. This protocol tolerates up
to a constant fraction of corrupted servers.

Keywords: Verifiable computation, delegatable computation,
input/output privacy, garbled circuits.

1 Introduction

Recently, there have been a number of proposals for non-interactive ver-
ifiable computation protocols (also called delegation of computation) (c.f.,
[AIK10, GGP10, CKV10]). In this scenario, we have a computationally weak
client talking to a powerful (but un-trusted) server. The client wishes to get the
outcome of a desired computation (say a function F evaluated on an input x)
with the help of the server. If the server is malicious, one could ask that the
correctness of the output and the privacy of the input (and possibly output) of
the client still be preserved. Of course, it is also imperative that the work done
by the client in verifying the correctness of the output be much lesser than the
work done in computing F(x) on his own.

Unfortunately, to the best of our knowledge, all proposed solutions that meet
this security requirement, have the following two drawbacks: they rely on the
assumption of fully homomorphic encryption (FHE) and they work in a pre-
processing model which requires the weak client to perform work proportional
to F during an initial pre-processing phase and only guarantees that the work
done in the online phase is low. First, we see the reliance on fully homomorphic
encryption as a drawback for two reasons: a) the verifiable computation protocols
so obtained, are inefficient in practice since they require the client to perform
FHE encryption (which, typically, is less efficient than regular encryption and
have enormous public keys) as well as require the server to perform expensive
computation on encrypted data; b) from a theoretical perspective, it would be
interesting to base protocols for verifiable computation on weaker or (relatively
more) well-studied cryptographic hardness assumptions1 . Hence, an interesting

1 The recent result of [BV13] constructs a leveled FHE scheme under the LWE as-
sumption that matches the best-known assumption for lattice-based PKE. However,
all standard FHE (i.e., non-leveled) schemes additionally require a much stronger
circular security assumption.

Achieving Privacy in Verifiable Computation with Multiple Servers 151

question to ask is: do we need fully homomorphic encryption to obtain privacy
in non-interactive verifiable computation protocols?

The second drawback of existing solutions is that they require the client to
perform work proportional to F during an initial pre-processing phase. In addi-
tion to being a strong assumption, it is also meaningful only in settings where
the client wishes to compute the same function many times. This brings us to
the next question: can we build verifiable computation protocols that allow the
client to efficiently outsource computations (even ones that it wishes to execute
just once)?

In this work, we are interested in addressing the above questions. Before we
do so, we first present some intuition on the challenge of avoiding FHE. First,
note that in a non-interactive verifiable computation protocol, the client sends
a single message to the server (that can be viewed as an “encryption” of x), and
the server responds back with a single message from which the client can recover
F(x) (hence this message must look like an encryption of F(x)). If we require
the client’s computational complexity to be independent of F , then inherently,
every verifiable computation protocol seems to have an FHE scheme embedded
in it2. In fact, even if we allow interaction between the client and the server, to
the best of our knowledge we do not know verifiable computation protocols that
achieve privacy without FHE.

1.1 Multi-server Model for Verifiable Computation

In light of the challenge in removing FHE in the single-server model, we turn to
a model of verifiable computation in which a single client outsources its compu-
tation to multiple (say n) servers. Note that if, all n servers are un-trusted (and
colluding), then this is equivalent to outsourcing computation to a single server,
and again it seems that we require FHE to obtain secure protocols. Hence, we
consider a model in which a single client, holding an input x, wishes to out-
source the computation of some function F , to a set of servers S1, · · · ,Sn, such
that client performs very little computation (independent of F) throughout the
protocol and yet has a guarantee that none of the servers learn x, nor can they
force the client to accept any other output, other than the right value of F(x),
even if up to n − 1 of the servers are malicious and colluding. (Note that in the
multi-server model, this is the strongest security one can achieve.)

Communication Model. Since client efficiency is our primary concern, we work
in a model where the client sends and receives a single message, similar to the
single-server non-interactive communication model. In particular, consider any
(arbitrary) ordering of the servers. In our communication model, the client pre-
pares a message and sends it (only) to the first server. Each intermediate server
(except the first and the last server) receives a message from the previous server,

2 This is not entirely true if the client is allowed to work in time proportional to F in
the pre-processing stage, but it does seem like the only way we know how to obtain
privacy in such protocols.

152 P. Ananth et al.

performs some computation, and, sends the outgoing message to the next server.
The last server, upon doing its computation, sends the resulting message back
to the client. After receiving this message, the client either accepts or rejects.

1.2 Our Results and Techniques

We provide general positive results in the above model for any PPT computable
function without relying on FHE and without requiring a pre-processing stage.
Our constructions guarantee both: privacy for the input (and output) of the
client, as well as the correctness of the output (in case client outputs accept).
We now state the various results that we obtain in this work:

– We first consider the 2-server case. In this setting, we present a protocol that
can be obtained from any non-private verifiable computation protocol3 and
any collision-resistant hash function. This protocol is secure (i.e, guarantees
privacy and soundness) as long as at least one of the two servers is not
corrupted.

– Furthermore, in the 2-server case, if we allow each server to send a message
to the other (i.e., we add one new message from the second server to the
first), we are able to achieve a highly practical protocol solely based on
one-way functions. In fact, in this protocol, the client only needs to send
2κ(λx+λy) random bits, where λx and λy are the input and output lengths
respectively and κ is the security parameter, (and then additionally perform
a lookup), while the two servers only need to generate and evaluate a garbled
circuit each (the work done by the two servers can be run in parallel further
minimizing the time of the protocol execution).

– Next, we consider the n-server case. That is a client outsources the computa-
tion to n servers. Here, we construct a protocol based solely on the Decisional
Diffie-Hellman (DDH) assumption that is secure as long as at least one of
the n servers is not corrupted. The computational complexity of the client
throughout the protocol is independent of F , the function being outsourced;
in particular it is O(κ · λx). Since there is no preprocessing, there are no
restrictions on which functions the servers might evaluate for the client. The
function to be evaluated may even be different in different protocols execu-
tions (as long as there is a mechanism for the servers to get the function
description without affecting the computational complexity of the client).
The primary tool this construction relies on is the notion of rerandomizable
Yao’s garbled circuits due to Gentry, Halevi, and, Vaikuntanathan [GHV10]
which we carefully put together along with a specific proxy re-encryption
scheme [BBS98].

– Finally, we also show how to obtain a secure protocol in the n-server case
that is based solely on one-way functions. This protocol is secure as long as
a constant fraction of the n servers are not corrupted.

3 That is, a verifiable computation protocol that does not necessarily guarantee any
privacy.

Achieving Privacy in Verifiable Computation with Multiple Servers 153

An added feature of all our protocols is that by using universal circuits, we
can hide not just the input (x), but also the function (F) being outsourced. This
would be particularly useful in the case when the function description is short
but the computational complexity of evaluating F is high. Finally, we note that
our solutions do not suffer from the “rejection-bit” problem (that most earlier
solutions suffer from) as we do not employ a pre-processing stage.

Remarks. We stress that we do not assume that the multiple malicious servers
do not collude. Similar to standard secure multi-party computation protocols, all
of our protocols are secure even when n−1 out of the n servers are malicious and
colluding with each other. We remark that one could potentially reduce the com-
munication between servers by making use of a fully homomorphic encryption
(FHE) scheme; however, our goal is to not rely on FHE due to its inefficiency.
Furthermore, it would seem unlikely for us to obtain an n-server protocol where
server communication is independent of the function without relying on FHE
as this would lead to a secure multi-party computation protocol with constant
communication complexity (without relying on FHE). We stress that the lack
of any positive results in getting privacy for outsourcing computation without
FHE, makes it important to consider models such as ours.

We stress that, similar to standard MPC, in our protocol also, n−1 malicious
servers could jointly collude and send their entire state to the honest server; this
would mean that the honest server could learn the client’s input. However, we
do not view this as a serious limitation as this issue exists even in any MPC
protocol that tolerates t corruptions. However, we stress that this problem does
not arise in our setting as long as at most n − 2 servers are corrupted. Even if
n−2 servers send their state to one other server, it learns nothing as the protocol
tolerates n − 1 corruptions.

We finally remark that while one can obtain a private protocol for outsourcing
computation in the multi-server model by simply secret sharing the clients input
to the n servers and running a standard MPC protocol, our work shows that
one can obtain significant efficiency gains when dealing with the specific prob-
lem of outsourcing computation (namely by leveraging the fact that the client is
honest). In the 2-server setting, our protocol is even faster than standard semi-
honest secure 2PC as we do not need to make use of oblivious transfer protocols
(or zero-knowledge proofs/cut-and-choose techniques to obtain malicious secu-
rity). We believe that our work can be a stepping stone towards obtaining faster
protocols even in the multi-server setting.

Related work and open questions. As mentioned earlier, the works of Gennaro
et al. [GGP10], Chung et al. [CKV10], Applebaum et al. [AIK10] were the firsts
to consider non-interactive verifiable computation (with privacy) in the single
server model. All the above protocols rely on fully homomorphic encryption
to obtain privacy of the client’s input. The works of [GKR08, KR09, GLR11,
BCCT12, DFH12], and [GGPR13], all consider the problem of delegating com-
putation, but without privacy (and obtain protocols for various classes of func-
tions and under different assumptions). The works of [BGV11, FG12] consider

154 P. Ananth et al.

outsourcing the computation of polynomials (but not the inputs), while the
work of [PRV12] considers (non-private) outsourcing of specific class of func-
tions without FHE. Of course, one could additionally make these protocols
private, by “enveloping them” under an FHE scheme; however, this is what
we wish to avoid. Note that one could obtain a private verifiable computation
protocol from an attribute-based encryption scheme that has the property of
attribute-hiding (using the construction of [PRV12]); however, we remark that
while recent work has constructed attribute-based encryption for all polynomial
time functions [GVW13, GGH+13], these works do not obtain attribute hiding.
Furthermore, even then, using this transform, we will only get a verifiable com-
putation protocol in the pre-processing model. Finally, the work of Goldwasser
et al. [GKP+13] shows how to construct reusable garbled circuits and from this
show how to obtain a private scheme for delegating computation; however their
construction makes use of a FHE scheme.

The works of Canetti et al. [CRR11, CRR12] were the first to consider verifi-
able computation in the multi-server setting. While they do not consider privacy
of the client’s inputs, they provide an unconditional guarantee of the client re-
ceiving the correct output (as long as at least one server is honest). The servers
do not communicate in their model, however their protocol works only for a
restricted class of functions (logspace uniform NC circuits). They also have a
result based on computational assumptions that work for arbitrary polynomial
sized circuits.

Kamara and Raykova [KR11] consider the problem of outsourcing compu-
tation in the “multi-tenant” setting, in which there any mutually untrusting
tenants (clients) running computations on the same trusted server (physical ma-
chine). Our solutions can be extended to this setting and achieve an improve-
ment in efficiency (e.g., the protocol in Section 4.1) compared to the solutions
of [KR11].

In our work, we obtain protocols in which the client sends a single message
to the first server and receives a single message from the last server, but each of
the servers send and receive one message each. A very interesting open problem
would be to obtain a private protocol, in which the client sends a single message
to each of the servers and receives a single message from each of the servers, and
can obtain the correct result from this (i.e., a model in which the servers do not
communicate with each other at all).

Organization of the paper. We begin, in Section 2, by defining our security and
communication model for multi-server verifiable computation. In Section 3, we
give an overview of the main tools, that we use in constructing our protocols. We
present our main n-server protocol based on the DDH assumption in Section 4.2.
We describe an improvement of this protocol in which the client works in time
independent of n in the full version [ACG+14]. We refer the reader to the full
version for details of our two 2-server protocols and the n-server protocol based
on one-way functions (that tolerates a constant fraction of corrupt servers). We
also refer the reader to the full version for more details of the constructions and
for all the proofs.

Achieving Privacy in Verifiable Computation with Multiple Servers 155

2 Verifiable Computation in the Multi-server Setting

Let VCmultiserv = (C,S1, . . . ,Sn) be a multi-server delegation scheme where C de-
notes the client and S1, . . . ,Sn denote the servers. The scheme basically consists
of two stages - the first is the (one-time) setup stage and the second is the online
stage. In the setup stage, denoted by SetupVCmultiserv

, some computation is per-
formed by the clients and the servers. The output of the setup stage consists of
information public to everyone, as well as some secret information for the client
as well as the servers. We stress that this stage is different from the standard
pre-processing stage in literature as the work done in this stage is independent
of the function F or the input x4.

The second stage is the online stage when the client delegates the job of
evaluating F on an input x to the set of servers. In this stage, the client runs in
time independent of the complexity of the function F .

A note on the setup stage. In all our constructions, the setup stage is indepen-
dent of the function F . As a result, the computational complexity of this stage is
independent of the complexity of function F . This is a much stronger condition
than the proposed single-server delegation protocol [GGP10, CKV10] where the
setup stage was allowed to run in time proportional to the complexity of F . An-
other important advantage of the setup stage being independent of the function
being delegated is that the client can execute this setup stage once (irrespective
of the function being delegated) and store the secret state, which can then be
reused for delegating any function, making our protocol efficient if the client
wishes to delegate a number of different functions.

A multi-server delegation scheme should satisfy the properties of correctness,
soundness and privacy. We refer the reader to the full version for the definitions.

3 Building Blocks

3.1 A Variant of Garbled Circuits

Yao in his seminal paper [Yao82] introduced the notion of garbled circuits to
construct a secure two-party computation protocol. For this work, as we will
explain later, we will consider a variant of the garbled circuit construction, de-
noted by YaoGarbledCkt, – namely, one in which the output wires are fixed. In
this variant, the output wire keys are given externally to YaoGarbledCkt which in
turn generates a garbled circuit with these fixed output wire keys. Though this
violates the one-time soundness property of the garbled circuits, we will show,
that this still ensures the privacy of the inputs which suffices for our construction.
We formally show the proof of this claim in the full version.

4 This requirement of having the setup stage to be independent of the function of
the client makes our model significantly stronger than the ones considered in prior
works.

156 P. Ananth et al.

In more detail, YaoGarbledCkt is a probabilistic polynomial time algo-
rithm that takes as input a circuit F5, randomness R1, R2, and fixed out-
put wire keys. Let the keys for the output wire be denoted by wout ={
((w0

out,1, w
1
out,1), . . . , (w

0
out,μ, w

1
out,μ))

}
. It generates a garbled circuit according

to Yao [Yao82]. R1 is the randomness used to generate the input wire keys. R2

is the randomness used to generate the wire keys for the rest of the circuit along
with the four ciphertexts associated with every gate of the circuit. We will denote
the collection of garbled gates by GC. Given the input wires corresponding to
an input x, one can “evaluate” the garbled circuit and finally decode the output
wires in order to obtain F(x).

To aid the construction we give later, we define another functionality, namely
YaoGarbledCktin, that does the following. YaoGarbledCktin takes as input ran-
domness R1, and outputs just the input wires corresponding to GC which is the
output of YaoGarbledCkt(F ; (R1, R2)). As we will see later, the client will use
this algorithm to compute just the input wire keys for his input x, correspond-
ing to the garbled circuit GC, without generating the entire garbled circuit (GC)
itself. The procedure YaoGarbledCktin can be derived from YaoGarbledCkt such
that the computational complexity of YaoGarbledCktin depends only on the size
of the input to the function and not on the size of the garbled circuit itself. For
more details, refer to the full version.

Re-randomizable Garbled circuits. In [GHV10], Gentry et al. gave an alternate
construction of garbled circuits whose security was shown, based on the Deci-
sional Diffie Hellman (DDH) assumption. The advantage of their construction
was that the garbled circuits that were obtained from their approach could be
rerandomized. We say that a garbled circuit produced by YaoGarbledCkt is reran-
domizable when there exists an algorithm reRand which on input a garbled circuit
produces a different garbled circuit such that no computationally bounded ad-
versary can distinguish whether a given garbled circuit is obtained as a result
of rerandomization or was computed from YaoGarbledCkt, even when given the
original garbled circuit. To explain this in more detail, we first define reRand.
reRand takes as input a garbled circuit GC1 (constructed from F and with fixed
output wires wout) and outputs another garbled circuit GC2 (whose output wires
are also fixed to wout) such that the distribution of GC1 is computationally in-
distinguishable from that of GC2 even if the distinguisher is given access to F
and the randomness used to compute GC1. In addition to GC1, reRand takes as
input randomness (R1, R2) (and is denoted reRand(GC1, (R1, R2))). R1 is used
to re-randomize the input wires while R2 is used to re-randomize the rest of
circuit. Note that the procedure reRand re-randomizes only the garbled circuit
and not the output wires. So it does not need to take as input wout. Gentry
et al. construct re-randomizable garbled circuits whose output wires are also
randomized; as mentioned earlier, we require a variant of garbled circuits whose
output wires remain the same, even after re-randomizing. We will show that the

5 We use the same symbol to denote the function as well as the circuit computing the
function.

Achieving Privacy in Verifiable Computation with Multiple Servers 157

construction of Gentry et al. can be used even for our purposes and the security
of the construction holds. For more details, we refer the reader to the full version.

We now define another functionality, namely reRandin, on the lines of
YaoGarbledCktin as follows. reRandin takes as input randomness R1 and wGC1,in,
which are the input wire keys of a garbled circuit GC1, and outputs wGC2,in

which are the input wire keys corresponding to GC2 where GC2 is the output
of reRand(GC1; (R1, R2)). Like in the case of YaoGarbledCktin, the reRandin algo-
rithm can be easily derived from reRand such that the computational complexity
of reRandin depends only on the size of the input to the function and not the size
of the garbled circuit itself.

3.2 Re-encryption Scheme

Informally, a re-encryption scheme allows a third party, who possesses a re-
encryption key, to transform ciphertexts encrypted under one public key pk1
into ciphertexts of the same message under a different public key pk2, without
learning anything about the contents of the message m. Various constructions
of re-encryption schemes are known; we require a re-encryption scheme that is
also additively homomorphic. We show such a scheme and provide more details
about it in the full version.

4 Constructions of Verifiable Computation Protocols

In this section, we shall present our protocols for verifiable computation in the
multi-server model. We shall first begin by describing a protocol in the 2-server
case that can be built from any non-private verifiable computation protocol
coupled with any collision-resistant hash function family. We will then build
our n-server protocol that is based on the Decisional Diffie-Hellman assumption.
Our n-server protocol based on one-way functions (but handling only a constant
fraction of corrupt servers) is given in the full version.

4.1 The Two-Server Case

We wish to construct a verifiable computation protocol that allows a client C
to outsource the computation of F on input x to two servers S1 and S2 with a
guarantee on both privacy and soundness when at least one server is honest. We
present two protocols for this purpose.

Solution 1: The high level idea for the first protocol is as follows. C will pick
a seed to pseudo-random function (PRF) family and send the seed to S1. The
client will also generate the output wires of a garbled circuit for function F (as
described in Section 3.1 using YaoGarbledCktin) and send them to S1. Finally, the
client also picks a key to a collision-resistant hash function (call the description
of this function H) and sends H to S1 and S2. Upon receiving input x, C picks
the corresponding input wires in the garbled circuit for x and sends them to S2.

158 P. Ananth et al.

S1 generates a garbled circuit for F using randomness produced by the PRF
seed and the output wires given by C. S1 then computes a hash of this garbled
circuit using H and sends the result of this hash to C along with a proof that
the computation was performed honestly (we use the non-private verifiable com-
putation protocol in order to do this). S1 will send the garbled circuit produced
to S2. S2 will compute a hash of the garbled circuit received from S1 and send
that to C. S2 will also evaluate the garbled circuit using the input wires received
from C and send the resulting output wire to C.

The client finally checks three things: a) The non-private verifiable compu-
tation with S1 succeeded, b) the hash output values received from both servers
were the same and c) the output wire received from S2 was indeed a valid out-
put wire. If all three checks succeed, then the client decodes the output from the
received output wire and learns F(x). For more details, we refer the reader to
the full version.

Solution 2: We next present a highly practical two-server protocol based solely
on one-way functions. For this protocol alone, we will have each server send a
message to the other server.

The protocol works as follows. The client sends each server Si (for i ∈ {1, 2}),
a seed to a pseudo-random function Ki. Each Si uses Ki and generates the
garbled circuit (GCi) for the function F6. Additionally, the client also sends
input wires of GC1 (resp. GC2), corresponding to his input, to S2 (resp. S1).
Each server evaluates the garbled circuit it receives from the other server using
the input wires it receives from the client and sends the output wires to the
client. C checks the output wires it receives from both servers to make sure they
are valid. If they are both valid, it decodes them to obtain the output values
contained in them. If both these values are the same, it accepts the output value
and rejects otherwise7. For more details of this protocol, we refer the reader to
the full version.

While the communication between servers cannot be reduced in this protocol,
we feel the practical efficiency of this protocol outweighs any overhead caused
due to that extra message from S2 to S1. Indeed, the only work done by the
client is to generate short randomness and finally do a look-up to obtain the
output. The only work done by the servers is to generate (and evaluate) a single
garbled circuit each (that can also be done in parallel by both the servers). We
stress that while 2-PC protocols can be used to obtain a similar result, we need
the underlying 2-PC protocol used to be secure against malicious adversaries.
Such a 2-PC protocol would need to use either the cut-and-choose approach or
zero-knowledge proofs, both of which are inefficient.

6 Actually C needs to only give the servers the randomness for generating the input
and output wires. The servers can pick their own randomness to generate the garbled
circuit (consistent with these input and output wires). Security of our protocol holds
even in this case – since we have that at least one server is honest, at least one garbled
circuit is generated honestly. This is sufficient to guarantee security.

7 Note that the above protocol can be modified trivially so that the client sends just
one message to S1 and receives just one message from S2.

Achieving Privacy in Verifiable Computation with Multiple Servers 159

This protocol for verifiable computation is similar in spirit to a protocol by
Mohassel and Franklin [MF06] to achieve efficient, malicious, 2-PC in a model
where the malicious party may get some information-leakage. Our protocol, used
in the context of verifiable computation, is fully secure. It, of course, avoids the
use of oblivious transfer protocols and, can additionally allow the servers to run
in parallel, thereby achieving better efficiency. One drawback of this solution is
that its security is guaranteed only when the servers do not learn whether or
not the client accepted the response. We stress that none of our other solutions
suffer from this drawback.

4.2 The n-Server Case

In this section, we present our n-server verifiable computation protocol based on
the DDH assumption. The high level idea behind constructing such a protocol for
functionality F(x) works as follows: the client generates the input and output
wires corresponding to GC1 (where GC1 is the garbled circuit for evaluating
F). S1 generates GC1 (and all the wires corresponding to it). Each server Si
(for 1 ≤ i ≤ n − 1), then re-randomizes GCi and sends it Si+1. The client
re-randomizes his input wires (n − 1 times) to obtain the wires corresponding
to input x (according to the re-randomized garbled circuit GCn−1). Sn obtains
the re-randomized input wires corresponding to input x. (NIZK proofs need
to be used to ensure that the re-randomizations are done correctly; likewise
signature and encryption schemes need to be used to ensure that messages are
sent via secure authenticated channels – we omit those details for now.8) Sn
then evaluates the final garbled circuit and returns the output to the client.
The client re-randomizes his output wires n − 1 times to obtain the output
wires corresponding to GCn−1. Using the work of Gennaro et al. [GGP10], one
can then show that if Sn returned a “correct” output wire, then he must have
obtained it by evaluating the “honestly” re-randomized garbled circuit on the
right input wires – therefore the protocol guarantees soundness. One can then
show the privacy of this protocol from the fact that even if one of the servers
does the re-randomization honestly, the re-randomized input and output wires
will reveal no information to the dishonest servers (i.e., the adversary) about x
and F(x).

Remark. Recently, the work of [BHR12] built adaptively secure garbled circuits
which remain secure even if the input is chosen after seeing the garbled circuit.
Such security is needed in verifiable computation protocols where the garbled
circuit is generated in the pre-processing stage. In our protocol, the garbled
circuits are always generated in the online stage. So standard garbled circuits as
proven secure in the work of [LP09], suffice for our purposes.

8 Alternatively, one can use techniques of cut-and-choose in order to make sure that
the servers honestly create (or re-randomize) the garbled circuits; we leave the details
of this construction to the full version of the paper.

160 P. Ananth et al.

While this, along with a few other ideas, forms the underlying intuition for
our result, the main limitation of the above approach is that the client works
proportional to n.

To this end, observe that the client works proportional to n because he needs
to re-randomize both the input wires as well as the output wires. For the sake of
simplicity, for now, we only discuss how to avoid the client’s re-randomization
of the output wires. One idea to accomplish this is to fix all the output wires (of
all garbled circuits) to some specific value. However, this results in two issues.
The first issue is that it is not immediately clear that this protocol guarantees
privacy. However, we show that Yao’s garbled circuit and it’s re-randomization
remains private even when using fixed output wires. We will use this to show
that our protocol guarantees privacy. We refer the reader to the full version for
the details.

The next, and more important, issue with this change, is that it no longer
guarantees soundness. (Since the servers know the fixed output wires, Sn could
just send a correct output wire without evaluating the garbled circuit GCn−1.)
We fix this by using an idea from the work of Applebaum et al. [AIK10]. We
use a message authentication scheme MAC = (MACtag,MACverify) and modify
the functionality F to G: instead of computing just F(x), G, takes as additional
inputs K1,K2. G(x,K1,K2) executes F on input x to obtain y. It then computes
y⊕K1 and then produces yMAC = MACtag(K2, y⊕K1). Now, one can show that
the soundness of the protocol comes from security of the message authentication
code. This is an overview of our main construction which we describe below.
In this construction, the client still works proportional to n but he no longer
re-randomizes the output wires.

In our full version, we describe how to avoid the client’s re-randomization of
the input wires, thereby making the client’s running time independent of n.

Our n−Server Construction

Setup stage. During the Key Generation stage, each server Si generates the secret
key-public key (ski, pki) pairs for an encryption scheme (KeyGenEnc,Enc,Dec)
that is CCA2 secure. Further, the client generates (SK,VK) for the signature
scheme (KeyGenSign, Sign,Ver) that is existentially unforgeable under chosen mes-
sage attack. The servers S1, . . . ,Sn−1 generate (SK1,VK1), . . . , (SKn−1,VKn−1)
respectively for the signature scheme (KeyGenSign, Sign,Ver). Let MAC =
(MACtag,MACverify) be a message authentication scheme which is existentially
unforgeable against chosen message attack. MACtag on input a MAC key K and
a message m produces a message authentication code mMAC for m. MACverify
on input key K, message m and a tag m′

MAC, outputs 1 if m′
MAC is a valid mes-

sage authentication code for m under the key K else it outputs 0. Let Comm(m)
denote the commitment to a message m (that is at least computationally hiding
and binding). We let Open(c) denote the opening of a commitment c. Further,
the servers use a non-interactive zero knowledge proof (NIZK) system (in the
CRS model) (ProverRel,VerifierRel) defined for a relation Rel in NP that satisfies

Achieving Privacy in Verifiable Computation with Multiple Servers 161

the standard notions of correctness, soundness, and zero-knowledge. The zero
knowledge simulator for this proof system is denoted by SimRel. We also use the
following pseudo-random function families:

1. PRFgc(·, ·) is used by S1 to output the randomness for generating all the
wires of GC1 with the exception of the input and output wires alone. With-
out loss of generality, assume that the output length of the PRF is suf-
ficiently long enough to garble the circuit G 9 which is defined with re-
spect to the delegated function F as follows. G on input (x,K1,K2) outputs
MACtag(K2,F(x)

⊕
K1).

2. For 2 ≤ i ≤ n− 1, PRFre(·, ·) is used by Si to re-randomize the entire circuit
GCi−1 except the input wire keys. As before, assume that the output of PRF
is sufficiently long enough to rerandomize the garbled circuit of G (which is
defined above).

3. PRFin(·, ·) is used by S1 to generate the keys for the input wires correspond-
ing to GC1. Additionally it will be used by the client to generate the keys
for the input wires (without having to generate all of GC1). Further Si (for
2 ≤ i ≤ n − 1) uses PRFin(·, ·) to rerandomize the input wire keys of GCi.

We now describe our protocol P .

1. Client on input x does the following:
(a) C picks a key α1 for PRFgc(·, ·) and n − 2 keys {α2, . . . , αn−1} for the

pseudorandom function PRFre(·, ·) uniformly at random. In addition he
also picks keys β1, . . . , βn−1 to be used by Si to evaluate PRFin(·, ·) uni-
formly at random.

(b) C computes commitments to each of these PRF keys. Let cα = {cα1 , . . . ,
cαn−1} def

= {Comm(α1), . . . , Comm(αn−1)} and cβ = {cβ1 , . . . , c
β
n−1} def

=
{Comm(β1), . . . ,Comm(βn−1)}.

(c) C sets dαi = Open(cαi) and dβi = Open(cβi) for all 1 ≤ i ≤ n − 1. Let

dα = {dα1 , . . . , dαn−1} and dβ = {dβ1 , . . . , d
β
n−1}.

(d) Let the client’s input be x = x1 · · ·xλx , where each xi is a bit. The client
picks K1 uniformly at random (where K1 is of the same length as F(x))
and also picks a MAC key K2. Let K2 be of length λK2 . λ is such that
λ = λx + λK1 + λK2 .

(e) C picks an execution id, id10, and obtains the keys for the
input wires of the garbled circuit GC1 (to be defined later) by

9 This assumption requires the knowledge of the size of the circuit being delegated by
the client before the PRF keys are generated. This in turn makes the key generation
stage dependent on the function being delegated. This dependency can be eliminated
as follows. Instead of using just one output of PRF to garble the circuit, use multiple
PRF outputs to garble the circuit. Using sufficiently many PRF outputs the entire
circuit can be garbled. For convenience sake, in our protocol description the garbling
of the entire circuit is done using just one output of the PRF.

10 This id needs to be unique for each execution. This can be achieved by the client,
either by maintaining state and ensuring that ids do not repeat, or by the client
picking the id at random from a sufficiently large domain (and one can then argue
that except with negligible probability, the id will be unique).

162 P. Ananth et al.

evaluating YaoGarbledCktin(F ,PRFin(β1, id)). Let the keys (correspond-
ing to 0 and 1) for the input wires be denoted by wGC1,in =
{(w0

GC1,in,1
, w1

GC1,in,1
), . . . , (w0

GC1,in,λ
, w1

GC1,in,λ
)} where w0

GC1,in,i
denotes

the key for the ith input wire representing bit 0 while w1
GC1,in,i

denotes

the ith wire representing the bit 1 in the garbled circuit GC1.

(f) The client C then does the following. It computes reRandin
(
reRandin(

· · ·
(
reRandin(wGC1,in;PRFin(β2, id))

)
; · · ·

)
;PRFin(βn−1, id)

)
to obtain

wGCn−1,in = ((w0
GCn−1,in,1

, w1
GCn−1,in,1

), · · · , (w0
GCn−1,in,λ

, w1
GCn−1,in,λ

)). Let

wX
GCn−1,in

= (wX0

GCn−1,in,1
, . . . , wXλ

GCn−1,in,λ
) denote the input wire keys cor-

responding to the input X = (x,K1,K2) for the garbled circuit GCn−1.
(g) Client C picks the output wire keys wout =

{(w0
out,1, w

1
out,1), . . . , (w

0
out,μ, w

1
out,μ)}. For simplicity we assume that

these are chosen uniformly at random, even though we won’t rely on
that property in any of our proofs.

(h) Client C picks random strings CRS1, . . . ,CRSn−1 to be used as common
reference string for the NIZK proofs.

(i) For 1 ≤ i ≤ n−1, C sets msgi = (id, dαi , d
β
i , c

α, cβ ,CRS1, . . . ,CRSi,wout).
Further, C sets msgn = (id, cα, cβ ,wX

GCn−1,in
,CRS1, . . . ,CRSn−1,wout).

(j) Let σ
msgi
i be the signature of Encpki(msgi) using signing key SK for all

1 ≤ i ≤ n.
(k) C sends Encpk1(msg1), . . . ,Encpkn(msgn) along with σ

msg1
1 , . . . , σ

msgn
n

to S1.

2. Server S1 on input F and upon receiving (Encpk1(msg1), . . . ,
Encpkn(msgn), σ

msg1
1 , . . . , σ

msgn
n) from the client does the following:

(a) Compute the modified functionality G which does the following. G on
input (x,K1,K2) executes F on input x to obtain y. It then computes y⊕
K1 and then produces yMAC = MACtag(K2, y⊕K1). It outputs (y, yMAC).

(b) S1 verifies signature σ
msg1
1 on the input message Encpk1(msg1) by exe-

cuting Ver(VK,Encpk1(msg1), σ
msg1
1). If Ver outputs reject then it aborts.

(c) S1 decrypts Encpk1(msg1) using sk1 to obtain msg1 which is parsed as

(id, dα1 , d
β
1 , c

α, cβ ,CRS1,wout).
(d) S1 evaluates PRFgc(α1, id) and PRFin(β1, id) and uses the randomness

output by the two PRFs to compute YaoGarbledCkt on input G, to ob-
tain GC1. In other words,
YaoGarbledCkt(F ,wout; (PRFin(β1, id),PRFgc(α1, id))) outputs GC1 as
well as the input wires corresponding to GC1.

(e) S1 then computes a proof π1 using CRS1 as the CRS for the statement:

“There exists witness dα1 , d
β
1 such that

i. dα1 = Open(cα1) and dβ1 = Open(cβ1);
ii. GC1 is the garbled circuit output by YaoGarbledCkt(G; (PRFin(β1, id),

PRFgc(α1, id))).”
More formally, the proof is generated as follows. Consider the following
relation:

Achieving Privacy in Verifiable Computation with Multiple Servers 163

Rel1 =
{(

(cα1 , c
β
1 ,GC1), (d

α
1 , d

β
1)
)

:

dα1 = Open(cα1), d
β
1 = Open(cβ1), d

α
1 = (α1, R

α
1), dβ1 = (β1, R

β
1),

GC1 = YaoGarbledCkt((G,wout); (PRFin(β1, id),PRFgc(α1, id)))
}

Execute ProverRel1
(
(cα1 , c

β
1 ,GC1), (d

α
1 , d

β
1)
)
to obtain the proof π1.

(f) Generate signature σS1 for the message (GC1, π1).
(g) S1 lets π = {π1}, and gives (GC1, π,Encpk2(msg2), . . . ,Encpkn(msgn),

σS1 , σ
msg2
2 , . . . , σ

msgn
n) to S2.

3. Server Si (2 ≤ i ≤ n − 1) upon receiving F and (GC1, . . . ,GCi−1, π,
Encpki(msgi), . . . , Encpkn(msgn), σS1 , . . . , σSi−1 , σ

msgi
i , . . . , σ

msgn
n) from Si−1

does the following:
(a) Si verifies signature σ

msgi
i on the input message Encpki(msgi) by execut-

ing Ver(VK,Encpki(msgi), σ
msgi
i). If Ver outputs reject then it aborts.

(b) Si parses π as π1, . . . , πi−1. It then verifies signatures σS1 , . . . , σSi−1

on the messages (GC1, π1), . . . , (GCi−1, πi−1) using the verification keys
VK1, . . . ,VKi−1 respectively.

(c) Si then decrypts Encpki(msgi) using secret key ski to obtain msgi which

is parsed as (id, dαi , d
β
i ,c

α, cβ , CRS1, . . . ,CRSi,wout).
(d) Si verifies all the NIZK proofs in π as follows. It first parses π

as π1, . . . , πi−1. It then executes Verifier1((c
α
1 , c

β
1 ,GC1),CRS1, π1) and

Verifierj((c
α
j , c

β
j ,GCj ,GCj−1),CRSj , πj) for all 2 ≤ j ≤ i − 1. Si aborts if

any of the verifiers Verifierj, for 1 ≤ j ≤ i − 1, aborts.
(e) Si evaluates PRFre(αi, id) and PRFin(βi, id) and uses the randomness

output by the 2 PRFs to rerandomize the garbled circuit GCi−1. More
formally, it computes reRand(GCi−1; (PRFin(βi, id), PRFre(αi, id))) to ob-
tain GCi.

(f) Si computes a proof πi with respect to CRSi for the statement:

“There exists witness dαi and dβi such that

i. dαi = Open(cαi) and dβi = Open(cβi);
ii. GCi is the garbled circuit output by reRand(GCi−1; (PRFin(βi, id),

PRFre(αi, id))).”
More formally, consider the following relation:

Rel1 =
{(

(cαi , c
β
i ,GCi,GCi−1), (d

α
i , d

β
i)
)

:

dαi = Open(cαi), d
β
i = Open(cβi), d

α
i = (αi, R

α
i), dβi = (βi, R

β
i),

GCi = reRand(GCi−1; (PRFin(βi, id),PRFre(αi, id)))
}

Execute ProverReli
(
(cαi , c

β
i ,GCi), (d

α
i , d

β
i)
)
to obtain the proof πi.

(g) Generate signature σSi for the message (GCi, πi).
(h) Si lets π = π ∪ {πi}, and sends (GC1, . . . ,GCi,Encpki+1(msgi+1), . . . ,

Encpkn(msgn), σS1 , . . . , σSi , σ
msgi+1

i+1 , . . . , σ
msgn
n) to Si+1.

164 P. Ananth et al.

4. Server Sn does the following upon receiving F and (GC1, . . . ,GCn−1, π,
Encpkn(msgn), σS1 , . . . , σSn−1 , σ

msgn
n):

(a) Sn verifies signature σ
msgn
n on the input message Encpkn(msgn) by exe-

cuting Ver(VK,Encpkn(msgn), σ
msgn
n). If Ver outputs reject then it aborts.

(b) Si parses π as π1, . . . , πn−1. It then verifies signatures σS1 , . . . , σSn−1

on the messages (GC1, π1), . . . , (GCn−1, πn−1) using the verification keys
VK1, . . . ,VKn−1 respectively.

(c) Sn then decrypts Encpkn(msgn) using secret key ski to obtain msgi
which is parsed as (id, cα, cβ , wX

GCn−1,in
,CRS1, . . . ,CRSn−1,wout). Fur-

ther, wX
GCn−1,in

is parsed as (wX1

GCn−1,in,1
, . . . , wXλ

GCn−1,in,λ
).

(d) Sn verifies all the NIZK proofs in π as follows. It first parses π

as π1, . . . , πn−1. It then executes Verifier1((c
α
1 , c

β
1 ,GC1),CRS, π1) and

Verifierj((c
α
j , c

β
j ,GCj ,GCj−1),CRS, πj) for all 2 ≤ j ≤ n − 1. Sn aborts if

any of the verifiers Verifierj, for 1 ≤ j ≤ n − 1, aborts.
(e) If Sn accepts all the NIZK proofs and signatures, it uses wX

GCn−1
to

evaluate the garbled circuit GCn−1 to obtain the wire keys wz
out. It

then determines z = z1 · · · z|Gout|
11 such that the set of wire keys

{wout,1, . . . , wout,|Gout|} represents wz
out. Sn sends z to the client C.

5. Client on receiving z from Sn does the following:

(a) C parses z as (y, yMAC).
(b) C executes MACverifyK2

(y, yMAC). If the output of MACverify is 0 then
it outputs Reject. Else, it computes y′ where y′ = y ⊕ K1 and then it
outputs Accept.

It is easy to see that correctness follows from the correctness of Yao and other
underlying primitives. We defer the proof of privacy and soundness to the full
version.

References

[ACG+14] Ananth, P., Chandran, N., Goyal, V., Kanukurthi, B., Ostrovsky, R.:
Achieving privacy in verifiable computation with multiple servers – without
fhe and without pre-processing. IACR Cryptology ePrint Archive (2014)

[AIK10] Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: Ef-
ficient verification via secure computation. In: Abramsky, S., Gavoille, C.,
Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010,
Part I. LNCS, vol. 6198, pp. 152–163. Springer, Heidelberg (2010)

[BBS98] Blaze, M., Bleumer, G., Strauss, M.J.: Divertible protocols and atomic
proxy cryptography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 127–144. Springer, Heidelberg (1998)

[BCCT12] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable col-
lision resistance to succinct non-interactive arguments of knowledge, and
back again. In: Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference, ITCS 2012, pp. 326–349. ACM, New York (2012)

11 |Gout| denotes the length of the output of the function G.

Achieving Privacy in Verifiable Computation with Multiple Servers 165

[BGV11] Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation
over large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 111–131. Springer, Heidelberg (2011)

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with
applications to one-time programs and secure outsourcing. In: Wang, X.,
Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer,
Heidelberg (2012)

[BV13] Brakerski, Z., Vaikuntanathan, V.: Lattice-based fhe as secure as pke.
Cryptology ePrint Archive, Report 2013/541 (2013),
http://eprint.iacr.org/

[CKV10] Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation
using fully homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 483–501. Springer, Heidelberg (2010)

[Cra12] Cramer, R. (ed.): TCC 2012. LNCS, vol. 7194. Springer, Heidelberg (2012)
[CRR11] Canetti, R., Riva, B., Rothblum, G.N.: Practical delegation of compu-

tation using multiple servers. In: Chen, Y., Danezis, G., Shmatikov,
V. (eds.) ACM Conference on Computer and Communications Security,
pp. 445–454. ACM (2011)

[CRR12] Canetti, R., Riva, B., Rothblum, G.N.: Two protocols for delegation of
computation. In: Smith, A. (ed.) ICITS 2012. LNCS, vol. 7412, pp. 37–61.
Springer, Heidelberg (2012)

[DFH12] Damg̊ard, I., Faust, S., Hazay, C.: Secure two-party computation with
low communication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 54–74. Springer, Heidelberg (2012)

[FG12] Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomi-
als and matrix computations, with applications. In: ACM Conference on
Computer and Communications Security, pp. 501–512 (2012)

[GGH+13] Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute based
encryption for circuits from multilinear maps. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer,
Heidelberg (2013)

[GGP10] Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable comput-
ing: Outsourcing computation to untrusted workers. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

[GGPR13] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs
and succinct nizks without pcps. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg
(2013)

[GHV10] Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryption
and rerandomizable yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 155–172. Springer, Heidelberg (2010)

[GKP+13] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: Overcoming the worst-case curse for cryptographic constructions. In:
CRYPTO (2013)

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: in-
teractive proofs for muggles. In: Dwork, C. (ed.) STOC, pp. 113–122. ACM
(2008)

[GLR11] Goldwasser, S., Lin, H., Rubinstein, A.: Delegation of computation with-
out rejection problem from designated verifier cs-proofs. IACR Cryptology
ePrint Archive 2011, 456 (2011)

http://eprint.iacr.org/

166 P. Ananth et al.

[GVW13] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption
for circuits. In: STOC (2013)

[KR09] Kalai, Y.T., Raz, R.: Probabilistically checkable arguments. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 143–159. Springer, Heidelberg
(2009)

[KR11] Kama, S., Raykova, M.: Secure outsourced computation in a multi-tenant
cloud. In: Workshop on Cryptography and Security in the Clouds (2011)

[LP09] Lindell, Y., Pinkas, B.: A proof of security of yao’s protocol for two-party
computation. J. Cryptology 22(2), 161–188 (2009)

[MF06] Mohassel, P., Franklin, M.K.: Efficiency tradeoffs for malicious two-party
computation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC
2006. LNCS, vol. 3958, pp. 458–473. Springer, Heidelberg (2006)

[PRV12] Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and ver-
ify in public: Verifiable computation from attribute-based encryption. In:
Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Hei-
delberg (2012)

[Yao82] Yao, A.C.-C.: Protocols for secure computations (extended abstract). In:
23rd Annual Symposium on Foundations of Computer Science (FOCS),
Chicago, Illinois, USA, November 3-5, pp. 160–164 (1982)

Efficient Delegation of Zero-Knowledge Proofs

of Knowledge in a Pairing-Friendly Setting

Sébastien Canard1, David Pointcheval2, and Olivier Sanders1,2

1 Orange Labs, Applied Crypto Group, Caen, France
2 École normale supérieure, CNRS & INRIA, Paris, France

Abstract. Since their introduction in 1985, by Goldwasser, Micali and
Rackoff, followed by Feige, Fiat and Shamir, zero-knowledge proofs have
played a significant role in modern cryptography: they allow a party to
convince another party of the validity of a statement (proof of member-
ship) or of its knowledge of a secret (proof of knowledge). Cryptographers
frequently use them as building blocks in complex protocols since they
offer quite useful soundness features, which exclude cheating players. In
most of modern telecommunication services, the execution of these pro-
tocols involves a prover on a portable device, with limited capacities,
and namely distinct trusted part and more powerful part. The former
thus has to delegate some computations to the latter. However, since the
latter is not fully trusted, it should not learn any secret information.

This paper focuses on proofs of knowledge of discrete logarithm re-
lations sets (DLRS), and the delegation of some prover’s computations,
without leaking any critical information to the delegatee. We will achieve
various efficient improvements ensuring perfect zero-knowledge against
the verifier and partial zero-knowledge, but still reasonable in many con-
texts, against the delegatee.

1 Introduction

Zero-Knowledge Proofs of Knowledge. The past three decades have witnessed
the emergence of several new cryptographic notions. In 1985, Goldwasser, Micali
and Rackoff [16] introduced the concept of zero-knowledge interactive proofs
that enable an entity, called the prover, to convince another entity, called the
verifier, of the validity of a statement without revealing anything else beyond the
assertion of this statement. In other words, one wants to prove that a statement
is in the set of the valid statements, hence the notion of zero-knowledge proof of
membership. They were followed by Feige, Fiat and Shamir [12] with the notion
of zero-knowledge proof of knowledge (ZKPK) in which the prover convinces the
verifier not only of the validity of a statement but also that it possesses a witness
for this fact.

Since these seminal papers, many ZKPK have been introduced, such as the
Schnorr’s protocol [25], that provide efficient ways of proving knowledge of a
discrete logarithm in finite groups with known order, and even with unknown
order [14,15]. In modern cryptography, these proofs of knowledge are heavily used

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 167–184, 2014.
c© International Association for Cryptologic Research 2014

168 S. Canard, D. Pointcheval, and O. Sanders

for authentication but also as building blocks in more complex protocols, such
as group signature schemes [1,11,4,21] or Direct Anonymous Attestation (DAA)
schemes [5,3]. Indeed, such protocols usually require to prove that some public
elements, relying on private values, are well-formed. For anonymous authentica-
tions, one classically wants to prove one’s knowledge of a secret key related to
a public key certified by a given authority, without revealing the secret key, the
public key, nor the certificate itself. They can be efficiently addressed by using
Schnorr-like interactive ZKPK. Moreover, these interactive proofs can be turned
into non-interactive proofs or signatures using the Fiat-Shamir paradigm [13,24],
in the random oracle model [2].

Discrete-Logarithm Relation Sets. More complex protocols, such as group sig-
nature schemes or DAA schemes, involve several proofs of knowledge of discrete
logarithms or of representations in a fixed or variable basis: they deal with a
Discrete-Logarithm Relation Set (or DLRS, as defined by Kiayias, Tsiounis and
Yung [20]), i.e a set of relations involving objects and free variables. Extensions
of the Schnorr’s protocol can be applied to this setting, but they require the
prover to compute many exponentiations for the first round of the protocol (the
commitments).

Pairing-Friendly Settings. Elliptic curves with or without pairing-friendly groups
have been widely used for the past few years, since they offer many new features
and provide communication-wise efficient protocols. They allow to prove com-
plex relations with still reasonable efficiency, namely when compared with the
RSA setting. Indeed, most of the recent group signature schemes [11,17,4,21] or
DAA schemes [6,10,3] are based on groups (G1, G2 and GT) of prime order with
a bilinear map (e : G1 × G2 → GT).

The main interesting feature is definitely the possibility of non-interactive
zero-knowledge proofs in the standard model, using the so-called Groth-Sahai
methodology [18]. Unfortunately, while reducing the number of interactions is
quite useful, this leads to quite costly protocols, for both the prover and the
verifier. They are currently totally impractical on constrained devices.

Delegation of Computation. However,most of these complex cryptographic primi-
tives, such as anonymous authentications and DAAs, achieve their ultimate
impact when implemented on portable andmobile devices. This increases the con-
trast between the important needs to embed these protocols in such lightweight
devices and their practical limitations when performing many exponentiations or
pairing evaluations. A common way to overcome this problem is to delegate (when
possible) some computations to a more powerful, but not fully trusted, delegatee
as in [5,7,3,8]. Since the latter entity cannot have access to secret values, most of
the computations on the prover’s side have to be performed by the constrained
device, which reduces the benefits of server-aided cryptography. Moreover, if the
DLRS involved in the protocol contains several relations or variables, the over-
all computational cost may remain prohibitive. One may argue that exponentia-
tions in the first flow of Schnorr’s protocol are precomputable. This is true if the

Efficient Delegation of Zero-Knowledge Proofs of Knowledge 169

basis is fixed, but when the proof is used as a building block in a more complex
construction, the basis is not always fixed or known in advance (as e.g. in DAA
schemes [5,3]). The lack of way to efficiently delegate the prover’s side of the proof
of knowledge may then prevent portable devices to get access to all features of
modern cryptography.

Although the delegatee might not be fully trusted, it may have access to some
additional information. For example, let us consider the following setting: a SIM-
card in a smartphone. This is probably the best illustration of a lightweight but
fully trusted device (the SIM-card with embedded secrets) within a more pow-
erful but partially trusted device (the smartphone with more and more powerful
processors, and even co-processors). In case of group signature or anonymous
authentication to a server, only the SIM-card knows the secret key to perform
authentication, and no information about the identity of the actual user should
leak to the server. However, while not trusted enough to learn the secret key,
since it can potentially be corrupted by a virus, the smartphone anyway already
knows its owner. As a consequence, the anonymity has to be enforced with re-
spect to the server but not to the smartphone (it has other means to learn
owner’s identity). However, the secret key should not be leaked to neither the
server nor the smartphone.

Such a SIM-card together with a smartphone issuing anonymous authentica-
tion illustrates well the relaxation on the security model that seems reasonable in
practice: during delegation of computation, some additional information can be
leaked to the helper until it does not help it to impersonate the real prover. We
will thus provide several security models in which the delegatee might be given
access to some extra knowledge. We however stress that the delegatee should re-
main unable to recover the secrets or to impersonate the prover, but still being
able to handle a significant part of the prover’s computations.

Achievements. In this paper, we provide an efficient way to delegate the prover’s
side of zero-knowledge proofs of knowledge for any DLRS in a group G1. Our
method enables a delegator to use the computational power of a delegatee to
prove knowledge of witnesses for any DLRS with significantly fewer computations
than with the classical Schnorr’s based protocol. While lifting the verification
relation into GT , and thus involving pairing computations on the verifier’s side,
no pairing computations have to be performed on the prover’s side (for both
the delegator and the delegatee). Moreover, the computations that remain to be
done by the delegator do not rely on the objects involved in the DLRS, but on
a fixed basis only, they can thus all be precomputed.

By decreasing the computational cost for the constrained devices (the dele-
gator), our work improves on the efficiency of protocols using zero-knowledge
proofs of knowledge and thus enables engineers to embed complex primitives on
such devices.

More precisely, we provide two constructions in which the delegator essen-
tially computes as many exponentiations of a fixed basis as the number of secret
discrete logarithms involved in the relations, whatever the number of relations
is. We illustrate the effective gain on concrete examples.

170 S. Canard, D. Pointcheval, and O. Sanders

2 Preliminaries

In this section, we provide a basic review of the tools that will be used throughout
this paper. Namely, we recall the notations of bilinear maps and zero-knowledge
proofs of knowledge together with the concept of Discrete-Logarithm Relations
Sets (DLRS) and the Schnorr’s protocol for such relations.

2.1 Pairing-Friendly Groups

Let G1,G2,GT be three groups of prime order p. In the following, we will use
additive notations for G1 and G2, but multiplicative notations for GT . Elements
of G1 will be written in uppercase (G,X, T, . . .) and elements of G2 will be

written (G̃, X̃, T̃ , . . .). Pairing-friendly settings are defined by G1,G2,GT along
with a bilinear map e : G1 × G2 → GT with the following properties:

1. for all X ∈ G1, X̃ ∈ G2 and a, b ∈ Zp we have e([a]X, [b]X̃) = e(X, X̃)ab;

2. for X �= 0 and X̃ �= 0, e(X, X̃) �= 1;
3. e is efficiently computable.

We emphasize that our protocols will work in any pairing-friendly setting: in both
the symmetric (i.e., G1 = G2) and asymmetric (i.e., G1 �= G2) cases. In the

following, the setting (p,G1,G2,GT , G, G̃, e) defines the bilinear environment,

with G1 = 〈G〉, G2 = 〈G̃〉, and GT = 〈e(G, G̃)〉. All the three groups being of
the same prime order p.

2.2 Zero-Knowledge Proofs of Knowledge

Interactive zero-knowledge proofs of knowledge have been introduced by Gold-
wasser, Micali and Rackoff [16] and formalized by Feige, Fiat and Shamir [12].
We recall here the informal definition.

Definition 1. An interactive protocol between a prover P and a verifier V is
a zero-knowledge proof of knowledge of a private witness w for P that a public
information Y satisfies a relation R if the three following properties are satisfied.

– Completeness: for an honest prover P with correct witness w and an honest
verifier V, the protocol succeeds with overwhelming probability.

– Soundness: for any prover P̃ that is accepted by a verifier V with non
negligible probability, it is possible to construct a probabilistic polynomial
time Turing machine E (called extractor) that can extract a valid witness w

by interacting with P̃.
– Zero-knowledge: for every verifier V, there exists a probabilistic polynomial-

timeTuringmachine S (called simulator) that just takes Y as input and outputs
a string that is indistinguishable from the transcript of the communications be-
tween an honest prover P with a valid witness w and V.

The soundness property models the fact that in order to be accepted, the prover
must actually know a valid witness, while the zero-knowledge property shows
that the real protocol with the prover that uses the witness w does not leak
more information than a simulation that does not know the witness.

Efficient Delegation of Zero-Knowledge Proofs of Knowledge 171

P V
∀j ∈ {1, ..., m}, kj $← Zp

∀i ∈ {1, ..., r},Ki ←
∑

j∈Ji
[kj]Avi,j

{Ki}i−−−−−−−−→
c←−−−−−−−− c

$← {0, 1}�

∀j ∈ {1, ..., m}, sj ← kj + cαj mod p
{sj}j−−−−−−−−→ ∀i ∈ {1, ..., r},

Ki + [c]Vi
?=
∑

j∈Ji
[sj]Avi,j

Setting: A group G of prime order p and a DLRS R in G: for A1, . . . , Aw, V1, . . . , Vr ∈
G, and J1, . . . ,Jr ⊆ {1, . . . , w}, the prover P knows variables α1, . . . , αm ∈ Zp such
that Vi =

∑
j∈Ji

[αj]Avi,j , for i = 1, . . . , r.

Fig. 1. The Extended Schnorr’s Protocol for any DLRS R

2.3 Discrete-Logarithm Relations Set

Discrete-logarithm relations sets (DLRSs) were introduced by Kiayias et al. [20]
to describe sets of relations involving secret variables that correspond to discrete
logarithms. Many cryptographic protocols [22,10,3] require some entity to prove
that some public elements (a ciphertext, a certificate, . . .) relying on several
secret values, are well-formed and based on a DLRS. They thus require a proof
of knowledge for a DLRS. More formally, a DLRS can be defined as follows:

Definition 2. A DLRS R on the group G (of prime order p) with r relations
over m variables and w + r objects in G is a set of relations R1, . . . , Rr defined
over objects A1, . . . , Aw, V1, . . . , Vr ∈ G and the free variables α1, . . . , αm ∈ Zp
where Ri, for i = 1, . . . , r, is to be interpreted as: Vi =

∑
j∈Ji

[αj]Avi,j , where
Ji ⊆ {1, . . . ,m} and vi,j ∈ {1, . . . , w} for i = 1, . . . , r and j ∈ Ji. We will write
R(α1, . . . , αm) to denote the conjunction of all the relations Ri on the variables
α1, . . . , αm.

Remark 3. The above definition is given in a group G, but it could be in any
group. In our practical applications, as we will work in pairing-friendly settings,
relations could be all in G1 but also all in G2 or in both G1 and G2. In the
following, we will describe our results in the group G1, with companion values
in G2, and we will give evidences that it can also work in the general case.

Using these notations, a prover that knows witnesses α1, . . . , αm such that
R(α1, ..., αm) = 1 will generally use the 3-flow zero-knowledge proof of knowledge
described in Figure 1 (which is easily derived from the Schnorr’s protocol [25]
for groups of known order). This protocol then corresponds to a proof of knowl-
edge for a DLRS. The completeness comes from the fact that for valid witnesses
α1, . . . , αm that satisfy, for all i, Vi =

∑
j∈Ji

[αj]Avi,j , then for all i ∈ {1, ..., r},∑
j∈Ji

[sj]Avi,j =
∑
j∈Ji

[kj + cαj]Avi,j =
∑
j∈Ji

[kj]Avi,j + [c]
∑
j∈Ji

[αj]Avi,j = Ki+ [c]Vi.

172 S. Canard, D. Pointcheval, and O. Sanders

The complexity for the prover is:
∑r
i=1 #Ji multiplications by scalars in G and∑r

i=1(#Ji − 1) additions in G to get the commitments Ki for i ∈ {1, ..., r}.
For complex DLRSs, it can represent too many computations. In the next

section, we explain how to delegate such proofs of knowledge of DLRSs, where
the constrained device has to compute m scalar multiplications in G2 to prove
knowledge of α1, . . . , αm satisfying a DLRS R in G1, no matter how many rela-
tions Ri are involved in R.

3 Delegating Proofs of Knowledge

As in [5,7,3], we will split the prover into a trusted device which has a lim-
ited computational power and a more powerful, but untrusted, machine. As in
DAA [5] schemes, the trusted device will be called the TPM (Trusted Platform
Module) and the untrusted machine will be called the host.

3.1 Our First Protocol

We consider the following situation: the TPM knows witnesses (α1, . . . , αm) for
the DLRS R, such that R(α1, . . . , αm) = 1, and wants to use the computational
power of the host to prove knowledge of these witnesses. Since the host is not
trusted, we do not want to give (α1, . . . , αm) to it (else it would be able to
impersonate the TPM). However, we allow it to get access to more information
than a standard verifier (see Theorem 5). This is a common requirement in DAA
schemes and, more generally, in server-aided cryptography (see e.g. [8]).

Intuition. Informally, we do not want the TPM to have to compute [kj]Avi,j
for all the pairs (i, j), as in the extended Schnorr’s protocol, then we essentially

lift them to GT , by applying pairing with G̃, and then the Ki’s become

e
(
Ki, G̃

)
= e

⎛⎝∑
j∈Ji

[kj]Avi,j , G̃

⎞⎠ =
∏
j∈Ji

e
(
Avi,j , [kj]G̃

)
=

∏
j∈Ji

e
(
Avi,j , Z̃j

)
.

The verification Ki
?=
∑
j∈Ji

[sj]Avi,j − [c]Vi would then become

∏
j∈Ji

e
(
Avi,j , Z̃j

)
?= e

⎛⎝∑
j∈Ji

[sj]Avi,j − [c]Vi, G̃

⎞⎠ .

This is the reason why the TPM can just compute Z̃j = [kj]G̃, for k = 1, . . . ,m.

A First Note. However, it cannot directly send these values to the verifier.
Otherwise, the zero-knowledge property obtained by our protocol would not
be equivalent to the one of the initial Extended Schnorr’s protocol, from the

Efficient Delegation of Zero-Knowledge Proofs of Knowledge 173

TPM Host Verifier

∀j ∈ {1, . . . ,m}, ∀i ∈ {1, . . . , r},
kj

$← Zp, Z̃j ← [kj]G̃ (bi,j)j
$← (Z∗

p)
m, (ti,j)j

$← (Zp)
m

such that
∑

k∈Ji
ti,k = 0 mod p

{Z̃j}j−−−−−−−−→ ∀i ∈ {1, . . . , r},∀j ∈ Ji,
Zi,j ← [b−1

i,j]Avi,j

B̃i,j ← [bi,j](Z̃j + [ti,j]Ãi,j)

{Zi,j , B̃i,j}i,j−−−−−−−−−−−→
∀j ∈ {1, . . . ,m}, c←−−−−−−−− c←−−−−−−−−−−− c

$← {0, 1}�
sj ← kj + cαj mod p

{sj}j−−−−−−−−→
{sj}j−−−−−−−−−−−→ ∀i ∈ {1, . . . , r}

e
(∑

j∈Ji
[sj]Avi,j − [c]Vi, G̃

)
?=
∏

j∈Ji
e(Zi,j , B̃i,j)

Setting: A pairing-friendly setting (p,G1,G2,GT , G, G̃, e) and a DLRS R in G1: for
A1, . . . , Aw, V1, . . . , Vr ∈ G1, and J1, . . . ,Jr ⊆ {1, . . . , w}, the TPM knows variables
α1, . . . , αm ∈ Zp such that Vi =

∑
j∈Ji

[αj]Avi,j , for i = 1, . . . , r.
Notations: For i = 1, . . . , w, we denote ai ∈ Zp the discrete logarithms such that

Ai = [ai]G, and, for i = 1, . . . , r and j ∈ Ji, one computes Ãi,j =
[

1
avi,j

∏
k∈Ji

avi,k

]
G̃

that are added to the public parameters (see Section 3.2 for details).

Players’ inputs: The public input contains G, G̃, {Vi}i, {Ji}i, {Aj}j and the {Ãi,j}i,j ;
The TPM additionally knows {αi}i.

Fig. 2. Delegation of Proof of Knowledge of Witnesses for a DLRS

verifier’s view: from Z̃j = [ki]G̃ and sj = kj − cαj mod p, one would be able to

compute [c−1]
(
Z̃j − [sj]G̃

)
= [c−1][cαj]G̃ = [αj]G̃. This might be too much

information about αj . These values are thus just sent to the host who will

compute blinded versions Zi,j ← [b−1
i,j]Avi,j and B̃i,j ← [bi,j](Z̃j+[ti,j]Ãi,j), with

random scalars (bi,j)i,j and (ti,j)i,j and additional elements (Ãi,j)i,j (defined in
Figure 2), so that for any i,∏

j∈Ji

e
(
Avi,j , Z̃j

)
=

∏
j∈Ji

e
(
Zi,j , B̃i,j

)
/
∏
j∈Ji

e
(
Avi,j , [ti,j]Ãi,j

)
where the latter denominator is equal to, with ci =

∏
k∈Ji

avi,k ,

∏
j∈Ji

e

(
[avi,j]G, [ti,j/avi,j]

∏
k∈Ji

[avi,k]G̃

)
= e

⎛⎝G,

⎡⎣⎛⎝∑
j∈Ji

ti,j

⎞⎠ ci

⎤⎦ G̃

⎞⎠ .

By choosing (ti,j)i,j such that
∑

j∈Ji
ti,j = 0 mod p, it is equal to 1GT .

174 S. Canard, D. Pointcheval, and O. Sanders

A Second Note. If one just uses the factors (bi,j)i,j , but not (ti,j)i,j , the values

(Zi,j)i,j and (B̃i,j)i,j would reveal to much information too. Let us consider any

pair (i, j) such that j ∈ Ji and k = vi,j : e(Zi,j , B̃i,j) = e(Ak, Z̃j), and thus(
e(Zi,j , B̃i,j)/e(Ak, [sj]G̃)

)1/c

= e
(
Ak, [c

−1]
(
Z̃j − [sj]G̃

))
= e

(
Ak, αjG̃

)
.

Then, e(Ak, G̃)αj would leak, which is again too much information about αj .
In the case of a singleton Ji = {j}, Vi = [αj]Ak indeed leaks this information

too, but in case of larger sets, such information does not leak, and thus should
not leak from the proof either.

Description. These blinding factors (bi,j)i,j and (ti,j)i,j will make the protocol
zero-knowledge from the verifier’s view (as formally proven in Section 4). This
leads to the 3-flow protocol described on Figure 2, that enables the TPM to
prove knowledge of (α1, . . . , αm) with fewer computations than in the extended
Schnorr’s protocol (see Figure 1).

Example I. Let us consider the following example:

V1=[α1]A1 . . . Vq=[α1]Aq

Vq+1=[α2]Aq+1 . . . Vq+s=[α2]Aq+s

Vq+s+1=[α1]Aq+s+1 + [α2]Aq+s+n+1 . . . Vq+s+n=[α1]Aq+s+n + [α2]Aq+s+2n

Using the extended Schnorr’s protocol described on Figure 1, one would require
q+s+2nmultiplications by scalars inG1 (group exponentiations) and n additions
in G1 from the TPM. With our protocol (see Figure 2), the TPM has to compute
only 2 multiplications by scalars in G2 (group exponentiations).

3.2 Additional Computations

One might have noted that the public parameters must now contain several Ãi,j
that may not be known in practice. However, in most cases, there is no need
of additional values. First, when Ji = {j} is a singleton, Ãi,j = G̃. Second,

when Ji = {α, β} is a pair, and vi,α = u and vi,β = v, then Ãi,α = [av]G̃ and

Ãi,β = [au]G̃. Thus, Ãi,α = Av and Ãi,β = Au in the case of symmetric pairing
(i.e., G1 = G2). Our above Example I involves singletons and pairs only, and

thus the Ãi,j can be easily publicly computed. However, in Section 5, we provide
another delegation protocol that does not present these limitations, and can thus
be used in more situations.

3.3 Computational Cost

Since the TPM is considered to be far less powerful than the host and the verifier,
we want to decrease its computational load even if it involves a slight increase
of work for the host and for the verifier. Let us evaluate the computational cost
for each party (see Table 1):

Efficient Delegation of Zero-Knowledge Proofs of Knowledge 175

Table 1. Complexity Comparisons

Prover

TPM Host Verifier

Ext. Schnorr JM + (J − r)A JM + (J − r)A
Example I (q + s+ 2n)M + nA (q + s+ 2n)M + nA
Example II 7M + 2A 7M + 2A
Example III 9M + 3A 9M + 3A

Figure 2 mM2 J(M1 + 2M2 + A2)
J(M1 +A1 + P +MT)
+r(M1 + P −MT)

Example I 2M2 (q + s+ 2n)(M1 + 2M2 + A2)
(2q + 2s+ 3n)(M1 + P)
+(q + s+ 2n)A1 + nMT

Example II 2M2 7(M1 + 2M2 + A2) 12(M1 + P) + 7A1 + 2MT

Example III 6M2 9(M1 + 2M2 + A2) 15(M1 + P) + 9A1 + 3MT

Figure 3 mM2
J(2M1 + 2M2 +A2 +A1)

−rA1

(J + r)(M1 + A1 + P)
+(J − r)MT

Example I 2M2
(q + s+ 2n)(2M1 + 2M2 + A2)

+nA1

(2q + 2s+ 3n)(M1 + A1 + P)
+nMT

Example II 2M2 7(2M1 + 2M2 + A2) + 2A1 12(M1 + A1 + P) + 2MT

Example III 6M2 9(2M1 + 2M2 + A2) + 3A1 15(M1 + A1 + P) + 3MT

Generic DLRS: m secret scalars, r relations each involving Ji elements respectively for
i = 1, . . . , r, and thus globally J =

∑
Ji.

For the extended Schnorr, all computations have to be done by the TPM itself.
A,A1, A2 denote point additions in G, G1, G2 respectively;
M,M1,M2 denote point multiplications by a scalar in G, G1, G2 respectively;
MT denotes multiplication in GT ; P denotes a pairing.

– the TPM has to compute m multiplications by a scalar in G2 (one per vari-
able αi), which are moreover all precomputable. Its computational cost is
thus independent of the number of relations, which can be very useful when
a variable is involved in many relations (as in our above Example I);

– the host has to compute
∑r
i=1 #Ji multiplications by a scalar in G1 and at

most the same number of additions in G2 and twice as many multiplications
by a scalar in G2;

– the verifier has to compute
∑r

i=1 #Ji additions in G1, r+
∑r

i=1 #Ji multi-
plications by a scalar in G1, r+

∑r
i=1 #Ji pairings, and some multiplications

in GT .

3.4 More Examples

We now provide some concrete examples, with comparisons of the complexity
computations on Table 1: Extended Schnorr is the natural 3-round protocol
between a prover and a verifier, while the two other protocols are the delagated
protocols proposed above (in Section 3) and below (in Section 5). One can note
that our protocols with delagation drastically reduce the computational cost for
the TPM with respect to the Prover in the basic protocol. To this aim, one can

176 S. Canard, D. Pointcheval, and O. Sanders

indeed use G2 as the efficient group and G1 as the less efficient group in the
pairing-friendly setting.

Example II. In 2007, Shacham [26] described an encryption scheme based on
the DLIN assumption. This is a Cramer-Shoup variant of the linear encryption,
where the first triple is a linear tuple used for masking the plaintext in the fourth
element, while the last element helps to verify validity with a hash proof system
(see also [19]). With the public parameters (G1, G2, G3) ∈ G3

1 and the public
key (H1, H2, C1, C2, D1, D2) ∈ G6

1 and a collision-resistant hash function H, to
encrypt a message M ∈ G1, one computes, for random scalars α1, α2 ∈ Zp:(

U1 = [α1]G1, U2 = [α2]G2, U3 = [α1 + α2]G3,
E = M + [α1]H1 + [α2]H2, V = [α1](C1 + [u]D1) + [α2](C2 + [u]D2)

)
where u = H(U1, U2, U3, E) ∈ Zp. We may need to prove, as in [9], that
(U1, U2, U3, E, V) is a valid ciphertext. Since 2 secret variables (α1 and α2) are
involved in the 4 relations to be checked for ciphertext validity (on U1, U2, U3,
and V), our protocol only requires 2 multiplications by a scalar from the TPM.

Example III. In [23], the authors provided a group signature with message-
dependent opening (GS-DMO) scheme secure in the random oracle model. With
the public parameters (U, V,G,H) ∈ G4

1, to issue a signature σ, one has to prove
knowledge of α, β, x, δ1, δ2, δ3 ∈ Zp such that:(

T1 = [α]U, T2 = [β]V, T3 = [α+ β]H,
0 = [x]T1 − [δ1]U, 0 = [x]T2 − [δ2]V, 0 = [x]T5 − [δ3]G

)
where T1, T2, T3, T5 ∈ G1 are part of the signature σ. Since 6 secret variables
are involved in these relations, our protocol only requires 6 multiplications by a
scalar from the TPM.

3.5 Security Properties

The protocol described on Figure 2 may actually be divided in two parts: a proof
of knowledge between P (TPM + host) and V (verifier) and a proof of knowledge
between P (TPM) and V (host). We consider the security of each part in the
following theorems, which proofs are provided in Section 4.

Theorem 4. The protocol described on Figure 2 is a 3-move zero-knowledge
proof of knowledge of the witnesses α1, ..., αm between P (TPM + host) and V
(verifier), where the description of R is the unique auxiliary input.

The first theorem essentially shows that this proof of knowledge does not leak
any information outside the host. But one may wonder if the host learns a lot
of information. This is the goal of the second theorem below that says that the
host just learns {[αi]G̃}i, which is not enough to impersonate the TPM later.

Efficient Delegation of Zero-Knowledge Proofs of Knowledge 177

Theorem 5. The protocol described on Figure 2 is a 3-move zero-knowledge
proof of knowledge of the witnesses α1, ..., αm between P (TPM) and V (host),
where the auxiliary input contains the description of R and the additional values
{[αi]G̃}i.

3.6 Discussions

Honest Verifier Zero-Knowledge. As usual, this protocol is actually a zero-
knowledge proof of knowledge if the challenge c is selected from {0, 1}� and
the proof is repeated k times with � logarithmically bounded in the security
parameter and 2k� super-polynomial. If one wants the soundness in one execution
only, which implies 2� to be super-polynomial, then the protocol is no longer
zero-knowledge but honest-verifier zero-knowledge only.

Precomputation. As already noticed, if computations of a party are indepen-
dent of external values, they can be prepared and stored in advance. This is the
case of the elements Z̃j computed by the TPM.

For example let us consider the Sign protocol of the DAA scheme from [3,
page 32]. The TPM has to prove knowledge of its secret key s involved in two
relations (namely K = [s]J and W = [s]S). Since the authors use the standard
Schnorr’s protocol, this leads to 2 multiplications by a scalar for the TPM, one of
which (the one involving J) has to be computed online because J is determined
by the basename submitted by the verifier. Using our protocol, the TPM only
has to compute one multiplication by a scalar, and it can even be precomputed,
since the basis G̃ is a public parameter.

We even emphasize that these precomputations (the group elements Z̃j) can
even be sent to the host. The TPM just has to store the scalars kj , or even a
seed (and some index), as off-line pre-computed coupons [15].

Extra Inputs. In the Theorem 5, we allow the host to learn the elements [αj]G̃
for all j ∈ {1, . . . ,m}. In the DAA scheme considered above, this means that

the host can learn [s]G̃, which does not endanger the security properties.
Indeed, the non-frameability property of their scheme is based on the fact

that the adversary does not know s. However, recovering s from both [s]G and

[s]G̃ is not known to be much easier than recovering s from [s]G alone. As a
consequence, the non-frameability still holds.

However, one could argue that this additional information helps to break the
anonymity property. But as already remarked, one does not require to enforce
anonymity of the TPM with respect to the host, since the latter already knows
which TPM is inserted (or even sees the signature which is sent outside). And as
explained in [7], in DAA schemes and in server-aided version of group signatures,
the host is not adversarially-controlled in the anonymity experiment, but just
for the impersonation or frameability.

178 S. Canard, D. Pointcheval, and O. Sanders

More General Relations. The protocol described on Figure 2 only considers
relations in G1. But as already said, our protocol would work the same way if all
relations were in G2, by simply swapping the role of G1 and G2 in our protocol
described in Figure 2.

However, one could have to prove knowledge of variables involved in relations
in both G1 and G2. In such a case the host would need to know a commitment
in G2 (to compute the proof for relations in G1) and one in G1 (for the relations
in G2). The computational cost for the TPM would then depend on the type
of the pairing. For pairings of Type 1 or Type 2, the computational cost will
remain the same because of the isomorphism. For pairings of Type 3 (without
any efficient isomorphism), the TPM would have to compute the values in both
groups, and thus with a multiplication by a scalar in G1 and a multiplication
by a scalar in G2 for each variable involved in both G1 and G2. In any case, the
computational cost remains independent of the number of relations.

4 Security Proofs

We now formally prove the two above theorems. Completeness and soundness will
be similar for both, but the zero-knowledge property will involve two different
simulators.

4.1 Completeness

It follows from the construction explained in Section 3.1: The verifier checks
whether

e

⎛⎝∑
j∈Ji

[sj]Avi,j − [c]Vi, G̃

⎞⎠ ?=
∏
j∈Ji

e(Zi,j , B̃i,j).

Since, for all i ∈ {1, . . . , r}, Vi =
∑

j∈Ji
[αj]Avi,j and for all j ∈ {1, . . . ,m}, sj =

kj + cαj mod p, then
∑

j∈Ji
[sj]Avi,j =

∑
j∈Ji

[kj + cαj]Avi,j =
∑

j∈Ji
[kj]Avi,j +

[c]Vi, and one easily verifies that both sides are equal to e
(∑

j∈Ji
[kj]Avi,j , G̃

)
,

which proves the completeness.

4.2 Soundness

Let {Zi,j, B̃i,j}i,j be the values sent to the verifier at the first flow. If the ad-
versary (trying to impersonate P (TPM + host)) can answer successfully with
probability significantly greater than 1/2�, then it can send {sj}j and {s′j}j for
two different challenges c and c′: ∀i ∈ {1, . . . , r},

e

⎛⎝∑
j∈Ji

[sj]Avi,j − [c]Vi, G̃

⎞⎠ =
∏
j∈Ji

e(Zi,j , B̃i,j) = e

⎛⎝∑
j∈Ji

[s′j]Avi,j − [c′]Vi, G̃

⎞⎠ ,

which leads to e
(∑

j∈Ji
[sj − s′j]Avi,j − [c − c′]Vi, G̃

)
= 1GT and thus, from the

non-degeneracy of the pairing,
∑

j∈Ji
[sj − s′j]Avi,j − [c − c′]Vi = 0G1 . As a

Efficient Delegation of Zero-Knowledge Proofs of Knowledge 179

consequence, αj = (sj−s′j)/(c−c′) for j = 1, . . . ,m, we have Vi =
∑
j∈Ji

[αj]Avi,j
for i = 1, . . . , r. This is thus a solution to the DLRS R.

4.3 Zero-Knowledge w.r.t. the Host

For Theorem 5, we assume the host already knows (or can learn, as explained

above) Tj = [αj]G̃, ∀j ∈ {1, . . . ,m}. The simulator operates as follows:

– it first selects c
$← {0, 1}� and {sj}j $← Zp;

– it computes: Z̃j ← [sj]G̃ − [c]Tj , for all j ∈ {1, . . . ,m};
– it then outputs {Z̃j}j, and waits for the challenge and rewinds in case of

incorrect guess of c;
– it eventually answers {sj}j.

This is statistically indistinguishable from transcripts generated during a real
protocol between the TPM and the host. Since the initial guess for c is perfectly
hidden in {Z̃j}j , the probability of successful simulation is 1/2�, which is non-
negligible for a logarithmic value �. For a larger �, it remains honest-verifier
zero-knowledge.

4.4 Zero-Knowledge w.r.t. the Verifier

For Theorem 4, the verifier just knows the public parameters: G, G̃, {Aj}j , {Vi}.
The simulator operates as follows:

– it first selects c
$← {0, 1}� and {sj}j $← Zp;

– it computes Ki ←
∑
j∈Ji

[sj]Avi,j − [c]Vi, for all i ∈ {1, . . . , r};
– it additionally selects, for i ∈ {1, . . . , r} and j ∈ Ji, ui,j $← Z∗

p and Ui,j
$←

G1\{0G1}, such that
∑

j∈Ji
Ui,j = Ki (which conditions the last Ui,j);

– it then computes, for i ∈ {1, . . . , r} and j ∈ Ji, Zi,j = [u−1
i,j]Ui,j and B̃i,j =

[ui,j]G̃;

– it then outputs {Zi,j, B̃i,j}i,j, and waits for the challenge and rewinds in
case of incorrect guess of c;

– it eventually answers {sj}j.

A problem can occur with the above simulation if some elements get zero while
it is not allowed. But the large order of the groups makes this problem to happen
with negligible probability only. We exclude these bad cases in the following.

In order to prove the zero-knowledge property, we need to show that our
simulated tuples are indistinguishable from the tuples generated during a real
protocol, for the verifier. In a real protocol, the verifier sees: {Zi,j, B̃i,j}, c, {sj}j ,
where Zi,j = [b−1

i,j]Avi,j = [avi,j/bi,j]G for random non-zero scalars bi,j , and

B̃i,j = [bi,j](Z̃j + [ti,j]Ãi,j) = [bi,j/avi,j · (kjavi,j + ti,j
∏
k∈Ji

avi,k)]G̃ for random
scalars ti,j , such that

∑
j∈Ji

ti,j = 0 mod p.

180 S. Canard, D. Pointcheval, and O. Sanders

Let us denote u′
i,j = (bi,j/avi,j)·(kjavi,j +ti,j

∏
k∈Ji

avi,k), for i = 1, . . . , r and

j ∈ Ji. Then B̃i,j = [u′
i,j]G̃. Since the bi,j ’s are independent random scalars, the

u′
i,j ’s are also independent random scalars, and thus follow the same distribution

as the ui,j’s.
With such a notation and di =

∏
k∈Ji

avi,k , we have Zi,j = [(u′
i,j)

−1(kjavi,j +
ti,jdi)]G. Let us denote U ′

i,j = [kjavi,j +ti,jdi]G. Since the ti,j are random scalars
with the unique constraint that

∑
j∈Ji

ti,j = 0 mod p, for i = 1, . . . , r, then the
U ′
i,j ’s are random elements in G1 with the constraint that, for i = 1, . . . , r,∑
j∈Ji

U ′
i,j = [

∑
j∈Ji

kjavi,j]G =
∑
j∈Ji

[sj − cαj]Avi,j =
∑
j∈Ji

[sj]Avi,j − [c]Vi = Ki.

As a consequence, in the real protocol execution, for i ∈ {1, . . . , r} and j ∈ Ji,
Zi,j = [(u′

i,j)
−1]U ′

i,j and B̃i,j = [u′
i,j]G̃, where the u′

i,j ’s and U ′
i,j ’s follow the

same distributions as the ui,j ’s and Ui,j ’s generated by our simulator.

5 Delegating with Weaker Assumptions

5.1 Description

As said in Section 3.2, our first protocol required the knowledge of the elements
Ãi,j . In many applications, such as our first example, this is not a strong re-
quirement. However, in some other cases, this can be a problem. We thus now
provide another protocol for the same delegation from the TPM to the host,
with just a slight increase of the computations for the host, but without any ad-
ditional information. The main difference with our first protocol is that the Host
now needs to additionally compute the Hi’s which permit to blind the Ãi,j ’s.
This protocol is described on Figure 3 and the obtained efficiency is given in
Table 1.

5.2 Security Results

Theorem 6. The protocol described on Figure 3 is a 3-move zero-knowledge
proof of knowledge of the witnesses α1, ..., αm between P (TPM + host) and V
(verifier), where the description of R is the unique auxiliary input.

As for Theorems 4 and 5, the first theorem essentially shows that this proof does
not leak any information outside the host, and the next one says that the host
just learns {[αi]G̃}i, which is not enough to impersonate the TPM later.

Theorem 7. The protocol in Figure 3 is a 3-move zero-knowledge proof of
knowledge of the witnesses α1, ..., αm between P (TPM) and V (host), where the

auxiliary input contains the description of R and the additional values {[αi]G̃}i.

Efficient Delegation of Zero-Knowledge Proofs of Knowledge 181

TPM Host Verifier

∀j ∈ {1, . . . ,m}, ∀i ∈ {1, . . . , r},
kj

$← Zp, Z̃j ← [kj]G̃ (bi,j)j
$← (Z∗

p)
m, (ti,j)j

$← (Zp)
m

Hi ←
∑

j∈Ji
[ti,j]Avi,j

{Z̃j}j−−−−−−−−→ ∀i ∈ {1, . . . , r},∀j ∈ Ji,
Zi,j ← [b−1

i,j]Avi,j

B̃i,j ← [bi,j](Z̃j + [ti,j]G̃)

{Hi}i, {Zi,j , B̃i,j}i,j−−−−−−−−−−−→
c←−−−−−−−− c←−−−−−−−−−−− c

$← {0, 1}�
∀j ∈ {1, . . . ,m},

sj ← kj + cαj mod p
{sj}j−−−−−−−−→

{sj}j−−−−−−−−−−−→ ∀i ∈ {1, . . . , r}
e
(
Hi +

∑
j∈Ji

[sj]Avi,j − [c]Vi, G̃
)

?=
∏

j∈Ji
e(Zi,j , B̃i,j)

Setting: A pairing-friendly setting (p,G1,G2,GT , G, G̃, e) and a DLRS R in G1: for
A1, . . . , Aw, V1, . . . , Vr ∈ G1, and J1, . . . ,Jr ⊆ {1, . . . , w}, the TPM knows variables
α1, . . . , αm ∈ Zp such that Vi =

∑
j∈Ji

[αj]Avi,j , for i = 1, . . . , r.

Players’ inputs: The public input contains G, G̃, {Vi}i, {Ji}i, {Aj}j ; The TPM knows
{αi}i.

Fig. 3. Delegation of Proof of Knowledge of Witnesses for a DLRS (without additional
information)

5.3 Proofs of the Theorems

Completeness. The verifier checks, for i = 1, . . . , r, e(Hi +
∑

j∈Ji
[sj]Avi,j −

[c]Vi, G̃) =
∏
j∈Ji

e(Zi,j , B̃i,j), where

e

⎛⎝Hi +
∑
j∈Ji

[sj]Avi,j − [c]Vi, G̃

⎞⎠ = e

⎛⎝Hi +
∑
j∈Ji

[kj]Avi,j , G̃

⎞⎠
and ∏

j∈Ji

e(Zi,j, B̃i,j) =
∏
j∈Ji

e(Avi,j , Z̃j + [ti,j]G̃) =
∏
j∈Ji

e(Avi,j , [kj + ti,j]G̃)

= e

⎛⎝∑
j∈Ji

[ti,j]Avi,j +
∑
j∈Ji

[kj]Avi,j , G̃

⎞⎠ = e

⎛⎝Hi +
∑
j∈Ji

[kj]Avi,j , G̃

⎞⎠ .

Soundness. The proof is similar to the one in Section 4 since everything was
on the left-hand side of the verification equation, that remains the same plus a
constant Hi.

182 S. Canard, D. Pointcheval, and O. Sanders

5.4 Zero-Knowledge w.r.t. the Host

The protocol between the TPM and the host is the same as the first protocol,
and thus the security analysis is the same as in Section 4.

5.5 Zero-Knowledge w.r.t. the Verifier

As in Section 4, the verifier just knows the public parameters: G, G̃, {Aj}j , {Vi}.
The simulator operates as follows:

– it first selects c
$← {0, 1}� and {sj}j $← Zp;

– it computes Ki ←
∑
j∈Ji

[sj]Avi,j − [c]Vi, for all i ∈ {1, . . . , r};
– it additionally selects, for i ∈ {1, . . . , r} and j ∈ Ji, ui,j $← Z∗

p and Ui,j
$←

G1\{0G1}, with no constraint;
– it then computes, for i ∈ {1, . . . , r}, Hi =

∑
j∈Ji

Ui,j − Ki and for j ∈ Ji,
Zi,j = [u−1

i,j]Ui,j and B̃i,j = [ui,j]G̃;

– it then outputs {Hi}i, {Zi,j, B̃i,j}i,j , and waits for the challenge and rewinds
in case of incorrect guess of c;

– it eventually answers {sj}j.

As in Section 4, a problem can occur with the above simulation if some elements
gets zero while it is not allowed. But the large order of the groups makes this
problem to happen with negligible probability only. We exclude these bad cases
in the following analysis.

In a real protocol, the verifier sees: {Hi}i, {Zi,j, B̃i,j}, c, {sj}j, where Hi =∑
j∈Ji

[ti,j]Avi,j =
∑
j∈Ji

[ti,javi,j]G, for random scalars ti,j , Zi,j = [b−1
i,j]Avi,j =

[avi,j/bi,j]G for random non-zero scalars bi,j, and B̃i,j = [bi,j](Z̃j + [ti,j]Ãi,j)

= [bi,j/avi,j · (kjavi,j + ti,j
∏
k∈Ji

avi,k)]G̃.
Let us denote u′

i,j = (bi,j/avi,j)·(kjavi,j +ti,j
∏
k∈Ji

avi,k), for i = 1, . . . , r and

j ∈ Ji. Then B̃i,j = [u′
i,j]G̃. Since the bi,j ’s are independent random scalars, the

u′
i,j ’s are also independent random scalars, and thus follow the same distribution

as the ui,j’s.
With such a notation and di =

∏
k∈Ji

avi,k , we have Zi,j = [(u′
i,j)

−1(kjavi,j +
ti,jdi)]G. Let us denote U ′

i,j = [kjavi,j+ti,jdi]G. Since the ti,j are random scalars,
then the U ′

i,j ’s are random elements in G1. Eventually,∑
j∈Ji

U ′
i,j = [

∑
j∈Ji

kjavi,j + ti,jdi]G = Ki +
∑
j∈Ji

[ti,j]Avi,j = Ki +Hi.

As a consequence, in the real protocol execution, for i ∈ {1, . . . , r}, Hi =∑
j∈Ji

Ui,j − Ki, and for j ∈ Ji, Zi,j = [(u′
i,j)

−1]U ′
i,j and B̃i,j = [u′

i,j]G̃, where
the u′

i,j ’s and U ′
i,j ’s follow the same distributions as the ui,j ’s and Ui,j ’s gener-

ated by our simulator.

Acknowledgments. This work was supported in part by the French ANR-12-
INSE-0014 SIMPATIC Project.

Efficient Delegation of Zero-Knowledge Proofs of Knowledge 183

References

1. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003)

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993: 1st Conference on Computer
and Communications Security, pp. 62–73. ACM Press (November 1993)

3. Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N.P., Warinschi, B.: Anonymous
attestation with user-controlled linkability. Int. J. Inf. Sec. 12(3), 219–249 (2013)

4. Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get shorty via
group signatures without encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN
2010. LNCS, vol. 6280, pp. 381–398. Springer, Heidelberg (2010)

5. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Atluri,
V., Pfitzmann, B., McDaniel, P. (eds.) ACM CCS 2004: 11th Conference on Com-
puter and Communications Security, pp. 132–145. ACM Press (October 2004)

6. Brickell, E., Chen, L., Li, J.: Simplified security notions of direct anonymous attes-
tation and a concrete scheme from pairings. Int. J. Inf. Sec. 8(5), 315–330 (2009)

7. Canard, S., Coisel, I., De Meulenaer, G., Pereira, O.: Group signatures are suitable
for constrained devices. In: Rhee, K.-H., Nyang, D. (eds.) ICISC 2010. LNCS,
vol. 6829, pp. 133–150. Springer, Heidelberg (2011)

8. Canard, S., Coisel, I., Devigne, J., Gallais, C., Peters, T., Sanders, O.: Toward
generic method for server-aided cryptography. In: Qing, S., Zhou, J., Liu, D. (eds.)
ICICS 2013. LNCS, vol. 8233, pp. 373–392. Springer, Heidelberg (2013)

9. Cathalo, J., Libert, B., Yung, M.: Group encryption: Non-interactive realization
in the standard model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 179–196. Springer, Heidelberg (2009)

10. Chen, L., Page, D., Smart, N.P.: On the design and implementation of an efficient
daa scheme. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS
2010. LNCS, vol. 6035, pp. 223–237. Springer, Heidelberg (2010)

11. Delerablée, C., Pointcheval, D.: Dynamic fully anonymous short group signatures.
In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer,
Heidelberg (2006)

12. Feige, U., Fiat, A., Shamir, A.: Zero knowledge proofs of identity. In: Aho, A.V.
(ed.) STOC, pp. 210–217. ACM (1987)

13. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

14. Girault, M.: An identity-based identification scheme based on discrete logarithms
modulo a composite number (rump session). In: Damg̊ard, I.B. (ed.) EUROCRYPT
1990. LNCS, vol. 473, pp. 481–486. Springer, Heidelberg (1991)

15. Girault, M., Poupard, G., Stern, J.: On the fly authentication and signa-
ture schemes based on groups of unknown order. Journal of Cryptology 19(4),
463–487 (2006)

16. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: Sedgewick, R. (ed.) STOC, pp. 291–304.
ACM (1985)

17. Groth, J.: Fully anonymous group signatures without random oracles. In: Kuro-
sawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Hei-
delberg (2007)

184 S. Canard, D. Pointcheval, and O. Sanders

18. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

19. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

20. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Ca-
menisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer,
Heidelberg (2004)

21. Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revoca-
tion. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 571–589. Springer, Heidelberg (2012)

22. Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable group signature schemes
with constant costs for signing and verifying. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 463–480. Springer, Heidelberg (2009)

23. Ohara, K., Sakai, Y., Emura, K., Hanaoka, G.: A group signature scheme with un-
bounded message-dependent opening. In: Kefei, C., Qi, X., Weidong, Q., Ninghui,
L., Wen-Guey, T. (eds.) ASIACCS, pp. 517–522. ACM (2013)

24. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. Journal of Cryptology 13(3), 361–396 (2000)

25. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

26. Shacham, H.: A cramer-shoup encryption scheme from the linear assumption and
from progressively weaker linear variants. IACR Cryptology ePrint Archive 2007:74
(2007)

Rounding and Chaining LLL: Finding Faster Small
Roots of Univariate Polynomial Congruences�

Jingguo Bi1, Jean-Sébastien Coron2, Jean-Charles Faugère3,4,5,
Phong Q. Nguyen6,1, Guénaël Renault4,3,5, and Rina Zeitoun7,4,3,5

1 Tsinghua University, Institute for Advanced Study, Beijing 100084, China
jingguobi@mail.tsinghua.edu.cn

2 University of Luxembourg
jean-sebastien.coron@uni.lu

3 INRIA, POLSYS, Centre Paris-Rocquencourt, F-78153, Le Chesnay, France
4 Sorbonne Universités, UPMC Univ Paris 06, Équipe POLSYS, LIP6 UPMC, F-75005,

Paris, France
5 CNRS, UMR 7606, LIP6 UPMC, F-75005, Paris, France

jean-charles.faugere@inria.fr,
guenael.renault@lip6.fr

6 INRIA, France
http://www.di.ens.fr/˜pnguyen

7 Oberthur Technologies, 420 rue d’Estienne d’Orves, CS 40008, 92705 Colombes, France
r.zeitoun@oberthur.com

Abstract. In a seminal work at EUROCRYPT ’96, Coppersmith showed how to
find all small roots of a univariate polynomial congruence in polynomial time:
this has found many applications in public-key cryptanalysis and in a few security
proofs. However, the running time of the algorithm is a high-degree
polynomial, which limits experiments: the bottleneck is an LLL reduction of a
high-dimensional matrix with extra-large coefficients. We present in this paper the
first significant speedups over Coppersmith’s algorithm. The first speedup is based
on a special property of the matrices used by Coppersmith’s algorithm, which al-
lows us to provably speed up the LLL reduction by rounding, and which can also
be used to improve the complexity analysis of Coppersmith’s original algorithm.
The exact speedup depends on the LLL algorithm used: for instance, the speedup
is asymptotically quadratic in the bit-size of the small-root bound if one uses the
Nguyen-Stehlé L2 algorithm. The second speedup is heuristic and applies when-
ever one wants to enlarge the root size of Coppersmith’s algorithm by exhaustive
search. Instead of performing several LLL reductions independently, we exploit
hidden relationships between these matrices so that the LLL reductions can be
somewhat chained to decrease the global running time. When both speedups are
combined, the new algorithm is in practice hundreds of times faster for typical
parameters.

Keywords: Coppersmith’s Algorithm, Small Roots of Polynomial Equations,
LLL, Complexity, Speedup, RSA.

� During the preparation of this paper, J. Bi and P. Q. Nguyen were supported in part by NSFC’s
Key Project Grant 61133013, China’s 973 Program, Grant 2013CB834205, and J. Bi was
also supported by NSFC Grant 61272035 and China Postdoctoral Science Foundation Grant
2013M542417. Part of this work was also supported by the HPAC grant (ANR-11-BS02-013)
and by the EXACTA grant (ANR-09-BLAN-0371-01) of the French National Research Agency.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 185–202, 2014.
c© International Association for Cryptologic Research 2014

186 J. Bi et al.

1 Introduction

At EUROCRYPT ’96, Coppersmith [7,6,8] showed how to find efficiently all small
roots of polynomial equations (modulo an integer, or over the integers). The simplest
(and perhaps most popular) result is the following: Given an integer N of unknown
factorization and a monic polynomial f (x) ∈ Z[x] of degree δ , Coppersmith’s lattice-
based algorithm finds all integers x0 ∈Z such that f (x0)≡ 0(modN) and |x0| ≤ N1/δ in
time polynomial in logN and δ . This has many applications in public-key cryptanalysis
(e.g. attacking special cases of RSA and factoring with a hint), but also in a few security
proofs (such as in RSA-OAEP [22]). Accordingly, Coppersmith’s seminal work has
been followed up by dozens of articles (see May’s survey [14] for references), which
introduced new variants, generalizations, simplifications and applications.

All these small-root algorithms are based on the same idea of finding new polyno-
mial equations using lattice basis reduction: it reduces the problem of finding small
roots to finding LLL-short vectors in a lattice. This can theoretically be done in poly-
nomial time using the LLL algorithm [13], but is by no means trivial in practice: the
asymptotic running time is a high-degree polynomial, because the lattice is huge. More
precisely, May’s recent survey [14] gives for Coppersmith’s lattice-based algorithm the
complexity upper bound O(δ 5 log9 N) using the Nguyen-Stehlé L2 algorithm [18] as the
reduction algorithm. A careful look gives a slightly better upper bound: asymptotically,
one may take a matrix of dimension O(logN), and bit-size O((log2 N)/δ), resulting in
a complexity upper bound O((log9 N)/δ 2) using L2. In typical applications, δ is small
≤ 9 but logN is the bit-size of an RSA modulus, i.e. at least 1024 bits, which makes
the theoretical running time daunting: log9 N is already at least 290. For more powerful
variants of Coppersmith’s algorithm, the running time is even worse, because the lattice
dimension and/or the bit-size increase: for instance, Coron [9] gives the upper bound
O(log11 W) for finding small roots over bivariate equations over the integers (W plays
a role similar to N in the univariate congruence case), using L2.

The bottleneck of all Coppersmith-type small-root algorithms is the LLL reduction.
Despite considerable attention, no significant improvement on the running time has
been found, except that LLL algorithms have improved since [8], with the appearance
of L2 [18] and L̃1 [20]. And this issue is reflected in experiments (see [10]): in practice,
one settles for sub-optimal parameters, which means that one can only find small roots
up to a bound lower than the asymptotic bound. To illustrate this point, the celebrated
Boneh-Durfee attack [1] on RSA with short secret exponent has the theoretical bound
d ≤ N1−1/

√
2 ≈ N0.292, but the largest d in the Boneh-Durfee experiments is only d ≈

N0.280 with a 1000-bit N, and much less for larger N, e.g. d ≈ N0.265 for 4000-bit N.

OUR RESULTS. We present two speedups over Coppersmith’s algorithm for finding
small roots of univariate polynomial congruences, which can be combined in practice.

The first speedup is provable and depends on the LLL algorithm used: if one uses
L2 [18], the total bit-complexity is upper bounded by O(log7 N), which gives a speedup
Θ((log2 N)/δ 2) quadratic in the bit-size of the small-root bound N1/δ ; and if one uses
L̃1, the total complexity is upper bounded by O(log6+ε N) for any ε > 0 using fast inte-
ger arithmetic, which gives a speedup O((logN)/δ) linear in the bit-size of the small-
root bound N1/δ . This speedup comes from combining LLL reduction with rounding:

Rounding and Chaining LLL: Finding Faster Small Roots 187

instead of LLL-reducing directly a matrix with huge entries, we suitably round the coef-
ficients before LLL reduction to make them much smaller, and show that the LLL output
allows to derive sufficiently short vectors in the original lattice. In practice, this means
that for any instantiation of Coppersmith’s algorithm achieving a small-root bound X ,
we can drastically reduce the size of the coefficients of the matrix to be LLL-reduced
and achieve essentially the same small-root bound: asymptotically, the bit-size is re-
duced by a factor (logN)/δ , which implies that the speedup is quadratic when using
the popular L2 algorithm, or quasi-linear using the more theoretical L̃1 algorithm. This
rounding strategy is very natural, but it is folklore that it fails in the worst case: when an
arbitrary non-singular matrix is rounded, it may even become singular, and the situation
is worse for LLL reduction. However, we show that a well-chosen rounding strategy
surprisingly works for the special matrices used by Coppersmith’s algorithm: this is
because the matrices to be reduced are triangular matrices whose diagonal entries are
reasonably balanced, which can be exploited. Interestingly, this peculiar property can
also be used to improve the complexity upper bound of Coppersmith’s original algo-
rithm, without changing the algorithm: if one uses L̃1 [20], one can obtain the same
complexity upper bound as in our rounding-based algorithm, up to constants.

Our second speedup is heuristic and applies whenever one wants to enlarge the root
size X of Coppersmith’s algorithm by exhaustive search: it is well-known that any root
size X can be extended to mX by applying m times the algorithm on “shifted” polynomi-
als. This enlargement is necessary when one wants to go beyond Coppersmith’s bound
N1/δ , but it is also useful to optimize the running time below N1/δ : beyond a certain
root size below N1/δ , it is folklore that it is faster to use exhaustive search than Cop-
persmith’s algorithm with larger parameters. In this setting, one applies Coppersmith’s
algorithm with the same modulus N but different polynomials which are all “shifts” of
the initial polynomial f (x): ft(x) = f (X · t + x) for varying t, where 0 � t < N1/δ/X .
We show that this creates hidden relationships between the matrices to be LLL reduced,
which can be exploited in practice: instead of performing LLL reductions independently
of say, matrices B1 and B2, we chain the LLL reductions. More precisely, after LLL re-
ducing B1 into a reduced basis C1, we reduce a matrix of the form C1 × P for some
well-chosen matrix P, instead of the matrix B2. And this process can be iterated to
drastically reduce the global running time.

When both speedups are combined, the new algorithm is in practice hundreds of
times faster for typical parameters. Finally, our work helps to clarify the asymptotic
complexity of Coppersmith’s algorithm for univariate polynomial congruences. Despite
the importance of the algorithm, it seems that the dependence on the polynomial degree
δ was not well-understood: as previously mentioned, May’s survey [14] gave an upper
bound including a factor δ 5, and Coppersmith’s journal article [8] gave an upper bound
growing exponentially in δ . Our final complexity upper bound is independent of δ : it
only depends on the bit-size of the modulus N.

Surprisingly, our improvements only apply for now to Coppersmith’s algorithm for
finding all small roots of univariate polynomial equations, and not to more sophis-
ticated variants such as the gcd generalization used for factoring with a hint. This
seems to be the first significant difference between Coppersmith’s algorithm and its

188 J. Bi et al.

gcd generalization. It is an interesting open problem to obtain significant speedup for
other small-root algorithms.

RELATED WORK. Our first speedup is based on rounding. Rounding has been used
in lattice reduction before: for instance, Buchmann [2] used rounding to rigorously
estimate when a computation with real lattices can be alternatively performed using
integer bases; and the L̃1 [20] algorithm is also based on rounding. However, it seems
that none of the previous work identified the special structure of matrices which we
exploit. Our second speedup is based on chaining. Chaining has also been used in lattice
reduction before, e.g. in the MIMO context [15], but our technique and analysis seem
to be a bit different. Thus, both rounding and chaining are folklore strategies, but our
work seems to be their first application to Coppersmith’s algorithm.

ROADMAP. In Sect. 2, we recall background on lattices and Coppersmith’s small-root
algorithm. In Sect. 3, we present and analyze our first speedup of Coppersmith’s algo-
rithm: rounding LLL. In Sect. 4, we present and analyze our second speedup of Cop-
persmith’s algorithm: chaining LLL. In Sect. 5, we present experimental results with
both speedups. Finally, we discuss the case of other small-root algorithms in Sect. 6.

We refer the reader to the full Eprint version of this paper for further details, espe-
cially for all missing proofs.

2 Background and Notation

We use row representation for matrices: vectors are row vectors denoted by bold lower-
case letters, matrices are denoted by uppercase letters, and their coefficients are denoted
by lowercase letters. All logarithms are in base 2. Let ‖‖ and 〈,〉 be the Euclidean norm
and inner product of Rn. The Euclidean norm is naturally extended to polynomials
as follows: if f (x) = ∑n

i=0 fixi ∈ R[x], then ‖ f ‖ = (∑0≤i≤n f 2
i)

1/2. We use the follow-

ing matrix norms: if M = (mi, j) is an n × m matrix, then ‖M‖2 = max‖x‖�=0
‖xM‖
‖x‖ , and

‖M‖∞ = max1≤ j≤m ∑n
i=1 |mi, j|. Then: ‖M‖2 ≤

√
n‖M‖∞. If x ∈ R, we denote by �x
 a

closest integer to x.

2.1 Lattices

LATTICES. A lattice L is a discrete subgroup of Rm: there exist n(≤ m) linearly in-
dependent vectors b1, . . . ,bn ∈ Rm s.t. L is the set L (b1, . . . ,bn) of all integral linear
combinations of the bi’s. Here, we mostly consider full-rank lattices, i.e. n = m. The
(co-)volume of L is vol(L) =

√
det(BBt) for any basis B of L, where Bt denotes B’s

transpose. If B is square, then vol(L) = |detB|, and if B is further triangular, then vol(L)
is simply the product of the diagonal entries of B in absolute value.

GRAM-SCHMIDT ORTHOGONALIZATION. Let b1, · · · ,bn ∈Rm be linearly independent
vectors. The Gram-Schmidt orthogonalization is the family (b�

1, . . . ,b
�
n) defined recur-

sively as: b�
1 = b1 and for i ≥ 2, b�

i is the component of the vector bi which is or-
thogonal to the linear span of b1, · · · ,bi−1. Then b�

i = bi − ∑i−1
j=1 μi, jb�

j , where μi, j =

〈bi,b�
j 〉/‖b�

j‖2 for 1 ≤ j < i ≤ n.

Rounding and Chaining LLL: Finding Faster Small Roots 189

SIZE-REDUCTION. A basis B = (b1, · · · ,bn) is size-reduced if its Gram-Schmidt or-
thogonalization satisfies |μi, j| ≤ 1/2, for all 1 ≤ j < i ≤ n. There is a classical (elemen-
tary) algorithm which size-reduces a basis (b1, . . . ,bn) of an integer lattice L ⊆ Zm, in
polynomial time, without ever modifying the Gram-Schmidt vectors b�

i : this algorithm
is included in the original LLL algorithm [13] (e.g. it is the sub-algorithm RED in the
description of LLL in [4]). In the special case that the input basis is (square) lower-
triangular, the running-time of this size-reduction algorithm is O(n3b2) without fast in-
teger arithmetic, and n3Õ(b) using fast-integer arithmetic, where b=max1≤i≤n log‖bi‖.

LLL AND SHORT LATTICE VECTORS. Coppersmith’s small-root method requires the
ability to efficiently find reasonably short vectors in a lattice. This can be achieved by the
celebrated LLL algorithm [13] which outputs a non-zero v ∈ L s.t. ‖v‖ ≤ 2

n−1
4 vol(L)1/n.

Nguyen and Stehlé [18] introduced the L2 algorithm, a faster variant of LLL which can
output similarly short vectors in time O(n4m(n+ b)b) without fast integer arithmetic.
The recent L̃1 algorithm by Novocin et al. [20] can output similarly short vectors for a
full-rank lattice in time O(n5+ε b+ nω+1+εb1+ε) for any ε > 0 using fast integer arith-
metic, where ω ≤ 2.376 is the matrix multiplication complexity constant. However, this
algorithm is considered to be mostly of theoretical interest for now: L̃1 is currently not
implemented anywhere, as opposed to L2. When assessing the complexity of LLL re-
duction, it is therefore meaningful to mention two complexities: one (closer to the real
world) using L2 without fast integer arithmetic, and another using L̃1 using fast integer
arithmetic and fast linear algebra.

The complexity upper bound of LLL reduction can sometimes be decreased by some
polynomial factor. In particular, when the Gram-Schmidt norms of the input basis are
balanced, the LLL algorithm requires fewer loop iterations than in the worst case. More
precisely, [11, Th. 1.1] showed that the classical upper bound O(n2b) on the number of

iterations can be replaced by O
(

n2 log max‖b�
i ‖

min‖b�
i ‖

)
.

2.2 Coppersmith’s Method for Finding Small Roots

At EUROCRYPT ’96, Coppersmith [7,6,8] showed how to find efficiently all small
roots of polynomial equations (modulo an integer, or multivariate over the integers),
which is surveyed in [14,16]. We now review the simplest result, following the classical
Howgrave-Graham approach [12]: In Sect. 6, we will discuss the main variants of this
result.

Theorem 1 (Coppersmith [7,8]). There is an algorithm which, given as input an inte-
ger N of unknown factorization and a monic polynomial f (x) ∈ Z[x] of degree δ and
coefficients in {0, . . . ,N − 1}, outputs all integers x0 ∈ Z such that f (x0) ≡ 0 (mod N)
and |x0| ≤ N1/δ in time polynomial in logN and δ .

In all the paper, we consider polynomials verifying 2 < δ + 1 < (logN)/2 since other
cases are trivial. Furthermore, Coppersmith’s algorithm does not directly achieve the
bound N1/δ : indeed, it finds efficiently all roots up to some bound X (<N1/δ) depending
on an integer parameter h ≥ 2, chosen asymptotically to be h = O((logN)/δ). When
h is sufficiently large, then X becomes sufficiently close to N1/δ so that one can find
all roots up to N1/δ . However, it is well-known that the bound X = N1/δ should not be

190 J. Bi et al.

reached by taking such a large h. Instead, it is faster to use a smaller h, and perform
exhaustive search on the most significant bits of the solutions (see Section 4 for more
details).

We now explain Coppersmith’s algorithm. The core idea consists in reducing the
problem to solving univariate polynomial equations over the integers, by transforming
modular roots into integral roots. More precisely, it constructs a polynomial g(x)∈ Z[x]
such that: if x0 ∈ Z is such that f (x0) ≡ 0 (modN) and |x0| ≤ X , then g(x0) = 0 and can
be solved easily over Z. To do so, it uses the following elementary criterion:

Lemma 1 (Howgrave-Graham [12]). Let g(x) ∈ Z[x] be a polynomial with at most n
non-zero coefficients. Let M be an integer ≥ 1. Assume that ‖g(xX)‖ < M√

n for some

X ∈ R. If x0 ∈ Z is such that g(x0) ≡ 0 (mod M) and |x0| ≤ X, then g(x0) = 0.

Lemma 1 will be used with M = Nh−1 and g(x) found by lattice reduction. Let h ≥ 2 be
an integer and define the following family of n = hδ polynomials:

gi, j(x) = (x) jNh−1−i f i(x) 0 ≤ i < h,0 ≤ j < δ (1)

These n polynomials satisfy: if f (x0) ≡ 0 (mod N) for some x0 ∈ Z, then gi, j(x0) ≡
0 (mod Nh−1). In order to apply Lemma 1 for a bound X ≥ 1 to be determined later,
Coppersmith’s algorithm constructs the n-dimensional lattice L spanned by the rows of
the n × n matrix B formed by the n coefficient vectors of gi, j(xX), where the polynomi-
als are ordered by increasing degree (e.g. in the order (i, j) = (0,0),(0,1), · · · ,(0,δ −
1),(1,0), · · ·(h − 1,δ − 1)) and the coefficients are ordered by increasing monomial
degree: the first coefficient is thus the constant term of the polynomial. The matrix B is
lower triangular, and its n diagonal entries are:(

Nh−1,Nh−1X , . . . ,Nh−1Xδ−1, . . . ,N0Xδh−δ , . . . ,N0Xδh−2,N0Xδh−1
)
, (2)

because f (x) is monic. In other words, the exponent of X increases by one at each row,
while the exponent of N decreases by one every δ rows. It follows that vol(L) = det(B)=

N
1
2 n(h−1)X

1
2 n(n−1). The LLL algorithm is applied to the matrix B, which provides a non-

zero polynomial v(x) ∈ Z[x] such that ‖v(xX)‖ ≤ 2
n−1

4 vol(L)
1
n = 2

n−1
4 N

h−1
2 X

n−1
2 . It fol-

lows that the polynomial v(x) satisfies Lemma 1 with M = Nh−1 and g(x) = v(x) if

X ≤ 1√
2
N

h−1
n−1 (n+1)− 1

n−1 . The dimension of B is n = hδ , and the entries of the matrix B

have bit-size O(h logN), therefore the running time of L2 without fast integer arithmetic
is O(δ 6h7 logN+δ 5h7 log2 N), which is O(δ 5h7 log2 N) because δ +1< (logN)/2, and
the running time of L̃1 is O(h6+ε δ 5+ε logN + hω+2+2εδ ω+1+ε log1+ε N) for any ε > 0
using fast integer arithmetic and L̃1, where ω ≤ 2.376 is the matrix multiplication com-
plexity constant. We obtain the following concrete version of Th. 1:

Corollary 2. Coppersmith’s algorithm of Th. 1 with h = 	logN/δ
 and X =

	2−1/2N
h−1
n−1 (n+ 1)− 1

n−1
 runs in time O((log9 N)/δ 2) without fast integer arithmetic
using L2, or O((log7+ε N)/δ) for any ε > 0 using fast integer arithmetic and L̃1.

Sketch of Proof: One can show that the cost of the root computation step performed at
the end of Coppersmith’s algorithm is less than the one of the LLL reduction. More-
over the number of loop iterations performed by Coppersmith’s algorithm to find all

Rounding and Chaining LLL: Finding Faster Small Roots 191

solutions smaller than N1/δ by exhaustive search is at most O(N1/δ/X) which can
be shown to be O(1). Thus, from the analysis preceding Cor. 2, the asymptotic com-
plexity of Coppersmith’s algorithm is the one of one call to LLL (L2 or L̃1), with
h = 	logN/δ
. ��

We will later see that the complexity upper bounds of Cor. 2 with L2and L̃1can ac-
tually be decreased. Indeed, we will uncover a special property of Coppersmith’s ma-

trix (see Lemma 2), which implies that O
(

max‖b�
i ‖

min‖b�
i ‖

)
= O(N), so that the number of

loop iterations O
(

n2 log
max‖b�

i ‖
min‖b�

i ‖

)
on the input basis used by Coppersmith’s algorithm

is O(n2 logN) instead of the all-purpose bound O(n2h logN) [11]. By taking this obser-
vation into account, the upper bounds O((log8 N)/δ) and O(log6+ε N) are respectively
achieved for the L2and L̃1algorithms. In the sequel, we present another method improv-
ing Cor. 2, based on the same special property of Coppersmith’s matrix, and which can
be easily implemented.

3 Speeding Up Coppersmith’s Algorithm by Rounding

Our first main result is the following speedup over Coppersmith’s algorithm:

Theorem 3. There is an algorithm (namely, Alg. 1) which, given as input an integer
N of unknown factorization and a monic polynomial f (x) ∈ Z[x] of degree δ and co-
efficients in {0, . . . ,N − 1}, outputs all integers x0 ∈ Z such that f (x0) ≡ 0 (mod N)
and |x0| ≤ N1/δ in time O(log7 N) without fast integer arithmetic using the L2 algo-
rithm [18], or O(log6+ε N) for any ε > 0 using fast integer arithmetic and the L̃1 algo-
rithm [20] in Step 7.

3.1 Rounding for Coppersmith’s Algorithm

The bottleneck of Coppersmith’s algorithm is the LLL reduction of the matrix B, whose
dimension is n = hδ , and whose entries have bit-size O(h logN). Asymptotically, we
have h = O(logN/δ) so the dimension is O(logN) and the bit-size is O((log2 N)/δ).
We will modify Coppersmith’s algorithm in such a way that we only need to LLL-
reduce a matrix of the same dimension but with much smaller entries, namely bit-length
O(logN).

To explain the intuition behind our method, let us first take a closer look at the matrix
B and uncover some of its special properties:

Lemma 2. Let X ≤ N1/δ . The maximal diagonal coefficient of Coppersmith’s matrix B

is Nh−1Xδ−1 < Nh, the minimal diagonal coefficient is Xhδ−δ ≤ Nh−1, and Nh−1Xδ−1

Xhδ−δ ≥
N1−1/δ if h ≥ 2. Furthermore, if X ≥ Ω(N

h−1
n−1), h ≥ 2 and hδ =O(logN) then Xhδ−δ ≥

Nh−O(1).

Proof. The ratio Nh−1Xδ−1

Xhδ−δ is exactly Nh−1/Xhδ−2δ+1 which is clearly ≥ N1−1/δ if X ≤
N1/δ and h ≥ 2. Now, let X0 =N

h−1
n−1 so that X =Ω(X0). We have N1/δ/N

h−1
n−1 ≤ N1/(hδ−1),

192 J. Bi et al.

therefore X0 ≥ N1/δ−1/(hδ−1) = N(hδ−1−δ)/(δ (hδ−1)). Hence Xδ
0 ≥ N(hδ−1−δ)/(hδ−1) =

N1−δ/(hδ−1) and thus Xhδ−δ
0 > Nh−2. Since X = Ω(X0) and hδ = O(logN), we obtain

Xhδ−δ ≥ Nh−O(1) . ��
This implies that the diagonal coefficients of B are somewhat balanced: the matrix

B is not far from being reduced. In fact, the first row of B has norm Nh−1 which is
extremely close to the bound Nh−1/

√
n required by Lemma 1: intuitively, this means

that it should not be too difficult to find a lattice vector shorter than Nh−1/
√

n.
To take advantage of the structure of B, we first size-reduce B to make sure that

the subdiagonal coefficients are smaller than the diagonal coefficients. Then we round
the entries of B so that the smallest diagonal coefficient becomes 	c
 where c > 1 is a
parameter. More precisely, we create a new n × n triangular matrix B̃ = (b̃i, j) defined
by:

B̃ =
⌊

cB/Xhδ−δ
⌋

(3)

By Lemma 2, we have: bi,i ≥ Xhδ−δ and b̃i,i ≥ 	c
 . We LLL-reduce the rounded ma-
trix B̃ instead of B: let ṽ = xB̃ be the first vector of the reduced basis obtained. If we
applied to B the unimodular transformation that LLL-reduces B̃, we may not even ob-
tain an LLL-reduced basis in general. However, because of the special structure of B, it
turns out that v = xB is still a short non-zero vector of L, as shown below:

Lemma 3. Let B = (bi, j) be an n × n lower-triangular matrix over Z with strictly pos-
itive diagonal. Let c > 1. If B̃ = 	cB/minn

i=1 bi,i
 and xB̃ is the first vector of an LLL-

reduced basis of B̃, then 0 < ‖xB‖ <
(
n‖B̃−1‖2 + 1

)
2

n−1
4 det(B)

1
n .

Proof. Let α = minn
i=1 bi,i/c, so that B̃ = 	B/α
. Define the matrix B̄ = αB̃ whose

entries are b̄i, j = α b̃i, j. Then 0 ≤ bi, j − b̄i. j < α , therefore ‖B − B̄‖2 < nα . We have:

‖xB‖ ≤ ‖x(B − B̄)‖+ ‖xB̄‖ ≤ ‖x‖ × ‖B − B̄‖2 +α‖xB̃‖ < n‖x‖α +α‖xB̃‖.

Let ṽ = xB̃. Then ‖x‖ ≤ ‖ṽ‖‖B̃−1‖2, and we obtain ‖xB‖ <
(
n‖B̃−1‖2 + 1

)
α‖ṽ‖. The

matrix B̃ is lower-triangular with all diagonal coefficients strictly positive because c > 1.
Since ṽ = xB̃ is the first vector of an LLL-reduced basis of B̃, and B̃ is non-singular,
xB �= 0 and we have:

α‖ṽ‖ ≤ α2
n−1

4 det(B̃)
1
n = 2

n−1
4 det(B̄)

1
n ≤ 2

n−1
4 det(B)

1
n ,

where we used the fact that matrices B̃, B̄ and B are lower-triangular. The result follows
by combining both inequalities. ��

If xB is sufficiently short, then it corresponds to a polynomial of the form v(xX)
for some v(x) ∈ Z[x] satisfying Lemma 1, and the rest proceeds as in Coppersmith’s
algorithm. The whole rounding algorithm is given in Alg. 1, which will be shown to
admit a lower complexity upper-bound than Coppersmith’s algorithm to compute all
roots up to N1/δ .

Rounding and Chaining LLL: Finding Faster Small Roots 193

Algorithm 1. Coppersmith’s Method with Rounding
Input: Two integers N ≥ 1 and h ≥ 2, a univariate degree-δ monic polynomial f (x) ∈ Z[x] with

coefficients in {0, . . . ,N − 1} and 2 < δ +1 < (logN)/2.
Output: All x0 ∈ Z s.t. |x0| ≤ N1/δ and f (x0) ≡ 0 mod N.
1: Let n = hδ , X the bound given in Th. 4, c = (3/2)n and t = 0.
2: while Xt < N1/δ do
3: ft(x) = f (Xt +x) ∈ Z[x].
4: Build the n× n matrix B whose rows are the gi, j(xX)’s defined by (1).
5: Size-reduce B without modifying its diagonal coefficients.
6: Compute the matrix B̃ = 	cB/Xhδ−δ
 obtained by rounding B.
7: Run the L2 algorithm [18] on the matrix B̃.
8: Let ṽ = xB̃ be the first vector of the reduced basis obtained.
9: The vector v = xB corresponds to a polynomial of the form v(xX) for some v(x) ∈ Z[x].

10: Compute all the roots x′
0 of the polynomial v(x) ∈ Z[x] over Z.

11: Output x0 = x′
0 +Xt for each root x′

0 which satisfies ft(x′
0) ≡ 0 (mod N) and |x′

0| ≤ X .
12: t ← t +1.
13: end while

We now justify the bound X given in Alg. 1. In order for Lemma 3 to be useful, we
need to exhibit an upper bound for ‖B̃−1‖2 :

Lemma 4. Let B = (bi, j) be an n × n size-reduced lower-triangular matrix over Z
with strictly positive diagonal. Let c > 1. If B̃ = 	cB/minn

i=1 bi,i
, then ‖B̃−1‖2 ≤
√

n
(3c−2

2c−2

)n−1
/	c
.

By combining Lemmas 3 and 4, we obtain the following small-root bound X for
Alg. 1:

Theorem 4. Given as input two integers N ≥ 1 and h ≥ 2, a rational c > 1, and a
univariate degree-δ monic polynomial f (x) ∈ Z[x] with coefficients in {0, . . . ,N − 1},
one loop of Alg. 1, corresponding to t < N1/δ/X, outputs all x0 = Xt + x′

0 ∈ Z s.t.
|x′

0| ≤ X and f (x0) = 0 mod N, where n = hδ and

X =

⌊
N

h−1
n−1 κ−2/(n−1)

1√
2n1/(n−1)

⌋
with κ1 = n3/2

(
3c − 2
2c − 2

)n−1

	c
−1 + 1 .

Proof. Combining Lemma 4 with Lemma 3 where det(B)1/n = N
h−1

2 X
n−1

2 , we get 0 <

‖xB‖ < κ12
n−1

4 N
h−1

2 X
n−1

2 . It follows that Lemma 1 is satisfied with M = Nh−1 and
v(xX) corresponding to xB if ‖xB‖ ≤ Nh−1/

√
n. This gives the following condition on

the bound X : X ≤ N(h−1)/(n−1)2−1/2n−1/(n−1)κ−2/(n−1)
1 . ��

The bound X of Th. 4 is never larger than that of Cor. 2. However, if one selects
c ≥ (3/2)n, then the two bounds are asymptotically equivalent. This is why Alg. 1 uses
c = (3/2)n.

3.2 Running Time: Proof of Theorem 3

The original matrix B had entries whose bit-size was O(h logN). Let β = NhXδ−1

Xhδ−δ be the
ratio between the maximal diagonal coefficient and the minimal diagonal coefficient

194 J. Bi et al.

of B̃. If B is size-reduced, the entries of the new matrix B̃ =
⌊
cB/Xhδ−δ⌋ are upper

bounded by cβ .

By Lemma 2, we know that if h ≥ 2, then β ≥ N1−1/δ , and if further X ≥ Ω(N
h−1
n−1)

and hδ = O(logN), then β = NO(1). Hence, the bit-size of B̃’s entries is ≤ logc +
O(logN). And the dimension of B̃ is the same as B, i.e. hδ . It follows that the run-
ning time of L2 in Step 7 is O(δ 6h6(logc+ logN)+ δ 5h5(logc+ logN)2) without fast
integer arithmetic, which is O(δ 5h5(logc+ logN)2 because δ < (logN)/2 − 1, and
is O((hδ)5+ε(logc+ logN) + (hδ)ω+1+ε(logc+ logN)1+ε) for any ε > 0 using fast
integer arithmetic and L̃1 in Step. 7, where ω ≤ 2.376 is the matrix multiplication com-
plexity constant.

This leads to our main result (Th. 3), a variant of Coppersmith’s algorithm with im-
proved complexity upper bound. More precisely, as in Coppersmith’s algorithm, one
can easily prove that the number of loops performed in Alg. 1 is at most constant. In-

deed, when c= (3/2)n, then κ
−2

n−1
1 converges to 1. This means that the bound X achieved

by Th. 4 is asymptotically equivalent to the one achieved by Cor. 2, which completes
the proof of Th. 3, because logc = O(logN) when c = (3/2)n.

Remark: Surprisingly, Lemma 2 also allows to prove that the L̃1algorithm, when care-
fully analyzed using the balancedness of the Gram-Schmidt norms, already achieves
the complexity bound O(log6+ε N) given in Th. 3. Indeed, using Th. 6 from [20] which
gives the L̃1complexity upper bound O(n3+ετ) = O(log3+ε Nτ) where τ is the to-
tal number of iterations, and combining it with [11] applied to Coppersmith’s matrix
(Lemma 2), which gives τ = O(n2 logN) = O(log3 N), allows to retrieve the above
complexity O(log6+ε N). However, we propose in this paper a direct improvement of
Coppersmith’s method based on elementary tools and which can therefore be easily
implemented on usual computer algebra systems (e.g. Sage, Magma, NTL) with imme-
diate practical impact on cryptanalyses. Furthermore, we are not aware of any imple-
mentation of the L̃1algorithm for the time being, which makes a practical comparison
tricky.

In the sequel, we present a method that allows to speed up the exhaustive search
which is performed to reach Coppersmith’s bound N1/δ .

4 Chaining LLL

As recalled in Section 2.2, in order to find all solutions which are close to the bound
N1/δ , one should not use a very large dimension (i.e. n = O(logN)). Instead, it is better
to use a lattice of reasonable dimension and to perform exhaustive search on the most
significant bits of x until finding all solutions. Namely, we consider polynomials ft(x) =

f (X ·t+x) where 0� t < N1/δ

X and X = 	2
−1
2 N

h−1
n−1 (n+1)− 1

n−1
. Thus, an initial solution
x0 that can be written x0 = X · t0 + x′

0 is obtained by finding the solution x′
0 of the

polynomial ft0 . In this case, this solution satisfies |x′
0| < X and it has a correct size

for LLL to find it using a lattice of dimension n. For each polynomial ft , one runs
LLL on a certain matrix (Step 4 of Alg. 1). In Section 4.1, we describe a method that
allows to take advantage of the LLL performed for the case t = i to reduce (in practice)

Rounding and Chaining LLL: Finding Faster Small Roots 195

the complexity of the LLL performed for the case t = i+ 1. Thereafter, in Section 4.2
we combine this improvement with the rounding approach described in Section 3. The
proofs of the results presented in this section can be found in the full version of this
paper.

4.1 Exploiting Relations between Consecutive Lattices

The following proposition discloses a surprising connection between the lattice used
for the case t = i and the next lattice used for t = i+ 1. This connection is based on the
well-known Pascal matrix P = (ps,t) defined as the n×n lower-triangular matrix whose
non-zero coefficients are the binomials: ps,t =

(s
t

)
for 0 ≤ t ≤ s ≤ n − 1.

Proposition 1. Let B be a basis of the n-dimensional lattice used by Coppersmith’s
algorithm to find all small roots of the polynomial fi(x) = f (X · i+ x), where X is the
small-root bound. Then B · P is a basis of the “next” lattice used for the polynomial
fi+1(x).

Proof. Because all lattice bases are related by some unimodular matrix, it suffices to
prove the statement for a special basis B. We thus only consider the special basis B = Bi

formed by the n shifted polynomials constructed from fi(x) and written in the basis
B =

(
1,xX−1,(xX−1)2, . . . ,(xX−1)n−1

)
. For the case t = i+ 1, one tries to solve the

polynomial

fi+1(x) = f (X · (i+ 1)+ x) = f (X · i+ x+X) = fi(x+X) .

Therefore, the shifted polynomials constructed from fi+1 are the same as for the case t =
i, but written in the different basis B′ = (1,xX−1 +1,(xX−1+1)2, . . . ,(xX−1 +1)n−1).
Yet, we need to return to the original representation of the polynomials, i.e. in the basis
B. To this end, we use the following property regarding the lower triangular Pascal
matrix P: B′T = P ·BT . As a consequence, left-multiplying each side of this equality
by the matrix Bi proves that the matrix Bi · P is a basis of the lattice used for finding
small roots of the polynomial fi+1(x). ��

The proposition allows us to use different matrices to tackle the polynomial fi+1(x)
than the one initially used by Coppersmith’s method. In particular, we can use a matrix
of the form BR · P where BR is an LLL-reduced basis of the previous lattice used to
solve fi(x): intuitively, it might be faster to LLL-reduce such matrices than the initial
Coppersmith’s matrix. Although we are unable to prove this, we can show that the
vectors of such a matrix are not much longer than that of B:

Corollary 5. Let BR
i be the LLL-reduced matrix used for solving ft for t = i and P be

the Pascal matrix. The matrix Bi+1 = BR
i · P spans the same lattice used for solving the

case t = i+ 1. This matrix consists of vectors bi+1, j whose norms are close to vector
norms of the LLL-reduced matrix BR

i . Namely, for all 1 � j � n we have: ||bi+1, j|| <√
n · 2n−1 · ||bR

i , j||. In particular, for the case i = t0 the first vector of Bi+1 has a norm

bounded by 2n−1 · Nh−1.

196 J. Bi et al.

Cor. 5 shows us that vectors of Bi+1 are relatively close to the ones in the LLL-
reduced matrix BR

i . Thus, we intuitively expect the LLL-reduction of Bi+1 to be less
costly than the one of the original Coppersmith’s matrix. However, our bounds are too
weak to rigorously prove this. Yet, one can use this property iteratively to elaborate a
new method which chains all LLL reductions as follows. First, one LLL-reduces B0

for the case t = 0. This gives a reduced matrix BR
0 . Then, one iterates this process by

performing LLL reduction on Bi+1 = BR
i · P (for i ≥ 0) to obtain BR

i+1 and so forth until
all solutions are found (each time by solving the polynomial corresponding to the first
vector of BR

i).
In the sequel, we study this chaining method by performing similar roundings as in

Section 3 before each call of LLL reduction.

4.2 Rounding and Chaining LLL

During the exhaustive search described in Section 4.1, we perform the LLL algorithm
on the matrix Bi+1 = BR

i · P for 0 � i < N1/δ/X , where BR
i is LLL-reduced. It is worth

noticing that the structure of BR
i and thereby of Bi+1, is different from the original

Coppersmith’s matrix B0 (in particular, it is not triangular anymore). Yet, we are able
to show that under certain conditions on Bi+1 verified experimentally, one can combine
the rounding technique of Section 3 with the chaining technique of Section 4.1. Indeed,
we show that during the chaining loop, one can size-reduce Bi+1 and then round its
elements for all i ≥ 0 as follows:

B̃i+1 =

⌊
cBi+1/ min

1≤i≤n
‖b�

i ‖
⌋

, (4)

where b�
i are Gram-Schmidt vectors of Bi+1 and c is a rational that will be determined

later. Then, one applies LLL on the rounded matrix B̃i+1 as performed in Section 3.
We obtain an LLL-reduced matrix B̃R

i+1 and a unimodular matrix Ũi+1 such that Ũi+1 ·
B̃i+1 = B̃R

i+1. Then one shows that by applying Ũi+1 on Bi+1, the first vector of this
matrix Ũi+1 · Bi+1 is a short vector that allows to find the solutions provided that they
are smaller than a bound X that will be determined latter. For the sake of clarity, in the
sequel we denote by B the matrix Bi+1, and by xB, the first vector of matrix Ũi+1 · Bi+1.
We would like to exhibit an upper-bound on ‖xB‖. To this end, we will need, as in
Section 3, to upper-bound the value ‖B̃−1‖2. This is done in the following lemma:

Lemma 5. Let B = (bi, j) be an n × n non-singular integral matrix and α ≥ 1
such that nα‖B−1‖2 < 1. Then the matrix B̃ = 	B/α
 is invertible with ‖B̃−1‖2 ≤
α‖B−1‖2(1 − nα‖B−1‖2)

−1.

As one can see, this value depends on ‖B−1‖2 which is given in Lemma 6.

Lemma 6. Let B be an n × n non-singular size-reduced matrix, with Gram-Schmidt
vectors b�

i . Then ‖B−1‖2 ≤
√

n(3/2)n−1/min1≤i≤n ‖b�
i ‖.

Rounding and Chaining LLL: Finding Faster Small Roots 197

One can now give an upper-bound on ‖xB‖:

Corollary 6. Let B = (bi, j) be an n × n size-reduced non-singular matrix over Z. Let
α ≥ 1 such that n2α‖B−1‖2 < 1. Then B̃ = 	cB/min1≤i≤n ‖b�

i ‖
 = 	B/α
 is non-
singular. And if xB̃ is the first vector of an LLL-reduced basis of B̃, then: 0 < ‖xB‖ <

c
n+1

n

(c−n3/2(3/2)n−1)(c−n5/2(3/2)n−1)1/n 2
n−1

4 det(B)
1
n .

Again, if ‖xB‖ is sufficiently short, then it corresponds to a polynomial of the
form v(xX) for some v(x) ∈ Z[x] satisfying Lemma 1. In particular, for the case
t = t0, solving this polynomial equation would allow to retrieve the solution x0.
Note that the condition n2α‖B−1‖2 < 1 specified in Cor. 6 gives a condition on
the rational c. Indeed, since α = min1≤i≤n ‖b�

i ‖/c and using Lemma 6, one gets:

n2α‖B−1‖2 � n2 min1≤i≤n ‖b�
i ‖

c

√
n(3/2)n−1

min1≤i≤n ‖b�
i ‖ � n5/2(3/2)n−1

c < 1 that is c should be such

that c > n5/2(3/2)n−1. The whole chaining and rounding algorithm is depicted in Al-
gorithm 2. Note that in practice, we do not need to perform Step 8 of Alg. 2 and that
min1≤i≤n ‖bt+1

�
i ‖ can be estimated instead of being computed in Step 9 (see Section

4.3 for more details).

Algorithm 2. Coppersmith’s Method with Chaining and Rounding
Input: Two integers N ≥ 1 and h ≥ 2, a univariate degree-δ monic polynomial f (x) ∈ Z[x] with

coefficients in {0, . . . ,N − 1} and 2 < δ +1 < (logN)/2.
Output: All x0 ∈ Z s.t. |x0| ≤ N1/δ and f (x0) ≡ 0 mod N.
1: Perform Step 1 and Steps 3 to 7 of Alg. 1. Step 7 returns B̃R

0 and Ũ0 such that Ũ0 · B̃0 = B̃R
0 .

2: Let n = hδ , X the bound given in Th. 7, c = n
5
2 (3

2)
n, t = 0, P is the n × n lower triangular

Pascal matrix.
3: Compute the matrix Ũ0 · B0, where B0 is the matrix computed in Step 5 of Alg. 1.
4: The first vector of Ũ0 ·B0 corresponds to a polynomial of the form v(xX) for some v(x)∈Z[x].

5: Compute and output all roots x0 ∈ Z of v(x) satisfying f (x0) ≡ 0 (mod N) and |x0| ≤ X .
6: while Xt < N1/δ do
7: Compute the matrix Bt+1 = Ũt · Bt · P.
8: Size-reduce Bt+1.
9: Compute the matrix B̃t+1 = 	cBt+1/min1≤i≤n ‖bt+1

�
i ‖
 obtained by rounding Bt+1.

10: Run L2 algorithm on matrix B̃t+1 which returns B̃R
t+1 and Ũt+1 s.t. Ũt+1 · B̃t+1 = B̃R

t+1.
11: Compute the matrix Ũt+1 · Bt+1.
12: The first vector of Ũt+1 · Bt+1 corresponds to a polynomial of the form v(xX).
13: Compute all the roots x′

0 of the polynomial v(x) ∈ Z[x] over Z.
14: Output x0 = x′

0+Xt for each root x′
0 which satisfies f (x′

0+Xt) ≡ 0(mod N) and |x′
0| ≤ X .

15: t ← t +1.
16: end while

In the following, we give a small-root bound X on the solution x′
0 sufficient to guar-

antee success:

198 J. Bi et al.

Theorem 7. Given as input two integers N ≥ 1 and h ≥ 2, a rational c > n5/2(3/2)n−1,
and a univariate degree-δ monic polynomial f (x)∈Z[x] with coefficients in {0, . . . ,N −
1}, one loop of Alg. 2, corresponding to t < N1/δ/X, outputs all x0 = Xt + x′

0 ∈ Z s.t.
|x′

0| ≤ X and f (x0) = 0 mod N, and n = hδ , where

X =

⎢⎢⎢⎣ N
h−1
n−1 κ

−2
n−1

2√
2n1/(n−1)

⎥⎥⎥⎦ and κ2 =
c

n+1
n

(c − n3/2(3/2)n−1)(c − n5/2(3/2)n−1)1/n
.

The bound X of Th. 7 is never larger than that of Cor. 2. However, if one selects c >
n5/2(3/2)n−1, then the two bounds are asymptotically equivalent. This is why Alg. 2
uses c = n5/2(3/2)n.

4.3 Complexity Analysis: A Heuristic Approach

The complexity of Alg. 2 relies on the complexity of the LLL-reduction performed
in Step 10. The cost of this reduction depends on the size of coefficients in ma-
trix B = B̃t+1, which itself depends on the value min1≤i≤n ‖b�

i ‖. The exact knowl-
edge of this value does not seem straightforward to obtain without computing the
Gram-Schmidt matrix explicitly. However, experiments show that the Gram-Schmidt
curve is roughly decreasing, i.e. min1≤i≤n ‖b�

i ‖ ≈ ‖b�
n‖ and is roughly symmetric:

i.e. log‖b�
i ‖ − log‖b�

n/2‖ ≈ log‖b�
n/2‖ − log‖b�

n−i+1‖ . If we assume these two ex-

perimental facts, we deduce that ‖b�
n/2‖ ≈ |det(B)|1/n. By duality, this means that

‖b�
n‖ ≈ |det(B)|2/n/‖b�

1‖. Furthermore, from the definition of the Gram-Schmidt or-
thogonalization, we know that ‖b�

1‖ = ‖b1‖, where b1 is the first vector of matrix B.
Therefore we have:

min
1≤i≤n

‖b�
i ‖ ≈ ‖b�

n‖ ≈ |det(B)|2/n‖b�
1‖−1 = Nh−1Xn−1‖b1‖−1 , (5)

Thus, we need an estimation on ‖b1‖. Since in practice matrix B = Bi+1 = Ũi · Bi · P is
already nearly size-reduced, one can skip Step 8 of Alg. 2. Therefore, vector b1 is the
first vector of matrix Ũi · Bi · P. Using Cor. 6, one deduces that the first vector of matrix
Ũi · Bi is roughly as short as the first vector of an LLL-reduced matrix. From the well-
known experimental behavior of LLL [17], we can model the first vector of the LLL-
reduced basis as a “random” vector of norm ≈ 1.02n|det(B)|1/n . Since the Pascal matrix
P has a norm smaller than 2n−1 , one gets the bound ‖b1‖ � √

n2n−11.02n|det(B)|1/n.
Therefore, we deduce that: min1≤i≤n ‖b�

i ‖ ≈ |det(B)|1/n/(
√

n2n−11.02n) . In practice,
we conjecture that min1≤i≤n ‖b�

i ‖ > |det(B)|1/n/β n, where β < 2 (see Fig. 5 in Sec. 5).
This discussion leads to the following heuristic approach regarding the method:

firstly, one should rather use the estimation (5) in Step 9 of Alg. 2, instead of explic-
itly computing the Gram-Schmidt matrix; secondly, one can skip Step 8 of Alg. 2. This
heuristic version of Algorithm 2 is the one we used during our experiments, all these
assumptions were always verified.

To conclude our analysis, it suffices to reduce a rounded matrix such that
max1≤i≤n ‖b̃�

i ‖ ≤ cmax1≤i≤n ‖b�
i ‖/min1≤i≤n ‖b�

i ‖ � cβ 2n, instead of being such that
max1≤i≤n ‖b̃�

i ‖ ≤ β n|det(B)|1/n. This means that we are trading entries of size O(n).

Rounding and Chaining LLL: Finding Faster Small Roots 199

Therefore, by considering n = O(logN), we obtain the same complexity as in Theo-
rem 3 but in a heuristic way. However, even if both asymptotic complexities are identi-
cal, in practice for reasonable dimensions the speed-up brought by using Alg. 2 rather
than Alg. 1 is considerable (see Section 5). Indeed, the LLL-reduction of matrix Ũi ·Bi ·P
(Step 10 of Alg. 2) performs surprisingly faster than expected. This comes from the fact
that for reasonable dimensions, the Gram-Schmidt curve of this matrix remains quite
close to the one of matrix Ũi · Bi, where Ũi · Bi turns out to be LLL-reduced (or nearly).
Besides, the overall running-time of Alg. 2 is approximately the time spent to perform
one LLL-reduction, multiplied by the number of executed loops, i.e. by N1/δ/X .

5 Experiments

We implemented Coppersmith’s algorithm and our improvements (Algs. 1 and 2) us-
ing Shoup’s NTL library [21]. However, for the LLL reduction, we used the fplll im-
plementation [3] by Cadé et al., which includes the L2 algorithm [18]: fplll is much
faster than NTL for Coppersmith’s matrices. It should be stressed that fplll is a wrapper
which actually implements several variants of LLL, together with several heuristics: L2

is only used as a last resort when heuristic variants fail. This means that there might be
a discrepancy between the practical running time and the theoretical complexity upper
bound of LLL routines. Our test machine is a 2.93-GHz Intel Core 2 Duo processor
E7500 running on Fedora. Running times are given in seconds. Like in [10], we used
the case δ = 3, and N an RSA-type modulus: the exact polynomial congruence is de-
rived from RSA encryption with public exponent δ . Then, one loop of Coppersmith’s

algorithm , with n = 3h, can find all roots x0 as long as |x′
0| ≤ X = 	2−1/2N

h−1
n−1 n− 1

n−1
.
For a fixed h, the rounding strategy (Alg. 1) gives a worse bound than X , but the differ-
ence can be made arbitrarily small by increasing the parameter c: in our experiments,

we therefore chose the smallest value of c such that κ
−2

n−1
1 and κ

−2
n−1

2 are larger than 0.90,
so that the new bound is never less than the old bound X by more than 10%, which is
essentially the same. However, we note that the value c can be taken smaller in practice.

Furthermore, it is worth noticing that since the value α is not significant in itself, in
order to increase the efficiency, one can round matrices at negligible cost by taking α :=
2	log2(α)
 and performing shifts of 	log2(α)
 bits. In the same vein, one can increment
t by 2 instead of 1 in Coppersmith’s algorithm or in Step 12 of Alg. 1, and one can
multiply the matrix Ũi · Bi by P2 instead of P in Step 7 of Alg. 2. This comes from
the fact that if 0 < x′

0 < X (resp. −X < x′
0 < 0), then x′

0 − X (resp. x′
0 +X) is also a

valid solution. This refinement allows to divide by 2 the global timing of Coppersmith’s
algorithm and Alg. 1. However, it seems to be much less relevant when applied to Alg. 2.

Figures 1 and 2 summary our limited experiments respectively comparing one loop
of Coppersmith’s algorithm with Alg. 1 and Alg. 2 in practice. They provide the bit-
length of X and the corresponding running times of the lattice reduction only, because
the cost of solving a univariate equation over Z turns out to be much less in practice.
Running times are given as averages over 5 samples. For a typical case where �logN� =
2048, the whole Coppersmith’s algorithm would perform in ((2048/3 − 666
)/2)×
6431.2 ≈ 6.7 years and the new Alg. 2 would perform in (2048/3 − 666
)× 15.52 ≈
11.8 days, which is about 207 times faster (see Fig. 2 and 6).

200 J. Bi et al.

Size Data Parameter h
of N type 10 15 20 25 30

Size of X 318 324 328 331 332
Toriginal 2.54 30.48 216.3 793.4 3720.8

1024 Trounded 0.68 4.49 18.22 48.17 175.9
Speed-up 3.74 6.79 11.87 16.47 21.16
Size of X 634 650 658 663 666
Toriginal 13.47 150.7 865.7 3078 10146.7

2048 Trounding 3.14 17.79 63.3 166.4 379.8
Speed-up 4.29 8.40 13.67 18.50 26.72
Size of X 1270 1302 1318 1327 1333
Toriginal 41.45 582.6 3162 11968 42053

4096 Trounded 7.07 43.25 157.5 449.8 1301.5
Speed-up 5.86 13.47 20.07 26.61 32.31

Fig. 1. Bounds and running time of rounding
method for cubic congruences

Size Data Parameter h
of N type 10 15 20 25 30

Size of X 316 323 327 330 332
Toriginal 2.14 23.55 161.55 646.37 1955.1

1024 Trc 0.04 0.42 1.71 5.56 12.71
Speed − uprc 53.5 56.07 94.47 116.25 153.83

Size of X 633 649 657 663 666
Toriginal 8.21 95.12 641.22 2299.5 6431.2

2048 Trc 0.07 0.55 2.39 7.75 15.52
Speed − uprc 117.28 172.95 268.29 296.71 414.38

Size of X 1270 1302 1318 1327 1333
Toriginal 27.64 378.62 2226 8303.2 25813

4096 Trc 0.11 0.87 3.73 11.72 29.65
Speed − uprc 251.27 435.19 596.78 708.46 870.6

Fig. 2. Bounds and running time of rounding plus
chaining method for cubic congruences

� � � � �
� �

�
�
� �

� � � �
� � �

�
�
�

� � � �
�
�
�
�
�
� �

� �
� �

�
�
�
�
�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
� �

� �
�
� �

�speed-up

h

1024

2048

4096

15 20 25 30

5

10

15

20

25

30

Fig. 3. Speed-up of rounding method

� �
� � � � �

� � � � � � � �
� � �

� � �

� �

� �
�
� �

�
�
� �

� �
�
� � � �

� �
�
� �

4096

2048

1024

15 20 25 30

200

400

600

800

Fig. 4. Speed-up of rounding plus chaining
method

From Figure 3, we see that we already get significant speedups (say, larger than
10) even for small values of h and typical sizes of N, by using the rounding method
(Alg. 1). The speedup grows when logN or h grows: for fixed N, the speedup grows
roughly a bit less than quadratically in h, whereas the theoretical analysis gives a
speedup linear in h. From Figure 4, we see that we can obtain more speedups as the
sizes of N or h increase, by using the rounding and chaining method (Alg. 2). Hence,
our improvement is practical and allows to get much closer to the asymptotic small-root
bound. Furthermore, we verify the assumption on value min1≤i≤n ‖b�

i ‖ for matrix B. Let
max1≤i≤n ‖b�

i ‖ ≈ β n
1 vol(L)1/n and min1≤i≤n ‖b�

i ‖ ≈ β n
2 vol(L)1/n. In this paper, we have

assumed that β1 = 1/β2. We summary the results of our experiments for �logN� = 512
with dimensions 30,60,90,120,150 in Table 5. We can see that β1 × β2 ≈ 1 and that
β1 ≤ 2. This means our assumptions are reasonable.

6 Other Small-Root Algorithms

Other small-root algorithms (see the surveys [14,16]) are based on the same main ideas
where LLL reduction plays a crucial role. Due to the different structure of the matrices
in these settings, a direct application of our new approach does not seem to provide

Rounding and Chaining LLL: Finding Faster Small Roots 201

Data Parameter h
type 10 20 30 40 50
β1 1.7582 1.8751 1.9093 1.9218 1.9435
β2 0.5460 0.5271 0.5155 0.5091 0.5077

product 0.9600 0.9883 0.9842 0.9785 0.9867

Fig. 5. Beta values for �logN� = 512

logN
1024 2048 4096

Original 5.8 days 6.7 years 1757782 years
Alg. 2 1.8 hours 11.8 days 4038 years

Speed-up 77 207 435

Fig. 6. Timings comparisons for the total method

the same speedup. We leave it as an open problem to obtain polynomial (non-constant)
speedups for these other small-root algorithms: this might be useful to make practical
attacks on certain fully homomorphic encryption schemes (see [5]). See the extended
version of this paper for a further discussion on these generalizations.

Acknowledgements. We would like to thank the anonymous reviewers of PKC’14 for
their valuable comments.

References

1. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292. IEEE
Transactions on Information Theory 46(4), 1339 (2000)

2. Buchmann, J.: Reducing lattice bases by means of approximations. In: Huang, M.-D.A.,
Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 160–168. Springer, Heidelberg
(1994)

3. Cadé, D., Pujol, X., Stehlé, D.: FPLLL library, version 3.0 (September 2008),
http://perso.ens-lyon.fr/damien.stehle

4. Cohen, H.: A course in computational algebraic number theory. Graduate Texts in Mathe-
matics, vol. 138. Springer, Berlin (1993)

5. Cohn, H., Heninger, N.: Approximate common divisors via lattices. IACR Cryptology ePrint
Archive 2011:437 (2011)

6. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring with high
bits known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 178–189.
Springer, Heidelberg (1996)

7. Coppersmith, D.: Finding a small root of a univariate modular equation. In: Maurer, U.M.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer, Heidelberg (1996)

8. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnera-
bilities. J. Cryptology 10(4), 233–260 (1997); Journal version [7][6]

9. Coron, J.-S.: Finding small roots of bivariate integer polynomial equations: A direct ap-
proach. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 379–394. Springer,
Heidelberg (2007)

10. Coupé, C., Nguyên, P.Q., Stern, J.: The effectiveness of lattice attacks against low-exponent
RSA. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 204–218. Springer,
Heidelberg (1999)

11. Daudé, H., Vallée, B.: An upper bound on the average number of iterations of the lll algo-
rithm. Theor. Comput. Sci. 123(1), 95–115 (1994)

12. Howgrave-Graham, N.: Finding small roots of univariate modular equations revisited. In:
Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 131–142. Springer,
Heidelberg (1997)

http://perso.ens-lyon.fr/damien.stehle

202 J. Bi et al.

13. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients.
Mathematische Ann. 261, 513–534 (1982)

14. May, A.: Using LLL-reduction for solving RSA and factorization problems: A survey. In:
[19] (2010)

15. Najafi, H., Jafari, M., Damen, M.-O.: On adaptive lattice reduction over correlated fading
channels. IEEE Transactions on Communications 59(5), 1224–1227 (2011)

16. Nguyen, P.Q.: Public-key cryptanalysis. In: Luengo, I. (ed.) Recent Trends in Cryptography.
Contemporary Mathematics, vol. 477. AMS–RSME (2009)

17. Nguyên, P.Q., Stehlé, D.: LLL on the average. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS
2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006)

18. Nguyen, P.Q., Stehlé, D.: An LLL algorithm with quadratic complexity. SIAM J. of Com-
puting 39(3), 874–903 (2009)

19. Nguyen, P.Q., Vallée, B. (eds.): The LLL Algorithm: Survey and Applications. Information
Security and Cryptography. Springer (2010)

20. Novocin, A., Stehlé, D., Villard, G.: An LLL-reduction algorithm with quasi-linear time
complexity: extended abstract. In: Proc. STOC 2011, pp. 403–412. ACM (2011)

21. Shoup, V.: Number Theory C++ Library (NTL) version 5.4.1,
http://www.shoup.net/ntl/

22. Shoup, V.: OAEP reconsidered. J. Cryptology 15(4), 223–249 (2002)

http://www.shoup.net/ntl/

Elliptic and Hyperelliptic Curves: A Practical
Security Analysis

Joppe W. Bos1, Craig Costello1, and Andrea Miele2,�

1 Microsoft Research, Redmond, WA, USA
2 LACAL, EPFL, Lausanne, Switzerland

Abstract. Motivated by the advantages of using elliptic curves for dis-
crete logarithm-based public-key cryptography, there is an active re-
search area investigating the potential of using hyperelliptic curves of
genus 2. For both types of curves, the best known algorithms to solve the
discrete logarithm problem are generic attacks such as Pollard rho, for
which it is well-known that the algorithm can be sped up when the target
curve comes equipped with an efficiently computable automorphism. In
this paper we incorporate all of the known optimizations (including those
relating to the automorphism group) in order to perform a systematic
security assessment of two elliptic curves and two hyperelliptic curves of
genus 2. We use our software framework to give concrete estimates on the
number of core years required to solve the discrete logarithm problem
on four curves that target the 128-bit security level: on the standardized
NIST CurveP-256, on a popular curve from the Barreto-Naehrig family,
and on their respective analogues in genus 2.

1 Introduction

In the last couple of decades, the use of elliptic curves, or genus 1 curves, has
become a popular and standardized choice to instantiate public-key cryptogra-
phy [25,29]. The security of these cryptographic schemes relies on the difficulty
of the elliptic curve discrete logarithm problem (ECDLP). Currently, the best
known algorithms to solve this problem are the so-called “generic” attacks, such
as the parallelized version [37] of the Pollard rho algorithm [33], which has been
used to solve large instances of the ECDLP (cf. [22,12,8,2]). It is well-known
that this algorithm can be optimized by a constant factor when the target curve
comes equipped with an efficiently computable group automorphism [39,15]. For
example, all elliptic curves can efficiently compute the inverse of a point and
this negation map can be used to speed up the run-time by at most a factor√
2. When the cardinality of the automorphism group is larger, such as for the

elliptic curves proposed in [18], a higher speedup is expected when solving the
ECDLP.

Jacobians of hyperelliptic curves of genus 2 have also been considered for
cryptographic applications [26] (also see [5,27]). Just as with their elliptic curve
� Most of this work was done while the third author was an intern in the Cryptography

Research group at Microsoft Research.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 203–220, 2014.
c© International Association for Cryptologic Research 2014

204 J. W. Bos, C. Costello, and A. Miele

counterpart, the best known algorithms to solve the discrete logarithm in such
groups are the generic ones. The practical potential of genus 2 curves in public-
key cryptography has recently been highlighted by the fast performance numbers
presented in [7]. For cryptographically interesting curves over large prime fields,
it is possible to achieve larger automorphism groups in genus 2 (see [15]). This
not only aids the cryptographer (e.g. [17,7]), but also the cryptanalyst: one can
expect a larger speed-up when computing the (H)ECDLP on curves from these
families [15].

In this paper we investigate the practical speed-up of Pollard rho when exploit-
ing the automorphism group. We use the methods presented in [9,6] for situations
where only the negation map is available, and extend these techniques to curves
with a larger group automorphism. As examples in the elliptic case, we use two
curves that target the 128-bit security level: the NIST Curve P-256 [36] and a
BN-curve [3] – the automorphism groups on these two curves are of size two and
six respectively, which are the minimum and maximum possible sizes for genus 1
curves over large prime fields. To mimic these choices in the hyperelliptic case1,
we use two curves from [7], where the automorphism groups are of size two
and ten – these are the minimum and maximum possible sizes for cryptographi-
cally interesting genus 2 curves over large prime fields. We implemented efficient
field and curve arithmetic that was optimized for each of these four curves, and
derived the best parameters to make use of the automorphism optimization.

We obtain security estimates for these four curves using parameters and im-
plementations that were devised to minimize the practical inconveniences arising
from the group automorphism optimization. When taking the standardized NIST
Curve P-256 as a baseline for the 128-bit security level, we show that curves with
a larger automorphism group (of cardinality m > 2) indeed sacrifice some secu-
rity. The constant-factor speedup, however, is lower in practice than the often
cited

√
m. Nevertheless, using both theoretical and experimental analysis, we

provide parameters which push the performance of the Pollard rho algorithm
close to what can be achieved in practice.

2 Preliminaries

General Group Elements. We use JC to denote the Jacobian group of a
curve C over a finite field Fq, where q > 3 is prime. For our purposes, C and
JC can be identified when C is an elliptic curve, where our group elements are
all points (x, y) ∈ Fq × Fq satisfying C/Fq : y2 = x3 + ax + b, together with
the identity element O. In genus 2, our curves are assumed to be of the form
C/Fq : y

2 = x5 + f3x
3 + f2x

2 + f1x+ f0. In this case we write general elements
of the Jacobian group (i.e. weight 2 divisors) in their Mumford representation as

1 The fact that the BN curve is pairing-friendly, while our chosen genus 2 “analogue”
is not, does not make a difference in the context of our ECDLP Pollard rho analysis.
We wanted curves with large automorphism groups, and we choose the BN curve as
one interesting example.

Elliptic and Hyperelliptic Curves: A Practical Security Analysis 205

(u(x), v(x)) = (x2+u1x+u0, v1x+v0) ∈ Fq[x]×Fq[x], such that u(x1) = u(x2) =
0, v(x1) = y1 and v(x2) = y2, where (x1, y1) and (x2, y2) are two (not necessarily
distinct) points in the set C(Fq), and where y1 �= −y2. The canonical embedding
of C into JC maps (x1, y1) ∈ C(Fq) to the divisor with Mumford representation
(x − x1, y1) – we call such divisors degenerate. Since #C ≈ p and #JC ≈ p2,
the probability of encountering a degenerate divisor randomly from JC is O(1p);
this is also the probability that the sum of two random elements in JC is a
degenerate divisor [31, Lemma 1]. Combining these probabilities with standard
Pollard rho heuristics allows us to ignore the existence of degenerate divisors in
practice – in all of the cases considered in this work, it is straightforward to see
that an optimized random walk is more likely to solve the discrete logarithm
problem than it is to walk into a degenerate divisor. Note that in the unlikely
event one encounters a degenerate divisor, such that our general-case formulas
compute divisors which are not on the Jacobian, this can be dealt with at almost
no additional cost by performing a sanity check on all active walks, once in a
while. Another solution is to perform such a sanity check on the distinguished
elements only (see the description of the parallel Pollard rho algorithm below)
and to discard such incorrect elements.

The Pollard rho Algorithm. The Pollard rho algorithm [33] can be used to
compute discrete logarithms in arbitrary groups, but here we give a description
that is specific to our context of Jacobian groups. Suppose we are given P ∈ JC
that generates a group of large prime order n: given some Q ∈ 〈P 〉, the (hyper-)
elliptic curve discrete logarithm problem (H)ECDLP is to find k ∈ Z/nZ such
that Q = [k]P . At the highest level, the idea is to compute pseudo-random
elements of the form Pi = [ai]P + [bi]Q for known non-zero ai, bi ∈ Z/nZ, such
that if a collision Pi = Pj is found with bi �= bj, then taking k := (aj − ai)/(bi −
bj) ∈ Z/nZ is a solution to the (H)ECDLP. The birthday paradox implies that we
can expect to find such a collision after computing around

√
πn
2 group elements

Pi, provided they are chosen independently and uniformly at random [23]. In
practice we use the so-called r-adding walk, which starts with r precomputed
group elements Sj = [cj]P +[dj]Q, for non-zero cj , dj ∈ Z/nZ and 0 ≤ j < r. On
input of a group element Pi, we use a partition function � : 〈P 〉 → {0, 1, . . . , r−1}
to define an iteration function f : 〈P 〉 → 〈P 〉, which computes the next element
as Pi+1 = f(Pi) = Pi + S�(Pi). Put simply, the iteration function chooses one of
the r precomputed elements to add to Pi in order to step to Pi+1. On top of the
minor costs of evaluating � and updating the ai, bi ∈ Z/nZ, each such step comes
at the cost of a single Jacobian group operation. Keeping every group element
encountered in the walk imposes exponential (and therefore infeasible) storage
requirements, which is why the parallel Pollard rho algorithm [37] stores only a
small fraction of the elements we come across: the so-called distinguished points.
Storage of O(log n) group elements suffices when roughly

√
n logn out of n group

elements are distinguished [16, Exercise 14.2.15]. In practice one can use a simple
check to determine whether the group element Pi is classed as distinguished, in
which case it is reported to a central location, along with the corresponding ai
and bi. Only these distinguished ‘points’ need to be cross-checked against one

206 J. W. Bos, C. Costello, and A. Miele

another for collisions; when two walks coincide at a non-distinguished point and
this collision goes undetected, the deterministic iteration function guarantees
that these walks continue along the same path until they arrive at the same
distinguished point.

Affine Additions with Amortized Inversions. As mentioned above, each
step of a random walk requires the addition of two distinct Jacobian group
elements. In the context of scalar multiplications, additions on the Jacobian
are usually performed in projective space, where all inversions are avoided until
the very end, at which point the result is normalized via a single inversion.
In the context of Pollard rho however, it is preferred to work in affine space
for two main reasons. Firstly, we need a way to suitably define and efficiently
check a distinguished point criterion on every group element that is computed;
since there are many distinct tuples of projective coordinates corresponding to
a unique affine point, there is currently no known method to do this efficiently
when working in projective space. Secondly, optimized versions of Pollard rho run
many concurrent random walks to take advantage of Montgomery’s simultaneous
inversion method [30]. If enough concurrent walks are used, then the amortized
cost of each individual field inversion becomes roughly 3 field multiplications –
this makes affine Weierstrass coordinates the fastest known coordinate system to
work with for cryptanalysis. On elliptic curves, such amortized point additions
require 5 Fq multiplications, 1 Fq squaring and 6 Fq additions; on genus 2
curves, these additions cost 20 Fq multiplications, 4 Fq squarings and 48 Fq
additions [14] – see Table 1 in Section 4.

Exploiting Automorphisms. The Pollard rho algorithm can be sped up by a
constant factor if the presence of automorphisms on C is exploited [39,15]. Let
m denote the cardinality of the automorphism group, Aut(C), which we assume
is cyclic2 with generator ψ; in genus 2, ψ extends in the natural way to JC
under the canonical embedding described above. For all R,R′ ∈ 〈P 〉, define an
equivalence relation ∼ on 〈P 〉 by R ∼ R′ if and only if R = ψi(R′) for some
0 ≤ i < m. Note that there are around n/m such equivalence classes in 〈P 〉,
and that m ≥ 2 since Aut(C) contains (at least) the identity map id and the
negation/involution map “−”. We write R̃ for the unique representative of the
class containing R, i.e. R̃1 = R̃2 if and only if R1 ∼ R2. An efficient way of
choosing such representatives is imperative to an optimized implementation of
the Pollard rho algorithm, so we give the fine-grained details for each of the
curves under consideration in Section 4. The important point is that each time
the iteration function computes a new group element Pi+1 via an addition, it now
immediately computes the representative element P̃i+1, thereby accounting for
m elements at a time. This effectively reduces the size of the set on which we walk
by a factor of m, which theoretically reduces the expected time to a collision by a
constant factor

√
m. In practice however, computing these representatives incurs

an overhead which reduces the actual speedup obtained; one of the contributions

2 This is always the case for curves of cryptographic interest over large prime fields
with g ≤ 2 (see [15]).

Elliptic and Hyperelliptic Curves: A Practical Security Analysis 207

of this work is to optimize parameter selection in a variety of scenarios to see
how close we can get to this theoretical

√
m improvement.

3 Handling Fruitless Cycles

It is well known that certain practical issues are encountered when exploiting the
automorphism optimization [39,18,15,9,6]. Walks will end up in fruitless cycles –
endless small loops where many fruitless collisions are found over-and-over again
(the collisions are fruitless because they have the same ai and bi). At a high level,
these collisions occur because the automorphism ψ, which generates Aut(C), has
a minimal polynomial of small degree; for all scenarios in this paper, ψ satisfies∑d

i=0 eiψ
i = 0 for ei ∈ Z and where d ≤ 5. Since each step in a walk involves

the addition of an element from a relatively small fixed table, it is possible
that the same table element (or a very small subset of them) is added multiple
times in succession, and that these contributions to the walk are annihilated by
unfortunate linear combinations of powers of ψ (which sum to zero). The most
simple and frequently occurring example is when the negation map sends the
walk into a fruitless 2-cycle: the partition function will choose the same table
element twice in a row (i.e �(Pi) = �(Pi+1) = �(Pi + S�(Pi))) with probability
1/r, and the representative P̃i+1 of the equivalence class {Pi+1,−Pi+1} will be
P̃i+1 = −Pi+1 = −(Pi + S�(Pi)) with probability 1/2, meaning that P̃i+2 = P̃i
with probability 1/(2r). This is analyzed in more detail for different cycle lengths
and values of m = #Aut(C) in [15].

In this section we summarize the current literature and discuss how to reduce
the occurrence of fruitless cycles, how to detect when they occur, and subse-
quently how to deal with a walk that is stuck in such a cycle.

3.1 Cycle Reduction

In [39], a ‘look-ahead’ technique is described to reduce the event of 2-cycles. This
method starts by computing a candidate point P̂ for Pi+1 as usual, i.e. computing
P̂ = Pi + S�(Pi); if �(P̂) �= �(Pi), then we set Pi+1 = P̂ and continue, otherwise
we discard the point P̂ and compute another candidate point by adding the next
lookup table element S�(Pi)+1 mod r to Pi. Note that the probability that r lookup
elements result in invalid candidates is extremely low, i.e. r−r. As analyzed in [9],
using this look-ahead technique lowers the probability to enter a 2-cycle from 1

2r
to 1

2r3 +O(1
r4). This technique can be generalized to longer cycles as well [39,9].

Note that if a point gets discarded, it means that we have computed the group
operation but did not take a step forward in our pseudo-random walk. We refer
to this event as a fruitless step due to cycle reduction. In this work we use a 2-
cycle reduction technique that slightly modifies the above approach, as we detail
in Section 3.3.

208 J. W. Bos, C. Costello, and A. Miele

3.2 Escaping Fruitless Cycles

Even if the probability of a fruitless cycle is lowered using the look-ahead strategy
in Section 3.1, the walks will still eventually enter a fruitless cycle, which clearly
must be dealt with. The first step towards a remedy is to detect that a walk is
trapped; the next step is to then escape the fruitless cycle in a deterministic way,
such that if any other walk encounters the same cycle, they both end up exiting
using the exact same point. The idea described in [18] is to occasionally store a
sequence of points and to check for repetitions by comparing new points to these
stored points. If a cycle has been detected, then one can escape by applying a
modified iteration function to a representative of the cycle – in [18], the point
with smallest x- or y-coordinate is proposed to be the representative. In [9] it
is observed that many modified iteration functions used to escape the cycle are
insufficient, and can result in the walk recurring to the same fruitless cycle soon
after it “escapes”. As observed in [15,9], one example of how to properly escape
cycles is to double the representative of the fruitless cycle – our implementations
use this approach.

3.3 Handling Fruitless Cycles in Practice

In this subsection we compute a lower-bound on the number of fruitless steps we
expect to perform in order to state an upper-bound on the (theoretical) speedup.
For this analysis, we measure the cost of the additional (fruitless) computations
we have to perform in order to deal with cycles. To analyze this cost, we use a
function c which expresses the cost of certain operations in terms of the num-
ber of modular multiplications. We summarize which strategy we use in our
implementation and outline how we select the various parameters, based on our
analysis, to perform cycle reduction and cycle escaping.

In [9], different scenarios and varied parameters for both cycle reduction and
cycle escaping techniques are implemented and compared. The recommenda-
tions are to use medium sized values of r (since larger values might decrease the
performance by introducing cache-misses), to reduce the event of 2-cycles only
(not any higher cycles), and to escape cycles by doubling the cycle’s representa-
tive. This combination of choices was able to achieve a 1.29 times speedup over
not using the negation map on architectures supporting the x64 instruction set,
while from a theoretical perspective a speedup of 1.38 should be possible (both
speedups are slightly below

√
2). A follow-up paper [6] takes a different approach

on the single instruction, multiple data (SIMD) Cell processor. Since multiple
walks are processed by the same instructions, all of which must follow identical
computational steps, the cycle reduction technique is completely omitted. In-
stead, the walk is modified to occasionally check for fruitless cycles – different
cycle lengths are detected at different points in time, but if a cycle is detected,
this is resolved by escaping from it by again doubling the cycle’s representative.

We now analyze the maximum expected speedup in more detail. Assume we
perform w > 0 steps, and that at every step we can enter a cycle with probability
p, if we are not in a cycle already. Once we enter a cycle at step 0 < i ≤ w,

Elliptic and Hyperelliptic Curves: A Practical Security Analysis 209

all subsequent w − i steps are fruitless. Hence, after w steps we expect to have
computed W (w, p) fruitless steps where

W (w, p) =
w−1∑
i=0

p(1 − p)i(w − i) =
(1 − p)w+1 + p(w + 1) − 1

p
. (1)

Using this simple analysis (which is similar to the analysis from [6]), one can
compute the ratio between the number of fruitful steps and the number of total
steps. For example, the implementation described in [6] uses r = 2048, checks
for 2-cycles every 48 iterations, and checks for larger cycles much less frequently.
Since 2-cycles occur with probability 1

2r , the expected number of multiplications
due to fruitful steps (per 48 iterations) is c(f) · (48− W (48, 1

2·2048)), where c(f)
is the cost to compute the iteration function expressed in multiplications, which
in this setting is c(f) = 6. The total number of multiplications computed is
then 48 · c(f) + c(D), where the latter is the cost for point doubling in order
to escape the 2-cycle, which is c(D) = 7 in the elliptic curve case. Ignoring the
various implementation overheads, this analysis shows that a speedup of at most
0.97

√
2 is expected when taking only 2-cycles into account.

In our implementations, we chose to follow an approach closer to that which
is described in [9]. The reason is that we do want to use the cycle reduction
technique to lower the probability for walks to enter 2-cycles (at the price of
occasionally computing fruitless cycles due to cycle reduction). We remark that
in a SIMD setting, such as that considered in [6], an approach without cycle
reduction might be more efficient in practice. We note that using the 2-cycle
reduction technique also reduces the event of 3-cycles, which can only occur if
3 | #Aut(C), for which the BN curve is the only such scenario in this paper.
As shown in [15], 3-cycles occur only if we add representatives from the same
partition three times in a row – this repetition is exactly what we aim to avoid
using the 2-cycle reduction technique.

We check for cycles every α steps by recording the β points {α, α+1, . . . , α+
β − 1} (or an appropriate subset of these points), and checking if the (α+ β)th
point occurs in the list of recorded points. If it does, then we select a fruitless
cycle representative and use this point to double out of this fruitless cycle: this
heuristically eliminates recurring cycles [9].

We modify the cycle reduction technique from [39,9], as described in Sec-
tion 3.1. In order to avoid, with probability r−r, the scenario where all of the r
lookup table elements give rise to an invalid next point, we simply add a point
from another precomputed lookup table f̃ (which also contains r elements), as
follows:

pi+1 =

{
pi + f�(pi) if �(pi) �= �(pi + f�(pi)),

pi + f̃�(pi) otherwise.

Following the analysis from [9], this reduces the probability to enter a 2-cycle
from (mr)−1 to approximately 4

(mr)3 . For practical values of r, this makes 4-
cycles the most likely event to occur, with probability approximately (mr)−2

(assuming independence of the precomputed values Si). Due to this cycle reduc-
tion technique, we expect that one out of r steps is fruitless (since the probability

210 J. W. Bos, C. Costello, and A. Miele

that �(pi) = �(pi + f�(pi)) is 1
r). Hence, the fraction of all steps that are fruitful

is r−1
r .

4 Target Curves and Their Automorphism Groups

In this section we discuss our chosen target curves and the associated parame-
ter choices and optimizations in the context of Pollard rho. The computational
costs for divisor addition, computing the equivalence class representative, and
updating the ai and bi values are summarized in the worst and average case
in Table 1. The average case costs are used in our analysis, but we include the
worst case costs for settings (like parallel architectures) where all the walks must
always perform the same (worst-case) computational steps.

We choose to target two curves in genus 1 and two curves in genus 2. All four
of these curves have a prime order between 254 and 256 bits. The two elliptic
curves have m = 2 and m = 6, which are the respective minimum and maximum
values of m = #Aut(C) for cryptographically interesting genus 1 curves over
prime fields; likewise, the two hyperelliptic curves have m = 2 and m = 10,
which are the respective minimum and maximum values of m = #Aut(C) for
genus 2 curves of cryptographic interest over prime fields.

In each case we also outline our parameter choices for handling fruitless cycles.
We follow the analysis and notation as outlined in Section 3.3, with a primary
goal that less than one percent of the steps we compute are fruitless. We assume
that the cost of a modular multiplication and modular squaring are equivalent:
if required, the analysis can be trivially adjusted to reflect any other cost ratio.
In order to sufficiently reduce the probability of cycles to occur, we always take
r ≥ 1024 (we did not use the idea from [6] to reduce the storage of the r
precomputed points). Furthermore, in order to detect much longer (and much
less likely) cycles, we take β = 32, so that we can detect and deal with cycles up
to length 32. More precisely, given a probability p to enter a cycle at every step,
and a value for α (we check for cycles every α steps), we estimate the fraction
of all computation that is fruitful using Eq. (1), as

c(f) · (α − W (α, p))

α · c(f) + c(D)
· r − 1

r
, (2)

where the first fraction is due to the cycle detection and escaping (we assume that
we always compute a doubling to escape), and the second fraction incorporates
the fruitless steps due to the cycle reduction technique. Although we give the
costs of updating the ai and bi, we omit these from our analysis – the correct ai
and bi can be recovered when needed, when each path starts at a random point
derived from a random seed, as described in [2].

4.1 Target Curves in Genus 1

NIST CurveP-256. Let q = 2256−2224+2192+296−1, and define E/Fq : y
2 =

x3 − 3x + b, with b=0x5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B.

Elliptic and Hyperelliptic Curves: A Practical Security Analysis 211

This curve has a 256-bit prime order n and is defined in NIST’s Digital Signature
Standard [36]. In this case Aut(E) = {id,−}, meaning that (x, y) ∼ (x,−y), so
we take the representative of each class to be the point with the odd y-coordinate
(when 0 ≤ y < q). In the worst case, the cost of computing this representative
is a negation in Fq, and updating the corresponding (ai, bi) pair costs two nega-
tions in Z/nZ. On average though, these costs are halved, since we have already
computed (and detected) the representative half of the time.

In order to derive parameters for the cycle detection, we use p = (2r)−2 as
the probability to enter a 4-cycle, which (due to the cycle-reduction technique)
is higher than the probability to enter a 2-cycle – see Section 3.3. The elliptic
curve group operation costs are taken as c(f) = c(A) = 6 and c(D) = 7. Using
the parameters r = 1024, α = 7 · 104 and β = 32, we expect that around one
percent of the computed steps are fruitless: Eq.(2) evaluates to 0.9907.

BN254. Let q be the 254-bit prime obtained when u = −(262 + 255 + 1) is
plugged into q(u) = 36u4 + 36u3 + 24u2 + 6u + 1. The Barreto-Naehrig (BN)
curve [3] E/Fq : y

2 = x3 + 2 has a 254-bit prime order n, and has been used
in several of the “speed-record” papers for pairing computations that target the
128-bit security level (e.g. [1,21]). Since q ≡ 1 mod 3, there exists ζ �= 1 ∈ Fq
such that ζ3 = 1, meaning that E(Fq) has additional automorphisms, e.g. φ :
E → E, (x, y) �→ (ζx, y). In fact, Aut(E) = {id,−, φ,−φ, φ2,−φ2}, so that the
points (x, y), (x,−y), (ζx, y), (ζx,−y), (ζ2x, y) and (ζ2x,−y) are all equivalent
under ∼. We take the representative of each equivalence class to be the point
whose x-coordinate has least absolute value and whose y-coordinate is odd.
In the worst case, computing this representative costs one multiplication, two
negations and one addition in Fq, and updating the corresponding (ai, bi) pair
costs two multiplications in Z/nZ; we exploit ζ2x = −(ζ + 1)x to compute the
x-coordinate of φ2(P) from the x-coordinates of φ(P) and P without any further
multiplications. On average however, we only need the negation to get the odd
y-coordinate half of the time; to update the (ai, bi), we compute the two Z/nZ
multiplications two thirds of the time, while in the remaining one third of the
cases, we average a single Z/nZ addition.

In order to derive parameters for the cycle detection, we use p = (6r)−2

as the adjusted probability to enter a 4-cycle (taking the group automorphism
into account). In this case the elliptic curve group operation costs are taken as
c(f) = c(A) = 7 and c(D) = 8, where both costs incorporate the additional
multiplication to compute the representative. Using r = 1024 and β = 32, we
find that a corresponding α value (for which we expect that around one percent
of the computed steps is fruitless) as α = 6 · 105, which is almost an order of
magnitude larger than in the NIST CurveP-256 setting: in this case, evaluating
Eq. (2) gives 0.9911.

4.2 Target Curves in Genus 2

Generic1271. Let q = 2127 − 1 and C/Fq : y
2 = x5 + a3x

2 + a2x
2 + a1x +

a0 with a3 = 0x1A237F07B8BB79AEBA5011C3FA697D2D, a2=0x63D7B6834F8A4F3DBDBD141CE55EA675,

212 J. W. Bos, C. Costello, and A. Miele

a1=0x44642D7B9E492BE2E3C4F8A36F0C4236, a0=0x504351F67810EFACF06E3A6E5C532F0. This curve
was recently used in [7] as a “generic” instance of a (degree 5) genus 2 curve,
since it has no special structure and the order of its Jacobian is a 254-bit
prime n. Here Aut(C) = {id,−}, which extends to JC to give that the divi-
sors (x2 + u1x + u0, v1x + v0) and (x2 + u1x + u0,−v1x − v0) are equivalent
under ∼. Thus, we take the representative of each class to be the divisor whose
v0-coordinate is odd. In the worst case, the cost of computing this representative
is two negations in Fq, and updating the corresponding (ai, bi) pair costs two
negations in Z/nZ. On average these costs are again halved since we already
have the correct representative half of the time.

In order to derive parameters for the cycle detection, we use exactly the same
parameters as in the NIST CurveP-256 setting, since the automorphism groups
are the same, and only the costs of the group operations differ: c(f) = c(A) = 24
and c(D) = 28 in this case: Eq.(2) evaluates to 0.9907 (when α = 7 · 104, β = 32
and r = 1024).

4GLV127-BK. Let q = 264 · (263 − 27443) + 1. The Buhler-Koblitz [11] curve
C/Fq : y

2 = x5+17 gives rise to a Jacobian whose group order is a 254-bit prime
n. Since q ≡ 1 mod 5, there exists ζ �= 1 in Fq such that ζ5 = 1, which gives
rise to additional automorphisms on C, e.g. φ : C → C, (x, y) �→ (ζx, y). The
map φ extends to weight-2 divisors as φ : JC → JC , (x2 + u1x+ u0, v1x+ v0) �→
(x2+ ζu1x+ ζ2u0, ζ

4v1x+v0). Here Aut(C) = {id,−, φ,−φ, . . . , φ4,−φ4}, so we
take the representative of each class to be the divisor whose u1-coordinate has
least absolute value and whose v0-coordinate is odd. In the worst case, the cost
of finding this representative is six multiplications, one squaring, three additions
and two negations in Fq; it takes three multiplications, three additions and a
negation (this time we use ζ4 = −(ζ3 + ζ2 + ζ + 1) to save a multiplication)
to first determine the minimum value in {ζiu1} for 0 ≤ i ≤ 4, another two
multiplications to compute the corresponding ζ2iu0 and ±ζ4iv1, and finally one
negation for the v0-coordinate. To comply with the formulas in [14], we must also
recompute the two extended coordinates u1u0 and u2

1, which additionally incurs a
multiplication and a squaring. Updating the (ai, bi) pair costs two multiplications
in Z/nZ. On average though, we only need the three Fq multiplications and one
Fq squaring for u0, v1, u1u0 and u2

1 in eight of the ten cases (one of the ten needs
only one Fq negation, the other case needs no computation), and we only need
to negate v0 in five of the ten cases. For updating (ai, bi) on average, we need
two Z/nZ multiplications in eight of the ten cases, two Z/nZ negations in one
of them, while the remaining case leaves (ai, bi) unchanged.

Taking the size of the automorphism group into account gives p = (10r)−2

as the adjusted probability to enter a 4-cycle. Including the average number of
additional multiplications to compute the representative of the equivalence class
in the iteration function, the costs become c(f) = 30 1

5 and c(D) = 34 1
5 . An

α value for which we expect that around one percent of the computed steps is
fruitless is α = 106: this is over an order of magnitude larger compared to the
Generic1271 setting: evaluating Eq.(2) gives 0.9943 in this case (when β = 32
and r = 1024).

Elliptic and Hyperelliptic Curves: A Practical Security Analysis 213

Table 1. Cost of the Pollard rho iteration for the selected genus g curves, where
m = #Aut and q is the prime field characteristic. We denote modular multiplications,
modular squarings and modular additions/subtractions with M, S and a respectively.
When updating the ai and bi values, we compute modulo n instead of modulo q.

cost of one step
curve g m divisor compute representative update ai, bi

addition worst average worst average
CurveP-256 1 2 5M+ S+ 6a 1a 1

2
a 2an 1an

BN254 1 6 5M+ S+ 6a 1M+ 3a 1M+ 5
2
a 2Mn

4
3
Mn + 1

3
an

Generic1271 2 2 20M + 4S+ 48a 2a 1a 2an 1an

4GLV127-BK 2 10 20M + 4S+ 48a 6M+ 1S+ 5a 27
5
M+ 4

5
S+ 3

5
a 2Mn

8
5
Mn + 1

5
an

4.3 Other Curves of Interest

In this subsection we briefly mention the application of the Pollard rho algorithm
to other popular curves that have appeared in the literature and that target the
128-bit security level.

Other Genus 1 Curves. Bernstein’s Curve25519 [4] and Hisil’s ecfp256e [24]
both facilitate fast timings for scalar multiplications without the existence of
additional morphisms, so besides the faster modular arithmetic that is possible
over these pseudo-Mersenne primes, the application of Pollard rho to these two
curves is identical to the case of CurveP-256. There are other j-invariant zero
curves (that are not pairing-friendly) which have been put forward for fast ECC
using the Gallant-Lambert-Vanstone (GLV) technique [18]: the prime order curve
E/Fq : y

2 = x3+2 with q = 2256 −11733 was used by Longa and Sica [28], while
the prime order curve E/Fq : y

2 = x3 + 7 with q = 2256 − 232 − 977 is proposed
in the SEC standard [13] and is subsequently used in Bitcoin [32]. In both of
these cases, the automorphism group is the same as that for BN254, so Pollard
rho is optimized identically.

There exist numerous families of curves that come equipped with non-trivial
morphisms which are useful in the context of scalar multiplications, but which
are not useful in the context of Pollard rho. This is often the case for curves that
contain efficiently computable endomorphisms which are not automorphisms,
like the families of Q-curves recently proposed by Smith [34]. On the other hand,
Galbraith-Lin-Scott (GLS) curves [17] do facilitate a constant-factor speedup in
Pollard rho, since the GLS endomorphism gives rise to small orbits and is typi-
cally much faster than a group operation (it usually involves one multiplication
by a fixed constant).

Other Genus 2 Curves. The authors of [7] recently used the Kummer surface
found by Gaudry and Schost [20] to achieve fast scalar multiplications in genus 2.
Interestingly, there is no known way to exploit the fast arithmetic on the Kummer
surface in Pollard rho, since only pseudo-additions exist there. Discrete logarithm
instances must therefore be mapped back to the full Jacobian group, where,
besides the smaller prime subgroup resulting from the imposed cofactor of 16 on

214 J. W. Bos, C. Costello, and A. Miele

Kummer1271, the optimal application of Pollard rho is identical to the case of
Generic1271.

In addition to BK curves of the form y2 = x5 + b, the performance of 4-
dimensional scalar decompositions on curves of the form C/Fq : y

2 = x5 + ax
was also recently investigated [7]. Similar to the BK curves, the endomorphisms
on these curves are very efficient in comparison to a group addition, so they
facilitate significant speedups in Pollard rho. Here we have m = 8, so it would
be interesting to see how close we can get to a

√
8 speedup in this case.

As is the case in the elliptic curve setting, there are several genus 2 families
that possess maps which are useful to the cryptographer, but which offer no
known benefit to the cryptanalyst – see [19] for some examples of endomorphisms
which are not automorphisms. Thus, the application of Pollard rho to these
families is identical to the case of Generic1271.

5 Performance Results

In order to systematically compare the security of the genus 1 and genus 2 curves
from the previous section, we designed and implemented a software framework
for 64-bit platforms supporting the x64 instruction set. This modular design is
capable of switching various features on or off: for example, using the automor-
phism optimization, employing different techniques for handling fruitless cycles,
using different finite fields, or using different curve arithmetic. We implemented
dedicated modular arithmetic for the special prime fields considered in this work
(see Section 4); for each curve, we optimized the modular multiplication by hand
in assembly, which resulted in a significant performance speedup compared to
compiling our native C-code. All of the experimental results presented in this
section have been obtained using an Intel Core i7-3520M (Ivy Bridge), running
at 2893.484 MHz, and with the so-called turbo boost and hyper-threading features
disabled.

We do not claim that the performance numbers reported in this section are
the best possible. In a real attack, which focuses on a single curve target, the
curve arithmetic and the arithmetic in the finite field should be optimized even
further in assembly – we spent a moderate amount of time per curve to achieve
good performance. We expect however, that the relative timings between the
curves would remain roughly invariant under such further optimizations.

5.1 Correctness

In order to make sure that our software framework works correctly and behaves
as expected, we searched for curves defined over the same base fields as our target
curves (as outlined in Section 4), but with smaller (around 45-bit) prime-order
subgroups (we note that ψ stabilizes these prime-order subgroups in all cases).
We ran our implementations and enabled all the “statistic-gathering” options:
this slows down the cost of a single step, but does not alter the behavior of the
algorithm. We computed 10 batches of 103 Pollard rho computations for solving

Elliptic and Hyperelliptic Curves: A Practical Security Analysis 215

Table 2. Summary of the number of steps required when solving the DLP in a prime
order subgroup n (2N−1 < n < 2N) on the four (modified) curves we consider in this
work. We computed 10 batches of 103 discrete logarithms and we display the minimum
and maximum number of average steps out of these 10 batches, as well as the overall
average. We used a 32-adding walk and a distinguished point property with d = 8,
which we expect to occur once every 28 steps. The expected estimate is derived using
Eq. (4).

curve N min avg max expected
NIST CurveP-256 45 6 528 891 6 703 125 6 959 881 6 702 814
BN254 47 12 766 948 13 130 659 13 353 056 13 114 481
Generic1271 45 6 936 215 7 087 854 7 311 815 7 137 587
4GLV127-BK 45 5 339 249 5 489 583 5 668 256 5 489 249

discrete logarithm instances in these subgroups, both with and without the use
of the automorphism optimization.

Pollard rho without the Group Automorphism Optimization. Assume
we use an r-adding walk without the automorphism optimization (we take m = 1,
where m is the cardinality of the group automorphism that is used). Experimen-
tal results from [35] suggest that using a larger r-value, such as r ≥ 16, results
in practical behavior that is closer to a truly random walk and gives a run-time
that is close to the expected

√
πn
2 . This is in agreement with the heuristic anal-

ysis from [2, Appendix B], which refines the arguments from [10], where it is
shown that the average number of pseudo-random group elements required to
find a collision (and solve the DLP) using an r-adding walk is√

πn

2m(1 − 1
r)

, (3)

where n is the size of the prime order subgroup. We use the parallel (i.e. distin-
guished point) version of Pollard rho, such that approximately one out of every
2d points is distinguished. When computing w walks concurrently, Eq. (3) can
be adjusted to √

πn

2m(1 − 1
r)

+ w · 2d−1. (4)

This is because we need to perform an additional w · 2d−1 steps after two walks
arrive at the same point: on average, 2d−1 steps are required to reach the next
distinguished point, where both walks will be sent to the central database and
the collision will be detected. For each scenario, Table 2 summarizes the average
minimum, average and maximum steps of these 10 batches together with the
theoretical number of steps we expect to take to solve the DLP. In all four cases,
the average number of steps observed in practice matches the expected number
of steps almost exactly: the difference is below one percent.

Pollard rho with the Group Automorphism Optimization. When using
the group automorphism with m = #Aut(C), we can encounter two types of

216 J. W. Bos, C. Costello, and A. Miele

Table 3. A comparison of the expected (exp.) and real number of fruitless steps
(FS) and fruitful steps when computing 10 batches of 103 discrete logarithms (as
in Table 2) but using the group automorphism optimization. The genus-g curves have
m = #Aut(C) and we check for cycles up to length β every α steps.

NIST P-256 BN254 Generic1271 4GLV127-BK
(g,m) (1, 2) (1, 6) (2, 2) (2, 10)

(α, β) (7 · 104, 32) (6 · 105, 32) (7 · 104, 32) (106, 32)

exp. # of fruitful steps (Eq.(4)) 4 668 485 5 274 669 4 971 221 1 712 170
real # of fruitful steps (s) 4 643 787 5 271 219 5 010 354 1 723 756

exp. # of trapped FS (Eq. (5)) 38 537 41 671 41 538 8185
real # of trapped FS 33 349 28 526 42 122 4835

exp. # of cycle reduction FS 4535 5148 4893 1683
real # of cycle reduction FS 4582 5173 4911 1687

fruitless steps: those due to the 2-cycle reduction technique and those which are
performed when a walk is trapped in fruitless cycles. Due to the cycle reduction
technique we use (see Section 3.3), the probability of 2-cycles and 3-cycles (if
the latter can occur) have been reduced significantly. In fact, the probability to
enter a 4-cycle becomes the most likely event by far, so we use the approximation
p = 1/(mr)2 (see Section 3.3) for the probability of entering any cycle. We check
for cycles every α steps, where α depends on the curve (see Section 4), and we
escape these cycles if necessary. If s is the expected number of steps required
to solve the DLP, then the expected number of fruitless steps spent in fruitless
cycles is

s

α
· W (α, (mr)−2), (5)

where W is as in Eq. (1).
Table 3 summarizes the results of running Pollard rho with the group au-

tomorphism optimization, where it is clear that the number of fruitful steps
observed is very close to what we expect. Hence, we can expect to achieve a
speedup if the practical cost of the iteration function is not increased too much.
We note that the number of fruitless steps due to the 2-cycle reduction technique
is also consistent with the prediction.

Interestingly, for the two curves with a larger automorphism group (i.e. with
m > 2), the number of trapped fruitless cycles is lower than the expected value,
which can be explained as follows. Since we expect fruitless cycles to occur much
less frequently, the α parameter has been chosen significantly larger than for the
curves with m = 2. In our benchmark runs, we solve the smaller DLP instances
that are outlined in Table 2; if one of the walks gets trapped in a fruitless
cycle, then, with overwhelming probability, one of the other concurrent walks
will solve the DLP before this trapped walk has computed all of the fruitless
α + β steps that are required to escape from this fruitless cycle. This behavior
is not incorporated in our estimate for the total number of trapped fruitless
steps. We ran larger instances of the DLP and, as expected, the total number of
trapped fruitless steps increased.

Elliptic and Hyperelliptic Curves: A Practical Security Analysis 217

Table 4. The performance of our implementations expressed in the number of cycles
per step without (32-adding walk) and with (1024-adding walk) the usage of the group
automorphism running 2048 walks concurrently. For each curve, the expected speedup
(which takes into account the additional cost of computing the equivalence class rep-
resentative) and the speedup found in practice are stated together with the expected
number of single-core years to solve a discrete logarithm. The security of each curve is
given when taking NIST CurveP-256 as the baseline for the 128-bit security level.

curve performance speedup core sec
without with exp. real years

NIST CurveP-256 1129 1185
√
2 0.947

√
2 3.946 · 1024 128.0

BN254 1030 1296 6
7
·
√
6 ≈ 0.857

√
6 0.790

√
6 9.486 · 1023 125.9

Generic1271 986 1043
√
2 0.940

√
2 1.736 · 1024 126.8

4GLV127-BK 1398 1765 120
151

·
√
10 ≈ 0.795

√
10 0.784

√
10 1.309 · 1024 126.4

5.2 Implementation Results

In order to optimize performance, we conducted several experiments to find
the best parameters for instantiating the Pollard rho algorithm in practice: we
varied the number of partitions in the adding walks (but restricted to r ≥ 1024
when using the group automorphism optimization) and the number of concurrent
walks. For all four curves, we found that 2048 concurrent walks resulted in
low costs for amortized inversions and gave the best performance. Using 2048
concurrent walks contradicts the advice from [9], which might be explained by
the fact that our platform has a large cache so that “cache-misses” will only
occur for a much larger number of concurrent walks. In regards to the optimal
size of the lookup table, our benchmark runs showed that using 32-adding walks
are best when the automorphism optimization is not used, and that 1024-adding
walks are best when it is.

In Table 4 we state the performance numbers using the parameters above. We
save computation by exploiting the fact that one does not need to update the
ai and bi values [2]: this is especially significant for the curves with m > 2. Note
that the number of computer cycles per step, when not using the group auto-
morphism optimization, is lower for the BN254 curve compared to CurveP-256.
This is surprising since the BN254 curve does not use a special prime. A par-
tial explanation is that the CurveP-256 arithmetic is relatively slow, especially
compared to the other NIST curves, and the addition of two residues might
result in a carry occupying an additional word, which slows down the compu-
tation. On the other hand, the BN254 curve is defined over a 254-bit prime,
such that subtraction-less Montgomery multiplication [38] can be used to save
a conditional subtraction in every modular multiplication. Furthermore, the ad-
dition of two residues does not result in a carry occupying another word, which
saves instructions. We suspect, however, that a hand-tweaked assembly imple-
mentation of NIST’s CurveP-256 can be made slightly more efficient than the
subtraction-less Montgomery arithmetic using the x64 instruction set.

Table 4 states the expected speedup of Pollard rho using the automorphism
(which takes into account the additional cost of choosing representatives), as

218 J. W. Bos, C. Costello, and A. Miele

well as the speedup we observed. This experimental speedup is consistently five
to seven percent lower than the expected one, except for the 4GLV127-BK curve
– such differences can be expected, as our analysis did not take extra modular
additions, subtractions and negation into account, nor did we consider various
overheads due to the usage of additional memory latencies. In the case of the
BK curve, these additional factors constitute a much smaller fraction of the
factors that were included in the analysis, which is why our experiments results
match the expected numbers even closer. For each curve, Table 4 also reports
the expected number of single Intel Core i7-3520M core years required to solve
a discrete logarithm instance. This estimate assumes that we use the group
automorphism optimization and takes into account that we have to perform
slightly more steps, increasing the estimate from Eq. (3) such that we take
fruitless cycles into account, in line with the analysis from Section 4. Based
on this estimate, we also give the security level for each curve using the NIST
CurveP-256 as the baseline for 128-bit security. Hence, this security estimate
takes into account the different available optimizations for each curve, as well as
the varying performance for the base field arithmetic.

6 Conclusions

We analyzed the practical security of elliptic curves and genus 2 hyperelliptic
curves over prime fields using the Pollard rho algorithm. We developed a soft-
ware framework implementing the state-of-the-art techniques to make use of the
group automorphism optimization, which is targeted at 64-bit architectures that
support the x64 instruction set. We detailed optimized parameter selection when
dealing with practical issues, such as reducing, detecting and escaping fruitless
cycles; in particular, we analyzed these choices for curves with large automor-
phism groups, which have not yet received a detailed analysis in the literature.

We studied the performance of the Pollard rho algorithm on two elliptic curves
and two genus 2 curves of cryptographic interest, all of which are estimated to
provide around 128 bits of security. Our first conclusion is that, reassuringly,
the practical security of all four curves considered is almost equivalent. Our
second conclusion is that curves having large a large group automorphism of
cardinality m > 2 can not achieve a speedup of

√
m: one has to pay a penalty for

finding the representative of the equivalence class. Nevertheless, a constant-factor
improvement is possible when dealing with fruitless cycles, and our analysis
shows how to optimize this improvement in practice.

Acknowledgments. We thank Michael Naehrig for pointing out further opti-
mizations and the anonymous reviewers for their insightful comments.

References

1. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit
formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011)

Elliptic and Hyperelliptic Curves: A Practical Security Analysis 219

2. Bailey, D.V., Batina, L., Bernstein, D.J., Birkner, P., Bos, J.W., Chen, H.-C.,
Cheng, C.-M., van Damme, G., de Meulenaer, G., Perez, L.J.D., Fan, J., Güneysu,
T., Gurkaynak, F., Kleinjung, T., Lange, T., Mentens, N., Niederhagen, R., Paar,
C., Regazzoni, F., Schwabe, P., Uhsadel, L., Herrewege, A.V., Yang, B.-Y.: Break-
ing ECC2K-130. Cryptology ePrint Archive, Report 2009/541 (2009),
http://eprint.iacr.org/2009/541

3. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

4. Bernstein, D.J.: Curve25519: New Diffie-Hellman speed records. In: Yung,
M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 207–228. Springer, Heidelberg (2006)

5. Bernstein, D.J.: Elliptic vs. Hyperelliptic, part I. Talk at the ECC (September
2006), slides at http://cr.yp.to/talks/2006.09.20/slides.pdf

6. Bernstein, D.J., Lange, T., Schwabe, P.: On the correct use of the negation map
in the Pollard rho method. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A.
(eds.) PKC 2011. LNCS, vol. 6571, pp. 128–146. Springer, Heidelberg (2011)

7. Bos, J.W., Costello, C., Hisil, H., Lauter, K.: Fast cryptography in genus 2.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 194–210. Springer, Heidelberg (2013)

8. Bos, J.W., Kaihara, M.E., Kleinjung, T., Lenstra, A.K., Montgomery, P.L.: Solving
a 112-bit prime elliptic curve discrete logarithm problem on game consoles using
sloppy reduction. International Journal of Applied Cryptography 2(3), 212–228
(2012)

9. Bos, J.W., Kleinjung, T., Lenstra, A.K.: On the use of the negation map in the
Pollard rho method. In: Hanrot, G., Morain, F., Thomé, E. (eds.) ANTS-IX. LNCS,
vol. 6197, pp. 66–82. Springer, Heidelberg (2010)

10. Brent, R.P., Pollard, J.M.: Factorization of the eighth Fermat number. Mathemat-
ics of Computation 36(154), 627–630 (1981)

11. Buhler, J., Koblitz, N.: Lattice basis reduction, Jacobi sums and hyperelliptic cryp-
tosystems. Bull. Australian Math. Soc. 58(1), 147–154 (1998)

12. Certicom. Press release: Certicom announces elliptic curve cryptosystem (ECC)
challenge winner (2002),
http://www.certicom.com/index.php/2002-press-releases/
38-2002-press-releases/340-notre-dame-mathematician-solves-eccp
-109-encryption-key-problem-issued-in-1997

13. Certicom Research. Standards for efficient cryptography 2: Recommended elliptic
curve domain parameters. Standard SEC2, Certicom (2000)

14. Costello, C., Lauter, K.: Group law computations on Jacobians of hyperelliptic
curves. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 92–117.
Springer, Heidelberg (2012)

15. Duursma, I.M., Gaudry, P., Morain, F.: Speeding up the discrete log computa-
tion on curves with automorphisms. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.)
ASIACRYPT 1999. LNCS, vol. 1716, pp. 103–121. Springer, Heidelberg (1999)

16. Galbraith, S.D.: Mathematics of public key cryptography. Cambridge University
Press (2012)

17. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. J. Cryptology 24(3), 446–469 (2011)

18. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

http://eprint.iacr.org/2009/541
http://cr.yp.to/talks/2006.09.20/slides.pdf
http://www.certicom.com/index.php/2002-press-releases/38-2002-press-releases/340-notre-dame-mathematician-solves-eccp-109-encryption-key-problem-issued-in-1997
http://www.certicom.com/index.php/2002-press-releases/38-2002-press-releases/340-notre-dame-mathematician-solves-eccp-109-encryption-key-problem-issued-in-1997
http://www.certicom.com/index.php/2002-press-releases/38-2002-press-releases/340-notre-dame-mathematician-solves-eccp-109-encryption-key-problem-issued-in-1997

220 J. W. Bos, C. Costello, and A. Miele

19. Gaudry, P., Kohel, D.R., Smith, B.A.: Counting points on genus 2 curves with real
multiplication. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 504–519. Springer, Heidelberg (2011)

20. Gaudry, P., Schost, É.: Genus 2 point counting over prime fields. J. Symb. Com-
put. 47(4), 368–400 (2012)

21. Geovandro, C.C.F.P., Simplício Jr., M.A., Naehrig, M., Barreto, P.S.L.M.: A fam-
ily of implementation-friendly BN elliptic curves. Journal of Systems and Soft-
ware 84(8), 1319–1326 (2011)

22. Harley, R.: Elliptic curve discrete logarithms project,
http://pauillac.inria.fr/~harley/

23. Harris, B.: Probability distributions related to random mappings. The Annals of
Mathematical Statistics 31, 1045–1062 (1960)

24. Hisil, H.: Elliptic curves, group law, and efficient computation. PhD thesis (2010)
25. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177),

203–209 (1987)
26. Koblitz, N.: Hyperelliptic cryptosystems. Journal of Cryptology 1(3), 139–150

(1989)
27. Lange, T.: Elliptic vs. Hyperelliptic, part II. Talk at the ECC (September 2006),

slides at http://www.hyperelliptic.org/tanja/vortraege/ECC_06.ps
28. Longa, P., Sica, F.: Four-dimensional Gallant-Lambert-Vanstone scalar multipli-

cation. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
718–739. Springer, Heidelberg (2012)

29. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

30. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation 48(177), 243–264 (1987)

31. Nagao, K.: Improving group law algorithms for Jacobians of hyperelliptic curves.
In: Bosma, W. (ed.) ANTS-IV. LNCS, vol. 1838, pp. 439–447. Springer, Heidelberg
(2000)

32. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2009),
http://bitcoin.org/bitcoin.pdf

33. Pollard, J.M.: Monte Carlo methods for index computation (mod p). Mathematics
of Computation 32(143), 918–924 (1978)

34. Smith, B.A.: Families of fast elliptic curves from Q-curves. In: Sako, K., Sarkar, P.
(eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 61–78. Springer, Heidelberg
(2013)

35. Teske, E.: On random walks for Pollard’s rho method. Mathematics of Computa-
tion 70(234), 809–825 (2001)

36. U.S. Department of Commerce/National Institute of Standards and Technology.
Digital Signature Standard (DSS). FIPS-186-4 (2013),
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

37. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic ap-
plications. Journal of Cryptology 12(1), 1–28 (1999)

38. Walter, C.D.: Montgomery exponentiation needs no final subtractions. Electronics
Letters 35(21), 1831–1832 (1999)

39. Wiener, M.J., Zuccherato, R.J.: Faster attacks on elliptic curve cryptosystems. In:
Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 190–200. Springer,
Heidelberg (1999)

http://pauillac.inria.fr/~harley/
http://www.hyperelliptic.org/tanja/vortraege/ECC_06.ps
http://bitcoin.org/bitcoin.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

Discrete Logarithm in GF(2809) with FFS

Razvan Barbulescu, Cyril Bouvier, Jérémie Detrey, Pierrick Gaudry,
Hamza Jeljeli, Emmanuel Thomé, Marion Videau, and Paul Zimmermann

CARAMEL project-team, LORIA, INRIA / CNRS / Université de Lorraine,
Campus Scientifique, BP 239, 54506 Vandœuvre-lès-Nancy Cedex, France

first name.last name@loria.fr

Abstract. The year 2013 has seen several major complexity advances
for the discrete logarithm problem in multiplicative groups of small-
characteristic finite fields. These outmatch, asymptotically, the Function
Field Sieve (FFS) approach, which was so far the most efficient algorithm
known for this task. Yet, on the practical side, it is not clear whether
the new algorithms are uniformly better than FFS. This article presents
the state of the art with regard to the FFS algorithm, and reports data
from a record-sized discrete logarithm computation in a prime-degree
extension field.

Keywords: Discrete logarithm, Function field sieve, Cryptanalysis,
Number theory.

1 Introduction

The discrete logarithm problem (DLP) is the cornerstone of a large part of public-
key cryptography. Multiplicative groups of finite fields were the first proposed
groups for cryptography, meeting the requirements of fast arithmetic and a hard
discrete logarithm problem. Since almost the beginning though, the discrete
logarithm problem is known to be of subexponential complexity in these groups,
with the most efficient algorithms being those from the Number Field Sieve
family, of complexity L#G(1/3, c) for computing discrete logarithms in G =
GF(pn)×, where we use the conventional notation

L#G(α, c) = exp
(
(c+ o(1))(log#G)α(log log#G)1−α

)
.

To this regard, alternatives to these choices of groups, such as elliptic curve
cryptography, are of course considered. With elliptic curves, a smaller group size
allows for the same security against potential attackers. In spite of the existence
of such alternatives, multiplicative groups of finite fields remain of primary im-
portance for cryptography, because of their widespread use in many protocols
and their implementations, such as the Diffie–Hellman key exchange [12], the
ElGamal encryption system [13] or the Digital Signature Algorithm [27]. An-
other typical situation where the DLP in multiplicative groups of finite fields is
of crucial importance is the area of pairing-based cryptography.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 221–238, 2014.
c© International Association for Cryptologic Research 2014

222 R. Barbulescu et al.

We focus here on multiplicative groups of finite fields of small characteristic,
the archetypal examples of which being the binary fields GF(2n). These fields
offer some implementation advantages for the cryptographer, which make them
a natural choice (the most usually chosen fields being prime fields). Invented
by Adleman [2] in 1994, the Function Field Sieve has been the most efficient
algorithm known to solve the DLP in finite fields of small characteristic for quite
a long time. It earned its first successes from 2001 onwards [17,18], the latest
record computations being in the fields GF(2613) [21] and GF(2619) [8].

In 2013, several works have significantly changed the landscape and improved
the asymptotic complexity for solving the DLP in small-characteristic finite
fields. Successive improvements lowered the complexity from L(1/3) down to
L(1/4 + o(1)) [19], and later down to quasi-polynomial complexity [9]. A com-
mon feature of these improved algorithms is their reliance on an appropriately
sized subfield. Hence, the new algorithms perform well for finite fields which
readily provide such a subfield. All published DLP records which have used
these improved algorithms satisfy this criterion, the culminating computation to
date being in the field GF(26168)=GF((224)257). On the other hand, finite fields
which have no such subfield, such as fields of prime extension degree GF(2p),
are less amenable to the newer approaches. One must first apply the new algo-
rithms to the DLP in an extension GF(2kp) for an appropriate k, and only then
solve the DLP in GF(2p) as a by-product. Complexity analysis shows that this
approach is asymptotically faster than FFS, despite the large intermediary field
GF(2kp).

Motivation. In practical terms, though, determining the cut-off point where
FFS is surpassed by the new methods is not obvious. No practical data exists as
of yet where the L(1/4+o(1)) or quasi-polynomial algorithms have been applied
to fields of prime extension degree. The FFS approach, on the other hand, is
complicated enough so that its runtime is difficult to extrapolate from previous
experiments, all the more so given that experimental data with FFS is quite
scarce (the computation from [21] is 8 years old, and the report [8], while doing
better than the former, involved only a small amount of resources). One of the
motivations of the present article is to provide new record computation data for
fields of prime extension degree by computing discrete logarithms in GF(2809).

Another line of work made important by the recent developments in the com-
putation of discrete logarithms in small characteristic finite fields is the assess-
ment of their reach in the context of pairing-based cryptography, as studied for
instance by the preprint [1]. Indeed, the fields of definition of pairings on elliptic
curves and Jacobians of genus-2 curves offer almost by construction the required
criterion for the new algorithms to apply optimally, or fall close at the very least.
Re-assessing the security levels for finite fields which were once thought to offer
strong DLP hardness calls again for a serious FFS study, because of its potential
use in this context. The new algorithms allow to do the so-called descent step
all the way down to tiny elements, much smaller than what any FFS/NFS-DL
variant can reach. For best performance, it is perfectly reasonable to organize

Discrete Logarithm in GF(2809) with FFS 223

this descent by combining several algorithms, as proposed in [1]. It is expected
that the early steps of the descent are best done with the same techniques as for
the FFS algorithm, including in particular the sieving technique.

It is an important feature of our work that all software used is original work
freely available for download, the main component being the cado-nfs software
suite [6] (although cado-nfs originally focuses on the Number Field Sieve, recent
additions cover FFS as well). The development of the present work has led to
several preprints and articles providing detailed insights on the improvements of
the individual steps of FFS [7,10,11,16]. For brevity, this article does not repeat
these details, and the interested reader is referred to these articles for more
detail.

Roadmap. This article is organized as follows. Section 2 recalls classical facts
about the FFS algorithm. Section 3 gives the details about the different steps
involved in the computation of discrete logarithms in (a prime order subgroup
of) GF(2809)×. Section 4 discusses ways to optimize the computation cost by bal-
ancing the sieving and linear algebra step. Section 5 explores the cost of solving
the discrete logarithm problem in a kilobit-sized field, namely GF(21039)×.

2 A Brief Overview of FFS

The goal of this section is to provide the readers with a primer on FFS, so that
they can have a better insight into the various steps of the algorithm along with
the computations they involve. However, for brevity purposes, this presentation
is in no way complete nor exhaustive. For more details, we refer the interested
reader to the extensive literature on this topic, starting from the first theoretical
articles [2,3,25] to the algorithmic advances and implementation reports which
followed [18,14,15,7,11,10,16].

2.1 Index Calculus

The Function Field Sieve algorithm belongs to the family of so-called index
calculus methods for computing discrete logarithms in a cyclic group G.

Writing G multiplicatively and assuming that it is generated by an element g
of prime order � = #G, the core idea is to collect many equalities, or relations,
of the form ∏

i

αeii = 1,

where the elements αi all belong to a predefined subset of G called the factor base,
and where the exponents ei all lie in Z/�Z. When taking the discrete logarithm
in base g, each relation then yields a linear equation in Z/�Z,∑

i

ei logg(αi) ≡ 0 (mod �),

224 R. Barbulescu et al.

whose unknowns are the discrete logarithms of the elements αi of the factor
base. This is known as the relation collection step.

Once enough such relations have been found (typically, more than the size of
the factor base), one can solve the corresponding system of linear equations and
retrieve the logarithms of the factor base elements. This step is usually referred
to as the linear algebra step. It is often directly preceded by a filtering step,
whose chief purpose is to prepare the matrix from the collected relations; some
simplifications and Gaussian elimination are typically performed at this stage.

Finally, the discrete logarithm of a given element h ∈ G is computed thanks to
the last step, known as the individual logarithm step. The idea here is to rewrite h
as a product

∏
i α

fi
i of elements of the factor base. The discrete logarithm of h

is then
logg(h) ≡

∑
i

fi logg(αi) (mod �).

2.2 FFS-Specific Considerations

In the case of FFS, one can detail further the various steps of the index calculus
algorithm, mostly due to the fact that G is the multiplicative subgroup of a
finite field GF(pn), where the characteristic p is a small prime (e.g., p = 2 in
this work).

Relation Collection. Let us write k to denote the base field GF(p), and let f
and g be two monic polynomials in k[t][x] such that their resultant in x con-
tains an irreducible factor ϕ(t) of degree n. The key to collecting relations in
FFS is then based on the following commutative diagram, whose maps are ring
homomorphisms:

k[t][x]

k[t][x]/f(x, t) k[t][x]/g(x, t)

k[t]/ϕ(t) ∼= GF(pn)

Let us now consider an element of the form a(t) − b(t)x ∈ k[t][x]. Following
the maps on the left-hand side of the diagram, we first obtain an element of
k[t][x]/f(x, t), which can be viewed as a principal ideal in the ring of integers of
the corresponding function field k(t)[x]/f(x, t). As this is a Dedekind domain,
there is a unique factorization in prime ideals. The same also applies to the right-
hand side of the diagram, corresponding to the function field k(t)[x]/g(x, t), thus
yielding two factorizations of the same element a(t) − b(t)x. Strictly speaking,
there is no reason for k[t][x]/f(x, t) to be the full ring of integers of k(t)[x]/f(x, t),

Discrete Logarithm in GF(2809) with FFS 225

but this technicality can easily be dealt with after a study of the singularities of
the curve of equation f(x, t) = 0.

When pushing these two factorizations into the finite field k[t]/ϕ(t) ∼= GF(pn),
we then obtain an equality between two products of elements of the finite field.
Should all these elements belong to the factor base, we would then have computed
a relation.

In FFS, there are in fact two factor bases: one for each side of the diagram.
Indeed, when considering the principal ideal corresponding to a(t) − b(t)x in
k(t)[x]/f(x, t), we will say that it is smooth if its factorization involves only
prime ideals whose norms have degree less than or equal to a parameter called
the smoothness bound. Therefore, the factor base on this side will correspond to
the prime ideals 〈q(t), x − r(t)〉 of k(t)[x]/f(x, t) for which deg(q) is less than or
equal to this smoothness bound. In general, by degree of an ideal of the factor
base we understand the degree of its norm. The factor base for the g side can be
constructed in a similar fashion.

All in all, finding relations in FFS amounts to looking for elements of the
form a(t) − b(t)x in k[t][x] whose corresponding images in k[t][x]/f(x, t) and
k[t][x]/g(x, t) are both smooth. Whether or not these images factor nicely can
be decided by considering the factorizations of the polynomials Resx(a(t) −
b(t)x, f(x, t)) and Resx(a(t) − b(t)x, g(x, t)). These resultants are commonly re-
ferred to as norms because of the link to the norm of the ideal generated by
a(t) − b(t)x in the two rings.1

The relation collection process can be greatly accelerated by using sieving
techniques. Another important acceleration can be achieved thanks to the so-
called sieving by special-q technique. It relies on the fact that one can easily
restrict the relation collection to elements a(t) − b(t)x which are divisible by an
arbitrary prime ideal q on the (say) f side. This way, when considering a(t)−b(t)x
over k[t][x]/f(x, t), one knows that the corresponding principal ideal is divisible
by q, thus lowering by deg(q) the degree of the remaining part and therefore
increasing the probability that it is smooth. One can then apply this technique
for many special-q’s of degree below the smoothness bound in order to achieve
a large speed-up.

Polynomial Selection. In order to further increase the probability to find
doubly-smooth elements a(t) − b(t)x all the while keeping arithmetic computa-
tions to a minimum in the relation collection step, one has to pay extra care
to the selection of the polynomials f and g ∈ k[t][x]. Similar to the case of the
Number Field Sieve (NFS), several criteria exist in the literature in order to rate
polynomials to be used in FFS [7].

A typical choice of polynomials involves a g which is linear in x, but many
degrees of freedom remain. Due to the bad impact a poor choice of polynomials
can have on the relation collection step, it is deemed important to dedicate some
1 As in the case for the Number Field Sieve, it is possible to generalize the setting

somewhat by allowing non-monic polynomials f and g. In that case the norms and
the resultants do not coincide exactly. This is not a concern for the present work.

226 R. Barbulescu et al.

CPU time to carefully select good polynomial pairs. This preliminary step is
usually known as the polynomial selection step.

Individual Logarithms. In the FFS context, individual logarithms are com-
puted thanks to the descent step, which reuses several key aspects of the relation
collection step. Indeed, the sieving methods developed for the latter can help us
rewrite “large” elements (i.e., of high degree) of GF(pn) into products of smaller
elements. This way, starting from h and recursively working our way down, we
end up considering only products of elements of the factor base, all of whose dis-
crete logarithms are known after the linear algebra step. We can then backtrack
this descent and reconstruct the discrete logarithms of the larger elements and,
ultimately, of h.

3 Discrete Logarithm Computation in GF(2809)

In this work, we have chosen to attack the discrete logarithm problem in a
subgroup which is not GF(2809)× itself, but rather one of its prime-order sub-
groups, namely the subgroup of prime order �, where � is the 202-bit prime factor
of 2809 − 1 given by

� = 4148386731260605647525186547488842396461625774241327567978137.

The other factor of 2809 − 1 is also prime, and 608 bits long.
The motivation for this choice is related to the cryptographic applications, for

which the discrete logarithm problem is to be solved only in a subgroup whose
size is large enough to resist Pollard’s ρ attack. We recall, as a comparison, that
the original DSA (digital signature algorithm) setup recommends a 160-bit prime
order subgroup in the multiplicative group of a 1024-bit finite field [27]. Here,
the chosen subgroup is rather over-sized than under-sized, given the expected
difficulty of Pollard’s ρ attack on a 202-bit group.

Extrapolations from the hardness of our discrete logarithm computation to
the hardness of the full discrete logarithm computation in the group GF(2809)×

are easy to obtain, as one can get satisfactory estimates by keeping most tim-
ings unchanged, and scaling the linear algebra cost by a roughly 4-fold linear
factor (the complexity of the linear algebra step being dominated by the cost of
multiplying an integer modulo � by a word-size integer).

In the following sub-sections, we discuss the choices of parameters made for
this computation, and present benchmarks and estimates for the various steps
of the FFS algorithm.

Notations. For the sake of compactness, in the following, we represent a poly-
nomial of GF(2)[t] by the integer obtained when considering the polynomial
over Z then evaluating it at t = 2; we write this integer in hexadecimal so that
sparseness is still visible. For instance, 0x11 represents t4 + 1, and 0xb00001 is
t23 + t21 + t20 + 1.

Discrete Logarithm in GF(2809) with FFS 227

3.1 Polynomial Selection

We used the criteria defined in [7] to select the polynomials. It appears that
monic polynomials f(x, t) and g(x, t) of degree 6 and 1 in x, respectively, were
the best choice. We therefore computed the α value—a quantity that is similar
to the one used when estimating the quality of NFS polynomials [26]—for all the
irreducible polynomials of degree 6 in x for which the degree in t of the coefficient
of xi is at most 12− 2i. Relying on sieving techniques for acceleration purposes,
this computation took about 2,760 hours on one core of an Intel Core i5-2500
CPU running at 3.3 GHz. We see it as a pre-computation since, when associated
with different polynomials g, f can be used to compute discrete logarithms in
any field GF(2n) with n ranging roughly from 700 to 900.

With this setting, the degree of the resultant in x of f and g is 6 times the
degree in t of the constant coefficient of g. Since we want this resultant to have
an irreducible factor of degree 809, this imposes this constant coefficient to have
a degree at least 135. According to [7], our choice may be driven by the α value
and by the factorization pattern of the resultant. As it turns out, among the
few polynomials f(x, t) that were preselected for having an α value around −6,
all but one have arithmetic properties that force a small factor of degree 2 in
the resultant, independently of the linear polynomial g. For those polynomials,
the degree in t of the constant coefficient of g would have to be at least 136 in
order to leave enough room for an irreducible factor of degree 809 to exist in
the resultant. For this reason, we chose for f the only polynomial that we have
found to have a nice α-value and that forces only a factor of degree 1 in the
resultant, which is expected to be better [7, §3.3]:

f(x, t) = x6 + 0x7x5 + 0x6bx3 + 0x1abx2 + 0x326x+ 0x19b3.

As far as g(x, t) is concerned, no special care was taken for its selection, as
it can be found in a few seconds and it did not make any difference in the
subsequent computations. We therefore picked a linear monic polynomial whose
constant term (with respect to x) is a sparse polynomial of degree 135 in t:

g(x, t) = x+ 0x80000000000000000000000000001e7eaa.

The resultant in x of f(x, t) and g(x, t) is (t + 1) times an irreducible factor
ϕ(t) of degree 809 that we take as defining polynomial for GF(2809):

ϕ(t) = 0x3ffffffffffffffffffffffffffffffffe80000000000000000000000

0cc0cfaeb0e000000000000000000000000000000004dfffffffffffffc

3c3ffc3c3c3fce3c2133ffffffffffffe9697fe96804c84c97e0b0000c0

0cf9b0f7675354e79f4cf7c97e29.

This choice of polynomials was driven solely by the efficiency of the relation
collection. The genus of the curve corresponding to f(x, t) = 0 is 19, which is
not especially low. The class number is 2073600, which is rather large, and there
are some singular points. The only ones that we have to take care of for the
computation are the ones at (x, t) = (ω, ω), where ω2 + ω + 1 = 0, which splits

228 R. Barbulescu et al.

into 2 places, and of course its conjugate. All these complications have essentially
no influence on the running time but require some care in the implementation.

N.B. Since g was chosen to be linear in x, the corresponding function field
GF(2)(t)[x]/g(x, t) is a rational function field. Therefore, to remain consistent
with the established terminology, we will refer to the corresponding side (i.e.,
the right-hand side in the commutative diagram of Section 2.2) as the rational
side. Conversely, the f side of the diagram will be referred to as the algebraic
side.

3.2 Relation Collection

The relation collection was performed using the implementation described in [11].
This is a rather classical sieving method using lattice-sieving for various special-
q’s. We actually ran the relation collection step for two different sets of pa-
rameters, in order to compare and be able to see how the tuning of this phase
influences the filtering and linear algebra steps.

The terminology used in [11] is the classical one, where the factor base bound
is the limit for the degree of the irreducible polynomials that are sieved, and the
large-prime bound refers to the limit for the degree of the polynomials allowed
in a relation (i.e., the smoothness bound). These notions are very similar to
the ones used when sieving relations for factoring integers using NFS (see for
instance [23]); irreducible polynomials of a given degree playing the role of prime
numbers of a given number of bits, we keep the “large-prime” terminology for
convenience. Likewise, the discussion below uses terminology which is heavily
borrowed from NFS implementation folklore. In particular, the I and J param-
eters directly relate to the dimensions of the sieved area in what is customarily
called the (i, j)-plane in the lattice sieving context. Typically, the number of
a(t) − b(t)x polynomials considered for a given special-q is given by 2I+J .

For the two parameter sets that we considered, we used a skewness of 2 (the
skewness being the degree gap in the coefficients a(t) and b(t) of the functions
a(t) − b(t)x considered in the algorithm), and we only considered the special-
q’s on the rational side, since we are in a range where the rational side yields
larger norms than the algebraic side. We used a factor base bound of degree 23
(inclusive). The main difference between our two sets of parameters is the large-
prime bound.

Case 1: Large-Prime Bound of 27. In that case, we used I = J = 15,
which were chosen to yield enough relations per special-q, despite a low large-
prime bound. Only (a(t), b(t)) pairs for which the norms on both sides (once
removed the factors obtained from sieving) have degree at most 81 were actually
considered as candidates for a complete factorization attempt. In other words,
we allowed for three large primes of maximum degree on each side.

All the special-q’s of degree 24 to 27 (inclusive) were sieved, producing a bit
more than 52 million relations (possibly non-unique). The relevant data is sum-
marized in the following table. The running times are given for a single core of

Discrete Logarithm in GF(2809) with FFS 229

an Intel Core i5-2500 CPU running at 3.3 GHz (Sandy Bridge microarchitec-
ture). In particular, this assumes the presence of the PCLMULQDQ instruction
for carry-less multiplication. In practice, most of our computations were done
using the idle time of a cluster2 whose 4-year old processors do not support
this instruction, and therefore took twice as much time. On the other hand, we
expect faster runtime on Intel’s new Haswell processor family that provides a
much better implementation of the PCLMULQDQ instruction than the Sandy
Bridge and Ivy Bridge microarchitectures.

deg q number of rels s/rel rels/sp-q accumulated rels accumulated time
24 6,940,249 1.48 9.93 6,940,249 2,853 h
25 9,926,294 1.91 7.39 16,866,543 8,119 h
26 14,516,775 2.42 5.62 31,383,318 17,877 h
27 20,645,456 3.38 4.15 52,028,774 37,260 h

Case 2: Large-Prime Bound of 28. In that case, we used I = J = 14, which
was enough to get a decent rate of relations per special-q. The threshold was
again set to 3 times the large-prime bound, that is, 84 for both sides. We sieved
all the special-q’s of degree 24 to 28 (inclusive), and produced more than 117
million relations, distributed as in the following table:

deg q number of rels s/rel rels/sp-q accumulated rels accumulated time
24 9,515,069 0.41 13.61 9,515,069 1,083 h
25 13,816,908 0.54 10.29 23,331,977 3,155 h
26 20,538,387 0.65 7.95 43,870,364 6,863 h
27 29,652,781 0.86 5.96 73,523,145 13,946 h
28 43,875,232 1.07 4.57 117,398,377 26,986 h

In both cases, we obtained a number of relations that provided a reasonable
excess (the excess is defined as the difference between the number of unique
relations collected and the number of ideals involved).

3.3 Filtering

The filtering step is split in three stages:

– duplicate: remove duplicate relations from the relation collection step;
– purge: remove singletons (ideals that appear in only one relation) and remove

relations while the excess is positive (i.e., there are still more relations than
ideals);

– merge: beginning of Gaussian elimination.

The filtering step was performed using the implementation described in [10].
It was run identically on the two sets of relations produced by the relation
collection step.
2 We acknowledge the support of the Région Lorraine and the CPER MISN TALC

project who gave us access to this cluster.

230 R. Barbulescu et al.

Case 1: Large-Prime Bound of 27. In total, 52,028,774 relations were col-
lected. They produced 30,142,422 unique relations (42 % were duplicates). After
the first singleton removal, about 29M relations remained as well as 19M ideals
(so the excess was around 10M). At the end of the purge algorithm, there were
9.6M relations and as many ideals. The final matrix (after the merge algorithm)
had 3.68M rows and columns (with, in average, 100 non-zero coefficients per
row, which is close to optimal for our linear algebra implementation).

Case 2: Large-Prime Bound of 28. In total, 117,398,377 relations were
collected. They produced 67,411,816 unique relations (43 % duplicates). After
the first singleton removal, about 65M relations remained as well as 37M ideals
(so the excess was around 28M). At the end of the purge algorithm, there were
13.6M relations and as many ideals. The final matrix (after the merge algorithm)
had 4.85M rows and columns (with, in average, 100 non-zero coefficients per
row).

For the actual computation, relations collected with both values of the large-
prime bound were considered to produce the matrix. This is of course not “fair”,
in the sense that if the computation were to be run again, we would have only
one of the two relation sets. On the other hand, it was a pity not to use all what
we had at hand to reduce the cost of the linear algebra.

In this setting, starting from an input set of 78.8M unique relations, we ob-
tained a matrix with 3,602,667 rows and columns, and an average of 100 non-zero
coefficients per row. The matrix contains small values that fit within one pro-
cessor word. Around 90% of the non-zero coefficients are ±1.

3.4 Linear Algebra

The linear system to be solved is of the form Mw = 0, where M is the sparse
matrix produced by the filtering step. We solved the linear system modulo the
subgroup of order �, which is a 202-bit prime, using the Wiedemann algorithm
as a solver. This algorithm iterates a very large number of sparse-matrix–vector
products of the form v′ ← Mv, where v and v′ are dense vectors. Either for the
simple Wiedemann or for its block variant [22], the algorithm returns a vector
of the kernel of the matrix. This vector is with high probability non-trivial. In
practice, one run of the algorithm is sufficient to find a solution.

The computation was carried out on NVIDIA GPUs. The implementation
used Residue Number System (RNS) arithmetic to accelerate arithmetic over
Z/�Z, since this representation system offers the opportunity to increase the
parallelism between the computational units, and is well suited to the GPU
execution framework. This approach is described in details in [16].

This linear algebra step was actually computed twice on two different setups,
whose choice was driven by the hardware which was available to us at that time.
A CPU implementation was also developed to serve as a reference point.

Dual-GPU Setup. A simple Wiedemann algorithm was run on a single node
equipped with two NVIDIA GeForce GTX 680 graphics processors. On this

Discrete Logarithm in GF(2809) with FFS 231

setup, the sparse-matrix–vector product takes 144 ms, including 16 ms for inter-
GPU communication. The total computation time sums up to 18 days: 12 days
on both GPUs for computing the initial sequence, 35 minutes for computing the
minimal polynomial, and 6 days on both GPUs for computing a vector of the
kernel.

Eight-GPU Setup. Another option was tried, using a different computing fa-
cility3 equipped with slightly different hardware. We used four distinct nodes,
each equipped with two NVIDIA Tesla M2050 graphics processors, and ran the
block Wiedemann algorithm with blocking parameters m = 8 and n = 4. An
iteration took 169 ms on each node, with 27 ms for the inter-GPU communi-
cation. The initial sequence computation required 2.6 days in parallel on the 4
nodes. The linear generator computation required 2 hours in parallel using 16
jobs on a 4-node cluster with Intel Xeon E5-2609 CPUs at 2.4 GHz connected
with Infiniband QDR network. Finally, computing the kernel vector required 1.8
days in parallel on the 4 GPU nodes. All in all, this computation took a total
wall-clock time of about 4.5 days.

CPU Implementation. For comparison purposes, we also developed a software
implementation of block Wiedemann based on the RNS representation for the
arithmetic and using the SSE-4.2 and AVX SIMD instruction sets. We exploited
the data-level parallelism in order to multiply the sparse matrix by several vec-
tors in parallel. For instance, using 64-bit RNS moduli, a 128-bit SSE register
can hold two RNS residues coming from two distinct vectors, thus allowing us to
multiply the matrix by these two vectors in parallel. The SSE implementation
offers the advantage of using integer arithmetic while AVX only supports packed
floating-point arithmetic.

The experiment was run on a cluster of Intel Core i5-2500 CPU running
at 3.3 GHz connected with Infiniband QDR network. Each node of the cluster
contains 4 cores. The matrix was split into 4 balanced parts and distributed
over 4 threads running on a single node. With the SSE-4.2 implementation, an
iteration requires 5 seconds to compute the product of M by two vectors, while
the AVX version computes the product with four vectors in 12.1 seconds. The
SSE implementation using integer arithmetic ends up being the fastest, despite
its lower data parallelism. Even though we did not run the full computation of the
linear algebra, our SSE implementation running on 4 nodes with the blocking
parameters m = 16 and n = 8 should take a total of 68.4 days, or 26,267
core-hours (15,120 core-hours for computing the initial sequence, 1,067 core-
hours for the linear generators, and 10,080 core-hours for computing a kernel
vector).
3 This work was realized with the support of HPC@LR, a Center of Competence

in High-Performance Computing from the Languedoc-Roussillon region, funded by
the Languedoc-Roussillon region, the European Union and the Université Montpel-
lier 2 Sciences et Techniques. The HPC@LR Center is equipped with an IBM hybrid
Supercomputer.

232 R. Barbulescu et al.

From the non-zero kernel vector coming out of the linear algebra step, we
obtained the discrete logarithms of 39,319,911 elements of the factor base, among
which 98.6 % of the degree-28 ideals.

3.5 Descent

Once the discrete logarithms of almost all elements up to the large-prime bound
have been found, we compute individual logarithms using the classical strategy
of descent by special-q.

More precisely, we start by splitting the target element into the quotient of
two elements of about half the degree, using an Euclidean algorithm that we
stop in the middle. Randomizing the target allows to repeat that step until the
two elements are smoother than average. In our case, after a dozen of minutes,
we managed to rewrite the target in terms of elements of degree at most 90 (in
comparison, straight out of the Euclidean algorithm, we have a numerator and
a denominator whose degree is at most 405).

Then we “descended” these elements of degree less than or equal to 90 but
above 28, by considering them as special-q’s in the relation collection implemen-
tation, so that they are rewritten as ideals of smaller degree. Hence a tree is
built where the discrete logarithm of a node can be deduced from the discrete
logarithms of each of its children, which are of smaller degree. At the end of this
process, one of the degree-28 ideals involved in the tree was not known from the
linear algebra step, and was therefore “re-descended” to known degree-28 ideals.

The overall cost of the individual logarithm step is less than one hour, and
therefore was not thoroughly investigated.

There are cases, however, where the cost of the descent step could become
critical. First, we could imagine that if such a finite field is used in real life
for securing communications, then the number of individual logarithms to solve
becomes very large. Besides this admittedly highly hypothetical scenario, it is
important to take into account the new discrete logarithm algorithms where the
bottleneck is the descent step. For instance, in [1], the estimates for computing
a discrete logarithm in GF(36×509) is around 274 operations, with about half of
the time spent in the Euclidean algorithm and classical descent steps which are
exactly the same algorithms as in FFS.

As already performed in [1], in order to optimize our descent implementation,
it would be necessary to make a careful study of the cost required to descend
an element of a given degree down to the large-prime bound. Indeed, once we
know the average costs to fully descend elements of degree less than a given
integer d, it is possible to deduce an estimate for the cost of a complete descent
of a polynomial of degree d. For this, we run a few special-q sievings for random
ideals of degree d and, for each relation, we compute the corresponding cost to
go down to the large-prime bound. It is then possible to tune the parameters
of the sieving for a special-q of degree d in order to optimize the expected total
time to fully descend it. Then we can continue with degree d + 1, and so on.
This approach is for instance implemented in the NFS context in the cado-nfs
software package [5].

Discrete Logarithm in GF(2809) with FFS 233

As for the Euclidean step, it is also possible to optimize it using the siev-
ing strategy explained in [20]. It is presented in the case of the Number Field
Sieve, but it applies mutatis mutandis to FFS after having replaced integers with
polynomials.

3.6 Computation Result

Since it is a generator of the order-� subgroup of GF(2809)×, we considered
the element t as the basis for the discrete logarithm computations. Then, the
logarithms of the elements of the factor base were readily available after the
linear algebra step. For instance,

logt(t+ 1) ≡ 107082105171602535431582987436 \
7989865259142730948684885702574 (mod �).

As an illustration of the descent step, we computed the discrete logarithm
of a “random” element. We decided to step away from the tradition of taking
the logarithm of decimals of π, and took as a “random” input the integer RSA-
1024 (converted into a polynomial of degree 1023 in t using the same encoding
as above). It was reduced modulo ϕ(t) before taking its discrete logarithm. We
then obtain

logt(RSA-1024) ≡ 299978707191164348545002008342 \
0834977154987908338125416470796 (mod �).

A short Magma script is given in Appendix for verification purposes.

4 Balancing Sieving and Linear Algebra

In retrospect, it is now clear that the strategy of using a large-prime bound of 27
is better than 28: in the same amount of sieving time, one obtains a post-merge
matrix that is smaller.

The question of where to stop sieving is not so easy to answer in advance, but
with the data that we have collected, we can give some hints for future choices.

With this objective in mind, we ran the filtering step for various numbers of
relations (always produced with a large-prime bound of 27), and estimated both
the sieving time for getting these relations, along with the linear algebra time for
the corresponding matrix. The relations were added in increasing lexicographical
order of the special-q’s. We estimate the cost of the linear algebra step as the
product of the size by the total weight of the matrix, which is theoretically pro-
portional to the running time. With this metric, the linear algebra step described
in Section 3.4—using the matrix mentioned at the end of Section 3.3—has a cost
of about 1298 and corresponds to 36 days on one GTX 680 GPU (this running
time is the same for both the dual- and the eight-GPU setups). Estimates for
the CPU running time of the linear algebra step are also reported, based on our
software reference implementation.

234 R. Barbulescu et al.

matrix size after matrix size lin. alg. sieve linear algebra
rels singleton removal after merge cost CPU time GPU time CPU time

(×103 h) (×103 h) (×103 h)
27.7M 14.1M × 14.0M 4.99M 2493 15.4 1.65 55.4
31.3M 16.6M × 15.1M 4.46M 1995 17.8 1.32 40.4
33.9M 18.6M × 16.1M 4.28M 1837 20.2 1.22 37.2
36.5M 20.4M × 16.8M 4.15M 1723 22.7 1.14 34.9
39.1M 22.1M × 17.4M 4.04M 1633 25.1 1.08 33.7
41.7M 23.7M × 17.9M 3.94M 1560 27.5 1.03 31.6
44.2M 25.1M × 18.3M 3.87M 1498 29.9 0.99 30.3
46.8M 26.5M × 18.6M 3.80M 1444 32.4 0.96 29.2
49.4M 27.7M × 18.9M 3.73M 1396 34.8 0.92 28.3
52.0M 28.9M × 19.1M 3.68M 1354 37.2 0.90 27.4

One can then use the above estimates to tailor the balance between the siev-
ing and the linear algebra steps to the available CPU and GPU resources. For
instance, in a CPU-only context, a minimal running time of 57.4 ·103 core-hours
is achieved after sieving around 34M relations, even though most of the other
options fall very close. Similarly, if one has 50 CPU cores and 4 GPUs at hand,
an optimal wall-clock time of 686 hours is obtained when stopping sieving after
only about 31M relations.

5 Towards GF(21039)

After GF(2809), the next natural milestone is to reach a prime-degree exten-
sion field of kilobit size. A nice target is GF(21039), because it echoes the rather
recent factorization of 21039 − 1 which was the first kilobit SNFS integer factor-
ization [4]. In particular, there are subgroups in the multiplicative group that are
not amenable to a discrete logarithm computation based on Pollard’s ρ, since
the two largest prime factors of 21039 − 1 are 752 and 265 bits long, respectively,
and are both far beyond what is feasible with an exponential algorithm.

5.1 Relation Collection

As mentioned in [11], it is a rather easy task to obtain a set of relations that is
complete—in the sense that it yields a system with (far) more equations than
unknowns—so that we can expect it to be full-rank or close to full-rank. We ran
our software with exactly the same parameters as in [11], namely:

– a polynomial f(x, t) of degree 6 in x, which is not as good as the one we
used for GF(2809), since its α-value is around −5;

– a large-prime bound of 33 on each side;
– a factor base bound of 25 on each side;
– a threshold value of 99;
– a sieving range with parameters I = J = 15.

Discrete Logarithm in GF(2809) with FFS 235

The relation collection was performed for a large range of special-q’s, in the
following order: first the rational special-q’s of degree 26 to 30, then the algebraic
special-q’s of degree 28 to 29, and finally, again the rational special-q’s of degree
31 and 32. For the rational special-q’s of degree 32, we sieved only about half of
the range. The computing time for this relation collection step was equivalent
to 124 core-years on an Intel i5-2500 at 3.3 GHz as the one used in [11]. On
a 768-core cluster of Intel E5-2650 at 2.0 GHz to which we have access, this
corresponds to 3 months.

After having computed a bit more than 1.2 billion relations (which corre-
sponds to the start of the rational degree-31 range), we got our first complete
system. The corresponding matrix had 110 million rows and columns, with an
average weight of 100 non-zero coefficients per row. The rate of duplicates, at
this stage, was 32.5 %.

As we sieved more and more special-q’s, the time to get a relation increased
with the degree of the special-q’s, the rate of duplicates increased as well, but on
the other hand, the matrix produced by the filtering stage was getting smaller.

After having computed about 2 billion relations, we got a duplicate rate of
37.7 % and a matrix with 67 million rows and columns. In total, we obtained 2.6
billion relations, leading to 1.6 billion unique relations (duplicate rate of 38.5 %).
The final matrix had then 60 million rows and columns, with an average row-
weight of 100.

We then stopped the relation collection because we had reached a point where
the size of the matrix was decreasing very slowly, and we could not really expect
to save much more by just sieving larger and larger special-q’s. Still, we remark
that the estimates in [11] were indeed accurate.

5.2 Linear Algebra

We ran some computer experiments in order to estimate the running time that
the linear algebra step would take. For these experiments, we worked in the
subgroup whose order is the 265-bit prime factor of 21039 − 1.

The maximum available memory on our graphics cards is 4 GB, which is far
below what is needed to store the matrix and the temporary vectors. However,
this fits in the 64 GB of RAM of the CPU host of our cards. Therefore, our
timings include the additional cost of on-the-fly data transfers between the CPU
and the GPU. The sparse-matrix–vector product on a single GPU then requires
14.3 seconds, which leads to an estimate of 82 GPU-years for the whole linear
algebra phase (assuming a simple Wiedemann implementation).

The CPU version of our implementation could run two interleaved sparse-
matrix–vector products on a 16-core dual Intel E5-2650 node in 37 seconds,
leading to an estimate of 1408 core-years for the whole linear algebra step, or
22 months on a 768-core cluster to which we have access (assuming blocking
parameters n = 96, m = 192). Because of the important memory requirements
for this step, we were unable to perform benchmarking experiments on our Intel
i5-2500 machines.

236 R. Barbulescu et al.

Although this computation is clearly feasible, we did not start it for real. The
first reason is related to the sensibility of the block Wiedemann algorithm to
the blocking parameters m and n. While the cost of the computation of the
sequence terms of the form txM iy can be estimated with reasonable accuracy,
we do not have an equally solid estimation for the cost of the middle step of the
block Wiedemann algorithm for such blocking factors: our current software is
probably unable to treat the corresponding input, and various optimization and
distribution opportunities have to be explored in order to make this computation
practical. The second reason for not running the computation for GF(21039) is
that, based on our experiments with GF(2809), we want to try other parameters
than the ones proposed in [11]. For instance, lowering the large-prime bound to
32 would certainly make life easier for the linear algebra; there is still some work
to do in order to make our sieving code efficient in that case.

6 Conclusion

With an overall total of 7.6 core-years and 0.1 GPU-years—or 59 bits of se-
curity4,5, approximately—our computation of discrete logarithms in GF(2809)×

claimed a running time which is not immense, especially in comparison to large
integer factorization records [23]. It brings important data, however, towards
the assessment of the feasibility limit of discrete logarithms in GF(2p) for prime
extension degrees p. Given our experimental data and our running time projec-
tions, it is apparent that reaching larger sizes is possible using current hardware
and software technology, going even to kilobit-sized fields provided one affords
the necessary time.

Further experiments of this kind, both for FFS and for the more recent L(1/4+
o(1)) and quasi-polynomial algorithms, are indeed necessary in order to establish
the actual cut-off points between those different algorithms.

References

1. Adj, G., Menezes, A., Oliveira, T., Rodríguez-Henríquez, F.: Weakness of F36∗509
for discrete logarithm cryptography, preprint, 24 pages (2013),
http://eprint.iacr.org/2013/446

2. Adleman, L.M.: The function field sieve. In: Huang, M.-D.A., Adleman, L.M. (eds.)
ANTS 1994. LNCS, vol. 877, pp. 108–121. Springer, Heidelberg (1994)

3. Adleman, L.M., Huang, M.D.A.: Function field sieve method for discrete logarithms
over finite fields. Inf. Comput. 151(1-2), 5–16 (1999)

4. Aoki, K., Franke, J., Kleinjung, T., Lenstra, A.K., Osvik, D.A.: A kilobit special
number field sieve factorization. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 1–12. Springer, Heidelberg (2007)

5. Bai, S., Bouvier, C., Filbois, A., Gaudry, P., Imbert, L., Kruppa, A., Morain, F.,
Thomé, E., Zimmermann, P.: CADO-NFS, an implementation of the number field
sieve algorithm (2013), development version http://cado-nfs.gforge.inria.fr/

4 Estimated using the formula log2(running-time-in-seconds× 3.3 · 109 ops/second).
5 That is, a mere 0.007 Olympic-size swimming pools brought to a boil [24].

http://eprint.iacr.org/2013/446
http://cado-nfs.gforge.inria.fr/

Discrete Logarithm in GF(2809) with FFS 237

6. Bai, S., Filbois, A., Gaudry, P., Kruppa, A., Morain, F., Thomé, E., Zimmermann,
P.: CADO-NFS, Crible Algébrique: Distribution, Optimisation - Number Field
Sieve, http://cado-nfs.gforge.inria.fr/

7. Barbulescu, R.: Selecting polynomials for the Function Field Sieve. 23 pages (2013),
http://hal.inria.fr/hal-00798386 (preprint)

8. Barbulescu, R., Bouvier, C., Detrey, J., Gaudry, P., Jeljeli, H., Thomé, E., Videau,
M., Zimmermann, P.: The relationship between some guy and cryptography, ECC
2012, rump session talk (humoristic) (2012), http://ecc.rump.cr.yp.to/

9. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A quasi-polynomial algorithm
for discrete logarithm in finite fields of small characteristic, 8 pages (2013),
http://hal.inria.fr/hal-00835446 (preprint)

10. Bouvier, C.: The filtering step of discrete logarithm and integer factorization algo-
rithms, 22 pages (2013), http://hal.inria.fr/hal-00734654 (preprint)

11. Detrey, J., Gaudry, P., Videau, M.: Relation collection for the Function Field Sieve.
In: Nannarelli, A., Seidel, P.M., Tang, P.T.P. (eds.) Proceedings of ARITH-21, pp.
201–210. IEEE (2013)

12. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

13. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

14. Granger, R., Holt, A.J., Page, D.L., Smart, N.P., Vercauteren, F.: Function field
sieve in characteristic three. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076,
pp. 223–234. Springer, Heidelberg (2004)

15. Hayashi, T., Shimoyama, T., Shinohara, N., Takagi, T.: Breaking pairing-based
cryptosystems using ηT pairing over GF (397). In: Wang, X., Sako, K. (eds.) ASI-
ACRYPT 2012. LNCS, vol. 7658, pp. 43–60. 7658, Heidelberg (2012)

16. Jeljeli, H.: Accelerating iterative SpMV for Discrete Logarithm Problem using
GPUs, 11 pages (2013), http://hal.inria.fr/hal-00734975 (preprint)

17. Joux, A., Lercier, R.: Discrete logarithms in GF(2n) (521 bits), email to the NM-
BRTHRY mailing list (September 2001),
http://listserv.nodak.edu/archives/nmbrthry.html

18. Joux, A., Lercier, R.: The function field sieve is quite special. In: Fieker, C., Kohel,
D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 431–445. Springer, Heidelberg (2002)

19. Joux, A.: A new index calculus algorithm with complexity L(1/4 + o(1)) in very
small characteristic, To appear in Selected Areas in Cryptography, 12 pages (2013),
http://eprint.iacr.org/2013/095 (preprint)

20. Joux, A., Lercier, R.: Improvements to the general number field sieve for dis-
crete logarithms in prime fields. A Comparison with the Gaussian Integer
Method 72(242), 953–967 (2003)

21. Joux, A., Lercier, R.: Discrete logarithms in GF(2607) and GF(2613). E-mail to the
NMBRTHRY mailing list (September 2005),
http://listserv.nodak.edu/archives/nmbrthry.html

22. Kaltofen, E.: Analysis of Coppersmith’s block Wiedemann algorithm for the paral-
lel solution of sparse linear systems. Mathematics of Computation 64(210), 777–806
(1995)

23. Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry,
P., Kruppa, A., Montgomery, P.L., Osvik, D.A., te Riele, H., Timofeev, A., Zimmer-
mann, P.: Factorization of a 768-bit RSA modulus. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010)

http://cado-nfs.gforge.inria.fr/
http://hal.inria.fr/hal-00798386
http://ecc.rump.cr.yp.to/
http://hal.inria.fr/hal-00835446
http://hal.inria.fr/hal-00734654
http://hal.inria.fr/hal-00734975
http://listserv.nodak.edu/archives/nmbrthry.html
http://eprint.iacr.org/2013/095
http://listserv.nodak.edu/archives/nmbrthry.html

238 R. Barbulescu et al.

24. Lenstra, A.K., Kleinjung, T., Thomé, E.: Universal security. In: Fischlin, M.,
Katzenbeisser, S. (eds.) Buchmann Festschrift. LNCS, vol. 8260, pp. 121–124.
Springer, Heidelberg (2013)

25. Matsumoto, R.: Using Cab curves in the function field sieve. IEICE Trans. Fund.
E82-A(3), 551–552 (1999)

26. Murphy, B.A.: Polynomial selection for the number field sieve integer factorisation
algorithm. Phd thesis, Australian National University (1999)

27. National Institute of Standards and Technology: Digital signature standard, DSS
(2013), http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

Magma Verification Script

UP<t> := PolynomialRing(GF(2));
hex2pol := func<x | UP!Intseq(x, 2)>;

phi := hex2pol(0x3ffffffffffffffffffffffffffffffffe80000000000000\
0000000000cc0cfaeb0e000000000000000000000000000000004dfffffffff\
ffffc3c3ffc3c3c3fce3c2133ffffffffffffe9697fe96804c84c97e0b0000c\
00cf9b0f7675354e79f4cf7c97e29);

assert Degree(phi) eq 809 and IsIrreducible(phi);

N := 2^809-1;
ell := Factorization(N)[1][1];
h := N div ell;

rsa1024 := hex2pol(0xc05748bbfb5acd7e5a77dc03d9ec7d8bb957c1b95d9b\
206090d83fd1b67433ce83ead7376ccfd612c72901f4ce0a2e07e322d438ea4\
f34647555d62d04140e1084e999bb4cd5f947a76674009e2318549fd102c5f7\
596edc332a0ddee3a355186b9a046f0f96a279c1448a9151549dc663da8a6e8\
9cf8f511baed6450da2c1cb);

log1024 :=
2999787071911643485450020083420834977154987908338125416470796;

Modexp(rsa1024, h, phi) eq Modexp(t, h*log1024, phi);

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

Identity-Based Lossy Trapdoor Functions:

New Definitions, Hierarchical Extensions,
and Implications

Alex Escala1, Javier Herranz2, Benôıt Libert3, and Carla Ràfols4

1 Scytl Secure Electronic Voting, Spain
2 Universitat Politècnica de Catalunya - BarcelonaTech,

Dept. Matemàtica Aplicada IV, Spain
3 Technicolor, France

4 Ruhr-Universität Bochum,
Horst Görtz Institut für IT-Sicherheit, Germany

Abstract. Lossy trapdoor functions, introduced by Peikert and Waters
(STOC’08), have received a lot of attention in the last years,
because of their wide range of applications. The notion has been recently
extended to the identity-based setting by Bellare et al. (Eurocrypt’12).
An identity-based trapdoor function (IB-TDF) satisfying the lossy prop-
erty introduced by Bellare et al. can be used to construct other cryp-
tographic primitives in the identity-based setting: encryption schemes
with semantic security under chosen-plaintext attacks, deterministic en-
cryption schemes, and hedged encryption schemes that maintain some
security when messages are encrypted using randomness of poor quality.
However, the constructed primitives can be proved secure only against
selective adversaries who select the target identity upfront.

Our first contribution is an alternative definition for the lossiness
of an identity-based trapdoor function. We prove that an IB-TDF
satisfying the new property can be used to construct all the aforemen-
tioned primitives, in the identity-based setting, with security against
adaptive adversaries. We further consider the new definition and its im-
plications in the more general scenario of hierarchical identity-based
cryptography, which has proved very useful both for practical appli-
cations and to establish theoretical relations with other cryptographic
primitives (including encryption with chosen-ciphertext security or with
forward-security).

As a second contribution, we describe a pairing-based hierarchical
IB-TDF satisfying the new definition of lossiness against either selec-
tive or, for hierarchies of constant depth, adaptive adversaries. This is
also the first example of hierarchical trapdoor functions based on tra-
ditional (i.e., non-lattice-related) number theoretic assumptions. As a
direct consequence of our two contributions, we obtain a hierarchical
identity-based (HIB) encryption scheme with chosen-plaintext security,
a HIB deterministic encryption scheme and a HIB hedged encryption
scheme, all of them with security against adaptive adversaries.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 239–256, 2014.
c© International Association for Cryptologic Research 2014

240 A. Escala et al.

1 Introduction

1.1 (Identity-Based) Lossy Trapdoor Functions

Lossy trapdoor functions, as introduced by Peikert and Waters in [25], have been
proved very powerful in theoretical cryptography and received a lot of attention
in the recent years (see, e.g., [17,21,10,22,30]). Lossy trapdoor functions are
function families that can be instantiated in two different modes. In the injective
mode, the function is injective and can be inverted using a trapdoor. In lossy
mode, the function is (highly) non-injective since its image size is much smaller
than the size of the domain. The key point is that lossy instantiations of the
function must be indistinguishable from injective instantiations.

In their seminal paper [25], Peikert and Waters showed that lossy trapdoor
functions provide black-box constructions of chosen-ciphertext secure (IND-
CCA) public-key encryption schemes as well as universal one-way and collision-
resistant hash functions. Later on, other applications of lossy trapdoor functions
were discovered: they gave rise to deterministic encryption schemes [2] in the
standard model [6], public-key hedged encryption schemes maintaining some
security in the absence of reliable encryption coins [3] and even public-key en-
cryption with selective-opening security [4] (i.e., which offer certain security
guarantees in case of sender corruption).

Recently, Bellare, Kiltz, Peikert and Waters [5] introduced the notion of
identity-based (lossy) trapdoor function (IB-TDF), which is the analogue of
lossy trapdoor functions in the setting of identity-based cryptography [28]. In
the identity-based scenario, users’ public keys are directly derived from their
identities, whereas secret keys are delivered by a trusted master entity. In this
way, the need for digital certificates, which usually bind public keys to users in
traditional public-key cryptography, is drastically reduced. Throughout the last
decade, several generalizations of identity-based cryptography were put forth,
including hierarchical identity-based encryption [18], attribute-based encryption
[26,19] or predicate encryption [8,23]. In the setting of hierarchical identity-based
cryptography, identities are organized in a hierarchical way, so that a user who
holds the secret key of an identity id can generate, use and distribute valid se-
cret keys for any identity that is a descendant of id in the hierarchy. Hierarchical
identity-based encryption (HIBE) is of great interest due to both practical and
theoretical reasons. On the practical side, many organizations and systems that
may need (identity-based) cryptographic solutions are organized in a hierarchical
way. On the theoretical side, generic constructions [11,12] are known to trans-
form a weakly secure HIBE scheme (i.e., IND-CPA security against selective
adversaries) into (public-key) encryption schemes with strong security proper-
ties, like chosen-ciphertext security [12] or forward-security [1,11], where private
keys are updated in such a way that past encryptions remain safe after a key
exposure.

Bellare et al. [5] proposed instantiations of identity-based lossy trapdoor func-
tions based on bilinear maps and on lattices (as noted in [5], almost all IBE
schemes belong to these families). Moreover, they show that their definition of

Identity-Based Lossy Trapdoor Functions 241

partial-lossiness for identity-based trapdoor functions leads to the same crypto-
graphic results as lossy trapdoor functions, but in the selective identity-based
setting only, where the attacker must choose the target identity upfront in the
attack game. Namely, in the case of selective adversaries, IB-TDFs satisfying
their definition imply identity-based encryption with semantic security, identity-
based deterministic encryption and identity-based hedged encryption. In [5], it
was left as an open problem to prove that the same results hold in the case of
adaptive adversaries.

1.2 Our Two Main Contributions

New Definition of Partial Lossiness and Its Applications. From a theo-
retical standpoint, we first define a new security property for hierarchical identity-
based trapdoor functions (HIB-TDFs). For the particular (non-hierarchical) case
of IB-TDFs, the new security property is different to the property of partial lossi-
ness defined by Bellare et al. [5]. We show that a HIB-TDF which satisfies this
new property can be used to obtain the same kind of results that are derived
from standard lossy trapdoor functions [25]. Namely, they lead to standard en-
cryption schemes, to deterministic encryption schemes for block sources, and to
non-adaptive hedged encryption schemes (also for block sources), which are secure
in the hierarchical identity-based setting, against adaptive-id adversaries. Since
IB-TDFs are a particular case of HIB-TDFs, our results for adaptive adversaries
solve the abovementioned open problem in [5]. Interestingly, the pairing-based IB-
TDF of Bellare et al. [5] can be proved to also satisfy the new security property.
See the full version of the paper [16] for more details on this. As a consequence, it
provides adaptive-id secure deterministic and hedged IBE schemes, and not only
selectively secure ones as initially believed.

Construction of a Pairing-Based Hierarchical Trapdoor Function.

On the constructive side, we focus on pairing-based hierarchical systems and
leave possible constructions based on lattices as an open line for future work.
Our intuition, however, is that pairing-based HIB-TDFs seem harder to construct
than their lattice-based counterpart. Indeed, no hierarchical trapdoor function
is currently known to rely on traditional number theoretic assumptions whereas,
in the lattice world, constructions have been known since the results of Cash,
Hofheinz, Kiltz and Peikert [13].

Using bilinear maps, we build a HIB-TDF and prove that it satisfies our new
definition of partial lossiness under mild assumptions in prime order groups. As
an intermediate step, we design a hierarchical predicate encryption (HPE) sys-
tem [27,24] with suitable anonymity properties. Perhaps surprisingly, although
this scheme is proved secure only against weak selective adversaries (who select
their target attribute set before seeing the public parameters), we are able to
turn it into a HIB-TDF providing security (namely, our new version of partial
lossiness) against adaptive adversaries for hierarchies of constant depth. To the
best of our knowledge, our HIB-TDF gives rise to the first hierarchy of trapdoor
functions which does not rely on lattices: realizing such a hierarchy using number
theoretic techniques was identified as an open problem in [13].

242 A. Escala et al.

Beyond its hierarchical nature, our construction brings out an alternative
design principle for (H)IB-TDFs. The idea is to rely on hierarchical predicate
encryption (HPE) to deal with hierarchies. Namely, public parameters consist
of a matrix of HPE encryptions and, when the function has to be evaluated, the
latter matrix is turned into a matrix of (anonymous) HIBE ciphertexts. The ho-
momorphic properties of the underlying HIBE then make it possible to evaluate
the function while guaranteeing a sufficient amount of lossiness in lossy mode.
It seems possible to abstract away the properties of the underlying HPE sys-
tem in order to obtain a HIB-TDF via a semi-generic transformation. However,
the HPE scheme we describe seems to be the only candidate with the required
algebraic structure.

While the pairing-based IB-TDF construction of Bellare et al. [5] builds on
an adaptively secure anonymous IBE, our HIB-TDF is obtained from a selec-
tive weakly attribute-hiding HPE system. This result is somewhat incomparable
with [5]: on the one hand, we start from a more powerful primitive – because
predicate encryption implies anonymous IBE – but, on the other hand, we need
a weaker security level to begin with. Both (H)IB-TDF constructions rely on
specific algebraic properties in the underlying IBE/HPE and neither is generic.

1.3 Implications

Combining our HIB-TDF with the theoretical implications of our new security
property, we obtain: (1) a modular way to build adaptive-id secure HIBE schemes
from HIB-LTDFs, (2) the first secure deterministic HIBE scheme for block
sources1, (3) the first HIBE scheme, for block sources, that (non-adaptively)
hedges against bad randomness, as advocated by Bellare et al. [3]. All these
schemes are secure against both selective and adaptive-id adversaries.

In the case of adaptive adversaries, these results only hold for hierarchies of
constant depth (said otherwise, we do not provide full security). However, using
our definition of partial lossiness or that of Bellare et al. [5], this appears very dif-
ficult to avoid. The reason is that both definitions seem inherently bound to the
partitioning paradigm. Namely, they assume the existence of alternative public
parameters, called lossy parameters, where the identity space is partitioned into
subsets of injective and lossy identities (this is, identities which lead to injec-
tive and lossy functions respectively). The definition of [5] intuitively captures
that a fraction δ of identities are lossy in the case of lossy parameters. In the
hierarchical setting, the analogy with HIBE schemes suggests that all ancestors
of a lossy identity be lossy themselves. Hence, unless one can make sure that
certain lossy identities only have lossy descendants, the fraction δ seems doomed
to exponentially decline with the depth of the hierarchy.

Finally, due to the results of Canetti, Halevi and Katz [11], our construction
also implies the first forward-secure deterministic and hedged public-key encryp-
tion schemes (note that, as pointed out in [11], selective security suffices to give

1 See [31] for a recent and independent construction, in the (non-hierarchical) IBE
case.

Identity-Based Lossy Trapdoor Functions 243

forward-secure cryptosystems). Although our scheme is not practical due to large
ciphertexts and keys, it provides the first feasibility results in these directions.

2 Background

2.1 Some Complexity Assumptions

We will consider groups (G, Ĝ,GT) of prime order p for which an asymmetric

bilinear map e : G× Ĝ → GT is efficiently computable. We will assume that the
DDH assumption holds in both G and Ĝ, which implies that no isomorphism
is efficiently computable between G and Ĝ. The assumptions that we need are
sometimes somewhat stronger than DDH. However, they have constant size (i.e.
we de not rely on q-type assumptions) and were previously used in [15].

The Bilinear Diffie Hellman Assumption (BDH): in asymmetric bilinear

groups (G, Ĝ,GT) of prime order p, no PPT adversary can distinguish the
distribution D1 = {(g, ga, gc, ĝ, ĝa, ĝb, e(g, ĝ)abc) | a, b, c R← Zp}, from
D2 = {(g, ga, gc, ĝ, ĝa, ĝb, e(g, ĝ)z) | a, b, c, z R← Zp}.

The P-BDH1 Assumption: in asymmetric bilinear groups (G, Ĝ,GT) of prime
order p, the distribution D1 = {(g, gb, gab, gc, ĝ, ĝa, ĝb, gabc) | a, b, c R← Zp} is

indistinguishable from D2 = {(g, gb, gab, gc, ĝ, ĝa, ĝb, gz) | a, b, c, z R← Zp} for
any PPT algorithm.

The DDH2 Assumption: in asymmetric bilinear groups (G, Ĝ,GT) of prime
order p, the distribution D1 = {(g, ĝ, ĝa, ĝb, ĝab) | a, b R← Zp} is computa-

tionally indistinguishable from D2 = {(g, ĝ, ĝa, ĝb, ĝz) | a, b, z R← Zp}.

2.2 Hierarchical Identity-Based (Lossy) Trapdoor Functions

This section recalls formal definitions of (hierarchical) identity-based lossy trap-
door function.

Syntax. A hierarchical identity-based trapdoor function (HIB-TDF) is a tuple
of efficient algorithmsHF = (HF.Setup,HF.MKg,HF.Kg,HF.Del,HF.Eval,HF.Inv).
The setup algorithm HF.Setup takes as input a security parameter � ∈ N, the
(constant) number of levels in the hierarchy d ∈ N, the length of the identities
μ ∈ poly(�) and the length of the function inputs n ∈ poly(�), and outputs a set
of global public parameters pms, which specifies an input space InpSp, an iden-
tity space IdSp and the necessary mathematical objects and hash functions. The
master key generation algorithm HF.MKg takes as input pms and outputs a mas-
ter public key mpk and a master secret key msk. The key generation algorithm
HF.Kg takes as input pms, msk and a hierarchical identity (id1, . . . , id�) ∈ IdSp,
for some � ≥ 1 and outputs a secret key SK(id1,...,id�). The delegation algo-
rithm HF.Del takes as input pms, mpk, a hierarchical identity (id1, . . . , id�), a
secret key SK(id1,...,id�) for it, and an additional identity id�+1; the output is
a secret key SK(id1,...,id�,id�+1) for the hierarchical identity (id1, . . . , id�, id�+1) iff
(id1, . . . , id�, id�+1) ∈ IdSp. The evaluation algorithm HF.Eval takes as input pms,

244 A. Escala et al.

mpk, an identity id = (id1, . . . , id�) and a value X ∈ InpSp; the result of the eval-
uation is denoted as C. Finally, the inversion algorithm HF.Inv takes as input
pms, mpk, a hierarchical identity id = (id1, . . . , id�), a secret key SKid for it and
an evaluation C, and outputs a value X̃ ∈ InpSp.

A HIB-TDF satisfies the property of correctness if we have the equaltity
HF.Inv

(
pms,mpk, id,SKid,HF.Eval

(
pms,mpk, id = (id1, . . . , id�), X

))
= X, for

any X ∈ InpSp, any pms, (mpk,msk) generated by HF.Setup and HF.MKg, any
hierarchical identity (id1, . . . , id�) ∈ IdSp and any key SK(id1,...,id�) generated

either by running HF.Kg
(
pms,msk, (id1, . . . , id�)

)
or by applying the delegation

algorithm HF.Del to secret keys of shorter hierarchical identities.
Before formalizing the new definition of partial lossiness for a HIB-TDF, let

us recall the notion of lossiness : if f is a function with domain Dom(f) and
image Im(f) = {f(x) : x ∈ Dom(f)}, we say that f is ω-lossy if λ(f) ≥ ω,

where λ(f) = log |Dom(f)|
|Im(f)| .

To define lossiness for HIB-TDFs, it is useful to consider extended HIB-
TDFs, which differ from standard HIB-TDFs in that, in the latter, the algorithm
HF.Setup specifies in pms an auxiliary input space AuxSp, and HF.MKg admits
an auxiliary input aux ∈ AuxSp. Given a HIB-TDF HF = (HF.Setup,HF.MKg,
HF.Kg,HF.Del,HF.Eval,HF.Inv), a sibling for HF is an extended HIB-TDF LHF =
(HF.Setup, LHF.MKg, LHF.Kg, HF.Del,HF.Eval, HF.Inv) whose delegation, evalu-
ation and inversion algorithms are those of HF, and where an auxiliary space
AuxSp is contained in pms ← HF.Setup(�), so that IdSp ⊂ AuxSp.

Looking ahead, we will define, as in [5], two different experiments: one corre-
sponding to the standard setup and one corresponding to the lossy setup, in one
of them the experiment will interact with a standard HIB-TDF, in the other one
with a sibling in which some identities lead to lossy evaluation functions. The
notion of extended HIB-TDF will serve to construct both of these functions as
an extended HIB-TDF but with different auxiliary inputs y(0),y(1).

3 A New Security Definition for (H)IB-TDFs

The basic security property of a trapdoor function is one-wayness, which means
that the function is hard to invert without the suitable secret key. In the identity-
based setting, one-wayness is required to hold even when the adversary has
access to secret keys for some identities. Partial lossiness for identity-based trap-
door functions was introduced in [5], where it was proved to imply one-wayness.
Roughly speaking, partial lossiness requires that the weighted difference of the
probability that any adversary outputs 1 in the lossy or in the real experiment is
negligible. These weights account for the fact that, in the lossy experiment in the
adaptive case, some identities may lead to lossy functions, which can be detected
by any adversary A that queries the secret key for such an identity. As a result,
there is an asymmetry when comparing the real and the lossy experiments which
is compensated by the weights.

For the selective case, the weights can simply be set to 1 and it can be
proved that an IB-TDF satisfying their notion of partial lossiness in the selective

Identity-Based Lossy Trapdoor Functions 245

scenario can be used to build: (1) identity-based encryption (IBE) schemes with
selective IND-CPA security, (2) selectively secure deterministic IBE schemes, (3)
selectively secure hedged IBE schemes. However, these results are not known to
be true in the adaptive setting. In fact, the definition is not known to imply the
IND-ID-CPA security of the resulting IBE scheme in the adaptive-id scenario.

To address this question, we propose an alternative definition for the partial
lossiness of (hierarchical) identity-based trapdoor functions — in particular, the
definition is also different from the one of Bellare et al. when the hierarchy depth
is equal to 1, the case considered in [5]. We will show that a HIB-TDF satisfying
this new definition gives, in the adaptive-id case, a secure construction of the
same primitives we mentioned for the selective-id case.

3.1 The Formal Definition

As in [5], we define two different experiments, a lossy experiment and a real
experiment. For any adversary A against a HIB-TDF, the REALAHF,LHF,P,ω,ζ ex-

periment and the LOSSYA
HF,LHF,P,ω,ζ experiment are parameterized by the se-

curity parameter � (which is usually omitted in the notation) and some values
ζ(�), ω(�). The experiment also takes as input the specification of some algorithm
P which takes as input ζ, pms,mpk1,msk1, IS, id

�, and outputs a bit d2. This al-
gorithm must be efficient for any non-negligible ζ. To simplify notations, we write
REAL instead of REALAHF,LHF,P,ω,ζ and LOSSY instead of LOSSYA

HF,LHF,P,ω,ζ.
We present the two experiments as a single experiment depending on a bit β:

the challenger C, who interacts with the adversary A, runs either REAL if β = 0 or
LOSSY if β = 1. Also, some instructions of both experiments depend on whether
selective or adaptive security is being considered. We say that a hierarchical
identity id = (id1, . . . , id�) is a prefix of another one id� = (id�1, . . . , id

�
��) if � ≤ ��

and idi = id�i for every i = 1, . . . , �. We denote this fact by id ≤ id�.

0. First, C chooses global parameters pms by running HF.Setup. The parameters
pms are given to the adversary A, who replies by choosing a hierarchical
identity id† = (id†1, . . . , id

†
�†), for some �† ≤ d.

1. The challenger C runs (mpk0,msk0) ← HF.MKg(pms) and (mpk1,msk1) ←
LHF.MKg(pms, aux = id†). The adversary A receives mpkβ and lists IS ←
∅, QS ← ∅ are initialized.

2. A can make adaptive queries for hierarchical identities id = (id1, . . . , id�).
- Create-key: A chooses an identity id and C creates a private key SKid.
If β = 0, SKid is created by running HF.Kg(pms,msk0, id). If β = 1, it
is created by running LHF.Kg(pms,msk1, id). The list QS is updated as
QS = QS ∪ {id}.

- Create-delegated-key: A provides a tuple id = (id1, . . . , id�) and id�+1

such that id ∈ QS. The challenger C then computes a delegated key
SKid′ for id′ = (id1, . . . , id�+1) by running the delegation algorithm
HF.Del

(
pms,mpkβ , SKid, id�+1

)
before setting QS = QS ∪ {id′}.

246 A. Escala et al.

- Reveal-key: A provides id with the restriction that if A is selective,
then id �≤ id†. C returns ⊥ if id �∈ QS. Otherwise, SKid is returned to A
and the list IS is updated as IS = IS ∪ {id}.

3. A outputs a hierarchical identity id� = (id�1, . . . , id
�
��). If A is selective, then

id� = id†. In the adaptive case, no element of IS can be a prefix of id�.
4. The adversary can make adaptive queries such as the ones described in step

2, with the restriction that for Reveal-key queries the id provided by A
must satisfy id �≤ id�.

5. The adversary outputs a bit dA ∈ {0, 1}. Let d1 be the bit d1 :=
(
∀ id ∈

IS, λ (HF.Eval(pms,mpk1, id, ·)) = 0
)

∧
(
λ (HF.Eval(pms,mpk1, id

�, ·)) ≥ ω
)
.

6. The challenger C sets d2 to be the output of the pre-output stage P with
input ζ, pms,mpk1,msk1, IS, id

�.
7. The final output of the experiment consists of the bits {dA, dA¬abort}, where

dA¬abort = d1 ∧ d2 ∈ {0, 1}.

For notational convenience, from now on, let us define dAexp = dA ∧ dA¬abort.

Definition 1. A HIB-TDF is (ω, δ)-partially lossy if it admits a sibling and
an efficient pre-output stage P such that for all PPT adversaries A and for all
non-negligible ζ, there exist two non-negligible values ε1, ε2 such that δ = ε1ε2 is
non-negligible and the following three conditions hold:

(i) the following advantage function is negligible in the security parameter �:

Advlossy
HF,LHF,P,ω,ζ(A) = |Pr[dAexp = 1| REAL] − Pr[dAexp = 1| LOSSY]| (1)

(ii) Pr[dA¬abort = 1 | REAL] ≥ ε1.

(iii) if A is such that Pr[dA = 1 | REAL] − 1
2 > ζ, then

Pr[dA = 1 | REAL ∧ dA¬abort = 1] − 1

2
> ε2 · ζ, (2)

where δ may be a function of q the maximal number of key queries of A.

Some Intuition. As we mentioned, to account for the asymmetry between
the real and the lossy experiment, Bellare et al. defined the advantage of a
distinguisher among the lossy and real experiments as the weighted difference
of the probability of outputting 1 in the real case minus the same probability
in the lossy case. Our solution is different. We always execute in parallel two
instances of the master key generation protocol, one in the real and one in the
lossy mode (the adversary does not notice this). The experiments output a bit
d1 which is computed in the same way in both the real and lossy settings and
which depends on the secret key queries and the challenge identity chosen by
the adversary: for example, if a query would force the LOSSY experiment to
output d1 = 0 indicating that the adversary queried for a secret key of a lossy
identity, then it also forces the REAL experiment to output d1 = 0. For the

Identity-Based Lossy Trapdoor Functions 247

sake of intuition, let us think of dA¬abort as the bit d1 and temporarily ignore d2,
whose purpose is explained later. By defining the output of the experiment as
the logical AND between the output dA of the adversary and a bit dA¬abort, we
just avoid having to introduce weights in condition (i) in Definition 1. This is a
difference with [5] which is crucial to prove that lossy identity-based trapdoor
functions imply other primitives in the adaptive-id case.

Condition (i) can be seen as the natural (non-weighted) analogue of the se-
curity definition of [5], while the other conditions might look more artificial. We
provide some more intuition on why condition (i) alone is not useful to guarantee
that security reductions can be done from a scheme Π built from an HIB-TDF
to the HIB-TDF itself in the adaptive setting. First, we add condition (ii) to rule
out some cases in which the condition (i) would be trivial to satisfy, like the case
where the procedure P aborts with overwhelming probability or the case where
the sibling admits only lossy identities: in any of these scenarios, we would have
dA¬abort = 1 with negligible probability, which would render the scheme useless.

A more serious problem, which motivates condition (iii), is that, in the reduc-
tion, the output of a potential adversary A with meaningful advantage ε against
Π does not necessarily help to contradict condition (i) because the output of A
needs to be conditioned to dA¬abort = 1 and the output of A may not be indepen-
dent of dA¬abort = 1. To solve that, the reduction might try to abort after certain
events, for example after some secret key queries have been done. However, such
events could be related to the underlying HIB-TDF scheme, so the reduction
would not be black-box. Condition (iii) guarantees that, if an adversary has
some meaningful advantage against the scheme built from the HIB-TDF, it will
also have meaningful advantage when d¬abort = 1, this is, when all the secret
key queries correspond to injective identities and the challenge identity is lossy.
Roughly said, this condition ensures that the probability of aborting is somewhat
independent of the behavior of any computationally bounded adversary.

We have not discussed the role of d2 yet. If d¬abort was just defined as d1,
condition (iii) would be quite hard to satisfy: intuitively we would not be allowing
the security reduction to make extra aborts related to events which depend on
the HIB-TDF, which is unnecessarily restrictive. To handle this problem, we
allow the experiment to consider an efficient algorithm P , which depends on
the HIB-TDF and outputs a bit d2, and we define d¬abort = d1 ∧ d2. Finally,
we stress that the incorporation of algorithm P results in a more general and
flexible security definition: although one could define the security of HIB-TDF
without taking into account the existence of such an algorithm P , it would make
it more difficult for a HIB-TDF to satisfy it. On the other hand, if P is the
trivial algorithm which always outputs d2 = 1, this is equivalent to considering
the security definition without the algorithm P , which is enough to prove the
security of our HIB-TDF against selective adversaries, indeed. To prove the
security of our HIB-TDF against adaptive adversaries, we will define P as the
artificial abort stage in the security proof of Waters’ IBE scheme [29].

248 A. Escala et al.

3.2 Implications of Lossy (H)IB-TDFs: The Example of (H)IBE

Using the same argument as in [5], it is quite easy to prove that a HIB-TDF
which enjoys the new version of the partial lossiness property is already one-
way, in both the selective and adaptive settings. In this section we prove that a
HIB-TDF which satisfies our new security definition can be used to build other
primitives in the hierarchical identity-based scenario, with security against adap-
tive adversaries. We detail the example of hierarchical identity-based encryption
(HIBE) with IND-CPA security2. The construction is the direct adaptation of
the Peikert-Waters construction [25] in the public-key setting.

Let HF be a HIB-TDF with message space {0, 1}n and (ω, δ) partial lossiness,
and H a family of pairwise independent hash functions from {0, 1}n to {0, 1}l
where l ≤ ω − 2 lg(1/εLHL) for some negligible εLHL. The HIBE scheme has
message space {0, 1}l. Its setup, key generation and key delegation algorithms
are basically the same ones as those for HF, the rest are as follows:

MKGen(pms) Enc(pms,mpk,m, id) Dec(pms,mpk,SKid, C, id)
(mpk′,msk) ← x ← {0, 1}n x = HF.Inv(pms,

HF.MKg(1k) c1 = HF.Eval(pms,mpk′, id, x) mpk′,SKid, c1, id)
h ← H c2 = h(x) ⊕ m m = c2 ⊕ h(x)
mpk = (mpk′, h) Return C = (c1, c2) Return m
Return mpk

We prove the following theorem.

Theorem 1. If HF is (ω, δ)-partially lossy for some non-negligible value of δ,
then the HIBE scheme Π described is IND-ID-CPA secure. In particular, for ev-
ery IND-ID-CPA adversary B against Π there exists a PPT adversary A against
HF such that Advlossy

HF,LHF,P,ω,ζ(A) ≥ 2
3 ·δ ·Advind−id−cpa(B)−ν(�), for some neg-

ligible function ν. Both adversaries A and B run in comparable times; whenever
B is selective, so is A (for their respective experiments).

Proof. Let us assume that an adversary B has advantage at least ζ in breaking
the IND-ID-CPA security of the HIBE scheme Π , for some non-negligible ζ.
We build an adversary A that breaks the condition (i) of Definition 1 assuming
that conditions (ii) and (iii) are satisfied. Our adversary A, who interacts with
a challenger that runs either the experiment REAL or the experiment LOSSY,
proceeds to simulate the challenger in the IND-ID-CPA game with B as follows.

Our adversaryA forwards an identity id† to its challenger, which is an arbitrary
identity in the adaptive case or corresponds to the challenge identity chosen by
B in the selective case. When the challenger runs the setup and gives the output
to A, A forwards this information to B together with a hash function h ← H.
When B asks for a secret key for a hierarchical identity id, A forwards the query
to the experiment and relays the latter’s reply to B. At some point, B outputs
(m0,m1, id

�), with id† = id� in the selective case. Adversary A then forwards

2 The cases of deterministic HIBE and hedged HIBE are discussed in the full version
of this paper [16].

Identity-Based Lossy Trapdoor Functions 249

id� to its challenger, chooses γ ← {0, 1} at random and encrypts mγ under the
identity id�. After some more secret key queries, B outputs a guess γ′ and A
outputs dA = 1 if γ = γ′ and dA = 0 otherwise.

In the REAL setting, we have Pr[γ′ = γ| REAL]− 1
2 = Pr[dA = 1| REAL]− 1

2 ≥
ζ, since A perfectly simulated the IND-ID-CPA game with B. This inequality
can be combined with conditions (ii) and (iii) of the definition of (ω, δ)-partial
lossiness (which we assume to be satisfied by HF), and we obtain

Pr[dA¬abort=1 | REAL] ·
(

Pr[dA=1 | REAL ∧ dA¬abort = 1] − 1

2

)
> ε1ε2ζ. (3)

On the other hand, in the LOSSY setting when id� is lossy, the advantage of
B in guessing γ is negligible. Indeed, since h is a pairwise independent hash
function, the Leftover Hash Lemma [20] (more precisely, its variant proved in
[14]) implies that the distribution of c2 given c1 is statistically uniform. We thus
have Pr[dA = 1| LOSSY∧dA¬abort = 1] ≤ 1/2+εLHL, for some negligible function
εLHL. Since dAexp = dA¬abort ∧ dA, we can express Pr[dAexp = 1 | LOSSY] as

Pr[dA = 1 | LOSSY ∧ dA¬abort = 1]Pr[dA¬abort = 1 | LOSSY]

≤
(1
2
+ εLHL

)
· Pr[dA¬abort = 1 | LOSSY]

≤ 1

2
·
(
Pr[dA¬abort = 1 | REAL] +Advlossy

HF,LHF,P,ω,ζ(A)
)
+ ν, (4)

for some negligible function ν ∈ negl(�). The last equality follows from the fact

that Pr[dA¬abort = 1| LOSSY]−Pr[dA¬abort = 1| REAL] ≤ Advlossy
HF,LHF,P,ω,ζ(A): oth-

erwise, we can build a distinguisher3 against condition (i) of the partial lossiness

definition. If we plug (4) into the definition of Advlossy
HF,LHF,P,ω,ζ(A), we find

Advlossy
HF,LHF,P,ω,ζ(A) =

∣∣Pr[dAexp = 1 | REAL] − Pr[dAexp = 1 | LOSSY]
∣∣

≥
∣∣∣∣Pr[dA¬abort = 1 | REAL] ·

(
Pr[dA = 1 | REAL ∧ dA¬abort = 1] − 1

2

)∣∣∣∣
−1

2
· Advlossy

HF,LHF,P,ω,ζ(A) − ν,

so that there exists ν̃ ∈ negl(�) such that Advlossy
HF,LHF,P,ω,ζ(A) is at least

2

3
·
∣∣∣∣Pr[dA¬abort = 1 | REAL] ·

(
Pr[dA = 1 | REAL ∧ dA¬abort = 1] − 1

2

)∣∣∣∣ − ν̃.

Using (3) and δ = ε1ε2, we have that the right-hand-side member of the above

expression is at least (2/3) ·δ ·ζ−ν. This means that Advlossy
HF,LHF,P,ω,ζ(A) is non-

negligible, which contradicts condition (i). ��
3 This distinguisher A1 is obtained from A by ignoring dA ∈ {0, 1} and replacing it
by a 1, so that dA¬abort = dAexp.

250 A. Escala et al.

4 A Hierarchical Identity-Based (Lossy) Trapdoor
Function

The design of our new HIB-TDF and its security analysis use as a key ingredient
an HPE scheme which is described in the full version of the paper [16]. Let us
first provide some intuition on the reason why a HPE scheme simplifies our task.

The pairing-based IB-TDF of Bellare et al. [5] uses an anonymous IBE scheme
as a building block. To construct a HIB-TDF, a natural idea is thus to use an
anonymous HIBE system. One difficulty is that, at least in the world of pair-
ings, anonymous IBE schemes are usually harder to extend to a hierarchy than
non-anonymous ones. Indeed, private keys have to contain extra randomization
components because, if the randomization material were included in the public
parameters, ciphertexts would betray the identity of receivers. Moreover, as al-
ready mentioned in [5], anonymity is not sufficient by itself: what we need is a
way to propertly embed an auxiliary input in the public parameters without the
adversary noticing the difference between two distinct auxiliary inputs. Adapting
the Boyen-Waters anonymous HIBE [9] to achieve this is not straightforward.
On the other hand, HPE schemes make it possible to naturally embed auxiliary
inputs in the attribute vectors of HPE ciphertexts, which are included in the
public parameters of the function. When the function has to be evaluated for
a specific identity, our construction uses a mechanism to turn HPE ciphertexts
into a matrix of HIBE ciphertexts and this is where the interaction between aux-
iliary inputs and hierarchical identities leads to functions that can be injective
or lossy. From the resulting matrix of HIBE ciphertexts, the function evalua-
tion proceeds by computing a matrix-vector product in the exponent, as done
in many lossy TDF construcitons (see, e.g., [25,17,21,30]), and takes advantage
of homomorphic properties in the underlying HIBE system.

More precisely, our lossy function is obtained by including a n × n matrix of
HPE ciphertexts in the master public parameters. As in the DDH-based function
of [25], each row of the matrix is associated with an encryption exponent, which
is re-used throughout the entire row. Each column corresponds to a different set
of public parameters in the HPE system.

The HIB-TDF that we construct is actually an extended HIB-TDF, and so
the master key generation protocol takes an auxiliary input. Depending on the
value of this auxiliary input, we obtain the trapdoor (injective) function or a
partially lossy function, used in the security proofs. Actually, all HPE cipher-
texts in the above-mentioned matrix correspond to different hierarchical vec-
tors (y1, . . . ,yd) ∈ Zd·μp , depending on the auxiliary input. The selective weak
attribute-hiding property of the HPE scheme guarantees that the two setups are
computationally indistinguishable.

In order to evaluate a function for some hierarchical identity id = (id1, . . . , id�),
the first step of the evaluation algorithm computes a transformation on HPE
ciphertexts so as to obtain a matrix of Boneh-Boyen HIBE ciphertexts [7] in
their anonymized variant suggested by Ducas [15]. During this transformation,
a set of inner products {〈yi1 , idi1〉}�i1=1 is calculated in the exponent in the
diagonal entries of the matrix. The transformation provides a n × n matrix (7)

Identity-Based Lossy Trapdoor Functions 251

of anonymous HIBE ciphertexts that are always well-formed in non-diagonal
entries. As for diagonal entries, they contain “perturbed” HIBE ciphertexts: at
each level, one ciphertext component contains a perturbation factor of the form
〈yi1 , idi1〉. In this matrix of HIBE ciphertexts, random encryption exponents are
again re-used in all positions at each row.

The function evaluation is carried out as in [25], by computing a matrix-vector
product in the exponent and taking advantage of homomorphic properties of the
HIBE scheme over the randomness space. The function output can be seen as a
set of n anonymous HIBE ciphertexts – one for each input bit – which are well-
formed ciphertexts if and only if the corresponding input bit is 0 (i.e., if and
only if the perturbation factors {〈yi1 , idi1〉}�i1=1 are left out when computing the
matrix-vector product in the exponent). The function is thus inverted by testing
the well-formedness of each HIBE ciphertext using the private key.

4.1 Description

HF.Setup(�, d, n, μ): given a security parameter � ∈ N, the (constant) desired
number of levels in the hierarchy d ∈ N and integers μ, n ∈ poly(�) specify-
ing the length of identities and that of function inputs, respectively, choose
asymmetric bilinear groups (G, Ĝ,GT) of prime order p > 2�. Define InpSp =

{0, 1}n, ΣID = {(1,x) : x ∈ Zμ−1
p }, IdSp = Σ

(≤d)
ID and AuxSp = Zd·μp . The

public parameters are pms =
(
p, (G, Ĝ,GT), d, n, μ, InpSp, IdSp,AuxSp

)
.

Since HF is an extended HIB-TDF, the master key generation algorithm of our
HIB-TDF receives an auxiliary input y ∈ AuxSp. Here, it is seen as a concatena-
tion of d row vectors y1, . . . ,yd ∈ Zμp . NotationΔ(i, j) is used for the Kronecker’s
delta function (that is, Δ(i, j) = 1 if i = j, and is equal to 0 otherwise).

HF.MKg(pms,y): parse the auxiliary input as y = [y1| . . . |yd] ∈ Zd·μp , and
proceed as follows.

1. Choose αv
R← Z∗

p, αw
R← (Z∗

p)
n, and αh

R← (Z∗
p)
d×(μ+1)×n. Define v =

gαv , v̂ = ĝαv , w = gαw ∈ Gn and ŵ = ĝαw ∈ Ĝn. Likewise, set up
vectors h = gαh ∈ Gd×(μ+1)×n and ĥ = ĝαh ∈ Ĝd×(μ+1)×n. Define

PPcore :=
(
v, {w[l1]}nl1=1, {h[i1, i2, l1]}i1∈{1,...,d},i2∈{0,...,μ}, l1∈{1,...,n}

)
2. For i1 = 1 to d, parse yi1 as (yi1 [1], . . . ,yi1 [μ]) ∈ Zμp . For l2 = 1 to n,

do the following.

a. Choose s[l2]
R← Z∗

p and compute J[l2] = vs[l2] as well as

Cw[l2, l1] = w[l1]
s[l2],

C[i1, i2, l2, l1] =
(
h[i1, 0, l1]

yi1 [i2]·Δ(l2,l1) · h[i1, i2, l1]
)s[l2]

for each i1 ∈ {1, . . . , d}, i2 ∈ {1, . . . , μ}, l1 ∈ {1, . . . , n}.

252 A. Escala et al.

b. Define a n × n matrix {CT[l2, l1]}l2,l1∈{1,...,n} of HPE ciphertexts

CT[l2, l1] =
(
J[l2],Cw[l2, l1], {C[i1, i2, l2, l1]}i1∈{1,...,d}, i2∈{1,...,μ}

)
. (5)

Themaster public key consists ofmpk:=
(
PPcore, {CT[l2, l1]}l2,l1∈{1,...,n}

)
while the master secret key is msk :=

(
v̂, ŵ, ĥ

)
. For each l1 ∈ {1, . . . , n},

it will be convenient to view (PPcore,msk) as a vector of HPE master key
pairs (mpk[l1],msk[l1]), with

mpk[l1] =
(
v,w[l1], {h[i1, i2, l1]}i1∈{1,...,d},i2∈{0,...,μ}

)
msk[l1] =

(
v̂, ŵ[l1], {ĥ[i1, i2, l1]}i1∈{1,...,d},i2∈{0,...,μ}

)
.

HF.Kg
(
pms,msk, (id1, . . . , id�)

)
: to generate a key for an identity (id1, . . . , id�) ∈

IdSp, parse msk as
(
v̂, ŵ, ĥ

)
and idi1 as idi1 [1] . . . idi1 [μ] for i1 = 1 to �.

Choose rw, r1, . . . , r�
R← (Z∗

p)
n, choose s R← (Z∗

p)
d×μ×�×n, s′ R← (Z∗

p)
d×n,

and sw
R← (Z∗

p)
d×μ×n. For each l1 ∈ {1, . . . , n}, compute the decryption

component SKD = (D,Dw , {Di1}�i1=1) of the key as Di1 [l1] = v̂ri1 [l1] and

D[l1] =

�∏
i1=1

(μ∏
i2=1

ĥ[i1, i2, l1]
idi1 [i2]

)ri1 [l1] · ŵ[l1]
rw[l1], Dw[l1] = v̂rw [l1], (6)

while the delegation component SKDL consists of(
{K[j, k, l1]}j,k,l1 , {L[j, l1]}j,l1 , {L[j, k, i1, l1]}j,k,i1,l1 , {Lw[j, k, l1]}j,k,l1

)
,

with j ∈ {�+1, . . . , d}, k ∈ {1, . . . , μ}, i1 ∈ {1, . . . , �} and l1 ∈ {1, . . . , n}, as

K[j, k, l1]=

�∏
i1=1

(μ∏
i2=1

ĥ[i1, i2, l1]
idi1 [i2]

)s[j,k,i1,l1]

·ĥ[j, k, l1]s
′[j,l1]·ŵ[l1]

sw[j,k,l1],

L[j, l1] = v̂s
′[j,l1], L[j, k, i1, l1] = v̂s[j,k,i1,l1] and Lw[j, k, l1] = v̂sw[j,k,l1].

Output SK(id1,...,id�) =
(
SKD,SKDL

)
.

HF.Del
(
pms,mpk, (id1, . . . , id�),SK(id1,...,id�), id�+1

)
: parse SK(id1,...,id�) as a HF

private key of the form (SKD,SKDL), and the identifier id�+1 as a string
id�+1[1] . . . id�+1[μ] ∈ ΣID. The idea is to run, for l1 = 1 to n, the key
derivation algorithm Delegate(mpk[l1], (id1, . . . , id�),SK(id1,...,id�)[l1], id�+1)
of the HPE scheme, as specified in the full version of the paper, where
SK(id1,...,id�)[l1] = (SKD[l1],SKDL[l1]) is defined by

SKD[l1]=(D[l1],Dw[l1], {Di1 [l1]}�i1=1)

SKDL[l1]=
(
{K[j, k, l1]}j,k, {L[j, l1]}j , {L[j, k, i1, l1]}j,k,i1 , {Lw[j, k, l1]}j,k

)
.

Identity-Based Lossy Trapdoor Functions 253

Specifically, for l1 = 1 to n, do the following.

1. Randomize SKDL[l1] by raising all its component to some z R← Z∗
p.

Call this new key ŜKDL[l1] and write its elements with a hat (e.g.,

K̂[j, k, l1] = K[j, k, l1]
z).

2. Compute a partial decryption key

K̃[+ 1, l1] =

μ∏
k=1

K̂[+ 1, k, l1]
id�+1[k] =

�∏
i1=1

(μ∏
i2=1

ĥ[i1, i2, l1]
idi1 [i2]

)s̃[�+1,i1,l1]

·
(μ∏
k=1

ĥ[+ 1, k, l1]
id�+1[k]

)s′[�+1,l1] · ŵ[l1]
s̃w [�+1,l1],

L̃[+ 1, 	+ 1, l1]= L̂[+ 1, l1],

L̃[+ 1, i1, l1]=

μ∏
k=1

L̂[+ 1, k, i1, l1]
id�+1[k]= v̂s̃[�+1,i1,l1] for i1 ∈ {1, . . . , 	},

L̃w[+ 1, l1]=

μ∏
k=1

L̂w[+ 1, k, l1]
id�+1[k] = v̂s̃w [�+1,l1]

where we define s̃[�+1, i1, l1] = z · (
∑μ

k=1 s[�+ 1, k, i1, l1] · id�+1[k]), for
i1 ∈ {1, . . . , �}, and s̃w[�+ 1, l1] = z · (

∑μ
k=1 s[�+ 1, k, l1] · id�+1[k]).

3. For all j ∈ {�+2, . . . , d}, k ∈ {1, . . . , μ}, compute re-randomized versions
of the partial decryption key by raising the partial decryption key to
random powers τj,k

R← Z∗
p.

K[�+ 1, l1]
(j,k) = K̃[�+ 1, l1]

τj,k , Lw[�+1, l1]
(j,k) = L̃w[�+ 1, l1]

τj,k ,

{L[�+ 1, i1, l1]
(j,k) = L̃[�+ 1, i1, l1]

τj,k}�+1
i1=1.

These values will be used to compute the delegation component of the
new key at step 5.

4. Compute adecryption componentSK′
D[l1]=(D

′[l1],D
′
w[l1], {D′

i1
[l1]}�+1

i1=1)

for the delegated key by setting D′[l1] = D[l1] · K̃[� + 1, l1] as well as

D′
w[l1] = Dw[l1] · L̃w[� + 1, l1]. Then, define D

′
�+1[l1] = L̃[� + 1, � + 1, l1]

and, for each i1 ∈ {1, . . . , �}, setD′
i1 [l1] = Di1 [l1] · L̃[�+ 1, i1, l1].

5. Finally, compute a delegation component for the delegated key. For each
j ∈ {� + 2, . . . , d}, set L′[j, l1] = L̂[j, l1]. Then, for each k ∈ {1, . . . , μ},
i1 ∈ {1, . . . , �+ 1}, set K′[j, k, l1] = K̂[j, k, l1] · K[�+ 1, l1]

(j,k) and

L′
w[j, k, l1] = L̂w [j, k, l1] · Lw[�+ 1, l1]

(j,k)

L′[j, k, i1, l1] = L̂[j, k, i1, l1] · L[�+ 1, i1, l1]
(j,k),

with L̂[j, k, �+1, l1] = 1 for all j, k. The delegation component SK′
DL is

SK′
DL[l1]=

(
{K′[j, k, l1]}j,k, {L′[j, l1]}j , {L′[j, k, i1, l1]}j,k,i1 , {L

′
w[j, k, l1]}j,k

)
,

254 A. Escala et al.

with j ∈ {� + 2, . . . , d}, k ∈ {1, . . . , μ}, i1 ∈ {1, . . . , � + 1}. Return the
delegated private key SK(id1,...,id�,id�+1)[l1] = (SK′

D[l1],SK
′
DL[l1]).

Return {SK(id1,...,id�,id�+1)[l1]}nl1=1.

HF.Eval
(
pms,mpk, (id1, . . . , id�), X

)
: Given an-bit inputX=x1 . . . xn ∈ {0, 1}n,

for i1 = 1 to �, parse idi1 as idi1 [1] . . . idi1 [μ]. For l1 = 1 to n, do the following.
1. Compute modified HPE ciphertexts by defining

Cid[i1, l2, l1] =

μ∏
i2=1

C[i1, i2, l2, l1]
idi1 [i2]

=
(
h[i1, 0, l1]

〈yi1 ,idi1 〉·Δ(l2,l1) ·
μ∏

i2=1

h[i1, i2, l1]
idi1 [i2]

)s[l2]

for each i1 ∈ {1, . . . , �}, l1, l2 ∈ {1, . . . , n}. The modified ciphertexts are

Cid[l2, l1] =
(
J[l2], {Cid[i1, l2, l1]}�i1=1

)
∈ G�+1. (7)

The resulting {Cid[l2, l1]}l2,l1∈{1,...,n} thus form a n×n matrix of anony-
mous HIBE ciphertexts for the identity id = (id1, . . . , id�).

2. Using the vector X ∈ {0, 1}n, compute Cid,v =
∏n
l2=1 J[l2]

xl2 = v〈s,X〉,

CTid,w[l1] =
∏n
l2=1 Cw[l2, l1]

xl2 = w[l1]
〈s,X〉 and

CTid[i1, l1] =

n∏
l2=1

Cid[i1, l2, l1]
xl2 (8)

= h[i1, 0, l1]
s[l1]·xl1

·〈yi1 ,idi1 〉 ·
(μ∏
i2=1

h[i1, i2, l1]
idi1 [i2]

)〈s,X〉

Output

C =
(
Cid,v, {CTid,w[l1]}nl1=1, {CTid[i1, l1]}i1∈{1,...,�},l1∈{1,...,n}

)
∈ Gn+1+n×�.

(9)

HF.Inv
(
pms,mpk, (id1, . . . , id�),SK(id1,...,id�), C

)
: parse the decryption compo-

nent SKD of the private key as a tuple of the form (D,Dw,Dw̄, {Di1}�i1=1)
and the output C as per (9). Then, for l1 = 1 to n, set xl1 = 0 if

e(Cid,v,D[l1]) · e(CTid,w[l1],Dw[l1])
−1 ·

�∏
i1=1

e(CTid[i1, l1],Di1 [l1])
−1 = 1GT .

(10)Otherwise, set xl1 = 1. Eventually, return X = x1 . . . xn ∈ {0, 1}n.

From (8), we see that, with overwhelming probability, if there exists i1 ∈
{1, . . . , d} such that 〈yi1 , idi1〉 �= 0, relation (10) is satisfied if and only if xl1 = 0.
Indeed, in this case, the output (9) is distributed as a vector of n Boneh-Boyen
anonymous HIBE ciphertexts. These ciphertexts correspond to the same en-
cryption exponent 〈s, X〉 and are generated under n distinct master public keys
sharing the same component v ∈ G.

When the function is prepared for the injective mode, the auxiliary input
consists of a vector y(0) = [(1, 0, . . . , 0)| . . . |(1, 0, . . . , 0)] ∈ Zd·μp . Since idi1 [1] = 1

Identity-Based Lossy Trapdoor Functions 255

for each i1, this implies injectivity since 〈y(0)
i1

, idi1〉 �= 0 for each i1 ∈ {1, . . . , �}.
In the partially lossy mode, a suitable choice of y(1) ensures that 〈yi1 , idi1〉 = 0
for each i1 ∈ {1, . . . , �} with non-negligible probability, which leads to high non-
injectivity: from (8), we see that (9) only consists of valid HIBE ciphertexts, so
that the inversion algorithm always outputs 0n.

In the full version of the paper [16], we prove that, under the P-BDH1 and
DDH2 assumptions, the scheme provides selective security and adaptive security
(for a constant number of levels) for appropriate choices of the auxiliary input.

References

1. Anderson, R.: Two Remarks on Public Key Cryptology. Invited lecture. In: ACM
Conference on Computer and Communications Security (1997)

2. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and Efficiently Searchable
Encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

3. Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek,
S.: Hedged Public-Key Encryption: How to Protect against Bad Randomness. In:
Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer, Hei-
delberg (2009)

4. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and Impossibility Results for En-
cryption and Commitment Secure under Selective Opening. In: Joux, A. (ed.) EU-
ROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009)

5. Bellare, M., Kiltz, E., Peikert, C., Waters, B.: Identity-Based (Lossy) Trapdoor
Functions and Applications. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 228–245. Springer, Heidelberg (2012)

6. Boldyreva, A., Fehr, S., O’Neill, A.: On Notions of Security for Deterministic En-
cryption, and Efficient Constructions without Random Oracles. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

7. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
Without Random. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

8. Boneh, D., Waters, B.: Conjunctive, Subset, and Range Queries on Encrypted
Data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007)

9. Boyen, X., Waters, B.: Anonymous Hierarchical Identity-Based Encryption (With-
out Random Oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 290–307. Springer, Heidelberg (2006)

10. Boyen, X., Waters, B.: Shrinking the Keys of Discrete-Log-Type Lossy Trapdoor
Functions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 35–52.
Springer, Heidelberg (2010)

11. Canetti, R., Halevi, S., Katz, J.: A Forward-Secure Public-Key Encryption Scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

12. Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based
Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

13. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Dele-
gate a Lattice Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 523–552. Springer, Heidelberg (2010)

256 A. Escala et al.

14. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate Strong Keys
from Biometrics and Other Noisy Data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

15. Ducas, L.: Anonymity from Asymmetry: New Constructions for Anonymous HIBE.
In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 148–164. Springer, Hei-
delberg (2010)

16. Escala, A., Herranz, J., Libert, B., Ràfols, C.: Identity-Based Lossy Trapdoor
Functions: New Definitions, Hierarchical Extensions, and Implications. Cryptol-
ogy ePrint Archive: Report 2012/503 (2012)

17. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More Construc-
tions of Lossy and Correlation-Secure Trapdoor Functions. In: Nguyen, P.Q.,
Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279–295. Springer, Hei-
delberg (2010)

18. Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

19. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-Based Encryption for Fine-
Grained Access Control of Encrypted Data. In: ACM CCS 2006 (2006)

20. H̊astad, J., Impagliazzo, R., Levin, L., Luby, M.: A Pseudorandom Generator from
any One-Way Function. SIAM Journal on Computing 28(4) (1999)

21. Hemenway, B., Ostrovsky, R.: Lossy Trapdoor Functions from Smooth Homomor-
phic Hash Proof Systems. Electronic Colloquium on Computational Complexity
(ECCC) 16, 127 (2009)

22. Hofheinz, D.: All-But-Many Lossy Trapdoor Functions. In: Pointcheval, D., Jo-
hansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 209–227. Springer,
Heidelberg (2012)

23. Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions,
Polynomial Equations, and Inner Products. In: Smart, N.P. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

24. Okamoto, T., Takashima, K.: Hierarchical Predicate Encryption for Inner-
Products. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231.
Springer, Heidelberg (2009)

25. Peikert, C., Waters, B.: Lossy Trapdoor Functions and their Applications. In:
STOC 2008. ACM Press (2008)

26. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

27. Shi, E., Waters, B.: Delegating Capabilities in Predicate Encryption Systems.
In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 560–578. Springer,
Heidelberg (2008)

28. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

29. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

30. Wee, H.: Dual Projective Hashing and Its Applications — Lossy Trapdoor Func-
tions and More. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 246–262. Springer, Heidelberg (2012)

31. Xie, X., Xue, R., Zhang, R.: Deterministic Public Key Encryption and Identity-
Based Encryption from Lattices in the Auxiliary-Input Setting. In: Visconti, I., De
Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 1–18. Springer, Heidelberg (2012)

Bounded-Collusion Identity-Based

Encryption from Semantically-Secure
Public-Key Encryption:

Generic Constructions with Short Ciphertexts

Stefano Tessaro1,� and David A. Wilson2

1 University of California, Santa Barbara
2 MIT

Abstract. To circumvent the lack of generic constructions of identity-
based encryption (IBE), Dodis et al. (EUROCRYPT ’02) introduced the
notion of bounded-collusion IBE (BC-IBE), where attackers only learn
secret keys of an a-priori bounded number t of identities. They provided
a generic BC-IBE construction from any semantically-secure encryption
scheme which, however, suffers from a ω(t) blow-up in ciphertext size.
Goldwasser et al. (TCC 2012) recently presented a generic construc-
tion with no ciphertext-length blow-up. Their construction requires an
underlying public-key scheme with a key homomorphism, as well as a
hash-proof-style security definition that is strictly stronger than semantic
security. This latter requirement in particular reduces the applicability
of their construction to existing schemes.

In this paper, we present the first generic constructions of BC-IBE from
semantically-secure encryption schemes with no ciphertext-length blow-
up. Our constructions require different degrees of key-homomorphism and
malleability properties that are usually easy to verify.We provide concrete
instantiations based on the DDH, QR, NTRU, and LWE assumptions. For
all of these assumptions, our schemes present the smallest BC-IBE cipher-
text size known to date. Our NTRU-based construction is particularly in-
teresting, due to the lack of NTRU-based IBE constructions as well as the
fact that it supports fully-homomorphic evaluation.

Our results also yield new constructions of bounded CCA-secure
cryptosystems.

1 Introduction

Public-key encryption.One of the classic and best-studied models of secure
communication is that of public-key encryption (PKE) [12], in which each indi-
vidual independently generates a public-key / secret-key pair. Anyone possessing
the public key can encrypt a message such that only the individual with the asso-
ciated secret key can decrypt. To date, there are innumerable PKE constructions
proven secure based on a wide variety of hardness assumptions.

� Research done while the author was with MIT CSAIL.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 257–274, 2014.
c© International Association for Cryptologic Research 2014

258 S. Tessaro and D.A. Wilson

However, the basic public-key model lacks a well-developed structure for pub-
lic key verification. One can encrypt messages using a public key, but the model
implies a trust that the public key belongs to a specific individual, unless an
expensive public-key infrastructure is in place. In order to make explicit these
assumptions and avoid potential difficulties with key distribution, cryptogra-
phers have explored other models of encryption.

Identity-based Encryption.The identity-based encryption (IBE) model, in-
troduced by Shamir in 1984 [30], attempts to alleviate the above concerns. In
this model, a trusted center generates a master secret key and public parameters
for the entire system. Anyone can encrypt a message to any user of the system
using only these global public parameters and the user’s identity. To decrypt, a
user must obtain the secret key for their identity from the trusted center (who
presumably authenticates the user before distributing the key).

The security model for IBE assumes that the adversary can adaptively obtain
an arbitrary number of secret keys for users in the system, and requires that
messages encrypted to any other user still be indistinguishable to the adversary.
This models the idea that an individual’s messages are still secure even if an
arbitrary number of other users of the system collude against that user.

The first constructions of IBE came in 2001, by Boneh and Franklin [5] and
Cocks [9]. Both of these constructions assumed the existence of random oracles;
however, subsequent work by Boneh and Boyen [3] and Waters [32] achieved
IBE in the standard model. There now exist a number of IBE constructions
in both the random oracle and standard models, under hardness assumptions
of problems in bilinear groups (e.g. [5,7,3,32]), various forms of the Quadric
Residuosity (QR) problem (e.g. [9,6]), and the Learning With Errors problem
(e.g. [20,8,1]). Some of these, and in particular all those based on the standard
QR problem, additionally require random oracles. However, no constructions of
IBE are known from generic primitives.

Bounded-collusion IBEs.As an attempt to come up with constructions un-
der a wider range of assumptions, cryptographers began looking at a variant of
IBE known as Bounded-Collusion IBE (BC-IBE). In this model, one only guar-
antees security against an adversary who obtains secret keys associated with at
most t identities, where the size of the parameters of the system are allowed
to depend on t. Falling short of achieving full security, the bounded-collusion
model can be a realistic assumption in many settings, and is in fact a necessary
restriction to achieve the more general notion of functional encryption [24]. Ad-
ditionally, it has been studied in other settings, notably broadcast encryption
and revocation (e.g. [17,18,19,27,29,25,13]).

The first construction of BC-IBE came in the context of key-insulated systems
in [15]. This paper gave a general reduction from any semantically secure public-
key cryptosystem to a BC-IBE scheme. However, their construction suffers from
a large ciphertext-size blowup – the resulting ciphertext length is a factor ω(t)
larger than that of the underlying encryption scheme. To mitigate this, this
work was recently followed by that of Goldwasser et al. [22]: They provide a
new construction that relies on a public-key encryption scheme which exhibits

Bounded-Collusion Identity-Based Encryption 259

key-homomorphic properties, i.e., secret keys and public keys are elements of
respective groups (with possibly different operations, which we denote by + and
·), and there exists a homomorphism μ such that μ(sk + sk′) = μ(sk) + μ(sk′),
where μ(sk) and μ(sk′) are valid public keys for which sk and sk′ yield cor-
rect decryption, respectively. More concretely, the GLW construction generates
multiple public-key / secret-key pairs (pk1, sk1), . . . , (pkn, skn), letting the pub-
lic parameters and the master secret key of the scheme be pp = (pk1, . . . pkn)
and msk = (sk1, . . . , skn), respectively. Then, an efficient map φ associates every
identity ID with a vector [id1, . . . , idn], and a message m is encrypted for an
identity ID as the ciphertext c = Enc(pkID,m), where pkID =

∏n
i=1 pk

idi

i . By the
existence of μ, this ciphertext can be decrypted using skID =

∑n
i=1 idi · ski, since

the homomorphism guarantees that pkID = μ(skID). The map φ is subjected
to a combinatorial requirement that disallows computing skID given skID′ for t
different ID′ �= ID. The GLW construction preserves the ciphertext size of the
underlying encryption, but its security requires the latter to satisfy a property
which is strictly stronger than semantic security. This property is inspired by the
security of hash-proof systems [11], and in particular does not allow the homo-
morphism μ to be one-to-one. This somewhat hinders the applicability of their
framework to existing encryptions schemes not designed with this security goal
in mind.

Our contributions. In this paper, we seek for generic constructions of BC-
IBE which rely on encryption schemes that solely satisfy the standard security
notion of semantic security in addition to some syntactical, non-security-related,
properties which can be easily verified. Our constructions have the added benefit
of conceptual simplicity, and the resulting instantiations from concrete assump-
tions either outperform or abstract existing BC-IBE constructions along different
axes.

In summary, this paper makes three main contributions:

1. As our first contribution, we revisit the GLW approach in the context of
selective security. The latter security notion only demands security for at-
tackers attempting to break the confidentiality of messages encrypted for an
a-priori specified identity (in particular, independently of the parameters of
the scheme). We prove that the GLW approach is selectively secure for ev-
ery semantically secure encryption scheme with key-homomorphic properties
whenever φ satisfies a slightly stronger property that the one used in [22],
namely that of cover-freeness introduced in [16] and used in several other
works (e.g. [27,10,14], and others). While being strictly weaker than the no-
tion of full security, selective security is sufficient for some applications, as
discussed below.

2. Whenever the underlying semantically-secure scheme satisfies an additional
new property – which we call weak multi-key malleability – we prove that the
GLW construction achieves full BC-IBE security, i.e., confidentiality holds
even with respect an identity chosen adaptively after learning the param-
eters of the schemes as well as secret keys for at most t other identities.

260 S. Tessaro and D.A. Wilson

Roughly, our malleability property states that given the encryption of c =
Enc(pk,m) of an unknown message m under a known public key pk, and
given an additional public-key / secret-key pair (pk′, sk′), we can efficiently
produce a ciphertext which is indistinguishable from an encryption of m
under pk · pk′. An example scheme with this property is ElGamal encryp-
tion – hence we directly obtain a DDH-based BC-IBE scheme from ElGamal
encryption.

3. As our third contribution, we provide a new, alternative construction that
relies on a different form of malleability (which we simply call multi-key
malleability), and does not require any explicit key-homomorphic structure.
Intuitively, our notion requires that given c = Enc(pk,m) for an unknown
message m, and another public key pk′, we can obtain a new ciphertext c
which decrypts to m under a combination of the secret keys sk and sk′ as-
sociated with pk and pk′. We provide an efficient instantiation based on
NTRU [26], exploiting it multi-key homomorphic properties recently ob-
served by Lopez-Alt et al. [28]. This is of particular interest due to the
fact that no fully-secure NTRU-based IBE scheme is known to date. More-
over, our constructions support homomorphic evaluation of ciphertexts, and
this is the only construction of identity-based fully homomorphic encryption
beyond the recent result by Gentry, Sahai, and Waters [21].

To conclude, we stress that our instantiation of the GLW approach is somewhat
orthogonal to the one by Goldwasser et al.: Our instantiation requires indeed
somewhat larger public-parameters at the cost of a weaker assumption on the
underlying encryption scheme, hence leading to wider applicability and often
smaller ciphertexts. Nonetheless, we believe that large ciphertexts are generally
a more limiting factor than large parameters, especially in settings where many
messages are encrypted with the same parameters.

A summary of our instantiations and their parameters is given in Table 1
comparing them to previously known best constructions. For LWE and NTRU,
the best previously known construction was obtained by using the construction
of [15]. We also provide a construction based on QR which does not outperform
the one of [22], even though we find it conceptually simpler.

From IBE to CCA-security.A somewhat related problem is that of building
bounded-CCA secure public-key encryption [10]: Concretely, for t-bounded CCA
security, semantic security must hold also for attackers which can decrypt up to
t ciphertexts other than the challenge ciphertext for which we attempt to break
confidentiality. We note that by re-interpreting a result of Boneh et al. [4], every
construction of a BC-IBE scheme selectively secure against t-collusions directly
yields a t-bounded CCA secure PKE. Hence, our BC-IBE constructions also
directly yield better bounded-CCA-secure constructions, in terms of ciphertext
size and/or conceptual simplicity. When applying our framework to ElGamal,
for example, we obtain a construction which is equivalent to the one proposed
in [10], for which a direct security proof was given. Moreover, our instantiation
from NTRU is indeed more efficient than the best fully CCA-secure construction
from NTRU given by Steinfeld et al. [31].

Bounded-Collusion Identity-Based Encryption 261

Table 1. Comparison with previous works on BC-IBE. Here t is the collusion
parameter and |ID| is the total number of identities in the system. PK and ciphertext
size implicitly include the security parameter. The upper section of the table considers
generic constructions, whereas the lower section describes existing constructions from
concrete assumptions. Note that linear hash proof property implies semantic security,
while being strictly stronger than it.

Construction Assumptions Ciphertext size PK size

DKXY02 [15] Semantically secure
PKE

Θ(t log |ID|)
PKE ciphertexts

Θ(t2 log |ID|) PKE PKs

GLW12 [22] PKE w/linear hash
proof and key homo-
morphism

Same as
underlying PKE

Θ(t log |ID|) PKE PKs

This work Semantic-secure PKE;
key homomorphism,
weak multi-key mal-
leability

Same as
underlying PKE

Θ(t2 log |ID|) PKE PKs

This work Semantic-secure PKE;
multi-key malleability

Same as
underlying PKE

Θ(t2 log |ID|) PKE PKs

DKXY02 [15] DDH 3 group elements Θ(t) group elements

GLW12 [22] DDH 3 group elements Θ(t log |ID|) group elts

This work DDH 2 group elements Θ(t2 log |ID|) group elts

GLW12 [22] QR 2 RSA group
elements

Θ(t log |ID|) group elts

This work LWE Same as
GPV [20]

Θ(t2 log |ID|) GPV PKs

This work NTRU Same as NTRU-
Encrypt [26]

Θ(t2 log |ID|) NTRU PKs

2 Preliminaries

2.1 Public-Key Encryption

PKE Syntax. As usual, a public-key encryption (PKE) scheme is a triple of
efficient algorithms PKE = (Gen,Enc,Dec) where:

- Gen is the (randomized) key generation algorithm: it takes no input (other
than the security parameter 1k , which is implicit and generally omitted),
and outputs a public-key / secret-key pair (pk, sk).

- Enc and Dec are the (randomized) encryption and the (deterministic) decryp-
tion algorithms, such that for all valid public-key / secret-key pairs (pk, sk)
output by Gen, and all messages m, the probability P[Dec(sk,Enc(pk,m)) �=
m] is negligible, where the probability is taken over the random coins of the
encryption algorithm Enc.

Often, we allow public-key encryption schemes to additionally depend on ex-
plicit public parameters pp (randomly generated in an initial phase and shared
across multiple instances of the PKE scheme) on which all of Gen, Enc, and Dec

262 S. Tessaro and D.A. Wilson

are allowed to depend. Examples include the description of a group G with its
generator g. We will often omit them in the descriptions of generic constructions
from PKE schemes.

Security of PKE. We define security against chosen-plaintext attacks (for
short, IND-CPA security) [23,2] for a PKE scheme PKE = (Gen,Enc,Dec) via a
security game involving an adversary A which is initially given the public key pk,
and subsequently outputs a pair of equal-length messagesm0, m1. The adversary

continues after receiving a challenge ciphertext c∗
$← Enc(pk,mb) for a random

secret bit b, and then finally outputs a guess b′ for b. We say that PKE is (τ, ε)-
ind-cpa-secure if all attackers A with time complexity at most τ guess the right
bit (i.e., b′ = b) with probability at most 1+ε

2 . Moreover, it is simply ind-cpa
secure if for all polynomials p, there exists a negligible function ν such that the
scheme is (p(k), ν(k))-ind-cpa-secure for all values of the security parameter k.
We also consider security against chosen ciphertext attacks (for short, IND-CCA
security), where the adversary is additionally able to decrypt ciphertexts under
the constraint that a decryption query for the challenge ciphertext is never asked.
We say that PKE is (τ, t, ε)-ind-cca-secure if any attacker with time complexity
τ and making at most t decryption queries guesses b with probability at most
1+ε
2 . The asymptotic notion of t-ind-cca-secure is defined accordingly.

2.2 Identity-Based Encryption

Recall that an identity-based encryption (IBE) scheme for identity set ID is a
4-tuple of algorithms IBE = (IBEGen, IBEExtract, IBEEnc, IBEDec) satisfying the
following syntactical properties:

- IBEGen is the randomized parameter generator algorithm which returns a
pair (msk, pp), where msk is the so-called master secret key, and pp are the
public parameters.

- The extraction algorithm IBEExtract, on input the master secret-key msk and

a valid identity ID ∈ ID returns a secret key skID
$← IBEExtract(msk, ID)

associated with this identity.
- The encryption algorithm IBEEnc takes as inputs the public parameters
pp, an identity ID ∈ ID, and a message m, and returns a ciphertext

c
$← IBEEnc(pp, ID,m) such that for the associated deterministic algorithm

IBEDec, IBEDec(skID, IBEEnc(pp, ID,m)) = m with overwhelming probabil-
ity for each (pp,msk) output by Gen and skID output by IBEExtract(msk, ID).

The notion of IND-CPA security is extended to the setting of IBE. The adver-
sary, given the public parameters pp, can obtain keys skID for identities ID of
its choice (via so-called extraction queries), and outputs at some point a pair
of equal-length challenge messages m0, m1, together with a challenge identity
ID∗ for which no extraction query has been issued. It then obtains an encryp-
tion of mb for the challenge identity ID∗ and for a random bit b. The adversary
is asked to guess b, constrained on not asking a key extraction query for ID∗.
We also consider a weaker security notion, called selective IND-CPA security:

Bounded-Collusion Identity-Based Encryption 263

Here, the adversary is required to choose its challenge identity beforehand, and
only subsequently learns the public parameters and is given access to the IBEExtract
oracle.

In analogy to the case of conventional PKE, we say that IBE is (τ, t, ε)-cpa-
secure if all τ -time adversaries A making t extraction queries output b with
probability at most 1+ε

2 in the CPA-security game above. Similarly, we define
(τ, t, ε)-selective-cpa-secure likewise for the selective-CPA game above, as well
as the asymptotic notions of t-cpa and t-selective-cpa security.

3 Revisiting the GLW Construction

In the first part of this paper, we revisit the IBE construction for bounded-
collusion security proposed by Goldwasser, Lewko, and Wilson [22] – henceforth,
we refer to this construction as the GLW construction. We show two generic
results, the first one for selective security and the second one for full IBE security.
Then, we discuss a new instantiation of this paradigm based on DDH. Two more
instantiations based on the LWE and QR assumptions are deferred to the full
version for lack of space.

3.1 The GLW Construction

Secret-key to Public-key Homomorphisms. Throughout this section, we
(tacitly) consider only public-key cryptosystems PKE = (Gen,Enc,Dec) with
the property that secret and public keys are elements of groups G and H , re-
spectively. For convenience and ease of distinction, we will denote the group
operations on G and H as + and ·, respectively.
Definition 1 (Secret-key to public-key homomorphism). We say that
PKE admits a secret-key to public-key homomorphism if there exists a map
μ : G → H such that:

(i) μ is a homomorphism, i.e., for all sk, sk′ ∈ G, we have μ(sk + sk′) =
μ(sk) · μ(sk′);

(ii) Every output (sk, pk) of Gen satisfies pk = μ(sk).

We stress that we are not requiring that every element sk ∈ G is a valid secret
key output by Gen. This will be important in our LWE instantiation below. In
this case, we still want to make sure that decryption is correct: In particular,
we say below that μ satisfies n-correctness if for any n′ ≤ n valid secret keys
sk1, . . . , skn′ output by Gen, the probability P[Dec(sk,Enc(μ(sk),m)) �= m] is
negligible for all messages m, where the probability is over the coins of Enc and
where sk = sk1 + · · · + skn′ . (This property is implicitly satisfied for all n if all
elements of G are valid secret keys.)

Also note that the map μ does not need to be efficiently computable for
our applications, even though the map is often very efficient. Additionally, we
observe that in case the scheme depends on some explicit public parameter (like
a generator or a matrix, as will be the case in our examples below), μ is indeed
allowed to be parameter-dependent.

264 S. Tessaro and D.A. Wilson

The GLW Construction. Goldwasser, Lewko, and Wilson [22] presented a
generic approach to build a bounded-collusion secure IBE from a public-key
encryption scheme admitting a secret-key to public-key homomorphism. Specif-
ically, let PKE = (Gen,Enc,Dec) be such a public-key encryption scheme with
homomorphism μ : G → H satisfying n-correctness, and let φ : ID → {0, 1}n
be a polynomial-time computable function, called the identity map. (With a
slight abuse of notation, it will be convenient to consider the output φ as a
subset of {1, . . . , n}, encoded in the canonical way as an n-bit string.) Then,
the GLW construction for PKE and φ gives rise to the following IBE scheme
IBE = (IBEGen, IBEExtract, IBEEnc, IBEDec) with identities from the set ID de-
fined as follows (where additionally IBEDec(skID, c) = Dec(skID, c))

IBEGen:

(pk, sk)
$← Genn

msk ← sk
pp ← pk
Return (msk, pp)

IBEExtract(sk, ID):

skID =
∑

i∈φ(ID) sk[i]
Return skID

IBEEnc(pk, ID,m):

pkID =
∏
i∈φ(ID) pk[i]

c
$← Enc(pkID,m)

Return c

The notation (pk, sk)
$← Genn denotes running Gen n times, with independent

random coins, and pk, sk are vectors such that (pk[i], sk[i]) is the output of the
i-th execution of Gen. First note that correctness of IBE follows trivially from the
correctness of PKE and the existence of a secret-key to public-key homomorphism
μ with n-correctness, since pkID = μ(skID) holds for all IDs and skID is the sum
of at most n valid secret keys. We stress that a central advantage of the above
construction is that IBE ciphertexts are ciphertexts of the underlying encryption
scheme PKE. Also, note that if PKE relies on some public parameters, these are
generated once and used across all uses of Gen, Enc, and Dec.

Instantiating the identity map.We still need to discuss how the map φ is
instantiated. In all constructions of this paper, we rely on constructions based on
cover-free sets, following previous work on bounded-collusion IBE [15], bounded-
CCA security [10], and bounded security for FDH signatures [14]. Concretely,
let 2[n] be the set of subsets of [n] := {1, . . . , n}.

Definition 2 (Cover-free sets).We say that φ : ID → 2[n] is (t, s)-cover free if

|φ(x)| = s for all x ∈ ID, and moreover φ(xt)\
⋃t−1
i=1 φ(xi) �= ∅ for all x1, . . . , xt ∈

ID, i.e., the set φ(xt) is not covered by the union of φ(x1), . . . , φ(xt−1).

In general, we will equivalently think of φ as a map ID → {0, 1}n, where we
output the characteristic vector of the associated set, instead of the set itself.
The following gives the currently best-known construction of cover-free sets.

Theorem 1 ([10]). For all integers t ≥ 1, there exists a polynomial-time com-
putable (t, s)-cover-free map φ : ID → {0, 1}n, where n = 16t2 log |ID| and
s = 4t log |ID|.

Bounded-Collusion Identity-Based Encryption 265

We note that Goldwasser, Lewko, and Wilson used a weaker requirement of
φ that only requires linear independence of the vectors φ(x1), . . . , φ(xt). In this
case, the output length n can be reduced to O(t log |ID|), or even O(t) if we
allow both identities as well as components of φ(x) to be elements of Zp for
some large prime p. However, the price they pay compared to our results below
is that the underlying encryption scheme is required to satisfy a harder to show
notion than in our results given below assuming cover-freeness, and this is often
reflected in instantiations with larger ciphertexts.

3.2 Selective Security of the GLW Construction

We start with selective security, which will be important to obtain bounded
CCA-secure cryptosystems with short ciphertexts, as we explain below in Sec-
tion 5. In the following, let PKE = (Gen,Enc,Dec) be an arbitrary public-key
encryption scheme which admits secret-key to public-key homomorphism, and
let IBE be the IBE scheme resulting from the above construction, using an un-
derlying identity map φ.

Theorem 2 (Selective ID Security of GLW). Assume that PKE is ind-
cpa-secure, and that φ is (t + 1, s)-cover free. Then, the GLW construction is
t-selective-cpa-secure.

Proof. Let A be a selective-cpa adversary for IBE which outputs b′ = b with
probability at least (1 + nε)/2, and which makes at most t extraction queries.
We construct an ind-cpa adversary B for PKE from A, guessing the bit b with
probability 1+ε

2 . Concretely, the adversary B first runs A, obtaining the challenge
identity ID∗, and chooses an index i∗ uniformly at random from the set S∗ =
{i : id∗i = 1}, where φ(ID∗) = [id∗1, ..., id

∗
n]. It then gets a public key pk∗ from the

underlying CPA game, and computes (pk[j], sk[j])
$← Gen for all j ∈ [n] \ {i∗}.

Finally, it sets pk[i∗] = pk∗ ·
(∏

j �=i∗ pk[j]
−id∗j

)
.

The adversary B then gives pp = pk to A and runs it until it outputs a pair
(m0,m1). In particular, A’s extraction queries for ID �= ID∗ ∈ ID are replied by
computing [id1, . . . , idn] = φ(ID) and, if idi∗ = 0, returning skID :=

∑
i idi · sk[i].

Note that if idi∗ = 1, then B cannot answer the extraction query, as it does not
know any corresponding sk[i∗]. In this case, it returns ⊥, and sets a flag bad
to true. When the adversary A outputs a pair (m0,m1) of messages of equal
length, B forwards them to the CPA, obtaining a challenge ciphertext c∗ , which
it then gives back to A, and its simulated execution is continued until it outputs
a bit b′. To conclude, B outputs the bit b′ if bad is not set to true, and returns
a random bit otherwise. Note that we have pkID∗ = pk∗ by our definition.

Since φ is (t+ 1, s)-cover-free, we know that there exists at least one i∗ such
that id∗i∗ = 1, but idi∗ = 0 for all vectors φ(ID) corresponding to the (at most t)
extraction queries ID �= ID∗. Intuitively, such an index i∗ is hence chosen with
probability at least 1/ |S∗| = 1/s ≥ 1/n, and conditioned on this, the simulation

266 S. Tessaro and D.A. Wilson

is easily seen to be perfect. Formally, we let WinPKE and WinIBE be the events
that B and A guess the bit in the respective security games. Then,

P [WinPKE] = P [WinPKE ∧ bad = false] + P [WinPKE ∧ bad = true]

≥ P [bad = false] · P
[
WinPKE

∣∣ bad = false
]

+ P [bad = true] · P
[
WinPKE

∣∣ bad = true
]
.

Now, clearly, P [bad=true]=1−P [bad = false], and P
[
WinPKE

∣∣ bad=true
]

≥
1
2 , since B outputs a random bit if bad is true. Moreover, one can verify that
P [bad=false] ≥ 1

n , and, as the simulation is perfect, P
[
WinPKE

∣∣ bad=false
]
=

P [WinIBE]. Formalizing these last two argument actually requires some (stan-
dard) extra work, using the fact that all random coins are independent of the
choice of i∗, but we dispense with the details in this version. Plugging in terms
into the above concludes the proof. ��

3.3 Full Security of GLW

We note that the above proof strategy used in Theorem 2 fails when we do
not know the challenge identity ID∗ at the point in time when the reduction B
sets the public parameters pp. However, an additional syntactic requirement on
the underlying cryptosystem PKE yields full security, as we show below. This
requirement is captured by the following definition.

Definition 3 (Weak Multi-Key Malleability). We say that PKE is weakly
n-key malleable if there exists an efficient algorithm Simulate such that for all
messages m, all I ⊆ [n], and all i ∈ I, the probability distributions D0 and D1

are computationally indistinguishable, where with (pk, sk)
$← Genn, Db consists

of (pk, sk[[n] \ {i}], cb) such that

(1) c0
$← Enc(

∏
i∈I pk[i],m);

(2) c
$← Enc(pk[i],m), c1

$← Simulate(i, I, c,pk, sk[[n] \ {i}]).

In other words, given a ciphertext c encrypting with public key pk[i] (where
i is part of some set I) an arbitrary unknown message m, we can efficiently
generate a ciphertext c′ encrypting the same message m under the product of
the keys pk[j] for j ∈ I without knowing the secret key sk[i], but still possibly
using sk[j] for j �= i. The resulting ciphertext has the right distribution in the
eyes of a computationally bounded distinguisher.

The proof of the following theorem follows a similar approach to the one of
Theorem 2, and is deferred to the full version.

Theorem 3 (Full Security of GLW). Assume that PKE is ind-cpa-secure
and weakly n-key malleable, and that φ is (t + 1, s)-cover free. Then, the GLW
construction is t-cpa-secure.

Bounded-Collusion Identity-Based Encryption 267

3.4 Instantiation from DDH

We present a simple instantiation of the above paradigm based on the Decisional
Diffie-Hellman (DDH) assumption and the ElGamal cryptosystem. The result-
ing scheme has smaller ciphertexts than earlier BC-IBE schemes [22,15], both
requiring three group elements.

Concretely, let G be a group with prime order |G| = q and generator g.

Recall that the ElGamal cryptosystem has secret key sk
$← Zq and public key

pk = gsk.
For a message m ∈ G, the encryption algorithm is Enc(pk,m) = (gr,m · pkr),

where r
$← Zq , whereas Dec(sk, (c1, c2)) = c2 ·c−sk

1 . ElGamal is easily shown to be
ind-cpa-secure under the DDH assumption. Moreover, we observe the following
two properties of the ElGamal cryptosystem:

1. ElGamal admits a secret-key to public-key homomorphism μ : Zq → G where
μ(x) = gx, and n-correctness is satisfied for any n.

2. Moreover, it satisfies (perfect) weak n-key malleability: Namely, just consider
the algorithm that for all I ⊆ [n], i ∈ I, and secret- and public-key vectors
sk and pk, outputs

c∗ = Simulate(i, I,pk, sk[[n] \ {i}], (c1, c2)) = (c1, c2 · c
∑

j 	=i sk[j]

1) . (1)

In particular, the resulting IBE scheme with identities ID obtained by plugging
ElGamal into the GLW construction, for any (t+1, s)-cover-free map φ : ID →
{0, 1}n, is as follows, and Theorem 3 implies its t-ibe-cpa security under the
DDH assumption. (The decryption algorithm remains the same as in the original
ElGamal scheme.)

IBEGen:

g
$← G

sk
$← Znq , pk[i] ← gsk[i]

pp ← (g,pk), msk ← sk
Return (pp,msk)

IBEExtract(msk = sk, ID):

[id1, . . . , idn] ← φ(ID)
skID ←

∑n
i=1 idi · sk[i]

Return skID

IBEEnc(pp = (g,pk), ID,m):

[id1, . . . , idn] ← φ(ID)

r
$← Zq

c ← (gr,m ·
∏n
i=1 pk[i]

r·idi)
Return c

3.5 Instantiations from LWE and QR

We achieve an additional instantiation of the above paradigm starting from the
GPV cryptosystem [20]. We thus achieve BC-IBE based on the learning with
errors (LWE) assumption (with polynomial modulus for selective security and
subexponential modulus for full semantic security).

Additionally, we achieve an instantiation under the quadratic residuosity (QR)
assumption based on a simplified variant of the QR-based PKE scheme from [22].
We defer the details of both of these constructions to the full version.

268 S. Tessaro and D.A. Wilson

4 Construction from Multi-key Malleability

4.1 Bounded-IBE Construction

We present a further construction of BC-IBE from PKE schemes which satisfy
a different notion of key malleability than the one given above, which we first
introduce. Our notion requires that given an encryption of a message under one
public key, we are asking for the ability to produce a new ciphertext of the same
message which decrypts under a combination of secret keys (e.g., the product)
for which we only know the corresponding public keys. Note that we are only
asking for decryptability under the combination of the secret keys. In particular,
in contrast to the above notion of weak key-malleability, the distribution of
the resulting ciphertext may not be a valid encryption under some well-defined
combination of the corresponding public keys, and moreover, we require ability
to compute this ciphertext without knowledge of any secret keys.

Definition 4 (Multi-Key Malleability). Let PKE be a public-key encryption
scheme. We say that PKE is n-key malleable if there exist algorithms Modify
and Combine such that the following properties hold:

(i) For all valid messages m, all I ⊆ [n], and all i ∈ I, the following probability
is negligible (taken over the coins of Enc):

P

[
(pk, sk)

$← Genn, c
$← Enc(pk[i],m),

c′
$← Modify(i, I,pk, c)

: Dec(Combine(I, sk), c′) �= m

]
.

(ii) For all I ⊆ [n], Combine(I, sk) does not depend on sk[i] for i /∈ I.
(iii) For all I ⊆ [n] and all valid public-key / secret-key vectors (pk, sk), for

all i, j ∈ I, the values Modify(i, I,pk,Enc(pk[i],m)) and
Modify(j, I,pk,Enc(pk[j],m)) are equally distributed.

We note that Property (iii) above is not really necessary (a computational re-
laxation would suffice), but will make the presentation somewhat simpler and is
true in the only instantiation we give below.

The IBE construction and its security. For an identity map φ : ID →
{0, 1}n, we now propose a construction of an identity-based encryption scheme
IBE = (IBEGen, IBEExtract, IBEEnc, IBEDec) from an n-key malleable encryp-
tion scheme PKE = (Gen,Enc,Dec). The decryption algorithm is unaltered, i.e.,
IBEDec = Dec, and moreover the construction consists of the following algo-
rithms. (Note that the choice of i as min{φ(ID)} below within IBEEnc is purely
arbitrary.)

IBEGen:

(pk, sk)
$← Genn

msk ← sk
pp ← pk
Return (msk, pp)

IBEExtract(msk = sk, ID):

skID ← Combine(φ(ID), sk)
Return skID

IBEEnc(pp = pk, ID,m):

i ← min{φ(ID)}
c′

$← Enc(pk[i],m)
c ← Modify(i, φ(ID),pk, c′)
Return c

Bounded-Collusion Identity-Based Encryption 269

Correctness of the scheme follows by Property (i) above. The following theorem
establishes security of our new construction. The proof is deferred to the full
version.

Theorem 4. Assume that PKE is ind-cpa-secure and n-key malleable, and that
φ is (t+ 1, s)-cover free. Then, IBE is t-ibe-cpa-secure.

4.2 NTRU-Based Instantiation and Fully-Homomorphic IBE

We provide an instantiation of the above constructing using the multi-key ho-
momorphic properties of NTRU-based public-key encryption [28], which we first
review. For some parameters r, n and q (where q is a prime), consider the ring
of polynomials R = Z[x]/(xr + 1), and let χ be a B-bounded distribution on
R, i.e., with overwhelming probability, χ samples a polynomial from R whose
coefficients are all at most B in absolute value. All operations on polynomials
are to be understood as over the ring Rq = R/qR. The NTRU cryptosystem is

such that key generation Gen samples f, g
$← χ subject to the constraint that

f ≡ 1 (mod 2), and sets pk = 2g/f and sk = f . (Possibly, f needs to be resam-
pled until it admits an inverse in Rq, and χ is such that this happens with good
probability.) The message b ∈ {0, 1} is encrypted as

Enc(pk,m) = h · pk+ 2e+ b ,

where h, e
$← χ. Finally, decryption, given c, outputs Dec(sk, c) = sk · c (mod 2).

To see why decryption is correct, note that

sk · c ≡ f · (2h · g/f + 2e+ b) ≡ 2h · g + 2e · f + f · b (mod q) .

If B ≤
√

q/2/r, then all coefficients from h · g and e · f are of size at most
r2B2 < q/2. Consequently, 2hg and 2ef only have even coefficients, and are 0
modulo 2. And finally, f · b clearly always equals b modulo 2.

The scheme was proven ind-cpa-secure under a fairly ad-hoc assumption
in [28], where it was also shown to have strong homomorphic properties we
address below, and which we exploit for our construction.

The IBE Scheme. We turn now to building an IBE scheme from the above
NTRU-based PKE scheme PKE using the above generic approach. In the fol-
lowing, we assume that r is our security parameter, q = 2n

ε

for some constant
ε < 1, B = poly(r), and n = Θ(rδ) for some constant δ < 1.

We first show �-key malleability exploiting the multi-key homomorphic prop-
erties of NTRU shown in [28]. To this end, we define the algorithm Combine
which given I ⊆ [�] and sk ∈ R�q outputs

Combine(I, sk) =
∏
i∈I

sk[i] .

Moreover, we also define the (randomized) function Modify, which given I ⊆ [�],
i ∈ I, c ∈ Rq , and pk ∈ R�q, outputs

Modify(i, I, c,pk) = c+
∑

j∈I\{i}
hj · pk[j] ,

270 S. Tessaro and D.A. Wilson

where hj for j ∈ I \ {i} are sampled independently from the B-bounded distri-
bution χ as above. Now, Properties (ii) and (iii) in Definition 4 are immediate
to verify. Moreover, for Property (i), fix I ⊆ [�] and i ∈ I, and pk, sk ∈ R�q ,
each consisting of � B-bounded polynomials as components, then define c as

c = Modify(i, I,Enc(pk[i], b),pk) =
∑
j∈I

hj · pk[j] + 2e+ b ,

and observe that

Dec(Combine(I, sk), c) =

(∏
i∈I

sk[i]

)
·

⎛⎝∑
j∈I

hj · pk[j] + 2e+ b

⎞⎠ (mod 2) .

In particular,(∏
i∈I

sk[i]

)
·

⎛⎝∑
j∈I

hj · pk[j] + 2e+ b

⎞⎠ ≡

∑
j∈I

2hj · gj ·
∏

i∈I\{j}
f� +

(
2e ·

∏
i∈I

f�

)
+ b ·

(∏
i∈I

f�

)
.

Note that in the above sum, only products of at most |I| + 1 B-bounded poly-
nomials occurs. The coefficients of the resulting products have size at most
r|I| · B|I|+1, which (given previous parameter choices) is smaller than q/2 as
long as |I| = o(nε). This yields correct decryption as no wraparound (modulo q)
occurs.

The final scheme.Overall, this yields to the following scheme, for any identity
mapping φ : ID → {0, 1}� which is (s, t+1)-cover-free for some s = o(nε), which
is t-ind-cpa secure by Theorem 4.

IBEGen:

f1, . . . , fn
$← χ

(fi ≡ 1 (mod 2), fi ∈ R∗
q)

g1, . . . , gn
$← χ

msk ← (f1, . . . , fn)

pp
$← (2g1/f1, . . . 2gn/fn)

Return (msk, pp)

IBEExtract(msk = sk, ID):

skID ←
∏
i∈φ(ID) sk[i]

Return skID

IBEEnc(pp = pk, ID,m):

h1, . . . , hn, e
$← χ

c ←
∑

i∈φ(ID) pk[i] · hi
+2e+m

Return c

Fully-Homomorphic IBE.The above instantiation has additionally the prop-
erty of being fully-homomorphic in the following sense:

Given encryptions IBEEnc(ID,m1), . . . , IBEEnc(ID,mt), and a function f :
{0, 1}t → {0, 1}, we can compute a ciphertext which decrypts to f(m1, . . . ,mt)
under skID using the homomorphic-evaluation procedures given in [28].

We note that in general one can provide a construction, along the lines given
above, from multi-key fully-homomorphic encryption to fully-homomorphic
identity-based encryption for bounded collusions. We defer a full discussion to
the full version of this paper, noting in passing that the above is the only in-
stantiation of this paradigm we are aware of.

Bounded-Collusion Identity-Based Encryption 271

5 Applications: Bounded CCA Security with Short
Ciphertexts

In this section, we revisit the generic transform by Boneh, Canetti, Halevi, and
Katz [4] in the context of BC-IBE, and use it to obtain constructions of bounded-
CCA2 secure encryption schemes with short ciphertexts from any semantically
secure scheme with a secret-key to public-key homomorphism.

The BCHK transform . Boneh et al [4] present a construction of an en-
cryption scheme PKE = (Gen,Enc,Dec) from a selectively-secure IBE scheme
IBE = (IBEGen, IBEExtract, IBEEnc, IBEDec) and a strong one-time signature
scheme SS = (GenSS, Sign,Verify). They then proceed to prove chosen-ciphertext
security of the resulting PKE.

Of note is that in their reduction to the selective security of IBE, the reduction
makes at most one IBEExtract query for each decryption query it receives from
the adversary, and no other parameters change. Thus, their proof carries through
exactly in the bounded-collusion case, yielding:

Theorem 5. If IBE is t-selective-ibe-cpa-secure, and if SS is strongly one-time
secure, then PKE is t-CCA secure.

Applications. Using previous results, we directly obtain bounded CCA PKE
constructions from DDH, QR, NTRU, and (standard) LWE using the construc-
tions of the previous sections. In particular, note that only standard LWE is
required as we only need selective security to instantiate the above paradigm.
Moreover, the resulting DDH construction is essentially equivalent to the one
presented in [10], and our construction thus provides an abstraction to obtain
the same construction.

As an example, we give the t-CCA PKE based on the NTRU assumption
that comes from applying Theorem 5 to the BC-IBE of Section 4.2. (Here the
parameters q, χ,R∗

q are defined as in that section.)

Gen:

f1, . . . , fn
$← χ

(fi ≡ 1 (mod 2), fi ∈ R∗
q)

g1, . . . , gn
$← χ

sk ← (f1, . . . , fn)
pk ← (2g1/f1, . . . , 2gn/fn)
Return (pk, sk).

Enc(pk,m):

(skSS, vkSS)
$← GenSS

h1, . . . , hn, e
$← χ

c ←∑
i∈φ(vkSS) pk[i]·hi+2e+m

σ
$← Sign(skSS, c)

Return (vkSS, c, σ).

Dec(sk, (vk, c, σ)):

If Verify(vk, c, σ) = 0
then
m ← ⊥

Else
skvk ←

∏
i∈φ(vk) sk[i]

m ← skvk · c (mod 2)
Return m

The ciphertext size of the CCA scheme generated by the BCHK transform is
the same as the ciphertext size of the IBE scheme (and hence of the NTRU en-
cryption scheme), plus a verification key and signature. Steinfeld et al. [31] show
a (fully) CCA-secure construction based on NTRU; their ciphertext contains k
ciphertexts of the underlying NTRUEncrypt algorithm (where k = Θ(1) is a
parameter that depends on the hardness assumption used, but is at least 4), and

272 S. Tessaro and D.A. Wilson

additionally a verification key, a signature, and a blinded message. (Since the
NTRUEncrypt ciphertexts are polynomials in Rq, they will typically be much
larger than the other values.) Thus, we obtain a constant-factor improvement
in ciphertext size by moving to the bounded-query model, in addition to the
conceptual simplicity of the proof.

Acknowledgments. The authors wish to thank Shafi Goldwasser for insightful
feedback and motivating us to write the present paper.

The research of this paper was partially supported by NSF Contract CCF-
1018064. Moreover, this material is based on research sponsored by DARPA
under agreement numbers FA8750-11-C-0096 and FA8750-11-2-0225. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The views and con-
clusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed
or implied, of DARPA or the U.S. Government.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 98–115. Springer, Heidelberg (2010)

2. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

3. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

4. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM Journal on Computing 36(5), 1301–1328 (2007)

5. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

6. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption
without pairings. In: 48th Annual Symposium on Foundations of Computer Sci-
ence, pp. 647–657. IEEE Computer Society Press (October 2007)

7. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

8. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to dele-
gate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 523–552. Springer, Heidelberg (2010)

9. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

10. Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., Shelat, A.,
Vaikuntanathan, V.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007)

Bounded-Collusion Identity-Based Encryption 273

11. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

12. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

13. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In:
Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg
(2003)

14. Dodis, Y., Haitner, I., Tentes, A.: On the instantiability of hash-and-sign RSA
signatures. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 112–132. Springer,
Heidelberg (2012)

15. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer,
Heidelberg (2002)

16. Erdös, P., Frankel, P., Furedi, Z.: Families of finite sets in which no set is covered
by the union of r others. Israeli Journal of Mathematics 51, 79–89 (1985)

17. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

18. Gafni, E., Staddon, J., Yin, Y.L.: Efficient methods for integrating traceability
and broadcast encryption. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 372–387. Springer, Heidelberg (1999)

19. Garay, J.A., Staddon, J., Wool, A.: Long-lived broadcast encryption. In: Bellare,
M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 333–352. Springer, Heidelberg (2000)

20. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC
Annual ACM Symposium on Theory of Computing, pp. 197–206. ACM Press, New
York (May 2008)

21. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. Cryptology
ePrint Archive, Report 2013/340 (2013), http://eprint.iacr.org/

22. Goldwasser, S., Lewko, A., Wilson, D.A.: Bounded-collusion IBE from key homo-
morphism. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 564–581. Springer,
Heidelberg (2012)

23. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

24. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012)

25. Halevy, D., Shamir, A.: The LSD broadcast encryption scheme. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)

26. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

27. Kumar, R., Rajagopalan, S., Sahai, A.: Coding constructions for blacklisting prob-
lems without computational assumptions. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 609–623. Springer, Heidelberg (1999)

28. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Karloff, H.J., Pitassi,
T. (eds.) 44th ACM STOC Annual ACM Symposium on Theory of Computing,
pp. 1219–1234. ACM Press (May 2012)

http://eprint.iacr.org/

274 S. Tessaro and D.A. Wilson

29. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

30. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

31. Steinfeld, R., Ling, S., Pieprzyk, J., Tartary, C., Wang, H.: NTRUCCA: How to
strengthen NTRUEncrypt to chosen-ciphertext security in the standard model.
In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293,
pp. 353–371. Springer, Heidelberg (2012)

32. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

A Framework and Compact Constructions

for Non-monotonic Attribute-Based Encryption

Shota Yamada1,�, Nuttapong Attrapadung2,
Goichiro Hanaoka2, and Noboru Kunihiro1

1 The University of Tokyo
{yamada@it.,kunihiro}@k.u-tokyo.ac.jp

2 National Institute of Advanced Industrial Science and Technology (AIST)
{n.attrapadung,hanaoka-goichiro}@aist.go.jp

Abstract. In this paper, we propose new non-monotonic attribute-based
encryption schemes with compact parameters. The first three schemes are
key-policy attribute-based encryption (KP-ABE) and the fourth scheme
is ciphertext-policy attribute-based encryption (CP-ABE) scheme.
– Our first scheme achieves the shortest ciphertext overhead in the lit-

erature. Compared to the scheme by Attrapadung et al. (PKC2011),
which is the best scheme in terms of the ciphertext overhead, our
scheme shortens ciphertext overhead by 33%. The scheme also re-
duces the size of the master public key to about half.

– Our second scheme is proven secure under the decisional bilin-
ear Diffie-Hellman (DBDH) assumption, which is one of the most
standard assumptions in bilinear groups. Compared to the non-
monotonic KP-ABE scheme from the same assumption by Ostrovsky
et al. (ACM-CCS’07), our scheme reduces the size of the master pub-
lic key and the ciphertext to about half.

– Our third scheme is the first non-monotonic KP-ABE scheme that
can deal with unbounded size of set and access policies. That is,
there is no restriction on the size of attribute sets and the number of
allowed repetition of the same attributes which appear in an access
policy. The master public key of our scheme consists of only constant
number of group elements.

– Our fourth scheme is the first non-monotonic CP-ABE scheme that
can deal with unbounded size of set and access policies. The master
public key of the scheme consists of only constant number of group
elements.

We construct our KP-ABE schemes in a modular manner. We first
introduce special type of predicate encryption that we call two-mode
identity based broadcast encryption (TIBBE). Then, we show that any
TIBBE scheme that satisfies certain condition can be generically con-
verted into non-monotonic KP-ABE scheme. Finally, we construct effi-
cient TIBBE schemes and apply this conversion to obtain the above new
non-monotonic KP-ABE schemes.

Keywords: Attribute-based encryption, non-monotonic access struc-
ture, compact parameters.

� The first author is supported by a JSPS Research Fellowship for Young Scientists.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 275–292, 2014.
c© International Association for Cryptologic Research 2014

276 S. Yamada et al.

1 Introduction

In many systems, a server monitors access to sensitive data so that only certain
users can access it. If the server is not fully trusted, the data must be encrypted.
However, a standard public key encryption scheme is not appropriate, because
it severely limits the users who can access the contents.

To solve this problem, Sahai and Waters [31] were the first to study attribute-
based encryption (ABE). In ABE, one can encrypt data for a set of receivers that
satisfy certain condition. In Sahai and Waters’ scheme, a ciphertext and a private
key are associated with a set of attributes, and the key can decrypt the ciphertext
if and only if these sets overlap more than certain threshold. Goyal, Pandey,
Sahai, and Waters [16] further extended their result and proposed schemes that
support finer-grained access control. In their scheme, a ciphertext is associated
with a set of attributes, and a private key is associated with an access structure
that is specified by a Boolean formula. Decryption is possible when the set
satisfies this Boolean formula. Their schemes are called key-policy ABE (KP-
ABE), because the key specifies the access structure. Ciphertext-policy ABE
(CP-ABE) is complementary form to KP-ABE in the sense that a ciphertext
specifies an access structure while a key is associated with a set of attributes.
The first studies of CP-ABE appear in [5,12].

The above schemes can express a wide class of access structures, but they
are still limited because they only support a monotonic access structure. In
particular, they cannot deal with an access structure that is associated with a
Boolean formula that includes the negation of attributes. This is not convenient
for real world applications. One possible solution to this problem is to explicitly
include attributes that express absence of attributes in the attribute space, as
suggested in [16]. For example, in the CP-ABE case, to generate a key for an
attribute x1, one should generate the key for a set that includes x1 and attributes
“Not xj” for all attribute xj such that xj �= x1, using the underlying monotonic
CP-ABE system. Then, a ciphertext for “Not x2” can be decrypted by the key
as desired, because “Not x2” ∈ {x1, “Not x2”, “Not x3”, . . . , }. This solution
works well in the settings where attribute space is small, but does not work if
the attribute space is exponentially large.

Ostrovsky, Sahai, and Waters [28] addressed this problem and constructed
the first KP-ABE scheme that supports a non-monotonic access structure by
using an idea from the Naor-Pinkas revocation scheme [25]. Following their work,
several non-monotonic KP/CP-ABE schemes have been proposed [21,26,3,27].

OurContributions. In this paper,we propose newnon-monotonicABE schemes.
Our new schemes either improve efficiency or achieve a new functionality that was
previously not possible. We propose the following four schemes. The first three
schemes are KP-ABE schemes and the last one is CP-ABE scheme.
– The first scheme has very compact ciphertexts. The ciphertext overhead of
our scheme consists of only two group elements, which is even shorter than
the currently shortest scheme of [3]. Furthermore, the scheme also reduces
the size of master public key to about half while the private key size is
slightly larger.

A Framework and Compact Constructions 277

– The second scheme is proven secure under the decisional bilinear Diffie-
Hellman (DBDH) assumption, which is one of the weakest number theoretic
assumptions in bilinear groups. The public key and the ciphertext size of our
scheme are about half the size of the scheme in [28], which is secure under
the same assumption. The encryption algorithm of our scheme is at least
two times faster than the existing scheme, but our decryption algorithm is
somewhat slower.

– The third scheme is the first non-monotonic KP-ABE scheme in the standard
model that supports fully unbounded attribute sets and access policies. That
is, there is no restriction on the size of the attribute set, or on the number of
times the same attributes can appear in an access policy. The master public
key of the scheme is very compact: it consists of only constant number of
group elements. Such a construction has previously only been possible in the
random oracle model [21].

– The fourth scheme is the first non-monotonic CP-ABE scheme that supports
fully unbounded size of attribute sets and access policies. The master public
key of our scheme consists of only constant number of group elements.

We construct the above KP-ABE schemes in a modular way. First, we define a
new predicate encryption that we call two mode identity based broadcast en-
cryption (TIBBE). In TIBBE, a ciphertext is associated with a set of identities.
A private key is associated with an identity and certain “type”. There are two
types of keys in the system. First type keys can decrypt the ciphertext iff the
identity is included in the set, while the second type keys can iff the identity
is not included. The notion of TIBBE is an extension of identity based broad-
cast encryption (IBBE) and identity based revocation (IBR). We show that
any TIBBE scheme with a certain property can be generically converted into a
non-monotonic KP-ABE scheme. This can be seen as an extension of the pre-
vious result in [3] that converts any IBBE scheme with certain properties into
a (monotonic) KP-ABE scheme. Finally, we construct efficient TIBBE schemes.
By applying our conversion to these schemes, we obtain our new non-monotonic
KP-ABE schemes.

While we construct KP-ABE schemes in a modular way, our construction of
the above non-monotonic CP-ABE scheme is more direct. Our construction is
based on the (monotonic) CP-ABE scheme recently proposed by [30]. We extend
their scheme to support a non-monotonic access structure by applying an idea
from the IBR scheme in [21] to the CP-ABE setting.

Finally, we remark that all our schemes are selectively secure. Constructing
adaptively secure schemes with similar property is left open for future research.

Other Related Works. After the work of Sahai andWaters [31], many CP/KP-
ABE schemes have been proposed [16,15,32,17]. The first adaptively secure ABE
schemes were proposed in [20] using composite order groups. Later, schemes
on prime order groups were proposed [26,27,19,24]. The settings with multiple-
authorities are investigated in several works [10,1,11,22]. To construct a scheme
with even more general access structure is an important direction of research.
Recently, there are significant progress toward this direction [33,13,14].

278 S. Yamada et al.

2 Preliminaries

2.1 Notation

We will treat a vector as a row vector, unless stated otherwise. For any vector
a = (a1, . . . , an) ∈ Znp , g

a = (ga1 , . . . , gan). For a, z ∈ Znp , we denote their inner
product as 〈a, z〉 = a·z� =

∑n
i=1 aizi.We denote by ei the i-th unit vector: its i-th

component is one, all others are zero. We also denote by [n] a set {1, . . . , n} for an
integer n > 0 and [n1, . . . , nm] = [n1]× · · · × [nm] for integers n1, . . . , nm > 0. For
a set U , we define 2U = {S|S ⊆ U} and

(
U
<k

)
= {S|S ⊆ U, |S| < k} for k ≤ |U |.

2.2 Definition of Predicate Encryption

Here, we define the syntax of predicate encryption. We emphasize that we do
not consider attribute hiding in this paper.1

Syntax. Let R = {RN : AN × BN → {0, 1} | N ∈ Nc} be a relation family
where AN and BN denote “key attribute” and “ciphertext attribute” spaces
and c is some fixed constant. The index N = (n1, n2, . . . , nc) of RN denotes the
numbers of bounds for corresponding parameters. If an index N is not required,
we say that R is an unbounded relation. A predicate encryption (PE) scheme
for R consists of the following algorithms:
Setup(λ,N) → (mpk,msk): The setup algorithm takes as input a security pa-

rameter λ and a index N of the relation RN and outputs a master public
key mpk and a master secret key msk.

KeyGen(msk,mpk, X) → skX : The key generation algorithm takes as input the
master secret key msk, the master public key mpk, and a key attribute X ∈
AN . It outputs a private key skX . We assume X is included in skX implicitly.

Encrypt(mpk,M, Y) → C: The encryption algorithm takes as input a master
public key mpk, the message M, and a ciphertext attribute Y ∈ BN . It
will output a ciphertext C.

Decrypt(mpk, C, Y, skX) → M or ⊥: We assume that the decryption algorithm is
deterministic. The decryption algorithm takes as input the public parameters
mpk, a ciphertext C, ciphertext attribute Y ∈ BN and a private key skX . It
outputs the message M or ⊥ which represents that the ciphertext is not in
a valid form.

We require correctness of decryption: that is, for all λ, N , all (mpk,msk) pro-
duced by Setup(λ,N), all X ∈ AN , Y ∈ BN such that R(X,Y) = 1, and all skX
returned by KeyGen(msk,mpk, X), Decrypt(mpk,Encrypt(mpk,M, Y), Y, skX) =
M holds.

Security. We now define the security for an PE scheme Π . This security notion
is defined by the following game between a challenger and an attacker A.

At first, the challenger runs the setup algorithm and gives mpk to A. Then
A may adaptively make key-extraction queries. We denote this phase Phase1.
In this phase, if A submits X to the challenger, the challenger returns skX ←
KeyGen(msk,mpk, X). At some point, A outputs two equal length messages

1 This is called “public-index” predicate encryption, categorized in [9].

A Framework and Compact Constructions 279

M0 and M1 and challenge ciphertext attribute Y � ∈ BN . Y � cannot satisfy
R(X,Y �) = 1 for any attribute X such that A already queried private key for X .
Then the challenger flips a random coin β ∈ {0, 1}, runs Encrypt(mpk,Mβ , Y

�) →
C� and gives challenge ciphertext C� to A. In Phase2, A may adaptively make
queries as in Phase1 with following added restriction: A cannot make a key-
extraction query for X such that R(X,Y �) = 1. At last, A outputs a guess β′ for
β. We say that A succeeds if β′ = β and denote the probability of this event by
PrPEA,Π . The advantage of an attacker A is defined as AdvPEA,Π = |PrPEA,Π − 1

2 |. We

say that Π is fully secure if AdvPEA,Π is negligible for all probabilistic polynomial
time (PPT) adversary A.

A weaker notion called selective security can be defined as in the above game
with the exception that the adversary A has to choose the challenge ciphertext
index Y � before the setup phase but private key queries X1, . . . , Xq can still be
adaptive. All schemes proposed in this paper are selectively secure.

2.3 Linear Secret Sharing Scheme and Attribute-Based Encryption

Here, we first define linear secret sharing scheme (LSSS) following [4] and then
define key/ciphertext-policy atrribute based encryption scheme as an instance
of PE.

Definition 1 (Access Structure). Let P = {P1, . . . ,Pn} be a set of parties.
A collection A ⊂ 2P is said to be monotone if, for all B,C, if B ∈ A and B ⊂ C,
then C ∈ A holds. An access structure (resp., monotonic access structure) is a
collection (resp., monotone collection) A ⊂ 2P\{∅}. The sets in A are called the
authorized sets, and the sets not in A are called the unauthorized sets.

Definition 2 (Linear Secret Sharing Scheme). Let P be a set of parties.
Let L be an � × m matrix. Let π : {1, . . . , �} → P be a function that maps a
row to a party for labeling. A secret sharing scheme π for access structure A
over a set of parties P is a linear secret-sharing scheme (LSSS) in Zp and is
represented by (L, π) if it consists of two efficient algorithms:
ShareL,π. There exists an efficient algorithm which takes as input s ∈ Zp which

is to be shared. It chooses s2, . . . , sm
$← Zp and let s = (s, s2, . . . , sm). It

outputs L ·s as the vector of � shares. The share λi = 〈Li, s〉 belongs to party
π(i), where Li denotes the i-th row of L.

ReconL,π. The algorithm takes as input an access set S ∈ A. Let I = {i|π(i) ∈
S}. It outputs a set of constants {(i, μi)}i∈I which has a linear reconstruction
property:

∑
i∈I μi · λi = s.

Terminology for Non-monotonic Access Structure. We recall a
technique by Ostrovsky Sahai, and Waters [28] to move from monotonic access
structures to non-monotonic access structure. They assume a family {ΠA}A∈AS
of linear secret sharing schemes for a set of monotonic access structures A. For
each such access structure A ∈ AS, the set P of underlying parties has the fol-
lowing properties: The names of the parties in P may be of two types: either

280 S. Yamada et al.

the name is normal (like x) or it is primed (like x′), and if x ∈ P then x′ ∈ P
and vice versa. Conceptually, prime attributes are associated with negation of
unprimed attributes.

A family AS of non-monotone access structures can be defined as follows. For
each access structure A ∈ AS over a set of parties P , one defines a possibly
non-monotonic access structure NM(A) over the set P̃ of all unprimed parties
in P . For every set S̃ ⊂ P̃ , N(S̃) is defined as N(S̃) = S̃ ∪ {x′|x ∈ P̃\S̃}. Then,
NM(A) is defined by saying that S̃ is authorized in NM(A) if and only if N(S̃)
is authorized in A. For each access setX ∈ NM(A), there is a set in A containing
the elements in X and primed elements for each party not in X .

Key-(Ciphertext) Policy Attribute-Based Encrypion. Let U = {0, 1}∗
be an attribute space and N = (n, ϕ) specify the corresponding bounds (the
maximum numbers) on the size of attribute sets, the number of allowed repetition
of same attributes which appear in a policy, respectively. Let ASϕ be a collection
of access structures over U such that every access structure in ASϕ is specified
by an access formula in which same attributes do not appear more than ϕ times.
A bounded key (resp. ciphertext)-policy attribute-based encryption for ASϕ is

a predicate encryption for RKP
(n,ϕ) : ASϕ ×

(U
<n

)
→ {0, 1} (resp. RCP

(n,ϕ) :
(U
<n

)
×

ASϕ → {0, 1}) defined by RKP
(n,ϕ)(A, ω) = 1 (resp. RCP

(n,ϕ)(ω,A) = 1) iff ω ∈ A
(for ω ⊆ U such that |ω| < n and A ∈ ASϕ). Let AS be a collection of access
structure over U . An unbounded key (resp., ciphertext)-policy attribute-based
encryption scheme is a predicate encryption for RKP : AS × 2U → {0, 1} (resp.,
RCP : 2U × AS → {0, 1}) defined by RKP(A, ω) = 1 (resp. RCP(ω,A) = 1) iff
ω ∈ A (for ω ⊆ U and A ∈ AS).

We note that the scheme of [27] (which was called unbounded ABE) can
achieve the unbounded attribute set size, but it is still limited to the number of
allowed repetition. Currently, only few KP-ABE schemes that are unbounded in
full sence are known [21,23,30]. Note that the scheme in [21] uses random oracle
model. In the CP-ABE setting, only scheme that is unbounded in full sense is
recently proposed [30].

2.4 Number Theoretic Assumptions

We use groups (G,GT) of prime order p with an efficiently computable mapping
e : G × G → GT s.t. e(ga, hb) = e(g, h)ab for any (g, h) ∈ G × G, a, b ∈ Z and
e(g, h) �= 1GT whenever g, h �= 1G.

Decisional Bilinear Diffie-Hellman (DBDH) Assumption.We say that an
adversary A breaks the DBDH assumption on (G,GT) if A runs in polynomial
time and 1

2 |Pr[A(g, ga, gb, gs, e(g, g)abs) → 0] − Pr[A(g, ga, gb, gs, T) → 0]| is

negligible where g
$← G, T

$← GT , a, b, s
$← Zp.

n-Decisional Bilinear Diffie-Hellman Exponent (n-DBDHE) Assump-
tion [7]. We say that an adversary A breaks the n-DBDHE assumption on

(G,GT) if A runs in polynomial time and 1
2 |Pr[A(g, {gai}i∈[2n]\{n+1}, g

s,

e(g, g)s·a
n+1

) → 0]− 1
2 |Pr[A(g, {gai}i∈[2n]\{n+1}, g

s, T) → 0]| is negligible where
g

$← G, T
$← GT , a, s

$← Zp.

A Framework and Compact Constructions 281

3 Linear Two-Mode Identity Based Broadcast Encryption
and Conversion to Non-monotonic KP-ABE

In this section, we first introduce the two mode inner product encryption scheme
(TIPE) and two mode identity based broadcast encryption schemes (TIBBE)
and explain how the latter can be derived from the former. Then, we propose
a general transformation that transforms any TIBBE scheme that satisfies a
certain condition into a non-monotonic KP-ABE scheme. Our transformation is
an extension of the generic transformation proposed in [3], which converts any
IBBE scheme with certain conditions into (monotonic) KP-ABE scheme.

3.1 Definition of TIPE and TIBBE

In a TIPE scheme, a ciphertext is associated with a vector y. A private key
is associated with type ∈ {ZIPE,NIPE} and a vector x. Decryption is possible
iff type = ZIPE and 〈x,y〉 = 0, or type = NIPE and 〈x,y〉 �= 0. In a TIBBE
scheme, a ciphertext is associated with a set of identities S. A private key is
associated with type ∈ {IBBE, IBR} and an identity ID. Decryption is possible iff
type = IBBE and ID ∈ S, or type = IBR and ID �∈ S.

Here, we formally define TIPE and TIBBE as instances of PE as follows.

Two-Mode InnerProductEncryption scheme.TIPE is a predicate encryp-
tion for RTIPE

(n,p) : (Znp × {ZIPE,NIPE}) × Znp → {0, 1} defined by RTIPE
(n,p)((x, type),

y) = 1 iff (〈x,y〉 = 0 ∧ type = ZIPE) ∨ (〈x,y〉 �= 0 ∧ type = NIPE).

Two-Mode Identity Based Broadcast Encryption scheme. TIBBE is a
predicate encryption for RTIBBE

n : (I × {IBBE, IBR}) ×
(I
<n

)
→ {0, 1} defined by

RTIBBE
n ((ID, type), S) = 1 iff (ID ∈ S ∧ type = IBBE) ∨ (ID �∈ S ∧ type = IBR).

In later sections, we construct TIPE schemes instead of TIBBE schemes when
it is simpler to describe. TIBBE scheme can be derived from TIPE scheme by the
following technique due to [18]. The setup algorithm of the TIBBE scheme is the
same as TIPE scheme. To generate a private key for (ID, IBBE) (resp. (ID, IBR)),
one runs key generation algorithm of TIPE scheme to obtain a private key for
(x,ZIPE) (resp. (x,NIPE)) where x = (1, ID, . . . , IDn−1). To encrypt a message
M for a set S = (ID1, . . . , IDk), one defines y = (y1, . . . , yn) as a coefficient

vector from PS [Z] =
∑k+1

i=1 yiZ
i−1 =

∏
IDj∈S(Z − IDj) where, if k + 1 < n, the

coordinates yk+1, . . . , yn are all set to 0. Then, one runs encryption algorithm
of TIPE scheme to encrypt M for a vector y. To decrypt a ciphertext, one
first defines x and y as above and runs the decryption algorithm of the TIPE
scheme. Since ID ∈ S ⇔ PS(ID) = 0 ⇔ 〈x,y〉 = 0, the correctness of the
resulting TIBBE scheme follows from the correctness of the underlying TIPE
scheme. Furthermore, by the embedding lemma [8], the resulting TIBBE scheme
is selectively secure if the underlying TIPE scheme is selectively secure.

3.2 Linear Two-Mode Identity Based Broadcast Encryption
Template

We define a template for two-mode IBBE schemes that ensures that they give
rise to selective secure non-monotonic KP-ABE schemes. We call this a linear

282 S. Yamada et al.

TIBBE template. Let G,GT be underlying bilinear groups of order p. The iden-
tity space of the scheme is I = Zp. A linear TIBBE scheme is determined by
parameters n, n1, n2, n̄1,∈ N, a distribution G on vectors of functions, and func-
tions DIBBE, DIBR. G’s output is tuple of functions (f IBBE

1 , f IBBE
2 , f IBR

1 , f IBR
2 , F)

where f IBBE
1 : I → G, f IBBE

2 : I → Gn1 , f IBR
1 : I → G, f IBR

2 : I → Gn̄1 , F :
(I)≤n−1 × Zp → G≤n2 . Here, we allow F to be probabilistic whereas all other
functions are assumed to be deterministic. DIBBE and DIBR are functions such
that DIBBE : Gn1+1×I ×Gn2 ×

(I
<n

)
→ GT , DIBR : Gn̄1+1×I ×Gn2 ×

(I
<n

)
→ GT .

Setup(λ, n) : Given a security parameter λ ∈ N and a bound n ∈ Z on the
number of identities per ciphertext, the algorithm selects bilinear groups
(G,GT) of prime order p > 2λ and a generator g

$← G. It computes e(g, g)α

for a random α
$← Zp and chooses functions (f IBBE

1 , f IBBE
2 , f IBR

1 , f IBR
2 , F)

$← G.
The master secret key consists of msk = α while the master public key is
mpk = (g, e(g, g)α, {f type

1 , f type
2 }type∈{IBBE,IBR}, F, n, n1, n2, n̄1).

KeyGen(msk,mpk, (ID, type)) : To generate a private key for ID of type type ∈
{IBBE, IBR}, it chooses r

$← Zp. Then, it computes the private key as

sk(ID,type) = (d1, d2) =
(
gα · f type

1 (ID)r, f type
2 (ID)r

)
.

Encrypt(mpk,M, S) : To encryptM ∈ GT for a set of identities S = (ID1, . . . , IDk)

where k < n, it chooses s
$← Zp and computes the ciphertext as

C = (C0, C1) = (M · e(g, g)αs, F (ID1, . . . , IDk, s)).

Decrypt(mpk, C, S, sk(ID,type)) : It parses sk(ID,type) = (d1, d2) and C = (C0, C1)
then runs

Dtype
(
(d1, d2), ID, C1, S

)
→ e(g, g)α·s,

and obtains M = C0/e(g, g)
α.

We also require that for all (f IBBE
1 , f IBBE

2 , f IBR
1 , f IBR

2 , F)
$← G, the following prop-

erty must hold. 2

Correctness.For allα, r, s ∈ Zp, randomness forF , (ID, type) ∈ I×{IBBE, IBR},
S = {ID1, . . . , IDk} ∈

(I
<n

)
such that (type = IBBE∧ ID ∈ S)∨ (type = IBR∧ ID �∈

S) and randomness for F , we have

Dtype
((

gα · f type
1 (ID)r, f type

2 (ID)r
)
, ID, F (ID1, . . . , IDk, s), S

)
= e(g, g)α·s.

3.3 Generic Conversion from Linear TIBBE to Non-monotonic
KP-ABE

Let ΠTIBBE = (Setup′,Keygen′,Encrypt′,Decrypt′) be a linear TIBBE system. We
construct a non-monotonic KP-ABE scheme from ΠTIBBE as follows.

Setup(λ, n) : It simply outputs Setup′(λ, n) → (mpk,msk).

2 In [3], the authors also assume a property called linearity. However, we do not need
this property.

A Framework and Compact Constructions 283

KeyGen(msk,mpk, Ã) : The input to the algorithm is the master secret key msk,
the master public key mpk, and a non-monotonic access structure Ã such
that we have Ã = NM(A) for some monotonic access structure A over a set
P of attributes and associated with a linear secret sharing scheme (L, π). Let
L be an � × m matrix. First, it generates shares of α with (L, π). Namely, it

chooses a vector s = (s1, . . . , sm) such that s1 = α and s2, . . . , sm
$← Zp and

calculates λi = 〈Li, s〉 for each i = 1, . . . , �. The party corresponds to share
λi is π(i) = x̆i, where xi is underlying attribute, and can be primed (i.e.,
negated) or unprimed (non-negated). Then for each i = 1, . . . , �, it picks

ri
$← Zp and sets Di for each i = 1, . . . , � as follows.

Di =

{ (
d′i,1 = gλi · f IBBE

1 (xi)
ri , d′i,2 = f IBBE

2 (xi)
ri
)

if π(i) = xi(
d′i,1 = gλi · f IBR

1 (xi)
ri , d′i,2 = f IBR

2 (xi)
ri
)

if π(i) = x′
i.

It then outputs the private key as sk
Ã
= {Di}�i=1

Encrypt(mpk,M, ω) : It simply outputs Encrypt′(mpk,M, ω).
Decrypt(mpk, C, ω, sk

Ã
) : Assume first that the policy Ã is satisfied by the at-

tribute set ω, so that decryption is possible. Since Ã = NM(A) for some
access structure A associated with a linear secret sharing scheme (L, π),
we have ω′ = N(ω) ∈ A and we let I = {i|π(i) ∈ ω′}. Since ω′ is au-
thorized in A, the receiver can efficiently compute reconstruction coefficients
{(i, μi)}i∈I = ReconL,π(ω

′) such that
∑

i∈I μiλi = α. It parses C = (C0, C1),

sk
Ã
= {Di}�i=1 where Di = (d′i,1, d

′
i,2) and computes e(g, g)s·λi for each i ∈ I

as follows. (The correctness is shown later.){
DIBBE

(
(d′i,1, d

′
i,2), xi, C1, ω

)
→ e(g, g)s·λi if π(i) = xi (1a)

DIBR
(
(d′i,1, d

′
i,2), xi, C1, ω

)
→ e(g, g)s·λi if π(i) = x′

i. (1b)

Finally, it recovers message by C0 ·
∏
i∈I

(
e(g, g)s·λi

)−μi
= M.

Correctness. We now verify that equations (1a) and (1b) are correct. (1a) and
(1b) follow from the correctness of the underlying TIBBE scheme by seeing Di

as a private key for
(
ID = xi, type ∈ {IBBE, IBR}

)
that is derived from msk = λi

using randomness ri. The security of the resulting scheme is established by the

following Theorem. The proof is similar to that of Theorem 1 in [3] and can be
found in full version of this paper.

Theorem 1. If the underlying TIBBE scheme is selectively secure, then the
resulting KP-ABE system above is also selectively secure.

Remark.We have described the conversion for TIBBE scheme with a restriction
that the number of identities per ciphertext is bounded by n. However, the
same conversion also applies to a TIBBE scheme without such a restriction. In
particular, we can apply the above conversion to our TIBBE scheme in Sec. 6.

284 S. Yamada et al.

4 TIPE Scheme with Compact Ciphertexts

In this section, we propose a TIPE scheme with compact ciphertext size. As we
explained in Sec. 3.1, we can obtain a TIBBE scheme from the TIPE scheme.
By applying the conversion in Sec. 3 to this TIBBE scheme, we obtain a new
non-monotonic KP-ABE scheme with very short ciphertexts. The ciphertext
overhead is 33% shorter than the non-monotonic KP-ABE ciphertext in [3] (the
shortest in the literature). It also reduces the number of pairing operations in
the decryption algorithm from 3 to 2. The public key size of our scheme is about
half that of the existing scheme, but the private key of our scheme is slightly
longer.

Setup(λ, n) : It chooses bilinear groups (G,GT) of prime order p > 2λ with

g
$← G. It also picks v, α

$← Zp and u = (u1, . . . , un)
$← Znp . Then it sets

V = gv and U = (U1, . . . , Un) = gu. It finally outputs the master public key
mpk = (g, U1, . . . , Un, V, e(g, g)

α) and the master secret key msk = α.
KeyGen(msk,mpk, (x, type)) : To generate a private key for

(
x = (x1 �= 0, . . . , xn)

∈ Z∗
p × Zn−1

p , type ∈ {ZIPE,NIPE}
)
, it chooses r

$← Zp and computes⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
sk(x,ZIPE) =

(
D1 = gαV r, D2 = gr,

{Ki = (U
− xi

x1
1 Ui)

r}ni=2

)
if type = ZIPE

sk(x,NIPE) =

(
D1 = gαU r

1 , D2 = gr, D3 = V r,

{Ki = (U
− xi

x1
1 Ui)

r}ni=2

)
if type = NIPE.

Encrypt(mpk,M,y) : To encrypt M ∈ GT for the vector y = (y1, . . . , yn) ∈ Znp ,

it picks s
$← Zp and computes the ciphertext as

C =
(
C0 = M · e(g, g)αs, C1 = gs, C2 = (V Uy1

1 · · ·Uyn
n)−s

)
.

Decrypt(mpk, C,y, sk(x,type)): It computes⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e(C1, D1 ·

n∏
i=2

Kyi
i) · e(C2, D2) = e(g, g)sα if type = ZIPE

e(C1, D1) ·
(
e(C1, D3

n∏
i=2

Kyi
i) · e(C2, D2)

) x1
〈x,y〉

= e(g, g)sα if type = NIPE

and recovers the message by C0/e(g, g)
sα = M.

We construct the above scheme by combining the IPE scheme derived from the
spatial encryption scheme in [8,2] and a variant of the NIPE scheme proposed
in [3] so that they share the master public key and the ciphertext. The non-
monotonic KP-ABE scheme derived from the above TIPE scheme has compact
parameters, because of this share of parameters. The main technical challenge in
the proof of the security of the scheme is to simulate the key generation oracle for
two different types (i.e., ZIPE and NIPE) of keys simultaneously. To achieve this,
we use a significantly different strategy to simulate NIPE keys than the security
proof in [3]. The following theorem addresses the security of the scheme.

A Framework and Compact Constructions 285

Theorem 2. The above TIPE scheme is selectively secure under the n-DBDHE
assumption.

Before proving the theorem, we recall following lemma that is implicit in [8].

Lemma 1. ([8]) Let G be a multiplicative group with prime order p and g
be its generator. Let n,m be some integer bounded by polynomial of λ, a be
a = (a, a2, . . . , an) ∈ Znp , α̃, {wi}mi=0 be elements in Zp, {zi}mi=0 be vectors
in Znp . We also assume that h = (h1, . . . , hn) ∈ Znp satisfies 〈h, z0〉 �= 0
and 〈h, zi〉 = 0 for i ∈ [m]. Then, there exists an PPT BHSim which

takes (α̃, {zi}mi=0, {wi}mi=0,h, {ga
i}i∈[2n]\{n+1}) as input and outputs (ga

n+1+α̃ ·
(g〈z0,a〉+w0)r, {(g〈zi,a〉+wi)r}mi=1) where r

$← Zp.

Proof. (of Theorem 2.) We construct B that decides if T = e(g, g)a
n+1s given

(g, {gai}i∈[2n]\{n+1}, g
s, T) ∈ G2n+1 × GT by using the selective adversary A

against our scheme. We denote by a a vector (a, a2, . . . , an).

Setup of Master Public Key. At the outset of the game, the adversary A
declares the challenge vector y� = (y�1 , . . . , y

�
n) ∈ Znp . B picks α̃, ṽ

$← Zp, ũ =

(ũ1, . . . , ũn)
$← Znp and sets mpk as

mpk =
(
g = g, e(g, g)α = e(ga, ga

n

) · e(g, g)α̃,U = ga · gũ, V = g−〈a,y�〉 · gṽ
)
,

and gives it to A. Here, we implicitly set α = α̃ + an+1, u = a + ũ, and
v = −〈a,y�〉 + ṽ.

Phase1 and 2. When A queries private key for (x = (x1, . . . , xn), type) ∈
Z∗
p × Zn−1

p × {ZIPE,NIPE}, B answers as follows.
– If type = ZIPE, we have 〈x,y�〉 �= 0. In this case, B first sets z0 = −y�, z1 =
0, zi = − xi

x1
e1+ei for i = 2, . . . , n, w0 = ṽ, w1 = 1, and wi = − xi

x1
ũ1+ ũi for

i = 2, . . . , n. Then B runs BHSim(α̃, {zi}ni=0, {wi}ni=0,x, {ga
i}i∈[2n]\{n+1}) →

(Z0, {Zi}ni=1) and returns (D1, D2, {Ki}ni=2) = (Z0, Z1, {Zi}ni=2). We claim
that (D1, D2, {Ki}ni=2) is distributed the same as real private key. At first,
we check that the input to BHSim is in a valid form. To see this, it suffices
to check that 〈x, z0〉 = 〈x,−y�〉 �= 0, 〈x, z1〉 = 〈x,0〉 = 0, and 〈x, zi〉 =
〈x,− xi

x1
e1 + ei〉 = −x1 · xi

x1
+ xi = 0 for i = 2, . . . , n. Since the input to

BHSim is in a valid form, D1 = Z0 = gα̃+a
n+1

(g−〈a,y�〉 · gṽ)r = gαV r,
D2 = Z1 = (g〈0,a〉+1)r = gr, and

Ki = Zi = (g〈−
xi
x1

e1+ei,a〉− xi
x1
ũ1+ũi)r = (g−

xi
x1

(a+ũ1) · gai+ũi)r = (U
− xi

x1
1 ·Ui)r

for i ∈ {2, . . . , n} where r
$← Zp as desired.

– If type = NIPE, we have 〈x,y�〉 = 0. In this case, B first sets z0 = e1, z1 =
0, zi = − xi

x1
e1 + ei for i = 2, . . . , n, zn+1 = −y�, w0 = ũ1, w1 = 1, wi =

− xi

x1
ũ1 + ũi for i = 2, . . . , n, and wn+1 = ṽ. Then B runs BHSim(α̃, {zi}n+1

i=0 ,

{wi}n+1
i=0 ,x, {ga

i}i∈[2n]\{n+1}) → (Z0, {Zi}n+1
i=1) and returns (D1, D2, D3,

{Ki}ni=2) = (Z0, Z1, Zn+1, {Zi}ni=2). We claim that (D1, D2, D3, {Ki}ni=2) is

286 S. Yamada et al.

distributed the same as real private key. At first, we check that the input
to BHSim is in a valid form. To see this, it suffices to check that 〈x, z0〉 =
〈x, e1〉 = x1 �= 0, 〈x, z1〉 = 〈x,0〉 = 0, 〈x, zi〉 = 〈x,− xi

x1
e1 + ei〉 = 0 for

i = 2, . . . , n, and 〈x, zn+1〉 = 〈x,−y�〉 = 0 . Since the input to BHSim is in
a valid form, we have

D1 = Z0 = gα̃+a
n+1 · (g〈a,e1〉 · gũ1)r = gα · (ga+ũ1)r = gαU r

1

where r
$← Zp. We can also check that D2 = gr and {Ki}ni=2 = {(U

− xi
x1

1 ·
Ui)

r}ni=2 by exactly the same computation as in the case of type = ZIPE.
Finally, we have that D3 = Zn+1 = (g−〈a,y�〉+ṽ)r = V r as desired.

Challenge. At some point in the game, A submits a pair of ciphertexts (M0,M1)

to B. B flips a random coin β
$← {0, 1} and returns (C0, C1, C2) = (Mβ ·e(gs, gα̃)·

T, gs, (gs)−(〈y�,ũ〉+ṽ)) to A. Since

(gs)−(〈y�,ũ〉+ṽ) = (g〈−a,y�〉+ṽ · g〈a+ũ,y�〉)−s = (V U
y�1
1 · · ·Uy�

n)−s

and e(gs, gα̃) · e(g, g)an+1s = e(g, g)sα, the ciphertext is in a valid form if T =

e(g, g)a
n+1s.

Guess. Finally, A outputs its guess β′ for β. If β′ = β, A outputs 1 for its guess.
Otherwise, it outputs 0. If T = e(g, g)sa

n+1

, the above simulation is perfect and
thus A has non-negligible advantage. On the other hand, If T is a random element
in GT , A’s advantage is 0. Therefore, if A breaks our scheme with non-negligible
advantage, B has a non-negligible advantage against the n-DBDHE assumption.

5 TIPE Scheme from the DBDH Assumption

In this section, we propose a TIPE scheme from the DBDH assumption, which is
one of the weakest assumptions in bilinear groups. By sequentially applying the
conversions from TIPE to TIBBE in Sec. 3.1 and from TIBBE to non-monotonic
KP-ABE in Sec. 3 to the scheme, we obtain a new non-monotonic KP-ABE scheme
from the DBDH assumption. Compared to the Non-monotonic KP-ABE scheme
from the same assumption in [28], the public key and ciphertext size of our scheme
are approximately half the size of theirs, and the private key size is comparable.
Setup(λ, n) : It chooses bilinear groups (G,GT) of prime order p > 2λ with

g
$← G. It also picks u, α

$← Zp and v = (v1, . . . , vn)
$← Znp . Then it sets

U = gu and V = (V1, . . . , Vn) = gv. It finally outputs the master public key
mpk = (g, U, V1, . . . , Vn, e(g, g)

α) and the master secret key msk = α.
Encrypt(mpk,M,y) : To encrypt M ∈ GT for the vector y = (y1, . . . , yn) ∈ Znp ,

it picks s
$← Zp and computes the ciphertext as

C =
(
C0 = M · e(g, g)αs, C1 = gs, {Ei = (UyiVi)

−s}i=1,...n

)
.

KeyGen(msk,mpk, (x, type)) : To generate a private key for
(
x = (x1, . . . , xn) ∈

Znp , type ∈ {ZIPE,NIPE}
)
, it chooses r

$← Zp and computes

A Framework and Compact Constructions 287

⎧⎪⎨⎪⎩
sk(x,ZIPE) =

(
D1 = gα · (V x1

1 · · ·V xn
n)r, D2 = gr

)
if type = ZIPE

sk(x,NIPE) =
(
D1 = gαU r, D2 = (V x1

1 · · ·V xn
n)r, D3 = gr

)
if type=NIPE.

Decrypt(mpk, C,y, sk(x,type)): It computes⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e(C1, D1) · e(

n∏
i=1

Exi

i , D2) = e(g, g)sα if type = ZIPE

e(C1, D1) ·
(
e(

n∏
i=1

Exi

i , D3) · e(C1, D2)
) 1

〈x,y〉
= e(g, g)sα if type = NIPE

and recovers the message by C0/e(g, g)
sα = M.

The following theorem addresses the security of the scheme. The proof will be
found in the full version of this paper.

Theorem 3. The above TIPE scheme is selectively secure under the DBDH
assumption.

6 Unbounded TIBBE Scheme

In the TIBBE schemes derived from the TIPE schemes in Sec. 4 and 5, the
number of identities per ciphertext is bounded by a parameter n. In this section,
we propose a TIBBE scheme without such a restriction. The structure of the
construction can be seen as a combination of the IBBE scheme implicit in KP-
ABE scheme in [30] and the IBR scheme in [21]. By applying the conversion in
Sec. 3 to the scheme, we obtain the first non-monotonic KP-ABE scheme in the
standard model that does not restrict the number of attributes per ciphertext
or the number of times the same attribute can be used in an access formula
associated with a private key.

Setup(λ) : It chooses bilinear groups (G,GT) of prime order p > 2λ with g
$← G.

It also picks H,U, V,W
$← G and b, α

$← Znp . Then it sets B = gb, B′ =

gb
2

, V ′ = V b. It finally outputs the master public keympk=(g,H, U,W,B,B′

, V, V ′, e(g, g)α) and the master secret key msk = α.
Encrypt(mpk,M, S) : To encrypt M ∈ GT for the set of identities S = (ID1, . . . ,

IDk) ⊂ Zp, it chooses s, t1, . . . , tk
$← Zp and random s1, . . . , sk ∈ Zp such

that s1 + . . .+ sk = s and computes the ciphertext as C =⎛⎝C0 = M · e(g, g)αs, C1 = gs,

{
Ci,1 = W−s(U IDiH)−ti , Ci,2 = gti

C′
i,1 = (B′IDiV ′)−si , C′

i,2 = Bsi

}
i∈[k]

⎞⎠ .

KeyGen(msk,mpk, (ID, type)) : To generate a private key for ID ∈ Zp, it chooses
r

$← Zp and computes the private key as⎧⎪⎨⎪⎩
sk(ID,IBBE) =

(
D1 = gα · W r, D2 = (U IDH)r, D3 = gr

)
if type = IBBE

sk(ID,IBR) =
(
D1 = gα · (B′)r, D2 = (BIDV)r, D3 = gr

)
if type = IBR.

288 S. Yamada et al.

Decrypt(mpk, C, S, sk(ID,type)): We assume that in the case of type = IBBE, ID
is contained in ID ∈ S = {ID1, . . . , IDk}, so that decryption is possible.
Therefore, there is an τ ∈ [k] such that ID = IDτ . It computes⎧⎪⎨⎪⎩

e(C1, D1) · e(Cτ,1, D3) · e(Cτ,2, D2) = e(g, g)sα if type = IBBE

e(C1, D1) ·
k∏

i=1

(
e(C′

i,1, D3) · e(C′
i,2, D2)

) 1
(IDi−ID) = e(g, g)sα if type = IBR

and recovers the message by C0/e(g, g)
sα = M.

We can prove selective security of the scheme under the new assumption
that we call n-(A) assumption which is secure in the generic group model. The
definition of the assumption and the proof will appear in the full version of this
paper.

7 Unbounded Non-monotonic CP-ABE Scheme

In this section, we propose the first non-monotonic CP-ABE scheme that does
not restrict the size of the attributes set or the number of times the same at-
tribute can be used in an access formula. Our starting point for the construction
of the scheme is the unbounded (monotonic) CP-ABE scheme in [30]. To sup-
port the non-monotonic access structure, we first construct a suitable revocation
mechanism, which can be seen as a ciphertext-policy version of the IBR scheme
in [21]. Then, we combine this with the CP-ABE scheme in [30] to obtain our
new scheme. Because some parameters are shared between the two schemes,
the public key of our scheme is only one group element longer than that of the
scheme in [30], while our scheme supports a more general access structure.

Setup(λ) : It chooses bilinear groups (G,GT) of prime order p > 2λ with g
$← G.

It also picks b, α
$← Zp and H,U, V,W

$← G. Then it sets V ′ = U b and
outputs the master public key mpk = (g,H, U, V, V ′,W, e(g, g)α) and the
master secret key msk = (α, b).

KeyGen(msk,mpk, ω) : To generate a private key for a set of attributes ω =

{ω1, . . . ωk} ⊂ Zp, it chooses r, r1, . . . , rk
$← Zp and random r′1, . . . , r

′
k ∈ Zp

such that r′1 + . . .+ r′k = r. It then outputs the private key as

skω=

⎛⎝D1 = gαW r, D2 = gr,

{
Ki,1 = V −r(UωiH)ri , Ki,2 = gri

K ′
i,1 = (U bωiHb)r

′
i , K ′

i,2 = gbr
′
i

}
i∈[k]

⎞⎠ .

Encrypt(mpk,M, Ã) : The input to the algorithm is the master public key mpk,
the message M ∈ GT and a non-monotonic access structure Ã such that
we have Ã = NM(A) for some monotonic access structure A over a set P
of attributes and associated with a linear secret sharing scheme (L, π). Let

L be an � × m matrix. First, it picks random s = (s, s2, . . . , sm)
$← Zmp

and computes share of s for π(i) by λi = 〈Li · s〉 for i = 1, . . . , �. It then

A Framework and Compact Constructions 289

computes C0 = M · e(g, g)α·s, C1 = gs. It also computes (Ci,1, Ci,2, Ci,3) for
every i = 1, . . . , � as follows.{

Ci,1 = WλiV ti , Ci,2 = (UxiH)−ti , Ci,3 = gti if π(i) = xi

Ci,1 = Wλi(V ′)ti , Ci,2 = (UxiH)−ti , Ci,3 = gti if π(i) = x′
i

where ti
$← Zp. The final output is C = (C0, C1, {Ci,1, Ci,2, Ci,3}i∈[�]).

Decrypt(mpk, C, ω, sk
Ã
) : Assume first that the policy Ã is satisfied by the at-

tribute set ω, so that decryption is possible. Since Ã = NM(A) for some
access structure A associated with a linear secret sharing scheme (L, π),
we have ω′ = N(ω) ∈ A and we let I = {i|π(i) ∈ ω′}. Since ω′ is au-
thorized in A, the receiver can efficiently compute reconstruction coeffi-
cients {(i, μi)}i∈I = ReconL,π(ω

′) such that
∑

i∈I μiλi = s. It parses C =

(C0, C1, {Ci,1, Ci,2, Ci,3}i∈[�]), skω =
(
D1, D2, {Ki,1,Ki,2,K

′
i,1,K

′
i,2}i∈[k]

)
and computes e(g, g)r·λi for each i ∈ I as⎧⎪⎨⎪⎩

e(Ci,1, D2) · e(Ci,2,Kτ,2) · e(Ci,3,Kτ,1) → e(g,W)rλi if π(i) = xi

e(Ci,1, D2) ·
∏
j∈[k]

(
e(Ci,3, K

′
j,1) · e(Ci,2,K

′
j,2)
) 1

xi−ωj = e(g,W)rλi if π(i) = x′
i

where τ is the index such that ωτ = xi. Such τ exists if i ∈ I and π(i) is

non-negated attribute. Next, it computes e(C1, D1) ·
∏
i∈I

(
e(g,W)rλi

)−μi
=

e(gs, gα)e(g,W)sre(g,W)−r
∑

i∈I μiλi = e(g, g)α·s. Finally, it recovers the
message by C0/e(g, g)

sα = M.

We can prove selective security of the scheme under the new assumption
that we call n-(B) assumption which is secure in the generic group model. The
definition of the assumption and the proof will appear in the full version of this
paper.

8 Comparisons

Here, we compare our schemes with existing schemes. In Table 1, we
compare non-monotonic KP-ABE schemes with compact ciphertexts. In Table
2, we compare non-monotonic KP-ABE schemes from the DBDH assumption. In
Table 3 (resp., 4), we compare the KP (resp., CP)-ABE schemes which allow un-
bounded size for set of attributes associated with ciphertext (resp., private key).
In these tables, n̄ = |attribute set| = |ω|, n is the maximum bound of n̄ (i.e.,
|ω| < n), ϕ is the number of allowed repetition of the same attributes which ap-
pear in a policy, and t1 and t2 are the number of non-negated and negated at-
tributes that apper in an access policy.We also let t = t1+t2. The terms “reg-exp.”
and “mult-exp.” refer to regular and multi-exponentiation inG and GT . The Pip-
penger algorithm [29] can efficiently compute the latter. The term “pair” refers to
pairing computation. The columun “unbounded set” in Table 3 (resp., 4) states
whether unbounded attribute set size is allowed for ciphertext (resp., for key) or

290 S. Yamada et al.

not. The columun “unbounded multi-use” states whether unboudned reuse of the
same policy for a key (resp., ciphertext) is allowed or not.

In Table 2, we only highlight the encryption cost. As for the efficiency of the
decryption algorithm, our scheme in Sec. 5 is somewhat slower than [28], because
of the additional exponentiations. Note that the schemes in [27] achieve adaptive
security, whereas all the other schemes achieve only selective security.

Table 1. Comparison of non-monotonic KP-ABE with compact ciphertexts

Schemes Master public Ciphertext Private Computational cost for Assumption
key size overhead key size encryption decryption

(|G|, |GT |) |G| |G| (reg,mult)-exp (pair,mult-exp)

ALP [3] (2n+ 2, 1) 3 (n+ 1)t (2, 2) (3, 3∗) n-DBDHE
Ours in Sec. 4. (n+ 2, 1) 2 (n+ 1)t+ t2 (2, 1) (2, 2∗) n-DBDHE

∗ These multi-exponentiation is heavier than that needed in the encryption algorithm.

Table 2. Comparison of non-monotonic KP-ABE schemes from the DBDH

Schemes Master public key size Ciphertext overhead Private key size Encryption cost
(|G|, |GT |) |G| |G| reg-exp. mult-exp.

OSW [28] (2n+ 2, 0) 2n − 1 2t1 + 3t2 2 2n‡

Ours in Sec. 5 (n+ 2, 1) n + 1 2t1 + 3t2 2 n

† For simplicity, we compare these schemes in a most basic form. However, we can modify the
schemes so that the ciphertext size only depends on n̄ instead of n, which might be preferable
in many case, by the technique in [28]. As a result, master public key and the private key
becomes larger, whereas it makes ciphertext size smaller and encryption/decryption cost
lower.

‡ These multi-exponentiations are heavier than that of our scheme in Sec. 5.

Table 3. Comparison of KP-ABE schemes with unbounded attribute set size

Schemes Access Ciphertext Private key Assumption
structure

overhead (|G|) unbounded
size(G)

unbounded
set multi-use

LSW[21] non-monotone 3n̄+1 Yes 2t + t2 Yes RO+n-MEBDH
OT[27] non-monotone 14n̄ϕ + 5 Yes 14t+ 5 No DLIN
RW[30] monotone 2n̄+ 1 Yes 3t1 Yes n-1assumption
LW[23] monotone 3n̄+ 1 Yes 4t1 Yes assumption 1-4
Ours in Sec. 6 non-monotone 4n̄+ 1 Yes 3t Yes n-(A) assumption

§ LW scheme [23] is constructed in composite order group.

Table 4. Comparison of CP-ABE schemes with unbounded attribute set size

Schemes Access Ciphertext Private key Assumption
structure

overhead (|G|) unbounded
size(G)

unbounded
multi-use set

OT[27] non-monotone 14t+ 5 No 14n̄ϕ+ 5 Yes DLIN
RW[30] monotone 3t1 + 1 Yes 2n̄+ 2 Yes n-2 assumption
Ours in Sec. 7 non-monotone 3t+ 1 Yes 4n̄+ 2 Yes n-(B) assumption

Acknowledgement. We thank Yannis Rouselakis, Brent Waters, anonymous
reviewers of PKC 2014, and members of Shin-Akarui-Angou-Benkyoukai for their
helpful discussions and comments.

A Framework and Compact Constructions 291

References

1. Attrapadung, N., Imai, H.: Conjunctive broadcast and attribute-based encryption.
In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 248–265.
Springer, Heidelberg (2009)

2. Attrapadung, N., Libert, B.: Functional encryption for inner product: Achiev-
ing constant-size ciphertexts with adaptive security or support for negation. In:
Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 384–402.
Springer, Heidelberg (2010)

3. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011)

4. Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. PhD thesis,
Israel Institute of Technology, Technion, Haifa, Israel (1986)

5. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

6. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

7. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

8. Boneh, D., Hamburg, M.: Generalized identity based and broadcast encryption
schemes. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 455–470.
Springer, Heidelberg (2008)

9. Boneh, D., Sahai, A., Waters, B.: Functional Encryption: Definitions and Chal-
lenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer,
Heidelberg (2011)

10. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007)

11. Chase, M., Chow, S.S.M.: Improving privacy and security in multi-authority
attribute-based encryption. In: ACM Conference on Computer and Communica-
tions Security, pp. 121–130 (2009)

12. Cheung, L., Newport, C.C.: Provably secure ciphertext policy abe. In: ACM Con-
ference on Computer and Communications Security, pp. 456–465 (2007)

13. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013)

14. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: STOC, pp. 545–554 (2013)

15. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 579–591. Springer, Heidelberg (2008)

16. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, p. 89 (2006)

17. Hohenberger, S., Waters, B.: Attribute-based encryption with fast decryption.
In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 162–179.
Springer, Heidelberg (2013)

292 S. Yamada et al.

18. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

19. Lewko, A.: Tools for simulating features of composite order bilinear groups in the
prime order setting. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 318–335. Springer, Heidelberg (2012)

20. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-
tional encryption: Attribute-based encryption and (Hierarchical) inner product en-
cryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

21. Lewko, A.B., Sahai, A., Waters, B.: Revocation systems with very small private
keys. In: IEEE Symposium on Security and Privacy, pp. 273–285 (2010)

22. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011)

23. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In: Pa-
terson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011)

24. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: Achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

25. Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y. (ed.) FC
2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)

26. Okamoto, T., Takashima, K.: Fully secure functional encryption with general re-
lations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

27. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS,
vol. 7658, pp. 349–366. Springer, Heidelberg (2012)

28. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: ACM Conference on Computer and Communi-
cations Security, pp. 195–203 (2007)

29. Pippenger, N.: On the evaluation of powers and related problems (preliminary
version). In: FOCS, pp. 258–263 (1976)

30. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for
large universe attribute-based encryption. In: ACM Conference on Computer and
Communications Security, pp. 463–474 (2013)

31. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

32. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

33. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Heidel-
berg (2012)

Online/Offline Attribute-Based Encryption

Susan Hohenberger and Brent Waters

Johns Hopkins University and University of Texas at Austin

Abstract. Attribute-based encryption (ABE) is a type of public key
encryption that allows users to encrypt and decrypt messages based on
user attributes. For instance, one can encrypt a message to any user
satisfying the boolean formula (“crypto conference attendee” AND “PhD
student”) OR “IACRmember”. One drawback is that encryption and key
generation computational costs scale with the complexity of the access
policy or number of attributes. In practice, this makes encryption and
user key generation a possible bottleneck for some applications.

To address this problem, we develop new techniques for ABE that
split the computation for these algorithms into two phases: a prepara-
tion phase that does the vast majority of the work to encrypt a mes-
sage or create a secret key before it knows the message or the attribute
list/access control policy that will be used (or even the size of the list or
policy). A second phase can then rapidly assemble an ABE ciphertext or
key when the specifics become known. This concept is sometimes called
“online/offline” encryption when only the message is unknown during
the preparation phase; we note that the addition of unknown attribute
lists and access policies makes ABE significantly more challenging.

One motivating application for this technology is mobile devices: the
preparation work can be performed while the phone is plugged into a
power source, then it can later rapidly perform ABE operations on the
move without significantly draining the battery.

1 Introduction

Attribute-Based Encryption (ABE) was introduced by Sahai and Waters [20] as
a more expressive form of encryption where one can encrypt according to some
policy. For example, in a large corporate setting one might encrypt data to the
policy of (“Procurement” AND “Manager”) OR “Accounting”. There
are two main flavors of ABE. In Key-Policy ABE [10], a key is associated with a
boolean formula φ and a ciphertext with a set S of attributes. One can decrypt
iff the set S satisfies the formula φ. Alternatively, in Ciphertext-Policy ABE the
roles are flipped; a key is associated with a set of attributes and the ciphertext
with an access formula.

One challenge in building systems that use Attribute-Based Encryption is that
the added functionality may come with a significant cost compared to standard
public key cryptography. Consider a Key-Policy ABE system. Here the encryp-
tion time will scale with the number of attributes assigned to the ciphertext and
key generation time will scale with the size of the boolean formula ascribed to a

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 293–310, 2014.
c© International Association for Cryptologic Research 2014

294 S. Hohenberger and B. Waters

user’s private key. These costs could impact several applications. If the encryp-
tion algorithm is run on a mobile device, encryption time and battery power are
of large importance. In other applications, authority servers that generate users’
private keys may become a bottleneck. In both of these scenarios, an exacerbat-
ing factor is that the cost for operations may vary widely between each ciphertext
and key; thus forcing a system to provision for a load that matches a worst case
scenario. See [4,18,23] for further ABE performance cost details.

In this work, we aim to mitigate this problem by introducing methods for
online/offline encryption and key generation in Attribute-Based Encryption. By
moving the majority of the cost of an encryption and key generation into an
offline phase, a system will be able to smooth the computational (and power)
demand over a longer range of time, and thus only need the resources to handle
the average case load.

Applications for this Technology. One motivating application for splitting the
work this way is that a mobile device could be programmed to automatically
do ABE preparation work whenever it is plugged into a power source, and then
when it is unplugged, ABE ciphertexts could be rapidly formed with a significant
reduction in battery consumption.

Another potential advantage of splitting work this way is that in some appli-
cations the online and offline work can be performed in different devices. One
might perform the offline work for several encryptions on a high-end server and
store these intermediate ciphertexts on a sensor device such that the small de-
vice never needs to perform a full encryption. In other applications, for security
reasons a designer might wish to limit the number of outward facing servers that
have access to the master secret key (or equivalent). Using online/offline tech-
niques he could have several servers performing offline operations, but relatively
fewer required for the final online step to generate a user’s private key. While a
corrupted offline server (without the master secret) could not break the system,
in collusion it could produce outputs that would allow an eventual key holder
to do so. Therefore, application of this idea would require further analysis and
techniques to mitigate this scenario.

Background on Online/Offline Cryptography. Even, Goldreich and Micali [9]
initiated online/offline techniques for signatures and Shamir and Tauman [22]
introduced a general method using chameleon hash functions. In the context of
signatures, one would like to perform most of the work for signing a message in
the offline phase, but without knowing what the message to be signed is. Later
in the online phase the signer will learn the message and given the offline work
should be able to sign it relatively quickly.

The focus of our investigation is on moving encryption computation offline.
In the basic encryption setting, the job is to perform most of the work for
encryption offline, before the message is known. This is one of the reasons that
stream ciphers, such as RC4, are sometimes preferred over certain block ciphers,
because they operate by generating a pseudorandom string (which can be done
offline) and then XORing it with the plaintext (in the online phase).

Online/Offline Attribute-Based Encryption 295

Let’s next consider the task of moving encryption computation offline for
Identity-Based Encryption (IBE), where neither the message nor the recipi-
ent’s identity is known during the offline phase. Guo et al. [12] give an offline
encryption system for Identity-Based Encryption (and other works [17,16,8,21]
proposed different variants). We illustrate the main idea as a KEM1 variant of
the Boneh-Boyen [5] IBE system. In the offline phase, one will create a cipher-
text by encrypting to a random identity x ∈ Zp with randomness s ∈ Zp. The
resulting BB-type ciphertext will have the form C1 = gs, C2 = (uxh)s and the
encapsulated key will be e(g, g)αs, where the bilinear group description G of or-
der p and g, u, h, e(g, g)α are in the public parameters. The offline algorithm will
store these ciphertext components as well as remember x and s; these together
will consist of what we call an intermediate ciphertext. In the online phase, the
encryptor will learn that she wishes to encrypt to a certain identity I ∈ Zp.
To do this, she simply adds a small “correction factor” r · (I − x) ∈ Zp to the
ciphertext components C1, C2. The computation only takes one multiplication
and subtraction in Zp. A modified decryption algorithm with the correct pri-
vate key can then extract the required symmetric key. We note that treating the
system as a Key Encapsulation Mechanism allows us to separate the issues of
learning the identity in the online phase versus learning the message in the online
phase.

The Challenge for ABE. From the above description, one can see that the
correction techniques critically rely on there being well-known algebraic rela-
tionships between the Boneh-Boyen hashes of different identities. Unfortunately,
these do not exist in most initial ABE systems [10,6,24] as an attribute for string
x would typically be represented as either a random group element hx in the
parameters or as the result of a (random oracle modeled) hash function H(x).
A second challenge is that the size and structure of ciphertext descriptors is
more complex in ABE systems. For instance, in a KP-ABE system the number
of attributes associated with a ciphertext may vary widely between each encryp-
tion. If one encrypts to a small number in each offline stage, the intermediate
ciphertext may be not useable. If one encrypts to a large or maximum number in
each offline phase, it can result in much wasted work. Using offline computation
efficiently becomes a challenge in this setting. For ciphertext-policy ABE, find-
ing a good solution is more challenging as the “unknown” is an complex access
structure.

Our Contributions. We develop new techniques for online/offline ABE encryp-
tion and key generation that tackle these challenges. The first non-trivial task
is to identity ABE constructions that have the required algebraic structure to
enable online/offline computation. Unfortunately, most existing schemes do not.
However, a few do. We first identified the recent “large universe” construction of
Lewko and Waters [14] as a candidate base scheme due to its algebraic structure

1 A key encapsulation mechanism, where the public key ciphertext encapsulates a
symmetric key which could later be used to symmetrically encrypt the plaintext.

296 S. Hohenberger and B. Waters

that appears amenable to adding correction factors.2 We finally decided to use a
recent more efficient prime-order variant due to Rouselakis and Waters [19]. (We
are not aware of any other ABE schemes that can support a similarly efficient
online/offline tradeoff.)

We begin by designing online/offline encryption algorithms for Key-Policy
ABE. For our first construction we assume a set number of attributes that will be
associated with each ciphertext. In this setting we develop a correction technique
for the KP-ABE [19] system. We prove security by directly reducing to the
security of [19]. This has the advantage of simplicity in that we do not need to
revisit the guts of the prior proof. In addition, we will automatically inherenit
any future improvements in the proof for the underlying scheme.

For reasons, discussed above assuming a fixed number of attributes per ci-
phertext is undesirable. To this end we come up with a method of “pooling”
work done offline. In this system an encryptor will continuously create offline
ciphertext pieces and add these to a pool. When the encryption algorithm later
needs to encrypt to a set S of attributes, it grabs |S| pieces from the pool con-
necting each one to a single attribute from S. The work per attribute is domi-
nated by one multiplication in Zp. We describe this as a “connect and correct”
approach.

We extend our offline encryption approach to the more complex case of
Ciphertext-Policy ABE. The challenge here is that a CP-ABE ciphertext is as-
sociated with a Linear Secret Sharing Scheme (LSSS) matrix. Again, we develop
a pooling technique. However, in this application for each row of the matrix
M given online, we will need to correct each ciphertext component to an LSSS
share in the exponent and to the corresponding attribute. Finally, we show how
online/offline key generation can be derived from our encryption techniques. We
observe a symmetry between CP-ABE encryption and KP-ABE key generation
that allows us to develop an online/offline pair of algorithms for the latter.

Combining with Outsourcing for ABE. We make a brief detour here to discuss
how the results of this work might be combined with prior ABE results to make
a practical overall system.

In 2011, Green, Hohenberger and Waters [11] presented a solution for out-
sourcing the decryption of ABE ciphertexts. That is, they assumed that ABE
ciphertexts might be stored in the cloud. They then showed how a user can
provide the cloud with a single translation key that allows the cloud to trans-
late any ABE ciphertext satisfied by that user’s attributes into a very short El
Gamal-style ciphertext, without the cloud being able to read any part of the
user’s messages. These transmitted ciphertexts are short (saving on bandwidth
and receiving time), but also quick to decrypt (with roughly one or two exponen-
tiations). Thus, the ability to outsource decryption to the cloud allows a mobile
device to quickly decrypt an ABE-encrypted message.

2 Interestingly, [14] aimed for a large universe construction in the standard model and
thus our use of the schemes’s additional structure is a byproduct of removing the
random oracles.

Online/Offline Attribute-Based Encryption 297

Conversely, the results of this work allow a mobile device to quickly encrypt an
ABE-encrypted message. These two results could be combined into one system,
where a mobile device would be fully ABE operational while drastically reducing
the computational costs for both decryption (with the help of the cloud) and
encryption (with the help of a preparation phase while the phone charges). We
believe that creative solutions of this sort can be implemented transparently, but
will provide noticeably better performance for users.

2 Definitions for Online/Offline ABE

Wework in the key encapsulationmechanism (KEM) setting, where the attribute-
based ciphertext hides a symmetric session key that can then be used to symmet-
rically encrypt data of arbitrary length. The goal in the online/offline setting is to
allow as much precomputation of attribute-based ciphertext as possible without
knowing the intended access policy (ciphertext-policy) or set of attributes (key-
policy). We refer the reader to [13] for a review of access structures, linear secret
sharing schemes (LSSS) and related conventions.

Definition 1 (Online/Offline Attribute-Based KEM Specification). Let
S represent a set of attributes and A an access structure. For generality, we will
define (Ikey , Ienc) as the inputs to the extract and online encryption functions
respectively. In a KP-ABE scheme (Ikey , Ienc) := (A, S), while in a CP-ABE
scheme, we have (Ikey , Ienc) := (S,A). We define the function f as follows:

f(Ikey , Ienc) :=

⎧⎪⎨⎪⎩
1 if Ienc ∈ Ikey in KP-AB setting

1 if Ikey ∈ Ienc in CP-AB setting

0 otherwise.

An online/offline KP-AB (resp., CP-AB) key-encapsulation mechanism for ac-
cess structure space G is a tuple of the following algorithms:

Setup(λ, U) → (PK,MK). The setup algorithm takes as input a security pa-
rameter λ and a universe description U , which defines the set of allowed
attributes in the system. It outputs the public parameters PK and the master
secret key MK.

Extract(MK, Ikey) → SK. The extract algorithm takes as input the master se-
cret key MK and an access structure (resp., set of attributes) Ikey and outputs
a private key SK associated with the attributes.

Offline.Encrypt(PK) → IT. The offline encryption algorithm takes as input
the public parameters PK and outputs an intermediate ciphertext IT.

Online.Encrypt(PK, IT, Ienc) → (key,CT). The online encryption algorithm
takes as input the public parameters PK, an intermediate ciphertext IT and
a set of attributes (resp., access structure) Ienc and outputs a session key
key and a ciphertext CT.

298 S. Hohenberger and B. Waters

Decrypt(SK,CT) → key. The decryption algorithm takes as input a private key
SK for Ikey and a ciphertext CT associated with Ienc and decapsulates ci-
phertext CT to recover a session key key if S satisfies A or the error message
⊥ otherwise.

For a fixed universe description U and λ ∈ N, the KP-AB correctness property
requires that for all (PK,MK) ∈ Setup(λ, U), all S ⊆ U , all A ∈ G, all SK ∈
Extract(MK,A), if (key,CT) ∈ Online.Encrypt(PK,Offline.Encrypt(PK), S) and if
S satisfies A, then Decrypt(SK,CT) outputs key. CP-AB correctness is defined
analogously, with the last inputs to Extract and Online.Encrypt reversed.

Security Model for Online/Offline AB-KEM. Let Π = (Setup,Extract,
Offline.Encrypt,Online.Encrypt,Decrypt) be an AB-KEM for access structure
space G, and consider the following experiment for an adversary A, parame-
ter λ and attribute universe U :

The Online/Offline AB-KEM experiment OO-ABKEM-ExpA,Π(λ, U):

Setup. The challenger runs the Setup algorithm and gives the public parame-
ters, PK to the adversary.

Phase 1. The challenger initializes an empty table T , an empty set D and an
integer counter j = 0. Proceeding adaptively, the adversary can repeatedly
make any of the following queries:
– Create(Ikey): The challenger sets j := j + 1. It runs the key generation

algorithm on Ikey to obtain the private key SK and stores in table T the
entry (j, Ikey , SK).
Note: Create can be repeatedly queried with the same input.

– Corrupt(i): If there exists an ith entry in table T , then the challenger
obtains the entry (i, Ikey , SK) and sets D := D ∪ {Ikey}. It then returns
to the adversary the private key SK. If no such entry exists, then it
returns ⊥.

– Decrypt(i,CT): If there exists an ith entry in table T , then the challenger
obtains the entry (i, Ikey , SK) and returns to the adversary the output
of the decryption algorithm on input (SK,CT). If no such entry exists,
then it returns ⊥.

Challenge. The adversary gives a challenge value I∗enc such that for all Ikey ∈
D, f(Ikey , I

∗
enc) �= 1. The challenger runs the algorithm Online.Encrypt(PK,

Offline.Encrypt(PK), I∗enc) to obtain (key∗,CT∗). It then randomly selects a
bit b. If b = 0, it returns (key∗,CT∗) to the adversary. If b = 1, it selects a
random session key R in the session key space and returns (R,CT∗).

Phase 2. Phase 1 is repeated with the restrictions that the adversary cannot
– trivially obtain a private key for the challenge ciphertext. That is, it

cannot issue a Corrupt query that would result in a value Ikey which
satisfies f(Ikey , I

∗
enc) = 1 being added to D.

– issue a decryption query on the challenge ciphertext CT∗.
Guess. The adversary outputs a guess b′ of b. The output of the experiment is

1 if and only if b = b′.

Online/Offline Attribute-Based Encryption 299

Definition 2 (Online/Offline AB-KEM Security). An online/offline AB-
KEM Π is CCA-secure (or secure against chosen-ciphertext attacks) for at-
tribute universe U if for all probabilistic polynomial-time adversaries A, there
exists a negligible function negl such that:

Pr[OO-ABKEM-ExpA,Π(λ, U) = 1] ≤ 1

2
+ negl(λ).

CPA Security. We say that a system is CPA-secure (or secure against chosen-
plaintext attacks) if we remove the Decrypt oracle in both Phase 1 and 2.

Selective Security. We say that a system is selectively secure if we add an Init
stage before Start where the adversary outputs the challenge I∗enc (instead of
waiting until Challenge).

3 A KP-ABE Scheme with Online/Offline Encryption

We now show how to extend the unbounded KP-ABE scheme of Rouselakis
and Waters [19, Appendix C] to be an online/offline system. We will work in a
key encapsulation mechanism (KEM) model as specified in Defintion 2, so that
we can focus on preparing for an unknown attribute set. Any plaintext can be
encrypted in a hybrid manner during the online phase by a symmetric cipher
keyed with the encapsulated key. We first show a simple system that assumes a
bound P on the maximum number of attributes that can be used to encrypt a
ciphertext. We show how to remove this bound in Section 3.2.

Setup(λ, U). The setup algorithm takes in a security parameter λ and a universe
U of attributes. chooses a bilinear group G of prime order p ∈ Θ(2λ). It also
chooses random generators g, h, u, w ∈ G and picks a random exponent α ∈ Zp.
It then sets the keys as:

PK = (G, p, g, h, u, w, e(g, g)α), MSK = (PK, α).

We assume that the universe of attributes can be encoded as elements in Zp.

Extract(MSK, (M,ρ)). The extract algorithm takes as input the master secret
key MSK and an LSSS access structure (M,ρ). Let M be an � × n matrix. The
function ρ associates rows of M to attributes. The algorithm initially chooses
random values y2, . . . , yn ∈ Zp. It then computes � shares of the master secret
key as (λ1, λ2, . . . , λ�) := M · (α, y2, . . . , yn)T (where T denotes the transpose).
It then picks � random exponents t1, t2, . . . , t� ∈ Zp. For i = 1 to �, it computes

Ki,0 := gλiwti Ki,1 :=
(
uρ(i)h

)−ti
Ki,2 := gti .

The private key is SK := ((M,ρ), {Ki,0,Ki,1,Ki,2}i∈[1,�]).

300 S. Hohenberger and B. Waters

Offline.Encrypt(PK). The offline encryption algorithm takes in the public pa-
rameters only. Here we describe the basic system which assumes a maximum
bound of P attributes will be associated with any ciphertext. We describe more
advanced variations in Section 3.2. The algorithm first picks a random s ∈ Zp
and computes

key := e(g, g)αs C0 := gs.

Next, for j = 1 to P , it chooses random rj , xj ∈ Zp and computes

Cj,1 := grj Cj,2 := (uxjh)rjw−s.

One can view this as encrypting for a random attribute xj , where this will be
corrected in the online phase. The work done in the offline phase is roughly
equivalent to the work of the regular encryption algorithm in [19, Appendix C].

The intermediate ciphertext is IT := (key, C0, {rj , xj , Cj,1, Cj,2}j∈[1,P]).

Online.Encrypt(PK, IT, S). The online encryption KEM algorithm takes as in-
put the public parameters, an intermediate ciphertext IT, and a set of attributes
S = (A1, A2, . . . , Ak≤P). For j = 1 to k, it computes Cj,3 := (rj · (Aj −
xj)) mod p. Intuitively, this will correct to the proper attributes. It sets the
ciphertext:

CT := (S,C0, {Cj,1, Cj,2, Cj,3}j∈[1,k]).

The encapsulated key is key. The dominant cost is one multiplication in Zp per
attribute in S.

Decrypt(SK,CT). The decryption algorithm in the KEM setting recovers the en-
capsulated key. It takes as input a ciphertext CT=(S,C0, {Cj,1, Cj,2, Cj,3}j∈[1,k])
for attribute set S and a private key SK = ((M,ρ), {Ki,0,Ki,1,Ki,2}i∈[1,�]) for
access structure (M,ρ). If S does not satisfy this access structure, then the al-
gorithm issues an error message. Otherwise, it sets I := {i : ρ(i) ∈ S} and
computes constants wi ∈ Zp such that

∑
i∈I wi · Mi = (1, 0, . . . , 0), where Mi

is the i-th row of the matrix M . Then it then recovers the encapsulated key by
calculating key :=∏

i∈I

(
e(C0,Ki,0) · e(Cj,1,Ki,1) · e(Cj,2 · uCj,3 ,Ki,2)

)wi
= e(g, g)αs (1)

where j is the index of the attribute ρ(i) in S (it depends on i). This does not
increase the number of pairing operations over [19, Appendix C], although it
adds |I| exponentiations.

Online/Offline Attribute-Based Encryption 301

Correctness. If the attribute set S of the ciphertext is authorized, we have that∑
i∈I wiλi = α. Therefore, key:

:=
∏
i∈I

(
e(C0,Ki,0) · e(Cj,1,Ki,1) · e(Cj,2 · uCj,3 ,Ki,2)

)wi

=
∏
i∈I

(e(gs, gλiwti) · e(grj , (uρ(i)h)−ti) · e((uxjh)rjw−s · urj(ρ(i)−xj), gti))wi

=
∏
i∈I

(e(g, g)sλi · e(g, w)sti · e(g, u)−rjtiρ(i) ·

e(g, h)−rjti · e(g, u)ρ(i)rjti · e(g, h)rjti · e(g, w)−sti)wi

=
∏
i∈I

e(g, g)swiλi = e(g, g)sα.

Recall that in the symmetric setting e(g, u) = e(u, g), for all g, u ∈ G, although
this scheme can operate in an asymmetric setting with small alterations.

3.1 Proof of Selective Security

Discussion on Security. We shortly show that the security of our online/offline
system can be directly based on the security of the underlying Rouselakis-
Waters [19, Appendix C] system. The Rouselakis-Waters system that we reduce
security to is selectively secure based on a “q-type” assumption in prime or-
der groups. We remark that our techniques appear to be equally ammenable
to transforming the Lewko-Waters [15] system to an online/offiline system. The
Lewko-Waters system is proven selectively secure from a static assumption in
composite order groups. If such a transformation were done (as well as a reduc-
tion to their scheme), the new scheme would inherit those assumptions.

In [10, Section 9], Goyal et al. discuss how to combine delegation in their ABE
systems with the techniques of Canneti-Halevi-Katz [7] to build a CCA secure
ABE scheme from a CPA one. We believe that a similar delegation structure
exists in our schemes, so that similar techniques would likely work out (although
we do not work out the details here).

Theorem 1. The above online/offline KP-AB-KEM scheme is selectively CPA-
secure with respect to Definition 2 assuming that the scheme of Rouselakis and
Waters [19, Appendix C] is a selectively CPA-secure KP-ABE system.

Proof. To prove the theorem, we will show that any PPT attacker A with
a non-negligible advantage in the OO-ABKEM-Exp experiment against the
above scheme, which we will denote ΠOO = (Setup,Extract,Offline.Encrypt,
Online.Encrypt, Decrypt), can be used to break the selective CPA-security of the
Rouselakis-Waters scheme, which we will denote ΠRW = (SetupRW ,ExtractRW ,
EncryptRW , DecryptRW), with a PPT simulator B.

The simulator plays the challenger and interacts with A in OO-ABKEM-Exp
with security parameter λ and the universe of attributes set to U = Zp.

302 S. Hohenberger and B. Waters

Initialization. Initially, B receives an attribute set S∗ = {A∗
1, A

∗
2, . . . , A

∗
k} ⊆ U

from A and gives it to the RW challenger.

Setup. Next, B receives the public parameters PK = (G, p, g, h, u, w, e(g, g)α)
from the RW challenger and passes them to A unchanged.

Phase 1. The secret keys are the same in both schemes, so any key generation
request from A is passed to the RW challenger to obtain the key.

Challenge. B chooses two distinct, random messages m0,m1 in the RW message
space and sends them to its RW challenger, and receives back a challenge cipher-
text CT∗

RW = (S∗, C, C0, {Cj,1, Cj,2}j∈[1,|S∗|]). Here C is the encrypted message
times e(g, g)αs, C0 = gs and for each attribute Aj ∈ S∗, we have Cj,1 = grj and
Cj,2 = (uAjh)rjw−s.

It then selects random values z1, . . . , z|S| ∈ Zp and computes the ciphertext
CT∗

OO as (S∗, C0) followed by

C∗
j,1 := Cj,1 = grj C∗

j,2 := Cj,2 · u−zj = (uAjh)rjw−su−zj C∗
j,3 := zj.

To see why this is a correctly formed ciphertext, one needs to recall the third
pairing of equation 1, where one must compute e(C∗

j,2 · uC∗
j,3 ,Ki,2), as well as

observe that the ciphertext is randomized to have the proper distribution. The zj
blinding will cancel out in this step. Next, B guess which message was encrypted
τB ∈ {0, 1} and computes keyguess := C/mτB . Finally, B then sends to A the
tuple (keyguess,CT

∗
OO).

Phase 2. B proceeds as in Phase 1.

Guess. Eventually, A outputs a bit τA. If τA = 0 (meaning that A guesses
that keyguess is the key encapsulated by CT∗

OO), then B outputs τB. If τA =
1 (meaning that A guesses that keyguess is a random key), then B outputs
1 − τB. The distribution for A is perfect. Thus, if A has advantage ε in the
OO-ABKEM-Exp experiment, then B breaks the RW KP-ABE system with the
same probability.

3.2 A More Advanced System: Pooling Attributes for an
Unbounded System

Previously, we presented a system that imposed a bound of P attributes asso-
ciated with any ciphertext. We presented P as if it was a system-wide bound
for all ciphertexts, for simplicity. A slightly less naive solution would involve
creating a set of intermediate ciphertexts prepared for different sizes of attribute
sets, and then pulling the “right-sized IT” off-the-shelf during the online phase
(e.g., create one IT for a set of size 1, another for a set of size 2, etc.). However,
these approaches could prove wasteful, as certain ITs may be created and stored
without being used.

Online/Offline Attribute-Based Encryption 303

Pooling Construction. Instead, we introduce the idea of “pooling” to eliminate
waste during the offline phase. The intermediate ciphertext is now comprised of
two logical types of objects: a main module and an attribute module. During
the offline phase(s), an arbitrary number of main and attribute modules are
independently created. During the online phase for attribute set S, one main
module and |S| attribute modules will be consumed. The critical feature of this
approach is that any attribute module can be attached to any main module. The
online phase uses exactly what it needs, and any modules left in the pool can be
used on subsequent ciphertexts.

Specifically, during Offline.Encrypt, a main module is computed as follows. It
picks a random s ∈ Zp and sets ITmain := (key, C0, Cw), where these values are
computed as

key := e(g, g)αs C0 := gs Cw := w−s.

During Offline.Encrypt, an attribute module is computed as follows. It picks
a random r, x ∈ Zp and sets ITatt := (r, x, C′

1, C
′
2), where these values are

computed as

C′
1 := gr C′

2 := (uxh)r.

During Online.Encrypt for an attribute set S, the algorithm selects any one
main module ITmain := (key, C0, Cw) and any |S| attribute modules ITatt,j :=
(rj , xj , C

′
j,1, C

′
j,2) available in the pool. Finally, it computes CT as (S,C0, {Cj,1,

Cj,2, Cj,3}j∈[1,|S|]), where

Cj,1 := C′
j,1 = grj Cj,2 := C′

j,2 · Cw = (uxjh)rj · w−s Cj,3 := rj · (Aj − xj).

The encapsulated key is key.

Security Discussion. The dominant cost in the online encryption algorithm is
2 modular multiplications per attribute in S. To formally capture the pooling
model, the specification and security definition in Section 2 would need to be ex-
panded to have the Offline.Encrypt algorithm keep state (e.g., the pool) between
iterations and to pass this state into Online.Encrypt as well. Since pooling does
not impact the structure or distribution of the final ciphertexts over Section 3
and the adversary in the security experiment only views final ciphertexts, it is
relatively straightforward to prove the selective security of the pooling scheme.

4 A CP-ABE Scheme with Online/Offline Encryption

We now turn our attention to developing online/offline CP-ABE systems. This
is intuitively harder than KP-ABE, because the structure of ciphertext is more
complex. We must now be able to create an intermediate ciphertext in the offline
phase that can be quickly be translated to a ciphertext for a hitherto unknown
access structure. To do this, we will use and extend the basic “correction” and

304 S. Hohenberger and B. Waters

pooling concepts introduced for KP-ABE. Our online/offline system is based
on the unbounded CP-ABE scheme of Rouselakis and Waters [19, Section 4],
where again it takes a special algebraic structure to make this work, which most
other CP-ABE systems do not appear to have. As before, we are working in
the KEM model. We’ll first show a simple system that assumes a bound P on
the maximum number of rows in an LSSS access structure that will be used to
encrypt. We will subsequently discuss how to remove this bound.

Setup(λ, U). The setup algorithm chooses a bilinear group G of prime order
p ∈ Θ(2λ). It also chooses random generators g, h, u, v, w ∈ G and picks a random
exponent α ∈ Zp. It then sets the keys as:

PK = (G, p, g, h, u, v, w, e(g, g)α), MSK = (PK, α).

Again, we will view the attribute universe as consisting of elements in Zp.

Extract(MSK, S). The extract algorithm takes as input the master secret key
MSK and an attribute set S = {A1, A2, . . . , Ak} ⊆ Zp. The algorithm chooses
random values r, r1, r2, . . . , rk ∈ Zp. It then computes K0 := gαwr,K1 := gr,
and for i = 1 to k, it computes

Ki,2 := gri Ki,3 :=
(
uAih

)ri
v−r.

The private key is SK := (S,K0,K1, {Ki,2,Ki,3}i∈[1,k]).

Offline.Encrypt(PK). The offline encryption algorithm takes in the public pa-
rameters only. Here we describe the basic system which assumes a maximum
bound of P rows in any LSSS access structure used in a ciphertext. We describe
more advanced variations in Section 4.1. The algorithm first picks a random
s ∈ Zp and computes

key := e(g, g)αs C0 := gs.

Next, for j = 1 to P , it chooses random λ′
j , xj , tj ∈ Zp and computes

Cj,1 := wλ
′
jvtj Cj,2 := (uxjh)−tj Cj,3 := gtj .

One can view this as encrypting for a random attribute xj with a random “share”
λ′
j of s, where this will be corrected in the online phase. We remark that the

work done in the offline phase is roughly equivalent to the work of the regular
encryption algorithm in [19, Section 4].

Intermediate ciphertext is IT := (key, s, C0, {λ′
j , tj , xj , Cj,1, Cj,2, Cj,3}j∈[1,P]).

Online.Encrypt(PK, IT, (M,ρ)). The online encryption KEM algorithm takes
as input the public parameters, an intermediate ciphertext IT, and an LSSS ac-
cess structure (M,ρ), where M is an � × n matrix and � ≤ P . It picks random
y2, . . . , yn ∈ Zp, sets the vector y = (s, y2, . . . , yn)

T (where T denotes the trans-
pose of the matrix) and computes a vector of shares of s as (λ1, . . . , λ�)

T = My.

Online/Offline Attribute-Based Encryption 305

For j = 1 to �, it computes

Cj,4 := λj − λ′
j Cj,5 := tj · (ρ(j) − xj).

Intuitively, this will correct to the proper attributes and shares of s. It sets the
ciphertext as:

CT := ((M,ρ), C0, {Cj,1, Cj,2, Cj,3, Cj,4, Cj,5}j∈[1,k]).

The encapsulated key is key. The dominant cost is one multiplication in Zp per
row of M .

Decrypt(SK,CT). The decryption algorithm in the KEM setting recovers the
encapsulated key. It takes as input a ciphertext CT = ((M,ρ), C0, {Cj,1, Cj,2,
Cj,3, Cj,4, Cj,5}j∈[1,k]) for access structure (M,ρ) and a private key SK=(S, {Ki,0,
Ki,1,Ki,2}i∈[1,�]) for access structure (M,ρ). If S does not satisfy this access
structure, then the algorithm issues an error message. Otherwise, it sets I := {i :
ρ(i) ∈ S} and computes constants wi ∈ Zp such that

∑
i∈I wi ·Mi = (1, 0, . . . , 0),

where Mi is the i-th row of the matrix M . Then it then recovers the encapsulated
key by calculating key := e(g, g)αs =

e(C0,K0)

e(w
∑

i∈I Ci,4wi ,K1) ·
∏
i∈I(e(Ci,1,K1)

· 1

e(Ci,2 · uCi,5 ,Kj,2) · e(Ci,3,Kj,3))wi
(2)

where j is the index of the attribute ρ(i) in S (it depends on i). We note that
this decryption algorithm adds one pairing operation and |I|+1 exponentiations
over [19, Appendix C]. Alternatively, one could re-arrange the equation for no
additional pairings at the cost of 2|I| exponentiations.

In the full version [13], we show correctness and prove the below theorem.

Theorem 2. The above online/offline CP-AB-KEM scheme is selectively CPA-
secure with respect to Definition 2 assuming that the scheme of Rouselakis and
Waters [19, Section 4] is a selectively CPA-secure CP-ABE system.

4.1 Pooling Attributes for an Unbounded Ciphertext-Policy System

In the previous section, we presented an online/offline system that imposed a
bound of P rows on any LSSS access matrix associated with any ciphertext. As
introduced in Section 3.2, we now show how to remove this bound by creating a
“pool” from which to draw ready-made ciphertext components. As before, the
intermediate ciphertext is comprised of two logical types of objects: a main mod-
ule and an attribute module. During the offline phase(s), an arbitrary number of
main and attribute modules are independently created. During the online phase
for LSSS access structure (M,ρ), one main module and � attribute modules will
be consumed, where M is an �×n matrix. Any attribute module can be attached
to any main module.

306 S. Hohenberger and B. Waters

Specifically, during Offline.Encrypt, a main module is computed as follows. It
picks a random s ∈ Zp and sets ITmain := (key, C0), where these values are
computed as

key := e(g, g)αs C0 := gs.

During Offline.Encrypt, an attribute module is computed as follows. It picks a
random λ, x, t ∈ Zp and sets ITatt := (λ, x, t, C1, C2, C3), where these values are
computed as

C1 := wλvt C2 := (uxh)t C3 := gt.

During Online.Encrypt for an LSSS access structure (M,ρ), where M is an
� × n matrix, the algorithm selects any one main module ITmain := (key, C0)
and any � attribute modules ITatt,j := (λj , xj , tj , Cj,1, Cj,2, Cj,3) available in the
pool. It picks random y2, . . . , yn ∈ Zp, sets the vector y = (s, y2, . . . , yn)

T (where
T denotes the transpose of the matrix) and computes a vector of shares of s as
(λ1, . . . , λ�)

T = My.
Finally, it computesCT as ((M,ρ), C0, {Cj,1, Cj,2, Cj,3, Cj,4, Cj,5}j∈[1,�]),where

Cj,4 := λj − λ′
j Cj,5 := tj · (ρ(j) − xj).

The encapsulated key is key. The dominant cost in the online encryption algo-
rithm is one modular multiplication per row in M . The security discussion at
the end of Section 3.2 applies here as well.

5 Online/Offline ABE Key Generation

Private key generation in ABE systems requires the master secret key MSK.
This key is so valuable that any organization granting keys might do well to
store it on only a small number of well-guarded servers. At the same time, this
could create a bottleneck in systems with many users, especially when private
keys are reissued each time period for revocation purposes. In this section, we
discuss how the key generation operation in the KP-ABE system of Section 3
and the CP-ABE system of Section 4 can operate in an online/offline fashion
as well. Thus, the bulk of the key generation work can be performed by servers
that are truly offline (or otherwise well secured). These pre-computations can be
passed to the online servers, where incoming requests can be processed quickly.

In the KP-ABE setting, a private key embeds an LSSS access structure,
whereas in the CP-ABE setting, the private key embeds a set of attributes. We
will borrow ideas from the prior two sections to deal with these objects, where
again we can employ both the “correct and connect” and “pooling” concepts.

To capture online/offline key generation, one needs to replace the Extract
algorithm with an offline algorithm that takes in the MK and produces a inter-
mediate private key (or pool of private key parts) and an online algorithm that
takes in this intermediate key (or pool) together with an access structure and
then produces the private key. The security experiment is essentially unchanged
except that the Create oracle (called in Phases 1 and 2) now calls Offline.Extract
and Online.Extract in sequence to create a private key.

Online/Offline Attribute-Based Encryption 307

5.1 Online/Offline Key Generation for KP-ABE Keys

The Setup and encryption algorithms remain the same as Section 3. We present
a pooling solution, and because the structure of the private keys change, so must
the decryption algorithm.

Offline.Extract(MSK). There are no “main” key modules. A “row” module is
computed by selecting random λ′, x, t ∈ Zp and outputting Irow := (λ′, x, t,K0,

K1,K2) where K0 := gλ
′
wt, K1 := (uxh)

−t
and K2 := gt.

Online.Extract(pool, (M,ρ)). Let M be an � × n matrix. The algorithm initially
chooses random values y2, . . . , yn ∈ Zp. It then computes � shares of the master
secret key as (λ1, λ2, . . . , λ�) := M ·(α, y2, . . . , yn). Next select any � row modules
from the pool. For i = 1 to �, set Ki,3 := λi −λ′

i and Ki,4 := ti · (ρ(i)− xi). The
private key is SK := ((M,ρ), {Ki,0,Ki,1,Ki,2,Ki,3,Ki,4}i∈[1,�]). The dominant
cost is one multiplication per row of M .

Decrypt(SK,CT).Using the prior steps and notation, it recovers the encapsulated
key :=

∏
i∈I

(
e(C0,Ki,0 · gKi,3) · e(Cj,1,Ki,1 · uKi,4) · e(Cj,2 · uCj,3,Ki,2)

)wi
=

e(g, g)αs. This adds 2|I| exponentiations over the construction in Section 3.

5.2 Online/Offline Key Generation for CP-ABE Keys

The CP-ABE system in Section 4 can be extended in a similar manner. In
that system, there will be a “main” key module which contains K0,K1 and
Kv := v−r. The attribute modules are identical to those of Section 3.2 and the
keys are assembled as in the online phase of 3.2. The decryption equation is then
key := e(C0,K0)/D, where D = e(w

∑
i∈I Ci,4wi ,K1) ·

∏
i∈I(e(Ci,1,K1) · e(Ci,2 ·

uCi,5 ,Kj,2 · uKj,4) · e(Ci,3,Kj,3))
wi , resulting in e(g, g)αs.

6 Performance Analysis

We provide estimates on the performance of the proposed schemes in Figures 1
and 2. These numbers are extrapolated from operation times on a 256-bit Bareto-
Naehrig curve using version 0.3.1 of the RELIC library [3]. Times are measured
in milliseconds (averaged over 10,000 iterations) and were computed on an Intel
Core i7 processor with 16GB RAM [2]. We ignore small numbers of operations
which will be negligible by comparison, such as arithmetic in Zp.

A natural question to ask is: how much pre-processing can I do for an ABE
encryption (similarly, key generation) before I know the message I want to en-
crypt or the access structure that I want to encrypt under? It may come as
a surprise that the results are so drastic. Indeed, our estimates show that the
answer to this question is: you can do almost all of the encryption work, before
you know any of the specifics of what/to whom you are encrypting.

Indeed, our worst-case for encryption was key-policy ABE in pooling mode,
and even then over 99% of the work could be done offline. Similarly, the worst-
case for key generation was ciphertext-policy ABE in pooling mode, and even

308 S. Hohenberger and B. Waters

Encryption Algorithm Bilinear Operations Est. Time Est. Time
P = 10 P = 100

KP-ABE from [19, App. C] 1ET + (3P + 2)E1 + 2PM1 .133 1.134

KP-Offline Sec. 3 1ET + (3P + 2)E1 + 2PM1 .133 1.134

KP-Online Sec. 3 0 < .001 < .001

KP-Pool-Offline Sec. 3.2 1ET + (3P + 2)E1 + PM1 .133 1.132

KP-Pool-Online Sec. 3.2 PM1 < .001 .001

CP-ABE from [19] 1ET + (5P + 1)E1 + 2PM1 .203 1.870

CP-Offline Sec. 4 1ET + (5P + 1)E1 + 2PM1 .203 1.870

CP-Online Sec. 4 0 < .001 < .001

CP-Pool-Offline Sec. 4.1 1ET + (5P + 1)E1 + 2PM1 .203 1.870

CP-Pool-Online Sec. 4.1 0 < .001 .001

Fig. 1. Performance estimates for regular and online/offline encryption algorithms. We
mapped these algorithms into the asymmetric bilinear setting, placing the ciphertexts
in G1 and keys inG2. Let Ei (resp.,Mi) denote an exponentiation (reps., multiplication)
in the group Gi. The bilinear operations are the dominate cost, so we ignore minor
factors such as arithmetic in Zp. The variable P represents the size of the attribute list
(in KP-ABE) or the complexity of the access policy (in CP-ABE). The times are in
seconds. It is helpful to compare the cost of the original scheme (with a citation) to the
cost of the online phase of the given algorithms. In three of the four schemes presented,
all bilinear group operations for encryption can be shifted to the offline phase.

then over 99% of the work could be done offline. It is also worth noting that
the total computation required between the offline and online phases is nearly
identical to the work required by the original scheme. Thus, the total work
remains the same, but the vast majority of it can be shifted in time to a moment
when the device is least busy or has access to a power source.

We remark that the operation counts given here for the schemes in [19] dif-
fer slightly from the summary given in that work. The counts from [19] were
obtained from the Charm [1] benchmarking utility, which may have performed
various optimizations, whereas ours are a strict count of operations from the
algorithms as presented in the paper [19]. We do not expect these differences to
have any significant impact on the estimates in Figures 1 and 2.

7 Conclusions

We are exploring methods to make attribute-based encryption (ABE) more ef-
ficient for deployment. To this end, we investigated how devices might quickly
encrypt ABE messages or generate user keys, even for complex policies.

We developed new “connect and correct” techniques for ABE that split the
computation for encryption and key generation into two phases: a preparation
phase that does the vast majority of the work to encrypt a message or create a
secret key before it knows the message or the attribute list/access control policy
that will be used (or even the size of the list or policy). A second phase can then

Online/Offline Attribute-Based Encryption 309

Key Generation Algorithm Bilinear Operations Est. Time Est. Time
P = 10 P = 100

KP-ABE from [19, App. C] 5PE2 + 2PM2 .370 3.703

KP-Pool-Offline Sec. 5.1 5PE2 + 2PM2 .370 3.703

KP-Pool-Online Sec. 5.1 0 < .001 < .001

CP-ABE from [19] (3P + 4)E2 + (2P + 1)M2 .252 2.253

CP-Pool-Offline Sec. 5.2 (3P + 4)E2 + (P + 1)M2 .251 2.251

CP-Pool-Online Sec. 5.2 PM2 < .001 .003

Fig. 2. Performance estimates for regular and online/offline key generation algorithms.
We mapped these algorithms into the asymmetric bilinear setting, placing the cipher-
texts in G1 and keys in G2. Let Ei (resp., Mi) denote an exponentiation (reps., multi-
plication) in the group Gi. The bilinear operations are the dominate cost, so we ignore
minor factors such as arithmetic in Zp. The variable P represents the size of the at-
tribute list (in CP-ABE) or the complexity of the access policy (in KP-ABE). The
times are in seconds. It is helpful to compare the cost of the original scheme (with a
citation) to the cost of the online phase. In both schemes, our estimates show that over
99% of the work to generate a key can be shifted to the offline phase.

rapidly assemble an ABE ciphertext or key when the specifics become known.
This concept is sometimes called “online/offline” encryption. We provided effi-
cient constructions for both key-policy and ciphertext-policy ABE systems.

We provided performance estimates that showed over 99% of the computa-
tional work could be moved to offline phase in many scenarios. We expect that
this technology could reduce battery consumption on mobile devices and help
reduce the bottleneck on a master authority server tasked with generating user
keys. Overall, it helps reduce the cost of bringing ABE into practice.

Acknowledgments. The authors thank Joseph Ayo Akinyele and Matthew
Green for advice on performance numbers and other helpful comments. Susan
Hohenberger was supported in part by NSF CNS-1154035 and CNS-1228443;
the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory under contract FA8750-11-2-0211, DARPA N11AP20006,
the Office of Naval Research under contract N00014-11-1-0470, and a Microsoft
Faculty Fellowship. The views expressed are those of the authors and do not
reflect the official policy or position of the Department of Defense or the U.S.
Government.

References

1. Akinyele, J.A., Garman, C., Miers, I., Pagano, M.W., Rushanan, M., Green, M.,
Rubin, A.D.: Charm: a framework for rapidly prototyping cryptosystems. Journal
of Cryptographic Engineering 3(2), 111–128 (2013)

2. Akinyele, J.A., Green, M.: Personal communication (2013)
3. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography,

http://code.google.com/p/relic-toolkit/

4. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

http://code.google.com/p/relic-toolkit/

310 S. Hohenberger and B. Waters

5. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

6. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007)

7. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

8. Chow, S.S.M., Liu, J.K., Zhou, J.: Identity-based online/offline key encapsulation
and encryption. In: ASIACCS, pp. 52–60 (2011)

9. Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. J. Cryptol-
ogy 9(1), 35–67 (1996)

10. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

11. Green, M., Hohenberger, S., Waters, B.: Outsourcing the decryption of ABE ci-
phertexts. In: USENIX Security Symposium (2011)

12. Guo, F., Mu, Y., Chen, Z.: Identity-based online/Offline encryption. In: Tsudik,
G. (ed.) FC 2008. LNCS, vol. 5143, pp. 247–261. Springer, Heidelberg (2008)

13. Hohenberger, S., Waters, B.: Online/offline attribute-based encryption, The full
version is available from the IACR ePrint Archive, Report 2014/021 (2014)

14. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In: Pa-
terson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011)

15. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: Achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

16. Liu, J.K., Zhou, J.: An efficient identity-based online/Offline encryption scheme.
In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009.
LNCS, vol. 5536, pp. 156–167. Springer, Heidelberg (2009)

17. Liu, Z., Xu, L., Chen, Z., Mu, Y., Guo, F.: Hierarchical identity-based online/offline
encryption. In: ICYCS, pp. 2115–2119 (2008)

18. Pirretti, M., Traynor, P., McDaniel, P., Waters, B.: Secure attribute-based sys-
tems. In: ACM Conference on Computer and Communications Security, pp. 99–112
(2006)

19. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for
large universe attribute-based encryption. In: ACM Conference on Computer and
Communications Security, pp. 463–474 (2013)

20. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

21. Selvi, S.S.D., Vivek, S.S., Rangan, C.P.: Identity based online/Offline encryption
and signcryption schemes revisited. In: Joye, M., Mukhopadhyay, D., Tunstall, M.
(eds.) InfoSecHiComNet 2011. LNCS, vol. 7011, pp. 111–127. Springer, Heidelberg
(2011)

22. Shamir, A., Tauman, Y.: Improved online/Offline signature schemes. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)

23. Traynor, P., Butler, K.R.B., Enck, W., McDaniel, P.: Realizing massive-scale con-
ditional access systems through attribute-based cryptosystems. In: NDSS (2008)

24. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

Scale-Invariant Fully Homomorphic Encryption

over the Integers

Jean-Sébastien Coron1, Tancrède Lepoint1,2,3, and Mehdi Tibouchi4

1 University of Luxembourg, Luxembourg
jean-sebastien.coron@uni.lu

2 École Normale Supérieure, France
3 CryptoExperts, France

tancrede.lepoint@cryptoexperts.com
4 NTT Secure Platform Laboratories, Japan

tibouchi.mehdi@lab.ntt.co.jp

Abstract. At Crypto 2012, Brakerski constructed a scale-invariant fully
homomorphic encryption scheme based on the LWE problem, in which
the same modulus is used throughout the evaluation process, instead of
a ladder of moduli when doing “modulus switching”. In this paper we
describe a variant of the van Dijk et al. FHE scheme over the integers
with the same scale-invariant property. Our scheme has a single secret
modulus whose size is linear in the multiplicative depth of the circuit
to be homomorphically evaluated, instead of exponential; we therefore
construct a leveled fully homomorphic encryption scheme. This scheme
can be transformed into a pure fully homomorphic encryption scheme
using bootstrapping, and its security is still based on the Approximate-
GCD problem.

We also describe an implementation of the homomorphic evaluation
of the full AES encryption circuit, and obtain significantly improved
performance compared to previous implementations: about 23 seconds
(resp. 3 minutes) per AES block at the 72-bit (resp. 80-bit) security level
on a mid-range workstation.

Finally, we prove the equivalence between the (error-free) decisional
Approximate-GCD problem introduced by Cheon et al. (Eurocrypt 2013)
and the classical computational Approximate-GCD problem. This equiv-
alence allows to get rid of the additional noise in all the integer-based
FHE schemes described so far, and therefore to simplify their security
proof.

1 Introduction

Fully Homomorphic Encryption. In 2009, Gentry constructed the first fully
homomorphic encryption scheme (FHE), i.e. a scheme allowing a worker to eval-
uate any circuit on plaintext values while manipulating only ciphertexts. The
first generation of FHE schemes [Gen09, DGHV10, SV10, GH11, BV11a, BV11b]
and [CMNT11, CNT12, CCK+13] followed Gentry’s blueprint to achieve a fully
homomorphic scheme.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 311–328, 2014.
c© International Association for Cryptologic Research 2014

312 J.-S. Coron, T. Lepoint, and M. Tibouchi

The first step of Gentry’s blueprint is to construct a somewhat homomorphic
encryption scheme (SWHE) capable of evaluating “low degree” polynomials ho-
momorphically. Inherent to this construction is the property that ciphertexts
are “noisy”, and noises grow slightly with homomorphic additions and substan-
tially with homomorphic multiplications. Thus ciphertexts need to be refreshed
to maintain a low noise level and allow subsequent homomorphic operations. To
obtain a FHE scheme, Gentry’s key-idea, referred to as bootstrapping, states that
a SWHE capable of evaluating its own decryption procedure (and an additional
multiplication) can be transformed into a FHE scheme. Bootstrapping consists in
evaluating the decryption circuit of the SWHE scheme using the decryption key
bits in encrypted form, thus resulting in a different encryption of the same plain-
text but with reduced noise. In practice, the scheme parameters are generally
determined so that the refreshed ciphertexts can handle one additional homo-
morphic multiplication [GH11, CMNT11, CNT12, CCK+13]. Unfortunately, the
downside of these settings is that one needs to call the (very costly) bootstrap-
ping procedure after each homomorphic multiplication.

Modulus Switching and Scale Invariance. To avoid bootstrapping a new
noise management technique, called modulus switching, was introduced by Brak-
erski, Gentry and Vaikuntanathan [BGV12]. The authors obtained a leveled FHE
scheme: i.e. a scheme in which the noise grows linearly with the multiplicative
depth instead of exponentially as in somewhat homomorphic encryption. There-
fore any circuit with polynomial depth can be evaluated. The technique consists
in scaling down the noise by converting a ciphertext modulo q into a cipher-
text modulo a smaller q′; the noise being reduced by roughly a factor q/q′. By
carefully calibrating the ladder of moduli, the noise growth can then be made
linear with the number of homomorphic multiplications. The technique was also
adapted to the DGHV fully homomorphic encryption scheme over the integers
[DGHV10] in [CNT12]. Unfortunately for a circuit with L layers of multiplica-
tion, the technique requires to store the equivalent of L public-keys, yielding a
huge storage requirement.

At Crypto 2012, Brakerski introduced a new tensor product technique for
LWE-based leveled FHE [Bra12] so that the same modulus is used throughout
the evaluation process instead of a layer of moduli; the noise growth is still
linear in the number of homomorphic multiplications. This was achieved by
considering ciphertexts such that 〈c, s〉 = 	q/2
 ·m+e mod q, instead of 〈c, s〉 =
m+ 2e mod q, as in Regev’s initial scheme [Reg05].

Implementations of FHESchemes. Independently at Crypto 2012, Gentry et
al. benchmarked a LWE-based scheme by homomorphically evaluating an AES
circuit [GHS12b], yielding to the first “real-world” circuit homomorphically evalu-
atedby aFHE scheme.This implementationused themodulus switching technique
of [BGV12] and additionally a batching technique [SV11, BGV12, GHS12a] that
allows one to encrypt vectors of plaintexts in a single ciphertext, and to perform
any permutation on the underlying plaintext vector while manipulating only the
ciphertext. They obtained a timing of about 5 minutes per AES block

Scale-Invariant Fully Homomorphic Encryption over the Integers 313

homomorphically encrypted. Similar results were later obtained for the integer-
based DGHV scheme [DGHV10], extending the batching technique and homomor-
phically evaluating AES on a desktop computer in about 12 minutes per block for
72 bits of security [CCK+13, CLT13].

Our Contributions. In this paper, we describe a variant of the DGHV scheme
over the integers with the same scale-invariant property as in [Bra12]; i.e. our
scheme does not use modulus switching and the noise grows linearly with the
multiplicative depth. We obtain a DGHV variant with a single secret modulus
p whose size is linear in the multiplicative depth (instead of exponential). Our
technique is as follows.

In the original DGHV scheme, a ciphertext c of the bit message m ∈ {0, 1}
has the form

c = m+ 2r + q · p ,

where p is the secret key, q is a large random integer, and r is a small random in-
teger (noise). The bit message is recovered by computing m = (c mod p) mod 2.
Adding and multiplying ciphertexts over Z respectively adds and multiplies the
plaintexts modulo 2 while keeping them hidden. Unfortunately, the noise grows
exponentially with the number of homomorphic multiplications: if two cipher-
texts c1, c2 have ρ-bit noise, the noise of c3 = c1 · c2 has ≈ 2ρ bits. Therefore to
evaluate a circuit with L sequential layers of multiplications without bootstrap-
ping, the bit-size η of the modulus p must satisfy η > 2Lρ.

In our new scheme, similar to [Bra12], instead of encrypting the bit m ∈ {0, 1}
in the LSB of [c mod p], we encrypt it in the MSB of [c mod p]; additionally we
work modulo p2 instead of modulo p. More precisely, the message m is now
encrypted as

c = r + (m+ 2r∗) · p − 1

2
+ q · p2 , (1)

where the ciphertext now contains two noises r and r∗. We decrypt c by comput-
ing m = (2c mod p) mod 2. Clearly adding two ciphertexts over Z still adds the
underlying bit messages m modulo 2. However, multiplication of two ciphertexts
moves the bit message m from the MSB of [c mod p] to the MSB of [c mod p2].
Namely, a ciphertext c obtained as the multiplication of ciphertexts c1 and c2
for the respective bit messages m1 and m2 will have the form

c = 2 · c1 · c2 = r + (m1 · m2) · p
2 − 1

2
+ q · p2 , (2)

where r > p but still r $ p2. We then describe a procedure Convert that al-
lows to publicly convert the result of a multiplication (i.e. a ciphertext as in
Equation (2)) into a ciphertext reusable in subsequent homomorphic operations
(i.e. a ciphertext as in Equation (1)), either keeping the same secret p (which
requires, as usual, a circular security assumption) or using a different fresh p
at each level (which requires a larger secret key). The bit length of the noise
in the new ciphertext grows only by a constant additive factor with respect to
the noise in c1 and c2 (see Figure 1 for an illustration). Therefore, our scheme

314 J.-S. Coron, T. Lepoint, and M. Tibouchi

(γ − 2η) bits 2η bits

m1r∗
1

r1q1

ρ bitsρ∗ bits

(γ − 2η) bits 2η bits

m2r∗
2

r2q2

ρ bitsρ∗ bits×

M
S
B

(2γ − 2η) bits 2η bits

m r′q′

(ρ + ρ∗ + η) bits

L
S
B

Convert
(γ − 2η) bits 2η bits

mr∗ rq

ρ∗ bits (ρ + ρ∗) bits

Fig. 1. Conversion of a ciphertext after a homomorphic multiplication

is a variant of the DGHV scheme that is a leveled fully homomorphic encryp-
tion scheme. It can be turned into a pure FHE scheme using bootstrapping
(cf. [DGHV10, CMNT11, CNT12, CCK+13]). We also show that our scheme is
semantically secure, under the Approximate-GCD assumption.

We also adapt our scale-invariant technique to the batch setting in [CCK+13]
and homomorphically evaluate an AES encryption as in [GHS12b, CCK+13].
Our scheme offers competitive performances as it can evaluate the full AES
circuit in about 23 seconds (resp. 3 minutes) per AES block at the 72-bit (resp.
80-bit) security level on a mid-range workstation, that is one order of magnitude
faster than [CCK+13].

Finally, we prove the equivalence between the (error-free) computational
Approximate-GCD problem [DGHV10] and the (error-free) decisional Appro-
ximate-GCD problem introduced in [CCK+13, KLYC13]. From this equivalence,
the additional noise added during encryption to drawn the noises coming from
the public key elements is no longer required. This yields automatic improve-
ments in the parameters of all the fully homomorphic encryption schemes over
the integers.

2 The Somewhat Homomorphic DGHV Scheme

In this section we first recall the somewhat homomorphic encryption scheme
over the integers of van Dijk, Gentry, Halevi and Vaikuntanathan (DGHV)
in [DGHV10]. We denote by λ the security parameter, τ the number of ele-
ments in the public key, γ their bit-length, η the bit-length of the secret key p
and ρ (resp. ρ′) the bit-length of the noise in the public key (resp. in a fresh
ciphertext).

For a real number x, we denote by �x�, 	x
 and �x
 the upper, lower or nearest
integer part of x. For integers z, p we denote the reduction of z modulo p by
(z mod p) or [z]p with −p/2 < [z]p � p/2. For a specific η-bit odd integer p, we
use the following distribution over γ-bit integers:

Dγ,ρ(p) =

{
Choose q ← Z ∩ [0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ) :

Output x = q · p+ r

}
.

Scale-Invariant Fully Homomorphic Encryption over the Integers 315

DGHV.KeyGen(1λ). Generate an η-bit random prime integer p. For 0 � i � τ ,
sample xi ← Dγ,ρ(p). Relabel the xi’s so that x0 is the largest. Restart unless
x0 is odd and [x0]p is even. Let pk = (x0, x1, . . . xτ) and sk = p.

DGHV.Encrypt(pk,m ∈ {0, 1}). Choose a random subset S ⊆ {1, 2, . . . , τ} and
a random integer r in (−2ρ

′
, 2ρ

′
), and output the ciphertext:

c =

[
m+ 2r + 2

∑
i∈S

xi

]
x0

. (3)

DGHV.Evaluate(pk, C, c1, . . . , ct). Given the circuit C with t input bits and t
ciphertexts ci, apply the addition and multiplication gates of C to the ci-
phertexts, performing all the additions and multiplications over the integers,
and return the resulting integer.

DGHV.Decrypt(sk, c). Output m ← (c mod p) mod 2.

This completes the description of the scheme. The scheme is clearly some-
what homomorphic, i.e. a limited number of homomorphic operations can be
performed on ciphertexts. More precisely given two ciphertexts c = q ·p+2r+m
and c′ = q′ ·p+2r′+m′ where r and r′ are ρ′-bit integers, the ciphertext c+c′ is
an encryption of m+m′ mod 2 with a (ρ′ +1)-bit noise and the ciphertext c · c′
is an encryption of m · m′ with noise bit-length % 2ρ′. Therefore the scheme al-
lows roughly η/ρ′ successive multiplications on ciphertexts (since the noise must
remain smaller than p for correct decryption).

As shown in [DGHV10] the scheme is semantically secure under the Approxi-
mate-GCD assumption.

Definition 1 (Approximate GCD). The (ρ, η, γ)-Approximate-GCD prob-
lem consists, given a random η-bit odd integer p and given polynomially many
samples from Dγ,ρ(p), in outputting p.

3 Scale-Invariant DGHV Scheme

In this section we describe our variant of the DGHV scheme with the scale-
invariant property. We first explain the two main ideas of our scheme, namely
1) moving the plaintext bit from the LSB to the MSB of [c mod p] and working
modulo p2, and 2) converting the result of a ciphertext multiplication back to a
ciphertext usable in subsequent homomorphic operations. We then provide the
full description of our scheme.

3.1 Ciphertexts and Homomorphic Operations

As explained in introduction, instead of encrypting the plaintext m ∈ {0, 1} in
the LSB of [c mod p], m is now encrypted in the MSB of [c mod p] as

c = r + (m+ 2r∗) · p − 1

2
+ q · p2 , (1)

316 J.-S. Coron, T. Lepoint, and M. Tibouchi

where the ciphertext has now two noises r and r∗ of respective bit-length ρ and
ρ∗. We call such ciphertext a Type-I ciphertext and we say that c has noise length
(ρ, ρ∗). To decrypt c, one computes (2c mod p) mod 2 = m.

Homomorphic additions are performed as additions over Z: namely given two
Type-I ciphertexts c1 and c2 of noise (ρ, ρ∗):

c1 = r1 + (m1 + 2r∗1) · (p − 1)/2 + q1 · p2

c2 = r2 + (m2 + 2r∗2) · (p − 1)/2 + q2 · p2

we get

c1 + c2 = r3 + (m1 +m2 + 2r∗3) · p − 1

2
+ q3 · p2 ,

for some integers r3, r
∗
3 and q3, with log2 |r3| � ρ+ 1 and log2 |r∗3 | � ρ∗ + 1.

Next, to homomorphically multiply the ciphertexts c1 and c2, one computes
c3 = 2 · c1 · c2 over Z. This gives

c3 = 2 · c1 · c2 = 2r1r2 +
(
r1(m2 + 2r∗2) + r2(m1 + 2r∗1)

)
· (p − 1) +

(m1 + 2r∗1) · (m2 + 2r∗2) · (p − 1)2

2
+ q′3 · p2

= r′3 + (m1 + 2r∗1) · (m2 + 2r∗2) · (p − 1)2

2
+ q′3 · p2

for some integers q′3 and r′3, with log2 |r′3| � η+ρ+ρ∗+3, where η is the bit-size
of p. We use η & ρ, ρ∗. Then, there exist integers r3 and q3 such that

c3 = r3 +m3 · p
2 − 1

2
+ q3 · p2 , (2)

where m3 = m1 · m2. We call an integer c verifying Equation (2) a Type-II
ciphertext. The bit-length of noise r3 satisfies log2 |r3| � η+ρ+ρ∗+4, assuming
ρ∗ < ρ. We refer to Figure 1 for a graphical representation of the homomorphic
multiplication.

3.2 Conversion from Type-II Ciphertext to Type-I Ciphertext

We show that we can efficiently convert a Type-II ciphertext back to a Type-
I ciphertext, using only the public-key. Our procedure Convert uses essentially
the same technique as the modulus switching technique for DGHV in [CNT12].
Namely modulus switching in [CNT12] enables to convert a classical DGHV
ciphertext modulo a prime p into a new ciphertext modulo a prime p′, with
noise scaled by a factor p′/p. Similarly, our Convert procedure converts a Type-II
ciphertext modulo p2 back to a ciphertext where the noise is modulo p (therefore
the noise is scaled by a factor p/p2 = 1/p), but still somehow encrypted modulo
p2.

More precisely, we start from a Type-II ciphertext:

c = r +
p2 − 1

2
· m+ q · p2 (4)

Scale-Invariant Fully Homomorphic Encryption over the Integers 317

where |r| � 2ρ
′
. Let κ be such that |c| < 2κ. Let z be a vector of Θ rational

numbers in [0, 2η) with κ bits of precision after the binary point, and let s be a
vector of Θ bits such that

2η

p2
= 〈s, z〉 + ε mod 2η , (5)

where |ε| � 2−κ. Here Θ is a parameter to be chosen later for security. We use
the same BitDecomp and PowersofTwo procedures as in [BGV12].

– BitDecompη(v): For v ∈ Zn, let vi ∈ {0, 1}n be such that v mod 2η =∑η−1
i=0 vi · 2i. Output the vector

(v0, . . . ,vη−1) ∈ {0, 1}n·η .

– PowersofTwoη(w): For w ∈ Zn, output the vector

(w, 2 · w, . . . , 2η−1 · w) ∈ Zn·η .

Given the vector s from (5), we let s′ = PowersofTwoη(s), and let

σ = q · p2 + r +
⌊
s′ · p

2η+1

⌉
(6)

be an “encryption” of the vector s′, where q ← (Z ∩ [0, 2γ/p2))η·Θ and r ←
(Z ∩ (−2ρ, 2ρ))η·Θ. We can now define the Convert algorithm:

Convert(z,σ, c). First compute c = (c·zi� mod 2η)1�i�Θ and its decomposition
c′ = BitDecompη(c). Finally, output

c′ ← 2〈σ, c′〉 .

The following Lemma shows that our procedure Convert enables one to trans-
form a Type-II ciphertext back to a Type-I ciphertext. We provide the proof in
the full version of the paper [CLT14].

Lemma 1. Let ρ′ be such that ρ′ � η + ρ + log2(ηΘ). The procedure Convert
above converts a Type-II ciphertext with noise size ρ′ into a Type-I ciphertext
with noise (ρ′ − η + 5, log2 Θ).

Assume that initially the two ciphertexts c1, c2 are Type-I ciphertexts with
noise (ρ1, log2 Θ). After computing c3 = 2 · c1 · c2 which has noise size at most
ρ′ = η + ρ1 + log2 Θ + 4 (see previous section) one can convert c3 back into a
Type-I ciphertext with noise (ρ3, ρ

∗
3) with ρ3 = ρ1 + log2 Θ+ 9 and ρ∗3 = log2 Θ,

from Lemma 1. Therefore the noise length in bits has only grown by an additive
factor log2 Θ + 9. Therefore the ciphertext noise grows only linearly with the
number of homomorphic multiplications.

318 J.-S. Coron, T. Lepoint, and M. Tibouchi

3.3 Description of the Public-Key Leveled Fully Homomorphic
Scheme

We are now ready to describe our scale-invariant version of the DGHV encryption
scheme. For a specific η-bit odd integer p and an integer q0 in [0, 2γ/p2), we define
the set:

Dρ
p,q0 = {q · p2 + r : q ∈ Z ∩ [0, q0), r ∈ Z ∩ (−2ρ, 2ρ)} .

SIDGHV.KeyGen(1λ). Generate an odd η-bit integer p and a γ-bit integer x0 =
q0 · p2 + r0 with r0 ← (−2ρ, 2ρ) ∩ Z and q0 ← [0, 2γ/p2) ∩ Z. Let xi ← Dρ

p,q0
for 1 � i � τ . Let also y′ ← Dρ

p,q0 and y = y′ + (p − 1)/2.
Let z be a vector of Θ numbers with κ = 2γ + 2 bits of precision after

the binary point, and let s be a vector of Θ bits such that

2η

p2
= 〈s, z〉 + ε mod 2η,

with |ε| � 2−κ. Now, define

σ = q · p2 + r +
⌊
PowersofTwoη(s) · p

2η+1

⌉
,

where the components of q (resp. r) are randomly chosen from [0, q0) ∩ Z
(resp. (−2ρ, 2ρ) ∩ Z).
The secret-key is sk = {p} and the public-key is pk = {x0, x1, . . . , xτ , y,σ, z}.

SIDGHV. Encrypt(pk,m ∈ {0, 1}). Choose a random subset S ⊂ {1, . . . , τ} and
output

c ←
[
m · y +

∑
i∈S

xi

]
x0

.

SIDGHV.Add(pk, c1, c2). Output c ← c1 + c2 mod x0.

SIDGHV. Convert(pk, c). Output c′ ← 2 ·
〈
σ,BitDecompη(c)

〉
where c =

(
	c ·

zi� mod 2η
)
1�i�Θ.

SIDGHV.Mult(pk, c1, c2). Output c′ ← SIDGHV. Convert(pk, 2 · c1 · c2) mod x0.

SIDGHV.Decrypt(sk, c). Output m ←
(
(2c) mod p

)
mod 2.

Remark 1. This describes a leveled fully homomorphic encryption scheme, be-
cause the noise growth is only linear in the number of levels. The scheme can
be bootstrapped to obtain a (pure) fully homomorphic encryption scheme, as
in [DGHV10, CCK+13],

Scale-Invariant Fully Homomorphic Encryption over the Integers 319

3.4 Constraints on the Parameters

The parameters of the scheme must meet the following constraints (where λ is
the security parameter):

• ρ = Ω(λ) to avoid brute force attack on the noise [CN12, CNT12],

• η � ρ + O(L logλ) where L is the multiplicative depth of the circuit to be
evaluated,

• γ = ω(η2 · logλ) in order to thwart lattice-based attacks (see [DGHV10] and
[CMNT11, CH12]),

• Θ2 = γ ·ω(log λ) to avoid lattice attacks on the subset sum (see [CMNT11]),

• τ � γ + 2λ in order to apply the Leftover Hash Lemma (see Section 3.5).

To satisfy the above constraints one can take ρ = 2λ, η = Õ(L + λ), γ =
Õ(L2λ+ λ2), Θ = Õ(Lλ) and τ = γ + 2λ.

3.5 Semantic Security

We show that the semantic security of our scheme can be based on the following
variant of the decisional problem introduced in [KLYC13], called the Decisional-
Approximate-GCD problem. Roughly speaking, it should be hard to distinguish
integers from Dρ

p,q0 from completely uniform integers modulo x0, where:

Dρ
p,q0 = {q · p2 + r : q ∈ Z ∩ [0, q0), r ∈ Z ∩ (−2ρ, 2ρ)} .

Definition 2 ((ρ, η, γ)-Decisional-Approximate-GCD). Let p be a random
odd integer of η bits, q0 an integer uniformly distributed in [0, 2γ/p2), r0 an
integer uniformly distributed in (−2ρ, 2ρ). Given x0 = q0 · p2 + r0, polynomially
many samples from Dρ

p,q0 and y ← Dρ
p,q0 + (p − 1)/2, determine b ∈ {0, 1} from

c = x+ b · r mod x0 where x ← Dρ
p,q0 and r ← [0, x0) ∩ Z.

The following theorem shows that our scheme is semantically secure under
the Decisional-Approximate-GCD assumption; below we only consider a subset
of our scheme without the procedure Convert, i.e. without the public parameters
z and σ. To prove the semantic security of the full scheme it suffices to include
z and σ in the above decisional assumption.1

1 Usually in FHE we first show the semantic security of a restricted scheme, and then
a ‘circular security’ assumption is used to get the semantic security of the entire
FHE; that is we assume that the encryption scheme remains secure even when the
adversary is given encryptions of the individual bits of the private-key.

Here we first prove that the scheme is secure without the terms z and σ. If the
scheme is ‘circular secure’ (secure even with encryptions of the invariant switching,
i.e. z and σ) then it remains semantically secure. This circular security assumption
can be avoided by using the classical modulus switching technique [CNT12] instead
of our scale-invariance technique.

320 J.-S. Coron, T. Lepoint, and M. Tibouchi

Theorem 1. The above scale-invariant DGHV scheme without the parameters
z, σ is semantically secure under the (ρ, η, γ)-Decisional-Approximate-GCD
assumption.

To prove the theorem, we use a preliminary Lemma from [KLYC13] stating
that the distribution of the public-key elements is indistinguishable from random
elements in [0, x0) if the Decisional-Approximate-GCD problem is hard; the proof
follows from a standard hybrid argument.

Lemma 2. For the parameters (ρ, η, γ), let pk = (x0, {xi}i, y) and sk = p be
chosen as in the KeyGen procedure. Define pk′ = (x0, {x′

i}i, y) for x′
i uniformly

generated in [0, x0). Then pk and pk′ are indistinguishable under the Decisional-
Approximate-GCD assumption.

Proof (of Theorem 1). Under the attack scenario the attacker first receives the
public key, and an encryption of a random bit b ∈ {0, 1}. The attacker outputs
a guess b′ and succeeds if b′ = b. We use a sequence of games and denote by Si
the event that the attacker succeeds in Gamei.

Game0: This is the attack scenario. We simulate the challenger by running
KeyGen to obtain pk and sk.

Game1: We replace the xi’s in the public key by elements uniformly drawn in
[0, x0). By Lemma 2, we have

|Pr[S1] − Pr[S0]| � τ · εdagcd .

Game2: By the Leftover Hash Lemma (Lemma 5 in Appendix A),
∑
i∈S xi mod

x0 is ε-statistically indistinguishable from uniform modulo x0, with ε = 2(γ−τ)/2.
Therefore we can replace the challenge ciphertext by a uniform integer modulo x0;
this no longer gives any information on b and therefore Pr[S2] = 1/2. Moreover
we have |Pr[S2]−Pr[S1]| � ε. This gap can be made negligible by satisfying the
constraints on the parameters from Section 3.4, which concludes the proof. ��

Remark 2. We show in Section 6 that the (Error-Free) Decisional-Approximate-
GCD problem is equivalent to the computational (Error-Free) Approximate-
GCD problem. Thus our scheme is automatically based on the computational
Approximate-GCD problem as in previous works on the DGHV schemes
[DGHV10, CMNT11, CNT12].

4 Generalization to Batch Scale-Invariant DGHV Scheme

We now describe a generalization of the previous scheme to the batch setting (as
in RLWE-based schemes [BV11a, BV11b] and integer schemes [CCK+13]). The
goal is to pack � plaintext bits m0, . . . ,m�−1 into a single ciphertext. Homomor-
phic addition and multiplication will then apply in parallel and component-wise
on the mi’s.

Scale-Invariant Fully Homomorphic Encryption over the Integers 321

Our batch generalization is similar to [CCK+13]. A ciphertext encrypting a
vector m = (m0, . . . ,m�−1) has the form:

c = CRTq0,p20,...,p2�−1

(
q, . . . , ri + (2r∗i +mi) · pi − 1

2
, . . .

)
(7)

for a tuple of �+1 coprime integers q0, p0, . . . , p�−1, where we denote by CRTbi(ai)
the unique integer u such that 0 � u <

∏
i bi and u mod bi = ai for all i. We call

such ciphertext a batch Type-I ciphertext. Modulo each of the pj’s the ciphertext
c behaves as in the SIDGHV scheme in Section 3. Accordingly, the addition of
two ciphertexts yields a new ciphertext that decrypts to the componentwise sum
modulo 2 of the original plaintexts.

To homomorphically multiply two ciphertexts c1 and c2, as previously one
computes c3 = 2 · c1 · c2 in Z. As previously there exists small integers r3,j such
that

c3 ≡ r3,j +mj ·
p2j − 1

2
(mod pj) for j = 0, . . . , � − 1, (8)

where each mj is the product of the corresponding plain text components of
c1 and c2. We call c3 a batch Type-II ciphertext. Modulo each of the pj ’s, the
ciphertext c3 behaves as a Type-II ciphertext given by Equation (2); therefore
the message bit mj is the MSB of [c mod p2j] for all j. As in Section 3, there exists
an efficient conversion procedure Convert to convert any Type-II ciphertext to
a new Type-I ciphertext. As shown below the procedure Convert is actually the
same as in Section 3, with adapted public parameters.

Namely let z be a vector of Θ rational numbers in [0, 2η) with κ bits of
precision after the binary point (where |c| < 2κ), and let (sj) be a set of �
vectors of Θ bits such that, for all j = 0, . . . , � − 1,

2η

p2j
= 〈sj , z〉 + εj mod 2η

where |εj | � 2−κ. Let s′j = PowersofTwoη(sj) ∈ ZηΘ. Define σ = (σ1, . . . , σηΘ)
so that, for all 1 � i � ηΘ:

σi = CRTq0,p20,...,p2�−1

(
qi, r0,i +

⌊
s′0,i · p0

2η+1

⌉
, . . . , r�−1,i +

⌊
s′�−1,i · p�−1

2η+1

⌉)
is an encryption of (s′j,i)1�j��. For Convert we use the same algorithm as in
Section 3:

Convert(z,σ, c). First compute c = (c · zi� mod 2η)1�i�Θ and then its decom-
position c′ = BitDecompη(c). Finally, output

c′ ← 2〈σ, c′〉 mod x0 .

The proof of the following lemma follows directly from the proof of Lemma 1
applied modulo each of the pj ’s.

322 J.-S. Coron, T. Lepoint, and M. Tibouchi

Lemma 3. The procedure Convert above converts a Type-II ciphertext with noise
size ρ′ into a Type-I ciphertext with noise (ρ′ − η + 5, log2 Θ), for ρ′ − η �
ρ+ log2(ηΘ).

In the full version of this paper [CLT14] we provide a full description of the
resulting batch leveled fully homomorphic scheme. We also show that the batch
scheme is semantically secure under a variant of the previous Decisional-Appro-
ximate-GCD assumption with error-free x0.

5 Practical Implementation

In this section, we provide concrete parameters and timings for a homomorphic
evaluation of AES with our batch scale-invariant DGHV scheme. For homomor-
phic AES evaluations we compare our timings with the RLWE-based leveled-
FHE scheme in [GHS12b] and with the batch (bootstrapping-based) DGHV
scheme in [CCK+13, CLT13]. We use the following existing optimizations:

1. Subset-sum: as in [CMNT11] we use β-bit integers bi instead of bits in the
subset sum, to reduce the value of τ . Namely the condition becomes β · τ �
γ + 2λ.

2. Public-key compression: the technique in [CNT12, CLT13] enables to com-
press the ciphertexts in the public-key from γ to roughly � · η bits.

3. Ciphertext expand [CNT12]: the technique consists in generating the zi’s
with a special structure instead of pseudo-random. Let δ be a parameter to
be specified later. One generates a random z with κ+δ ·Θ ·η bits of precision
after the binary point, and one defines the zi’s for �+ 1 � i � Θ as

zi =
[
z · 2i·δ·η

]
2η

,

keeping only κ bits of precision after the binary point for each zi as previously.
We fix z1, . . . , z� so that the previous equalities hold. Then the ciphertext
expansion can be computed as follows, for all �+ 1 � i � Θ:

ci = 	c · zi� mod 2η = 	c · z · 2i·δ·η� mod 2η .

Therefore computing all the zi’s (except the first �) is now essentially a single
multiplication c · z. A lattice attack against this optimization is described in
[CNT12]; the authors show that the attack is thwarted by selecting δ such
that δ · Θ · η � 3γ.

5.1 Optimization of Scalar Product

We describe an additional optimization for computing the scalar product c′ =
2〈σ, c′〉 computed in Convert, similar to the ciphertext expand optimization
above. The vectors σ and c′ have ηΘ elements. We first divide the vectors σ
and c′ into subvectors of Θ elements, and we compute the scalar products of the

Scale-Invariant Fully Homomorphic Encryption over the Integers 323

subvectors separately. In the following for simplicity we keep the same notations
and now assume that σ and c′ have Θ elements each.

We generate the vector σ ∈ ZΘ such that:

σi =
⌊
σ · 2i·δ·η

⌉
+ vi

for small public corrections |vi| � 2η·� for all 1 � i � Θ, where the large public
random σ has δηΘ bits of precision after the binary point, and γ + δηΘ bits in
total. Then

c′ = 2〈σ, c′〉 = 2

n∑
i=1

⌊
σ · 2i·δ·η

⌉
· c′i + 2〈v, c′〉 = 2

n∑
i=1

(
σ · 2iδη + ui

)
c′i + 2〈v, c′〉

= 2σ ·
(

n∑
i=1

c′i · 2iδη
)

+ 2〈v, c′〉 + u =

⌊
2σ ·

(
n∑
i=1

c′i · 2iδη
)⌉

+ 2〈v, c′〉 + u′ ,

where |ui| � 1/2, |u| � Θ, and u′ ∈ Z is such that |u′| � Θ + 1. Then the scalar
product becomes essentially one multiplication and another scalar product but
with much smaller entries vi’s instead of σi’s.

Therefore with vectors σ and c′ with ηΘ elements each instead of Θ, the
scalar product 2〈σ, c′〉 becomes essentially η multiplications and another scalar
product but with much smaller entries vi’s instead of σi’s. Note that the size of c

′

is now γ+Θδη bits instead of γ; therefore one must increase κ by twice the same
additive factor (to support multiplications of two such converted ciphertexts).

Finally we use the following straightforward optimization: instead of using
BitDecomp and PowersofTwo with bits, we use words of size ω bits instead. This
decreases the size of the vector σ by a factor ω, at the cost of increasing the
resulting noise by roughly ω bits. In particular the scalar product 2〈σ, c′〉 then
requires essentially �η/ω� multiplications and another scalar product but with
smaller entries vi’s instead of σi’s. In our code we used ω = 64.

5.2 Concrete Parameters and AES Evaluation

In Table 1 we derive concrete parameters as in [CNT12, CCK+13], taking into
account the known attacks on the Approximate-GCD problem (see [DGHV10]
and [CMNT11, CNT12, CN12, CH12]).

AES evaluation has become a standard evaluation circuit for fully homomor-
phic encryption [GHS12b, CCK+13]. The main difference between [GHS12b]
and [CCK+13] (apart from the underlying FHE scheme) is that bootstrapping
was used in the later while in the former the parameters could be made large
enough so that no bootstrapping was required to evaluate the full-fledged AES
circuit (thanks to the linear growth of the noise). In our scheme we also chose
large enough parameters so that the entire AES evaluation could be performed
without bootstrapping.

In practice we have evaluated the AES circuit using the state-wise bitslicing
variant described in [CLT13] and we obtained the results in Table 1. In this
variant, the state is represented as an array of 128 ciphertexts, each ciphertext

324 J.-S. Coron, T. Lepoint, and M. Tibouchi

Table 1. Benchmarking of a C++ implementation of our scale-invariant batch DGHV
scheme with a compressed public key on an Intel Xeon E5-2690 at 2.9 GHz on the
state-wise AES implementation, using GMP [Gt13]

Instance λ � ρ η γ × 10−6 τ,Θ pk size KeyGen Encrypt Decrypt Mult Convert

Toy 42 9 42 971 0.27 135 3.2 MB 0.5s 0.0s 0.0s 0.0s 0.1s
Small 52 35 52 976 1.1 525 45 MB 11s 0.2s 0.0s 0.0s 0.3s
Medium 62 140 62 981 4.2 2100 704 MB 5min 3s 0.2s 0.0s 2.8s
Large 72 569 72 986 15.8 8535 11 GB 2h 50min 45s 3.3s 0.1s 33s
Extra 80 1875 86 993 35.9 28125 100 GB 213h 5min 24s 0.3s 277s

Instance λ � = # of enc. AddRoundKey SubBytes ShiftRows MixColumns Total Time/AES
in parallel Time block

Toy 42 9 0.0s 1.5s 0.0s 0.0s 15.1s 1.7s
Small 52 35 0.1s 9.9s 0.0s 0.0s 1min 40s 2.9s
Medium 62 140 0.3s 80.5s 0.0s 0.1s 13min 29s 5.8s
Large 72 569 2.1s 21min 0.0s 0.6s 3h 35min 23s
Extra 80 1875 6.9s 10h 9min 0.1s 1.6s 102h 195s

representing one bit of the state of � different AES blocks encrypted in parallel.
In [CCK+13, CLT13], the authors obtained a time per AES block of 12 min 46 s
on a 4-core machine at 3.4 GHz whereas we obtained 23 s on a 16-core machine
at 2.9 GHz for the same security level (72 bits of security); which is one order of
magnitude faster. For 80 bits of security, timings are competitive with [GHS12b]
(3 min vs. 5 min).

6 Equivalence between the (Error-Free) Decisional and
Computational Approximate-GCD Problems

In this section, we show the equivalence between the (error-free) decisional and
computational Approximate-GCD problems. As a consequence, it follows di-
rectly that the additional noises in the fully homomorphic encryption schemes
over the integers [DGHV10, CMNT11, CNT12, CLT13] can be removed (as in
[CCK+13, Section 3]), simplifying both the schemes and the security proofs.
In the following for simplicity we only consider integers r ∈ [0, 2ρ) instead of
(−2ρ, 2ρ). One can always go from one distribution to another by an appropriate
centering. Therefore, for a η-bit integer p and q0 ∈ [0, 2γ/p), we consider the
following distribution over γ-bit integers:

Dρ(p, q0) = {Choose q ← [0, q0), r ← Z ∩ [0, 2ρ) : Output y = q · p+ r} .

Let us recall the definition of the computational and decisional Error-Free
Approximate-GCD problems.

Definition 3 (Error-Free (Computational) Approximate-GCD). The (ρ,
η, γ)-error-free Approximate-GCD problem is: For a random η-bit prime p, given

a γ-bit 2λ
2

-rough integer x0 = q0 · p where q0 is a random integer in [0, 2γ/p),
and polynomially many samples from Dρ(p, q0), output p.

Scale-Invariant Fully Homomorphic Encryption over the Integers 325

Algorithm 1. Learn-LSB(z, pk)

Input: z = qp+ r ∈ [0, 2γ) with |r| � 2ρ, and x0 = q0 · p.
Output: The least significant bit of q

Generate x1, . . . , xτ ← Dρ(p, q0)
for j = 1 to poly(λ/ε) do

Choose randomly and uniformly a noise rj ← [0, 2ρ
′
), a bit δ ← {0, 1} and a

random subset Sj ⊂ {1, . . . , τ}
Set yj = z + δ + 2rj + 2

∑
i∈Sj

xi mod x0

Call A to get a prediction of (r mod 2) ⊕ δ: aj ← A(yj)
Set bj ← aj ⊕ parity(z)⊕ δ

end for
Output the majority vote among the bj ’s

Definition 4 (Error-Free Decisional Approximate-GCD). The (ρ, η, γ)-
error-free Decisional-Approximate-GCD problem is: For a random η-bit prime p,
given a γ-bit 2λ

2

-rough integer x0 = q0 · p and polynomially many samples from
Dρ(p, q0), determine b ∈ {0, 1} from z = x + r · b mod x0 where x ← Dρ(p, q0)
and r ← Z ∩ [0, x0).

We also consider the following decisional problem.

Definition 5 (Error-Free LSB Approximate-GCD Problem). The (ρ, η,
γ)-error-free LSB Approximate-GCD problem is: For a random η-bit prime p,

given a γ-bit 2λ
2

-rough integer x0 = q0 · p and polynomially many samples from
Dρ(p, q0), determine b ∈ {0, 1} from z = q · p + 2r + b · c where q ← [0, q0),
r ← Z ∩ [0, 2ρ−1) and c ← {0, 1}.

One can show that the problems from Definitions 3 and 5 are equivalent.
Indeed, we can construct a high-accuracy LSB predictor subroutine (cf. Al-
gorithm 1 below) using an adversary A having a non-negligible advantage ε
against the (ρ′, η, γ)-Error-Free LSB Approximate-GCD problem (with ρ′ >
log2(τ +1)+ρ+λ)2, and by using it in Step 2 of the security proof of [DGHV10],
we automatically get the equivalence.

Let us show that Definitions 4 and 5 are equivalent. We consider the sequence
of distributions for ρ � i � η + λ:

D′
ρ(p, q0, i) =

{
Choose q ← [0, q0), r ← Z ∩ [0, 2i) :
Output y = q · p+ 2λ+η−i · r mod x0

}
.

Note that in the distribution D′
ρ(p, q0, i) above the size of the random r is

i-bit instead of ρ-bit. For i = ρ, the distribution of y is the same as the dis-
tribution Dρ(p, q0), up to a factor 2λ+η−ρ modulo x0. One can show that for
i = η + λ, the distribution D′

ρ(p, q0, i) is 2
−λ-statistically close to uniform mod-

ulo x0. Therefore by a standard hybrid argument, if a distinguisher solves the

2 The additional noise is use to drawn the noise due to the public key elements and z.

326 J.-S. Coron, T. Lepoint, and M. Tibouchi

Error-Free Decisional-Approximate-GCD problem with some non-negligible ad-
vantage, then he must be able to distinguish between two successive distributions
D′
ρ(p, q0, i) and D′

ρ(p, q0, i+ 1) for some i.
Let us consider the challenge from the Error-Free LSB Approximate-GCD

problem:
z = q · p+ 2r + b · c

where r ← Z ∩ [0, 2ρ−1) and c ← {0, 1}. We let:

y = 2λ+η−i−1 · (2ρ · u+ z) mod x0

where u ← Z ∩ [0, 2i+1−ρ). This gives:

y = q′ · p+ 2λ+η−i−1 · (2ρ · u+ 2r + b · c) mod x0

= q′ · p+ 2λ+η−i−1 · (2r′ + b · c)

for some q′ ∈ Z, where r′ ← Z ∩ [0, 2i).
If b = 0 then we get y = q′ ·p+2λ+η−i ·r′ which corresponds to the distribution

D′
ρ(p, q0, i). If b = 1 then we get y = q′ ·p+2λ+η−i−1 ·r′′ where r′′ ← Z∩ [0, 2i+1),

which corresponds to the distribution D′
ρ(p, q0, i+ 1). Therefore we can use the

previous distinguisher to solve the Error-Free LSB Approximate-GCD problem.

References

[BGV12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomor-
phic encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012,
pp. 309–325. ACM (2012)

[Bra12] Brakerski, Z.: Fully homomorphic encryption without modulus switching
from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012)

[BV11a] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. In: FOCS 2011, pp. 97–106. IEEE Computer Society
(2011)

[BV11b] Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from
Ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

[CCK+13] Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M.,
Yun, A.: Batch fully homomorphic encryption over the integers. In: Jo-
hansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 315–335. Springer, Heidelberg (2013)

[CH12] Cohn, H., Heninger, N.: Approximate common divisors via lattices. In:
ANTS X (2012)

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Batch fully homomorphic encryp-
tion over the integers. Cryptology ePrint Archive, Report 2013/036 (2013),
http://eprint.iacr.org/

[CLT14] Coron, J.-S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic
encryption over the integers. Full version of this paper. Cryptology ePrint
Archive, Report 2014/032 (2014), http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/

Scale-Invariant Fully Homomorphic Encryption over the Integers 327

[CMNT11] Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic
encryption over the integers with shorter public keys. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011)

[CN12] Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common di-
visors: Breaking fully-homomorphic-encryption challenges over the inte-
gers. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 502–519. Springer, Heidelberg (2012)

[CNT12] Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and
modulus switching for fully homomorphic encryption over the integers. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 446–464. Springer, Heidelberg (2012)

[DGHV10] van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomor-
phic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzen-
macher, M. (ed.) STOC, pp. 169–178. ACM (2009)

[GH11] Gentry, C., Halevi, S.: Implementing Gentry’s fully-homomorphic encryp-
tion scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 129–148. Springer, Heidelberg (2011)

[GHS12a] Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with
polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012)

[GHS12b] Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES
circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 850–867. Springer, Heidelberg (2012)

[Gt13] Torbjörn Granlund and the GMP development team. GNU MP: The GNU
Multiple Precision Arithmetic Library, 5.1.3 edition (2013),
http://gmplib.org/

[HILL99] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gen-
erator from any one-way function. SIAM Journal on Computing 28, 12–24
(1999)

[KLYC13] Kim, J., Lee, M.S., Yun, A., Cheon, J.H.: CRT-based fully homomorphic
encryption over the integers. Cryptology ePrint Archive, Report 2013/057
(2013), http://eprint.iacr.org/

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: Gabow, H.N., Fagin, R. (eds.) STOC 2005, pp. 84–93. ACM
(2005)

[SV10] Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with rela-
tively small key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D.
(eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

[SV11] Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. IACR
Cryptology ePrint Archive, 2011:133 (2011)

A Leftover Hash Lemma

We recall the classical Leftover Hash Lemma (LHL), following [DGHV10]. A
family H of hash functions from X to Y , both finite sets, is said to be pairwise-
independent if for all distinct x, x′ ∈ X , Prh←H [h(x) = h(x′)] = 1/|Y |. A dis-
tribution D is ε-uniform if its statistical distance from the uniform distribution

http://gmplib.org/
http://eprint.iacr.org/

328 J.-S. Coron, T. Lepoint, and M. Tibouchi

is at most ε, where the statistical distance Δ(D1, D2) between two distributions
D1, D2 over a finite domain X is given by Δ(D1, D2) =

1
2

∑
x∈X |D1(x)−D2(x)|.

Lemma 4 (Leftover Hash Lemma [HILL99]). Let H be a family of pairwise
hash functions from X to Y . Suppose that h ← H and x ← X are chosen
uniformly and independently. Then, (h, h(x)) is 1

2

√
|Y |/|X |-uniform over H×X.

From the LHL one can deduce the following Lemma for finite sums modulo an
integer M , as proved in [DGHV10]:

Lemma 5. Set x1, . . . , xm ← ZM uniformly and independently, set s1, . . . , sm ←
{0, 1}, and set y =

∑m
i=1 si · xi mod M . Then (x1, . . . , xm, y) is 1/2

√
M/2m-

uniform over Zm+1
M .

Proof. We consider the following hash function family H from {0, 1}m to ZM .
Each member h ∈ H is parameterized by the elements (x1, . . . , xm) ∈ ZmM . Given
s ∈ {0, 1}m, we define h(s) =

∑m
i=1 si · xi ∈ ZM . The hash function family is

clearly pairwise independent. Therefore by Lemma 4, (h, h(x)) is 1/2
√

M/2m-
uniform over Zm+1

M . ��

Enhanced Chosen-Ciphertext Security

and Applications

Dana Dachman-Soled1, Georg Fuchsbauer2, Payman Mohassel3,
and Adam O’Neill4

1 University of Maryland
danadach@ece.umd.edu

2 Institute of Science and Technology Austria
georg.fuchsbauer@ist.ac.at

3 University of Calgary
pmohasse@cpsc.ucalgary.ca

4 Georgetown University
adam@cs.georgetown.edu

Abstract. We introduce and study a new notion of enhanced chosen-
ciphertext security (ECCA) for public-key encryption. Loosely speaking,
in the ECCA security experiment, the decryption oracle provided to the
adversary is augmented to return not only the output of the decryption
algorithm on a queried ciphertext but also of a randomness-recovery
algorithm associated to the scheme. Our results mainly concern the case
where the randomness-recovery algorithm is efficient.

We provide constructions of ECCA-secure encryption from adaptive
trapdoor functions as defined by Kiltz et al. (EUROCRYPT 2010), re-
sulting in ECCA encryption from standard number-theoretic assump-
tions. We then give two applications of ECCA-secure encryption: (1) We
use it as a unifying concept in showing equivalence of adaptive trapdoor
functions and tag-based adaptive trapdoor functions, resolving an open
question of Kiltz et al. (2) We show that ECCA-secure encryption can
be used to securely realize an approach to public-key encryption with
non-interactive opening (PKENO) originally suggested by Damg̊ard and
Thorbek (EUROCRYPT 2007), resulting in new and practical PKENO
schemes quite different from those in prior work.

Our results demonstrate that ECCA security is of both practical and
theoretical interest.

1 Introduction

This paper introduces and studies a new notion of security for public-key en-
cryption (PKE) we call enhanced chosen-ciphertext security (ECCA). Besides
being interesting in its own right, we find that ECCA security plays a funda-
mental role in contexts where randomness-recovering encryption (as discussed
informally in e.g. [29]) is important, such as adaptive trapdoor functions [25] and
PKE with non-interactive opening [15]. We also believe ECCA will find further
applications in the future. Below we describe our results concerning ECCA in
more detail; for a pictorial summary, see Figure 1.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 329–344, 2014.
c© International Association for Cryptologic Research 2014

330 D. Dachman-Soled et al.

1.1 ECCA Security Definition and Variants

Recall that in the standard formulation of CCA security [30], the adversary, given
a public key pk, must guess which of the two possible messages its challenge
ciphertext c encrypts, while being allowed to query a decryption oracle on any
ciphertext c′ different from c. Very informally, our “enhancement” is that the
decryption oracle, when queried on a ciphertext c′, returns not only the output
of the decryption algorithm of the scheme run on c′, but also of an associated
randomness-recovery algorithm. This randomness-recovery algorithm, given sk
and an honestly generated encryption c ofm with coins r, is guaranteed to output
some coins r′ such that the encryption of m with coins r′ is also c. (However,
like the decryption algorithm — which is only guaranteed to output the right
message on honestly generated ciphertexts — its behavior on other, maliciously
generated ciphertexts depends on its specification.)

Note that in general we do not require that r = r′ above, but in the special
case that this holds we say that the scheme is uniquely randomness-recovering.
Looking ahead, our constructions of ECCA-secure PKE will be uniquely RR,
but for some applications this is not strictly necessary as long as the scheme has
perfect correctness (i.e., zero decryption error).

Our study of ECCA security is largely motivated by the related concept of
randomness-recovering (RR) encryption, in which case the randomness-recovery
algorithm is efficient. Indeed, we show that not every CCA-secure RR encryption
scheme is ECCA-secure (cf. Proposition 1). This means that in applications of
RR encryption that require ECCA security, it may not be sufficient to use a
scheme proven CCA-secure.

1.2 Constructions of ECCA-Secure PKE

ECCA-Secure PKE from Adaptive TDFs. The first standard-model con-
struction of CCA-secure randomness-recovering PKE was achieved by Peikert
and Waters [29], based on their new concept of “lossy” trapdoor functions
(TDFs). A line of subsequent work [31,25] focused on achieving CCA-secure
PKE from progressively weaker assumptions on TDFs.1 This leads one to won-
der whether these assumptions suffice for ECCA-secure RR PKE as well. Ideally,
one would achieve ECCA-secure, uniquely RR PKE — the strongest form of
randomness-recovery — based on adaptive TDFs, the weakest of these assump-
tions. (Intuitively, adaptivity is a form of CCA security for TDFs, asking that
the TDF remain one-way even when the adversary may query an inversion oracle
on points other than its challenge.) This is exactly what our results obtain.

Challenges and Techniques. Our construction is technically novel, as the
construction of CCA-secure encryption from adaptive TDFs in the earlier work

1 Wee [32] showed that a weaker notion of adaptivity for trapdoor relations suffices;
however, as this is not an assumption on trapdoor functions it does not seem to
yield RR encryption and won’t be useful for our results.

Enhanced Chosen-Ciphertext Security and Applications 331

of [25] seems to be neither RR nor ECCA-secure (we achieve both, and more-
over unique randomness recovery). Indeed, in the construction of [25] a general
transform of [27] is used to convert a one-bit CCA-secure PKE from ATDFs to
a multi-bit CCA-secure one. However, this transform does not seem to preserve
either randomness-recovery nor ECCA-security of the one-bit scheme. Further-
more, the one-bit scheme of [25] — which works by re-sampling a domain point
x until the hardcore bit of x equals the message — is not uniquely RR, since de-
cryption does not recover the “thrown away” x’s. (Note that the “näıve” one-bit
scheme from ATDFs that simply XOR’s the message bit with a hardcore bit of
the ATDF is trivially malleable by flipping the last bit of a ciphertext and thus
is not CCA-secure.)

We solve these problems via a novel application of detectable CCA (DCCA)
security, introduced recently by Hohenberger et al. [24]. Informally, DCCA is de-
fined relative to a “detecting” function F (which must satisfy some definitions)
that determines whether two ciphertexts are related; in the DCCA experiment,
the adversary is not allowed to ask for decryptions of ciphertexts related to the
challenge ciphertext according to F . The work of [24] gives a transform from
any DCCA-secure PKE to a CCA-secure encryption one. In particular, bit-by-
bit encryption using a 1-bit CCA-secure encryption scheme is DCCA-secure,
thus encompassing the earlier work of [27]. Our novelty is that we construct a
DCCA-secure scheme from ATDFs also using bit-by-bit encryption, but where
the underlying one-bit encryption scheme is not CCA-secure — namely, we use
the “näıve” one-bit scheme described above. We show this one-bit scheme is
uniquely RR and moreover satisfies a notion of DCCA with analogous “en-
hanced” security (where the decryption oracle also returns coins).

More Efficient Schemes.We note that the above is a feasibility result in terms
of minimal assumptions. We also show more efficient constructions of ECCA-
secure encryption from tag-based ATDFs as defined in [25] and from ATDFs
having a large number of simultaneous hardcore bits (using the KEM/DEM
paradigm). See Section 4.2 and the full version [14].

1.3 Applications to Adaptive Trapdoor Functions

Going the other direction, we next give applications of ECCA-security to the
theory of adaptive TDFs. Namely, we show (1) adaptive TDFs are in fact equiva-
lent to uniquely randomness-recovering ECCA-secure PKE. This helps us better
understand the power and complexity of ATDFs. We furthermore show (2) “tag-
based” ATDFs as defined in [25] are likewise equivalent to uniquely randomness-
recovering ECCA-secure PKE. A corollary of (1) and (2) is that tag-based and
non-tag-based ATDFs are themselves equivalent, which resolves a foundational
question left open by [25]. We note that it is in fact much easier to construct
uniquely RR ECCA-secure PKE from tag-based ATDFs than from non-tag-
based ATDFs. (The rough intuition is that in the tag-based case, a signature
scheme can be used to “glue together” many one-bit encryptions via a com-
mon tag, namely a single verification key.) Indeed, the apparent extra power

332 D. Dachman-Soled et al.

of tag-based ATDFs makes it surprising that they turn out to be equivalent to
(non-tag-based) ATDFs. We note that unlike the TDF case, the equivalence of
tag-based and standard PKE is much easier to prove [26].

1.4 Applications to PKE with Non-interactive Opening

PKENO. Public-key encryption with non-interactive opening (PKENO), intro-
duced by Damg̊ard an Thorbeck [16] and studied in detail by [15,19,20], allows
a receiver to non-interactively prove to anyone that a ciphertext c decrypts to a
message m. As discussed in the above-mentioned work, PKENO has applications
to multiparty computation (e.g., auctions and elections), secure message trans-
mission, group signatures, and more. But despite numerous applications, such
schemes have been difficult to realize. Secure constructions of PKENO currently
exist from identity-based encryption [15] and robust non-interactive threshold
encryption [20], which are somewhat heavy-weight primitives.

Resurrecting a Simple Approach. We show that ECCA-secure encryption
can be used to securely realize (for the first time) a simple approach to PKENO
originally suggested by [16]. The basic idea is to use a randomness-recovering
PKE and have the receiver provide the recovered coins as the proof. However,
several issues need to be addressed for this approach to work. One problem al-
ready discussed in [20, Sect. 4.1] is that there must be a way for the receiver
to prove the claimed behavior of the decryption algorithm on ciphertexts that
are not an output of the encryption algorithm, and for which necessarily no
underlying coins exist. (Note that such ciphertexts may or may not decrypt
to ⊥ in general.) More fundamentally, we observe that the encryption scheme
must be ECCA secure (which was not even defined in prior work); standard
chosen-ciphertext security is not enough, because here the adversary in the cor-
responding PKENO security game has the ability to see random coins underlying
ciphertexts of its choosing. We now describe our results in more detail.

PKENO-Compatible ECCA Encryption. First, we formalize a notion of
PKENO-compatible ECCA-secure encryption, for which we can overcome the
above problems and safely use the underlying message and randomness as the
non-interactive opening of a ciphertext. There are two requirements for such a
scheme: (1) It has a “partial-randomness” recovery algorithm that, informally,
recovers enough coins to uniquely identify the underlying message. (Here “full”
randomness-recovery is not needed, and would not permit constructions where
the ciphertext contains randomized parts that are verifiable without coins, like a
one-time signature or zero-knowledge proof.) This should also be true for cipher-
texts outside the range of the encryption algorithm but which do not decrypt
to ⊥.2

2 For example, consider a scheme that always outputs ciphertexts whose last bit is
“0,” but whose decryption algorithm ignores this last bit. Then clearly we can still
recover the randomness underlying ciphertexts ending in “1” despite the fact that
such ciphertexts are outside the range of the encryption algorithm.

Enhanced Chosen-Ciphertext Security and Applications 333

(2) The scheme has ciphertext verifiability, meaning one can check without the
secret key (but possibly with the help of the recovered partial coins) whether
the decryption of a ciphertext is ⊥. We define ECCA security of such schemes
with respect to the partial-randomness recovery algorithm.

We also define an analogous notion of PKENO-compatible ECCA-secure tag-
based PKE. We show that one can efficiently transform such a scheme into a
(non-tag-based) PKENO-compatible ECCA-secure PKE scheme using either of
the two “BCHK transforms” [9]. (Recall that [9] give a “basic” transform using
one-time signatures and a “more efficient” transform based on symmetric-key
primitives.)

Constructing PKENO. We show a generic way to achieve PKENO-
compatibility from any ECCA-secure RR PKE by adding a non-interactive zero-
knowledge (NIZK) proof of “well-formedness” to a ciphertext, namely that there
exist some underlying message and random coins. (The idea of adding such a
proof to achieve PKENO comes from [16,20], although not in connection with
ECCA.) For this approach to work, the PKE scheme does not need to be uniquely
RR, but it needs perfect correctness. Moreover, we show the NIZK needs to be
simulation-sound.

While this construction is generic, it is also inefficient. Towards more efficient
schemes, we show our construction of ECCA-secure tag-based PKE from tag-
based ATDFs can be made PKENO-compatible if its starting tag-based ATDF
has “range verifiability”, meaning that anyone can verify preimage existence of a
range point. We propose two efficient such tag-based ATDFs. The first instanti-
ates a general tag-based ATDF construction from [25] using a lossy and all-but-
one TDF as defined in [29]. Specifically, we use the lossy and all-but-one TDFs
of Freeman et al. [18] based on the decision-linear (DLIN) assumption. We show
that in this case preimage existence is a “Groth-Sahai” statement [22], for which
we know efficient NIZK constructions in bilinear groups.3 Interestingly, we show
simulation-soundness is not needed in this case, illustrating another efficiency
benefit over the generic approach. The second is a tag-based ATDF from [25]
based on the “instance-independent” RSA assumption, which we observe intrin-
sically has range verifiability because it is a permutation. The resulting PKENO
scheme based on II-RSA is quite practical.

1.5 Related Work

ECCA is similar in spirit to coin-revealing selective opening attack (SOA-
C) [10,17,3,8]. In the latter setting, there are say n ciphertexts encrypting related
(but unknown) messages under independent random coins, and the adversary re-
quests the plaintexts and random coins corresponding to some subset of them;
the question is whether the “unopened” ciphertexts remain secure. However, it

3 Technically, when the NIZK is added, the tag-based ATDF is not a trapdoor func-
tion anymore but is already a tag-based PKE scheme (because the NIZK part is
randomized), but we gloss over this technicality in our informal exposition.

334 D. Dachman-Soled et al.

Fig. 1. Relations between various primitives studied in this paper. “(U)RR-ECCA”
is (uniquely) randomness-recovering enhanced-chosen-ciphertext secure PKE, “(TB-)
ATDF” is (tag-based) adaptive trapdoor function, and “PKENO” is public-key en-
cryption with non-interactive opening.

seems to us that SOA-C is neither implied by, nor implies, ECCA. It is an inter-
esting question whether ECCA has any applications in the domain of SOA-C.

An analogue of ECCA (in the case of inefficient randomness-recovery) has
been previously defined for commitment schemes by Canetti et al. [12], which
they call CCA-secure commitments. These are commitment schemes that remain
secure when the adversary has access to an unbounded decommitment oracle that
it can call on commitments other than the challenge. They are interested in such
schemes that are interactive but in the plain model, meaning there are no public
keys. Thus, our setting seems incomparable (as we disallow interaction but allow
public keys). However, we view their work as supporting the claim that ECCA
is a natural notion of security to consider for encryption.

Other variants of CCA-security for encryption considered before include re-
playable CCA security [11], constrained CCA security [23], and detectable CCA
security [24]. Notably, these are all relaxations of CCA security, whereas we con-
sider a strengthening. Another strengthening of CCA security previously con-
sidered is plaintext awareness [7,2,5].

2 Preliminaries

2.1 Notation and Conventions

If A is an algorithm then y ← A(x1, . . . , xn; r) means we run A on inputs
x1, . . . , xn and coins r and denote the output by y. By y ←$A(x1, . . . , xn) we
denote the operation of picking r at random and letting y ← A(x1, . . . , xn; r).
Unless otherwise indicated, an algorithm may be randomized. The security pa-
rameter is denoted k ∈ N. We say that an algorithm is efficient if it is proba-
bilistic polynomial time in the security parameter. All algorithms we consider
are efficient unless indicated otherwise.

Enhanced Chosen-Ciphertext Security and Applications 335

2.2 Public-Key Encryption

A public-key encryption scheme [21] with message space MsgSp is a triple of
algorithms PKE = (Kg,Enc,Dec). The key-generation algorithm Kg returns a
public key pk and matching secret key sk. The encryption algorithm Enc takes pk
and a plaintextm to return a ciphertext. The deterministic decryption algorithm
Dec takes sk and a ciphertext c to return a plaintext.

Correctness. An issue that will be more important than usual in our context is
correctness, which refers to how likely it is that an encrypted message decrypts
to some other message. By default we require perfect correctness : for all k ∈ N
and m ∈ MsgSp(1k),

Pr[Dec(sk,Enc(pk,m)) = m : (pk, sk)←$Kg(1k)] = 1 .

If instead we allow this probability to be 1 − ν(k) we say that that PKE has
decryption error ν(·).

Tag-Based. PKE is tag-based [26] with tag space TagSp if Enc and Dec take
an additional input t ∈ TagSp(1k) called the tag. Again, by default we re-
quire perfect correctness : for all k ∈ N, m ∈ MsgSp(1k), and t ∈ TagSp(1k),
Pr[Dec(sk, t,Enc(pk, t,m)) = m : (pk, sk)←$Kg(1k)] = 1. Decryption error is
defined analogously.

Other Standard Primitives.We recall the definitions of other standard prim-
itives such as (injective) trapdoor functions in the full version [14].

3 Enhanced Chosen-Ciphertext Security

Randomness Recovery. We start with a definition of randomness recovery for
public-key encryption. For anypublic-key encryption schemePKE=(Kg,Enc,Dec)
we specify an additional randomness-recovery algorithm Rec that takes a secret
key sk and ciphertext c to return coins r. To our knowledge, this notion has been
discussed informally in the literature (e.g. in [29]) but our formalization is novel.
Suppose Enc draws its coins from Coins. We require that for all messages m ∈
MsgSp(1k),

Pr[Enc(pk,m; r′) �= c : (pk, sk)←$Kg ; r ←$Coins(1k) ;

c ← Enc(pk,m; r) ; r′ ← Rec(sk, c)]

is negligible. Note that we do not necessarily require r = r′; that is, the ran-
domness recovery algorithm need not return the same coins used for encryption;
indeed, it may not be possible, information theoretically, to determine r from
sk and c. We also do not require Rec to be efficient in general. But in the spe-
cial case that Rec is polynomial-time we say that PKE is randomness recovering
(RR). Moreover, if the forgoing condition on Rec holds for r′ = r we say that

336 D. Dachman-Soled et al.

PKE is uniquely randomness recovering.4 In the definition that follows these are
important special cases, but they are not assumed by the definition.

In the tag-based case, Rec also takes a tag as input and we require that for
all m ∈ MsgSp(1k) and t ∈ TagSp(1k), the following is negligible:

Pr[Enc(pk, t,m; r′) �= c : (pk, sk)←$Kg ; r ←$Coins(1k) ; c ← Enc(pk, t,
m; r) ; r′ ← Rec(sk, t, c)] is negligible. Randomness-recovery and unique RR are
defined analogously.

ECCA Definition. We are now ready to state our new definition. Let PKE =
(Kg,Enc,Dec) be a public-key encryption scheme. We associate to PKE and an
adversary A = (A1, A2) an enhanced chosen-ciphertext attack experiment:

Experiment Expind-ecca
PKE,A (k)

b←$ {0, 1} ; (pk, sk)←$Kg(1k)

(m0, m1, St)←$A
Dec∗(sk,·)
1 (pk)

c∗ ←$Enc(pk,mb)

d←$A
Dec∗(sk,·)
2 (pk, c∗, St)

If d = b then return 1 else return 0

Oracle Dec∗(sk, c)
m ← Dec(sk, c)
r′ ← Rec(sk, c)
Return (m, r′)

Above we require that the output of A1 satisfies |m0| = |m1| and that A2 does
not query c∗ to its oracle. Define the ind-ecca advantage of A against PKE as

Advind-ecca
PKE,A (k) = 2 · Pr

[
Expind-ecca

PKE,A (k) outputs 1
]

− 1 .

We say that PKE is enhanced chosen-ciphertext secure (ECCA-secure) if
Advind-ecca

PKE,A (·) is negligible for every efficient A.
Note that when PKE is randomness recovering, the ECCA experiment is effi-

cient. In general, however, one can still ask whether a scheme meets the notion
of ECCA even when it is not RR. In this case, it may still be possible to simulate
the ECCA experiment efficiently since in the proof of security we are addition-
ally given the code of the adversary A (and so, for example, the randomness for
encryption might be efficiently extractable from the code of A using non-black-
box techniques). We leave exploration of ECCA security relative to an inefficient
Rec algorithm for future work.

(Not) Allowing Decryption Error. Unless otherwise specified, we will al-
ways require that an ECCA-secure PKE scheme has perfect correctness. Indeed,
in the full version [14] we show how to construct an ECCA-secure, randomness-
recovering PKE scheme given any CCA-secure one if we allow negligible de-
cryption error — however, an ECCA-secure scheme with negligible decryption
error will not be sufficient in the applications we consider.5 This observation and
example are due to [1].

4 Looking ahead, it turns out that in some applications of ECCA, non-unique ran-
domness recovery is OK as long as the scheme has perfect correctness.

5 The resulting ECCA-secure scheme does not have unique randomness recovery,
though. In the case of unique randomness recovery, schemes with negligible decryp-
tion error may still have some applications, but for simplicity we do not discuss it
in the paper.

Enhanced Chosen-Ciphertext Security and Applications 337

CCA Does Not Imply ECCA. A next natural question to ask is whether, as-
suming perfect correctness, ECCA security is a stronger requirement than CCA
security. We answer this question affirmatively by showing that, given a perfectly
correct, CCA-secure randomness-recovering PKE scheme, we can construct an-
other RR PKE scheme that is still CCA-secure but is not ECCA-secure. This
motivates the construction of specialized ECCA-secure schemes in Section 4.

Consider a RR CCA-secure scheme PKE = (Kg,Enc,Dec). We transform PKE
to a new scheme PKE∗ = (Kg∗,Enc∗,Dec∗) which is still CCA-secure but is not
ECCA-secure. The idea is to embed a “test” ciphertext in the public key of the
new scheme, such that its decryption algorithm returns the secret key if given as
input some randomness consistent with this test ciphertext. Formally, PKE∗ is
constructed as follows (where we implicitly assume the public key is contained
in the secret key):

Alg Kg∗(1k)
(pk, sk)←$Kg(1k)
r←$ {0, 1}k
c∗ ← Enc(pk, 0 ; r)
Return ((pk, c∗), sk)

Alg Enc∗((pk, c∗),m)
c←$Enc(pk,m)
Return c‖0

Alg Dec∗(sk, c‖b)
If b = 1 and Enc(pk, 0; c) = c∗

then return sk
Return Dec(sk, c)

Note that using the extra “flag bit” appended to ciphertexts ensures that PKE∗

maintains perfect correctness. We prove the following proposition in the full
version [14].

Proposition 1. Assuming PKE is CCA-secure and has perfect correctness, PKE∗

is CCA-secure but is not ECCA-secure.

Tag-Based Definition. Let TB-PKE = (Kg,Enc,Dec) be a tag-based public-
key encryption scheme with tag space TagSp. We associate to TB-PKE and
an adversary A = (A1, A2, A3) a tag-based enhanced chosen-ciphertext attack
experiment,

Experiment Expind-tb-ecca
TB-PKE,A (k)

b←$ {0, 1} ; (pk, sk)←$Kg(1k)
t←$A1(1

k)

(m0,m1, St)←$A
Dec∗(sk,·,·)
2 (pk, t)

c←$Enc(pk, t,mb)

d←$A
Dec∗(sk,·,·)
3 (pk, t, c, St)

If d = b then return 1 else return 0

Oracle Dec∗(sk, t, c)
m ← Dec(sk, t, c)
r′ ← Rec(sk, t, c)
Return (m, r′)

Above we require that the output of A2 satisfies |m0| = |m1| and that A3 does
not make a query of the form Dec∗(sk, t, ·) to its oracle. Define the ind-tb-ecca
advantage of A against PKE as

Advind-tb-ecca
PKE,A (k) = 2 · Pr

[
Expind-tb-ecca

PKE,A (k) outputs 1
]

− 1 .

We say that TB-PKE is tag-based enhanced chosen-ciphertext secure (TB-ECCA-
secure) if Advind-tb-eccaPKE,A (·) is negligible for every efficient A.

338 D. Dachman-Soled et al.

4 Constructions of ECCA-Secure PKE

We give several constructions of ECCA secure encryption, which are based on
notions of adaptivity for trapdoor functions introduced in [25] (see the full ver-
sion [14]).

4.1 ECCA Security from Adaptive Trapdoor Functions

Here we construct ECCA-secure public-key encryption from adaptive TDFs. We
note that our construction applies to general ATDFs; in the case of ATDFs with
a linear number of hardcore bits we obtain a much more efficient construction;
see the full version [14] for details.

Overview and Intuition. As in [25] (which constructs CCA-secure PKE from
ATDFs), our approach involves first constructing a one-bit encryption scheme
and then transforming it into a multi-bit scheme. In doing so we heavily use the
recent approach of Hohenberger et al. [24] and their notion of detectable CCA
security (DCCA); this should be contrasted with [25] who rely on [27] instead.
Let us explain why.

Both [24] and [27] provide a way to “tie together” many one-bit ciphertexts via
“inner” and “outer” encryption layers but differ in which layer contains the one-
bit ciphertexts. In [27], the inner layer is a multi-bit q-bounded non-malleable
encryption scheme while the outer layer is the concatenation of one-bit cipher-
texts. This means that without a randomness-recovering inner layer, [27] does
not preserve randomness-recovery of the outer one-bit scheme. Such an inner
layer seems hard to construct, as known approaches to non-malleability [28,13]
crucially use randomness in an un-invertible way in their encryption algorithms
(e.g., to generate a signature key-pair or a zero-knowledge proof).

On the other hand, in Hohenberger et al. [24] it is the inner layer that is
the concatenation of one-bit ciphertexts, which obviates the problem since this
inner layer is also used to encrypt randomness for use by the outer layer and
thus the latter does not need to be randomness-recovering for the overall scheme
to be so. Surprisingly, we also show that when this inner layer is RR then in all
hybrid games used for the security proof the simulator is even able to the return
randomness corresponding to valid ciphertexts, and thus the overall scheme also
has ECCA security.

Enhanced DCCA Security. The notion of detectable chosen-ciphertext
(DCCA) security was recently introduced by [24]. We define here the notion
of enhanced DCCA (EDCCA) security, which parallels the notion of enhanced
CCA security. In our definition, we require that the DCCA scheme be both
enhanced and RR, because our application of DCCA requires both properties.

A detectable encryption scheme consists of a public-key encryption scheme
(Kg,Enc,Dec) and a detecting function F : (pk, c′, c) �→ b ∈ {0, 1} mapping a
public key and two ciphertexts to a bit. The detecting function must satisfy
unpredictability, which informally means that given the description of F and
a public key pk, it should be hard to find a ciphertext c′ that is related to a

Enhanced Chosen-Ciphertext Security and Applications 339

“challenge” ciphertext c, in that F(pk, c′, c) = 1, before being given c. See [24]
for the formal definition.

Definition. We define enhanced detectable chosen ciphertext security for a RR
scheme PKE = (Kg,Enc,Dec,Rec) and an unpredictable detecting function F
similarly to ECCA in Section 3, except that the decryption oracle for A2 returns
⊥ whenever it is queried on a ciphertext c such that F(pk, c∗, c) = 1, where c∗

is the challenge ciphertext. (see [14]).

EDCCA Security from ATDFs. Let TDF = (Tdg,Eval, Inv) be a trapdoor
function with hardcore bit hc. We define the following multi-bit PKE scheme
EDCCA[TDF] = (KgD,EncD,DecD) with message space {0, 1}�:

Alg KgD(1
k)

(ek, td)

←$Tdg(1k)
Return (ek, td)

Alg EncD(ek,m = m1, . . . , m�)

x1 ←$ {0, 1}k; . . . ;x� ←$ {0, 1}k
Return C = (Eval(ek, x1),

hc(x1)⊕m1, . . . ,
Eval(ek, x�), hc(x�)⊕m�)

Alg Dec(td, C)
Parse C = (y1, β1, . . . , y�, β�)
For 1 ≤ i ≤ 	

mi = hc(Inv(td, yi))⊕ βi

Return m1, . . . ,m�

In [14] we show that if TDF is adaptive one-way then this scheme is ED-
CCA with respect to the detection function FD, which on input pk, C∗ =
(y∗1 , β

∗
1 , . . . , y

∗
� , β

∗
�) and C = (y1, β1, . . . , y�, β�) outputs 1 iff for some i, j ∈ [�]:

y∗i = yj .
Scheme EDCCA[TDF] is perfectly correct and uniquely RR, which will be cru-

cial for our application to ATDFs in Section 5. We also wish to stress that it gives
a novel example of a DCCA secure scheme; our scheme is not the concatenation
of ciphertexts for a 1-bit CCA-secure scheme. Indeed, a ciphertext of the form
(Eval(ek, x), hc(x) ⊕ m) is trivially malleable by flipping the second component.

From EDCCA to ECCA Security. We next show that the construction of a
CCA-secure scheme from a DCCA-secure one in [24] allows us to go from ED-
CCA to ECCA. That is, we show that the construction preserves “enhanced”
security; it also preserves (unique) RR. Specifically, we instantiate the construc-
tion of [24] with the following components:

ΠD, the above RR EDCCA scheme EDCCA[TDF];

ΠCPA, a CPA-secure scheme with perfect correctness (which can also be instan-
tiated with EDCCA[TDF]); and

Π1b, a perfectly correct 1-bounded CCA-secure6 (which can be constructed from
a multi-bit CPA scheme via the construction from [13]).

Note that all these components can be constructed in a black-box manner from
ATDFs. In the full version [14] we prove that the following is a multi-bit encryp-
tion scheme with message space {0, 1}� that is uniquely RR, ECCA-secure and
perfectly correct.

6 1-bounded CCA security means that the adversary may make only a single
decryption query.

340 D. Dachman-Soled et al.

Alg KgECCA(1
λ)

(pkin, skin)←$KgD(1
λ)

(pkA, skA)←$Kg1b(1
λ)

(pkB , skB)←$KgCPA(1
λ)

pk ← (pkin,pkA,pkB)
sk ← (skin, skA, skB)
Return (pk, sk)

Alg EncECCA(pk,m)

(rA, rB)←$ {0, 1}λ
Cin ←$EncD(pkin,

(rA, rB ,m))
CA ← Enc1b(pkA, Cin; rA)
CB←EncCPA(pkB , Cin; rB)
Return C = (CA, CB)

Alg DecECCA(sk, C)
Cin ←$Dec1b(skA, CA)
(rA, rB,m)←DecD(skin, Cin)
rin ← RecD(skin, Cin)
If CA = Enc1b(pkA, Cin; rA)
∧ CB = EncCPA(pkB , Cin; rB)

return (rA, rB ,m, rin)
Else return ⊥

4.2 ECCA Security from Tag-Based ATDFs

We give more efficient constructions of ECCA-secure public-key encryption from
tag-based adaptive trapdoor functions, introduced by Kiltz et al. [25]. Due to
space constraints, these constructions are deferred to [14].

5 Application to Adaptive Trapdoor Functions

We use ECCA-security as a unifying concept to show that the notions of adaptive
TDFs and tag-based adaptive ATDFs introduced by Kiltz et al. [25] are equiv-
alent (via fully black-box reductions), resolving a foundational open question
raised in [25]. To do so, we show that both primitives are implied by uniquely
randomness-recovering ECCA-secure PKE. Combined with Section 4, this shows
that in fact uniquely RR PKE, adaptive TDFs, and tag-based ATDFs are all
equivalent. Due to space constraints, these implications are deferred to the full
version [14].

6 Application to PKE with Non-interactive Opening

In this section, we show that ECCA-secure encryption is a natural building block
for public key encryption with non-interactive opening (PKENO) [16,15,19,20].
PKENO allows the receiver to non-interactively prove that a given ciphertext de-
crypts to a claimed message. Our constructions yield new and practical PKENO
schemes.

PKENO extends a public-key encryption scheme PKE = (Kg,Enc,Dec) by the
following algorithms: Prove takes a secret key sk and a ciphertext c, and outputs
a proof π. Ver takes a public key pk, a ciphertext c, a plaintext m and a proof π,
and outputs 0 or 1. We require proof correctness : for all ciphertexts (i.e. strings)
c, Pr[Ver(pk, c,Dec(sk, c),Prove(sk, c)) �= 1 : (pk, sk)←$Kg(1k)] is negligible.

Security. In [15,19] security of PKENO is defiend by indistinguishability under
chosen-ciphertext and -proof attacks (IND-CCPA) and proof soundness. The for-
mer guarantees that a ciphertext hides the plaintext even when the adversary
sees decryptions of and proofs for other ciphertexts; the latter formalizes that no
adversary should be able to produce a proof for a message and ciphertext that
is not the encryption of that message.

Enhanced Chosen-Ciphertext Security and Applications 341

Experiment Expind-ccpa
PKENO,A(k)

b←$ {0, 1} ; (pk, sk)←$Kg(1k)

(m0,m1, St)←$A
Dec(sk,·),Prove(sk,·)
1 (pk)

c←$Enc(pk,mb)

d←$A
Dec(sk,·),Prove(sk,·)
2 (pk, c, St)

If d = b then return 1 else return 0

Experiment Expproof-snd
PKENO,A (k)

(pk, sk)←$Kg(1k)
(m′, π′, c′)←$A(pk, sk)
m ← Dec(sk, c′)
If Ver(pk, c′,m′, π′) = 1 and m �= m′

then return 1 ; else return 0

Fig. 2. Security experiments for PKENO

Formally, to a scheme PKENO = (Kg,Enc,Dec,Prove,Ver), and an adversary
A = (A1, A2) we associate the chosen-ciphertext and -proof attack experiment
given in Figure 2. We require that the output of A1 satisfies |m0| = |m1| and that
A2 does not query c to any of its oracles. We say that PKENO is chosen-ciphertext
and -proof-attack secure (CCPA-secure) if 2 ·Pr

[
Expind-ccpa

PKENO,A(k) outputs 1
]

−1
is negligible for every efficient A. We associate to a scheme PKENO and an
adversary A = (A1, A2) a proof-soundness experiment, given in Figure 2, and

say that PKENO is proof-sound if Pr
[
Expproof-snd

PKENO,A(k) outputs 1
]
is negligible

for every efficient A.
We note that in contrast to [15,19] our definition of proof soundness also

considers adversarially produced ciphertexts, which need not even be a valid
output of the encryption algorithm. Note that it is already required by proof
correctness that the PKENO correctly proves decryption of such ciphertexts
(which may or may not decrypt to ⊥), so constructions should achieve this
stronger notion of proof soundness anyway.

Strong Proof Soundness. An even stronger notion of proof soundness is de-
fined in [20], which also handles maliciously chosen receiver public keys. In the
full version [14] we define notions of strong proof soundness and discuss how our
constructions can be adapted to meet them.

6.1 PKENO-Compatible ECCA-Secure PKE

A natural approach to building PKENO suggested by [16] is to use a randomness-
recovering encryption scheme and have the receiver provide the recovered coins
as the proof. A moment’s reflection reveals that for this approach to work, the
encryption scheme must be ECCA secure in order to protect against chosen-
proof attacks. In addition, as discussed in [16,15,20], we also need a way for the
receiver to prove correct decryption of ciphertexts that are not in the range of
the encryption algorithm, in which case such coins may not be defined. In this
section we define a notion of PKENO-compatible ECCA-secure encryption for
which we can do this. Below we discuss the properties such a scheme must have,
but due to space constraints, we defer the details to the full version [14].

Partial-Randomness Recovery. It turns out that for such schemes we do not
always achieve, nor need, the notion of full RR, so we define a natural gener-
alization we call partial-randomness recovery, which loosely says that enough

342 D. Dachman-Soled et al.

of the random coins are recovered to uniquely identify the underlying message.
However, in order to deal with the case that ciphertexts outside the range of
the encryption algorithm may not decrypt to ⊥, we also strengthen what we get
from RR encryption in some respect.

Ciphertext Verifiability. This notion intuitively means a verifier can check
(with the help of some partial random coins) whether the decryption algorithm
returns ⊥ on a given ciphertext.

PKENO-Compatibility. We say PKE is a PKENO-compatible ECCA-secure
PKE scheme if it satisfies ECCA-security, partial-randomness recovery and ci-
phertext verifiability. In the full version of the paper [14] we show that a PKENO-
compatible ECCA-secure PKE scheme indeed gives us PKENO by using the idea
of [16] described above. We also show an analogous theorem in the case of tag-
based PKE.

6.2 PKENO-Compatible PKE Using NIZK

PKENO-compatibility can be obtained generically from any ECCA-secure RR
PKE by adding a non-interactive zero-knowledge proof (NIZK) of ciphertext
“well-formedness.” The approach of using a NIZK originates from [15,20], al-
though not with respect to ECCA-secure encryption. We note that we do not
require the starting ECCA-secure encryption scheme to be uniquely RR (al-
though our constructions in Section 4 achieve this), but it should have perfect
correctness. Moreover, the NIZK needs to be simulation-sound, for reasons anal-
ogous to the proof of full anonymity of the group signature construction in [4].
See [14] for the details.

6.3 Efficient PKENO-Compatible Tag-Based PKE

Our construction using NIZKs, while it applies to any ECCA-secure RR PKE
scheme, is not very efficient unless we rely on the random-oracle model [6] for the
NIZK. We show more efficient constructions by following the tag-based approach;
namely, we show that our construction from tag-based ATDFs in Section 4.2 can
be made PKENO-compatible by using special tag-based ATDFs (from which we
can then obtain non-tag-based PKENO-compatible PKE). The idea is to use
tag-based ATDF for which we have “range verifiability,” meaning that anyone
can verify preimage existence. In our first construction, we achieve this property
by adding an efficient NIZK proof due to Groth and Sahai [22]. In our second
construction, we use a tag-based ATDF that has this property because it is a
permutation. Details of these constructions are again deferred to [14].

Acknowledgements. We gratefully acknowledge Mihir Bellare, whose com-
ments improved our results and presentation. The second author was supported
by EPSRC grant EP/H043454/1 and the European Research Council, ERC
Starting Grant (259668-PSPC). The fourth author was supported by NSF grants
CNS-1012910 and CNS-0546614.

Enhanced Chosen-Ciphertext Security and Applications 343

References

1. Bellare, M.: Private communication (2012)
2. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of

security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

3. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for en-
cryption and commitment secure under selective opening. In: Joux, A. (ed.) EU-
ROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009)

4. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003)

5. Bellare, M., Palacio, A.: Towards plaintext-aware public-key encryption without
random oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 48–62.
Springer, Heidelberg (2004)

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press
(November 1993)

7. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

8. Bellare, M., Yilek, S.: Encryption schemes secure under selective opening attack.
Cryptology ePrint Archive, Report 2009/101 (2009), http://eprint.iacr.org/

9. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM Journal on Computing 36(5), 1301–1328 (2007)

10. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: 28th ACM STOC, pp. 639–648. ACM Press (May 1996)

11. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg
(2003)

12. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the
plain model from standard assumptions. In: 51st FOCS, pp. 541–550. IEEE Com-
puter Society Press (October 2010)

13. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Black-box construction of a
non-malleable encryption scheme from any semantically secure one. In: Canetti, R.
(ed.) TCC 2008. LNCS, vol. 4948, pp. 427–444. Springer, Heidelberg (2008)

14. Dachman-Soled, D., Fuchsbauer, G., Mohassel, P., O’Neill, A.: Enhanced chosen-
ciphertext security and applications. Cryptology ePrint Archive, Report 2012/543
(2012)

15. Damg̊ard, I., Hofheinz, D., Kiltz, E., Thorbek, R.: Public-key encryption with
non-interactive opening. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964,
pp. 239–255. Springer, Heidelberg (2008)

16. Damg̊ard, I.B., Thorbek, R.: Non-interactive proofs for integer multiplication. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 412–429. Springer, Hei-
delberg (2007)

17. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. Journal of
the ACM 50(6), 852–921 (2003)

18. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions
of lossy and correlation-secure trapdoor functions. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279–295. Springer, Heidelberg (2010)

http://eprint.iacr.org/

344 D. Dachman-Soled et al.

19. Galindo, D.: Breaking and repairing damg̊ard et al. public key encryption scheme
with non-interactive opening. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473,
pp. 389–398. Springer, Heidelberg (2009)

20. Galindo, D., Libert, B., Fischlin, M., Fuchsbauer, G., Lehmann, A., Man-
ulis, M., Schröder, D.: Public-key encryption with non-interactive opening: New
constructions and stronger definitions. In: Bernstein, D.J., Lange, T. (eds.)
AFRICACRYPT 2010. LNCS, vol. 6055, pp. 333–350. Springer, Heidelberg (2010)

21. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

22. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

23. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

24. Hohenberger, S., Lewko, A., Waters, B.: Detecting dangerous queries: A new ap-
proach for chosen ciphertext security. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 663–681. Springer, Heidelberg (2012)

25. Kiltz, E., Mohassel, P., O’Neill, A.: Adaptive trapdoor functions and chosen-
ciphertext security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 673–692. Springer, Heidelberg (2010)

26. MacKenzie, P.D., Reiter, M.K., Yang, K.: Alternatives to non-malleability: Defini-
tions, constructions, and applications (extended abstract). In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 171–190. Springer, Heidelberg (2004)

27. Myers, S., Shelat, A.: Bit encryption is complete. In: 50th FOCS, pp. 607–616.
IEEE Computer Society Press (October 2009)

28. Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a non-malleable encryp-
tion scheme from any semantically secure one. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg (2006)

29. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Ladner,
R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 187–196. ACM Press (May 2008)

30. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

31. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. In: Rein-
gold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg (2009)

32. Wee, H.: Efficient chosen-ciphertext security via extractable hash proofs. In: Rabin,
T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 314–332. Springer, Heidelberg (2010)

Lattice-Based Group Signature Scheme

with Verifier-Local Revocation

Adeline Langlois1, San Ling2, Khoa Nguyen2, and Huaxiong Wang2

1 École Normale Supérieure de Lyon,
LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL),
46 Allée d’Italie, 69364 Lyon Cedex 07, France

adeline.langlois@ens-lyon.fr
2 Division of Mathematical Sciences,

School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore
{lingsan,khoantt,hxwang}@ntu.edu.sg

Abstract. Support of membership revocation is a desirable functional-
ity for any group signature scheme. Among the known revocation ap-
proaches, verifier-local revocation (VLR) seems to be the most flexible
one, because it only requires the verifiers to possess some up-to-date re-
vocation information, but not the signers. All of the contemporary VLR
group signatures operate in the bilinear map setting, and all of them
will be insecure once quantum computers become a reality. In this work,
we introduce the first lattice-based VLR group signature, and thus, the
first such scheme that is believed to be quantum-resistant. In compari-
son with existing lattice-based group signatures, our scheme has several
noticeable advantages: support of membership revocation, logarithmic-
size signatures, and weaker security assumption. In the random oracle
model, our scheme is proved to be secure based on the hardness of the
SIVPÕ(n1.5) problem in general lattices - an assumption that is as weak
as those of state-of-the-art lattice-based standard signatures. Moreover,
our construction works without relying on encryption schemes, which is
an intriguing feature for group signatures.

Keywords: group signature, verifier-local revocation, lattice-based
cryptography.

1 Introduction

Group Signatures. Group signatures have been an important research topic in
public-key cryptography since their introduction by Chaum and van Heyst [15].
In these schemes, all the potential signers form a group, where each signer can
anonymously issue a signature on behalf of the whole group (anonymity). On
the other hand, in cases of disputes, there is a tracing mechanism which can
link a given signature to the identity of the misbehaving member (traceability).
These two attractive features allow group signatures to find applications in var-
ious real-life scenarios, such as anonymous online communications, digital right

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 345–361, 2014.
c© International Association for Cryptologic Research 2014

346 A. Langlois et al.

management, e-commerce systems, and much more. Over the last two decades,
many group signature schemes with different security models, different levels of
efficiency and functionality have been proposed ([16,4,5,8,9,6,20,25], ...).

One desirable functionality of group signatures is the support for membership
revocation. For example, misbehaving members who issue signatures for docu-
ments, which they are not allowed to sign, should be revoked from the group.
In these cases, if a group signature scheme does not support revocation, then
the whole system has to be re-initialized, which is obviously an unsuitable solu-
tion in practice. Currently there are two main revocation approaches for group
signatures. The first approach requires all the unrevoked members to update
their signing keys after each revocation ([4,12,8,11],...). At the same time, all the
signature verifiers need to download the up-to-date group public key. As a conse-
quence, it is sometimes inconvenient to practically implement such schemes. The
second approach, that is group signatures with verifier-local revocation (VLR),
only requires the verifiers to possess some up-to-date revocation information,
but not the signers. Since in most of real-life scenarios, the number of signature
verifiers is much smaller than the number of signers, this revocation approach
is more flexible and more practical. Moreover, it is akin to that of the tradi-
tional Public Key Infrastructures, where the verifiers use the latest Certificate
Revocation List to check the public key of the signer. The notion of VLR group
signatures was considered by Brickell [10] and Kiayias et al. [22], then formalized
by Boneh and Shacham [9], further investigated and extended by Nakanishi and
Funabiki [33,34], Libert and Vergnaud [26], and Bichsel et al. [7]. It is worth men-
tioning that all the existing VLR group signatures scheme operate in the bilinear
map setting. Furthermore, all these schemes will be insecure once quantum com-
puters become a reality [39]. Thus, constructing a VLR group signature schemes
which is secure against quantum computers, or even outside of the bilinear map
setting, is a challenging open question.

Lattice-Based Group Signatures. Lattice-based cryptography is currently
considered as the most promising candidate for post-quantum cryptography. As
opposed to classical cryptography (i.e., based on the hardness of factoring or dis-
crete log problems), lattice-based cryptography is widely believed to be resistant
against quantum computers, moreover, it enjoys provable security under worst-
case hardness assumptions ([1,37,18,31]). Designing secure and efficient lattice-
based cryptographic constructions (and group signatures, in particular) becomes
an intriguing challenge for the research community looking forward to the future.
To the best of our knowledge, three lattice-based group signature schemes have
been proposed, but none of them supports membership revocation. The first one
was introduced by Gordon et al. [19] in 2010. While their scheme is of great the-
oretical interest, its signatures have size O(N), where N is the number of group
users. In terms of efficiency, this is a noticeable disadvantage if the group is large,
e.g., group of all employees of a big company. Camenisch et al. [13] later proposed
lattice-based anonymous attribute tokens system, a primitive that can be consid-
ered as a generalization of group signature. However, in their construction, the
signatures size is still linear in N . Recently, Laguillaumie et al. [23] designed a

Lattice-Based Group Signature Scheme with Verifier-Local Revocation 347

scheme featuring signature size Õ(logN), which is the first lattice-based group
signature that overcomes the linear-size barrier. We remark that all the above
mentioned schemes follow the traditional sign-and-encrypt-and-prove paradigm:
to enable the tracing mechanism, these schemes require the signer to encrypt some
private information via certain type of encryption based on the LearningWith Er-
rors (LWE) problem, and then generate a sophisticated proof to prove particularly
that the ciphertext is well-formed. Relying on encryption to construct group sig-
natures may imply two troublesome issues: firstly, it makes the construction less
efficient; secondly, since the whole system is secure only if the underlying encryp-
tion scheme is secure, it usually leads to a relatively strong security assumption. In
particular, the recent scheme by Laguillaumie et al. [23] is only provably secure if
there is no quantum algorithm to approximate the Shortest Independent Vectors
Problem (SIVPγ) on lattices of dimension n to within certain γ = Õ(n8.5). This
yields several interesting open questions in this direction: Is it possible to construct
a scheme that supports membership revocation? Can lattice-based group signa-
ture schemes be free of LWE-based encryptions? How to design a more efficient
scheme based on weaker security assumption?

Our Contributions. In the present work, we reply to all the above open ques-
tions positively. In particular, we introduce the first group signature with verifier-
local revocation from lattice assumptions, and thus, the first such scheme that is
believed to be quantum-resistant. In comparison with known lattice-based group
signatures, while the schemes from [19], [13] and [23] follow the CPA-anonymity
and CCA-anonymity notions from [8,5], our construction satisfies the (weaker)
notion of selfless-anonymity for VLR group signatures from [9]. Nevertheless, our
scheme has several remarkable advantages over the contemporary counterparts:

1. Functionality: Our scheme is the first lattice-based group signature that sup-
ports membership revocation. As discussed above, this is a desirable func-
tionality for any group signature scheme.

2. Simplicity: Our scheme is conceptually very simple. The signature is basically
an all-in-one proof of knowledge, made non-interactive using Fiat-Shamir
paradigm [17]. Moreover, the scheme departs from the traditional paradigm,
and is free of LWE-based encryptions.

3. Efficiency: For a security parameter n and for a group of N members, the
group public key and the signature have bit-sizes Õ(n2) · logN and Õ(n) ·
logN , respectively. This result is comparable to that of [23], and is a notice-
able improvement over those of [19] and [13].

4. Security assumption: Our scheme is proved to be secure (in the random ora-
cle model) based on the worst-case hardness of approximating the Shortest
Independent Vectors Problem, for general lattices of dimension n, to within
a factor γ = Õ(n1.5). Surprisingly, this security assumption is as weak as
those of state-of-the-art lattice-based standard signatures, such as [18], [14],
and [29]. This is a non-trivial feature, as group signatures are more elaborate
primitive than standard signatures, one would expect to rely on a stronger
security assumption.

348 A. Langlois et al.

Overview of Our Techniques. The main building block of our VLR group
signature scheme is an interactive protocol allowing a prover to convince the
verifier that he is a certified group member (i.e., he possesses a valid secret
signing key), and that he has not been revoked (i.e., his “revocation token” is
not in the verifier’s blacklist). The protocol is repeated many times to make the
soundness error negligibly small, and then is converted to a signature scheme
via Fiat-Shamir heuristic. Roughly speaking, in the random oracle model, the
traceability and anonymity of the resulting group signature are based on the facts
that the underlying protocol is a proof of knowledge, and it can be simulated.

We consider a group of N = 2� users, where each user is identified by a string
d ∈ {0, 1}� denoting the binary representation of his index in the group. Let
n,m, β, and q ≥ 2 be integers (to be determined later). Our scheme operates
within the structure of a Bonsai tree of hard random lattices [14], i.e., a matrix

A =
[
A0

∣∣A0
1

∣∣A1
1

∣∣ . . . ∣∣A0
�

∣∣A1
�

]
∈ Zn×(2�+1)m

q , and a vector u ∈ Znq . Initially, the
group user with identity d = d[1] . . . d[�] ∈ {0, 1}� is issued a Bonsai signature
of his identity, that is a small vector z ∈ Z(�+1)m, such that ‖z‖∞ ≤ β and

Ad · z = u mod q, where Ad =
[
A0

∣∣Ad[1]
1

∣∣ . . . ∣∣Ad[�]
�

]
- a subtree defined by d. In

other words, vector z is a solution to the Inhomogeneous Small Integer Solution
(ISIS) instance (Ad,u). To prove that he is a certified group member without
leaking z, the user can perform a proof of knowledge (e.g., [32,28,27]) to convince
the verifier that he knows such a vector z in zero-knowledge.

At this stage, one can obtain a secure identity-based identification scheme (as
shown in [38]), but it is insufficient for our purposes: to achieve anonymity, the
group user also has to hide his identity d, and hence the matrix Ad should not be
explicitly given. This raises an interesting question: If the verifier does not know
Ad, how could he be convinced that Ad · z = u mod q? To address this issue,
we introduce the following extension: we add � suitable zero-blocks of size m to
vector z to obtain an extended vector x =

(
x0‖x0

1‖x1
1‖ . . . ‖x0

�‖x1
�

)
∈ Z(2�+1)m,

where the added zero-blocks are x
1−d[1]
1 , . . . ,x

1−d[�]
� . We then have ‖x‖∞ ≤ β,

and A · x = u mod q. Namely x is a solution to the ISIS instance given by the
whole Bonsai tree, with an additional condition: for each i = 1, . . . , �, one of
the two blocks x0

i ,x
1
i must be zero, where the arrangement of the zero-blocks is

determined by d. To prove in zero-knowledge the possession of such a vector x,
we adapt the ‘Stern Extension’ proof system from [27], where the user identity d
is hidden by a “one-time pad” technique. This technique is as follows. In each
round of the protocol, the user samples a fresh uniformly random e ∈ {0, 1}� and
permutes the blocks of x to obtain the permuted vector v, whose zero-blocks are
arranged according to d⊕e (where ⊕ denotes the bit XOR operation). Depending
on the verifier’s challenge, the user later will either reveal e, or reveal d ⊕ e and
show that v has the correct shape determined by d ⊕ e. Since d ⊕ e is uniformly
random over {0, 1}�, the user identity d is completely hidden. As a result, the
user can anonymously prove his group membership.

We now briefly review our revocation mechanism. For each group user’s secret
key x, consider the first block x0 that corresponds to the “root”A0 of the Bonsai
tree, and let his revocation token be A0 · x0 mod q ∈ Znq . We choose suitable

Lattice-Based Group Signature Scheme with Verifier-Local Revocation 349

parameters, and sample x0 from a proper distribution, so that the token is
statistically close to uniform over Znq . At a high level, our revocation mechanism
works as follows. The user is asked to sample a uniformly random vector r0 ∈ Zmq ,
and to compute a commitment c0 using a (lattice-based) statistically hiding
and computationally binding string commitment scheme COM, for which the
value A0 · r0 mod q is part of the committed string. Depending on the verifier’s
challenge, the user will either reveal r0 or reveal x0 + r0. In the former case,
the verifier can check for honest computation of c0, while in the latter case,
he can perform the revocation check using a list of tokens of revoked users
RL =

{
{ui}i

}
⊂ Znq , as follows: For all ui ∈ RL, check that c0 �= COM

(
A0 ·

(x0 + r0) − ui mod q
)
. Assuming that the user has been revoked, i.e., there

exists i such that A0 ·x0 mod q = ui. If he follows the protocol, then COM
(
A0 ·

(x0 + r0) − ui mod q
)
= COM(A0 · r0 mod q) = c0, and thus, he gets rejected.

If there is a false acceptance, then we can use it to break the computational
binding property of COM. On the other hand, the probability of false rejection
is negligibly small, since COM is statistically regular.

Putting everything together, we obtain a lattice-based VLR group signature
that has several nice features, as mentioned earlier. In the process, we exploit the
rich structure of the Bonsai tree [14], and the versatility of the “Stern Extension”
proof system [27]. We also employ a special “one-time pad” technique, and a
novel revocation mechanism.

2 Preliminaries

Notations. Vectors are denoted in bold lower-case letters and matrices in bold
upper-case letters. We assume that all vectors are column vectors. The concate-
nation of vectors x ∈ Rm and y ∈ Rk is denoted by (x‖y). We denote the
column concatenation of matrices A ∈ Rn×m and B ∈ Rn×k by

[
A
∣∣B]. Let

x = (xi)1≤i≤n, we denote by Parse(x, i1, i2) the vector (xi)i1≤i≤i2 for i1, i2 ∈ [n].

If S is a finite set, y
$←− S means that y is chosen uniformly at random from S.

If D1 and D2 are two distributions over the same countable support S, then
their statistical distance is defined as Δ(D1, D2) = 1

2

∑
x∈S |D1(x) − D2(x)|.

Two distributions are statistically close if their statistical distance is negligible.

2.1 VLR Group Signature

The presentation in this section follows [9]. A VLR group signature consists of
3 following algorithms:

• KeyGen(n,N): On input a security parameter n and the number of group
users N , this PPT algorithm outputs a group public key gpk, a vector of
user secret keys gsk = (gsk[0], gsk[1], . . . , gsk[N − 1]), and a vector of user
revocation tokens grt = (grt[0], grt[1], . . . , grt[N − 1]).

• Sign(gpk, gsk[d],M): On input gpk, a user secret key gsk[d], and a message
M ∈ {0, 1}∗, this PPT algorithm outputs a signature Σ.

350 A. Langlois et al.

• Verify(gpk, RL,Σ,M): On input gpk, a set of revocation tokens RL ⊆
{grt[0], grt[1], . . . , grt[N − 1]}, a signature Σ, and the message M , this al-
gorithm outputs either Valid or Invalid. The output Valid indicates that Σ
is a valid signature on message M under gpk, and the signer has not been
revoked.

Remark 1. Any VLR group signature has an implicit tracing algorithm using grt
as the tracing key. The tracing algorithm works as follows: on input a valid sig-
nature Σ on a messageM , it reveals the signer of Σ by running Verify(gpk, RL =
grt[d], Σ,M), for d = 0, 1, . . ., and outputting the first index d∗ ∈ {0, 1, . . . , N −
1} for which the verification algorithm returns Invalid. The tracing algorithm
fails if and only if the given signature is properly verified for all d.

A secure VLR group signature scheme must satisfy the following 3 requirements:

1. Correctness: For all (gpk, gsk, grt) outputted by KeyGen, M ∈ {0, 1}∗, and
d ∈ {0, 1, . . . , N − 1}:

Verify(gpk, RL, Sign(gpk, gsk[d],M),M) = Valid ⇔ grt[d] �∈ RL.

2. Selfless-anonymity: In the following selfless-anonymity game, the adver-
sary’s goal is to determine which of the two adaptively chosen keys generated
a signature. He is not given access to either key.

3. Traceability: The adversary’s goal in the traceability game is to forge a
signature that cannot be traced to one of the users in his coalition using the
implicit tracing algorithm above.

The formal definitions of the selfless-anonymity and traceability games can be
found at [9, Sec. 2] and in the full version of the present paper [24].

2.2 Some Cryptographic Tools from Lattices

Lattices. Let n,m, and q ≥ 2 be integers. For matrix A ∈ Zn×mq , define the

m-dimensional lattice: Λ⊥(A) =
{
x ∈ Zm : A · x = 0 mod q

}
⊆ Zm. For any

u in the image of A, define the coset Λ⊥
u (A) =

{
x ∈ Zm : A · x = u mod q

}
.

We recall the homogeneous and inhomogeneous Small Integer Solution problems
(SIS and ISIS).

Definition 1. The SISpn,m,q,β and ISISpn,m,q,β problem in the �p norm with pa-
rameters (n,m, q, β) are as follows: Given a uniformly random matrix A ∈
Zn×mq , and a uniformly random vector u ∈ Znq ,

• SISpn,m,q,β asks to find a non-zero vector x ∈ Λ⊥(A) such that ‖x‖p ≤ β.

• ISISpn,m,q,β asks to find a vector x ∈ Λ⊥
u (A) such that ‖x‖p ≤ β.

The hardness of the SIS and ISIS problems is given by a worst-case to average-
case reduction from standard lattice problems, such as the Shortest Independent
Vectors Problem (SIVP).

Lattice-Based Group Signature Scheme with Verifier-Local Revocation 351

Theorem 1 ([18]). For any m, β = poly(n), and for any q ≥ β · ω(
√
n logn),

solving a random instance of the SIS2n,m,q,β or ISIS2
n,m,q,β problem with non-

negligible probability is at least as hard as approximating the SIVP2
γ problem on

any lattice of dimension n to within certain γ = β · Õ(
√
n) factors.

It then follows from the relationship between the �2 and �∞ norms that the
SIS∞n,m,q,β and ISIS∞n,m,q,β problems are at least as hard as SIVP2

γ (in the �2 norm)

for some γ = β · Õ(n).

Gaussians over Lattices. For any positive real σ, the n-dimensional Gaussian
function is defined as: ∀x ∈ Rn, ρσ(x)= exp(−π‖x‖2/σ2). For any n-dimensional
lattice Λ, define the discrete Gaussian distribution over Λ as: ∀x ∈ Λ, DΛ,σ(x) =
ρσ(x)
ρσ(Λ)

. In the following lemma, we review several well-known facts about discrete

Gaussian distribution:

Lemma 1 ([18][36]). Let n and q ≥ 2 be integers. Let m ≥ 2n log q, and
σ ≥ ω(

√
logm).

1. For all but a 2q−n fraction of all A ∈ Zn×mq , for x ←↩ DZm,σ, the distribution
of u = A · x mod q is statistically close to uniform over Znq . Moreover, the
conditional distribution of x given u is DΛ⊥

u (A),σ.

2. For β = �σ · logm�, and x ←↩ DZm,σ, Pr
[

‖x‖∞ > β
]
is negligible.

3. The min-entropy of DZm,σ is at least m − 1.

We now recall results about two fundamental tools: the trapdoor generation and
the preimage sampling algorithms. The following algorithms are improvements
of those in the literature [2,18,35,3].

Theorem 2 ([30]). Given integers n ≥ 1, q ≥ 2, and m ≥ 2n log q. There
is a PPT algorithm GenTrap(n,m, q) that outputs a matrix A ∈ Zn×mq and
a trapdoor RA, such that the distribution of A is negl(n)-far from uniform.
Moreover, for any vector u in the image of A and σ = ω(

√
n log q logn), there is

a PPT algorithm SampleD(RA,A,u, σ) that outputs x ∈ Zm sampled from the
distribution DZm,σ, conditioned on the event that A · x = u mod q.

The KTX String Commitment Scheme. Kawachi et al. [21] gave a string
commitment scheme COM : {0, 1}∗ × {0, 1}m/2 → Znq , such that:

• If m > 2n(1 + δ) log q for δ > 0 constant, COM is statistically hiding.
• If the SIS∞n,m,q,1 problem is hard, then COM is computationally binding.

In this paper, we extensively use the KTX commitment scheme. For simplicity,
we omit the randomness of the commitment. Also, we choosem sufficiently large,
e.g., m = 4n log q, to make COM statistically hiding.

3 Preparations

In this section, we will describe the parameters and some specific constructions
that will be used in our VLR group signature scheme.

352 A. Langlois et al.

3.1 Parameters

Our group signature scheme involves 2 main parameters: a security parameter
n and a desired number of group users N = 2� ∈ poly(n). Given n, we fix the
other scheme parameters as in Table 1.

Table 1. Parameters of our VLR group signature scheme. The sequence β1, β2, . . . , βp

satisfies
∑p

j=1 βj = β, and every integer in the interval [−β, β] can be efficiently
expressed as a subset sum of elements in the set {±β1,±β2, . . . ,±βp}.

Parameter Value or Asymptotic bound

Modulus q ω(n2 log n)

Dimension m ≥ 2n log q

Gaussian parameter σ ω(
√
n log q log n)

Integer norm bound β
σ · logm�

Number of ‘decompositions’ p �log β�+ 1

Sequence of integers β1 =
β/2�; β2 =
(β − β1)/2�
β1, β2, β3, . . . , βp β3 =
(β − β1 − β2)/2�; . . . ;βp = 1

Number of protocol repetitions t ω(logn)

3.2 Some Specific Sets

We now define some specific sets of vectors and permutations that will be exten-
sively used throughout this work. First, we denote by B3m the set of all vectors
in {−1, 0, 1}3m having exactly m coordinates −1; m coordinates 0; and m co-
ordinates 1. Given a binary string d = d[1] . . . d[�] ∈ {0, 1}�, we define two sets:

• Secretβ(d): The set of all x =
(
x0‖x0

1‖x1
1‖ . . . ‖x0

�‖x1
�

)
∈ Z(2�+1)m consisting

of 2� + 1 blocks of size m, such that ‖x‖∞ ≤ β, and the following � blocks

are zero-blocks 0m: x
1−d[1]
1 , . . . ,x

1−d[�]
� .

• SecretExt(d): The set of all vectors x =
(
x0‖x0

1‖x1
1‖ . . . ‖x0

�‖x1
�

)
∈

{−1, 0, 1}(2�+1)3m consisting of 2�+ 1 blocks of size 3m, such that the �+ 1

blocks x0,x
d[1]
1 , . . . ,x

d[�]
� are elements of B3m, and the remaining � blocks

x
1−d[1]
1 , . . . ,x

1−d[�]
� are zero-blocks 03m.

Given a vector x =
(
x0‖x0

1‖x1
1‖ . . . ‖x0

�‖x1
�

)
∈ Z(2�+1)3m consisting of 2� + 1

blocks of size 3m, we define two sets of permutations of x:

• The set S of all permutations that keep the arrangement of the blocks:
If π ∈ S, then π(x) =

(
τ0(x0)‖τ01 (x0

1)‖τ11 (x1
1)‖ . . . ‖τ0� (x0

�)‖τ1� (x1
�)
)
, where

τ0, τ
0
1 , τ

1
1 , . . . , τ

0
� , τ

1
� are certain permutations of 3m elements.

• The set T = {Te
∣∣ e ∈ {0, 1}�}, where for e = e[1] . . . e[�], Te ∈ T rearranges

the blocks as: Te(x) =
(
x0‖xe[1]1 ‖x1−e[1]

1 ‖ . . . ‖xe[�]� ‖x1−e[�]
�

)
.

Lattice-Based Group Signature Scheme with Verifier-Local Revocation 353

In particular, given d, e ∈ {0, 1}�, π ∈ S, and x ∈ Z(2�+1)3m, it can be checked
that:

x ∈ SecretExt(d) ⇔ π(x) ∈ SecretExt(d) ⇔ Te ◦ π(x) ∈ SecretExt(d ⊕ e). (1)

3.3 The Decomposition - Extension Technique

Ling et al. [27] proposed a Stern-type zero-knowledge proof of knowledge for
the ISIS∞n,m,q,β problem, which relies on a Decomposition-Extension framework.
Adapting their technique, we construct the following procedures:

Elementary Decomposition. On input a vector v = (v1, v2, . . . , vm) ∈ Zm

such that ‖v‖∞ ≤ β, the procedure EleDec outputs p = 	log β
 + 1 vectors
w̃1, . . . , w̃p ∈ {−1, 0, 1}m, such that

∑p
j=1 βj · w̃j = v. This procedure works as

follows:

1. For each i ∈ [m], express vi as vi = β1 · vi,1 + β2 · vi,2 + . . .+ βp · vi,p, where
∀j ∈ [p] : vi,j ∈ {−1, 0, 1}. It was noted in [27] that for β1, β2, . . . , βp given
in Table 1, this step can easily be done.

2. For each j ∈ [p], let w̃j := (v1,j , v2,j , . . . , vm,j) ∈ {−1, 0, 1}m. Output
w̃1, . . . , w̃p.

Elementary Extension. On input a vector w̃ ∈ {−1, 0, 1}m, EleExt extends w̃
to a vector w ∈ B3m. This procedure works as follows:

1. Let λ(−1), λ(0) and λ(1) be the numbers of coordinates of w̃ that equal to
−1, 0, and 1 respectively.

2. Pick a random vector ŵ ∈ {−1, 0, 1}2m that has exactly (m − λ(−1)) coor-
dinates −1, (m − λ(0)) coordinates 0, and (m − λ(1)) coordinates 1. Output
w =

(
w̃‖ŵ

)
∈ B3m.

Witness Decomposition and Extensions. On input x ∈ Secretβ(d) for some
d = d[1] . . . d[�] ∈ {0, 1}�, the procedure WitnessDE outputs p vectors z1, . . . zp ∈
SecretExt(d). This procedure works as follows:

1. Write x as the concatenation of 2� + 1 blocks of size m, namely: x =(
x0‖x0

1‖x1
1‖ . . . ‖x0

�‖x1
�

)
.

2. Run EleDec on each of the � + 1 blocks x0,x
d[1]
1 , . . . ,x

d[�]
� to obtained

(� + 1)p decomposed vectors. Then run EleExt on each of the decom-
posed vectors to obtain (� + 1)p vectors in B3m, denoted respectively by

{w0,j}pj=1, {w
d[1]
1,j }pj=1, . . . , {w

d[�]
�,j }pj=1.

3. Create �p zero-vectors of dimension 3m, and denote them by:

{w1−d[1]
1,j }pj=1, . . . , {w

1−d[�]
�,j }pj=1.

4. For each j ∈ [p], let zj =
(
w0,j‖w0

1,j‖w1
1,j‖ . . . ‖w0

�,j‖w1
�,j

)
. Output z1, . . . , zp

∈ SecretExt(d).

Matrix Extension. On input A ∈ Zn×(2�+1)m
q , the following procedure

MatrixExt outputs A∗ ∈ Zn×(2�+1)3m
q :

354 A. Langlois et al.

1. Write A as the concatenation of 2�+ 1 component-matrices in Zn×mq .

2. Append 2m zero-columns to each of the component-matrices, then output
the extended matrix A∗.

In particular, let {zj}pj=1 ← WitnessDE(x) and A∗ ← MatrixExt(A) then we

have A · x = A∗ · (
∑p

j=1 βj · zj). We illustrate our technique in Figure 1.

A · x = u (mod q)

x ∈ Secretβ(d)

d = (1 . . . 0) ∈ {0, 1}�

A0 A0
1 A1

1 A0
� A1

� · x0

x0
1 = 0m

x1
1

x0
�

x1
� = 0m

u
=n

m

A0

A∗ =
0 A0

1 0 A1
1 0 A0

� 0 A1
� 0

n

2m

zT1 = ︸ ︷︷ ︸
w0,1

︸ ︷︷ ︸
w0

1,1 = 03m
︸ ︷︷ ︸

w1
1,1

︸ ︷︷ ︸
w0

�,1

︸ ︷︷ ︸
w1

�,1 = 03m

zTp =

......

β
1 ·

+
...

+
β
p ·

=

x1
1

β
1 ·

+
...

+
β
p ·

=

x0
�

β
1 ·

+
...

+
β
p ·

=
x0

Fig. 1. An illustration of our Decomposition-Extension technique, where the first bit
of d is 1 and its last bit is 0. We denote by an element of B3m. After
performing Decomposition-Extension, one has that zj ∈ SecretExt(d) for all j ∈ [p],
and A∗ ·

(∑p
j=1 βj · zj

)
= A · x = u mod q.

Therefore, in the protocol in Section 4, to prove that x ∈ Secretβ(d) for some
d ∈ {0, 1}�, and A · x = u mod q, one can instead prove that:{

A∗ · (
∑p
j=1 βj · zj) = u mod q,

∀j ∈ [p], π ∈ S, e ∈ {0, 1}� : Te ◦ π(zj) ∈ SecretExt(d ⊕ e),

where the second relation follows from the fact that zj ∈ SecretExt(d) for all
j ∈ [p], and from (1).

4 The Underlying Interactive Protocol

We recall that the main building block of our VLR group signature scheme is an
interactive protocol that allows the prover to convince the verifier that he is a
certified group member (i.e., he has a valid secret key), and that he has not been
revoked (i.e., his revocation token is not in the verifier’s list RL). In Section 5, the
protocol is repeated t = ω(logn) times to make the soundness error negligibly
small, and then is transform to a signature scheme via Fiat-Shamir heuristic.
The interactive protocol is summarized as follows:

• The public parameters are A =
[
A0

∣∣A0
1

∣∣A1
1

∣∣ . . . ∣∣A0
�

∣∣A1
�

]
∈ Zn×(2�+1)m

q and
u ∈ Znq .

Lattice-Based Group Signature Scheme with Verifier-Local Revocation 355

• The prover’s witness is a x =
(
x0‖x0

1‖x1
1‖ . . . ‖x0

�‖x1
�

)
∈ Secretβ(d) for some

d ∈ {0, 1}�. The verifier’s additional input is a set RL =
{

{ui}i
}

⊂ Znq ,
whose cardinality is at most N − 1.

• The prover’s goal is to convince the verifier in that:
1. A · x = u mod q and x ∈ Secretβ(d), while keeping d secret.
2. A0 · x0 mod q �∈ RL.

4.1 Description of the Protocol

Let COM be the KTX commitment scheme [21]. Let A∗ ← MatrixExt(A). Prior
to the interaction, the prover applies the Decomposition-Extension technique
on his witness: Let z1, . . . , zp ← WitnessDE(x). The protocol follows Stern’s
approach for three-pass zero-knowledge identification schemes [40], for which we
employ an additional commitment c0 to enable the revocation mechanism. The
details are as follows:

1. Commitment: The prover samples a string e
$←− {0, 1}�, p permutations

π1, . . . , πp
$←− S, and p vectors r1, . . . , rp

$←− Z(2�+1)·3m
q . For each j ∈ [p], let

rj,0 = Parse(rj , 1,m). Then it sends the commitment CMT =
(
c0, c1, c2, c3

)
∈ (Znq)

4 to the verifier, where⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c0 = COM
(
e, {πj}pj=1, A0 ·

(∑p
j=1 βj · rj,0

)
mod q

)
,

c1 = COM
(
e, {πj}pj=1, A∗ ·

(∑p
j=1 βj · rj

)
mod q

)
,

c2 = COM
(
{Te ◦ πj(rj)}pj=1

)
,

c3 = COM
(
{Te ◦ πj(zj + rj)}pj=1

)
.

(2)

2. Challenge: The verifier sends Ch
$←− {1, 2, 3} to the prover.

3. Response: Depending on the challenge, the prover computes the response
RSP differently:

• Case Ch = 1: ∀ j ∈ [p], let vj = Te ◦πj(zj), wj = Te ◦πj(rj), d1 = d⊕e,
and set:

RSP =
(
d1, {vj}pj=1, {wj}pj=1

)
. (3)

• Case Ch = 2: ∀ j ∈ [p], let φj = πj , sj = zj + rj , d2 = e, and set:

RSP =
(
d2, {φj}pj=1, {sj}pj=1

)
. (4)

• Case Ch = 3: ∀ j ∈ [p], let ψj = πj , hj = rj , d3 = e, and set:

RSP =
(
d3, {ψj}pj=1, {hj}pj=1

)
. (5)

Verification: Receiving RSP, the verifier proceeds as follows:

• Case Ch = 1: Parse RSP as in (3). Check that ∀j ∈ [p] : vj ∈ SecretExt(d1),
and that:

c2 = COM
(
{wj}pj=1

)
and c3 = COM

(
{vj +wj}pj=1

)
.

356 A. Langlois et al.

• Case Ch = 2: Parse RSP as in (4). ∀j ∈ [p], let sj,0 = Parse(sj , 1,m). Check
that:⎧⎪⎪⎨⎪⎪⎩

∀ui ∈ RL : c0 �= COM
(
d2, {φj}pj=1,A0 ·

(∑p
j=1 βj · sj,0

)
− ui mod q

)
c1 = COM

(
d2, {φj}pj=1,A

∗ ·
(∑p

j=1 βj · sj
)

− u mod q
)
;

c3 = COM
(
{Td2 ◦ φj(sj)}pj=1

)
.

• Case Ch = 3: Parse RSP as in (5). ∀j ∈ [p], let hj,0 = Parse(hj , 1,m). Check
that: ⎧⎪⎪⎨⎪⎪⎩

c0 = COM(d3, {ψj}pj=1, A0 ·
(∑p

j=1 βj · hj,0) mod q
)

c1 = COM
(
d3, {ψj}pj=1, A∗ · (

∑p
j=1 βj · hj) mod q

)
;

c2 = COM
(
{Td3 ◦ ψj(hj)}pj=1

)
.

The verifier outputs Valid if and only if all the conditions hold. Otherwise, he
outputs Invalid.

4.2 Witness Extraction

The following lemma says that in our protocol, one can extract a satisfying
witness under specific conditions. The proof of the lemma is given in the full
version [24, Appendix A].

Lemma 2. Assume that for a given commitment CMT, there exist 3 valid re-
sponses RSP(1), RSP(2), and RSP(3) corresponding to all 3 possible values of the
challenge Ch. If COM is a computationally binding commitment scheme, then
one can efficiently extract a vector y such that y =

(
y0‖y0

1‖y1
1‖ . . . ‖y0

�‖y1
�

)
∈

Z(2�+1)m satisfying A · y = u mod q, y ∈ Secretβ(d) for some d ∈ {0, 1}�, and
A0 · y0 mod q �∈ RL.

5 The VLR Group Signature Scheme

In this Section we will describe and analyze our lattice-based VLR group signa-
ture scheme. The scheme uses the protocol in Section 4 as its building block.

5.1 Description of the Scheme

Keys Generation. The algorithm KeyGen(n,N), works as follows:

1. Run GenTrap(n,m, q) to get A0 ∈ Zn×mq and trapdoor R.

2. Sample u
$←− Znq , and Ab

i
$←− Zn×mq for all b ∈ {0, 1} and i ∈ [�]. Then define

the matrix A =
[
A0

∣∣A0
1

∣∣A1
1

∣∣ . . . ∣∣A0
�

∣∣A1
�

]
∈ Zn×(2�+1)m

q .

3. For group user with index d ∈ {0, 1, . . . , N − 1}, let d[1] . . . d[�] ∈ {0, 1}�
denote the binary representation of d, and do the following:

Lattice-Based Group Signature Scheme with Verifier-Local Revocation 357

(a) Sample vectors x
d[1]
1 , . . . ,x

d[�]
� ←↩ DZm,σ. Compute z =

∑�
i=1 A

d[i]
i ·

x
d[i]
i mod q, and sample x0 ∈ Zm with x0 ←↩ SampleD

(
R,A0,u −

z, σ
)
. Let x

1−d[1]
1 , . . . ,x

1−d[�]
� be zero-vectors 0m, and define x(d) =(

x0‖x0
1‖x1

1‖ . . . ‖x0
�‖x1

�

)
∈ Z(2�+1)m. If ‖x(d)‖∞ ≤ β then go to step (3b);

else, repeat step (3a).
(b) Let the user secret key be gsk[d] = x(d), and the revocation token be

grt[d] = A0 · x0 ∈ Znq .
4. The algorithm outputs (gpk, gsk, grt), where gpk = (A,u); gsk =(

gsk[0], gsk[1], . . . , gsk[N − 1]
)
; grt =

(
grt[0], grt[1], . . . , grt[N − 1]

)
.

Remark 2. We have some observations on the behaviour of the above key gen-
eration algorithm:

• By Theorem 2, the distribution of A0 generated by GenTrap(n,m, q) is sta-
tistically close to uniform over Zn×mq . Thus, the distribution of gpk output

by KeyGen(n,N) is statistically close to uniform over Zn×(2�+1)m
q × Znq . We

note that the pair (A,u) resembles the Bonsai tree structure [14], where A0

is the “root” of the tree.
• In Step (3a), each coordinate of vector x(d) is either 0 or distributed according

to the distribution DZ,σ (see Theorem 2 regarding the output distribution of
algorithm SampleD). By setting β = �σ · logm�, we ensure that ‖x(d)‖∞ ≤ β
with overwhelming probability (see Lemma 1). Thus, the event that Step (3a)
needs to be repeated only occurs with negligible probability.

• The secret key x(d) of group user with index d satisfies A · x(d) = u mod q,
and x(d) ∈ Secretβ(d).

• By Lemma 1, the distribution of each user revocation token grt[d] is statisti-
cally close to uniform over Znq . The trivial requirement is that the revocation
tokens of two different group users must be different. In the very rare event
of conflict (i.e., there exist d1, d2 ∈ {0, . . . , N − 1} such that d2 > d1 and
grt[d1] = grt[d2]), the algorithm simply re-samples the key and token for user
with index d2.

Signing Algorithm. Let H : {0, 1}∗ → {1, 2, 3}t be a hash function, modelled
as a random oracle. Given gpk = (A,u), to sign a message M ∈ {0, 1}∗ using
the secret key gsk[d] = x ∈ Secretβ(d), the user runs the randomized algorithm
Sign(gpk, gsk[d],M), which is as follow:

1. Generate a proof that the user is a certified group members and that he has
not been revoked. This is done by repeating t = ω(logn) times the basic
protocol from Section 4 with public parameter (A,u) and prover’s witness
x, and then making it non-interactive with the Fiat-Shamir heuristic as
a triple

(
{CMT(k)}tk=1, CH, {RSP(k)}tk=1

)
, where CH =

(
{Ch(k)}tk=1

)
=

H
(
M, {CMT(k)}tk=1

)
∈ {1, 2, 3}t.

2. Output the group signature:

Σ =
(
M, {CMT(k)}tk=1, {Ch(k)}tk=1, {RSP(k)}tk=1

)
. (6)

358 A. Langlois et al.

Verification Algorithm. On input gpk = (A,u), a set of tokens RL ={
{ui}i

}
⊂ Znq whose cardinality is at most N − 1, a message M ∈ {0, 1}∗,

and a purported group signature Σ on M , the verifier runs the deterministic
algorithm Verify(gpk, RL,Σ,M), which performs the following steps:

1. Parse the signature Σ as in (6).

2. Check if
(
Ch(1), . . . , Ch(t)

)
= H

(
M,CMT(1), . . . ,CMT(t)

)
.

3. For k = 1 to t, run the verification of the protocol from Section 4 to check the
validity of RSP(k) with respect to CMT(k) and Ch(k). If any of the conditions
does not hold, then output Invalid and terminate.

4. Output Valid.

5.2 Analysis of the Scheme

We now will analyze the efficiency and security properties of the VLR group
signature described in Section 5.1.

Efficiency. The parameters in Table 1 are set so that all of the algorithms in
Section 5.1 can be implemented in polynomial time. Asymptotically, the group
public key has bit-size � · Õ(n2) = logN · Õ(n2), while the group signatures have

bit-size � · Õ(n) = logN · Õ(n). The revocation check, i.e., the check against c
(k)
0

in the case Ch(k) = 2, runs in linear time in the number of revoked users, as it
seems unavoidable for secure VLR group signature schemes.

Security. The correctness, selfless-anonymity, and traceability of our VLR group
signature scheme are stated in theorems 3, 4 and 5, respectively. The proofs of
these theorems are provided in the full version of the paper [24].

Theorem 3. The VLR group signature scheme is correct with overwhelming
probability.

In the random oracle model, our scheme is selfless-anonymous.

Theorem 4. If COM is a statistically hiding string commitment scheme, then
the VLR group signature scheme in Section 5.1 is selfless-anonymous in the
random oracle model.

Finally, in the random oracle model, our VLR group signature scheme is
traceable if the SIS∞

n,(�+1)·m,q,2β problem is hard.

Theorem 5. If there is a traceability adversary A with success probability ε and
running time T , then there is an algorithm F that solves the SIS∞

n,(�+1)·m,q,2β
problem with success probability ε′ >

(
1 − (7/9)t

)
· 1
2N , and running time T ′ =

32 ·T ·qH/(ε−3−t)+poly(n,N), where qH is the number of queries to the random
oracle H : {0, 1}∗ → {1, 2, 3}t.

Lattice-Based Group Signature Scheme with Verifier-Local Revocation 359

The results of Theorem 1 and Theorem 5 imply that the traceability of our
scheme in the random oracle model can be based on the worst-case hardness of
the SIVP2

γ problem, with γ = 2β · Õ(n) = Õ(n1.5).

Acknowledgements. The authors would like to thank D. Stehlé, B. Libert,
R. Bhattacharyya, J. Chen, and the anonymous reviewers for their helpful com-
ments. The research is supported in part by the Singapore Ministry of Education
under Research Grant MOE2013-T2-1-041. Adeline Langlois is supported in part
by ERC Starting Grant ERC-2013-StG-335086-LATTAC.

References

1. Ajtai, M.: Generating Hard Instances of Lattice Problems (Extended Abstract).
In: STOC, pp. 99–108. ACM (1996)

2. Ajtai, M.: Generating Hard Instances of the Short Basis Problem. In: Wiedermann,
J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999)

3. Alwen, J., Peikert, C.: Generating Shorter Bases for Hard Random Lattices. Theory
Comput. Syst. 48(3), 535–553 (2011)

4. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A Practical and Provably Secure
Coalition-Resistant Group Signature Scheme. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

5. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of Group Signatures: For-
mal Definitions, Simplified Requirements, and a Construction Based on Gen-
eral Assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 614–629. Springer, Heidelberg (2003)

6. Bellare, M., Shi, H., Zhang, C.: Foundations of Group Signatures: The Case
of Dynamic Groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 136–153. Springer, Heidelberg (2005)

7. Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get Shorty via
Group Signatures without Encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN
2010. LNCS, vol. 6280, pp. 381–398. Springer, Heidelberg (2010)

8. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

9. Boneh, D., Shacham, H.: Group Signatures with Verifier-local Revocation. In:
ACM-CCS, pp. 168–177. ACM (2004)

10. Brickell, E.: An Efficient Protocol for Anonymously Providing Assurance of the
Container of the Private Key. Submitted to the Trusted Comp. Group (April 2003)

11. Camenisch, J., Groth, J.: Group Signatures: Better Efficiency and New Theoretical
Aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133.
Springer, Heidelberg (2005)

12. Camenisch, J., Lysyanskaya, A.: Dynamic Accumulators and Application to Effi-
cient Revocation of Anonymous Credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

13. Camenisch, J., Neven, G., Rückert, M.: Fully Anonymous Attribute Tokens from
Lattices. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485,
pp. 57–75. Springer, Heidelberg (2012)

360 A. Langlois et al.

14. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Dele-
gate a Lattice Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 523–552. Springer, Heidelberg (2010)

15. Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

16. Chen, L., Pedersen, T.P.: New Group Signature Schemes (Extended Abstract). In:
De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 171–181. Springer,
Heidelberg (1995)

17. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

18. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for Hard Lattices and New
Cryptographic Constructions. In: STOC, pp. 197–206. ACM (2008)

19. Gordon, S.D., Katz, J., Vaikuntanathan, V.: A Group Signature Scheme from
Lattice Assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 395–412. Springer, Heidelberg (2010)

20. Groth, J.: Fully Anonymous Group Signatures Without Random Oracles. In: Kuro-
sawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Hei-
delberg (2007)

21. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently Secure Identification Schemes
Based on the Worst-Case Hardness of Lattice Problems. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008)

22. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable Signatures. In: Cachin, C., Ca-
menisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer,
Heidelberg (2004)

23. Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-Based Group Signa-
tures with Logarithmic Signature Size. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013, Part II. LNCS, vol. 8270, pp. 41–61. Springer, Heidelberg (2013)

24. Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based Group Signa-
ture Scheme with Verifier-local Revocation. Cryptology ePrint Archive, Report
2014/033 (2014), http://eprint.iacr.org/2014/033

25. Libert, B., Peters, T., Yung, M.: Group Signatures with Almost-for-Free Revo-
cation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 571–589. Springer, Heidelberg (2012)

26. Libert, B., Vergnaud, D.: Group Signatures with Verifier-Local Revocation and
Backward Unlinkability in the Standard Model. In: Garay, J.A., Miyaji, A., Otsuka,
A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 498–517. Springer, Heidelberg (2009)

27. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved Zero-Knowledge Proofs of
Knowledge for the ISIS Problem, and Applications. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013)

28. Lyubashevsky, V.: Lattice-Based Identification Schemes Secure Under Active At-
tacks. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer,
Heidelberg (2008)

29. Lyubashevsky, V.: Lattice Signatures without Trapdoors. In: Pointcheval, D., Jo-
hansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012)

30. Micciancio, D., Peikert, C.: Trapdoors for Lattices: Simpler, Tighter, Faster,
Smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 700–718. Springer, Heidelberg (2012)

31. Micciancio, D., Regev, O.: Lattice-based Cryptography. In: Post-Quantum Cryp-
tography, pp. 147–191. Springer (2009)

http://eprint.iacr.org/2014/033

Lattice-Based Group Signature Scheme with Verifier-Local Revocation 361

32. Micciancio, D., Vadhan, S.P.: Statistical Zero-Knowledge Proofs with Efficient
Provers: Lattice Problems and More. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 282–298. Springer, Heidelberg (2003)

33. Nakanishi, T., Funabiki, N.: Verifier-Local Revocation Group Signature Schemes
with Backward Unlinkability from Bilinear Maps. In: Roy, B. (ed.) ASIACRYPT
2005. LNCS, vol. 3788, pp. 533–548. Springer, Heidelberg (2005)

34. Nakanishi, T., Funabiki, N.: A Short Verifier-Local Revocation Group Signa-
ture Scheme with Backward Unlinkability. In: Yoshiura, H., Sakurai, K., Rannen-
berg, K., Murayama, Y., Kawamura, S.-I. (eds.) IWSEC 2006. LNCS, vol. 4266,
pp. 17–32. Springer, Heidelberg (2006)

35. Peikert, C.: An Efficient and Parallel Gaussian Sampler for Lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010)

36. Peikert, C., Rosen, A.: Efficient Collision-Resistant Hashing from Worst-Case As-
sumptions on Cyclic Lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 145–166. Springer, Heidelberg (2006)

37. Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography. In: STOC, pp. 84–93. ACM (2005)

38. Rückert, M.: Adaptively Secure Identity-Based Identification from Lattices without
Random Oracles. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280,
pp. 345–362. Springer, Heidelberg (2010)

39. Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM Journal on Computing 26(5),
1484–1509 (1997)

40. Stern, J.: A New Paradigm for Public Key Identification. IEEE Transactions on
Information Theory 42(6), 1757–1768 (1996)

Leakage-Resilient Signatures

with Graceful Degradation

Jesper Buus Nielsen1, Daniele Venturi2,�, and Angela Zottarel1

1 Aarhus University
2 Sapienza University of Rome

Abstract. We investigate new models and constructions which allow
leakage-resilient signatures secure against existential forgeries, where the
signature is much shorter than the leakage bound. Current models of
leakage-resilient signatures against existential forgeries demand that the
adversary cannot produce a new valid message/signature pair (m,σ)
even after receiving some λ bits of leakage on the signing key. If |σ| ≤ λ,
then the adversary can just choose to leak a valid signature σ, and hence
signatures must be larger than the allowed leakage, which is impractical
as the goal often is to have large signing keys to allow a lot of leakage.

We propose a new notion of leakage-resilient signatures against exis-
tential forgeries where we demand that the adversary cannot produce n =
�λ/|σ|�+1 distinct valid message/signature pairs (m1, σ1), . . . , (mn, σn)
after receiving λ bits of leakage. If λ = 0, this is the usual notion of exis-
tential unforgeability. If 1 < λ < |σ|, this is essentially the usual notion
of existential unforgeability in the presence of leakage. In addition, for
λ ≥ |σ| our new notion still guarantees the best possible, namely that
the adversary cannot produce more forgeries than he could have leaked,
hence graceful degradation.

Besides the game-based notion hinted above, we also consider a variant
which is more simulation-based, in that it asks that from the leakage a
simulator can “extract” a set of n − 1 messages (to be thought of as
the messages corresponding to the leaked signatures), and no adversary
can produce forgeries not in this small set. The game-based notion is
easier to prove for a concrete instantiation of a signature scheme. The
simulation-based notion is easier to use, when leakage-resilient signatures
are used as components in larger protocols.

We prove that the two notion are equivalent and present a generic
construction of signature schemes meeting our new notion and a con-
crete instantiation under fairly standard assumptions. We further give
an application, to leakage-resilient identification.

1 Introduction

The problem of message authentication is one of the most basic in cryptography.
Alice wants to transmit a message m to Bob via an insecure channel, with the

� Part of the work done while at Aarhus University supported by the DFF Starting
Grant 10-081612.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 362–379, 2014.
c© International Association for Cryptologic Research 2014

Leakage-Resilient Signatures with Graceful Degradation 363

guarantee that the message will reach the destination without any modification
by a third party on the communication channel. In a world where public-key
cryptography exists the latter can be achieved via a digital signature: Before
sending m, Alice computes a signature σ (via her signing key sk) of the message,
and transmits (m,σ) over the channel. The idea is that Bob can later verify
the signature using Alice’s verification key vk , and thus establish whether the
received message is consistent with the original.

Traditionally, security of signatures schemes (and other primitives) is mod-
eled in a black-box fashion where an adversary can only access the algorithms
underlying the scheme as a black-box. For instance, in the case of a signature
scheme, we require that no computationally bounded adversary is able to forge
a signature of a message (with respect to some verification key vk) even given
black-box access to an oracle returning signatures of arbitrarily chosen messages
(computed via the signing key corresponding to vk).1 However, as pointed out
by recent research, the model above might be too restrictive, in that in prac-
tice there are several ways by which an adversary can learn partial information
(a.k.a. leakage) on the secrets used within a cryptographic primitive, and thus
easily step out of the security model. This includes so-called side-channel attacks,
based on timings [27], power analysis [28] and electromagnetic radiation [35].

A large body of work has extended standard cryptographic definitions such
that they can capture different flavours of security against leakage, both in
the game-based setting (e.g. [13,33,1,30,24,14,8,10,11,6]) and in the simulation-
based setting [17,21,4,31]. In the case of a signature scheme, a simple extension
of the black-box setting requires that no computationally bounded adversary is
able to forge a signature of a message (with respect to some verification key
vk) even given black-box access to an oracle returning signatures on arbitrarily
chosen messages (computed via the signing key corresponding to vk) and to a
leakage oracle returning bounded (but otherwise arbitrary) information on the
signing key sk . This is often referred to as the bounded leakage model, and on
this we focus our work. See Section 1.2 for a discussion on other models.

The modeling above requires two necessary limitations. The first limitation is
that the total amount of leakage must be smaller than the length of the signing
key, as otherwise the entire key can be learned by the adversary, leaving no hope
for security. The second limitation is that a signature has to be longer than the
leakage bound, as otherwise a leakage query can just leak a forgery which is a
valid attack against the security definition. A similar issue was already observed
by Alwen, Dodis and Wichs [1], in their work on leakage-resilient public-key
cryptography in the so-called bounded retrieval model. In this setting, the secret
key is made intentionally large (say, 100 gigabytes) such that it may be infeasi-
ble/impractical for the attacker to download “too much” data (say, more than 1
gigabytes). Still, the length of the public key and the computational overhead are
essentially independent from the size of the secret key. For the very same reason
pointed out above, no signature scheme can be proven existentially unforgeable

1 The restriction is of course that the forgery should not correspond to one of the
messages asked to the oracle.

364 J.B. Nielsen, D. Venturi, and A. Zottarel

in the bounded retrieval model, as the leakage could simply consist of a forgery.
To tackle this issue the authors in [1] considered a weaker notion, which they
name entropic unforgeability, where, after the leakage phase, the adversary is
required to forge the signature of a message sampled from a (potentially adver-
sarially chosen) distribution of high enough min-entropy (given the entire view
of the adversary). [1] then shows that entropic unforgeability can be achieved in
the random oracle model [3], by applying the Fiat-Shamir transform [16] to a
certain class of interactive protocols.

In this work we propose more granular ways to model (bounded) leakage
resilience for signature schemes where the length of the signature is smaller
than the length of the secret key. In a nutshell, our simplest notion says that
an adversary leaking λ bits will always be able to produce 	λ/|σ|
 forgeries,
but not more than that. At first glance it may seem that our notion gives a
weaker guarantee. However, the number of forgeries the adversary is required to
produce strictly depends on the actual leakage, so if an adversary asks for no
leakage (i.e. we are in the black-box model), our notion is equivalent to standard
existential unforgeability, as now 	λ/|σ|
 = 0. On the other hand, when leakage
does happen, our definition offers a graceful degradation of security and, as we
argue in more details below, still allows for interesting, non-trivial, applications.

1.1 Our Contribution

We investigate new models and constructions which allow leakage-resilient sig-
natures secure against existential forgeries, where the signature is much shorter
than the leakage bound. Our main contributions are discussed in detail below.

One-more unforgeability. As a first contribution, we state a variant of leakage
resilience for signature schemes where the length of the secret key is much larger
than the length of a signature.2 We name our notion one-more unforgeability,
since it has a similar flavour to the unforgeability notion for blind signatures [34].
The attacker (given the verification key vk) can access a signing oracle and a
leakage oracle; at the end he has to output n forgeries (m1, σ1), . . . , (mn, σn)
and wins the game if and only if all the forgeries are valid, the messages are
pairwise distinct, and n is strictly larger than the number of forgeries one could
have leaked via leakage queries. See Section 3 for a precise definition.

We also formulate a seemingly stronger variant, which we name constrained -
one-more unforgeability. Here we introduce a simulator S which first looks at the
state of the adversary A after the leakage phase ended and then defines a set of
messages Q∗ of size strictly smaller than n, as defined above. A signature scheme
is secure in this setting if, for all A, there exists such a simulator for which A is
not able to forge a message which is not contained in Q∗ (and was not already
asked to the signing oracle). This captures the intuition that the forgeries are

2 Note that this in general encompasses schemes with short signatures, and not
necessarily signature schemes in the bounded retrieval model.

Leakage-Resilient Signatures with Graceful Degradation 365

already fixed after the leakage is ended, and the adversary is “constrained” in
the sense that those are the only messages for which he can forge.3

We show that one-more unforgeability and constrained-one-more unforgeabil-
ity are equivalent. The tricky direction is to show that the former implies the
latter. The intuition is using an adversary breaking constrained-one-more un-
forgeability and rewinding him to obtain a sufficiently large set of forgeries: if at
each rewinding we use a strictly larger set Q∗ (including all previous forgeries
output by the adversary), after n steps we end-up with n forgeries which allow
to break one-more unforgeability. The actual analysis is more involved, as we
need to take care of the fact that we are rewinding the adversary at the point
where he is already committed to the leakage.

A construction. As a second contribution we present a scheme achieving one-
more-unforgeability, based on a perfectly hiding (homomorphic) commitment
scheme and a non-interactive zero knowledge argument of knowledge system.

The secret key consists of the coefficients δi of a d-degree polynomial δ(·) over
a finite field, together with the openings ri for the commitments comi to δi. The
verification key consists of the set of all com i together with a common reference
string for the argument system. To sign a message m, we compute δ(m) and
we produce a zero-knowledge argument of knowledge that the evaluation of the
polynomial was performed correctly using the coefficients whose commitments
are in the verification key. The signature consists of such an argument.

We prove that the scheme is one-more unforgeable whenever the commit-
ment is perfectly hiding (and computationally binding), as long as the leakage
is smaller than (1/2 − o(1)) · |sk |. We also show a particular instantiation, using
standard building blocks such as Pedersen commitments [32] and Groth-Sahai
proofs [19,20]. Security follows from the DLIN assumption [5]. We remark that
for our concrete instantiation it is indeed the case that the length of a signature
is essentially independent of the length of the secret key.

Application to identification protocols. Besides being a notion of theoretical in-
terest, we also show that one-more unforgeability can be applied in the context
of identification protocols. We focus on the public-key setting, where a prover P
wants to be identified from a verifier V holding P’s public key.

Following [1], we define security in the presence of leakage by considering
an adversary having black-box access to the prover and to a leakage oracle

3 We note that constrained-one-more unforgeability is strictly stronger than entropic
unforgeability [1]. If a scheme is constrained-one-more unforgeable, then after the
leakage is done, a poly-sized set of messages Q∗ is defined and the adversary cannot
forge for a message outside Q∗, whereas a high entropy message will hit inside Q∗

with negligible probability. On the other hand consider a signature scheme where a
signature is given as σ = Π−1(m) for a one-way trapdoor permutation Π hard to
invert on high-entropy m. Such a scheme is entropic secure in the presence of λ = 0
bits of leakage, by definition, but is clearly not constrained-one-more unforgeable in
the presence of λ = 0 bits of leakage, as the adversary can always sample one more
random message/signature pair as m = Π(σ) for random σ.

366 J.B. Nielsen, D. Venturi, and A. Zottarel

(depending on the prover’s secret key) in a first phase. In a second phase the
adversary is given one chance to convince the verifier. The above notion is rem-
iniscent of so-called active security [23,25].

We show that the classical protocol for public-key identification, where the
verifier challenges the prover with a random message and the prover has to
respond with a signature on that message, achieves the above notion of ac-
tive security4 with leakage, provided that the underlying signature scheme is
constrained-one-more unforgeable.

1.2 Other Related Work

In this work (similarly to [1,10,15]) we focus on bounded leakage resilience, i.e.,
we assume that there is an a-priori upper bound on the length of the maximum
tolerated leakage. Furthermore, we consider a setting where the leakage can only
depend on the signing key and not on the full state of the signer (including, e.g.,
the signer’s random coins). A strictly stronger notion of fully leakage-resilient
signatures (where the leakage is bounded but can depend on the entire state of
the signer) was considered in [24,6].

In the continual leakage setting [7,9,29,6], there is no a priori bound on the
length of the leakage. This requires an efficient procedure to update the secret
key (while leaving the public key unchanged), and to assume that the leakage is
bounded only between two updates (and during the update process itself).

An independent line of research (see, e.g. [22,26]) aims at constructing sig-
nature schemes (in the black-box model) which are as short as possible. Even
though this is not our purpose, we believe that our notions could have interesting
implications in this setting, when studying leakage resilience of such schemes.

2 Preliminaries

2.1 Notation

For a, b ∈ R, we let [a, b] = {x ∈ R ; a ≤ x ≤ b}; for a ∈ N we let [a] =
{1, 2, . . . , a}. If x is a string, we denote its length by |x|; if X is a set, |X |
represents the number of elements in X . When x is chosen randomly in X , we
write x ← X . When A is an algorithm, we write y ← A(x) to denote a run of A on
input x and output y; if A is randomized, then y is a random variable and A(x; r)
denotes a run of A on input x and randomness r. An algorithm A is probabilistic
polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the
computation of A(x; r) terminates in at most poly(|x|) steps.

Throughout the paper we let κ denote the security parameter. We say that a
function ν : N → R is negligible in the security parameter κ if ν(κ) = κ−ω(1).
For two ensembles X = {Xκ}κ∈N and Y = {Yκ}κ∈N, we write X ≡ Y if they

4 In fact, as argued in [2], without leakage the signature based protocol is even secure
against man-in-the-middle attacks. It is not hard to see, however, that our result
does not extend to man-in-the-middle security.

Leakage-Resilient Signatures with Graceful Degradation 367

are identically distributed and X ≈s Y to denote that the statistical distance
between the two distributions is negligible in the security parameter. We say that
X and Y are computationally indistinguishable if for all PPT distinguishers D
it holds that |P [D(1κ, X) = 1] − P [D(1κ, Y) = 1]| is negligible in κ.

The min-entropy of a random variable X over a set X is defined as H∞(X) :=
− logmaxx P [X = x] and represents the best chance of guessing X by an un-
bounded adversary. Average min-entropy captures how hard it is to guess X on
average, given some side information Z (possibly related to X):

H̃∞(X |Z) = − logEz
[
max
x

P [X = x|Z = z]
]
.

The min-entropy of a distribution conditioned to some side information cannot
decrease more than the bit-length of the side information itself:

Lemma 1 ([12]). For all random variables X ∈ X and Λ ∈ {0, 1}λ we have

that H̃∞(X |Λ) ≥ H∞(X) − λ.

We let O�(s) be an oracle parametrized by a value s, which takes as input
efficiently computable functions f : {0, 1}∗ → {0, 1}∗ and outputs f(s), returning
a total of at most � bits.

2.2 Commitment Schemes

A (non-interactive) commitment scheme COM is a tuple of algorithms (Setup,
Commit), defined as follows: (1) Algorithm Setup takes as input the security
parameter and outputs a public key pk ; (2) Algorithm Commit takes as input
a message m ∈ M, randomness r ∈ R, the public key pk and outputs a value
com ∈ C. To open a commitment com we output (m, r); an opening is valid if
and only if com = Commit(m; r).

A commitment scheme has two properties, known as binding and hiding. In
Section 4 we need a scheme with the following flavour.

Computationally Binding : For any PPT adversary A, the following is
negligible:

P
[
Commit(m0; r0) = Commit(m1; r1) :

pk ← Setup(1κ);
((m0, r0), (m1, r1)) ← A(pk)

]
.

Statistically Hiding : For all messages m0,m1 ∈ M, we have that

{pk ,Commit(pk ,m0)}κ∈N ≈s {pk ,Commit(pk ,m1)}κ∈N,

where the two ensembles are considered as random variables over the choice
of the randomness to generate pk ← Setup(1κ) and to compute the com-
mitment. If the two ensembles are identically distributed, we say that the
commitment is perfectly hiding.

368 J.B. Nielsen, D. Venturi, and A. Zottarel

Whenever M and R are a finite field F, we say that COM is linearly homo-
morphic in the following sense: Given commitments com and com ′ and a field
element c ∈ F, one can compute commitments com∗ and com ′′ such that being
able to open com and com ′ to m and m′ (respectively) allows to open com∗ to
m +m′ and com ′′ to c · m. We will write the mapping (com , com ′) �→ com∗ as
com ·com ′ and the mapping (c, com) �→ com ′′ as comc. Similarly, for the opening
information we will write the mappings as com∗ = Commit(pk ,m + m′; r + r′)
and com ′′ = Commit(pk , c · m; c · r). The above can be generalized to abstract
operations over M, R and C, but for simplicity, and to be consistent with the
concrete instantiation given in Section 4.2, we stick to this formulation here.

2.3 Non-interactive Zero-Knowledge Arguments of Knowledge

For a relation R ⊆ {0, 1}∗×{0, 1}∗, the language associated with R is LR = {x :
∃w s.t. (x,w) ∈ R}. A non-interactive argument system N IZK for a relation R
is a tuple of algorithms (Init,Prove,Ver), defined as follows: (1) Algorithm Init
takes as input the security parameter and outputs a common reference string
crs ← Init(1κ); (2) Algorithm Prove takes as input a pair (x,w) such that (x,w) ∈
R and outputs an argument π; (3) Algorithm Ver takes as input a pair (x, π)
and outputs a judgement in {0, 1}.

We require the following properties for N IZK [36,10].

Completeness: For every (x,w) ∈ R we have that

Pr[Ver(crs, (x, π)) = 1 : crs ← Init(1κ);π ← Prove(crs, (x,w))] ≥ 1 − negl(κ).

Multi-theorem zero-knowledge: There exists a PPT simulator Sim = (Sim1,
Sim2) such that, for all PPT adversaries A, the ensembles {Real(κ)}κ∈N and
{Simu(κ)}κ∈N are computationally close, where

Real(κ) :=
{
crs ← Init(1κ); out ← AProve(crs,·)(crs)

}
Simu(κ) :=

{
(crs, tk) ← Sim1(1

κ); out ′ ← AS̃im2(tk ,·)(crs)
}

and S̃im2(tk , (x,w)) outputs Sim2(tk , x) if (x,w) ∈ R, and ⊥ otherwise.

Simulation extractability: There exists a PPT algorithm Xtr = (Xtr1,Xtr2)
such that, for all PPT adversaries A, we have that

P
[

(crs, tk , xk) ← Xtr1(1
k); (x, π) ← ASim2(tk ,·)(crs);

w ← Xtr2(xk , (x, π)); (x,w) �∈ R ∧ (x, π) �∈ Q ∧ Ver(crs, (x, π)) = 1

]
is negligible, where the list Q contains the successful pairs (xi, πi) that A
has queried to Sim2. We say that N IZK is true simulation-extractable if

oracle Sim2(tk , x) is replaced by S̃im2(tk , (x,w)) that outputs the same as
Sim2(tk , x) if and only if (x,w) ∈ R (and outputs ⊥ otherwise).

Leakage-Resilient Signatures with Graceful Degradation 369

3 One-More Unforgeability

A signature scheme is a triple of algorithms SS = (KGen, Sign,Verify) defined as
follows: (1) The key generation algorithm takes as input the security parameter
κ and outputs a verification key/signing key pair (vk , sk) ← KGen(1κ); (2) The
signing algorithm takes as input a message m ∈ M and the signing key sk and
outputs a signature σ ← Sign(sk ,m); (3) The verification algorithm takes as
input the verification key vk and a pair (m,σ) and outputs Verify(vk , (m,σ)) ∈
{0, 1}. We denote by |σ| the size of a signature output via Sign(sk , ·).

Given a signature scheme SS, consider the following experiment Expone−more
SS,A (κ,

�, γ) running with a PPT adversary A and parametrized by the security param-
eter κ ∈ N, the leakage bound � ∈ N and the slack parameter γ ∈ (0, 1]:

1. Compute (vk , sk) ← KGen(1κ) and give vk to A.
2. The adversary A can adaptively access oracles Sign(sk , ·) and O�(sk , ·), where

O�(sk , f) returns f(sk). We let Λ ∈ {0, 1}λ be the total information returned
by O� (with λ ≤ �), and we write Q for the set of messages A forwarded to
the signing oracle.

3. A outputs n pairs (m1, σ1), . . . , (mn, σn).
4. The experiment outputs 1 iff if the following conditions are satisfied:

(a) Verify(vk , (mi, σi)) = 1 and mi �∈ Q, for all i ∈ [n].
(b) The messages m1, . . . ,mn are pairwise distinct.
(c) n ≥ 	λ/(γ|σ|)
 + 1.

Definition 1 (One-more unforgeability). We say that SS = (KGen, Sign,
Verify) is (�, γ, ε)-one-more unforgeable if for every PPT adversary A we have
that P[Expone−more

SS,A (κ, �, γ) = 1] ≤ ε. Whenever ε is negligible in the security
parameter, we simply say that SS is (�, γ)-one-more unforgeable.

Remark 1 (on γ). The parameter γ specifies how close to optimal security SS is.
In particular, in case γ = 1 one-more unforgeability requires that A cannot forge
even a single signature more than what it could have leaked via leakage queries.
As γ decreases, so does the strength of the signature scheme (the extreme case
being γ = |M|−1, where we have no security).

Note that the number of signatures the adversary has to forge depends on the
length of the leakage he asks to see. In particular (�, γ)-one-more unforgeability
implies standard unforgeability for any adversary asking no leakage (λ = 0).

Finally, we remark that for any γ ∈ (0, 1] we have that (�, γ)-one-more un-
forgeability implies (�′, γ)-one-more unforgeability for all �′ ≤ �.

3.1 An Alternative Definition

Definition 1 may seem a weak security guarantee for a signature scheme, as an
adversary is able to forge a certain number of signatures. If the messages to
forge could be chosen at will at any time, this would be a rather useless security
guarantee. Here, we state a seemingly stronger flavour of one-more unforgeability

370 J.B. Nielsen, D. Venturi, and A. Zottarel

where a simulator can look at the state of the adversary after he is done with
leakage queries and output a set Q∗ ⊂ M, of size less than n, thought of as
the messages corresponding to the forgeries leaked so far; now the adversary is
successful if he can produce a forgery for a message of his choice not contained
in Q∗ (and not already asked to the signing oracle). In a certain sense, we get a
notion that is similar to the standard unforgeability notion, with the twist that
the adversary can ask a few extra signing queries (via leakage queries, though).

Given a signature scheme SS, consider the experiment Exppoly−sim−one−more
SS,A,S (κ,

�, γ) below, running with a PPT adversary A = (A1,A2) and a PPT simulator
S and parametrized by the security parameter κ ∈ N, the leakage bound � ∈ N
and the slack parameter γ ∈ (0, 1]:

1. Compute (vk , sk) ← KGen(1κ) and give vk to A.
2. The adversary A1 can adaptively access oracles Sign(sk , ·) and O�(sk , ·),

where O�(sk , f) returns f(sk). We let Λ ∈ {0, 1}λ be the total information
returned by O� (with λ ≤ �), and we write Q for the set of messages A1

forwarded to the signing oracle.
3. Let st be the state of A1 at the end of step 2 above, i.e., all his inputs, all his

random choices, and all replies from the oracles. The simulator is given st
and outputs Q∗ ← S(1κ, vk , st) such that Q∗ ⊂ M and |Q∗| ≤ 	λ/(γ|σ|)
.

4. A2 is given Q∗ and st and outputs a forgery (m∗, σ∗).
5. The experiment outputs 1 iff Verify(vk , (m∗, σ∗)) = 1 and m∗ �∈ Q ∪ Q∗.

Definition 2 (Poly-constrained one-more unforgeability). We say that
SS = (KGen, Sign,Verify) is (�, γ, ε)-poly-constrained one-more unforgeable if
for every PPT adversary A there exists a PPT simulator S such that

P[Exppoly−sim−one−more
SS,A,S (κ, �, γ) = 1] ≤ ε.

Whenever ε is negligible in the security parameter, we simply say that SS is
(�, γ)-poly-constrained one-more unforgeable.

3.2 Yet another Alternative Definition

Definition 2 requires that Q∗ can be computed in poly-time, effectively requiring
that the adversary knows the small set of forgeries he leaked. In most applications
we are aware of, it seems, however, enough that such a small set exists. And,
there seems to be a difference between these notions. Consider an adversary who
leaks a few values of the form vi = H(mi) ⊕ σi, where H is a hash function, for
random messages mi (with i ∈ [n]) and σi a signature on mi. Given any mi as
input it can compute a “forgery” σi = vi⊕H(mi), but until it is given mi it does
not know the set of messages it can forge signatures on, at least it would be hard
to compute this set efficiently in a black-box manner. We formulate a security
notion which still considers leakage of a few such “unknown” σi as benign.

We simply restate Definition 2, but we now allow S unbounded computing
time. We can massage this relaxed definition a bit to get a simpler, equivalent
definition. Consider the following generic simulator Smin(1

κ, vk , st): it iterates

Leakage-Resilient Signatures with Graceful Degradation 371

over all Q∗ ⊂ M with |Q∗| ≤ 	λ/(γ|σ|)
 and computes the probability pQ∗ that
A2(Q∗, st) outputs (m∗, σ∗) such that Verify(vk , (m∗, σ∗)) = 1 and m∗ �∈ Q∪Q∗.
It then outputs the Q∗ minimizing pQ∗ . It is clear that if for some adversary
A there exists an unbounded simulator S fulfilling Definition 2 for A, then also
Smin will fulfil Definition 2 for A. Hence we can equivalently hardwire Smin into
the definition. If we at the same time use that the expected value of a random
value over {0, 1} is equal to the probability that it is 1, we get the below more
compact definition. Consider the following experiment Expsim−one−more

SS,A (κ, �, γ):

1. Compute (vk , sk) ← KGen(1κ) and give vk to A1.
2. The adversary A1 can adaptively access oracles Sign(sk , ·) and O�(sk , ·),

where O�(sk , f) returns f(sk). We let Λ ∈ {0, 1}λ be the total information
returned by O� (with λ ≤ �), and we write Q for the set of messages A1

forwarded to the signing oracle.
3. Let st be the state of A1 at the end of step 2 above.
4. Output

min
Q∗⊂M:

|Q∗|≤�λ/(γ|σ|)�

(P[(m∗, σ∗) ← A2(Q∗, st) : Verify(vk , (m∗, σ∗))∧m∗ �∈ Q∪Q∗]) .

Definition 3 (Constrained one-more unforgeability). We say that SS =
(KGen, Sign,Verify) is (�, γ, ε)-constrained one-more unforgeable if it holds that
E[Expsim−one−more

SS,A (κ, �, γ)] ≤ ε for every PPT adversary A, where the expected
value is over the random choices used to generate (vk , sk) and the random choices
of A1. Whenever ε is negligible in the security parameter, we simply say that SS
is (�, γ)-constrained one-more unforgeable.

3.3 Equivalence of Two Definitions

We argue below that one-more unforgeability and constrained-one-more unforge-
ability are equivalent. It is clear that security under Definition 2 implies security
under Definition 3. We conjecture that Definition 3 is strictly weaker than Def-
inition 2.

Theorem 1. Definition 1 and Definition 3 are equivalent up to a constant factor
4 in security.

Proof. For space reasons, we prove only that Definition 1 implies Definition 3;
the proof of the other direction can be found in the full version. We give a
proof by contradiction. Assume there exists a polynomial ε and PPT adversary
A′ = (A′

1,A
′
2) such that E[Expsim−one−more

SS,A′ (κ, �, γ)] > ε for infinitely many values
of κ.

Since 0 ≤ E[Expsim−one−more
SS,A′ (κ, �, γ)] ≤ 1 this implies that P[Expsim−one−more

SS,A′ (κ,
�, γ) ≥ ε/2] ≥ ε/2 for infinitely many values of κ. Let E be the event that
P[Expsim−one−more

SS,A′ (κ, �, γ) ≥ ε/2].

We now describe A, running in experiment Expone−more
SS,A (κ, �, γ). When reading

the description keep in mind that it is defined to work when E occurs.

372 J.B. Nielsen, D. Venturi, and A. Zottarel

1. Receive the verification key vk and initialize Q∗ = ∅.
2. Run A′

1(1
κ, vk) and simulate leakage queries and signature queries using

oracles O�(sk , ·) and Sign(sk , ·). Let Λ ∈ {0, 1}λ be the overall information
retrieved by A′

1.
3. Define n := 	λ/(γ|σ|)
 + 1. Repeat the following steps, for i = 1, . . . , n:

(a) Run 8(log2(n) + κ)/ε copies of A′
2(1

κ, st ,Q∗) in parallel. If any of the
copies outputs (m∗

i , σ
∗
i) such that Verify(vk , (m∗, σ∗)) = 1 and m∗ �∈

Q ∪ Q∗, then go to the next step, otherwise give up and terminate.
(b) Set Q∗ := Q∗ ∪ {m∗

i } for one of the forgeries from above.
4. Output (m∗

1, σ
∗
1), . . . , (m

∗
n, σ

∗
n).

Assume that E occurs. Then the probability that any copy A′
2(1

κ, st ,Q∗) in
Step 1 outputs (m∗

i , σ
∗
i) such that Verify(vk , (m∗, σ∗)) = 1 and m∗ �∈ Q ∪ Q∗ is

≥ ε/2. Hence one of the copies will output such (m∗
i , σ

∗
i), except with probability

2− log2(n)−κ, by construction. Thus, by a union bound, the probability that A
gives up in any of the iterations is at most n · 2− log2(n)−κ = 2−κ.

Clearly, when A does not give up in any of the iterations, we have that
Expone−more

SS,A (κ, �, γ) = 1. Hence P[Expone−more
SS,A (κ, �, γ) = 1] ≥ P[E](1 − 2−κ) =

ε(1 − 2−κ)/2 > ε/4 for infinitely many values of κ. This concludes the proof as
A is PPT.

4 Construction

We give a construction of a one-more unforgeable signature scheme (cf. Defini-
tion 1) based on the following building blocks:

– A non-interactive zero knowledge argument of knowledge system N IZK =
(Init,Prove,Ver).

– A perfectly hiding and computationally binding, linearly homomorphic5 com-
mitment scheme COM = (Setup,Commit), with message and randomness
space equal to a finite field F.

Our scheme SS = (KGen, Sign,Verify) has message space equal to F and is de-
scribed below:

Key Generation. Run pk ← Setup(1κ) and crs ← Init(1κ). For some parame-
ter d ∈ N, sample δ0, . . . , δd and r0, . . . , rd uniformly from F, and compute
commitments comi = Commit(pk , δi; ri) for i = 0, . . . , d. Let δ = (δ0, . . . , δd)
and r = (r0, . . . , rd); output sk = (δ, r) and vk = (crs, pk , {comi}di=0).

Signature. To sign a message m ∈ F, let δ(X) be the degree d polynomial

having δi’s as coefficients, i.e. δ(X) =
∑d

i=0 δi · X i. Consider the following
polynomial-time relation:

R := {(pk , com∗); (m̃, r̃) : com∗ = Commit(pk , m̃; r̃)} .

5 For notational convenience, we assume that the product of commitments give com-
mitments to the sum of messages using the sum of the randomness as randomness,
à la Pedersen [32].

Leakage-Resilient Signatures with Graceful Degradation 373

Compute m̃ = δ(m) and r̃ =
∑d

i=0 ri · mi. Note that both values m̃, r̃
can be computed efficiently as a function of the signing key (δ, r) and the
message to be signed. Using crs as common reference string, generate a NIZK
argument π that (pk ,

∏d
i=0(com i)

mi

) ∈ LR, the language generated by the
above relation R. Output σ = π.

Verification. Given a pair (m,σ), parse σ as σ = π and compute com∗ =∏d
i=0(com i)

mi

. Output the same as Ver(crs, π, (pk , com∗)).

Let us first argue that the signature scheme satisfies the correctness property.
This follows from the fact that COM is linearly homomorphic (cf. Section 2.2):

com∗ =
d∏

i=0

(com i)
mi

=
d∏

i=0

Commit(δi ·mi; ri ·mi) = Commit
(d∑

i=0

δi ·mi

︸ ︷︷ ︸
m̃

;
d∑

i=0

ri ·mi

︸ ︷︷ ︸
r̃

)
.

We prove the following result:

Theorem 2. Assume that COM is perfectly hiding and computationally bind-
ing, and that N IZK is a NIZK argument of knowledge system for relation R.
Then the scheme SS described above is (�, γ)-one-more unforgeable, as long as

� = d log |F| and γ =
log |F|

|σ| .

4.1 Proof of Theorem 2

To prove the theorem we will rely on the following property of any perfectly
hiding commitment scheme COM = (Setup,Commit). Define the following ex-
periment ExpguessCOM,A(κ, �, d), featuring an unbounded adversary A:

1. Run pk ← Setup(1κ) and sample x1, . . . , xd ∈ M uniformly at random.
Compute com i = Commit(pk , xi; ri) and give ({com i}di=1, pk) to A. Store
s = ({xi}di=1, {ri}di=1).

2. The adversary can access adaptively oracle O�(s, ·). Let Λ ∈ {0, 1}λ be the
overall information retrieved by A (with λ ≤ �).

3. The adversary can open a subset of size t of (x1, . . . , xd): Given a set of
indexes (i1, . . . , it) such that each ij ∈ [d], the values ({xij }tj=1, {rij }tj=1)
are forwarded to A.

4. The experiment returns 1 if A outputs the remaining values xi, for all i ∈
[d] \ {i1, . . . , it}.

Lemma 2. Let COM = (Setup,Commit) be a perfectly hiding commitment
scheme with message space M. Then for every computationally unbounded ad-
versary A we have that

P
[
ExpguessCOM,A(κ, �, d) = 1

]
≤ 2λ

|M|d−t .

374 J.B. Nielsen, D. Venturi, and A. Zottarel

The proof of Lemma 2 appears in the full version of this paper.
We now prove Theorem 2. Let A be a PPT machine running in experiment

Expone−more
SS,A (κ, �, γ). We recall how the experiment is held for our scheme SS.

1. The signing key sk = (δ, r) and the verification key vk = (pk , {comi}di=0)
are computed. In particular, pk ← Setup(1κ) and crs ← Init(1κ). Here, δ =
(δ0, . . . , δd) ← Fd+1, com i = Commit(δi; ri) and r = (r0, . . . , rd) ← Fd+1.

2. The adversary A is given vk and can access oracles Sign(sk , ·) and O�(sk , ·).
– The signing oracle Sign(sk ,m) computes m̃ =

∑d
i=0 δi · mi and r̃ =∑d

i=0 ri · mi, together with an argument π that (pk , com∗) ∈ LR for
com∗ = Commit(m̃; r̃); hence, it returns σ = π.

– The leakage oracle O�(sk , f) returns f(sk).
3. A outputs n pairs (m1, π1), . . . , (mn, πn).
4. The experiment outputs 1 iff the following conditions are satisfied:

(a) Verify(vk , (mi, σi)) = 1 and mi �∈ Q, for all i ∈ [n].
(b) The messages m1, . . . ,mn are pairwise distinct.
(c) n ≥ 	λ/(γ|σ|)
 + 1.

The proof proceeds by a series of games.

Game0. This is the real experiment, as described above.
Game1. This game is identical to Game0, but we replace the Init algorithm with

(crs, tk) ← Sim1(1
κ). Moreover, each time a signing query for message m

is asked, we simulate the argument by running π ← Sim2(tk , (pk , com
∗)).

Everything else remains the same.
By a standard argument, the multi-theorem zero-knowledge property of
the argument system implies that P [A wins Game0] is negligibly close to
P [A wins Game1].

Game2. This game is identical to Game1, but the common reference string is
sampled as (crs, tk , xk) ← Xtr1(1

κ) and before outputting 1 we check that
all arguments contained in A’s forgeries can be extracted via Xtr2(xk , ·).
By a standard argument, (true) simulation extractability of N IZK implies
that P [A wins Game1] is negligibly close to P [A wins Game2].

Now, we show that P [A wins Game2] is negligible which proves the theorem.
Define the following event Bad in Game2: The event occurs whenever for at least
one of the forgeries (mj , σj) returned by A it holds that m̃′

j �=
∑d

i=0 δi · mi
j

for (m̃′
j , r̃

′
j) ← Xtr2(xk , πj). In other words, there exists a valid pair (mj , σj) for

which the extracted value m̃′
j is not the evaluation of mj through the polynomial

δ(X) having δ as coefficients. We write

P [A wins Game2] ≤ P [A wins Game2 ∧ Bad] + P
[
A wins Game2 ∧ Bad

]
≤ negl(κ),

where the last inequality comes from the two claims below.

Claim. P
[
A wins Game2 ∧ Bad

]
≤ 2λ/|F|n.

Leakage-Resilient Signatures with Graceful Degradation 375

Proof. By contradiction, assume that P
[
A wins Game2 ∧ Bad

]
> 2λ/|F|n. We

build a PPT reduction B (running A) which wins the game of experiment
ExpguessCOM,B(κ, �, d+ 1) with at least the same advantage.

1. Given {comi = Commit(δi; ri)}di=0 as input, implicitly define sk := (δ, r),
where

δ = (δ0, δ1, . . . , δd) r = (r0, r1, . . . , rd).

Run (crs, tk , xk) ← Xtr1(1
κ) and give vk := (crs, pk , {comi}di=0) to A.

2. Whenever A asks a leakage query f to O�((δ, r), ·), forward the same query
to O�(s, ·) (where s = (δ, r)). Give to A the same value returned by O�(s).

3. Whenever A asks a signing querym to Sign(sk , ·), answer as follows. Simulate

an argument π ← Sim(tk , (pk , com∗)) where com∗ =
∏d
i=0(com i)

mi

. Give
σ = π to A.

4. Let (m1, σ1), . . . , (mn, σn) be the forgeries output by A. Ask to open the last
t := d+1−n values, i.e. ({δi}di=n, {ri}di=n). Set δ̃i = δi for each i = n, . . . , d.

5. For each of the values σi = πi returned by A compute (m̃′
i, r̃

′
i) ← Xtr2(xk , πi).

Solve the following linear system:⎛⎜⎝1 m1 . . . mn−1
1

. . .

1 mn . . . mn−1
n

⎞⎟⎠ ·

⎛⎜⎝ δ0
...

δn−1

⎞⎟⎠ =

⎛⎜⎝ y0
...

yn−1

⎞⎟⎠ , (1)

where each of the values yi is computed from known values as yi = m̃′
i −∑d

j=n δ̃j · mj
i .

6. Output (δ1, . . . , δn).

Note that B perfectly simulates the environment for A in Game2. The choice of
the parameters γ = log |F|/|σ| and � = d log |F| (as in the theorem statement),
ensures that 1 ≤ n ≤ d + 1. In particular, the total number of field elements

known by B is at most λ
log |F| +

(
d −

⌊
λ
γ|σ|

⌋)
< d + 1, and thus there is some

entropy left in the commitments.
Moreover, as the values (m1, . . . ,mn) are pairwise distinct, the matrix of

Eq. (1) has full rank and the linear system always admits a solution. Since the
event Bad does not happen, we have that m̃′

i = m̃i = δ(mi) (for all i ∈ [n]), and
thus the solution (δ1, . . . , δn) corresponds to the same elements in the vector δ.
The above contradicts Lemma 2, as

P
[
ExpguessCOM,B(κ, �, d+ 1) = 1

]
≥ P

[
A wins Game2 ∧ Bad

]
>

2λ

|F|n .

Claim. P [A wins Game2 ∧ Bad] ≤ negl(κ).

Proof. Assume that P [A wins Game2 ∧ Bad] > 1/poly(κ) for infinitely many κ.
We build an attacker C breaking the binding property of the commitment scheme
COM with non-negligible advantage. A description of C follows:

376 J.B. Nielsen, D. Venturi, and A. Zottarel

1. Receive the public parameter pk for COM. Choose δ0, . . . , δd ← F and
compute commitments com i = Commit(pk , δi; ri) for randomly chosen r0,
. . . , rd ← F. Generate (crs, tk , xk) ← Xtr1(1

κ).
2. Run A with input vk := (crs, pk , {comi}di=0) and answer signing/leakage

queries from A as it would be done in Game2.
3. When A outputs (m1, π1), . . . , (mn, πn), extract the witness (m̃′

i, r̃
′
i) from

each argument of knowledge πi, for i ∈ [n].
4. If there exists an index j ∈ [n] such that m̃′

j �= δ(mj), compute com∗
j =∏d

i=0(com i)
mi

j , m̃j =
∑d

i=0 δi · mi
j and r̃j =

∑d
i=0 ri · mi

j and output
(com∗

j , (m̃j , r̃j), (m̃
′
j , r̃

′
j)); otherwise abort and output ⊥.

Notice that if Game2 outputs 1 and event Bad occurs, then C outputs a valid
pair breaking the binding property of COM with non-negligible probability (a
contradiction). This is because both (m̃j , r̃j) and (m̃′

j , r̃
′
j) are valid openings for

com∗
j and moreover Bad implies that (m̃j , r̃j) �= (m̃′

j , r̃
′
j).

4.2 A Concrete Instantiation

In this section we show how to instantiate our signature scheme, reducing secu-
rity to the DLIN assumption [5]. For each of the building blocks we present an
instantiation and concrete parameters.

In the following let G be a cyclic group of order a prime number q. Before
introducing our concrete construction, let us recall the DLIN assumption:

Definition 4. The DLIN assumption states that for any PPT algorithm A it
holds that

∣∣∣P [A(G, (g, g1, g2, g
a
1 , g

b
2, g

c)) = 1
]
− P
[
A(G, (g, g1, g2, g

a
1 , g

b
2, g

a+b) = 1
]∣∣∣ ≤ negl(κ),

where g, g1, g2 ← G and a, b, c ← Fq.

COM : We use Pedersen commitments. The setup algorithm Setup outputs
public parameters pk = (h1, h2), where h1 is a generator for G and h2 =
ha1 for a random a ∈ Fq. The commitment to an element m ∈ Fq using
randomness r ← Fq is computed as com = Commit(pk ,m; r) := hm1 · hr2.
Whenever we want to open the commitment, we reveal (m, r).

Note that Pedersen commitment is linearly homomorphic: given com1 =
Commit(m1; r1) and com2 = Commit(m2; r2) it holds that

com1 · com2 = hm1+m2
1 · hr1+r22 = Commit(m1 +m2; r1 + r2).

Moreover, for all constants c ∈ Fq we have that comc = hc·m1 · hc·r2 =
Commit(c · m; c · r).

N IZK : Recall that our relation is as follows:

R = {(pk , com∗); (m̃, r̃) : com∗ = Commit(pk , m̃; r̃)} .

Leakage-Resilient Signatures with Graceful Degradation 377

When using Pedersen commitment, we get

com∗ =

d∏
i=0

(com i)
mi

=

d∏
i=0

(
hδi+ari1

)mi

= h
∑d

i=0 δim
i+arim

i

1 = hm̃+a·r̃
1 .

Thus, we can reduce the proof of knowledge of an opening for com∗ to the
proof of knowledge of a discrete logarithm. Groth [18] gives a simulation-
extractable NIZK for proving knowledge of discrete logarithms of a group
element. We remark that the length of a proof is constant, and in particular
independent of the degree d of the polynomial.

Alternatively, as true simulation-extractability is sufficient for our con-
struction, one could instantiate the NIZK using the transformation of [10],
which requires a standard (non-simulation-extractable) NIZK and a labeled
CCA-secure encryption scheme.

5 Application to Leaky Identification

We show how to apply one-more unforgeability to the context of (leaky) iden-
tification protocols. In a public key identification scheme a prover with public
key vk attempts to prove its identity to a verifier holding vk . More formally, an
identification scheme ID = (PGen,KGen,P,V) consists of four PPT algorithms
described as follows: (1) The parameters generation algorithm takes as input the
security parameter and outputs public parameters params ← PGen(1κ), shared
by all users.6 (2) The key generation algorithm takes as input the security pa-
rameter and outputs a verification key/secret key pair (vk , sk) ← KGen(1κ). (3)
P and V are probabilistic Turing machines interacting in a protocol (P(sk) �
V)(vk); at the end of the execution V outputs a judgment d ∈ {0, 1}, where d = 1
means that the identification was successful.

Following [1], we define a leaky variant of the standard notion of active security
(dubbed active �-security under pre-impersonation attacks with leakage), where
an adversary, in a first stage, is given black-box access to the honest prover, and in
a second stage is given one shot to convince the verifier. In the leaky case, during
the first phase, the adversary can also access adaptively a leakage oracle O�(sk).

We then show that the below standard way (see [2]) of constructing an identi-
fication scheme ID from a signature scheme SS = (KGen′, Sign,Verify), achieves
active �-security under pre-impersonation attacks with leakage provided that SS
is one-more unforgeable.

– Parameters generation. Algorithm PGen samples the public parameters
params for the signature schemes (if any).

– Key Generation. Algorithm KGen runs the key generation algorithm of the
signature scheme, obtaining (vk , sk) ← KGen′(1κ).

– Identification protocol. The interaction is as follows: (a) The verifier sends
a random m∗ ← M to the prover; (b) The prover replies with σ∗ ←
Sign(sk ,m∗); (c) The verifier outputs Verify(vk , (m∗, σ∗)).

6 In what follows all algorithms take as input params, but we omit to explicitly write
this for ease of notation.

378 J.B. Nielsen, D. Venturi, and A. Zottarel

Theorem 3. Assume that SS is (�, γ)-constrained-one-more unforgeable. Then
ID from above is actively �-secure under pre-impersonation attacks with leakage.

For space reasons, a formal definition and a proof of the above theorem are
deferred to the full version of this paper.

References
1. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the

bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 36–54. Springer, Heidelberg (2009)

2. Bellare, M., Fischlin, M., Goldwasser, S., Micali, S.: Identification protocols secure
against reset attacks. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045,
pp. 495–511. Springer, Heidelberg (2001)

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

4. Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive protocols. In:
Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 266–284. Springer, Heidelberg
(2012)

5. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

6. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg
(2011)

7. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole
in the bucket: Public-key cryptography resilient to continual memory leakage. In:
FOCS, pp. 501–510 (2010)

8. Dav̀ı, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 121–137. Springer, Heidelberg
(2010)

9. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: FOCS, pp. 511–520 (2010)

10. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

11. Dodis, Y., Lewko, A.B., Waters, B., Wichs, D.: Storing secrets on continually leaky
devices. In: FOCS, pp. 688–697 (2011)

12. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

13. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS,
pp. 293–302 (2008)

14. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures. In:
Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Heidelberg
(2010)

15. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of
the Fiat-Shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012)

16. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

Leakage-Resilient Signatures with Graceful Degradation 379

17. Garg, S., Jain, A., Sahai, A.: Leakage-resilient zero knowledge. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 297–315. Springer, Heidelberg (2011)

18. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006)

19. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006)

20. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 11 (2012)

21. Halevi, S., Lin, H.: After-the-fact leakage in public-key encryption. In: Ishai, Y.
(ed.) TCC 2011. LNCS, vol. 6597, pp. 107–124. Springer, Heidelberg (2011)

22. Hofheinz, D., Jager, T., Kiltz, E.: Short signatures from weaker assumptions. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 647–666.
Springer, Heidelberg (2011)

23. Juels, A., Weis, S.A.: Authenticating pervasive devices with human protocols. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg
(2005)

24. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009)

25. Kiltz, E., Pietrzak, K., Cash, D., Jain, A., Venturi, D.: Efficient authentication
from hard learning problems. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 7–26. Springer, Heidelberg (2011)

26. Kiltz, E., Pietrzak, K., Szegedy, M.: Digital signatures with minimal overhead from
indifferentiable random invertible functions. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 571–588. Springer, Heidelberg (2013)

27. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

28. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

29. Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to contin-
ual leakage on memory and computation. In: Ishai, Y. (ed.) TCC 2011. LNCS,
vol. 6597, pp. 89–106. Springer, Heidelberg (2011)

30. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. IACR Cryp-
tology ePrint Archive, 105 (2009)

31. Nielsen, J.B., Venturi, D., Zottarel, A.: On the connection between leakage tol-
erance and adaptive security. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013.
LNCS, vol. 7778, pp. 497–515. Springer, Heidelberg (2013)

32. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

33. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

34. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptology 13(3), 361–396 (2000)

35. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): Measures and
counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

36. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 566–598. Springer, Heidelberg (2001)

On the Lossiness of the Rabin Trapdoor Function

Yannick Seurin

ANSSI, Paris, France
yannick.seurin@m4x.org

Abstract. Lossy trapdoor functions, introduced by Peikert and Waters
(STOC ’08), are functions that can be generated in two indistinguishable
ways: either the function is injective, and there is a trapdoor to invert
it, or the function is lossy, meaning that the size of its range is strictly
smaller than the size of its domain. Kakvi and Kiltz (EUROCRYPT
2012) proved that the Full Domain Hash signature scheme based on
a lossy trapdoor function has a tight security reduction from the lossi-
ness of the trapdoor function. Since Kiltz, O’Neill, and Smith (CRYPTO
2010) showed that the RSA trapdoor function is lossy under the Φ-Hiding
assumption of Cachin, Micali, and Stadler (EUROCRYPT ’99), this im-
plies that the RSA Full Domain Hash signature scheme has a tight se-
curity reduction from the Φ-Hiding assumption (for public exponents
e < N1/4). In this work, we consider the Rabin trapdoor function, i.e.
modular squaring over Z∗

N . We show that when adequately restricting its
domain (either to the set QRN of quadratic residues, or to (JN)+, the set
of positive integers 1 ≤ x ≤ (N − 1)/2 with Jacobi symbol +1) the Ra-
bin trapdoor function is lossy, the injective mode corresponding to Blum
integers N = pq with p, q ≡ 3 mod 4, and the lossy mode corresponding
to what we call pseudo-Blum integers N = pq with p, q ≡ 1 mod 4. This
lossiness result holds under a natural extension of the Φ-Hiding assump-
tion to the case e = 2 that we call the 2-Φ/4-Hiding assumption. We then
use this result to prove that deterministic variants of Rabin-Williams Full
Domain Hash signatures have a tight reduction from the 2-Φ/4-Hiding
assumption. We also show that these schemes are unlikely to have a
tight reduction from the factorization problem by extending a previous
“meta-reduction” result by Coron (EUROCRYPT 2002), later corrected
by Kakvi and Kiltz (EUROCRYPT 2012). These two results therefore
answer one of the main questions left open by Bernstein (EUROCRYPT
2008) in his work on Rabin-Williams signatures.

1 Introduction

1.1 Background

Lossy Trapdoor Functions. Lossy Trapdoor Functions (LTF) were intro-
duced by Peikert and Waters [28] and have since then found a wide range of appli-
cations in cryptography such as deterministic public-key encryption [8], hedged
public-key encryption [2], and security against selective opening attacks [3, 14]

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 380–398, 2014.
c© International Association for Cryptologic Research 2014

On the Lossiness of the Rabin Trapdoor Function 381

to name a few. Informally, an LTF consists of two families of functions: functions
in the first family are injective (and efficiently invertible using some trapdoor),
while functions in the second family are non-injective and hence lose information
on their input. The key requirement for an LTF is that functions sampled from
the first and the second family be computationally indistinguishable. Many con-
structions of LTF are known from various hardness assumptions such as DDH,
LWE, etc. [28]. In particular, Kiltz, O’Neill, and Smith showed [24] that the RSA
trapdoor function f : x �→ xe mod N , where N = pq is an RSA modulus, is lossy
under the Φ-Hiding assumption, introduced by Cachin, Micali, and Stadler [9].
When e is coprime with φ(N) (φ(·) is Euler’s totient function), f is injective on
the domain Z∗

N , while when e divides φ(N) (but e2 does not), f is e-to-1 on Z∗
N .

The Φ-Hiding assumption states that given (N, e) where e < N1/4, it is hard to
tell whether gcd(e, φ(N)) = 1 or e|φ(N), which corresponds to respectively the
injective and lossy modes of the RSA function.

Full Domain Hash Signatures. Full Domain Hash (FDH) signatures [4] are
a class of signature schemes which can be based on any trapdoor function f : the
signature of a message m is computed as σ = f−1(H(m)), where H is some hash
function (the secret signature key is the trapdoor enabling to invert f). For a
long time, the only known security result for FDH signatures, due to Coron [11]
(improving on a previous result [4]), had been a non-tight reduction from the
problem of inverting the trapdoor function, losing a factor qs (the maximal
number of signature queries made by the forger). Recently, Kakvi and Kiltz [22]
showed that the FDH signature scheme, when based on a trapdoor function
which is lossy, has a tight reduction from the problem of distinguishing the in-
jective from the lossy mode of the LTF. In particular, this applies to RSA-FDH
signatures with public exponents e < N1/4, which hence have a tight security
reduction from the Φ-Hiding problem.1 Moreover, in the same paper, Kakvi and
Kiltz corrected a previous “meta-reduction” result due to Coron [12] stating that
the security reduction of [11] losing a factor qs is essentially optimal. More pre-
cisely, they showed that when the trapdoor function is certified (meaning that
there is an efficient algorithm distinguishing injective from non-injective mem-
bers of the function family), any security reduction from inverting the trapdoor
function to breaking FDH signatures must lose a factor qs (unless inverting the
trapdoor function is easy). This applies in particular to RSA-FDH signatures
with public exponents e > N1/4 since RSA is certified for these parameters [23].

1.2 Contributions of This Work

Lossiness of the Rabin Trapdoor Function. We show that the Rabin trap-
door function, i.e. modular squaring, is lossy (with exactly one or two bits of
lossiness) when adequately restricting its domain. Since any quadratic residue

1 Tight security reductions are important for adequately setting security parameters,
see the discussion of this point in [22].

382 Y. Seurin

modulo an RSA modulus N = pq has exactly four square roots, it is not im-
mediately obvious how to render this function injective. It is well known that
when N is a so-called Blum integer, i.e. p, q ≡ 3 mod 4, any quadratic residue
has a unique square root which is also a quadratic residue, named its principal
square root. Hence, in this case, modular squaring defines a permutation over
the set of quadratic residues QRN . One potential problem with this definition
of the injective mode is that the domain of the permutation is (presumably) not
efficiently recognizable (this is exactly the Quadratic Residuosity assumption).
A different way to restrict the domain of modular squaring is to consider the set
(JN)+ of integers 1 ≤ x ≤ (N − 1)/2 with Jacobi symbol +1 (which is efficiently
recognizable). We show that when restricting its domain to either QRN or (JN)+
to make it injective, modular squaring becomes an LTF. The lossy mode corre-
sponds to integers N = pq such that p, q ≡ 1 mod 4, that we call pseudo-Blum
integers. It can be shown that in that case, modular squaring becomes 4-to-1
over QRN and 2-to-1 over (JN)+. Indistinguishability of the injective and lossy
modes is then exactly the problem of distinguishing Blum from pseudo-Blum
integers, which is equivalent to tell whether 2 divides φ(N)/4 or not. This can
be seen as the extension of the traditional Φ-Hiding assumption to exponent
e = 2, so that we call this problem the 2-Φ/4-Hiding problem. Details can be
found in Sections 2 and 3.

Application to Rabin-Williams Signatures. We apply our finding to the
security of deterministic Rabin-Williams Full Domain Hash signatures. The Ra-
bin signature scheme [29] is one of the oldest provably secure digital signature
scheme. Its security relies on the difficulty of computing modular square roots,
which is equivalent to factoring integers. Given an RSA modulus N = pq, the
general principle of Rabin signatures is to first map the message m ∈ {0, 1}∗ to
a quadratic residue h modulo N using some hash function H , and then return
a square root s of h. Since only 1/4 of integers in Z∗

N are quadratic residues,
directly using h = H(m) mod N will fail for roughly 3 out of 4 messages. This
can be coped with using a randomized padding. The simplest one, Probabilistic
Full Domain Hash with �-bit salts (�-PFDH) [12], computes h = H(r,m) for
random �-bit salts r, until h is a quadratic residue (r is then included in the
signature for verification). A way to avoid this probabilistic method is to use a
tweak, as proposed by Williams [31].2 For any RSA modulus N , one can find
four values α1, α2, α3, α4 ∈ Z∗

N such that for any h ∈ Z∗
N , there is a unique

i ∈ [1; 4] such that α−1
i h mod N is a quadratic residue.3 When p ≡ 3 mod 8 and

q ≡ 7 mod 8, one can use the set of values {1,−1, 2,−2}. This way, the signa-
ture becomes a so-called tweaked square root (α, s), where s is a square root of
2 Williams’ paper [31] was primarily concerned with public key encryption. The idea

of using a tweak for deterministic signing is implicit in the ISO/IEC 9796 standard
published in 1991, and was later made more explicit in a paper by Kurosawa and
Ogata [25].

3 The sufficient condition for this is that the pairs of Legendre symbols (
(

αi
p

)
,
(

αi
q

)
)

take each of the four values (1, 1), (−1, 1), (1,−1) and (−1,−1) for exactly one αi.

On the Lossiness of the Rabin Trapdoor Function 383

α−1H(m) mod N for the correct value α ∈ {1,−1, 2,−2}, and the verification
algorithm now checks whether αs2 = H(m) mod N . This enables to define FDH
Rabin-Williams signatures.

Since any quadratic residue modulo an RSA modulus N has four square roots,
one must also specify which (tweaked) square root of the hash to use as the
signature. There are basically two ways to proceed. The first one is simply to pick
a square root at random. However, when no randomization (or randomization
with only a small number of bits) is used in the input to the hash function,
one must be careful not to output two non-trivially distinct square roots if the
same message is signed twice, since this would reveal the factorization of the
modulus N . In consequence, the signature algorithm must either be stateful and
store all signatures previously output (which is cumbersome), or generate the
bits for deciding which root to use pseudo-randomly.4 However, in constrained
environments, implementors might be reluctant to pay the additional cost of a
pseudorandom function (moreover, how exactly this derandomization is done is
not always precisely discussed, and may have security implications as explained
in [26]).

The second option is to define some deterministic rule telling which square
root to use as the signature. The most popular way to do so is to use for N a
Blum integer and to use the principal square root. A variant is to use what we call
the absolute principal square root, i.e. |s mod N |, where s is the principal square
root represented by an integer in [−(N − 1)/2; (N − 1)/2]. This turns out to also
be the unique square root in (JN)+. We will call these ways to choose a square
root Principal Rabin-Williams (PRW) and Absolute Principal Rabin-Williams
(APRW) respectively.5 When no randomization in the input to the hash function
is used, the signature algorithm then becomes entirely deterministic (without
having to appeal to an auxiliary pseudorandom function), which is attractive
from an implementation point of view.

Bernstein [7] proposed an extensive study of possible variants of
Rabin-Williams signature schemes depending on the length of the salt and the
square root selection method. In particular, for FDH signatures, he showed
a tight security reduction from the factoring assumption for the probabilistic
square root selection method (Fixed Unstructured). On the other hand, for PRW
and APRW, only a loose reduction from factoring is known using methods of
Coron [11, 7]. Our main result is a tight security reduction from the 2-Φ/4-Hiding
problem for the PRW and APRW schemes, building on the results of [22]. Details
can be found in Section 4.

Extending the Coron-Kakvi-Kiltz Meta-reduction Result. Recall that
Coron’s meta-reduction result [12] as corrected by Kakvi and Kiltz [22] states
that when the trapdoor function is certified, any security reduction from
4 This method was called Fixed Unstructured Rabin-Williams in [7], and Probabilistic

Rabin-Williams (PRW) in [26].
5 PRW was called Fixed Principal in [7] and Deterministic Rabin-Williams (DRW)

in [26], while APRW was called Fixed |Principal| in [7].

384 Y. Seurin

inverting the trapdoor function to breaking FDH signatures must lose a fac-
tor qs. Since this only applies for certified trapdoor functions, this leaves open
the question of whether there might exist a tight reduction from inverting the
trapdoor function to breaking FDH signatures when the trapdoor function is
not certified. In particular, the question whether there exists a tight security
reduction from factoring (or equivalently, computing modular square roots) for
the PRW and APRW schemes was left as an open problem in [7]. However, we
observe that the meta-reduction result still holds (namely, any security reduction
from inverting the trapdoor function to breaking FDH signatures must lose a
factor qs) when the underlying trapdoor function is gap one-way, meaning that
inverting the injective mode of the function is hard even with the help of an oracle
distinguishing injective from non-injective modes of the trapdoor function. This
implies in particular that if factoring with the help of an oracle solving the 2-Φ/4-
Hiding problem is hard, the PRW and APRW signature schemes cannot have a
tight security reduction from the factorization problem. This essentially answers
the open question of [7] regarding the security reductions for these schemes.
Details can be found in Section 5.

1.3 Related and Future Work

Two constructions of lossy trapdoor functions based on modular squaring were
previously proposed, however they are slightly more complicated than the basic
Rabin trapdoor function. Mol and Yilek [27] gave a construction whose secu-
rity relies on an assumption close in spirit (though more involved) to the 2-
Φ/4-Hiding assumption. Freeman et al. [16] gave a construction relying on the
Quadratic Residuosity problem.

The cryptographic applications of the set (JN)+ when N is a Blum integer
were previously considered by Goldwasser et al. [19], Fischlin and Schnorr [15],
and Hofheinz and Kiltz [21] (in this last paper, it was denoted QR+

N and named
group of signed quadratic residues). In particular, it was showed in [21] that
under the factoring assumption, the Strong Diffie-Hellman problem [1] is hard
in this group.

The Coron-Kakvi-Kiltz meta-reduction result [12, 22] was extended by Hof-
heinz et al. [20] to the case where the signature scheme is re-randomizable (rather
than with unique signatures).

Kiltz et al. [24] showed that lossiness of RSA implies that the RSA-OAEP
encryption scheme [5] meets indistinguishability under chosen-plaintext attacks
in the standard model (under appropriate assumptions on the hash functions
used to instantiate OAEP). An interesting question is whether lossiness of the
Rabin trapdoor function can be used to argue about the security of Rabin-
OAEP encryption as was done in [24] for RSA. Though from a theoretical point
of view the results of [24] apply to OAEP used with any LTF, they provide some
meaningful security insurance only when the amount of lossiness is sufficiently
high. This requires more careful investigation in the case of Rabin-OAEP. As a
first step in this direction, we note that if “multi-primes” pseudo-Blum integers
N = p1 · · · pm, with p1, . . . , pm ≡ 1 mod 4 are indistinguishable from 2-primes

On the Lossiness of the Rabin Trapdoor Function 385

pseudo-Blum integers, lossiness of the Rabin trapdoor function with domain
(JN)+ can be amplified from 1 bit to m − 1 bits. Similar arguments were used
for RSA in [24].

2 Preliminaries

2.1 General Notation

The set of integers i such that a ≤ i ≤ b will be denoted [a; b]. The security
parameter will be denoted k. A function f of the security parameter is said
negligible if for any c > 0, f(k) ≤ 1/kc for sufficiently large k. When S is a non-
empty finite set, we write s ←$ S to mean that a value is sampled uniformly
at random from S and assigned to s. By z ← AO1,O2,...(x, y, . . .) we denote the
operation of running the (possibly probabilistic) algorithm A on inputs x, y, . . .
with access to oracles O1,O2, . . . (possibly none), and letting z be the output.

2.2 Basic Definitions

Given an (odd for most of what follows) integer N , the multiplicative group of
integers modulo N is denoted Z∗

N . This group has order φ(N) where φ(·) is the
Euler function. We denote JN the subgroup of Z∗

N of all elements x ∈ Z∗
N with

Jacobi symbol
(
x
N

)
= 1. This subgroup has index 2 and order φ(N)/2 in Z∗

N .
Moreover it is efficiently recognizable even without the factorization of N since
the Jacobi symbol is efficiently computable given only N . We also denote JN
the coset of elements x ∈ Z∗

N such that
(
x
N

)
= −1. Finally, we denote QRN the

subgroup of quadratic residues of Z∗
N . This subgroup is widely believed not to be

efficiently recognizable when N is composite and its factorization is unknown:
this is the Quadratic Residuosity assumption.

We will represent elements of ZN as signed integers in [−(N−1)/2, (N−1)/2].
Given an integer x, we denote |x mod N | the absolute value of x mod N . For any
subset S ⊂ ZN , we denote S+ = S∩[1; (N−1)/2] and S− = S∩[−(N−1)/2;−1].
Note that (JN)+, (JN)−, (JN)+ and (JN)− form a partition of Z∗

N .
We call an integer N = pq which is the product of two distinct odd primes

a Blum integer when p, q ≡ 3 mod 4 , and a pseudo-Blum integer when p, q ≡
1 mod 4 , and we denote

Bl(k) = {(N, p, q) : N = pq, p �= q are 	k/2
-bit primes with p, q ≡ 3 mod 4}
B̃l(k) = {(N, p, q) : N = pq, p �= q are 	k/2
-bit primes with p, q ≡ 1 mod 4} .

We call a Blum integer N = pq such that moreover p ≡ 3 mod 8 and q ≡ 7 mod 8
a Williams integer, and a pseudo-Blum integer such that p ≡ 5 mod 8 and q ≡
1 mod 8 a pseudo-Williams integer. We denote

Wi(k) = {(N, p, q) ∈ Bl(k) : p ≡ 3 mod 8, q ≡ 7 mod 8}
W̃i(k) = {(N, p, q) ∈ B̃l(k) : p ≡ 5 mod 8, q ≡ 1 mod 8} .

386 Y. Seurin

Note that:

– when N is a Blum integer, −1 ∈ JN \ QRN ;
– when N is a pseudo-Blum integer, −1 ∈ QRN ;
– when N is a Williams or a pseudo-Williams integer, 2 ∈ JN .

A quadratic residue modulo an RSA modulus N = pq has four square roots,
two of which are in (Z∗

N)+ and two of which are in (Z∗
N)−. The two square roots

in (Z∗
N)+ will be called the absolute square roots in what follows. The following

lemma will be important when proving lossiness of the Rabin trapdoor function.

Lemma 1. Let N = pq be a RSA modulus with N ≡ 1 mod 4. Let x ∈ QRN ,
and let s1 and s2 be the two absolute square roots of x (the two other square
roots being −s1 and −s2). Then:

– if N is a Blum integer, exactly one si is in (JN)+ and the other is in (JN)+;
moreover if si ∈ (JN)+ then either si ∈ QRN or −si ∈ QRN ;

– if N is a pseudo-Blum integer, then s1, s2,−s1,−s2 are either all in QRN ,
or all in JN \ QRN , or all in JN .

Proof. Consider x ∈ QRN . Denote xp = x mod p and xq = x mod q. Let also
±rp and ±rq denote the two square roots of respectively xp (mod p) and xq
(mod q). The four square roots of x modulo N are obtained by combining ±rp
and ±rq by the Chinese Remainder Theorem, i.e. there are to integers cp and
cq such that the four square roots of x are ±(pcprq ± qcqrp) mod N . Assume
that one of the two absolute square roots is s1 = (pcprq + qcqrp) mod N (the
reasoning is similar if it is −(pcprq + qcqrp) mod N). Then the other absolute
square root satisfies s2 = α(pcprq − qcqrp) mod N , with α = ±1 so that:(

s2
p

)
=

(
α

p

)(
−1

p

)(
s1
p

)
and

(
s2
q

)
=

(
α

q

)(
s1
q

)
.

Consequently:

– when N is a Blum integer, s1 and s2 have opposite Jacobi symbols; moreover,
assuming s1 ∈ (JN)+ then since −1 is a non-quadratic residue, either s1 ∈
QRN or −s1 ∈ QRN ;

– when N is a pseudo-Blum integer, we see that(
s1
p

)
=

(
−s1
p

)
=

(
s2
p

)
=

(
−s2
p

)
and

(
s1
q

)
=

(
−s1
q

)
=

(
s2
q

)
=

(
−s2
q

)
,

from which the claim on the localization of the four square roots follows.

This concludes the proof. ��

On the Lossiness of the Rabin Trapdoor Function 387

Hence when N is a Blum integer, the two absolute square roots can easily be
distinguished through their Jacobi symbol. In the following, given a Blum integer
N and x ∈ QRN , we will call the unique square root of x which is in QRN the
principal square root of x, and denote it psr(x). We will also call the unique
square root of x which is in (JN)+ the absolute principal square root of x, and will
denote it |psr|(x). The notation is chosen so that |psr|(x) = |psr(x) mod N |.

Tweaked Square Roots. Let N be a Williams integer. Then for any x ∈
Z∗
N there is a unique α ∈ {1,−1, 2,−2} such that α−1x mod N is a quadratic

residue.6 The four pairs (α, si)i=1,...,4 where (si)i=1,...,4 are the four square roots
of α−1x mod N are named the tweaked square roots of x, and α is named the
tweak. Hence, (α, s) with α ∈ {1,−1, 2,−2} is a tweaked square root of x ∈ Z∗

N

iff αs2 = x mod N . By extension, the principal tweaked square root of x is
the unique tweaked square root (α, s) such that s ∈ QRN , and the absolute
principal tweaked square root is the unique tweaked square root (α, s) such that
s ∈ (JN)+. Overloading the notation, they will be denoted respectively psr(x)
and |psr|(x).

2.3 Trapdoor Functions

We recall some formal definitions associated with trapdoor functions (we follow
closely the ones of [22]). We also introduce the concept of gap one-way trapdoor
function, which is informally a trapdoor function which is hard to invert even
when given access to an oracle which tells whether a member of the family is
injective or lossy.

Definition 1 (Trapdoor Function). A trapdoor function (TDF) is a tuple
of polynomial-time algorithms TDF = (InjGen, Eval, Invert) with the following
properties:

– InjGen(1k): a probabilistic algorithm which on input the security parameter
1k, outputs a public description pub (with implicitly understood domain Dpub)
and a trapdoor td;

– Eval(pub, x): a deterministic algorithm which on input pub and a point x ∈
Dpub, outputs a point y ∈ {0, 1}∗; we denote fpub : x �→ Eval(pub, x);

– Invert(td, y): a deterministic algorithm which on input td and a point y ∈
{0, 1}∗, outputs a point x ∈ Dpub when y ∈ fpub(Dpub) (and ⊥ otherwise).

We require that for any k and any (pub, td) possibly output by InjGen(1k), the
function fpub : x �→ Eval(pub, x) be injective, and y �→ Invert(td, y) be its
inverse f−1

pub. We also require that Dpub and fpub(Dpub) be efficiently samplable.

Definition 2 (One-Way TDF). A trapdoor function TDF = (InjGen, Eval,
Invert) is said to be (t, ε)-one-way if for any adversary A running in time at
most t, one has:

Pr
[
pub ← InjGen(1k), x ←$ Dpub, x

′ ← A(pub, Eval(pub, x)) : x′ = x
]

≤ ε .

6 This follows easily from the fact that the pairs of Legendre symbols (
(

α
p

)
,
(

α
q

)
) for

α = 1, −1, 2, and −2 are respectively (1, 1), (−1,−1), (−1, 1) and (1,−1).

388 Y. Seurin

Definition 3 (Certified TDF). A trapdoor function TDF = (InjGen, Eval,
Invert) is said to be certified if there exists a deterministic polynomial-time
algorithm Certify which, on input an arbitrary string pub (not necessarily
generated by InjGen) returns 1 iff the function x �→ Eval(pub, x) is injective
over Dpub.

Definition 4 (Lossy TDF). A lossy trapdoor function (LTF) with absolute
lossiness � is a tuple of algorithms LTF = (InjGen, LossyGen, Eval, Invert)
such that (InjGen, Eval, Invert) is a TDF as per Definition 1, and moreover
LossyGen is a probabilistic algorithm which on input 1k, outputs a public de-
scription pub′ such that the range of the function fpub′ : x �→ Eval(pub′, x) over
Dpub′ satisfies:

|Dpub′ |
|fpub′(Dpub′)|

≥ � .

We say that LTF is (t, ε)-secure if for any adversary A running in time at most
t, the following advantage is less than ε:∣∣Pr[(pub, td) ← InjGen(1k) : 1 ← A(pub)]

− Pr[pub′ ← LossyGen(1k) : 1 ← A(pub′)]
∣∣ .

We say that LTF is a regular (�, t, ε)-lossy trapdoor function if LTF is (t, ε)-secure
and all functions generated by LossyGen are �-to-1 on Dpub′ .

Remark 1. One can easily show that if TDF is a regular (�, t, ε)-lossy TDF, then it
is (t′, ε′)-one way with t′ % t and ε′ ≤ ε+1/�. Note in particular that asymptoti-
cally, if � = O(1) is constant (as is the case for the trapdoor functions considered
in this paper), this only implies that TDF is weakly one-way [18].

Definition 5 (Gap One-Way TDF). A trapdoor function TDF = (InjGen,
Eval, Invert) is said (t, ε, n)-gap one-way if for any adversary A running in
time at most t and making at most n queries to a Certify(·) oracle which on
input a string pub, returns 1 iff the function x �→ Eval(pub, x) is injective over
Dpub, one has:

Pr
[
pub ← InjGen(1k), x ←$ Dpub,

x′ ← ACertify(·)(pub, Eval(pub, x)) : x′ = x
]

≤ ε .

Informally, for a lossy TDF, being gap one-way means that inverting the
injective mode of the function cannot be black-box reduced to the lossiness of
the TDF. Note that for a certified TDF, being gap one-way is equivalent to being
one-way since the Certify oracle can be efficiently implemented.

2.4 Signature Schemes

A signature scheme Σ is a tuple of algorithms (Σ.KeyGen, Σ.Sig, Σ.Ver) where
Σ.KeyGen(1k) outputs a pair of public/secret key (pk, sk), Σ.Sig(sk,m), on in-
put a secret key sk and a message m ∈ {0, 1}∗, outputs a signature σ, and

On the Lossiness of the Rabin Trapdoor Function 389

Σ.Ver(pk,m, σ), on input a public key pk, a message m, and a purported sig-
nature σ, either outputs 1 (accepts) or 0 (rejects). A signature scheme is said
to have unique signatures if for all k, for any public key pk possibly output by
KeyGen(1k), and any message m ∈ {0, 1}∗, there is exactly one string σ such
that Ver(pk,m, σ) accepts. The usual security definition for a signature scheme
is existential unforgeability under chosen-message attacks (EUF-CMA security).
We recall this definition in the full version of the paper [30].

FDH Signatures Based on an Arbitrary TDF. Let TDF = (InjGen,
Eval, Invert) be a trapdoor function. The Full Domain Hash signature scheme
TDF-FDH is defined as follows: the key generation algorithm KeyGen(1k) runs
InjGen(1k) to obtain (pub, td), selects a random hash function H : {0, 1}∗ →
fpub(Dpub), and sets pk = (pub,H) and sk = td. The signature algorithm, on
input td and m, computes h = H(m) and returns σ = Invert(td, h). The ver-
ification algorithm, on input pub, m and σ, checks that Eval(pub, σ) = H(m).
This scheme can be shown EUF-CMA secure in the Random Oracle Model under
the assumption that TDF is (strongly) one-way [4, 11], but the reduction loses a
factor qs, where qs is the maximal number of signature queries of the adversary,
and this loss cannot be avoided assuming that TDF is certified [12, 22].

3 The 2-Φ/4-Hiding Assumption and Lossiness of the
Rabin Trapdoor Function

3.1 Definition

We introduce the 2-Φ/4-Hiding assumption, an extension of the traditional Φ-
Hiding assumption to the case e = 2. The Φ-Hiding assumption, introduced by
Cachin et al. in [9], roughly states that given an RSA modulus N = pq and a
random prime 3 ≤ e < N1/4, it is hard to distinguish whether e divides φ(N)
or not (when e ≥ N1/4 and e|φ(N), N can be factored using Coppersmith’s
method for finding small roots of univariate modular equations [10, 9]). Kiltz et
al. [24] were the first to observe that the Φ-Hiding assumption can be interpreted
in terms of lossiness of the RSA trapdoor permutation.

The original definition of the Φ-Hiding assumption was formulated for primes
e randomly drawn in [3;N1/4[. Since in practice RSA is often used with a fixed,
small prime e (e.g. e = 3 or e = 216 + 1), Kakvi and Kiltz [22] introduced the
Fixed-Prime Φ-Hiding assumption, which states, for a fixed prime e, that it is
hard, given an RSA modulus N = pq, to distinguish whether e divides φ(N) or
not (the exact statement of the assumption is slightly different for e = 3 and
e > 3 in order to avoid trivial distinguishers). The 2-Φ/4-Hiding assumption is
the extension of the Fixed-Prime Φ-Hiding assumption to the case e = 2. Since
for an RSA modulus N (more generally for any number which has at least two
distinct prime factors) one always has that 4 divides φ(N), the problem will be to
distinguish whether 2 divides φ(N)/4 or not. Moreover, when N ≡ 3 mod 4, one
can check that 2 always divides φ(N)/4, so that the instances will be restricted
to RSA moduli such that N ≡ 1 mod 4. As a matter of fact, distinguishing

390 Y. Seurin

whether 2 divides φ(N)/4 or not when N ≡ 1 mod 4 turns out to be equivalent to
distinguishing Blum integers from pseudo-Blum integers. Indeed, if N is a Blum
integer, then p = 4p′ +3 and q = 4q′ +3, so that φ(N) = 4(2p′+1)(2q′+1) and
2 � (φ(N)/4). On the other hand, if N is a pseudo-Blum integer, then p = 4p′+1
and q = 4q′ + 1, so that φ(N) = 16p′q′ and 2|(φ(N)/4). We now precisely
formalize the assumption.

Definition 6 (2-Φ/4-Hiding Assumption). We say that the 2-Φ/4-Hiding
problem is (t, ε)-hard if for any algorithm A running in time at most t, the
following advantage is less than ε:

Adv2−Φ/4(A)
def
=

∣∣∣Pr[(N, p, q) ←$ Bl(k) : 1 ← A(N)]−

Pr[(N, p, q) ← B̃l(k) : 1 ← A(N)]
∣∣∣ .

A variant of this problem is obtained by switching from Blum integers to
Williams integers, i.e. replacing Bl(k) and B̃l(k) in the above definition by re-
spectively Wi(k) and W̃i(k). Clearly, the hardness of this variant is polynomially
related to the hardness of the original problem, under the plausible assump-
tion that roughly half of Blum, resp. pseudo-Blum integers are Williams, resp.
pseudo-Williams integers.

3.2 Lossiness of the Rabin and Rabin-Williams Trapdoor Functions

We now show that the 2-Φ/4-Hiding assumption implies that squaring is a lossy
trapdoor function over the domains QRN or (JN)+, for N ≡ 1 mod 4, with
respectively two bits or one bit of lossiness. The injective mode corresponds to
N being a Blum integer, and the lossy mode corresponds to N being a pseudo-
Blum integer.

The Rabin LTFs. We first define two related LTFs, that we name respectively
the Principal Rabin LTF PR-LTF and the Absolute Principal Rabin LTF APR-LTF
as follows:

– on input 1k, PR-LTF.InjGen and APR-LTF.InjGen both draw (N, p, q) ←$

Bl(k), and output pub = N and td = (p, q);
– on input 1k, PR-LTF.LossyGen and APR-LTF.LossyGen both draw (N, p, q) ←$

B̃l(k), and output pub′ = N ;
– the domain is DN = QRN for PR-LTF, and DN = (JN)+ for APR-LTF; the

evaluation algorithms PR-LTF.Eval(N, x) and APR-LTF.Eval(N, x) both out-
put fN (x) = x2 mod N ; in both cases fN (DN) = QRN in injective mode;

– the inversion algorithm PR-LTF.Invert((p, q), y) outputs the principal square
root psr(y), while APR-LTF.Invert((p, q), y) outputs the absolute principal
square root |psr|(y) (for N a Blum integer and y ∈ QRN).

On the Lossiness of the Rabin Trapdoor Function 391

Theorem 1. Assuming the 2-Φ/4-Hiding problem is (t, ε)-hard, the Principal
Rabin trapdoor function PR-LTF is a regular (4, t, ε)-LTF, while the Absolute
Principal Rabin trapdoor function APR-LTF is a regular (2, t, ε)-LTF.

Proof. Indistinguishability of the injective and lossy modes is exactly the 2-Φ/4-
Hiding problem. It follows from Lemma 1 that when N is a Blum integer, any
y ∈ QRN has exactly one pre-image in QRN or (JN)+, while when N is pseudo-
Blum integer, any y in the range fN (QRN) has exactly 4 pre-images in QRN ,
and any y in the range fN ((JN)+) has exactly 2 pre-images in (JN)+. ��

The Rabin-Williams LTFs. The PR-LTF and APR-LTF LTFs can be straight-
forwardly extended to what we call the Principal Rabin-Williams LTF PRW-LTF
and Absolute Principal Rabin-Williams LTF APRW-LTF as follows:

– on input 1k, PRW-LTF.InjGen and APRW-LTF.InjGen both draw a random
Williams integer (N, p, q) ←$ Wi(k), and output pub = N and td = (p, q);

– on input 1k, PRW-LTF.LossyGen and APRW-LTF.LossyGen both draw a random
pseudo-Williams integer (N, p, q) ←$ W̃i(k) and output pub′ = N ;

– the domain of PRW-LTF is DN = {1,−1, 2,−2} × QRN , while the domain
of APRW-LTF is DN = {1,−1, 2,−2} × (JN)+; the evaluation algorithms
PRW-LTF.Eval(N, (α, x)) and APRW-LTF.Eval(N, (α, x)) compute the function
fN (α, x) = αx2 mod N ; in both cases fN(DN) = Z∗

N in injective mode;
– algorithm PRW-LTF.Invert((p, q), y) computes the principal tweaked square

root psr(y), while APRW-LTF.Invert((p, q), y) computes the absolute princi-
pal tweaked square root |psr|(y) (for N a Williams integer and y ∈ Z∗

N).

Theorem 2. Under the assumption that Williams and pseudo-Williams inte-
gers are (t, ε)-indistinguishable, the Principal Rabin-Williams trapdoor function
PRW-LTF is a regular (4, t, ε)-LTF, while the Absolute Principal Rabin-Williams
trapdoor function APRW-LTF is a regular (2, t, ε)-LTF.

Proof. Indistinguishability of the injective and lossy modes is exactly indis-
tinguishability of Williams and pseudo-Williams integers, which follows from
the 2-Φ/4-Hiding assumption and the additional (reasonable) assumption that
roughly half of Blum, resp. pseudo-Blum integers, are Williams, resp. pseudo-
Williams integers. Injectivity of fN for both PRW-LTF and APRW-LTF follows di-
rectly from Lemma 1 and the discussion about tweaked square roots in Section 2.
Assume now that N is a pseudo-Williams integer, and let y ∈ fN (DN) with
DN = {1,−1, 2,−2} × QRN . We show that y has exactly 4 pre-images in DN ,
which will establish that PRW-LTF is 4-to-1 on DN . Let (α, x) ∈ DN be such that
αx2 = y mod N . Then by Lemma 1, y has at least 4 pre-images in DN , all with
the same tweak α. Assume that y has an extra pre-image (α′, x′) ∈ DN with
α′ �= α. Note that when N = pq is a pseudo-Williams integer (i.e. p ≡ 5 mod 8

and q ≡ 1 mod 8), the pairs of Legendre symbols (
(
α
p

)
,
(
α
q

)
) for α = 1, −1, 2,

and −2 are respectively (1, 1), (1, 1), (−1, 1) and (−1, 1). Hence it must be that
α′ = −α, so that x2 = −(x′)2 mod N . Let a be any square root of −1 modulo

392 Y. Seurin

N . Since a2 = −1 mod N , we observe (denoting p = 8p′ + 5 and q = 8q′ + 1)
that: (

a

p

)
≡ a

p−1
2 ≡ a

8p′+4
2 ≡ (−1)2p

′+1 ≡ −1 mod p(
a

q

)
≡ a

q−1
2 ≡ a

8q′
2 ≡ (−1)2q

′ ≡ 1 mod q ,

so that a ∈ JN . Hence, we have that x2 = (ax′)2 mod N , with x, x′ ∈ QRN .
Yet by Lemma 1, one should have ax′ ∈ QRN as well, which is impossible since
a ∈ JN . Hence y has exactly 4 pre-images in DN .

The proof that APRW-LTF is 2-to-1 on DN = {1,−1, 2,−2} × (JN)+ is very
similar. See the full version of the paper [30]. ��

4 Application to Rabin-Williams Signatures

There are two very close ways to define deterministic Rabin-Williams FDH sig-
natures, called principal and |principal| in the terminology of Bernstein [7]. We
will use the name Absolute Principal Rabin-Williams signatures for the latter
in this paper. Before defining precisely these schemes, we stress that the exact
definition of the verification algorithm is important, especially with respect to
how a forgery is defined (since a forgery is exactly a string which is accepted by
the verification algorithm). Hence, to be more precise, we will define in total four
“real” signature schemes: Principal Rabin-Williams (PRW), Absolute Principal
Rabin-Williams (APRW), as well as two slightly different variants that we call
PRW∗ and APRW∗, which differ from respectively PRW and APRW only in
their verification algorithm. We will also define a “theoretical” scheme PRW∗∗

where the verification algorithm is inefficient (this will be necessary to estab-
lish a clean security reduction). For the five schemes, the signing algorithm first
hashes the message h = H(m); then, for the PRW, PRW∗, and PRW∗∗ schemes,
the signing algorithm returns the principal tweaked square root of h, whereas
for the APRW and APRW∗ schemes, the signing algorithm returns the absolute
principal tweaked square root of h. In all the following, we assume that if h is
not coprime with N , the signing algorithm outputs some fixed signature, e.g.
(1, 1). Since this happens only with negligible probability when H is modeled as
a random oracle, this does not affect the security analysis.

We now proceed to the formal definition. First, all the schemes share exactly
the same key generation algorithm:

– (A)PRW(∗,∗∗).KeyGen(1k): on input the security parameter 1k, draw uni-
formly at random (N, p, q) ←$ Wi(k). Select a hash function H : {0, 1}∗ →
ZN . The public key is pk = (N,H) and the secret key is sk = (p, q).

Note that the hash function will usually be selected once for each security pa-
rameter k and common to all public keys, but this affects the security proof only
up to negligible terms, see Bernstein [7].

The signing algorithm for PRW, PRW∗, and PRW∗∗ on one hand, and for
APRW and APRW∗ on the other hand, are the same, and are defined as follows:

On the Lossiness of the Rabin Trapdoor Function 393

– PRW(∗,∗∗).Sig(sk,m): To sign a message m, compute h = H(m), and out-
put the principal tweaked square root σ = (α, s) = psr(h).

– APRW(∗).Sig(sk,m): To sign a message m, compute h = H(m), and output
the absolute principal tweaked square root σ = (α, s) = |psr|(h).

The verification algorithms for the five schemes are very close, and differ only
with respect to an additional check on the Jacobi symbol of the signature made
for PRW∗ and APRW∗, and on the quadratic residuosity of the signature for
PRW∗∗. They are defined as follows:

– (A)PRW(∗,∗∗).Ver(pk,m, σ): To check a purported signature σ = (α, s) on
message m, first ensure that s ∈ S, and then check that αs2 = H(m) mod N .
Accept if this holds, and reject otherwise;

where the set S is defined as:

– S = Z∗
N for PRW, S = JN for PRW∗, and S = QRN for PRW∗∗;

– S = (Z∗
N)+ for APRW and S = (JN)+ for APRW∗.

Note that the verification algorithm is (presumably) inefficient for PRW∗∗ since
it needs to decide whether the signature is indeed the principal square root, i.e.
a quadratic residue.

The following claims are straightforward:

– in PRW, each message has exactly four valid signatures:
(α, s1) = |psr|(H(m)), (α,−s1), and (α, s2), (α,−s2) with s2 ∈ (JN)+;

– in PRW∗, each message has exactly two valid signatures:
(α, s) = |psr|(H(m)) and (α,−s);

– in PRW∗∗, each message has a unique valid signature: (α, s) = psr(H(m));
– in APRW, each message has exactly two valid signatures:

|psr|(H(m)) and (α, s2) with s2 ∈ (JN)+;
– in APRW∗, each message has a unique valid signature: |psr|(H(m)).

We now relate the security of PRW, PRW∗, and PRW∗∗ on one hand, and APRW
and APRW∗ on the other hand.

Lemma 2. The security of PRW, PRW∗ and PRW∗∗ on one hand, and APRW
and APRW∗ on the other hand, is related as depicted in Figure 1, where an
arrow labeled (t, f(ε)) from scheme A to scheme B means that if scheme A is
(t, ε, qh, qs)-EUF-CMA secure in the ROM, then scheme B is (t′, f(ε), qh, qs)-
EUF-CMA secure for t′ % t.

Proof. See the full version of the paper [30]. ��

Hence, one can see that PRW and PRW∗ on one hand, and APRW and
APRW∗ on the other hand, have the same security up to a factor 2. In other
words, omitting the additional check on the Jacobi symbol has negligible impact
on security. Since computing a Jacobi symbol might be costly (in particular, it
is more expensive than modular squaring), we see that PRW and APRW are
superior in terms of security/efficiency trade-off.

394 Y. Seurin

2-Φ/4-Hiding

PRW∗∗ PRW∗ PRW

APRW∗ APRW

(t, 7ε/3)

(t, 3ε)

(t, 2ε) (t, 2ε)

(t, 2ε)

Fig. 1. Set of reductions proved in Lemma 2. An arrow labeled (t, f(ε)) from scheme
A to scheme B means that if scheme A is (t, ε, qh, qs)-EUF-CMA secure in the ROM,
then scheme B is (t′, f(ε), qh, qs)-EUF-CMA secure for t′ � t. The reduction from
2-Φ/4-Hiding to breaking PRW∗∗ and APRW∗ is Theorem 4.

In the following, we give a tight reduction for PRW∗∗ and APRW∗ from the
2-Φ/4-Hiding assumption, which extends to PRW and APRW by Lemma 2. It
is easy to see that the PRW∗∗, resp. APRW∗ signature scheme is exactly the in-
stantiation of the generic TDF-FDH scheme recalled in Section 2.4 with PRW-LTF,
resp. APRW-LTF. In order to conclude about the security of these schemes, we ap-
peal to the main result of [22]. This theorem was originally stated for trapdoor
permutations, but it can be straightforwardly extended to trapdoor functions
such that Dpub and fpub(Dpub) are efficiently samplable.

Theorem 3 ([22]). Assume LTF is a regular (�, t′, ε′)-LTF for � ≥ 2. Then for
any (qh, qs), the TDF-FDH signature scheme instantiated with LTF is (t, ε, qh,
qs)-EUF-CMA secure in the ROM, where

ε =

(
2� − 1

� − 1

)
ε′ and t = t′ − qhTEval ,

where TEval is the time to run algorithm Eval of LTF.

Theorem 4. Assuming the 2-Φ/4-Hiding problem is (t′, ε′)-hard, then for any
(qh, qs), the PRW∗∗ signature scheme is (t, ε, qh, qs)-EUF-CMA secure, where
ε = 7ε′/3 and t = t′−O(qhk

3), and the APRW∗ signature scheme is (t, ε, qh, qs)-
EUF-CMA secure, where ε = 3ε′ and t = t′ − O(qhk

3).

Proof. This follows directly from Theorems 2 and 3 (noting that QRN and (JN)+

are efficiently samplable). Combined with Lemma 2, this yields tight security
reductions for PRW and APRW (see Figure 1 for a clear picture). ��

Remark 2. The global security reduction from the 2-Φ/4-Hiding assumption to
breaking the signature scheme is slightly looser for PRW (factor 28/3) than
for APRW (factor 6 = 18/3). We also remark that a PRW signature oracle is
(potentially) slightly more powerful than an APRW signature oracle because
it reveals some non-trivial information regarding the quadratic residuosity of
the square roots of the hash of the message (whereas this information, which is

On the Lossiness of the Rabin Trapdoor Function 395

unnecessary for verifying signatures, is “canceled” in an APRW signature oracle).
Since APRW signatures are not more costly than PRW signatures (and even
slightly more communication efficient), these two observations make a case in
favor of APRW signatures.

As explained in [22], these results can be extended to PSS-R [6], allowing a
smaller overhead of the randomized signature under the 2-Φ/4-Hiding assump-
tion. It seems also likely (though we have not checked the details) that the same
techniques can be used to prove a tight security reduction from the 2-Φ/4-Hiding
assumption for Rabin-Williams Partial Domain Hash signatures [13, 17].

5 Extending the Coron-Kakvi-Kiltz Meta-reduction
Result

In this section, we complete the picture of the security of FDH signatures by ex-
tending Coron’s meta-reduction result [11] as corrected by Kakvi and Kiltz [22].
In a nutshell, this result says that if a trapdoor function TDF is certified, then
any reduction from inverting the trapdoor function to breaking the EUF-CMA
security of the TDF-FDH signature scheme must lose a factor qs (the maximal
number of signature queries made by the forger) in its time-to-success ratio.
The theorem below extends this to trapdoor functions which are not necessar-
ily certified, assuming that TDF is gap one-way. The proof is straightforwardly
adapted from the one of [11, 22]: when simulating the forger, the meta-reduction
checks as a preliminary step that the public key received from the reduction con-
tains a parameter pub which defines an injective function. When TDF is certified,
this can be done efficiently by the meta-reduction itself. In the variant below,
the meta-reduction uses a Certify oracle for this step, hence breaking the gap
one-wayness (rather than classical one-wayness) of the trapdoor function.

Theorem 5. Let TDF be a trapdoor function. Let tR, εR, n, εF , qh, qs be functions
of the security parameter with qh > qs. Assume there exists a reduction R which
(tR, εR, n, εF , qh, qs)-reduces breaking the one-wayness of TDF to breaking EUF-
CMA security of the TDF-FDH signature scheme. Then there exists a meta-
reduction M which (tM , εM , n)-breaks the gap one-wayness of TDF, where:

tM ≤ (n+ 1)tR

εM ≥ εR − εF · n · exp(−1)

qs

(
1 − qs

qh

)−1

.

Proof. A precise definition of a (black-box) reduction and a sketch of the proof
are provided in the full version of the paper [30]. ��

Remark 3. Theorem 5 above can be straightforwardly extended to any non-
interactive computational problem which is hard relative to a Certify oracle
(instead of the one-wayness of the underlying trapdoor function).

396 Y. Seurin

Consequences for RSA and Rabin-Williams FDH Signatures. We know
by Theorem 8 of [22] that RSA-FDH with public exponents e < N1/4 has a
tight security reduction from the Φ-Hiding assumption. By Theorem 7 of [22] we
also know that RSA-FDH with public exponents e > N1/4 cannot have a tight
security reduction from the problem of inverting RSA —nor any non-interactive
hard problem— since RSA is certified for this class of exponents [23]. Theorem 5
above implies that it is unlikely as well that RSA-FDH with e < N1/4 can have a
tight security reduction from inverting RSA: unless inverting RSA with the help
of an oracle solving the Φ-Hiding problem is easy, any reduction from inverting
RSA to breaking the EUF-CMA security of RSA-FDH with e < N1/4 must lose
a factor qs.

This extends to Rabin-Williams FDH signatures as follows: unless computing
modular square roots (or equivalently factoring) with the help of an oracle solving
the 2-Φ/4-Hiding problem is easy, any reduction from factoring to breaking the
EUF-CMA security of the PRW and APRW schemes must lose a factor qs.

References

[1] Abdalla, M., Bellare, M., Rogaway, P.: The Oracle Diffie-Hellman Assumptions
and an Analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
pp. 143–158. Springer, Heidelberg (2001)

[2] Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek,
S.: Hedged Public-Key Encryption: How to Protect against Bad Randomness. In:
Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer,
Heidelberg (2009)

[3] Bellare, M., Hofheinz, D., Yilek, S.: Possibility and Impossibility Results for En-
cryption and Commitment Secure under Selective Opening. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009)

[4] Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Design-
ing Efficient Protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

[5] Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

[6] Bellare, M., Rogaway, P.: The Exact Security of Digital Signatures - How to
Sign with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS,
vol. 1070, pp. 399–416. Springer, Heidelberg (1996)

[7] Bernstein, D.J.: Proving Tight Security for Rabin-Williams Signatures. In: Smart,
N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 70–87. Springer, Heidelberg
(2008)

[8] Boldyreva, A., Fehr, S., O’Neill, A.: On Notions of Security for Deterministic
Encryption, and Efficient Constructions without Random Oracles. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

[9] Cachin, C., Micali, S., Stadler, M.: Computationally Private Information Retrieval
with Polylogarithmic Communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

On the Lossiness of the Rabin Trapdoor Function 397

[10] Coppersmith, D.: Finding a Small Root of a Univariate Modular Equation. In:
Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer,
Heidelberg (1996)

[11] Coron, J.-S.: On the Exact Security of Full Domain Hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)

[12] Coron, J.-S.: Optimal Security Proofs for PSS and Other Signature Schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer,
Heidelberg (2002)

[13] Coron, J.-S.: Security Proof for Partial-Domain Hash Signature Schemes. In:
Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 613–626. Springer, Hei-
delberg (2002)

[14] Fehr, S., Hofheinz, D., Kiltz, E., Wee, H.: Encryption Schemes Secure against
Chosen-Ciphertext Selective Opening Attacks. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 381–402. Springer, Heidelberg (2010)

[15] Fischlin, R., Schnorr, C.-P.: Stronger Security Proofs for RSA and Rabin Bits.
Journal of Cryptology 13(2), 221–244 (2000)

[16] Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More Construc-
tions of Lossy and Correlation-Secure Trapdoor Functions. In: Nguyen, P.Q.,
Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279–295. Springer, Hei-
delberg (2010)

[17] Gentry, C.: How to Compress Rabin Ciphertexts and Signatures (and More).
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 179–200. Springer,
Heidelberg (2004)

[18] Goldreich, O.: Foundations of Cryptography - vol. 1, Basic Tools. Cambridge
University Press (2001)

[19] Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks. SIAM J. Comput. 17(2), 281–308
(1988)

[20] Hofheinz, D., Jager, T., Knapp, E.: Waters Signatures with Optimal Security
Reduction. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 66–83. Springer, Heidelberg (2012)

[21] Hofheinz, D., Kiltz, E.: The Group of Signed Quadratic Residues and Applica-
tions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer,
Heidelberg (2009)

[22] Kakvi, S.A., Kiltz, E.: Optimal Security Proofs for Full Domain Hash, Revisited.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 537–553. Springer, Heidelberg (2012)

[23] Kakvi, S.A., Kiltz, E., May, A.: Certifying RSA. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 404–414. Springer, Heidelberg (2012)

[24] Kiltz, E., O’Neill, A., Smith, A.: Instantiability of RSA-OAEP under Chosen-
Plaintext Attack. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 295–
313. Springer, Heidelberg (2010)

[25] Kurosawa, K., Ogata, W.: Efficient Rabin-type Digital Signature Scheme. Des.
Codes Cryptography 16(1), 53–64 (1999)

[26] Leurent, G., Nguyen, P.Q.: How Risky Is the Random-Oracle Model? In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 445–464. Springer, Heidelberg (2009)

398 Y. Seurin

[27] Mol, P., Yilek, S.: Chosen-Ciphertext Security from Slightly Lossy Trapdoor Func-
tions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
296–311. Springer, Heidelberg (2010)

[28] Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In:
Dwork, C. (ed.) Symposium on Theory of Computing, STOC 2008, pp. 187–196.
ACM (2008)

[29] Rabin, M.O.: Digitalized signatures and public-key functions as intractable as
factorization. Technical Report 212. MIT Laboratory for Computer Science (1979)

[30] Seurin, Y.: On the Lossiness of the Rabin Trapdoor Function. Full version of this
paper, http://eprint.iacr.org/2013/256

[31] Williams, H.C.: A modification of the RSA public-key encryption procedure. IEEE
Transactions on Information Theory 26(6), 726–729 (1980)

http://eprint.iacr.org/2013/256

Solving Random Subset Sum Problem

by lp-norm SVP Oracle�

Gengran Hu, Yanbin Pan, and Feng Zhang

Key Laboratory of Mathematics Mechanization, NCMIS,
Academy of Mathematics and Systems Science, Chinese Academy of Sciences

Beijing 100190, China
hudiran10@mails.ucas.ac.cn, {panyanbin,zhangfeng}@amss.ac.cn

Abstract. It is well known that almost all random subset sum in-
stances with density less than 0.6463... can be solved with an l2-norm
SVP oracle by Lagarias and Odlyzko. Later, Coster et al. improved the
bound to 0.9408... by using a different lattice. In this paper, we gener-
alize this classical result to lp-norm. More precisely, we show that for
p ∈ Z+, an lp-norm SVP oracle can be used to solve almost all random
subset sum instances with density bounded by δp, where δ1 = 0.5761
and δp = 1/(1

2p
log2(2

p+1 − 2) + log2(1 +
1

(2p−1)(1−(1
2p+1−2

)(2
p−1))

))) for

p ≥ 3(asymptotically, δp ≈ 2p/(p + 2)). Since δp goes increasingly to
infinity when p tends to infinity, it can be concluded that an lp-norm
SVP oracle with bigger p can solve more subset sum instances. An inter-
esting phenomenon is that an lp-norm SVP oracle with p ≥ 3 can help
solve almost all random subset sum instances with density one, which
are thought to be the most difficult instances.

Keywords: SVP, random subset sum problems, lattice, lp-norm.

1 Introduction

Lattices are discrete subgroup in Rn and have many important applications in
both cryptanalysis and cryptographic constructions. Many lattice-based crypto-
graphic primitives have been presented, such as the public-key cryptosystems
[1,2,21,9,11], the digital signature scheme NTRUSign [12] and the fully homo-
morphic encryption [8]. Usually, the securities of these schemes can be based on
the hardness of some lattice problems, like SVP (the shortest vector problem).
SVP refers to finding a shortest non-zero vector in a given lattice and is one
of the most famous computational problems of lattice. Many famous algorithms
are proposed to solve SVP, including the famous LLL algorithm [14]. These al-
gorithms can also be used to attack knapsack-based public-key cryptosystems
(See [15] for more details).

� This work was supported in part by the NNSF of China (No.11071285, No.11201458,
and No.61121062), in part by 973 Project (No. 2011CB302401) and in part by the
National Center for Mathematics and Interdisciplinary Sciences, CAS.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 399–410, 2014.
c© International Association for Cryptologic Research 2014

400 G. Hu, Y. Pan, and F. Zhang

The knapsack problem, or the subset sum problem (SSP), is a well-known NP-
hard problem. It asks to choose some elements in a given set such that the sum
of these elements is exactly equal to a given number. When all of the elements
of the set are uniformly random over some set, it comes to the random subset
sum problem (RSSP), which is also a significant computational problem.

The hardness of RSSP is still not clear. However, it seems that there is a
very close relationship between the hardness of RSSP and its density. When
the density is large enough, it can be solved via dynamic programming. When
the density is small enough, it can be solved by LLL algorithm [15]. In [13],
Impagliazzo and Naor showed that the hardest instances of RSSP lie in those
with density equal to 1.

Some relations between SVP and RSSP have been exploited. In 1985, Lagarias
and Odlyzko [15] showed that the l2-norm SVP oracle can be used to solve almost
all random subset sum instances with density bounded by 0.6463 when the size
of the subset sum instance is large enough. Later, Coster et al. [5] improved this
bound to 0.9408. However, it is a long standing open problem to solve the RSSP
instances with density 1 using the lattice l2-norm SVP oracle.

In this work, we give a very interesting result that any lp-norm SVP oracle
(p > 2) can help to solve the RSSP with density 1 efficiently. More precisely, if
p ∈ Z+, an lp-norm SVP oracle can be used to solve almost all random subset
sum instances with density bounded by δp = 1/(1

2p log2(2
p+1 − 2) + log2(1 +

1
(2p−1)(1−(1

2p+1−2
)(2

p−1))
))). It is easy to see that δp goes increasingly to infinity

as p tends to infinity, which implies that an lp-norm SVP oracle with bigger p can
solve more subset sum instances. Especially, an l∞-norm SVP oracle can solve
all the subset sum instances, which coincides with the deterministic reduction
from subset sum problem to l∞-norm SVP. It seems that the hardness of lp-
norm SVP increases as p gets bigger. However, in practice, the existing SVP
algorithms are mostly in l2-norm, even the lp-norm SVP algorithm in [6] uses
the MV algorithm(an l2-norm SVP algorithm in [18]) as a starting point.

In fact, it is well known that the l∞-norm SVP is NP-hard under deterministic
reduction, whereas SVP for other norms are proved to be NP-hard under only
probabilistic reductions (see [3,17,19]). In addition, Regev and Rosen [22] proved
for any ε > 0, l2-norm SVP1+ε can be probabilistically reduced to lp-norm
SVP for all 1 ≤ p ≤ ∞ which showed that the l2-norm SVP1+ε is easiest.
Unfortunately, reduction from exact l2-norm SVP to lp-norm SVP has still not
been found.

We would like to point out that if RSSP can be proved to be NP-hard, then
by our result, we can prove lp-norm SVP (p > 2, p ∈ Z+) is NP-hard under
probabilistic reduction. Such a reduction will be more simple and clear, compared
to the previous reductions.

Moreover, as a byproduct, we give an upper bound of the number of the in-
teger points in an lp ball, which is shown to be very nice for p ≥ 3.

Roadmap. The remainder of the paper is organized as follows. In Section 2,
we give some preliminaries needed. In Section 3, we describe our probabilistic

Solving Random Subset Sum Problem by lp-norm SVP Oracle 401

reduction from random subset sum problem to lp-norm SVP in details. Finally,
we give a short conclusion in Section 4.

2 Preliminaries

We denote by Z the integer ring. We use bold letters to denote vectors. If v ∈ Rn

is a vector, then we denote by vi the i-th entry of v. Let ‖v‖p be the lp norm of
v, that is, ‖v‖p = (

∑n
i=1 |vi|p)1/p.

2.1 Lattice

Given a matrix B = (bij) ∈ Rm×n with rank n, the lattice L(B) spanned by the
columns of B is

L(B) = {Bx =

n∑
i=1

xibi|xi ∈ Z},

where bi is the i-th column of B. We call m the dimension of L(B) and n its
rank.

Definition 1 (lp-norm SVP). Given a lattice basis B, the lp-norm SVP asks
to find a nonzero vector in L(B) with the smallest lp-norm.

2.2 Random Subset Sum Problem

Given a = (a1, a2, . . . , an) distributed uniformly in [1, A]n and s =
∑n
i=1 eiai

where e = (e1, e2, . . . , en) ∈ {0, 1}n, RSSP refers to finding some c =
(c1, c2, . . . , cn) ∈ {0, 1}n such that s =

∑n
i=1 ciai without knowing e. Notice

that the solution c may not be the original e.
The density of these ai’s is defined by

d =
n

log2(A)
.

It was shown by Lagarias and Odlyzko [15] that almost all the subset sum
problem with density less than 0.6463 . . . would be solved in polynomial time
with a single call to an oracle that can find the shortest vector in a special lattice.
Later, Coster et al. [5] improved the bound to 0.9408 . . . by finding a shortest
nonzero vector with an l2-norm SVP oracle in the following lattice spanned by
the columns of ⎛⎜⎜⎜⎜⎜⎝

1 0 . . . 0 1
2

0 1 . . . 0 1
2

...
...

...
...

0 0 . . . 1 1
2

Na1 Na2 . . . Nan Ns

⎞⎟⎟⎟⎟⎟⎠ ,

where N is a big enough integer.

402 G. Hu, Y. Pan, and F. Zhang

2.3 Estimation of the Combinatorial Number

By Stirling’s Formula, we have the following estimation for the combinatorial
number, (

αn

βn

)
=

∼

O(2αH(β/α)n),

where
H(x) = −x log2 x− (1− x) log2(1− x) and

∼

O(f(n)) = O(f(n) ∗ poly(log(f(n)))).

3 Solving Random Subset Sum Problem by lp-norm SVP
Oracle

3.1 The Upper Bound of the Number of Integer Points in an lp-Ball

We first give some results about the number of the integer points in an lp-ball,

that is, #{x ∈ Zn+1|‖x‖p ≤ 1
2 (n+ 1)

1
p }.

Theorem 1. For all n ≥ 1,

– If p = 1 and n large enough,

#{x ∈ Zn|‖x‖1 ≤ 1

2
n} ≤ 2c1n,

where c1 = 1.7357.

– If p = 2,

#{x ∈ Zn|‖x‖2 ≤ 1

2

√
n} ≤ 2c2n,

where c2 = 1.0628.

– If p ≥ 3 and p ∈ Z+,

#{x ∈ Zn|‖x‖p ≤ 1

2
n

1
p } ≤ 2cpn,

where cp ≈ 1
2p log2(2

p+1 − 2) + log2(1 +
1

2p−1).

Proof. We will prove the theorem in three cases.

– p = 1:
For simplicity, we assume n is even (the case when n is odd is similar). Let
R(m,n) � #{x ∈ Zn,x has m nonzero entries | ‖x‖1 ≤ 1

2n}, then

#{x ∈ Zn|‖x‖1 ≤ 1

2
n} =

n/2∑
m=0

R(m,n).

Solving Random Subset Sum Problem by lp-norm SVP Oracle 403

It is easy to know that R(m,n) = 2m
(
n
m

)∑n/2
j=m

(
j−1
m−1

)
= 2m

(
n
m

)(
n/2
m

)
. As-

sumeR(mn, n) = max
m

R(m,n), then #{x ∈ Zn|‖x‖1 ≤ 1
2n} ≤ 1

2n(R(mn, n)).

Noticing that

R(m+ 1, n)/R(m,n) =
2m+1

(
n

m+1

)(
n/2
m+1

)
2m

(
n
m

)(
n/2
m

)
=

(n − m)(n − 2m)

(m+ 1)2

is decreasing with respect to m, we have{
R(mn, n)/R(mn − 1, n) ≥ 1,
R(mn + 1, n)/R(mn, n) ≤ 1,

which implies that {
mn ≤ 0.381966n+ 0.658359,
mn ≥ 0.381966n− 0.828427,

since mn ≤ n/2. We obtain mn ≈ 0.381966n. Thus, we have the bound

#{x ∈ Zn|‖x‖1 ≤ 1

2
n} ≤ 1

2
n20.381966n

(
0.5n − 1

0.381966n− 1

)(
n

0.381966n

)
.

Using the estimation
(
αn
βn

)
=

∼

O(2αH(β/α)n), finally we have for n large enough

#{x ∈ Zn|‖x‖1 ≤ 1

2
n} =

∼

O(20.381966n+0.39422n+0.9594187n) =
∼

O(21.7356047n) ≤ 21.7357n .

– If p = 2:
It has been proven in Section 3 in [5].

– If p ≥ 3 and p ∈ Z+:
Let θ(z) = 1 + 2

∑∞
i=1 z

ip and rn(k) be the number of integer solutions to

n∑
i=1

|xi|p = k.

Then

(θ(z))n =

∞∑
k=0

rn(k)z
k.

404 G. Hu, Y. Pan, and F. Zhang

For all x > 0, we have

#{x ∈ Zn|‖x‖p ≤ 1

2
n

1
p } = #{x ∈ Zn|‖x‖pp ≤ 1

2p
n}

=
∑

k≤ 1
2p n

rn(k)

≤
∑

k≤ 1
2p n

rn(k)e
1
2p nxe−kx

≤
∞∑
k=0

rn(k)e
1
2p nxe−kx

= e
1
2p nx

∞∑
k=0

rn(k)e
−kx

= e
1
2p nx(θ(e−x))n.

Let

fp(x) =
1

2p
x+ ln θ(e−x).

We have

#{x ∈ Zn|‖x‖p ≤ 1

2
n

1
p } ≤ efp(x)n = 2(log2 e)fp(x)n

holds for all x > 0.
So we only need to compute min

x>0
fp(x). It is difficult to give the exact value

of min
x>0

fp(x). Next we give an upper bound for min
x>0

fp(x).

Noticing that

fp(x) =
1

2p
x+ln θ(e−x) =

1

2p
x+ln(1+2e−1px+2e−2px+2e−3px+· · ·+2e−kpx+· · ·),

we define

lp(x) �
1

2p
x+ ln(1 + 2e−x)

and

up(x) � 1

2p
x + ln(1 + 2e−x + 2e−2px + 2e−(2p+2p−1)x + · · · + 2e−((k−1)2p−(k−2))x + · · ·)

=
1

2p
x + ln(1 +

2e−x

1 − e−(2p−1)x
).

When p ≥ 1, the difference sequence (2p − 1p, 3p − 2p, 4p − 3p, · · ·) is not
decreasing, then for k ≥ 2,

2e−k
px = 2e−x(1+(2p−1p)+(3p−2p)+···+(kp−(k−1)p))

≤ 2e−x(1+(2p−1p)+(2p−1)+···+(2p−1))

= 2e−((k−1)2p−(k−2))x

Solving Random Subset Sum Problem by lp-norm SVP Oracle 405

So we have
lp(x) ≤ fp(x) ≤ up(x)

holds for all x > 0, which implies

min
x>0

lp(x) ≤ min
x>0

fp(x) ≤ min
x>0

up(x).

Because lp(x) takes the minimum

lp(x0(p)) =
1

2p
ln(2p+1 − 2) + ln(1 +

1

2p − 1
)

at
x0(p) = ln(2p+1 − 2)

and

up(x0(p)) =
1

2p
ln(2p+1 − 2) + ln(1 +

1

(2p − 1)(1 − (1
2p+1−2)

(2p−1))
),

we have an interval estimate [lp(x0(p)), up(x0(p))] for min
x>0

fp(x) since

lp(x0(p)) = min
x>0

lp(x) ≤ min
x>0

fp(x) ≤ min
x>0

up(x) ≤ up(x0(p)).

Taking cp = log2 e · up(x0(p)), the result for p ≥ 3 follows.

We would like to point out that 2cpn is a very nice estimation of the number

of integer points in the lp ball {x ∈ Zn|‖x‖p ≤ 1
2n

1
p } for p ≥ 3. In fact, we can

easily have an asymptotic rough lower bound for the number of integer points
by just considering those vectors in the ball with exactly 1

2pn entries in {−1, 1}
and other entries equal to 0. The total number of such vectors is 2

1
2p n ·

(
n
1
2p n

)
,

which is approximately equal to 2(H(1
2p)+ 1

2p)n. Hence for p ∈ Z+ and n large
enough, we have

#{x ∈ Zn|‖x‖p ≤ 1

2
n

1
p } ≥ 2kpn,

where kp =
p+1
2p − (1 − 1

2p) log2(1 − 1
2p). Interestingly, we find that kp is exactly

the total lower bound log2 e · lp(x0(p)) obtained above.
The table below gives the values of lp(x0(p))(= ln 2 · kp) and up(x0(p)) for p

from three to ten.

p 3 4 5 6 7 8 9 10
lp 0.4634 0.2771 0.1607 0.0913 0.0511 0.2827 0.0155 0.0084
up 0.4634 0.2771 0.1607 0.0913 0.0511 0.2827 0.0155 0.0084

It can be seen that up(x0(p)) is a very good estimation of min
x>0

fp(x), since

for p ≥ 3, lp(x0(p)) and up(x0(p)) are nearly the same. Similarly, 2cpn is a very
nice estimation of the number of integer points in the lp ball for p ≥ 3, since
the upper bound and the lower bound are also nearly the same. In fact, the
asymptotic forms for lp(x0(p)) and up(x0(p)) are the same:

lp(x0(p)) ≈ ln 2 · p+ 2

2p
, up(x0(p)) ≈ ln 2 · p+ 2

2p
.

406 G. Hu, Y. Pan, and F. Zhang

3.2 Solving Random Subset Sum Problem by lp-norm SVP Oracle

To solve the subset sum problem defined by ai(1 ≤ i ≤ n) and s, we consider
the lattice L(B) generated by the columns of B where

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 1
2

0 1 . . . 0 1
2

...
...

...
...

0 0 . . . 1 1
2

0 0 . . . 0 1
2

Na1 Na2 . . . Nan Ns

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

andN > 1
2 (n+1)

1
p is an positive integer. Notice that our lattice is a little different

from Coster et al.’s, which leads a more simple reduction. The additional row in
the lattice basis matrix can bound the last integer coefficient more tightly(see
section 3 of [5] for more details).

Any x = (x1, x2 . . . xn, xn+1, xn+2)
T ∈ L(B) can be written as⎧⎪⎨⎪⎩

xi = wi +
1
2w (i = 1, 2 . . . n)

xn+1 = 1
2w

xn+2 = N(
∑n
i=1 wiai + ws)

(1)

with all the wi’s and w in Z.
For any solution e of the subset problem, taking wi = ei, w = −1, we get

L(B) contains a corresponding lattice vector e
′
= (e

′
1 . . . e

′
n,− 1

2 , 0) with e
′
i =

ei − 1
2 ∈ {− 1

2 ,
1
2}. Obviously, ‖e′‖p = 1

2 (n+ 1)
1
p .

On the other hand, it is easy to know that any y = (y1, y2 . . . yn, yn+1, yn+2)
T ∈

L(B) of the form ⎧⎪⎨⎪⎩
yi ∈ {− 1

2w, 1
2w} (i = 1, 2 . . . n)

yn+1 = − 1
2w

yn+2 = 0

where w ∈ Z\{0} yields an solution (y1 − 1
2 , y2 − 1

2 , · · · , yn − 1
2) of the RSSP.

Thus, we define the solution set of the subset sum instance

Sn = { w(y1, y2 . . . yn,−
1

2
, 0)T | |yi| =

1

2
, w ∈ Z\{0} }.

Then ±e
′ ∈ Sn.

By querying the lp-norm SVP oracle with L(B), we get a non-zero shortest
vector x. If x ∈ Sn, then we can recover one solution of the RSSP. So the failure
possibility is at most

P = Pr(∃x ∈ L(B) s.t. 0 < ‖x‖p ≤ ‖e
′
‖p ,x /∈ Sn).

Solving Random Subset Sum Problem by lp-norm SVP Oracle 407

For x ∈ L(B) with ‖x‖p ≤ ‖e′‖p = 1
2 (n + 1)

1
p ,x /∈ Sn, we have xn+2 = 0 since

N > 1
2 (n+ 1)

1
p , which implies

n∑
i=1

wiai + ws = 0. (2)

If w is odd, then x /∈ Zn+2 and |xi| ≥ 1
2 for i = 1, 2 . . . n + 1 by (1). Noticing

that ‖x‖p ≤ 1
2 (n+1)

1
p , we must have |xi| = 1

2 and w = ±1, which means x ∈ Sn
in this case.

Thus w is even and x ∈ Zn+2. Using xi = wi +
1
2w and xn+1 = 1

2w, together
with (2), we have

n∑
i=1

xiai + 2xn+1s − xn+1

n∑
i=1

ai = 0.

As a result, the above probability P can be bounded as

P = Pr(∃x ∈ L(B) s.t. 0 < ‖x‖p ≤ 1

2
(n+ 1)

1
p , x /∈ Sn)

≤ Pr(∃x ∈ Zn+1 s.t. 0 < ‖x‖p ≤ 1

2
(n+ 1)

1
p ,

n∑
i=1

xiai + 2xn+1s− xn+1

n∑
i=1

ai = 0, (xT , 0)T /∈ Sn)

≤ Pr(

n∑
i=1

xiai + 2xn+1s− xn+1

n∑
i=1

ai = 0 : 0 < ‖x‖p ≤ 1

2
(n+ 1)

1
p , (xT , 0)T /∈ Sn)

·#{x ∈ Zn+1 | ‖x‖p ≤ 1

2
(n+ 1)

1
p }.

For any solution e, we have s =
∑n

i=1 eiai. Taking zi = xi+2xn+1ei − xn+1, we
get

n∑
i=1

xiai + 2xn+1s − xn+1

n∑
i=1

ai = 0 ⇐⇒
n∑
i=1

ziai = 0.

So we have

P ≤ Pr(

n∑
i=1

ziai = 0, (xT , 0)T /∈ Sn) · #{x ∈ Zn+1 | ‖x‖p ≤ 1

2
(n+ 1)

1
p }.

We next show that there exists a j s.t. zj �= 0. For contradiction, if all zj = 0,
then xj = (1 − 2ej)xn+1. Hence |xj | = |xn+1| since ej ∈ {0, 1}. By 0 < ‖x‖p ≤
1
2 (n+1)

1
p , we know that 0 < xj <

1
2 , which contradicts that xj ’s are integer. So

there exists a j s.t. zj �= 0. Let z
′
= −

∑
i�=j ziai/zj, then

408 G. Hu, Y. Pan, and F. Zhang

Pr(
n∑
i=1

ziai = 0, (xT , 0)T /∈ Sn) = Pr(
n∑
i=1

ziai = 0, zj �= 0)

= Pr(aj = z
′
)

=

A∑
k=1

Pr(aj = z
′ |z′

= k) · Pr(z′
= k)

=
A∑
k=1

Pr(aj = k) · Pr(z′
= k)

=
1

A

A∑
k=1

Pr(z
′
= k)

≤ 1

A
.

Now we obtain

P ≤ 1

A
· #{x ∈ Zn+1|‖x‖p ≤ 1

2
(n+ 1)

1
p }. (3)

By Theorem 1, we can bound P as

P ≤ 2cp(n+1)

A
=

2cp(n+1)

2(n/d)

When d < 1/cp � δp, P is exponentially small on n, meaning almost all random
subset sum instances with density less than δp can be solved by lp-norm SVP
oracle. Hence we get the following theorem.

Theorem 2. For p ∈ Z+ and large enough n, let A be a positive integer,
ai(1 ≤ i ≤ n) be independently uniformly random integers between 1 and A,
e = (e1, e2, · · · , en) be arbitrary non-zero vector in {0, 1}n, and s =

∑n
i=1 aiei.

If the density

d =
n

log2 A
< δp =

⎧⎪⎪⎨⎪⎪⎩
0.5761, p = 1

0.9408, p = 2

1/(1
2p

log2(2
p+1 − 2) + log2(1 +

1

(2p−1)(1−(1
2p+1−2

)(2
p−1))

))), p ≥ 3

(4)

then with probability exponentially close to 1, the subset sum problem defined by
ai(1 ≤ i ≤ n) and s can be solved in polynomial time with a single call to an
lp-norm SVP oracle.

The table below gives the values of δp for p from one to ten.

p 1 2 3 4 5 6 7 8 9 10
δp 0.5761 0.9408 1.4957 2.5013 4.3127 7.5907 13.564 24.521 44.750 82.302

We also plot the ten log2 δp’s values in the following picture.

Solving Random Subset Sum Problem by lp-norm SVP Oracle 409

1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

4

5

6

7

p

lo
g 2de

ns
ity

First ten log
2
δ

p
’s

Density=1(log
2
density=0)

Roughly speaking, the asymptotic form for δp is 2p/(p + 2). It’s easy to see
that the upper bound δp will go increasingly to infinity when p tends to infinity,
which implies that an lp-norm SVP oracle with larger p will help to solve more
random subset sum problems. Another interesting phenomenon is that we can
solve the RSSP with density one with the lp-norm SVP oracle with p ≥ 3 but we
can not solve them with l2-norm SVP oracle by now. It seems that the hardness
of lp-norm SVP is not decreasing as p gets larger.

4 Conclusion

In this paper, we generalize the classical probabilistic reduction from random
subset sum problem to l2-norm SVP to the case for lp-norm. For any p ∈ Z+, we
can use an lp-norm SVP oracle to solve almost all random subset sum problem
with density bounded by δp. Since δp increases as p gets bigger, an lp-norm
SVP oracle with larger p will help to solve more random subset sum problems.
Moreover, an lp-norm SVP oracle with p ≥ 3 can help solve almost all random
subset sum instances with density one, which are thought to be the most difficult
instances.

Acknowledgement.We thank the anonymous referees for putting forward their
excellent suggestions on how to improve the presentation of this paper.

References

1. Ajtai, M.: Gennerating hard instances of lattice problems. In: STOC 1996, pp.
99–108. ACM Press, New York (1996)

2. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: STOC 1997, pp. 284–293. ACM Press, New York (1997)

410 G. Hu, Y. Pan, and F. Zhang

3. Ajtai, M.: The shortest vector problem in L2 is NP-hard for randomized reduc-
tions(extended abstract). In: 30th Annual ACM Symposium on Theory of Com-
puting, pp. 266–275. ACM Press, New York (1998)

4. Babai, L.: On Lovasz’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986)

5. Coster, M.J., Joux, A., Lamacchia, B.A., Odlyzko, A.M., Schnorr, C.P., Stern,
J.: An improved low-density subset sum algorithm. Computational Complexity 2,
111–128 (1992)

6. Dadush, D., Peikert, C., Vempala, S.: Enumerative lattice algorithms in any norm
via M -ellipsoid coverings. In: FOCS 2011, pp. 580–589. IEEE Computer Society
Press (2011)

7. Frieze, A.M.: On the Lagarias-Odlyzko algorithm for the subset sum problem.
SIAM J. Comput. 18, 550–558 (1989)

8. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp.
169–178. ACM Press, New York (2009)

9. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC 2008, pp. 197–206. ACM Press, New York
(2008)

10. Goldreich, D., Micciancio, D., Safra, S., Seifert, J.P.: Approximating shortest lat-
tice vectors is not harder than approximating closest lattice vectors. Information
Processing Letters 71(2), 55–61 (1999)

11. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A Ring-Based Public Key Cryp-
tosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288.
Springer, Heidelberg (1998)

12. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSIGN: Digital Signatures Using the NTRU Lattice. In: Joye, M. (ed.) CT-
RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003)

13. Impagliazzo, R., Naor, M.: Efficient Cryptographic Schemes Provably as Secure as
Subset Sum. Journal of Cryptology 9, 199–216 (1996)

14. Lenstra, A.K., Lenstra Jr., H.W., Lovasz, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261, 513–534 (1982)

15. Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. J. Assoc.
Comp. Mach. 32(1), 229–246 (1985)

16. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: A modest
proposal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp.
54–72. Springer, Heidelberg (2008)

17. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A Cryptography
Perspective. Kluwer Academic Publishes (2002)

18. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm
for most lattice problems based on Voronoi cell computations. In: STOC 2010, pp.
351–358. ACM Press, New York (2010)

19. Micciancio, D.: Inapproximability of the Shortest Vector Problem: Toward a De-
terministic Reduction. Theory of Computing 8(1), 487–512 (2012)

20. Regev, O.: Lattices in computer science. Lecture notes of a course given in Tel
Aviv University (2004)

21. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: STOC 2005, pp. 84–93. ACM Press, New York (2005)

22. Regev, O., Rosen, R.: Lattice problems and norm embeddings. In: STOC 2006, pp.
447–456. ACM Press, New York (2006)

Parallel Gauss Sieve Algorithm: Solving the SVP

Challenge over a 128-Dimensional Ideal Lattice�

Tsukasa Ishiguro1, Shinsaku Kiyomoto1,
Yutaka Miyake1, and Tsuyoshi Takagi2

1 KDDI R&D Laboratories Inc., 2-1-15 Ohara, Fujimino, Saitama 356-8502, Japan
{tsukasa,kiyomoto,miyake}@kddilabs.jp

2 Institute of Mathematics for Industry, Kyushu University, 744, Motooka, Nishi-ku,
Fukuoka 819-0395, Japan

takagi@imi.kyushu-u.ac.jp

Abstract. In this paper, we report that we have solved the SVP Chal-
lenge over a 128-dimensional lattice in Ideal Lattice Challenge from TU
Darmstadt, which is currently the highest dimension in the challenge
that has ever been solved. The security of lattice-based cryptography is
based on the hardness of solving the shortest vector problem (SVP) in
lattices. In 2010, Micciancio and Voulgaris proposed a Gauss Sieve algo-
rithm for heuristically solving the SVP using a list L of Gauss-reduced
vectors. Milde and Schneider proposed a parallel implementation method
for the Gauss Sieve algorithm. However, the efficiency of the more than
10 threads in their implementation decreased due to the large number
of non-Gauss-reduced vectors appearing in the distributed list of each
thread. In this paper, we propose a more practical parallelized Gauss
Sieve algorithm. Our algorithm deploys an additional Gauss-reduced list
V of sample vectors assigned to each thread, and all vectors in list L re-
main Gauss-reduced by mutually reducing them using all sample vectors
in V . Therefore, our algorithm allows the Gauss Sieve algorithm to run
for large dimensions with a small communication overhead. Finally, we
succeeded in solving the SVP Challenge over a 128-dimensional ideal lat-
tice generated by the cyclotomic polynomial x128 +1 using about 30,000
CPU hours.

Keywords: shortest vector problem, lattice-based cryptography, ideal
lattice, Gauss Sieve algorithm, parallel algorithm.

1 Introduction

Lattice-based cryptography has been considered a powerful primitive for con-
structing useful cryptographic protocols. The security of lattice-based cryptog-
raphy is based on the hardness of solving the shortest vector problem (SVP),
which involves searching for the shortest nonzero vectors in lattices. Ajtai proved
that the worst case complexity of solving the SVP is NP-hard under randomized

� The full-version of this paper is appeared in [13].

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 411–428, 2014.
c© International Association for Cryptologic Research 2014

412 T. Ishiguro et al.

reductions [1]. The α-SVP [17] is an approximation problem of the SVP, which
searches for elements with the size of the shortest vector multiplied by a small ap-
proximation factor α. Many cryptographic primitives have been built on lattices
due to their security against quantum computers and their novel functionalities:
Ajtai-Dwork scheme [2], NTRU [10], fully-homomorphic cryptosystems [8], and
multi-linear maps [7].

There are several approaches for solving the SVP and the α-SVP. The fastest
deterministic algorithm is the Voronoi cell algorithm [18], which runs in expo-
nential time 2O(n) and space 2O(n) for n-dimensional lattices. The sieving algo-
rithms, which are explained in the next subsection, are probabilistic algorithms
that require exponential time 2O(n) and space 2O(n) [3,21,5]. The enumeration

algorithms are exhaustive search algorithms that need time 2O(n2) or 2O(n log n),
but only the polynomial size of space [29,30,6], and they are suitable for paral-
lelization using multicore CPUs and GPUs. Moreover, the lattice basis reduction
such as LLL or BKZ is a polynomial-time approximation algorithm [16,28]. Gen-
erally, enumeration algorithms are also used in lattice basis reduction algorithms
as a subroutine for solving the α-SVP. On the other hand, sieving algorithms
are used only for solving the SVP.

1.1 Sieving Algorithms and Ideal Lattices

In 2001 Ajtai et al. proposed the first sieve algorithm for solving the SVP [3].
There are many variants of the sieving algorithm [21,5] that try to improve the
computational costs of the algorithm. In 2009 Micciancio and Voulgaris proposed
a practical sieving algorithm, called the Gauss Sieve algorithm [19]. The Gauss
Sieve algorithm consists of a list L of vectors in the lattice and a reduction
algorithm that outputs a shorter vector from two input vectors. List L manages
the vectors reduced by the reduction algorithm. The number of vectors in L
increases but the norm of several vectors L is shrunk by the reduction algorithm,
and eventually the shortest nonzero vector can be found in list L.

The theoretical upper boundary of the computation time of the Gauss Sieve
algorithm is not yet proved; however, the Gauss Sieve algorithm is faster than
any other sieve algorithm in practice, because it deploys a list L of pair-wise
Gauss-reduced vectors that can gradually reduce the norm of vectors in the
list. The time complexity of the Gauss sieve is estimated to be asymptotically
20.52n for n-dimensional lattices [19]. In 2011 Milde and Schneider considered
a parallelization variant of the Gauss Sieve algorithm. From the experiment by
Milde and Schneider, once the number of threads increases to more than ten, the
speed-up factor does not exceed around five. Therefore, it is difficult to apply to
large-scale parallel computation.

In order to realize efficient construction of lattice-based cryptography, ideal
lattices are often used. Using ideal lattices, many cryptographic primitives work
faster and require less storage [10,7]. One of the open problems is whether the
computational problems related to the ideal lattices are easier to solve compared
with those of random lattices [23]. First, Micciancio and Voulgaris mentioned the
possibility of speeding up the sieving algorithm for ideal lattices [19]. In ideal

Parallel Gauss Sieve Algorithm 413

lattices, several vectors of similar norms have a rotation structure, and thus
it is possible to compute the set of vectors in the reduction algorithm derived
from the sieve algorithm without a large overhead. Schneider proposed the Ideal
Gauss Sieve algorithm, which uses the rotation structure of the Anti-cyclic lattice
generated by the polynomial xn + 1 where n is a power of two [26]. Then, their
proposed algorithm enables the Gauss Sieve algorithm to run about 25 times
faster on 60-dimensional ideal lattices.

1.2 Our Contribution

We propose a parallelized Gauss Sieve algorithm using an additional list V gen-
erated by the multisampling technique of vectors in the lattice. Our algorithm
mutually reduces the vectors in both L and V , so that all vectors in both lists
V and L remain pair-wisely Gauss-reduced. Using this technique, the reduction
algorithm can be easily parallelized. Additionally, even if the number of threads
increases, our algorithm keeps the vector set pairwise-reduced and efficiency is
maintained. Therefore, our algorithm enables the Gauss Sieve algorithm to run
without excessive overhead even in a large-scale parallel computation.

With the result of our proposed algorithm, we succeeded in solving the SVP
Challenge over a 128-dimensional ideal lattice generated by the cyclotomic poly-
nomial x128 + 1 using about 30,000 CPU hours. In our experiment, we used 84
instances and each instance runs 32 threads, namely the number of threads is
2,688 in total. The communication overhead among threads was less than ten
percents of the total running time.

2 Definitions and Problems

In this section, we provide a short overview of the definition of the SVP on the
lattice. We then explain the definitions of Gauss-reduced and pairwise-reduced
for a set of vectors on the lattice used for the Gauss Sieve algorithm.

Let B = {b1, . . . ,bn} be a set of n linearly independent vectors in Rm. The
lattice generated by B is the set L(B) = L(b1, . . . ,bn) = {

∑
1≤i≤n xibi, xi ∈ Z}

of all integer linear combinations of the vectors in B. The set B is called basis of
the lattice L(B). In the following, we denote by L(B) the lattice of basis B as
the matrix representation B = (b1, . . . ,bn) ∈ Rm×n. If n = m, the lattice L(B)
is called full-rank. In this paper, for the sake of simplicity, we will consider only
full-rank lattices and assume that all the basis vectors bi(i = 1, 2, ..., n) have
only integer entries.

The Euclidean norm of vector v = (v0, . . . , vn−1) ∈ L(B) is denoted by
||v|| =

∑
0≤i<n v

2
i . The norm of the shortest nonzero vectors in L(B) is de-

noted by λ1(L(B)). The inner product of two vectors a = (a0, . . . , an−1),b =
(b0, . . . , bn−1) ∈ L(B) is defined by 〈a ·b〉 =

∑
0≤i<n aibi. For x ∈ R, 	x� denotes

the nearest integer to x, namely 	x+ 1/2
.

414 T. Ishiguro et al.

We define the shortest vector problem (SVP) on a lattice as follow.

Definition 1 (Shortest vector problem on a lattice). Given a lattice L(B),
find a shortest nonzero vector of the length λ1(L(B)) in L(B).

From the Gaussian heuristic, the length of a shortest vector in lattice L(B) is

estimated to be λ1(L(B)) = (1/
√
π)Γ (n2 + 1)

1
n · det(L(B))

1
n , where Γ (x) is the

gamma-function and det(B) is the determinant of matrix B.
Let g(x) ∈ Z[x] be a monic polynomial of degree n, and let I be an ideal of

ring Z[x]/(g(x)). All elements of ideal I are represented by polynomials v(x) =∑
0≤i<n vix

i in Z[x]/(g(x)). We identify v(x) with vectors v = (v0, . . . , vn−1) ∈
Zn. The ideal I is an additive subgroup of Z[x]/(g(x)), and the set {v =
(v0, . . . , vn−1) ∈ Zn|v(x) =

∑
0≤i<n vix

i ∈ I} becomes a lattice. This is called
the ideal lattice generated by v(x), and its basis B consists of the rotation vec-
tors xiv(x) ∈ Z[x]/(g(x)) for i = 0, 1, ..., n − 1. The cyclotomic polynomials,
such as g(x) = xn + 1 for n = 2h with some positive integer h, are often used
for generating the ideal lattice in cryptography.

2.1 Gauss-Reduced and Pairwise-Reduced

We define Gauss-reduced and pairwise-reduced for a set of vectors on lattice
L(B). We then explain an algorithm for determining and reducing two given
vectors of lattice L(B).

First, the definition of Gauss-reduced is as follows.

Definition 2 (Gauss-reduced). If two different vectors a,b ∈ L(B) satisfy
||a ± b|| ≥ max(||a||, ||b||), then a,b are called Gauss-reduced.

Micciancio and Voulgaris explained about the way to convert two vectors
a,b in L(B) to be Gauss-reduced. The conversion algorithm uses the Reduce
algorithm (Alg.1), which outputs vectors a′ for two vectors a,b in L(B). The
reduced vector a′ is a linear combination of a and b, which has a shorter norm
than max(a,b), or otherwise a′ = a. From this, we can determine whether two
vectors a,b in L(B) are Gauss-reduced. Indeed, we can easily prove the following
lemma.

Lemma 1. Let a,b be two vectors in L(B). We set a′ =Reduce(a,b) and
b′ =Reduce(b, a). If both a = a′ and b = b′ hold, then a,b are Gauss-reduced.

If two vectors a,b are not Gauss-reduced, then a �= a′ or b �= b′ holds by
Lemma 1. Recall that the reduced vector a′ ←Reduce(a,b) has the property
||a′|| ≤ ||a||. After performing both Reduce(a,b) and Reduce(b, a), we know
that the resulting vectors (a′,b′) are either Gauss-reduced or a′ (or b′) is strictly
shorter than a (or b), respectively. If we repeatedly run the Reduce algorithm
for a = a′ and b = b′, then we expect the resulting vectors (a′,b′) to become
Gauss-reduced. From our experiments in the 100-dimensional lattices, we can
obtain the Gauss-reduced vectors after at most 10 iterations in most cases.

If a,b are linearly dependent, the output of Reduce(a,b) is always the zero
vector, i.e., ||a′|| = 0, which is called a “collision”. The collision is used as the
condition for terminating the Gauss Sieve algorithm.

Parallel Gauss Sieve Algorithm 415

Algorithm 1. Reduce [19]

Require: Vectors p1,p2 in lattice L(B)

Ensure: Vector p1 in lattice L(B) s.t. | 〈p1,p2〉
〈p2,p2〉 | ≤

1
2

1: if |2 · 〈p1 · p2〉| > 〈p2 · p2〉 then
2: p1 ← p1 −

⌊
〈p1,p2〉
〈p2,p2〉

⌉
· p2 /* Make p1 closest to p2 in p1 + p2Z */

3: return p1

Definition 3 (Pairwise-reduced). Let A be a set of d vectors in L(B). If
every pair of two vectors (ai, aj) in A for i, j = 1, . . . , d, i �= j is Gauss-reduced,
then the A is called pairwise-reduced.

In general, if we append a vector b ∈ L(B) to a pairwise-reduced set A, then
A ∪ {b} is not always pairwise-reduced. If every pair of two vectors (ai,b) for
a1, ..., ad ∈ A is Gauss-reduced, then the union A∪{b} becomes pairwise-reduced
from the definition. Obviously we can prove the following lemma that shows that
the union of two pairwise-reduced sets of vectors becomes pairwise-reduced by
checking whether the all pairs of two vectors from A and B are Gauss-reduced.

Lemma 2 (Combining Lemma). Let A = {a1, . . . , ar} and B = {b1, . . . ,bm}
be sets of vectors in L(B). Assume that both A and B are pairwise-reduced. If
every pair of two vectors (ai,bj) in A,B for 1 ≤ i ≤ r, 1 ≤ j ≤ m is Gauss-
reduced, then the union A ∪ B is pairwise-reduced.

This lemma is used for constructing our proposed parallel algorithm for the
Gauss Sieve algorithm.

3 Gauss Sieve Algorithm

In this section, we briefly explain the Gauss Sieve algorithm [19] and the Ideal
Gauss Sieve algorithm [26].

3.1 Gauss Sieve [19]

The Gauss Sieve (GS) algorithm was proposed by Micciancio and Voulgaris in
2009 [19] and it was implemented as gsieve library by Voulgaris [32]. We prepare
two auxiliary lists L and S, where L and S are defined by a set of vectors and
a stack of vectors, respectively. L and S are initially assigned as empty. In the
beginning of the GS algorithm, a new vector v is randomly sampled using Klein’s
randomized rounding algorithm [15].

The GS algorithm runs a subroutine, Gauss Reduce, which updates v, L, S
by the steps in the following two parts. The first part runs the Reduce algo-
rithm using a list L for updating v′ = Reduce(v, �i) for all vectors �i ∈ L. Once
the v′ is not equal to v, this vector v′ is moved to stack S. The reason is that
if v is reduced using �i ∈ L, then v′ and �j , (i > j) are not always Gauss-reduced.

416 T. Ishiguro et al.

If the v is not changed by Reduce(v, �i) for all �i ∈ L, the steps in the second
part are performed. The second part runs the Reduce algorithm using a list L
that makes the list pairwise-reduced. If �′i �= �i holds for �

′
i = Reduce(�i,v), then

the vector �′i is moved to stack S and deleted from L. By the above steps, all
pairs (v, �i) are always Gauss-reduced, where �i ∈ L. Therefore, L ∪ v becomes
pairwise-reduced by Lemma 2. Then L is updated by L ∪ v and the iteration is
continued . If the stack is not empty, v is popped from the stack S, otherwise, v
is newly sampled . The termination condition of the GS algorithm is determined
by the number of collisions of the zero vector (||a′|| = 0) that appears in L.

The theoretical upper bound of the complexity of the GS algorithm is not yet
proved; however, in practice, the GS algorithm is faster than any other sieving
algorithms. According to Micciancio and Voulgaris [19], the complexity of the
GS algorithm is asymptotically estimated as time 20.52n and space 20.2n. More-
over, Micciancio and Voulgaris showed some experiments that the GS algorithm
outputs a shortest vector in some lattices of up to 60 dimensions, but it is not
theoretically proved that the GS algorithm always outputs a shortest vector [19].

3.2 Ideal Gauss Sieve Algorithm [26]

Schneider proposed an Ideal Gauss Sieve algorithm [26] that uses the structure
of an ideal lattice to improve the processing speed of the Gauss Sieve algorithm.
If n is a power of two, an ideal lattice generated by the cyclotomic polynomial
g(x) = xn +1 is called an Anti-cyclic lattice. In this type, the rotation of vector
v is rot(v) = (−vn−1, v0, . . . , vn−2). The rotation of the Anti-cyclic lattice can
generate new vectors that have a similar norm virtually for free. Therefore,
we can implement the Gauss Sieve algorithm using the list L with the rotated
vectors roti(v) for i = 1, 2, ..., n− 1 in addition to v with a small overhead. The
algorithm enables the Gauss Sieve algorithm to run about 25 times faster on
60-dimensional ideal lattices [26].

4 Proposed Parallel Gauss Sieve Algorithm

In this section, we propose the parallelized algorithm derived from the Gauss
Sieve algorithm. We design our algorithm so that the list L remains pairwise-
reduced as with the Gauss Sieve algorithm, even though this algorithm works in
parallel.

4.1 Overview

Let t be the number of threads used in our algorithm. Our algorithm prepares
the auxiliary list V of r vectors in L(B), where each thread treats at most
s = 	r/t
 sample vectors for the list V . We also use the same list L and stack S
in the Gauss Sieve algorithm, and the vectors in list L remain pairwise-reduced
during our algorithm by control with list V . Each thread has list V , list L, and
stack S, where we write V = {v1, . . . ,vr} and L = {�1, . . . , �m}. After each

Parallel Gauss Sieve Algorithm 417

Algorithm 2. Proposed Parallel Gauss Sieve

Require: Lattice basis B, the number of sample vectors r ∈ N, α, β ∈ R
Ensure: A shortest vector v in L(B)
1: L ← {}, V ← {}, S ← {}, K ← 0

/* Multisampling of vectors (Steps from 2 to 9)*/
2: while K < α|L| + β do
3: if |S| �= 0 then
4: t ← min(r, |S|)
5: for j = 1, . . . , t do
6: Pop from Stack S to vj

7: if |S| < r then
8: for j = |S|+ 1, . . . , r do
9: Generate a new vector vj using Klein’s randomized rounding algorithm [15]

10: V ← {v1, ...,vr}, V ′ ← {}, V ′′ ← {}, L′ ← {}
11: L = {�1, ..., �m}

/*Reduction sample vectors using list vectors (Steps from 12 to 22)*/
12: for i = 1, . . . , r do
13: wi ← vi
14: for j = 1, . . . ,m do
15: wi ← Reduce(wi, �j) /* This step can be ran in parallel */
16: if ||wi|| = 0 then
17: K ← K + 1
18: else if wi �= vi then
19: S ← S ∪ {wi}
20: else
21: V ′ ← V ′ ∪ {wi}
22: V ′ = {v1, ...,vr′}

/*Reduction sample vectors using sample vectors (Steps from 23 to 34)
*/

23: for i = 1, . . . , r′ do
24: wi ← vi

25: for j = 1, . . . , r′ do
26: if i �= j then
27: wi ← Reduce(wi,vj) /* This step can be ran in parallel */
28: if ||wi|| = 0 then
29: K ← K + 1
30: else if wi �= vi then
31: S ← S ∪ {wi}
32: else
33: V ′′ ← V ′′ ∪ {wi}
34: V ′′ = {v1, ...,vr′′}

/* Reduction list vectors using sample vectors (Steps from 35 to 45)*/
35: for i = 1, . . . ,m do
36: wi ← �i
37: for j = 1, . . . , r′′ do
38: wi ← Reduce(wi,vj) /* This step can be ran in parallel */
39: if ||wi|| = 0 then
40: K ← K + 1
41: else if wi �= �i then
42: S ← S ∪ {wi}
43: else
44: L′ ← L′ ∪ {wi}
45: L′ = {�1, ..., �m′}
46: L ← L′ ∪ V ′′
47: return a shortest vector in L

418 T. Ishiguro et al.

iteration of the loop in our algorithm, we pop vectors from the stack S to list
V . If the size of V is smaller than r, we generate new sample vectors by the
multisampling techniques. We explain how to construct the proposed threads in
the following. There are three different reduction steps in our algorithm, namely
Reduction sample vectors using list vectors, Reduction sample vectors
using sample vectors, and Reduction list vectors using sample vectors.
Our algorithm requires to use Alg.1 at most max(rm, r2) times in each step, in
other words, at most max(rm/t
, 	r2/t
) times in each thread.

In the Reduction sample vectors using list vectors, let s = 	r/t
 be
the number of sample vectors treated by a thread, where r is the size of list V .
Each thread has the distributed list Vi = {v(i−1)s+1, . . . ,vis} and list L, where
V = ∪iVi and i = 1, 2, ..., t. Each thread i independently deals with list L and
the sample vectors Vi, and runs v′

k = Reduce(vk, �j), where vk ∈ Vi, �j ∈ L,
identical to a Gauss Sieve algorithm. If v′

k �= vk holds, then the thread i moves
the reduced vector v′

k into the stack S, otherwise, the thread i moves this vector
v′
k into new list V ′. At the end of this part, any vector v in list V ′ satisfies

v = Reduce(v, �) for all vectors � in list L.
In the Reduction sample vectors using sample vectors, each thread has

list V ′, which consists of r′ vectors on a lattice. Let s′ = 	r′/t
 be the number
of sample vectors treated by a thread. Each thread i deals with only a sample
list V ′ and runs v′

k = Reduce(vk,vj), where vk ∈ {v(i−1)s′+1, . . . ,vis′},vj ∈ V ′

with k �= j. If v′
k �= vk holds, then the thread i moves the reduced vectors

v′
k into the stack S, otherwise, the thread i moves the vectors v′

k into new list
V ′′. At the end of this part, list V ′′ becomes pairwise-reduced and we have the
relationship V ′′ ⊂ V ′ ⊂ V .

In the Reduction list vectors using sample vectors, let s̄ = 	m/t
 be
the number of list vectors treated by a thread, where m is the size of list L.
Each thread has list Li = {�(i−1)s̄+1, . . . , �is̄} and V ′′, where L = ∪iLi, and
i = 1, 2, ..., t. From our assumption, L is pairwise-reduced before processing this
part. Each thread i deals with a distributed list Li and a list V ′′ and runs
�′k = Reduce(�k,vj), where �k ∈ Li,vj ∈ V ′′. If �′k �= �k holds, then the thread i
moves the reduced vector �′k into the stack S, otherwise, the thread i moves the
vectors �k into new list L′. At the end of this part, any vector �k in the new list
L′ satisfies �k = Reduce(�k,vj) for all vectors vj in list V ′′. Here both L′ and
V ′′ are pairwise-reduced due to relationship L′ ⊂ L and V ′′ ⊂ V ′, respectively.

After the above three reduction steps, our algorithm merges list L′ and list
V ′′ to create the new list L = L′ ∪ V ′′. Note that � = Reduce(�,v) and v =
Reduce(v, �) hold for any vector � ∈ L′ and v ∈ V ′′. Therefore, any pair of
two vectors (�,v) in L′, V ′′ is Gauss-reduced by Lemma 1, and thus the union
L = L′ ∪ V ′′ becomes pairwise-reduced by Lemma 2.

We show the algorithm derived from the proposed parallelized Gauss Sieve
Algorithm in Alg.2. The inputs of this algorithm are a lattice on basis B, the
number of samplings r ∈ N, and termination conditions α, β. Here r is deter-
mined by the experimental scale, for example, the number of CPU cores or the
available memory (we discuss the most suitable value based on an experiment

Parallel Gauss Sieve Algorithm 419

described in section 5). In the following, we explain the details of the proposed
algorithm.

4.2 Multisampling of Vectors (Steps from 3 to 9 in Alg.2)

We sample r vectors in lattice L(B) and construct a list V = (v1, . . . ,vr) at the
beginning of the iteration from step 3 to step 9 in Alg.2. Sample vector vi is
samples in two ways, (i.e., popping from stack S or newly generating just as in
the case the Gauss Sieve algorithm). If |S| ≥ r, all vectors vi are popped from
the stack S, where 1 ≤ i ≤ r. If 0 < |S| < r, we pop |S| vectors from the stack
S and generate (r− |S|) vectors using Klein’s sampling algorithm. If S is empty,
all vectors vi are newly generated using Klein’s sampling algorithm.

4.3 Reduction of Sample Vectors Using List Vectors (Steps from 12
to 22 in Alg.2)

In this part, by reducing the sample vectors in V using all vectors in list L
we will construct the list V ′, which consists of vectors vi ∈ V that satisfy
Reduce(vi, �j) = vi for all �j ∈ L. Here denote V = {v1, . . . ,vr} and L =
{�1, . . . , �m}. At the beginning of this part, we assign wi ← vi at step 13 in
Alg.2. For i = 1, 2, ..., r, this part runs Reduce(wi, �j) from j = 1 to m for the
fixed first input wi and updates wi using its output repeatedly. After running
Reduce(wi, �j) for �j ∈ L, if wi is changed (i.e., wi �= Reduce(wi, �j) for some
�j), this vector wi is moved to stack S, otherwise, wi(= vi) is moved to the
distributed list V ′. This part runs the Reduce algorithm in the following order.

w1 ← Reduce(w1, �1)
...

w1 ← Reduce(w1, �m)
...

wi ← Reduce(wi, �1)
...

wi ← Reduce(wi, �m)
...

...
wr ← Reduce(wr, �1)

...
wr ← Reduce(wr, �m)

At the end of this part, we re-index the vectors in V ′ from 1 to r′ in no partic-
ular order, and rename the vectors in list V ′ from {w1, ...,wr′} to {v1, ...,vr′} at
step 22 in Alg.2. Recall that any vector vi in list V ′ satisfies vi =Reduce(vi, �j)
for all vectors �j in list L. We have the relationship V ′ ⊆ V and |V ′| = r′ ≤ r.

This part can simply be parallelized without heavy overhead. Let t be the
number of threads and s be the number of sample vectors treated by a thread,
where s = 	r/t
. While a thread i(1 ≤ i ≤ t) computes Reduce(wi, �1) to
Reduce(wi, �m), another thread j(j �= i) can compute Reduce(wj , �1) to Reduce(
wj , �m), because the vectors �k in list L are not changed in this part. Therefore,
the inner loop (from step 14 to step 21) can be fully parallelized and the degree
of parallelization is at most r, if we set s = 1. If s > 1, the thread i has
Vi = {v(i−1)s+1, . . . ,vis} and list L, where V = ∪iVi. And then the thread
i runs Reduce(w(i−1)s+1, �1) to Reduce(wis, �m) sequentially in the following
order.

420 T. Ishiguro et al.

Thread 1

w1 ← Reduce(w1, �1)
...

w1 ← Reduce(w1, �m)
...

w′
s ← Reduce(ws, �1)

...
w′

s ← Reduce(ws, �m)

· · ·

Thread t

ws(t−1)+1 ← Reduce(ws(t−1)+1, �1)
...

ws(t−1)+1 ← Reduce(ws(t−1)+1, �m)
...

wst ← Reduce(wst, �1)
...

wst ← Reduce(wst, �m)

4.4 Reduction of Sample Vectors Using Sample Vectors (Steps from
23 to 34 in Alg.2)

In this part we try to convert the list V ′ = {v1, . . . ,vr′} to be a pairwise-reduced
list V ′′. We reduce sample vectors vi ∈ V ′ using all vectors in V ′ \ {vi} and
construct list V ′′, which consists of vectors vi that satisfy Reduce(vi,vj) = vi
for all vj ∈ V ′′ with i �= j. At the beginning of this part, we assign wi ← vi
at step 24 in Alg.2. For i = 1, 2, ..., r′, this part runs Reduce(wi,vj) from j = 1
to m without j = i for the fixed first input wi and updates wi using its output
repeatedly. During all reductions, just after wi is reduced even once, this vector
wi is moved to stack S as in the first reduction part. If wi is not reduced (wi =
Reduce(wi,vj)), this vector wi(= vi) is moved to list V ′′.

At the end of this part, we re-index the vectors in V ′′ from 1 to r′′ in
no particular order, and rename the vectors in list V ′′ from {w1, ...,wr′′} to
{v1, ...,vr′′} at step 34 in Alg.2. Recall that list V ′′ becomes pairwise-reduced
because Reduce(vi,vj) = vi holds for all vectors vi,vj ∈ V ′′ with i �= j. We
then have relationship V ′′ ⊆ V ′ ⊆ V and |V ′′| = r′′ ≤ r′ ≤ r.

This part also can be parallelized in a similar way as the first part. Let t
be the number of threads and s′ be the number of sample vectors treated by a
thread, where s′ = 	r′/t
. Each thread i deals with only a sample list V ′ and
runs wk ← Reduce(wk,vj), where (i − 1)s′ + 1 ≤ k ≤ is′,vj ∈ V ′ with k �= j.
When thread i computes wi ← Reduce(wi,vj), another thread h can compute
wh ←Reduce(wh,vj) for all vj ∈ V ′.

4.5 Reduction of List Vectors Using Sample Vectors (Steps from 35
to 45 in Alg.2)

In this part, by reducing the vectors �i in L using all sample vectors in V ′′ =
{v1, . . . ,vr′′}, we will construct the list L′, which consists of vectors �i ∈ L that
satisfy Reduce(�i,vj) = �i for all vj ∈ V ′′. At the beginning of this part, we as-
signwi ← �i at step 36 in Alg.2. For i = 1, 2, ...,m, this part runs Reduce(wi,vj)
from j = 1 to r′′ for the fixed first input wi and updates wi using its output re-
peatedly. During all reduction steps, if wi is changed (i.e., wi �= Reduce(wi,vi)
for some vi), this vector wi is moved to stack S, otherwise, this vector wi(= �i)
is moved to the distributed list L′.

Parallel Gauss Sieve Algorithm 421

At the end of this part, we re-index the vectors in L′ from 1 to m′ in
no particular order, and rename the vectors in list L′ from {w1, ...,wm′} to
{�1, ..., �m′} at Step 45 in Alg.2. Recall that any vector �i in list L′ satisfies
Reduce(�i,vj) = �i for all vectors vj in list V ′′. We then have relationships
L′ ⊆ L and |L′| = m′ ≤ m. After this part, our algorithm merges list L′ and list
V ′′ to become the new list L = L′ ∪ V ′′ at Step 46 in Alg.2.

This step can be simply parallelized without heavy overhead in a similar way
as the first part, and the degree of parallelization is at most r′′. Each thread
of index i updates s̄ vectors in list Li (i.e., Li = {�(i−1)s̄+1, . . . , �is̄}, where
s̄ = 	m/r′′
).

4.6 Properties of the Proposed Algorithm

In our algorithm, list L remains pairwise-reduced at any iteration for the follow-
ing reasons. After the three reduction steps, our algorithm merges list L′ and
list V ′′ to become the new list L = L′ ∪ V ′′. Note that � = Reduce(�,v) and
v = Reduce(v, �) hold for any vector � in L′ and v ∈ V ′′ by the first and third
reduction parts. And then, V ′′ is pair-wise reduced by the second part. There-
fore, any pair of two vectors (�,v) in L′, V ′′ is Gauss-reduced by Lemma 1, and
thus the union L = L′ ∪ V ′′ becomes pairwise-reduced by Lemma 2.

Our algorithm is a natural extension of the Gauss Sieve algorithm. If only one
vector is sampled (i.e., r = 1), all the pairs of (�j ,v1) and (v1, �j) are Gauss-
reduced by the first and third reduction part, where �j ∈ L. There is nothing to
do in the second reduction part. Therefore, this algorithm is equal to the Gauss
Sieve algorithm when r = 1.

5 Implementation and Experimental Results

In this section, we explain the parallel implementation of the proposed parallel
Gauss Sieve algorithm on a multicore CPU, and we also present some algorithmic
improvement in our experiment.

5.1 Implementation Using Amazon EC2

We use the instance cc1.8xlarge in AmazonEC2 [4]. Our implementation is based
on the gsieve library, published by Voulgaris [32] and written in C++. We
assume the following properties from our preliminary experiment:

– all absolute values of entries of vectors are less than 216

– the computational cost of the inner product is dominant (step 1 in Alg.1)

We optimize the code for the inner product (step 1 in Alg.1) using the SIMD
operation. Intel Xeon E5-2670 and g++4.1.2 support SSE4.2, and we can use
a 128-bit SSE register. Using the SSE, we can treat eight elements in one SSE
operation in parallel. This technique enables our program to run about four
times faster.

422 T. Ishiguro et al.

0

1000

2000

3000

4000

5000

0 10000 20000 30000 40000 50000

R
u
n
n
in
g
ti
m
e
(s
ec
o
n
d
s)

The number of samples r

(a) Running time

0

100000

200000

300000

400000

500000

0 10000 20000 30000 40000 50000

M
a
x
li
st

si
ze

The number of samples r

(b) Maximum size of list L

Fig. 1. Results for solving the SVP Challenge of a 80-dimensional lattice. Fig (a) shows
the running time using one instance (32 threads). Fig (b) shows the maximum size of
list L. The horizontal axis indicates the number of sample vector r.

5.2 Space Complexity

In this section, we discuss the space complexity with a large number of sample
vectors r and a fixed number of threads t. The space complexity of our algorithm
is dominated by the size of lists L, V , and stack S. We evaluate the size of a
list by the number of vectors in the list. In our experiment of solving the SVP
Challenge of 80 dimensions [27], the sizes of list L between Gauss Sieve algorithm
(r = 1) and our algorithm (r > 1) are similar within several percent. Indeed,
Figure 1(b) shows the maximum size of list L for r = 1, 2, . . . , 5000 and fixed
t = 32 using one instance, and there is no increase of the maximum size of list
L from 400,000 even if r increases.

Next, in our algorithm, the maximum size of list V is at most r because V
is selected by r random vectors on a lattice at the beginning of iteration (from
step 12) and then the size of V shrinks by each iteration from step 12 to step
46. If we choose a suitable value of r which minimizes the total running time of
our proposed algorithm, then r is much smaller than the maximum size of list L.
Indeed, Figure 1(a) shows that the running time for solving the SVP Challenge
of 80 dimensions becomes relatively fast when the number of sample vectors r
is in the range of about 4,000 to 10,000.

Finally, in our experiment, the size of stack S in our proposed algorithm does
not increase that of the original Gauss Sieve algorithm. As a result, the space
complexity of our algorithm with a large r is not greater than that of the Gauss
Sieve algorithm of 20.2n.

5.3 Communication Complexity

In this section, we discuss the communication complexity between threads in our
proposed parallel algorithm. We evaluate the communication comlexity in terms
of the size of the lists communicated among the threads.

Parallel Gauss Sieve Algorithm 423

 0

 200

 400

 600

 800

 1000

 1200

1 4 8 12 16 20 24 28 32

T
im

e
(m

in
ut

es
)

The number of threads

Total time

(a) 80 dimensions

 0

 10

 20

 30

 40

 50

 32 64 96 128 160 192 224

T
im

e
(m

in
ut

es
)

The number of threads

Total time
Computation time

Communication time

(b) 80 dimensions

 0

 50

 100

 150

 200

 32 64 96 128 160 192 224

T
im

e
(h

ou
rs

)

The number of threads

Total time
Communication time

(c) 96 dimensions

Fig. 2. Results for solving the SVP Challenge on lattices of 80 and 90 dimensions.
Fig (a) shows the running time of solving the SVP Challenge of 80 dimensions for
t = 1, 2, . . . , 32. Fig (b) shows the running and communication time of solving the SVP
Challenge of 80 dimensions for t = 32, 64, . . . , 224. Fig (c) shows the running and com-
munication time of solving the SVP Challenge of 96 dimensions for t = 32, 64, . . . , 224.

At first, we estimate the communication complexity of our algorithm. The
dominant part of the communication complexity of our algorithm is the timing
of broadcasting the whole list L in the beginning of iterations (from step 12)
because the size of the list V is much smaller than that of the list L for large
dimensions n. In the previous section, we estimated that the space complexity of
our algorithm was 20.2n, which was the maximum size of list L. In the following,
we estimate the number of broadcasting the list L among threads in our algo-
rithm. A main thread broadcasts the whole list L to t threads in each iteration
(from step 12 to step 46 in Alg.2), and thus the communication complexity of
our algorithm becomes t20.2n per one iteration. Therefore, the total communi-
cation complexity of broadcasting the list L is tγ20.2n, where γ is the number
of iterations (from step 12 to step 46 in Alg.2). Here, the number of iterations
γ can be estimated as 20.29n in the case of r = 1 and t = 1 [18]. On the other
hand, in our experiment of the proposed algorithm in from 60 to 80 dimensions,
γ was estimated as 20.25n for r = 8192 and t = 32. Note that the number of
iterations γ is independent of t and, γ remains the same for a fixed number of
sampling r. If r is bigger than 8192 with fixed t, then we have more samples r
in the beginning of the iteration (from step 12 to step 46 in Alg.2) and γ is not
greater than 20.25n. Therefore, the communication complexity of our algorithm
is at most 20.45n which is smaller than the computation time of each thread,
i.e., 20.52n.

Next, we describe some experiments on both the running and communication
time for solving the SVP Challenge [27] of 80 and 96 dimensions for changing the
number of threads t. Figure 2 shows the running and communication time of our
algorithm for solving the SVP Challenge of 80 and 96 dimensions by changing
the number of threads for t = 1, . . . , 224. Figure 2(a) shows the total time for
solving the SVP Challenge of 80 dimensions for t = 1, . . . , 32 using one instance
that has 32 threads. Note that there is no communication cost among 32 threads
in one instance because they share one common memory in the instance. The
total time becomes 1/t by using t threads for t ≤ 16.

424 T. Ishiguro et al.

Finally, Figures 2(b) and 2(c) show the running and communication time for
solving the SVP Challenge of 80 and 96 dimensions by changing the number of
instance from 1 to 7, namely t = 32 to 224. In this experiment, the communica-
tion time becomes greater if the number of threads t increases. The communi-
cation time of our algorithm is about ten percent of the total running time for
64 threads and 128 threads in 80 dimensions (Figure 2(b)) and 96 dimensions
(Figure 2(c)), respectively. Therefore, we expect that the rate of communication
time relatively decreases for larger dimensions n.

5.4 Sampling Short Vectors and Shrinking Ratio

If we are able to sample shorter vectors at step 9 in Alg.2, then the running
time of the proposed Gauss Sieve algorithm can be improved. However, it takes
longer time to sample such shorter vectors on a lattice in general. Therefore, we
try to adjust the parameter which determines the tradeoff between the length of
the norm of sample vectors and the running time of our algorithm.

In the gsieve library [32], Klein’s randomized rounding algorithm [15] is im-
plemented. The details of the algorithm are explained by Gentry et al. [9]. In the
following we adjust the parameter of the core subroutine in the gsieve library,
namely the SampleD algorithm described in [9]. For the two inputs (u, c), Sam-
pleD chooses an integer x from the range [c − u · d, c+ u · d], where d = logn in
the gsieve library. We determine a more suitable value of d instead of d = logn
used in the gsieve library. The SampleD outputs x with probability ρu,c(x − c),
otherwise repeats choosing x, where ρu,c(x) denoted a Gaussian function on R
that is defined by ρu,c(x) = exp(−π|x−c|2/u2) for any x ∈ R. If the SampleD al-
gorithm outputs a smaller integer, Klein’s sampling algorithm outputs a shorter
vector. However, the computational time of the SampleD algorithm increases as
the length of the output vector decreases.

In our experiment, we found the parameter d = logn/70 which is most suitable
for speeding up our proposed parallel Gauss sieve algorithm. In this case, the
average value of the norms of all the sample vectors using the parameter d =
logn/70 becomes 3.7 times shorter than that using the parameter d = logn in
the gsieve library. This technique enables our proposed algorithm to run about
two times faster.

Next, we estimate how the norm of sample vectors becomes smaller in the
final list L in our proposed algorithm. Our proposed algorithm terminates and
outputs a shorter vector from the final list L at step 47 in Alg.2. Here denote by
GH the Gaussian heuristic bound (1/

√
π)Γ (n2 + 1)

1
n · det(L(B))

1
n for a lattice

L(B) of dimensions n, which is heuristically estimated as the length λ1(L(B))
of a shortest vector in L(B). In our experiment, we used a lattice L(B) of 80
dimensions whose GH is equal to 2179. The average value of the norm of all the
sample vectors is 1.66 GH and that of vectors in the final list L is 1.24 GH . The
norm of the shortest vector in the final list L at the termination of our proposed
algorithm achieves 1.04 GH . More details are described in [13].

Parallel Gauss Sieve Algorithm 425

5.5 Improvement of the Ideal Gauss Sieve

In [26], there are three types of ideal lattices generated by specific polynomials
(including two cyclotomic polynomials), which are suitable for the rotate oper-
ation rot(v) of a vector v. We define a new type of an ideal lattice, which is
called a Trinomial lattice.

A Trinomial lattice is generated by the trinomials in the cyclotomic polynomi-
als. Note that the Trinomial lattice is not used in cryptography, but we use this
type for the speeding up for solving the SVP Challenge in Ideal lattice Challenge
[22]. There are two conditions for a Trinomial lattice, as follows:

– Condition 1 : If n/2 is a power of three, where n is an even dimension of
a lattice, an Trinomial lattice is generated by the cyclotomic polynomial
g(x) = xn + xn/2 +1. In this condition, the rotation of vector v is rot(v) =
(−vn−1, v0, . . . , vn

2
−2, vn

2
−1 − vn−1, vn

2
, . . . , vn−2).

– Condition 2 : If the dimension n is the product of both a power of two
and a power of three, an Trinomial lattice is generated by the cyclotomic
polynomial g(x) = xn − xn/2 + 1. In this condition, the rotation of vector v
is rot(v) = (−vn−1, v0, . . . , vn

2 −2, vn
2 −1 + vn−1, vn

2
, . . . , vn−2).

The rotate operation rot(v) using the Trinomial lattice requires no greater com-
putational cost than that using the Anti-cyclic lattice.

In a Trinomial lattice, repeating the rotate operation increases the norm grad-
ually. Therefore, the total running time of our algorithm increases with too large
a number of rotate operations. Then, we derived the most suitable number of
rotate operations from the experiment to solve the SVP Challenge of 72 dimen-
sions with each number of rotations. In our experiment, it was found that the
most suitable number was 6, and this technique enables our parallel Gauss Sieve
algorithm to run about 5.5 times faster. More details are described in [13].

5.6 Solving the SVP Challenge

We have solved several problems in the Ideal Lattice Challenge [22]. The problem
setting in these challenges has been published in [23]. We pre-computed the
BKZ-reduced basis with a block size of 30 using NTL library [31]. Because this
precomputation requires much less time than the Gauss Sieve algorithm, we do
not include the timing in the following. In our experiment, we used the instance
cc1.8xlarge in AmazonEC2. We fix the number of threads at 32 per an instance.

In the Ideal Lattice Challenge [22], we solved the SVP Challenges of 80, 96 and
128 dimensions. In this challenge, a basis of n-dimensional ideal lattice is gener-
ated from one of cyclotomic polynomials of degree n. In our experiment we chose
the 80-dimensional lattice generated by cyclotomic polynomial given as a file-
name “ideallatticedim80index220seed0.txt”. The basis of 96-dimensional lattice
was selected to be a Trinomial lattice generated by g(x) = x96 −x48+1 given as
filename “ideallatticedim96index288seed0.txt”, and that of 128-dimensional SVP
Challenge was selected to be an Anti-cyclic lattice generated by cyclotomic poly-
nomial g(x) = x128+1 given as filename “ideallatticedim128index256seed0.txt”.

426 T. Ishiguro et al.

Table 1. Results of the Ideal Lattice Challenge [22]. SVP Challenges of 96 and 128
dimensions in the Ideal Lattice Challenge are generated by cyclotomic polynomials
x96 − x48 + 1 and x128 + 1, respectively.

dimension instance hours # thread t # sample vectors r type

80 0.9 32 8,192 Ideal lattice

96 8 32 8,192 Trinomial lattice

128 29,994 2,688 688,128 Anti-cyclic lattice

In our experiment of the 80-dimensional ideal lattice, our parallel algorithm re-
quired about one CPU hour using 32 threads and 8,192 sample vectors, which
are the same time cost compared with our experiment for a random lattice in
the SVP Challenge [27]. Additionally, in our experiment of the 96-dimensional
ideal lattice, our parallel algorithm required about 8 CPU hours using 32 threads
and 8,192 sample vectors. We also solved the SVP Challenge of 96 dimensions
using four instances of 128 threads and 32,768 sample vectors. As a result, our
parallel algorithm required about 200 CPU hours. The proposed techniques for
Trinomial lattice (Section 5.5) enable us to speedup about 25 times faster than
the random lattice of the same dimension.

In our experiment of the 128-dimensional ideal lattice, our parallel algorithm
require 29, 994 CPU hours using 84 instances, where we can set that the number
of total threads and sample vectors are t = 2, 688 and r = 688, 128, respectively.
The Euclidean norm of the output vector is 2,959 which is 1.03 times larger
than the Gaussian heuristic bound of this ideal lattice, namely this vector is
a solution of SVP Challenge. In the experiment, the communication overhead
among threads for solving the SVP Challenge of 128 dimensions was less than
ten percents for the total running time of our proposed parallel Gauss Sieve
algorithm. More details are described in [13].

6 Conclusion

In this paper, we proposed a parallel Gauss Sieve algorithm, which is an extension
of Gauss Sieve algorithm suitable for parallel computation of a large number
of threads. We implemented the proposed parallel Gauss Sieve algorithm by
the SIMD operation in AmazonEC2 which supports hyper-threading technology.
Our experiment deploys 32 threads per instance cc1.8xlarge of 16 CPU cores.
We tried to solve the SVP Challenge in the Ideal Lattice Challenge from TU
Darmstadt (http://www.latticechallenge.org/).

Then we successfully solved the SVP Challenge of 128 dimensions on the ideal
lattice generated by the cyclotomic polynomial x128+1, where this type of ideal
lattice is often used for efficient implementation of lattice-based cryptography.
Our experiment required 29,994 CPU hours by executing 2,688 threads over
84 instances in total. In the experiment, the communication overhead among
threads is less than ten percents of the total running time. To the best of our
knowledge, this is currently the highest dimensions of solving the SVP Challenge
over ideal lattices.

Parallel Gauss Sieve Algorithm 427

References

1. Ajtai, M.: The Shortest Vector Problem in L2 is NP-hard for Randomized Reduc-
tions (Extended Abstract). In: Proceedings of the 30th Annual ACM Symposium
on Theory of Computing, STOC 1998, pp. 10–19. ACM (1998)

2. Ajtai, M., Dwork, C.: A Public-key Cryptosystem with Worst-case/average-case
Equivalence. In: Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, STOC 1997, pp. 284–293. ACM (1997)

3. Ajtai, M., Kumar, R., Sivakumar, D.: A Sieve Algorithm for the Shortest Lattice
Vector Problem. In: Proceedings of the 33th Annual ACM Symposium on Theory
of Computing, STOC 2001, pp. 601–610. ACM (2001)

4. Amazon. Amazon Elastic Compute Cloud, http://aws.amazon.com/jp/ec2/
5. Arvind, V., Joglekar, P.S.: Some Sieving Algorithms for Lattice Problems. In: Pro-

ceedings of the IARCS Annual Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science, FSTTCS 2008. LIPIcs, vol. 2, pp. 25–36.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2008)

6. Gama, N., Nguyen, P., Regev, O.: Lattice Enumeration Using Extreme Pruning.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer,
Heidelberg (2010)

7. Garg, S., Gentry, C., Halevi, S.: Candidate Multilinear Maps from Ideal Lattices.
Cryptology ePrint Archive. Report 2012/610 (2012)

8. Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: Proceedings
of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pp.
169–178. ACM (2009)

9. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for Hard Lattices and New
Cryptographic Constructions. In: Proceedings of the 40th Annual ACM Sympo-
sium on Theory of Computing, STOC 2008, pp. 197–206. ACM (2008)

10. Hoffstein, J., Pipher, J., Silverman, J.: NTRU: A Ring-based Public Key Cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

11. Hanrot, G., Stehlé, D.: Improved Analysis of Kannan’s Shortest Lattice Vector
Algorithm. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 170–186.
Springer, Heidelberg (2007)

12. Hanrot, G., Pujol, X., Stehlé, D.: Algorithms for the Shortest and Closest Lattice
Vector Problems. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H.,
Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 159–190. Springer, Heidelberg
(2011)

13. Ishiguro, T., Kiyomoto, S., Miyake, Y., Takagi, T.: Parallel Gauss Sieve Algorithm:
Solving the SVP Challenge over a 128-Dimensional Ideal Lattice. Cryptology ePrint
Archive. Report 2013/388 (2013)

14. Kannan, R.: Improved Algorithms for Integer Programming and Related Lattice
Problems. In: Proceedings of the 15th ACM Symposium on Theory of Computing,
STOC 1983, pp. 193–206. ACM (1983)

15. Klein, P.: Finding the Closest Lattice Vector When it’s Unusually Close. In: Pro-
ceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2000, pp. 937–941. ACM (2000)

16. Lenstra, A., Lenstra, H., Lovász, L.: Factoring Polynomials with Rational Coeffi-
cients. Journal of Mathematische Annalen 261(4), 515–534 (1982)

17. Micciancio, D.: The Shortest Vector in a Lattice is Hard to Approximate to within
Some Constant. In: Proceedings of the 39th Annual Symposium on Foundations
of Computer Science, FOCS 1998, pp. 92–98. IEEE Computer Society (1998)

http://aws.amazon.com/jp/ec2/

428 T. Ishiguro et al.

18. Micciancio, D., Voulgaris, P.: A Deterministic Single Exponential Time Algorithm
for Most Lattice Problems Based on Voronoi Cell Computations. In: Proceedings
of the 42nd ACM Symposium on Theory of Computing, STOC 2010, pp. 351–358.
ACM (2010)

19. Micciancio, D., Voulgaris, P.: Faster Exponential Time Algorithms for the Shortest
Vector Problem. In: Proceedings of the 21st Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2010, vol. 65, pp. 1468–1480. SIAM (2010)

20. Milde, B., Schneider, M.: A Parallel Implementation of GaussSieve for the Shortest
Vector Problem in Lattices. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873,
pp. 452–458. Springer, Heidelberg (2011)

21. Nguyen, P.Q., Vidick, T.: Sieve Algorithms for the Shortest Vector Problem Are
Practical. Journal of Mathematical Cryptology 2, 181–207 (2008)

22. Plantard, T., Schneider, M.: Ideal Lattice Challenge,
http://www.latticechallenge.org/ideallattice-challenge/

23. Plantard, T., Schneider, M.: Creating a Challenge for Ideal Lattices. Cryptology
ePrint Archive. Report 2013/039 (2013)

24. Pujol, X., Stehle, D.: Solving the Shortest Lattice Vector Problem in Time 22.465n.
Cryptology ePrint Archive. Report 2009/605 (2009)

25. Schneider, M.: Analysis of Gauss-Sieve for Solving the Shortest Vector Problem in
Lattices. In: Katoh, N., Kumar, A. (eds.) WALCOM 2011. LNCS, vol. 6552, pp.
89–97. Springer, Heidelberg (2011)

26. Schneider, M.: Computing Shortest Lattice Vectors on Special Hardware. PhD
thesis, Technische Universität Darmstadt (2011)

27. Schneider, M., Gama, N.: SVP Challenge,
http://www.latticechallenge.org/svp-challenge/

28. Schnorr, C.-P.: A Hierarchy of Polynomial Time Lattice Basis Reduction Algo-
rithms. Journal of Theoretical Computer Science 53(2-3), 201–224 (1987)

29. Schnorr, C.-P.: Lattice Basis Reduction: Improved Practical Algorithms and Solv-
ing Subset Sum Problems. Journal of Mathematical Programming, 181–191 (1993)

30. Schnorr, C.-P., Hörner, H.H.: Attacking the Chor-Rivest Cryptosystem by Im-
proved Lattice Reduction. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT
1995. LNCS, vol. 921, pp. 1–12. Springer, Heidelberg (1995)

31. Shoup, V.: Number Theory Library (NTL) for C++. Available at Shoup’s home-
page, http://shoup.net/ntl

32. Voulgaris, P.: Gauss Sieve beta 0.1 (2010) Available at Voulgaris’ homepage at the
University of California, San Diego
http://cseweb.ucsd.edu/~pvoulgar/impl.html

http://www.latticechallenge.org/ideallattice-challenge/
http://www.latticechallenge.org/svp-challenge/
http://shoup.net/ntl
http://cseweb.ucsd.edu/~pvoulgar/impl.html

Lazy Modulus Switching for the BKW

Algorithm on LWE

Martin R. Albrecht1, Jean-Charles Faugère3,2,4, Robert Fitzpatrick5,
and Ludovic Perret2,3,4

1 Technical University of Denmark, Denmark
2 Sorbonne Universités, UPMC Univ Paris 06, POLSYS,

UMR 7606, LIP6, F-75005, Paris, France
3 INRIA, Paris-Rocquencourt Center, POLSYS Project

4 CNRS, UMR 7606, LIP6, F-75005, Paris, France
5 Information Security Group

Royal Holloway, University of London
Egham, Surrey TW20 0EX, United Kingdom

maroa@dtu.dk, jean-charles.faugere@inria.fr,

robert.fitzpatrick.2010@live.rhul.ac.uk, ludovic.perret@lip6.fr

Abstract. Some recent constructions based on LWE do not sample the
secret uniformly at random but rather from some distribution which
produces small entries. The most prominent of these is the binary-LWE
problem where the secret vector is sampled from {0, 1}∗ or {−1, 0, 1}∗.
We present a variant of the BKW algorithm for binary-LWE and other
small secret variants and show that this variant reduces the complexity
for solving binary-LWE. We also give estimates for the cost of solving
binary-LWE instances in this setting and demonstrate the advantage of
this BKW variant over standard BKW and lattice reduction techniques
applied to the SIS problem. Our variant can be seen as a combination
of the BKW algorithm with a lazy variant of modulus switching which
might be of independent interest.

1 Introduction

Learning With Errors (LWE) [20] has received widespread attention from the
cryptographic community since its introduction. LWE-based cryptography is
mainly motivated by its great flexibility for instantiating cryptographic solution
as well as a deep worst-case/average-case connections [20]: solving LWE on the
average is not easier than solving worst-case instances of several famous lattice
approximation problems.

The motivation behind this work comes from the observation that some recent
constructions based on LWE do not sample the secret uniformly at random but
rather from some distribution which produces small entries (e.g. [5,1,13,12,19]).
From a theoretical point of view, this is motivated by the observation that every
LWE instance can be transformed into an instance where the secret follows the
same distribution as the noise [5].1 However, many constructions use secrets

1 Also in [15] for the LPN case.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 429–445, 2014.
c© International Association for Cryptologic Research 2014

430 M.R. Albrecht et al.

which are considerably smaller. For example, binary-LWE samples the secret
from {0, 1}∗ [8] or {−1, 0, 1}∗ [12]. The presence of such small secrets provokes
the question of what implications such choices have on the security of LWE.
Is solving LWE with, say, binary secrets easier than standard LWE? From a
theoretical point of view, [8] proves that their binary-LWE is as secure as LWE.
In this paper, we try to address the question from an algorithmic point of view;
i.e. what is the actual impact of small secrets on concrete parameters.

1.1 Algorithms for Solving LWE

Three families of algorithms for solving LWE are known in the literature. The
most prominent approach is to reduce LWE to a problem that can be solved
via lattice reduction, for example, by reducing it to the Short Integer Solution
(SIS) problem. Indeed, most parameter choices in the literature are based on the
hardness of lattice reduction such as [16,10,17]. These estimates for a given set
of parameters n (number of components of the secret), q (size of the modulus)
and σ (standard deviation of the noise) are usually produced by extrapolating
running times from small instances.

A second approach is due to Arora and Ge who reduce LWE to solving a
system of non-linear equations [6]. This algorithm allow us to solve LWE in
sub-exponential time as soon as the Gaussian distribution is sufficiently narrow,
i.e. α · q <

√
n. Recall that the security reduction [20] for LWE requires to

consider discrete Gaussian with standard deviation α ·q strictly bigger than
√
n.

However, from a practical point of view, the constants involved in this algorithm
are so large that it is much more costly than other approaches for the parameters
typically considered in cryptographic applications [2].

The third family of algorithms are combinatorial algorithms which can all be
seen as variants of the BKW algorithm. The BKW algorithm was proposed by
Blum, Kalai and Wasserman [7] as a method for solving the Learning Parity with
Noise problem, with sub-exponential complexity, requiring 2O(n/ logn) samples,
space and time. The algorithm can be adapted for tackling LWE with complexity
2O(n) when the modulus is taken to be polynomial in n [20]. BKW proceeds by
splitting the n components of LWE samples into a groups of b components each.
For each of the a groups of components the algorithm then searches for collisions
in these b components to eliminate them. The overall complexity of the algorithm

is ≈
(
a2n

)
· q

b

2 operations, and a · q
b

2 memory, where a and b depend on the n, q
and α.

The behaviour of the algorithm is relatively well understood and it was shown
to outperform lattice reduction estimates when reducing LWE to SIS (when q is
small), thus it provides a solid basis for analysing the concrete hardness of LWE
instances [3].

1.2 Organisation of the Paper and Main Results

While none of the algorithms above take advantage of the presence of small
secrets, we may combine them with modulus switching. Recall that modulus

Lazy Modulus Switching for the BKW Algorithm on LWE 431

switching was initially introduced to improve the performance of homomorphic
encryption schemes [9] and was recently used to reduce the hardness of LWE with
polynomially sized moduli to GAPSVP [8]. Modulus switching is essentially the
same as computing with a lower precision similar to performing floating point
computations with a low fixed precision. Namely, let

(
a, c = 〈a, s〉+e

)
∈ Znq ×Zq

be LWE sample where s ∈ Znq is the secret vector, and e ∈ Zq is an error. Let

also some p < q and consider
(

	p/q · a� , 	p/q · c�
)
with⌊

p

q
· c
⌉
=

⌊
p

q

(
〈a, s〉+ q · u+ e

)⌉
, for some u ∈ Z⌊

p

q
· c
⌉
=

⌊〈
p

q
· a, s

〉
p

+
p

q
· e
⌉
=

⌊〈⌊
p

q
· a
⌉
, s

〉
p

+

〈
p

q
· a−

⌊
p

q
· a
⌉
, s

〉
p

+
p

q
· e
⌉

=

〈⌊
p

q
· a
⌉
, s

〉
p

+

〈
p

q
· a−

⌊
p

q
· a
⌉
, s

〉
p

+
p

q
· e+ e′, where e′ ∈ [−0.5, 0.5]

=

〈⌊
p

q
· a
⌉
, s

〉
p

+ e′′ +
p

q
· e+ e′. (1)

where 〈x,y〉p denotes the modulo p inner product of x and y.
Since p/q · a− 	p/q · a� takes values ∈ [−0.5, 0.5] we have that e′′ is small if s

is small. We may hence compute with the smaller ‘precision’ p at the cost of a
slight increase of the noise rate by a ‘rounding error’ e′′.

Modulus switching allows to map a LWE instance modq to a scaled in-
stance of LWE mod p. Thus, modulus switching can be used in the solving of
small secret instances of LWE, a folklore approach which has not been ex-
plicitly studied in the literature. Namely, if we pick p such that e′′ is not
much larger than p/q · e then, for example, the running time of the BKW al-

gorithm improves from (a2n) · q
b

2 to (a2n) · p
b

2 . Since typically b ≈ n/ logn
this may translate to substantial improvements. Indeed, we can pick p such
that |〈p/q · a − 	p/q · a�, s〉| ≈ p/q · |e|. This implies σs ·

√
n
12 ≈ p/q · σ, or

p ≈ min
{
q, σs

σ ·
√

n
12 · q

}
, where σs is the standard deviation of elements in the

secret s.
In this paper, we refine this approach and present a variant of the BKW algo-

rithm which fuses modulus switching and BKW-style reduction. In particular,
this work has two main contributions. Firstly, in Section 2 we present a modulus
switching strategy for the BKW algorithm in which switching is delayed until
necessary. In a nutshell, recall that the BKW algorithm performs additions of
elements which collide in certain components. Our variant will search for such
collisions in ‘low precision’ Zp but will perform arithmetic in ‘high precision’
Zq. We call rounding error the inner product of the sub-vector of ‘low bits’ of a
with the secret s. Our strategy permits to decrease rounding errors and allows
to reduce p by a factor of

√
a.

Secondly, this perspective enables us to choose reductors in the BKW algo-
rithm which minimise the rounding errors further (Section 3). Namely, we favour
components a with small distance |	p/q · a� − p/q · a| in already reduced com-
ponents, called ‘child components’ in this work. Our strategy ensures that the
probability of finding such elements is highest for those components which are

432 M.R. Albrecht et al.

considered first by the BKW algorithm, i.e. those components which contribute
most to the noise. We note that the first contribution relies on standard in-
dependence assumptions only, while the second contribution relies on stronger
assumptions, which however seem to hold in practice.

We then discuss the complexity of our variants in Section 4. For typical choices
of parameters – i.e. q ≈ nc for some small constant c ≥ 1, a = log2 n and
b = n/ log2 n – the complexity of BKW as analysed in [3] is O

(
2cn · n log22 n

)
.

For small secrets, a naive modulus switching technique allows reducing this com-

plexity to O
(
2
n
(
c+

log2 d
log2 n

)
· n log22 n

)
where 0 < d ≤ 1 is a small constant. If the

secret distribution does not depend on n and if an unbounded number of LWE
samples is available our improved version of BKW allows to get a complexity
of:

O
(
2n
(
c+

log2 d− 1
2

log2 log2 n

log2 n

)
· n log22 n

)
.

We then study the behaviour of this algorithm by applying it to various instances
of LWE with binary secrets. In Section 5, we compare the results with plain
BKW and BKZ under modulus switching and a simple meet-in-the-middle ap-
proach or generalised birthday attack. We show that our lazy-modulus-switching
variant of the BKW algorithm provides better results than applying plain BKW
after modulus reduction. We also demonstrate that under the parameters con-
sidered here this algorithm also – as n increases – outperforms the most opti-
mistic estimates for BKZ when we apply BKZ to the same task as that to which
we apply BKW: finding short vectors in the (scaled-)dual lattice – we obtain
this perspective by viewing the rounding error as an increase in the noise rate
while still finding short vectors in the (scaled)-dual p-ary lattice determined by
our modulus-reduced LWE samples. Indeed, our results indicate that our algo-
rithm outperforms BKZ 2.0 when both are used to find a short vector in the
(scaled)-dual lattice in dimension as low as ≈ 256 when considering LWE pa-
rameters from [20] with binary secret. However, we stress again that we always
assume an unbounded number of samples to be available for solving.

1.3 Notations

To fix the notations, we reproduce below the definition of LWE.

Definition 1 (LWE [20]). Let n, q be positive integers, χ be a probability dis-
tribution on Zq and s be a secret vector in Znq . We denote by Ls,χ the probability
distribution on Znq ×Zq obtained by choosing a ∈ Znq uniformly at random, choos-
ing e ∈ Zq according to χ, and returning (a, c) = (a, 〈a, s〉 + e) ∈ Znq × Zq. We
define Decision-LWE as the problem of deciding whether pairs (a, c) ∈ Znq × Zq
are sampled according to Ls,χ or the uniform distribution on Znq × Zq. Search-
LWE is the problem of recovering s from (a, c) = (a, 〈a, s〉+e) ∈ Znq ×Zq sampled
according to Ls,χ.

The noise follows some distribution χ which is classically chosen to be a
discrete Gaussian distribution over Z with mean 0 and standard deviation

Lazy Modulus Switching for the BKW Algorithm on LWE 433

σ = s/
√
2π = αq/

√
2π, reduced modulo q. In the following, we always start

counting at zero. We denote vectors as well as matrices in bold, vectors in lower
case, and matrices in upper case. Given a vector a, we denote by a(i) the i-th
entry in a, i.e. a scalar, and by A(i,j) the entry at index i, j. For vectors a we
denote by a(a,b) the vector (a(a), . . . , a(b−1)). When given a list of vectors, we
index its elements by subscript, e.g. a0, a1, a2, to denote the first three vectors of
the list. This means that ai,(j) is the j-th component of the vector ai. When we
write (ai, ci) we always mean the output of an oracle which should be clear from
the context. In particular, (ai, ci) does not necessarily refer to samples following
the initial distribution. We write ã instead of a to indicate a has some short
elements. We represent elements in Zq as integers in [− q

2 , . . . ,
q
2], similarly for

Zp. We write χα,q for the distribution obtained by considering a discrete Gaus-
sian distribution over Z with standard deviation αq/

√
2π, mean 0, considered

modulo q.

2 A Modified BKW Algorithm: Lazy Modulus Switching

Following [3], we consider BKW – applied to Decision-LWE – as consisting of
two stages: sample reduction and hypothesis testing. In this work, we only modify
the first stage.

2.1 The Basic Idea

We briefly recall the principle of classical BKW. Assume we are given samples
of the form (a, c) following either Ls,χ or U(Znq) × U(Zq). Our goal is to dis-
tinguish between the two cases. BKW proceeds by producing samples (a∗, c∗)
with a∗ being all zero such that statistical tests can be applied to c∗ to decide
whether they follow U(Zq) or some distribution related to Ls,χ. This is achieved
by grouping the n components of all vectors into a groups of b components each
(assuming a and b divide n for simplicity). If two vectors collide on all b entries
in one group, the first is subtracted from the second, producing a vector with at
least b all zero entries. These vectors are then again combined to produce more
all zero entries and so forth until all a groups are eliminated to zero. However, as
we add up vectors the noise increases. Overall, after � addition levels the noise
has standard deviation

√
2�αq. Our algorithm, too, will be parametrized by a

positive integer b ≤ n (the window width), and a := �n/b� (the addition depth).
Recall that the complexity of BKW algorithm is essentially qb. However, b

only depends on the ratio αq/
√
2πq = α

√
2π and thus not on q. Hence, it

is clear that applying modulus reduction before running the BKW algorithm
may greatly improve its running time: b is preserved whilst q is reduced to p.
However, instead of applying modulus reduction in ‘one shot’ prior to executing
BKW, we propose switching to a lower precision only when needed. For this, we
actually never switch the modulus but simply consider elements in Zq ‘through
the perspective’ of Zp. We then essentially only consider the top-most log2 p
bits of Zq.

434 M.R. Albrecht et al.

Under this perspective, given samples of the form (a, c) we aim to produce(
ã, c̃ = 〈ã, s〉 + ẽ

)
, where ã is short enough, i.e.

|〈ã, s〉| ≈
√
2aαq. (2)

Although other choices are possible, this choice means balancing the noise ẽ after
a levels of addition and the contribution of |〈ã, s〉| such that neither dominates.
We call the term 〈ã, s〉 the rounding error. So, condition (2) is such that after a
levels of additions performed by the BKW algorithm the escalated initial noise
and the noise coming from rounding errors have the same size.

2.2 Sample Reduction for Short Secrets

Let (a0, c0), . . . , (am−1, cm−1) be samples which follow Ls,χ or U(Znq) × U(Zq).
We now explain how to produce samples (ãi, c̃i)i≥0 that satisfy condition (2).
For simplicity, we assume from now on that p = 2κ. 2

The main idea of the algorithm is to search for collisions among the first b
components of samples (ai, ci) by only considering their top log2 p bits. If such a
collision is found, we proceed as in the normal BKW algorithm, i.e. we subtract
the colliding samples to clear the first b components. In our case, we clear the top-
most log2 p bits of the first b components. Hence, instead of managing elimination
tables for every bit of all components, we only manage elimination tables for the
most significant κ bits. Put differently, all arithmetic is performed in Zq but
collisions are searched for in Zp after rescaling or modulus switching.

As in [3], we realise the first stage of the BKW algorithm as a (recursively
constructed) series of oracles Bs,χ(b, �, p). In our case, we have 0 ≤ � < a, where
Bs,χ(b, a−1, p) produces the final output and Bs,χ(b,−1, p) calls the LWE oracle.
We will make use of a set of tables T � (maintained across oracle calls) to store
(randomly-chosen) vectors that will be used to reduce samples arising from our
oracles. However, compared to [3] our oracles Bs,χ(b, �, p) take an additional
parameter p which specifies the precision which we consider. Hence, if p = q
then we recover the algorithm from [3] where we perform no modulus reduction
at all. In particular, Bs,χ(b, �, p) proceeds as follows:

1. For � = −1, we can obtain samples from Bs,χ(b,−1, p) by simply calling the
LWE oracle Ls,χ and returning the output.

2. For � = 0, we repeatedly query the oracle Bs,χ(b, 0, p) to obtain (at most)
(pb − 1)/2 samples (a, c) with distinct non-zero vectors

⌊
p/q · a(0,b)

⌉
. We

use these samples to populate the table T 0, indexed by
⌊
p/q · a(0,b)

⌉
. We

store (a, c) in the table. During this course of this population, whenever

we obtain a sample (a′, c′) from Bs,χ(b,−1, p), if
⌊
p/q · a′(0,b)

⌉
(resp. the

negation) match
⌊
p/q · a(0,b)

⌉
such that the pair (a, c) is already in T 1, we

return (a′±a, c′±c), as a sample from Bs,χ(b, 0, p). Note that, if
⌊
p/q · a(0,b)

⌉
2 While we do not have to restrict our attention to p of the form 2κ, we choose it for
ease of exposition and implementation.

Lazy Modulus Switching for the BKW Algorithm on LWE 435

is zero, we return (a′, c′) as a sample from Bs,χ(b, 0, p). Further calls to the
oracle Bs,χ(b, 0, p) proceed in a similar manner, but using (and potentially
adding entries to) the same table T 0.

3. For 0 < � < a, we proceed as above: we make use of the table T � (constructed
by callingBs,χ(b, � − 1, p) up to (pb−1)/2 times) to reduce any output sample
from Bs,χ(b, � − 1, p) with

⌊
p/q · a(b·�,b·�+b)

⌉
by an element with a matching

such vector, to generate a sample returned by Bs,χ(b, �, p).

Pseudo-code for the modified oracle Bs,χ(b, �, p), for 0 ≤ � < a, is given in the
full version of this work.

2.3 Picking p

Yet, we still have to establish the size of p to satisfy Condition 2. We note that
in our approach we do not actually multiply by p/q. Let σr be the standard
deviation of uniformly random elements in Z�q/p�. Performing one-shot modulus
switching in this setting would mean splitting a into two vectors, a′ with the
‘high order’ bits and a′′ with ‘low order’ bits. The components of the latter would
contribute to the final noise as the rounding error, the components of the former
would be eliminated by BKW. The standard deviation of the components of a′′

is σr. For each component of a(i) one-shot modulus switching would add a noise
with standard deviation σrσs. Hence, after applying BKW to these pre-processed
samples, the standard deviation of the noise contributed by modulus-switching
in the final output would be√

n · 2a · σ2
rσ

2
s =

√
a b · 2a · σ2

rσ
2
s . (3)

However, as the following lemma establishes, we may consider smaller p because
the final noise contributed by modulus switching in our algorithm is smaller
than in (3). This is because if (ãi, c̃i) are final output samples then the entries
ãi,(b·a−1) will be significantly smaller than ãi,(0).

Yet, to formalise this, we need to make a (standard) simplifying assumption,
namely that the outputs of the BKW algorithm (at every stage) are independent.
That is, we make the assumption that, during the course of the algorithm de-
scribed, all components of each sample from Bs,χ(b, �, p) are independent from
every other sample. We emphasize that similar assumptions are standard in
treatments of combinatorial algorithms for LPN/LWE (cf. [3,11]).

Assumption 1. We assume that all outputs of Bs,χ(b, �, p) are independent.

Assumption 1 allows to establish the following lemma:

Lemma 1. Let n ≥ 1 be the dimension of the LWE secret vector, q be a modulus,
b ∈ Z with 1 ≤ b ≤ n. Let also σr be the standard deviation of uniformly random
elements in Z�q/p�. Under Assumption 1, the components of ã = a− a′ returned
by Bs,χ(b, �, p) satisfy:

Var(ã(i)) = 2�−�i/b�σ2
r , for 0 ≤ 	i/b
 ≤ �

and Var
(
U(Zq)

)
for 	i/b
 > �.

436 M.R. Albrecht et al.

Proof. The proof is omitted here but available in the full version of this work.

Using Lemma 1 we may adapt our choice of p, because the noise contributed
by modulus switching for a given p is smaller:

Corollary 1. Let n ≥ 1 be the dimension of the LWE secret vector, q be a
modulus, b ∈ Z with 1 ≤ b ≤ n. Let σr be the standard deviation of uniformly
random elements in Z	q/p� and σs be the standard deviation of the distribution
from which the secret s is sampled. Let (ã, c̃) be an output of Bs,χ(b, a − 1, p).
Under Assumption 1, the noise added by lazy modulus switching in the final
output of Bs,χ(b, a − 1, p), that is |〈ã, s〉|, has standard deviation√√√√b ·

(
a−1∑
i=0

2a−i−1

)
· σ2

rσ
2
s =

√
b · (2a − 1) · σ2

rσ
2
s .

Proof. The proof is omitted here but available in the full version of this work.

Now, compare Corollary 1 with the standard deviation in (3). We see that
the standard deviation obtained using our lazy modulus switching is divided
by a factor

√
a w.r.t. to a naive use of modulus-switching, i.e. as in (3). As a

consequence, we may reduce p by a factor
√
a.

3 Improved Algorithm: Stunting Growth by Unnatural
Selection

Based on the strategy in the previous section, we now introduce a pre-processing
step which allows us to further reduce the magnitude of the noise present in the
outputs of Bs,χ(b, a − 1, p) by reducing rounding errors further. For this, it will
be useful to establish notation to refer to various components of ai in relation
to Bs,χ(b, �, p).

Children: are all those components with index j < b · �, i.e. those components
that were reduced by some Bs,χ(b, k, p) with k < �: they grow up so quickly.

Parents: are those components of ai with index b · � ≤ j < b · � + b, i.e. those
components among which collisions are searched for in Bs,χ(b, �, p): collisions
among parents produce children.

Strangers: with respect to Bs,χ(b, �, p) are all other components j ≥ b · � + b:
they are indifferent towards each other.

3.1 The Basic Idea

For the general idea and intuition, assume b = 1 and that ãi are outputs of
Bs,χ(b, 0, p) and we hence have Var(ãi,(0)) = σ2

r . Now, some of these ãi will be
stored in Table T 1 by Bs,χ(b, 1, p) based on the value in the parent component
ãi,(1). All future outputs of Bs,χ(b, 1, p) which collide with ãi in the parent com-
ponent at index 1 will have ãi added/subtracted to it, we are hence adding a
value with Var(ãi,(0)) = σ2

r in index 0.

Lazy Modulus Switching for the BKW Algorithm on LWE 437

Now, however, if the ãi,(0) happened to be unusually short, all Bs,χ(b, �, p) for
� > 0 would output vectors with a shorter ãi,(0) added/subtracted in, i.e. would
also have unusually small child components (although to a lesser degree). That
is, improving the outputs of Bs,χ(b, 1, p) – i.e. decreasing the magnitude of the
ãi,(0) stored in T 1 – has a knock-on effect on all later outputs. More generally,
improving the outputs of Bs,χ(b, �, p) will improve the outputs of Bs,χ(b, k, p) for
k > �.

On the other hand, improving the outputs of Bs,χ(b, �, p) where � is small, is
easier than for larger values of �. In the algorithm as described so far, when we
obtain a collision between a member of T � and an output (ai, ci) of Bs,χ(b, � −
1, p), we reduce (ai, ci) using the colliding member of T �, retaining this member
in the table. Alternatively we can reduce (ai, ci) using the in-situ table entry,
replace the table entry with (the now reduced) (ai, ci) and return the former
table entry as the output of Bs,χ(b, �, p). If we selectively employ this alternative
strategy using the relative magnitudes of the child components of (ai, ci) and
the table entry as a criterion, we can improve the ‘quality’ of our tables as part
of a pre-processing phase.

That is, in Bs,χ(b, �, p) for each collision in a parent component we may in-
spect the child components for their size and keep that in T � where the child
components are smallest. Phrased in the language of ‘children’ and ‘parents’:
we do not let ‘nature’, i.e. randomness, run its course but intervene and select
children based on their size. As the number of child components is b ·� it becomes
more difficult as � increases to find vectors where all child components are short.

3.2 Algorithms

This leads to a modified algorithm Bsmall,s,χ(b, �, p) given in Algorithm 1 which
acts as a pre-processing phase.

1 begin
2 T � ← table with pb rows maintained across all runs of

Bsmall,s,χ(b, �, p);

3 Find (a′, c′) ← T �z that collides with a fresh sample (a, c) from
Bs,χ(b, � − 1, p);

4 if
∑b·�−1
i=0

∣∣∣a′(i)∣∣∣ > ∑b·�−1
i=0

∣∣a(i)∣∣ then
5 T �z ← (a, c);

6 return (a − a′, c − c′);

Algorithm 1. Bsmall,s,χ(b, �, p) for 0 ≤ � < a

3.3 Picking p

It remains to be established what the effect of such a strategy is, i.e. how fast
children grow up or how fast rounding errors accumulate. In particular, given n
vectors xi sampled from some distribution D where each component has standard

438 M.R. Albrecht et al.

deviation σ, i.e. Var(xi,(j)) = σ2 we are interested in the standard deviation
σn of each component for x∗ = minabs (x0, . . . ,xn−1) where minabs picks that

vector where
∑b·�−1
j=0

∣∣x(j)

∣∣ is minimal. At this point we know no closed algebraic
expression for σn. However, we found (as detailed in the full version of this work)
that σn can be estimated as follows:

Assumption 2. Let the vectors x0, . . . ,xn−1 ∈ Zτq be sampled from some distri-
bution D such that σ2 = Var(xi,(j)) where D is any distribution on (sub-)vectors
observable in our algorithm. Let x∗ = minabs (x0, . . . ,xn−1) where minabs picks

that vector x∗ with
∑b·�−1

j=0

∣∣∣x∗
(j)

∣∣∣ minimal. The stddev σn =
√
Var(x∗

(0)) = · · · =√
Var(x∗

(τ−1)) of components in x∗ satisfies

σ/σn ≥ cτ
τ
√
n+ (1 − cτ)

with cτ as in Table 1 for τ ≤ 10 and

cτ = 0.20151418166952917
√
τ + 0.32362108131969386 ≈ 1

5

√
τ +

1

3

otherwise.

Table 1. cτ for small values of τ

τ 1 2 3 4 5
cτ 0.405799353869 0.692447899282 0.789885269135 0.844195936036 0.854967912468

τ 6 7 8 9 10
cτ 0.895446987232 0.91570933651 0.956763578012 0.943424544282 0.998715322134

With Assumption 2 we can now estimate the size of the entries of the variance
matrix associated with our elimination tables. That is, a matrix M where the
entry M(i,j) holds the variance of entries (b · j, . . . , b · j+ b− 1) in T i. We give an
algorithm for constructing M in Algorithm 2 which repeatedly applies Assump-
tions 1 and 2. We discuss this algorithm in detail and back up the expectation
that it gives a reasonable approximation of the variances in T � with empirical
evidence the full version of this work.

Using the matrix M computed by Algorithm 2, we can estimate the variances
of components of ãi as output by Bs,χ(b, a−1, p). This result follows immediately
from Assumption 2.

Lemma 2. Let n ≥ 1, q be a modulus, b ∈ Z with 1 ≤ b ≤ n and σr be the
standard deviation of U(Z�q/p�). Define a := �n/b� and pick some p < q and let
M be the output of Algorithm 2 under these parameters. Let (ãi, ci) be samples
returned by Bs,χ(b, a − 1, p). Finally, define v as the a−vector of variances of
the components of ã where v(k) holds the variance of the components ã(b·k) to
ã(b·k+b−1). Under Assumption 2, the components of v satisfy:

v(i) = σ2
r +

a∑
j=i+1

M(j,i).

Lazy Modulus Switching for the BKW Algorithm on LWE 439

1 begin

2 T ← 2 · pb/2; // fudge factor: 2

3 n ← m∗
(a+1)·T + 1;

4 Varred = Var(U(Z
q/p�)) = σ2
r ; // the var. of fresh red. elements

5 M is an a× a matrix;
6 for 0 ≤ r < a do
7 for 0 ≤ c < a do
8 M(r,c) ← Var(U(Zq)); // el. on and above main diag. not red.

9 for 1 ≤ t < a do
// row t = sum of prev. rows + 1 fresh el. for each index

10 for 0 ≤ i < t do

11 M(t,i) ← Varred +
∑t−1

j=i+1 M(j,i);

12 τ ← b · 	;
13 for 0 ≤ i < t do

14 M(t,i) ←
M(t,i)

(cτ τ√n+1−cτ)2
;

Algorithm 2. Constructing M

This now allows us to given an expression for the noise distribution output by
Bs,χ(b, a − 1, p).

Lemma 3. Let n ≥ 1 be the dimension of the LWE secret vector, q be a modulus,
b ∈ Z with 1 ≤ b ≤ n. Define a := �n/b� and pick some p < q and let v
be as in Lemma 2. Let (ãi, c̃i) be outputs of Bs,χ(b, a − 1, p). We assume that
Assumptions 1 and 2 hold. Then as a increases the distribution of c̃i approaches
a discrete Gaussian distribution modulo q with standard deviation

σtotal :=

√√√√2aσ + b σ2
rσ

2
s

a−1∑
i=0

v(i) ≤
√
2aσ + (2a − 1) · b · σ2

rσ
2
s .

Proof. The standard deviation follows from Assumption 1 and Lemma 2. Since
the distribution is formed by adding up 2a vectors it approaches a discrete Gaus-
sian distribution when considered over Z as a increases by the Central Limit
Theorem. ��

Assumption 3. We assume that Lemma 3 holds for 128 ≤ n, i.e. the values of
n considered in this work.

4 Complexity

Finally, we analyse the complexity of the presented algorithms. To do so, we
assume that Assumptions 1, 2, and 3 hold. Lemma 3 allows us to estimate
the numbers of samples needed to distinguish the outputs of Bs,χ(b, a − 1, p) if
Bs,χ(b,−1, p) returns LWE samples from uniform. For this, we rely on standard

440 M.R. Albrecht et al.

estimates [16] for the number of samples required to distinguish. This estimate
provides a good approximation for the advantage obtainable in distinguishing
between U(Zq) and a discrete Gaussian reduced mod q with standard deviation
σtotal. In particular, we compute the advantage as

Adv = exp

⎛⎝−π

(
σtotal ·

√
2π

q

)2
⎞⎠ .

We can now state the overall complexity of running the algorithm in Theorem 1.
Remark that the proof of next two results are omitted; they follow by an easy
adaptation of the proof of Lemma 2 in [3].

Theorem 1. Let n ≥ 1 be the dimension of the LWE secret vector, q be a
modulus, b ∈ Z with 1 ≤ b ≤ n and σs the standard deviation of the secret vec-
tor components. Let also σr be the variance of random elements in Z�q/psmall�.

Define a := �n/b� and pick a pair (psmall,m
∗) such that b σ2

rσ
2
s

∑a−1
i=0 v(i) ≤

2aσ, where v(i) is defined as in Lemma 3. Then Bs,χ(b, a − 1, p) will return

(ã0, c̃0), . . . , (ãm−1, c̃m−1) where c̃i has standard deviation ≤
√
2a+1 ·σ. Further-

more, this costs

pbsmall

2
·
(
a(a − 1)

2
· (n+ 1)

)
+ (m+m∗) n a

additions in Zq and a ·
(
pbsmall

2

)
+m+m∗ calls to Ls,χ.

The memory requirement for storing each table is established in Corollary 2
below.

Corollary 2. The memory required to store the table T i is upper-bounded by

pbsmall

2
· a · (n+ 1)

elements in Zq, each of which requires �log2(q)� bits of storage.

To clarify the impact of Theorem 1, we consider m∗ = 0 – i.e. the case discussed
in Section 2 – on classical parameters of LWE.

Corollary 3. Let q ≈ nc, for some constant c > 0, and α = n1/2−c such
that σ ≈ αq ≈

√
n. Furthermore, let a = log2 n and b = n/ log2 n be the usual

choices of parameters for BKW. Assume σs does not depend on n. Then, solving
Decision-LWE costs at most

O
(
2n
(
c+

log2 d− 1
2

log2 log2 n

log2 n

)
· n log22 n

)
operations in Zq. We also need to store O

(
2
n
(
c+

log2 d− 1
2

log2 log2 n

log2 n

)
· n log2 n

)
elements in Zq.

Proof. The proof is omitted here but available in the full version of this work.

Lazy Modulus Switching for the BKW Algorithm on LWE 441

5 Parameters

To understand the behaviour of our more careful modulus switching technique
for concrete parameters, we compare it with one-shot modulus switching. Specif-
ically, we consider the “plain” BKW algorithm [7] as analysed in [3]. Furthmore,
to make this work somewhat self-contained we also compare with the BKZ (2.0)
algorithm when applied to SIS instances derived from LWE samples and with a
simple meet-in-the-middle (MITM) approach or generalised birthday attack.

Instances. We choose n ∈ [128, 256, 512, 1024, 2048] and – using [4] – pick
q ≈ n2 and σ = q√

2πn log2
2 n

as in Regev’s original encryption scheme [20]. We

then consider binary-LWE as defined in [12]: s ←$ U({−1, 0, 1}n) (we consider
the case s ←$ U(Zn2) as in [8] in the full version of this work). However, we assume
an unbounded number of samples being available to the attacker to establish the
performance of the algorithms discussed here under optimal conditions.

BKW. For complexity estimates of the plain BKW algorithm we rely on [3].
There the BKW algorithm takes a parameter t which controls the addition depth
a := t log2 n. Here we first pick t = 2(log2 q − log2 σ)/ log2 n which ensures that
the standard deviation of the noise after a levels of additions grows only as large
as the modulus. We then slowly increase t in steps of 0.1 until the performance
of the algorithm is not estimated to improve any further because too many
samples are needed to perform the distinguishing step. Following [3], we translate
operations in Zq into “bit operations” by multiplying by log2 q.

BKZ. To estimate the cost of the BKZ (2.0) algorithm we follow [18,16]. In
[18], the authors briefly examine an approach for solving LWE by distinguishing
between valid matrix-LWE samples of the form (A, c) = (A,As+e) and samples
drawn from the uniform distribution over Znq × Zq. Given a matrix of samples
A, one way of constructing such a distinguisher is to find a short vector u
such that uA = 0 mod q. If c belongs to the uniform distribution over Znq ,
then 〈u, c〉 belongs to the uniform distribution on Zq. On the other hand, if
c = As+e, then 〈u, c〉 = 〈u,As+e〉 = 〈u, e〉, where samples of the form 〈u, ei〉
are governed by another discrete, wrapped Gaussian distribution. Following the
work of Micciancio and Regev [18], the authors of [16] give estimates for the
complexity of distinguishing between LWE samples and uniform samples by
estimating the cost of the BKZ algorithm in finding a short enough vector. In
particular, given n, q, σ and a target distinguishing advantage ε we set s = σ·

√
2π

and compute β = q/s ·
√
log(1/ε)/π. From this β we then compute the required

root Hermite factor δ0 = 2log
2
2(β)/(4n log2 q).

Given δ0 we then approximate the running time of BKZ 2.0 in seconds using
two different strategies. Both strategies treat δ0 as the dominant influence in de-
termining the running time. The first strategy denoted “BKZ” follows [16] and
defines log2 Tsec = 1.8/ log2 δ0 − 110. The second strategy denoted “BKZ2” fol-
lows [3] who interpolated data points from [17] as log2 Tsec = 0.009/ log22 δ0 − 27.

442 M.R. Albrecht et al.

We translate the running time in seconds figure into bit operations by assum-
ing 2.3 · 109 bit operations per second on a 2.3 GHz CPU, which is pessimistic.
Furthermore, for BKZ choosing advantage ε $ 1 and running the algorithms
about 1/ε times is usually more efficient than choosing ε ≈ 1 directly, i.e. we
generate a new lattice of optimal sub-dimension each time using fresh LWE
samples.

MITM. One can also solve small secret LWE with a meet-in-the-middle attack
that requires ≈ cn/2 time and space where c is the cardinality of the set from
which each component of the secret is sampled (so c = 2 or c = 3 for binary-
LWE depending on the definition used): compute and store a sorted list of all
As′ where s′ = (s(0), . . . , s(n/2)−1, 0, 0, . . . , 0) for all possible cn/2 choices for s′.
Then compute c − As′′ where we have s′′ = (0, 0, . . . , 0, s(n/2), . . . , sn−1) and
check for a vector that is close to this value in the list.

In Table 2 we give the number of bit operations (“logZ2”), calls to the LWE
oracle (“logLs,χ”) and memory requirement (“logmem”) for BKW without any
modulus reduction to establish the baseline. All costs are given for the high
advantage case, i.e. if ε $ 1 we multiply the cost by 1/ε.

Table 3 gives the running times after modulus reductionwith p = q
√

n/12σs/σ.
In particular, Table 3 lists the expected running time (number of oracle calls and
where applicable memory requirements) of running BKWandBKZ after applying
modulus reduction.

Finally, Table 4 gives the expected costs for solving these LWE instances using
the techniques described in this work. We list two variants: one with and one
without “unnatural selection”. This is because these techniques rely on more
assumptions than the rest of this work which means we have greater confidence
in the predictions avoiding such assumptions.

Table 2. Cost for solving Decision-LWE with advantage ≈ 1 for BKW, BKZ and
MITM where q and σ are chosen as in [20] and s ←$ U({−1, 0, 1}n)

MITM BKZ [16] BKZ 2.0 [17] BKW [3]
n log Z2 logmem log ε logLs,χ log Z2 log ε logLs,χ log Z2 t logLs,χ log Z2 log mem

128 105.2 101.4 -18 26.5 65.4 -14 22.5 65.7 3.18 83.9 97.6 90.0
256 206.9 202.9 -29 38.5 179.5 -35 44.5 178.5 3.13 167.2 182.1 174.2
512 409.9 405.8 -48 58.5 390.9 -94 104.5 522.8 3.00 344.7 361.0 352.8

1024 815.8 811.5 -82 93.5 785.0 -265 276.5 1606.2 2.99 688.0 705.5 697.0
2048 1627.5 1623.0 -141 153.6 1523.6 -773 785.4 5100.0 3.00 1369.8 1388.7 1379.9

Table 3. Cost for solving Decision-LWE with advantage ≈ 1 for BKW and BKZ
variants where q, σ are chosen as in [20] and s ←$ U({−1, 0, 1}n) after one-shot modulus
reduction with p = q

√
n/12σs/σ

BKZ [16] BKZ 2.0 [17] BKW [3]
n log ε logLs,χ log Z2 log ε logLs,χ log Z2 t logLs,χ log Z2 logmem

128 -21 29.3 70.2 -16 24.4 69.8 2.85 76.8 90.2 82.4
256 -31 40.3 175.3 -37 46.3 172.8 2.85 150.4 165.6 153.7
512 -50 60.3 365.0 -90 100.2 467.0 2.76 293.8 309.6 301.9

1024 -81 92.3 710.1 -236 247.2 1339.1 2.78 570.3 587.4 579.4
2048 -134 146.3 1342.3 -647 659.2 4006.5 2.71 1149.0 1167.3 1159.1

Lazy Modulus Switching for the BKW Algorithm on LWE 443

Table 4. Cost for solving Decision-LWE with advantage ≈ 1 with the algorithms
discussed in this work when s ←$ U({−1, 0, 1}n)

this work (w/o unnatural selection) this work
n t log p logm∗ logLs,χ log Z2 logmem t log p logm∗ logLs,χ log Z2 logmem

128 2.98 10 0 64.7 78.2 70.8 2.98 6 61 61.0 75.2 46.3
256 2.83 11 0 127.8 142.7 134.9 2.83 5 118 118.0 133.5 67.1
512 2.70 11 0 235.1 251.2 243.1 2.70 8 225 225.0 241.8 180.0

1024 2.59 12 0 477.4 494.8 486.5 2.59 10 467 467.0 485.0 407.5
2048 2.50 12 0 971.4 990.7 907.9 2.50 12 961 961.0 980.2 907.9

Discussion. The results in this section indicate that the variants of the BKW
algorithms discussed in this work compare favourably for the paramters consid-
ered. The results in this table also indicate that the unnatural selection strategy
has little impact on the overall time complexity. However, it allows to reduce the
data complexity, in some cases, considerably. In particular, e.g. considering line 1
of Table 4, we note that applying this technique can make the difference between
a feasible (≈ 80 · 10244 bytes) and infeasible (≈ 1260 · 10246 bytes) attack for a
well-equipped attacker [14]. Finally, we note that our results indicate that lattice
reduction benefits from modulus reduction. However, this seems somewhat im-
plausible judging from the used algorithms. This might indicate that the lattice
reduction estimates from the literature above might need to be revised.

6 Conclusion and Future Work

We investigated applying modulus switching to exploit the presence of a small
secret in LWE instances and demonstrated that it can make a significant impact
on the complexity of solving such instances. We also adapted the BKW algo-
rithm to perform modulus-switching ‘on-the-fly’, showing that this approach is
superior to performing ‘one-shot’ modulus reduction on LWE samples prior to
solving. Our first variant improves the target modulus by a factor of

√
log2 n in

typical scenarios; our second variant mainly improves the memory requirements
of the algorithm, one of the key limiting aspects of the BKW algorithm. Our al-
gorithms, however, rely on various assumptions which, though appearing sound,
are unproven. Our estimates should thus be considered heuristic, as are perfor-
mance estimates for all currently-known algorithms for solving LWE. Verifying
these assumptions is hence a promising direction for future research. Further-
more, one of the main remaining obstacles for applying the BKW algorithm
to cryptographic constructions based on LWE is that it requires an unbounded
number of samples to proceed. Lifting this requirement, if only heuristically, is
hence a pressing research question.

Acknowledgement. We thank Steven Galbraith for helpful comments on an
earlier draft of this work. We also thank anonymous referees for detailed com-
ments which greatly improved this work. Jean-Charles Faugère, and Ludovic
Perret have been partially supported supported by the Computer Algebra and
Cryptography (CAC) project (ANR-09-JCJCJ-0064-01) and the HPAC grant
(ANR ANR-11-BS02-013) of the French National Research Agency.

444 M.R. Albrecht et al.

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

2. Albrecht, M., Cid, C., Faugr̈e, J.-C., Fitzpatrick, R., Perret, L.: On the complexity
of the arora-ge algorithm against lwe. In: SCC 2012: Proceedings of the 3rd Interna-
tional Conference on Symbolic Computation and Cryptography, Castro-Urdiales,
pp. 93–99 (July 2012)

3. Albrecht, M.R., Cid, C., Faugère, J.-C., Fitzpatrick, R., Perret, L.: On the com-
plexity of the BKW algorithm on LWE. Designs, Codes and Cryptography, 1–30
(2013)

4. Albrecht, M.R., Fitzpatrick, R., Cabracas, D., Gpfert, F., Schneider, M.: A gener-
ator for LWE and Ring-LWE instances (2013),
http://www.iacr.org/news/files/2013-04-29lwe-generator.pdf

5. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

6. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011)

7. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM 50(4), 506–519 (2003)

8. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of Learning with Errors. In: STOC 2013, pp. 575–584. ACM, New York (2013)

9. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) IEEE 52nd Annual Symposium on Foun-
dations of Computer Science, FOCS 2011, pp. 97–106. IEEE (2011)

10. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011)

11. Levieil, É., Fouque, P.-A.: An improved LPN algorithm. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006)

12. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012)

13. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the
Learning with Errors assumption. In: ICS, pp. 230–240. Tsinghua University Press
(2010)

14. Hill, K.: Blueprints of NSA’s ridiculously expensive data center in Utah suggest it
holds less info than thought (2013),
http://www.forbes.com/sites/kashmirhill/2013/07/24/

blueprints-of-nsa-data-center-in-utah-suggest-its-

storage-capacity-is-less-impressive-than-thought/

15. Kirchner, P.: Improved generalized birthday attack. Cryptology ePrint Archive,
Report 2011/377 (2011), http://eprint.iacr.org/

16. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption.
IACR Cryptology ePrint Archive, 2010:592 (2010)

http://www.iacr.org/news/files/2013-04-29lwe-generator.pdf
http://www.forbes.com/sites/kashmirhill/2013/07/24/blueprints-of-nsa-data-center-in-utah-suggest-its-storage-capacity-is-less-impressive-than-thought/
http://www.forbes.com/sites/kashmirhill/2013/07/24/blueprints-of-nsa-data-center-in-utah-suggest-its-storage-capacity-is-less-impressive-than-thought/
http://www.forbes.com/sites/kashmirhill/2013/07/24/blueprints-of-nsa-data-center-in-utah-suggest-its-storage-capacity-is-less-impressive-than-thought/
http://eprint.iacr.org/

Lazy Modulus Switching for the BKW Algorithm on LWE 445

17. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: An update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013)

18. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buch-
mann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer,
Heidelberg (2009)

19. Pietrzak, K.: Subspace LWE. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 548–563. Springer, Heidelberg (2012)

20. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
J. ACM 56(6) (2009)

Practical Cryptanalysis of a Public-Key Encryption
Scheme Based on New Multivariate

Quadratic Assumptions

Martin R. Albrecht1, Jean-Charles Faugère3,2,4, Robert Fitzpatrick5,
Ludovic Perret2,3,4, Yosuke Todo6, and Keita Xagawa6

1 Technical University of Denmark, Denmark
2 Sorbonne Universités, UPMC Univ Paris 06, POLSYS,

UMR 7606, LIP6, F-75005, Paris, France
3 INRIA, Paris-Rocquencourt Center, POLSYS Project

4 CNRS, UMR 7606, LIP6, F-75005, Paris, France
5 Information Security Group

Royal Holloway, University of London
Egham, Surrey TW20 0EX, United Kingdom

6 NTT Secure Platform Laboratories
maroa@dtu.dk, jean-charles.faugere@inria.fr,

robert.fitzpatrick.2010@live.rhul.ac.uk, ludovic.perret@lip6.fr,

{todo.yosuke,xagawa.keita}@lab.ntt.co.jp

Abstract. In this paper, we investigate the security of a public-key encryption
scheme introduced by Huang, Liu and Yang (HLY) at PKC’12. This new scheme
can be provably reduced to the hardness of solving a set of quadratic equations
whose coefficients of highest degree are chosen according to a discrete Gaussian
distributions. The other terms being chosen uniformly at random. Such a problem
is a variant of the classical problem of solving a system of non-linear equations
(PoSSo), which is known to be hard for random systems. The main hypothesis of
Huang, Liu and Yang is that their variant is not easier than solving PoSSo for ran-
dom instances. In this paper, we disprove this hypothesis. To this end, we exploit
the fact that the new problem proposed by Huang, Liu and Yang reduces to an
easy instance of the Learning With Errors (LWE) problem. The main contribution
of this paper is to show that security and efficiency are essentially incompatible
for the HLY proposal. That is, one cannot find parameters which yield a secure
and a practical scheme. For instance, we estimate that a public-key of at least
1.03 GB is required to achieve 80-bit security against the simplest of our attacks.
As a proof of concept, we present 3 practical attacks against all the parameters
proposed by Huang, Liu and Yang. With the most efficient attack, we have been
able to recover the private-key in roughly 5 minutes for the first challenge

(
i.e.

Case 1
)

proposed by HLY and less than 30 minutes for the second challenge
(
i.e.

Case 2
)
.

1 Introduction

At PKC 2012 Huang, Liu and Yang (HLY) proposed a new public-key encryption
scheme [17]. It follows a line of research, called Multivariate Quadratic (MQ)

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 446–464, 2014.
c© International Association for Cryptologic Research 2014

Practical Cryptanalysis of a Public-Key Encryption Scheme 447

cryptography, to construct public-key encryption schemes from the known hard prob-
lem of solving systems of polynomial equations. This line of research dates back to the
mid eighties with the design of C∗ [24], later followed by many other proposals. While
this family of designs is commonly considered to be an interesting alternative to con-
structions based on number-theoretic problems (in the post-quantum setting), it suffers
from a lack of clear security reductions to well-understood problems, leading to a series
of attacks.

In contrast, [17] is part of a recent trend inMQ cryptography of designing cryptosys-
tems whose security can be provably reduced to the the hardness of solving a system
of non-linear equations (other examples include [3,8]). The key innovation of Huang-
Liu-Yang [17] is aMQ scheme in which the public key is noise-free and non-linear but
ciphertexts are noisy and linear. Hence, the scheme proposed by Huang, Liu, and Yang
can be viewed as a hybrid between the Learning with Errors (LWE) problem [27] and
MQ cryptosystems. The semantic security of the scheme [17] can be provably reduced
to the difficulty of solving a system of non-linear equations which is somewhat struc-
tured as the coefficients of the non-linear parts of the polynomials are chosen according
to a discrete Gaussian. The main assumption of [17] is that this new problem is not
easier than the problem of solving a random system of quadratics equations.

1.1 Organisation of the Paper and Overview of the Results

After this introduction, the paper is organized as follows. We first provide a brief in-
troduction to lattices and algorithms for solving LWE in Section 2. In particular, we
briefly recall in Section 2.2 Micciancio and Regev’s [26,21] distinguishing approach
and Kannan’s embedding technique [18] for solving LWE. We then describe the HLY
proposal in Section 3. The new hard problem introduced by Huang, Liu and Yang is as
follows:

Definition 1 (MQ(n,m,Φζ,Hβ)). Let n be positive integer, m = cn for some c ≥ 1,
q be a polynomially bounded prime, a constant β, 0 < β < q/2 and s be a secret
vector in Hβ := [−β, . . . , β]n ⊆ Z

n
q. We denote by Z

Φζ
q [x1, . . . , xn] the distribution on

quadratic polynomials of Zq[x1, . . . , xn] obtained by sampling the monomials of degree
2 according to a discrete Gaussian distribution Φζ of standard deviation ζ ∈ O (1)
and centred on zero and by sampling the others coefficients (linear, and constant parts)
uniformly at random. MQ(n)

s,Φ is the probability distribution on the Zq[x1, . . . , xn]m × Zm
q

obtained by sampling p = (p1, . . . , pm) from Z
Φζ
q [x]m, and returning (p, c) =

(
p, p(s)

) ∈
Zq[x1, . . . , xn]m × Z

m
q . MQ(n,m,Φζ,Hβ) is the problem of finding s ∈ Hn

β given a pair
(
p, p(s)

)←$ MQ(n)
s,Φ.

The main assumption from [17] is that MQ(n,m,Φζ,Hβ) is not easier than the prob-
lem of solving a random system of quadratic equations (Assumption 1). Remark that
the latter problem is notoriously known as a hard problem from a theoretical [14] and
practical point of view [5,6,7]. In this paper, we show that MQ(n,m,Φζ,Hβ) is in fact
related to a much easier problem. The starting point of our analysis is to simply remark

448 M.R. Albrecht et al.

(Fact 1) that MQ(n,mΦζ,Hβ) resembles to a LWE problem with a discrete Gaussian
with variance γ2 = O

(
n2β2ζ2

)
(centred at zero).

We use this fact, together with the Micciancio-Regev distinguisher and the lattice-
reduction complexity model of Lindner and Peikert to derive a new necessary condi-
tions on the security of the HLY scheme (Section 4). In particular, such scheme has
at most τ-bit security – with regard to constructing a distinguisher of advantage d – if
(n, β, c, k, τ, d) verifies

exp
(
− π2

12β2 · (c k)−2 · n−4 · 2 3.6cn
τ+78.9

)
= d.

For example, with β = c = 2, k = 12, d = 0.5, setting n = 1140 satisfies this condition
for τ = 80. With n = 1140, however, the public-key is of size ≈ 1.03 GB.

It appears then that all parameters suggested in [17] (reproduced Table 1) are too
small to verify our new security condition. Indeed, we have been able to mount sev-
eral practical attacks: distinguishing attack with Micciancio-Regev, and a key-recovery
attack with the embedding technique, and an improved key-recovery attack exploiting
the presence of a small secret (Section 5). We successfully run the two first attacks in
roughly one day for the first challenge

(
i.e. Case 1)

)
and in roughly three days for the

second challenge
(
i.e. Case 2

)
proposed by the authors [17]. The last practical attack is

attack even more efficient. For the first challenge, we recovered the secret-key in less
than 5 minutes and less than 30 minutes for the second challenge. The experimental
results are detailed in Section 6.

2 Preliminaries

Notation. In the following we always start counting at zero, denote vectors and matrices
in bold, vectors in lower case, and matrices in upper case. Given a vector a, we denote by
a(i) the i-th entry in a, and by A(i, j) the entry at index (i, j). When given a list of vectors,
we index its elements by subscript, e.g. a0, a1, a2, to denote the first three vectors of the
list. Let q be a prime. We represent elements in Zq as integers in [− q

2 , . . . ,
q
2]. We work

in the Euclidean norm throughout. We denote by Zq the algebraic closure of Zq.

2.1 Background on Lattices

A lattice Λ in R
m is a discrete additive subgroup. For a general introduction, the reader

is referred to [25]. We view a lattice as being generated by a (non-unique) basis B =
{b0, . . . , bn−1} ⊂ Z

m of linearly-independent integer vectors. We assume that the vectors
b0, . . . , bn−1 form the rows of the n × m matrix B. That is: Λ = L(B) = Z

n · B ={∑n−1
i=0 xi · bi | x0, . . . , xn−1 ∈ Z

}
. In this work, we are concerned only with q-ary lattices

which are those such that qZm ⊆ Λ ⊆ Z
m. We also restrict our attention to full-rank

lattices i.e. those in which dim(span(Λ)) = m. The determinant or volume vol (Λ) of a
(full-rank) lattice Λ is the determinant of any given basis of Λ, hence vol (Λ) = det(B).

Practical Cryptanalysis of a Public-Key Encryption Scheme 449

The dual of a latticeΛ, denoted byΛ∗, is the lattice consisting of the set of all vectors
z ∈ R

m such that 〈y, z〉 ∈ Z for all vectors y ∈ Λ. Given a lattice Λ, we denote by
λi(Λ) the i-th minimum of Λ defined as λi(Λ) := inf

{
r | dim(span(Λ ∩ B̄m(0, r))) ≥ i

}
,

where B̄m(0, r) denotes the closed, zero-centered m-dimensional (Euclidean) ball of
radius r. We define the minimum distance from a given point t ∈ R

m to the lattice by
dist(Λ, t) = min {‖t − x‖2 | x ∈ Λ}.

Minkowski’s second theorem gives us a bound on the geometric mean of the suc-
cessive minima. Given an m-dimensional lattice Λ and any 1 ≤ k ≤ m we have
(∏k

i=1 λi(Λ)
)1/k ≤ √γm · vol (Λ)1/m, where γm denotes Hermite’s constant of dimen-

sion m. However, determining the exact value of γm is a long-standing open problem
in the geometry of numbers, with the exact values being known for only 1 ≤ m ≤ 8
and m = 24. Heuristically speaking, given a random lattice Λ of dimension m and
a Euclidean ball B̄m(x, r). We expect that the number of lattice points which lie in

Λ ∩ B̄m(x, r) to be approximately equal to
vol(B̄m(x,r))

vol(Λ) .
The lattices we consider here are not random, rather they are ‘Ajtai’ lattices, possess-

ing reductions from worst-case Approx-SVP to average-case Hermite-SVP. For more
details on the nature of random lattices, the reader is referred to [16]. However, it is
generally assumed in the literature, as in this work, that the Gaussian heuristic holds
reasonably well for Ajtai lattices. If this approximate equality was to hold for any such
ball, then by considering the unit ball in B̄m(0, 1) ⊂ R

m, we would have |Λ∩B̄m(0, 1)| ≈
πm/2

Γ(1+m/2)·vol(Λ) , where Γ denotes the standard gamma function Γ(z) =
∫ ∞

0
xz−1e−xdx,

z ∈ C.
Hence we would expect that

λ1(Λ) ≈
(

vol(Λ)
vol(B̄m(0,1))

)1/m
=

vol(Λ)1/m·Γ(1+m/2)1/m√
π

≈ vol (Λ)1/m ·
√

m
2πe

For random lattices, it is known that, with overwhelming probability, the above holds
(for all successive minima) [1]. This provides the motivation for the Hermite-SVP prob-
lem, which we define below. More generally, we list below the four main lattice prob-
lems of relevance to this work.

First, the approximate Shortest Vector problem (γ-SVP) is as follows: Given a lattice
Λ = L(B), find a vector v ∈ Λ such that 0 < ‖v‖ ≤ γ · λ1(Λ). In the same vain, the
approximate Hermite Shortest Vector problem (γ-HSVP) is: Given a lattice Λ = L(B),
find a vector v ∈ Λ such that 0 < ‖v‖ ≤ γ · det(Λ)

1
m . Any algorithm which solves γ-SVP

also solves Hermite-SVP with factor γ
√
γn. Note also that (γ-SVP) (γ ≥ 1) is NP-Hard

under randomized reduction for any γ < 2(log n)1/2−ε
, where ε > 0 is an arbitrarily small

constant [19].
We also consider the bounded distance decoding problem (BDDη): Given a lattice

Λ and a vector t such that dist(t,Λ) < η · λ1(Λ), find the lattice vector y which is
closest to t. We note that, when considering BDDη from a complexity theory approach,
arbitrary values for η can be considered while in practical settings, the problem is often
defined with the restriction that η ≤ 1

2 . The case of solving BDDη> 1
2

corresponds to
list-decoding in coding parlance. BDDη is known to be NP-hard for any constant factor
η > 1√

2
[22]. Finally:

450 M.R. Albrecht et al.

Finally, the GapSVP (promise) problem (GapSVPγ) is: Given a lattice Λ, a radius
r > 0 and approximation factor γ > 1, is λ1(Λ) ≤ r ? If so return YES, else if λ1(Λ) > γr
return NO, and otherwise return YES or NO. Note that GapSVPγ is NP-Hard for any
constant γ[19].

Lattice Reduction. The predominant approaches for solving the Learning with Errors
(LWE) problem [27] rely on reducing a lattice basis (determined by a subset of the
LWE samples) to obtain either a single short vector in the (scaled) dual lattice [26] or a
‘good’ (relatively orthogonal) basis of the primal lattice [21], as measured by the norms
of the Gram-Schmidt vectors of such a basis. In the first case, since we do not know
λ1(Λ) a priori, it is customary to measure the ‘strength’ of a basis reduction algorithm
by the γ-HSVP factor it can attain. In the latter case, similar notions are used, with the
added heuristic that the norms of the Gram-Schmidt vectors of a reduced-basis decrease
geometrically.

We briefly recall some notions of lattice basis reduction (from a Hermite-SVP per-
spective). While finding the shortest vector in low-dimensional lattices is relatively easy,
only approximation algorithms can be realistically run in higher dimensions. With re-
spect to the Hermite-SVP problem, we aim to find a vector v in the lattice such that
γ = ‖v‖/vol (Λ)

1
m is small. The famed LLL algorithm [20] discloses lattice vectors with

Hermite factor ≤ (4/3)(m−1)/4 while the more powerful Block Korkine-Zolotarev (BKZ)
algorithm, parameterised by a block-size β, discloses lattice vectors with Hermite factor
≤ √γβ1+(m−1)/(β−1) [13].

In practice, however, both LLL and BKZ perform much better than their worst-case
provable bounds and both are commonly characterised by a ‘root Hermite-factor’ δ0

such that δm
0 ≈ ‖v‖/vol (Λ)

1
m . Given a fixed algorithm, the value of δ0 appears to rapidly

converge to a fixed value as the lattice dimension increases. In [13], the authors report
the results of extensive experiments, partly aimed at determining root Hermite factors
for LLL and BKZ with selected block-sizes. The results of [13] indicate that, in prac-
tise, LLL achieves a δ0 ≈ 1.0219 while BKZ-20 and BKZ-28 achieve δ0 ≈ 1.0128
and δ0 ≈ 1.0109, respectively, conjecturing that the current limits of ‘practical’ lattice
reduction appear to be a root Hermite factor of ≈ 1.01, with δ0 = 1.005 being far be-
yond reach (in high dimension). However, estimation of the running time of BKZ in
high dimension with a large block-size is difficult, with the asymptotic running time
being doubly-exponential in the block-size. To attempt a conservative prediction of the
running time of BKZ with large block-size, the authors of [21] assume that δ0 is the
dominant influence on the running-time of BKZ in high dimension and proposed a sim-
ple extrapolation of running times as a function of δ0 leading to the model

log2 Tsec = 1.8/ log2 δ0 − 110. (1)

We can translate this figure into bit operations by assuming 2.3 · 109 bit operations per
second on a 2.3 GHz CPU.

However, the accuracy and hence utility of such models is debatable, with such mod-
els giving infeasibly low complexity estimates for the application of LLL.

Practical Cryptanalysis of a Public-Key Encryption Scheme 451

2.2 Learning with Errors (LWE)

We briefly review the results on LWE required in our cryptanalysis. The central idea
of our attack is to observe that the security of HLY scheme actually relies on weak in-
stances of LWE. After providing the definition of LWE, we recall a modulus-switching
result from [9] which we exploit to improve our basic attack. Finally, we briefly re-
view some known techniques for solving LWE. In this work, we consider the short
dual-lattice vector distinguishing attack [26] to distinguish LWE instances arising in
our attack of HLY scheme. The LWE problem is as follows:

Definition 2 (LWE [27]). Let n, q be a positive integers, χ be a probability distribution
on Zq and s be a secret vector in Z

n
q. We denote by L(n)

s,χ the probability distribution on
Z

n
q × Zq obtained by choosing a ∈ Zn

q uniformly at random, choosing e ∈ Zq according
to χ, and returning (a, c) = (a, 〈a, s〉 + e) ∈ Z

n
q × Zq. We shall call Decision-LWE the

problem of deciding whether pairs (a, c) ∈ Zn
q ×Zq are sampled according to L(n)

s,χ or the
uniform distribution on Z

n
q × Zq.

The noise follows some distribution χ which is classically chosen to be a discrete Gaus-
sian distribution over Z with mean 0, reduced modulo q. This distribution (over Z) is
obtained by rounding the (continuous) Gaussian distributionN(μ, σ2) with mean μ and
standard deviation σ = s/

√
2π = αq/

√
2π, i.e. we consider �N(μ, σ2)�. The modulus

q is typically taken to be polynomial in n. It was shown [27,9] that if αq > 2
√

n, then
(worst-case) GapSVPÕ(n/α) reduces to (average-case) LWE.

Remark 1 (Modulus reduction). Modulus switching was introduced to improve the per-
formance of homomorphic encryption schemes [10] and was recently used to reduce
the hardness of LWE with polynomially sized moduli to GAPSVP [9]. It also possible
to use such technique for attacking schemes. As soon as the secret s follows a distribu-
tion with small standard deviation σs, then we can perform modulus reduction. That is,
given p � q we can consider a new LWE sample (�p/q · ai�, �p/q · ci�) in place of the
initial LWE (ai, ci) at the cost of a slight increase in the noise level. We do not consider
this approach further in this work as it only provides a moderate improvement over the
results presented in Section 6.

Solving LWE with Lattice Reduction. For solving LWE, several approaches exist in
the literature. Asymptotically, combinatorial approaches are superior [2] while in prac-
tise lattice-based approaches are often more efficient. The most straight-forward ap-
proach [26] is to apply lattice basis reduction to the (scaled) dual lattice determined
by the LWE samples. This allows to obtain a short vector in this lattice and leads to a
distinguisher of valid LWE samples and uniformly random samples. Note that thanks
to the classical decision to search equivalence for LWE [27] any distinguisher can be
actually used to recover the secret key. This multiplies the cost of the distinguisher by a
polynomial factor q (more precisely, by the size of the secret space).

Given a set of m LWE samples (ai, ci), we denote by A ∈ Z
n×m
q the matrix whose

columns are the aT
i ’s. We then consider the following q-ary lattice

452 M.R. Albrecht et al.

Λq(A) := {z ∈ Zm | ∃s ∈ Zn such that sA ≡ z mod q}
and a corresponding (scaled) dual lattice

Λ⊥q (A) :=
{
y ∈ Zm | AyT ≡ 0 mod q

}
.

In [26], the authors briefly examine an approach for solving LWE by distinguishing be-
tween valid matrix-LWE samples of the form (A, c) = (A, sA + e) and samples drawn
from the uniform distribution over Zn×m

q ×Zm
q . Given a matrix of samples A, one way of

constructing such a distinguisher is to find a short vector u in the (scaled) dual lattice
Λ⊥q (A), the vector u is such that AuT = 0 mod q. If c belongs to the uniform distribu-
tion over Zm

q , then 〈u, c〉 belongs to the uniform distribution on Zq. On the other hand,
if c = sA + e, then 〈u, c〉 = 〈u, sA + e〉 = 〈u, e〉. Each sample of the form 〈u, ei〉 are
governed by another discrete, wrapped Gaussian distribution. Following the work of
Micciancio and Regev [26], the authors of [21] investigates the algorithmic hardness of
Decision-LWE by estimating the cost of the BKZ algorithm in finding a short enough
vector, using the model mentioned above (Section 2.1).

In particular, given m, n, q, σ = αq, we set s = σ
√

2π. Then, given a vector v in the
dual lattice, a good approximation for the distinguishing advantage obtained through
this approach is

ε ≈ exp
(
−π · (‖v‖ · s/q)2

)
. (2)

Thus, given a target distinguishing advantage ε, we can compute the required norm of
a vector in the (scaled) dual lattice to be: v = (q/s) · √− log(ε)/π. We also let

λ1(Λq(A)) = min
{
q, qn/m · √m/(2π · e)

}

be the length of the shortest vector according to the Gaussian heuristic. Once again,
we note that while the q-ary lattices derived from LWE instances are not random in a
strict sense and thus we cannot a priori expect the Gaussian heuristic to be verified, in
practice the heuristic holds extremely well. Hence, as do other works, we assume this
also in our case.

To estimate the root Hermite factor δ0 we need to achieve, we rely on the heuris-
tic – but experimentally sound – model in which we expect the norm of the shortest
vectors found to be approximately qn/mδm

0 . Then, the optimal sub-lattice dimension for
the attack is mopt =

√
n log(q)/log(δ0). Assuming that we have enough LWE samples

to construct a lattice of the optimal dimension, we then require the application of a

basis-reduction algorithm with root-factor given by δ0 = 2
log2 v

4n log q .
An alternative method for solving LWE (and for BDD in general) using lattice reduc-

tion is to employ Kannan’s embedding method. Here, we take a lattice Λ = L(B) ⊂ R
m

and a point t ∈ R
m which is close to a lattice point y with ‖y − t‖ < λ1(Λ)/2. We then

construct

B′ =
(

B 0
t ‖y − t‖

)

.

Practical Cryptanalysis of a Public-Key Encryption Scheme 453

It can be shown [23] that if
√

2 · ‖y− t‖ < λ1(Λ) then [t | ‖y− t‖] is a shortest (non-zero)
vector in L(B′). This leads to an instance of unique-SVP - an instance of SVP in which
we are given the additional guarantee that there is a certain ‘gap’ between λ1(L(B′)) and
λ2(L(B′)). Note that, in practise, one would choose the embedding factor to be smaller
than ‖y− t‖ to (probabilistically) maximise this gap. In this work, we employ both large
and small embedding factors, ‘small’ meaning an embedding factor of 1. In the latter
case (see section 5.1) we make the simplifying assumption that the second minimum of
the embedding lattice is approximately equal to the first minimum of the original lat-
tice, to gain an estimation of the gap. However, compared to alternative approaches for
solving LWE, the efficacy of the embedding approach is poorly understood at present
with no good models (to the best of our knowledge) to predict when the approach will
succeed. It is known, however, that the presence of a λ2/λ1 gap makes finding the short-
est vector somewhat easier, with an exponential gap clearly allowing disclosure of a
shortest non-zero vector by application of LLL. With smaller gaps, the success of the
approach is known to be probabilistic [13].

3 A New Multivariate Quadratic Assumption and LWE with
Small Secrets

in this section we describe the public-key encryption scheme proposed by Huang, Liu
and Yang (HLY) [17] at PKC’12 as well as the new hard problem underlying their
scheme. We will revisit the fact that the hardness of this new problem is related to the
difficulty of solving a LWE-style problem for a very small secret. In [17] the authors
introduced a variant of the classical Polynomial System Solving Problem (PoSSo).

Definition 3. Let f0, . . . , fm−1 ∈ Zq[x0, . . . , xn−1] be non-linear polynomials. PoSSo is
the problem of finding – if any – s ∈ Zq

n
such that f0(s) = 0, . . . , fm−1(s) = 0.

It is well known [14] that this problem is NP-hard. Note that PoSSo remains NP-hard
[14] even if we suppose that the input polynomials are quadratics. In this case, PoSSo is
also called MQ. Huang, Liu and Yang proposed a variant of MQ where the monomials
of highest degree (i.e. 2) in the system have their coefficients chosen according to a
discrete Gaussian distribution of standard deviation ζ ∈ O (1) and centered on zero.
Following [17], we denote this distribution by Φζ .1 The remaining coefficients (linear,
and constant parts) are chosen uniformly at random. We denote this distribution on
Zq[x1, . . . , xn] by Z

Φζ
q [x]. The problem introduced by Huang, Liu and Yang will be the

main concern of this work:

Definition 4 (MQ(n,m,Φζ,Hβ)). Let n be positive integer, m ∈ O (n), q be a poly-
nomially bounded prime, a constant β, 0 < β < q/2 and e be a secret vector in Hβ :=
[−β, . . . , β]n ⊆ Z

n
q. We denote by MQ(n)

s,Φ the probability distribution on Zq[x1, . . . , xn]m×
Z

m
q obtained by sampling p = (p1, . . . , pm) from Z

Φζ
q [x]m, and returning (p, c) =

(
p, p(s)

)

∈ Zq[x1, . . . , xn]m × Zm
q .

1 The parameter ζ is called α in [17] but this notation clashes with the standard notation for
LWE.

454 M.R. Albrecht et al.

MQ(n,m,Φζ,Hβ) is the problem of finding s ∈ Hn
β given a pair

(
p, p(s)

)←$ MQ(n)
s,Φ.

The decision problem associated to MQ(n,m,Φζ,Hβ) is the task of distinguishing MQ(n)
s,Φ

from the uniform distribution on Zq[x1, . . . , xn]m × Zm
q .

As mentioned in [17], MQ(n,m,Φζ,Hβ) is rather close to LWE:

Fact 1. Each
(
p, p(s)

)←$ MQ(n)
s,Φ can be mapped to a LWE instance. To do so, we just

consider the matrix Ap ∈ Z
n×m
q corresponding to the linear part of p. We then remark

that each component of p(s) − s · Ap − p(0) is the sum of n(n+1)
2 discrete Gaussians

each having variance
(

(2β+1)2−1
12

)
· ζ2. From now, we assume that this sum is a discrete

Gaussian of variance γ2 =
n(n+1)

2 ·
(

(2β+1)2−1
12

)
· ζ2 (centered at zero).

It is proven in [17] that MQ(n,m,Φζ,Hβ) has decision to search equivalence. Such
equivalence makes the problem appealing to design an encryption scheme. The public-
key of the scheme proposed in [17] is a pair of the form

(
p, p(s)

)
= (p, c) ∈ ZΦζq [x]m×Zm

q .
To encrypt a bit b, we choose r ∈ Hnλ := [−nλ, . . . , nλ]m ⊂ Z

m
q with λ being a new

parameter. We then compute : c =
(
Ap ·rT , 〈 r, c−p(0) 〉+b·�q/2�). Thus, each encryption

of zero produces a LWE sample whose error has variance: m ·n2λ ·γ2.As a consequence,

we expect the noise to have size
√

2
π
· √m · nλ · γ. Note that [17] also proposed a Key

Encapsulation Mechanism (KEM) scheme, based on the same new hard problem, but
which we do not discuss here.

Regarding the security, [17] showed that breaking the semantic security of the en-
cryption scheme is equivalent to solving MQ(n,m,Φζ,Hβ). More precisely:

Theorem 2 ([17]). LetA be an adversary breaking the semantic security of the scheme
working in time T with advantage ε. Then, there exists a probabilistic algorithm B
solving MQ(n,m,Φζ,Hβ) in time at most T · 128

ε2
· (2β + 1) · (n2 log q)2 with success

probability at least ε/(4 q).

A similar result holds for the KEM scheme, i.e. breaking the semantic security of the
KEM scheme allows to solve MQ(n,m,Φζ,Hβ).

Such reduction is then used to establish concrete parameters for the proposed encryp-
tion scheme. The basic hypothesis for setting the parameter is to assume that solving
p − p(s) = 0, for

(
p, p(s)

) ←$ MQ(n)
s,Φ, is essentially not easier than solving a random

system of equations [17].

Assumption 1 (HLY Hardness Hypothesis). Solving MQ(n,m,Φζ,Hβ) is as hard as
solving a random system of m quadratic equations in n variables modulo q with a pre-
assigned solution in Hn

β .

Remark 2. The fact that the secret is in Hn
β implies that one can always add n equations

of degree 2β+ 1 of the form
∏

j∈Hβ(xi − j). Clearly, the evaluation of such equations on
any s ∈ Hn

β will be zero.

Practical Cryptanalysis of a Public-Key Encryption Scheme 455

Arguably, this connection between the semantic security and hardness of PoSSo is
the main difference between the HLY scheme and the classical encryption scheme based
on LWE. Indeed, the HLY scheme is very similar to a textbook LWE encryption scheme
equipped with a Gaussian of standard deviation

√
m · nλ · γ with a very small secret. A

noteworthy difference lies in the fact that we also consider small (i.e. of norm bounded
by nλ) linear combinations of public samples. In the classical LWE encryption scheme
due to Regev [27], we consider only linear combinations with coefficients in {−1, 0, 1}
of the public samples.

Assumption 1 allows to estimate the cost of the best attack against MQ(n,m,Φζ,Hβ).
A well-established approach to solve PoSSo is to compute a Gröbner basis [11]. The
cost of solving a (zero-dimensional, i.e. finite number of solutions) system of m non-

linear equations in n variables with the F5 algorithm [5,12] is O
((

n+Dreg

Dreg

)ω)
, where Dreg is

the maximum degree reached during the Gröbner basis computation, andω is the matrix
multiplication exponent (or the linear-algebra constant) as defined in [31, Chapter 12].
We recall that ω ∈ [2, 2.3727]).

In general, it is a hard problem to predict a priori the degree of regularity of a
given system of equations. However, Assumption 1 implies that the system of non-
linear equations involved is no easier to solve than semi-regular equations [5,6,7]. Pre-
cisely, Dreg is bounded from below by the index of the first non-positive coefficient of:
∑

k≥0 ckzk = (1−z2)m(1−z(2β+1))n/(1−z)n. This is the degree of regularity of a system of
m equations of degree 2 plus n equations of degree 2β+1 in n variables.2 From now on,
we will denote by Tref(m, n, q) the cost of solving such system with F5 algorithm, and
by εref the success probability. Usually, a Gröbner basis computation always succeeds,
but one can relax this condition by randomly fixing variables. Precisely, a success prob-
ability εref allows to fix rref =

⌈
log2 β+1 (1/εref)

⌉
variables for systems sampled according

to MQ(n)
s,Φ.

It is worth mentioning and commending that [17] propose concrete parameters for
their scheme (reproduced in Table 1). The parameters are chosen as follows. Assume
there exist an adversaryA breaking the semantic security of the HLY encryption in time
Tdist = 2� with advantage εdist = 2−s. According to Theorem 2, we can construct an algo-
rithm B solving MQ(n,m,Φζ,Hβ) in time Tsearch(Tdist, εdist, n, q) with success probabil-
ity εsearch(εdist, q). From Assumption 1, the best algorithm for solving MQ(n,m,Φζ,Hβ)
works in time Tref (m, n − rref , q) with a success probability εref . The parameters m, n, q
are chosen such that

Tsearch(Tdist, εdist, n, q) < Tref(m, n, q) and εsearch(εdist, q) < εref .

Under the HLY hypothesis (Assumption 1), this means that no adversary can break the
semantic security of the scheme in time less than 2� with success probability better
than 2−s.

4 Analysis of the Parameters

In this part, we show that security and efficiency are essentially incompatible for HLY.
To do so, we derive a set of conditions on the parameters that would thwart the simplest

2 Note that this quantity can be explicitly computed for any value of n,m and β.

456 M.R. Albrecht et al.

known attack against LWE-style systems such as those discussed above. That is, we
want to find parameters such that both computing a Gröbner basis and lattice attacks (in
particular the non-optimal Micciancio-Regev approach) are exponentially hard in the
security parameter τ. Below, we recall the constraints on the parameters from [17]:

1. k · ζ · n2+λ · m · β2 ≤ q/4 (to allow for correct decryption)
2. m · log(2nλ + 1) ≥ (n + 1) log q + 2k (to make sure the subset sum problem is hard)
3. n,m, q, ζ, β (to satisfy the condition in the MQ assumption such that MQ(n,m, q, Ψζ,

Hβ) is hard to solve).

For the number of equations, we may restrict m = c ·n where c is a constant (we remark
that the challenges proposed in [17] have c = 2). In this case, we can assume that MQ
is hard (that is, the cost of computing a Gröbner basis is exponential in the number of
variables [5,6,7]. From Condition 2, we then get m · log(2nλ + 1) ≥ (n + 1) log q + 2k ≥
n log q and

c · log(2nλ + 1) ≥ log q

by replacing m with cn. This means that 2nλ should be roughly (or at least) q1/c. Hence,
the first condition yields:

k · ζ · n2+λ · m · β2≤ q/4

k · ζ · n2+λ · c · n · β2≤ 2(c−2)ncλ

ζ · n2 · β2≤ (ck)−12(c−2)n(c−1)λ−1

as a bound on the noise in each of the m samples. As explained in Section 2.2, (heuris-
tically) lattice reduction will produce vectors of length

v = qn/m · δm
0 = q1/c · δcn

0 ≤ 2nλ · δcn
0 .

By combining this with the above, we get a distinguishing advantage
(
as defined in (2)

)

of

exp
(
− πs2v2

q2

)
= exp

(
− πs24n2λδ2cn

0

q2

)
= exp

(
− 2π2σ24n2λδ2cn

0

q2

)

= exp
(
− 2π2σ24n2λδ2cn

0

4cn2cλ

)
= exp

(
−(4(1−c+ 1

2)π2σ2n2λ(1−c)δ2cn
0)
)
.

Now, we can write:

σ2= ζ2 · n(n+1)
2 ·
(

(2β+1)2−1
12

)
=
(
ζ

1
2 · n · β

)
·
(
ζ

3
2 · n+1

2 · β+1
3

)

=
(
ζ

1
2 · n · β

)
·
(

1
6 · ζ

3
2 · (n + 1) · (β + 1)

)
≈ 1

6 · ζ ·
(
ζ · n2 · β2

)
.

This gives:

ζ � (ck)−12(c−2)n(c−1)λ−1

n2·β2 .

Thus:

σ2 � 1
6 · n2 · β2 ·

(
(ck)−222(c−2)n2(c−1)λ−2

n4·β4

)
=

(ck)−222(c−2)n2(c−1)λ−4

6β2 .

Practical Cryptanalysis of a Public-Key Encryption Scheme 457

Hence we can lower-bound the distinguishing advantage by:

exp
(
−(4

3
2−cπ2σ2n2λ(1−c)δ2cn

0)
)
= exp

(
− π2

12β2 · (ck)−2n−4 · δ2cn
0

)

We now introduce a parameter τ, representing the bit-complexity of solving such in-
stances using the model of Lindner and Peikert. We then replace δ0 by 2(1.8/(τ+78.9))

(employing (1) to deliver an estimate of the number of bit operations required to obtain
such a root Hermite factor) and require that the advantage is constant in terms of τ. In
other words

exp
(
− π2

12β2 · (ck)−2 · n−4 · 23.6cn/(τ+78.9)
)
= d. (3)

For example, for τ = 80, with β = 2, c = 2, k = 12 and d = 0.5, setting n = 1140
satisfies this condition. For τ = 128, the same parameters require n = 1530. We note,
however, that setting n = 1140 already results in a public key of considerable size
(optimistically setting ζ = 10):

m·(n+2
2)·log2(2πζ)
8·10243 ≈ 1.03 GB, (4)

while setting n = 1530 results in a public-key of size 2.49 GB.
Furthermore, we stress that these parameters do not take potential other attack vec-

tors into account and should be viewed as a somewhat loose upper-bound on the com-
plexity of solving such instances. In particular, this discussion does not reflect the pos-
sibility of exploiting the small secret for example through modulus reduction (Remark
1) and the approach discussed next.

5 Improved Embedding Attack

We present an improved version of the embedding attack described in Section 2.2. To do
so, we exploit the fact that the secret key s is extremely short. Recall that the coefficients
of the secret lie in a small subset H = [−β, β] ⊂ Zq. Typically, Huang, Liu and Yang
suggested to take β = 2 (Table 1).

Let
(
p, p(s)

)
= (p, c) ←$ MQ(n)

s,Φ be a public-key of HLY scheme. Let Ap ∈ Zn×m
q be

the matrix corresponding to the linear part of p. According to Fact 1, we can write:

c ≡ s · Ap + e + p(0) mod q,

where e ≡ p(s) − s · Ap − p(0) mod q. Notice that each coefficient of e is the sum of
n(n + 1)/2 discrete Gaussians. From now on, we let y ≡ c − p(0) ≡ s · Ap + e mod q to
ignore the constant part.

The basic idea is to consider the lattice defined by the following basis B:

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

qIm 0 0
Ap In 0
−y 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

458 M.R. Albrecht et al.

Since y ≡ sAp + e (mod q), there exists k ∈ Z
m satisfying y = s · Ap + e + qk ∈ Z

m.
Notice that the lattice L(B) contains a short vector w = [−e | s | 1] ∈ Z

m+n+1, since
[k | s | 1] · B = [qk + sAp − y | s | 1] = w. Applying the reduction algorithm to the
lattice L(B) is less efficient than the basic embedding attack. The dimension m + n + 1
is larger than m + 1 and the short vector w = [−e | s | 1] ∈ Zm+n+1 contains e entirely.

However, we can consider a truncated lattice defined by an (m′ + n + 1)-dimension
right-bottom submatrix B′ of B. By this truncation, we have the following relations:

[k′ | s | 1] ·
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

qIm′ 0 0
A′p In 0
−y′ 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= [−e′ | s | 1] ∈ Zm′+n+1.

We note that w′ = [−e′ | s | 1] should be shorter than the previous w. Hence, we could
expect a ‘less powerful’ basis reduction algorithm to be required for recovery of ±w′
as compared to one required for recovery of the previous w. We finally note that, if
m′ < m − n, then the dimension is smaller than that of the lattice in the direct approach.

5.1 Estimation of the Expected Gap

For an N dimensional latticeΛ, we defineσ(Λ) ≈ √N/2πe·vol(Λ)1/N to be the expected
first minimum λ1(Λ) according to the Gaussian heuristic. We have

σ(L(B′)) ≈ √(n + m′ + 1)/2πe · qm′/(n+m′+1).

Next, we estimate ‖w′‖ = √‖s‖2 + ‖e′‖2 + 1. Since s is chosen from {−β, . . . , β} uni-
formly at random, the expected value of ‖s‖2 is n · 1

2β+1

∑β
i=−β i2 = nβ(β + 1)/3. As

mentioned above, each coefficient of e′ follows a discrete Gaussian of standard devia-
tion γ. Hence, E[‖e′‖] can be estimated as

√
m′ · γ. Summarizing the above, we obtain

(using β = 2):

E[‖w′‖] ≈ √m′γ2 + 2n + 1 ≈ √m′ · ζ2 · n · (n + 1) + 2n.

Hence, the expected gap is expected to be

σ(L(B′))
‖w′‖ ≈

√
n+m′+1

2πen(m′ζ2(n+1)+2) · qm′/(n+m′+1). (5)

We finally note that, when comparing the efficacy of embedding attacks, the expected
gaps should be compared with those of lattices of the same dimension. If the dimen-
sions differ, we derive less information regarding the success of the lattice-reduction
algorithm in finding the shortest vector.

6 Practical Attacks against HLY Challenges

From the discussion in Section 4, we expect that all parameters suggested in [17] should
be weak against a lattice-reduction attack. To mount such attacks practically we make

Practical Cryptanalysis of a Public-Key Encryption Scheme 459

Table 1. Suggested parameters in [17]

Case n m ζ β q Hardness (T, μ)
1 200 400 10 2 18031317546972632788519 ≈ 273.93 (2156, 2−100)
2 256 512 10 2 52324402795762678724873 ≈ 275.47 (2205, 2−104)

use of the fact that we can view the hard problem from [17] as an LWE instance and then
solve these instances using lattice reduction. In particular, we consider all the parameter
sets proposed in [17] (Table 1).

The column “Hardness” (T, μ) is a strict lower bound [17] on the complexity of
solving MQ(n,m,Φζ,Hβ) under Assumption 1. The parameters of Case (1) are chosen
such that no adversary running in time less than 282 can break the semantic security of
the HLY bit-encryption scheme with advantage better than 2−11. For the KEM, Case
(1) provides a security of (285, 2−10) (which denotes (time, advantage). Case (2) was
expected to provide a security level of (2130, 2−11) for the bit encryption scheme (and a
security level of (2130, 2−10) for the KEM scheme).

Case (1)

Distinguishing. We have m = 400 equations in n = 200 unknowns. Coefficients for
quadratic terms are chosen from a discrete Gaussian with standard deviation ζ = 10
and the secret is in [−β, . . . , β] for β = 2. If we ignore all quadratic terms and only con-
sider the linear part, we have an LWE-style instance with m = 400, n = 200, q ≈ 273.93

and standard deviation γ =
√

200·201
2 · 102 ·

(
52−1

12

)2 ≈ 211.47. In this instance, the optimal

sub-lattice dimension for applying LLL is
√

n log(q)/ log(1.0219) ≈ 688. However, ap-
plying LLL in dimension 400 is expected to return a vector of norm v = qn/m ·δm

0 ≈ 249.47

which is more than sufficient to distinguish between such LWE samples and random
with advantage ε = exp

(
− πs2v2

q2

)
≈ 0.9999. We ran the LLL algorithm as implemented

in fpLLL [29] on lattice instances as in Case (1), i.e., with m = 400, n = 200, q =
18031317546972632788519. More precisely, we ran LLL (using Sage’s default param-
eters [30]) on the 400×400 dual lattice. The shortest vector recovered by LLL had norm
249.76 while we predicted a norm of 249.47. The entire computation took 26 hours on a
single core.

Modulus Reduction. A slightly more efficient variant is to perform modulus reduction
before performing LLL in order to keep coefficients small. We may apply modulus
reduction technique (Remark 1) with the above parameters and pick p ≈ 265.00 and
γ ≈ 23.59. Applying LLL in dimension 400 is expected to return a vector of norm
v = 245.00 which translates into a distinguishing advantage of ε ≈ 1.

Embedding. We may also consider the embedding attack as described in Section 2.2.
We apply LLL to the 401 × 401 extended primal lattice and using a (conservative)
embedding factor � √m · σ�. The λ2/λ1 gap in this case is approximately

460 M.R. Albrecht et al.

vol(L(B))1/m·Γ(1+m/2)1/m√
2πmσ

≈ q
m−n

m
√

m
2πe√

2mσ
≈ 222.94.

The attack recovered the ‘noise’ from the public key, allowing the private key (or an
equivalent) to be recovered by simple linear algebra. We note that this attack obviates
the need for a separate search-to-distinguishing phase, as required in the dual-lattice
method, the attack taking again ∼26 hours using a single core.

Improved Embedding. We set m′ = 66 ≈ 200/3. Our attack can recover the secret
key s from every vector y = c − p(0). The running times vary from 268.69 to 295.34
seconds and the average (on 10 instances) of them is 278.16 seconds. We notice that the
expected gap (5) is ≈ 26.267. This attack was mounted on a Core i7 PC using the NTL
library [28] with GMP [15]. In each case, we ran the BKZ algorithm (G BKZ FP with
δ = 0.99, block size = 30, and prune = 10) on 267-dimensional lattices constructed
from the public-keys. We computed m′ by incrementing m′ from 1 until we success to
recover in a test case.

Case (2)

Distinguishing. We have m = 512 equations in n = 256 unknowns modulo q ≈ 275.47.
Coefficients for quadratic terms are chosen from a discrete Gaussian with standard de-
viation ζ = 10 and the secret is in [−2, . . . , 2] for β = 2. This gives a standard deviation

γ =

√
256·257

2 · 102 ·
(

52−1
12

)2 ≈ 211.82. Applying LLL in dimension 512 is expected to re-

turn a vector of norm v = qn/m · δm
0 ≈ 253.74 which is more than sufficient to distinguish

between such LWE samples and random with advantage ε = exp
(
− πs2v2

q2

)
≈ 1.

Modulus Reduction. Using modulus reduction, we pick p ≈ 266.36 and γ ≈ 23.76. Ap-
plying LLL in dimension 512 is expected to return a vector of norm v = 216.00 which
translates into a distinguishing advantage of ε ≈ 1.

Improved Embedding. We set m′ = 90 as a slightly larger integer than a third of n. Our
attack successfully recovers the secret keys from all ten public-keys. The running times
vary from 898.14 to 1119.53 seconds and the average of them is 964.83 seconds (≈ 16
minutes). We note that the expected gap is ≈ 27.176.

Beyond the Challenges. To examine how the improved embedding attack scales, we
consider larger parameters than those provided by the two challenges of Huang, Liu
and Yang. In order to extend these challenges, we fix ζ = 10, β = 2, m = 2n, k = 12,
and λ = 5 and calculate q. From the correctness condition in [17] (see also Section 4),
we should set q ≥ NextPrime(4kζβ2mn2+λ) = NextPrime(3840n8). From the provable
security side, in order to employ the leftover hash lemma, Huang et al. [17] require q
to satisfy m · log(2nλ+1) ≥ (n+1) log q+2k. We here take q as small as possible, that is,

Practical Cryptanalysis of a Public-Key Encryption Scheme 461

we take q = NextPrime(3840n8), which always satisfies the correctness constraint and
the security constraint.

Employing a single core of an i7 machine (3.4GHz), we ran the LLL algorithm on
lattices constructed from the public keys with the parameter n increasing from 100 with
intervals of 25. We computed m′ on each n by incrementing m′ from 30 at an interval of
10 until we were able to successfully recover a shortest vector in such a test case. The
implementation of LLL in the NTL library consists of a number of variants of LLL ca-
pable of handling differing precision levels. Additionally, to enhance numerical stabil-
ity, Givens orthogonalization can be used in place of Gram-Schmidt orthogonalization,
the use of Given orthogonalization being denoted by a G prefix. The variants which
concern us are: G LLL FP - LLL with Givens orthogonalization + double precision;
G LLL QP - LLL with Givens orthogonalization + quadratic precision and G LLL RR
- LLL with Givens orthogonalization and arbitrary precision - we used a precision of
150 bits.

Table 2 summarises the results of experiments using G LLL FP, G LLL QP, and
G LLL RR (with precision 150), respectively. Due to precision limitations, G LLL FP
fails at n = 300 while G LLL QP stops at n = 450. We also ran G LLL RR with default
precision 150. Due to time constraints, we only ran this algorithm for parameters up to
and including n = 325.

We can approximate the charts of the logarithm of TFP, TQP, and TRR, which are the
running times (in seconds) for these algorithms; log2(TFP) = 6.9675 log(n) − 27.238,
log2(TQP) = 7.3037 log(n) − 27.208, and log2(TRR) = 6.4345 log(n) − 18.502, By
using Tcycle = T · 3.4 · 109, we obtain bit-operation complexity estimation formulae
log2(TFP,cycle) = 6.9675 log(n) + 4.425, log2(TQP,cycle) = 7.3037 log(n) + 4.459, and
log2(TRR,cycle) = 6.4345 log(n) + 13.161.

Our experiment shows that G LLL QP can find the secret keys up to n = 425 in
approximately 2 days. Although we could run G LLL RR on n ≥ 425 to avoid the

Table 2. Experimental results using G LLL FP, G LLL QP, and G LLL RR with precision 150

G LLL FP G LLL QP G LLL RR *

n q m′ TFP (sec.) m′ TQP (sec.) m′ TRR (sec.)

100 ≈ 265.058 30 31 ≈ 24.954 30 115 ≈ 26.845 30 2412 ≈ 211.237

125 ≈ 267.533 40 82 ≈ 26.358 40 294 ≈ 28.200 40 5960 ≈ 212.541

150 ≈ 269.737 50 177 ≈ 27.468 50 626 ≈ 29.290 50 11974 ≈ 213.548

175 ≈ 271.517 70 466 ≈ 28.864 70 1411 ≈ 210.463 70 27190 ≈ 214.731

200 ≈ 273.057 80 810 ≈ 29.662 80 2441 ≈ 211.253 80 50976 ≈ 215.638

225 ≈ 274.417 100 1456 ≈ 210.508 100 4513 ≈ 212.140 100 86427 ≈ 216.399

250 ≈ 275.633 120 2487 ≈ 211.280 120 7587 ≈ 212.889 120 135423 ≈ 217.047

275 ≈ 276.733 140 3784 ≈ 211.886 130 11720 ≈ 213.517 140 203450 ≈ 217.634

300 ≈ 277.737 — fail 160 19285 ≈ 214.235 160 292092 ≈ 218.156

325 ≈ 278.661 200 32016 ≈ 214.967 190 439574 ≈ 218.746

350 ≈ 279.516 230 44158 ≈ 215.430

375 ≈ 280.313 280 82369 ≈ 216.330

400 ≈ 281.057 330 119767 ≈ 216.870

425 ≈ 281.757 400 175007 ≈ 217.417

450 ≈ 282.417 — fail

462 M.R. Albrecht et al.

precision problems with G LLL QP beyond this point, we only ran it up to n = 325 due
to time constraints. If we ran G LLL RR on n = 450, our model indicates that around
220.808 seconds ≈ 21 days would be required. However, we expect that LLL will be
insufficient to recover the private key (with probability ∼ 1) in this manner for values of
n greater than ∼ 500. For such values of n, lattice reduction algorithms achieving lower
root Hermite factors will be required 3. We expect this to be the case due to observations
made in [13] and [4] that we can expect to solve unique-SVP instances with a certain
probability p whenever we have

λ2(L)/λ1(L) ≥ τp · δdim(L)
0

for some τp ∈ (0, 1]. The values of τp derived experimentally in [13] ranged from 0.18
to 0.45, though with unspecified p. In [4], values of τ0.1 were derived experimentally
for LWE instances, with values between 0.385 and 0.400 being obtained. Though there
are ‘structural’ differences in the lattices employed in this work and [13],[4], we expect
the model above to also hold reasonably well.

In any case, our experimental results suggest that the security bounds derived in
Section 4 are already very pessimistic; even bigger keys than (4), for example, should
be considered to thwart the improved embedding attack.

Acknowledgement. Jean-Charles Faugère and Ludovic Perret have been partially sup-
ported supported by the Computer Algebra and Cryptography (CAC) project (ANR-09-
JCJCJ-0064-01) and the HPAC grant (ANR ANR-11-BS02-013) of the French National
Research Agency.

References

1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: STOC,
pp. 99–108 (1996)

2. Albrecht, M.R., Cid, C., Faugère, J.-C., Fitzpatrick, R., Perret, L.: On the complexity
of the BKW algorithm on LWE. Cryptology ePrint Archive, Report 2012/636 (2012),
http://eprint.iacr.org/; Des. Codes Cryptogr. (2013)

3. Albrecht, M.R., Farshim, P., Faugère, J.-C., Perret, L.: Polly Cracker, revisited. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 179–196. Springer, Heidelberg
(2011), http://eprint.iacr.org/

4. Albrecht, M.R., Fitzpatrick, R., Gopfert, F.: On the efficacy of solving lwe by reduction to
unique-svp. Cryptology ePrint Archive, Report 2013/602 (2013),
http://eprint.iacr.org/

5. Bardet, M.: Étude des systèmes algébriques surdéterminés. Applications aux codes cor-
recteurs et à la cryptographie. PhD thesis, Université Paris VI (2004)

6. Bardet, M., Faugère, J.-C., Salvy, B.: Complexity of Gröbner basis computation for semi-
regular overdetermined sequences over F2 with solutions in F2. Technical Report 5049, IN-
RIA (December 2003), http://www.inria.fr/rrrt/rr-5049.html

3 However, further improved embedding attacks may enable larger values of n to be attacked
using only LLL, but we do not deal with this here.

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.inria.fr/rrrt/rr-5049.html

Practical Cryptanalysis of a Public-Key Encryption Scheme 463

7. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of Gröbner basis computation
of semi-regular overdetermined algebraic equations. In: Proc. International Conference on
Polynomial System Solving (ICPSS), pp. 71–75 (2004)

8. Berbain, C., Gilbert, H., Patarin, J.: QUAD: A multivariate stream cipher with provable se-
curity. J. Symb. Comput. 44(12), 1703–1723 (2009)

9. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of Learning
with Errors. To appear STOC 2013 (2013)

10. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard)
LWE. In: Ostrovsky, R. (ed.) IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, pp. 97–106. IEEE (2011)

11. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes
nach einem nulldimensionalen Polynomideal. PhD thesis, University of Innsbruck (1965)

12. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without reduction to
zero (F5). In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic
Computation, pp. 75–83. ACM, New York (2002)

13. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman (1979)

15. G.: GMP: The GNU multiple precision arithmetic library, http://gmplib.org/
16. Goldstein, D., Mayer, A.: On the equidistribution of hecke points (2003)
17. Huang, Y.-J., Liu, F.-H., Yang, B.-Y.: Public-key cryptography from new multivariate

quadratic assumptions. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 190–205. Springer, Heidelberg (2012)

18. Kannan, R.: Minkowski’s convex body theorem and integer programming. Mathematics of
Operations Research 12(3), 415–440 (1987)

19. Khot, S.: Hardness of approximating the shortest vector problem in lattices. J. ACM 52(5),
789–808 (2005)

20. Lovász, L., Lenstra Jr., H.W., Lenstra, A.K.: Factoring polynomials with rational coefficients.
Mathematische Annalen 261, 515–534 (1982)

21. Lindner, R., Peikert, C.: Better key sizes (and attacks) for lwe-based encryption. IACR Cryp-
tology ePrint Archive, 592 (2010)

22. Liu, Y.-K., Lyubashevsky, V., Micciancio, D.: On Bounded Distance Decoding for General
Lattices. In: Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RAN-
DOM 2006. LNCS, vol. 4110, pp. 450–461. Springer, Heidelberg (2006)

23. Lyubashevsky, V., Micciancio, D.: On bounded distance decoding, unique shortest vectors,
and the minimum distance problem. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 577–594. Springer, Heidelberg (2009)

24. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS,
vol. 330, pp. 419–453. Springer, Heidelberg (1988)

25. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: a cryptographic perspec-
tive. The Kluwer International Series in Engineering and Computer Science, vol. 671.
Kluwer Academic Publishers, Boston (2002)

26. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J.,
Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer, Heidelberg (2009)

http://gmplib.org/

464 M.R. Albrecht et al.

27. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J.
ACM 56(6) (2009)

28. Shoup, V.: NTL: A library for doing number theory, http://shoup.net/ntl/
29. Stéhle, D., et al.: fpLLL 4.0.4. fpLLL Development Team (2013),

http://perso.ens-lyon.fr/damien.stehle/fplll/

30. Stein, W.A., et al.: Sage Mathematics Software (Version 5.2). The Sage Development Team
(2012), http://www.sagemath.org

31. von Zur Gathen, J., Gerhard, J.: Modern computer algebra, 2nd edn. Cambridge University
Press (2003)

http://shoup.net/ntl/
http://perso.ens-lyon.fr/damien.stehle/fplll/
http://www.sagemath.org

Related Randomness Attacks

for Public Key Encryption

Kenneth G. Paterson, Jacob C.N. Schuldt, and Dale L. Sibborn�

Information Security Group, Royal Holloway, University of London
{kenny.paterson,jacob.schuldt,dale.sibborn.2011}@rhul.ac.uk

Abstract. Several recent and high-profile incidents give cause to be-
lieve that randomness failures of various kinds are endemic in deployed
cryptographic systems. In the face of this, it behoves cryptographic re-
searchers to develop methods to immunise – to the extent that it is
possible – cryptographic schemes against such failures. This paper con-
siders the practically-motivated situation where an adversary is able to
force a public key encryption scheme to reuse random values, and func-
tions of those values, in encryption computations involving adversarially
chosen public keys and messages. It presents a security model appro-
priate to this situation, along with variants of this model. It also pro-
vides necessary conditions on the set of functions used in order to attain
this security notation, and demonstrates that these conditions are also
sufficient in the Random Oracle Model. Further standard model con-
structions achieving weaker security notions are also given, with these
constructions having interesting connections to other primitives includ-
ing: pseudo-random functions that are secure in the related key attack
setting; Correlated Input Secure hash functions; and public key encryp-
tion schemes that are secure in the auxiliary input setting (this being a
special type of leakage resilience).

1 Introduction

Modern cryptographic primitives are heavy consumers of randomness. Unfor-
tunately, random number generators (RNGs) used to provide this randomness
often fail in practice [16,18,20,21,13,1,15,26]. This is due to issues including poor
algorithmic design, software bugs, insufficient or poor estimation of system en-
tropy, and the handling of randomness across virtual machine resets [27]. The
results of randomness failures can be catastrophic and newsworthy in practice –
DSA, ECDSA and Schnorr private signing keys can be exposed [9,27]; plaintext
recovery for low entropy plaintext becomes possible in the the public key encryp-
tion setting; key generation processes can be severely weakened [13,24,22,10];
ephemeral Diffie-Hellman keys can become predictable leading to compromise of
session keys [18]; and electronic wallet security can be compromised [11].

Evidently, randomness failures are a major problem in practice. The cryp-
tography research community has begun to address this problem only relatively

� All authors were supported by EPSRC Leadership Fellowship EP/H005455/1.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 465–482, 2014.
c© International Association for Cryptologic Research 2014

466 K.G. Paterson, J.C.N. Schuldt, and D.L. Sibborn

recently [28,29,23,2,33,27]. Accepting that randomness failures are endemic and
unlikely to be eliminated in totality, a basic approach is to try to hedge against
randomness failures, that is, to design cryptographic primitives that still offer a
degree of security in the face of randomness failures. For signatures, there is a
folklore de-randomisation technique which neatly sidesteps security issues aris-
ing from randomness failures: simply augment the signature scheme’s private
key with a key for a pseudo-random function (PRF), and derive any random-
ness needed during signing by applying this PRF to the message to be signed;
meanwhile verification proceeds as normal. In the symmetric encryption set-
ting, previous work has considered nonce-based encryption [28], misuse-resistant
authenticated encryption (which concerns residual security when nonces are re-
peated) [29], and encryption in a chosen-randomness setting (wherein the adver-
sary is given control over the randomness used for encryption) [23]. Ristenpart
and Yilek [27] studied the use of “hedging” as a general technique for protect-
ing against broad classes of randomness failures in already-deployed systems,
and implemented and benchmarked this technique in OpenSSL. Hedging in the
sense of [27] involves replacing the random value r required in some crypto-
graphic scheme with a hash of r together with other contextual information,
such as a message, algorithm or unique operation identifier, etc. Their results,
while applying to a variety of different randomness failure types (see in particu-
lar [27, Figure 3]), all have their security analyses restricted to the ROM. Work
in the public key encryption setting can be summarised as follows:

– Bellare et al. [2] considered security under chosen distribution attack, wherein
the joint distribution of message and randomness is specified by the adver-
sary, subject to containing a reasonable amount of min entropy. The PKE
scheme designer’s challenge is to find a way of “extracting” this entropy in
a secure way. Bellare et al. gave several designs for PKE schemes achieving
this notion in the Random Oracle Model (ROM) and in the standard model.
This is a powerful and general approach, but does have its limitations: under
extreme failure conditions, the joint message-randomness distribution may
simply fail to contain sufficient entropy, at which point all security guaran-
tees may be lost; moreover, for technical reasons, the model in [2] requires
the target public key to be hidden from the adversary until all encryption
queries have been made. This is impractical in real world applications.

– Yilek [33], inspired by virtual machine reset attacks in [27], considered the
scenario where the adversary does not know the randomness (in contrast to
the chosen-randomness setting of [23]), but can instead force the reuse of
random values that are otherwise well-distributed. This is referred to in [33]
as the Reset Attack (RA) setting. To fully reflect the reality of randomness
failures in this setting, Yilek provides the adversary with the ability to en-
crypt chosen messages under adversarially generated public keys using the
unknown but repeated random values. This makes his model very power-
ful, to the extent that certain trivial attacks must be excluded by assuming
the adversary is equality-pattern respecting. In [33], Yilek also gave a general
construction in which the random coins of the encryption algorithm are used

Related Randomness Attacks for Public Key Encryption 467

as a key to a PRF, the input to the PRF is the public key concatenated with
the message to be encrypted, and the output of the PRF is then used as
the ‘randomness’ for the encryption algorithm. This is sufficient to achieve
security in his RA setting. Note that the RA security model is incomparable
with the CDA model of [2].

1.1 Motivation

Inspired by the challenge of preserving security under randomness failures, we
initiate the study of security for PKE in what we call the Related Randomness
Attack (RRA) setting. Our RRA setting builds on the RA setting from [33] and
brings the theory of hedging PKE against randomness failures closer to practice.
As we shall see, it also has interesting connections with related key attacks for
PRFs and PKE, as developed in [5,3,4,6,32], and leakage resilient cryptography
(and in particular, the techniques developed in [14] to provide security for PKE
in the auxiliary input setting).

In our RRA setting, the adversary can now not only force the reuse of existing
random values as in the RA setting, but can also force the use of functions of
those random values. This power is analogous to the power granted to the adver-
sary in the Related Key Attack (RKA) setting, wherein an adversary is able to
tamper with private (or secret) keys used during cryptographic operations. The
RA setting arises as the special case of our RRA setting where only the identity
function is allowed. The extra adversarial power in the RRA setting allows the
modelling of reset attacks in which the adversary does not have an exact reset
capability, but where the randomness used after a reset is in some way related to
that used on previous resets. Such behaviours were observed in the experimental
work in [27]. Furthermore, our RRA setting allows modelling of situations where
the randomness used in a scheme comes from a PRNG which is not regularly
refreshed with new entropy, but which steps forward under some deterministic
state evolution function Next and output function Out; here the appropriate
functions in our RRA setting would be the compositions Out(Nexti(·)).

More generally, RRA security has a strong theoretical motivation as being a
stepping stone towards giving the adversary enhanced control over the inputs
to cryptographic algorithms – messages (in the standard PKE setting), keys
(in the RKA setting), and now randomness (in our new RRA setting). It is
an interesting direction for future research to develop this theme further, by
examining security in a combined RKA/RRA setting, where the adversary would
be able to simultaneously tamper with all the inputs to a PKE scheme.

1.2 Our Contributions

RRA security model. In this paper, we provide a strong model and security def-
inition for PKE in the RRA setting, which we name RRA-ATK security (where
ATK = CPA or CCA) . Our model is inspired by that of Yilek for the RA setting:
via access to an Enc oracle, we allow the adversary to get arbitrary messages

468 K.G. Paterson, J.C.N. Schuldt, and D.L. Sibborn

encrypted under arbitrary public keys, using functions φ of an initial set of well-
distributed but unknown random values. The public keys can even be maliciously
generated, and the adversary can of course know all the corresponding private
keys. The adversary is tasked with winning an indistinguishability-style game,
via an LR oracle which gives access to encryptions of left or right messages with
respect to an honestly generated target public key pk∗, but again where the ad-
versary can force the use of functions φ of the initial random values. When the
functions φ are limited to coming from some set Φ, we speak of a Φ-restricted
adversary.

Because the adversary may know all but one of the private keys, it can check
that its challenger is behaving correctly with respect to its encryption queries.
This also rules out the possibility of achieving RRA-ATK security for any ran-
domness recovering PKE scheme, like RSA-OAEP [7] and PKE schemes based
on the Fujisaki-Okamoto transformation [17]. Moreover, the encryption queries
concern public keys that are outside the control of the challenger. This increases
the technical challenge of achieving security in the RRA setting. This facet of
the RRA setting bears comparison with the RKA setting for PKE [4,6,32]. In
the RKA setting, the tampering via related key functions only affects the PKE
scheme’s private key, and so only comes into play when simulating decryption
queries. By contrast, it is encryption queries that require special treatment in
our RRA setting.

Given the power of the adversary in the RRA setting, we have to exclude
certain sets of adversarial queries to prevent the adversary from trivially breaking
security. For example, as in the RKA setting, constant functions φ must be
disallowed for security to be achievable. See Section 2 for further discussion.

ROM construction. We are able to show that, in the ROM, these necessary
conditions on the function set Φ are actually also sufficient. More specifically,
we show how to transform any IND-ATK secure PKE scheme PKE into a new
PKE scheme Hash-PKE that is RRA-ATK secure, simply by hashing the random
input together with the public key and message during encryption. In fact, this
is just an application of the hedging approach from [27], and an instance of the
randomized-encrypt-with-hash (REwH) scheme from [2]. Our result then shows
that this approach also provides security in our new RRA setting.

Standard model constructions. Having dealt with the ROM, we then turn our
attention to constructions in the standard model. Reinforcing the connections
to RKA security, we are able to show that any Φ-restricted RKA-PRF can be
used to build a RRA-ATK secure PKE scheme for Φ-restricted adversaries, thus
transferring security from the RKA setting (for PRFs) to the RRA setting for
PKE. But the limited range of RKA-PRFs currently available in the literature
[25,3] essentially restricts the obtained RRA-ATK secure PKE scheme to a
class of functions Φ consisting of linear or group-induced functions. To achieve
an RRA-ATK secure PKE scheme for richer classes of functions, we must seek
alternative methods of construction.

Related Randomness Attacks for Public Key Encryption 469

Unfortunately, we have not been able to achieve our full RRA-ATK security
notion for more interesting function classes using other constructions. So we must
resort to exploring alternative versions of this notion in order to make progress.
We relax RRA-ATK security along two independent dimensions: the degree of
control that the adversary enjoys over the public keys under which it can force
encryptions for related random values, and the degree of adaptivity it has in the
selection of functions φ ∈ Φ:

– We first consider the situation where the public keys are all honestly gener-
ated at the start of the security game, and the public keys and all but one
of the private keys are then given to the adversary — the honest-key, re-
lated randomness attack (HK-RRA) setting. This is a reasonable relaxation
in that, in practice, all the public keys that the adversary might be able to
induce a user to encrypt under would be properly generated by users and
then certified by a CA ahead of time. In this setting, we provide a generic
construction for a scheme achieving HK-RRA-ATK security based on com-
bining any IND-ATK secure PKE scheme with a Correlated-Input Secure
(CIS) hash function [19]. Currently known instantiations of CIS hash func-
tions allow us to obtain selective, HK-RRA-ATK security for Φ-restricted
adversaries where Φ is a large class of polynomial functions (as opposed to
the linear functions we can achieve using our RKA-PRF-based construction).
Here, selectivity refers to the adversary committing at the start of the game
to the set of functions it will use.

– We then consider the situation where there is no restriction on public keys,
but the adversary is committed up-front to a vector of functions φ =
(φ1, . . . , φq) that it will use in its attack, and where security is in the end
quantified over all choices of φ from some set Φ. This quantification is sub-
tly different from allowing the adversary a fully adaptive choice of functions
φ ∈ Φ (for a detailed discussion, see Section 2). In this situation, we refer to
the function-vector, related randomness attack (FV-RRA) model. Here, we
are able to give a direct construction for a PKE scheme that is FV-RRA-ATK
secure solely under the DDH assumption, assuming the component functions
φi of φ are simultaneously hard to invert on a random input. Our scheme is
inspired by a PKE scheme of Boneh et al. [12] that is secure in the so-called
auxiliary input setting, wherein the adversary is given a hard-to-invert func-
tion of the secret key as part of its input. By swapping the roles of secret key
and randomness in the Boneh et al. scheme, we are able to obtain security
in a setting where a hard-to-invert function of the encryption randomness is
leaked to the adversary. This leakage is then sufficient to allow us to simulate
the encryptions for adversarially chosen public keys. For technical reasons, to
obtain a construction, we must also limit our adversary to using the identity
function when accessing its LR oracle.

To summarise, in the standard model, we can achieve our full security notion,
RRA-ATK security, but only for a limited class of functions Φ (inherited from
known results on RKA-PRFs), while we can achieve alternative security notions
for richer classes Φ.

470 K.G. Paterson, J.C.N. Schuldt, and D.L. Sibborn

1.3 Future Directions

In this paper, we concentrate on PKE, but RRA security notions can be devel-
oped for other primitives. As previously noted, the case of signatures is quite
simple, provided one is prepared to extend a scheme’s private key. We would
expect symmetric key encryption and key exchange primitives to be more com-
plex. Also as noted above, our RRA setting is related to the RKA setting, and it
is an open problem to develop these connections further, possibly by considering
a combined RKA/RRA setting.

2 Related Randomness Security for PKE

We now formalise our notions of related randomness security for PKE. We give a
detailed treatment of our strongest notion, before sketching restricted versions.
The description of our security notions will utilise code-based games and the
associated language (see [8]).

Our strongest security notion, RRA-CCA security, is defined via the game
in Figure 1. Here, a challenge key pair (pk∗, sk∗) for a PKE scheme PKE =
(PKE.K, PKE.E, PKE.D) with randomness space Rnd is honestly generated, and the
adversary is considered successful if it wins an indistinguishability game with
respect to messages encrypted under pk∗. Extending the standard PKE setting,
the adversary is able to control which one of polynomially many random values
ri ∈ Rnd is used in responding to each encryption query for pk∗; furthermore,
the adversary is able to obtain the encryption of messages of its choice under
(possibly maliciously generated) arbitrary public keys. Extending the model of
Yilek [33], our adversary not only specifies which one of the random values ri is
to be used in each query, but also specifies, for each query he makes, a function φ
on Rnd; the value φ(ri) is used for encryption in place of ri. In the CCA setting,
the adversary also has access to a regular decryption oracle for private key sk∗.
Note that if the adversary uses only the identity function, then we recover the
Resettability Attack (RA) model of Yilek [33].

It is not difficult to see that, as in the RA setting, an adversary may trivially
win this game if no restrictions are placed on oracle queries.1 We will shortly
introduce an equality-pattern respecting definition for adversaries, designed to
prevent trivial wins of this kind. This extends the related RA definition from
[33]. However, restrictions on the functions φ will also be required. To illustrate
the issue, consider as an extreme case the constant function φC (with φC(r) = C
for all r ∈ Rnd). Suppose the adversary submits LR query (m0,m1, j, φC) for
any m0 �= m1 and any j ∈ N; the adversary receives a ciphertext c∗ and then

1 For example, if an adversary requests the encryption of m under the target public
key using coins φ(ri), PKE.E(pk

∗,m;φ(ri)), and submits LR query (m,m′, i, φ), then
the adversary guesses b is 0 if the two ciphertexts match, otherwise he guesses b is 1.
This adversary wins the game with probability 1. As in the RA setting, such wins are
unavoidable in our setting since encryption essentially becomes deterministic when
the same random coins and functions φ are used.

Related Randomness Attacks for Public Key Encryption 471

proc. Initialise(λ):

b ←$ {0, 1};
(pk∗, sk∗) ←$ PKE.K(1λ);
CoinTab ← ∅;
S ← ∅; Return pk∗

proc. Dec(c):

If c ∈ S , then return ⊥
Else return PKE.D(sk∗, c)

proc. LR(m0,m1, i, φ):

If CoinTab[i] =⊥
CoinTab[i] ←$ Rnd

ri ← CoinTab[i]
c ← PKE.E(pk∗,mb;φ(ri))
S ← S ∪ {c}
Return c

proc. Enc(pk,m, i, φ):

If CoinTab[i] =⊥
CoinTab[i] ←$ Rnd

ri ← CoinTab[i]
c ← PKE.E(pk,m;φ(ri))
Return c

proc. Finalise(b′):
If b = b′, return 1

Fig. 1. Game RRA-ATK. (Note that if ATK = CPA, then the adversary’s access to
proc. Dec is removed.)

computes c0 = PKE.E(pk∗,m0;C); the adversary outputs guess b′ = 0 if and only
if c∗ = c0. It is easy to see that this adversary wins the RRA-ATK game with
probability 1. This example is analogous to one in the related key attack setting
for PRFs in [5]. Hence, we will need to restrict the class of functions which the
adversary is allowed to access in its queries to come from some set Φ, in which
case we speak of Φ-restricted adversaries. We have already seen that constant
functions must be excluded from Φ if we are to have any hope of achieving our
related randomness security notion.

Thus we have two sets of constraints that we need to consider to prevent
trivial wins: those on messages and randomness indices (analogous to the RA
setting from [33]) and those on functions φ (analogous to the RKA setting for
PRFs from [5]). Let us deal with the first set of constraints first and define
what it means for an adversary to be equality-pattern respecting. The following
definition is adapted from [33] for our purposes.

Definition 1. Let A be a Φ-restricted adversary in Game RRA-ATK that que-
ries r different randomness indices to its LR and Enc oracles and makes qi,φ
queries to its LR oracle with index i and function φ ∈ Φ. Let Ei,φ be the set of all

messages m such that A makes Enc query (pk∗,m, i, φ). Let (mi,φ,1
0 ,mi,φ,1

1), . . . ,

(m
i,φ,qi,φ
0 ,m

i,φ,qi,φ
1) be A’s LR queries for index i ∈ [r] and φ ∈ Φ. Suppose that

for all pairs (i, φ) ∈ [r] × Φ and for all j �= k ∈ [qi,φ], we have:

mi,φ,j
0 = mi,φ,k

0 iff mi,φ,j
1 = mi,φ,k

1

and that, for all pairs (i, φ) ∈ [r] × Φ, and for all j ∈ [qi,φ], we have:

mi,φ,j
0 /∈ Ei,φ ∧ mi,φ,j

1 /∈ Ei,φ.

Then we say that A is equality-pattern respecting.

Notice that if the adversary is restricted to using only the identity function,
then this definition reduces to the equality-pattern respecting definition for the
RA setting, cf. [33, Appendix A].

472 K.G. Paterson, J.C.N. Schuldt, and D.L. Sibborn

Definition 2. We define the advantage of an equality-pattern respecting, RRA-
ATK adversary A against a PKE scheme PKE to be:

Advrra-atk
PKE,A (λ) := 2 · P[RRA-ATKA

PKE(λ) ⇒ 1] − 1.

A PKE scheme PKE is said to be Φ-RRA-ATK secure if the advantage of any
Φ-restricted, equality-pattern respecting, RRA-ATK adversary against PKE that
runs in polynomial time is negligible in the security parameter λ.

2.1 Alternative Security Notions

The above definition for Φ-RRA-ATK security is very powerful: it allows an
adversary to submit any public key to its encryption oracle and allows the ad-
versary to adaptively choose the functions φ, the only restriction being that they
lie in Φ. In Section 2.2 we will exhibit conditions that are both necessary and
sufficient for achieving security in this sense in the ROM (given a starting PKE
scheme that satisfies the usual definition of IND-ATK security). In the standard
model, we will give a construction that relies on RKA-PRFs. Since construc-
tions for these are currently very limited in terms of the function classes they
can handle, we will now consider alternative versions of the Φ-RRA-ATK notion.

The first alternative notion we consider is called Honest Key Related Ran-
domness (HK-RRA) security. The security game has two parameters, λ and �.
Informally, the game itself generates a polynomial number � of key pairs and re-
turns the public keys to the adversary. The adversary then chooses which public
key he wishes to be the target key, and is given the private keys corresponding to
all the non-target public keys. Meanwhile, the adversary’s queries to its Enc or-
acle are restricted to using the public keys generated by the game. Suitable
Φ-HK-RRA-ATK security notions follow by analogy with our earlier definitions.

One may consider notions intermediate between Φ-RRA-ATK security and Φ-
HK-RRA-ATK security. For example, a registered key notion could be defined,
in which the adversary chooses and registers key pairs (pk, sk), with registration
involving a test for validity by some procedure, and all queries involve only
registered public keys. One may also consider weaker variants of these notions in
which the adversary’s choice of functions φ is non-adaptive (or selective). That
is, the adversary must submit a set of functions {φ} ⊂ Φ of polynomial size to
the game before he is allowed to see the target public key (or set of public keys, if
playing in the Honest Key setting). In this setting, we refer to Φ-sHK-RRA-ATK
security.

The final alternative notion we consider is called Function-Vector Related
Randomness (FV-RRA) security, and is based on the game in Figure 2. Here,
the adversary is parameterised by a vector of functions φ = (φ1, . . . , φq), and
is limited to using only these functions in its oracle queries. Additionally, we
restrict the adversary by demanding that the LR queries use only the identity
function. However, once again, the adversary has complete freedom over public
keys submitted to its encryption oracle. Furthermore, security will be quantified
over all choices of vector from a particular class. (Specifically, in our construction

Related Randomness Attacks for Public Key Encryption 473

proc. Initialise(λ):

b ←$ {0, 1};
(pk∗, sk∗) ←$ PKE.K(1λ);
CoinTab ← ∅; S ← ∅;
return pk∗

proc. Dec(c):

If c ∈ S , then return ⊥
Else return PKE.D(sk∗, c)

proc. LR(m0,m1, i):

If CoinTab[i] =⊥,
CoinTab[i] ←$ Rnd

ri ← CoinTab[i]
c ← PKE.E(pk∗,mb; ri)
S ← S ∪ {c}
return c

proc. Enc(pk,m, i, j):

If CoinTab[i] =⊥,
CoinTab[i] ←$ Rnd

ri ← CoinTab[i]
c ← PKE.E(pk,m;φj(ri))
return c

proc. Finalise(b′):
If b = b′, return 1

Fig. 2. Game φ-FV-RRA-ATK, where φ = (φ1, . . . , φq). (As usual, if ATK = CPA,
then the adversary’s access to proc. Dec is removed.)

in Section 5, we will demand that security holds over all vectors φ that are
simultaneously hard to invert on a common random input r.) This quantification
actually makes our notion rather strong.

Definition 3. Let φ = (φ1, . . . , φq) be a vector of q := q(λ) functions. We define
the advantage of an equality-pattern respecting, φ-FV-RRA-ATK adversary A
against a PKE scheme PKE to be:

Adv
φ-fv-rra-atk
PKE,A (λ) := 2 · P[φ-FV-RRA-ATKA

PKE(λ) ⇒ 1] − 1.

If Φ is a set of vectors of functions, then a PKE scheme PKE is said to be Φ-
FV-RRA-ATK secure if, for all φ ∈ Φ, the advantage of any equality-pattern
respecting, φ-FV-RRA-ATK adversary against PKE that runs in polynomial time
is negligible in the security parameter λ.

Comparison of security notions. The first alternative security notion, HK-RRA-
ATK security, is easily seen to be a strictly weaker notion than full RRA-ATK
security2. Likewise, the selective models are easily seen to be weaker then their
adaptive counterparts. However, the relation between full RRA-ATK security
and FV-RRA-ATK security is not immediately obvious. Aside from the restric-
tion on LR-queries in FV-RRA-ATK security, there is a subtle distinction be-
tween requiring security for all vectors φ of functions from a particular set Φ
and requiring security for a fully adaptive choice of functions φ ∈ Φ. In par-
ticular, the former notion will allow a security reduction to consider multiple
runs of an adversary with different random coins for a fixed choice of function
vector φ, whereas the latter notion will leave open the possibility that an ad-
versary will chose a different sequence of functions φ in each run. Also note that
FV-RRA-ATK security guarantees that there is no choice of φ for which the

2 A separation can be established by considering a scheme where public keys generated
by the key generation algorithm always have a certain bit set to 0, and where the
encryption algorithm, given a public key with this bit set to 1 (i.e. a maliciously
generated public key), will expose the randomness used for the encryption.

474 K.G. Paterson, J.C.N. Schuldt, and D.L. Sibborn

considered scheme is weak, even if this choice might be computationally hard
for an adaptive adversary to find. Furthermore, the relation between the notions
might also be influenced by the considered class of functions Φ. It remains future
work to fully explore and categorise the possible notions of RRA security.

It is not hard to see that our RRA security notions are incomparable with the
CDA security notions of [2]. In the RA setting, Yilek defines only an equivalent
of our full RRA-ATK notion; it is clear that RRA-ATK security is stronger than
his RA-ATK security whenever the function set Φ contains the identity function.
The same would carry over to relaxed versions of RA-ATK security.

2.2 Function Restrictions

Above, we briefly alluded to the fact that the class of functions Φ used by our
RRA adversaries must be restricted in various ways. The example given showed
that constant functions must always be excluded. Here, we exhibit much stronger
necessary conditions on Φ that must be satisfied, namely output-unpredictability
and collision-resistance. These notions are closely related to notions with the
same names arising in the setting of related key security for PRFs that was
considered in [5]. Here, however, we are concerned with functions acting on the
randomness used in PKE schemes rather than on PRF keys.

Definition 4 (Output-unpredictability for Φ). Let Φ be a set of functions
from Rnd to Rnd. Let α and β be positive integers. Then the (α, β)-output-
unpredictability of Φ is defined to be:

InSecupΦ (α, β) = max
P⊆Φ,X⊆R,|P |≤α,|X|≤β

{P [r ←$ Rnd : {φ(r) : φ ∈ P} ∩ X �= ∅]} .

Definition 5 (Collision-resistance for Φ). Let Φ be a set of functions from
Rnd to Rnd. Let α be a positive integer. Then the α-collision-resistance of Φ is
defined to be:

InSeccrΦ (α) = max
P⊆Φ,|P |≤α

{P [r ←$ Rnd : |{φ(r) : φ ∈ P}| < |P |]} .

Regarding these two definitions, we have the two following results.

Theorem 1 (Necessity of output-unpredictability). Let Φ be a class of
functions from Rnd to Rnd. Suppose there are natural numbers α = poly1(λ) and
β = poly2(λ) such that InSecupΦ (α, β) = p, where p := p(λ) is non-negligible.
Then no PKE scheme can be RRA-ATK secure with respect to the class of
functions Φ.

Theorem 2 (Necessity of collision-resistance). Let Φ be a class of functions
from Rnd to Rnd. Suppose there is a natural number α = poly1(λ) such that
InSeccrΦ (α) = p, where p := p(λ) is non-negligible. Then no PKE scheme can be
RRA-ATK secure with respect to the class of functions Φ.

Related Randomness Attacks for Public Key Encryption 475

Alg. PRF-PKE.K(1λ):

(pk, sk) ←$ PKE.K(1λ)

Alg. PRF-PKE.E(pk,m):

r ←$ Rnd

r′ ← Fr(pk||m)
c ← PKE.E(pk,m; r′)
return c

Alg. PRF-PKE.D(sk, c):

m ← PKE.D(sk, c)
return m

Fig. 3. Scheme PRF-PKE built from a standard PKE scheme, PKE and a PRF, F

We note that many classes of functions that arise from practical attacks satisfy
these conditions. For example, the class of functions that flip bits at certain posi-
tions, or the class of functions that fix the value of certain bits, are both output-
unpredictable and collision-resistant (provided at least a polynomial number of
bits are not fixed, in the latter case).

In the RO model, these conditions are sufficient to achieve security in our
strongest randomness attacks. More specifically, we can transform any IND-
ATK secure scheme into a RRA-ATK secure scheme, simply by hashing string
representations of the public key, the message, and appropriate randomness, and
then using the output as randomness for the standard encryption scheme. This is
an instance of the randomized-encrypt-with-hash (REwH) scheme from [2]. If the
class of functions Φ is sufficiently collision-resistant and output-unpredictable,
then this scheme is RRA-ATK-secure. We defer the details to the full version.

3 Related Randomness Security from RKA-PRFs

Since the RA setting of [33] is a special case of our RRA setting, an obvious
way to try to achieve RRA security is to extend the main construction from
[33]. That construction combines a PRF with an IND-ATK secure PKE scheme.
Specifically, the randomness r is used as a key to the PRF, and the input to
the PRF is the “context” pk||m; the output from the PRF is then used as the
actual randomness for encryption. This construction extends directly to our set-
ting, and security is guaranteed against Φ-restricted adversaries in our strongest
RRA-ATK models, under the assumption that the PRF is Φ-RKA-secure (i.e.
secure against related key attacks for the same class of functions Φ). Thus the
construction transfers RKA security for PRFs to RRA-ATK security for PKE.
Figure 3 formalises the construction, and Theorem 3 our security result.

Theorem 3. Suppose A is a Φ-restricted, equality-pattern respecting adversary
in the RRA-ATK game against the scheme PRF-PKE defined in Figure 3. Suppose
A makes qLR LR queries, qs Enc queries, and uses qr randomness indices. Then
there exists a Φ-restricted RKA-PRF adversary B and an IND-ATK adversary
C such that

Advrra-atk
PRF-PKE,A(λ) ≤ qLR · qr · Advind-atk

PKE,C (λ) + 2qr · Advrka-prf
F,B (λ).

Adversaries B and C run in approximately the same time as A. Adversary C
makes 1 LR query and the same number of Dec queries as A. Adversary B
makes at most qLR + s queries to its oracle.

476 K.G. Paterson, J.C.N. Schuldt, and D.L. Sibborn

Notice that our RO scheme (mentioned in Section 2) may be interpreted as
an instantiation of our scheme in Figure 3, since a random oracle can be viewed
as an (unkeyed) RKA-PRF.

The previous theorem is seductively simple, but currently of limited applica-
tion because the set of known RKA-secure PRFs is rather sparse. RKA-PRFs
were first formalised in 2003 by Bellare and Kohno [5], and some initial (though
not fully satisfactory) constructions were given in [5] and [25]. Setting these
aside, the only known constructions are due to Bellare and Cash [3]. They gave
a first construction for an RKA-PRF (based on the Naor-Reingold PRF) which
is provably secure under the DDH assumption for related key functions Φ cor-
responding to component-wise multiplication on the key-space (Z∗

p)
n+1. They

also provided a second construction achieving a similar result under the DLIN
assumption. A third construction for related key functions Φ corresponding to
component-wise addition on the key-space (Zp)n was recently withdrawn by the
authors of [3].

The limited nature of existing RKA-PRF families forces us to find alterna-
tive approaches to achieving security in the RRA setting. The application for
RKA-PRFs implied by Theorem 3 also provides yet more motivation for the fun-
damental problem of constructing RKA-PRFs for richer classes of related key
function.

4 Related Randomness PKE from CIS Hash Functions

To address some of the limitations encountered in the previous approach, we
show how a PKE scheme secure in the RRA setting can be constructed using
correlated-input secure (CIS) hash functions as introduced in [19]. While the
currently known instantiations of CIS hash functions only allow us to obtain
selective HK-RRA-ATK security, we are able to obtain security for a large class
of polynomial functions, as opposed to linear functions to which the previous
construction is currently restricted.

In its strongest form, a CIS hash function h (with key k) will yield out-
put hk(x) which is pseudorandom, even when given the hash value of multiple
correlated input values (hk(φ1(x)), . . . , hk(φq(x))), where the correlation func-
tions φ1, . . . , φq are maliciously chosen. This type of CIS hash function is closely
related to RKA-secure PRFs. In fact, the authors of [19] show that given a
CIS hash function h, an RKA-secure weak PRF F can be obtained simply by
exchanging the role of the key and the input of h:

FK(x) := hx(K).

Recall that weak PRF security does not allow an adversary to choose the function
inputs, but instead, the inputs are chosen uniformly at random in the security
game.

Related Randomness Attacks for Public Key Encryption 477

Alg. CI-Hash-PKE.K(1λ):

(pk, sk) ←$ PKE.K(1λ)

k ←$ CI-HASH.K(1λ)

(p̂k, ŝk) ← (pk||k, sk)

Alg. CI-Hash-PKE.E(p̂k,m):

(pk||k) ← p̂k
r ←$ Rnd

r′ ← hk(r)

r′′ ← Fr′(p̂k||m)
c ← PKE.E(pk,m; r′′)
return c

Alg. CI-Hash-PKE.D(ŝk, c):

m ← PKE.D(ŝk, c)
return m

Fig. 4. Scheme CI-Hash-PKE built from PKE scheme PKE, PRF F , and hash function
family H

The authors of [19] furthermore give a concrete construction of a CIS hash
function secure for a class of correlation functions consisting of uniform-output3

polynomials of bounded degree, albeit in a restricted security model where the
adversary’s function queries are non-adaptive. This then yields a non-adaptive,
RKA-secure weak PRF.

Unfortunately, such a PRF this is not sufficient for our purposes. Surprisingly,
however, by making a relatively simple modification to the above construction
of PRFs from CIS hash functions, it is possible to obtain a primitive similar to
an RKA-secure (standard) PRF. More specifically, consider a CIS hash function
h and a standard PRF f . We introduce a public parameter c of F which will
correspond to the key for h, and then, instead of using the output of h directly,
we use h to derive a key for f . More specifically, we define

Fc,K(x) := fhc(K)(x).

Whilst not strictly an RKA-secure PRF due to the presence of the public param-
eter c, this primitive allows adaptively chosen inputs x, while remaining secure
under related key attacks. This ‘partial’ RKA-secure PRF will allow us to ob-
tain HK-RRA-ATK secure encryption schemes for the function families of the
underlying CIS hash function h. However, to achieve this, we need to extend
the definitions and theorems of [19] to the multi-key setting (reflecting the fact
that in the HK-RRA setting, our adversary can interact with multiple public
keys). The extensions of the security definitions are relatively straightforward,
and we defer definitions of a multi-key selective correlated-input pseudorandom
(MK-SCI-PR) secure family of hash functions to the full version.

Based on an ordinary PKE scheme PKE, a PRF F , and a family of hash func-
tions H, we construct a PKE scheme CI-Hash-PKE as shown in Figure 4. The fol-
lowing theorem establishes the selective �-HK-RRA-ATK security of this scheme
based on the IND-ATK security of PKE, the multi-key selective CIS security of
H, and the (regular) pseudorandomness of F .

Theorem 4. Suppose A is a Φ-restricted, equality pattern respecting adver-
sary in the selective �-HK-RRA-ATK game against the scheme CI-Hash-PKE in

3 A polynomial is said to be a uniform-output polynomial if its output range is equal
to its domain i.e. evaluating the polynomial on all values in the domain will again
yield the elements of the domain.

478 K.G. Paterson, J.C.N. Schuldt, and D.L. Sibborn

Figure 4. Suppose A makes qLR LR queries, uses qr randomness indices, and
uses qφ functions in its oracle queries. Then there exists a Φ-restricted, multi-
key, selective correlated-input hash adversary B, a PRF adversary C and an
IND-ATK adversary D such that

Adv�-shk-rra-atkCI-Hash-PKE,A(λ) ≤ 2qφ · qr · Adv�-mk-sci-pr
H,B (λ) + 2qφ · qr · Advprf

F,C(λ)

+� · qLR · qr · Advind-atk
PKE,D (λ) +

�2 · qr
|HashKeySpace| .

Adversaries B, C and D run in approximately the same time as A. Adversary C
makes at most qLR queries, and D makes 1 LR query and as many Dec queries
as A.

It remains to show that we can instantiate a hash function satisfying the
multi-key correlated-input security notion. We achieve this by extending the
security results for the CIS hash function defined in [19]. Concretely, the CIS
hash function from [19] is defined as follows:

GenFun(1λ) : Pick a group G of prime order p, and set the keyspace to K =
G×Zp, the domain to D = Zp, and the range to R = G. Return (K,D,R, h)
where h is a description of the function defined below.

hk(x) : For k ∈ K and x ∈ D, parse k as (g, a) ∈ G × Zp and return

hk(x) = g
1

x+a ,

where 1/(m+ a) is computed modulo p

Based on the decisional q-Diffie Hellman Inversion (q-DDHI) assumption in G,
and extending the results of [19], we are able to show that the above hash
function achieves multi-key correlated-input pseudorandomness for a class of
functions consisting of uniform-output polynomials of bounded degree.

Theorem 5. Assume the decisional q-DDHI assumption holds in G, and let Φ
be a class of uniform-output polynomials over Zp. Then there exists no polyno-
mial time Φ-restricted adversary A with non-negligible advantage in the (Φ, �)-
MK-SCI-PR security game when interacting with H defined as above, provided
that � ·d ≤ q+1, where d is an upper bound on the sum of the degrees of the poly-
nomials submitted by A. More precisely, if � · d ≤ q+1, then for any polynomial
time Φ-restricted A, there exists a polynomial time algorithm B such that

Adv�-mk-sci-pr
H,A (λ) ≤ 2n� · Advq-ddhi

G,B (λ)

where n is the number of polynomials submitted by A.

Note 1. Our ‘partial’ RKA-secure PRF is only secure when an adversary’s func-
tion queries are non-adaptive, which is why we are only able to prove selective
HK-RRA-ATK security. If we had a result similar to Theorem 5 for adaptive
function queries, then we would immediately obtain a PKE scheme that is (adap-
tively) HK-RRA-ATK secure.

Related Randomness Attacks for Public Key Encryption 479

Note 2. The above construction is only shown to achieve HK-RRA-ATK secu-
rity, as opposed to RRA-ATK security. The technical reason for this is that
public keys include a hash key, and the CIS hash function is only assumed to be
secure for honestly generated keys. An alternative solution would be to introduce
a common reference string (CRS) containing a single hash key, and let all users
make use of this. While this requires a trusted third party to initially set up the
CRS, it would be possible to show RRA-ATK security of the above construction
in a security model appropriately extended to model the presence of a CRS.

Likewise, if we had a multi-key CIS hash function that remained secure for
maliciously chosen keys, then we would be able to obtain full RRA-ATK security
for the above construction. Unfortunately, we are currently unaware of how to
obtain such CIS hash functions.

5 Function-Vector Related Randomness Security

Our previous standard model constructions concerned functions φ that are linear
(scheme PRF-PKE analysed in Theorem 3 combined with known RKA-PRF fami-
lies), or of bounded degree and having unpredictable outputs (scheme CI-Hash-
PKE analysed in Theorem 5). We now turn our attention to alternative classes
of functions. Specifically, we will propose a construction for a PKE scheme that
is Φ-FV-RRA-ATK secure for the set Φ of vectors of functions that are hard to
invert, in a sense that we make precise next.

Definition 6. Let φ = (φ1, . . . , φq) denote a vector of functions on a set Rndλ,
where q := q(λ) is polynomial in the security parameter λ. Let δ(λ) be a function.
We say that φ is δ(λ)-hard-to-invert if, for all polynomial time algorithms A and
all sufficiently large λ, we have:

P[r ← A(φ1(r), . . . , φq(r)) : r ←$ Rndλ] ≤ δ(λ).

We say that a set of vectors of functions Φ is δ-hard-to-invert if each vector
φ ∈ Φ is δ-hard-to-invert (note that the vectors in such a set Φ need not all be of
the same dimension, but we assume they each have dimension that is polynomial
in λ).

We will now construct a PKE scheme that offers Φ-FV-RRA-CPA security,
where Φ is the set of all sufficiently hard-to-invert vectors of functions on the
scheme’s randomness space Rnd. As noted in Section 2, security in this setting
is quantified over all vectors in Φ, and the adversary is allowed to work with
any set of public keys (even maliciously generated) in its attack. This makes our
result relatively strong.

With these definitions in hand, Figure 5 defines our PKE scheme mBHHO which
offers security in the FV-RRA-CPA setting. This scheme is obtained by modi-
fying a PKE scheme of Boneh et al. [12] (the BHHO scheme) which Dodis et al.
[14] showed to be secure in the auxiliary input setting. To arrive at our modified
scheme mBHHO, we swap the roles of secret key and randomness in the original

480 K.G. Paterson, J.C.N. Schuldt, and D.L. Sibborn

Alg. mBHHO.K(1λ):

g1, . . . , gλ ←$ G
x ←$ Zp

pk = (g1, . . . , gλ, g
x
1 . . . , gxλ)

sk = x

Alg. mBHHO.E(pk,m):

r ←$ {0, 1}λ
c1 =

∏λ
i=1 g

ri
i

(K, r′) ← f(
∏λ

i=1(g
x
i)

ri)
r′′ ← Fr′(pk||m)
c2 = DEM.E(K,m; r′′)
c = (c1, c2)

Alg. mBHHO.D(sk, (c1, c2)):

(K, r′) ← f(cx1)
m ← DEM.D(K, c2)

Fig. 5. Modified BHHO scheme mBHHO, constructed using a PRF, F , a KDF, f , and a
DEM DEM

BHHO scheme. This then enables us to provide the values φi(r) as auxiliary inputs
without undermining the usual IND-CPA security of the scheme; in turn, these
values enables our security reduction to properly handle Enc queries involving
any function φi. The following theorem gives our formal result concerning the
security of this scheme.

Theorem 6. Let Φ be the set of δ-hard-to-invert vectors of functions on {0, 1}λ.
The PKE scheme mBHHO in Figure 5 is Φ-FV-RRA-CPA secure. More precisely,
consider any polynomial-size vector of functions φ ∈ Φ and any equality-pattern
respecting, φ-FV-RRA-CPA adversary A against mBHHO. Suppose A makes qLR
LR queries and uses qr randomness indices. Then there exists a DDH adversary
B, a KDF adversary D, a PRF adversary E, and an IND-CPA adversary F , all
running in polynomial time, such that:

Adv
φ-fv-rra-cpa
mBHHO,A (λ) < 2λqr · Advddh

G,B(λ) + 2qr · Advkdf
f,D(λ)

+2qr · Advprf
F,E(λ) + qr · Advind-cpa

DEM,F (λ)

+qrp
2 3
√
512λδ.

In particular, when δ is sufficiently small the advantage of A is negligible in the
security parameter λ.

The class of related randomness functions which our scheme mBHHO can tol-
erate is quite different from those in our previous constructions: linear and
bounded-degree polynomials are certainly not hard-to-invert in general. Our
proof of Theorem 6 actually shows that even if φ(r) were to completely leak to
the adversary (instead of merely being indirectly accessible via Enc queries),
the scheme mBHHO would still be secure. This would not be the case if the anal-
ogous φ(r) values were to leak in our earlier schemes PRF-PKE and CI-Hash-PKE,
since the adversary could actually reconstruct r from this leakage for the rel-
evant φ functions and win the security game. Furthermore, the functions are
not required to be collision-resistant or output-unpredictable. These restrictions
are only strictly required of the functions queried to the LR oracle. However,
since an an adversary is restricted to using only the identity function (which is
collision-resistant and output-unpredictable) in its LR queries, the functions in
Φ do not need to satisfy these conditions.

Related Randomness Attacks for Public Key Encryption 481

References

1. Becherer, A., Stamos, A., Wilcox, N.: Cloud computing security: Raining on the
trendy new parade. In: BlackHat, USA (2009)

2. Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek,
S.: Hedged public-key encryption: How to protect against bad randomness. In:
Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer, Hei-
delberg (2009)

3. Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure
against related-key attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 666–684. Springer, Heidelberg (2010)

4. Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks
and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 486–503. Springer, Heidelberg (2011)

5. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 491–506. Springer, Heidelberg (2003)

6. Bellare, M., Paterson, K.G., Thomson, S.: RKA security beyond the linear barrier:
IBE, encryption and signatures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 331–348. Springer, Heidelberg (2012)

7. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

8. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay (ed.) [31], pp. 409–426

9. Bendel, M.: Hackers describe PS3 security as epic fail, gain unrestricted access
(2011), http://www.exophase.com/20540/hackers-describe-ps3-security-
as-epic-fail-gain-unrestricted-access/

10. Bernstein, D.J., Chang, Y.-A., Cheng, C.-M., Chou, L.-P., Heninger, N., Lange,
T., van Someren, N.: Factoring RSA keys from certified smart cards: Coppersmith
in the wild. Cryptology ePrint Archive, Report 2013/599 (2013),
http://eprint.iacr.org/

11. Bitcoin.org. Android security vulnerability (2013),
http://bitcoin.org/en/alert/2013-08-11-android

12. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision diffie-hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008)

13. Debian: Debian Security Advisory DSA-1571-1: OpenSSL – predictable random
number generator (2008), http://www.debian.org/security/2008/dsa-1571

14. Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.:
Public-key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010)

15. Dodis, Y., Pointcheval, D., Ruhault, S., Vergnaud, D., Wichs, D.: Security analysis
of pseudo-random number generators with input: /dev/random is not robust. IACR
Cryptology ePrint Archive, 338 (2013)

16. Dorrendorf, L., Gutterman, Z., Pinkas, B.: Cryptanalysis of the random number
generator of the Windows operating system. ACM Trans. Inf. Syst. Secur. 13(1)
(2009)

17. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999)

http://www.exophase.com/20540/hackers-describe-ps3-security-as-epic-fail-gain-unrestricted-access/
http://www.exophase.com/20540/hackers-describe-ps3-security-as-epic-fail-gain-unrestricted-access/
http://eprint.iacr.org/
http://bitcoin.org/en/alert/2013-08-11-android
http://www.debian.org/security/2008/dsa-1571

482 K.G. Paterson, J.C.N. Schuldt, and D.L. Sibborn

18. Goldberg, I., Wagner, D.: Randomness and the Netscape browser (1996),
http://www.drdobbs.com/windows/184409807

19. Goyal, V., O’Neill, A., Rao, V.: Correlated-input secure hash functions. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 182–200. Springer, Heidelberg (2011)

20. Gutterman, Z., Malkhi, D.: Hold your sessions: An attack on java session-id gener-
ation. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 44–57. Springer,
Heidelberg (2005)

21. Gutterman, Z., Pinkas, B., Reinman, T.: Analysis of the linux random number gen-
erator. In: IEEE Symposium on Security and Privacy, pp. 371–385. IEEE Computer
Society (2006)

22. Heninger, N., Durumeric, Z., Wustrow, E., Alex Halderman, J.: Mining your Ps
and Qs: Detection of widespread weak keys in network devices. In: Proceedings of
the 21st USENIX Security Symposium (August 2012)

23. Kamara, S., Katz, J.: How to encrypt with a malicious random number generator.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 303–315. Springer, Heidelberg
(2008)

24. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter,
C.: Public keys. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 626–642. Springer, Heidelberg (2012)

25. Lucks, S.: Ciphers secure against related-key attacks. In: Roy, Meier (eds.) [30],
pp. 359–370

26. Michaelis, K., Meyer, C., Schwenk, J.: Randomly failed! the state of randomness in
current java implementations. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779,
pp. 129–144. Springer, Heidelberg (2013)

27. Ristenpart, T., Yilek, S.: When good randomness goes bad: Virtual machine reset
vulnerabilities and hedging deployed cryptography. In: NDSS. The Internet Society
(2010)

28. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, Meier (eds.) [30], pp.
348–359

29. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay (ed.) [31], pp. 373–390

30. Roy, B., Meier, W. (eds.): FSE 2004. LNCS, vol. 3017. Springer, Heidelberg (2004)
31. Vaudenay, S. (ed.): EUROCRYPT 2006. LNCS, vol. 4004. Springer, Heidelberg

(2006)
32. Wee, H.: Public key encryption against related key attacks. In: Fischlin, M., Buch-

mann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 262–279. Springer,
Heidelberg (2012)

33. Yilek, S.: Resettable public-key encryption: How to encrypt on a virtual machine.
In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 41–56. Springer, Heidel-
berg (2010)

http://www.drdobbs.com/windows/184409807

Encryption Schemes Secure under Related-Key

and Key-Dependent Message Attacks

Florian Böhl1,�, Gareth T. Davies2,��, and Dennis Hofheinz1,���

1 Karlsruhe Institute of Technology (KIT)
2 University of Bristol

Abstract. We construct secret-key encryption (SKE) schemes that are
secure against related-key attacks and in the presence of key-dependent
messages (RKA-KDM secure). We emphasize that RKA-KDM security is
not merely the conjunction of individual security properties, but covers
attacks in which ciphertexts of key-dependent messages under related
keys are available. Besides being interesting in their own right, RKA-
KDM secure schemes allow to garble circuits with XORs very efficiently
(Applebaum, TCC 2013). Until now, the only known RKA-KDM secure
SKE scheme (due to Applebaum) is based on the LPN assumption. Our
schemes are based on various other computational assumptions, namely
DDH, LWE, QR, and DCR.

We abstract from Applebaum’s construction and proof, and formalize
three generic technical properties that imply RKA-KDM security: one
property is IND-CPA security, and the other two are the existence of
suitable oracles that produce ciphertexts under related keys, resp. of
key-dependent messages. We then give simple SKE schemes that achieve
these properties. Our constructions are variants of known KDM-secure
public-key encryption schemes. To additionally achieve RKA security,
we isolate suitable homomorphic properties of the underlying schemes in
order to simulate ciphertexts under related keys in the security proof.
RKA-KDM security for our schemes holds w.r.t. affine functions (over
the respective mathematical domain).

From a conceptual point of view, our work provides a generic and
extensible way to construct encryption schemes with multiple special
security properties.

Keywords: related key attacks, key-dependent message security,
garbled circuits.

1 Introduction

Motivation and Overview. The standard notion of security for secret-key en-
cryption (SKE) is indistinguishability of ciphertexts (short: IND-CPA or
IND-CCA, depending on whether passive or active attacks are considered).

� Supported by MWK grant “MoSeS”.
�� Work partially conducted while visiting KIT.

��� Supported by DFG grant GZ HO 4534/2-1.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 483–500, 2014.
c© International Association for Cryptologic Research 2014

484 F. Böhl, G.T. Davies, and D. Hofheinz

However, in certain applications, ciphertext indistinguishability is not sufficient.
For instance, in harddisk encryption, encryptions of the secret key itself naturally
occur (see [25]). Security in the presence of such key-dependent messages (KDM
security [23]) is not implied by IND-CPA or IND-CCA security [23, 1]. There
are numerous other specialized notions of encryption scheme security, such as se-
curity under related-key attacks (RKAs [7]), leakage-resilience [35, 29], security
under bad randomness [10], security under selective openings [11], and others.

In this paper, we consider two such specialized notions of security for SKE
schemes in a combined fashion. In particular, we will derive SKE schemes that are
secure in the presence of key-dependent messages encrypted under related keys.
This notion, dubbed RKA-KDM security and already considered by Applebaum
[3] (as RK-KDM security), combines the notions of KDM and RKA security,
but is more than just their conjunction. RKA-KDM secure SKE schemes are of
course suitable for all applications in which RKA or KDM security is required. In
fact, there are even applications that explicitly require the combined RKA-KDM
notion: Applebaum [3] uses RKA-KDM secure SKE schemes in a garbled circuit
construction in which XOR gates can be garbled for free (in the sense that XOR
gates require no explicit encryption whatsoever). Besides, “aggregating” security
properties as in RKA-KDM security may eventually lead to more “ideal” and
universally useful security notions and encryption schemes.

RKA and KDM Security. To give more details, we first recall the definitions
of IND-CPA, RKA, and KDM security. In a nutshell, an SKE scheme has indis-
tinguishable ciphertexts (or, is IND-CPA secure [30]1), if no efficient adversary
A can tell apart whether it is interacting with an oracle Real, or with an oracle
Fake. Here, upon input M , oracle Real returns an encryption Ek(M) of M , while
Fake returns an encryption Ek(0

|M|) of a zero-string of the same length. (In other
words, A is asked to tell authentic encryptions from encryptions of meaningless
messages of the same length.)

For security under key-dependent messages (KDM security [23]), we require
the same, except that messages are now functions in the secret key. That is,
upon input a function ψ, Real returns Ek(ψ(k)), and Fake returns Ek(0

|ψ(k)|).
Depending on the class of allowed functions Ψ , there are many constructions
of KDM-secure encryption schemes from various computational assumptions,
e.g. [23, 31, 33, 25, 5, 28, 6, 26, 27, 34, 8, 12, 4, 32]. However, most of these works
follow the design principle of Boneh et al. [25] (henceforth BHHO). Namely, it
should be publicly possible (or at least given some “harmless” extra information)
to construct key-dependent encryptions from regular ones. Intuitively, if this is
the case, then clearly the presence of key-dependent encryptions is no more
harmful than the presence of “regular”, key-independent encryptions.

For security under related-key attacks (RKA security [9]), we again require
the same as for IND-CPA security, except that an adversary A now speci-
fies a function ϕ on secret keys alongside each message M to be encrypted.

1 In the following, for ease of exposition, we describe a modified but equivalent version
of IND-CPA security.

RKA-KDM Secure Encryption Schemes 485

Real then returns an encryption Eϕ(k)(M) of M under the related key ϕ(k),

and Fake returns Eϕ(k)(0
|M|). RKA security draws its motivation primarily from

the wide range of attacks that are known in this setting, e.g. [16, 17, 18, 19,
21, 20, 22]. There are also a number of constructions of RKA secure schemes,
e.g. [7, 13, 36, 3]. As with KDM security, the main idea is to generate encryptions
under related keys from “regular” encryptions.

RKA-KDM Security. It is of course easy to combine RKA and KDM secu-
rity into a combined notion, which we call RKA-KDM security here. Concretely,
RKA-KDM security is defined like IND-CPA security above, only that an ad-
versary supplies functions ϕ and ψ along with the message M to be encrypted.
Then, Real returns Eϕ(k)(ψ(k)), and Fake returns Eϕ(k)(0

|ψ(k)|). This notion has
already been defined by Applebaum [3] (dubbed RK-KDM security there), who
used RKA-KDM secure schemes to garble circuits with XOR gates in a very
elegant and efficient way. As a proof of concept, Applebaum also constructed
an RKA-KDM secure encryption scheme, starting from the KDM-secure scheme
of Applebaum et al. [5] based on the LPN assumption. (Along the way, he also
shows that RKA-KDM security is strictly stronger than the conjunction of RKA
and KDM security.) Currently, no further RKA-KDM secure schemes are known.

Our Contribution. In this work, we provide a generic framework to construct
RKA-KDM secure encryption schemes, and we instantiate this framework un-
der several computational assumptions. In particular, we provide RKA-KDM
secure schemes from the decisional Diffie-Hellman (DDH), learning with errors
(LWE), quadratic residuosity and decisional Diffie-Hellman (QR+DDH) 2, and
decisional composite residuosity (DCR) assumptions. Our constructions support
affine KDM and RKA functions in the “natural domain” of the respective se-
cret keys. Furthermore, with the exception of the DCR-based scheme, all of our
schemes can be directly used in the application of Applebaum [3]. Additionally,
they fit the construction of Bellare et al. [14], and thus can be extended from
projection-KDM security to bounded-KDM security while maintaining the same
level of RKA security.

Our Approach. Based on an informal remark of Applebaum [3, Remark 3.6
in full version], we first reduce RKA-KDM security to three technical properties
of the scheme in question:
(a) IND-CPA security in the usual sense,
(b) the existence of an oracle (that itself has access to an Ek(·) oracle) that

generates ciphertexts Eϕ(k)(M) under related keys, and
(c) the existence of an oracle (with access to Ek(·)) that generates ciphertexts

Ek(ψ(k)) of key-dependent messages.
Intuitively, property (b) allows to reduce any RKA-KDM attack to a KDM
attack, which in turn can be reduced (using (c)) to an IND-CPA attack. We

2 Similar to Hofheinz [32], we have to use the DDH assumption in the group of
quadratic residues modulo N .

486 F. Böhl, G.T. Davies, and D. Hofheinz

note that it seems possible to add further oracles (e.g., for encryption queries
with leakage) to achieve even stronger combined security notions from individual
and isolated technical properties.

We then proceed to construct several RKA-KDM secure encryption schemes.
Our constructions are slight variations of the known KDM-secure schemes from
[25, 5, 6, 26, 34]. For these schemes, properties (a) and (c) already follow (with
slight modifications) from the KDM security proofs of the underlying schemes.
Showing property (b) then boils down to showing suitable homomorphic prop-
erties of the encryption, resp. decryption algorithm.

Example: Our DDH-Based Scheme. To give a taste of the proof, we out-
line our DDH-based scheme (which is based upon the DDH-based public-key
encryption scheme from [25]). In this scheme, a ciphertext is of the form

C = (gr11 , . . . , grλλ , gM · g0),

where λ is the security parameter, g and the gi are uniformly random generators
of the underlying cyclic group, the ri are uniformly random exponents, and
g0 =

∏
i∈[λ](g

ri
i)−ki for the secret key k = (k1, . . . , kλ) ∈ {0, 1}λ. (In the original

public-key encryption scheme from [25], all ri are identical.)
We show property (b) for functions of the form ϕΔ : {0, 1}λ → {0, 1}λ with

ϕΔ(k) = k ⊕ Δ for some Δ ∈ {0, 1}λ. (This will be sufficient for the application
in [3].) To show (b), we only need to show that any given ciphertext C = Ek(M)
as above can be transformed into a ciphertext C′ = EϕΔ(k)(M). For simplicity,
assume that Δ = (1, 0, . . . , 0). In this case, it is easy to see that

C′ = (1/gr11 , gr22 , . . . , grλλ , (gM · g0) · gr11)

is a perfectly distributed encryption ofM under key k′ = k⊕Δ (with randomness
r′1 = −r1 and r′i = ri for i > 1). This shows property (b) – the other properties
follow as in [25].3

Our other constructions proceed similarly, starting from the schemes of Ap-
plebaum et al. [5], Brakerski and Goldwasser [26], and Malkin et al. [34]. The
latter is only contained in our full version [24].

2 Preliminaries

Notation. For n ∈ N, let [n] := {1, . . . , n}. Throughout the paper, λ ∈ N
denotes the security parameter. For a finite set S, we denote by s ← S the
process of sampling s uniformly from S. For a distribution X , we denote by
x ← X the process of sampling x from X . For a probabilistic algorithm A,
we denote with y := A(x; r) the process of running A on input x and with

3 We note that our technical change to the scheme from [25] – namely, using different ri
– can be proven to be not crucial to its security (see Theorem 7). Instead, choosing
different ri simplifies expressing the scheme in our framework, and in particular
separating the KDM, RKA, and IND-CPA properties.

RKA-KDM Secure Encryption Schemes 487

randomness r, and assigning y the result. We let RA denote the randomness
space of A; we require RA to be of the form RA = {0, 1}�. We write y ← A(x)
for y ← A(x; r) with uniformly chosen r ∈ RA. If A’s running time is polynomial
in λ, then A is called probabilistic polynomial-time (PPT). For a real number
x, let the floor function 	x
 denote the largest integer not greater than x. For a
vector v, vi denotes the ith element of v.

Two sequences of random variables X = (Xλ)λ∈N and Y = (Yλ)λ∈N are

computationally indistinguishable (denoted X
c≈ Y) iff for any PPT algorithm

D, the probability Pr
[
D(1λ, Xλ) = 1

]
− Pr

[
D(1λ, Yλ)

]
is negligible in λ. X =

(Xλ)λ∈N and Y = (Yλ)λ∈N are statistically indistinguishable (denoted X
s≈ Y)

iff the same holds for any algorithm D with unbounded runtime.

SKE Schemes. A secret-key encryption (SKE) scheme consists of four PPT al-
gorithms (Pg,Kg,E,D). Parameter generation Pg(1λ) outputs public parameters
π for the scheme. Key generation Kg(π) outputs a (secret) key k. Encryption
Ek(M) takes a key k and a message M , and outputs a ciphertext C. Decryp-
tion Deck(C) takes a key k and a ciphertext C, and outputs a message M or
⊥ if decryption fails. For correctness, we stipulate Dk(C) = M for all M , all
k ← Kg(Pg(1λ)), and all C ← Ek(M).

Definition 1 (RKA-KDM[Φ, Ψ] Security.). Let Σ = (Pg,Kg,E,D) be a sym-
metric encryption scheme, π ← Pg(1λ) be public parameters and b ← {0, 1} be a
bit chosen by the challenger. A key k ← Kg(π) is randomly chosen. Adversary A
makes encryption queries by submitting (ϕ ∈ Φ, ψ ∈ Ψ) and receives a response
from one of the following oracles, depending on the bit b.

– If b = 1, oracle Realk takes as input (ϕ, ψ) and returns C ← Eϕ(k)(ψ(k)).

– If b = 0, oracle Fakek takes as input (ϕ, ψ) and returns C ← Eϕ(k)(0
|ψ(k)|).

Scheme Σ is RKA-KDM secure w.r.t. Φ and Ψ if for all PPT adversaries A∣∣∣Pr[AReal(ϕ,ψ)(π) = 1] − Pr[AFake(ϕ,ψ)(π) = 1]
∣∣∣

is a negligible function in λ.

Throughout this paper each class of KDM functions Ψ implicitly contains
constant functions ψM (k) := M for all messages M ∈ M where M is the
message space of the encryption scheme at hand.

Further Security Definitions. The standard definition of RKA security fol-
lows from restricting the KDM function class Ψ to constant functions, and the
definition of KDM security follows from restricting the RKA function class Φ
to the identity function. IND-CPA security follows from applying both of these
restrictions at once.

488 F. Böhl, G.T. Davies, and D. Hofheinz

2.1 A Generic Approach

In this section we prove that an SKE scheme Σ is RKA-KDM[Φ, Ψ] secure if
– Σ is IND-CPA secure,
– there is a so called RKA[Φ] oracle (defined below) for Σ that takes as input

Ek(M) and RKA function ϕ ∈ Φ, and returns something that is indistin-
guishable from Eϕ(k)(M) without knowledge of the key k,

– there is a so called KDM[Ψ] oracle (defined below) for Σ that takes as input
Ek(M) and KDM function ψ ∈ Ψ , and returns something that is indistin-
guishable from Ek(ψ(k)) without knowledge of the key k (M is the constant
part of ψ here).

Definition 2 (RKA[Φ] oracle). Let Σ = (Pg,Kg,E,D) be a secret key encryp-
tion scheme with message space M. We say that a function FRKA[Φ](ϕ,C) is an
RKA[Φ] oracle for Σ iff for all PPT adversaries A that make queries (ϕ,M) for
ϕ ∈ Φ and M ∈ M∣∣∣∣Pr [AFRKA[Φ](ϕ,Ek(·))(π, k) = 1 : π ← Pg(1λ), k ← Kg(π)

]
− Pr

[
AEϕ(k)(·)(π, k) = 1 : π ← Pg(1λ), k ← Kg(π)

] ∣∣∣∣
is a negligible function in λ. Here, AFRKA[Φ](ϕ,Ek(·)) denote the interaction of A
with an oracle that, upon input M , outputs FRKA[Φ](ϕ,Ek(M)).

Definition 3 (KDM[Ψ] oracle). Let Σ = (Pg,Kg,E,D) be a secret key encryp-
tion scheme with message space M. We say that a function FKDM[Ψ](ψ,C) is
a KDM[Ψ] oracle for Σ iff for all PPT adversaries A that make queries ψ for
ψ ∈ Ψ (where M denotes the constant part of ψ, i.e., ψ(0))∣∣∣∣Pr [AFKDM[Ψ](ψ,Ek(M))(π, k) = 1 : π ← Pg(1λ), k ← Kg(π)

]
− Pr

[
AEk(ψ(k))(π, k) = 1 : π ← Pg(1λ), k ← Kg(π)

] ∣∣∣∣
is a negligible function in λ.

Note that for constant functions ψ ∈ Ψ a sufficient behaviour of FKDM[Ψ] is to
output the ciphertext it received without changes. All KDM[Ψ] oracles presented
in this paper implicitly adopt this behaviour.

Theorem 4. Let Σ be an SKE scheme that is IND-CPA secure, FRKA[Φ] be
an RKA[Φ] oracle for Σ and FKDM[Ψ] be a KDM[Ψ] oracle for Σ. Then Σ is
RKA-KDM[Φ, Ψ] secure.

Proof. We prove the theorem by a sequence of games.

Game 0. In Game 0 A plays the original RKA-KDM[Φ, Ψ] experiment (see
Theorem 1).

RKA-KDM Secure Encryption Schemes 489

Game 1. In Game 1, instead of computing Eϕ(k)(ψ(k)) the experiment computes
CKDM ← Ek(ψ(k)) and outputs FRKA[Φ](ϕ,CKDM) to the adversary. This game
is indistinguishable from Game 0 due to the indistinguishability of FRKA[Φ] (see
Theorem 2).

Game 2. In Game 2, instead of computing Ek(ψ(k)), the experiment com-
putes CCPA ← Ek(M) where M is the constant part of ψ and sets CKDM :=
FKDM[Ψ](ψ,CCPA). Given a distinguisher D between this game and Game 1, we
can construct an adversary S, henceforth called simulator, on the indistinguisha-
bility of FKDM[Ψ]. First, the simulator forwards the public parameters π to D
and picks a bit b ← {0, 1}. For b = 1 and each query (ϕ, ψ) from D, the sim-
ulator queries its oracle for ψ and either gets a response FKDM[Ψ](ψM , CCPA) or
Ek(ψM (k)) (see Theorem 3). It then applies FRKA[Φ] with ϕ to the response and
sends the result to D. The responses to the queries of the simulator are that of
Game 2 if itself gets responses of type FKDM[Ψ](ψM , CCPA) and that of Game 1 for
responses of type Ek(ψM (k)). Analogously for b = 0, where the simulator queries
0|ψ(k)| instead of ψ. The advantage of S is that of D and must be negligible due
to the indistinguishability FKDM[Ψ].

Game 3. In Game 3 we replace CCPA ← Ek(M) by CCPA ← Ek(0
|M|). Analo-

gously to the indistinguishability of Game 1 and Game 2, we can easily transform
a distinguisher between this game and the previous game into an IND-CPA ad-
versary for Σ.

We observe that the advantage of any PPT adversary in Game 3 is 0 since
the behaviour of the oracle given to the adversary is is independent of the bit b
picked by the experiment. This concludes our proof since Game 3 and Game 0
are indistinguishable.

3 RKA-KDM-Secure Encryption Schemes

3.1 Boneh et al. [25]

The PKE scheme of Boneh et al. [25] was the first construction provably KDM
secure under standard assumptions. In this section we detail a SKE analogue of
the ‘basic’ version of their scheme. We construct an RKA[Φ] oracle and a KDM[Ψ]
oracle for the scheme. The class of RKA functions Φ allows for XOR operations
on the key while the class of KDM functions Ψ brings circular KDM security,
i.e., encryptions of the secret key are possible (as in the original paper). The
security of the scheme is based on the DDH assumption.

DDH Assumption. The decisional Diffie-Hellman (DDH) assumption over a
group G (that may depend on the security parameter λ) stipulates that

(g, gx, gy, gxy)
c≈ (g, gx, gy, gz),

where g ← G and x, y, z ← [|G|] are uniformly distributed.

490 F. Böhl, G.T. Davies, and D. Hofheinz

For the sake of readability we introduce the scheme Σ′
BHHO with message

space {0, 1}. Canonical concatenation at the end will yield the scheme ΣBHHO

with message space {0, 1}λ.

The SKE Scheme Σ′
BHHO. Let G be a group of prime order p and g be a

generator of G. The scheme Σ′
BHHO for M ∈ {0, 1} is defined as follows:

– Pg(1λ) picks generators g1, . . . , gλ ← G\{1} and returnsπ :=(G, g, g1, . . . , gλ).
– Kg(π) returns a random bitstring k ← {0, 1}λ.
– Ek(M) picks r1, . . . , rλ ← Zp. Sets g0 :=

∏
i∈[λ](g

ri
i)−ki and returns

C := (gr11 , . . . , grλλ , gM · g0) ∈ Gλ+1.

– Dk(C) parses C as (x1, . . . , xλ, y). Computes M̃ := y ·
∏
i∈[λ] x

ki
i . Returns 0

if M̃ = 1, returns 1 if M̃ = g, otherwise returns ⊥.

The RKA[Φ] Oracle. For the concrete class of RKA functions

Φ := {ϕΔ : {0, 1}λ → {0, 1}λ, k �→ k ⊕ Δ : Δ ∈ {0, 1}λ}

we find an RKA[Φ] oracle FRKA[Φ] for Σ′
BHHO as follows: Given a ciphertext C =

(x1, . . . , xλ, y) and a function ϕΔ it outputs

C′ := (x′
1, . . . , x

′
λ, y

′) := (x
(−1)Δ1

1 , . . . , x
(−1)Δλ

λ , y ·
∏
i∈[λ]

xΔi

i)

To understand this better we assume that C is an honestly generated cipher-
text (as it will be in the indistinguishability experiment for FRKA[Φ]). Then we

have y = gM ·
∏
i∈[λ] x

−ki
i . We observe

y′ = gM ·
∏
i∈[λ]

x−ki
i ·

∏
i∈[λ]

xΔi

i = gM ·
∏
i∈[λ]

x′
i
(−1)Δi (−ki+Δi) (∗)

= gM ·
∏
i∈[λ]

x′
i
−(ki⊕Δi)

and (∗) since

(−1)Δi(−ki +Δi) =

{
−ki if Δi = 0

−(1 − ki) if Δi = 1

}
= −(ki ⊕ Δi)

Therefore C′ decrypts to M under key k ⊕ Δ.

Lemma 5. FRKA[Φ] is an RKA[Φ] oracle in the sense of Theorem 2.

Proof. It is easy to see that the distributions ofFRKA[Φ](ϕΔ,Ek(M)) and Ek⊕Δ(M)
are perfectly indistinguishable (even for someone knowing k and Δ): The x′

i just
look like r′i = (−1)Δiri was used as randomness for the ith component (which
yields the same distribution) and we have y′ = gM ·

∏
i∈[λ](x

′
i)

−(ki⊕Δi).

RKA-KDM Secure Encryption Schemes 491

The KDM[Ψ ′] Oracle. For the class of KDM functions

Ψ ′ := {ψi,b : {0, 1}λ → {0, 1}, k �→ ki ⊕ b : i ∈ [λ], b ∈ {0, 1}}

we find the following KDM[Ψ ′] oracle FKDM[Ψ ′] for Σ′
BHHO: Given a function ψi,b

and an honestly generated ciphertext of b (the constant part of ψi,b is b) denoted
C = (x1, . . . , xλ, y) it outputs

C′ := (x′
1, . . . , x

′
λ, y

′) := (x1, . . . , xi−1, xi · g(−1)b , xi+1, . . . , xλ, y)

We check that this ciphertext decrypts to ki ⊕ b:

y ·
∏
j∈[λ]

x′
j
kj (∗)

= y ·

⎛⎝∏
j∈[λ]

xj
kj

⎞⎠ · g(−1)b·ki = gb ·

⎛⎝∏
j∈[λ]

xj
−kj · xj

kj

⎞⎠ · g(−1)b·ki = gki⊕b

(∗) since x′
i = xi · g(−1)b and x′

j = xj for j ∈ [λ] \ {i}.

Lemma 6. FKDM[Ψ ′] is a KDM[Ψ ′] oracle in the sense of Theorem 3.

Proof. We show that the distributions of FKDM[Ψ ′](ψi,b,Ek(b)) and Ek(ψi,b(k))
are perfectly indistinguishable. First, we observe that xi = grii and g = gαi for

α := loggi(g), i.e., x
′
i = gri+(−1)b·α. Furthermore we have y = gb ·

∏
j∈[λ] xj

−kj =

gb ·
∏
j∈[λ] xj

−kjg−(−1)b·kig(−1)b·ki = gb+(−1)b ·
∏
j∈[λ] x

′
j
−kj . Hence the output

of the oracle looks like a normal encryption of ki ⊕ b where ri + (−1)b · α was
used as randomness in the ith component.

Lemma 7. The SKE scheme Σ′
BHHO is IND-CPA secure if DDH is hard over

the underlying group G.

Proof. Intuitively, we first use the hardness of DDH over G to collapse the ran-
domness used by the encryption oracle to one random exponent per ciphertext,
so instead of r1, . . . , rλ all generators are taken to the same random exponent r.
This modified scheme is the ‘basic’ version of [25] with a smaller message space.
We can then simply reduce security to the IND-CPA security of Boneh et al’s
scheme.

More concretely, we prove the lemma with the following sequence of games.

Game 0. In Game 0 A plays the original IND-CPA experiment.
Game 1 to Game λ − 1 form a hybrid argument to collapse the random-

ness used by the encryption oracle. In hybrid i (i ∈ [λ − 1]) we pick the same
randomness for the first i+1 components of the ciphertext. I.e., the format of a
ciphertext output by the encryption oracle in game i is⎛⎝gr1 , . . . , g

r
i+1, g

ri+2

i+2 , . . . , grλλ , gM ·

⎛⎝ ∏
i∈[i+1]

g−rkii

⎞⎠⎛⎝ ∏
i∈[λ]\[i+1]

g−rikii

⎞⎠⎞⎠

492 F. Böhl, G.T. Davies, and D. Hofheinz

Analysis. Each of the game hops above is indistinguishable due to the hardness
of DDH over G. The simulation for a hop from Game i−1 to Game i (i ∈ [λ−1])
works as follows: The simulator S gets a DDH challenge (g,X := gx, Y :=
gy, Z := gxy/z). For j ∈ [λ] \ {i+1} it picks αj ← Zp, sets gj := gαj and gi+1 :=
X . Subsequently it picks a key k ← {0, 1}λ and sends the public parameters
π := (G, g, g1, . . . , gλ) to A. If A requests an encryption of message M , S picks
randomness r, ri+2, . . . , rλ, a, b ← Zp and sets Ŷ := ga · Y b and Ẑ := Xa · Zb to
re-randomize the DDH challenge. Finally, S sends(

Ŷ rα1 , . . . , Ŷ rαi , Ẑr, g
ri+2

i+2 , . . . , gM · g0
)

to the adversary where g0 is computed as usual (S knows k). If Z = gz, the
output of S looks like that of game i − 1, otherwise (for Z = gxy) it looks like
that of game i. Any PPT distinguisher between those games with non-negligible
advantage can thus be used to break DDH.

Finally, only one fresh random exponent is used for each ciphertext in game
λ − 1. The output now looks like that of the BHHO (public key) cryptosystem
with message space {g0, g1}.

In Game λ, we replace the message with 0. The indistinguishability of game
λ − 1 and game λ can be reduced to the IND-CPA security of Boneh et al’s
original scheme in a straightforward way (using the generators from the public
key as public parameters). Hence IND-CPA security of Σ′

BHHO follows.

The Full Scheme ΣBHHO. Finally, we assemble the SKE scheme ΣBHHO from
λ instances of Σ′

BHHO that use the same public parameters π and the same key
k. A ciphertext under ΣBHHO is a matrix from Gλ×(λ+1) where each row is an
instance of Σ′

BHHO (using π and key k). To encrypt a message M ∈ {0, 1}λ under
key k we encrypt Mi in row i (while picking fresh randomness ri, i ∈ [λ] for each
row). Decryption also works row-wise.

For the RKA[Φ] oracle we apply FRKA[Φ] to each row. The class of KDM
functions Ψ ′ changes to

Ψ := {ψi,Δ : {0, 1}λ → {0, 1}λ, k �→ (ki1 ⊕Δ1, . . . , kiλ ⊕Δλ) : i ∈ [λ]λ,Δ ∈ {0, 1}λ}

I.e., each bit of the message can be an arbitrarily picked key bit. For the KDM[Ψ]
oracle provided with function ψi, we apply FKDM[Ψ ′] with function ψij ∈ Ψ ′ to
the jth row of the ciphertext where Ψ ′ is the class of KDM functions for Σ′

BHHO.
Since the oracles work row-wise it is easy to check that the indistinguishability
results from Theorem 5 and Theorem 5 carry over to ΣBHHO. Analogously for
the IND-CPA security of ΣBHHO. Finally, by Theorem 4, we get

Theorem 8. The SKE scheme ΣBHHO is RKA-KDM[Φ, Ψ] secure (for Φ and Ψ
as defined above in this section) if DDH is hard over the underlying group G.

3.2 Applebaum et al. [5]

In this section, we present a secret-key version of the PKE scheme of Applebaum
et al. [5] and prove it RKA-KDM secure. For compatibility with Applebaum’s

RKA-KDM Secure Encryption Schemes 493

application, however, we slightly change the space of secret keys from Zmp to
{0, 1}m. Our RKA and KDM oracles allow encryptions under keys k ⊕ Δ (for
arbitrary Δ ∈ {0, 1}m) of arbitrary components of the secret key. Security is
based on the LWE assumption.

For ease of exposition, we do not detail the choices of the following parameters
– these can occur as in [5] (with adaptations as in [2] due to the different choice of
secret key). Let q be a polynomial in the security parameter λ, and let m > n be
integers (that may also depend on λ). By χ, we denote a (discretized Gaussian)
error distribution with suitable parameters over Zq.

LWE Assumption. Let s ∈ Znq be uniformly chosen. Let LWEs be the oracle
that (on trivial input) returns (a, 〈a; s〉+x) ∈ Znq ×Zq for freshly chosen a ← Znq
and x ← χ. Let RND be the oracle that returns a freshly and independently
chosen (a,b) ← Znq × Zq. The LWE assumption states that oracle access to
LWEs is computationally indistinguishable from oracle access to RND.

Applebaum et al. [5] show that the LWE assumption over Zq = Zp2 and with
s ← Znp is equivalent to the LWE assumption as above (for q = p). Furthermore,
Akavia et al. [2] show that the LWE assumption with s ← {0, 1}n is implied
by the LWE assumption as above (for different parameters of n,m). In the
following, we will consider q = p2 and s ∈ {0, 1}n. Furthermore, for x ∈ R, we
write �x
p := �x+ 1/2� mod p for the nearest integer to x modulo p.

The SKE Scheme Σ′
ACPS. The scheme Σ′

ACPS (with M ∈ Zp) is defined as
follows:

– Pg(1λ) returns the empty bitstring.
– Kg(π) returns a random bitstring k := s ← {0, 1}m.
– Ek(M) picks A ← Zn×mq and r,x ← χm, and returns

C := (A·r,−(sT ·A+xT)·r+p·M) = (A·r,−sT ·A·r−〈x; r〉+p·M) ∈ Zmq ×Zq

– Dk(C) parses C =: (y, z) and computes and returns M := �(〈s;y〉 + z)/p
p.
Compared to the PKE scheme of [5], we choose s slightly differently, and also
choose different A,x upon each encryption. We note that correctness holds only
with overwhelming probability over the choice of r and x. In particular, |〈x; r〉| <
p/2 with overwhelming probability.

The RKA[Φ] Oracle. For the concrete class of RKA functions

Φ := {ϕΔ : {0, 1}m → {0, 1}m, k �→ k ⊕ Δ : Δ ∈ {0, 1}m},
we find an RKA[Φ] oracle FRKA[Φ] for Σ′

ACPS as follows: Given a ciphertext C =
(y, z) and a function ϕΔ, it outputs

C′ := (y′, z′) with y′
i = (−1)Δiyi and z′ = z +

∑
i∈[m]

Δiyi

As with the BHHO scheme, a quick calculation shows that C′ is a perfectly
distributed ciphertext of M under k ⊕ Δ. Thus:

Lemma 9. FRKA[Φ] is an RKA[Φ] oracle in the sense of Theorem 2.

494 F. Böhl, G.T. Davies, and D. Hofheinz

The KDM[Ψ ′] Oracle. For the class of KDM functions

Ψ ′ := {ψi,b : {0, 1}λ → {0, 1}, k �→ ki ⊕ b : i ∈ [λ], b ∈ {0, 1}}
and following [5], we find the following KDM[Ψ ′] oracle FKDM[Ψ ′] for Σ

′
ACPS: Given

a function ψi,b and an honestly generated ciphertext C = (y, z) of M = b, it
outputs

C′ :=
(
y +

(
(−1)bp

)
ei, z

)
for the i-th unit vector ei.

We check that this ciphertext decrypts to ki ⊕ b:

Dk(C
′) =

⌈(〈
s;y +

(
(−1)bp

)
ei
〉
+ z

)
/p
⌋
p
=
⌈(

〈s;y〉 +
(
(−1)bp

)
si + z

)
/p
⌋
p

=
⌈(
sTAr+

(
(−1)bp

)
si + z

)
/p
⌋
p
=
⌈((

(−1)bp
)
si − 〈x; r〉 + pb

)
/p
⌋
p
,= si⊕b.

In fact, it is easy to see that ciphertexts C′ as produced by FKDM[Ψ ′] are perfectly
distributed ciphertexts of si ⊕ b. We get:

Lemma 10. FKDM[Ψ ′] is a KDM[Ψ ′] oracle in the sense of Theorem 3.

Lemma 11. The SKE scheme Σ′
ACPS is IND-CPA secure if the LWE assump-

tion holds for the respective parameters.

A sketch of the proof is contained in the full version of this paper [24].

The Full Scheme ΣACPS. As in the BHHO setting, we can construct the full
scheme ΣACPS with message space Zmp from m instances of Σ′

ACPS that use the
same public parameters and key in a straightforward manner.

Likewise, by transferring Theorem 9, Theorem 10 and Theorem 11 fromΣ′
ACPS

to ΣACPS and by Theorem 4, we get

Theorem 12. The SKE scheme ΣACPS is RKA-KDM[Φ, Ψ] secure (for Φ as de-
fined above in this section and Ψ from the full BHHO scheme) if the LWE as-
sumption holds for the respective parameters.

3.3 Brakerski-Goldwasser [26]

In this section we consider the encryption scheme of Brakerski and Goldwasser
[26], modified to the symmetric setting. The KDM security of the original (public-
key) scheme relies on the hardness of deciding quadratic residuosity in the group
Z∗
N , for Blum integer N = p · q. To construct our SKE scheme ΣBG resilient

against related key attacks, we additionally have to stipulate that DDH is hard
over the subgroup of quadratic residues QRN . We achieve security against the
same class of KDM functions as for ΣBHHO from Section 3.1.

QR Assumption. Let N be a Blum integer of bitlength λ. With Z∗
N [+1] we

denote the set of elements in Z∗
N with Jacobi symbol +1 and with QRN :=

{x2 mod N : x ∈ Z∗
N} the set of Quadratic Residues modulo N . Then we say

that the Quadratic Residuosity (QR) assumption holds in Z∗
N if

|Pr[A(N, x) = 1 : x ← Z∗
N [+1]] − Pr[A(N, x) = 1 : x ← QRN]|

is negligible for all PPT adversaries A.

RKA-KDM Secure Encryption Schemes 495

The SKE Scheme Σ′
BG. We define the scheme for messages M ∈ {0, 1}.

– Pg(1λ) picks a random Blum integer N of length �(λ).4 Then samples
quadratic residues g1, . . . , gλ ← QRN and returns π := (N, g1, . . . , gλ).

– Kg(π) returns a random bitstring k ← {0, 1}λ.
– Ek(M) picks r1, . . . , rλ ← [N2], computes g0 :=

∏
i∈[λ](g

ri
i)−ki and outputs

C := (gr11 , . . . , grλλ , (−1)M · g0) ∈ Zλ+1
N

– Dk(C) parses C as (x1, . . . , xλ, y). Computes M̃ := y ·
∏
i∈[λ] x

ki
i . Returns 0

if M̃ = 1, returns 1 if M̃ = −1, otherwise returns ⊥.

The RKA[Φ] Oracle. The RKA[Φ] oracle FRKA[Φ] for Σ′
BG works exactly like

the RKA[Φ] for Σ′
BHHO from Section 3.1, i.e., Φ allows for transformations of the

secret key under XOR. Analogously to Theorem 5 we have

Lemma 13. FRKA[Φ] is an RKA[Φ] oracle for Σ′
BG in the sense of Theorem 2.

The KDM[Ψ ′] Oracle. Analogously to Σ′
BHHO we define

Ψ ′ := {ψi,b : {0, 1}λ → {0, 1}, k �→ ki ⊕ b : i ∈ [λ], b ∈ {0, 1}}

Given a function ψi,b and a ciphertext C = (x1, . . . , xλ, y), the KDM[Ψ ′] oracle
FKDM[Ψ ′] for Σ′

BG simply returns

C′ := (x′
1, . . . , x

′
λ, y

′) := (x1, . . . , xi−1, (−1) · xi, xi+1, . . . , xλ, y)

We check that this decrypts to ki ⊕ b if FKDM[Ψ ′] is given an honestly generated

ciphertext of b (the constant part of ψi,b), i.e., y = (−1)b ·
∏
j∈[λ] xj

−kj :

Dk(C
′) = y′ ·

∏
j∈[λ]

x′
j
kj (∗)

= y · (−1)ki ·
∏
j∈[λ]

xj
kj = (−1)b+ki ·

∏
j∈[λ]

xj
−kj ·xj

kj = (−1)ki⊕b

(∗) since x′
i = (−1) · xi and x′

j = xj for j ∈ [λ] \ {i}.

Lemma 14. FKDM[Ψ ′] is a KDM[Ψ ′] oracle for Σ′
BG in the sense of Theorem 3

if QR is hard in the underlying group Z∗
N .

Proof. To show the indistinguishability of FKDM[Ψ ′]’s output we use the interac-
tive vector game (IV) from [26], Section 5. In the interactive λ-vector game the
experiment picks a Blum integer N , a quadratic residues g1, . . . , gλ ← QRN and
a bit b ← {0, 1} and sends N, g1, . . . , gλ to a PPT adversary A that has to guess
b. It then provides A with an oracle that, given a query a ∈ {0, 1}λ, returns
4 We use 	(λ) here since the IND-CPA security of Brakerski and Goldwasser’s original
scheme requires that N is substantially shorter than the number of components/key
length λ, e.g., 	(λ) = λ/2. We refer to [26], Theorem 6.1 for details.

496 F. Böhl, G.T. Davies, and D. Hofheinz

((−1)a1gr1, . . . , (−1)aλgrλ) if b = 0 and (gr1 , . . . , g
r
λ) if b = 1 for fresh randomness

r. [26] show that A’s advantage is negligible if the QR assumption holds in Z∗
N .

Let D be a PPT algorithm to distinguish FKDM[Ψ ′](ψ,Ek(M)) from Ek(ψ(k))
in the sense of Theorem 3. We construct an adversary S on the interactive 1-
vector game that utilizes D: First, S sets π to the parameters (N, g1, . . . , gλ)
received from the interactive λ-vector game, samples a key k ← {0, 1}λ and
then sends π and k to D. For each query ψi,b received from D, S picks ran-
domness r1, . . . , ri−1, ri+1, . . . , rλ ← [N2] and queries the interactive λ-vector
game with vector a ∈ {0, 1}λ where ai := 1 and aj := 0 for j �= i. S gets
a response (x1, . . . , xλ) and sets x′

i := xi and x′
j := x

rj
j for j �= r. It then

sends (x′
1, . . . , x

′
λ, (−1)b ·

∏
j∈[λ] x

′
j
−kj) to D. It is easy to check that this equals

FKDM[Ψ ′](ψi,b,Ek(b; r̂)) if the bit picked by the λ-vector game is 0, or Ek(ψ(k); r̂)
otherwise (where randomness r̂ := (rr1, . . . , ri−1, r, ri+1, . . . , rrλ)).

The advantage of S is the advantage of D at the same asymptotic time com-
plexity. Thus, if QR holds in Z∗

N , no such adversary D with non-negligible ad-
vantage can exist.

Lemma 15. The SKE scheme Σ′
BG is IND-CPA secure if QR is hard over the-

group Z∗
N and DDH is hard over the subgroup of quadratic residues QRN .

Proof. This proof is completely analogous to the IND-CPA proof for Σ′
BHHO

(see Theorem 7). We first collapse the randomness to one random exponent per
ciphertext. For this we rely on the hardness of DDH over QRN . Subsequently we
utilize the IND-CPA security of Brakerski and Goldwasser’s original scheme to
conclude the proof.

The Full Scheme ΣBG. Analogously to the setting for BHHO (Section 3.1),
we can canonically construct the full scheme ΣBG for message space {0, 1}λ from
λ instances of Σ′

BG using the same public parameters and the same key. The
class of RKA functions remains the same, while the class of KDM functions
automatically extends from Ψ ′ to

Ψ := {ψi,M : {0, 1}λ → {0, 1}λ, k �→ (ki1 ⊕Δ1, . . . , kiλ ⊕Δλ) : i ∈ [λ]λ,Δ ∈ {0, 1}λ}

Since we can canonically transfer Theorem 13, Theorem 14 and Theorem 15
from Σ′

BG to ΣBG we get the final result of this section by Theorem 4.

Theorem 16. The SKE scheme ΣBG is RKA-KDM[Φ, Ψ] secure (for Φ and Ψ
as defined above in this section) if QR is hard in the underlying group Z∗

N and
DDH is hard over the subgroup of quadratic residues QRN .

3.4 Bellare et al. [14]

Since Applebaum’s work on KDM amplification [4], it is known that projection-
KDM security implies bounded-KDM security. Projection-KDM security allows
for KDM functions where each output bit depends only on one input bit (key

RKA-KDM Secure Encryption Schemes 497

bit). Bounded-KDM security means that the class of KDM functions is the
set of all functions that can be represented by a circuit of bounded size L.
We refer to this function class as Ψbnd(L) from now on. To our knowledge, cur-
rently the most efficient way to construct a bounded-KDM secure scheme from
a projection-KDM secure one is the approach of Bellare, Hoang, and Rogaway
[14] (henceforth BHR). In this section we observe that their construction also
maintains RKA security in our sense. Thus, we can plug all of our projection-
KDM secure schemes (i.e., ΣBG, ΣACPS and ΣBHHO) into their framework to
get RKA-bounded-KDM secure schemes. Obviously, this result holds for any
projection-KDM secure scheme that is RKA secure (with a suitable oracle in
our sense).

(Projective) Garbling Schemes. What follows is a quick introduction to
garbling schemes established by [14]. A garbling scheme is a tuple of algorithms
(GCgarble,GCencode,GCdecode,GCeval).

5 The algorithm GCgarble is probabilistic while
the remaining algorithms are deterministic. Given an encoding of the security
parameter and a function f , GCgarble(1

λ, f) outputs the description of a garbled
circuit (F, e, d). Here, F is a function mapping garbled inputs to garbled outputs.
E.g., F could be a circuit in terms of gates and wires together with a garbled
table for each gate. The outputs e and d contain information to encode and
decode the input and output of F respectively. We say that a garbling scheme is
correct if GCdecode(d,GCeval(F,GCencode(M, e))) = f(M) for all functions f (from
a certain class), inputs M ∈ {0, 1}λ and descriptions (F, e, d) ← GCgarble(1

λ, f)
of garbled circuits for f .

For our application we need so-called projective garbling schemes. Basi-
cally, a garbling scheme is projective if for all x := GCencode(e,M) and x′ :=
GCencode(e,M

′), we have |xi| = |x′
i| for i ∈ [λ] and xi = x′

i for i ∈ [λ] with
Mi = M ′

i (see [15] for a rigorous definition). One well-known way to construct a
projective garbling scheme is to assign a pair of keys to each wire corresponding
to low and high voltage (0/1) respectively. Then e is a tuple of pairs of keys and
GCencode(M, e) picks the keys from e corresponding to the bits of M .

Furthermore, we say that a garbling scheme is privacy preserving if for any
two (adversarially chosen) functions f0, f1 with the same circuit size and in-
puts x0, x1 of same length with f0(x0) = f1(x1), no adversary can distin-
guish (F0,GCencode(e0, x0), d0) from (F1,GCencode(e1, x1), d1) (where (Fb, eb, db)
← GCgarble(1

λ, fb), b ∈ {0, 1}). We refer to [15] for a more detailed definition.

The Construction of BHR. The construction creates a symmetric
KDM[Ψbnd(L)]-secure encryption scheme ΣBHR = (Pg,Kg,E,D) from any
projection-KDM-secure encryption scheme Σ′ = (Pg′,Kg′,E′,D′) and any pri-
vacy preserving projective garbling scheme (GCgarble, GCencode, GCdecode, GCeval)
as follows.

5 For simplicity we omit the additional evaluation function from [14] and restrict to
inputs of length λ here.

498 F. Böhl, G.T. Davies, and D. Hofheinz

– Pg(1λ) returns Pg′(1λ).
– Kg(π) returns Kg′(π).
– Ek(M) first generates a garbled circuit for the identity function IDλ on bit-

strings of length λ: (F, e, d) ← GCgarble(1
λ, IDλ). It then encodes the message

x := GCencode(e,M) (w.l.o.g. x ∈ {0, 1}λ×λ). Finally, it outputs the cipher-
text C := (F, d,E′

k(xi)).
– Dk((F, d, (ci)i∈[λ])) first decrypts the keys for the input wires xi := D′

k(ci)
and then evaluates the circuit to compute and output the message M :=
GCdecode(d,GCeval(F,x)).

An RKA[Φ] oracle for ΣBHR. Given an RKA[Φ] oracle F ′
RKA[Φ] for Σ′, we can

construct an RKA[Φ] oracle FRKA[Φ] for ΣBHR (note that we maintain the class of
RKA functions). LetC = (F, d, (ci)i∈[λ]) be an honestly generated ciphertext and
ϕ ∈ Φ be an RKA function. We define FRKA[Φ](C) := (F, d, (F ′

RKA[Φ](ci))i∈[λ]). A
straightforward hybrid argument over the ci, based on the indistinguishability of
F ′

RKA[Φ], shows the indistinguishability of FRKA[Φ](C).

Theorem 17. Let Σ′ be a RKA-KDM[Φ, Ψ]-secure SKE scheme with an indis-
tinguishable RKA[Φ] oracle FRKA[Φ]. If Ψ covers projections, then ΣBHR is an
RKA-KDM[Φ, Ψbnd(L)]-secure SKE for any arbitrary but fixed bound L.

Proof. We only sketch the proof here, which is straightforward and based on a
short sequence of games. Our first game is the original RKA-KDM[Φ, Ψ] experi-
ment (see Theorem 1). In the next game, we no longer use the secret key itself
to answer the RKA part of queries. More concretely, for a given RKA-KDM
query (ϕ, ψ), we compute C ← Ek(ψ(k)) and output FRKA[Φ](ϕ,C) instead of
directly returning Eϕ(k)(ψ(k)). The indistinguishability of this game hop follows
directly from the indistinguishability of RKA[Φ]. Finally, we can simply follow
the strategy from [15], Theorem 15, to compute C. This strategy requires that
the garbling scheme used to construct ΣBHR is privacy preserving and projective.

Acknowledgements. The authors would like to thank Martijn Stam for useful
discussions and Rafael Dowsley for kindling our interest in the topic. Further-
more, we would like to thank Viet Tung Hoang for pointing out a more efficient
and less complicated way to achieve bounded-KDM security (based on [14]) than
the one we first decided on (based on [6]).

References

[1] Adão, P., Bana, G., Herzog, J.C., Scedrov, A.: Soundness of Formal Encryption
in the Presence of Key-Cycles. In: de Capitani di Vimercati, S., Syverson, P.F.,
Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 374–396. Springer,
Heidelberg (2005)

[2] Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous Hardcore Bits and
Cryptography against Memory Attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

RKA-KDM Secure Encryption Schemes 499

[3] Applebaum, B.: Garbling XOR gates “For free” in the standard model. In: Sahai,
A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 162–181. Springer, Heidelberg (2013)

[4] Applebaum, B.: Key-Dependent Message Security: Generic Amplification and
Completeness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 527–546. Springer, Heidelberg (2011)

[5] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast Cryptographic Primitives
and Circular-Secure Encryption based on Hard Learning Problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

[6] Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded Key-Dependent Message
Security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444.
Springer, Heidelberg (2010)

[7] Bellare, M., Cash, D.: Pseudorandom Functions and Permutations Provably Se-
cure against Related-Key Attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 666–684. Springer, Heidelberg (2010)

[8] Bellare, M., Keelveedhi, S.: Authenticated and Misuse-Resistant Encryption of
Key-Dependent Data. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
610–629. Springer, Heidelberg (2011)

[9] Bellare, M., Kohno, T.: A Theoretical Treatment of Related-Key Attacks: RKA-
PRPs, RKA-PRFs, and Applications. In: Biham, E. (ed.) EUROCRYPT 2003.
LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003)

[10] Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek,
S.: Hedged Public-Key Encryption: How to Protect against Bad Randomness. In:
Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer,
Heidelberg (2009)

[11] Bellare, M., Hofheinz, D., Yilek, S.: Possibility and Impossibility Results for En-
cryption and Commitment Secure under Selective Opening. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009)

[12] Bellare, M., Cash, D., Keelveedhi, S.: Ciphers that Securely Encipher their own
Keys. In: ACM Conference on Computer and Communications Security, pp. 423–
432 (2011)

[13] Bellare, M., Cash, D., Miller, R.: Cryptography Secure against Related-Key At-
tacks and Tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS,
vol. 7073, pp. 486–503. Springer, Heidelberg (2011)

[14] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Security,
pp. 784–796. ACM (2012)

[15] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. Cryptology
ePrint Archive, Report 2012/265 (2012), http://eprint.iacr.org/

[16] Biham, E.: New types of Cryptoanalytic Attacks using Related Keys. In: Helleseth,
T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg
(1994)

[17] Biham, E., Dunkelman, O., Keller, N.: A Related-Key Rectangle Attack on the
Full KASUMI. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 443–461.
Springer, Heidelberg (2005)

[18] Biham, E., Dunkelman, O., Keller, N.: Related-Key Impossible Differential At-
tacks on 8-Round AES-192. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS,
vol. 3860, pp. 21–33. Springer, Heidelberg (2006)

[19] Biham, E., Dunkelman, O., Keller, N.: A Simple Related-Key Attack on the Full
SHACAL-1. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 20–30. Springer,
Heidelberg (2006)

http://eprint.iacr.org/

500 F. Böhl, G.T. Davies, and D. Hofheinz

[20] Biryukov, A., Khovratovich, D.: Related-Key Cryptanalysis of the Full AES-192
and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009)

[21] Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and Related-Key At-
tack on the Full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 231–249. Springer, Heidelberg (2009)

[22] Biryukov, A., Dunkelman, O., Keller, N., Khovratovich, D., Shamir, A.: Key
Recovery Attacks of Practical Complexity on AES-256 Variants with up to 10
Rounds. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 299–319.
Springer, Heidelberg (2010)

[23] Black, J., Rogaway, P., Shrimpton, T.: Encryption-Scheme Security in the Pres-
ence of Key-Dependent Messages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002.
LNCS, vol. 2595, pp. 62–75. Springer, Heidelberg (2003)

[24] Böhl, F., Davies, G.T., Hofheinz, D.: Encryption schemes secure under related-key
and key-dependent message attacks. IACR Cryptology ePrint Archive 653 (2013)

[25] Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryp-
tion from Decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 108–125. Springer, Heidelberg (2008)

[26] Brakerski, Z., Goldwasser, S.: Circular and Leakage Resilient Public-Key En-
cryption under Subgroup Indistinguishability - (or: Quadratic Residuosity strikes
back). In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer,
Heidelberg (2010)

[27] Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-Box Circular-Secure Encryption
beyond Affine Functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 201–
218. Springer, Heidelberg (2011)

[28] Camenisch, J., Chandran, N., Shoup, V.: A Public Key Encryption Scheme Se-
cure against Key Dependent Chosen Plaintext and Adaptive Chosen ciphertext
Attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368.
Springer, Heidelberg (2009)

[29] Dziembowski, S., Pietrzak, K.: Leakage-Resilient Cryptography. In: FOCS,
pp. 293–302 (2008)

[30] Goldwasser, S., Micali, S.: Probabilistic Encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

[31] Halevi, S., Krawczyk, H.: Security under Key-Dependent Inputs. In: ACM Con-
ference on Computer and Communications Security, pp. 466–475 (2007)

[32] Hofheinz, D.: Circular Chosen-Ciphertext Security with Compact Ciphertexts.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 520–536. Springer, Heidelberg (2013)

[33] Hofheinz, D., Unruh, D.: Towards Key-Dependent Message Security in the
Standard Model. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 108–126. Springer, Heidelberg (2008)

[34] Malkin, T., Teranishi, I., Yung, M.: Efficient Circuit-Size Independent Public Key
Encryption with KDM Security. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 507–526. Springer, Heidelberg (2011)

[35] Micali, S., Reyzin, L.: Physically Observable Cryptography. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

[36] Wee, H.: Public Key Encryption against Related Key Attacks. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 262–279.
Springer, Heidelberg (2012)

Functional Signatures and Pseudorandom

Functions

Elette Boyle1,�, Shafi Goldwasser2,3,��,� � �, and Ioana Ivan2

1 Technion – Israel Institute of Technology
eboyle@alum.mit.edu

2 MIT CSAIL
shafi@theory.csail.mit.edu, ioanai@mit.edu

3 Weizmann Institute of Science

Abstract. We introduce two new cryptographic primitives: functional
digital signatures and functional pseudorandom functions.

In a functional signature scheme, in addition to a master signing key
that can be used to sign any message, there are signing keys for a function
f , which allow one to sign any message in the range of f . As a special
case, this implies the ability to generate keys for predicates P , which
allow one to sign any message m for which P (m) = 1.

We show applications of functional signatures to constructing suc-
cinct non-interactive arguments and delegation schemes. We give several
general constructions for this primitive based on different computational
hardness assumptions, and describe the trade-offs between them in terms
of the assumptions they require and the size of the signatures.

In a functional pseudorandom function, in addition to a master se-
cret key that can be used to evaluate the pseudorandom function F on
any point in the domain, there are additional secret keys for a func-
tion f , which allow one to evaluate F on any y for which there exists
an x such that f(x) = y. As a special case, this implies pseudoran-
dom functions with selective access, where one can delegate the ability
to evaluate the pseudorandom function on inputs y for which a predi-
cate P (y) = 1 holds. We define and provide a sample construction of
a functional pseudorandom function family for prefix-fixing functions.
This construction yields, in particular, punctured pseudorandom func-
tions, which have proven an invaluable tool in recent advances in obfus-
cation (Sahai and Waters ePrint 2013).

� The research of the first author has received funding from the European Union’s
Tenth Framework Programme (FP10/ 2010-2016) under grant agreement no.
259426 ERC-CaC. This work was primarily completed while the first author was
a student at MIT.

�� This work was supported in part by Trustworthy Computing: NSF CCF-1018064.
� � � This material is based on research sponsored by the Air Force Research Laboratory

under agreement number FA8750-11-2-0225. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the Air Force Research
Laboratory or the U.S. Government.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 501–519, 2014.
c© International Association for Cryptologic Research 2014

502 E. Boyle, S. Goldwasser, and I. Ivan

1 Introduction

We introduce new cryptographic primitives with a variety of accompanying con-
structions: functional digital signatures (FDS), functional pseudorandom func-
tions (F-PRF), and psuedorandom functions with selective access (PRF-SA).1

Functional Signatures

In digital signature schemes, as defined by Diffie and Hellman [11], a signature
on a message provides information which enables the receiver to verify that the
message has been created by a proclaimed sender. The sender has a secret sign-
ing key, used in the signing process, and there is a corresponding verification key,
which is public and can be used by anyone to verify that a signature is valid.
Following Goldwasser, Micali and Rackoff [20], the standard security require-
ment for signature schemes is unforgeability against chosen-message attack: an
adversary that runs in probabilistic polynomial time and is allowed to request
signatures for a polynomial number of messages of his choice, cannot produce a
signature of any new message with non-negligible probability.

In this work, we extend the classical digital signature notion to what we call
functional signatures. In a functional signature scheme, in addition to a master
signing key that can be used to sign any message, there are secondary signing keys
for functions f (called skf), which allow one to sign any message in the range of
f . These additional keys are derived from the master signing key. The notion of
security we require such a signature scheme to satisfy is that any probabilistic
polynomial time (PPT) adversary, who can request signing keys for functions
f1 . . . fl of his choice, and signatures for messages m1, . . .mq of his choice, can
only produce a signature of a message m with non-negligible probability, if m is
equal to one of the queried messages m1, . . .mq, or if m is in the range of one of
the queried functions f1 . . . fl.

An immediate application of a functional signature scheme is the ability to
delegate the signing process from a master authority to another party. Suppose
someone wants to allow their assistant to sign on their behalf only those mes-
sages with a certain tag, such as “signed by the assistant”. Let P be a predicate
that outputs 1 on messages with the proper tag, and 0 on all other messages. In
order to delegate the signing of this restricted set of messages, one would give
the assistant a signing key for the following function:

f(m) :=

{
m if P (m) = 1

⊥ otherwise
.

1 We note that independently the notion of pseudorandom functions with selective
access was studied by Boneh-Waters under the name of constrained pseudorandom
functions [9] and by Kiayias, Papadopoulos, Triandopoulos and Zacharias under
the name delegatable pseudorandom functions [23]. Subsequent to our posting of an
earlier manuscript of this work, [4] and [2] have additionally posted similar results
on functional signatures.

Functional Signatures and Pseudorandom Functions 503

P could also be a predicate that checks if the message does not contain a given
phrase, if it is related to a certain subject, or if it satisfies a more complex policy.

Another application of functional signatures is to certify that only allowable
computations were performed on data. For example, imagine the setting of a dig-
ital camera that produces signed photos (i.e the original photos produced by the
camera can be certified). In this case, one may want to allow photo-processing
software to perform minor touch-ups of the photos, such as changing the color
scale or removing red-eyes, but not allow more significant changes such as merg-
ing two photos or cropping a picture. Functional signatures can naturally address
this problem by providing the photo processing software with keys which enable
it to sign only the allowable modifications of an original photograph. Generaliz-
ing, we think of a client and a server (e.g. photo-processing software), where the
client provides the server with data (e.g. signed original photos, text documents,
medical data) which he wants to be processed in a restricted fashion.A functional
signature of the processed data provides proof of allowable processing.

Functional signatures can also be used to construct a delegation scheme. In
this setting, there is a client who wants to allow a more powerful server to
compute a function f on inputs chosen by the client, and wants to be able to
verify that the result returned by the server is correct. The verification process
should be more efficient than for the client to compute f himself. The client can
give the server a key for the function f ′(x) = (f(x)|x). To prove that y = f(x),
the prover gives the client a signature of y|x, which he could only have obtained
if y|x is in the range of f ′; that is, if y = f(x).

A desirable property of a functional signature scheme is function privacy : the
signature should reveal neither the function f corresponding to the key used in
the signing process, nor the message m that f was applied to. In the example
with the signed photos, one might not wish to reveal the original image, just that
the final photographs were obtained by running one of the allowed functions on
some image taken with the camera.

An additional desirable property is succinctness : the size of the signature
should only depend on the size of the output f(m) and the security parameter (or
just the security parameter), rather than the size of the circuit for computing f .

Functional Pseudorandomness

Pseudorandom functions (PRFs), introduced by Goldreich, Goldwasser, and Mi-
cali [14], are a family of indexed functions F = {Fs} such that: (1) given the
index s, Fs can be efficiently evaluated on all inputs, and (2) no probabilistic
polynomial-time algorithm without s can distinguish evaluations Fs(xi) for in-
puts xi of its choice from random values. Pseudorandom functions are useful for
numerous symmetric-key cryptographic applications, including generating pass-
words, identify-friend-or-foe systems, and symmetric-key encryption schemes se-
cure against chosen-ciphertext attacks.

In this work, we extend pseudorandom functions to a primitive which we call
functional pseudorandom functions (F-PRF). The idea is that in addition to a
master secret key (that can be used to evaluate the pseudorandom function Fs

504 E. Boyle, S. Goldwasser, and I. Ivan

on any point in the domain), there are additional secret keys skf per function
f , which allow one to evaluate Fs on any y for which there exists x such that
f(x) = y (i.e y ∈ Range(f)). An immediate application of such a construct is
to specify succinctly the randomness to be used by parties in a randomized dis-
tributed protocol with potentially faulty players, so as to force honest behavior.
A centralized authority holds an index s of a pseudorandom function Fs. One
may think of this authority as providing a service which dispenses pseudoran-
domness (alternatively, the secret s can be shared among players in an MPC).
The authority provides each party id with a secret key sid which enables party id
to (1) evaluate Fs(y) whenever y = “id‖h”, where h corresponds to say the pub-
lic history of communication, and (2) use Fs(y) as her next sequence of coins in
the protocol. To prove that the appropriate randomness was used, id can utilize
NIZK proofs. An interesting open question is how to achieve a verifiable F-PRF,
where there is additional information vks that can be used to verify that a given
pair (x, Fs(x)) is valid, without assuming the existence of an honestly generated
common reference string, as in the NIZK setting. Note that in this example the
function f(x) = y is simply the function which appends the string prefix id to x.
We note that there are many other ways to force the use of proper randomness in
MPC protocols by dishonest parties, starting with the classical paradigm [19,15]
where parties interact to execute a “coin flip in the well” protocol forcing players
to use the results of these coins, but we find the use of F-PRF appealing in its
simplicity, lack of interaction and potential efficiency.

The notion of functional pseudorandom functions has many variations. One
natural variant that immediately follows is PRFs with selective access, in which
secondary keys skP can be produced per predicate P to enable computing Fs(x)
on inputs x for which P (x) = 1. This is a special case of F-PRF, as we can take
the secret key for predicate P to be skf where f(x) = x if P (x) = 1 and ⊥
otherwise. The special case of punctured PRFs, in which secondary keys allow
computing Fs(x) on all inputs except one, is similarly implied and has recently
been shown to have important applications (e.g., [29,22]). Another variant is
hierarchical PRFs, with an additional property that parties with functional keys
skf may also generate subordinate keys skg for functions g of the form g = f ◦f ′

(i.e., first evaluate f ′, then evaluate f). Note that the range of such composition
g is necessarily contained within the range of f .

1.1 Our Results on Functional Signatures and Their Applications

We provide a construction of functional signatures achieving function privacy
and succinctness, assuming the existence of succinct non-interactive arguments of
knowledge (SNARKS) and (standard) non-interactive zero-knowledge arguments
of knowledge (NIZKAoKs) for NP languages.

As a building block, we first give a construction of a functional signature
scheme that is not succinct or function private, based on a much weaker as-
sumption: the existence of one-way functions.

Functional Signatures and Pseudorandom Functions 505

Theorem 1 (Informal). Based on any one-way function, there exists a func-
tional signature scheme that supports signing keys for any function f computable
by a polynomial-sized circuit. This scheme satisfies the unforgeability requirement
for functional signatures, but not function privacy or succinctness.

Overview of the Construction: The master signing and verification keys for
the functional signature scheme will correspond to a key pair, (msk,mvk), in an
underlying (standard) signature scheme. To generate a signing key for a function
f , we sample a fresh signing and verification key pair (sk′, vk′) in the underlying
signature scheme, and sign the concatenation f |vk′ using msk. The signing key
for f consists of this signature together with sk′. Given this signing key, a user
can sign any message m∗ = f(m) by signing m using sk′, and outputting this
signature, together with the signature of f |vk′ given as part of skf .

We then now show how to use SNARKs, together with this initial construc-
tion, to construct a succinct, function-private functional signature scheme.

A SNARK system for an NP language L with corresponding relation R is
an extractable proof system where the size of a proof is sublinear in the size
of the witness corresponding to an instance. SNARKs have been constructed
under various non-falsifiable [26] assumptions. Bitansky et al. [6] construct zero-
knowledge SNARKs where the length of the proof and the verifier’s running
time are bounded by a polynomial in the security parameter, and the logarithm
of running time of the corresponding relation R(x,w), assuming the existence
of collision-resistant hash functions and a knowledge-of-exponent assumption.2

(More details are given in the full version).

Theorem 2 (Informal). Assuming the existence of SNARK and NIZKAoK for
NP, and a functional signature scheme that is not necessarily function-private
or succinct, there exists a succinct, function-private functional signature scheme
that supports signing keys for the class of polynomial-sized circuits.

Overview of the Construction: In the setup algorithm for our functional
signature scheme, we sample a key pair (msk,mvk) for the underlying (non-
succinct, non-function-pivate) functional signature scheme FS1, and a common
reference string crs for the SNARK system. We usemsk as the new master singing
key and (mvk, crs) as the new master verification key. The skf key generation
algorithm is the same as in the underlying functional signature scheme FS1.
To sign a message m∗ using a resulting key skf , we generate a zero-knowledge
SNARK for the following statement: ∃σ such that σ is a valid signature of m∗

under mvk in the functional signature scheme FS1. To verify the signature, we
run the verification algorithm for the SNARK argument system.

Resorting to non-falsifiable assumptions, albeit strong, seems necessary to
obtain succinctness for functional signatures. We show that, given a functional
signature scheme with short signatures, we can construct a SNARG system.

2 In [5], Bitansky et al. also show that any SNARK + NIZKAoK directly yield zero-
knowledge (ZK)-SNARK with analogous parameters.

506 E. Boyle, S. Goldwasser, and I. Ivan

Theorem 3 (Informal). If there exists a functional signature scheme sup-
porting keys for all polynomial-sized circuits f , with short signatures (i.e., of
size poly(k) · (|f(m)| + |m|)o(1) for security parameter k), then there exists a
SNARG scheme with preprocessing for any language L ∈ NP with proof size
poly(k) · (|w| + |x|)o(1), where w is the witness and x is the instance.

The main idea in the SNARG construction is for the verifier (CRS generator)
to give out a single signing key skf for a function whose range consists of exactly
those strings that are in the language L. Then, with skf , the prover will be
able to sign only those messages x that are in L, and thus can use this (short)
signature as his proof.

Gentry andWichs showed in [13] that SNARG schemes with proof size poly(k)·
(|w| + |x|)o(1) cannot be obtained using black-box reductions to falsifiable as-
sumptions. We can thus conclude that in order to obtain a functional signature
scheme with signature size poly(k) · (|f(m)| + |m|)o(1) we must either rely on
non-falsifiable assumptions (as in our SNARK construction) or make use of non
black-box techniques.

Finally, we can construct a scheme which satisfies unforgeability and func-
tional privacy but not succinctness, based on the weaker assumption of non-
interactive zero-knowledge arguments of knowledge (NIZKAoK) for NP.

Theorem 4 (Informal). Assuming the existence of non-interactive zero-
knowledge arguments of knowledge (NIZKAoK) for NP, there exists a functional
signature scheme that supports signing keys for any function f computable by
a polynomial-sized circuit. This scheme satisfies function privacy, but not suc-
cinctness: the size of the signature is dependent on the size of f and m.

Overview of the Construction:The construction is analogous to the SNARK-
based construction above, with the SNARK replaced with NIZKAoK. Namely, a
signature will be a NIZK Argument of Knowledge for the following statement: ∃σ
such that σ is a valid signature of m∗ under mvk, in an underlying non-succinct,
non-function-private functional signature scheme, as before (recall such a scheme
exists based on OWF). The signature size is now polynomial in the size of σ,
which, if m∗ = f(m), and sigma was generated using skf , is itself polynomial in
the security parameter, |m|, and |f |.

Relation to Delegation: Functional signatures are highly related to delegation
schemes. A delegation scheme allows a client to outsource evaluation of a function
f to a server, allowing the client to verify the correctness of the computation
more efficiently than evaluating f himself. We show that given any functional
signature scheme supporting a class of functions F , we can obtain a delegation
scheme in the preprocessing model for functions in F , with related parameters.

Theorem 5 (Informal). If there exists a functional signature scheme for func-
tion class F , with signature size s(k), and verification time t(k), then there exists
a one-round delegation scheme for functions in F , with server message size s(k)
and client verification time t(k).

Functional Signatures and Pseudorandom Functions 507

Overview of the Construction: The client gives the server a key skf ′ for the
function f ′(x) = (f(x)|x). To prove that y = f(x), the prover gives the client a
signature of y|x, which he could only have obtained if y|x is in the range of f ′;
that is, if y = f(x). The length of a proof is equal to the length of a signature in
the functional signature scheme, s(k), and the verification time for the delegation
scheme is equal to the verification time of the functional signature scheme.

1.2 Summary of Our Results on Functional Pseudorandom
Functions and Selective Pseudorandom Functions

We present formal definitions and constructions of functional pseudorandom
functions (F-PRF) and pseudorandom functions with selective access (PRF-SA).
In particular, we present a construction based on one-way functions of an F-PRF
supporting the class of prefix-fixing functions. Our construction is based on the
Goldreich-Goldwasser-Micali (GGM) tree-based PRF construction [GGM86].

Theorem 6 (Informal). Assuming the existence of OWF, there exists an F-
PRF supporting keys for the class of prefix-matching functions: Fpre = {fz|z ∈
{0, 1}m,m ≤ n}, where fz(x) = x if z is a prefix of x, and ⊥ otherwise. The
pseudorandomness property holds against a selective adversary, who declares the
functions he will query before seeing the public parameters.

We remark that one can directly obtain a fully secure F-PRF for Fpre, in
which security holds against an adversary who adaptively requests key queries,
from our selectively secure construction, with a loss of 2−n in security for each
functional secret key skfz queried by the adversary, via standard complexity
leveraging. For appropriate choices of the input length n, security of the under-
lying OWF, and number of key queries, this still provides desirable security.

Overview of the Construction. We show that the original Goldreich-
Goldwasser-Micali (GGM) tree-based PRF construction [14] provides the de-
sired functionality, where the functional key skf corresponding to a prefix-fixing
function fz(x) = z1z2 · · · zixi+1 · · ·xn will be given by the partial evaluation of
the PRF down the tree, at the node corresponding to prefix z1z2 · · · zi.

This partial evaluation clearly enables a user to compute all possible contin-
uations in the evaluation tree, corresponding to the output of the PRF on any
input possessing prefix z. Intuitively, security holds since the other partial eval-
uations at this level i in the tree still appear random given the evaluation skf
(indeed, this corresponds to a truncated i-bit input GGM construction).

Punctured pseudorandom functions. Punctured pseudorandom functions [29] are
a special case of functional PRFs, where one can generate keys for the function
family F = {fx(y) = y if y �= x, and ⊥ otherwise}. Namely, a key for function
fx allows one to compute the pseudorandom function on any input except for x.
Punctured PRFs have recently proven useful as one of the main techniques used
in proving the security of various cryptographic primitives based on the exis-
tence of indistinguishability obfuscation. Some examples include a construction

508 E. Boyle, S. Goldwasser, and I. Ivan

of public-key encryption from symmetric-key encryption and the construction
of deniable encryption given by Sahai and Waters in [29], as well as an instan-
tiation of random oracles with a concrete hash function for full-domain hash
applications by Hohenberger et al. in [22].

We note that the existence of a functional PRF for the prefix-fixing function
family gives a construction of punctured PRFs. A key that allows one to compute
the PRF on all inputs except x = x1 . . . xn consists of n functional keys for the
prefix-fixing function family for prefixes: x̄1, x1x̄2, x1x2x̄3, . . . , x1x2 · · ·xn−1x̄n.

Corollary 1 (Informal). Assuming the existence of OWF, there exists a (se-
lectively secure) punctured PRF for any desired poly-size input length.

Our construction has the additional beneficial property of hierarchical key
generation: i.e., a party with a functional key skfz for a prefix z may generate
valid “subordinate” functional keys skfz′ for any prefix z′ = z|∗. That is, we
prove the following additional statement.

Corollary 2 (Informal). Assuming the existence of OWF, there exists a (se-
lectively secure) hierarchical functional PRF for the class of functions Fpre.

1.3 Other Related Work

Functional Encryption. This work is inspired by recent results on the problem
of functional encryption, introduced by Sahai and Waters [28], and formalized
by Boneh et al. [8]. In the past few years there has been significant progress
on constructing functional encryption schemes for general classes of functions
(e.g., [21,17,18]). In this setting, a party with access to a master secret key can
generate secret keys skf for functions f , which allow a third party with skf and
an encryption of a message m to learn f(m), but nothing else about m. In [17],
Goldwasser et al. construct a functional encryption scheme supporting general
functions, and secure according to a simulation-based definition, as long as a
single key is given out. In [1], Agrawal et al. show that constructing functional
encryption schemes achieving this notion of security in the presence of an un-
bounded number of secret keys is impossible for general functions. In contrast,
no such impossibility results are known in the setting of functional signatures.

Connections to Obfuscation. The goal of program obfuscation is to construct
a compiler O that takes as input a program P and outputs a program O(P)
that preserves the functionality of P , but hides all other information about the
original program. Following [3], this is often formalized by requiring that the
single-bit output of an efficient adversary given access to an obfuscation of P
can be simulated given only black-box access to P . However, Barak et al. [3]
show that this definition is unachievable for general functions. Furthermore,
in [16], Goldwasser and Kalai give evidence that several natural cryptographic
algorithms, including the signing algorithm of any unforgeable signature scheme,
are not obfuscatable with respect to this strong definition.

Functional Signatures and Pseudorandom Functions 509

Consider the function Sign ◦ f , where Sign is the signing algorithm of an un-
forgeable signature scheme, f is an arbitrary function and ◦ denotes function
composition. Based on the results in [16] we would expect this function not to
be obfuscatable according to the black-box simulation definition. A meaningful
relaxation of the definition is that, while having access to an obfuscation of this
function might not hide all information about the signing algorithm, it does not
completely reveal the secret key, and does not allow one to sign messages that
are not in the range of f . In our function signature scheme, the signing key
corresponding to a function f achieves exactly this definition of security, and
we can think of it as an obfuscation of Sign ◦ f according to this relaxed defini-
tion. Indeed it has recently come to our attention that Barak in an unpublished
manuscript has considered delegatable signatures, a highly related concept.

Homomorphic Signatures. In a homomorphic signature scheme, a third party
is able to perform computations over already-signed data, and obtain a new
signature that authenticates the resulting message with respect to this compu-
tation. In [12], Gennaro and Wichs construct homomorphic (privately verifiable)
message authentication codes. For homomorphic signature schemes with public
verification, the most general construction of Boneh and Freeman [7] only al-
lows the evaluation of multivariate polynomials on signed data. Constructing
homomorphic signature schemes for general functions remains an open problem.

Signatures of correct computation. Papamanthou, Shi and Tamassia consider
a notion of functional signatures under the name “signatures of correct com-
putation” [27]. They give constructions for schemes that support operations
over multivariate polynomials, such as polynomial evaluation and differentia-
tion. Their schemes are secure in the random oracle model and allow efficient
updates to the signing keys: the keys can be updated in time proportional to
the number of updated coefficients. In contrast, our constructions that support
signing keys for general functions, in the plain model, assuming the existence of
succinct non-interactive arguments of knowledge.

Independent work. Finally, as mentioned earlier, related notions to functional
PRFs appear in the concurrent and independent works [9,23]. Based on the
Multilinear Decisional Diffie-Hellman assumption (a recently coined assumption
related to existence of secure multilinear maps), [9] show that PRFs with Se-
lective Access can be constructed for all predicates describable as polynomial-
sized circuits. We remark that this is not equivalent to functional PRFs for
polynomial-sized circuits, which additionally captures NP relations (i.e., the
predicate y ∈ Range(f) may not be efficiently testable directly). Subsequent
to our posting of an earlier manuscript of this work, [4] and [2] have additionally
posted similar results on functional signatures.

1.4 Overview of the Paper

In Section 2, we give a formal definition of functional signature schemes, and
present three constructions satisfying the definition. In Section 3, we show how to

510 E. Boyle, S. Goldwasser, and I. Ivan

construct delegation schemes and succinct non-interactive arguments (SNARGs)
from functional signatures schemes. In Section 4, we give a formal definition of
functional pseudorandom functions and pseudorandom functions with selective
access, and present a sample construction for the prefix-fixing function family. In
Section 5, we discuss open problems. Due to space constraints, we defer the pre-
liminaries and proofs of theorem statements to the full version of the paper [10].

2 Functional Signatures: Definition and Constructions

We now give a formal definition of a functional signature scheme, specifying the
desired unforgeability, function-privacy, and succinctness properties.

Definition 1. A functional signature scheme for a message space M, and func-
tion family F = {f : Df → M} consists of algorithms (FS.Setup, FS.KeyGen,
FS.Sign, FS.Verify):

– FS.Setup(1k) → (msk,mvk): the setup algorithm takes as input the security
parameter and outputs the master signing key and master verification key.

– FS.KeyGen(msk, f) → skf : the key generation algorithm takes as input the
master signing key and a function f ∈ F (represented as a circuit), and
outputs a signing key for f .

– FS.Sign(f, skf ,m) → (f(m), σ): the signing algorithm takes as input the sign-
ing key for a function f ∈ F and an input m ∈ Df , and outputs f(m) and
a signature of f(m).

– FS.Verify(mvk,m∗, σ) → {0, 1}: the verification algorithm takes as input the
master verification key mvk, a message m and a signature σ, and outputs 1
if the signature is valid.

We require the following conditions to hold:

Correctness
∀f ∈ F , ∀m ∈ Df , (msk,mvk) ← FS.Setup(1k), skf ← FS.KeyGen(msk, f),
(m∗, σ) ← FS.Sign(f, skf ,m), it holds that FS.Verify(mvk,m∗, σ) = 1.

Unforgeability
The scheme is unforgeable if the advantage of any PPT algorithm A in the fol-
lowing game is negligible:

– The challenger generates (msk,mvk) ← FS.Setup(1k), and gives mvk to A.
– The adversary is allowed to query a key generation oracle Okey, and a signing

oracle Osign, that share a dictionary indexed by tuples (f, i) ∈ F × N, whose
entries are signing keys: skif ← FS.KeyGen(msk, f). This dictionary keeps
track of the keys that have been previously generated during the unforgeability
game. The oracles are defined as follows :

• Okey(f, i) :

Functional Signatures and Pseudorandom Functions 511

∗ if there exists an entry for the key (f, i) in the dictionary, then output
the corresponding value, skif .

∗ otherwise, sample a fresh key skif ← FS.KeyGen(msk, f), add an entry

(f, i) → skif to the dictionary, and output skif
• Osign(f, i,m):

∗ if there exists an entry for the key (f, i) in the dictionary, then gen-
erate a signature on f(m) using this key: σ ← FS.Sign(f, skif ,m).

∗ otherwise, sample a fresh key skif ← FS.KeyGen(msk, f), add an entry

(f, i) → skif to the dictionary, and generate a signature on f(m)

using this key: σ ← FS.Sign(f, skif ,m).

– The adversary wins if it can produce (m∗, σ) such that

• FS.Verify(mvk,m∗, σ) = 1.

• there does not exist m such that m∗ = f(m) for any f which was sent
as a query to the Okey oracle.

• there does not exist a (f,m) pair such that (f,m) was a query to the
Osign oracle and m∗ = f(m).

Function Privacy
Intuitively, we require the distribution of signatures on a message m′ generated
via different keys skf to be computationally indistinguishable, even given the
secret keys and master signing key. Namely, the advantage of any PPT adversary
in the following game is negligible:

– The challenger honestly generates a key pair (mvk,msk) ← FS.Setup(1k) and
gives both values to the adversary.

– The adversary chooses a function f0 and receives an (honestly generated)
secret key skf0 ← FS.KeyGen(msk, f0).

– The adversary chooses a second function f1 for which |f0| = |f1| (where
padding can be used if there is a known upper bound) and receives an (hon-
estly generated) secret key skf1 ← FS.KeyGen(msk, f1).

– The adversary chooses a pair of values m0,m1 for which |m0| = |m1| and
f0(m0) = f1(m1).

– The challenger selects a random bit b ← {0, 1} and generates a signature on
the image message m′ = f0(m0) = f1(m1) using secret key skfb , and gives
the resulting signature σ ← FS.Sign(skfb ,mb) to the adversary.

– The adversary outputs a bit b′, and wins the game if b′ = b.

Succinctness
There exists a polynomial s(·) such that for every k ∈ N, f ∈ F ,m ∈ Df , it holds
with probability 1 over (msk,mvk) ← FS.Setup(1k), skf ← FS.KeyGen(msk, f),
(f(m), σ) ← FS.Sign(f, skf ,m) that the resulting signature on f(m) has size
|σ| ≤ s(k, |f(m)|). In particular, the signature size is independent of the size |m|
of the input to the function, and of the size |f | of a description of the function f .

512 E. Boyle, S. Goldwasser, and I. Ivan

Constructions. In the full version of the paper, we give three constructions
of functional signature schemes, and describe the trade-offs between them in
terms of the assumptions they require and the function privacy and succinctness
properties of the functional signature scheme.

Theorem 7. The following three implications hold:

1. Assuming the existence of one-way functions, there exists a functional sig-
nature scheme for the class F of polynomial-size circuits that satisfies the
unforgeability requirement described above.

2. Assuming the existence of Non-Interactive Zero Knowledge Arguments of
Knowledge for NP and one-way functions, there exists a function-private
(but not necessarily succinct) functional signature scheme for the class F of
polynomial-size circuits.

3. Assuming the existence of an unforgeable (but not necessarily succinct or
function-private) functional signature scheme supporting the class of func-
tions F , and an adaptive zero-knowledge Succinct Non-Interactive
Argument of Knowledge (SNARK) system for NP, there exists succinct,
function-private functional signatures for F .

As a corollary, it follows that succinct, function-private functional signatures
for the class of polynomial-size circuits can be based on SNARKs for NP and
OWFs.

3 Applications of Functional Signatures

In this section we discuss applications of functional signatures to other cryp-
tographic problems, such as constructing delegation schemes and succinct non-
interactive arguments (SNARGs).

3.1 SNARGs from Functional Signatures

Recall that in a SNARG system for a language L, there is a verifier V , and a
prover P who wishes to convince the verifier that an input x is in L. To achieve
succinctness, proofs produced by the prover must be sublinear in the size of the
input plus the size of the witness.

We show how to use a functional signature scheme supporting keys for func-
tions f describable as polynomial-size circuits, and which has short signatures
(i.e of size r(k) · (|f(m)|+ |m|)o(1) for a polynomial r(·)) to construct a SNARG
scheme with preprocessing for any language L ∈ NP with proof size bounded
by r(k) · (|w| + |x|)o(1), where w is the witness and x is the instance. We note
that this is the proof size used in the lower bound of [13].

Let L be an NP-complete language, and R the corresponding relation. The
main idea in the construction is for the verifier (or CRS setup) to give out a single
signing key for a function whose range consists of exactly those strings that are
in L. Note that this can be efficiently described by use of the relation R (where

Functional Signatures and Pseudorandom Functions 513

the function also takes as input a witness). Then, with skf for this appropriate
function f , the prover will be able to sign only those messages that are in the
language L, and hence can use a signature on x as a convincing argument that
x ∈ L. The resulting argument is succinct and publicly verifiable.

More explicitly, let FS = (FS.Setup,FS.KeyGen,FS.Sign,FS.Verify) be a suc-
cinct functional signature scheme (as in Definition 1) supporting the class F of
polynomial-size circuits. We construct the desired SNARG system Π = (Π.Gen,
Π.Prove,Π.Verify) for NP language L with relation R, as follows:

– Π.Gen(1k):
• run the functional signature scheme setup: (mvk,msk) ← FS.Setup(1k).
• generate a signing key skf ← FS.KeyGen(msk, f) for the function

f(x|w) := x if R(x,w) = 1,⊥ otherwise, and output crs = (mvk, skf).
– Π.Prove(x,w, crs): output FS.Sign(f, skf , x|w).
– Π.Verify(crs, x, π): output FS.Verify(mvk, x, π).

Theorem 8. If FS is a functional signature scheme supporting the class F of
polynomial-sized circuits, thenΠ is a succinct non-interactive argument (SNARG)
for NP language L.

We defer the proof of Theorem 8 to the full version.

Remark 1 (Functional PRFs as Functional MACs). Note that functional pseu-
dorandom functions directly imply a notion of functional message authentication
codes (MACs), where the master PRF seed s serves as the (shared) master secret
MAC key, and a functional PRF subkey skf enables one to both MAC and verify
messages f(m). Using the transformation above with such a functional MAC in
the place of functional signatures yields a privately verifiable SNARG system.

Remark 2 (Lower bound of [13]). Gentry and Wichs showed in [13] that SNARG
schemes for NP, with proof size r(k) · (|x|+ |w|)o(1) for polynomial r(·) cannot be
obtained using black-box reductions to falsifiable assumptions [26]. Therefore,
combined with Theorem 8, it follows that in order to obtain a functional signa-
ture scheme with signature size r(k) · (|f(m)| + |m|)o(1) we must either rely on
non-falsifiable assumptions (as in our SNARK-based construction) or make use
of non black-box techniques.

In the full version of this paper, we demonstrate a similar implication of
functional signatures on the existence of efficient delegation schemes.

4 Functional Pseudorandom Functions

In a standard pseudorandom function family, the ability to evaluate the chosen
function is all-or-nothing: a party who holds the secret seed s can compute Fs(x)
on all inputs x, whereas a party without knowledge of s cannot distinguish
evaluations Fs(x) on requested inputs x from random. We propose the notion

514 E. Boyle, S. Goldwasser, and I. Ivan

of a functional pseudorandom function (F-PRF) family, which partly fills this
gap between evaluation powers. The idea is that, in addition to a master secret
key that can be used to evaluate the pseudorandom function F on any point in
the domain, there are additional secret keys per function f , which allow one to
evaluate F on y for any y for which there exists an x such that f(x) = y (i.e., y
is in the range of f).

Definition 2 (Functional PRF). We say that a PRF family {Fs : D →
R}s∈S is a functional pseudorandom function (F-PRF) with respect to a class
of functions F = {f : Af → D} if there exist additional algorithms

KeyGen(s, f) : On input a seed s ∈ S and function description f ∈ F , the
algorithm KeyGen outputs a key skf .

Eval(skf , f, x) : On input key skf , function f ∈ F , and input x ∈ Af , then Eval
outputs the PRF evaluation Fs(f(x)).

which satisfy the following properties:

– Correctness: For every f ∈ F , ∀x ∈ Af , it holds that ∀s ← S, ∀skf ←
KeyGen(s, f), Eval(skf , f, x) = Fs(f(x)).

– Pseudorandomness: Given a set of keys skf1 . . . skf� for functions f1 . . . f�,
the evaluation of Fs(y) should remain pseudorandom on all inputs y that are
not in the range of any of the functions f1 . . . f�. That is, for any PPT
adversary A, the advantage of A in distinguishing between the following two
experiments is negligible (for any polynomial � = �(k)):

Experiment Rand Experiment PRand
Key query Phase Key query Phase
(pp, s) ← Gen(1k) (pp, s) ← Gen(1k)
f1 ← A(pp) f1 ← A(pp)
skf1 ← KeyGen(s, f1) skf1 ← KeyGen(s, f1)
...

...
f� ← A(pp, f1, skf1 , . . . , fl−1, skfl−1

) f� ← A(pp, f1, skf1 , . . . , fl−1, skfl−1
)

skf� ← KeyGen(s, f�) skf� ← KeyGen(s, f�)
Challenge Phase Challenge Phase
H ← FD→R a random function

b ← AO{fi}
s,H (·)(f1, skf1 , . . . , f�, skf�) b ← AFs(·)(f1, skf1 , . . . , f�, skf�)

where O{fi}
s,H (y) :=

{
Fs(y) if ∃i ∈ [l] and x s.t. fi(x) = y

H(y) otherwise
.

Note that, as defined, the oracle O{fi}
s,H (y) need not be efficiently computable.

This inefficiency stems both from sampling a truly random function H , and
from testing whether the adversary’s evaluation queries y are contained within

Functional Signatures and Pseudorandom Functions 515

the range of one of his previously queried functions fi. However, within par-
ticular applications, the system can be set up so that this oracle is efficiently
simulatable: For example, evaluations of a truly random function can be simu-
lated by choosing each queried evaluation one at a time; Further, the range of
the relevant functions fi may be efficiently testable given trapdoor information
(e.g., determining the range of f : r �→ Enc(pk, 0; r) for a public-key encryption
scheme is infeasible given only pk but efficiently testable given the secret key).

We also consider a weaker security definition, where the adversary has to
reveal which functions he will request keys for before seeing the public parameters
or any of the keys. Namely, the key query phase takes place as follows:

Selective Key query Phase
(pp, s) ← Gen(1k)
(f1, . . . , f�) ← A(pp)
For i ∈ [�], skfi ← KeyGen(s, fi)

We refer to this as a selectively secure F-PRF.
A special case of functional PRFs arises when access control is to be de-

termined by predicates. (Indeed, fitting within the F-PRF framework, one can
emulate predicate policies by considering the corresponding functions fP (x) = x
if P (x) = 1 and = ⊥ if P (x) = 0). We refer to this as PRFs with selective access.

Finally, we consider hierarchical F-PRFs, where a party holding key skf for
function f : B → D can generate subsidiary keys skf◦g for functions g : A → B.

We present formal definitions of these notions in the full version of this paper.

4.1 Construction Based on OWF

We now construct a functional pseudorandom function family Fs : {0, 1}n →
{0, 1}n supporting the class of prefix-fixing functions, building upon the
Goldreich-Goldwasser-Micali (GGM) tree-based PRF construction [14]. More
precisely, our construction supports the function class

Fpre =
{
fz(x) : {0, 1}n → {0, 1}n

∣∣∣ z ∈ {0, 1}m for m ≤ n
}
,

where fz(x) :=

{
x if (x1 = z1) ∧ · · · ∧ (xm = zm)

⊥ otherwise
.

Recall that the GGM construction makes use of a length-doubling pseudorandom
generator G : {0, 1}k → {0, 1}2k (which can be constructed from any one-way
function). Denoting the two halves of the output of G as G(y) = G0(y)G1(y),
the PRF with seed s is defined as Fs(y) = Gyk(· · ·Gy2(Gy1(s))).

We show that we can obtain a functional PRF for Fpre by adding the follow-
ing two algorithms on top of the GGM PRF construction. Intuitively, in these
algorithms the functional secret key skfz corresponding to a queried function
fz ∈ Fpre will be the partial evaluation of the GGM prefix corresponding to
prefix z: i.e., the label of the node corresponding to node z in the GGM eval-
uation tree. Given this partial evaluation, a party will be able to compute the

516 E. Boyle, S. Goldwasser, and I. Ivan

completion for any input x which has z as a prefix. However, as we will argue,
the evaluation on all other inputs will remain pseudorandom.

KeyGen(s, fz) : output Gzm(· · ·Gz2(Gz1(s))), where m = |z|

Eval(skfz , y) : output

{
Gyn(· · ·Gym+2(Gym+1(skfz))) if y1 = z1 ∧ · · · ∧ ym = zm

⊥ otherwise

Theorem 9. Based on the existence of one-way functions, the GGM pseudoran-
dom function family together with algorithms KeyGen and Eval defined as above,
yields a selectively secure functional PRF for the class of functions Fpre.

We remark that one can directly obtain a fully secure F-PRF for Fpre (as
in Definition 2) from our selectively secure construction, with a loss of 2−n in
security for each secret key skfz queried by the adversary. This is achieved simply
by guessing the adversary’s query fz ∈ Fpre. For appropriate choices of input size
n and security parameter k, this can still provide useful security.

As an immediate corollary of Theorem 9, we obtain a (selectively secure)
PRF with selective access for the class of equivalent prefix-matching predicates
Ppre = {Pz : {0, 1}n → {0, 1}|z ∈ {0, 1}m for m ≤ n}, where Pz(x) := 1 if (x1 =
z1) ∧ · · · ∧ (xm = zm) and 0 otherwise.

Our F-PRF construction has the additional benefit of being hierarchical.
Given a secret key skfz for a prefix z ∈ {0, 1}m, a party can generate subor-

dinate secret keys skfz′ for any z′ ∈ {0, 1}m′
, m′ > m that aligns with z on its

first m bits. This secondary key generation process is accomplished simply by
applying the PRGs to skfz , traversing the GGM tree according to the additional
bits of z′.

Punctured Pseudorandom Functions. Punctured PRFs, formalized by [29],
are a special case of functional PRFs where one can generate keys for the function
family F = {fx(y) = y if y �= x, and ⊥ otherwise}. Such PRFs have recently
been shown to have important applications, including use as a primary technique
in proving security of various cryptographic primitives based on the existence of
indistinguishability obfuscation (see, e.g., [29,22]).

The existence of a functional PRF for the prefix-fixing function family gives
a construction of punctured PRFs. Namely, a punctured key skx allowing one
to compute the PRF on all inputs except x = x1 . . . xn consists of n functional
keys for the prefix-fixing function family for prefixes:

(x̄1), (x1x̄2), (x1x2x̄3), . . . , (x1x2 . . . xn−1x̄n).

Our GGM-based construction in the previous section thus directly yields a
selectively secure punctured PRF based on OWFs.

Corollary 3 (Selectively-Secure Punctured PRFs). Assuming the exis-
tence of OWF, there exists a selectively secure punctured PRF for any desired
poly-size input length.

Functional Signatures and Pseudorandom Functions 517

We remark that full security can be achieved with a security loss of 2−n (as
the reduction needs only to guess which of the 2n query sets will be made by
the adversary, corresponding to the 2n possible point puncturings).

5 Open Problems

The size of the signatures in our SNARK-based functional signature scheme
is dependent only on the security parameter (as one would desire), but the
construction is based on non-falsifiable assumptions. In Section 3, we show that,
for any sufficiently expressive functional signature scheme (supporting a function
class F that contains any NP-complete relation), a functional signature for y =
f(x) cannot be sublinear in the size of y or x, unless the construction is either
proven secure under a non-falsifiable assumption or makes use of non-black-box
techniques. However, no lower bound exists that relates the size of the signature
to the description of f (which may have short inputs/outputs x, y but a large
description). Constructing functional signatures with short (sublinear in the size
of the functions supported) signatures and verification time under falsifiable
assumptions remains an open problem.

An interesting problem left open by this work is to construct a functional
PRF that is also verifiable. A verifiable PRF, introduced by Micali, Rabin and
Vadhan in [25] has the property that, in addition to the secret seed s of the PRF,
there is a corresponding public key pks and a way to generate a proof πx given
the secret seed, such that given pks, x, y and πx, one can check that y is indeed
the consistent output of the PRF on x. (The challenge arises in guaranteeing
soundness even though the public key is produced by the potentially malicious
party. This, for example, rules out direct application of non-interactive zero-
knowledge proofs, which require an honestly generated common reference string.)
The public parameters and proofs πx should not allow an adversary to distinguish
the outputs of the PRF from random on any point x′ for which the adversary
has not received a proof. A construction of standard verifiable PRFs was given
by Lysyanskaya based on the many-DH assumption in bilinear groups in [24].

One may extend the notion of verifiable PRFs to the setting of functional
PRFs by enabling a user with functional key skf to also generate verifiable
proofs πx of correctness for evaluations of the PRF on inputs x for which his
key allows. We note that such a verifiable functional pseudorandom function
family supporting keys for a function class F , implies a functional signature
scheme that supports signing keys for the same function class, so the lower
bound mentioned for functional signatures applies also to the proofs output in
the verifiable functional PRF context.

References

1. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption:
New perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013)

518 E. Boyle, S. Goldwasser, and I. Ivan

2. Backes, M., Meiser, S., Schröder, D.: Delegatable functional signatures. Cryptology
ePrint Archive, Report 2013/408 (2013)

3. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

4. Bellare, M., Fuchsbauer, G.: Policy-based signatures. Cryptology ePrint Archive,
Report 2013/413 (2013)

5. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision re-
sistance to succinct non-interactive arguments of knowledge, and back again. In:
ITCS, pp. 326–349 (2012)

6. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for snarks and proof-carrying data. In: STOC, pp. 111–120 (2013)

7. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011)

8. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

9. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications.
Cryptology ePrint Archive, Report 2013/352 (2013)

10. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. Cryptology ePrint Archive, Report 2013/401 (2013)

11. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

12. Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. IACR Cryp-
tology ePrint Archive, 2012:290 (2012)

13. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: STOC, pp. 99–108 (2011)

14. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

15. Goldreich, O., Micali, S., Wigderson, A.: How to prove all np-statements in zero-
knowledge, and a methodology of cryptographic protocol design. In: Odlyzko, A.M.
(ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185. Springer, Heidelberg (1987)

16. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: FOCS, pp. 553–562 (2005)

17. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Suc-
cinct functional encryption and applications: Reusable garbled circuits and beyond.
IACR Cryptology ePrint Archive, 2012:733 (2012)

18. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013)

19. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
keeping secret all partial information. In: STOC, pp. 365–377 (1982)

20. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

21. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012)

22. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: Full domain
hash from indistinguishability obfuscation. Cryptology ePrint Archive, Report
2013/509 (2013)

Functional Signatures and Pseudorandom Functions 519

23. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. Cryptology ePrint Archive, Report 2013/379
(2013)

24. Lysyanskaya, A.: Unique signatures and verifiable random functions from the dh-
ddh separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 597–612.
Springer, Heidelberg (2002)

25. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: FOCS,
pp. 120–130 (1999)

26. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)

27. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg
(2013)

28. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

29. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: Deniable en-
cryption, and more. Cryptology ePrint Archive, Report 2013/454 (2013)

Policy-Based Signatures

Mihir Bellare1 and Georg Fuchsbauer2

1 Department of Computer Science and Engineering,
University of California San Diego, USA

2 Institute of Science and Technology Austria

Abstract. We introduce policy-based signatures (PBS), where a signer
can only sign messages conforming to some authority-specified policy.
The main requirements are unforgeability and privacy, the latter mean-
ing that signatures not reveal the policy. PBS offers value along two
fronts: (1) On the practical side, they allow a corporation to control
what messages its employees can sign under the corporate key. (2) On
the theoretical side, they unify existing work, capturing other forms of
signatures as special cases or allowing them to be easily built. Our work
focuses on definitions of PBS, proofs that this challenging primitive is re-
alizable for arbitrary policies, efficient constructions for specific policies,
and a few representative applications.

1 Introduction

PBS. In a standard digital signature scheme [25,29], a signer who has established
a public verification key vk and a matching secret signing key sk can sign any
message that it wants. We introduce policy-based signatures (PBS), where a
signer’s secret key skp is associated to a policy p ∈ {0, 1}∗ that allows the signer
to produce a valid signature σ of a message m only if the message satisfies
the policy, meaning (p,m) belongs to a policy language L ⊆ {0, 1}∗ × {0, 1}∗
associated to the scheme.

This cannot be achieved if the signer creates her keys in a standalone way.
In our model, a signer is issued a signing key skp for a particular policy p by
an authority, as a function of a master secret key msk held by the authority.
Verification that σ is a valid signature of m is then done with respect to the
authority’s public parameters pp.

Within this framework, we consider a number of security goals. The most
basic are unforgeability and privacy. Unforgeability says that producing a valid
signature for message m is infeasible unless one has a secret key skp for some
policy p such that (p,m) ∈ L. (You can only sign messages that you are allowed
to sign.) Privacy requires that signatures not reveal the policy under which they
were created. We will propose and explore different formalizations of these goals.

A trivial way to achieving PBS is via certificates. In more detail, to issue a
secret key skp for policy p, the authority generates a fresh key pair (sk, pk) for an
ordinary signature scheme, creates a certificate cert consisting of a signature of
(p, pk) under the authority’s signing key msk, and returns skp = (sk, pk, p, cert)

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 520–537, 2014.
c© International Association for Cryptologic Research 2014

Policy-Based Signatures 521

to the signer. The latter’s signature on m is now an ordinary signature of m
under sk together with (pk, p, cert), and verification is possible given the public
verifying key pp of the authority. However, while this will provide unforgeability,
it does not provide privacy, because the policy must be revealed in the signature
to allow for verification. Similarly, privacy in the absence of unforgeability is
also trivial. The combination of the two requirements, however, results in a non-
trivial goal.

PBS may be viewed as an authentication analogue of functional encryp-
tion [15]. We can view the latter as allowing decryption to be policy-restricted
rather than total, an authority issuing decryption keys in a way that enforces
the policy. Correspondingly, in PBS the signing capability is policy-restricted,
an authority issuing signing keys in a way that enforces the policy.

Why PBS? Given that there already exist many forms of signatures, one might
ask why another. PBS offers value along two fronts, practical and theoretical.
On the practical side, the setup of PBS is natural in a corporate or other hierar-
chical environment. For example, a corporation may want to allow employees to
sign under the company public key pp, but may want to restrict the signing ca-
pability of different employees based on their positions and privileges. However,
the company policies underlying the restrictions need to be kept private. On
the theoretical side, PBS decreases rather than increases complexity in the area
because it serves as an umbrella notion unifying existing notions by capturing
some as special cases and allowing others to be derived in simple and natural
ways. In particular, this is true for a significant body of work on signatures that
have privacy features, including group signatures [22,10], proxy signatures [35],
ring signatures [38,14], mesh signatures [17], anonymous proxy signatures [28],
attribute-based signatures [34] and anonymous credentials [19,6].

Policy languages. We wish to allow policies as expressive and general as
possible. We accordingly allow the policy language to be any language in P,
which captures most typical applications, where one can test in polynomial time
whether a given policy allows a given message. At first this may seem as general
as one can get, but we go further, allowing the policy language to be any language
in NP. This means that the policies that can be expressed and enforced are
restricted neither in form nor type, the only condition being that, given a witness,
one can test in polynomial time whether a policy allows a given message. We
will see applications where it is important that policy languages can be in NP
rather than merely in P.

Definitions and relations. We first provide an unforgeability definition and
an indistinguishability-based privacy definition. Unforgeability says that an ad-
versary cannot create a valid signature of a message m without having a key for
some policy p such that (p,m) ∈ L, even when it can obtain keys for other poli-
cies, and signatures for other messages under the target policy. Indistinguisha-
bility says that the verifier cannot tell under which of two keys a signature was
created assuming both policies associated to the keys permit the corresponding

522 M. Bellare and G. Fuchsbauer

message. Our definition also implies that the verifier cannot decide whether two
signatures were created using the same key.

However, indistinguishability may not always provide privacy. For example, if
for each message m there is only one policy pm such that (pm,m) ∈ L then even
a scheme where a signature of m reveals pm satisfies indistinguishability. We
provide a stronger, simulatability-based privacy notion that says that real signa-
tures look like ones a simulator could generate without knowledge of the policy
or any key. This strong notion of privacy is not subject to the above-discussed
weaknesses of indistinguishability. The situation parallels that for functional en-
cryption (FE), where an indistinguishability-based requirement was shown to
not always suffice [15,37] and stronger simulatability requirements have been de-
fined and considered [15,37,11,23,2,5,36]. However, for FE, impossibility results
show that the strongest and most desirable simulation-based definitions are not
achievable [15,11,23,2,36]. In contrast, for PBS we show that our simulatability
notion is achievable in the standard model under standard assumptions.

We also strengthen unforgeability to provide an extractability notion for
PBS. We show that simulatability implies indistinguishability, and simulatabil-
ity+extractability implies unforgeability. Simulatability+extractability emerges
as a powerful security notion that enables a wide range of applications.

Constructions. PBS for arbitrary NP policy languages achieving simulata-
bility+extractability is an ambitious target. The first question that emerges is
whether this can be achieved, even in principle, let alone efficiently. We answer in
the affirmative via two generic constructions based on standard primitives. The
first uses ordinary signatures, IND-CPA encryption and standard non-interactive
zero-knowledge (NIZK) proofs. The second uses only ordinary signatures and
simulation(-sound) extractable NIZK proofs [30].

While our generic constructions prove the theoretical feasibility of PBS, their
use of general NIZKs makes them inefficient. We ask whether more efficient solu-
tions may be given without resorting to the random-oraclemodel [12]. Combining
Groth-Sahai proofs [31] and structure-preserving signatures [1], we design effi-
cient PBS schemes for policy languages expressible via equations over a bilinear
group. This construction requires a twist over usual applications of Groth-Sahai
proofs; namely, in order to hide the policy, we swap the roles of constants and
variables. This provides a tool that, like structure-preserving signatures, is useful
in cryptographic applications where policies may be about group elements.

Applications and implications. We illustrate applicability by showing how
to derive a variety of other primitives from PBS in simple and natural ways. This
shows how PBS can function as a unifying framework for signatures and beyond.
In Section 5 we show that PBS implies group signatures meeting the strong CCA
version of the definition of [10]. In the full version [7] we also show that PBS
implies attribute-based signatures [34] and signatures of knowledge [21]. These
applications are illustrative rather than exhaustive, many more being possible.

Our generic constructions discussed above show which primitives are sufficient
to build PBS. A natural question is which primitives are necessary, namely, which
fundamental primitives are implied by PBS? In [7], we address this and show

Policy-Based Signatures 523

that PBS implies seemingly unrelated primitives like IND-CPA encryption and
simulation-extractable NIZK proofs [30]. By [39] this means PBS implies IND-
CCA encryption. In particular, this means the assumptions we make for our
generic constructions are not only sufficient but necessary.

Delegatable PBS. In Section 6 we extend the PBS framework to allow dele-
gation. This means that an entity receiving from the authority a key skp1 for a
policy p1 can then issue to another entity a key skp1‖p2 that allows the signing of
messages m which satisfy both policies p1 and p2. The holder of skp1‖p2 can fur-
ther delegate a key skp1‖p2‖p3 , and so on. This is useful in a hierarchical setting,
where a company president can delegate to vice presidents, who can then dele-
gate to managers, and so on. We provide definitions which extend and strengthen
those for the basic PBS setting; in particular, privacy must hold even when the
adversary chooses the user keys. We then show how to achieve delegatable PBS
for policy chains of arbitrary polynomial length. For simplicity, we base our con-
struction, achieving sim+ext security, on append-only signatures [33], which can
however be easily constructed from ordinary signatures.

Discussion. In the world of digital signatures, extensions of functionality typ-
ically involve some form of delegation of signing rights: group signatures allow
members to sign on behalf of a whole group, in attribute-based signatures (ABS)
and types of anonymous credentials, keys are also issued by an authority, and
(anonymous) proxy signatures model delegation and re-delegation explicitly. For
most of these primitives, anonymity or privacy notions have been considered. A
group signature, for example, should not reveal which group member produced
a signature on behalf of the group (while an authority can trace group signa-
tures to their signer). In ABS, users hold keys corresponding to their attributes
and can sign messages with respect to a policy, which is a predicate over at-
tributes. Users should only be able make signatures for policies satisfied by their
attributes. Privacy for ABS means that a signature should reveal nothing about
the attributes of the key under which it was produced, other than the fact that
it satisfies the policy.

In the models of primitives such as ABS or mesh signatures, the policy itself
is always public, as is the warrant specifying the policy in (even anonymous)
proxy signatures. With PBS, we ask whether this is a natural limitation of
privacy notions, and whether it is inherently unavoidable that objects like the
policy (which specify why the message could be signed) need to be public.

Consider the example of a company implementing a scheme where each em-
ployee gets a signing key and there is one public key which is used by outsiders to
verify signatures in the name of the company. A group-signature scheme would
allow every employee holding a key to sign on behalf of the company, but there is
no fine-grained control over who is allowed to sign which documents. This can be
achieved using attribute-based signatures, where each user is assigned attributes,
and a message is signed with respect to a policy like (CEO or (board member
and general manager)). However, it is questionable whether a verifier needs to
know the company-internal policy used to sign a specific message, and there is
no apparent reason he should know; all he needs to be assured of is that the

524 M. Bellare and G. Fuchsbauer

message was signed by someone entitled to, but not who this person is, what she
is entitled to sign, nor whether two messages were signed by the same person.
This is what PBS provides.

Another issue is that when using ABS we have to assume that the verifier
can tell which messages can be signed under which policies. An attribute-based
signature which is valid under the policy (CEO or intern) tells a verifier that it
could have been produced by an intern, but it does not provide any guarantees
as to whether an intern would have been entitled to sign the message. We ask
whether it is possible to avoid having these types of public policies at all. PBS
answers this in the affirmative.

Related work. The use of NIZKs for signatures begins with [8], who built an
ordinary signature scheme from a NIZK, a pseudorandom function (PRF) and
a commitment scheme. Encryption and ordinary signatures were combined with
NIZKs to create group signatures in [10]. Our first generic construction builds
on these ideas. Our second generic construction, inspired by [26,9], exploits the
power of simulation-extractable NIZKs to give a conceptually simpler scheme
that, in addition to the NIZK, uses only an ordinary signature scheme.

In independent and concurrent work, Boyle, Goldwasser and Ivan (BGI) [18]
introduce functional signatures, where an authority can provide a key for a
function f that allows the signing of any message in the range of f . This can
be captured as a special case of PBS in which the policy is f and the policy
language is the set of all (f,m) such that m is in the range of f , a witness
for membership being a pre-image of m under f . BGI define unforgeability and
an indistinguishability-based privacy requirement, but not the stronger simu-
latability or extractability conditions that we define and achieve. BGI have a
succinctness condition which we do not have.

A related primitive is malleable signatures, introduced by Chase, Kohlweiss,
Lysyanskaya and Meiklejohn [20]. They are defined with respect to a set of
functions F , so that given a signature of m, anyone can derive a signature of
f(m) for f ∈ F . Concurrently to our work, Backes, Meiser and Schröder [3]
introduced delegatable functional signatures, but in their model delegatees have
public keys and signatures are verified under the authority’s and the delegatee’s
keys. Privacy means that signatures from delegatees are indistinguishable from
signatures from the authority.

Three recent works independently and concurrently introduce PRFs where
one may issue a key to evaluate the PRF on a subset of the points of the
domain [16,18,32]. These can be viewed as PRF analogues of policy-based signa-
tures in which a policy corresponds to a set of inputs and a key allows compu-
tation of the PRF on the inputs in the set. Boneh and Waters [16] also provide
a policy-based key-distribution scheme.

In their treatment of policy-based cryptography, Bagga and Molva [4] mention
both policy-based encryption and policy-based signatures. However they do not
consider privacy, without which, as noted above, the problem is easy. Moreover,
they have no formal definitions of security requirements or proofs that their
bilinear-map-based schemes achieve any well-defined security goal.

Policy-Based Signatures 525

2 Preliminaries

Notations and conventions. If S is a finite set then |S| denotes its size and
s ←$ S denotes picking an element uniformly from S and assigning it to s. For i ∈
N we let [i] = {1, . . . , i}. We denote by λ ∈ N the security parameter and by 1λ

its unary representation. Algorithms are randomized unless otherwise indicated
and “PT” stands for “polynomial-time”. By y ← A(x1, . . . ;R), we denote the
operation of running algorithm A on inputs x1, . . . and coins R and letting y
denote the output. By y ←$ A(x1, . . .), we denote letting y ← A(x1, . . . ;R) with
R chosen at random. We denote by [A(x1, . . .)] the set of points that have positive
probability of being output by A on inputs x1,

A map R : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is said to be an NP-relation if it is
computable in time polynomial in the length of its first input. For x ∈ {0, 1}∗
we let WSR(x) = {w : R(x,w) = 1} be the witness set of x. We let L(R) = {x :
WSR(x) �= ∅} be the language associated to R. The fact that R is an NP-relation
means that L(R) ∈ NP.

Game-playing framework. For our security definitions and proofs we use the
code-based game-playing framework of [13]. A game Exp (Figure 1, for example)
consists of a finite number of procedures. We execute a game with an adversary
A and security parameter λ ∈ N as follows. The adversary gets 1λ as input.
It can then query game procedures. Its first query must be to Initialize with
argument 1λ, and its last to Finalize, and these must be the only queries to
these oracles. The output of the execution, denoted ExpA(λ) is the output of
Finalize. The running time of the adversary A is a function of λ in which oracle
calls are assumed to take unit time.

3 Policy-Based Signatures

Policy languages. A policy checker is an NP-relation PC : {0, 1}∗×{0, 1}∗ →
{0, 1}. The first input is a pair (p,m) representing a policy p ∈ {0, 1}∗ and a mes-
sage m ∈ {0, 1}∗, while the second input is a witness w ∈ {0, 1}∗. The associated
language L(PC) = {(p,m) : WSPC((p,m)) �= ∅} is called the policy language as-
sociated to PC. That (p,m) ∈ L(PC) means that signing m is permitted under
policy p. We say that (p,m,w) is PC-valid if PC((p,m), w) = 1.

PBS schemes. A policy-based signature scheme PBS = (Setup,KeyGen, Sign,
Verify) is a 4-tupe of PT algorithms:

1. Setup: On input the unary-encoded security parameter 1λ, setup algorithm
Setup returns public parameters pp and a master secret key msk.

2. KeyGen: On input msk and p, where p ∈ {0, 1}∗ is a policy, key-generation
algorithm KeyGen outputs a signing key sk for p.

3. Sign: On input sk, m and w, where m ∈ {0, 1}∗ is a message and w ∈ {0, 1}∗
is a witness, signing algorithm Sign outputs a signature σ.

4. Verify: On input pp, m and σ, verification algorithm Verify outputs a bit.

526 M. Bellare and G. Fuchsbauer

proc Initialize ExpUF
PBS

(pp,msk) ← Setup(1λ) ; j ← 0
Return pp

proc MakeSK(p)

j ← j + 1 ; Q[j][1] ← p
Q[j][2]←$ KeyGen(pp,msk, p) ; Q[j][3] ← ∅
proc RevealSK(i)

If i �∈ [j] then return ⊥
sk ← Q[i][2] ; Q[i][2] ← ⊥ ; Return sk

proc Sign(i,m,w)

If i �∈ [j] or Q[i][2] = ⊥ then return ⊥
Q[i][3] ← Q[i][3] ∪ {m}
Return Sign(pp, Q[i][2], m,w)

proc Finalize(m,σ)

If Verify(pp,m, σ) = 0 then return false
For i = 1, . . . , j do
If (Q[i][1], m) ∈ L(PC) then

If Q[i][2] = ⊥ or m ∈ Q[i][3]
then return false

Return true

ExpIND
PBS

proc Initialize

(pp,msk) ← Setup(1λ)
b←$ {0, 1}
Return (pp,msk)

proc LR(p0, p1,m,w0, w1)

If PC((p0,m), w0) = 0
or PC((p1,m), w1) = 0

then return ⊥
sk0 ← KeyGen(msk, p0)
sk1 ← KeyGen(msk, p1)
σb ← Sign(skb,m,wb)
Return (σb, sk0, sk1)

proc Finalize(b′)
Return (b = b′)

Fig. 1. Games defining unforgeability and indistinguishability for PBS

We say that the scheme is correct relative to policy checker PC if for all λ ∈ N, all
PC-valid (p,m,w), all (pp,msk) ∈ [Setup(1λ)] and all σ ∈ [Sign(KeyGen(msk, p),
m,w)] we have Verify(pp,m, σ) = 1.

Unforgeability. Our basic unforgeability requirement is that it be hard to
create a valid signature of m without holding a key for some policy p such that
(p,m) ∈ L(PC). The formalization is based on game ExpUF

PBS in Figure 1. For
λ ∈ N we let AdvUF

PBS,A(λ) = Pr[ExpUF
PBS,A ⇒ true]. We say that PBS is

unforgeable, or UF-secure, if AdvUF
PBS,A(·) is negligible for every PT A. Via a

MakeSK query, the adversary can have the game create a key for a policy p.
Then, via Sign, it can obtain a signature under this key for any message of its
choice. (This models a chosen-message attack.) It may also, via its RevealSK

oracle, obtain the key itself. (This models corruption of users or the formation of
collusions of users who pool their keys.) These queries naturally give the adver-
sary the capability of creating signatures for certain messages, namely messages
m such that for some p with (p,m) ∈ L(PC), it either obtained a key for p or
obtained a signature for m. Unforgeability asks that it cannot sign any other
messages. Note that we did not explicitly specify how Sign behaves when run
on a key for p, and m,w with PC((p,m), w) = 0. However, if it outputs a valid
signature, this can be used to break UF-security.

Policy-Based Signatures 527

Indistinguishability. Privacy for policy-based signatures requires that a sig-
nature not reveal the policy associated to the key and neither the witness that
was used to create the signature. A first idea would be the following formaliza-
tion: an adversary outputs a message m, two policies p0, p1, and two witnesses
w0, w1, such that (p0,m,w0) and (p1,m,w1) are PC-valid. For either p0 or p1 the
experiment computes a secret key and uses it to produce a signature on m, from
which the adversary has to determine which policy was used. It turns out that
this notion is too weak, as it does not guarantee that two signatures produced
under the same secret key do not link, as seen as follows. Consider a scheme
satisfying the security notion just sketched and modify it by attaching to each
secret key a random string during key generation and alter Sign to append to the
signature the random string contained in the secret key. Clearly, two signatures
under the same key are linkable, but yet the scheme satisfies the definition. We
therefore give the adversary both secret keys in addition to the signature.

Let ExpIND
PBS,A be the game defined in Figure 1. We say that PBS has in-

distinguishability if for all PT adversaries A we have that AdvIND
PBS,A(λ) =

Pr[ExpIND
PBS,A(λ) ⇒ true]− 1

2 is negligible in λ. We assume that either all policy
descriptions p are of equal length, or that A outputs p0 and p1 with |p0| = |p1|.

Unlinkability could be formalized via a game where an adversary is given
two signatures and must decide whether they were created using the same key.
Indistinguishability implies unlinkability, as an adversary against the latter could
be used to build another one against indistinguishability, who can simulate the
unlinkability game by using the received signing keys to produce signatures.

Discussion. The unforgeability and indistinguishability notions we have defined
above are basic, intuitive, and suffice for many applications. However, they have
some weaknesses, and some applications call for stronger requirements.

First, we claim that indistinguishability does not always provide the privacy
we may expect. To see this, consider a policy checker PC such that for every
message m there is only one p with (p,m) ∈ L(PC). (See our construction of
group signatures in Section 5 for an example of such a PC.) Now consider a
scheme which satisfies indistinguishability, and modify it so that the key contains
the policy and the signing algorithm appends the policy to the signature. This
scheme clearly does not hide the policy, yet still satisfies indistinguishability.
Indeed, in ExpIND

PBS , in order to satisfy PC((p0,m), w0) = 1 = PC((p1,m), w1),
the adversary must return p0 = p1. If the signatures in the original scheme have
not revealed the bit b then attaching the same policy to both will not do so either.
The notion of simulatability we provide below will fill the gap. It asks that there
is a simulator which can create simulated signatures without having access to
any signing key or witness, and that these signatures are indistinguishable from
real signatures.

With regard to unforgeability, one issue is that in general it cannot be effi-
ciently verified whether an adversary has won the game, as this involves checking
whether (p,m) ∈ L(PC) for all p queried to MakeSK and m from the adver-
sary’s final output, and membership in L(R) may not be efficiently decidable.
(This is the case for L(R) defined in (4) in Section 5.) Although not a problem

528 M. Bellare and G. Fuchsbauer

ExpSIM
PBS

proc Initialize

b←$ {0, 1} ; j ← 0

(pp0,msk0, tr)←$ SimSetup(1λ)
(pp1,msk1)←$ Setup(1λ)
Return (ppb,mskb)

proc Key(p)

j ← j + 1 ; sk0 ←$ SKeyGen(tr, p)
sk1 ←$ KeyGen(msk1, p)
Q[j][1] ← p ; Q[j][2] ← sk1

Return skb

proc Signature(i,m,w)

If i �∈ [j] then return ⊥
If PC((Q[i][1], m), w) = 1
then σ0 ←$ SimSign(tr,m)

Else σ0 ← ⊥
σ1 ←$ Sign(Q[i][2], m,w) ; Return σb

proc Finalize(b′)
Return (b = b′)

ExpEXT
PBS

proc Initialize

(pp,msk, tr)←$ SimSetup(1λ)
QK ← ∅ ; QS ← ∅ ; Return pp

proc SKeyGen(p)

sk←$ SKeyGen(tr, p)
QK ← QK ∪ {p} ; Return sk

proc SimSign(m)

σ ←$ SimSign(tr,m)
QS ← QS ∪ {(m,σ)} ; Return σ

proc Finalize(m,σ)

If Verify(pp,m, σ) = 0
then return false

If (m,σ) ∈ QS then return false
(p,w) ← Extr(tr,m, σ)
If p /∈ QK or PC((p,m), w) = 0

then return true
Return false

Fig. 2. Games defining simulatability and extractability for PBS

in itself, it can become one, for example when using the notion in a proof by
game hopping, as a distinguisher between two games must efficiently determine
whether an adversary has won the game. (See [7] for such a proof.) The ex-
tractability notion we will provide below will fill this gap as well as be more
useful in applications. It requires that from a valid signature, using a trapdoor
one can extract a policy and a valid witness. To satisfy this notion, a signature
must contain information on the policy and can thus not hide its length. For
simplicity, we assume from now on that all policies are of the same length.

Simulatability. We formalize simulatability by requiring that there exist the
following algorithms: SimSetup, which outputs parameters and a master key that
are indistinguishable from those output by Setup, as well as a trapdoor; SKeyGen,
which outputs keys indistinguishable from those output by KeyGen; and SimSign,
which on input the trapdoor and a message (but no signing key nor witness)
produces signatures that are indistinguishable from regular signatures.

Let ExpSIM
PBS be the game defined in Figure 2. We require that for every PT

adversary A we have AdvSIM
PBS,A(λ) = Pr[ExpSIM

PBS,A(λ) ⇒ true]− 1
2 is negligible

in λ. Note that in all our constructions, tr contains msk and SKeyGen is defined
as KeyGen. We included SKeyGen to make the definition more general.

Extractability. We define our notion in the spirit of “sim-ext” security for
signatures of knowledge [21]. LetAdvEXT

PBS,A(λ) = Pr[ExpEXT
PBS,A(λ) ⇒ true] with

Policy-Based Signatures 529

ExpEXT
PBS defined in Figure 2. We say that PBS has extractability if there exists

an algorithm Extr which taking a trapdoor, a message and a signature outputs
a pair (p, w) ∈ {0, 1}∗, such that AdvEXT

PBS,A(·) is negligible for every PT A.
Although the definition might not seem completely intuitive at first, it implies

that, as long as the adversary outputs a valid message/signature pair and does
not simply copy a SimSign query/response pair, the only signed messages it
can output are those that satisfy the policy of one of the queried keys: assume
A outputs (m∗, σ∗) such that (∗) for all p ∈ QK : (p,m∗) /∈ L(PC). Then let
(p∗, w∗) ← Extr(tr,m, σ). If PC((p∗,m∗), w∗) = 0, the adversary wins ExpEXT

PBS .
On the other hand, if PC((p∗,m∗), w∗) = 1 then (p∗,m∗) ∈ L(PC), thus by (∗)
we have p∗ /∈ QK and it wins too. Note that this notion corresponds to strong
unforgeability for signature schemes.

Sim-ext security implies IND and UF. In [7] we show that our two latter
security notions are indeed strengthenings of the former two:

Theorem 1. Any policy-based signature scheme which satisfies simulatability
satisfies indistinguishability. Any PBS scheme which satisfies simulatability and
extractability satisfies unforgeability.

4 Constructions of Policy-Based Signature Schemes

We first show that PBS satisfying SIM+EXT can be achieved for any language
in NP. Then we develop more efficient schemes for specific policy languages.

4.1 Generic Constructions

We now show how to construct policy-based signatures satisfying simulatability
and extractability (and, by Theorem 1, IND and UF) for any NP-relation PC.
In [7] we show that the assumptions we make are not only sufficient but necessary.

An first approach could be the following, similar to the generic construction
of group signatures in [10]: The issuer creates a signature key pair (mvk,msk)
and publishes mvk as pp. When a user is issued a key for a policy p, the issuer
creates a key pair (vkU , skU), signs p‖vkU and sends this certificate to the user
together with (p, vkU , skU). To sign a message m, the user first signs it under
skU , thereby establishing a chain mvk → vkU → m via the certificate and the
signature. The actual signature is a (zero-knowledge) proof of knowledge of such
a chain and the fact that the message satisfies the policy signed in the certificate.

While this approach yields a scheme satisfying IND and UF, it would fail to
achieve extractability. We thus choose a different approach: The user’s key is
simply a signature from the issuer on the policy. Now to sign a message, the user
first picks a key pair (ovk, osk) for a strongly unforgeable one-time signature
scheme1 and makes a zero-knowledge proof π that he knows either (I) an issuer

1 In such a scheme it must be infeasible for an adversary, after receiving a verification
key ovk and after obtaining a signature σ on one message m of his choice, to output
a signature σ∗ on a message m∗, such that (m,σ) �= (m∗, σ∗).

530 M. Bellare and G. Fuchsbauer

Setup(1λ)

crs←$ Setupnizk(1
λ)

(pk, dk)←$ KeyGenpke(1
λ)

(mvk,msk)←$ KeyGensig(1
λ)

Return pp ← (crs,pk,mvk) and msk

KeyGen(msk, p)

s←$ Signsig(msk, 1‖p)
Return skp ← (pp, p, s)

Sign(skp,m,w)

Parse ((crs,pk,mvk), p, s) ← skp

If PC((p,m), w) = 0 then return ⊥
(ovk, osk)←$ KeyGenots(1

λ)

ρp, ρs, ρw ←$ {0, 1}λ; Cp ← Enc(pk, p; ρp)
Cs ← Enc(pk, s; ρs); Cw ← Enc(pk, w; ρw)
π ←$ Prove(crs, (pk,mvk, Cp, Cs, Cw,

ovk,m), (p, s, w, ρp, ρs, ρw))
τ ←$ Signots(osk, (m,Cp, Cs, Cw, π))
Return σ ← (ovk, Cp, Cs, Cw, π, τ)

Verify(pp,m, σ)

Parse (crs,pk,mvk) ← pp
Parse (ovk, Cp, Cs, Cw, π, τ) ← σ
Return 1 iff

Verifynizk(crs, (pk,mvk, Cp, Cs, Cw,
ovk, m), π) = 1 and

Verifyots(ovk, (m,Cp, Cs, Cw, π), τ) = 1

SimSetup(1λ)

crs←$ Setupnizk(1
λ)

(pk, dk)←$ KeyGenpke(1
λ)

(mvk,msk)←$ KeyGensig(1
λ)

Return pp ← (crs,pk,mvk), msk
and tr ← (msk, dk)

SKeyGen((msk,dk), p)

s←$ Signsig(msk, 1‖p)
Return skp ← (pp, p, s)

SimSign((msk,dk),m)

(ovk, osk)←$ KeyGenots(1
λ)

s←$ Signsig(msk, 0‖ovk)
ρp, ρs, ρw ←$ {0, 1}λ
Cp ← Enc(pk, 0; ρp)
Cs ← Enc(pk, s; ρs)
Cw ← Enc(pk, 0; ρw)
π ←$ Prove(crs, (pk,mvk, Cp, Cs,

Cw, ovk, m), (0, s, 0, ρp, ρs, ρw))
τ ←$ Signots(osk, (m,Cp, Cs, Cw, π))
Return σ ← (ovk, Cp, Cs, Cw, π, τ)

Extr((msk,dk),m, σ)

Parse (ovk, Cp, Cs, Cw, π, τ) ← σ
p ← Dec(dk, Cp) ; w ← Dec(dk, Cw)
Return (p,w)

Fig. 3. Generic construction of PBS

signature on a policy p such that (p,m) ∈ L(PC) or (II) an issuer signature on
ovk. Finally, he adds a signature under ovk of both the message and the proof.
As we will see, this construction satisfies both SIM (where the simulator can
make a signature on ovk and use clause (II) for the proof) and EXT (as π is a
proof of knowledge).

We formalize the above: Let Sig = (KeyGensig, Signsig,Verifysig) be a sig-
nature scheme which is unforgeable under chosen-message attacks (UF-CMA),
OtSig = (KeyGenots, Signots,Verifyots) a strongly unforgeable one-time signature
scheme and let PKE = (KeyGenpke,Enc,Dec) be an IND-CPA-secure public-key
encryption scheme. For a policy checker PC we define the following NP-relation:(

(pk,mvk, Cp, Cs, Cw, ovk,m), (p, s, w, ρp, ρs, ρw)
)

∈ RNP

⇐⇒ Cp = Enc(pk, p; ρp) ∧ Cs = Enc(pk, s; ρs) ∧ Cw = Enc(pk, w; ρw)

∧
[(
Verifysig(mvk, 1‖p, s) = 1 ∧ PC((p,m), w) = 1

)
(1)

∨ Verifysig(mvk, 0‖ovk, s) = 1
]

Policy-Based Signatures 531

Setup(1λ)

crs←$ Setupnizk(1
λ)

(mvk,msk)←$ KeyGensig(1
λ)

Return pp ← (crs,mvk), msk

KeyGen(msk, p)

c←$ Signsig(msk, p)
Return sk ← (pp, p, c)

Sign(sk = ((crs,mvk), p, c),m,w)

σ ←$ Prove(crs, (mvk,m), (p, c, w))
Return σ

Verify(pp = (crs,mvk),m, σ)

Return Verifynizk(crs, (mvk,m), σ)

SimSetup(1λ)

(crs, tr)←$ SimSetupnizk(1
λ)

(mvk,msk)←$ KeyGensig(1
λ)

Return pp ← (crs,mvk), msk,
trpbs ← (pp,msk, tr)

SKeyGen((pp,msk, tr), p)

c←$ Signsig(msk, p) ; Return sk ← (pp, p, c)

SimSign(((crs,mvk),msk, tr),m)

Return σ ←$ SimProve(crs, tr, (mvk,m))

Extr(((crs,mvk),msk, tr),m, σ)

(p, c, w) ← Extrnizk(tr, (mvk,m), σ)
Return (p,w)

Fig. 4. PBS based on SE-NIZKs

Let NIZK = (Setupnizk,Prove,Verifynizk) be a non-interactive zero-knowledge
(NIZK) proof system for L(RNP). Our construction PBS for a policy checker
PC is detailed in Figure 3, and in [7] we prove the following:

Theorem 2. If PKE satisfies IND-CPA, Sig is UF-CMA , OtSig is a strongly
unforgeable one-time signature scheme and NIZK is a NIZK proof system for
L(RNP) then PBS, defined in Figure 3, satisfies simulatability and extractability.

We now present a much simpler construction of PBS by relying on a more ad-
vanced cryptographic primitive: simulation-extractable (SE) NIZK proofs [30]
(see [7] for the definition). Let Sig = (KeyGensig, Signsig,Verifysig) be a signature
scheme and for a policy checker PC let NIZK = (Setupnizk,Prove,Verifynizk,
SimSetupnizk, SimProve,Extrnizk) be a SE-NIZK for the following NP-relation,
whose statements are of the form X = (vk,m) with witnesses W = (p, c, w) and

((vk,m), (p, c, w)) ∈ RNP ⇐⇒ Verifysig(vk, p, c) = 1 ∧ ((p,m), w) ∈ PC

Then the scheme in Figure 4 is a PBS for PC which satisfies SIM+EXT. In [7]
we prove this for a more general scheme allowing delegation.

4.2 Efficient Construction via Groth-Sahai Proofs

Our efficient construction of PBS will be defined over a bilinear group. This is a
tuple (p,G,H,T, G,H), where G, H and T are groups of prime order p, generated
by G and H , respectively, and e : G×H → T is a bilinear map such that e(G,H)
generates T. We denote the group operation multiplicatively and let 1G, 1H and
1T denote the neutral elements ofG,H and T. Groth-Sahai proofs [31] let us prove
that there exists a set of elements (X ,Y) = (X1, . . . , Xn, Y1, . . . , Y�) ∈ Gn × H�

which satisfy equations E(X,Y) of the form

k∏
i=1

e(Pi, Qi)
�∏

j=1

e(Aj , Yj)
n∏
i=1

e(Xi, Bi)
n∏
i=1

�∏
j=1

e(Xi, Yj)
γij = 1T (2)

532 M. Bellare and G. Fuchsbauer

Such an equation E is called a pairing-product equation2 (PPE) and is uniquely
defined by its constants P ,Q,A,B and Γ := (γij)i∈[n],j∈[�]. These equations
have already found many uses in cryptography, of which the following two are
relevant here: they can define the verification predicate of a digital signature
(see [1]), or witness the fact that a ciphertext encrypts a certain value (see [7]).
Our aim is to construct policy-based signatures where policies define (sets of)
PPEs, which must be satisfied by the message and the witness.

Groth and Sahai define a setup algorithm which on input a bilinear group
outputs a common reference string crs and an extraction key xk. On input crs, an
equation E and a satisfying witness (X,Y), algorithm Provegs outputs a proof π.
Proofs are verified by Verifygs(crs,E(·, ·), π). Under the SXDH assumption (see
[31]), proofs are witness-indistinguishable [27], that is, proofs for an equation
using different witnesses are computationally indistinguishable. Moreover, they
are extractable and thus proofs of knowledge [24]: From every valid proof π,
Extrgs(xk,E(·, ·), π) extracts a witness (X,Y) such that E(X,Y) = 1.

In our Groth-Sahai-based construction of PBS, messages and witnesses will
be group elements and a policy defines a set of equations as in (2) that have to
be satisfied. The policy checker is thus defined as follows: the policy p defines
a set of equations (E1, . . . ,En) and PC((p,m), w) = 1 iff Ei(m,w) = 1 for all
i ∈ [n], where m ∈ Gnm × H�m and w ∈ Gnw × H�w .

GS proofs only allow us to extract group elements; however, an equation—
and thus a policy—is defined by a set of group elements and exponents γij . In
order to hide a policy, we need to swap the roles of constants and variables in
an equation, as this will enable us to hide the policy defined by the constants.
We first transform equations as in (2) into a set of equivalent equations without

exponents. To do so, we introduce auxiliary variables Ŷij , add i ·j new equations
and define the set E(no-exp) as follows:∏

e(Pi, Qi)
∏

e(Aj , Yj)
∏

e(Xi, Bi)
∏∏

e(Xi, Ŷij) = 1T

∧
∧

i,j
e(G, Ŷij) = e(Gγij , Yj) (3)

A witness (X,Y) satisfies E in (2) iff (X ,Y , (Ŷij := Y
γij
j)i,j) satisfies the set

of equations E(no-exp) in (3). Now we can show that a (clear) message (M ,N)
satisfies a “hidden” policy defined by equation E, witnessed by elements (V ,W),
since we can express policies as sets of group elements.

Our second building block are structure-preserving signatures [1], which were
designed to be combined with GS proofs: their keys, messages and signatures
consist of elements from G and H and signatures are verified by evaluating
PPEs. GS proofs let us prove knowledge of keys, messages, and/or signatures
which satisfy verification, without revealing anything beyond this fact.

Our construction now follows the blueprint of the generic scheme in Figure 3.
The setup creates a CRS for GS proofs and a key pair (mvk,msk) for a structure-

2 This is a simulatable pairing-product equation, that is, one for which Groth-Sahai
proofs can be made zero-knowledge.

Policy-Based Signatures 533

preserving scheme Sigsp. (Note that here we need not encrypt any witnesses like
in the generic construction, since GS proofs are extractable.) We transform every
PPE E contained in a policy to a set of equations E(no-exp) without exponents.
The policies can thus be expressed as sets of group elements describing the
equations E(no-exp), which can be signed by Sig sp.

A signing key is a signature on the policy under msk and signing is done by
choosing a one-time signature key pair (ovk, osk), proving a statement analogous
to (1) and signing the proof and the message with osk. A further technical
obstacle is that we need to express the disjunction in the statement to be proven
as (a conjunction of) sets of PPEs. We achieve this by following Groth’s approach
in [30]. The details of the construction can be found in [7].

A simple use case. Messages that are elements of bilinear groups and policies
demanding that they satisfy PPEs will prove useful to construct other crypto-
graphic schemes like group signatures. Yet, our pairing-based construction might
seem too abstract for deploying PBS to manage signing rights in a company—one
of the motivations given in the introduction.

However, consider the following simple example: A company issues keys to
their employees which should allow them to sign only messages h‖m that start
with a particular header h. (E.g. h could be “Contract with company X”, so
employees are limited to signing contracts with X.) This can be implemented by
mapping messages h‖m to (F (h), F (m)) via a collision-resistant hash function
F : {0, 1}∗ → G. (E.g. first hash to Zp via some f and then set F (x) = Gf(x).)
The policy p∗ requiring messages to start with h∗ can then be expressed as
PC((p∗, h‖m)) = 1 ⇔ e(F (h∗), H) e(F (h), H−1) = 1.

Another option would be to additionally demand that an employee hold a
credential (verified via PPEs), which she must use as a witness when signing.

5 Applications and Implications

Here we illustrate how PBS can provide a unifying framework for work on ad-
vanced forms of signatures and beyond, capturing some primitives as special
cases and allowing others to be derived in simple and natural ways. Here we
show how PBS allows one to easily obtain group signatures [10]. In [7] we show
that they imply signatures of knowledge [21] and attribute-based signatures [34].
These applications are illustrative rather than exhaustive.

Section 4.1 shows which primitives are sufficient for policy-based signatures.
We now ask the converse question, namely which primitives are necessary, that
is, which fundamental cryptographic primitives are implied by PBS? In [7] we
show that PBSs imply simulation-extractable NIZKs and IND-CPA encryption.
By a result [39] they thus imply IND-CCA public-key encryption. The sufficient
assumptions we make in our constructions of Section 4.1 are thus also necessary.

CCA-Secure Group Signatures from PBS.Group signatures [22] let mem-
bers sign anonymously on behalf of a group. To deter misuse, the group manager
holds a secret key which can open signatures, that is, reveal the member that

534 M. Bellare and G. Fuchsbauer

made the signature. As defined in [10], a group-signature scheme GS is a 4-tuple
of PT algorithms. On input 1λ and the group size 1n, key generation algorithm
GKg returns the group public key gpk, the manager’s secret key gmsk and a
vector of member secret keys gsk. On input gsk[i] and a message m ∈ {0, 1}∗,
signing algorithm GSig returns a group signature γ by member i on m. On input
gpk,m and γ, verification algorithm GVf outputs a bit. On input gmsk,m and γ,
the opening algorithm Open returns an identity i ∈ [n] or ⊥.

Full anonymity requires that an adversary cannot decide which of two group
members of its choice produced a group signature, even when given an oracle
that opens any other signature. Traceability means that an adversary, which is
allowed to corrupt users, cannot produce a group signature which opens to a
user that was not corrupted. (We give a formal definition in [7].)

We now construct group signatures from CCA-secure public-key encryption
and PBS. Since the former can be constructed from PBS (as we show in [7]),
this means that PBS implies group signatures. The main idea is to define a
group signature as a ciphertext plus a PBS. When making a group signature
on a message m, a member is required to encrypt her identity as c and then
sign (c,m). This is enforced by issuing to the member a PBS key whose policy
ensures that c must be an encryption of the member’s identity. Let PKE =
(KeyGenpke,Enc,Dec) be a public-key encryption scheme satisfying IND-CCA
and let PBS = (Setup,KeyGenpbs, Sign,Verify) be a PBS for the following NP-
relation:

PC
(
((ek, i), (c,m)), r

)
⇐⇒ c = Enc(ek, i; r) . (4)

(See [7] for an encryption scheme such that (4) lies in the language of our efficient
PBS from Section 4.2.) In [7] we sow that the following group-signature scheme
satisfies full anonymity and traceability as formalized by [10].

GKg(1λ, 1n)

(pp,msk)←$ Setup(1λ)
(ek,dk)←$ KeyGenpke(1

λ)
For i = 1, . . . , n do

ski ←$ KeyGenpbs(msk, (ek, i))
gsk[i] ← (pp, ek, i, ski)

Return (gpk ← (pp, ek), gmsk ← dk,gsk)

GVf((pp, ek),m, (c, σ))

Return Verify(pp, (c,m), σ)

GSig((pp, ek, i, ski),m)

r←$ {0, 1}λ
c ← Enc(ek, i; r)
σ ←$ Sign(ski, (c,m), r)
Return (c, σ)

Open(gmsk,m, (c, σ))

If Verify(pp, (c,m), σ) = 0
Then return ⊥

Return Dec(gmsk, c)

6 Delegatable Policy-Based Signatures

In an organization, policies may be hierarchical, reflecting the organization struc-
ture. Thus, a president may declare a high-level policy to vice presidents and
issue keys to them. Each of the vice presidents augments the policy with their
own sub-policies for managers below them, and so on. To support this, we extend
PBS to allow delegation. We define and achieve delegatable policy-based signa-
tures, where a user holding a key for some policy can delegate her key to another

Policy-Based Signatures 535

user and possibly restrict the associated policy. We formalize this by associating
keys to vectors of policies and require that keys can (only) sign messages which
are allowed under all policies associated to the key. In order to restrict the policy
at delegation, users can add policies to the associated vector.

Consider the following simple use case: A company issues a key to a manager
Alice which enables her to sign contracts with companies X,Y and Z. Now Bob
is negotiating a contract with Z on behalf of Alice, so she gives Bob a key that
only lets him sign contracts with Z.

In [7] we provide a syntax and definitions of UF and IND, as well as SIM and
EXT, which are straightforward generalizations of those for PBS. However, we
strengthen IND by letting the adversary (who obtains msk) construct the keys
under one of which the experiment makes a signature. This ensures that when
Alice delegates different keys to Bob and Carol, she will not be able to tell by
whom a message was signed. Analogously, we let the adversary choose the key
in SIM.

With regard to a construction, we note that in the PBS schemes in Figures 3
and 4, a signing key skp is simply a signature from the authority on the associated
policy p. We add delegation to PBS by replacing the signature with an append-
only signature [33]. These signatures allow anyone holding a signature on a
message p to create a signature on p‖p′ for any p′. One can thus append a new
part to a signed message, but this is the only transformation allowed. Append-
only signatures can be constructed from any signature scheme. Holding a key,
which is a signature on a vector of policies p, a user can delegate the key after
(possibly) appending a new policy.

Due to space constraints, the definitions as well as the constructions are de-
ferred to the full version [7].

Acknowledgments. Mihir Bellare was supported in part by NSF grants CNS-
1228890, CNS-1116800, CNS-0904380 and CCF-0915675. Georg Fuchsbauer was
supported by the European Research Council, ERC Starting Grant (259668-
PSPC); part of his work was done while at Bristol University, supported by
EPSRC grant EP/H043454/1.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

2. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption:
New perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013)

3. Backes, M., Meiser, S., Schröder, D.: Delegatable functional signatures. Cryptology
ePrint Archive, Report 2013/408 (2013)

4. Bagga, W., Molva, R.: Policy-based cryptography and applications. In: S. Patrick,
A., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 72–87. Springer, Heidelberg
(2005)

536 M. Bellare and G. Fuchsbauer

5. Barbosa, M., Farshim, P.: On the semantic security of functional encryption
schemes. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp.
143–161. Springer, Heidelberg (2013)

6. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and nonin-
teractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 356–374. Springer, Heidelberg (2008)

7. Bellare, M., Fuchsbauer, G.: Policy-based signatures. Cryptology ePrint Archive,
Report 2013/413 (2013)

8. Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer, Heidelberg (1990)

9. Bellare, M., Meiklejohn, S., Thomson, S.: Key-versatile signatures and applica-
tions: RKA, KDM and Joint Enc/Sig. Cryptology ePrint Archive, Report 2013/326
(2013)

10. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003)

11. Bellare, M., O’Neill, A.: Semantically-secure functional encryption: Possibility re-
sults, impossibility results and the quest for a general definition. In: Abdalla, M.,
Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 218–234.
Springer, Heidelberg (2013)

12. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press
(November 1993)

13. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

14. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)

15. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

16. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications.
Cryptology ePrint Archive, Report 2013/352 (2013)

17. Boyen, X.: Mesh signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS,
vol. 4515, pp. 210–227. Springer, Heidelberg (2007)

18. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. Cryptology ePrint Archive, Report 2013/401 (2013)

19. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EU-
ROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

20. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable signatures:
Complex unary transformations and delegatable anonymous credentials. Cryptol-
ogy ePrint Archive, Report 2013/179 (2013)

21. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006)

22. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

Policy-Based Signatures 537

23. De Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the
achievability of simulation-based security for functional encryption. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 519–535. Springer,
Heidelberg (2013)

24. De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-knowledge proof sys-
tems. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 52–72. Springer,
Heidelberg (1988)

25. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

26. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

27. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
22nd ACM STOC, pp. 416–426. ACM Press (May 1990)

28. Fuchsbauer, G., Pointcheval, D.: Anonymous proxy signatures. In: Ostrovsky, R.,
De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 201–217. Springer,
Heidelberg (2008)

29. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308
(1988)

30. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006)

31. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

32. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. Cryptology ePrint Archive, Report 2013/379
(2013)

33. Kiltz, E., Mityagin, A., Panjwani, S., Raghavan, B.: Append-only signatures. In:
Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 434–445. Springer, Heidelberg (2005)

34. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011)

35. Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing op-
eration. In: ACM CCS 1996, pp. 48–57. ACM Press (March 1996)

36. Matt, C., Maurer, U.: A constructive approach to functional encryption. Cryptol-
ogy ePrint Archive, Report 2013/559 (2013)

37. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010)

38. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

39. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS, pp. 543–553. IEEE Computer Society Press
(October 1999)

Generalizing Homomorphic MACs

for Arithmetic Circuits

Dario Catalano1, Dario Fiore2, Rosario Gennaro3, and Luca Nizzardo4,�

1 Università di Catania, Italy
catalano@dmi.unict.it

2 IMDEA Software Institute, Spain
dario.fiore@imdea.org

3 City College of New York, USA
rosario@cs.ccny.cuny.edu

4 Università degli Studi di Milano-Bicocca, Italy
l.nizzardo@campus.unimib.it

Abstract. Homomorphic MACs, introduced by Gennaro and Wichs in
2013, allow anyone to validate computations on authenticated data with-
out knowledge of the secret key. Moreover, the secret-key owner can verify
the validity of the computation without needing to know the original (au-
thenticated) inputs. Beyond security, homomorphic MACs are required
to produce short tags (succinctness) and to support composability (i.e.,
outputs of authenticated computations should be re-usable as inputs for
new computations).

At Eurocrypt 2013, Catalano and Fiore proposed two realizations
of homomorphic MACs that support a restricted class of computations
(arithmetic circuits of polynomial degree), are practically efficient, but
fail to achieve both succinctness and composability at the same time.

In this paper, we generalize the work of Catalano and Fiore in several
ways. First, we abstract away their results using the notion of encodings
with limited malleability, thus yielding new schemes based on different
algebraic settings. Next, we generalize their constructions to work with
graded encodings, and more abstractly with k-linear groups. The main
advantage of this latter approach is that it allows for homomorphic MACs
which are (somewhat) composable while retaining succinctness. Interest-
ingly, our construction uses graded encodings in a generic way. Thus, all
its limitations (limited composability and non-constant size of the tags)
solely depend on the fact that currently known multilinear maps share
similar constraints. This means, for instance, that our scheme would sup-
port arbitrary circuits (polynomial depth) if we had compact multilinear
maps with an exponential number of levels.

1 Introduction

Following the recent development of cloud computing, it is becoming popular
for users to delegate the storage of their data to remote service providers. On

� Work done while visiting CUNY.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 538–555, 2014.
c© International Association for Cryptologic Research 2014

Generalizing Homomorphic MACs for Arithmetic Circuits 539

one hand, this paradigm presents several benefits. For instance, users can access
the data from different devices and different places. Moreover, even devices with
limited storage capacity (e.g., smartphones) can have access to large amounts
of data. On the other hand, outsourcing data to remote (possibly untrusted)
providers exposes the users to severe risks of privacy and integrity. While the
community has devoted a lot of effort to finding ways to solve the privacy issue
(notably the ground-breaking work on fully-homomorphic encryption [29]), the
problem of integrity has received less attention. In particular, in this work we
consider the following problem. Imagine that Alice wants to outsource a large
amount of data to the cloud so that she can later (reliably) delegate the cloud to
perform computation on such data. By “reliably” here we mean that the cloud
should perform the computation and also be able to convince Alice that the
computation was carried out correctly. What makes this task non trivial is that
Alice does not keep a local copy of her data (i.e., the input of the computation)
and that the communication complexity of the protocol should not depend on the
size of the input. The latter restriction, for instance, rules out trivial solutions
in which Alice can send signed data to the cloud and then ask the same (signed)
data back in order to rerun the computation locally.

To solve this problem Gennaro and Wichs [28] put forward the notion of ho-
momorphic message authenticators (homomorphic MACs, for short). Informally,
a homomorphic MAC allows anyone, without knowledge of the secret key, to val-
idate computations on authenticated data, and allows the secret-key owner to
verify the results of these computations without knowing the original authen-
ticated inputs. Slightly more in detail, a homomorphic MAC scheme enables a
user to use his secret key to generate a tag σ that authenticates a message m.
Later, given tags σ1, . . . , σn for messages m1, . . . ,mn, anyone can run a pro-
gram P over σ1, . . . , σn to generate a short tag that authenticates (the output
of) P(m1, . . . ,mn). To properly formalize the idea of authenticating a program’s
output, Gennaro and Wichs introduced the notion of labeled data and programs.
The label of some message m is simply some string τ , which is used as auxiliary
information to authenticate m. Intuitively, one can think of labels as names (or
indexing) of the data. For instance, if a company outsources a database with
information on its employees, the label “(salary, i)” might be used to indicate
the salary value in the record corresponding to employee i. A labeled program P
generalizes labeling to computations as follows. P is defined by a circuit f and
a set of labels (τ1 . . . , τn), one for each of the circuit’s input wires. Intuitively,
labeled programs provide a way to specify on which inputs the circuit has to
be evaluated, without having to specify the exact values for such inputs. Ba-
sically, input labels can be seen as variable names in programming languages.
In this sense, given a labeled program P = (f, τ1, . . . , τn) and a set of tags
σ1, . . . , σn—each authenticating mi under label τi—anybody can run the (ho-
momorphic) evaluation algorithm σ←Eval(P , σ1, . . . , σn) to obtain a tag σ that
authenticates m = P(m1, . . . ,mn) as the output of P run on inputs labeled by
τ1, . . . , τn respectively.

540 D. Catalano et al.

Homomorphic MACs are required to satisfy three main properties. (1) They
must be secure, i.e., an adversary that can (adaptively) see the tags correspond-
ing to polynomially many messages of his own choice, should not be able to
produce valid tags for messages that are not produced as the output of P . (2) A
homomorphic MAC should be succinct, in the sense that the authenticity of P ’s
output should be certifiable using much less communication than what required
to send the original inputs. (3) Finally, a homomorphic MAC should be com-
posable, in the sense that tags authenticating previous computations should be
usable as inputs to further authenticate new computations, i.e., computations
executed on the results of other computations.

In terms of realizations, Gennaro and Wichs [28] proposed a fully homomor-
phic MAC scheme that achieves all the above three properties for arbitrary
programs. On the negative side, their construction is unfortunately rather inef-
ficient as it relies on the full power of fully homomorphic encryption. Moreover,
it guarantees security only with respect to adversaries that are allowed to ask a
constant number of verification queries. In recent work [16], Catalano and Fiore
proposed a realization of homomorphic MACs that, while less general than [28],
is more interesting from a practical point of view: it is more efficient, it guar-
antees security for an unbounded number of verification queries, and it can be
based on minimal assumptions (OWFs). On the negative side, this efficiency gain
comes at the cost of a somewhat reduced flexibility. More precisely, in [16] two
solutions are proposed. The first one achieves full composability but guarantees
succinctness only for circuits of low degree. The second construction, instead,
achieves succinctness but does not guarantee fully-fledged composability1.

Our Contribution. In this paper, we generalize the work of Catalano and Fiore,
by proposing new constructions and extensions for their paradigm. In particular,
our contribution is threefold.

First, we devise a general methodology to construct succinct homomorphic
MACs using the notion of encodings with limited malleability first introduced
in [8]. Very informally, these are encodings that are additively homomorphic
and, at the same time, believed not to be multiplicative homomorphic. A bit
more precisely, for the case of deterministic encodings, we require that given the
econding of the � powers of a random x, it must be computationally hard to
come up with the encoding of 1/x. We show that by encoding x as gx, then the
original scheme in [16] can be seen as an instance of our abstraction.

By replacing gx in [16] with Enc(x), and presenting encodings based on differ-
ent intractability assumptions, we then obtain new homomorphic MAC schemes,
relying on such assumptions. In particular, we discuss encoding instantiations
based on partially-homomorphic encryption schemes, such as Paillier [36], Boneh-
Goh-Nissim [13] and Brakerski-Vaikuntanathan [15]. We remark that all such
schemes, constitute examples of randomized encodings. In order for our proofs to
go through, however, we need to be able to check when two encodings

1 This second scheme guarantees what the authors call local composability. In a nut-
shell, local composability allows to arbitrarily compose programs only when all the
compositions are performed by the same entity.

Generalizing Homomorphic MACs for Arithmetic Circuits 541

encode the same element. To accommodate this, our security assumption must
be strengthened to assume that computing an encoding of 1/x remains hard
even if these encryption schemes are not semantically secure2.

The final resulting assumption (which we call �-inversion resistance in the
paper) is quite strong and somewhat non-standard: it is “non-constant” as it
depends on the parameter �, and also requires, in the security simulation, the
hypothetical existence of a “distinguisher” that breaks the semantic security
of the underlying encryption schemes. Yet assumptions of this type have been
regularly used for many protocols in this area (e.g. [8,26], cf. Footnote 2), and
an intriguing open problem is to figure out how necessary they are.

For the same reason as in [16], though, the use of encodings for obtain-
ing compact tags undermines the composability property. Our second contri-
bution is a solution to this issue, which is obtained by further generalizing
the idea of encodings with limited malleability. In particular, we build on so-
called graded encodings, a notion recently proposed by Garg, Gentry and Halevi
[24], that also provides an “approximate” realization of (leveled) multilinear
groups. Basically, graded encodings are encodings that are additively homomor-
phic in the usual sense and multiplicatively homomorphic in a limited sense.3

Our second construction uses graded encodings to obtain a homomorphic MAC
scheme that achieves both composability and succinctness at the same time.
In particular, if we instantiate our MAC by using the GGH graded encoding,
we then obtain a scheme that allows for the following process: (1) one can
generate constant-size tags, each authenticating the results of a computation
yi = fi(m1, . . . ,mn) for i = 1 to t, where each fi is an arithmetic circuit of
degree at most D = poly(λ); (2) one can compose the above computations fi
by using a “composition circuit” φ of degree at most k. Namely, one can finally
authenticate y = φ(y1, . . . , yt) = f∗(m1, . . . ,mn), where f

∗ = φ(f1, . . . , ft). Here
k is the degree of the multilinear groups. The size of the produced tags is linear
in the degree of the composition circuit φ. Compared to the scheme of Catalano
and Fiore, ours supports the same class of computations (i.e., arithmetic circuits
of polynomial degree) but enjoys a higher degree of composability, and preserves
succinctness as long as the composition circuit is low-degree.

Finally, we observe that our second scheme discussed above is generically built
from multilinear maps. In particular, all its limitations (bounded circuits and size
of the tags) are inherited from the current realizations of multilinear maps (e.g.,
GGH encodings): we support circuits of polynomial degree because the maps

2 There is no contradiction here, as we are requiring the adversary to compute some-
thing (Enc(1/x)) even if it is easy to decide if a given value t is an encoding of 0 or
not. A similar situation arises in the SNARK protocols of [8,26], when implemented
with a randomized encoding – however in their case the assumptions made on the
encoding are knowledge, non-falsifiable, ones (i.e. it is hard to compute t = enc(x)
with x satisfying certain constraints, without knowing x). Our assumption is falsi-
fiable and conceptually simpler, though we do not know of any reduction from one
to the other.

3 Roughly speaking, the multiplicative homomorphism is limited in the sense that the
result of a multiplication lies into a different encoding set.

542 D. Catalano et al.

have polynomially-many levels, and our tags have size linear in the degree of
the composition circuit because the maps are not compact. This means that our
scheme would support arbitrary circuits (polynomial depth) if we had compact
multilinear maps with an exponential number of levels. Furthermore, our generic
construction is proven secure against adversaries making an unbounded number
of verification queries, in contrast to the fully-homomorphic MAC of Gennaro-
Wichs, that can support only a constant number of verification queries. There-
fore, although such powerful algebraic tools are not known, our result has the
potential of yielding a fully-fledged homomorphic MAC.

Related Work. The problem of realizing homomorphic (mostly linear) au-
thenticators either in the symmetric setting (MACs) or in the asymmetric one
(signatures) has been the subject of several recent papers, starting with the
seminal work of Johnson et al. [33]. The subject became popular more recently,
due to an important application of homomorphic signatures to linear network
coding. Efficient schemes of this primitive have been proposed both in the ran-
dom oracle [10,27,12,17] and in the standard model [1,2,18,19,23,3]. Realizations
for more complex functionalities (i.e., beyond linear) have been proposed only
very recently [11,28,16,4]. In addition to the works of Gennaro-Wichs [28] and
Catalano-Fiore [28] that we already discussed in the previous section, it is worth
mentioning two more works that are closely related to ours. Boneh and Freeman
defined the notion of (fully) homomorphic signatures and showed a realization
for bounded (constant) degree polynomials, from ideal lattices [11]. Compared
to our work (and more in general to homomorphic MACs) this solution has
the obvious advantage of allowing for public verifiability. On the negative side,
however, it is not truly practical and the bound on the degree of the supported
polynomials is more stringent than in our case (as they can support only poly-
nomials of constant degree). Very recently, Backes, Fiore and Reischuk [4] put
forward the notion of homomorphic MACs with efficient verification, which ex-
tends homomorphic MACs by requiring the verification algorithm to run more
efficiently than the time necessary to compute the program P against which it
verifies (precisely, they require amortized constant time). In [4], they propose a
construction of this primitive based on the decision linear assumption and show
applications to verifiable delegation of computation on outsourced data.

Other Related Work. Homomorphic signatures could be realized by using
Succinct Non-interactive Arguments of Knowledge (SNARKs) [6]. Informally,
a SNARK allows to construct a succinct argument that can be used to prove
knowledge of the witness of a given any NP statement. SNARKs enjoy the nice
property that the size of the proof is independent of the size of both statement
and witness. A drawback of SNARKs is that they are not very efficient in practice
and require either the random oracle model [35] or non-standard, non-falsifiable
assumptions [30]. Moreover, the composability of homomorphic signatures ob-
tained via SNARKs seems to be very limited [39,7].
Homomorphic authenticators are also related to memory delegation [20] and veri-
fiable computation [34,35,31,25,5,37,22]. We refer to [28] for a detailed discussion
about similarities with these primitives.

Generalizing Homomorphic MACs for Arithmetic Circuits 543

2 Background and Definitions

In our work we use the notion of arithmetic circuits and related definitions. For
lack of space, we refer the interested reader to [38] for a nice survey on this
subject.

2.1 Homomorphic Message Authenticators

Labeled Programs. First, let us recall the notion of labeled programs in-
troduced by Gennaro and Wichs in [28]. A labeled program P is defined by
a tuple (f, τ1, . . . , τn) where f : Fn → F is a circuit, and the binary strings
τ1, . . . , τn ∈ {0, 1}∗ are the labels of the input nodes of f . Given some la-
beled programs P1, . . . ,Pt and a function g : Ft → F, the composed program
P∗ = g(P1, . . . ,Pt) is the circuit which evaluates a circuit g on the outputs of
P1, . . . ,Pt respectively. The labeled inputs of P∗ are all distinct labeled inputs
of P1, . . . ,Pt, i.e., all inputs with the same label are put together in a single
input of the new program. We denote with Iτ = (gid, τ) the identity program
with label τ where gid is the canonical identity function and τ ∈ {0, 1}∗ is some
input label. Notice that any program P = (f, τ1, . . . , τn) can be expressed as the
composition of n identity programs P = f(Iτ1 , . . . , Iτn).
Homomorphic Authenticator Scheme. A homomorphic message authenti-
cator scheme HomMAC consists of the following four algorithms:

KeyGen(1λ): on input the security parameter λ, the key generation algorithm
outputs a secret key sk and a public evaluation key ek.

Auth(sk, τ,m): given the secret key sk, an input-label τ and a message m ∈ M,
it outputs a tag σ.

Ver(sk,m,P , σ): given the secret key sk, a message m ∈ M, a program P =
(f, τ1, . . . , τn) and a tag σ, the verification algorithm outputs 0 (reject) or 1
(accept).

Eval(ek, f,σ): given the evaluation key ek, a circuit f : Mn → M and a vector
of tags σ = (σ1, . . . , σn), the evaluation algorithm outputs a new tag σ.

Authentication Correctness. Intuitively, a homomorphic MAC satisfies
this property if any tag σ generated by the algorithm Auth(sk, τ,m) authenti-
cates with respect to the identity program Iτ . Formally, we require that for any

message m ∈ M, all keys (sk, ek)
$← KeyGen(1λ), any label τ ∈ {0, 1}∗, and any

tag σ
$← Auth(sk, τ,m), it holds: Pr[Ver(sk,m, Iτ , σ) = 1] = 1.

Evaluation Correctness. Informally, this property states that if the eval-
uation algorithm is given a vector of tags σ = (σ1, . . . , σn) such that each σi
authenticates some message mi as the output of a labeled program Pi, then the
tag σ produced by Eval must authenticate f(m1, . . . ,mn) as the output of the
composed program f(P1, . . . ,Pn).

More formally, let us fix a pair of keys (sk, ek)
$← KeyGen(1λ), a function

g : Mt → M and any set of message/program/tag triples {(mi,Pi, σi)}ti=1 such
that Ver(sk,mi,Pi, σi) = 1. If m∗ = g(m1, . . . ,mt), P∗ = g(P1, . . . ,Pt), and
σ∗ = Eval(ek, g, (σ1, . . . , σt)), then it must hold: Ver(sk,m∗,P∗, σ∗) = 1.

544 D. Catalano et al.

Succinctness. The size of a tag is bounded by some fixed polynomial in the
security parameter, that is independent of the number of inputs taken by the
evaluated circuit.

Security. Here we recall the security definition of homomorphic MACs pro-
posed by Catalano and Fiore [16] (which slightly weakens the one of Gennaro
and Wichs [28]). A homomorphic MAC scheme HomMAC is secure if for any
PPT adversary A we have Pr[HomUF−CMAA,HomMAC(λ) = 1] ≤ ε(λ) where ε(λ)
is a negligible function, and HomUF−CMAA,HomMAC(λ) is the experiment below.

Setup. The challenger generates (sk, ek)
$← KeyGen(1λ) and gives ek to A. Also

a list T = ∅ is initialized.
Authentication queries. The adversary can adaptively ask for tags on label-

message pairs of its choice. Given a query (τ,m), if (τ,m) ∈ T (i.e., the
query was previously made), then the challenger replies with the same tag
generated before. If T already contains a pair (τ,m′) ∈ T with m′ �= m (i.e.,
the label τ was already queried with a different message), then the challenger

ignores the query. Otherwise, if (τ,m) /∈ T , the challenger computes σ
$←

Auth(sk, τ,m), returns σ to A and updates the list T = T ∪ (τ,m).
Verification queries. The adversary is also given access to a verification or-

acle. A can submit a query (m,P , σ) and the challenger replies with the
output of Ver(sk,m,P , σ).

Forgery. When the adversary stops running, the experiment outputs 1 if one
of the verification queries made by A, say (m∗,P∗, σ∗), is a forgery.

The description of the experiment is thus concluded by defining what is
a forgery. To this end, we first recall the notion of a well-defined program
with respect to a list T . Informally, there are two ways for a program P∗ =
(f∗, τ∗1 , . . . , τ

∗
n) to be well-defined. Either all the τ∗i ’s are in T or, if there are

some labels τ∗i that are not in T , then the inputs associated with such labels
are “ignored” by f∗ when computing the output. In other words, inputs corre-
sponding to labels not in T do not affect the behavior of f∗ in any way.

More formally, a labeled program P∗ = (f∗, τ∗1 , . . . , τ
∗
n) is well defined with

respect to T if either one of the following two cases occurs:

1. there exists i ∈ {1, . . . , n} such that (τ∗i , ·) /∈ T (i.e., A never asked an
authentication query with label τ∗i), and f∗({mj}(τj,mj)∈T ∪ {m̃j}(τj,·)/∈T)
outputs the same value for all possible choices of m̃j ∈ M;

2. T contains tuples (τ∗1 ,m1), . . . , (τ
∗
n ,mn), for some messages m1, . . . ,mn.

In the experiment HomUF−CMA, a tuple (m∗,P∗, σ∗) is a forgery if and only
if Ver(sk,m∗,P∗, σ∗) = 1 and one of the following conditions holds:

– Type 1 Forgery: P∗ is not well-defined w.r.t. T .
– Type 2 Forgery: P∗ is well defined w.r.t. T and m∗ �= f∗({mj}(τj,mj)∈T),

i.e., m∗ is not the correct output of the labeled program P∗ when executed
on previously authenticated messages (m1, . . . ,mn).

Generalizing Homomorphic MACs for Arithmetic Circuits 545

As already noted in [16], the experiment HomUF−CMA requires the chal-
lenger to recognize whether a program submitted by the adversary in a veri-
fication query is well-defined or not, but the latter check might not be doable
in polynomial time, at least for certain classes of computations. Catalano and
Fiore observe that this is not a problem for the class of arithmetic circuits of
polynomial degree and over an exponentially large finite field. Here we give a
simple proposition (for lack of space its proof appears in the full version) to show
that testing whether a program is well-defined can be done even for arithmetic
circuits of degree d, over a finite field of order p such that d/p < 1/2.4

Proposition 1. Let λ, n ∈ N and let F be the class of arithmetic circuits f :
Fn → F over a finite field F of order p and such that the degree of f is at most d,
for d

p < 1
2 . Then, there exists a probabilistic algorithm that for any given f ∈ F ,

decides if there exists y ∈ F such that f(u) = y, ∀u ∈ Fn (i.e., if f is constant)
and is correct with probability at least 1 − 2−λ.

Furthermore, for the same class of computations, we show that Type-1 forg-
eries essentially “collapse” into Type-2 forgeries. Namely, we show that any ad-
versary winning in the experiment by producing a Type-1 forgery can be con-
verted into another adversary that wins by producing a Type-2 forgery. This is
formalized in the following proposition whose proof is deferred to the full version:

Proposition 2. Let λ ∈ N be the security parameter, and let F be the class of
arithmetic circuits f : Fn → F over a finite field F of order p and such that
the degree of f is at most d, for d

p < 1
2 . Let Eb be the event that the adversary

wins in experiment HomUF−CMA by producing a Type-b forgery (for b = 1, 2).
Then, if for any adversary B we have that Pr[HomUF−CMAB,HomMAC(λ) =
1 ∧ E2] ≤ ε, then for any adversary A producing a Type-1 forgery it holds
Pr[HomUF−CMAA,HomMAC(λ) = 1 ∧ E1] ≤ Q(ε+ 2−λ).

3 Compact Homomorphic MACs Based on Encodings
with Limited Malleability

In this section we describe a generalization of the scheme of Catalano and Fiore
[16] which uses a more general encoding to compress the tags. First we define
the encoding that we are going to use to compress the tags. We then show the
compact scheme and prove its security. Finally we show that the scheme from
[16] can be seen as an instance of this generalization, and we also present a
different implementation based on partially-homomorphic encryption.

Limited Malleability Encoding. An encoding E consists of three algorithms
(EncGen,Enc,Test) defined as follows:

4 For simplicity, we show this for 1/2. The same argument can be extended to d/p <
1/c for some constant c.

546 D. Catalano et al.

EncGen(1λ). Given the security parameter λ, it outputs a pair of public/secret
keys pk, dk, the message space Zp where p is a prime of at least λ-bits, and an
encoding space T . We denote with +, · the usual additions/multiplications
over Zp, while T is assumed to be an abelian group under operation ×.

Enc(pk,m). A possibly randomized algorithm which takes as input m ∈ Zp and
returns a value t ∈ T .

Test(dk,m, t) A deterministic algorithm which on input m ∈ Zp and t ∈ T
outputs 1 if t ∈ Enc(pk,m), and 0 otherwise.

On the testing algorithm. We note that if the encoding algorithm is deter-
ministic, the testing procedure can be easily carried out by re-encoding m and
checking that is equal to t. Also, note that in this case there is no need of a secret
key to test. This is the case for the discrete-log based encoding in [16]. For more
general encodings where the encoding algorithm might be randomized, a secret
decoding key dk might be needed to “decode” t and check that is equal to m.

Definition 1. We say that an encoding is additively homomorphic if for all
m,m′ ∈ Zp, and for all h ∈ Enc(pk,m) and h′ ∈ Enc(pk,m′) we have that
h × h′ ∈ Enc(pk,m+m′).

Limited Malleability. We now define our security assumption for the encod-
ings E that we use in our scheme. Basically, we ask that given ti = Enc(pk, xi)
for i = 0, . . . , � it must be hard to compute t = Enc(pk, 1/x), even in the pres-
ence of an oracle which decides if an element of T is an encoding of 0 or not.
More formally, define the oracle O(dk, τ) which answers ”yes” if τ ∈ Enc(pk, 0)
and “no” otherwise. Then for any PPT (adversary) A, consider the following
experiment E-INVA(λ, �):

1. (pk, dk, p, T) ← EncGen(1λ);
2. x ← Z∗

p;

3. hi ← Enc(pk, xi) for i = 1, . . . , �;
4. t ← AO(dk,·)(pk, p, T, h0, . . . , h�)

We define A’s advantage in winning the E-INVA(λ, �) game asAdvE−INV
A (λ, �)

= Pr[t ∈ Enc(pk, 1/x)].

Definition 2. We say that E is �-inversion-resistant if for every PPT A we
have that AdvE−INV

A (λ, �) is negligible in λ.

The assumption states that computing Enc(pk, 1/x) must be difficult even if
we were able to efficiently decide if a string is the encoding of 1/x (because of
homomorphic properties of E deciding if τ is an encoding of 0 is equivalent to
deciding if τ is an encoding of an arbitrary element of Zp).

We remark that we do not require the existence of the oracle to implement the
encoding and our scheme. It is just needed by the simulation (therefore making
our assumption stronger than just computing Enc(pk, 1/x)).

The Scheme. We now describe a homomorphic MAC scheme that works for
arithmetic circuits of polynomial degree D (but does not support composition).

Generalizing Homomorphic MACs for Arithmetic Circuits 547

The authentication tags produced by our construction have size which is inde-
pendent of the size/depth of the circuit. The description of our scheme follows.

KeyGen(1λ, D). Let λ be the security parameter, and D be a parameter of size
poly(λ). The key generation works as follows. Run EncGen(1λ) to generate

pk, dk, p, T . We assume that our circuits work over Zp. Next, select x
$← Zp,

a seed K of a pseudorandom function FK : {0, 1}∗ → Zp, and compute hi =
Enc(pk, xi), for i = 0 to D − 1. Output sk = (K, dk, x), ek = (h0, . . . , hD−1).

Auth(sk, τ,m). To authenticate a message m ∈ Zp with label τ ∈ {0, 1}λ,
compute rτ = FK(τ), set y0 = m , y1 = (rτ − m)/x mod p, and output
σ = (y0, y1) ∈ Z2

p. The authentication tags produced by Auth are interpreted
as degree-1 polynomials y(X) = y0 + y1X over the ring Zp[X].

Eval(ek, f,σ). The first step of this algorithm is the same as the Eval algorithm
of the homomorphic MACs construction based on OWFs proposed in [16].
The input is the evaluation key ek, an arithmetic circuit f : Znp → Zp, and
a vector σ of tags (σ1, . . . , σn) where each σi is a polynomial y(i)(X) ∈
Zp[X]. The first step is to compute the polynomial y(X) obtained by (ho-
momorphically) evaluating the circuit f over the polynomial ring Zp[X], i.e.,
y(X)←f(y(1)(X), . . . , y(n)(X)). Namely, additions and multiplications over
Zp are replaced by additions and multiplications of polynomials over Zp[X].
Let y0, . . . , yd be the coefficients of the polynomial y(X) (note that d ≤ D).
If d = 1 then the algorithm returns σ = (y0, y1), otherwise it computes
Λ = Πd−1

i=0 h
yi+1

i (where this product is computed in the group T defined by
the encoding) and returns σ = Λ.

Ver(sk,m,P , σ). Let P = (f, τ1, . . . , τn) be a labeled program, m ∈ Zp and σ be
a tag of either the form (y0, y1) ∈ Z2

p, or Λ ∈ T .
First, compute ρ = f(rτ1 , . . . , rτn) where rτi←FK(τi). Next, according to
the form of σ perform the following checks:

1. If σ = (y0, y1), then output 1 only if ρ = y0 + y1 · x ∧ y0 = m.
2. If σ = Λ, then let t = Λx and output Test(dk, ρ − m, t)

It is not difficult to check that the scheme is correct by the construction of the
polynomials y(X) and the correctness of the encoding E . The following theorem
proves the security of our construction. For lack of space, the proof of Theorem
1 as well as a full proof of correctness appear in the full version.

Theorem 1. If E is (D−1)-inversion resistant, and F is a pseudorandom func-
tion, then the scheme described in Section 3 is a secure homomorphic MAC.

Possible Instantiations
Discrete-Log Based Encoding. We first show that the protocol of Cata-
lano and Fiore [16] fits into the abstraction we just described. In their case the
encoding algorithms are as follows:

– EncGen(1λ) chooses a prime p of size at least λ, and a cyclic group T of order
p, and a generator g for it. pk = dk = (p, T, g). Note that the decoding key
is not secret.

548 D. Catalano et al.

– Enc(pk,m) = gm. Note that the encoding scheme is deterministic.
– Test(dk,m, t) checks if t = gm

The assumption that this encoding is �-inversion resistant is equivalent to the

�-Diffie-Hellman inversion assumption [14]: given g, gx, gx
2

, . . . , gx
�

it is hard to
compute g1/x. Note that the oracle which test if t is an encoding of 0 is trivially
implemented by checking if t = 1, since the encoding is deterministic.

Partially Homomorphic Encryption Schemes. Any encryption scheme
which is additively homomorphic over a prime field but is believed to be mul-
tiplicative homomorphic only up to a constant degree, constitutes a suitable
candidate to be an �-inversion resistant encoding. Let (KG,Enc,Dec) be such
an encryption scheme, then:

– EncGen(1λ) runs KG(1λ) to choose a public/secret key pair (pk, sk). It sets
pk to be the encoding public key and dk = sk its secret decoding key.

– Enc(pk,m) = Enc(pk,m). Note that in this case the encoding scheme is
randomized.

– Test(dk,m, t) checks if Dec(sk, t) = m

Examples of encryption schemes with such a partial homomorphic property in-
clude the “basic” version of the Brakerski and Vaikuntanathan FHE [15], Boneh,
Goh and Nissim [13], and Paillier [36] schemes. 5 Note that to use these schemes
in our protocol we need to require them to be �-inversion resistant as defined
earlier. This is a strong notion of security: we require them to be one-way in a
strong sense (given encryptions of � successive powers of x, it is impossible to
come up with an encryption of 1/x) even in the presence of an oracle that breaks
the semantic security of the scheme.

4 A Compact Scheme with k-degree Composition

In this section we propose a homomorphic MAC based on multilinear groups.
Compared to [16], the main advantage of this scheme is that it provides a way to
both compress the tags and enable their (later) composition. Before describing
the scheme, we first recall the definition of graded encoding and its abstraction
of leveled multilinear maps.

Leveled Multilinear Maps and Graded Encodings. Informally speaking, a

k-graded encoding system for a ring R includes a system of sets {S(α)
i ⊂ {0, 1}∗ :

i ∈ [0, k], α ∈ R} such that for every fixed i ∈ [0, k] the sets {S(α)
i : α ∈ R}

are disjoint. The set S
(α)
i essentially contains the level-i encodings of α ∈ R.

5 Although Paillier and BGN schemes operate over the ring ZN where N is the product
of two large primes, note that the zero-divisors are only a negligible fraction of ZN .
Moreover, it is hard to find such divisors if we assume that factoring N is hard.
Therefore, it is not hard to see that with minor modifications the proof of Theorem
1 can be changed to accomodate this. More details appear in the full version.

Generalizing Homomorphic MACs for Arithmetic Circuits 549

As a first requirement, the system needs an algorithm to obtain an encoding

ai ∈ S
(α)
i of some ring element α (notice that such encoding can be randomized).

Additionally, the encoding system is homomorphic in a graded sense. Namely,

let us abuse notation and assume that every set S
(α)
i is a ring where +, · are the

usual addition/multiplication operations. Then, for any ai ∈ S
(α)
i and bi ∈ S

(β)
i

we have ai + bj ∈ S
(α+β)
i . Furthermore, for ai ∈ S

(α)
i and bj ∈ S

(β)
j we have

ai · bj ∈ S
(α·β)
i+j , if i + j ≤ k. Finally, the encoding system has an algorithm to

test if a given a is an encoding of 0 at level i, i.e., a ∈ S
(0)
i .

Garg, Gentry and Halevi [24] recently proposed a candidate construction of
a randomized graded encoding system, which has some additional algorithms to
deal with the fact that the encoding is randomized. Another candidate was also
proposed by Coron, Lepoint and Tibouchi [21]. We refer to these works for a
precise definition of graded encodings. Here we note that graded encodings define
an “approximate” version of a multilinear group family. For ease of exposition,
we proceed our description of graded encodings by using the more abstract and
simpler multilinear groups. Although graded encodings slightly depart from this
abstraction (mainly because of the randomized “noisy” procedures), they can be
adapted to work in place of multilinear groups.

In generic multilinear groups we assume the existence of an algorithm G(1λ, k)
that, on input the security parameter and an integer k indicating the number of
levels (i.e., the number of allowed pairing operations), generates the description
pp of leveled multilinear groups (G1, . . . ,Gk), each of large prime order p > 2λ.
We let gi be a canonical generator of Gi and we assume that pp includes g1 ∈ G1.
The groups are such that there exists a set of bilinear maps {ei,j : Gi × Gj →
Gi+j}i,j≥1,i+j≤k such that ∀a, b ∈ Zp: ei,j(g

a
i , g

b
j) = gabi+j . When it is obvious

from the context the indices i, j are dropped from ei,j .

Limited Malleability. To prove the security of our scheme we assume that
the encoding system is homomorphic only in a graded sense. Namely, given
the level-1 encodings of the � powers of w ∈ R, it must be hard to compute
a level-k encoding of w�k+1. Framed in the context of multilinear groups, this
assumption can be seen as an extension of the computational Bilinear Diffie-
Hellman Inversion assumption (first defined by Boneh, Boyen and Goh [9]) to the
multilinear setting. Its hardness in the generic multilinear group follows by the
same argument as in the “master theorem” of [9], i.e., by the linear independence
of the polynomial x�k+1 w.r.t. the polynomials x, x2, . . . , x�k. It is worth noting
that a similar assumption, in the multilinear groups setting, has been recently
used by Hohenberger, Sahai and Waters [32].

Definition 3 ((�, k)-Multilinear Diffie-Hellman Inversion). Let pp be the
description of a set of multilinear groups and g1 ∈ G1 be a random generator.

Let w
$← Zp be chosen at random. We define the advantage of an adversary A

in solving the (�, k)-MDHI problem as AdvMDHI
A (λ) = Pr[A(g1, g

w
1 , . . . , gw

�

1) =

gw
k�+1

k], and we say that the (�, k)-MDHI assumption holds for G if for every

PPT A and for � = poly(λ), AdvMDHI
A (λ) is negligible in λ.

550 D. Catalano et al.

The Scheme. Our homomorphic MAC based on k-linear groups allows for the
following process: (1) one can generate constant-size tags, each authenticating
the results of a computation vi = fi(m1, . . . ,mn) for i = 1 to t, where each fi
is an arithmetic circuit of degree at most D = poly(λ); (2) one can compose the
above computations fi by using a “composition circuit” φ of degree at most k.
Namely, one can finally authenticate v = φ(v1, . . . , vt) = f∗(m1, . . . ,mn), where
f∗ = φ(f1, . . . , ft).

Before describing our scheme in full detail, we first provide an intuitive de-
scription. The basic idea of our construction is to first generate the authen-
tication tags as in [16] – i.e., as polynomials y(X) – and to publish in the
evaluation key level-1 encodings of the D powers of the secret value x, i.e.,
hi = gx

i

1 , i = 1, . . . , D. To authenticate a computation vi = fi(m1, . . . ,mn),
one first computes the polynomial y(i)(X)←fi(y1(X), . . . , yn(X)) ∈ Zp[X], and
then generates its “compressed” representation by computing the level-1 encod-

ing Λi = g
y(i)(x)−y(i)(0)
1 =

∏d
j=1(g

xj

1)y
(i)
j . To further authenticate the composed

computation φ(v1, . . . , vt) (with φ of degree k), the idea is to compute the k-level

encoding Λ = (ga
k−1

k)y(x)−y(0), where y(X) ∈ Zp[X] is the polynomial obtained
from φ(y(1)(X), . . . , y(t)(X)). Precisely, Λ is computed by homomorphically eval-
uating φ over the level-1 encodings {Λi}i: additions in φ are replaced by the group
operation and multiplications are replaced by the pairing. In our scheme we also
publish encodings {ηi = gax

i

1 = hai }di=0 where a ∈ Zp is randomly chosen, and
we include in every tag another element Γ = Λa computed by using the values
{ηi}i. Very roughly, these additional encodings are introduced to enable one to
“move up” an encoding Λj from Gj to Gj+1 without publishing the generator
g1 ∈ G1, i.e., one computes Λj+1 = ej,1(Λj , g

a
1).

A full description of our scheme follows.

KeyGen(1λ, D, k). Let λ be the security parameter, and D, k be two parameters
of size poly(λ). The key generation works as follows.

Run G(1λ, k) to generate the description of k-linear groups G1, . . . ,Gk of

order p where p is a prime number of at least λ bits. Let g1
$← G1 be a

random generator, and choose random values a, x
$← Zp, and a seed K of a

pseudorandom function FK : {0, 1}∗ → Zp. Next, for i = 1 to D, compute

hi = gx
i

1 , ηi = hai and A1 = ga1 . Also, we let gi ∈ Gi be the canonical
generator of Gi which is obtained by repeatedly applying the graded map to
g1, i.e., let g2 = e(g1, g1) and gi = e(gi−1, g1). Similarly, we define Ai from

A1 and we observe that Ai = ga
i

i . Finally, compute σU = (1, (rU − 1)/x)

for a random rU
$← Zp. σU is essentially a tag for the value 1 under a fixed

canonical label (cf. the authentication algorithm).
Output sk = (K, g1, x, a), ek = (A1, h1, η1, . . . , hD, ηD, σU) and let the

message space M be Zp.
Auth(sk, τ,m). To authenticate a message m ∈ Zp with label τ ∈ {0, 1}λ,

compute rτ = FK(τ), set y0 = m , y1 = (rτ − m)/x mod p, and output
σ = (y0, y1) ∈ Z2

p. The authentication tags produced by Auth are interpreted
as degree-1 polynomials y(X) = y0 + y1X over the ring Zp[X].

Generalizing Homomorphic MACs for Arithmetic Circuits 551

Eval1(ek, f,σ). This algorithm is the same as the Eval algorithm of the homo-
morphic MACs construction based on OWFs proposed in [16]: The input
is the evaluation key ek, an arithmetic circuit f : Znp → Zp, and a vector

σ of tags (σ1, . . . , σn) where each σi is a polynomial y(i)(X) ∈ Zp[X]. The
authentication tag σ computed by Eval1 is the polynomial y(X) obtained by
(homomorphically) evaluating the circuit f over the polynomial ring Zp[X],
i.e., y(X)←f(y(1)(X), . . . , y(n)(X)). Namely, additions/multiplications over
Zp are replaced by additions/multiplications of polynomials over Zp[X].

Compress(ek, σ). This algorithm takes as input an authentication tag σ of the
form y(X) ∈ Zp[X] of degree d (i.e., y(X) consists of d + 1 coefficients
(y0, . . . , yd)), and “compresses” the polynomial into a shorter value of con-
stant size. The resulting tag is a triple (y0, Λ1, Γ1) ∈ Zp ×G1 ×G1 where Λ1

and Γ1 are computed as follows: Λ1 =
∏d
i=1 h

yi
i , Γ1 =

∏d
i=1 η

yi
i .

Eval2(ek, φ,σ). This algorithm allows to further apply homomorphic operations
on tags that were obtained using Eval1 and later compressed using Compress.
Eval2 takes as input the evaluation key ek, an arithmetic circuit φ : Znp → Zp
of degree at most k and a vector σ of tags (σ1, . . . , σn) such that each σi is a

triple (y
(i)
0 , Λ

(i)
1 , Γ

(i)
1) ∈ Zp ×G1 ×G1. Without loss of generality, we assume

that in the circuit φ addition gates take inputs of the same degree i.6

Eval2 evaluates the circuit φ over the tags by replacing additions and
multiplications as follows:

– Add(ek, σ1, σ2). On input two tags σ1 = (y
(1)
0 , Λ

(1)
i , Γ

(1)
i) and σ2 =

(y
(2)
0 , Λ

(2)
i , Γ

(2)
i), it computes a tag σ = (y0, Λi, Γi) as follows: y0 =

y
(1)
0 + y

(2)
0 , Λi = Λ

(1)
i · Λ(2)

i , Γi = Γ
(1)
i · Γ (2)

i .

– ConstMult(ek, σ1, c). On input a tag σ1 = (y
(1)
0 , Λ

(1)
i , Γ

(1)
i) and a constant

c ∈ Zp, it computes the tag σ = (y0, Λi, Γi): y0 = c · y(1)0 , Λi =

(Λ
(1)
i)c, Γi = (Γ

(1)
i)c.

– Mult(ek, σ1, σ2). This takes as input two tags σ1 = (y
(1)
0 , Λ

(1)
i , Γ

(1)
i) and

σ2 = (y
(2)
0 , Λ

(2)
j , Γ

(2)
j) and outputs a tag σ = (y0, Λd, Γd) where d = i+ j.

σ is computed as follows:

y0 = y
(1)
0 · y(2)0

Λd = e(Λ
(1)
i , Γ

(2)
j) · e(Λ(1)

i , Aj)
y
(2)
0 · e(Ai, Λ(2)

j)y
(1)
0

Γd = e(Γ
(1)
i , Γ

(2)
j) · e(Γ (1)

i , Aj)
y
(2)
0 · e(Ai, Γ (2)

j)y
(1)
0

Ver(sk,m,P , σ). Let P = (f, τ1, . . . , τn) be a labeled program, m ∈ Zp and σ be
a tag of either the form (y0, y1) ∈ Z2

p, or (y0, Λi, Γi) ∈ Zp × G2
i .

First, compute ρ = f(rτ1 , . . . , rτn) where rτi←FK(τi). Next, according to
the form of σ perform the following checks:

1. If σ = (y0, y1) ∈ Z2
p, then output 1 only if ρ = y0 + y1 · x ∧ y0 = m.

6 Note that any circuit can be changed to meet this assumption: simply add multipli-
cations by a special variable with value 1. This change does not increase the circuit’s
degree, and its homomorphic evaluation can be performed by using the tag σU .

552 D. Catalano et al.

2. If σ = (y0, Λi, Γi) ∈ Zp × G2
1, then output 1 only if y0 = m ∧

(ga
i−1

i)ρ−m = Λi ∧ Λai = Γi.

For lack of space, the correctness of the scheme is shown in the full version.
In the following theorem we prove the security of the scheme for the class of

arithmetic circuits of (total) degree Δ such that Δ < p, and in particular when
0 < Δ/p < 1 is the inverse of a small constant (e.g., 1/2). For lack of space, the
proof of the theorem appears in the full version.

Theorem 2. If F is a PRF and the computational (D, k)-MDHI assumption
holds for G, then the homomorphic MAC scheme described in Section 4 is secure.

Possible Candidates. Here we discuss the possible instantiations of our scheme.
A brief summary is also provided in Table 1.

GGH Graded Encodings. A first instantiation is obtained by using the
recent proposal of multilinear maps [24,21]. Since these realizations allow for a
number of levels k which is polynomial in the security parameter, we obtain
a homomorphic MAC that supports circuits of bounded polynomial degree and
that, in particular, allows for degree-k composition. Also, due to the properties of
the current multilinear maps realizations, the size of the final authentication tags
(i.e., as generated by Eval2) is O(d) where d ≤ k is the degree of the composition
circuit φ. This limitation stems from the fact that in all current realizations the
size of an encoding at level d is O(d). Hence, we obtain the following corollary.

Corollary 1. Assume that F is a PRF, G is an instantiation of multilinear
maps as in [24,21], and the computational (D, k)-MDHI assumption holds for
G with D, k = poly(λ). Then the scheme of Section 4 is a secure homomorphic
MAC with authentication tags of size O(k) and that supports computations ex-
pressed by arithmetic circuits of degree at most D and composition circuits of
degree at most k.

Supporting circuits of polynomial depth via compact multilinear

maps. We note that the succinctness and the expressiveness (i.e., the class of
circuits that are supported) of our construction crucially depend on the prop-
erties of the graded encoding. In particular, it is interesting to note that, in
principle, we could support almost arbitrary circuits (i.e., of polynomial depth)
and achieve full succinctness if the scheme is implemented with multilinear maps
that allow for an exponential number of levels and that are compact. In this case,
it is not even necessary to distinguish between Eval1 and Eval2: we can “merge”
the algorithms Auth and Compress in order to create tags that are directly level-1
encodings, and then use Eval2 to perform all the homomorphic operations. Al-
though multilinear groups with such properties are not known, our result has
the potential of yielding a fully-fledged homomorphic MAC. Indeed, our con-
struction uses multilinear maps in a generic way, and its security holds against
adversaries making an unbounded number of verification queries, in contrast to
the fully-homomorphic MAC of Gennaro-Wichs, that can support only a con-
stant number of verification queries.

Generalizing Homomorphic MACs for Arithmetic Circuits 553

Table 1. Summary of homomorphic MACs instantiations with message space Zp. The
last column indicates whether unbounded verification queries are supported or not.

Scheme
Tag

Composability
Supported

Assumption
Verif.

Size Computations Queries

CF13-1 [16] O(d) � degree-d circuits OWF �
CF13-2 [16] O(1) × degree-D circuits D-DHI �

GW13 [28] O(λ) � Arbitrary
FHE ×

circuits

This work with graded
O(k)

degree-k degree-(D + k)
(D, k)-MDHI �

encodings [24,21] circuits circuits

This work with
O(1) � degree-k circuits

(1, k)-MDHI �
ideal k-linear maps ∀k : k/p < 1/2

Corollary 2. Assume that F is a PRF, G is an (ideal) instantiation of com-
pact multilinear maps, and the computational (1, k)-MDHI assumption holds for
G for any k < p/2 ≈ 2λ−1. Then the scheme of Section 4 is a secure homomor-
phic MAC with authentication tags of size O(1) and that supports computations
expressed by arithmetic circuits of degree at most k.

Acknowledgements. The research of Dario Fiore is partially supported by the
European Commission’s Seventh Framework Programme Marie Curie Cofund
Action AMAROUT II (grant no. 291803). The research of Rosario Gennaro was
sponsored by the U.S. Army Research Laboratory and the U.K. Ministry of De-
fense and was accomplished under Agreement Number W911NF-06-3-0001. The
views and conclusions contained in this document are those of the author(s) and
should not be interpreted as representing the official policies, either expressed or
implied, of the U.S. Army Research Laboratory, the U.S. Government, the U.K.
Ministry of Defence or the U.K. Government. The U.S. and U.K. Governments
are authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation hereon.

References

1. Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-based integrity for network
coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS
2009. LNCS, vol. 5536, pp. 292–305. Springer, Heidelberg (2009)

2. Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the stan-
dard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011.
LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011)

3. Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding
quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013)

4. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on
outsourced data. In: 2013 ACM Conference on Computer and Communication
Security. ACM Press (November 2013)

554 D. Catalano et al.

5. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131.
Springer, Heidelberg (2011)

6. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In: ITCS
2012: Proceedings of the 3rd Symposium on Innovations in Theoretical Computer
Science (2012)

7. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for snarks and proof-carrying data. In: STOC (2013)

8. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013)

9. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005)

10. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: Signature
schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 68–87. Springer, Heidelberg (2009)

11. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011)

12. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro,
R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg
(2011)

13. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

14. Boyen, X.: The uber-assumption family. In: Galbraith, S.D., Paterson, K.G. (eds.)
Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008)

15. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106. IEEE Computer
Society Press (October 2011)

16. Catalano, D., Fiore, D.: Practical homomorphic mACs for arithmetic circuits. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
336–352. Springer, Heidelberg (2013)

17. Catalano, D., Fiore, D., Gennaro, R., Vamvourellis, K.: Algebraic (Trapdoor)
one-way functions and their applications. In: Sahai, A. (ed.) TCC 2013. LNCS,
vol. 7785, pp. 680–699. Springer, Heidelberg (2013)

18. Catalano, D., Fiore, D., Warinschi, B.: Adaptive pseudo-free groups and applica-
tions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 207–223.
Springer, Heidelberg (2011)

19. Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures in the
standard model. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012.
LNCS, vol. 7293, pp. 680–696. Springer, Heidelberg (2012)

20. Chung, K.-M., Kalai, Y.T., Liu, F.-H., Raz, R.: Memory delegation. In: Rogaway,
P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 151–168. Springer, Heidelberg (2011)

21. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 476–493. Springer, Heidelberg (2013)

Generalizing Homomorphic MACs for Arithmetic Circuits 555

22. Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In: 2012 ACM Conference on Computer
and Communication Security. ACM Press (October 2012)

23. Freeman, D.M.: Improved security for linearly homomorphic signatures: A generic
framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 697–714. Springer, Heidelberg (2012)

24. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013)

25. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

26. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)

27. Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the
integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 142–160. Springer, Heidelberg (2010)

28. Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 301–320.
Springer, Heidelberg (2013)

29. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press (May/June 2009)

30. Gentry, C.,Wichs, D.: Separating succinct non-interactive arguments from all falsifi-
able assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACMSTOC, pp. 99–108.
ACM Press (June 2011)

31. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 113–
122. ACM Press (May 2008)

32. Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (Leveled) multilinear
maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013)

33. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer,
Heidelberg (2002)

34. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: 24th ACM
STOC, pp. 723–732. ACM Press (May 1992)

35. Micali, S.: Cs proofs. In: 35th FOCS (November 1994)
36. Hawkes, P.: XOR and non-XOR differential probabilities. In: Stern, J. (ed.) EU-

ROCRYPT 1999. LNCS, vol. 1592, pp. 272–285. Springer, Heidelberg (1999)
37. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public:

Verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)

38. Shpilka, A., Yehudayoff, A.: Arithmetic circuits: A survey of recent results and
open questions. Foundations and Trends in Theoretical Computer Science 5(3-4),
207–388 (2010)

39. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18.
Springer, Heidelberg (2008)

General Impossibility of Group Homomorphic

Encryption in the Quantum World

Frederik Armknecht1, Tommaso Gagliardoni2,�,
Stefan Katzenbeisser2, and Andreas Peter3,��

1 Universität Mannheim, Germany
armknecht@uni-mannheim.de

2 Technische Universität Darmstadt and CASED, Germany
tommaso.gagliardoni@cased.de

katzenbeisser@seceng.informatik.tu-darmstadt.de
3 University of Twente, The Netherlands

a.peter@utwente.nl

Abstract. Group homomorphic encryption represents one of the most
important building blocks in modern cryptography. It forms the basis of
widely-used, more sophisticated primitives, such as CCA2-secure encryp-
tion or secure multiparty computation. Unfortunately, recent advances
in quantum computation show that many of the existing schemes com-
pletely break down once quantum computers reach maturity (mainly
due to Shor’s algorithm). This leads to the challenge of constructing
quantum-resistant group homomorphic cryptosystems.

In this work, we prove the general impossibility of (abelian) group
homomorphic encryption in the presence of quantum adversaries, when
assuming the IND-CPA security notion as the minimal security require-
ment. To this end, we prove a new result on the probability of sampling
generating sets of finite (sub-)groups if sampling is done with respect to
an arbitrary, unknown distribution. Finally, we provide a sufficient con-
dition on homomorphic encryption schemes for our quantum attack to
work and discuss its satisfiability in non-group homomorphic cases. The
impact of our results on recent fully homomorphic encryption schemes
poses itself as an open question.

Keywords: Public-Key Cryptography, Homomorphic Encryption, Se-
mantic Security, Quantum Algorithms, Sampling Group Generators.

1 Introduction

Since the introduction of public-key cryptography by Diffie and Hellman [13] in
1976, researchers strived to construct encryption schemes that are group homo-
morphic. This property can be characterized by requiring the encryption scheme

� Supported by the German Federal Ministry of Education and Research (BMBF)
within the EC-SPRIDE project.

�� Supported by the THeCS project as part of the Dutch national program COMMIT.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 556–573, 2014.
c© International Association for Cryptologic Research 2014

Impossibility of Group Homomorphic Encryption in the Quantum World 557

to have a homomorphic decryption procedure, while the plaintext and cipher-
text spaces form groups. Ever since, the topic of homomorphic encryption is of
central importance in cryptography. The recent advances in fully homomorphic
encryption (FHE) [7,16,17] constitute just one example of this trend. In prac-
tice, group homomorphic encryption schemes lie at the heart of several important
applications, such as electronic voting [9], private information retrieval [24], or
multiparty computation [8] to name just a few. Moreover, the group homomor-
phic property comes quite naturally, as witnessed by a number of encryption
schemes, for example RSA [29], ElGamal [14], Goldwasser-Micali [20], where the
homomorphic property was not a design goal, but rather arose “by chance”.

So far, these cryptosystems were all analyzed in the classical model of compu-
tation. However, it is reasonable to assume that the quantum model of compu-
tation will become more realistic in the future. Unfortunately, in this model all
aforementioned cryptosystems are insecure due to Shor’s algorithm [30], which
allows to efficiently solve the discrete logarithm problem and to factor large
integers. That is, until today nobody has been able to come up with a group
homomorphic encryption scheme that can withstand quantum attackers.

It seems that such a scheme would require other design approaches. For in-
stance, when considering ElGamal-like encryption schemes, simply replacing
the underlying computational hardness assumption by a supposedly quantum-
resistant one, say code-based, is not enough [3]. In fact although there is a sub-
stantial number of classical cryptographic primitives that can be proven secure
against quantum attackers, e.g. [22], we still know little about what classical
primitives can be realized in the quantum world and what not. Indeed this ap-
plies to the case of group homomorphic encryption schemes as well: so far it
was even undecided whether group homomorphic encryption can exist at all in
the quantum world. In other words, does the absence of a quantum secure group
homomorphic encryption scheme so far imply that the right approach has not
been found yet (but may be in the future) or are there universal reasons that
prevent the existence of such schemes?

1.1 Our Contributions

Basic Impossibility Result. The central contribution of this work is to give
a negative answer to the above question:

It is impossible to construct secure group homomorphic encryption in the
quantum world, if the plaintext and ciphertext spaces form abelian groups.

More precisely, we prove that any such scheme1 cannot meet the minimial se-
curity notion of IND-CPA security in the presence of quantum adversaries. Ob-
serve that this result not only re-confirms the insecurity of existing schemes,
but shows that all group homomorphic encryption schemes (including all yet to
come schemes) are inevitably insecure in the quantum world.

1 Although we postulate that our result is extendible to arbitrary solvable groups,
we focus on the abelian case, since it is the most important one for reasons of
practicability in real-world applications.

558 F. Armknecht et al.

Quantum Attack. In order to prove this impossibility, we start by exhibit-
ing the fact that the IND-CPA security of any group homomorphic encryption
scheme can be reduced to an abstract Subgroup Membership Problem (SMP),
introduced by Cramer and Shoup [10], which is much easier to analyze. Roughly
speaking, this problem states that given a group G with subgroup H and a
randomly sampled (according to some arbitrary distribution D) element g ∈ G,
decide whether g ∈ H or not. This reduction to the SMP tells us that in order to
break the IND-CPA security of a given group homomorphic encryption scheme
in the quantum world, it is sufficient to give a quantum algorithm that breaks
the SMP. Now, the basic idea for breaking the SMP for groups (G,H) is to
use Watrous’ variant [31] of the famous group order-finding quantum algorithm,
which will effectively decide membership.

Sampling Generators in Finite Groups. Unfortunately, this algorithm only
works when given a set of generators ofH which we commonly do not have. Hence
we restrict to the generic case that an attacker has only access to an efficient
sampling algorithm for H that samples according to some distribution D. We
distinguish between the following two cases:

– Uniform Distribution. If D is uniform, Erdös and Rényi [15] show that
sampling polynomially many times from H will give a generating set with
high probability—a result that has been improved by Pak and Bratus [27]: If
k = �log2(|H |)�, then k+4 samples are enough to get a set of generators with
probability ≥ 3/4. After obtaining a generating set for H , we use Watrous’
quantum algorithm to decide membership in H , and hence efficiently break
the SMP for (G,H).

– Arbitrary/Unknown Distribution. In general, the distribution D does
not have to be uniform, but can be arbitrary, or completely unknown. In-
terestingly, we prove that, even then, breaking the SMP is possible with
(almost) linearly many samples only. Observe that as we do not make any
restrictions on the sampling algorithm, we cannot exclude seemingly exotic
cases where regions of H are hardly (or never) reached by the sampling
algorithm. Thus, the best we can aim for is to find a generating set for a
subgroup H∗ of H such that the probability that a random sample (with
respect to D) does fall into H∗ is above an arbitrarily chosen threshold δ. We
call such subgroups to be δ-covering. It turns out that having a generating
set for such a subgroup is enough to break the SMP for (G,H). The main
challenge, however, is to find a generating set for a δ-covering subgroup. To
this end, we prove a new result on the probability of sampling generating sets
of finite (sub-)groups with unknown sampling distribution. More precisely,
we show that for any chosen probability threshold δ∗, there exists a value N ,
which grows at most logarithmically in k and does not depend on D, such
that N · k+ 1 samples yield a generating set for a δ-covering subgroup with
probability at least δ∗. This result represents one of the main technical con-
tribution of our work. We believe that it is also applicable in other research
areas, e.g., computational group theory, and hence might be of independent
interest.

Impossibility of Group Homomorphic Encryption in the Quantum World 559

Possible Extensions to Fully Homomorphic Encryption Schemes. Fi-
nally, we provide a general sufficient condition on a homomorphic encryption
scheme for our quantum attack to work and discuss the applicability in FHE
schemes. The decision of whether our attack breaks any of the existing FHE
schemes [7,16,17] proves itself to be a highly non-trivial task and lies outside the
scope of this paper. We leave it as interesting future work.

1.2 Related Work

There are many papers dealing with the construction of IND-CPA secure group
homomorphic encryption schemes [26,18,12,3,28]. Some of these works attempt-
ed to build such schemes using post-quantum primitives [1], which did not suc-
ceed (for a good reason as our results show). Also, for a restricted class of group
homomorphic schemes, [3] shows the impossibility of using linear codes as the ci-
phertext group. Furthermore, we mention the impossibility (even in the classical
world) of algebraically homomorphic encryption schemes [6], which are deter-
ministic encryption schemes and thus do not fall into the class IND-CPA secure
cryptosystems.

In the quantum world, there is an even more efficient algorithm for break-
ing such algebraically homomorphic schemes [11]. In this vein, there are many
variants of Shor’s algorithm [30] that are being used to solve different compu-
tational problems [25,31], leading to the breakdown of certain cryptosystems.
On the other hand, there are several papers dealing with the analysis of classical
primitives in the presence of quantum adversaries [21,22]. However, none of these
works show a general impossibility of group homomorphic cryptosystems.

With respect to the sampling from finite groups, there are many papers that
are concerned with the improvement of probability bounds on finding generating
sets when sampling uniformly at random [15,5,27]. Similar strong results for the
arbitrary sampling from finite groups are not known.

Finally, we mention the recent advances in fully homomorphic encryption
(FHE) [7,16,17]. These schemes are not classified as being group homomorphic,
as they follow a different design approach. Rather than having a group homo-
morphic decryption algorithm, the decryption is only guaranteed to run correctly
for polynomially many evaluations of the group operation. Interestingly enough,
our results show that since current FHE schemes are based on post-quantum
hardness assumptions, they had to follow a different approach than the group
homomorphic one.

1.3 Outline

We recall standard notation in Section 2 and show some basic observations on
group homomorphic encryption and the Subgroup Membership Problem (SMP)
in Section 3. Section 4 covers the main Theorem, showing the impossibility of
group homomorphic encryption in the quantum world, thereby giving our new
insights in the sampling of group generators. We discuss non-group homomorphic
encryption, such as somewhat and (leveled) fully homomorphic encryption in
Section 5.

560 F. Armknecht et al.

2 Notation

Throughout the paper, we use some standard notation that we briefly want to
recall. We write x ←− X if X is a random variable or distribution and x is to
be chosen randomly from X according to its distribution. In the case where X

is solely a set, x
U←− X denotes that x is chosen uniformly at random from X .

If we sample an element x from X by using a specific distribution D, we write

x
D←− X (or x ←− X when there is no doubt about the distribution D). For a

distribution D on X , the term D(x) for x ∈ X expresses the probability with
which x is sampled according to D, i.e., the probability mass function at x ∈ X .

For an algorithm A we write x ←− A(y) if A outputs x on fixed input y
according to A’s distribution. Sometimes, we need to specify the randomness of
a probabilistic algorithm A explicitly. To this end, we interpret A in the usual
way as a deterministic algorithm A(y; r), which has access to values r ←− Rnd
that are randomly chosen from some randomness space Rnd. Moreover, two dis-
tribution ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N taking values in a finite
set Sλ (indexed by a parameter λ) are said to be computationally indistinguish-
able, if for all probabilistic polynomial time (PPT) algorithms A there exists a
negligible function negl such that

AdvX,YA (λ) :=

∣∣∣∣ Pr
x←−Xλ

[A(x) = 1] − Pr
y←−Yλ

[A(y) = 1]

∣∣∣∣ ≤ negl(λ).

We denote this by X
c
= Y .

For a group G, we denote the neutral element by 1, and denote the binary
operation on G by “·”, i.e., G is written in multiplicative notation. We recall
that a subgroup H of a group G is said to be normal if z · h · z−1 ∈ H for all
z ∈ G, h ∈ H . In particular, this means that if G is an abelian group, then every
subgroup H is normal.

In general, we will consider sequences of abelian groups (Gλ)λ indexed by a
parameter λ, where any element of every Gλ admits a representation of size at
most polynomial in λ. We might assume, without loss of generality, that the
choice of this polynomial is the identity, and in particular that every Gλ has
order upper bounded by 2λ. We will just write G instead of Gλ for any fixed
choice of λ.

By a description of a finite group G we mean an efficient (i.e., PPT in λ)
sampling algorithm (where sampling is denoted by x ←− G), the neutral element
1, an efficient algorithm for performing the group operation on G, and one for the
inversion of group elements. Notice that the output distribution of the sampling
algorithm does not have to be necessarily uniform. We abuse notation and write
G both for the description and for the group itself. Furthermore, for elements
x1, . . . , xk ∈ G, we write 〈x1, . . . , xk〉 for the subgroup generated by x1, . . . , xk.

Impossibility of Group Homomorphic Encryption in the Quantum World 561

3 Group Homomorphic Encryption

We recall the notion of public-key group homomorphic encryption, which roughly
can be described as usual public-key encryption where the decryption algorithm
is a group homomorphism.

Definition 1 (Group Homomorphic Encryption [3,23]). A public key en-
cryption scheme E = (KeyGen,Enc,Dec) is called group homomorphic, if for ev-
ery output (pk, sk) of KeyGen(λ), the plaintext space P and the ciphertext space

Ĉ are non-trivial groups such that

– the set of all encryptions C := {Encpk(m; r) | m ∈ P , r ∈ Rnd} is a non-trivial

subgroup of Ĉ
– the decryption Decsk is a group homomorphism on C, i.e.

Decsk(c · c′) = Decsk(c) · Decsk(c′), for all c, c′ ∈ C.2

Notice that the scheme does not include a membership testing algorithm (i.e.,
an algorithm to test whether a group element is a valid encryption or not).
The standard security notion for such homomorphic encryption schemes is that
of indistinguishability under chosen-plaintext attack, denoted by IND-CPA [3].
Informally, this notion states whenever an adversary picks two plaintext mes-
sages of his choosing and gets to see an encryption of either of them, it should
be computationally infeasible for him to decide which of the two messages was
encrypted. Formally, for a given security parameter λ, group homomorphic en-
cryption scheme E = (KeyGen,Enc,Dec), and PPT adversary A, we consider the

experiment Expind-cpa
A,KeyGen(λ), where A chooses two different plaintexts m0,m1

and is then provided an encryption Encpk(mb) for a randomly chosen bit b and
a public key pk output by KeyGen(λ). The experiment succeeds (outputs 1) if b
is guessed correctly. We say that E is IND-CPA secure if the advantage∣∣∣∣Pr [Expind-cpa

A,KeyGen(λ) = 1
]

− 1

2

∣∣∣∣ is negligible for all PPT adversaries A.

Moreover, we recall a fact showing the strong group-theoretic structure of the
set of encryptions of 1 ∈ P for any group-homomorphic encryption scheme. For
this, we introduce the set of all encryptions of m ∈ P

Cm := {c ∈ C | Decsk(c) = m}.

Fact 1 (Basic Properties [3]). Let E = (KeyGen,Enc,Dec) be an arbitrary
group homomorphic encryption scheme. It holds that

2 Note that the decryption might output an error ⊥ on inputs in Ĉ \ C. Therefore,
requiring it to be homomorphic on C is as general as possible since we do not give
any restriction on its behaviour outside of C.

562 F. Armknecht et al.

1. Cm = Encpk(m; r) · C1 for all m ∈ P and all r ∈ Rnd, and

2. C1 is a proper normal subgroup of C such that |C1| = |Cm| for all m ∈ P.

It follows that the set {Encpk(m; r) | m ∈ P} for a fixed r is a system of repre-
sentatives of C/C1.

With this notation, the IND-CPA security of E is equivalent to saying that the
distribution on Cm0 (induced by the encryption algorithm Encpk(m)) is compu-
tationally indistinguishable from the distribution on Cm1 for any two messages

m0 and m1 [19, Ch. 5.2], i.e., Cm0

c
= Cm1 .

Necessary Security Condition. We briefly recall the Subgroup Membership
Problem (SMP) which was introduced by Cramer and Shoup in [10].

Definition 2 (Subgroup Membership Problem). Let Gen be a PPT algo-
rithm that takes a security parameter λ as input and outputs descriptions (G,H)
where H is a non-trivial, proper subgroup of a finite group G. Additionally, we
assume here that there is an algorithm that allows for the efficient sampling from
G \ H. We consider the following experiment for a given algorithm Gen, algo-
rithm A and parameter λ:

Experiment Expsmp
A,Gen(λ):

1. (G,H) ←− Gen(λ)

2. Choose b
U←− {0, 1}. If b = 1: z ←− G \ H. Otherwise: z ←− H.

3. d ←− A(G,H, z) where d ∈ {0, 1}
4. The output of the experiment is defined to be 1 if d = b and 0 otherwise.

We say that the SMP is hard for (G,H) (or relative to Gen) if the advantage∣∣∣∣Pr [Expsmp
A,Gen(λ) = 1

]
− 1

2

∣∣∣∣ is negligible for all PPT algorithms A.

We stress the fact that the efficient sampling from G \ H does not have to be
uniform. Let E = (KeyGen,Enc,Dec) be a group homomorphic encryption scheme
with the group C of all encryptions and the subgroup C1 of all encryptions of
the neutral element 1. In fact, the hardness of SMP for (C, C1) (i.e., relative to
KeyGen) is a necessary condition for E to be IND-CPA secure. Recall that the
sampling algorithms for the groups C and C1 are the ones inherited from the
encryption algorithm of E . In particular, sampling an element c from C \ C1 is
done by choosing a random message m ∈ P with m �= 1 and then computing c
as Encpk(m; r) for r ←− Rnd. We have the following immediate result:

Theorem 1 (Necessary Condition on IND-CPA Security). For a group
homomorphic encryption scheme E = (KeyGen,Enc,Dec) we have:

E is IND-CPA secure =⇒ SMP is hard (relative to KeyGen).

Impossibility of Group Homomorphic Encryption in the Quantum World 563

The above holds regardless of the type of adversary (i.e., classical vs quantum)
taken into account. A straightforward proof of this Theorem can be found in the
appendix of the full version of this paper [2]. Since it is a popular belief (and for
reasons of completeness), we want to point out that the converse of the Theorem
does not hold in general. This can be seen by considering a somewhat pathologi-
cal example, which we also present in the appendix of [2]. Note that the converse
of Theorem 1 does, however, hold for so-called shift-type homomorphic encryption
schemes [4], which describe a certain subclass of group homomorphic encryption
schemes that actually encompasses all existing instances. Furthermore, it also
holds for bit encryption schemes, since there are only two messages, 0 and 1.

4 General Impossibility in the Quantum World

Let Gen be a PPT algorithm that takes a security parameter λ as input and
outputs descriptions (G,H) where H is a non-trivial, proper subgroup of a
finite group G with an additional algorithm for the efficient sampling from
G \ H (cf. Section 3). Now, assume that for any such algorithm Gen, we can
construct a quantum algorithm AQ that breaks the hardness of SMP rela-
tive to Gen. In particular, for a given group homomorphic encryption scheme
E = (KeyGen,Enc,Dec) this means that we have a quantum algorithm AQ that
breaks the hardness of SMP relative to KeyGen. However, by Theorem 1, this
implies that we can construct an algorithm that breaks the IND-CPA security of
E . Since we had no restriction on the encryption scheme E , this would imply that
any group homomorphic encryption scheme E is insecure in terms of IND-CPA
in the quantum world. This is the result we want to prove in this section, at
least for the abelian case, i.e., when G is an abelian group. Therefore, let Gen be
as above but with G being abelian.

It is well-known that a modification of the famous order-finding quantum
algorithm [31] can efficiently find the order of an abelian group, given that we
have its description by a set of generators.

Theorem 2 (QuantumOrder-FindingAlgorithmwithGenerators [31]).
Let G be a finite abelian group with k = �log2(|G|)�. Then, there exists a quan-
tum algorithm which, given a generating set of G and an error probability ε
as an input, outputs the order of G with probability at least 1 − ε in time
o(poly(k + log2(1/ε))).

This Theorem already is sufficient to break the hardness of SMP (relative to
Gen), if the description of H contains a set of generators, as the next Theorem
shows.

Theorem 3 (Quantum Attack on SMP with Generators). Let (G,H)
be the output of Gen(λ), for some security parameter λ, such that H contains
a set of generators g1, . . . , gr. Since Gen is a PPT algorithm, this implies that
k = k(λ) = �log2(|H |)� is a polynomial in λ. There exists a quantum algorithm
which, given g1, . . . , gr (i.e., the description of H), breaks the hardness of SMP

with probability at least (1 − ε)
2
in time o(poly(k + log2(1/ε))).

564 F. Armknecht et al.

Proof. Let z denote the challenge in the SMP game (Def. 2), i.e., z ∈ G \ H
if b = 1, and z ∈ H otherwise. Since H contains a set of generators g1, . . . , gr,
we can run the quantum algorithm in Theorem 2 twice: the first time on the
generating set and the second time on the generating set plus the element z.
Provided that both runs succeed, we have that z ∈ H (i.e., b = 0) if and only if
the two subgroup orders, obtained from the two algorithm runs, are the same.
But both runs succeed with probability (1 − ε)

2
. This proves the Theorem. �

Recall that the original definition of SMP gives no set of generators for H a
priori, since the description of a group only contains standard algorithms for
the group operations and a sampling algorithm (cf. Section 2). However, we
show that the previous Theorem extends to this case, i.e., when only having a
sampling algorithm. For the sake of readability, we will first treat the case of
sampling uniformly at random from H (Section 4.1), and will then show the
general case with arbitrary (possibly unknown) sampling from H (Section 4.2).

4.1 Breaking SMP with Uniform Sampling

It is well-known that if we have a sampling algorithm for H that samples uni-
formly at random, we can obtain a set of generators by sampling polynomially (in
the base-2 logarithm of the order of H) many times from H . If k = �log2(|H |)�,
Pak and Bratus [27] show that k+4 samples are sufficient to generate the whole
group with probability > 3/4. This result is an improvement over a result by
Erdös and Rényi [15]. We recall it in the following Theorem:

Theorem 4 (Probability of Finding a Generating Set with Uniform
Sampling [27]). Let H be a finite abelian group of order n where k = �log2(n)�.
Then:

Pr
x1,...,xk+4

U←−H
[〈x1, . . . , xk+4〉 = H] >

3

4
.

As an immediate corollary of this Theorem and Theorem 3 we have the main
result of this section.

Theorem 5 (Quantum Attack on SMP with Uniform Sampling). Let
(G,H) be the output of Gen(λ) with k = �log2(|H |)�, for some security parameter
λ, such that the sampling algorithm in the description of H samples uniformly at
random from H. Then, there exists a quantum algorithm which breaks the hard-
ness of SMP with probability at least 3

4 (1 − ε)
2
in time o(poly(k + log2(1/ε))),

and by sampling only k + 4 times from H.

We remark that the constant 3
4 can be greatly improved by increasing the num-

ber of samples we take from H , approximating 1 very quickly. In general, by
performing k + l random sampling, the success probability approximates 1 ex-
ponentially fast in l.

Impossibility of Group Homomorphic Encryption in the Quantum World 565

4.2 Breaking SMP with Arbitrary/Unknown Sampling

In this section, we show an extension of Theorem 5 to the general case, where
the description of H only contains a sampling algorithm with unknown/arbitrary
distribution D. Since we do not make any restrictions on the sampling algorithm,
we cannot exclude seemingly exotic cases where parts of H are hardly (or not
at all) reached by the sampling algorithm. Consider the following example:

Example 1. Let λ ≥ 1 be the security parameter. We define a family of groups
by Gλ := GF (2)λ together with sampling distributions Dλ on Gλ as through
the probability mass function

Dλ(v1, . . . , vλ) :=

{
1

2λ−1 − 1
2λ·(λ−1)

, if v1 = 0
1

2λ·(λ−1)
, otherwise.

(1)

Here, (v1, . . . , vλ) denotes an arbitrary element from GF (2)λ. Observe that the
probability of sampling one vector (v1, . . . , vλ) with v1 = 1 is 2−λ. However, at
least one such sample is necessary for a generating set of the whole group. This
shows that the probability of sampling a generating set for the whole group is
negligible in λ.

As the examples illustrates, the best we can aim for (in general) is to find a
generating set for a subgroup of H such that the probability that a random
sample (with respect to D) does fall into this group is sufficiently large. This
motivates the following definition:

Definition 3 (Covering Subgroup). Let a finite group H be given, together
with a sampling distribution D. For a value 0 ≤ δ ≤ 1, we say that a subgroup
H∗ ≤ H is a δ-covering subgroup of H with respect to D if

Pr
x

D←−H
[x ∈ H∗] ≥ δ. (2)

Example 2. Observe that the whole group H is trivially a δ-covering subgroup.
A less trivial example is the following. We order the elements h ∈ H in descend-
ing order according to their probabilities of being sampled, that is h1, h2, . . .
with D(hi) ≥ D(hi+1) for all i. Now, let b denote the smallest index such that∑b

i=1 D(hi) ≥ δ. Then 〈h1, . . . , hb〉 is for sure a δ-covering subgroup.

Obviously, it follows directly from Theorem 3 that given generators of a δ-
covering subgroup, there exists a quantum attack on SMP with success proba-
bility at least δ · (1 − ε)

2
in time o(poly(k + log2(1/ε))). Thus in the remainder

of this section, we consider the task of finding, with probability ≥ σ, a gener-
ating set for a δ-covering subgroup (for fixed, but arbitrary values δ, σ) if only
a sampling algorithm Sample is given which samples according to an arbitrary
(possibly unknown) distribution D. To this end, we prove the following new re-
sult on the probability of finding a δ-covering subgroup (with generators) of a
finite group with arbitrary/unknown sampling distribution and a given value δ.

566 F. Armknecht et al.

Algorithm 1. Sample generating set of a δ-covering subgroup

Given: A group H with sampling algorithm Sample, an integer k =
log2 |H |�, a
membership testing procedure that efficiently tests for any subset S ⊆ H and any
x ∈ H whether x ∈ 〈S〉, two real values 0 ≤ δ, σ ≤ 1.

Output: A set S of elements that generate a δ-covering subgroup ofH with probability
at least σ.

1:
2: x ← Sample, S ← {x} {Initial candidate for a generating set}
3: N :=

⌈
log(1−σ)−log(k)

log(δ)

⌉
{Number of samples per round}

4:
5: for j = 1, . . . , k do
6: xi ← Sample, i = 1, . . . , N {Sample N elements from H}
7: if xi ∈ 〈S〉 for all i = 1, . . . , N then
8: Abort for-loop {Abort as all samples are already in 〈S〉}
9: else
10: S ← S ∪ {x1, . . . , xN} {Extend candidate generating set}
11: end if
12: end for
13:
14: return S

Theorem 6 (Sampling a Generating Set for a δ-covering Subgroup).
Let H be a finite group, together with a sampling algorithm Sample that sam-
ples according to a (possibly unknown) distribution D, and let k = �log2(|H |)�.
Moreover, fix two values 0 ≤ δ, σ ≤ 1 and set N :=

⌈
log(1−σ)−log(k)

log(δ)

⌉
.

Let x1, . . . , xN ·k+1 ∈ H be N · k+1 samples from H by invoking the sampling
algorithm, i.e., xi ← Sample for i = 1, . . . , N · k + 1. Then with probability at
least σ, the group H∗ := 〈x1, . . . , xN ·k+1〉 is a δ-covering subgroup of H.

Observe that like in the case of uniform sampling, a polynomial number of sam-
ples (almost linear in k) is sufficient. Interestingly, this number of samples is
independent of the distribution.

For the sake of readability, we prove Theorem 6 in two steps. In the first step,
we present an algorithm (Algorithm 1) that makes at most N · k + 1 samples
and outputs a set S ⊆ H . We prove that S is a generating set for a δ-covering
subgroup with probability at least σ. The algorithm relies on the assumption of
the existence of an efficient membership testing procedure. But in the second
step we present a modification of the algorithm, Algorithm 2, that works without
the membership testing procedure and has at least the same success probability.
In fact, Algorithm 2 makes exactly N · k+1 samples, hence proving Theorem 6.

We start with Algorithm 1 and prove the following result:

Theorem 7 (Correctness of Algorithm 1). With a probability of at least σ,
the output S of Alg. 1 is a generating set for a δ-covering subgroup.

Impossibility of Group Homomorphic Encryption in the Quantum World 567

Algorithm 2. Sample generating set of a δ-covering subgroup

Given: A group H with sampling algorithm Sample, an integer k =
log2 |H |�, and
two real values 0 ≤ δ, σ ≤ 1

Output: A set S of elements that generate a δ-covering subgroup ofH with probability
≥ σ

1:
2: x ← Sample, S ← {x} {Initial candidate for a generating set}
3: N :=

⌈
log(1−σ)−log(k)

log(δ)

⌉
{Number of samples per round}

4:
5: for j = 1, . . . , k do
6: xi ← Sample, i = 1, . . . , N {Sample N elements from H}
7: S ← S ∪ {x1, . . . , xN} {Extend candidate generating set}
8: end for
9:
10: return S

Proof. Let S denote the output of Alg. 1 and H∗ := 〈S〉. There are two possi-
bilities: (i) the algorithm aborted the for-loop for some value j < k or (ii) the
algorithm executed all k for-loops.

First, we consider case (i). At the same time, assume that H∗ is not a δ-
covering subgroup, that is

δ∗ := Pr
[
x ∈ H∗|x D←− H

]
< δ

(this would be a failure of the algorithm). As the algorithm aborted the for-loops
for some value j < k by assumption, this can only happen if xi ∈ 〈S〉 =: H∗

for all N samples made in round j although δ∗ < δ. As the samples are made
independently, the probability of this error event happening at a certain round
is (δ∗)

N
< δN ; since there are at most k − 1 independent rounds in case (i), the

probability that an error occurs in any of them is at most k · δN < 1 − σ by
definition of N . Hence, the probability that no error happens and the output is
correct, i.e., is a generating set of a δ-covering subgroup, is at least 1−(1−σ) = σ.
This concludes the first case.

Now, we consider case (ii), i.e., the algorithm has executed all k for-loops. For
simplicity, we index the sets S according to the round number. More precisely,
let S0 denote the initial candidate for the generating set (line 2). Moreover, let
S� denote the set S at the end of the while loop (after being extended - see
line 10) and we define H� := 〈S�〉 for � ≥ 0. Observe that H� ⊆ H for all �
by construction. The output of the algorithm is S = Sk. We make use of the
following inequalities that we prove afterwards:

ord(H�) ≥ 2� , ∀� ≥ 0. (3)

A consequence of (3) is that ord(Hk) ≥ 2k ≥ ord(H) which implies thatHk = H .
Hence, H∗ = Hk = H is the whole group and trivially a δ-covering group for
any value 0 ≤ δ ≤ 1.

568 F. Armknecht et al.

It remains to prove the inequalities in (3), i.e., ord(H�) ≥ 2� for all 0 ≤ � ≤ k.
Observe that H� is a proper subgroup of H�+1 for every � < k. Thus, the number
|H�+1|
|H�| (which is an integer, by Lagrange’s Theorem), must be strictly greater

than 1. Hence |H�+1| ≥ 2 |H�|, and this proves (3) since |H0| = 1. �

Observe that Alg. 1 runs at most k for-loops and uses the membership test
procedure only for deciding if the algorithm can be stopped earlier. Hence, we
consider a variant, namely Alg. 2, which simply drops this test and always runs
all k loops. That is, the only difference between Algorithms 1 and 2, respectively,
is that the latter may run longer (but still at most k loops) and outputs a
superset S′ of the output S of Alg. 1. Of course, if S is a generating set for a
δ-covering subgroup, then this is certainly true for S′ as well. This shows that
Alg. 2 “inherits” the success probability of Alg. 1:

Corollary 1. [Correctness of Algorithm 2] With a probability of at least σ, the
output S of Algorithm 2 is a generating set for a δ-covering subgroup.

Observe that Alg. 2 simply outputs N · k + 1 samples. Hence, the proof of
Theorem 6 is a direct consequence of Corollary 1. The remainder of this section
is straightforward. Given a generating set S of a δ-covering subgroup, we can
apply Theorem 3 in order to break the SMP for (G,H).

Theorem 8 (Quantum Attack on SMP with Arbitrary Sampling). Let
(G,H) be the output of Gen(λ) with k = �log2(|H |)�, for some security param-
eter λ. We denote the distribution of the sampling algorithm contained in the
description of H by D. Let 0 ≤ ε∗ ≤ 1 be an arbitrary fixed positive value. Then,
there exists a value N = N(k, ε∗) (which only grows at most logarithmically in
k) and a quantum algorithm which breaks the hardness of SMP with probability

at least (1 − ε∗) (1 − ε)
2
in time o(poly(k + log2(1/ε))), and by sampling only

N · k + 1 times from H (where ε is the error probability of Theorem 2).
In particular, we can construct a quantum algorithm that breaks SMP with

probability at least 3
4 (1− ε)2 in time o(poly(k+ log2(1/ε))) while only sampling

7k · (2 + �log(k)�) + 1 times from H.

Proof. In principle, the attacker A is the same as described in Theorems 3 and 5,
the only difference being the approach for finding an appropriate generating
set. Given the value ε∗, the attacker chooses two positive values δ, σ such that
δ · σ ≥ (1 − ε∗), for example δ = σ =

√
1 − ε∗. Then, the attacker makes

N · k+1 samples as explained in Theorem 6. Let H∗ denote the subgroup of H
that is generated by these N · k + 1 samples. Due to Corollary 1, we know that
H∗ is a δ-covering subgroup of H with probability σ. From this point on, the
attack continues as specified in Theorem 3, while using the N · k + 1 samples
as generators, i.e., we let z denote the challenge in the SMP game (Def. 2), so
z ∈ G\H if b = 1, and z ∈ H otherwise. If b = 1 (which happens with probability
1
2), we know that z �∈ H∗ and the attacker A will recognize this with probability
≥ (1 − ε)2 (as in the proof of Theorem 3). If b = 0 (which also happens with
probability 1

2), several sub-cases do exist (depending on whether H∗ is δ-covering

Impossibility of Group Homomorphic Encryption in the Quantum World 569

and whether z ∈ H∗). In case that both properties are true (which happens with
probability ≥ σ · δ), the attacker recognizes that z ∈ H∗ again with probability
≥ (1 − ε)2. As the success probabilities in the other sub-cases are at least zero,
it follows that

Pr
[
Expsmp

A,Gen(λ) = 1
]

≥ (1 − ε)2 + δσ(1 − ε)2

2
≥ δσ(1 − ε)2 ≥ (1 − ε∗)(1 − ε)2

which concludes the proof of the first part of the Theorem. For the second part,
we see that when choosing ε∗ = 1

4 and δ = σ = 1
2

√
3, the above attacker A has

a success probability of at least 3
4 (1− ε)2 by sampling only N · k+1 times from

H where N =
⌈
log(1−σ)−log(k)

log(δ)

⌉
≤ 7 (�log(k)� + 2). �

Finally, Theorems 8 and 1 together immediately imply our main result: the
general impossibility of group homomorphic encryption in the quantum world,
if the plaintext and ciphertext groups are abelian.

Theorem 9 (Impossibility of Group Homomorphic Encryption in the
Quantum World). Let E = (KeyGen,Enc,Dec) be an IND-CPA secure group
homomorphic encryption scheme with abelian plaintext and ciphertext groups.
Then, there exists a quantum PPT algorithm that breaks the security of E with
non-negligible probability.

5 Discussion

In this section, we provide an informal discussion about the applicability of
our quantum attack to non-group homomorphic encryption schemes and elabo-
rate on fully homomorphic encryption (FHE). In abstract terms, existing FHE
schemes are standard public-key encryption schemes E = (KeyGen,Enc,Dec)
with the following extras [16]:

– the plaintext space P and ciphertext space Ĉ are rings,
– there is an algorithm Eval that takes as input a public key pk, a circuit C, a

tuple (c1, . . . , ct) of ciphertexts (one for every input node of C), and outputs
another ciphertext c, and

– for all outputs (pk, sk) by KeyGen(λ), all polynomials p(λ) in λ, all t ≤
poly(λ), all plaintexts m1, . . . ,mt ∈ P corresponding to fresh encryptions
ci ←− Encpk(mi), i = 1 . . . t, and all t-input circuits C of depth ≤ p(λ), we
have the following correctness condition:

Decsk(Evalpk(C, c1, . . . , ct)) = C(m1, . . . ,mt). (4)

Homomorphic encryption schemes for which the polynomial depth p(λ) of the
circuits C is bounded a priori (i.e., fixed in the public key pk) are called leveled
FHE. For very small polynomials p(λ), we say that the scheme is somewhat
homomorphic. At a first glance, there a two main differences to the notion of
group homomorphic encryption (see Fig. 1 for a pictorial explanation):

570 F. Armknecht et al.

1. The set of all (fresh) encryptions C = {Encpk(m; r) | m ∈ P , r ∈ Rnd} is only

a subset (and not necessarily a subgroup) of the ring Ĉ.
2. The decryption is not necessarily a group homomorphism as it is only guar-

anteed to run correctly with circuits that are polynomially bounded in depth;
this polynomial bound can be dynamically chosen in the “pure” FHE case,
while it is fixed in the public key for leveled FHE and somewhat homomor-
phic schemes. But if the decryption is group homomorphic, it particularly
must run correctly (at least theoretically) on all unbounded circuits consist-
ing only of group-operation gates.

ciphertext group

mC

m'C

ciphertext ring
(fresh encryptions)

mC

(A) Group Homomorphic Encryption (B) Fully Homomorphic Encryption

m'C

ciphertext ring
(after less than

poly() evaluations)

mS

m'S

ciphertext ring
(after more than

poly() evaluations)

decryption fails!

λ

λ

Fig. 1. Differences between group homomorphic encryption and FHE: (A) shows that
each Cm is a coset of C1 in C (Fact 1), while the decryption is a group homomorphism;
(B) shows first that Cm and Cm′ are subsets and not necessarily cosets in C, second that
the decryption runs correctly on poly(λ) evaluations of ciphertexts, and third that the
decryption might fail if exponentially many evaluations have been performed, meaning
that the decryption is not necessarily group homomorphic

If the decryption is not a group homomorphism, the set of fresh encryptions
of the neutral element in P is not necessarily a group, but only a subset of
Ĉ. However, the quantum order-finding algorithm of Theorem 2 only works on
(solvable) groups. This immediately gives us the first important observation:

Observation 1. Our quantum attack from Section 4 on group homomorphic
encryption schemes is not immediately applicable to more general homomorphic
encryption schemes, such as somewhat and (leveled) FHE schemes.

A sufficient condition that we need a homomorphic scheme to have for our quan-
tum attack to work is the following:

Impossibility of Group Homomorphic Encryption in the Quantum World 571

Sufficient Condition (Quantum Attack). For any output (pk, sk) by

KeyGen(λ), there exist two plaintexts m,m′ ∈ P and a subgroup G of Ĉ such
that

1. there exists an efficient PPT algorithm which outputs a generating set for
G of size at most poly(λ),

2. the probability Pr
c←−Encpk(m)

[c ∈ G] is non-negligible in λ, and

3. the probability Pr
c′←−Encpk(m′)

[c′ /∈ G] is non-negligible in λ.

In the setting of group homomorphic encryption schemes, the plaintext m would
be the neutral element 1, while m′ �= 1 can be any other plaintext. The group
G satisfying the above conditions would be a δ-covering subgroup of the group
C1 of all (fresh) encryptions of 1, for a sufficiently small δ. For more general
homomorphic encryption schemes, such as somewhat or (leveled) FHE schemes,
the situation looks more like in Fig. 2.

(A) Condition fulfilled

low
probability

high
probability

(B) Condition not fulfilled

G

mC
mC

m'C

m'C

G

Fig. 2. Our condition in the FHE case: (A) shows pictorially when the condition is
fulfilled; (B) shows the case when item 3 of the condition is not met and G intersects
with a large part of encryptions of m′

The important observation here is, that as long as only polynomially many
evaluations of the ciphertexts have been performed, the decryption still runs
correctly (cf. correctness condition in Equation (4)). But for any scheme to be
IND-CPA secure, the set of encryptions of a given message m must be exponen-
tially large, so in particular, a group G that fulfills condition 2 is required to be
exponentially large. Hence, the decryption is not guaranteed to run correctly on
G and might fail. More precisely, condition 3 for our attack to work will most
likely be unsatisfied. However, proving or disproving that any of the existing
somewhat or (leveled) FHE schemes satisfies our sufficient condition is a highly
non-trivial task (due to the very general and abstract nature of the requirement)
and lies outside the scope of this work. We leave it as interesting future work.
Interestingly enough, since most of the existing FHE schemes base their security
on supposedly quantum-resistant hardness assumptions (such as LWE), spotting
a scheme that is susceptible to our quantum attack will effectively break the un-
derlying hardness assumption and thereby disprove its quantum-resistance.

572 F. Armknecht et al.

Acknowledgements. We would like to thank Richard Lindner and Pooya
Farshim for helpful discussions. We are also grateful for the constructive com-
ments by the anonymous reviewers.

References

1. Armknecht, F., Augot, D., Perret, L., Sadeghi, A.R.: On constructing homomorphic
encryption schemes from coding theory. In: Chen, L. (ed.) IMACC 2011. LNCS,
vol. 7089, pp. 23–40. Springer, Heidelberg (2011)

2. Armknecht, F., Gagliardoni, T., Katzenbeisser, S., Peter, A.: General impossibil-
ity of group homomorphic encryption in the quantum world. Cryptology ePrint
Archive, Report 2014/029 (2014), http://eprint.iacr.org/

3. Armknecht, F., Katzenbeisser, S., Peter, A.: Group homomorphic encryption: char-
acterizations, impossibility results, and applications. Designs, Codes and Cryptog-
raphy, 1–24, 10.1007/s10623-011-9601-2

4. Armknecht, F., Katzenbeisser, S., Peter, A.: Shift-type homomorphic encryption
and its application to fully homomorphic encryption. In: Mitrokotsa, A., Vaudenay,
S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 234–251. Springer, Heidel-
berg (2012)

5. Babai, L.: Local expansion of vertex-transitive graphs and random generation in
finite groups. In: STOC, pp. 164–174. ACM (1991)

6. Boneh, D., Lipton, R.J.: Algorithms for black-box fields and their application to
cryptography (extended abstract). In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 283–297. Springer, Heidelberg (1996)

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic en-
cryption without bootstrapping. In: ITCS. pp. 309–325. ACM (2012)

8. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 280–299. Springer, Heidelberg (2001)

9. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient
multi-authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

10. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

11. van Dam, W., Hallgren, S., Ip, L.: Quantum algorithms for some hidden shift
problems. SIAM J. Comput. 36(3), 763–778 (2006)

12. Damg̊ard, I., Geisler, M., Krøigaard, M.: Homomorphic encryption and secure com-
parison. IJACT 1(1), 22–31 (2008)

13. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

14. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

15. Erdös, P., Rényi, A.: Probabilistic methods in group theory. J. Analyse Math. 14,
127–138 (1965)

16. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC. pp. 169–
178. ACM (2009)

http://eprint.iacr.org/

Impossibility of Group Homomorphic Encryption in the Quantum World 573

17. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the aes circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012)

18. Gjøsteen, K.: Homomorphic cryptosystems based on subgroup membership prob-
lems. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp.
314–327. Springer, Heidelberg (2005)

19. Goldreich, O.: The Foundations of Cryptography, vol. 2, Basic Applications. Cam-
bridge University Press (2004)

20. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

21. Hallgren, S., Kolla, A., Sen, P., Zhang, S.: Making classical honest verifier zero
knowledge protocols secure against quantum attacks. In: Aceto, L., Damg̊ard, I.,
Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008, Part II. LNCS, vol. 5126, pp. 592–603. Springer, Heidelberg (2008)

22. Hallgren, S., Smith, A., Song, F.: Classical cryptographic protocols in a quan-
tum world. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 411–428.
Springer, Heidelberg (2011)

23. Hemenway, B., Ostrovsky, R.: On homomorphic encryption and chosen-ciphertext
security. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 52–65. Springer, Heidelberg (2012)

24. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database,
computationally-private information retrieval. In: FOCS. pp. 364–373 (1997)

25. Mosca, M.: Quantum computing, cryptography and compilers. In: ISMVL. pp.
154–156. IEEE (2012)

26. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

27. Pak, I., Bratus, S.: On sampling generating sets of finite groups and product re-
placement algorithm (extended abstract). In: ISSAC, pp. 91–96. ACM (1999)

28. Peter, A., Kronberg, M., Trei, W., Katzenbeisser, S.: Additively homomorphic en-
cryption with a double decryption mechanism, revisited. In: Gollmann, D., Freiling,
F.C. (eds.) ISC 2012. LNCS, vol. 7483, pp. 242–257. Springer, Heidelberg (2012)

29. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

30. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: FOCS, pp. 124–134. IEEE Computer Society (1994)

31. Watrous, J.: Quantum algorithms for solvable groups. In: STOC, pp. 60–67. ACM
(2001)

On Minimal Assumptions for Sender-Deniable Public
Key Encryption

Dana Dachman-Soled

University of Maryland
danadach@ece.umd.edu

Abstract. The primitive of deniable encryption was introduced by Canetti et al.
(CRYPTO, 1997). Deniable encryption is an encryption scheme with the added
feature that after transmitting a message m, both sender and receiver may pro-
duce random coins showing that the transmitted ciphertext was an encryption of
any message m′ in the message space. Deniable encryption is a key tool for con-
structing incoercible protocols, since it allows a party to send one message and
later provide apparent evidence to a coercer that a different message was sent. In
addition, deniable encryption may be used to obtain adaptively-secure multiparty
computation (MPC) protocols and is secure under selective-opening attacks. Dif-
ferent flavors such as sender-deniable and receiver-deniable encryption, where
only the sender or receiver produce fake random coins, have been considered.

Recently, over 15 years after the primitive was first introduced, Sahai and
Waters (IACR Cryptology ePrint Archive, 2013), gave the first construction of
sender-deniable encryption schemes with super-polynomial security, where an
adversary has negligible advantage in distinguishing real and fake openings. Their
construction is based on the construction of an indistinguishability obfuscator
for general programs recently introduced in a breakthrough result of Garg et al.
(FOCS, 2013). Although feasibility has now been demonstrated, the question of
determining the minimal assumptions necessary for sender-deniable encryption
with super-polynomial security remains open.

The primitive of simulatable public key encryption (PKE), introduced by
Damgård and Nielsen (CRYPTO, 2000), is a public key encryption scheme with
additional properties that allow oblivious sampling of public keys and ciphertexts.
It is one of the low-level primitives used to construct adaptively-secure MPC pro-
tocols and was used by O’Neill et al. in their construction of bi-deniable encryp-
tion in the multi-distributional model (CRYPTO, 2011). Moreover, the original
construction of sender-deniable encryption with polynomial security given by
Canetti et al. can be instantiated with simulatable PKE. Thus, a natural ques-
tion to ask is whether it is possible to construct sender-deniable encryption with
super-polynomial security from simulatable PKE.

In this work, we investigate the possibility of constructing sender-deniable
public key encryption from simulatable PKE in a black-box manner. We show that
there is no black-box construction of sender-deniable public key encryption with
super-polynomial security from simulatable PKE. This indicates that improving
on the original construction of Canetti et al. requires the use of non-black-box
techniques, stronger assumptions, or interaction, thus giving some evidence that
strong assumptions such as those used by Sahai and Waters are necessary.

Keywords: sender-deniable encryption, simulatable PKE, black-box separation.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 574–591, 2014.
c© International Association for Cryptologic Research 2014

On Minimal Assumptions for Sender-Deniable Public Key Encryption 575

1 Introduction

Deniable encryption was first introduced by Canetti et al. [3]. In its strongest form,
called bi-deniable encryption, this primitive allows a sender and receiver to commu-
nicate via a public key encryption scheme (sending some message m) and then later
allows both parties to produce apparent evidence (i.e. secret key and random coins) that
the ciphertext sent/received was actually an encryption of any message m′ in the mes-
sage space. Deniable encryption is useful for designing protocols that resist coercion
(c.f. [5]) as well as for designing adaptively-secure protocols. Moreover, deniable en-
cryption is is secure under selective-opening attacks. As a concrete example, consider a
voting scheme where parties encrypt their votes using the voting authority’s public key
and send the ciphertext to the voting authority over a public channel. The voting author-
ity is then trusted to decrypt and tally the votes1. In the voting scheme described, voters
can carry away a receipt, the ciphertext sent to the authority along with the random
coins used to encrypt, which can later be used to prove to a third party that a particu-
lar vote was cast. Although obtaining a receipt may seem desirable, it also means that
voters or the voting authority can later be coerced by some third party to reveal the
vote cast by a particular ciphertext. Thus, such a voting scheme is highly susceptible to
coercion. However, using a bi-deniable encryption scheme instead of a regular public
key encryption scheme allows both the voters and the authority to claim that a spe-
cific ciphertext corresponds to a vote for a particular candidate regardless of the actual
effective vote. One may also consider weaker versions of bi-deniable encryption such
as sender-deniable encryption and receiver-deniable encryption, where only the sender
(resp. receiver) can produce fake coins.

Constructing deniable encryption schemes seems difficult due to two conflicting
goals: Parties must be able to communicate effectively with each other, but if coerced,
both parties must be able to produce seemingly correctly distributed randomness and/or
secret keys consistent with any message m in the message space. Now it seems that
surely deniability must interfere with effective communication since the receiver cannot
tell which message m was the intended message and the sender cannot be assured that
his intended message m was received. Indeed, it was shown by [2] that (non-interactive)
receiver-deniable encryption (with negligible distinguishing advantage), and thus (non-
interactive) bi-deniable encryption is impossible to achieve.

The case of sender-deniable encryption, however, is more optimistic. Indeed, very re-
cently, Sahai and Waters [27], gave the first construction of sender-deniable encryption
schemes with super-polynomial security, where an adversary has negligible advantage
in distinguishing real and fake openings. Their construction is based on the construc-
tion of an indistinguishability obfuscator for general programs recently introduced in a
breakthrough result of Garg et al. [12], and thus inherits the same non-standard hardness
assumptions.

Prior to the result of [27], there were known constructions of deniable encryption (c.f.
[3]) with non-negligible distinguishing advantage, where an adversary may distinguish
real and fake openings of ciphertexts with probability 1/ poly for some polynomial.

1 Alternatively, the voting authority may be required to give a zero-knowledge proof that the
final tally is consistent with the transmitted ciphertexts.

576 D. Dachman-Soled

We say that such schemes have polynomial security. As discussed in more detail below,
the construction of [3] can be based on the existence of simulatable public key encryp-
tion, which can in turn be based on standard assumptions such as DDH and RSA.

This leaves open the following important question:

What are the minimal assumptions required for sender-deniable public-key en-
cryption with super-polynomial security?

Relationship to Adaptive Security and Simulatable Public Key Encryption

There is a strong link between deniable encryption and another primitive known as
non-committing encryption [4]. The main difference between the two is that a Non-
Committing Encryption scheme consists of two sets of Key Generation and Encryption
algorithms–one for honest players and one for the simulator. Moreover, only honest
parties need to communicate effectively, while only the simulator needs to equivo-
cate ciphertexts. Both deniable encryption and non-committing encryption can be used
to achieve adaptively secure multiparty computation and both are secure under se-
lective opening attacks. One of the standard low-level assumptions used to construct
non-committing encryption is a primitive known as simulatable public key encryption
(PKE) introduced by Damgård and Nielsen[9]2. Loosely speaking, a simulatable public
key encryption scheme is an encryption scheme with special algorithms for obliviously
sampling public keys and random ciphertexts without learning the corresponding secret
keys and plaintexts; in addition, both of these oblivious sampling algorithms should be
eficiently invertible. Simulatable public key encryption schemes can be based on the
assumptions of DDH and RSA3.

Simulatable public key encryption has been a useful tool for constructing variants
of deniable encryption. O’Neill et al. showed how to use simulatable PKE to construct
bi-deniable encryption in the multi-distributional model [24]. Moreover, it is not hard to
see that the original construction of sender-deniable public key encryption given by [3]
can be instantiated with simulatable PKE instead of trapdoor permutations, although in
their paper they do not explicitly use simulatable PKE.

Thus, a natural and imperative direction to explore is whether it is possible to construct
sender-deniable encryption with super-polynomial security from simulatable PKE.

Our Results

We consider the possibility of constructing non-interactive sender-deniable encryption,
known as sender-deniable public key encryption, with super-polynomial security in a
black-box manner from simulatable PKE. We provide a negative answer to the above
question by showing the following:

Theorem 1 (Main Theorem, Informal). There is no (fully) black-box reduction of
sender-deniable public key encryption with super-polynomial security to simulatable
PKE.

2 In fact, an even weaker primitive called trapdoor-simulatable PKE [6] is sufficient for non-
committing encryption.

3 Trapdoor-simulatable PKE can be constructed from these assumptions as well as hardness of
factoring.

On Minimal Assumptions for Sender-Deniable Public Key Encryption 577

In particular, we show that every black-box construction of a sender-deniable public
key encryption scheme from simulatable PKE which makes m = m(n) queries to the
simulatable PKE scheme cannot achieve security better than O(m4(n)). Our results in-
dicate that improving upon the original scheme of [3] requires the use of non-black-box
techniques, stronger underlying assumptions or interaction thus giving some evidence
that strong assumptions such as those used by Sahai and Waters [27] are necessary.

Black-Box Separations

Impagliazzo and Rudich [19] were the first to develop a technique to rule out the exis-
tence of an important class of reductions between primitives known as black-box reduc-
tions. Indeed, most known reductions between cryptographic primitives are black-box
(see the works of [28,16,26,17,15,20,18,23,22] for a small sampling). Intuitively, black-
box reductions are reductions where the primitive is treated as an oracle or a “black-
box”. There are actually several flavors of black-box reductions (fully black-box, semi
black-box and weakly black-box [25]). In our work, we only deal with fully black-box
reductions, and so we will focus on this notion here. Informally, a fully black-box re-
duction from a primitive Q to a primitive P is a pair of oracle PPT Turing machines
(G,S) such that the following two properties hold:

Correctness: For every implementation f of primitive P , g = Gf implements Q.

Security: For every implementation f of primitive P , and every adversary A, if A
breaks Gf (as an implementation of Q) then SA,f breaks f . (Thus, if f is “secure”,
then so is Gf .)

We remark that an implementation of a primitive is any specific scheme that meets
the requirements of that primitive (e.g., an implementation of a public-key encryption
scheme provides samplability of key pairs, encryption with the public-key, and decryp-
tion with the private key). Correctness thus states that when G is given oracle access to
any valid implementation of P , the result is a valid implementation of Q. Furthermore,
security states that any adversary breaking Gf yields an adversary breaking f . The re-
duction here is fully black-box in the sense that the adversary S breaking f uses A in a
black-box manner.

Our Techniques

Following the paradigm introduced by [19], we define an oracle O and consider con-
structions of simulatable PKE and sender-deniable public key encryption relative to this
oracle. The oracle O that we use is similar to the by now standard oracle first introduced
by [13]. This oracle implements an ideal trapdoor function with the important property
that it is difficult to obliviously sample from the range of the function. Namely, it is hard
to find an image in the range of the function without first sampling the corresponding
preimage.

Relative to the oracle O, we show the following:

– There exists a simulatable PKE scheme, ESim secure against all (computationally
unbounded) adversaries A making at most polynomial number of queries.

578 D. Dachman-Soled

– For every implementation E of a sender-deniable public key encryption scheme
relative to O, there exists an adversary A making at most polynomial number of
queries such that A breaks E .

The above is sufficient to imply that there is no fully black-box construction of sender-
deniable public key encryption from simulatable PKE.

Now, recall that a sender-deniable public key encryption scheme is a public key
encryption scheme with an additional algorithm, Fake, which takes an honestly gen-
erated sender’s view ViewS0 encrypting a bit b and returns a fake view, ViewS1 =
Fake(ViewS0), encrypting the bit 1 − b. A simple but key observation is the following:
If the distributions over the corresponding views, ViewS0 and ViewS1 are indistinguish-
able, then one should be able to now compute ViewS2 = Fake(ViewS1) obtaining a
fake view encrypting the bit b and such that the distributions over the views, ViewS1

and ViewS2 are again indistinguishable. We note that somewhat similar arguments were
used in [2]. In general, in any sender-deniable public key encryption scheme with negli-
gible distinguishing advantage, one must be able to run Fake iteratively on the output of
the previous Fake invocation for any (unbounded) polynomial number of times. Other-
wise, if there is a fixed polynomial upper bound p(n) on the number of times that Fake
can be applied to a fresh ciphertext (before failure), then we can distinguish ViewS0

from ViewSp(n) = ⊥ = Fakep(n)(ViewS0) (where by Fakep(n) we denote the com-
position of Fake, p(n) times). So by a hybrid argument there must be some i such that
Fakei(ViewS0), Fake

i+1(ViewS0) can be distinguished with probability 1/p(n). Finally,
this means that real and fake openings ViewS0 and ViewS1 can be distinguished, con-
tradicting the security of the sender-deniable public key encryption scheme4. Thus, in
order to prove the lower bound it is sufficient to show that relative to our oracle, Fake
can be repeatedly applied only a fixed polynomial number of times before failure.

To gain some intuition for why this is the case, it is instructive to recall the construc-
tion of [3]5. Let {Fpk} be a family of trapdoor functions with pseudorandom range such
that given the secret key sk of Fpk , one can distinguish between elements y in the range
of Fpk and random elements, but given only pk, random elements in the range of Fpk
are indistinguishable from random strings. In [3], the secret key of the sender-deniable
public key encryption scheme is the secret key sk of the trapdoor function F . The pub-
lic key pk is the public key of F . Each ciphertext consists of m number of strings
s1, . . . , sm. To encrypt a 1, choose an a set of indeces I ⊆ [m] of odd cardinality; oth-
erwise choose a set I ⊆ [m] of even cardinality. Compute m strings in the following
way: For the i-th string, if i ∈ I , choose a random xi and compute yi = f(xi). If
i /∈ I , choose yi to be a random string. The sender sends these m strings to the receiver.
The receiver then checks which of the m strings y1, . . . , ym are valid images. If an odd
number of strings are valid, output 1. Otherwise, output 0. It is not hard to see that the
Fake algorithm works by having the sender claim that a pseudorandom string is really
random (but note that the sender cannot claim the reverse).

Clearly, the Fake algorithm described above can be run iteratively at most m times
for a given ciphertext, since the sender claims to have made one less query each time
Fake is run and there are at most m queries total. Unfortunately, our analysis is more

4 Simply run Fake iteratively i number of times on ViewS0 and then use the distinguisher above.
5 We simplify their construction here somewhat.

On Minimal Assumptions for Sender-Deniable Public Key Encryption 579

complicated since we must also consider candidate schemes where the Fake algorithm
might add queries to the outputted view. It may seem at first glance that it is impossible
for Fake to add new queries to the sender’s view that were not in the original view since
it would seem to require inverting a random image y without access to the correspond-
ing secret key. However, this is not necessarily the case (see the full version [7] for a
toy example where this occurs).

Thus, we must show that even for candidate schemes whose Fake algorithms may
both remove and add queries, Fake can be repeatedly applied only a fixed polynomial
number of times before failure. Intuitively, the reason we can handle such schemes is
that it is infeasible to add an unbounded number of new queries to the fake view, since
many queries must be removed from the previous view for each new query that is added.
In order to show that this intuition indeed holds, we leverage the fact that in our oracle,
with overwhelming probability, random strings are not valid images of the trapdoor
function. Much of the technical part of the proof is in showing that the above intuition
holds for all possible constructions of sender-deniable public key encryption schemes
relative to our oracle.

Technical Overview of Proof. The high-level approach of the proof will be to consider

the distribution D10m2(n)
Fake , where m(n) is the maximum number of queries made by

sender and receiver, and a draw from D10m2(n)
Fake is obtained in the following way:

– Draw an oracle O and original views, ViewS0 ,ViewR, for sender and receiver from
the correct distributions.

– For 1 ≤ i ≤ 10m2(n), set ViewSi = FakeO(ViewSi−1).
– Output O,ViewR,ViewS0 , . . . ,ViewS10m2(n)

In our analysis, we will look at the properties of sequences of fake openings ViewS0 ,
. . . , ViewS10m2(n)

drawn from this distribution. Note that for any sender-deniable public
key encryption scheme it should (at the very least) be the case that w.v.h.p. for every
consecutive i, i + 1, ViewSi and ViewSi+1 are valid encryptions of bits bi and bi+1 =
1−bi, respectively. Furthermore, we show that if a public key encryption scheme has the

deniability property then with high probability a sequence drawn from D10m2(n)
Fake will

have several additional properties. However, we will also argue that it is impossible for
a sequence of fake openings of length 10m2(n) to satisfy all of the required properties

simultaneously. Thus, a sequence drawn from D10m2(n)
Fake will with high probability not

satisfy at least one of the required properties. This leads to contradiction and so we
conclude that the encryption scheme is not sender-deniable.

In what follows, we give a slightly innacurate but intuitive overview of what these
properties are and the techniques we use to prove that with high probability a sequence
of fake openings will possess these properties.

First, note that a fake opening is simply a view ViewSi of the sender which consists
of a transcript, W (i.e. a public key, PK, and ciphertext c), and a set of queries Q(Si)
made by the sender. We also consider the set Q(E)i which, intuitively, is a set of queries
that includes all queries the honest sender (with view ViewSi) believes may have been
made by both him and the receiver. The set of queries in Q(E)i can be found by running

580 D. Dachman-Soled

an algorithm that is very similar to the Eve algorithm of [1], which finds intersection
queries based only on the transcript (and does not depend on the sender’s view, as in our
case). During the execution of the Eve algorithm, Eve finds pairs (pk∗, y∗) such that it
is likely the sender queried F (pk∗, x) = y∗ for some x. If Eve identifies a such a pair
(pk∗, y∗) and, indeed, a corresponding F (pk∗, x∗) = y∗ is found in ViewSi , then the
query is “added” and placed in Qmade

i . If Eve identifies a such a pair (pk∗, y∗), however,
and no correspondingF (pk∗, x∗) = y∗ is found in ViewSi , then the query is “removed”
and placed in Qskipped

i .
Now for each fake openingViewSi we consider two types of queries “A” type queries

and “B” type queries. Intuitively, “A” type queries are those queries that were originally
in ViewS0 and have either not been removed in some Qskipped

j set (for j ≤ i), or were
removed and then added again in some Qmade

k set (for j < k ≤ i). “B” type queries
are new queries that do not appear in the original view ViewS0 , were added in some
Qmade
j set (for j ≤ i) and have not been subsequently removed in a Qskipped

k set (for
j < k ≤ i). Thus, each view ViewSi is associated with a set, Ai, of “A” type queries
and a set, Bi, of “B” type queries.

We will show that with high probability a draw of fake openings ViewS0 , . . . ,

ViewS10m2(n)
and corresponding sequence (A0, B0), . . . , (A10m2(n), B10m2(n)) must

satisfy the following properties:

– (ViewS0 ,ViewS1 , . . . ,ViewS10m2(n)
) are valid openings.

– Ai ⊆ Ai−1 for 1 ≤ i ≤ 10m2(n)

– (Ai−1, Bi−1) �= (Ai, Bi) for 1 ≤ i ≤ 10m2(n)

– If the same set A∗ appears consecutively β times within the sequence above, and
all corresponding consecutive B sets are different, then β ≤ 10m(n).

Much of the technical portion of this work is dedicated to showing that these proper-
ties hold (see Claim 2, Lemma 4 and Lemma 5). Then, we will show that it is, in fact,
impossible to realize all of the above properties simultaneously (see the end of Section 5).

Related Work

In their seminal paper, Canetti et al. [3] introduce the primitive of deniable encryption
and present constructions. However, for the strongest form of deniable encryption which
assumes that the same key generation and encryption algorithms are always used, [3]
achieve only sender-deniable and receiver-deniable schemes with polynomial security.
[3] also rule out the existence of a specific type of sender-deniable encryption scheme
with negligible distinguishing advantage (or super-polynomial security) called sepa-
rable schemes (which, roughly speaking, are a generalization of the scheme of [3]).
Our impossibility result is incomparable to theirs since ours rules out a larger class of
reductions (black-box reductions), but only rules out reductions to the specific primitive
of simulatable PKE.

O’Neill et al. [24] recently constructed a bi-deniable encryption scheme in the multi-
distributional model, in which the parties run alternative key-generation and encryption
algorithms for equivocable communication, but claim under coercion to have run the

On Minimal Assumptions for Sender-Deniable Public Key Encryption 581

prescribed algorithms. This weaker model was also initially considered by [3]. Al-
though useful in some settings, the multi-distributional model does not achieve the
strongest form of deniability which we consider in this work. We note that it is es-
sential for our impossibility result that the same encryption algorithm is run for both
real and equivocable communication, which is why our result does not contradict the
work of [24].

Recently, Dürmuth and Freeman announced a fully-deniable (receiver/sender)-
deniable interactive cryptosystem with negligible security [10]. However their result
was later showed to be incorrect by Peikert and Waters (see [11] for details). The pro-
tocol constructed by [10] was both interactive and utilized the fact that for the trapdoor
function used, a random element in the range could be sampled obliviously. We note
that in our analysis it is essential both that the schemes we consider are non-interactive
and that the trapdoor function implemented by our oracle does not allow oblivious sam-
pling of the range. Thus, an interesting open question is whether removing these two
restrictions can help achieve fully-deniable encryption schemes.

Subsequently, [2] showed, using an information-theoretic argument, that (non-
interactive) receiver-deniable encryption with negligible distinguishing advantage do
not exist, unconditionally. We note, however, that the work of [2] does not address the
case of sender-deniable encryption and it does not seem that their techniques may be
applied to our case.

Recently, Sahai and Waters [27] showed how to construct sender-deniable encryption
from indistinguishability ofuscation. In a breakthrough result, a candidate construction
of an indistinguishability obfuscator for general programs was put forward by Garg et
al. [12]. In their followup paper, [27] show that indistinguishability obfuscation can be
used to achieve sender-deniable encryption6 We note that the candidate construction of
[12] is based on newly introduced hardness assumptions such as “multilinear jigsaw
puzzles”. Thus, the construction of [27] also requires these non-standard assumptions.

Organization

In Section 2 we formally define sender-deniable public key encryption and simulatable
PKE as well as the notion of a black-box construction of sender-deniable public key
encryption from simulatable PKE. In Section 3 we define our oracle and in Section 4
we define some additional useful notations, algorithms and corresponding properties
which will be used in the main result. Finally, in Section 5 we prove our main theorem,
with some technical parts deferred to the Appendix.

2 Definitions

Definition 1 (Sender-Deniable Public Key Encryption). A sender-deniable (bit) pub-
lic key encryption scheme is a tuple of algorithms (Gen,Enc,Dec,Fake) defined as
follows:

– The key-generation, encryption and decryption algorithms Gen,Enc,Dec are de-
fined as usual for public-key encryption.

6 Simply called “deniable encryption” in their work.

582 D. Dachman-Soled

– The sender faking algorithm Fake(PK, rS , b), given a public key PK, original coins
rS and bit b of Enc, outputs faked random coins r∗S for Enc and the bit 1 − b.

We require the following properties:

Correctness. (Gen,Enc,Dec) forms a correct public-key encryption scheme7.
Deniability. For b ∈ {0, 1}, we require that the following two probability ensembles

are computationally indistinguishable:
– {(PK, c, rS)|PK ←Gen(1n; rG), c←Enc(PK, b; rS)}n
– {(PK, c, r∗S)|PK ←Gen(1n; rG), c←Enc(PK, 1−b; rS), r

∗
s ←Fake(PK, rS , b)}n

It follows from the definition that a sender-deniable public key encryption scheme is
also semantically secure.

Remark 1. In this work, we also consider constructions of deniable public key encryp-
tion schemes that do not achieve negligible distinguishing advantage. We say that a
deniable encryption scheme has security p(n) for some polynomial p(·) if correctness
holds and every probabilistic polynomial time adversary A distinguishes the following
two probability ensembles with advantage at most 1/p(n):

– {(PK, c, rS)|PK ← Gen(1n; rG), c ← Enc(PK, b; rS)}n
– {(PK, c, r∗S)|PK ← Gen(1n; rG), c ← Enc(PK, 1− b; rS), r

∗
s ← Fake(PK, rS , b)}n.

We note that in this case semantic security does not follow from deniability and is an
additional requirement.

Definition 2 (Simulatable PKE). A �-bit simulatable encryption scheme consists of an
encryption scheme (Gen,Enc,Dec) augmented with (oGen, oRndEnc, rGen, rRndEnc).
Here, oGen and oRndEnc are the oblivious sampling algorithms for public keys and
ciphertexts, and rGen and rRndEnc are the respective inverting algorithms, rGen (resp.
rRndEnc) takes rG (resp. (PK, rE,m)) as the trapdoor information. We require that,
for all messages m ∈ {0, 1}�, the following distributions are computationally indistin-
guishable:

{rGen(rG), rRndEnc(PK, rE,m), PK, c | (PK, SK) = Gen(1k; rG), c = EncPK(m; rE)}
and {r̂G, r̂E, P̂K, ĉ | (P̂K,⊥) = oGen(1k; r̂G), ĉ = oRndEncP̂K(1

k; r̂E)}

It follows from the definition that a simulatable encryption scheme is also semantically
secure.

Definition 3 (Sender-Deniable Public Key Encryption from Simulatable PKE). For
oracle algorithms (Gen,Enc,Dec,Fake) we call E = (Gen,Enc,Dec,Fake) a black-
box construction of sender-deniable public key encryption based on simulatable PKE if
the following properties hold:

– Implementation: The algorithms (Gen,Enc,Dec,Fake) get oracle access to sim-
ulatable PKE scheme ESim and E is an implementation of sender-deniable public
key encryption.

7 Note that perfect correctness is not possible.

On Minimal Assumptions for Sender-Deniable Public Key Encryption 583

– Security: There is a polynomial-time oracle algorithm S with the following prop-
erty. For any simulatable PKE ESim = (Gen,Enc,Dec, oGen, oRndEnc, rGen,
rRndEnc), given as oracle, if A breaks the security of E then SESim,A breaks the
security of ESim.

3 Oracle

The oracle O consists of three functions G,F, F−1 defined below for every security
parameter n.

– G : {0, 1}n → {0, 1}3n is an injective function taking inputs sk of length n bits to
outputs pk of length 3n bits.

– F : {0, 1}4n → {0, 1}12n is an injective function taking inputs pk, x of length 4n
bits to outputs y of length 12n bits.

– F−1 : {0, 1}13n → {0, 1}n takes inputs of the form sk, y where sk ∈ {0, 1}n and
y ∈ {0, 1}12n. F−1 returns x ∈ {0, 1}n if G(sk) = pk and F (pk, x) = y and ⊥
otherwise.

Note that the oracle above behaves like a trapdoor function, where G is the key
generation functionality, F evaluates the trapdoor function and F−1 is the inversion
function. Additionally, note that we may easily construct a simulatable PKE scheme
relative to this oracle.

We denote by Υ the uniform distribution over all possible oracles O.

Lemma 1. There is a construction of a simulatable PKE scheme ESim relative to oracle
O, such that for every unbounded adversary A, making a polynomial number of queries
to O:

Pr
O∼Υ

[AO breaks EO
Sim] ≤ neg(n).

The proof of the Lemma above is by now standard (c.f. [13,14]) and so we omit it.

4 Preliminaries

In this section we introduce some useful notation, algorithms and properties of sender-
deniable public key encryption schemes.

Given a deniable public key encryption scheme E = (Gen,Enc,Dec,Fake), we will
consider the natural two-message protocol 〈S,R〉 between a Receiver, R (who sends a
public key in the first message) and a Sender, S (who sends a ciphertext in the second
message).

The view of the Receiver (resp. Sender) consists of the transcript W , random tape,
rR (resp. rS) and queries made to the oracle along with the responses. The view of the
Receiver, denoted by ViewR = (ViewG,ViewD), consists of two parts where ViewG
includes queries and responses made during Gen and ViewD includes queries and re-
sponses made during Dec. The view of the Sender, denoted by ViewS includes queries
and responses made during Enc. We denote the queries to O in ViewR by Q(R) =
Q(G) ∪ Q(D). We denote the queries to O in ViewS by Q(S).

584 D. Dachman-Soled

We assume without loss of generality that:

– No queries to F−1 are made during Gen. This is WLOG since with overwhelm-
ing probability either the corresponding query to F was already made, or F−1

returns ⊥.
– Each party queries G(sk) = pk before querying F−1(sk, y).
– Either Fake returns a valid opening or returns ⊥ and Fake(⊥) = ⊥.

Additionally, relative to our oracle O, we assume WLOG that Fake takes ViewS and
returns another ViewS with the same public key and ciphertext but different randomness
and input bit (i.e. ViewSi+1 = FakeO(ViewSi)). By FakeO,i we denote composing Fake
with itself i times.

4.1 Useful Distributions

Distribution D: D is a distribution over tuples (ViewS,ViewR) resulting from an exe-
cution of 〈S,R〉. A draw from D is obtained as follows:

– Draw O ∼ Υ , b ← {0, 1}, rR, rS ← {0, 1}p(n), for some polynomial p(·) and
execute 〈S,R〉 with O, rR, rS and input bit b.

– Output: The views (ViewS,ViewR) resulting from the execution of 〈S,R〉 above.

Distribution Di: Di is a distribution over tuples (ViewSi ,ViewR) as before, but here
we begin to use the Fake algorithm. A draw from Di is obtained as follows:

– Draw O ∼ Υ , b ← {0, 1}, rR, rS ← {0, 1}p(n). and execute 〈S,R〉 with O, rR, rS
and input bit b.

– Let ViewS0 = ViewS,ViewR containing PK, c, b, rS be the resulting views from the
execution of 〈S,R〉. Compute ViewSi = FakeO,i(ViewS).

– Output: O and the views (ViewSi ,ViewR).

For every fixed polynomial p(·), we additionally define the following distribution:

Distribution Dp(n)
Fake : Dp(n)

Fake is a distribution over tuples (O,ViewS,ViewS1 , . . . ,

ViewSp(n)
). A draw from Dp(n)

Fake is obtained as follows:

– Draw O ∼ Υ , b ← {0, 1}, rR, rS ← {0, 1}p(n). and execute 〈S,R〉 with O, rR, rS
and input bit b.

– Let ViewS0 = ViewS,ViewR containing PK, c, b, rS be the resulting views from the
execution of 〈S,R〉.

– Output: (O,ViewR,ViewS0 = ViewS,ViewS1 = FakeO(ViewS), ViewS2 =
FakeO(ViewS1), . . . , ViewSp(n)

= FakeO(ViewSp(n)−1
)).

4.2 Algorithms for Finding Likely Queries

As in [19,1,8,13,21], we will be concerned with finding intersection queries, or common
information about the oracle shared by S and R. We note that in our setting there are
two ways to get an intersection query:

On Minimal Assumptions for Sender-Deniable Public Key Encryption 585

– One party makes a query of the form G(sk) = pk, F (pk, x) = y, or F−1(sk, y)
and the other party makes the same query.

– One of the parties queries both G(sk), F−1(sk, y) = x and the other party queries
F (pk, x) = y.

We now (informally) define the Eve algorithm: For a more formal specification, see
the full version [7]. Eve runs the following algorithm, using threshold ε = ε1 = 1/m16

during the first pass (before S sends its message) and using threshold ε = ε2 = 1/m6

during the second pass (after S sends its message).

(0) Eve queries F on all possible inputs up to length 4n̂ = 4 log(10m34) and adds all
queries and responses to E.

(1) As long as there exists a query q of the form G(sk), F (pk, x), or F−1(sk, y) that
was previously made by S or R with probability at least ε (conditioned on Eve’s
current knowledge, E), then ask q from the oracle and add q paired with its answer
to E.

(2)As long as there exists a pair (pk∗, y∗) such thatG(sk)=pk∗ ∈ Q(E),F (pk∗, x)=
y∗ /∈ Q(E) and with probability at least ε, R made a query of the form F (pk∗, x) =
y∗ for some x (conditioned on Eve’s current knowledge, E), then query the oracle
on F−1(sk, y∗). If F−1(sk, y∗) returns some value x, then add F (pk∗, x) = y∗ to
E. If F−1(sk, y∗) returns ⊥ then add F−1(sk, y∗) = ⊥ to E.

(3) As long as there exists a pair (pk∗, y∗) such that F (pk∗, x) = y∗ /∈ Q(E) and
with probability at least ε, S made a query of the form F (pk∗, x) = y∗ for some x
(conditioned on Eve’s current knowledge, E), then if F (pk∗, x) = y∗ ∈ Q(S), add
q paired with its answer to E and add (pk∗, y∗) to Qmade. Otherwise, add (pk∗, y∗)
to Qskipped.

We denote by Q(E)G the Eve queries made after the first message is sent from R to
S and denote by Q(E)S the Eve queries made after the second message is sent from S
to R. Thus Q(E) = Q(E)G ∪ Q(E)S.

The following Lemma appeared in [8], but there was proven with respect to a random
oracle.

Lemma 2. Let 〈S,R〉 be a protocol as specified above in which the Sender and Receiver
ask at most 2m queries each from the oracle O. Then there is a universal constant c such
that on input parameter ε:

– (cm/ε)-Efficiency: Eve is deterministic and, over the randomness of the oracle
and S and R’s private randomness, the expected number of Eve queries from the
oracle O is at most cm/ε1.

– (c
√
mε)-Security: Let W be the transcript of messages sent between R and S so

far, and let E be the additional information that Eve has learned till the end of the
i’th round. We denote by Q(E) the oracle query/answer pairs that Eve has asked.
Let D(W,E) be the joint distribution over the views (ViewS,ViewR) of S and R
only conditioned on (W,E). By DR(·, ·) and DS(·, ·) we refer to the projections of
D(W,E) over its first or second components.
With probability at least 1 − c

√
mε over the randomness of S, R, and the ran-

dom oracle O the following holds at all moments during the protocol when Eve is

586 D. Dachman-Soled

done with her learning phase in that round: There are independent distributions
S(W,E),R(W,E) such that:

1. The statistical distance between S(W,E) × R(W,E) and D(W,E) is at most
Δ(S(W,E) × R(W,E),D(W,E)) ≤ c

√
mε.

2. For every oracle query q /∈ Q(E) it holds that Pr(ViewS∼S(W,E),ViewR∼R(W,E)

[q ∈ Q(S) ∪ Q(R)] ≤ ε.

– Robustness. The learning algorithm is robust to the input parameter ε in the fol-
lowing sense. If the parameter ε changes in the interval ε ∈ [ε1, ε2] arbitrarily
during the learner’s execution (even inside a learning phase of a specific round), it
still preserves O(cm/ε1)-efficiency and (c

√
mε2)-security.

See the full version [7] for the proof of Lemma 2 which is based on the proofs found
in [1,8,21].

Remark 2. Note that the Eve algorithm as described above requires knowledge ofViewS

but not of ViewR. Thus, Eve can only be simulated by a party who has knowledge of
ViewS. This is a key difference between our results and the results of [13]. Note that
we can actually implement oblivious transfer relative to our oracle, since although it
is hard to sample valid public keys without knowing the corresponding secret key, a
party can call F (pk, ·) with any string pk and receive a value y indistinguishable from
a “valid” image. In contrast, [13] show that oblivious transfer does not exist relative to
their oracle. The fact that only S can simulate Eve but not R is the reason that our results
do not contradict those of [13].

Remark 3. Note that since the expected number of Eve queries is at most cm/ε, we may
consider a modified algorithm Eve′ which simulates Eve but aborts if Eve makes more
than cm/ε2 number of queries. By Markov’s inequality, this occurs with probability at
most O(ε) and so executions of Eve and Eve′ are identical with probability 1 − O(ε).
Thus, all properties stated above for Eve hold also for Eve′. In the following, we assume
that we run Eve′, making at most N = O(m33) = poly(n) number of queries, to
generate the sets E,Q(E). We additionally assume that N ≤ 2n̂/1600m2.

4.3 Properties of Fake Openings

Definition 4 (Iterative Indistinguishability). Let E = (Gen,Enc,Dec,Fake) be an
implementation of a sender-deniable public key encryption scheme relative to oracle O.
We say that E is iteratively indistinguishable up to p(n), where p(·) is some polynomial,
if for every i where 1 ≤ i ≤ p(n), and every adversary A making at most a polynomial
number of oracle queries we have:

Pr
ViewS∼DS

[AO(ViewS) outputs 1] − Pr
ViewSi

∼Di
S

[AO(ViewSi) outputs 1] ≤ i/80p(n).

In what follows, we split the queries found in a given view ViewSi into two types:
“A” type queries and “B” type queries. Informally, “A” type queries are queries that
were also made in the original ViewS0 = ViewS. “B” type queries are new queries that
were added which do not appear in ViewS0 . Details follow.

On Minimal Assumptions for Sender-Deniable Public Key Encryption 587

For a given draw (O,ViewR,ViewS0 ,ViewS1 , . . . ,ViewSp(n)
) ∼ Dp(n)

Fake , we consider
a run of the Eve′ algorithm with (O,ViewR,ViewS0) yielding sets Q(E), Qmade, Qskipped

and a run of the Eve′ algorithm with (O,ViewR,ViewSi) for each 1 ≤ i ≤ p(n) yielding
sets Q(E)i, Q

made
i , Qskipped

i .
We define the sets A0, B0 corresponding to (ViewR,ViewS0) as follows: A0 =

Q(S0), B0 = ∅. For i ≥ 1, we define the sets Ai, Bi corresponding to (ViewR,ViewSi)
as follows 8:

Ai =
(
Ai−1 \Qskipped

i

)
∪
(
Qmade

i ∩Q(S0)
)
, Bi =

(
Bi−1 \Qskipped

i

)
∪
(
Qmade

i \Q(S0)
)
.

Note that every draw (O,ViewR,ViewS0 ,ViewS1 , . . . ,ViewSp(n)
) ∼ Dp(n)

Fake , is associ-

ated with a unique sequence (A0, B0), (A1, B1), . . . , (Ap(n), Bp(n)).

Definition 5 (Well-formed Sequences). Let E = (Gen,Enc,Dec,Fake) be an imple-
mentation of a sender-deniable public key encryption scheme relative to oracle O.
We say that an opening (O,ViewR,ViewS0 ,ViewS1 , . . . , ViewSp(n)

) ∼ Dp(n)
Fake is well-

formed if it has the following properties:

(1) (ViewS0 ,ViewS1 , . . . ,ViewSp(n)
) are valid openings.

(2)
(
Q(G) ∩

⋃p(n)
i=1 Q(Si)

)
\ Q(E)G = ∅.

(3) Ai ⊆ Ai−1 for 1 ≤ i ≤ p(n).
(4) For every query of the form F (pk, x) = y that appears in Q(E)i for some 1 ≤

i ≤ p(n), the pair (pk, y) does not appear in Qskipped
j for all 1 ≤ j ≤ i.

Claim 2. Let E = (Gen,Enc,Dec,Fake) be an implementation of a sender-deniable
public key encryption scheme relative to oracle O and let m = m(n) be the maxi-
mum number of queries made by (Gen,Enc,Dec,Fake). If E is iteratively indistinguish-

able up to 10m2(n) then (O,ViewR,ViewS0 ,ViewS1 , . . . ,ViewS10m2(n)
) ∼ D10m2(n)

Fake is
well-formed with probability 9/10.

We defer the proof to the full version [7].

5 Analysis

In this section, we prove our main theorem:

Theorem 3 (Main Theorem, Formal). Let E = (Gen,Enc,Dec,Fake) be a black-box
construction of sender-deniable public key encryption from simulatable PKE and let
m = m(n) be the maximum number of queries made by (Gen,Enc,Dec,Fake). Then E
has security at most O(m4).

We first present the following Lemma, which will be our main technical Lemma:

8 By the notation below, we mean to remove from Ai−1 all queries of the form F (pk, x) = y
such that the pair (pk, y) ∈ Qskipped. The same holds for the following definitions.

588 D. Dachman-Soled

Lemma 3. Let E = (Gen,Enc,Dec,Fake) be an implementation of a sender-deniable
public key encryption scheme relative to oracle O and let m = m(n) be the maximum
number of queries made by (Gen,Enc,Dec,Fake). Then E is not iteratively indistin-
guishable up to 10m2 = 10m2(n).

We present the following corollary and use it to prove our main theorem:

Corollary 1. Let E =(Gen,Enc,Dec,Fake) be an implementation of a sender-deniable
public key encryption scheme relative to oracle O and let m = m(n) be the maximum
number of queries made by (Gen,Enc,Dec,Fake). Then there exists an adversary A
making a polynomial number of oracle queries such that

Pr
ViewS∼D

[AO(ViewS) outputs 1] − Pr
ViewS1

∼D1
[AO(ViewS1) outputs 1] ≥ 1/8000m4.

Lemma 1 and Corollary 1 imply our main theorem:

Proof (Proof of Main Theorem using Lemma 1 and Corollary 1.). Assume towards con-
tradiction that there is some fully black-box reduction (E , S) of sender-deniable public
key encryption with distinguishing advantage o(1/m4) to simulatable PKE, where S
is a probabilitic polynomial time reduction. Then, since there exists a construction of
simulatable PKE relative to oracle O, we have that E is also a sender-deniable public
key encryption scheme relative to O. Now, Corollary 1 implies that with probability
at least 1/16000m4(n) over O ∼ Υ , there exists an adversary A making at most a
polynomial number of oracle queries such that A distinguishes with probability at least
1/16000m4(n). Thus, with probability at least 1/16000m4(n) over O ∼ Υ , A breaks
E . However, since S makes at most a polynomial number of calls to A, SA also makes
at most polynomial number of queries and so Lemma 1 implies that with probability
1 − neg(n) over O ∼ Υ , SA does not break ESim. Thus, there must exist some fixed O
such that A breaks E with distinguishing advantage Ω(1/m4), but SO,A does not break
ESim, which means that the reduction (E , S) fails and so we arrive at contradiction.

We now turn to proving Lemma 3. We define two events and prove they occur with
small probability.

Event ErSets: ErSets is the event that a draw (O,ViewS0 ,ViewS1 , . . . ,ViewS10m2(n)
) ∼

D10m2(n)
Fake has the property that (Ai, Bi)=(Ai+1, Bi+1) for some 0 ≤ i ≤ 10m2(n)−1.

Event ErA: ErA is the event that a draw (O,ViewS0 ,ViewS1 , . . . ,ViewS10m2(n)
) ∼

D10m2(n)
Fake has the property that for some A∗ there are β > 10m(n) number of con-

secutive pairs of the form (A∗, Bj), . . . , (A∗, Bj+β−1) such that Bj+i �= Bj+i+1 for
0 ≤ i ≤ β − 2.

Lemma 4. Let E = (Gen,Enc,Dec,Fake) be an implementation of a sender-deniable
public key encryption scheme relative to O and let m = m(n) be the maximum number
of queries made by (Gen,Enc,Dec,Fake). Let E be iteratively indistinguishable up to
10m2(n). The probability that upon a draw (O, ViewS0 , ViewS1 , . . . , ViewS10m2(n)

) ∼
D10m2(n)

Fake Event ErSets occurs is at most 1/2.

Next, we give some intuition for the proof of Lemma 4.

On Minimal Assumptions for Sender-Deniable Public Key Encryption 589

Proof Intuition for Lemma 4. We show that if for two consectutive views ViewSi ,
ViewSi+1 , we have that (Ai, Bi) = (Ai+1, Bi+1), then the set of “intersection queries”
Q(E) found by the Eve′ algorithm when it is run on ViewSi and ViewSi+1 are the same.

Now, intuitively, Lemma 2 tells us that conditioned on the transcript W and inter-
section queries Q(E), the views of S and R are independent. Since both the transcript
(which cannot be changed by the Fake algorithm) and the intersection queries Q(E)
are the same for the i-th and i+ 1-th opening, this means that the views of the receiver
conditioned on ViewSi and ViewSi+1 should be distributed nearly identically. But note
that ViewSi is supposed to be an encryption of a bit b, while ViewSi is supposed to be an
encryption of the bit 1−b. Thus, by the correctness of the encryption scheme, the views
of the receiver should be statistically far when conditioning on ViewSi and ViewSi+1 .
This leads to a contradiction.

Lemma 5. Let E = (Gen,Enc,Dec,Fake) be an implementation of a sender-deniable
public key encryption scheme relative to O and let m = m(n) be the maximum number
of queries made by (Gen,Enc,Dec,Fake). Let E be iteratively indistinguishable up to
10m2(n). The probability that upon a draw (O, ViewS0 , ViewS1 , . . . , ViewS10m2(n)

) ∼
D10m2(n)

Fake Event ErA occurs is at most 1/5.

Next, we give some intuition for the proof of Lemma 5.

Proof Intuition for Lemma 5. We show that givenViewS0 ,ViewR, oracleO, the set A∗ ⊆
Q(S0) plus some additional small amount of information we can reconstruct the entire
sequence (A∗, Bj), . . . , (A∗, Bj+β−1). The following is an imprecise description of
the reconstruction algorithm:

1. Execute the two-message protocol 〈S,R〉 with Receiver’s view ViewR and Sender’s
view ViewS0 .

2. Use the transcript W generated above and begin running the Eve′ algorithm to
reconstruct set Bj+β−1. The only additional information necessary to reconstruct
Bj+β−1 is upon encountering a pair (pk, y) whether to return F−1(sk, y) = x and
add the query to Bj+β−1 or whether to add this query to Qskipped

j+β−1.
3. Continue to construct sets Bj+β−2 through Bj in the same way as above.

The additional information needed to reconstruct (A∗, Bj), . . . , (A∗, Bj+β−1) can
be encoded by a list of α elements. More specifically, when encountering the pair
(pk, y) as the �-th query in the run of the Eve′ algorithm reconstructing the set Bj+i, the
algorithm checks whether the index � appears on the list. If it does, the reconstruction
algorithm adds F−1(sk, y) = x to Bj+i. Otherwise, it adds (pk, y) to Qskipped

j+i .
Now, since the Eve′ algorithm is efficient and makes N queries (where N ≤

2n̂/1600m2) to reconstruct each B set, we only need logN bits to encode each of
the α elements of the list above. Thus, we need “additional information” of length at
most α · logN .

We use properties (2) and (4) of well-formed sequences (see Definition 5) to show
that for almost all sequences, when a pair (pk, y) is encountered when running the
Eve′ algorithm to reconstruct set Bj+i, if the corresponding query (F−1(sk, y) or
F (pk, x) = y) has already been made by the reconstruction algorithm, then (pk, y)

590 D. Dachman-Soled

is always added to Bj+i. Thus, we do not need to include such pairs in the list at all.
This implies that since Bj+i �= Bj+i+1 for all i, we must have α ≥ β. Moreover,
the above implies that at the point when a pair (pk, y) is encountered as the �-th Eve′

query and the index � appears on the list then it must be that the corresponding query
F (pk, x) = y has not yet been made by the reconstruction algorithm.

This means that at the point where we encounter each of these α queries on the list,
the probability that an oracle O chosen conditioned on the view of the reconstruction
algorithm thus far has the string y in its image is at most 1/2n̂. Thus, the probability that
an O chosen conditioned only on ViewS,ViewR has each of the α-many encountered
strings y1, . . . , yα in its image is at most (1/2n̂)α.

Finally, taking a union bound over all sets A∗ ⊆ Q(S) and all sequences S we
show that the probability that an oracle O chosen conditioned only on ViewS0 ,ViewR is
consistent with any well-formed sequence corresponding to some set A∗ ⊆ Q(S0) and
some and sequence S of length α ≥ β is small.

We complete the proof of Lemma 3 using the above lemmas. We defer the proofs of
Lemmas 4 and 5 to the full version [7].

Proof (Proof of Lemma 3 using Lemmas 4 and 5). Assume towards contradiction that
there is some implementation of a sender-deniable public key encryption scheme, E =
(Gen,Enc,Dec), relative to oracle O that is iteratively indistinguishable up to 10m2 =
10m2(n). By Claim 2, we may assume that, with probability at least 9/10, a draw

(O,ViewR,ViewS0 ,ViewS1 , . . . ,ViewS10m2(n)
) ∼ D10m2(n)

Fake is well-formed. In particu-
lar, this implies that with probability at least 9/10 over draws, Property (1) and (3) hold
so we have that with probability 9/10 the openings (ViewS1 , . . . ,ViewS10m2(n)

) are all

valid and Ai+1 ⊆ Ai for every 0 ≤ i ≤ 10m2(n)−1. This implies that with probability
9/10 over draws there must be some set A∗ that appears at least 10m = 10m(n) times.
Moreover, since Lemma 4 guarantees that event ErSets occurs with probability at most
1/2, we have that with probability at least 9/10− 1/2 = 2/5, there is some set A∗ that
appears at least 10m times consecutively and for this A∗, for all 0 ≤ i ≤ 10m − 2,
Bj+i �= Bj+i+1. Now, by definition of Event ErA, this means that with probability at

least 2/5 over draws (O,ViewR,ViewS0 ,ViewS1 , . . . ,ViewS10m2(n)
) ∼ D10m2(n)

Fake , we
have that Event ErA occurs. But by Lemma 5 we have that event ErA occurs with prob-
ability at most 1/5. Thus, we have arrived at contradiction and so the Lemma is proved.

References
1. Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal — an O(n2)-query attack

on any key exchange from a random oracle. In: Halevi, S. (ed.) CRYPTO 2009. LNCS,
vol. 5677, pp. 374–390. Springer, Heidelberg (2009)

2. Bendlin, R., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: Lower and upper bounds for deniable
public-key encryption. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 125–142. Springer, Heidelberg (2011)

3. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski Jr., B.S.
(ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg (1997)

4. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation.
In: STOC, pp. 639–648 (1996)

5. Canetti, R., Gennaro, R.: Incoercible multiparty computation (extended abstract). In: FOCS,
pp. 504–513 (1996)

On Minimal Assumptions for Sender-Deniable Public Key Encryption 591

6. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Improved non-committing encryption
with applications to adaptively secure protocols. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 287–302. Springer, Heidelberg (2009)

7. Dachman-Soled, D.: On the impossibility of sender-deniable public key encryption. IACR
Cryptology ePrint Archive, 2012:727 (2012)

8. Dachman-Soled, D., Lindell, Y., Mahmoody, M., Malkin, T.: On the black-box complexity
of optimally-fair coin tossing. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 450–467.
Springer, Heidelberg (2011)

9. Damgård, I.B., Nielsen, J.B.: Improved non-committing encryption schemes based on a gen-
eral complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 432–
450. Springer, Heidelberg (2000)

10. Dürmuth, M., Freeman, D.M.: Deniable encryption with negligible detection probability: An
interactive construction. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp.
610–626. Springer, Heidelberg (2011)

11. Dürmuth, M., Freeman, D.M.: Deniable encryption with negligible detection probability: An
interactive construction. IACR Cryptology ePrint Archive, 2011:66 (2011)

12. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistin-
guishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40–49
(2013)

13. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The relationship between
public key encryption and oblivious transfer. In: FOCS, pp. 325–335 (2000)

14. Gertner, Y., Malkin, T., Myers, S.: Towards a separation of semantic and CCA security for
public key encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 434–455.
Springer, Heidelberg (2007)

15. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4),
792–807 (1986)

16. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299
(1984)

17. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any
one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

18. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based cryptogra-
phy (extended abstract). In: FOCS, pp. 230–235 (1989)

19. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations.
In: STOC, pp. 44–61 (1989)

20. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudorandom
functions. SIAM J. Comput. 17(2), 373–386 (1988)

21. Maji, H.: On Computational Intractability Assumptions in Cryptography. PhD thesis, Uni-
versity of Illinois at Urbana-Champaign, Champaign, Illinois (2011)

22. Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151–158 (1991)
23. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications.

In: STOC, pp. 33–43 (1989)
24. O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In: Rogaway, P. (ed.)

CRYPTO 2011. LNCS, vol. 6841, pp. 525–542. Springer, Heidelberg (2011)
25. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryptographic prim-

itives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004)
26. Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: STOC,

pp. 387–394 (1990)
27. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: Deniable encryption, and

more. IACR Cryptology ePrint Archive, 2013:454 (2013)
28. Yao, A.C.-C.: Theory and applications of trapdoor functions. In: FOCS, pp. 80–91 (1982)

Traceable Group Encryption

Benôıt Libert1, Moti Yung2, Marc Joye1, and Thomas Peters3,�

1 Technicolor
2 Google Inc. and Columbia University

3 Université Catholique de Louvain

Abstract. Group encryption (GE) is the encryption analogue of group
signatures. It allows a sender to verifiably encrypt a message for some
certified but anonymous member of a group. The sender is further able to
convince a verifier that the ciphertext is a well-formed encryption under
some group member’s public key. As in group signatures, an opening au-
thority is empowered with the capability of identifying the receiver if the
need arises. One application of such a scheme is secure repository at an
unknown but authorized cloud server, where the archive is made accessi-
ble by a judge order in the case of misbehavior, like a server hosting illegal
transaction records (this is done in order to balance individual rights and
society’s safety). In this work we describe Traceable GE system, a group
encryption with refined tracing capabilities akin to those of the primi-
tive of “traceable signatures” (thus, balancing better privacy vs. safety).
Our primitive enjoys the properties of group encryption, and, in addi-
tion, it allows the opening authority to reveal a user-specific trapdoor
which makes it possible to publicly trace all the ciphertexts encrypted
for that user without harming the anonymity of other ciphertexts. In ad-
dition, group members are able to non-interactively prove that specific
ciphertexts are intended for them or not. This work provides rigorous
definitions, concrete constructions in the standard model, and security
proofs.

Keywords: Group encryption, traceability, anonymity, provable secu-
rity, standard model.

1 Introduction

Group signatures [10] are a fundamental privacy primitive allowing members
of a group to sign messages on behalf of the group while hiding their identity.
To deter abuses, an authority is capable of identifying the author of any valid
signature using privileged information. Group encryption (GE) is a primitive
suggested by Kiayias, Tsiounis and Yung [19], which is the encryption analogue
of group signatures [10]. Namely, it allows the sender of a ciphertext to hide the
identity of the receiver within a population of certified users —under the control
of a group manager (GM)— while providing universally verifiable guarantees
that this receiver belongs to the group. If necessary, an opening authority (OA)

� This author was supported by the CAMUS Walloon Region Project.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 592–610, 2014.
c© International Association for Cryptologic Research 2014

Traceable Group Encryption 593

is empowered with a key allowing it to “open” a ciphertext and pin down the
receiver’s identity in the same way as group signatures can be opened. Moreover,
the system should support a mechanism allowing the sender to convince any
verifier that (1) the ciphertext is well-formed and intended for some registered
group member who will be able to decrypt; (2) the opening authority can identify
the receiver if the need arises; (3) the plaintext satisfies certain properties such
as being a witness for some public relation.

As a natural use case, group encryption allows a firewall to block all encrypted
emails attempting to enter a network unless they are generated for some certified
organization member and they carry a proof of malware-freeness. The GE prim-
itive was also motivated by privacy applications such as anonymous trusted
third parties (TTP) or oblivious retriever storage. In optimistic protocols, it al-
lows verifiably encrypting messages to anonymous trusted third parties which
remain offline most of their lifetime and only wake up when there is a problem
to sort out. Group encryption provides a convenient way to hide the identity
of users’ preferred trusted third party, which can be a privacy-sensitive piece
information by itself as it can betray, e.g., the participant’s citizenship.

Group encryption also finds applications in cloud storage systems. When en-
crypting datasets on a remote storage server, the sender can convince this server
that the data is intended for some legitimate certified user without disclosing
the latter’s identity.

As exemplified in [19], group encryption also allows constructing hierarchical
group signatures [27], where signers can flexibly specify how a set of trustees
should operate to open their signatures.

Here we suggest a primitive extending the group encryption primitive and
describe a refined traceability mechanism analogous to the way traceable sig-
natures [18] extend group signatures. Specifically, when a given group member
is suspected of conducting illegal activities, the opening authority is able to re-
lease a trapdoor allowing anyone to publicly trace ciphertexts encrypted for this
member without affecting the anonymity of other users. As in the case of trace-
able signatures, the tracing trapdoor can be distributed to several tracing agents
who can proceed in parallel when it comes to search for a given group member’s
ciphertexts. In contrast, in ordinary GE schemes, this task requires the OA to
sequentially operate on all ciphertexts.

Related work. Kiayias, Tsiounis and Yung (KTY) [19] formalized the notion
of group encryption and provided a modular design using zero-knowledge proofs,
digital signatures, anonymous CCA-secure public-key encryption and commit-
ment schemes. They also gave an efficient instantiation using Paillier’s cryp-
tosystem [25] and Camenisch-Lysyanskaya signatures [8]. While efficient, their
scheme uses interactive proof systems. It can be made non-interactive using the
Fiat-Shamir paradigm [13] at the cost of relying on the random oracle model [4],
which is understood to only provide heuristic arguments in terms of security.

Qin et al. [26] considered a sort of group encryption mechanism with non-
interactive proofs and short ciphertexts. However, they appeal to random or-
acles and interactive assumptions in their security analysis. A non-interactive

594 B. Libert et al.

realization in the standard model was put forth by Cathalo, Libert and Yung
[9]. More recently, El Aimani and Joye [12] considered more efficient interactive
and non-interactive constructions using various optimizations.

As a matter of fact, none of the above solutions makes it possible to trace spe-
cific users’ ciphertexts and only those ones. If messages encrypted for a specific
misbehaving user have to be identified within a collection of, say n = 100000
ciphertexts, the opening authority has to open all of these in order to find those
it is looking for. This is clearly harmful to the privacy of honest users who lose
their anonymity just because they belong to the same group as a rogue user.
In [18], Kiayias, Tsiounis and Yung suggested a technique to address this con-
cern in the context of group signatures. To our knowledge, no real encryption
analogue of their primitive has been studied so far.

The closest work addressing the problem at hand is that of Izabachène, Point-
cheval and Vergnaud [17] who focus on eliminating subliminal channels by means
of randomizable encryption. However, their mediated traceable anonymous en-
cryption primitive does not provide all the functionalities we are aiming at. First,
their scheme only provides message confidentiality and anonymity against pas-
sive adversaries, who have no access to decryption oracles at any time. Second,
while their constructions enable individual user traceability, they do not provide
a mechanism allowing the authority to identify the receiver of a ciphertext in
O(1) time. If their scheme is set up for groups of up to n users, their opening
algorithm requires O(n) operations in the worst case. Finally, the schemes of [17]
provide no method allowing users to claim or disclaim ciphertexts they are the
recipients of or not without disclosing their private keys.

Our contribution. This paper suggests a primitive called traceable group
encryption (TGE) as the direct encryption analogue of traceable signatures, as
suggested by Kiayias, Tsiounis and Yung [18]. Beyond the usual functionalities of
group encryption, a TGE system allows the opening authority to reveal trapdoors
associated with specific group members. These trapdoors enable the recognition
of ciphertexts intended for these group members and leak no information about
the identity of other ciphertexts’ recipients. For example, when an employee
leaves a company, the firewall can use a tracing trapdoor to sieve out all incoming
ciphertexts encrypted for that former employee without learning anything else.
As in the traceable signature scenario [18], this implicit tracing process can be
run in parallel by clerks equipped with a copy of the tracing trapdoor.

In addition, similarly to the claiming mechanism of traceable signatures [18],
TGE schemes support a procedure whereby group members are able to claim
and prove that they are the legitimate receiver of some initially anonymous
ciphertexts. Moreover, we further consider the dual problem of allowing group
members to disclaim ciphertexts that are not encrypted under their public keys
(this feature was not part of the original traceable signature model but it can be
added on top of it in a modular way). Of course, our security notions explicitly
require that group members be unable to falsely claim or disclaim ciphertexts.

The above claiming and disclaiming capabilities can serve in certain appli-
cations like cloud storage. While storage servers may require anonymous data

Traceable Group Encryption 595

retrievers to hold a certificate from some authority, the disclaiming procedure
allows group members to convince investigators that they are not the intended
recipient of some suspicious ciphertext without revealing their private key.

The first contribution of this paper is to define the primitive and to further
provide stringent security definitions for traceable group encryption systems: like
its group encryption counterpart [19], our model considers powerful adversaries
who have oracle access to the private key functionalities of all users and author-
ities. As a second contribution, we provide a concrete construction and prove its
security in the standard model under non-interactive assumptions. Our system is
not just a proof of concept. At the 128-bit security level, ciphertexts and proofs
fit within 2.18 and 9.38 kB, respectively. The efficiency is thus competitive with
that of state-of-the-art group signatures [15] or traceable signatures [22] relying
on non-interactive assumptions in the standard model.

2 Background

In the paper, when S is a set, x
R← S denotes the action of choosing x at random

in S. By a ∈ poly(λ), we mean that a is a polynomial in λ while b ∈ negl(λ) says
that b is a negligible function of λ. When a and b are two binary strings, a‖b
stands for their concatenation. For equal-dimension vectors %A and %B containing
group elements, %A , %B stands for their component-wise product.

2.1 Complexity Assumptions

We use groups (G,GT) of prime order p with an efficiently computable map
e : G×G → GT such that e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G, a, b ∈ Z and
e(g, h) �= 1GT whenever g, h �= 1G. In this setting, we consider several problems.

Definition 1 ([6]). The Decision Linear Problem (DLIN) in G, is to distin-

guish the distribution of D1 = {(g, ga, gb, gac, gbd, gc+d) | a, b, c, d
R← Zp} from

the distribution D2 = {(g, ga, gb, gac, gbd, gz) | a, b, c, d, z R← Zp}.

We also rely on a problem whose generic hardness of which was proved in [1].

Definition 2 ([1]). In a group G of prime order p, the q-Simultaneous Flexible
Pairing Problem (q-SFP) is, given

(
gz, hz, gr, hr, a, ã, b, b̃

)
∈ G8 as well as q

tuples (zj , rj , sj , tj, uj , vj , wj) ∈ G7 such that

e(a, ã) = e(gz, zj)·e(gr, rj)·e(sj , tj) and e(b, b̃) = e(hz, zj)·e(hr, uj)·e(vj , wj) ,

to find a new tuple (z�, r�, s�, t�, u�, v�, w�) ∈ G7 satisfying the above equations
and such that z� �∈ {1G, z1, . . . , zq}.

Definition 3 ([7]). The Decision 3-party Diffie-Hellman Problem (D3DH) in
G, is to distinguish the distributions (g, ga, gb, gc, gabc) and (g, ga, gb, gc, gz),

where a, b, c, z
R← Zp.

596 B. Libert et al.

2.2 Groth-Sahai Proof Systems

In symmetric pairing configurations, the Groth-Sahai (GS) proof systems [16]
use a common reference string (CRS) consisting of three vectors %g1, %g2, %g3 ∈ G3,
where %g1 = (g1, 1, g), %g2 = (1, g2, g) for some g1, g2 ∈ G. To commit to a

group element X ∈ G, the prover computes %C = (1, 1, X) , %g1
r , %g2

s , %g3
t

with r, s, t
R← Zp. When the proof system is configured to provide perfectly

sound proofs, %g3 is set as %g3 = %g1
ξ1 , %g2

ξ2 with ξ1, ξ2
R← Zp. In this case,

commitments %C = (gr+ξ1t1 , gs+ξ2t2 , X ·gr+s+t(ξ1+ξ2)) can be interpreted as Boneh-
Boyen-Shacham (BBS) ciphertexts as X can be recovered by running the BBS
decryption algorithm using the private key (α1, α2) = (logg(g1), logg(g2)). When
the CRS is set up to give perfectly witness indistinguishable (WI) proofs, %g1, %g2
and %g3 are linearly independent vectors, so that %C is a perfectly hiding commit-
ment to X ∈ G: a typical choice is %g3 = %g1

ξ1 , %g2
ξ2 , (1, 1, g)−1. Under the DLIN

assumption, the two distributions of CRS are computationally indistinguishable.
To commit to an exponent x ∈ Zp, the prover computes %C = %ϕx , %g1

r , %g2
s,

with r, s
R← Zp, using a CRS containing %ϕ, %g1, %g2. In the perfect soundness setting

%ϕ, %g1, %g2 are linearly independent (typically %ϕ = %g3 , (1, 1, g) where %g3 = %g1
ξ1 ,

%g2
ξ2) whereas, in the perfect WI setting, choosing %ϕ = %g1

ξ1 , %g2
ξ2 yields perfectly

hiding commitments since %C is statistically independent of x.
Efficient NIWI proofs are available for pairing-product relations, which are

equations of the form
∏n
i=1 e(Ai,Xi) ·

∏n
i=1 ·

∏n
j=1 e(Xi,Xj)aij = tT , for vari-

ables X1, . . . ,Xn ∈ G and constants tT ∈ GT , A1, . . . ,An ∈ G, aij ∈ Zp, for
i, j ∈ {1, . . . , n}. Efficient proofs also exist for multi-exponentiation equations

like
∏m
i=1 Ayi

i ·
∏n
j=1 X bj

j ·
∏m
i=1 ·

∏n
j=1 X yiγij

j = T , for variables X1, . . . ,Xn ∈ G,
y1, . . . , ym ∈ Zp and constants T,A1, . . . ,Am ∈ G, b1, . . . , bn ∈ Zp and γij ∈ Zp,
for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

Multi-exponentiation equations always admit non-interactive zero-knowledge
(NIZK) proofs at no additional cost. On a perfectly witness indistinguishable

CRS, a trapdoor (like the hidden exponents (ξ1, ξ2) ∈ Z2
p when %g3 = %g1

ξ1 ,
%g2
ξ2 , (1, 1, g)−1) allows simulating proofs without knowing the witnesses and

simulated proofs are perfectly indistinguishable from real proofs. As for pairing-
product equations, zero-knowledge proofs are often possible – this is usually
the case when the right-hand-side member tT is a product of pairings involving
known group elements – but the number of group elements per proof may not be
constant anymore. Here, when using such NIZK simulators, we just introduce a
constant number of extra group elements in the proofs.

2.3 Chameleon Hash Functions

A chameleon hash function [21] is a tuple CMH = (CMKg,CMhash,CMswitch)
that contains an algorithm CMKg that, given a security parameter λ, outputs a
key pair (hk, tk) ← G(λ). The hashing algorithm outputs y = CMhash(hk,m, r)
given the public key hk, a message m and random coins r ∈ Rhash. On in-
put of messages m,m′, random coins r ∈ Rhash and the trapdoor key tk,

Traceable Group Encryption 597

the switching algorithm r′ ← CMswitch(tk,m, r,m′) computes r′ ∈ Rhash such
that CMhash(hk,m, r) = CMhash(hk,m′, r′). The collision-resistance property
mandates that it be infeasible to come up with pairs (m′, r′) �= (m, r) such
that CMhash(hk,m, r) = CMhash(hk,m′, r′) without knowing the trapdoor key
tk. Uniformity guarantees that the distribution of hash values is independent
of the message m: for all hk, and all m,m′, the distributions {r ← Rhash :
CMHash(hk,m, r)} and {r ← Rhash : CMHash(hk,m′, r)} are identical.

3 Traceable Group Encryption

3.1 Syntax

Traceable group encryption (TGE) schemes involve a sender, a verifier, a group
manager (GM) that manages the group of receivers and an opening author-
ity (OA) that is able to uncover the identity of ciphertext receivers.

A group encryption system is formally specified by the description of a relation
R and a collection TGE =

(
SETUP, JOIN, 〈Gr,R, sampleR〉,ENC,DEC, 〈P ,V〉,

OPEN,REVEAL,TRACE,CLAIM/DISCLAIM,CLAIM-VERIFY,DISCLAIM-
VERIFY

)
of algorithms or protocols. Among these, SETUP is a set of initial-

ization procedures that all take (explicitly or implicitly) a security parameter
λ as input. They can be split into one that generates a set of public param-
eters param (a common reference string), one for the GM and another one for
the OA. We call them SETUPinit(λ), SETUPGM(param) and SETUPOA(param), re-
spectively. The latter two procedures are used to produce key pairs (pkGM, skGM),
(pkOA, skOA) for the GM and the OA. In the following, param is incorporated in
the inputs of all algorithms although we sometimes omit to explicitly write it.

JOIN = (Juser, JGM) is an interactive protocol between the GM and the prospec-
tive user. As in [9], we will aim for two-message protocols: the first message is the
user’s public key pk sent by Juser to JGM and the latter’s response is a certificate
certpk for pk vouching for the user’s group membership. The user is not required
to prove knowledge of his private key sk. Valid public keys are assumed to be
publicly recognizable, so that proofs of validity are not necessary either. After
the execution of JOIN, the GM stores the public key pk and its certificate certpk
in a public directory database.

Algorithm sample allows sampling pairs (x,w) ∈ R (comprised of a public
value x and a witness w) using public / secret parameters (pkR, skR) produced
by Gr for R. Depending on the relation, skR may be the empty string, as in the
scheme we describe. The testing procedure R(x,w) returns 1 iff (x,w) ∈ R. To
encrypt a witness w such that (x,w) ∈ R for some public x, the sender picks
the pair (pk, certpk) from database and runs the encryption algorithm. The latter
takes as input w, a label L, the receiver’s pair (pk, certpk) as well as public keys
pkGM and pkOA. Its output is a ciphertext ψ ← ENC(pkGM, pkOA, pk, certpk, w, L).
On input of the same elements, the certificate certpk, the ciphertext ψ and the
random encryption coins coinsψ, the non-interactive algorithm P generates a
proof πψ that there exists a certified receiver whose public key was registered
in database and that is able to decrypt ψ and obtain a witness w such that

598 B. Libert et al.

(x,w) ∈ R. The verification algorithm V takes as input ψ, pkGM, pkOA, πψ and
the description of R and outputs 0 or 1. Given ψ, L and the receiver’s private
key sk, the output of DEC is either a witness w such that (x,w) ∈ R or ⊥.

The next three algorithms provide explicit and implicit tracing capabilities.
First, OPEN takes as input a ciphertext/label pair (ψ,L) and the OA’s secret
key skOA and returns a receiver’s identity i. Algorithm REVEAL takes as input
the joining transcript transcripti of user i and allows the OA to extract a tracing
trapdoor tracei using its private key skOA. This tracing trapdoor can be subse-
quently used to determine whether or not a given ciphertext-label pair (ψ,L) is
a valid encryption under the public key pki of user i: namely, algorithm TRACE
takes in public keys pkGM and pkOA as well as a pair (ψ,L) and the tracing trap-
door tracei associated with user i. It returns 1 if and only if (ψ,L) is believed to
be a valid encryption intended for user i.

Finally, algorithms (CLAIM/DISCLAIM,CLAIM-VERIFY,DISCLAIM-VERIFY)
implement a functionality that allows user to convincingly claim or disclaim
being the legitimate recipient of a given anonymous ciphertext. Concretely,
CLAIM/DISCLAIM takes as input all public keys (pkGM, pkOA, pk), a ciphertext-
label pair (ψ,L) and a private key sk. It reveals a publicly verifiable piece of
evidence τ that (ψ,L) is or is not a valid encryption under the public key pk.
Algorithms CLAIM-VERIFY and DISCLAIM-VERIFY are then used to verify the
assertion established by τ . They take as input all public keys, a pair (ψ,L) and
a claim/disclaimer τ and output 1 or 0.

3.2 Security Definitions

Beyond the standard correctness requirement, our security model involves four
properties called message privacy, anonymity, soundness and claiming sound-
ness. In the definitions hereunder, we use the notation 〈outputA|outputB〉 ←
〈A(inputA), B(inputB)〉(common-input) to denote the execution of a protocol be-
tween A and B obtaining their own outputs from their respective inputs.

Correctness. The following experiment should return 1 w.h.p.

Experiment Exptcorrectness(λ)
param ← SETUPinit(λ); (pkR, skR) ← Gr(λ); (x,w) ← sampleR(pkR, skR);
(pkGM, skGM) ← SETUPGM(param); (pkOA, skOA) ← SETUPOA(param);
〈pki, ski, certpki |pki, certpki〉 ← 〈Juser, JGM(skGM)〉(pkGM);
ψ ← ENC(pkGM, pkOA, pki, certpki , w, L);
πψ ← P(pkGM, pkOA, pki, certpki , x, w, L, ψ, coinsψ);
If
(
(w �= DEC(ski, ψ, L)) ∨ (i �= OPEN(skOA, ψ, L))

∨ (V(ψ,L, πψ, pkGM, pkOA) = 0)
)
return 0 else return 1.

Message privacy. This property is defined by an experiment where the ad-
versary has access to oracles that may be stateless or maintain a state across
queries:

Traceable Group Encryption 599

– DEC(sk): is an oracle for the user decryption function. When it is restricted

not to decrypt a ciphertext-label pair (ψ,L), we denote it by DEC¬〈ψ,L〉.
– CHbror(λ, pk, w, L): is a real-or-random challenge oracle that is only queried

once. It returns (ψ, coinsψ) such that ψ ← ENC(pkGM, pkOA, pk, certpk, w, L)
if b = 1 whereas, if b = 0, ψ ← ENC(pkGM, pkOA, pk, certpk, w

′, L) encrypts a
random plaintext uniformly chosen in the space of plaintexts of length O(λ).
In either case, coinsψ are the random coins used to generate ψ.

– PROVEbP,P′(pkGM, pkOA, pk, certpk, pkR, x, w, ψ, L, coinsψ): is a stateful ora-
cle that the adversary can query on multiple occasions. If b = 1, it runs the
real prover P on the inputs to produce an actual proof πψ. If b = 0, the
oracle runs a simulator P ′ that uses the same inputs as P except w and
coinsψ and generates a simulated proof.

– CLAIM/DISCLAIM(pkGM, pkOA, ψ, L, sk): is a stateful oracle that generates
claims or disclaimer proofs for arbitrary ciphertexts. Specifically, the oracle
first uses the private key sk to determine whether (ψ,L) is a valid ciphertext-
label pair w.r.t. the public key pk. If so, the oracle uses sk to compute and
return a non-interactive claim τ for ψ. Otherwise, the oracle generates a
disclaimer proof τ showing that (ψ,L) is not a valid encryption under pk. In
either case, (ψ,L) is stored in a list claims, which is initially empty.

These oracles are used in an experiment where the adversary controls the GM,
the OA and all members but the honest receiver. The adversary A is the dishon-
est GM that certifies the honest receiver in an execution of JOIN. It has oracle
access to the decryption function DEC of that receiver. At the challenge phase, it
probes the challenge oracle for a label and a pair (x,w) ∈ R of her choice. After
the challenge phase, A can also invoke the PROVE oracle on multiple occasions
and eventually aims to guess the bit b chosen by the challenger.

As pointed out in [19], designing an efficient simulator P ′ (for executing
PROVEbP,P′(.) when b = 0) is part of the security proof and might require a
simulated common reference string.

Definition 4. A TGE scheme satisfies message security if, for any PPT adver-
sary A, the experiment below returns 1 with probability at most 1/2 + negl(λ).

Experiment ExptsecA (λ)
param ← SETUPinit(λ); (aux, pkGM, pkOA) ← A(param);
〈pk, sk, certpk|aux〉 ← 〈Juser,A(aux)〉(pkGM);
(aux, x, w, L, pkR) ← ADEC(sk,.), CLAIM/DISCLAIM(pkGM,pkOA,.,.,sk)(aux);

If (x,w) �∈ R return 0; b
R← {0, 1}; (ψ, coinsψ) ← CHbror(λ, pk, w, L);

b′ ← APROVEb
P,P′ (pkGM,pkOA,pk,certpk,pkR,x,w,ψ,L,coinsψ),DEC¬〈ψ,L〉(sk,.),

CLAIM/DISCLAIM(pkGM,pkOA,.,.,sk)(aux, ψ);
If b = b′ return 1 else return 0.

Anonymity. In anonymity attacks, the adversary controls the entire system
except the opening authority. One way to jeopardize the anonymity property
is to mount a chosen-ciphertext attack on the encryption scheme used by the
OA. A difference with the usual group encryption scenario is that we must

600 B. Libert et al.

pay attention to the information revealed by the traceability components of
ciphertexts. Throughout the game, the adversary can act as a dishonest group
manager and register honest users in the system. In the challenge phase, the
adversary A chooses a pair (x,w) ∈ R and the public keys pk0, pk1 of two honest
users. In return, it receives an encryption of w under the public key pkb for some
b ∈ {0, 1} chosen by the challenger. It has access to the following oracles:

– USER(pkGM): is a stateful oracle simulating executions of Juser on behalf of
new honest users who are requested to join the group. It uses an initially
empty list keys. At its i-th invocation, the output (i, pki, ski, certpki) of Juser
is stored in keys if the adversary, which emulates the GM, provides a valid
certificate certpki . If the JOIN protocol does not successfully terminate, the
oracle stores (i,⊥) in keys.

– CORR(.): is a stateful oracle that allows the adversary to corrupt honest
group members. When invoked on input of an index i, the oracle first checks
if the list keys contains an entry of the form (i, pki, ski, certpki). If so, it
returns ski and adds i to the set Corr, which is initially empty.

– DEC(., .): is a stateless decryption oracle that provides a decryption capa-
bility for each secret key. It takes as input an index i and a ciphertext-label
pair (ψ,L). It first checks if the list keys contains an entry of the form
(i, pki, ski, certpki). If no such entry exists, it returns ⊥. Otherwise, it uses
ski to run DEC on the input (ψ,L) and returns the result. When this oracle
is restricted not to decrypt a ciphertext-label pair (ψ,L) for some user index

i ∈ {i0, i1}, we denote it by DEC¬{i0,i1}×〈ψ,L〉.
– OPEN(skOA, .): is a stateless oracle that runs the opening algorithm on behalf

of the OA. On input of a TGE ciphertext, it returns the receiver’s identity i.
– REVEAL(skOA, .): is an oracle that takes as input a user index i and simulates

the REVEAL algorithm on behalf of the OA. If no user was assigned the index
i in keys, it returns ⊥. Otherwise, it recovers the transcript transcripti of user
i in database and uses skOA to extract and return the i-th group member’s
tracing trapdoor tracei. It also adds i to the set Revs.

– CHbanon(pkGM, pkOA, pk0, pk1, w, L): is a challenge oracle that can only be
queried once. It returns a pair (ψ, coinsψ) consisting of a ciphertext ψ ←
ENC(pkGM, pkOA, pkb, certpkb , w, L) and the coin tosses used to generate ψ.

– P(pkGM, pkOA, pkb, certpkb , pkR, x, w, ψ, L, coinsψ): is a stateful oracle which
can be queried several times after the challenge phase. It runs the real prover
P on the inputs to produce an actual proof πψ using the random coins coinsψ
involved in the generation of the challenge. It returns the resulting proof πψ .

– CLAIM/DISCLAIM(pkGM, pkOA, ψ, L, i): is a stateful oracle. It takes as input
an index i and a ciphertext/label pair. It first checks whether keys contains a
tuple transcripti = (i, pki, ski, certpki). If not, it returns ⊥. Otherwise, it uses
the private key ski to determine whether (ψ,L) is a valid ciphertext-label
pair w.r.t. the public key pki. If yes, the oracle uses ski to generate a non-
interactive claim τ for (ψ,L). Otherwise, the oracle generate a disclaimer τ
guaranteeing that (ψ,L) is not a valid encryption under pki. In either case,
(i, ψ, L) is stored in a list claims, which is initially empty.

Traceable Group Encryption 601

Definition 5. A TGE scheme satisfies anonymity if, for any PPT adversary A,
the experiment below returns 1 with a probability not exceeding 1/2 + negl(λ).

Experiment ExptanonA (λ)
param ← SETUPinit(λ); (pkOA, skOA) ← SETUPOA(param);
(aux, pkGM) ← A(param, pkOA);

(i0, i1, aux, x, w, L, pkR) ← AUSER(pkGM), OPEN(skOA,.),

REVEAL(skOA,.), DEC(.,.), CLAIM/DISCLAIM(pkGM,pkOA,.,.,.), CORR(.)(aux);
If (i0, pk0, sk0, certpk0) �∈ keys ∨ (i1, pk1, sk1, certpk1) �∈ keys return 0;

If (x,w) �∈ R return 0; b
R← {0, 1};

(ψ, coinsψ) ← CHbanon(pkGM, pkOA, pk0, pk1, w, L);

b′ ← AUSER(pkGM), P(pkGM,pkOA,pkb,certpkb ,x,w,ψ,L,coinsψ), OPEN¬〈ψ,L〉(skOA,.), CORR(.)

REVEAL¬{i0,i1}(skOA,.), DEC¬{i0,i1}×〈ψ,L〉(.,.), CLAIM/DISCLAIM(pkGM,pkOA,.,.,.)(aux, ψ);
If
(
(i0, ψ, L) ∈ claims

)
∨

(
(i1, ψ, L) ∈ claims

)
return 0;

If (i0 ∈ Revs ∪ Corr) ∨ (i1 ∈ Revs ∪ Corr) return 0;
If b = b′ return 1 else return 0.

As shown in [19], TGE schemes satisfying the above notion necessarily subsume
a key-private (a.k.a. receiver anonymous) [3] cryptosystem.

Soundness. In a soundness attack, the adversary creates the group of receivers
by interacting with the honest GM. Its goal is to create a ciphertext ψ and
a convincing proof that ψ is valid w.r.t. a relation R of its choice but either
(1) the opening fails to identify a certified group member as the legitimate
recipient of ψ; (2) the implicit tracing mechanism TRACE does not point to
the group member pinned down by OPEN; (3) the ciphertext C is not in the
language Lx,L,pkR,pkGM,pkOA,pki = {ENC(pkGM, pkOA, pki, certpki , w, L) | (x,w) ∈
R; (pki, certpki) ∈ valid}, where valid is the set of properly certified keys. This
notion is formalized by a game where the adversary is given access to a user regis-
tration oracle REG(skGM, .) that emulates JGM. This oracle maintains a repository
database where registered public keys and their certificates are stored.

Definition 6. A TGE scheme is sound if, for any PPT adversary A, the exper-
iment below returns 1 with negligible probability.

Experiment ExptsoundnessA (λ)
param ← SETUPinit(λ); (pkOA, skOA) ← SETUPOA(param);
(pkGM, skGM) ← SETUPGM(param);
(pkR, x, ψ, πψ, L, aux) ← AREG(skGM,.)(param, pkGM, pkOA, skOA);
If V(ψ,L, πψ, pkGM, pkOA) = 0 return 0;
i ← OPEN(skOA, ψ, L);
If
(
(i =⊥) ∨ (ψ �∈ Lx,L,pkR,pkGM,pkOA,pki)

)
then return 1;

tracei ← REVEAL(transcripti, skOA);
If
(
i �= TRACE(pkGM, pkOA, ψ, tracei)

)
then return 1;

Return 0.

602 B. Libert et al.

The above properties are similar to those for group encryption. We need to
introduce the new notion of claiming soundness (which is not part of the group
encryption model [19]) that formalizes the soundness of the claiming process.

Claiming soundness. The last security notion considers an adversary attack-
ing the soundness of the claiming algorithm by either claiming other users’ ci-
phertexts as its own or disclaiming ciphertexts that are actually encrypted under
its public key. Moreover, the verifier of a claim/disclaimer should be convinced of
the group member’s intentionality to claim or repudiate ciphertexts. We require
that only users be able to claim/disclaim ciphertexts encrypted under their key
or not: even the sender (who knows the encryption coins) should not do this.

In the model, the adversary controls the GM and the OA. It has access to ora-
cles USER(pkGM), CORR(.), DEC(., .) and CLAIM/DISCLAIM(pkGM, pkOA, ψ, L, i),
which are identical to those of the anonymity property.

The adversary’s goal is to create a public repository database satisfying
the integrity check, a ciphertext ψ and a statement statement consisting of a
claim/disclaimer τ and a public key pk but either: (1) the implicit tracing mech-
anism TRACE does not point to the group member i pinned down by OPEN;
(2) statement = (τ, pk) is a valid claim although pk �= pki, where pki is associ-
ated with user i in database; (3) statement = (τ, pk) is a valid disclaimer whereas
pk = pki coincides with the public key associated with user i in database; (4)
statement = (τ, pkj) is a valid claim/disclaimer for the public key pkj of some
uncorrupted user j ∈ database\Corr in the database and the pair (τ, pkj) was
not produced by the CLAIM/DISCLAIM oracle.

Definition 7. A TGE scheme provides claiming-soundness if, for any PPT ad-
versary A, the experiment below returns 1 with negligible probability.

Experiment Exptclaiming-soundness
A (λ)

param ← SETUPinit(λ); (pkGM, aux0) ← A(param);
(pkOA, skOA) ← SETUPOA(param);

(pk�R, x�, ψ�, L�, π�ψ , statement�, database�, aux) ← AUSER(pkGM), CORR(.),

DEC(.,.), CLAIM/DISCLAIM(pkGM,pkOA,.,.,.)(param, pkOA, skOA, aux0);
If DATABASE-CHECK(param, database) = 0 return 0;
If V(ψ�, L�, π�ψ , pkGM, pkOA) = 0 return 0;

i ← OPEN(skOA, ψ
�, L�); tracei ← REVEAL(transcripti, skOA);

If
(
i �= TRACE(pkGM, pkOA, ψ

�, tracei)
)
then return 1;

If
(
statement� = (τ�, pk�) s.t. (pk� �= pki)
∧ CLAIM-VERIFY(pkGM, pkOA, ψ

�, L�, pk�, τ�
)
= 1

)
then return 1;

If
(
statement� = (τ�, pk�) s.t. (pk� = pki)
∧ DISCLAIM-VERIFY(pkGM, pkOA, ψ

�, L�, pk�, τ�
)
= 1

)
then return 1;

If
(
statement� = (τ�, pkj) s.t. (j, pkj , certj , .) ∈ database ∧ (j �∈ Corr)

∧ (ψ�, L�, pkj) �∈ Qc ∧
(
CLAIM-VERIFY(pkGM, pkOA, ψ

�, L�, pkj , τ
�
)
=1

∨ DISCLAIM-VERIFY(pkGM, pkOA, ψ
�, L�, pkj , τ

�
)
= 1

))
then return 1;

Return 0.

Traceable Group Encryption 603

In the above notations, Qc is the set of CLAIM/DISCLAIM queries made by A.
We note that there is no need for a REVEAL oracle in the definition. Indeed,

since A knows skOA, it can obtain tracing trapdoors by itself, by decrypting the
verifiable encryptions sent by honest users when the USER oracle is invoked.

4 A Non-interactive Traceable Group Encryption Scheme

We use the Libert-Yung (LY) scheme [23], which is a publicly verifiable variant
of Cramer-Shoup [11]. We take advantage of the observation that, if certain pub-
lic key components are shared by all users as common public parameters, the
scheme can simultaneously provide receiver anonymity and publicly verifiable
ciphertexts. In other words, anyone can publicly verify that a ciphertext is valid
without knowing who the receiver is. When proofs are generated for the cipher-
text, this saves the prover from having to provide evidence that the ciphertext
is valid and thus yields shorter proofs.

The message is encrypted under the receiver’s public key using the LY scheme.
At the same time, the two last components of the receiver’s public key is en-
crypted under the public key of the opening authority using Kiltz’s encryption
scheme [20]. We use this scheme because it is the most efficient DLIN-based
CCA2-secure cryptosystem where the validity of ciphertexts is publicly verifi-
able and we do not need it to hide the public key under which it is generated.

When new users join the group, the GM provides them with a membership
certificate made of a structure-preserving signature [14,1,2] on their public key
which comprises group elements (X1, X2). We chose to work with the scheme
of Abe, Haralambiev and Ohkubo (AHO) [1,2] because it allows working exclu-
sively with linear pairing-product equations and thus obtain a better efficiency.

The implicit tracing mechanism must allow the OA to disclose user-specific
tracing trapdoors. To this end, we include in each membership certificate a
pair (Γ1, Γ2) = (gγ1 , gγ2) ∈ G2, where (γ1, γ2) ∈ Z2

p are part of the user’s pri-
vate key. When users join the group, they are thus requested to produce a pair
(Γ1, Γ2) = (gγ1 , gγ2) for which gγ1γ2 will serve as a tracing trapdoor for them.
Since gγ1γ2 cannot be publicly revealed, we appeal to a verifiable encryption
mechanism as was suggested in [5] in a related context: namely, the prospective
user provides the GM with an encryption Φvenc of gγ1γ2 under the OA’s public
key and generates a non-interactive proof that the encrypted value is indeed an
element gγ1γ2 such that (g, gγ1, gγ2 , gγ1γ2) is a Diffie-Hellman tuple. The REVEAL
algorithm thus uses the OA’s private key to decrypt Φvenc so as to expose gγ1γ2 .
Armed with the information tracei = gγ1γ2 , a tracing agent can test whether a
ciphertext ψ is prepared for user i as follows. We require each ciphertext ψ to

contain elements of the form (T1, T2, T3) = (gδ, Γ
δ/�
1 , Γ �2), where δ, � ∈R Zp are

chosen by the sender. Since (Γ1, Γ2) = (gγ1 , gγ2), the TRACE algorithm concludes
that user i is indeed the receiver if e(T1, g

γ1γ2) = e(T2, T3). At the same time,
we can show that recognizing ciphertexts encrypted for user i without tracei is
as hard as solving the D3DH problem.

For technical reasons, we need to introduce an extra traceability component
T4 = (ΛVK

0 · Λ1)
δ, where Λ0, Λ1 ∈ G are part of common public parameters and

604 B. Libert et al.

VK is the verification key of a one-time signature. The reason is that, in order
to prove anonymity in our model, we need to bind (T1, T2, T3) to the one-time
verification key VK in a non-malleable way. Otherwise, an anonymity adversary
could break the anonymity by having access to a CLAIM/DISCLAIM oracle.

In order to prove or disprove that he is the intended recipient of a given pair

(ψ,L), a user i can use the traceability components (T1, T2, T3) = (gδ, Γ
δ/�
1 , Γ �2)

of ψ and his private key γ1 = logg(Γ1) to compute Γ δ1 = T γ11 (although he does

not know δ), which allows anyone to realize that (g, T1, Γ1, Γ
δ
1) forms a Diffie-

Hellman tuple and that e(Γ δ1 , Γ2) = e(T2, T3). This is sufficient for proving that
(ψ,L) was created for the public key pk = (X1, X2, Γ1, Γ2). In order to make sure
that only the user will be able to compute non-interactive claims, we also require
him to provide a non-interactive proof of knowledge of Γ−1 = g1/γ1 satisfying
e(Γ δ1 , Γ−1) = e(T1, g). Moreover, the claim is non-malleably bound to (ψ,L, pk)
– where pk is the claimer’s public key —by generating the non-interactive Groth-
Sahai proof for a CRS (%g1, %g2,%hv) that depends on the ciphertext which is being
claimed and the receiver’s public key (the idea of data-dependent CRS is bor-
rowed from [24]): this prevents malicious users from convincingly claiming other
users’ ciphertexts. To eliminate an annoying case in the proof of anonymity, we
chose to derive the vector %hv from a bit string obtained by applying a chameleon
hash function [21] (rather than a an ordinary hash function) to (ψ,L, pk).

We build a non-interactive group encryption scheme for the Diffie-Hellman
relation R = {(X,Y),W} where e(g,W) = e(X,Y), for which the keys are
pkR = {G,GT , g} and skR = ε.

SETUPinit(λ) : Let � ∈ poly(λ) be a polynomial, where λ ∈ N is the security
parameter.
1. Choose bilinear groups (G,GT) of prime order p > 2λ with g, g1, g2,

Λ0, Λ1
R←G. Construct a perfectly sound Groth-Sahai CRS g=(%g1, %g2, %g3)

using %g1 = (g1, 1, g), %g2 = (1, g2, g) and %g3 = %g1
ξ1 , %g2

ξ2 with ξ1, ξ2
R← Zp.

2. For i = 0 to � choose ζi,1, ζi,2
R← Zp and set %hi = %g1

ζi,1 , %g2
ζi,2 so as to

obtain vectors {%hi}�i=0.

3. Choose η1, η2
R← Zp and compute %f = %g1

η1 , %g2
η2 = (f3,1, f3,2, f3,3) so

as to form another CRS f = (%g1, %g2, %f).
4. Select a strongly unforgeable one time signature Σ = (G,S,V) and a

chameleon hash function CMH = (CMKg,CMhash,CMswitch) with a key
pair (hk, tk) ← G(λ). Public parameters are

param = {λ,G,GT , g, %g1, %g2, %g3, %f , {%hi}�i=0, Λ0, Λ1, Σ, CMH , hk}.
SETUPGM(param) : This algorithm runs the setup algorithm of the structure-

preserving signature of Abe et al. [1] for messages of length n = 4. The
secret key is skGM =

(
αa, αb, γz, δz, {γi, δi}4i=1

)
while the public key consists

of pkGM =
(
Gr, Hu, Gz , Hz, {Gi, Hi}4i=1, Ωa, Ωb

)
∈ G8 × G2

T .

SETUPOA(param) : generates pkOA = (Y1, Y2, Y3, Y4) = (gy1 , gy2 , gy3 , gy4), as a
public key for Kiltz’s encryption scheme [20], and the corresponding private
key as skOA = (y1, y2, y3, y4).

Traceable Group Encryption 605

JOIN : The prospective user Ui and the GM run the following protocol.
1. Ui picks x1, x2, z, γ1, γ2

R← Zp and computes pk = (X1, X2, Γ1, Γ2), where

X1 = gx1
1 · gz , X2 = gx2

2 · gz , Γ1 = gγ1 , Γ2 = gγ2 .

The private key is defined to be sk = (x1, x2, z, γ1, γ2). Here, (X1, X2)
form a public key for the LY encryption scheme recalled in [23] whereas
(Γ1, Γ2) will provide user traceability.

2. Ui defines Γ0 = gγ1γ2 and generates a verifiable encryption of Γ0 un-

der pkOA. To this end, he chooses w1, w2
R← Zp and computes Φvenc =

(Φ0, Φ1, Φ2) =
(
Γ0·gw1+w2 , Y w1

1 , Y w2
2

)
. Then, Ui generates a NIZK proof

πvenc that Φvenc encrypts Γ0 such that e(Γ0, g) = e(Γ1, Γ2). Namely, Ui
uses the CRS f = (%g1, %g2, %f) to generate GS commitments %CW1 , %CW2 to
the group elements W1 = gw1 and W2 = gw2 , respectively, and non-
interactively prove that e(Φ0, g) = e(Γ1, Γ2) · e(g,W1) · e(g,W2) and

e(Φ1, g) = e(Y1,W1) e(Φ2, g) = e(Y2,W2) .

These are linear pairing product equations. However, since their proofs
must be NIZK proofs, they cost 21 group elements to prove altogether
We denote by πvenc the resulting NIZK proof. The prospective user Ui
then sends to the group manager a certification request consisting of(
pk = (X1, X2, Γ1, Γ2), Φvenc, %CW1 , %CW2 , πvenc

)
.

3. If database already contains a record transcriptj for which the certi-
fied public key pkj = (Xj,1, Xj,2, Γj,1, Γj,2) is such that (X1, X2) =
(Xj,1, Xj,2) or e(Γj,1, Γj,2) = e(Γ1, Γ2), the GM returns ⊥. Otherwise,
the GM generates a certificate certpk = (Z,R, S, T, U, V,W) ∈ G7 for pk,
which consists of an AHO signature on the tuple (X1, X2, Γ1, Γ2). Then,
it stores the entire interaction transcript

transcripti =
(
pk = (X1, X2, Γ1, Γ2), (Φvenc, %CW1 , %CW2 , πvenc), certpk

)
in database. We also define the DATABASE-CHECK algorithm in such
a way that it returns 0 (meaning that database is not well-formed)
if database contains two distinct records transcripti and transcriptj for
which the corresponding public keys pki = (Xi,1, Xi,2, Γi,1, Γi,2) and
pkj = (Xj,1, Xj,2, Γj,1, Γj,2) are such that (Xi,1, Xi,2) = (Xj,1, Xj,2) or
e(Γi,1, Γi,2) = e(Γj,1, Γj,2). Otherwise, it returns 1.

ENC(pkGM, pkOA, pk, certpk,M,L) : To encrypt M ∈ G s.t. ((A,B),M) ∈ Rdh

(for public A,B ∈ G), parse pkGM, pkOA and pk as (X1, X2, Γ1, Γ2) ∈ G4.

1. Generate a one-time signature key pair (SK,VK) ← G(λ).
2. Generate traceability components (T1, T2, T3, T4)∈G4 by choosing δ, �

R←
Zp and computing T1 = gδ, T2 = Γ

δ/�
1 , T3 = Γ �2 and T4 = (ΛVK

0 · Λ1)
δ.

3. Compute a LY encryption of M under the label L. Namely,

(a) Choose θ1, θ2
R← Zp and compute C0 = M · Xθ1

1 · Xθ2
2 , C1 = gθ11 ,

C2 = gθ22 and C3 = gθ1+θ2 .

606 B. Libert et al.

(b) Construct a vector%gVK = %g3·(1, 1, g)VK and usegVK = (%g1, %g2, %gVK) as a
Groth-Sahai CRS to generate a NIZK proof that (g, g1, g2, C1, C2, C3)

form a linear tuple. More precisely, generate commitments %Cθ1 , %Cθ2 to

θ1, θ2 ∈ Zp (namely, compute %Cθi = %g θiVK · %g1
ri · %g2si with ri, si

R← Zp
for each i ∈ {1, 2}) and a proof πLIN that they satisfy

C1 = gθ11 , C2 = gθ22 , C3 = gθ1+θ2 . (1)

The whole proof for (1) consists of %Cθ1 , %Cθ2 and πLIN is obtained as

πLIN = (π1, π2, π3, π4, π5, π6) =
(
gr11 , gs11 , gr22 , gs22 , gr1+r2 , gs1+s2

)
.

(c) Define the partial LY ciphertextψLY=(C0, C1, C2, C3, %Cθ1 , %Cθ2 , πLIN).

4. For i = 1, 2, choose zi,1, zi,2
R← Zp and encrypt Γi under pkOA using

Kiltz’s cryptosystem using the same one-time verification key VK as in
step 1. Let {ψKi}i=1,2 be the ciphertexts.

5. Set the TGE ciphertext ψ as ψ = VK‖(T1, T2, T3, T4)‖ψLY‖ψK1‖ψK2‖σ
where σ = S(SK, ((T1, T2, T3, T4)‖ψLY‖ψK1‖ψK2‖L)).

Return (ψ,L) and coinsψ consist of δ, �, {(zi,1, zi,2)}2i=1 and (θ1, θ2). If the
one-time signature of [14] is used, the pair (VK, σ) takes 5 group elements,
so that ψ comprises 35 elements of G.

P(pkGM, pkOA, pk, certpk, (X,Y),M, ψ, L, coinsψ) : Parse pkGM, pkOA, pk and ψ

as above. Using the vectors f = (%g1, %g2, %f) as a Groth-Sahai CRS, generate
a non-interactive proof for ψ.
1. Parse certpk as (Z,R, S, T, U, V,W) ∈ G7 and re-randomize it to ob-

tain (Z ′, R′, S′, T ′, U ′, V ′) ← ReRand(pkGM, (Z,R, S, T, U, V,W)) (as ex-

plained in [1]). Generate GS commitments %CZ′ , %CR′ , %CU ′ to Z ′, R′ and

U ′. Then, set comcertpk = (%CZ′ , %CR′ , %CU ′ , S′, T ′, V ′,W ′) ∈ G13.
2. Generate Groth-Sahai commitments to the components of the public key

pk = (X1, X2, Γ1, Γ2) and obtain the set compk = { %CXi , %CΓi}i=1,2, which
consists of 12 group elements.

3. Generate a proof πcertpk that comcertpk is a commitment to a valid certifi-
cate for the public key contained in compk. The proof πcertpk is a NIWI
that (Z ′, R′, S′, T ′, U ′, V ′) is a valid AHO signature on pk.

4. Generate a NIZK proof πT that (T1, T2, T3) = (gδ, Γ
δ/�
1 , Γ �2) for some

δ, � ∈ Zp. To this end, generate a commitment %CΥ to the group element
Υ = gδ/� and generate a NIZK proof that

e(Υ, T3) = e(T1, Γ2) , e(T2, g) = e(Γ1, Υ) .

5. For i = 1, 2, generate NIZK proofs πeq-key,i that %CΓi and ψKi are en-
cryptions of the same Γi. If ψKi = (Vi,0, Vi,1, Vi,2, Vi,3, Vi,4) is a Kiltz
encryption comprising

(
Vi,0, Vi,1, Vi,2) =

(
Γi · gzi,1+zi,2 , Y zi,1

1 , Y
zi,2
2

)
and

%CΓi is parsed as (cΓi1 , cΓi2 , cΓi3) =
(
gρi11 ·fρi33,1 , g

ρi2
2 ·fρi33,2 , Γi·gρi1+ρi2 ·fρi33,3

)
,

where zi,1, zi,2 ∈ coinsψ, ρi1, ρi2, ρi3 ∈ Zp and %f = (f3,1, f3,2, f3,3), this

Traceable Group Encryption 607

amounts to prove knowledge of values zi,1, zi,2, ρi1, ρi2, ρi3 ∈ Zp such

that
(
Vi,1

cΓi1
,
Vi,2

cΓi2
,
Vi,0

cΓi3

)
is of the form(

Y
zi,1
1 · g−ρi11 · f−ρi3

3,1 , Y
zi,2
2 · g−ρi22 · f−ρi3

3,2 , gzi,1+zi,2−ρi1−ρi2 · f−ρi3
3,3

)
.

6. Generate a NIZK proof πR that ψLY encrypts a group element M ∈ G
such that ((A,B),M) ∈ R. To this end, generate a commitment comM =
(cM,1, cM,2, cM,3) =

(
gρ11 · fρ33,1, g

ρ2
2 · fρ33,2,M · gρ1+ρ2 · fρ33,3

)
and prove that

the underlying M is the same as the one for which C0 = M · Xθ1
1 · Xθ2

2

in ψLY. In other words, prove knowledge of θ1, θ2, ρ1, ρ2, ρ3 such that(
C1, C2,

C1

cM,1
, C2

cM,2
, C0

cM,3

)
equals(

gθ1 , gθ2 , gθ1−ρ11 · f−ρ3
3,1 , gθ2−ρ22 · f−ρ3

3,2 , g−ρ1−ρ2 · f−ρ3
3,3 · Xθ1

1 · Xθ2
2

)
.

The entire proof πψ = comcertpk‖compk‖πcertpk‖πT ‖πeq-key,1‖πeq-key,2‖πR
takes 150 elements.

V(param, ψ, L, πψ, pkGM, pkOA) : Parse pkGM, pkOA, pk, ψ and πψ as above. Re-
turn 1 if and only if the conditions below are all satisfied.

1. V(VK, σ, ((T1, T2, T3, T4)‖ψLY‖ψK1‖ψK2‖L)) = 1.
2. e(T1, Λ

VK
0 · Λ1) = e(g, T4) and ψLY is a valid LY ciphertext.

3. All proofs verify and if {ψKi}2i=1 are valid Kiltz encryptions w.r.t. VK.
DEC(sk, ψ, L) : Parse ψ as VK‖(T1, T2, T3, T4)‖ψLY‖ψK1‖ψK2‖σ. Return ⊥ in the

event that either: (i) V(VK, σ, ((T1, T2, T3, T4)‖ψLY‖ψK1‖ψK2‖L)) = 0; (ii)
e(T1, Λ

VK
0 ·Λ1) �= e(g, T4) or ψLY and {ψKi}i=1,2 are not all valid ciphertexts.

Otherwise, use sk to decrypt (ψLY, L).

REVEAL(transcripti, skOA) : Parse transcripti as(
(Xi,1, Xi,2, Γi,1, Γi,2), (Φvenc,i, %CWi,1 , %CWi,2 , πvenc,i), certpk,i

)
.

Parse Φvenc,i as a BBS ciphertext (Φi,0, Φi,1, Φi,2) ∈ G3 and verify that

(%CWi,1 , %CWi,2 , πvenc,i) form a valid proof fo. If not, return ⊥. Otherwise, use

skOA = (y1, y2, y3, y4) to compute Γi,0 = Φi,0 · Φ−1/y1
i,1 · Φ−1/y2

i,2 . Return the
resulting plaintext tracei = Γi,0 ∈ G which can serve as a tracing trapdoor

for user i as it is necessarily of the form Γi,0 = Γ
logg(Γi,1)

i,2 .
TRACE(pkGM, pkOA, ψ, tracei) : Given ψ = VK‖(T1, T2, T3, T4)‖ψLY‖ψK1‖ψK2‖σ

and the tracing trapdoor tracei as a group element Γi,0 ∈ G. If the equality
e(T1, Γi,0) = e(T2, T3) holds, it returns 1. Otherwise, it outputs 0.

OPEN(skOA, ψ, L) : Parse ψ as VK‖(T1, T2, T3, T4)‖ψLY‖ψK1‖ψK2‖σ. Return ⊥ if
{ψKi}2i=1 are not both valid ciphertexts w.r.t. VK or if σ is an invalid one-
time signature for VK. Otherwise, decrypt {ψKi}i=1,2 to obtain Γ1, Γ2 ∈ G
and look up database in order to find a record transcripti containing a key
pki = (Xi,1, Xi,2, Γi,1, Γi,2) such that (Γi,1, Γi,2) = (Γ1, Γ2) (note that, unless
database is ill-formed, such a record is unique if it exists). If such a record is
found, output the matching i. Otherwise, output ⊥.

608 B. Libert et al.

CLAIM/DISCLAIM(pkGM, pkOA, ψ, L, sk) : Given sk = (x1, x2, z, γ1, γ2), parse ψ
as VK‖(T1, T2, T3, T4)‖ψLY‖ψK1‖ψK2‖σ. To generate a claim/disclaimer τ for
the ciphertext ψ, first verify that e(T1, Λ

VK
0 · Λ1) = e(g, T4) and that σ is

a valid one-time signature. If these conditions, do not hold, return ⊥. Oth-
erwise, compute Tδ,1 = T γ11 = Γ δ1 , where δ = logg(T1). Then, compute a

collision-resistant hash v = CMhash(hk, (ψ,L, pk), shash) ∈ {0, 1}�, where
shash

R← Rhash. Then, parse v as v[1] . . . v[�] ∈ {0, 1}� and assemble the vec-

tor %hv = %h0 ,
⊙�

i=1
%h
v[i]
i . Using (%g1, %g2,%hv) as a Groth-Sahai CRS, generate

a commitment %CΓ−1 to Γ−1 = g1/γ1 and a NIZK proof that Γ−1 satisfies

e(Tδ,1, Γ−1) = e(T1, g). To this end, generate a commitment %CXτ to the aux-
iliary variable Xτ = g and non-interactive proofs πτ,1, πτ,2 for the equations

e(Tδ,1, Γ−1) = e(T1,Xτ) , e(g,Xτ) = e(g, g) . (2)

The claim/disclaimer is τ =
(
Tδ,1, %CΓ−1 , %CXτ , πτ,1, πτ,2, shash

)
∈ G14.

CLAIM-VERIFY(pkGM, pkOA, ψ, L, pk, τ) : Given pk = (X1, X2, Γ1, Γ2) and the
ciphertext ψ = VK‖(T1, T2, T3, T4)‖ψLY‖ψK1‖ψK2‖σ, parse τ as above. Re-
turn 1 if and only if e(Tδ,1, Γ2) = e(T2, T3) and e(T1, Γ1) = e(g, Tδ,1) and

πτ,1, πτ,2 are valid proofs for (2) w.r.t. the Groth-Sahai CRS (%g1, %g2,%hv),

where %hv = %h0 ,
⊙�

i=1
%h
v[i]
i and v = CMhash(hk, (ψ,L, pk), shash) ∈ {0, 1}�.

DISCLAIM-VERIFY(pkGM, pkOA, ψ, L, pk, τ) : Parse pk, ψ and τ as previously.
Return 1 if and only if e(Tδ,1, Γ2) �= e(T2, T3), e(T1, Γ1) = e(g, Tδ,1) and

πτ,1, πτ,2 are valid proofs for (2) and the Groth-Sahai CRS (%g1, %g2,%hv), where
%hv = %h0 ,

⊙�
i=1

%h
v[i]
i and v = CMhash(hk, (ψ,L, pk), shash) ∈ {0, 1}�.

The length of ciphertexts is about 2.18 kB using symmetric pairings with a
512-bit representation for each group element (at the 128-bit security level). Our
proofs only require 9.38 kB (against roughly 32 kB for the same security in [9]).
More detailed comparisons with [19,9] are given in the full version of the paper.

The correctness of the scheme stems from that of Groth-Sahai proofs. From a
security point of view, we prove the security properties under the q-SFP, D3DH
and DLIN assumptions and also require the one-time signatures to be strongly
unforgeable. All proofs are given in the full version of the paper.

References

1. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups for
modular protocol design. Cryptology ePrint Archive: Report 2010/133 (2010)

2. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

3. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001)

Traceable Group Encryption 609

4. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS 1993 (1993)

5. Benjumea, V., Choi, S.G., Lopez, J., Yung, M.: Fair traceable multi-group sig-
natures. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 231–246. Springer,
Heidelberg (2008)

6. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

7. Boneh, D., Franklin, M.: Identity based encryption from the Weil pairing. SIAM
J. of Computing 32(3), 586–615 (2003), Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 213–615. Springer, Heidelberg (2001)

8. Camenisch, J.L., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003)

9. Cathalo, J., Libert, B., Yung, M.: Group encryption: Non-interactive realization
in the standard model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 179–196. Springer, Heidelberg (2009)

10. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

11. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

12. El Aimani, L., Joye, M.: Toward practical group encryption. In: Jacobson, M.,
Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954,
pp. 237–252. Springer, Heidelberg (2013)

13. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

14. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006)

15. Groth, J.: Fully anonymous group signatures without random oracles. In: Kuro-
sawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Hei-
delberg (2007)

16. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

17. Izabachène, M., Pointcheval, D., Vergnaud, D.: Mediated traceable anonymous
encryption. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS,
vol. 6212, pp. 40–60. Springer, Heidelberg (2010)

18. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Ca-
menisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer,
Heidelberg (2004)

19. Kiayias, A., Tsiounis, Y., Yung, M.: Group encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 181–199. Springer, Heidelberg (2007)

20. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

21. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000 (2000)
22. Libert, B., Yung, M.: Efficient Traceable Signatures in the Standard Model. In:

Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 187–205.
Springer, Heidelberg (2009)

610 B. Libert et al.

23. Libert, B., Yung, M.: Non-interactive CCA-secure threshold cryptosystems with
adaptive security: New framework and constructions. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 75–93. Springer, Heidelberg (2012)

24. Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to contin-
ual leakage on memory and computation. In: Ishai, Y. (ed.) TCC 2011. LNCS,
vol. 6597, pp. 89–106. Springer, Heidelberg (2011)

25. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

26. Qin, B., Wu, Q., Susilo, W., Mu, Y.: Publicly verifiable privacy-preserving group
decryption. In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008. LNCS, vol. 5487,
pp. 72–83. Springer, Heidelberg (2009)

27. Trolin, M., Wikström, D.: Hierarchical group signatures. In: Caires, L., Italiano,
G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580,
pp. 446–458. Springer, Heidelberg (2005)

Practical Covert Authentication

Stanislaw Jarecki

University of California Irvine
stasio@ics.uci.edu

Abstract. Von Ahn, Hopper, and Langford [vAHL05] introduced the
notion of two-party steganographic a.k.a. covert computation, which as-
sures that neither party can distinguish its counterparty from a random
noise generator, except for what is revealed by the final output of the
securely computed function. The flagship motivation for covert compu-
tation is covert authentication, where two parties want to authenticate
each other, e.g. as some credential holders, but a party who lacks the
credentials is not only unable to pass the authentication protocol, but
cannot even distinguish a protocol instance from random noise.

Previous work on covert computation [vAHL05,CGOS07] showed
general-purpose protocols whose efficiency is linear in the size of the cir-
cuit representation of the computed function. Here we show the first prac-
tical (assuming a large-enough random steganographic channel) covert
protocol for the specific task of two-party mutual authentication, se-
cure under the strong RSA, DQR, and DDH assumptions. The protocol
takes 5 rounds (3 in ROM), O(1) modular exponentiations, and supports
revocation and identity escrow. The main technical contribution which
enables it is a compiler from a special honest-verifier zero-knowledge
proof to a covert conditional key encapsulation mechanism for the same
language.

1 Introduction

Steganography addresses a security/privacy property which is not usually con-
sidered in cryptography, which is how to make the very fact of secure protocol
execution hidden from the adversary. Such hiding of a protocol instance is in
principle possible if the public channels connecting the communicating parties
are steganographic in the sense that they have some intrinsic entropy. A protocol
is steganographic, or covert, if its messages can be efficiently injected into such
channels in a way that the resulting communication cannot be distinguished from
the (assumed) a priori random behavior of these channels. A simple example of
a steganographic channel is a random channel, which can be implemented e.g.
using protocol nonces, random padding bits, lower bits of time stamps, and var-
ious other standard communication mechanisms which exhibit inherent entropy.
Assuming such random channels between two parties A → B and B → A, party
A would encode its protocol messages as bitstrings which are indistinguishable
from random, inject its out-going messages into the A → B channel, and in-
terpret the messages on the B → A channel as B’s responses in the protocol.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 611–629, 2014.
c© International Association for Cryptologic Research 2014

612 S. Jarecki

A and B must synchronize the timing of using these channels, so they know
which bits to interpret as protocol messages, but this can be public informa-
tion: The covertness of the protocol implies that the messages which A and B
exchange cannot be distinguished from the a priori behavior of these channels.

Covert computation was formalized for two parties in [vAHL05] and in the
multi-party setting in [CGOS07] as a protocol that lets the participants securely
compute the desired functionality on their inputs, with the additional property
that no party can distinguish the other participants from “random beacons”
which send random bitstrings of fixed length instead of proscribed protocol mes-
sages, except for what is revealed by the final output of the computed function.
Both [vAHL05] and [CGOS07] show protocols for covert computation of any
functionality which tolerate malicious adversaries, resp. in the two-party and
the multi-party setting, but the costs of these protocols are linear in the size
of the circuit representation of the computed function. Moreover, these proto-
cols are not constant-round, and the subsequent work of [GJ10] showed that
this is a fundamental limitation on maliciously-secure covert computation in the
standard model, i.e. without access to trusted parameters or public keys. Still,
this begs the question whether useful two-party (or multi-party) tasks can be
accomplished covertly in a more practical way, with constant-round protocols
and constant number of public-key operations, in applications where common
trusted parameters and/or public keys are naturally available.

Indeed, the flagship motivation for covert computation, including [vAHL05]
and [CGOS07], was covert authentication, where two parties want to authenti-
cate each other, e.g. as holders of mutually accepted certificates, but a party
who lacks proper certificate is not only unable to pass in the authentication pro-
tocol, but cannot even distinguish an instance of such protocol from a random
beacon. In this work we show the first practical covert Mutual Authentication
(MA) protocol for the setting where mutually accepted certificates are defined
as group membership certificates issued by the same group manager. A very
similar mutual authentication setting was considered by “Secret Handshakes”
a.k.a. Private Mutual Authentication, see e.g. [JL09], but the goal of private
authentication is to protect the privacy of all authentication protocol inputs,
including the group public key assumed by each party in the protocol, while
covert authentication goes a step further, and aims to hide the very fact that
the authentication protocol takes place.

Our covert MA protocol relies on a covert Conditional Key Encapsulation
Mechanism (CKEM), a covert variant of Conditional Oblivious Transfer [COR99]
and a variant of the ZKSend gadget used in [CGOS07]. A covert CKEM is a
steganographic form of a zero-knowledge proof: It establishes a shared key be-
tween the prover and the verifier if and only if it is run on a true statement.
Unlike a zero-knowledge proof which involves an explicit verification which dis-
tinguishes the prover from a random beacon, a CKEM instance could appear
indistinguishable from a random noise to either participant. We show an efficient
compiler which converts a special Σ-protocol, i.e. a public-coin HVZK proof of
knowledge with certain (commonly satisfied) additional properties, into a covert

Practical Covert Authentication 613

CKEM for the same language. A key property of this compiler is that it con-
structs a CKEM with a proof-of-knowledge property, which ensures extraction of
a witness for a verifier’s statement given a prover who distinguishes the verifier
from a random beacon. Witness-extraction makes covert CKEM’s more useful as
protocol building blocks, as we exemplify in our covert MA construction below.

Our covert MA scheme requires a group signature scheme which works by
committing to a group membership certificate and then proving in ZK that the
committed certificate is valid under the group public key. If the commitment is
covert and the ZK proof is replaced with a covert CKEM for the same language,
the result is a covert MA scheme. Crucially, if the CKEM enables extraction
of a witness given an adversary who breaks protocol covertness, then a security
reduction can extract a new membership certificate (and thus break the un-
forgeability of the underlying group signature scheme) given an adversary who
distinguishes an MA counterparty from a random beacon.

Note that covert CKEM’s without the proof-of-knowledge property, for rela-
tions involving discrete logarithm equalities, can be implemented using a Smooth
Projective Hash Function (SPHF) [CS01], if the verifier sends to the prover the
projection key, which is usually a tuple of random group elements, and so it can
be encoded as a random bitstring. What makes our covert CKEM construction
interesting is its proof-of-knowledge property, which is achieved as follows: On
statement x, the prover covertly commits to its first message a as C, sends re-
sponse z to the verifier’s challenge c, and then the two parties run an SPHF on
the statement that the prover’s presumed first message a, which can be computed
from (x, c, z), is indeed committed in C. Simulation follows from the covertness
of the commitment, and extraction follows by the standard rewinding technique
from the binding property of the commitment. The “special” property of the
Σ-protocol required by our CKEM construction is that a can be efficiently com-
puted given (x, c, z), and that z is an integer tuple distributed statistically close
to uniform over some integer ranges (and thus can be encoded as a random
bitstring), which is commonly the case in Σ-protocols for various arithmetic
relations on discrete logarithm and representations.

Organization. Section 2 introduces basic concepts and tools related to covert
computation. In Section 3 we define a covert CKEM and a covert MA scheme. In
Section 4 we construct a covert CKEM for any language which admits a special
Σ-protocol. In Section 5 we construct a covert MA scheme from (an interactive
version of) a group signature and a covert CKEM for a related language. In Sec-
tion 5.1 we instantiate this construction with the group signature of [ACJT00].

2 Preliminaries

Covertness. The paradigm of covert computation used in [vAHL05,CGOS07],
as well as in the work on steganographic key exchange of [vAH04], assumes that
the participants in a covert protocol are connected by a channel with sufficient
entropy, henceforth called a steganographic channel, and that the participants
communicate by using a steganographic algorithm, e.g. [HLvA02], to embed

614 S. Jarecki

protocol messages into this steganographic channel. As was shown by Ahn et al.
[vAHL05], if a protocol is covert for a random channel, i.e. if its messages are
indistinguishable from random bitstrings of some fixed length, then applying a
steganographic encoding to each protocol message makes the protocol covert for
the corresponding steganographic channel. Consequently we can limit our goal to
creating protocols whose messages are indistinguishable from random bitstrings.
Moreover, many steganographic channels are already uniform over fixed-length
bitstrings, e.g. a channel provided by random nonces in TCP/IP control packets,
in which case the steganographic encoding consists of simple splitting of protocol
messages into segments of length dictated by this channel. We use the following
notation to capture indistinguishability of a protocol participant from a random
beacon, i.e. a source that broadcasts random bitstrings of fixed length. Let A be
an interactive algorithm which engages in a fixed number k of protocol rounds
in each protocol instance, and where for each i = 1, .., k, A’s i-th message is a
bitstring of length ui(τ), where ui is a polynomial and τ is a security parameter.
Let u = (u1, ..., uk). We denote by A$(u) an interactive protocol which takes k
rounds s.t. its i-th outgoing message is a random bitstring of length ui(τ).

Covert Encodings. Our goal is to create efficient protocols whose messages are
indistinguishable from random bitstrings of fixed length. We will accomplish this
by designing protocols which communicate values which are indistinguishable
from either random group elements or random integers on integer intervals, and
then encoding these as fixed-length bitstrings using randomized encodings. Let
|R| denote the bit-length of R, and let [R] and ±[R] denote sets {0, . . . , R − 1}
and {−R + 1, . . . , R − 1}, respectively. Encoding EC[R] maps v ∈ [R] to an
(|R| + τ)-bit string by outputting v = v + Rk (over integers) for random k in
{0, . . . , 	2|R|+τ/R
}. Decoding DC|R|(v) outputs v = v mod R. Encoding EC±[R]

maps v ∈ ±[R] to an (|2R−1|+τ)-bit string by outputting EC[2R−1](v+(R−1)),
while DC±[R] reverses this process. Finally, if I = I1 × . . .× It is a cross-product
of integer intervals then ECI maps I into bitstrings of length |I1|+ . . .+ |It|+ t ·τ
by outputting v = (ECI1(v1), . . . ,ECIt(vt)) on input v = (v1, . . . , vt), while DCI

reverses this process. All these encodings are covert on their respective message
spaces in the following sense: (ECS ,DCS) is a covert encoding on space S if the
distribution {ECS(v)}v←S is statistically close to uniform over {0, 1}t for some t.

3 Covert KEM and Authentication Definitions

Covert Conditional KEM. Conditional OT (COT) for an NP relation R (and
an associated language LR), introduced by Di Crescenzo et al. [COR99], is a pair
of algorithms for sender S and receiver R, where S runs on a message m and a
statement x and R runs on a witness w, s.t. the receiver learns m if (x,w) ∈ R,
while the sender learns nothing from the protocol. COT sender’s privacy re-
quires that the receiver learns nothing about both m and x unless (x,w) ∈ R
[COR99,Cre00]. Since COT can be thought of as an interactive encryption, we
introduce a KEM-like version of this notion, a Conditional Key Encapsulation

Practical Covert Authentication 615

Mechanism (CKEM). We define CKEM in a public parameter model, as a tu-
ple (PG, S,R) where S and R are interactive algorithms running on respective
inputs (π, xS) and (π, xR, w), for π ← PG(1τ). Both S and R output τ -bit keys,
respectively K and K ′, s.t. key K generated by S is a random bitstring, while
K ′ output by R is equal to K if ((π, xS), w) ∈ R (and xR = xS), and independent
from K if ((π, xS), w) �∈ R. Note that CKEM implies COT if S encrypts its mes-
sage m under key K. Jarecki and Liu [JL09] introduced strong sender security
for COT, where an efficient extractor can extract w s.t. (xS, w) ∈ R from an
adversary which breaks sender’s security. We adapt this notion because witness-
extraction makes CKEM into a more useful protocol building block. Indeed, our
mutual authentication scheme of Section 5 relies on strong sender covertness of
CKEM to enable the reduction to extract a valid certificate (and thus forge a
certificate) from an adversary who breaks authentication security/privacy.

Definition 1 (Receiver Covertness). A CKEM (PG, S,R) for relation R
(and language LR) is receiver covert if for some polynomial sequence u =
(u1, u2, ...), for any efficient algorithm A, the difference between the probabil-
ity of A outputting 1 in the following two experiments is a negligible function
of τ . Both experiments run PG(1τ) to choose parameter π, and A(π) chooses
(x,w), and then in the first experiment A interacts with R(π, x, w), while in the
second experiment A interacts with R$(u).

Definition 2 (Strong Sender Covertness). A CKEM (PG, S,R) for relation
R (and language LR) is strong sender covert if there is a polynomial sequence
u, an efficient algorithm Ext, and a polynomial p s.t. for any efficient algorithm
A there exists a negligible function δ, s.t. for any τ , any π output by PG(1τ),
and any x of size polynomial in τ , it holds that Ext on input (π, x) and an oracle
access to A outputs w s.t. ((x, π), w) ∈ R with probability at least p(εA,π,x,u −
δ(τ)), where εA,π,x,u is defined as the difference between the probability that A
outputs 1 in the following two games: In the “real” game, A interacts with S(π, x)
and then receives key K output by this S instance, while in the “random” game,
A interacts with S$(u) and then receives K generated as a random τ-bit string.

Note on Computational Restrictions. We define CKEM covertness only for com-
putationally bounded adversaries because our CKEM construction in Section
4 depends on these bounds in both directions. Receiver’s covertness is compu-
tational because it encrypts the first Σ-protocol message using a commitment
which is only computationally hiding/covert, while sender’s covertness relies on
collision-resistance of a hash function. (Additionally, the 2-round version of this
CKEM, which works in the Random Oracle Model (ROM) for hash functions, re-
quires a polynomial bound on the number of adversary’s hash function queries.)

CKEM vs. Zero-Knowledge Proofs. One can view CKEM as an encryption coun-
terpart to a Zero-Knowledge Proof, with S playing the role of the Verifier and R
that of a Prover, except that in CKEM, the point is not for S to learn anything
about statement x, but for R to receive S’s key only if R has w s.t. (x,w) ∈ R.
In particular, one can view CKEM receiver privacy as a form of zero-knowledge

616 S. Jarecki

and CKEM strong sender security as a form of strong soundness, i.e. a proof
of knowledge. Indeed, both strong sender covertness and strong soundness of
an interactive proof require that if some algorithm A “ε-succeeds” on state-
ment x, then an efficient extractor can use A to extract w s.t. (x,w) ∈ R. In
an interactive proof A’s success is defined as convincing a verifier that x ∈ LR,
while CKEM covertness defines A’s success as distinguishing an interaction with
S(π, x) followed by the key K output by this instance of S, from an interaction
with a random beacon followed by a random τ -bit string.

CKEM vs. SPHF. CKEM’s can be seen as a generalization of Smooth Projective
Hash Functions [CS01] to interactive protocols. An SPHF gives rise to a one-
round CKEM by sending the projection key and treating the hash value as the
key K. Such CKEM is covert if the projection key can be covertly encoded, but
it is not strongly covert because it does not assure witness extraction.

CKEM vs. Covert 2PC. Our CKEM construction of Section 4 satisfies the above
game-based CKEM definition, but it is not a covert secure computation of a
CKEM functionality [vAHL05,CGOS07]. In particular, it enables extraction of
the witness w input by R but not the statement x input by S.

Covert Mutual Authentication. Consider a group manager GM who issues
certificates to group members and publishes revocation tokens for the users
whose membership it wants to revoke. An (implicit) Mutual Authentication (MA)
scheme, with verifier-local revocation, is a tuple of algorithms (KGen,CG,Auth)
which work as follows. KGen on security parameter τ outputs a master secret key
msk and a public key mpk. To issue a membership certificate to user Pi, GM gives
her a certificate generated as (ski, rti) ← CG(msk). To revoke membership, GM
adds rti to an initially empty revocation list CRL, which should then be propa-
gated to all current group members. If two players Pi and Pj want to authenticate
to each other, each player follows the interactive algorithm Auth, where Pi runs
on private inputs (mpk, (ski, rti),CRL) while Pj runs on (mpk′, (skj , rtj),CRL

′).
Each participant’s local outputs is a τ -bit session key, respectively K and K ′.
If both parties follows the protocol then K = K ′ if (1) mpk = mpk′, (2) both
(ski, rti) and (skj , rtj) are valid certificates under mpk, (3) neither certificate is
revoked in the CRL of the other player, i.e. rti �∈ CRL′ and rtj �∈ CRL.

Intuitively, we call an MA scheme covert if no one except a valid group member
can distinguish an interaction in the authentication scheme with a member of the
same group from an interaction with a random beacon. Formally, we define MA
covertness via the following game between an adversary A and a game G. Let k
be the number of message rounds in protocol Auth, and let u = (u1, u2, ..., uk) be
some sequence of polynomials. The MA security experiment, denoted GA(1

τ , b),
is defined by an interaction between game G and an attacker A which proceeds
as follows:

Init. G on input (1τ , b) for bit b sets (msk,mpk) ← KGen(1τ), CRL ← ∅, and
generates (ski, rti) ← CG(msk) for i = 1, . . . , N(τ) for a fixed polynomial N .
Corruptions. A, on input (1τ ,mpk), specifies a subset CorSet of corrupt players,
and for each i ∈ CorSet, A receives (ski, rti), and rti is added to CRL.

Practical Covert Authentication 617

Queries. A can (concurrently) make any number of Exec queries and a single
Test query, to which G responds as follows:
Exec(i,CRL∗): Execute Auth(mpk, (ski, rti),CRL

∗), interacting with A.
Test(i): If i �∈ CorSet, respond as follows:
If b = 1, execute Auth(mpk, (ski, rti),CRL), interacting with A, and send the

local output K of this Auth instance to A;
If b = 0, execute Auth$(u), and send a random τ -bit string K ′ to A.

Guess. If A halts and outputs a bit, G halts and outputs the same bit.

Definition 3 (MA Covertness). We call an MA scheme (KGen,CG,Auth)
covert if for some polynomial sequence u function εA(τ) = |Pr[GA(1

τ , 0) =
1] − Pr[GA(1

τ , 1) = 1]| is negligible for any efficient algorithm A.

Revocation and Escrow. The MA definition implies that A can corrupt or partic-
ipate in Auth instances with any party, but this will not help A in distinguishing
an Auth instance ran by a non-corrupted party from a random beacon. This
can hold only if the honest party executes on a revocation list containing re-
vocation tokens of all corrupted players. (Otherwise the adversary could run
an Auth instance on a certificate of a corrupted player.) Note that we allow A
to interact with Auth instances executing on wrong revocation lists, to model
the fact that honest parties can execute on outdated or otherwise incorrect re-
vocation lists. While such instances can be recognizable to A, they should not
endanger covertness of instances which use the correct revocation list. One limi-
tation of our “verifier-local” revocation model, which we adopt from the work on
group signatures by Boneh and Shacham [BS04], is the lack of “perfect-forward
covertness”, i.e. an adversary who learns some party’s certificate can break the
covertness of all past protocol instances executed by this party. We model this
in the security experiment by requiring that the tested player is not on the revo-
cation list. However, this revocation model naturally supports identity escrow,
because GM can use revocation tokens to link protocol transcripts to users.

Authentication Security.MA covertness implies standard authentication security
because an attacker without a valid certificate cannot distinguish the key output
by a group member from a random string. However, our MA notion is quite far
from a full-fledged Authenticated Key Exchange (AKE) [BCK98,CK01]. First of
all, an adversary gets to see a session key only on a single tested session, so there
are no guarantees of independence between keys created by different instances,
and no guarantees of security against the man-in-the-middle attacks. In other
limitations, we offer only static security, because all corruptions must precede
protocol instance executions, and we offer limited security against malicious
insiders, because we never expose the session keys on Exec(i,CRL∗) instances.

4 Covert Conditional KEM Construction

We show a general compiler which uses a covert commitment with associated
SPHF to convert a special Σ-protocol for a given language, a form of three-
round public-coin Honest-Verifier Zero-Knowledge (HVZK) proof of knowledge,

618 S. Jarecki

into a covert CKEM for the same language. When the covert commitment is
instantiated as we explain below, the CKEM construction relies on the DDH
assumption on a prime-order subgroup of a prime residue group Z∗

p, and its cost is
that of the underlying Σ-protocol plus 2 exponentiations in Z∗

p for the sender and
3 for the receiver, assuming that the encoding of bitstrings output by the CKEM
into the underlying steganographic channel is not computationally intensive, e.g.
because the underlying steganographic channel is a random channel. Below we
first introduce our tools, the special Σ-protocol and the covert commitment with
associated SPHF, and then we show the covert CKEM construction.

Special Σ-Protocol. The notion of Σ-protocol was used by Damgard (see e.g.
[Dam10]) to describe common features of HVZK proof systems which extend
Schnorr’s proof of knowledge of the discrete logarithm to various arithmetic rela-
tions on discrete logarithms and representations. Let algorithm triple (P1, P2, V)
define a 3-round public-coin proof system for relation R, where P1 on input
(x,w) ∈ R and internal randomness r outputs the prover’s first message a, P2

on input (x,w, r) and a τ -bit challenge c outputs the prover’s second message
z, and V on input (x, a, c, z) outputs the verifier’s accept/reject decision bit.
We say that (P1, P2, V) is a Special Σ-Protocol for R if it satisfies the following
additional properties: (1) (“special soundness”) There exists an efficient extrac-
tor which outputs w s.t. (x,w) ∈ R given any two accepting transcripts that
share the same prover’s first message a but differ on the challenge c, i.e. given
(x, a, c, z, c′, z′) s.t. V (x, a, c, z) = V (x, a, c′, z′) = 1 and c′ �= c; (2) The prover’s
second message z is a sequence of integers distributed statistically close to uni-
form over some integer ranges, i.e. for any (x,w) ∈ R and c ∈ {0, 1}τ , the
distribution of z’s output by P2(x,w, r, c) on random r is statistically close to
uniform over I = I1×. . .×It for some integer ranges I1, . . . , It; (3) (“special sim-
ulation”) There exists an efficiently computable function fV s.t. V (x, a, c, z) = 1
iff a = fV (x, c, z), c ∈ {0, 1}τ , and z ∈ I′ for some cross-product of ranges I′.
These properties are satisfied by Σ-protocols for many relations on discrete log-
arithms and representations (see e.g. [CM99] for examples). Such Σ-protocols
are usually given for prime order groups, but they extend to the QRn sub-
group of Z∗

n for a safe RSA modulus n, such as the Σ-protocol for ACJT group
signature[ACJT00] possession (see Appendix A) used in the instantiation of our
covert MA construction in Section 5.1.

Covert Commitment with Associated SPHF. We call a tuple of efficient
algorithms (PG,Com,Hash,PHash) a perfectly binding covert commitment with
associated smooth projective hash function (SPHF) if the following requirements
are satisfied. (1) First, pair (PG,Com) is a covert commitment defined as follows:
There is a polynomial l(·) s.t. for any efficient algorithm A, quantity |p0 − p1| is
a negligible function of τ , where pβ is defined as the probability that b = 1 in the
following experiment: Generate π ← PG(1τ), pick A’s randomness r, and gener-
ate m ← A(π; r). If β = 1 generate C ← Com(π,m), otherwise C ← {0, 1}l(τ).
Finally, let b ← A(π,C; r). Note that commitment covertness implies the stan-
dard notion of hiding for a commitment scheme. (2) Secondly, this commit-
ment must be perfectly binding, i.e. for any τ , any π ← PG(1τ), any m,m′, r, r′,

Practical Covert Authentication 619

if Com((π,m); r) = Com((π,m′); r′) then m = m′. (3) Thirdly, (Hash,PHash)
is an SPHF system for the language of correct commitments, i.e. Hash(π,C,m)
outputs hash value h and projection key pk s.t. (3a) the SPHF is correct in the
sense that PHash(π, pk,m, r) = h if C = Com((π,m); r) for some r, and (3b)
the SPHF is covert in the sense that for any τ , any π ← PG(1τ), any C,m s.t.
C �= Com((π,m); r) for all r, the pair (h, pk) output by Hash(π,C,m) is statisti-
cally close to a random bitstring of some length u(τ). Note that SPHF covertness
implies the standard notion of SPHF smoothness, because if m is not committed
in C then the hash value h is statistically independent of the projection key pk.

We construct such commitment using ElGamal encryption in a prime residue
group: Let PG(1τ) output π = (p, q, k, g,H) where p, q are primes s.t. p = qk+1
and gcd(q, k) = 1, g is a generator of subgroup G of order q in Z∗

p, and H is a
universal hash from Z∗

p to {0, 1}τ s.t. for any distribution D over Z∗
p which has

at least |p| bits of entropy, {H(x)}x←D is statistically close to {0, 1}τ . Algorithm
Com(π,m) for m in message space Zq picks (t, z1, z2) ← Zq×Z∗

p×Z∗
p, and outputs

C = (EC[p](e),EC[p](f)), where e = gt · z1q mod p and f = gt
2+m · z2q mod p.

Under the DDH assumption on subgroup G of Z∗
p this commitment is covert,

because then pair (gt, gt
2

) is indistinguishable from two random G elements,
which makes pair (e, f) indistinguishable from two random Z∗

p elements. Algo-
rithm Hash(π,C,m) decodes e and f from C, picks α, β ← Zq and z3 ← Z∗

p, and

outputs (h, pk) where h = H
(
ek

2·α · (fg−m)k
2·β) and pk = EC[p]

(
gk·α · ek·β · z3q

)
.

Algorithm PHash(π, pk,m, r) for r = (t, z1, z2) decodes v ← DC[p](pk) and out-

puts h = H(vkt). Note that for both parties h = H(w) for w = gtk
2α+t2k2β

because (zi
q)k = zi

p−1 = 1. On the other hand, if C is not a commitment to
m then (h, pk) output by Hash(π,C,m) are distributed as (H(w),EC[p](x)) for

w = gk
2·(tα+t2β+δmβ) and x = gk·(α+tβ)z3

q for δm �= 0 mod q. Since (α, β, z3)
is random in Zq × Zq × Z∗

p, pair (w, x) is uniform in G × Z∗
p, and therefore

(H(w),EC[p](x)) is statistically close to uniform in {0, 1}τ × {0, 1}|p|+τ .

Covert CKEM Construction. Let (P1, P2, V) be a special Σ-protocol for
relation R, with the associated integer ranges I, let (PG,Com,Hash,PHash) be
a perfectly binding covert commitment with associated SPHF, and let H be a
collision-resistant hash onto the message space of the commitment. Fig. 1 shows
algorithms S and R for a covert CKEM (PG, S,R) for relation R. Note that the
security argument for this construction uses rewinding, which degrades exact
security. Using the 2-round ROM version of this construction (see below), τ
should be at least 160, and H should hash onto at least 480-bit strings. If the
covert commitment is implemented using group Z∗

p as shown above, this means
that the order q of the subgroup G of Z∗

p must satisfy |q| ≥ 480.

Theorem 1. Tuple (PG, S,R) where S,R are specified in Fig. 1 is a receiver
covert and strong sender covert CKEM for relation R if (PG,Com,Hash,PHash)
is a perfectly binding covert commitment with associated SPHF, (P1, P2, V) is a
special Σ-protocol for R, and H is a collision resistant hash function.

620 S. Jarecki

On R’s inputs (π, x,w) and S’s inputs (π, x) for π generated by PG(1τ).

R: Pick random (r, r′), compute Σ-protocol first message a ← P1(x,w, r), com-
pute its hash C ← Com((π,H(a)); r′), and send C to S.

S: Pick challenge c ← {0, 1}τ and send c to R.

R: Compute Σ-protocol response as z ← P2(x,w, r, c), send z ← ECI(z) to S.

S: Decode z ← DCI(z), use Σ-protocol verification to compute a ← fV (x, c, z),
compute (h, pk) ← Hash(π,C,H(a)), send pk to R and output key K = h.

R: On sender’s message pk, output key K′ = PHash(π, pk,H(a), r′).

Fig. 1. A Covert CKEM for relation R

Proof Sketch. To argue receiver covertness note that in the real execution the ad-
versary sees (C, z) generated as in Fig. 1, and this pair is indistinguishable from
two random bitstrings of appropriate size: First, by covertness of the commit-
ment scheme, commitment C can be replaced by a random bitstring incurring
at most negligible change in the adversary’s behavior. Secondly, since z is sta-
tistically close to random in I by the properties of the Σ-protocol, and ECI is
covert on I, it follows that z is statistically close to a random bitstring. For
strong sender covertness, take any τ , any π output by PG(1τ), any x polynomial
in τ , and an efficient algorithm A. Let εA,π,x,u = |p0 − p1| where p0 is the prob-
ability that A(π, x) outputs 1 in an interaction where it gets (pk,K) = (pk, h)
computed by S(π, x), and p1 is the probability that A(π, x) outputs 1 given a
random u(τ)-bit string where u is given by the covertness property of the SPHF
for the commitment scheme (see property 3b in the definition above). First con-
sider executions where A sends (C, z) to S s.t. C is not a commitment to H(a)
for a = fV (x, c,DCI(z)). By the covertness of the SPHF for the commitment
scheme, in such executions pair (pk, h) is statistically indistinguishable random
u(τ)-bit string. Let εsphf(τ) be the upper-bound on the (negligible) amount such
executions can contribute to A’s distinguishing advantage εA,π,x,u. We conclude
that with probability at least ε′ = εA,π,x,u − εsphf(τ), a random interaction with
A(π, x) outputs (C, c, z) s.t. C is a commitment to H(a) for a = fV (x, c,DCI(z)).
Running such interaction twice with A’s initial randomness fixed until A outputs
C creates a “fork” with two transcripts (C, c, z) and (C, c′, z′) s.t. with probabil-
ity at least ε′′ = (ε′)2/2 (if ε′ ≥ 2 · 2−τ) we have that c �= c′ and both transcripts
are successful in the sense that C is a commitment to H(a) for a = fV (x, c, z)
and C is a commitment to H(a′) for a′ = fV (x, c

′, z′), for (z, z′) = DCI(z, z
′).

H(a) = H(a′) by perfect binding of Com. Let εcrh(τ) be the (negligible) upper-
bound on the probability that this forked execution, running A(π, x) twice, pro-
duces a collision in H . Therefore with probability at least ε′′ − εcrh(τ) we have
that a = a′, in which case the extractor implied by the special soundness of the
Σ-protocol outputs w s.t. (x,w) ∈ R when executed on input (x, a, c, z, c′, z′),
which implies strong sender covertness for δ(τ) = 2−τ+2 + 2εsphf(τ) + 4

√
εcrh(τ)

and p(ε) = ε2/16.

Practical Covert Authentication 621

2-round Covert CKEM in ROM. The same construction becomes a 2-round
CKEM in the Random Oracle Model (ROM), if c is computed as c = H ′(x,C)
for a hash function H ′ onto {0, 1}τ modeled as a random oracle. If A(π, x) can
make at most qH(τ) hash queries then using the version of the forking lemma in
[BN06] we get a (forking) algorithm which on input (π, x) runs two executions
of A(π, x) and creates the same two transcripts as above with probability ε′′ =
(ε′)2/(2qH(τ)) given ε′ ≥ 2·qH(τ)/2τ , which implies sender covertness for δ(τ) =
qH(τ) · 2−τ+2 + 2εsphf(τ) + 4

√
qH(τ)εcrh(τ) and p(ε) = ε2/(16qH(τ)).

5 Covert Mutual Authentication Scheme

We construct a covert Mutual Authentication (MA) from an Identity Escrow
(IE) scheme [KP98] where a group member commits to its certificate and then
proves in zero-knowledge that the committed value is a valid certificate under
the group public key. We turn such IE scheme into a covert MA scheme by
replacing the zero-knowledge proof with a covert CKEM for the same relation.
For revocation we require that each commitment can be linked to a committed
certificate given the revocation token corresponding to this certificate, and to
assure covertness we need this certificate commitment to be covert until the
revocation token is made public. Identity Escrow [KP98] is an interactive form of
a group signature [CvH91], and many group signatures can be converted to an IE
scheme which fits the above structure. Below we formalize the properties our MA
scheme construction requires of an IE scheme, and we show how to build a covert
MA protocol from such IE scheme and a covert CKEM for committed certificate
validity. In Section 5.1 we show how to instantiate this construction by modifying
the Ateniese-Camenisch-Joye-Tsudik (ACJT) group signature [ACJT00] into an
IE scheme that satisfies the properties required by this construction.

Compatible Identity Escrow Scheme. An IE scheme is a tuple of algorithms
(KG,CG,Ver, IECom,TraceCom), where KG(1τ) outputs a group secret key gsk
and a public key gpk, CG(gsk) generates a certificate (sk, rt), where sk is a user
secret and rt a revocation token, s.t. Ver(gpk, (sk, rt)) = 1, IECom(gpk, (sk, rt))
generates a commitment C to (sk, rt), and TraceCom(gpk, C, rt) = 1 if C ←
IECom(gpk, (sk, rt)). We call an IE scheme covert-MA-compatible if it satisfies
the following four properties. (1) First, (KG,Ver) must form an unforgeable cer-
tificate scheme, i.e. for any efficient algorithm A, the probability that A(gpk),
on access to an oracle CG(gsk), generates (sk∗, rt∗) s.t. Ver(gpk, (sk∗, rt∗)) = 1
and rt∗ �= rti for all (ski, rti) pairs A receives from CG(gsk), is negligible, for
(gsk, gpk) randomly generated by KG(1τ). (2) Second, the scheme must be trace-
able, i.e. for any τ , any (gsk, gpk) output by KG(1τ), and any C and rt, it holds
that TraceCom(gpk, C, rt) = 1 if and only if C = IECom((gpk, (sk, rt)); r) for
some sk, r. (3) We define a committed certificate validity relation RIE as the set
((gpk, C), (sk, rt, r)) s.t. C = IECom((gpk, (sk, rt)); r) and Ver(gpk, (sk, rt)) = 1.
The third property of an IE scheme is that RIE admits a special Σ-protocol, so
that it can be converted into a covert CKEM by the construction in Fig. 1.

622 S. Jarecki

(4) The last property is the covertness of the commitment IECom. Note that
traceability implies that IECom cannot be semantically secure because the rt
part of the committed plaintext can be efficiently linked to the commitment.
However, the commitment must hide the committed certificate (sk, rt) as long
as the revocation token rt is not made public, and we need this commitment to
be covert and not just plaintext-hiding. Thus, we require the IE scheme to be
revocably covert in the sense that there exists some function l polynomial in τ s.t.
for any efficient algorithm A, quantity |p0−p1| is a negligible function of τ , where
pβ is defined as the probability that b = 1 in the following experiment: Generate
(gsk, gpk) ← KG(1τ) and (skt, rtt) ← CG(gsk), and then let A(gpk) repeatedly
query the CG(gsk) oracle which generates (sk, rt) and gives it to A, and an oracle
which returns C ← IECom(gpk, (skt, rtt)) for β = 1, or C ← {0, 1}l(τ) for β = 0.
A outputs bit b, its guess of bit β, after polynomially many queries of both types.

Covert MA Scheme Construction. Fig. 2 constructs a covert MA scheme
given a covert-MA-compatible IE scheme (KG,CG,Ver, IECom,TraceCom) and
a receiver covert and strong sender covert CKEM (PG, S,R) for the associated
committed certificate validity relation RIE . In the figure, uS stands for the poly-
nomial sequence implied by CKEM strong sender covertness.

KGen(1τ): Set (gsk, gpk) ← KG(1τ), π ← PG(1τ), mpk = (gpk, π), and msk = gsk.

CG(gsk): Generate (sk, rt) following the CG(gsk) algorithm of the IE scheme.

Auth protocol for Pi((gpk, π), (ski, rti),CRLi) and Pj((gpk, π), (skj , rtj),CRLj):

1. Pi sets Ci ← IECom((gpk, (ski, rti)); ri) for random ri and sends Ci to Pj .
Pj sets Cj← IECom((gpk, (skj , rtj)); rj) for random rj and sends Cj to Pi.

Pi sets Fi ← 1 if TraceCom(gpk, Cj , rt) = 1 for any rt ∈ CRLi ∪ {rti},
and Fi ← 0 otherwise.

Pj sets Fj ← 1 if TraceCom(gpk, Ci, rt) = 1 for any rt ∈ CRLj ∪ {rtj},
and Fj ← 0 otherwise.

2. Pi runs protocol R on (π, (gpk, Ci), (ski, rti, ri)), interacting with Pj who runs
protocol S on (π, (gpk, Ci)) if Fj = 0, or runs S$(uS) if Fj = 1.
Pi sets Ki,R as its local output in R.
Pj sets Kj,S as its local output in S if Fj = 0, otherwise Kj,S ← {0, 1}τ .

3. Pj runs protocol R on (π, (gpk, Cj), (skj , rtj , rj)), interacting with Pi who runs
protocol S on (π, (gpk, Cj)) if Fi = 0, or runs S$(uS) if Fi = 1.
Pj sets Kj,R as its local output in R.
Pi sets Ki,S as its local output in S if Fi = 0, otherwise Ki,S ← {0, 1}τ .

Pi’s local output is Ki = Ki,R ⊕Ki,S and Pj ’s local output is Kj = Kj,R ⊕Kj,S.

Fig. 2. A Covert Mutual Authentication Scheme (KGen,CG,Auth)

Practical Covert Authentication 623

Theorem 2. (KGen,CG,Auth) in Fig. 2 is a Covert Mutual Authentication
Scheme if (KG,CG,Ver, IECom,TraceCom) is a covert-MA-compatible IE scheme
and (PG, S,R) is a receiver covert and strong sender covert CKEM for RIE.

Proof Sketch. By the symmetry of the Auth protocol we can assume that in all
the Auth protocol instances adversary invokes its counterparty plays the role of
Pi in Fig. 2. Let l(·) be the length polynomial implied by revocable covertness
of the IE scheme, and let uR and uS be the polynomial sequences implied by
the receiver and sender covertness of the CKEM. The polynomial sequence u
which defines the random beacon Auth$(u) is composed of l(·) followed by the
elements of uR and then the elements of uS, because Pi first sends Ci, then
performs R, and then S (or S$(u)). Let A be an efficient algorithm with the
distinguishing advantage εA in the MA covertness experiment (see Definition 3).
For any i ∈ {0, . . . , N(τ)}, consider a game G(1τ , b, i∗) which follows G(1τ , b)
but fixes the index i used by A in the Test query by halting and outputting
1 if A calls the Test(i) query for i �= i∗. There must exist an index i∗ s.t. A’s
advantage in distinguishing between G1 = G(1τ , 1, i∗) and G0 = G(1τ , 0, i∗) is at
least εA/N(τ). By a series of modifications starting from game G1 we show that
A’s distinguishing advantage between G1 and G0 must be negligible, implying
that εA is negligible. In the following we will only consider Exec(i,CRL∗) queries
for i s.t. rti �∈ CRL, because A can execute the game response on such queries
for i ∈ CRL using the (ski, rti) certificate A received by corrupting Pi.

A hybrid argument shows that G1 is indistinguishable from G2 where all
Auth instances followed by Pi on Exec(i,CRL∗) queries are modified by replacing
R(π, (gpk, Ci), (ski, rti, ri)) with R$(uR) in step (2) of Auth. Let G1(t) be a hybrid
between G1 and G2 which responds to the first t of Exec queries as in G2,
and to the remaining ones as in G1. A’s advantage in distinguishing G1(t −
1) and G1(t) must be negligible for each t by CKEM receiver covertness. A
reduction which shows it runs on input π, generates (gsk, gpk), interacts with
either R(π, (gpk, Ci), (ski, rti, ri)) or R

$(uR) on A’s t-th query Exec(i,CRL∗), and
simulates the rest of A’s view in either game.

Let CorSet+ = CorSet∪ {i∗} and CRL+ = CRL∪ {rti∗}. By another hybrid we
modify G2 into G3 by replacing the Ci values generated in the Auth instances by
each Pi for i �∈ CorSet+, with random strings of length l(τ). This hybrid goes over
the players rather than over the Exec sessions. Let G2(t) be a game which follows
G2 in servicing each Exec(i,CRL∗) query for i > t, but on queries Exec(i,CRL∗)
for i ≤ t and i �∈ CorSet+ it replaces Ci generated as Ci ← IECom(gpk, (ski, rti))
with a random l(τ)-bit string. Note that the subsequent steps of Pt in the Auth in-
stances triggered by Exec queries in G2 do not depend on either Ct or (skt, rtt, rt),
which allows us to reduce A’s advantage in distinguishing G2(t − 1) and G2(t)
to an attack on the revocable covertness of the IE scheme: The challenger gen-
erates (gsk, gpk) ← KG(1τ) and (skt, rtt) ← CG(gsk), the reduction on input gpk
receives certificates (ski, rti) for all i �= t from the CG(gsk) oracle, receives either
a sequence of Ct’s computed as Ct ← IECom(gpk, (skt, rtt)) or as a sequence of
random bitstrings, and simulates everything else A sees in either game.

624 S. Jarecki

Note that G3 responds to each Exec(i,CRL∗) query for i �∈ CorSet+ by pick-
ing Ci as a random string in step (1), running R$(uR) in step (2), and running
S(π, (gpk, Cj)) for Cj supplied by A in step (3). Therefore G3 can be simu-
lated given π, gpk, and the certificates (rti, ski) for i ∈ CorSet+. Let G4 be G3

with Pi∗ ’s code in the Auth instance triggered by the Test(i∗) query modified
by replacing the S(π, (gpk, Cj)) protocol Pi∗ follows if Fi∗ = 0 with a random
beacon S$(uS) and a random key Ki∗,S. If we assume that A’s advantage in
distinguishing between G3 and G4 is non-negligible, then by the strong sender
covertness of CKEM it follows that there is an efficient extractor which, on in-
put (gpk, π, {ski, rti}i∈CorSet+), extracts with non-negligible probability a witness
(sk, rt, r) s.t. ((gpk, Cj), (sk, rt, r)) ∈ RIE , i.e. Cj = IECom((gpk, (sk, rt)); r) and
Ver(gpk, (sk, rt)) = 1. Since the difference in this modification appears only for
Fi∗ = 0 (otherwise Pi∗ executes S$(uS) in either case), we can consider only ses-
sions where TraceCom(gpk, Cj , rti) = 0 for all rti ∈ CRL+. By the traceability
property this implies that the extracted witness (sk, rt, r) must satisfy rt �∈ CRL+.
Therefore a reduction which simulates A’s view on input gpk, and on (ski, rti)
pairs for i ∈ CorSet+, can with non-negligible probability compute (sk, rt) s.t.
Ver(gpk, (sk, rt)) = 1 and rt �= rti for all i ∈ CorSet+, which breaks the unforge-
ability of the (KG,Ver) certificate scheme.

Note that in G4 key Ki∗,S, computed in the Test(i∗) query, masks keyKi∗,R, so
now the latter key becomes irrelevant to A’s view and Ki∗ can be picked at ran-
dom. This allows us to modify G4 into G5, by replacing R(π, (gpk, Ci∗), (ski∗ , rti∗ ,
ri∗)) in the Auth instance triggered by the Test(i∗) query with R$(uR). By CKEM
receiver covertness we get that G4 ≈ G5, via a reduction similar to the one which
shows that G1(t − 1) ≈ G1(t). We then modify G5 into G6, by replacing Ci∗ in
all Auth instances (in both Test(i∗) and Exec(i∗,CRL∗)) with a random l(τ)-bit
string. By revocable covertness of the IE scheme we get that G5 ≈ G6, via a
reduction similar to the one which shows that G2(t−1) ≈ G2(t). Note that in G6

player Pi∗ responds to the Test(i∗) query as Auth$(u) and outputs a random τ -bit
string as key Ki∗ , but also each Pi for i �∈ CorSet responds to every Exec(i,CRL∗)
query by sending a random string instead of Ci in step (1) and following R$(uR)

instead of R in step (2). However, we can roll back those changes in responses
to Exec(i,CRL∗) queries. Using a similar argument as above for arguing indis-
tinguishability of G2 and G3, we first change Pi’s responses in Exec(i,CRL∗)
queries by replacing random Ci’s back with Ci ← IECom(gpk, (ski, rti)). Then,
using a similar argument as above for arguing indistinguishability of G1 and G2

we change Pi’s responses to Exec(i,CRL∗) queries by replacing R$(uR) back with
R(π, (gpk, Ci), (ski, rti, ri)). After these modifications the game is identical to G0,
which completes the proof.

5.1 Covert MA Instantiation from ACJT Group Signature

RSA Setting. We first introduce the cryptographic setting required by the
ACJT group signature scheme and by the covert encodings we will apply to
it. The safe RSA setting modulus of length ln = 2l + 2, for l polynomial in
security parameter τ , is a product n = pq of two primes p, q s.t. p = 2p′ + 1

Practical Covert Authentication 625

and q = 2q′ + 1 where p′, q′ are also primes and |p′| = |q′| = l. The subgroup of
quadratic residues in Z∗

n, denoted QRn, is a cyclic group of order n′ = p′q′. Let
g be a generator of QRn. Note that −1 �∈ QRn but Jn(−1), the Jacobi symbol
of −1 mod n, is equal to 1. We use ±QRn to denote the set of elements whose
Jacobi symbol is 1. (±QRn contains x and −x for x ∈ QRn.) We use the following
assumptions on safe RSA moduli, where negl stands for a negligible function:

Definition 4 (Strong RSA Assumption). For all efficient algorithms A
there is a negligible function negl s.t. if n is a random safe RSA modulus of
length ln, and z is a random element in Z∗

n, the probability that A(n, z) outputs
(x, e) s.t. e �= 1 and xe = z mod n, is upper-bounded by negl(ln). (Note that since
QRn makes 1/4-th of Z∗

n∗, same assumption holds if z is sampled from QRn.)

Definition 5 (Decisional Quadratic Residuosity (DQR) Assumption).
For all efficient algorithms A there is a negligible function negl s.t. if n is a
random safe RSA modulus of length ln, the distinguishability advantage |ε0 − ε1|,
where ε0 = Pr[1 ← A(n, a)] for a ∈ QRn and ε1 = Pr[1 ← A(n, a)] for a ± QRn,
is upper-bounded by negl(ln).

Definition 6 (Decisional Diffie-Hellman (DDH) Assumption on QRn).
For all efficient algorithms A there is a negligible function negl s.t. if n is a
random safe RSA modulus of length ln, and ĝ is a random generator of QRn,
the distinguishability advantage |ε0 − ε1|, where ε0 = Pr[1 ← A(ĝ, ĝa, ĝb, ĝc)]
for a, b, c ← Zn′ and ε1 = Pr[1 ← A(n, ĝ, ĝa, ĝb, ĝab)] for a, b ← Zn′ , is upper-
bounded by negl(ln).

Covert Encoding for QRn. The ACJT group signature works in the QRn
subgroup of Z∗

n, but a protocol whose messages are elements of QRn would not be
covert because one can distinguish QRn from Z∗

n by computing a Jacobi symbol
mod n. We can handle it using the DQR assumption as follows. Let ν be any
element in Z∗

n of order 2n′ s.t. Jn(ν) = −1. Let EC±QRn
be an encoding of ±QRn

where EC±QRn
(v) picks a random bit β and returns EC[n](ν

β · v). The decoding
DC±QRn

(v) computes v′ ← DC[n](v) and outputs v = v′ if J(v′, n) = 1 and v =
v′/ν mod n if J(v′, n) = −1. EC±QRn

is covert for message space ±QRn because
±QRn × {1, ν} is isomorphic to Z∗

n and Z∗
n is statistically indistinguishable from

[n]. Since under the DQR assumption QRn is indistinguishable from ±QRn, the
same encoding is also covert for message space QRn, assuming DQR.

Covert-MA-Compatible IE Scheme from ACJT Group Signature. We
explain how the ACJT group signature [ACJT00] can be transformed into a
covert-MA-compatible IE scheme (KG,CG,Ver, IECom,TraceCom) which we will
call a ACJT-IE. This provides an instantiation of the covert MA construction
of Fig. 2 because by the property (4) of a covert-MA-compatible IE scheme, we
can construct a receiver covert and strong sender covert CKEM for the RIE

relation associated with this IE scheme using the CKEM construction in Fig. 1,
and then we can use this CKEM together with the rest of the IE scheme in the
covert MA construction in Fig. 2. By combining the assumptions required for

626 S. Jarecki

the ACJT-IE scheme and for the CKEM construction (as stated in Theorem 1),
we get the following corollary of Theorem 2:

Corollary 1. The (KGen,CG,Auth) in Fig. 2 instantiated with the ACJT-IE
scheme and the CKEM scheme of Fig.1, is a Covert Mutual Authentication
Scheme, assuming the strong RSA and DQR assumptions on Z∗

n for the safe
RSA modulus n, the DDH assumption on the QRn subgroup of Z∗

n, and the DDH
assumption on a prime-order subgroup of a prime residue group.

We show the ACJT-IE scheme (KG,CG,Ver, IECom,TraceCom) and explain how
it relies on the strong RSA, DDH, and DQR assumptions stated above. Algo-
rithm KG sets the group public key as gpk = (n, a, a0, y, g, h), as in the original
ACJT group signature [ACJT00], where n is a safe RSA modulus and a, a0, y, g, h
are all random generators of QRn. The group secret key gsk is the factorization
of n. CG outputs (ski, rti) = ((Ai, ei), xi) where xi ← 2λ1 ± [2λ2], ei is a random
prime in 2γ1 ± [2γ2], and Ai = (axia0)

1/ei mod n, for parameters λ1, λ2, γ1, γ2
set as λ2 ≈ 2ln = 2|n|, λ1 ≈ λ2 + τ , γ2 ≈ λ1 + 2, and γ1 ≈ γ2 + τ . Al-
gorithm Ver(gpk, (Ai, ei), xi) returns 1 if Aeii = axia0 mod n and 0 otherwise.
Commitment IECom on inputs (gpk, ((Ai, ei), xi)) picks w ← [n/4] and com-
putes T1 ← Aiy

w, T2 ← gw, and T3 ← geihw, just like in the ACJT scheme, but
in addition it picks a random QRn element T4, computes T5 ← (T4)

xi , and out-
puts C = (T 1, . . . , T 5) where T i ← EC±QRn

(Ti) for each i. TraceCom(gpk, C, xi)
outputs 1 iff T5 = (T4)

xi for T4, T5 decoded from T 4, T 5 in C.
Unforgeability of the (KG,Ver) certificate scheme is argued in [ACJT00] un-

der the strong RSA assumption on QRn. Traceability follows by the fact that
procedure TraceCom(gpk, C, xi) computes T5 from T4 in the same way as IECom
on xi. As for revocable covertness, since λ2 ≥ 2|n| we have that for xi uniform
in 2λ1 ± [2λ2] value (xi mod n′) is statistically indistinguishable from uniform
over Zn′ . Therefore, for secret xi, under DDH assumption on QRn the 5-tuple
(T1, . . . , T5) is indistinguishable from uniform over (QRn)

5, and therefore by
covertness of EC±QRn

commitment T is indistinguishable from a random bit-
string. Finally, the HVZK proof system given for the ACJT group signature in
[ACJT00], amended by the simple consistency check for the new (T4, T5) values,
is a special Σ-protocol for the associated relation RIE . We include this amended
proof system of [ACJT00] in Appendix A.

Efficiency of the Resulting Covert MA Scheme. The Covert MA protocol
of Fig. 2 can be condensed to three rounds in ROM: Player Pi can piggyback
R’s message in the CKEM instance of step 2 with the commitment Ci it sends
in step 1. Then player Pj can piggyback its commitment Cj with S’s response
in the CKEM instance of Step 2 and with R’s message in the CKEM instance
of step 3. Finally Pi would respond with S’s response in the CKEM instance of
step 3. As for the computational cost of this scheme instantiated with ACJT-IE
scheme, note that ACJT-IE uses 4 multi-exp’s in the certificate commitment
IECom and that the Σ-protocol for the associated relation RIE uses 5 multi-
exp’s for each party. Since each party plays the prover in one direction and
the verifier in the other, the total comes to 14 (multi-)exp’s in Z∗

n. The CKEM

Practical Covert Authentication 627

protocol in Fig. 1 adds 5 exp’s in Z∗
p for each party (2 as the sender and 3 as

the receiver). Moduli p and n can both be 2048 bits long, but exp’s in Z∗
p are

with much smaller exponents. Looking closer at the 14 multi-exp’s in Z∗
n in the

computation of Ti’s, and di’s in either step 1 for the prover or step 4 for the
verifier (see the Σ-protocol in Appendix A), for |n| = 2048 and τ = 160 this
makes four 2048-bit exp’s (i.e. T1, T2, and d3 for both parties) and ten exp’s with
exponents between 4000 and 5000 bits. By comparison, the five exp’s in Z∗

p have
only 480-bit exponents. The total cost for each party, of these 14 exp’s in Z∗

n and
5 exp’s in Z∗

p, can be approximated as 30 full exp’s in Z∗
n for |n| = 2048. However,

each party additionally performs |CRL| + 1 exp’s in Z∗
n in the TraceCom checks

for each rt in CRL and for one’s own rt. Since exponents xi are roughly twice
longer than |n|, the total cost is approximately 32+ 2|CRL| full exp’s in Z∗

n with
|n| = 2048 and τ = 160. The bandwidth is about 29Kb in each direction. Note
that these costs are almost exactly as in the underlying ACJT group signature
scheme, so the practicality of our ACJT-based covert MA scheme depends on
whether the two parties have access to a random steganographic channel with
enough capacity to transmit 29Kb.

References

ACJT00. Ateniese, G., Camenisch, J.L., Joye, M., Tsudik, G.: A practical and prov-
ably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

BCK98. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design
and analysis of authentication and key exchange protocols. In: STOC 1998,
pp. 419–428 (1998)

BN06. Bellare, M., Neven, G.: Multisignatures in the plain publickey model and a
general forking lemma. In: Proceedings of ACM CCS (2006)

BS04. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In:
ACM Conference on Computer and Communications Security, pp. 168–177
(2004)

CGOS07. Chandran, N., Goyal, V., Ostrovsky, R., Sahai, A.: Covert multi-party com-
putation. In: FOCS, pp. 238–248 (2007)

CK01. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use
for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

CM99. Camenisch, J.L., Michels, M.: Proving in zero-knowledge that a number is
the product of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 107–122. Springer, Heidelberg (1999)

COR99. Di Crescenzo, G., Ostrovsky, R., Rajagopalan, S.: Conditional oblivious
transfer and timed-release encryption. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 74–89. Springer, Heidelberg (1999)

Cre00. Di Crescenzo, G.: Private selective payment protocols. In: Financial Cryp-
tography, pp. 72–89 (2000)

CS01. Cramer, R., Shoup, V.: Universal hash proofs and and a paradigm for adap-
tive chosen ciphertext secure public-key encryption. Electronic Colloquium
on Computational Complexity (ECCC) 8(072) (2001)

628 S. Jarecki

CvH91. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EURO-
CRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

Dam10. Ivan Damgard. On Σ-protocols (2010),
http://www.cs.au.dk/~ivan/Sigma.pdf

GJ10. Goyal, V., Jain, A.: On the round complexity of covert computation. In:
STOC (2010)

HLvA02. Hopper, N.J., Langford, J., von Ahn, L.: Provably secure steganography.
In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 77–92. Springer,
Heidelberg (2002)

JL09. Jarecki, S., Liu, X.: Private mutual authentication and conditional oblivious
transfer. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 90–107.
Springer, Heidelberg (2009)

KP98. Kilian, J., Petrank, E.: Identity escrow. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 169–185. Springer, Heidelberg (1998)

vAH04. von Ahn, L., Hopper, N.J.: Public-key steganography. In: Cachin, C., Ca-
menisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 323–341.
Springer, Heidelberg (2004)

vAHL05. von Ahn, L., Hopper, N.J., Langford, J.: Covert two-party computation. In:
STOC, pp. 513–522 (2005)

A Special Σ-Protocol for the ACJT-IE Scheme

We show a proof system for the committed certificate validity relation RIE in
the ACJT-IE scheme of Section 5.1, which satisfies the properties of a special
Σ-protocol, and hence it can be compiled into a covert CKEM for the same
relation using our CKEM construction in Fig. 1. The proof system below is a
simple modification of the proof system for the ACJT group signature [ACJT00]
extended by a check that T5 = T xi

4 . Relation RIE for the ACJT-IE scheme
consists of pairs (x̂, ŵ) = (((n, a, a0, y, g, h), (T 1, . . . , T 5)), ((Ai, ei), xi, w)) which
satisfy the following set of relations for Ti’s decoded from T i’s using DC±QRn

:

T1 = Aiy
w , T2 = gw , T3 = geihw , T5 = T xi

4 , Aeii = axia0 , xi ∈ 2λ1 ±[2λ2+2τ]

Below is the special Σ-protocol for this relation, which the honest prover
executes on (xi, ei, w) ∈

(
2λ1 ± [2λ2] × 2γ1 ± [2γ2] × [2ln−2]

)
:

1. P1 picks (r1, r2, r3, r4) ← ±[2γ2+2τ] × ±[2λ2+2τ] × ±[2γ1+ln+2τ] × ±[2ln+2τ],
sets (d1, d2, d3, d4, d5) ← (T r11 /(ar2yr3) , T r12 /gr3 , gr4 , gr1hr4 , T r24),
sets r = (r1, r2, r3, r4), and outputs a = (d1, d2, d3, d4, d5).

2. Public coin challenge c is chosen as c ← {0, 1}τ .
3. P2 sets z = (z1, z2, z3, z4) for z1 ← r1 − c(ei − 2γ1), z2 ← r2 − c(xi − 2λ1),

z3 ← r3 − ceiw, z4 ← r4 − cw [all computed over integers]
4. V accepts if z = (z1, . . . , z4) lies in the cross-space I′ = (I ′1×I ′2×I ′3×I ′4), for

I ′1 = ±[2γ2+2τ+1], I ′2 = ±[2λ2+2τ+1], I ′3 = ±[2γ1+ln+2τ+1], I ′4 = ±[2ln+2τ+1],
and if a = fV (x̂, c, z) where fV (x̂, c, z) computes (d1, . . . , d5) as follows:

d1
?
= ac0T

z1−c2γ1
1 /(az2−c2

λ1
yz3) d2

?
= T z1−c2

γ1

2 /gz3

d3
?
= T c2 g

z4 d4
?
= T c3 g

z1−c2γ1hz4 d5
?
= T c5T

z2−c2λ1

4

http://www.cs.au.dk/~ivan/Sigma.pdf

Practical Covert Authentication 629

By the constraints on (xi, ei, w) used by an honest prover, z is statistically close
to uniform over I = I1 × I2 × I3 × I4 where I1 = ±[2γ2+2τ], I2 = ±[2λ2+2τ],
I3 = ±[2γ1+ln+2τ], I4 = ±[2ln+2τ]. The proof of knowledge property of the
ACJT proof system [ACJT00] satisfies the requirement that a valid witness
ŵ = ((Ai, xi), ei, w) is efficiently extractable from two accepting proof transcripts
(a, c, z) and (a, c′, z′) s.t. c′ �= c, and this property holds for our extension which
involves the check that T5 = T xi

4 .

Fine-Tuning Groth-Sahai Proofs

Alex Escala1 and Jens Groth2,�

1 Scytl Secure Electronic Voting, Spain
2 University College London, United Kingdom

Abstract. Groth-Sahaiproofs are efficientnon-interactive zero-knowledge
proofs that have found widespread use in pairing-based cryptography. We
propose efficiency improvements of Groth-Sahai proofs in the SXDH set-
ting, which is the one that yields the most efficient non-interactive zero-
knowledge proofs.
– We replace some of the commitments with ElGamal encryptions,

which reduces the prover’s computation and for some types of equa-
tions reduces the proof size.

– Groth-Sahai proofs are zero-knowledge when no public elements are
paired to each other. We observe that they are also zero-knowledge
when base elements for the groups are paired to public constants.

– The prover’s computation can be reduced by letting her pick her own
common reference string. By giving a proof she has picked a valid
common reference string this does not compromise soundness.

– We define a type-based commit-and-prove scheme, which allows com-
mitments to be reused in many different proofs.

Keywords: Non-interactive zero-knowledge proofs, commit-and-prove
schemes, Groth-Sahai proofs, type-based commitments.

1 Introduction

Non-interactive zero-knowledge (NIZK) proofs [BFM88] can be used to demon-
strate a statement is true without revealing any other information. NIZK proofs
are fundamental building blocks in cryptography and are used in numerous cryp-
tographic schemes. It is therefore important to increase their efficiency since even
small improvements will lead to significant performance gains when aggregated
over many applications.

NIZK proofs were invented more than two decades ago but early construc-
tions [BFM88, FLS99, Dam92, KP98] were very inefficient. This changed when
Groth, Ostrovsky and Sahai [GOS12] introduced pairing-based techniques for
constructing NIZK proofs. In a series of works [BW06, Gro06, BW07, GS12]
pairing-friendly NIZK proofs were developed. This line of research culminated

� The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreement n. 307937 and the Engineering and Phys-
ical Sciences Research Council grants EP/G013829/1 and EP/J009520/1.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 630–649, 2014.
c© International Association for Cryptologic Research 2014

Fine-Tuning Groth-Sahai Proofs 631

in Groth and Sahai [GS12] that gave efficient and practical NIZK proofs that
are now widely used in pairing-based cryptography.

Groth-Sahai proofs [GS12] can be instantiated in many ways with either sym-
metric or asymmetric pairings and over groups that may have either composite
order or prime order. The asymmetric setting with prime order groups yields the
smallest group elements [GPS08]. We will therefore focus on improving Groth-
Sahai proofs for prime order asymmetric bilinear groups, since the better effi-
ciency makes it the most important setting for use in practice.

Let us give some more details of what can be done with Groth-Sahai proofs.
The setting they consider is a bilinear group (p, Ĝ, Ȟ,T, e, ĝ, ȟ), where Ĝ, Ȟ,T
are prime order p groups, ĝ and ȟ are generators of Ĝ and Ȟ respectively and e :
Ĝ×Ȟ → T is a non-degenerate bilinear map. The prover wants to show that there
are values x̂i ∈ Ĝ, y̌j ∈ Ȟ, xi, yj ∈ Zp simultaneously satisfying a set of equations.
Groth and Sahai formulate four types of equations, which using additive notation
for group operations and multiplicative notation for the bilinear map e can be
written as follows.

Pairing-product equation: Public constants âj ∈ Ĝ, b̌i ∈ Ȟ, γij ∈ Zp, tT ∈ T.∑
i

x̂i · b̌i +
∑
j

âj · y̌j +
∑
i

∑
j

γij x̂i · y̌j = tT.

Multi-scalar multiplication equation in Ĝ: Public constants âj ∈ Ĝ, bi ∈
Zp, γij ∈ Zp, t̂ ∈ Ĝ.∑

i

x̂ibi +
∑
j

âjyj +
∑
i

∑
j

γij x̂iyj = t̂.

Multi-scalar multiplication equation in Ȟ: Public constants aj ∈ Zp, b̌i ∈
Ȟ, γij ∈ Zp, ť ∈ Ȟ.∑

i

xib̌i +
∑
j

aj y̌j +
∑
i

∑
j

γijxiy̌j = ť.

Quadratic equation in Zp: Public constants aj ∈ Zp, bi ∈ Zp, γij ∈ Zp, t ∈
Zp. ∑

i

xibi +
∑
j

ajyj +
∑
i

∑
j

γijxiyj = t.

These four types of equations express in a direct way statements arising in
pairing-based cryptography. For this reason Groth-Sahai proofs are used in nu-
merous pairing-based protocols including group signatures [Gro07], anonymous
credentials [BCKL08, BCC+09], e-cash [FPV09], etc.

Groth-Sahai proofs are witness-indistinguishable proofs that enable a prover
to convince a verifier that a statement is true without revealing which witness the
prover knows. For a slightly more restricted set of statements where all pairing-
product equations have tT = 0T, Groth-Sahai proofs are actually zero-knowledge
proofs that leak no information besides the truth of the statement.

632 A. Escala and J. Groth

There have been several papers that extend or improve the Groth-Sahai proof
system in different directions. [Mei09] suggested how to create perfectly ex-
tractable commitments, something which is not given by the commitments used
by Groth and Sahai. [CHP07, BFI+10] reduced the computational cost of the ver-
ification of the proofs using batch techniques, at the cost of trading perfect sound-
ness for statistical soundness. [Seo12] gave another map for verifying proofs in the
symmetric setting which reduces the computational cost of the verification of the
proofs. On the other hand, they prove that the map proposed by Groth and Sa-
hai in the asymmetric setting is optimal. [GSW10] proposed another assumption
on which Groth-Sahai proofs can be based. [BCKL08, BCC+09] exploited reran-
domization properties of Groth-Sahai proofs, which they used in anonymous cre-
dentials. [Fuc11] proposed a witness-indistinguishable commit-and-prove scheme
based on Groth-Sahai proofs in the symmetric setting. [CKLM12] introduced a
new notion of malleable proof systems, which can be built from Groth-Sahai
proofs. While there has been significant research effort devoted to pairing-based
NIZK proofs, Groth-Sahai proofs still remain the most efficient NIZK proofs
that are based on standard intractability assumptions and there has not been
any progress in reducing their size or the prover’s computation except for special
purpose statements [EHKRV13, JR13].

1.1 Our Contributions

We focus on improving efficiency and propose several ways to fine-tune Groth-
Sahai zero-knowledge proofs in the asymmetric bilinear group setting.

– Groth-Sahai proofs use public constants and committed variables. We intro-
duce two new types of values: public base elements and encrypted variables.
This reduces the size of proofs for statements involving these values.

– We recast Groth-Sahai proofs as a commit-and-prove scheme. This makes
it possible to reuse commitments in the proofs of different statements even
when these statements depend on previous commitments and proofs.

– We show that the prover’s computation can be reduced by letting her pick
her own provably correct common reference string.

Encrypted Variables. The common reference string in Groth-Sahai proofs
contains a public commitment key that the prover uses to commit to variables.
The prover then proceeds to prove that the committed variables satisfy the
equations in the statement. In our scheme we allow the prover to encrypt vari-
ables using ElGamal encryption as an alternative to the commitment scheme.
ElGamal encryption reduces the prover’s computation when compared to the
commitment operation. Moreover, equations that use ElGamal ciphertexts in-
stead of commitments have simpler proofs. However, using ElGamal encryption
means we cannot get perfect zero-knowledge, so we rely on the Decision Diffie-
Hellman (DDH) assumption to get computational zero-knowledge and we place
some restrictions on the types of equations where ElGamal encryptions can be
used.

Fine-Tuning Groth-Sahai Proofs 633

Base Elements. We observe that the commitment keys can be set up to allow
simulation in pairing-product equations where tT = â·ȟ+ĝ ·b̌ for public constants
â ∈ Ĝ and b̌ ∈ Ȟ. This extension of Groth-Sahai proofs comes at no extra cost,
so we save the costly rewriting of the equations proposed in [GS12] which was
required to get zero-knowledge in those kinds of equations.

In addition, a similar observation allows us to have shorter Groth-Sahai zero-
knowledge proofs for multi-scalar multiplications equations in Ĝ or in Ȟ in which
all the field elements are the constants t̂ = ĝ or ť = ȟ.

Using Commitment Keys with Known Discrete Logarithms. In Groth-
Sahai proofs, a common reference string created by a trusted entity is shared
between the prover and the verifier. We show how to reduce the prover’s com-
putation by allowing her to choose her own common reference string, which we
think of as her public key. This change reduces the cost of computing her com-
mitments from 4 scalar multiplications to 2 scalar multiplications and it also
reduces the cost of computing proofs.

To enforce soundness, the prover will give a Groth-Sahai proof to the prover,
using a common reference string the verifier does trust, for the public key being
correct. The cost of such proof is 12 group elements in total, which is a one-off
cost as the public key can be used for many commitments and proofs.

Viewing the common reference string as the prover’s public key gives us some
flexibility in the setup. Instead of proving the public key correct in the com-
mon reference string model, the prover could use the multi-string model [GO07]
where we only assume a majority out of n common reference strings are honest.
Alternatively, the prover could give a zero-knowledge proof of knowledge to a
trusted third party that the public key is correct and get a certificate on the
public key.

Type-Based Commit-and-Prove Schemes. A natural generalization of zero-
knowledge proofs are commit-and-prove schemes [Kil90, CLOS02], where the
prover can commit to values and prove statements about the committed values.
Commit-and-prove schemes provide extra flexibility and reduce communication;
it is for instance possible to choose values to be committed to in an adaptive
fashion that depends on previous commitments or proofs. The traditional def-
inition of zero-knowledge proofs would require the prover to make an entirely
new set of commitments for each statement to be proven.

Groth-Sahai proofs can be used to build a non-interactive commit-and-prove
scheme in a natural way; Belenkiy et al. [BCKL08] for instance explicitly let
the commitments be part of the statements and define witness-indistinguishable
proofs for such statements. Fuchsbauer [Fuc11] defines a witness-indistinguishable
Groth-Sahai based commit-and-prove scheme and uses it in the construction of
delegatable anonymous credentials. Our definition of a non-interactive commit-
and-prove scheme will resemble Fuchsbauer’s [Fuc11]. However, we are in a differ-
ent situation because we have more types of elements that we want to commit
to. A group element in Ĝ may for instance be committed using the perfectly
binding/perfectly hiding commitment scheme or using ElGamal encryption.

634 A. Escala and J. Groth

To give a generally applicable definition of non-interactive commit-and-prove
schemes, we propose the notion of type-based commitments. A type-based com-
mitment scheme enables the prover to commit to a message m with a publicly
known type t and we require that the type and message pair (t,m) belong to
a message space Mck. One example of a type could for instance be t = enc

Ĝ

meaning the value m should be encrypted (as opposed to using the more expen-

sive commitment operation) and it should be done in group Ĝ. This increases
the flexibility of the commitment scheme, we can for instance create a type
(pub

Ĝ
, x) that publicly declares the committed value x. Since the type is public

this commitment is no longer hiding, however, as we shall see it simplifies our
commit-and-prove scheme because we can now commit to both public constants
and secret variables without having to treat them differently.

Applications. To illustrate the advantages of our fine-tuned Groth-Sahai proofs
we give an example based on the weak Boneh-Boyen signature scheme [BB04],
which is widely used in pairing-based protocols. The verification key is an element
v̂ ∈ Ĝ and a signature on a message m ∈ Zp is a group element σ̌ ∈ Ȟ such that

(v̂ +mĝ) · σ̌ = ĝ · ȟ.

Suppose the prover has commitments to v̂ and σ̌ and wants to demonstrate
that they satisfy the verification equation for a (public) message m. With tradi-
tional Groth-Sahai proofs the commitments c and d to v̂ and σ̌ would be treated
as part of the statement and one would carefully demonstrate the existence of
openings of c and d to v̂ and σ̌ satisfying the pairing-product equation. With a
commit-and-prove system, we can instead jump directly to demonstrating that
the values inside v̂ and σ̌ satisfy the verification equation without having to treat
the openings of the commitments as part of the witness. This saves several group
elements each time one of the commitments is used.

Next, observe that the pairing-product equation has tT = ĝ · ȟ. A direct appli-
cation of Groth-Sahai proofs would therefore not yield a zero-knowledge proof
but only give witness-indistinguishability. To get zero-knowledge we could use
the workaround suggested by Groth-Sahai, which would consist of committing
to a new variable y̌, prove that y̌ = ȟ and simultaneously (v̂+mĝ) · σ̌− ĝ · y̌ = 0T.
This workaround would increase the cost of the proof from 8 group elements to
16 group elements, so we save 8 group elements by enabling a direct proof.

Now assume the prover has created her own common reference string pk and
has already sent it together with the well-formedness proof to the verifier. The
prover could now use pk to compute the zero-knowledge proof for the equation
(v̂ +mĝ) · σ̌ = ĝȟ . By using pk, she would need to do 10 scalar multiplications

in Ĝ and 6 scalar multiplications in Ȟ to compute the proof. In contrast, if she
was computing the proof using the commitment key ck, she would need to do 12
scalar multiplications in Ĝ and 10 scalar multiplications in Ȟ. As the operations
in Ȟ are usually significantly more expensive than the operations in Ĝ, the prover
is essentially saving 4 expensive operations of the 10 that she would need to do if
she used ck. Therefore, our techniques reduce the computational cost of creating

Fine-Tuning Groth-Sahai Proofs 635

the zero-knowledge proof by roughly 40%. In addition, the computational cost
of computing the commitments to v̂ and σ̌ would also be reduced by 50%.

Finally, we can obtain a saving by encrypting one of the variables instead of
committing to it. If we encrypt v̂ for instance, the ciphertext is 2 group elements
just as a commitment would be, but the cost of the proof for the pairing-product
equation is reduced from 8 group elements to 6 group elements. In total we have
reduced the cost by 63% from 16 group elements to 6 group elements.

In the full paper [EG13] we give two concrete examples of existing schemes
using Groth-Sahai proofs where our techniques can improve efficiency.

2 Commit-and-Prove Scheme Definitions

Let RL be a polynomial time verifiable relation containing triples (ck, x, w).
We will call ck the commitment key or the common reference string, x the
statement and w the witness. We define the key-dependent language Lck as the
set of statements x for which there exists a witness w such that (ck, x, w) ∈ RL.

We will now define a commit-and-prove scheme for a relation RL. In the
commit-and-prove scheme, we may commit to different values w1, . . . , wN and
prove for different statements x that a subset of the committed values w =
(wi1 , . . . , win) constitute a witness for x ∈ Lck, i.e., (ck, x, w) ∈ RL.

We will divide each committed value into two parts wi = (ti,mi). The first
part ti can be thought of as a public part that does not need to be kept secret,
while the second part mi can be thought of as a secret value that our commit-
and-prove scheme should not reveal. The first part ti will be useful later on to
specify the type of value mi is, for instance a group element or a field element,
and to specify which type of commitment we should make tomi. This is a natural
and useful generalization of standard commitment schemes.

A commit-and-prove scheme CP = (Gen,Com,Prove,Verify) consists of four
polynomial time algorithms. The algorithms Gen,Prove are probabilistic and
the algorithms Com,Verify are deterministic.

Gen(1k): Generates a commitment key ck. The commitment key specifies a mes-
sage space Mck, a randomness space Rck and a commitment space Cck.
Membership of either space can be decided efficiently.

Comck(t,m; r): Given a commitment key ck, a message (t,m) ∈ Mck and
randomness r such that (t, r) ∈ Rck returns a commitment c such that
(t, c) ∈ Cck.

Proveck(x, (t1,m1, r1), . . . , (tn,mn, rn)): Given a commitment key ck, statement
x and commitment openings such that (ti,mi) ∈ Mck, (ti, ri) ∈ Rck and
(ck, x, t1,m1, . . . , tn,mn) ∈ RL returns a proof π.

Verifyck(x, (t1, c1), . . . , (tn, cn), π): Given a commitment key ck, a statement x,
a proof π and commitments (ti, ci) ∈ Cck returns 1 (accept) or 0 (reject).

Definition 1 (Perfect correctness). The commit-and-prove system CP is
(perfectly) correct if for all adversaries A

Pr

[
ck ← Gen(1k) ; (x,w1, r1, . . . , wn, rn) ← A(ck) ; ci ← Comck(wi; ri) ;
π ← Proveck(x,w1, r1, . . . , wn, rn) : Verifyck(x, (t1, c1), . . . , (tn, cn), π) = 1

]
= 1,

636 A. Escala and J. Groth

where A outputs wi, ri such that wi = (ti,mi) ∈ Mck, (ti, ri) ∈ Rck and
(ck, x, w1, . . . , wn) ∈ RL.

We say a commit-and-prove scheme is sound if it is impossible to prove a
false statement. Strengthening the usual notion of soundness, we will associate
unique values to the commitments, and these values will constitute a witness for
the statement. This means that not only does a valid proof guarantee the truth
of the statement, but also each commitment will always contribute a consistent
witness towards establishing the truth of the statement.

Definition 2 (Perfect soundness). The commit-and-prove system CP is (per-
fectly) sound if there exists a deterministic (unbounded) opening algorithm Open
such that for all adversaries A

Pr

[
ck ← Gen(1k) ; (x, t1, c1, . . . , tn, cn, π) ← A(ck) ; mi ← Openck(ti, ci) :
Verifyck(x, t1, c1, . . . , tn, cn, π) = 0 ∨ (ck, x, (t1,m1), . . . , (tn,mn)) ∈ RL

]
= 1.

Extending the notion of soundness we may define a proof of knowledge as one
where it is possible to efficiently extract a witness for the truth of the state-
ment proven when given an extraction key xk. Actually, the commit-and-prove
schemes we construct will not allow the extraction of all types of witnesses due
to the hardness of the discrete logarithm problem. However, following Belenkiy
et al. [BCKL08] we can specify a function F such that we can extract F (ck, w)
from a commitment. Efficient extraction of a witness corresponds to the special
case where F (ck, w) = m, with m being the secret part of the witness w = (t,m).

Definition 3 (Perfect F -extractability). Let in the following ExtGen and
Ext be two algorithms as described below.

– ExtGen is a probabilistic polynomial time algorithm that on 1k returns
(ck, xk). We call ck the commitment key and xk the extraction key. We
require that the probability distributions of ck made by ExtGen and Gen are
identical.

– Ext is a deterministic polynomial time algorithm that given an extraction
key xk and (t, c) ∈ Cck returns a value.

The commit-and-prove scheme CP with perfect soundness for opening algo-
rithm Open is F -extractable if for all adversaries A

Pr

[
(ck, xk) ← ExtGen(1k) ; (t, c) ← A(ck, xk) :
(t, c) /∈ Cck ∨ Extxk(t, c) = F (ck, (t,Open(t, c)))

]
= 1.

A commit-and-prove scheme is zero-knowledge if it does not leak information
about the secret parts of the committed messages besides what is known from
the public parts. This is defined as the ability to simulate commitments and
proofs without knowing the secret parts of the messages (the types are known)
if instead some secret simulation trapdoor is known.

Fine-Tuning Groth-Sahai Proofs 637

Following [Gro06, GOS12] we define a strong notion of zero-knowledge called
composable zero-knowledge. Composable zero-knowledge says the commitment
key can be simulated, and if the commitment key is simulated it is not possible
to distinguish real proofs from simulated proofs even if the simulation trapdoor
is known.

Definition 4 (Composable zero-knowledge). The commit-and-prove sys-
tem CP is (computationally) composable zero-knowledge if there exist proba-
bilistic polynomial time algorithms SimGen, SimCom, SimProve such that for all
non-uniform polynomial time stateful interactive adversaries A 1

Pr
[
ck ← Gen(1k) : A(ck) = 1

]
≈ Pr

[
(ck, tk) ← SimGen(1k) : A(ck) = 1

]
and

Pr

[
(ck, tk) ← SimGen(1k); (x, i1, . . . , in) ← AComck(·)(ck, tk);
π ← Proveck(x,wi1 , ri1 , . . . , win , rin) : A(π) = 1

]
≈ Pr

[
(ck, tk) ← SimGen(1k); (x, i1, . . . , in) ← ASimComtk(·)(ck, tk);
π ← SimProvetk(x, ti1 , si1 , . . . , tin , sin) : A(π) = 1

]
,

where

– tk is a trapdoor key used to construct simulated proofs
– Comck(·) on wi = (ti,mi) ∈ Mck picks uniformly random ri such that

(ti, ri) ∈ Rck and returns ci = Comck(wi; ri)
– SimComtk(·) on wi = (ti,mi) ∈ Mck runs (ci, si) ← SimComtk(ti) and

returns ci, where si is some auxiliary information used to construct simulated
proofs

– A picks (x, i1, . . . , in) such that (ck, x, wi1 , . . . , win) ∈ RL

3 Preliminaries

3.1 Bilinear Group

Let G be a probabilistic polynomial time algorithm that on input 1k returns
(p, Ĝ, Ȟ,T, e, ĝ, ȟ), where Ĝ, Ȟ and T are groups of prime order p, ĝ and ȟ gen-

erate Ĝ and Ȟ respectively, and e : Ĝ × Ȟ → T is an efficiently computable,
non-degenerate bilinear map.

Notation. We will write elements x̂ ∈ Ĝ with a hat and elements y̌ ∈ Ȟ with
an inverted hat to make it easy to distinguish elements from the two groups. We
denote the neutral elements in the groups Ĝ, Ȟ and T with 0̂, 0̌ and 0T.

1 Given two functions f, g : N → [0, 1] we write f(k) ≈ g(k) when |f(k) − g(k)| =
O(k−c) for every positive integer c. We say that f is negligible when f(k) ≈ 0 and
that it is overwhelming when f(k) ≈ 1.

638 A. Escala and J. Groth

It will be convenient to use additive notation for all three groups Ĝ, Ȟ and T.
This notation deviates from standard practice (Ĝ, Ȟ are sometimes written mul-
tiplicatively and T is usually written multiplicatively) but will greatly simplify
our paper and make it possible to use linear algebra concepts such as vectors
and matrices in a natural way. We stress that even though we are using additive
notation it is hard to compute discrete logarithms in the groups.

It will also be convenient to write the pairing e with multiplicative notation.
So we define

x̂ · y̌ = e(x̂, y̌).

Writing the pairing multiplicatively allows us to use linear algebra notation
in a natural way, we have for instance

x̂ ·
(
0̌ y̌
ž 0̌

)
e� =

(
x̂ · y̌
0T

)
,

for x̂ ∈ Ĝ, y̌, ž ∈ Ȟ and e = (0, 1). Note that as x̂a · y̌ = x̂ · ay̌ we will use the
simpler notation x̂ay̌ = x̂a · y̌ = x̂ · ay̌.

3.2 SXDH Assumption

Let (p, Ĝ, Ȟ,T, e, ĝ, ȟ) be a bilinear group. The Decision Diffie-Hellman (DDH)

problem in Ĝ is to distinguish the two distributions (ĝ, ξĝ, ρĝ, ξρĝ) and
(ĝ, ξĝ, ρĝ, κĝ), where ξ, ρ, κ ← Zp. The DDH problem in Ȟ is defined in a similar
way.

Definition 5. The Symmetric eXternal Diffie-Hellman (SXDH) assumption

holds relative to G if the DDH problems are computationally hard in both Ĝ
and Ȟ for (p, Ĝ, Ȟ,T, e, ĝ, ȟ) ← G(1k).

3.3 ElGamal Encryption

The ElGamal encryption scheme [EG84] is a public key encryption scheme given
by the following algorithms:

– Setup: on input a security parameter 1k, output a cyclic group Ĝ of prime
order p, an element ĝ ∈ Ĝ and an element ξ ← Z∗

p. Then, define the public

key as pk = (Ĝ, v̂), where v̂ = (ξĝ, ĝ)� ∈ Ĝ2×1 and the secret decryption
key as xk = (pk, ξ), where ξ = (−ξ−1 mod p, 1).

– Encrypt: the encryption algorithm takes as input the public key pk and
a message x̂ ∈ Ĝ, picks a random r ← Zp and outputs the ciphertext ĉ =

e�x̂+ v̂r ∈ Ĝ2×1, where e = (0, 1).
– Decrypt: the decryption algorithm takes as input the secret key xk and a

ciphertext ĉ ∈ Ĝ2×1 and outputs x̂ = ξĉ. Note ξe� = 1 and ξv̂ = 0 so
simple linear algebra shows decryption is correct.

The ElGamal encryption scheme is IND-CPA secure if the DDH problem is
computationally hard in Ĝ [TY98]. ElGamal encryption can be defined simi-
larly in Ȟ and if the SXDH assumption holds we then have IND-CPA secure
encryption schemes in both Ĝ and Ȟ.

Fine-Tuning Groth-Sahai Proofs 639

3.4 Pairing-Product Equations and Other Types of Equations

Using the linear algebra friendly additive notation for group operations and
multiplicative notation for the pairing, we can express the four types of equations
given in the introduction (Sec. 1) in a compact way.

Consider elements x̂1, . . . , x̂m ∈ Ĝ and y̌1, . . . , y̌n ∈ Ȟ, which may be publicly
known constants (called âj and b̌i in the introduction) or secret variables. Let
furthermore the matrix Γ = {γij}m,ni=1,j=1 ∈ Zm×n

p and tT ∈ T be public values.
We can now write the pairing product equation simply as

x̂Γ y̌ = tT,

where x̂ = (x̂1, . . . , x̂m) and y̌ = (y̌1, . . . , y̌n)
�.

We can in a similar fashion write multi-scalar multiplication equations in Ĝ,
multi-scalar multiplication equations in Ȟ, and quadratic equations in Zp as

x̂Γy = t̂ xΓ y̌ = ť xΓy = t

for suitable choices of m,n ∈ N, Γ ∈ Zm×n
p , x̂ ∈ Ĝ1×m, y̌ ∈ Ȟn×1,x ∈ Z1×m

p ,y ∈
Zn×1
p , t̂ ∈ Ĝ, ť ∈ Ȟ and t ∈ Zp. The vectors x̂, y̌,x,y may contain a mix of

known public values and secret variables.
Groth and Sahai [GS12] made the useful observation that by subtracting

t̂ · 1, 1 · ť and 1 · t on both sides of the respective equations we may without loss
of generality assume t̂ = 0̂, ť = 0̌ and t = 0 in all multi-scalar multiplication
equations and quadratic equations.

To get zero-knowledge proofs, we will in addition like Groth and Sahai restrict
ourselves to tT = 0T in all pairing product equations. Groth and Sahai [GS12] do
not allow pairings of public constants in the pairing product equations in their
zero-knowledge proofs, which we express by requiring the matrix Γ to contain
entries γi,j = 0 whenever x̂i and y̌j both are public values. This is because their
zero-knowledge simulator breaks down when public values are paired. Groth
and Sahai offers a work-around to deal with public values being paired with each
other but it involves introducing additional multi-scalar multiplication equations
and therefore increases the complexity of the zero-knowledge proof by many
group elements. We will show that zero-knowledge simulation is possible when
base elements ĝ or ȟ are paired with each other or other public values. Since we
do not need the additional multi-scalar multiplication equation used in Groth
and Sahai’s work-around this yields a significant efficiency gain whenever ĝ or ȟ
are paired with each other or other public values.

4 Commitment Keys and Commitments

Like in Groth-Sahai proofs, commitment keys come in two flavours: extraction
keys that give perfect soundness and simulation keys that give zero-knowledge.
The two types of key generation algorithms are given in Fig. 1 and by the

640 A. Escala and J. Groth

ExtGen(1k)

(p, Ĝ, Ȟ,T, e, ĝ, ȟ) ← G(1k)
ρ ← Zp, ξ ← Z∗

p σ ← Zp, ψ ← Z∗
p

v̂ ← (ξĝ, ĝ) v̌ ← (ψȟ, ȟ)
ŵ ← ρv̂ w̌ ← σv̌

û ← ŵ + (0̂, ĝ) ǔ ← w̌ + (0̌, ȟ)

ξ ← (−ξ−1 mod p, 1) ψ ← (−ψ−1 mod p, 1)

ck ← (p, Ĝ, Ȟ,T, e, û, v̂, ŵ, ǔ, v̌, w̌)
xk ← (ck, ξ,ψ)
Return (ck, xk)

SimGen(1k)

(p, Ĝ, Ȟ,T, e, ĝ, ȟ) ← G(1k)
ρ ← Zp, ξ ← Z∗

p σ ← Zp, ψ ← Z∗
p

v̂ ← (ξĝ, ĝ) v̌ ← (ψȟ, ȟ)

ŵ ← ρv̂ − (0̂, ĝ) w̌ ← σv̌ − (0̌, ȟ)

û ← ŵ + (0̂, ĝ) ǔ ← w̌ + (0̌, ȟ)

ck ← (p, Ĝ, Ȟ,T, e, û, v̂, ŵ, ǔ, v̌, w̌)
tk ← (ck, ρ, σ)
Return (ck, tk)

Fig. 1. Generator algorithms

SXDH assumption extraction keys and simulation keys are computationally in-
distinguishable.2

The column vectors v̂, ŵ, û ∈ Ĝ2×1 will be used to make commitments ĉ to
group elements x̂ ∈ Ĝ and scalars x ∈ Zp. Commitments to group elements and
scalars are computed as

ĉ ← e�x̂+ v̂r + ŵs and ĉ ← ûx+ v̂r,

where r, s ∈ Zp. Commitments, usually denoted ď, to group elements ŷ ∈ Ȟ and
scalars y ∈ Zp are made analogously using the row vectors v̌, w̌, ǔ ∈ Ȟ1×2.

The commitment scheme is similar to [GS12], however, we will have several
different types of commitments and the randomness r, s ∈ Zp we use will depend
on the type. Fig. 2 summarizes the commitment types and describes the message,
randomness and commitment spaces specified by the public key ck.

The type t = (pub
Ĝ
, x̂) corresponds to a commitment to a public value x̂

using randomness r = s = 0. It is easy for the verifier to check whether a
commitment ĉ = e�x̂ is indeed a correct commitment to a public value x̂.
Explicitly allowing public values in the commitments simplifies the description
of the proofs because we can now treat all elements x̂1, . . . , x̂m in a pairing
product equation as committed values regardless of whether they are public or
secret. Suppose some of the elements x̂ ∈ Ĝ1×m that appear in a pairing-product
equation are committed as constant and others as Groth-Sahai commitments.
The matrix consisting of all the commitments Ĉ = (ĉ1 · · · ĉm) ∈ Ĝ2×m can be
written in a compact way as Ĉ = e�x̂+ v̂rx + ŵsx, where for a constant x̂i we
just have rxi = 0 and sxi = 0.

In a standard Groth-Sahai proof, group element variables are committed as
type t = com

Ĝ
using randomness r, s ← Zp. We will for greater efficiency also

2 The commitment keys are not defined exactly as in [GS12]: by defining v̂ as (ξĝ, ĝ)

instead of (ĝ, ξĝ) we will be able to reduce the computational cost of the prover,
as explained in Sec. 6. Besides this small difference, the keys v̂, ŵ, û, v̌, w̌ and ǔ
correspond to u1, u2, u, v1, v2 and v in [GS12].

Fine-Tuning Groth-Sahai Proofs 641

t m (r, s) ĉ

(pub
Ĝ
,m) m̂ ∈ Ĝ r = s = 0 ĉ = (0̂, m̂)

enc
Ĝ

m̂ ∈ Ĝ r ∈ Zp, s = 0 ĉ ∈ Ĝ2×1

com
Ĝ

m̂ ∈ Ĝ r, s ∈ Zp ĉ ∈ Ĝ2×1

base
Ĝ

m̂ = ĝ r = s = 0 ĉ = (0̂, ĝ)

sca
Ĝ

m ∈ Zp r ∈ Zp, s = 0 ĉ ∈ Ĝ2×1

unit
Ĝ

m = 1 r = s = 0 ĉ = û

t m (r, s) ď

(pub
Ȟ
,m) m̌ ∈ Ȟ r = s = 0 ď = (0̌, m̌)

enc
Ȟ

m̌ ∈ Ȟ r ∈ Zp, s = 0 ď ∈ Ȟ1×2

com
Ȟ

m̌ ∈ Ȟ r, s ∈ Zp ď ∈ Ȟ1×2

base
Ȟ

m̌ = ȟ r = s = 0 ď = (0̌, ȟ)

sca
Ȟ

m ∈ Zp r ∈ Zp, s = 0 ď ∈ Ȟ1×2

unit
Ȟ

m = 1 r = s = 0 ď = ǔ

Fig. 2. Mck,Rck and Cck

allow commitments of type t = enc
Ĝ
where s = 0. A type t = enc

Ĝ
commitment

to a group element x̂ is ĉ ← e�x̂ + v̂r, which is an ElGamal encryption of x̂
as described in Sec. 3.3. Using encryption of variables instead of commitments
reduces the computation and in some instances the size of the proofs. However,
even on a simulation key the encryptions are only computationally hiding, so we
must take care to ensure that it is possible to simulate proofs.

We also introduce the type t = base
Ĝ
for a commitment to the base element ĝ

using r = s = 0. This type allows us to differentiate ĝ from other public values,
which is important because simulation becomes problematic when public values
are paired with each other. However in the special case when ĝ is paired with
ȟ or public constants it is possible to simulate. In addition, one can get shorter
zero-knowledge proofs for certain equations by using the special properties of
commitments with types t = base

Ĝ
and t = base

Ȟ
.

Scalars have the type t = sca
Ĝ
and we use the type t = unit

Ĝ
for a commitment

to the scalar 1 using r = s = 0. Please note that t = unit
Ĝ
suffices to incorporate

any public value a ∈ Zp into our equations by multiplying the corresponding row
in the matrix Γ with a. With these two types we can therefore commit to both
variables and constants in Zp, which simplifies the description of the proofs.

We have now described the types of commitments in Ĝ and similar types for
commitments in Ȟ are given in Fig. 2. The commitment algorithm is described
in Fig. 3.

The extraction key xk includes a vector ξ such that ξv̂ = ξŵ = 0̂ and
ξe� = 1, ξû = ĝ. On a commitment to a group element ĉ = e�x̂ + v̂r + ŵs or
on an encryption to a group element ĉ = e�x̂+v̂r we can extract x̂ by computing
x̂ = ξĉ. On a commitment to a scalar ĉ = ûx + v̂r we extract ĝx = ξĉ, which
uniquely determines the committed value x. The extraction algorithm is given
in Fig. 4.

The simulated commitment algorithm SimComtk(t) commits honestly to pub-
lic constants, base elements ĝ, ȟ and units 1, which is easy to verify using public
information. For all other types it commits to 0. We refer to the full paper [EG13]
for a detailed specification.

On a simulation key, the commitments of types com
Ĝ
or sca

Ĝ
are perfectly

hiding. Commitments of types (pub
Ĝ
, x̂) or enc

Ĝ
on the other hand are perfectly

binding. However, by the SXDH assumption commitments of type enc
Ĝ
cannot

642 A. Escala and J. Groth

Input Randomness Output

(pub
Ĝ
, x̂), x̂ r ← 0, s ← 0 ĉ ← ex̂

enc
Ĝ
, x̂ (�) r ← Zp, s ← 0 ĉ ← ex̂+ v̂r

com
Ĝ
, x̂ r ← Zp, s ← Zp ĉ ← ex̂+ v̂r + ŵs

base
Ĝ
, ĝ (�) r ← 0, s ← 0 ĉ ← eĝ

sca
Ĝ
, x r ← Zp, s ← 0 ĉ ← ûx+ v̂r

unit
Ĝ
, 1 r ← 0, s ← 0 ĉ ← û

Input Randomness Output

(pub
Ȟ
, y̌), y̌ r ← 0, s ← 0 ď ← y̌e

enc
Ȟ
, y̌ (�) r ← Zp, s ← 0 ď ← y̌e+ rv̌

com
Ȟ
, y̌ r ← Zp, s ← Zp ď ← y̌e+ rv̌ + sw̌

base
Ȟ
, ȟ (�) r ← 0, s ← 0 ď ← ȟe

sca
Ȟ
, y r ← Zp, s ← 0 ď ← yǔ+ rv̌

unit
Ȟ
, 1 r ← 0, s ← 0 ď ← ǔ

Fig. 3. Commitment algorithm. [GS12] do not have the types marked with (�)

Extxk(t, ĉ) where ĉ ∈ Ĝ2×1

Return x̂ ← ξĉ

Extxk(t, ď) where ď ∈ Ȟ1×2

Return y̌ ← ďψ

Fig. 4. Extraction algorithm

be distinguished from commitments to other elements. Commitments of type
(pub

Ĝ
, x̂) are public, so we do not require any hiding property.

Commitments to ĝ and 1 of types base
Ĝ
and unit

Ĝ
are interesting. The secret

simulation key specifies ρ such that û = ρv̂ and e�ĝ = ρv̂− ŵ. This means that
commitments of types base

Ĝ
and unit

Ĝ
can be equivocated as either commit-

ments to ĝ and 1 or as commitments to 0̂ and 0. The zero-knowledge simulator
will use the equivocations to simulate proofs involving the base element ĝ or
constants in Zp.

5 Proofs

We will first explain how the proofs work using the example of pairing product
equations to give intuition. We want to prove that committed values x̂, y̌ satisfy
the equation

x̂Γ y̌ = 0T.

Assume that we have committed to x̂, y̌ as Ĉ = e�x̂ + v̂rx + ŵsx and Ď =
y̌e+ ryv̌ + syw̌. We then have

ĈΓ Ď =(e�x̂+ v̂rx + ŵsx)Γ (y̌e+ ryv̌ + syw̌)

=e�x̂Γ y̌e+ v̂rxΓĎ + ŵsxΓĎ + e�x̂Γryv̌ + e�x̂Γsyw̌

=0T + v̂π̌′
v̂ + ŵπ̌′

ŵ + π̂′
v̌v̌ + π̂′

w̌w̌

where π̌′
v̂ = rxΓĎ, π̌′

ŵ = sxΓĎ, π̂′
v̌ = e�x̂Γry, π̂′

w̌ = e�x̂Γsy.
The prover randomizes π̌′

v̂, π̌
′
ŵ, π̂

′
v̌, π̂

′
w̌ as π̌v̂ = π̌′

v̂ + αv̌ + βw̌, π̌ŵ = π̌′
ŵ +

γv̌+ δw̌, π̂v̌ = π̂′
v̌ − v̂α− ŵγ, π̂w̌ = π̂′

w̌ − v̂β − ŵδ. This gives us a randomized
proof π̌v̂, π̌ŵ, π̂v̌, π̂w̌ satisfying the verification equation

ĈΓ Ď = v̂π̌v̂ + ŵπ̌ŵ + π̂v̌v̌ + π̂w̌w̌.

Fine-Tuning Groth-Sahai Proofs 643

Soundness and F -extractability. An extraction key xk contains ξ,ψ such
that ξv̂ = ξŵ = 0̂ and v̌ψ = w̌ψ = 0̌. Multiplying the verification equation by
ξ and ψ on the left and right side respectively, we get

ξĈΓ Ďψ = ξv̂π̌v̂ψ + ξŵπ̌ŵψ + ξπ̂v̌v̌ψ + ξπ̂w̌w̌ψ = 0T.

Observe, x̂ = ξĈ are the values the extractor Extxk gets from the commitments
Ĉ and y̌ = Ďψ are the values the extractor Extxk gets from the commitments
Ď. The extracted values from the commitments therefore satisfy x̂Γ y̌ = 0T.
This gives us perfect soundness and perfect F -extractability, where F on group
elements in Ĝ and Ȟ is the identity function.

Zero-Knowledge. The simulator will simulate proofs by equivocating the com-
mitments to values x̂, y̌ that satisfy the equation x̂Γ y̌ = 0T. On a simulation
key, commitments with types com

Ĝ
, com

Ȟ
are perfectly hiding. The simulator

can therefore use x̂i = 0̂ or y̌j = 0̌. Commitments with types base
Ĝ
, base

Ȟ

are also equivocable to 0̂ or 0̌ since on a simulation key e�ĝ = v̂ρ − ŵ and
ȟe = σv̌ − w̌. By using equivocations to 0̂ and 0̌ we can now ensure that
x̂iγi,j y̌j = 0T whenever txi ∈ {base

Ĝ
, com

Ĝ
} or tyj ∈ {base

Ȟ
, com

Ȟ
}. Commit-

ments of type txi ∈ {(pub
Ĝ
, x̂), enc

Ĝ
} and tyj ∈ {(pub

Ȟ
, y̌), enc

Ȟ
} cannot be

equivocated and, to get zero-knowledge, we will therefore assume γi,j = 0 when-
ever such types are paired (as is also the case in [GS12]).

We now have that the simulator can equivocate commitments and base el-
ements to 0̂ and 0̌ such that the resulting x̂, y̌ satisfy x̂Γ y̌ = 0T. The ran-
domization of the proofs ensures that they will not leak information about
whether we are giving a real proof or simulating. Recall the prover randomized
π̌′
v̂, π̌

′
ŵ, π̂

′
v̌, π̂

′
w̌ as π̌v̂ = π̌′

v̂+αv̌+βw̌, π̌ŵ = π̌′
ŵ+γv̌+δw̌, π̂v̌ = π̂′

v̌− v̂α−ŵγ,
π̂w̌ = π̂′

w̌ − v̂β − ŵδ. On a simulation key this means regardless of whether we
are giving a real proof or a simulated proof π̌v̂, π̌ŵ are uniformly random and
π̂v̌, π̂w̌ are the unique values that make the verification equation true. Finally,
the encrypted elements are computationally hidden by the SXDH assumption,
so here the simulator may use encryptions of 0̂ and 0̌ instead of the witness
and as we shall show the proofs can be constructed on top of the ciphertexts
such that they do not reveal whether the underlying plaintext are part of a real
witness or are set to zero by the simulator.

Optimizations. Now let us return to the prover. Observe that rx, sx, ry, sy
may have some zero elements. In particular, assume that all elements in sx are
0. This happens if all x̂i in the statement have types enc

Ĝ
, (pub

Ĝ
, x̂i) or baseĜ.

Moreover, assume that all elements y̌ have as types either com
Ȟ

or base
Ȟ

so
that a simulator uses y̌ = 0̌ in the simulated proof. This sets π̌′

ŵ = 0̌. As π̌′
ŵ

is the same for all witnesses, even for “simulated witnesses”, we might as well
set γ = δ = 0. For such equations, we therefore save 2 group elements or 25%
of the proof size compared to Groth and Sahai [GS12] where there is no enc

Ĝ

or enc
Ȟ
types. We refer to the full paper [EG13] for a list of equation types and

the corresponding proof sizes.

644 A. Escala and J. Groth

5.1 The Full Proof System

We divide the possible statements into 16 different types. They are summarized
in Fig. 5, which provides an algorithm for checking that the statement format
is correct. The relation RL is defined in Fig. 6, which provides an algorithm to
check whether a statement is true. The relation first checks that the types of
the witnesses and the types of the equations match according to Fig. 5 and then
whether the relevant pairing product, multi-scalar multiplication or quadratic
equation is satisfied.

CheckFormatck(T, Γ, {txi}mi=1, {tyj}nj=1)

Check Γ ∈ Zm×n
p

Check that the equation and message types match each other according to the table below

T tx1 , . . . , txm ty1 , . . . , tyn
PPE base

Ĝ
, (pub

Ĝ
, x̂i), encĜ, comĜ

base
Ȟ
, (pub

Ȟ
, y̌j), encȞ, comȞ

PEnc
Ĝ

base
Ĝ
, (pub

Ĝ
, x̂i), encĜ base

Ȟ
, com

Ȟ

PConst
Ĝ

base
Ĝ
, (pub

Ĝ
, x̂i) base

Ȟ
, com

Ȟ

PEnc
Ȟ

base
Ĝ
, com

Ĝ
base

Ȟ
, (pub

Ȟ
, y̌j), encȞ

PConst
Ȟ

base
Ĝ
, com

Ĝ
base

Ȟ
, (pub

Ȟ
, y̌j)

ME
Ĝ

base
Ĝ
, (pub

Ĝ
, x̂i), encĜ, comĜ

unit
Ȟ
, sca

Ȟ

MEnc
Ĝ

base
Ĝ
, (pub

Ĝ
, x̂i), encĜ unit

Ȟ
, sca

Ȟ

MConst
Ĝ
base

Ĝ
, (pub

Ĝ
, x̂i) unit

Ȟ
, sca

Ȟ

MLin
Ĝ

base
Ĝ
, com

Ĝ
unit

Ȟ

ME
Ȟ

unit
Ĝ
, sca

Ĝ
base

Ȟ
, (pub

Ȟ
, y̌j), encȞ, comȞ

MEnc
Ȟ

unit
Ĝ
, sca

Ĝ
base

Ȟ
, (pub

Ȟ
, y̌j), encȞ

MConst
Ȟ
unit

Ĝ
, sca

Ĝ
base

Ȟ
, (pub

Ȟ
, y̌j)

MLin
Ȟ

unit
Ĝ

base
Ȟ
, com

Ȟ

QE unit
Ĝ
, sca

Ĝ
unit

Ȟ
, sca

Ȟ

QConst
Ĝ

unit
Ĝ

unit
Ȟ
, sca

Ȟ

QConst
Ȟ

unit
Ĝ
, sca

Ĝ
unit

Ȟ

If T = PPE check Γi,j = 0 for all (i, j) where txi ∈ {(pub
Ĝ
, x̂i), encĜ} and tyj ∈ {(pub

Ȟ
, y̌j), encȞ}

Accept format if all checks pass, else abort

Fig. 5. Equation - message types check

The prover and verifier are given in Fig. 7. The prover constructs a proof for
the relevant type of equation assuming the input is a correctly formatted state-
ment with valid openings of commitments to a satisfying witness. The verifier
uses the matching verification equation to check validity of a proof.

Let F be given by

F (ck, t, x̂) = x̂ for t ∈ {(pub
Ĝ
, x̂), enc

Ĝ
, com

Ĝ
, base

Ĝ
}

F (ck, t, x) = ĝx for t ∈ {sca
Ĝ
, unit

Ĝ
}

F (ck, t, ŷ) = y̌ for t ∈ {(pub
Ȟ
, y̌), enc

Ȟ
, com

Ȟ
, base

Ȟ
}

F (ck, t, y) = yȟ for t ∈ {sca
Ȟ
, unit

Ȟ
}

.

Fine-Tuning Groth-Sahai Proofs 645

RL(ck, (T, Γ), ({(txi , xi)}mi=1, {(tyj , yj)}nj=1))

CheckFormatck(T, Γ, {txi}mi=1, {tyj}nj=1)
For all i, j check (txi , xi) ∈ Mck and (tyj , yj) ∈ Mck

If x ∈ Ĝm and y ∈ Ȟn check xΓy = 0T
If x ∈ Ĝm and y ∈ Zn

p check xΓy = 0̂
If x ∈ Zm

p and y ∈ Ȟn check xΓy = 0̌
If x ∈ Zm

p and y ∈ Zn
p check xΓy = 0

Accept if and only if all checks pass

Fig. 6. Relation that defines the key-dependent languages for our proofs

Proveck(T, Γ, {(txi , xi, (rxi , sxi))}mi=1, {(tyj , yj , (ryj , syj))}nj=1)

If x ∈ Ĝm define Ĉ = ex+ v̂rx + ŵsx else if x ∈ Zm
p define Ĉ = ûx+ v̂rx

If y ∈ Ȟn define Ď = ye+ ryv̌ + syw̌ else if y ∈ Zn
p define Ď = yǔ+ ryv̌

Set α = β = γ = δ = 0
If T = PPE pick α, β, γ, δ ← Zp

If T ∈ {PEnc
Ĝ
,ME

Ȟ
} pick α, β ← Zp

If T ∈ {PEnc
Ȟ
,ME

Ĝ
} pick α, γ ← Zp

If T ∈ {MEnc
Ĝ
,MEnc

Ȟ
,QE} pick α ← Zp

π̌v̂ ← rxΓĎ + αv̌ + βw̌ π̂v̌ ← (Ĉ − v̂rx − ŵsx)Γry − v̂α− ŵγ

π̌ŵ ← sxΓĎ + γv̌ + δw̌ π̂w̌ ← (Ĉ − v̂rx − ŵsx)Γsy − v̂β − ŵδ
Return π = (π̌v̂ , π̌ŵ, π̂v̌ , π̂w̌)

Verifyck(T, Γ, {(txi , ĉi)}mi=1, {(tyj , ďj)}nj=1, π)

CheckFormatck(T, Γ, {txi}mi=1, {tyj}nj=1)

Check Ĉ = (ĉ1 · · · ĉm) ∈ Ĝ2×m and Ď =
(
ď1 · · · ďn

) ∈ Ȟn×2

Check π = (π̌v̂, π̌ŵ, π̂v̌, π̂w̌) ∈ Ȟ2×1 × Ȟ2×1 × Ĝ1×2 × Ĝ1×2

Check ĈΓ Ď = v̂π̌v̂ + ŵπ̌ŵ + π̂v̌v̌ + π̂w̌w̌
Return 1 if all checks pass, else return 0

Fig. 7. Prover and verifier algorithms

Theorem 1. The commit-and-prove scheme given in Figs. 1,3,4 and 7 has per-
fect correctness, perfect soundness and F -extractability for the function F defined
above, and computational composable zero-knowledge if the SXDH assumption
holds relative to G.

Due to lack of space, the description of the zero-knowledge simulator and the
proof of the theorem is given in the full version [EG13].

6 NIZK Proofs with Prover-Chosen CRS

In Groth-Sahai proofs, the prover uses a common reference string shared between
the prover and the verifier to construct NIZK proofs. We can improve efficiency
by letting the prover choose her own common reference string, which we will refer

646 A. Escala and J. Groth

to as her public key. To maintain the soundness of the NIZK proof, the prover
will create its public key as a perfectly binding key and will make a NIZK proof
using the shared common reference string to prove that the public key is binding.
In this section we will explain how the prover creates her public key, proves its
well-formedness and we explain what the efficiency improvement obtained is. In
the full version of this paper [EG13] we give definitions for commit-and-prove
schemes with prover-chosen CRS and we prove the security of our scheme.

6.1 Creating the Public Key

Like commitment keys, public keys can be created in two ways: they can either
be perfectly binding or perfectly hiding. These two types of keys are computa-
tionally indistinguishable if the SXDH assumption holds. As we already argued,
we will require the prover to create her public key in a perfectly binding way.
However, the zero-knowledge simulator will create a perfectly hiding public key
and simulate the NIZK proof for well-formedness.

ProverGen(ck)

ρP ← Zp σP ← Zp

v̂P ← v̂ v̌P ← v̌
ŵP ← ρP v̂P w̌P ← σP v̌P

ûP ← ŵP + (0̂, ĝ) ǔP ← w̌P + (0̌, ȟ)
pk ← (ûP , v̂P , ŵP , ǔP , v̌P , w̌P)
sk ← (pk, ρP , σP)
Return (pk, sk)

SimProverGen(ck)

ρP ← Zp σP ← Zp

v̂P ← v̂ v̌P ← v̌

ŵP ← ρP v̂P − (0̂, ĝ) w̌P ← σP v̌P − (0̌, ȟ)

ûP ← ŵP + (0̂, ĝ) ǔP ← w̌P + (0̌, ȟ)
pk ← (ûP , v̂P , ŵP , ǔP , v̌P , w̌P)
sk ← (pk, ρP , σP)
Return (pk, sk)

Fig. 8. Public key generator algorithms

As shown in Fig. 8, the public key is created in a similar way to how the
commitment key is created. The main difference is that the bilinear group
(p, Ĝ, Ȟ,T, e, ĝ, ȟ) is already fixed, and that we allow the prover to reuse the
elements v̂, v̌. This both reduces the size of the public key and also ensures that
the prover’s commitments are extractable even when using her own key.

Once the prover has created her pair of public key and secret key, she has
to compute an NIZK proof to show that her pk is perfectly binding. A valid
public key is defined by the existence of some ρP , σP such that ŵP = ρP v̂ and
w̌P = σP v̌, which can be written as two equations of type MConst

Ĝ
involving

public elements in Ĝ and a secret ρP committed in Ȟ, and two equations of
type MConst

Ȟ
involving public elements in Ȟ and a secret σP committed in Ĝ.

These are simple statements that each have a proof consisting of a single group
element. In the full version of this paper [EG13] we give the exact NIZK proofs
that have to be computed. The total cost of communicating the public key,
which is determined by the commitments to ρP and σP and the NIZK proofs
is 12 group elements. Since we are using a commit-and-prove scheme we can

Fine-Tuning Groth-Sahai Proofs 647

consider this as a one-off cost for each verifier engaging with the prover after
which the public key may be used for many commitments and proofs.

6.2 Computing Commitments and NIZK Proofs

Once the prover has created her public key pk and has proven its well-formedness,
she can make commitments and prove statements using pk instead of ck. The
commitments and proofs are created and verified in exactly the same way as
described in Fig. 3 and Fig. 7, but the number of scalar multiplications needed
to compute commitments and NIZK proofs can be reduced using her knowledge
of the discrete logarithms in sk. We have for instance

ĉ = e�x̂+ v̂r + ŵP s = e�x̂+ v̂(r + ρP s),

so the prover can compute a commitment with 2 scalar multiplications instead
of 4 scalar multiplications.

By using the secret key sk the prover can reduce the number of scalar mul-
tiplications by 50% for commitments to group elements and commitments to
elements in Zp. Computing NIZK proofs is more complicated and there are
many operations that cannot be avoided by using the secret key sk. However,
in some cases the improvement is very noticeable as in the case of quadratic
equations (T = QE) where the number of scalar multiplications is reduced by
50%3. Furthermore, in most applications found in the literature there are only a
few variables in the equations, which makes our improvements more significant.
The exact savings can be found in the full version of this paper [EG13].

References

[BB04] Boneh, D., Boyen, X.: Short signatures without random oracles. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 56–73. Springer, Heidelberg (2004)

[BCC+09] Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A.,
Shacham, H.: Randomizable proofs and delegatable anonymous creden-
tials. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125.
Springer, Heidelberg (2009)

[BCKL08] Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures
and noninteractive anonymous credentials. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 356–374. Springer, Heidelberg (2008)

[BFI+10] Blazy, O., Fuchsbauer, G., Izabachène, M., Jambert, A., Sibert, H.,
Vergnaud, D.: Batch Groth-Sahai. In: Zhou, J., Yung, M. (eds.) ACNS
2010. LNCS, vol. 6123, pp. 218–235. Springer, Heidelberg (2010)

3 We assume that operations in Ȟ are more computationally expensive than operations
in Ĝ, as usually Ĝ is an elliptic curve over a prime order field and Ȟ is the same elliptic
curve over an extension field [GPS08]. Therefore, we have tried to reduce the numbers
of operations in Ȟ as much as possible. In addition, we have for simplicity assumed
that the commitments that appear in the NIZK proof have as many randomization
factors as possible conditioned to the equation type T .

648 A. Escala and J. Groth

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications. In: Proceedings of the Twentieth Annual ACM Symposium
on Theory of Computing, STOC 1988, pp. 103–112. ACM, New York
(1988)

[BW06] Boyen, X., Waters, B.: Compact group signatures without random or-
acles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 427–444. Springer, Heidelberg (2006)

[BW07] Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size
group signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS,
vol. 4450, pp. 1–15. Springer, Heidelberg (2007)

[CHP07] Camenisch, J.L., Hohenberger, S., Pedersen, M.Ø.: Batch verification of
short signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515,
pp. 246–263. Springer, Heidelberg (2007)

[CKLM12] Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable
proof systems and applications. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg
(2012)

[CLOS02] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable
two-party and multi-party secure computation. In: 34th ACM STOC, pp.
494–503. ACM Press (2002)

[Dam92] Damg̊ard, I.B.: Non-interactive circuit based proofs and non-interactive
perfect zero-knowledge with preprocessing. In: Rueppel, R.A. (ed.) EU-
ROCRYPT 1992. LNCS, vol. 658, pp. 341–355. Springer, Heidelberg
(1993)

[EG13] Alex Escala and Jens Groth. Fine-Tuning Groth-Sahai Proofs. Cryptol-
ogy ePrint Archive, Report 2013/662

[EG84] El Gamal, T.: A public key cryptosystem and a signature scheme based
on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO
1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)

[EHKRV13] Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An Algebraic
Framework for Diffie-Hellman Assumptions. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer,
Heidelberg (2013)

[Fuc11] Fuchsbauer, G.: Commuting Signatures and Verifiable Encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245.
Springer, Heidelberg (2011)

[FLS99] Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowl-
edge proofs under general assumptions. SIAM Journal on Comput-
ing 29(1), 1–28 (1999)

[FPV09] Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Transferable Constant-
Size Fair E-Cash. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS
2009. LNCS, vol. 5888, pp. 226–247. Springer, Heidelberg (2009)

[GO07] Groth, J., Ostrovsky, R.: Cryptography in the Multi-string Model.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 323–341.
Springer, Heidelberg (2007)

[GOS12] Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive
zero-knowledge. J. ACM 59(3), 11 (2012)

[GPS08] Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptogra-
phers. Discrete Applied Mathematics 156(16), 3113–3121 (2008)

Fine-Tuning Groth-Sahai Proofs 649

[Gro06] Groth, J.: Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)

[Gro07] Groth, J.: Fully Anonymous Group Signatures Without Random Oracles.
In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180.
Springer, Heidelberg (2007)

[GS12] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. SIAM Journal on Computing 41(5), 1193–1232 (2012)

[GSW10] Ghadafi, E., Smart, N.P., Warinschi, B.: Groth-Sahai proofs revisited.
In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 177–192. Springer, Heidelberg (2010)

[JR13] Jutla, C.S., Roy, A.: Shorter Quasi-Adaptive NIZK Proofs for Linear
Subspaces. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I.
LNCS, vol. 8269, pp. 1–20. Springer, Heidelberg (2013)

[Kil90] Kilian, J.: Uses of randomness in algorithms and protocols. MIT Press
(1990)

[KP98] Kilian, J., Petrank, E.: An efficient noninteractive zero-knowledge proof
system for NP with general assumptions. Journal of Cryptology 11(1),
1–27 (1998)

[Mei09] Meiklejohn, S.: An Extension of the Groth-Sahai Proof System. Master’s
thesis, Brown University, Providence, RI (2009)

[Seo12] Seo, J.H.: On the (Im)possibility of Projecting Property in Prime-
Order Setting. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS,
vol. 7658, pp. 61–79. Springer, Heidelberg (2012)

[TY98] Tsiounis, Y., Yung, M.: On the security of ELGamal based encryption.
In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 117–134.
Springer, Heidelberg (1998)

Cross-Domain Secure Computation�

Chongwon Cho1, Sanjam Garg2, and Rafail Ostrovsky3

1 Information and Systems Science Laboratory, HRL Laboratories
2 IBM Research T.J. Watson

3 Computer Science Department and Mathematics Department, UCLA

Abstract. Consider the setting of two mutually distrustful parties Alice
and Bob communicating over the Internet, who want to securely evalu-
ate desired functions on their private inputs. In this setting all known
protocols for securely evaluating general functions either require hon-
est parties to trust an external party or provide only weaker notions of
security. Thus, the question of minimizing or removing trusted set-up
assumptions remains open. In this work, we introduce the cross-domain
model (CD) for secure computation as a means to reducing the level of
required trust. In this model, each domain consists of a set of mutually
trusting parties along with a key-registration authority, where we would
like parties from distinct domains to be able to perform multiple secure
computation tasks concurrently. In this setting, we show the followings:

- Positive Construction for 2 domains: We give a multiparty-party
protocol that concurrently and securely evaluates any function in
the CD model with two domains, using only a constant number of
rounds and relying only on standard assumptions.

- Impossibility Results for 3 or more domains: Consider a deter-
ministic function (e.g., 1-out-of-2 bit OT) that Alice and Bob in the
standalone setting cannot evaluate trivially and which allows only
Bob to receive the output. In this setting if besides Alice and Bob
there is a third party (such that all three are from distinct domains)
then they cannot securely compute any such function in the CD
model in concurrent setting even when their inputs are pre-specified.

These results extend to the setting of multiple parties as well. In par-
ticular, there exists an n-party concurrently secure protocol in the CD
model of n domains if and only if there are exactly n domains in the
system.

Keywords: Multi-party computation, Concurrent security.

� The significant part of this work was done while the first and second authors were
Ph.D. students at UCLA. Research supported in part by NSF grants CNS-0830803;
CCF-0916574; IIS-1065276; CCF-1016540; CNS-1118126; CNS-1136174; US-Israel
BSF grant 2008411, OKAWA Foundation Research Award, IBM Faculty Research
Award, Xerox Faculty Research Award, B. John Garrick Foundation Award, Ter-
adata Research Award, and Lockheed-Martin Corporation Research Award. This
material is also based upon work supported by the Defense Advanced Research
Projects Agency through the U.S. Office of Naval Research under Contract N00014-
11-1-0392. The views expressed are those of the authors and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 650–668, 2014.
c© International Association for Cryptologic Research 2014

Cross-Domain Secure Computation 651

1 Introduction

Consider the following scenario: Amazon and Walmart are two giant wholesale
stores. Each store has a distributed set of servers to handle client requests. In
order to establish best prices, Amazon and Walmart often need to collaborate
on a real-time basis. In other words they need to compute functions of their
confidential data which itself is distributed across the different servers. Neither
do they trust each other nor are they willing to trust a third-party setup.

The well-studied notion of secure computation [40,18] allows them to do so,
however only in the stand-alone setting where security holds only if a single
protocol session is executed in isolation. However, the requirement of free col-
laborations between Amazon and Walmart in the above requires security to hold
even when multiple sessions are executed concurrently as in the Internet. What
if Amazon in parallel wants to collaborate with another wholesale store Costco
while protecting its confidential data even if Walmart and Costco collude with
each other?

Background: Concurrent Security. In the past few years a lot of effort has
been made in obtaining secure computation protocols in the demanding network
setting where there might be multiple concurrent protocol executions. A large
number of secure protocols (in fact under an even stronger notion of security
called Universal Composability (UC)) based on various trusted third-party setup
assumptions [8,7,2,11,24,12,30,22,21,15] have been proposed. One of main aims
to this line of work has been to reduce the level of trust that honest parties need
to place in the trusted third-party setup. For example, Katz [24] considered the
hardware token model. In his model, honest parties program tokens and send
them to other parties. Since honest parties can program their own tokens, they
only need to trust their hardware token manufacturer. Groth and Ostrovsky
[22] initiated the study of constructing UC secure protocols without relying on
a single trusted external entity. In other words, one of the main goals in this line
of works is to achieve those notions of security in a setting which is as close to
the “plain model” as possible (also see [21,15] for subsequent works).

The Dark Side of Concurrency. Unfortunately, very strong impossibility results
have been proved ruling out the existence of secure protocols in the concurrent
setting. UC secure protocols for most functionalities of interest have been ruled
out by [8,6]. Concurrent self-composability1 for a large class of interesting func-
tionalities (i.e., bit transmitting functionalities) was first ruled out [31] only in
a setting in which the honest parties choose their inputs adaptively (i.e., “on
the fly”). Subsequently, a series of works [3,19,1,17] show that it is impossible
to achieve concurrent self-composition even in the very natural setting of static
(pre-specified) inputs. In summary, these results have firmly established that for
obtaining the most general result some setup is needed unless we are willing to
consider more constrained models. Finally even in a setting with bounded num-

1 Concurrent self-composition requires that a protocol remain secure even when mul-
tiple copies of the same protocol are executed concurrently.

652 C. Cho, S. Garg, and R. Ostrovsky

ber of players [23], an impossibility result has been established. However, this
is for the more demanding setting in which honest parties choose their inputs
adaptively.

1.1 Overview of Our Setting and Results

We introduce a new set-up model, called the Cross-Domain(CD) model. A do-
main consists of a set of mutually trusting parties along with a key-registration
authority. We prove the following for the setting of n-domain multi-party
protocols:

Positive result if n = 2. We give a multi-party protocol that concurrently and
securely evaluates any function in the CD model of two fixed domains where
each domain may contain arbitrarily many parties. Our protocol has a con-
stant round complexity, a black-box proof of security and relies only on stan-
dard assumptions.

Impossibility results when n ≥ 3. We show that there does not exist a two-
party protocol such that parties from three distinct domain can concurrently
and securely realizes any complete asymmetric (only one party gets the out-
put) deterministic functionality2 in the stand-alone setting [25,26,29,5,27].
Our impossibility results hold even in the very restricted setting of static
inputs (inputs of honest parties are pre-specified) and fixed roles (i.e, the
adversary can corrupt only two parties who play the same role across all
executions).

This answers the motivating question we started with. We can equip Amazon
and Walmart to collaborate freely but this can not be done if collaborations with
Costco are also desired.

Our results directly extend to the setting of n-domain protocols. In particular
an n-party protocol for concurrently and securely computing any function on
the joint inputs of n parties form distinct domains exists, if and only if there are
exactly n domains in the system.
Relation with Bare-Public Key (BPK) model. The CD model is a generaliza-
tion of the BPK introduced by Canetti et al. [9] model that has been studied
extensively in the literature. Recall that in the BPK model each party sets up
its own public-key and private-key pair. On the other hand in our model each
domain has a key-registration authority that roughly generates a public-key and
a private-key pair which is then used by all parties of the domain. We stress that
even in the BPK model prior to our work no results for the setting of secure
computation were known and our results fully characterize what is possible in
the BPK setting. We elaborate on the details of this relation in Section 6.

1.2 Previous Results with Weaker Notions of Security

To address the problem of concurrent security for general secure computa-
tion in the plain model, a few candidate definitions have been proposed,

2 A functionality is complete if it can be used to securely realize any other functionality.

Cross-Domain Secure Computation 653

including input-indistinguishable security [33,16] and super-polynomial simu-
lation [34,38,4,30,10]. Both of these notions, although very useful in specialized
settings, do not suffice in general. Additionally, other models that limit the level
of concurrency have also been considered [35,19] or allow simulation using addi-
tional outputs from the ideal functionality [20]. Among these models the model of
m-bounded concurrency [36,35] which allows for m different protocol executions
to be interleaved has received a lot of attention in the literature [36,35,31,32].
Unbounded concurrent oblivious transfer in the restricted model where all the
inputs in all the executions are assumed to be independent has been constructed
in [14]. Finally the only known positive results for concurrently secure composi-
tion in the plain model are for the zero-knowledge functionality [13,39,28,37,3].

1.3 Technical Overview

Impossibility Result. We start by giving the intuition behind the impossi-
bility result for constructing a protocol that concurrently securely realizes the
Oblivious Transfer(OT) functionality in the setting of three parties. The exten-
sion to general asymmetric two party functionalities follows using a Theorem
from [1]. In the following, we consider the simplest setting where three domains
exist and where each domain contains a single party.

Our impossibility result builds on the top of ideas developed by [1,17] for
the setting of plain model. Even though their result holds for the two party
setting, we recall their technique for the setting of three parties. Consider a
scenario with three parties Alice, Bob and Charlie. Now, consider an adversary
that corrupts Bob and Charlie who (as receivers of the OT protocol) are allowed
to participate in an arbitrary polynomial number of executions of the protocol
with honest Alice (who plays as the sender). In this setting, we can construct a
real-world adversary acting as Bob that interacts with Alice in an execution of
the protocol, referred to as the main execution, that cannot be simulated in the
ideal world.

The key idea is that the adversary has secure computation at its disposal
and it can use it to its advantage. The adversary on behalf of Charlie may
interact with Alice in multiple additional executions of the secure computation
protocol and use these executions to generate messages that it needs to send in
the main execution on behalf of Bob. More specifically, the adversary securely
realizes Bob by using garbled circuits such that the adversary needs to evaluate
the garble circuit in order to generate the messages it sends on behalf of Bob.
However, the adversary does not have the OT keys necessary for evaluation of
the garbled circuit. Instead, the OT keys are given to the honest Alice from
which the adversary obtains the desired OT keys by the (additional) concurrent
executions of the OT protocol as Charlie. Finally, the existence of a simulator
simulating such an adversary that is securely implementing Bob contradicts the
stand-alone security of the OT protocol. The pictorial description of our real-
world adversary is provided in Figure 1.

In the CD model, each domain containing Alice, Bob and Charlie generates a
certificate associated with their public-keys. The key insight in our impossibility

654 C. Cho, S. Garg, and R. Ostrovsky

KCA1

Domain 1

S

KCA2

Domain 2

R2

KCA3

Domain 3

R1

�
�

Main session

Additional sessions

Fig. 1. Our real-world adversary A corrupting two receivers where R1 is Bob (replaced
with the garbled circuit of its next message generator) and R2 is Charlie

result is to use the setting described above and to enable the garbled circuit
securely evaluating Bob to generate Bob’s public key as well. The adversary
however will generate Charlie’s public key and secret key by himself, which
enables the adversary to interact freely on Charlie’s behalf. In particular, this
allows the adversary to still obtain the OT keys for the garbled circuit from
Alice as in the plain model. Finally, the existence of a simulator simulating such
an adversary that is securely implementing Bob (along with its key registration)
contradict the stand-alone security of the OT protocol in the CD model.

Positive Result for Two Domains. The intuition behind the impossibility
result above makes it abundantly clear that the adversary must be able to do
secure computation with honest Alice if it wants to securely simulate Bob. How-
ever, if we restrict ourselves to the setting of two domains then the adversary
essentially loses this ability, which eventually allows us to give a positive result.

Our protocol can roughly be partitioned into two phases– the preamble phase
and the post-preamble phase. In the preamble phase, a party needs to demon-
strate the knowledge of the secret key corresponding to its public and the cer-
tificate issued by its KCA. Subsequently in the post-preamble phase the actual
secure computation happens. In the simulation for the proof of security, obtaining
the knowledge of the adversary’s secret key suffices for straight-line simulation.

Our protocol proceeds to the post-preamble phase only after the adversary has
demonstrated knowledge of its secret key in the preamble phase. The adversary
can interleave sessions arbitrarily and among these interleaved sessions consider
the first session in which the protocol reaches the post-preamble phase. Let’s
call this session as the target session. Now note that since the target session
was the first session in which the the post-preamble phase was reached, we
can expect the same thing to happen with some probability on appropriate
re-windings as well. We formalize this appropriately using swapping argument
introduced in [37]. Now note that throughout this process of re-windings we never
execute the post-preamble phase for any session. This allows us to avoid the

Cross-Domain Secure Computation 655

technical difficulties that generally arise when constructing concurrently secure
two-party computation protocols. Our protocol with this limited re-windings is
able to extract the secret key of the adversary and this allows our simulator to
subsequently simulate all the sessions in straight-line. For our construction and
the proof we build on the techniques developed in [3,20,16].

Organization: In Section 2, we first introduce the CD model. In Section 3, we
present our impossibility result for static input concurrently secure two-domain
two-party computation in the CD model in a setting with at least three domains
and three parties. In Section 4, we provide the formal construction of concur-
rently secure two-domain two-party computation protocol in the CD model (in
the setting of 2 parties) and for the proof of its security, we give the construc-
tion of a black-box simulator for the protocol in Section 5. We elaborate on the
details of the relation with the bare-public key model in Section 6.

2 The Cross-Domain (CD) Model

In this section we sketch the details of the CD model. In the CD model, we
have multiple domains each consisting of a set of mutually trusting parties and
a Key Certification Authority (KCA). Each party in a domain trusts its KCA.
Intuitively, whenever a party in one domain wants to jointly compute a function
with a party in another domain, each party registers its public key to its own
KCA and obtains a certificate on the public key. No party communicates with
the KCAs of other domains. Instead, only KCAs communicate with each other
to obtain the verification information for the certificates of other parties within
other KCAs. Then, every KCA delivers the obtained verification information to
the parties in the own domain. The parties use the verification information of
other parties received from the trusted KCA throughout the subsequent inter-
action. We formalize this as an interaction between multiple parties and KCA
functionalities as follows. We denote a set of KCA functionalities by FKCA =
{F1

KCA, F
2
KCA, . . . , F

N
KCA} where N is the number of domains.

– A party in the i-th domain registers their public key with FiKCA. Then, func-
tionality FiKCA generates a pair of signing key and verification key, signs the
public key, and returns the verification key and the signature to the party.
If FiKCA has already generated a pair of signing key and verification key for
the other parties in the domain, then it will use the same signing key and
verification key to certify the public key of the current requesting party.

– If an adversary corrupts a party in a domain, then we assume that all other
parties in the domain are corrupted as well.3

We emphasize that our main aim of the above definition is to protect the
privacy of inputs of parties in domains in which no corrupted party exists from

3 This is because all the parties in a domain trust each other. This captures the toy
scenario for Amazon and Walmart described in the introduction. Servers of Amazon
and Walmart are seen as the parties in our system.

656 C. Cho, S. Garg, and R. Ostrovsky

interacting with corrupted parties in the other domains. The formal definition
of the CD model appears in the full version.

3 Impossibility of Concurrent Security in the CD Model

In this section, we provide strong impossibility results ruling out constructions
for secure MPC protocols in the CD model. We heavily rely on the recent works
of [1,17] in proving these results. In fact, we show the impossibility result in the
simplest case of the CD model: We show that there does not exist a concurrently
secure protocol in the CD model of two domains when three domains and three
parties exist in the system. Since each party belongs to the distinct domains in
the following discussion, we discuss the impossibility result simply focusing on
the parties without considering the KCA functionalities.

We start by showing that string OT functionality can not be concurrently and
securely realized even in the setting of static inputs in the bare-public key model
in the setting of three parties even against adversaries that corrupt two parties
playing the same role, i.e. of the sender or the receiver. Next we generalize this
impossibility to essentially all functionalities of interest. Finally we extend our
impossibility result to the setting of larger number of parties. In particular we
show that no n-party protocol in the CD model (for a large class of functionali-
ties, discussed later) can be concurrently secure in the setting of n + 1 parties.
We use the notation used by [17] and some of the texts here have been taken
verbatim from [17].

3.1 The Case of String OT

String OT is a two-party functionality between a sender S, with input (m0,m1)
and a receiver R with input b which allows R to learn mb without learning
anything about m1−b. At the same time the sender S learns nothing about b.
More formally string OT functionality FOT : ({0, 1}p(k) × {0, 1}p(k)) × {0, 1} →
{0, 1}p(k) is defined as, FOT ((m0,m1), b) = mb, where p(·) is any polynomial
and only R gets the output.

Note that string OT is a two-party functionality, however, the protocol real-
izing the string OT functionality can be executed among multiple parties. We
consider the setting of three parties and each of the parties registers exactly one
key. We show that for some polynomial p(·) (to be fixed later), there does not ex-
ist a protocol π that concurrently securely realizes the FOT functionality among
these three parties. More specifically we show that there exists an adversary A
who corrupts 2 parties, registers keys on their behalf, starts a polynomial number
of sessions (say �(k)) of the protocol π with the honest (with pre-specified in-
puts drawn from a particular distribution D) such that no ideal-world adversary
whose output is computationally indistinguishable from the output of real-world
adversary A exists. We stress that the parties corrupted by the adversary (we
construct) corrupts two parties playing the same role – either the sender S or
the receiver R in all the �(k) sessions.

Cross-Domain Secure Computation 657

Theorem 1. (impossibility of static input concurrent-secure string OT in CD
model) Let π be any protocol which implements4 the FOT functionality for a
particular (to be determined later) polynomial p in the CD model. Then, in the
setting of 3 parties (assuming one-way functions exist) there exists a polynomial
� and a distribution D over �-tuple vectors of inputs and an adversarial strat-
egy A, that corrupts 2 parties, such that for every probabilistic polynomial-time
simulation strategy S, (see full-version for formal definition) cannot be satisfied
when the inputs of the parties are drawn from D.

Implications for Bounded Concurrency. Observe that the attack described
in the above proof (in the unboundend concurrent setting) has natural implica-
tions in the bounded setting as well. In particular, the number of sessions that
our adversary executes, or the “extent” of concurrency used by the adversary
in the proof above in order to arrive at a contradiction is bounded by the com-
munication complexity of the protocol. More specifically the adversary needs to
make one additional OT call for every bit that the Sender sends in the protocol.

3.2 Extending to All Asymmetric Functionalities

The goal of this section is to generalize the impossibility result for string OT pro-
vided in the previous section to all finite deterministic “non-trivial” asymmetric
functionalities F . Consider a two-party functionality Fasym between a sender S,
with input x and a receiver R with input y which allows R to learn f(x, y) and
at the same time S should not learn anything. More formally, let f : X ×Y → Z
be any finite function5 then an asymmetric functionality Fasym is defined as,
Fasym(x, y) = (⊥, f(x, y)) where S gets no output and R gets f(x, y). We show
that there does not exist a protocol π that concurrently securely realizes any
complete Fasym functionality as defined below.

Fasym is said to be complete [26]6 in the setting of stand-alone two-party
computation in the presence of malicious adversaries iff ∀b0, ∃b1, a0, a1 such that

f(a0, b0) = f(a1, b0) ∧ f(a0, b1) �= f(a1, b1).

Lemma 1 (Theorems 1 and 3, [1]). Given any protocol ρ that concurrently
securely realizes a non-trivial asymmetric functionality F secure under concur-
rent self-composition in the static-input, fixed-role setting we have that there
exists a protocol Π that securely realizes the FOT functionality secure under
concurrent self-composition in the static-input, fixed-role setting.

The proof of [1] is for the setting of plain model but extends to the setting
of the CD model in a direct manner.

4 We say that a protocol implements a functionality if the protocol allows two parties
to evaluate the desired function. This protocol however may not be secure.

5 Recall that a function is said to be finite if both the domain and the range are of
finite size.

6 Recall that a functionality is said to be complete if it can be used to securely realize
any other functionality.

658 C. Cho, S. Garg, and R. Ostrovsky

Now any hypothetical protocol for any non-trivial asymmetric functionality F
(using Lemma 1), we will obtain a protocol for FOT , contradicting Theorem 1.
This gives our impossibility result for the setting of two parties:

Theorem 2. (impossibility of static input concurrent security for asymmetric
complete functionalities) Let π be any protocol which implements any Fasym
functionality that is complete in the stand-alone setting in the CD model. Then,
in the setting of 3 parties (assuming one-way functions exist) there exists a
polynomial � and a distribution D over �-tuple vectors of inputs and an ad-
versarial strategy A, that corrupts two parties, such that for every probabilistic
polynomial-time simulation strategy S, (see full-version for formal definition)
cannot be satisfied when the inputs of the parties are drawn from D.

Extending to n-party protocols. So far we have only considered the setting of
3-parties only. We now explain how these results can be extended to the setting
of n+1 parties executing an n party protocol. Consider an n-party functionality
f(x1, x2 . . . xn) with x1, x2 . . . xn as input. Let S and S be disjoint partitions of
the n parties such that only a subset of the parties in S get the outputs. Let
g be a two-argument function obtained by viewing f as a function of {xi}i∈S
and {xi}i∈S . For any f , if there exist such partitions S and S such that g is a
complete two-party asymmetric functionality,7 then we can use our impossibility
result for concurrently securely realizing g in the CD model in the setting of 3
parties to argue that f can not be concurrently securely realized in CD model
in the setting of n + 1 parties. The proof follows in a very similar manner and
we omit the details.

4 Possibility of Concurrent Security in the CD Model

In this section, we present the positive side of our result by constructing a
constant-round concurrently secure MPC protocol in the CD model with black-
box simulation. Our protocol, the ingredients needed and the proof build upon
the construction of [16] (and its full version) and parts of the texts have been
taken verbatim from there without explicitly mentioning again and again. Let
F be a well-formed functionality where such a functionality admits a constant-
round two-party computation protocol in the semi-honest setting.8 In fact, for
simplicity, we present a constant-round concurrently secure two-party computa-
tion protocol in the CD model, denoted by Π , where a party belongs to either
of the two domains.

We emphasize that this two-party protocol easily extends to a concurrently
secure protocol for any polynomially many parties in CD model of two fixed
domains where a party is under either of two domains. Subsequently, our proto-
col easily extends to a concurrently secure protocol for any polynomially many
parties in CD model of N fixed domains where each party belongs to one of the
N domains.
7 Note here this implies that at least one party in S and at least one party in S has
an input.

8 See [7] for the notion of well-formed functionality.

Cross-Domain Secure Computation 659

4.1 Building Blocks and Notations

Due to the space restrictions, see the full version for the details of the building
blocks. Let g : {0, 1}n → {0, 1}3n be a length tripling pseudo-random generator.
Let PBcom(·) denote a non-interactive perfectly binding commitment scheme,
and let 〈C,R〉 denote an one-slot extractable commitment scheme . Furthermore,
we will denote a constant round strong WI proof system by 〈P, V 〉 and a special
constant-round NMWI argument of knowledge protocol by 〈P ′, V ′〉 . Finally we
denote a constant-round SWI argument by 〈Pswi, Vswi〉, and a constant-round
semi-honest two-party computation protocol by 〈P sh

1 , P sh
2 〉 which securely com-

putes F as per the standard simulation-based definition of secure computation.

4.2 Construction of Our Protocol

We now provide the formal construction of concurrently secure two-party com-
putation protocol in the CD model. Some notations and the protocol description
closely resemble those of [16]. Let FKCA = {F1

KCA,F
2
KCA} be the key certification

authority(KCA) functionality with two domains in the CD model, which is a
special case of FKCA where N = 2. See the formal description in full-version.

Let n be the security parameter. Let P1 and P2 be two parties with private
inputs x1 and x2 respectively. Without loss of generality, let P1 and P2 be in the
domains F1

KCA and F2
KCA respectively. Also, P1 and P2 have unique identifiers id1

and id2 respectively. Protocol Π = 〈P1, P2〉 proceeds as follows. We omit session
identifiers for the succinct specification.
I. Key Registration Phase

1. P1 samples random strings sk01 and sk11 and sets pk01 := g(sk01) and pk11 :=
g(sk11).

2. P1 registers both public keys pk01 and pk11 by sending (register, id1, pk
0
1) and

(register, id1, pk
1
1) to functionality F1

KCA.
9

3. P1 obtains (σpk01
,mvk1) and (σpk11

,mvk1) from F1
KCA where σpk01

and σpk11

are signatures on pk01 and pk11 respectively where mvk1 is the respective
verification key.

4. P1 chooses a random bit b1 ∈ {0, 1} and sets pk1 = pkb11 and sk1 = skb11 . We
now denote the corresponding signature by σpkpo.

5. P2 acts analogously, registers pk
0
2 and pk12 with F2

KCA, and obtains (σpk02
,mvk2)

and (σpk1 ,mvk2). It sets pk2 = pkb22 and sk2 = skb22 where b2 is a random bit.
Finally, σpkpt is the corresponding signature.

II. Trapdoor Creation Phase. Let R1 be a NP-relation where the NP theorem is a
string mvk and the witness is a tuple (p̃k, s̃k, σ̃, c̃) such that (mvk, p̃k, s̃k, σ̃, c̃) ∈
R1 if and only if c̃ is the commitment to p̃k||sk||σ̃ with respect to protocol 〈C,R〉,
9 The registration request is not required to be two distinct requests to the function-
ality. Registering pk01 and pk11 can be viewed as a registering one public key which is
a concatenation of two public keys and the functionality simply decomposes it into
two strings, signs both and returns them to the party.

660 C. Cho, S. Garg, and R. Ostrovsky

p̃k = g(sk), and Ver(p̃k, σ̃,mvk) = 1. For convenience, we let (mvk, t, c̃) ∈ R1 if
t = p̃k||sk||σ̃ and (mvk, p̃k, s̃k, σ̃, c̃) ∈ R1. In addition, let R2 be a NP-relation
where the NP theorem is a string mvk and the witness is a tuple (p̃k, s̃k, σ̃) such
that (mvk, p̃k, s̃k, σ̃) ∈ R2 if and only if p̃k = g(sk) and Ver(p̃k, σ̃,mvk) = 1.
Similarly, we denote we let (mvk, t) ∈ R2 if t = p̃k||sk||σ̃ and (mvk, p̃k, s̃k, σ̃) ∈
R2. The trapdoor creation phase proceeds as follows.

1. P1 ⇒ P2 : P1 sends a request (retrieval, id2) to F1
KCA and obtains mvk2, a

verification key from F1
KCA. Recall that F1

KCA obtains mvk2 by interacting
with F2

KCA. P2 analogously obtains mvk1 from F2
KCA.

2. P1 ⇒ P2 : P1 executes 〈C,R〉 with P2, where P1 commits to trap1 =
pk1||sk1||σpk1 . We denote this execution by 〈C,R〉trap11→2 and the commitment
by c̃1. Next P1 proves to P2 by using strong WI proof system 〈P, V 〉 with
common inputmvk1, the following NP-statement: there exists (pk1, sk1, σpk1)

where (mvk1, pk1, sk1, σpk1) ∈ R1. If the verifier V in 〈P, V 〉sk11→2 aborts, then

P2 aborts. We denote this execution by 〈P, V 〉trap11→2 .
3. P2 ⇒ P1 : P2 acts analogously in Step 2 by first committing to trap2 =

pk2||sk2||σpk2 using 〈C,R〉 and then giving a proof using 〈P, V 〉. We denote

this execution by 〈C,R〉trap22→1 and 〈P, V 〉trap22→1 .
4. P1 ⇒ P2 : P1 commits to bit 0 as com1 = PBcom(0) and sends com1 to

P2. Next P1 and P2 executes constant-round NMWI argument of knowledge
〈P ′, V ′〉 in which P1 and P2 respectively play as P ′ and V ′. The common
inputs for this execution of 〈P ′, V ′〉 are com1 andmvk2. In this execution, P1

proves to P2 that com1 is a commitment to 0 or there exists a string t such
that (mvk2, t) ∈ R2. Honest party P1’s private input is the de-commitment
information of com1.

10 That is, by the execution of 〈P ′, V ′〉, P1 proves to P2

that com1 is a commitment to bit 0.
5. P2 ⇒ P1 : P2 proceeds symmetrically as does P1 above. In summary, it

generates a commitment com2 to bit 0 and then proves the same using
〈P ′, V ′〉.

III. Input Commitment Phase
Let Encpk(·) denote the encryption algorithm of an dense encryption scheme

with pseudo-random public keys with public-keys of length �.

1. P1 ⇔ P2 : P1 samples a random string α1 ∈ {0, 1}� and sends c′1 =
PBcom(α1) to P2. Upon receiving c′1, P2 responds with a random string
β1 ∈ {0, 1}�. At this point, P1 reveals the value α1 to P2 and proves the
following NP-statement to P2 by executing 〈Pswi, Vswi〉:
(a) either there exists randomness such that c′1 is a commitment to the string

α1,
(b) or com1 is a commitment to 1.

Both parties set pk1c = α1⊕β1 (public key generated using the coin flipping).

10 Looking ahead the secret key corresponding to the public key pk2 will allow the
simulator to cheat in the simulation.

Cross-Domain Secure Computation 661

2. P2 ⇔ P1 : P2 and P1 proceed symmetrically as above to generate the public
key pk2c = α2 ⊕ β2.

3. P1 ⇒ P2 : P1 samples a random string r1 of appropriate length which is
to be used as randomness to execute semi-honest two-party computation
〈P sh

1 , P sh
2 〉. P1 computes y1 = Encpk2c (x1||r1). Then, it sends y1 to P2.

4. P2 ⇒ P1 : P2 proceeds symmetrically as does P1 above. Let x2 and r2 be
the input and the random string chosen by P2 to be used in the execution
of 〈P sh

1 , P sh
2 〉. Let y2 = Encpk1c (x2||r2) be the cipher-text generated.

IV. Secure Computation Phase. In the secure computation phase, parties P1

and P2 jointly evaluate the desired functionality F based on a constant-round
semi-honest two-party computation protocol 〈P sh

1 , P sh
2 〉. Party P1 plays P

sh
1 while

party P2 plays P
sh
2 . Note that 〈P sh

1 , P sh
2 〉 is secure against semi-honest adversaries.

Thus, we require that the coins of participating parties are indeed uniform.
Moreover, we require each party to prove the validity of every message it sends
to the other party. That is, whenever a party generates and sends a message to
the other party, it is required to prove by using 〈Pswi, Vswi〉 that the message is
honestly generated with respect to its input, random coins and the instructions
of 〈P sh

1 , P sh
2 〉. In the following, let t be the round complexity of 〈P sh

1 , P sh
2 〉 where

each round consists of two messages: w.l.o.g. a message from P1 followed by a
message from P2. We denote the next message generators of 〈P sh

1 , P sh
2 〉 simply

by P sh
1 and P sh

1 . We define transcript T1,i (resp., T2,i) by the set (or vector)
of all the messages (belonging to 〈P sh

1 , P sh
2 〉) which are exchanged between P1

and P2 before P1 (resp., P2) needs to send the i-th round message of 〈P sh
1 , P sh

2 〉
for i ∈ [t]. In particular, P1 obtains the i-th round message, denoted by β1,i,
of 〈P sh

1 , P sh
2 〉 as it computes β1,i = P sh

1 (T1,i, x1, r
′′
1). The P2’s i-th message is

symmetrically defined as β2,i = P sh
1 (T2,i, x2, r

′′
2). The formal definition of the

secure computation phase is provided as follows.

1. P1 ⇒ P2 : P1 samples a random string r′2 of appropriate length and sends it
to P2.

2. P1 ⇐ P2 : P2 similarly samples a random string r′1 of appropriate length and
sends it to P1.

3. P1 computes r′′1 = r1 ⊕ r′1 and P2 computes r′′2 = r2 ⊕ r′2. Then, r
′′
1 and r′′2

are the random coins to be used respectively by P1 and P2 in the execution
of 〈P sh

1 , P sh
2 〉.

4. For i ∈ [t], parties P1 and P2 repeats the following procedure.

(a) P1 ⇒ P2 : P1 computes β1,i = P sh
1 (T1,i, x1, r

′′
1) and send it to P2.

(b) P1 ⇒ P2 : P1 proves to P2 by using 〈Pswi, Vswi〉, the NP-statement which
is a disjunction of the following NP-statements:
i. There exist values x̂1, r̂1 such that

A. there exists randomness such that y1 = Encpk2c (x̂1||r̂1)
B. and β1,i = P sh

1 (T1,i, x̂1, r̂1 ⊕ r′1)
ii. com1 is a commitment to bit 1.

(c) P2 ⇒ P1 : P2 acts symmetrically.

This completes the formal definition of protocol Π . We claim the following.

662 C. Cho, S. Garg, and R. Ostrovsky

Theorem 3. If there exist a constant-round semi-honest OT, an encryption
system with dense(pseudo-random) public keys, and a family of collision-resistant
hash functions, then there exists a constant-round concurrently secure two-party
computation protocol for every well-formed functionality F in the CD model.

5 Proof of Theorem 3 (Simulator S)

In this section, we prove Theorem 3 by constructing an Expected Probabilis-
tic Polynomial-Time (EPPT) simulator S for protocol Π . That is, the EPPT
simulator S with a black-box access to the adversary A simulates the view of
adversary which is computationally indistinguishable from the view of adversary
interacting with a honest party in the real world execution of Π . Here we will
only give a description of our simulator and refer the reader to the full version
for a formal proof of indistinguishability.

Notice that the NP-statement for an instance of SWI (in Step 4b of Secure
Computation Phase) is a disjunction of two NP-statements (Statement 4(b)i and
Statement 4(b)ii). In the rest of the work, we refer to Statement 4(b)i as real
theorem while we refer to Statement 4(b)ii as the trapdoor theorem. We call the
witness corresponding to statement 4(b)i (resp. statement 4(b)ii) as real (resp.
trapdoor) witness.

Notation. In the following, we denote the honest party and the adversary by H
and A respectively. Also, let FHKCA be the domain to which the honest party be-
long. Similarly, we use FA

KCA to denote the domain where the adversary corrupts
a party. Without loss of generality, we define our simulator in the case where
the honest party (thus, the simulator in the following) sends the first message in
the protocol. We omit the other case where the corrupted party sends the first
message. Let m = poly(n) be the running time of the PPT adversary A. And let
l be the number of public keys registered by the corrupted party. The running
time of A serves as an upper-bounds on the number of concurrent sessions and
also on the number of registered public keys. In the course of simulation, sim-
ulator S maintains two sets denoted by Database1 and Database2. Database1
contains an element of the form (pk, sk, σpk) for i ∈ [l]. Database2 contains ele-
ments of the form (sid, xsid

i , rsidi) where sid ∈ [m] and i ∈ [l]. Initially, Database1
and Database2 are set to be empty. We sometimes omit the session identifier sid
in order to simplify notations.

We preserve the notations for the execution of building blocks as in Section 4.2.
For example, we denote by 〈P, V 〉S→A, an instance of 〈P, V 〉 where simulator
S and corrupted party A play as the prover P and the verifier V respectively
in the execution of the protocol 〈P, V 〉. We demarcate the following two special
messages in the protocol Π :

– Message Σsid
1 : Σsid

1 denotes the second message of 〈C,R〉trapAA→S in session
sid. Recall that the second message of the protocol 〈C,R〉 is a random
string (challenge) from the receiver to the committer. In the execution of
〈C,R〉trapAA→S , this message is sent by the simulator (on behalf of H) to the
adversary A.

Cross-Domain Secure Computation 663

– Message Σsid
2 : Σsid

2 denotes the message of session sid when the simulator
(on behalf of the honest party H) sends the commitment to 0 using the
commitment scheme PBcom. The simulator will behave honestly until this
point and will cheat only after this point is reached.

Description of S. We provide the simulation strategy of S in each phase of Π
as follows.

I. Simulation of Key Registration Phase: In the key registration phase,
simulator S follows an honest party’s strategy. That is, S interacting with FHKCA
registers public keys pk0S and pk1S (on behalf of the honest party H) where
(pk0S , sk

0
S) and (pk1S , sk

1
S) are obtained as in the honest setting. Finally, S com-

pletes the simulation of key registration phase by setting pkS , skS , and σpkS
following the honest strategy.

II. Simulation of Trapdoor Creation Phase: Simulator S behaves ac-
cording to the honest party strategy until it needs to send the Σsid

2 for some
session session sid ∈ [m]. At this point, S by interacting with FHKCA obtained a
verification key mvkA of FA

KCA. To successfully simulate trapdoor creation phase,
S wants to do the following:

1. For all sessions, S commits to 1 (recall that this differs from the real execution
in the fact that honest party commit to 0) by executing comS = PBcom(1)
and then sends comS in to the adversary.

2. For all sessions, S proves to A by executing 〈P ′, V ′〉S→A using a trapdoor
information trapA (stored in the database Database1) as its witness that
(mvkA, trapA) ∈ R2.

Thus, before sending the commitment to 1, S checks if Database1 contains
trapA such that (mvkA, trapA) ∈ R2. If so, then S proceeds as above. Otherwise,
S employs a rewinding strategy to extract the trapdoor information. Note that
session sid (called target session) is the session in which the simulator needs to
send the commitment to bit 1 using the commitment scheme PBcom without the
corresponding trapdoor information in Database1. We will denote this session
by sidtarget. When this point is reached, our simulator S executes the following
look-ahead thread strategy.11

1. S rewinds adversary A back to the point before S had sent Σsidtarget

1 to A.

2. In the look-ahead thread, the simulator S sends to A a fresh random chal-
lenge for the message Σsidtarget

1 and behaves honestly subsequently. If in this
look-ahead thread, the first session in which the simulator needs to send Σsid

2

is not the target session (in other words sid �= sidtarget), then S rewinds
again and repeats this step. If the number of rewindings reaches 2n, then S
aborts completely and outputs Rewind Abort.

11 Note that the transcript generated by the execution of look-ahead threads will not
be included in the view of the main thread simulation.

664 C. Cho, S. Garg, and R. Ostrovsky

3. Since S need to sendΣsidtarget

2 in both themain thread and the rewound thread,
it must have obtained two distinct valid de-commitments of 〈C,R〉trapAA→S in the
target session sidtarget in both the main thread and the look-ahead threads. At
this point, using two distinct valid de-commitments, S obtains trapA . S exe-
cutes the rest of the main concurrent execution with the updated Database1.
Notice that a single successful extraction of trapA in one session suffices to
simulate all other sessions.

III. Simulation of Input Commitment Phase

1. The simulator behaves honestly in the generation of the public key pkAc .
2. Now, we describe simulation strategy in generation of the public key pkSc .

S starts by generating a a fresh public key pkSc along with the secret key
skSc . It generates the commitment c′S as the commitment to the zero string.

Then, S receives βS from A. Finally S opens αS as pkSc ⊕ βS . S executes
〈Pswi, Vswi〉S→A where S uses the trapdoor witness. S possesses the trapdoor
witness since it committed to bit 1 instead of 0 during the simulation of the
trapdoor creation phase.

3. S generates yS as encryption of the zero string using the public key pkAc and
sends it to the adversary. (instead of using its actual input and random coins
needed for the semi-honest two-party computation)

4. Upon the receiving yA, the simulator S extracts the input and randomness
xsid
A and rsidA of A using the secret key skSc . Now, S adds (sid, xsid

A , rsidA) to
Database2.

IV. Simulation of Secure Computation Phase. Let Ssh denote the simu-
lator for the semi-honest two-party protocol 〈P sh

1 , P sh
2 〉 used in our construction.

S internally runs simulator Ssh on adversary Ash’s input xA ∈ Database2. Ssh at
some point makes a call to ideal functionality F in the ideal world with an input
string xA. Then, S makes a query (sid, xA) to F . Then, S forwards the output
returned by F to Ssh. At some point of internal simulation of 〈P sh

1 , P sh
2 〉, Ssh fi-

nally halts and outputs a transcript βSsh,1, βAsh,1, . . . , βSsh,t, βAsh,t and associated
random coin r̂A. S proceeds with the following instructions.

1. S computes a random string r̃A such that r̃A = rA ⊕ r̂A. Then, S sends r̃A
to A.

2. For each round j ∈ [t], S sends βSsh,j to A. Then, S executes 〈Pswi, Vswi〉S→A
with A where S uses the trapdoor witness, decommitment information of
comS (commitment to 1 instead of 0). If A aborts upon βSsh,j for some
j ∈ [t], S outputs a special abort message ABORT1.

3. Upon receiving A’s next message βA,j in the protocol 〈P sh
1 , P sh

2 〉, S plays the
honest verifier in an execution of 〈Pswi, Vswi〉A→S . For any j ∈ [t], if the jth

message βA,j sent by adversary A is not identical to βAsh,j (obtained from
the internal execution of Ssh) and if 〈Pswi, Vswi〉A→S on βA,j is accepting,
then S aborts and outputs a special abort message ABORT2.

Cross-Domain Secure Computation 665

Finally, the output of simulator S contains all messages exchanged between
the simulator and the adversary including the output of the adversary in the
communication of all sessions.

6 Relation with the Bare-Public Key (BPK) Model

The CD model defined in this paper is a generalization of the BPK model in-
troduced by Canetti et al. [9]. In the BPK model each party sets up its own
public-key and private-key pair. It publishes its public-key in a public file while
keeping the private-key secret. This phase of publishing the public-keys happens
prior to any protocol executions, implicitly also placing a bound on the number
of parties in the system.

The CD model is a generalization of the BPK model, where each party cor-
responding to the BPK model is now associated with a domain of mutually
trusting entities, equipped with a key registration authority. A key registration
authority in the CD model generates a common public-key for all entities in its
domain and issues a private-key for each of these entities. Just as in the BPK
model in which the number of parties are bounded, the CD model bounds the
number of domains while putting no bound on the number of parties.

As a real-world example, consider a setting of the BPK model where one of
the parties owns multiple (physically distinct) devices and would like to use each
of these devices for various secure computation tasks. In the CD model, each one
of these devices is seen as a separate entity and the owner who generates and
distributes the keys across these devices is seen as the key registration authority.

In the BPK model, one party could coordinate between different concurrent
executions that it takes part in. For example, a party could ensure that it takes
part in all the protocol executions sequentially and hence avoid all the problems
that arise because of concurrent executions. This coordination is certainly not
desirable but might very well be acceptable in various real world applications.
On the other hand in our CD model, different entities represent possibly separate
devices, coordinating which is not possible. The key advantage of the CD model
over the BPK model is that it makes this distinction in functionality clear.

Finally, we note that our results in the CD model, directly imply positive and
negative results in the BPK model. We stress that even in the BPK model prior
to our work no results for the setting of secure computation were known and
our results fully characterize what is possible in this model. More formally, these
results are directly implied by the following lemma.

Lemma 2. There exists an n-party black-box concurrently secure protocol Π
among n-domains in the CD-model where each party is associated with distinct
domains if and only if there exists an n-party black-box concurrently secure pro-
tocol Π ′ in the BPK model with n parties.

Proof. We give a proof sketch here. We start by giving a protocol Π ′ secure
in the BPK model given a protocol Π secure in the CD-model. Each party in
protocol Π ′ that we are trying to construct executes the public setup of the

666 C. Cho, S. Garg, and R. Ostrovsky

key-registration authority of protocol Π and generates the private-key assuming
only one entity in its domain. Subsequently to this setup phase, parties in Π ′

execute all concurrent execution as a party of Π using the secret key that it had
generated earlier as the key-registration authority. Security of the protocol Π ′

follows immediately. The other direction can be argued in a similar manner.

In particular, the above lemma along with our results in the CD model implies
that there exists an n-party concurrently secure protocol in the BPK model if
and only if there are exactly n parties in the system.

References

1. Agrawal, S., Goyal, V., Jain, A., Prabhakaran, M., Sahai, A.: New impossibility
results for concurrent composition and a non-interactive completeness theorem for
secure computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 443–460. Springer, Heidelberg (2012)

2. Barak, B., Canetti, R., Nielsen, J., Pass, R.: Universally composable protocols with
relaxed set-up assumptions. In: FOCS, pp. 186–195 (2004)

3. Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge.
In: FOCS, pp. 345–354 (2006)

4. Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent
composition via super-polynomial simulation. In: FOCS, pp. 543–552 (2005)

5. Beimel, A., Malkin, T., Micali, S.: The all-or-nothing nature of two-party secure
computation. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 80–97.
Springer, Heidelberg (1999)

6. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally com-
posable two-party computation without set-up assumptions. J. Cryptology 19(2),
135–167 (2006)

7. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: STOC, pp. 494–503 (2002)

8. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

9. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: STOC, pp. 235–244 (2000)

10. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the
plain model from standard assumptions. In: FOCS, pp. 541–550 (2010)

11. Canetti, R., Pass, R., Shelat, A.: Cryptography from sunspots: How to use an
imperfect reference string. In: FOCS, pp. 249–259 (2007)

12. Chandran, N., Goyal, V., Sahai, A.: New constructions for uc secure computation
using tamper-proof hardware. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 545–562. Springer, Heidelberg (2008)

13. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: STOC, pp. 409–
418 (1998)

14. Garay, J.A., MacKenzie, P.D.: Concurrent oblivious transfer. In: FOCS, pp. 314–
324 (2000)

15. Garg, S., Goyal, V., Jain, A., Sahai, A.: Bringing people of different beliefs together
to do uc. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 311–328. Springer,
Heidelberg (2011)

Cross-Domain Secure Computation 667

16. Garg, S., Goyal, V., Jain, A., Sahai, A.: Concurrently secure computation in con-
stant rounds. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 99–116. Springer, Heidelberg (2012)

17. Garg, S., Kumarasubramanian, A., Ostrovsky, R., Visconti, I.: Impossibility re-
sults for static input secure computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 424–442. Springer, Heidelberg (2012)

18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)

19. Goyal, V.: Positive results for concurrently secure computation in the plain model.
In. FOCS, pp. 41–50 (2012)

20. Goyal, V., Jain, A., Ostrovsky, R.: Password-authenticated session-key generation
on the internet in the plain model. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 277–294. Springer, Heidelberg (2010)

21. Goyal, V., Katz, J.: Universally composable multi-party computation with an un-
reliable common reference string. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 142–154. Springer, Heidelberg (2008)

22. Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 323–341. Springer, Heidelberg (2007)

23. Jain, A., Ostrovsky, R., Richelson, S., Visconti, I.: Concurrent zero knowledge in
the bounded player model. Cryptology ePrint Archive, Report 2012/279 (2012),
http://eprint.iacr.org/

24. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Eurocrypt., pp. 115–128 (2007)

25. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31
(1988)

26. Kilian, J.: More general completeness theorems for secure two-party computation.
In: STOC, pp. 316–324 (2000)

27. Kilian, J., Kushilevitz, E., Micali, S., Ostrovsky, R.: Reducibility and completeness
in private computations. SIAM J. Comput. 29(4), 1189–1208 (2000)

28. Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-
loalgorithm rounds. In: STOC, pp. 560–569 (2001)

29. Kushilevitz, E., Micali, S., Ostrovsky, R.: Reducibility and completeness in multi-
party private computations. In: FOCS, pp. 478–489 (1994)

30. Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for concurrent
security: universal composability from stand-alone non-malleability. In: STOC, pp.
179–188 (2009)

31. Lindell, Y.: Lower bounds for concurrent self composition. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 203–222. Springer, Heidelberg (2004)

32. Lindell, Y.: Lower bounds and impossibility results for concurrent self composition.
J. Cryptology 21(2), 200–249 (2008)

33. Micali, S., Pass, R., Rosen, A.: Input-indistinguishable computation. In: FOCS,
pp. 367–378 (2006)

34. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-
position. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176.
Springer, Heidelberg (2003)

35. Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest
majority. In: STOC, pp. 232–241 (2004)

36. Pass, R., Rosen, A.: Bounded-concurrent secure two-party computation in a con-
stant number of rounds. In: FOCS, pp. 404–413 (2003)

http://eprint.iacr.org/

668 C. Cho, S. Garg, and R. Ostrovsky

37. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarith-
mic round-complexity. In: FOCS, pp. 366–375 (2002)

38. Prabhakaran, M., Sahai, A.: New notions of security: achieving universal compos-
ability without trusted setup. In: STOC, pp. 242–251 (2004)

39. Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415–431. Springer,
Heidelberg (1999)

40. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167 (1986)

On the Security of the Pre-shared Key
Ciphersuites of TLS

Yong Li1, Sven Schäge2,�, Zheng Yang1, Florian Kohlar1, and Jörg Schwenk1

1 Ruhr-Universität Bochum, Germany
{yong.li,zheng.yang,florian.kohlar,joerg.schwenk}@rub.de

2 University College London, UK
s.schage@ucl.ac.uk

Abstract. TLS is by far the most important protocol on the Internet for
negotiating secure session keys and providing authentication. Only very
recently, the standard ciphersuites of TLS have been shown to provide
provably secure guarantees under a new notion called Authenticated and
Confidential Channel Establishment (ACCE) introduced by Jager et al.
at CRYPTO’12. In this work, we analyse the variants of TLS that make
use of pre-shared keys (TLS-PSK). In various environments, TLS-PSK
is an interesting alternative for remote authentication between servers
and constrained clients like smart cards, for example for mobile phone
authentication, EMV-based payment transactions or authentication via
electronic ID cards. First, we introduce a new and strong definition of
ACCE security that covers protocols with pre-shared keys. Next, we
prove that all ciphersuite families of TLS-PSK meet our strong notion
of ACCE security. Our results do not rely on random oracles nor on any
non-standard assumption.

Keywords: TLS, TLS-PSK, ACCE, Pre-Shared Keys, Authenticated
Key Exchange, Secure Channels.

1 Introduction

TLS is undeniably the most prominent key exchange protocol in use today. While
the security of most web applications relies on the classical Diffie-Hellman and
RSA-based ciphersuites of TLS, there also exist several important applications
that make use of one of the less common ciphersuites [31,1,29]. One such appli-
cation is (remote) authentication of resource-restricted clients like smart-cards.
In these scenarios, computational efficiency and low power consumption often
are one of the most important system features. Instead of using the public-key
based ciphersuites of TLS, applications can apply a variant of TLS that assumes
pre-shared symmetric keys between client and server. The corresponding cipher-
suite family is termed TLS with pre-shared keys (TLS-PSK) and available in
many TLS releases and libraries, for example [28,24,7].

� Supported by EPSRC grant number EP/J009520/1.

H. Krawczyk (Ed.): PKC 2014, LNCS 8383, pp. 669–684, 2014.
c© International Association for Cryptologic Research 2014

670 Y. Li et al.

Related Work: On the Security of TLS. Since the introduction of its pre-
decessor SSL, the security of TLS has often been the focus of security researchers
and attackers worldwide. Over the time, several attacks on TLS have been pub-
lished. Most of these attacks do not directly attack the cryptographic core of
TLS, but rather exploit side-channels or vulnerabilities in associated technolo-
gies, like the famous Bleichenbacher attack [6], or attacks on the domain name
system or the public-key infrastructure [20,10,26]. However, despite that no se-
rious attacks on the cryptographic core of the current TLS protocol are known,
determining exactly what security guarantees TLS provides has been an elusive
problem for many years. This is partly due to the fact that the popular TLS
ciphersuites provably do not provide security in the sense of authenticated key
exchange (AKE) protocols [3], the classical and very strong standard notion of
security of key exchange protocols (which requires that the session key remains
indistinguishable from random even if the adversary obtains the communication
transcript of the session). Until recently only security analyses of modified ver-
sions of TLS were published [18,16,27]. At CRYPTO 2012, Jager, Kohlar, Schäge,
and Schwenk (JKSS) [17] were the first to present a detailed security analysis of
the unmodified version of one of TLS’s ciphersuite families. They showed that the
cryptographic core of ephemeral Diffie-Hellman with mutual authentication is a
provably secure authenticated and confidential channel establishment (ACCE)
protocol in the standard model. ACCE is a new security notion that is particu-
larly well suited to capture what protocols like TLS intuitively want to achieve:
the establishment of a secure channel between client and server. Among its fea-
tures, it not only formalizes confidentiality and integrity of messages exchanged
between client and server, but also covers replay and re-ordering attacks. Very
recently, Krawczyk, Paterson, and Wee (KPW) [22] and independently Kohlar,
Schäge, Schwenk (KSS) [19] presented, while relying on different cryptographic
assumptions and security models1, extensions of the JKSS result to the remain-
ing ciphersuite families. In particular, they show that TLS-RSA and TLS-DH
also constitute ACCE protocols when used for mutual authentication setting and
that TLS-RSA, TLS-DH, and TLS-DHE are ACCE secure in the practically im-
portant setting of server-only authentication (for which they provide new formal
security definitions).

Unfortunately, all previous results on the (ACCE) security of TLS are based on
either i) new, non-standard security assumption like the PRF-ODH assumption
introduced in [17] and refined in [22,19] or ii) strong idealizations such as the
modeling of TLS’s key derivation function as a random oracle [2] or assuming
that the public-key encryption scheme in TLS-RSA is replaced with an IND-CCA
secure one. Looking somewhat ahead, for the TLS-PSK ciphersuites, fortunately
the situation is different, i.e. security can be based on standard assumptions
only.

1 The security models and complexity assumptions differ mainly with respect to the
capabilities granted to the adversary when corrupting and registering new parties
and the application of the random oracle model.

On the Security of the Pre-shared Key Ciphersuites of TLS 671

TLS with Pre-Shared Keys. The original specifications of the TLS pro-
tocol [11,12,13] do not explicitly include ciphersuites that support authentica-
tion and key exchange using pre-shared keys. However, since 2005 there exists
an extension called “Pre-Shared Key Ciphersuites for Transport Layer Secu-
rity” (TLS-PSK) which specifically describes such ciphersuites in RFC 4279 [14].
The TLS-PSK standard specifies three ciphersuites, TLS_PSK, TLS_RSA_PSK and
TLS_DHE_PSK, each of which derives the master secret in a different way. In
TLS_PSK, the master secret is solely based on the secret pre-shared keys. In the re-
maining ciphersuites the computation of the master secret is additionally depen-
dent on freshly exchanged secrets via encrypted key transport in TLS_RSA_PSK
or Diffie-Hellman key exchange in TLS_DHE_PSK. The intuition is that as long as
either the pre-shared key or the freshly exchanged secret is not compromised,
then the protocol produces a secure application key. All three ciphersuites as-
sume that the client only has a pre-shared key for authentication. Although it is
not as widespread as TLS with RSA key transport, several interesting and im-
portant scenarios for TLS with pre-shared keys exist where its efficiency makes
TLS-PSK a much more attractive alternative than, for example, TLS with self-
signed certificates.

– Since November 2010, the new electronic German ID (eID) card supports
online remote authentication of the eID card holder to some online service
(eService). Here TLS-PSK is applied to perform mutual authentication be-
tween the two parties [15].

– As a second example, we mention the application of TLS-PSK in the Generic
Authentication Architecture, the 3GGP mobile phone standard for UMTS
and LTE. According to ETSI TR 133 919 V11.0.0 (2012-11), TLS-PSK can
be used to secure the communication between server and user equipment.

– An IETF draft from 2009 for EMV smart cards describes an authentication
protocol based on TLS-PSK [29]. EMV chips are widely deployed and are
used commonly for secure payment transactions [9].

Contribution. In this paper, we provide a security analysis of all three TLS-
PSK ciphersuites. Similar to classical TLS, it is provably impossible to show that
the keys produced by TLS-PSK are indistinguishable from random. Therefore,
as one of our main contributions, we introduce the first definition of ACCE
security for authentication protocols with pre-shared keys. We do not propose a
separate model but rather an extension of the ACCE model of JKSS to also cover
authentication via pre-shared keys. Next, we introduce a strengthened variant
of this definition called asymmetric perfect forward secrecy, that captures that
protocol sessions of ACCE protocols with pre-shared keys may retain a strong
level of confidentiality even if the long-term secrets of the client are exposed
after the protocol run. Asymmetric perfect forward secrecy is a strong security
notion that can hold for protocols that do not fulfill the standard notion of
perfect forward secrecy. This allows us to prove the security of such protocols in
a stronger security model than was previously possible. We show that TLS_PSK
is ACCE secure (without forward secrecy), TLS_RSA_PSK is ACCE secure with

672 Y. Li et al.

asymmetric perfect forward secrecy and TLS_DHE_PSK is secure with (classical)
perfect forward secrecy. Informally, our results say that TLS-PSK guarantees
confidentiality and integrity of all messages exchange between client and server,
unless the adversary has learned the pre-shared key or corrupted one of the
parties to learn the application/session key. In TLS_DHE_PSK the communication
remains confidential even if the adversary corrupts the pre-shared secret later
on. In contrast, in TLS_RSA_PSK the communication remains confidential even if
the adversary manages to corrupt the pre-shared key or the server’s long-term
key later on, but not both of them.

Double PRFs and Forward Secrecy. To prove TLS_RSA_PSK and
TLS_DHE_PSK, we introduce a variant of pseudo-random functions (PRFs), called
double pseudo-random function (DPRF). Roughly, a DPRF takes as input two
keys only one of which is generated randomly and kept secret from the attacker
(as in classical PRFs). However, when the adversary makes its queries, not only
the message but also the other key can entirely be specified by the adversary.
Our notion of DPRF nicely abstracts the crucial mechanism in TLS-PSK that
is required to guarantee (asymmetric) perfect forward secrecy. In our security
proofs, we assume that TLS’s key derivation function provides a suitable DPRF
in the standard model. Existing results on the security of HMAC support this
assumption for TLS 1.1 when the pre-shared key has a specific bit length. Our
new DPRF notion may be of independent interest beyond the scope of this work.

Note also, that for the TLS_PSK and TLS_DHE_PSK ciphersuites we neither
have to rely on non-standard assumptions like the PRF-ODH assumption of
JKSS to give a proof nor on idealized setup assumptions like the random oracle
model. We can show that TLS_RSA_PSK is secure under our basic notion of ACCE
security without any assumption on the public key encryption system used in
TLS. This is because under the basic ACCE definition security can be derived
solely from secrecy of the pre-shared keys. However, if we want to prove the
ACCE security of TLS_RSA_PSK with asymmetric perfect forward secrecy in the
standard model we need to assume that the public key encryption scheme is
IND-CCA secure2, similar to [22,19]. Thus, we do not consider TLS-RSA with
RSA-PKCS encryption as it is currently used in practice. We remark that [22]
were also able to prove security of the classical TLS ciphersuites based on RSA
key transport with RSA-PKCS encryption in the random oracle model. It would
be interesting to show that the results of KPW on TLS-RSA can be transferred to
show that TLS-PSK with RSA-PKCS based key transport provides asymmetric
perfect forward secrecy in the random oracle model.

Limitations. In our work, we give a dedicated security analysis for TLS-PSK.
We believe that it is possible to give a more modularized analysis, similar
to KPW [22] who analyzed the classical ciphersuites of TLS by abstracting
the handshake phase into a Constrained-CCA-secure (CCCA) KEM that is
combined with a secure authenticated encryption scheme. The benefit of the
KPW analysis is re-usability: once the security proof is established for a generic

2 KPW call this TLS-CCA.

On the Security of the Pre-shared Key Ciphersuites of TLS 673

CCCA-secure KEM, all that remains is to show that each of the ciphersuites
indeed provides such a KEM.

2 Security Assumptions

To state our results, we will rely on standard security definitions for the Decisional
Diffie-Hellman assumption (DDH), collision-resistant cryptographic hash func-
tions, IND-CCA secure public key encryption schemes, (plain) pseudo-random
functions (PRF), and stateful length-hiding authenticated encryption (sLHAE)
schemes as recently defined in [30]. However, we will sometimes also rely on a new
class of PRFs called double pseudo-random functions.

Double Pseudo-Random Functions. Double pseudo-random functions can
be thought of as a class of pseudo-random functions with two keys. Let DPRF :
KDPRF1 × KDPRF2 × MDPRF → RDPRF denote a family of deterministic functions,
where KDPRF1

,KDPRF2
is the key space, MDPRF is the domain and RDPRF is the

range of PRF.
Intuitively, security requires that the output of the DPRF is indistinguishable

from random as long as one key remains hidden from the adversary even if the
adversary is able to adaptively specify the second key and the input message. To
formalize security we consider the following security game played between a chal-
lenger C and an adversary A. Let RFDPRF(·, ·) denote an oracle implemented by C,
which takes as input a key kj ∈ KDPRFj (where j is specified by the adversary via
an Init query) and message m ∈ MDPRF and outputs a random value z ∈ RDPRF.
1. The adversary first runs Init(j) with j ∈ {1, 2} to specify the key kj ∈ KDPRFj

that he wants to manipulate.
2. The challenger C samples b̂

$← {0, 1}, and sets u = (j mod 2) + 1. If b̂ =
0, the challenger samples ku ∈R KDPRFu and assigns RFDPRF(·, ·) to either
DPRF(·, k2, ·) orDPRF(k1, ·, ·) depending on the value of u. For instance, if u =
2 then the random function RFDPRF is assigned to DPRF(·, k2, ·), and the A is
allowed to specify k1 arbitrarily in each query. If b̂ = 1, the challenger assigns
RFDPRF to RF(·, ·) which is a truly random function that takes as input key kj
and message m and outputs a value in the same range RDPRF as DPRF(·, ·, ·).

3. The adversary may adaptively make queries kj,i, mi for 1 ≤ i ≤ q to oracle
RFDPRF and receives the result of RFDPRF(kj,i,mi), where kj,i denotes the i-th
key kj chosen by A.

4. Finally, A outputs its guess b̂′ ∈ {0, 1} of b̂. If b̂ = b̂′, A wins.

Definition 1. We say that DPRF is a (t, ε)-secure double pseudo-random func-
tion, if any adversary running in time t has at most an advantage of ε to distinguish
the DPRF from a truly random function, i.e.

Pr
[
b̂ = b̂′

]
≤ 1/2 + ε.

The number of allowed queries q is upper bounded by t.

674 Y. Li et al.

3 A Brief Introduction to TLS-PSK

Client Server
m1 : ClientHello

m2 : ServerHello

m3 : ServerCertificate
m4 : ServerKeyExchange

m5 : ServerHelloDone
m6 : ClientKeyExchange

m7 : ChangeCipherSpec

m8 : ClientFinished
m9 : ChangeCipherSpec

m10 : ServerFinished

pre-accept phase:

post-accept phase:

Stateful Symmetric Encryption

Fig. 1. Handshake in TLS-PSK

This section describes the three sets
of ciphersuites specified in TLS-
PSK: TLS_PSK, TLS_RSA_PSK and
TLS_DHE_PSK. In each of these cipher-
suites, the master secret is computed
using pre-shared keys which are
symmetric keys shared in advance
among the communicating parties.
The main differences are in the way
the master secret is computed. The
following description is valid for all
TLS_PSK versions. We only describe
the cryptographically relevant mes-
sages and only those that deviate
from the classical TLS ciphersuites. A
detailed description can be found in
the full version.

ServerCertificate. For TLS_PSK and TLS_DHE_PSK, the message is not in-
cluded. In TLS_RSA_PSK certS contains a public key that is bound to the server’s
identity.

ServerKeyExchange. Since clients and servers may have pre-shared keys with
many different parties, in the ServerKeyExchange message m4, the server pro-
vides a PSK identity hint pointing to the PSK used for authentication. However,
for ephemeral Diffie-Hellman key exchange, the Diffie-Hellman (DH) key exchange
parameters are also contained in the ServerKeyExchangemessages including in-
formation on the DH group (e.g. a large prime number p ∈ {0, 1}poly(κ), where
κ is the security parameter, and a generator 〈g〉 for a prime-order q subgroup of
Z∗
p), and the DH share TS (TS = gtS , where tS is a random value in Zq). (We im-

plictly assume that the client checks whether the received parameters are valid,
in particular if TS is indeed in the group generated by g.)

ClientKeyExchange. Message m6 is called ClientKeyExchange. We describe
the contents of this message for the ciphersuites TLS_DHE_PSK, TLS_PSK and
TLS_RSA_PSK separately:

– For TLS_PSK, the message is not included.
– For ephemeral Diffie-Hellman key exchange TLS_DHE_PSK, it contains the

Diffie-Hellman share TC of the client, i.e. TC = gtC .
– For the RSA-based key exchange TLS_RSA_PSK the client selects a 46-byte ran-

dom value R and sends a 2-byte version number V and the 46-byte random
value R encrypted under the server’s RSA public key to the server.

Also, the client sends an identifier for the pre-shared key it is going to use when
communicating with the server. This information is called PSK identity.

On the Security of the Pre-shared Key Ciphersuites of TLS 675

Computing the Master Secret. According to the original specification, re-
leased as RFC 4279 [14], the key derivation function of TLS, denoted here as
PRFTLS, is used when constructing the master secret. PRFTLS takes as input a se-
cret, a seed, and an identifying label and produces an output of arbitrary length.
We first describe the generic computation of the master secret ms for all cipher-
suites using pre-shared keys. Then, a detailed description of all cases (TLS_PSK,
TLS_DHE_PSK, and TLS_RSA_PSK) is provided. The master secret ms is computed
as follows:

ms := PRFTLS(pms, label1||rC ||rS) (1)

– TLS_PSK case: For TLS_PSK, the client/server is able to compute the master
secret ms using the pre-master secret pms, from which all further secret val-
ues are derived. If the PSK is N bytes long, the pms consists of the 2-byte
representation (uint16) of the integer value N, N zero bytes, the 2-byte repre-
sentation of N once again, and the PSK itself, i.e. pms := N ||0...0||N ||PSK.
Since the first half of pms is constant for any PSK we get for TLS_PSK that the
entire security of PRFTLS only relies on the second half of pms.

– TLS_DHE_PSK case: LetZ be the value produced for DH-based ciphersuites, i.e.
Z =gtStC = T tSC = T tCS . The pms consists of a concatenation of four values:
the uint16 lenZ indicating the length of Z, Z itself, the uint16 lenPSK showing
the length of the PSK, and the PSK itself: pms := lenZ ||Z||lenPSK ||PSK.

– TLS_RSA_PSK case: First, the pre-master secret concatenates the uint16 con-
stant C = 48, the 2-byte version number V, a 46-byte random value R, the
uint16 lenPSK containing the length of the PSK, and the PSK itself, i.e. pms :=
C||V||R||lenPSK ||PSK.

3.1 On the Security of PRFTLS

In our security proof of TLS_PSK, we assume that the pseudo-random function of
TLS (PRFTLS) that is used for the computation of the master-secret constitutes
a secure PRF in the standard model when applied with pms as the key. However
to prove (asymmetric) perfect forward secrecy in TLS_DHE_PSK and TLS_RSA_PSK,
we assume that PRFTLS constitutes a secure DPRF (in the standard model) where
the key space of the DPRF consists of the key space of the pre-shared key and the
key space of the freshly generated RSA or Diffie-Hellman secret. Unfortunately,
existing results do not directly prove that PRFTLS as used in TLS-PSK is a secure
DPRF. Nevertheless, they might in some cases serve as a strong indicator of the
security of PRFTLS. We provide a more detailed analysis of the plausibility of this
assumption in the full version.

4 ACCEProtocols

In this section, we present an extension of the formal security model for two party
authenticated and confidential channel establishment (ACCE) protocols intro-
duced by JKSS [17] to also cover scenarios with pre-shared, symmetric keys. Ad-
ditionally, we extend the model to also address PKI-related attacks that exploit

676 Y. Li et al.

that the adversary does not have to prove knowledge of the secret key when reg-
istering a new public key [5]. (In [25] such attacks are generally called strong-key
substitution attacks.) For better comparison with JKSS we will subsequently use
boxes to highlight state variables that are essentially new in our model.

In this model, while emulating the real-world capabilities of an active adversary,
we provide an ‘execution environment’ for adversaries following the tradition of
the seminal work of Bellare and Rogaway [3] and its extensions [4,8,21,23,17]. Let
K0 = {0, 1}κ be the key space of the session key and K1 = {0, 1}κ be the key space
of the pre-shared keys.

Execution Environment. In the following let �, d ∈ N be positive integers. In the
execution environment, we fix a set of � honest parties {P1, . . . , P�}. Each party
is either identified by index i in the security experiment or a unique, fixed-length
string idi (which might appear in the protocol flows).

To cover authentication with symmetric keys, we extend the state of each party
to also include pre-shared keys. Each party holds (symmetric) pre-shared keys
with all other parties. We denote with PSKi,j = PSKj,i the symmetric key shared
between parties Pi and Pj . Each party Pi with i ∈ {1, . . . , �} also has access to a
long-term public/private key pair (pki, ski). Formally, each party maintains the
state variables given in Table 1.

Table 1. Internal States of Parties

Variable Description
ski stores the secret key of a public key pair (pki, ski)
PSKi a vector which contains an entry PSKi,j per party Pj

τi denotes, that ski was corrupted after the τi-th query of A
fi a vector denoting the freshness of all pre-shared keys,

containing one entry fi,j ∈ {exposed, fresh} for each entry in PSKi

The first two variables, ski and PSKi, are used to store keys that are used in
the protocol execution while the remaining variables are solely used to define se-
curity. (When defining security the latter are additionally managed and updated
by the challenger.) The variables of each party Pi will be initialized according to
the following rules:

– The long-term key pair (pki, ski) and pre-shared key vector PSKi are chosen
randomly from the key space. For all parties Pi, Pj with i, j ∈ {1, . . . , �} and
with i �= j, and pre-shared keys PSKi it holds that PSKi,j = PSKj,i and
PSKi,i := ∅.

– All entries in fi are set to fresh.
– τi is set to τi := ∞, which means that all parties are initially not corrupted.

In the following, we will call party Pi uncorrupted iff τi = ∞. Thus, we do not
consider a dedicated variable that holds the corruption state of the secret key

On the Security of the Pre-shared Key Ciphersuites of TLS 677

ski. Each honest party Pi can sequentially and concurrently execute the proto-
col multiple times. This is modeled by a collection of oracles {πsi : i ∈ [�], s ∈ [d]}.
Oracle πsi behaves as party Pi carrying out a process to execute the s-th proto-
col instance with some partner Pj (which is determined during the protocol ex-
ecution). All oracles of Pi have access to the long-term keys ski and PSKi with
j ∈ {1, . . . , �}. Moreover, we assume each oracle πsi maintains a list of indepen-
dent internal state variables with the semantics given in Table 2. The variables Φsi ,

Table 2. Internal States of Oracles

Variable Description
Φs

i denotes πs
i ’s execution-state in {negotiating, accept, reject}

Pidsi stores the identity of the intended communication partner
ρsi denotes the role ρsi ∈ {Client,Server}

Ks
i = (kenc, kdec) stores the application keys Ks

i

Stsi = (u, v, ste, std, C) stores the current states of the sLHAE scheme
Ts

i records the transcript of messages sent and received by πs
i

kstsi denotes the freshness kstsi ∈ {exposed, fresh} of the session key
bsi stores a bit b ∈ {0, 1} used to define security

Pidsi , ρsi , Ksi , ste, std, and Tsi are used by the oracles to execute the protocol. The
remaining variables are only used to define security. The variables of each oracle
πsi will be initialized by the following rules:

– The execution-state Φsi is set to negotiating.
– The variable kstsi is set to fresh.
– The bit bsi is chosen at random.
– The counters u, v are initialized to 0.
– All other variables are set to only contain the empty string ∅.

At some point, each oracle πsi completes the execution with a decision state
Φsi ∈ {accept, reject}. Furthermore, we will always assume (for simplicity) that
Ksi = ∅ if an oracle has not reached accept-state (yet).

Matching Conversations. To formalize the notion that two oracles engage in an
on-line communication, we define partnership via matching conversations as pro-
posed by Bellare and Rogaway [3]. We use the variant by JKSS.

Definition 2. We say that an oracle πsi has a matching conversation to oracle πtj,
if

– πsi has sent all protocol messages and Ttj is a prefix of Tsi , or
– πtj has sent all protocol messages and Tsi = Ttj.

To keep our definition of ACCE protocols general we do not consider protocol-
specific definitions of partnership like for example [22] who define partnership of
TLS sessions using only the first three messages exchanged in the handshake phase.

678 Y. Li et al.

Adversarial Model. An adversary A in our model is a PPT taking as input the se-
curity parameter 1κ and the public information (e.g. generic description of above
environment), which may interact with these oracles by issuing the following
queries.

Sendpre(πsi ,m): This query sends message m to oracle πsi . The oracle will respond
with the next message m∗ (if there is any) that should be sent according to
the protocol specification and its internal states.
After answering a Sendpre query, the variables (Φsi ,Pid

s
i , ρ

s
i ,K

s
i , T

s
i) will be up-

dated depending on the protocol specification. This query is essentially de-
fined as in JKSS.

RegisterParty(μ, pkμ, [psk]): This query allows A to register a new party with a
new identity μ and a static public key (pkμ) to be used for party Pμ. In re-
sponse, if the same identity μ is already registered (either via a RegisterParty-
query or μ ∈ [�]), a failure symbol ⊥ is returned. Otherwise, a new party Pμ
is added with the static public key pkμ. The secret key skμ is set to a con-
stant. The parties registered by this query are considered corrupted and con-
trolled by the adversary. If RegisterParty is the τ ′-th query of the adversary,
Pμ is initialized with τμ = τ ′. If the adversary also provides a pre-shared key
psk, then this key will be implemented for every party Pi with i ∈ [�] as key
PSKi,μ.3 Otherwise, the simulator chooses a random key psk

$← {0, 1}κ and
sets PSKi,μ = PSKμ,i := psk for all parties Pi before outputting psk. The
corresponding entries fi,μ in the vectors of the other parties Pi with i ∈ [�]
are set to exposed. Via this query we extend the ACCE model of JKSS to also
model key registration.

RevealKey(πsi): Oracleπsi responds to aRevealKey-query with the contents of vari-
able Ksi , the application keys. At the same time the challenger sets kstsi =
exposed. If at the point when A issues this query there exists another oracle
πtj having matching conversation to πsi , then we also set ksttj = exposed for πtj .
This query slightly deviates from JKSS.4

Corrupt(Pi, [Pj]): Depending on the second input parameter, oracle π1
i responds

with certain long-term secrets of party Pi. This query extends the corruption
capabilities of JKSS to symmetric keys.
– If A queries Corrupt(Pi) or Corrupt(Pi, ∅)5, oracle π1

i returns the long-term
secret key ski of party Pi. If this query is the τ -th query issued by A, then
we say that Pi is τ -corrupted and π1

i sets τi := τ .
– If A queries Corrupt(Pi, Pj), oracle π1

i returns the symmetric pre-shared
key PSKi,j stored in PSKi and sets fi,j := exposed.

– If A queries Corrupt(Pi,-), oracle π1
i returns the vector PSKi and sets

fi,j := exposed for all entries fi,∗ ∈ fi.
3 This is just for simplicity. Modeling different pre-shared keys between the registered

party and every other party is equivalent to registering multiple parties with a single
shared key each.

4 JKSS implicitly located the specification of when to set ksttj = exposed into the secu-
rity definition.

5 The party Pi is not adversarially controlled.

On the Security of the Pre-shared Key Ciphersuites of TLS 679

Encrypt(πsi ,m0,m1, len, H): This query takes as input two messages m0 and m1,
length parameter len, and header data H . If Φsi �= accept then πsi returns ⊥.
Otherwise, it proceeds as depicted in Figure 2, depending on the random bit
bsi

$← {0, 1} sampled by πsi at the beginning of the game and the internal state
variables of πsi . This query is essentially defined as in JKSS.

Decrypt(πsi , C,H): This query takes as input a ciphertext C and header data H .
If πsi has Φsi �= ‘accept’ then πsi returns ⊥. Otherwise, it proceeds as depicted
in Figure 2. This query is essentially defined as in JKSS.

Encrypt(πs
i ,m0,m1, len,H): Decrypt(πs

i , C,H):
u := u+ 1 v := v + 1

(C(0), st
(0)
e)

$← StE.Enc(kρ
enc, len,H,m0, ste) If bsi = 0, then return ⊥

(C(1), st
(1)
e)

$← StE.Enc(kρ
enc, len,H,m1, ste) (m, std) = StE.Dec(kρ

dec,H,C, std)

If C(0) = ⊥ or C(1) = ⊥ then return ⊥ If v > u or C �= Cv or H �= Hv,
(Cu,Hu, ste) := (C(b), H, st

(b)
e) then phase := 1

Return Cu If phase = 1 then return m

Here u, v, bsi , ρ, k
ρ
enc, k

ρ
dec, C denote the values stored in the internal variables of πs

i .

Fig. 2. Encrypt and Decrypt oracles in the ACCE security experiment

Definition 3 (Correctness). We say that an ACCE protocol Π is correct, if for
any two oracles πsi , πtj that have matching conversations with Pidsi = j and Pidtj = i
and Φsi = accept and Φtj = accept it always holds that Ksi = Ktj.

Secure ACCE Protocols. We define security via an experiment played between a
challenger C and an adversary A.

Security Game. Assume there is a global variable pinfo which stores the role in-
formation of each party for the considered protocol Π .6 In the game, the following
steps are performed:

1. Given the security parameter κ, C implements the collection of oracles {πsi :
i, j ∈ [�], s ∈ [d]} with respect to Π and pinfo. In this process, C generates
long-term keys PSKi for all parties i ∈ [�]. Next it additionally generates long-
term key pairs (pki, ski) for all parties i ∈ [�] that require them (e.g. if the
corresponding party is a server in the TLS_RSA_PSK protocol). Finally, C gives
all identifiers {idi}, all public keys (if any), and pinfo to A.

2. Next the adversary may start issuing Sendpre, RevealKey, Corrupt, Encrypt,
Decrypt, and RegisterParty queries.

3. At the end of the game, the adversary outputs a triple (i, s, b′) and terminates.

6 This information is simply used to determine which party also holds asymmetric key
pairs besides the shared symmetric keys.

680 Y. Li et al.

In the following, we provide a general security definition for ACCE protocols.
It will subsequently be referred to when formalizing specific definitions for ACCE
protocols that provide no forward secrecy, perfect forward secrecy or asymmetric
perfect forward secrecy. We have tried to keep the details of the execution environ-
ment and the definition of security close to that of JKSS. Intuitively, our security
definition mainly differs from JKSS in that it considers adversaries that also have
access to the new RegisterParty query and the extended Corrupt query.

Definition 4 (ACCE Security). We say that an adversary (t, ε)-breaks an
ACCE protocol, if A runs in time t, and at least one of the following two
conditions holds:

1. When A terminates, then with probability at least ε there exists an oracle πsi
such that
– πsi ‘accepts’ with Pidsi = j when A issues its τ0-th query, and
– both Pi and the intended partner Pj

7 are not corrupted throughout the se-
curity game and

– πsi has internal state kstsi = fresh, and
– there is no unique oracle πtj such that πsi has a matching conversation to

πtj.
If an oracle πsi accepts in the above sense, then we say that πsi accepts mali-
ciously.

2. When A terminates and outputs a triple (i, s, b′) such that
– πsi ‘accepts′ – with a unique oracle πtj such that πsi has a matching conver-

sation to πtj – when A issues its τ0-th query, and
– A did not issue a RevealKey-query to oracle πsi nor to πtj , i.e. kstsi = fresh,

and
– Pi is τi-corrupted and Pj is τj-corrupted,

then the probability that b′ equals bsi is bounded by

|Pr[bsi = b′] − 1/2| ≥ ε.

If adversary A outputs (i, s, b′) with b′ = bsi and the above conditions are met,
we say that A answers the encryption-challenge correctly.

We say that the ACCE protocol is (t, ε)-secure, if there exists no adversary that
(t, ε)-breaks it.

Let us now define security more concretely. We consider three levels of forward
secrecy. We start with a basic security definition for protocols that do not provide
any form of forward secrecy.

Definition 5 (ACCE Security without Forward Secrecy). We say that an
ACCE protocol is (t, ε)-secure without forward secrecy (NoFS), if it is (t, ε)-secure
with respect to Definition 4 and τi = τj = ∞.
7 The party Pj is not adversarially corrupted, i.e. j ∈ []. This means that Pj has not

been registered by a RegisterParty query. Otherwise A may obtain all corresponding
secure keys and trivially make oracle πs

i accept.

On the Security of the Pre-shared Key Ciphersuites of TLS 681

The next definition considers PFS in the classical sense for both, client and server,
as in JKSS.

Definition 6 (ACCE Security with Perfect Forward Secrecy). We say that
an ACCE protocol is (t, ε)-secure with perfect forward secrecy (PFS), if it is (t, ε)-
secure with respect to Definition 4 and τi, τj ≥ τ0.

In the following, we provide our new definition of asymmetric perfect forward se-
crecy which is similar to that of classical perfect forward secrecy except that only
the client is allowed to be corrupted after it has accepted.

Definition 7 (ACCE Security with Asymmetric Perfect Forward
Secrecy). We say that an ACCE protocol is (t, ε)-secure with asymmetric per-
fect forward secrecy (APFS), if it is (t, ε)-secure with respect to Definition 4 and
it holds that τi = ∞ and τj ≥ τ0 if πsi has internal state ρ = Server or τi ≥ τ0 and
τj = ∞ if πsi has internal state ρ = Client.

5 Security Analysis of Pre-shared Key Ciphersuites for
Transport Layer Security

In this section, we present our results for each of the TLS-PSK ciphersuites. Due
to space restrictions, the proofs are given in the full version.

Theorem 1. Let μ be the output length of PRFTLS and let λ be the length of the
nonces. Assume that PRFTLS is a (t, εPRF)-secure PRF when keyed with the pre-
master secret pms := N ||0...0||N ||PSK or the master secret ms. Suppose the hash
functionH is (t, εH)-secure, and the sLHAE scheme is (t, εStE)-secure. Then for any
adversary that (t′, εtls)-breaks the TLS_PSK protocol in the sense of Definition 5 with
t ≈ t′ it holds that

εtls ≤ (d�)2
(

1

2λ−1
+ 3εDPRF + 3εPRF + 2εH +

1

2μ−1
+ 6εStE

)
.

Theorem 2. Let μ be the output length of PRFTLS and let λ be the length of the
nonces. Assume that PRFTLS is a (t, εDPRF)-secure DPRF when keyed with the pre-
master secret pms := lenZ ||Z||lenPSK ||PSK (that consists of the pre-shared secret
PSK and the Diffie-Hellman value Z). Assume that PRFTLS is a (t, εPRF)-secure
PRF when keyed with the master secret ms. Suppose the hash function H is (t, εH)-
secure, the DDH-problem is (t, εDDH)-hard in the group G used to compute Z, and
the sLHAE scheme is (t, εStE)-secure. Then for any adversary that (t′, εtls)-breaks
the TLS_DHE_PSK protocol in the sense of Definition 6 with t ≈ t′ we get

εtls ≤ (d�)2
(

1

2λ−1
+ 3εDPRF + 3εPRF + 2εH +

1

2μ−1
+ εDDH + 6εStE

)
.

Theorem 3. Let μ be the output length of PRFTLS and let λ be the length of the
nonces. Assume that PRFTLS is a (t, εDPRF)-secure DPRF when keyed with the pre-
master secret pms := C||V||R||lenPSK ||PSK (that consists of the pre-shared key

682 Y. Li et al.

PSK and the random key R that is exchanged between client and server). Assume
that PRFTLS is a (t, εPRF)-secure PRF when keyed with the master secret ms. Sup-
pose the hash function H is (t, εH)-secure, the public key encryption scheme PKE
is (t, εPKE)-secure (IND-CCA). Suppose that the sLHAE scheme is (t, εStE)-secure.
Then for any adversary that (t′, εtls)-breaks the TLS_RSA_PSK protocol (where the
key transport mechanism is implemented via PKE) in the sense of Definition 7 with
t ≈ t′ it holds that

εtls ≤ (d�)2
(

1

2λ−1
+ εPKE + 3εDPRF + 3εPRF + 2εH +

1

2μ−1
+ 6εStE

)
.

Technical Overview of the Security Proofs. At a high level, the security
proofs are similar to that of JKSS. From a technical standpoint, the security proof
of TLS_PSK is simpler than that of the classical ciphersuites of TLS as security
only relies on the secrecy of the pre-shared secrets. Roughly, in the proofs of the
classical TLS ciphersuites one additionally has to establish that the key exchange
mechanism produces a shared secret in the first place. To prove TLS_RSA_PSK
and TLS_DHE_PSK we exploit the DPRF-security of PRFTLS. The challenge is to
show that the master secret is indistinguishable from random although the ad-
versary may reveal the pre-shared secret or a freshly generated ephemeral secret.
Intuitively, if only one of these values remains unrevealed by the adversary, then
at least one input key to the DPRF PRFTLS is (indistinguishable from) random.
Therefore, PRFTLS computes a random-looking master secret which in turn can
be used to derive secure application keys.

Acknowledgements. We would like to thank Kenny Paterson and the anony-
mous referees for their valuable comments and suggestions.

References

1. Badra, M., Urien, P.: Toward SSL integration in SIM smartcards. In: WCNC, pp.
889–893. IEEE (2004)

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM Conference on Computer and Communications Security, pp. 62–73.
ACM (1993)

3. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)

4. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their
security analysis. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS,
vol. 1355, pp. 30–45. Springer, Heidelberg (1997)

5. Blake-Wilson, S., Menezes, A.: Unknown key-share attacks on the Station-to-
Station (STS) protocol. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560,
pp. 154–170. Springer, Heidelberg (1999)

6. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 1–12. Springer, Heidelberg (1998)

On the Security of the Pre-shared Key Ciphersuites of TLS 683

7. BouncyCastle Software Developers. Bouncy Castle Crypto APIs (2013),
http://www.bouncycastle.org/

8. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

9. Chen, C., Tang, S., Mitchell, C.J.: Building general-purpose security services on
EMV payment cards. In: Keromytis, A.D., Di Pietro, R. (eds.) SecureComm 2012.
LNICST, vol. 106, pp. 29–44. Springer, Heidelberg (2013)

10. Dacosta, I., Ahamad, M., Traynor, P.: Trust no one else: Detecting MITM attacks
against SSL/TLS without third-parties. In: Foresti, S., Yung, M., Martinelli, F.
(eds.) ESORICS 2012. LNCS, vol. 7459, pp. 199–216. Springer, Heidelberg (2012)

11. Dierks, T., Allen, C.: The TLS Protocol Version 1.0. RFC 2246 (Proposed Stan-
dard). Obsoleted by RFC 4346, updated by RFCs 3546, 5746 (January 1999)

12. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.1.
RFC 4346 (Proposed Standard). Obsoleted by RFC 5246, updated by RFCs 4366,
4680, 4681, 5746 (April 2006)

13. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (Proposed Standard). Updated by RFCs 5746, 5878 (August 2008)

14. Eronen, P., Tschofenig, H.: Pre-Shared Key Ciphersuites for Transport Layer Secu-
rity (TLS). RFC 4279 (Proposed Standard) (December 2005)

15. German Federal Office for Information Security (BSI). TR-03112, Das eCard-API-
Framework (2005), https://www.bsi.bund.de/ContentBSI/
Publikationen/TechnischeRichtlinien/tr03112/index_htm.html

16. Gajek, S., Manulis, M., Pereira, O., Sadeghi, A.-R., Schwenk, J.: Universally Com-
posable Security Analysis of TLS. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.)
ProvSec 2008. LNCS, vol. 5324, pp. 313–327. Springer, Heidelberg (2008)

17. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012)

18. Jonsson, J., Kaliski Jr., B.S.: On the security of RSA encryption in TLS. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 127–142. Springer, Heidelberg (2002)

19. Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DH and TLS-RSA in
the standard model. IACR Cryptology ePrint Archive, 2013:367 (2013)

20. Kohlar, F., Schwenk, J., Jensen, M., Gajek, S.: Secure bindings of SAML assertions
to TLS sessions. In: ARES, pp. 62–69. IEEE Computer Society (2010)

21. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidel-
berg (2005)

22. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: A sys-
tematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 429–448. Springer, Heidelberg (2013)

23. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

24. Mavrogiannopoulos, N., Josefsson, S.: The GnuTLS Transport Layer Security li-
brary, http://gnutls.org (last updated March 22, 2013)

25. Menezes, A., Smart, N.P.: Security of signature schemes in a multi-user setting. Des.
Codes Cryptography 33(3), 261–274 (2004)

26. Meyer, C., Schwenk, J.: Lessons learned from previous SSL/TLS attacks - a brief
chronology of attacks and weaknesses. IACR Cryptology ePrint Archive, 2013:49
(2013)

http://www.bouncycastle.org/
https://www.bsi.bund.de/ContentBSI/Publikationen/TechnischeRichtlinien/tr03112/index_htm.html
https://www.bsi.bund.de/ContentBSI/Publikationen/TechnischeRichtlinien/tr03112/index_htm.html
http://gnutls.org

684 Y. Li et al.

27. Morrissey, P., Smart, N.P., Warinschi, B.: The TLS handshake protocol: A modular
analysis. Journal of Cryptology 23(2), 187–223 (2010)

28. OpenSSL. The OpenSSL project (2013), http://www.openssl.org
29. Urien, L.C.P., Martin, P.: EMV support for TLS-PSK. draft-urien-tls-psk-emv-02

(February 2011)
30. Paterson, K.G., Ristenpart, T., Shrimpton, T.: Tag size does matter: Attacks and

proofs for the TLS record protocol. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 372–389. Springer, Heidelberg (2011)

31. Urien, P.: Introducing TLS-PSK authentication for EMV devices. In: Smari, W.W.,
McQuay, W.K. (eds.) CTS, pp. 371–377. IEEE (2010)

http://www.openssl.org

Author Index

Albrecht, Martin R. 429, 446
Ananth, Prabhanjan 149
Apon, Daniel 131
Armknecht, Frederik 556
Attrapadung, Nuttapong 275

Barbulescu, Razvan 221
Bellare, Mihir 520
Bi, Jingguo 185
Böhl, Florian 483
Bos, Joppe W. 203
Bouvier, Cyril 221
Boyle, Elette 501

Canard, Sébastien 167
Canetti, Ran 113
Catalano, Dario 538
Chandran, Nishanth 95, 149
Chase, Melissa 95
Cho, Chongwon 650
Coron, Jean-Sébastien 185, 311
Costello, Craig 203

Dachman-Soled, Dana 37, 329, 574
Davies, Gareth T. 483
Detrey, Jérémie 221

Escala, Alex 239, 630

Faugère, Jean-Charles 185, 429, 446
Fiore, Dario 538
Fitzpatrick, Robert 429, 446
Fuchsbauer, Georg 329, 520

Gagliardoni, Tommaso 556
Garg, Sanjam 650
Gaudry, Pierrick 221
Gennaro, Rosario 538
Goldwasser, Shafi 501
Goyal, Vipul 149
Groth, Jens 630

Hanaoka, Goichiro 56, 275
Herranz, Javier 239
Hofheinz, Dennis 483

Hohenberger, Susan 293
Hu, Gengran 399

Ishiguro, Tsukasa 411
Ivan, Ioana 501

Jarecki, Stanislaw 611
Jeljeli, Hamza 221
Joye, Marc 592

Kanukurthi, Bhavana 149
Katz, Jonathan 131
Katzenbeisser, Stefan 556
Kiltz, Eike 1
Kirshanova, Elena 77
Kiyomoto, Shinsaku 411
Kohlar, Florian 669
Kunihiro, Noboru 275

Langlois, Adeline 345
Lepoint, Tancrède 311
Li, Yong 669
Libert, Benôıt 239, 592
Ling, San 345
Liu, Feng-Hao 95
Liu, Shengli 19

Masny, Daniel 1
Matsuda, Takahiro 56
Miele, Andrea 203
Miyake, Yutaka 411
Mohassel, Payman 329

Nguyen, Khoa 345
Nguyen, Phong Q. 185
Nielsen, Jesper Buus 362
Nishimaki, Ryo 95
Nizzardo, Luca 538

O’Neill, Adam 329
Ostrovsky, Rafail 149, 650

Pan, Yanbin 399
Paneth, Omer 113
Papadopoulos, Dimitrios 113

686 Author Index

Paterson, Kenneth G. 465
Perret, Ludovic 429, 446
Peter, Andreas 556
Peters, Thomas 592
Pietrzak, Krzysztof 1
Pointcheval, David 167

Qin, Baodong 19

Ràfols, Carla 239
Renault, Guénaël 185

Sanders, Olivier 167
Schäge, Sven 669
Schuldt, Jacob C.N. 465
Schwenk, Jörg 669
Seurin, Yannick 380
Shi, Elaine 131
Sibborn, Dale L. 465

Takagi, Tsuyoshi 411
Tessaro, Stefano 257
Thiruvengadam, Aishwarya 131

Thomé, Emmanuel 221
Tibouchi, Mehdi 311
Todo, Yosuke 446
Triandopoulos, Nikos 113

Venturi, Daniele 362
Videau, Marion 221

Wang, Huaxiong 345
Waters, Brent 293
Wilson, David A. 257

Xagawa, Keita 95, 446

Yamada, Shota 275
Yang, Zheng 669
Yung, Moti 592

Zeitoun, Rina 185
Zhang, Feng 399
Zimmermann, Paul 221
Zottarel, Angela 362

	Preface
	PKC 2014
	Table of Contents
	Chosen Ciphertext Security
	Simple Chosen-Ciphertext Securityfrom Low-Noise LPN
	1 Introduction
	1.1 Our Contributions
	1.2 Open Problems

	2 Preliminaries
	2.1 The Bernoulli Distribution
	2.2 Learning Parity with Noise
	2.3 Asymptotically Good Codes
	2.4 Game-Based Proofs
	2.5 Tag-Based Encryption

	3 Tag-Based Encryption
	3.1 Double Trapdoor Generator
	3.2 Description of the Scheme
	3.3 Correctness and Equivalence of the Trapdoors
	3.4 Proof of Security

	References

	Leakage-Flexible CCA-secure Public-Key Encryption: Simple Constructionand Free of Pairing
	1 Introduction
	2 Preliminary
	3 Refined Subgroup Indistinguishability Assumption
	4 Leakage-Resilient CCA-secure PKE under the RSI Assumption
	4.1 Review of Qin and Liu’s Approach to LR-CCA Security
	4.2 Universal Hash Proof System from the RSI Assumption
	4.3 One-Time Lossy Filter from the RSI Assumption
	4.4 An Efficient Leakage-Flexible CCA-secure PKE

	5 Conclusion
	References

	A Black-Box Construction of a CCA2 Encryption Scheme from a Plaintext Aware (sPA1)E ncryption Scheme
	1 Introduction
	1.1 Our Assumptions
	1.2 Our Results
	1.3 Technical Overview
	1.4 Related Work

	2 Preliminaries
	2.1 CCA2 Security
	2.2 Plaintext Awareness for Multiple Key Setup
	2.3 Weakly Simulatable Encryption Scheme
	2.4 PA1+–An Extension of Plaintext Awareness
	2.5 Strong One-Time Signature Scheme

	3 The Scheme
	4 Security Analysis
	4.1 Bad Extraction Event When
	4.2 Bad Extraction Event When

	References

	Chosen Ciphertext Security via UCE
	1 Introduction
	2 Preliminaries
	2.1 Universal Computational Extractor (UCE)
	2.2 Basic Primitives

	3 Uninstantiability of the Fujisaki-Okamoto Construction
	3.1 The Fujisaki-Okamoto Construction Using a Function Family
	3.2 Counterexample for Public-Key-Dependent Plaintexts
	3.3 Counterexample for Public-Key-Independent Plaintexts

	4 Puncturable Tag-Based Encryption
	5 Chosen Ciphertext Security via UCE
	5.1 CCA Secure KEM
	5.2 Further Results and Extensions

	References

	Re-encryption
	Proxy Re-encryption from Lattices
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Definitions
	3 Lattices
	3.1 Lattice Definition
	3.2 Gaussians on Lattices
	3.3 Useful Tools
	3.4 Hard Problems

	4 G-trapdoor and Algorithms
	4.1 Trapdoor Generation
	4.2 Algorithms

	5 Chosen Ciphertext Secure Proxy Re-encryption
	5.1 Construction of the Single-Hop PRE
	5.2 Correctness

	6 Conclusions
	References

	Re-encryption, Functional Re-encryption, and Multi-hop Re-encryption: A Framework for Achieving Obfuscation-Based Securityand Instantiations from Lattices
	1 Introduction
	1.1 Our Results and Techniques
	1.2 Applications of Our Results

	2 Definitions for Obfuscation
	3 Our Framework and Instantiations
	3.1 Notions of Key-Switching and Blurring
	3.2 Implementations Using Regev’s Encryption Scheme
	3.3 Implementations Using the Dual Regev Encryption Scheme

	4 Applications of Our Tools
	4.1 Obfuscating Re-encryption
	4.2 Obfuscating Functional Re-encryption
	4.3 Obfuscating Multi-hop Re-encryption

	References

	Verifiable Outsourcing
	Verifiable Set Operations over Outsourced Databases
	1 Introduction
	2 Tools and Definitions
	3 Setup and Update Algorithms
	4 Query Responding and Verification
	References

	Verifiable Oblivious Storage
	1 Introduction
	1.1 Technical Highlight
	1.2 Related Work

	2 Definitions of Verifiable Oblivious Storage
	2.1 Security Definition

	3 ORAM to VOS: Generic Compilation Techniques
	3.1 Preliminary: Oblivious RAM
	3.2 Compilation in the Semi-honest Model
	3.3 Handling Malicious Servers

	4 Optimizations for Specific ORAM Schemes
	4.1 Background on Path ORAM
	4.2 Path VOS
	4.3 The Hierarchical VOS

	5 Applications: Efficient Dynamic Proofs of Retrievability
	6 Conclusion and Open Problems
	References

	Achieving Privacy in Verifiable Computation with Multiple Servers – Without FHEand without Pre-processing
	1 Introduction
	1.1 Multi-server Model for Verifiable Computation
	1.2 Our Results and Techniques

	2 Verifiable Computation in the Multi-server Setting
	3 Building Blocks
	3.1 A Variant of Garbled Circuits
	3.2 Re-encryption Scheme

	4 Constructions of Verifiable Computation Protocols
	4.1 The Two-Server Case
	4.2 The n-Server Case

	References

	Efficient Delegation of Zero-Knowledge Proofsof Knowledge in a Pairing-Friendly Setting
	1 Introduction
	2 Preliminaries
	2.1 Pairing-Friendly Groups
	2.2 Zero-Knowledge Proofs of Knowledge
	2.3 Discrete-Logarithm Relations Set

	3 Delegating Proofs of Knowledge
	3.1 Our First Protocol
	3.2 Additional Computations
	3.3 Computational Cost
	3.4 More Examples
	3.5 Security Properties
	3.6 Discussions

	4 SecurityProofs
	4.1 Completeness
	4.2 Soundness
	4.3 Zero-Knowledge w.r.t. the Host
	4.4 Zero-Knowledge w.r.t. the Verifier

	5 Delegating with Weaker Assumptions
	5.1 Description
	5.2 Security Results
	5.3 Proofs of the Theorems
	5.4 Zero-Knowledge w.r.t. the Host
	5.5 Zero-Knowledge w.r.t. the Verifier

	References

	Cryptanalysis I
	Rounding and Chaining LLL: Finding Faster SmallRoots of Univariate Polynomial Congruences
	1 Introduction
	2 Background and Notation
	2.1 Lattices
	2.2 Coppersmith’s Method for Finding Small Roots

	3 Speeding Up Coppersmith’s Algorithm by Rounding
	3.1 Rounding for Coppersmith’s Algorithm
	3.2 Running Time: Proof of Theorem 3

	4 Chaining LLL
	4.1 Exploiting Relations between Consecutive Lattices
	4.2 Rounding and Chaining LLL
	4.3 Complexity Analysis: A Heuristic Approach

	5 Experiments
	6 Other Small-Root Algorithms
	References

	Elliptic and Hyperelliptic Curves: A PracticalSecurity Analysis
	1 Introduction
	2 Preliminaries
	3 Handling Fruitless Cycles
	3.1 Cycle Reduction
	3.2 Escaping Fruitless Cycles
	3.3 Handling Fruitless Cycles in Practice

	4 Target Curves and Their Automorphism Groups
	4.1 Target Curves in Genus 1
	4.2 Target Curves in Genus 2
	4.3 Other Curves of Interest

	5 Performance Results
	5.1 Correctness
	5.2 Implementation Results

	6 Conclusions
	References

	Discrete Logarithm in GF(2809) with FFS
	1 Introduction
	2 A Brief Overview of FFS
	2.1 Index Calculus
	2.2 FFS-Specific Considerations

	3 Discrete Logarithm Computation in GF(2809)
	3.1 Polynomial Selection
	3.2 Relation Collection
	3.3 Filtering
	3.4 Linear Algebra
	3.5 Descent
	3.6 Computation Result

	4 Balancing Sieving and Linear Algebra
	5 TowardsGF(21039)
	5.1 Relation Collection
	5.2 Linear Algebra

	6 Conclusion
	References

	Identity- and Attribute-Based Encryption
	Identity-Based Lossy Trapdoor Functions: New Definitions, Hierarchical Extensions,and Implications
	1 Introduction
	1.1 (Identity-Based) Lossy Trapdoor Functions
	1.2 Our Two Main Contributions
	1.3 Implications

	2 Background
	2.1 Some Complexity Assumptions
	2.2 Hierarchical Identity-Based (Lossy) Trapdoor Functions

	3 A New Security Definition for (H)IB-TDFs
	3.1 The Formal Definition
	3.2 Implications of Lossy (H)IB-TDFs: The Example of (H)IBE

	4 A Hierarchical Identity-Based (Lossy) Trapdoor Function
	4.1 Description

	References

	Bounded-Collusion Identity-Based Encryption from Semantically-SecurePublic-Key Encryption: Generic Constructions with Short Ciphertexts
	1 Introduction
	2 Preliminaries
	2.1 Public-Key Encryption
	2.2 Identity-Based Encryption

	3 Revisiting the GLW Construction
	3.1 The GLW Construction
	3.2 Selective Security of the GLW Construction
	3.3 Full Security of GLW
	3.4 Instantiation from DDH
	3.5 Instantiations from LWE and QR

	4 Construction from Multi-key Malleability
	4.1 Bounded-IBE Construction
	4.2 NTRU-Based Instantiation and Fully-Homomorphic IBE

	5 Applications: Bounded CCA Security with Short Ciphertexts
	References

	A Framework and Compact Constructionsfor Non-monotonic Attribute-Based Encryption
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Definition of Predicate Encryption
	2.3 Linear Secret Sharing Scheme and Attribute-Based Encryption
	2.4 Number Theoretic Assumptions

	3 Linear Two-Mode Identity Based Broadcast Encryption and Conversion to Non-monotonic KP-ABE
	3.1 Definition of TIPE and TIBBE
	3.2 Linear Two-Mode Identity Based Broadcast Encryption Template
	3.3 Generic Conversion from Linear TIBBE to Non-monotonic

	4 TIPE Scheme with Compact Ciphertexts
	5 TIPE Scheme from the DBDH Assumption
	6 Unbounded TIBBE Scheme
	7 Unbounded Non-monotonic CP-ABE Scheme
	8 Comparisons
	References

	Online/Offline Attribute-Based Encryption
	1 Introduction
	2 Definitions for Online/Offline ABE
	3 A KP-ABE Scheme with Online/Offline Encryption
	3.1 Proof of Selective Security
	3.2 A More Advanced System: Pooling Attributes for an

	4 A CP-ABE Scheme with Online/Offline Encryption
	4.1 Pooling Attributes for an Unbounded Ciphertext-Policy System

	5 Online/Offline ABE Key Generation
	5.1 Online/Offline Key Generation for KP-ABE Keys
	5.2 Online/Offline Key Generation for CP-ABE Keys

	6 Performance Analysis
	7 Conclusions
	References

	Enhanced Encryption
	Scale-Invariant Fully Homomorphic Encryptionover the Integers
	1 Introduction
	2 The Somewhat Homomorphic DGHV Scheme
	3 Scale-Invariant DGHV Scheme
	3.1 Ciphertexts and Homomorphic Operations
	3.2 Conversion from Type-II Ciphertext to Type-I Ciphertext
	3.3 Description of the Public-Key Leveled Fully Homomorphic
	3.4 Constraints on the Parameters
	3.5 Semantic Security

	4 Generalization to Batch Scale-Invariant DGHV Scheme
	5 Practical Implementation
	5.1 Optimization of Scalar Product
	5.2 Concrete Parameters and AES Evaluation

	6 Equivalence between the (Error-Free) Decisional and Computational Approximate-GCD Problems
	References

	Enhanced Chosen-Ciphertext Securityand Applications
	1 Introduction
	1.1 ECCA Security Definition and Variants
	1.2 Constructions of ECCA-Secure PKE
	1.3 Applications to Adaptive Trapdoor Functions
	1.4 Applications to PKE with Non-interactive Opening
	1.5 Related Work

	2 Preliminaries
	2.1 Notation and Conventions
	2.2 Public-Key Encryption

	3 Enhanced Chosen-Ciphertext Security
	4 Constructions of ECCA-Secure PKE
	4.1 ECCA Security from Adaptive Trapdoor Functions
	4.2 ECCA Security from Tag-Based ATDFs

	5 Application to Adaptive Trapdoor Functions
	6 Application to PKE with Non-interactive Opening
	6.1 PKENO-Compatible ECCA-Secure PKE
	6.2 PKENO-Compatible PKE Using NIZK
	6.3 Efficient PKENO-Compatible Tag-Based PKE

	References

	Signature Schemes
	Lattice-Based Group Signature Schemewith Verifier-Local Revocation
	1 Introduction
	2 Preliminaries
	2.1 VLR Group Signature
	2.2 Some Cryptographic Tools from Lattices

	3 Preparations
	3.1 Parameters
	3.2 Some Specific Sets
	3.3 The Decomposition - Extension Technique

	4 The Underlying Interactive Protocol
	4.1 Description of the Protocol
	4.2 Witness Extraction

	5 The VLR Group Signature Scheme
	5.1 Description of the Scheme
	5.2 Analysis of the Scheme

	References

	Leakage-Resilient Signatureswith Graceful Degradation
	1 Introduction
	1.1 Our Contribution
	1.2 Other Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Commitment Schemes
	2.3 Non-interactive Zero-Knowledge Arguments of Knowledge

	3 One-More Unforgeability
	3.1 An Alternative Definition
	3.2 Yet another Alternative Definition
	3.3 Equivalence of Two Definitions

	4 Construction
	4.1 Proof of Theorem 2
	4.2 A Concrete Instantiation

	5 Application to Leaky Identification
	References

	On the Lossiness of the Rabin Trapdoor Function
	1 Introduction
	1.1 Background
	1.2 Contributions of This Work
	1.3 Related and Future Work

	2 Preliminaries
	2.1 General Notation
	2.2 Basic Definitions
	2.3 Trapdoor Functions
	2.4 Signature Schemes

	3 The2-
	3 The2-Φ/4-Hiding Assumption and Lossiness of theRabin Trapdoor Function
	3.1 Definition
	3.2 Lossiness of the Rabin and Rabin-Williams Trapdoor Functions

	4 Application to Rabin-Williams Signatures
	5 Extending the Coron-Kakvi-Kiltz Meta-reduction Result
	References

	Cryptanalysis II
	Solving Random Subset Sum Problemby lp-norm SVP Oracle
	1 Introduction
	2 Preliminaries
	2.1 Lattice
	2.2 Random Subset Sum Problem
	2.3 Estimation of the Combinatorial Number

	3 Solving Random Subset Sum Problem by
	3.1 The Upper Bound of the Number of Integer Points in an
	3.2 Solving Random Subset Sum Problem by

	4 Conclusion
	References

	Parallel Gauss Sieve Algorithm: Solving the SVPChallenge over a 128-Dimensional Ideal Lattice
	1 Introduction
	1.1 Sieving Algorithms and Ideal Lattices
	1.2 Our Contribution

	2 Definitions and Problems
	2.1 Gauss-Reduced and Pairwise-Reduced

	3 Gauss Sieve Algorithm
	3.1 Gauss Sieve [19]
	3.2 Ideal Gauss Sieve Algorithm [26]

	4 Proposed Parallel Gauss Sieve Algorithm
	4.1 Overview
	4.2 Multisampling of Vectors (Steps from 3 to 9 in Alg.2)
	4.3 Reduction of Sample Vectors Using List Vectors (Steps from 12 to 22 in Alg.2)
	4.4 Reduction of Sample Vectors Using Sample Vectors (Steps from
	4.5 Reduction of List Vectors Using Sample Vectors (Steps from 35 to 45 in Alg.2)
	4.6 Properties of the Proposed Algorithm

	5 Implementation and Experimental Results
	5.1 Implementation Using Amazon EC2
	5.2 Space Complexity
	5.3 Communication Complexity
	5.4 Sampling Short Vectors and Shrinking Ratio
	5.5 Improvement of the Ideal Gauss Sieve
	5.6 Solving the SVP Challenge

	6 Conclusion
	References

	Lazy Modulus Switching for the BKWAlgorithm on LWE
	1 Introduction
	1.1 Algorithms for Solving LWE
	1.2 Organisation of the Paper and Main Results
	1.3 Notations

	2 A Modified BKW Algorithm: Lazy Modulus Switching
	2.1 The Basic Idea
	2.2 Sample Reduction for Short Secrets
	2.3 Picking

	3 Improved Algorithm: Stunting Growth by Unnatural Selection
	3.1 The Basic Idea
	3.2 Algorithms
	3.3 Picking

	4 Complexity
	5 Parameters
	6 Conclusion and Future Work
	References

	Practical Cryptanalysis of a Public-Key Encryption Scheme Based on New MultivariateQuadratic Assumptions
	1 Introduction
	1.1 Organisation of the Paper and Overview of the Results

	2 Preliminaries
	2.1 Background on Lattices
	2.2 Learning with Errors (LWE)

	3 A New Multivariate Quadratic Assumption and LWE with Small Secrets
	4 Analysis of the Parameters
	5 Improved Embedding Attack
	5.1 Estimation of the Expected Gap

	6 Practical Attacks against HLY Challenges
	References

	Related-Key Security
	Related Randomness Attacksfor Public Key Encryption
	1 Introduction
	1.1 Motivation
	1.2 Our Contributions
	1.3 Future Directions

	2 Related Randomness Security for PKE
	2.1 Alternative Security Notions
	2.2 Function Restrictions

	3 Related Randomness Security from RKA-PRFs
	4 Related Randomness PKE from CIS Hash Functions
	5 Function-Vector Related Randomness Security
	References

	Encryption Schemes Secure under Related-Keyand Key-Dependent Message Attacks
	1 Introduction
	2 Preliminaries
	2.1 A Generic Approach

	3 RKA-KDM-Secure Encryption Schemes
	3.1 Boneh et al. [25]
	3.2 Applebaum et al. [5]
	3.3 Brakerski-Goldwasser [26]
	3.4 Bellare et al. [14]

	References

	Functional Authentication
	Functional Signatures and PseudorandomFunctions
	1 Introduction
	1.1 Our Results on Functional Signatures and Their Applications
	1.2 Summary of Our Results on Functional Pseudorandom
	1.3 Other Related Work
	1.4 Overview of the Paper

	2 Functional Signatures: Definition and Constructions
	3 Applications of Functional Signatures
	3.1 SNARGs from Functional Signatures

	4 Functional Pseudorandom Functions
	4.1 Construction Based on OWF

	5 OpenProblems
	References

	Policy-Based Signatures
	1 Introduction
	2 Preliminaries
	3 Policy-Based Signatures
	4 Constructions of Policy-Based Signature Schemes
	4.1 Generic Constructions
	4.2 Efficient Construction via Groth-Sahai Proofs

	5 Applications and Implications
	6 Delegatable Policy-Based Signatures
	References

	Generalizing Homomorphic MACsfor Arithmetic Circuits
	1 Introduction
	2 Background and Definitions
	2.1 Homomorphic Message Authenticators

	3 Compact Homomorphic MACs Based on Encodings with Limited Malleability
	4 ACompactSchemewithk-degree Composition
	References

	Quantum Impossibility
	General Impossibility of Group HomomorphicEncryption in the Quantum World
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Outline

	2 Notation
	3 Group Homomorphic Encryption
	4 General Impossibility in the Quantum World
	4.1 Breaking SMP with Uniform Sampling
	4.2 Breaking SMP with Arbitrary/Unknown Sampling

	5 Discussion
	References

	Privacy
	On Minimal Assumptions for Sender-Deniable PublicKey Encryption
	1 Introduction
	2 Definitions
	3 Oracle
	4 Preliminaries
	4.1 Useful Distributions
	4.2 Algorithms for Finding Likely Queries
	4.3 Properties of Fake Openings

	5 Analysis
	References

	Traceable Group Encryption
	1 Introduction
	2 Background
	2.1 Complexity Assumptions
	2.2 Groth-Sahai Proof Systems
	2.3 Chameleon Hash Functions

	3 Traceable Group Encryption
	3.1 Syntax
	3.2 Security Definitions

	4 A Non-interactive Traceable Group Encryption Scheme
	References

	Practical Covert Authentication
	1 Introduction
	2 Preliminaries
	3 Covert KEM and Authentication Definitions
	4 Covert Conditional KEM Construction
	5 Covert Mutual Authentication Scheme
	5.1 Covert MA Instantiation from ACJT Group Signature

	References

	Protocols
	Fine-Tuning Groth-Sahai Proofs
	1 Introduction
	1.1 Our Contributions

	2 Commit-and-Prove Scheme Definitions
	3 Preliminaries
	3.1 Bilinear Group
	3.2 SXDH Assumption
	3.3 ElGamal Encryption
	3.4 Pairing-Product Equations and Other Types of Equations

	4 Commitment Keys and Commitments
	5 Proofs
	5.1 The Full Proof System

	6 NIZK Proofs with Prover-Chosen CRS
	6.1 Creating the Public Key
	6.2 Computing Commitments and NIZK Proofs

	References

	Cross-Domain Secure Computation
	1 Introduction
	1.1 Overview of Our Setting and Results
	1.2 Previous Results with Weaker Notions of Security
	1.3 Technical Overview

	2 The Cross-Domain (CD) Model
	3 Impossibility of Concurrent Security in the CD Model
	3.1 The Case of String OT
	3.2 Extending to All Asymmetric Functionalities

	4 Possibility of Concurrent Security in the CD Model
	4.1 Building Blocks and Notations
	4.2 Construction of Our Protocol

	5 Proof of Theorem 3 (Simulator
	6 Relation with the Bare-Public Key (BPK) Model
	References

	On the Security of the Pre-shared KeyCiphersuites of TLS
	1 Introduction
	2 Security Assumptions
	3 A Brief Introduction to TLS-PSK
	3.1 On the Security of

	4 ACCE Protocols
	5 Security Analysis of Pre-shared Key Ciphersuites for Transport Layer Security
	References

	Author Index

