
Model Checking TLR* Guarantee Formulas

on Infinite Systems�

Óscar Mart́ın, Alberto Verdejo, and Narciso Mart́ı-Oliet

Facultad de Informática, Universidad Complutense de Madrid, Spain
{omartins,jalberto,narciso}@ucm.es

Abstract. We present the implementation of a model checker for sys-
tems with a potentially infinite number of reachable states. It has been
developed in the rewriting-logic language Maude. The model checker is
explicit-state, that is, not symbolic. In infinite systems, we cannot ex-
pect it to finish in every case: it provides a semi-decision algorithm to
validate guarantee formulas (or, equivalently, to falsify safety ones). To
avoid getting lost in infinite paths, search is always performed within
bounded depth. The properties to be checked are written in the Tempo-
ral Logic of Rewriting, TLR*, a generalization of CTL* that uses atomic
propositions both on states and on transitions, providing, in this way, a
richer expressive power. As an intermediate step, a strategy language is
used. Guarantee formulas are first translated into strategy expressions
and, then, the system and the strategy evolve in parallel searching for
computations that satisfy the strategy and, thus, the formula. An ex-
ample on verifying cache coherence protocols is presented, showing the
usefulness of the tool.

Keywords: Infinite-state system, rewriting logic, Maude, model check-
ing, strategy, temporal logic, TLR*, guarantee formula, cache coherence.

1 Introduction

Rewriting logic is a language for the specification of concurrent systems [19].
It is also an executable logic, which makes it a very useful formalism. Maude
is a language and development system that incorporates both equational logic
and rewriting logic [11]. Parallelism and nondeterminism are natural features of
rewriting logic and Maude.

We now describe a very simple system that we use to introduce some im-
portant concepts in this paper. There are a number of counting devices in the
system. Each time some external event happens, one and only one device detects
it and increases its own counter. In order to be able to share data, the devices
are organized as a ring, so that each device knows to whom it must send its
messages, that are then resent until they have visited the whole ring. As we do

� Research supported by MINECO Spanish project StrongSoft (TIN2012–39391–C04–
04) and Comunidad de Madrid program PROMETIDOS (S2009/TIC-1465).

S. Iida, J. Meseguer, and K. Ogata (Eds.): Futatsugi Festschrift, LNCS 8373, pp. 129–150, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

130 Ó. Mart́ın, A. Verdejo, and N. Mart́ı-Oliet

not care about the nature of the events being counted, in our model each device
is able by itself to increase its counter by one and immediately send a message
to its next device. Here is the complete Maude specification:

mod COUNTING is

protecting NAT .

sort Id .

subsort Nat < Id .

sort Device .

op [_,_,_] : Id Id Nat -> Device [ctor] .

sort Message .

op _|>_ : Id Id -> Message [ctor] .

sort State .

subsorts Device Message < State .

op nullState : -> State [ctor] .

op __ : State State -> State [ctor comm assoc id: nullState] .

vars I J N : Id . var A : Nat .

rl [change] : [I, N, A] => [I, N, s(A)] (I |> N) .

crl [resend] : [I, N, A] (J |> I) => [I, N, s(A)] (J |> N) if I =/= J .

rl [remove] : (I |> I) => nullState .

endm

Types are introduced in Maude by the keyword sort. A Device is built by
enclosing between square brackets three natural numbers: the device’s Id, the Id

of the next device in the ring, and the counter. A Message is given by two Ids:
the first argument is the sender’s Id, and the second the addressee’s Id. The last
sort we need is the State of the system. Maude uses an order-sorted type system.
Thus, we declare that any Device or Message, by itself, constitutes a State. We
also provide an operator with empty syntax, __, that allows to juxtapose any
number of States to get a new one. Note that the comm and assoc attributes
given to the operator allow commutative and associative matching. This way of
defining states is a usual idiom in Maude. We have also declared a nullState to
be used as identity element for states.

The three rewrite rules represent the different ways the system can evolve.
Rule change represents the counting of an event and the sending of the associated
message. Rule resend states that when device I sees a message addressed to
itself, it updates its counter and resends the message to the next device. It
is a conditional rule, because this should only happen for devices other than
the original one. Rule remove just drops a message whose sender and addressee
coincide—that is, the message has already visited the whole ring. Notice that the
variable I is used twice: this rule should only be applied when both arguments
of a message are equal.

A nice property of rewriting logic is that both states and transitions between
states can be represented by terms. In the example, states are represented by
terms of sort State, like [0, 1, 5] [1, 0, 5]. Transitions are represented by
terms on a larger signature, so-called proof terms [19]. For instance, the transition

[0, 1, 5] [1, 0, 5] −→ [0, 1, 5] [1, 0, 6] (1 |> 0)

is represented by this proof term:

Model Checking TLR* Guarantee Formulas on Infinite Systems 131

{[0, 1, 5] [] | ’change : (’I \ 1) ; (’N \ 0) ; (’A \ 5)}

This is a triple of a context (a term with a hole symbol [] showing where
the rewrite took place), the name of the rule that has been applied, and the
substitution used. (The leading quotes are a syntactic requirement of Maude.)

Atomic propositions on states and on transitions can be declared, and their
satisfaction relations be defined, based on the shape of the term representing
them. Once defined, they can be used to formally express temporal properties by
means of temporal-logic formulas. For the example system, a proposition selfMsg

that asserts that some message has completed its trip around the ring, and
another parametric proposition rule that asserts that the transition is executing
the rule whose label is given in its argument can be defined like this:

var I : Id . var S : State . var Cn : Context$State .

var L : Qid . var Sb : Subst . var T : Trans .

op selfMsg : -> StateProp [ctor] .

eq (I |> I) S |= selfMsg = true .

eq S |= selfMsg = false [owise] .

op rule : Qid -> TransProp [ctor] .

eq {Cn | L : Sb} |= rule(L) = true .

eq T |= rule(L) = false [owise] .

Thus, a State satisfies selfMsg iff it matches the pattern (I |> I) S.
The Temporal Logic of Rewriting TLR* [20] has been designed to take profit

of this strength of rewriting logic. The logic CTL* allows only propositions
on states; TLR* extends CTL* by allowing also propositions on transitions.
Some interesting properties of systems are only naturally expressible using both
state and transition propositions. For instance, the TLR* formula G(selfMsg →
rule(’remove)) asserts that each time a message has completed its trip around
the ring it must be immediately removed.

The model checker we have implemented accepts guarantee formulas of TLR*.
Guarantee formulas assert that some property is going to hold in the future. For
instance, F selfMsg asserts that, at some future time, the system will arrive to
a state satisfying selfMsg. The model checker explores all possible evolutions of
the given system in search for that future time in which the property holds. If
the formula happens to be false for the given system, the algorithm may not ter-
minate: thus, for infinite systems, it only provides a semi-decision algorithm (but
a complete decision one for finite systems). Bounded-depth search is necessary
to avoid getting lost into an infinite branch when, perhaps, the answer is on an-
other. Our implementation provides a way to specify the maximum depth to be
explored. Also, it provides a command to ask the system to explore some more
levels based on the open branches left by a previous model-checking command.
Note that any tool that can verify guarantee formulas can also be used to falsify
safety ones through the duality trick of verifying their (guarantee) negations.

Internally, the model checker uses strategies. Strategies [22,8,17] applied to
system specifications are a means of guiding their evolution and restricting
their nondeterminism. The strategy “any+ . selfMsg”, for instance, accepts only

132 Ó. Mart́ın, A. Verdejo, and N. Mart́ı-Oliet

executions that, after some positive number of steps, land on a state that satisfies
selfMsg. And the strategy “(rule(’change) ; rule(’resend)+ ; rule(’remove))+”
guides the system in such a way that once a message is added to the system, it
is processed by all the devices and removed before a new event can be counted.

We will describe below a strategy language and show how TLR* guarantee
formulas can be translated into it. We internally implement the strategies and
use this implementation to model check TLR* guarantee formulas.

In the rest of the paper we first review rewrite systems, proof terms, TLR* and
its semantics, and the strategy language and its semantics, following [20], and
then we show how all of them are used to implement the model checker. Then
we present an example on verifying the MSI cache coherence protocol. We finish
with some related work and conclusions. An extended version of this paper can
be found in [18]. Also, the complete Maude specifications for the model checker
as well as for some examples, including the MSI cache coherence protocol, are
available for download at http://maude.sip.ucm.es/ismc.

2 Rewrite Systems

Formally, a rewrite system [19] is a triple R = (Σ,E,R), where Σ is an order-
sorted signature, E a set of equations, and R a set of rewrite rules of the form
l : q → q′, with l a label, and q, q′ terms of the same sort and such that all
variables in q′ appear also in q. Such a triple specifies a concurrent, nondeter-
ministic system in which the states of the system are E-equivalence classes of
ground terms [t]E ; that is, the initial algebra TΣ/E constitutes the state space.
The dynamics of the system are given by the rewrite rules in R. As states are
equivalence classes of terms, rewriting happens also at this level. Thus, a transi-
tion from state [t]E to state [t′]E , denoted by [t]E −→1

R [t′]E , is possible in R iff
there exist u ∈ [t]E and u′ ∈ [t′]E such that u can be rewritten to u′ using some
rule l : q → q′ in R.

For arbitraryE andR, whether [t]E −→∗
R [t′]E holds is undecidable in general.

Definition 1 (computable rewrite system [20]). A rewrite system R =
(Σ,E∪A,R) (where the set of equations has been split into two disjoint subsets)
is computable if E, A and R are finite and the following conditions hold:

1. Equality modulo A is decidable, and there exists a matching algorithm modulo
A, producing a finite number of A-matching substitutions or failing other-
wise, that can implement rewriting in A-equivalence classes.

2. (Σ,E∪A) is ground terminating and confluent modulo A. That is: (i) there
are no infinite sequences of reductions with E modulo A; and (ii) for each
[t]A ∈ TΣ/A there is a unique A-equivalence class [canE/A(t)]A ∈ TΣ/A,
called the E-canonical form of [t]A modulo A, such that the last term, which
cannot be further reduced with E modulo A, of any terminating sequence
beginning at [t]A is necessarily [canE/A(t)]A.

http://maude.sip.ucm.es/ismc

Model Checking TLR* Guarantee Formulas on Infinite Systems 133

3. The rules R are ground coherent relative to the equations E modulo A.
That is, if [t]A is rewritten to [t′]A by a rule l ∈ R, then [canE/A(t)]A is also
rewritten by l to some [t′′]A such that [canE/A(t

′)]A = [canE/A(t
′′)]A.

These three conditions imply that for each sort S ∈ Σ the relation −→1
R,S is

computable: one can decide [t]E∪A −→1
R [t′]E∪A by generating the finite set of

all one-step R-rewrites modulo A of canE/A(t) and testing if any of them has
the same E-canonical form modulo A as [canE/A(t

′)]A.
The three conditions are quite natural and are typically met in practical

rewriting-logic specifications. In Maude, the set of equations A is given by oper-
ator attributes like comm and assoc used in the example of Section 1, for which
Maude knows specific matching algorithms.

3 Proof Terms and Computations

In rewriting logic computation and proof are equivalent. Given a system R =
(Σ,E∪A,R), the state [u]E∪A can be rewritten to [u′]E∪A if and only if the infer-
ence rules of rewriting logic [19,9] allow to prove R � [u]E∪A →+ [u′]E∪A. Single
rewritings are witnessed by so-called one-step proof terms. One-step proof terms
can be characterized in an algebraic fashion. We define the signature Trans(Σ)
(Trans for “transition”), on which one-step proof terms are built, extending Σ
in this way:

– For each sort S ∈ Σ, we add a new sort Trans(S) to Trans(Σ), and state that
S < Trans(S), that is, S is a subsort of Trans(S). Terms of sort Trans(S)
represent one-step rewrites between terms of sort S.

– Given a rule l : q → q′ in R, let S be the sort of q and q′, and let the
variables appearing in q, taken in their textual order of appearance, have
sorts S1, . . . , Sn. Then, for each such rule l ∈ R, we add to Trans(Σ) a new
function symbol l : S1 × · · · × Sn → Trans(S).

– For each function symbol f : S1×· · ·×Sn → S in Σ and each i = 1, . . . , n, we
add to Trans(Σ) an overloaded function symbol (with the same attributes
as the original f) f : S1 × · · · × Trans(Si)× · · · × Sn → Trans(S).

In this paper, we assume that the sort of the terms that represent states of the
system is called State. In that case, Trans(State) is the sort of one-step proof
terms. We declare Trans as a convenient synonym for Trans(State).

Thus, a proof term has the form v[l(ū)]p: a term v of sort State whose subterm
at position p has been replaced by l(ū). In such a proof term, v[]p shows the
context in which the rewrite is taking place, l is the rule being executed, and the
substitution x̄ �→ ū is being used, where x̄ is the tuple of all the variables in q in
the textual order in which they appear.

Now consider the rewrite system Trans(R) = (Trans(Σ), E ∪ A,R). There
are no new equations and no new rules. Thus, if R is computable (as defined in
Section 2), so is Trans(R). In particular, every term has a unique E-canonical
form modulo A. For each sort S, let (CanTrans(Σ)/E∪A)S denote the set of all

134 Ó. Mart́ın, A. Verdejo, and N. Mart́ı-Oliet

A-equivalence classes of the form [canE/A(t)]A, where t is a ground-term of
sort S. Thus, (CanTrans(Σ)/E∪A)Trans describes the set of all transitions between
States in the system specified by R in their canonical form representation. And
(CanΣ/E∪A)State = (CanTrans(Σ)/E∪A)State describes the set of all States.

Definition 2. [20] A computation (s, t) in R is a pair of functions

s : N → (CanΣ/E∪A)State and t : N → (CanTrans(Σ)/E∪A)Trans

such that for all n ∈ N we have s(n)
t(n)−→ s(n + 1). Usually, we write si = s(i)

and ti = t(i), and we consider s and t as sequences. Thus, the computation

s0
t0−→ s1

t1−→ s2
t2−→ · · · is represented as (s, t) = (s0s1s2 . . . , t0t1t2 . . .).

Note that we only consider infinite computations. This allows an easier def-
inition of the semantics, and it is not at all a strong restriction. See [20] for
details.

Computations are the semantic entities on which the truth of TLR* formulas
is evaluated.

4 Temporal Logics and TLR* Guarantee Formulas

Temporal logics, in their different flavors, are a usual formalism to express the
properties we expect a system to satisfy as it evolves in time. Usually, temporal
logics fall in one of two classes according to the kind of atomic propositions they
use: state-based or action-based. State-based logics, like LTL, CTL and CTL*,
can only talk directly about states [10]. Action-based logics, like A-CTL* [12]
and Hennessy-Milner logic [16], can only talk directly about actions (that is,
transitions). Rewriting logic provides algebraic structure both to states and to
actions and TLR* was designed to form a good tandem with it [20].

The formulas our model checker understands are guarantee formulas with a
leading path quantifier, either universal or existential. They constitute a sublogic
of TLR*. We define its syntax now, with σ denoting an atomic state proposition
and τ an atomic transition proposition:

φ ::= � | ⊥ | σ | ¬σ | τ | ¬τ | φ1 ∨ φ2 | φ1 ∧ φ2 | Xφ | φ1 Uφ2 | Fφ
ϕ ::= Aφ | Eφ

The definition of the semantics, following [20], is given below. Remember that
s0 and t0 always denote the first state and transition in the sequences s and t,
respectively. Also, for a computation (s, t), its suffix resulting by removing the
first k elements from s and from t is denoted by (s, t)k.

– R, (s, t) |= �;
– R, (s, t) �|= ⊥;
– R, (s, t) |= σ ⇔ R, s0 |= σ;
– R, (s, t) |= τ ⇔ R, t0 |= τ ;

Model Checking TLR* Guarantee Formulas on Infinite Systems 135

– R, (s, t) |= ¬φ ⇔ R, (s, t) �|= φ;

– R, (s, t) |= φ1 ∨ φ2 ⇔ R, (s, t) |= φ1 or R, (s, t) |= φ2;

– R, (s, t) |= Xφ ⇔ R, (s, t)1 |= φ;

– R, (s, t) |= φ1 Uφ2 ⇔ ∃k s.t. R, (s, t)k |= φ2 and ∀i ∈ [0, k),R, (s, t)i |= φ1;

– R, (s, t) |= Fφ ⇔ ∃k s.t. R, (s, t)k |= φ;

– R, s0 |= Aφ ⇔ for all computations (s, t) we have R, (s, t) |= φ;

– R, s0 |= Eφ ⇔ for some computation (s, t) we have R, (s, t) |= φ.

Thus, an existentially quantified formula, Eφ, represents a reachability pred-
icate, while a universally quantified one, Aφ, has the semantics of a linear tem-
poral formula.

5 A Strategy Language

There exists a rich strategy language for Maude [17]. Now we describe another
such strategy language, proposed in [20], designed with the construction of the
model checker in sight. As above, we denote by σ and τ generic atomic proposi-
tions on states and transitions. The syntax contains three syntactic categories:
Test (tests on states), Strat (strategy expressions), and StratForm (strategy for-
mulas). Here, e, e1, e2 are strategy expressions, and b, b1, b2 are tests.

– Test : b ::= � | ⊥ | σ | ¬b | b1 ∨ b2 | b1 ∧ b2
– Strat : e ::= idle | τ | ¬τ | any | e1 ∧ e2 | (e1 | e2) | e1 ; e2 | e+ | e1 U e2 | e . b
– StratForm: f ::= A e | E e

Formal semantics are given below. A few informal explanations follow on the
operators that may not be trivial:

– The strategy idle does nothing, is always satisfied, and leaves the system in
the same state it was.

– The expression e1 ; e2 means sequential composition, that is, the system is
first guided by e1 and then, when e1 has finished its job, by e2.

– The strategy e1 U e2 is an until operator: e1 holds for subcomputations be-
ginning at the first state, at the second, and so on, until a subcomputation
beginning at state n ≥ 0, and then e2 holds from state n+ 1.

– The strategy e . b combines e with a test b. It holds iff e holds and the test b
succeeds for the last state reached.

Our model checker internally works with strategies, but we want the user to
introduce TLR* guarantee formulas. So a semantically appropriate translation
from the former to the latter is needed. It is given by the function [20]

β : TLR* guarantee formulas → Strat

136 Ó. Mart́ın, A. Verdejo, and N. Mart́ı-Oliet

defined by

β(φ) = idle . φ for φ = �,⊥, σ,¬σ
β(φ) = φ for φ = τ,¬τ
β(φ1 ∨ φ2) = β(φ1) | β(φ2)

β(φ1 ∧ φ2) = β(φ1)∧ β(φ2)

β(X φ) = any ; β(φ)

β(φ1 Uφ2) = β(φ1)U β(φ2)

β(Fφ) = (idle | any+) ; β(φ)
In the next section we define a semantics for strategy expressions with the

aim of making φ and β(φ) semantically equivalent for each formula φ.

6 Strategy Semantics

Our semantics is different, but equivalent, to the one defined in [20] (see also
[18]). Two nice features of our semantics are:

1. That it is bounded by definition. We are defining the relation R, (s, t) |=k e
with the intuitive meaning that the computation (s, t) needs to perform at
most k steps before satisfying e. (This is in the same spirit as the bounded
semantics defined in [7].)

2. That it allows a step-by-step implementation. That is, we are able to check
whether R, (s, t) |=k e by, first, checking whether (s0, t0) is a step compatible
with e, and, second, checking whether the rest of the computation (s, t)1

satisfies the rest of e in at most k − 1 steps.

The semantics uses two auxiliary functions with these intuitive meanings:

fail(e) = does e always fails, for any computation and with no need to take any
step? A posteriori, fail(e) means that e is semantically equivalent to idle .⊥.

tick(e) = is e always satisfied, for any computation and with no need to take
any step? A posteriori, tick(e) means that e is semantically equivalent either
to idle or to idle | e′ for some e′.

Definition 3 (fail and tick). The functions fail, tick : Strat → Bool are defined
as shown in this table:

e fail(e) tick(e)
idle false true
τ false false
¬τ false false
any false false
e1 ∧ e2 fail(e1) ∨ fail(e2) tick(e1) ∧ tick(e2)
e1 | e2 fail(e1) ∧ fail(e2) tick(e1) ∨ tick(e2)
e1 ; e2 fail(e1) ∨ fail(e2) tick(e1) ∧ tick(e2)
e1

+ fail(e1) tick(e1)
e1 U e2 fail(e1) ∧ fail(e2) tick(e2)
e1 . b fail(e1) ∨ b ≡ ⊥ tick(e1) ∧ b ≡ �

Model Checking TLR* Guarantee Formulas on Infinite Systems 137

The most important function in the definition of the semantics is rests0,t0(e).
It answers the question: what strategy, derived from e, remains to be satisfied
after step (s0, t0)? For instance, rests0,t0(idle |(τ ; any)) = any if t0 satisfies τ .
We define this function below, based on the structure of the formula.

In some cases, the result of rests0,t0(e) is a disjunction, showing the different
ways in which a step can be taken. For instance, e1 ; e2 can take a step in
two nonexclusive ways: (i) e1 takes a step to become rests0,t0(e1), with e2 still
pending behind, or (ii) e1 is already satisfied and then e2 takes a step to become
rests0,t0(e2). In cases like this, we use a convenient shorthand notation, showing
each possible first step on a different line.

Definition 4. The notation
e1
| e2 if B

where e1 and e2 are strategies and B is a Boolean expression, is equal to just
(e1) if B evaluates to false, and is equal to ((e1) |(e2)) if B evaluates to true.

Definition 5 (rests0,t0). Given s0 and t0 (a state and a transition from it), the
function rests0,t0 : Strat → Strat is defined by:

e rests0,t0(e)
idle idle .⊥
τ if R, t0 |= τ then idle else idle .⊥
¬τ if R, t0 |= τ then idle .⊥ else idle
any idle

e1 ∧ e2

rests0,t0(e1)∧ rests0,t0(e2)
| rests0,t0(e1) if tick(e2)
| rests0,t0(e2) if tick(e1)

e1 | e2
if fail(e1) then rests0,t0(e2)
if fail(e2) then rests0,t0(e1)
otherwise rests0,t0(e1) | rests0,t0(e2)

e1 ; e2
rests0,t0(e1) ; e2
| rests0,t0(e2) if tick(e1)

e1
+ rests0,t0(e1) ; (idle | e1+)

| idle if tick(e1)

e1 U e2

rests0,t0(e2)
| idle if tick(e2)
| e1 U e2 if tick(e1)
| rests0,t0(e1)∧(e1 U e2) if ¬ fail(e1)

e1 . b
rests0,t0(e1) . b
| idle if tick(e1) ∧R, s0 |= b

Note that rests0,t0(e) is never called with an e such that fail(e), and thus we
avoid some cases in the definition.

The last case in this definition uses the semantics for Test , that follows the
usual definition for Boolean expressions, as shown next.

138 Ó. Mart́ın, A. Verdejo, and N. Mart́ı-Oliet

Definition 6 (Test semantics). Given a rewrite system R, a state s0, and a
Test on states b:

R, s0 |= �
R, s0 �|= ⊥
R, s0 |= σ according to the definition of σ, i.e., iff E ∪ A � (s0|=σ) = true

R, s0 |= ¬b ⇔ R, s0 �|= b

R, s0 |= b1 ∨ b2 ⇔ R, s0 |= b1 or R, s0 |= b2

R, s0 |= b1 ∧ b2 ⇔ R, s0 |= b1 and R, s0 |= b2

The semantics for strategies and strategy formulas are given in the following
two definitions:

Definition 7 (Strat semantics). Given a rewrite system R, a strategy e, a
computation (s, t), and an integer k, we define the bounded semantic relation
|=k, whose value can be true, false or uncertain, by case distinction:

If fail(e) then R, (s, t) |=k e is false for every k
else if tick(e) then R, (s, t) |=k e is true for every k
else if k = 0 then R, (s, t) |=0 e is uncertain
else R, (s, t) |=k e = R, (s, t)1 |=k−1 rests0,t0(e)

Definition 8 (StratForm semantics). Given a rewrite system R, a strategy e,
a computation (s, t) (with s0 always denoting the first state in s), and an integer
k, we define the bounded semantic relation |=k, whose value can be true, false or
uncertain, by case distinction:

R, s0 |=k A e is true ⇔ R, (s, t) |=k e is true for all (s, t)
R, s0 |=k A e is false ⇔ R, (s, t) |=k e is false for some (s, t)
R, s0 |=k A e is uncertain otherwise

R, s0 |=k E e is true ⇔ R, (s, t) |=k e is true for some (s, t)
R, s0 |=k E e is false ⇔ R, (s, t) |=k e is false for all (s, t)
R, s0 |=k E e is uncertain otherwise

Theorem 1. [20,18] Given a computable rewrite system R, a TLR* guarantee
formula φ and a computation (s, t) in R, we have

R, (s, t) |= φ ⇔ ∃k ∈ N such that R, (s, t) |=k β(φ) is true
R, s0 |= Aφ ⇔ ∃k ∈ N such that R, s0 |=k Aβ(φ) is true
R, s0 |= Eφ ⇔ ∃k ∈ N such that R, s0 |=k E β(φ) is true

Proof (sketch). Based on the definition, semantic equivalences e ≡ e′ between
strategy expressions e and e′ can be proved just by proving that fail(e) = fail(e′),

Model Checking TLR* Guarantee Formulas on Infinite Systems 139

tick(e) = tick(e′), and rests0,t0(e) ≡ rests0,t0(e
′). In this way, we get some intu-

itive and useful equivalences. For instance:

e | e′ ≡ e′ if fail(e)
idle ; e ≡ e

With equivalences like these, a proof of the theorem by structural induction is
straightforward. We review just the case for the X operator:

R, (s, t) |= Xφ ⇔ (TLR* semantics)
R, (s, t)1 |= φ ⇔ (induction hypothesis)
∃k s.t. R, (s, t)1 |=k β(φ) is true ⇔ (semantic equivalence)
∃k s.t. R, (s, t)1 |=k idle ; β(φ) is true ⇔ (definition of rests0,t0)
∃k s.t. R, (s, t)1 |=k rests0,t0(any ; β(φ)) is true ⇔ (strategy semantics)
∃k s.t. R, (s, t) |=k+1 any ; β(φ) is true ⇔ (definition of β)
∃k s.t. R, (s, t) |=k+1 β(X(φ)) is true

7 The Implementation

Maude has reflective capabilities through its metalevel [11]. That means, for
instance, that using the Maude language we can ask Maude itself about the
possible rewrites from some given state, so that we can manipulate them in our
code. We use the metalevel to compute and explore all evolutions of the system.

Functions equivalent to tick, fail, and rests0,t0 have been coded into Maude.
With this we make the strategy evolve at the same time as the system. To avoid
getting lost in infinite branches, we use a bounded depth-first search. The depth
is a parameter the user provides. The tool includes a command to search some
additional levels when the previous search has not been conclusive. This shows
a scheme of the algorithm:

s0
e := β(φ)

s1
rests0,t0(e)

.

s2
rests1,t1(rests0,t0(e))

.

. . .

t0

t1

t2

d

At each node, the algorithm checks whether the state definitively satisfies the
strategy, or it definitively does not, or more states have to be explored. It has
to take care of a few more points not mentioned yet:

– Whether the quantifier is forall or exists to stop or continue the search
when a satisfying or falsifying node is found.

140 Ó. Mart́ın, A. Verdejo, and N. Mart́ı-Oliet

– Storing the path from the initial state to the current one for loop detection
and witness reporting. This is achieved by means of an ordered list of (state,
strategy) pairs. At present, we do not store the whole set of visited nodes,
so that our tests for repetitions are limited to the current path.

– Storing the open branches of the computation tree, in case they are later
needed for a deeper search. It is not enough to store the set of leaves open
at the depth bound, but whole paths to all of the open leaves are needed,
so that a new, deeper search will be able to do loop detection and witness
reporting properly from the original initial state.

The model checker, as it is, does not show an industrial-level performance and,
although we show its usefulness below, it must be rather seen as a prototype.

The tool’s user interface has two components: some commands related to
model checking (described later), and an operator on modules, called EXTENDED.
Given a system module—let us call it UserMod—our tool is able to generate
the module EXTENDED[UserMod] and put it at the user’s disposal. The operator
EXTENDED assumes and needs that UserMod has a sort named State. The module
EXTENDED[UserMod] adds to UserMod the following (syntax largely borrowed from
[3,5]):

– New sorts Trans, StateProp, and TransProp, and satisfaction operators

op |= : State StateProp -> Bool . op |= : Trans TransProp -> Bool .

– For each sort S in UserMod, a new sort Context$S, a subsort declaration
S < Context$S, and an overloaded constant op [] : -> Context$S.

– For each constructor operator, say op f : S1 S2 ... Sn -> S, new operators

op f : Context$S1 S2 ... Sn -> Context$S .

...

op f : S1 S2 ... Context$Sn -> Context$S .

– The constructor for proof terms

op {_|_:_} : Context$State Qid Subst -> Trans .

Note that this is not the algebraic syntax proposed in Section 3, but is
equivalent to it and more convenient for implementation.

– New sorts Assign and Subst, with the subsort relation Assign < Subst.

– For each sort S in UserMod, an operator op __ : Qid S -> Assign.

– New operators to build substitutions:

op noSubst : -> Subst .

op _;_ : Subst Subst -> Subst [comm assoc id: noSubst] .

– An operator op _instanceOf_ : Subst Subst -> Bool and equations to de-
fine the instanceOf relation as true when the first argument, taken as a set
of assignments, is a subset of the second.

Model Checking TLR* Guarantee Formulas on Infinite Systems 141

Users need to write at least two modules:

(mod UserMod is (mod UserMod-FULL is

sort State . extending EXTENDED[UserMod] .

... op foo : -> StateProp .

endm) ...

endm)

The first one, UserMod, has the whole specification of the system in the usual
Maude way. Of course, it can import other modules as needed. The other mod-
ule has to include the instruction extending EXTENDED[UserMod]. In this second
module the users—having at their disposal all the infrastructure on proof terms,
satisfaction, etc.—can define their own atomic propositions to be used in TLR*
formulas, as we did in the example of Section 1. The definition of initial states
is usually included in this second module as well.

The main model-checking command the user can issue is

(ismc [d] s |= q φ .)

Here, d is a natural number that specifies the maximum depth in the system’s
state space to which the search has to be performed; s is a term of sort State;
q is a quantifier, either the literal exists or forall; and φ is a TLR* guarantee
formula.

The concrete syntax for TLR* guarantee formulas is:

φ ::= TRUE | FALSE | σ | NOT σ | τ | NOT τ | φ1 AND φ2 | φ1 OR φ2 |
X φ | F φ | φ1 U φ2

The possible answers to a model-checking command are Yes or No, with a
witness computation when appropriate, or DontKnow when the search was not
conclusive, followed in this case by the number of open tasks left. Witnesses and
counterexamples can be, in particular, looping computations. In the DontKnow

case, the tool keeps in its memory all the open tasks, so that this new command
can be issued:

(ismc deeper [d] .)

This asks the model checker to search d more levels for each open task remaining
after the latest ismc or deeper command.

There are also two set commands:

– (ismc set loops on / off .)

– (ismc set contexts on / off .)

The first instructs the tool to look (or not) for possible looping computations
as it searches. It must be noted that in a loop not only states have to repeat,
but also the strategies coupled with them. Detecting loops is not for free, as it
involves the storing of information and the comparison of terms. Some model-
checking tasks in which loops happen to be rare benefit notably from disabling
loop detection. However, in many cases the effort is worthwhile—it may even be
the only way to reach a final answer.

The command about contexts instructs the tool to generate (or not) contexts
for proof terms. Contexts tend to be seldom used in practice; when they are not

142 Ó. Mart́ın, A. Verdejo, and N. Mart́ı-Oliet

used, one gains some performance by setting contexts off (about 10% to 20%
according to our measures).

8 Verification of the MSI Cache Coherence Protocol

As an example to test our tool, we have chosen cache coherence protocols, a
problem that does not seem to have been previously modeled in rewriting logic.
In multiprocessor computers it is frequently the case that a small cache memory
is attached to each processor. This cache memory, or just cache, holds a copy of
a part of the main memory. A processor only reads from and writes to its cache,
improving in this way the overall computer’s performance. The cache coherence
problem arises because several caches may hold copies of the same main-memory
address, and the respective processors may write different data on them.

To avoid this problem, cache coherence protocols have been devised, that
dictate the actions a cache must perform according to the orders that arrive
to it. Here we consider one of the best-known protocols: MSI. In this protocol,
like in most others, each cache line is marked with a mode that determines the
validity of the information it stores. A cache line is the smallest chunk of memory
that can be moved between the main memory and a cache. In MSI a cache line
can be in one of three modes:

Modified: the line has been modified in this cache, so other copies of the same
memory address, both in caches and in main memory, are unreliable;

Shared: the line is valid and so is every other copy of the line stored in any
cache and in main memory;

Invalid: the line is not valid, presumably because it has been modified else-
where.

The initials of these three modes give its name to the protocol. We abbreviate
the three modes as mdf, shr, and inv.

There is usually a bus through which all communication between caches and
main memory happens. MSI was designed for buses that do not allow direct
communication of data from cache to cache. However, the caches are able to
snoop the bus, that is, to monitor it to detect when another cache is trying to
access a certain main-memory address. By snooping, a cache cannot see the data
being read or written by another cache, but only its address in main memory.

To simplify the model, operations on the bus are taken to be atomic, that is,
they are fully dealt with before the system does anything else. Reality is usually
not that simple, but considering technicalities on the bus side would make the
model unnecessarily complex. Also, we assume that each cache only contains one
line of information. This turns out to be an unrealistic but sensible simplification:
each operation happens to a particular line, all other lines in the cache being
irrelevant to this operation.

A computer is a finite object. Although the number of processors and the
size of the memory are not limited in principle, once a computer is built and
running, these numbers are fixed. Or this was so until the advent of virtual

Model Checking TLR* Guarantee Formulas on Infinite Systems 143

machines. Virtualization software allows running operating systems on virtual
hardware that is not mapped in a one-to-one fashion to actual hardware. The
online manual for VMware vSphere 5.1 [23] states: “When the virtual machine is
turned on [. . .] you can hot add virtual CPUs to the running virtual machine.”
Thus, we include in our model the possibility of adding new processors on the
fly, which turns the number of states reachable from a given one into infinite.

First, we need the data structures. A Line consists of two natural numbers
representing the address and the data stored. Caches and processors are indepen-
dent entities, identified and coupled by its ChipId (a Nat). A CPU, or processor,
contains just its ChipId and a Boolean that indicates whether it sent a message
to its cache and is waiting for the answer. A cache registers its ChipId, its mode
and its only line of information.

sorts Mode Line CPU Cache .

ops mdf shr inv : -> Mode [ctor] .

op line : Address Data -> Line [ctor] .

op cpu : ChipId Bool -> CPU [ctor] .

op cache : ChipId Mode Line -> Cache [ctor] .

Main memory is declared as a set of lines enclosed in double curly brackets:

sort MemContents . subsort Line < MemContents .

op mtMemContents : -> MemContents [ctor] .

op __ : MemContents MemContents -> MemContents

[ctor comm assoc id: mtMemContents] .

eq MC:MemContents MC:MemContents = MC:MemContents .

sort Memory .

op {{_}} : MemContents -> Memory [ctor] .

The bus is not a distinct entity in our model: there are BusMessages loose in
the state. There are also LocalMessages, that is, messages between a processor
and its cache, whose means of transmission is of no concern to us either.

sorts BusMessage LocalMessage .

op bus-read : ChipId Address -> BusMessage [ctor] .

op bus-hereur : ChipId Line -> BusMessage [ctor] .

op read : ChipId Address -> LocalMessage [ctor] .

op hereur : ChipId Line -> LocalMessage [ctor] .

op write : ChipId Line -> LocalMessage [ctor] .

We want to control the amount of memory addresses and of possible data
values available, so that they can be kept to the minimum we need in each
moment. We do so by defining a sort of sets on natural numbers, NatSet, and
these two sorts:

sorts AddressRange DataRange .

op aRange : NatSet -> AddressRange [ctor] .

op dRange : NatSet -> DataRange [ctor] .

A State is defined as a soup of elements, enclosed in curly brackets:

sort StateContents .

subsorts CPU Cache Memory BusMessage LocalMessage

AddressRange DataRange ChipId < StateContents .

144 Ó. Mart́ın, A. Verdejo, and N. Mart́ı-Oliet

op mtStateContents : -> StateContents [ctor] .

op __ : StateContents StateContents -> StateContents

[ctor comm assoc id: mtStateContents] .

sort State .

op {_} : StateContents -> State [ctor] .

We also store in the state the maximum ChipId currently used, so that adding
new caches is easier. Some provisos are missing that are important. For instance,
one and only one Memory, AddressRange, and DataRange should exist in a given
State, and there should be as many Caches as CPUs, coupled by id. These and
others will be enforced in the initial states we use and in the rules that govern
the system.

Let us consider now the dynamics of the system. A processor starts sending
a read or write order. Its cache, and maybe others, reacts in a number of ways,
depending on where the information is stored. There are ten possible cases a
cache must be ready to react to: from its processor it can receive a read or a
write order; from the bus it can snoop a read or a write being performed on
another cache, or also an invalidate signal (to be explained soon). Each of these
five cases unfolds into two, as we need to separately consider a hit, that happens
when the order the cache receives refers to the memory address that the cache
is already storing, and a miss, which is the opposite.

First, this is the way a new processor and cache may come into existence:

var Id : ChipId . var SC : StateContents .

crl [add] : { Id SC }

=> { s(Id) cpu(s(Id), false) cache(s(Id), inv, line(0, 0)) SC }

if allCpusBusy(SC) .

The function allCpusBusy checks that each existing processor is waiting for an
answer. So, we can only add a processor when all others are busy. These are the
ways a processor sends an order to its cache:

vars N N’ : Nat . vars NS NS’ : NatSet . var Md : Mode .

vars A A’ : Address . var MM : Memory .

crl [read] : { cpu(Id, false) aRange(N ; NS) SC }

=> { cpu(Id, true) read(Id, N) aRange(N ; NS) SC }

if not hasBusMsg(SC) .

crl [write] : { cpu(Id, false) aRange(N ; NS) dRange(N’ ; NS’) SC }

=> { cpu(Id, true) write(Id, line(N, N’))

aRange(N ; NS) dRange(N’ ; NS’) SC }

if not hasBusMsg(SC) .

The condition in the rules ensures that bus messages are dealt with before any
other action takes place.

We review next some of the ways in which the system can react to an order.
Specially simple are the cases for bus misses. On snooping these, a cache would
think: “Someone is reading from or writing to or invalidating an address I don’t
have stored, so I have nothing to do.” Therefore, we include no rule for this case.
For a more complex case, consider the “processor write hit.” On detecting this, a
cache in mode shr would think: “My processor needs to write to a line I already
have stored. I will just write the new data. But, as this is the first time I modify

Model Checking TLR* Guarantee Formulas on Infinite Systems 145

this line, I will ask the bus to send an invalidate signal, so that other caches are
aware that some change has happened. And I will change to mdf.”

crl [write-hit] :

{ cpu(Id, true) cache(Id, Md, line(A, D)) write(Id, line(A, D’)) SC }

=> { cpu(Id, false) cache(Id, mdf, line(A, D’))

(if Md == shr then invalidate(Id, A, SC) else SC fi) }

if not hasBusMsg(SC) .

The invalidate function simulates the workings of the bus and the snooping
caches, running through the state to find caches that need to be invalidated:

op invalidate : ChipId Address StateContents -> StateContents .

ceq invalidate(Id, A, cache(Id’, Md, line(A, D)) SC) =

cache(Id’, inv, line(0, 0)) invalidate(Id, A, SC) if Id =/= Id’ .

eq invalidate (Id, A, SC) = SC [owise] .

For a “processor read miss” the cache must react like this:

crl [read-miss] : { MM cache(Id, Md, line(A, D)) read(Id, A’) SC }

=> { (if Md == mdf then update(MM, line(A, D)) else MM fi)

cache(Id, Md, line(A, D)) bus-read(Id, A’) SC }

if A =/= A’ /\ not hasBusMsg(SC) .

The processor needs to read an address A’ that is not the one stored now in
its cache. The cache puts in the system a message bus-read, asking for the
needed data. When the answer is finally received, cache contents are going to be
overwritten, so if cache was in mode mdf, that is, if it had the only valid copy of
its data, it has to copy its line to main memory (eviction is the technical term
for this action). That is what the update function is for.

Now, when a mdf cache sees a bus-read order for the address it is storing, it
copies its data to main memory and produces the answer.

crl [bus-read-hit] : { MM cache(Id’, mdf, line(A, D)) bus-read(Id, A) SC }

=> { update(MM, line(A, D)) cache(Id’, shr, line(A, D))

bus-hereur(Id, line(A, D)) SC }

if Id =/= Id’ .

In case no mdf cache has the data, it is the main memory who must answer
to the bus-read, through a rule not shown here. By the way, the previous rule
is a simplification of the standard MSI, as caches cannot usually communicate
directly data to each other. The reading cycle ends with these two rules:

rl [bus-read-done] : { cache(Id, Md, L) bus-hereur(Id, L’) SC }

=> { cache(Id, shr, L’) hereur(Id, L’) SC } .

rl [read-done] : { cpu(Id, true) hereur(Id, L) SC }

=> { cpu(Id, false) SC } .

To begin with model-checking tasks, we wonder first whether invalidating is
really needed. Namely: if we remove invalidation from our system, is coherence
still guaranteed? This is more intuitive if viewed as a question about the safety
formulaAG coherent, but we use its negation, as our model checker only accepts
guarantee formulas. We redefine invalidate to an identity in its third argument,
and define a coherent proposition (after importing EXTENDED[MSI]):

op coherent : -> StateProp [ctor] .

146 Ó. Mart́ın, A. Verdejo, and N. Mart́ı-Oliet

ceq { cache(Id, shr, line(A, D)) cache(Id’, shr, line(A, D’)) SC }

|= coherent = false if D =/= D’ .

ceq { cache(Id, shr, line(A, D)) {{line(A, D’)}} SC }

|= coherent = false if D =/= D’ .

eq { SC } |= coherent = true [owise] .

We ask our brand-new model checker whether coherence can be violated

(ismc [8] init |= exists F NOT coherent .)

from this initial state:

op init : -> State .

eq init = { cpu(1, false) cache(1, mdf, line(1, 2))

cpu(2, false) cache(2, inv, line(0, 0))

2 {{line(1, 1)}} aRange(1 ; 2) dRange(1 ; 3) } .

We get a Yes and a witness computation ending in this state:

{ {{line(1, 1)}} aRange(1 ; 2) dRange(1 ; 3) 2

cpu(1, true) cpu(2, true) cache(1, mdf, line(1, 1))

cache(2, shr, line(1, 2)) bus-read(1, 2) hereur(2, line(1, 2)) }

So, yes, invalidating is necessary, and we restore it to go on. The question in this
example is a reachability one and does not use propositions on transitions, so its
result can be achieved as well with Maude’s search command.

Next, we consider this initial state:

op init2 : -> State .

eq init2 = { cpu(1, false) cache(1, mdf, line(1, 3))

cpu(2, true) cache(2, inv, line(0, 0)) read(2, 1)

2 {{line(1, 1)}} aRange(1) dRange(4) } .

Processor 2 wants to read the contents of memory address 1. That information
is stored in the main memory, but it is cache 1 who has the only valid value.
We want to check that, eventually, cache 2 receives line(1, 3). With aRange(1)

and dRange(4), we include the possibility for processors to initiate new reads or
writes to address 1 with a different value 4; this is not a big range of possibilities,
but it is all we need to try to interfere with the reading.

We model check this:

(ismc [10] init2 |= forall F readdone(2, line(1, 3)) .)

for this parametric proposition on transitions:

var Ln : Line . var C : Context$State . var L : Qid . var Sb : Subst .

op readdone : ChipId Line -> TransProp [ctor] .

eq {Cn | ’read-done : (’Id \ Id) ; (’L \ Ln) ; Sb}

|= readdone(Id, Ln) = true .

eq {C | L : Sb} |= readdone(Id, Ln) = false [owise] .

Unfortunately, it produces a No after finding a looping computation in just four
steps. The problem is clearly unfairness: the system is only paying attention
to processor 1, or creating new processors. This example shows model checking
with an infinity of reachable states and with a proposition on transitions, which
puts it out of the scope of other existing tools. Some other model-checking tasks
at different levels of abstraction are shown in [18].

Model Checking TLR* Guarantee Formulas on Infinite Systems 147

Unfortunately, slight increases in the number of caches tend to cause large
increases in the time needed for the checking to complete. On the other hand, it
is known that most design flaws can often be found using small systems.

9 Related Work

Model Checking TLR*. The papers [6,3,4,5] are all related to model checking
Maude modules with LTLR formulas. The logic LTLR is the linear sublogic of
TLR*, that is, formulas with no path quantifiers taken to be universally quan-
tified on paths. In [6] the authors implement a translation, already described in
[20], that allows the use of Maude’s LTL model checker (see [11] for explanations
on this model checker). The idea is the following: we are given a rewrite system
R, with an initial state on it, and a LTLR formula as parameters to perform
model checking on them. From R we produce a new system, equivalent to R
in an appropriate way, whose states store, in addition to its own information,
also data on the transition that took the system to them. In parallel, we trans-
late the given LTLR formula to a LTL formula with equivalent semantics. The
produced system satisfies the produced formula iff the given system satisfies the
given formula [20]. Looking for better performance, [3] implements a different
algorithm for LTLR model checking in C++, by modifying the implementation
of Maude’s LTL model checker.

The papers [4,5] show how fairness constraints can be included in the system
specification, and how to model check LTL or LTLR formulas taking these con-
straints into account in the very algorithm. Moreover, these papers show how
to use parameterized fairness properties, that allow the user to specify which
entities of the system have to be treated with fairness and which others we do
not care about.

None of these model checkers works for systems with an infinity of reachable
states.

Infinite Systems. Model checking on infinite systems has been the subject of
many studies. Most of them look for either an abstraction that turns the system
finite, or a way to finitely represent the elements that compose the system.

Abstraction is a well-known mechanism to make the size of a system smaller,
where smaller can even mean finite from infinite. See [21] for an approach within
rewriting logic. The idea of abstraction is grouping together states that, though
different, are indistinguishable to the formula we are model checking. In this
respect, model checking on timed systems often uses time regions with the same
idea: instead of using time instants, use well-chosen time intervals, taking care
that the given temporal formula is not able to tell apart two instants on the
same interval.

In the way of finite representability, the method of well-structured transi-
tion systems has proved useful [1,15]. A well-structured transition system is one
in whose infinite set of states a well-quasi-ordering has been defined. A well-
quasi-ordering is a reflexive and transitive relation such that no infinite strictly

148 Ó. Mart́ın, A. Verdejo, and N. Mart́ı-Oliet

decreasing sequence exists. In a well-structured system certain sets (so called
upward-closed sets) of states are finitely representable. These sets are enough to
provide algorithms to solve some model-checking problems. The reference [15]
lists a collection of natural examples for which a well-quasi-ordering exists.

The papers [13,2] describe a narrowing-based approach to model checking
rewrite systems in which terms with variables are used as patterns to represent
and let evolve whole sets of states. Also, abstraction and folding relations (similar
to the quasi-orderings of well-structured transition systems) are used.

As explained below, the advantage of our own method is that it does not need
to find relations and prove they are appropriate, but uses the raw system as it
is given.

Strategies. Strategies do not seem to have been used as a means to model
checking before. However, they are present in several languages. In Maude, there
is a rich strategy language; see [17], for instance. In some sense, that is a more
powerful strategy language than the one presented in this paper, although none of
them contains the other. In [22] strategies are used in the framework of program
transformation (like for refactoring, compiling, optimization). In particular, they
use Stratego, a language for program transformation based on rewriting and
strategies. ELAN, described for instance in [8], is a rewriting-logic language.
Both ELAN and Stratego have strategies included in the language, while in
Maude system modules and strategy modules are separated syntactic entities.

10 Conclusions and Future Work

Several subjects related to system specification and verification have got roles
in this work: rewriting logic (and Maude) as a specification formalism, rewriting
logic (and Maude) as a software development tool, state-based and action-based
temporal logics and TLR*, guarantee and safety properties, strategies applied
to nondeterministic systems, and model checking on infinite systems. We have
introduced all of them. We have implemented a strategy language and shown
how it can be used to model check TLR* guarantee formulas on possibly infinite
systems by first translating them into strategy expressions. Finally, we have
proved the usefulness of the tool verifying the MSI cache coherence protocol.

Our model checker has a unique combination of three ingredients: it admits
propositions on transitions (and states), bounded search on finite or infinite
systems (even with an infinity of reachable states), and existential or universal
quantification on paths. Maude’s search command works in a bounded way, but
lacks the other ingredients; Maude’s built-in model checker for LTL does not have
any of the three; and the LTLR model checkers cited above allow propositions
on transitions, but not the other two.

An explicit-state model-checking procedure on infinite systems cannot be ex-
pected to produce a definitive answer in all cases, and cannot be expected either
to provide the best performance. However, the point is that our model-checking
procedure is available almost for free as soon as the system is specified. Quoting

Model Checking TLR* Guarantee Formulas on Infinite Systems 149

Meseguer, talking about an example presented in [20], “all such efforts to obtain
a tractable finite-state abstraction, and the associated theorem proving work to
check confluence, coherence and preservation of state predicates for the abstrac-
tion, are not even worth it; since this simpler analysis of the system specification
has already uncovered a key flaw.” Thus, we think explicit-state model checking
deserves a place in an infinite-system verification toolbox.

Several improvements and lines for additional work are possible. A C++ im-
plementation in search for better performance is an obvious thing to do. In
a different line, we already have loop detection, that is, detection of repeated
(state, strategy) pairs on the same path. But, when repetition occurs in different
branches, we are not ready to detect it. For some systems, this would provide
a drastically improved performance. Also some other tools can be offered to
the user: abstraction, well-structured transition systems, and partial order re-
duction. To this end, means should be implemented to allow the user specify,
respectively, when two different states can be considered equivalent to the cur-
rent model-checking task, or when they are related by the well-quasi-ordering,
or when two transitions are independent, so that only one way to order and
perform them has to be taken into account. The reference [14] has proposals on
how to implement partial order reduction in rewrite systems.

Acknowledgments. We thank José Meseguer for motivating this research and
showing us its initial foundations; Fernando Rosa for answering our questions
about model checking and suggesting us readings and examples; and the anony-
mous referees for their helpful suggestions to improve this paper.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. In: LICS, pp. 313–321. IEEE Computer Society Press
(1996)

2. Bae, K., Escobar, S., Meseguer, J.: Abstract logical model checking of infinite-state
systems using narrowing. In: van Raamsdonk, F. (ed.) RTA. LIPIcs, vol. 21, pp.
81–96. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

3. Bae, K., Meseguer, J.: The linear temporal logic of rewriting Maude model checker.
In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 208–225. Springer,
Heidelberg (2010)

4. Bae, K., Meseguer, J.: State/event-based LTL model checking under parametric
generalized fairness. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 132–148. Springer, Heidelberg (2011)

5. Bae, K., Meseguer, J.: Model checking LTLR formulas under localized fairness. In:
Durán, F. (ed.) WRLA 2012. LNCS, vol. 7571, pp. 99–117. Springer, Heidelberg
(2012)

6. Bae, K., Meseguer, J.: A rewriting-based model checker for the linear temporal
logic of rewriting. Electr. Notes Theor. Comput. Sci. 290, 19–36 (2012)

7. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Advances in Computers 58, 117–148 (2003)

150 Ó. Mart́ın, A. Verdejo, and N. Mart́ı-Oliet

8. Borovanský, P., Kirchner, C., Kirchner, H., Moreau, P.-E.: ELAN from a rewriting
logic point of view. Theoretical Computer Science 285(2), 155–185 (2002)

9. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theoretical Computer Science 360(1-3), 386–414 (2006)

10. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press (2001)
11. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,

C.L.: All About Maude - A High-Performance Logical Framework, How to Spec-
ify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer,
Heidelberg (2007)

12. De Nicola, R., Vaandrager, F.W.: Action versus state based logics for transition
systems. In: Guessarian, I. (ed.) Semantics of Systems of Concurrent Processes.
LNCS, vol. 469, pp. 407–419. Springer, Heidelberg (1990)

13. Escobar, S., Meseguer, J.: Symbolic model checking of infinite-state systems using
narrowing. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 153–168. Springer,
Heidelberg (2007)

14. Farzan, A.: Static and Dynamic Formal Analysis of Concurrent Systems and Lan-
guages: A Semantics-Based Approach. PhD thesis, Department of Computer Sci-
ence, University of Illinois at Urbana-Champaign (2007)

15. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor.
Comput. Sci. 256(1-2), 63–92 (2001)

16. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency.
Journal of the ACM 32(1), 137–161 (1985)

17. Mart́ı-Oliet, N., Meseguer, J., Verdejo, A.: Towards a strategy language for Maude.
In: Mart́ı-Oliet, N. (ed.) Proceedings of the Fifth International Workshop on
Rewriting Logic and its Applications, WRLA 2004, Barcelona, Spain, March 27-
April 4. Electronic Notes in Theoretical Computer Science, vol. 117, pp. 417–441.
Elsevier (2004)

18. Mart́ın, Ó.: Model checking TLR* guarantee formulas on infinite systems. Master’s
thesis, Facultad de Informática, Universidad Complutense de Madrid (July 2013),
http://maude.sip.ucm.es/ismc

19. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96(1), 73–155 (1992)

20. Meseguer, J.: The temporal logic of rewriting. Technical Report UIUCDCS-R-
2007-2815, Department of Computer Science, University of Illinois at Urbana-
Champaign (2007)

21. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Equational abstractions. Theoretical
Computer Science 403(2-3), 239–264 (2008)

22. Visser, E.: A survey of strategies in program transformation systems. Electr. Notes
Theor. Comput. Sci. 57, 109–143 (2001)

23. VMware. vSphere Virtual Machine Administration (update 1, ESXi 5.1, vCenter
Server 5.1), http://pubs.vmware.com/vsphere-51/topic/com.vmware.ICbase/

PDF/vsphere-esxi-vcenter-server-511-virtual-machine-admin-guide.pdf

http://maude.sip.ucm.es/ismc
http://pubs.vmware.com/vsphere-51/topic/com.vmware.ICbase/PDF/vsphere-esxi-vcenter-server-511-virtual-machine-admin-guide.pdf
http://pubs.vmware.com/vsphere-51/topic/com.vmware.ICbase/PDF/vsphere-esxi-vcenter-server-511-virtual-machine-admin-guide.pdf

	Model Checking TLR* Guarantee Formulason Infinite Systems
	1 Introduction
	2 Rewrite Systems
	3 Proof Terms and Computations
	4 Temporal Logics and TLR* Guarantee Formulas
	5 A Strategy Language
	6 Strategy Semantics
	7 The Implementation
	8 Verification of the MSI Cache Coherence Protocol
	9 Related Work
	10 Conclusions and Future Work
	References

