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Abstract. The InvA tool supports the deductive verification of safety
properties of infinite-state concurrent systems. Given a concurrent sys-
tem specified as a rewrite theory and a safety formula to be verified,
InvA reduces such a formula to inductive properties of the underlying
equational theory by means of the application of a few inference rules.
Through the combination of various techniques such as unification, nar-
rowing, equationally-defined equality predicates, and SMT solving, InvA
achieves a significant degree of automation, verifying automatically many
proof obligations. Maude Inductive Theorem Prover (ITP) can be used to
discharge the remaining obligations which are not automatically verified
by InvA. Verification of the reliable communication ensured by the Alter-
nating Bit Protocol (ABP) is used as a case study to explain the use of
the InvA tool, and to illustrate its effectiveness and degree of automation
in a concrete way.

1 Introduction

The late Amir Pnueli entitled his invited talk at FM’99 “Deduction is For-
ever” [22]. Pnueli, who had pioneered the use of temporal logic in computer
science as well as many model checking techniques, wanted to remind us that al-
gorithmic verification methods are not enough by themselves and should always
be complemented by deductive verification methods. What is actually happen-
ing is that model checking and theorem proving methods are increasingly used
in tandem, and the borderline between both is becoming more tenuous. Ver-
ification of temporal logic properties, particularly for infinite-state systems, is
an area where both algorithmic and deductive methods can be used, sometimes
together.

In the rewriting logic research program [16], model checking methods and
tools have been extensively developed. However, deductive techniques, while
well-supported for equational specifications with an initial algebra semantics,
do not directly apply to temporal logic formulas. One important exception is
the deductive verification approach with proof scores and the OTS/CafeOBJ
method [9,19], pioneered by Kokichi Futatsugi and his collaborators, for the
verification of invariants of concurrent systems. By using such an approach quite
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sophisticated systems have been verified [20,21]. Work on the OTS/CafeOBJ
method has stimulated our own work on deductive verification of concurrent
systems. Indeed, the work presented here is a concrete example of the way in
which we have responded to such an encouraging stimulus. Our main purpose
has been to advance the following goals:

1. Deductive Support for Temporal Logic. Beyond invariants, deductive
reasoning about other temporal logic properties should be supported. For the
moment we have advanced this to support a useful subset of safety properties,
but we hope to extend the methods to also support liveness properties.

2. Reduction of Temporal Verification to Equational Verification. As
much as possible, temporal logic properties should be construed as “syntactic
sugar” for inductive properties of an algebraic specification corresponding to
the system’s states and the predicates satisfied by such states. In this way,
all the wealth of techniques and tools already available to verify properties
of algebraic specifications with an initial algebra semantics can be leveraged.

3. Increased automation. To reduce the verification effort, the level of au-
tomation should be increased as much as possible, both at the level of rea-
soning about temporal properties, and after reducing such properties to in-
ductive proof obligations in equational logic.

Our way to advance goals (1)–(3) has been to develop new deductive verifi-
cation techniques, embody them in the InvA tool [23,24] as part of the Maude
formal environment, and test the practical advancement of goals (1)–(3) through
case studies. We can summarize our present advances as follows. Goals (1) and
(2) have been advanced by (i) identifying a class of commonly used safety proper-
ties; and (ii) developing and proving correct a set of inference rules that reduce
the verification of such safety properties to inductive equational reasoning. A
key technique for this reduction has been the use of unification and narrowing
to prove stability properties in an inductive way. The development of Goal (3)
has been advanced by a combination of automation techniques including: (i)
automation of narrowing and unification in the underlying Maude system; (ii)
automation of certain conditional inferences; (iii) systematic use of equationally-
defined equality predicates [12]; (iv) use of SMT solvers; and (v) use of proof
tactics in the Maude ITP.

Although still work in progress and amenable to many subsequent improve-
ments and extensions, it seems fair to say that the advances in goals (1)–(3)
supported by the InvA tool have been significant. A good way to give a feeling
for such advances is to explain how they have helped in automating a remarkable
amount of proof tasks when verifying a well-known benchmark verified by other
systems, and in particular by the OTS/CafeOBJ methodology and tool, namely,
the reliable communication ensured by the Alternating Bit Protocol. This also
makes it possible to compare our proof efforts with those in OTS/CafeOBJ and
measure advances in Goal (3) in a concrete and meaningful way.

In summary, therefore, this work should be seen in the context of a very
long and broader exchange of ideas with Kokichi Futatsugi and his collabora-
tors in the CafeOBJ group, which has stimulated advances in both Maude and
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CafeOBJ. In particular, it has been a pleasure to discuss our ideas about InvA
with Kokichi Futatsugi and Kazuhiro Ogata, and to benefit from their experi-
ence in the deductive verification of invariants. This work is cordially dedicated
to Kokichi Futasugi in the spirit of such a long term and very fruitful exchange
of ideas.

2 Preliminaries

This paper follows notation and terminology from [15] for order-sorted equational
logic and from [5] for rewriting logic.

An order sorted signature Σ is a tuple Σ = (S,≤, F ) with finite poset of sorts
(S,≤) and a finite S-index set of function symbols F = {Fw,s}(w,s)∈S∗×S . It is
assumed that: (i) each connected component of a sort s ∈ S in the poset ordering
has a top sort, denoted by ks, and (ii) for each operator declaration f ∈ Fs1...sn,s

there is also a declaration f ∈ Fks1 ...ksn ,ks . The collection X = {Xs}s∈S is an
S-sorted family of disjoint sets of variables with each Xs countably infinite. The
set of terms of sort s is denoted by TΣ(X)s and the set of ground terms of sort
s is denoted by TΣ,s, which are assumed nonempty for each s. The expressions
TΣ(X) and TΣ denote the respective term algebras. The set of variables of a
term t is written vars(t) and is extended to sets of terms in the natural way. A
substitution θ is a sorted map from a finite subset dom(θ)⊆X to TΣ(X) and
extends homomorphically in the natural way; ran(θ) denotes the set of variables
introduced by θ and tθ the application of θ to a term t. Substitution θ1θ2 is
the composition of substitutions θ1 and θ2. A substitution θ is called ground iff
ran(θ) = ∅.

A Σ-equation is a Horn clause t = u if γ, where t = u is a Σ-equality with
t, u ∈ TΣ(X)s for some sort s ∈ S, and the condition γ is a finite conjunction
of Σ-equalities

∧
i∈I ti = ui. An equational theory is a tuple (Σ,E) with order-

sorted signature Σ and finite set of Σ-equations E. For ϕ a Σ-equation, (Σ,E) �
ϕ iff ϕ can be proved from (Σ,E) by the deduction rules in [15] iff ϕ is valid
in all models of (Σ,E); assuming TΣ,s �= ∅ for each s ∈ S, (Σ,E) induces the
congruence relation =E on TΣ(X) defined for any t, u ∈ TΣ(X) by t =E u iff
(Σ,E) � t = u. The expressions TΣ/E(X) and TΣ/E denote the quotient algebras
induced by =E over the algebras TΣ(X) and TΣ , respectively; TΣ/E is the initial
algebra of (Σ,E). An E-unifier for a Σ-equality t = u is a substitution θ such
that tθ =E uθ. A complete set of E-unifiers for a Σ-equality t = u is written
CSUE(t = u) and it is called finitary if it contains a finite number of E-unifiers.
The expression GUE(t = u) denotes the set of ground E-unifiers of a Σ-equality
t = u. A theory inclusion (Σ,E) ⊆ (Σ′, E′) is protecting iff the unique Σ-
homomorphism TΣ/E −→ TΣ′/E′ |Σ to the Σ-reduct of the initial algebra TΣ′/E′

is an isomorphism.
A Σ-rule is a sentence t → u if γ, where t → u is a Σ-sequent with t, u ∈

TΣ(X)s for some sort s ∈ S and the condition γ is a finite conjunction of Σ-
equalities. A rewrite theory is a tuple R = (Σ,E,R) with equational theory
ER = (Σ,E) and a finite set of Σ-rules R. A topmost rewrite theory is a rewrite
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theory R = (Σ,E,R) such that for some top sort s and for each t → u if γ ∈ R,
the terms t, u satisfy t, u ∈ TΣ(X)s and t /∈ X , and no operator in Σ has s as
argument sort. For R = (Σ,E,R) and ϕ a Σ-rule, R � ϕ iff ϕ can be obtained
from R by the deduction rules in [5] iff ϕ is valid in all models of R. For ϕ
a Σ-equation, R � ϕ iff ER � ϕ. A rewrite theory R = (Σ,E,R) induces the
rewrite relation →R on TΣ/E(X) defined for every t, u ∈ TΣ(X) by [t]E →R [u]E
iff there is a one-step rewrite proof R � t → u. The expressions R � t → u and
R � t

∗→ u respectively denote a one-step rewrite proof and an arbitrary length
(but finite) rewrite proof in R from t to u. The expression TR = (TΣ/E ,

∗→R)
denotes the initial reachability model of R = (Σ,E,R) [5]. A Σ-sequent ϕ is
an inductive consequence of R denoted R � ϕ iff (∀θ : X −→ TΣ)R � ϕθ iff
TR |= ϕ.

State predicates. A set of state predicates Π for R = (Σ,E,R) can be
equationally-defined by an equational theory EΠ = (ΣΠ , E 	 EΠ). Signature
ΣΠ contains Σ, two sorts Bool ≤ [Bool ] with constants 
 and ⊥ of sort Bool ,
predicate symbols p : s −→ [Bool ] for each p ∈ Π , and optionally some aux-
iliary function symbols. Equations in EΠ define the predicate symbols in ΣΠ

and auxiliary function symbols, if any; they protect (Σ,E) and the equational
theory specifying sort Bool , constants 
 and ⊥, and the Boolean operations.
It is easy to define a state predicate p ∈ Π as a Boolean combination of other
already-defined state predicates {p1, . . . , pn} in ΣΠ . The reason why p has typ-
ing p : s −→ [Bool ] instead of p : s −→ Bool , is to allow partial definitions of p
with equations that fully define the positive case by equations p(t) = 
 if γ, and
either leave the negative case implicit or may only define some negative cases
with equations p(t′) = ⊥ if γ′ without necessarily covering all the cases.

LTL semantics. For p ∈ Π and [t]E ∈ TΣ/E,s, EΠ defines the semantics of p in
TR as follows: it is said that p([t]E) holds in TR iff EΠ � p(t) = 
. This defines a
Kripke structure KΠ

R = (TΣ/E,s,→R, LΠ) with labeling function LΠ such that,
for each [t]E ∈ TΣ/E,s, the semantic equivalence p ∈ LΠ([t]E) iff p([t]E) holds in
TR. Then, all of LTL can be interpreted in KΠ

R in the standard way [6], including
the “always” (�), “next” (©), and “strong implication” (⇒) operators.

Executability conditions. It is assumed that the set of equations of a rewrite
theory R can be decomposed into a disjoint union E 	 B, with B a collec-
tion of axioms (such as associativity, and/or commutativity, and/or identity) for
which there exists a matching algorithm modulo B producing a finite number of
B-matching substitutions, or failing otherwise. It is also assumed that the equa-
tions E can be oriented into a set of ground sort-decreasing, ground confluent,

and ground terminating rules
−→
E modulo B. The expression t ↓Σ,E/B∈ TΣ,s(X)

denotes the E/B-canonical form of t ∈ TΣ(X), which is guaranteed to exist un-
der the executability conditions above mentioned. The rules R in R are assumed
to be ground coherent relative to the equations E modulo B [28].

Free constructors. For R = (Σ,E 	B,R), the signature Ω ⊆ Σ is a signature
of free constructors modulo B iff for each sort s in Σ and t ∈ TΣ,s there is
u ∈ TΩ,s satisfying t =E�B u, and v ↓Σ,E/B=B v for any v ∈ TΩ,s. For the
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development in this paper it is required that t ∈ TΩ(X) for each t → u if γ ∈ R
(see [23,24] for more details).

3 The Maude Invariant Analyzer Tool: An Overview

The Maude Invariant Analyzer Tool (InvA) is a tool designed for interactively
proving two key safety properties of executable Maude specifications, namely, in-
ductive stability and inductive invariance, plus their combination by strengthen-
ing techniques. The tool mechanizes an inference system that, without assuming
finiteness of the set of initial or reachable states, uses rewriting and narrowing-
based reasoning techniques, in which all temporal logic formulas eventually dis-
appear and are replaced by purely equational conditional sentences. The InvA
tool provides a substantial degree of mechanization and can automatically dis-
charge many proof obligations without user intervention. It is implemented in
the Maude language and exploits rewriting logic’s reflection capabilities, i.e., it
is a Maude specification that takes, as part of its input, a meta-representation
of a Maude specification.

The concept of inductive stability for R = (Σ,E,R) is intimately related to
the notion of the set of states t ∈ TΣ,s of TR that satisfy a state predicate p ∈ Π
and is closed under →R. More precisely, for p ∈ Π and x ∈ Xs, the property p
being inductively stable for R is the safety property:

KΠ
R |= p(x) ⇒ �p(x)

meaning that if p(t) holds in a state t ∈ TΣ,s, then p(u) holds in any state
u ∈ TΣ,s that is reachable from t.

Invariants are among the most important safety properties. Given a set of
initial states characterized by I ∈ Π , a state predicate p ∈ Π being inductively
invariant for R from the set of initial states I is the safety property

KΠ
R |= I(x) ⇒ �p(x)

meaning that if I(t) holds in a state t ∈ TΣ,s, then p(u) holds in any state
u ∈ TΣ,s reachable from t. In other words, the invariant p holds for all states
reachable from I. Since the set of initial states is defined in EΠ as a state predicate
I ∈ Π , an equational definition of I can of course capture an infinite set of initial
states.

3.1 Inference System Mechanized in the InvA Tool

Given an inductive stability or inductive invariance property ϕ, the InvA tool
generates equational proof obligations such that, if they hold, then TR |= ϕ. For a
topmost rewrite theory R and a set of state predicates Π specified in Maude, the
InvA tool mechanizes inference rules St, Inv, Str1, Str2, C⇒, Nr1, and Nr2
depicted in Figure 1. Soundness proofs for each one of these inference rules can
be found in [23]. The application of inference rules St, Inv, Str1, and Str2 to
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a given inductive stability or invariance LTL verification goal ultimately reduces
such a goal to simpler inductive equational reasoning that can be handled by
applying rules C⇒, Nr1, and Nr2.

Inference rule St reduces the verification task of the inductive stability of a
predicate p to the simpler condition p ⇒ ©p, which only involves 1-step search
instead of arbitrary depth search. Inference rule Inv reduces the verification task
of inductive invariance to equational implication and inductive stability. Infer-
ence rules Str1 and Str2 are strengthening rules. Inference rule C⇒ handles
equational implications, while rules Nr1 and Nr2 use 1-step narrowing modulo
axioms to handle the symbolic 1-step search, for the temporal next operator, in
formulae of the form p ⇒ ©p. Note that any inductive stability and invariance
formula is ultimately reduced to equational reasoning. Thanks to the availabil-
ity since Maude 2.6 of unification modulo commutativity (C), associativity and
commutativity (AC), and modulo these theories plus identities (U), and to the
narrowing modulo infrastructure, the InvA tool can handle modules with op-
erators declared C, CU, AC, and ACU. Furthermore, since unification modulo
the above theory combinations is decidable, and each one yields a finite set of
complete unifiers, the set of proof obligations resulting from applying rules Nr1
and Nr2 is always finite.

Under the executability assumptions, R has a disjoint union E 	 B of equa-
tions, with B a collection of structural axioms on some function symbols in Σ
such as associativity, commutativity, identity, etc., and E a set of ground sort-
decreasing, ground confluent, ground terminating, and ground coherent (w.r.t.
R) equations modulo B. Then, it is key to note that for rules Nr1 and Nr2
and for a combination of free and associative and/or commutative and/or iden-
tity axioms, except for symbols f that are associative but not commutative, a
finitary B-unification algorithm exists. Instead, in general there is no finitary
E 	 B-unification algorithm, but for Ω ⊆ Σ a signature of free equational con-
structors modulo B and a Ω-equality t = u, CSUB(t = u) exactly characterizes
as its ground instances the set GUB(t = u) (see [23, Lemma 2, Chapter 4] for
more details).

3.2 Methodology and Commands Available to the User

The approach for proving inductive stability and invariance properties in the
InvA tool is depicted in Figure 2.

Given a topmost rewrite theory R, an equational specification EΠ for the
state predicates Π , and an inductive safety property ϕ the InvA tool internally
generates equational proof obligations according to the inference system in Fig-
ure 1 and tries to discharge as many of them as possible by using the heuristics
described in Section 3.3. Any proof obligation that cannot be automatically dis-
charged is output to the user so it can be handled interactively in an external
tool such as Maude’s Inductive Theorem Prover (ITP) [7,13] (an experimental
interactive tool for proving properties of the initial algebra TE of an order-sorted
equational theory E written in Maude).
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R � p(x) ⇒ ©p(x)

R � p(x) ⇒ �p(x)
St

R � I(x) ⇒ p(x) R � p(x) ⇒ �p(x)

R � I(x) ⇒ �p(x)
Inv

R � I(x) ⇒ J(x) R � J(x) ⇒ �q(x)
R � q(x) ⇒ p(x)

R � I ⇒ �p
Str1

R � I(x) ⇒ p(x) R � I(x) ⇒ �q(x)
R � q(x) ∧ p(x) ⇒ ©p(x)

R � I(x) ⇒ �p(x)
Str2

∧

(q(v)=w if γ′)∈EΠ

EΠ � p(v) = 
 if γ′ ∧ w = 


R � q(x) ⇒ p(x)
C⇒

∧

(l→r if γ)∈R
(θ,w,γ′)∈Θp

l

EΠ � p(rθ) = 
 if γθ ∧ γ′θ ∧ wθ = 


R � p(x) ⇒ ©p(x)
Nr1

∧

(l→r if γ)∈R
(θ,w,γ′)∈Θp

l

EΠ � p(rθ) = 
 if γθ ∧ γ′θ ∧ wθ=
∧q(l)θ=


R � q(x) ∧ p(x) ⇒ ©p(x)
Nr2

where Θp
l =

⋃
(p(v)=w if γ′)∈EΠ

{(θ, w, γ′) | θ ∈ CSUB(l = v)}.

Fig. 1. Inference rules mechanized in the InvA tool
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The user interacts with the InvA tool via commands; the commands available
are the following:

– (help .) shows the list of commands available.
– (analyze-stable <pred> in <module> <module> .) generates the proof obli-

gations for inference St with inference Nr1, for the given predicate. The
first module equationally specifies the state predicate and the second one
the topmost rewrite theory. This command tries to eagerly discharge the
proof obligations; those that cannot be discharged are shown to the user.

– (analyze-stable <pred> in <module> <module> assuming <pred> .) generates
the proof obligations for proving the third premise of inference Str2 with
inference Nr2, for the given predicate and the given modules. The first
module equationally specifies the state predicates and the second one the
topmost rewrite theory. This command tries to eagerly discharge the proof
obligations; those that cannot be discharged are shown to the user.

– (analyze <pred> implies <pred> in <module> .) generates the proof obliga-
tions for proving the given implication in the given module, according to in-
ference C⇒. This command tries to eagerly discharge the proof obligations;
those that cannot be discharged are shown to the user.

– (show pos .) shows the proof obligations computed by the last analyze

command that could not be discharged; those that were discharged are not
shown.

– (show-all pos .) shows all the proof obligations computed by the last analyze
command.

Observe that the analysis commands in InvA give direct tool support for de-
ductive reasoning with some of the inference rules presented here, but not for all
of them. For example, there is no command in InvA directly supporting deduction
with inference rule Inv. Nevertheless, deduction with all inference rules is sup-
ported by InvA via combination of commands. For example, deduction with infer-
ence rule Inv can be achieved by combining the analyze and analyze-stable

commands.

3.3 Proof-Search Heuristics in InvA

After applying rules St, Inv, Str1, Str2, C⇒, Nr1, and Nr2 according to the
user commands, the InvA tool uses rewriting-based reasoning and narrowing pro-
cedures, and SMT decision procedures for automatically discharging as many of
the generated equational proof obligations as possible. For an executable equa-
tional specification EΠ = (ΣΠ , EΠ 	B) and a conditional proof obligation ϕ of
the form

t = u if γ,

the InvA tool applies a proof-search strategy such that, if it succeeds, then the
Kripke structure KΠ

R associated to the initial reachability model TR satisfies
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Fig. 2. Approach for checking inductive stability and invariance properties for rewrite
theories

ϕ. Otherwise, if the proof-search fails, the proof obligation ϕ (or a logically
equivalent variant) is output to the user.

For the proof-search process, the InvA tool first tries to simplify Boolean ex-
pressions in ϕ. During the simplification process, the tool assumes that any oper-
ator ‘∼’ is an equationally defined equality predicate, i.e., an equality enrichment.
Given an order-sorted signature Σ = (S,≤, F ) and an order-sorted equational
theory E = (Σ,E) with initial algebra TE , an equality enrichment [17] of E is
an equational theory E∼ that extends E by defining a Boolean-valued equality
function symbol ‘∼’ that coincides with ‘=’ in TE .

Definition 1. An equational theory E∼=(Σ∼, E∼) is called an equality enrich-
ment of E = (Σ,E), with Σ∼ = (S∼,≤∼, F∼) and Σ = (S,≤, F ), iff

– E∼ is a protecting extension of E;
– the poset of sorts of Σ∼ extends (S,≤) by adding a new sort Bool that

belongs to a new connected component, with constants 
 and ⊥ such that
TE∼,Bool = {[
], [⊥]}, with 
 �=E∼ ⊥; and

– for each connected component in (S,≤) there is a top sort k ∈ S∼ and a
binary commutative operator ∼ : k k −→ Bool in Σ∼, such that the
following equivalences hold for any ground terms t, u ∈ TΣ,k:

E � t = u ⇐⇒ E∼ � (t ∼ u) = 
,

E �� t = u ⇐⇒ E∼ � (t ∼ u) = ⊥.

An equality enrichment E∼ of E is called Boolean iff it contains all the func-
tion symbols and equations making the elements of TE∼,Bool a two-element
Boolean algebra.

Using the information about ‘∼’, a Boolean transformation can be applied
recursively to ϕ with the additional information of the equality enrichment, if
any is defined.
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The goal of the Boolean transformation process on a conditional proof obliga-
tion ϕ having the form t = u if γ, is to obtain, if possible, an inductively equiv-
alent proof obligation ϕ′ for which the automatic search tests, explained below,
have better chances of success. The following is a description of the Boolean
transformations applied recursively by the InvA tool:

– If t = u in ϕ is such that t is of the form t1 ∼ t2 and u of the form ⊥, then
ϕ is transformed into 
 = ⊥ if γ ∧ t1 = t2.

– If v1 = v2, with v1, v2 ∈ TΣ(X)Bool , is any of theΣ-equalities in the condition
γ of ϕ, then:

• If v1 is of the form v11 ∼ v21 and v2 of the form 
, then v1 = v2 is replaced
by v11 = v21 .

• If v1 is of the form v11 � · · · � vn1 and v2 of the form 
, then v1 = v2 is
replaced by v11 = 
 ∧ · · · ∧ vn1 = 
. Note that the vi1 have sort Bool .

• If v1 is of the form v11 � · · · � vn1 and v2 of the form ⊥, then v1 = v2 is
replaced by v11 = ⊥ ∧ · · · ∧ vn1 = ⊥. Note that the vi1 have sort Bool .

Symbols � and � are used to represent, respectively, the conjunction and
disjunction function symbols used by the Boolean equality enrichment in Def-
inition 1. Also note that Σ-equalities are unoriented, and thus in the Boolean
transformation the order of terms in the equalities is immaterial.

After the Boolean transformation process is completed, some automatic search
tests are applied to the resulting proof obligation following the strategy described
below. In what follows, it is assumed that ϕ has been already simplified by the
abovementioned Boolean transformations. Furthermore, let t, u, γ be obtained
from t, u, and γ, respectively, by replacing each variable x ∈ X by a new constant
x ∈ X, with Σ ∩X = ∅.

1. Equational simplification. The strategy checks if ϕ holds trivially, i.e., if

t ↓Σ,E/B=B u ↓Σ,E/B

or there is ti=ui in γ such that ti ↓Σ,E/B, ui ↓Σ,E/B∈ TΣ but

ti ↓Σ,E/B �=B ui ↓Σ,E/B .

Some simplifications in the form of reduction to canonical forms can be
made to ϕ, even if they do not yield a trivial proof of ϕ. In some cases, such
canonical reductions are incorporated into ϕ and the Boolean transformation
is used again.

2. Context joinability. It checks whether ϕ is context-joinable [8]. The proof
obligation ϕ is context-joinable iff t and u are joinable in the rewrite theory

Rϕ
E = (Σ(X), B,

−→
E 	 −→γ ), obtained by making variables into constants and

by orienting the equations E as rewrite rules
−→
E and heuristically orienting

each equality ti = ui in γ as a sequent ti → ui in
−→γ .
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3. Unfeasability. It checks if the proof obligation is unfeasible [8]. The proof
obligation ϕ is unfeasible if there is a conjunct ti → ui in −→γ and v, w ∈
TΣ(X) such that Rϕ

E � ti → v ∧ ti → w, CSUB(v = w) = ∅, and v and w

are strongly irreducible with
−→
E modulo B, i.e., if v and w are such that each

one of its ground instances is in E-canonical form modulo B.
4. SMT Solving. It checks if the proof obligation can be proved by an SMT

decision procedure. The condition γ of the proof obligation ϕ is analyzed
and, if possible, a subformula consisting only of arithmetic subexpressions is
extracted. This subformula has the following property: if it is a contradiction,
then γ is unsatisfiable. Therefore, if the SMT decision procedure answers
that the input subformula is unsatisfiable, then, as in the previous test, ϕ is
unfeasible.

Because of the admissibility assumptions on (Σ,E 	 B), the first test of the
strategy either succeeds or fails in finitely many equational rewrite steps. For
the second and third tests, the strategy is not guaranteed to succeed or fail
in finitely many rewrite steps because the oriented sequents −→γ can falsify a
termination assumption. So, for these last two checks, InvA uses a bound on
the depth of the proof-search. For the fourth test, InvA offers support for integer
linear arithmetic constraints, which is known to be decidable and for which there
are decision procedures already implemented in the SMT solver of choice.

The code in InvA for tests (2) and (3) was borrowed and adapted from the
Church-Rosser Checker Tool [8]. For the test (4), the InvA tool relies on an
extension of Maude with the CVC3 theorem prover available from the Matching
Logic Project [25].

4 The Alternating Bit Protocol

The Alternating Bit Protocol (ABP) [2] is a data layer protocol. It was designed
to achieve reliable full-duplex data transfer between two processes over an unre-
liable half-duplex transmission line in which messages can be lost or corrupted
in a detectable way. The data link layer, the second lowest layer in the OSI seven
layer model, splits data into frames for sending on the physical layer and receives
acknowledgment frames. It performs error checking and re-transmits frames not
received correctly. It provides an error-free virtual channel to the network layer,
the third lowest layer in the OSI layer model.

The overall structure of ABP is illustrated in Figure 3. The protocol comprises
an input stream of data to be transmitted, a sender and a receiver process, each
having a data buffer and a one bit state, a data channel for data-bit pairs called
bit-packets, an acknowledgment channel for bit-packets consisting of a single bit,
and an output data stream. Here is how the protocol works:

– The sender process starts by repeatedly sending bit-packets (b, d1) into the
data channel, where b is the sender’s bit and d1 is the first element of the
input stream.
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– The receiver process starts by waiting until it receives the bit-packet (b, d1),
and then it repeatedly sends b over the acknowledgment channel.

– When the source process receives b, it begins repeatedly sending the bit-
packet (flip(b), d2), where d2 is the second element of the input stream,
which is what the receiver process is now waiting for.

– When the target receives (flip(b), d2), it begins sending packets containing
flip(b).

– At any moment either channel can duplicate or lose its oldest packet, if any.
– And so on ...

data bit data bit
output streamack channelinput stream

data channel

Fig. 3. The Alternating Bit Protocol

The protocol is highly concurrent and non-deterministic because, for instance,
it is unknown how long will it take before a bit-packet gets through. To guarantee
progress, it must be assumed that the channels are fair, in the sense that if the
sender persists, eventually a bit-packet will get through. The reason is that
without this assumption the algorithm is not correct because data transmission
might fail forever. However, this is a fairness assumption that is not needed for
analyzing the reliable communication enforced by the protocol. Remember that
a safety property assures that “nothing bad happens”, even when nothing ever
happens.

4.1 Formal Modeling

The ABP specification in Maude has 9 modules. This section gives an overview;
the full specification can be found in [23].

At the top level, the state space is represented by the top sort Sys defined in
module ABP-STATE, which is a 6-tuple:

sort Sys .

op _:_>_|_<_:_ : iNat Bit BitPacketQueue BitQueue Bit iNatList

-> Sys [ctor] .

The arguments of a state are the data from the input stream currently being
transmitted by the sender (as iNat), the bit of the sender (as Bit), the data
channel (as BitPacketQueue), the acknowledgment channel (as BitQueue), the
bit of the receiver (as Bit), and the output stream (as iNatList).

The sort iNat is that of natural numbers in Peano notation, together with
an equality enrichment. Natural numbers are used to represent packets in the
potentially infinite input stream.
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sort iNat .

op 0 : -> iNat [ctor] .

op s_ : iNat -> iNat [ctor] .

op _~_ : iNat iNat -> Bool [comm] .

Bits are defined in module BIT by sort Bit with two constructor constants, a
‘flipping’ operator, and an equality enrichment:

sort Bit .

ops on off : -> Bit [ctor] .

op flip : Bit -> Bit .

op _~_ : Bit Bit -> Bool [comm] .

eq flip(on)

= off .

eq flip(off)

= on .

Sort BitPacketQueue represents lists of bit-packets, sort BitQueue represents
lists of bits, and sort iNatList represents lists of natural numbers. They are all
lists defined in the usual way: an empty list is identified by the constructor con-
stant nil, “cons” is a constructor binary symbol denoted by juxtaposition, and
append is a defined binary symbol denoted by ‘;’. For instance, sort BitQueue
defined in module BIT-QUEUE is specified as follows:

sort BitQueue .

op nil : -> BitQueue [ctor] .

op __ : Bit BitQueue -> BitQueue [ctor prec 61] .

op _;_ : BitQueue BitQueue -> BitQueue [prec 65] .

eq nil ; BQ:BitQueue

= BQ:BitQueue .

eq B1:Bit BQ1:BitQueue ; BQ2:BitQueue

= B:Bit (BQ1:BitQueue ; BQ2:BitQueue) .

Having covered the basic notation, consider the following ground term of sort
Sys representing a state in the system:

s(0) : on > (off,0) nil | nil < off : (0 nil)

In this state, the packet from the input stream currently being sent is s(0),
the sender’s bit is on, the data channel contains only the bit-packet (off,0),
the acknowledgment channel is empty, the receiver’s bit is off, and the output
stream consists only of the packet 0.

Finally, module ABP specifies the operation of the protocol with 15 rewrite
rules. These rewrite rules model the transmission of the bit-packets through the
data channel, the reception of acknowledgments from the receiver, data duplica-
tion and loss, among other behaviors of the system. For instance, consider the
following five rewrite rules:

rl [send-1] :
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N:iNat : B1:Bit > BPQ:BitPacketQueue

| BQ:BitQueue < B2:Bit : NL:iNatList

=> N:iNat : B1:Bit > BPQ:BitPacketQueue ; ((B1:Bit, N:iNat) nil)

| BQ:BitQueue < B2:Bit : NL:iNatList .

rl [recv-1b] :

N:iNat : on > BPQ:BitPacketQueue

| off BQ:BitQueue < B2:Bit : NL:iNatList

=> s(N:iNat) : off > BPQ:BitPacketQueue

| BQ:BitQueue < B2:Bit : NL:iNatList .

rl [recv-1c] :

N:iNat : off > BPQ:BitPacketQueue

| on BQ:BitQueue < B2:Bit : NL:iNatList

=> s(N:iNat) : on > BPQ:BitPacketQueue

| BQ:BitQueue < B2:Bit : NL:iNatList .

rl [recv-2a] :

N:iNat : B1:Bit > (on,N2:iNat) BPQ:BitPacketQueue

| BQ:BitQueue < on : NL:iNatList

=> N:iNat : B1:Bit > BPQ:BitPacketQueue

| BQ:BitQueue < off : (N2:iNat NL:iNatList) .

rl [dup-1] :

N:iNat : B1:Bit > BP:BitPacket BPQ:BitPacketQueue

| BQ:BitQueue < B2:Bit : NL:iNatList

=> N:iNat : B1:Bit > BP:BitPacket (BP:BitPacket BPQ:BitPacketQueue)

| BQ:BitQueue < B2:Bit : NL:iNatList .

The effects of these rules in a state can be summarized as follows:

[send-1] models the “fifo” placement of the current bit-packet in the data
channel (the acknowledgment channel behaves in the same way).

[recv-1b] models the reception of the acknowledgment the sender was wait-
ing for and thus the sender process immediately updates the packet to be
transmitted with the next available packet from the input stream and flips
its communication bit.

[recv-1c] models the reception of an acknowledgment the sender was not wait-
ing for and thus the acknowledgment is ignored.

[recv-2a] models the reception of a bit-packet whose contents are put in the
output stream.

[dup-1] duplicates the first message in the data channel.

Note that because of rule [recv-1c], for instance, the formal model of the
ABP has potentially infinitely many reachable states: every time a packet is
successfully transmitted, the sender’s counter modeling the input stream is in-
creased by one and then the whole sending process starts over again with the
next packet.



Mechanical Analysis of Reliable Communication 617

5 Reliable Communication

The analysis that follows is based on the formal model explained in Section 4.1.
One of the main properties the ABP should enjoy is the reliable communica-

tion property. This means that the protocol makes possible to reliably communi-
cate and deliver information from a source to a destination, even in the presence
of unreliable channels of communication. The goal in this section is to report on
the experience of using the InvA tool in the successful mechanical verification of
this property.

5.1 Formal Specification of the Property

Reliable communication in ABP means that whenever n packets have been de-
livered, these were the first n packets sent in that particular order. Note that
this is a property that must hold for each natural number n and that cannot
be effectively checked by means of direct algorithmic techniques, such as model
checking the ABP specification, even if the set of initial states is finite.

The reliable communication property is expressed by the state predicate
inv-main and is defined as follows:

op inv-main : Sys -> Bool .

eq [inv-main-1] :

inv-main(N:iNat : B:Bit > BPQ:BitPacketQueue

| BQ:BitQueue < B:Bit : NL:iNatList)

= (N:iNat NL:iNatList) ~ gen-list(N:iNat) .

ceq [inv-main-2] :

inv-main(N:iNat : B1:Bit > BPQ:BitPacketQueue

| BQ:BitQueue < B2:Bit : NL:iNatList)

= NL:iNatList ~ gen-list(N:iNat)

if B1:Bit ~ B2:Bit = false .

op gen-list : iNat -> iNatList .

eq gen-list(0)

= (0 nil) .

eq gen-list(s N)

= (s N) gen-list(N) .

State predicate inv-main is fully defined by two equations and uses the aux-
iliary function gen-list. Equation [inv-main-1] considers the case in which
the parity of the sender and receiver bits coincides. In this case, the reliable
communication property holds if and only if the delivered packets correspond to
all but the last packet sent and they are all in order. Equation [inv-main-2]

considers the case in which the parity of the sender and receiver bits does not
coincide. In this case, the reliable communication property holds if and only if
the delivered packets correspond to all packets sent and they are all in order.
Given a natural number n, function gen-list generates the list of the first n
natural numbers in decreasing order.



618 C. Rocha and J. Meseguer

Consider the rule [recv-2b] that models packet reception in ABP in order to
motivate the correctness of the reliable communication property:

rl [recv-2b] :

N:iNat : B:Bit > (off,N1:iNat) BPQ:BitPacketQueue

| BQ:BitQueue < off : NL:iNatList

=> N:iNat : B:Bit > BPQ:BitPacketQueue

| BQ:BitQueue < on : (N1:iNat NL:iNatList) .

Note that when a packet N1:iNat is received there is no assumption made about
the relationship between N1:iNat and the current packet from the input stream
N:iNat or the already delivered packets NL:iNatList. In this case, there is no
obvious reason for the reliable communication property to hold, even if a state
initially satisfies this property.

The goal is to prove the ABP inv-main-invariant from init. State predicate
init defines the set of initial states as follows:

op init : Sys -> [Bool] .

eq [init-1] :

init( 0 : on > nil | nil < on : nil)

= true .

eq [init-2] :

init( 0 : off > nil | nil < off : nil)

= true .

The set of initial states for the verification task at hand, as defined by init,
consists of exactly two states. Namely, those states where the packet to be trans-
mitted is 0, the sender and receiver bits coincide, the communication channels
are empty, and no packet has been delivered.

The following verification commands can be given to the InvA tool in order
to check if state predicate inv-main is an inductive invariant from init:

(analyze init(S:Sys) implies inv-main(S:Sys) in ABP-PREDS .)

(analyze-stable inv-main(S:Sys) in ABP-PREDS ABP .)

It is assumed that module ABP-PREDS contains the state predicates and their
corresponding auxiliary function symbols, and module ABP contains the specifi-
cation of ABP, as explained in Section 4.1 and documented in [23].

When the above-mentioned commands, the InvA tool generates the following
output:

Checking ABP-PREDS ||- init(S:Sys) => inv-main(S:Sys) ...

Proof obligations generated: 2

Proof obligations discharged: 2

Success!

Checking ABP-PREDS ||- inv-main(S:Sys) => O inv-main(S:Sys) ...

Proof obligations generated: 30



Mechanical Analysis of Reliable Communication 619

Proof obligations discharged: 22

The following proof obligations need to be discharged:

8. from inv-main-2 & recv-2b : pending

inv-main(#7:iNat : #8:Bit > #10:BitPacketQueue

| #11:BitQueue < on :(#9:iNat #12:iNatList)) = true

if off ~ #8:Bit = false

/\ #12:iNatList = gen-list(#7:iNat).

...

The tool generates 32 proof obligations and automatically discharges 24 of them.
The remaining 8 proof obligations are returned to the user; in the snapshot, only
one proof obligation for ground stability that was not automatically discharged
is shown and it is identified by label 8.

Upon inspection of the InvA’s output, it is relatively easy to observe that
inv-main is not an inductive invariant for ABP. Indeed, consider the proof obli-
gation identified by label 8, as show in the snapshot above, and a ground inter-
pretation where #8:Bit is on, #7:iNat and #9:iNat are 0, and #12:iNatList is
the singleton list 0 nil. For this particular ground instantiation, the condition
in the proof obligation is satisfied because on ~ off reduces to false and the
value returned by gen-list on input 0 is the ground list 0 nil. However, by
equation [inv-main-2] in the definition of predicate inv-main, this proof obli-
gation is false because the lefthand side of the conclusion reduces to the Boolean
term 0 nil ~ 0 0 nil, which ultimately reduces to false. This is evidence
of the fact that a stronger predicate is needed, that is, inv-main needs to be
strengthened.

5.2 Strengthening the Invariant

The first observation to make is that the InvA tool would be able to automatically
discharge more proof obligations and also return simpler ones if there were some
mechanism for achieving case analysis on the sort Bit. Since the InvA internals
do not yet offer this feature, a practical approach is to include the case splitting
as part of the predicate’s equational definition (similarly to what was done in
the definition of state predicate init). For instance, state predicate inv is a
finer-grained version of inv-main that exhibits the idea of case splitting on the
sort Bit for the case of the bits in the sender and receiver.

op inv : Sys -> Bool .

eq [inv-1a] :

inv(N:iNat : on > BPQ:BitPacketQueue

| BQ:BitQueue < on : NL:iNatList)

= (N:iNat NL:iNatList) ~ gen-list(N:iNat) .

eq [inv-1a] :

inv(N:iNat : off > BPQ:BitPacketQueue

| BQ:BitQueue < off : NL:iNatList)

= (N:iNat NL:iNatList) ~ gen-list(N:iNat) .

eq [inv-2a] :
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inv(N:iNat : on > BPQ:BitPacketQueue

| BQ:BitQueue < off : NL:iNatList)

= NL:iNatList ~ gen-list(N:iNat) .

eq [inv-2a] :

inv(N:iNat : off > BPQ:BitPacketQueue

| BQ:BitQueue < on : NL:iNatList)

= NL:iNatList ~ gen-list(N:iNat) .

Since the case analysis on the sort Bit is already implemented in predicate
inv, and this is potentially useful for automation in the overall proof, this pred-
icate is preferred over predicate inv-main. The idea is then to strengthen inv

instead of inv-main. Within the overall context of the verification task, the
change of predicate inv-main for inv requires a formal proof of the following
implications:

ABP � init ⇒ inv and ABP � inv ⇒ inv-main.

These two proof obligations can be analyzed with the help of inference rule C⇒
in Section 3.1. The InvA’s mechanization of this inference rule can automatically
discharge the implications:

Checking ABP-PREDS ||- init(S:Sys) => inv(S:Sys) ...

Proof obligations generated: 2

Proof obligations discharged: 2

Success!

Checking ABP-PREDS ||- inv(S:Sys) => inv-main(S:Sys) ...

Proof obligations generated: 4

Proof obligations discharged: 4

Success!

Finding a strengthening for inv is not an easy task at first sight. The non-
obvious relationships between the channels and the alternating bits, and the
many rules that can concurrently apply to a state make this harder. But it is
the deep understanding of these relationships that guides the proof effort for
obtaining a useful, yet succinct and elegant, strengthening for inv.

The key to it all is that the channels behave under some sort of uniformity
that is parametric on the sender and receiver bits. This notion of uniformity
can be precisely captured with the help of some auxiliary predicates for the
two communication channels. Indeed, consider the following auxiliary predicates
all-packets and good-packet-queue:

op all-packets : BitPacketQueue Bit iNat -> Bool .

eq [ap-1] :

all-packets(nil,B:Bit,N:iNat)

= true .

eq [ap-2] :

all-packets(BP:BitPacket BPQ:BitPacketQueue,B:Bit,N:iNat)

= BP:BitPacket ~ (B:Bit,N:iNat) and
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all-packets(BPQ:BitPacketQueue,B:Bit,N:iNat) .

op good-packet-queue : BitPacketQueue Bit iNat -> Bool .

eq [gpq-1] :

good-packet-queue(nil,B:Bit,N:iNat)

= true .

ceq [gpq-2] :

good-packet-queue((B1:Bit,N1:iNat) BPQ:BitPacketQueue,

B:Bit,N:iNat)

= N:iNat ~ s(N1:iNat) and

good-packet-queue(BPQ:BitPacketQueue,B:Bit,N:iNat)

if B1:Bit = flip(B:Bit) .

eq [gpq-3] :

good-packet-queue((B:Bit,N1:iNat) BPQ:BitPacketQueue,

B:Bit,N:iNat)

= N:iNat ~ N1:iNat and

all-packets(BPQ:BitPacketQueue,B:Bit,N:Nat) .

Predicate all-packets on input BPQ:BitPacketQueue and (B:Bit,N:iNat)

is true if and only if all bit-packets in BPQ have the form (B,N). Predicate
good-packet-queueon input BPQ:BitPacketQueue and (B:Bit,N:iNat) is true
if and only if BPQ can be split into two parts, one of them possibly empty, where
in the initial part of the channel all packets are of the form (flip(B),N-1) and
in the second part of the form (B,N). For example:

good-packet-queue((on,3) (off,4) (off,4) nil, off, 4) = true

good-packet-queue((on,3) (on,3) nil, off, 4) = true

good-packet-queue((off,4) nil, off, 4) = true

good-packet-queue((off,4) (on,4) nil, off, 4) = false

Auxiliary predicates all-bits and good-bit-queue are similar to the aux-
iliary predicates just discussed for channels of bit-packets, but they are about
channels of bits.

op all-bits : BitQueue Bit -> Bool .

eq [ab-1] :

all-bits(nil,B:Bit)

= true .

eq [ab-2] :

all-bits(B1:Bit BQ:BitQueue,B:Bit)

= B1:Bit ~ B:Bit and all-bits(BQ:BitQueue,B:Bit) .

op good-bit-queue : BitQueue Bit -> Bool .

eq [gbq-1] :

good-bit-queue(nil,B:Bit)

= true .

ceq [gbq-2] :
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good-bit-queue(B1:Bit BQ:BitQueue, B:Bit)

= good-bit-queue(BQ:BitQueue,B:Bit)

if B1:Bit = flip(B:Bit) .

eq [gbq-3] :

good-bit-queue(B:Bit BQ:BitQueue, B:Bit)

= all-bits(BQ:BitQueue,B:Bit) .

The strengthening for inv is the state predicate good-queues that uses the
auxiliary predicates above-mentioned:

op good-queues : Sys -> Bool .

eq [good-queues-1a] :

good-queues(N:iNat : on > BPQ:BitPacketQueue |

BQ:BitQueue < on : NL:iNatList)

= all-bits(BQ:BitQueue,on) and

good-packet-queue(BPQ:BitPacketQueue,on,N:iNat) .

eq [good-queues-1b] :

good-queues(N:iNat : off > BPQ:BitPacketQueue |

BQ:BitQueue < off : NL:iNatList)

= all-bits(BQ:BitQueue,off) and

good-packet-queue(BPQ:BitPacketQueue,off,N:iNat) .

eq [good-queues-2a] :

good-queues(N:iNat : on > BPQ:BitPacketQueue |

BQ:BitQueue < off : NL:iNatList)

= good-bit-queue(BQ:BitQueue,off) and

all-packets(BPQ:BitPacketQueue,on,N:iNat) .

eq [good-queues-2b] :

good-queues(N:iNat : off > BPQ:BitPacketQueue |

BQ:BitQueue < on : NL:iNatList)

= good-bit-queue(BQ:BitQueue,on) and

all-packets(BPQ:BitPacketQueue,off,N:iNat) .

State predicate good-queues is fully defined by four equations. It characterizes
the patterns observed on the communication channels, and their relationship
with the alternating bits, in four cases. For example, equation [good-queues-1a]

states that a state in which both bits are on satisfies predicated good-queues if
and only if all bits in the receiver’s queue are on and the sender’s channel can
be split into two parts, where in the initial part of the channel all packets are of
the form (off,N-1) and in the second part of the form (on,N).

As it will be shown, the strengthening good-queues of inv is enough to
prove the correctness of ABP. Figure 4 depicts the full proof-tree for the in-
ductive invariance of inv-main from init that uses state predicates inv and
good-queues.

The next step in the proof is to check

ABP � good-queues∧ inv ⇒ ©inv and

ABP � init ⇒ �good-queues,
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2/2

init ⇒ inv
C⇒

2/2

init ⇒ gq
C⇒

28/48
(48/48)

gq ⇒ ©gq
Nr1

gq ⇒ �gq
St

init ⇒ �gq
Inv

46/48
(48/48)

gq ∧ inv ⇒ ©inv
Nr2

init ⇒ �inv
Str2

4/4

inv ⇒ inv-main
C⇒

init ⇒ �inv-main
Str1

Fig. 4. Correctness proof of the Alternating Bit Protocol (gq stands for good-queues).
The expression d/g denotes the number g of proof obligations generated and the number
d of proof obligations automatically discharged by the InvA tool; the same expression
in parenthesis has the same meaning but includes the use of the ITP and/or some
auxiliary lemmata. Some trivial inferences have been omitted.

since the following two properties have been already proved:

ABP � init ⇒ inv and ABP � inv ⇒ inv-main.

When checking good-queues∧inv ⇒ ©inv, the following is the output given
by the InvA tool:

rewrites: 97315 in 348ms cpu (346ms real) (279623 rewrites/second)

Checking ABP-PREDS ||- inv(S:Sys) => O inv(S:Sys)

assuming good-queues(S:Sys) ...

Proof obligations generated: 48

Proof obligations discharged: 46

The following proof obligations could not be discharged:

8. from inv-1a & recv-2b : pending

gen-list(#5:iNat)~(#6:iNat #9:iNatList) = true

if #5:iNat = #6:iNat

/\ all-bits(#8:BitQueue,off) = true

/\ all-packets(#7:BitPacketQueue,off,#5:iNat) = true

/\ gen-list(#5:iNat) = #5:iNat #9:iNatList .

46. from inv-1a & recv-2a : pending

gen-list(#5:iNat)~(#6:iNat #9:iNatList) = true

if #5:iNat = #6:iNat

/\ all-bits(#8:BitQueue,on) = true

/\ all-packets(#7:BitPacketQueue,on,#5:iNat) = true

/\ gen-list(#5:iNat) = #5:iNat #9:iNatList .

The tool generates 48 proof obligations and automatically discharges 46 of them.
The remaining two proof obligations are about properties of lists of natural num-
bers. Note that the Boolean transformation internally implemented by the InvA
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tool (explained in Section 3.1) splits the Boolean conjunctions in the specifi-
cation of good-queues into conditions and the equality predicate ‘∼’ into ‘=’,
whenever it was possible. A proof script for proof obligations 8 and 46, that
automatically discharges these proof obligations, can be given to the ITP as
follows:

(goal po8 : ABP-PREDS |- A{ #5:iNat ; #6:iNat ; #9:iNatList ;

#8:BitQueue ; #7:BitPacketQueue }

(

(#5:iNat) = (#6:iNat) &

(all-bits(#8:BitQueue,off)) = (true) &

(all-packets(#7:BitPacketQueue,off,#5:iNat)) = (true) &

(gen-list(#5:iNat)) = (#5:iNat #9:iNatList)

=>

(gen-list(#5:iNat) ~ (#6:iNat #9:iNatList)) = (true)

)

.)

(auto .)

(goal po46 : ABP-PREDS |- A{ #5:iNat ; #6:iNat ; #9:iNatList ;

#8:BitQueue ; #7:BitPacketQueue }

(

(#5:iNat) = (#6:iNat) &

(all-bits(#8:BitQueue,on)) = (true) &

(all-packets(#7:BitPacketQueue,on,#5:iNat)) = (true) &

(gen-list(#5:iNat)) = (#5:iNat #9:iNatList)

=>

(gen-list(#5:iNat) ~ (#6:iNat #9:iNatList)) = (true)

)

.)

(auto .)

The following is the output of the ITP:

=================================
label-sel: po8#0@0
=================================
A{#5:iNat ; #6:iNat ; #7:BitPacketQueue ; #8:BitQueue ; #9:iNatList}
gen-list(#5:iNat) = #5:iNat #9:iNatList
& all-packets(#7:BitPacketQueue,off,#5:iNat) = true
& all-bits(#8:BitQueue,off) = true & #5:iNat = #6:iNat
==> gen-list(#5:iNat)~(#6:iNat #9:iNatList) = true

+++++++++++++++++++++++++++++++++

rewrites: 10751 in 173ms cpu (181ms real) (61990 rewrites/second)
Eliminated current goal.

q.e.d

+++++++++++++++++++++++++++++++++

rewrites: 9172 in 51ms cpu (51ms real) (177962 rewrites/second)

=================================
label-sel: po46#1@0
=================================
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A{#5:iNat ; #6:iNat ; #7:BitPacketQueue ; #8:BitQueue ; #9:iNatList}
gen-list(#5:iNat) = #5:iNat #9:iNatList
& all-packets(#7:BitPacketQueue,on,#5:iNat) = true
& all-bits(#8:BitQueue,on) = true & #5:iNat = #6:iNat
==> gen-list(#5:iNat)~(#6:iNat #9:iNatList) = true

+++++++++++++++++++++++++++++++++

rewrites: 10751 in 179ms cpu (182ms real) (59745 rewrites/second)
Eliminated current goal.

q.e.d

+++++++++++++++++++++++++++++++++

This completes the proof of:

ABP � good-queues∧ inv ⇒ ©inv.

For the proof of init ⇒ �good-queues the InvA tool gives the following output:

rewrites: 10072 in 32ms cpu (35ms real) (314730 rewrites/second)

Checking ABP-PREDS ||- init(S:Sys) => good-queues(S:Sys) ...

Proof obligations generated: 2

Proof obligations discharged: 2

Success!

rewrites: 57223 in 284ms cpu (283ms real) (201476 rewrites/second)

Checking

ABP-PREDS+LEMMATA ||- good-queues(S:Sys) => O good-queues(S:Sys) ...

Proof obligations generated: 48

Proof obligations discharged: 48

Success!

Note that in the proof of inductive stability, module ABP-PREDS+LEMMATA is used
instead of ABP-PREDS. The former module contains 10 lemmata about the aux-
iliary predicates used by state predicate good-queues. Without these lemmata,
the InvA tool discharges automatically only 26 of the 48 proof obligations. See [23]
for a complete explanation of these lemmata and their mechanical proof in the
ITP. This concludes the proof of the inductive invariance of good-queues from
init for ABP.

The main result about the correctness of the ABP is then established mechan-
ically in the InvA with help of the ITP. Namely, the following inductive property
holds:

ABP � init ⇒ �inv-main.

See [23] for mechanical proofs of the admissibility of modules ABP, ABP-PREDS,
ABP-PREDS+LEMMATA, and also for the ITP proof scripts used as part of the main
result in this section.

6 Related Work and Concluding Remarks

The Alternating Bit Protocol (ABP) is a well-established benchmark in the proof
technologies that address concurrent, non-deterministic systems. As such, it has



626 C. Rocha and J. Meseguer

been formally studied from different viewpoints using a wealth of formal tech-
niques. They include process algebra [3,4], temporal Petri nets [27], the Calculus
of Constructions [11], and timed rewriting logic [26], among many others.

In the framework of observational transition systems (OTS), ABP has been
formally studied independently by K. Ogata and K. Futatsugi [20], and by K.
Lin and J. Goguen [14]. In the former, the focus is on proving the same invariant
property about reliable communication based on simultaneous induction. In the
latter, the focus is on verifying liveness properties using conditional circular
coinductive rewriting.

Figure 5 presents a comparison between the proof of the reliable communi-
cation property for ABP presented in [20], that uses proof scores, and the one
presented here. This comparison is possible thanks to the authors of [20] who
kindly shared the source code of their case study.

Measure [20] This work
Model LOC 286 208

Model + Predicates LOC 286 + 63 208 + 200
State predicates # 11 3

Lemmata # 7 10
Proof scripts LOC 5189 213

Proof scripts / # predicates LOC 471.8 71

Fig. 5. Comparison of the ABP case study for the reliable communication property
with a similar case study using proof scores in [20]

Note that the human proof effort in [20] is significantly higher than the one
in proving the same property using the approach and tools of Section 3, as
presented in this paper. However, this comparison needs to be taken with a
grain of salt. In particular, the case study using proof scores in [20] does not
benefit from automation techniques, not even for many proof obligations that
are trivial base cases. In contrast, the combined power of InvA and ITP was of
great help, not only because it automatically took care of many simple proof
obligations, but also because of some of its equational inductive techniques such
as cover-set induction [13].

This paper has presented a case study about the deductive analysis of induc-
tive safety properties using the methodology, the proof system, and the Maude
Invariant Analyzer tool (InvA) [23,24]. The subject of study is the Alterating Bit
Protocol: a highly concurrent protocol for reliable data communication across a
lossy channel. The invariant in this case study is about reliable communication,
which is the main safety property of the ABP protocol. As a result of the case
study, a fully mechanized proof for the correctness of the protocol is obtained
with the InvA tool, and with help of Maude’s ITP that was useful for discharg-
ing some equational proof obligations and auxiliary lemmata. The proof relies
heavily on the specification and verification methods developed in [23,24], and
their implementation in the InvA tool.
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Future work should focus on improving the management of proof obligations in
the InvA tool, specially when analyzing large specifications. There is also a need
for improving the proof heuristics used by the tool. As explained in Section 3,
a series of heuristics are employed by the InvA for discharging proof obligations.
However, it should be possible to improve some of them and implement some
new ones. For example, the InvA tool implements some basic heuristic for check-
ing unsatisfiability of numeric conditions modulo SMT. This could perhaps be
combined with equational narrowing, which is already available in Maude. This
should increase the number of proof obligations automatically discharged by the
tool, and thus lessen the proof effort of the user. There is also the need for
improving the techniques available to the user in tools such as the ITP. For in-
stance, inductive techniques such as cover-set induction modulo AC should be
investigated, implemented, and offered to the user. The current ITP version sup-
ports cover-set induction [13] but for the moment not modulo AC. Finally, the
comparison in Figure 5 could be taken a step further by (i) extending the InvA
tool with (semi)automatic lemma discovery by means of symbolic simulation
based on narrowing [1] and rewriting modulo SMT [23], and (ii) by comparing
InvA’s degree of automation with the OTS/CafeOBJ method assisted with auto-
matic and interactive theorem proving tools such as CrÈme [18] and the newly
developed CITP [10].
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