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Abstract. Ensembles are groups of active entities that collaborate to
perform a certain task. Modeling software systems for ensemble execu-
tion is challenging since such applications are highly dynamic involving
complex interaction structures of concurrently running individuals. In
this work, we propose a formal foundation for ensemble modeling based
on a rigorous semantic framework. Our approach is centered around the
notion of a role expressing the capabilities that a component needs when
participating in a specific ensemble. We use ensemble structures to model
the structural aspects of collaborations and labeled transition systems to
specify the dynamic behavior typical for performing a certain role. Our
approach is driven by a clear discrimination between types, used on the
specification level, and instances, which form concrete ensembles in an
ensemble automaton. The semantics of an ensemble specification is given
by the class of all ensemble automata which adhere to the properties of
an ensemble structure such that any ensemble member, playing a certain
role, exhibits a behavior that is allowed by the role behavior specification.

1 Introduction

1.1 Motivation

The continuously increasing potential of new computer technologies paves the
way for developing advanced applications in which huge numbers of distributed
nodes collaborate to accomplish various tasks under changing environments.
Application domains are, for instance, environmental monitoring and simula-
tion, robotics, e-mobility and cloud computing. Such applications are typically
highly dynamic involving a complex interaction behavior between nodes. Nodes
may join or leave a collaboration, they may change location and they may au-
tonomously adapt to new conditions. Systems supporting such applications are
extremely software-intensive. In contrast to available hardware, current software
engineering practices are not sufficiently developed to support such scenarios in
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a reliable way on a semantically solid basis with sound formal specification and
verification techniques.

On this background, the EU project ASCENS [1,34] pursues the goal to de-
velop foundations, techniques and tools to support the whole life cycle for the
construction of Autonomic Service-Component ENSembles [9]. An ensemble is
understood as a collection of autonomic entities that collaborate for some global
goal. Following [27,2], a goal can be an “achieve goal”, such that the ensemble
will terminate when the goal (specified, e.g., by a particular state) is reached, or
a “maintenance goal”, such that a certain property (specified, e.g., by a system
invariant) is maintained while the system is running.

The inherent complexity and dynamics of ensembles exhibiting a collec-
tive, goal-oriented behavior is a huge challenge. Well-known techniques, like
component-based software engineering [33,31], are not sufficient for modeling
ensembles, but must be augmented with other features that allow to focus on
the particular characteristics of ensembles. While a component model describes
the architectural and dynamic properties of a (complex) target system, ensem-
bles are dynamically formed on demand as specific, goal-oriented communication
groups running on top of a target system and different ensembles may run con-
currently on the same system (dealing with different tasks). The target platform
of the system can be component-based, but it is crucial to recognize that the
same component instance may take part in different ensembles under partic-
ular, ensemble-specific roles. A component instance can play different roles at
the same time and it can dynamically change its role. Therefore, we propose to
center our approach around the notion of a role [21] and to model an ensemble
in terms of roles and their interactions to collectively pursue a certain goal.

Ensemble modeling is particularly important in the analysis phase of the
development life cycle since it allows us to concentrate only on parts of the
capabilities that a component must finally support. Each role a component can
fill represents a particular view on the component needed to solve a specific
collaborative task. In this way complexity of system modeling can be significantly
reduced.

1.2 The Helena Approach

In this paper, we propose a rigorous formal foundation for ensemble modeling
that can be used during requirements elicitation and as a basis for the develop-
ment of designs. In the Helena approach, we assume given a set of component
types. The component types define basic attributes and operations that are com-
monly available. Each role (more precisely, role type) is defined for a subset of
component types whose instances can fill the role. A role specifies particular
capabilities in terms of role attributes and role operations that are only relevant
when performing the role. The structural aspects of a collaboration are deter-
mined by an ensemble structure which consists of a set of roles (constrained by
multiplicities) and a set of role connectors determining which roles may interact
in terms of which operations. This introduces a level of security since other in-
teractions are not legal; i.e. an interaction requested by a component which does
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not fit to its current role would be a failure. For visualizing ensemble structures,
we use UML-like notations [30]. Additionally, we use labeled transition systems
to determine the dynamic aspects of a collaboration in terms of role behaviors
such that collaboration is directed towards a specific task.

Our framework supports specialization in the sense that different extensions
and interpretations of an ensemble model are possible. For instance we do not
fix any particular paradigm for interaction on the level of an ensemble structure.
Interaction could be performed by accessing knowledge in the repositories of
components, like in SCEL [17,18], it could be realized by implicit knowledge
exchange managed by the runtime infrastructure, like in DEECo [12], or it could
be based on explicit synchronous or asynchronous communication.

To provide semantics for an ensemble specification, the interaction paradigm
must be instantiated. In this paper, we show how this can be done for the case
of synchronous message passing systems. For a given ensemble specification, we
consider the class of its semantic models given by particular labeled transition
systems called ensemble automata. Each state of the system determines a set
of component instances which are currently participating in the ensemble and a
set of role instances which are currently adopted by the component instances.
Both component and role instances have a current data state determined by
their attribute values respectively. The attribute values of a component instance
ci determine the (basic) information that is shared by all role instances that ci
is currently playing. Moreover, to each role instance a control state is associated
that determines its current progress according to the behavior specification of the
corresponding role type. Transitions between ensemble states are caused either
by communication between role instances according to a role connector or when
certain management operations are performed such that component instances
join or leave an ensemble, change their role or adopt an additional role.

In the following sections, we first consider, in Sect. 2, the syntactic notions
for ensemble structures and ensemble specifications. In Sect. 3, we define their
semantic interpretations: we consider ensemble states, formed by collections of
component and role instances, and we focus on the particular case of synchronous
message passing systems for which we introduce ensemble automata as seman-
tic models of ensemble specifications. In Sect. 4, we discuss related work and,
in Sect. 5, we give a short summary and point out ideas how our approach
will be extended towards a comprehensive, semantically well-founded ensemble
development methodology.

Dedication. Our approach is strongly influenced by the school of algebraic spec-
ifications and institutions [20], including the seminal work of Prof. Futatsugi as
one of the leading architects of prominent algebraic specification languages like
OBJ2 [19] and CafeOBJ [29]. Indeed, an ensemble structure in Helena can be
considered as a signature, ensemble automata as models of that signature, en-
semble states as (higher-order) algebras, ensemble specifications as presentations
and the satisfaction relation is implicitly given by the notion of a model of an
ensemble specification. We would like to thank Prof. Futatsugi very cordially
for his important contributions to the field and for his very friendly attitude in
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scientific and private discussions. In particular, it was always a great pleasure
to discuss with him new ideas for the observational interpretation of algebraic
specifications, as supported by CafeOBJ and implemented in the CafeOBJ en-
vironment [28]. It is a pleasure for us to dedicate this work to Prof. Futatsugi
and we want to wish him many more new exciting ideas and experiences in the
future.

2 Ensemble Structures and Specifications

In the Helena approach, we tackle systems with a large number of entities which
collaborate towards a specific goal. The foundation for those systems are compo-
nents which are presented in the first subsection. To cope with the complexity of
systems with large numbers of components, we afterwards introduce the notion
of an ensemble structure as a view on a component-based system. Lastly, we
outline the specification of the dynamic behavior of roles collaborating in such
an ensemble structure to direct behavior towards the intended task.

Throughout the paper, we use a peer-2-peer network as running example
which supports the distributed storage of files that can be retrieved upon request.
Several peers of the network will work together when a file is requested. One peer
will play the role of the requester of the file, other peers will act as routers and
finally, the peer storing the requested file will appear in the role of a provider.

Notation. Whenever we consider tuples t = (t1, . . . , tn), in the following we use
the notation ti(t) to refer to ti.

2.1 Components

First, we introduce the concepts of rudimentary components providing basic in-
formation usable in all roles the component can fill. Component types are char-
acterized by attributes and operations. Attributes and parameters of operations
are not (necessarily) typed.

Definition 1 (Attributes and Operations). An attribute is a named vari-
able. An operation op is of the form op = opname(params) such that opname
is the name of the operation and params is a list of formal parameters.

Definition 2 (Attribute Values). Let A be a set of attributes and D a uni-
verse of data values. An A-state is a function δ : A → D which assigns a value
in D to each attribute in A. The set of all A-states is denoted by DStatesA.

Let us consider this definition in the context of our running example of a
peer-2-peer network. Typical attributes in such an environment are the network
address of an entity and the list of filenames and their content which an entity
stores. The set of attributes can thus be defined as A = {address, fileNames,
contents}. The function δ1 may, for example, assign the value 198.121.1.3 to
the attribute address, [1.txt, 2.pdf] to the attribute fileNames, and some
file contents to the attribute contents.
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To classify components according to their capabilities, we introduce com-
ponent types. A component type defines the attributes and operations for all
components of that type. It forms the basis for more specialized and complex
capabilities. A component instance is a concrete instantiation of its component
type.

Definition 3 (Component Type). A component type ct is a tuple
ct = (nm , attrs, ops) such that nm is the name of the component type, attrs
is a set of attributes, and ops = 〈opsout, ops in, ops int〉 with opsout, ops in, and
ops int are sets of outgoing, incoming, and internal operations respectively.

The basic component type in a peer-2-peer network is
peer = (Peer, {address, fileNames, contents}, 〈∅, ∅, ∅〉). Each component of
component type peer has the attributes address, fileNames, and contents
and no (basic) operations, since all peer operations introduced in the sequel will
only be relevant for particular roles. For visualization, we introduce a graphical
notation for component types like in UML (cf. Fig. 1).

Fig. 1. Component type peer in graphical notation

2.2 Ensemble Structures

Components can collaborate to perform certain tasks. For this purpose, they
team up in ensembles. Each participant in the ensemble contributes specific
functionalities to the collaboration, we say, the participant plays a certain role
in the ensemble. A role (more precisely, role type) defines which types of com-
ponents can contribute the desired functionality to the overall collaboration and
enhances them with role-specific capabilities. Firstly, the role specifies the com-
ponent types of entities which are able to fill this role. Secondly, it defines role-
specific attributes to store data that is relevant for performing the role and
role-specific operations which are required to fulfill the responsibilities of the
role.

Definition 4 (Role). Let CT be a set of component types. A role r over CT is
a tuple r = (head , roleattrs, roleops) such that

– head = 〈nm, ctypes〉 declares the name nm of the role together with a finite,
non-empty set ctypes ⊆ CT of component types (whose instances can fill the
role r),

– roleattrs specifies the role specific attributes, and
– roleops = 〈roleopsout, roleops in, roleops int〉 specifies outgoing, incoming, and

internal operations provided by the role r .
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In the context of our peer-2-peer network, we consider the task of requesting
and transferring a file. To perform this task, we envision three roles: requester,
router, and provider. The requester wants to download the file. First, it needs
to request the address of the peer storing the file from the network, while using
the routers as forwarding peers of its request. Once the requester knows the
address, it directly requests the file from the provider for download. Each role
can be adopted by instances of component type peer, but exhibits different
capabilities to take over responsibility for the transfer task. The requester must
be able to request the address of the provider from a router and receive the reply.
Afterwards, it must be able to request the file from the provider and receive the
content. The router must be able to receive a request for the address, forward it
to another router, receive the reply from another router, and send it back. The
provider of a certain file must be able to receive a request for the file and send
back the content. Formally, the role of the provider peer is defined as follows:

provider = (〈 Provider, {peer} 〉, ∅,
〈{sndFile(cont)}, {reqFile(fn)}, ∅〉)

Note that for this role neither specific attributes nor internal operations are
necessary, but the requester role stores the name of the requested file in its
role-specific attribute fileName.

We use a UML-like visualization of roles annotated with the stereotype
«role type». The diagrams for the roles in the peer-2-peer network are given
in Fig. 2. They consist of three parts: the name of the role followed by the
set of component types which can fill the role, the role attributes, and the role
operations together with the modifiers out, in, and int.

Fig. 2. Roles requester, router, and provider in graphical notation

To collaborate on tasks, roles need to communicate. A role initiates the infor-
mation transfer via the call of an outgoing operation and receives information via
the reception of an incoming operation. However, for the specification of collab-
orations we do not only want to declare communication abilities of a single role,
but also to specify which roles are meant to interact by which messages. This
information is specified by a role connector (or more precisely, role connector
type). Role connectors are directed such that they can also support multicast
sending of messages.
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Definition 5 (Role Connector). Let CT be a set of component types and R be
a set of roles over CT. A role connector rc over R is a tuple
rc = (nm, src, trg, ops , rcconstraints) such that

– nm is the name of the role connector,
– src ∈ R denotes the source role from which information is transferred along rc,
– trg ∈ R denotes the target role to which information is transferred along rc,

and
– ops is a set of operations such that ops ⊆ roleopsout(src) ∩ roleops in(trg)

determine which messages can be sent along rc.

In our running example, a requester peer needs to send a download request
for a file to the provider peer. For that communication, we introduce the role
connector rfc = (ReqFileConn, requester, provider, {reqFile(fn)}). In Fig. 2
we can verify that rfc is well-formed according to Def. 5 since reqFile is an
outgoing operation for the role requester and an incoming operation for the role
provider. For the reply, we introduce the role connector sfc = (SndFileConn,
provider, requester, {sndFile(cont)}). Role connectors are visualized as shown
in Fig. 3. The first box shows the name of the role connector, the second one
the source and target role, and the last one the exchanged messages. Although
in our example rfc and sfc are only responsible for one message, role connectors
can in general allow a set of messages, some of which could also be declared as
multicast messages.

(a) Role connector rac (b) Role connector frac (c) Role connector rfc

(d) Role connector sac (e) Role connector fsac (f) Role connector sfc

Fig. 3. Role connectors providing interaction abilities in graphical notation

Roles and role connectors form the basic building blocks for collaborations in
ensembles. An ensemble structure determines the kind of teams needed to per-
form a task. An ensemble structure specifies which roles contribute to the col-
laboration and which role connectors are required for interaction. Additionally,
in an ensemble structure roles are equipped with a multiplicity which determines
how many instances may contribute. Thus, an ensemble structure specifies the
structural aspects of a collaboration.
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Definition 6 (Ensemble Structure). Let CT be a set of component types.
An ensemble structure Σ over CT is a pair Σ = (roles , conns) such that

– roles is a set of roles over CT such that each r ∈ roles has a multiplicity
mult(r) ∈ Mult and Mult is the set of multiplicities available in UML, like
0..1 or ∗,

– conns is a set of role connectors over roles such that for each rc ∈ conns, it
holds src(rc), trg(rc) ∈ roles.

The ensemble structure Σ is closed if all operations are used in connectors, i.e.
if ⋃

rc∈conns

ops(rc) =
⋃

r∈roles

(roleopsout(r) ∪ roleops in(r));

otherwise it is open.

For our peer example, we define an ensemble structure Σtransfer . The ensemble
structure is composed of a requester role (with at most one instance participating
in the ensemble), a router role (with arbitrarily many instances participating in
the ensemble), and a provider role (with at most one instance participating in the
ensemble). Communication between those roles is needed to request and receive
the provider address from the network (possibly involving several forwarding
steps via routers) and finally to request and receive the file from the provider
itself. Formally, the ensemble structure Σtransfer = (roles, conns) embraces the
two sets:

roles = {〈requester, 0..1〉, 〈router, ∗〉, 〈provider, 0..1〉}
conns = {rac, sac, frac, fsac, sfc, rfc}

In the set roles, we find each role associated with a multiplicity as mentioned
before. The role connectors in the set conns provide the means to request and
send address and file (cf. Fig. 3). We visualize ensemble structures similarly
to collaborations in composite structure diagrams in UML 2. Fig. 4 shows the
ensemble structure Σtransfer in graphical notation. Roles are depicted as boxes
with the multiplicity written in the upper right corner. Role connectors are
represented as arrows between source and target roles labeled with the connector
name.

2.3 Ensemble Specifications

After having modeled the structural aspects of an ensemble, we move on to the
specification of dynamic behaviors. A role itself declares the particular capabil-
ities needed to perform a certain task in the form of its operations. How these
operations are used to model role behavior is formalized by a labeled transition
system. Starting from an initial state, the role behavior specifies which sequences
of operations can be executed to contribute the required responsibilities of this
role to the overall collaboration.
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Fig. 4. Ensemble structure Σtransfer

Definition 7 (Labeled Transition System). A labeled transition system
(LTS) is a tuple (Q , q0 ,Λ,Δ) such that Q is a set of states, q0 ∈ Q is the
initial state of the LTS, Λ is a set of labels, and Δ ⊆ Q × Λ×Q is a transition
relation. For (q, l, q ′) ∈ Δ, we also write (q

l−→ q ′) ∈ Δ.

A role behavior is a labeled transition system whose labels denote sending
an operation (expressed by the operation followed by an exclamation mark “!”)
or receiving an operation (expressed by the operation followed by a question
mark “?”) or executing an internal operation (expressed just by the operation).

Definition 8 (Role Behavior). Let Σ = (roles , conns) be an ensemble struc-
ture and r ∈ roles . A role behavior of r is given by a labeled transition system
RoleBehr = (Q , q0 ,Λ,Δ) such that

– Q is a set of control states,

– q0 ∈ Q is the initial state,

– Λ is the set of labels given by
{nm(rc).op! | ∃rc ∈ conns : r = src(rc), op ∈ ops(rc)} ∪
{nm(rc).op? | ∃rc ∈ conns : r = trg(rc), op ∈ ops(rc)},

– Δ ⊆ Q × Λ×Q is a transition relation.

Following our notational convention, we write Q(RoleBehr ) for Q ,
q0 (RoleBehr ) for q0 , Λ(RoleBehr ) for Λ, and Δ(RoleBehr ) for Δ.
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The full specification of an ensemble comprises the architecture of the col-
laboration in terms of an ensemble structure Σ and the set of all role behavior
specifications.

Definition 9 (Ensemble specification). An ensemble specification is a pair
EnsSpec = (Σ,RoleBeh) such that

– Σ = (roles , conns) is an ensemble structure over a set CT of component
types, and

– RoleBeh = (RoleBehr )r∈roles is a family of role behaviors RoleBehr for each
r ∈ roles .

Let us illustrate the specification of ensembles with our running example.
We specify the dynamic behavior of the requester, router and provider roles by
the three role behaviors RoleBehrequester , RoleBehrouter, and RoleBehprovider

shown in Fig. 5. All three behaviors terminate since in this application we
consider an achieve goal such that an ensemble stops when it has fulfilled its
task.

The router role exhibits the most interesting behavior. Its responsibility is
to provide the address of the provider to a requesting peer. A router can first
receive a request reqAddr(fn)? to search for the address where the file with
name fn is located from a requester, using the connector rac, or from (an-
other) router, using the forward request address connector frac. Since the router
may or may not store the file itself, in each case it has two possibilities to
proceed: either it has the file and thus sends its own address back to the re-
quester with the message sndAddr(addr)!, or it does not have the file and thus
requests the address from a neighboring peer by issuing the call reqAddr(fn)!.
In the first case, it has immediately met its responsibility according to the router
role while in the second case it has to wait for a response and then to forward
it to the requesting peer. Note that on the instance level considered later on in
Sect. 3, the peer instance playing the router will adopt the role of a provider
when it detects that it stores the file itself (cf. the transition from state σ5 to σ6

in Fig. 9).

With this example we want to illustrate that the separate consideration of
roles facilitates significantly the task of system specification for ensembles. If we
had directly started with component-based modeling of a peer component, it
would have been necessary to specify the full component behavior at once. This
behavior would have to model all possible behaviors which a component instance
should be able to perform. In particular, one would have to decide whether a
component instance should administrate several threads for concurrent execu-
tions of different tasks at the same time or whether a component is only able to
perform different tasks in a sequential order.
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3 Semantics of Ensemble Specifications

3.1 Ensemble States

An ensemble structure Σ = (roles , conns) over a set CT of component types
specifies which roles and role connectors are needed to perform a task. The ac-
tual execution of an ensemble will be performed by collaborating component
instances. We assume that before an ensemble is started there exists already a
repository of component instances which can potentially contribute. Formally,
this repository is given by a family INST = (INSTct)ct∈CT of pairwise dis-
joint sets INSTct of component instances for each component type ct . For an
ensemble state σ, the currently participating component instances are deter-
mined by the sets insts = (instsct )ct∈CT shown in Def. 10 below. The situation
is different for roles. Role instances are only created when a component instance
adopts that role. Formally, we assume given a family RID = (RIDr )r ∈ roles of
countably infinite and pairwise disjoint sets RIDr of role identifiers for role r .
These sets determine a space of names which can be instantiated when a new
role instance is created. An ensemble state σ has not only to record which are
the current component members of the ensemble, but also which role instances
currently exist. These are determined by the sets roleinsts = (roleinstsr )r∈roles

below. Any existing role instance must be adopted by exactly one component
instance and any participating component instance must at least adopt one role
instance. For the formalization of these relationships we use the surjective map-
pings adoptedBy = (adoptedBy r )r∈roles whose functionalities are defined below.

To fully specify a Σ-ensemble state, we additionally need to determine the
data states of component and role instances (given by valuations of component
and role attributes resp.), and also the control state of a role instance showing
the current progress of its execution. For this purpose, we use the families of
functions data, roledata, and control as indicated below.

Definition 10 (Σ-ensemble state). Let CT be a set of component types,
INST be a family of sets of component instances and RID be a universe of
role identifiers as explained above. A Σ-ensemble state (over INST) is a tuple

σ = (insts , roleinsts , adoptedBy , data, roledata , control)

such that

– insts = (instsct)ct∈CT is a family of sets instsct ⊆ INSTct of component
instances currently participating in the ensemble,

– roleinsts = (roleinstsr )r∈roles is a family of sets roleinstsr ⊆ RIDr of role
instances currently existing in the ensemble such that the multiplicities of
r ∈ roles in Σ are respected, i.e. |roleinstsr | ≤ 1 if mult(r) = 0..1,

– adoptedBy = (adoptedBy r )r∈roles is a family of surjective functions
adoptedBy r : roleinstsr → ⋃

ct ∈ ctypes(r)

instsct such that each role instance

is associated to a unique component instance,
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– data = (datact )ct∈CT is a family of functions
datact : instsct → DStatesattrs(ct),

– roledata = (roledatar )r∈roles is a family of functions
roledatar : roleinstsr → DStatesroleattrs(r),

– control = (control r )r∈roles is a family of functions
control r : roleinstsr → CStatesr with a set CStatesr of control states.

The set of all Σ-ensemble states is denotated by StatesΣ.

Following our notational conventions, for a Σ-ensemble state σ =
(insts , roleinsts , adoptedBy , data, roledata , control) we write insts(σ) for insts ,
instsct (σ) for instsct , and similarly for all other parts of σ.

To illustrate the meaning of the adoptedBy functions, we visualize the mapping
for two different Σ-ensemble states σ1 and σ2 in Fig. 6. Both states are based on
the set INST = {ci1, ci1’, ci2’} of component instances of type CT and CT’
resp.. The idea is that there are two ensembles running in parallel such that σ1 is
a state of the first ensemble and σ2 is a state of the second. The given component
instances should be able to participate at the same time in both ensembles. For
instance in σ1, ci1 adopts the role instances ri1 and ri1’ of different role types
R and R’. In σ2, ci1 adopts, at the time, another role instance ri3 of type R.
Being surjective, each function adoptedByr associates each component instance
ci which is participating in an ensemble with at least one role instance. The
inverse image of one component instance ci in a particular state is thus the set
of all role instances which ci is currently playing in that state. Only component
instances that do currently not participate in an ensemble, like ci1’ in Fig. 6,
have no associated role instance.

Fig. 6. Visualization of the function adoptedBy
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Let us illustrate the definition of a Σ-ensemble state at our peer-2-peer net-
work. Consider the ensemble structure Σtransfer and four component instances
of type peer such that INST = INSTpeer = {p1, p2, p3, p4}, i.e. we have
given a system with four peers. A valid ensemble state over INST could be
that p1 has adopted the role of a requester that requests a file with name
"song.mp3", p2 and p3 work as routers, and p3 provides the file; p4 is not
involved in this collaboration. The formal representation of such a Σtransfer -
ensemble state σ = (insts , roleinsts , adoptedBy , data, roledata, control) is given
in Fig. 7; a graphical representation of this state is shown in Fig. 8. The cur-
rent control state of each role instance is shown in a circle and taken from the
role behavior specifications. For instance, rout1 being in control state qrout2 has
just sent out a request address message to another router via the role connector
frac, and rout2 being in control state qrout5 has just received this message. We
assume that the component p3 stores the requested file and therefore adopts, in
the current state, also the role of a provider being in the initial provider state
qprov0 .

instspeer = {p1, p2, p3}
roleinstsrequester = {req}
roleinstsrouter = {rout1, rout2}
roleinstsprovider = {prov}
adoptedByrequester(req) = {p1}
adoptedByrouter(rout1) = {p2}
adoptedByrouter(rout2) = {p3}
adoptedByprovider(prov) = {p3}

datapeer(p1) = {(address �→ 198.121.1.1,

fileNames �→ . . .)}
contents �→ . . .)}

datapeer(p2) = . . .

datapeer(p3) = . . .

roledatarequester(req) = {fileName �→ "song.mp3"}
roledata_(_) = ∅
controlrequester (req) = qreq

1

controlrouter(rout1) = qrout
2

controlrouter(rout2) = qrout
5

controlprovider(prov) = qprov
0

Fig. 7. A Σtransfer -ensemble state σ

Fig. 8. Σtransfer -ensemble state σ in graphical notation
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3.2 Ensemble Automata

A system evolves over time by execution of operations of component instances.
To model the precise collaborative behavior we have to fix how interaction
is performed. In this paper, we consider the case of message passing systems
with synchronous communication. Two communication partners must synchro-
nize whenever they want to execute a shared input/output operation; otherwise
they cannot proceed. We define a formal execution model for ensembles in terms
of ensemble automata. Their states are ensemble states as defined in the last
section. We consider two kinds of actions that can cause state transitions. First,
we consider communication actions which express synchronous communication
betweeen role instances. These actions are represented by operation labels of the
form opname(actparams)(rc, ri , ri ′) meaning that a role instance ri sends a mes-
sage determined by an operation with name opname and with actual parameters
actparams via a role connector rc to a role instance ri ′. Of course, the message
must be supported by the role connector and the role types of the communi-
cating role instances must fit to the source and target roles of the connector.
For technical simplicity, we assume that ensemble structures are closed and that
roles and component types do not declare internal operations. The general case
could be modeled by simple variants of the form of operation labels. The second
kind of actions are represented by management labels of the form adopt(ci , r)
or giveUp(ci , ri). The first label expresses that a component instance ci adopts
a role r , either because ci is joining the ensemble or because ci adopts an addi-
tional role. In any case, a new role instance will be created (cf. Eq. (1)), and the
adoptedBy function will be updated accordingly (cf. Eq. (2)). The second man-
agement label expresses that a component instance ci gives up a role instance ri .
The role instance is then deleted from the ensemble and the component instance
must leave the ensemble if this was the only role played by the component. For
all kinds of labels, appropriate pre- and postconditions are provided that are re-
spected by the transitions. The postconditions specify the effect of the operation
for the different constituent parts of an ensemble state. If no effect is specified
then the interpretation is loose leaving room for non-deterministic behavior.

Definition 11 (Σ-ensemble automaton). Let CT be a set of component types
and let INST = (INSTct)ct∈CT be a family component instances as in Def. 10.
Let Σ = (roles , conns) be an ensemble structure over CT. A Σ-ensemble au-
tomaton (over INST) is a labeled transition system M = (S , σ0 ,L,T ) such
that

– S ⊆ StatesΣ,
– σ0 ∈ S is the initial state,
– L = oplabels ∪mgmtlabels such that

• oplabels = {opname(actparams)(rc, ri , ri ′) |
rc ∈ conns, ri ∈ RIDsrc(rc), ri

′ ∈ RIDtrg(rc),
opname(params) ∈ ops(rc) such that actparams ∈ D∗ is a list of
actual parameters instantiating params}
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• mgmtlabels =
{adopt(ci , r) | ci ∈ INSTct , r ∈ roles such that ct ∈ ctypes(r)} ∪
{giveUp(ci , ri) | ci ∈ INSTct , ri ∈ RIDr

such that r ∈ roles and ct ∈ ctypes(r)}
– for each (σ1, l, σ2) ∈ T , one of the following holds:

• if l = opname(actparams)(rc, ri , ri ′) then

(pre) ri ∈ roleinsts src(rc)(σ1), ri
′ ∈ roleinsts trg(rc)(σ1),

(post) insts(σ2) = insts(σ1), roleinsts(σ2) = roleinsts(σ1),

adoptedBy(σ2) = adoptedBy(σ1)

• if l = adopt(ci , r) with ci ∈ INSTct , r ∈ roles then

(post) instsct(σ2) = instsct (σ1) ∪ {ci},
instsct′(σ2) = instsct′(σ1) for all ct ′ �= ct ,

roleinstsr (σ2) = (1)
roleinsts r (σ1) ∪ {ri} with ri ∈ RIDr , ri /∈ roleinstsr (σ1),

roleinstsr′(σ2) = roleinstsr′(σ1) for all r ′ �= r ,

adoptedBy r (σ2)(ri) = ci for the new role instance ri , (2)
adoptedBy r′(σ2)(ri

′) =

adoptedBy r′(σ1)(ri
′) for all r ′ ∈ roles , ri ′ �= ri ,

data(σ2) = data(σ1),

roledatar′(σ2)(ri
′) =

roledata r′(σ1)(ri
′) for all r ′ ∈ roles , ri ′ �= ri ,

control r′(σ2)(ri
′) =

control r′(σ1)(ri
′) for all r ′ ∈ roles , ri ′ �= ri ,

• if l = giveUp(ci , ri) with ci ∈ INSTct , ri ∈ RIDr then

(pre) ci ∈ instsct (σ1), ri ∈ roleinstsr (σ1),

adoptedBy r (σ1)(ri) = ci ,

(post) instsct (σ2) =

⎧
⎨

⎩

instsct (σ1)\{ci} , if �ri ′ �= ri .
adoptedBy r (σ1)(ri

′) = ci
instsct (σ1) , otherwise

instsct′(σ2) = instsct′(σ1) for all ct ′ �= ct ,

roleinsts r (σ2) = roleinstsr (σ1)\{ri},
roleinsts r′(σ2) = roleinsts r′(σ1) for all r ′ �= r ,

adoptedBy(σ2) = adoptedBy(σ1)|roleinsts(σ2),

data(σ2) = data(σ1),

roledata(σ2) = roledata(σ1)|roleinsts(σ2),

control (σ2) = control (σ1)|roleinsts(σ2).

The class of all ensemble automata for an ensemble structure Σ is denoted
by EAut(Σ).
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Fig. 9 shows an example of an ensemble automaton for the peer-2-peer net-
work. The state σ6 corresponds to the Σtransfer -state σ in Fig. 8. The peer
instance p1 starts the task by joining the ensemble as a requester which creates
a new role instance req for the requester. Then p2 joins the ensemble in the role
of a router and the role instance rout1 for the first router is created in σ2. The
role instance req then sends to the router rout1 a request for the address of the
peer who stores file "song.mp3". Since rout1 is currently adopted by p2 which
does not store the requested file, another peer p3 needs to join the ensemble in
state σ4 as a router. It adopts the new role instance rout2. Now, rout1 forwards
the request for the address to rout2 leading to state σ5. The component p3 stores
the file and therefore additionally adopts the role of a provider realized by the
role instance prov which is depicted in Fig. 8. Afterwards, the component p3, in
its role as a router rout2, sends its address to the forwarding router rout1 and
then the component p3 abandons its role as a router leading to state σ8. Another
forwarding step transmits the address from rout1 to req. The requester req can
now directly request the file from the provider prov who sends the content of
the file back to the requester. At this point, the task is finished in state σ11.

σ0
adopt(p1,requester)−−−−−−−−−−−−−→ σ1

adopt(p2,router)−−−−−−−−−−−→ σ2
reqAddr("file.txt")(rac,req,rout1)−−−−−−−−−−−−−−−−−−−−−→

σ3
adopt(p3,router)−−−−−−−−−−−→ σ4

reqAddr("song.mp3")(frac,rout1,rout2)−−−−−−−−−−−−−−−−−−−−−−−→
σ5

adopt(p3,provider)−−−−−−−−−−−−→ σ6
sndAddr(198.121.1.3)(fsac,rout2,rout1)−−−−−−−−−−−−−−−−−−−−−−−−→

σ7
giveUp(p3,rout2)−−−−−−−−−−−→ σ8

sndAddr(198.121.1.3)(sac,rout1,req)−−−−−−−−−−−−−−−−−−−−−−→
σ9

reqFile("song.mp3")(rfc,req,prov)−−−−−−−−−−−−−−−−−−−−→
σ10

sndFile(...)(sfc,prov,req)−−−−−−−−−−−−−−−−→ σ11

Fig. 9. Valid sequence of transitions in the Σtransfer -model

In a Σ-ensemble automaton, the ensemble can behave arbitrarily as long as
it uses legal transitions between Σ-ensemble states. However, we want role in-
stances to act according to their specified role behaviors such that the ensemble
works towards reaching a particular goal. These role behaviors restrict the Σ-
ensemble automaton such that that only sequences of actions adhering to the
behavior specifications of the roles are allowed. This leads to our notion of a
model of an ensemble specification..

Definition 12 (Model of an Ensemble Specification). Let CT and INST
be as in Def. 11. Let Σ = (roles , conns) be an ensemble structure over CT, let
EnsSpec = (Σ,RoleBeh) with RoleBeh = (RoleBehr )r∈roles be an ensemble
specification and let M = (S , σ0 ,L,T ) with L = oplabels ∪ mgmtlabels be
a Σ-ensemble automaton (over INST).
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M is a model of EnsSpec, if the following conditions are satisfied:
(1) for all opname(actparams)(rc, ri , ri ′) ∈ oplabels , σ1, σ2 ∈ S , it holds:

If σ1
opname(actparams)(rc,ri,ri′)−−−−−−−−−−−−−−−−−−−→ σ2 ∈ T , then

(a) control r ′′(σ1)(ri
′′) = control r ′′(σ2)(ri

′′) for all r ′′ ∈ roles, ri ′′ /∈
{ri , ri ′},

(b) there exists ri ∈ roleinstsr (σ1), r ∈ roles such that

control r (σ1)(ri)
nm(rc).opname(params)!−−−−−−−−−−−−−−−−→ control r (σ2)(ri) ∈

Δ(RoleBehr ), and
(c) it exists ri ′ ∈ roleinstsr ′(σ1), r ′ ∈ roles such that

control r ′(σ1)(ri
′)

nm(rc).opname(params)?−−−−−−−−−−−−−−−−→ control r ′(σ2)(ri
′) ∈

Δ(RoleBehr ′)
such that actparams ∈ D∗ is a list of actual parameters instantiating
params,

(2) for all adopt(ci , r) ∈ mgmtlabels , σ1, σ2 ∈ S , it holds:

If σ1
adopt(ci,r)−−−−−−−→ σ2 ∈ T with roleinstsr (σ2) = roleinstsr (σ1) ∪ {ri},

ri /∈ roleinstsr (σ1), then controlr (σ2)(ri) = q0 (RoleBehr ).

The class of all models of EnsSpec is denoted by Mod(EnsSpec).

Condition (1a) says that control states of role instances that are not involved
in the communication do not change. The rules (1b) and (1c) express that a
communication between two role instances is only allowed if the role instances
are in a control state of their respective role behaviors such that both roles are
allowed to communicate. There are no restrictions on the particular instances
that want to communicate since role behaviors are specified on the type and
not on the instance level. Condition (2) requires that whenever a role instance
is created its control state is the initial state of its role behavior. There are no
particular constraints for the occurrence of management operations since those
are not considered in role behaviors and therefore can always occur when their
pre- and postconditions of Def. 11 are satisfied.

As an example, consider the ensemble specification in Sect. 2.3 with the three
role behaviors specified in Fig. 5. The ensemble automaton shown in Fig. 9
respects the role behavior specifications and is therefore a model of the ensemble
specification.

4 Related Work

Our framework is driven by a rigorous discrimination between instances and
types. Formally, an ensemble is composed by a set of component instances such
that each component instance, participating in the ensemble, adopts at least
one role instance representing a role that the component currently plays in a
collaboration. Of course, sets of interacting components are considered in any
reasonable component model. They occur in the form of architectures [4,10,13],
networks [5], assemblies [11,22], team automata [8], etc. Mostly, components and
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their behaviors are described on the type level such that the dynamic creation
of individual instances, their identification and the evolution of systems is not
supported. Exceptions are component interaction automata [11], which iden-
tify components by names such that individual communications naming sender
and receiver of a message are possible (similarly to communication between role
instances in ensemble automata), and SCEL [18] which additionally allows dy-
namic creation of components. This is possible since SCEL considers two levels
of operational semantics, the component level and the system level. Similarly,
the Helena approach distinguishes between role behaviors (on the type level)
and ensemble behaviors (on the instance level). We do not create new compo-
nent instances during the run of an ensemble because we assume them to be
already given by an overall system management when an ensemble is started.
However, component instances can dynamically join and leave an ensemble while
role instances are dynamically created (and adopted by a component instance)
during an ensemble execution. Also in the DEECo model [12] for ensemble-based
component systems the membership of components in ensembles is dynamically
changing which is realized by the DEECo runtime framework. Interaction of en-
semble members is implicit in DEECo and performed via knowledge exchange
triggered by the DEECo infrastructure. A computational model for DEECo is
defined in terms of automata [3] that express knowledge exchange by buffered
updating of components’ knowledge. A general mathematical system model for
ensembles based on input/output relations has been presented in [24]. It aims
at general applicability such that, e.g., also physical parts based on differential
equations can be integrated. Helena is more concrete since at least explicit
notions of interaction and collaboration (on the type and on the instance level)
are involved.

In contrast to the other component models Helena is centered around the
notion of a role which allows to focus only on those capabilities of a component
that is actually needed in a particular collaboration. The use of roles has al-
ready been proposed in [21,26] as an additional concept to classes and objects in
object-oriented programming. In [26] it is stated that “a role of an object is a set
of properties which are important for an object to be able to behave in a certain
way expected by a set of other objects”. In these approaches the consideration
of role instances is already recommended and, in [26], a diagrammatic specifi-
cation of role behaviors is suggested. Experiments with implementing roles in
Smalltalk are also discussed. In [32] a formal definition for “model specifications”
in the language LODWICK is proposed consisting of a signature, a static model
and a dynamic model. The signature relates types and roles; the static model
comprises all instances of types and their relationships to roles that may poten-
tially exist; the dynamic model consist of sequences of sets of objects and their
associated roles similar to state transitions in ensemble automata. LODWICK
is designed as a rudimentary modeling language which does not contain collab-
oration specifications and does not support object interactions in the dynamic
models. Apparently the ideas of role-based modeling did not have much influ-
ence on new methodologies for component-based systems engineering. Although
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UML2 has explicitly established a conceptual role layer between types and in-
stances (for context dependent modeling), our impression is that its potential
has not been sufficiently recognized yet.

The situation is different in the community of (multi-)agent systems where the
modeling of roles is incorporated as a central part in methodologies for analysis
and design. For instance, the GAIA methodology [35] and its extensions [15] con-
sider a multi-agent system as a computational organization consisting of various
interacting roles; this is very similar to our interpretation of ensembles. Most
specifications in this methodologies are, however, rather informal or at most
semi-formal, like the UML-based notation Agent UML [6]. Agent UML models
collaborations by interaction protocols which combine sequence diagrams with
state diagrams. Another approach has been pursued in the ROPE project [7],
which proposes to use “cooperation processes” represented by Petri nets for the
specification of collaborative behavior. A model-driven approach to the develop-
ment of role-based open multi-agent software is presented in [36]. It uses Object-Z
notation and focuses merely on structural properties of role organizations and
agent societies and not on interaction behavior. The structural concepts involve,
however, specifications of role spaces as containers of role instances (that can be
taken by agents), which resembles ensemble states in Helena. All these methods
are not based on a formal semantics and do not provide verification techniques
which will be a central topic of our approach in the near future. In particular,
they do not formalize concurrent executions which is built-in in our ensemble
automata expressed by interleaving.

5 Conclusion

In this paper, we presented the Helena approach for modeling ensemble-based
systems. Helena extends the component-based approach by the notion of roles
teaming up in ensemble to collaborate for some global goal. We introduced en-
semble structures to capture the static architecture of such teams composed of
roles and role connectors for communication between roles. For the dynamic as-
pects, an ensemble specification adds role behaviors to ensemble structures. The
formal semantics and execution model of an ensemble specification was given
as an ensemble automaton for the evolving ensemble with synchronous commu-
nication. We illustrated our approach by the running example of a peer-2-peer
network for storing and downloading files.

We consider our work as a first step towards a comprehensive methodology for
the development of ensemble systems founded on a precise semantic basis. We
have not yet considered an infrastructure for the administration of ensembles.
Several variants are possible dependent on the choice of a concrete interaction
and/or communication model. For instance, we will define also an execution
model for asynchronous communication which can be realized by message pass-
ing via event queues. A further important issue concerns the transition from
ensemble specifications to designs and implementations. One possibility is to
use component-based architectures for the target systems and to map ensemble
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specifications (semi-automatically) to a component-based design for concurrent
executions of ensembles. The mapping depends again on the choice of particu-
lar interaction models like synchronous and buffered communication including
multicast message passing. We also plan to study an interaction model based on
knowledge repositories and knowledge exchange like in SCEL and DEECo. Since
SCEL can be considered as an abstract programming language we envisage to
implement ensemble specifications by abstract SCEL programs. The semantic
foundations of both languages should be appropriate to verify the correctness of
the implementation. Another possibility is a direct implementation of ensemble
specifications by using an appropriate framework, a prototype of which has cur-
rently been developed [25]. As a next step, we want to investigate under which
conditions properties of communication compatibility (see e.g. [23]) valid for
role behaviors can be propagated to ensemble automata and implementations.
The challenge here is that role behavior specifications are formalized for types
while ensemble automata (and implementations) concern concurrently executing
instances.

Concerning the first phase of the development life cycle our methodology
should still be augmented with explicit interaction specifications. Currently our
behavioral descriptions are local to single role behaviors, but do not explicitly
model the interactions to achieve a goal on a global level. For that purpose,
we want to investigate appropriate notations, for instance on the basis of com-
munication protocols used for specifying global interactions in multi-party ses-
sions [14], [16]. The transition from an interaction specification to an ensemble
specification must be formalized by an appropriate refinement relation. Then we
want to consider properties of interaction specifications (expressed in some logic)
and to prove that they are preserved by refinement. Also the explicit integration
of adaptation and awareness requirements, which are central to autonomously
evolving systems, must be considered. We need techniques to specify goals, for
instance in the style of KAOS [27], and we need verification techniques for goal
satisfaction. The validation of Helena w.r.t. the case studies of the ASCENS
project (e-mobility, robotics rescue scenario, autonomic cloud platform) is cur-
rently ongoing.
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