
Synthesis of Infinite-State Abstractions

and Their Use for Software Validation

Carlo Ghezzi�, Andrea Mocci, and Mario Sangiorgio

Politecnico di Milano
Dipartimento di Elettronica, Informazione e Bioingegneria,

P.za Leonardo Da Vinci 32, 20131 Milano (MI) Italy
{ghezzi,mocci,sangiorgio}@elet.polimi.it

Abstract. In the recent years, several research efforts have been devoted
to developing approaches to synthesize specifications of software behav-
ior. Most of the proposed approaches addressed the inference of finite-
state abstractions. The synthesized abstractions have been integrated in
different validation scenarios, such as testing. While finite-state models
can be effectively used as models of a software component’s behavior for
certain specific purposes, they can hardly be used as full-fledged spec-
ifications. Because of their very limited expressive power, they cannot
represent some of the component behaviors and may lead to synthesiz-
ing too coarse abstractions. In this paper, we survey a set of approaches
that instead infer infinite-state abstractions, which can be used to express
richer sets of behaviors of a software component in a black-box manner.
For such approaches, we also discuss the few existing applications to
software validation. In particular, we discuss the limitations and identify
how, in principle, they can be used in different validation scenarios and
how this opens new research directions.

1 Introduction

A formal specification is a description of the behaviors of a given software ex-
pressed in a certain mathematical notation with a clear semantics. Formal speci-
fications are important and often essential for many validation activities. Exam-
ples of such activities are testing [1], where specifications can be used as oracles
to check the correctness of an implementation for a certain set of inputs, or
model checking [2], where specifications have both the role of models of software
artifacts and properties to be checked on the model itself.

In practice, the cost of producing a component’s specification is often as
high as code writing, and thus producing the component itself. Moreover, a
formal specification requires mathematical skills that may not be possessed by
developers. These are among the reasons why specifications are often absent for
real-world software components. When present, specifications are given through

� This research has been partially funded by the European Commission, Programme
IDEAS-ERC, Pro ject 227977-SMScom.

S. Iida, J. Meseguer, and K. Ogata (Eds.): Futatsugi Festschrift, LNCS 8373, pp. 276–295, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Synthesis of Infinite-State Abstractions and Their Use 277

SEmpty SNonEmpty SFull

pop, pushpush push

pop pop

Fig. 1. A behavior model of a bounded stack

natural language in an informal way, that is not amenable to the automatic
validation approaches described above. In addition, no guarantee can be as-
sumed that the specification and the implementation are synchronized. Very
often, they diverge because implementations are maintained without making
the corresponding changes to the specification.

A recent branch of research activity in software engineering has been devoted
to addressing the problems due to a missing specification by proposing the au-
tomatic synthesis through the analysis of existing software. The pioneering work
described in Daikon [3] goes exactly in this direction. Most of the work involv-
ing software specification synthesis has focused on finite-state abstractions of
software behavior [4]. Finite-state abstractions may capture an important be-
havioral aspect of software components, that is, the protocol of interaction with
the component. Intuitively, an interaction protocol describes the legal sequences
of operations that are valid from the client’s point of view when the client calls
operations available through the component’s interface.

Properties of the interaction protocol typically express precedence relations.
For example, a component that represents a file requires that the file should be
open before a write operation can be performed; that is, write can only be called
after (a successful) open operation. Such properties are naturally expressible
with an automaton, or in general with a finite-state abstraction that may not
possess all the properties of an automaton. Semiautomata, that is, automata
with no final states, are typically used to express interaction protocols, since the
notion of a final state is not useful to express component behaviors.

Examples of finite-state models of software components are the ones inferred
by Adabu [5,6], which uses dynamic analysis, and Contractor [7], which uses
static analysis to derive behavior models from C programs. Figure 1 shows a
behavior model of a bounded stack as inferred by Contractor; for example,
the model describes the fact that the pop operation is not enabled in SEmpty ,
imposing a precedence relation on the legal sequences of operations on the com-
ponent, that requires at least a push operation to be called before any call of
pop.

Inferred behavior models have been used for many validation activities; ex-
amples include test case generation [8,6], integration in model checking [9], and
runtime verification [10]. However, behavior models are formalisms that capture
only a subset of the possible behaviors of the analyzed component. In partic-
ular, being finite-state machines, they must abstract away any collection-like
behavior, like LIFO or FIFO behaviors, because these cannot be represented

278 C. Ghezzi, A. Mocci, and M. Sangiorgio

with a finite-state abstraction. For this reason, finite-state machines are most of
the times models of certain behaviors exhibited by a given software, rather than
full-fledged specifications of it.

The motivation of this paper is twofold. First, we critically survey the field, fo-
cusing on techniques that infer specifications that instead consist of infinite-state
abstractions, which potentially may achieve the role of full-fledged specifications
of software components. For example, such abstractions are contracts [11] or
algebraic specifications [12,13], which potentially can capture such infinite-state
behaviors, like collection-like behaviors, that finite-state machines may represent
only in a very imprecise way, yielding very coarse abstractions.

Finally, we are interested in exploring the potential usages of inferred infinite-
state abstractions that may reveal new research directions. In fact, while several
approaches to validation that use inferred behavior models have been studied and
proposed, very few exist that use inferred infinite-state abstractions in similar
scenarios. To this aim, we first critically analyze such existing works, and then
we outline possible future work considering the existing literature where infinite-
state abstractions are considered to be present, and where an inference step could
be potentially integrated.

For the sake of clarity, hereafter we discuss some of the assumptions we make
in this paper and we describe the main terms we use. First, we refer to software
components that define abstract data types (Adt), implemented as classes. We
assume that the class only exports methods through its interface. A method
represents an operation that can be used to operate on instances of the Adt

(also called objects). Client components can only use these exported operations
to interact with a given component. We distinguish among the following kinds
of operations:

Observers : These are operations that return to the client some information
related to the state of the object upon which they are invoked. Observers
may be pure or not. A pure observer can only observe and cannot modify
the internal state of the object.

Modifiers : These are operations that change the state of the object they are
applied upon. If a class exports modifiers, the instantiated objects are said
to be mutable.

Terms, or traces, represent sequences of operations. While the two words are
often used interchangeably in formal approaches to software specification, in the
area of software testing and analysis usually a trace denotes an execution trace,
that is, an executed sequence of operations of a given implemented software
component. In this paper, for the sake of clarity, we will always refer to such
notion as execution trace.

Structure of the Paper. The paper is organized as follows. Section 2 dis-
cusses the state of the art about synthesis of infinite-state abstractions from
software components. We classify the existing approaches by the classes of in-
finite state abstractions that they can synthesize, like contracts and algebraic

Synthesis of Infinite-State Abstractions and Their Use 279

Table 1. Works surveyed on the State of the Art

Approach Ref. Specification Abstract Input Analysis

Daikon [3,14] Contract No Ex.Traces Dynamic
DySy [15] Contract No Code + Ex.Traces Dynamic + Static

Axiom Meister [16] Contract Yes Code Static
AutoInfer [17] Contract Yes Tests Dynamic
KindSpec [18] Contract Yes Code Static

Heureka [19] Algebraic Spec Yes Tests Dynamic
Adiheu [20] Algebraic Spec Yes Tests Dynamic
Sabicu [21] Algebraic Spec Yes Tests Dynamic
AbsSpec [22] Algebraic Spec Yes Code Static

Spy [23] Intensional BM Yes Tests Dynamic

specifications. Then, Section 3 identifies possible validation scenarios where such
inferred infinite-state abstractions could be used, considering existing approaches
and outlining promising research directions. Finally, Section 4 derives conclusions
of this paper.

2 Synthesis of Infinite-State Abstractions: State of the
Art

In this section, we will introduce the existing synthesis approaches that address
infinite-state abstractions. Table 1 reports the main features of the surveyed
approaches, classified mainly according to the class of infinite-state abstraction
(specification) they synthesize. Moreover, we distinguish whether the specifica-
tion is abstract (that is, expressed in terms of what a client can observe exter-
nally), what is the source artifact of the analysis, and what kind of analysis
(static or dynamic) is used to infer the specification.

The section is structured according to the kind of specification synthesized by
each of the surveyed approaches. We start by describing approaches that infer
contracts (Section 2.1), then approaches that synthesize algebraic specifications
(Section 2.2), and finally specifications based on trace assertions (Section 2.3).

2.1 Inferring Contracts

Contracts are a popular methodology to specify the behavior of software com-
ponents in general, and they have been successfully applied to infinite-state
components too. Basically, a contract [11,24] uses pre/post-conditions to specify
the behavior of each operation in isolation. The pre-condition states what has
to be true to invoke the operation (i.e., it states an obligation for the client); the
post-condition states what has to be true when the operation terminates (i.e., it
states an obligation for the object onto which the operation is applied).

There are five main approaches that implement inference of contracts for
infinite-state components:

280 C. Ghezzi, A. Mocci, and M. Sangiorgio

public class StackAr

private Object[] theArray;
private int topOfStack;

Precondition : capacity ≥ 0
Postcondition : capacity = this.theArray.length
this.topOfStack = −1
this.theArray[] elements = null
public StackAr(int capacity) {...}

Fig. 2. The contract inferred by Daikon for the StackAr constructor

– Daikon, an invariant detector that can be used to infer contracts of data
abstractions;

– DySy, which integrates dynamic analysis and symbolic execution to infer
contracts;

– Axiom Meister, which infers contracts for modifiers, expressed in terms of
observer return values, using symbolic execution;

– AutoInfer, that infers abstract postconditions of modifiers for components
written in the Eiffel language;

– KindSpec, which infers pre- and post-condition like specifications of C pro-
grams using the Matching Logic semantic framework [25].

Daikon. TheDaikon [3,14] invariant detector has been a pioneering work in the
area of specification inference. Daikon analyses the values of program variables
at specific program points as a result of test case invocations. Starting from
the results of these test case invocations, Daikon infers invariant properties
that hold at the recorded program points. For example, it may infer that the
value of variable x is always greater than or equal to 10 before a statement that
contains a division by s. An invariant holding at the entry point of an operation
represents its preconditions, while an invariant holding at exit points represents
a postcondition.

The inferred invariants predicate about program variables, including internal
fields of classes. Consider, for example, a reference implementation of a bounded
stack in Java, called StackAr; this Adt is typically implemented with an
array and an integer value pointing to the top of the stack. Figure 2 shows
an example of invariants inferred by Daikon, representing likely preconditions
and postconditions of a StackAr constructor which initializes it with a specific
capacity.

Daikon works by generating candidate invariants out of a rich grammar of
patterns, and then checking if they hold at specific program points. Invariants
are reported only if there is enough statistical evidence that they do not hold by
chance, and several optimizations are performed to get better results in terms of
performance and relevance of reported invariants. Such optimizations include, for
example, suppression of weaker invariants, that is, invariants that are logically
implied by other ones.

Synthesis of Infinite-State Abstractions and Their Use 281

DySy. One of the main problems with Daikon and in general of dynamic in-
variant detection is that it is hard, sometimes, to know in advance what are the
possible patterns of invariants to be detected, and so the approach could fail in
deriving interesting behaviors of the component to be analyzed. To overcome this
limitation, the DySy approach [15] integrates black box dynamic analysis with
symbolic execution, which is a white box, static analysis technique. By using
symbolic execution, DySy is able to derive operation pre- and post-conditions
based on the actual code behavior; in this sense, DySy is able to infer a method
specification without using invariant patterns. However, symbolic execution is
unable to generalize code behavior in the presence of loops or recursive opera-
tions; in this case, the approach uses some ad-hoc heuristics to support common
iterative structures.

In the case of both Daikon and DySy, there are some fundamental prob-
lems in applying specification synthesis approaches to extract contracts of data
abstractions. The main problem is that the state must be expressed in function
of some variables that represent the state of the component. In principle, the
specification of a component must be abstract, that is, implementation indepen-
dent. In other words, specifications should respect the information hiding [26]
principle. It should be expressed only in terms of the operations that are visible
at the component’s interface. Although useful for many development activities
like testing, the invariants extracted by Daikon and DySy are not abstract and
they represent code behavior expressed in terms of the component internals.

Axiom Meister. This tool [16] infers contracts from the static analysis of
.Net programs. The tool requires the developer to choose the modifier meth-
ods he wants to analyze and its related observers. The tool requires observers
to be observationally pure, i.e. they are only allowed to change the state in a
way that it is invisible to clients. Then, Axiom Meister produces an abstract
description of the modifier behavior in terms of the values returned by observer
methods. Figure 3 shows the specification inferred by Axiom Meister for the
push operation of a bounded stack.

Axiom Meister’s inference approach is based on symbolic execution of the
modifier method under analysis, which tries to explore all the possible execution
paths; in symbolic execution, for each path, there is a corresponding path condi-
tion stating the symbolic constraints required for its execution. In general, path
conditions express constraints over the data structures used to implement the
operation and its enclosing class. The tool aims at producing a specification for
an ADT and thus it has to find an abstraction of path conditions relying only
on class observers. This process produces many path specific axioms, which are
finally merged and simplified to obtain the more compact and readable specifi-
cation. The inferred specification can be either used by humans or by Spec#.

AutoInfer. The AutoInfer approach presented in [17] provides another inter-
esting approach that partially infers contracts with dynamic analysis but without
using component internals. In fact,AutoInfer expresses behavior in function of

282 C. Ghezzi, A. Mocci, and M. Sangiorgio

void push (Object x)
r e q u i r e s s i z e ()< capac i ty () otherwi se Ful lStackExcept ion
ensu re s top () = x
ensu re s s i z e () = old (s i z e ()) + 1
ensu re s capac i ty () = old (capac i ty ())

Fig. 3. The Spec# contract inferred by Axiom Meister for the push method of a
bounded stack

observer return values. The approach targets Eiffel, an object-oriented language
that supports design by contract [11], a development methodology that focuses
on specifying the behavior of software components through contracts. The infer-
ence approach proposed by the authors uses novel dynamic inference techniques
to infer modifier postconditions. Intuitively, such postconditions are properties
that express how observers change their returned values after the invocation of
an operation1.

In particular, the approach supports the inference of two peculiar kind of
assertions in modifier postconditions:

– assertions that involve quantification, that are useful to express frame prop-
erties, like that all the elements of a collection are still present after an
operation invocation;

– assertions that involve implications, useful to identify which conditions trig-
ger a particular different behavior.

AutoInfer is based on dynamic analysis like Daikon; the test cases used
as inference base are generated by using random testing. The approach uses a
modified version of AutoTest [27], which prunes generated test cases when they
satisfy the operation preconditions. The operation preconditions are essentially
assumed to be (correctly) written by the developer.

The main limitation of the approach is that it just focuses on the inference
of postconditions of modifiers; the authors tailored the proposed inference tech-
niques to postconditions because a previous work identifies preconditions as nor-
mally well written in contract-based development approaches. For this reason,
the approach is not easily extensible to preconditions.

KindSpec. The KindSpec approach presented in [18] uses a static analy-
sis technique based on the K framework to infer specifications for KernelC

programs. In particular, the tool focuses on modeling the behavior of heap-
manipulating code. For each modifier operation, the tool finds a specification in
the form of a set of facts represented by logic implications. Figure 4 shows an
example of a specification inferred by KindSpec. An important difference with
respect to the specifications produced by other tools is that KindSpec only

1 In the Eiffel jargon, the specific language targeted by the approach, observers are
called queries and modifiers are called commands.

Synthesis of Infinite-State Abstractions and Their Use 283

isnull(s) = 1 =⇒ isnull(s’) = 1

isnull(s) = 0 ∧
size(s) = capacity(s)

=⇒ top(s) = top(s’)

isnull(s) = 0 ∧
size(s) < capacity(s)

=⇒ isnull(s’) = 0 ∧ top(s’) = x ∧ size(s’) =

size(s) + 1

Fig. 4. The contract inferred by KindSpec for the push(Stack s, Object x) function
for a bounded Stack

looks for invariants involving calls to observer functions and the return value
of the analyzed modifier. It does not produce invariants containing predicates
over the implementation details of a class. It is worth to say that, since it is not
possible to guarantee that a KernelC observer is pure, each function call in the
logic formulas is assumed to be evaluated independently from the others, under
the same initial conditions, to avoid the need of making assumptions on possible
side effects.

The inference algorithm implemented in KindSpec relies on the symbolic ex-
ecution engine of the Matching Logic verifier MatchC. This choice makes it
possible for KindSpec to statically analyze the source code instead of concrete
execution traces. The framework also ensures the correctness of the inferred spec-
ifications. In fact, they can check the inferred specifications with the MatchC

verifier. A peculiarity of this approach is that KindSpec does not reason about
the whole heap. It instead separates the different parts of the heap and its algo-
rithms can reason only about the relevant ones for a specific function.

KindSpec is interesting from a particular point of view, which serves as a
bridge from contracts to algebraic specifications for our classification of inference
approaches. It is important to emphasize that while the MatchC verifier – on
which the programs are interpreted to infer specifications – is based on alge-
braic rewrite rules, the inferred specifications themselves are not presented and
interpreted with an algebraic style. In fact, each inferred fact represents the pre-
and the post-state of the component itself explicitly, in a style that is typical of
contracts, justifying our classification. However, by using only observers, such
facts could be easily rewritten, and possibly interpreted, as conditional axioms
in a typical algebraic specification style.

2.2 Synthesis of Algebraic Specifications

When specifying components with contracts, the focus is on each operation in
isolation, and some kind of model is used to predicate about the state of the
component to be specified. This can be the value of internal variables, as in the
case of Daikon, or the return value of observers, like in the case of AutoIn-

fer. Both, however, have pitfalls. The former case leads to a violation of the
information hiding principle, since the specification ends up referring to imple-
mentation details that should instead remain hidden. The latter instead assumes
that enough observers are available to support the effect of any other operation.
A different point of view is adopted in the case of algebraic specifications, where

284 C. Ghezzi, A. Mocci, and M. Sangiorgio

∀x : Stack , c : Integer , e : Object |
pop.state(push.state(x, e)) = x
size.retval (Stack(c)) = 0
size.retval (push.state(x, e)) = size.retval (x) + 1
top.retval (push.state(x, e)) = e
contains.retval (Stack(c), e) = false
contains.retval (push(x, e), e) = true

Fig. 5. An algebraic specification of an unbounded Stack as inferred by Heureka

the focus is on the whole component to be specified, and the behavior of opera-
tions is specified implicitly (and not explicitly) through algebraic axioms.

Each axiom in an algebraic specification is an equation that prescribes when
two different sequences of operations, for a certain state and for certain param-
eters, are equal. The interpretation of this equality depends on the semantics
of the algebraic specifications; for example, the semantics may impose that the
sequences of operations are equivalent in the sense that they will expose the
same observable behavior to the component clients.

Several approaches have been investigated to synthesize specifications that
fall in the area of algebraic specification. The main ones are surveyed below.

Heureka. Heureka [19] is the main existing approach that infers algebraic
specifications. Heureka explicitly targets Java classes and uses dynamic anal-
ysis. Furthermore, Heureka uses a particular semantics for algebraic axioms,
called behavioral or hidden semantics [28], which is based on the concept of
behavioral equivalence. Intuitively, a behavioral equivalence relation clusters ele-
ments of the algebra which cannot be distinguished by any possible sequence of
operations.

Figure 5 shows an algebraic specification of an unbounded stack as inferred
by Heureka. Because the synthesis approach targets Java, each method is
potentially modeled with two operations: i) an operation modeling how state is
changed, if the method is not pure – the operation is denoted with the .state
suffix; ii) an operation modeling the return value of the method, if this is not
void – the operation is denoted with the .retval suffix. This is a typical choice
when modeling classes of object-oriented languages with algebraic specifications.

The technique operates with a fully black-box approach; the input consists
of a class’ public interface and a set of actual values for method parameters,
called instance pool. Heureka starts by generating terms, that is, sequences of
operations, and then groups them by checking if they are behaviorally equiva-
lent. Behavioral equivalence is in general undecidable, so the tool checks it up
to a certain maximum depth of contexts. Once equivalent terms have been de-
tected, the tools tries to generalize them by introducing universally quantified
variables, obtaining candidate axioms. Axioms are then tested and reported if
no counterexample is found.

Heureka has been evaluated against implementations of data abstractions
mainly from the Java Development Kit (Jdk).

Synthesis of Infinite-State Abstractions and Their Use 285

Adiheu. Another work that infers algebraic specifications is Adiheu [20]. The
approach uses behavior models to improve the inference process of Heureka.
Essentially, behavior models are used to reduce the checks needed to establish
if two terms are behaviorally equivalent. In the case of Adiheu, the finite-state
abstraction of the component is used as an intermediate model that is easier
to synthesize, but whose synthesis dramatically improves the performance of
the algebraic specification synthesizer of Heureka. The approach reduces the
needed number of method invocations for the component under analysis from
50% to almost one order of magnitude.

Sabicu. Sabicu [21] proposed an approach to infer algebraic specification sim-
ilar to Heureka, but supporting also the inference of conditional algebraic ax-
ioms. Compared to Heureka, it is less general in the sense that the structure of
possible axiom is derived from predefined templates, not from the generalization
of equations classified by behavioral equivalence. Such predefined patterns may
be enriched with conditional extensions, that represent specific conditions for
the axiom to be applied. For example, consider the contains method of the stack
example; then, the following axiom can be inferred by Sabicu:

∀x : Stack , e, f : Object | contains.retval (push.state(x, e), f) = true if e = f
else contains.retval (x, f)

The axiom expresses the fact that if contains is called after a push, it returns
true if the parameter value for both methods is the same; otherwise, it returns
the return value of contains called on the rest of the stack.

Another important aspect of Sabicu is that it keeps track of a statistical
metric of axioms, that is, the number of instances that satisfy the axiom itself.
Thus, it not only derives common properties, that is, properties that hold for
every possible instance of an Adt, but also special axioms that hold only for
a subset of the tested instances. This aspect is useful to derive axioms whose
holding conditions are too complex and not supported by the inference patterns
of Sabicu, but that could be potentially derived manually.

AbsSpec. AbsSpec [22] is a tool to automatically infer high level, property-
oriented specifications in the form of algebraic equations for Curry, a lazy func-
tional logic programming language. These features of Curry require a careful
definition of program semantics. The nature of the language requires different
equality relations to be defined in order to support features like free variables in
formulas.

Like other algebraic specification recovery tools, AbsSpec produces specifica-
tions in the form of sets of equations relating (nested) operation calls that have
the same behavior. AbsSpec is based on a white box static inference mechanism
that is guaranteed to generate correct specifications. The inference technique is

286 C. Ghezzi, A. Mocci, and M. Sangiorgio

data Stack a = S [a]

new : : Stack a
isEmpty : : Queue a −> Bool
push : : a −> Stack a −> Stack a
pop : : Stack a −> Stack a
top : : Stack a −> a

−− Inferred a l g e b ra ic s p e c i f i c a t i on
−− contex tua l equ iva lence
(pop (push x (pop y))) = (pop (pop (push x y)))
(top (push x (push y z))) = (top (push x (pop (push y z))))
(pop (push x (pop (pop y)))) = (pop (pop (pop (push x y))))
(pop (push x (pop (push y z)))) = (pop (pop (push y (push x z))))
(pop (push x (pop (push y z)))) = (pop (pop (push x (push y z))))
(top (push x1 (push x3 (push x2 x4)))) =

(top (push x1 (push x2 (push x3 x4))))

−− computed r e su l t equ iva lence
(top (push x new)) = x

Fig. 6. A two-sided queue algebraic specification inferred by AbsSpec

based on an abstract semantics for the Curry language: a condensed goal-
independent fix-point semantics that has been specifically designed to model the
small-step behavior of rewriting [29] for logic functional programming languages.

The completeness of the inferred specifications depends on the analysis bounds
in term of trace length and analyzed functions the user decides to set. The tool
is guaranteed to infer correct and complete specifications within these bounds.

Figure 6 shows the inferred algebraic specification for a stack. For the example
we selected to consider the push, pop, top, and isEmpty functions. The inferred
algebraic specification includes two different kinds of logic formulas. The first set
of equations uses the contextual equivalence, which checks whether two terms
are equal within any context. The last formula instead uses the computed result
equivalence relation, in which all the possible outcomes for the left side equals
to the results for the right side. The latter is the usual equality relation for
functional languages.

2.3 A Synthesis Approach Based on Trace Assertions

Algebraic specifications are useful to infer some interesting properties of oper-
ation interaction (like idempotent and equivalent traces), but in some cases it
is hard to use them as a specification language. In some cases, algebraic spec-
ifications require hidden functions, that is, operations that are used only for
specification purposes and that are not exposed to the clients to be accessible.

For many reasons, the use of hidden functions has been criticized as a prob-
lem with respect to information hiding, and some authors have considered this
necessity of algebraic specifications as a violation of the principle (see for exam-
ple [30] and also some early work on software specification [31]). In fact, they
may convey design and implementation decisions.

Obviously, this problem also hinders the capability of algebraic specifications
to be inferred in the case of components that would require hidden functions.

Synthesis of Infinite-State Abstractions and Their Use 287

Canonical Traces : Stack(c).pushN (di) | N ≤ c

operation Pattern Equivalence

t.pop() t = s.push(d) s

t.push(e) t = Stack(c).pushc(di) t

t.capacity() : c t = Stack(c).s t

t.size() : 0 t = Stack(c) t

t.size() : k t = Stack(c).pushk(di) t

t.top() : d t = s.push(d) t

t.contains(e) : true t = s.push(e).q t

t.contains(e) : false t = Stack (c).pushc(di) | di �= e t

Fig. 7. A Tam specification of a bounded stack

Hidden functions, in general, encapsulate an abstract state that depends on the
component behavior itself.

The trace assertion method (Tam) [32,30] is a specification formalism and
notation introduced to deal with the problems of information hiding violation
in algebraic specifications. A particular set of traces, called canonical traces, is
chosen to uniquely identify the state of the component, and assertions (that is,
predicates) on canonical traces are used to the behavior of operations.

In Tam, an operation is specified in a tabular notation which maps a given
pattern in the trace to the behavior of the operation. For this reason, equations
describing the behavior of operations are explicit, in the sense that they explicitly
describe their behavior in terms of the canonical trace model.

Figure 7 shows the Tam specification of a stack with a tabular notation. By
allowing arbitrary predicates to specify the structure of traces, Tam solves the
problem of hidden functions.

We are not aware of published work that directly targets trace assertions as a
specification formalism for synthesized specifications. We have instead developed
the Spy approach [23], which uses a closely related method to model the state
of an infinite-state data abstraction.

Spy. Spy [23] is a specification synthesis method that targets Java classes like
Heureka, but it uses a different class of target specifications. Spy synthesizes
so-called intensional behavior models. As we discussed briefly in the introduction,
a behavior model is a finite-state abstraction where each transition represents a
modifier invocation and the states describe, with a certain level of abstraction,
observer return value in a particular state. An intensional behavior model is a
generalization of a particular kind of behavior model, called behavioral equiva-
lence model (Bem), where each state represents a class of behaviorally equivalent
objects, and it represents a subset of all the possible behaviors of the compo-
nent (e.g., for a subset of possible parameters for methods, or for terms up to
a certain length). An intensional behavior model generalizes a Bem by using an

288 C. Ghezzi, A. Mocci, and M. Sangiorgio

NAC L R

1: Stack

Stack

push(π)

1: Stack
capacity()= σ1

size()= σ2

top()= σ3

contains(θi)= σ4

CT= σCT

1: Stack
capacity()= σ1

size()= σ2

top()= σ3

contains(θi)= σi
4

CT= σCT

Stack
capacity()= σ1

size()= σ2 + 1
top()= π

contains(θi)= (θi = π ⇒ true : σi
4)

CT= append(σCT , push(π))

push(π)

AC : σ2 < σ1

(a) Push Rule

Fig. 8. An intensional behavior model rule describing the behavior of a push operation
in a non-full bounded Stack

generative approach, similar to a graph grammar: each operation is described by
a rule which describes how new states, and new transitions, can be added to an
existing Bem to explain new behaviors. The generalization is possible because
each state is uniquely identified by a canonical trace, as in Tam.

Figure 8 shows a rule describing the behavior of the push operation of a stack.
Essentially, it describes how a new state on a Bem can be generated after the
invocation of a push operation. First, the rule describes how the observer return
values change – that is, size is incremented by 1 and top returns the inserted
element; second, the rule describes the value of the new canonical trace for the
state by appending the last operation to the previous canonical trace.

Spy first infers a Bem from the dynamic analysis of a Java class, as in
Heureka. Essentially, it has three steps:

– for a user-specified instance pool, it generates terms up to a certain length
and classifies them by behavioral equivalence, generating a Bem;

– then, Spy uses heuristics based on a metric for object distance to identify a
candidate set of canonical traces for an inferred Bem;

– finally, a generalization step uses invariant detection (à la Daikon) to de-
tect both trace assertions describing the behavior of modifiers and other
invariants describing the behavior of observers; such invariants are used to
generalize Bems to intensional behavior models.

The use of trace assertions, essentially, makes Spy able to infer specifications
where methods like Heureka would explicitly require hidden functions.

3 Use of Inferred Specifications for Validation

In the introduction of this paper we discussed how inferred specifications may
play a role beyond specification recovery and documentation improvement. We
mentioned, in particular, their use in software validation. Hereafter we first sur-
vey and discuss existing work that uses inferred infinite-state models for valida-
tion purposes (Section 3.1). Then we outline some possible research directions
(Section 3.2).

Synthesis of Infinite-State Abstractions and Their Use 289

3.1 Existing Approaches

Hereafter, we explore the related work that uses the results of inference of
infinite-state abstractions to perform different kinds of validation – either of
the inferred specifications themselves or of the artifacts under analysis. Existing
work in this area is reviewed below for the classes of specification we identified
in this paper.

Contracts. Most existing validation approaches that use inferred infinite-state
specifications involve contracts. A number of such techniques embed contract
inference in more complex workflow that includes static analysis and testing.
The use of Daikon, in this context, has been pretty intense [33]. A full survey
of all the usages of Daikon is outside the scope of this paper, mainly because the
contracts inferred by Daikon are in general not abstract, that is, they normally
express pre- and post-conditions in term of a class’ internal representation.

A notable example is provided by DSD-Crasher [34], which combines dy-
namic contract inference, static code analysis, and testing. The first phase of
the approach relies on Daikon for specification inference. In this context, the
inferred specification acts as an oracle of the intended program behavior. The
next phases of DSD-Crasher focus on detection of possible bugs, which is
performed in two separate steps. First, static analysis is used to find counterex-
amples that possibly violate the inferred contracts. Second, testing is performed
to confirm that the issues found with static analysis are actually bugs. Both
steps are important because static analysis may return an over-approximated
set of issues containing some bugs that are not reachable in real executions.

A research approach that uses abstract contract inference for bug finding is
Stateful Testing [35], which is based upon AutoInfer-synthesized Eiffel

contracts. By using Stateful Testing it is possible to produce a suitable test
suite that is both able to uncover bugs in the code and that can lead to the
inference of more accurate contracts. The approach starts from the AutoTest

random test case generation; the initial test suite is then improved by leveraging
the contracts inferred with AutoInfer. The underlying hypothesis of the ap-
proach is that the initial test suite, which is generated randomly, likely misses to
cover some behavior of the component under test. Thus, it is desirable to enrich
such initial test suite to cover more behaviors and obtain a more complete test
suite. Inferred contracts indeed provide an effective way to enhance a test suite.
Stateful Testing leverages the information encoded in the inferred contracts
to find test cases that violate their preconditions and postconditions. Adding
these new test cases improves the number of faults that it can expose and thus,
in the end, likely leads to the inference of more precise contracts.

Algebraic Specifications. Inference approaches like Heureka [19], [36], or
Spy [23] interleave automated test generation with specification inference. For
example, Heureka uses test generation also after algebraic axiom generation to
prune invalid axioms generated by the generalization phase. In [36] the authors

290 C. Ghezzi, A. Mocci, and M. Sangiorgio

propose an iterative approach where testing and specification inference are mu-
tually enhanced by each other. Essentially, the approach starts from an initial
set of tests that guide specification inference. Then such specifications are used
to guide the automatic generation of new tests. In the initial iterations, such
approach is very likely to generate test cases that violate the previously inferred
specifications. The violating tests might be exercising either new program be-
haviors or exposing some fault that was not exercised in initial iterations of the
approach. The technique has been implemented by considering both contracts
as inferred by Daikon, and algebraic specifications inferred with a mechanism
that is closely related to the one of Sabicu.

Through testing, it is also possible to provide an empirical comparison of
the quality of inferred specifications by different methods. For example, the
experimental validation of Spy against Heureka [23] has been performed by
generating test cases and using the component under analysis as an oracle against
the prediction of both inferred specifications, to compute the numbers of correct,
wrong, or undetermined predictions.

Comparing inferred specifications is also the subject of [37]. This paper pro-
poses a technique to automatically check the mutual consistency of two different
infinite-state abstractions, that is, algebraic specifications and intensional be-
havior models of the same software component. The approach reduces the con-
sistency problem to model checking. The evaluation considers (and simulates)
typical situations that may arise in the context of specification inference. For
example, different inference bases may get different (and inconsistent) behavior
predicted by the two different inferred specifications; the approach is able to de-
rive such inconsistencies that may potentially arise in the context of specification
inference.

3.2 Potential Future Research Directions

The works analyzed so far demonstrate that specification inference can be the
basis for interesting validation activities. Hereafter, we briefly analyze potentially
interesting research directions that can be further. To this aim, we briefly discuss
examples of existing literature that use non-inferred infinite state abstractions,
and we discuss how inferred specifications could play a role. We explore two areas
of possible applications: testing and debugging, and validation in the so-called
open world.

Testing and Debugging. Testing and debugging techniques can get significant
improvements in their effectiveness when accurate specifications are available.
For example, specifications may act as oracles of the intended behavior of a
piece of code. Testing tools can rely on this information to discriminate between
the expected and actual behavior of the code under analysis.

Many existing works use contracts to enable the automatic generation of test
cases that try to find input values violating them. For example, Eiffel natively
supports design by contract, and the research community developed several tech-
niques to leverage such specification for automatic test case generation. These

Synthesis of Infinite-State Abstractions and Their Use 291

approaches rely on contracts as oracles to drive the search performed by ran-
dom testing techniques [27] or evolutionary algorithms [38]. These approaches
explore the input spaces trying to find test cases that violate the precondition
of a method, or that satisfy the precondition but violate the postcondition.

Astoot [39] uses algebraic specifications and term rewriting to automatically
generate test cases for object-oriented software. The tool produces test cases to
ensure the equivalence of all the sequence of operations that should bring an ob-
ject in a given abstract state. It generates different sequences of operations and
the assertions on the value returned by observer methods needed to check that
the object is in the right abstract state. The presence of specifications is also
useful to optimize an existing test suite.Rostra [40] relies on algebraic specifica-
tions to minimize the number of test cases contained in a test suite. Minimization
is performed by eliminating redundant test cases, i.e. the test cases that cover
the same abstract states, and removing the ones dealing with equivalent objects.

The aforementioned approaches work in the presence of an existing speci-
fication. Since very often in practice specifications are missing, incomplete, or
unreliable, inference techniques can help to fill this gap. However, existing meth-
ods that apply to human-produced specifications cannot be simply transferred
as they are to inferred specifications. The latter, in fact, reflect the actual be-
havior of observed code, plus generalizations; they do not express, per se, the
intended program behavior. To enable application of approaches like the ones we
reviewed above, one should first inspect the extracted specifications to ensure
that they actually reflect the intended component behavior. This inspection can
be non-trivial for infinite-state abstractions.

A different approach views specification inference and validation as integrated
steps that mutually influence each other. In fact, it is also possible to envision a
feedback loop in which specifications are built starting from existing test cases
and, at the same time, they are used to construct new relevant test cases, reaching
a point where the likelihood of finding new mismatching test cases from the
implementation and the specification is relatively low. This approach has been
explored by Stateful Testing and can be traced back to the pioneering work
on finite-state abstraction learning and testing approach called L∗ [41]. If one
applies such a technique to a reference implementation, then the specification is
likely to capture the intended behavior and can be used, for example, for precise
regression testing or even for program verification.

Service-Oriented Architectures and Open-World Software. Inference of
infinite-state abstractions may play a relevant role in the context of modern
software architectures, like service-oriented architectures, living in the so-called
open world [42]. Such applications, in fact, are composed by using third-party
components or services on which the developer has no control. Composition may
even occur dynamically, at run time. In such contexts, the value of an inferred
specification is particularly critical, since a service client has no possibility to
inspect the implementation of a service.

The work by Bianculli et. al. [43] uses infinite-state abstractions in the context
of a service-oriented environment. Specifically, algebraic specifications are used

292 C. Ghezzi, A. Mocci, and M. Sangiorgio

to monitor the behavior of a stateful service, like a typical shopping cart used by
most e-commerce Web applications. The proposed approach uses aspect-oriented
programming [44] to monitor a BPEL service and the operations that are in-
voked on it. An algebraic specification interpreter (either the Heureka [45] or
CafeOBJ [46] one) is used to evaluate the monitored terms and check it against
the observed operation result. In this work, the specification is assumed to be pro-
vided. However, this assumption may be irrealistic, considering the current state
of the practice in the specification of service-oriented applications. Although a
specification (both for functional and non-functional aspects) should in princi-
ple be available to support service-level agreement between service providers and
users, in practice descriptions are informal and compliance with their evolving
implementation may not be ensured.

Existing inference techniques may not be straightforwardly applied in this
context. For example, the techniques for algebraic specifications, like Heureka,
are computationally expensive and the number of method invocations required
to infer a specification is relatively high. If these method invocations have to
be applied to an existing service, they would negatively affect non-functional
properties of the service to be analyzed. Furthermore, it can be unreasonable to
expect each client should perform analysis on the same exposed service to obtain
the specification. Instead, one should perhaps envision specific discovery services
and mechanisms to perform specification inference. In addition, inference should
apply to both functional and non-functional interface properties.

4 Conclusions

Infinite-state abstractions can provide very precise descriptions of behaviors that
finite-state machines would instead ignore. However, it is hard to produce them
and keep them consistent with implementations. Thus they are seldom used in
the practice of software development. In this paper, we surveyed the research
literature on specification inference for infinite-state abstractions, focusing in
particular on two existing classes: pre-/post-condition based contracts and al-
gebraic specifications. Furthermore, we outlined interesting validation scenarios
where an inference step can play an important role, extending the applicability
of existing work. Although very promising initial work has been focusing on the
interplay between specification inference and validation, more research is needed
to make it applicable and to pave the way for use of infinite-state abstractions
in the practice of software engineering.

References

1. Young, M., Pezze, M.: Software Testing and Analysis: Process, Principles and Tech-
niques. John Wiley & Sons (2007)

2. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Information and Computation 98(2) (1992)

3. Ernst, M.D.: Dynamically Discovering Likely Program Invariants. Ph.D. thesis,
University of Washington, Seattle, Washington (August 2000)

Synthesis of Infinite-State Abstractions and Their Use 293

4. Robillard, M., Bodden, E., Kawrykow, D., Mezini, M., Ratchford, T.: Auto-
mated api property inference techniques. IEEE Transactions on Software Engi-
neering 39(5), 613–637 (2013)

5. Dallmeier, V., Lindig, C., Wasylkowski, A., Zeller, A.: Mining object behavior with
adabu. In: Proceedings of the 2006 International Workshop on Dynamic Systems
Analysis, WODA 2006, pp. 17–24. ACM, New York (2006)

6. Dallmeier, V., Knopp, N., Mallon, C., Hack, S., Zeller, A.: Generating test cases
for specification mining. In: Proceedings of the 19th International Symposium on
Software Testing and Analysis, ISSTA 2010, pp. 85–96. ACM, New York (2010)

7. De Caso, G., Braberman, V., Garbervetsky, D., Uchitel, S.: Program abstractions
for behaviour validation. In: 2011 33rd International Conference on Software En-
gineering (ICSE), pp. 381–390 (2011)

8. Xie, T., Notkin, D.: Tool-assisted unit-test generation and selection based on op-
erational abstractions. Automated Software Engineering 13(3), 345–371 (2006)

9. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: Proceedings of the
IFIP TC6 WG6.1 Joint International Conference on Formal Description Techniques
for Distributed Systems and Communication Protocols (FORTE XII) and Protocol
Specification, Testing and Verification (PSTV XIX). FORTE XII / PSTV XIX
1999, pp. 225–240. Kluwer, The Netherlands (1999)

10. Mocci, A., Sangiorgio, M.: Detecting component changes at run time with behavior
models. Computing 95(3), 191–221 (2013)

11. Meyer, B.: Applying “Design by Contract”. IEEE Computer 25(10), 40–51 (1992)

12. Guttag, J.V., Horning, J.J.: The algebraic specification of abstract data types.
Acta Informatica 10, 27–52 (1978), http://dx.doi.org/10.1007/BF00260922

13. Goguen, J., Malcolm, G.: Algebraic Semantics of Imperative Programs. Founda-
tions of Computing Series. Mit Press (1996)

14. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Science
of Computer Programming 69(1-3), 35–45 (2007); Special issue on Experimental
Software and Toolkits

15. Csallner, C., Tillmann, N., Smaragdakis, Y.: DySy: Dynamic symbolic execution
for invariant inference. In: Proceedings of the 30th International Conference on
Software Engineering, ICSE 2008, pp. 281–290. ACM, New York (2008)

16. Tillmann, N., Chen, F., Schulte, W.: Discovering likely method specifications.
In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 717–736. Springer,
Heidelberg (2006)

17. Wei, Y., Furia, C.A., Kazmin, N., Meyer, B.: Inferring better contracts. In: Pro-
ceedings of the 33rd International Conference on Software Engineering, ICSE 2011,
pp. 191–200. ACM, New York (2011)

18. Alpuente, M., Feliú, M.A., Villanueva, A.: Automatic inference of specifications
using matching logic. In: Proceedings of the ACM SIGPLAN 2013 Workshop on
Partial Evaluation and Program Manipulation, PEPM 2013, pp. 127–136. ACM,
New York (2013)

19. Henkel, J., Reichenbach, C., Diwan, A.: Discovering documentation for Java con-
tainer classes. IEEE Trans. Software Eng. 33(8), 526–543 (2007)

20. Ghezzi, C., Mocci, A., Monga, M.: Efficient recovery of algebraic specifications for
stateful components. In: Ninth International Workshop on Principles of Software
Evolution: In Conjunction with the 6th ESEC/FSE Joint Meeting, IWPSE 2007,
pp. 98–105. ACM, New York (2007)

http://dx.doi.org/10.1007/BF00260922

294 C. Ghezzi, A. Mocci, and M. Sangiorgio

21. Xie, T., Notkin, D.: Automatically identifying special and common unit tests for
object-oriented programs. In: Proc. 16th IEEE International Symposium on Soft-
ware Reliability Engineering (ISSRE 2005), pp. 277–287 (November 2005)

22. Bacci, G., Comini, M., Feliú, M.A., Villanueva, A.: Automatic synthesis of spec-
ifications for first order Curry programs. In: Proceedings of the 14th Symposium
on Principles and Practice of Declarative Programming, PPDP 2012, pp. 25–34.
ACM, New York (2012)

23. Ghezzi, C., Mocci, A., Monga, M.: Synthesizing intensional behavior models by
graph transformation. In: IEEE 31st International Conference on Software Engi-
neering, ICSE 2009, pp. 430–440. IEEE (2009)

24. Meyer, B.: Design by Contract: The Eiffel Method. In: International Conference
on Technology of Object-Oriented Languages, p. 446 (1998)

25. Roşu, G., Ştefănescu, A.: Matching Logic: A New Program Verification Approach
(NIER Track). In: ICSE 2011: Proceedings of the 30th International Conference
on Software Engineering, pp. 868–871. ACM (2011)

26. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Commun. ACM 15, 1053–1058 (1972)

27. Meyer, B., Fiva, A., Ciupa, I., Leitner, A., Wei, Y., Stapf, E.: Programs that test
themselves. Computer 42(9), 46–55 (2009)

28. Goguen, J., Malcolm, G.: A hidden agenda. Theoretical Computer Science 245(1),
55–101 (2000)

29. Comini, M., Torella, L.: A condensed goal-independent fixpoint semantics modeling
the small-step behavior of rewriting. In: Kovacs, L., Kutsia, T. (eds.) SCSS 2013.
EPiC Series, vol. 15, pp. 31–49. EasyChair (2013)

30. Janicki, R., Sekerinski, E.: Foundations of the trace assertion method of module
interface specification, vol. 27, pp. 577–598. IEEE Press, Piscataway (2001)

31. Bartussek, W., Parnas, D.L.: Using assertions about traces to write abstract spec-
ifications for software modules. In: Bracchi, G., Lockemann, P. (eds.) Information
Systems Methodology. LNCS, vol. 65, pp. 211–236. Springer, Heidelberg (1978)

32. Parnas, D.L.: A technique for software module specification with examples. Com-
mun. ACM 15(5), 330–336 (1972)

33. Ernst, M.: Daikon-related invariant detection publications (2013),
http://groups.csail.mit.edu/pag/daikon/pubs/#daikon-methodology

34. Csallner, C., Smaragdakis, Y., Xie, T.: DSD-Crasher: A hybrid analysis tool for
bug finding. ACM Trans. Softw. Eng. Methodol. 17(2), 8:1–8:37 (2008)

35. Wei, Y., Roth, H., Furia, C., Pei, Y., Horton, A., Steindorfer, M., Nordio, M.,
Meyer, B.: Stateful testing: Finding more errors in code and contracts. In: 2011
26th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 440–443 (2011)

36. Xie, T., Notkin, D.: Mutually enhancing test generation and specification infer-
ence. In: Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 60–69.
Springer, Heidelberg (2004)

37. Ghezzi, C., Mocci, A., Salvaneschi, G.: Automatic cross validation of multiple speci-
fications: A case study. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS,
vol. 6013, pp. 233–247. Springer, Heidelberg (2010)

38. Silva, L.S., Wei, Y., Meyer, B., Oriol, M.: Evotec: Evolving the best testing strategy
for contract-equipped programs. In: APSEC, pp. 290–297 (2011)

39. Doong, R.K., Frankl, P.G.: The astoot approach to testing object-oriented pro-
grams. ACM Transactions on Software Engineering and Methodology 3(2), 101–130
(1994)

http://groups.csail.mit.edu/pag/daikon/pubs/#daikon-methodology

Synthesis of Infinite-State Abstractions and Their Use 295

40. Xie, T., Marinov, D., Notkin, D.: Rostra: A framework for detecting redundant
object-oriented unit tests. In: 26th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2011), pp. 196–205 (2004)

41. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Com-
put. 75(2), 87–106 (1987)

42. Baresi, L., Di Nitto, E., Ghezzi, C.: Toward open-world software: Issues and chal-
lenges. IEEE Computer 39(10), 36–43 (2006)

43. Bianculli, D., Ghezzi, C.: Monitoring conversational web services. In: 2nd Interna-
tional Workshop on Service Oriented Software Engineering: in Conjunction with
the 6th ESEC/FSE Joint Meeting, IW-SOSWE 2007, pp. 15–21. ACM, New York
(2007)

44. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

45. Henkel, J., Reichenbach, C., Diwan, A.: Developing and debugging algebraic spec-
ifications for java classes. ACM Trans. Softw. Eng. Methodol. 17(3), 14:1–14:37
(2008)

46. Diaconescu, R., Futatsugi, K., Iida, S.: Component-based algebraic specification
and verification in CafeOBJ. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM
1999. LNCS, vol. 1709, pp. 1644–1663. Springer, Heidelberg (1999)

	Synthesis of Infinite-State Abstractionsand Their Use for Software Validation
	1 Introduction
	2 Synthesis of Infinite-State Abstractions: State of the Art
	2.1 Inferring Contracts
	2.2 Synthesis of Algebraic Specifications
	2.3 A Synthesis Approach Based on Trace Assertions

	3 Use of Inferred Specifications for Validation
	3.1 Existing Approaches
	3.2 Potential Future Research Directions

	4 Conclusions
	References

