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Kokichi Futatsugi



Preface

During his entire professional life, Prof. Kokichi Futatsugi has worked in the
intersection of formal methods and software engineering. He has made funda-
mental scientific contributions to both of these areas and is recognized as an
international leader in both of them.

In formal methods he is one of the founding fathers of the field of algebraic
specification and verification. In 1980 he designed and implemented the first
Japanese algebraic specification language (HISP), one of the very first such lan-
guages in the world with powerful module operations. And in the mid-1980s
he co-designed the OBJ algebraic specification language, at the time the most
advanced language of its type in the world, which has had an enormous impact
in the field of formal methods. In the 1990s he greatly expanded the reach and
impact of algebraic specification and verification by supporting reasoning and
executable formal specification of systems involving algebraic data types, ob-
jects, states, and concurrency through the seamless and elegant integration of
equational, hidden, and rewriting logic in the so-called CafeOBJ “cube.”

The CafeOBJ language and the range of verification methods and tools it
supports —including its support for inductive theorem proving, verification of
behavioral specifications, deductive invariant proof, and reachability analysis
of concurrent systems— has played a key role in both extending and bringing
algebraic specification techniques into contact with many software engineering
applications. In the most recent years, the CafeOBJ approach to formal specifi-
cation and verification has been further advanced under his leadership to achieve
a more intimate integration between theorem proving and model checking, reach
greater automation of proofs, and make further breakthroughs in deductive in-
variant verification.

One of the most appealing strong points of the vision brought to fruition
by Kokichi Futatsugi through all these efforts is the advancement of a style of
executable specification that is in fact, simultaneously, a very simple and in-
tuitive form of declarative programming, and therefore considerably easier to
understand and use by software engineers than other, more arcane formalisms.
This, together with all the above-mentioned formal verification methods and
tools based on such executable specifications, has brought formal methods con-
siderably closer to software engineering practice.

His leadership in the software engineering field includes, but has not been
limited to, all the above-mentioned scientific contributions: He has furthermore
carried out a sustained and impressive effort to connect his formal methods work
with other key areas of software engineering such as object-oriented design and
model-based software development. Furthermore, with his collaborators he has
developed a very impressive array of case studies showing the practical useful-
ness of these methods. He has also been a leading figure in the ICSE community
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as its main Japanese representative over the years, has played a key role in pro-
moting other important international research initiatives such as the ICFEM
conferences that bring together researchers in formal methods and software en-
gineering all over the word, has promoted and edited the proceedings of many
other scientific events, and has served as program chair and/or on steering and
program committees of numerous prestigious international scientific conferences.

In Japan his leadership and influence in formal methods and software engi-
neering have been immense, not only among researchers, but also in bringing
formal methods closer to industrial software practice.

For us it is both an honor and a pleasure to have been able to organize
this event and have edited this volume. The response from the internationally
leading researchers in formal methods and software engineering that we have
invited has been enthusiastic. Thanks to them we have been able to assemble a
remarkable body of research papers that, in different ways, bring out both the
vibrancy of research in this frontier and allude to Kokichi Futatsugi’s remarkable
impact on it. Indeed, we believe that this festive volume and event to honor
Kokichi Futatsugi afford a rather special opportunity for leading researchers at
the intersection of formal methods and software engineering to reflect on and
discuss some of the main research directions in this frontier in the context of the
life-long ideas of one of its leading contributors.

We wish to thank all the contributors to this Festschrift volume and all the
researchers who, through their careful refereeing of the papers, have allowed us
to assemble a volume of very high scientific quality. We also wish to thank Alfred
Hofmann and all the staff at Springer for their warm support and encouragement
of this project from its very inception and for their excellent technical help.
Finally, we are grateful to the Kanazawa Convention Bureau for supporting this
event.

January 2014 Shusaku Iida
José Meseguer

Kazuhiro Ogata
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Inspecting Rewriting Logic Computations (in a Parametric
and Stepwise Way) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
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Laudatio

Futatsugi says he’s known me since the IFIP World Gongress in Tokyo, Japan, September
1980. I can certainly and clearly remember having met Kokichi in the late Joseph Goguen’s
SRI office in July 1984. He was there; so was José Meseguer and Jean-Pierre Jouannaud.
They were clearly onto something, OBJectively speaking, very exciting ! Nothing really
“destined” us for one another. Kokichi was into algebraic specifications and I into model-
oriented ones. Mathematicians versus engineers — some would say. Well, the RAISE, [25],
specification language RSL, [24], does “mix” traditional model-oriented expressivity with
sorts, observers and axioms — borrowed very specifically from early work on OBJ [27]. So
maybe we were destined. At least I have enjoyed, tremendously, our acquaintance. Had we
lived closer, geographically, I might even have been able to claim the kind of friendship
that survives sitting together, not saying a word, for hours. That’s not difficult in our case:
Kokichi has his mother tongue, hopelessly isolated out here, in the Far East, and I have
my mother tongue, hopelessly isolated back here ! Kokichi and his work has become an
institution [26]. First ETL and then JAIST became firmly implanted in the universe of the
communities of algebraic semantics and formal specification scientists. Not many Japanese
computer scientists have become so well-known abroad as has Kokichi. One thing that
has paved the way for this is Kokichi’s personality. A Japanese at ease also in the Western
World. Westerners being so very kindly accepted and welcome by Kokichi and his colleagues
here in the beautiful, enigmatic Land of the Rising Sun. One thing I always do complain
about when seeing Kokichi in my world is that he should bring his wife, charming Junko,
there more often — well every time ! So, Kokichi, thanks for your scientific contributions;
thanks for your being a fine Doctors Father; thanks for hosting one of my former students,
Dr. Anne Elisabeth Haxthausen for half a year at ETL; thanks for hosting me here at JAIST
for a whole year, 2006; and thanks for helping us “barbarian” Westerners getting to love
Japan and all things Japanese.

Abstract: We present a summary, Sect. 2, of a structure of domain analysis
and description concepts: techniques and tools. And we link, in Sect. 3, these
concepts, embodied in domain analysis prompts and domain description prompts,
in a model of how a diligent domain analyser cum describer would use them. We
claim that both sections, Sects. 2–3, contribute to a methodology of software
engineering.
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2 D. Bjørner

1 Introduction

A Context for Domains: Before software can be designed we must have a
reasonably good grasp of its requirements. Before requirements can be prescribed
we must have a reasonably good grasp of the domain in which the software is
to reside. So we turn to domain analysis & description as a means to obtain and
record that ‘grasp’. In this paper we summarise an approach to domain analysis
& description recorded in more detail in [12]. Thus this paper is based on [12].

Related Papers: This paper is one in a series of papers on domain science &
engineering. In [6] we present techniques related to the analysis and description
of domain facets. In [4] we investigate some research issues of domain science.
The paper [13] examines possible contributions of domain science & engineering
to computation for the humanities. It is expected that the present paper may be
followed by respective (“spin-off”) papers on Perdurants [10], A Formal Model of
Prompts [11], Domain Facets (cf. [6]) [9], and On Deriving Requirements From
Domain Descriptions (cf. [5]) [14].

A TripTych of Software Engineering: The first 3+ lines above suggest an
“idealised”, the TripTych, approach to software development: first a phase of
domain engineering in which is built a domain model; then a phase of requirements
engineering in which is built a requirements model; and finally a phase of software
design in which the code is developed. We show in [5] how to systematically
“transform” domain descriptions into requirements prescriptions.

Structure of this Paper: The structure of this paper is as follows: First, in
Sect. 2 we present a terse summary of a system of domain analysis & description
concepts focused on endurants. This summary is rather terse, and is a “tour de
force”. Section 2 is one of the two main sections of this paper. Section 3 sug-
gests a formal-looking model of the structure of domain analysis prompts and
domain description prompts introduced in Sect. 2. It is not a formalisation of do-
mains, but of the domain analysis & description process. Domains are usually
not computationally tractable. Less so is the domain analysis & description pro-
cesses. Finally, Sect. 4 concludes this paper. An appendix, Appendix A, presents
a domain description of a [class of] pipeline systems. Some seminars over the
underlying paper may start by a brief presentation of this model. The reader is
invited to browse this pipeline system model before, during and/or after reading
Sects. 2–3.

2 The Domain Analysis Approach

2.1 Hierarchical versus Compositional Analysis and Description

In this paper we choose, what we shall call, a ‘hierarchical analysis’ approach
which is based on decomposing an understanding of a domain from the
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“overall domain” into its components, and these, if not atomic, into their sub-
components •. In contrast we could have chosen a ‘compositional analysis’ ap-
proach which starts with an understanding of a domain from its atomic endurants
and composes these into composite ones, finally ending up with an “overall do-
main” description •.

2.2 Domains

A ‘domain’ is characterised by its observable, i.e., manifest entities and their
qualities •. 1 Example 1. Domains: a road net, a container line, a pipeline, a hospi-
tal . 2

2.3 Sorts, Types and Domain Analysis

By a ‘sort’ (or ‘type’ which we take to be the same) we shall understand the
largest set of entities all of which have the same qualities3 •. Example 2. Sorts:
Links of any road net constitute a sort. So does hubs. The largest set of (well-
formed) collections of links constitute a sort. So does similar collections of hubs.
The largest set of road nets (containing well-formed collections of hubs and links)
form a sort .

By ‘domain analysis’ we shall understand a process whereby a domain analyser
groups entities of a domain into sorts (and types) •. The rest of this paper will
outline a class of domain analysis principles, techniques and tools.

2.4 Entities and Qualities

Entities: By an ‘entity’ we shall understand a phenomenon that can be observed,
i.e., be seen or touched4 by humans, or that can be conceived as an abstraction of
an entity5 •. The method can thus be said to provide the domain analysis prompt:
is entity where is entity(θ) holds if θ is an entity. Example 3. Entities: (a) a
road net, (b) a link6 of a road net, (c) a hub7 of a road net; and (d) insertion of a
link in a road net, (e) disappearance of a link of a road net, and (f) the movement
of a vehicle on a road net .

1 Definitions start with a single quoted ‘term’ and conclude with a •.
2 Examples conclude with a .
3 Taking a sort (type) to be the largest set of entities all of which have the same
qualities reflects Ganter & Wille’s notion of a ‘formal concept’ [23].

4 An entity which can be seen or touched is thus a physical phenomenon. If an entity
has the quality the colour red, it is not the red that is an entity.

5 There is no “infinite loop” here: a concept can be an abstraction of (another) concept,
etc., which is finally an abstraction of a physical phenomenon.

6 A link: a street segment between two adjacent hubs.
7 A hub: an intersection of street segments.



4 D. Bjørner

Qualities: By a ‘quality’ of an entity we shall understand a property that can
be given a name and precisely measured by physical instruments or otherwise
identified •. Example 4. Quality Names: cadestral location of a hub, hub state8,
hub state space9, etcetera . Example 5. Quality Values: the name of a road net,
the ownership of a road net, the length of a link, the location of a hub, etcetera .

2.5 Endurants and Perdurants

Entities are either endurants or are perdurants.

Endurants: By an ‘endurant entity’ (or just, an endurant) we shall understand
that can be observed or conceived, as a “complete thing”, at no matter which
given snapshot of time. Were we to “freeze” time we would still be able to ob-
serve the entire endurant •. Thus the method provides a domain analysis prompt:
is endurant where is endurant(e) holds if entity e is an endurant. Example 6.
Endurants: Items (a–b–c) of Example 2.4 are endurants; so are the pipes, valves,
and pumps of a pipeline.

Perdurants: By a ‘perdurant entity’ (or just, an perdurant) we shall understand
an entity for which only a fragment exists if we look at or touch them at any given
snapshot in time, that is, were we to freeze time we would only see or touch a
fragment of the perdurant •. Thus the method provides a domain analysis prompt:
is perdurant where is perdurant(e) holds if entity e is a perdurant. Example
7. Perdurants: Items (d–e–f) of Example 2.4 are perdurants; so are the insertion
of a hub, removal of a link, etcetera .

2.6 Discrete and Continuous Endurants

Entities are either discrete or are continuous.

Discrete Endurants: By a ‘discrete endurant’ we shall understand something
which is separate or distinct in form or concept, consisting of distinct or separate
parts •. We use the term ‘part’ for discrete endurants, that is: is part(p)≡
is endurant(p)∧is discrete(p)•. Thus the method provides a domain analysis
prompt: is discrete where is discrete(e) holds if entity e is discrete. Example
8. Discrete Endurants: The examples of Example 2.5 are all discrete endurants .

Continuous Endurants: By a ‘continuous endurant’ we shall understand some-
thing which is prolonged without interruption, in an unbroken series or pattern •.
We use the term ‘material’ for continuous endurants •. Thus the method provides
a domain analysis prompt: is continuous where is continuous(e) holds if en-
tity e is continuous. Example 9. Continuous Endurants: The pipes, valves, pumps,

8 From which links can one reach which links at a given time.
9 Set of all hub states over time.
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etc., of Example 2.5 may contain oil; water of a hydro electric power plant is also
a material (i.e., a continuous endurant) .

2.7 Discrete and Continuous Perdurants

We are not covering perdurants in this paper.

2.8 Atomic and Composite Discrete Endurants

Discrete endurants are either atomic or are composite.

Atomic Endurants: By an ‘atomic endurant’ we shall understand a discrete
endurant which in a given context, is deemed to not consist of meaningful,
separately observable proper sub-parts •. The method can thus be said to provide
the domain analysis prompt: is atomic where is atomic(p) holds if p is an
atomic part. Example 10. Atomic Parts: Examples of atomic parts of the above
mentioned domains are: aircraft (of air traffic), demand/deposit accounts (of
banks), containers (of container lines), documents (of document systems), hubs,
links and vehicles (of road traffic), patients, medical staff and beds (of hospitals),
pipes, valves and pumps (of pipeline systems), and rail units and locomotives
(of railway systems) .

Composite Endurants: By a ‘composite endurant’ we shall understand a dis-
crete endurant which in a given context, is deemed to indeed consist of mean-
ingful, separately observable proper sub-parts •. The method can thus be said
to provide the domain analysis prompt: is composite where is composite(p)
holds if p is an a composite part. Example 11. Composite Parts: Examples of
composite parts of the above mentioned domains are: airports and air lanes (of
air traffic), banks (of a financial service industry), container vessels (of container
lines), dossiers of documents (of document systems), routes (of road nets), med-
ical wards (of hospitals), pipelines (of pipeline systems), and trains, rail lines
and train stations (of railway systems) .

It is the domain analysers who decide whether an endurant is atomic or com-
posite. In the context of air traffic an aircraft might very well be described as an
atomic entity; whereas in the context of an airline an aircraft might very well be
described as a composite entity consisting of the aircraft ‘body’, the crew, the
passengers, their luggage, the fuel, etc.

2.9 Part Observers

From atomic parts we cannot observe any sub-parts. But from composite parts
we can.



6 D. Bjørner

Composite Sorts: For composite parts, p, the domain description prompt

observe part sorts(p)

yields some formal description text according to the following schema:

type P1, P2, ..., Pn;
10

value obs P1: P→P1, obs P2: P→P2,...,obs Pn: P→Pn;
11

where sorts P1, P2, ..., Pn must be disjoint. A proof obligation may need be
discharged to secure disjointness.

Sort Models: A part sort is an abstract type. Some part sorts, P, may have a
concrete type model, T. Here we consider only two such models: one model is
as sets of parts of sort A: T = A-set; the other model has parts being of either
of two or more alternative, disjoint sorts: T=P1|P2|...|PN. The domain analysis
prompt: has concrete type(p) holds if part p has a concrete type. In this case
the domain description prompt

observe concrete type(p)

yields some formal description text according to the following schema,

* either

type P1, P2, ..., PN, T = E(P1,P2,...,PN)12
value obs T: P → T13

where E(...) is some type expression over part sorts and where P1,P2,...,PN
are either (new) part sorts or are auxiliary (abstract or concrete) types14;

* or:

type
T = P1 | P2 | ... | PN15

P1, P2, ..., Pn

P1 :: mkP1(P1), P2 :: mkP2(P2), ..., PN :: mkPN(P) 16

value
obs T: P → T17

10 This RSL type clause defines P1, P2, ..., Pn to be types.
11 Thus RSL value clause defines n function values. All from type P into some type Pi.
12 The concrete type definition T = E(P1,P2,...,PN) define type T to be the set of

elements of the type expressed by type expression E(P1,P2,...,PN).
13 obs T is a function from any element of P to some element of T.
14 The domain analysis prompt: sorts of(t) yields a subset of {P1,P2,...,PN}.
15 A|B is the union type of types A and B.
16 Type definition A :: mkA(B) defines type A to be the set of elements mkA(b) where

b is any element of type B.
17 obs T is a function from any element of P to some element of T.
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2.10 Material Observers

Some parts p of sort Pmay contain material. The domain analysis prompt has ma-

terial(p) holds if composite part p contains one or more materials. The domain
description prompt

observe material sorts(p)

yields some formal description text according to the following schema:

type M1, M2, ..., Mm;
value obs M1: P → M1, obs M2: P → M2, ..., obs Mm: P → Mm;

where values, mi, of type Mi satisfy is material(m) for all i; and where M1,
M2, ..., Mm must be disjoint sorts. Example 12. Part Materials: The pipeline parts
p pipes, valves, pumps, etc., contains some either liquid material, say crude oil.
or gaseous material, say natural gas .

Some material m of sort M may contain parts. The domain analysis prompt
has parts(m) holds if material m contains one or more parts. The domain de-
scription prompt

observe part sorts(m)

yields some formal description text according to the following schema:

type P1, P2, ..., Pn;
value obs P1: M→P1, obs P2: M→P2,...,obs Pm: M→Pm;

where values, pi, of type Pi satisfy is part(pi) for all i; and where P1, P2,
..., Pn must be disjoint sorts. Example 13. Material and Part Relations: A global
transport system can, for example, be described as primarily containing naviga-
ble waters, land areas and air — as three major collections of parts. Navigable
waters contain a number of “neighbouring” oceans, channels, canals, rivers and
lakes reachable by canals or rivers from other navigable waters (all of which
are parts). The part sorts of navigable waters has water materials. All water
materials has (zero or more) parts such as vessels and sea-ports. Land areas
contain continents, some of which are neighbouring (parts), while some are iso-
lated (that is, being islands not “border–”connected to other continents). Some
land areas contain harbour. Harbours and seaports are overlapping parts shar-
ing many attributes. And harbours and seaports are connected to road and rail
nets. Etcetera, etcetera . The above example, Example 2.10, help motivate the
concept of mereology (see below).

2.11 Endurant Properties

External and Internal Qualities: We have already, above, treated the follow-
ing properties of endurants: is discrete, is continuous, is atomic, is com-

posite and has material. We may think of those properties as external qualities.
In contrast we may consider the following internal qualities: has unique identi-

fier (parts), has mereology (parts) and has attributes (parts and materials).



8 D. Bjørner

2.12 Unique Identifiers

Without loss of generality we can assume that every part has a unique identi-
fier18. A ‘unique part identifier’ (or just unique identifier) is a further undefined,
abstract quantity. If two parts are claimed to have the same unique identifier
then they are identical, that is, their possible mereology and attributes are (also)
identical •. The domain description prompt:

observe unique identifier(p)

yields some formal description text according to the following schema:

type PI;
value uid P: P → PI;

Example 14. Unique Identifiers: A road net consists of a set of hubs and a set of
links. Hubs and links have unique identifiers. That is: type HI, LI; value uid H:
H→HI, uid L: L→LI; .

2.13 Mereology

By ‘mereology’ [35] we shall understand the study, knowledge and practice of
parts, their relations to other parts and “the whole” •.

Part relations are such as: two or more parts being connected, one part being
embedded within another part, and two or more parts sharing (other) attributes.
Example 15. Mereology: The mereology of a link of a road net is the set of the two
unique identifiers of exactly two hubs to which the link is connected. The mereol-
ogy of a hub of a road net is the set of zero or more unique identifiers of the links
to which the hub is connected . The domain analysis prompt: has mereology(p)
holds if the part p is related to some others parts (pa, pb, . . . , pc). The domain
description prompt:

observe mereology(p)

can then be invoked and yields some formal description text according to the
following schema:

type MT = E(PIA,PIB,...,PIC);
value mereo P: P → MT;

where E(...) is some type expression over unique identifier types of one or more
part sorts. Mereologies are expressed in terms of structures of unique part iden-
tifiers. Usually mereologies are constrained. Constraints express that a mereol-
ogy’s unique part identifiers must indeed reference existing parts, but also that
these mereology identifiers “define” a proper structuring of parts. Example 16.
Mereology Constraints: We continue our line of examples of road net endurants,
cf. Example 2.4 but now a bit more systematically: A road net, n:N, contains

18 That is, has unique identifier(p) for all parts p.
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a pair, (HS,LS), of sets Hs of hubs h:H and sets Ls of links. The mereology of
links must identify exactly two hubs of the road net, the mereology of hubs must
identify links of the road net, so connected hubs and links must have commen-
surate mereologies . Two parts, pi:Pi and pj :Pj , of possibly the same sort (i.e.,
Pi≡Pj) are said to ‘refer one to another’ if the mereology of pi contains the unique
identifier of pj and vice-versa •. The parts pi and pj are then said to enjoy ‘part
overlap’ •. We refer to the concept of shared attributes covered at the very end of
this section.

2.14 Attributes

Attributes are what really endows parts with qualities. The external properties19

are far from enough to distinguish one sort of parts from another. Similarly with
unique identifiers and the mereology of parts. We therefore assume, without loss
of generality, that every part, whether discrete or continuous, whether, when
discrete, atomic or composite, has at least one attributes.

By a ‘part attribute’, or just an ‘attribute’, we shall understand a property
that is associated with a part p of sort P , and if removed from part p, that
part would no longer be part p but may be a part of some other sort P ′; and
where that property itself has no physical extent (i.e., volume), as the part may
have, but may be measurable by physical means •. Example 17. Attributes: Some
attributes of road net hubs are location, hub state20, hub state space21, and of
road net links are location, length, link state22, link state space23, etcetera .
The domain description prompt

observe attributes(p)

yields some formal description text according to the following schema:

type A1, A2, ..., An, ATTR;
value attr A1:P→A1, attr A2:P→A2, ..., attr An:P→An,

attr ATTR:P→ATTR;

where for ∀ p:P, attr Ai(attr ATTR(p)) ≡ attr Ai(p).

Shared Attributes: A final quality of endurant entities is that they may share
attributes. Two parts, pi:Pi, pj:Pj , of different sorts are said to enjoy ‘shared
attributes’ if Pi and Pj have at least one attribute name in common •. In such
cases the mereologies of pi and pj are expected to refer to one another, i.e., be
‘commensurable’.

19 is discrete,is continuous,is atomic,is compositehas material.
20 Hub state: a set of pairs of unique identifiers of actually connected links.
21 Hub state space: a set of hub states that a hub states may range over.
22 Link state: a set of pairs of unique identifiers of actually connected hubs.
23 Link state space: a set of link states that a link state may range over.
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3 A Model of the Analysis and Description Process

3.1 A Summary of Prompts

In the previous section we outlined two classes of prompts: the domain [endurant]
analysis prompts:24

a. is entity
b. is endurant
c. is perdurant
d. is part
e. is discrete
f. is continuous
g. is atomic
h. is composite

i. has concrete type

j. sorts of

k. has material

l. has parts

m. has unique identifier

n. has mereology

o. has attributes

and the domain [endurant] description prompts:

1. observe part sorts

2. observe concrete type

3. observe material sorts

4. observe unique identifier

5. observe mereology

6. observe attributes

These prompts are imposed upon the domain analyser cum describer. They
are “figuratively” applied to the domain. Their orderly, sequenced application
follows the method hinted at in the previous section and expressed in a pseudo-
formal notation in this section. The notation looks formal but since we have
not formalised these prompts it is only pseudo-formal. In [11] we shall formalise
these prompts.

3.2 Preliminaries

Let P be a sort, that is, a collection of endurants. By ηP we shall understand
a syntactic quantity: the name of P. By ιp:P we shall understand the semantic
quantity: an (arbitrarily selected) endurant in P. And by η−1ηP we shall un-
derstand P. To guide the TripTych domain analysis & description process we
decompose it into steps. Each step “handles” a sort p:P or a material m:M. Steps
handling discovery of composite sorts generate a set of sort names ηP1, ηP2, . . . ,
ηPn and ηM1, ηM2, . . . , ηMn. These are put in a reservoir for sorts to be in-
spected. The handled sort ηP or ηM is removed from that reservoir. Handling of
material sorts concerns only their attributes. Each domain description prompt
results in domain specification text (here we show only the formal texts) being
deposited in the domain description reservoir, a global variable τ . The clause:
domain description prompt(p) : τ := τ ⊕ [ ”text ; ”] means that the formal

24 The prompts are sorted in order of appearence. The one or two digits following the
prompt names refer to page numbers minus the number of the first page of this
paper + 1.
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text ”text ; ” is joined to the global variable τ where that ”text ; ” is prompted
by domain description prompt(p). The meaning of ⊕ will be discussed at the
end of this section.

3.3 Initialising the Domain Analysis and Description Process

We remind the reader that we are dealing only with endurant domain entities.
The domain analysis approach covered in Sect. 2 was based on decomposing
an understanding of a domain from the “overall domain” into its components,
and these, if not atomic, into their subcomponents. So we need to initialise the
domain analysis & description by selecting (or choosing) the domain Δ.

Here is how we think of that “initialisation” process. The domain analyser
& describer spends some time focusing on the domain, maybe at the “white
board”25, rambling, perhaps in an un-structured manner, across its domain, Δ,
and its subdomains. Informally jotting down more-or-less final sort names, build-
ing, in the domain analysers’ & describers’ mind an image of that domain. After
some time, doing this, the domain analyser & describer is ready. An image of the
domain is in the form of “a domain” endurant, δ:Δ. Those are the quantities,
ηΔ (name of Δ) [Item 1] and ιp:P (for (δ:Δ)) [Item 8], referred to below.

Thus this initialisation process is truly a creative one.

3.4 A Domain Analysis and Description State

1. A global variable αps will accumulate all the sort names being discovered.
2. A global variable νps will hold names of sorts yet to be analysed and de-

scribed.
3. A global variable τ will hold the (so far) generated (in this case only) formal

domain description text.

variable
1. αps := [ ηΔ ] ηP-set or ηP∗

2. νps := [ ηΔ ] (ηP|ηM)-set or (ηP|ηM)∗

3. τ := [ ] Text-set or Text∗

We shall explain the use of [...]s and the operations of \ and ⊕ on the above
variables in Sect. 3.6.

3.5 Analysis and Description of Endurants

4. To analyse and describe endurants means to first
5. examine those endurant which have yet to be so analysed and described
6. by selecting and removing from νps (Item 11.) an as yet unexamined sort

(by name);

25 Here ‘white board’ is a conceptual notion. It could be physical, it could be yellow
“post-it” stickers, or it could be an electronic conference “gadget”.
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7. then analyse and describe an endurant entity (ιp:P) of that sort — this
analysis, when applied to composite parts, leads to the insertion of zero26 or
more sort names27;

8. then to analyse and describe the mereology of each part sort,
9. and finally to analyse and describe the attributes of each sort.

value
4. analyse and describe endurants: Unit → Unit
4. analyse and describe endurants() ≡
5. while ∼is empty(νps) do
6. let ηS = select and remove ηS() in
7. analyse and describe endurant sort(ιs:S) end end ;
8. for all ηP • ηP ∈ αps do analyse and describe mereology(ιp:P) end
9. for all ηP • ηP ∈ αps do analyse and describe attributes(ιp:P) end

The ι of Items 7, 8 and 9 are crucial. The domain analyser is focused on sort
S (and P) and is “directed” (by those items) to choose (select) an endurant ιs
(ιp) of that sort. The ability of the domain analyser to find such an entity is a
measure of that person’s professional creativity.

As was indicated in Sect. 2, the mereology of a part may involve unique iden-
tifiers of any part sort, hence must be done after all such part sort unique identi-
fiers have been identified. Similarly for attributes which also may involve unique
identifiers. Each iteration of analyse and describe endurant sort(ιp:P) involves the
selection of a sort (by name) (which is that of either a part sort or a material
sort) with this sort name then being removed.

10. The selection occurs from the global state (hence: ()) and changes that (hence
Unit).

11. The affected global state component is that of the reservoir, νps.

value
10. select and remove ηS: Unit → ηP
10. select and remove ηS() ≡
11. let ηS • ηS ∈ νps in νps := νps \ {ηS} ; ηS end

The analysis and description of all sorts also performs an analysis and description
of their possible unique identifiers (if part sorts) and attributes. The analysis and
description of sort mereologies potentially requires the unique identifiers of any
set of sorts. Therefore the analysis and description of sort mereologies follows
that of analysis and description of all sorts.

12. To analyse and describe an endurant

26 If the sub-parts of p are all either atomic or already analysed, then no new sort
names are added to the repository νps.

27 These new sort names are then “picked-up” for sort analysis &c. in a next iteration
of the while loop.
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13. is to find out whether it is a part.
14. If so then it is to analyse and describe it as a part,
15. else it is to analyse and describe it as a material.

12. analyse and describe endurant sort: (P|M) → Unit
12. analyse and describe endurant sort(e:(P|M)) ≡
13. if is part(e)
13. assert: is part(e) ≡ is endurant(e)∧is discrete(e)
14. then analyse and describe part sort(e:P)
15. else analyse and describe material parts(e:M)
12. end

Analysis and Description of Part Sorts:

16. The analysis and description of a part sort
17. is based on there being a set, ps, of parts28 to analyse —
18. of which an archetypal one, p′, is arbitrarily selected.
19. analyse and describe part p′

16. analyse and describe part sort: P → Unit
16. analyse and describe part sort(p:P) ≡
17. let ps = observe parts(p) in
18. let p′:P • p′ ∈ ps in
19. analyse and describe part(p′)
16. end end

20. The analysis (&c.) of a part
21. first analyses and describes its unique identifiers.
22. If atomic
23. and
24. if the part embodies materials,
25. we analyse and describe these.
26. If not atomic then the part is composite
27. and is analysed and described as such.

20. analyse and describe part: P → Unit
20. analyse and describe part(p) ≡
21. analyse and describe unique identifier(p) ;
22. if is atomic(p)
23. then

28 We can assume that there is at least one element of that set. For the case that
the sort being analysed is a domain Δ, say “The Transport Domain”, p′ is some
representative “transport domain” δ. Similarly for any other sort for which ps is
now one of the sorts of δ.
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24. if has materials(p)
25. then analyse and describe part materials(p) end
26. else assert: is composite(p)
27. analyse and describe composite endurant(p) end
20. pre: is discrete(p)

We do not associate materials with composite parts.

Analysis and Description of Part Materials:

28. The analysis and description of the material part sorts, one or more, of
atomic parts p of sort P containing such materials,

29. simply observes the material sorts of p,
30. that is, generates the one or more continuous endurants
31. and the corresponding observer function text.
32. The reservoir of sorts to be inspected is augmented by the material sorts —

except if already previously entered (the \ αps clause).

28. analyse and describe part materials: P → Unit
28. analyse and describe part materials(p) ≡
29. observe material sorts(p) :
30. τ := τ ⊕ [ ”type M1,M2,...,Mm;
31. value obs M1:P→M1,obs M2:P→M2,...,obs Mm:P→Mm;” ]
32. νps := νps ⊕ ([ M1,M2,...,Mm ] \ αps)
28. pre: has materials(p)

Analysis and Description of Material Parts:

33. To analyse and describe materials, m, i.e., continuous endurants,
34. is only necessary if m has parts.
35. Then we observe the sorts of these parts.
36. The identified part sort names update both name reservoirs.

33. analyse and describe material parts: M → Unit
33. analyse and describe material parts(m:M) ≡
34. if has parts(m)
35. then observe part sorts(m):
35. τ := τ ⊕ [ ” type P1,P2,...,PN ;
35. value obs Pi: M→Pi i:{1..N};” ]
36. ‖ νps := νps ⊕ ([ ηP1,ηP2,...,ηPN ]\ αps)
36. ‖ αps := αps ⊕ [ ηP1,ηP2,...,ηPN ]
33. end
33. assert: is continuous(m)
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Analysis and Description of Composite Endurants:

37. To analyse and describe a composite endurant of sort P
38. is to analyse and describe the unique identifier of that composite endurant,
39. then to analyse and describe the sort. If the sort has a concrete type
40. then we analyse and describe that concrete sort type
41. else we analyse and describe the abstract sort.

37. analyse and describe composite endurant: P → Unit
37. analyse and describe composite endurant(p) ≡
38. analyse and describe unique identifier(p) ;
39. if has concrete type(p)
40. then analyse and describe concrete sort(p)
41. else analyse and describe abstract sort(p)
39. end

Analysis and Description of Concrete Sort Types:

42. The concrete sort type being analysed and described
43. is either
44. expressible by some compound type expression
43. or is
45. expressible by some alternative type expression.

42. analyse and describe concrete sort: P → Unit
42. analyse and describe concrete sort(p:P) ≡
44. analyse and describe concrete compound type(p)
43. 
�
45. analyse and describe concrete alternative type(p)
42. pre: has concrete type(p)

46. The concrete compound sort type
47. is expressible by some simple type expression, T=E(Q,R,...,S) over either

concrete types or existing or new sorts Q, R, ..., S.
48. The emerging sort types are identified
49. and assigned to both νps
50. and αps.

44. analyse and describe concrete compound type: P → Unit
44. analyse and describe concrete compound type(p:P) ≡
46. observe part type(p):
46. τ := τ ⊕ [ ”type Q,R,..,S, T = E(Q,R,...,S);
46. value obs T: P → T ;” ] ;
47. let {Pa,Pb,...,Pc} = sorts of({Q,R,...,S})
48. assert: {Pa,Pb,...,Pc} ⊆ {Q,R,...,S} in
49. νps := νps ⊕ [ ηPa, ηPb, ..., ηPc ] ‖
50. αps := αps ⊕ ([ ηPa, ηPb, ..., ηPc ] \ αps) end
44. pre: has concrete type(p)
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51. The concrete alternative sort type expression
52. is expressible by an alternative type expression T=P1|P2|...|PN where each

of the alternative types is made disjoint wrt. existing types by means of the
description language Pi::mkPi(su:Pi) construction.

53. The emerging sort types are identified and assigned
54. to both νps
55. and αps.

45. analyse and describe concrete alternative type: P → Unit
45. analyse and describe concrete alternative type(p:P) ≡
51. observe part type(p):
52. τ := τ ⊕ [ ”type T=P1 | P2 | ... | PN, Pi::mkPi(s u:Pi) (1≤i≤N);
52. value obs T: P→T ;” ] ;
53. let {Pa,Pb,...,Pc} = sorts of({Pi|1≤i≤n})
53. assert: {Pa,Pb,...,Pc} ⊆ {Pi|1≤i≤n} in
54. νps := νps ⊕ ([ ηPa, ηPb, ..., ηPc ] \ αps) ‖
55. αps := αps ⊕ [ ηPa, ηPb, ..., ηPc ] end
42. pre: has concrete type(p)

Analysis and Description of Abstract Sorts:

56. To analyse and describe an abstract sort
57. amounts to observe part sorts and to
58. update the sort name repositories.

56. analyse and describe abstract sort: P → Unit
56. analyse and describe abstract sort(p:P) ≡
57. observe part sorts(p):
57. τ := τ ⊕ [ ”type P1, P2, ..., Pn;
57. value obs Pi:P→Pi (0≤i≤n);” ]
58. ‖ νps := νps ⊕ ([ ηP1, ηP2, ..., ηPn ] \ αps)
58. ‖ αps := αps ⊕ [ ηP1, ηP2, ..., ηPn ]

Analysis and Description of Unique Identifiers:

59. To analyse and describe the unique identifier of parts of sort P is
60. to observe the unique identifier of parts of sort P
61. where we assume that all parts have unique identifiers.

59. analyse and describe unique identifier: P → Unit
59. analyse and describe unique identifier(p) ≡
60. observe unique identifier(p):
60. τ := τ ⊕ [ ”type PI; value uid P:P→PI;” ]
61. assert: has unique identifier(p)
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Analysis and Description of Mereologies:

62. To analyse and describe a part mereology
63. if it has one
64. amounts to observe that mereology
65. and otherwise do nothing.
66. The analysed quantity must be a part.

62. analyse and describe mereology: P → Unit
62. analyse and describe mereology(p) ≡
63. if has mereology(p)
64. then observe mereology(p) :
64. τ := τ ⊕ ”type MT = E(PIa,PIb,...,PIc) ;
64. value mereo P: P→MT ;”
65. else skip end
62. pre: is part(p)

Analysis and Description of Part Attributes:

67. To analyse and describe the attributes of parts of sort P is
68. to observe the attributes of parts of sort P
69. where we assume that all parts have attributes.

67. analyse and describe part attributes: P → Unit
67. analyse and describe part attributes(p) ≡
68. observe attributes(p):
68. τ := τ ⊕ [ ”type A1, ..., Am ;
68. value attr A1:P→A1,,...,attr Am:P→Am;” ]
69. assert: has attributes(p)

3.6 Discussion of the Model

The above model lacks a formal understanding of the individual prompts as
listed in Sect. 3.1. Such an understanding is attempted in [11].

Termination: The sort name reservoir νps is “reduced” by one name in each
iteration of the while loop of the analyse and describe endurants, cf. Item 6, and
is augmented, in each iteration of that loop, by sort names – if not already
dispensed of iterations of in earlier itetrations, cf. formula Items 32, 36, 49, 54
and 49. We take it as a dogma that domains contain a finite number of differently
typed parts and matyerials. This introduction and removal of sort names and
the finiteness of sort names is then the basis for a proper proof of terminaton of
the the analysis & description process.
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Axioms and Proof Obligations: We have omitted from the above treat-
ment of axioms concerning well-formedness of parts, materials and attributes
and proof obligations concerning disjointness of observed part and material sorts
and attribute types. A more proper treatment would entail adding a line of proof
obligation text right after Item lines 65 and 68, and of axiom text right after
Item lines 31, 35, 46, 48, 60, 68, No axiom is needed in connection with Item
line 52.

[12] covers axioms and proof obligations in some detail.

Order of Analysis and Description: A Meaning of ‘⊕’: The variables αps,
νps and τ are defined to hold either sets or lists. The operator ⊕ can be thought
of as either set union (∪ and [,]≡{, }) — in which case the domain description
text in τ is a set of domain description texts or as list concatenation (̂ and
[,]≡〈,〉) of domain description texts. The operator 
1 ⊕ 
2 now has at least two
interpretations: either 
1̂
2 or 
2̂
1. In the case of lists the ⊕ (i.e., ̂) does not
(suffix or prefix) append 
2 elements already in 
1. The select and remove ηP
function on Page12 applies to the set interpretation. A list interpretation is:

value
6. select and remove ηP: Unit → ηP
6. select and remove ηP() ≡
6. let ηP = hd νps in νps := tl νps; ηP end

In the first case (
1̂
2) the analysis and description process proceeds from the
root, breadth first, In the second case (
2̂
1) the analysis and description process
proceeds from the root, depth first.

Laws of Description Prompts: The domain ‘method’ outlined in the previous
section suggests that many different orders of analysis & description may be
possible. But are they ? That is, will they all result in “similar” descriptions ?
That is, if Da and Db are two domain description prompts where Da and Db

can be pursued in any order will that yield the same description ? And what
do we mean by ‘can be pursued in any order’, and ‘same description’ ? Let us
assume that sort P decomposes into sorts Pa and Pb (etcetera). Let us assume
that the domain description prompt Da is related to the description of Pa and
Db to Pb. Here we would expect Da and Db to commute, that is Da;Db yields
same result as does Db;Da. In [7] we made an early exploration of such laws of
domain description prompts.

To answer these questions we need a reasonably precise model of domain
prompts. We attempt such a model in [11].

4 Conclusion

Domains can be studied, that is, analysed and described, without any thoughts of
possible, subsequent phases of requirements and software development. To study
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domains includes, for proper studies. the establishment of domain theories, that
is, of theorems about what is being described. This paper does not, unfortunately,
show even “top of the iceberg” domain theorems. Such theories are necessary
in order to develop a trust in domain desxcriptions. Theorems can then be held
up against the actual domain and it can then be checked whether that domain
satisfy the theorems. We know that such domain theories can be established
as a result of domain modelling. A domain description can be said to be the
description of the language spoken by practitioners of the domain, that is, by its
stake-holders, hence of a semantics of that language.

4.1 Comparison to other Work

Domain Analysis: Section 2 outlined the TripTych] approach to the analysis
& description of domain endurants. We shall now compare that approach to a
number of techniques and tools that are somehow related — if only by the term
‘domain’ !

[1] Ontological and Knowledge Engineering: Ontological engineering [3] build
ontologies. Ontologies are “formal representations of a set of concepts within a
domain and the relationships between those concepts”— expressed usually in some
logic. Published ontologies usually consists of thousands of logical expressions.
These are represented in some, for example, low-level mechanisable form so that
they can be interchanged between ontology research groups and processed by
various tools. There does not seem to be a concern for “deriving” such ontologies
into requirements for software. Usually ontology presentations either start with
the presentation of, or makes reference to its reliance on, an upper ontology.
Instead the ontology databases appear to be used for the computerised discovery
and analysis of relations between ontologies.

The aim of knowledge engineering was formulated, in 1983, by an originator of
the concept, Edward A. Feigenbaum [20]: knowledge engineering is an engineering
discipline that involves integrating knowledge into computer systems in order to
solve complex problems normally requiring a high level of human expertise. A
seminal text is that of [19]. Knowledge engineering focus on continually build-
ing up (acquire) large, shared data bases (i.e., knowledge bases), their continued
maintenance, testing the validity of the stored ‘knowledge’, continued experi-
ments with respect to knowledge representation, etcetera. Knowledge engineering
can, perhaps, best be understood in contrast to algorithmic engineering: In the lat-
ter we seek more-or-less conventional, usually imperative programming language
expressions of algorithms whose algorithmic structure embodies the knowledge re-
quired to solve the problem being solved by the algorithm. The former seeks to
solve problems based on an interpreter inferring possible solutions from logical
data. This logical data has three parts: a collection that “mimics” the semantics of,
say, the imperative programming language, a collection that formulates the problem,
and a collection that constitutes the knowledge particular to the problem. We refer
to [15].

The concerns of our form of domain science & engineering is based on that of
algorithmic engineering. Domain science & engineering is not aimed at letting
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the computer solve problems based on the knowledge it may have stored. Instead
it builds models based on knowledge of the domain. Our form of domain science
& engineering differs from conventional ontological engineering in the following,
essential ways: Our domain descriptions rely essentially on a “built-in” upper
ontology: types, abstract as well as model-oriented (i.e., concrete) and actions,
events and behaviours. Domain science & engineering is not, to a first degree,
concerned with modalities, and hence do not focus on the modelling of knowledge
and belief, necessity and possibility, i.e., alethic modalities, epistemic modality
(certainty), promise and obligation (deontic modalities), etcetera.

[2] Domain Analysis: Domain analysis, or product line analysis (see below) —
as it was then conceived in the early 1980s by James Neighbors — is the analysis
of related software systems in a domain to find their common and variable parts.
It is a model of a wider business context for the system. This form of domain
analysis turns matters “upside-down”: it is the set of software “systems” (or
packages) that is subject to some form of inquiry, albeit having some domain
in mind, in order to find common features of the software that can be said to
represent a named domain. In this section ([2]) we shall mainly be comparing
the TripTych approach to domain analysis to that of Reubén Prieto-Dı̃az’s ap-
proach [40,41,42]. Firstly, the two meanings of domain analysis basically coincide.
Secondly, in, for example, [40], Prieto-Dı̃az’s domain analysis is focused on the
very important stages that precede the kind of domain modelling that we have
described: major concerns are selection of what appears to be similar, but specific
entities, identification of common features, abstraction of entities and classification.
Selection and identification is assumed in the TripTych approach, but we suggest
to follow the ideas of Prieto-Dı̃az. Abstraction (from values to types and signa-
tures) and classification into parts, materials, actions, events and behaviours is
what we have focused on. All-in-all we find Prieto-Dı̃az’s work very relevant to
our work: relating to it by providing guidance to pre-modelling steps, thereby
emphasising issues that are necessarily informal, yet difficult to get started on
by most software engineers. Where we might differ is on the following: although
Prieto-Dı̃az does mention a need for domain specific languages, he does not show
examples of domain descriptions in such DSLs. We, of course, basically use math-
ematics as the DSL. In the TripTych approach we do not consider requirements,
let alone software components, as do Prieto-Dı̃az, but we find that that is not
an important issue.

[3] Domain Specific Languages Martin Fowler29 defines a Domain-specific lan-
guage (DSL) as a computer programming language of limited expressiveness focused
on a particular domain [21]. Other references are [38,45]. Common to [45,38,21]
is that they define a domain in terms of classes of software packages; that they
never really “derive” the DSL from a description of the domain; and that they

29 http://martinfowler.com/dsl.h
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certainly do not describe the domain in terms of that DSL, for example, by for-
malising the DSL.

[4] Feature-oriented Domain Analysis (FODA): FODA is a domain analysis
method which introduced feature modelling to domain engineering FODA was de-
veloped in 1990 following several U.S. Government research projects. Its concepts
have been regarded as critically advancing software engineering and software
reuse. The US Government supported report [34] states: “FODA is a necessary
first step” for software reuse. To the extent that domain engineering with its sub-
sequent requirements engineering indeed encourages reuse at all levels: domain
descriptions and requirements prescription, we can only agree. Another source on
FODA is [18]. Since FODA “leans” quite heavily on ‘Software Product Line Engi-
neering’ our remarks in that section, next, apply equally well here.

[5] Software Product Line Engineering [SPLE]: SPLE earlier known as
domain engineering, is the entire process of reusing domain knowledge in the pro-
duction of new software systems. Key concerns of SPLE are reuse, the building of
repositories of reusable software components, and domain specific languages with
which to more-or-less automatically build software based on reusable software
components. These are not the primary concerns of our form of domain science
& engineering. But they do become concerns as we move from domain descriptions
to requirements prescriptions. But it strongly seems that software product line en-
gineering is not really focused on the concerns of domain description — such as is
our form of domain engineering. It seems that software product line engineering is
primarily based, as is, for example, FODA, on analysing features of software sys-
tems. Our [8] puts the ideas of software product lines and model-oriented software
development in the context of the TripTych approach.

[6] Problem Frames [PF]: The concept of PF is covered in [32]. Jack-
son’s prescription for software development focus on the “triple development”
of descriptions of the problem world, the requirements and the machine (i.e., the
hardware and software) to be built. Here domain analysis means, the same as for
us, the problem world analysis. In the PF approach the software developer plays
three, that is, all the rôles: domain engineer, requirements engineer and software
engineer, “all at the same time”, iterating between these rôles repeatedly. So,
perhaps belabouring the point, domain engineering is done only to the extent
needed by the prescription of requirements and the design of software . These, re-
ally are minor points. But in “restricting” oneself to consider only those aspects
of the domain which are mandated by the requirements prescription and software
design one is considering a potentially smaller fragment [31] of the domain than
is suggested by the TripTych approach. At the same time one is, however, sure to
consider aspects of the domain that might have been overlooked when pursuing
domain description development in the “more general” three stage development
approach outlined above.

[7] Domain Specific Software Architectures (DSSA): It seems that the con-
cept of DSSA was formulated by a group of ARPA30 project “seekers” who also

30 ARPA: The US DoD Advanced Research Projects Agency.
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performed a year long study (from around early-mid 1990s); key members of
the DSSA project were Will Tracz, Bob Balzer, Rick Hayes-Roth and Richard
Platek [46]. The [46] definition of domain engineering is “the process of creating
a DSSA: domain analysis and domain modelling followed by creating a software
architecture and populating it with software components.” This definition is ba-
sically followed also by [39,44,36]. Defined and pursued this way, DSSA appears,
notably in these latter references, to start with the analysis of software compo-
nents, “per domain”, to identify commonalities within application software, and
to then base the idea of software architecture on these findings. Thus DSSA turns
matter “upside-down” with respect to our requirements development by start-
ing with software components, assuming that these satisfy some requirements,
and then suggesting domain specific software built using these components. This
is not what we are doing: we suggest that requirements can be “derived” sys-
tematically from, and related back, formally to domain descriptionss without, in
principle, considering software components, whether already existing, or being
subsequently developed. Of course, given a domain description it is obvious that
one can develop, from it, any number of requirements prescriptions and that these
may strongly hint at shared, (to be) implemented software components; but it
may also, as well, be the case two or more requirements prescriptions “derived”
from the same domain description may share no software components whatso-
ever ! It seems to this author that had the DSSA promoters based their studies
and practice on also using formal specifications, at all levels of their study and
practice, then some very interesting insights might have arisen.

[8] Domain Driven Design [DDD] DDD31“is an approach to developing software
for complex needs by deeply connecting the implementation to an evolving model
of the core business concepts; the premise of domain-driven design is the follow-
ing: placing the project’s primary focus on the core domain and domain logic;
basing complex designs on a model; initiating a creative collaboration between
technical and domain experts to iteratively cut ever closer to the conceptual
heart of the problem.”32 We have studied some of the DDD literature, mostly
only accessible on the Internet, but see also [29], and find that it really does
not contribute to new insight into domains such as we see them: it is just “plain,
good old software engineering cooked up with a new jargon.

[9] Unified Modelling Language (UML) Three books representative of UML

are [16,43,33]. The term domain analysis appears numerous times in these books,
yet there is no clear, definitive understanding of whether it, the domain, stands
for entities in the domain such as we understand it, or whether it is wrought
up, as most of the ‘approaches’ treated in this section, to wit, Items [3–8], with
either software design (as it most often is), or requirements prescription. Certainly,
in UML, in [16,43,33], as well as in most published papers claiming “adherence”
to UML, domain analysis usually is manifested in some UML text which “mod-
els” some requirements facet. Nothing is necessarily wrong with that, but it is
therefore not really our form of domain analysis with its concepts of abstract

31 Eric Evans: http://www.domaindrivendesign.org/
32 http://en.wikipedia.org/wiki/Domain-driven_design

http://www.domaindrivendesign.org/
http://en.wikipedia.org/wiki/Domain-driven_design
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representations of endurant and perdurants, and with its distinctions between
domain and requirements, and with its possibility of “deriving” requirements pre-
scriptions from domain descriptions. The UML notion of class diagrams is worth
relating to our structuring of the domain. Class diagrams appear to be inspired
by [2, Bachman, 1969] and [17, Chen, 1976]. It seems that each part sort — as
well as other than part (or material) sorts — deserves a class diagram (box),
that (assignable) attributes — as well as other non-part (or material) types —
are written into the diagram box — as are action signatures — as well as other
function signatures. Class diagram boxes are line connected with annotations
where some annotations are as per the mereology of the part type and the con-
nected part types and others are not part related. The class diagrams are said
to be object-oriented but it is not clear how objects relate to parts as many
are rather implementation-oriented quantities. All this needs looking into a bit
more, for those who care.

• • •
Summary of Comparisons: It should now be clear from the above that basi-
cally only Jackson’s problem frames really take the same view of domains and,
in essence, basically maintain similar relations between requirements prescription
and domain description. So potential sources of, we should claim, mutual inspi-
ration ought be found in one-another’s work — with, for example, [28,31], and
the present document, being a good starting point.

But none of the referenced works make the distinction between discrete en-
durants (parts) and their qualities, with their further distinctions between unique
identifiers, mereology and attributes. And none of them makes the distinction be-
tween parts and materials.

Domain Analysis and Philosophy: Many readers may have felt somewhat
queasy about our definitions of, for example, the notions of domain, entity, en-
durant, perdurant, discrete, continuous, part and material. Perhaps they thought
that these were not proper definitions. Well, the problem is that we are en-
croaching upon the disciplines of epistemology33, in particular ontology34. Thus
we have to thread carefully: On one hand we cannot and do not pretend to for-
malise philosophical notions. On the other hand we do wish to “get as close to
such formalisations as possible” ! In the context of a philosophical inquiry our

33 Epistemology is the branch of philosophy concerned with the nature and scope of
knowledge and is also referred to as “theory of knowledge”. It questions what knowl-
edge is and how it can be acquired, and the extent to which any given subject or
entity can be known. Much of the debate in this field has focused on analyzing the
nature of knowledge and how it relates to connected notions such as truth, belief,
and justification[1,30].

34 Ontology is the philosophical study of the nature of being, becoming, existence, or
reality, as well as the basic categories of being and their relations. Traditionally
listed as a part of the major branch of philosophy known as metaphysics, ontology
deals with questions concerning what entities exist or can be said to exist, and how
such entities can be grouped, related within a hierarchy, and subdivided according
to similarities and differences [1,30].
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definitions are acceptable as witnessed by two work on which we draw [37,22].
In the context of classical computer science they are not. In computer science
we would expect precise, mathematical definitions. But that would defeat our
purpose, namely to get “as close” to actual domains as possible ! So we have
opted for a compromise: To keep our ‘philosophical-inquiry-acceptable’ defini-
tions, while, as in Sect. 3, beginning a journey of formalising such processes of
‘philosophical-inquiry-processes’.

4.2 What Have We Achieved

Domain Analysis: In Sect. 2 we have presented a terse, seven+ page, sum-
mary of a novel approach to domain analysis. That this approach is different
from other ‘domain analysis’ approaches is argued in [12, Sect. 6.2]. The new as-
pects are: the distinction between parts and materials, the distinction between
external and internal properties (Sect. 2.11), the introduction of the concept of
mereologies and the therefrom separate treatment of attributes. It seems to us
that “conventional” domain analysis treated all endurant qualities as attributes.
The many concepts, endurants and perdurants, discrete and continuous, hence
parts and materials, atomic and composite, uniqueness of parts, mereology, and
shared attributes, we claim, are forced upon the analysis by the nature of
domains: existing in some not necessarily computable reality. In this way the
proposed domain analysis & description approach is new.

Methodology: By a ‘method’ we shall understand a set of principles for se-
lecting and applying techniques and tools in order to analyse and construct an
artifact. Section 3 presents a partially instantiated framework for a formal model
of a ‘method’ for domain analysis & description: Some principles are abstraction
(sorts in preference for concrete types), separation of concerns (tackling endurants
before perdurants), commensurate narratives and formalisations, tackling do-
main analysis either “top-down”, hierarchically from composite endurants, or
“bottom-up”, compositionally, from atomic endurants, or in some orderly com-
bination of these; etcetera. Some techniques are expressing axioms concerning
well-formedness of mereologies and attribute values; stating (and discharging)
proof obligations securing disjointness of sorts; etcetera. And some tools are
the domain analysis prompts, the domain description prompts and the description
language (here RSL [24]). We claim that we have sketched a formalisation of a
method for domain analysis and description.

What is really new here is, as for domain analysis, that the analysis & de-
scription process is applied to a domain, that is, to our image of that domain,
something not necessarily computable, and that our description therefore must
not reduce the described domain to a computable artefact.

4.3 Future Work

There remains to conclude studies of, that is, to document and publish treat-
ments of the following related topics: (i) domain analysis of perdurants (actions,
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events and behaviours [12, Sect. 5]) — including related domain analysis prompts
and domain description prompts35, (ii) model(s) of prompts36, (iii) domain facets,
cf. [6]37, and (iv) derivation of requirements from domain descriptions, cf. [5]38.
And there remains to actually establish theories of specific domains.

Acknowledgements. The author thanks three referees for their careful reading
and comments. I think that I have dealt with all their remarks.
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A Pipeline Endurants

Our example is an abstraction of pipeline system endurants. The presentation of the
example reflects a rigorous use of the domain analysis & description method outlined in
Sect. 2, but is relaxed with respect to not showing all — one could say — intermediate
analysis steps and description texts, but following stoichiometry ideas from chemistry
makes a few short-cuts here and there. The use of the “stoichiometrical” reductions,
usually skipping intermediate endurant sorts, ought properly be justified in each step
— and such is adviced in proper, tool-supported industry-scale domain analyses &
descriptions.

A.1 Parts

70. A pipeline system contains a set of pipeline units and a pipeline system monitor.
71. The well-formedness of a pipeline system depends on its mereology (cf. Sect. A.2) and

the routing of its pipes (cf. Sect. A.3).
72. A pipeline unit is either a well, a pipe, a pump, a valve, a fork, a join, or a sink unit.
73. We consider all these units to be distinguishable, i.e., the set of wells, the set pipe,

etc., the set of sinks, to be disjoint.

type
70. PLS′, U, M
71. PLS = {| pls:PLS′•wf PLS(pls) |}

value
71. wf PLS: PLS → Bool
71. wf PLS(pls) ≡ wf Mereology(pls) ∧ wf Routes(pls)
70. obs Us: PLS → U-set
70. obs M: PLS → M

type
72. U = We | Pi | Pu | Va | Fo | Jo | Si
73. We :: Well
73. Pi :: Pipe
73. Va :: Valv
73. Fo :: Fork
73. Jo :: Join
73. Si :: Sink

A.2 Part Identification and Mereology

Unique Identification:

74. Each pipeline unit is uniquely distinguished by its unique unit identifier.

type
74. UI

value
74. uid UI: U → UI

axiom
74. ∀ pls:PLS,u,u′:U•{u,u′}⊆obs Us(pls)⇒u �=u′⇒uid UI(u) �=uid UI(u′)
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Unique Identifiers:

75. From a pipeline system one can observe the set of all unique unit identifiers.

value
75. xtr UIs: PLS → UI-set
75. xtr UIs(pls) ≡ {uid UI(u)|u:U•u ∈ obs Us(pls)}

76. We can prove that the number of unique unit identifiers of a pipeline system equals
that of the units of that system.

theorem:
76. ∀ pls:PLS•card obs Us(pl)=card xtr UIs(pls)

Mereology:

77. Each unit is connected to zero, one or two other existing input units and zero, one or
two other existing output units as follows:

a A well unit is connected to exactly one output unit (and, hence, has no “input”).

b A pipe unit is connected to exactly one input unit and one output unit.

c A pump unit is connected to exactly one input unit and one output unit.

d A valve is connected to exactly one input unit and one output unit.

e A fork is connected to exactly one input unit and two distinct output units.

f A join is connected to exactly two distinct input units and one output unit.

g A sink is connected to exactly one input unit (and, hence, has no “output”).

type
77. MER = UI-set × UI-set

value
77. mereo U: U → MER

axiom
77. wf Mereology: PLS → Bool
77. wf Mereology(pls) ≡
77. ∀ u:U•u ∈ obs Us(pls)⇒
77. let (iuis,ouis) = mereo U(u) in iuis ∪ ouis ⊆ xtr UIs(pls) ∧
77. case (u,(card uius,card ouis)) of
77a. (mk We(we),(0,1)) → true,
77b. (mk Pi(pi),(1,1)) → true,
77c. (mk Pu(pu),(1,1)) → true,
77d. (mk Va(va),(1,1)) → true,
77e. (mk Fo(fo),(1,1)) → true,
77f. (mk Jo(jo),(1,1)) → true,
77g. (mk Si(si),(1,1)) → true,
77. → false end end
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A.3 Part Concepts

An aspect of domain analysis & description that was not covered in Sect. 2 was that of de-
rived concepts. Example pipeline concepts are routes, acyclic or cyclic, circular, etcetera. In
expressing well-formedness of pipeline systems one often has to develop subsidiary concepts
such as these by means of which well-formedness is then expressed.

Pipe Routes:

78. A route (of a pipeline system) is a sequence of connected units (of the pipeline system).
79. A route descriptor is a sequence of unit identifiers and the connected units of a route

(of a pipeline system).

type
78. R′ = Uω

78. R = {| r:Route′•wf Route(r) |}
79. RD = UIω

axiom
79. ∀ rd:RD • ∃ r:R•rd=descriptor(r)

value
79. descriptor: R → RD
79. descriptor(r) ≡ 〈uid UI(r[ i ])|i:Nat•1≤i≤len r〉

80. Two units are adjacent if the output unit identifiers of one shares a unique unit identifier
with the input identifiers of the other.

value
80. adjacent: U × U → Bool
80. adjacent(u,u′) ≡
80. let (,ouis)=mereo U(u),(iuis,)=mereo U(u′) in
80. ouis ∩ iuis �= {} end

81. Given a pipeline system, pls, one can identify the (possibly infinite) set of (possibly
infinite) routes of that pipeline system.
a The empty sequence, 〈〉, is a route of pls.
b Let u, u′ be any units of pls, such that an output unit identifier of u is the same

as an input unit identifier of u′ then 〈u, u′〉 is a route of pls.
c If r and r′ are routes of pls such that the last element of r is the same as the first

element of r′, then r̂tlr′ is a route of pls.
d No sequence of units is a route unless it follows from a finite (or an infinite)

number of applications of the basis and induction clauses of Items 81a–81c.

value
81. Routes: PLS → RD-infset
81. Routes(pls) ≡
81a. let rs = 〈〉 ∪
81b. {〈uid UI(u),uid UI(u′)〉|u,u′:U•{u,u′}⊆obs Us(pls) ∧ adjacent(u,u′)}
81c. ∪ {r̂tl r′|r,r′:R•{r,r′}⊆rs}
81d. in rs end
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Well-Formed Routes:

82. A route is acyclic if no two route positions reveal the same unique unit identifier.

value
82. acyclic Route: R → Bool
82. acyclic Route(r) ≡ ∼∃ i,j:Nat•{i,j}⊆inds r ∧ i�=j ∧ r[ i ]=r[ j ]

83. A pipeline system is well-formed if none of its routes are circular (and all of its routes
embedded in well-to-sink routes).

value
83. wf Routes: PLS → Bool
83. wf Routes(pls) ≡
83. non circular(pls) ∧ are embedded in well to sink Routes(pls)

83. non circular PLS: PLS → Bool
83. non circular PLS(pls) ≡
83. ∀ r:R•r ∈ routes(p)∧acyclic Route(r)

84. We define well-formedness in terms of well-to-sink routes, i.e., routes which start with
a well unit and end with a sink unit.

value
84. well to sink Routes: PLS → R-set
84. well to sink Routes(pls) ≡
84. let rs = Routes(pls) in
84. {r|r:R•r ∈ rs ∧ is We(r[ 1 ]) ∧ is Si(r[ len r ])} end

85. A pipeline system is well-formed if all of its routes are embedded in well-to-sink routes.

85. are embedded in well to sink Routes: PLS → Bool
85. are embedded in well to sink Routes(pls) ≡
85. let wsrs = well to sink Routes(pls) in
85. ∀ r:R • r ∈ Routes(pls) ⇒
85. ∃ r′:R,i,j:Nat •

85. r′ ∈ wsrs
85. ∧ {i,j}⊆inds r′∧i≤j
85. ∧ r = 〈r′[ k ]|k:Nat•i≤k≤j〉 end

Embedded Routes:

86. For every route we can define the set of all its embedded routes.

value
86. embedded Routes: R → R-set
86. embedded Routes(r) ≡
86. {〈r[ k ]|k:Nat•i≤k≤j〉 | i,j:Nat• i {i,j}⊆inds(r) ∧ i≤j}
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A Theorem:

87. The following theorem is conjectured:
a the set of all routes (of the pipeline system)
b is the set of all well-to-sink routes (of a pipeline system) and
c all their embedded routes

theorem:
87. ∀ pls:PLS •

87. let rs = Routes(pls),
87. wsrs = well to sink Routes(pls) in
87a. rs =
87b. wsrs ∪
87c. ∪ {{r′|r′:R • r′ ∈ embedded Routes(r′′)} | r′′:R • r′′ ∈ wsrs}
86. end

A.4 Materials

88. The only material of concern to pipelines is the gas49 or liquid50 which the pipes
transport51.

type
88. GoL

value
88. obs GoL: U → GoL

A.5 Attributes

Part Attributes:

89. These are some attribute types:
a estimated current well capacity (barrels of oil, etc.),
b pipe length,
c current pump height,
d current valve open/close status and
e flow (e.g., volume/second).

type
89a. WellCap
89b. LEN
89c. Height
89d. ValSta == open | close
89e. Flow

49 Gaseous materials include: air, gas, etc.
50 Liquid materials include water, oil, etc.
51 The description of this document is relevant only to gas or oil pipelines.
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90. Flows can be added (also distributively) and subtracted, and
91. flows can be compared.

value
90. ⊕,�: Flow×Flow → Flow
90. ⊕: Flow-set → Flow
91. <,≤,=,�=,≥,>: Flow × Flow → Bool

92. Properties of pipeline units include
a estimated current well capacity (barrels of oil, etc.),
b pipe length,
c current pump height,
d current valve open/close status,
e current Laminar in-flow at unit input,
f current Laminar in-flow leak at unit input,
g maximum Laminar guaranteed in-flow leak at unit input,
h current Laminar leak unit interior,
i current Laminar flow in unit interior,
j maximum Laminar guaranteed flow in unit interior,
k current Laminar out-flow at unit output,
l current Laminar out-flow leak at unit output,

m maximum guaranteed Laminar out-flow leak at unit output.

value
92a. attr WellCap: We → WellCap
92b. attr LEN: Pi → LEN
92c. attr Height: Pu → Height
92d. attr ValSta: Va → VaSta
92e. attr In FlowL: U → UI → Flow
92f. attr In LeakL: U → UI → Flow
92g. attr Max In LeakL: U → UI → Flow
92h. attr body FlowL: U → Flow
92i. attr body LeakL: U → Flow
92j. attr Max FlowL: U → Flow
92k. attr Out FlowL: U → UI → Flow
92l. attr Out LeakL: U → UI → Flow
92m. attr Max Out LeakL: U → UI → Flow

A.6 Flow Laws

93. “What flows in, flows out !”. For Laminar flows: for any non-well and non-sink unit
the sums of input leaks and in-flows equals the sums of unit and output leaks and
out-flows.

Law:
93. ∀ u:U\We\Si •

93. sum in leaks(u) ⊕ sum in flows(u) =
93. attr body LeakL(u) ⊕
93. sum out leaks(u) ⊕ sum out flows(u)
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value
sum in leaks: U → Flow
sum in leaks(u) ≡

let (iuis,) = mereo U(u) in
⊕ {attr In LeakL(u)(ui)|ui:UI•ui ∈ iuis} end

sum in flows: U → Flow
sum in flows(u) ≡

let (iuis,) = mereo U(u) in
⊕ {attr In FlowL(u)(ui)|ui:UI•ui ∈ iuis} end

sum out leaks: U → Flow
sum out leaks(u) ≡

let (,ouis) = mereo U(u) in
⊕ {attr Out LeakL(u)(ui)|ui:UI•ui ∈ ouis} end

sum out flows: U → Flow
sum out flows(u) ≡

let (,ouis) = mereo U(u) in
⊕ {attr Out LeakL(u)(ui)|ui:UI•ui ∈ ouis} end

94. “What flows out, flows in !”. For Laminar flows: for any adjacent pairs of units the
output flow at one unit connection equals the sum of adjacent unit leak and in-flow
at that connection.

Law:
94. ∀ u,u′:U•adjacent(u,u′) ⇒
94. let (,ouis)=mereo U(u), (iuis′,)=mereo U(u′) in
94. assert: uid U(u′) ∈ ouis ∧ uid U(u) ∈ iuis ′
94. attr Out FlowL(u)(uid U(u′)) =
94. attr In LeakL(u)(uid U(u))⊕attr In FlowL(u′)(uid U(u)) end
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Abstract. This paper suggests that there is considerable value in creating pre-
cise and formally-defined specifications of processes for carrying out formal 
verification, and in then subjecting those processes to rigorous analysis, and us-
ing the processes to guide the actual performance of formal verification. The 
paper suggests that some of the value could derive from widening the commu-
nity of verifiers by having a process definition guide the performance of formal 
verification by newcomers or those who may be overawed by the complexities 
of formal verification. The paper also suggests that formally-defined process 
definitions can be of value both to novices and more experienced verifiers by 
serving as subjects of both dynamic and static analyses, with these analyses 
helping to build the confidence of various stakeholder groups (including the ve-
rifiers themselves) in the correct performance of the process and hence the cor-
rectness of the verification results. This paper is a status report on early work 
aimed at developing such processes, and demonstrating the feasibility and value 
of such analyses. The paper provides an example of a formally-defined verifica-
tion process and suggests some kinds of dynamic and static analyses of the 
process. The process incorporates specification of both the nominal, ideal 
process as well as how the process must be iterated in response to such verifica-
tion contingencies as incorrect assertions, incorrectly stated lemmas, and failed 
proofs of lemmas. In demonstrating how static analyses of this process can 
demonstrate that it assures certain kinds of desirable behaviors, the paper de-
monstrates an approach to providing effective verification guidance that assures 
sound verification results.  

1 Introduction 

Society is becoming ever more dependent upon systems that rely importantly upon 
the reliably correct functioning of software. Air travel is now heavily dependent  
upon software that is pervasive both in the cockpit and on the ground. Automobiles 
are similarly increasingly dependent upon software. Health care devices and systems 
also increasingly employ software in critical roles. Because of this it is corresponding-
ly important that the software in these systems performs correctly, across the  
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increasingly broad spectrum of situations in which it is relied upon. There are many 
approaches to assuring the correct functioning of software, including dynamic testing 
and various forms of static analysis. But perhaps the strongest assurances of correct 
functioning of software are provided by formal verification. This paper describes an 
approach that is currently being developed for making the performance of formal 
verification accessible to more practitioners by providing explicit proactive process 
guidance to this performance.  

In addition, we note that while it is essential that critical software reliably function 
correctly in all circumstances and situations, it is also most important that those who 
rely upon such correct functioning have a sound basis for believing that that is the 
case. In short, it is not enough for software to perform correctly, but it is also impor-
tant that all of the software’s stakeholders have access to satisfactory evidence of this 
correct performance. This paper also suggests that the explicit process guidance pro-
vided by the approaches presented in this paper can also be the basis for providing 
importance forms of evidence that the formal verification process has been performed 
correctly. Evidence of correct functioning that is provided by testing and many forms 
of static analysis can be relatively accessible to broad communities of stakeholders, 
but it seems important to also consider how it might be possible to provide broadly 
accessible evidence of correct performance of formal verification. It is the position of 
this paper that the formal verification community has made good progress towards the 
goal of understanding how to reason about the correct performance of software (al-
though it would be desirable to make formal verification processes more accessible to 
more practitioners), but that more progress should be made towards the second goal 
of being able to provide convincing assurances to stakeholders that a formal verifica-
tion process has actually been carried out correctly. 

Over the past several decades many approaches to reasoning about the correct per-
formance of software have been developed. The most widely recognized and em-
ployed approach has been testing, where the program is run using a large number of 
diverse input datasets. Typically the results can be examined by diverse stakeholder 
communities to provide these stakeholders assurances that the program behaves cor-
rectly. While this approach allows for the in-depth exploration of the behavior of a 
program under actual runtime conditions, testing results do not extrapolate. Thus, 
even if a program has been run successfully millions of times on different datasets, 
there is no assurance that it might not fail on the next test execution. Consequently 
testing is unable to offer the kinds of ironclad assurances of correct performance that 
are required by many stakeholders in software for critical applications. 

Static analysis approaches such as finite state verification [3] and model checking 
[1] can offer some kinds of more definitive assurances, however, and thus serve as a 
useful complement to dynamic testing. The static analysis approach makes it possible 
to prove that all possible executions of a program must necessarily always satisfy 
certain classes of properties. Typically these kinds of properties are modeled as se-
quences of events, often represented by finite state machines. Insofar as these proper-
ties are modeled by relatively accessible diagrams such as finite state machines, and 
anomalous execution sequences can be presented as statement execution traces, these 
kinds of analyses can provide relatively accessible evidence of correct program per-
formance to relatively broad classes of stakeholders. A principal drawback of this 
approach, however, is that the need to represent these properties by formalisms such 
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as finite state machines limits the kinds of properties for which it is useful. In particu-
lar these static analysis approaches are generally not useful in supporting demonstra-
tions that the program will always necessarily demonstrate the desired functional 
behavior.  

Especially in view of the foregoing, formal verification [2,4,7] occupies a very im-
portant position among the many approaches to reasoning about the behavior of  
programs. Formal verification can be used to prove that all possible executions of a 
program must necessarily always deliver specified functional behavior. Doing so, 
however, requires a considerable amount of effort and resources. The program to be 
formally verified must be written in a language whose semantics have been defined 
formally, the specified behavior must be defined in the form of formally specified 
assertions, and human verifiers are invariably required to create large numbers of 
proofs, each of which may be quite complex and must be meticulously reasoned. Be-
cause the reasoning process is complex and lengthy, errors of many kinds can be 
committed. The structure of lemmas to be proven may be flawed, the assertions essen-
tial to the statements of the lemmas may also be flawed, and the details of the actual 
proofs may be incorrect. All of these difficulties have in the past served as obstacles 
to the broader adoption of formal verification by practitioners, and to the accessibility 
of formal verification results by broader stakeholder communities. Novices, in partic-
ular, have all too often been daunted by the complexities of performing formal verifi-
cation. And the complexity of the work of formal verification experts has at times 
seemed to be beyond the grasp of some stakeholders, suggesting the desirability of 
additional forms of visibility into how the formal verification process was carried out. 
In both cases, the continued evolution of software systems creates additional difficul-
ties. Once modified in any way, a previously-verified program must be reverified. If 
modifications are minor and quarantined to a small program locality, the reverifica-
tion of the entire program may not be necessary. But it can be difficult to determine 
which reverifications are necessary, and which are not. Automated  
tool support can be quite useful in guiding both novices and experts to the correct 
determination.  

Especially since formal verification is employed most commonly to offer the most 
solid assurances of correct performance to the most demanding stakeholders, it then 
seems appropriate that these stakeholders have the most definitive assurances that the 
verification results are trustworthy. In large-scale industrial contexts, these assurances 
are often obtainable using verification assistants and checkers such as Isabelle [12]. 
But even in these contexts, the need to reverify software as it continues to evolve can 
lead to uncertainty about just which portions of which versions of a program have 
been subjected to which verification activities. In other contexts, especially where 
verification is done informally or by novices, these assurances are harder to obtain, 
and necessarily less reliable. 

A variety of directions have been taken in order to address the many difficulties in-
herent in formal verifications of programs. Of particular interest in the context of this 
event, we note that Futatsugi [5, 6] has suggested the value of verifying designs rather 
than code, inventing the notion of Proof Scores. Another approach has advocated the 
use of automated proof checkers and proof assistants to support humans in carrying 
out the formal verification process. The first tool to provide such support, a verifica-
tion assistant, was developed in 1969 by James King [8]. Many such systems have 
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been developed subsequently. Currently Isabelle/HOL [12] seems particularly popular 
and effective in supporting the verification process and the checking of needed proofs. 
It is important to note, however, that the participation of humans is typically essential, 
especially at the higher levels of lemma specification, and that considerable amounts 
of iteration and rework are typically required to successfully complete an entire for-
mal verification. Typically humans must create and place assertions, and guide the 
proof of many lemmas derived from the assertions and program code. As noted 
above, iteration is typically necessary, requiring and responding to assertion modifica-
tions, lemma regeneration, and proof defects. As also noted above, program evolution 
necessitates reverification that can be expedited by lemma reuse, but can also lead to 
configuration management issues leading to mistakenly thinking that an incorrect 
verification is correct. 

One approach to addressing these problems is to formally define formal verifica-
tion processes that incorporate specifications of these various kinds of iteration, and 
then to apply the various forms of reasoning just summarized to this process defini-
tion. In short, we advocate formally defining realistic iterative formal verification 
processes, and then applying dynamic testing, finite state verification, and other forms 
of analysis to such processes in order to generate analysis results that can lead to 
greater insight into these processes, and increased credence in the results they deliver. 
The purpose of this paper is to indicate that such formal definitions and analyses of 
formal verification processes are feasible, and should be increasingly important addi-
tions to the formal verification enterprise. To that end, this paper describes early work 
that is developing formal definitions of iterative formal verification processes such as 
Floyd’s Method. The paper presents one such process definition that has been written 
in a rigorously-defined process definition language. Because of the language’s seman-
tic definition in terms of a rigorous notation (in this case it is Finite State Machines) 
we are able to demonstrate the feasibility of applying rigorous analysis to these 
processes, thereby obtaining definitive analytic results. 

2 A Process-Centric View of Formal Verification 

A formal verification of a program is essentially a proof that all possible executions of 
the program must necessarily deliver functional results that are consistent with a spe-
cification. The program and a precise specification of desired functionality are taken 
as input to the verification process, and the desired result of the process is a proof of a 
theorem that the program meets its specification. The process of producing the proof 
consists of creating and then proving a carefully constructed set of lemmas. We will 
use Floyd’s Method of Inductive Assertions [4] as an example of an approach to for-
mal verification. 

2.1 Floyd’s Method of Inductive Assertions 

Floyd’s Method begins by creating a set of assertions, each of which is a statement 
that characterizes what should be true at a specific point in the execution of a  
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program. These assertions must then be placed so that every program loop is “broken” 
or “cut” by an assertion (i.e. every iteration of every loop in the program must neces-
sarily encounter at least one assertion). Initial and Final Assertions are also placed at 
the beginning and end of the program to capture the desired functional behavior of the 
program. The placement of these assertions assures that every possible execution of 
the program is a sequence of loop-free statement execution sequences, each of which 
is bounded at each end by an assertion. Because any program has a finite number of 
statements there are only a finite number of places where assertions can be positioned. 
Thus there are a finite number, N, of assertions placed in any program, and there can 
therefore be at most N2 pairs of assertions. Assuming that there are at most C different 
paths between any pair of adjacent assertions, then any execution of the program can 
be viewed as a sequence that consists of at most C*N2 different loop-free statement 
execution sequences that are bounded at each end by an assertion. Assuming that 
there are in fact L such different loop-free execution sequences (where L <= C*N2), 
then the essence of Floyd’s Method is to prove L lemmas, each of which consists of 
demonstrating that, assuming the assertion at the start of the loop-free execution se-
quence is true, the execution of the loop-free execution sequence then assures that the 
assertion at the end of the loop-free execution sequence must also be true. If all such 
lemmas can be proven, then by induction, for any possible program execution, the 
truth of the initial assertion guarantees the truth of the final assertion assuming that 
the execution of the program reaches the final assertion. The verification of the pro-
gram then requires a proof that the program must actually terminate.  

This elegant approach to reasoning about the functionality of a program provides 
an excellent intellectual framework for understanding and reasoning about a program. 
The need to be sure that the final assertion is implied by all of its possible predecessor 
assertions makes it imperative that all of these previous assertions address the real 
functional substance of the program (e.g. trivial assertions such as true = true ^ true 
will not help imply the final assertion). Thus there is strong pressure for intermediate 
assertions that are placed inside of loops to be specifications of the quintessential 
contribution that each loop iteration makes to the overall work of the program. As 
such, creating these so-called loop invariant assertions, or loop breakers, compels the 
human verifier to come to grips with the nature of the program being verified, and to 
develop a deep understanding of the program. This discipline is widely regarded as 
being of at least as much value and importance as the actual completed proof itself, 
suggesting that it is particularly important for novice programmers to understand and 
practice the discipline. One key motivation of the work described here is to suggest an 
approach to helping novices feel comfortable in carrying out formal verifications of 
their programs. 

2.2 Pragmatic Issues 

While the conceptual basis for Floyd’s Method is beautiful and elegant, the actual 
execution of the method is fraught with difficulties and perils. Ultimately the human 
verifier would like to either prove all of the lemmas, thereby verifying that the pro-
gram must always produce the correct functional results, or in failing to do so come to 
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the realization of the existence of a program error that must be fixed. But simply fail-
ing to be able to prove all lemmas may result from difficulties in performing the veri-
fication, rather than from the presence in the program of an error that must be fixed. 
Specifically, the following are some of the difficulties that a human verifier may en-
counter in performing the verification: 

•  An assertion may be incorrect or inadequate: As noted above, a loop invariant 
assertion must capture the essence of what each loop is quintessentially all about 
and what it contributes to the overall functioning of the program. All too often pro-
grammers have only a fuzzy grasp of this and may build loops whose actual func-
tioning lacks this sharp focus. In such cases, the verifier will understandably have 
difficulty in enunciating simple and elegant loop-breaker assertions. Sometimes 
this lack of clarity of purpose causes a loop indeed to be programmed incorrectly, 
but often it simply creates an intellectual challenge that requires the verifier to ite-
rate the specification of the loop invariant or modify the program code, seeking 
code and assertion that will suffice. Thus, lack of success in proving a needed 
lemma may well indicate ways in which a loop invariant specification may need 
improvement or code should be modified. When any code or assertion is changed, 
then it becomes necessary to repeat the proof of any previously-proven lemma that 
involved that assertion or code. 

•  An assertion may be positioned in the wrong place in the program: In a similar 
way, it may be the case that the verifier understands the essential nature of the per-
formance of a loop, but may position a needed loop invariant in a location where 
the specification of the invariant it not true under all circumstances. Here too fail-
ure to prove one or more lemmas may lead to a clearer understanding of where the 
assertion needs to be positioned. And here too, any change in the position of an as-
sertion requires that any lemma involving that assertion be reproven.  

• The proof of a lemma may be incorrect: The proof of a lemma requires that the 
contribution of every statement in the loop-free execution sequence be characte-
rized as a specific change that the execution of that statement makes to the overall 
state of the program’s execution. The statement’s contribution may be to change 
the value of one or more program variables, or the concurrency state of the pro-
gram, for example. The semantics of the language in which the program is written 
provide a template for determining the contribution of a statement, and the specif-
ics of each statement can then be used to elaborate the template into a precise and 
detailed specification of the contribution of the statement. Proving a lemma entails 
composing the contributions of each of the statements in the loop-free execution 
sequence, and proving that their combined behaviors must always cause the final 
assertion to be true, given that the initial assertion is true. Because the semantics of 
a typical programming language are defined using non-trivial mathematics, proofs 
of lemmas about programs written in such languages require good facility with 
such mathematics. Even a very minor error in inference can cause a verifier to in-
correctly conclude that a correct lemma is incorrect, or that an incorrect lemma is 
correct. Either of these errors invalidates the entire verification. Because of this, 
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proof checking tools are typically used to review the proofs of lemmas. If the proof 
of a lemma is found to be incorrect, the proof must be corrected.  

• The lemma may be correct, but too difficult for the verifier to prove: As noted 
above, a proof typically requires reasoning meticulously about the combined beha-
viors of all of a sequence of program statements. When the sequence of statements 
gets long, the combined behaviors of these statements can become quite complex, 
requiring the verifier to create a long and complex lemma. The very size and com-
plexity of the lemma may make the proof too difficult for the verifier to carry out. 
In such cases, the verifier may expedite the verification process by creating new 
assertions, modifying some of the existing assertions, moving the locations of 
some of the existing assertions, or modifying the underlying program to be veri-
fied. In each of these cases, the changes to assertions or to program statements will 
require reconsideration of the previously developed lemmas and proofs.  

The foregoing suggests why many novices may be daunted by the prospect of car-
rying out the formal verification of a program. But it also suggests the value of proac-
tive process guidance through the different kinds of iterations that may be necessary, 
and the prospect that such guidance could increase the accessibility and appeal of 
formal verification to novices. In particular, because the formal verification of a pro-
gram is likely to require a considerable amount of trial and error, leading to a consi-
derable amount of iteration, guidance through these iterations could be of considera-
ble value. Some iteration might be minor, requiring only a minor modification to a 
slightly flawed proof of a single lemma. But some iteration, such as the need to modi-
fy an assertion that is a part of several different lemmas, may require a very consider-
able amount of effort. In cases where considerable effort seems required, it is reason-
able for the verifier to think carefully about which lemmas need to be reproven, and 
which need not be reproven. In the case of lemmas to be reproven, it is reasonable for 
the verifier to seek to reuse as much of the previous proof as possible. All of this rea-
soning is error-prone and can lead to the incorporation into the final set of lemmas of 
one or more lemmas whose correctness might be incorrectly assumed, leading to an 
incorrect verification. Therefore, proactive support for reasoning about he reuse of 
lemmas would be of great value to the verifier.  

Documentation of the reasoning about lemma reuse can also be of considerable 
value to stakeholders. The possibility that a formal verification of a program is incor-
rect should be a concern for all of the stakeholders of that program. All of these 
stakeholders should be insistent upon having access to evidence that the verification 
has indeed delivered correct results. Among the kinds of stakeholders that should 
have this concern and should require such evidence are: 

• Customers who have paid for the program and should expect that they are receiv-
ing what they have paid for. 

• Users who need the functionality that has been promised. 
• Innocent bystanders (e.g. passengers on a software-guided airplane) whose safety 

might be jeopardized by software that performs in an incorrect and/or unsafe way. 
• Developers whose pride and professional reputations derive from their demonstrat-

ed ability to create software that meets the needs of stakeholders. 
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There are some differences in the ways in which the needs of these different stake-
holders should be met. But all are seeking assurances that the process by which the 
formal verification of the program was carried out is itself correct, and was carried out 
correctly. Our view is that these assurances can be derived from appropriate examina-
tions of a sufficiently precise and detailed definition of the formal verification 
process, and of a sufficiently precise and detailed history its execution. Thus, for ex-
ample, it would be important to be able to show definitive evidence that a proof 
checker has been run on each of the lemmas. And to show that none of the assertions 
or code involved in a lemma that is incorporated as part of a final program verifica-
tion has been modified subsequent to the running of a check of its proof. As noted 
above, automated tool systems such as Isabelle can help to provide these kinds of 
evidence. But as a less expensive and more accessible alternative, an appropriately 
complete and detailed definition of the formal verification process could be used to 
provide some of these forms of evidence as well. Moreover, a trace of the execution 
of the process could provide evidence that all proofs were indeed checked, and no 
changes were made subsequently. Human verifiers’ efforts could be augmented by 
such a process if the process were to specify that the human verifier could not declare 
the program to be verified until and unless all lemmas were proof-checked. These 
examples suggest ways in which an appropriate formal verification process definition 
could be used to provide desired assurances of different kinds to different stakeholder 
groups. 

3 An Example Formalization of a Formal Verification Process 

To demonstrate the feasibility of creating a formal definition of a formal verification 
process, we now use Little-JIL, a semantically well-defined language [13,14], to de-
fine precisely and in some detail Floyd’s Method of Inductive Assertions. We have 
chosen to use Little-JIL as the vehicle for the definition of this process for a number 
of reasons. First, the semantic scope of Little-JIL seems particularly well-matched to 
the needs of an iteration-intensive formal verification process definition in that Little-
JIL provides particularly strong support for such features as abstraction, exception 
management, rigorously-defined artifact flow, and human choice, all of which seem 
to be important in formal verification processes. Thus, for example, Petri Nets seem 
particularly poorly suited to the concise specification of such processes in that they 
lack strong features for modeling artifacts and their flow, and are particularly clumsy 
in dealing with exception management. In their lack of hierarchical structure they 
make it hard to deal with abstraction. Other specification languages have other pat-
terns of weakness in specifying these critical features of iteration-intensive formal 
verification processes. 

3.1 About Little-JIL 

We now provide some minimal level of details about the Little-JIL language. More 
complete details about the language can be found in [13] and will also be introduced 
in the context of our explanation of the definition of Floyd’s Method. Little-JIL is a 
visual language, depicting processes as hierarchies of steps. But Little-JIL is also 
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semantically well-defined, with its semantics being based upon finite state machines. 
The semantics are sufficiently strongly defined to support the execution of processes 
defined in Little-JIL. A presentation of the finite state machines used to define Little-
JIL semantics is well beyond the scope of this paper. But these finite state machine 
definitions have been used to support various forms of reasoning about processes 
from many diverse domains that have been defined in Little-JIL. In this section we 
build upon that process reasoning experience to apply it to reasoning about formal 
verification processes. 

A Little-JIL process definition looks initially somewhat like a task decomposition 
graph, in which processes are decomposed hierarchically into steps, with the order of 
execution of child steps being specified by the parent. Steps can be thought of as pro-
cedures, especially in that they incorporate specifications of argument flow. When a 
Little-JIL process definition is executed, its various steps are elaborated at run time 
into step instances. 

Figure 1 is a visualization of a step, where the black bar represents the step. Little-
JIL steps are connected to each other with edges that represent both hierarchical de-
composition and artifact flow. These edges are shown emanating from the left side of 
the step bar in Figure 1. The left side of a non-leaf step bar contains an iconic repre-
sentation of the order in which the step’s substeps are to be executed. Little-JIL  
incorporates four different step execution sequencing specifications: sequential (indi-
cated by a right facing arrow), which specifies that substeps are to executed sequen-
tially from left to right; parallel (indicated by an = sign), which specifies fork-and-join 
for its substeps; choice (indicated by a circle slashed through the middle), which spe-
cifies that only one of the step’s substeps is to be executed, with the choice being 
made by the parent step; and try (indicated by a right facing arrow with an X on its 
tail), which specifies that the step’s substeps are to be executed in left-to-right order 
until one of them succeeds by failing to throw an exception.  

 
 

 

Fig. 1. A visualization of a Little-JIL step showing its key semantic features 
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Each step definition contains an interface specification, represented in Figure 1 by 
the small blue ball over the step bar. The interface specification consists of a specifi-
cation of the step’s arguments and its resource requirements. An argument specifica-
tion incorporates both type information and information about whether the argument 
is an input, an output, or both. Step invocation parameter-passing semantics are essen-
tially copy-and-restore. A step’s resource requirement specification details the types 
of resources needed in order to perform the task associated with that step. In Little-
JIL, moreover, one resource is always designated as the step’s agent, namely the  
resource responsible for the performance of the step. Thus, for example, in Floyd’s 
Method, the agent for a step such as the specification of a loop invariant would be a 
human, but the agent for a step that checks the details of a proof would probably be an 
automated proof-checker.  

Exception handling is a particularly strong and important feature of Little-JIL. 
Steps can be preceded by a prerequisite check (indicated by a green triangle to the left 
of the step bar in Figure 1) and followed by a postrequisite check (indicated by a red 
triangle to the right of the step bar in Figure 1). Each of these can represent an entire 
step structure that evaluates to true or false. If a requisite evaluates to false then an 
exception is thrown. The agent for a step can also throw an exception during the ex-
ecution of the step. Exceptions are typed objects, and are handled by handlers for that 
exception type that are above the step that has thrown the exception in the step de-
composition hierarchy. Every step can contain one or more exception handlers, each 
of which may itself be an entire step hierarchy. A step’s exception handlers are at-
tached to the step by edges that emanate from the right side of the step bar. When a 
step contains exception handlers, a red X appears inside the right side of the step bar. 
Non-leaf steps are sometimes introduced into the step hierarchy specifically for the 
purpose of creating a scope of applicability for a particular exception handler. Little-
JIL’s exception management facilities seem particularly well suited to support the 
clear and concise specification of various kinds of iteration that must occur in realistic 
formal verification activities. 

3.2 A Little-JIL Definition of Floyd’s Method 

Figure 2 depicts a Little-JIL definition of Floyd’s Method. As might be expected, the 
process consists, at the highest level of abstraction (represented by the substeps of the 
root step in Figure 2), of sequential execution (indicated by the right-facing arrow in 
Floyds Method, the root step) of Define and Place Initial and Final Assertions, a step 
to create and place all needed assertions, then Define and Place All Invariants, a step 
to create all of the needed loop-breaker invariants, Create Lemmas, a step to build all 
of the lemmas whose proofs are needed to complete the formal verification of the 
program, Prove Lemmas, a step to actually carry out the proofs of all of the lemmas, 
and then Prove Program Termination, a step to prove that program execution must 
terminate.  

While these top level steps capture the nominal process of performing Floyd’s Me-
thod, our process is designed to support the actual process that a verifier most typical-
ly goes through, including the recovery from errors and speculative approaches that 
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do not work out, and supporting verifiers’ efforts to determine when such recoveries 
are need, and how to carry out the recoveries. In the lower levels of this process defi-
nition we will show some examples of such error detection and recovery. At the top 
level, though, we can already see such an example. Hanging from the right end of the 
step bar of the root step, Floyds Method, is an exception handler that shows that the 
entire Floyds Method process will be reexecuted in response to an appropriately typed 
exception thrown at any time during the execution of the process. This presumably 
would happen in response to a realization that the execution of the process has be-
come hopelessly entangled (we shall see shortly how easily this can happen). In this 
case the process definition specifies that the hopelessly entangled verification process 
execution will be abandoned and the entire Floyds Method process will be restarted. 
We note that the reinvocation of Floyds Method is essentially a recursion, indicating 
that the new process invocation takes place in the context created by this exception 
handler, where that context (communicated perhaps through arguments thrown with 
the exception) may incorporate important information about what has been tried pre-
viously and why it has not worked out well. Other examples of exception manage-
ment will be shown in the elaboration of the top level steps that we address now. 

To provide further examples of the power of our process definition to describe and 
guide the details of a realistic performance of Floyd’s Method, we now describe ela-
borations of some top level steps, starting with Define and Place All Invariants. This 
step is an iteration over all of the invariants needed to support the complete proof.  

 
 

 

Fig. 2. An Example of a Little-JIL definition of a process for performing Floyd’s Method of 
Inductive Assertions 
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The iteration is indicated by the annotation invariants+ positioned on the edge  
between Define and Place All Invariants and Define and Place an Invariant. The 
invariants+ annotation on the edge indicates that the lower level step is to be instan-
tiated one or more times (the Kleene +), once for each invariant that the verifier wish-
es to create. The lower level step, Define and Place an Invariant, is decomposed into 
two further substeps, namely the defining of the invariant and the placement of the  
invariant in the program source text. Following performance of the iterative definition 
and placement of all invariants, is a substep of Define and Place All Invariants, Check 
for All Loops Broken, that is imbedded in the process here to assure that enough inva-
riants have been created and that they have been appropriately placed. It is expected 
that this step is to be executed by some kind of automated tool, and that can be speci-
fied as part of the Little-JIL definition of this process, although this visualization of 
the definition does not include that annotation in order to reduce visual clutter. If the 
checking to assure that all loops are broken by an assertion reveals that this critical 
requirement has not been met, then the checker will throw an appropriately typed 
exception. This exception is to be handled by the Define and Place All Invariants 
step, which consists of reinvoking Define and Place All Invariants. Here too, this is a 
recursive invocation of the step in which the new execution context will presumably 
contain information about the cause of the exception, most likely a specification of all 
of the loops that have not yet been broken. This information would presumably be of 
considerable value to the verifier in identifying just where additional assertions are 
needed. As the entire Define and Place All Invariants step is reinstantiated, however, 
the verifier will in this case also be free to edit, remove, or replace any existing asser-
tions. The reinstantiations of the Define and Place All Invariants step will continue 
until checking confirms that all loops have been broken. 

The elaboration of the Prove Lemmas step incorporates other interesting details. 
Prove Lemmas is also an iteration whose nature is specified by the lemmas+ annota-
tion on the edge from Prove Lemmas to its substep, Prove a Lemma, which will be 
instantiated once for each of the lemmas to be proven. The list of lemmas to be prov-
en will have been generated by Create Lemmas, the immediate predecessor sibling of 
Prove Lemmas, and then passed as an argument from Create Lemmas to Prove Lem-
mas. Prove a Lemma consists of the sequential execution of Assume Preconditions 
and then Construct Proof. Certainly most of the time and effort in verification is spent 
in the Construct Proof step, which we do not elaborate here. This is the heart of pro-
gram verification, and is often a highly creative activity. Some guidance in how to 
carry out that activity could be provided by elaborations of this Little-JIL step, per-
haps emphasizing the details of how humans and proof assistants might collaborate. 
Thus, further elaboration of this step would seem to be particularly important if this 
process is to be used to train and support formal verification novices. Elaborations of 
this kind will be pursued in future work on this ongoing project. 

To see how this process definition does help support assurance about the correct-
ness of the proof, note that the Construct Proof step has a postrequisite, presumably 
(but not necessarily) carried out by an automated proof checker, whose job is to con-
firm that what has been created is indeed a valid proof of the lemma. If the postrequi-
site determines that the proof is not valid, then two different exceptions might be 
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thrown. One exception, suggesting a defect in the proof, would be handled by the 
Prove a Lemma step, and would cause the Prove the Lemma step to be reinvoked 
recursively thereby causing the verifier to examine the report of the defect in the 
proof thereby expediting the process of correcting the defect. 

The postrequisite in this definition is also able to throw a different exception, this 
one to be handled by Handle Unsuccessful Proof Attempt, an exception handler at-
tached to the higher level Prove Lemmas step. Handle Unsuccessful Proof Attempt is 
to be thrown when a failed proof attempt has indicated that there is a more fundamen-
tal problem with the verification. It is not uncommon, for example, for an assertion to 
have been incorrectly stated, or inconveniently placed, or indeed for the program that 
is being verified to contain a defect (a principal reason for doing the verification). 
Each of these three possible difficulties is to be addressed by a different substep of 
Make Needed Changes, the first substep of Handle Unsuccessful Proof Attempt. Make 
Needed Changes, is defined to be a choice step, indicating that the verifier is free to 
choose whichever of its three substeps (each supporting a different kind of change) is 
to be performed. Of particular note is the fact that the edge from Handle Unsuccessful 
Proof Attempt to Make Needed Changes, is annotated with a Kleene *, indicating that 
this step can be instantiated as many times as the verifier might wish, in order to sup-
port the possibility that the verifier may need to make more than one change (e.g. 
perhaps to modify more than one assertion, and perhaps also change some program 
source text). Regardless of the number of instantiations of Make Needed Changes, the 
process next mandates that Create Lemmas and Prove Lemmas be executed next. The 
reexecution of Create Lemmas is to assure that all lemmas continue to be consistent 
with the current set of loop-breaker assertions (some of which might have been 
changed during the execution of Make Needed Changes). The reexecution of Prove 
Lemmas requires that all lemmas be proven. In cases where neither the assertions nor 
code have been changed, the proof would not need to be modified, and the postcondi-
tion on Construct Proof would reconfirm the validity of the previous proof. In other 
cases, Prove a Lemma would entail creating a new proof, and would require the suc-
cessful execution of the Construct Proof postcondition. Failure of the postcondition 
would cause the throwing of an exception and might cause another recursive invoca-
tion of Prove Lemmas.  

It is clear that continued recursive invocations of this step, perhaps multiple times 
in response to multiple postcondition failures, can create a situation in which several 
different proof failures are being investigated and corrected essentially simultaneous-
ly, perhaps even in ways where progress in addressing one difficulty creates new 
difficulties for other proof correction activities. All of this creates a potentially very 
confusing environment for the human verifier. Little-JIL’s hierarchical structure, and 
its ability to support recursive invocations, each of which can carry considerable 
amounts of contextual information, seems to have the clear potential to provide guid-
ance that could be very useful to the verifier in this sort of complex situation. Still, 
however, it is not hard to envisage situations in which there are so many recursive 
reconsiderations of so many lemmas that the verifier might feel it is best to simply 
start all over again. In that case, this process definition supports the ability of the hu-
man verifier to throw the exception this is handled by the top level Floyds Method 
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step, causing the entire process to be started anew (although still in a context that 
might make information about the previous verification attempts available). 

4 Analysis of a Formal Verification Processes 

As noted above, we feel that it is not sufficient only to verify a program, but that it is 
also important to be able to provide to stakeholders (including the human verifier—
especially a novice human verifier) credible evidence that the program has indeed 
been verified, and verified correctly. In this section we demonstrate how a formal 
definition of a formal verification process such as the one just presented can be effec-
tive in supporting the creation of such evidence. To provide some initial examples, we 
suggest some fundamental assurances are that: all loops have been shown to have 
been broken by at least one assertion, that all necessary lemmas have been created, 
that each lemma is stated based upon the most recently created assertions and current 
code, and that each lemma that has been verified is indeed a lemma based upon cur-
rent assertions and code. The nominal execution of Floyd’s Method as a straight un-
iterated sequence of the top level substeps of Floyds Method makes it clear that a 
verification cannot terminate until and unless all lemmas have been created and prov-
en. But experience suggests that the verification of a real program is almost never as 
simple as following that nominal uniterated straight path, because errors in creating 
assertions, placing them, creating lemmas and (especially) proving lemmas success-
fully are to be expected, necessitating backtracking, and iterations of various kinds. 
As noted above, all of these difficulties are further complicated when reverifying a 
program that has been modified. In such a case some assertions, lemmas, and proofs 
can be reused, but others cannot. We suggest that proactive process support can be 
quite useful both to verifiers and other stakeholders, in providing guidance about 
which assertions, lemmas, and proofs are safe to reuse and which are not. The exam-
ple process presented above is a suggestion of one way in which needed backtracking 
and iteration might be organized systematically, hopefully providing structure and 
artful integration of automated tools that can be of real assistance to a human verifier, 
especially a novice human verifier. But this process definition also makes it clear that 
the specification of backtracking and iteration also make it more difficult to be sure 
that all needed lemmas have been created and then proven successfully, with no 
changes to any assertions or program text taking place between the conclusion of all 
of these proofs and the end of the execution of this process.  

In earlier work we have argued that a process that is defined in a rigorously speci-
fied language can be thought of as a kind of software that is, in particular, amenable 
to analysis using existing software analysis approaches, such as testing, static analy-
sis, and formal verification [9,10]. That suggests to us that it should be possible to 
apply these kinds of analyses to formally defined formal verification process defini-
tions such as the one presented above in order to produce assurances to stakeholders 
of the correctness, and the correct execution, of such processes. 

We begin by observing that the executability of a Little-JIL process supports the 
ability to do dynamic analyses of executions of the process. Little-JIL processes are 
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executed using a system, Juliette [14], that assures that steps are executed in orders 
that are consistent with Little-JIL semantics, and that arguments are correctly col-
lected from completed steps and delivered to steps that are defined to be their users. 
Juliette also delivers to agents, both human and automated, the work that they have 
been assigned as per the specifications in the process definition. These work assign-
ments are delivered to the agendas of the agents, who signal the completion of as-
signed work by making appropriate annotations to their agendas. Clearly the history 
of inputs received, assignments of steps to agents, the completion statuses of those 
steps, and the values of artifacts both consumed and generated, comprises an articu-
late record of how the process has been executed for any given input program. This 
record, generated in the form of a Data Derivation Graph (DDG) [11], seems to be an 
excellent basis for reasoning about whether key properties have been adhered to by 
any execution of the process. Thus, for example, if we wish to be sure that all lemmas 
have been proven successfully and correctly, we should be able to verify this by ex-
amining the DDG to see that no changes have been made either to a lemma’s asser-
tions, or to the lemma’s code subsequent to the last successful verification of that 
lemma, and prior to the completion of the execution of the entire process. By confirm-
ing that this is indeed the case for each lemma, we then confirm that all of the compo-
nent parts of the verification have been proven. If the postcondition of the Construct 
Proof step has been executed by an automated proof checker, then this will be observ-
able from an examination of the DDG, and reportable as part of the assurances pro-
vided to stakeholders. 

As is the case with other kinds of software, however, this sort of dynamic analysis 
of a single formal verification process execution may provide useful assurance about 
the trustworthiness of a single verification, but provides no assurances about any other 
verification process execution. More generally, in addition to knowing that a single 
verification has satisfied some key properties, it is also quite important to know that 
any verification that follows the same process must also always satisfy these key 
properties. Thus, we believe it is important to be able to analyze a given formal verifi-
cation process definition to verify properties such as that all lemmas have been proven 
correctly prior to the termination of the verification process. This can be done by ap-
plying finite state verification [3] to a rigorously defined verification process specifi-
cation such as the one just presented. As an example, we indicate how this property 
can be verified for the specific process shown in Figure 2.  

A finite state verification of the property that all lemmas have been successfully 
proven before the process terminates should be based upon analysis of a flow graph 
derived from the Little-JIL process definition. Because Little-JIL’s semantics are 
rigorously defined based upon finite state machines, such a flowgraph can be auto-
matically generated (and indeed we have developed a tool for automatically generat-
ing such process definitions into the Bandera intermediate representation, which  
incorporates all needed data and control flow information [3]). The verification of this 
property then entails verifying that no modifications to a lemma’s statement or to the 
program text used by the lemma can occur between the end node of the process flow-
graph and the most immediately proximate prior successful execution of the proof 
checker’s confirmation of the correctness of the proof. An informal inspection of the 
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process definition strongly supports a surmise that this is the case, as the termination 
of the execution of the process occurs only after the successful completion of the 
Prove Lemmas step (regardless of how many times this step might have been called 
recursively), and the successful completion of the Prove Lemmas step occurs only 
after all of the proofs of the individual lemmas have been confirmed as being correct.  

Certainly, however, this informal argument should be supplanted by a rigorous 
proof of the consistency of the process with this property. To cite a specific sugges-
tive reason, suppose that the Create Lemmas step had been omitted from the list of 
children of the Handle Unsuccessful Proof Attempt exception handler step. If that 
were the case, it might then be possible that the Define and Place All Invariants step 
might have been performed as part of the response to an unsuccessful proof attempt, 
thereby potentially necessitating the modification of some prior lemma statements. 
But, with the Create Lemmas step missing, the process now no longer assures that 
those new lemmas would be created, and thus does not assure that the needed new 
proofs would be completed. Determining whether the needed proofs have been cor-
rectly created and proven would have to be determined based upon a careful analysis 
that included precise specification of the flow of arguments between these process 
steps. Certainly this is eminently possible, based upon the semantics of Little-JIL. But 
the purpose of this thought-exercise is to suggest that just this kind of careful and 
precise mathematically sound static analysis of processes such as this one is neces-
sary—but possible. Similar kinds of concerns about the soundness of a proof arise in 
being sure that a reverification has not relied upon lemmas that are no longer valid, or 
upon lemmas that have been incorrectly constructed using assertions that are no long-
er valid. 

Indeed, going a step further, the kind of analysis that is probably of most value is a 
full formal verification of this formal verification process definition. We suggest that 
it is not only possible, but actually highly desirable, to apply Floyd’s Method to the 
verification that this process for the performance of Floyd’s Method necessarily al-
ways produces a correct outcome. Thus, for example, we would like to use Floyd’s 
Method to verify formally that all lemmas needed for a verification have been created 
correctly, and that every one of these lemmas has been proven correctly. Doing this 
requires, obviously, the creation of at least one loop-breaking invariant assertion for 
each of the loops in our process definition. As in the case of the verification of any 
other kind of program, this requires a firm understanding of the essential goals and 
natures of each of the loops, which is perhaps the most valuable product of any verifi-
cation effort. In the case of the iteration in the Prove Lemmas step, for example, a 
component of the needed invariant would certainly have to assert that at the end of the 
ith iteration all lemmas up to and including lemmai have been proven successfully.  

We have not, at present, undertaken the formal verification of a formal verification 
process, as this work is currently ongoing. But we expect that the somewhat intricate 
structure of exceptions and exception handling in this example verification process 
might make the proof of all needed lemmas difficult, perhaps suggesting the advisa-
bility of creating a more straightforwardly understandable and provable process.  
This is very much in line with what our community has learned about the value of 
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verifying programs, namely that proof attempts often lead to the kinds of deeper un-
derstandings that point the way to useful simplifications.  

The fact that program verifications currently are often carried out (e.g. by novices 
or those having to work in environments that lack powerful proof assistant tools) 
without benefit of a formally defined process to guide them raises the risk that re-
ported successes in verification may not be supportable by acceptably rigorous argu-
ments and acceptably definitive evidence. The example we have just presented makes 
it clear that the expectable need to incorporate various kinds of iteration and rework 
into real verification processes can make it difficult to assemble such rigorous and 
definitive evidence. To address this worrisome problem this paper has suggested an 
approach that should seem quite natural to those who have developed the admirable 
science and technology of testing, analysis, and verification. 

5 Conclusions 

We have argued that it is quite important to be able to assure all stakeholders that a 
formal verification of a program has been carried out correctly. This seems particular-
ly important in consideration of the fact that formal verifications typically entail  
extensive amounts of rework and iteration that can raise doubts about whether all 
necessary lemmas have really been generated and proven. We have then demonstrated 
that the process of performing just such an iteration-intensive formal verification can 
be defined precisely in a rigorously defined process definition language. We then 
indicated how classical dynamic, static, and formal verification approaches can be 
applied to such a process definition thereby creating the kinds of assurances of verifi-
cation correctness that should be desired by stakeholders. But our work is still in a 
relatively early stage, and so in this paper we describe the application of these analy-
sis approaches to only one specific desirable property. Future work must address far 
more properties. 

In addition, this paper has suggested the applicability of only a few analysis ap-
proaches. But in future work it seems useful to consider how to apply other approach-
es. For example, dynamic monitoring could be used to help identify proof bottlenecks 
and sticking points and to suggest possible approaches to resolving such problems, 
perhaps aided by the results of automated proof assistants that might be automatically 
invoked. Moreover, timing analyses might be carried out as well to attempt to project 
the amount of time needed to complete a verification. Most important, perhaps, is this 
paper’s suggestion that formal verification has applicability to more than just pro-
grams, but also is a valuable technology to apply to processes as well, even the 
processes that should be used to carry out formal verification. 
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Abstract. We survey two important distinctive features of CafeOBJ,
namely behavioural specification based upon coherent hidden algebra
and heterogeneous specification based upon Grothendieck institutions.
Both of them represent seminal contributions to formal specification
culture that go much beyond the realm of CafeOBJ. Our presentation
includes rather detailed explanations of the motivations and of the pro-
cess leading to the inception of these concepts and theories. The paper
is dedicated to Professor Kokichi Futatsugi, the leader of the CafeOBJ
project, and also close friend and collaborator, on the occasion of his
retirement.

1 Introduction

In the early nineties the lifespan of OBJ [28], the iconic language of algebraic
specification, was nearing its end. This was much due to several important the-
oretical developments that had happened at the time, and that were calling
for a new generation of algebraic specification languages. Three offsprings of
OBJ were thus born, CASL [1], Maude [5], and CafeOBJ [17]. All of them are
now mature specification languages, each of them with its own identity. I would
like to confess: from all OBJ offsprings, I see the fate of CafeOBJ and its as-
sociated activities over next one or two decades as uncertain. The CafeOBJ
definition [17] (that was the fruit of intense collaboration between me and Pro-
fessor Futatsugi between 1996–2000) lacks the theoretical rigor and clarity of
CASL, and the quality of the JAIST/SRA implementation is far from the im-
pecable and powerful Maude rewrite engine. Moreover the current activities
around CafeOBJ are rather weak compared to the other two. Although CafeOBJ
does not have many regular users outside JAIST, its semantics continues to this
day to pose challenging research questions (e.g. [16,12,15] etc.). The effort put
into the design of CafeOBJ between 1996–2000 had left traces in the algebraic
specification culture that in my opinion will continue to have a great impact for
a long time.

In this survey, I would like to share with you, the reader, two of the traces
left by CafeOBJ, what they mean, their impact so far, and especially an insider
perspective about how they appeared and how they developed.

S. Iida, J. Meseguer, and K. Ogata (Eds.): Futatsugi Festschrift, LNCS 8373, pp. 53–65, 2014.
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2 Modern Behavioural Specification through Coherent
Hidden Algebra

2.1 From Rewriting Logic to Behavioural Specification

When I arrived at JAIST in January 1996, being hired by Professor Futatsugi on
a recommendation of Joseph Goguen, the CafeOBJ project was at the beginning
and it looked very much that it will become a kind of copy of Maude, and
extension of OBJ towards rewriting logic. At that moment I was under the strong
influence of the work on behavioural specification that I had been doing in the
early nineties with Joseph Goguen, my Oxford D.Phil. supervisor. This very
promising specification and verification paradigm introduced first time perhaps
by Horst Reichel in the early eighties [37] had undergone a new development
within Joseph Goguen’s research group at Oxford, the most representative paper
from that period being [26].

It was not very difficult to convince Professor Futatsugi, the head of the
CafeOBJ project, that we need to realize behavioural specification directly as
part of the CafeOBJ definition and implementation. This was meant to provide
CafeOBJ an unique identity, and after all behavioural specification was an ex-
tremely promising specification paradigm, very worth to explore through an ex-
ecutable specification language. Thus CafeOBJ was to become the first language
directly implementing behavioural specification. Later on there was BOBJ [38]
that after several more years evolved into the CIRC behavioural verification tool
[39]. By contrast, the design team of CASL decided to have behavioural specifi-
cation at the methodology level rather than at the language definition level.

2.2 The Birth of Non-monadic Hidden Algebra

The process of rethinking hidden algebra, the logic underlying behavioural spec-
ification, this time fuelled by the design of a real language, led in 1998 to a
profound extension of the definition of hidden algebra [6] (its journal version
being [18]). This was called ‘coherent hidden algebra’, a way to point out the
single most important aspect of this reform, the so-called coherence property
that opened the door for allowing algebraic operations with more than one hid-
den sort in their arity.

The main idea behind the coherence property was that the actual specification
practice may require operations that have no behavioural meaning, but that
have the flavour of constructors and that preserve the behavioural equivalence
determined by the operations that are explicitly specified as ‘behavioural’. I still
remember the original example of a coherent operator, given by the following
specification of a non-deterministic choice function on natural numbers.

mod* NNAT-HSA {
protecting(NAT)

*[ NNat ]*

op [_] : Nat -> NNat
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op _|_ : NNat NNat -> NNat {coherent}
bop _->_ : NNat Nat -> Bool

vars S1 S2 : NNat

vars M N : Nat

eq [M] -> N = M == N .

eq (S1 | S2) -> N = (S1 -> N) or (S2 -> N) .

}

In this specification NNat models behaviourally the set of the non-deterministic
naturals, and | looks like a state constructor and carries no behavioural mean-
ing. But on the other hand, | preserves the behavioural equivalence ∼ deter-
mined by the choice predicate -> . This means each model of NNAT-HSA satisfies

(∀s1, s′1, s2, s′2) (s1 ∼ s′1) ∧ (s2 ∼ s′2)⇒ (s1 | s2) ∼ (s′1 | s′2).

The idea to allow for operations with more than one hidden sort in the arity
meant a dramatic breakthrough the monadic world of the hidden algebra at the
time, a departure from the final semantics (in its strict sense) and the ideology of
co-algebra [31]. Within Goguen’s inner circle of collaborators there was already
an understanding that co-algebra was not technically adequate for real software
specification mainly because of its inability to integrate well data types. On the
contrary, hidden algebra looked already much better in this respect and at this
new level even “more divorced” from co-algebra. Later on, Grigore Roşu, in his
San Diego Ph.D. thesis under Joseph Goguen’s supervision [38], took another
step forward and explored behavioural operations with more than one hidden
sort in the arity. He came up with a very interesting finding . While of course
final semantics in its literal sense is lost (no more chance to have a final algebra
for the signature, in a category theoretic sense), its congruence theoretic essence
is still there in the form of the existence of the largest hidden congruence. The
way I present these important results these days is as follows.

Definition 1 (Signatures). A HA signature is a tuple (H,V, F,BF ) where

– (H ∪ V, F ) is a many sorted signature with H ∩ V = ∅; the sorts in V are
called visible sorts and the sorts in H are called hidden sorts; and

– (H ∪V,BF ) is a sub-signature of (H ∪V, F ); the operations of BF are called
behavioural operations.

Definition 2 (Hidden algebras). Given a signature (H,V, F,BF ),
an (H,V, F,BF )-algebra is just an MSA (H ∪ V, F )-algebra.

Definition 3 (Hidden congruence). Given a (H,V, F,BF )-algebra A, a hid-
den (H,V, F,BF )-congruence ∼ on A is just an (H ∪ V,BF )-congruence which
is identity on the visible sorts.

Definition 4 (Behavioural equivalence). The largest hidden (H,V, F,BF )-
congruence ∼A on a (H,V, F,BF )-algebra A is called the behavioural equivalence
on A.

Theorem 1. Behavioural equivalence exists for any (H,V, F,BF )-algebra.
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2.3 Behavioural Specification of Hierarchical Object Composition

In spite of its great promises, behavioural specification has remained to this day
marginal among CafeOBJ activities. For some it was still too sophisticated to be
of real use. I think this is one of the major failures of the CafeOBJ project so far.
However the start of a new era of behavioural specification given by CafeOBJ
has a major impact on CASL behavioural specification methodologies and its
ideas have been taken over and developed to very advanced stages by CIRC. I
think CIRC shows very clearly that the original great promises of behavioural
specification as formal method paradigm were not empty.

There was a very notable exception to the inability of the CafeOBJ community
to cultivate behavioural specification. This was the so-called ‘hierarchical object
composition’ methods that was the subject of Shusaku Iida’s JAIST Ph.D. thesis
[30] and that had a further semantic development stage in [10]. The roots of
behavioural approaches to object composition can be traced to [26], but that was
an initial semantics approach. By contrast the method put forward by Shusaku
Iida was a final semantics one (as shown in [10]), very much true to the spirit of
behavioural specification. A great benefit of this specification method is that its
associated verification method is fully automatic, and moreover the debugging
process is linear. In spite of all these promises the CafeOBJ behavioural object
composition has not yet been developed as a tool, an easy step from the point
of view of implementation, but absolutely mandatory for a real industrial usage
of the method.

2.4 Structuring Behavioural Specifications

The structuring of behavioural specifications poses particular challenging prob-
lems. Unfortunately specification in-the-large in CafeOBJ has been defined rather
sketchy in [17], and at the level of the details there are problems that only now
are being addressed.

A peculiarity of hidden algebra that prevents a direct application of the very
mature general theory on structuring specifications (e.g. [40,20,16]) is that in
general one does not have unions of any hidden algebra signatures. This is due
to the encapsulation condition on the hidden algebra signature morphisms, which
is absolutely necessary to ensure the so-called Satisfaction Condition from insti-
tution theory [25] for hidden algebra. In its absence no decently working modu-
larization system would be possible. Let us recall the definition of hidden algebra
signature morphisms.

Definition 5. A quasi-morphism of HA signatures

ϕ : (H,V, F,BF )→ (H ′, V ′, F ′, BF ′)

is just a morphism of many sorted algebra signatures ϕ : (H ∪ V, F ) → (H ′ ∪
V ′, F ′) such that

– ϕ(H) ⊆ H ′ and ϕ(V ) ⊆ V ′, and
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– the restriction of ϕ to (H ∪ V,BF ) is morphism of many sorted algebra
signatures (H ∪ V,BF )→ (H ′ ∪ V ′, BF ′).

A quasi-morphism ϕ : (H,V, F,BF ) → (H ′, V ′, F ′, BF ′) is a signature mor-
phism if and only if the following ‘encapsulation’ condition holds:

for any σ′ ∈ BF ′
w→s, if w ∩ ϕ(H) �= ∅ (i.e. w contains an ‘old’ hidden sort)

then there exists σ in BF such that σ′ = ϕ(σ).

The connection between the encapsulation condition for HA signature mor-
phisms and the Satisfaction Condition from institution theory has been dis-
covered in [23], where it had been noted for the first time this strong interde-
pendency between the logic and engineering levels of behavioural specification.
Work on the semantics and methodologies of structuring specifications directly
motivated by CafeOBJ semantics is currently under development [15].

3 Heterogeneous Specification through Grothendieck
Institutions

3.1 The CafeOBJ Cube

When a decision was made to shift the CafeOBJ focus from rewriting logic to
behavioural specification, there was also the decision not to abandon completely
rewriting logic. Without rewriting logic inside CafeOBJ, the language would have
had a simpler semantics based upon hidden algebra. The way rewriting logic is
realized in CafeOBJ is quite different from Maude, and in fact these days it is
called differently, namely preordered algebra [11,12]. Firstly, CafeOBJ rewriting
logic has a clear institution theoretic semantics based upon preordered alge-
bra [19], which supports only unlabelled transitions.1 Second, unlike in Maude
rewriting logic, the equations and the transitions live at the same conceptual
level. Consequently, in CafeOBJ it is possible to have equations conditioned by
transitions. Some applications have showed that this is a very useful feature
which is not possible in Maude where the level of the transitions is built on top
of the equational logic level.

CafeOBJ not being anymore an orthodox rewriting logic language, and having
also the other dimension of behavioural specification, it began to look more like
a heterogeneous specification language. However in the mid nineties there was
not yet a clear thinking about what heterogeneity really means and how to deal
with it. Therefore it was desirable to have, at least at the level of the semantics, a
conventional approach based upon institutions. But there was a serious obstacle
given by the presence of rewriting logic which may be easily understood through
the following very simple example of a specification of the order between natural
numbers as transitions.

1 This is one aspect that is incorrectly addressed in [17] and had been fixed in [19].
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mod! TWO {
[ s ]

ops 0 1 : -> s .

}
mod! TRANS {

protecting(TWO)

trans 0 => 1 .

}

The semantics of TRANS is given by the preordered algebra that consists of the
two elements Boolean partial order. But if we look at what happens with TWO

then we see that if we treat its semantics as a preordered algebra then it is not
protected anymore since the reduct from TRANS to TWO is not able to get rid off
the order 0 ≤ 1 in order to obtain a discrete algebra (set) for TWO.

The dramatic implication of this example is that it does not suffice to work
only within one logic, namely preordered algebra (eventually enhanced with
hidden algebra things). It is rather necessary that each of the paradigms involved
maintain the identities of their underlying logics, that we cannot just work within
only a big one obtained as a combination of logics corresponding to the primitive
specification paradigms. Instead we have to consider a system of logics in which
the component logics are linked by their embedding relationships. In this system
of logics, in order to have a smooth module structuring system for CafeOBJ, any
two logics must have a least upper bound. That implied that everything had
to be combined with everything else, which resulted in the following system of
logics, known as the ‘CafeOBJ cube’.

HA

MSA POA

HPOA

OSPOA

OSHPOAOSHA

OSA

(In the cube ‘OS’ stands for ‘order sorted’, ‘H’ for ‘hidden’, and ‘PO’ for ‘pre-
ordered’, ‘A’ for ‘algebra’ and ‘MS’ means many sorted.) Above we have given a
modern version of the CafeOBJ cube that differs from the original one (e.g. from
[17]) in two ways: rewriting logic is replaced by preordered algebra, and also the
direction of the arrows is inverse. Below we will understand the significance of
the latter aspect.

3.2 Logic Combination in CafeOBJ

The CafeOBJ cube represents a 3D system of logics, one dimension being the
order sorted algebra, another hidden algebra, and the third one being preordered
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algebra. Then all possible combinations between these, the ultimate one being
order sorted hidden preordered algebra. In the logic communities, logic combi-
nation has been for long time a hot research topic, the main result so far being
the so-called fibring method [4]. However logic combination in CafeOBJ is quite
different from fibring in that it is rather ad-hoc and based upon the intuitive
combinations of the respective model theories. Because of the strong emphasis
on model theory, this is beyond what fibring generally proposes. Fibring cannot
capture properly combinations of model theories, and the consequence relations
of the model theoretic logic combinations are in general stronger than those of
the fibring theoretic logic combinations. On the other hand, of course, fibring is
a general method, while the model theoretic combinations are still quite ad-hoc.

However logic combinations in CafeOBJ follow a general pattern, that al-
though does not enjoy a full theoretical support, that appears also in other
works such as [22,21,32,14] etc., and that may be described in general terms as
follows. Given a logic L1 and another logic L2

1. we develop the essential features of L2 at an abstract institution theory level,
the result being a generalized abstract version of L2, denoted I(L2);

2. then the combination L1 L2 is obtained by instantiating the abstract parts
of I(L2) to L1.

This is obviously a hierarchical asymmetric combination in which L2 is developed
on top of L1. For example, in CafeOBJ the combination between hidden algebra
and preordered algebra is a development of former on top of the latter [12].

It is worth mentioning that this method has been first realized and applied in
[3] in order to achieve a combination between order sorted algebra and hidden
algebra. A refinement of [3] that accommodates non-monadic hidden algebra has
been developed in [36].

3.3 Grothendieck Institutions

Since the eighties the foundations of modern algebraic specification is based
upon the theory of institutions of Goguen and Burstall [25]. Moreover other
logic-based computing science areas are increasingly based upon institutions,
most notably ontologies [24,35]. In the recent ISO standard 17347 Ontology
Integration and Interoperability (OntoIOp) institution theory plays a core role.
As a side comment, the enormous success of institution theory has extended
beyond computing science, as it has become a major and perhaps the most
developed trend of the so-called ‘universal logic’ in the sense envisaged by Béziau
[2]. The monograph [11] includes some of the works on institutional abstract
model theory, that are not necessarily computing science motivated.

So, the design ideology of modern logic-based specification languages is that
there is an underlying logic, captured as an institution, such that all of the respec-
tive language constructs can be explained rigorously as mathematical concepts
in the underlying institution. Then one may use the rather rich and advanced
body of logic and specification concepts and results that have been developed



60 R. Diaconescu

over the past three decades at the general level of abstract institutions. The
effort is rather minimal, just have to instantiate those to the concrete details of
the actual institution underlying the respective language. Of course, this process
requires that the designer of the language makes sure that the logic involved
enjoys several institution theoretic properties that constitute the conditions for
the development of the general results. The best example of a concrete realiza-
tion of this ideology is constituted by the design of CASL [1]. At this stage it is
useful to recall the definition of institutions.

Definition 6 (Institutions). An institution I = (SigI , SenI ,ModI , |=I) con-
sists of

1. a category SigI, whose objects are called signatures,
2. a functor SenI : SigI → Set, giving for each signature a set whose elements

are called sentences over that signature,
3. a functor ModI : (SigI)op → CAT giving for each signature Σ a category

whose objects are called Σ-models, and whose arrows are called Σ-(model)
homomorphisms, and

4. a relation |=I
Σ ⊆ |ModI(Σ)| × SenI(Σ) for each Σ ∈ |SigI|, called Σ-satis-

faction,

such that for each morphism ϕ : Σ → Σ′ in SigI, the satisfaction condition

M ′ |=I
Σ′ Sen

I(ϕ)(ρ) if and only if ModI(ϕ)(M ′) |=I
Σ ρ

holds for each M ′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ).

The heterogeneous logical nature of CafeOBJ represented the single strongest
obstacle that initially prevented CafeOBJ to benefit from the institution theoretic
design ideology. Confronted with such difficulty, my first reaction was to begin
a process of lifting the huge body of institution theoretic concepts and results
supporting the specification theory and practice from the framework of a single
institution to that of a system of institutions, and then to apply the fruits of
this process to the CafeOBJ cube. The general results obtained in the process,
reported in [7], may have constituted a first foundational theory of heterogeneous
specification. When talking about ‘systems of institutions’ this does not mean a
discrete collection of institutions but rather a diagram of homomorphisms linking
the various component institutions. For this in [7] I considered the projection-
styled institution homomorphisms as defined in [25].

Definition 7 (Institution morphism). An institution morphism (Φ, α, β)
: I ′ → I consists of

1. a functor Φ : Sig′ → Sig,
2. a natural transformation α : Φ; Sen⇒ Sen′, and
3. a natural transformation β : Mod′ ⇒ Φop;Mod

such that the following satisfaction condition holds

M ′ |=′
Σ′ αΣ′(e) iff βΣ′(M ′) |=Φ(Σ′) e

for each signature Σ′ ∈ |Sig′|, for each Σ′-model M ′, and each Φ(Σ′)-sentence e.
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After [7] was published I have had a brief correspondence with Martin Hoff-
man who was working on a review of the paper for Mathematical Reviews. He
raised one remark that triggered the hope about the possibility to come up
with a general procedure to flatten a system of institutions back to a single
institution that would maintain the substance of the heterogeneity but within
a technically homogeneous situation. So I come up with the definition of the
concept of Grothendieck institution which replicates the flattening construction
from category theory invented by the famous algebraic geometrician Alexandre
Grothendieck [29], to the much more refined framework of institutions. As shown
in [8] both the original construction of Grothendieck and the Grothendieck in-
stitutions arise as a 2-categorical co-limit, the former in CAT, the 2-category of
categories and functors, and the later in INS, the 2-category of institutions and
institution morphisms. Let us recall the original definition from [8].

Definition 8. Given a category I of indices, an indexed institution J is a
functor J : Iop → INS. For each index i ∈ |I| we denote the institution J i

by (Sigi,Modi, Seni, |=i) and for each index morphism u ∈ I we denote the
institution morphism J u by (Φu, αu, βu).

The Grothendieck institution J � = (Sig�, Sen�,Mod�, |=�) of an indexed in-
stitution J : Iop → INS is defined as follows:

1. Let Sig : Iop → Cat be the indexed institution mapping each index i to Sigi

and each index morphism u to Φu; then the category of the signatures of J �

is the Grothendieck category Sig�. Thus the signatures of J � consist of pairs
〈i, Σ〉 with i index and Σ ∈ |Sigi| and signature morphisms 〈u, ϕ〉 : 〈i, Σ〉 →
〈i′, Σ′〉 consists of index morphisms u : i → i′ and signature morphisms
ϕ : Σ → Φu(Σ′).

2. The model functor Mod� : (Sig�)op → Cat is given by
– Mod�(〈i, Σ〉) = Modi(Σ) for each index i ∈ |I| and signature Σ ∈ |Sigi|,

and
– Mod�(〈u, ϕ〉) = βu

Σ′ ;Modi(ϕ) for each 〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′〉.
3. The sentence functor Sen� : Sig� → Set is given by

– Sen�(〈i, Σ〉) = Seni(Σ) for each index i ∈ |I| and signature Σ ∈ |Sigi|,
and

– Sen�(〈u, ϕ〉) = Seni(ϕ);αu
Σ′ for each 〈u, ϕ〉 : 〈i, Σ〉 → 〈i′, Σ′〉.

4. The satisfaction relation is given by

M |=�
〈i,Σ〉 e if and only if M |=i

Σ e

for each index i ∈ |I|, signature Σ ∈ |Sigi|, model M ∈ |Mod�(〈i, Σ〉)|, and
sentence e ∈ Sen�(〈i, Σ〉).

It is important to point out a crucial aspect of the Grothendieck construction.
In a Grothendieck institution the individual identities of the original component
institutions is preserved, it is not melted like in the case of the logic combinations.
For example, in the case of the Grothendieck institution obtained from flattening
of the CafeOBJ cube the result is very different from the upper bound of the logics
in the cube, namely order sorted hidden preordered algebra. Unfortunately all
these developments happened two years after the official CafeOBJ definition was
published [17], however a corresponding upgrade of this was published in [19].
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3.4 Morphisms or Co-morphisms?

Besides the definition of the Grothendieck institutions and the proof of their uni-
versal property, [8] also resumed from [7] the theme of lifting several properties
important for specification theory from the local level of component institutions
to the global level of the Grothendieck institution. From these properties model
amalgamation was really difficult to prove and it required rather strong con-
ditions. Joseph Goguen told me that Till Mossakowski was doing a replica of
Grothendieck institutions using embedding-styled rather than projection-styles
institution homomorphisms, called co-morphisms in [27].

Definition 9 (Institution co-morphisms). An institution co-morphism

(Φ, α, β) : I → I ′

consists of

1. a functor Φ : Sig → Sig′,
2. a natural transformation α : Sen⇒ Φ; Sen′, and
3. a natural transformation β : Φop;Mod′ ⇒ Mod

such that the following satisfaction condition holds

M ′ |=′
Φ(Σ) αΣ(e) iff βΣ(M

′) |=Σ e

for each signature Σ ∈ |Sig|, for each Φ(Σ)-model M ′, and each Σ-sentence e.

Till Mossakowski was claiming that obtaining model amalgamation in
co-morphism-based Grothendieck institutions [34] was rather smooth. After
overcoming an initial feeling of skepticism I came to understand what Till
Mossakowski meant, and in fact the rather strong conditions of [8] for model
amalgamation to hold in Grothendieck institutions were exactly the condi-
tions required to turn a morphism-based Grothendieck construction into a co-
morphism-based one. What happens is that, roughly speaking, any adjunction
between the categories of signatures of institutions I and I ′ determines a canon-
ical bijection between co-morphisms I → I ′ and morphisms I ′ → I. Moreover,
in a diagram of institutions, if any of the edges corresponds to an adjunction at
the level of the categories of the signatures, then the morphism-based and the
co-morphism-based Grothendieck constructions yield isomorphic results. This
is also the case of the CafeOBJ institution, it can be obtained by flattening
the CafeOBJ cube either considered with institution morphisms or with co-
morphisms.

In any case Till Mossakowski was right, heterogeneous specification through
Grothendieck institution is more convenient, and has more applications by co-
morphisms rather than by morphisms. In fact my next paper dedicated to
Grothendieck institutions [9] was already using the co-morphism-based construc-
tion. Moreover since several years all my references to the CafeOBJ cube are to
its co-morphism-based version (e.g. [13]) rather to its morphism-based original
version of [17,19].
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3.5 The Wider Impact of Grothendieck Institutions

The Grothendieck construction on institutions did CafeOBJ a great service, it
provided an underlying institution for CafeOBJ. The CafeOBJ institution is
just the Grothendieck flattening of the CafeOBJ cube. But the impact of the
Grothendieck institution concept has gone far beyond the world of CafeOBJ.
Grothendieck institution have become a quite standard way to approach het-
erogeneity in logic-based contexts. They have been adopted as foundations for
Hets, the heterogeneous environment around CASL [33], and recently for het-
erogeneous ontologies [35] (an idea already suggested by Goguen several years
ago [24]). Surprising applications also happened in model theory, such as a gen-
eral method to extend Craig interpolation to Craig-Robinson interpolation in
logics without implication [11]. Grothendieck institutions have also inspired and
called for the Grothendieck construction on inclusion systems [13] that provide
an important technical device for the structuring of heterogeneous specifications.

4 Conclusions

We have discussed coherent hidden algebra, logic combination, and Grothendieck
institutions. These are theoretical achievements coming originally from the
CafeOBJ project, and they have played and continue to play a major role in
my scientific career. I think even in the absence of the CafeOBJ project these
would have been developed by others. Serious thinking about Grothendieck in-
stitutions was going in parallel from Till Mossakowski and I am also sure that
eventually Grigore Roşu and Joseph Goguen would have had discovered by them-
selves alone the possibility of non-monadic hidden algebra. However the CafeOBJ
project gave me the opportunity to get involved and work with these wonderful
bits of math, logic and computer science; and this is not the only way Professor
Futatsugi has contributed positively to my scientific career.
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3 Laboratory for Foundations of Computer Science, University of Edinburgh
4 Institute of Informatics, University of Warsaw

Abstract. This paper addresses issues arising in the systematic con-
struction of large logical systems. We rely on a model-theoretic view of
logical systems, captured by institutions that are in turn presented by
parchments. We define their categories, and study constructions that may
be carried out in these categories. In particular we show how limits of
parchments may be used to combine features involved in various logical
systems, sometimes necessarily augmenting the universal construction
by additional systematic adjustments. We illustrate these developments
by sketching how the logical systems that form the logical foundations
of CafeOBJ may be built in this manner.

1 Introduction

This paper is written as a tribute to Professor Kokichi Futatsugi, the leader of
the algebraic specification community in Japan, whom we have had a chance to
meet many times over the years. One of his major undertakings was the very
successful CafeOBJ project [DF98], which led to the development of a system
that implements and executes algebraic specifications, in the tradition of the
OBJ family [GWM+00]. The system is based on solid logical foundations given
by a family of logical systems linked by a number of logic morphisms, referred
to as the CafeOBJ cube [DF02]:
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RWL = rewriting logic
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The eight logical systems listed above and the twelve arrows that link them are
formalised as, respectively, institutions and institution morphisms [GB92]. The
institution diagram above may be viewed as an indexed institution; the actual
logical system that underlies CafeOBJ is given as the Grothendieck institution
[Dia02] built out of it. Even if we prefer to think of the cube above as a heteroge-
neous logical environment [MT09] and work with heterogeneous specifications,
technically the differences are negligible and the main point is to understand
properly the CafeOBJ cube of institutions and their morphisms.

As far as we are aware, while the CafeOBJ literature presents the institu-
tions involved in a manner that is sufficient to understand and work with them
well, there is no document that presents the institutions involved formally in
complete detail; this applies even more to the institution morphisms that link
them. In a way, this is rather expected, as the details appear to be quite obvi-
ous, largely routine and repetitive from one institution to another, and from one
morphism to another. So, the CafeOBJ authors present the interesting aspects
of the institutions, leaving out the details.1

The main point of the present paper concerns the methodology of logic defini-
tions. [DF02] defines the CafeOBJ cube in a top-down manner. Although in the
literature, the concepts of order-sorting, rewriting logic and hidden algebra have
been defined and studied (and integrated) separately, the technical presentation
in [DF02] starts with a large combined institution, from which suitable subinsti-
tutions are obtained subsequently. A drawback of this approach is the difficulty
of changing individual feature components in a simple way. For example, [Dia07]
claims that the base institution of equational logic could be replaced by mem-
bership equational logic, but to our knowledge, this has never been worked out.
Indeed, working this out would imply a lot of tedious repetition of the original
CafeOBJ definitions. However, even if the details seem routine and repetitive, one
cannot just leave them out without a risk of unforeseen interactions between the
modifications and the other features.

We therefore propose a bottom-up approach to the CafeOBJ cube. We present
each of the features separately, and obtain the combined institution via a general
universal construction. At each step of the combination, the details may be fine-
tuned, if needed. This approach has the benefit of increased modularity: we
can change certain feature components and then automatically re-generate the
whole picture by repeating the universal constructions involved. In this paper, we
concentrate on the methodology of this approach and therefore take the liberty
of deviating from some details of the CafeOBJ institutions as defined in [DF02].

Like CafeOBJ, we follow Goguen and Burstall [GB92] and work within the
theory of institutions as a formal framework to study and use logical systems.
We will, however, look more closely at the structure of logical sentences and their
semantics, and consider institutions to be presented by parchments [GB86]. We
employ the version of parchments introduced in [MTP98] to avoid the technically

1 We should stress though that this point may be due to our lack of complete knowledge
of the CafeOBJ literature.
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unnecessary and methodologically dubious blending of models into the syntactic
aspects of logical systems.

We study various ways to extend, combine and modify these model-theoretic
parchments, thus obtaining new logical systems and morphisms between them.
We sketch how the logical systems in the CafeOBJ cube and morphisms between
them may be obtained in such a way.

We start by recalling some standard algebraic notions (Sect. 2) and the basic
concepts of the theory of institutions (Sect. 3). Then the less standard notions
of model-theoretic parchment and parchment morphism are recalled in Sect. 4.
The crucial property here is that when such parchments and their morphisms are
institutional, they present institutions and institution morphisms, respectively.
In Sect. 5 we discuss some simple ways to extend, combine and modify model-
theoretic parchments and their morphisms, and in particular the use of limits in
various parchment categories to combine institutions presented by parchments.
We show how this works on some simple examples, sketching how the institutions
and morphisms in the CafeOBJ cube may arise.

2 Algebraic Preliminaries

We briefly recall the key concepts and notations used throughout this paper; we
refer to [ST12] for details omitted here.

First-order signatures are triples Θ = 〈S,Ω,Π〉, consisting of a set S of sorts,
set Ω of operation names classified by their profiles (we write f : s1×· · ·×sn → s,
n ≥ 0, to indicate that f has the arity s1. . .sn ∈ S∗ and result sort s ∈ S) and set
Π of predicate names classified by their profiles (we write p : s1×· · ·×sn, n ≥ 0,
to indicate that the predicate p has arity s1. . .sn ∈ S∗). First-order signature
morphisms map sorts, operation and predicate names to sorts, operation and
predicate names, respectively, preserving their arities and result sorts. This yields
the category FOSig.

Given a first-order signature Θ = 〈S,Ω,Π〉, a Θ-structure A consists of an S-
sorted carrier set |A| = 〈|A|s〉s∈S , for each operation name f : s1× · · · × sn → s,
a function fA : |A|s1 × · · · × |A|sn → |A|s, and for each predicate name p : s1 ×
· · · × sn, a relation pA ⊆ |A|s1 × · · · × |A|sn . A Θ-homomorphism h : A → B
between two such Θ-structures is a family of maps h = 〈hs : |A|s → |B|s〉s∈S

that preserves results of operations and predicate relations; h is closed if it also
reflects predicate relations. Str(Θ) is the category of Θ-structures and their (not
necessarily closed) homomorphisms. For any first-order morphism θ : Θ → Θ′,
we have the usual reduct functor Str(θ) : Str(Θ′) → Str(Θ), often written as

θ. This yields a functor Str : FOSigop → Cat.2

2 Cat denotes the (quasi-)category of all categories. We will gloss over fine foun-
dational distinctions between categories at various levels of the hierarchy of uni-
verses [Mac71], and use the same term category to refer to (quasi-)categories of all
categories, of all institutions, etc.
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For any signature morphism θ : Θ → Θ′, the θ-reduct has a left adjoint
Fθ : Str(Θ) → Str(Θ′); for any A ∈ |Str(Θ)|, Fθ(A) ∈ |Str(Θ′)| is its free
extension with unit ηθ : A→ Fθ(A) θ.

Logic denotes a special signature with ∗ as the only sort, no operations and a
unique predicate D : ∗. FOSig∗ is the subcategory of FOSig that has signatures
that extend Logic and signature morphisms that are identities on Logic.

The category FOSig is cocomplete, with the standard colimit construction.
The functor Str is continuous, which in particular implies that the amalgama-
tion property holds. This carries over to FOSig∗ and the restriction of Str to
FOSig∗.

For any signature Θ, Θ-terms and their evaluation in Θ-structures are defined
as usual. In particular, the algebra TΘ of terms with predicates interpreted as
empty relations is initial in Str(Θ). For any (ground) term t ∈ |TΘ| and structure
A ∈ |Str(Θ)|, we write tA ∈ |A| for the value of t in A (which is the value of the
unique homomorphism !A : TΘ → A on t).

Θ-equations and predicate applications, as well as their satisfaction in Θ-
structures, are defined as usual.

Any signature morphism θ : Θ → Θ′ determines the obvious translation of
Θ-terms to Θ′-terms, given by θ : TΘ → T ′

Θ θ. This translation further extends

to Θ-equations and predicate applications. Then for any term t ∈ |TΘ|, and Θ′-
structure A′, the crucial property is that θ(t)A′ = t

A′
θ
. This yields the famous

satisfaction condition for equations and predicate applications: given any Θ-
equation or predicate application ϕ and structure A′ ∈ |Str(Θ′)|, A′ |=Θ′ θ(ϕ)
iff A′

θ |=Θ ϕ.

3 Institutions

Goguen and Burstall [GB92] formalised the notion of a logical system as an
institution, thus starting a line of important developments of adequately abstract
and general approaches to the foundations of software specifications and formal
system development (as envisaged by the work on Clear [BG80], and carried
forward by [ST88], see [ST12]), as well as a modern and elegant version of very
abstract model theory (as proposed in [Tar86], see [Dia08]). Another important
line of work which exploits institutions and their various morphisms [GR02] aims
at moving between logical systems within a heterogeneous logical environment,
comparing logical systems, and building complex logical systems in a systematic
manner. In our view, in spite of work on various aspects of this area [Tar96,
MTP97, MTP98, Tar00, CMRS01, CGR03, Mos03, Mos05, MT09], there is much
to add here. The current paper is a contribution to this field.

An institution INS = 〈Sign,Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉 consists of:

– a category Sign of signatures ;
– a functor Sen : Sign → Set which for any signature Σ ∈ |Sign| yields a

set Sen(Σ) of sentences, and for any signature morphism σ : Σ → Σ′, a
σ-translation of sentences, often written as σ : Sen(Σ)→ Sen(Σ′);
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– a functor Mod : Signop → Class3 which for any signature Σ yields a class
Mod(Σ) of models, and for any morphism σ : Σ → Σ′, a σ-reduct of models
often written as σ : Mod(Σ′)→Mod(Σ); and

– a satisfaction relation |=Σ ⊆ Mod(Σ)× Sen(Σ) for any signature Σ ∈
|Sign|

such that the following satisfaction condition holds: for any signature morphism
σ : Σ → Σ′, sentence ϕ ∈ Sen(Σ) and model M ′ ∈Mod(Σ′), M ′ |=Σ′ σ(ϕ) iff
M ′

σ |=Σ ϕ.
For simplicity of presentation, we will look at examples of logical systems

drawn from the CafeOBJ cube in their ground versions, without variables:

GMSA GRWL

GOSA GOSRWL

GHA GHRWL

GHOSA GHOSRWL
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�

�

�

�

�

�

�

�����
�����

�����
����� G = ground

H = hidden
A = algebra
O = order
M = many
S = sorted
RWL = rewriting logic

Variables and (universal) quantification may be introduced in a rather standard
way, see Sect. 6 for some hints. Moreover, we will simplify all of the logical
systems involved by disregarding the fact that all statements in CafeOBJ may
be conditional [DF02] — hence there are no conditional statements in the logics
below. Adding conditions to the sentences of each of the logics considered is
straightforward. Thus, we consider ground atomic sentences of CafeOBJ logics.

Furthermore, we will only attempt to capture the essential features of the
logics in the CafeOBJ cube, rather than follow their published definitions. Con-
sequently, the exact details of the logics presented below may depart from their
CafeOBJ inspirations.

Finally, the logics of CafeOBJ seem to be set up incrementally, so that for in-
stance strict equations, behavioural (hidden) equations and rewriting statements
coexist rather than replacing one another [DF02]. So, the version of rewriting
logic we consider covers equations (inherited from many-sorted equational logic)

3 Class is the quasi-category of all classes (or discrete categories). The standard def-
inition of institution puts Cat here. There would be no problem in doing the same,
and we realise that this is important for the semantics of CafeOBJ specifications.
However, since model morphisms are orthogonal to the issues discussed in this paper,
we decided to leave them out to simplify the technicalities and notation somewhat.
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as well as rewriting statements. For presentation purposes, we will introduce
another logical system, GPRWL, capturing ground rewriting statements only.4

Example 3.1. A trivial algebraic institution: A = 〈AlgSig,Sen∅,Alg, |=∅〉, with
algebraic signatures (i.e., first-order signatures with no predicates, so that
AlgSig is the full subcategory of FOSig), with algebras (i.e., structures over
algebraic signatures) as models (with reducts inherited from the definition of
algebras as first-order structures, so that Alg is a “subfunctor” of Str), and

with no sentences whatsoever (so that Sen∅(Σ) = ∅).

Example 3.2. Ground equational institution: GMSA = 〈AlgSig,GEQ,Alg, |=〉,
where for each algebraic signature Σ ∈ |AlgSig|, GEQ(Σ) is the set of ground
(no variables) Σ-equations, with the translations along signatures morphisms
and the satisfaction of equations in algebras defined in the standard way (as
recalled in Sect. 2).

Example 3.3. The institution of ground order-sorted equational logic: GOSA =
〈OSSig,GOSEQ,OSAlg, |=〉, where

– An order-sorted signature 〈Σ,≤〉 is an algebraic signature Σ with a partial
ordering ≤ on its set of sorts. Order-sorted signature morphisms are like
algebraic signature morphisms which in addition must preserve the order-
ing. This yields the category OSSig of order-sorted signatures and their
morphisms.

– For each order-sorted signature 〈Σ,≤〉:
• 〈Σ,≤〉-terms are built as usual, except that in addition to the operations
in Σ, a subsort inclusion ιs≤s′ : s→ s′ and retract rs≤s′ : s

′ → s is avail-

able when s ≤ s′. Then SenGOSA(〈Σ,≤〉) contains equations between
such ground terms.

• An order-sorted 〈Σ,≤〉-algebra A is a Σ-algebra where for any sorts
s ≤ s′, |A|s ⊆ |A|s′ .

• Evaluation of order-sorted 〈Σ,≤〉-terms is as usual, except that the in-
clusions ιs≤s′ are interpreted as inclusions from |A|s to |A|s′ ⊇ |A|s, and
retracts rs≤s′ as maximal partial identities from |A|s′ to |A|s ⊆ |A|s′ . So,
term evaluation is partial.5 A ground order-sorted equation t = t′ holds
in an order-sorted algebra A, written as usual A |= t = t′, if the values
in A of both t and t′ are defined and equal.

Example 3.4. Ground rewriting institution GPRWL = 〈AlgSig,GRW,RAlg, |=〉
with algebraic signatures, and then for each signature Σ ∈ |AlgSig|,

– sentences inGRW(Σ) are rewritings (or transitions) t⇒ t′ between (ground)
terms of a common sort,

4 P stands for “pure”.
5 We depart here from CafeOBJ, which to handle partiality either refers to the order-
sorted [GM92] tradition, relying on the use of “error supersorts”, with retracts yield-
ing “erroneous terms” rather than being undefined, or vaguely mentions membership
equational logic [Mes98].
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– models in RAlg(Σ) are rewriting algebras6, i.e., Σ-algebras A ∈ Alg(Σ)
additionally equipped with a rewriting relation �s ⊆ |A|s × |A|s on the
carrier of each sort s in Σ, where the family of the rewriting relations is
required to be a precongruence on A, i.e., a preorder that is preserved (in
the obvious sense) by all of the operations in A,

– a Σ-rewriting t ⇒ t′ holds in a rewriting algebra A ∈ RAlg(Σ), written as
usual A |= t⇒ t′, if tA � t′A.

Example 3.5. The institution of ground behavioural equational logic GHA =
〈BehSig,GBEQ,Alg, |=〉, where:7

– A behavioural signature 〈Σ,OBS 〉 consists of an algebraic signature Σ to-
gether with the indicated set OBS of observable sorts in Σ. Behavioural
signature morphisms are those algebraic signature morphisms that preserve
the sets of observable and of non-observable sorts and, stating the extra
condition somewhat informally, add no new terms leading from an “old”
non-observable sort to an observable sort. This defines the category of be-
havioural signatures BehSig.

– For each behavioural signature 〈Σ,OBS 〉,
• sentences are pairs of (ground) terms of a common sort, just like Σ-
equations, but we write them here as t ∼ t′,

• models are just Σ-algebras,
• for each Σ-algebra A, let ≈A be the indistinguishability relation, i.e.,
the largest congruence on the subalgebra of A generated by the sorts
in OBS that is the identity on the carriers of sorts in OBS (so that
a ≈A b iff, relying on standard concepts and notation, for all contexts
C of an observable sort, CA[a] = CA[b]). A ground Σ-equation t ∼ t′

behaviourally holds in A, written A |= t ∼ t′, if tA ≈A t′A.

Given institutions INS = 〈Sign,Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉 and INS′ =
〈Sign′,Sen′,Mod′, 〈|=′

Σ′〉Σ′∈|Sign′|〉, an institution morphism μ : INS → INS′

consists of

– a functor μSig : Sign→ Sign′,
– a natural transformation μSen : μSig ;Sen′ → Sen, and
– a natural transformation μMod : Mod→ (μSig )op ;Mod′

such that the following satisfaction condition holds: for any signature Σ ∈
|Sign|, sentence ϕ′ ∈ Sen′(μSig (Σ)) and model M ∈Mod(Σ), M |=Σ μSen

Σ (ϕ′)
iff μMod

Σ (M) |=′
μSig (Σ) ϕ

′.

6 This terminology follows [DF02], even though recently some CafeOBJ authors go
back to the more traditional term (pre)ordered algebras.

7 This is a crude version of the behavioural (hidden) equational logic of CafeOBJ
presented in [DF02], which has a more subtle treatment of observability, specifying
the set of operations that may be used as observers rather than indicating observable
sorts, much in the style of constructor observational logic COL [BH06], going back
perhaps to [SW83, ST87]. We omit here coherence statements, which are trivial in
our behavioural institution.
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Institution morphisms compose in the obvious, component-wise manner. We
thus have a category INS of institutions and their morphisms.

Example 3.6. There are evident institution morphisms from the institutions
GMSA, GOSA, GPRWL, GHA given in Examples 3.2, 3.3, 3.4 and 3.5, respec-
tively, to the institution A of Example 3.1; in each case signatures are mapped
to their underlying algebraic signatures, and models to their underlying algebras
(some of these mappings are identities, of course).

Example 3.7. The trivial morphism from GOSA to A of Example 3.6 extends
easily to a morphism from GOSA to GMSA, with the translation of (ground)
equations in GMSA to order-sorted equations being the identity.

Example 3.8. The trivial morphism from GHA to A of Example 3.6 does not
extend to an institution morphism from GHA to GMSA — one may try to map
equations t = t′ to behavioural equations t ∼ t′ and check that one implication
of the satisfaction condition would in general fail.

However, we may construct a different morphism, based on a signature functor
that maps any behavioural signature 〈〈S,Ω〉,OBS 〉 to the algebraic signature
〈OBS , ΩOBS 〉 with observable sorts only and operations limited to observable
operations, i.e., operations with observable arity and result sorts. Algebras are
then mapped to their appropriate reducts, and (ground) equations over such
limited signatures are mapped to their behavioural versions. It is easy to see
that the satisfaction condition holds for such equations.

It is relatively easy to show completeness of the category INS of institutions
and their morphisms:

Theorem 3.9 ([Tar86]). INS is complete.

In essence, the limit of a diagram of institutions is built by first defining the cat-
egory of signatures as the limit of the categories of signatures of the institutions
in the diagram. Signatures so defined in essence combine individual signatures
in the institutions in the diagram linked by the signature functors of the insti-
tution morphisms involved. Then for each such “combined” signature, the set of
sentences is defined as the colimit of the sets of sentences over the correspond-
ing individual signatures with sentence translations between them given by the
institution morphisms. Dually, the class of models is defined as the limit of the
model classes over the corresponding individual signatures with model transla-
tions between them given by the institution morphisms. Finally, the satisfaction
relation is defined uniquely so that the satisfaction condition holds for each of
the resulting projection morphisms.

Example 3.10. The institution GRWL is defined as a pullback of GMSA and
GPRWL over A (via the trivial morphisms of Example 3.6). It has algebraic
signatures (common to GMSA and GPRWL), rewriting algebras of GPRWL as
models (mapped onto the class of algebras of GMSA) and sentences that are
either equations (coming from GMSA) or rewritings (from GPRWL), with satis-
faction inherited from the appropriate component institutions.
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Example 3.11. Similarly, we may consider a pullback of GMSA and GHA over A
(via the morphisms of Example 3.6). It has behavioural signatures as signatures,
behavioural algebras as models, and sentences that are either (ground) equations
of GMSA or behavioural equations of GHA. The morphism from GHA to GMSA of
Example 3.8 is not involved here, and the two sets of sentences remain separate,
even though one might want to identify equations between terms of observable
sorts with their behavioural versions.

Example 3.12. We may also form a pullback of GOSA and GRWL over GMSA
(via the morphism of Example 3.7 and the morphism given by the pullback
construction of GRWL in Example 3.10). This would not be quite satisfactory
though: in such a pullback institution, sentences would be either equations be-
tween order-sorted terms, as expected, or rewritings, but only between ordinary
many-sorted terms. There would be no rewritings between order-sorted terms
that involve subsort inclusions and retracts, which we would like to include in a
combination of order-sorted algebra and rewriting logic as well. On the positive
side: as expected, equations between the terms we have in GRWL would be glued
together with their corresponding order-sorted equations.

Example 3.13. Another interesting pullback that is not adequate as a logic com-
bination is the pullback of GHA and GRWL over GMSA (via the morphism of
Example 3.8 and the morphism given by the pullback construction of GRWL
in Example 3.10). The pullback institution has behavioural signatures as signa-
tures (that map to the algebraic signatures in GRWL as in the morphism given
in Example 3.8), and as models algebras with carriers equipped with a rewriting
preorder on observable sorts only, preserved by observable operations. As sen-
tences, we would get behavioural equations, here including standard equations
between terms built using solely observable operations, and rewritings between
such terms only. Clearly, what would be “missing” are rewritings between terms
involving operations with non-observable result sorts.

4 Model-Theoretic Parchments

Examples 3.12 and 3.13 illustrate a major problem with using institutions and
their limits as a tool for combining logical systems. Since logical sentences in
institutions are regarded as unstructured entities, this works as expected only
when we put together logical systems with sentences that capture distinct prop-
erties that do not interact with each other, as in Examples 3.10 and 3.11. Oth-
erwise, we would prefer to combine the ways sentences are built, rather than
sets of sentences as such. Consequently, we have to look more closely at sentence
construction. To capture this, Goguen and Burstall [GB86] introduced parch-
ments, an algebraic way to present institutions, where the syntax of sentences
is given by the initial (term) algebra over a signature that lists the operations
for constructing sentences and other auxiliary syntactic phrases. Parchments
also presented models as signature morphisms into a special “large” signature,
naming all potential denotations for signature components, with an indicated
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Procrustean structure comprising all these denotations. Semantics of syntactic
phrases is then captured by mapping the initial syntax to the corresponding
reduct of the Procrustean algebra. The disadvantage is not only the need to use
such “large” objects (with all the foundational worries they bring) but also that
we inherently mix together model-theoretic and syntactic aspects of logical sys-
tems presented in such a way. To avoid this, in [MTP98] we proposed a version of
parchments that keeps the models separate and splits the Procrustean semantic
object into smaller objects appropriate for each model considered.

This means that model-theoretic parchments comprise signatures and models
in the same way as institutions do. However, while in institutions sentences are
given directly by the sentence functor, model-theoretic parchments feature a
language functor that maps each signature of the model-theoretic parchment to
a first-order signature with an algebraic part representing the abstract syntax
of sentences8; sentences are then generated as terms of the distinguished sort ∗.
Moreover, instead of a satisfaction relation, model-theoretic parchments, for each
signature and model, feature an evaluation structure that gives interpretation for
the syntactic constructs used to build sentences. The interpretation of terms in
the evaluation structure determines the meaning of syntactic phrases used in
sentences, and of sentences themselves. A sentence holds in a model when in the
evaluation structure for this model the sentence as a term evaluates to a logical
value designated by the special predicate D. Finally, the satisfaction condition is
ensured by suitable coherence homomorphisms between evaluation structures.

A model-theoretic parchment (or briefly: parchment) P = 〈Sign,L,Mod,G〉
consists of:

– a category Sign of signatures;
– a functor L : Sign → FOSig∗ that for any signature Σ ∈ |Sign| yields a

first-order signature L(Σ) that gives the abstract syntax for sentences;
– a functor Mod : Signop → Class (as for institutions); and
– a family G that in turn consists of:9

• for any signature Σ ∈ |Sign| and model M ∈ Mod(Σ), an L(Σ)-
structure GΣ(M) ∈ |Str(L(Σ))|; and

• for any signature morphism σ : Σ → Σ′ and model M ′ ∈Mod(Σ′), an
L(Σ)-homomorphism Gσ(M ′) : GΣ(M ′

σ)→ GΣ′(M ′) L(σ)

such that for any signature morphisms σ1 : Σ0 → Σ1, σ2 : Σ1 → Σ2 and
model M2 ∈Mod(Σ2), Gσ1 ;σ2(M2) = Gσ1(M2 σ2);Gσ2(M2) L(σ1).

Informally, for any signature Σ ∈ |Sign| and model M ∈ Mod(Σ), the
evaluation structure GΣ(M) determines semantic evaluation of L(Σ)-phrases
in the model M . Then the mediating homomorphisms Gσ(M ′) : GΣ(M ′

σ) →

8 This relies on the usual correspondence between context-free grammars and algebraic
signatures.

9 G may be viewed as a signature-preserving functor between Grothendieck categories
built by “flattening” Mod : Signop → Class and Lop ;Str : Signop → Cat, respec-
tively, cf. [TBG91]. We prefer to indicate the components of G explicitly, so we refrain
from spelling out and using this alternative formulation.
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GΣ′(M ′) L(σ) ensure that this evaluation changes smoothly when we move from
one signature to another, and so is in a sense uniform for the entire logical sys-
tem presented by the parchment. However, the uniformity as captured by the
mediating homomorphisms implies that semantic properties are preserved, but
not necessarily reflected, by model reducts w.r.t. signature morphisms.

We think of the set |GΣ(M)|∗ as the set of logical values for evaluation of
Σ-sentences in M ∈ Mod(Σ). By allowing arbitrary sets of values here we
naturally accommodate various forms of many-valued logics, with non-standard
logical values permitted. Then the predicate D : ∗ designates the logical values
that indicate which sentences “hold” in the model, thus enabling a classical two-
valued understanding of satisfaction on top of possibly many-valued sentence
evaluation.

A parchment as above is institutional if for any signature morphism σ : Σ →
Σ′ and model M ′ ∈ Mod(Σ′), Gσ(M ′) : GΣ(M ′

σ) → GΣ′(M ′) L(σ) is a closed

L(Σ)-homomorphism on the subsignature Logic, that is |Gσ(M ′)|∗ preserves and
reflects the predicate D : ∗.10 Then, such an institutional parchment is Boolean if
for any signature Σ ∈ |Sign| and modelM ∈Mod(Σ), |GΣ(M)|∗ = Bool , where
Bool = {tt ,ff }, and DGΣ(M) = {tt} (it follows that the homomorphisms Gσ(M ′)
are identities on the sort ∗). We say that a parchment is strict if for any signa-
ture morphism σ : Σ → Σ′ and model M ′ ∈ Mod(Σ′), Gσ(M ′) : GΣ(M ′

σ) →
GΣ′(M ′) L(σ) is the identity; in particular, all strict parchments are institutional.

Any institutional parchment P = 〈Sign,L,Mod,G〉 presents the institution
J (P) = 〈Sign,Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉, which inherits signatures and models
directly from P, and

– for Σ ∈ |Sign|, Sen(Σ) = |TL(Σ)|∗, where TL(Σ) is the initial L(Σ)-structure
(so that Σ-sentences are ground L(Σ)-terms of sort ∗),

– for σ : Σ → Σ′, Sen(σ) = (!σ)∗, where !σ : TL(Σ) → TL(Σ′) L(σ) is the unique

L(Σ)-homomorphism given by the initiality of TL(Σ), and
– for Σ ∈ |Sign|, ϕ ∈ |TL(Σ)|∗, and M ∈ Mod(Σ), M |=Σ ϕ iff ϕGΣ(M) ∈

DGΣ(M) (i.e., in GΣ(M) the predicate D holds on the value of ϕ viewed as a
L(Σ)-term of sort ∗).

One can check now that J (P) so defined is indeed an institution, where for
σ : Σ → Σ′, ϕ ∈ Sen(Σ) and M ′ ∈Mod(Σ′), the satisfaction condition follows
since the homomorphism Gσ(M ′) preserves and reflects the predicate D : ∗.

A parchment P = 〈Sign,L,Mod,G〉 is atomic if for all Σ ∈ |Sign|, the
first-order signature L(Σ) has no operations with ∗ in their arity. In that case,
no sentence is constructed out of other sentences, and so, informally, all the
sentences are atomic.

Example 4.1. A Boolean parchment that presents the institution A of Exam-
ple 3.1 is PA = 〈AlgSig,LA,Alg,GA〉 with algebraic signatures, with alge-
bras as models, and where for any Σ ∈ |AlgSig|, LA(Σ) extends Logic by

10 This requirement is deliberately weaker than that imposed on “logical” parchments
in [MTP98].
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adding (the sorts and operations of) Σ, and then for any algebra A ∈ Alg(Σ),
GA
Σ(A) ∈ Str(LA(Σ)) coincides with A on Σ, with identity mediating homomor-

phisms.

Example 4.2. A Boolean parchment that in essence presents the institution
GMSA of Example 3.2 is PGMSA = 〈AlgSig,LGMSA,Alg,GGMSA〉, with algebraic
signatures, with algebras as models, and where for any Σ ∈ |AlgSig|:

– LGMSA(Σ) extends Logic by adding Σ and for each sort s in Σ, a binary
operation eq : s× s→ ∗;

– for any algebra A ∈ Alg(Σ), GGMSA
Σ (A) ∈ Str(LGMSA(Σ)) is A on Σ, and in-

terprets eq as the diagonal function, yielding tt if its two arguments coincide,
and ff if they are distinct; and

– mediating homomorphisms are identities.

Now, LGMSA(Σ)-terms of sort ∗ are of the form eq(t, t′), for Σ-terms t and t′

of a common sort. Such a term evaluates to tt in GGMSA
Σ (A) if the terms t and

t′ evaluate in GGMSA
Σ (A) (or equivalently, in A) to equal values. Consequently,

the parchment PGMSA presents the institution GMSA, modulo the details of the
actual notation used for sentences (we will disregard such differences from now
on).

Example 4.3. A Boolean parchment that presents the institution GOSA of Ex-
ample 3.3 is PGOSA = 〈OSSig,LGOSA,OSAlg,GGOSA〉, with order-sorted sig-
natures, with order-sorted algebras as models, and then for any order-sorted
signature 〈Σ,≤〉:

– LGOSA(〈Σ,≤〉) extends Logic byΣ and all the subsort inclusions and retracts,
as well as the operation eq : s× s→ ∗ for each sort s in Σ;

– for each order-sorted algebra A ∈ OSAlg(〈Σ,≤〉), GGOSA
〈Σ,≤〉(A) expands A on

Σ by adding an “undefined” element ⊥ to the carrier of each sort s in Σ and
extending the interpretation of all operations in A so that they are strict on
⊥ (yield ⊥ as the result on any tuple of arguments that contains ⊥), and
interprets subsort inclusions and retracts in the obvious way (retracts map
to ⊥ the elements of the supersort that are not in the subsort) and the eq
operations as the diagonal on the “defined” elements in |A| and yielding ff
when any of its arguments is ⊥; and

– mediating morphisms are identities again.

Now, an order-sorted 〈Σ,≤〉-term with a defined value in an order-sorted 〈Σ,≤〉-
algebra A evaluates to the same value in GGOSA

〈Σ,≤〉(A); if it is undefined in A then

in GGOSA
〈Σ,≤〉(A) it has the value ⊥. Hence, eq(t, t′) evaluates to tt in GGOSA

〈Σ,≤〉(A) iff
the values of t and t′ in A are defined and equal. Consequently, the parchment
PGOSA indeed presents the institution GOSA.

Example 4.4. A Boolean parchment that presents the institution GPRWL of Ex-
ample 3.4 is PGPRWL = 〈AlgSig,LGPRWL,RAlg,GGPRWL〉, with algebraic signa-
tures, with rewriting algebras as models, and where for any Σ ∈ |AlgSig|:
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– LGPRWL(Σ) extends Logic by adding Σ and for each sort s in Σ a binary
operation rwrt : s× s→ ∗,

– for any rewriting algebraA ∈ RAlg(Σ), GGPRWL
Σ (A) ∈ Str(LGPRWL(Σ) is the

standard algebra part of A on Σ, and interprets each rwrt so that it yields
tt if its two arguments are in the rewriting precongruence, and ff otherwise,
and

– mediating homomorphisms are identities.

Example 4.5. A Boolean parchment that presents the institution GHA of Exam-
ple 3.5 is PGHA = 〈BehSig,LGHA,Alg,GGHA〉, with behavioural signatures and
algebras as models, and where for any Σ ∈ |AlgSig|:

– LGHA(Σ) extends Logic by adding Σ and for each sort s in Σ a binary
operation beq : s× s→ ∗, and

– for any algebra A ∈ Alg(Σ), GGHA
Σ (A) ∈ Str(LGHA(Σ)) is A on Σ, and

interprets beq to capture the indistinguishability relation, yielding tt if its
two arguments are related by ≈A, and ff otherwise, and

– mediating homomorphisms are identities.11

Clearly, all parchments in Examples 4.1–4.5 are atomic and strict.
Given two parchmentsP = 〈Sign,L,Mod,G〉 andP′ = 〈Sign′,L′,Mod′,G′〉,

a parchment morphism γ : P→ P′ consists of:

– a functor γSig : Sign→ Sign′,
– a natural transformation γLan : γSig ;L′ → L,
– a natural transformation γMod : Mod→ (γSig )op ;Mod′,
– a family of homomorphisms γG

Σ,M : G′
γSig (Σ)(γ

Mod
Σ (M)) → GΣ(M) γLan

Σ
, for

Σ ∈ |Sign| and M ∈ Mod(Σ), such that for any signature morphism
σ : Σ1 → Σ2 in Sign and model M2 ∈Mod(Σ2) we have

γG
Σ1,M2 σ

;Gσ(M2) γLan
Σ1

= G′
σ′(γMod

Σ2
(M2));γ

G
Σ2,M2 L′(σ′)

where σ′ = γSig (σ) : Σ′
1 → Σ′

2.

The naturality condition in the last item captures the identity of two composed
L′(Σ′

1)-homomorphisms of type

G′
Σ′

1
(γMod

Σ1
(M2 σ))=G′

Σ′
1
(γMod

Σ2
(M2) σ′)→GΣ2(M2) γLan

Σ1
;L(σ)=GΣ2(M2) L′(σ′);γLan

Σ2

.

This may look scary, but we encourage the reader to “type” the morphisms in
question and make sure that the condition is not only correctly stated, but is
indeed natural.12

11 The extra condition imposed in Example 3.5 on signature morphisms in BehSig
plays a crucial role here: for signature morphisms that add new contexts to “observe”
old sorts, the identity map indicated here as the mediating homomorphism may fail
to preserve the operation beq .

12 In fact, γG is a natural transformation between suitably re-indexed functors G′ and
G, see footnote 9.
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As with parchments, where only institutional parchments presented institu-
tions, not every parchment morphism presents an institution morphism. We say
that a parchment morphism as above is institutional if all homomorphisms γG

Σ,M

are closed on the subsignature Logic.13 It follows that in institutional parchment
morphisms14 between Boolean parchments, the homomorphisms γG

Σ.M are iden-
tities on the subsignature Logic. If all homomorphisms γG

Σ.M are identities, we
say that the parchment morphism is strict.

For institutional parchments P and P′ as above, each institutional parchment
morphism γ = 〈γSig , γLan , γMod , γG〉 : P→ P′ presents an institution morphism
J (γ) : J (P)→ J (P′), defined as follows:

– (J (γ))Sig = γSig ,
– (J (γ))Mod = γMod ,
– for Σ ∈ |Sign|, let Σ′ = γSig(Σ); then (J (γ))SenΣ : |TL′(Σ′)|∗ → |TL(Σ)|∗ is

given as the ∗ component of the unique L′(Σ′)-homomorphism !Σ : TL′(Σ′) →
TL(Σ) γLan

Σ
.

One can check now that J (γ) so defined is indeed an institution morphism
J (γ) : J (P)→ J (P′). In particular, the satisfaction condition follows since for
any signature Σ ∈ |Sign| and M ∈Mod(Σ), the homomorphism γG

Σ,M reflects
and preserves the predicate D : ∗.

Example 4.6. There are evident parchment morphisms from the parchments
PGMSA, PGOSA, PGPRWL, PGHA, given in Examples 4.2, 4.3, 4.4, and 4.5, re-
spectively, to PA given in Example 4.1, presenting the corresponding institution
morphisms from Example 3.6. In each case signatures are mapped to their under-
lying algebraic signatures, models are mapped to the underlying algebras, and
the maps on abstract syntax signatures are simply inclusions. All these parch-
ment morphisms are strict (i.e., all the γG homomorphisms are identities) except
for the morphism from PGOSA to PA, where for any order-sorted signature 〈Σ,≤〉
and A ∈ OSAlg(〈Σ,≤〉), γG

〈Σ,≤〉,A : GA
Σ(A) → GGOSA

〈Σ,≤〉(A) LA(Σ) is identity on ∗
and inclusion on sorts from Σ (“adding” undefined elements ⊥).

Example 4.7. The parchment morphism from PGOSA to PA extends to the ob-
vious strict parchment morphism from PGOSA to PGMSA, where the abstract
syntax signatures are mapped by inclusions. This parchment morphism presents
the institution morphism from GOSA to GMSA given in Example 3.7.

Example 4.8. The institution morphism from GHA to GMSA given in Exam-
ple 3.8 is presented by a strict parchment morphism from PGHA to PGMSA: sig-
natures and models are mapped as in the institution morphism (so, forgetting
about non-observable parts of behavioural signatures and their algebras), and
abstract syntax signatures are mapped essentially by inclusions, except that the
eq operations are renamed to beq .

13 Again, this is weaker than the corresponding condition imposed in [MTP98].
14 To clarify: institutional parchment morphism refers to a parchment morphism that is

institutional (rather than to an institutional-parchment morphism, i.e., a morphism
between institutional parchments).
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5 Constructions in Parchment Categories

The rather straightforward composition of parchment morphisms γ1 : P0 → P1

and γ2 : P1 → P2 is the parchment morphism γ : P0 → P2 defined as follows:

– γSig = γSig
1 ;γSig

2 ,

– γLan = (γSig
1 ·γLan

2 );γLan
1 ,

– γMod = γMod
1 ;((γSig

1 )op ·γMod
2 ),

– for any P0-signature Σ0 and any Σ0-model M0, let Σ1 = γSig
1 (Σ0) and

M1 = (γMod
1 )Σ0(M0); then γG

Σ0,M0
= (γG

2 )Σ1,M1 ;(γ
G
1 )Σ0,M0 (γLan

2 )Σ1
.

This defines a category PAR of parchments and their morphisms. IPAR de-
notes the subcategory of institutional parchments with institutional parchment
morphisms. The construction of institutions and institutions morphisms from in-
stitutional parchments and their institutional morphisms, respectively, as given
in Sect. 4, yields a functor J : IPAR→ INS.

We can combine parchments using limits:

Theorem 5.1 ([MTP98]). PAR is complete.

Instead of a detailed proof (which may be found in the full version of [MTP98]),
let us just mention that the construction of limits in PAR essentially follows the
same idea as for institutions, see Thm. 3.9, and illustrate how this works for
pullbacks.

Given parchments P0 = 〈Sign0,L0,Mod0,G0〉, P1 = 〈Sign1,L1,Mod1,G1〉,
P2 = 〈Sign2,L2,Mod2,G2〉 and parchment morphisms γ1 : P1 → P0 and
γ2 : P2 → P0, we sketch the construction of their pullback in PAR as a parch-
ment P = 〈Sign,L,Mod,G〉 with morphisms γ3 : P→ P1 and γ4 : P→ P2:

– The category Sign of signatures with γSig
3 : Sign→ Sign1 and γSig

4 : Sign→
Sign2 is obtained as a pullback of γSig

1 : Sign1 → Sign0 and γSig
2 : Sign2 →

Sign0 in Cat.
– For each signature Σ ∈ |Sign|, with Σ1 = γSig

3 (Σ), Σ2 = γSig
4 (Σ) and

Σ0 = γSig
1 (Σ1) (= γSig

2 (Σ2)):

• the abstract syntax signature L(Σ) with (γLan
3 )Σ : L1(Σ1)→ L(Σ) and

(γLan
4 )Σ : L2(Σ2)→ L(Σ) is given as a pushout of (γLan

1 )Σ1 : L0(Σ0)→
L1(Σ1) and (γLan

2 )Σ2 : L0(Σ0)→ L2(Σ2) in FOSig∗,
• the class of models Mod(Σ) with (γMod

3 )Σ : Mod(Σ) →
Mod1(γ

Sig
3 (Σ)) and (γMod

4 )Σ : Mod(Σ) → Mod2(γ
Sig
4 (Σ)) is ob-

tained as a pullback of (γMod
1 )Σ1 : Mod1(Σ1) → Mod0(Σ0) and

(γMod
2 )Σ2 : Mod2(Σ2)→Mod0(Σ0) in Class, and

• for each model M ∈ Mod(Σ), in an attempt to make the construction
of GΣ(M) readable, let us introduce a number of abbreviations:

∗ M1 = (γMod
3 )Σ(M), M2 = (γMod

4 )Σ(M) and M0 = (γMod
1 )Σ1(M1)

(= (γMod
2 )Σ2(M2)),

∗ G1 = (G1)Σ1(M1), G2 = (G2)Σ2(M2), and G0 = (G0)Σ0(M0),
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∗ θ1 = (γLan
1 )Σ1 : L0(Σ0) → L1(Σ1), θ2 = (γLan

2 )Σ2 : L0(Σ0) →
L2(Σ2), θ3 = (γLan

3 )Σ : L1(Σ1) → L(Σ), θ4 = (γLan
4 )Σ : L2(Σ2) →

L(Σ), and θ = θ1;θ3 (= θ2;θ4).
We have two L0(Σ0)-homomorphisms (γG

1 )Σ1,M1 : G0 → G1 (γLan
1 )Σ1

and (γG
2 )Σ2,M2 : G0 → G2 (γLan

2 )Σ2
. Using freeness, we get

(γG
1 )

#
Σ1,M1

: Fθ1(G0) → G1 in Str(L1(Σ1)) and (γG
2 )

#
Σ2,M2

: Fθ2(G0) →
G2 in Str(L2(Σ2)). Then, since (up to natural isomorphism)
Fθ3(Fθ1(G0)) and Fθ4(Fθ2(G0)) coincide with Fθ(G0), we

may assume that Fθ3((γ
G
1 )

#
Σ1,M1

) : Fθ(G0) → Fθ3(G1) and

Fθ4((γ
G
2 )

#
Σ2,M2

) : Fθ(G0) → Fθ4(G2). Let now GΣ(M) with L(Σ)-
homomorphisms g1 : Fθ3(G1) → GΣ(M) and g2 : Fθ4(G2) → GΣ(M) be
their pushout in Str(L(Σ)). Finally, put (γG

3 )Σ,M = (ηθ3)G1 ;g1 θ3 : G1 →
GΣ(M) θ3 and (γG

4 )Σ,M = (ηθ4)G2 ;g2 θ4 : G2 → GΣ(M) θ4 .

Then, for each signature morphism σ : Σ → Σ′:
• L(σ) : L(Σ)→ L(Σ′) is given by the pushout property of L(Σ),
• Mod(σ) : Mod(Σ′) → Mod(Σ) is given by the pullback property of
Mod(Σ), and

• for any model M ′ ∈ Mod(Σ′), Gσ(M ′) : GΣ(M ′
σ) → GΣ′(M ′) L(Σ) is

given by the pushout property of GΣ(M ′
σ).

It is routine (but very tedious!) to check that the above indeed defines a parch-
ment P = 〈Sign,L,Mod,G〉 with parchment morphisms γ3 : P → P1 and
γ4 : P→ P2 which form a pullback of γ1 : P1 → P0 and γ2 : P2 → P0.

Proposition 5.2. The limit in PAR of a diagram of institutional parchments
and institutional parchment morphisms is not necessarily an institutional parch-
ment, but the limiting cone consists of institutional parchment morphisms.

This is the first sign of worry that a programme to “just” use the standard limit
construction to put together logical systems presented by institutional parch-
ments linked by institutional parchment morphisms is doomed. Here is another
negative result, perhaps expected after Prop. 5.2, to show that this idea cannot
work in general:

Proposition 5.3 ([MTP98]). The category IPAR of institutional parchments
and their institutional morphisms is not complete.

The source of these negative results is that the free constructions involved in
building the evaluation structures in the limit parchment in general add new
values, possibly also new logical values (of sort ∗). The predicate D : ∗ does not
hold on these new values over a given signature (so that the limit projection
morphisms are institutional). However, there may be extensions of the signature
considered where the new logical values are glued together with “old” logical val-
ues (due to identification of some parts of syntax) and when D : ∗ holds on them,
the mediating homomorphism is not closed — which yields the negative part of
Prop. 5.2. Then, even when this does not happen and the limit parchment is
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institutional, there may be common compatible extensions of the parchments in
the diagram (institutional cones over this diagram) that designate the predicate
D : ∗ to hold for some of the new logical values. Consequently, the unique parch-
ment morphism from such a cone to the limit in PAR need not be institutional.
This shows that for a parchment diagram in IPAR, even if its limit given by
Thm. 5.1 is an institutional parchment and so the limit cone fits entirely into
IPAR, it still does not have to be a limit of this diagram in IPAR.

In fact, this is as expected: there is nothing like a free lunch, we cannot get
meanings for essentially new combinations of syntactic constructs involved for
free. The upshot is that the new logical values added by the free constructions
involved in the limits in PAR indicate the need for some decision concerning the
meaning of such new phrases. Technically, this may take the form of consistently
choosing a family of congruences on the evaluation structures that glue together
new and old logical values.

Example 5.4. One can easily construct the combination of PGOSA and PGPRWL as
a pullback of PGOSA and PGPRWL over PA, via the parchment morphisms given in
Example 4.6. The pullback parchment has order-sorted signatures as signatures,
and order-sorted algebras as models. For any order-sorted signature 〈Σ,≤〉, the
abstract syntax signature extends Logic byΣ and subsort inclusions and retracts,
as well as by eq : s × s → ∗ and rwrt : s × s → ∗ for each sort s in Σ. So, in
contrast to Example 3.12, the abstract syntax here covers rewritings between all
order-sorted terms. Then, for any order-sorted algebra A ∈ OSAlg(〈Σ,≤〉), the
evaluation structure will comprise the carriers of A extended with the undefined
element ⊥, operations from Σ and eq interpreted as in PGOSA, and operations
rwrt interpreted as in PGPRWL on arguments from |A|, but on pairs of arguments
containing ⊥ interpreted as new “free” logical values. It is now our decision to
define how to interpret rewritings between terms with undefined values. The
obvious choice — though technically not the only one possible — is to identify
the freely added logical values with ff (thus setting rewritings between undefined
terms to never hold) which would complete an adequate combination of the
logical systems given by PGOSA and PGPRWL.

The above example captures well a general situation; let’s have a closer look
at the issue of when a parchment combination is “satisfactory”.

Consider a family P = 〈Pi = 〈Signi,Li,Modi,Gi〉〉i∈I of parchments. A
parchment P = 〈Sign,L,Mod,G〉 with parchment morphisms γi : P → Pi,
i ∈ I, is a complete joint extension of P if for all signatures Σ ∈ |Sign| and mod-
els M ∈Mod(Σ), the homomorphisms (γG

i )Σ,M : (Gi)Σi(Mi)→ GΣ(M) (γLan
i )Σ ,

i ∈ I (where Σi = γSig
i (Σ), Mi = (γMod

i )Σ(M)) are jointly surjective on the
sort ∗. So, informally, a parchment P gives a complete joint extension of a family
of parchments if each logical value in P corresponds to some logical value in at
least one of the parchments jointly extended. If all of the parchments in P are in-
stitutional, then the complete joint extension is institutional if P is institutional
and all morphisms γi are institutional as well.
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Proposition 5.5. If a limit in PAR of a diagram of institutional parchments
and institutional parchment morphisms is a complete joint extension of the
parchments in the diagram, then it is a limit in IPAR as well.

Things work particularly easily when the parchment extensions involved in the
diagram do not interfere with each other. To keep the presentation relatively
simple, we look at pullbacks only.

We say that institutional parchment morphisms γ1 : P1 → P0 and γ2 : P2 →
P0 in IPAR do not interfere, if for any signatures Σ1 ∈ |Sign1| and Σ2 ∈
|Sign2| such that γSig

1 (Σ1) = γSig
2 (Σ2) = Σ0, we have that the term algebra

over the pushout (in FOSig∗) signature of (γLan
1 )Σ1 : L0(Σ0) → L1(Σ1) and

(γLan
2 )Σ2 : L0(Σ0) → L2(Σ2) has as the carrier of sort ∗ the pushout in Set of

!Σ1 : TL0(Σ0) → TL1(Σ1) (γLan
1 )Σ1

and !Σ2 : TL0(Σ0) → TL2(Σ2) (γLan
2 )Σ2

restricted
to the functions on the carriers of sort ∗.

Informally, this condition captures the fact that the new syntactic constructs
added in P1 and P2, respectively, do not interact with each other to build new
sentences that would not come from either P1 or P2. In particular, it requires
both parchments to be atomic (except for some degenerate cases). It is rather
obvious that in such a situation we can put the two parchments together without
further ado:

Proposition 5.6. If two morphisms γ1 : P1 → P0 and γ2 : P2 → P0 in IPAR

do not interfere then their pullback in PAR is also a pullback in IPAR. Moreover
the functor J : IPAR→ INS maps this pullback to a pullback in INS.

Example 5.7. Define a parchment PGRWL as the pullback of PGMSA and PGPRWL

over PA (via the morphisms sketched in Example 4.6). It is easy to see that
the two parchment morphisms do not interfere, and the pullback presents the
pullback of the corresponding institutions given in Example 3.10; in particular,
PGRWL presents GRWL.

Example 5.8. Similarly, PGHA and PGMSA over PA (via the morphisms of Ex-
ample 4.6) do not interfere. Their pullback presents the institution sketched in
Example 3.11, where standard ground equations and ground behavioural equa-
tions coexist.

Before we return to the general case of an arbitrary combination of insti-
tutional parchments, let’s have a look at a simpler situation, when given a
parchment P = 〈Sign,L,Mod,G〉, we want to add to it some new syntactic
constructs, as captured by a natural transformation α : L → L′ between func-
tors from Sign to FOSig∗. We may now build another parchment Fα(P) =
〈Sign,L′,Mod,G′〉, with the same signatures and models as P, with the richer
abstract syntax signatures given by L′, with the evaluation structures that
freely extend the evaluation structures of P, i.e., for Σ ∈ |Sign| and M ∈
Mod(Σ), G′

Σ(M) = FαΣ (GΣ(M)), and with the mediating homomorphisms de-
fined as follows. For σ : Σ1 → Σ2 and M2 ∈ Mod(Σ2), with M2 σ = M1,

we have morphisms Gσ(M2) : GΣ(M1) → GΣ2(M2) L(σ) and ηαΣ2
: GΣ2(M2) →
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FαΣ2
(GΣ2(M

′)) αΣ2
= G′

Σ2
(M2) αΣ2

, which yield Gσ(M2);ηαΣ2 L(σ) : GΣ1(M1)→
(G′

Σ2
(M2) αΣ2

) L(σ) = (G′
Σ2

(M2) L′(σ)) αΣ1
. Since G′

Σ(M1) = FαΣ1
(GΣ1(M1)),

we can now define G′
σ(M2) : G′

Σ1
(M1)→ G′

Σ2
(M2) L′(σ) as the unique morphism

such that ηαΣ1
;G′

σ(M2) αΣ1
= Gσ(M2);ηαΣ2 L(σ). It is routine now to verify fur-

ther compatibility condition, so that we get:

Proposition 5.9. Given any parchment P = 〈Sign,L,Mod,G〉 and natural
transformation α : L → L′, Fα(P) = 〈Sign,L′,Mod,G′〉 as defined above is a
parchment with an institutional parchment morphism γα = 〈IdSign, α, IdMod, γ

G
α〉

from Fα(P) to P, where IdSign is the identity functor, IdMod is the identity nat-
ural transformation, and for Σ ∈ |Sign| and M ∈Mod(Σ), (γG

α)Σ,M = (ηαΣ )M .

In general,Fα(P) need not be institutional, even ifP is so. The problem is similar
to that indicated for Prop. 5.2: new logical values freely added over one signature
may become identified with some old logical values over another signature, and
if D : ∗ holds for those, the resulting mediating homomorphism is not closed. For
typical extensions this does not happen though.

A natural transformation α : L→ L′ (between functors from Sign to FOSig∗)
is clean if new parts of syntax are never identified with old parts of syntax, i.e.,
for any signature morphism σ : Σ1 → Σ2, for any symbol x (sort, operation or
predicate name) in L′(Σ1) that is not in the image of αΣ1 : L(Σ1) → L′(Σ1),
the symbol L′(σ)(x) is not in the image of αΣ2 : L(Σ2)→ L′(Σ2).

Proposition 5.10. Given any institutional parchment P = 〈Sign,L,Mod,G〉
and clean natural transformation α : L → L′, Fα(P) = 〈Sign,L′,Mod,G′〉 as
defined above is an institutional parchment.

This is promising, but we have not ensured that Fα(P) is a complete (joint)
extension of P — there may be, and typically there are, new logical values of
sort ∗ freely added by the construction above. To complete the extension, we
need to identify these new logical values with some old ones, used already in P.
To carry this out, another concept is useful.

Given a parchment P = 〈Sign,L,Mod,G〉, a coherent family of semantic
congruences for P is a family 〈∼=Σ,M 〉Σ∈|Sign|,M∈Mod(Σ), where for Σ ∈ |Sign|
andM ∈Mod(Σ), ∼=Σ,M is a congruence on GΣ(M) that is preserved by the me-
diating homomorphisms, i.e., for any signature morphism σ : Σ → Σ′ and M ′ ∈
Mod(Σ′) with M ′

σ = M , we have Gσ(M ′)(∼=Σ,M ) ⊆ ∼=Σ′,M ′ L(σ). Given such a

family, we may build another parchment P/∼= = 〈Sign,L,Mod,G∼=〉, where for
Σ ∈ |Sign| andM ∈Mod(Σ), G∼=

Σ(M) = GΣ(M)/∼=Σ,M and for σ : Σ → Σ′ and
M ′ ∈ Mod(Σ′) with M ′

σ = M , G∼=
σ (M ′) : G∼=

Σ (M) → G∼=
Σ′(M ′) L(σ) is defined

by G∼=
σ (M ′)([a]∼=Σ,M

) = [Gσ(M ′)(a)]∼=Σ′,M′ (the coherence condition ensures that
this is well-defined).

Proposition 5.11. Given any parchment P = 〈Sign,L,Mod,G〉 and coherent
family ∼= of semantic congruences for P, P/∼= = 〈Sign,L,Mod,G∼=〉 as defined
above is a parchment, with a parchment morphism γ∼= = 〈IdSign, IdL, IdMod, γ

G∼=〉
from P/∼= to P, where IdSign is the identity functor, IdL and IdMod are the
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identity natural transformations, and for any Σ ∈ |Sign| and M ∈ Mod(Σ),
(γG∼=)Σ,M = [ ]∼=Σ,M

.

The construction above simplifies considerably when the parchment is atomic:
instead of considering congruences on the evaluation structures, it is sufficient to
consider equivalence relations on the carriers of sort ∗ of these structures (which
together with identities on other sorts then form congruences).

Now, given a family P = 〈Pi = 〈Signi,Li,Modi,Gi〉〉i∈I of parchments, con-
sider a parchment P = 〈Sign,L,Mod,G〉 with parchment morphisms γi : P →
Pi, i ∈ I. A coherent family ∼= of semantic congruences for P is complete for P ,
if for any signature Σ ∈ |Sign| and M ∈ Mod(Σ), for any a ∈ |GΣ(M)|∗, for
some i ∈ I and ai ∈ |(Gi)γSig

i (Σ)((γ
Mod
i )Σ(M))|∗, we have a ∼=Σ,M (γG

i )Σ(M)(ai).

Proposition 5.12. Consider any family P = 〈Pi = 〈Signi,Li,Modi,Gi〉〉i∈I
of parchments, parchment P = 〈Sign,L,Mod,G〉 with parchment morphisms
γi : P → Pi, i ∈ I, and coherent family ∼= of semantic congruences for P
that is complete for P. Then the parchment P/∼= with parchment morphisms
γ∼=;γi : P/∼=→ Pi, i ∈ I, is a complete joint extension for the family P.

Furthermore, a coherent family ∼= of semantic congruences for P is insti-
tutional for P , if for any signature Σ ∈ |Sign| and M ∈ Mod(Σ), when-

ever for any i, j ∈ I, with γSig
i (Σ) = Σi, γ

Sig
j (Σ) = Σj , (γ

Mod
i )Σ(M) = Mi

and (γMod
j )Σ(M) = Mj , we have ai ∈ |(Gi)Σi(Mi)|∗, aj ∈ |(Gj)Σj (Mj)|∗,

(γG
i )Σ,M (ai) ∼=Σ,M (γG

j )Σ,M (aj) and ai ∈ D(Gi)Σi
(Mi), then aj ∈ D(Gj)Σj

(Mj)

as well. Informally: we can glue together only those “old” logical values that
either both designate sentences to hold, or both designate them not to hold.

Theorem 5.13. Consider any family P = 〈Pi = 〈Signi,Li,Modi,Gi〉〉i∈I of
institutional parchments, parchment P = 〈Sign,L,Mod,G〉 with institutional
parchment morphisms γi : P → Pi, i ∈ I, and coherent family ∼= of semantic
congruences for P that is complete and institutional for P. Then the parchment
P/∼= with parchment morphisms γ∼=;γi : P/∼= → Pi, i ∈ I, is a complete insti-
tutional joint extension for the family P.

One strength of the above result is that we show the quotient parchment to be
institutional without assuming that P is so. This follows since the parchments in
the family are institutional, and the coherent family of congruences is complete
and institutional as well.

Example 5.14. Consider a pullback of PGOSA and PGRWL over PGMSA via the
morphisms given by Example 4.7 and the pullback construction of PGRWL in
Example 5.7, respectively. In fact, the pullback parchment is the same as the
pullback parchment for PGOSA and PGPRWL over PA described in Example 5.4.
The problem is that it is not a complete joint extension of PGOSA and PGRWL, as
evaluation structures carry freely added logical values, corresponding to rewrit-
ing statements between terms with undefined values. To fix this, consider a family
of equivalences on the carriers of sort ∗ that glue values of the operations rwrt
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on pairs of arguments containing ⊥ with ff . Since the parchment is atomic, this
family extends to a family of congruences by adding identities on the carriers
of other sorts. It is easy to check now that this family is coherent as well as
complete and institutional for PGOSA and PGRWL. Consequently, by Thm. 5.13,
quotienting the pullback parchment by this family yields an institutional com-
plete joint extension of PGOSA and PGRWL — this is an institutional parchment
PGOSRWL that presents the institution GOSRWL, and the institutional parch-
ment morphisms from PGOSRWL to PGOSA and PGRWL, respectively, present the
corresponding institution morphisms in the CafeOBJ cube.

Example 5.15. Consider now a pullback P0 = 〈Sign0,L0,Mod0,G0〉 of PGHA

and PGRWL over PGMSA via the parchment morphisms given by Example 4.8 and
the pullback construction of PGRWL in Example 5.7, respectively. As in Exam-
ple 3.13, Sign0 is the category of behavioural signatures, and Mod0(〈Σ,OBS 〉)
is the class of Σ-algebras with a rewriting preorder �o ⊆ |A|o × |A|o on observ-
able sorts o ∈ OBS only, preserved by observable operations. For any
behavioural signature 〈Σ,OBS 〉, the abstract syntax signature L0(〈Σ,OBS 〉)
extends Logic by Σ, operations beq : s × s → ∗ for all sorts s in Σ, and opera-
tions rwrt : o× o→ ∗ for observable sorts o ∈ OBS . Perhaps surprisingly, PGHA

and PGRWL over PGMSA do not interfere, and so P0 is a pullback of PGHA and
PGRWL over PGMSA in IPAR, and in fact is their complete institutional joint
extension. But we still “miss” rewritings on non-observable sorts!

So, let us add them: consider the natural inclusion α : L0 → LGHRWL, for any
behavioural signature 〈Σ,OBS〉, LGHRWL(〈Σ,OBS 〉) adding to L0(〈Σ,OBS 〉)
operations brwrt : s×s→ ∗ for non-observable sorts s �∈ OBS . Now, by Prop. 5.9,
we obtain the parchment Fα(P0), which is institutional by Prop. 5.10. However,
it is not a complete joint extension of PGHA and PGRWL, with new logical val-
ues added for behavioural rewritings between terms of non-observable sorts. Of
course, it is now our decision how to interpret such rewritings.

For any signature 〈Σ,OBS〉 and 〈A, 〈�o〉o∈OBS 〉 ∈Mod0(〈Σ,OBS 〉), let � ⊆
|A| × |A| be the largest precongruence on A such that �o ⊆ �o for all observable
sorts o ∈ OBS .15 Now, consider a family of equivalences on the carriers of
sort ∗ of the evaluation structures in Fα(P0) that glue values of the operations
brwrt on arguments a, b with tt if a � b and with ff otherwise. Since the
parchment is atomic, this family extends to a family of congruences by adding
identities on the carriers of other sorts. Given the conditions on behavioural
signature morphisms, it is easy to check now that this family is coherent as well
as complete and institutional for PGHA and PGRWL. Consequently, by Thm. 5.13,
quotienting Fα(P0) by this family yields an institutional complete joint extension
of PGHA and PGRWL — this is an institutional parchment PGHRWL that presents
institution GHRWL, and the institutional parchment morphisms from PGHRWL to
PGHA and PGRWL, respectively, present the corresponding institution morphisms
in the CafeOBJ cube.

15 So that a � b iff, relying on the standard concepts and notation, for all contexts C
of an observable sort, CA[a] � CA[b].
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Example 5.16. Consider now a pullback of PGHA and PGOSA over PGMSA via the
morphisms of Examples 4.8 and 4.7, respectively. Somewhat similarly to the
initial construction in Example 5.15, a signature in the resulting parchment is
a behavioural signature with ordering on the set of sorts that is non-trivial on
observable sorts only, and models over such signature are order-sorted algebras
over the obvious order-sorted signature extracted from it. For any such signa-
ture 〈Σ,OBS ,≤〉, the abstract syntax signature extends Logic by Σ, operations
beq : s × s → ∗ for all sorts s in Σ, and subsort inclusions and retracts as de-
termined by the subsorting relation on the observable sorts. No need to discuss
evaluation structures — they are given by the obvious amalgamation of the
evaluation structures in PGHA and PGOSA.

For the purposes of this presentation we stop at this point and set this parch-
ment to be PGHOSA, presenting an institution that corresponds to GHOSA. Note
though that we thus neglect adding subsorting on non-observable sorts – this
could be done much in the style of adding rewritings on non-observable sorts
in Example 5.15, except that we would need a slightly more general form of
Prop. 5.9 and Thm. 5.13, with extension of signatures (and models) permitted.

Example 5.17. Finally, let PGHOSRWL be a pullback of PGHRWL and PGOSRWL over
PGRWL via the morphisms constructed in Examples 5.15 and 5.14, respectively.
Equivalently, PGHOSRWL is the limit of the parchments and their morphisms
constructed so far. It is a complete joint extension of the parchments considered
so far, and so by Prop. 5.5, it is the limit in IPAR of the diagram constructed
so far. PGHOSRWL presents an institution that corresponds to GHOSRWL in the
cube, inheriting the comments on the lack of subsorting for non-observable sorts
from Example 5.16.

6 Final Remarks

In this paper we study the problems of systematic combination of logical systems
in the framework of the theory of institutions and their presentations as parch-
ments. To begin with, we recall the notion of institution and institution mor-
phism [GB92], and the construction of limits in the category they form [Tar86].
Then we introduce a new notion of model-theoretic parchment, modifying the
original notions defined in [GB86] and [MTP98]. We sketch again how limits in
the category of such parchments are built, and argue that they do not always
offer a satisfactory way of putting logical systems together. We present a new
understanding of this phenomena via Props. 5.2 and 5.3, and the new notion of
a complete joint extension of a family of parchments. We suggest some simple
situations when the use of limits yields a desired result, as for instance captured
by Prop. 5.6. We also develop constructions that adjust such limits to a more
desired form, Props. 5.9, 5.11 and Thm. 5.13.

All these developments are extensively illustrated by referring to various logi-
cal systems that underlie CafeOBJ [DF02]. We start from simple parchments that
capture equational logic, order-sorted equational logic, behavioural equational
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logic and rewriting logic, respectively, and show how to systematically combine
and modify them to obtain the remaining logical systems of the CafeOBJ cube.

To keep the presentation relatively simple and hopefully understandable, in
places we depart from the details of the logical systems as used in CafeOBJ. In
particular, we deal with their ground versions only (no variables). Adding vari-
ables would be simple: in essence, we would have to multiply the sorts in the
abstract syntax signatures by the sets of variables considered, and to parametrise
non-logical values in the evaluation structures by valuations of variables, as is
done in [Mos96]. We foresee no major difficulties with this, but it is worth spelling
out the details, of course. Another departure from the logics of CafeOBJ is elim-
ination of conditions in statements – adding those should pose no difficulties
whatsoever, although the abstract syntax signatures and the evaluation struc-
tures would again become somewhat more complex. We also simplify the view
of behavioural satisfaction, by using a set of observable sorts rather than a des-
ignated set of observer operations. The changes required to capture the more
refined view of CafeOBJ are rather obvious as well. To deal with order-sorted
algebra, we introduce explicit subsort inclusions and (partial) retracts, again
somewhat departing from what is sketched in [DF02]. The combination of be-
havioural equations with subsorting, omitted here, requires further careful study
in our view, perhaps building on [BD94].

To keep the paper to a reasonable size, we entirely omitted notions of comor-
phisms for institutions and parchments, even though there seems to have been
a shift in the presentation of the CafeOBJ cube from institution morphisms to
comorphisms [Dia11]. In the case of the logical systems considered here, these
are simple, as all the morphisms in use are based on signature functors having
left adjoints — and in such cases well-known results about duality between in-
stitution morphisms and comorphisms [FC96] carry over to parchments as well.
In general, however, the use of comorphisms in this context is not immediate.
First, there are formal problems: for instance, the category of institutions and
their comorphisms is not cocomplete due to foundational reasons, and some size
limitations have to be imposed on the institutions considered. Second, and per-
haps more to the point, comorphisms capture a different intuition concerning
the relationship between the institutions they link. Informally, while institution
morphisms indicate how a richer logical system is built over a simpler one, insti-
tution comorphisms show how a simpler logical system is encoded in a richer one.
Consequently, it is not obvious at all that comorphisms offer a proper technical
framework for the modular construction of logical systems we aim at here. We
leave this as a worthwhile topic for further investigation though, as comorphisms
open the way to the study of parchment representations in universal logics we
began in [MTP98], and link to other frameworks based on heterogeneous logi-
cal environments like Hets [MML07] and LATIN [CHK+11], which admit logic
definitions in a modular manner [CHK+12].

An interesting, far-reaching and difficult problem is how to capture in our
framework the operational ideas that underlie the CafeOBJ implementation and
are closely linked with the logical systems involved.
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Abstract. OBJ languages support semi-automated verification for al-
gebraic specifications based on equational reasoning by term rewriting
systems (TRS). Termination, confluence and sufficient completeness are
important fundamental properties for the equational reasoning. In this
article, we give light-weight methods for checking those properties in
a modular way. We formalize the notion of hierarchical extension for
constructor-based conditional algebraic specifications, and give sufficient
conditions for those fundamental properties, which can be used for prov-
ing them incrementally 1.
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1 Introduction

There are three fundamental properties of OBJ algebraic specifications: termi-
nation, confluence and sufficient completeness. Termination guarantees that a
normal form exists and computable. Confluence guarantees the uniqueness of
normal forms. Sufficient completeness guarantees the well-definedness of a func-
tion. Those fundamental properties are undecidable in general. There are several
methods and tools to prove termination, confluence and sufficient completeness,
which can be proved automatically for some class of TRSs. We may apply those
established methods to OBJ specifications directly, however, for a large and com-
plex system, its specification may involve lots of equations and we may face a lim-
itation of time and space for proving the properties by those methods. To make
the task easy, incremental approaches are effective. In an incremental approach,
those properties are proved in a modular way. To prove termination (or conflu-
ence, sufficient completeness), first prove it for the imported modules, and then
prove it for the importing module, which guarantee the whole specification to
satisfy the property. Unfortunately, termination is not modular in general. Even
if two sets E0 and E1 of equations have no shared operators, termination of each

1 The preliminary version of a part of this article appeared in the short paper [14].
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E0 and E1 does not imply termination of the union E0 ∪E1. The following is a
famous example of Toyama’s counter-example: E0 = {f(0, 1, X) = f(X,X,X)}
and E1 = {g(X,Y ) = X, g(X,Y ) = Y } where f, g are operators, 0, 1 are con-
stants, and X,Y are variables. E0 and E1 are terminating respectively, however,
E0 ∪ E1 is not terminating since f(0, 1, g(0, 1)) → f(g(0, 1), g(0, 1), g(0, 1)) →
f(0, g(0, 1), g(0, 1))→ f(0, 1, g(0, 1)). Thus, we need to give an appropriate con-
dition such that the fundamental properties can be proved in a modular way and
the condition covers practically used specifications. In [20,18], incremental ap-
proaches for proving termination (and confluence, sufficient completeness) have
been proposed. However, they do not deal with conditional equations. Condi-
tional equations in OBJ specifications are useful to describe the meaning of an
operator by case splitting, and used in lots of practical case studies, including
OTS/CafeOBJ specifications in [15,9,17], for example. The main contribution of
our work is to give incremental approaches to prove fundamental properties for
specifications with conditional equations.

2 Preliminaries

In this section, we introduce the notion of algebraic specifications [1,3] and term
rewriting systems [19,16]. Though we take CafeOBJ notations in this article, our
approaches and results can be applied to other OBJ specification languages.

2.1 Algebraic Specifications

A sort is a name of entities of the same type. For a partial order ≤ on a set
S of sorts, ≡≤ is defined as the equivalence relation. The quotient of S under

≡≤ is denoted by Ŝ = S/≡≤ . The element of Ŝ which contains s ∈ S is

denoted by [s] ∈ Ŝ, and called a connected component. In CafeOBJ, S and ≤
are declared with the square brackets and the symbol <. For example, when
declaring [Zero NzNat < Nat], the corresponding set Sn is {Zero, NzNat, Nat}
and the partial order ≤n on S is the reflexive and transitive closure of <, that
is, ≤n = {(Zero, Zero), (NzNat, NzNat), (Nat, Nat), (Zero, Nat), (NzNat, Nat)}.
An operator is an element of an S+-sorted set Σ, where S+ (or S∗) is the set of
all non-empty strings (or all strings) on S. An operator f ∈ Σws is denoted by
f : w→ s, and w ∈ S∗, s ∈ S and ws ∈ S+ are called the arity, the sort and the
rank of f respectively. The empty string is denoted by []. A constructor-based
order-sorted signature is denoted by (S,≤, Σ,ΣC) (abbr. (S,≤, Σ) or Σ) where
a set S of sorts, a poset ≤ on S, a S+-sorted set Σ of operators, and a set
ΣC ⊆ Σ of constructors, where we use set notations for A-sorted set B with
natural extension such that B ⊆ B′ means Ba ⊆ B′

a for all a ∈ A, e ∈ B means
e ∈ Ba for some a ∈ A, and so on. In CafeOBJ, f ∈ Σws (or f0, f1, . . . ∈ Σws) is
declared as op f : w -> s (or ops f0 f1 · · · : w -> s for plural ones of a same rank).
Constructors are declared with the operator attribute {constr}. For example,
ops ( + ) ( - ) : Nat Nat -> Nat is a declaration of two operators. op 0 : -> Zero

{constr} and op s : Nat -> NzNat {constr} are declarations of constructors
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on Sn. Underlines in operators indicate the positions of their arguments in term
expression, defined below. We assume (S,≤, Σ,ΣC) is sensible, that is, for each
f ∈ Σws ∩ Σw′s′ , w ≡≤ w′ implies s ≡≤ s′. A sort s ∈ S is called constrained
if (1) there exists f ∈ ΣC

ws or (2) there exists a constrained sort s′ ≤ s. We
denote the set of all constrained sorts in S by SCT . A non-constrained sort is
called loose, and denoted by SLS = S \ SCT . A term is a tree whose nodes are
operators and leaves are variables. For a given signature (S,≤, Σ,ΣC) and an
S-sorted set X of variables, the S-sorted set TΣ(X) (abbr. T ) of (Σ,X)-terms
is defined as the smallest set satisfying that (1) Xs ⊆ Ts for each s ∈ S, (2)
Ts ⊆ Ts′ for each s ≤ s′, and (3) f(t̄n) ∈ Ts for each f ∈ Σs̄n s and ti ∈ Tsi

(i ∈ {n̄}) 2. Term t ∈ Ts is called a term of s. We write c instead of a term c()
for a constant c ∈ Σs. Variables are declared with var and vars in CafeOBJ, for
example, vars M N : Nat means that M, N ∈ XNat. The followings are examples
of terms: 0 ∈ TZero, 0 ∈ TNat, s 0 ∈ TNzNat, s 0 ∈ TNat, M + (N + s 0) ∈ TNat

and so on. A position of a term is given by the string of positive integers, where
the empty string is denoted by ε. The set O(t) of positions of a term t is defined
as O(x) = {ε} and O(f(t̄n)) = {ε} ∪ {i.p ∈ N ∗

+ | i ∈ {n̄}, p ∈ O(ti)}. The root
symbol of a term t, denoted by root(t), is defined as root(t) = f if t = f(· · · )
and root(t) = x if t = x ∈ X . The subterm of a term t at position p ∈ O(t),
denoted by t|p, is defined as t|ε = t and f(t̄n)|i.p = ti|p. The subterm relation
≥sub is defined as follows: t ≥sub t

′ if and only if t′ = t|p for some p ∈ O(t). We
call it the strict subterm relation, denoted by >sub, when p �= ε.

An equation, denoted by t = t′, on a signature Σ and a variable set X is a
pair of (Σ,X)-terms t, t′ ∈ Ts of a same sort s. In CafeOBJ, an equation t = t′

is declared like eq t = t′. A conditional equation, denoted by t = t′ if c, on a
signature Σ and a variable set X is a pair of an equation t = t′ on them and
a (Σ,X)-term c ∈ TBool

3. A conditional equation is declared like ceq t = t′

if c. For example, eq N + 0 = N is an equation since both N + 0 and N are of
the sort Nat, and ceq even (s N) = true if not (even N) is a conditional
equation for op even : Nat -> Bool. Hereafter, we may regard an equation
eq l = r as a conditional equation ceq l = r if c, and call just an equation for
both unconditional and conditional equations if no confusion arises.

A pair of (Σ,E) is a specification if each e ∈ E is an equation on Σ and
a variable set X . CafeOBJ supports a module system for describing a large
specification effectively. A CafeOBJ module consists of imports, a signature and
axioms. We only treat equational specifications in this article, that is, axioms are
equations. A module may import other modules. When a module M ′ imports a
module M , the sorts and the operators in M can be used to declare sorts, opera-
tors and equations in M ′. There are three kinds of imports in CafeOBJ: protect-
ing, extending and using imports, denoted by pr(M), ex(M) and us(M). By

2 Hereafter we may write ān instead of a1, . . . , an, and n̄ instead of 1, . . . , n.
3 Bool is a special sort of CafeOBJ, which is declared in a built-in module BOOL, where
constants true, false and logical operators not , and , or , . . . are declared with
some equations like eq false and A = false with var A : Bool. In default, each
CafeOBJ module implicitly imports BOOL.
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using those notions, we can describe algebraic specifications in various abstract
levels. For more details of semantics, see the literatures [1,3]. Note that in this
article, we focus on equational reasoning by the TRS, and the TRS ignores the
difference between import modes.

Example 1. We show CafeOBJ modules NAT-OP specifying natural numbers with
addition, subtraction and comparison operators, and ACCOUNT specifying a bank
account system with balance, deposit and withdraw operators (Fig.1).

mod! NAT-OP{

[Zero NzNat < Nat]

op 0 : -> Zero {constr}

op s_ : Nat -> NzNat {constr}

ops (_+_) (_-_) : Nat Nat -> Nat

ops (_>=_) (_>_) : Nat Nat -> Bool

vars M N : Nat

eq N + 0 = N . eq M + s N = s (M + N) .

eq 0 - N = 0 . eq M - 0 = M .

eq s M - s N = M - N .

eq N >= N = true . eq M >= 0 = true .

eq 0 >= s N = false . eq s M >= s N = M >= N .

eq N > M = not (M >= N) .

}

mod* ACCOUNT{

pr(NAT-OP)

[Account]

op balance_ : Account -> Nat

ops (deposit_ _) (withdraw_ _) : Nat Account -> Account {constr}

op init : -> Account {constr}

var A : Account

var N : Nat

eq balance init = 0 .

eq balance (deposit N A) = balance A + N .

ceq balance (withdraw N A) = balance A - N if balance A >= N .

ceq withdraw N A = A if N > balance A .

}

Fig. 1. CafeOBJ modules NAT-OP and ACCOUNT

In NAT-OP, the sorts Zero, NzNat and Nat are declared with the subsort rela-
tion Zero < Nat and NzNat < Nat. The set SNAT−OP is {Zero, NzNat, Nat} and the
partial order≤NAT−OP on SNAT−OP is the reflexive and transitive closure of <, that is,
≤NAT−OP = {(Zero, Zero), (NzNat, NzNat), (Nat, Nat), (Zero, Nat), (NzNat, Nat)}.
The constant 0 stands for zero, and s stands for the Peano style successor func-
tion. Constructors are declared with {constr}. The terms 0, s 0, s s 0, . . . are
regarded as 0, 1, 2, . . . respectively. The operators + , - , >= , and > stand for
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the addition, the subtraction, ≥ and > on natural numbers respectively. Those
operators are defined by the equations in NAT-OP inductively.

In ACCOUNT, the module NAT-OP is imported with the protect mode. The sort
Account is declared. A term of Account stands for a state of the account. The
operator balance returns the balance of a state. The term deposit N A is the
result state of depositing N into A, and the term withdraw N A is the result
state of withdrawing N from A. The constant init stands for the initial state.
The first equation means that the initial balance is zero. The second equation
means that after depositing N, the balance increases by N. The third one means
that after withdrawing N, the balance decreases by N when the current balance
is greater than or equal to N. The last one means that the state does not change,
and thus the balance also does not change, when trying to withdraw more than
the current balance.

2.2 Term Rewriting Systems

OBJ languages support specification execution based on the theory of term
rewriting systems (TRS). In the TRS, an equation is regarded as a left-to-right
rewrite rule. An instance of a left-hand side of an equation is called a redex (of
the equaiton). A term is rewritten by replacing a redex of an equation with the
corresponding instance of the right-hand side of the equation. A term is reduced
by rewriting a given term until it cannot. A conditional equation is regarded as a
conditional rewrite rule, which can be applied when the instance of the condition
is reduced into true.

For a given binary relation →, the transitive closure and the reflexive and
transitive closure are written by →+ and →∗ respectively. A map θ ∈ TX from
a set of variable X to a set of terms T is called a substitution, and the instance
of a term t by θ, denoted by tθ, is defined as xθ = θ(x) and f(t̄n)θ = f(tnθ).
For a given set E of equations, the rewrite relation →E is defined as follows:

t →E t′ ⇐⇒ ∃i ∈ N .t →E,i t
′

t →E,<i t
′ ⇐⇒ ∃j < i.t →E,j t′

t →E,0 t′ ⇐⇒ ∃eq l = r ∈ E.θ ∈ TX .p ∈ O(t).t|p = lθ ∧ t′ = t[rθ]p
t →E,i t

′ ⇐⇒ ∃ceq l = r if c ∈ E.θ ∈ TX .p ∈ O(t).t|p = lθ ∧ t′ = t[rθ]p
∧ cθ →∗

E,<i true

A term t is called an E-normal form if there is no u such that t→E u. A term
is called E-reducible if it is not an E-normal form. We may omit E and write a
normal form and a reducible term if no confusion. When t→E t′ is obtained by
applying an equation e, we write t→e t

′. Hereafter, we assume each specification
satisfies the following conditions: (1) the number of equations is finite, (2) the
left-hand side is not a variable for each equation, and (3) all variables in the
right-hand side and the condition term are included in the left-hand side for
each equation 4. Then, for each unconditional equation e : eq l = r and each

4 A conditional TRS for a CafeOBJ specification is categorized into strongly deter-
ministic oriented 1-CTRS[16], where a conditional equation l = r if c of CafeOBJ
corresponds to a conditional rewrite rule l → r ⇐ c → true of 1-CTRS.
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redex t, that is, t = lθ for some θ, there exists the unique t′ such that t →e t′.
For each conditional equation e : ceq l = r if c and each redex t, there exists
the unique cθ to be checked, and there exists the unique t′ such that t →e t′

when cθ →∗ true. We may write →M instead of →EM where EM is the set of
all equations declared in a module M and the all modules imported by M . We
may omit the subscript E in →E (or→E,i) and write → (or →i) if no confusion
arises.

Example 2. Equational reasoning in CafeOBJ is done by the reduction com-
mand. The following is an example of the reduction with the input term s 0 +
s s 0 in NAT-OP:

CafeOBJ> red in NAT-OP : s 0 + s s 0 .

s (s (s 0)) : NzNat

This input and output mean that s 0 + s s 0 →∗
NAT-OP s s s 0. When

t →∗
M t′, the terms t and t′ are equivalent, i.e. t = t′ can be deduced from the

axioms. Thus, the above execution is a proof of 1 + 2 = 3 in NAT-OP. The trace
of the above reduction is s 0 + s s 0 →0 s(s 0 + s 0) →0 s s(s 0 + 0)→0

s s s 0, where a redex (lθ) is underlined for each rewrite relation. First and
second rewrites are obtained by the second equation eq M + s N = s(M + N)

in NAT-OP and the last one is obtained by the first equation eq M + 0 = M.

Example 3. The following is an example of reduction with the input term
balance (withdraw (s s 0) (deposit (s 0) init)) in ACCOUNT:

CafeOBJ> red in ACCOUNT : balance (withdraw (s s 0) (deposit (s 0) init)) .

(s 0):NzNat

The input term means that the result state of depositing 1 to the initial state and
then withdrawing 2 from that state. The result is 1 since the deposit succeeds
and the balance increases 1, however the withdrawal does not succeed because of
1 �≥ 2. The trace is balance(withdraw (s s 0) (deposit (s 0) init)) →1

balance (deposit (s 0) init) →0 balance init + s 0 →0 0 + s 0 →∗
0 s

0. The first rewrite is obtained by the last equation ceq withdraw N A = A if

N > balance A in ACCOUNT. To apply the equation, the condition part should
be reduced into true. The corresponding instance of the condition is s s 0 >

balance (deposit (s 0) init). The right-hand side of > is reduced into s 0,
and s s 0 > s 0 → not (s 0 >= s s 0) → not (0 >= s 0) → not false

→BOOL true.

3 Hierarchical Extension

In this section, we introduce the notion of hierarchical extension proposed in
[20,13] to give incremental proof methods for termination, confluence and suffi-
cient completeness.

A module [Σ | E] is a pair of a signature and a set of equations. Note that a
module may not be a specification (or a TRS), which means that E may involve
operators not involved in Σ. For a given CafeOBJ module M , we write ΣM for
the set of all operators declared in M , and EM for the set of all equations in
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M . For example, the set EACCOUNT involves eq balance init = 0, declared in
ACCOUNT, but does not involve eq N + 0 = N, declared in NAT-OP. The equation
eq balance init = 0 ∈ EACCOUNT involves the constant 0, which is declared
in NAT-OP, that is, 0 ∈ ΣNAT-OP but 0 �∈ ΣACCOUNT.

To obtain a sufficient condition under which we can try to prove termination
(or confluence, sufficient completeness) by checking some conditions on each
module, we give the notion of hierarchical extension, which originally proposed
in [20] for unconditional TRSs and extended to conditional TRSs in [13].
Definition 1. [20,13] Let M0 = (Σ0, E0) be a specification and M1 = [Σ1 | E1]
be a module. A pair of M0 and M1 is called a hierarchical extension (or M1 is
called a module extending M0 in [20]), denoted by M0 ←M1, if (1) Σ0 ∩Σ1 =
∅ 5, (2) (Σ0 ∪ Σ1, E1) is a specification, and (3) DE1 ⊆ Σ1, where DE is the
set of the root symbols of the left-hand sides of all equations in E, that is,
DE = {f ∈ Σ | f(· · · ) = r if c ∈ E}, and f ∈ DE is called a defined symbol of
E.

The union of M0 and M1 is a specification when M0 ← M1. We denote
M0 ←M1 ←M2 when M0 ←M1 and M0 ∪M1 ←M2. A specification (Σ0, E0)
can be regarded as a module [Σ0 | E0] extending the empty specification (∅, ∅).
Hereafter we may use the module expression for both specifications and modules
if no confusion arises.
Example 4. NAT-OP ← ACCOUNT is a hierarchical extention since (1) there are
no shared operators, (2) all equations in ACCOUNT are defined on ΣNAT-OP ∪
ΣACCOUNT, and (3) balance and withdraw ∈ DEACCOUNT

are included in ΣACCOUNT.

4 Incremental Proofs

In the following subsections, we give a sufficient condition for each of termination,
confluence and sufficient completeness, which can be proved incrementally. For
each property, we give two kinds of conditions. The first condition is a sufficient
condition for each property, which can be checked automatically. The second
condition enables us to check the first condition incrementally.

4.1 Termination

For unconditional equations, termination is defined as the absence of infinite
reduction sequences t0 →0 t1 →0 t2 →0 · · · . In the case of conditional equations,
the absence of infinite reduction sequences is not enough to obtain termination of
computation. Let E = { ceq a = b if a }, and try to reduce a term a. To apply
the conditional equation to a, we need to reduce the condition term a again.
To avoid such infinite condition calls as well as infinite reduction sequences, the
notion of operational termination has been proposed [10].

5 This means that they have no shared operations, i.e. Σ′
0 ∩ Σ′

1 = ∅ when Σ0 =
(S0,≤0, Σ

′
0) and Σ1 = (S1,≤1, Σ

′
1). In this article, we mean that operator names

are not shared in Σ0 and Σ1. Thus, overloaded operators between M0 and M1 are
not allowed. For example, op + : Nat Nat -> Nat in M0 and op + : Int Int ->

Int with [Nat < Int] in M1 do not satisfy the condition.
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Reflexive Transitive Congruence Replacement

t →∗ t

t0 → t1 t1 →∗ t2
t0 →∗ t2

ui → u′
i

f(ū) → f(ū′)
cθ →∗ true

lθ → rθ

where f ∈ Σ and where l = r if c ∈ E
∀j �= i.ui = u′

i

Fig. 2. Inference rules

We give a definition of operational termination for CafeOBJ, which can be
obtained from the definitions in [10] straightforwardly 6. The operational ter-
mination is defined by the absence of infinite chains of well-formed proof trees
on some inference rules. Inference rules for the CafeOBJ reduction are given as
Figure 2. We call t→ t′ or t→∗ t′ a formula. The set of (finite) proof trees and
the head of a proof tree are defined inductively. A proof tree is either an open
goal G, which is a formula, where we denote head(G) = G, or a derivation tree
with G as its head, denoted as

T1 · · · Tn

G
(R)

where G is a formula, R is an inference rule, and T1, . . . , Tn are proof trees such
that

head(T1) · · · head(Tn)

G

is an instance of R. Let T and T ′ be proof trees. We denote T ⊂ T ′ when T has
open goals Gi and T ′ is obtained by replacing the Gi with a derivation tree Ti

whose head is Gi.
A proof tree is closed if it is finite and has no open goals. A proof tree is

well-formed if it is either an open goal, a closed proof tree, or a derivation tree
of the form

T1 · · · Ti · · · Tn

G
(R)

where all T1 . . . , Tn are well-formed, T1, . . . , Ti−1 are closed, Ti is not closed, and
Ti+1, . . . , Tn are open goals. Operation termination is defined as follows.

Definition 2. [10] A specification is operationally terminating if there is no
infinite chain T0 ⊂ T1 ⊂ T2 · · · of well-formed finite proof trees.

Operational termination is shown to be equivalent to the notion of quasi-
decreasingness [10].

6 The results of Section 4.1 have been published in our preliminary work [14], however
the definitions and the proofs are rough in [14]. Thus, we give precise definitions and
proofs for constructor-based order-sorted specifications in this article.
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Definition 3. [16] A specification (Σ,E) is quasi-decreasing if there is a well-
founded partial ordering > on T such that (1) →E⊆ >, (2) >sub ⊆ >, and (3)
for each ceq l = r if c and θ ∈ TX , if cθ →∗ true then lθ > cθ.

Proposition 1. [10] A specification is quasi-decreasing if and only if it is oper-
ationally terminating.

By Proposition 1, operational termination can be proved by finding an appro-
priate well-founded partial ordering on terms. Recursive path ordering (RPO) is
one of the classical approaches to make a well-founded partial ordering on terms.

Definition 4. [19] Let Σ be a signature, X a set of variables, and � ⊆ Σ ×Σ
a quasi-order on operators. RPO >rpo⊆ TΣ(X)× TΣ(X) is defined as follows:

t >rpo t
′ def⇐⇒ t = f(t̄m) and

(1) ∃i ∈ {m̄}.ti ≥rpo t
′, or

(2) t′ = g(t̄′n) ∧ f � g ∧ ∀j ∈ {n̄}.t >rpo t
′
j , or

(3) t′ = g(t̄′n) ∧ f ∼ g ∧ {|t̄m|} >mul
rpo {|t̄′n|},

where a � b ⇔ a � b ∧ b � �a, a ∼ b ⇔ a � b ∧ b � a. {| . . . |} stands for a
multiset7. The partial order >mul is a multiset order w.r.t. > 8.

The following property holds.

Proposition 2. [19] Let (Σ,E) be a specification. If there exists � such that
� is well-founded, then >sub ⊆ >rpo, >rpo is well-founded, and closed under
contexts and substitutions, i.e. l >rpo r implies f(. . . , lθ, . . .) >rpo f(. . . , rθ, . . .)
for each f ∈ Σ and θ ∈ TX .

To give a well-founded order � on operators declared in a module, we intro-
duce the notion of recursive dependency on operators [18,14]. Let (Σ,E) be a
specification. The relations  1

E , E⊆ Σ ×Σ are defined as follows: f  1
E g ⇐⇒

∃ f(· · · ) = r if c ∈ E. ( ∃p ∈ O(r). r|p = g(· · · ) ∨ ∃p ∈ O(c). c|p = g(· · · ) ),
and  E⊆ Σ × Σ is the reflexible and transitive closure of  1

E . The strict part
and the equivalent part of  E is defined as "E= E \ �E and ∼E= E ∩ �E

respectively. We have the following property.

Lemma 1. Let (Σ0, E0) ← [Σ1 | E1] and f, g ∈ Σ0 ∪ Σ1. If f ∈ DE0∪E1 and
g ∼E0∪E1 f then (1) g ∈ DE0∪E1 and (2) either g ∼E0 f or g ∼E1 f .

Proof. From the definition of ∼E, we have g  E0∪E1 f and f  E0∪E1 g. First,
we prove the claim (1). From the definition of  E, either g = f or g  1+

E0∪E1
f

holds. The former case is trivial from the assumption f ∈ DE0∪E1 . For the latter

7 A multiset is a collection where duplicated elements are allowed. For example,
{|a, a, b|} and {|a, b|} are different. FM(A) is the set of all finite multisets whose
elements are of a given set A, e.g. {|0, 2, 2|} ∈ FM(N ).

8 A multiset order >mul ⊆ FM(A)×FM(A) w.r.t. a partial > ⊆ A×A is defined as
follows: M1 >mul M2 ⇔ ∃X,Y ∈ FM(A).[X �= ∅∧X ⊆ M1 ∧M2 = (M1 \X)+Y ∧
∀y ∈ Y.∃x ∈ X.x > y]. For example, {|2, 2, 3|} >mul {|1, 1, 2, 3|} holds, where X = {|2|}
and Y = {|1, 1|}.
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case, there exists g(· · · ) = r if c ∈ E0 ∪ E1. Thus, g ∈ DE0∪E1 . Next, we prove
the claim (2). There are the following two cases: g ∈ DE0 and g ∈ DE1 . Consider
the case of g ∈ DE0 . It is trivial for the case of g = f . We assume g  1+

E0∪E1
f and

decompose the sequence as follows: g = f0  1
E0∪E1

f1  1
E0∪E1

· · ·  1
E0∪E1

fn = f
(n > 0). All fi are defined symbols of E0 ∪ E1 from the definition of  1

E and
the assumption of f ∈ DE0∪E1 . If h  1

E0∪E1
h′ and h ∈ DE0 then there exists

h(· · · ) = r if c ∈ E0 and h′ ∈ Σ0 since (Σ0, E0) ← [Σ1 | E1]. Thus, all fi are
defined symbols of E0 and g = f0  1

E0
f1  1

E0
· · ·  1

E0
fn = f . The opposite

side f  1
E0

g can be proved from the definition of  1
E and (1) in the same way.

Therefore, we have f ∼E0 g. Consider the case of g ∈ DE1 . Assume there exists
fi ∈ DE0 in g = f0  1

E0∪E1
f1  1

E0∪E1
· · ·  1

E0∪E1
fn = f . We have f ∈ DE0

from the same reason as above, and then we have g ∈ DE0 from f  1+
E0∪E1

g. It
contradicts g ∈ DE1 and (Σ0, E0)← [Σ1 | E1]. Thus, all fi are defined symbols
of E1 and we have f ∼E1 g. #$

We introduce the notion of decreasing rules [18,14]. Let g ∈ Σ. An equation
f(t̄m) = r if c is g-argument decreasing if for each subterm g(ūn) of r or c,
{|t̄m|} >mul

sub {|ūn|}. Then, we have the following sufficient condition for operational
termination.

Lemma 2. [14] Let (Σ,E) be a specification. If each equation f(t̄m) = r if c ∈ E
is g-argument decreasing for each operator g ∼E f , then (Σ,E) is operationally
terminating.

Proof. For any operator h included in r or c, either f "E h or f ∼E h holds
from the definition of  E . From the definition of RPO, >rpo w.r.t.  E satisfies
l >rpo r and l >rpo c. Since RPO is closed under substitution and contexts, all
conditions in Definition 3 hold. The specification is quasi-decreasing, and thus
operationally terminating. #$
Lemma 3. Let (Σ0, E0)← [Σ1 | E1]. Assume (0) each equation f(t̄m) = r if c
∈ E0 is g-argument decreasing for each operator g ∼E0 f , and (1) each equation
f(t̄m) = r if c ∈ E1 is g-argument decreasing for each operator g ∼E1 f . Then,
each equation f(t̄m) = r if c ∈ E0∪E1 is g-argument decreasing for each operator
g ∼E0∪E1 f .

Proof. Let f(t̄m) = r if c ∈ E0∪E1. Consider the case of f(t̄m) = r if c ∈ E0. If
g ∼E0∪E1 f , then g ∼E0 f or g ∼E1 f from Lemma 1. If g ∼E1 f , then g  E1 f
and f  E1 g. If f  E1 g, then f ∈ DE1 , and it contradicts the assumption of
hierarchical extension. Thus, g ∼E0 f and the equation is g-argument decreasing
from the assumption (0). Similarly, when f(t̄m) = r if c ∈ E1, it is g-argument
decreasing. #$

We have the following theorem of an incremental proof of operational termi-
nation.

Theorem 1. [14] Let (Σ0, E0) ← [Σ1 | E1]. Assume (0) and (1) in Lemma 3.
Then, (Σ0 ∪Σ1, E0 ∪ E1) is operationally terminating.

Proof. From Lemmata 2 and 3. #$
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4.2 Confluence

Confluence is another important property of TRSs. A specification is confluent if
all terms reduced from a same term are joinable. We write t0 ↑E t1 if there exists
t such that t →∗ t0 and t →∗ t1. Terms t0 and t1 are called joinable, denoted
by t0 ↓E t1, if there exists u such that t0 →∗ u and t1 →∗ u. Then, confluence
is defined as ↑E⊆↓E. Confluence guarantees the uniqueness of normal forms. If
u0 and u1 are normal forms of t then t →∗ u0 and t →∗ u1 and there should
be u such that u0 →∗ u and u1 →∗ u. Since u0, u1 are normal forms, we have
u0 = u = u1.

The congruence relation =E obtained from E is defined as the smallest equiv-
alence relation on terms satisfying that (1) f(t̄n) =E f(t̄′n) whenever ti =E t′i
for each i ∈ {n̄}, and (2) lθ =E rθ whenever cθ =E true for each ceq l = r if

c ∈ E. Equational reasoning is to prove or disprove t0 =E t1 for given t0, t1 and
E. For terminating and confluent E, t0 ↓E t1 can be checked in finite time, and
t0 ↓E t1 if and only if t0 =E t1.

The notion of critical pairs is useful to prove confluence of terminating spec-
ifications. Our approach to prove confluence is first to prove termination and
then to prove confluence by checking the joinability of critical pairs. We give a
definition of conditional critical pairs for CafeOBJ specifications.

Definition 5. [16] Let l0 = r0 if c0 and l1 = r1 if c1 be renamed equations of
E such that they do not share variables. If l0|p = t �∈ X and tσ = l1σ for a most
general unifier σ, then the triple (l0[r1]σ, r0σ) if c0σ and c1σ of terms is called
a conditional critical pair (CCP) of E. If these equations are renamed ones of
the same equation of E, p should be non-empty string (p �= ε). A CCP (t, t′) if
c is joinable if tσ ↓ t′σ for any substitution σ satisfying cσ →∗true. It is called
feasible if there exists σ such that cσ →∗true, infeasible if no such σ exists, and
trivial if t = t′. The set of all CCPs of E is denoted by CCP (E).

Note that and : Bool Bool -> Bool is an operator of the built-in module
BOOL. Infeasible (or trivial) CCPs are joinable. We have the following proposition.

Proposition 3. [16] If a specification is operationally terminating and every
CCPs are joinable, then it is confluent.

Checking Joinability of CCPs. In this section, we give a sufficient condi-
tion for joinability of CCPs. For unconditional TRSs, it is known that non-
overlapping and left-linear TRSs are confluent. However, the non-overlapping
is too strong for conditional ones. A typical use of conditional equations is to
describe equations with a same left-hand side with disjoint conditions, like ceq

l = r0 if c, and ceq l = r1 if not c . Instead of non-overlapping, we adopt in-
feasibility of CCPs [16]. Unfortunately, infeasibility is undecidable since we need
to check the absence of σ such that cσ →∗ true. Thus, for automated checker,
we should take an approximation for it.

We first give a sufficient condition for trivial CCPs. [C0] A CCP is a pattern of
(t, t) if c. Next, we give three conditions for checking infeasibility automatically.
The first one is that [C1] the condition c is a pattern of t and not t. The condition
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can be checked by just pattern matching. This approach may be extended by
adding other typical unsatisfiable patterns, like t and not (t or t′) made from the
combination of ceq l = r0 if c0, ceq l = r1 if c1, and ceq l = r2 if not (c0 or c1).
Instead of enumerating conceivable patterns, we may use CafeOBJ reduction as
follows. The second one is that [C2] c is reduced into false by the Hsiang’s
TRS of Boolean algebra, which reduces a Boolean formula into its exclusive-or
normal form (with the associative and commutative and, or and xor) [6]. The
following is (a part of) the built-in module BOOL in CafeOBJ, which implements
a Hsiang’s TRS [4]:

vars A B C : Bool

eq (false and A) = false . eq (true and A) = A .

eq (A and A) = A .

eq (A or A) = A . eq (false or A) = A .

eq (true or A) = true .

eq (A or B) = ((A and B) xor (A xor B)) .

eq (A xor A) = false . eq (false xor A) = A .

eq (A and (B xor C)) = ((A and B) xor (A and C)) .

eq (not A) = (A xor true) .

It is known that the exclusive-or normal form is true if the input term is valid,
and false if it is unsatisfiable. Thus, for example, the above Boolean terms t
and not t, and t and not (t or t′) can be reduced into false by the CafeOBJ
reduction command. In this case, although reduction of a term is needed, the
complexity can be estimated since only the equations in BOOL are used in the
reduction, and it depends on the form of the condition terms (mainly depends on
the number of or). The last one is that [C3] c can be reduced into false by all
rewrite rules (with the evaluation strategy implemented in CafeOBJ [1]). This
covers the case of the CCP (balanceA, balanceA− N) if balance A >= N and

N > balance A from the module ACCOUNT. The condition part balance A >=

N and N > balance A can be written into balance A >= N and not balance

A >= N by the equation eq N > M = not (M >= N), and reduced into false

by BOOL’s equations. By [C3], we may prove infeasibility of more CCPs than
the other conditions. For operationally terminating specifications, [C3] can be
checked in finite time, however, it is hard to estimate its computation complexity
since it depends on not only the size of the condition part but also the equations
of the specifications.

Non-overlapping Modules. To obtain a light-weight proof of confluence, we
give a condition for the hierarchical extension to avoid CCPs between different
modules. A TRS (Σ,E) is called a constructor system if every left-hand side
has no defined symbols except at the root position, i.e., ∀f(t̄n) = r if c. ∀i ∈
{n̄}. ti ∈ TΣ\DE

(X) [16]. If (Σ0,M0) ← [Σ1 | M1] and (Σ0 ∪ Σ1, E0 ∪ E1)
is a constructor TRS, there is no CCPs between e0 ∈ E0 and e1 ∈ E1 since
for a constructor system, only root position can be overlapped and the root
symbol of the left-hand side of each equation should be an operator declared in
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the module from the definition of the hierarchical extension. Constructor TRSs
seem to be reasonable to describe a specification since a term constructed by
constructors denotes an element of the sort and the meaning of an operator
defining some function is often defined for patterns of such terms constructed
by constructors. However, there is a difference of the meaning of the constructor
between constructor TRSs and constructor operators of CafeOBJ. In constructor
TRSs, the constructor means non-defined symbols, i.e. it does not appear as the
root symbol of the left-hand side of any equation. In CafeOBJ, an operator with
the attribute {constr} may appear as the root symbol, like ceq withdraw N A

= A if N > balance A in the module ACCOUNT. Thus, ΣC �= Σ \DE in general.
Another typical example is a specification of integers described by extending
Peano-style natural numbers as follows:

mod! BASIC-INT{

[Zero < Int] op 0 : -> Zero op (s_) (p_) : Int -> Int

var X : Int eq s p X = X . eq p s X = X . }

We give a condition such that there are no CCPs between different modules
although non-constructor systems like ACCOUNT and BASIC-INT are allowed.

Definition 6. A hierarchical extension (Σ0, E0) ← [Σ1 | E1] is called non-
overlapping if for each l = r if c ∈ E1, the left-hand side l does not involve any
defined symbol of E0, that is, l ∈ T(Σ1∪Σ0)\DE0

(X).

Unlike constructor TRSs, a left-hand side of an equation may have a defined
symbol at non root positions if the symbol is declared in the module itself in a
non-overlapping hierarchical extension.

For a non-overlapping hierarchical extension, there are no CCPs between e0 ∈
E0 and e1 ∈ E1. The following lemma holds straightforwardly.

Lemma 4. Let (Σ0, E0) ← [Σ1 | E1] be a non-overlapping hierarchical exten-
sion. Then, CCP (E0) ∪ CCP (E1) = CCP (E0 ∪ E1).

We have the following theorem for an incremental proof of confluence.

Theorem 2. Let (Σ0, E0) ← [Σ1 | E1] be a non-overlapping hierarchical
extension such that (Σ0 ∪ Σ1, E0 ∪ E1) is operationally terminating. If every
CCPs of CCP (E0) ∪ CCP (E1) satisfy either [C0] or [C1] (or [C2], [C3]), then
(Σ0 ∪Σ1, E0 ∪ E1) is confluent.

Proof. From Lemma 4, CCP (E0) ∪ CCP (E1) = CCP (E0 ∪ E1). Let ccp ∈
CCP (E0 ∪ E1). If ccp satisfies [C0], it is trivial. If ccp satisfies [C1] (or [C2],
[C3]), it is infeasible. Thus every CCPs are joinable, and (Σ0 ∪ Σ1, E0 ∪ E1) is
confluent from Proposition 3. #$
Example 5.

Since MNAT-OP ← MACCOUNT is a non-overlapping hierarchical extension,
CCP (ENAT-OP) is empty, CCP (EACCOUNT) has only the CCP

(balanceA, balanceA− N) if balance A >= N and N > balance A,

which satisfies [C3], i.e., is infeasible, ACCOUNT is confluence.
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4.3 Sufficient Completeness

Sufficient completeness is an important property of algebraic specifications [5].
Roughly speaking, sufficient completeness guarantees the existence of solutions,
where a solution means a term constructed by constructors.

Definition 7. [3] Let ((S,≤, Σ,ΣC), E) be a specification, SCT = {s ∈ S | f ∈
ΣC

ws ∨ (f ∈ ΣC
ws′ ∧ s′ ≤ s)} the set of constrained sorts, SLS = S \ SCT the

set of loose sorts, ΣSCT

= {f ∈ Σws | w ∈ S∗, s ∈ SCT } and Y an SLS-sorted
set of variables of loose sorts. We call E sufficiently complete if for each term
t ∈ TΣSCT (Y ), there exists a term u ∈ TΣC (Y ) such that t =E u.

Sufficient completeness of terminating specifications can be proved by check-
ing reducibility as follows: Assume that (Σ,E) is operationally terminating. If

each term t ∈ TΣSCT (Y ) is reducible whenever t has an operator ΣSCT \ ΣC ,
then there exists a normal form u ∈ TΣC (Y ), and thus t =E u. We give the
notion of quasi-C-reducibility, which is a straightforward extension of the notion
of quasi-reducibility.

Definition 8. A term f(t̄n) is basic if f ∈ ΣSCT \ ΣC and t̄n ∈ TΣC (Y ). A
specification is quasi-C-reducible if every basic terms are reducible.

Lemma 5. If a specification is operationally terminating and quasi-C-reducible,
then it is sufficiently complete.

Proof. Let t ∈ TΣSCT (Y ). If t has an operator f ∈ ΣSCT \ΣC , t is E-reducible.
From the operational termination, t has a normal form u ∈ TΣC (Y ). #$

In this section, we give a sufficient condition for checking quasi-C-reducibility
of basic terms. A basic term t is reducible when (1) it has a redex, that is, t|p = lθ
for some l = r if c, and (2) the redex can be rewritten, that is, cθ →∗ true.

Cover Sets. It is known that whether a basic term is a redex or not is decidable
and can be checked by using the notion of cover sets [8,12]. We define the notion
of cover sets for the quasi-C-reducibility.

Definition 9. The height of a term t, denoted by #(t), is defined as #(x) = 0

and #(f(t̄n)) = 1+max{#(ti) | i ∈ {n̄}}. The height of f ∈ ΣSCT

in E, denoted
by #(E, f), is defined as #(E, f) = max{#(f(l̄n)) | f(l̄n) = r if c ∈ E}.
Definition 10. A cut function cut(i, t), which cuts a term t whose height is
more than i and returns a term whose height is less than or equal i, is defined
as follows: cut′(0, t) = �s for a term t ∈ Ts, cut

′(n + 1, x) = x for a variable
x ∈ X , and cut′(n + 1, f(t̄n)) = f(cut′(n, ti)). cut(i, t) is obtained by replacing
the occurrence of � by fresh variables in cut′(i, t).

Definition 11. A cover set CS(M, f) of an operator f ∈ ΣSCT \ΣC in a module
M = [(S,≤, Σ,ΣC) | E] is defined as follows:

CS(M, f)≤i = {f(t̄n) | ti ∈ TΣC (Y ),#(f(t̄n)) ≤ i}
CS(M, f) = {cut(#(E, f), f(t̄n)) | f(t̄n) ∈ CS(M, f)≤#(E,f)+1}
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We have the following property.

Lemma 6. LetM = [(S,≤, Σ,ΣC) | E] be a specification. If all cs ∈ CS(M, f)

for all f ∈ ΣSCT \ΣC are reducible, then M is quasi-C-reducible.

Proof. It is trivial that every basic term is an instance of some cs. #$
Example 6. For NAT-OP, we have #(NAT-OP, +) = 2 and CS(NAT-OP, +) =
{0 + 0, 0 + s X, s X + 0, s X + s Y}. For ACCOUNT, we have
CS(ACCOUNT, balance) = {balance init, balance (deposit X Y),
balance (withdraw X Y)}.

Checking Reducibility of Cover Sets. In this section, we give three sufficient
conditions under which cs ∈ CS(M, f) is reducible.

Definition 12. Let cs ∈ CS(M, f). The disjunction of conditions of equations
applicable to cs, denoted by ccs, is defined as follows:

Ccs = {cθ | l = r if c ∈ E, lθ ≤sub cs}

ccs =

{
false if Ccs = ∅
t1 or t2 or · · · or tn if Ccs = {t̄n}

where an unconditional equation l = r is regarded as l = r if true.

Example 7. Let cs =balance (withdraw X Y) ∈ CS(ACCOUNT, balance). Then,
ccs = balance A >= X or X > balance A.

Similar to Section 4.2, we give three conditions for cs ∈ CS(M, f). [S1] Let
ccs = t1 or t2 or · · · or tn. Either (1) ti = true for some ti or (2) ti = not tj
for some ti and tj

9, [S2] ccs is reduced into true by the Hsiang’s TRS, and [S3]
ccs is reduced into true by all equations.

Let M = [Σ,E] and f ∈ ΣSCT \ΣC . If each cs ∈ CS(M, f) satisfies [S1] (or
[S2], [S3]), then cs is reducible, and M is quasi-C-reducible from Lemma 6.

Constructor Preserving. To prove sufficient completeness incrementally, we
give a condition for the hierarchical extension to keep TΣC (Y ) unchanged by
module imports.

Definition 13. A hierarchical extension ((S0,≤0, Σ0), E0) ← [(S1,≤1, Σ1) |
E1] is called constructor-preserving if (1) s �∈ S0 for each f ∈ ΣC

1 ws, and (2)
there is no s1 ∈ S1 such that s1 ≤1 s0 for each s0 ∈ S0

10.

We have the following property for constructor-preserving specification.

Lemma 7. If ((S0,≤0, Σ0, Σ
C
0 ), E0) ← [(S1,≤1, Σ1, Σ

C
1 ) | E1] is constructor-

preserving, then (1) #(E0, f) = #(E0 ∪ E1, f) for each f ∈ ΣSCT

0 and (2)
TΣC

0 ∪ΣC
1
(Y )s0 = TΣC

0
(Y )s0 for each s0 ∈ S0.

9 Here, the operator or is associative and commutative.
10 For example, introducing a subsort of an existing sort may specify an inheritance

in the sense of object oriented modeling [7].
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Proof. (1) E1 does not include f(l̄n) = r if c ∈ E1 from the definition of the
hierarchical extension. (2) Let t ∈ TΣC

0 ∪ΣC
1
(Y )s0 . Assume t has f : s̄i -> s ∈ ΣC

1 .
From the definition of constructor-preserving, s ∈ S1 and all operators between
the root and f are of ΣC

1 . Thus, t ∈ Ts1 , which contradicts t ∈ TΣC
0 ∪ΣC

1
(Y )s0 .

Therefore, t does not have f ∈ ΣC
1 and TΣC

0 ∪ΣC
1
(Y )s0 = TΣC

0
(Y )s0 . #$

We have the following theorem for an incremental proof of sufficient complete-
ness.

Theorem 3. Let M0 = ((S0,≤0, Σ0, Σ
C
0 ), E0)← [(S1,≤1, Σ1, Σ

C
1 ) | E1] = M1

be a constructor-preserving hierarchical extension such that (Σ0 ∪Σ1, E0 ∪E1)
is operationally terminating. If

1. each cs ∈ CS(M0, f) satisfies [S1] (or [S2], [S3]) for each f ∈ Σ
SCT
0

0 \ΣC
0 and

2. each cs ∈ CS(M1, f) satisfies [S1] (or [S2], [S3]) for each f ∈ Σ
SCT
0 ∪SCT

1
1 \ΣC

1 ,

then (Σ0 ∪Σ1, E0 ∪ E1) is sufficiently complete.

Proof. From Lemmata 5 and 6, it suffices to show that each cs ∈ CS(M0∪M1, f)

satisfies [S1] (or [S2], [S3]) (and thus reducible) for each f ∈ (Σ0∪Σ1)
(S0∪S1)

CT \
(Σ0∪Σ1)

C . From the definition of constructor-preserving, (Σ0∪Σ1)
C = ΣC

0 ∪ΣC
1 ,

and (Σ0 ∪ Σ1)
(S0∪S1)

CT

= Σ
SCT
0

0 ∪ Σ
SCT
0 ∪SCT

1
1 . For f ∈ Σ

SCT
0

0 , CS(M0, f) =

CS(M0 ∪M1, f) from Lemma 7. For f ∈ Σ
SCT
0 ∪SCT

1
1 , CS(M1, f) = CS(M0 ∪

M1, f) since M0 does not have f . Therefore, for each f ∈ (Σ0 ∪Σ1)
(S0∪S1)

CT \
(Σ0∪Σ1)

C , cs ∈ CS(M0∪M1, f) satisfies [S1] (or [S2], [S3]) from the assumptions
1 and 2. #$
Example 8. MNAT-OP←MACCOUNT is a constructor-preserving hierarchical ex-
tension. For NAT-OP, each element in the cover sets made from +, -, >= and >

satisfies [S1]. For ACCOUNT, each element in the cover sets made from balance

satisfies [S3]. Thus, ACCOUNT is sufficiently complete.

5 Conclusion

We proposed methods to prove termination, confluence and sufficient complete-
ness incrementally by checking syntactical conditions of specifications and re-
ducing terms. Among termination, confluence and sufficient completeness, our
proof methods assume different conditions: hierarchical extension for termina-
tion, non-overlapping extension for confluence, and constructor-preserving ex-
tension for sufficient completeness.

We give several kinds of conditions for checking infeasibilty (or quasi-C-
reducibility). Our example ACCOUNT satisfies only [C3] (or [S3]) and does not
satisfy [C1] (or [C2], [S1], [S2]). If we give the condition not (balance A >= N)

for the conditional equation ceq withdraw N A = A if N > balance A, then
ACCOUNT satisfies [C1]. One solution may be to give a guideline to describe speci-
fications satisfying the condition [C1] (or [C2], [S1], [S2]) for CafeOBJ specifiers,
which not only gives a lighter checker of the conditions but also may help reduce
the mistake when giving appropriate case-splitting.
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When using our methods, we may take a different class of modules for each
property. For example, consider the case of specifying ACCOUNT on BASIC-INT

given in Section 4.2 instead of NAT-OP, for example, BASIC-INT ← INT-OP ←
ACCOUNT-Z. Each of them may satisfy the constructor-preserving condition, how-
ever, INT-OP may not satisfy the non-overlapping condition with M + s N = s

(M + N) where s is a defined symbol of BASIC-INT. For such cases, termination
and sufficient completeness are proved incrementally according to BASIC-INT

← INT-OP ← ACCOUNT-Z, and confluence is proved according to (BASIC-INT ∪
INT-OP) ← ACCOUNT-Z where the union of BASIC-INT and INT-OP is regarded
as a single module.

In this article, we focus to formalize proof methods for conditional equations.
As future work, other important notions should be covered for the practical
use: associative and commutative (AC) attributes of operators, parameterized
modules, built-in modules, and so on. Our methods can be extended for deal-
ing with AC operators straightforwardly if we restrict no defined symbols are
AC operators. Then, our method covers practical case studies of OTS/CafeOBJ
specifications like [9,17]. The literatures [11,18] deal with AC operators, which
can be defined symbols. In addition, overlorded operators with order-sorts are
allowed in [18]. We may apply these techniques for conditional systems. The
literature [2] presents a sufficient completeness checker for conditional systems
with inductive theorem proving based on a tree grammars. The technique may
improve our sufficient completeness checker by extending applicable specifica-
tions.
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The Versatile Synchronous Observer

John Rushby

Computer Science Laboratory
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Abstract. A synchronous observer is an adjunct to a system model that
monitors its state variables and raises a signal flag when some condition
is satisfied. Synchronous observers provide an alternative to temporal
logic as a means to specify safety properties but have the advantage
that they are expressed in the same notation as the system model—
and thereby lower the mental hurdle to effective use of model checking
and other techniques for automated analysis of system models. Model
checkers that do use temporal logic can nonetheless employ synchronous
observers by checking for properties such as “never(flag raised).”

The use of synchronous observers to specify properties is well-known;
rather less well-known is that they can be used to specify assumptions
and axioms, to constrain models, and to specify test cases. The idea
underlying these applications is that the basic model generates more
behaviors than are desired, the synchronous observer recognizes those
that are interesting, and the model checker is constrained to just the
interesting cases. The efficiency in this approach is that it is usually
much easier to write recognizers than generators.

The paper describes and illustrates several applications of synchronous
observers.

1 Introduction

Model checkers are called that because, in their basic form, they check whether
a system defined as a finite state machine is a Kripke model of a specification ex-
pressed in a temporal logic. The selection of finite state machines for the system
description and (branching time) temporal logic for their specification has prag-
matic benefits: in this form, the model checking problem can be fully automated
and its complexity is linear in the size of both system and specification (although
the size of the system is often exponential in the number of its components).

However, the term model checking has grown beyond this precise usage and
now refers to any highly automated method for formal analysis of systems and
their specifications—as contrasted, for example, to methods that use interac-
tive theorem provers. Under this looser usage, specification methods other than
temporal logic may be employed, and one example is the synchronous observer.
Here, the system is described as a state machine, as before, and its specification
is likewise described by a state machine that observes the state variables of the

S. Iida, J. Meseguer, and K. Ogata (Eds.): Futatsugi Festschrift, LNCS 8373, pp. 110–128, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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system and sets a Boolean “flag” variable true as long as the required properties
hold. The “model checker” then verifies that the flag variable is always true.
Obviously, the flag variable can be used in either “parity”: we can choose to set
it true when the required property is satisfied or, alternatively, if it is violated.
For consistency in the examples, we will use state variables whose names are a
variant on ok for the former case and a variant on alarm for the latter.

Both the concept and the term “synchronous observer” were introduced in the
context of the synchronous languages developed in France and, in particular, by
the Lesar model checker for the language Lustre [1,2]. However, the idea is readily
adapted for use with temporal logic model checkers: we simply model check for
the temporal property always(ok) or always(NOT alarm) (this expresses the
never construct used in the abstract to this paper); the “always” operator may
be written as AG in a specification language based on the branching time logic
CTL (Computation Tree Logic), or as G or � in one based on Linear Temporal
Logic, LTL. If the model checker allows liveness properties (e.g., its specification
language provides the operator eventually, which may be written AF, F, or �)
then synchronous observers can likewise be extended to liveness properties.

An advantage claimed for synchronous observers over temporal logic speci-
fications is that a single language is used to describe both the system and its
required properties (and, as we will see later, also its assumptions). Furthermore,
engineers readily understand the method, since it is like adding a runtime check
to an executable program. In contrast, when using temporal logic specifications,
the engineer is required to learn and use one language and method for describing
the system, and another for specifying its properties. As we will see, many sim-
ple specification constructs are quite difficult to write as temporal logic formulas
and intermediate “pattern languages” have arisen to ease this difficulty [3].

The purpose of this paper is to describe and illustrate the uses and benefits of
synchronous observers. We begin with their familiar use in the specification of
properties and assumptions, and then proceed to less familiar uses where they
enable the specification of relational constraints and of axioms for uninterpreted
functions. We then turn from applications in verification to their use in the
construction of test cases. These illustrations of the versatility of synchronous
observers constitute Section 2 of the paper; brief conclusions are presented in
Section 3.

2 Synchronous Observers and Their Applications

In the subsections that follow, we introduce several applications for synchronous
observers.

2.1 Specification

We begin by describing the standard use of synchronous observers to specify
properties and assumptions, as in Lesar [2], but we do so in the framework of
model checkers that ordinarily use temporal logic specifications. To make our
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illustrations concrete, we use the syntax and tools of the SAL suite of model
checkers from SRI [4].

In SAL, systems are specified as synchronous or asynchronous compositions
of modules that read and write state variables of various (not necessarily finite)
types. Thus, an observer module can be written as follows.

observer: MODULE =

BEGIN

INPUT

<state variables>

OUTPUT

ok: BOOLEAN

INITIALIZATION

ok = TRUE

TRANSITION

[

<property> --> ok’ = TRUE

[]

ELSE --> ok’ = FALSE

]

END;

Here, <state variables> represents declaration of the observed state vari-
ables and their types, and <property> represents a Boolean expression over these
state variables that specifies the desired property. The observer sets the Boolean
flag variable ok to TRUE or FALSE according to whether the property is satisfied
or not: “primed” variables in SAL represent values in the “new” state, and “un-
primed” in the “old” state; the symbol --> indicates that the assignments are
“guarded” by the Boolean expression appearing to its left.

If the system is specified in a module system (which may itself be the compo-
sition of other modules), then the “observed system” is the synchronous compo-
sition of this with the observer, which is written as follows (in SAL, the symbol
|| represents synchronous composition).

observed: MODULE = (system || observer);

We can then specify the theorem correctness, which states that ok is always
true in the observed system.

correctness: THEOREM observed |- G(ok);

Depending on the types of the state variables in system, we can examine
correctness using the symbolic, bounded, or infinite-bounded model checkers
of SAL using shell commands such as the following.

sal-smc example.sal correctness

sal-bmc example.sal correctness -d 17 -it

sal-inf-bmc example.sal correctness -i -d 2 -ice
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The first of these invokes SAL’s symbolic (BDD-based) model checker on the
theorem correctness in the file example.sal; this will prove the theorem if
it is true, or provide a counterexample if it is not (of course, it may also run
out of memory or time). The second invokes the bounded (SAT-based) model
checker to search for a counterexample up to depth 17, operating iteratively
(i.e., depth 1, depth 2,. . . ); the third invokes the infinite-bounded (SMT-based)
model checker to attempt proof by k-induction at depth 2 (i.e., 2-induction),
and to provide an inductive counterexample if this fails.

The basic construction illustrated above allows checking of invariants over
the state variables of the system; it can be extended to general safety properties,
including bounded liveness properties and properties on transitions, by adding
new variables to the state of the observer that act as “history variables” to
remember the values of system state variables some time in the past.

2.2 Assumptions

Systems are seldom expected to satisfy their specifications in an unconstrained
environment; usually there are assumptions about the environment and the sys-
tem is required to satisfy its specification only in cases where the assumptions
are satisfied.

Like properties, assumptions also can be described by synchronous observers
and the verification method can be suitably adjusted to ensure that the required
properties are satisfied for all those reachable states that satisfy the assumptions.

In SAL, we could use an assumptionsmodule, defined in a similar way to the
observer module in the previous section, but using a flag variable aok (for “as-
sumptions OK”) whose assignments are guarded by Boolean expressions over the
state variables that specify the assumptions. We then form the synchronous com-
position of the system, assumptions, and observer and state the requirement
that the correctness property should be true whenever the assumptions are sat-
isfied (the symbol => represents implication in SAL).

constrained: MODULE = (system || assumptions || observer);

requirement: THEOREM constrained |- G(aok => ok);

Actually, the LTL formula suggested above G(aok => ok) raises some inter-
esting issues. Consider the trace of some imaginary system shown below, which
displays the values of aok and ok in the first six steps (where T represents true,
and F false).

step 1 2 3 4 5 6

aok: T T T F T T

ok: T T T T F T

This fails to satisfy the formula G(aok => ok) because ok is false at step 5
while aok is true. But aok itself was false at step 4 and usually we do not care
what happens after the assumptions have been violated.
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To specify this different requirement in LTL, it is convenient to use the “weak
until” operator W, which is usually defined in terms of the “strong” variant U as
follows (where ∨ indicates disjunciton):

W(p, q)
def
= G(p) ∨ U(p, q).

Intuitively, U(p, q), which is primitive in most formulations of LTL, requires that
q eventually becomes true, and that p is true until (and possibly beyond) that
point; W is the same but relaxes the requirement for q to become true if p is
invariantly true. A subtle point is that LTL formulas are defined only on infinite
traces; however, most model checkers extend interpretation of G and W (but not
F or U) to finite traces. Using the W operator, our adjusted requirement can be
written in SAL as follows.

requirement_alt1: THEOREM constrained |- W(ok, NOT aok);

Intuitively, this says that ok must be true until aok is false, and it accepts the
trace we saw earlier, and also the following one.

step 1 2 3 4 5 6

aok: T T T F T T

ok: T T T F F T

Here, both aok and ok go false at step 4. There are several formulations of
compositional reasoning (e.g., [5, 6]) that require the assumptions to fail before
the property. The trace above does not satisfy this requirement, but the first
one does. An LTL formula that specifies the “fails before” requirement uses the
strong until operator U and is expressed in SAL as follows.

requirement_alt2: THEOREM constrained |- NOT U(aok, NOT ok);

Most readers will surely agree that it is not easy to see that this formula
captures exactly the informal requirement that aok fails before ok; neither is
it straightforward to comprehend the difference between this formula and the
earlier one using W, nor why the positions of ok and aok are reversed in the
arguments to W and U.

We are employing a “hybrid” approach here: using synchronous observers to
specify properties and assumptions, and temporal logic to combine them. This is
rather unnatural and was done to illustrate some of the complexities in writing
temporal logic specifications.

Exploiting synchronous observers more fully, it becomes straightforward to
say what we mean. First, we adjust the assumptions module so that it does
nothing if the <assumption> is satisfied and “latches” aok as soon as it becomes
false.
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assumptions: MODULE =

BEGIN

INPUT

<state variables>

OUTPUT

aok: BOOLEAN

INITIALIZATION

aok = TRUE

TRANSITION

[

<assumption> -->

[]

ELSE --> aok’ = FALSE

]

END;

Then we modify the observer module so that it takes aok as an input and
latches ok to false if the desired <property> ever goes false when aok is true.

observer: MODULE =

BEGIN

INPUT

aok: BOOLEAN,

<state variables>

OUTPUT

ok: BOOLEAN

INITIALIZATION

OK = TRUE

TRANSITION

[

aok AND NOT <property> --> ok’ = FALSE

[]

ELSE -->

]

END;

Now we use the model checker simply to verify that ok is invariantly true.

requirement_simplified: THEOREM constrained |- G(ok);

This combination of observers requires the assumptions to fail before the
property; if we wish to allow the assumptions to fail at the same time as the
property, then we can simply replace the appearance of aok in the observer
guard by aok’.

As always when theorems have the form of an implication, as these implicitly
do, it is prudent to check that they are not vacuously true: that is, we should
check that the antecedent is not invariantly false. There is a large literature
on the related problem of vacuity detection in LTL formulas (e.g., [7]) and the
necessary tests become quite difficult. However, this difficulty is a result of the
complex LTL formulas used to state the basic property of interest. If we use
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synchronous observers of the form described above, then all we need to do is
check that each of the positive flag variables can remain true and each of the
negative ones can remain false at least one step beyond its initialization. In
the example, this is accomplished by seeking a counterexample to the following
formula, which asserts that aok is false in the second step.

check_simple: CLAIM constrained |- X(NOT aok);

Of course, an alternative is to prove the positive claim X(aok), but this is com-
putationally more demanding (with a bounded model checker, it requires k-
induction).

2.3 Expressivity

Model checkers in which the system is specified by state machines generally
provide some way to describe how the values of state variables are updated on
a state transition. For example, in SAL, the expression

x’ = x + y

indicates that the “new” value of the state variable x is the sum of the current
values of itself and the state variable y. Nondeterministic assignments are often
supported as well, as in the following example, where x is nondeterministically
assigned a value between 25 and 50, inclusive.

x’ IN { a: nat | a >= 25 AND a <= 50 }

Now, suppose we wish to specify that the new value of x can be any value
larger than its current value. In SAL we could write

x’ IN { a: nat | a > x }

but not all model checkers provide this expressivity. Another option, available
in those languages that provide guarded commands is the following.

(x’ > x) --> x’ IN { a: nat | TRUE }

But notice this requires a primed variable to appear in the guard, and not all
model checker state machine languages allow this.

In this simple case, an alternative would be to use an auxiliary variable that
is nondeterministically set to the amount by which x should be incremented.
However, this does not solve the general problem, which is that of updating
(possibly several variables of) the state so that some constraint is satisfied—
such as to nondeterministically update real variables x and y so that they lie on
a unit circle (i.e., x*x + y*y = 1).

However, one method that is almost always feasible uses a synchronous ob-
server. Returning to the simple example of nondeterministically incrementing x:
in the main system specification, we make an unconstrained nondeterministic
assignment to x as follows.
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x’ IN { a: nat | TRUE }

Then, in a synchronous observer module, we enforce the desired relation using
cok (for “constraints OK”) as our flag variable as follows.

TRANSITION

[

(x’ > x) -->

[]

ELSE --> cok’ = FALSE

]

If the language does not allow primed variables in the guards, then we will need
to introduce a history variable oldx to remember the previous value of x.

TRANSITION

oldx’ = x;

[

(x > oldx) -->

[]

ELSE --> cok’ = FALSE

]

Then we model check for whatever property p we had in mind, but only in
cases where cok is true.

constrained_prop: THEOREM (system || constraints) |- G(cok => p)

Or, if the required property is specified by a synchronous observer with flag
variable ok, we would use the following variant.

constrained_req: THEOREM

(system || observer || constraints) |- G(cok => ok)

Rather than the explicit implication G(cok => ok), we can also use the meth-
ods of the previous section. Note that if we are using a history variable in the
constraints module, then the property p or flag ok must also be defined in a
similar way, or should reference oldx rather than x, as otherwise the property
will be out of step with the constraint.

Sometimes, we may we wish to consider only traces in which the constraints
are satisfied globally. For example, in the following trace the constraint is violated
at step 6, but it may be that some earlier decisions made this violation inevitable.

step 1 2 3 4 5 6

cok: T T T T T F

ok: T T T F F T

Hence, although the required property is violated at steps 4 and 5, we consider
this entire scenario invalid because the constraint is not globally true. If desired,
although it is seldom appropriate, we can specify this interpretation as follows
(and, of course, we can do the same for other kinds of assumptions as well).
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globally_constrained_req: THEOREM

(system || observer || constraints) |- G(cok) => G(ok)

Note that this is a liveness property and cannot be verified by bounded model
checkers, although they can find counterexamples.

Using observers to specify constraints is especially useful when we wish to up-
date multiple variables in a way that enforces a relation on them as, for example,
the case mentioned earlier of points constrained to lie on a circle. This finds par-
ticular application in specifying relational abstractions for hybrid automata [8].
Unlike other methods for abstracting hybrid automata, which typically abstract
the state space, relational abstraction retains the state space (i.e., continuous
variables continue to range over the reals) but simplifies the transition relation.

Generally, we start with a true hybrid automaton (i.e., a state machine plus
differential equations) and calculate a relational abstraction in the manner de-
scribed by Sankaranarayanan and Tiwari and mechanized in the HybridSAL
Relational Abstractor [9]. But another approach, suitable when we have or need
only a crude model of the dynamical system, is to assert a relational abstraction
as the model. An example is described in [10]; there, the basic task is analysis
of human-machine interaction and only crude models of the aircraft automation
and dynamics are needed, such as “when automation is in a climb mode, the
pitch angle must be positive” and “when the pitch angle is positive, the altitude
increases.” These are specified in a constraints module as follows.

INITIALIZATION

cok = TRUE;

TRANSITION

[ actual_mode = op_des AND pitch > 0 --> cok’ = FALSE;

[] actual_mode = op_clb AND pitch < 0 --> cok’ = FALSE;

[] actual_mode = vs_fpa AND fcu_fpa <= 0 AND pitch > 0

--> cok’ = FALSE;

[] actual_mode = vs_fpa AND fcu_fpa >= 0 AND pitch < 0

--> cok’ = FALSE;

[] pitch > 0 AND altitude’ < altitude --> cok’ = FALSE;

[] pitch < 0 AND altitude’ > altitude --> cok’ = FALSE;

[] pitch=0 AND altitude’ /= altitude --> cok’ = FALSE;

[] ELSE -->

] END;

Observe that each guard is the negation of a desired constraint (e.g., the
first guard is the negation of the natural constraint actual mode = op des =>

pitch <= 0). This is because we generally require all assumptions or constraints
to be satisfied—i.e., they are conjoined together—whereas guarded commands
are disjoined. Hence, we apply De Morgan’s rule and disjoin the negations. An
alternative is to conjoin all the (unnegated) constraints together in the guard of
a single command.

This subsection has shown how synchronous observers provide expressivity
that can assist in the construction of system models. This is a different topic
than their expressivity with respect to the classes of properties that can be
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specified, which will be considered in Section 3. In the following subsection, we
continue our examination of the use of synchronous observers in the construction
of system models by considering the case of very abstract models that employ
uninterpreted functions.

2.4 Axioms for Uninterpreted Functions

Traditional model checkers require the system model to be totally explicit—
effectively, a program or hardware circuit—and this is one of the reasons that
interactive theorem provers are preferred for some verification tasks. For reasons
of efficiency or generality, we often wish to abstract some parts of a design prior
to verification. One way to do this is to replace parts of the design by a nondeter-
ministic component (this is feasible with traditional model checkers) but a more
general and attractive method is to use uninterpreted functions constrained by
suitable axioms.

One standard example in model checking is to verify correctness of the bypass
logic in a model of a processor pipeline [11]. The pipeline feeds values into an
arithmetic logic unit (ALU) and a standard way to verify its correctness is to
prove that the outputs of the ALU are the same in a processor design with and
without the pipeline. In traditional model checking we need to provide some
implementation for the ALU; if this is fully accurate the verification complexity
may be very high, but if it is simplified (e.g., every operation is an addition)
some flaws in the bypass logic may be masked by the simplification (e.g., a flaw
that transposes arguments will be masked by the commutativity of addition);
and if the simplification is excessive (e.g., nondeterministic) then the property
may become unverifiable. A much more attractive solution is to model the ALU
by an uninterpreted function ALU(x, y): that is, a function about which we
know nothing. If we did wish the function to be commutative for some reason,
we would add the following axiom.

∀x, y : ALU(x, y) = ALU(y, x)

First order logic provides uninterpreted functions and, when restricted to the
unquantified case (i.e., all variables are implicitly universally quantified), the
theory of uninterpreted functions with equality is decidable. Interactive theorem
provers provide uninterpreted functions and often a decision procedure to au-
tomate the unquantified case and, for this reason (among others), they may be
preferred to conventional (i.e., finite-state or explicit-state) model checkers for
some verification tasks.

However, the theory of uninterpreted functions is one of the core theories
automated in modern solvers for satisfiability modulo theories (SMT) [12] and
bounded model checking can be generalized to use these solvers, yielding infinite
bounded model checkers, abbreviated as inf-BMC [13] (“infinite” because SMT
includes theories of infinite cardinality such as the integers and rationals).

Inf-BMC blurs the line between model checking and theorem proving and is
widely used for verification of models that use linear arithmetic, arrays, and
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other theories decided by SMT. It would also be very attractive to incorporate
uninterpreted functions into inf-BMC models, but we must then find a way to
convey any axioms about the functions to the underlying SMT solver. By now,
readers will not be surprised to learn that synchronous observers provide a way
to do this. The method is basically the same as that described in the previous
section.

For example, suppose we have a system with one integer-valued state variable
called count and that the behavior of the system is simply to apply an uninter-
preted function f to this variable at each step. This can be specified in SAL as
follows.

f(x: int): int;

system: MODULE =

BEGIN

OUTPUT

count: int

INITIALIZATION

count = 0

TRANSITION

count’ = f(count)

END;

Now suppose we wish to assert the axiom ∀x : f(x) ≥ x and then prove
that count is always non-negative. We introduce a synchronous observer called
constraints that does nothing as long as the axiom about f is satisfied, but
sets the flag variable cok to false when it is violated.

constraints: MODULE =

BEGIN

INPUT

count: integer

OUTPUT

cok: BOOLEAN

INITIALIZATION

cok = TRUE

TRANSITION

[

f(count) >= count -->

[]

ELSE --> cok’ = FALSE

]

END;

We then synchronously compose the system and the observer and state the
theorem that count is non-negative provided the axiom flagged by cok is satis-
fied.

nonneg: THEOREM (system || constraints) |- G(cok => count >= 0);
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The SAL inf-BMC can prove this by 1-induction.

sal-inf-bmc increments.sal nonneg -i -d 1

If we modify the guard encoding the axiom to read as follows, so that f(x)

f(count) >= count - 375 -->

can be less than x, then the SAL inf-BMC constructs a 1-step counterexample
in which f(0) = -1.

This ability of SMT solvers, and hence of inf-BMC, to construct witnesses
for uninterpreted functions is very useful: it helps us to discover necessary con-
straints, as described in the following section.

2.5 Discovering Assumptions

The previous sections have described how synchronous observers can be used to
specify assumptions, axioms, and constraints. The descriptions assume we know
these beforehand and merely need to formalize them in a way that is feasible and
effective for model checking. A variant problem is that of discovering suitable
assumptions and constraints. Synchronous observers are very convenient for this
purpose. We can start with an “empty” assumptions observer of the following
form, where aalarm is a flag for “assumption alarm” and is set true when the
assumptions are violated. (It is “empty” because the command with guard FALSE

can never be taken.) Incidentally, we are using a “negative” flag variable here
simply for variety.

assumptions: MODULE =

BEGIN

OUTPUT

aalarm: BOOLEAN

INPUT

<state variables>

INITIALIZATION

aalarm = FALSE

TRANSITION

[

assumption_violation:

FALSE --> aalarm’ = TRUE

assumptions_ok:

[] ELSE -->

]

END;

Then we model check for the property of interest p when aalarm is false.

learn_assumptions: LEMMA (system || assumptions) |- G((NOT aalarm) => p)

If this formula is violated, the counterexample should suggest a missing assump-
tion, which we add to the assumptions module (below the FALSE guard).
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[] NOT <new assumption> --> aalarm’ = TRUE

We proceed in this way until all necessary assumptions have been discovered.
The use of counterexamples to guide discovery of assumptions can be employed
no matter how the assumptions are represented. But this form of synchronous
observer is a particularly attractive representation because it allows each newly
discovered assumption to be added as a new guard: it is truly incremental. By
contrast, a more tightly integrated representation of the assumptions might re-
quire substantial revision at each step.

control_out

errorflag
data_in

data_in
control_out

errorflag

m_data

ideal

di
st

ri
bu

to
r

ch
ec

ke
r

controller

c_data

ideal_out

safe_out

fault

con_out

data_in

merror

cerror

mon_out
controller
(monitor)

assumptions

violation

self−checking pair

Fig. 1. “Box and Arrow” Diagram of a Self-Checking Pair

This approach combines very well with that of the previous subsection. Un-
interpreted functions are very attractive for the highly abstract modeling that
is appropriate for the upper levels of system design, where systems are often
represented by “box and arrow” diagrams. Flaws at this level of design are a
major cause of incidents in aircraft software [14]. Traditionally, it has been diffi-
cult to apply any mechanized analysis to this level of description, so often they
are prematurely “prototyped” in a simulation environment like Simulink and the
prototype then becomes the requirement. However, uninterpreted functions can
be used to provide suitably abstract semantics for a box and arrow diagram and
the methods of this and the previous subsection can then be used to analyze it
and to discover its properties and required assumptions.



The Versatile Synchronous Observer 123

An example, taken from [15] and shown in Figure 1 illustrates this. Here,
the goal is to deduce the assumptions under which a “self-checking pair” works
correctly. Self-checking pairs are used quite widely in safety-critical systems to
provide protection against random hardware faults: two identical controllers per-
form the same calculations and their results are compared; if they differ the pair
shuts down (thereby becoming a “fail-stop” processor [16]) and some higher-
level fault management activity takes over. Obviously, this does not work if
both controllers become faulty and compute the same wrong result. We would
like to learn if there are any other scenarios that can cause a self-checking pair
to deliver the wrong result; we can then assess their likelihood (for example, the
double fault scenario just described may be considered extremely improbable)
and calculate the overall reliability of this architecture.

In the SAL model corresponding to the box and arrow diagram shown in Fig-
ure 1, the controllers simply compute some uninterpreted function f of their
inputs, unless they are faulty—in which case the produce some nondeterministic
(but incorrect) output. The components shown in red are synchronous observers
(the arrows represent the state variables that they observe). The ideal box
serves as a correctness specification: it computes the same function f as the real
controllers but never fails. The requirement is that if the (as yet undetermined)
assumptions are not violated, and if the checker component does not signal a
fault, then the output of the self-checking pair should be the same as that of the
ideal controller.

Among the assumptions discovered (see [15] or [17] for fuller descriptions) is
one that says a faulty distributor component must not relay different, incorrect
values x and y to the two controllers such that f(x) = f(y) (x and y correspond
to c data and m data in the diagram). This would be a Byzantine fault on the
part of the distributor (this can occur—even when the implementation of the
distributor is as simple as a solder joint—if voltages or timing are close to their
boundaries) and is unlikely to be discovered in simulation experiments. This is
because we would first have to anticipate the possibility of Byzantine faults and
build this into the simulation model for the distributor, and would also have to
supply some concrete instantiation for f(x) (e.g., x+1) and are unlikely to choose
one that can produce the same output for different inputs. In contrast, the SMT
solver underneath inf-BMC synthesizes whatever behavior of the distributor and
whatever instantiation of f are needed to construct a counterexample.

2.6 Test Cases

All the applications of synchronous observers that we have seen so far concern
their use in verification. A quite different application is their use in test genera-
tion. It is well-known that model checkers can be used to construct test cases: if
we seek a test characterized by a property p then we model check for G(NOT p)

and the counterexample provides a test case.
One difficulty in exploitation of this idea is to decide what properties p cor-

respond to good test cases, and how to specify such p. Often, tests are based
on structural coverage of the source program or specification: that is, we aim
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to find a suite of tests that exercises each statement or branch (or visits each
state or transition). This can be accomplished by adding “trap variables” that
are set true when some coverage target is encountered, and then using these
variables in definition of p [18]. Unfortunately, model checkers are so good at
finding counterexamples that the tests produced by this method are often short
and very similar to each other [19].

A better approach uses a synchronous observer to indicate whether the trace
seen so far satisfies some “test purpose.” The observer merely has to recog-
nize tests satisfying its purpose, then raise a flag tok (for “test OK”). We then
model check for G(NOT tok) and the model checker effectively performs con-
straint satisfaction to generate tests satisfying that purpose. This approach is
very effective. Several examples are given in the manual for the SAL test gener-
ator sal-atg [20]. One concerns the “shift scheduler” for the automatic gearbox
of a car.

The inputs to this component are torque, velocity, and gear; its outputs
drive actuators that change clutch pressures and thereby influence the gearbox
to select a different gear. The goal of test generation in this example is to find
sequences of inputs that drive the state machine of the shift scheduler through
all its transitions and this is easily accomplished by sal-atg. However, the
test cases have many “discontinuities” in the gear input: that is, the currently
selected gear may go from 2 to 4 to 1 in successive inputs. We might suppose that
a more realistic test sequence would not have these discontinuities, and therefore
propose a test purpose in which the gear input changes by at most one at each
step. We can implement this purpose by adding the following observer to the
SAL specification of the shift scheduler.

purpose: MODULE =

BEGIN

INPUT

gear: [1..4]

OUTPUT

continuous: BOOLEAN

INITIALIZATION

continuous = (gear=1);

TRANSITION

continuous’ = continuous AND (gear - gear’ <= 1)

AND (gear’ - gear <= 1);

END;

monitored_system: MODULE = (scheduler || purpose);

Here, the purpose module takes gear as input and produces the Boolean
output continuous: this output remains TRUE as long as the sequence of in-
puts changes by at most 1 at each step (and starts at 1). The purpose mod-
ule is then synchronously composed with the existing scheduler to yield the
monitored system. We then repeat test generation, but indicate to sal-atg

that the flag continuous, representing the test purpose, must remain true.
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It turns out that the test generated holds the gear input constant for long
periods (e.g., the first ten inputs that it generates are 1, 1, 1, 1, 1, 1, 2, 3, 3, 3)
so we might adjust the test purpose to additionally require that the gear input
always changes value from one step to the next. It is easy to add this to the
purposemodule and we then obtain a single test of length 51 that discharges all
the coverage goals while satisfying the enlarged test purpose (the first ten gear

inputs are 1, 2, 3, 2, 3, 2, 3, 2, 3, 2).

3 Discussion and Conclusion

I hope the examples in this paper serve to alert readers to the utility and versatil-
ity of synchronous observers. The first examples that we considered were focused
on the use of observers to specify properties and assumptions. The main advan-
tage that we claim for this application of synchronous observers is convenience:
it is generally easier and less error-prone to specify properties and assumptions
in this way than to write temporal logic formulas. But convenience aside, do we
give up any expressiveness in using synchronous observers rather than temporal
logic?

In the “hybrid” case where we use observers to define flag variables and tem-
poral logic to combine them, the answer is obviously “no,” because we have the
full resources of both methods at our disposal. So let us focus on the case where
flag variables are used only in formulas of the form G(ok) and G(aok => ok),
and compare these to general temporal logic formulas over “natural” state vari-
ables (i.e., state variables that are intrinsically part of the system model, not
those introduced as observers). The main loss with synchronous observers is that
they are restricted to safety properties and therefore cannot specify general live-
ness properties. However, most applications are not concerned with possibilities
in the indefinite future (e.g., “every request eventually receives a response”), but
with explicit bounds (e.g., “every request receives a response within 8 steps, or
returns an error”), and these are safety properties.

On the other hand, synchronous observers can specify properties that LTL
cannot (an example is “p is true on every alternate state”). Industrial specifi-
cations languages such as the Accellera/IEEE Property Specification Language
(PSL) [21] and SystemVerilog Assertions (SVA) [22] extend LTL with regular
expressions and thereby achieve approximate expressive parity with synchronous
observers.1 CTL and LTL are mutually incomparable and some properties that
are in CTL but not LTL may also be beyond the reach of synchronous observers
(because CTL can specify nondeterministic possibilities whereas synchronous
observers monitor single threads).

In general, it is safe to assume that synchronous observers have approximately
the same expressive power as industrial assertion languages based on LTL, when

1 We say “approximate” because, although regular expressions are equivalent to finite
automata, the comparison here is complicated by the presence of state variables
ranging over possibly infinite types and constrained by theories and, in the case of
SVA, local variables.
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the latter are restricted to safety properties. Hence, selecting between the two
approaches can be based on user preferences, tool capabilities, and overall work-
flows, rather than fundamental limitations.

The later examples that we considered focussed on the use of observers to
enhance the class of system models that can be defined conveniently. These
include models where updates to state variables must maintain some constraint,
and those where axioms are applied to uninterpreted functions. The methods
used in these examples were later used to facilitate the discovery of suitable
constraints, and the specification of test purposes.

The idea underlying these applications is that the basic system model gener-
ates more behaviors than are desired, the synchronous observer recognizes those
that are “good” (or “bad,” depending on the parity) and raises a flag appropri-
ately, and the model checker is constrained to scenarios where the flag is raised.
The value in this approach derives from the fact that it is usually much easier
to specify systems that recognize desired behavior than those that generate it.
Of course, the approach is “inefficient” in that the basic system model gener-
ates many scenarios that are rejected and “thrown away” by the observer and
this may make it unsuitable for explicit-state model checkers, which really do
have to enumerate all behaviors. But there is no comparable penalty when using
symbolic model checkers, whether based on BDDs, SAT, or SMT: the observer
simply adds to the constraints that must be solved by the underlying symbolic
method.

Despite their versatility, synchronous observers are intuitive and easy to use:
the system, its requirements, assumptions, axioms, and test plans are all written
using the same state-machine notation, and this reduces the learning burden
for verification and test engineers. Furthermore, it eliminates the need to use a
property specification language (apart from “canned” formulas such as G(p)):
in traditional model checking, the need to learn a property language based on
temporal logic is often a major obstacle to adoption and effective use.

Synchronous observers closely correspond to runtime monitors for executable
programs, and this also is a familiar concept to most engineers. Furthermore,
assumptions for high-level models, possibly discovered in the manner described
in Section 2.5, can provide the basis for runtime monitors that deliver signif-
icant benefit in system reliability [23]. These monitors could even be formally
synthesized directly from the model and this is an attractive direction for future
research.
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Abstract. We present the implementation of a model checker for sys-
tems with a potentially infinite number of reachable states. It has been
developed in the rewriting-logic language Maude. The model checker is
explicit-state, that is, not symbolic. In infinite systems, we cannot ex-
pect it to finish in every case: it provides a semi-decision algorithm to
validate guarantee formulas (or, equivalently, to falsify safety ones). To
avoid getting lost in infinite paths, search is always performed within
bounded depth. The properties to be checked are written in the Tempo-
ral Logic of Rewriting, TLR*, a generalization of CTL* that uses atomic
propositions both on states and on transitions, providing, in this way, a
richer expressive power. As an intermediate step, a strategy language is
used. Guarantee formulas are first translated into strategy expressions
and, then, the system and the strategy evolve in parallel searching for
computations that satisfy the strategy and, thus, the formula. An ex-
ample on verifying cache coherence protocols is presented, showing the
usefulness of the tool.

Keywords: Infinite-state system, rewriting logic, Maude, model check-
ing, strategy, temporal logic, TLR*, guarantee formula, cache coherence.

1 Introduction

Rewriting logic is a language for the specification of concurrent systems [19].
It is also an executable logic, which makes it a very useful formalism. Maude
is a language and development system that incorporates both equational logic
and rewriting logic [11]. Parallelism and nondeterminism are natural features of
rewriting logic and Maude.

We now describe a very simple system that we use to introduce some im-
portant concepts in this paper. There are a number of counting devices in the
system. Each time some external event happens, one and only one device detects
it and increases its own counter. In order to be able to share data, the devices
are organized as a ring, so that each device knows to whom it must send its
messages, that are then resent until they have visited the whole ring. As we do
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not care about the nature of the events being counted, in our model each device
is able by itself to increase its counter by one and immediately send a message
to its next device. Here is the complete Maude specification:

mod COUNTING is

protecting NAT .

sort Id .

subsort Nat < Id .

sort Device .

op [_,_,_] : Id Id Nat -> Device [ctor] .

sort Message .

op _|>_ : Id Id -> Message [ctor] .

sort State .

subsorts Device Message < State .

op nullState : -> State [ctor] .

op __ : State State -> State [ctor comm assoc id: nullState] .

vars I J N : Id . var A : Nat .

rl [change] : [I, N, A] => [I, N, s(A)] (I |> N) .

crl [resend] : [I, N, A] (J |> I) => [I, N, s(A)] (J |> N) if I =/= J .

rl [remove] : (I |> I) => nullState .

endm

Types are introduced in Maude by the keyword sort. A Device is built by
enclosing between square brackets three natural numbers: the device’s Id, the Id

of the next device in the ring, and the counter. A Message is given by two Ids:
the first argument is the sender’s Id, and the second the addressee’s Id. The last
sort we need is the State of the system. Maude uses an order-sorted type system.
Thus, we declare that any Device or Message, by itself, constitutes a State. We
also provide an operator with empty syntax, __, that allows to juxtapose any
number of States to get a new one. Note that the comm and assoc attributes
given to the operator allow commutative and associative matching. This way of
defining states is a usual idiom in Maude. We have also declared a nullState to
be used as identity element for states.

The three rewrite rules represent the different ways the system can evolve.
Rule change represents the counting of an event and the sending of the associated
message. Rule resend states that when device I sees a message addressed to
itself, it updates its counter and resends the message to the next device. It
is a conditional rule, because this should only happen for devices other than
the original one. Rule remove just drops a message whose sender and addressee
coincide—that is, the message has already visited the whole ring. Notice that the
variable I is used twice: this rule should only be applied when both arguments
of a message are equal.

A nice property of rewriting logic is that both states and transitions between
states can be represented by terms. In the example, states are represented by
terms of sort State, like [0, 1, 5] [1, 0, 5]. Transitions are represented by
terms on a larger signature, so-called proof terms [19]. For instance, the transition

[0, 1, 5] [1, 0, 5] −→ [0, 1, 5] [1, 0, 6] (1 |> 0)

is represented by this proof term:
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{[0, 1, 5] [] | ’change : (’I \ 1) ; (’N \ 0) ; (’A \ 5)}

This is a triple of a context (a term with a hole symbol [] showing where
the rewrite took place), the name of the rule that has been applied, and the
substitution used. (The leading quotes are a syntactic requirement of Maude.)

Atomic propositions on states and on transitions can be declared, and their
satisfaction relations be defined, based on the shape of the term representing
them. Once defined, they can be used to formally express temporal properties by
means of temporal-logic formulas. For the example system, a proposition selfMsg

that asserts that some message has completed its trip around the ring, and
another parametric proposition rule that asserts that the transition is executing
the rule whose label is given in its argument can be defined like this:

var I : Id . var S : State . var Cn : Context$State .

var L : Qid . var Sb : Subst . var T : Trans .

op selfMsg : -> StateProp [ctor] .

eq (I |> I) S |= selfMsg = true .

eq S |= selfMsg = false [owise] .

op rule : Qid -> TransProp [ctor] .

eq {Cn | L : Sb} |= rule(L) = true .

eq T |= rule(L) = false [owise] .

Thus, a State satisfies selfMsg iff it matches the pattern (I |> I) S.
The Temporal Logic of Rewriting TLR* [20] has been designed to take profit

of this strength of rewriting logic. The logic CTL* allows only propositions
on states; TLR* extends CTL* by allowing also propositions on transitions.
Some interesting properties of systems are only naturally expressible using both
state and transition propositions. For instance, the TLR* formula G(selfMsg →
rule(’remove)) asserts that each time a message has completed its trip around
the ring it must be immediately removed.

The model checker we have implemented accepts guarantee formulas of TLR*.
Guarantee formulas assert that some property is going to hold in the future. For
instance, F selfMsg asserts that, at some future time, the system will arrive to
a state satisfying selfMsg. The model checker explores all possible evolutions of
the given system in search for that future time in which the property holds. If
the formula happens to be false for the given system, the algorithm may not ter-
minate: thus, for infinite systems, it only provides a semi-decision algorithm (but
a complete decision one for finite systems). Bounded-depth search is necessary
to avoid getting lost into an infinite branch when, perhaps, the answer is on an-
other. Our implementation provides a way to specify the maximum depth to be
explored. Also, it provides a command to ask the system to explore some more
levels based on the open branches left by a previous model-checking command.
Note that any tool that can verify guarantee formulas can also be used to falsify
safety ones through the duality trick of verifying their (guarantee) negations.

Internally, the model checker uses strategies. Strategies [22,8,17] applied to
system specifications are a means of guiding their evolution and restricting
their nondeterminism. The strategy “any+ . selfMsg”, for instance, accepts only
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executions that, after some positive number of steps, land on a state that satisfies
selfMsg. And the strategy “(rule(’change) ; rule(’resend)+ ; rule(’remove))+”
guides the system in such a way that once a message is added to the system, it
is processed by all the devices and removed before a new event can be counted.

We will describe below a strategy language and show how TLR* guarantee
formulas can be translated into it. We internally implement the strategies and
use this implementation to model check TLR* guarantee formulas.

In the rest of the paper we first review rewrite systems, proof terms, TLR* and
its semantics, and the strategy language and its semantics, following [20], and
then we show how all of them are used to implement the model checker. Then
we present an example on verifying the MSI cache coherence protocol. We finish
with some related work and conclusions. An extended version of this paper can
be found in [18]. Also, the complete Maude specifications for the model checker
as well as for some examples, including the MSI cache coherence protocol, are
available for download at http://maude.sip.ucm.es/ismc.

2 Rewrite Systems

Formally, a rewrite system [19] is a triple R = (Σ,E,R), where Σ is an order-
sorted signature, E a set of equations, and R a set of rewrite rules of the form
l : q → q′, with l a label, and q, q′ terms of the same sort and such that all
variables in q′ appear also in q. Such a triple specifies a concurrent, nondeter-
ministic system in which the states of the system are E-equivalence classes of
ground terms [t]E ; that is, the initial algebra TΣ/E constitutes the state space.
The dynamics of the system are given by the rewrite rules in R. As states are
equivalence classes of terms, rewriting happens also at this level. Thus, a transi-
tion from state [t]E to state [t′]E , denoted by [t]E −→1

R [t′]E , is possible in R iff
there exist u ∈ [t]E and u′ ∈ [t′]E such that u can be rewritten to u′ using some
rule l : q → q′ in R.

For arbitraryE andR, whether [t]E −→∗
R [t′]E holds is undecidable in general.

Definition 1 (computable rewrite system [20]). A rewrite system R =
(Σ,E∪A,R) (where the set of equations has been split into two disjoint subsets)
is computable if E, A and R are finite and the following conditions hold:

1. Equality modulo A is decidable, and there exists a matching algorithm modulo
A, producing a finite number of A-matching substitutions or failing other-
wise, that can implement rewriting in A-equivalence classes.

2. (Σ,E∪A) is ground terminating and confluent modulo A. That is: (i) there
are no infinite sequences of reductions with E modulo A; and (ii) for each
[t]A ∈ TΣ/A there is a unique A-equivalence class [canE/A(t)]A ∈ TΣ/A,
called the E-canonical form of [t]A modulo A, such that the last term, which
cannot be further reduced with E modulo A, of any terminating sequence
beginning at [t]A is necessarily [canE/A(t)]A.

http://maude.sip.ucm.es/ismc
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3. The rules R are ground coherent relative to the equations E modulo A.
That is, if [t]A is rewritten to [t′]A by a rule l ∈ R, then [canE/A(t)]A is also
rewritten by l to some [t′′]A such that [canE/A(t

′)]A = [canE/A(t
′′)]A.

These three conditions imply that for each sort S ∈ Σ the relation −→1
R,S is

computable: one can decide [t]E∪A −→1
R [t′]E∪A by generating the finite set of

all one-step R-rewrites modulo A of canE/A(t) and testing if any of them has
the same E-canonical form modulo A as [canE/A(t

′)]A.
The three conditions are quite natural and are typically met in practical

rewriting-logic specifications. In Maude, the set of equations A is given by oper-
ator attributes like comm and assoc used in the example of Section 1, for which
Maude knows specific matching algorithms.

3 Proof Terms and Computations

In rewriting logic computation and proof are equivalent. Given a system R =
(Σ,E∪A,R), the state [u]E∪A can be rewritten to [u′]E∪A if and only if the infer-
ence rules of rewriting logic [19,9] allow to prove R ' [u]E∪A →+ [u′]E∪A. Single
rewritings are witnessed by so-called one-step proof terms. One-step proof terms
can be characterized in an algebraic fashion. We define the signature Trans(Σ)
(Trans for “transition”), on which one-step proof terms are built, extending Σ
in this way:

– For each sort S ∈ Σ, we add a new sort Trans(S) to Trans(Σ), and state that
S < Trans(S), that is, S is a subsort of Trans(S). Terms of sort Trans(S)
represent one-step rewrites between terms of sort S.

– Given a rule l : q → q′ in R, let S be the sort of q and q′, and let the
variables appearing in q, taken in their textual order of appearance, have
sorts S1, . . . , Sn. Then, for each such rule l ∈ R, we add to Trans(Σ) a new
function symbol l : S1 × · · · × Sn → Trans(S).

– For each function symbol f : S1×· · ·×Sn → S in Σ and each i = 1, . . . , n, we
add to Trans(Σ) an overloaded function symbol (with the same attributes
as the original f) f : S1 × · · · × Trans(Si)× · · · × Sn → Trans(S).

In this paper, we assume that the sort of the terms that represent states of the
system is called State. In that case, Trans(State) is the sort of one-step proof
terms. We declare Trans as a convenient synonym for Trans(State).

Thus, a proof term has the form v[l(ū)]p: a term v of sort State whose subterm
at position p has been replaced by l(ū). In such a proof term, v[ ]p shows the
context in which the rewrite is taking place, l is the rule being executed, and the
substitution x̄ (→ ū is being used, where x̄ is the tuple of all the variables in q in
the textual order in which they appear.

Now consider the rewrite system Trans(R) = (Trans(Σ), E ∪ A,R). There
are no new equations and no new rules. Thus, if R is computable (as defined in
Section 2), so is Trans(R). In particular, every term has a unique E-canonical
form modulo A. For each sort S, let (CanTrans(Σ)/E∪A)S denote the set of all
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A-equivalence classes of the form [canE/A(t)]A, where t is a ground-term of
sort S. Thus, (CanTrans(Σ)/E∪A)Trans describes the set of all transitions between
States in the system specified by R in their canonical form representation. And
(CanΣ/E∪A)State = (CanTrans(Σ)/E∪A)State describes the set of all States.

Definition 2. [20] A computation (s, t) in R is a pair of functions

s : N→ (CanΣ/E∪A)State and t : N→ (CanTrans(Σ)/E∪A)Trans

such that for all n ∈ N we have s(n)
t(n)−→ s(n + 1). Usually, we write si = s(i)

and ti = t(i), and we consider s and t as sequences. Thus, the computation

s0
t0−→ s1

t1−→ s2
t2−→ · · · is represented as (s, t) = (s0s1s2 . . . , t0t1t2 . . . ).

Note that we only consider infinite computations. This allows an easier def-
inition of the semantics, and it is not at all a strong restriction. See [20] for
details.

Computations are the semantic entities on which the truth of TLR* formulas
is evaluated.

4 Temporal Logics and TLR* Guarantee Formulas

Temporal logics, in their different flavors, are a usual formalism to express the
properties we expect a system to satisfy as it evolves in time. Usually, temporal
logics fall in one of two classes according to the kind of atomic propositions they
use: state-based or action-based. State-based logics, like LTL, CTL and CTL*,
can only talk directly about states [10]. Action-based logics, like A-CTL* [12]
and Hennessy-Milner logic [16], can only talk directly about actions (that is,
transitions). Rewriting logic provides algebraic structure both to states and to
actions and TLR* was designed to form a good tandem with it [20].

The formulas our model checker understands are guarantee formulas with a
leading path quantifier, either universal or existential. They constitute a sublogic
of TLR*. We define its syntax now, with σ denoting an atomic state proposition
and τ an atomic transition proposition:

φ ::= ) | ⊥ | σ | ¬σ | τ | ¬τ | φ1 ∨ φ2 | φ1 ∧ φ2 | Xφ | φ1 Uφ2 | Fφ
ϕ ::= Aφ | Eφ

The definition of the semantics, following [20], is given below. Remember that
s0 and t0 always denote the first state and transition in the sequences s and t,
respectively. Also, for a computation (s, t), its suffix resulting by removing the
first k elements from s and from t is denoted by (s, t)k.

– R, (s, t) |= );
– R, (s, t) �|= ⊥;
– R, (s, t) |= σ ⇔R, s0 |= σ;
– R, (s, t) |= τ ⇔R, t0 |= τ ;
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– R, (s, t) |= ¬φ⇔ R, (s, t) �|= φ;

– R, (s, t) |= φ1 ∨ φ2 ⇔R, (s, t) |= φ1 or R, (s, t) |= φ2;

– R, (s, t) |= Xφ⇔R, (s, t)1 |= φ;

– R, (s, t) |= φ1 Uφ2 ⇔ ∃k s.t. R, (s, t)k |= φ2 and ∀i ∈ [0, k),R, (s, t)i |= φ1;

– R, (s, t) |= Fφ⇔ ∃k s.t. R, (s, t)k |= φ;

– R, s0 |= Aφ⇔ for all computations (s, t) we have R, (s, t) |= φ;

– R, s0 |= Eφ⇔ for some computation (s, t) we have R, (s, t) |= φ.

Thus, an existentially quantified formula, Eφ, represents a reachability pred-
icate, while a universally quantified one, Aφ, has the semantics of a linear tem-
poral formula.

5 A Strategy Language

There exists a rich strategy language for Maude [17]. Now we describe another
such strategy language, proposed in [20], designed with the construction of the
model checker in sight. As above, we denote by σ and τ generic atomic proposi-
tions on states and transitions. The syntax contains three syntactic categories:
Test (tests on states), Strat (strategy expressions), and StratForm (strategy for-
mulas). Here, e, e1, e2 are strategy expressions, and b, b1, b2 are tests.

– Test : b ::= ) | ⊥ | σ | ¬b | b1 ∨ b2 | b1 ∧ b2
– Strat : e ::= idle | τ | ¬τ | any | e1 ∧ e2 | (e1 | e2) | e1 ; e2 | e+ | e1 U e2 | e . b
– StratForm: f ::= A e | E e

Formal semantics are given below. A few informal explanations follow on the
operators that may not be trivial:

– The strategy idle does nothing, is always satisfied, and leaves the system in
the same state it was.

– The expression e1 ; e2 means sequential composition, that is, the system is
first guided by e1 and then, when e1 has finished its job, by e2.

– The strategy e1 U e2 is an until operator: e1 holds for subcomputations be-
ginning at the first state, at the second, and so on, until a subcomputation
beginning at state n ≥ 0, and then e2 holds from state n+ 1.

– The strategy e . b combines e with a test b. It holds iff e holds and the test b
succeeds for the last state reached.

Our model checker internally works with strategies, but we want the user to
introduce TLR* guarantee formulas. So a semantically appropriate translation
from the former to the latter is needed. It is given by the function [20]

β : TLR* guarantee formulas→ Strat
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defined by

β(φ) = idle . φ for φ = ),⊥, σ,¬σ
β(φ) = φ for φ = τ,¬τ
β(φ1 ∨ φ2) = β(φ1) | β(φ2)

β(φ1 ∧ φ2) = β(φ1)∧ β(φ2)

β(X φ) = any ; β(φ)

β(φ1 Uφ2) = β(φ1)U β(φ2)

β(Fφ) = (idle | any+) ; β(φ)
In the next section we define a semantics for strategy expressions with the

aim of making φ and β(φ) semantically equivalent for each formula φ.

6 Strategy Semantics

Our semantics is different, but equivalent, to the one defined in [20] (see also
[18]). Two nice features of our semantics are:

1. That it is bounded by definition. We are defining the relation R, (s, t) |=k e
with the intuitive meaning that the computation (s, t) needs to perform at
most k steps before satisfying e. (This is in the same spirit as the bounded
semantics defined in [7].)

2. That it allows a step-by-step implementation. That is, we are able to check
whether R, (s, t) |=k e by, first, checking whether (s0, t0) is a step compatible
with e, and, second, checking whether the rest of the computation (s, t)1

satisfies the rest of e in at most k − 1 steps.

The semantics uses two auxiliary functions with these intuitive meanings:

fail(e) = does e always fails, for any computation and with no need to take any
step? A posteriori, fail(e) means that e is semantically equivalent to idle .⊥.

tick(e) = is e always satisfied, for any computation and with no need to take
any step? A posteriori, tick(e) means that e is semantically equivalent either
to idle or to idle | e′ for some e′.

Definition 3 (fail and tick). The functions fail, tick : Strat → Bool are defined
as shown in this table:

e fail(e) tick(e)
idle false true
τ false false
¬τ false false
any false false
e1 ∧ e2 fail(e1) ∨ fail(e2) tick(e1) ∧ tick(e2)
e1 | e2 fail(e1) ∧ fail(e2) tick(e1) ∨ tick(e2)
e1 ; e2 fail(e1) ∨ fail(e2) tick(e1) ∧ tick(e2)
e1

+ fail(e1) tick(e1)
e1 U e2 fail(e1) ∧ fail(e2) tick(e2)
e1 . b fail(e1) ∨ b ≡ ⊥ tick(e1) ∧ b ≡ )
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The most important function in the definition of the semantics is rests0,t0(e).
It answers the question: what strategy, derived from e, remains to be satisfied
after step (s0, t0)? For instance, rests0,t0(idle |(τ ; any)) = any if t0 satisfies τ .
We define this function below, based on the structure of the formula.

In some cases, the result of rests0,t0(e) is a disjunction, showing the different
ways in which a step can be taken. For instance, e1 ; e2 can take a step in
two nonexclusive ways: (i) e1 takes a step to become rests0,t0(e1), with e2 still
pending behind, or (ii) e1 is already satisfied and then e2 takes a step to become
rests0,t0(e2). In cases like this, we use a convenient shorthand notation, showing
each possible first step on a different line.

Definition 4. The notation
e1
| e2 if B

where e1 and e2 are strategies and B is a Boolean expression, is equal to just
(e1) if B evaluates to false, and is equal to ((e1) |(e2)) if B evaluates to true.

Definition 5 (rests0,t0). Given s0 and t0 (a state and a transition from it), the
function rests0,t0 : Strat → Strat is defined by:

e rests0,t0(e)
idle idle .⊥
τ if R, t0 |= τ then idle else idle .⊥
¬τ if R, t0 |= τ then idle .⊥ else idle
any idle

e1 ∧ e2
rests0,t0(e1)∧ rests0,t0(e2)
| rests0,t0(e1) if tick(e2)
| rests0,t0(e2) if tick(e1)

e1 | e2
if fail(e1) then rests0,t0(e2)
if fail(e2) then rests0,t0(e1)
otherwise rests0,t0(e1) | rests0,t0(e2)

e1 ; e2
rests0,t0(e1) ; e2
| rests0,t0(e2) if tick(e1)

e1
+ rests0,t0(e1) ; (idle | e1+)

| idle if tick(e1)

e1 U e2

rests0,t0(e2)
| idle if tick(e2)
| e1 U e2 if tick(e1)
| rests0,t0(e1)∧(e1 U e2) if ¬ fail(e1)

e1 . b
rests0,t0(e1) . b
| idle if tick(e1) ∧R, s0 |= b

Note that rests0,t0(e) is never called with an e such that fail(e), and thus we
avoid some cases in the definition.

The last case in this definition uses the semantics for Test , that follows the
usual definition for Boolean expressions, as shown next.
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Definition 6 (Test semantics). Given a rewrite system R, a state s0, and a
Test on states b:

R, s0 |= )
R, s0 �|= ⊥
R, s0 |= σ according to the definition of σ, i.e., iff E ∪ A ' (s0|=σ) = true

R, s0 |= ¬b⇔R, s0 �|= b

R, s0 |= b1 ∨ b2 ⇔R, s0 |= b1 or R, s0 |= b2

R, s0 |= b1 ∧ b2 ⇔R, s0 |= b1 and R, s0 |= b2

The semantics for strategies and strategy formulas are given in the following
two definitions:

Definition 7 (Strat semantics). Given a rewrite system R, a strategy e, a
computation (s, t), and an integer k, we define the bounded semantic relation
|=k, whose value can be true, false or uncertain, by case distinction:

If fail(e) then R, (s, t) |=k e is false for every k
else if tick(e) then R, (s, t) |=k e is true for every k
else if k = 0 then R, (s, t) |=0 e is uncertain
else R, (s, t) |=k e = R, (s, t)1 |=k−1 rests0,t0(e)

Definition 8 (StratForm semantics). Given a rewrite system R, a strategy e,
a computation (s, t) (with s0 always denoting the first state in s), and an integer
k, we define the bounded semantic relation |=k, whose value can be true, false or
uncertain, by case distinction:

R, s0 |=k A e is true ⇔ R, (s, t) |=k e is true for all (s, t)
R, s0 |=k A e is false ⇔ R, (s, t) |=k e is false for some (s, t)
R, s0 |=k A e is uncertain otherwise

R, s0 |=k E e is true ⇔ R, (s, t) |=k e is true for some (s, t)
R, s0 |=k E e is false ⇔ R, (s, t) |=k e is false for all (s, t)
R, s0 |=k E e is uncertain otherwise

Theorem 1. [20,18] Given a computable rewrite system R, a TLR* guarantee
formula φ and a computation (s, t) in R, we have

R, (s, t) |= φ⇔ ∃k ∈ N such that R, (s, t) |=k β(φ) is true
R, s0 |= Aφ ⇔ ∃k ∈ N such that R, s0 |=k Aβ(φ) is true
R, s0 |= Eφ ⇔ ∃k ∈ N such that R, s0 |=k E β(φ) is true

Proof (sketch). Based on the definition, semantic equivalences e ≡ e′ between
strategy expressions e and e′ can be proved just by proving that fail(e) = fail(e′),
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tick(e) = tick(e′), and rests0,t0(e) ≡ rests0,t0(e
′). In this way, we get some intu-

itive and useful equivalences. For instance:

e | e′ ≡ e′ if fail(e)
idle ; e ≡ e

With equivalences like these, a proof of the theorem by structural induction is
straightforward. We review just the case for the X operator:

R, (s, t) |= Xφ ⇔ (TLR* semantics)
R, (s, t)1 |= φ ⇔ (induction hypothesis)
∃k s.t. R, (s, t)1 |=k β(φ) is true ⇔ (semantic equivalence)
∃k s.t. R, (s, t)1 |=k idle ; β(φ) is true ⇔ (definition of rests0,t0)
∃k s.t. R, (s, t)1 |=k rests0,t0(any ; β(φ)) is true ⇔ (strategy semantics)
∃k s.t. R, (s, t) |=k+1 any ; β(φ) is true ⇔ (definition of β)
∃k s.t. R, (s, t) |=k+1 β(X(φ)) is true

7 The Implementation

Maude has reflective capabilities through its metalevel [11]. That means, for
instance, that using the Maude language we can ask Maude itself about the
possible rewrites from some given state, so that we can manipulate them in our
code. We use the metalevel to compute and explore all evolutions of the system.

Functions equivalent to tick, fail, and rests0,t0 have been coded into Maude.
With this we make the strategy evolve at the same time as the system. To avoid
getting lost in infinite branches, we use a bounded depth-first search. The depth
is a parameter the user provides. The tool includes a command to search some
additional levels when the previous search has not been conclusive. This shows
a scheme of the algorithm:

s0
e := β(φ)

s1
rests0,t0(e)

. . . . . .

s2
rests1,t1(rests0,t0(e))

. . . . . .

. . .

t0

t1

t2

d

At each node, the algorithm checks whether the state definitively satisfies the
strategy, or it definitively does not, or more states have to be explored. It has
to take care of a few more points not mentioned yet:

– Whether the quantifier is forall or exists to stop or continue the search
when a satisfying or falsifying node is found.
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– Storing the path from the initial state to the current one for loop detection
and witness reporting. This is achieved by means of an ordered list of (state,
strategy) pairs. At present, we do not store the whole set of visited nodes,
so that our tests for repetitions are limited to the current path.

– Storing the open branches of the computation tree, in case they are later
needed for a deeper search. It is not enough to store the set of leaves open
at the depth bound, but whole paths to all of the open leaves are needed,
so that a new, deeper search will be able to do loop detection and witness
reporting properly from the original initial state.

The model checker, as it is, does not show an industrial-level performance and,
although we show its usefulness below, it must be rather seen as a prototype.

The tool’s user interface has two components: some commands related to
model checking (described later), and an operator on modules, called EXTENDED.
Given a system module—let us call it UserMod—our tool is able to generate
the module EXTENDED[UserMod] and put it at the user’s disposal. The operator
EXTENDED assumes and needs that UserMod has a sort named State. The module
EXTENDED[UserMod] adds to UserMod the following (syntax largely borrowed from
[3,5]):

– New sorts Trans, StateProp, and TransProp, and satisfaction operators

op |= : State StateProp -> Bool . op |= : Trans TransProp -> Bool .

– For each sort S in UserMod, a new sort Context$S, a subsort declaration
S < Context$S, and an overloaded constant op [] : -> Context$S.

– For each constructor operator, say op f : S1 S2 ... Sn -> S, new operators

op f : Context$S1 S2 ... Sn -> Context$S .

...

op f : S1 S2 ... Context$Sn -> Context$S .

– The constructor for proof terms

op {_|_:_} : Context$State Qid Subst -> Trans .

Note that this is not the algebraic syntax proposed in Section 3, but is
equivalent to it and more convenient for implementation.

– New sorts Assign and Subst, with the subsort relation Assign < Subst.

– For each sort S in UserMod, an operator op _\_ : Qid S -> Assign.

– New operators to build substitutions:

op noSubst : -> Subst .

op _;_ : Subst Subst -> Subst [comm assoc id: noSubst] .

– An operator op _instanceOf_ : Subst Subst -> Bool and equations to de-
fine the instanceOf relation as true when the first argument, taken as a set
of assignments, is a subset of the second.
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Users need to write at least two modules:

(mod UserMod is (mod UserMod-FULL is

sort State . extending EXTENDED[UserMod] .

... op foo : -> StateProp .

endm) ...

endm)

The first one, UserMod, has the whole specification of the system in the usual
Maude way. Of course, it can import other modules as needed. The other mod-
ule has to include the instruction extending EXTENDED[UserMod]. In this second
module the users—having at their disposal all the infrastructure on proof terms,
satisfaction, etc.—can define their own atomic propositions to be used in TLR*
formulas, as we did in the example of Section 1. The definition of initial states
is usually included in this second module as well.

The main model-checking command the user can issue is

(ismc [d] s |= q φ .)

Here, d is a natural number that specifies the maximum depth in the system’s
state space to which the search has to be performed; s is a term of sort State;
q is a quantifier, either the literal exists or forall; and φ is a TLR* guarantee
formula.

The concrete syntax for TLR* guarantee formulas is:

φ ::= TRUE | FALSE | σ | NOT σ | τ | NOT τ | φ1 AND φ2 | φ1 OR φ2 |
X φ | F φ | φ1 U φ2

The possible answers to a model-checking command are Yes or No, with a
witness computation when appropriate, or DontKnow when the search was not
conclusive, followed in this case by the number of open tasks left. Witnesses and
counterexamples can be, in particular, looping computations. In the DontKnow

case, the tool keeps in its memory all the open tasks, so that this new command
can be issued:

(ismc deeper [d] .)

This asks the model checker to search d more levels for each open task remaining
after the latest ismc or deeper command.

There are also two set commands:

– (ismc set loops on / off .)

– (ismc set contexts on / off .)

The first instructs the tool to look (or not) for possible looping computations
as it searches. It must be noted that in a loop not only states have to repeat,
but also the strategies coupled with them. Detecting loops is not for free, as it
involves the storing of information and the comparison of terms. Some model-
checking tasks in which loops happen to be rare benefit notably from disabling
loop detection. However, in many cases the effort is worthwhile—it may even be
the only way to reach a final answer.

The command about contexts instructs the tool to generate (or not) contexts
for proof terms. Contexts tend to be seldom used in practice; when they are not
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used, one gains some performance by setting contexts off (about 10% to 20%
according to our measures).

8 Verification of the MSI Cache Coherence Protocol

As an example to test our tool, we have chosen cache coherence protocols, a
problem that does not seem to have been previously modeled in rewriting logic.
In multiprocessor computers it is frequently the case that a small cache memory
is attached to each processor. This cache memory, or just cache, holds a copy of
a part of the main memory. A processor only reads from and writes to its cache,
improving in this way the overall computer’s performance. The cache coherence
problem arises because several caches may hold copies of the same main-memory
address, and the respective processors may write different data on them.

To avoid this problem, cache coherence protocols have been devised, that
dictate the actions a cache must perform according to the orders that arrive
to it. Here we consider one of the best-known protocols: MSI. In this protocol,
like in most others, each cache line is marked with a mode that determines the
validity of the information it stores. A cache line is the smallest chunk of memory
that can be moved between the main memory and a cache. In MSI a cache line
can be in one of three modes:

Modified: the line has been modified in this cache, so other copies of the same
memory address, both in caches and in main memory, are unreliable;

Shared: the line is valid and so is every other copy of the line stored in any
cache and in main memory;

Invalid: the line is not valid, presumably because it has been modified else-
where.

The initials of these three modes give its name to the protocol. We abbreviate
the three modes as mdf, shr, and inv.

There is usually a bus through which all communication between caches and
main memory happens. MSI was designed for buses that do not allow direct
communication of data from cache to cache. However, the caches are able to
snoop the bus, that is, to monitor it to detect when another cache is trying to
access a certain main-memory address. By snooping, a cache cannot see the data
being read or written by another cache, but only its address in main memory.

To simplify the model, operations on the bus are taken to be atomic, that is,
they are fully dealt with before the system does anything else. Reality is usually
not that simple, but considering technicalities on the bus side would make the
model unnecessarily complex. Also, we assume that each cache only contains one
line of information. This turns out to be an unrealistic but sensible simplification:
each operation happens to a particular line, all other lines in the cache being
irrelevant to this operation.

A computer is a finite object. Although the number of processors and the
size of the memory are not limited in principle, once a computer is built and
running, these numbers are fixed. Or this was so until the advent of virtual
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machines. Virtualization software allows running operating systems on virtual
hardware that is not mapped in a one-to-one fashion to actual hardware. The
online manual for VMware vSphere 5.1 [23] states: “When the virtual machine is
turned on [. . . ] you can hot add virtual CPUs to the running virtual machine.”
Thus, we include in our model the possibility of adding new processors on the
fly, which turns the number of states reachable from a given one into infinite.

First, we need the data structures. A Line consists of two natural numbers
representing the address and the data stored. Caches and processors are indepen-
dent entities, identified and coupled by its ChipId (a Nat). A CPU, or processor,
contains just its ChipId and a Boolean that indicates whether it sent a message
to its cache and is waiting for the answer. A cache registers its ChipId, its mode
and its only line of information.

sorts Mode Line CPU Cache .

ops mdf shr inv : -> Mode [ctor] .

op line : Address Data -> Line [ctor] .

op cpu : ChipId Bool -> CPU [ctor] .

op cache : ChipId Mode Line -> Cache [ctor] .

Main memory is declared as a set of lines enclosed in double curly brackets:

sort MemContents . subsort Line < MemContents .

op mtMemContents : -> MemContents [ctor] .

op __ : MemContents MemContents -> MemContents

[ctor comm assoc id: mtMemContents] .

eq MC:MemContents MC:MemContents = MC:MemContents .

sort Memory .

op {{_}} : MemContents -> Memory [ctor] .

The bus is not a distinct entity in our model: there are BusMessages loose in
the state. There are also LocalMessages, that is, messages between a processor
and its cache, whose means of transmission is of no concern to us either.

sorts BusMessage LocalMessage .

op bus-read : ChipId Address -> BusMessage [ctor] .

op bus-hereur : ChipId Line -> BusMessage [ctor] .

op read : ChipId Address -> LocalMessage [ctor] .

op hereur : ChipId Line -> LocalMessage [ctor] .

op write : ChipId Line -> LocalMessage [ctor] .

We want to control the amount of memory addresses and of possible data
values available, so that they can be kept to the minimum we need in each
moment. We do so by defining a sort of sets on natural numbers, NatSet, and
these two sorts:

sorts AddressRange DataRange .

op aRange : NatSet -> AddressRange [ctor] .

op dRange : NatSet -> DataRange [ctor] .

A State is defined as a soup of elements, enclosed in curly brackets:

sort StateContents .

subsorts CPU Cache Memory BusMessage LocalMessage

AddressRange DataRange ChipId < StateContents .
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op mtStateContents : -> StateContents [ctor] .

op __ : StateContents StateContents -> StateContents

[ctor comm assoc id: mtStateContents] .

sort State .

op {_} : StateContents -> State [ctor] .

We also store in the state the maximum ChipId currently used, so that adding
new caches is easier. Some provisos are missing that are important. For instance,
one and only one Memory, AddressRange, and DataRange should exist in a given
State, and there should be as many Caches as CPUs, coupled by id. These and
others will be enforced in the initial states we use and in the rules that govern
the system.

Let us consider now the dynamics of the system. A processor starts sending
a read or write order. Its cache, and maybe others, reacts in a number of ways,
depending on where the information is stored. There are ten possible cases a
cache must be ready to react to: from its processor it can receive a read or a
write order; from the bus it can snoop a read or a write being performed on
another cache, or also an invalidate signal (to be explained soon). Each of these
five cases unfolds into two, as we need to separately consider a hit, that happens
when the order the cache receives refers to the memory address that the cache
is already storing, and a miss, which is the opposite.

First, this is the way a new processor and cache may come into existence:

var Id : ChipId . var SC : StateContents .

crl [add] : { Id SC }

=> { s(Id) cpu(s(Id), false) cache(s(Id), inv, line(0, 0)) SC }

if allCpusBusy(SC) .

The function allCpusBusy checks that each existing processor is waiting for an
answer. So, we can only add a processor when all others are busy. These are the
ways a processor sends an order to its cache:

vars N N’ : Nat . vars NS NS’ : NatSet . var Md : Mode .

vars A A’ : Address . var MM : Memory .

crl [read] : { cpu(Id, false) aRange(N ; NS) SC }

=> { cpu(Id, true) read(Id, N) aRange(N ; NS) SC }

if not hasBusMsg(SC) .

crl [write] : { cpu(Id, false) aRange(N ; NS) dRange(N’ ; NS’) SC }

=> { cpu(Id, true) write(Id, line(N, N’))

aRange(N ; NS) dRange(N’ ; NS’) SC }

if not hasBusMsg(SC) .

The condition in the rules ensures that bus messages are dealt with before any
other action takes place.

We review next some of the ways in which the system can react to an order.
Specially simple are the cases for bus misses. On snooping these, a cache would
think: “Someone is reading from or writing to or invalidating an address I don’t
have stored, so I have nothing to do.” Therefore, we include no rule for this case.
For a more complex case, consider the “processor write hit.” On detecting this, a
cache in mode shr would think: “My processor needs to write to a line I already
have stored. I will just write the new data. But, as this is the first time I modify
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this line, I will ask the bus to send an invalidate signal, so that other caches are
aware that some change has happened. And I will change to mdf.”

crl [write-hit] :

{ cpu(Id, true) cache(Id, Md, line(A, D)) write(Id, line(A, D’)) SC }

=> { cpu(Id, false) cache(Id, mdf, line(A, D’))

(if Md == shr then invalidate(Id, A, SC) else SC fi) }

if not hasBusMsg(SC) .

The invalidate function simulates the workings of the bus and the snooping
caches, running through the state to find caches that need to be invalidated:

op invalidate : ChipId Address StateContents -> StateContents .

ceq invalidate(Id, A, cache(Id’, Md, line(A, D)) SC) =

cache(Id’, inv, line(0, 0)) invalidate(Id, A, SC) if Id =/= Id’ .

eq invalidate (Id, A, SC) = SC [owise] .

For a “processor read miss” the cache must react like this:

crl [read-miss] : { MM cache(Id, Md, line(A, D)) read(Id, A’) SC }

=> { (if Md == mdf then update(MM, line(A, D)) else MM fi)

cache(Id, Md, line(A, D)) bus-read(Id, A’) SC }

if A =/= A’ /\ not hasBusMsg(SC) .

The processor needs to read an address A’ that is not the one stored now in
its cache. The cache puts in the system a message bus-read, asking for the
needed data. When the answer is finally received, cache contents are going to be
overwritten, so if cache was in mode mdf, that is, if it had the only valid copy of
its data, it has to copy its line to main memory (eviction is the technical term
for this action). That is what the update function is for.

Now, when a mdf cache sees a bus-read order for the address it is storing, it
copies its data to main memory and produces the answer.

crl [bus-read-hit] : { MM cache(Id’, mdf, line(A, D)) bus-read(Id, A) SC }

=> { update(MM, line(A, D)) cache(Id’, shr, line(A, D))

bus-hereur(Id, line(A, D)) SC }

if Id =/= Id’ .

In case no mdf cache has the data, it is the main memory who must answer
to the bus-read, through a rule not shown here. By the way, the previous rule
is a simplification of the standard MSI, as caches cannot usually communicate
directly data to each other. The reading cycle ends with these two rules:

rl [bus-read-done] : { cache(Id, Md, L) bus-hereur(Id, L’) SC }

=> { cache(Id, shr, L’) hereur(Id, L’) SC } .

rl [read-done] : { cpu(Id, true) hereur(Id, L) SC }

=> { cpu(Id, false) SC } .

To begin with model-checking tasks, we wonder first whether invalidating is
really needed. Namely: if we remove invalidation from our system, is coherence
still guaranteed? This is more intuitive if viewed as a question about the safety
formulaAG coherent, but we use its negation, as our model checker only accepts
guarantee formulas. We redefine invalidate to an identity in its third argument,
and define a coherent proposition (after importing EXTENDED[MSI]):

op coherent : -> StateProp [ctor] .
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ceq { cache(Id, shr, line(A, D)) cache(Id’, shr, line(A, D’)) SC }

|= coherent = false if D =/= D’ .

ceq { cache(Id, shr, line(A, D)) {{line(A, D’)}} SC }

|= coherent = false if D =/= D’ .

eq { SC } |= coherent = true [owise] .

We ask our brand-new model checker whether coherence can be violated

(ismc [8] init |= exists F NOT coherent .)

from this initial state:

op init : -> State .

eq init = { cpu(1, false) cache(1, mdf, line(1, 2))

cpu(2, false) cache(2, inv, line(0, 0))

2 {{line(1, 1)}} aRange(1 ; 2) dRange(1 ; 3) } .

We get a Yes and a witness computation ending in this state:

{ {{line(1, 1)}} aRange(1 ; 2) dRange(1 ; 3) 2

cpu(1, true) cpu(2, true) cache(1, mdf, line(1, 1))

cache(2, shr, line(1, 2)) bus-read(1, 2) hereur(2, line(1, 2)) }

So, yes, invalidating is necessary, and we restore it to go on. The question in this
example is a reachability one and does not use propositions on transitions, so its
result can be achieved as well with Maude’s search command.

Next, we consider this initial state:

op init2 : -> State .

eq init2 = { cpu(1, false) cache(1, mdf, line(1, 3))

cpu(2, true) cache(2, inv, line(0, 0)) read(2, 1)

2 {{line(1, 1)}} aRange(1) dRange(4) } .

Processor 2 wants to read the contents of memory address 1. That information
is stored in the main memory, but it is cache 1 who has the only valid value.
We want to check that, eventually, cache 2 receives line(1, 3). With aRange(1)

and dRange(4), we include the possibility for processors to initiate new reads or
writes to address 1 with a different value 4; this is not a big range of possibilities,
but it is all we need to try to interfere with the reading.

We model check this:

(ismc [10] init2 |= forall F readdone(2, line(1, 3)) .)

for this parametric proposition on transitions:

var Ln : Line . var C : Context$State . var L : Qid . var Sb : Subst .

op readdone : ChipId Line -> TransProp [ctor] .

eq {Cn | ’read-done : (’Id \ Id) ; (’L \ Ln) ; Sb}

|= readdone(Id, Ln) = true .

eq {C | L : Sb} |= readdone(Id, Ln) = false [owise] .

Unfortunately, it produces a No after finding a looping computation in just four
steps. The problem is clearly unfairness: the system is only paying attention
to processor 1, or creating new processors. This example shows model checking
with an infinity of reachable states and with a proposition on transitions, which
puts it out of the scope of other existing tools. Some other model-checking tasks
at different levels of abstraction are shown in [18].
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Unfortunately, slight increases in the number of caches tend to cause large
increases in the time needed for the checking to complete. On the other hand, it
is known that most design flaws can often be found using small systems.

9 Related Work

Model Checking TLR*. The papers [6,3,4,5] are all related to model checking
Maude modules with LTLR formulas. The logic LTLR is the linear sublogic of
TLR*, that is, formulas with no path quantifiers taken to be universally quan-
tified on paths. In [6] the authors implement a translation, already described in
[20], that allows the use of Maude’s LTL model checker (see [11] for explanations
on this model checker). The idea is the following: we are given a rewrite system
R, with an initial state on it, and a LTLR formula as parameters to perform
model checking on them. From R we produce a new system, equivalent to R
in an appropriate way, whose states store, in addition to its own information,
also data on the transition that took the system to them. In parallel, we trans-
late the given LTLR formula to a LTL formula with equivalent semantics. The
produced system satisfies the produced formula iff the given system satisfies the
given formula [20]. Looking for better performance, [3] implements a different
algorithm for LTLR model checking in C++, by modifying the implementation
of Maude’s LTL model checker.

The papers [4,5] show how fairness constraints can be included in the system
specification, and how to model check LTL or LTLR formulas taking these con-
straints into account in the very algorithm. Moreover, these papers show how
to use parameterized fairness properties, that allow the user to specify which
entities of the system have to be treated with fairness and which others we do
not care about.

None of these model checkers works for systems with an infinity of reachable
states.

Infinite Systems. Model checking on infinite systems has been the subject of
many studies. Most of them look for either an abstraction that turns the system
finite, or a way to finitely represent the elements that compose the system.

Abstraction is a well-known mechanism to make the size of a system smaller,
where smaller can even mean finite from infinite. See [21] for an approach within
rewriting logic. The idea of abstraction is grouping together states that, though
different, are indistinguishable to the formula we are model checking. In this
respect, model checking on timed systems often uses time regions with the same
idea: instead of using time instants, use well-chosen time intervals, taking care
that the given temporal formula is not able to tell apart two instants on the
same interval.

In the way of finite representability, the method of well-structured transi-
tion systems has proved useful [1,15]. A well-structured transition system is one
in whose infinite set of states a well-quasi-ordering has been defined. A well-
quasi-ordering is a reflexive and transitive relation such that no infinite strictly
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decreasing sequence exists. In a well-structured system certain sets (so called
upward-closed sets) of states are finitely representable. These sets are enough to
provide algorithms to solve some model-checking problems. The reference [15]
lists a collection of natural examples for which a well-quasi-ordering exists.

The papers [13,2] describe a narrowing-based approach to model checking
rewrite systems in which terms with variables are used as patterns to represent
and let evolve whole sets of states. Also, abstraction and folding relations (similar
to the quasi-orderings of well-structured transition systems) are used.

As explained below, the advantage of our own method is that it does not need
to find relations and prove they are appropriate, but uses the raw system as it
is given.

Strategies. Strategies do not seem to have been used as a means to model
checking before. However, they are present in several languages. In Maude, there
is a rich strategy language; see [17], for instance. In some sense, that is a more
powerful strategy language than the one presented in this paper, although none of
them contains the other. In [22] strategies are used in the framework of program
transformation (like for refactoring, compiling, optimization). In particular, they
use Stratego, a language for program transformation based on rewriting and
strategies. ELAN, described for instance in [8], is a rewriting-logic language.
Both ELAN and Stratego have strategies included in the language, while in
Maude system modules and strategy modules are separated syntactic entities.

10 Conclusions and Future Work

Several subjects related to system specification and verification have got roles
in this work: rewriting logic (and Maude) as a specification formalism, rewriting
logic (and Maude) as a software development tool, state-based and action-based
temporal logics and TLR*, guarantee and safety properties, strategies applied
to nondeterministic systems, and model checking on infinite systems. We have
introduced all of them. We have implemented a strategy language and shown
how it can be used to model check TLR* guarantee formulas on possibly infinite
systems by first translating them into strategy expressions. Finally, we have
proved the usefulness of the tool verifying the MSI cache coherence protocol.

Our model checker has a unique combination of three ingredients: it admits
propositions on transitions (and states), bounded search on finite or infinite
systems (even with an infinity of reachable states), and existential or universal
quantification on paths. Maude’s search command works in a bounded way, but
lacks the other ingredients; Maude’s built-in model checker for LTL does not have
any of the three; and the LTLR model checkers cited above allow propositions
on transitions, but not the other two.

An explicit-state model-checking procedure on infinite systems cannot be ex-
pected to produce a definitive answer in all cases, and cannot be expected either
to provide the best performance. However, the point is that our model-checking
procedure is available almost for free as soon as the system is specified. Quoting
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Meseguer, talking about an example presented in [20], “all such efforts to obtain
a tractable finite-state abstraction, and the associated theorem proving work to
check confluence, coherence and preservation of state predicates for the abstrac-
tion, are not even worth it; since this simpler analysis of the system specification
has already uncovered a key flaw.” Thus, we think explicit-state model checking
deserves a place in an infinite-system verification toolbox.

Several improvements and lines for additional work are possible. A C++ im-
plementation in search for better performance is an obvious thing to do. In
a different line, we already have loop detection, that is, detection of repeated
(state, strategy) pairs on the same path. But, when repetition occurs in different
branches, we are not ready to detect it. For some systems, this would provide
a drastically improved performance. Also some other tools can be offered to
the user: abstraction, well-structured transition systems, and partial order re-
duction. To this end, means should be implemented to allow the user specify,
respectively, when two different states can be considered equivalent to the cur-
rent model-checking task, or when they are related by the well-quasi-ordering,
or when two transitions are independent, so that only one way to order and
perform them has to be taken into account. The reference [14] has proposals on
how to implement partial order reduction in rewrite systems.
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18. Mart́ın, Ó.: Model checking TLR* guarantee formulas on infinite systems. Master’s
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Abstract. In the quest for tractable formal methods to improve the
practice of software engineering, both CafeOBJ [7] and PAT1 [12] have
made great achievements based on different formal techniques. CafeOBJ
has an evident advantage in specifying concurrent systems with object-
oriented methods and proving behavioral properties based on reusability
of proof. However, it is difficult to be applied to automatically verify
some LTL based properties which involve complex state updates and
finite path of states. Conversely, PAT offers great flexibility to simulate
system behaviors and support modeling checking various properties, but
it is difficult to prove behavioral properties directly, the definition of
which is based on the structure of contexts. In the paper, we attempt
to combine the two approaches by modeling specifications and verifying
properties in CafeOBJ and PAT. A keyless car system is provided to
illustrate our approach.

1 Introduction

Formal methods with rigorously mathematical description and verification tech-
niques are considered as approaches to ensure system requirements always cor-
rect and satisfied in the full development process from specification to imple-
mentation [9]. In the quest for tractable formal methods to improve the prac-
tice of software engineering, both CafeOBJ [7] and PAT [12] have made great
achievements based on different formal techniques. CafeOBJ is a multi-paradigm
specification language equipped with verification methodologies based on alge-
braic specification technique [5] while PAT [11] is a self-contained framework to
support composing, simulating and verifying software systems based on model
checking technique.

Object-oriented technique is one of the most promising modeling and pro-
gramming techniques for complex and critical system development. CafeOBJ
enhances formal methods with object-oriented techniques to achieve the mod-
ularity and reusability power. Thus it has an evident advantage in specifying
concurrent systems with object-oriented methods. Further, CafeOBJ supports
not only the reusability of specification code but also the reusability of proofs.
The behavioral equivalence of composing object can be proved by reusing the

1 PAT represents Process Analysis Toolkit.
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proof of that for the composing objects, which facilitates to prove behavioral
properties of the system.

However CafeOBJ is not designed to be applied to automatically verify LTL
based properties which involve complex state updates and finite path of states.
Some safety properties like invariant properties can be done by structural induc-
tion on module operators using an interactive approach. LTL based properties
may be verified based on observational transition systems (OTSs) which can be
used as mathematical models of designs for systems. In some situations, more
complex types of hidden objects are needed, such as semantic configuration,
path of states and sequence of actions. All of them are usually expected to be
constructed from scratch by the users. Further, the LTL formula are not di-
rectly verified since its syntax are not supported in CafeOBJ. For these reasons,
users often need to encode the algorithm by themselves. Thus it is necessary to
incorporate other tools for effective verification of the LTL properties.

PAT is an extensible and modularized framework [11,12,13], which allows user
to build customized model checkers easily. It provides a library of model checking
algorithms as well as the support for customizing language syntax, semantics,
model checking algorithms and reduction techniques, graphic user interfaces,
and domain specific abstraction techniques. At present, PAT has successfully
modeled and verified a variety of systems, which shows that PAT is capable of
verifying systems with a number of states and outperforms the popular model
checkers in many cases. But it is difficult to prove behavioral properties directly,
the definition of which is based on the structure of contexts. For some specified
behavioral properties, PAT may handle with them by adding extra processes.

Consequently, we attempt to combine the two approaches by modeling and
verifying specification using CafeOBJ and PAT. The combination leverages their
respective advantages of CafeOBJ and PAT. On one hand, the combination sup-
ports describing object-oriented specification and prove behavioral properties
easily using CafeOBJ’s capability. On the other hand, it facilitates analyzing
and verifying the specification based on the simulation and verification power of
PAT. The key point of combination depends on the translation from CafeOBJ
specification to a CSP# [11] model. We propose a semantic link that can identify
a CafeOBJ module with a CSP# process and the object composition with pro-
cess composition operators. Further, following the OTSs’ method in [3], for each
method in CafeOBJ module, we describe its behaviors by a conditional tran-
sition rule and the corresponding effective condition. The former is generally
expressed as a data operation attaching to an event and the latter is described
as boolean guard in CSP#. In sum, all of these contribute to the generation of
CSP# model from the CafeOBJ specification.

The remainder of the paper is organized as follows. Section 2 briefly introduces
CafeOBJ and PAT and describes the push-button keyless system. In Section 3,
the object-oriented algebraic specification of the keyless car system is described
and specified in CafeOBJ, and then we prove behavioral properties in CafeOBJ
in Section 4. Section 5 verifies the related temporal properties of the specified
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specification, which provides a possibility of combining CafeOBJ and PAT. Fi-
nally, Section 6 presents the future work and concludes the paper.

2 Preliminaries

In this section, we firstly give a brief description of CafeOBJ and PAT respec-
tively, by covering their most important and distinct features used in this paper.
Complete details are available in their respective documents [1,13]. And then,
we explain the push-button keyless system.

2.1 CafeOBJ

As a successor of OBJ [10,8,14], CafeOBJ is an executable formal algebraic
specification language, which provides an elegant declarative way of algebraic
programming to incorporate several algebraic specification paradigms such as
equational specification, rewriting logic specification and behavior specification.
The underlying logics of CafeOBJ consist of many sorted algebra, order sorted
algebra, hidden algebra and rewriting logic, which form the so called CafeOBJ
cube with respect to institution embedding, i.e., the Grothendieck institution of
the indexed institution [2].

CafeOBJ has a natural advantage in specifying concurrent systems with
object-oriented methods due to its modularity and reusability power. Inherits
from OBJ, CafeOBJ has a powerful module system which supports several kinds
of imports, shared for multiple imports, parameterized modules and module ex-
pression. More importantly, depending on where one module appears or what
it contains, the users can choose different semantics for the module, i.e., tight
(initial) and loose semantics. The former, declared by module!, denotes a unique
model while the latter, denoted by module∗, indicates a class of models which is
generally employed to act as a parameter or define behavioral properties.

In actual, each module denotes order-sorted algebra, each of which embodies
several kinds of objects and operators defined among them, whose meanings are
specified by equational specification. A set of objects with some common proper-
ties is defined as a sort. CafeOBJ provides two kinds of sorts called visible sorts
and hidden sorts. A visible sort is declared with [name] and it is generally used
to define data type. A hidden sort is introduced by ∗[name]∗ and the correspond-
ing hidden algebra over the hidden sort facilitates users to specify encapsulated
objects. Further, models can be imported by using protecting, extending, using
and including. A simple example is listed in the following.

module∗ OWNER−ID {
− − declarations of sorts

[ Oid ]

−− declarations of operators

op defoid : −> Oid
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}

This defines a loose module named OWNER− ID, which specifies a visible
sort Oid and an operator (actually a constant) defoid. No more property of Oid
is defined except that it at least contains a constant defoid. The lines that start
with −− are comments which will be displayed when the module is input to the
CafeOBJ tool. The examples which contain more basic constructs of a module
will be illustrated in subsequent sections. In summary, we list the subset of
CafeOBJ that is sufficient for writing a specification in this paper.

1 . Module (loose and tight)

2 . Parameterized module

3 . Comment

4 . Import feature

5 . Sort declaration (visible and hidden)

6 . Operator and behavior operator

7 . Attribute and method

8 . Variable declaration

9 . Equation declaration and its label

10 . Predicate and transition

2.2 Process Analysis Toolkit (PAT)

PAT is a self-contained framework to support composing, modeling, simulat-
ing and verifying concurrent, real-time systems and other possible domains. It
offers featured model editor, animated simulator and various verifiers. The edi-
tor provides a user friendly editing environment to develop system models. The
simulator enables users to interactively and visually simulate system behaviors
using facilities such as by random simulation, user-guided step-by-step simula-
tion, complete state graph generation, trace playback, counterexample visualiza-
tion, etc. The verifiers implement various model checking techniques catering for
different properties such as deadlock-freeness, divergence-freeness, reachability,
LTL properties with fairness assumptions, refinement checking and probabilistic
model checking [17]. Further, to achieve good performance, advanced optimiza-
tion techniques are implemented in PAT, e.g., partial order reduction, symmetry
reduction, process counter abstraction, parallel model checking.

CSP#[11,15,16], as PAT’s specification language, offers great modeling flex-
ibility and efficient system verification by integrating high level CSP-like op-
erators with low level sequential programs constructs such as assignments and
while loops. A CSP# model may consist of definitions of constants, variables
and processes. A constant is declared with keyword #define followed by a name
and a value, e.g., #define off 0. A variable is defined with keyword #var fol-
lowed by a name and an initial value, which may be either a scalar or an array.
For example, var mst = off indicates a variable mst with initial value off and
var opos [2] : {0..2} defines an array opos with 2 elements and each of which
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ranges over the set 0..2. Part of the syntax of a CSP# process is shown below
with short descriptions.

P ::= skip – termination
| e{prog} → P – data operation prefixing
| [b]P – state guard
| P [ ]Q – general choices
| P ; Q – sequential composition
| P ||| Q – interleaving
| ||| i : {m..n}@P(i) – indexed interleaving

where P andQ are processes, e is an event, prog is a sequential program updating
global shared variables, b is a Boolean expression and m..n defines a set of
natural numbers from m to n. The process skip terminates and does nothing. In
process e{prog} → P , prog is executed atomically with the occurrence of event
e. Process [b]P waits until condition b becomes true and then behaves as P .
For process P ; Q , Q starts only when P has finish. In process P [ ]Q , either
process P or process Q may execute. P ||| Q allows processes P and Q to run in
parallel, except they communicate with shared variables or synchronous events.
In particular, the indexed interleaving extends the interleaving to apply to more
than two processes.

PAT supports a number of different assertions to query about system behav-
iors or properties, denoted by keyword #assert.

- Deadlock: given P as a process, the assertion #assert P deadlockfree checks
whether P is deadlock-free or not.

- Reachability: the assertion #assert P reach cond asks whether P can reach
a state at which some given condition cond is satisfied.

- Linear Temporal Logic (LTL): PAT supports the full set of LTL syntax, such
as � (always) and � (eventually). In general, the assertion P |= F checks
whether P satisfies the LTL formula F .

2.3 Keyless Car System

One of the latest automotive technologies, push-button keyless system, allows
you to start your car’s engine without the hassle of key insertion and offers
great convenience. Push-button keyless system allows owner with key-fob in her
pocket to unlock the door when she is very near the car. The driver can slide
behind the wheel, with the key-fob in her pocket (briefcase or purse or anywhere
inside the car), she can push the start/stop button on the control panel. Shutting
off the engine is just as hassle-free, and is accomplished by merely pressing the
start/stop button.

These systems are designed so it is impossible to start the engine without
the owner’s key-fob and it cannot lock your key-fob inside the car because the
system will sense it and prevent the user from locking them in. However, the
keyless system can also surprise you as it may allow you to drive the car without
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key-fob. This has happened to someone when his wife dropped him to his office
on the way to a shopping mall but the key-fob was in his pocket. At the shopping
mall, when the engine was turned off, the car could not be locked or re-started
again. The man had to take a taxi to the mall to pass the key-fob.

3 Modeling Specification in CafeOBJ

In the section, we use CafeOBJ to describe and model the behaviors in the
algebraic specification of the keyless car system with object-oriented techniques.
Following the method advocated by S. Iida et al. in [6], the keyless system will be
divided into six composing objects, i.e., Key, Door,Motor, Cardr, Fuel and Owner2

which represents the (unique) push-button key-fob, the door of the car, the motor
system, the drive state of the car, the fuel and the owner (or user) of the car,
respectively. The object Owner will be defined in a parameterized module, which
facilitates to prepare a generic reusable module. All these objects, regarded as
static objects, can be composed by synchronized concurrent connection.

3.1 Definitions of Modules for Composing Objects

We first show how to specify the module Key in detail. The module KEY−POS
is declared to indicate the location status of the key with respect to tight se-
mantics. Constant faralone indicates the key is put outside and far from the car
while constant incar represents the key is in the car.

module! KEY− POS {
[ Kpos ]

op faralone : −> Kpos
op incar : −> Kpos

}

Next, we specify a loose module KEY to describe the specification and the
behaviors of a key. The clause protecting(KEY−POS+ OWNERS−ID) imports
the predefined modules KEY−POS and OWNER−ID. According to the manual
[1], protecting imports cannot collapse elements or add new elements to the
models of the imported modules KEY−POS and OWNERS−ID.

The hidden sort Key, declared with ∗[Key]∗, specifies an encapsulated object
of which we can observe the state only by using some operators kowner and kpos.
From a methodological perspective from object-oriented techniques, it makes a
hidden object look like a black box : the insides of the box are hidden from view
and operators are on the outside of the box. In general, specifications referring
to hidden algebra are called behavioral (or observational) specifications.

Behavioral operators, denoted as bop, have exactly a hidden sort in their do-
main, and when the sort in their codomain is hidden they are named method and

2 This kind of decomposition are considered for simplification. Multi-hierarchy decom-
position is also supported in our approach.
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when it is visible they are named attributes. Attributes kowner and kpos indicate
the holder and the position of the key respectively. The sort Key provides two
methods putincar and putaway to update the position of key and method getkey
to change the holder of the key. Using eq or ceq clauses, the equations describe
the specification and behaviors of operators. Further, this kind of equational
specification is the underlying foundation of algebraic programming and term
rewriting system.

All operators defined in CafeOBJ modules are well formed, each of which has
a given rank defined by its domain and codomain. Actually, all terms in CafeOBJ
have a type, which facilitates to do runtime type checking and error handling.
Note that for each operator in composing module, we only describe the effect
when it occurs and do not specify the condition under which it may do. This
approach is significant for our combination of CafeOBJ and PAT, of which the
advantages will be interpreted later.

module∗ KEY {
− − import modules

protecting(KEY−POS + OWNERS−ID)

∗ [ Key ] ∗
op init−key : −> Key −− initial state
bop putincar : Key −> Key −− method
bop putaway : Key −> Key −− method
bop getkey : Oid Key −> Key −− method
bop kowner : Key −> Oid −− attribute
bop kpos : Key −> Kpos −− attribute

−− declarations of variables

var ID : Oid
var K : Key

−− declarations of equations

eq kowner(init−key) = defoid .
eq kpos(init−key) = faralone .
eq kowner(putincar(K)) = kowner(K) .
eq kowner(putaway(K)) = kowner(K) .
eq kowner(getkey(ID,K)) = ID .
eq kpos(putincar(K)) = incar .
eq kpos(putaway(ID,K)) = faralone .
eq kpos(getkey(ID,K)) = kpos(K) .

}

Due to the reason of space, for other static objects, we only list their declara-
tions of sorts and operators and the declarations for variables and equations are
omitted. The modules DOOR−ST, ENGINE and CAR−ST define the possible
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status of the door, the motor and the car, which are listed in the Appendix.
The module DOOR introduces a hidden sort Door and provides attribute dst to
observe the status of every door of Door. Given a state d : Door, method close(d)
makes the door closed but unlocked; similarly method open(d) opens the door
while lock locks the door.

module∗ DOOR {
protecting(DOOR−ST)

∗ [ Door ] ∗
op init−door : −> Door
bop open : Door −> Door
bop close : Door −> Door
bop lock : Door −> Door
bop dst : Door −> Dst

}

The module FUEL describes the amount of fuel when the car is used. The
attribute fst tells the amount of fuel and the initial amount of fuel is 10 units.
The behavior operator longdrive costs 5 units of fuel each time while shortdrive
consume 1 unit. Method refill will refuel 10 units of fuel when it is empty.

module∗ FUEL {
protecting(INT)

∗ [ Fuel ] ∗
op init−fuel : −> Fuel
bop longdrive : Fuel −> Fuel
bop shortdrive : Fuel −> Fuel
bop refill : Fuel −> Fuel
bop fst : Fuel −> Nat

}

The module MOTOR describes the specification and behaviors of the motor of
car. The attribute mst gives the status of a motor and the initial state of motor
should be off. Methods turnon and turnoff can launch and shut down the engine
respectively.

module∗ MOTOR {
protecting(ENGINE)

∗ [ Motor ] ∗
op init−motor : −> Motor

bop turnon : Motor −> Motor
bop turnoff : Motor −> Motor
bop mst : Motor −> Egn
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}

The module CARDR describes the specification and behaviors of a car. The
attribute cst shows the status of a car and the initial state of car is stopped.
Method startdrive can drive a car while method stop stops the car but the engine
may be still launched.

module∗ CARDR {
protecting(CAR−ST)

∗ [ Cardr ] ∗
op init−cardr : −> Cardr
bop startdrive : Cardr −> Cardr
bop stop : Cardr −> Cardr
bop cst : Cardr −> Cst

}

3.2 Parameterized Module

In this subsection, we will show how to define a generic parameterized module,
which can be instantiated by the actual parameter. We first specify the param-
eterized module USER with formal parameter module TRIV, which is a build-in
module in CafeOBJ. The module USER contains three methods gonear, gofar
and getin, by which the user can approach a car, go far away from a car or get
in a car. The initial operator init−user associates a given element of Elt with a
user, which is far from the car initially.

module∗ USER(X :: TRIV) {
protecting(OWNER−POS + OWNER+ID)

∗ [ User ] ∗
op init−user : Elt −> User
bop opos : User −> Opos
bop gofar : USER −> USER
bop gonear : USER −> USER
bop getin : USER −> USER

var I : Oid
var U : USER

eq opos(init−user(ID)) = far .
eq opos(gofar(O)) = far .
eq opos(gonear(O)) = near .
eq opos(getin(O)) = in .

}
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After that we can easily declare the module OWNERS by instantiating the
formal parameter Elt with Oid and rename the initial operator into init−owner.
Note that the actual parameter should be a member of class of algebras defined
by module TRIV.

mod∗ OWNER {
protecting(USER (X <= view to OWNER−ID { sort Elt −> Oid })

∗{ hsort User −> Owner,
op init−user −> init−owner } )

}

3.3 Object Composition

In this subsection, we will show how to compose the keyless car system from
the objects defined above using projection operators. Due to space limit, we only
give the specification for some of the operators involving the owner and the key;
the others can be similarly defined.

Inspired by the approach advocated in [3], we specify the composed object
Keyless in terms of a restricted type of coherent hidden algebra, i.e., observational
transition system (OTS) [4]. Every operator defines the conditional transition
rule while the corresponding predicate describes the effective condition of the
operator. When the effective condition is not satisfied, the corresponding op-
erator would not change the state. For example, operator k−putaway defines a
transition rule, denoted in equation [k−3], stating that the key would be put far
away from the car and the predicate c−putaway indicates the effective condition
of k−putaway. The case that the predicate is not satisfied is shown in equation
[k−4].

The operators of the composing objects are now reused in describing the
equation specification for operators of composed specification. Note that the
descriptions of effective conditions in composing objects are undesired since the
effective condition for the new operator of the composed objection often depends
on the states of several composing objects. In addition, the dependent relation
may not be orthogonal. Thus the reusability of effective conditions for composing
objects are quite difficult. The separation of behavior and effective condition fa-
cilitates to easily express the corresponding model in the PAT framework based
on CafeOBJ specification3 and this can be seen in Section 5.

module∗ KEYLESS {
protecting(OWNER + KEY + DOOR + MOTOR + FUEL + CARDR)

∗ [ Keyless ] ∗
op init−keyless : −> Keyless
bop k−owner : Oid Keyless −> Owner
bop k−key : Keyless −> Key

3 Actually, this separation is helpful to construct the transition system in CafeOBJ.
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bops k−towards k−goaway k−getin k−goout : Oid Keyless −> Keyless
preds c−towards c−goaway c−getin c−goout : Oid Keyless
bops k−putincar k−putaway k−getkey : Oid Keyless −> Keyless
preds c−putincar c−putaway c−getkey : Oid Keyless

vars I I′ : Oid
var K : Keyless

eq [o−1] : k−owner(I, init−keyless) = init−owner(I) .
ceq [o−2] : k−owner(I′, k−towards(I,K)) =

(if I′ == I then gonear(k−owner(I′,K)) else k−owner(I′,K) fi)
if c−towards(I,K) .

ceq [o−3] : k−towards(I,K) = K if not c−towards(I,K) .
ceq [o−4] : k−owner(I′, k−putaway(I,K)) = k−owner(I′,K) .
ceq [o−a] : c−towards(I,K) = opos(k− owner(I,K)) == far .
eq [k−1] : k−key(init−keyless) = init−key .
ceq [k−2] : k−key(k−towards(I,K)) = k−key(I,K) .
ceq [k−3] : k−key(k−putaway(I,K)) = putaway(k−key(K))

if c−putaway(I,K) .
ceq [k−4] : k−putaway(I,K) = K if not c−putaway(I,K) .
ceq [k−a] : c−putaway(I,K) =

kowner(k−key(K)) == I and opos(I, k−owner(K)) == far .
}

At last, we list the main steps of specifying the composed module KEYLESS.

1. import the component objects OWNER, KEY, DOOR, MOTOR, FUEL and
CARDR.

2. declare a new hidden sort Keyless and several behavior projection operations
to connect with the hidden sorts of all the components respectively. The
operators are k−owner, k−key, k−door, k−motor, k−fuel, and k−cardr. For
example, given a K ∈ Keyless, method k−owner(K) can obtain the object of
Owner.

3. define operators on Keyless which describes the behaviors of the keyless car
system, such as k−towards and k−putaway. All these operators are related to
the corresponding methods of component objects by equations. For example,
in clause o − 2, the method k−towards of Keyless changes the position of
owner I by the method gonear of its component object Owner.

4. introduce predicates to describe the effective conditions under which all the
corresponding operators of object Keyless could occur, for instance, when
c−putincar is satisfied, it indicates the operator k−putaway could occur, i.e.,
the key can be put away from the car. Based on projection operations, all
the predicates can be checked. For example, in clause k − a, it will establish
the predicate c−putincar when the holder of the key is far away from the car.
Note that the operators k− key and k− owner are projection operations.
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4 Proving Behavioral Properties in CafeOBJ

Behavioral properties based on hidden objects are independent from the concrete
implementation, whose underlying foundation is so called behavioral equivalence,
denoted as =∗=. Informally, two behavioral equivalent states of sort cannot be
distinguished under all the observations on attributes after applying any method.
Behavioral equivalence is weaker than strict equivalence, and actually it is the
largest hidden congruence with respect to behavioral operators.

In previous section, we reuse the code specifications by importing composing
objects. Here, we apply a technique of reusability of proofs to establish behavioral
equivalence of the composed object Keyless, which is supported by the following
theorem [5,6].

Theorem 1. The behavioral equivalence of the composed object T is the con-
junction via all the projection operations of the behavioral equivalences of its
component objects, i.e., ∀ t1, t2 : T • t1 =∗= t2 if

∧
a∈A

a(t1) =∗a = a(t2).

where A defines the set of attributes of composed object and = ∗a = is the
corresponding behavioral equivalence on attribute a.

Thus we first demonstrate all behavioral equivalence for composing objects.
Considering object Key and a relation =∗k= such that ∀ k1, k2 : Key•k1 =∗k= k2
if kowner(k1) = kowner(k2) ∧ kpos(k1) = kpos(k2). Thus we can obtain the theo-
rem below.

Theorem 2. The relation =∗k= is the behavioral equivalence of Key.

We give the proof using the following CafeOBJ code.

module∗ BEQ− KEY {
protecting(KEY)

op =∗k= : Key Key −> Bool
vars K1, K2 : Key

eq K1 =∗k= K2 = kowner(K1) == kowner(K2) ∧ kpos(K1) == kpos(K2) .
}

open BEQ−KEY .

ops k1, k2 : −> Key .
op id : −> Oid .

−− hypothesis
eq kowner(k1) = kowner(k2) .
eq kpos(k1) = kpos(k2) .

−− prove =∗k= is a congruence
red putaway(k1) =∗k= putaway(k2) .
−− excepted to return true
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red putincar(k1) =∗k= putincar(k2) .
−− excepted to return true

red getkey(id, k1) =∗k= getkey(id, k2) .
−− excepted to return true

}

Similarly, we can establish behavioral equivalences for other objects. For each
hidden object, the CafeOBJ tool will try to prove behavioral equivalence pred-
icate automatically. If it is satisfied, the system will add the ceq clause for be-
havioral equivalence predicate; otherwise, we should complete that which is the
same as above. According to Theorem 1, we obtain the following theorem below
about the behavioral equivalence of Keyless.

Theorem 3. The relation R[id ], derived from composing objects based on pro-
jection operations, is the behavioral equivalence of Keyless with respect to id.

Now we can prove a behavioral property stating that given a K ∈ Keyless em-
bodying two owners at least, the result states are not distinguishable no matter
who firstly tries to get in the car without respect of their positions, the state of
door or the state of car. This property can be denoted as:

k−getin(I, k−getin(I′,K)) R[I ] k−getin(I′, k−getin(I,K)) and
k−getin(I, k−getin(I′,K)) R[I ′] k−getin(I′, k−getin(I,K))

where I , I ′ are the user identifiers.
There are several case analysis involved and we only give one proof of them

using the following CafeOBJ code.

open KEYLESS .

ops i, i′ : −> Oid .
op k : −> KEYLESS .
ops d : −> Door .
ops c : −> Cardr .

−− hypothesis
eq i =/= i′ = true .
eq opos(k − owner(i, k)) = far .
eq opos(k − owner(i′, k)) = near .

eq dst(k− door(k)) = opened .
eq cst((k− cardr(i′, k)) = stopped .

−− prove the property
red k−getin(I, k−getin(I′,K)) R[i ] k−getin(I′, k−getin(I,K)) .
−− excepted to return true

red k−getin(I, k−getin(I′,K)) R[i ′] k−getin(I′, k−getin(I,K)) .
−− excepted to return true

}
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5 Verifying Specification in PAT

In previous sections, we present an algebraic specification for the keyless car sys-
tem and establish the behavioral equivalence of Keyless. Now, we construct the
corresponding model in PAT and verifying some properties in the PAT frame-
work.

Table 1. Declaration of constants and variables

#define far 0; #define near 1; #define in 2;
#define incar − 1; #define faralone − 2;
#define unlocked 0; #define locked 1; #define opened 2;
#define off 0; #define on 1; #define defoid 0;
#define stopped 0; #define moving 1; var opos[N ];
var kpos = faralone; var kowner = defoid ; var dst = locked ;
var mst = off ; var cst = stopped ; var fst = 10;

The construction process can be easily carried out in these steps blew.

1. declare constants in CSP# to correspond with the constants in basic objects
such as KEYPOS and ENGINE.

2. define variables and arrays to correspond with the attributes in modules,
for example, declare variable kowner for attribute kowner and array opos [N ]
for attribute k−owner., where variable N indicates the current number of
owners; then initialize all variables and arrays according to initial operators
in CafeOBJ module.

3. for each composing object, we construct a corresponding parameterized
CSP# process and the concrete construction method refers to step 4 and 5.
These processes are owner(i), key(i), door(i), motor(i), fuel(i) and cardr(i),
where i represents the identifier of owner and P(i) indicates the process is
related to owner i .

4. considering all pairs of method (k−) and condition (c−) with the same suffix
name in object Keyless; then divide them into six groups according to their
corresponding composing object.

5. for each pair (k−operator, c−operator) in the same group P(i), we first build
the CSP# prefix [b]operator .i{prog}, where b is the corresponding effective
condition c−operator and program prog describes the corresponding behav-
iors of k−operator when c−operator is satisfied. Then, we obtain a subprocess
branch [b]operator .i{prog} → P(i). At last, the process for each compos-
ing object can be completed by combining all these branches using general
choice.

6. combine all the processes using interleaving and indexed interleaving into
process keyless .

Here, we give the CSP# declarations of variables and constants in Table 1
which correspond to the initial operators and basic visible objects in CafeOBJ. In
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PAT, the constants belong to the same sort are distinguished by different values,
such as faralone = −2 and in = −1. The variables derived from the attributes
of modules and their initial values are deployed according to the initial operator
of modules, for instant, kpos = faralone. In particular, array opos [N ] is defined
and each element is initialized as far .

Fig. 1. The verification results

According to steps 3-5 of the construction process described above, 6 cor-
responding sub-processes are generated from the composing modules and the
process keyless are combined by these sub-processes using CSP# operators in-
dexed interleaving. Part of the CSP# processes are listed in the following and
others can be found in Appendix. Process owner(i) describes the behaviors of
owner with identifier i . Each choice branch denotes one method of object Owner;
state guard and data operation respectively define the effective condition and
transition rule in CafeOBJ.

owner(i) = [opos [i ] == far ]towards .i{opos [i ] = near ; } → owner(i)
[ ]
[opos [i ] == near ]goaway.i{opos [i ] = far ; } → owner(i)
[ ]
[opos [i ] == near&&dst == opened&&cst == stopped ]

getin.i{opos [i ] = in; } → owner(i)
[ ]
[opos [i ] == in&&dst == opened&&cst == stopped ]

goout .i{opos [i ] = near ; } → owner(i);
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key(i) = [kowner == i&&opos [i ] == in]
putincar .i{keypos = incar ; } → key(i)

[ ]
[kowner == i&&opos [i ] == far ]

putaway.i{keypos = faralone; } → key(i)
[ ]
[(keypos == faralone&&opos [i ] == far) ||

(keypos == incar&&opos [i ] == in)]
getkey.i{kowner = i ; } → key(i);

keyless = (||| i : {0..N − 1}@(motor(i) ||| door(i) ||| key(i) |||
owner(i) ||| fuel(i) ||| cardr(i)));

After achieving the CSP# model from the CafeOBJ specification, we turn to
the verification of some temporal properties in PAT. Here, we mainly investigate
the properties with N = 2. These properties and the corresponding assertions
can be seen in Figure 2.

Fig. 2. Some properties and assertions in PAT

All these properties can be automatically checked in PAT and the results of
the verification are shown in Figure 1. From the result, we can conclude that
the keyless car system would be deadlock-free. There may exist a path such that
the first owner cannot drive the car for a long time. Actually, the PAT gives
one of these paths as a counterexample. It cannot lock your key-fob inside the
car and it is impossible to start the engine without the owner’s key-fob, which
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are shown by the unsatisfaction of properties keylockinside and runwithoutowner
respectively. The keyless model allows the two owner drive the car together.
Obviously, it cannot drive the car when the engine is off or the fuel is exhausted.
At last, we state that it is possible to drive the car without key-fob in the keyless
model.

6 Conclusion

In this paper, we give the algebraic specification of the keyless car system in
CafeOBJ and investigate the behavioral equivalence of the composed object
Keyless and its composing objects, which can be used to prove behavioral prop-
erties. Further, the CafeOBJ specification can be transformed into CSP# model
and several LTL properties can be automatically verified in PAT.

In the future, a more thorough comparsion of CafeOBJ and PAT will be
investigated and we will combine them to model and verify the specification in
a consistent and effective way. The transformation from CafeOBJ specification
to CSP# will be implemented in a tool.
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Appendix

Some CabeOBJ Specification
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Values of OWNER
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
module! OWNER− POS {

[ Opos ]

op far : −> Opos
op near : −> Opos
op in : −> Opos

}

− − −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Values of DOOR
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
module! DOOR− ST {

[ Dst ]

op opened : −> Dst
op unlocked : −> Dst
op locked : −> Dst

}

− − −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Values of MOTOR
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
module! ENGINE {

[ Egn ]

op on : −> Egn
op off : −> Egn

}
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−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Values of CARDR
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
module! CAR − ST {

[ Cst ]

op moving : −> Cst
op stopped : −> Cst

}

− − −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− KEYLESS
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
module∗ KEYLESS {

protecting(OWNER + KEY + DOOR + MOTOR + FUEL + CARDR)

∗ [ Keyless ] ∗
op init−keyless : −> Keyless
bop k−owner : Oid Keyless −> Owner
bop k−key : Keyless −> Key
bop k−door : Keyless −> Door
bop k−motor : Keyless −> Motor
bop k−fuel : Keyless −> Fuel
bop k−cardr : Keyless −> Cardr
bops k−towards k−goaway k−getin k−goout : Oid Keyless −> Keyless
preds c−towards c−goaway c−getin c−goout : Oid Keyless
bops k−putincar k−putaway k−getkey : Oid Keyless −> Keyless
preds c−putincar c−putaway c−getkey : Oid Keyless
bops k−unlockopen k−justopen k−insideopen : Oid Keyless −> Keyless
preds c−unlockopen c−justopen c−insideopen : Oid Keyless
bops k−close k−insidelock k−outsidelock : Oid Keyless −> Keyless
preds c−close c−insidelock c−outsidelock : Oid Keyless
bops k−turnon k−turnoff : Oid Keyless −> Keyless
preds c−turnon c−turnoff : Oid Keyless
bops k−startdrive k−stop : Oid Keyless −> Keyless
preds c−startdrive c−stop : Oid Keyless
bops k−refill k−longdrive k−shortdrive : Oid Keyless −> Keyless
preds c−refill c−longdrive c−shortdrive : Oid Keyless

}

− − −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− The other CSP proceses
−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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door(i) = [kowner == i&&opos[i ] == near&&dst == locked&&
kpos! = incar&&cst == stopped ]

unlockopen.i{dst = opened ; } → door(i)
[ ]
[opos[i ] == near&&dst == unlocked&&cst == stopped ]

justopen.i{dst = opened ; } → door(i)
[ ]
[dst ! = opened&&opos[i ] == in]

insideopen.i{dst = opened ; } → door(i)
[ ]
[dst == opened ]close.i{dst = unlocked ; } → door(i)
[ ]
[dst == unlocked&&opos[i ] == in]

insidelock .i{dst = locked ; } → door(i)
[ ]
[dst == unlocked&&opos[i ] == near&&kowner == i&&

kpos! = incar ]outsidelock .i{dst = locked ; } → door(i);

motor(i) = [opos[i ] == in&&(kowner == i || kpos == incar)&&
mst == off&&fuel ! = 0]
turnon.i{mst = on; } → motor(i)

[ ]
[mst == on&&cst == stopped&&opos[i ] == in]

turnoff .i{mst = off ; } → motor(i);

fuel(i) = [cst == moving&&fst > 1]shortdrive.i{fst = fst − 1; } → fuel(i)
[ ]
[cst == moving&&fst == 1]shortdrive.i

{fst = fst − 1; mst = off ; cst = stopped} → fuel(i)
[ ]
[cst == moving&&fuel > 6]longdrive.i{fst = fst − 5; } → fuel(i)
[ ]
[cst == moving&&fst == 5]longdrive.i

{fst = fst − 1; mst = off ; cst = stopped} → fuel(i)
[ ]
[fst == 0&&mst == off ]refill{fst = 10; } → fuel(i);

cardr(i) = [mst == on&&opos[i ] == in&&cst == stopped ]
startdrive.i{cst = moving ; } → cardr(i)

[ ]
[mst == on&&cst == moving&&opos[i ] == in]

stop.i{cst = stopped ; } → cardr(i)
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Abstract. Reasoning about object-oriented programs requires an appropriate 
technique to reflect a fundamental “general relativity” property of the approach: 
every operation is relative to a current object, which changes with every quali-
fied call; such a call needs access to the context of the client object. The notion 
of negative variable, discussed in this article, provides a framework for reason-
ing about OO programs in any semantic framework. We introduce a fundamen-
tal rule describing the semantics of object-oriented calls, its specific versions 
for such frameworks as axiomatic (Hoare-style) logic and denotational seman-
tics, and its application to such problems as alias analysis and the consistency of 
concurrent programs. The approach has been implemented as part of a verifica-
tion environment for a major object-oriented language and used to perform a 
number of proofs and analyses. 

Keywords: Program logic, operational semantics, object-oriented language. 

1 Preamble: The Need for Coordinate Transform 

The concept of negative variable, discussed in this article, addresses a specific but 
important aspect of reasoning about object-oriented programs: the need to obtain re-
verse access to the context of your caller. Current verification approaches miss it, and 
hence cannot express certain important properties, let alone verify them. Even for 
properties that can be expressed otherwise, the negative variable technique provides a 
simpler and more elegant framework, making automatic verification easier. 

A little non-technical example illustrates the issue (all person names are fictitious). 
Eri likes to party, and has many followers who send her lots of invitations on Twitter, 
but she is selective. A typical tweet says “Restaurant Komatsu Yasuke, today at 
19:30, Shin also coming”. But she would like to know more: how many people are 
invited? Is Junko coming? (If so Eri will stop at home on the way, to pick up a nice 
bracelet that she has bought for her.) Now whoever is inviting Eri — today Kokichi, 
say, and tomorrow Taku — could answer these questions; but Eri’s procedure for 
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accepting or skipping an invitation can only be based on the message she has re-
ceived; she would need access to information available only to the tweet’s author. 

All she does know is the content of the tweet: place, time, and possibly the name of 
another person who is also invited. Maybe that person has the other information; but 
maybe not. The only way to answer the pending questions would be to reach the 
original tweeter. 

This setup, including lack of access to the tweeter’s own context, exactly mirrors 
what happens in the execution of a routine (method) on a target object in an object-
oriented programming language. We are considering a “qualified call” 

call Eri●invite (Komatsu_Yasuke, [Today, “19:30”], Shin)  (1) 

(using an explicit call keyword for clarity, although it usually does not appear in pro-
gramming languages). This call executes the procedure invite on the “target object” 
denoted by Eri, with the arguments given. The procedure is declared with the corre-
sponding arguments: 

invite (p: PLACE; d: DATE; other_invitee: PERSON) 
require … do … ensure … end 

To do its work, the procedure can only use the arguments it has; but then it lacks con-
text. For example it cannot answer Eri’s question, which we can rephrase in software 
terms. The question applies to a given object such as the restaurant, accessible to the 
procedure as the formal argument p: 

• Is x (some person) also invited to p today?  (2) 
• How many people are invited to p today?  (3) 

In a particular call, such as (1), this information is accessible to the calling object, but 
not to the object on which the call executes. 

In the writing of object-oriented programs, this restriction is not a major obstacle 
(otherwise people would have been complaining about it loudly). In fact one can ar-
gue that not knowing the caller helps write self-contained, reusable code. 

For reasoning about OO programs, however, the restriction also exists, and it hurts. 
For example Müller [13] states, in presenting a proof rule for OO routines:  

Req-clauses [shared precondition components] and [the rest of the] preconditions 
may refer to formal [arguments], the object store, and the current universe, 
whereas the postcondition may only refer to the object store and result [denoting 
the result of a function]. 

This information does not identify the caller, and hence does not make it possible to 
express properties such as the above. 

The usual technique for modelling qualified calls is to treat the target as if it were a 
supplementary argument, understanding (1), for example, as call inviteC (Eri, Komat-
su_Yasuke, [Today, “19:30”], Shin) where inviteC is the non-OO equivalent to invite, 
extended with one argument, as it would be written for example in the C language (or 
in the C output of an Eiffel compiler generating C code). Verification techniques will 
then handle the target just as it handles other arguments, through proof rules that 
transpose any property of the routine to a property of a call by substituting actual 
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arguments for the formal arguments. This standard approach, however, will fail for 
properties such as (2) and (3) above, because it ignores the distinctive object-oriented 
style of programming, detailed in the next section: the target of an OO call is more 
than just another argument. 

The gist of the present paper is a simple notation that addresses the issue: for any 
call x●r (args), one may use x’, called the “negation” of x, to represent a back refer-
ence to the calling object, making it accessible to the target object (the object on 
which r is executed). Negative variables enjoy simple mathematical properties, such 
as x●x’= Current where Current denotes the “current object” of execution. 

Through the negative variable, any analysis of the call has access to the caller con-
text, enabling it to answer questions such as those in our example: if the caller has (as 
it must) a list invited of persons invited, the call can use the integer Eri’●invited●count 
and the test Junko ∈ Eri’●invited. More generally, the basic rule for reasoning about 
calls makes it possible to establish any property for the call x●r (args) by: 
• Establishing the property for r (x’●args), that is to say, a call executed locally in 

the context of the target object, but with access to the caller’s context through x’. 
• Transposing the result back to the caller’s context by prefixing it with “x●”; oc-

currences of x’ will normally disappear through the rule just mentioned.  
The negative variable technique is an application to formal program analysis of a 
well-established mathematical technique: coordinate transform. Reasoning about the 
effect of a call is easier if we transpose the coordinates to the context of the target; 
then we interpret the results back in the caller context by performing the reverse coor-
dinate transformation. 

2 Overview: General Relativity 

2.1 In the Space Capsule 

The negative variable technique is a response to the special nature of object-oriented 
programming, based on what has been called a principle of “General Relativity” [10]. 
This style sets OO programming apart from all other approaches even before one 
considers inheritance and other advanced techniques (which require it). 

What is relative is the meaning of every operation in the program text: it applies to 
a “current object” (“this”, “Current”, “self”) known only at the time of each execu-
tion. In a non-OO language, x = 3 states a property of a variable of the program; in an 
OO language, it states a property of “the x of the current object”. The name x by itself 
is meaningless except with respect to that context. 

We can think of the execution of an OO program (see fig. 1 on the next page) as 
occurring, at any given time, in a space vehicle that operates in its own set of coordi-
nates (the current object). The cosmonauts responsible for executing these operations, 
and the operations themselves, do not see the larger context in which the vehicle ex-
ists. In fact the vehicle was launched from another, itself launched from yet another 
and so on up to the  initial event that started the entire execution (“root procedure”). 
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Fig. 1. Objects as space vehicles 

2.2 The Execution of an Object-Oriented Program 

In an OO language the operations are of two kinds: basic operations (assignments and 
such, sequenced by control structures such as conditionals and loops) and routine 
calls. 
Every basic operation is relative to a designated object, the “current object” at the 
time of the operation’s execution. 
Routine calls have two variants: 

• An unqualified call, written call r (args), executes the body of r on the cur-
rent object, with the given arguments. 

• A qualified call, written call t●r (args) causes another object, the target of 
the call, to execute the body of the routine on itself. The target is the object 
denoted by t at the time of execution. (The term “target” denotes both a static 
notion, the variable or expression t in the program text, and a dynamic one, 
the object attached to t in a particular call.) 

For all operations of all kinds except one, the current object remains current: such 
operations execute within the current spacecraft. This is true in particular for unquali-
fied calls. The one exception is qualified call. More precisely: 

• At the start of a qualified call, the target object (the object attached to t in 
call t●r (args)) becomes the new current object. All the operations of the 
body of r will treat it as their current object. 

• At the end of the execution of the qualified call, the formerly current object 
becomes current again. 

This process is recursive since the execution of the routine can execute qualified calls 
on new targets. 

The names of all variables occurring in an operation are understood in relation to 
the current object; the name t means “the t of the current object”. This property ap-
plies to basic operations, such as the assignment t := u, but also to qualified calls: to 
determine the target object (target in the dynamic sense) in the call t●r (args) requires 
finding out the value of t (the target in the static sense) relative to the current object. 

x  r (a) 

y  s (b) 
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For generality we assume the Eiffel convention for executing entire programs: the 
execution consists of creating an instance of a designated “root class” and executing a 
designated “root procedure” on that target. (In languages with a more traditional 
“main program” we can posit a fictitious root object and consider the main program 
as the root procedure. Global variables do not fit well in the OO paradigm and do not 
exist in Eiffel, but their presence in other languages does not fundamentally affect the 
discussion.) Any operation is executed as part of a current call: the qualified call last 
started and not yet terminated (or, if there is no such call, meaning that we are at the 
top level of the execution flow, the root object). The target of that call serves as cur-
rent object during the execution of the call; we may call it the current target, or just 
“the target”, of the current call. The object that was current at the time of the call is 
the caller object, or just “the caller”. In the root call the target is the root object and 
there is no caller (in all other cases there is a caller). 

Object-oriented programming languages do not provide access to the caller object. 
The cosmonauts are in their own vehicle, and may launch new vehicles, but have no 
information or access to the vehicle that launched them. 

For reasoning and verification purposes, we may need such access. If the current 
call is of the form x●r (args), the negative variable, written x’ (x negated), denotes a 
backward reference to the caller. 

2.3 Negative Variable Basics 

From an implementation perspective, negative variables are only a fiction, as no 
backward reference exists in the execution-time structure. Their role is to support 
reasoning and verification. 

The notion was introduced in [11] and [12], in the context of developing the “alias 
calculus” for automatic may-alias analysis of OO programs; the calculus needs nega-
tive variables in the rules for qualified calls. The present work generalizes the original 
concept, showing that beyond alias analysis it can provide a framework for reasoning 
about a wide variety of properties of object-oriented programs. 

The traditional approach, as noted, treats the target as if it were just one more ar-
gument, then applying the usual technique for dealing with arguments to calls: substi-
tution of actuals for formals. This approach ignores the specific role of the target in 
object-oriented programming. As we have seen, it precludes the very expression of 
some important properties of the object store; aliasing properties are an example.  

Negative variables define a basic semantic rule for handling qualified call, the fun-
damental operation of object-oriented programming. A simplified version of the rule 
(the full version appears in Section 5) is, for any property Π of program elements: 

 Π (x●r (args)) = x●Π (r (x’●args)) (4) 

meaning, informally, that to derive a property of the qualified call x●r (…) we start 
from a property of the unqualified call r (…), where we interpret the arguments in 
relation to the calling context, hence the prefixing by x’, then plunge the result back 
into that calling context by prefixing it with x. 
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We may, as noted, view the technique as coordinate transform. The rule tells us 
that to reason about a call, we first transport ourselves to the new spacecraft, evaluat-
ing Π for an unqualified call to r; in this evaluation, we may need back-access to the 
caller spacecraft’s context, which we obtain by prefixing arguments with x’. Then we 
perform the reverse coordinate transform, getting everything back to the original con-
text, by prefixing the results with x. As a result the property Π of the unqualified call, 
be it a value, a set, a list, a relation or a function is reinterpreted in the caller’s con-
text. In normal usage the result will no longer contain any occurrence of negative 
variables, thanks to rules stating that x and x’ cancel each other out. 

Section 3 further illustrates, through examples, the need for negative variables. 
Section 4 introduces the notations and conventions. Section 5 introduces the basic 
rules. Section 6 presents a number of applications; Section 7 provides comparison to 
previous work and Section 8 describes opportunities for further development. 

3 Examples 

The usual modes of reasoning about programs cannot be transposed to OO programs 
without adaptation. Even simple examples bring out the need for different techniques. 

Consider classes C (client) and S (supplier). S has a simple argument-less proce-
dure r with the postcondition m = n, where m and n are attributes (fields) of S. The 
procedure may be written as 

 r 
   -- Among other possible effects, make sure that the fields m and n 
   -- of the current object have equal values. 
  do 
    … Appropriate implementation, including the assignment m := n … 
  ensure 
    m = n 
  end 

 
In C, with x declared of type S, we may call x●r. We may deduce properties of such a 
call from the properties of the routine simply by prefixing the latter with “x●”; in this 
case the postcondition m = n tells us, after actual-formal argument substitution, that 
the following will hold after the call: 

 x●m = x●n 

To cover such cases it would suffice to use a naïve adaptation to object-oriented pro-
gramming of the standard Hoare rule for procedures [6]: 
 

{P (f )} call r (f ) {Q (f )} 
─────────────────────

{x●P (a)} call x●r (a) {x●Q (a)} 

 -- Warning: naïve rule, 
 -- corrected in (6) below. 
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(Conventions: f stands for the list of formal arguments, a for the list of actual ar-
guments; P and Q are explicitly parameterized by arguments, as an alternative to us-
ing substitution; we ignore recursion, which can be handled as described in [6]; we 
also ignore the role of class invariants, essential in practice for OO programs but not 
directly related to this discussion.) 

The “●” operator is a “distributed dot” which distributes the period of OO pro-
gramming, used for calls and “path expressions” such as x●y●z (which in fact are a 
special case of calls, resulting in this example from applying z to the result of apply-
ing y to x) over: 

• An equality: x●(u = v) denotes the equality x●u = x●v 
• A set: x●{a, b, c} denotes {x●a, x●b, x●c}. 
• A pair: x●[y, z] denotes [x●y, x●z]. 
• More generally, a list: x●[u, v, w] denotes the list [x●u, x●v, x●w]. 
• A relation (a set of pairs): x●{[a, b], [c, d]} denotes {[x●a, x●b], [x●c, x●d]}. 
• A function (a special case of relations): if f (u) = v then x●(f (u)) = x●v. Another 

way of denoting this property is to state that x●(f (u)) = x●f (x●u). Note the double 
application of the dot; the reason is that stating that f (u) = v means, if we look at 
f as a relation, that [u, v] ∈ f. This rule (like the preceding ones) is recursive: u 
could be, for example, a list. 

As soon as we move on to less trivial properties, however, the simple device of pre-
fixing properties by “x●” no longer works. Assume that r now has an argument and 
new postconditions: 

 r (u: T) 

  do 
   … 

  ensure 
   m●count > 0 

   u = m 

  end 

and we call x●r (a), for a of type T. Application of the naïve rule would give us mea-
ningless properties for the call: x●m●count > x●0, where it makes no sense to prefix the 
constant 0 with “x●”; and x●a = x●m, where x●a also makes no sense since a is an ex-
pression defined in the calling context, C, and prefixing it with x is pointless. We can 
get away in the first case through a general rule that identifies x●const, for any con-
stant const, with const; but such tricks would not work for more significant properties 
such as the second postcondition. The problem is not syntactical but conceptual: every 
expression needs to be interpreted in the right object context (the right space vehicle). 
The actual argument a belongs to the client context (C) whereas m, an attribute of S, 
makes sense in the context of the supplier object. 

With negative variables, the correct consequent for the procedure rule, replacing 
{x●P (a)} call x●r (a) {x●Q (a)} above, is 

 {x●P (x’●a)} call x●r (a) {x●Q (x’●a)} 
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stating that the arguments must be interpreted relative to the caller’s context, accessi-
ble through the (fictitious) back-pointer x’. Applying this rule gives, as the second 
postcondition of the call: 

 x●x’●a = x●m 

Then we apply two of the fundamental rules listed below: x●x’ = Current, and Cur-
rent●e = e for any expression e, giving  

 a = x●m 

which correctly describes the effect of the call. 
The example remains sufficiently simple to suggest that other rules could do the 

job, for example a set of ad hoc rules stating that x●v = v for various kinds of elements 
v in the caller context. But such an approach fails to capture the “general relativity” 
property of object-oriented programming discussed in section 2, which implies that 
every program element or program property makes sense only with respect to a well-
defined context. For a call, in particular, a property belongs to the context of either the 
caller (client) or the supplier. Consider the following new variant of our example 
routine, now with a precondition: 

 r (u: T) 
  require 
   u●p + q > 0 
  do 
   u●set_m (n + 1) 
    -- The procedure set_m, in T, sets the value of the attribute m. 
  ensure 
   u●m = n + 1 
  end 

Consider the call x●r (a). By applying the rule we get as a postcondition of the call 

 x●(x’●a) ●m = x●n + x●1 

(distributing “●” over addition, as justified in Section 4). Simplifying, this yields 

 a●m = x●n + 1 

Similarly, the precondition making this call legal (assuming, as implied by the exam-
ple, that p and q are integer attributes of classes T and S respectively) is  

 x●(x’●a)●p + x●q > x●0 

or, after simplification: 

 a●p + x●q > 0 
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Note how u●p refers to a property of the client context and q to a property of the sup-
plier context. The general rule makes it possible to switch back and forth effortlessly 
between these contexts: 

• As stated in the routine, the properties (here a precondition and a postcondition, but 
the same rules will apply to any kind of a property) are expressed relative to the 
supplier context. T has access to the client context through the formal arguments 
which, however, describe an unknown caller. 

• When the caller is known, here x, the formal arguments can be transposed back to 
the client context through prefixing by x’, representing a fictitious back pointer. 

• The resulting properties are also transposed back to the client context, but in this 
case through prefixing by x. 

This example illustrates only one of the applications of the general approach: the 
Hoare-style rule. We will now explore the general framework and the general rules. 

4 Notations and Conventions 

The discussion is applicable to any object-oriented language. We assume an impera-
tive language, with an assignment instruction written target := source, and routines 
(methods) that can be functions (returning a result) or procedures (changing the state). 
Examples of such languages include Java, Eiffel and C#. The imperative character of 
the language has no influence on the discussion, so the results are also applicable to a 
functional (applicative) object-oriented language. 

We make the assumption that (as in Eiffel) no direct assignment is permitted to 
fields of an object: rather than x●a := v, the programmer must write a procedure call 
x●set_a (v), with the appropriate setter procedure set_a declared in the corresponding 
class. (Some languages, such as Eiffel, allow the syntax x●a := v provided the class 
author has marked the setter procedure as “assigner”; but this instruction is not an 
assignment, only a different syntactical form of the explicit call x●set_a (v). C#’s 
“properties” have a similar role.) This restriction, justified by information hiding prin-
ciples, does not limit the application of the approach to languages that permit direct 
field assignments: one should simply replace such assignments, for the purpose of 
program analysis or verification, by the application of a suitable setter. 

Among routines we will only consider procedures, with the understanding that a 
function call can be handled as a procedure call followed by assignment of the result. 

Calls, qualified and unqualified, are as discussed in Section 2.2, which also intro-
duced the notions of target and caller objects. 

Since the matter of defining the semantics of unqualified calls is independent from 
the problem tackled in this article, we assume that such a semantic definition exists. 
The simplest way to define it (depending on the rules of argument passing) is that the 
semantics of call r (a) is the semantics of the body of the routine r, after substitution 
of actual arguments a for formals. 

The notation old e, for an expression e, denotes the value that e had at the start of 
the current call. Current denotes the current object. 
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The dot operator is generalized as explained in Section 3, complemented by the 
convention that if c is a constant then x●c is c. The combination of all the variants 
allows us to generalize the distributive dot to a wide class of operators: 

x● (u  v) is (x●u)  (x●v) 
where  is any operator that can be defined from functions, relations, sets, pairs, lists 
and equality; for example, in a pure OO language, u + v on numerical arguments is 
simply an abbreviation for the function call u●plus (v), so that by application of the 
second case x● (u + v) is (x●u) + (x●v). 

Thus generalized, the dot operator covers, in our experience so far, all the kinds of 
properties that one may want to express about a program. 

5 Negative Variables: Definitions and Rules 

For any variable x that may be used as target of a qualified call, the “negation” of x, 
written x’, denotes a reference, defined during the execution of a qualified call of 
target x, to the object that started this call. (The existence of such an object is tradi-
tionally checked at run time, through “null pointer” exceptions, but in some recent 
languages it has become a static property enforced by the compiler, as in Eiffel’s 
“void safety” mechanism [9]. The present discussion assumes that all calls are void-
safe, i.e. pointers are not null.) 

The following rules are applicable to any variable x and its negation x’, and to any 
expression e of the target programming language1: 

N1 Current’ = Current 
N2 e●Current = e 
N3 Current●e = e 
N4 x●x’ = Current2 
N5 x’●(old x) = Current 
N6 old x’ = x’ 

N1 enables us, by application of the call rules that follow, to treat a qualified call of 
the form Current●r (a) as equivalent to the unqualified call r (a). In N5, note the use 
of old, without which the rule would be unsound since it is in principle possible for a 
routine r, during the execution of x●r (a), to modify (through callbacks) the value of 
the very variable x that the client object used as target of the current call. Such a setup 
is of course error-prone; we say that a routine is nonprodigal if it cannot modify the 
target of its own call. For a nonprodigal routine, N5 yields a more practical variant 
(symmetric with N4): 

 x’●x = Current 

                                                           
1 Depending on the rules of the programming language, occurrences of e may have to be en-

closed in parentheses to avoid syntactic ambiguity. 
2 Depending on the context x●x’ can also be replaced with an implicit current object that is 

usually omitted, for example, x●x’●y simplifies to y. 
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N6 expresses that the back link to a routine’s caller cannot be changed: your space-
craft was launched by a given spacecraft, and there is nothing you can do about it. 

In the application to aliasing, rules N4 and N5 may produce an over-approximation 
for some cyclic structures. Adding integer indexes can improve the precision. This 
issue has no influence on the rest of the discussion and is hence not considered further 
in this article. 

The fundamental rule was previewed in Section 3 and will now be given in full. It 
considers an arbitrary property Π applicable to a program element such as an instruc-
tion, an expression, a class or an entire program. 

In the initial version, Π had just one argument, the program element. In practice, 
any realistic framework for reasoning about programs involves properties of two ar-
guments: a program element, and an environment representing what is already 
known, or assumed, about the context of the program element’s current execution. In 
static analysis, for example, we may compute the “defined” and “used” variables of a 
block in relation to the values of these properties for the context in which it is ex-
ecuted. As another example, the alias calculus [11] is a set of rules giving the value of 
a » p for the various constructs p of an OO programming language; a is an alias rela-
tion, consisting of a set of pairs of expressions that may be aliased to each other (de-
note the same object) at a given program point, and a » p is the new alias relation that 
results from executing p when the original alias relation is a. In this case the alias 
relation is the environment. 

With this convention, the fundamental rule for reasoning about properties Π of ob-
ject-oriented programming languages is 

 Π (call x●r (args), env) = x●Π (call r (x’●args), x’●env) (4) 

The rule enables us to deduce, from a property of the unqualified call (that is to say, a 
property that makes sense in the context of the supplier object), the corresponding 
property of a qualified call (in the client context). 

The prefixing by “x’●” must be applied to the environment as well as to the actual 
arguments, since both are relative to the client context. 

The rule is applicable to properties for which the prefixing by “x’●” is defined, as 
discussed in section 4. It appears to cover all properties used in existing frameworks 
for semantics and verification of programs, from static analysis to denotational and 
axiomatic semantics. 

In denotational (and operational) semantics, a common scheme is to define a pro-
gram construct such as an instruction as a function (usually partial) in Environment  
State  State, preceded by Arguments  for a routine. The Fundamental Rule ap-
plied to this framework gives3: 

 call x●r = λ args | λ env | x●(call r (x’●args) (x’●env)) (5) 

                                                           
3 It is common practice to define the semantics through a “meaning function” M, which for any 

program element p yields a mathematical function M [p], the “denotation” of p. The alterna-
tive, used here for simplicity, is to define every construct directly as a mathematical func-
tion, skipping the meaning function. The “M” variant is easy to deduce from this form. 
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In axiomatic semantics, the environment does not need to be explicitly stated since it 
is embedded in the precondition, postcondition and invariant4:  

{P (f ) and INV} call r (f ) {Q (f ) and INV}
{x●P (x’●a) and x.INV} call x●r (a) {x●Q (x’●a) and x.INV}

   
6 Applications 

We now show some potential uses of the rules given. 
The alias calculus rule given in [11] is a direct application of the fundamental rule 

(4). The purpose of the alias calculus is to answer, for any two reference (pointer) 
expressions e and f and any program point pp at which they are both defined, the 
question: “can e and f, at any time execution reaches pp, have as their values refer-
ences to the same object?”. To this end, the calculus is a set of rules to compute a » p 
for every programming language construct p, where a is an alias relation, containing 
all pairs of expressions that may be aliased to each other. If a is the alias relation be-
fore execution of p, a » p will be the alias relation after that execution. The rule for 
qualified calls, where l denotes a list of actual arguments, is: 

 a » call x●r (l ) = x●((x’●a) » call r (x’●l )) (7) 

This rule shows a typical use of the negative variable technique in its full extent. Both 
the initial alias relation a and the list of arguments l are defined on the client’s side 
(the caller’s context). To apply the unqualified call rule on the right side of (7), we 
must be able to interpret a and l on the supplier side; this is achieved by prefixing 
both of them with “x’●” to interpret them in the context of the callee. The expression 
(x’●a) » call r (x’●l ) then gives us the resulting alias relation, but still in the supplier 
context. To transpose it back to the client context, which is where we need the final 
result, we prefix that supplier-side relation with “x●”, yielding a client-side property. 

Here now are examples of application of the axiomatic rule (6). Consider a routine 
sign used to sign a message with a signature computed from a key, according to the 
specification: 

 {is_valid_key (k)} call sign (k, s) {signed (k, s)} 

where k is a key and s a message to be signed. Applying the rule (6) to a qualified call 

 call x●sign (y, z) 

where y and z are local variables or attributes, we get 

 {x●(is_valid_key (x’●y))} call x●sign (y, z) {x●(signed (x’●y, x’●z))} 

which rules N4 and N3 from Section 5 allow us to simplify into 

                                                           
4 This rule implies some conditions on callbacks (to ensure that they satisfy the invariant), an 

issue separate from the theme of this article. 

(6) 
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 {x●is_valid_key (y)} call x●sign (y, z) {x●signed (y, z)} 

reflecting the intuitive result. 
Another application area is purity. A routine is pure if it does not modify the state. 

In the case of weak purity [3] it may, however, create and modify new objects. Con-
sider a pure routine r and purity (strong or weak) for r relative to an expression e: 

 {…} call f (t) {e == old e} 

where == expresses deep equality (equality not only of the values themselves but of 
all reachable objects). Rule (6) yields 

 {…} call x●f (a) {x●(x’●e == old x’●e)} 

The postcondition can be simplified through distributivity to 

 x●x’●e == x●(old x’ ) ●e 

which through N4, N3 and N6 gives 

 e == old e 

In other words, a qualified call to a pure routine (weak or strong) is itself pure. 
The same approach generalizes to a full-fledged frame rule. A frame rule is a spe-

cification of which properties an operation may modify; it is typically stated by listing 
the possibly affected expressions in a modifies or only clause. (Purity is a special 
case, expressed as a frame clause with an empty list of attributes.) Consider a routine 
with such a specification: 

 f (p: X ; q: Y) 
  … 
  ensure 
   a = p 
   p●b = q 
   g●v = old g●v + 1 
  only 
   a, p●b, g●v 
  end 

Ignoring the rest of the postcondition, we may write the frame property in Hoare style 
as 

 {…} call f (p, q) {only a, p●b, g●v} 

The transposition to a qualified call through (6) is 

 {…} x●call f (p, q) {x●(only a, x’●p●b, g●v)} 

which after simplification yields 
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 {…} x●call f (p, q) {only x●a, p●b, x●g●v} 

SCOOP, a concurrency model developed for simple and reliable concurrent pro-
gramming through the safe use of shared resources ([14]), provides another example 
of application of negative variables. SCOOP binds the concurrency structure to the 
object-oriented structure by partitioning the object space into a number of “regions”, 
each associated with a given thread of control or “processor”, the “handler” of these 
objects, so that a qualified call x● r (args) is always processed by the handler of the 
target object (the object denoted by x). If a variable x may denote an object in another 
region (so that calls x●r (args) will be handled by a different processor), it must be 
declared separate. The SCOOP type system includes a set of rules to ensure consis-
tent semantics. The rules imply in particular that if x is separate the formal arguments 
corresponding to args must also be declared separate. The reason for this rule is that if 
the call is executed on behalf of processor A and the processor of x is B, args denotes 
objects in A, which for B are separate and hence must be declared accordingly. In 
other words, the notion of separateness is always relative. 

Applying this observation to negative variables yields the rule that if the variable x 
is separate, its negation x’ is also separate (if the supplier S is separate from the client 
C, then C is separate from S). 

Then in the application of any semantic rule, for example the axiomatic rule (6), to 
a call  

 call x●r (args) 

the formal arguments will be prefixed with “x’●”, since the rules deduce properties of 
the qualified call from the properties of its unqualified version call r (x’●args). This 
observation indicates that, in the program text, the formal arguments should them-
selves be declared as separate for consistency. This is indeed one the rules of the 
SCOOP type system. Here we see it arising as a consequence of the general properties 
of negative variables, without any domain-specific reasoning. 

7 Related Work 

Even before OO came to the scene, back pointers were used to simplify and optimize 
the implementation of algorithms working on complex data structures. Such back-
pointers, however, are physically present in the corresponding data structures and 
usually take up memory (although some algorithms, such as the Deutsch-Schorr-
Waite stack-free technique for tree or graph traversal, reuse other fields for the tempo-
rary representation of back pointers). Any reasoning about and manipulation of such 
back pointers follows the same rules as for other references and makes no use of their 
specific nature. Negative variables as discussed in this article are a conceptual me-
chanism to reason about OO programs; it is not necessary (but of course not prohi-
bited) to turn them into physical components of the data structure representations. 
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Operating systems have used back pointers for a long time. They serve in particular 
to keep references to the parent directory in a file system, making it possible to use 
“..”to refer to the parent directory without knowing the current directory’s actual loca-
tion. OO languages usually do not support such a mechanism for their run-time data 
structures, since this would require keeping track of the invocation structure. Negative 
variables give us the concept without requiring its implementation. 

Usually the axiomatic semantics of a method call is described using substitution 
rules of actual arguments to formal arguments, target of a call as the current object, 
and return value as a result after the call; see in particular the work of Müller, Leino 
and their colleagues [13] [8] [4]. Negative variables are not explicitly used in these 
approaches and are not available for formal reasoning on program properties. Meyer’s 
“Calculus of Object Programs” [12] is an exception, integrating the alias calculus [11] 
and negative variables. Schoeller’s path-based alias analysis [16] comes close to the 
need to use negative variables, but still uses the standard substitution technique to 
describe the semantics of a qualified method call. Other semantic descriptions of ob-
ject-oriented languages, such as algebraic specifications [5], also use substitution. 

The specifications and subtleties of pure functions are described by Darvas, Müller 
and Leino in [3] and [4]. We used a simplified version of the specification. 

Nienaltowski provides in [14] an analysis of the type requirements for safe concur-
rent programming and the resulting design of a type system for SCOOP. The ap-
proach covers both the attachment (non-nullness) status and the separateness status of 
the target and arguments of a call. The target’s attachment status ensures that a call 
cannot lead to an exception at run-time. Meyer, Kogtenkov and Stapf address this 
issue in [9]; in the examples we have taken the assumption of attachment for granted. 
The other key property presented in [14] can be deduced, as we have seen, from the 
general rules for negative variables. 

Shield [17] makes the current object explicit through a variable self. He treats 
every qualified call as an operation that saves the value of the current object to a 
stack, and assigns the call’s target to self. After the call, the original value is restored. 
The author notes that this technique works for recursive calls only when the stack 
stores a reference to the current object, not the object itself, on the stack. The present 
work makes a similar assumption for negative variables. 

Research in automatic program verification, particularly around the ESC/Java and 
JML languages and verification systems, uses the notion of model fields [1] or ghost 
variables [2]: variables used only for verification, without influence on the generated 
code, as in the classic Owicki-Gries approach [15] to the verification of concurrent 
programs. The variables should be specified by the developer and should be kept in 
sync with the rest of the program in the annotation sections. The verifier can use the 
properties of these variables to perform the verification of the actual code. Negative 
variables have a similar status: useful for reasoning and verification, but not used 
directly in the program. 

Kassios [7] proposes an extension to ghost fields by introducing implicit back-
pointers that are automatically added to the explicit ghost fields as soon as the corres-
ponding forward field is marked as tracked. The back-pointers are really object sets 
and are used to turn unstable class invariants into stable ones by making sure that data 
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reflecting the references to the given object are always synchronized with the refer-
ences themselves (the example in [7] uses reference count for this purpose). This 
approach makes it possible to apply separation logic rules to cases when actual object 
disjointness is replaced by observable disjointness. 

Wei Ke at al [18] use a special $-edge in object state graphs to denote a call stack. 
Whenever a qualified call is made, a new $-edge that points to the current root is 
created and points from the new root object node. On return the $-edge is removed 
and the current object is popped from it. Our approach is quite similar but goes 
beyond graph-based framework and state representation. Moreover, it allows using 
both – normal and reverse edges indistinguishably in cases when caller’s and callee’s 
contexts are to be taken into account, as in alias calculus. 

8 Implementation, Discussion and Future Work 

We have proposed a simple concept, negative variables, reflecting an essential 
property of object-oriented computation: the relativity of all program constructs to a 
“current object” known only at the very last moment during execution. The 
corresponding fundamental rule, (4), provides a general framework for reasoning 
about object-oriented programs regardless of the programming language and semantic 
framework; directly applicable versions of the general rule have been shown for 
specific frameworks such as denotational (5) and Hoare-style axiomatic (6) semantics, 
as well as alias analysis. Other examples, such as the application to concurrency, 
show the generality of the approach. 

The mechanisms for dealing with negative variables, particularly in the axiomatic 
and alias calculus applications, have been implemented in EVE, the research version 
of the EiffelStudio IDE (integrated development environment) and have been used to 
prove a number of properties of example programs. 

The discussion has not considered some important OO mechanisms such as 
inheritance, polymorphism, genericity, expanded (value) types, closures (C# dele-
gates, Eiffel agents) and the full extent of concurrency; specific rules may (or not) be 
needed to handle them. More generally, the use of negative variables in the verifica-
tion of ever larger object-oriented programs may lead to generalizations of the tech-
niques described here. 
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Abstract. Programming autonomic systems with massive number of
heterogeneous components poses a number of challenges to language de-
signers and software engineers and requires the integration of computa-
tional tools and reasoning tools. We present a general methodology to
enrich SCEL, a recently introduced language for programming systems
with massive numbers of components, with reasoning capabilities that are
guaranteed by external reasoners. We show how the methodology can be
instantiated by considering the Maude implementation of SCEL and a
specific reasoner, Pirlo, implemented in Maude as well. Moreover we
show how the actual integration can benefit from the existing analytical
tools of the Maude framework. In particular, we demonstrate our ap-
proach by considering a simple scenario consisting of a group of robots
moving in an arena aiming at minimising the number of collisions.

1 Introduction

The increasing complexity, heterogeneity and dynamism of current computa-
tional and information infrastructures is calling for new ways of designing and
managing computer systems and applications. Adaptation, namely “the capabil-
ity of a system to change its behavior according to new requirements or envi-
ronment conditions” [18], has been largely proposed as a powerful means for
taming the ever-increasing complexity of today’s computer systems and appli-
cations. Besides, a new paradigm, named autonomic computing [19], has been
advocated that aims at making modern distributed IT systems self-manageable,
i.e. capable of continuously self-monitoring and selecting appropriate operations.

More recently, to capture the relevant features and challenges, the ‘Interlink
WG on software intensive systems and new computing paradigms’ [20] has pro-
posed to use the term ensembles to refer to:

� Research supported by the European Integrated Project 257414 ASCENS and by
the MIUR COFIN Project CINA.

S. Iida, J. Meseguer, and K. Ogata (Eds.): Futatsugi Festschrift, LNCS 8373, pp. 188–211, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



Reasoning (on) Service Component Ensembles in Rewriting Logic 189

The future generation of software-intensive systems dealing with mas-
sive numbers of components, featuring complex interactions among com-
ponents and with humans and other systems, operating in open and
non-deterministic environments, and dynamically adapting to new re-
quirements, technologies and environmental conditions.

The notions of service components (SCs) and service-component ensembles
(SCEs) have been put forward as a means to structure a system into well-
understood, independent and distributed building blocks that interact in speci-
fied ways. SCs are autonomic entities that can cooperate, with different roles, in
open and non-deterministic environments. SCEs are instead sets of SCs with ded-
icated knowledge units and resources, featuring goal-oriented execution. Most of
the basic properties of SCs and SCEs are already guaranteed by current service-
oriented architectures; the novelty lays in the notions of goal-oriented evolution
and of self-awareness and context-awareness.

These notions of SCs and SCEs are the starting point of the EU project AS-
CENS [3,31] that aims at investigating different issues ranging from languages
for modelling and programming SCEs to foundational models for adaptation, dy-
namic self-expression and reconfiguration, from formal methods for the design
and verification of reliable SCEs to software infrastructures supporting deploy-
ment and execution of SCE-based applications. The aim is to develop formal
tools and methodologies supporting the design of self-adaptive systems that can
autonomously adapt to, also unexpected, changes in the operating environment,
while keeping most of their complexity hidden from administrators and users.

To this end, the SCEL language [13] has been proposed to deal with service
component ensembles. The language supports attribute-based communication
and sharing of (local) knowledge repositories to model interactions, and allows
to express behaviours in terms of process calculi. While SCEL is sufficiently
powerful for dealing with coordination and interaction issues, it does not provide
advanced tools for specifying components that take decisions about the action to
perform while taking into account the context they are currently in. Obviously,
the language could be extended in order to encompass such possibilities, and one
could have specific reasoning phases when decisions need to be taken because
changes of context have been noticed.

In our view, it is however preferable to have separate reasoning components
that SCEL programs can invoke whenever they need to take decisions. Hav-
ing two different languages, one for computation and coordination and one for
“reasoning”, does guarantee separation of concerns, a fundamental property to
obtain reliable and maintainable specifications. Also, it may be beneficial to
have a methodology for integrating different reasoners, designed and optimised
for specific purposes, with a specific programming language. What we envisage is
having SCEL programs that whenever have to take decisions have the possibility
of invoking an external reasoner by providing it information about the relevant
knowledge they have access to and receiving in exchange informed suggestions
about how to proceed.
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In this paper, we start our investigation towards the actual integration of
SCEL components and reasoners and describe a possible approach to the design
of interfaces and methodologies for building up systems consisting of separated
components concerned with computations and with decision taking. In particular
we show how a specific implementation of SCEL, that we call MISSCEL, can
be integrated with a specific reasoner that we call Pirlo [5]. The integration is
simplified by the fact that both MISSCEL and Pirlo are based on rewriting
logic and developed inMaude. We can thus specify: reasoning service component
ensembles.

The use of the Maude framework as basic tools for the implementation of the
two main components of our system paves also the way towards the exploitation
of tools and techniques for analysing the behaviour of SCEs, and we can thus
reason on reasoning service component ensembles. Indeed, all analytical tools
that have been developed for Maude, can now be exploited to analyse or simu-
late the behaviour of SCEs. As an example we will show how MultiVeStA[26],
a recently proposed statistical analyser for probabilistic systems, can be used to
evaluate the implementation of a simple scenario consisting of a group of robots
moving in an arena paying attention at minimising the number of collisions.

Indeed, this robotics scenario will be used throughout the paper to explain
the role of the different components. In particular, we will discuss the role of
SCEL and Pirlo in the modelling and reasoning phases and will assess the
impact of different perception ranges on the actual behaviour of the robots and
on the number of collisions.

Fig. 1. A bird-eye view of the scenario

The scenario is depicted in Fig-
ure 1, and is concerned with a
group of robots moving in an arena.
The arena is abstracted as a dis-
crete grid (the grey dashed lines),
while robots (the white or black
circles) are situated in cells in-
tersections. Several robots can re-
side in the same position, in which
case they collide. Robots are la-
belled with their current number
of collisions. Robots perform one-
cell movements following a dashed
line (up, right, down or left), or
stay idle. We consider two kinds
of robots distinguished by how the
choice of action is performed: nor-
mal robots, depicted as white circles, and informed robots, represented as black
circles. Normal robots randomly choose the action to be executed among the
five listed above, i.e. they perform a random walking or stay idle. The informed
robots monitor their surrounding environment by relying on proximity sensors
and exploit this information to choose an action that exhibits the minimal
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probability of colliding with other robots. The amount of environment perceived
by an informed robot depends on its perception range (depicted in Figure 1 as
the semi-transparent circle surrounding the informed robot). For example, the
informed robot of Figure 1 perceives its four neighbouring positions and the four
diagonal ones. The eight numbers surrounding the robot represent its current
perception of the environment: it perceives 1 robot above it, 1 robot in posi-
tion down-left, and 0 in the other six directions. The positions up, right, down
and left are reachable with a single move, while the diagonal ones are reachable
with two moves. However, the perception of the diagonal positions is also useful
for the computation of the next action, as a robot located there (e.g. the one
perceived in down-left) could move towards the same position chosen by the
informed robot (e.g. up, if the informed robot moves left).

The rest of the paper is structured as follows. Section 2 introduces SCEL and
its implementation in rewriting logic MISSCEL, and briefly describes the rea-
soner Pirlo. Section 3 provides a general methodology to enrich SCEL com-
ponents with reasoning capabilities by resorting to explicit reasoner integrators,
together with a concrete instantiation for MISSCEL, Pirlo and their use for
the implementation of the robotic scenario. Finally, Section 4 presents the ana-
lytical activities performed to validate our approach, while Section 5 wraps up
and discusses related and future work.

Personal Note: The fourth author has known Kokichi for a long time. Ko-
kichi and MW are both members of IFIP WG 1.3 on Foundations of System
Specification; in 1996 - 1998 MW has participated in the CafeOBJ project.
CafeOBJ [10,14,15] is a very well designed advanced algebraic specification lan-
guage developed by Kokichi and his group. Together with Maude and Elan [7],
CafeOBJ is among the three main implementations of rewriting logic. The
CafeOBJ project had also been coordinated by Kokichi and had the purpose
of making formal methods accessible to practising software engineers. MW and
his group were especially concerned with case studies and were able to show that
CafeOBJ is well-suited for specifying and analysing complex concurrent systems
such as a model of the airport ”Munich II” [21] and the operational semantics
of multi-threaded Java [22]. Our paper here explores these ideas and is written
in the spirit of Kokichi’s project: it uses rewriting logic for tackling a case study
on concurrent autonomic systems and aims at making formal methods useful for
software engineers.

Discussing and cooperating with Kokichi is always a pleasant experience; we
are looking forward to many further inspiring exchanges.

2 Preliminaries

Section 2.1 introduces SCEL and shows how the robotic scenario can be mod-
elled with it, while Section 2.2 discusses how Pirlo exploits the environment per-
ceptions of robots to reason about their next steps and suggest optimal choices.
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2.1 SCEL

SCEL [13] is a kernel formal language developed for modelling adaptive systems.
It brings together programming abstractions to directly address aggregations
(how different components interact to form ensembles and systems), behaviors
(how components progress) and knowledge manipulation, according to specific
policies. This allows to program interaction, adaptation and self- and context-
awareness.

Fig. 2. A SCEL component

SCEL specifications are made of possibly
cooperating SCEL components which, as de-
picted in Figure 2, are composed by an inter-
face, a knowledge repository, a set of policies,
and a process. The role of an interface is that
of publishing and making available to other
components selected parts of the local knowl-
edge. A knowledge repository manages compo-
nent’s data, and offers high-level primitives for
adding, retrieving and withdrawing it. Policies regulate the interaction between
the internal parts of a component (interaction policy) and with other compo-
nents (authorization predicate). Finally, a process executing actions in the style
of process calculi is used to explicitly represent the behaviour of a component.
Processes execute local computations, coordinate the interaction with the local
knowledge or interact with remote repositories according to the interfaces and
policies of the involved components. In particular, three actions are provided
to interact with repositories: put, qry and get, paired, respectively, with the
adding, retrieving and withdrawing primitives. Noteworthy, the target of these
actions can be either self, or the id of a component, or a target predicate al-
lowing, respectively, to access the local knowledge, the knowledge of another
component in a point-to-point fashion, or to perform an attribute-based com-
munication with any (qry or get) or all (put) components satisfying the target
predicate.

An in depth presentation of SCEL is out of the scope of this paper, we refer
the reader to [13], while a preliminary version of SCEL can be found in [12]. In
this paper we consider SCELTS , a SCEL dialect where repositories are tuple
spaces, and policies are omitted: intra-component processes evolve in a pure
interleaving fashion, while extra-component interactions are always authorized.
Note that policies are supported by MISSCEL (in particular the authorization
predicates), but no policy language has been integrated yet.

MISSCEL: A Maude Interpreter and Simulator for SCEL. SCEL comes
with solid semantics foundations laying the basis for formal reasoning. MISS-

CEL, a faithful rewriting logic-based implementation of SCEL’s operational
semantics is a first step in this direction. MISSCEL is written in Maude [11], an
instantiation of rewriting logic which allows to execute rewrite theories. What
we obtain is then an executable operational semantics for SCEL, that is an
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1 SC(I( tId(’SCId)),
2 K( < tId(’SCId) ; av(id(’robot -normal -1)) >, < tId(’type) ; av(’normal)

>,
3 < tId(’pos) ; av(1) av(2) >, < tId(’collisions) ; av(13) >),
4 Pi(INTERLEAVING -INTERACTION -PREDICATE),
5 P( qry(< tId(’pos) ; ?x(’x) ?x(’y) >)@ self .
6 put(< tId(’dir) ; randomDirection(x(’x), x(’y)) >)@ self .
7 put(< av(’terminated) >)@ self [ get(< av(’terminated) >)@ self .
8 pDef(’PnormalRobot)] )

Listing 1.1. A (MIS)SCEL component representing a normal robot

interpreter. Given a SCEL specification, thanks to MISSCEL it is possible to
exploit the rich Maude toolset [11] to perform:

– automatic state-space generation,
– qualitative analysis via Maude’s invariant and LTL model checkers,
– debugging via probabilistic simulations and animations generation,
– quantitative analysis via the recently proposed MultiVeStA [26], a dis-

tributed statistical analyzer extending VeStA [28] and PVeStA [2].

A further advantage of MISSCEL is that SCEL specifications can now be
intertwined with rawMaude code, exploiting its great expressiveness. This allows
to obtain cleaner specifications in which SCEL is used to model behaviours,
aggregations, and knowledge manipulation, leaving scenario-specific details like
environment sensing abstractions or robots movements to Maude.

Robots of our scenario are modelled as SCEL components. Listing 1.1 pro-
vides the MISSCEL representation of the normal robot of Figure 1 with label
13.

In MISSCEL, a SCEL component is defined as a Maude term with sort
ServiceComponent built with the operation op SC : Interface Knowledge

Policies Processes -> ServiceComponent . The interface exposes the id of
the robot (line 1), while, as depicted in lines 2-3, the knowledge contains the
id (’robot-normal-1), the type (’normal), the position (1,2) and the current
number of collisions (13). Line 4 specifies that the default policy of SCELTS

is enforced. Finally, lines 5-8 contain the behaviour specification of the robot.
The robot first queries its position from the local knowledge (line 5) and then
adds a randomly selected direction to its knowledge. Here we have two exam-
ples showing that it might be useful to mix SCEL and Maude specifications:
randomDirection is a Maude operation which probabilistically selects one of

1 ceq SC(I, K(< tId(’pos) ; av(x) av(y) >, < tId(’dir) ; av(dir)
2 >, k), Pi ,P)
3 = SC(I, K(< tId(’pos) ; av(x2) av(y2) > , k), Pi

,P)
4 if av(x2) av(y2) := computeNeighbouringPosition(av(x),av(y),av(dir)) .

Listing 1.2. The Maude equation to actuate robot movements
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Fig. 3. Four of the rules of SCEL’s semantics of processes

1 op commit : Process -> Commitment . rl commit(P) =>
2 commitment(inaction ,P) . rl commit(a . P) => commitment(a,P) . crl
3 commit(P + Q) => commitment(a, P1) if commit(P) => commitment(a,
4 P1) .

Listing 1.3. The rules of Figure 3 implemented in MISSCEL

the possible directions in which the robot can move. This direction is then con-
sumed by the Maude equation of Listing 1.2 to actuate the movement (where
computeNeighbouringPosition simply increases or decreases x or y depending
on the direction dir). We similarly defined an equation to abstract the environ-
ment sensing of informed robots. Then, in line 7 the token terminated is added
to the local repository to signal completion of the movement. This token can
now be consumed by the process enclosed is squared brackets (in parallel with
the one just described), and finally the process definition pDef(’PnormalRobot)

is invoked, meaning that it is replaced with its body, which actually corresponds
to the whole described process.

Coming to semantics-related aspects, the operational semantics of SCEL[13]
is defined in two steps: the semantics of processes, and the semantics of sys-
tems. First, the semantics of processes specifies their commitments, ignoring the
structure of SCEL components. Namely, issues like allocation of processes to a
component, available data in the knowledge, and regulating policies are ignored
at this level. Then, by taking process commitments and system configuration into
account, the semantics of systems provides a full description of systems behavior.
The same happens in MISSCEL. Due to space constraints we now exemplify
the correspondence of SCEL semantics and its implementation in MISSCEL

for the semantics of processes only.
Figure 3 depicts four of the rules defining SCEL’s semantics of processes,

specifying, respectively from left to right, that: a process can commit in itself
executing an inaction, a process composed by P prefixed by an action a can
commit in P by executing a, a process P + Q, in which P can commit in P ′

executing an action, orQ can commit inQ′ executing another action, can commit
either in P ′ or in Q′ executing the corresponding action.

Listing 1.3 depicts (omitting unnecessary details) how we implemented the
rules of Figure 3 in MISSCEL. Where P, Q and P1 are Maude variables with
sort Process (i.e. place-holders for any term with the specified sort), while a is
an Action variable. The correspondence is straightforward. Note that we need
only one rule for the + operator, as we defined it with the comm axiom, meaning
that it has the commutative property, meaning the when applying a rule to P +

Q, Maude will try to match the rule also with Q + P.
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2.2 Pirlo

For specification and execution of reasoning about which move to execute in order
to minimize collision probability we use Pirlo, an implementation of action pro-
gramming in rewriting logic [5]. The general idea is to write a non-deterministic
action program that captures agents’ behavioural alternatives. The effects of
these alternatives are then computed by the Pirlo reasoning system and can
subsequently be evaluated, e.g. by computing the probability of avoiding colli-
sions when moving in a specific direction.

For Pirlo being able to reason about domain dynamics, the current state
perceived by the agent is represented in terms of fluents, i.e. properties of the en-
vironment that are object to change due to actions executed by an agent or other
events. Additionally, a specification of domain dynamics is provided in terms of
rewrite rules which encode the effects of actions on the environment, i.e. they
encode the changes that happen to fluents upon action execution. This specifi-
cation of domain dynamics can be augmented by other assumptions about the
environment, like general laws or invariants, to form an exhaustive background
knowledge that can be used to predict the effects of action execution. Note that
dynamics can be encoded on first-order level using variables for domain objects,
thus allowing for concise specification of knowledge and efficient computation of
action effects.

Fig. 4. Action programming in rewriting logic

Pirlo uses specified knowl-
edge about domain dynam-
ics to compute the possible
effects of non-deterministic
programs that encode vari-
ous action alternatives for an
agent. These programs are
constructed by means of pro-
cedural operations as well
as non-deterministic opera-
tors, e.g. choice of action and
choice of argument. For exam-
ple, given a non-deterministic
choice operator # and two distinct actions a and a’, the program a # a’ will
lead to the computation of the effects of executing either a or a’. Actions induced
by programs are used to rewrite a fluent term representing the current state and
computing its normal form w.r.t. domain dynamics and background knowledge
which have been specified in terms of rewrite rules. This approach is roughly out-
lined in Figure 4. For example, given an agent that perceives a state s and s’,
and that has been provided with a specification for actions a and a’ defining
s and a -> s’’ and s’ and a’ -> s’’’, the computation of possible effects
of executing the program a # a’ will result in two new state terms according to
action execution; namely, these are s and s’ and a that rewrites to s’’ and s’

when executing action a and s and s’ and a’ rewriting to s and s’’’ when
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1 sorts Agent Position Probability .
2
3 op pos : Agent Int Int -> Position .
4 op p : Float -> Probability .

Listing 1.4. Example domain fluents

1 var A : Agent .
2 vars X, Y, DX, DY : Int .
3
4 crl pos(A, X , Y ) and move(A, DX, DY)
5 => pos(A, X + DX, Y + DY)
6 if X + DX and Y + DY are in grid area .

Listing 1.5. Specification of the effects of the move action

executing a’, respectively. For a more detailed discussion of action programming
in rewriting logic, the reader is referred to [5].

Domain specification. For our scenario, the system state is represented by fluents
as shown in Listing 1.4 denoting an agent’s position and the probability of the
system being in a certain state, respectively. Fluents are conjoined to states by
an associative and commutative operator op and : State State -> State

denoting logical conjunctions of fluents and/or states respectively. Fluents are
considered a sub-sort of sort state. For example, pos(a,1,0) and pos(a’,2,2)

and p(0.8) denotes a state with two agents a and a’ being located at the
specified positions, and that this state will occur with a probability of 0.8.

In the presented scenario, agents only have a move action that takes the mov-
ing agent and the movement delta in x- and y-direction as parameters. For
example, move(a,1,0) denotes that agent a will move one step to the right on
the grid area.

Fig. 5. Probability of agent
position after one step

When specifying action domains in rewriting
logic, system dynamics (i.e. action effects) are
modelled in terms of (conditional) rewrite laws
that specify the action’s precondition and the
affected portion of the current state as a fluent
formula that is conjoined with the action repre-
sentation. The effect of a move action is thus rep-
resented by a rewrite law as shown in Listing 1.5.
An action program that allows an agent to move in
any direction or to stand still can then be defined
as shown in Listing 1.6.

Lookup tables. In order to allow an agent to compute the probability of colliding
with another agent, it is useful to provide to the reasoning agent information
about the probability that a perceived agent will be at a certain position in the
future. As the movement of uncontrolled agents is assumed to be random (with
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1 op moveProgram : Agent -> Program . eq moveProgram(A)
2 = move(A,0,0) # move(A,1,0) # move(A,-1,0) # move(A,0,1) # move(A,0,-1) .

Listing 1.6. Specification of agent movement alternatives

1 op update : Agent -> Action .
2
3 var CA : ControlledAgent . var A : Agent .
4 vars X, Y, X’, Y’ : Int . vars P, P’ : Float.
5
6 crl pos(CA , X, Y) and pos(A, X’, Y’) and update(A) and p(P)
7 => pos(CA , X, Y) and pos(A, X’, Y’) and p(P * P’)
8 if P’ := lookup(X, Y, X’, Y’) .

Listing 1.7. Specification of collision probability update

a uniform probability distribution, i.e. each of the five actions is chosen with a
probability of 0.2), this information can be precomputed and used as a lookup
table for computation of collision avoidance probability at run-time. Figure 5
graphically represents this lookup table when no borders are considered. The
centered point is considered to be the current position of a perceived agent. The
numbers denote the probability that this agent will not be at the given position
after one step. Note that the lookup table does not take into account situations
where borders are present; however, for these cases, it could be precomputed as
well.

To allow an agent to compute the probability of not colliding with a certain
other agent, an action update is defined as shown in Listing 1.7. CA denotes a
controlled agent (being specified as a subsort of agent to allow distinction from
uncontrolled agents).

Example. Consider the state pos(ca,1,1) and pos(a,1,2), ca being the con-
trolled agent, and a an uncontrolled one. In order to compute the probabilities
of avoiding collisions when performing a certain move action, agent ca invokes
the reasoner by passing to it the current state. Then, the reasoner computes
the results of the sequential program moveProgram(ca);update(a), that first
chooses a possible move (and performs it hypothetically), and finally updates the
probability of avoiding a collision in the resulting state. The given program will
compute a probability of 0.8 of avoiding a collision when standing still or moving
up, and a probability of 1.0 for all other moves. In the example situation, the
reasoner thus will propose to either move down, left or right to achieve the best
result. If the informed robot perceives multiple other agents in its environment,
the update is performed for each of them, resulting in a cumulated computation
of the probability that a particular move will avoid collision.

3 Enriching SCEL with Reasoning Capabilities

SCEL has been defined to deal with components behaviours and interactions,
while Pirlo has been conceived to express and perform reasoning. Even if it
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would be possible to directly enrich SCEL with reasoning capabilities, this
would not be convenient from a separation of concerns perspective. Here we
present a general approach to enrich SCEL with external reasoning capabili-
ties (Section 3.1), we instantiate it for MISSCEL (Section 3.2), and then show
how to integrate MISSCEL with Pirlo for dealing with the robotic scenario
(Section 3.3).

3.1 Methodology

We aim at enriching SCEL components with a reasoner to be invoked when
necessary. Ideally, this should be done by minimally extending SCEL. In Fig-
ure 2 we depicted the constituents of a component: interfaces, policies, processes
and repositories. Interfaces and policies will not be involved in the extension, as
the former only exposes the local knowledge to other components, and the lat-
ter are not considered in SCELTS. Processes store and retrieve data (tuples in
SCELTS) in repositories. The interaction between a process and its local repos-
itory is a natural choice to plug a reasoner: we can use special data (reasoning
request tuples) whose addition to the local knowledge triggers the reasoner. Rea-
soning results can then be stored in the knowledge as reasoning result tuples,
allowing local processes to access them as any other data. We could have ei-
ther passive reasoners invoked when necessary, or active ones that continuously
monitor the repositories. In Sections 3.2, 3.3 we exemplify the first case.

Figure 6 depicts such an enriched SCEL component. With respect to Figure 2,
now local communications are filtered by RI, a reasoner integrator.

Fig. 6. Enriched SCEL component

As depicted by the grey ar-
row between RI and R (a
reasoner), in case of reason-
ing requests, RI invokes R,
which evaluates the request
and returns back the result of
the reasoning phase. RI then
stores the obtained result in
the knowledge, allowing the
local processes to access it via
common get or qry actions.
In case of normal data, the flow goes instead directly to the knowledge.

Actually, RI has the further fundamental role of translating data among the
internal representations used by SCEL and by the reasoner, acting hence as
an adapter between them. To sum up, RI performs three tasks: it first trans-
lates the reasoning request from SCEL’s representation to the reasoner’s one
(scel2reasoner), then it invokes the reasoner (invokeReasoner), and finally trans-
lates back the results (reasoner2scel). Clearly, each reasoner requires its own
implementation of the three operations. Hence, as depicted in Figure 7, we sep-
arate the RI component into an abstract reasoning interface and a concrete
adapter. The former is given just once and contains the definition of the three
operations, while the latter is reasoner- and domain-specific, and provides the
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Fig. 7. An architectural perspective of the reasoner integrator

actual implementation of the three operations. In Section 3.2 we discuss the
instantiation for MISSCEL of the abstract reasoning interface. The three op-
erations implemented by a concrete adapter provide a connection from SCEL
to a particular reasoner taking care of the translation of syntactical represen-
tations and of the actual execution of the reasoning operation. As discussed in
Section 3.3, in our running case study these steps consist of: (i) providing to the
reasoner the information about nearby robots perceived by proximity sensors;
(ii) invoking Pirlo’s reasoning service to calculate the optimal action w.r.t. this
information; (iii) returning an optimal action to the SCEL program.

3.2 Providing the Abstract Interface in MISSCEL

We now discuss how we enrichedMISSCEL to provide components with abstract
reasoning interfaces.

Listing 1.8 depicts MISSCEL’s abstract reasoning interface (omitting un-
necessary details). Line 3 defines the reasoner-side sorts and variables for rea-
soning requests and results. Constructors for these sorts are provided in the
concrete adapter. Line 4 defines the variables used to match the SCEL-side pa-
rameters of the reasoning results and requests (lists of values like e.g. integers or
strings). Lines 6-8 define the three operations discussed in Section 3.1. Note how
scel2reasoner goes from SCEL-side to reasoner-side values, reasoner2scel
does the opposite, and invokeReasoner deals with reasoner-side values only.
Lines 10-16 show how our methodology is actuated: in case of a local put of a
tuple t, we actually store the result of invokeReasonerIfNecessary(t). If t
is a reasoning request tuple (i.e. has id ’reasoningRequest, line 11), then its
parameters are translated by scel2reasoner (line 13), the reasoner is invoked
(line 14), and the obtained result is translated back by reasoner2scel (line 15).
Note that the result is enclosed in a reasoning result tuple (line 12). Finally, if
t is not a reasoning request tuple, the equation of line 16 is applied (due to the
owise clause standing for otherwise), leaving it unchanged.

3.3 Integrating MISSCEL and PiRLo for the Robotic Scenario

We now discuss the integration of MISSCEL and PiRLo for the robotic scenario,
i.e. we present the defined concrete adapter.
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1 mod ABSTRACT -REASONING -INTERFACE is
2 --- importings of modules are omitted
3 sorts RRequest RRequestParameters RResult RResultParameters .
4 var rReq : RRequest . var rRes : RResult .
5 var requestParameter resultParameter : List{Value} . var t : Tuple .
6
7 op scel2reasoner : List{Value} -> RRequestParameters .
8 op invokeReasoner : RRequest -> RResultParameters .
9 op reasoner2scel : RResult -> List{Value} .

10 op invokeReasonerIfNecessary : Tuple -> Tuple .
11 ceq invokeReasonerIfNecessary(< tId(’reasoningRequest) ;

requestParameter >)
12 = < tId(’reasoningResult) ; resultParameter

>
13 if rReq := scel2reasoner(requestParameter)
14 /\ rRes := invokeReasoner(rReq)
15 /\ resultParameter := reasoner2scel(rRes) .
16 eq invokeReasonerIfNecessary(t) = t [ owise ] .
17 endm

Listing 1.8. The MISSCEL’s abstract reasoning interface.

As Pirlo needs as input a state term and an action program as outlined
in Section 2.2, these have to be constructed from the parameters of a reasoning
request. While these input parameters are required by Pirlo regardless of the
underlying problem, their representation is very much depending on the domain
specification (see Section 2.2). Thus, the following paragraph outlines an instan-
tiation of scel2Reasoner for the robotics scenario to illustrate the approach.
The resulting implementation of scel2Reasoner is shown in Listing 1.9.

The buildState operation takes the parameters of the reasoning request and
transforms them to a state term and an action program according to the re-
quested reasoning service. Namely, proximity sensor data is translated into the
fluent representation that was introduced in Section 2.2. For example, if a robot is
perceived on direction up, a position fluent pos(<some id>, ownX, ownY + 1)

is constructed and conjoined with the current state term. This construction is
performed recursively by the operation buildPosOfPerceivedRobots for all the
perceived robots. Finally, the built state is annotated with a fluent p(1.0), which
is exploited by Pirlo to encode the probability of not colliding with another
robot after one step. Note that, if necessary, information about error rates of
proximity sensors could be encoded here. Listing 1.9 shows the general outline
of buildState for reasoning services regarding four perceived positions only.

The action program used to update collision probability as described in Sec-
tion 2.2 is constructed by the operation buildProgram depicted in Listing 1.9. In
general, it produces a non-deterministic program that will compute the effects
for all possible actions of the controlled agent, and subsequently will deduce
the probability for each action of not colliding with another agent. To do so,
an action program only consisting of the operation update(<some id>) is se-
quentially added to the final reasoner program for each robot perceived by the
proximity sensor (i.e. for each position fluent in the state term that is not encod-
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1 var rReqParams : List{Value} . var S : State . var P : Program .
2
3 ceq scel2reasoner(rReqParams) = reasoningRequest(S, P)
4 if S := buildState(rReqParams)
5 /\ P := buildProgram(S) .
6
7 op buildState : List{Value} -> State .
8 eq buildState(av(’reasonWith4Directions) av(id(SCID)) av(ownX) av(ownY)
9 av(#Up) av(#Right) av(#Down) av(#Left))

10 = pos(SCID , ownX , ownY) and p(1.0) and
11 buildPosOfPerceivedRobots(ownX , ownY , #Up, #Right , #Down , #Left) .
12
13 op buildProgram : State -> Program .
14 eq buildProgram(pos(CA,X,Y) and S) = moveProgram(R) ; buildUpdateProgram(

S) .
15
16 op buildUpdateProgram : State -> Program .
17 eq buildUpdateProgram(pos(R,X,Y) and S)= update(R,0) ; buildUpdateProgram

(S).
18 eq buildUpdateProgram(pos(R,X,Y)) = update(R,0) .

Listing 1.9. Concrete implementation of scel2Reasoner.

1 eq invokeReasoner(reasoningRequest(S, P))
2 = reasoningResult(maxProb (metaExec (S, P))) .
3
4 var A : PrimitiveAction .
5 eq reasoner2scel(reasoningResult(A ; P)) = av(translateAction(A)) .
6
7 op translateAction : PrimitiveAction -> Qid .
8 eq translateAction(move(SCID , 0, 0)) = ’standStill .
9 eq translateAction(move(SCID , 1, 0)) = ’right .

10 --- Other directions are translated similarly.

Listing 1.10. Concrete implementation of invokeReasoner and reasoner2scel.

ing the controlled agent). As described in Section 2.2, distinction of controlled
and uncontrolled agents can be realized via sub-sorting.

Lines 1-2 of Listing 1.10 show the implementation of invokeReasoner, which
takes as parameters the state term and program constructed in the previous
steps. Here, maxProb and metaExec are operations provided by Pirlo. Finally,
lines 4-9 of Listing 1.10 show the implementation of reasoner2scel, i.e. how the
result provided by the reasoner is translated to SCEL’s syntactic representation.

4 Methodology Validation: Analysis of the Scenario

We now describe the analysis activities performed on the robotic scenario by re-
sorting to MISSCEL and its integration with PiRLo. We have performed two
kind of analysis. An informal analysis of videos generated out of probabilistic
simulations (Section 4.2); and statistical model checking (Section 4.3). In partic-
ular, in the early development stages of the scenario we mainly concentrated on
informally analysing single simulations and their automatically generated anima-
tions. This can be considered as a debugging phase. A couple of trial-and-error
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iterations were enough for the model to acquire sufficient maturity to undergo a
more rigorous analysis in terms of statistical model checking. Qualitative analy-
sis of SCEL specifications is possible in MISSCEL by resorting to the rich Maude
framework [11] (e.g. via Maude’s reachability analysis capabilities, or LTL model
checker) but it suffers from the state-space explosion problem, and it is limited
to small scenarios. To tackle larger scenarios, and to gain more insights into the
model by dealing with probabilities and quantities, rather than possibilities, we
resorted to quantitative statistical analysis techniques. The work presented in
this section greatly benefited from the previous experience done by the third
author in the line of research of [24,8] where PMaude [1] (a probabilistic exten-
sion of Maude) and PVeStA (a tool extended by MultiVeStA, used in this
paper) have been used to model and analyze robotic self-assembly strategies.

4.1 From Non-determinism to Probabilistic Simulations

MISSCEL is an executable operational semantics for SCEL. As such, given a
SCEL specification representing a system’s state (i.e. a set of SCEL components),
MISSCEL executes it by applying a rule of SCEL’s semantics to (part of) the
state. According to such semantics a system evolves non-deterministically by
executing the process of one of its components, and in particular by consuming
one of its actions. We will call active the component triggering the execution step.
Clearly, depending on the action (e.g. a get or a group put) a single execution
step may involve more than one component (e.g. the sender and the receivers),
the execution is however triggered by one of them (the active one).

As usual (especially in the Maude context, e.g. [6,8,1,17]), in order to ob-
tain probabilistic behaviours out of non-deterministic ones we need to resolve
this non-determinism. Two main approaches exist in the literature, one where
Maude specifications are enriched with probabilities and quantities (obtaining
probabilistic rewrite theories [1]) and schedulers are used to solve the remaining
non-determinism (see e.g. [8,1,17]), and the other approach, where probabilistic
strategy languages [6] are used to associate probabilities to rule applications.
Both approaches resolve non-determinism by probabilistic choices.

In a way, our proposal can be associated with both approaches. Intuitively, it
belongs to the first approach because we rely on a (Java) scheduler that exploits
MISSCEL to generate all one-step next states, and then probabilistically selects
one of them. From another point of view it can be seen as taking the second
approach, as we implicitly specify the same probability to every rule application.
As a last remark, our approach can be considered as “conservative”, as we did
not modify MISSCEL itself, but we exploited an external scheduler in order
to resolve non-determinism. However, nothing would prevent us from taking
different choices in the lines of [1].

Apart from efficiency and scalability concerns, the above outlined naive sched-
uler does not fit well with the considered scenario, where components are robots
moving independently: it leads to unrealistic executions in which robots “evolve
with different frequencies”. In order to have a more realistic abstraction we need
fair executions, i.e. we need to consider execution iterations (or rounds) in which
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1 performSimulation(state ,numberOfIterations)
2 while(numberOfIterations have been performed)
3 listOfIds := getIds(state);
4 shuffledIds := shuffleProbabilistically(listOfIds);
5 while(shuffledIds contains further ids)
6 states := oneStepNextStates(state ,shuffledIds.getNext ());
7 state := chooseProbabilistically(states);

Listing 1.11. The pseudo-code for simulations with fair scheduling

each component executes in turn. Listing 1.11 provides the pseudo-code to per-
form simulations with fair scheduling. Provided the fair scheduler with an initial
state and a maximal number of iterations (line 1), for every iteration it first ob-
tains the list of components’ identifiers (line 3), then iteratively executes the
system forcing the choice of active components according to their order in the
list (lines 5-7). Noteworthy, the list is shuffled probabilistically at every iteration
(line 4), so that conflicts among components (e.g. willingness to consume the
same tuple) are implicitly resolved with dynamic priorities. Furthermore, this
solution offers better performances, as at each step of an iteration only the next
states triggered by an active component are generated (line 6).

Recall that a step of the system does not correspond to a movement of a
robot, but to the consumption of a SCEL action. In order to mimic simultaneous
movements, we provided robots with processes of the same length, so that they
move in the same iteration. Intuitively, we added some actions to normal robots
(querying the current position), and now robots move every 8 iterations.

4.2 Animated Probabilistic Simulations

Simulations are performed by using the fair simulator of Section 4.1. In order
to obtain animated simulations we implemented an exporter from SCEL terms
to DOT graphs [16], offering the automatic generation of images from states,
and of animations from images: they have greatly facilitated the debugging of
MISSCEL, PiRLo and of the specification of the robotic scenario.

In order to detail the dynamics of the robotic scenario, we now discuss a simu-
lation regarding ten normal robots and an informed one using the reasoner. We
performed 4400 execution steps (i.e. 400 execution iterations for the 11 robots),
requiring in average around 30 milliseconds per step. Given that each robot ex-
ecutes 400 actions, and that robots perform a movement (or stand still) every
8 actions, we have that each robot performs at most 50 movements, and the
reasoner is invoked 50 times by the informed robot. Six interesting states of the
simulation are depicted in the automatically generated images of Figure 8.

Given the number of robots, the initial state of a simulation is computed by
probabilistically distributing them in the arena. An example is depicted in the
top-left of Figure 8, where we notice an informed robot (the black circle) and
only nine normal ones (white circles), meaning that two robots are colliding.
During the simulation each robot counts its collisions with others (depicted in
their labels), but ignores those of the initial state. As we will discuss, during
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Fig. 8. Six states of a simulation of the robotic scenario

the execution the informed robot changes its “internal state” among monitoring,
wait for reason result and actuating reason result. The informed robot is initially
black, meaning that it is monitoring the environment. As depicted by its per-
ception range (the semi-transparent circle surrounding it) it perceives only the
four surrounding positions (up, right, down and left). In other simulations and
in Section 4.3 we considered greater perception ranges allowing e.g. to perceive
also the four surrounding diagonal positions.

After several iterations we reach the configuration depicted in the top-middle
of Figure 8. Even if not appreciable in the figure, the number of collisions of
the informed robot is five, while the normal ones have an average of more than
nine. The informed robot perceives a robot on its left and one on its right.
Further execution leads to the state in the top-right of Figure 8. The informed
robot changed its color to grey, meaning that it froze its current perception of
the environment and passed it to the reasoner (state waiting for reason result).
Given that the informed robot perceived a robot on its right and one on its
left, we can expect that if either an up or a down movement will be chosen,
as movements in other directions may lead to collisions. Furthermore, also the
choice of not moving should be avoided, as the perceived robots could move
towards the informed one.

In the bottom-left part of Figure 8 we notice that the informed robot is labelled
with a yellow light (state actuating reason result), symbolizing the reception of
the reasoning result. As expected, in the bottom-centre part of Figure 8 we
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see that the informed robot moved up. Finally (bottom-left of Figure 8), the
informed robot enters again in state monitoring.

4.3 Statistical Model Checking

By performing different simulations by varying the number and distribution
of robots we noticed that normal robots tend to collide more than informed
ones. We can measure and quantify this phenomenon via statistical analysis
techniques.

We perform a quantitative analysis by resorting to statistical model check-
ing (see e.g. [27,28,2]). This technique does not yield the absolute confidence of
qualitative or probabilistic model checking, but allows to analyze (up to some
statistical errors) larger scenarios and to deal with the stochastic nature of proba-
bilistic systems. Statistical model checking does not exhaustively explore systems
state-spaces, but rather performs n independent simulations, with n large enough
to statistically estimate quantitative properties. More precisely, properties are
estimated for a given confidence interval specified by two parameters α and δ: if
a property is estimated as the real number x, then with probability (1− α) the
actual value of the property belongs to the interval [x − δ/2, x + δ/2]. Clearly,
the coarser is the confidence interval, the less accurate is the estimation, and
hence the smaller number of simulations are required. In all our experiments we
fixed 0.05 for both α and δ, meaning that with probability 0.95 the actual value
of a property estimated as x belongs to [x− 0.025, x+ 0.025].

We exploited MultiVeStA [26], a distributed statistical analyzer and model
checker which performs Monte Carlo based evaluations of quantitative temporal
multi-expressions (MultiQuaTEx) [26,1], allowing to query expected values of
real-typed parametric expressions like the number of collisions of an informed
robot at the growing of the number steps, fixing 5000 as maximum number of
steps. A presentation of MultiVeStA and of MultiQuaTEx is out of the
scope of this paper, we refer the interested reader to [26,25,2,28,1].

Figure 9 presents the results of some of the performed experiments. We con-
sidered two scenarios concerning an arena with 5× 5 cells containing ten normal
robots and an informed one; all are probabilistically distributed. In the first sce-
nario the informed robot perceives only the four surrounding positions (up, right,
down, left). In the second scenario the informed robot has a wider perception
range allowing to perceive also the positions in the four diagonal directions (up-
right, down-right, down-left, up-left). Figure 8 and Figure 1 depict, respectively,
some possible configurations of the first and second scenario.

For both scenarios we first studied the expected value of the average number
of collisions of the normal robots when varying of the number of execution steps
from 1 to 5000 (i.e. 455 iterations). Not surprisingly, we obtain very similar
measures for both the scenarios, and hence we use only one plot in Figure 9
(“Avg collisions of random walkers”). Noteworthy, after 5000 steps, the average
of the number of collisions of the normal robots is near to 26.8 in both the
scenarios.
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Fig. 9. Collisions of normal and informed robots at varying of the number of steps

More interesting is the comparison of the expected value of the number of
collisions of informed robots when varying the perception range. For both sce-
narios we thus also studied the number of collisions of the informed robot at
steps from 1 to 5000. As depicted by the plots “Collisions of informed robot -
perceive 4 dirs” and “Collisions of informed robot - perceive 8 dirs”, informed
robots do significantly less collisions than the normal ones. In particular, after
5000 steps we observe 15 collisions for the informed robot that perceives only
four positions, and 10.9 for the one that perceives also the additional four diag-
onal positions. Hence, the perception of the four surrounding positions leads to
reducing by 44% the number of collisions when compared to random walking. A
doubly richer perception reaching also the diagonal positions leads to reducing
by 60% the number of collisions.

All the described analysis have been performed on a machine equipped with
four Intel Xeon E7540 and 64GB of RAM, running Linux 2.6.32 and Java 1.7.0
04-b20 64bit, requiring in total less then one hour and an half.

5 Conclusions

Future software systems will have to cope with dynamically changing environ-
ments rendering difficult any static approach to their design. To this end, ser-
vice component ensembles, i.e. systems with a massive number of autonomous
(service) components which adapt to changing requirements at run-time were
proposed.
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This paper discussed a methodology for the integration of service components
and reasoners, enabling components to evaluate their current state at run-time
to optimize their behaviour, thus making them autonomous. The proposed ap-
proach aims at a separation of concerns between behavioural and reasoning
aspects by explicitly providing component parts with clearly distinguished re-
sponsibilities.

Coordination and execution of service components behaviour, together with
distribution of knowledge among them is specified in terms of SCEL, a process
description language that exploits the notion of distributed tuple spaces, and
offers attribute-based communication, where the set of participants to a commu-
nication is evaluated at run-time as those satisfying a given predicate.

The processing of knowledge to produce information used to autonomously
adapt behaviour is performed by particular reasoning parts of the component.
Such elaboration is explicitly triggered by a SCEL process whenever there is a
need for additional information, e.g. to obtain optimal behavioural alternatives.

The presented methodology is not restricted to a particular reasoner. More-
over, many reasoners could be used at the same time, each performing particular
reasoning tasks for which they are best suited. To this end, particular reasoning
services can be requested by a SCEL process according to the task at hand.

In order to allow for a clear integration of SCEL components and reason-
ers, we added a so-called reasoner integrator to the original constituents of a
SCEL component. The reasoner integrator is composed by an abstract inter-
face offered by SCEL components, and by a concrete adapter that has to be
implemented for any integrated reasoner and considered scenario. The adapter
has to perform the translation of knowledge between the representations used by
SCEL components and by the one of the reasoner. Moreover it has to implement
the reasoning services specific to the scenario at hand.

In an example scenario regarding colliding robots, we provided the behavioural
specification with MISSCEL, the Maude implementation of SCEL. Reason-
ing capabilities have been instead specified exploiting Pirlo, a Maude imple-
mentation of action programming. Given that we provided rewriting logic and
Maude as formal environment, we can perform formal evaluation of modelled
systems by resorting to the Maude tool framework. As an exemplary analy-
sis, we performed statistical model checking of the robotic scenario by exploiting
MultiVeStA, a recently proposed statistical analyser for probabilistic systems.

In this paper we did not study the computational cost of providing autonomous
components with reasoning capabilities. Reasoning is an external feature invoked
by SCEL components at need, and, indeed, its cost depends on the considered
scenario and reasoner, and on the kind of reasoning and the frequency of its
invocation. For example, it has only a slight impact in our robotic scenario. This
is due to two main reasons: the required reasoning is relatively simple and has
been efficiently implemented in Pirlo and it is not invoked frequently. A step of
the system corresponds to the consumption of a SCEL action; robots perform 8
actions in order to perform a movement, and only informed robots resort to rea-
soning, which is thus invoked every 88 steps of the system. In order to provide
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an informal idea of the overhead introduced by the reasoning phases, we run
simulations that are based on 400 iterations (i.e. 4400 steps) for three scenarios:
one with 11 random walkers, and two with 10 random walkers and an informed
robot perceiving, respectively, 4 and 8 positions. By performing 5 simulations
of each of the three scenario, we obtained an average execution time in seconds
of 135 (30.7 milliseconds per step), 136.2 (31.0 milliseconds per step) and 138.2
(31.4 milliseconds per step), respectively.

Due to the simplicity of the considered reasoning, in this paper we did not
investigate how to introduce approximations in the reasoning procedures. How-
ever, the reasoning performed by robots perceiving the 4 surrounding positions
can be considered as an approximation of the case with 8 perceptions, as less
information is taken into account when choosing the next movement. Moreover,
the decisions taken by random walkers can be considered as a further approxima-
tion, as no information at all is used, and the next movement is chosen randomly.
What we have shown in this paper is that, for the considered scenario, exploiting
a perception of a small portion of the surrounding environment (i.e. the 4 sur-
rounding positions) leads to an almost halved number of collisions, in average.
Perceiving a doubly larger portion of the environment (i.e. the 4 surrounding
positions, and the 4 diagonal ones) further decreases the number of collisions,
but does not provide an improvement comparable to the one introduced by the
case of 4 perceptions w.r.t. the random walkers case.

Related Work. Other Maude-based approaches to autonomic and adaptive
systems exist in the literature. Among these we mention MESSI [24,8,9] and
PAGODA [30], which propose modular architectures for specifying and proto-
typing systems of autonomous cooperating agents.

Both approaches are based on the Russian Dolls architectures [23,29] and
propose to hierarchically structure components, where the component of a layer
can be seen as a sort of adaptation manager of the one of the inner layer (i.e.
the managed component). MESSI achieves adaptation via meta-programming
mechanisms based on computational reflection, i.e. a manager component exe-
cutes the managed one changing its code, filtering its inputs and elaborating
its outputs. PAGODA, instead, achieves adaptation mainly by intercepting and
manipulating messages while they cross the layers of a component.

The two approaches are more generic than the one proposed in this paper,
as we focus on a Maude implementation of a specific programming language
(SCEL), and show how its components can be enriched with reasoning capabil-
ities. In SCEL each component has an explicit representation of its behaviour
(i.e. its process description), which can be executed and modified at run time by
loading other process descriptions stored in the distributed repositories. Thus,
in a sense, we have a two-layer architecture based on meta-programming (in fact
programs are data which can be modified and executed at run-time).

However, this paper, and in particular Section 4, is related to the research
line of MESSI, where a probabilistic extension of Maude and PVeStA (a
tool extended by MultiVeStA) have been used to model and analyze robotic
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self-assembly strategies. In a broad sense, this work can be considered as a follow-
up of that research line.

Future Work. While the integration of behaviour and reasoning is clearly defined
from a service component point of view, our approach does not take into account
yet the structure of knowledge that is used as input and provided as output for
reasoning services. The use of specific knowledge representation formalisms will
further enhance the clarity of integration of elaboration and execution. Espe-
cially when multiple reasoners are employed, a component managing the flow of
information between a SCEL process and the different reasoners would clearly
benefit from a clean formalization of the different internal representations. Of
course, the choice of using SCELTS rather than any other variant of SCEL

simplified the methodology and its implementation.
In this paper we did not consider policies, another important component of

SCEL that uses them at the level of operational semantics: before executing
a SCEL action it is checked whether the action is permitted by the policies
defined for the components under consideration. The current MISSCEL imple-
mentation does not consider any policy language and simply assumes that all
actions are permitted. However, we do not foresee any problem in implementing
in MISSCEL authorization predicates described by means of a specific policy
language. Moreover, for more complicated policies, possibly involving structured
and advanced reasoning, we can envisage the possibility of resorting to specific
reasoners, by following the methodology proposed in this paper.

Another issue worth investigating is the explicit distribution and coordination
of knowledge among the different service components forming an ensemble. The
challenge is how to integrate the results provided by the individual reasoners
of each component, to obtain a global outcome from the distributed local ones.
This is especially important in presence of shared resources, or in case some form
of consensus has to be reached.

The presented approach for enhancing behavioural specifications of service
components with reasoning capabilities relies on the explicit invocation of the
reasoner by a requesting process. This means that for the moment only passive
reasoners are used that can be invoked at needs. An alternative approach would
be enabling reasoners to have a more active role by continuously elaborating
the information they have access to and providing components with appropriate
suggestions for decision to take.
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LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011)

3. ASCENS Autonomic Service-Component ENSembles, http://www.ascens-ist.eu

http://www.ascens-ist.eu


210 L. Belzner et al.

4. Beckert, B., Damiani, F., de Boer, F.S., Bonsangue, M.M. (eds.): FMCO 2011.
LNCS, vol. 7542. Springer, Heidelberg (2013)

5. Belzner, L.: Action programming in rewriting logic (technical communication). The-
ory and Practice of Logic Programming, On-line Supplement (2013)
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Abstract. We propose an approach for the validation of UML models
annotated with OCL constraints. Specifically, we provide support for dy-
namically validating class invariants and operation pre/post conditions
during the execution of prototypes automatically obtained from UML di-
agrams. The supported UML models specify both static and dynamic as-
pects, specifically, we focus on class and sequence diagrams. The proposal
is based on Maude: UML models and OCL expressions are represented
as Maude specifications, which allows us to evaluate OCL expressions
on UML models by term rewriting. A model transformation allows us
to accomplish this transformation automatically, and represents a first
step towards the integration of the proposed facilities into development
environments. The Maude specifications thus obtained can be seen as
high-level executable prototypes of the annotated UML models.

1 Introduction

The benefits of early prototyping and checking at design time have for long
been advocated by the software community. Specifically, different tools support
the validation and verification of UML models [4], both static and dynamic
ones. However, very little exists on the verification and validation of OCL con-
straints [40] on them, and almost nothing when we look to their dynamic be-
havior (see, e.g., [10,9], and discussion on related work in Section 4).

We propose a system for the validation of UML diagrams with OCL con-
straints, where these models include both static and dynamic specifications.
Specifically, we provide support for a modeler who specifies the behavior of a
system by means of UML sequence diagrams to use Maude [11,12] capabilities
to validate the invariants, pre- and post-conditions specified for classes and op-
erations using OCL.

We have developed an EMF-based model transformation that takes a UML
model (currently we only support class and sequence diagrams), annotated with
constraints expressed in OCL, and generates a corresponding Maude specifica-
tion. For us, the behavior of a system is specified by its sequence diagrams, and
the OCL constraints specified in the class diagrams provide a contract, the in-
variants each class must satisfy at any time, and the pre- and post-conditions
that operations must respect. If the source sequence diagrams is an executable
specification of a system, the Maude specification automatically generated will

S. Iida, J. Meseguer, and K. Ogata (Eds.): Futatsugi Festschrift, LNCS 8373, pp. 212–228, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



Dynamic Validation of Maude Prototypes of UML Models 213

be an executable prototype of it, and will be susceptible of being used for the
automated validation of the given constraints. If the source sequence diagram
were not executable, the Maude specification generated could still be seen as a
skeleton of it, which could then be completed with Maude code to model the
behavior of the different operations. This is the approach followed for generating
final code, say Java or C++, and was the proposal in [35] and in previous works
as, e.g., [41]. We however assume we are at a very abstract level of design, and
do not need to have all the details that would have to be available for gener-
ating a full implementation. We believe that any UML modeler would prefer
adding the missing pieces of his specification in UML, and not having to do it in
Maude, a language he may be not familiar with, and if so he would be working on
automatically-generated skeletons that would require a considerable amount of
work before being able to complete them. The possibility of completing Maude
code is even less attractive if we think on an incremental-iterative methodology
were we would have to repeatedly complete the Maude specifications, or if we
were able to apply other automated transformations on the (incomplete) UML
models with different purposes.

Maude [11,12] is an executable formal specification language based on rewrit-
ing logic, with a rich set of validation and verification tools [12,13], increasingly
used as support of UML, MDA, and OCL (see, e.g., [39,33,6,5,14]). Furthermore,
Maude has demonstrated to be a good environment for rapid prototyping, a good
logical and semantic framework, and also good for application development (see
surveys [12,29]).

Several authors have already explored how to represent different UML dia-
grams in Maude (see, e.g., [23,18,30]). We currently focus on class and sequence
diagrams, and we provide a basic scheme for specifying UML dynamic models as
rewrite systems. The use of the proposed scheme allows us, not only to simulate
UML models by executing their corresponding Maude specifications, but also to
dynamically validate their OCL constraints. Furthermore, our Maude prototypes
are not restricted to these uses, we could use the tools of the Maude environment
to perform other kinds of analyses. For example, we have already explored the
use of our Maude prototypes in conjunction with the Maude reachability-analysis
tool to locate scenarios which fulfill or violate given constraints [16].

Basically, the dynamic validation of the constraints of a model requires two
tasks: the identification of those states on which constraints must be satisfied,
and the evaluation of the satisfaction of such constraints on them. Our approach
provides support for the location of relevant states by using a given scheme to
specify system prototypes, and the evaluation of the OCL constraints on such
states is accomplished by using mOdCL [35], our OCL interpreter for Maude,
which can evaluate, not only OCL constraints, but OCL expressions in general.

Our aim is to be able to directly verify UML models by extending existing
modeling environments. Our transformation from UML models to Maude speci-
fications has been developed using state-of-the-art MDE tools, namely ATL [22]
and Acceleo.1 A model-to-text transformation is used to get mOdCL Maude

1 Acceleo’s web site: http://www.eclipse.org/acceleo/

http://www.eclipse.org/acceleo/
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configurations from Ecore object models, using mOdCL as infrastructure to
manage OCL constraints along execution and as a back-end tool to evaluate
OCL expressions.

We have developed the transformation from UML models to Maude specifi-
cations for the Papyrus tool, which is a modeling tool inside the Eclipse envi-
ronment that provides support for OCL. Thus, given a UML model (class and
sequence diagrams) defined using Papyrus, we are able to automatically gener-
ate a Maude specification which can be executed and analyzed in the Maude
system. Although our transformation is in theory usable with different UML
environments, since it takes UML models conforming to its metamodel [31], the
different possibilities offered in UML makes the portability between commercial
tools tricky.

The ATL+Acceleo transformation presented in this paper together with
several medium size case studies, including the complete cinema example
in [35] and the classical Royal & Loyal example from [40], is available at
http://maude.lcc.uma.es/mOdCL. The implementation of mOdCL, together
with its documentation and some examples, may be found in the same site.

The paper is structured as follows. Section 2 serves as a brief introduction
to the main technologies used in the paper, namely rewriting logic and Maude,
and model-driven software development, ATL y Acceleo. Section 3 presents our
proposal to represent UML class and sequence diagrams as Maude prototypes,
considering their static and dynamic aspects. Section 4 revises some related work,
and Section 5 draws some conclusions and anticipates some future work.

2 Technological Background

We make in this section brief presentations to the main technologies used in
our approach. We assume basic knowledge of UML and OCL—we refer the
interested reader to appropriate references, e.g., [4] for an introduction to UML
and [40,9] for one to OCL. Section 2.1 introduces rewriting logic and the Maude
language. Section 2.2 introduces model-driven software development and the
transformation languages ATL and Acceleo.

2.1 Rewriting Logic and Maude

Maude [11,12] is a high-performance reflective language and system that inte-
grates an equational style of functional programming with rewriting logic com-
putation, supporting specification and programming for a wide range of appli-
cations [29].

Rewriting logic [28] is a logic of change that can naturally deal with state
and with highly nondeterministic concurrent computations. In rewriting logic,
the state space of a distributed system is specified as an algebraic data type
in terms of an equational specification (Σ,E), where Σ is a signature of sorts
(types) and operations, and E is a set of equational axioms. The dynamics of a
system in rewriting logic is then specified by rewrite rules of the form t → t′,

http://maude.lcc.uma.es/mOdCL
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where t and t′ are Σ-terms. This rewriting happens modulo the equations E,
describing in fact local transitions [t]E → [t′]E . These rules describe the local,
concurrent transitions possible in the system, i.e., when a part of the system
state fits the pattern t (modulo the equations E) then it can change to a new
state in which t has been replaced by t′.

Maude supports the modeling of object-based systems by providing sorts rep-
resenting the essential concepts of object (Object), message (Msg), and configu-
ration (Configuration). A configuration is a multiset of objects and messages
(with the empty syntax, associative commutative, union operator __) that rep-
resents a possible system state.

Although the user is free to define any syntax for representing objects and
messages, several additional sorts and operators are introduced as a common
notation. Maude provides sorts Oid for object identifiers, Cid for class identi-
fiers, Attribute for attributes of objects, and AttributeSet for multisets of
attributes (with _,_ as union operator). Given a class C with attributes ai of
types Si, the objects of this class are then record-like structures of the form

< O : C | a1:v1, ..., an:vn >

where O is the identifier of the object, and vi are the current values of its
attributes (with appropriate types). Class inheritance is directly supported by
Maude’s order-sorted type structure.

2.2 Model-Driven Software Development, ATL and Acceleo

Model-Driven Software Development (MDSD) is a methodology that proposes
the use of models as the main artifacts in the software lifecycle. One of the main
goals of this methodology is to maximize the compatibility between systems,
simplifying the design process, and promoting the communication between the
different software stakeholders.

Models, metamodels, and model transformations are the key ingredients of
MDSD. Metamodels are used to describe modeling languages. Basically, a meta-
model is a model that specifies, at a higher level of abstraction, the concepts
of a modeling language and the relationships between them. A concept is any
abstract or concrete thing of interest, and with a specific purpose, for the system
being modeled.

If models are important in MDSD, so are the different ways of manipulating
them, being model transformations the most significant one. A model-to-model
transformation allows the mapping between two models. Different languages
(declarative, imperative, and hybrid ones) exist in the context of MDSD for
the definition of model transformations. In all cases, model transformations are
defined at the metamodel level, and applied on models that conform to these
metamodels. Figure 1 illustrates the typical architecture of model transforma-
tions.

We have defined a model transformation from UML models (that conform
to the UML metamodel in [31]) to Maude models (that conform to the Maude
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Fig. 1. Model transformation architecture (borrowed from [15])

metamodel in [32]). Such a transformation has been defined using the model
transformation language ATL [21].

ATL can be used to develope exogenous—source and target models may con-
form to different metamodels—and unidirectional—transformation rules are ex-
ecuted in one direction, one of the models is the input and the other one the
output—transformations. It is a hybrid language, in the sense that it has declar-
ative and imperative constructors. Basically, an ATL model-to-model transfor-
mation is defined in terms of rules that specify relations between elements in the
input model and elements in the output model. Although imperative contructs
may allow us to optimize the efficiency of our transformations, declarative ones
will typically be closer to how developers understand the transformations. This
declarative style allows us focusing on the transformation, hiding details as the
selection of input elements, the rule execution order, etc.

Once we have our Maude model, conforming to its metamodel, we need to
transform it to text so that it can be loaded into the Maude system. For this
purpose, there are different model-to-text transformation languages. We use Ac-
celeo, because it follows the OMG standard for model-to-text transformations,
and because its operational semantics is given by OCL, as for other tools in
our setting. A model-to-text transformation in Acceleo basically consists in a
mapping between each object in the input model and a string of characters that
represents the output.

3 UML Prototyping with Maude

We describe in this section the Maude representation of UML models that we use,
and give a very high-level description of our ATL+Acceleo transformation. The
interested reader may find these details at http://maude.lcc.uma.es/mOdCL.

3.1 A Maude Representation of Class Diagrams

In UML, the structure of systems is basically specified by class diagrams. To
define the concrete representation of the elements in class diagrams in Maude,

http://maude.lcc.uma.es/mOdCL
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Fig. 2. Class diagram PersonCar

we follow an approach similar to those used in the metamodeling frameworks
MOMENT-2 [5] and e-Motions [34], where class diagrams are represented as
Maude modules, and system states are represented as configurations of objects.
However, since these approaches deal with Ecore models, and not proper UML
ones, and since we are interested in the dynamic validation of our models, our
representation presents some differences with these ones: on the representation
of attributes, associations and operations, as explained below; since we deal with
interactions between objects, our configurations are of objects and messages, and
not only of objects; and, since OCL plays a significant role in our setting, we use
OCL sorts to represent the elements of class diagrams.

UML classes are represented as Maude classes (see Section 2.1). There are
however a few minor differences with respect to the common Maude object-based
notation. For instance, attributes and associations are represented as constants
of the sort AttributeName, and its values are represented by OCL types.

op _:_ : AttributeName OclType -> Attribute [ctor] .

Let us consider the class diagram in Figure 2. The diagram represents a very
simple system with two classes, namely Person and Car. A person can have
either no car or one car, and a car can have passengers. A person is supposed
to be inside no car or one car. A car has a boolean attribute started which
indicates whether it is started or not. A person has an operation drive(), and
a car has operations getIn(person: Person), which adds a new passenger to
the car, and start(), which toggles the starting state of the car.

The class diagram must be completed with appropriate OCL constraints. E.g.,
a car without passengers should always be stopped.

context Car inv EmptyCarIsStopped :

started implies passengers->size() > 0

Similarly, pre- and post-conditions may be specified for each of the operations
in the class diagram. E.g., for the getIn operation to be executed, the person
to get on the car should not be in any car, and there should be at least one
available seat in the car. Once the operation is completed, the person should be
one of the passengers of the car, and the number of passengers should have been
increased by one.

context Car::getIn(person: Person)
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pre: person.car.oclIsUndefined()

and

passengers->size() < 5

post: passengers->includes(person)

and

passengers@pre->size()+1 = passengers->size()

The ATL transformation is straightforward: we basically say how each element
in the UML metamodel is mapped into elements in the Maude metamodel.

For each class C in the diagram the transformation produces a sort declaration
for sort C, makes it subsort of Cid, and declares a constant C of sort C. Thus,
for class Person we get the following declarations:

sort Person .

subsort Person < Cid .

op Person : -> Person [ctor] .

For each attribute or association A, a constant of sort AttributeName is pro-
duced. For our example we get the following declarations:

op started : -> AttributeName [ctor] .

op car : -> AttributeName [ctor] .

op passengers : -> AttributeName [ctor] .

op ownedCar : -> AttributeName [ctor] .

Notice that with these declarations, terms of sort Configuration that do not
respect the corresponding model may be constructed, i.e., we could, e.g., have
a Person object with an attribute started of sort Integer. This is a situation
already present in the Maude representation of object-based systems, and, as for
them, it may be handled by appropriate membership constraints.

Associations are represented as references to objects. Thus, associations with
multiplicity 1 are represented as attributes of sort Oid, and associations with
multiplicity * as attributes of sort Set (for Oid sets). Constraints as ordered,
unique, other multiplicities, etc. on the associations will adjust this rule appro-
priately; e.g., if the association is ordered, a sequence will be used instead of a
set. Restrictions on the cardinality of associations will lead to appropriate OCL
constraints on them. Association classes and other features we may find in UML
class diagrams are also supported.

An operation op(arg1 : type1, . . ., argn : typen): type is represented as a
constant op, of sort OpName (of operation names), and constants arg1, . . . , argn,
of sort Arg (of arguments). Types of operation arguments are specified by using
OCL sorts. For the operations in our PersonCar example we get the following
declarations:

op start : -> OpName [ctor] .

op getIn : -> OpName [ctor] .

op person : -> Arg [ctor] .

op drive : -> OpName [ctor] .

op setCar : -> OpName [ctor] .

op car : -> Arg [ctor] .
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The mOdCL evaluator will handle invariants, pre- and post-conditions as
given,2 since the appropriate mechanisms are included in the infrastructure man-
aging the execution stack. For details, see Section 3.2 and [35].

3.2 Representation of System Behavior

In UML, the behavior of a system may be specified in several diagrams: sequence
diagrams, activity diagrams, collaboration diagrams, etc. These diagrams specify
the behavior of systems as the behavior of the operations specified in their class
diagrams. Each of these operations may invoke other operations, perform actions,
or produce changes in the states of the systems. In what follows, we focus on
the behavior described by sequence diagrams, and assume synchronous messages
and a single thread of execution (see [17] for its generalization to asynchronous
messages and multithreaded execution).

In the Maude representation of sequence diagram, the behavior of each op-
eration will be specified as a sequence of Maude rewrite rules. These rules may
require access to information related to their invocation or computation, as the
objects invoking the operations or the actual parameters used in their invoca-
tion. To gather this information, we assume that the execution context for the
running operation is represented by an object of class Context with the form

< ctx : Context | opN : m, obj : id, args : vars, seq : N >

where m is the name of the active operation, id is the identifier of the current
object (self ), vars is a set of pairs, each of which has the name of a parameter
or a local variable and its actual value, and N is a list of pairs which guides the
execution of the rules—messages are to be executed in the order established in
the sequence diagram. Although for sequence diagrams without nested blocks
a single natural number is enough, using a list of pairs allows us to handle
alternatives and loops.

Operations may be invoked by other operations, so the possibly recursive
chaining of invocations must be supported. Our proposal provides, as part of
its infrastructure, an execution stack, which will keep the sequence of contexts
of the pending operations. To allow the user not to have to directly manage
such an execution stack, the system just need to know about the invocation and
termination of operations. To this end, we assume that the rules specifying the
behavior of an operation follow a basic scheme with three successive messages,
namely, call, return, and resume.

Messages are assumed to be sent with the call operator:

op call : OpName Oid ArgsList -> Msg [ctor] .

When a message m (args-list) is to be sent to an object obj , a message
call(m, obj, args-list) that represents the state of the system is placed in

2 For mOdCL to be able to tokenize OCL expressions, white spaces must be placed
around its operators.
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send call message 

wait for resume message 

create Context object 

send return message  

Fig. 3. Operation behavior specification scheme

the configuration of objects and messages. This call message is then processed
by the execution stack infrastructure, which creates a Context object with the
identifier of the object sending the message, the name of the invoked operation,
and the values of its parameters.

Figure 3 shows how a Context object is generated when a callmessage shows
up in the system configuration. The execution of the sender object gets blocked
until the operation is completed, waiting for a resume(m, result) message.
The invoked operation is then executed until a return(result) message is
sent. When the stack infrastructure detects such a return message, it pulls the
context on the top of the execution stack and puts a resume message in the
configuration.

op return : OclType -> Msg [ctor] .

op resume : OpName OclType -> Msg [ctor] .

The parameter of the return operation is the value to be returned as result,
which is then set as second parameter of the corresponding resume message.

The stack infrastructure includes the definition of classes Stack and Context.
A stack object has a single attribute state that stores the stack of pending
context objects. Respective equations CALL and RETURN are in charge of dealing
with the call and return messages as explained above, pushing and pulling
contexts into the stack as expected. To make the user completely unaware of
the underlying stack, an initialization equation INIT is in charge of adding an
empty stack to the initial configuration.

Given the scheme proposed in Sections 3.1 and 3.2, we know that CALL and
RETURN equations are executed to handle, respectively, call and return mes-
sages. This allows us to locate states before and after the execution of operations.
We will make use of that to check pre-conditions and invariants before the exe-
cution of operations, and post-conditions and invariants after their completion.

Finally, given the Maude prototype thus obtained, we can define an initial
state and use the Maude rewriting commands to execute our system (see Sec-
tion 3.5). Thanks to the infrastructure managing the execution stack and the
generic behavior scheme described above, the validation of OCL constraints is
accomplished automatically. If all constraints are respected, the execution ter-
minates as any normal execution. However, if some constraint is violated, the
system execution gets stopped and an error message is provided.
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3.3 OCL Expressions and the Behavior of Systems

Traditionally, UML sequence diagrams model interactions between objects. How-
ever, different extensions available since UML 2.0 allow us to use them for more
than that. The possibility of using OCL expressions as arguments in method
invocations, and as assignments in found messages3 allow us to specify the com-
plete behavior of systems using sequence diagrams.

We explain here the transformation for simple sequence diagrams. See the
documentation at http://maude.lcc.uma.es/mOdCL for details on the trans-
formation for diagrams with blocks, conditionals and loops.

Our transformation generates a Maude rule per message in the sequence di-
agram. All these rules are top rules, with an operator {_} grabbing the entire
configuration. The basic structure of the lefthand side of each of these rules,
intended for handling a message m sent to an object of class C is as follows:

{ < ctx : Context | opN : m, obj : Self:Oid, args : vars, seq : N >

< Self:Oid : C | Attrs >

Cf:Configuration }

The same components will appear in the righthand side of the rule. Several
specific cases are to be considered:

(call) If the rule represents an invocation to another method, the righthand side
of the rule will include

call(iMethod , iMethodClass , (methodArgsList ))

where iMethod is the name of the method being invoked, iMethodClass is
the name of the class the method is defined in—possibly a variable in the
args list in the context object—and methodArgsList is a (possibly empty)
list or arguments of the invoked method.

(resume) If the rule is representing an invocation to a method m in the se-
quence diagram and this invocation is preceded by an invocation to another
operation, the resume operator is to be added to the lefthand side of the rule

resume(previousMethod , Rst:OclType)

where previousMethod is the name of the operation called in the previous
message.

(return) If the rule represents either the last rule in the sequence diagram being
transformed or a lost message,4 the righthand side of the rule will include

return(returnValue )

where returnValue is the value to be returned, which is supposed to agree
with the type of the method.

3 In UML, a found message is a message whose caller is not shown.
4 In UML, a lost message is a message whose callee is not shown.

http://maude.lcc.uma.es/mOdCL
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Fig. 4. Sequence diagram of the operation Person::drive()

As indicated above, OCL expressions may be used as method arguments and
return values. To handle them properly, all method arguments and return values
are evaluated using the eval mOdCL operation. The use of the {_} operator in
the rules specifying the behavior of the system allows us to use the entire system
to evaluate OCL expressions.

3.4 Transformation Example: The PersonCar Case

We show in this section the UML specification of the behavior of operations in
the class diagram in Figure 2, and illustrate the Maude code obtained by the
transformation.

The sequence diagram shown in Figure 4 represents the behavior of the
drive() operation. In it, we see two lifelines, namely PPers, of class Person,
and CCar, of class Car. The objects that represent these lifelines are related by
the person owns car association (see Figure 2). The first message in the se-
quence, getIn, has a single parameter, person, of type Person. We can see in
the figure how the parameter person receives the OCL expression ‘self’ as
value. Note that the OCL expression is quoted: it is handled as such by the
mOdCL eval function. The drive() operation is completed by invoking the
start() operation once the getIn one has concluded. The code generated by
the transformation for the Person::drive() operation is shown in Figure 5.

Note how the generated code follows the structure presented in the previous
section:

1. The first rule, 1:GETIN::CAR, corresponds to the first message addressed to
CCar in the sequence diagram. Notice the call operation in the righthand
side of this rule representing the invocation of the method, and how the
parameter of the message is evaluated using the eval mOdCL operation
(the ellipsis replaces the entire configuration in the lefthand side).

2. The second rule, 2:START::CAR, corresponds to the second message in the
diagram. Since it has no parameters, the arguments list of the call operation
in its righthand side is set to empty.



Dynamic Validation of Maude Prototypes of UML Models 223

rl [1:GETIN::CAR] :

{ < ctx : Context | opN : drive, obj : Self:Oid, args : (AL-1:ArgsList),

seq : [ ( 1 | 1 ) ] >

< Self:Oid : P:Person | ownedCar : VAR7:OclType, car : VAR5:OclType,

AS-1:AttributeSet >

Cf:Configuration}

=>

{ < ctx : Context | opN : drive, obj : Self:Oid, args : (AL-1:ArgsList),

seq : [ ( 1 | 2 ) ] >

< Self:Oid : P:Person | ownedCar : VAR7:OclType, car : VAR5:OclType,

AS-1:AttributeSet >

call(getIn, VAR7:OclType, (arg(person, eval(self, ...))))

Cf:Configuration } .

rl [2:START::CAR] :

{ < ctx : Context | opN : drive, obj : Self:Oid, args : (AL-1:ArgsList),

seq : [ ( 1 | 2 ) ] >

< Self:Oid : P:Person | ownedCar : VAR7:OclType, car : VAR5:OclType,

AS-1:AttributeSet >

resume(getIn, Rst:OclType)

Cf:Configuration }

=>

{ < ctx : Context | opN : drive, obj : Self:Oid, args : (AL-1:ArgsList),

seq : [ ( 1 | 3 ) ] >

< Self:Oid : P:Person | ownedCar : VAR7:OclType, car : VAR5:OclType,

AS-1:AttributeSet >

call(start, VAR7:OclType, empty)

Cf:Configuration } .

rl [3:RETURN] :

{ < ctx : Context | opN : drive, obj : Self:Oid, args : (AL-1:ArgsList),

seq : [ ( 1 | 3 ) ] >

< Self:Oid : P:Person | ownedCar : VAR7:OclType, car : VAR5:OclType,

AS-1:AttributeSet >

resume(start, Rst:OclType)

Cf:Configuration }

=>

{ < ctx : Context | opN : drive, obj : Self:Oid, args : (AL-1:ArgsList),

seq : [ ( 1 | 4 ) ] >

< Self:Oid : P:Person | ownedCar : VAR7:OclType, car : VAR5:OclType,

AS-1:AttributeSet >

return(null)

Cf:Configuration } .

Fig. 5. Maude code generated for the operation Person::drive()

3. The third and last rule 3:RETURN models the return of the drive operation.
Although the operation returns no value, we must send the return message
to unblock other potential rules waiting on the corresponding resume.
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(a) Car::getIn(Person) (b) Car::start()

Fig. 6. Sequence diagrams for operations Car::getIn(Person) and Car::start()

The sequence diagrams for operations getIn and start are shown in Fig-
ures 6(a) and 6(b), respectively. Note how these operations change attribute
values. This is done by using found messages. For each attribute to be modified,
the found message has a parameter with name the name of the attribute to be
modified and as value an OCL expression. The transformation of the entire UML
model of the system produces a Maude specification which can be executed (see
Section 3.5).

3.5 Execution of the Diagrams

UML models described as explained in the previous sections can be automat-
ically transformed into a Maude specification by using our ATL and Acceleo
transformations. The resulting specification is a collection of Maude modules
which specify in Maude the structure and behavior modeled by UML class and
sequence diagrams.

To be able to use the thus obtained specification to rewrite, we just need
an initial configuration. We plan to get this initial configuration from object
diagrams, but currently it has to be provided directly as a Maude term.

Given Oid constants ada and ferrari, we may ask ada to drive her ferrari
with the following command:

rewrite

[ < ada : Person | car : ferrari >

< ferrari : Car | started : false, passengers : Set{mt-ord} >

call(drive, ada, empty) ] .

result Configuration+:

{ resume(drive, null)

< stack : Stack | state : nil >

< ada : Person | car : ferrari >

< ferrari : Car | started : true, passengers : Set{ada} > }
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The given initial configuration has been executed using the rewrite rules in
the Maude specification obtained by the transformation, taking into account the
OCL constraints specified for the different operations. Note that, in the resulting
term, the ferrari object has its started attribute to true, and ada appears
in its set of passengers. The drive operations has returned null as result, which
appears in the resume message.

4 Related Work

An increasing number of commercial UML tools provide some kind of support for
OCL. However, they are in general limited to parsing, type checking, and eval-
uation of expressions or checking of instances or models (see, e.g. the discussion
on tool support in [9]).

There are also many contributions providing some analysis of OCL constraints
on UML diagrams. Tools like USE [19], Dresden OCL [38], MDT [27] or the eval-
uator mOdCL, can be used to check OCL constraints on concrete system states
(snapshots), that is, can evaluate OCL expressions on UML object diagrams. In
USE, systems can also be simulated, and properties like constraint consistency
or independency can be checked. Although reasoning on OCL is undecidable in
general, some support for verification is provided by tools like HOL-OCL [7],
based on the HOL-Isabelle theorem prover, approaches looking at OCL con-
straints as satisfiability problems using Alloy [3,24,37], or tools expressing them
as constraint satisfaction problems [8]. Some of them use sequence diagrams as
input describing test cases to be validated [19] or as output that shows scenarios
demonstrating given properties [36].

Hamann, Hofrichter and Gogolla propose in [20] an extension of the USE tool
for validating OCL constraints on state diagrams. In such a work, the semantics
of operations is described by using their SOIL language, and the USE tool is
responsible for the execution and the validation of the OCL constraints.

UML static and dynamic diagrams, without OCL constraints, have been for-
malized and used to reason about them by different authors using, e.g., the
B-method [1], Petri Nets [2], Rewriting Logic [25], or finite automata [42].

The idea of using Maude specifications as executable prototypes of systems is
not new (see, e.g., [12] for a revision on the literature). In the context of UML,
different authors have proposed the use of Maude to formalize UML models [18]
or some of its diagrams [23,26,30], and as support for prototyping. E.g., Wirsing
and Knapp propose in [41] a formal approach to design object-oriented systems
based on the use of rewriting logic and UML diagrams. In their proposal, di-
agrams are semi-automatically translated into incomplete Maude specifications
which then have to be completed by hand. The resulting specifications would
be used as prototypes of the systems. In our opinion, this proposal requires an
experimented Maude user to complete the generated Maude specifications.
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5 Conclusions and Future Work

We have presented a proposal to dynamically validating OCL constraints on high
level Maude prototypes of UML models. Our dynamic validator relies on the use
of mOdCL, our evaluator of OCL expressions, to validate constraints on concrete
states. The mOdCL evaluator has been designed as an external component, and
can also be used for statically validating OCL constraints. Thus, we provide
the possibility of validating either statically or dynamically OCL constraints on
UML models.

Given the specification of a system and its OCL constraints, many possibili-
ties are opened inside the Maude formal environment: theorem proving, model
checking, reachability analysis, invariant analyzing, etc. We have already ex-
plored some of the possibilities, e.g., using our validator in conjunction with
the reachability tools of Maude to automatically generate test case violating the
OCL constraints [16]. But mechanisms to prove the independence or inconsis-
tency of constraints, and the static validation of dynamic constraints using the
Maude’s invariant analyzer have already been initiated, and we plan to advance
on them in the near future.

Acknowledgements. This work was partially supported by Research Project
TIN2011-23795 and by Universidad de Málaga (Campus de Excelencia Interna-
cional Andalućıa Tech).
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Camino de Vera s/n, Apdo 22012, 46071 Valencia, Spain

2 CLIP Lab, Technical University of Madrid,
E-28660, Boadilla del Monte, Madrid, Spain

Abstract. Trace inspection is concerned with techniques that allow the
trace content to be searched for specific components. This paper presents
a rich and highly dynamic, parameterized technique for the trace in-
spection of Rewriting Logic theories that allows the non-deterministic
execution of a given unconditional rewrite theory to be followed up in
different ways. Using this technique, an analyst can browse, slice, filter,
or search the traces as they come to life during the program execution.
Starting from a selected state in the computation tree, the navigation of
the trace is driven by a user-defined, inspection criterion that specifies
the required exploration mode. By selecting different inspection crite-
ria, one can automatically derive a family of practical algorithms such
as program steppers and more sophisticated dynamic trace slicers that
facilitate the dynamic detection of control and data dependencies across
the computation tree. Our methodology, which is implemented in the An-
ima graphical tool, allows users to capture the impact of a given criterion
thereby facilitating the detection of improper program behaviors.

1 Introduction

Dynamic analysis is crucial for understanding the behavior of large systems. Dy-
namic information is typically represented using execution traces whose analysis
is almost impracticable without adequate tool support. Existing tools for analyz-
ing large execution traces rely on a set of visualization techniques that facilitate
the exploration of the trace content. Common capabilities of these tools include
stepping the program execution while searching for particular components and
having the option to simplify the traces by hiding some specific contents.
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Program animation or stepping refers to the very common debugging tech-
nique of executing code one step at a time, allowing the user to inspect the
program state and related data before and after the execution step. This allows
the user to evaluate the effects of a given statement or instruction in isolation
and thereby gain insight into the program behavior (or misbehavior). Nearly
all modern IDEs, debuggers, and testing tools currently support this mode of
execution optionally, where animation is achieved either by forcing execution
breakpoints, code instrumentation, or instruction simulation.

Rewriting Logic (RWL) is a very general logical and semantic framework,
which is particularly suitable for formalizing highly concurrent, complex sys-
tems (e.g., biological systems [7] and Web systems [2,6]). RWL is efficiently
implemented in the high-performance system Maude [9]. Roughly speaking, a
rewriting logic theory seamlessly combines a term rewriting system (TRS) with
an equational theory that may include equations and axioms (i.e., algebraic laws
such as commutativity, associativity, and unity) so that rewrite steps are per-
formed modulo the equations and axioms. In recent years, debugging and opti-
mization techniques based on RWL have received growing attention [1,15,19,20],
but to the best of our knowledge, no versatile program animator or trace inspec-
tion tool for RWL/Maude has been formally developed to date.

To debug Maude programs, Maude has a basic tracing facility that allows the
user to advance through the program execution stepwisely with the possibility
to set break points, and lets him/her select the statements to be traced, except
for the application of algebraic axioms that are not under user control and are
never recorded explicitly in the trace. All rewrite steps that are obtained by
applying the equations or rules for the selected function symbols are shown in
the output trace so that the only way to simplify the displayed view of the trace
is by manually fixing the traceable equations or rules. Thus, the trace is typically
huge and incomplete, and when the user detects an erroneous intermediate result,
it is difficult to determine where the incorrect inference started. Moreover, this
trace is either directly displayed or written to a file (in both cases, in plain text
format) thus only being amenable for manual inspection by the user. This is in
contrast with the enriched traces described in this work, which are complete (all
execution steps are recorded by default) and can be sliced automatically so that
they can be dramatically simplified in order to facilitate a specific analysis. Also,
the trace can be directly displayed or delivered in its meta-level representation,
which is very useful for further automated manipulation.

Contributions. This paper presents the first semantic-based, parametric trace
exploration technique for RWL computations that involve rewriting modulo as-
sociativity (A), commutativity (C), and unity (U) axioms. Our technique is
based on a generic animation algorithm that can be tuned to work with different
modalities, including incremental stepping and automated forward slicing, which
drastically reduces the size and complexity of the traces under examination. The
algorithm is fully general and can be applied for debugging as well as for opti-
mizing any RWL-based tool that manipulates unconditional RWL theories. Our
formulation takes into account the precise way in which Maude mechanizes the
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equational rewriting process modulo B, where B may contain any combination
of associativity, commutativity, and unity axioms for different binary operators,
and revisits all those rewrite steps in an informed, fine-grained way where each
small step corresponds to the application of an equation, equational axiom, or
rule. This allows us to explain the input execution trace with regard to the set
of symbols of interest (input symbols) by tracing them along the execution trace
so that, in the case of the forward slicing modality, all data that are not de-
scendants of the observed symbols are filtered out. The ideas are implemented
and tested in a graphical tool called Anima that provides a skillful and highly
dynamic interface for the dynamic analysis of RWL computations.

Related Work. Program animators have existed since the early years of pro-
gramming. Although several steppers have been implemented in the functional
programming community (see [10] for references), none of these systems applies
to the animation and dynamic forward slicing of Maude computations. An alge-
braic stepper for Scheme is defined and formally proved in [10], which is included
in the DrScheme programming environment. The stepper reduces Scheme pro-
grams to values (according to the reduction semantics of Scheme) and is useful
for explaining the semantics of linguistic facilities and for studying the behavior
of small programs. In order to discover all of the steps that occur during the
program evaluation, the stepper rewrites (or “instruments”) the code, which is
in contrast to our technique which does not rely on program instrumentation.

In [4,5], an incremental, backward trace slicer was presented that generates
a trace slice of an execution trace T by tracing back a set of symbols of in-
terest along (an instrumented version of) T , while data that are not required
to produce the target symbols are simply removed. This can be very helpful in
debugging since any information that is not strictly needed to deliver a critical
part of the result is discarded, which helps answer the question of “what program
components might effect a selected computation”. However, for the dual problem
of “what program components might be effected by a selected computation”, a
kind of forward expansion is needed (which has been overlooked to date in RWL
research).

Plan of the paper. After some preliminaries in Section 2 that describe basic
notions of RWL, Section 3 summarizes the rewriting modulo equational theories
defined in Maude and provides a convenient trace instrumentation technique that
facilitates the stepwise inspection of Maude computations. Section 4 formalizes
trace inspection as a semantics-based procedure that is parameterized by the
criterion for the inspection. Section 5 formalizes three different exploration tech-
niques that are mechanically obtained as an instance of the generic scheme: 1) an
interactive program stepper that allows rewriting logic theories to be stepwisely
animated; 2) a partial stepper that is able to work with partial inputs; and 3)
an automated, forward slicing technique that is suitable for analyzing complex,
textually-large system computations by filtering out the irrelevant data that do
not derive from some selected terms of interest. The Anima tool is described in
Section 6, and Section 7 concludes.
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2 Preliminaries

Let us recall some important notions that are relevant to this work. We assume
some basic knowledge of term rewriting [21] and Rewriting Logic [16]. Some
familiarity with the Maude language [9] is also required.

We consider an order-sorted signature Σ, with a finite poset of sorts (S,<)
that models the usual subsort relation [9]. We assume an S-sorted family V =
{Vs}s∈S of disjoint variable sets. τ(Σ,V)s and τ(Σ)s are the sets of terms and
ground terms of sort s, respectively. We write τ(Σ,V) and τ(Σ) for the corre-
sponding term algebras. The set of variables that occur in a term t is denoted
by Var(t). In order to simplify the presentation, we often disregard sorts when
no confusion can arise.

A position w in a term t is represented by a sequence of natural numbers that
addresses a subterm of t (Λ denotes the empty sequence, i.e., the root position).
By notation w1.w2, we denote the concatenation of positions (sequences) w1 and
w2. Positions are ordered by the prefix ordering; that is, given the positions w1

and w2, w1 ≤ w2 if there exists a position u such that w1.u = w2.
Given a term t, we let Pos(t) denote the set of positions of t. By t|w, we

denote the subterm of t at position w, and t[s]w specifies the result of replacing
the subterm t|w by the term s.

A substitution σ ≡ {x1/t1, x2/t2, . . . , xn/tn} is a mapping from the set of
variables V to the set of terms τ(Σ,V) which is equal to the identity almost
everywhere except over a set of variables {x1, . . . , xn}. The domain of σ is the
set Dom(σ) = {x ∈ V | xσ �= x}. By id we denote the identity substitution. The
application of a substitution σ to a term t, denoted tσ, is defined by induction
on the structure of terms:

tσ =

{
xσ if t = x, x ∈ V
f(t1σ, . . . , tnσ) if t = f(t1, . . . , tn), n ≥ 0

Given two terms s and t, a substitution σ is the matcher of t in s, if sσ = t.
The term t is an instance of the term s, iff there exists a matcher σ of t in s.
By matchs(t), we denote the function that returns a matcher of t in s if such a
matcher exists.

A labelled equation (or simply equation) is an expression of the form [l] :
λ = ρ, where λ, ρ ∈ τ(Σ,V), V ar(ρ) ⊆ V ar(λ), and l is a label, i.e., a name
that identifies the equation. A labelled rewrite rule (or simply rewrite rule) is
an expression of the form [l] : λ ⇒ ρ, where λ, ρ ∈ τ(Σ,V), V ar(ρ) ⊆ V ar(λ),
and l is a label. When no confusion can arise, rule and equation labels are often
omitted. The term λ (resp., ρ) is called left-hand side (resp. right-hand side) of
the rule λ⇒ ρ (resp. equation λ = ρ).

A Term Rewriting System (TRS for short) R is a finite set of rewrite rules.
We formalize the rewrite relation →R w.r.t. a TRS R as follows. A rewrite step
is the application of a rewrite rule to a term t that replaces a redex (reducible
expression) of t by its contracted version, or contractum. Formally, a term t

rewrites to a term t′ (in symbols t
r,σ,w→R t′) iff there exists a rewrite rule [r] :
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(λ⇒ ρ) ∈ R, a substitution σ, and a position w of t such that the redex t|w = λσ
and t′ = t[ρσ]w.

3 Rewriting Modulo Equational Theories

Roughly speaking, a rewriting logic theory [20] seamlessly combines a term
rewriting system with an equational theory that may include equations and ax-
ioms (i.e., algebraic laws such as commutativity, associativity, and unity) so that
rewrite steps are applied modulo the equations and axioms. Within this frame-
work, the system states are typically represented as elements of an algebraic data
type that is specified by the equational theory, while the system computations
are modeled via the rewrite rules, which describe transitions between states.

More formally, an order-sorted equational theory is a pair (Σ,E), where Σ is
an order-sorted signature, E = Δ∪B with Δ a collection of (oriented) equations,
and B a collection of equational axioms (i.e., algebraic laws such as associativity,
commutativity, and unity) that can be associated with any binary operator ofΣ1.
The equational theory (Σ,E) induces a congruence relation on the term algebra
τ(Σ,V), which is denoted by =E . A rewrite theory is a triple R = (Σ,Δ∪B,R),
where (Σ,Δ ∪B) is an order-sorted equational theory, and R is a TRS.

Example 1. The following rewrite theory, encoded in Maude, specifies a buggy
version of the fault-tolerant client-server communication protocol of [17].
mod CLIENT-SERVER-TRANSF is inc NAT .

sorts Content State Msg Cli Serv Host
Data CliName ServName Question Answer .

subsorts Msg Cli Serv < State .
subsorts CliName ServName < Host .
subsorts Nat < Question Answer < Data .

ops Srv-A Srv-B : -> ServName .
ops Cli-A Cli-B : -> CliName .
op null : -> State .
op _&_ : State State -> State [assoc comm

id: null] .
op _<-_ : Host Content -> Msg .
op {_,_} : Host Data -> Content .
op [_,_,_,_] : CliName ServName

Question Answer -> Cli .
op na : -> Answer .
op [_] : ServName -> Serv .
op f : ServName CliName Question -> Answer .

var C S H : Host .
var Q : Question .
var A : Answer .
var D : Data .
var CNT : Content .

eq [inc] : f(S, C, Q) = (Q + 1) .

rl [req] : [C, S, Q, na] =>
[C, S, Q, na] &
S <- {C, Q} .

rl [reply] : S <- {C, Q} & [S] =>
[S] &
C <- {S, f(S, C, Q)} .

rl [rec] : C <- {S, D} &
[C, S, Q, A] =>
[C, S, Q, A] .

rl [dupl] : (H <- CNT) =>
(H <- CNT) & (H <- CNT) .

rl [loss] : (H <- CNT) => null .
endm

The specification models an environment where several clients and servers
interact. Each server can serve many clients. However, for the sake of simplicity,
we assume that each client communicates with a single server.

The names of clients and servers belong to the sorts CliName and ServName,
respectively. Clients are represented as 4-tuples of the form [C, S, Q, A], where
C is the client’s name, S is the name of the server it wants to communicate with,

1 Equational specifications in Maude can be theories in membership equational logic,
which may include conditional membership axioms not addressed in this paper.
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Q is a natural number that identifies a client request, and D is either a natural
number that represents the server response, or the constant value na (not avail-
able) when the response has not yet been received. Servers are stateless and are
represented as structures [S], with S being the server’s name. All messages are
represented as pairs of the form H <- CNT, where H is either the client or server
host name, and CNT stands for the message contents. These contents are pairs
{H,D}, with H being the host’s name and D being a data value that represents
either a request or a response.

The server S uses a function f (only known to the server itself) that takes
a question Q from client C as input. This function is defined by means of the
equation inc, which specifies that the call f(S, C, Q) computes Q+ 1.

Program states are formalized as a soup (multiset) of clients, servers, and
messages, whereas the system behavior is formalized through five rewrite rules
that model a faulty communication environment in which messages can arrive
out of order, can be duplicated, and can be lost. Specifically, the rule req allows
a client C to send a message with request Q to the server S. The rule reply

lets the server S consume the client request Q and send a response message
that is computed by means of the function f. The rule rec specifies the client
reception of a server response D that should be stored in the client data structure.
However, the right-hand side [C, S, Q, A] of the rule rec includes an intentional,
barely perceptible bug that does not let the client structure be correctly updated
with the incoming response D. The correct right-hand side should be [C, S, Q, D].
Finally, the rules dupl and loss model the faulty environment and have the
obvious meaning: messages can either be duplicated or lost.

Given a rewrite theory (Σ,E,R), with E = Δ ∪ B, the rewriting modulo E
relation (in symbols, →R/E) can be defined by lifting the usual rewrite relation
on terms →R [14] to the E-congruence classes [t]E on the term algebra τ(Σ,V)
that are induced by =E [8]; that is, [t]E is the class of all terms that are equal
to t modulo E. Hence the rewrite relation →R/E is defined as =E ◦ →R ◦ =E .
Unfortunately, →R/E is, in general, undecidable since a rewrite step t →R/E t′

involves searching through the possibly infinite equivalence classes [t]E and [t′]E .
The exploration technique formalized in this work is formulated by considering

the precise way in which Maude proves the rewrite steps modulo an equational
theory E = Δ ∪ B (see Section 5.2 in [9]). Actually, the Maude interpreter
implements rewriting modulo E by means of two much simpler relations, namely
→Δ,B and →R,B . These allow rewrite rules and equations to be intermixed in
the rewriting process by simply using an algorithm of matching modulo B.

Roughly speaking, the relation →Δ,B uses the equations of Δ (oriented from
left to right) as simplification rules: thus, for any term t, by repeatedly apply-
ing the equations as simplification rules, we eventually reach a normalized term
t↓Δ,B to which no further equations can be applied. The term t↓Δ,B is called a
canonical form of t w.r.t. Δ modulo B. On the other hand, the relation →R,B

implements rewriting with the rules of R, which might be non-terminating and
non-confluent, whereas Δ is required to be terminating and Church-Rosser mod-
ulo B in order to guarantee the existence and unicity (modulo B) of a canonical
form w.r.t. Δ for any term [9].



Inspecting Rewriting Logic Computations 235

Formally, →R,B and →Δ,B are defined as follows: given a rewrite rule [r] :
(λ ⇒ ρ) ∈ R (resp., an equation [e] : (λ = ρ) ∈ Δ), a substitution σ, a term

t, and a position w of t, t
r,σ,w→R,B t′ (resp., t

e,σ,w→Δ,B t′) iff λσ =B t|w and
t′ = t[ρσ]w. When no confusion can arise, we simply write t →R,B t′ (resp.

t→Δ,Bt
′) instead of t

r,σ,w→R,B t′ (resp. t
e,σ,w→Δ,B t′).

Under appropriate conditions on the rewrite theory, a rewrite step s→R/E t
modulo E on a term s can be implemented without loss of completeness by
applying the following rewrite strategy [11]:

1. Equational simplification of s in Δ modulo B, that is, reduce s using
→Δ,B until the canonical form w.r.t. Δ modulo B (s ↓Δ,B) is reached;

2. Rewrite (s ↓Δ,B) in R modulo B to t′ using →R,B, where t
′ ∈ [t]E .

A computation (trace) C for s0 in the rewrite theory (Σ,Δ ∪ B,R) is then
deployed as the (possibly infinite) rewrite sequence

s0 →∗
Δ,B s0↓Δ,B →R,B s1 →∗

Δ,B s1↓Δ,B→R,B . . .

that interleaves→Δ,B rewrite steps and→R,B rewrite steps following the strat-
egy mentioned above. Note that, following this strategy, after each rewriting step
using→R,B , generally the resulting term si, i = 1, . . . , n, is not in canonical nor-
mal form and is thus normalized before the subsequent rewrite step using →R,B

is performed. Also in the precise strategy adopted by Maude, the last term of a
finite computation is finally normalized before the result is delivered.

Therefore, any computation can be interpreted as a sequence of juxtaposed
→R,B and →∗

Δ,B transitions, with an additional equational simplification→∗
Δ,B

(if needed) at the beginning of the computation, as depicted below.

︷ ︸︸ ︷
s0 →∗

Δ,B s0↓Δ,B →R,B s1 →∗
Δ,B s1↓Δ,B →R,B s2 →∗

Δ,B s2↓Δ,B . . .︸ ︷︷ ︸
We define a Maude step from a given term s as any of the sequences s→∗

Δ,B

s↓Δ,B→R,B t→∗
Δ,B t↓Δ,B that head the non-deterministic Maude computations

for s. Note that, for a canonical form s, a Maude step for s boils down to
s →R,B t→∗

Δ,B t↓Δ,B t. We definemS(s) as the set of all such non-deterministic
Maude steps stemming from s.

3.1 Instrumented Computations

In this section, we introduce an auxiliary technique for instrumenting computa-
tion traces. The instrumentation allows the relevant information of the rewrite
steps, such as the selected redex and the contractum produced by the step, to
be traced despite the fact that terms are rewritten modulo equational axioms
that may cause their components to be implicitly reordered. Given a computa-
tion C, let us show how C can be expanded into an instrumented computation T
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in which each application of the matching modulo B algorithm that is used in
→R,B-steps and→Δ,B-steps is explicitly mimicked by the specific application of
a bogus equational axiom, which is oriented from left to right and then applied
as a rewrite rule in the standard way.

Typically hidden inside the B-matching algorithms, some pertinent term
transformations allow terms that contain operators obeying equational axioms to
be rewritten into supportive B-normal forms that facilitate the matching modulo
B. In the case of AC-theories, these transformations allow terms to be reordered
and correctly parenthesized in order to enable subsequent rewrite steps. Basi-
cally, this is achieved by producing a single, auxiliary representative of their AC
congruence class (i.e., the AC-normal form) [3]. An AC-normal form is typically
generated by replacing nested occurrences of the same AC operator by a flat-
tened argument list under a variadic symbol, sorting these arguments under some
linear ordering and combining equal arguments using multiplicity superscripts
[13]. For example, the congruence class containing f(f(α, f(β, α)), f(f(γ, β), β))
where f is an AC symbol and subterms α, β and γ belong to alien theories
might be represented by f∗(α2, β3, γ), where f∗ is a variadic symbol that re-
places nested occurrences of f . A more formal account of this transformation is
given in [12].

As for purely associative theories, we can get an A-normal form by just flat-
tening nested function symbol occurrences without sorting the arguments. This
case has practical importance because it corresponds to lists. C-normal forms
are just obtained by properly ordering the arguments of a commutative binary
operator. Finally, for function symbols that satisfy the unit axiom U, the iden-
tity element of U is not included in the U-normal form, and variables under a U
symbol can always be assigned the identity element through U-matching [12].

Then, rewriting modulo B in Maude proceeds by using the special form of
matching called B-matching on the internal representation of terms as B-normal
forms, where B may contain, among others, any combination of associativity,
commutativity, and unity axioms for different binary operators. Moreover, in a
Maude step, all terms in the sequence are shown in B-normal form (without
multiplicity superscripts).

In the following, we discuss how we can simulate B-matching in our framework
by means of specific “fake” axioms that mimick the B-matching transformation
of terms that occur internally in Maude. This allows these transformations to
be unhidden and explicitly revealed in the output trace.

Example 2. Consider a binary AC operator f together with a simple, standard
lexicographic ordering over constant symbols. Given the term f(b, f(f(b, a), c)),
let us reveal how this term matches modulo AC the left-hand side of the rule
[r] : f(f(x, y), f(z, x))⇒ x with AC-matching substitutions {x/b, y/a, z/c} and
{x/b, y/c, z/a}. For the first solution, this is mimicked by the transformation se-

quence f(b, f(f(b, a), c))
toACnf−→ f∗(a, b2, c) fromACnf−→ f(f(b, a), f(c, b)), where 1) the

first step corresponds to a term transformation that obtains the AC-normal form
f∗(a, b2, c), and 2) the second step corresponds to the inverse, unflattening trans-
formation that delivers the AC-equivalent term f(f(b, a), f(c, b)) that syntacti-
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[Srv-A] & [Cli-A,Srv-A,7,na] 
& [Cli-B,Srv-A,17,na] & Srv-A 
<- {Cli-A,7}

S0

[Srv-A] & Cli-A <- {Srv-A,f(
Srv-A,Cli-A,7)} & [Cli-A,Srv-A,
7,na] & [Cli-B,Srv-A,17,na]

S4 toACnf

rl: reply

rl: reply

[Cli-A,Srv-A,7,na] & [Cli-B,Srv-A,
17,na] & ([Srv-A] & Cli-A <- {Srv-A,
f(Srv-A,Cli-A,7)})

S3

[Srv-A] & Cli-A <- {Srv-A,f(
Srv-A,Cli-A,7)} & [Cli-A,Srv-A,
7,na] & [Cli-B,Srv-A,17,na]

S4

[Srv-A] & [Cli-A,Srv-A,7,na] 
& [Cli-B,Srv-A,17,na] & Srv-A 
<- {Cli-A,7}

fromACnf

[Cli-A,Srv-A,7,na] & [Cli-B,Srv-A,
17,na] & ([Srv-A] & Srv-A <- {Cli-
A,7})

S2

[Srv-A] & Srv-A <- {Cli-A,7} 
& [Cli-A,Srv-A,7,na] & [Cli-
B,Srv-A,17,na] 

S1 toACnf
S0

Fig. 1. A rewrite step and its instrumented version

cally matches the left-hand side of rule r with substitution {x/b, y/a, z/c}. Note
that an alternative unflattening transformation is possible f∗(a, b2, c) fromACnf−→
f(f(b, c), f(a, b)) that actually delivers the second AC-matcher {x/b, y/c, z/a}.

Obviously, in our implementation, rewriting modulo B proceeds by using the
standard form of B-matching on B-normal forms supported by Maude, where
B-normalization is applied both to the states and to the (left-hand sides and
right-hand sides) of the rules. The artifice described above is only a means to
reveal the term transformations of subterms forced by the step so that any
position can be properly traced across rewriting steps. Let us see an example.

Example 3. Consider the rewrite theory of Example 1 together with the rewrite
step and corresponding instrumentation shown in Figure 1, where B-normalized
nodes are represented in white, whereas nodes not in B-normal form are shown
shaded in grey. The instrumented version of the rewrite step reveals that the
normalized rule2

rl [reply] : [S] & S <- {C, Q} => [S] & C <- {S, f(S, C, Q)} .

is not actually applied into the term s0, but rather into a B -equivalent term s2
that is chosen to syntactically match the left-hand side of the applied rule. As a
result, all the information we collect from the application of the rule (e.g., the
position where the rule was applied) corresponds to the s1, s2, and s3 states,
which are omitted in the non-instrumented version of the rewrite step.

2 Note that, in this specific case, the B-normalization of the reply rule simply consists
of a reordering of arguments in the left-hand side of the rule. Given any program
rule, when no confusion can arise we always use the same label for the original rule
and for the B-normalized version of the rule that is internally used by Maude.



238 M. Alpuente et al.

Therefore, any given instrumented computation consists of a sequence of
rewrite steps using the equations (→Δ), rewrite rules (→R), equational axioms,
and (internal) B-matching transformations (→B). More precisely, each rewrite

step s
r,σ,w→R,B t (resp., s

e,σ,w→Δ,B t) is broken down into a rewrite sequence

s →∗
B s′

r,σ,w→R,∅ t′ →∗
B t (resp., s →∗

B s′
e,σ,w→Δ,∅ t′ →∗

B t), where s′ =B s and
s′ syntactically matches the left-hand side of the equation e or rule r that is
applied in the considered rewrite step. We define the rewrite relation →K as
→R ∪ →Δ ∪ →B. By instrument(C) we denote a function that takes a compu-
tation C and delivers its instrumented counterpart.

Example 4. Consider the rewrite theory of Example 1 together with the following
computation C that consists of a single Maude step (note that the last term is
normalized):

C = [Srv-A] & Cli-A <- {Srv-A, f(Srv-A, Cli-A, 7)}
& [Cli-A, Srv-A, 7, na]

inc−→Δ,B

[Srv-A] & Cli-A <- {Srv-A, 8} & [Cli-A, Srv-A, 7, na]
rec−→R,B

[Srv-A] & [Cli-A, Srv-A, 7 , na]

The corresponding instrumented computation T , produced by instrument(C),
is given by suitably parenthesizing and reordering the arguments of the second
term by applying ACU-matching transformations for the operator & .

These internal transformations allow the rec rule to be applied by syntacti-
cally matching the third term of T within its left-hand side.

T = [Srv-A] & Cli-A <- {Srv-A, f(Srv-A, Cli-A, 7)}
& [Cli-A, Srv-A, 7, na]

inc−→Δ

[Srv-A] & Cli-A <- {Srv-A, 7+1}
& [Cli-A, Srv-A, 7, na]

builtIn(+)−→Δ

[Srv-A] & Cli-A <- {Srv-A, 8} & [Cli-A, Srv-A, 7, na]
fromACUnf−→B

[Srv-A] & (Cli-A <- {Srv-A, 8} & [Cli-A, Srv-A, 7, na])
rec−→R

[Srv-A] & [Cli-A, Srv-A, 7, na]

The second rewrite step of the instrumented trace is simply proven with the
bogus rule:

rl [fromACUnf] : [Srv-A] & Cli-A <- {Srv-A, 8}
& [Cli-A, Srv-A, 7, na] =>

[Srv-A] & (Cli-A <- {Srv-A, 8}
& [Cli-A, Srv-A, 7, na]) .

In order to improve readability, we omit B-matching transformations and
built-in evaluations when displaying Maude steps (unless explicitly stated other-
wise). This is consistent with the strategy adopted by Maude and is the default
option in our tool. As described in Section 6, by using the tool Anima, the user
can visualize either the simplified view of a rewrite step or the complete and
detailed instrumented version of the step.
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4 Exploring Computation Trees

Given a rewrite theory R, the transition space of all computations in R from
the initial term s can be represented as a computation tree3, TR(s). RWL com-
putation trees are typically large and complex objects to deal with because of
the highly-concurrent, nondeterministic nature of rewrite theories. Also, their
complete generation and inspection are generally not feasible since some of their
branches may be infinite as they encode nonterminating computations.

Example 5. Consider the rewrite theory of Example 1 together with the initial
term [Srv-A] & [Cli-A,Srv-A,7,na] & [Cli-B,Srv-A,17,na]. In this case,
the computation tree consists of several infinite computations that start from
the considered initial term and model interactions between clients Cli-A, Cli-B
and server Srv-A. A fragment of the computation tree is depicted in Figure 2
where we only display the equations and rules that have been applied at each
rewrite step, while other information such as the computed substitution and the
rewrite position are omitted in the depicted tree. Also for simplicity, note that
we merge the two edges leading from s1 to the same node s4 with the rules req
and dup, respectively.

[Srv-A] & [Cli-A,Srv-A,7,na] 
& [Cli-B,Srv-A,17,na]

S0

[Srv-A] & Srv-A <- {Cli-A,7} & 
[Cli-A,Srv-A,7,na] & [Cli-B,
Srv-A,17,na]

S1 rl: req

[Srv-A] & Srv-A <- {Cli-B,17}
& [Cli-A,Srv-A,7,na] & [Cli-B,
Srv-A,17,na]

S2 rl: req

[Srv-A] & Cli-A <- 
{Srv-A,f(Serv-A,Cli-A,
7)} & [Cli-A,Srv-A,7,
na] & [Cli-B,Srv-A,17,
na]

S3 rl: reply

[Srv-A] & Srv-A <- 
{Cli-A,7} & Srv-A <- 
{Cli-A,7} & [Cli-A,
Srv-A,7,na] & [Cli-B
,Srv-A,17,na]

S4 rl: req/dupl

[Srv-A] & Srv-A <- 
{Cli-A,7} & Srv-A <- 
{Cli-B,17} & [Cli-A,
Srv-A,7,na] & [Cli-B
,Srv-A,17,na]

S5 rl: req

[Srv-A] & 
[Cli-A,Srv-A,
7,na] & [Cli-
B,Srv-A,17,
na]

S6 rl: loss

[Srv-A] & Cli-A <- 
{Srv-A,8} & [Cli-A
,Srv-A,7,na] & 
[Cli-B,Srv-A,17,na]

S7 eq: inc

･･
･

･･
･

･･
･

･･
･

･･
･

Fig. 2. Computation tree

3 In order to facilitate trace inspection, computations are visualized as trees, although
they are internally represented by means of more efficient graph-like data structures
that allow common subexpressions to be shared.
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Note that the instrumented version of a computation tree TR(s) can be con-
structed from TR(s) by expanding each computation in TR(s) into its corre-
sponding instrumented counterpart as explained in Section 3.1. Also, it is possi-
ble to switch from the instrumented computation tree to the non-instrumented
one by simply hiding the intermediate B-matching transformations and alge-
braic axiom applications that occur in the instrumented tree. In the sequel, we
let T +

R (s) denote the instrumented computation tree that originates from the
state s.

The rest of this section presents a slicing-based exploration technique that
allows the user to incrementally generate and inspect a portion of the instru-
mented computation tree T +

R (s) by expanding (slices of) its computation states
into their descendants starting from the root node. The exploration is an inter-
active procedure that can be completely controlled by the user, who is free to
choose the computation states to be expanded. Roughly speaking, in our slices
certain subterms of a term are omitted, leaving “holes” that are denoted by
special variable symbols.

4.1 Term Slices and Instrumented Computation Slices

A term slice of the term s is a term s• that hides part of the information in s;
that is, the irrelevant data in s that we are not interested in are simply replaced
by special •-variables of appropriate sort, denoted by •i, with i = 0, 1, 2, . . ..
Given a term slice s•, a meaningful position p of s• is a position p ∈ Pos(s•)
such that s•|p �= •i, for all i = 0, 1, . . ..

By MPos(s•), we denote the set that contains all the meaningful positions
of s•. Symbols that occur at meaningful positions of a term slice are called
meaningful symbols. Basically, a term slice records just the information the user
wants to observe of a given term.

Example 6. Consider the client-server specification of Example 1. Then, the term
slice [Cli-A, Srv-A, •1, •2] represents any request from client Cli-A to com-
municate with server Srv-A where the request and response identification num-
bers are irrelevant. For this term slice, the set of meaningful positions is {Λ, 1, 2}.

The next auxiliary definition formalizes the function Tslice(t, P ) that allows
a term slice of t to be constructed w.r.t. a set of positions P of t. The function
Tslice relies on the function fresh• whose invocation returns a (fresh) variable
•i of appropriate sort that is distinct from any previously generated variable •j .

Definition 1 (Term Slice). Let t ∈ τ(Σ,V) be a term and let P be a set
of positions s.t. P ⊆ Pos(t). Then, the term slice Tslice(t, P ) of t w.r.t. P is
computed as follows.

Tslice(t, P ) = recslice(t, P, Λ), where



Inspecting Rewriting Logic Computations 241

(frag)
V • = I(U•, U → V ) ∧ V • �= fail

〈U → V →∗ W,S••→∗ U•〉 =⇒ 〈V →∗ W,S••→∗ U••→ V •〉

Fig. 3. The inference rule frag of the transition system (Conf ,=⇒)

recslice(t, P, p) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f(recslice(t1, P, p.1), . . . , recslice(tn, P, p.n))

if t=f(t1, . . . , tn), n ≥ 0, and p ∈ P̄

t if t ∈ V and p ∈ P̄

fresh• otherwise

and P̄ = {u | u ≤ p ∧ p ∈ P} is the prefix closure of P .

Roughly speaking, the function Tslice(t, P ) yields a term slice of t w.r.t. a set
of positions P that includes all symbols of t that occur within the paths from
the root of t to any position in P , while each maximal subterm t|p, with p �∈ P ,
is replaced by means of a freshly generated •-variable.

Example 7. Let t = d(f(g(a, h(b)), c), a) be a term, and let P = {1.1, 1.2}
be a set of positions of t. By applying Definition 1, we get the term slice
t• = Tslice(t, P ) = d(f(g(•1, •2), c), •3) and the set of meaningful positions
MPos(t•) = {Λ, 1, 1.1, 1.2}.

Definition 2 (Inspection criterion). An inspection criterion is a function
I(s•, s →K t) that, given a →K-rewrite step s →K t, and a term slice s• of s,
computes a term slice t• of t.

Roughly speaking, inspection criteria allow us to control the information con-
tent conveyed by term slices resulting from the execution of →K-rewrite steps.
It is worth noting that distinct implementations of the inspection criteria may
produce distinct slices of the considered rewrite step. Several examples of inspec-
tion criteria are discussed in Section 5. We assume that the special value fail is
returned by the inspection criterion whenever no slice t• can be computed by I.
Actually, for any sensible criterion I, I(•, s →K t) = fail (i.e., no meaningful
result can be derived when no relevant information is considered).

Given the instrumented computation T = (s0 →K s1 . . .→K sn), with n ≥ 1,
an instrumented computation slice of T w.r.t. the inspection criterion I is the
sequence T •

I = (s•0•→ s•1•→ . . . •→ s•n) that can be generated by sequentially
applying I to the steps that compose T . We often write T • for an instrumented
computation slice T •

I when the inspection criterion I is clear from the context.
Let us formalize a calculus to generate instrumented computation slices by

means of a transition system (Conf ,=⇒) [18] where

– Conf is a set of configurations of the form 〈T ,F•〉, where T is a an instru-
mented computation and F• is an instrumented computation slice of a prefix
of T ;
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– the transition relation =⇒ implements the calculus of instrumented com-
putation slices and is the smallest relation that satisfies the inference rule
frag given in Figure 3. By =⇒∗, we denote the usual transitive and reflexive
closure of the relation =⇒.

Roughly speaking, the rule frag transforms the configuration 〈U →K V →∗
K

W,S••→∗
K U•〉 into the configuration 〈V →∗

K W,S••→∗ U••→ V •〉 where the
first step U →K V has been consumed and its corresponding slice U••→ V • w.r.t.
I has been added to S••→∗ U•. The rule frag only applies when the inspection
criterion I generates a term slice V • that is not the fail value.

The sequential application of the considered inference rule allows the instru-
mented computation T to be traversed in order to produce the sliced counterpart
T • of T w.r.t. I. More formally,

Definition 3 (Computation slice). Given the instrumented computation T =
(s0 →K s1 →K . . .→K sn), with n ≥ 1, the instrumented computation slice T •

of T w.r.t. the inspection criterion I and term slice s•0 of s0 is defined by the
function Cslice(s•0, T , I) which is defined as follows.

Cslice(s•0, T , I) = if 〈T , s•0〉 =⇒∗ 〈ε, T •〉 then T • else fail

where ε denotes the empty computation. Note that the second component s•0 of
the initial configuration 〈T , s•0〉 matches the sequence S••→∗ U• in rule frag by
taking s•0 for U• and considering a sequence S••→∗ U• consisting of zero steps.

4.2 Instrumented Computation Tree Slices

Instrumented computation tree slices are formally defined as follows.

Definition 4 (Instrumented Computation Tree Slice). Let T +
R (s0) be an

instrumented computation tree for the term s0 in the rewrite theory R = (Σ,Δ∪
B,R); let s•0 be a term slice of s0; and let I be an inspection criterion. An
instrumented computation tree slice for s•0 in R w.r.t. I is a tree T +

R,I(s
•
0)

(simply denoted by T +
R (s•0) when no confusion can arise) such that:

1. the root of T +
R (s•0) is s•0;

2. each branch of T +
R (s•0) is an instrumented computation slice T • w.r.t. I and

s•0 of a computation T in T +
R (s0).

3. for each instrumented computation T in T +
R (s0), there is one, and only one,

instrumented computation slice T • of T in T +
R (s•0).

In the following section, we show how tree slices of a given instrumented
computation tree in R = (Σ,Δ∪B,R) can be generated by repeatedly unfolding
the nodes of the original tree.



Inspecting Rewriting Logic Computations 243

function expand(s, s•,R, I)
1. A = ∅
2. for each M ∈ mS(s)
3. M• = Cslice(s•, instrument(M), I)
4. if M• �= fail then A = A∪ {M•}
5. end
6. return A
endf

Fig. 4. The one-step expand function

4.3 Exploring the Computation Tree

In our methodology, instrumented computation tree slices are incrementally con-
structed by expanding tree nodes (i.e., term slices), starting from the root node
(i.e., the initial term slice). Formally, given the term s and the term slice s• of
s, the expansion of s in the rewrite theory R = (Σ,Δ ∪B,R) w.r.t. the inspec-
tion criterion I is defined by the function expand(s, s•,R, I) of Figure 4 which
unfolds the term slice s• by deploying and then slicing all the possible instru-
mented Maude computation steps stemming from s that are given by mS(s). In
other words, for each Maude step M = s →∗

Δ,B s↓Δ,B →R,B t →∗
Δ,B t↓Δ,B, we

first compute its instrumented version and then the corresponding instrumented
Maude step slice M• is generated, which is then added to the set of arcs A.

The overall construction methodology for instrumented computation tree
slices is specified by the function explore, defined in Figure 5. Given a rewrite
theory R, a term slice s•0 of the initial term s0, and an inspection criterion
I, the function explore essentially formalizes an interactive procedure that is
driven by the user starting from an elemental tree slice fragment, which only
consists of the sliced root node s•0. The instrumented computation tree slice
T +
R (s•0) is built by choosing, at each loop iteration of the algorithm, the tree leaf

that represents the term slice to be expanded by means of the auxiliary func-
tion pickLeaf (T +

R (s•0)), which allows the user to freely select a leaf node from
the frontier of the current tree T +

R (s•0). Then, T +
R (s•0) is augmented by calling

addPaths(T +
R (s•0), s

•, expand(s, s•,R, I)). This function call adds all the instru-
mented computation slices w.r.t. I and s• that correspond to the Maude steps
that originate from the term s.

The special value EoE (End of Exploration) is used to terminate the inspec-
tion process: when the function pickLeaf (T +

R (s•0)) is equal to EoE, no term to
be expanded is selected and the exploration terminates delivering (a fragment
of) the computation tree slice T +

R (s•0).

5 Particularizing the Exploration

The methodology given in Section 4 provides a generic scheme for the exploration
of (instrumented) computation trees w.r.t. a given inspection criterion I that



244 M. Alpuente et al.

function explore(s0, s
•
0,R, I)

1. T +
R (s•0) = s•0

2. while((s• = pickLeaf (T +
R (s•0))) �= EoE) do

3. T +
R (s•0) = addPaths(T +

R (s•0), s
•, expand(s, s•,R, I))

4. od
5. return T +

R (s•0)
endf

Fig. 5. The interactive explore function

must be selected or provided by the user. In this section, we show three imple-
mentations of the criterion I that produce three distinct exploration strategies.
In the first case, the considered criterion allows an interactive program stepper
to be derived in which rewriting logic theories can be stepwisely animated. In
the second case, we implement a partial stepper that allows computations with
partial inputs to be stepped. Finally, in the last instantiation of the framework,
the chosen inspection criterion implements an automated, forward slicing tech-
nique that simplifies the traces and allows relevant control and data information
to be easily identified within the computation trees.

5.1 Interactive Stepper

Given an instrumented computation tree T +
R (s0) for an initial term s0 and a

rewrite theoryR, the stepwise inspection of the computation tree can be directly
implemented by instantiating the exploration scheme of Section 4 with the basic

inspection criterion Istep(s, s
r,σ,w→ K t) = t which simply returns the reduced

term t of the rewrite step s
r,σ,w→ K t.

This way, by starting the exploration from a term slice that corresponds to the
whole initial term s0 (i.e., s•0 = s0), the call explore(s0, s

•
0,R, Istep) generates (a

fragment of) the instrumented computation tree T +
R (s0) whose topology depends

on the program states that the user decides to expand during the exploration
process.

Example 8. Consider the rewrite theory R in Example 1 and the computa-
tion tree in Example 5. Assume the user starts the exploration by calling
explore(s0, s

•
0,R, Istep), with s0 = s•0, which allows all the Maude steps that

stem from the initial term s0 to be expanded w.r.t. the inspection criterion
Istep . This generates the instrumented computation tree fragment T +

R (s0) in
Figure 6.

Now, the user can either quit or carry on with the exploration of nodes s3 and
s5, which would result in the instrumented version of the tree fragment that is
shown in Figure 2.
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[Srv-A] & [Cli-A,Srv-A,7,na] 
& [Cli-B,Srv-A,17,na]

S0

[Srv-A] & Srv-A <- {Cli-A,7} 
& [Cli-A,Srv-A,7,na] & [Cli-
B,Srv-A,17,na]

S3

- -

rl: req

[Srv-A] & [Cli-B,Srv-A,
17,na] & [Cli-A,Srv-A,7,na] 

S1

[Srv-A] & [Cli-B,Srv-A,17,na] 
& Srv-A <- {Cli-A,7} & [Cli-
A,Srv-A,7,na]

S2

[Srv-A] & [Cli-A,Srv-A,7,na] 
& Srv-A <- {Cli-B,17} &  
[Cli-B, Srv-A,17,na]

S4

[Srv-A] & Srv-A <- {Cli-B,17} 
& [Cli-A,Srv-A,7,na] & [Cli-
B, Srv-A,17,na]

S5

fromACnf

toACnf

rl: req

toACnf

Fig. 6. Inspection of the state s0 w.r.t. Istep

5.2 Partial Stepper

The computation states produced by the program stepper defined above do not
include •-variables. However, sometimes it may be useful to work with partial
information and hence with term slices that “abstract some data” by using •-
variables. This may help the user focus on those parts of the program state that
he/she wants to observe, while disregarding pointless information or unwanted
rewrite steps.

We define the following inspection criterion

Ipstep(s•, s
r,σ,w→K t) = if s•

r,σ•,w→K t• then t• else fail

Roughly speaking, given a rewrite step s
r,σ,w→K t, the criterion Ipstep returns a

term slice t• of the reduced term t, whenever s• can be rewritten to t• using
the very same rule r at the same position w with the corresponding matching
substitution σ•.

The particularization of the exploration scheme given by the criterion Ipstep
allows an interactive, partial stepper to be derived, in which the user can work
with state information of interest, thereby producing more compact and focused
representations of the visited slices of the (instrumented) computation trees.

Example 9. Consider the computation tree of Example 5 whose initial term
is s0 = [Srv-A] & [Cli-A,Srv-A,7,na] & [Cli-B,Srv-A,17,na]. Let s•0 =
(•1 & [Cli-A,Srv-A,7,na] & •2) be a term slice of s0 where only client Cli-A
data structure is considered of interest. Assume that the inspection criterion
Ipstep is used to generate computation tree slice fragments. The computation
tree slice fragment shown in Figure 7 is obtained by first expanding the node s•0
into s•1, and then the node s•1 into s•2, s

•
3. The expanded nodes have been high-

lighted in the figure. Note that the adopted partial stepping strategy allows a
simplified view of (a part of) the considered computation tree to be constructed.
Specifically, the generated computation tree slice fragment isolates client Cli-A’s
behavior. More precisely, given the input encoded in the initial term slice s•0, the
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･1 & [Cli-A,Srv-A,7,na] & ･2

S0
･

rl: req

･1 & ･2 & Srv-A <- {Cli-A,7} & [Cli-A,Srv-A,7,na] 
S1
･

rl: req/dupl

･1 & ･2 & Srv-A <- {Cli-A,7} & Srv-A 
<- {Cli-A,7} & [Cli-A,Srv-A,7,na]

S2
･

rl: loss
･1 & ･2 & [Cli-A,Srv-A,7,na]
S3
･

+

+ +

Fig. 7. Computation tree slice fragment for s•0 w.r.t. Ipstep

computation can evolve by only applying either the rule req to the Cli-A data
structure, or the rules dupl and loss to Cli-A’s request messages.

In other words, this amounts to saying that a client-server protocol interaction
cannot be successfully carried out when the input term does not specify a sever
data structure (in this specific case, [Srv-A] should be included in s•0), since its
presence is essential to fire the reply rule that is in charge of producing server
responses.

5.3 Forward Trace Slicer

Forward trace slicing is a program analysis technique that allows computations
to be simplified w.r.t. a selected slice of their initial term. More precisely, given
an instrumented computation T with initial term s0 and a term slice s•0 of s0,
forward slicing yields a simplified view T • of T in which each term s of the
original instrumented computation is replaced by the corresponding term slice
s• that only records the information that depends on the meaningful symbols of
s•0, while irrelevant data are simply pruned away.

In the following, we define an inspection criterion Islice that implements the

forward slicing for a single rewrite step. Given a rewrite step μ = (s
r,σ,w→ K

t) (with r = λ ⇒ ρ) and a term slice s• of the term s, it delivers the term
slice t• that results from “rewriting” s• at position w with the rule r and a
suitable substitution that abstracts any irrelevant information of the computed
substitution σ with •-variables. A precise formalization of the inspection criterion
Islice is provided by the algorithm in Figure 8.

Note that, by adopting the inspection criterion Islice , the exploration scheme
of Section 4 automatically turns into an interactive, forward trace slicer that
expands computation states using the slicing methodology encoded into the in-
spection criterion Islice . In other words, given an instrumented computation tree
T +
R (s0) and a user-defined term slice s•0 of the initial term s0, any computation

slice s•0 •→ s•1 . . . •→ s•n in the tree T +
R (s•0), which is computed by the explore func-

tion, is the sliced counterpart of an instrumented computation s0 → s1 . . .→ sn
(w.r.t. the term slice s•0) in the instrumented computation tree T +

R (s0).
Roughly speaking, the inspection criterion Islice works as follows. When the

rewrite step μ occurs at a position w that is not a meaningful position of s•
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function Islice(s
•, s

λ⇒ρ,σ,w→K t)
1. if w ∈ MPos(s•) then
2. θ = {x/fresh• | x ∈ V ar(λ)}
3. λ• = Tslice(λ,MPos(s•|w) ∩ Pos(λ))

4. ψλ = 〈|θ,matchλ•(s•|w)|〉
5. t• = s•[ρψλ]w
6. else
7. t• = fail
8. fi
9. return t•

endf

Fig. 8. Inspection criterion that models the forward slicing of a rewrite step

(in symbols, w �∈ MPos(s•)), trivially μ does not contribute to producing the
meaningful symbols of t•. This amounts to saying that no relevant information
descends from the term slice s• and, hence, the function returns the fail value.

On the other hand, when w ∈ MPos(s•), the computation of t• involves a
more in-depth analysis of the rewrite step, which is based on a refinement process
that allows the descendants of s• in t• to be computed.

The following definition is auxiliary and is used to update (override) a substi-
tution σ1 with the substitution σ2, where both σ1 and σ2 may contain •-variables.

Definition 5 (substitution update). Let σ1 and σ2 be two substitutions,. The
update of σ1 w.r.t. σ2 (in symbols 〈|σ1, σ2|〉) is defined by 〈|σ1, σ2|〉 = σ|̀Dom(σ1),
where the substitution σ is given by

xσ =

{
xσ2 if x ∈ Dom(σ1) ∩Dom(σ2)
xσ1 otherwise

The main idea behind the operator 〈| , |〉 is that, in order to compute a rewrite
step from the term slice s• using the rule r, all variables in r are näıvely assumed
to be initially bound to •-variables that model irrelevant data, and the bindings
are incrementally updated as we apply the rule r.

More specifically, given the rewrite step μ : s
r,σ,w→ t, with r = λ⇒ ρ, and the

term slice s•, we initially define the substitution θ = {x/fresh• | x ∈ V ar(λ)}
that binds each variable in λ ⇒ ρ to a fresh •-variable. This corresponds to
assuming that all the information in μ, which is introduced by the substitution
σ, can be marked as irrelevant. Then, θ is refined as follows.

We first compute the term slice λ• = Tslice(λ,MPos(s•|w) ∩ Pos(λ)) that
filters the meaningful symbols of the left-hand side λ of the rule r w.r.t. the set
of meaningful positions of s•|w. Then, by matching s•|w into λ•, we generate a

matcher matchλ•(s•|w) that extracts the meaningful symbols from s•|w. Such a

matcher is then used to compute ψλ, which is an update of θ w.r.t. matchλ•(s•|w)
containing the meaningful information to be propagated across the rewrite step.
Finally, the term slice t• is computed from s• by replacing its subterm at position
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w with the instance ρψλ of the right-hand side of the applied rule r. This way,
we can transfer all the relevant information marked in s• into the slice of the
resulting term t•.

Example 10. Consider the rewrite theory in Example 1 together with the fol-
lowing rewrite step

s
req→ t : [Srv-A] & [Cli-A,Srv-A,7,na]

req→
[Srv-A] & Srv-A <- {Cli-A,7} & [Cli-A,Srv-A,7,na]

that applies (at position w = 2) the rule req: λ⇒ ρ, with λ =[C,S,Q,na] and
ρ = [C, S, Q, na] & S <- {C, Q}.

Let s• = •1 & [Cli-A,•2,7, •3 ] be a term slice of s. The execution of the
inspection criterion Islice(s•, s

req→ t) that computes a term slice t• of t proceeds
as follows.

First, the substitution θ is initialized to {C/•4, S/•5, Q/•6} and the slice λ•

of λ is computed w.r.t. the meaningful positions of s•|Λ.2 that also appear in λ.

Specifically, λ• = Tslice(λ, {Λ, 1, 3}) = [C,•7,Q,•8]. Then, the update ψλ of θ
is calculated. More precisely,matchλ•(s•|w) = match[C,•7,Q,•8]([Cli-A,•2,7,•3])
= {C/Cli-A, •7 /•2, Q/7, •8 /•3} and ψλ = 〈|θ,matchλ•(s•|w)|〉 =

{C/Cli-A, S/•5,
Q/7}. Roughly speaking, the computed update ψλ refines θ by replacing the
uninformed bindings C/•4 and Q/•6 with C/Cli-A and Q/7, respectively. Fi-

nally, Islice(s•, s
req→ t) returns the term slice t• = s•[ρψλ]2 = •1 & [Cli-A, •5

,7,na] & •5 <-{Cli-A,7}.

The following example describes the interactive construction process of a frag-
ment of an instrumented computation tree slice based on the Islice criterion. To
improve its readability, we omit the transformation steps that are required to
mimick the behavior of the Maude B-matching algorithm. The example also
demonstrates how forward trace slicing can be fruitfully employed to debug
RWL specifications.

Example 11. Consider the computation tree of Example 5 whose initial term
is s0 = [Srv-A] & [Cli-A,Srv-A,7,na] & [Cli-B,Srv-A,17,na]. Let s•0 =
(•1 & [Cli-A,•2,7, •3 ] & •4) be a term slice of s0 where only request 7 of
client Cli-A is considered of interest. We get the computation tree slice fragment
shown in Figure 9 by first expanding (w.r.t. the inspection criterion Islice) the
node s•0 into s•1; the node s•1 into s•2, s

•
3 (which is automatically normalized to

s•5 using the equation inc), and s•4; and finally the node s•5 into {s•6 . . . s•9}. The
branch leading from s•0 to s•9 is highlighted.

Note that the intermediate node s•3 does not have to be expanded since it is an
intermediate node generated by the expansion of node s•1 that is automatically
normalized into s•5. Indeed, the computation slice generated by expanding the

node s•1 is s•1
reply•→ s•3

inc•→ s•5, which corresponds to the forward slicing of a Maude
step from s1.
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･1 & [Cli-A,･2,7,･3] & ･4

S0
･

rl: req

･1 & ･2 <- {Cli-A,7} & [Cli-A,･2,7,na] & ･4

S1
･

rl: req/dupl
･1 & ･2 <- {Cli-A,7} & ･2 <- 
{Cli-A,7} & [Cli-A,･2,7,na] & ･4

S2
･ rl: reply

[･2] & Cli-A <- {･2,f(･2,Cli-A
,7)} & [Cli-A, ･2,7,na] & ･4

S3
･

rl: loss
･1 & [Cli-A,･2,7,na] & ･4

S4
･

[･2] & Cli-A <- {･2,8} & [Cli-A, ･2,7,na] & ･4

S5
･

[･2] & ･2 <- {Cli-A,7} & Cli-A 
<- {･2,8} & [Cli-A,･2,7,na] & ･4

S6
･ rl: req

[･2] & Cli-A <- {･2,8} & Cli-A 
<- {･2,8} & [Cli-A,･2,7,na] & ･4

S7
･

rl: dupl
[･2] & [Cli-A,
･2,7,na] & ･4

S8
･

rl: loss
[･2] & [Cli-A,
･2,7,na] & ･4

S9
･ rl: rec

+

+ + +

+

+ + + +

eq: inc

Fig. 9. Computation tree slice fragment for •1 & [Cli-A,•2,7, •3 ] & •4 w.r.t. Islice

The slicing process automatically computes a computation tree slice fragment
that represents a partial view of the protocol interactions from client Cli-A’s
perspective. Actually, irrelevant information is hidden and rules applied on irrel-
evant positions are directly ignored, which allows a simplified slice to be obtained
thus favoring its inspection for debugging and analysis purposes. In fact, if we
observe the highlighted branch in Figure 9, we can easily detect the wrong be-
havior of the rule rec. Specifically, by inspecting the term slice s•9 = ([•2] &
[Cli-A,•2, 7,na] & •4), which is generated by an application of the rule rec,
we immediately realize that response 8 produced in the parent node s•5 has not
been stored in s•9, which clearly reveals the bug in the applied rule rec.

Finally, it is worth noting how the forward trace slicer implemented via the
criterion Islice differs from the partial stepper given at the end of Section 5.1.

Given a term slice s• and a rewrite step s
r,σ,w→K t, Islice always yields a slice t•

when the rewrite step occurs at a meaningful position, whereas the inspection
criterion Ipstep encoded in the partial stepper may fail to provide a computed
slice t• when s• does not rewrite to t•, which allows the user to identify those
states that can be reached, from any instance of the sliced input state, by stan-
dard rewriting.

Example 12. Consider the computation tree of Example 5 whose initial term
is s0 = [Srv-A] & [Cli-A,Srv-A,7,na] & [Cli-B,Srv-A,17,na], and the
initial term slice s•0 = (•1 & [Cli-A,•2,7, •3 ] & •4) of Example 11. Then, no
expansion of node s•0 is possible using the inspection criterion Ipstep , since the
input encoded in s•0 does not suffice to enable the application of any protocol
rule, whereas the forward slicing strategy specified by the criterion Islice allows
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Fig. 10. Anima architecture

the computation tree fragment in Figure 9 to be generated. Nevertheless, tree
fragments computed by forward slicing do not generally describe valid compu-
tations, that is, computations that can be proven for any instance of the sliced
input state.

6 Implementation

The exploration methodology developed in this paper has been
implemented in the Anima tool, which is publicly available at
http://safe-tools.dsic.upv.es/anima/. The underlying rewriting ma-
chinery of Anima is written in Maude and consists of about 250 Maude function
definitions (approximately 2000 lines of source code). Anima also comes with an
intuitive Web user interface based on AJAX technology, which allows users to
graphically animate their programs and display fragments of computation trees.
The core exploration engine is specified as a RESTful Web service by means of
the Jersey JAX-RS API.

The architecture of Anima is depicted in Figure 10 and consists of five main
components: Anima Client, JAX-RS API, Anima Web Service, Database, and
Anima Core. The Anima Client is purely implemented in HTML5 Canvas4 and
JavaScript. It represents the front-end layer of our tool and provides an intu-
itive, versatile Web user interface, which interacts with the Anima Web Service
to invoke the capabilities of the Anima Core and save partial results in the Mon-
goDB Database component, which is a scalable, high-performance, open source
NoSQL database that perfectly fits on our needs.

Figure 11 displays a screenshot that shows the Anima tool at work on the case
study that is described in Example 11. The figure depicts (a fragment of) the
computation tree slice for this example program and several capabilities offered
by the tool.

4 For the sake of efficiency, browsers limit the maximum dimensions of a canvas object
(eg., Chrome limits a canvas to a maximum width or height of 8192 pixels). Exceeding
these limits may cause the inability to properly display the current exploration.

http://safe-tools.dsic.upv.es/anima/
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Fig. 11. Anima at work

These are the main features provided by Anima:

1. Inspection strategies. The tool implements the three inspection strategies
described in Section 5. As shown in Figure 11, the user can select the desired
strategy by using the selector provided in the option pane.

2. Select meaningful symbols for slicing. State slices can be specified by high-
lighting with the mouse the state symbols of interest directly on the tree.

3. Expand/Fold program states. The user can expand or fold states of the tree by
double-clicking or right-clicking on them with the mouse and then selecting
either the Expand Node option or Fold Node option that are offered in the
contextual menu. For instance, in Figure 11, a state slice on the frontier
of the computed tree slice fragment has been selected and is ready to be
expanded through the Expand Node option that will add all the possible slices
of the Maude steps to the tree starting from the selected node. The whole
branch leading from the root to the selected node of the tree is highlighted.
Common actions like dragging, zooming, and navigating the tree are allowed.
Also, when a tree node is selected, the position of the tree on the screen is
automatically rearranged to keep the chosen node at the center of the scene.

4. Display instrumented trace. The user can freely choose to display either a
default, simplified view of a rewrite step (where only the applied rewrite
rule is displayed), or the complete and detailed sequence of steps in the
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Fig. 12. Anima search mechanism

corresponding instrumented trace that simulates the step. This facility can
be locally accessed by clicking in the +/− symbols that respectively adorn
the standard/instrumented view of the rewrite step, or by checking/uncheck-
ing the Instrumented steps option in the Anima option pane for the entire
computation tree.

5. Tree Query mechanism. The search facility illustrated in Figures 11 and
12 implements a pattern language that allows the selected information of
interest to be searched on huge states of complex computation trees. The
user only has to provide a filtering pattern (the query) that specifies the set
of symbols that he/she wants to search for, and then all the states matching
the query are automatically highlighted in the computation tree.

6. Show rewrite step information. Anima facilitates the inspection of any rewrite
step s → t of the computation tree by underlining the differences between
the two states (typically the selected redex of s and its contractum in t). In
the case of a non-instrumented step s →Δ,B t (resp. s →R,B t), we cannot
highlight in general the redex and contractum of the step as they might not
exist in s and t because of the matching modulo B that precedes the rewrite
step, and the normalization that occurs after the rewrite step. Actually, recall
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Fig. 13. Anima trace information

that s and t are eventually reordered, augmented with identity elements,
and parenthesised, yielding the B-equivalent terms s′ and t′ that star in an
intermediate rewrite step s′ →Δ t′ (resp., s′ →R t′). In this case, we underline
the antecedents in s of the reduced redex in s′ (and the descendants in t of
the contractum that appears in t′).
Furthermore, by clicking on the corresponding edge label of the tree, addi-
tional transition information is also displayed in the transition information
window that shows up at the top, including the computed substitution and
the normalized rule/equation applied.

7. Show trace information. By right-clicking a tree node and by selecting the
Show trace information option, the user can obtain the complete information
of the execution trace from the root to the selected node. This information
is presented in a table that includes the labels of the rules and equations
applied, the terms that result from the application of each rule or equation
and the computed trace slice (if applicable) as shown in Figure 13. Moreover,
Anima offers the possibility to export the displayed trace into meta-level
representation, so the user can easily transfer the selected trace to any other
Maude trace analyzer tool like, for example, iJulienne [4].

8. Show statistics. Finally, detailed statistics of the current computation tree
can be accessed by selecting the Statistics option that appears in the contex-
tual menu for any node in the tree. This shows, among others, the number
of terms (normalized or not) that are reachable from this node, its number
of children and depth in the tree, and the global size of the computation tree.

7 Conclusions

The analysis of execution traces plays a fundamental role in many program anal-
ysis approaches, such as runtime verification, monitoring, testing, and specifica-
tion mining. We have presented a parametrized exploration technique that can
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be applied to the inspection of rewriting logic computations and that can work
in different ways. Three instances of the parameterized exploration scheme (an
incremental stepper, an incremental partial stepper, and a forward trace slicer)
have been formalized and implemented in the Anima tool, which is a novel pro-
gram animator for RWL. The tool is useful for Maude programmers in two ways.
First, it graphically exemplifies the semantics of the language, allowing the eval-
uation rules to be observed in action. Secondly, it can be used as a debugging
tool, allowing the users to step forward and backward while slicing the trace in
order to validate input data or locate programming mistakes.

As already mentioned, the present version supports the instrumentation of
matching modulo associativity, commutativity, and (left-, right- or two-sided)
unity. Nevertheless, Anima has an extensible design so that instrumentation for
other equational axioms such as idempotency can be easily added in the future.

As future work, we intend to apply our exploration technique to more so-
phisticated rewrite theories that may include membership axioms as well as
conditional rules and equations. Furthermore, we plan to integrate the analysis
capabilities of the backward trace slicer iJulienne [4] in Anima. The idea is to
first apply forward trace slicing to a given computation in order to remove all
the information that does not affect the observed symbols. This procedure may
produce “incorrect” computation slices, that is, computation slices that do not
precise all the concrete input data that are required to generate the relevant
symbols in the output/final state of the computation slice, as seen in Example
12. Hence, backward trace slicing might be applied to the generated computa-
tion slice to enrich it with new input symbols computed as antecedents of the
relevant output with the aim of ensuring the correctness of the slice.

Finally, we envisage to equip Anima with dynamic program slicing techniques
to extract the minimal program slice that is needed to generate any selected
execution trace of the computation tree.
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Sorted Rewrite Theories. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381,
pp. 86–103. Springer, Heidelberg (2010)

12. Eker, S.: Associative-Commutative Matching via Bipartite Graph Matching. The
Computer Journal 38(5), 381–399 (1995)

13. Eker, S.: Associative-Commutative Rewriting on Large Terms. In: Nieuwenhuis, R.
(ed.) RTA 2003. LNCS, vol. 2706, pp. 14–29. Springer, Heidelberg (2003)

14. Klop, J.W.: Term Rewriting Systems. In: Abramsky, S., Gabbay, D., Maibaum, T.
(eds.) Handbook of Logic in Computer Science, vol. I, pp. 1–112. Oxford University
Press (1992)

15. Mart́ı-Oliet, N., Meseguer, J.: Rewriting Logic: Roadmap and Bibliography. The-
oretical Computer Science 285(2), 121–154 (2002)

16. Meseguer, J.: Conditional Rewriting Logic as a Unified Model of Concurrency.
Theoretical Computer Science 96(1), 73–155 (1992)

17. Meseguer, J.: The Temporal Logic of Rewriting: A Gentle Introduction. In: Degano,
P., De Nicola, R., Meseguer, J. (eds.) Montanari Festschrift. LNCS, vol. 5065, pp.
354–382. Springer, Heidelberg (2008)

18. Plotkin, G.D.: The Origins of Structural Operational Semantics. The Journal of
Logic and Algebraic Programming 60-61(1), 3–15 (2004)

19. Riesco, A., Verdejo, A., Caballero, R., Mart́ı-Oliet, N.: Declarative Debugging of
Rewriting Logic Specifications. In: Corradini, A., Montanari, U. (eds.) WADT
2008. LNCS, vol. 5486, pp. 308–325. Springer, Heidelberg (2009)

20. Riesco, A., Verdejo, A., Mart́ı-Oliet, N.: Declarative Debugging of Missing Answers
for Maude. In: Proc. RTA 2010. LIPIcs, vol. 6, pp. 277–294 (2010)

21. TeReSe. Term Rewriting Systems. Cambridge University Press (2003)

http://maude.cs.uiuc.edu/maude2-manual/


The Semantics of Datalog for the Evidential
Tool Bus�

(Extended Abstract)

Simon Cruanes1, Stijn Heymans2, Ian Mason3,
Sam Owre3, and Natarajan Shankar3

1 Ecole Polytechnique, Palaiseau, France
2 Artificial Intelligence Center, SRI International, Menlo Park, CA 94025, USA

3 Computer Science Laboratory, SRI International, Menlo Park, CA 94025, USA
simon.cruanes.2007@polytechnique.org,

Stijn.Heymans@sri.com,
{Iam,Owre,Shankar}@csl.sri.com

Dedicated to Kokichi Futatsugi for his inspiring vision and generous spirit.

Abstract. The Evidential Tool Bus (ETB) is a distributed framework
for tool integration for the purpose of building and maintaining assur-
ance cases. ETB employs Datalog as a metalanguage both for defining
workflows and representing arguments. The application of Datalog in
ETB differs in some significant ways from its use as a database query
language. For example, in ETB Datalog predicates can be tied to exter-
nal tool invocations. The operational treatment of such external calls is
more expressive than the use of built-in predicates in Datalog. We out-
line the semantic characteristics of the variant of Datalog used in ETB
and describe an abstract machine for evaluating Datalog queries.

1 Introduction

Software is an important component of many modern safety-critical systems, and
its reliability must therefore be certified to very high levels of assurance. It is
quite common for an assurance case for software to be developed using workflows
that integrate multiple formal, semi-formal, and informal tools. The capabilities
offered by these tools span the software lifecycle from requirements capture and
validation, to design and verification, and eventually system integration and
testing. At SRI, we have been developing a framework for software assurance
called the Evidential Tool Bus (ETB) [5]. The ETB middleware can be used
to integrate external tools through tool wrappers, to define workflows, and to
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collect claims and evidence in support of a well-defined argument. The Datalog
fragment of Horn clause programming is at the core of ETB. Datalog is used as
the metalanguage, both for scripting workflows that incorporate multiple tools,
and for representing assurance arguments. ETB differs from other application
of Datalog in some subtle but significant ways. Since we are using Datalog for
developing assurance cases, it is important to capture the semantic details of the
language in a rigorous manner. We outline the semantic peculiarities of ETB
Datalog and define an abstract machine for the evaluation of Datalog programs
in the context of a distributed computation.

Workflows for software assurance involve semi-formal steps for validation,
testing, and hazard analysis; formal steps for verification, synthesis, and test
generation; and informal steps such as checklists and human inputs. From the
viewpoint of assurance, the end result of such a workflow must be a certifiable
assurance case consisting of claims supported by arguments and evidence. Many
verification workflows involve multiple tools: type checkers, static analyzers, SAT
and SMT solvers, interactive and automated theorem provers, and symbolic
and explicit-state model checkers. The tools and inference rules used in the
argument must be expressly qualified for use in the assurance case. Each of the
different tools might work only with certain languages and representations, so
that translations between different representations will also be a key part of the
workflow. An assurance case constructed from the workflow is a collection of
artifacts (files, properties, metrics, etc.) along with claims about these artifacts,
and arguments in support of these claims. For the purpose of certification, it
is desirable that arguments representing the assurance case be replayable. It
should also be possible to maintain the argument against changes to inputs
(e.g., requirements) as well as modifications to the tools.

The Evidential Tool Bus framework has been outlined in an earlier paper [5].
We summarize the key points below. ETB is a distributed framework for tool
integration. An ETB installation is a network of ETB servers as shown in
Figure 1, where each server can offer specific services. ETB uses Datalog as the
scripting language for defining workflows as well as the metalanguage for build-
ing arguments. Services are packaged as Datalog predicates. Each ETB server
runs a Datalog engine that can be used to implement workflows integrating dif-
ferent services. The claims are maintained together with their proofs. A service
is associated with a Datalog predicate by means of a wrapper. For example,
the Yices SMT solver can be offered as a service through the Datalog predicate
yices(F, S,M), where the variable1 F represents a file containing a formula in
the Yices input language, S is the result, sat or unsat, of the satisfiability check,
and M is the model when S is sat. If a.ys is a Yices file containing a formula,
then the query yices(a.ys, S,M) invokes the Yices solver to bind the variables
S and M .

A workflow is defined as a Datalog program consisting of Horn clauses. For
example, a workflow that generates a test input from a formula in a file F and
executes it on a program P can be defined by the Horn clause below, where

1 As is conventional in logic programming, identifiers starting with uppercase letters
are variables.
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A :− B,C,D represents the clause (B ∧ C ∧D) =⇒ A.

gentest(F, P,Result) :− yices(F, S,M), equal(S, sat), test(P,M,Result)

If a.ys is a file defining a Yices formula and b is a file containing a program, then
gentest(a.ys, b, Result) executes the workflow on these files and binds the test
results to the variable Result. A query is invoked by a client and is evaluated
by a Datalog engine at a server in the ETB network. The server can invoke
services that are available at other nodes in the network. The gentest query
above is evaluated at a specific server, but might use the yices service at a
remote server by copying the input files to the remote server and copying back
any files representing the results.

Clients
Clients

Git Server Git Server

Git ServerGit Server
Link

ClientsClients

Server Server

Server Server

Fig. 1. The ETB Client-Server Architecture

The Datalog variant used in ETB serves as an integration language for a
distributed network of services. It is also used as a representation language for
assurance arguments that build in calls to certain trusted services. External
services are invoked through queries with external predicates such as the yices
predicate. Such invocations are operationally quite similar to the evaluation of
internal predicates, e.g., gentest, in the sense that the evaluation step returns a
(possibly empty) set of clauses whose head atoms are instances of the query atom.
This leads to a richer notion of external predicates than the traditional built-
in predicates in Datalog. Furthermore, the similarity between the evaluation of
internal and external predicates yields a somewhat uniform denotational and
operational semantics for the Datalog variant used in ETB.

There is a large volume of work on Datalog related to its use in Databases.
This work has its origins in a workshop on Logic and Data Bases organized by
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Gallaire and Minker [6]. Details of the use and implementation of Datalog as
a programming language are covered in the book Foundations of Databases by
Abiteboul, Hull, and Vianu [1], and in several survey articles [3,7,8]. Our focus
here is on Datalog extended with a specific mechanism for service invocation that
is richer than the interpretation of built-in predicates. We present the semantics
of this version of Datalog that is suitable for use in the ETB framework. The
abstract machine we present employs tabling to memoize the computation of
repeated subgoals, and the presentation here is somewhat related to the abstract
machine for tabled Datalog defined by Sagonas and Swift [10].

We describe the peculiarities of ETB Datalog in Section 3. We then present
the semantics of ETB Datalog in Section 4. Concluding observations and future
work are presented in Section 6.

2 A Brief Overview of Datalog

Though Datalog was first introduced as a deductive language for defining
database queries, it has found applications in a number of other areas such
as declarative networking [9], static analysis [12], distributed computing[2], and
parallel programming [4]. The core of Datalog is a Horn clause programming
language where the terms are either variables or constants. Typical applications
of Datalog employ a fragment that includes a notion of negation, but we restrict
ourselves to the positive fragment.

The Datalog language is specified relative to a set of constants C, a set of
variables V , and a set of predicates Σ, where each predicate has an arity. An
atom is of the form p(a1, . . . , an), where p is an n-ary predicate in Σ, and each
ai is a term, i.e., either a variable in V or a constant in C. A ground atom is an
atom that contains no variables. A rule is of the form A :− Q, where A is the
head atom of the rule, and the body Q is a (possibly empty) sequence of atoms
A1, . . . , An. The set of variables occurring in the head A must be a subset of
those occurring in the body Q. A program R is a set of rules. A predicate p is
defined in R by the set of rules in R of the form p(a1, . . . , an) :− Q.

For example, the program below defines a sibling relation given the father
and mother relations. The parent relation is defined as the union of the father
and mother relations.

sibling(X,Y ) :− parent(Z,X), parent(Z, Y )

parent(X,Y ) :− father(X,Y )

parent(X,Y ) :− mother(X,Y )

A Datalog program will contain both rules, such as the definitions shown
above, as well as facts which are just ground atoms such as

father(joe, bill)
mother(mary, joe)
father(jim,mary)
father(jim, bob)
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Informally, a Datalog program R consisting of rules and facts entails a set
of ground atoms H , i.e., every atom in H holds in every model of R. A query
is a negated atom of the form ¬p(a1, . . . , an). The answers to such a query
are the ground instances of p(a1, . . . , an) in H , namely, the refutations of the
query. For example, if the query is ¬sibling(mary, x), then the answers are
sibling(mary,mary) (which is counterintuitive, but what the definition implies)
and sibling(mary, bob).

The definition of the sibling relation can already be formulated in first-order
logic, but Datalog can also capture recursive definitions that are not expressible
in first-order logic. The ancestor relation can be given the recursive Horn clause
definition shown below.

ancestor(X,Y ) :− parent(X,Y )

ancestor(X,Y ) :− parent(Z, Y ), ancestor(X,Z)

For example, the query ¬ancestor(X, bill) yields the answers

1. ancestor(joe, bill)
2. ancestor(mary, bill)
3. ancestor(jim, bill)

3 Datalog as Used in ETB

As a metalanguage for ETB, Datalog offers a simple semantic framework for
expressing claims, composing arguments, and defining workflows that direct the
flow of information and work to and from the external tools. For example, the
following ETB Datalog program generates all the satisfying assignments for a
Boolean formula.

sat(F,M) :− yices(F, S,M), equal(S, sat)

unsat(F ) :− yices(F, S,M), equal(S, unsat)

allsat(F,Answers) :− sat(F,M),
negateModel(F,M,NewF ),
allsat(NewF, T ),
cons(M,T,Answers)

allsat(F,Answers) :− unsat(F ), nil(Answers)

The query ¬yices(f, S,M) triggers the invocation of the Yices SMT solver
on the Yices formula in the file corresponding to the file handle f to return the
result sat or unsat binding S. In the latter case, the model M is irrelevant and is
bound to the Yices formula false. In the former case, the variable M is bound to
the model which is given as a Yices formula that is a conjunction of literals. The
program for the predicate allsat invokes the Yices solver to compute a model M
for the formula in the file f . Its negation is conjoined with the formula in F and
placed in a new file with the handle NewF . The allsat procedure is repeated on
NewF until the formula becomes unsatisfiable. The list of all the assignments is
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bound to the variables Answers. Note that even the list operations of binding
Answers to nil and the pairing operation cons(M,T,Answers) are implemented
as external calls.

Let f be the file handle for the file containing the input Yices formula. A goal
query, e.g., ¬allsat(f,Answers) is evaluated with respect to a set of rules by
means of backward chaining. The goal is resolved with all the program clauses
where allsat is the head predicate, i.e., the predicate of the head atom. There
are two such clauses. In both cases, unification binds the variable F with the file
handle f . The leading atoms of the body, namely, sat(f,M) and unsat(f), then
become new goals. Backward chaining on these goals leads to the evaluation of
yices(f, S,M). Although the subgoal yices(f, S,M) occurs twice in the evalu-
ation, it is only evaluated once. If Yices finds the formula in the file (handle)
f to be satisfiable, then it binds S to sat and M to the resulting model which
we can label as m1. Since the evaluation of unsat(F ) returns no bindings, we
can terminate the evaluation of the second clause in the definition of allsat.
The evaluation of the body of the first clause continues with the evaluation of
negateModel(F,M,NewF ). This creates a new file where the contents of the file
handle f have been augmented with the assertion of the negation of the formula
corresponding to model m1. The allsat program is now evaluated recursively
on this new file. The answer m1 is added to the list of assignments m2, . . . ,mn

returned by the recursive evaluation.
The bulk of the computation is carried out by these external tools. Predicates,

like yices, that invoke external tools are called interpreted or external predicates.
They are similar to built-in predicates in Datalog. However, built-in predicates
are usually invoked on ground arguments whereas the invocation in ETB of an
interpreted predicate will involve binding the variables to zero or more bindings.
The typical evaluation of a query involving an interpreted predicate, such as yices
will return at most one binding, but there are predicates that can return multiple
bindings. Another difference with built-in predicates is that the evaluation of an
interpreted predicate can generate further queries. For example, an interpreted
query for computing a definite integral of a function over an interval using Risch’s
algorithm might return a result with the qualification that the function must
be defined and continuous over the interval. Queries returned by the external
procedure can be used to guard the answers with side conditions or reflect the
case analysis in the computation.

We employ standard mathematical notation in presenting the details of ETB
Datalog. The metavariables a and b range over Datalog terms, i.e., variables and
constants. The metavariable p ranges over Datalog predicates, the metavariable
A ranges over atoms, and Q ranges over conjunctions of atoms. In running text,
a clause is bracketed for ease of reading and is represented as A :− Q, with head
A and body Q.

The Datalog variant used in ETB has several distinctive features:

1. The basic evaluation scheme is backward chaining on rules through resolution
with queries. The body literals in the rule are evaluated through backward
chaining, left-to-right order. This order of evaluation is significant. Backward
chaining is needed to ensure that only the relevant external predicate calls



262 S. Cruanes et al.

are evaluated. The left-to-right order of evaluation on the body of a rule
ensures that external predicates are not evaluated until their preconditions
have been verified. For example, it does not make sense to invoke the PVS
prover on a formula that has not yet been typechecked.

2. As in tabled evaluation [10], the searches are memoized to avoid repeated
computation.

3. An external predicate corresponds to a service that might be available only
from specific servers. In order to provide this service, the corresponding
server has one or more wrappers associated with the predicate. Each wrapper
covers a specific mode for the predicate. The modes specify the arguments to
the predicate that are provided as inputs, and some subset of the remaining
arguments might be computed through the evaluation of the wrappers. For
example, the invocation of the yices predicate has the mode 〈+,−,−〉 in the
allsat program.

4. Though the external calls can return multiple bindings (i.e., substitutions)
for the outputs, most wrappers are expected to return at most one bind-
ing. This means that we can adopt a Prolog-style, tuple-at-a-time mode of
evaluation rather than computing with sets of tuples.

5. External calls can generate further queries. This means that the evalua-
tion of an external call, e.g., p(a1, . . . , an) can return clauses of the form
p(b1, . . . , bn) :− Q. Most implementations of Datalog restrict external calls
to ground atoms, i.e., atoms of the form p(b1, . . . , bn) for ground terms
b1, . . . , bn.

6. The evaluation of Datalog queries relative to a program returns a set of
claims. Each claim is supported by a derivation or a proof. The derivation
should be replayable, and it should be possible to identify the evidence arti-
facts such as files (and file contents) that are used in the derivation.

7. For the purpose of developing an assurance argument, we can restrict the
external predicates and Datalog rules that are sanctioned for use in the
construction of a derivation.

8. Query evaluation is distributed in the sense that the evaluation of external
calls can take place at a remote ETB server. This means that the evaluation
must be asynchronous — at any given point in the computation, a server
can be awaiting results from multiple external calls. In some cases, a service
might fail during evaluation or might only become available after a delay.

The above features of ETB Datalog require special treatment that are not
offered by existing implementations of Datalog. We present the semantics of
ETB Datalog and describe an abstract machine that captures the evaluation of
Datalog queries in this framework.

4 Semantics of ETB Datalog

The semantics of the Datalog language can be given by a traditional first-order
structure M that maps each element c of C to an element c in the domain |M |,
and each n-ary predicate to a subset of the set |M |n of the n-tuples from |M |.
The meaning of a rule set R can be given by a set H of ground atoms such that
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for any model M of R: M |= A for A ∈ H . In this case, we say R |= A. Given a
goal query ¬p(a1, . . . , an) and a rule set R, a Datalog computation should return
the set of valid ground instances of the goal query, i.e., those atoms A that are
instances of p(a1, . . . , an) such that R |= A.

One way to check R |= A is by computing the minimal Herbrand model for
R. This is done starting with H0 as the empty set. Each successive Hi+1 is
computed by closing under the application of rules from R so that

Hi+1 = {B̂|B̂ = σ(B) for ground B̂, σ(Q) ⊆ Hi, B :− Q ∈ R}.

Then H = Hi for the least i such that Hi = Hi+1. It can be checked that R |= A
iff A ∈ H . Note also that for a given R, the set H is finite, even if the set of
constants C is infinite.

An operational way to compute the valid ground instances of the goal query is
through depth-first backward search. We introduce the operations of substitution
and unification as a prelude to the operational semantics. A substitution σ is a
partial map from variables in V to terms, e.g., [v1 (→ a1, v2 (→ a2]. For such a
partial map, σ(x) = a if σ maps x to a, and σ(x) = x, otherwise. A substitution
σ can be applied to an atom A as σ(A), a rule body Q as σ(Q), or a rule K as
σ(K). In each case, the result is obtained by substituting σ(x) for each occurrence
of a variable x. A substitution σ is at least as general as another substitution
σ′ if σ(x) = σ′(x) whenever σ(x) is defined. An atom A is an instance of an
atom B if there is a substitution σ such that σ(B) = A. Conversely, B is said
to be a generalization of A. A substitution σ is at least as general as another
substitution σ′ if σ(A) is at least as general than σ′(A), for any atom A. A
substitution σ is a unifier of two atoms A and B if σ(B), i.e., the unification,
is an instance of A. We have given an asymmetric definition of unification so
that we can avoid renaming the variables in A and B apart. A substitution σ
is the most general unifier of two atoms A and B if it yields a unification σ(B)
that is at least as general as the unification resulting from another unifier. The
operation mgu(A,B) is the most general unifier of A and B when it exists, and
is ⊥, otherwise.

Unification is used to compute DR(A), the valid ground instances of A given
the rule set R. It is defined mutually recursively with the operation DR(Q) that
computes the valid ground instances of a sequence of atoms Q. We define DR(Q)
as

DR(A,Q) = {A′, Q′|A′ ∈ DR(A), σ(A) = A′, Q′ ∈ DR(σ(Q))},
and DR(ε) = ε, where ε is the empty sequence. Let R(A) be the set of clauses
{σ(B :− Q)|B :− Q ∈ R, σ = mgu(A,B) �= ⊥}. We can complete the mutual
recursion by defining DR(A) as

{B′|B :− Q ∈ R(A), Q′ ∈ DR(Q), σ(Q) = Q′, B′ = σ(B)}.

The sets DR(A) and DR(Q) are finite and contain all and only the ground
instances of A and Q, respectively, that are valid in R.
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In ETB, we also include an external oracle E that interprets the external pred-
icates, which we take as any predicate that is not defined in R.2 With external
predicates, we give up the property that there is a finite Herbrand model. For
example, if we have an external predicate successor such that successor(0, Y )
returns the binding of 1 to Y , and successor(K,Y ) is the successor of the nu-
meral K, then we can write a Datalog program that computes all of the natural
numbers:

nat(0)

nat(X) :− nat(Y ), successor(Y,X)

We can in fact recover the full power of Prolog through external oracles that
perform unification.

Examples of atoms in external predicates can range from simple built-in op-
erations such as less(x, y) and subrange(low , high, i) to wrapper calls such as
yices(f, S,M). The interpretation E(p(a1, . . . , an)) for an atom is performed by
a wrapper. For example, the evaluation of the external predicate

yices(filename.ys, s,m)

invokes a wrapper that executes the Yices SMT solver on the input from the file
filename.ys, and binds the result, sat or unsat, to the variable s, and a model,
if one exists to the variable m. In general, the interpretation E(p(a1, . . . , an))
returns a (possibly empty) list of clauses where each clause has the form

p(b1, . . . , bn) :− Q.

The head atom p(b1, . . . , bn) must be an instance of the query atom p(a1, . . . , an),
and the variables in the head must also occur in the body. Most Datalog variants
admit only a limited interpretation of external predicates where the queries must
be fully grounded, whereas in ETB, we allow a more liberal and expressive
interpretation of external predicates that allows further queries to be spawned.
This interpretation also makes the behavior of E and R similar with respect to
the operational semantics.

Each external predicate can be evaluated under one or more modes. An n-
ary mode for an n-ary predicate is a sequence of symbols length n, where each
symbol is either + or −. The positions marked by + are the input arguments for
the predicate, and these have to be grounded in the query, whereas the positions
marked − are the outputs that are bound during the evaluation of the query. For
an atom p(a1, . . . , an), mode(p(a1, . . . , an)) is the sequence m1, . . . ,mn, where
each mi is either + or −, and ai is a variable exactly when mi is −. An external
predicate might have wrappers associated only with specific modes. For example,
the query subrange(0,High, 3) is not sensible since the set of bindings for High
is infinite. Similarly, yices(F, unsat,M) should not have a wrapper associated

2 We disallow the possibility of a predicate being defined both in R and E since in
our semantics, the same effect can be achieved solely through external oracles.
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with it since it requires finding a file containing an unsatisfiable formula, and
there could be unboundedly many such files.

There is a partial ordering on the modes of an external predicate so that one
mode is narrower than another if the set of input arguments of the first mode
is a superset of the set of input arguments of the second mode. If a mode is
interpretable for an external predicate, then any narrowing of this mode obtained
by turning outputs arguments into input arguments must also be interpretable.
This can be satisfied by interpreting p with a more general mode, i.e., one where
some of the input arguments are outputs, and filtering the results relative to the
additional input arguments. For example, to compute E(p(c1, . . . , cn)), we can
instead compute E(p(a1, . . . , an)), where each ai is either ci or a fresh variable
vi. The resulting clauses can then be instantiated and filtered so that the head
atom is always an instance of p(c1, . . . , cn). This ensures, for example, that it is
always possible to invoke an external call on a fully grounded atom.

The wrappers for the different modes of an external predicate have to be
compatible, so that even if there are multiple wrappers for p that can be used to
compute E(p(a1, . . . , an)), the set of clauses returned is the same. In ETB, we
do not check the compatibility of the wrappers for a given external predicate.
Instead, we assume that every external predicate has a wrapper for the fully
grounded mode, i.e., one where all the arguments are inputs. This is the only
wrapper that needs to be trusted since it will be used to check the arguments
associated with the final set of claims.

Herbrand models do not make sense for external oracles since new constants
can be generated when an oracle is invoked. We can instead construct a relatively
closed Herbrand model where an oracle generates a set of ground external atoms
Ω and E[Ω] is

⋃
{E(A)|A ∈ Ω}. Then, a ground atom A is a consequence of

R and E (relative to the oracle Ω) if R ∪ E[Ω] |= A. The minimal Herbrand

model can be constructed by defining H0 as the empty set and Hi+1 = {B̂|B̂ =

σ(B) for ground B̂, σ(Q) ⊆ Hi, B :− Q ∈ R ∪ E[Ω]}. We can then say that the
ground atom A is a consequence of R and E if for some set of ground external
atoms Ω, A is a consequence of R ∪ E[Ω]. The abstract machine in Section 5
defines a specific set Ω from which Herbrand models can be constructed.

The model-theoretic semantics and the minimal Herbrand model do not yield
effective operational methods for computing the set of answers to a query relative
to a rule set R and an external oracle E. In the next section, we present an
abstract machine for answering Datalog queries.

5 An Abstract Machine for ETB Datalog

We define an abstract machine for the ETB Datalog engine and argue for its
correctness relative to the semantics given in the previous section. The engine
evaluates a goal query of the form ¬p(a1, . . . , an) against a set of rules R and
external oracle E. The goal is to return all and only those ground instances of
p(a1, . . . , an) that are entailed by the rules R together with the external oracle
E.
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In order to easily check for equality, all the expressions are maintained in
normalized form so that variables are ordered by occurrence so that vi names
the i’th distinct variable occurring in the expression. For example, the atom
p(X, c1, Y ) is normalized as p(v1, c1, v2). Similarly, a clause p(X, c1, Y ) :−
p(X, c2, Z), p(Z, c3, Y ) is represented as p(v1, c1, v2) :− p(v1, c2, v3), p(v3, c3, v2).

5.1 An Abstract Inference System

We can first capture the Datalog computation as an abstract inference sys-
tem [11]. For this we define a logical state is a pair 〈G, J〉, where

1. The set G consists of goals so that G is {¬A1, . . . ,¬An}
2. The set J consists of clauses of the form B :− Q or of the form B, where

Q is a nonempty list of atoms. A claim is a clause of the form B in J . It
must be ground because of the condition that any variables in the head must
occur in the body, and the body here is empty.

In each inference step, we perform one of the following steps:

1. Backchain: For a clause of the form B :− A1, . . . , An in J , we add the goal
¬A1 to G if it is not already in G.

2. Resolve: For a goal ¬A in G and clause B :− Q in R, we add a new clause
K to J , where σ = mgu(A,B) �= ⊥ and K = σ(B :− Q).

3. External: For a goal ¬A in G where A is an external atom and a clause K
in E(A), we add a new clause K to J .

4. Propagate: For a clause in J of the form B :− A,Q and another clause
in J of the form A′, with σ such that σ(A) = A′, we add the new clause
σ(B :− Q) to J .

The initial logic state consists of G = {¬A} where ¬A is the initial goal. The
inference procedure terminates when no further inference steps can be applied,
i.e., when the logic state is irreducible. The result of the computation is the set
{B ∈ J |σ(A) = B}.

The abstract inference system described here is sound and complete with
respect to the semantics given above. Given an irreducible state 〈G, J〉, the set
Ω is the set of all claims of the form {B ∈ J |B is an external atom}. Then, each
claim in J is a consequence of R ∪ E[Ω]. Additionally, for an initial goal ¬A,
expanding Ω does not add any new claims of the B to J , where B is an instance
of A.

5.2 An Abstract Machine

The abstract inference system above captures the basic idea of using resolution
to compute with Datalog programs, but it has a major source of inefficiency. The
logic state is not suitably indexed so that the number of steps for finding an ap-
plicable inference step can be quadratic in the number of formulas in the state.
The number of formulas can itself be exponential in the size of the universe.
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We can improve the performance of the abstract machine through better index-
ing and structuring.

Another problem with the abstract inference system is that our Datalog engine
works in a distributed setting where new queries can be added from other nodes
in the network. In this case, we might be done processing one goal query but the
state might not be irreducible because other goals are still being processed. A
termination check is needed to determine if a goal has been fully processed and
all of the associated claims have been generated.

We modify the inference system to address these drawbacks. In the extended
system, the state now consists of goal nodes G, clause nodes J , and an index
T . The goal and clause nodes are enriched with annotations. Each entry g in G
now consists of

1. Literal: The actual goal literal.
2. Parents: A set of the clauses in J from which the goal originated. This entry

can be empty if the goal was introduced at the top level. Note that a goal
can have multiple parents.

3. Index: The index that uniquely identifies a goal node. The Index slot is used
in timestamps for checking termination.

4. Claims: A sequence of claims, i.e., clause nodes j where j.Clause is of the
form B, instantiating the goal.

5. Children: The set of clause nodes obtained by applying R or E to the Atom.
6. Status: Open, Resolved, Closed, or Completed.3

Each entry j in J consists of

1. Clause: The actual clause corresponding to the entry.
2. Goal: The parent goal in G from which the clause node originates.
3. Subgoal: A pointer to the subgoal in G generated from the clause. This

slot could be empty. If j.Clause is of the form B :− A,Q, then the
j.Subgoal.Literal is ¬A. Furthermore, j.Subgoal.Parents contains j.

4. Subclause: A set of clause nodes that are derived by propagating from j.
5. SubgoalIndex: The number of claims corresponding to the subgoal that have

already been propagated. It is initially zero when node j is created and is
bumped up by one for each claim that is propagated from the subgoal.

We say that one goal h is an immediate subgoal of another goal g if there is
some j such that j.Goal = g and j.Subgoal = h. The inference steps can now be
rewritten to operate on the annotated logic state.

1. Backchain: For a clause node j in J with j.Clause of the form B :−
A1, . . . , An, where j.Subgoal is empty,
(a) If there is already a goal node g in G with g.Atom slot of the form ¬A1,

we add j to g.Parents and set j.Subgoal to g and j.SubgoalIndex to 0.

3 In the implementation, a goal may also be Stuck if there is neither a rule nor a
wrapper associated with it. This can happen, for example, if the server providing
the wrapper is temporarily unavailable.
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(b) Otherwise, if there is no goal node g in G with g.Atom of the form ¬A1,
we create a new goal node g′ so that
i. g′.Literal is ¬A1,
ii. g′.Parents is {j},
iii. g′.Index is T + 1,
iv. g′.Claims is the empty sequence,
v. g′.Status is Open.
All the other fields of g are left empty, and the global time parameter T
in the state is incremented by one.

2. Resolve: For a goal node g in G with g.Status = Open, and g.Literal = ¬A,
and each clause B :− Q in R, we add a new clause node j to J , where
j.Clause = K = σ(B :− Q) with σ = mgu(A,B) �= ⊥, j.Goal = g, and
j.SubgoalIndex = 0, with all the other fields empty. We also set g.Status to
Resolved.

3. External: For a goal node g in G with g.Status = Open, and g.Literal =
¬A, and for each clause K returned by E(A), where g.Literal = ¬A,
we add a new clause node j to J , where j.Clause = K, j.Goal = g, and
j.SubgoalIndex = 0, with all the other fields empty. We also set g.Status to
Resolved.

4. Propagate: For some goal node g and for some clause node j′ in g.Parents,
where j′.Clause is B :− A,Q and j′.SubgoalIndex is smaller than the length
of g.Claims,
let j = g.Claims[j′.SubgoalIndex] with j.Clause of the form A′, we create
a clause node j′′ with
(a) j′′.Clause set to σ(B :− Q) where A′ = σ(A),
(b) j′′.Goal set to j′.Goal, and
(c) j′′.SubgoalIndex set to 0.
Also, add j′′ to j′.Subclause, set j′′.Subclause to the empty set, and incre-
ment j′.SubgoalIndex by one.

5. Claim: For a clause j where j.Claim is of the form B, we add j to the
end of j.Goal.Claims unless B is already present as j′.Claim for some j′

in j.Goal.Claims. We assume that this step is done immediately after a
Propagate, Resolve, or External step whenever a claim is generated.

The abstract machine is initialized with a single initial goal node g with
g.Literal = ¬A with g.Index = 1 and with T = 1. The evaluation is terminated
when no rule is applicable. In the next subsection, we augment the abstract
machine with support for detecting termination. The key modifications in the
machine defined above are

1. The clauses in J are no longer maintained as a set. This is to simplify the
termination check.

2. The Propagate step does not scan all the claims but is instead triggered
by the addition of a claim to the goal.

5.3 Abstract Machine with Termination Check

The abstract machine with the inference steps Backchain, Resolve, External,
Propagate, and Claim is a refinement of the abstract inference system in



Semantics of Datalog for the ETB 269

Subsection 5.1. However, it lacks a way of checking that a subgoal g has been
fully evaluated, i.e., no further claims can be added to g.Claims. There is a
simple but impractical way to do this that is already implicit in the abstract
inference system: if the computation is stuck so that no further inference steps
can be applied, then the computation has terminated. This only works if we are
evaluating a single query in a sequential setting. However, ETB is a distributed
system where the Datalog engine is evaluating many queries simultaneously and
these computations could be sharing subgoals. Some of these subgoals might be
fully evaluated even while new queries are being added and other parts of the
computation have only be partially completed. A global termination check will
not work in this context. We still need a termination check so that completed
subgoals can be garbage collected.

Checking termination is not straightforward since the evaluation graph con-
sisting of goal and clause nodes can contain cycles. Swift and Sagonas [10] inter-
leave the evaluation with a check for strongly connected components (SCCs) to
identify the fully evaluated nodes. We present a more fine-grained method for
checking termination that can be run alongside the normal evaluation. For this
purpose, we augment the state of the goals g with

1. A map g.T from goals to sets of clauses such that g.T (h) is nonempty only
when h is an immediate subgoal of the goal g, and g.T (h) is the set of clauses
{j|j.Goal = g ∧ j.Subgoal = h}.

2. A partial map g.D from goals to a number so that g.D(h) is defined only
when h.Index < g.Index and h is not closed. The entry g.D(h) is the number
of claims from h that have been fully propagated in the derivation rooted
at g. This means that every sub-derivation of g has propagated at least k
claims from h for k = g.D(h). The partial map g.D contains the unclosed
subgoals of g at the point when the Close rule (defined below) is applied.

3. A slot g.Unclosed which, when defined, is the maximal index of an unclosed
subgoal h of g such that h.Index < g.Index. In particular, g.Unclosed is
defined when g is closed, and it is the maximal index of a goal h such that
g.D is defined.

We modify the Backchain step of the abstract machine so that whenever it
is applied to a clause j to set j.Subgoal to h, we also add j to g.T (h), where
g = j.Goal.

Define min(i1, i2) for two possibly undefined numeric values i1 and i2 as

1. undefined, if both i1 and i2 are undefined
2. i1, if i2 is undefined or i1 ≤ i2, and
3. i2 if i1 is undefined or i2 < i1.

For a set of indices I, min(i, I) is i if I is empty, or it is the minimal index in
{i}∪ I. If I is a nonempty set of indices, then min(I) is the minimal index in I.

Close: The Close rule performs a step in the termination check computation.
We say that g is closed if g.Status is Closed or Completed. When g.Status =
Closed, then the only way a new claim can be added to g is if it is the result of
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adding a new claim to some subgoal h of g such that h.Index < g.Index. When
g.Status = Completed, then no further claims can be added to g.

The Close rule is applied to a goal g where

1. g.Status ∈ {Resolved, Closed}, and for all j ∈ g.Children, j.Clause is a
claim or j.Subgoal has been set. This ensures that the immediate children
of g are either claims or have generated subgoals. Note that the Backchain
rule registers a subgoal in g.T as soon as it is generated.

2. For all h we check that either g.T (h) is empty, h.Index ≤ g.Index, or
h.Status is Closed and h.Unclosed ≤ g.Index when h.Unclosed is de-
fined. In the latter two cases, we also check that for all j in g.T (h),
j.SubgoalIndex = |h.Claims| and for all j′ ∈ j.Subclause, either j′.Clause
is a claim or j′.Subgoal has been set. This check ensures that we have a com-
plete set of subgoals that have propagated all their claims, and the resulting
clauses have also generated their subgoals (if any).

When this check is valid for a goal g, we compute the value of g.D(h) for h
such that h.Index < g.Index. We first compute for any h such that h.Index ≤
g.Index, the set

τ(g)(h) = {h′.D(h)|h′ is closed, g.T (h′) is nonempty, h′.D(h) is defined}.

If τ(g)(g) is either empty or min(τ(g)(g)) = |g.Claims|, then we mark g.Status
as Closed and then set g.D(h) as below for unclosed h such that h.Index <
g.Index. If g.T (h) is nonempty, g.D(h) is set to min(|h.Claims|, τ(g)(h)). Oth-
erwise, we set g.D(h) to min(τ(g)(h)). In any remaining case, g.D(h) is unde-
fined. Note that because of the way that τ is computed, g.D(h) is defined only
when h is not closed and h.Index < g.Index.

Once g.D is set, we can recompute g.Unclosed as the maximal unclosed h
such that g.D(h) is defined. If g.D is everywhere undefined, then g.Unclosed is
also undefined. The information that g is closed needs to be propagated to any
goal node h such that h.Unclosed = g, and this happens when the Close rule
is applied to h.

Complete: The rule Complete marks nodes as completed. If for some g,
g.Status is Closed then g.Status can be set to Completed if either

1. g.D(h) is everywhere undefined, or
2. For some goal h such that g is an immediate subgoal of h, h.Status =

Completed. Recall that g is an immediate subgoal of h when for some j in
g.Parents, j.Goal = h.

5.4 An Example

We illustrate the abstract machine on a simple example using the program in
Figure 2 consisting of clauses C1 through C7.

The derivation is summarized in the goal table and the clause table in Fig-
ures 3 and 4, respectively. The Backchain rule is implicit in the Parent column
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C1 black(a, b)
C2 white(b, c)
C3 white(b, a)
C4 blackpath(X,Y ) :− black(X,Y )
C5 blackpath(X,Y ) :− black(X,Z), whitepath(Z, Y )
C6 whitepath(X,Y ) :− white(X,Y )
C7 whitepath(X,Y ) :− white(X,Z), blackpath(Z, Y )

Fig. 2. An Example Datalog Program

and the Claim rule is implicit in the Claims column of the goal table. The
derivation steps for Resolve and Propagate are marked in the clause table.
are marked in the

Goal Literal Parents Claims Children Status

G1 ¬blackpath(a, Y ) J13 J4, J17, J18 J1, J2 Resolved
G2 ¬black(a, Z) J1, J2 J3 J3 Resolved
G3 ¬whitepath(b, Y ) J5 J10, J11, J19, J20 J12, J13 Resolved
G4 ¬white(b, Z) J6, J7 J8, J9 J8, J9 Resolved
G5 ¬blackpath(c, Y ) J12 J15, J16 Resolved
G6 ¬black(c, Z) J16 Resolved

Fig. 3. The Goal nodes

We can now look at the termination process. The map G6.T is everywhere
empty since it has no immediate subgoals. We can therefore mark it as Closed
with G5.Unclosed undefined, and then mark G6 as Completed since G6.D is
also everywhere undefined.

The map G5.T is only defined at G6 and G5.T (G6) = {J15}. The precondi-
tions of the Close rule hold for G65 since G6.Status is Closed, G6.Unclosed is
undefined, and J15.Subgoals is empty. G5 can therefore be marked as Closed
and Completed, and G5.D is everywhere undefined, and G5.Unclosed is also
undefined.

The map G4.T is also everywhere empty since it has no subgoals, and it can
also be marked as Closed and Completed with G4.D everywhere undefined.

The map G3.T is nonempty on G4, G5, and G1 so that G3.T (G1) = {J13},
G3.T (G4) = {J7}, G3.T (G5) = {J12}. Since both G4 and G5 are closed, we
set G3.D(G1) = 3, leave G3.D undefined on other arguments, and mark G3 as
Closed.

The goal G2 has no immediate subgoals and can be marked as Completed.
The goal G1 has subgoals G2 and G3 as immediate subgoal so that G1.T (G2) =
{J2, J2} and G1.T (G3) = {J5}. The τ definition for G1 has τ(G1)(G1) = 3,
and since τ(G1)(G1) = |G1.Claims|, we can mark G1.Status as Closed, and
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Node Clause Derivation

J1 blackpath(a, Y ) :− black(a, Y ) Resolve(G1, C4)
J2 blackpath(a, Y ) :− black(a, Z), whitepath(Z, Y ) Resolve(G1, C5)
J3 black(a, b) Resolve(G2, C1)
J4 blackpath(a, b) Propagate(J3, J1)
J5 blackpath(a, Y ) :− whitepath(b, Y ) Propagate(J3, J2)
J6 whitepath(b, Y ) :− white(b, Y ) Resolve(G3, C6)
J7 whitepath(b, Y ) :− white(b, Z), blackpath(Z, Y ) Resolve(G3, C7)
J8 white(b, c) Resolve(G4, C2)
J9 white(b, a) Resolve(G4, C3)
J10 whitepath(b, c) Propagate(J8, J6)
J11 whitepath(b, a) Propagate(J9, J6)
J12 whitepath(b, Y ) :− blackpath(c, Y ) Propagate(J8, J7)
J13 whitepath(b, Y ) :− blackpath(a, Y ) Propagate(J9, J7)
J14 whitepath(b, b) Propagate(J4, J13)
J15 blackpath(c, Y ) :− black(c, Y ) Resolve(G5, C4)
J16 blackpath(c, Y ) :− black(c, Z), whitepath(Z, Y ) Resolve(G5, C5)
J17 blackpath(a, c) Propagate(J10, J5)
J18 blackpath(a, a) Propagate(J11, J5)
J19 whitepath(b, c) Propagate(J17, J13)
J20 whitepath(b, a) Propagate(J18, J13)

Fig. 4. The Clause nodes

since there are no goals with smaller indices, G1.Status can also be marked
as Completed. This is then propagated to G3, so that every goal node is now
marked as completed.

5.5 Correctness

The new abstract machine can be simulated by the abstract inference procedure,
but it is not easy to see why the termination check works. The termination check
marks a goal node as Closed when it has been completely evaluated modulo the
goal nodes with smaller indices. Each closed node also tracks its open subgoals in
g.D along with the minimal number of claims propagated from these subgoals.
The Close step ensures that a goal node is closed only when it is current with
respect to all its immediate subgoals. These subgoals can add new claims but
this has to be initiated by the addition of a claim to an open subgoal. We can
then make the following claims.

Theorem 1. Let g be a goal node with g.Status = Closed and let Pr(g)(h)
represent the number of claims propagated from an immediate subgoal h of g
in the derivation of g at the point when g.Status was last set to Closed. If a
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new claim is added to g, then for some subgoal h different from g, |h.Claims| >
Pr(g)(h).

This is because a closed goal node is fully evaluated in terms of propagating
claims from its subgoals and applying the Backchain rule to the clauses re-
sulting from the propagation. The only way a new claim can be added to g is
through a Propagate step applied to some subgoal of g other than g.

Theorem 2. When a goal node g is marked with g.Status = Closed, its evalua-
tion is complete modulo the evaluation of the goals h such that g.D(h) is defined.

This means that no new claims can be added to g unless there are new claims
(beyond the number recorded in g.D(h)) are added to some goal h such that
g.D(h) is defined. We maintain the invariant that if g.D(h) is defined, then
g.Index > h.Index and h is not closed. If we look at the subgoal relation in the
derivation of g, then the entry g.D(h) is defined for every unclosed subgoal h
of g, and g.D(h) is the minimum number of claims that have been propagated
in the derivation of g. By Theorem 1, the only way g can add a new claim is
if some immediate subgoal propagates a new claim. By induction, the only way
that a claim can be propagated to g is if a new claim is added to some unclosed
subgoal h of g, i.e., one where g.D(h) is defined. Hence, the theorem.

Theorem 3. When a goal node g is marked as completed, no further claims can
be added for it.

This is because for such a node, g.D is everywhere undefined, and hence by
Theorem 2, it is not waiting on new claims from any other nodes. In fact, such a
node can be seen as the root node of a strongly connected component (SCC) in
the evaluation graph. If every node in the strongly connected component is closed
modulo other completed nodes or other closed nodes in the strongly connected
component, then the entire component has been completely evaluated.

Note that theClose step can be interleaved with other steps in the evaluation.
It would also make sense to run the Close computation in rounds by scanning
the goals that are not marked as completed from the highest index downwards.

The implementation of the ETB Datalog engine builds an an Application
Programming Interface (API) that can be used to implement the goals. The
API includes the following operations for adding goal nodes, processing a goal
by either resolving it against the rules or through external evaluation, processing
a clause node, propagating a new claim, and closing the evaluation.

We have thus defined an abstract machine for evaluating Datalog programs
that operates in a distributed setting.

6 Conclusions

The Evidential Tool Bus (ETB) is a framework for defining distributed workflows
that construct claims supported by arguments, where some of the subclaims can
be established by external services. ETB uses a variant of Datalog as the script-
ing language for defining workflows and as the metalanguage for representing
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arguments. The main novelty of ETB Datalog is that it enhances the basic Dat-
alog language with external predicates for defining computations that invoke
external services over a distributed network. We have presented a denotational
semantics for ETB Datalog and defined an abstract machine that captures the
evaluation of programs using both internal and external predicates. This ab-
stract machine is the basis for the implementation of the Datalog engine used in
ETB.

The novel contributions of our work include

1. A powerful mechanism for external predicates that incorporates distributed
services.

2. A semantics for Datalog extended with external predicates.
3. An abstract machine that works in a distributed setting.
4. A novel termination check for the abstract machine that indicates when the

evaluation of a subgoal has been completed.

The semantic treatment of ETB Datalog given here is a step toward a richer
language for defining distributed workflows. The semantics we have given works
in a distributed setting where new goals can be added, but the evaluation is still
sequential. The body of a clause is evaluated in left-to-right order even when
there is no dependency. Since we would like to allow the definition of workflows
that exploit parallelism, we are working on extending the language to include
annotations for parallel evaluation.
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Abstract. In the recent years, several research efforts have been devoted
to developing approaches to synthesize specifications of software behav-
ior. Most of the proposed approaches addressed the inference of finite-
state abstractions. The synthesized abstractions have been integrated in
different validation scenarios, such as testing. While finite-state models
can be effectively used as models of a software component’s behavior for
certain specific purposes, they can hardly be used as full-fledged spec-
ifications. Because of their very limited expressive power, they cannot
represent some of the component behaviors and may lead to synthesiz-
ing too coarse abstractions. In this paper, we survey a set of approaches
that instead infer infinite-state abstractions, which can be used to express
richer sets of behaviors of a software component in a black-box manner.
For such approaches, we also discuss the few existing applications to
software validation. In particular, we discuss the limitations and identify
how, in principle, they can be used in different validation scenarios and
how this opens new research directions.

1 Introduction

A formal specification is a description of the behaviors of a given software ex-
pressed in a certain mathematical notation with a clear semantics. Formal speci-
fications are important and often essential for many validation activities. Exam-
ples of such activities are testing [1], where specifications can be used as oracles
to check the correctness of an implementation for a certain set of inputs, or
model checking [2], where specifications have both the role of models of software
artifacts and properties to be checked on the model itself.

In practice, the cost of producing a component’s specification is often as
high as code writing, and thus producing the component itself. Moreover, a
formal specification requires mathematical skills that may not be possessed by
developers. These are among the reasons why specifications are often absent for
real-world software components. When present, specifications are given through
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SEmpty SNonEmpty SFull

pop, pushpush push

pop pop

Fig. 1. A behavior model of a bounded stack

natural language in an informal way, that is not amenable to the automatic
validation approaches described above. In addition, no guarantee can be as-
sumed that the specification and the implementation are synchronized. Very
often, they diverge because implementations are maintained without making
the corresponding changes to the specification.

A recent branch of research activity in software engineering has been devoted
to addressing the problems due to a missing specification by proposing the au-
tomatic synthesis through the analysis of existing software. The pioneering work
described in Daikon [3] goes exactly in this direction. Most of the work involv-
ing software specification synthesis has focused on finite-state abstractions of
software behavior [4]. Finite-state abstractions may capture an important be-
havioral aspect of software components, that is, the protocol of interaction with
the component. Intuitively, an interaction protocol describes the legal sequences
of operations that are valid from the client’s point of view when the client calls
operations available through the component’s interface.

Properties of the interaction protocol typically express precedence relations.
For example, a component that represents a file requires that the file should be
open before a write operation can be performed; that is, write can only be called
after (a successful) open operation. Such properties are naturally expressible
with an automaton, or in general with a finite-state abstraction that may not
possess all the properties of an automaton. Semiautomata, that is, automata
with no final states, are typically used to express interaction protocols, since the
notion of a final state is not useful to express component behaviors.

Examples of finite-state models of software components are the ones inferred
by Adabu [5,6], which uses dynamic analysis, and Contractor [7], which uses
static analysis to derive behavior models from C programs. Figure 1 shows a
behavior model of a bounded stack as inferred by Contractor; for example,
the model describes the fact that the pop operation is not enabled in SEmpty ,
imposing a precedence relation on the legal sequences of operations on the com-
ponent, that requires at least a push operation to be called before any call of
pop.

Inferred behavior models have been used for many validation activities; ex-
amples include test case generation [8,6], integration in model checking [9], and
runtime verification [10]. However, behavior models are formalisms that capture
only a subset of the possible behaviors of the analyzed component. In partic-
ular, being finite-state machines, they must abstract away any collection-like
behavior, like LIFO or FIFO behaviors, because these cannot be represented
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with a finite-state abstraction. For this reason, finite-state machines are most of
the times models of certain behaviors exhibited by a given software, rather than
full-fledged specifications of it.

The motivation of this paper is twofold. First, we critically survey the field, fo-
cusing on techniques that infer specifications that instead consist of infinite-state
abstractions, which potentially may achieve the role of full-fledged specifications
of software components. For example, such abstractions are contracts [11] or
algebraic specifications [12,13], which potentially can capture such infinite-state
behaviors, like collection-like behaviors, that finite-state machines may represent
only in a very imprecise way, yielding very coarse abstractions.

Finally, we are interested in exploring the potential usages of inferred infinite-
state abstractions that may reveal new research directions. In fact, while several
approaches to validation that use inferred behavior models have been studied and
proposed, very few exist that use inferred infinite-state abstractions in similar
scenarios. To this aim, we first critically analyze such existing works, and then
we outline possible future work considering the existing literature where infinite-
state abstractions are considered to be present, and where an inference step could
be potentially integrated.

For the sake of clarity, hereafter we discuss some of the assumptions we make
in this paper and we describe the main terms we use. First, we refer to software
components that define abstract data types (Adt), implemented as classes. We
assume that the class only exports methods through its interface. A method
represents an operation that can be used to operate on instances of the Adt

(also called objects). Client components can only use these exported operations
to interact with a given component. We distinguish among the following kinds
of operations:

Observers : These are operations that return to the client some information
related to the state of the object upon which they are invoked. Observers
may be pure or not. A pure observer can only observe and cannot modify
the internal state of the object.

Modifiers : These are operations that change the state of the object they are
applied upon. If a class exports modifiers, the instantiated objects are said
to be mutable.

Terms, or traces, represent sequences of operations. While the two words are
often used interchangeably in formal approaches to software specification, in the
area of software testing and analysis usually a trace denotes an execution trace,
that is, an executed sequence of operations of a given implemented software
component. In this paper, for the sake of clarity, we will always refer to such
notion as execution trace.

Structure of the Paper. The paper is organized as follows. Section 2 dis-
cusses the state of the art about synthesis of infinite-state abstractions from
software components. We classify the existing approaches by the classes of in-
finite state abstractions that they can synthesize, like contracts and algebraic
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Table 1. Works surveyed on the State of the Art

Approach Ref. Specification Abstract Input Analysis

Daikon [3,14] Contract No Ex.Traces Dynamic
DySy [15] Contract No Code + Ex.Traces Dynamic + Static

Axiom Meister [16] Contract Yes Code Static
AutoInfer [17] Contract Yes Tests Dynamic
KindSpec [18] Contract Yes Code Static

Heureka [19] Algebraic Spec Yes Tests Dynamic
Adiheu [20] Algebraic Spec Yes Tests Dynamic
Sabicu [21] Algebraic Spec Yes Tests Dynamic
AbsSpec [22] Algebraic Spec Yes Code Static

Spy [23] Intensional BM Yes Tests Dynamic

specifications. Then, Section 3 identifies possible validation scenarios where such
inferred infinite-state abstractions could be used, considering existing approaches
and outlining promising research directions. Finally, Section 4 derives conclusions
of this paper.

2 Synthesis of Infinite-State Abstractions: State of the
Art

In this section, we will introduce the existing synthesis approaches that address
infinite-state abstractions. Table 1 reports the main features of the surveyed
approaches, classified mainly according to the class of infinite-state abstraction
(specification) they synthesize. Moreover, we distinguish whether the specifica-
tion is abstract (that is, expressed in terms of what a client can observe exter-
nally), what is the source artifact of the analysis, and what kind of analysis
(static or dynamic) is used to infer the specification.

The section is structured according to the kind of specification synthesized by
each of the surveyed approaches. We start by describing approaches that infer
contracts (Section 2.1), then approaches that synthesize algebraic specifications
(Section 2.2), and finally specifications based on trace assertions (Section 2.3).

2.1 Inferring Contracts

Contracts are a popular methodology to specify the behavior of software com-
ponents in general, and they have been successfully applied to infinite-state
components too. Basically, a contract [11,24] uses pre/post-conditions to specify
the behavior of each operation in isolation. The pre-condition states what has
to be true to invoke the operation (i.e., it states an obligation for the client); the
post-condition states what has to be true when the operation terminates (i.e., it
states an obligation for the object onto which the operation is applied).

There are five main approaches that implement inference of contracts for
infinite-state components:
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public class StackAr

private Object[] theArray;
private int topOfStack;

Precondition : capacity ≥ 0
Postcondition : capacity = this.theArray.length
this.topOfStack = −1
this.theArray[] elements = null
public StackAr(int capacity) {...}

Fig. 2. The contract inferred by Daikon for the StackAr constructor

– Daikon, an invariant detector that can be used to infer contracts of data
abstractions;

– DySy, which integrates dynamic analysis and symbolic execution to infer
contracts;

– Axiom Meister, which infers contracts for modifiers, expressed in terms of
observer return values, using symbolic execution;

– AutoInfer, that infers abstract postconditions of modifiers for components
written in the Eiffel language;

– KindSpec, which infers pre- and post-condition like specifications of C pro-
grams using the Matching Logic semantic framework [25].

Daikon. TheDaikon [3,14] invariant detector has been a pioneering work in the
area of specification inference. Daikon analyses the values of program variables
at specific program points as a result of test case invocations. Starting from
the results of these test case invocations, Daikon infers invariant properties
that hold at the recorded program points. For example, it may infer that the
value of variable x is always greater than or equal to 10 before a statement that
contains a division by s. An invariant holding at the entry point of an operation
represents its preconditions, while an invariant holding at exit points represents
a postcondition.

The inferred invariants predicate about program variables, including internal
fields of classes. Consider, for example, a reference implementation of a bounded
stack in Java, called StackAr; this Adt is typically implemented with an
array and an integer value pointing to the top of the stack. Figure 2 shows
an example of invariants inferred by Daikon, representing likely preconditions
and postconditions of a StackAr constructor which initializes it with a specific
capacity.

Daikon works by generating candidate invariants out of a rich grammar of
patterns, and then checking if they hold at specific program points. Invariants
are reported only if there is enough statistical evidence that they do not hold by
chance, and several optimizations are performed to get better results in terms of
performance and relevance of reported invariants. Such optimizations include, for
example, suppression of weaker invariants, that is, invariants that are logically
implied by other ones.
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DySy. One of the main problems with Daikon and in general of dynamic in-
variant detection is that it is hard, sometimes, to know in advance what are the
possible patterns of invariants to be detected, and so the approach could fail in
deriving interesting behaviors of the component to be analyzed. To overcome this
limitation, the DySy approach [15] integrates black box dynamic analysis with
symbolic execution, which is a white box, static analysis technique. By using
symbolic execution, DySy is able to derive operation pre- and post-conditions
based on the actual code behavior; in this sense, DySy is able to infer a method
specification without using invariant patterns. However, symbolic execution is
unable to generalize code behavior in the presence of loops or recursive opera-
tions; in this case, the approach uses some ad-hoc heuristics to support common
iterative structures.

In the case of both Daikon and DySy, there are some fundamental prob-
lems in applying specification synthesis approaches to extract contracts of data
abstractions. The main problem is that the state must be expressed in function
of some variables that represent the state of the component. In principle, the
specification of a component must be abstract, that is, implementation indepen-
dent. In other words, specifications should respect the information hiding [26]
principle. It should be expressed only in terms of the operations that are visible
at the component’s interface. Although useful for many development activities
like testing, the invariants extracted by Daikon and DySy are not abstract and
they represent code behavior expressed in terms of the component internals.

Axiom Meister. This tool [16] infers contracts from the static analysis of
.Net programs. The tool requires the developer to choose the modifier meth-
ods he wants to analyze and its related observers. The tool requires observers
to be observationally pure, i.e. they are only allowed to change the state in a
way that it is invisible to clients. Then, Axiom Meister produces an abstract
description of the modifier behavior in terms of the values returned by observer
methods. Figure 3 shows the specification inferred by Axiom Meister for the
push operation of a bounded stack.

Axiom Meister’s inference approach is based on symbolic execution of the
modifier method under analysis, which tries to explore all the possible execution
paths; in symbolic execution, for each path, there is a corresponding path condi-
tion stating the symbolic constraints required for its execution. In general, path
conditions express constraints over the data structures used to implement the
operation and its enclosing class. The tool aims at producing a specification for
an ADT and thus it has to find an abstraction of path conditions relying only
on class observers. This process produces many path specific axioms, which are
finally merged and simplified to obtain the more compact and readable specifi-
cation. The inferred specification can be either used by humans or by Spec#.

AutoInfer. The AutoInfer approach presented in [17] provides another inter-
esting approach that partially infers contracts with dynamic analysis but without
using component internals. In fact,AutoInfer expresses behavior in function of
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void push ( Object x )
r e q u i r e s s i z e ()< capac i ty ( ) otherwi se Ful lStackExcept ion
ensu re s top ( ) = x
ensu re s s i z e ( ) = old ( s i z e ( ) ) + 1
ensu re s capac i ty ( ) = old ( capac i ty ( ) )

Fig. 3. The Spec# contract inferred by Axiom Meister for the push method of a
bounded stack

observer return values. The approach targets Eiffel, an object-oriented language
that supports design by contract [11], a development methodology that focuses
on specifying the behavior of software components through contracts. The infer-
ence approach proposed by the authors uses novel dynamic inference techniques
to infer modifier postconditions. Intuitively, such postconditions are properties
that express how observers change their returned values after the invocation of
an operation1.

In particular, the approach supports the inference of two peculiar kind of
assertions in modifier postconditions:

– assertions that involve quantification, that are useful to express frame prop-
erties, like that all the elements of a collection are still present after an
operation invocation;

– assertions that involve implications, useful to identify which conditions trig-
ger a particular different behavior.

AutoInfer is based on dynamic analysis like Daikon; the test cases used
as inference base are generated by using random testing. The approach uses a
modified version of AutoTest [27], which prunes generated test cases when they
satisfy the operation preconditions. The operation preconditions are essentially
assumed to be (correctly) written by the developer.

The main limitation of the approach is that it just focuses on the inference
of postconditions of modifiers; the authors tailored the proposed inference tech-
niques to postconditions because a previous work identifies preconditions as nor-
mally well written in contract-based development approaches. For this reason,
the approach is not easily extensible to preconditions.

KindSpec. The KindSpec approach presented in [18] uses a static analy-
sis technique based on the K framework to infer specifications for KernelC

programs. In particular, the tool focuses on modeling the behavior of heap-
manipulating code. For each modifier operation, the tool finds a specification in
the form of a set of facts represented by logic implications. Figure 4 shows an
example of a specification inferred by KindSpec. An important difference with
respect to the specifications produced by other tools is that KindSpec only

1 In the Eiffel jargon, the specific language targeted by the approach, observers are
called queries and modifiers are called commands.
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isnull(s) = 1 =⇒ isnull(s’) = 1

isnull(s) = 0 ∧
size(s) = capacity(s)

=⇒ top(s) = top(s’)

isnull(s) = 0 ∧
size(s) < capacity(s)

=⇒ isnull(s’) = 0 ∧ top(s’) = x ∧ size(s’) =

size(s) + 1

Fig. 4. The contract inferred by KindSpec for the push(Stack s, Object x) function
for a bounded Stack

looks for invariants involving calls to observer functions and the return value
of the analyzed modifier. It does not produce invariants containing predicates
over the implementation details of a class. It is worth to say that, since it is not
possible to guarantee that a KernelC observer is pure, each function call in the
logic formulas is assumed to be evaluated independently from the others, under
the same initial conditions, to avoid the need of making assumptions on possible
side effects.

The inference algorithm implemented in KindSpec relies on the symbolic ex-
ecution engine of the Matching Logic verifier MatchC. This choice makes it
possible for KindSpec to statically analyze the source code instead of concrete
execution traces. The framework also ensures the correctness of the inferred spec-
ifications. In fact, they can check the inferred specifications with the MatchC

verifier. A peculiarity of this approach is that KindSpec does not reason about
the whole heap. It instead separates the different parts of the heap and its algo-
rithms can reason only about the relevant ones for a specific function.

KindSpec is interesting from a particular point of view, which serves as a
bridge from contracts to algebraic specifications for our classification of inference
approaches. It is important to emphasize that while the MatchC verifier – on
which the programs are interpreted to infer specifications – is based on alge-
braic rewrite rules, the inferred specifications themselves are not presented and
interpreted with an algebraic style. In fact, each inferred fact represents the pre-
and the post-state of the component itself explicitly, in a style that is typical of
contracts, justifying our classification. However, by using only observers, such
facts could be easily rewritten, and possibly interpreted, as conditional axioms
in a typical algebraic specification style.

2.2 Synthesis of Algebraic Specifications

When specifying components with contracts, the focus is on each operation in
isolation, and some kind of model is used to predicate about the state of the
component to be specified. This can be the value of internal variables, as in the
case of Daikon, or the return value of observers, like in the case of AutoIn-

fer. Both, however, have pitfalls. The former case leads to a violation of the
information hiding principle, since the specification ends up referring to imple-
mentation details that should instead remain hidden. The latter instead assumes
that enough observers are available to support the effect of any other operation.
A different point of view is adopted in the case of algebraic specifications, where
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∀x : Stack , c : Integer , e : Object |
pop.state(push.state(x, e)) = x
size.retval (Stack(c)) = 0
size.retval (push.state(x, e)) = size.retval (x) + 1
top.retval (push.state(x, e)) = e
contains.retval (Stack(c), e) = false
contains.retval (push(x, e), e) = true

Fig. 5. An algebraic specification of an unbounded Stack as inferred by Heureka

the focus is on the whole component to be specified, and the behavior of opera-
tions is specified implicitly (and not explicitly) through algebraic axioms.

Each axiom in an algebraic specification is an equation that prescribes when
two different sequences of operations, for a certain state and for certain param-
eters, are equal. The interpretation of this equality depends on the semantics
of the algebraic specifications; for example, the semantics may impose that the
sequences of operations are equivalent in the sense that they will expose the
same observable behavior to the component clients.

Several approaches have been investigated to synthesize specifications that
fall in the area of algebraic specification. The main ones are surveyed below.

Heureka. Heureka [19] is the main existing approach that infers algebraic
specifications. Heureka explicitly targets Java classes and uses dynamic anal-
ysis. Furthermore, Heureka uses a particular semantics for algebraic axioms,
called behavioral or hidden semantics [28], which is based on the concept of
behavioral equivalence. Intuitively, a behavioral equivalence relation clusters ele-
ments of the algebra which cannot be distinguished by any possible sequence of
operations.

Figure 5 shows an algebraic specification of an unbounded stack as inferred
by Heureka. Because the synthesis approach targets Java, each method is
potentially modeled with two operations: i) an operation modeling how state is
changed, if the method is not pure – the operation is denoted with the .state
suffix; ii) an operation modeling the return value of the method, if this is not
void – the operation is denoted with the .retval suffix. This is a typical choice
when modeling classes of object-oriented languages with algebraic specifications.

The technique operates with a fully black-box approach; the input consists
of a class’ public interface and a set of actual values for method parameters,
called instance pool. Heureka starts by generating terms, that is, sequences of
operations, and then groups them by checking if they are behaviorally equiva-
lent. Behavioral equivalence is in general undecidable, so the tool checks it up
to a certain maximum depth of contexts. Once equivalent terms have been de-
tected, the tools tries to generalize them by introducing universally quantified
variables, obtaining candidate axioms. Axioms are then tested and reported if
no counterexample is found.

Heureka has been evaluated against implementations of data abstractions
mainly from the Java Development Kit (Jdk).
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Adiheu. Another work that infers algebraic specifications is Adiheu [20]. The
approach uses behavior models to improve the inference process of Heureka.
Essentially, behavior models are used to reduce the checks needed to establish
if two terms are behaviorally equivalent. In the case of Adiheu, the finite-state
abstraction of the component is used as an intermediate model that is easier
to synthesize, but whose synthesis dramatically improves the performance of
the algebraic specification synthesizer of Heureka. The approach reduces the
needed number of method invocations for the component under analysis from
50% to almost one order of magnitude.

Sabicu. Sabicu [21] proposed an approach to infer algebraic specification sim-
ilar to Heureka, but supporting also the inference of conditional algebraic ax-
ioms. Compared to Heureka, it is less general in the sense that the structure of
possible axiom is derived from predefined templates, not from the generalization
of equations classified by behavioral equivalence. Such predefined patterns may
be enriched with conditional extensions, that represent specific conditions for
the axiom to be applied. For example, consider the contains method of the stack
example; then, the following axiom can be inferred by Sabicu:

∀x : Stack , e, f : Object | contains.retval (push.state(x, e), f) = true if e = f
else contains.retval (x, f)

The axiom expresses the fact that if contains is called after a push, it returns
true if the parameter value for both methods is the same; otherwise, it returns
the return value of contains called on the rest of the stack.

Another important aspect of Sabicu is that it keeps track of a statistical
metric of axioms, that is, the number of instances that satisfy the axiom itself.
Thus, it not only derives common properties, that is, properties that hold for
every possible instance of an Adt, but also special axioms that hold only for
a subset of the tested instances. This aspect is useful to derive axioms whose
holding conditions are too complex and not supported by the inference patterns
of Sabicu, but that could be potentially derived manually.

AbsSpec. AbsSpec [22] is a tool to automatically infer high level, property-
oriented specifications in the form of algebraic equations for Curry, a lazy func-
tional logic programming language. These features of Curry require a careful
definition of program semantics. The nature of the language requires different
equality relations to be defined in order to support features like free variables in
formulas.

Like other algebraic specification recovery tools, AbsSpec produces specifica-
tions in the form of sets of equations relating (nested) operation calls that have
the same behavior. AbsSpec is based on a white box static inference mechanism
that is guaranteed to generate correct specifications. The inference technique is
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data Stack a = S [ a ]

new : : Stack a
isEmpty : : Queue a −> Bool
push : : a −> Stack a −> Stack a
pop : : Stack a −> Stack a
top : : Stack a −> a

−− Inferred a l g e b ra ic s p e c i f i c a t i on
−− contex tua l equ iva lence
( pop ( push x ( pop y ) ) ) = (pop ( pop ( push x y ) ) )
( top ( push x ( push y z ) ) ) = ( top ( push x ( pop ( push y z ) ) ) )
( pop ( push x ( pop ( pop y ) ) ) ) = (pop ( pop ( pop ( push x y ) ) ) )
( pop ( push x ( pop ( push y z ) ) ) ) = (pop ( pop ( push y ( push x z ) ) ) )
( pop ( push x ( pop ( push y z ) ) ) ) = (pop ( pop ( push x ( push y z ) ) ) )
( top ( push x1 ( push x3 ( push x2 x4 ) ) ) ) =

( top ( push x1 ( push x2 ( push x3 x4 ) ) ) )

−− computed r e su l t equ iva lence
( top ( push x new) ) = x

Fig. 6. A two-sided queue algebraic specification inferred by AbsSpec

based on an abstract semantics for the Curry language: a condensed goal-
independent fix-point semantics that has been specifically designed to model the
small-step behavior of rewriting [29] for logic functional programming languages.

The completeness of the inferred specifications depends on the analysis bounds
in term of trace length and analyzed functions the user decides to set. The tool
is guaranteed to infer correct and complete specifications within these bounds.

Figure 6 shows the inferred algebraic specification for a stack. For the example
we selected to consider the push, pop, top, and isEmpty functions. The inferred
algebraic specification includes two different kinds of logic formulas. The first set
of equations uses the contextual equivalence, which checks whether two terms
are equal within any context. The last formula instead uses the computed result
equivalence relation, in which all the possible outcomes for the left side equals
to the results for the right side. The latter is the usual equality relation for
functional languages.

2.3 A Synthesis Approach Based on Trace Assertions

Algebraic specifications are useful to infer some interesting properties of oper-
ation interaction (like idempotent and equivalent traces), but in some cases it
is hard to use them as a specification language. In some cases, algebraic spec-
ifications require hidden functions, that is, operations that are used only for
specification purposes and that are not exposed to the clients to be accessible.

For many reasons, the use of hidden functions has been criticized as a prob-
lem with respect to information hiding, and some authors have considered this
necessity of algebraic specifications as a violation of the principle (see for exam-
ple [30] and also some early work on software specification [31]). In fact, they
may convey design and implementation decisions.

Obviously, this problem also hinders the capability of algebraic specifications
to be inferred in the case of components that would require hidden functions.
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Canonical Traces : Stack(c).pushN (di) | N ≤ c

operation Pattern Equivalence

t.pop() t = s.push(d) s

t.push(e) t = Stack(c).pushc(di) t

t.capacity() : c t = Stack(c).s t

t.size() : 0 t = Stack(c) t

t.size() : k t = Stack(c).pushk(di) t

t.top() : d t = s.push(d) t

t.contains(e) : true t = s.push(e).q t

t.contains(e) : false t = Stack (c).pushc(di) | di �= e t

Fig. 7. A Tam specification of a bounded stack

Hidden functions, in general, encapsulate an abstract state that depends on the
component behavior itself.

The trace assertion method (Tam) [32,30] is a specification formalism and
notation introduced to deal with the problems of information hiding violation
in algebraic specifications. A particular set of traces, called canonical traces, is
chosen to uniquely identify the state of the component, and assertions (that is,
predicates) on canonical traces are used to the behavior of operations.

In Tam, an operation is specified in a tabular notation which maps a given
pattern in the trace to the behavior of the operation. For this reason, equations
describing the behavior of operations are explicit, in the sense that they explicitly
describe their behavior in terms of the canonical trace model.

Figure 7 shows the Tam specification of a stack with a tabular notation. By
allowing arbitrary predicates to specify the structure of traces, Tam solves the
problem of hidden functions.

We are not aware of published work that directly targets trace assertions as a
specification formalism for synthesized specifications. We have instead developed
the Spy approach [23], which uses a closely related method to model the state
of an infinite-state data abstraction.

Spy. Spy [23] is a specification synthesis method that targets Java classes like
Heureka, but it uses a different class of target specifications. Spy synthesizes
so-called intensional behavior models. As we discussed briefly in the introduction,
a behavior model is a finite-state abstraction where each transition represents a
modifier invocation and the states describe, with a certain level of abstraction,
observer return value in a particular state. An intensional behavior model is a
generalization of a particular kind of behavior model, called behavioral equiva-
lence model (Bem), where each state represents a class of behaviorally equivalent
objects, and it represents a subset of all the possible behaviors of the compo-
nent (e.g., for a subset of possible parameters for methods, or for terms up to
a certain length). An intensional behavior model generalizes a Bem by using an
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NAC L R

1: Stack

Stack

push(π)

1: Stack
capacity()= σ1

size()= σ2

top()= σ3

contains(θi)= σ4

CT= σCT

1: Stack
capacity()= σ1

size()= σ2

top()= σ3

contains(θi)= σi
4

CT= σCT

Stack
capacity()= σ1

size()= σ2 + 1
top()= π

contains(θi)= (θi = π ⇒ true : σi
4)

CT= append(σCT , push(π))

push(π)

AC : σ2 < σ1

(a) Push Rule

Fig. 8. An intensional behavior model rule describing the behavior of a push operation
in a non-full bounded Stack

generative approach, similar to a graph grammar: each operation is described by
a rule which describes how new states, and new transitions, can be added to an
existing Bem to explain new behaviors. The generalization is possible because
each state is uniquely identified by a canonical trace, as in Tam.

Figure 8 shows a rule describing the behavior of the push operation of a stack.
Essentially, it describes how a new state on a Bem can be generated after the
invocation of a push operation. First, the rule describes how the observer return
values change – that is, size is incremented by 1 and top returns the inserted
element; second, the rule describes the value of the new canonical trace for the
state by appending the last operation to the previous canonical trace.

Spy first infers a Bem from the dynamic analysis of a Java class, as in
Heureka. Essentially, it has three steps:

– for a user-specified instance pool, it generates terms up to a certain length
and classifies them by behavioral equivalence, generating a Bem;

– then, Spy uses heuristics based on a metric for object distance to identify a
candidate set of canonical traces for an inferred Bem;

– finally, a generalization step uses invariant detection (à la Daikon) to de-
tect both trace assertions describing the behavior of modifiers and other
invariants describing the behavior of observers; such invariants are used to
generalize Bems to intensional behavior models.

The use of trace assertions, essentially, makes Spy able to infer specifications
where methods like Heureka would explicitly require hidden functions.

3 Use of Inferred Specifications for Validation

In the introduction of this paper we discussed how inferred specifications may
play a role beyond specification recovery and documentation improvement. We
mentioned, in particular, their use in software validation. Hereafter we first sur-
vey and discuss existing work that uses inferred infinite-state models for valida-
tion purposes (Section 3.1). Then we outline some possible research directions
(Section 3.2).
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3.1 Existing Approaches

Hereafter, we explore the related work that uses the results of inference of
infinite-state abstractions to perform different kinds of validation – either of
the inferred specifications themselves or of the artifacts under analysis. Existing
work in this area is reviewed below for the classes of specification we identified
in this paper.

Contracts. Most existing validation approaches that use inferred infinite-state
specifications involve contracts. A number of such techniques embed contract
inference in more complex workflow that includes static analysis and testing.
The use of Daikon, in this context, has been pretty intense [33]. A full survey
of all the usages of Daikon is outside the scope of this paper, mainly because the
contracts inferred by Daikon are in general not abstract, that is, they normally
express pre- and post-conditions in term of a class’ internal representation.

A notable example is provided by DSD-Crasher [34], which combines dy-
namic contract inference, static code analysis, and testing. The first phase of
the approach relies on Daikon for specification inference. In this context, the
inferred specification acts as an oracle of the intended program behavior. The
next phases of DSD-Crasher focus on detection of possible bugs, which is
performed in two separate steps. First, static analysis is used to find counterex-
amples that possibly violate the inferred contracts. Second, testing is performed
to confirm that the issues found with static analysis are actually bugs. Both
steps are important because static analysis may return an over-approximated
set of issues containing some bugs that are not reachable in real executions.

A research approach that uses abstract contract inference for bug finding is
Stateful Testing [35], which is based upon AutoInfer-synthesized Eiffel

contracts. By using Stateful Testing it is possible to produce a suitable test
suite that is both able to uncover bugs in the code and that can lead to the
inference of more accurate contracts. The approach starts from the AutoTest

random test case generation; the initial test suite is then improved by leveraging
the contracts inferred with AutoInfer. The underlying hypothesis of the ap-
proach is that the initial test suite, which is generated randomly, likely misses to
cover some behavior of the component under test. Thus, it is desirable to enrich
such initial test suite to cover more behaviors and obtain a more complete test
suite. Inferred contracts indeed provide an effective way to enhance a test suite.
Stateful Testing leverages the information encoded in the inferred contracts
to find test cases that violate their preconditions and postconditions. Adding
these new test cases improves the number of faults that it can expose and thus,
in the end, likely leads to the inference of more precise contracts.

Algebraic Specifications. Inference approaches like Heureka [19], [36], or
Spy [23] interleave automated test generation with specification inference. For
example, Heureka uses test generation also after algebraic axiom generation to
prune invalid axioms generated by the generalization phase. In [36] the authors
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propose an iterative approach where testing and specification inference are mu-
tually enhanced by each other. Essentially, the approach starts from an initial
set of tests that guide specification inference. Then such specifications are used
to guide the automatic generation of new tests. In the initial iterations, such
approach is very likely to generate test cases that violate the previously inferred
specifications. The violating tests might be exercising either new program be-
haviors or exposing some fault that was not exercised in initial iterations of the
approach. The technique has been implemented by considering both contracts
as inferred by Daikon, and algebraic specifications inferred with a mechanism
that is closely related to the one of Sabicu.

Through testing, it is also possible to provide an empirical comparison of
the quality of inferred specifications by different methods. For example, the
experimental validation of Spy against Heureka [23] has been performed by
generating test cases and using the component under analysis as an oracle against
the prediction of both inferred specifications, to compute the numbers of correct,
wrong, or undetermined predictions.

Comparing inferred specifications is also the subject of [37]. This paper pro-
poses a technique to automatically check the mutual consistency of two different
infinite-state abstractions, that is, algebraic specifications and intensional be-
havior models of the same software component. The approach reduces the con-
sistency problem to model checking. The evaluation considers (and simulates)
typical situations that may arise in the context of specification inference. For
example, different inference bases may get different (and inconsistent) behavior
predicted by the two different inferred specifications; the approach is able to de-
rive such inconsistencies that may potentially arise in the context of specification
inference.

3.2 Potential Future Research Directions

The works analyzed so far demonstrate that specification inference can be the
basis for interesting validation activities. Hereafter, we briefly analyze potentially
interesting research directions that can be further. To this aim, we briefly discuss
examples of existing literature that use non-inferred infinite state abstractions,
and we discuss how inferred specifications could play a role. We explore two areas
of possible applications: testing and debugging, and validation in the so-called
open world.

Testing and Debugging. Testing and debugging techniques can get significant
improvements in their effectiveness when accurate specifications are available.
For example, specifications may act as oracles of the intended behavior of a
piece of code. Testing tools can rely on this information to discriminate between
the expected and actual behavior of the code under analysis.

Many existing works use contracts to enable the automatic generation of test
cases that try to find input values violating them. For example, Eiffel natively
supports design by contract, and the research community developed several tech-
niques to leverage such specification for automatic test case generation. These
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approaches rely on contracts as oracles to drive the search performed by ran-
dom testing techniques [27] or evolutionary algorithms [38]. These approaches
explore the input spaces trying to find test cases that violate the precondition
of a method, or that satisfy the precondition but violate the postcondition.

Astoot [39] uses algebraic specifications and term rewriting to automatically
generate test cases for object-oriented software. The tool produces test cases to
ensure the equivalence of all the sequence of operations that should bring an ob-
ject in a given abstract state. It generates different sequences of operations and
the assertions on the value returned by observer methods needed to check that
the object is in the right abstract state. The presence of specifications is also
useful to optimize an existing test suite.Rostra [40] relies on algebraic specifica-
tions to minimize the number of test cases contained in a test suite. Minimization
is performed by eliminating redundant test cases, i.e. the test cases that cover
the same abstract states, and removing the ones dealing with equivalent objects.

The aforementioned approaches work in the presence of an existing speci-
fication. Since very often in practice specifications are missing, incomplete, or
unreliable, inference techniques can help to fill this gap. However, existing meth-
ods that apply to human-produced specifications cannot be simply transferred
as they are to inferred specifications. The latter, in fact, reflect the actual be-
havior of observed code, plus generalizations; they do not express, per se, the
intended program behavior. To enable application of approaches like the ones we
reviewed above, one should first inspect the extracted specifications to ensure
that they actually reflect the intended component behavior. This inspection can
be non-trivial for infinite-state abstractions.

A different approach views specification inference and validation as integrated
steps that mutually influence each other. In fact, it is also possible to envision a
feedback loop in which specifications are built starting from existing test cases
and, at the same time, they are used to construct new relevant test cases, reaching
a point where the likelihood of finding new mismatching test cases from the
implementation and the specification is relatively low. This approach has been
explored by Stateful Testing and can be traced back to the pioneering work
on finite-state abstraction learning and testing approach called L∗ [41]. If one
applies such a technique to a reference implementation, then the specification is
likely to capture the intended behavior and can be used, for example, for precise
regression testing or even for program verification.

Service-Oriented Architectures and Open-World Software. Inference of
infinite-state abstractions may play a relevant role in the context of modern
software architectures, like service-oriented architectures, living in the so-called
open world [42]. Such applications, in fact, are composed by using third-party
components or services on which the developer has no control. Composition may
even occur dynamically, at run time. In such contexts, the value of an inferred
specification is particularly critical, since a service client has no possibility to
inspect the implementation of a service.

The work by Bianculli et. al. [43] uses infinite-state abstractions in the context
of a service-oriented environment. Specifically, algebraic specifications are used
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to monitor the behavior of a stateful service, like a typical shopping cart used by
most e-commerce Web applications. The proposed approach uses aspect-oriented
programming [44] to monitor a BPEL service and the operations that are in-
voked on it. An algebraic specification interpreter (either the Heureka [45] or
CafeOBJ [46] one) is used to evaluate the monitored terms and check it against
the observed operation result. In this work, the specification is assumed to be pro-
vided. However, this assumption may be irrealistic, considering the current state
of the practice in the specification of service-oriented applications. Although a
specification (both for functional and non-functional aspects) should in princi-
ple be available to support service-level agreement between service providers and
users, in practice descriptions are informal and compliance with their evolving
implementation may not be ensured.

Existing inference techniques may not be straightforwardly applied in this
context. For example, the techniques for algebraic specifications, like Heureka,
are computationally expensive and the number of method invocations required
to infer a specification is relatively high. If these method invocations have to
be applied to an existing service, they would negatively affect non-functional
properties of the service to be analyzed. Furthermore, it can be unreasonable to
expect each client should perform analysis on the same exposed service to obtain
the specification. Instead, one should perhaps envision specific discovery services
and mechanisms to perform specification inference. In addition, inference should
apply to both functional and non-functional interface properties.

4 Conclusions

Infinite-state abstractions can provide very precise descriptions of behaviors that
finite-state machines would instead ignore. However, it is hard to produce them
and keep them consistent with implementations. Thus they are seldom used in
the practice of software development. In this paper, we surveyed the research
literature on specification inference for infinite-state abstractions, focusing in
particular on two existing classes: pre-/post-condition based contracts and al-
gebraic specifications. Furthermore, we outlined interesting validation scenarios
where an inference step can play an important role, extending the applicability
of existing work. Although very promising initial work has been focusing on the
interplay between specification inference and validation, more research is needed
to make it applicable and to pave the way for use of infinite-state abstractions
in the practice of software engineering.
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Abstract. This paper introduces behavioral rewrite systems, where
rewriting is used to evaluate experiments, and behavioral productivity,
which says that each experiment can be fully evaluated, and investigates
some of their properties. First, it is shown that, in the case of (infinite)
streams, behavioral productivity generalizes and may bring to a more
basic rewriting setting the existing notion of stream productivity defined
in the context of infinite rewriting and lazy strategies; some arguments
are given that in some cases one may prefer the behavioral approach.
Second, a behavioral productivity criterion is given, which reduces the
problem to conventional term rewrite system termination, so that one
can use off-the-shelf termination tools and techniques for checking be-
havioral productivity in general, not only for streams. Finally, behavioral
productivity is shown to be equivalent to a proof-theoretic (rather than
model-theoretic) notion of behavioral well-specifiedness, and its difficulty
in the arithmetic hierarchy is shown to be Π0

2 -complete. All new concepts
are exemplified over streams, infinite binary trees, and processes.

1 Introduction

Behavioral abstraction, or the process of understanding how a system behaves
under a given set of relevant observations or experiments, is a fundamental prob-
lem in formal methods: like information hiding, behavioral abstraction provides
the capability to abstract away from internal implementation details to better
capture and reason about the actual system behavior.

Behavioral equivalence, also informally called indistinguishability under exper-
iments in the literature [18, 13, 2, 19], is an important example of behavioral
abstraction. CafeOBJ [4], an executable specification language developed under
the leadership and vision of Kokichi Futatsugi, was one of the first systems that
provided explicit support for specifying and verifying behavioral equivalence.

We briefly explain behavioral equivalence using a very simple example. The
two (infinite) processes represented in Figure 1 can be behaviorally specified
by the following terminating term rewriting system R (behavioral specifications
typically use equations, but we here tacitly use rewriting instead):

S. Iida, J. Meseguer, and K. Ogata (Eds.): Futatsugi Festschrift, LNCS 8373, pp. 296–314, 2014.
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a/0 b/1 s0/0 s1/1 s2/0 s3/1 . . .

Fig. 1. Two behavioraly equivalent processes

out(a)→ 0 out(b)→ 1 next(a)→ b next(b)→ a

out(si)→ i mod 2 next(si)→ si+1

Each state has an output value, represented in the figure by a pair state/output.
The output is modeled by the operation out(state) and the transitions are mod-
eled by the operation next(state). We can observe that the states a and s0 are
behaviorally indistinguishable by experimenting with them:

1. We first check if the output values for the two states are equal:
out(a)

∗−→R 0 and out(s0)
∗−→R 0.

2. We check the equality of the output values after one transition:
out(next(a))

∗−→R 1 and out(next(s0))
∗−→R 1.

3. We check the equality of the output values after two transitions:
out(next2(a))

∗−→R 0 and out(next2(s0))
∗−→R 0. And so on.

So, for each experiment out(next i(∗)) respectively applied on the two states, we

obtain out(next i(a))
∗−→R v and out(next i(s0))

∗−→R v for certain v ∈ {0, 1} and
thus conclude that a and s0 are indistinguishable under experiments. Obviously,
a and s1 are distinguishable under experiments (e.g., out(s1)

∗−→R 1).
Lazy rewriting is an alternative, more operational approach to study infinite-

behavior objects. The idea here is to use lazy rewriting to only extract as much
information from the infinite behavior of an object or data-structure as needed
in the given context, this way avoiding the infinite nature of the object or data-
structure. In this approach, the notion of productivity [5, 10, 24] plays a crucial
rule. It captures the intuition of unlimited progress, that is, that the term under
analysis can be continuously evaluated (or rewritten) in such a way that its
infinite behavior is uniquely determined as the limit of this evaluation process.

Both behavioral equivalence and productivity were proposed in the early
1980’s, the former by Reichel [18] and the later by Dijkstra [5]. Since then,
attracted by the benefits and elegance of each of the two approaches, there have
been many related approaches, reasoning techniques and tool prototypes pro-
posed for each of them, e.g. [2, 4, 7–10, 13, 14, 16, 17, 19, 22, 24–26, 28, 29]
among many others. However, up to now, in spite of common intuitions and
ultimate goals, these two approaches to infinite behavior have lived separate
lives. In this paper we make a first step towards bringing the two approaches
closer. To make this possible, we first introduce the general notion of a behavioral
rewrite system, and then formally define our notion of behavioral productivity
for such systems. Note that almost any two papers in the aforementioned lists
defines different variants of behavioral equivalence or productivity. We are not



298 G. Roşu and D. Lucanu

attempting to consolidate all these different variations in this paper. Instead,
our objective is to capture the essence of these important concepts in order to
highlight their relationships. We believe that our results can be adapted to each
particular approach, but this is beyond our scope here.

A behavioral rewrite system (BRS) is a term rewrite system (TRS) together
with a set of derivative operations (or observers) which are used to formally de-
fine experiments, where the rewriting relation is used to compute the results of
the experiments. The usual productivity makes sense for those TRS’s defining
infinite data structures1: R is productive for a ground term t, intended to rep-
resent an infinite data structure [[t]], if the rewriting relation →R can be used to
obtain any approximation of [[t]] starting from t. We propose behavioral productiv-
ity as another example of a behavioral abstraction: it says that each experiment
applied on t can be computed in finite time by means of ordinary rewriting. Be-
havioral productivity captures the idea that the behavior of a given term can be
gradually “produced”; since the set of experiments that need to be applied on the
term in order to potentially yield the term’s behavior is recursively enumerable,
behavioral productivity means, in fact, that each of the experiments applied on
the term can be “evaluated”, or in our rewrite context, can be rewritten to a
data term. For the above process example, R is behaviorally productive for a
state s if and only if each experiment of the form out(next i(∗)) can be rewritten
to a data value term (here 0 or 1) when applied in any state. It is easy to see
that R is behaviorally productive for all states of the two processes. However, if
we add a new state c and only the transition next(b)→ c, then we observe that
R is not behaviorally productive for c because out(next i(c)) is irreducible.

We show that for streams, behavioral productivity for BRS’s generalizes the
productivity for TRS’s in several ways: it can be defined for a larger class of
specifications, there are non-productive TRS’s for which their behavioral versions
are behaviorally productive, and it can be defined for non-ground terms as well.
Behavioral productivity plays for coinductive specifications a role which is dual
to that played by sufficient completeness for inductive specifications. We show
that if a BRS (not necessarily defining streams) is productive for a term t,
then it behaviorally well-specifies the object represented by t; moreover, under
mild conditions the two notions coincide. We also show that the problem of
saying whether a given BRS is behaviorally productive isΠ0

2 -complete. Our main
practical result in this paper is a criterion that reduces the checking of behavioral
productivity of a “coinductive” BRS to the termination of the rewriting relation
(in the usual sense) of its underlying TRS. That means that one can use off-the-
shelf termination techniques and tools developed and continuously improved by
the rewriting community (see, e.g., [12, 6]) to test for behavioral productivity.

All results reported in this paper lead us to the belief that behavioral rewrite
systems may be more suitable than term rewrite systems when we want to

1 Again, formal definitions of productivity differ from paper to paper, mixing the
conceptual notion with operational or technical limitations (e.g., requiring the terms
to only be streams, or requiring orthogonality of the TRS, or both). We drop all
those limitations here and focus on the essence of the concept.
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analyze the behavioral properties of infinite data structures/processes. We sum-
marize the arguments supporting this idea: 1) behavioral productivity is uni-
formly defined for all BRS’s , 2) a TRS can be associated with various BRS’s
and hence we can capture various definitions for the productivity of TRS’s , 3)
some anomalies like ”productive for t but does not well-specify t” are avoided,
and 4) productivity can be defined for a larger class of terms.

Section 2 introduces the notation used in the paper and recalls the definitions
of stream productivity and of behavioral specifications. Section 3 introduces be-
havioral rewrite systems and behavioral productivity. Section 4 discusses how
behavioral productivity captures stream productivity as a special instance. Two
main properties of the behavioral productivity are studied in the next two sec-
tions: Section 5 shows that the termination in the standard sense of the term
rewriting relation of a coinductive BRS yields behavioral productivity; Section 6
shows that behavioral productivity implies behavioral well-definedness and that,
under some reasonable conditions, the two notions coincide. The hardness of of
the behavioral productivity problem is studied in Section 8.

2 Background, Preliminary Notions, and Notations

A many-sorted signature (S,Σ), or just signature Σ, is a set of sorts S together
with a set Σ of operations σ : s1 × · · · × sn → s, where s1, . . . , sn, s ∈ S. We
let TΣ(X) denote the set of Σ-terms built with operation symbols in Σ and
with variables in the S-indexed set X . A Σ-context for sort s ∈ S is a Σ-term
C ∈ TΣ(X ∪ {∗ : s}) having precisely one occurrence of the special variable ∗ of
sort s; to emphasize that C is such a context we may write C[∗:s], and if t is a
term of sort s then we let C[t] denote the term obtained replacing ∗ by t in C.

Fix a set X of S-sorted variables. A Σ-rewrite rule is a triple (∀X) l → r,
where X ⊆ X is an S-indexed set of variables and l, r ∈ TΣ(X) such that l is not
a variable and each variable in r also occurs in l. We often simply write l → r
for a rewrite rule and then X is the set of the variables occurring in l. A term
rewriting system (TRS) is a pair (Σ,R), where Σ is a many-sorted signature
and R is a set of Σ-rewrite rules. The rewrite relation →R is defined as usual:
t→R t′ for t, t′ ∈ TΣ(X ) iff there exists a Σ-context C, a rule (∀X) l → r, and a

substitution θ : X → TΣ(X ) such that t = C[θ(l)] and t′ = C[θ(r)]. We let
∗−→R

denote the reflexive and transitive closure of →R, and ←R the inverse of →R.
A Σ-equation is a triple (∀X) t = t′, where X has the same meaning as that

for rewrite rules and t, t′ ∈ TΣ(X). A many-sorted equational specification is a
pair (Σ,E), where Σ is a many-sorted signature and E a set of Σ- equations.

2.1 Stream Productivity

Although there are attempts to define productivity more generally, e.g. [10], so
far productivity was mainly used for streams (or infinite lists), with lazy (infinite)
rewriting [5, 24, 7–10, 26, 28, 29]. Here we remind the reader this particular but
conventional notion of productivity. To clearly emphasize its limited scope to
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stream rewrite systems and to distinguish it from our more general notion of
behavioral productivity, we will call it stream productivity from here on. Also,
to avoid the difficult task of unifying the various definitions of streams and
productivity in the papers listed above, we adopt the least restricted definition
that we were able to find in the literature, which in our view best captures the
intuition underlying the concept originally proposed by Dijskstra in [5]. This
is the definition proposed in [10], but without the orthogonally requirement.
Orthogonality ensures unique normal forms, so well-definedness, but that seems
to be unnecessary for productivity. In our view, productivity is the capability of
producing an element of the stream on any position, not necessarily of producing
a unique such element. Adding the orthogonality restriction brings no technical
difficulty, but since some of the papers above do not require it, we find it more
appropriate to keep our notions and results as unrestricted as possible.

A stream-TRS [10] is a TRS (Σ,R) having a special sort Data for stream
elements, a sort Stream for streams, and an “implicit” operation : : Data ×
Stream → Stream that allows to regard a stream as its “head” element followed
by its “tail” stream. A stream-TRS may contain operations together with rewrite
rules defining the data and may contain operations together with rewrite rules
defining the streams of interest and desired operations on them. For instance,
the constant stream zeros := 0 : 0 : 0 : . . . containing only 0’s, the sub-stream
consisting only of the elements on odd positions of a stream, and the stream
obtained by zipping two streams can be defined by the following rewrite rules:

zeros → 0 :zeros odd(B1 :B2 :S )→ B1 :odd(S ) zip(B :S, S ′)→ B :zip(S ′, S )

where B,B1, B2 are variables of sort Data and S, S′ are variables of sort Stream.
The above TRS is non-terminating, so termination is not the right concept for
stream-TRS’s. Stream productivity aims at capturing the notion of unlimited
progress. Informally, a stream is productive iff it can be continuously evaluated
(or rewritten), element by element. Formally, a stream-TRS (Σ,R) is stream
productive [10] for the stream (ground term) s iff ProdR(s) = ∞, where the

stream production function ProdR is defined by ProdR(s) = sup{n | s ∗−→R d1 :
d2 : . . . : dn : t}, where di are data terms. In practice, to avoid non-termination,
stream productivity is typically used in combination with lazy rewriting.

2.2 Behavioral Signatures, Experiments and Behavioral Equivalence

Here we recall several folklore behavioral concepts, following for uniformity the
notation and approach in [22] but without claiming any novelty or ownership.
These concepts have been introduced under various names and notations in
earlier works by fathers of behavioral specification, such as Sannella, Tarlecki,
Wirsing, Reichel, Goguen, Futatsugi, Bidoit, Hennicker, to only mention a few.

A behavioral signature is a pair (Σ,Δ), where Σ is a signature and Δ is a
set of Σ-contexts, which we call derivatives. If δ[∗:h] ∈ Δ then the sort h is
called a hidden sort. Let H ⊆ S be the set of all hidden sorts of (Σ,Δ). The
remaining sorts in V = S −H are called data, or visible sorts. A data operation
is an operation in Σ taking and returning only visible sorts; we let Σ �V⊆ Σ
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denote the sub-signature of data sorts and operations. A Σ-sentence/-equation is
called a data sentence/equation iff it is a Σ�V -sentence/-equation. A Σ-equation
(∀X) t = u is called a hidden equation when the sort of t, u is hidden. A behavioral
(equational) specification B is a pair ((Σ,Δ), E), where (Σ,Δ) is a behavioral
signature and E is a set of Σ-equations. A Δ-experiment is a Δ-context (i.e.,
one formed only with contexts in Δ) of visible result sort. If Δ is clear, we may
write experiment for Δ-experiment and context for Δ-context.

In the case of streams, the most straightforward choice for derivatives is Δ =
{hd [∗:Stream], tl [∗:Stream]}, which is the one we will consider for our stream
examples in the rest of the paper. However, the following are also possible choices
for derivatives, as they allow to reach any element of a stream:
{hd [∗:Stream], hd(tl [∗:Stream]), tl(tl [∗:Stream])},
{hd [∗:Stream], odd [∗:Stream], even[∗:Stream]},
{hd [∗:Stream], zip(tl([∗:Stream]), S )}, {hd(tln [∗:Stream]) | n ∈ Nat}, etc.

Many examples of derivative sets are discussed in [19], there called cobases.
Given a behavioral signature (Σ,Δ), the Δ-experiments allow us to “observe”

hidden terms, and thus state and prove behavioral properties. A common behav-
ioral property is the behavioral equivalence, stating that two hidden terms are
behaviorally equivalent iff they are indistinguishable under experiments: B be-
haviorally satisfies hidden equation e, written B � e, iff B ' C[e] for each
experiment C, where C[t = u] is C[t] = C[u]. Another behavioral property is the
behavioral productivity, which is the main concept introduced and investigated
in this paper, stating that a hidden term has “producible” behaviors, that is, it
rewrites to some data element under each experiment.

3 Behavioral Rewrite Systems and Productivity

In this section we introduce our main notions in this paper and discuss them
by means of examples. Our first notion, that of a behavioral rewrite system, has
the same relationship to behavioral equational specifications as rewrite systems
have to equational specifications: they orient the equations into rewrite rules.

Definition 1. A behavioral rewrite system (BRS) B is a pair ((Σ,Δ), R),
where (Σ,Δ) is a behavioral signature and (Σ,R) is a TRS. B terminates iff
(Σ,R) terminates as a TRS, and is coinductive iff δ[f(x)] is not a normal
form for any f : s→ h in Σ −Δ and δ[∗:h] in Δ (x are variables of sort s).

Our notion of coinductive rewrite system is reminiscent of earlier beahavioral
concepts, such as “observer completeness” in [1] and “cobasis” in [21]. It is in fact
dual to the folklore notion of “inductive rewrite system”, that is, one where there
is a subset of operations called “constructors” such that f(γ(x)) is rewritable
(typically the left-hand side term of some rewrite rule) for any non-constructor
(or defined) operator f and any constructor γ; such rules guarantee that, in the
presence of termination, each non-constructor operation is fully defined in terms
of constructors. Dually, the fact that the terms δ[f(x)] in a coinductive rewrite
system are rewritable will guarantee that, in the presence of termination, each
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non-derivative operation can be fully observed (Theorem 3). We next introduce
our general notion of behavioral productivity, inspired from the more particular
but insightful notion of stream productivity [5, 10, 24]:

Definition 2. BRS B = ((Σ,Δ), R) is productive for a hidden term t iff

for each Δ-experiment C there is some (Σ�V ∪Δ)-term d such that C[t]
∗−→R d.

B is productive iff it is productive for any hidden term, and it is ground
productive iff it is productive for any ground hidden term.

Therefore, productivity for a hidden term t means that a result of apply-
ing any experiment C on t can be eventually “produced”, or in other words,
since the experiments can typically be easily enumerated, that a behavior of
t can be incrementally approximated without getting stuck on any particular
experiment. Following the duality induction/coinduction above, note that pro-
ductivity plays the dual role of sufficient completeness [15]. Indeed, sufficient
completeness implies that a term u[x] (for simplicity, suppose that u has only
one variable, x) can be shown equal to a constructor ground term under any
substitution of its variable x by a constructor ground term c, that is, all the
non-constructor operations in u[c] can be eventually eliminated; dually, produc-
tivity implies that a term t can be shown equal to a derivative term under any
derivation (or experiment) C of it, that is, all the non-derivative operations in
C[t] can be eventually eliminated. This duality between productivity and suf-
ficient completeness is technically irrelevant in this paper, therefore we do not
bother to formalize it, but we find it interesting and thus worthwhile noting.

Note that the “result” (Σ�V ∪Δ)-term d in Definition 2 can use the operations
in Δ only as Δ-experiments applied to variables of hidden sort, because no other
non-data operations are allowed in d and because the sort of d is visible. In
particular, if t has no hidden variables then d is a Σ�V -term. To avoid confusion
with “stream productivity”, we take the freedom to tacitly call our productivity
for BRS’s behavioral productivity whenever we feel that clarifies the presentation.

In the sequel we illustrate the notions above on several examples.

Example 1. (Streams) A behavioral rewrite system of bit streams (or infinite
lists) may include a sort Bit with two constants 0 and 1, a sort Stream for bit
streams with operations hd : Stream → Bit (head) and tl : Stream → Stream
(tail), and as many stream operations and defining rewriting rules as desired.
For instance, the constant stream zeros, the sub-stream on odd positions odd,
and the stream merging zip can be behaviorally defined as:

hd(zeros)→ 0

tl(zeros)→ zeros

hd(odd(S ))→ hd(S )

tl(odd(S ))→ odd(tl(tl(S )))

hd(zip(S , S ′))→ hd(S )

tl(zip(S , S ′))→ zip(S ′, tl(S ))

One can also define a stream operation returning the sub-stream on even po-
sitions as even(S ) → odd(tl(S )). The set Δ of derivatives consists of the two
contexts hd [∗:Stream] and tl [∗:Stream]. Thus, Stream is a hidden sort and Bit
is visible. The stream experiments are contexts of the form hd(tl i [∗:Stream]),
where i ≥ 0. It is not hard to check that this behavioral rewrite system for
streams is terminating, coinductive, and behaviorally productive. For instance,
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zeros is behaviorally productive because hd(tl i(zeros)) = 0 for any i > 0. Also,

odd(S ) is productive because hd(tl i(odd(S )))
∗−→ hd(tl2i(S )) for any i > 0.

Example 2. (Non-Deterministic Streams) Consider now a bit stream random,
which can produce any sequence of 0 and 1 bits. It can be defined as follows:

hd(random)→ 0 hd(random)→ 1 tl(random)→ random

This BRS terminates and is both coinductive and productive. The stream ran-
dom is not productive according to existing formal definitions of stream produc-
tivity [10], as those require, in our view unjustified, that the stream elements are
not only producible, but also unique. We believe that productivity and unique
normal forms of experiments are orthogonal issues, so we do not mix them.

Example 3. (Non-Terminating Streams) Let us extend the stream BRS in Ex-
ample 1 with a new constant ones , an operation : : Bit × Stream → Stream,
and the rewrite rules:

ones → 1 : ones hd(B : S) = B tl(B : S) = S

Obviously, the resulting BRS is not terminating. It is coinductive, however, be-
cause hd(ones)→ hd(1 : ones) and tl(ones)→ tl(1 : ones). It is also productive,

because there is some rewriting sequence hd(tl i(ones))
∗−→ 1 for each i ≥ 0; even

though a lazy strategy may be needed in order to generate such rewriting se-
quences, it is important to note that for each experiment on ones there is some
finite rewriting sequence computing it, so the BRS is productive on ones .

Example 4. (Non-Coinductive Streams) Let us replace the two defining rules of
zeros in the stream BRS in Example 1 with the following three rules:

hd(zeros)→ 0 hd(tl(zeros)) = 0 tl(tl(zeros)) = zeros

Obviously, the resulting BRS is not coinductive, because tl(zeros) is now a nor-
mal form. It remains both terminating and productive, though. However, if we
instead choose Δ to be {hd [∗:Stream], hd(tl [∗:Stream]), tl(tl [∗:Stream])}, then
the stream BRS becomes also coinductive.

Example 5. (Non-Productive Streams) All the example BRS’s above were pro-
ductive. One can also have non-productive BRS’s ; however, since Theorem 3
tells us that coinductive and terminating BRS’s are also productive, it must
be the case that any non-productive BRS must either not be coinductive or
not terminate. We show an example of each. An example of non-coinductive
non-productive BRS can be obtained from the BRS in Example 1 by drop-
ping any of its rules. The other case is trickier. Let us extend the stream
BRS in Example 1 with a stream a (constant of sort Stream) defined with
the rules hd(a) → 0 and tl(a) → odd(a). Then the resulting BRS is not
productive for a, because there is no way to “evaluate” hd(tl2(a)): indeed,
hd(tl2(a)) → hd(tl(odd(a))) → hd(odd(tl2(a))) → hd(tl2(a)) → . . .. This
rewrite sequence shows that this stream BRS is also non-terminating. Note,
however, that it is coinductive.

Let us next also discuss some non-stream examples of BRS’s .
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Example 6. (Infinite Binary Trees) A BRS defining infinite binary trees over
bits consists of a definition of bits (similar to that of streams), a sort Tree for
infinite binary trees together with the operations root : Tree → Bit (the root of
the tree), left : Tree → Tree (the left subtree), right : Tree → Tree (the right
subtree), and other operations over trees and their defining rewriting rules. Here
are several examples of such operations inspired from [25]:

root(ones)→ 1

left(ones)→ ones

right(ones)→ ones

root(¬T )→ root(T )

left(¬T )→ ¬left(T )

right(¬T )→ ¬right(T )

root(thue)→ 0

left(thue)→ thue

right(thue)→ thue + ones

root(T1 + T2 )→ root(T1 ) ⊕ root(T2 )

left(T1 + T2 )→ left(T1 ) + left(T2 )

right(T1 + T2 )→ right(T1 ) + right(T2 )

where the addition (⊕) and the negation (·) over bits are defined as usual:
0⊕B → B, 1⊕ 1→ 0, 0→ 1, 1→ 0. The set Δ of derivatives consists of three
contexts: root(∗:Tree), left(∗:Tree), and right(∗:Tree). So, the sort Tree is hidden
and the sort Bit is visible. This behavioral rewrite system for infinite binary trees
is terminating, coinductive and productive. Moreover, one can show that, for
example, the infinite binary trees thue + ones and ¬thue are indistinguishable
under Δ-experiments; indeed, the behavioral prover CIRC [16] can prove them
behaviorally equivalent, but this is beyond our scope in this paper.

Example 7. (Processes) The BRS defining the processes presented in Section 1
consists of a visible sort Int for integers, visible operations over integers and
their defining rewriting rules, a hidden sort State for the states, two hidden
constants a, b of sort State describing the states of the first process, an operation
(generalized hidden constant) s : Int → State for the states of the second process,
and two operations out : State → Int and next : State → State, which together
with their rewrite rules describe the behaviors of the two processes. The set of
derivatives Δ consists of two contexts: out(∗:State) and next(∗:State). It is easy
to see that this BRS of processes is terminating, coinductive and productive.

Example 8. (Non-Deterministic, or Non-Confluent Processes) Here is an exam-
ple of BRS which is productive but is not confluent. Add to the BRS in Example
7 one more hidden constant of sort State, say c, together with the following rules:

next(a)→ c next(c)→ a out(c)→ 1

The resulting BRS is productive (for each of a, b, c) but is not confluent (the

critical pair b ←− next(a) −→ c is not join-able). However, out(next i(b))
∗−→R vi

and out(next i(c))
∗−→R vi for some vi ∈ {0, 1}, so b and c are indistinguishable

under experiments. Hence each experiment on a is uniquely determined, in spite
of the lack of confluence of this BRS.

The various examples above showed that neither termination, nor coinduc-
tivity, nor confluence is a requirement for productivity. As shown in Section 5,
termination and coinductivity imply productivity; confluence, however, appears
to play no role for productivity.
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4 Behavioral ProductivityGeneralizes StreamProductivity

In this section we discuss the relationship between productivity in the usual sense
of stream-TRS definitions and behavioral productivity of stream BRS definitions,
essentially showing that nothing is lost wrt productivity when using the latter.
On the contrary, the BRS approach to define streams has the benefit that one can
use our termination-based technique in Theorem 3 to prove stream productivity.

We start by defining a transformation, given in Definition 3, which shows the
immediate correspondence between stream productivity and behavioral produc-
tivity, namely that the former falls as a special case of the latter for particular
behavioral rewrite systems, namely ones of streams.

Definition 3. Let R = (Σ,R) be a stream-TRS (see Section 2.1). We let B0(R)
be the BRS ((Σ ∪ {hd , tl}, {hd , tl}), R ∪ {hd(B : S)→ B, tl(B : S)→ S}).

To avoid interfering with the head/tail operations that may already be defined
and used in the original stream-TRS R, we assume that the hd/tl added to the
BRS B0(R) are fresh. To achieve this, one may need to rename the potentially
homonymous operations in R.

Theorem 1. Let R be a stream-TRS and let s be a ground stream term. Then
s

∗−→R d1 : d2 : . . . : dn : t iff hd(s)
∗−→B0 (R) d1 , . . . , hd(tl

n−1(s))
∗−→B0(R) dn,

and tln(s)
∗−→B0(R) t. Therefore, R is productive for s if and only if B0(R) is

behaviorally productive for s.

Proof. Straightforward by induction on n, noting that s
∗−→R h : t if and only if

hd(s)
∗−→B0 (R) h and tl(s)

∗−→B0 (R) t . #$
The transformation R (→ B0(R) above is so trivial that it should not be sur-

prising that B0(R), in spite of capturing stream productivity as an instance of
the more general concept of behavioral productivity, does not add much behav-
ioral value; in particular, it is not coinductive and, if the original stream-TRS R
does not terminate, B0(R) does not terminate either. Therefore, our termination-
based technique in Theorem 3 cannot be applied to prove stream productivity
if we follow this simplistic approach.

We next give a converse transformation, from stream-BRS’s to stream-TRS’s,
also trivial and also productivity preserving:

Definition 4. Let B be a stream-BRS. We let R0(B) be the stream-TRS ob-
tained from B by adding the lazy constructor2 : and the rule S → hd(S ) : tl(S ).

Like in the previous transformation, to avoid interfering with the stream con-
struct that may already be defined and used in the original stream-BRS B, we
assume that the : added to the TRS R0(B) is fresh. If one does not like the
fact that the rule added to R0(B) has a variable (S, of sort Stream) as left hand
side, then one can instantiate the rule above for the stream operations defined
in B. This rule, however, is not problematic for lazy rewriting, because it is not
applied indefinitely under the hd/tl operations that it generates.

2 We refer the reader to [10] for precise stream-TRS definitions and terminology.
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Theorem 2. Let B be a stream-BRS. Then s
∗−→R0(B) d1 : d2 : . . . : dn : t

iff hd(s)
∗−→B d1 , . . . , hd(tln−1(s))

∗−→B dn, and tln(s)
∗−→B t. Therefore, B

is behaviorally productive for a ground stream term s if and only if R0(B) is
stream productive for s.

Proof. Straightforward again, by induction on n, noting that s
∗−→R0(B) h : t if

and only if hd(s)
∗−→B h and tl(s)

∗−→B t . #$

As explained in Section 2.1, existing variants of stream-TRS and stream pro-
ductivity definitions are more restricted than ours. If one wants to adapt our
results above to those variants, then one needs to add similar restrictions to the
corresponding stream-BRSes. For example, if one strongly believes that or abso-
lutely needs that stream-TRSes must be orthogonal (in order to ensure unique
normal forms), as it is the case in several stream-TRS variants, then one can
require that same orthogonality restriction on the stream-BRS.

In addition to its theoretical significance, the transformation above may also
have practical value. Supposing that one prefers to use lazy rewriting to define
streams, one may admittedly be reluctant to use our “behavioral style” because,
even if one proves productivity using behavioral techniques (e.g., Theorem 3),
one still cannot directly use the BRS in one’s lazy rewriting framework. The
transformation B (→ R0(B) above says that all one needs to do to take advantage
of both our behavioral approach and one’s lazy rewriting framework is to define
one’s streams as a BRS B, prove it behaviorally productive, then transform it into
the stream-TRS R0(B) by adding the lazy construct and rule as in Definition 4,
and finally use it in one’s lazy rewrite framework knowing that it is productive.

While we agree that the stream-TRS definitional style is compact, elegant, and
the required lazy rewriting strategy to evaluate them is well supported by several
programming languages, we conclude this section by warning the reader that the
more conventional stream-TRS style may sometimes, rather unexpectedly, lead
to situations of what one may call accidental non-productivity. Consider, for ex-
ample, the following stream-TRS from [29]:

zeros → 0 : zeros f (x : s)→ g(f (s)) g(x : s)→ zeros

This stream-TRS follows the lazy definitional style and it is easy to see that
f (zeros) can only be the stream zeros , which is productive. However, unfor-
tunately, f (zeros) is not productive in the original sense, because f (zeros) →
f (0 :zeros)→ g(f (zeros))→∗ g2(f (zeros))→ . . . and there is no way to produce
a first 0 element. The problem here is that the lazy stream construct in the
definition of g prevents the rule from matching, because f (zeros) cannot be split
in a head and tail. Such a situation would have not appeared if one followed
a behavioral rewriting style, aiming at defining a terminating and coinductive
BRS like the following, which is immediately productive by Theorem 3:

hd(zeros)→ 0

tl(zeros)→ zeros

hd(f (s))→ hd(g(f (tl(s))))

tl(f (s))→ tl(g(f (tl(s))))

hd(g(s))→ 0

tl(g(s))→ zeros

One could argue that accidental non-productive situations like above are not an
artifact of lazy TRS rewriting as we are implying, but instead desirable. Even if
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one agrees with that, we think that one may still want to eliminate accidental
non-productivity whenever possible, preferably even through automatic equiv-
alent TRS-transformations. We believe that the behavioral rewriting approach
proposed in this paper could help with this aspect, but our results in this direc-
tion are preliminary and so are only informally discussed in Section 7.

The idea is to devise more involved (stream-semantics preserving) transfor-
mations R (→ Bi(R) (for different i indexes - i = 0 is the most basic, starting
point transformation) from stream-TRS’s into BRS’s , more precisely ones where
Bi(R) may be behaviorally productive also in situations whereR is not necessar-
ily productive. Then one can use Theorem 3 and termination tools to check the
behavioral productivity of Bi(R), and finally report back the equivalent stream-
TRS R0(Bi(R)) which is now stream productive. One can also devise different
transformations B (→ Ri(B) that make the resulting stream-TRS follow the more
common style that one uses when defining stream-TRS’s (e.g., replacing pairs
of behavioral rules hd(l) → h and tl(l) → t by lazy rules l → h : t ,etc.). Such
transformations are beyond our scope in this paper.

5 Termination and Coinductivity Imply Productivity

Productivity is an inherently difficult problem (see Section 8) and there are no
tools available that can check productivity in general. It is therefore important
to reduce the problem of checking productivity to other problems with better
tool support. In this section we give a practical criterion that reduces behavioral
productivity to termination in the standard sense, so that one can use off-the-
shelf termination tools to check productivity.

Theorem 3. Let B = ((Σ,Δ), R) be a BRS such that Σ − (Σ�V ∪Δ) contains
only operations of hidden result sort. Then B terminating and coinductive implies
B productive.

Proof. Let t be a hidden term and let C be a Δ-experiment for t. If t is a
(Σ�V ∪Δ)-term then we are done. If t contains some operation in Σ−(Σ�V ∪Δ),
which by hypothesis must be of hidden result sort, then since the result sort of
C[t] is visible it must be the case that C[t] contains a subterm of the form δ[f(u)]
for some f : s → h in (Σ�V ∪Δ), some δ[∗:h] in Δ, and some tuple term u of
tuple sort s. Hence, by coinductivity, C[t] cannot be in normal form, so it can
be rewritten to some other term of visible sort. If the resulting term contains
any operation in Σ − (Σ�V ∪Δ), then we can apply the same arguments above
and reduce it to another term of visible sort. Since R terminates, eventually the
resulting term will contain no operations in Σ − (Σ�V ∪Δ), which proves that
B is productive for t. #$

The condition “Σ− (Σ�V ∪Δ) contains only operations of hidden result sort”
in Theorem 3 is, unfortunately, necessary. Indeed, consider a streamBRS defining
a stream a with rules hd(a) → vis(a) and tl(a) → a, where vis : Stream → Bit
is some artificially included operation of visible result in Σ − (Σ�V ∪Δ). This
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BRS obviously terminates and is coinductive, but it is not productive because
hd(a) cannot be evaluated.

Fortunately, both this condition and the coinductivity of a BRS are trivial
syntactic checks. The only non-trivial hypothesis of Theorem 3 is the termina-
tion, but since all that is required is standard termination of a TRS, this theorem
allows for the use of off-the-shelf termination tools (e.,g., [12, 6]) for checking
productivity of behavioral rewrite systems. Note that this would not be possible
if we allowed rules of the form zeros → 0 : zeros ; the point here is that such
non-terminating rules are unnecessary, because they can be replaced with their
coinductive variants and then productivity can be checked using conventional
termination techniques and tools.

Theorem 3 is reminiscent of a recent result by Zantema [29] which states
that, for some restricted variants of stream rewrite systems, termination implies
well-definedness; however, well-definedness of streams is formalized as a rather
intricate, model-theoretical concept in [29], while our formalization is based on
simple proof-theoretical/operational arguments.

Finally, Theorem 3 may find applications in deciding that certain classes of
stream TRS-es are productive, provided that one can decide termination for the
corresponding BRS-es; it would be interesting to see whether one can find this
way an alternative proof for the decidability of productivity result by Endrullis
et al. [10] for the particular class of stream constant specifications.

6 Behavioral Productivity Means Well-Specified Behavior

Behavioral productivity suggests, intuitively, well-specified behavior, that is, be-
havior which is not under-specified. However, it is not immediate what it means
for a term to be well-specified in our general behavioral context. To avoid the
complications and diversity that come with particular choices of models over
behavioral signatures (see [19] for several of them), we prefer to take an opera-
tional, or proof-theoretical approach here: we say that a term t is well-specified
iff it is indistinguishable by means of experiments (and rewriting) from a clone
t′ of it using cloned operations defined the same way as the original operations.
This notion of behavioral well-specifiedness is somehow dual to constructor-
based well-definedness. In this section we give an alternative but equivalent way
to understand productivity by means of well-specified behavior.

Definition 5. Given BRS B, let B �� t = t′ denote the behavioral join equiv-
alence of B: for any experiment C there is some term u with C[t]→∗ u←∗ C[t′].

Consider the stream term zeros in Example 1. BRS STREAM behaviorally well-
specifies zeros because one can show that STREAM�� zeros = zeros ′ for any other
stream zeros ′ specified the same way as zeros (i.e., STREAM includes hd(zeros ′)→
0 and tl(zeros ′)→ zeros ′). Similarly, STREAM well-specifies the stream operation
odd in Example 1, because one can behaviorally prove STREAM�� (∀S ) odd(S ) =
odd ′(S ) for any operation odd ′ defined the same way as odd (i.e., hd(odd ′(S ))→
hd(S ) and tl(odd ′(S )) → odd ′(tl2 (S ))). The CIRC tool [16] can prove these
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properties automatically by circular coinduction. However, STREAM does not well-
specifies a constant stream a specified without any rule, because there is no way
to show that a = a′ for another constant a′. Also, it does not well-specifies a
constant stream a specified with rules hd(a) → 0 and tl(a) → odd(a), since
hd(tl2(a)) → hd(tl(odd(a))) → hd(odd(tl2(a))) → hd(tl2(a)) → . . . and simi-
larly for a clone a′ of a, with no chance to show that hd(tl2(a)) = hd(tl2(a′)).

Interestingly and perhaps intriguingly at first, the random stream in Exam-
ple 2 defined as hd(random)→ 0, hd(random)→ 1, and tl(random)→ random
is in fact well-specified. It is non-deterministic, but that is intended in its specifi-
cation; its non-determinism is not a consequence of under- or lack of specification.

As it is usually the case with “equality” relations defined in terms of joint
rewriting, one should be aware of the fact that non-confluent rewriting might
lead to equalities which are not semantically valid. For example in our case here,
since random can rewrite its bits to either 0 or 1, it is behaviorally join equivalent
to any other stream, in particular to zeros . To avoid such phenomena, we advice
the reader to only use the notion of behavioral join equivalence in combination
with term cloning, which is described below.

Definition 6. Given behavioral specification B = ((Σ,Δ), R), let B′ extend B by
adding to Σ a copy σ′ of each σ ∈ Σ−(Σ�V ∪Δ) and to R a copy l′ → r′ of each
l → r ∈ R, where l′ (resp. r′) is obtained by replacing each σ ∈ Σ − (Σ�V ∪Δ)
in l (resp. r) with σ′. B (behaviorally) well-specifies term t iff B′ �� t = t′,
where t′ is obtained by replacing each σ ∈ Σ − (Σ�V ∪Δ) in t with σ′.

Hence, B′ ”clones” each operation which is not a data operation or a deriva-
tive, as well as all the rules referring to those operations. Behavioral well-
specifiedness of a term t states that t is behaviorally equivalent to its correspond-
ing clone t′, so from a behavioral point of view, t can have only one meaning.

Theorem 4. B = ((Σ,Δ), R) productive for t implies B well-defines t. Con-
versely, if the rules in R “do not introduce” operations in Σ − (Σ�V ∪Δ), that
is, if for each (l → r) ∈ R it is the case that if l does not contain operations in
Σ− (Σ�V ∪Δ) then r does not contain operations in Σ− (Σ�V ∪Δ) either, then
B well-defines t implies B productive for t.

Proof. Suppose that B = ((Σ,Δ), R) is productive on term t and let B′ =
((Σ′, Δ), R′) and t′ be the clone extension of B and the clone of t, respectively,
as explained in Definition 6. Let C be aΔ-experiment for t. Since B is productive,
there is some (Σ�V ∪Δ)-term d such that C[t]

∗−→R d. We get C[t′] ∗−→R′ d using
the copies of the rules used in the above reduction. Hence, B ' C[t] = C[t′].
Since the experiment C is arbitrary, B′ �� t = t′.

Suppose now that B well-defines t and let B′ and t′ be the clone extension
of B and the clone of t, respectively, as explained in Definition 6. Let C be
a Δ-experiment for t. Since B well-defines t, there is some term u such that
C[t]→∗

R u and C[t′]→∗
R u. Since C[t]→∗

R u and the rules of R do not introduce
operations in Σ−(Σ�V ∪Δ), it follows that u cannot contain any clone operation
in Σ′−(Σ�V ∪Δ). For the same reason, since C[t′]→∗

R u, it follows that u cannot
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contain any operation in Σ − (Σ�V ∪Δ). The only possibility is then that u is a
(Σ�V ∪Δ)-term, which proves that B is productive for t. #$

Note that all the productivities in Section 3 follow by Theorem 4.

7 Towards More Pragmatic Transformations

We have the following situation: on the one hand, term rewriting systems are
more compact and elegant for specifying infinite data structures or systems; on
the other hand, behavioral rewrite systems are more suitable for analyzing the
behavioral well-definedness (which is implied by the behavioral productivity).
The question is whether we can have the advantages of both approaches. We
strongly believe that the answer is yes, provided that we are able to define
appropriate mechanisms to safely translate from one approach to the other. In
this section we discuss some initial steps towards such mechanisms.

The transformation R (→ B0(R) taking a stream-TRS into a BRS (see Defi-
nition 3) typically yields neither terminating nor coinductive BRS’s , so it is not
very practical. However, we have seen in Section 4 that there are non-productive
stream-TRS’s R for which we can find behavioral versions B(R) which are pro-
ductive. So, we may aim at finding transformations R (→ B(R) which avoid the
accidental non-productivity. A partial positive answer is given by the algorithm
described in [29, 28]. That algorithm works fine only on a particular subclass
of stream-TRS’s and associates a BRS B1(R) with a stream-TRS R such that
R is well-defined (has a unique model) if and only if B1(R) is terminating. The
conditions on R ensures the fact B1(R) is coinductive and, by Theorem 3, we
obtain that if B1(R) is terminating then it is productive. We may further assume
that we have a transformation R1 associating a stream-TRS R1(B) with each
coinductive and terminating stream-BRS B such that the productivity is pre-
served. Then the composition of the two transformationsR (→ R1(B1((R))) may
transform a non-productive stream-TRS into a productive one. For instance, if
R1(B) includes rules of the form f(x : s) → h : t with h and t B-normal forms
of hd(f(x : s)) and respectively tl(f(x : s)), then the stream-TRS considered in
Section 4 is transformed in

zeros → 0 : zeros f (x : s)→ 0 : zeros g(x : s)→ 0 : zeros

which is productive (the anomalies are away).
Not only the streams can be specified as TRS’s with infinite rewriting. For

instance, the infinite binary trees defined in Example 6 are specified by the fol-
lowing TRS: ones → 1/ones , ones\

¬B/T1, T2\ → B/¬T1,¬T2\
B/T1, T2\+B′/T ′′

1 , T
′
2\ → B⊕B′/T1+T ′

1, T2+T
′
2\

thue → 0/thue, thue + ones\

where / , \ : Bit Tree Tree → Tree is a constructor. Similarly, the two processes
defined in Section 1 can be specified by the rewrite rules
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a→ 0; b b→ 1; a s2i → 0; s2i+1 s2i+1 → 0; s2i+2

where ; : Int State → State is a constructor.
The algorithm defining the transformation B1 can be adapted, e.g., for trees

or for processes. Like for streams, only a subclass of tree-TRS’s or process-TRS’s
can be transformed with such an algorithm; these subclasses can be defined by
adapting the conditions from Definition 1 in [29]. Unfortunately, a transforma-
tion which can be applied in the general case may be hard or impossible to
define. The main reason is given by the fact that it is hard or impossible to for-
mally state at this level of generality what it means for a BRS to be a “correct
behavioral version” of a given TRS.

We suggest the following methodology in order to have both the compactness
and the elegance of the TRS definitional style, as well as the behavioral well-
definedness/productivity for a given class of specifications:

1. formally define when a BRS is a correct behavioral version (e.g., specifies
the same data structure or system) of a given TRS from your class;

2. define a transformation B which associate a BRS B(R) with a given TRS R
from your class and prove that B(R) is a correct version of R;

3. when checking if a given TRS R is behaviorally productive, show that B(R)
is coinductive and terminating;

4. eventually, define a transformation R which associate a TRS with each coin-
ductive and terminating TRS in order to have a way to transform non-
productive TRS’s into productive ones.

8 Behavioral Productivity Is a Π0
2 -Complete Problem

Behavioral equivalence is known to be a Π0
2 -complete problem, both for streams

[20] and in general [3]. Also, a series of recent results show that many rewriting
problems, including termination and stream productivity, are Π0

2 -complete [9, 7,
26, 11]. Here we show that the behavioral productivity problem is no exception.

Π0
2 is the class, or degree, in the arithmetic hierarchy consisting of predicates

π(z) of the form (∀x)(∃y) r(x, y, z), where r is a recursive (or decidable) pred-
icate and x, y, z range over natural numbers (or, equivalently, over recursively
enumerable domains). Π0

2 contains predicates which are strictly harder than
recursively enumerable or co-recursively enumerable. A canonical Π0

2 -complete
problem is Totality(M) := (∀x)(∃n) Stop(x, n,M), asking whether compu-
tational device (Turing machine, program, rewrite system, etc.) M stops on all
its inputs; here Stop(x, n,M) is the recursive predicate saying that machine M
stops in at most n steps on input x. The reader is referred to [23] for more details
on the arithmetic hierarchy and the class Π0

2 .
To see why, for example, the terminating problem for a rewrite system is Π0

2 -
complete [9, 26], consider TRS’s computing r.e. functions (see, e.g., Section 3.2
in Terese book [27]) instead of Turing machines and interpret Stop(x, n,M) by
”the TRS M finds in at most n steps” all normal forms of the term x; then
Totality becomes exactly the terminating problem for TRS’s .
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Theorem 5. The behavioral productivity problem is Π0
2 -complete.

Proof. We first show the membership to the class Π0
2 . Let B = ((Σ,Δ), R) be

a BRS and let t be a hidden term. The predicate Search(t
?−→u, n,R), telling

that there is a reduction t
∗−→R u of length at most n, is recursive. The set of

(Σ�V ∪Δ)-terms d is r.e. and therefore the predicate (∃d)C[t]
∗−→R d is equivalent

to (∃〈n, d〉)Search(C[t]
?−→d, n,R). Then the productivity problem is equivalent

to (∀C)(∃〈n, d〉)Search(C[t]
?−→d, n,R).

The Π0
2 -hardness of the behavioral productivity problem over behavioral

rewrite systems is proved using the reduction given by the transformation R (→
B0(R), defined over stream-TRS’s in Section 4: The productivity problem for
stream-TRS’s is Π0

2 -hard [9] and this problem is reduced to the productivity
problem for the stream behavioral specifications by Theorem 1. We can now
conclude with the main result. #$

9 Conclusion

This paper investigates the role of term rewriting in behavioral reasoning. The
notion of term rewriting system is extended to that of behavioral rewrite system,
and a proper notion of productivity, called behavioral productivity, is given for
the new systems. Various aspects of the new notion are largely exemplified on
streams, infinite binary trees and processes. It is shown that behavioral produc-
tivity plays a similar role for coinductive specifications to that played by sufficient
completeness for inductive specifications. Behavioral productivity generalizes the
existing notion of productivity defined over stream rewriting systems. Two main
properties of the proposed behavioral approach are proved (under mild condi-
tions): termination yields behavioral productivity, and behavioral productivity is
equivalent to behavioral well-specification. The former property allows us to use
the existing tools for rewrite termination [12, 6] for checking behavioral produc-
tivity. It was also shown that behavioral productivity has the same complexity
as many other rewriting-related problems, namely it is Π0

2 -complete.
Even if behavioral productivity is defined for behavioral rewrite systems, it

can be extended to term rewrite systems by means of algorithms similar to that
described in [29], which associate behavioral versions to term rewrite systems.
Finding such algorithms for more general cases than that of streams is one of
the future work directions.

Productivity was defined for the first time for streams [5]. Then it was ex-
tended for infinite data structures used in functional programming [24]. See,
e.g., [8] for a review of the main approaches dealing with productivity. Recently,
productivity was intensively studied in the context of term rewriting systems
[10, 26]. Behavioral specifications were first introduced in [18]. Then behav-
ioral reasoning was intensively studied in different algebraic/logic frameworks
[13, 2, 4, 19, 17, 14]. The behavioral rewrite systems introduced in this paper
are an instance of the parametric definition given in [22].
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tool based on circular coinduction. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.)
CALCO 2009. LNCS, vol. 5728, pp. 433–442. Springer, Heidelberg (2009)
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Abstract. Functional logic programming languages combine the most
important features of functional programming languages and logic pro-
gramming languages. Functional logic programming applied to theMaude
specification language would replace the functional viewpoint by an equa-
tional viewpoint while retaining the logic features. This paper tries to
bridge the gap between functional logic languages and the current imple-
mentation of narrowing as symbolic reachability in Maude. It illustrates
how many features available in modern functional logic languages are
easily definable and simulated in Maude but also shows how Maude goes
beyond standard practices in the functional logic area by using, e.g. equa-
tional properties such as associativity and commutativity or order-sorted
information. As a practical application we use the Missionaries and Can-
nibals equational logic program given by Goguen and Meseguer for Eqlog
in the eighties.

1 Introduction

Functional logic programming languages combine the most important features
of functional programming languages such as Haskell and logic programming lan-
guages such as Prolog. From the functional paradigm they borrow algebraic data
types, advanced typing, evaluation strategies, and higher-order functions among
other features; and from the logic paradigm they borrow logical variables, com-
puting with partial information, constraint solving, and nondeterministic search
for solutions among other features. Functional logic programming in the Maude
specification language combines logical variables, computing with partial infor-
mation, and constraint solving with reasoning modulo equational properties,
advanced data types, order-sorted typing, efficient equational evaluation, dis-
tinction between concurrent and functional parts, and parameterised modules.

The Eqlog programming language [22] developed by Goguen and Meseguer in
the eighties was a first attempt to combine both equational programming with
logic programming. Eqlog unified equational programming and Horn-logic pro-
gramming into one paradigm. Its logic design task was to embed order-sorted
equational logic and Horn logic without equality into a suitable Horn logic with
equality [23]. During the eighties, also the japanese Fifth Generation Computer
System project started and it is claimed that failed because of the choice of
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concurrent constraint logic programming as the bridge between the parallel com-
puter and the programming language, but probably it failed because most of the
appropriate technology was missing. Many researchers in the functional logic pro-
gramming area (see [39,21,11,33,24]) have tried, since the eighties, to combine
the best features of both paradigms into a concurrent constraint functional logic
programming paradigm and many possibilities have been explored (see [24,25]
for a survey). Nowadays there is a remarkable body of programming languages
and tools in the functional logic area. Maude with logic features may easily be
an excellent choice in the near future for an effective and efficient concurrent
constraint functional logic programming language, in the spirit of the original
japanese Fifth Generation Computer System project.

Modern concurrent constraint functional logic programming languages, such
as Curry [26], combine different features of both functional and logic paradigms
using an evaluation mechanism called narrowing. Narrowing is a generalization
of term rewriting that allows free variables in terms (as in logic programming)
and replaces pattern matching by unification in order to (non-deterministically)
reduce these terms. Narrowing was originally introduced for automated theo-
rem proving [41], then used as a mechanism for solving equational unification
problems [20], it became the “de facto” evaluation mechanism for functional
logic programming languages [5], and it was generalized from equational unifi-
cation problems to solve the more general problem of symbolic reachability [35].
The narrowing mechanism has a number of important applications including
automated proofs of termination [7], execution of functional-logic programming
languages [6], program transformation [1], verification of cryptographic proto-
cols [35], and equational unification [28], to mention just a few.

An essential aspect in concurrent constraint functional logic programming is
the choice of an effective and efficient narrowing evaluation strategy. Several
approaches have been defined in the literature [5,2,4,15,16,18,12]. The needed
narrowing strategy [5] and the parallel needed narrowing strategy [4], both ex-
tended with the residuation principle, are applicable to left-linear constructor
rewrite systems and are lazy (or demand-driven), obtaining interesting proper-
ties and performance. The natural narrowing strategy [15,16] is applicable to
left-linear constructor rewrite systems too, and is extended to rewrite systems
in general [18]. It is also demand-driven with similar interesting properties and
performance. The development of narrowing in Maude as symbolic reachability
[9,12] is applicable to any unconditional rewrite theory without memberships (up
to some extra conditions [35,9,12]). This version of narrowing in Maude is not
demand-driven and it is still an open problem to develop demand-driven narrow-
ing evaluation strategies dealing with equational properties such as associativity
and commutativity.

This paper tries to bridge the gap between functional logic languages such
as Curry and the current implementation of narrowing as symbolic reachabil-
ity in Maude. It illustrates how many features available in modern functional
logic languages are easily definable and simulated in Maude; we consider: (i)
a semantics of values, (ii) a call-time choice semantics, (iii) conditional rules,
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(iv) strict equality, (v) extra variables, (vi) constraint solving, and (vii) resid-
uation. Many other features of functional logic languages are not considered
in this paper because of lack of space. However, this paper shows how Maude
goes beyond standard practices in the functional logic area by using features not
available to functional logic languages, e.g. reasoning modulo and an order-sorted
setting.

As a motivating example for the reader, in Section 2 we present how the
Missionaries and Cannibals equational logic program of [22] can be written us-
ing the narrowing features available nowadays in Maude. This is an example
requiring some constraint solving features, logical variables, order-sorted types,
and associativity–commutativity–identity, thus it cannot be specified in current
functional logic languages. In Section 3 we introduce some basic concepts on
rewriting logic. In Section 4 we recall the narrowing mechanism and how it
is made available in Maude. In Section 5 we present how features available in
Curry are easily definable and simulated in Maude and demonstrate in Section 6
how queries on the motivating example are executed. Finally, we conclude in
Section 7.

2 Example: Missionaries and Cannibals

As a motivating example for the reader, we present how the Missionaries and
Cannibals equational logic program of [22] can be written using the narrowing
features currently available in Maude. The equational logic program1 of [22] used
a syntax proposed for Eqlog where a functional syntax very close to Maude was
combined with some syntax for Horn-clauses using symbol “:-”.

module MAC[T :: MACTH] using NAT, TRIPLIST = LIST[trip] is
preds

boatok : trip
solve, good : triplist

fns
boat : pred -> trip
lb,rb : triplist -> pset
mset,cset : pset -> pset

vars
PS:pset, L:triplist, P:person, T:trip

axioms
boatok(boat(PS)) :- # PS = 1.
boatok(boat(PS)) :- # PS = 2.
mset(PS) = PS /\ m0.
cset(PS) = PS /\ c0.
lb(nil) = m0 + c0.
rb(nil) = empty.
lb(L * boat(PS)) = lb(L) - PS :- even # L.
rb(L * boat(PS)) = rb(L) + PS :- even # L.
rb(L * boat(PS)) = rbQ - PS :- odd # L.
lb(L * boat(PS)) = lb(L) + PS :- odd # L.
good(L * T) :- # cset(lb(L * T)) =< # mset(lb(L * T)) or mset(lb(L * T)) = 0,

# cset(rb(L * T)) =< # mset(rb(L * T)) or mset(rb(L * T)) = 0,

1 The original program in [22] had an error because the number of cannibals has to
be lower than or equal to the number of missionaries in both sides unless there is no
missionary. We discovered this error thanks to the new narrowing-based executability
in Maude.
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good(L), boatok(T).
good(nil).
solve(L) :- good(L), lb(L) = empty.

endmod MAC

This module is parametric on a theory T :: MATCH for the names of the mission-
aries and cannibals, which are instantiated to m0 = taylor, helen, william

and c0 = umugu, nzwave, amoc. Also a module for lists is imported2, where
* is the constructor symbol for lists and # is the length operation for lists.
The system is configured as a list of trips (sort triplist) where each trip is a
term rooted by a predicate boat with a set of names of missionaries and can-
nibals. Each trip in the list is considered good if it satisfies some properties.
Odd positions in the list represent moving from left to right and even positions
from right to left. There are some extra symbols for set manipulation: + for
union, - for removal, and _/\_ for intersection; indeed (multi-)sets are the
only data structure in this example with extra equational properties, namely
associativity, commutativity and identity for the multiset. There are also some
symbols for lists: even indicates whether a list has an even number of elements
and odd indicates whether a list has an odd number of elements. Finally, the
predicate boatok checks whether a trip is ok and solve is the general predicate
for checking/generating the triplist solution.

This is an example requiring some constraint solving features, logical variables,
order-sorted types, and associativity, commutativity, and an identity symbol for
multisets. For instance, it requires constraint solving features because of the
numerical conditions for length of lists in the conditions of predicate good; this
would be solved by using a generator function and using these length functions by
residuation. Also, the program considers equational properties, since the problem
is represented by a list of trips and each element is the boat with a multiset of
missionaries and cannibals; this would be easily handled by narrowing modulo
these properties. And it clearly includes order-sorted information in the sense of
having people which are specialized into missionaries and cannibals. Also, note
that some functional logic features described in Section 5 are necessary here; for
instance, this example considers a semantics of values instead of all reachable
terms, predicates are just conditional rules evaluated into a special sort different
from Bool that only contains positive (or successful) cases, and conditions in
conditional rules are indeed strict equalities instead of syntactic equality.

3 Background on Rewriting Logic and Term Rewriting

We follow the classical notation and terminology from [42] for term rewriting,
and from [32] for rewriting logic and order-sorted notions. We assume an order-
sorted signature Σ = (S,≤, Σ) with poset of sorts (S,≤) and such that for each
sort s ∈ S the connected component of s in (S,≤) has a top sort, denoted [s], and
all f : s1 · · · sn → s with n ≥ 1 have a top sort overloading f : [s1] · · · [sn] → [s].

2 The original program assumes lists are created using an associative symbol but
unification modulo associativity is infinitary and it is not available in Maude.
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We also assume an S-sorted family X = {Xs}s∈S of disjoint variable sets with
each Xs countably infinite. TΣ(X )s is the set of terms of sort s, and TΣ,s is the
set of ground terms of sort s. We write TΣ(X ) and TΣ for the corresponding
order-sorted term algebras. For a term t, Var(t) denotes the set of all variables
in t.

Positions are represented by sequences of natural numbers denoting an access
path in the term when viewed as a tree. The top or root position is denoted by
the empty sequence Λ. We define the relation p ≤ q between positions as p ≤ p
for any p; and p ≤ p.q for any p and q. Given U ⊆ Σ ∪ X , PosU (t) denotes the
set of positions of a term t that are rooted by symbols or variables in U . The set
of positions of a term t is written Pos(t), and the set of non-variable positions
PosΣ(t). The subterm of t at position p is t|p and t[u]p is the term t where t|p
is replaced by u.

A substitution σ ∈ Subst(Σ,X ) is a sorted mapping from a finite subset of X
to TΣ(X ). Substitutions are written as σ = {X1 (→ t1, . . . , Xn (→ tn} where the
domain of σ is Dom(σ) = {X1, . . . , Xn} and the set of variables introduced by
terms t1, . . . , tn is written Ran(σ). The identity substitution is id. Substitutions
are homomorphically extended to TΣ(X ). The application of a substitution σ
to a term t is denoted by tσ. For simplicity, we assume that every substitution
is idempotent, i.e., σ satisfies Dom(σ) ∩ Ran(σ) = ∅. Substitution idempotency
ensures tσ = (tσ)σ. The restriction of σ to a set of variables V is σ|V ; sometimes
we write σ|t1,...,tn to denote σ|V where V = Var(t1)∪· · ·∪Var(tn). Composition
of two substitutions σ and σ′ is denoted by σσ′.

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ(X )s for some
sort s ∈ S. Given an order-sorted signature Σ and a set E of Σ-equations,
order-sorted equational logic induces a congruence relation =E on terms t, t′ ∈
TΣ(X ) (see [34]). The E-equivalence class of a term t is denoted by [t]E and
TΣ/E(X ) and TΣ/E denote the corresponding order-sorted term algebras modulo

E . Throughout this paper we assume that TΣ,s �= ∅ for every sort s, because this
affords a simpler deduction system.

An equational theory (Σ, E) is a pair with Σ an order-sorted signature and
E a set of Σ-equations. The E-subsumption preorder ,E (or just , if E is un-
derstood) holds between t, t′ ∈ TΣ(X ), denoted t ,E t′ (meaning that t is more
general than t′ modulo E), if there is a substitution σ such that tσ =E t′; such
a substitution σ is said to be an E-match from t to t′.

An E-unifier for a Σ-equation t = t′ is a substitution σ such that tσ =E t′σ.
For Var(t) ∪ Var(t′) ⊆ W , a set of substitutions CSUW

E (t = t′) is said to be a
complete set of unifiers for the equality t = t′ modulo E away from W iff: (i) each
σ ∈ CSUW

E (t = t′) is an E-unifier of t = t′; (ii) for any E-unifier ρ of t = t′ there
is a σ ∈ CSUW

E (t = t′) such that σ|W ,E ρ|W ; (iii) for all σ ∈ CSUW
E (t = t′),

Dom(σ) ⊆ (Var(t) ∪ Var(t′)) and Ran(σ) ∩W = ∅. If the set of variables W
is irrelevant or is understood from the context, we write CSUE(t = t′) instead
of CSUW

E (t = t′). An E-unification algorithm is complete if for any equation
t = t′ it generates a complete set of E-unifiers. A unification algorithm is said
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to be finitary and complete if it always terminates after generating a finite and
complete set of solutions.

A rewrite rule is an oriented pair l → r, where3 l �∈ X and l, r ∈ TΣ(X )s
for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
(Σ, E , R) with Σ an order-sorted signature, E a set of Σ-equations, and R a set
of rewrite rules.

The rewriting relation on TΣ(X ), written t→R t′ or t→p,R t′ holds between
t and t′ iff there exist p ∈ PosΣ(t), l → r ∈ R and a substitution σ, such
that t|p = lσ, and t′ = t[rσ]p. The relation →R/E on TΣ(X ) is =E ;→R; =E , i.e.,
t→R/E t′ iff there exists u, u′ s.t. t =E u→R u′ =E t′. Note that→R/E on TΣ(X )
induces a relation →R/E on the free (Σ, E)-algebra TΣ/E(X ) by [t]E →R/E [t′]E
iff t →R/E t′. The transitive (resp. transitive and reflexive) closure of →R/E is

denoted →+
R/E (resp. →∗

R/E).
The application of one→R/E step is undecidable in general since E-congruence

classes can be arbitrarily large. Therefore, R/E-rewriting is usually implemen-
ted [29] by R,E-rewriting. A relation→R,E on TΣ(X ) is defined as: t→p,R,E t′ (or
just t→R,E t′) iff there exist p ∈ PosΣ(t), a rule l → r in R, and a substitution
σ such that t|p =E lσ and t′ = t[rσ]p.

We assume that the relation →R,E is local E-coherent [29], i.e., ∀t1, t2, t3 we
have t1 →R,E t2 and t1 =E t3 implies ∃t4, t5 such that t2 →∗

R,E t4, t3 →+
R,E t5, and

t4 =E t5. Let us recall how coherence works at least for the common associative-
commutative (AC) case. The best way to illustrate it is by its absence. Consider
a symbol + declared as AC. Now consider the rule b+ b→ c, where b and c are
constants. This rule, if not completed by another, is not coherent modulo AC.
What this means is that there will be term contexts in which the rule should be
applied, but it cannot be applied. Consider, for example, the term b + (a + b),
where a is also a constant. Intuitively, we should be able to apply to it the above
rule to simplify it to the term a + c in one step. However, since we are using
the weaker rewrite relation →R,AC instead of the stronger but much harder to
implement relation →R/AC , we cannot! The problem is that the rule cannot be
applied (even if we match modulo AC) to either the top term b+ (a+ b) or the
subterm a + b. We can however make our rule coherent modulo AC by adding
the extra rule b + b + Y → c + Y . This extended version of our rule will now
apply to the term b+(a+ b), giving the simplification b+(a+ b) −→R,AC a+ c.
Technically, what coherence means is that the weaker relation →R,E becomes
semantically equivalent to the stronger relation →R/E .

Coherence can be handled implicitly or explicitly, i.e., either the matching
mechanism is modified to take care of this issue or the rules are explicitly ex-
tended, which is the option shown above; see [43] for a comparison between

3 Note that we do not impose here the standard condition Var(r) ⊆ Var(l), necessary
for executability of rewriting in practice. Rewriting with extra variables in right-
hand sides is handled at a theoretical level by allowing the matching substitution
to instantiate these extra variables in any possible way. Extra variables do no pose
any problem to narrowing and are part of the nondeterministic search of solutions
typical of logic programming.
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implicit and explicit extensions. For rewriting, implicit extensions are sufficient
in many cases, as the implicit E-coherence completion provided by the Maude
tool [10] for any combination of associativity (A), commutativity (C), and iden-
tity (U) axioms. For narrowing, implicit extension is more complicated and it is
sufficient to consider explicit single-variable extensions in common cases such as
combinations of C, AC, and ACU axioms, i.e., given a rule s→ t one considers
s+ x → t + x where x is a new variable. The method is as follows for AC. For
any symbol f which is AC, and for any rule of the form f(u, v) → w in E , we
add also the equation f(f(u, v), X) → f(w,X), where X is a new variable not
appearing in u, v, w. In an order-sorted setting, we should give to X the biggest
sort possible, so that it will apply in all generality. As an additional optimization,
note that some rules may already be coherent modulo AC, so that we need not
add the extra equation. See [13] for further information.

We also assume that the equational theory is split into E = E ∪Ax such that
E is a set of equations oriented into rules and Ax is a set of equational axioms
satisfying:

1. Ax is regular, i.e., for each t = t′ in Ax, we have Var(t) = Var(t′), and
sort-preserving, i.e., for each substitution σ, we have tσ ∈ TΣ(X )s iff t′σ ∈
TΣ(X )s; furthermore, for each equation t = t′ in Ax, all variables in Var(t)
have a top sort.

2. Ax has a finitary and complete unification algorithm, which implies that
Ax-matching is finitary and complete.

3. For each t→ t′ in E we have Var(t′) ⊆ Var(t).
4. E is sort-decreasing, i.e., for each t → t′ in E, each s ∈ S, and each substi-

tution σ, t′σ ∈ TΣ(X )s implies tσ ∈ TΣ(X )s.
5. The relation→E,Ax is confluent, terminating, and local Ax-coherent, i.e., for

each term t, the relation terminates and produces a unique irreducible term
(up to Ax-equivalence) denoted by t↓E,Ax.

Given an order-sorted equational theory (Σ,E ∪ Ax), (t′, θ) is an E,Ax-
variant [19] (or just a variant) of term t if tθ↓E,Ax =Ax t′ and θ↓E,Ax =Ax θ. An
order-sorted equational theory (Σ,E ∪ Ax) has the finite variant property [19]
iff for each Σ-term t, a complete set of its most general variants is finite. A fini-
tary and complete unification algorithm is defined for order-sorted equational
theories with the finite variant property [19].

4 Narrowing in Maude

Logic programming languages are well suited for goal solving. Functional pro-
gramming languages are equipped with equational definition of operations. Sev-
eral approaches have been considered in the literature for combining the fun-
cional and logic paradigms, see [24]. On the one hand, it is a natural idea to add
an equality predicate to logic programs, leading to equational logic program-
ming [27]. On the other hand, it is also a natural idea to add logical variables
to functional programs, leading to narrowing-based equational reasoning [20].
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Logic variables are also valuable at the level of model checking rather than func-
tional programming, as proposed for symbolic reachability in [35] and extended
to logical model checking in [17,8].

At each rewriting step one must choose which subterm of the subject term
and which rule of the specification are going to be considered. Similarly, at each
narrowing step one must choose which subterm of the subject term, which rule
of the specification, and which instantiation4 on the variables of the subject term
and the rule’s left-hand side are going to be considered. The difference between
a rewriting step and a narrowing step is that in both cases we use a rewrite rule
l → r to rewrite t at a position p in t, but narrowing unifies the left-hand side
l and the chosen subject term t|p before actually performing the rewriting step.
Narrowing is restricted5 to non-variable positions of t, whereas rewriting does
not require such a restriction.

Let R = (Σ,E ∪ Ax,R) be an order-sorted rewrite theory where R is a
set of unconditional rewrite rules, specified with the rl keyword, E is a set
of unconditional equations specified with the eq and variant keywords, and
Ax is a set of commonly occurring axioms —declared in Maude as equational
attributes— such that an E ∪ Ax-unification procedure is available in Maude.
Unification algorithms already available in Maude are divided in two groups:
(i) Ax-unification for order-sorted signatures with any combination of free, C,
AC, or ACU function symbols [9], and (ii) E ∪ Ax-unification for order-sorted
equational theories with the finite variant property [12].

Let CSUE∪Ax(u = u′) provide6 a finitary and complete set of unifiers for any
pair of terms u, u′ with the same top sort. The R,(E∪Ax)-narrowing relation on
TΣ(X ) is defined as t�σ,p,R,E∪Ax t

′ (or �σ when p,R,E,Ax are understood)
if there is a non-variable position p ∈ PosΣ(t), a (possibly renamed) rule l → r
in R, and a unifier σ ∈ CSUE∪Ax(t|p = l) such that t′ = (t[r]p)σ. We denote by
t �+

σ,R,E∪Ax t′ (resp. t �∗
σ,R,E∪Ax t′) the transitive (resp. reflexive-transitive)

closure of the narrowing relation, where σ is obtained as the composition of the
substitutions for each narrowing step in the sequence.

Consider the following system module defining the addition function _+_ on
natural numbers built from 0 and s:

mod NAT-NARROWING is

sort Nat .

op 0 : -> Nat [ctor] .

4 Demand-driven narrowing strategies may require instantiations of a term that do
not correspond to a most general unifier of a subterm and a left-hand side of a rule,
see [5,2].

5 The paramodulation inference rule used in paramodulation-based theorem prov-
ing [37] is similar to narrowing and does not require non-variable positions.

6 In the present implementation of Maude, we are not interested in a minimal set
of unifiers, but only in a finite and complete set. Minimality is easily achieved in
syntactic unification (see [31]) but it is very costly in Ax-unification or E ∪ Ax-
unification, e.g., the ACU -unification available in Maude does not always provide a
minimal set of unifiers.
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op s : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat .

vars X Y : Nat .

rl [base] : 0 + Y => Y .

rl [ind] : s(X) + Y => s(X + Y) .

endm

Consider the term X + s(0) and the two rules base and ind. Narrowing will
instantiate variable X with 0 and s(X’) respectively in order to be able to apply
each of these rules, i.e., the following two narrowing steps are generated:

X+ s(0) �{X�→0},base s(0)

X+ s(0) �{X�→s(#1:Nat)},ind s(#1:Nat+ s(0))

Note that, for simplicity, we show only the bindings of the unifier that affect
the input term. There are infinitely many narrowing derivations starting at the
input expression X + s(0) (at each step the reduced subterm is underlined):

1. X+ s(0) �{X�→0},base s(0)

2. X+ s(0) �{X�→s(#1:Nat)},ind s(#1:Nat+ s(0)) �{#1:Nat �→0},base s(s(0))

3. X+ s(0) �{X�→s(#1:Nat)},ind s(#1:Nat+ s(0))

�{#1:Nat �→s(#2:Nat)},ind s(s(#2:Nat+ s(0))) �{#2:Nat �→0},base s(s(s(0)))

And some of those infinitely many narrowing derivations are infinite in length,
e.g. by applying rule ind infinitely many times:

X+ s(0) �{X �→s(#1:Nat)},ind s(#1:Nat+ s(0))

�{#1:Nat �→s(#2:Nat)},ind s(s(#2:Nat+ s(0)))

�{#2:Nat �→s(#3:Nat)},ind s(s(s(#3:Nat+ s(0))))

. . .

The classical application of narrowing modulo an equational theory is to per-
form E ∪Ax-unification by E,Ax-narrowing (see [20,19]) when the equations E
are oriented into rules and are confluent, terminating and coherent modulo Ax
(see Section 3). When the theory also satisfies the finite variant property [19],
a finitary and complete unification algorithm based on a narrowing strategy
called folding variant narrowing is provided in [19]. This unification algorithm
is available in Maude, see [12].

The modern application of narrowing modulo an equational theory is that of
symbolic reachability analysis [35], when the rules R are understood as transition
rules. Given an order-sorted rewrite theory of the formR = (Σ,E∪Ax,R) where:
(i) E∪Ax has a finitary and complete E∪Ax-unification algorithm (for instance,
the ACU-unification algorithm available in Maude or the E ∪ Ax-unification
algorithm based on folding variant narrowing) and (ii) the transition rules R are
E ∪Ax-coherent and topmost (see [35]), then narrowing is a complete deductive
method for symbolic reachability analysis, i.e., for solving existential queries of
the form ∃x : t(x)→∗ t′(x) in the sense that the formula holds for R iff there is a
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sequence of narrowing steps t �σ1,R,E∪Ax t1 �σ2,R,E∪Ax t2 · · · tn−1 �σn,R,E∪Ax

tn such that tn and t′ have a E∪Ax-unifier. This symbolic reachability is available
also in Maude, see [12]. The standard search command of Maude uses the syntax
search Term1 arrow Term2 where the arrows can be =>1, =>+, =>*, =>! for just
one rewriting step, one or more rewriting steps, zero or more rewriting steps, or
until no more rewriting steps are possible. This feature is extended to narrowing
in Full Maude by allowing variables both in Term1 and Term2 (possibly sharing
variables) and allowing extra arrows ~>1, ~>+, ~>*, ~>! for just one narrowing
step, one or more narrowing steps, zero or more narrowing steps, or until no
more narrowing steps are possible.

The current use of narrowing and unification in Maude is distributed as fol-
lows: (i) Ax-unification available in Maude for order-sorted signatures with any
combination of free, C, AC, or ACU function symbols (see [9]); (ii) E ∪ Ax-
unification available in Full Maude (and soon in Maude) using the folding variant
narrowing strategy for theories with the finite variant property (see [12]); and
(iii) narrowing-based reachability analysis using rules R modulo E ∪ Ax (see
[12]).

The narrowing relation currently available in Maude is slightly different than
the standard one formally defined above. LetR = (Σ,G∪E∪Ax,R) be an order-
sorted rewrite theory where R, E, and Ax are defined as above and G are the
remaining equations. Note that equations in G do not have the variant attribute
and have no restriction, i.e., they can be conditional equations, with the owise

attribute, etc. Each narrowing step of the form t�σ,p,R,E∪Ax t
′ is followed by

simplification t′↓G,Ax, i.e., the combined relation is defined as t�σ,p,R,E,G,Ax t
′′

iff t�σ,p,R,E∪Ax t
′ and t′′ = t′↓G,Ax. Note that this combined relation may be

incomplete because equations G are not considered for unification, i.e., given
a reachability problem of the form ∃x : t(x) →∗ t′(x) and a solution σ (i.e.,
tσ →∗

R,G∪E∪Ax t′σ), the relation �σ,p,R,E,G,Ax may not be able to find a more
general solution.

5 Functional Logic Programming in Maude

We define a functional logic program in Maude as a rewrite theory R = (Σ,G∪
E∪Ax,R) where R defines7 the rules used by narrowing,E∪Ax is the equational
theory for unification purposes and G ∪ Ax is the equational theory for simpli-
fication only. A functional logic computation consists of a reachability problem
of the form ∃x : t(x) →∗ t′(x) and a narrowing sequence with a computed sub-
stitution σ where σ is a solution. Note that we are interested in a semantics8

7 In reality, one would expect two sets Rrew and Rnarr , one for rewriting only and one
for narrowing only, as in the equational case with E and G, but we leave this for
future implementations.

8 A well-versed reader may believe we are interested in a semantics of both computed
answers and normal forms instead of only normal forms but this is arguable, e.g. the
different solutions found by narrowing for the reachability problem f(x) →∗ 0 using
programs (i) f(x) → 0 and f(0) → 0 and (ii) f(x) → 0 are irrelevant for the folding
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of normal forms and assume that the term t′(x) is strongly irreducible w.r.t.
→R,G∪E∪Ax, i.e., for any irreducible substitution ρ : TΣ(X ) → TΣ , t′ρ is irre-
ducible. Indeed, we are interested in a semantics of values rather than normal
forms but the concept of a value in Maude is not just as simple as a construc-
tor term in Haskell or Curry. As an example, take the rule double(X) → X + X

using the built-in Maude addition operator on natural numbers. For the reacha-
bility problem double(1)→∗ X, the expression double(1) is just evaluated to 2

and assigned to X. If we take the reachability problem double(1+2)→∗ Y, there
are different evaluation orders depending on whether 1+2 is evaluated before the
symbol double or not, but the normal form assigned to Y is 6.

In this section, we consider several features that are common in functional
logic languages such as Curry. In Section 5.1 we consider a call-time choice se-
mantics for computing values. Then equality in this semantics is adapted to the
notion of strict equality in Section 5.2 and this allows us to consider conditional
rules with conditions using only strict equality in Section 5.3 and extra variables
in right-hand sides of rules in Section 5.4. Finally, all these features provide us
with all the ingredients for constraint solving capabilities in Section 5.5, includ-
ing the concept of residuation.

5.1 Non-deterministic Functional Logic Computations and Kinds in
Order-Sorted Equational Logic

An interesting property of functional logic programming languages is that they
do not assume confluence of the equational specification. For instance, consider
the non-deterministic function coin with two rules coin → 0 and coin → 1.
When we consider the expression double(coin), the obtained results are 0, 1,
and 2 even if the reader would expect only 0 and 2. Different semantics give
different results to the previous expression:

1. If the expression coin is passed without evaluation to the function double,
we obtain the expression coin+coin, which has four possible derivations to
values 0, 1, 1, and 2. This behaviour corresponds to run-time choice, which
means that the choice of the value associated to a function parameter may
be determined later. This is the standard semantics associated to rewrite
theories in Maude.

2. If the expression coin is evaluated before passing it to the function double,
we obtain the expressions 0+0 and 1+1, which return 0 and 2. This behaviour
corresponds to call-time choice in functional/equational programming, which
means that the choice of the value associated to a function parameter is de-
termined when calling the function symbol. This behaviour corresponds also
to variable sharing when non-determinism is present. Sharing in rewriting
and narrowing are captured by the idea of graph rewriting [38] and graph
narrowing [14]. This is the intended semantics accepted by the functional
logic community. See [36] for elaborated interactions on non-determinism

variant narrowing strategy [19], which returns only the most general solution using
the common rule f(x) → 0, and similarly for this paper.
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and non-right-linear equations (or rules). Some bizarre behaviours are still
possible when combining it with demand-driven evaluation and solutions
have been recently developed [40].

All these behaviours are easily representable in rewriting logic by using kinds.
Since functional logic programs are interested only in values and not in normal
forms, constructor symbols would be the only ones belonging to a concrete sort
and defined symbols will belong to the kind. For example, let us consider a
definition of natural numbers using the sort Nat, without any algebraic property;
where the kind of Nat, [Nat], is used for terms that are not natural numbers.

sort Nat .

op 0 : -> Nat [ctor] .

op s_ : Nat -> Nat [ctor] .

Operations, for example addition and the function double would be defined on
the kind of Nat, since they are not considered as valid terms of sort Nat.

op _+_ : [Nat] [Nat] -> [Nat] .

rl 0 + M:[Nat] => M:[Nat] .

rl s N:[Nat] + M:[Nat] => s (N:[Nat] + M:[Nat]) .

op double : [Nat] -> [Nat] .

rl double(N:[Nat]) => N:[Nat] + N:[Nat] .

Similarly, the function coin is defined on the kind.

op coin : -> [Nat] .

rl coin => 0 .

rl coin => s 0 .

Now we can search for all possible normal forms, corresponding to a typical
run-time choice semantics.

search double(coin) =>! N:[Nat] .

Solution 1 Solution 2 Solution 3

N:[Nat] --> 0 N:[Nat] --> s 0 N:[Nat] --> s s 0

No more solutions.

We can force a call-time choice semantics by imposing variables and construc-
tor symbols of sort Nat instead of the kind [Nat], which forces arguments to be
evaluated first.

op double : Nat -> [Nat] . search double(coin) =>! N:[Nat] .

rl double(N:Nat) => N:Nat + N:Nat . Solution 1 Solution 2

N:[Nat] --> 0 N:[Nat] --> s s 0

No more solutions.

As a typical example of non-determinism in functional logic programming
with a call-time choice, we include the function permute based on a function
insert that non-deterministically inserts an element in any position of a listof
natural numbers.
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mod PERMUTE is

sort Nat . sort NatList .

op 0 : -> Nat [ctor] . op nil : -> NatList [ctor] .

op s_ : Nat -> Nat [ctor] . op _:_ : Nat NatList -> NatList [ctor] .

vars N E : Nat . var NL : NatList .

op permute : NatList -> [NatList] .

rl permute(nil) => nil .

rl permute(N : NL) => insert(N,permute(NL)) .

op insert : Nat NatList -> [NatList] .

rl insert(E,nil) => E : nil .

rl insert(E,N : NL) => E : N : NL .

rl insert(E,N : NL) => N : insert(E,NL) .

endm

A typical evaluation would return all the permutations of a given list of natural
numbers.

search permute(0 : s 0 : s s 0 : nil) =>! NL:NatList .

Solution 1 Solution 2

NL:NatList --> 0 : s 0 : s s 0 : nil NL:NatList --> s 0 : 0 : s s 0 : nil

Solution 3 Solution 4

NL:NatList --> 0 : s s 0 : s 0 : nil NL:NatList --> s 0 : s s 0 : 0 : nil

Solution 5 Solution 6

NL:NatList --> s s 0 : 0 : s 0 : nil NL:NatList --> s s 0 : s 0 : 0 : nil

No more solutions.

We can already use the narrowing capabilities to solve some symbolic reachability
problems, for instance give a fully instantiated final term and include logical
variables in the initial term, so that narrowing searches for solutions; note that
the inclusion of the variable Z:NatList makes the search space infinite even if
there is only one solution, which is obtained by restricting the search to the first
solution found using the extra option [1].

search [1] permute(0 : X:Nat : (s s 0) : Z:NatList)

~>! 0 : (s 0) : (s s 0) : nil .

Solution 1

X:Nat --> s 0 ; Z:NatList --> nil

No more solutions.

5.2 Strict Equality

Since functional logic programs are interested on values instead of normal forms,
the standard Maude equality is not useful and we need a strict equality9 [26].
That is, an expression coin == 0 will always be evaluated to false because it

9 Strict not in the sense of argument evaluation but in the sense of checking only for
values (normal forms).
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requires a rule application of coin before checking for equality. We would like to
have a built-in strict equality, as in major functional logic languages, but we have
to define it explicitly in this paper. Indeed, since we want narrowing to be able
to instantiate variables in a proper way, we must implement an explicit strict
equality in every program written in Maude. We use the symbol =:= along10 the
paper to denote this strict equality, which is explicitly defined for each sort in the
following form, when there are no algebraic properties, using also the boolean
symbol and:

f(X1, . . . , Xn) =:= g(Y1, . . . , Ym)→ false if f �= g, n ≥ 0,m ≥ 0
c =:= c → true

f(X1, . . . , Xn) =:= f(Y1, . . . , Yn) → X1=:=Y1 and · · · and Xn=:=Yn if fn > 1

Symbols f and g, and constant c above correspond to constructor symbols asso-
ciated to the normal forms of interest, which is more delicate in the presence of
an order-sorted setting with kinds, as shown in the previous section.

When we have algebraic properties such as associativity, commutativity and
identity, strict equality is not so well-studied and different formulations are pos-
sible; however we do not further discuss strict equality here because in the next
section we are going to simplify it to just a rule X =:= X → true. Now we can
search for equality with the desired behaviour, where coin is evaluated to 0 and,
then, =:= checks that it is equal to 0 in order to reduce to true.

search coin =:= 0 =>* true .

Solution 1

empty substitution

No more solutions.

5.3 Conditional Equations

Another relevant feature of functional logic programming languages is the use of
conditional rules. The current implementation of narrowing in Maude deals only
with unconditional rules but we transform conditional rules into unconditional
ones using a standard technique in functional logic languages such as Curry
(see [2,26] for details). Conditional means that a rule has an extra element,
apart from the left-hand and right-hand sides, which contains conditions and,
intuitively, these conditions must be satisfied before the rule is applied. These
conditions can be of different form in Maude but we restrict ourselves to just
equality conditions. Note that modern functional logic programming languages
use conditions of the form “t == t′” and “t =:= t′” for both syntactic and strict
equality, respectively. However, we will simplify it here to conditions of the form
“t =:= t′”. InMaude syntax, a definition of the membership function for multisets
of natural numbers is of the form:

sort NatSet .

op empty : -> NatSet . subsort Nat < NatSet .

10 The symbol =:= is original from the system Curry where it is a built-in operation.
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op _;_ : NatSet NatSet -> NatSet [assoc comm id: empty] .

vars N E : Nat . var NS : NatSet .

op member : Nat NatSet -> [Bool] .

rl member(E, empty) => false .

crl member(E, N ; NL) => true if E =:= N == true .

Functional logic languages assume that, when there is a conditional rule, the
only valuable case is usually when the condition is true and the case where the
condition is false is irrelevant, due to problems of negation in functional logic
programs [3]. We implement this idea in the paper. First, a new sort Success

and a new constant symbol success are defined in Maude. Note that there is no
symbol for the negative counterpart. Second, the =:= symbol is simply defined
for the positive case returning success, e.g. for the sort Nat is defined as follows:

sort Success .

op success : -> Success [ctor] .

op _=:=_ : Nat Nat -> [Success] [comm] .

rl X:Nat =:= X:Nat => success .

Note that variable X must be of a specific sort but not a kind, in order to obtain
the call-time choice semantics of Section 5.1. Third, we replace the conditional
expression by a new operator “>>” with just the positive case, where we restrict
reductions on the second argument using the attributes frozen (2) and strat

(1 0), as in the standard Maude if-then-else-fi symbol. Again, this transfor-
mation is standard in functional logic languages such as Curry, see [2,26] where
the symbol >> is also known as if-then (without an else branch).

op _>>_ : [Success] [Nat] -> [Nat] [frozen (2) strat (1 0)] .

rl success >> X:[Nat] => X:[Nat] .

Note that Maude expects conditions to be boolean expressions but we consider
here conditions to be of sort Success just because we consider only the positive
cases. The transformation of the previous definition of member is as follows:

op member : Nat NatSet -> [Bool] .

rl member(E, empty) => false .

rl member(E, N ; NS) => E =:= N >> true .

We can search for solutions to membership in the following form:

search member(N:Nat,0 ; s 0 ; s s 0) ~>! true .

Solution 1 Solution 2 Solution 3

N:Nat --> 0 N:Nat --> s 0 N:Nat --> s s 0

No more solutions.

5.4 Extra Variables

As in logic programming, rules have extra variables not appearing in the left-
hand side. There are different characterizations of rules with extra variables but
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we do not impose any restriction here, since extra variables are simply part
of the right-hand side when using >> expressions. An interesting example is
the definition of the function last returning the last element of a given list of
natural numbers, but using the function append (++) instead of traversing the
list to decompose the argument NL into a new list NL’ and the last element E:

op _++_ : NatList NatList -> [NatList] .

rl nil ++ NL’ => NL’ .

rl (N : NL) ++ NL’ => N : (NL ++ NL’) .

op last : NatList -> [Nat] .

rl last(NL) => NL’ ++ (E : nil) =:= NL >> E [nonexec] .

Note that variables E and NL’ are extra variables not appearing in the left-hand
side and are quantified existentially. The nonexec label is necessary11 because
Maude accepts only rules and equations without extra variables. The execution
of a query to last would be as follows, where we restrict to just the first solution:

search [1] in last(0 : s 0 : s s 0 : nil) ~>! X:Nat .

Solution 1

X:Nat --> s s 0

No more solutions.

5.5 Constraint Solving and Residuation

Logic programming is quite effective in solving goals and many strategies have
been defined in the literature to speed up that process. A typical optimization
in logic programming is to combine different goals where some of them are sus-
pended until an instantiation is provided by another goal. This procedure is
called residuation in functional logic programming languages such as Curry [26]
and Escher [30] and it is easy to achieve inMaude. That is, residuation is based on
the idea to delay or suspend function calls until they are ready for deterministic
evaluation. Since the residuation principle evaluates function calls by determin-
istic reduction steps, nondeterministic search is usually encoded by predicates
or disjunctions. Moreover, if some part of a computation might suspend, one
needs a primitive to execute computations concurrently. For instance, we in-
clude a symbol “&” for the conjunction of constraints using the sort Success

so that both arguments are evaluated concurrently, i.e., if the evaluation of one
argument suspends, the other one is evaluated. This requires very little inMaude.

op _&_ : [Success] [Success] -> [Success] [assoc comm id: success] .

The trick in Maude is that we will be using equations, with a rewriting semantics,
for those suspended function calls while we will be using rules, with a narrowing
semantics in this paper, for the others (see Footnote 7).

For instance, if we define a predicate for generating natural numbers through
narrowing:

11 A new attribute extra-vars(E,NL’) may be used in the future to denote a rule with
extra variables.
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op nat : Nat -> [Success] .

rl nat(0) => success .

rl nat(s N) => nat(N) .

And change the former specification of addition to use equations, so that addition
will be evaluated by rewriting (residuation) and never by narrowing:

op _+_ : Nat Nat -> [Nat] .

eq 0 + M = M .

eq (s N) + M = s (N + M) .

Now we can solve the conjunction of two goals very effectively, since narrowing
will be used only for nat and once this function instantiates some variable of an
addition expression, the equations of addition will be used.

search [1] nat(X:Nat) & (X:Nat + 0) =:= s 0 ~>! success .

Solution 1

X:Nat --> s 0

No more solutions.

In the context of Maude, the narrowing search space is very much reduced, since
only the evaluation of nat by narrowing generates new states and the evaluation
of addition and equality is done by equations, which is very efficient in Maude.
However, in many situations we have to reduce the search space by imposing an
order of evaluation among different constraints, i.e., Curry provides a symbol
&> that forces an evaluation of constraints from left to right, but this symbol is
indeed our symbol >> defined above. Now we can run the previous query slightly
faster.

search [1] nat(X:Nat) >> (X:Nat + 0) =:= s 0 ~>! success .

Solution 1

X:Nat --> s 0

No more solutions.

However, if we swap the constraints, (X:Nat + 0) =:= s 0 >> nat(X:Nat)

does not return any value, whereas (X:Nat + 0) =:= s 0 & nat(X:Nat) does.

6 Executing the Motivating Example

The specification of the equational logic program in Section 2 by using the
features and functionalities described in Section 5 is as follows.

mod MAC is
pr SUCCESS . pr TRIPLIST . pr PSET .

ops taylor helen william : -> Elem [ctor] . ops umugu nzwawe amoc : -> Elem [ctor] .
var L : TripList . var T : Trip . var PS : PSet .

op gen : Elem -> [Success] .
rl gen(taylor) => success . eq gen(taylor) = success .
rl gen(helen) => success . eq gen(helen) = success .
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rl gen(william) => success . eq gen(william) = success .
rl gen(umugu) => success . eq gen(umugu) = success .
rl gen(nzwawe) => success . eq gen(nzwawe) = success .
rl gen(amoc) => success . eq gen(amoc) = success .

op m0 : -> [PSet] . op c0 : -> [PSet] .
eq m0 = taylor helen william . eq c0 = umugu nzwawe amoc .

op mset : PSet -> [PSet] . op cset : PSet -> [PSet] .
eq mset(PS) = PS /\ m0 . eq cset(PS) = PS /\ c0 .

op boatok : Trip -> [Success] . op boat : PSet -> Trip [ctor] .
eq boatok(boat(X:Elem)) = gen(X:Elem) .
eq boatok(boat(X1:Elem X2:Elem))
= gen(X1:Elem) >> gen(X2:Elem) >> ((X1:Elem =/= X2:Elem) =:= true) .

ops lb rb : TripList -> [PSet] .
eq lb(nil) = m0 c0 .
eq lb(L * boat(PS)) = if (even # L) then (lb(L) - PS) else (lb(L) PS) fi .
eq rb(nil) = empty .
eq rb(L * boat(PS)) = if (even # L) then (rb(L) PS) else (rb(L) - PS) fi .

op good : TripList -> [Success] .
eq good(nil) = success .
eq good(L * T)
= boatok(T) >> good(L) >> ( (# cset(lb(L * T)) =< # mset(lb(L * T))

or (# mset(lb(L * T)) == 0))
and
(# cset(rb(L * T)) =< # mset(rb(L * T))

or (# mset(rb(L * T)) == 0)) ) =:= true .

op solve : TripList -> [Success] .
eq solve(L) = good(L) >> (lb(L) == empty) =:= true .

endm

We have used a specific generator function gen which is the only function using
rules apart from =:=; and both have rules and equations, both for narrowing and
rewriting (residuation). Predicates are indeed considered as conditional equa-
tions evaluated into success and the conditions have been transformed using
the >> operator. The remaining code is encoded into equations, thus speeding
up the execution. We have also used >> to order the evaluation of constraints,
thus speeding up the execution too. We omit12 the specification of the auxiliary
modules for list of trips and sets of missionaries and cannibals, but they are
defined with equations and following the description of this paper.

One of the possible solutions is

search solve(nil * boat(taylor umugu) * boat(taylor) * boat(nzwawe amoc) * boat(umugu) *
boat(william helen) * boat(helen nzwawe) * boat(taylor helen) *
boat(amoc) * boat(umugu amoc) * boat(helen) * boat(helen nzwawe) )

=>! success .
Solution 1
empty substitution
No more solutions.

We can search for solutions to queries using variables, for instance the person
chosen in the last two steps, e.g. helen, is irrelevant and we use variable E:

search solve(nil * boat(taylor umugu) * boat(taylor) * boat(nzwawe amoc) * boat(umugu) *
boat(william helen) * boat(helen nzwawe) * boat(taylor helen) *

12 The experiments are available at http://www.dsic.upv.es/~sescobar/MAC.html.

http://www.dsic.upv.es/~sescobar/MAC.html
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boat(amoc) * boat(umugu amoc) * boat(E) * boat(E nzwawe) ) ~>! success .
Solution 1 Solution 2 Solution 3 Solution 4 Solution 5
E:Elem --> amoc E:Elem --> helen E:Elem --> taylor E:Elem --> umugu E:Elem --> william
No more solutions.

The cannibal chosen in steps 9th and 10th is irrelevant and we use variable E1:

search solve(nil * boat(taylor umugu) * boat(taylor) * boat(nzwawe amoc) * boat(umugu) *
boat(william helen) * boat(helen nzwawe) * boat(taylor helen) *
boat(E1) * boat(umuguE1) * boat(E) * boat(E nzwawe) ) ~>! success .

Solution 1 Solution 2
E1:Elem --> amoc ; E:Elem --> amoc E1:Elem --> amoc ; E:Elem --> helen
Solution 3 Solution 4
E1:Elem --> amoc ; E:Elem --> taylor E1:Elem --> amoc ; E:Elem --> umugu
Solution 5 Solution 6
E1:Elem --> amoc ; E:Elem --> william E1:Elem --> nzwawe ; E:Elem --> amoc
Solution 7
E1:Elem --> nzwawe ; E:Elem --> umugu
No more solutions.

The current implementation of narrowing as symbolic reachability in Full
Maude is not able to handle the most general and powerful query
search solve(L) ~>* success due to its huge execution time and big memory
consumption.

The well-versed reader of narrowing features in Maude may wonder whether
this equational logic program can be used with the latest variant-generation fea-
tures recently available in Maude [12]. The answer is yes. First, this program has
no nondeterministic computation and no extra variables in right-hand sides, so
it can be turned into a confluent, terminating and coherent equational theory
modulo associativity, commutativity, and an identity symbol. Then, variant gen-
eration can be tried on the different input terms of the search commands shown
above and the generated variants contain the expected results shown above. In-
deed, this program and the output can be found in the url given above. This
process runs faster than symbolic reachability, but the results are the same and
are not discussed in this paper. Note that the expression solve(L) does not have
a finite number of most general variants and, thus, symbolic reachability would
be able to find the solution given enough time and memory while the variant
generation is incapable of finding it.

7 Conclusions

We have tried to illustrate how concurrent constraint functional logic programs
can be written and executed by using the novel infrastructure of narrowing
as symbolic reachability in Maude. This paper shows how Maude goes beyond
standard practices in the functional logic area by using, e.g. equational properties
such as associativity and commutativity or an order-sorted setting. A detailed
comparison of features that are available in Curry or Maude is outside of this
paper, as well as a performance comparison between both languages.
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1 Introduction

Scientific fields undergo successive phases of specialization and unification.
The field of programming languages is in a phase of specialization. Among the main

programming paradigms are imperative programming, functional programming, logic
programming, object oriented programming, concurrent programming and distributed
programming. Each of these fields is further specialized. For example, there are many
different paradigms for functional programming: LISP, Mac Carthy’s original func-
tional programming paradigm based on pure lambda-calculus for lists enriched with
recursion; ML, Milner’s paradigm based on a typed lambda-calculus enriched with
data types, a let construct and recursion which has become a standard; O’Donnel’s
paradigm based on orthogonal rewriting; and OBJ, Goguen’s paradigm based on termi-
nating rewriting in first-order algebra to cite a few. Similarly, logic programming has
given rise to constraint logic programming, as well as query languages for data bases.

Bridges have also been built across these programming languages: OCaml is a func-
tional programming language with modules, objects, inheritance, and more [18].
MAUDE is a functional, rewriting-based, programming language supporting concur-
rency [16]. Similar to MAUDE, CafeOBJ [3] supports in addition behavioural de-
scriptions [17]. Functional, logic and constraint programming coexist in CoqMT [20].
Bridges have also been built at the more abstract level of programming paradigms.
For one example, Kirchner’s rho-calculus is an attempt to unify lambda-calculus and
rewriting [12]. Meseguer’s rewriting logic can be seen as an attempt to unify terminat-
ing rewriting with process algebra [15]. Concurrent logic programming is constraint
logic programming with concurrent access to a store representing the current state of
shared logical facts [19]. Attempts of unifying functional and logic programming are
numerous, although not entirely conclusive so far.

In the area of functional programming, we think that a unification phase has started,
and our goal in this paper is to contribute to this trend.

The theory of functional programming languages relies on two major properties of
rewriting, its computation mechanism: a syntactic property, called confluence, and a
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semantic property, called type preservation. Rewriting is a recursive relation on two
expressions of the same type, such as arithmetic on natural numbers. Such a relation
is usually non-deterministic, hence the result could depend on particular choices made
by the interpreter or compiler. Confluence is the property expressing that rewriting is
deterministic, that is, the result does not actually depend upon a particular evaluation
path. Type preservation expresses the property that the input and the output have the
same functional behaviour. Our interest in this paper is in confluence, and our goal is to
unify techniques for checking confluence of a given rewriting relation, independently
of the rewriting mechanism itself, and of its termination properties.

1.1 Confluence Checking: The Principles

Historically, confluence checking has been influenced by a few foundational works, for
terminating rewriting, and for non-terminating rewriting independently. In both cases,
there are abstract results at the level of relations on a set, and concrete results elaborating
upon the abstract one in the case of a concrete structure on which the computation takes
place.

Let −→ be a binary relation on an abstract set S, called rewriting. We denote by
−→= its reflexive closure, by−→∗ its reflexive, transitive closure called derivation, and
by←→∗ its reflexive, symmetric, transitive closure called conversion. A triple s, u, v is
called a local peak if u←− s−→ v, a peak if u ∗←− s−→∗ v. A conversion u

∗←→ v

is joinable if u−→∗ t ∗←− v for some t and strongly joinable if u−→= t =←− v. The
rewriting relation −→ is Church-Rosser (resp., confluent, locally confluent) if every
conversion (resp., peak, local peak) is joinable. It is strongly confluent if every local
peak is strongly joinable.

As for the terminating case, Newman proved that confluence of an abstract rewriting
relation is reducible to local confluence, while Knuth and Bendix, followed by Huet,
proved that local confluence of a rewriting relation on terms is reducible to the join-
ability of specific local peaks called critical. For the non-terminating case, Hindley
proved that confluence of an abstract rewriting relation is reducible to its strong conflu-
ence, while Tait proved that parallel rewriting in lambda-calculus is strongly confluent,
which implies confluence. Driven by the many applications, the terminating branch of
rewriting specialized further into rewriting modulo, constraint rewriting, higher-order
rewriting and normal rewriting to cite a few. On the other hand, the non-terminating
branch kept its unity by generalizing Tait’s result to orthogonal rewriting systems, an
important class of strongly confluent, concrete rewriting systems.

In the recent years, techniques for proving confluence have been revisited so as to
start the unification process.

First, van Oostrom succeeded to capture Newman’s and Hindley’s results under a
unique, more expressive new approach in which each rewrite step on a given abstract
set is decorated by elements belonging to an abstract set of labels equipped with a
well-founded order �. Define a decreasing diagram for a local peak u←−

l
s−→

m
v as a

conversion u
∗−→

(�l)∗
=−→
m

∗−→
(�l,m)∗

∗←−
(�l,m)∗

=←−
l

∗←−
(�m)∗

v. Then rewriting is confluent if every

local peak has a decreasing diagram. It is easy to see that joinability for terminating
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relations and strong joinability for arbitrary relations are particular decreasing diagrams.
A general form of decreasing diagram is described in [24], which is more flexible for
practical use.

Second, all important results belonging to the terminating branch have been unified
by Jouannaud and Li under the concept of a Normal Abstract Rewriting System [8].
There are two main ideas behind NARSes. Rewriting is defined again on an abstract set,
but each rewrite step is now decorated by a subset Pp of an abstract set P of positions
equipped with a well-founded order >, p being the minimum of Pp. It is then possible

to characterize whether a local peak u
Pp←− s

Qq−→ v is a disjoint peak (p#q), an ancestor

peak (q > Pp), or a critical peak (q ∈ Pp) and to reduce confluence of a NARS to the
joinability of its abstract critical peaks. The framework of NARSes appears therefore to
be intermediate between abstract and concrete rewriting. Indeed, normal rewriting can
specialize to all important concrete rewriting relations that have been introduced in the
terminating case, and the associated notions of critical pairs are indeed instances of the
abstract ones defined for a NARS.

1.2 Weaknesses of Decreasing Diagrams

Van Oostrom showed that the method of decreasing diagrams is complete under the
countability assumption, that is, every confluent countable system can be labelled in
such a way that its local peaks have a decreasing diagram. The proof uses Klop’s notion
of cofinal derivation for each convertibility class, which is a (possibly infinite) sequence
{ti}i<I≤ω of terms such that (∀i �= 0) ti−1−→ ti, and (∀s ∈ O) s−→∗ ti for some i <
I . Then, a step s−→ t is labelled by 0 if it belongs to the cofinal derivation, and by 1
plus the minimum distance of t to the cofinal derivation otherwise. It is quite easy to
verify that all peaks have a decreasing diagram for that labelling.

Since Klop’s notion of cofinal derivation is non-constructive, this result does not
tell us how to guess the labelling we need. On the other hand, it could give us hints.
Unfortunately, this is not the case if we look for a local labelling, that is a mapping from
rewrite steps to labels. Consider for example a confluent system made of two distinct
convertibility classes C1 and C2, the first having a cofinal derivation reduced to a single
element a, and the second having an infinite one {ti}i<ω. Let us add the rewrite step
a → t1000. Then, the resulting system is still confluent, but the union of both cofinal
derivations is not a cofinal derivation. Of course, {ti}i<ω is a cofinal derivation for the
union, but the labels of all steps in C1 must be increased by one. {a, ti≥1000} is another
with a similar effect on many steps in C2. This shows that labelling can hardly be local.

A major strength of decreasing diagrams is that they capture Hindley’s Lemma as
well as Newman’s Lemma. To prove it, it suffices to label the rewrite steps by the same
label in the first case, and by the origin s of the step s → t in the second. Doing
so, we obtain a constructive labelling, rather than using the completeness result itself
(which we could do). Of course, all known criteria for confluence of abstract relations
are covered by van Oostrom’s result, as a result of completeness. It however comes as
a surprise to us that in each case, a labelling can be built. Assume P is a recursive set
of confluent relations. Then, we would like to exhibit a recursive function LP taking
as input a relation R ∈ P and returning a labelling function for R which satisfies
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van Oostrom’s assumptions. If such a function exists for every P , then we say that van
Oostrom decreasing diagrams method is constructively complete. We suspect a negative
answer to the open question whether this holds. Indeed, no constructive labelling is
known for Huet’s generalization [7, Lemma 2.5] of Hindley’s Lemma.

To overcome this particular weakness, van Oostrom introduced a generalization of
decreasing diagrams for local peaks that he calls commutation diagrams. The idea is
to duplicate the original rewrite relation −→ as −→ and −→. Then any step in a con-
version is painted in blue if heading to the left, and in red if heading to the right. We
shall prefix all notions by the word coloured. The coloured version of van Oostrom’s
theorem says that coloured confluence (or commutation) follows from the coloured
joinability of coloured local peaks. Coloured confluence implies confluence provided
the transitive closures of both relations coincide with the transitive closure of the start-
ing relation. Refining Tait’s idea for showing confluence of the lambda-calculus, we can
indeed paint in blue the starting relation, and in red its transitive closure. Coloured con-
fluence can be much easier to prove than confluence of the original relation, because
the two coloured relations can have very different labellings, giving more flexibility.
Whether the coloured version of van Oostrom’s method is constructively complete for
abstract relations is open, but there is now a constructive labelling for the commutation
version of Huet’s generalization [7, Lemma 2.5] of Hindley’s Lemma. We shall indeed
prove that the most important criteria among those we know of can be proved with a
constructive labelling when using coloured diagrams, which shows their importance.

The situation gets more complex when it comes to rewrite systems. Van Oostrom’s
framework is abstract, only constants are rewritten. The framework therefore allows
for critical peaks only: a constant a rewriting to constants b and c. Disjoint peaks en-
joy a decreasing diagram for any well-behaved labelling. Our experience is that dif-
ficulties come essentially from ancestor peaks, which exist when terms have a nested
structure. Ancestor peaks are joinable in various ways, depending on whether or not
a given variable may have multiple occurrences in the lefthand or righthand sides of
a given rule. These joinability diagrams are not decreasing in general, unless the rules
are both left- and right-linear, or simply left-linear, but the technicalities get more com-
plex. Indeed, another result of Huet, called parallel closedness criterion, says that a
left-linear system is confluent if all its critical peaks s←−u−→ t satisfy the condi-
tion s−→p1 . . .−→pn t where {pi}i∈[1..n] is a set of pairwise disjoint occurrences. We
shall prove it, as well as its generalization [22], by blending coloured multi-labelled di-
agrams with positional rewriting in order to abstract these results from a particular term
structure. Multi-labelling refers to a powerful extension of van Oostrom’s technique
allowing for global interpretations defined locally by a sequence of labels.

1.3 Organization

Our goal is to lift van Oostrom’s result to abstract positional rewriting, so as to capture
the concrete results in both the terminating and the non-terminating case. Our abstract
framework of (multi-) labelled abstract positional rewriting systems is described in Sec-
tion 2 together with our strategy for proving confluence. We will review in subsequent
sections several important results which are characteristic of the literature on conflu-
ence, and derive them as concrete cases of a same schema. On this journey, we are not
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going to consider all rewriting notions captured by a NARS, but only plain and parallel
rewriting, the general case of NARS being left for future work.

2 Labelled Positional Rewriting

Labelled positional rewriting brings together labelled rewriting as defined by van Oost-
rom and positional rewriting as introduced by Jouannaud and Li. As a consequence,
our notations are possibly heavier than usual, and sometimes heavier than needed. We
assume given:

– a set L, which elements are called labels, equipped with a partial quasi-order �
which strict part � is well-founded. We write m = n (resp., m#n) for equivalent
(resp., incomparable) labels m,n, and α � l (resp., l � α) if m � l (resp., l �m)
for all m in the multiset (or sequence) α of labels ;

– a set P which elements are called positions, equipped with a partial well-founded
order >P , writing p#q for incomparable positions p, q, satisfying the axiom: p′#q
if p′ >P p and p#q, a binary (infix) concatenation operation ·, and a minimum Λ

satisfying the axioms: p · Λ = Λ · p = p and p · q >P p provided q �= Λ. Given a
set of positions Q, we let p ·Q := {p · q | q ∈ Q} ;

– a set O which elements are called terms.

2.1 Domains

A domain Pp is any non-empty, downward closed set of positions p′ ≥P p, that is, such
that p′ ∈ Pp and p′ ≥P q ≥P p imply q ∈ Pp (hence, p ∈ Pp). In some cases, p will
not be mentioned, writing then P instead of Pp. Given a position p and a domain Qq,
it is easy to verify that p · Qq is a domain of minimum p · q. In practice, a domain is
meant to be the set of non-variable positions of some left-hand side of rule in a term.
We denote by DP the set of domains over P . We use the letters p, q for positions and
the notations Pp, Qq (or P,Q) for domains.

We write p >P Q if (∃q ∈ Q) p >P q and (∀q ∈ Q) q �≥P p, and Qq >P Pp if
q >P Pp. Two domains Pp, Qq are parallel or disjoint, written Pp#Qq if p#q.

We use the letters Γ,Δ for multisets (or sequences) of domains, and specifically
Π,Θ for sets (or sequences) of pairwise parallel domains, which set is denoted by
D//P .

We write: Γ#Pp if (∀Qq ∈ Γ )Qq#Pp ; Γ#Δ if (∀Pp ∈ Γ )Pp#Δ ; Γ ∈ Pp if
(∀Qq ∈ Γ ) q ∈ Pp ; Γ ≥P p if (∀Qq ∈ Γ ) q ≥P p ; Γ >P Pp if (∀Qq ∈ Γ )Qq >P
Pp ; Pp �� Qq if p �∈ Qq ∧ q �∈ Pp ; Γ �� Δ if (∀Pp ∈ Γ )(∀Qq ∈ Δ)Pp �� Qq.

We shall freely use the following straightforward key property of domains, which
first three cases are called respectively “disjoint case”, “critical case” and “ancestor
case” in the literature:

Lemma 1. (∀p, q ∈ P)(∀Pp ∈ DP )(q#p ∨ q ∈ Pp ∨ q >P Pp ∨ p >P q).
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2.2 Rewriting

We now consider relations generated by labelled, positional rewrite steps of the form

s
l−→
Pp

t for s, t ∈ O, l ∈ L and Pp ∈ DP , and may omit any of l, s, t or Pp. Given

an arbitrary labelled positional rewrite step
l−→
Pp

, we denote its projection on O × O

by −→, its inverse by
l←−
Pp

, its reflexive closure by
l−→=
Pp

, its symmetric closure by
l←→
Pp

,

its reflexive, transitive closure, called derivation or reachability, by
α−→→
Γ

for some se-

quences α of labels and Γ of domains, and its reflexive, symmetric, transitive closure,
called convertibility by

α←←→→
Γ

. Mention of l, Pp, α, Γ may be altogether omitted, or

abbreviated appropriately, in general by the property that they satisfy, as in
l−→

≥Pp
.

We call conversion, the sequence u0
l1←→
P 1

p1

. . .
ln←→
Pn

pn

un of steps witnessing the mem-

bership of a convertible pair (u0, un) to
α←←→→
Γ

for some α, Γ .

The triple (v, u, w) is called a local peak if v
m←−
Pp

u
n−→
Qq

w, a peak if v
α←←−
Γ1

u
β−→→
Γ2

w,

and a valley if v
α−→→
Γ1

u
β←←−
Γ2

w, and the pair (v, w) is then said to be locally divergent,

divergent and joinable respectively. The relation −→ is said to be (locally) confluent if
every (locally) divergent pair is joinable, and Church-Rosser if every convertible pair is
joinable.

Conversions can be coloured as explained in the introduction, rewrites heading left
in blue and those heading right in red. All notions have therefore a coloured version,
which is from now on the one we consider, the uncoloured one being obtained by taking
identical labellings for both colours.

2.3 Rewriting Axioms

According to Lemma 1, there are three kinds of local peaks: disjoint peaks if q#p,
ancestor peaks if q >P Pp, and critical peaks if q ∈ Pp.

We classically assume that rewriting satisfies three (unlabelled) axioms, one for dis-
joint peaks, one for ancestor peaks and one for parallel steps, which are displayed in
Figure 1, where Π1 and Π2 are supposed to be sequences of pairwise parallel domains.
The (universally quantified) assumptions are pictured with plain arrows, while the (ex-
istentially quantified) conclusions are pictured with dashed arrows.

In case rewrites are coloured, there are indeed two versions of the ancestor peak
axiom, depending which colour is above the other.

The following lemma follows from the parallel steps axiom:

Lemma 2. Given a set of domains Π ∈ D//P , and two enumerations Π1 and Π2 of
Π , then s−→→

Π1

t iff s−→→
Π2

t.
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(i) Disjoint peak

s

�
�

���
Pp

u

�
�
���

Qq

vq#p

�
Qq

�
Pp

w

(ii) Ancestor peak

s

�
�

���
Pp

u

�
�
���

Qq

vq >P Pp

��
Π1

t
��

Π2

w�
Pp

(iii) Parallel steps

s

�
�
��	
Pp

u

�
�
���

Qq

vq#p

�
Qq

	
Pp

w

Fig. 1. Positional rewriting axioms

We can therefore define parallel, positional rewriting as the relation such that s=⇒
Π

t

iff s−→→
Π1

t for an arbitrary enumeration Π1 of the set Π of parallel domains. The fol-

lowing straightforward properties of parallel rewriting are important:

Lemma 3. s =⇒
{Pp}

t iff s−→
Pp

t.

Lemma 4. Assume that Π#Θ. Then s =⇒
Π∪Θ

t iff s=⇒
Π

u=⇒
Θ

t for some u.

2.4 Local Diagrams

Given a rewriting relation −→ on a set O, we first consider specific sub-relations of
←←→→ made of a local peak and an associated conversion called local diagrams and
recall the important subclass of van Oostrom’s decreasing (local) diagrams and their
main property: a relation all whose local diagrams are decreasing enjoys the Church-
Rosser property, hence confluence.

Decreasing diagrams were introduced in [23]. In this paper, we use their most general
incarnation defined in [24], where it is shown that they imply confluence. Since these
notions relate to labels and not to positions, we shall omit positions in the coming
definitions. Further, we shall only consider coloured diagrams as already announced.

Definition 1 (Coloured local diagram). A coloured local diagram D is a pair made
of a coloured local peak Dpeak = v←− u−→ w and a coloured conversion Dconv =
v←←→→w. We call diagram rewriting the rewriting relation =⇒D on coloured conver-
sions associated with a set D of coloured local diagrams, in which a local peak is
replaced by one of its associated coloured conversions:

P Dpeak Q =⇒D P Dconv Q for some D ∈ D

Note that rewriting a coloured conversion yields indeed a coloured conversion. In the
sequel, the colouring will remain implicit.
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Definition 2 (Decreasing local diagram).
A local diagram with peak v

m←−u
n−→w is decreasing if its conversion has the

form v
α←←→→s

n−→=s′
γ←←→→t′ m

=←−t β←←→→w, with labels in α (resp. β) strictly smaller than

m (resp. n), and each label in γ strictly smaller than m or n. s
n−→=s′ and t′ m

=←−t are

called the facing steps of the conversion. We often talk of decreasing diagrams, omitting
the word local.

Theorem 1 ([24]). A labelled, abstract rewriting relation is coloured Church-Rosser
(hence coloured confluent) if all its coloured local peaks have a decreasing diagram.

In [11], Jouannaud and van Oostrom proved Theorem 1 by diagram rewriting. De-
spite the fact that it is proved there for uncoloured conversions, the proof applies with-
out any change to coloured conversions, since rewriting a coloured conversion yields a
coloured conversion. This is not quite the case of van Oostrom’s original proofs which
adaptation requires duplicating the lemmas relating to his lexicographic maximum mea-
sure used for carrying inductive proofs [23]. The idea of the proof based on diagram
rewriting is to define a measure on conversions that decreases when replacing a local
peak by the conversion associated to its decreasing diagram. Termination of diagram
rewriting then implies the Church-Rosser property, thus confluence. A simpler measure
is introduced in [9]. Yet another, related measure is given in [6]. We shall give here a
simple measure which blends the latter two:

Definition 3. The interpretation of a conversion P is defined as the multiset [|P |] :=
{〈l, T 〉 |P = T

l−→H orP = H
l←−T }. Conversions are compared in the quasi-order

P   Q iff [|P |] ((�,  )lex)mul [|Q|], which equivalence is the equality P == Q iff
[|P|] ((=,==)lex)mul [|Q|].

Here is the main property of the above order, implying Theorem 1:

Lemma 5.   is a partial quasi-order, which strict part "" is well-founded, and such
that PDpeakQ""PDconvQ for any decreasing diagram D and conversions P,Q.

This property is proved first in [11] with a complex order, in [9] with a simpler,
related order, and in [6] with a slightly different, albeit more complex order. The order
given here is the simplest possible, and its proof is very similar to [9].

We now consider multi-labelled abstract rewrite systems, for which each single
rewrite step is labelled by a sequence [l1, . . . , ln], each label li belonging to a set Li

equipped with an order �i which strict part �i is well-founded. The sequence itself is
not a label, this would then be a labelled system as before and we would use the word
tuple instead.

Definition 4. Given a labelled rewrite system R, a local diagram D is stable if for any
two conversions P,Q, PDpeakQ == PDconvQ.

The existence of stable diagrams depends on the properties of the order on conver-
sions. If this order is monotone, as is the one introduced in [6], then the above condition
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reduces to Dpeak == Dconv. If it is not, as are the present one and those introduced
in [11,9], then the property must be checked whether it holds or not for a given diagram.
The following simple stable diagram is used in Theorem 8:

Lemma 6. Let Dpeak = v
m←− u

n−→w and Dconv = v
m←−u′ n−→w. Then D is a

stable diagram.

Theorem 2. An n-labelled abstract rewriting relation is coloured Church-Rosser
(hence coloured confluent) if, for each local peak there exists some j ≤ n such that
the local peak enjoys a stable diagram for every ith-label with i < j and a decreasing
diagram for its jth-label.

Proof. Conversions now decrease in the order (  1, . . . ,  n)lex when a local peak is
replaced by its associated conversion. #$

The use of an n-labelled relation is actually different from the use of the tuple
〈l1, . . . , ln〉 as a (single) label, since the order (  1, . . . ,  n)lex is different from the
order  generated by the n-tuple of labels. Multi-labelled systems are indeed a way to
use labelling as a complex global interpretation on conversions, while still concentrating
on local peaks.

We will show the important impact of this seemingly small extension of van Oost-
rom’s technique in Theorem 8.

3 Terminating Systems

In this first application of Theorem 2, we assume a single colour and a single label,
which means rewriting relations are 1-labelled, that is, van Oostrom’s original labelling
technique as described by Theorem 1 suffices. We further make three key assumptions
throughout this section:

(i) rewriting satisfies the axioms for disjoint and ancestor peaks ;
(ii) the rewrite relation is terminating ;
(iii) we use self-labelling: a rewrite step u−→ v is labelled by u.

Note that self-labelling is made possible by assumption (ii), labels being compared
in the order −→→ . The following important lemma is straightforward:

Lemma 7. Joinable local peaks enjoy a decreasing diagram.

The result then follows:

Theorem 3. A terminating labelled positional rewriting relation satisfying the axioms
for disjoint and ancestor peaks is confluent iff all its critical peaks are joinable.

Proof. Using Lemma 7. #$

Terminating, first-order rewriting satisfies Theorem 3, possibly the most celebrated
result on the topic [14]. So do Church’s simply typed λ-calculus [1], another cele-
brated result, and more generally orthogonal systems [13] and algebraic, functional
languages [10].
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4 Linear Systems

In this second application of Theorem 2, we assume two colours and a single label.
We further make a key assumption about the labelling and joinability of disjoint and
(duplicated) ancestor peaks, which is displayed at Figure 2.
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Fig. 2. Linear axiom for disjoint and ancestor peaks

These revised axioms for disjoint and linear ancestor peaks are indeed decreasing
diagrams. Note that comparing rewrite positions breaks the symmetry between the two
colours, which results in two different axioms for ancestor peaks.

We still need to care about critical peaks, and again, comparing positions will break
the symmetry between two colours, which will result this time in three kinds of critical
peaks, the new kind corresponding to the case where the two rewrite positions are equal.

– top critical peaks: u
m←−
Pp

s
n−→
Qq

v with q = p

– red subterm critical peaks: u
m←−
Pp

s
n−→
Qq

v with q ∈ Pp \ {p}

– blue subterm critical peaks: u
m←−
Pp

s
n−→
Qq

v with p ∈ Qq \ {q}

The following result follows easily from Theorem 2 and Lemma 1:

Theorem 4. A labelled positional rewriting relation satisfying the axioms for disjoint
and linear ancestor peaks is coloured Church-Rosser if all its critical peaks enjoy a
decreasing diagram.

This result applies to any concrete system satisfying these axioms, which are very
restrictive since they are true of linear systems only. In case the two coloured relations
are identical, then we can conclude that the original relation is confluent. The particular
case of first-order linear rewriting appears in [25], with a similar uni-coloured analysis.

Notice that critical peaks need be duplicated in the coloured version, unless the su-
perposition is at the top, but not anymore if the two colours are identical, as is the case
when we are interested in a direct proof of confluence of a given relation. On the other
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hand, having two colours gives more flexibility for the labelling, hence may help in
finding decreasing diagrams for some critical pairs.

Theorem 4 implies Huet’s generalization [7, Lemma 2.5] of Hindley’s Lemma. Both
are actually direct applications of the coloured version of Theorem 1, as first noted by
van Oostrom [23].

5 Left-Linear Systems

In this section, we relax the previous assumption for ancestor peaks, by allowing for
rewriting in parallel at a set of disjoint occurrences on the right. To this end, we shall
need the full power of Theorem 2 with two colours and sequences of labels. Technically,
we shall follow Tait’s steps that we refine with an original variation by taking the given
rewriting relation as blue, and its parallel rewriting version as red. This choice will be
easier to carry out than taking parallel rewriting for both the blue and red relations as
done by Tait and his many followers.

We first introduce several kinds of local peaks needed in presence of parallel
rewriting:

Definition 5. A local peak u←−
Pp

s−→
Π

v is called a disjoint peak if Pp#Π , a (parallel)

blue/red ancestor peak if Π >P Pp, a parallel blue/red critical peak if Π ∈ Pp and
a plain blue/red critical peak if Π = {Qq} and q ∈ Pp. A local peak u←−

Pp

s−→
{Qq}

v is

called a (plain) red/blue ancestor peak if p >P Qq, and a (plain) red/blue critical peak
if p ∈ Qq.

Throughout this section, we revise the axioms for disjoint and ancestor peaks as in
Figure 3, and make four assumptions on the labels used:

– red labels are strictly larger than blue labels;
– the set of red labels is a sup-semi-lattice;
– given a parallel step s

m−→
Π

t, we assume that its label is the sup of the labels of its

elementary parallel steps. Therefore, given any Π1, Π2 s.t. Π = Π1 ∪ Π2 and
s

m1−→
Π1

u
m2−→
Π2

t for some u, then m = sup{m1,m2};

– given s
m1−→
Π1

u
m2−→
Π2

t with Π1#Π2, by Lemma 4 we have s−→
Π2

v−→
Π1

t for some v, we

further assume the labels satisfy s
m2−→
Π2

v
m1−→
Π1

t.

We useΣ to denote sequence of elements inD//P , writingΣ#Γ if (∀Π ∈ Σ)Π#Γ ,
and Σ ≥P p if (∀Π ∈ Σ)Π ≥P p.

To prepare the proof of the main theorem of this section, we need three auxiliary
lemmas:

Lemma 8. Given a derivation s
α−→→
Σ

u
n−→
Π

t s.t. Σ#Π , then s
n−→
Π

v
α−→→
Σ

t for some v.

Proof. By induction on the number of steps in s
α−→→
Σ

u and application of Lemma 4 and

our assumptions on labels. #$



348 J. Liu and J.-P. Jouannaud
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(iii) Left-linear red/blue
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Fig. 3. Left-linear axioms for disjoint and ancestor peaks

Lemma 9. Given a peak u←←−
Γ

s
n−→
Π

v s.t Γ#Π , then u
n′
−→
Π

t←←−
Γ

v for some t, n′ with

n′ � n.

Proof. By induction on the number of steps in u←←−
Γ

s and application of the axiom for

disjoint peaks. #$

Lemma 10. Given a peak u←←−
Θ

s
n−→
Π

v s.t.Θ �� Π , then u
n′
−→
Π′

t←←−
Γ

v for some t,Π ′, Γ

and n′ with n′ � n. If Θ ∪Π ≥P p is satisfied for some position p, then Π ′ ∪Γ ≥P p .
Π ′ is called the residual of Π after the derivation s−→→

Θ
u, denoted by Π/Θ.

The notion of residual is quite old. It is the key to many results, like the finite devel-
opment theorem and the standardization theorem, see [21].

Proof. The proof is by induction on the number of steps in s−→→
Θ

u.

Selecting the first step s−→
P 1

p1

u′ of s−→→
Θ

u, we have u←←−
Θ′

u′←−
P 1

p1

s
n−→
Π

v where Θ′ =

Θ \ {P 1
p1
}. To analyze the local peak u′←−

P 1
p1

s
n−→
Π

v, we split Π as Π = Π1 ∪ Π2 s.t.

Π1#P 1
p1

and Π2 satisfying either Π2 >P P 1
p1

or (∀Qq ∈ Π2)p1 >P Qq, in which case

Π2 contains one element or is empty. It follows in both cases that s
n1−→
Π1

v′ n2−→
Π2

v. By the

axiom for disjoint peaks, u′ n′
1−→

Π1

w′←−
P 1

p1

v′ for somew′ with n′
1�n1. Using now the axiom

for ancestor peaks, w′←−
P 1

p1

v′ n2−→
Π2

v can be joined by w′ n′
2−→

Π′
2

w←←−
Γ

v for some Π ′
2, Γ, w

with n′
2 � n2, where Π ′

2 ≥P p1 if Π2 >P P 1
p1

, or Π ′
2 = Π2 otherwise. In both cases,

Π ′
2#Π1 and Π ′

2 �� Θ
′, thus u′ n′

−→
Π1∪Π′

2

w←←−
Γ

v, with n′ = sup{n′
1, n

′
2}�sup{n1, n2} =

n and Θ′ �� (Π1 ∪ Π ′
2). If there exists some p s.t. Θ ∪ Π ≥P p, it is easy to see

Θ′ ∪Π1 ∪Π ′
2 ∪ Γ ≥P p.
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Applying the induction hypothesis to the peak u←←−
Θ′

u′ n′
−→

Π1∪Π′
2

w yields the result. #$

The following result follows:

Theorem 5. Assuming that parallel steps have labels which are strictly larger than
the labels of plain steps, a labelled positional rewriting relation satisfying the axioms
for disjoint and left-linear ancestor peaks is confluent if its critical peaks satisfy the
decreasing diagrams in Figure 4:

(i) Parallel blue/red critical peaks
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(ii) Plain red/blue critical peaks
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Fig. 4. Assumptions for critical peaks

Proof. We show that every local peak u
m←−
Pp

s
n−→
Π

v has a decreasing diagram. There are

three cases according to the comparison between Pp and Π :
(i): (∀Qq ∈ Π)Pp �� Qq. We conclude by Lemma 10.
(ii): (∃Qq ∈ Π)q ∈ Pp \ {p}. The proof is represented in Figure 5. We first split

Π into Π = Π1 ∪ Π2 ∪ Π3 with Π1 := {Qq ∈ Π | q ∈ Pp}, Π2 := {Qq ∈
Π | q >P Pp} and Π3 := {Qq ∈ Π | q#p}, hence s

n1−→
Π1

v1
n2−→
Π2

v2
n3−→
Π3

v by Lemma 4,

and n = sup{n1, n2, n3} by assumption on labels of parallel steps. By assumption, the

blue/red critical peak u
m←−
Pp

s
n1−→
Π1

v1 has a conversion u
�m←←−t n′

1−→
Θ1

t′1
α−→→
Σ

w1←←−
Θ2

v1, with

Θ2 �� Π2, Θ1 ∪ Θ2 ≥P p, Σ ≥P p, n′
1 � n1 and α � n1 � n. By Lemma 10, the

peak w1←←−
Θ2

v1
n2−→
Π2

v2 can be joined by w1
n′
2−→

Π′
2

w2←←−
Γ

v2 where n′
2�n2 and Π ′

2∪Γ ≥P

p. For the peak w2←←−
Γ

v2
n3−→
Π3

v, since Pp#Π3 by definition, we have Γ#Π3, hence

w2
n′
3−→

Π3

w←←−
Γ

v by Lemma 9 with n′
3�n3. By assumption in Figure 4(i), Σ#Π ′

2, hence

t′1
n′
2−→

Π′
2

t′2
α−→→
Σ

w2 by Lemma 8. We also have t′2
n′
3−→

Π3

t′ α−→→
Σ

w since Σ ≥P p and Pp#Π3.
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Thanks to the assumption in Figure 4(i), Θ1#Π ′
2. Since Θ1 ≥P p, Π ′

2 ≥P p and

Pp#Π3, t
n′

−−−→
Θ1∪Π′

2∪Π3

t′ by Lemma 4, where n′ = sup{n′
1, n

′
2, n

′
3}�sup{n1, n2, n3} =

n. The local peak u
m←−
Pp

s
n−→
Π

v has therefore a decreasing conversion, namely

u
�m←←−t

n′
−−−→

Θ1∪Π′
2∪Π3

t′ �n−→→
Σ

w←←−
Γ

v.
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Fig. 5. Proof of Theorem 5. Case(ii)

(iii): (∃Qq ∈ Π)p ∈ Qq. We first split the step s
n−→
Π

v into s
n1−→

{Qq}
v′ n3−→

Π3

v where p ∈

Qq and Π3 = Π \ {Qq}. By assumption, the plain red/blue critical peak u
m←−
Pp

s
n1−→

{Qq}
v′

admits the conversion u
�m←←−t�n1−→

Θ1

t′1
�n1−→→
Σ

w1←←−
Γ

v′ where Γ ≥P q, Σ ≥P q and Θ1 ≥P
q. Since Qq#Π3, we have Γ#Π3, Σ#Π3 and Θ#Π3. Then the proof continues simi-
larly as in case (ii). #$

Note that the rewrites from v to w in Figure 4(i) are pairwise disjoint, while those in
Figure 4(ii) are arbitrary, making these two figures incompatible when Π = {Qp}. In
fact, we can define a more general, but also more complex condition than the one given
in Figure 4(i).

Definition 6. Given a derivation t←←−
Γ

s and a set Π of pairwise parallel domains, we

say that Γ and Π are overlap-free, written Γ ��∗ Π , iff Γ = nil, or t←←−
Γ ′

t1←−
Pp

s,

(∀Qq ∈ Π)Pp �� Qq and one of the following three conditions holds :
Case (i): Pp#Π; then Γ ′ ��∗ Π .
Case (ii): (∃Qq ∈ Π) p >P Qq; then Γ ′ ��∗ Π .
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Case (iii): Π1 := {Qq ∈ Π | Qq >P Pp} �= ∅; then Γ ′ ��∗ Π ′
1 ∪ Π2, where

Π2 = Π \Π1 and Π ′
1 := Π1/{Pp}.

Note that for any Θ,Π ∈ D//P , Θ ��∗ Π if Θ �� Π . Then extensions of Lemma 10
and Theorem 5 follow easily:

Lemma 11. Given a peak u←←−
Γ

s
n−→
Π

v s.t. Γ ��∗ Π , then u
n′
−→
Π′

t←←−
Γ ′

v for some t,Π ′,

Γ ′ and n′ with n′�n. If Γ∪Π ≥P p is satisfied for some position p, then Π ′∪Γ ′ ≥P p.
We shall overload the word residual and call Π ′ the residual of Π after the derivation
s−→→

Γ
u, denoting it by Π/Γ .

Theorem 6. Assuming that parallel steps have labels which are strictly larger than
the labels of plain steps, a labelled positional rewriting relation satisfying the axioms
for disjoint and left-linear ancestor peaks is confluent if its critical peaks satisfy the
decreasing diagrams in Figure 4, replacing in Figure 4(i) Θ2 with Γ , and the bottom
condition with the following one:

(∀Π ′#Π s.t. Π ′ >P Pp and v−→
Π′

v′)

(Γ ��∗ Π ′, Θ1# Π ′/Γ and Σ# Π ′/Γ ).

Proof. Same proof as for Theorem 5, replacing Lemma 10 by Lemma 11. #$

With this new condition, take Π = {Qq} with p = q in Figure 4(i), giving then birth
to a top critical peak. Then, the set Π ′ satisfying the condition above would be empty
and the condition be trivially satisfied, making both figures identical in this case. This
explains the condition Π ∈ Pp \ {p} in Figure 4(i), to avoid the duplication that would
occur with p = q.

The overlap-free condition on Γ and Π ′ given in the theorem is somewhat compli-
cated, because we cannot talk about variables at the abstract level. On the other hand,
the condition will become quite simple at the concrete level where the notion of variable
is available. This lack of expressivity of the abstract language is an obstacle for obtain-
ing a better result. However, Theorem 6 can be improved to the price of an even more
complex definition of overlap-freeness. More precisely, in the diagram of Figure 4, the
conversion from t′ to v could use an alternation of red steps at positions in Σi and blue
steps at positions in Γi. We did not try to formulate the necessary adaptation of the
notions of overlap-freeness ��∗ and residual / , therefore left to the interested reader.
The improvement enabled by such a machinery would be marginal.

5.1 First-Order Left-Linear Systems

Theorem 6 gives sufficient conditions for an abstract rewriting relation to be confluent.
We shall now consider the concrete case of first-order rewrite systems. To this end, we
need to show that first-order rewriting satisfies our axioms, and that the abstract notion
of critical peak leads to the usual concrete notion of critical pair. We refer to [2] for the
basics of first-order term rewriting.

Accordingly, we denote by: Var(s) the set of variables occurring in s ; #x(s) the
number of occurrences of the variable x in s ; Pos(s), the set of positions of the term
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s ; s|p the subterm of s at position p ∈ Pos(s) ; s[u]p the term obtained by replacing
s|p by u ; s[u1, . . . , un]p1,...,pn the term obtained by replacing s|pi by ui for i ∈ [1..n] ;
sσ the instance of s by the substitution σ ; |s| the size of the term s ; l → r the rewrite
rule of lefthand side l and righthand side r. Rewriting a term s with a rule l → r at
position p with the substitution σ is the relation between the terms s[lσ]p and s[rσ]p. lσ
is called a redex and rσ its associated reduct.

We shall assume that the label of a plain rewrite step v←−
Pp

u is the integer 0 while the

label of a parallel step u−→
Π

v is the integer 1, which satisfies our abstract assumption

that the labels of parallel steps are strictly larger than that of plain steps. It also satisfies
obviously the properties of labels for parallel steps.

Definition 7. Given a rule l → r, a set of rules {gi → di}i≤n and a set of disjoint
positions {pi ∈ Pos(l)} such that the unification problem l|pi = gi has most general
unifier γ, then the pair (rγ, lγ[. . . diγ . . .]...pi...) is a parallel red/blue critical pair (a
plain critical pair if n = 1) of the rules g1 → d1, . . . , gn → dn onto l→ r at positions
p1, . . . , pn. A top critical pair is a plain critical pair with p1 = Λ. Others are subterm
critical pairs. Plain blue/red critical pairs are defined as expected.

There is no need for duplicating top critical pairs, we shall therefore consider that
they are plain blue/red pairs, as in the abstract case. Decreasing diagrams for these pairs
are obtained by instantiating the diagrams of Figure 4 and formulating their conditions
appropriately:

Definition 8. Plain blue/red critical pairs are said to be decreasing if they satisfy the
diagram of Figure 4 (ii).

Parallel red/blue critical pairs are said to be decreasing if they satisfy the diagram
of Figure 4 (i), replacing Θ2 by Γ , allowing domains that are not disjoint, with the con-
ditions Var(t′|Θ1) ⊆ Var(s|Π) and (∀ si−→

Θi

ti ∈ t′−→→
Σ

w)(Var(ti|Θi) ⊆ Var(s|Π)).

This elegant condition is due to Bertram Felgenhauer [5]. It indeed follows quite
naturally in the case of first-order terms from the abstract condition given at Figure 4.
Note however that Felgenhauer’s decreasing diagrams are different from ours since the
labelling technique is not the same: he uses rule-labelling, each rule coming with an
integer index. Rewrite steps, whether plain or parallel, use as label the set of rule indexes
implied in the rewrite (a singleton set in case of plain rewrites). As a consequence,
plain steps may have a bigger label than parallel steps, which gives more flexibility for
building decreasing diagrams: in particular the steps between u and t in Figure 4 could
be red as well as blue in this case. An interesting question is whether our approach is
compatible with a more flexible schema for labelling plain and parallel steps.

Theorem 7. A first-order term rewriting system R is confluent if all its parallel red/blue
subterm critical pairs, plain blue/red subterm critical pairs and top critical pairs are
decreasing.

Proof. We simply need to verify the axioms and apply Theorem 6. #$

Considering (plain) higher-order systems would actually not make much difference
in the case where there are no critical peaks with beta. Such a restriction is true of
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pure lambda-calculus with explicit substitutions, since no rule has an abstraction as its
lefthand side. We do not substantiate this claim here.

5.2 When Plain Critical Pairs Suffice

The question we now investigate is whether parallel critical pairs are really needed,
or if plain critical pairs are enough. This question has received quite a lot of attention
in the past [7,22,4] under the name of parallel-closedness. Proofs all follow the same
proof pattern introduced by Huet, by induction via a quite smart well-founded order.
We will show how to obtain it, and generalize it, in van Oostrom’s coloured labelled
framework, therefore hiding this induction within the use of the labelling technique.
We shall as before state and prove our result at the abstract level of labelled rewrite
relations, therefore making it available to a wider range of rewriting applications.

In this subsection, we use Σ̃ to denote heterogeneous sequences consisting of do-
mains and sets of pairwise parallel domains, since an arbitrary conversion ←←→→̃

Σ
may

contain both (plain) blue steps and (parallel) red steps at the same time. We write Σ̃#Γ
if ((∀Pp ∈ Σ̃)Pp#Γ )∧((∀Π ∈ Σ̃)Π#Γ ), Σ̃ ≥P p if ((∀Pp ∈ Σ̃)Pp ≥P p)∧((∀Π ∈
Σ̃)Π ≥P p). We also use specific color to denote components or properties of steps
in that specific color, for example, s

α←←→→̃
Σ

t meaning α is the sequence of labels of red

steps in s←←→→̃
Σ

t. All related abbreviations come as expected.

We need a lemma blending Lemma 8 with Lemma 9 before to show the main result.

Lemma 12. Given conversion u
α←←→→̃
Σ

s
n−→
Π

v s.t. Σ̃#Π , then u
n′
−→
Π

t
α←←→→̃
Σ

v for some

t, n′, with n′ � n.

Proof. By induction on the number of steps in u
α←←→→̃
Σ

s and application of the axiom for

disjoint peaks, Lemma 4 and our assumptions on labels. #$

The main result of this section states that decreasingness of plain critical peaks im-
plies the Church-Rosser property of rewriting:

Theorem 8. A labelled, positional rewriting relation satisfying (i) our assumptions on
labels and (ii) the axioms for disjoint and left-linear ancestor peaks is coloured Church-
Rosser, hence confluent, if its plain critical peaks enjoy the following local diagrams in
Figure 6:

Proof. We apply Theorem 2 with two labels. To this end, we define an appropriate
labelling for the rewrite steps before to analyze the local peaks.

We (re-) label the plain step s
m−→
Pp

t by the sequence [m, 0], and the parallel step s
m−→
Π

t

by [m, |Π |] where |Π | denotes the size of the set Π . These labels for plain and parallel
rewriting have the following structure: the first label remains the same as the original
one in L, and is compared in the order �, while the second label is a natural number,
which is compared in the familiar order >N on natural numbers.
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(ii) Plain blue/red critical peaks
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Fig. 6. Assumptions for plain critical peaks

The first label satisfies our assumptions on labels—in particular, the (first) label for
parallel rewrites is strictly larger than the (first) label for plain rewrites—, the axioms
for disjoint and left-linear ancestor peaks, and the assumptions for plain critical peaks.
The second label will be used in case the first fails to conclude. It turns out that it
does not need to satisfy (and actually does not satisfy) the axioms and assumptions that
are required from the first. Theorem 2 allows us to use a sequence of labels possibly
satisfying different assumptions, which is impossible with Theorem 1 even if grouping
different labels as a single tuple of labels.

In the sequel, we shall omit the second label when the first allows to conclude.

Given a local peak v
[m,0]
←−−−

Pp

u
[n,|Π|]
−−−→

Π
w, we distinguish three cases:

(i): (∀Qq ∈ Π)Pp �� Qq. Using the first label, Lemma 10 concludes this case.
(ii): (∃Qq ∈ Π) p ∈ Qq. The proof is similar to Case (iii) of the proof of Theorem 5,

using Lemma 12 instead of Lemma 8 and 9.
(iii): (∃Qq ∈ Π) q ∈ Pp \ {p}. As shown in Figure 7(i), we first select Qq ∈ Π s.t.

q ∈ Pp \ {p} and split the local peak into v
m←−
Pp

u
n1−→

{Qq}
w′ n2−→

Π′
w according to Lemma 4,

where Π ′ := Π \ {Qq}. Since n = sup{n1, n2} by assumption on labels, we get

n1�n, n2�n. By assumption, we have either v
α←←−t′ β←←→→̃

Σ
w′ for some t′, α, β, Σ̃ with

α�m, β�n1 and Σ̃ ≥P q, or v
m←−w′. The proof for the former case is represented in

Figure 7(ii). Since Σ̃ ≥P q, Σ̃#Π ′, hence t′
n′
2−→

Π′
t

β←←→→̃
Σ

w for some t, n′
2 with n′

2 � n2

by Lemma 12. It then results in a decreasing diagram (using the first label only) shown

in the figure. In the latter case, the conversion v
[m,0]←−w′[n2,|Π′|]

−−−→
Π′

w is either decreasing for

the first label if n2 � n, or is stable for the first label by Lemma 6 while decreasing for
the second, as displayed at Figure 7(iii), which concludes the whole proof.

#$
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The black dashed lines here relate two copies of a same term in order to make the picture
looking better.

Fig. 7. Proof of Theorem 8. Case (iii)

Following Felgenhauer [4], the right diagram of Figure 6(ii) can probably be relaxed
by adding extra blue steps from v at arbitrary positions larger than q. We have not yet
succeeded capturing this improvement in our setting.

Now we can turn our attention to concrete, first-order rewriting systems, using the
above abstract result to prove Toyama’s generalization [22] of Huet’s parallel closedness
criterion [7]. We still use two kinds of rewriting relations: the original one as blue, and
the parallel one as red.

Lemma 13 ([22]). A left-linear term rewriting system R is confluent if for every plain
subterm critical pair 〈u, v〉 we have v−→u, and for every top critical pair 〈u, v〉 we

have v−→t←←−u for some t.

Proof. We label a plain step v←−u rewritten at position p by 〈0, |v|p|〉 and all parallel

steps by tuple 〈1, 0〉. Then to apply Theorem 8, we simply need to verify the assump-
tions on labels and the axioms on peaks. #$

Toyama’s proof is very different, based on a slight generalization of Hindley’s Lemma
that we already alluded to. As a result, it is much more involved. A further advantage
of our proof, using colours and labels, is that it makes clear the origin of these different
criteria for top and subterm critical pairs. We are indeed very surprised that Toyama was
able to come up with the right condition using Huet’s proof technique. Here, it follows
quite naturally, we believe.

Our proof technique actually shows that it is possible to generalize a little bit
Toyama’s condition for top critical pairs, as we do now.

Definition 9. A rewrite rule l → r is called size-increasing if (∀x ∈ Var(l))#x(l) ≤
#x(r) and |l| ≤ |r|. Given a term rewriting system R, we denote by Rs↑ its maximum
subset of size-increasing rules, and by −→Rs↑ the corresponding rewrite steps.
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Lemma 14. A left-linear term rewriting system R is confluent if for every plain sub-
term critical pair 〈u, v〉 we have v−→u, and for every top critical pair 〈u, v〉 we have

v
( �=Λ)∗

Rs↑←←− t′ ( �=Λ)∗←←− t−→w←←−u for some t, t′, w provided the rewrite positions of

t′ ( �=Λ)∗←←− t are pairwise disjoint.

In fact, there are various ways to generalize Toyama’s condition, based on our proof
technique, using in particular variations of the size-increasing notion. We however pre-
fer the present notion, which is clear and simple enough, and leave the possible varia-
tions to the interested reader.

6 Conclusion

We have described a general framework for proving confluence (actually Church-
Rosser) properties of rewriting systems. Our approach is axiomatic, in the sense that
we hide the term structure as long as possible, and derive concrete results from the ab-
stract ones by first verifying the axioms and then instantiating the abstract conditions.

This abstract framework is based on a generalization of van Oostrom’s approach
which turns local labels into global measures on proofs by defining appropriate orders
on conversions. It further blends this framework with the abstract notion of positions
recently introduced by Jouannaud and Li. Thanks to the abstract notion of positions, we
can reduce Church-Rosser properties of abstract rewriting relations to simple labelling
properties of certain local peaks called critical. Thanks to the use of several labels,
we can use complex inductive arguments which are actually hidden in the order used
on conversions. Finally, the use of colours to generalize the Church-Rosser property
allows us to encode and simplify old techniques based on the use of parallel rewriting
to study the properties of plain rewriting.

We have devoted limited effort to instantiate our abstract results to concrete cases,
since these instantiations are mostly straightforward in the plain rewriting setting,
whether first- or higher-order. These simple technicalities should of course be carried
out carefully in future work. Indeed, our ultimate goal is to capture the entire field
of confluence (or Church-Rosser) proofs with a single abstract theorem reducing the
Church-Rosser property of a NARS to the existence of decreasing diagrams for its crit-
ical peaks, classified with respect to the three manageable sub-components of NARSes,
the terminating, linear non-terminating, and left-linear non-terminating ones.

The case of conditional rewriting is another potential subject for future work. How-
ever, since conditions serve filtering out critical pairs instances, this issue is somehow
orthogonal to our effort. In this respect, the general case of NARSes is more impor-
tant to us. This is the direction we want to investigate first. Such a result could become
the basis of a very general implementation in which different concrete cases would be
implemented via appropriate plug-ins.

Acknowledgements. To a referee for his very careful reading.
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Foundations for Ensemble Modeling –
The Helena Approach

Handling Massively Distributed Systems with ELaborate
ENsemble Architectures�
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Abstract. Ensembles are groups of active entities that collaborate to
perform a certain task. Modeling software systems for ensemble execu-
tion is challenging since such applications are highly dynamic involving
complex interaction structures of concurrently running individuals. In
this work, we propose a formal foundation for ensemble modeling based
on a rigorous semantic framework. Our approach is centered around the
notion of a role expressing the capabilities that a component needs when
participating in a specific ensemble. We use ensemble structures to model
the structural aspects of collaborations and labeled transition systems to
specify the dynamic behavior typical for performing a certain role. Our
approach is driven by a clear discrimination between types, used on the
specification level, and instances, which form concrete ensembles in an
ensemble automaton. The semantics of an ensemble specification is given
by the class of all ensemble automata which adhere to the properties of
an ensemble structure such that any ensemble member, playing a certain
role, exhibits a behavior that is allowed by the role behavior specification.

1 Introduction

1.1 Motivation

The continuously increasing potential of new computer technologies paves the
way for developing advanced applications in which huge numbers of distributed
nodes collaborate to accomplish various tasks under changing environments.
Application domains are, for instance, environmental monitoring and simula-
tion, robotics, e-mobility and cloud computing. Such applications are typically
highly dynamic involving a complex interaction behavior between nodes. Nodes
may join or leave a collaboration, they may change location and they may au-
tonomously adapt to new conditions. Systems supporting such applications are
extremely software-intensive. In contrast to available hardware, current software
engineering practices are not sufficiently developed to support such scenarios in
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a reliable way on a semantically solid basis with sound formal specification and
verification techniques.

On this background, the EU project ASCENS [1,34] pursues the goal to de-
velop foundations, techniques and tools to support the whole life cycle for the
construction of Autonomic Service-Component ENSembles [9]. An ensemble is
understood as a collection of autonomic entities that collaborate for some global
goal. Following [27,2], a goal can be an “achieve goal”, such that the ensemble
will terminate when the goal (specified, e.g., by a particular state) is reached, or
a “maintenance goal”, such that a certain property (specified, e.g., by a system
invariant) is maintained while the system is running.

The inherent complexity and dynamics of ensembles exhibiting a collec-
tive, goal-oriented behavior is a huge challenge. Well-known techniques, like
component-based software engineering [33,31], are not sufficient for modeling
ensembles, but must be augmented with other features that allow to focus on
the particular characteristics of ensembles. While a component model describes
the architectural and dynamic properties of a (complex) target system, ensem-
bles are dynamically formed on demand as specific, goal-oriented communication
groups running on top of a target system and different ensembles may run con-
currently on the same system (dealing with different tasks). The target platform
of the system can be component-based, but it is crucial to recognize that the
same component instance may take part in different ensembles under partic-
ular, ensemble-specific roles. A component instance can play different roles at
the same time and it can dynamically change its role. Therefore, we propose to
center our approach around the notion of a role [21] and to model an ensemble
in terms of roles and their interactions to collectively pursue a certain goal.

Ensemble modeling is particularly important in the analysis phase of the
development life cycle since it allows us to concentrate only on parts of the
capabilities that a component must finally support. Each role a component can
fill represents a particular view on the component needed to solve a specific
collaborative task. In this way complexity of system modeling can be significantly
reduced.

1.2 The Helena Approach

In this paper, we propose a rigorous formal foundation for ensemble modeling
that can be used during requirements elicitation and as a basis for the develop-
ment of designs. In the Helena approach, we assume given a set of component
types. The component types define basic attributes and operations that are com-
monly available. Each role (more precisely, role type) is defined for a subset of
component types whose instances can fill the role. A role specifies particular
capabilities in terms of role attributes and role operations that are only relevant
when performing the role. The structural aspects of a collaboration are deter-
mined by an ensemble structure which consists of a set of roles (constrained by
multiplicities) and a set of role connectors determining which roles may interact
in terms of which operations. This introduces a level of security since other in-
teractions are not legal; i.e. an interaction requested by a component which does
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not fit to its current role would be a failure. For visualizing ensemble structures,
we use UML-like notations [30]. Additionally, we use labeled transition systems
to determine the dynamic aspects of a collaboration in terms of role behaviors
such that collaboration is directed towards a specific task.

Our framework supports specialization in the sense that different extensions
and interpretations of an ensemble model are possible. For instance we do not
fix any particular paradigm for interaction on the level of an ensemble structure.
Interaction could be performed by accessing knowledge in the repositories of
components, like in SCEL [17,18], it could be realized by implicit knowledge
exchange managed by the runtime infrastructure, like in DEECo [12], or it could
be based on explicit synchronous or asynchronous communication.

To provide semantics for an ensemble specification, the interaction paradigm
must be instantiated. In this paper, we show how this can be done for the case
of synchronous message passing systems. For a given ensemble specification, we
consider the class of its semantic models given by particular labeled transition
systems called ensemble automata. Each state of the system determines a set
of component instances which are currently participating in the ensemble and a
set of role instances which are currently adopted by the component instances.
Both component and role instances have a current data state determined by
their attribute values respectively. The attribute values of a component instance
ci determine the (basic) information that is shared by all role instances that ci
is currently playing. Moreover, to each role instance a control state is associated
that determines its current progress according to the behavior specification of the
corresponding role type. Transitions between ensemble states are caused either
by communication between role instances according to a role connector or when
certain management operations are performed such that component instances
join or leave an ensemble, change their role or adopt an additional role.

In the following sections, we first consider, in Sect. 2, the syntactic notions
for ensemble structures and ensemble specifications. In Sect. 3, we define their
semantic interpretations: we consider ensemble states, formed by collections of
component and role instances, and we focus on the particular case of synchronous
message passing systems for which we introduce ensemble automata as seman-
tic models of ensemble specifications. In Sect. 4, we discuss related work and,
in Sect. 5, we give a short summary and point out ideas how our approach
will be extended towards a comprehensive, semantically well-founded ensemble
development methodology.

Dedication. Our approach is strongly influenced by the school of algebraic spec-
ifications and institutions [20], including the seminal work of Prof. Futatsugi as
one of the leading architects of prominent algebraic specification languages like
OBJ2 [19] and CafeOBJ [29]. Indeed, an ensemble structure in Helena can be
considered as a signature, ensemble automata as models of that signature, en-
semble states as (higher-order) algebras, ensemble specifications as presentations
and the satisfaction relation is implicitly given by the notion of a model of an
ensemble specification. We would like to thank Prof. Futatsugi very cordially
for his important contributions to the field and for his very friendly attitude in
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scientific and private discussions. In particular, it was always a great pleasure
to discuss with him new ideas for the observational interpretation of algebraic
specifications, as supported by CafeOBJ and implemented in the CafeOBJ en-
vironment [28]. It is a pleasure for us to dedicate this work to Prof. Futatsugi
and we want to wish him many more new exciting ideas and experiences in the
future.

2 Ensemble Structures and Specifications

In the Helena approach, we tackle systems with a large number of entities which
collaborate towards a specific goal. The foundation for those systems are compo-
nents which are presented in the first subsection. To cope with the complexity of
systems with large numbers of components, we afterwards introduce the notion
of an ensemble structure as a view on a component-based system. Lastly, we
outline the specification of the dynamic behavior of roles collaborating in such
an ensemble structure to direct behavior towards the intended task.

Throughout the paper, we use a peer-2-peer network as running example
which supports the distributed storage of files that can be retrieved upon request.
Several peers of the network will work together when a file is requested. One peer
will play the role of the requester of the file, other peers will act as routers and
finally, the peer storing the requested file will appear in the role of a provider.

Notation. Whenever we consider tuples t = (t1, . . . , tn), in the following we use
the notation ti(t) to refer to ti.

2.1 Components

First, we introduce the concepts of rudimentary components providing basic in-
formation usable in all roles the component can fill. Component types are char-
acterized by attributes and operations. Attributes and parameters of operations
are not (necessarily) typed.

Definition 1 (Attributes and Operations). An attribute is a named vari-
able. An operation op is of the form op = opname(params) such that opname
is the name of the operation and params is a list of formal parameters.

Definition 2 (Attribute Values). Let A be a set of attributes and D a uni-
verse of data values. An A-state is a function δ : A→ D which assigns a value
in D to each attribute in A. The set of all A-states is denoted by DStatesA.

Let us consider this definition in the context of our running example of a
peer-2-peer network. Typical attributes in such an environment are the network
address of an entity and the list of filenames and their content which an entity
stores. The set of attributes can thus be defined as A = {address, fileNames,
contents}. The function δ1 may, for example, assign the value 198.121.1.3 to
the attribute address, [1.txt, 2.pdf] to the attribute fileNames, and some
file contents to the attribute contents.
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To classify components according to their capabilities, we introduce com-
ponent types. A component type defines the attributes and operations for all
components of that type. It forms the basis for more specialized and complex
capabilities. A component instance is a concrete instantiation of its component
type.

Definition 3 (Component Type). A component type ct is a tuple
ct = (nm , attrs, ops) such that nm is the name of the component type, attrs
is a set of attributes, and ops = 〈opsout, ops in, ops int〉 with opsout, ops in, and
ops int are sets of outgoing, incoming, and internal operations respectively.

The basic component type in a peer-2-peer network is
peer = (Peer, {address, fileNames, contents}, 〈∅, ∅, ∅〉). Each component of
component type peer has the attributes address, fileNames, and contents
and no (basic) operations, since all peer operations introduced in the sequel will
only be relevant for particular roles. For visualization, we introduce a graphical
notation for component types like in UML (cf. Fig. 1).

Fig. 1. Component type peer in graphical notation

2.2 Ensemble Structures

Components can collaborate to perform certain tasks. For this purpose, they
team up in ensembles. Each participant in the ensemble contributes specific
functionalities to the collaboration, we say, the participant plays a certain role
in the ensemble. A role (more precisely, role type) defines which types of com-
ponents can contribute the desired functionality to the overall collaboration and
enhances them with role-specific capabilities. Firstly, the role specifies the com-
ponent types of entities which are able to fill this role. Secondly, it defines role-
specific attributes to store data that is relevant for performing the role and
role-specific operations which are required to fulfill the responsibilities of the
role.

Definition 4 (Role). Let CT be a set of component types. A role r over CT is
a tuple r = (head , roleattrs, roleops) such that

– head = 〈nm, ctypes〉 declares the name nm of the role together with a finite,
non-empty set ctypes ⊆ CT of component types (whose instances can fill the
role r),

– roleattrs specifies the role specific attributes, and
– roleops = 〈roleopsout, roleops in, roleops int〉 specifies outgoing, incoming, and

internal operations provided by the role r .
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In the context of our peer-2-peer network, we consider the task of requesting
and transferring a file. To perform this task, we envision three roles: requester,
router, and provider. The requester wants to download the file. First, it needs
to request the address of the peer storing the file from the network, while using
the routers as forwarding peers of its request. Once the requester knows the
address, it directly requests the file from the provider for download. Each role
can be adopted by instances of component type peer, but exhibits different
capabilities to take over responsibility for the transfer task. The requester must
be able to request the address of the provider from a router and receive the reply.
Afterwards, it must be able to request the file from the provider and receive the
content. The router must be able to receive a request for the address, forward it
to another router, receive the reply from another router, and send it back. The
provider of a certain file must be able to receive a request for the file and send
back the content. Formally, the role of the provider peer is defined as follows:

provider = (〈 Provider, {peer} 〉, ∅,
〈{sndFile(cont)}, {reqFile(fn)}, ∅〉)

Note that for this role neither specific attributes nor internal operations are
necessary, but the requester role stores the name of the requested file in its
role-specific attribute fileName.

We use a UML-like visualization of roles annotated with the stereotype
«role type». The diagrams for the roles in the peer-2-peer network are given
in Fig. 2. They consist of three parts: the name of the role followed by the
set of component types which can fill the role, the role attributes, and the role
operations together with the modifiers out, in, and int.

Fig. 2. Roles requester, router, and provider in graphical notation

To collaborate on tasks, roles need to communicate. A role initiates the infor-
mation transfer via the call of an outgoing operation and receives information via
the reception of an incoming operation. However, for the specification of collab-
orations we do not only want to declare communication abilities of a single role,
but also to specify which roles are meant to interact by which messages. This
information is specified by a role connector (or more precisely, role connector
type). Role connectors are directed such that they can also support multicast
sending of messages.
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Definition 5 (Role Connector). Let CT be a set of component types and R be
a set of roles over CT. A role connector rc over R is a tuple
rc = (nm, src, trg, ops , rcconstraints) such that

– nm is the name of the role connector,
– src ∈ R denotes the source role from which information is transferred along rc,
– trg ∈ R denotes the target role to which information is transferred along rc,

and
– ops is a set of operations such that ops ⊆ roleopsout(src) ∩ roleops in(trg)

determine which messages can be sent along rc.

In our running example, a requester peer needs to send a download request
for a file to the provider peer. For that communication, we introduce the role
connector rfc = (ReqFileConn, requester, provider, {reqFile(fn)}). In Fig. 2
we can verify that rfc is well-formed according to Def. 5 since reqFile is an
outgoing operation for the role requester and an incoming operation for the role
provider. For the reply, we introduce the role connector sfc = (SndFileConn,
provider, requester, {sndFile(cont)}). Role connectors are visualized as shown
in Fig. 3. The first box shows the name of the role connector, the second one
the source and target role, and the last one the exchanged messages. Although
in our example rfc and sfc are only responsible for one message, role connectors
can in general allow a set of messages, some of which could also be declared as
multicast messages.

(a) Role connector rac (b) Role connector frac (c) Role connector rfc

(d) Role connector sac (e) Role connector fsac (f) Role connector sfc

Fig. 3. Role connectors providing interaction abilities in graphical notation

Roles and role connectors form the basic building blocks for collaborations in
ensembles. An ensemble structure determines the kind of teams needed to per-
form a task. An ensemble structure specifies which roles contribute to the col-
laboration and which role connectors are required for interaction. Additionally,
in an ensemble structure roles are equipped with a multiplicity which determines
how many instances may contribute. Thus, an ensemble structure specifies the
structural aspects of a collaboration.
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Definition 6 (Ensemble Structure). Let CT be a set of component types.
An ensemble structure Σ over CT is a pair Σ = (roles , conns) such that

– roles is a set of roles over CT such that each r ∈ roles has a multiplicity
mult(r) ∈ Mult and Mult is the set of multiplicities available in UML, like
0..1 or ∗,

– conns is a set of role connectors over roles such that for each rc ∈ conns, it
holds src(rc), trg(rc) ∈ roles.

The ensemble structure Σ is closed if all operations are used in connectors, i.e.
if ⋃

rc∈conns

ops(rc) =
⋃

r∈roles

(roleopsout(r) ∪ roleops in(r));

otherwise it is open.

For our peer example, we define an ensemble structure Σtransfer . The ensemble
structure is composed of a requester role (with at most one instance participating
in the ensemble), a router role (with arbitrarily many instances participating in
the ensemble), and a provider role (with at most one instance participating in the
ensemble). Communication between those roles is needed to request and receive
the provider address from the network (possibly involving several forwarding
steps via routers) and finally to request and receive the file from the provider
itself. Formally, the ensemble structure Σtransfer = (roles, conns) embraces the
two sets:

roles = {〈requester, 0..1〉, 〈router, ∗〉, 〈provider, 0..1〉}
conns = {rac, sac, frac, fsac, sfc, rfc}

In the set roles, we find each role associated with a multiplicity as mentioned
before. The role connectors in the set conns provide the means to request and
send address and file (cf. Fig. 3). We visualize ensemble structures similarly
to collaborations in composite structure diagrams in UML 2. Fig. 4 shows the
ensemble structure Σtransfer in graphical notation. Roles are depicted as boxes
with the multiplicity written in the upper right corner. Role connectors are
represented as arrows between source and target roles labeled with the connector
name.

2.3 Ensemble Specifications

After having modeled the structural aspects of an ensemble, we move on to the
specification of dynamic behaviors. A role itself declares the particular capabil-
ities needed to perform a certain task in the form of its operations. How these
operations are used to model role behavior is formalized by a labeled transition
system. Starting from an initial state, the role behavior specifies which sequences
of operations can be executed to contribute the required responsibilities of this
role to the overall collaboration.
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Fig. 4. Ensemble structure Σtransfer

Definition 7 (Labeled Transition System). A labeled transition system
(LTS) is a tuple (Q , q0 ,Λ,Δ) such that Q is a set of states, q0 ∈ Q is the
initial state of the LTS, Λ is a set of labels, and Δ ⊆ Q × Λ×Q is a transition
relation. For (q, l, q ′) ∈ Δ, we also write (q

l−→ q ′) ∈ Δ.

A role behavior is a labeled transition system whose labels denote sending
an operation (expressed by the operation followed by an exclamation mark “!”)
or receiving an operation (expressed by the operation followed by a question
mark “?”) or executing an internal operation (expressed just by the operation).

Definition 8 (Role Behavior). Let Σ = (roles , conns) be an ensemble struc-
ture and r ∈ roles . A role behavior of r is given by a labeled transition system
RoleBehr = (Q , q0 ,Λ,Δ) such that

– Q is a set of control states,

– q0 ∈ Q is the initial state,

– Λ is the set of labels given by
{nm(rc).op! | ∃rc ∈ conns : r = src(rc), op ∈ ops(rc)} ∪
{nm(rc).op? | ∃rc ∈ conns : r = trg(rc), op ∈ ops(rc)},

– Δ ⊆ Q × Λ×Q is a transition relation.

Following our notational convention, we write Q(RoleBehr ) for Q ,
q0 (RoleBehr ) for q0 , Λ(RoleBehr ) for Λ, and Δ(RoleBehr ) for Δ.
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The full specification of an ensemble comprises the architecture of the col-
laboration in terms of an ensemble structure Σ and the set of all role behavior
specifications.

Definition 9 (Ensemble specification). An ensemble specification is a pair
EnsSpec = (Σ,RoleBeh) such that

– Σ = (roles , conns) is an ensemble structure over a set CT of component
types, and

– RoleBeh = (RoleBehr )r∈roles is a family of role behaviors RoleBehr for each
r ∈ roles .

Let us illustrate the specification of ensembles with our running example.
We specify the dynamic behavior of the requester, router and provider roles by
the three role behaviors RoleBehrequester , RoleBehrouter, and RoleBehprovider

shown in Fig. 5. All three behaviors terminate since in this application we
consider an achieve goal such that an ensemble stops when it has fulfilled its
task.

The router role exhibits the most interesting behavior. Its responsibility is
to provide the address of the provider to a requesting peer. A router can first
receive a request reqAddr(fn)? to search for the address where the file with
name fn is located from a requester, using the connector rac, or from (an-
other) router, using the forward request address connector frac. Since the router
may or may not store the file itself, in each case it has two possibilities to
proceed: either it has the file and thus sends its own address back to the re-
quester with the message sndAddr(addr)!, or it does not have the file and thus
requests the address from a neighboring peer by issuing the call reqAddr(fn)!.
In the first case, it has immediately met its responsibility according to the router
role while in the second case it has to wait for a response and then to forward
it to the requesting peer. Note that on the instance level considered later on in
Sect. 3, the peer instance playing the router will adopt the role of a provider
when it detects that it stores the file itself (cf. the transition from state σ5 to σ6
in Fig. 9).

With this example we want to illustrate that the separate consideration of
roles facilitates significantly the task of system specification for ensembles. If we
had directly started with component-based modeling of a peer component, it
would have been necessary to specify the full component behavior at once. This
behavior would have to model all possible behaviors which a component instance
should be able to perform. In particular, one would have to decide whether a
component instance should administrate several threads for concurrent execu-
tions of different tasks at the same time or whether a component is only able to
perform different tasks in a sequential order.
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3 Semantics of Ensemble Specifications

3.1 Ensemble States

An ensemble structure Σ = (roles , conns) over a set CT of component types
specifies which roles and role connectors are needed to perform a task. The ac-
tual execution of an ensemble will be performed by collaborating component
instances. We assume that before an ensemble is started there exists already a
repository of component instances which can potentially contribute. Formally,
this repository is given by a family INST = (INSTct)ct∈CT of pairwise dis-
joint sets INSTct of component instances for each component type ct . For an
ensemble state σ, the currently participating component instances are deter-
mined by the sets insts = (instsct )ct∈CT shown in Def. 10 below. The situation
is different for roles. Role instances are only created when a component instance
adopts that role. Formally, we assume given a family RID = (RIDr )r ∈ roles of
countably infinite and pairwise disjoint sets RIDr of role identifiers for role r .
These sets determine a space of names which can be instantiated when a new
role instance is created. An ensemble state σ has not only to record which are
the current component members of the ensemble, but also which role instances
currently exist. These are determined by the sets roleinsts = (roleinstsr )r∈roles

below. Any existing role instance must be adopted by exactly one component
instance and any participating component instance must at least adopt one role
instance. For the formalization of these relationships we use the surjective map-
pings adoptedBy = (adoptedBy r )r∈roles whose functionalities are defined below.

To fully specify a Σ-ensemble state, we additionally need to determine the
data states of component and role instances (given by valuations of component
and role attributes resp.), and also the control state of a role instance showing
the current progress of its execution. For this purpose, we use the families of
functions data, roledata, and control as indicated below.

Definition 10 (Σ-ensemble state). Let CT be a set of component types,
INST be a family of sets of component instances and RID be a universe of
role identifiers as explained above. A Σ-ensemble state (over INST) is a tuple

σ = (insts , roleinsts , adoptedBy , data, roledata , control)

such that

– insts = (instsct)ct∈CT is a family of sets instsct ⊆ INSTct of component
instances currently participating in the ensemble,

– roleinsts = (roleinstsr )r∈roles is a family of sets roleinstsr ⊆ RIDr of role
instances currently existing in the ensemble such that the multiplicities of
r ∈ roles in Σ are respected, i.e. |roleinstsr | ≤ 1 if mult(r) = 0..1,

– adoptedBy = (adoptedBy r )r∈roles is a family of surjective functions
adoptedBy r : roleinstsr →

⋃
ct ∈ ctypes(r)

instsct such that each role instance

is associated to a unique component instance,
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– data = (datact )ct∈CT is a family of functions
datact : instsct → DStatesattrs(ct),

– roledata = (roledatar )r∈roles is a family of functions
roledatar : roleinstsr → DStatesroleattrs(r),

– control = (control r )r∈roles is a family of functions
control r : roleinstsr → CStatesr with a set CStatesr of control states.

The set of all Σ-ensemble states is denotated by StatesΣ.

Following our notational conventions, for a Σ-ensemble state σ =
(insts , roleinsts , adoptedBy , data, roledata , control) we write insts(σ) for insts ,
instsct (σ) for instsct , and similarly for all other parts of σ.

To illustrate the meaning of the adoptedBy functions, we visualize the mapping
for two different Σ-ensemble states σ1 and σ2 in Fig. 6. Both states are based on
the set INST = {ci1, ci1’, ci2’} of component instances of type CT and CT’
resp.. The idea is that there are two ensembles running in parallel such that σ1 is
a state of the first ensemble and σ2 is a state of the second. The given component
instances should be able to participate at the same time in both ensembles. For
instance in σ1, ci1 adopts the role instances ri1 and ri1’ of different role types
R and R’. In σ2, ci1 adopts, at the time, another role instance ri3 of type R.
Being surjective, each function adoptedByr associates each component instance
ci which is participating in an ensemble with at least one role instance. The
inverse image of one component instance ci in a particular state is thus the set
of all role instances which ci is currently playing in that state. Only component
instances that do currently not participate in an ensemble, like ci1’ in Fig. 6,
have no associated role instance.

Fig. 6. Visualization of the function adoptedBy
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Let us illustrate the definition of a Σ-ensemble state at our peer-2-peer net-
work. Consider the ensemble structure Σtransfer and four component instances
of type peer such that INST = INSTpeer = {p1, p2, p3, p4}, i.e. we have
given a system with four peers. A valid ensemble state over INST could be
that p1 has adopted the role of a requester that requests a file with name
"song.mp3", p2 and p3 work as routers, and p3 provides the file; p4 is not
involved in this collaboration. The formal representation of such a Σtransfer -
ensemble state σ = (insts , roleinsts , adoptedBy , data, roledata, control) is given
in Fig. 7; a graphical representation of this state is shown in Fig. 8. The cur-
rent control state of each role instance is shown in a circle and taken from the
role behavior specifications. For instance, rout1 being in control state qrout2 has
just sent out a request address message to another router via the role connector
frac, and rout2 being in control state qrout5 has just received this message. We
assume that the component p3 stores the requested file and therefore adopts, in
the current state, also the role of a provider being in the initial provider state
qprov0 .

instspeer = {p1, p2, p3}
roleinstsrequester = {req}
roleinstsrouter = {rout1, rout2}
roleinstsprovider = {prov}
adoptedByrequester(req) = {p1}
adoptedByrouter(rout1) = {p2}
adoptedByrouter(rout2) = {p3}
adoptedByprovider(prov) = {p3}

datapeer(p1) = {(address �→ 198.121.1.1,

fileNames �→ . . .)}
contents �→ . . .)}

datapeer(p2) = . . .

datapeer(p3) = . . .

roledatarequester(req) = {fileName �→ "song.mp3"}
roledata_(_) = ∅
controlrequester (req) = qreq

1

controlrouter(rout1) = qrout
2

controlrouter(rout2) = qrout
5

controlprovider(prov) = qprov
0

Fig. 7. A Σtransfer -ensemble state σ

Fig. 8. Σtransfer -ensemble state σ in graphical notation
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3.2 Ensemble Automata

A system evolves over time by execution of operations of component instances.
To model the precise collaborative behavior we have to fix how interaction
is performed. In this paper, we consider the case of message passing systems
with synchronous communication. Two communication partners must synchro-
nize whenever they want to execute a shared input/output operation; otherwise
they cannot proceed. We define a formal execution model for ensembles in terms
of ensemble automata. Their states are ensemble states as defined in the last
section. We consider two kinds of actions that can cause state transitions. First,
we consider communication actions which express synchronous communication
betweeen role instances. These actions are represented by operation labels of the
form opname(actparams)(rc, ri , ri ′) meaning that a role instance ri sends a mes-
sage determined by an operation with name opname and with actual parameters
actparams via a role connector rc to a role instance ri ′. Of course, the message
must be supported by the role connector and the role types of the communi-
cating role instances must fit to the source and target roles of the connector.
For technical simplicity, we assume that ensemble structures are closed and that
roles and component types do not declare internal operations. The general case
could be modeled by simple variants of the form of operation labels. The second
kind of actions are represented by management labels of the form adopt(ci , r)
or giveUp(ci , ri). The first label expresses that a component instance ci adopts
a role r , either because ci is joining the ensemble or because ci adopts an addi-
tional role. In any case, a new role instance will be created (cf. Eq. (1)), and the
adoptedBy function will be updated accordingly (cf. Eq. (2)). The second man-
agement label expresses that a component instance ci gives up a role instance ri .
The role instance is then deleted from the ensemble and the component instance
must leave the ensemble if this was the only role played by the component. For
all kinds of labels, appropriate pre- and postconditions are provided that are re-
spected by the transitions. The postconditions specify the effect of the operation
for the different constituent parts of an ensemble state. If no effect is specified
then the interpretation is loose leaving room for non-deterministic behavior.

Definition 11 (Σ-ensemble automaton). Let CT be a set of component types
and let INST = (INSTct)ct∈CT be a family component instances as in Def. 10.
Let Σ = (roles , conns) be an ensemble structure over CT. A Σ-ensemble au-
tomaton (over INST) is a labeled transition system M = (S , σ0 ,L,T ) such
that

– S ⊆ StatesΣ,
– σ0 ∈ S is the initial state,
– L = oplabels ∪mgmtlabels such that

• oplabels = {opname(actparams)(rc, ri , ri ′) |
rc ∈ conns, ri ∈ RIDsrc(rc), ri

′ ∈ RIDtrg(rc),
opname(params) ∈ ops(rc) such that actparams ∈ D∗ is a list of
actual parameters instantiating params}
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• mgmtlabels =
{adopt(ci , r) | ci ∈ INSTct , r ∈ roles such that ct ∈ ctypes(r)} ∪
{giveUp(ci , ri) | ci ∈ INSTct , ri ∈ RIDr

such that r ∈ roles and ct ∈ ctypes(r)}
– for each (σ1, l, σ2) ∈ T , one of the following holds:

• if l = opname(actparams)(rc, ri , ri ′) then

(pre) ri ∈ roleinsts src(rc)(σ1), ri
′ ∈ roleinsts trg(rc)(σ1),

(post) insts(σ2) = insts(σ1), roleinsts(σ2) = roleinsts(σ1),

adoptedBy(σ2) = adoptedBy(σ1)

• if l = adopt(ci , r) with ci ∈ INSTct , r ∈ roles then

(post) instsct(σ2) = instsct (σ1) ∪ {ci},
instsct′(σ2) = instsct′(σ1) for all ct ′ �= ct ,

roleinstsr (σ2) = (1)
roleinsts r (σ1) ∪ {ri} with ri ∈ RIDr , ri /∈ roleinstsr (σ1),

roleinstsr′(σ2) = roleinstsr′(σ1) for all r ′ �= r ,

adoptedBy r (σ2)(ri) = ci for the new role instance ri , (2)
adoptedBy r′(σ2)(ri

′) =

adoptedBy r′(σ1)(ri
′) for all r ′ ∈ roles , ri ′ �= ri ,

data(σ2) = data(σ1),

roledatar′(σ2)(ri
′) =

roledata r′(σ1)(ri
′) for all r ′ ∈ roles , ri ′ �= ri ,

control r′(σ2)(ri
′) =

control r′(σ1)(ri
′) for all r ′ ∈ roles , ri ′ �= ri ,

• if l = giveUp(ci , ri) with ci ∈ INSTct , ri ∈ RIDr then

(pre) ci ∈ instsct (σ1), ri ∈ roleinstsr (σ1),

adoptedBy r (σ1)(ri) = ci ,

(post) instsct (σ2) =

⎧⎨
⎩

instsct (σ1)\{ci} , if �ri ′ �= ri .
adoptedBy r (σ1)(ri

′) = ci
instsct (σ1) , otherwise

instsct′(σ2) = instsct′(σ1) for all ct ′ �= ct ,

roleinsts r (σ2) = roleinstsr (σ1)\{ri},
roleinsts r′(σ2) = roleinsts r′(σ1) for all r ′ �= r ,

adoptedBy(σ2) = adoptedBy(σ1)|roleinsts(σ2),

data(σ2) = data(σ1),

roledata(σ2) = roledata(σ1)|roleinsts(σ2),

control (σ2) = control (σ1)|roleinsts(σ2).

The class of all ensemble automata for an ensemble structure Σ is denoted
by EAut(Σ).
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Fig. 9 shows an example of an ensemble automaton for the peer-2-peer net-
work. The state σ6 corresponds to the Σtransfer -state σ in Fig. 8. The peer
instance p1 starts the task by joining the ensemble as a requester which creates
a new role instance req for the requester. Then p2 joins the ensemble in the role
of a router and the role instance rout1 for the first router is created in σ2. The
role instance req then sends to the router rout1 a request for the address of the
peer who stores file "song.mp3". Since rout1 is currently adopted by p2 which
does not store the requested file, another peer p3 needs to join the ensemble in
state σ4 as a router. It adopts the new role instance rout2. Now, rout1 forwards
the request for the address to rout2 leading to state σ5. The component p3 stores
the file and therefore additionally adopts the role of a provider realized by the
role instance prov which is depicted in Fig. 8. Afterwards, the component p3, in
its role as a router rout2, sends its address to the forwarding router rout1 and
then the component p3 abandons its role as a router leading to state σ8. Another
forwarding step transmits the address from rout1 to req. The requester req can
now directly request the file from the provider prov who sends the content of
the file back to the requester. At this point, the task is finished in state σ11.

σ0
adopt(p1,requester)−−−−−−−−−−−−−→ σ1

adopt(p2,router)−−−−−−−−−−−→ σ2
reqAddr("file.txt")(rac,req,rout1)−−−−−−−−−−−−−−−−−−−−−→

σ3
adopt(p3,router)−−−−−−−−−−−→ σ4

reqAddr("song.mp3")(frac,rout1,rout2)−−−−−−−−−−−−−−−−−−−−−−−→

σ5
adopt(p3,provider)−−−−−−−−−−−−→ σ6

sndAddr(198.121.1.3)(fsac,rout2,rout1)−−−−−−−−−−−−−−−−−−−−−−−−→

σ7
giveUp(p3,rout2)−−−−−−−−−−−→ σ8

sndAddr(198.121.1.3)(sac,rout1,req)−−−−−−−−−−−−−−−−−−−−−−→

σ9
reqFile("song.mp3")(rfc,req,prov)−−−−−−−−−−−−−−−−−−−−→

σ10
sndFile(...)(sfc,prov,req)−−−−−−−−−−−−−−−−→ σ11

Fig. 9. Valid sequence of transitions in the Σtransfer -model

In a Σ-ensemble automaton, the ensemble can behave arbitrarily as long as
it uses legal transitions between Σ-ensemble states. However, we want role in-
stances to act according to their specified role behaviors such that the ensemble
works towards reaching a particular goal. These role behaviors restrict the Σ-
ensemble automaton such that that only sequences of actions adhering to the
behavior specifications of the roles are allowed. This leads to our notion of a
model of an ensemble specification..

Definition 12 (Model of an Ensemble Specification). Let CT and INST
be as in Def. 11. Let Σ = (roles , conns) be an ensemble structure over CT, let
EnsSpec = (Σ,RoleBeh) with RoleBeh = (RoleBehr )r∈roles be an ensemble
specification and let M = (S , σ0 ,L,T ) with L = oplabels ∪ mgmtlabels be
a Σ-ensemble automaton (over INST).
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M is a model of EnsSpec, if the following conditions are satisfied:
(1) for all opname(actparams)(rc, ri , ri ′) ∈ oplabels , σ1, σ2 ∈ S , it holds:

If σ1
opname(actparams)(rc,ri,ri′)−−−−−−−−−−−−−−−−−−−→ σ2 ∈ T , then

(a) control r ′′(σ1)(ri
′′) = control r ′′(σ2)(ri

′′) for all r ′′ ∈ roles, ri ′′ /∈
{ri , ri ′},

(b) there exists ri ∈ roleinstsr (σ1), r ∈ roles such that

control r (σ1)(ri)
nm(rc).opname(params)!−−−−−−−−−−−−−−−−→ control r (σ2)(ri) ∈

Δ(RoleBehr ), and
(c) it exists ri ′ ∈ roleinstsr ′(σ1), r ′ ∈ roles such that

control r ′(σ1)(ri
′)

nm(rc).opname(params)?−−−−−−−−−−−−−−−−→ control r ′(σ2)(ri
′) ∈

Δ(RoleBehr ′)
such that actparams ∈ D∗ is a list of actual parameters instantiating
params,

(2) for all adopt(ci , r) ∈ mgmtlabels , σ1, σ2 ∈ S , it holds:

If σ1
adopt(ci,r)−−−−−−−→ σ2 ∈ T with roleinstsr (σ2) = roleinstsr (σ1) ∪ {ri},

ri /∈ roleinstsr (σ1), then controlr (σ2)(ri) = q0 (RoleBehr ).

The class of all models of EnsSpec is denoted by Mod(EnsSpec).

Condition (1a) says that control states of role instances that are not involved
in the communication do not change. The rules (1b) and (1c) express that a
communication between two role instances is only allowed if the role instances
are in a control state of their respective role behaviors such that both roles are
allowed to communicate. There are no restrictions on the particular instances
that want to communicate since role behaviors are specified on the type and
not on the instance level. Condition (2) requires that whenever a role instance
is created its control state is the initial state of its role behavior. There are no
particular constraints for the occurrence of management operations since those
are not considered in role behaviors and therefore can always occur when their
pre- and postconditions of Def. 11 are satisfied.

As an example, consider the ensemble specification in Sect. 2.3 with the three
role behaviors specified in Fig. 5. The ensemble automaton shown in Fig. 9
respects the role behavior specifications and is therefore a model of the ensemble
specification.

4 Related Work

Our framework is driven by a rigorous discrimination between instances and
types. Formally, an ensemble is composed by a set of component instances such
that each component instance, participating in the ensemble, adopts at least
one role instance representing a role that the component currently plays in a
collaboration. Of course, sets of interacting components are considered in any
reasonable component model. They occur in the form of architectures [4,10,13],
networks [5], assemblies [11,22], team automata [8], etc. Mostly, components and
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their behaviors are described on the type level such that the dynamic creation
of individual instances, their identification and the evolution of systems is not
supported. Exceptions are component interaction automata [11], which iden-
tify components by names such that individual communications naming sender
and receiver of a message are possible (similarly to communication between role
instances in ensemble automata), and SCEL [18] which additionally allows dy-
namic creation of components. This is possible since SCEL considers two levels
of operational semantics, the component level and the system level. Similarly,
the Helena approach distinguishes between role behaviors (on the type level)
and ensemble behaviors (on the instance level). We do not create new compo-
nent instances during the run of an ensemble because we assume them to be
already given by an overall system management when an ensemble is started.
However, component instances can dynamically join and leave an ensemble while
role instances are dynamically created (and adopted by a component instance)
during an ensemble execution. Also in the DEECo model [12] for ensemble-based
component systems the membership of components in ensembles is dynamically
changing which is realized by the DEECo runtime framework. Interaction of en-
semble members is implicit in DEECo and performed via knowledge exchange
triggered by the DEECo infrastructure. A computational model for DEECo is
defined in terms of automata [3] that express knowledge exchange by buffered
updating of components’ knowledge. A general mathematical system model for
ensembles based on input/output relations has been presented in [24]. It aims
at general applicability such that, e.g., also physical parts based on differential
equations can be integrated. Helena is more concrete since at least explicit
notions of interaction and collaboration (on the type and on the instance level)
are involved.

In contrast to the other component models Helena is centered around the
notion of a role which allows to focus only on those capabilities of a component
that is actually needed in a particular collaboration. The use of roles has al-
ready been proposed in [21,26] as an additional concept to classes and objects in
object-oriented programming. In [26] it is stated that “a role of an object is a set
of properties which are important for an object to be able to behave in a certain
way expected by a set of other objects”. In these approaches the consideration
of role instances is already recommended and, in [26], a diagrammatic specifi-
cation of role behaviors is suggested. Experiments with implementing roles in
Smalltalk are also discussed. In [32] a formal definition for “model specifications”
in the language LODWICK is proposed consisting of a signature, a static model
and a dynamic model. The signature relates types and roles; the static model
comprises all instances of types and their relationships to roles that may poten-
tially exist; the dynamic model consist of sequences of sets of objects and their
associated roles similar to state transitions in ensemble automata. LODWICK
is designed as a rudimentary modeling language which does not contain collab-
oration specifications and does not support object interactions in the dynamic
models. Apparently the ideas of role-based modeling did not have much influ-
ence on new methodologies for component-based systems engineering. Although
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UML2 has explicitly established a conceptual role layer between types and in-
stances (for context dependent modeling), our impression is that its potential
has not been sufficiently recognized yet.

The situation is different in the community of (multi-)agent systems where the
modeling of roles is incorporated as a central part in methodologies for analysis
and design. For instance, the GAIA methodology [35] and its extensions [15] con-
sider a multi-agent system as a computational organization consisting of various
interacting roles; this is very similar to our interpretation of ensembles. Most
specifications in this methodologies are, however, rather informal or at most
semi-formal, like the UML-based notation Agent UML [6]. Agent UML models
collaborations by interaction protocols which combine sequence diagrams with
state diagrams. Another approach has been pursued in the ROPE project [7],
which proposes to use “cooperation processes” represented by Petri nets for the
specification of collaborative behavior. A model-driven approach to the develop-
ment of role-based open multi-agent software is presented in [36]. It uses Object-Z
notation and focuses merely on structural properties of role organizations and
agent societies and not on interaction behavior. The structural concepts involve,
however, specifications of role spaces as containers of role instances (that can be
taken by agents), which resembles ensemble states in Helena. All these methods
are not based on a formal semantics and do not provide verification techniques
which will be a central topic of our approach in the near future. In particular,
they do not formalize concurrent executions which is built-in in our ensemble
automata expressed by interleaving.

5 Conclusion

In this paper, we presented the Helena approach for modeling ensemble-based
systems. Helena extends the component-based approach by the notion of roles
teaming up in ensemble to collaborate for some global goal. We introduced en-
semble structures to capture the static architecture of such teams composed of
roles and role connectors for communication between roles. For the dynamic as-
pects, an ensemble specification adds role behaviors to ensemble structures. The
formal semantics and execution model of an ensemble specification was given
as an ensemble automaton for the evolving ensemble with synchronous commu-
nication. We illustrated our approach by the running example of a peer-2-peer
network for storing and downloading files.

We consider our work as a first step towards a comprehensive methodology for
the development of ensemble systems founded on a precise semantic basis. We
have not yet considered an infrastructure for the administration of ensembles.
Several variants are possible dependent on the choice of a concrete interaction
and/or communication model. For instance, we will define also an execution
model for asynchronous communication which can be realized by message pass-
ing via event queues. A further important issue concerns the transition from
ensemble specifications to designs and implementations. One possibility is to
use component-based architectures for the target systems and to map ensemble
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specifications (semi-automatically) to a component-based design for concurrent
executions of ensembles. The mapping depends again on the choice of particu-
lar interaction models like synchronous and buffered communication including
multicast message passing. We also plan to study an interaction model based on
knowledge repositories and knowledge exchange like in SCEL and DEECo. Since
SCEL can be considered as an abstract programming language we envisage to
implement ensemble specifications by abstract SCEL programs. The semantic
foundations of both languages should be appropriate to verify the correctness of
the implementation. Another possibility is a direct implementation of ensemble
specifications by using an appropriate framework, a prototype of which has cur-
rently been developed [25]. As a next step, we want to investigate under which
conditions properties of communication compatibility (see e.g. [23]) valid for
role behaviors can be propagated to ensemble automata and implementations.
The challenge here is that role behavior specifications are formalized for types
while ensemble automata (and implementations) concern concurrently executing
instances.

Concerning the first phase of the development life cycle our methodology
should still be augmented with explicit interaction specifications. Currently our
behavioral descriptions are local to single role behaviors, but do not explicitly
model the interactions to achieve a goal on a global level. For that purpose,
we want to investigate appropriate notations, for instance on the basis of com-
munication protocols used for specifying global interactions in multi-party ses-
sions [14], [16]. The transition from an interaction specification to an ensemble
specification must be formalized by an appropriate refinement relation. Then we
want to consider properties of interaction specifications (expressed in some logic)
and to prove that they are preserved by refinement. Also the explicit integration
of adaptation and awareness requirements, which are central to autonomously
evolving systems, must be considered. We need techniques to specify goals, for
instance in the style of KAOS [27], and we need verification techniques for goal
satisfaction. The validation of Helena w.r.t. the case studies of the ASCENS
project (e-mobility, robotics rescue scenario, autonomic cloud platform) is cur-
rently ongoing.
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Abstract. The growth and diffusion of reconfigurable and adaptive sys-
tems motivate the foundational study of models of software connectors
that can evolve dynamically, as opposed to the better understood no-
tion of static connectors. In this paper we investigate the interplay of
behaviour, interaction and dynamics in the context of the BIP com-
ponent framework, here denoted BI(P), as we disregard priorities. We
introduce two extensions of BIP: 1) reconfigurable BI(P) allows to re-
configure the set of admissible interactions, while preserving the set of
interacting components; 2) dynamic BI(P) allows to spawn new compo-
nents and interactions during execution. Our main technical results show
that reconfigurable BI(P) is as expressive as BI(P), while dynamic BI(P)
allows to deal with infinite state systems. Still, we show that reachability
remains decidable for dynamic BI(P).

1 Introduction

Recent years have witnessed an increasing interest about a rigorous modelling
of (different classes of) connectors. The term connector, as used here, has been
coined within the area of component-based software architectures, to name enti-
ties that can regulate the interaction of a collection of components [15]. This has
led to the development of different mathematical frameworks that are used to
specify, design, analyse, compare, prototype and implement suitable connectors.
Our previous efforts have been focused at unifying different frameworks, in par-
ticular, the BIP component framework [2], Petri nets with boundaries [16] and
the algebras of connectors [7,1] based on the tile model [12]. In [8] we have shown
that BIP without priorities, written BI(P) in the following, is equally expressive
as nets with boundaries. Thanks to the correspondence results in [16,10], we
can define an algebra of connectors as expressive as BI(P), where a few basic
connectors can be composed in series and parallel to generate any BI(P) system.

All above approaches deal with systems that have static structures, i.e., sys-
tems in which the possible interactions among components are all defined at
design time and remain unchanged during runtime. Nevertheless, when shifting
to connectors for systems that adapt their behaviour to changing environments,
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the situation is less well-understood. For example, approaches based on mobile
calculi (like the π-calculus [14]) are not suited, because there the notion of con-
nector / component is lost. In fact, a general and uniform theory for dynamic
connectors is still lacking. On the one hand, static structures of connectors can
be studied and executed efficiently. On the other hand, systems that can tra-
verse a large or infinite number of connector configurations are better dealt with
concise computational models that are tailored to dynamic structures.

Some recent progress has been done in [6], where Dy-BIP is proposed. We
remind that an ordinary BIP component is defined by a set of ports P and a
finite automaton whose transitions carry subsets of P as labels. An ordinary BIP
system consists of a finite number of components (fixing the “Behaviour”) whose
ports are disjoint, together with a set of admissible synchronisations between the
transitions of components (fixing the “Interaction”). Neither the set of compo-
nents, nor the set of interactions can change over time. In contrast to BIP, the
set of interactions can change dynamically in Dy-BIP, but this is obtained by ad-
hoc design choices. As a consequence, the definition of Dy-BIP systems can be
error-prone or lead to incomplete specifications unless the complex methodology
outlined in [6] is adopted.

In order to contribute to the development of a general theory for dynamic
connectors, in this paper we study two other extensions of the BI(P) framework
with different degrees of “dynamism” that allow enhanced conciseness, modu-
larity and expressiveness.

As a first step, we focus on a reconfigurable version of BI(P), analogous to
but simpler than Dy-BIP. A reconfigurable BI(P) system allows for the dynamic
modification of interactions among components, i.e., the set of available inter-
actions changes as a side-effect of an interaction between components. Our first
result proves that any reconfigurable BI(P) system is equivalent to an ordinary
BI(P) system. This result is achieved by introducing a “controller” component
for each interaction that can be added or removed at run-time. Roughly, the
controller keeps track of whether the managed interaction is currently available
or not and forces the components willing to use that interaction to synchronise
also with the controller. This mapping shows that the reconfiguration capabil-
ities provided by reconfigurable BI(P) do not increase the expressive power of
BI(P). In fact, reconfigurable BI(P) only provides a more compact representa-
tion of ordinary systems, while ordinary BI(P) representations may require an
exponential blow up in the number of components (it requires one controller for
each possible interaction, and the interactions are subsets of ports). The crux of
the proof is the fact that the set of controller components can be defined stat-
ically. In fact, the interfaces of components in reconfigurable BI(P) are static,
i.e., the set of available ports in every component is fixed. As a consequence, the
set of all possible interactions in a system are determined at design time (despite
the fact that they can be enabled/disabled at run-time).

Our next step is to explore situations in which the interfaces of the components
may change dynamically (i.e., to support the creation/elimination of ports).
This requirement also imposes the necessity of handling interactions that can be
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created/removed dynamically, as in reconfigurable BI(P). We take as an inspiring
example the notion of correlation sets in web services [17,13], that is used to keep
separate sessions between clients and servers. In these cases, when a partner call
is made, then an instance of the session is initialised with suitable correlation
data (e.g., specific message fields) gathered for the partner. To this aim we exploit
coloured tokens, where the colours are freshly created session identifiers. This
way, we do not need to replicate the ports and structure of components, instead
we keep all the coloured tokens within the same instance of the component,
distributed along its states: as in general it can happen that two or more replicas
are in the same state, then it is possible that two or more coloured tokens
mark the same state at the same time. An interaction is possible only when all
the involved components carry correlated colours, i.e., identifiers for the same
session. In fact, while session identifiers are created locally to each component
(e.g., s1 in a first component and s2 in a second component), a new interaction is
also created that correlates them (e.g., s1s2). Possibly many sessions are opened
with the same partners involved. In subsequent interactions, correlation tokens
are then exploited to identify the session that interaction is part of. When the
session ends, the correlation tokens are discarded. At the beginning, when the
system is initialised, we assume that all components carry correlated tokens,
i.e., that they are all part of the same session. Correspondingly, we introduce
an extension of BI(P), called dynamic BI(P), in which component instances
and new interactions can be added/removed dynamically. In this case we obtain
systems that are possibly infinite state and more expressive than ordinary BI(P)
systems. However, our second main result shows that reachability is decidable
for dynamic BI(P).

Structure of the paper. Section 2 recalls the basics of BI(P) systems. Section 3
introduces reconfigurable BI(P) systems and shows that they are as expressive as
ordinary BI(P) systems. Section 4 introduces dynamic BI(P) systems and shows
their correspondence with Place/Transition (P/T) Petri nets. Due to space lim-
itation and to the fact that P/T Petri nets are mainly used here as a technical
tool for the decidability proof, we assume the reader has some familiarity with
P/T Petri nets and refer to the standard literature [11] otherwise. Both re-
configurable and dynamic BI(P) systems are illustrated over small motivating
examples. Section 5 gives some concluding remarks.

2 The BIP Component Framework, and BI(P)

BIP [2] is a component framework that exploits a three-layered architecture:
1) the lower level is called Behaviour and it fixes the activities of individual
atomic components; 2) the middle layer is called Interaction and it defines the
handshaking mechanisms between components; and 3) the top level is called Pri-
ority and it assigns a partial order of preferences to the admissible interactions.
This section recalls the formal definition of BIP using the notation from [4]. Here
we disregard priorities and write BI(P) to avoid confusion.
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Fig. 1. A simple BI(P) system

The lower layer consists of a set of atomic components with ports. The sets of
ports of components are pairwise disjoint, i.e., each port is uniquely assigned to
a component. Components are automata whose transitions are labelled by sets
of their ports.

Definition 1 (Component). A component B = (Q,P,→) is a transition sys-
tem where Q is a set of states (ranged over by p, q, . . .), P is a set of ports (ranged
over by a, b, . . .), and →⊆ Q × 2P ×Q is the set of labelled transitions.

As usual, we write q
a−→ q′ to denote the transition (q, a, q′) ∈→. We say that

a is enabled in q, denoted q
a−→, iff there exists q′ s.t. q a−→ q′. We assume that

for all q, q′ it holds q ∅−→ q′ iff q = q′.
The second layer consists of connectors that specify the allowed interactions

between components.

Definition 2 (Interaction). Given a set of ports P , an interaction over P is
a non-empty subset a ⊆ P .

We write a1a2 . . . an for the interaction {a1, a2, . . . , an} and a ↓Pi for the
projection of a ⊆ P over the set of ports Pi ⊆ P , i.e., a ↓Pi= a ∩ Pi.

Definition 3 (BI(P) system). A BI(P) system B = γ(B1, . . . , Bn) is the
composition of a finite set {Bi}ni=1 of transitions systems Bi = (Qi, Pi,→i)
such that their sets of ports are pairwise disjoint, i.e., Pi ∩ Pj = ∅ for i �= j,
parametrized by a set γ ⊂ 2P of interactions over the set of ports P =

⊎n
i=1 Pi.

We call P the underlying set of ports of B, written ι(B).

The semantics of a BI(P) system γ(B1, . . . , Bn) is given by the transition
system (Q,P,→γ), with Q = ΠiQi, P =

⊎n
i=1 Pi and →γ⊆ Q × 2P × Q is the

least set of transitions satisfying the following inference rule

a ∈ γ ∀i ∈ 1..n : qi
a↓Pi−−−→ q′i

(q1, . . . , qn)
a−→γ (q′1, . . . , q′n)
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Example 1. Consider the BI(P) system shown in Fig. 1, which contains a compo-
nent Server that sequentially interacts with two clients Client1 and Client2.
The Server starts a connection with Clienti thanks to the interaction sici.
Once the session is initiated, the server and the connected client synchronise
over the interaction abi. The session ends when the server and the connected
client perform eidi. Note that the server has dedicated ports for handling the
connections of different clients (si and ei), but it interacts analogously with all
of them. The next section introduces an extension of BI(P) that allows for a
more compact description of this kind of systems.

3 Reconfigurable BI(P)

Our first extension is concerned with the possibility of enabling and disabling
specific interactions dynamically, as proposed in an internal document of the
ASCENS project. An interaction a can be enabled/disabled when all components
involved in the interaction a agree to do so. After a is enabled, it can be used
as an ordinary interaction until it gets disabled. Transitions in a reconfigurable
BI(P) component are decorated with either (i) ε for ordinary actions over (a set
of) ports (like the actions of ordinary BI(P) components), (ii) + to add a new
interaction, and (iii) − to remove an interaction.

Definition 4 (Reconfigurable Component). Let P be a set of ports. A re-
configurable component B = (Q,P,−−	) is a transition system where Q is a set
of states, P ⊂ P is a finite set of ports, and −−	⊆ Q× 2P ×{+,−, ε}×Q is the
set of labelled transitions such that (q, a, ρ, q′) ∈−−	 implies:

1. if ρ = ε then a ∈ 2P ;
2. if ρ ∈ {+,−} then a ∩ P �= ∅.

The annotation ρ indicates if the interaction a must be added (+) to the set
γ of global interactions, be removed (−) from γ, or be already present (ε) in
γ. Condition (1) states that the ports involved in any ordinary transition (i.e.,
ρ = ε) are ports of the component, i.e., a ∈ 2P . A transition that adds/removes
a global interaction a may also refer to ports belonging to other components
(Condition 2).

We write q
aρ

−−−−	 q′ to denote the transition (q, a, ρ, q′) ∈−−	. We say that

a is enabled in q, denoted q
a

−−−	, iff there exists q′ s.t. q
aε

−−−	 q′. We assume

that for all q, q′ it holds q
∅ε−−−−	 q′ iff q = q′. Given a set of ports P , we write

a#P if a ∩ P = ∅.

Definition 5 (Reconfigurable BI(P) system). A reconfigurable BI(P) sys-
tem B = γ(B1, . . . , Bn) is the composition of a finite set {Bi}ni=1 of reconfig-
urable components Bi = (Qi, Pi,−−	i) such that their sets of ports are pairwise
disjoint, i.e., Pi ∩ Pj = ∅ for i �= j, parametrized by a set γ ⊂ 2P . We call
P =

⊎n
i=1 Pi the underlying set of ports of B, written ι(B).
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Fig. 2. A simple reconfigurable BI(P) system

a ∈ γ ∀i ∈ 1..n : qi
a↓Pi

ε

−−−−−−	 q′i

γ(q1, . . . , qn)
a

−−−	 γ(q′1, . . . , q
′
n)

[int]

a ∈ 2P � γ ¬(a#Pi) =⇒ qi
a+

−−−−	 q′i (a#Pi) =⇒ q′i = qi γ′ = γ ∪ {a}

γ(q1, . . . , qn)
a

−−−	 γ′(q′1, . . . , q
′
n)

[add]

a ∈ γ ¬(a#Pi) =⇒ qi
a−

−−−−	 q′i (a#Pi) =⇒ q′i = qi γ′ = γ � {a}

γ(q1, . . . , qn)
a

−−−	 γ′(q′1, . . . , q
′
n)

[del]

Fig. 3. Operational semantics of reconfigurable BI(P) systems

Example 2. The client/server scenario introduced in Example 1 can be mod-
elled as the reconfigurable BI(P) system depicted in Fig. 2. Now, the server and
the clients have the transitions abi+ and abi− that respectively allow for the
dynamic enabling/disabling of the interaction abi. In this case, the connection
of a client to a server is modelled by the dynamic enabling of the interaction
abi. Analogously, the disconnection is modelled as the dynamic disabling of the
interaction abi.

The semantics of a reconfigurable BI(P) system B = γ(B1, . . . , Bn) with
ι(B) = P and γ ⊆ 2P is given by the transition system (Q,−−	) where

– Q = 2P ×ΠiQi (we write γ(q1, . . . , qn) for 〈γ, 〈q1, . . . , qn〉〉 ∈ Q), and
– −−	⊆ Q× 2P ×Q is the least set of transitions satisfying the inference rules

in Fig. 3.

Each state of the transition system keeps, not only the states of all components
but also, the set γ of all enabled interactions. Rule [int] stands for ordinary
interactions and it is analogous to the inference rule for ordinary BI(P) systems.
Rule [add] accounts for the addition of a new global interaction a to the set
of enabled interactions γ. Note that all components affected by the interaction
a, i.e., the ones that have ports in a (condition a#Pi), need to agree on the
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addition of the new interaction a (i.e., all of them perform the transition
a+

−−−−	).
Remaining components do not move. Rule [del] specifies the removal of an
enabled interaction and is analogous to [add].

Example 3. Consider the reconfigurable BI(P) system in Example 2. The ini-
tial state in which no connection has been established is given by the term
∅(DS, DC1 , DC2). In this state, the system can start a session between the Server
and either Client1 or Client2. Assuming that a session with Client1 is estab-
lished, then the system can move as follows

∅(DS , DC1, DC2)
ab1+−−−−−	 s with s = {ab1}(CS , CC1 , DC2)

After session initiation, Server and Client1 can repeatedly synchronise with
interaction ab1 as any ordinary BI(P) system, i.e.,

s
ab1−−−−	 s

ab1−−−−	 . . .
ab1−−−−	 s

At some point, both Server and Client1 decide to close the session and the
system returns to the initial state by removing the interaction ab1, i.e.,

s
ab1−−−−−−	 ∅(DS, DC1 , DC2)

3.1 Reconfigurable BI(P) in BI(P)

This section shows that Reconfigurable BI(P) is as expressive as BI(P), i.e., that
adding the possibility of dynamically changing the set of interactions does not
increase the expressiveness, even if a price is paid in terms of the combinatorial
explosion of global states.

We start by introducing some auxiliary notation and definitions.
Let B = (Q,P,−−	) be a reconfigurable component. The set of reconfigurable

interactions of B is defined as follows

R(B) = {a | (q, a, ρ, q′) ∈−−	 and ρ �= ε}

For any reconfigurable interaction of a BI(P) component, i.e., a ∈ R(B), we
add two additional ports in the encoded component, which are denoted by ãB+
and ãB−. We remark that we add some decoration to the interaction a in order
to avoid port clashes between the different components of a system. Note that
the same dynamic interaction may appear in different components of a system
(e.g., ab1 and ab2 in Fig. 2) and we need to ensure that a port appears in one
component at most. Although different choices for decoration would be possible,
we will use the following in the rest of the paper.

ãB = (a ∩ P ) ∪ {p̃ | p ∈ a� P}.

We write R̃(B) for the set of all decorated reconfigurable interactions, i.e.,

R̃(B) = {ãB | a ∈ R(B)}. For example, ˜R(Server) = {ab̃1 , ab̃2}.
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Fig. 4. Encoding reconfigurable BI(P) in BI(P)

The notion of reconfigurable interaction is straightforwardly extended to re-
configurable BI(P) systems. Let B = γ(B1, . . . , Bn) be a reconfigurable BI(P)
system, then the set of reconfigurable interactions is defined as

R(B) =
⋃

1≤i≤n

R(Bi).

Definition 6. Let B = (Q,P,−−	) be a reconfigurable component. The corre-

sponding BI(P) component [[B]] is (Q,P ∪ (R̃(B) × {+,−}),−→) with −→ defined
such as (q, a, q′) ∈−→ iff

– (q, a, ρ, q′) ∈−−	 and ρ = ε; or

– (q, a′, ρ, q′) ∈−−	, ρ �= ε and a = (ã′
B
, ρ)

Figure 4(a) shows the BI(P) component corresponding to the reconfigurable
component Server depicted in Fig. 2. For simplicity, we write ãBρ for a port
(ãB, ρ), e.g., we write ab̃1+ instead of (ab̃1,+). Note that we extend the inter-
face of the component by adding two ports for each reconfigurable interaction,
one for signalling the addition of the interaction and the other for the removal.
Besides, the transition relation of the component remains unchanged but transi-
tions corresponding to dynamic interactions are renamed to use the added ports.

The following result states a correspondence between the behaviour of a re-
configurable component and its encoded version.

Lemma 1. Let B = (Q,P,−−	) be a reconfigurable component and [[B]] =

(Q,P,−→) its encoded version. Then, q
aρ

−−−−	 q′ if and only if

– ρ = ε and q
a−→ q′, or

– ρ �= ε and q
ãBρ−−→ q′

Proof. It follows directly from the definition of [[B]].

We now address the encoding of the behaviour of reconfigurable interactions.
We will associate any reconfigurable interaction with a BI(P) component that
models the dynamics of an interaction that can be dynamically enabled and
disabled.
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Definition 7. Let a be an interaction. A controller for a is the BI(P) component
Ca = (QCa , PCa ,−→) defined in Fig. 4(b).

Note that the net Ca has two places, one for an enabled interaction, named aen,
and the other for a disabled one, named adis. The only possible transition for a
disable interaction is the enabling (i.e., a+). After being enabled, the interaction
can be used as a usual one (a) until it is disabled (a−). We remark that each of
these behaviours is observed over a dedicated port.

Definition 8. Let B = γ(B1, . . . , Bn) be a reconfigurable BI(P) system with
R(B) = {a0, . . . , aj}. The corresponding BI(P) system is defined as follows

[[γ(B1, . . . , Bn)]] = [[γ]]([[B1]], . . . , [[Bn]],Ca0 , . . . ,Caj )

where
[[γ]] = (γ �R(B)) ∪ (

⋃
a∈R(B),ρ∈{ε,+,−}

{[[a]]ρ})

with

[[a]]ρ =

{
{aρ} ∪ {ãBiρ | 1 ≤ i ≤ n and a ∈ R(Bi)} if ρ ∈ {+,−}
{a} ∪ {p | 1 ≤ i ≤ n and p ∈ a ↓Pi} if ρ = ε

Moreover, any state γ(q1, . . . , qn) of B will be associated with a state
[[γ(q1, . . . , qn)]] of [[B]] where

[[γ(q1, . . . , qn)]] = (q1, . . . , qn, s0, . . . , sj)

with

si =

{
enai if ai ∈ γ
disai if ai �∈ γ

Example 4. The reconfigurable system introduced in Example 2 is encoded as
the BI(P) system shown in Fig. 5, which contains five components: the encoded
versions of the components Server, Client1 and Client2, and the two interac-
tion controllers (i.e., one for each reconfigurable interaction ab1 and ab2). The
set γ contains six interactions, three for each reconfigurable interaction. The ini-
tial state of the system in Example 2 corresponds to (DS , DC1, DC2 , ab1dis, ab2dis).
Then, the transition that starts a session between Server and Client1 is simu-
lated by

(DS , DC1 , DC2 , ab1dis, ab2dis)
{ab1+,a˜b1+,ãb1+}−−−−−−−−−−−→γ (CS , CC1 , DC2, ab1en, ab2dis)

The synchronisation between Server and Client1 with the interaction ab1 is

(CS , CC1 , DC2, ab1en, ab2dis)
{ab1,a,b1}−−−−−−→γ (CS , CC1 , DC2 , ab1en, ab2dis)

Similarly, Server and Client1 jointly disconnect with the following transition

(CS , CC1 , DC2, ab1en, ab2dis)
{ab1−,a˜b1−,ãb1−}−−−−−−−−−−−→γ (DS , DC1, DC2 , ab1dis, ab2dis)
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γ = {{ab1, a, b1}, {ab1+, ab̃1+, ãb1+}, {ab1−, ab̃1−, ãb1−}
{ab2, a, b2}, {ab2+, ab̃2+, ãb2+}, {ab2−, ab̃2−, ãb2−}}
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ãb2−
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Fig. 5. A simple reconfigurable BI(P) system encoded in ordinary BI(P)

As illustrated by the above example, the transitions of a reconfigurable BI(P)
system and its corresponding BI(P) system are in one-to-one correspondence, as
formalised by the following result.

Theorem 1 (Correspondence). Let B = γ(B1, . . . , Bn) be a reconfigurable

BI(P) system with R(B) = {a0, . . . , aj}. Then, γ(q1, . . . , qn)
a

−−−	 γ′(q′1, . . . , q′n)

iff ∃b ∈ {a, γa, γa+, γa−} s.t. [[γ(q1, . . . , qn)]]
b−→[[γ]] [[γ

′(q′1, . . . , q
′
n)]] .

Proof. ⇒) By case analysis on the derivation of γ(q1, . . . , qn)
a

−−−	 γ′(q′1, . . . , q
′
n).

⇐) Follows by case analysis on the shape of a.

4 Dynamic BI(P)

In this section we further extend BI(P) by allowing the dynamic replication of
components as result of the interaction of existing components. The idea is that
upon certain interactions, where each involved component forks an instance of
itself with some given initial state, some sort of session is established among
(all and only) the spawned replicas that can thus interact in a sandboxed way,
isolated from the rest of the system. For example, this is useful when the same
server component must serve a possibly unbounded number of client requests
separately but concurrently. As another example, some form of publish-subscribe
mechanism can also be represented, where each subscriber has a dedicated no-
tification handler. As explained in the Introduction, the mechanism underlying
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dynamic BI(P) resembles, to some extent, the use of correlation tokens in web
service computing.

Technically, we rely on an infinite set of port names P ranged over by a, b, . . .,
an infinite set of port variable names X ranged over by x, y, . . ., and an infinite
set of state names Q ranged over by p, q, . . .. We assume P , Q and X pairwise
disjoint. As in general an interaction is related to a specific session, we some-
times decorate ports and interactions with specific correlation tokens as their
subscripts. For example, for a = ab we write ac for acbc.

Definition 9 (Dynamic Component). A dynamic component is a tuple B =
(Q,P,→) where Q ⊂ Q is a set of places, P ⊂ P is a set of ports, and → is a
finite set of transitions, each having one of the following shapes:

– q(x)
ax−→ q′(x), i.e., (a coloured version of) a BI(P) transition;

– q(x)
axy+−−−→ q′(x) ⊕ q′′(y), i.e., a port creation;

– q(x)
x−−−→ ∅, i.e., a port removal;

– q(x)
x−→ q′(x), i.e., an interaction over a dynamically created port.

Ports that appear in labels of the form ax are parametric to the correlation
token and are called static ports; the other ports are called dynamic. We assume
static ports cannot be used as correlation tokens. In the following we denote by
Px the set of static ports of P , by Pa the set of static ports in P parametrized
by the token a and by δ(P ) the set of dynamic ports. For example, if P = {a, b}
with a static and b dynamic, then Pc = {ac}. Note that if all transitions have

the form q(x)
ax−→ q′(x) then B is essentially an ordinary BI(P) component.

The current state of a dynamic component B = (Q,P,→) takes the form
〈P, f〉 with P ⊂ P defining the current ports of the component (that includes
opened sessions) and f : Q → 2P such that f(q1) ∩ f(q2) = ∅ for q1 �= q2.
The function f represents the current internal state of the component replicas.
For example, if f(q) = {a, b} then there are two replicas of the component,
one involved in session a and one in b both with current state q. The condition
f(q1) ∩ f(q2) = ∅ for q1 �= q2 guarantees that each replica is associated with a
different session and that to each session corresponds exactly one state.

As a matter of notation we denote f ⊕ p(a) the function defined as

(f ⊕ p(a))(q) =

{
f(q) if q �= p

f(q) ∪ {a} if q = p

Remark 1. Initially there is only one session opened for each component, i.e.,
for each component there is only one state p such that f(p) �= ∅ and such f(p)
must be a singleton. To shorten the notation but without loss of generality, we
shall assume that such initial session identifier is void, i.e. f(p) = {•} and omit
the corresponding port • from the drawing of components.

The operational semantics of components is given by the three rules in Fig. 6.
The first rule ([Cint]) deals with both: i) the case of an ordinary interaction

aa (here coloured by the token a); and ii) the case of a dynamic interaction over
the session associated with a.
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q(x)
α−→ q′(x) a ∈ δ(P ) α ∈ {ax, x}

〈P, q(a)⊕ f〉 α{a/x}−−−−→ 〈P, q′(a)⊕ f〉
[Cint]

q(x)
axy+−−−→ q′(x)⊕ q′′(y) a ∈ δ(P ) b �∈ P

〈P, q(a)⊕ f〉 aab+−−−→ 〈P ∪ {b} ∪ Pb, q
′(a)⊕ q′′(b)⊕ f〉

[Copen]

q(x)
x−−−→ ∅ a ∈ δ(P )

〈P, q(a)⊕ f〉 a−−−→ 〈P � ({a} ∪ Pa), f〉
[Cclose]

Fig. 6. Operational semantics of dynamic components

The second rule ([Copen]) is the most complex one, as it deals with compo-
nent spawning and port creation. Here the freshly created session identifier is b,
which is then used as a fresh dynamic port, together with suitable instances Pb

of the static ports of the component. The spawned instance of the component
has initial state q′′(b). Ports in Pb will allow the spawned instance of the compo-
nent to interact on static ports with some other spawned components that are
part of the same session. Moreover, the spawned instance of the component will
be able to interact on the port b by synchronising with all the other spawned
components that are part of the same session. Note that although the token b

has been created within the session a, such information is not maintained in the
state, i.e., sessions a and b will run independently.

Finally, the third rule ([Cclose]) deals with session closure, where the token
a and all the ports {a} ∪ Pa associated with the closed session a are discarded.

Example 5. Consider a server component that interacts with a possibly un-
bounded number of clients by keeping different/separate sessions. Any session
starts with a client request for a new connection. After the initial connection,
each client synchronises with the server by using a dedicated, private port un-
til the client disconnects from the server. This behaviour can be modelled as
the component depicted in Fig. 7(a). We rely on the standard graphical repre-
sentation of coloured Petri nets, in which places are represented by circles and
transitions are drawn as rectangles connected to their pre and post-set by direct
arcs which are decorated with the colours of the involved tokens. In addition,
we show the ports of the component as bullets drawn on the boundaries, like in
BIP notation. The component in Fig. 7(a) has one static port cnt, two places
accept and open with the following three transitions:

– t0 = accept(x)
cntx y+−−−−−→ accept(x)⊕ open(y): if the server can accept a new

connection (i.e., a token can be consumed from the place accept), then it
performs the action cnt that creates a new dynamic port (to be associated
with the symbol y). After performing this action, the server will still accept
new connections because the token x is put back to the place accept. Now,
the component has a new session (i.e., a dedicated port) for interacting with
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Fig. 7. Two dynamic components

the recently connected client as represented by the token y containing the
fresh created port name in the place open.

– t1 = open(x)
x−→ open(x): For any open session x, the server can repeatedly

perform an action on the corresponding dynamic port. This transition does
not alter the set of ports of the component.

– t2 = open(x)
x−−−→ ∅: An already opened session x is closed after performing

the corresponding action x−, that synchronises with a request from the client
to close the same session.

The component modelling the behaviour of a client is depicted in Fig. 7(b),
which is analogous to Fig. 7(a).

Definition 10 (Dynamic BI(P) system). A dynamic BI(P) system B =
γ(B1, . . . , Bn) is the composition of a finite set {Bi}ni=1 of dynamic BI(P) com-
ponents Bi = (Qi, Pi,→i) such that their sets of ports are pairwise disjoint, i.e.,
Pi ∩ Pj = ∅ for i �= j, parametrized by a set γ ⊂ 2P of interactions over the set
of ports P =

⊎n
i=1 Pi.

Without loss of generality, we assume that for any a ∈ γ it is either the case
that a contains static ports only and we call it static or it contains no static port
at all and we call it dynamic. Moreover, if a ↓Pi is made of static ports, then
a ↓Pi= a′ai for some a′ and ai ∈ Pi, i.e., all static ports in a ↓Pi are parametrized
by the same session identifier ai. In such case, we let idsi(a) denote ai

In the following we write I(a) to denote the set {i | ¬(a#Pi)} of indices of the
components involved in a and I(a) to denote its complement [1, n]� I(a) = {i |
a#Pi}. If a is static, we denote by ids(a) the set {idsi(a) | i ∈ I(a)}, otherwise
we let ids(a) = ∅.

Given a set of substitutions σ = {bi/ai}i∈I and a static interaction a ∈ γ
such that ids(a) ⊆ {ai}i∈I we write aσ for the interaction obtained by replacing
in a each parameter ai by the corresponding parameter bi. Moreover, we write
γσ for the set of renamed static interactions {aσ | a ∈ γ ∧ ids(a) ⊆ {ai}i∈I}.
Finally, given a dynamic interaction a we write γ - a for the set of interactions
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a ∈ γ ∀i.si
a↓Pi−−−→ s′i

γ(s1, . . . , sn)
a−→ γ(s′1, . . . , s

′
n)

[Sint]

a ∈ γ i ∈ I(a) =⇒ si
a↓Pi

bi+−−−−−→ s′i bi fresh

i ∈ I(a) =⇒ s′i = si σ = {bi/idsi(a)}i∈I(a)

γ(s1, . . . , sn)
a−→ (γ ∪ {bi}i∈I(a) ∪ γσ)(s

′
1, . . . , s

′
n)

[Sopen]

a ∈ γ i ∈ I(a) =⇒ si
a↓Pi

−
−−−−→ s′i i ∈ I(a) =⇒ s′i = si

γ(s1, . . . , sn)
a−→ (γ � a)(s′1, . . . , s

′
n)

[Sclose]

Fig. 8. Operational semantics of dynamic BI(P) systems

in γ where the ports in a do not appear. Formally, γ - a = {a′ ∈ γ | a′ ∩ a =
∅ ∧ ids(a′) ∩ a = ∅}

Let si range over 2
Pi ×PQi

i representing a generic state of the component Bi.
The semantics of a dynamic BI(P) system γ(B1, . . . , Bn) is defined by the three
rules in Fig. 8.

Example 6. Consider the dynamic BI(P) components introduced in Example 5.
We illustrate one possible run of the server with two clients in Fig. 9. Roughly,
it corresponds to the series of transitions in Fig. 10, where γ, γ′, γ′′ are the ones
indicated in Fig. 9. The first transition is obtained by combining the server
transition

〈{cnt}, accept(•)〉 cnt v+−−−−→ 〈{cnt, cntv, v}, accept(•)⊕ open(v)〉

with the following transition of the first client:

〈{req1}, start1(•)〉
req1 m+−−−−−→ 〈{req1, req1m, m}, start1(•)⊕ run1(m)〉

Analogously, for the second transition. Note that suitable replicas cntv, cntw,
req1m, req2n of the static ports cnt, req1, req2 have been created locally to
each component, and that the set of interactions has been enriched with suit-
able replicas cntv req1m and cntw req2n of the static interactions cntreq1 and
cntreq2 together with freshly created dynamic interactions v m and w n.

Let s denote the last state reached. Then, the server can interact with the
clients by performing the interactions v m and w n as many times as needed, with
the system remaining in the same state s:

s
v m−→ s

w n−→ s · · ·
The above transitions are obtained by combining dynamic transitions of the

server (labels v and w) with dynamic transitions of the clients (labels m and n).
Finally, we illustrate the case when the session between the server and the

second client is closed:
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γ = { cnt req1 , cnt req2 }
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(a) Initial State

γ′ = { cnt req1 , cnt req2 , v m , cntv req1m }
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(b) First Synchronisation

γ′′ = { cnt req1 , cnt req2 , v m , cntv req1m , w n , cntw req2n }
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(c) Second Synchronisation

Fig. 9. A run of the server with two clients
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γ

⎛
⎝ 〈{cnt}, accept(•)〉 ,

〈{req1}, start1(•)〉 ,
〈{req2}, start2(•)〉

⎞
⎠

cnt req1−−−−−→ γ′

⎛
⎝ 〈{cnt, cntv, v}, accept(•)⊕ open(v)〉 ,

〈{req1, req1m, m}, start1(•)⊕ run1(m)〉 ,
〈{req2}, start2(•)〉

⎞
⎠

cnt req2−−−−−→ γ′′

⎛
⎝ 〈{cnt, cntv, v, cntw, w}, accept(•)⊕ open(v)⊕ open(w)〉 ,

〈{req1, req1m, m}, start1(•)⊕ run1(m)〉 ,
〈{req2, req2n, n}, start2(•)⊕ run2(n)〉

⎞
⎠

Fig. 10. Transitions representing a run of the server with two clients

s
w n−→ γ′

⎛⎝ 〈{cnt, cntv, v}, accept(•)⊕ open(v)〉 ,
〈{req1, req1m, m}, start1(•)⊕ run1(m)〉 ,
〈{req2}, start2(•)〉

⎞⎠
The above transition is obtained by combining a closing transitions of the

server (label w−) with a closing transition of the second client (label n−). Note
that the set of ports of the server and of the second client are updated con-
sequently, by removing all ports that refer to the session identifiers w and n.
Similarly, the set of interactions is γ′ = γ′′ - w n.

4.1 Dynamic BI(P) vs BI(P) vs P/T Nets

Unlike reconfigurable BI(P) systems, dynamic BI(P) systems are strictly more
expressive than ordinary BI(P) systems. This can be immediately seen by noting
that BI(P) systems are finite state (see, e.g., [8], where it was shown that any
BI(P) system corresponds to a safe Petri net), while this is not the case for
dynamic BI(P) systems (see, e.g., Example 6).

In this section we outline a correspondence between dynamic BI(P) systems
and Place/Transition Petri nets. This is interesting because: i) it shows that
properties like reachability remains decidable and ii) it draws a nice analogy
with the correspondence between ordinary BI(P) systems and safe Petri nets
shown in [8].

Roughly, given a dynamic BI(P) system B = γ(B1, ..., Bn) we define a P/T
Petri net N(B) whose places are tuples of states from components B1, ..., Bn

and whose transitions represent the possible interactions. Note that N(B) is
determined statically and may contain more places and transitions than those
strictly necessary, i.e., N(B) may contains places that will never be marked as
well as transitions that will never be enabled. Still N(B) is finite and it is neither
an ordinary automata nor a safe Petri net because: i) it may contain transitions
that are attached to two output places; and ii) during a run it may produce more
than one token in the same place.
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Places of N(B). The places of the net will be named like pairs (I, {pi}i∈I), where
∅ ⊂ I ⊆ [1, n] and ∀i ∈ I.pi ∈ Qi. Intuitively, the place (I, {pi}i∈I) represents
a session that involves replicas of the components Bi such that i ∈ I, where the
ith component is in state pi.

The initial marking of N(B) has one token in the place ([1, n], {p0i}i∈[1,n]),
where p0i denotes the initial state of the ith component.

Transitions of N(B). The transitions will be named like pairs (p, t) for p a place
like described above and t one of the following: an ordinary interaction a or an
interaction with spawning a+, with a ∈ γ; a dynamic interaction I or a closing
interaction I− with ∅ ⊂ I ⊆ [1, n]. However not all combinations of p and t are
considered. A pair (p, t) where p = (I, {pi}i∈I) is included in N(B) if:

1. t = a, I(a) ⊆ I and for all i ∈ I(a) then pi(x)
aix−−→ qi(x) is a transition of Bi

with a ↓Pi= ai idsi(a). In this case we let •(p, t) = p and (p, t)• = (I, {qi}i∈I)
such that qi = pi whenever i ∈ I � I(a).

2. t = a+, I(a) ⊆ I and for all i ∈ I(a) then pi(x)
aixy+−−−−→ qi(x) ⊕ q′i(y)

is a transition of Bi with a ↓Pi= ai idsi(a). In this case we let •(p, t) = p
and (p, t)• = (I, {qi}i∈I) ⊕ (I(a), {q′i}i∈I(a)) such that qi = pi whenever
i ∈ I � I(a).

3. t = I and for all i ∈ I then p(x)
x−→ q(x) is a dynamic transitions of Bi. In

this case we let •(p, t) = p and (p, t)• = (I, {qi}i∈I).

4. t = I− and for all i ∈ I then p(x)
x−−−→ ∅ is a dynamic transitions of Bi. In

this case we let •(p, t) = p and (p, t)• = ∅.

Example 7. Consider the dynamic BI(P) system B introduced in Example 6.
The corresponding P/T Petri net N(B) contains, e.g., the places:

({1}, {accept}) ({1}, {open}) ({2}, {start1}) ({2}, {run1}) ({3}, {start2})
({3}, {run2}) ({1, 2}, {accept, start1}) ({1, 2}, {accept, run1})
({1, 2}, {open, start1}) ({1, 2}, {open, run1}) ({1, 3}, {accept, start2})
({1, 3}, {accept, run2}) ({1, 3}, {open, start2}) ({1, 3}, {open, run2})
({2, 3}, {start1, start2}) ({2, 3}, {start1, run2}) ({2, 3}, {run1, start2})
({2, 3}, {run1, run2}) ({1, 2, 3}, {accept, start1, start2}) . . .

The initial marking of N(B) is ({1, 2, 3}, {accept, start1, start2}).
The net N(B) contains the transitions:

(({1}, {open}), {1}) (({1, 2, 3}, {accept, start1, start2}), (cnt req1)+)
(({1}, {open}), {1}−) (({1, 2, 3}, {accept, start1, run2}), (cnt req1)+)
(({2}, {run1}), {2}) (({1, 2, 3}, {accept, start1, start2}), (cnt req2)+)
(({2}, {run1}), {2}−) (({1, 2, 3}, {accept, run1, start2}), (cnt req2)+)
(({3}, {run2}), {3}) (({1, 2, 3}, {open, run1, run2}), {1, 2, 3})
(({3}, {run2}), {3}−) (({1, 2, 3}, {open, run1, run2}), {1, 2, 3}−)
(({1, 2}, {open, run1}), {1, 2}) (({1, 2}, {accept, start1}), (cnt req1)+)
(({1, 3}, {open, run2}), {1, 3}) (({1, 3}, {accept, start2}), (cnt req2)+)
(({1, 2}, {open, run1}), {1, 2}−) (({1, 3}, {open, run2}), {1, 3}−)
(({2, 3}, {run1, run2}), {2, 3}) (({2, 3}, {run1, run2}), {2, 3}−)
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Since for all transitions (p, t) we have •(p, t) = p, we omit to define the presets
of transitions. Since for all transitions of the form (p, I) we have (p, I)• = p and
for all transitions of the form (p, I−) we have (p, I−)• = ∅, we omit to define
the postsets of such transitions. Then we have:

(p, (cnt req1)
+)• = p ⊕ ({1, 2}, {open, run1})

(p, (cnt req2)
+)• = p ⊕ ({1, 3}, {open, run2})

As already said, N(B) can contain dead transitions (never enabled) as well
as dead places (never marked). A simple inspection reveals that the only places
and transitions that are not dead are:

p1 = ({1, 2, 3}, {accept, start1, start2}) (p1, (cnt req1)
+) (p1, (cnt req2)

+)
p2 = ({1, 2}, {open, run1}) (p2, {1, 2}) (p2, {1, 2}−)
p3 = ({1, 3}, {open, run2}) (p3, {1, 3}) (p3, {1, 3}−)

Theorem 2. Reachability is decidable for any dynamic BI(P) system B.

Proof. The proof exploits the P/T Petri net encoding N(B) of B and the fact
that reachability is decidable for P/T Petri nets.

Let s = γ(s1, ..., sn) be a state of B with si = 〈Pi, fi〉 for i ∈ [1, n], and let
δ(γ) denote the set of dynamic interactions of γ (i.e., the opened sessions). Then
we denote by N(s) the marking defined as follows:

N(s) =
⊕

a∈δ(γ)

(I(a), {pi ∈ Bi | i ∈ I(a) ∧ fi(pi) ∩ a �= ∅})

Next, we prove separately the two implications:

1. if there is a transition from s to s′ in B, then there is a transition from N(s)
to N(s′) in N(B);

2. if there is a transition from N(s) to m in N(B), then there is a state s′ such
that there is a transition from s to s′ in B with N(s′) = m.

1st implication. Assume there is a transition s
a−→ s′ in B. Then, there are four

cases to consider, but due to space limitation, we show only the second case
([Sint]), which is the more interesting one.

– s
a−→ s′ is a static transition obtained via rule [Sint].

– s
a−→ s′ is a dynamic transition obtained via rule [Sint]. Since a ∈ γ, then

there is a token p = (I(a), {pi ∈ Bi | i ∈ I(a) ∧ fi(pi) ∩ a �= ∅}) ∈ N(s).

Moreover, there must be transitions pi(x)
x−→ qi(x) of Bi for each i ∈ I(a).

Therefore, there is a transition (p, I(a)) with •(p, I(a)) = p and (p, I(a))• =
(I(a), {qi}i∈I(a)). It is immediate to see that (p, I(a)) is enabled in N(s) and
that its firing leads to N(s′).

– s
a−→ s′ is a spawning transition obtained via rule [Sopen].

– s
a−→ s′ is a closing transition obtained via rule [Sclose].
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2nd implication. Assume that there is a transition (p, t) in N(B) that is enabled
in N(s) and whose firing leads to a markingm. Since t is enabled, then p ∈ N(s),
i.e., it must be the case that p = (I(a′), {pi ∈ Bi | i ∈ I(a′) ∧ fi(pi) ∩ a′ �= ∅})
for some a′ ∈ δ(γ). Then, there are four cases to consider, but due to space
limitation, we show only the third case, which is the more interesting one.

– t = a, I(a) ⊆ I(a′) and ∀i ∈ I(a) then pi(x)
aix−−→ qi(x) is a transition of Bi

with a ↓Pi= ai idsi(a).

– t = a+, I(a) ⊆ I(a′) and ∀i ∈ I(a) then pi(x)
aixy+−−−−→ qi(x) ⊕ q′i(y) is a

transition of Bi with a ↓Pi= ai idsi(a).

– t = I(a′) and ∀i ∈ I(a′) then p(x)
x−→ q(x) is a dynamic transitions of Bi.

In this case we have •(p, t) = p and (p, t)• = (I(a′), {qi}i∈I(a′)). Then, by

rule [Cint], we know that a′ ↓Pi= ai ∈ δ(Pi) and si = (Pi, pi(ai) ⊕ f ′
i)

ai−→
(Pi, qi(ai) ⊕ f ′

i) = s′i for each i ∈ I(a′) and by rule [Sint] we have that

s
a′
−→ γ(s′1, ..., s

′
n) = s′ for s′i = si when i ∈ [1, n]� I(a′). It is immediate to

see that N(s′) = m.

– t = I(a′)− and ∀i ∈ I(a′) then p(x)
x−−−→ ∅ is a dynamic transitions of Bi.

The thesis follows by the fact that reachability is decidable for N(B). �

5 Concluding Remarks

In this paper we have investigated two suitable extensions of BI(P) with dynami-
cally defined behaviour and interaction. The first extension, called reconfigurable
BI(P), has evolved from a previous proposal of the VERIMAG research group
within the project ASCENS, before Dy-BIP was proposed in [6]. Here we prove
that reconfigurable BI(P) is equally expressive as ordinary BI(P). The second
extension, called dynamic BI(P), has been inspired by the use of correlation sets
in web services and can be used to define systems with infinitely many states
(contrary to ordinary BI(P) systems), but ensures that state reachability is de-
cidable. Therefore, both extensions still preserve key BI(P) features in terms of
analysis and verification. Notably the encodings exploited in our expressiveness
results are obtained without a considerable change of the basic components, in
the spirit of the glue expressiveness introduced in [3].

With respect to Dy-BIP, we think dynamic BI(P) has some advantages. While
Dy-BIP imposes ad hoc restrictions (e.g., transitions of atomic components are
labelled with only one single local port instead of a set of local ports) and ex-
tensions (e.g. transitions of atomic components are decorated with non-local
architecture constraints that may involve port names of other components, thus
compromising the modularity of the specification and moreover history vari-
ables are introduced to store the identity of interacting components), this is not
necessary for dynamic BI(P). Furthermore, the number of component instances
cannot change in Dy-BIP, contrary to dynamic BI(P).

In the future we plan to study the interplay between probabilities, priorities
and dynamics, possibly in the compositional setting offered by the algebra of
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Petri nets with boundaries [9]. We are confident that our proposals can fit well
with the priorities based on the offer predicate semantics defined in [5].

Acknowledgments. We thank Simon Bliudze for several suggestions and com-
ments on a preliminary version of this paper.
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Abstract. The latest sensor, actuator, and wireless communication tech-
nologies make it feasible to build systems that can operate in challenging
environments, but we argue in this paper that the foundations needed to
support the design of such systems are not well developed. Traditional
models based on strong computing primitives, such as atomic transac-
tions, should be replaced by weaker models such as the partially ordered
knowledge sharing model, which we motivate in this paper and put into
context of existing research. We also introduce a general probabilistic
semantics for our model and the flavor of its specialization to charac-
terize fractionated systems, an interesting class of systems with a po-
tentially large number of redundantly operating components that can
be programmed independently of the actual number that is deployed or
operational at runtime.

1 Introduction

A wide variety of distributed computing models have been proposed and are
being successfully used in practice, but in this paper we would like to argue
that with a few exceptions most models are not well aligned with the current
technological trends. This is especially indicated by the lack of unified models
and the astonishing degree of diversity of mostly incompatible point solutions
and protocols for emerging technologies with applications in rapidly growing
areas such as mobile networking, sensor networks, networked cyber-physical sys-
tems, instrumented spaces, space and maritime networking, intelligent ensem-
bles, biologically-inspired computing, and mobile social networking. A general
observation is that in many application domains there is a trend from power-
ful centralized or tightly coupled solutions to decentralized and loosely-coupled
architectures.

Given such powerful trends it is often instructive to look at extreme cases. In
our context, we envision open networked systems consisting of a large number of
nodes that are continuously evolving, with nodes and groups of nodes joining or
leaving, or more generally a network exhibiting merging/partitioning of all kinds.
Wireless communication will be prevalent, but spectrum remains limited, and
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with the proliferation of wireless devices, interference becomes an increasingly
serious problem. The highly dynamic network may be physically controllable
to some degree, e.g., through mobility, transmission power control, or advanced
technologies such as smart antennas and beam forming. Various wireless commu-
nication technologies will be used in combination and together with traditional
wired and new emerging communication technologies. Additional challenges may
arise from the environment, leading to potentially high and unpredictable loss
rates, asymmetric connectivity, and windows of communication opportunities
that may be very short due to relative mobility. Unreliability and heterogeneity
of the nodes and limited resources, especially bandwidth and energy lead to fur-
ther difficulties. Intermittent and opportunistic connectivity can be expected to
be the common forms of communication in the future, given that the huge num-
ber of personal devices and sensors cannot be continuously connected. Safety-
and mission-critical systems will need to exploit large amounts of redundancy
to ensure correct operation in such noisy environments. Nevertheless, with the
large number of nodes there is also the expectation that the distributed system
as a whole has capabilities, e.g., in terms of performance and reliability, that are
beyond those of any monolithic system.

Given the potentially highly transient and unreliable nature of the topolog-
ical neighborhood (in fact the notion of neighbor becomes hard to define for
many emerging technologies), we propose the partially ordered knowledge shar-
ing model, which tries to avoid exposing this concept to applications and instead
uses a logical broadcast model (with a partial order semantics) that does not rely
on addressing individual nodes. The notion of locality is implicit but remains
essential, because knowledge can be shared over several hops. How knowledge is
shared is not defined by the model. Protocols based on shared memory, message
passing, broadcasting, gossiping, network coding and their combinations can be
used in implementations. The model does not assume any form of atomic interac-
tions, because they are not implementable in the environments that we envision.
Clearly, this has a significant impact on how the nodes need to cooperate and
what problems can be solved while remaining within the scope of model.

As summarized in Section 6, in spite of key differences our work is related to
a wide range of ideas, most notably the knowledge-based view of distributed al-
gorithms [51], the classical asynchronous message-passing and broadcast models
and corresponding impossibility results [42], the study of group communication
in the presence of network partitions [75], the work on semantically reliable
multicast [81,80], delay- and disruption-tolerant networking [39,88], distributed
blackboard models [27], and the idea of functionally accurate, cooperative dis-
tributed systems [70]. As discussed in Section 6, our work is also closely related
to various flavors of gossip protocols and generalizations [16]. Various informal
models for gossip protocols have been proposed, but given the diversity and the
fact that new variants of gossip-style algorithms keep emerging an exact formal
characterization seems difficult if we do not want to simply identify gossip pro-
tocols in terms of their power with the entire class of distributed algorithms, say
based on the message passing model.
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The partial order knowledge sharing model is not intended to be associated
with a fixed set of architectures or protocols, let it be shared memory, broadcast-
ing, overlay networks, gossip-style protocols, or distributed hashing. Instead, the
knowledge sharing model is intended as the weakest sensible distributed com-
puting model on which applications can be built. The mapping of the model into
a protocol or more realistically into a combination of protocols can depend on
application requirements and is typically influenced by the environment in which
the model is deployed. A deployment on a set of hosts in the Internet would use
different protocols than a deployment on a sensor network. Furthermore, a de-
ployment on wireless mobile nodes such as personal-digital assistants would use
different protocols than a computing cluster on a local area network. Neverthe-
less, applications or functions can be developed at a level that enables code to be
reused in a wide range of environments and ultimately in heterogenous systems
of systems.

Ideally, applications make use of the partially ordered knowledge sharing
model for all of their purposes, but since the model must be necessarily weak,
applications may exploit additional capabilities of the underlying platform, e.g.,
specific networking capabilities for more efficient communication, access to large
databases, or interfaces of specific cyber-physical devices.

Overview of this Paper. In the following Section 2 we motivate the partially
ordered knowledge sharing model, a model for losely coupled distributed com-
puting, which is subsequently formalized in Section 3. It serves as a basis for
other models introduced in this paper, namely its probabilistic refinement in
Section 4 and a more restricted model for the particularly interesting class of
fractionated systems introduced in Section 5. Some examples of fractionated
systems are informally given in Section 5.1 to illustrate to broad scope of this
notion. Since one goal of this paper is to put these models in the context of exist-
ing research, we review various related models in Section 6, before we conclude
in Section 7.

2 Knowledge Sharing as a Basis
for Distributed Computing

Our partially ordered knowledge sharing model is a generalization of a distributed
computing model that we have used in earlier work [88] as the basis for disruption-
tolerant networking. In that work we have used knowledge sharing with spe-
cific orderings as a support layer for disruption-tolerant routing algorithms. The
knowledge sharing model is asynchronous and can make explicit the structure
of a distributed computation in space and time, and hence is less abstract than
many other models of distributed computing, e.g., those abstracting from the
network topology by assuming direct end-to-end channels.

In a nutshell, we assume a networked cyber-physical system with a finite set of
so called cyber-nodes that provide computing resources, can have volatile and/or
persistent storage, and are all equipped with networking capabilities. Cybern-
odes can have additional devices such as sensors and actuators, through which
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they can observe and control their environment, but only to a limited degree
(including possibly their own physical state, e.g., their orientation/position).
Cyber-nodes can be fixed or mobile, and for the general model no assumption
is made about the computing or storage resources or about the network and
the communication capabilities or opportunities that it provides. Hence this
model covers a broad range of heterogeneous technologies (e.g., wireless/wired,
unicast/broadcast) and potentially challenging environment conditions, where
networking characteristics can range from high-quality persistent connectivity
to intermittent/episodic connectivity. The cyber-physical system is open in the
sense that new nodes can join and leave the network at any time. Permanent
or temporary communication or node failures are admitted by this model. As a
consequence, many forms of network dynamics including partitioning, merging,
message ferrying, group mobility, etc. are possible.

In the following, we give an informal characterization of an individual cyber-
node that will be sufficient for the our purposes. First of all, each cyber-node
has a unique name, but different from most models of distributed computing,
names are not used for communication between nodes, thereby allowing appli-
cations that do not make use of names and hence maintain a certain degree
of anonymity or indistinguishability. Each cyber-node has a local clock, which
increases monotonically by at least a fixed smallest unit in each instruction and
is only loosely synchronized with other nodes in the network if admitted by the
networking conditions. We also assume that each node has access to a source
of randomness (e.g., a fair coin), with the idea that typical applications of this
model make heavy use of randomization techniques.

Locally, each cyber-node uses an event-based sequential and universal com-
putation model. The model is based on the dual notions of local events and
distributed knowledge. Two key services are provided by each node. First, timed
events can be posted, i.e., scheduled to be executed at any local time (possi-
bly randomized) in the future. Second, knowledge can be posted, i.e., submitted
for dissemination in the network. All local computation is event-based, where
corresponding to the two services above, events can be either timed events or
knowledge events, with the latter representing the reception of a new unit of
knowledge. Similar to existing middleware frameworks for messaging or group
communication, knowledge dissemination can take place independently in differ-
ent logical cyber-spaces, but a unit of knowledge is a more state-like entity that
should not be confused with the notion of a message. Furthermore, no reliability,
delivery order, or atomicity guarantees are provided to the applications, because
they would severely limit the scalability of the model in terms of the network
size.

Partially ordered knowledge sharing is asynchronous and each node can use
some of its storage as a cache, which we also refer to as a knowledge base.
Network caching allows the system to support communication even if no end-to-
end path exists at a single point in time. Different from a shared-memory model,
partially ordered knowledge sharing allows each node to have its own (typically
partial and delayed) view of the distributed state of knowledge. Different from
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an asynchronous message-passing model, knowledge is not directed towards a
particular destination. Instead each node decides based on the knowledge content
(or its embedded type) if it wants to use the unit of knowledge that it receives.

Epidemic and (spatial) gossiping techniques can be used to implement knowl-
edge sharing, but unlike gossiping, which is based on the exchange of cache
summaries, knowledge sharing can also be implemented by single-message proto-
cols based on unidirectional unicast or broadcast communication [88]. Epidemic
computing covers a very broad class of algorithms, whereas partially ordered
knowledge sharing is a more restricted model that makes use of the abstract
semantics of knowledge that is given in a very specific way, namely in terms
of an equivalence relation and a partial order. The consideration of the partial-
order semantics of knowledge by intermediate nodes is of key importance for
scalable implementations and also the reason why knowledge sharing is funda-
mentally different from asynchronous/unreliable or even epidemic/probabilistic
broadcast.

To partially capture the semantics of knowledge for the purpose of distributed
knowledge sharing, we assume an application-specific partial order ≤ on all
knowledge items together with its induced equivalence relation. We refer to ≤
as the subsumption order given that the intuitive meaning of k ≤ k′ is that k′

contains at least the information contained in k. With this interpretation the
induced equivalence k ≡ k′, defined as k ≤ k′ and k ≥ k′, means that k and
k′ have the same semantics, even if they are represented in different ways. In
this situation, the knowledge sharing model may (but does not have to) discard
k′ without delivering it to the application, if k has already been delivered. In
addition to ≤, we assume an application-specific strict partial order ≺ that is
compatible with ≤ and we refer to as replacement order, with the intuition that
k ≺ k′ means that k′ replaces/overwrites k, and hence if k has not been delivered
yet to the application, the knowledge sharing model may (but does not have to)
discard it without delivering it to the application, if k′ has already been received.
Subsumption equivalence can be important in actual implementations, but we
identify elements that are subsumption-equivalent for the purpose of the formal
treatment in this paper.

The use of a locally sequential model may seem quite restrictive but it en-
courages a programming discipline where large monolithic programs are broken
up into small units that are distributed over the network, a process that we call
software fractionation. Concurrent execution techniques can be used as long as
they are consistent with the sequential model. This is similar to the approach
to multi-programming advocated in [74]. The use of a sequential model also
means that the application code does not use any explicit concurrency control,
e.g., semaphores, monitors, locks, which implies that all application code will be
wait-free by definition. This also means that typical concurrent programs cannot
be expressed in the model, but conversely a mapping of the partially ordered
knowledge sharing model to networked shared memory nodes, each with multi-
ple threads and/or processes, constitutes a possible implementation in today’s
space of technologies.
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The partially ordered knowledge sharing model can be specialized by imposing
local and global resource bounds as well by more specific environment (and
hence network) models. This paper, however, will not impose such technical
restrictions, but rather focuses on the motivation and rationale behind our basic
model, its probabilistic and fractionated variants, and their relationship to other
models for distributed computing.

3 Formalization of the Partially Ordered
Knowledge Sharing Model

Each cyber-node x can assume a local state from a set Qx, it can generate and
handle local events from a set Ex, and it can generate and handle knowledge
from a set Kx. Note that no finiteness requirements are imposed on Qx, Ex,
and Kx. To avoid confusion, assume that the sets Q, E ,K, defined as the union
of Qx, Ex,Kx over all nodes x, respectively, are disjoint. Since states and event
are local, we can without loss of generality assume that the sets Qx are disjoint
and we also assume that the sets Ex are disjoint. The sets Kx are generally not
disjoint, because knowledge can be shared between the nodes.

Since knowledge can be used to represent non-local events, it is possible to
treat knowledge and events in a uniform way for many purposes. For instance,
like knowledge, events can be equipped with an ordering capturing their ab-
stract semantics, and hence we assume that Kx and Ex are both equipped with
a replacement order, a strict partial order that we denote by ≺. In concrete ap-
plications, the definition of ≺ may involve a subsumption ordering, but for the
following it is only the replacement ordering that matters. We use � to denote
the reflexive closure of ≺. We should note, however, that different from knowl-
edge, events are local and hence the replacement order on events is local to each
node.

Each unit of knowledge k ∈ Kx has a creator xc(k) and a time tc(k) defining
the node where it was created and the local time of creation. Furthermore, it
has an activation time ta(k), defining the earliest time the knowledge should
be handled, and an expiration time te(k), after which it is too late to handle
the knowledge so that it can be discarded. Note that the ordering on knowledge
may but does not have to use any of this information. Similarly, each local
event e ∈ Ex has a creator xc(e), which can only be x, a creation time tc(e),
an activation time ta(e) defining the local time at which it is scheduled, and an
expiration time te(e), after which it will not be scheduled anymore. We always
require that tc(k) ≤ ta(k) < te(k) and similarly tc(e) ≤ ta(e) < te(e). An
equality tc(k) = ta(k) is useful and common for knowledge, but for events we
typically have tc(e) < ta(e).

We will not require that knowledge and events are handled in a particular
order, e.g., in the order defined by activation time. In fact, they can be han-
dled at any time between activation and expiration, and if several units satisfy
this condition, the selection is nondeterministic, i.e., unspecified in the general
model. Clearly, this does not preclude the use of the model together with a more
constrained implementation or policy.
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In the following we define the set Ax of actions as Kx ∪ Ex, with the idea
that the handling of a unit of knowledge or an event can be considered as an
action. We generally use a to range over single actions and A to range over
sets of actions. We also assume a set Zx of random values for each node x,
without making any assumptions on their distribution at this point. In this
paper, we use FS(X) to denote the set of finite (not necessarily proper) subsets
of X . Now, the local behavior of each node x is specified by an initializer, i.e.,
a relation • →t,x,z⊆ (Qx × FS(Ax)) and by a handler, i.e., a relation →t,x,z⊆
(Ax × Qx) × (Qx × FS(Ax)). The meaning of • →t,x,z q′, A′ is that node x is
initialized at time t with randomness z to a state q′ and initially generates a set
of actions A′ = E′ ∪K ′, representing a finite set of events E′ and/or knowledge
K ′. Similarly, the meaning of a, q →t,x,z q′, A′ is that processing a in state q by
node x at time t with randomness z leads to state q′ and the generation of a set
of actions A′ = E′ ∪K ′. In these cases, we require xc(a

′) = x and tc(a
′) = t for

all a′ ∈ A′. We should note that any of the sets A′, E′, and K ′ can be empty.
We assume that, given t, x, and z ∈ Zx, there is a unique (q′, A′) such that

• →t,x,z q′, A′, and we define ht,x,z(•) as this unique (q′, A′). Similarly, for all a
and q we require that there is at most one (q′, A′) such that a, q →t,x,z q′, A′.
We define ht,x,z(a, q) as this unique (q′, A′) if it exists and as (q, ∅) otherwise.
Hence, ht,x,z(•) and ht,x,z(a, q) are always well defined.

The state of a cyber-node is of the form K,E, q @ t, x, where x is the name
of the node, t is an element of the time domain T ⊆ R representing its local
time, K ⊆ K is a set of knowledge units cached at x, E ⊆ Ex is a set of local
events pending at x, and q ∈ Qx is the local state of x. Note that a node can
store knowledge that is not relevant for itself, and hence K is not restricted to
Kx.

The rules of the partially ordered knowledge sharing model are presented in
Figure 1. We view each unit of knowledge and each event as a singleton set and
use juxtaposition (empty syntax) to denote set union. If such a union is used
in the premise of a proof rule, we always assume that it denotes the union of
disjoint sets, i.e., Kk implies k /∈ K if it occurs in a premise.

A configuration of a cyber-physical system S is a set of local states K,E, q @
t, x, one for each cyber-node x of S. Given a configuration c containingK,E, q @
t, x, we write Kx(c) to denote K. The set of configurations is denoted by C. The
rules in Fig. 1 define a labeled transition relation → on configurations of the
cyber-physical system S in the following (non-standard) sense: For configurations
c and c′, we have c→r c

′ iff there exist an instance r of a rule such that c contains
the premises of r and c′ is obtained by an update of c with the conclusion which
is defined as below. In this case, we also say that r is applicable in c, and we
write r(c) = c′, viewing r as a partial function r : C →p C. A • is used to denote
the empty set of premises and the empty conclusion. If one of the premises is
K,E, q @ t, x and the conclusion is K ′, E′, q′ @ t′, x then c′ is obtained from c
by replacing this premise by the conclusion (not removing any other premises).
If the conclusion is • then c′ is simply obtained by removing the premises from
c.
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Intro(t, x, z)
•

K′, E′, q′ @ t, x
if • →t,x,z q′, E′K′

KDel(x, k)
Kk,E, q @ t, x

K,E, q @ t, x

KExp(x, k)
Kk,E, q @ t, x

K,E, q @ t, x
if t ≥ te(k)

EExp(x, e)
K,Ee, q @ t, x

K,E, q @ t, x
if t ≥ te(e)

KRepl(x, k, k′)
Kkk′, E, q @ t, x

Kk′, E, q @ t, x
if k ≺ k′

ERepl(x, e, e′)
K,Eee′, q @ t, x

K,Ee′, q @ t, x
if e ≺ e′

KComp(x, k, z,Δt)
K,E, q @ t, x

KK′, EE′, q′ @ t′, x
if

k ∈ K, ta(k) ≤ t < te(k),
k, q →t,x,z q′, E′K′, t′ = t+Δt

EComp(x, e, z,Δt)
K,E, q @ t, x

KK′, EE′, q′ @ t′, x
if

e ∈ E, ta(e) ≤ t < te(e),
e, q →t,x,z q′, E′K′, t′ = t+Δt

Comm(x, y, k,Δt)
Kx, Ex, qx @ tx, x Kyk,Ey, qy @ ty, y

Kxk,Ex, qx @ t′x, x
if

x �= y,
tx ≤ t′x ≥ ty,
t′x = tx +Δt

Sleep(x,Δt)
K,E, q @ t, x

K,E, q @ t′, x
if t′ = t+Δt

Elim(x)
K,E, q @ t, x

•

Fig. 1. Rules of the Partially Ordered Knowledge Sharing Model

By inspection of the rules we can see that, given a configuration c, applicable
rule instances r are uniquely determined by a subset of their variables. Using
the same variables as in the rules to denote the binding, we define a rule in-
stance as one of the following: Intro(t, x, z), KDel(x, k), KExp(x, k), EExp(x, e),
KRepl(x, k, k′), ERepl(x, e, e′), KComp(x, k, z,Δt), EComp(x, e, z,Δt), Comm(x, y,
k,Δt), Sleep(x,Δt), and Elim(x). All rules have an implicit constraint that
Δt ≥ τ where τ > 0 is the minimum time duration, a constant fixed for the
system. The set of all rules instances will be denoted by R.

We briefly convey the intution behind these rules in the following. The intro-
duction and elimination rules Intro(t, x, z) and Elim(x) express that nodes can be
added and removed, respectively, from the system dynamically at any time in the
absence of other constraints on the execution. This allows us to model dynamic
scaling of the system size as well as node failures. The deletion rule KDel(x, k)
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expresses that shared knowledge can be discarded or lost at any time in con-
strast to events which are local. In practice, some (probabilistic) constraints
may be placed on this rule depending on the actual environment. The expira-
tion rules KExp(x, k) and EExp(x, e) model the internal expiration of knowledge
and events. Although KExp(x, k) is subsumed by KDel(x, k) it is important to
distinguish these two rules so that the environment can impose constraints on
the latter only. Similar to expiration, the replacement rules KRepl(x, k, k′) and
ERepl(x, e, e′) model the internal replacement of knowledge and events, respec-
tively. The computation rules KComp(x, k, z,Δt) and EComp(x, e, z,Δt) model
a computational step triggered by a unit of knowledge k or an event e, respec-
tively. The communication rule Comm(x, y, k,Δt) expresses the transmission of
knowledge k from any node y to any node x, and just like the deletion rules it is
typically subject to environmental constraints, e.g. the feasible communication
possibilities may depend on network topology or a probabilistic transmission
model. Note that according to our definition of rule application the transmitting
node y remains unchanged in this step. Finally, the sleep rule Sleep(x,Δt) simply
allows time to pass locally but monotonically in each node.

An (unconstrained) execution in the partially ordered knowledge sharing model
is a finite sequence π = c0, r0, c1, r1, c2, . . . , cn or an infinite sequence π =
c0, r0, c1, r1, c2, . . . of configurations such that c0 is the empty configuration and
ci →ri ci+1 for all i. For each ri above we say that the index i is a step of the
execution π. We say that a rule r is applied in π at j iff r = rj . For the fol-
lowing definition and the subsequent weak fairness properties, we abstract from
the passage of time and hence identify instances of proof rules that only differ
in t, t′ (or the corresponding indexed variables). We say that r is permanently
applicable in π at i iff r is applicable in all steps j ≥ i of π.

Depending on the properties on interest, additional constraints imposed by the
environment must be made explicit, e.g. regarding the underlying network model
as pointed out above. Furthermore, in order to establish liveness properties,
gloabal fairness as defined subsequently is the weakest sensible requirement that
an environment may impose on executions. An execution is computationally
fair iff each instance of a computation rule that is permanently applicable at i is
applied at some j ≥ i. Similarly, an execution is replacement fair iff each instance
of a replacement rule that is permanently applicable at i is applied at some j ≥ i.
An execution is communication fair iff each instance of a communication rule
that is permanently applicable at i is applied at some j ≥ i. Note that an
applicable communication rule can lose applicability if the conclusion has been
reached already, which means that direct communication between each pair is
not required if the information can be exchanged over multiple hops by other
instantiations of the communication rules. An execution π is locally fair iff it is
computationally fair and replacement fair. An execution is globally fair iff it is
locally fair and communication fair.

For convenience, we introduce a few more abstract local transition relations.
We write a, q →x,t q

′, A′ iff there exists z such that a, q →t,x,z q′, A′. Similarly,
we write a, q →x q′, A′ iff there exists t such that a, q →t,x q′, A′. We write
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a, q →t,x q′ iff there exists A′ such that a, q →x q′, A′. Finally, we write q →x q′

iff there exists a such that a, q →x q′. Similarly, we write • →x q′ iff there
exists A′ such that • →x q′, A′. We also use the reflexive and transitive versions,
that is, we write q →∗

x q′ to denote the existence of a possibly trivial chain
q →x · · · →x q′, and we write • →∗

x q′ to denote • →x q →∗
x q′. Similarly, we

write a′, q →+
x q′′ iff a′, q →x q′ →∗

x q′′. Finally, we write a, q →x iff there exists
q′, A′ such that a, q →x q′, A′.

The initialization and handler relations need to be defined so that they are
consistent with the replacement order in the following sense: If • →∗

x q and
a′, q →+

x q′ and a � a′ then it is not the case that a, q′ →x. Furthermore, we
require that the handler relation is complete in the following sense: If • →∗

x q and
a ∈ Ax then a, q →x if there is no action a′ ∈ Ax with a � a′ such that • →∗

x q′

and a′, q′ →+
x q. Consistency means that actions corresponding to knowledge or

events that have already been processed are obsolete and are ignored. Complete-
ness means that new knowledge and events can always be processed if they are
not obsolete. Consistency implies, in particular, that an instance of a computa-
tion rule will not remain applicable after the corresponding event or knowledge
has been processed. As a consequence of the consistency condition, it is possible
to define the replacement relation as a relation derived from the application,
thereby making part of the application semantics available at other nodes of
the network. The use of this information outside of the application to discard
knowledge in an implementation can be essential if resources are limited but is
not strictly required (e.g., may only take place at some nodes) in the partially
ordered knowledge sharing model.

A generic implementation that satisfies consistency assuming a handler rela-
tion that already satisfies completeness can be defined as follows. Without loss
of generality we assume that each local state q ∈ Qx is of the form q = (K̄, Ē, q̄)
with the idea that a finite set K̄ ⊆ Kx is used to keep track of all knowledge units
processed by node x and a finite set Ē ⊆ Ex keeps track of all pending events,
i.e., events that have not yet been processed. Now the generic implementation
is inductively defined below. As defined by Rule (1) the implementation starts
with the empty set of processed knowledge and the intially pending events yet
to be processed. Rules (2) and (3) capture the processing of a unit of knowledge
or an event, respectively. To concisely keep track of all knowlege processed in
the past (usually an unbounded set) and all events to be processed in the future
it is sufficient to store the maximum of these sets (obsolete items are ignored in
line with the replacement rules).

(1) • →t,x (∅,max(E′), q′), E′K ′

if • →t,x q′, E′K ′.
(2) k, (K̄, Ē, q)→t,x (max(K̄k),max(ĒE′), q′), E′K ′

if k, q →t,x q′, E′K ′ and k /∈ ↓K̄.
(3) e, (K̄, Ēe, q)→t,x (K̄,max(ĒE′), q′), E′K ′

if e, q →t,x q′, E′K ′ and e /∈ Ē.
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In this definition, we use the maximum max(. . .) of a set of knowledge units or
events, which is defined as the set of maximal elements w.r.t. the replacement
ordering ≺. In addition, ↓K̄ denotes the downward closure of a set of knowledge
units K, i.e. the set of all k with k � k̄ for some k̄ ∈ ↓K̄.

4 Probabilistic Refinement of the Model

In this section we show how our model can be enriched to take into account
probabilisitic effects, which are often important to adequately model and verify
networked cyber-physical systems. Two sources of nondeterminism exist in our
model and need to be equipped with probabilities: nondeterminism due to local
random choices of the algorithm (formalized by instantiation of z in the rules)
and nondeterminism due to choices of the environment, under which we subsume
any other choices such as location and time of execution (formalized by x, t, and
other variables in the rules).

For a general probabilistic treatment, only measurable subsets are of interest.
Hence, we assume that each of the sets T , Qx, Kx, Ex, Zx is equipped with
a σ-algbra defining which subsets are measurable. This naturally gives rise to
σ-algebras on Q, K, E , Z, and finally R (the set of rule instances) and C (the set
of configurations). We always use B(S) to denote a suitable σ-algebra associated
with S to capture the measurable sets of interest. If S is a topological space, the
Borel σ-algebra would be a natural choice and used in most practical cases, but
the following construction does not depend on it.

In the probabilistic version of the model, the behavior of each node x is
specified by a time-independent probability measure Px : B(Zx) → [0, 1]. If
more than one random value is needed, Zx can be a finite or infinite product (in
which case z would be a tuple). For most practical purposes, Px can be simply
defined as a uniform distribution or the joint probability of independent uniform
distributions.

In this way, we define probability distributions over the local choices in the
nondeterministic model. However, there are many other choices in the knowledge
sharing model that remain nondeterministic. In order to equip system executions
with probabilities, all nondeterminism needs to be resolved. This is done, in the
following, by means of an environment, a more neutral term to subsume what
is often called a strategy, a scheduler, a policy, or an adversary.

We use C and R to range over B(C) and B(R), respectively. The probabilis-
tic model can only consider executions that lie within measurable sets. Hence,
in order to cover all executions starting from a measurable set C0, we require
that for each C the set of rule instances applicable in C, i.e., applicable in
some c ∈ C, must be measurable. In this case, we also require that this set
R is a measurable function (recall that rule instances are viewed as partial
functions on configurations, which can be naturally lifted to sets of configu-
rations). Now measurable executions are defined as finite sequences of the form
(C0, (R0, C1), (R1, C2), . . . , (Rn−1, Cn)) subject to the condition Ci+1 = Ri(Ci).
We denote by B(En) the product σ-algebra of all measurable executions and use
Π to range over this set.
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We now formalize the environment as a family of functions Pn : En×B(R)→
[0, 1] such that Pn(·, R) is measurable, Pn(π, ·) is a probability measure, and
Pn(π,R) > 0 implies that there exists a rule instance r ∈ R that is applicable
in the last configuration of π. We denote by Comp(x) the set of all instances of
computation rules for node x, and by Comp(x, z) the subset for a given choice
of z. We now require that Pn accurately reflects the local probabilities Px at
each node x, i.e., Pn(π,Comp(x, Z)) = Pn(π,Comp(x))Px(Z) for all Z ∈ B(Zx).
In this way, we can uniformly treat all nondetermism (internal and external)
through the notion of an environment.

Given these assumptions, we are now prepared to construct the execution se-
mantics of our probabilistic model as a particular stochastic process. To this end,
we first inductively define a family of probability measures Pn : B(En) → [0, 1]
as follows: P0(C0) = δc0(C0) and Pn+1(Π, (R,C)) =

∫
Π
Pn(dπ)

∫
R
Pn(π, dr) for

Π, (R,C) ∈ B(En+1). For the base case, we have used the Dirac measure δc0
as the initial probability measure. In the induction step, we use the Lebesgue
integral, exploiting the fact that Pn(·, R) is measurable. Note that C is uniquely
determined by Π and R.

Since P is defined as a finite-dimensional composition of probability kernels
we can apply the Ionescu Tulcea extension theorem (see e.g. [67]) to construct a
probability space (Ω,F , P ) and random variables C̄0 : Ω → C and (R̄i, C̄i+1) :
Ω → R × C such that C̄0, (R̄0, C̄1), . . . constitutes an infinite stochastic pro-
cess satisfying P (C̄0, (R̄0, C̄1), . . . , (R̄n−1, C̄n) ∈ C0, (R0, C1), . . . , (Rn−1, Cn)) =
Pn(C0, (R0, C1), . . . , (Rn−1, Cn)) for each n.

Note that the execution semantics of our probabilistic model is a general con-
struction of a probability measure on product spaces that is very concise, because
it does not depend on the nature of the underlying probability distributions, e.g.
wether they are discrete or continuous. As a direction for future work, it would
be important to work out specializations and more generally define a simple
language that captures practically relevant subclasses with more specific envi-
ronment models (e.g. templates for specific distributions) that can be supported
by automated tools for verification and analysis.

5 Fractionated Knowledge Sharing Model

The fractionated knowledge sharing model imposes additional conditions on the
(probabilistic) knowledge sharing model. In view of our motivation to serve as a
basis for highly dynamic and robust systems, it seems natural to require that the
fractionated model limits the use of node names (especially avoiding the prob-
lematic notion of neighborhood) and local state by requiring that the knowledge
generated by a node is only a nondeterministic or randomized function of lo-
cal time and all knowledge that has been processed, but disregarding obsolete
knowledge. This is however too strong, because each unit of knowledge generated
is equipped with the name of its creator, which clearly violates this condition.
Furthermore, we may want to keep track of names, e.g., contributors in sensor
information fusion, without making use of the specific names themselves. Hence,
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we use a more general definition based on a notion of symmetry, which generally
allows names to appear in generated knowledge units, but limits their use.

Given an execution π = c0, r0, c1, r1, c2, . . . we denote by Kx(π, i) the set of all
knowledge units available (received and posted) at node x before step i, i.e., the
union of all k and K appearing in applications of introduction or computation
rules. Given t, x, and z ∈ Zx, we recall that ht,x,z(•) and ht,x,z(a, q) are always
well defined and of the form (q′, A′) with A′ = E′ ∪K ′. In this case, we also use
hk
t,x,z(•) or hk

t,x,z(a, q), respectively, to denote the unique K ′.
A (permutation) symmetry is a bijective mapping σ : X → X on the node

identifiers. We assume that a symmetry σ can be lifted to local states and actions
a (and sets thereof) such that σ(xc(a)) = xc(σ(a)). In a syntactic representation,
a possible (although limited) way to achieve this is by replacing all occurrences
of x by σ(x). Category theory is the right tool for a more general treatment but
beyond the scope of this paper, which only gives the flavor of how we approach
fractionated systems.

For the homogeneous fractionated model, we now require that the following
conditions hold for each node x, time t, z ∈ Zx, local state q ∈ Qx such that
• →∗

x q, and each symmetry σ : X → X . (1) σ(ht,x,z(•)) = ht,σ(x),z(•). (2)
σ(ht,x,z(k, q)) = ht,σ(x),z(σ(k), σ(q)). (3) σ(ht,x,z(e, q)) = ht,σ(x),z(σ(e), σ(q)).
These conditions express that the initializer and handlers at x are independent of
x (location-independence) and do not distinguish between the remaining nodes.

We say that a family of functions ft,x,z : FS(Kx)→ FS(Kx) for z ∈ Zx is ho-
mogeneous iff σ(ft,x,z(K)) = ft,σ(x),z(σ(K)) for each symmetry σ : X → X . For
the homogeneous functional model, we now require in addition to the conditions
above that there exists a homogeneous family ft,x,z such that the following con-
ditions hold for each execution π, where the introduction or a computation rule is
applied at step i for node x with time t and z ∈ Zx. (1) h

k
t,x,z(•) ⊆ ft,x,z(∅). (2)

hk
t,x,z(k, q) ⊆ ft,x,z(max(Kx(π, i)∪{k})). (3) hk

t,x,z(e, q) ⊆ ft,x,z(max(Kx(π, i))).
These conditions express that the generated knowledge must match the resulting
knowledge defined by the family ft,x,z, and hence is independent of q and, by
the homogeneity condition, independent of x (up to a symmetry). Note that we
do not have a corresponding functionality requirement for generated events.

For practical purposes we need to relax these conditions in two ways. First,
full fractionation as defined by the condition above, implies complete anonymity
or indistinguishability of nodes, which is clearly not a realistic requirement for
nodes that can model identifiable users or cyber-physical devices. A hybrid ap-
proach that allows a mix of conventional identifiable and fractionated nodes
would address this problem. This is not sufficient, however, because even the
fractionated part will not be homogenous in practice, because in complex sys-
tems different fractions will often implement different functions. In other words,
anonymity/indistinguishability can at best be partial in practical systems and
our fractionated model needs to capture this.

A straightforward solution is to partition the set of fractionated nodes into
equivalence classes and to restrict the symmetries to symmetries that respect
the equivalence relation, i.e., h(x) ≡ x. This leads the a definition of the general



Partially Ordered Knowledge Sharing and Fractionated Systems 415

fractionated model, which can capture a heterogeneous set of equivalence classes,
with homogeneity within each class, which can be a singleton to express full dis-
tinguishability. To establish a connection to traditional concepts, an equivalence
class may also be also be thought of as the role of a type of nodes.

In this section we have only given a flavor of our fractionated model, which
together with the following examples should be sufficient to convey the intution.
The general definition and theory of fractionated systems is being further studied
and will be subject of a future publication.

5.1 Examples of Fractionated Systems

The need to operate in very general environments makes it impossible to solve
many traditional problems such as consensus in the original sense. However,
by relaxing the problem specifications it is often possible to find fractionated
solutions with weaker guarantees. A number of typical examples that may also
be thought of as design patterns of fractionated systems are informally discussed
in the following.

Distributed Task Execution. A task that is ready for execution is represented by
a unit of knowledge. A number of anonymous nodes will execute this task after a
random delay (using a timed event) and post the execution status of the task as
knowledge, replacing the knowledge unit that triggered the execution by means
of a suitable ordering. The execution is preempted at any time if knowledge
about the execution of the task at some other node is received. Depending on
the timing there is the possibility of redundant execution, but the system is
tolerant to temporary or permanent node or communication failures.

Sensor Information Fusion. In this example we assume a set of identifiable sensor
nodes that inject their measurements as time-stamped knowledge streams into
the network. Another set of anonymous nodes in the network is performing
sensor fusion computations based on what knowledge is available to them. In
the simplest case, each such node is time-triggered, performing one computation
per event, computing a function of all knowledge received so far and generating
a new piece of time-stamped aggregated knowledge. Aggregated knowledge is
equipped by an ordering that is consistent with the order of the knowledge it
depends on so that obsolete knowledge can be discarded at the earliest point in
the network.

Distributed Optimization. We assume that each node has the capability to com-
pute the objective function that specifyies the optimization objective. The best
known solution is represented as knowledge using the ordering on the value do-
main of the objective function. The ordering can be a total ordering in which case
a converged distributed state represents a single solution, or a partial ordering
representing multi-objective optimization problems, where the distributed state
should converge to the set of Pareto-optimal solutions as in our study on parallel
and distributed optimization [65]. Each node can use any method, e.g., periodic
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sampling the parameter space, to initialize the parameters and to incrementally
improve the objective, in which case knowledge with the improved solution will
be posted. Each node takes into account the available knowledge about the best
current solution.

Distributed Consensus. While solving the consensus problem is not possible
in our model, a weaker version which makes a best effort to converge to an
agreement if connectivity allows it, can be expressed. In the simplest solution,
each node proposes a random value (e.g., 0 or 1) posted as knowledge and keeps
track of the proposals from other nodes. Whenever it detects a tie, it will change
and post its proposal to break the tie. Note that it is essential to distinguish
different proposals from other nodes, but it is only the number of proposals
(with a specific value) that matters for the decision.

Sensor/Actor Virtualization. Sensor and actuator nodes implement a minimal
interface based on two kinds of knowledge: facts and goals, representing ob-
servations and control goals, respectively. Fact and goals are equipped with an
ordering based on their timestamps, so that new observations/controls will re-
place previous ones. Any other node in the network can perform computations
on behalf or any sensor/actuator, so that the system functionality will not be
affected by a missing computation node.

Declarative Control. The transformation of facts/goals into new facts/goals,
respectively, is a form of computation. A sample logical framework that can
support a notion of distributed proofs with applications to sensor/actor networks
can be found in [66]. In the simplest case all computational nodes are anonymous
and performing deductions in a single logical theory that is shared and assumed
to be known to all nodes. Other nodes may be identifiable and correspond to
physical devices such as sensors and actuators, respectively.

Cyber-Physical Workflows. A cyber-physical workflow is an operational descrip-
tion of the dynamics of a cyber-physical system with sensors and actuators.
Similar to a logical framework, control goals evolve over time based on feedback
from observations (facts). The workflow is executed in a distributed and fault-
tolerant fashion, so that each step of the workflow can be executed by any node
in the network who has the knowledge available.

In all these examples, the communication can be subject to delays or dis-
ruptions or the network may be even partitioned and the system will continue
to operate in a useful and meaningful way. If the network heals or partitions
merge, separately evolving components can resynchronize. The system can also
be scaled up and down incrementally at runtime by adding and or removing
nodes. A faulty or disappearing node does not lead to loss of essential state,
which is represented as knowledge that is redundantly cached. No notion of
a neighborhood is exposed to applications, thereby avoiding a concept that is
highly dynamic, often not well-defined, and may exposed node identities. Nev-
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ertheless, the model uses a notion of locality by propagating knowledge through
the network with potentially unbounded delays.

6 Related Work

Epistemic View of Distributed Systems. Knowledge sharing is a well known idea
that has been investigated in Halpern and Moses’ groundbreaking paper [51]
and in many subsequent works. Since then epistemic approaches have received
renewed interest due to their capability to put the concept of partial information
into the hands of the programmer (see, e.g., the SCEL language for autonomic
computing [78]) and their potential to serve as as unifying framework for modal-
ities such as time, location, and probability (see, e.g., [79]).

Initially, understanding knowledge sharing in distributed environments has
lead to a complementary view providing new insights into distributed algorithms
and a logical justification for their fundamental limitations. For instance, attain-
ing common knowledge, i.e., complete knowledge about the knowledge of other
agents (and hence about the global state) in a distributed system is not feasi-
ble in a strict sense, and hence problems like the coordinated attack problem
is unsolvable in asynchronous systems. In practice, approximations of common
knowledge can be used by making various assumptions of synchrony, but the
fundamental problem in asynchronous systems remains.

Halpern’s concept of knowledge is based on a modal logic, which expresses
facts and the state of knowledge of individual agents. A key axiom is the knowl-
edge axiom which states that if an agent knows a fact that fact must be true.
The use of knowledge in the partially ordered knowledge sharing model is not
limited to facts. For instance, knowledge can represent goals as in [87]. Conse-
quently, we do not assume a particular modal logic, which means that knowledge
about knowledge must be explicitly represented if it is needed. Our model is cen-
tered around the partial order structure of knowledge (which can also capture
information content) and how it enables distributed knowledge sharing and re-
placement. Our subsumption relation has a logical interpretation (which in a
sufficiently expressive logic can be defined in terms of a logical implication), but
the replacement ordering is of a different nature in that it cannot be reduced to
a simple logical relationship.

Asynchronous Message Passing and Broadcasting. Asynchronous message pass-
ing was the basis for one of the early models of concurrent computation, the
actor model [2], and the key feature that distinguishes it from synchronous mes-
sage passing models is that maximum delay of messages in transit is unbounded.
The FLP-model [43] captures the essence of asynchronous message passing and
has been used to study many impossibility results of distributed computing [42].
Each message carries the name of the intended destination. Messages are placed
in a message buffer (modeled as a multiset) by a send operation. A message in
the buffer may be delivered if the destination process invokes a receive operation,
but the receive operation may be unsuccessful and return without a message. If
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the receive operation is successful the message is deleted from the buffer. From
this description it is clear that message integrity and absence of duplication is
assumed. In addition, we have the following fairness requirement: If a receive op-
eration is performed infinitely many times by a given process then every message
with this process as its destination is eventually delivered.

Asynchronous broadcast differs from the message passing model only in that
the send operation generates a copy of the message for each process as a destina-
tion. All these messages are placed in the buffer and are received asynchronously
with an unbounded maximum delay. The synchronous version of broadcast is
also known as atomic broadcast, which involves an unbounded number of par-
ties and hence is inherently non-scalable. On the other hand, it has been shown
that a probabilistic version of broadcast [17], has good scalability properties un-
der realistic assumptions. It is also known as bimodal multicast, because with
high probability either all or none of the non-faulty processes will receive the
message.

Group communication systems provide group membership and communica-
tion services (usually including reliable atomic multicast with or without message
ordering guarantees) that were initially based on the virtual synchrony semantics
that essentially allows them to operate as replicated state machines as long as
sufficient synchronization can be maintained. Virtual synchrony can handle fail-
stop faults and considers a recovered process as a new one. Due to its limitations,
a more relaxed extended virtual synchrony semantics has been proposed [75] to
support more general fault models such as network partitioning and remerging.
Practical implementations such as Spread perform very well and provide range
of powerful primitives, but the inevitable drawback is the need for tight synchro-
nization (e.g., by means of a virtual token ring) which limits the scalability and
the capability to deal with highly unstable/dynamic networks.

Gossiping and Epidemic Algorithms. Bimodal multicast and various other ap-
proaches to probabilistic broadcast fall into the broad class of gossip protocols
[16], which have been initially studied in [28] and have been shown to exhibit
a dynamics similar to the spread of epidemics [38], which is why they are often
referred to as epidemic protocols. Due to their loosely-coupled nature, fault-
tolerance, and weak assumptions, gossip protocols are closely related to our
partially ordered knowledge sharing model (which lives at a higher level of ab-
straction), and hence this body of research deserves a careful review. The class
of gossip protocols is quite diverse and new gossip-style protocols continue to
emerge, which makes it difficult to capture their essence in a formal definition.
In the informal characterization of [16] a gossip protocol is based on pairwise,
periodic interactions exchanging information of (small) bounded size so that the
information exchanged reflects the state of the peer. Communication can be un-
reliable and the frequency of interactions is relatively low. Also the selection of
peers for pairwise interactions needs to involve a form of randomness. According
to [16] it is useful to distinguish three styles of gossip protocols. There are in-
formation dissemination protocols concerned with or supporting the end-to-end
delivery of data (e.g., bimodal multicast [17], rumor spreading [60]), and proto-
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cols for reconciling replicas (e.g., [28,82,47,92]), which reduce the entropy of the
global system and hence are also known as anti-entropy protocols, and proto-
cols that use in-network computation for information aggregation/fusion (e.g.,
[62]). Gossip protocols are often used to implement services e.g., for membership,
resource, reputation, key management, systems for distributed monitoring, man-
agement, and data mining [91], and can serve as a foundation for higher-level
protocols, e.g., routing protocols, as their are used in the Internet, in mobile ad
hoc networking, in delay-/disruption-tolerant networking [40], and peer-to-peer
networking [5]. More recently, general programming frameworks for gossip-style
algorithms such as [37] have been developed.

Probabilistic Information Dissemination. Based on the observation that a peer-
sampling service [58] is at the core of many gossip protocols, a general concep-
tual framework has been proposed in [64] and further refined in [21]. A similar
framework with an informal discussion of various system and network parame-
ters can be found in [41]. In [21] a gossip protocol is defined in as the iteration
of three operations (executed once within a fixed period), namely randomized
peer selection (i.e., sampling peers from the current view), data exchange, and
data processing. Data exchange is considered a two-way synchronous exchange
of information initiated by the active (i.e., sampling) peer. This model express
push, pull, and push-pull data exchanges, and like in [58] can be simplified to a
one-way message passing in the push case. Some limitations of this model are
already pointed out by the authors in [64]. In particular, it is questioned if this
model is sufficiently general to capture protocols that involve e.g., asynchronous
broadcast. For instance, [11] does not use explicit peer-selection and pairwise in-
teractions, but uses iterative broadcasting (with limited range and message loss).
The answer may depend on the level of abstraction and on the network model.
In [21], it is assumed that links are reliable, which is different from the model in
[17], which allows for probabilistic message loss. It is shown that with reliable
links, the model is equivalent to a model with atomic pairwise interactions. The
reference further identifies a subclass of anonymous gossip protocols that are
oblivious to the selected peers and establish an equivalence (in terms of their
capability to compute functions) to so-called population protocols that are also
based on atomic pairwise interactions. In the generic peer-sampling service [58],
random-peer selection is based on the current view, which is a suitable random
subset of all nodes in the network. In more general models, this view can be
spatially-biased as for instance in spatial gossiping protocols [63] for networks
with mobile nodes or in the topology sensitive epidemic algorithm [1]. Clearly,
this deviates from the common assumption in the analysis of gossip protocols
that node select their peers uniformly randomly among all nodes in the network.

In contrast to anti-entropy gossip protocols (see below), which are reconcil-
ing local state, gossip-based dissemination protocols provide logically a broad-
casting service for streams of messages, which are typically buffered only for
short periods of time so that buffer space is available for new messages coming
in. The network model is critical in gossip-based dissemination. For instance,
network partitioning is usually not considered, and it has been observed that
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gossip-based dissemination is not robust under correlated losses [16]. Partially
ordered knowledge sharing, on the other hand, is targeting such uncooperative
environments and hence more closely related to the following remaining two
classes of gossip/epidemic algorithms.

Reconciling Replicas. According to the definition in [92] anti-entropy protocols
perform pairwise exchanges of so-called deltas, that is, differences in the local
states of the two peers partcipating in an interaction. At the core of the model
it is assumed that each peer has a set of variables (keys) which not only have
a value but also a version number. The ordering on version numbers is then be
used by the anti-entropy protocol to discard old versions in favor of new versions
whenever information is merged and cached in the network. It is noteworthy
that the concept of versions with their total order is a special case of partially
ordered knowledge sharing. In fact, partially ordered knowledge sharing, which
is reconciling the content of local knowledge bases, can be naturally implemented
as a generalization of anti-entropy gossiping (with the partial order providing
additional structure to exploit for reconcilation).

In-network Computing. The last category of gossip protocols aim at the dis-
tributed computation of functions (such as min, max, number of votes, weighted
sums, averages) of the individual node states so that the result (or an approxi-
mation) is eventually available at all nodes. For instance, a simple approach to
compute averages using gossip in the abovementioned framework is to define the
data exchange function so that the intermediate results, say vi and vj at the
two participating nodes i and j is replaced by the local average (vi + vj)/2 at
each node. Under fairly general conditions the network will converge to the exact
result, but it has also been shown in [12] that message loss can easily lead to er-
rors of several orders of magnitude. This shows that the model based on atomic
pairwise interactions is an idealization and more refined models are needed for a
detailed analysis. Using the broadcast gossip model, [11] shows that distributed
averaging (as a special case of consensus) can be achieved simply by mixing,
where each node periodically (locally) broadcasts its current value and all re-
ceivers compute their new value as the weighted average (the weight is called
mixing parameter) of their current value and the received value. The algorithm
is robust to failures, but the analysis is done under the assumption of reliable
broadcast. Related approaches are the computation of separable functions, i.e.,
linear combinations of local functions, in [76] and the computation of frequent
elements [69] in a fully distributed way. The partially ordered knowledge shar-
ing model can model in-network computations, but imposes some additional
structure, namely the partial order, which allow us to naturally organize such
computations to operate on asynchronous and unreliable streams, using ordered
timestamped elements in the simplest case.

Semantic Networking. Semantically reliable multicast [81] is designed to make
use of the semantics of messages to discard obsolete messages in overload sit-
uations. To this end the authors assume that messages are equipped with an



Partially Ordered Knowledge Sharing and Fractionated Systems 421

obsolescence relation that is coherent with the causal order of events. As sug-
gested by the authors, this can be implemented by simply tagging each message
at its source with all messages that it makes obsolete. The obsolescence rela-
tion is hence defined independently for each stream of messages by the sender
and generalizes the idea of stubborn channels. Stubborn channels [49] between
non-faulty processes have the property that if a message is sent without send-
ing another message that it is guaranteed that this message will eventually be
received.

Probabilistic reliable multicast [80] is a combination of semantically reliable
multicast and gossip-based probabilistic multicast, but instead of a tight inte-
gration the authors argue in favor of a layering of probabilistic multicast on top
of semantically reliable multicast for performance reasons and to reduce the like-
lihood of problematic correlated losses. Different from partially ordered knowl-
edge sharing, messages are buffered only for a (typically short) finite duration
in probabilistic multicast, which justifies this layered approach. Replacement in
the knowledge-based model is not necessarily limited to overload situations. A
more important difference, however, is that the replacement ordering does not
have to be coherent with the causal order. This enables the use of more powerful
partial (and total) orders which break ties in the distributed system in a consis-
tent way. A single total order for instance is a common pattern that implements
a distributed and hence potentially inconsistent shared memory abstraction.

An idea related to semantically reliable multicast is used in the implemen-
tation of realtime UDP [4], a protocol that can improve VoIP quality by in-
network buffering with hop-to-hop retransmission. While this has been applied
to a specific class of applications, it is an instance of a more general intuitive
idea of buffered information that is “overtaken by events” [3], which is simi-
lar to the obsolescence relation of semantically reliable multicast and hence can
also be captured by a replacement relation in the partially ordered knowledge
sharing model. Semantics-aware networking is only recently gaining attention
in the context of networked cyber-physcial systems. For example, [59] focusses
on continuous data sources and exploits their underlying models to improve the
quality of real-time dissemination in unreliable networks using a broker-based
publish/subscribe architecture.

Delay- and Disruption-Tolerant Networking. Delay-tolerant networking (DTN)
[39,40,97] evolved from early ideas on an interplanetary Internet architecture
[22] and uses late binding and a store-and-forward approach (potentially utiliz-
ing persistent storage) to deal with episodic and intermittent connectivity and to
overcome delays and temporary disconnections. Network partitioning and merg-
ing is usually considered part of the normal operation, especially when nodes (or
groups of nodes) are used as data mules or message ferries [98] to transport stored
messages by means of physical mobility. A related concept are throw-boxes [99],
which can be placed in the environment as buffers to further improve tempo-
ral decoupling of nodes. More generally, and in contrast to traditional Internet
or MANET protocols, DTN aims to support communication even if a simulta-
neous end-to-end path does not exist. Even without network partitioning, the
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possibility of hop-to-hop (instead of end-to-end) retransmissions in DTN can of-
fer significant performance advantages and resource savings. Instead of operating
at the packet level, its units of information are semantically meaningful bundles
(or fragments) of variable and typically large size. In content-centric networking
[57] the semantically meaningful unit is referred to as content, and the network
is viewed as a content cache which is queried by the user. The DARPA-funded
program on DTN [36,88] combined both lines of research to support multi-party
communication with late-binding. It integrates distributed content caching and
intelligent routing with the primary objective of overcoming failures, delays, and
disruptions of all kinds, especially in wireless networks with mobile nodes.

Distributed Hashing. Instead of using a so-called unstructured approach, that
does not impose any systematic structure on top of the network, it is sometimes
useful to impose specific virtual topologies through which queries for information
and replies can be efficiently routed (usually in a number of steps logarithmic
in the network size). For instance, a common technique to store information in
peer-to-peer networks [5] are distributed hash tables (DHT) [14] that can rely
on the specific properties of the network structure to ensure resiliency and effi-
ciency of information access. Apart from limitations on the form of queries, the
efficient mapping of the overlay into the physical network is a difficult problem
[84] that partly conflicts with the objective of hashing so that useful tradeoffs
have to be identified. Further difficulties arise in resource-heterogeneous, highly
dynamic, and mobile networks, especially with node instabilities and partition-
ing. Some discussion and partial solutions can be found in [52]. On the other
end, it is argued in [71] that DHT should support atomic data access and up-
dates (sometimes referred to as a transactional DHT), but most proposals only
attempt to make a best effort towards this property or avoid the problem using
a write-once semantics. Strong consistency is useful for many applications and
indeed practical as for instance demonstrated in [89], but it is also clear that,
beyond the challenges mentioned above, it imposes further limitations on the
environments in which it can be deployed.

Asynchronous Shared-Memory Models. Several asynchronous shared memory
models have been proposed. Many of them evolved from the traditional (syn-
chronous) parallel random access machine (PRAM) model. For instance, the
asynchronous PRAM (APRAM) model [25] has been introduced to make ex-
plicit the cost of synchronization. The APRAM is a variation of the PRAM
model, where each processor is equipped with its own local clock and the execu-
tion time of each instruction is unbounded. Shared memory is modeled as a set
of atomic registers with atomic read and write operations. Several models for
APRAMs have been studied. The early model [45] had an explicit instruction for
barrier synchronization. An extension of the APRAM model with probabilistic
delays has been introduced in [26]. Looking beyond the objective of comput-
ing functions, impossibility results for the APRAM model have been studied in
[53]. An orthogonal direction, namely the use of storage redundancy to accel-
erate randomized computations has been studied in [73] in the context of the
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distributed memory machine (DMM), a further refinement of the PRAM that
organizes globally shared memory into memory modules (still supporting shared
access).

Parallel programs with shared variables based on Lamport’s sequential con-
sistency model have been extensively used in formal program verification. The
semantics of parallel execution is defined by nondeterministic interleavings of
their statements. For instance, in UNITY [23] (which stands for Unbounded
Nondeterministic Iterative Transformations) a program is a set of Dijkstra-style
guarded commands subject to a weak fairness condition, a simple and elegant
representation amenable to rigorous formalization. Various extensions in terms
of compositionality, fairness, and probabilities have been proposed [83]. It is also
interesting to note that ideas behind UNITY can be applied at higher levels of
granularity [74] leading to a discipline of multiprogramming based on the view
that parallel programs should ideally use a simple nondeterministic model and
parallel execution is simply a semantics-preserving mapping of this model to the
computing resources (by means of a scheduler).

Closely related, but studied in a language independent context, are asyn-
chronous iterative transformations [44], a very general model in which conceptu-
ally a function is iterated on the global state of the system (represented simply as
a vector of local states), but instead of performing synchronous global updates,
each component of the global state is updated independently (allowing for pos-
sibly unbounded communication delays). Various convergence results have been
established in this (non-probabilistic) setting [44].

Distributed shared memory (DSM) models [35] provide the programmer with
the abstraction of shared memory without relying on physical shared mem-
ory. This can be achieved, for instance, by implementing DSM on top of an
asynchronous message passing model [10], but the overhead of maintaining con-
sistency, the key feature of a shared memory abstraction, can be substantial.
Various DSM models are compared in [13]. A well-known model are Linda tuple
spaces, which combine access to shared variables with synchronization (discussed
below). An interesting but less general model, which avoids inconsistencies by
design, is the Agora shared memory architecture [18] based on write-once objects
which are replicated when referenced.

Self-stabilizing Algorithms. Motivated by similar notions in control theory, self-
stabilizing algorithms [86,31] have been originally studied using the nondetermi-
nistic parallel program model, where communication in a network is modeled by
shared variables with atomic operations. Starting with Dijkstra’s seminal work
[30] on self-stabilizing algorithms for unidirectional token rings, self-stabilizing
algorithms have been proposed for many problems including mutual exclusion,
leader election, consensus, graph coloring, clustering, routing, and overlay con-
struction. The key characteristic of self-stabilizing algorithms is that they even-
tually have to reach a legitimate state, given by the program specification, if
they start with or are put into an arbitrary state (e.g., by a transient memory
failure).
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Generalizations of self-stabilization, e.g., based on closure (a set including
all faulty states) and convergence (the legitimate set of states), have been pro-
posed as a foundation for fault-tolerant distributed computing [8]. Even in this
generalized sense, self-stabilization is a very strong property. Motivated by ef-
ficiency concerns and impossibility results in the deterministic setting, weaker
notions of self-stabilization have been introduced, in particular probabilistic self-
stabilization, which only requires convergence with probability one [29]. Some
general principles and techniques for designing self-stabilizing algorithms have
been developed such as local checkability and counter flushing [9,93].

The idea of self-stabilizing systems has also been extended to message pass-
ing systems (asynchronous and with unbounded delays). For instance, the ap-
proach in [61] can transform any distributed message-passing algorithm into a
self-stabilizing algorithm by recognizing failures using a (self-stabilizing) dis-
tributed snapshot (collected at a single node) and initiating a global reset if
necessary. Nevertheless, some results indicate that self-stabilization does not fit
well with the concept of asynchronous message passing with unbounded de-
lays [48,55]. Even weak concepts of self-stabilizing are very strong in the sense
that recovery is required even if all nodes fail. One significant drawback of self-
stabilizing algorithms is that they are not required to make progress in dynamic
environments with continuous failures, a situation which becomes more likely
with the scale of the network. In other words, they may be unproductive during
failures and rely on periods of global stability to reach legitimate states.

Anonymity in Self-stabilizing Algorithms. Self-stabilizing algorithms differ in
their assumptions on the availability of process identifiers which allow to break
symmetries. As pointed out by Dijkstra [30], a self-stabilizing algorithm for token
rings does not exist iff all processors are identical, but his proposed algorithm is
almost uniform, by singling out one exceptional machine which runs a different
algorithm than all others. In this context, a distributed algorithm is said to be
uniform if all processes locally execute the same algorithm. Clearly, uniformity
is not a real restriction if the program can be conditional on unique process
identifiers. Hence, a system is called anonymous iff all processes have the same
identifier. Other ways to break the symmetry include access to network topol-
ogy [6] or randomness. The latter, however, cannot be used to guarantee unique
process identities in an anonymous system, because a self-stabilizing algorithm
(in the strongest sense) can be initialized to any state. Generally, randomization
is essential to break symmetries for the purpose of e.g., leader selection. For in-
stance, a probabilistic algorithm for scalable leader election in non-anonymous
networks based on bimodal multicast can be found in [50]. By storing local
pointers to neighbors (a partial form of identification), leader election becomes
solvable [56] in an anonymous network by a randomized self-stabilizing algo-
rithm. On the other hand, in the population protocol model [7], which is fully
anonymous (i.e., without any local identification of neighbors), leader election
cannot be solved. The advantage of fully anonymous self-stabilizing algorithms
is that they are also stabilizing with respect to topology changes. A very general
result in this context is the existence of a universal self-stabilizing algorithm [19],
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which can operate under very few assumptions on the underlying network, but
clearly only if a self-stabilizing algorithm exists at all.

A lot of work on self-stabilization is centered around generalizing Dijkstra’s
token-passing algorithm, but the chatty nature of this style is not suitable in
resource-constrained environments such as sensor networks where locally check-
able self-stabilization is highly preferable. Also the atomic operations of the
shared variable model is not implementable in such environments, which are of-
ten characterized by high message loss/collision rates [90,54,68]. Based on the
cached sensor net transform of [54], where each node caches the state of all its
neighbors, the work [90] shows how self-stabilizing algorithms (for locally check-
able properties) can be transformed to operate in wireless sensor network based
on asynchronous broadcast with message loss, but some difficulties remain to
establish all desirable features simultaneously. Furthermore, although the model
uses anonymous nodes, local identification of neighbors is still assumed. The
challenge of extending this work to highly dynamic environments is left as an
open problem. More recently, self-stabilizing algorithms that are robust to net-
work topology changes have also been studied under the title of self-stabilizing
and self-organizing algorithms [32].

Petri Nets and Related Models. As the earliest model for concurrent systems,
Petri nets are inherently asynchronous and based on two key concepts, namely
places and transitions. The global state of the system is usually defined as a
marking that by definition assigns a number of indistinguishable tokens to each
place. The sequential semantics is defined by the so-called token game in which
transitions can remove tokens from their input places and produce tokens on their
output places in an atomic step. Petri nets, more precisely compact high-level
representations such as algebraic Petri nets, where tokens can carry data, have
been successfully used for modeling and verification of distributed algorithms
[85]. Their natural partial-order semantics, which can itself be represented as a
net, can yield intuitive presentations and new insights. For instance, impossi-
bility results regarding mutual exclusion or consensus and their connection to
conspiration have been studied in [95]. Various extensions of the Petri net model,
namely fairness, randomization, and quasi-synchrony to overcome the limitations
of the basic model have been studied.

Although conceptually simple, the use of atomic transitions is very powerful
and has to be used with care to make sure that this abstraction is accurate or
implementable in a given system context. Implementations of transitions can be
captured by transition refinement, which is one of the lines of research where the
power of atomicity has been observed. With partially ordered knowledge sharing
we are investigating a weaker model that intentionally avoids any assumption
of atomic transitions. A unit of data is not modeled as a token, which can be
moved by an atomic transition. Instead, data can be copied to a new place and
the original can be discarded, but in two separate operations. More generally,
a computation can generate new data (output) from existing data (input), but
the input does not disappear in this step. It is straightforward to generalize a
computation to multiple inputs and multiple outputs by performing multiple
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computations sequentially or concurrently, but it is important to understand
that inputs might disappear, before the computation can take place.

It should be noted that Petri nets can be found as special cases at the core
of many other formalisms such as linear logic [46] and rewiting logic [72], and
hence our remarks apply accordingly. Another model closely related to Petri
nets are (Linda) tuple spaces [20], where the atomic data units take the form
of tuples, and atomic in/get and out/put operations are available to remove
and add tuples to the space, respectively, and hence, like in Petri nets, mutual
exclusion can be directly expressed. For instance, the LIME (Linda in a Mobile
Environment) [77] is based on the idea that the tuple spaces of individual host
conceptually merge when they come into contact, which can partition again when
the connection is lost. Since tuple space operations must be implemented using
an atomic transaction protocol, disconnections must be announced or somehow
anticipated by the system before they happen to make sure that tuples (like
tokens) are not lost or duplicated, which is difficult in practice and limits the
applicability in disruptive environments. A different approach is taken in the
space-based computing architecture of [15] which organizes tuple spaces using
distributed hash tables. In addition to the in/get operation, Linda tuple spaces
also support a non-destructive read, similar to extensions of Petri nets with read
arcs [24,94].

Multi-Agent Systems. Blackboard systems [33] are a well-known paradigm in
multi-agent systems that allows multiple agents to interact and collaborate by
sharing knowledge through a so-called blackboard. The knowledge on the black-
board can be modified and agents can register for blackboard events of interest.
Originally used as a sequential model together with Lisp, parallel and distributed
implementations have been proposed in [27] and [34]. Consistency maintenance
among replicated blackboard data and the implementation of blackboard trans-
actions, which can modify data and possibly involve an entire region, i.e., a set
of data units, of the blackboard have been identified as major challenges, and
addressed by locking at different levels of granularity in [27]. Interestingly, it has
been pointed out that an alternative might be to structure the blackboard and
the algorithms so that blackboard objects are never modified and instead new
versions are created to reflect changes. Another variation which handles errors,
uncertainty, and temporal inconsistencies as part of the overall problem solving
process are the functionally accurate, cooperative distributed systems that have
been informally characterized and explored in [70]. This work is interesting not
only because it is far ahead of its time, but also because most the patterns dis-
cussed (ranging from abstraction, aggregation, and parallelism) can be naturally
realized on top of the partially ordered knowledge sharing model.

A key distinguishing feature from many of the models discussed in this section
is that the partially ordered knowledge sharing model is not closely tied to a par-
ticular implementation or class of protocols. Depending on available networking
technologies and performance requirements (e.g., latency, scalability, robustness)
the model can be implemented by a wide range of approaches (and combinations)
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including shared memory, physical broadcasting, overlay networks, and gossip-
style protocols.

7 Conclusions

The partially ordered knowledge sharing model, its probabilistic and fractionated
instantiations, are an attempt to build foundations that can be directly mapped
into the latest emerging technologies and possible future technologies that give
up the notions of reliable computing and communication as primitives. Special
cases of our partially ordered knowledge sharing model have found applications
in practical systems for disruption-tolerant networking [88] and, more recently,
content-based networking [96], where content can be equipped with user-defined
orderings. Wireless mobile networks, sensor networks, and more generally net-
worked cyber-physical systems are current applications that are often mission-
critical and urgently need better theoretical foundations. Future technologies
based on biological or nano-computing will require a fundamentally different
kind of software. Even in the short-term we expect that the trend to further
miniaturization, e.g., of current VLSI technologies, can only be maintained if
the foundations for ensembles of unreliable computing elements are sufficiently
developed. In this paper, we have made a small contribution by motivating and
defining our basic models and informally discussing their relation to existing and
mostly well-known models of distributed computing.

We believe that further work is needed in at least two directions, namely
(1) the application, validation, and refinement of our models using case studies
based on simulations or experiments with broad range of technologies, and (2)
the development of a methodology, theory, and tools to support the design and
construction of systems based on these models. Some initial progress has been
made on both fronts with applications ranging from content-based mobile ad-
hoc networking with Android devices to cyber-physical networked systems such
as our heterogeneous mobile robot and quadcopter testbed that we have been
building at SRI (see http://ncps.csl.sri.com). Increasing the scale in terms
of the numbers of nodes (in simulations and deployments) and reducing the
granularity at which the model is applied are important engineering challenges
that we are trying to address in these applications.
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Abstract. This paper proposes an extension of operation semantics and
discusses its benefits in enhancing the applicability of Morgan’s formal
refinement calculus in practical software development.

1 Introduction

Morgan established the refinement rule for developing sequential programs in [1].
Let A : s [Apre, Apost] be an operation that changes the the initial state s (a set of
variables subject to change) to a final state s′ satisfying the postcondition Apost,
provided that the precondition Apre is true before the operation. If operation
B : s [Bpre, Bpost] refines operation A, denoted by A / B, then the refinement
rule containing the following two conditions must be satisfied by A and B:

(1) Apre ⇒ Bpre

(2) Apre ∧Bpost ⇒ Apost

The rule states that operation B weakens the precondition and strengthens the
postcondition of A. The rational behind the rule has been well described by
Morgan in [1] and the rule has been widely accepted by the formal methods
community [2,3,4,5].

While the application of the rule disallows an operation to be refined into
an incorrect executable program, it allows a feasible (or satisfiable) operation
to be refined into an infeasible operation in the process of a successive refine-
ments leading to code. By infeasible operation we mean that the operation is
impossible to be satisfied by any normally executable program (i.e., a program
defining a function). Such a refinement may have a negative impact on software
development in practice. For example, consider the operation

F : {x}[x �= 0, x > 0 ∧ x′ = x+ 1 ∨ x < 0 ∧ x′ = x+ 2]
where x is an integer. F can be refined into the operation

H : {x}[true, x > 0 ∧ x′ = x+ 1]
because both operations F and H satisfy the refinement rule, that is,

Fpre ⇒ Hpre

Fpre ∧Hpost ⇒ Fpost
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However, there are two problems with operation H . Firstly, it is not desired
with respect to operation F because it does not do exactly what F requires
(e.g., when x < 0, F requires that the state variable x be increased by 2, that is
x′ = x+ 2, but operation H offers no definition). Secondly, H is infeasible, that
is, it is impossible to refine H into a normally executable program (An extreme
example is to refine operation H into a “miracle” : Hm : {x}[true, false]).

This situation has the following three implications for real software develop-
ment:

– The refinement rule does not guarantee that an operation will be refined
into a correct program (i.e., a program that is both normally executable
and satisfying its operation specification), although it guarantees that the
operation will not be refined into an incorrect program (i.e., a program that is
either not normally executable or not satisfying its operation specification).
For this reason, the refinement rule must be used with caution; otherwise, the
developer (i.e., a person who carries out operation refinements) may waste
time and efforts in finding a correct program.

– It is possible to form a sequence of operations F , H , H1, ..., Hn (n ≥ 1)
by a successive refinements from F , i.e., F / H / H1 / · · · / Hn, and at
the point of trying to refining Hn the developer realizes that there does not
exist a normally executable program to implement Hn. For this reason, the
developer has to trace back along the operation sequence to check where he
or she made a mistake at some point (i.e., creating an infeasible operation).
This can be extremely time-consuming and frustrating. Alternatively, when
an abstract operation is refined into a concrete one, the developer can check
whether the concrete operation is feasible or not. If it is not, he can trace
back to the latest abstract operation to find the mistake. However, this also
requires that developer check both whether the refinement rule is satisfied
and whether the concrete operation is feasible. Although this may not be as
time-consuming as the previous situation involving a sequence of operations,
it is still undesirable for real software development because the feasibility of
an operation (especially a complex operation) is difficult to verify in general.

Our experience in software development [6] suggests that it is desirable that
successful refinements (i.e., the refinements that obey the refinement rule) always
lead to a correct program. Thus, the developer can concentrate on refinement
without the need to check the feasibility (or satisfiability) of refined operations.
Fortunately, this can be done by properly extending the semantics of operations.

Carefully analyzing operations F and H above, we understand that the un-
desirable situation above is actually influenced by the following two points:

– The postcondition of F does not contain non-determinism in defining the
final state x′. Since refinement aims to resolve non-determinism (in the way
of weakening precondition and strengthening postcondition), the refinement
rule should not be applied to operation F . However, if we restrict the ap-
plication of refinement to only non-deterministic operations, it will require
a checking of the nondeterministic property before the refinement is carried
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out. This again will incur additional cost and efforts, and possibly technical
difficulty.

– Operation H is interpreted as a partial relation (in this case, a partial func-
tion) under the restricted domain by its precondition. The restricted domain
of H is a subset of its domain that contains only the values satisfying the
precondition Hpre. The rational behind the partial relation interpretation is
that we inherit the convention for defining partial relations or functions in
mathematics.

In fact, treating H as a partial relation is the root of the problem. To solve this
problem, we propose to interpret operations like H as a total relation under its
restricted domain.

2 Extending Operation Semantics

The underlying principle for extending the operation semantics is that we treat
every operation as a total relation under its restricted domain. Specifically, we
define the semantics of operation A introduced in the beginning of this paper as
followings:

∀s∈Σ ·Apre(s)⇒ ∃s′∈Σ · (Apost(s, s
′)⇒ Apost(s, s

′))∧ (¬Apost(s, s
′)⇒ s′ = s)

where Σ denotes the set of all states.
If operation A cannot change the initial state s to a final state s′ satisfying

its postcondition Apost (i.e., Apost(s, s
′) is false), then it will only maintain the

state s (i.e., s′ = s, like skip in some programming languages); otherwise, A will
change s to a s′ satisfying by Apost. Thus, operation H defined previously, for
example, will be equivalent to the following operation Ht:

Ht : {x}[true, x > 0 ∧ x′ = x+ 1 ∨ x ≤ 0 ∧ x′ = x]
Apparently, Ht is not a refinement of operation F because the postcondition of
Ht does not strengthen that of F .

In fact, the extension is quite supportive to real software development and
consistent with the corresponding mechanism in programming languages. In a
real software development, it is often the case that an operation remains only
partially specified in early phases [7,6], possibly because there is a lack of un-
derstanding of the real requirements or design decisions. Therefore, it is quite
possible that the developer defines an operation likeH above. With the extended
semantics, the operation will produce no “harm” with respect to the desired re-
quirement, because the operation will do nothing obvious except preserving the
current state for “undefined” input states (this is pretty similar to the situation
that an operation for drawing a rectangle will draw nothing if the command for
drawing a rectangle is not defined in the operation specification). Compared to
treating the “undefined” input states as “undefined”, this extension in semantics
is also “safer”, because it avoids the situation of implementing the “undefined”
function as a program that may “crash” or not terminate. Moreover, the se-
mantic extension also maintains a consistency between an operation like H and
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a “if-then” statement in most procedural programming languages. That is, “if-
then” is a natural implementation of an operation like Ht. For example, the
following program segment in Java implements Ht:

if (x > 0)
x = x + 1;

Since the semantic extension makes any operation as a total relation under
its restricted domain and there exists a program to implement a total relation,
we will have the following benefit in refinement:

A successful refinement will definitely lead to a correct program.
In other words, application of Morgan’s refinement rule will not be possible
to refine a feasible operation into an infeasible operation under the extended
operation semantics (no need to mention the “miracle”)

Furthermore, the extension will also facilitate the developer in writing a formal
operation specification. It is no longer necessary to explicitly write the identical
relation between the initial and the final states, such as s′ = s, if it is required
as part or the whole function of the operation. This will save the developer con-
siderable amount of time for writing formal specifications and have tremendous
impact on the introduction of formal methods to industry because it would be
more efficient to write formal specifications without the need to define variables
whose values are not expected to change before and after the operation (possibly
under certain conditions). For example, assuming we define an operation called
Withdraw for an Automated Teller Machine (ATM) [8]. The operation takes a
requested amount of money to be withdrawn and the account file as input and
modifies only the balance of the corresponding account. Suppose we have the
types

Account = ID × Password ×Balance×Available Amount;
AllAccounts = set of Account;

where set of Account denotes a set type with element type as Account, then,
we may define the operation as follows:

Withdraw : {account : Account, account file : AllAccounts}
[true,
account′.balance = account.balance− amount∧
account file′ = (account file \ {account}) ∪ {account′}]

Although several items, such as account′.ID, account′.Password, and
account ′.Available Amount, are not explicitly defined in the postcondition, under
the extended operation semantics the specification implies that all those items
are the same as those of the same account before the operation (i.e., account.ID,
account.Password, and account.Available Amount).

The advantage of this semantics will be obvious if only small parts of variables
of more complex types need to be updated and all the rest parts remain the same.
This advantage becomes even more obvious in specifying and refining object-
oriented systems. Due to potential side effects of calling a method of an object in



438 S. Liu

an expression, method calls are not appropriate to use in pre- and postconditions
of operations. For example, Object-Z does not permit the appearance of method
calls in pre- and postconditions of an operation schema [9]. To define the relation
between the initial state and the final state of an operation (say A) involving
objects (say a, b, c) as the attributes of its corresponding object (say obj, where
a, b, and c are its attributes and A is its method), a reasonable way is to treat
each object as a value of a composite type and then define the relation in terms
of the object attributes before and after the operation, as used by Utting in [10]
and Cavalcanti and Naumann in [11]. For instance, we can treat object a as a
value of a composite type that has three attributes (fields) x, y, and z (treat b
and c similarly). Then the relation between the initial state (including a, b, and
c) and the final state (including a′, b′, and c′) modelled by operation A can be
defined in the postcondition of A in terms of the attributes of the initial objects
(in the initial state) and those of the final objects (in the final state). It is often
the case that the change from the initial state to the final state made by a single
operation needs to be defined by only updating some attributes of the objects
involved. Imagining how complex it would be if attributes of objects are other
objects and the depth of such a nested definition is great. As pointed out by Hall
in [12], developing large-scale object-oriented software using the current formal
methods is still a tremendous challenge in practice. Our experience in several
previous projects [13,6,8] has convinced us that our proposal in this paper is a
useful solution.

3 Discussion

In spite of the practical advantages of our proposed semantic extension, one may
argue that such an extension may create a possibility for ambiguity in a specifi-
cation. Let us take the operation H introduced in Section 1 as an example. If we
interpret its semantics the same as that of operationHt defined in Section 2, that
is, considering the final state x′ being equal to the initial state x under the con-
dition x ≤ 0, then we may mess it up with a possible situation that the specifier
forgets to define x′ as something else (e.g., x′ = x+2) under the same condition.
However, this problem can be resolved by a proper validation of the specifica-
tion. There are many techniques that can be applied for this purpose, such as
review and analysis [14,15], animation [16,17,18], simulation [19], and testing
[20,21]. Since validation has been a routine activity in industrial projects [22],
checking the ambiguities above will not add extra cost to software processes. Of
course, since important decisions in a requirements or design specification must
ultimately be made by humans, there is no guarantee that all the ambiguities
can be eliminated by a validation activity. This is similar to the situation that no
guarantee can be provided to ensure that no mistakes will be made in software
development using formal methods. However, our proposal in this paper can at
least help to simplify formal specifications by omitting “tedious” and “trivial”
definitions, and make refinement as a more encouraging and practical technique
for practitioners to use.
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4 Conclusion

We have proposed to extend operation semantics so that every operation is
treated as a total relation under its domain restricted by its precondition. This
extension ensures that a successful refinement of an operation will definitely
lead to a correct program; it also allows the developer to simplify and write
formal specifications more efficiently. We believe that these advantages over the
original operation semantics will enhance the applicability of the refinement
approach in practice, and perhaps produce a great economic impact on real
software development in industry. This is because there is no need to conduct
feasibility checking during a successive refinement process and no need to spend
time for writing equations in an operation specification to define variables that
are supposed not to change by the operation.
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Abstract. The RAISE Specification Language (RSL) is a wide-spectrum
specification language having a very complex semantics. This paper de-
fines an institution for an imperative subset RSLI of RSL such that this
subset can be given a much simpler semantics in terms of that institu-
tion. The subset allows model-oriented type definitions, declaration of
state variables, axiomatic specification of values (including functions),
and explicit function definitions. Functions may be imperative. The se-
mantics of an RSLI specification is defined to be the loose semantics of
a theory presentation consisting of a signature Σ and a set of sentences
E that can easily be derived from the specification.

Keywords: Institutions, formal specification languages, RSL, algebraic
semantics, state based specifications.

1 Introduction

The RAISE Specification Language (RSL) [15] is the formal specification lan-
guage associated with the RAISE development method [16]. The language is a
rich, wide-spectrum language that encompasses and integrates different spec-
ification styles in a common conceptual framework. Hence, RSL enables the
formulation of modular specifications which are algebraic or model-oriented,
applicative/functional or imperative, and sequential or concurrent, or even a
mixture of these specification styles.

RSL has been given a denotational semantics [12]. The construction of the
denotational model and a demonstration of its existence has also been presented
in [2]. The semantics is very complex and difficult to read. One reason for this is
the expressiveness of RSL and the unified integration of aspects of the different
specification styles. Especially the concurrency aspects complicate the semantics.
As many RSL specifications are only expressed in well-defined subsets of RSL,
not involving concurrency, e.g. in a sequential, applicative subset or a sequen-
tial, imperative subset, an idea could be to provide simpler semantics for such
subsets. At the same time, the way the semantics is given could be improved. To
make it more accessible, we suggest to provide institution based semantics. The
concept of institutions [7] formalises the informal notion of logical systems with
signatures, sentences, and models. To give an institution based semantics for a
specification language, first an underlying institution for the language should be
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defined, and then on top of that the semantics of specifications should be given
in terms of the underlying institution. An institution based semantics has many
advantages. For instance, institutions and various kinds of mappings between
institutions provide a framework for comparing and relating them. Institutions
have primarily been used for giving semantics to algebraic specification languages
like CafeOBJ [5,4], Maude [3], and CASL [14,13].

An institution for an applicative subsetmRSL of RSL has already been defined
and used to give semantics to that subset in [10,11]. The goal of this paper is,
in the line of that, to show how one can define an institution for an imperative
subset RSLI of RSL such that this subset can be given a semantics in terms of
that institution.

Applicative

Imperative

Algebraic Model−oriented

Fig. 1. Specification styles through a typical RAISE development

According to the RAISE method a typical development (see Fig. 1) of imper-
ative software starts with an applicative, algebraic specification which is refined
into an applicative, model-oriented specification. Then the applicative, model-
oriented specification is transformed (as defined in [9]) into an imperative, model-
oriented specification (which might be further refined). It is our goal to let RSLI

cover the imperative, model-oriented specifications that can be achieved by the
transformation step (the target of the second arrow in Fig. 1).

1.1 Outline of the Paper

The core of the paper is Section 3 in which an institution for an imperative
subset of RSL is defined. Section 2 introduces an imperative subset of RSL,
RSLI , and explains the principles for how specifications of this subset can be
given a semantics in terms of that institution. Finally, achievements, related
work, and future work are summarised in Section 4. Appendix A defines the
mathematical background: the category theoretical notion of institutions and
the notation used in the semantic definitions of the RSLI institution.
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2 An Imperative Subset of RSL

This section presents RSLI : an imperative, deterministic subset of RSL. First,
in Section 2.1, a kernel of RSLI is informally presented, and then, in Section 2.2,
it is explained how additional RSLI constructs can be derived as shorthands for
kernel constructs. An example of an RSLI specification is given in Section 2.3.
Finally, in Section 2.4, the principles for how RSLI specifications can be given
a semantics are explained.

2.1 The Kernel

A basic RSLI specification takes the form

scheme id = ce

where id is an identifier that gives name to the specification and ce is a flat class
expression. A flat class expression consists of abbreviation type definitions, vari-
able declarations, value declarations, and axioms surrounded by the keywords
class and end. The identifiers introduced by the type definitions, variable dec-
larations, and value declarations of a class expression are assumed to be distinct.

An abbreviation type definition

type id = te

defines a type name id to be an abbreviation for a type expression te, i.e. in any
type expression occurrences of id and te are interchangeable. Recursive abbre-
viation type definitions are not allowed.

Type expressions are constructed in a model-oriented way, as in VDM[6], from
declared type names, declared variable names, type literals, and type operators.
The kernel comprises the following type expressions

– type names id (introduced in abbreviation type definitions),
– type literals: Unit, Char, Int, Real, and Bool,
– composite types: t1 × t2 (for Cartesian products), t− infset (for sets), tω

(for lists), t1 →̃m t2 (for maps), and t1
∼→ acc t2 (for possibly partial functions

from t1 to t2), where t, t1, and t2 are type expressions, and acc consists of
a read access description of the form read {id1, ..., idn} and a write access
description of the form write {id1, ..., idn}, where id1, ..., idn are names of
declared variables. Functions in the type denoted by t1

∼→ acc t2 may read
the contents of the variables stated in its read access description and make
assignments to variables stated in its write access description. In the kernel
it is assumed that the variable set in the write access description is a subset
of the variable set in the read access description.

Note that the type expressions include higher order type expressions. Type ex-
pressions that do not contain type names are called canonical type expressions.

A type expression denotes a type which is a set of values. More about that in
Section 3.4.

A variable declaration
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variable id : te

introduces a (state) variable with a name id that can store values of the type
denoted by type expression te. The type expression is not allowed to contain
function types having variable accesses1. In Section 2.2 it will be explained how
initial values of variables can be specified.

A (basic) value declaration

value id : te

introduces a name id for a value belonging to the type denoted by type expression
te. Note, that te is allowed to be any type expression, so it can also be a function
type. It is assumed that value names are not overloaded.

An axiom is of the form

axiom e

where e is a Boolean value expression. Axioms are used to constrain the possible
interpretations of declared values and possible initial values of variables.

In RSL there is no syntactic distinction between value expressions and state-
ments. What is traditionally considered as statements are just special cases of
value expressions. Value expressions in the kernel include

– value names id of declared values,
– variable names id of declared variables,
– integer literals representing Int values: ...,−1, 0, 1, ...
– literals representing Real values: ..., -5.2, ...., 0.0, ..., 108.77, ...
– literals representing Bool values: true and false
– literals representing Char values: ..., ‘c’, ..., ‘+’, .....
– skip representing the only value in the Unit type,
– chaos representing non-termination,
– product expressions of the form (e1, . . . en), where n ≥ 2,
– set enumerations of the form {e1, . . . en}, where n ≥ 0,
– list enumerations of the form 〈e1, . . . en〉, where n ≥ 0,
– map enumerations of the form [e1 (→ e′1, . . . , en (→ e′n], where n ≥ 0,
– function applications of the form fe(e),
– prefix expressions prefixop e, where prefixop is a built-in prefix operator like

hd,
– infix expressions e1 infixop e2, where infixop is a built-in infix operator like

+ and =,
– quantified expressions2 ∀ id : t • eb and ∃ id : t • eb,
– equivalence expressions e1 ≡ e2,
– if-then-else expressions if eb then e1 else e2 end,

1 This is a restriction compared to full RSL. In Section 4.3 it will be discussed how
this restriction can be loosened.

2 Note that it is allowed to quantify over values of any type expression t, and hence
also to quantify over imperative functions and higher-order functions.
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– assignments id := e, where id is the name of a declared variable,
– the initialise expression initialise that represents the effect of initialising

each declared variable to its initial value, and
– statement sequencing expressions eu; e.

where e, e1, e2, . . . , en, e
′
1, . . . , e

′
n, eb, fe, eu are value expressions, id is an

identifier, and t is a type expression. The requirements for a value expression to
be well-formed will be formally defined in Section 3.2 in terms of some typing
and variable access rules.

A value expression is said to be canonical if all constituent type expressions
are canonical.

Note that iterative constructs like while loops are not included in the kernel
language as they do not occur in the imperative specifications that we are target-
ing (i.e. those that can be obtained by applying the transformations described
in [9], as mentioned in Section 1).

Intuitively, the execution of a value expression may either diverge (not ter-
minate) or it has the effect of returning a value after possibly having updated
the contents of the variables. In Section 3.6 a formal denotational semantics of
canonical RSLI kernel value expressions will be given.

2.2 Derived Constructs

There are also derived constructs that can be described as shorthands for the
kernel constructs mentioned above. It is out of the scope of this paper to mention
all derived constructs, but we will give some important examples.

Explicit Function Definitions. For instance, an explicit function definition

value
id : tfun
id(x) ≡ e

where tfun is a function type expression, id and x are identifiers, and e is a
value expression (in which the formal parameter x may occur), is a shorthand
for the basic value declaration

value id : tfun

and the axiom

axiom ∀ x : t • id(x) ≡ e

where t is the formal parameter type of the function type expression tfun.
If the formal parameter type t is a Cartesian product type te1 × . . . × ten,

then the left-hand side of the equivalence can also be written in the form
id(id1, . . . , idn). In that case the derived axiom will be

axiom ∀ (id1, ..., idn) : t • id(id1, ..., idn) ≡ e
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An explicit function definition can also have a precondition eb which is a
Boolean value expression that may refer to the formal parameter(s) and the
declared variables:

value
id : tfun
id(x) ≡ e
pre eb

This is a shorthand for the following value declaration and axiom

value id : tfun
axiom ∀ x : t • (eb ≡ true ⇒ id(x) ≡ e)

Subtypes in Value Declarations. To simplify the presentation in this paper,
the kernel does not comprise RSL subtype expressions that denote subtypes3 of
other types. An example of an RSL subtype expression is Nat that denotes the
subset of integers i ≥ 0 in Int.

However, a value declaration, specifying a value to be in a subtype is a derived
construct that is a shorthand for a value declaration specifying the value to be
in its super-type and an axiom expressing that the value is in its subtype. For
instance,

value id : Nat

is a shorthand for

value id : Int
axiom id ≥ 0

Initialisation of Variables. A variable declaration can also contain a specifi-
cation of its initial value by an expression e that must not refer to any variables:

variable id : te := e

This is a shorthand for

variable id : te
axiom (initialise ; id := e) ≡ initialise

The axiom states that assigning the initial value e to the variable id right after
an initialisation, would not change the values stored in the variables. In other
terms initialise will result in a state where the value of id is e.

If a variable declaration does not contain a specification of its initial value
(and there are no axioms like the one stated above) then its initial value is
underspecified.

3 In RSL types are sets and subtype means subset.
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Variable Access Descriptions in Function Type Expressions. In the
kernel it is required that there is a read access description and a write access
description in function type expressions, however, in full RSL it is allowed to leave
out read and/or write access descriptions. If there is no read access description,
it is a shorthand for the read access description

read {}

and if there is no write access description, it is a shorthand for the write access
description

write {}

In the kernel it is required that the variable set in the write access description is
a subset of the variable set in the read access description. However, in full RSL a
shorthand is allowed: variables that are in the write access description need not
to be repeated in the read access description. The meaning is as if they had been
repeated. Furthermore, in full RSL the curly brackets in the access descriptions
may be left out.

2.3 Example of an Imperative Specification

Fig. 2 contains an example of an imperative specification having a variable stack
that can store a Stack value. According to the type abbreviation, a Stack value
is a list of integers. All the functions are allowed to read the stack variable, as
they have a read stack access description in their function type, while only the
push and pop functions are allowed to write (assign new values to) the stack
variable, as only these functions have a write stack access description in their
function type. hd, tl and ̂ are RSL built-in operators for taking the head of
a list, taking the tail of a list, and for concatenating two lists, respectively.
The initial value of the variable is not specified and it is not specified what
happens when the functions are applied to arguments that do not fulfil the
preconditions. Everything else is completely specified. Note that it is also possible
to give axiomatic specifications of functions, obtaining more loose specifications.

Larger examples can be found e.g. in [16].

2.4 Semantics

A (well-formed) RSLI specification determines a signature, Σ, and a set of Σ-
sentences, E, of the underlying institution (that will be described in Section 3).
In order to determine the signature and sentences of a specification, first de-
rived constructs (like explicit function definitions) should be expanded into the
constructs they are shorthands for. Furthermore, all occurrences of type ab-
breviation names in type expressions should be expanded into their canonical
type expressions, i.e. type expressions not referring to any type identifiers, by
recursively expanding type identifiers according to their abbreviations. For the
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scheme I STACK =
class

type
Stack = Intω

variable
stack : Stack

value

is empty : Unit
∼→ read stack Bool

is empty() ≡ stack = 〈〉,

push : Int
∼→ read stack write stack Unit

push(elem) ≡ stack := 〈elem〉 ̂ stack,

pop : Unit
∼→ read stack write stack Unit

pop() ≡ stack := tl stack
pre ∼ is empty(),

top : Unit
∼→ read stack Int

top() ≡ hd stack
pre ∼ is empty()

end

Fig. 2. Example of an RSLI specification

resulting specification it is straightforward to determine the signature and ax-
ioms: The signature captures the type definitions, the variable declarations, and
the value declarations of the specification, and the sentences are the Boolean
value expressions of the axioms. We will give examples of this later.

The semantics of a specification that determines a signature Σ and a set of
Σ-sentences E, is the loose semantics of the theory presentation (Σ,E), i.e. the
semantics is the class of those Σ-models that satisfy all the sentences in E.

3 An Institution for an Imperative Subset of RSL

In this section, we define an institution IRSLI for the imperative subset RSLI

of RSL described in Section 2. The definition of the notion of institutions and
the meta notation used in the semantic definitions of the RSLI institution can
be found in Appendix A.
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3.1 Signatures

In the following, let Id denote the set of allowed RSL identifiers for types, values
and variables.

Definition 1. The set of canonical type expressions over a set of variable iden-
tifiers IdV ⊆ Id is the least set T (IdV ) that satisfies:

– Unit, Char, Int, Real, Bool ∈ T (IdV ),
– t1 × t2 ∈ T (IdV ), if t1 ∈ T (IdV ) and t2 ∈ T (IdV ),
– t−infset ∈ T (IdV ), if t ∈ T (IdV ),
– tω ∈ T (IdV ), if t ∈ T (IdV ),
– t1 →̃m t2 ∈ T (IdV ), if t1 ∈ T (IdV ) and t2 ∈ T (IdV ),
– t1

∼→ read rs write ws t2 ∈ T (IdV ), if t1 ∈ T (IdV ), t2 ∈ T (IdV ), rs ⊆ IdV ,
and ws ⊆ rs.

An RSLI signature is intended to capture information given in the type, value
and variable declarations of an RSLI specification.

Definition 2. An RSLI signature is a triple Σ = (A,OP, V ) where

– A ∈ Id→m T (dom V ) is a map representing a set of type abbreviation defi-
nitions. It maps type names to canonical type expressions they abbreviate.

– OP ∈ Id→m T (dom V ) is a map representing a set of value declarations. It
maps value names to their canonical type expressions.

– V ∈ Id→m T (∅) is a map representing a set of variable definitions. It maps
variable names to their canonical type expressions. It is assumed that the
type expressions do not contain function types having variable accesses4.

such that dom A, dom OP and dom V are disjoint.

The type expressions in T (dom V ) are also called canonical Σ type expressions.
Note that OP could alternatively have been defined as a family of T (dom V )

sorted sets of value names, more in tradition of signatures for many other insti-
tutions. However, we choose to use a map from value names to their types in
T (dom V ) as this is more close to the original RSL semantics. This choice was
possible because we have assumed that value names are not overloaded.

A signature is said to be applicative if V = [ ].

Example 1. The signature of the specification shown in Section 2.3 is the triple
Σ = (A,OP, V ) where

A = [ Stack (→ Intω ],
OP =

[ is empty (→ Unit
∼→ read {stack} write {} Bool,

push (→ Int
∼→ read {stack} write {stack} Unit,

pop (→ Unit
∼→ read {stack} write {stack} Unit,

top (→ Unit
∼→ read {stack} write {} Int

],
V = [ stack (→ Intω ]

4 In Section 4.3 it will be discussed how this restriction can be loosened.
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3.2 Sentences

In the following, let Σ = (A,OP, V ) be an arbitrary signature.
In this section we will defineΣ-sentences to be canonical, Boolean RSLI kernel

value expressions that are well-formed with respect to Σ, i.e. they only refer to
value names and variable names in Σ and follow certain typing rules and variable
access rules.

In order to formally define what “well-formed” means, we first give a static
semantics for canonical RSLI kernel value expressions (the syntax of which was
given in Section 2).

The static semantics for selected5 canonical RSLI kernel value expressions is
given in Fig. 3. It is defined by a set of inference rules for assertions of the form
Σ ' e � t, rs, ws, where e is a canonical RSLI kernel value expression, t is a
canonical RSLI type expression, and rs, and ws are sets of (variable) identifiers.
Such an assertion states that e is well-formed, has type t, potentially reads the
variables in rs and potentially writes in (i.e. makes assignments to) the variables
in ws. The inference rules for infix expressions and prefix expressions depend
on type assertions for the RSL infix operators and the RSL prefix operators,
respectively. These type assertions take the form infixop : t1 × t2

∼→ t and
prefixop : t1

∼→ t2, respectively, where t, t1 and t2 are canonical RSLI type
expressions, and they are defined by 37 + 12 type assertion rules that can be
found in [15].

In Section 4.3 it will be discussed how the static semantics can be loosened
by adding some sub-typing rules.

Definition 3. An RSLI Σ value expression is a canonical RSLI kernel value
expression e that is well-formed with respect to Σ, i.e. for which Σ ' e�t, rs, ws
holds for some t, rs, and ws. The set of all Σ value expressions is denoted
V alueExpr(Σ).

Definition 4. An RSLI Σ-sentence is a Boolean RSLI Σ value expression e
that does not potentially write in variables, i.e. for which Σ ' e �Bool, rs, ∅
holds for some rs.

Example 2. The specification shown in Section 2.3 determines a sentence for
each function definition. For instance, the sentence determined by the definition
of the push function is the following:

∀ elem : Int • push(elem) ≡ stack := 〈elem〉 ̂ stack

Note that according to the static semantic rules, equivalence expressions have
an empty write access set (and as we shall see later in the dynamic semantics

5 The static semantics for set, list and map enumerations is not shown as it is similar to
that for product expressions, the static semantics for prefix expressions is not shown
as it is similar to that of infix expressions, and the static semantics for existential
quantifications is not shown as it is just as for universal quantifications. The static
semantics shown for product expressions having two elements can be generalised in
the obvious way to products having more than two elements.
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id ∈ dom OP t = OP (id)
(A,OP, V ) � id� t, ∅, ∅

id ∈ dom V t = V (id)
(A,OP, V ) � id� t, {id}, ∅

Σ � c�Char, ∅, ∅ Σ � i� Int, ∅, ∅ Σ � r �Real, ∅, ∅ Σ � b�Bool, ∅, ∅

Σ � skip�Unit, ∅, ∅ Σ � chaos� t, ∅, ∅
Σ � e1 � t1, rs1, ws1 Σ � e2 � t2, rs2, ws2
Σ � (e1, e2)� t1 × t2, rs1 ∪ rs2, ws1 ∪ ws2

Σ � e� t1, rs1, ws1 Σ � fe� t1
∼→ read rs write ws t2, rs2, ws2

Σ � fe(e)� t2, rs ∪ rs1 ∪ rs2, ws ∪ ws1 ∪ ws2

Σ � e1 � t1, rs1, ws1 Σ � e2 � t2, rs2, ws2 infixop : t1 × t2
∼→ t

Σ � e1 infixop e2 � t, rs1 ∪ rs2, ws1 ∪ ws2

t ∈ T (dom V ) (A \ {id}, OP † [ id �→ t ], V \ {id}) � eb�Bool, rs, ∅
(A,OP, V ) � ∀ id : t • eb�Bool, rs, ∅

Σ � e1 � t, rs1, ws1 Σ � e2 � t, rs2, ws2
Σ � e1 ≡ e2 �Bool, rs1 ∪ rs2 ∪ ws1 ∪ ws2, ∅
Σ � eb�Bool, rs, ws Σ � e1 � t, rs1, ws1 Σ � e2 � t, rs2, ws2
Σ � if eb then e1 else e2 end� t, rs ∪ rs1 ∪ rs2, ws ∪ ws1 ∪ ws2

id ∈ dom V t = V (id) Σ � e� t, rs, ws
(A,OP, V ) � id := e�Unit, rs, ws ∪ {id} (A,OP, V ) � initialise�Unit, ∅, V

Σ � eu�Unit, rs1, ws1 Σ � e2 � t2, rs2, ws2
Σ � eu; e2 � t2, rs1 ∪ rs2, ws1 ∪ ws2

Fig. 3. Static semantics of selected canonical RSLI kernel value expressions. In the
inference rules, the following meta variables are used: Σ and (A,OP, V ) for signatures,
id for identifiers in Id, c, i, r and b for char, integer, real and Bool literals, respectively,
fe, e, eb, eu, e1, and e2 for canonical RSLI kernel value expressions, t, t1 and t2
for canonical RSLI type expressions, and rs, rs1, rs2, ws, ws1, and ws2 for sets of
(variable) identifiers.

equivalence expressions do not have any side effects, they compare the returned
values and side effects of its two arguments and gives true, if these are the same)
even their sub-expressions contain assignments, as it is the case in this example.
Therefore, the value expression in this example can be used as a sentence.

3.3 Semantic Domains

This section defines some semantic domains that are needed when giving seman-
tics to type expressions and value expressions. The semantics of type expressions
and value expressions are in turn needed when defining the notion of models and
the satisfaction relation, respectively.

In the following, let Σ = (A,OP, V ) be an arbitrary signature.
For each canonical type expression t ∈ T (dom V ), there is a value domain

Valuet (of values of type t), for each set of variables vs ⊆ dom V , there is a
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store domain Storevs, for each canonical type expression t ∈ T (dom V ) and
set of variables ws ⊆ dom V , there is a process domain Procsws,t, and for
each t ∈ T (dom V ) and sets of variables rs, ws ⊆ dom V , there is an effect
domain Effectrs,ws,t. The domains are sets defined as follows, where vs, rs, ws
are subsets of variables in dom V , and t, t1 and t2 are canonical type expressions
in T (dom V ):

– ValueUnit = {skip}
– ValueChar = {′A′, ...}
– ValueInt = Z (the set of all Integers)
– ValueReal = R (the set of all Real numbers)
– ValueBool = B = {tt, ff}
– Valuet1×t2 = Valuet1 × Valuet2
– Valuet−infset = (Valuet)−infset
– Valuetω = (Valuet)

ω

– Valuet1 →̃m t2
= (Valuet1 × Valuet2)−infset

– Value
t1

∼→ read rs write ws t2
= Valuet1 → Effectrs,ws,t2

That is, a value of type t1
∼→read rs write ws t2 is a function f from values

of type t1 to effects of type t2 such that f only reads variables in rs and
writes variables in ws.

– Storevs = { : Id→m Value | dom  = vs ∧ ∀v ∈ vs •  (v) ∈ V alueV (v)}
That is, a store  maps each variable identifier v of vs to a value in the type
denoted by the type expression V (v) of v.

– Procsws,t = (Storews × Valuet) ∪ {⊥}. That is, a process6 is either a pair
consisting of a store and a value, or it is a diverging process represented by
⊥.

– Effectrs,ws,t = Storers → Procsws,t. That is, an effect is a function that
returns a process for a given store. Effects are used as denotations for value
expressions in the context of a given model.

The domain Type of all Σ-types, the domain Value of all Σ-values, and the
domain Store of all Σ-stores are defined in terms of the domains above:

– Type =
⋃

t∈T (dom V ) Valuet−infset. That is, a type is a subset7 of values in

Valuet for some canonical type expression t ∈ T (dom V ).
– Value =

⋃
t∈T (dom V ) Valuet

– Store =
⋃

vs⊆dom V Storevs

As it can be seen most of the domains depend on the V component of the
signature. If it is not clear from the context, with right to which signature the do-
mains are defined, the domains will be tagged with the signature like in Store(Σ)
and Type(Σ).

6 The term process is a reminiscence of the terminology used for the full RSL language.
For the imperative RSLI the process domain is a very degenerated domain compared
to the process domain for full RSL.

7 We allow subsets in order, in future work, to be able to give semantics to subtype
expressions.
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3.4 Dynamic Semantics of Type Expressions

In the following, let Σ = (A,OP, V ) be an arbitrary signature.
The semantics of canonical Σ type expressions in T (dom V ) is given by a

meaning function M(Σ) : T (dom V ) → Type(Σ) mapping type expressions t
into the types they denote. M(Σ) is defined by:

M(Σ)(t) = Valuet

When Σ is clear from the context, we sometimes just write M instead of M(Σ).

3.5 Models

In the following let Σ = (A,OP, V ) be a signature.

Definition 5. An RSLI Σ-model is a triple m = (mA,mOP , stinit) where

– mA ∈ Id→m Type, such that dom mA = dom A and mA(a) = M(A(a)) for
a ∈ dom A. That is, mA maps each type name a of A into the type denoted
by its abbreviation A(a).

– mOP ∈ Id→m Value, such that dom mOP = dom OP and mOP (op) ∈
M(OP (op)) for op ∈ dom OP . That is, mOP maps each value name op of
OP into a value in the type denoted by the type expressions OP (op) of op.

– stinit ∈ Store, such that dom stinit = dom V and stinit(v) ∈ M(V (v)) for
v ∈ dom V . That is, stinit denotes the initial store that maps each variable
name v of V to its initial value that must be in the type of the variable.

Note that all Σ-models have the same mA component.8

Note that as aliasing (two variable names representing the same location in
the storage) is not possible in RSL and only global variables are allowed in
the considered RSLI subset, it has not been necessary to introduce a notion of
locations for variables and in each model include a map from value names to
their locations and let a store be a map from locations to values. It has been
sufficient to define a store to be a map from variable names to values.

Definition 6. For each signature Σ, Mod(Σ) is the discrete category having
the RSLI Σ-models m as its objects and the identities idm on these objects as
its only morphisms.

3.6 Dynamic Semantics of Value Expressions

The dynamic semantics of well-formed mRSL value expressions was defined in
[10,11]. Here we generalise and extend it to cover well-formed RSLI kernel value
expressions.

8 Note that this would not have been the case if signatures had a component being
a set of sorts and canonical type expressions of abbreviation type definitions could
refer to these sorts.
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In the following, let Σ = (A,OP, V ) be an arbitrary signature.
The meaning of an RSLI Σ value expression e in the context of a Σ-model m

is a Σ-effect. Hence, the semantics of Σ value expressions is given by a meaning
function

M(Σ) : |Mod(Σ)| → V alueExpr(Σ)→ Effect(Σ)

where |Mod(Σ)| is the set of all Σ-models, V alueExpr(Σ) is the set of RSLI

Σ value expressions, and Effect(Σ) =
⋃

t∈T (dom V ) EffectV,V,t is the union of
all effect domains EffectV,V,t = StoreV → ProcsV,t.

M(Σ) is defined below such that for each Σ-model m and each Σ value
expression e of type t, M(Σ)(m)(e) ∈ EffectV,V,t.

In the following let m = (mA,mOP , stinit) be a Σ-model and st ∈ StoreV be
a Σ-store. For each kind of expression e, M(Σ)(m)(e)(st) is defined as follows,
where it is assumed that e is well-formed with respect to Σ:

– For value names id ∈ dom OP

M(Σ)(m)(id)(st) = (st, mOP (id))

– For variable names id ∈ dom V

M(Σ)(m)(id)(st) = (st, st(id))

– For integer literals i

M(Σ)(m)(i)(st) = (st, i)

Other kinds of literals are given semantics in a similar way.
– For basic expressions

M(Σ)(m)(skip)(st) = (st, skip)

M(Σ)(m)(chaos)(st) = ⊥

– For product expressions

M(Σ)(m)((e1, e2))(st) =
case M(Σ)(m)(e1)(st) of

⊥ → ⊥,
(st′, v′) →

case M(Σ)(m)(e2)(st
′) of

⊥ → ⊥,
(st′′, v′′) → (st′′, (v′, v′′))

end
end

The semantics above for product expressions having two elements generalises
in the obvious way to product expressions having more than two elements.
Enumeration value expressions for sets, lists and maps are given semantics
in a similar way.
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– For function applications fe(e), where the expression fe has a function type
t1

∼→ read rs write ws t2 and e has type t1 (according to the static seman-
tics):

M(Σ)(m)(fe(e))(st) =
case M(Σ)(m)(fe)(st) of

⊥ → ⊥,
(st′, vfe) →

case M(Σ)(m)(e)(st′) of
⊥ → ⊥,
(st′′, ve) →

case vfe(ve)(st′′/rs) of
⊥ → ⊥,
(st′′′, vres) → (st′′ † st′′′, vres)

end
end

end

Note that vfe(ve) is applied to the store st′′ restricted to the set of the
function’s read variables rs as vfe ∈ V aluet1→(Storers→Procws,t2). If the
application terminates, it returns a store st′′′ that only contains the write
variables, so in that case the store returned by M(Σ)(m)(fe(e))(st) must
be st′′ † st′′′.

– For infix expressions

M(Σ)(m)(e1 infixop e2)(st) =
case M(Σ)(m)(e1)(st) of

⊥ → ⊥,
(st′, v′) →

case M(Σ)(m)(e2)(st
′) of

⊥ → ⊥,
(st′′, v′′) → (st′′, M(infixop)(v′, v′′))

end
end

where

M(infixop) ∈ Value × Value
∼→ Value

is a function that respects the types of infixop. For instance, M(+)(i1, i2) =
i1 + i2, for values i1, i2 ∈ V alueInt
Prefix expressions are given semantics in a similar way.

– For quantified expressions

M(Σ)(m)(∀ id : t • eb)(st) =
let

Σ′′ = (A\{id}, OP † [ id(→t ], V\{id}),
b = ∀ v ∈ M(Σ)(t) • M(Σ′′)(m † [ id(→v ])(eb)(st\{id}) = (st, tt)

in (st, b) end
where m † [ id(→v ] = (mA\{id}, mOP † [ id(→v ], mV \{id})
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Existential qualified expressions are given semantics in a similar way.
– For equivalence expressions

M(Σ)(m)(e1 ≡ e2)(st) =
(st, M(Σ)(m)(e1)(st) = M(Σ)(m)(e2)(st))

– For structured expressions

M(Σ)(m)(if eb then e1 else e2 end)(st) =
case M(Σ)(m)(eb)(st) of

⊥ → ⊥,
(st′, tt) → M(Σ)(m)(e1)(st

′)
(st′, ff) → M(Σ)(m)(e2)(st

′)
end

– For assignments

M(Σ)(m)(x := e)(st) =
case M(Σ)(m)(e)(st) of

⊥ → ⊥,
(st′, v′) → (st′ † [ x (→ v′ ], skip)

end

– For the initialise expression

M(Σ)(m)(initialise)(st) = (stinit, skip)

– For sequence expressions

M(Σ)(m)(eu ; e2)(st) =
case M(Σ)(m)(eu)(st) of

⊥ → ⊥,
(st′, v′) → M(Σ)(m)(e2)(st

′)
end

3.7 The Satisfaction Relation

In the following, let Σ = (A,OP, V ) be an arbitrary signature.
The IRSLI satisfaction relation |=Σ is defined in terms of the meaning function

M(Σ) for Σ value expressions:

Definition 7. For any Σ-model m and any Σ-sentence e

m |=Σ e

if and only if
∀st ∈ StoreV • M(Σ)(m)(e)(st) = (st, tt).

That is, a Σ-model m satisfies a Σ-sentence e, if and only if the effect of e in
any store st is to return the truth value tt and leave the store unchanged. Note
that the store will actually always be unchanged as it is required that e does not
potentially write in variables.

For an applicative signature, the condition reduces to:

M(Σ)(m)(e)([]) = ([], tt).
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3.8 Signature Morphisms

Let Σ = (A,OP, V ) and Σ′ = (A′, OP ′, V ′) be signatures.

Definition 8. An RSLI signature morphism σ : Σ → Σ′ is a triple
σ = (σA, σOP , σV ) where

– σA ∈ dom A→ dom A′ is a mapping of abbreviation type names
– σOP ∈ dom OP → dom OP ′ is a mapping of value names
– σV ∈ dom V → dom V ′ is an injective9 mapping of variable names

such that the following conditions hold

1. A′(σA(a)) = σ(A(a)) for all a ∈ dom A
2. OP ′(σOP (op)) = σ(OP (op)) for all op ∈ dom OP
3. V ′(σV (v)) = σ(V (v)) for all v ∈ dom V

where σ is lifted to a function σ : T (dom V ) → T (dom V ′) mapping Σ type
expressions t to Σ′ type expressions σ(t) by replacing all variable names v ∈
dom V occurring in variable accesses in t with corresponding variable names
σV (v) ∈ dom V ′.

The three conditions mean that a type/value/variable name having type t in
Σ can only be mapped to a type/value/variable name having type σ(t) in Σ′,
so types are preserved. In other terms, the following diagrams must commute:

dom A
σA� dom A′

T (dom V )

A

� σ� T (dom V ′)

A′

�

dom OP
σOP� dom OP ′

T (dom V )

OP

� σ� T (dom V ′)

OP ′

�

dom V
σV� dom V ′

T (∅)

V

� σ � T (∅)

V ′

�

9 This restriction is necessary in order to define the model reduct functor in Sec-
tion 3.10.
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3.9 Sentence Morphisms

Signature morphisms σ can be lifted to work on sentences:

Definition 9. Let Σ = (A,OP, V ) and Σ′ = (A′, OP ′, V ′) be signatures, and
σ = (σA, σOP , σV ) : Σ→Σ′ a signature morphism. Sen(σ) : Sen(Σ)→Sen(Σ′)
is defined to be the function translating Σ-sentences into Σ′-sentences by replac-
ing occurrences of value names and variable names as prescribed by σOP , and
σV , respectively, and furthermore for quantified expressions ∀id : t•eb, the con-
stituent id and all free occurrences of id in eb must be replaced with an identifier
id

• ∈ Id which does not occur in dom A′ ∪ dom V ′ ∪ dom OP ′ in order to
avoid unintended name clashes in the translated version of eb.

3.10 Model Reduct Functor

In the following, let Σ = (A,OP, V ) and Σ′ = (A′, OP ′, V ′) be arbitrary signa-
tures, and let σ = (σA, σOP , σV ) : Σ → Σ′ be an arbitrary signature morphism.

In this section we are going to define the model reduct functor for the IRSLI

institution. In order to do that we first need to define some auxiliary construc-
tions lifting signature morphisms to functions that can make conversions between
Σ-stores and Σ′-stores, and between Σ-values and Σ′-values.

For later use, we introduce the following lemmas.

Lemma 1. V alueσ(t) = V aluet for t ∈ T (∅).

Proof. The lemma follows from the fact that σ(t) = t for t ∈ T (∅).

Lemma 2. st(v) ∈ V alueV ′(σV (v)) for st ∈ Store(Σ)vs, v ∈ vs and vs ⊆
dom V .

Proof. st(v) ∈ V alueV (v) by the Σ-stores definition in Section 3.3, V alueV (v) =
V alueσ(V (v)) by Lemma 1 and the assumption V (v) ∈ T (∅), and V alueσ(V (v)) =
V alueV ′(σV (v)) by condition 3 in Definition 8.

In the following, for any vs ⊆ dom V , let σV (vs) denote {σV (v)|v ∈ vs} .
First for any vs ⊆ dom V , we lift the signature morphism σ to a function σvs

translating Σ-stores to Σ′-stores, and we define an inverse function σ−1
vs too:

Definition 10. σvs : Store(Σ)vs → Store(Σ′)σV (vs)
is the function defined by

σvs(st) = [σV (v)(→st(v)|v ∈ dom st] for st ∈ Store(Σ)vs

This definition is well-formed as σV is injective and st(v) ∈ V alueV ′(σV (v)). The
first follows from Definition 8 and the latter follows from Lemma 2.

Definition 11. σ−1
vs : Store(Σ′)σV (vs) → Store(Σ)vs is the function defined by

σ−1
vs (st

′) = [v (→st′(σV (v))|v ∈ vs] for st′ ∈ Store(Σ′)σV (vs)

This definition is well-formed as one can in a similar way prove that st′(σV (v)) ∈
V alueV (v).
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We now lift the signature morphism σ to a family of functions translating Σ
values to Σ′ values: σ = (σt)t∈T (dom V ), where σt : V aluet → V alueσ(t), and

we define an inverse function σ−1 = (σ−1
t )t∈T (dom V ), where σ

−1
t : V alueσ(t) →

V aluet.

Definition 12. The functions σt : V aluet → V alueσ(t) and σ−1
t : V alueσ(t) →

V aluet are defined for t ∈ T (dom V ) as follows:

– For basic types t Char, Bool, Int, Real, and Unit, σt and σ−1
t are the

identity functions. (This is possible due to the property stated in Lemma 1.)
– For composite types t, σt(v) and σ−1

t (v′) are defined by recursively applying σ
and σ−1 to sub-values of v an v′, respectively. For instance, σt1×t2((v1, v2)) =
(σt1(v1), σt2(v2)) for v1 ∈ V aluet1 and v2 ∈ V aluet2.

– For function types t = t1
∼→ read rs write ws t2, σt(f), where f ∈ V aluet,

and σ−1
t (f ′), where f ′ ∈ V alueσ(t) and σ(t) = t′1

∼→ read rs′ write ws′ t′2,
are defined as follows:

σt(f) =
λ v′ ∈ Valuet′1

•

λ st′ ∈ Storers′ •

case f(σ−1
t1 (v′))(σ−1

rs (st
′)) of

⊥ → ⊥,
(st, v) → (σws(st) , σt2(v))

end

σ−1
t (f′) =
λ v ∈ Valuet1 •

λ st ∈ Storers •

case f′(σt1(v))(σrs(st)) of
⊥ → ⊥,
(st′, v′) → (σ−1

ws (st
′) , σ−1

t2 (v′))
end

From the definition it can be seen that for applicative types t ∈ T (∅), the func-
tions are just the identities. If t is an imperative function type (i.e. the function
type has a non empty variable access description), then σ−1

t convert function
values f ′ of type σ(t) to a corresponding function value f of type t. f behaves
like f ′, except that it accesses a variable x whenever f ′ accesses variable σV (x).

Now we are ready to define the model reduct functor.

Definition 13. Let Σ = (A,OP, V ) and Σ′ = (A′, OP ′, V ′) be signatures, and
let σ : Σ → Σ′ be a signature morphism. The model reduct functor Mod(σ) :
Mod(Σ′)→Mod(Σ) is defined to

– map each Σ′-model m′ = (m′
A,m

′
OP , st

′
init) in Mod(Σ′) to a Σ-model m =

(mA,mOP , stinit) where
• mA is uniquely determined by the signature Σ, cf. Definition 5.
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• mOP (op) = σ−1
OP (op)(m

′
OP (σOP (op))) for op ∈ dom OP , where σ−1

OP (op)

is defined by Definition 12.
• stinit(v) = st′init(σV (v)) for all v ∈ dom V , (i.e. stinit = σ−1

dom V (st
′
init),

where σ−1
dom V is the function defined in Definition 11).

– and to map each morphism idm′ (for m′ ∈ |Mod(Σ′)|) in Mod(Σ′) to a
morphism Mod(σ)(idm′ ) = idMod(Σ′)(m′) in Mod(Σ).

Above the application σ−1
OP (op)(m

′
OP (σOP (op))) is well-formed, as the argument

m′
OP (σOP (op)) ∈ M(OP ′(σOP (op))) = V alueOP ′(σOP (op)) = V alueσ(OP (op)),

(by Definition 5, by the definition of M in Section 3.4, and by Definition 8).
The value σ−1

OP (op)(m
′
OP (σOP (op))) ∈ V alueOP (op) = M(Op(op)) (by Defini-

tion 12 and by the definition of M in Section 3.4) and can therefore be used for
mOP (op).

3.11 Satisfaction Condition and the IRSLI Institution

The following proposition states that satisfaction is invariant with respect to
changes of signatures.

Proposition 1. Satisfaction condition: For all signatures Σ and Σ′, signature
morphisms σ : Σ → Σ′, Σ′-models m′, and Σ-sentences e:

m′ |=Σ′ Sen(σ)(e) iff Mod(σ)(m′) |=Σ e

Proof. It is straightforward to prove the proposition by induction over the struc-
ture of e.

To sum up, the IRSLI institution is defined as follows.

Definition 14. The IRSLI institution is a quadruple (Sign, Sen,Mod, |=) where

– Sign is a category of signatures and signature morphisms as defined in Def-
initions 2 and 8, respectively.

– Sen : Sign→ Set is the functor defined by Definitions 4 and 9, respectively.
– Mod : Sign → Catop is the functor that maps each signature Σ in Sign

to the category Mod(Σ) defined in Definition 6, and maps each signature
morphism σ : Σ → Σ′ in Sign to the reduct functor Mod(σ) : Mod(Σ′)→
Mod(Σ) defined in Definition 13.

– For each Σ ∈ |Sign|, |=Σ ⊆ |Mod(Σ)| × Sen(Σ) is the satisfaction relation
defined in Definition 7.

The required satisfaction condition (see Definition 15) holds for IRSLI due to
Proposition 1 and so the above definition of IRSLI yields an institution.

4 Conclusion

In this section we summarise achievements, related work and future work.
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4.1 Achievements

The contribution of the work reported in this paper is the provision of an institu-
tion for an imperative subset, RSLI , of RSL, and a description of the principles
for defining a semantics of the subset in terms of that institution.

4.2 Related Work

Compared with the original semantics[12] of RSL, our new semantics is more
elegant and easy to understand as simpler semantic domains are used (this is
possible as we only consider a subset of the full language) and a clear structure
is provided by the institutional setting. Moreover, an advantage of defining the
semantics in an institutional way is the institution-independent concepts and
results that then come for free.

Our RSLI subset extends the mRSL subset in [10,11], by allowing variable
declarations, explicit function definitions, more type expressions, and more value
expressions, but we have removed sort declarations.

Co-algebraic approaches have been suggested for the semantics of state-based
specifications, but these are based on terminal semantics, while for RSL we need
loose semantics. An observational logic suited for state-based systems specifi-
cations having loose semantics has been suggested in [8], but the observational
approach does not fit the original semantics of RSL. In [1] a state-based exten-
sion of CASL has been suggested. Specifications in this extension also have loose
semantics, but the specification approach differs in several ways from ours. For
instance, the state-as-algebra approach of Gurevich is used to specify the possible
states of a system, while we use explicit state variables, and also a syntactic and
semantic distinction between applicative functions (called static functions), state
dependent functions and state-changing functions (called procedures) is made,
while we have a unified syntactic and semantic integration of such functions.

4.3 Future Work

It is planned to extend the considered RSL subset and adapt the institution for
that.

An obvious extension would be to allow sort declarations and to allow sorts
in type expressions. The adaption of the institution for that should be done as
for the applicative subset mRSL in [10,11].

It could also be nice to allow subtype expressions in the type expressions
of abbreviation type definitions (subtype expressions in value expressions and
value declarations can be expanded away as shorthands for constructs without
subtype expressions). To allow subtype expressions in type expressions would at
least mean that the meaning function for type expressions should be changed.

It could be interesting to loosen the second condition in Definition 8 for sig-
nature morphisms to allow OP ′(σOP (op)) to have variable access descriptions
that are subsets of the corresponding ones in σ(OP (op)). This is possible, but
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will complicate the definition of the model reduct function in Definition 13 con-
siderably. Similarly, one could add suitable sub-typing rules to the typing rules
in Fig. 3 loosening the type requirements for value expressions to allow type
coercions from function types to function types allowing more variable accesses.
The latter would also imply that the meaning function for expressions should
be modified to include application of coercion functions at places where type
coercions would be allowed.

One could also allow variables to have types referring to variables, as long as
there are no cyclic self references. Apart from changing the definition of signa-
tures accordingly, it would require a change in the definitions of the auxiliary
functions in Definitions 10–11 for making conversions (wrt. a given signature
morphism σ : Σ → Σ′) between Σ-stores and Σ′-stores.

One could also take a further step to consider a kernel for full RSL. Including
the concurrency would mean that the semantics domains would be considerably
more complicated.

For RAISE, a transformation of applicative specifications into imperative
specifications have been defined [9]. We plan to use the framework of institu-
tions to define a formal refinement relation between applicative and imperative
RSL specifications and prove that the defined transformation maps applicative
specifications into refinements of them.
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A Formal Background

A.1 Notation

This section summarises some of the basic meta notation used for describing the
RSLI institution.

For (possibly infinite) sets S, S1, . . . , Sn, S-infset denotes the power set of
S, i.e. the set of all (possibly infinite) subsets of S, Sω denotes the set of all
(possibly infinite) lists (sequences) with elements in S, S1× . . .×Sn denotes the
set of n-tuples (v1, . . . , vn) where the vi ∈ Si for i = 1, . . . , n, S1 → S2 denotes
the set of total functions from S1 to S2, S1

∼→ S2 denotes the set of potentially
partial functions from S1 to S2, and S1 →m S2 denotes the set of finite maps
from S1 to S2, i.e. the set of total functions from finite subsets of S1 to S2.

For sets we use standard notation like ∪ for the union operation and ∅ for the
empty set.

For maps m, dom m denotes the domain of m. For maps m,m′ ∈ S1→m S2,
m † m′ (m overwritten by m′) denotes the map m′′ for which
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dom m′′ = dom m ∪ dom m′

m′′(x) = m′(x) for x ∈ dom m′

m′′(x) = m(x) for x ∈ dom m ∧ x �∈ dom m′

and for maps m ∈ S1 →m S2 and a subset s of S1,m/s (m restricted to s) denotes
the map m′ for which

dom m′ = s ∩ dom m
m′(x) = m(x) for x ∈ dom m′

and m \ s (m restricted by s) denotes the map m′ for which

dom m′ = (dom m) \ s
m′(x) = m(x) for x ∈ dom m′

A.2 Institutions

This section presents the definition of the concept of institutions [7] that for-
malises the informal notion of a logical system. The definition is made using
category theory, and for a category C, its collection of objects will be denoted
by |C|.

Definition 15. An institution I is a quadruple (Sign, Sen,Mod, |=) where

– Sign is a category of signatures and signature morphisms
– Sen : Sign→ Set is a functor giving, for each signature Σ, a set of sentences

Sen(Σ) over the signature, and for each signature morphism σ : Σ → Σ′,
a sentence translation map Sen(σ) : Sen(Σ)→Sen(Σ′), where Sen(σ)(e) is
often written σ(e),

– Mod : Sign → Catop is a functor that maps each signature Σ to the cat-
egory of models Mod(Σ) over the signature, and for each signature mor-
phism σ : Σ → Σ′, a reduct functor Mod(σ) : Mod(Σ′)→ Mod(Σ), where
Mod(σ)(m′) is often written m′|σ,

– |=Σ ⊆ |Mod(Σ)| × Sen(Σ) is a satisfaction relation for each Σ ∈ |Sign|

so that
m′ |=Σ′ Sen(σ)(e) iff Mod(σ)(m′) |=Σ e

for each σ : Σ → Σ′ in Sign, m′ ∈ |Mod(Σ′)|, and e ∈ Sen(Σ). This require-
ment is known as the satisfaction condition.
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Abstract. Tabular forms are commonly used in software. Those tabular forms 
are represented as rectangular dissections. In rectangular dissections, ruled line 
oriented operations such as cell merge, line and column operations are often 
used. With respect to ruled line oriented operations, 8k-ary grid graphs have 
been introduced as models of rectangular dissections that provide fast algo-
rithms. This paper surveys octal and hexa-decimal grid graph models of rectan-
gular dissections. First, octal grids, called octgrids, for single layer rectangular 
dissections and related algorithms are introduced. Next, hexa-decimal grid 
graphs for multiple layer rectangular dissections, called hexadeci-grids, and re-
lated algorithms are introduced. Furthermore, tetraicosa-grid graphs for rectan-
gular solid dissections for CG applications, called tetraicosa-grids and related 
algorithms are introduced.  

Keywords: modeling of spreadsheets, rectangular dissections, rectangular 
piped dissections, ruled line oriented transformations. 
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1 Introduction 

Tabular forms are widely used in user interfaces of visual languages (see e.g., [4]). 
Among them are tables in document processing, sheets in spread sheet processing, land 
forms in GIS and raster data in CG. However, it is known that you sometimes get 
unexpected results in tabular processing by transformation commands such as 
cell/row/column insertion/deletion for tabular forms. For example, if you insert a row 
or a column for some heterogeneous tabular form, you will sometimes find unexpected 
cells in unexpected locations. Those systems also often require rather long computation 
time for editing. Accordingly, reliable and efficient models of tabular forms are  
required.  

We note that in rectangular dissections, ruled line oriented operations such as  
cell merge, line and column operations are often used. Thus, this paper deals  
with graph models of rectangular dissections with respect to ruled line oriented  
operations.  

J. L. Bentley introduced quadtrees in 1975 [1], and K. Kozminsky and E. Kinnen in-
troduced properties of rectangular duals in 1985 [2] as data structures of rectangular 
dissections.  

Yaku introduced in 2002 octal degree grid graph, later called octgrids, for ruled line 
preserving transformation of rectangular dissections. It was shown that octgrids are 
effective for ruled line oriented operations (e.g., [9]). 

Octgrids are generalized to hexadecimal grids and to tetraicosa grids in order to 
manipulate multiple layer rectangular dissections and rectangular solid dissections.   

This paper surveys 8k-ary (k = 1, 2, 3) grid graph models of rectangular and rec-
tangular solid dissections [15]. In Section II, octal grid graphs, called octgrids, for 
single layer rectangular dissections and related algorithms are introduced.  

Next, in Section III, octgrids are generalized to the 2.5 dimension. Hexadecimal 
grid graphs for multiple layer rectangular dissections, called hexadeci-grids, and re-
lated algorithms are introduced. We note that transformation operations over tabular 
forms, stratum maps and 2.5D facility layouts of buildings often preserve ruled lines. 
Furthermore, in Section IV, we apply above results to CG data structures and tetraico-
sa-grid graphs for rectangular solid dissections, called tetraicosa-grids, and related 
algorithms are introduced.  

2 Octal Grid Graphs for the Single Layer Rectangular 
Dissections [6, 7, 10, 11] 

In [6], Yaku introduced “octgrids” based on octal grid graphs for heterogeneous rec-
tangular dissections such as Figure 1 (left). And it was shown that the octgrid model 
provides algorithms that run faster than well-known data structures such as rectangular 
duals (e.g. [7]).  

We introduce octal degree heterogeneous grid graphs (see e.g. [7]) called octgrids, 
that represent heterogeneous rectangular dissections, and provide efficient algorithms 
for mesh preserving transformation of CG objects. We first provide the definition of 
the octgrids. 
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2.1 Octgrids 

The “octgrid” for a rectangular dissection D is defined informally as follows: Each 
node in “octgrid” corresponds to a rectangle (cell) in D. Two nearest nodes are con-
nected if corresponding two cells in D have ruled line in common as in Figure 1. Fig-
ure 1 shows a rectangular dissection and the corresponding “octgrid”. 

Definition 2.1 
Let D be a rectangular dissection. An octgrid G = (VD, L, ED, AD, αD) for D is a mul-
tiple edge undirected grid graph, where VD is identified as the set of  rectangles in D. 
L = {enw, esw, eew, eww}, ED (ED ⊆ VD × L × VD) is a set of undirected labeled 
edges of VD of the form [vc, l, vd], where vc and vd are in VD and l is in L. ED is defined 
by the following Rules 1-4, AD = R4 and αD : VD → R4 are defined for vc ∈ VD by αD 
= (nw(c), sw(c), ew(c), ww(c)). Function nw(c), sw(c), ew(c) and ww(c) are defined  
for vc which corresponds to a rectangle in D by the north wall location, the south  
wall location, the east wall location and the west wall location of the rectangle  
respectively. 

Rule 1. If nw(c) = nw(d), that is, c and d have the equal north wall, and there is no cell 
between c and d which have the equal north wall, then [vc, enw, vd] is in ED and λD = 
enw. In this case [vc, enw, vd] is called a north wall edge. 

Rule 2. If sw(c) = sw(d), that is, c and d have the equal south wall, and there is no cell 
between c and d which have the equal south wall, then [vc, esw, vd] is in ED and λD = 
esw. In this case [vc, esw, vd] is called a south wall edge. 

Rule 3. If ew(c) = ew(d), that is, c and d have the equal east wall, and there is no cell 
between c and d which have the equal east wall, then [vc, eew, vd] is in ED and λD = 
eew. In this case [vc, eew, vd] is called an east wall edge. 

Rule 4. If ww(c) = ww(d), that is, c and d have the equal west wall, and there is no 
cell between c and d which have the equal west wall, then [vc, eww, vd] is in ED and λD 
= eww. In this case [vc, eww, vd] is called a west wall edge. 

Figure 1 shows a heterogeneous rectangular dissections and its corresponding 
octgrid. Two nodes are linked if they are nearest and have a ruled line in common. 
We note that the inner nodes have eight edges and the degrees of nodes are at most 8. 
Rectangular dissections are surrounded by “perimeter cells” in this paper, for conven-
ience of algorithms. 

 

Fig. 1. A rectangular dissection D (left) and its corresponding octgrid GD (right) 
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Fig. 2. Links around a node in an octgrid 

Figure 3 shows another example of rectangular dissections and the corresponding 
octgrid. 

                    

        D1                         G1 

Fig. 3. A rectangular dissection D1 and the corresponding octrid G1 

We have the following proposition. 

Proposition 2.1. Let D be a rectangular dissection with width n and depth m, ED be 
the edges in the octgrid GD for D, and k be the number of inner cells of D. The, the 
following equation holds:  

2|ED| = 6(2n-4) + 6(2m-4) + 8k + 16. 

2.2 Algorithms [7] 

An octgrid is an undirected grid graph, so we represent octgrids by 16-ary directed 
grid graphs as follows. After that, we introduce algorithms. And we introduce “For-
ward” and “Backward” because the actual processing becomes difficult if you do not 
know the direction of the edges. By this, each cell refers to each other with 8 edges. 
Therefore, each cell has 16 edges at most. This is the 16-ary directed grid graph. The 
32-ary directed grid graph and the 48-ary directed grid graph are also the same. 

The octgrid GD for a rectangular dissection D is represented by 16-ary directed grid 
graph. GDD = (VD, L, Direction, A, EDD), where Direction = {Forward, Backward},  

EDD ⊆ VD × L × Direction × VD is defined as follows. 

If a undirected edge [s, edge, t] is in ED, then 
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(1) a directed edge(s, edge, Forward, t) is in EDD  (sx < tx) 

and 

(2) (s, edge, Backward, t) is in EDD (sx ≧ tx), 

for edge LD. 

Now, we introduce a cell unification algorithm. 

ALGORITHM CellUnification8(GD, vx, vy, GF) 
INPUT 
GD = (VD, L, ED, AD, αD): an octgrid for a rectangular dissection D. 
vx, vy: adjacent nodes in GD with ww(x) = ww(y), ew(x) = ew(y), and sw(x) = 

nw(y). 
OUTPUT 
GF = (VF, L, EF, AF, αF): the octgrid for the rectangular dissection F, where F is 

obtained from D by the unification of cells x and y into x. 
METHOD 

1. Change edges around vx and vy. 
2. Delete edges around vy. 
3. Delete node vy. 

COMPLEXITY 
This algorithm runs in O(1) time, since the numbers of links around  nodes are 

at most 8. 

We show an algorithm that delete the northern side row from the focused cell. Fol-
lowing Figure 4 illustrates an example. 

 

Fig. 4. Deletion of the northern side row at the focused cell 

ALGORITHM DeleteSingleRow8(GD, vx, GE) 
INPUT 

GD: An octgrid for a rectangular dissection D. 
vx: The node (not in perimeters) in GD  for a focused cell x. 

OUTPUT 
GE: The octgrid deleted the northern side row of the cell vx. 

METHOD 
 1. Put the west side perimeter node linked with north wall edge to vx, v0. 
 2. Mark “N” to all nodes linked with north wall edge to v0. 
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 3. Delete inner node, which are marked “N” and linked with south wall edge to 
v0. 

 4. Change north wall edge of the inner node linked to v0. 
 5. Change south wall edge of the inner node linked to v0. 
 6. Change north-south links of the east side perimeter node linked to v0 and the 

links of v0, and delete the two nodes with east-west edges. 
 7. Change the height by the height of the deleted row. 

We construct an algorithm that delete all rows intersected to the focused cell. The 
following Figure 5 illustrates an example. 

 

Fig. 5. Deletion of multiple rows intersected with the cell x 

ALGORITHM DeleteMultipleRows8(GD, vx, GE) 
INPUT 

GD: The octgrid for a rectangular dissection D. 
vx: A node in GD, which is not in perimeters at the north and the south ends. 

OUTPUT 
GE: The octgrid deleted with rows, the number of rows is equivalent to the height 

of vx. 
METHOD 
1. Put the west side perimeter node linked by south wall edge to vx, v0. 
2. Put the south side node adjacent to v0, vh. 
3. Put the west side perimeter node linked by north wall edge to vx, vi. 
4. Put the lower node adjacent to vi, vi+1. 
5. DeleteRow(GD, vx, GE). 
6. Add 1 to i. 
7. If sw(vi) < sw(vh)  then return to Step 4. 

 

    

Fig. 6. A rectangular dissection and its corresponding octgrid 
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Cell unification algorithm runs in O(1) time. From these properties, we obtain effi-
cient resolution reduction algorithms that provide 3D maps with the appropriate resolu-
tion [10]. 

3 Hexadecimal Grid Graphs for the Multiple Layer 
Rectangular Dissections [10, 13, 15] 

In this section, we consider multiple layer rectangular dissections with cells of hete-
rogeneous sizes. The following Figure 7 shows an example of multiple layer rectan-
gular dissection. Multiple layer rectangular dissections illustrate multiple page books 
of spread sheets. 

We note that multiple layer rectangular dissections are effective tools to represent 
multiple page books in spreadsheets, facility layouts and stratum maps, for examples.  

 

Fig. 7. An example of multiple layer rectangular dissections (two layers) 

3.1 The Hexadeci-Grids 

Next, we introduce hexadecimal grids. 

Definition 3.1.  
Let D = (T, P, l) be a k-layered rectangular dissection. A hexadeci-grid GD = (VD, L, 
ED, AD, αD) for D is a multi-edge undirected grid graph. We provide definitions of L, 
ED, AD, and αD. First, we define the nodes VD. We put a node corresponding to each 
cell. Next, we define the labels L (L = {enw, esw, eew, eww, nec, nwc, sec, swc}). 
Next, we define the edges ED.  ED ⊆ VD × L × VD is the following set of undirected 
labeled edges of VD  of the form [vc, l, vd], where vc and vd are in VD and l is in L. (i) 
We define edges in ED  between nearest cells in D that have corner horizontally in 
common by Rules 1 – 4 similarly to octgrids. (ii) We define edges in ED between 
nearest cells in D that have corners vertically in common by the following rules. 

Rule 5. It is assumed that cells c and d are located in the different layer. If nec(c) = 
nec(d) and there is no cell between c and d which have the equal x - y coordinate of a 
northeastern, then [vc, nec, vd] is in ED. In this case, [vc, nec, vd] is called northeastern 
corner edge. 
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Rule 6. It is assumed that cells c and d are located in the different layer. If nwc(c) = 
nwc(d) and there is no cell between c and d which have the equal x - y coordinate of a 
northwestern, then [vc, nwc, vd] is in ED . In this case, [vc, nwc, vd] is called northwes-
tern corner edge. 

Rule 7. It is assumed that cells c and d are located in the different layer. If sec(c) = 
sec(d) and there is no cell between c and d which have the equal x - y coordinate of a 
southeastern, then [vc, sec, vd] is in ED. In this case, [vc, sec, vd] is called southeastern 
corner edge. 

Rule 8. It is assumed that cells c and d are located in the different layer. If swc(c) = 
swc(d) and there is no cell between c and d which have the equal x - y coordinate of a 
southwestern, then [vc, swc, vd] is in ED. In this case, [vc, swc, vd] is called southwes-
tern corner edge. 

AD = R8 and αD: VD → R8 are defined for vc ∈ VD by αD = (nw(c), sw(c), ew(c), 
ww(c), nec(c), nwc(c), sec(c), swc(c)). 

Figure 8 shows links around a node in hexadeci-grid. Figure 9 shows a multiple 
layer rectangular dissection and its corresponding hexadeci-grid. Figure 10 shows a 
concept of the multiple layer rectangular dissection and a multiple page book. 

 

Fig. 8. Links around a node in a hexadecimal grid 

 

     

Fig. 9. A multiple layer rectangular dissection (left) and its corresponding hexadeci-grid (right) 
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Fig. 10. A concept of multiple layer rectangular dissection of a multiple page book 

3.2 Algorithms 

This subsection introduces algorithms for hexadeci-grids. A hexadeci-grid GD is 
represented by the following 32-ary directed grid graph. GDD = (VD, L, Direction, A, 
EDD), where Direction = {Forward, Backward}.  

EDD ⊆ VD × L × Direction × VD is defined as follows. 

If [s, edge, t] is in ED, then 

(1) (s, edge, Forward, t) is in EDD (sx < tx)  

and 

(2) (s, edge, Backward, t) is in EDD (sx ≧ tx), 

for edge LD. 

We modify UnifyCells8 and obtain a cell unification algorithm for hexadeci-grids. 

ALGORITHM CellUnification16(GD, vx, vy, GF) 
INPUT 
GD = (VD, L, ED, AD, αD): a hexadeci-grid for a multiple layer rectangular dissec-

tion D. 
vx, vy: nodes in GD with ww(x) = ww(y), ew(x) = ew(y), and sw(x) = nw(y). 

OUTPUT 
GF = (VF, L, EF, AF, αF): the hexaeci-grid for the multiple layer rectangular dissec-

tion D, where F is obtained from D by unify cells x and y 
into x. 

METHOD 
1. Change edges of the horizontal direction around vx and vy. 

2. Delete edges of the horizontal direction around vy. 
3. Change edges of the vertical direction around vx and vy. 
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4. Delete edges of the vertical direction around vy. 
5. Delete node vy. 

 

ALGORITHM LayerDeletion16(GD, vx, GF) 
INPUT 
GD = (VD, L, ED, AD, αD): a hexadeci-grid for multiple layer rectangular dissection 

D. 
vx: a node in GD. 

OUTPUT 
GF = (VF, L, EF, AF, αF): a Hexadeci-grid for multiple layer rectangular dissection 

D, where F is obtained from D by delete k-th layer. 
METHOD 

1. Delete edges of the horizontal direction around vx. 
2. Delete edges of the vertical direction around vx. 
3. Delete node vx in GD. 
4. Repeat 1~3 steps for all cells in GD. 

We have the following proposition. 

Proposition 3.1. Let D be a multiple layer rectangular dissection with width n, depth 
m, and layer l, ED be the edges in the hexadeci-grid GD for D, and k be the number of 
inner cells of D. The following equation holds:  

2|ED| = 8 x 8 + 12(n-2)(m-2) + 14(m-2)(l-2) 
+ 14(l-2)(n-2) + 10(n-2)+10(m-2) +12(l-2) + 16k 

4 Tetra-Icosa Grids for the Rectangular Solid Dissections [9] 

Next, apply concepts of octgrids to CG data structures. We introduce a 24-ary grid 
graph representation for rectangular solid graphics. 

A rectangular solid dissection is a collection D = {S1, S2, ..., SN} of mutually dis-
joint rectangular solids, where S1 ∪ S2 ∪ ... ∪ SN = D. 

Definition 4.1.  
A tetraicosa-grid for D is an undirected labeled multi-edge grid graph GD = (VD, L, 
ED, A), defined as follows: (1) VD  = {vs  |  s is in D; vs corresponds to s} is a set of 
nodes, (2) L = {EquivalentUpwardNorthEastCornerPole,  EquivalentDown-
wardNorthEastCornerPole, ...,  EquivalentBackwardFloorWe-stBeam} (|L| = 24) is 
the set of edge labels, (3) ED is a set of undirected labeled edges defined as follows; if 
s and t are the nearest solids in D such that s and t have an upper north beam in com-
mon, then [s, EquivalentForwardCeilingNorthBeam, t] is in ED (Figure 11). Edges for 
other beams and corner poles are similarly defined. 

Figure 12 illustrates links around a node in a tetraicosa-grid. Furthermore, Figure 
13 shows a rectangular solid dissection (left) and the corresponding tetraicosa-grid 
(right). 
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Fig. 11. Example of labels for Eedges 

Figure 12 illustrates links around a node in a tetraicosa-grid. Furthermore, Figure 
13 shows a rectangular solid dissection (left) and the corresponding tetraicosa-grid 
(right). 

 

 

Fig. 12. Links around a node in a hexadecimal grid 

 

    

Fig. 13. A rectangular piped dissection (left) and its corresponding teraicose-grid (right) 

Proposition 4.1. Let D be a rectangular piped dissection with width k, depth l, and 
height m, ED be the edges in the tetraicosa-grid GD for D, and i be the number of inner 
voxels of D. The following equation holds:  

2|ED| = 12 x 8 + 16 x 4(k-2) + 16 x 4(l-2) 
+ 16 x 4(m-2) + 20 x 2(k-2)(l-2) 
+ 20 x 2(k-2)(m-2) + 20 x 2(l-2)(m-2) + 24i 
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GD is represented by 48-ary directed grid graph GDD = (VD, L, Direction, AD, EDD), 
where Direction = {Forward, Back-ward}, as follows. 

EDD ⊆ VD × L × Direction × VD is defined as follows. 

If [s, edge, t] is in ED, then 

(1) (s, edge, Forward, t) is in EDD (sx < tx)  

and 

(2) (s, edge, Backward, t) is in EDD (sx ≧ tx), 

for edge LD. 

Then, the similar O(1) time voxel unification algorithm can be given as cell unifi-
cation algorithms octgrids and in hexadeci-grids. 

5 Conclusion 

We surveyed 8k-ary grid graph models for the rectangular and rectangular piped dis-
sections. Cell unification algorithm of octgrids, hexadeci-grids and tetraicosa-grids 
runs in O(1) time, since the number of links around a node is bounded by 8, 16, 24, 
respectively. From these properties, we can show that 8k-ary grid graph models pro-
vide rapid ruled line preserving algorithms (e.g., [8, 9, 13, 14]).  Data formats and 
processing systems have been developped as a successor of a program diagram system 
[3]. As future works, we consider processing systems (e.g., [7, 8, 12, 14],  and a  
graph grammar that characterizes octgrids  (see e.g., [5, 13, 16]). 
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Abstract. Algebraic specification languages of the OBJ family are quite
flexible in providing adequate means by which to delineate software ab-
stractions. Although originally developed in the late 1970s, these lan-
guages are applied to new problems that have arisen with emerging
software-intensive systems. As an example of continuing efforts to tackle
those problems, the present paper considers the application of the OBJ
family language, specifically Realtime Maude, to model-based analysis
of power consumption in Android smartphones. Hereby, it demonstrates
that the language is powerful enough to be a basis for dealing with this
new problem.

Keywords: Realtime Maude, Sampling Abstraction, Energy Bugs, An-
droid Smartphone.

1 Introduction

Software is an enabler for innovation, and its frontier is expanding rapidly as
a result of best practices in the marketplace. Despite the strong need for solid
basis for safe and reliable software systems, the advancement of scientific grounds
is always behind the rapid evolution of practices (cf. [27]). Software research
is barely able to cope with the increased complexity of such systems. A key
to understanding such problems is modeling at the right level of abstraction,
without which system development is arduous.

Unambiguously delineating the software models requires concise notation or
language for rigorous expression at an appropriate level of abstraction. Since
the model characteristics are divergent, no language is universal, and languages
are elaborated as new problems are encountered. Searching for such appropriate
languages is often the most important task of scientists. For example, Sir Issac
Newton, while formulating particle dynamics, introduced the concept of the point
mass as an abstraction of apples and planets, and differential calculus as means
by which to describe their essential properties (cf. [16]).

Formal methods or formal specification languages have their roots in the 1970s
(cf. [25]). These languages are to software abstraction as differential calculus is
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to Newtonian dynamics. Specifically, algebraic specification languages, which ap-
peared in the late 1970s, are quite flexible in providing adequate abstractions,
thanks to the property-oriented specification writing style [33]. Extensive re-
search led to the development of the OBJ language family [14], which includes
OBJ2 [12], Maude [9], and CafeOBJ [11]. These languages are applied to new
problems that have arisen with emerging software-intensive systems. They in-
clude, even limited to my personal experience, object-oriented design [20][22],
software architecture with mobility [22], multi-paradigm software modeling [21],
and policies to govern user behavior [23]. Software technology is continuously
evolving and new research areas, such as self-adaptive systems [13][17][24][29]
and smartphones [1][28][31], are of great interest today.

As an example of continuing efforts to challenge new problems, the present
paper focuses on energy bugs in Android smartphones [31], in which unexpected
power consumption has become a major concern because of limited battery ca-
pacity. Although smartphones are compact and small, they are complex systems
in which hardware components, the Linux operating system, the Android frame-
works, and applications (app) are inter-related. All of these components have
much impact on the power consumption, but their causal relationships remain
unclear due to the complexity of the multi-layered architecture.

We herein describe the OBJ language approach, specifically Realtime Maude
[30], to model-based analysis of power consumption in Android smartphones. It
is true that much must be done before applying the proposed method to deal-
ing with ebugs [31] in real-world Android applications. The reported approach,
however, demonstrates that the language is powerful enough to deal with these
new problems.

The paper is structured as follows. Section 2 describes the problem of energy
bugs in smartphones, using the Wi-Fi component as a concrete example. Section
3 proposes a model-based approach using the power consumption automaton
(PCA). Section 4 explains a method for the representation and analysis of PCA
using Realtime Maude. Section 5 presents discussions and some remarks on
future research directions. Section 6 summarizes research related to the power
consumption problems, and conclusions are presented in Section 7.

2 Energy Bugs in Smartphones

2.1 Power Management in Android Smartphones

Power consumption of smartphone applications such as Android apps is a major
concern because smartphones have batteries with limited power capacity. Some
apps, although functionally correct, suffer from unexpected power consumption,
which is referred to as an energy bug (ebugs) [31]. Debugging such ebugs currently
makes use of the energy profiler (cf. [32]), which monitors the program execution
at runtime to check whether power drains exist.

Figure 1 shows an overview of an Android smartphone with regard to power
consumption. The Android framework together with the Linux kernel provides
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Fig. 1. Overview of an Android Smartphone

basic features to the application tasks, apps and services. Android apps are ap-
plication processes that provide GUI to the user, whereas the Android service
does not use a GUI and is a background process. They are multi-threaded pro-
grams. In addition, the application processes use other hardware components
such as networks or peripherals, all of which consumes battery power.

The Android framework encapsulates the underlying components to allow pro-
gramming tasks to be accessible. However, the framework is not transparent for
application developers with regard to the precise power consumption behavior.
The framework adapts an aggressive power saving strategy; the power control
subsystem automatically forces the system to sleep when the user does not touch
the screen for some period of time.

While adapting this aggressive strategy, the Android framework provides wake
locks for power management. An app can request CPU resources through wake
locks, and the CPU is kept awake while some active locks are in place. An
acquired wake lock should have a matching release call. Otherwise, the wake
lock is kept active even after the caller program is destroyed. Such improper
uses of wake locks result in ebugs [31], which can, in principle, be eliminated in
the early stages of development because these are design bugs.

2.2 Wi-Fi Subsystem

This section explains the Wi-Fi subsystem, which is used as a concrete example
to illustrate the motivation and approach to addressing energy bugs in smart-
phones. Figure 2 is an example of a measured energy profile of a Wi-Fi client
in Nexus One operating in the power save mode (PSM) [3]. The figure is taken
from [18] and is modified slightly for illustrative purposes. We refer to the paper
for the detailed measurement conditions.

The Wi-Fi client, or station (STA), is in the passive scan mode. The access
point (AP) periodically sends beacon signals to notify the STA to start data
transfer. Figure 2 shows that STA is in the Deep Sleep state, and then goes to
the High Power state to send or receive various frames. STA occasionally stays in
the Idle Listen state to see whether there are further frames to come. In the case
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Fig. 2. Wi-Fi Energy Profile (Adapted from [18])

of data transfer, STA moves to the Light Sleep state if it detects a no-more-data
flag. STA stays in this state for a while with the expectation that further data
transfer will be occurring soon. It can respond to beacon signals more quickly
in the Light Sleep state than in the Deep Sleep state because enough current is
provided. Last, STA is forced into the Deep Sleep state by a time-out event of
an inactivity timer.

The Wi-Fi subsystem, as well as the other hardware components, adopts the
concept of wake locks for power management. WifiManager is the key library
class to provide a method of controlling WifiLock [1], and allows an application
process to keep the Wi-Fi radio awake. Section 4.3 will discuss this topic in
detail.

2.3 Power Consumption Model

Let F (t) be an energy consumption function of the graph in Figure 2. Then,
the total power consumption (P (T )) from time 0 to time T is obtained by the
accumulation, or the integral of F (t).

P (T ) =

∫ T

0

F (t)dt

As the above explanation using Figure 2 suggests, the states of STA are changed
in both event-trigger (signal or frame) and time-trigger (periodic or timeout)
manners. Such changes can be represented by a state-transition system, and the
concept of the power state is introduced here. Figure 3 shows an example of a
state-transition system of Wi-Fi STA operating in the PSM.

While P (T ) above is formulated as the integral of a function F (t), it can be
simplified if the power consumption is approximated by a linear function of time
in each power state. Such an approximation can mostly reproduce the energy
profile in Figure 2.

Let P (tS , tE)
PS

be the consumed power in the state PS from tS to tE such

that P (tS , tE)
PS

=CPS×(tE − tS) if we know a constant CPS . The consumed
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Fig. 3. Behavioral Model of STA

power is proportional to the period of time that STA dwells on the particular
power state. Then, P (T ) becomes the sum of the power consumption in all states
that the STA transition system visits.

P (T ) =

n−1∑
i=0

P (ti, ti+1)
PS

where t0 = 0 and tn = T . With t = tE − tS , P (tS , tE)
PS

can be written as

P (t)
PS

, which is equal to CPS×t. For example, P (t)
DeepSleep

refers to the sum
of the power consumed as the drain currents of the radio circuits and the power
needed to process the beacon signals. The DeepSleep state is visited many times
while the Wi-Fi subsystem is enabled.

3 Model-Based Analysis of Power Consumption

3.1 Power Consumption Automaton

As mentioned above, the behavior of STA is modeled in terms of a state-
transition system. A state transition sequence generates a trace consisting of the
power states that the STA visits. P (T ) can be calculated by accumulating the
power consumed in all such visited states. Here, we introduce a state transition
system, the power consumption automaton, to express the power consumption
formally.

The power consumption automaton (PCA) is a six-tuple. We give its for-
mal definition by following the presentation of the linear hybrid system in [5],
〈 Loc, V ar, Lab, Edg,Act, Inv 〉. The components are explained below.

1. Loc is a finite set of locations to represent the power states.
2. V ar is a finite set of real-valued variables, A valuation v for the variables

is a function to assign a real-value v(x)∈R to each variable x∈V ar, and V
represents a set of valuations.
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3. Lab is a finite set of synchronization labels containing the stutter label
τ∈Lab.

4. Edg is a finite set of transitions. Each transition e is a tuple 〈l, a, μ, l′〉 where
l∈ Loc and l′∈Loc are a source and a target location respectively, a∈Lab
is a synchronization label, and μ is an action defined by a guarded set of
assignments (referred to as updates)

ψ ⇒ { x := αx | x∈V ar },
where the guard ψ is a linear formula over the variables, and αx is also a
linear term.

5. Act is a mapping from locations in Loc to a set of activities to represent the
flow dynamics. Act(l) is a differential equation of the form dP/dt = K with
an integer K (K∈Z) for a variable P∈V ar. K is either Cj for the case of

power consumption (P (t)
l
) or 1 for the clock.

6. Inv is a mapping from locations in Loc to invariants Inv(l)⊆V . Inv(l) is
defined by a linear formula φ over V ar.

Two PCAs are synchronized on the common set of labels Lab1∩Lab2. Whenever
PCA1 makes a discrete transition with a synchronization label a∈(Lab1∩Lab2),
PCA2 also performs a discrete transition.

The PCA is a strict subclass of the linear hybrid automaton (LHA) [6]. In-
formally, the LHA is a hybrid automaton, the guards (ψ), updates (μ), and in-
variants (φ) of which are only linear expressions, and the dynamics are specified
using differential inequalities that are linear constraints over first-order deriva-
tives (C1 ≤ dx/dt ≤ C2). The dynamics of the PCA are differential equalities
of the form, dP/dt = Cl for the case of the power consumption variable P , and
dX/dt = 1 for the clock variable X , both of which are linear equality constraints
over first-order derivatives. Therefore, the PCA is a subclass of the LHA.

3.2 Analysis of Power Consumption Automaton

This section reviews the algorithmic analysis methods, which were studied exten-
sively for the linear hybrid automaton (LHA) [5]. Here, we focus on a reachability
analysis over an infinite state space generated by the labeled transition system
(LTS) associated with the LHA.

The LHA has several special cases such as a timed automaton (TA), a mul-
tirate timed system (MTS), an n-rate timed system (nRTS), and a stopwatch
automaton (SWA). An LHA is simple if the location invariants (φ) and transition
guards (ψ) are of the form x≤k or k≤x for x∈V ar and k∈Z.

A variable x is a clock if Act(l, x) = 1 for each location l and μ(e, x)∈{0, x}
for each edge. A skewed clock is a clock to change with time at a rate k (k∈Z);
Act(l, x) = k and μ(e, x)∈{0, x}. k can be different from 1.

A TA is a simple linear hybrid automaton, whose variables are clocks. An
MTS is a linear hybrid automaton, whose clocks are skewed. An nRTS is an
MTS, each skewed clock of which proceeds at n different rates. An SWA is a
TA, in which Act(l, x)∈{0, 1} and μ(e, x)∈{0, x}. The reachability problem is



484 S. Nakajima

known to be decidable for the TA and simple MTS, but undecidable for other
cases even though they are simple.

A naive question regarding the PCA would be to ask whether a PCA model
can reproduce an energy profile such as that in Figure 2. The profile shows just
one particular trace instance. Although test executions of the model PCA might
reproduce the trace, this is not useful for design-level debugging. Analyzing the
PCA using various scenarios is desirable, and some static analysis methods such
as symbolic model-checking would be better than test executions. Furthermore,
although precise numerical values are needed, for example, in the optimization
problems, the focus here is to detect anomalies and systematic analyses are
preferred. Because of the decidability of the reachability problem, a close look
at the PCA is needed.

Imagine that we have a PCA model with M power states, each of which
consumes different amounts of electric power as P (t)

j
= Cj×t (j = 0. . .M − 1).

We also assume that the property to check takes the form of �(Pow≤Max),
which indicates that the total power (Pow) is within a given Max.

In discussing the decidability of the reachability problem, we consider how
the PCA is encoded in some subclass of LHA. A naive method is to encode
the PCA as an M -rate timed system. A skewed clock Pow is introduced, which
changes with time at the rate of Cj in the power state j, namely proceeds at M
different rates. Pow can record the total power consumption as the PCA changes
its power states.

Alternatively, the PCA can be regarded as an MTS. Since P (t)j is linear in
time, the power consumption in one power state j is essentially the period of
time that the PCA stays in that state. We may regard each P (t)

j
as a skewed

clock Xj that changes with time at a fixed rate of Cj . Since Xj changes with
time only when the PCA is in that particular state j, Xj must be stopped in all
the other states. Therefore, the PCA is regarded as a multirate SWA, where the
total power consumption is calculated such that Pow =

∑M−1
j=0 Xj . The PCA is

more expressive than either the MTS or the SWA.
As mentioned above, the reachability problem is undecidable for either an

nRTS or a simple SWA. The reachability problem of the PCA is also unde-
cidable even if we restrict the PCA to be simple. We may consider using an
over-approximation analysis method, which is complete with respect to finding
bugs.

PCA may be encoded in another variant of TA, priced timed automaton
(PTA) [7]. A PTA has observer variables (ObsV ar) that change their values at
locations or transition edges, but that are not used in guards nor invariants. The
observer variables are computed by a sum of weights along transition sequnces,
but not as dynamics of LHA. In the PTA theory, the analysis is aimed for the
optimization problems They deal with questions, for example, to find minimum
paths along which the observer variable has a specified value.

Although our problem is to find anomalies in power consumption behavior,
which is different from optimizations, we may encode PCA as an PTA in which
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the variable Pow is regarded as an observer variable not used in guards nor
invariants (Pow∈ObsV ar and Pow �∈V ar).

4 Analysis Using Realtime Maude

4.1 Realtime Maude

Realtime Maude [2][30] is an extension of Maude [9] for the application of rewrit-
ing logic [19] to the executable specifications of realtime and hybrid systems. Re-
altime Maude adapts explicit time model as compared to an implicit or symbolic
representation of time. The latter is used in the reachability analysis methods
for the LHA [5][6].

Realtime Maude provides two types of rewrite rules, instantaneous rules and
tick rules. The instantaneous rules are inherited from Maude, and rewrite terms
in a concurrent manner without delay, namely instantaneously. A general form
is introduced as a rewriting of concurrent objects [9][19]. The present paper,
however, uses a simplified presentation just for sketching how the PCA is encoded
in Realtime Maude.

Let T (A) be a term with argument A. Then, a conditional instantaneous rule
with label r takes the following form:

r : T (A) −→ T ′(A′) if C .

The term on the left-hand side (T (A)) is rewritten to the term on the right-hand
side (T ′(A′)). This rule is fired or enabled to make transitions only when the
side condition C is satisfied.

The rewrite rule can represent synchronous communications between two par-
ties. Let T1(A1) and T2(A2) be terms for the parties involved, and let M be a
message term to trigger the communication. The following rewrite rule can be
considered to describe synchronous communications between the two parties be-
cause both T1(A1) and T2(A2) change their internal status simultaneously with
M :

r : T1(A1) T2(A2) M −→ T1(A
′
1) T2(A

′
2) M

′ if C .

This example also shows that the rule generates a new message term M ′.
The tick rules are introduced in Realtime Maude [30] to be responsible for pas-

sage of time. There might be a situation in which the firing of instantaneous rules
interferes with that of tick rules. Realtime Maude adapts a rewriting strategy to
control the firing of instantaneous rules and tick rules. All of the instantaneous
rules are fired at some point in time until no such rule to be enabled is found.
The net result is that the entire system is in a stable state. Then, the tick rules
are checked if they are enabled.

Let T be a set of terms to represent a snapshot of the entire system. A tick
rule works on T enclosed with curly brackets ({ and }), where T is a term of
sort System pre-defined in Realtime Maude.
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l : { T } −→ { T ′ } in time τl if C

The rule states that the amount of the time τl passes in rewriting T to T ′. Here,
C may refer to a condition related to time τl, and such tick rules advance the
time nondeterministically as long as τl satisfies the condition C. For example,
the rule below, with a given constant u, advances time by any amount so long
as the condition τl ≤ u is satisfied:

l : { T } −→ { T ′ } in time τl if τl ≤ u

The amount of time to advance is not chosen exactly, but rather can be any
value that satisfies the condition. It needs a sound method by which to choose
an adequate time value because time is continuous in general.

Realtime Maude adapts sampling abstractions for such time-nondeterministic
systems, in which the notion of the maximum time elapsed (mte) plays an im-
portant role. Each term T is accompanied by two functions, δ and mte, where
δ is described so as to return a new term T ′ which is a modification of T after
the passage of time τl, and mte returns information on the sampling point, at
which the tick rules regarding to this T are supposed to fire.

The tick rules are then written as shown below where the side condition refers
to mte(T ):

l : { T } −→ { δ(T, τl) } in time τl if τl ≤ mte(T )

mte(T ) is the upper limit of the advancement of time, and thus instructs the
formal analysis method to consider transitions at some particular time to satisfy
the side condition. This means that the transition from T to T ′ is fired at least
once in the time interval specified by mte(T ).

The sampling abstraction is effective in the time-bounded model-checking.
The property to check is expressed as a formula in linear temporal logic (LTL),
and the following command invokes the model-checker.

mc initState |=t
formula in time ≤ B

The model checking method is feasible even for the case of continuous time
because of the sampling abstraction.

4.2 Encoding PCA in Realtime Maude

Realtime Maude is expressive enough to represent a wide range of realtime and
hybrid systems such as timed automaton and hybrid automaton. Since the power
consumption automaton (PCA) is a subclass of the linear hybrid automaton
(Section 3.1), the PCA can be encoded in Realtime Maude.

First, we introduce two reserved variables loc and pow. The value of loc refers
to a location L∈Loc, and pow represents the total consumed power (Section 3.2).
We then have a set of variables, V ar∪{loc, pow}. A PCA is a term with K+2
arguments that takes the following form:
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pca(LOC,POW,N1, . . ., NK)

where Nj∈V ar.
Each synchronization label in Lab is turned into a message Ai in Realtime

Maude. Edge describes how the transition occurs, and thus is encoded in the
rewrite rule. An edge 〈L,A, μ, L′〉 with μ taking the form of ψ ⇒ { x :=
αx|x∈V ar} is encoded in a rewrite rule with a side condition. ψ is defined over
V ar, and does not refer to loc or pow. Particularly, pow is an observer variable.
If a PCA has only one variable X , for simplicity, the transition is translated into
an instantaneous rule.

r : A pca(L, POW,X) −→ pca(L′, POW,αX) if ψ

Although the location L may be changed, the power does not. The value of X
is updated to be αX .

The edge with the stutter label tau is encoded as a rewrite rule just to change
the location (L) to a new location (L′) without any message term being involved.
L′ is possibly the same as L.

r : pca(L, POW,X) −→ pca(L′, POW,αX) if ψ

Act is responsible for the flow dynamics in the power state and is concerned with
the time-dependent behavior of the PCA. This aspect is encoded in tick rewrite
rules. We define δ(T, τl) as follows:

δ(pca(L, POW,X), τl) = pca(L, POW + CL×τl, X ′)

X ′ is defined in a proper manner. For an example case of a regular clock variable,
it calculates the effects on the time progress; X ′ = X + τl. Realtime Maude
supports the linear arithmetic for time such as POW + CL×τl with a constant
CL.

In the PCA, Inv is essentially a time constraint representing that the state
transition does not occur from state L while the specified temporal conditions ϕ
are satisfied, where ϕ does not refer to the observer variable pow. This situation
is the same as that in which the state transition occurs only when ¬ϕ becomes
satisfied. The new term is also calculated using the associated δ:

r : { pca(L, POW,X) } −→ { δ(pca(L, POW,X), τl) } in time τl if ¬ϕ

Once the PCA is encoded as a set of instantaneous rules and tick rules, its time-
dependent behavior is checked with the time-bounded model-checking method
As mentioned earlier, the property to check is �(Pow ≤ Maxtotal) within a
given time interval of 0 to B.

mc initState |=t
�(Pow ≤ Maxtotal) in time ≤ B

The analysis is performed under the sampling abstraction, which is dependent
on the function mte.
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4.3 Wi-Fi PCA Model in Realtime Maude

Based on the encoding method in Section 4.2, we present Realtime Maude de-
scriptions of PCA examples. Figure 4 shows two PCA models, Wi-Fi Wake Lock
(left) and Wi-Fi STA (right), in diagrammatic forms.

The wake lock is not time-dependent, but changes its states in response to the
acquire and release events. This is a good example for illustrating the instan-
taneous rules of Realtime Maude. A wakeLock term has two internal variables:
LCK of sort Bool for representing its locking status and N of sort Nat for
storing the reference counts:

op wakeLock : Bool Nat → System

Let Acquire and Release be message terms for the corresponding events. The
behavior of wakeLock is specified by a set of instantaneous rules.

a1: Acquire wakeLock(false, 0) −→ wakeLock(true, 1) Locked
a2: Acquire wakeLock(true,N) −→ wakeLock(true,N + 1)
r1: Release wakeLock(false, 0) −→ Exception
r2: Release wakeLock(true, 1) −→ wakeLock(false, 0) Unlocked
r3: Release wakeLock(true,N) −→ wakeLock(true,N − 1) if N>1

In the rules a1 and r2, appropriate message terms, Locked or Unlocked, are also
generated while the wakeLock term changes internal values.

The Wi-Fi PCA in Figure 4 has four power states with numerous transitions.
Since a transition is turned into a set of rewrite rules in Realtime Maude, the
description becomes lengthy. In the following, we describe some of the behavior
only.

First, we introduce a term wifiSTA with four arguments. In addition to
loc (sort Loc) and pow (sort T ime), the wifiSTA term has a Boolean flag to
indicate the status of the Wi-Fi WakeLock, and an inactivity timer of sort T ime.

op wifiSTA : Loc T ime Bool T ime → System
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The value of the Boolean flag is flipped in response to the Locked and Unlocked
messages sent by the wakeLock. Two instantaneous rules, w1 and w2, are re-
sponsible for these messages.

w1: wifiSTA(L, P, false,X) Locked −→ wifiSTA(L, P, true,X)
w2: wifiSTA(L, P, true,X) Unocked −→ wifiSTA(L, P, false,X)

Next we consider three transitions from the HighPower state when wifiSTA
receives Data messages with the More flag. We assume that these occur instan-
taneously and do not consume any electric power. When the More flag is not
on, the destination locations differ depending on the wake lock flag value (rules
h2 and h3).

h1: wifiSTA(HighPower, P,B,X) Data(More)
−→ wifiSTA(IdleListen, P,B,X)

h2: wifiSTA(HighPower, P, false,X) Data(NoMore)
−→ wifiSTA(LightSleep, P, false, 0)

h3: wifiSTA(HighPower, P, true,X) Data(NoMore)
−→ wifiSTA(IdleListen, P, true,X)

Rule h2 sets the fourth argument to 0 to reset the inactivity timer (Figure 4).
The access point (AP), which is not shown here, periodically sends beacon

frames. They have the TIM flag on when the AP notifies wifiSTA to start
exchanging additional frames. The transitions from the IdleListen state go to
different destinations based on the combination of the TIM flag and the status
of the wake lock (Figure 4). We assume that the message term Beacon has an
argument to designate the TIM flag value.

i1: wifiSTA(IdleListen, P,B,X) Beacon(TIM)
−→ wifiSTA(HighPower, P,B,X)

i2: wifiSTA(IdleListen, P, false,X) Beacon(noT IM)
−→ wifiSTA(LightSleep, P, false,X)

i3: wifiSTA(IdleListen, P, true,X) Beacon(noT IM)
−→ wifiSTA(IdleListen, P, true,X)

The time-dependent behavior of wifiSTA is related to the accumulated power
consumption values in each power state (pow) and the inactivity timer in the
LightSleep state. The power consumptions in states other than LightSleep are
almost the same: The power consumption P is updated to be P +CDS×τ with
a constant value for that power state, for example CDS in the DeepSleep state.
The power state loc is not changed since wifiSTA stays there.

δ(wifiSTA(DeepSleep, P,B,X), τ)
= wifiSTA(DeepSleep, P + CDS×τ, B,X)

The definition of δ involving the LightSleep takes into account of the inactivity
timer. Let T imeout be a constant to represent the timeout count of the inactivity
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timer. When δ is called before the timeout is reached, the power consumption
is calculated just as in the above cases. It, however, makes a slightly different
calculation when the inactivity timeout occurs, in which case the state is also
changed to the DeepSleep state.

δ(wifiSTA(LightSleep, P,B,X), τ)
= wifiSTA(LightSleep, P + CLS×τ, B,X + τ)
if X<Timeout− τ

δ(wifiSTA(LightSleep, P,B,X), τ)
= wifiSTA(DeepSleep, P + CLS×(T imeout−X), B, 0)
if X≥T imeout− τ

Last, mte in the LightSleep state, where the inactivity timer is effective, returns
the value (T imeout− X) to indicate that the tick rules for wifiSTA must be
consulted after the specified ticks. In the other states, mte returns infinity (inf)
to indicate that mte does not provide any useful information on the time point
of interest.

mte(wifiSTA(L, P,B,X)) = T imeout−X if (L = LightSleep)
mte(wifiSTA(L, P,B,X)) = inf if not(L = LightSleep)

The access point (AP) may be responsible for further time-dependencies and
introduces appropriate definitions of its own mte.

5 Discussion

The example PCA presented in this paper is the Wi-Fi subsystem, which is not
an application, whereas the motivation of the present study is removing ebugs
from Android applications at the design stage. As illustrated in Figure 5, the
target application may use several hardware subsystems such as Wi-Fi. The
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power consumption of these subsystems is attributed to this application. The
other applications to be executed concurrently may also affect the execution
time of that particular application. The model-based analysis framework must
take into account these components.

PCAs for all of the power consumers in the system are needed as a kind
of library for the analysis of applications. The Wi-Fi PCA is a first example
of such library components. Second, an Android application is implemented as
an activity, as a subclass of Activity. An activity consists of a set of callback
methods, and the behavior of the activity is modeled by the state-transition
system to follow the life-cycle. Since the PCA, being a subclass of the LHA,
subsumes discrete transition systems, such behavioral specifications can also be
captured by the PCA. Thus, model-based analysis using the PCA is useful for
the design-level debugging of ebugs in Android applications.

Figure 5 also shows that Android smartphones are equipped with ARM core
processors to allow dynamic voltage-frequency scaling (DVFS) [15]. The DVFS
governor in Android changes the voltage and frequency based on the CPU usage.
Changing the voltage and frequency has an impact on the CPU power consump-
tion, and it also affects the execution time of a program as the CPU performance
changes. If the CPU clock rate decreases, the physical time that the program
executes becomes long and the components used by the program are occupied
longer resulting in more power consumption.

The CPU usage is related to the number of active processes, which is not
known beforehand. The power consumption affected by the DVFS is difficult to
predict, but may be considered to be probabilistic. Therefore, the behavior of the
PCA is considered a stochastic process as in the statistical model-checking [34]
or the statistical runtime checking [26]. In regard to the OBJ language family,
especially Maude, PMaude [4] was proposed as an approach to the modeling of
probabilistic object systems. PMaude may be a first step needed to solve the
problem at hand.

6 Related Research

A. Pathak et al [31] pointed out the importance of eliminating energy bugs in
smartphones, which they referred to as ebugs. They also proposed the use of
state-transition systems for modeling of the power consumption and developed
Eprof [32]. Eprof is an energy profiler to monitor the program execution at
runtime to detect potential ebugs. The concept of using an automaton-based
representation of the PCA was inspired by their work.

MoVES [8] uses the stopwatch-extension of UPPAAL [10] for modeling and an-
alyzing embedded systems such as the schedulability or the power consumption.
The power consumption model is, however, that P (t) = C×t without considering
the difference in power states.

The Power consumption automaton (PCA) was introduced in [28]. They en-
coded the PCA in the stopwatch automaton (SWA) and used the stopwatch-
extension of UPPAAL for the reachability analysis. PCA, however, is not fully
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represented because the SWA is not multirated. Therefore, query checking is
performed separately for each clock. Checking of A�((

∑
PSP

PS) ≤ MaxTotal)
is not possible. It is because the sum of clock variables does not make sense due
to the symbolic model-checking algorithm. Although

∧
PSA�((P

PS ≤ MaxPS)
is possible, this is different from the above property.

7 Conclusion

Modeling at the right level of abstraction is necessary in order to capture the
fundamental properties of software systems, and requires concise notations or
languages. The languages of the OBJ family are quite flexible and were adopted
herein due to their property-oriented specification method. We demonstrated
how the power consumption of smartphones, one of the recent hot topics, was
dealt with using the notion of power consumption automaton and its encoding in
Realtime Maude. Furthermore, we also pointed out that stochastic or probabilis-
tic methods would be needed for the power consumption analysis of smartphone
applications. In summary, quantitative methods will play an important role in
addressing new problems in emerging software-intensive systems.
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30. Ölveczky, P.C., Meseguer, J.: Semantics and Pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)

31. Pathak, A., Hu, Y.C., Zhang, M.: Bootstrapping Energy Debugging on Smart-
phones: A First Look at Energy Bugs in Mobile Devices. In: Proc. Hotnets 2011
(2011)

32. Pathak, A., Hu, Y.C., Zhang, M.: Where is the energy spent inside my app?: Fine
Grained Energy Accoutning on Smartphones with Eprof. In: Proc. EuroSys 2012
(2012)

33. Wing, J.: A Specifier’s Introduction to Formal Methods. IEEE Computer, 8–24
(1990)

34. Zuliani, P., Baier, C., Clarke, E.M.: Rare-Event Verification for Stochastic Hybrid
Systems. In: Proc. HSCC 2012, pp. 217–225 (2012)



Formal Modeling and Analysis of Google’s
Megastore in Real-Time Maude�

Jon Grov1,2 and Peter Csaba Ölveczky1,3

1 University of Oslo
2 Bekk Consulting AS

3 University of Illinois at Urbana-Champaign

Abstract. Cloud systems need to replicate data to ensure scalability
and high availability. To enable their use for applications where consis-
tency of the data is important, cloud systems should provide transac-
tions. Megastore, developed and widely applied at Google, is one of very
few cloud data stores that provide transactions; i.e., both data replica-
tion, fault tolerance, and data consistency. However, the only publicly
available description of Megastore is short and informal. To facilitate
the widespread study, adoption, and further development of Megastore’s
novel approach to transactions on replicated data, a much more detailed
and precise description is needed. In this paper, we describe an executable
formal model of Megastore in Real-Time Maude that we have developed.
Our model is the result of many iterations resulting from correcting de-
sign flaws uncovered during Real-Time Maude analysis. We describe our
model and explain how it can be simulated for QoS estimation and model
checked to verify functional correctness.

1 Introduction

Cloud systems enable customers to deploy applications in a highly scalable and
available infrastructure. Key to these features is replication: several copies of
customer data in geographically distributed data centers allow cloud services to
cope with peaks in system load, as well as with network and site failures.

Many applications require database facilities for storing valuable data. Data-
bases provide transactions : for a given sequence of read and write operations on
data items, the user is assured atomicity, which means that either no operation is
completed or all operations are completed, and serializability, which means that
the execution of concurrent transactions must provide the same result as some
sequential execution. Transactions are necessary protection against inconsistency
due to interleaved operations on shared data. For example, if two transactions t1
and t2 both read and write bank account x to deposit $20, it is crucial to avoid
both the execution t1 : read(x) = 10; t2 : read(x) = 10; t1 : x := 10 + 20; t2 :
x := 10 + 20; t1 :write(x, 30); t2 :write(x, 30), where t1’s deposit is lost, and
the execution t1 :read(x) = 10; t1 :x := 10+ 20; t1 :write(x, 30); t2 :read(x) =

� This work was partially supported by AFOSR Grant FA8750-11-2-0084.

S. Iida, J. Meseguer, and K. Ogata (Eds.): Futatsugi Festschrift, LNCS 8373, pp. 494–519, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



Formal Modeling and Analysis of Google’s Megastore in Real-Time Maude 495

30; t2 :x := 30 + 20; t2 :write(x, 50); abort(t1), where t2 was allowed to read
t1’s update which was later aborted.

Some applications, such as newspaper content management and social net-
works like Facebook, can tolerate lower degrees of consistency. Other applications
have strict consistency requirements; notable examples include stock exchange
systems, online auctions, banking, and medical systems: it is clear that a lost up-
date due to concurrent transactions could have serious consequences in a system
recording the medication of hospital patients.

Transactions are among the most important features of a database manage-
ment system (DBMS), since a correct implementation of atomicity and serializ-
ability impose significant challenges. To quote Michael Stonebraker [20]:

“It is possible to build your own [transaction support] on any of these
systems, given enough additional code. However, the task is so difficult,
we wouldn’t wish it on our worst enemy. If you need [transaction sup-
port], you want to use a DBMS that provides them; it is much easier to
deal with this at the DBMS level than at the application level.”

Transaction management in the cloud, with geographical distribution and data
replication, involves additional challenges because of:

– Performance: Concurrent access to replicas at different locations requires
costly network coordination.

– Availability: The complexity of coordinating transactions across network
sites increases significantly due to possible network and site failures.

Given the difficulties of transaction management on replicated data, we believe
that formal methods are crucial to enable the use of cloud-based data stores also
for applications where strong data consistency is required. First of all, formal
analysis should be used to catch subtle “corner case” errors during design and
development of the data store. Second, because of the complexity and criticality
of such systems, it is necessary for application providers to be convinced that the
cloud system indeed provides transaction support. Formal verification could be a
major component in providing such assurance to application providers, just like
formal methods can be used in Level A certification of critical avionics systems.

There are currently only a few cloud data stores with transaction support.
Microsoft’s SQL Azure [4] uses a master-based approach to coordination, which
reduces fault-tolerance and gives worse performance for clients far from the mas-
ter site. Google’s Spanner [6] demands a complex infrastructure involving GPS
hardware and atomic clocks, which reduces its applicability. Google’s Megas-
tore [2] provides replication and transactions through a replicated transaction
log. Despite its relatively low performance, Megastore is used by Google for many
well-known services such as GMail, Android Market, and Google+ [6], and is of-
fered to customers using Google’s cloud-based application platform AppEngine.

In this paper, we use the rewriting-logic-based Real-Time Maude language and
tool [17] to formally model, simulate, and model check Megastore. The design of
Megastore is informally described in the paper [2]. However, designing a complete
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fault-tolerant protocol requires much more detail than publicly available. Our
contributions are:

1. We provide a precise, formal model of Megastore, which includes many de-
tails and aspects not even described informally in [2]. Because of the ambi-
guity and the lack of detail in the informal specification, we had to make a
number of assumptions and design choices in our formalization. Our model
is the result of several modifications resulting from extensive model checking
during this formalization process.

2. We show how Megastore can be model checked and probabilistically simu-
lated using Maude and Real-Time Maude.

3. We provide a general method for analyzing serializability in distributed
transactional systems with replicated data.

Our formal model should facilitate further research on the Megastore approach.
In particular, we are working on combining Megastore with the FLACS ap-
proach [8] to provide serializable transactions also across partitions.

The rest of the paper is organized as follows: Section 2 gives some background
on Maude and Real-Time Maude. Section 3 presents an overview of Megastore
and its approach to fault-tolerance. Section 4 describes our formal model of
Megastore. Section 5 explains how we have formally analyzed our model. Finally,
Section 6 discusses related work and gives some concluding remarks.

2 Maude and Real-Time Maude

Real-Time Maude [13] is a language and tool that extends Maude [5] to sup-
port the formal specification and analysis of real-time systems. The specification
formalism emphasizes ease and generality of specification, and is particularly
suitable for modeling distributed real-time systems in an object-oriented style.
Real-Time Maude specifications are executable, and the tool provides a variety
of formal analysis methods, including simulation, reachability analysis, and LTL
and timed CTL model checking.

2.1 Maude

Maude [5] is a rewriting-logic-based formal language and high-performance simu-
lation and model checking tool. A Maude module specifies a rewrite theory [10,3]
(Σ,E ∪ A,R), where:

– Σ is an algebraic signature; that is, a set of declarations of sorts, subsorts,
and function symbols.

– (Σ,E∪A) is a membership equational logic theory [11], with E a set of possi-
bly conditional equations and membership axioms, and A a set of equational
axioms such as associativity, commutativity, and identity, so that equational
deduction is performed modulo the axioms A. The theory (Σ,E∪A) specifies
the system’s state space as an algebraic data type.
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– R is a collection of labeled conditional rewrite rules specifying the system’s
local transitions, each of which has the form1 [l] : t −→ t′ if

∧m
j=1 cond j ,

where each cond j in the condition is either an equality uj = vj (uj and vj
have the same normal form) or a rewrite tj −→ t′j (tj rewrites to t′j in zero or
more rewrite steps), and l is a label. Such a rule specifies a one-step transition
from a substitution instance of t to the corresponding substitution instance
of t′, provided the condition holds. The rules are universally quantified by
the variables appearing in the Σ-terms t, t′, uj , vj , tj , and t′j , and are applied
modulo the equations E ∪A.2

We briefly summarize the syntax of Maude and refer to [5] for more details.
Operators are introduced with the op keyword: op f : s1 . . . sn -> s. They can
have user-definable syntax, with underbars ‘_’ marking the argument positions.
Some operators can have equational attributes, such as assoc, comm, and id,
stating, for example, that the operator is associative and commutative and has
a certain identity element. Such attributes are used by the Maude engine to
match terms modulo the declared axioms. An operator can also be declared to be
a constructor (ctor) that defines the carrier of a sort. Equations and rewrite rules
are introduced with, respectively, keywords eq, or ceq for conditional equations,
and rl and crl. The mathematical variables in such statements are declared
with the keywords var and vars, or can be introduced on the fly in a statement
without being declared previously, in which case they have the form var:sort.
An equation f(t1, . . . , tn) = t with the owise (for “otherwise”) attribute can
be applied to a subterm f(. . .) only if no other equation with left-hand side
f(u1, . . . , un) can be applied.

In object-oriented Maude modules, a class declaration

class C | att1 : s1, ... , attn : sn .

declares a class C with attributes att1 to attn of sorts s1 to sn. An object of class
C in a given state is represented as a term < O : C | att1 : val1, ..., attn : valn >
of sort Object, where O, of sort Oid, is the object’s identifier, and where val1
to valn are the current values of the attributes att1 to attn. A message is a term
of sort Msg, where the declaration msg m : s1 . . . sn -> Msg defines the syntax
of the message (m) and the sorts (s1 . . . sn) of its parameters.

The state is a term of the sort Configuration in a concurrent object-oriented
system, and has the structure of a multiset made up of objects and messages.
Multiset union for configurations is denoted by a juxtaposition operator (empty
syntax) that is declared associative and commutative, so that rewriting is multi-
set rewriting supported directly in Maude. Since a class attribute may have sort
Configuration, we can have hierarchical objects which contain a subconfigura-
tion of other (possibly hierarchical) objects and messages.

1 An equational condition ui = wi can also be a matching equation, written ui:= wi,
which instantiates the variables in ui to the values that make ui = wi hold, if any.

2 Operationally, a term is reduced to its E-normal form modulo A before any rewrite
rule is applied in Real-Time Maude.
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The dynamic behavior of concurrent object systems is axiomatized by speci-
fying each of its transition patterns by a rewrite rule. For example, the rule

rl [l] : m(O,w)
< O : C | a1 : x, a2 : O’, a3 : z >

=>
< O : C | a1 : x + w, a2 : O’, a3 : z >
m’(O’,x) .

defines a parameterized family of transitions (one for each substitution instance)
in which a message m, with parameters O and w, is read and consumed by an
object O of class C, the attribute a1 of the object O is changed to x + w, and
a new message m’(O’,x) is generated. The message m(O,w) is removed from
the state by the rule, since it does not occur in the right-hand side of the rule.
Likewise, the message m’(O’,x) is generated by the rule, since it only occurs in
the right-hand side of the rule. By convention, attributes whose values do not
change and do not affect the next state of other attributes or messages, such as
a3, need not be mentioned in a rule. Similarly, attributes whose values influence
the next state of other attributes or the values in messages, but are themselves
unchanged, such as a2, can be omitted from right-hand sides of rules.

A subclass inherits all the attributes and rules of its superclasses.

Formal Analysis in Maude. A Maude module is executable under some condi-
tions, such as the equations being confluent and terminating, possibly modulo
some structural axioms, and the theory being coherent [5].

Maude’s rewrite command simulates one of the many possible system behav-
iors from the initial state by rewriting the initial state. Maude’s search command
uses a breadth-first strategy to search for states that are reachable from the ini-
tial state, match the search pattern, and satisfy the search condition.

Maude’s linear temporal logic model checker analyzes whether each behavior
satisfies a temporal logic formula. State propositions, possibly parametrized, are
operators of sort Prop, and their semantics is defined by equations of the form

ceq statePattern |= prop = b if cond

for b a term of sort Bool, which defines the state proposition prop to hold in
all states t such that t |= prop evaluates to true. A temporal logic formula is
constructed by state propositions and temporal logic operators such as True,
False, ~ (negation), /\, \/, -> (implication), [] (“always”), <> (“eventually”), U
(“until”), and W (“weak until”). The command

(red modelCheck(t, formula) .)

then checks whether the temporal logic formula formula holds in all behaviors
starting from the initial state t. Such model checking terminates if the state
space reachable from the initial state t is finite.
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2.2 Real-Time Maude

A Real-Time Maude [17] timed module specifies a real-time rewrite theory [16],
that is, a rewrite theory R = (Σ,E ∪ A,R), such that:

1. (Σ,E ∪ A), contains a specification of a sort Time defining the (discrete or
dense) time domain.

2. The rules in R are decomposed into:
– “ordinary” rewrite rules that model instantaneous change that is assumed

to take zero time, and
– tick (rewrite) rules of the form

crl [l] : {t} => {t′} in time u if cond

that model the elapse of time in a system, where {_} is a constructor
of a new sort GlobalSystem and u is a term of sort Time denoting the
duration of the rewrite.

The initial state of a system must be equationally reducible to a term {t0}. The
form of the tick rules then ensures uniform time elapse in all parts of a system.

Real-Time Maude extends Maude’s analysis features to the real-time setting.
Real-Time Maude’s timed fair rewrite command simulates one behavior of the
system up to a certain duration. It is written with syntax

(tfrew t in time <= timeLimit .)

where t is the term to be rewritten (“the initial state”), and timeLimit is a ground
term of sort Time. Real-Time Maude extends Maude’s search command to search
for states that can be reached within a given time interval from the initial state.

Real-Time Maude provides both unbounded and time-bounded LTL model
checking. The unbounded model checking command

(mc t |=u formula .)

checks whether the temporal logic formula formula holds in all behaviors starting
from the initial state t. When the reachable state space is infinite, time-bounded
LTL model checking, in which each behavior starting in t is only analyzed up to
a certain time bound, can be used to ensure termination of the model checking.

3 Overview of Megastore

A data store is a system providing functionality to write and access persistent
data. Data stores are used to offload the complexity of data management from
individual applications by providing transaction support, access control, and/or
fault recovery. A data store often uses replication to ensure high availability in
the presence of site and/or network failures: several copies of the same data are
stored at different locations.

Megastore [2] is a data store offering very high availability and transaction
support. It is deployed within Google’s own cloud infrastructure. In addition
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to being widely used internally at Google, Megastore is also used by Google’s
customers through the cloud-based application platform AppEngine. Megastore
handles more than three billion write and 20 billion read transactions daily and
stores nearly a petabyte of data across many global data centers [2].

Data are replicated among sites (data centers), and Megastore can tolerate
failure of up to n−1 replicas, with n the total number of replicas. A transaction is
a sequence of read and write operations on entities, followed by a commit request.
Clients can issue transaction requests from any site replicating the relevant data,
and updates are propagated to the other replicas before the transaction commits.

In Megastore, data are stored as entities, each entity being a set of key-value
pairs. Entities are organized into entity groups. Transactional serializability is
only guaranteed for operations within the same entity group.

Initially, all operations in a transaction are executed locally at the receiving
site. When a commit request is issued, a coordination procedure between the sites
is used to decide whether or not the transaction is valid and can be committed.
If not, usually due to some concurrent update of the same data, the entire
transaction is aborted and must be restarted from the beginning.

Megastore uses the Paxos protocol [9] for coordinating updates. This allows
most transactions to complete even in the presence of site and/or network fail-
ures. Section 3.1 explains the behavior of Megastore in more detail, and Sec-
tion 3.2 explains how Megastore deals with recovery from faults.

3.1 Transaction Execution in Megastore

Any Megastore site S may receive transaction requests for entities replicated at
S. Entities are versioned, and Megastore provides reads with different levels of
consistency. We focus here on current reads, which give the most recent version
written. Any transaction updating an entity must perform a current read before
performing the update.

Each site has a coordinator, which is always informed about whether the local
replica is up-to-date. When a current read is issued, it is executed locally if and
only if granted by the local coordinator. Otherwise, a majority read is required,
as explained in Section 3.2.

During the execution of a transaction t, read operations are completed imme-
diately, while write operations are buffered. When receiving the commit request,
the site receiving t, denoted the originating site of t, initiates the coordination
procedure. Megastore’s approach to combine availability with serializability is to
partition data into relatively small units (entity groups), and maintain a separate
transaction log for each entity group. This log is replicated, and serializability
within the entity group is ensured, since, at any given time, only one transaction
is allowed to update the log.

A transaction t accessing an entity group eg reads entities in eg from a given
log position lp. t’s updates are buffered during transaction execution. When all
operations of t are completed and t is ready for commit, the originating site of t
prepares a log entry for eg containing t’s updates and runs Paxos [9] to request
that this log entry becomes entry lp+ 1 in the replicated log.
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Paxos is a generic consensus protocol for distributed systems which consists
of the following phases:

1. Agree on a leader.
2. The leader then proposes a value to the participating processes.
3. Once the proposed value is acknowledged by at least a majority of the pro-

cesses, the leader informs all participants about the decision.

In the presence of failures, this may be insufficient to reach consensus, in which
case a new round is initiated where another process becomes the leader.

Megastore optimizes Paxos by including in each log entry the Paxos leader for
the next log entry. Phase 1 is therefore replaced by a request from the originating
site directly to the leader. In the case of conflict, i.e., if multiple sites request
different log entries for the same log position, Paxos ensures that only one is
elected, and the others are aborted.

After a successful Paxos round, each site replicating eg then appends the
chosen log entry for position lp + 1 to the local copy of the transaction log for
eg, and subsequently updates the local data store.

3.2 Fault Tolerance and Failure Recovery

Failures may cause some processes to stop responding and/or may block network
messages from being delivered. Fault tolerance implies that a transaction execu-
tion must be able to proceed even if some replicating sites are unable to apply
the update. This means that a previously failed site may have missed updates
on some entity groups.

To provide fault tolerance, Megastore requires that even if a site is unable to
apply an update for some entity group, the site’s coordinator must be informed
and then mark the entity group as invalid. This is part of the Paxos coordination
procedure, and means that the coordinator of a failed site must be reachable.
Otherwise the update is blocked until the entire site is confirmed to be down by
Megastore’s underlying failure detection mechanism.

If a site, upon executing a current read, sees that the entity group in question
is invalid, it performs a majority read and a catchup before proceeding. During
the majority read, the local site sl requests from each other replicating site sr
the most recent log position known to be valid by sr. When sl has received a
reply from a majority of the replicating sites, it performs catchup as follows:
any log position missing at sl is requested from some updated site. When the
catchup is complete, the local coordinator marks the replica as valid, and the
current read operation can proceed.

4 Formalizing Megastore in Real-Time Maude

This section explains how we have formalized Megastore in Real-Time
Maude. Our model contains 56 rewrite rules, of which we only present
15 in this paper. The entire executable formal specification is available at
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http://folk.uio.no/jongr/megastore/maude.html. Section 4.1 lists our sys-
tem assumptions, Section 4.2 presents our model of Megastore in the absence of
failures, and Section 4.3 shows our model in the presence of failures.

4.1 System Assumptions

Based on the description in [2], we make the following system assumptions:

– Megastore is deployed across geographically distant sites connected by a
wide-area network. The network delays between two nodes can therefore
vary significantly, and we do not assume FIFO delivery between the same
pair of nodes.

– A site always knows all the other replicating sites for an entity group.
– Sites can fail and recover spontaneously, and messages can be dropped due

to site or network failures.
– Coordinators are supposed to be very stable. Furthermore, Megastore re-

quires that the coordinator of each running site is accessible; otherwise up-
date transactions are blocked until the given replica is confirmed down and
can be excluded. We therefore assume that coordinators are always available.

– Small time differences caused by clock skews of the local clocks are ignored.

4.2 The Model without Failure Handling

We model Megastore in an object-oriented way, where the global state consists
of a multiset of site objects and messages traveling between them. Each site is
modeled as an object instance of the following class:

class Site |
entityGroups : Configuration,
localTransactions : Configuration,
coordinator : EntGroupLogPosPairSet .

The attribute entityGroups contains one EntityGroup object for each entity
group replicated at the site, and the attribute localTransactions contains one
Transaction object for each active transaction originating at the site. The at-
tribute coordinator denotes the local coordinator state for each entity group, and
is a ;-separated set of terms eg upToDateAt lp, denoting that the entity group
eg is up-to-date at log position lp, and terms eg invalidAt lp, denoting that the
local replica of eg may be missing some log entries at or before lp.

Entity Groups. Each local entity group copy is modeled as an object instance of
the following class:

class EntityGroup |
entitiesState : EntitySet,
transactionLog : LogEntryList,
replicas : EntityGroupReplicaSet,
proposals : PaxosProposalSet,
pendingWrites : PendingWriteList .

http://folk.uio.no/jongr/megastore/maude.html
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The attribute entitiesState describes the available versions of each entity in the
entity group. Each such record is a term entity(eg,i) |-> (lpos(p1),v1) :: . . .

:: (lpos(pk),vk), where entity(eg,i) denotes the ith entity of the entity group
eg, and (lpos(pj),vj) is an entity version containing the value vj , created at log
position pj .

The attribute transactionLog denotes the local copy of the replicated trans-
action log which is the core of Megastore’s replication protocol. Each log entry
belongs to a given log position. A log entry (t lp s ol) contains the identity t
of the originating transaction, the log position lp, the leader site s for the next
log entry, and the list ol of write operations executed by t.

The attribute replicas denotes the set of sites replicating this entity group.
The attribute proposals denotes the local state in ongoing Paxos processes in-
volving this entity group. It contains two types of values: proposal(s,t,lp,pn),
which represents a request from site s to become the leader for log position lp
on behalf of transaction t, and accepted(s,le,pn), which states that this site has
accepted Paxos proposal number pn containing the log entry le from site s.

Megastore executes write operations in two steps: (i) write to the log, which
occurs immediately when the chosen log entry is committed; and (ii) updating
the actual data in the entityState. The attribute pendingWrites maintains a list
of write operations waiting to be applied to the entityState.

Transactions. A transaction request is a ::-separated list of current read op-
erations cr(e) and write operations w(e,v). Transactions being executed are
modeled as object instances of the following class:

class Transaction |
operations : OperationList,
reads : EntitySet,
writes : OperationList,
status : TransStatus,
readState : ReadStateSet,
paxosState : PaxosStateSet .

The attribute operations initially contains the transaction request. During exe-
cution, operations are removed from this list. For a read operation the resulting
entity is stored in the attribute reads. The attribute writes is used to buffer write
operations. status denotes the overall transaction status: idle, executing(lp,t)
(the transaction is executing at log position lp and will continue executing for
time t), and in-paxos, which is used during the commit process. The attributes
readState and paxosState store transient data for each entity group accessed by
the transaction execution.

Modeling Communication. We assume that the communication delay is non-
deterministic. The set of possible delays depends on the sender and receiver, and
is given by possibleMsgDelays(s1 , s2) as a ‘;’-separated set of time values:

sort TimeSet . subsort Time < TimeSet .
op emptyTimeSet : -> TimeSet .
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op _;_ : TimeSet TimeSet -> TimeSet [ctor assoc comm id: emptyTimeSet] .
op possibleMsgDelays : SiteId SiteId -> TimeSet [comm] .

A “ripe” message has the form

msg mc from sender to receiver

where mc is the message content. A message in transit that will be delivered
after t time units is modeled by a term dly(msg mc from sender to receiver, t):

sort DlyMsg .
subsort Msg < DlyMsg < NEConfiguration .
op dly : Msg Time -> DlyMsg [ctor right id: 0] .
msg msg_from_to_ : MsgContent Oid Oid -> Msg .

Nondeterministically selecting any possible delay from possibleMsgDelays(s1 , s2)
can be done using a matching equation in the condition of the rewrite rule. A
rule creating a single message with nondeterministic delay should have the form3

var T : Time . var TS : TimeSet .

crl [sendMsgAnd...] :
< SID : Site | ... > ...

=>
< SID : Site | ... > ...
dly(msg mc from SID to SID’, T)

if ... /\ T ; TS := possibleMsgDelays(SID,SID’) .

A site must often multicast a message to all other sites replicating an entity
group. The delay of each single message must of course be selected nondeter-
ministically. A naïve solution to model such multicast by generating the corre-
sponding single messages in any order would be prohibitively expensive from a
model checking perspective: if there are n recipients, there would be n! different
orders in which these messages could be created. We can therefore use a “partial
order reduction” technique, in which the messages are sent in a certain order.
In particular, the replicas attribute of an EntityGroup object contains sets of
tuples egrs(SID,N), where the second component is unique in the group. We
can therefore order the set of recipients, and generate the single messages in this
order, reducing the number of possible orders of sending the messages from n!
to 1. The following rewrite rule is used to “dissolve” a “multicast message”

multiCast mc from SID to EGRS

into single messages with nondeterministically selected delays:

op multiCast_from_to_ : MsgContent Oid EntityGroupReplicaSet
-> Configuration [ctor] .

eq multiCast MC from SID to noEGR = none .
crl [multiCastToUnicast] :

3 We do not show most variable declarations, but follow the Maude convention that
variables are written with capital letters.
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multiCast MC from SID to (egrs(SID’, N) ; EGRS)
=>
dly(msg MC from SID to SID’, T)
(multiCast MC from SID to EGRS)

if N == smallest(egrs(SID’, N) ; EGRS)
/\ T ; TS := possibleMsgDelays(SID, SID’) .

Therefore, to multicast a message with message content mc to all other sites
replicating the entity group EG, a rule of the following form could be used:

rl [multicastReplicatingSites]
< SID : Site | entityGroups : < EG : EntityGroup | replicas : EGRS, ... > ...

=>
< SID : Site | .... > ...
(multiCast mc from SID to EGRS) .

However, this would still involve n+ 1 rewrite steps needed to get to a state
where all the single messages have been generated, unnecessarily increasing the
state space explored during model checking. By using rewrite conditions, we can
replace the above rewrite rule with a rule

var SINGLE-MSGS : NEConfiguration .

crl [multicastReplicatingSitesEfficient]
< SID : Site | entityGroups : < EG : EntityGroup | replicas : EGRS, ... > ...

=>
< SID : Site | .... > ...
SINGLE-MSGS

if (multiCast mc from SID to EGRS) => SINGLE-MSGS .

where SINGLE-MSGS is a variable of some sort containing sets of delayed messages,
but no occurrences of the multiCast operator. In this rewrite rule, all the single
messages are created in one rewrite step, drastically reducing the reachable state
space. (The local “partial order reduction” is still important, since it significantly
reduces the number of behaviors explored by Maude during the evaluation of the
rewrite condition; however, it does not reduce the reachable state space.)

Dynamic Behavior. The dynamic behavior of Megastore without fault tol-
erance features is modeled by 16 rewrite rules, 7 of which are given below. A
transaction request with operations ol and name t is sent to a site s by a message
newTrans(s,t,ol). When a site gets such a transaction request, the site adds a
corresponding transaction object to its localTransactions.

rl [newTrans] :
newTrans(SID, TID, OL)
< SID : Site | localTransactions : LOCALTRANS >

=>
< SID : Site | localTransactions : LOCALTRANS

< TID : Transaction | operations : OL, readState : emptyReadState,
paxosState : emptyPaxosState, reads : emptyEntitySet,
writes : emptyOpList, status : idle > .
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If the next operation in an idle transaction TID is a current read (cr) of an
entity entity(EG,N) in entity group EG, the transaction goes to the local state
executing(LP,readDelay), where LP is the local coordinator’s current log position
for EG, and readDelay is the time it takes to perform a read operation:

crl [startCurrentLocalRead] :
< SID : Site | coordinator : (EG upToDateAt LP ; CES),

entityGroups : EGROUPS
< EG : EntityGroup | pendingWrites : emptyPWList >

localTransactions : LOCALTRANS
< TID : Transaction | operations : cr(entity(EG,N)) :: OL,

status : idle > >
=>
< SID : Site | localTransactions : LOCALTRANS

< TID : Transaction | operations : cr(entity(EG,N)) :: OL,
status : executing(LP, readDelay) > >

if not (containsUpdate(entity(EG,N), OL) and
inConflictWithRunning(EG, LOCALTRANS)) .

To avoid locals conflicts, a site only allows one active update transaction for
each entity group. The condition of the rewrite rule blocks the read request if
the transaction TID contains an update operation on entity(EG,N) until there
are no other active conflicting transactions.

When the executing timer expires (i.e., becomes zero), the read operation
completes and adds the version read at the given log position to reads. The
transaction status is then set to idle, allowing execution to proceed:

rl [endCurrentLocalRead] :
< SID : Site |

entityGroups : EGROUPS
< EG : EntityGroup | entitiesState : (entity(EG,N) |-> EVERSIONS) ; BSTATE >,

localTransactions : LOCALTRANS
< TID : Transaction | operations : cr(entity(EG,N)) :: OL, readState : RSTATE,

status : executing(LP, 0), reads : READS > >
=>
< SID : Site | localTransactions : LOCALTRANS

< TID : Transaction |
operations : OL, readState : readpos(EG, LP) ; RSTATE, status : idle,
reads : READS ; (entity(EG,N) |-> getVersion(LP, EVERSIONS)) > > .

A write operation is moved to the buffer writes, and will be executed once
the transaction is committed:

rl [bufferWriteOperation] :
< SID : Site | localTransactions : LOCALTRANS

< TID : Transaction | operations : w(EID, VAL) :: OL, writes : WRITEOPS,
status : idle > >

=>
< SID : Site | localTransactions : LOCALTRANS

< TID : Transaction | operations : OL, writes : WRITEOPS :: w(EID, VAL) > > .

When all operations in the operations list are completed (reads) or buffered
(writes), the transaction is ready to commit. All buffered updates are merged
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into a candidate log entry. If the transaction updates entities from several entity
groups, one log entry is created for each group.

For each such entity group, the first step is to send the candidate log entry
to the leader for the next log position, which was selected during the previous
coordination round. The rule for initiating Paxos is modeled as follows:

crl [initiateCommit] :
< SID : Site |

entityGroups : EGROUPS,
localTransactions : LOCALTRANS

< TID : Transaction | operations : emptyOpList,
writes : WRITEOPS, status : idle
readState : RSTATE, paxosState : PSTATE > >

=>
< SID : Site |

localTransactions : LOCALTRANS
< TID : Transaction | paxosState : NEW-PAXOS-STATE,

status : in-paxos > >
ACC-LEADER-REQ-MSGS

if EIDSET := getEntityGroupIds(WRITEOPS) /\
NEW-PAXOS-STATE := initiatePaxosState(EIDSET, TID, WRITEOPS,

SID, RSTATE, EGROUPS)
/\ (createAcceptLeaderMessages(SID, NEW-PAXOS-STATE)) => ACC-LEADER-REQ-MSGS .

getEntityGroupIds(WRITEOPS) contains entity groups accessed by operations in
WRITEOPS, and NEW-PAXOS-STATE contains one record for each entity group. These
records contain the log position that TID requests to update and the candidate log
entry le. The operator createAcceptLeaderMessages generates an acceptLeaderReq
message to the leader of each entity group containing the transaction id TID and
candidate log entry le.

The execution then proceeds as follows for each entity group:

1. When the leader sl receives an acceptLeaderReq message from the originating
site so for the transaction TID, the leader site inspects the proposals set for
the given entity group, to check whether it has previously accepted some
value for this log position and entity group. If so, there is a conflict, and sl
signals this with a message to the originating site of TID, which aborts the
transaction. Otherwise, sl sends an acceptLeaderRsp message to so.

2. When it receives an acceptLeaderRsp message, the originating site proceeds
by multicasting the log entry to the other replicating sites. Each recipient
of this message must verify that it has not already granted an accept for
this log position. If so, the recipient replies with an accept message to the
originating site. We show this rule below.

3. After receiving an acceptAllRsp message from all replicating sites, the origi-
nating site confirms the commit by multicasting an applyReq message. When
receiving this message, a recipient appends the proposed log entry to the
transactionLog of the entity group, and the update operations are added to
the pendingWrites list. With this, the transaction is committed.

The following rule shows the rule from step 2 where a replicating site receives
an acceptAllReq message. The site verifies that it has not already granted an
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accept for this log position (since messages could be delayed for a long time, it
checks both the transaction log and received proposals). If there are no such con-
flicts, the site responds with an accept message, and stores its accept in proposals
for this entity group. The record (TID’ LP SID OL) represents the candidate log
entry, containing the transaction identifier TID’, the log position LP, the proposed
leader site SID, and the list of update operations OL.

crl [rcvAcceptAllReq] :
(msg acceptAllReq(TID, EG, (TID’ LP SID OL), PROPNUM) from SENDER to THIS)
< THIS : Site |

entityGroups : EGROUPS
< EG : EntityGroup | proposals : PROPSET, transactionLog : LEL > >

=>
< THIS : Site |

entityGroups : EGROUPS
< EG : EntityGroup |

proposals : accepted(SENDER, (TID’ LP SID OL), PROPNUM) ;
removeProposal(LP, PROPSET) > >

dly(acceptAllRsp(TID, EG, LP, PROPNUM) from THIS to SENDER), T)
if not (containsLPos(LP, LEL) or hasAcceptedForPosition(LP, PROPSET))

/\ T ; TS := possibleMessageDelay(THIS, SENDER) .

Modeling Time and Time Elapse. We follow the guidelines in [17] for mod-
eling time in object-oriented specifications. Since an action can only be triggered
by the arrival of a message, the expiration of a timer, or by another event, we
use the following tick rule to advance time until the next event will take place:

crl [tick] : {SYSTEM} => {delta(SYSTEM, mte(SYSTEM))
if mte(SYSTEM) > 0 /\ mte(SYSTEM) =/= INF .

The function mte denotes the minimum time that can elapse until the next
event will take place, and delta defines the effect of time elapse on the state.
For example, mte(dly(M,T) REST) = min(T, mte(REST)), which means that
mte(m) is zero for a ripe message m (since m is identical to dly(m,0)). There-
fore, time cannot advance when there are ripe messages in the configuration.

We import the built-in module NAT-TIME-DOMAIN-WITH-INF, which defines
the time domain Time to be the natural numbers, with an additional constant
INF (for ∞) of a supersort TimeInf.

4.3 Modeling Megastore’s Fault Tolerance Mechanisms

Megastore is supposed to tolerate: (i) site failures (except for the coordinators);
(ii) message loss; and (iii) arbitrarily long message delays. We have formalized
these fault tolerance features using 37 rewrites rules, out of which we show only
1 rule in this paper. Our model provides fault tolerance and consistency through
the following mechanisms:

– A Paxos-based commit protocol to ensure that even in the presence of multi-
ple failure and recovery events, all available replicas agree on the value for the
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next log position. If the originating site so, after sending an acceptLeaderReq
message for log position lp, does not receive a response from the leader of lp
within a certain amount of time, it attempts to become the leader itself by
sending a prepareAllReq message to all replicating sites. When receiving a
positive response from a majority of sites, so proceeds with the accept phase
by multicasting an acceptAllReq message to all replicating sites. If at this
point so fails to receive an acceptAllRsp message from a majority of sites, it
re-initiates the prepare step after a nondeterministic backoff.

– If a replicating site sr is unable to apply an update, the coordinator at
sr must ensure that the site avoids serving invalid data. After obtaining a
acceptAllRsp message from a majority of the replicating sites, the originat-
ing site sends an invalidateCoordinator message to each site which did not
respond in time to the acceptAllReq message.

– A majority read and catchup procedure is used to bring a replica up-to-
date in case of failures. When executing a current read operation requesting
an entity from an invalid entity group eg (according to the coordinator),
the originating site so broadcasts a majorityRead request to all sites repli-
cating eg. Each available recipient responds with the highest log position
seen so far. When a majority of replicating sites have responded, so sends
a catchupRequest containing the highest received log position to one of the
responding sites. If this site does not have a complete log, so sends several
catchup requests. Once so’s log is complete, the entity group is marked as
valid in the coordinator.

The following rule belongs to the first mechanism above, and shows how we
meet a requirement of Paxos: after a site has accepted a log entry, it can never
accept another log entry for this log position. Therefore, if a replicating site
receives a prepareAllReq message for a log position where it has already ac-
cepted a log entry, the entry is sent to the originating site in a prepareAllRsp
message. At the originating site, the log entry for the highest proposal number
seen so far is stored within the prepare record of paxosState. If the originat-
ing site has received prepareAllRsp from a majority of the participating sites
(hasQuorum(size(SIS ; SENDER), REPLICAS)), it initiates the acceptAll step by
multicasting an acceptAllReq to all sites replicating the entity group EG:

crl [rcvPrepareAllRspWithValue] :
(msg prepareAllRsp(TID,EG, (TID2 LP MSID1 OL1), PROPNUM, PN)

from SENDER to THIS)
< THIS : Site |

entityGroups : < EG : EntityGroup | replicas : EGRS > EGROUPS,
localTransactions : LOCALTRANS

< TID : Transaction | status : in-paxos,
paxosState : prepare(EG, (TID3 LP MSID2 OL2),

PROPNUM, SEEN-PROPNUM, SIS, EXP) ; PSTATE > >
=>
< THIS : Site |

localTransactions : LOCALTRANS
(if hasQuorum(size(SIS ; SENDER), REPLICAS) then

< TID : Transaction | status : in-paxos, paxosState :
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acceptAll(EG, NEW-LE, PROPNUM, THIS, defTimeout) ; PSTATE >
else

< TID : Transaction | paxosState :
prepare(EG, NEW-LE, PROPNUM, maxPn(PN, SEEN-PROPNUM),

(SIS ; SENDER), EXP) ; PSTATE >
fi) >

MSGS
if REPLICAS := getSites(EGRS) /\

NEW-LE := chooseValue(PN, SEEN-PROPNUM,
(TID2 LP MSID1 OL1),(TID3 LP MSID2 OL2))

/\ (if hasQuorum(size(SIS ; SENDER), REPLICAS) then
multiCast acceptAllReq(TID, EG, NEW-LE, PROPNUM) from THIS to EGRS

else none fi) => MSGS .

Site Failures. All processing is blocked and incoming messages are dropped
when a site has failed. The exception is that the (co-located) coordinator of
the site is supposed to be available, and be able to receive and respond to
invalidateCoordinator messages even when the site is otherwise failed.

We model site failures in a modular way by enclosing the failed site object
by a “wrapper”: a failed site is modeled as a term failed(< s : Site | ... >).
This wrapper is declared to be a frozen operator (see [5])

op failed : Object -> Object [ctor frozen (1)] .

which ensures that no activity takes place inside the failed object.
A message arriving at a failed site is dropped, unless it is a message to the

coordinator:

crl [msgWhenSiteFailure] :
(msg MC from SENDER to SID) failed(< SID : Site | >)

=>
failed(< SID : Site | >)

if not isInvalidateCoordinator(MC) .

crl [invalidateCoordinator] :
(msg invalidateCoordinator(EG, LP) from SENDER to THIS)
failed(< THIS : Site | coordinator : CES >)

=>
failed(< THIS : Site | coordinator : applyInvalidate(EG, LP, CES) >)
(dly invalidateConfirmed(EG, LP) from THIS to SENDER, T)

if T ; TS := possibleMsgDelays(THIS,SENDER) .

In our analysis, we use “messages” siteFailure(s) and siteRepair(s) to inject
failures and repairs as follows:

msgs siteFailure siteRepair : SiteId -> Msg .

crl [siteDown] :
siteFailure(SID) < SID : Site | > => failed(< SID | >) dly(siteRepair(SID), T)

if T ; TS := possibleSiteRepairTimes .

rl [siteUp] :
siteRepair(SID) failed(< SID : Site | >) => < SID : Site | > .
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5 Formally Analyzing our Model of Megastore

We used both simulation and temporal logic model checking throughout the
development of our formal model from the description in [2]. Simulation provided
quick feedback; allowed us to analyze large systems with many sites, transactions,
and failures; and “probabilistic” simulation was used for quality of service (QoS)
estimation of the model. Model checking, which explores all possible system
behaviors, turned out to be very useful to find a number of subtle design flaws
that were not uncovered during extensive simulations.

This section shows how our model of Megastore can be formally analyzed in
(Maude and) Real-Time Maude. In particular, Section 5.1 lists the main prop-
erties to analyze; Section 5.2 gives some parameters of our model; Section 5.3
shows how we can simulate our model for QoS estimation; Section 5.4 explains
our model checking of the model without fault-tolerance features; and Section 5.5
describes the model checking of the entire model. Finally, Section 5.6 presents a
general technique for formally analyzing the serializability property of transac-
tional systems: each execution is equivalent to one in which all operations of a
transaction are completed before the next transaction begins.

5.1 Properties to Analyze

We use Real-Time Maude to analyze both quality of service and correctness
properties of our model. The important quality of service parameters are:

1. Transaction latency: the delay between the reception of a transaction request
and the response to the caller.

2. The fraction of received transactions that are committed and aborted, re-
spectively.

If there are a finite number of transactions to be executed, then the main cor-
rectness properties that the system should satisfy are:

3. All transactions will eventually finish their execution.
4. All replicas of an entity must eventually have the same value.
5. All logs for the same entity group must eventually contain the same entries.
6. The execution is serializable; i.e., it gives the same result as some execution

where the transactions are executed one after the other.
7. Furthermore, from some point on, the properties 3-6 above must hold for all

future states.

5.2 System Parameters

There are a number of system parameters in our model, including:

– the number of sites;
– the set of possible message delays between each pair of sites;
– the number of transactions and their arrival times;
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– the set of operations in each transaction;
– the number of entities and their organization into entity groups;
– the degree of replication of the different entity groups;
– the number and time distribution of site failures, and the set of possible

durations of a site failure;
– the amount of message losses; and
– the duration of the timeouts before initiating fault handling procedures.

Changing these parameters allows us to analyze the model under different scenar-
ios. For example, to define the set of possible message delays, we need to define
the function possibleMsgDelays. In some of the model checking commands, we
use three sites and the following message delays:
eq possibleMsgDelays(PARIS, LONDON) = (10 ; 30 ; 80) .
eq possibleMsgDelays(PARIS, NEW-YORK) = (30 ; 60 ; 120) .
eq possibleMsgDelays(LONDON, NEW-YORK) = (30 ; 60 ; 120) .

Transactions and failures are injected into the system by (delayed) messages
dly(newTrans(s,t,ol),startTime) and dly(siteFailure(s),failureTime). For ex-
ample, some of our analyses use initTransactions and initFailures, where the
start time of each transaction is nondeterministically selected from the set of
possible start times transStartTime, and the time of each failure is nondetermin-
istically selected from the set ttf:
vars T1 T2 T3 : Time . vars TS1 TS2 TS3 : TimeSet .

crl [delayTransactions] :
initTransactions

=>
dly(newTrans(PARIS, T-K, cr(entity(EG1,0)) :: w(entity(EG1,0),value(2))), T1)
dly(newTrans(LONDON, T-L, cr(entity(EG1,0)) :: w(entity(EG1,0),value(5))), T2)
dly(newTrans(NEW-YORK, T-M, cr(entity(EG2,0)) :: w(entity(EG2,0),value(4))), T3)

if T1 ; TS1 := transStartTime /\ T2 ; TS2 := transStartTime
/\ T3 ; TS3 := transStartTime .

eq transStartTime = (10 ; 50 ; 200) .

crl [delayFailures] :
initFailures => dly(siteFailure(LONDON), T1) dly(siteFailure(NEW-YORK), T2)

if T1 ; TS1 := ttf /\ (T2 ; TS2) := ttf .

eq ttf = (40 ; 100) .

The initial state initMegastore can then be defined as follows:
op initMegastore : -> GlobalSystem .
eq initMegastore = {initSites initTransactions initFailures} .

eq initSites =
< PARIS : Site | coordinator : EG1 upToDateAt lpos(0) ; EG2 upToDateAt lpos(0),

entityGroups : entityGroupsParis, localTransactions : none >
< LONDON : Site | coordinator : EG1 upToDateAt lpos(0) ; EG2 upToDateAt lpos(0),

entityGroups : entityGroupsLondon, localTransactions : none >
< NEW-YORK : Site | coordinator : EG1 upToDateAt lpos(0) ; EG2 upToDateAt lpos(0),

entityGroups : entityGroupsNY, localTransactions : none > .
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5.3 Simulation

We can use Real-Time Maude’s timed rewrite command to simulate the system
for a certain duration:
Maude> (tfrew initMegastore in time <= 850 .)

{< LONDON : Site | coordinator : EG1 upToDateAt lpos(0) ; EG2 upToDateAt lpos(1),
entityGroups :(
< EG1 : EntityGroup |

entitiesState : entity(EG1,0) |-> lpos(0)value(0) ; entity(EG1,1) |-> lpos(0)value(0),
pendingWrites : emptyPWList,
proposals : accepted(LONDON,T-L lpos(1) LONDON w(entity(EG1,0),value(5)),2),
replicas : egr(LONDON,0,lpos(0)) ; egr(NEW-YORK,2,lpos(0)) ; egr(PARIS,1,lpos(0)),
transactionLog : initTrans lpos(0) PARIS emptyOpList >

< EG2 : EntityGroup | ... >),
localTransactions :

< T-L : Transaction | operations : emptyOpList,
paxosState : acceptAll(EG1,T-L lpos(1) LONDON w(entity(EG1,0),value(5)),

1,LONDON ; NEW-YORK, 240),
reads : entity(EG1,0)|-> lpos(0)value(0), writes : w(entity(EG1,0),value(5)),
readState : readpos(EG1,lpos(0)), status : in-paxos > >

< NEW-YORK : Site | ... >
< PARIS : Site | ... >} in time 850

Although this gives very quick and useful feedback, each application of a rule
which selects a value nondeterministically will select the same value. To simulate
more random behaviors, and to obtain more realistic QoS estimates, we have
also defined a “probalistic” version of our model where the different delays are
given by discrete probability distributions. We then add an object containing
the seed to Maude’s built-in random function to the configuration, and use this
random value to sample a message delay from the probability distribution. Our
probability distribution for the network delays is as follows:4

30% 30% 30% 10%
London ↔ Paris 10 15 20 50
London ↔ New York 30 35 40 100
Paris ↔ New York 30 35 40 100

We generate transactions with a transaction generator for each site, which
generates transaction requests at random times, with an adjustable average rate
measured in transactions per second (TPS). We simulated two fully replicated
entity groups. We assume a delay of 10 ms for a local read operation in accor-
dance with the real-world measurements reported in [2].

Simulation without Fault Injection. With an average of 2.5 TPS and no failures,
we observe the following results in a run of 200 seconds:

Avg. latency (ms) Commits Aborts
London 122 149 15
New York 155 132 33
Paris 119 148 18

4 The delays New York–Paris and New York–London are the same, assuming trans-
atlantic backbone links from each of these cities. The delay between Paris and London
reflect that network equipment and local lines increase delivery times.
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The relatively high abort rate is expected, since we have only two entity groups.
While our calibration data are estimates based on a typical setup for this type
of cloud service combined with information given in [2], our measured latency
appears fairly consistent with Megastore itself [2]: “Most users see average write
latencies of 100–400 milliseconds, depending on the distance between datacen-
ters, the size of the data being written, and the number of full replicas.”

Simulation with Fault Injection. We have modified the above experiment by
adding a fault injector that randomly injects short outages in the sites. The
mean time to failure and the mean time to repair for each site was set to 10 and
2 seconds, respectively. This is a challenging scenario where a large fraction of
the transactions will experience failure on one or multiple sites. The results from
our simulation are given in the following table.

Avg. latency (ms) Commits Aborts
London 218 109 38
New York 336 129 16
Paris 331 116 21

Although both the average latency and the abort rate increase significantly,
these results indicate that Megastore is able to maintain an acceptable quality
of service under this challenging failure scenario.

5.4 Model Checking the Model without Fault Tolerance

We use linear temporal logic model checking to verify that all possible executions
from a given initial state satisfy the correctness properties 3-5 and 7 in Section
5.1 (the serializability analysis is explained in Section 5.6).

The state proposition allTransFinished is true in all states where all transac-
tions have finished executing. That is, there are no Transaction objects remaining
in a site’s localTransactions and there are no messages in the system:

vars SYSTEM REST LOCALTRANS EGS1 EGS2 : Configuration .
var M : Msg . vars ES1 ES2 : EntitySet . vars TL1 TL2 : LogEntryList .

op allTransFinished : -> Prop [ctor] .
eq {initTransactions REST} |= allTransFinished = false .
eq {< S1 : Site | localTransactions : < TID : Transaction | > LOCALTRANS > REST}

|= allTransFinished = false .
eq {M REST} |= allTransFinished = false .
eq {SYSTEM} |= allTransFinished = true [owise] .

This definition first characterizes the states where allTransFinished does not
hold; the last equation, with the owise attribute, then defines allTransFinished
to be true for all other states.

The following proposition entityGroupsEqual is true for all states where all
replicas of each entity have the same value:
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op entityGroupsEqual : -> Prop [ctor] .
ceq {< S1 : Site | entityGroups : < EG1 : EntityGroup | entitiesState : ES1 > EGS1 >

< S2 : Site | entityGroups : < EG1 : EntityGroup | entitiesState : ES2 > EGS2 >
REST} |= entityGroupsEqual = false if ES1 =/= ES2 .

eq {SYSTEM} |= entityGroupsEqual = true [owise] .

In the same way, we can define when all transitions logs for each entity group
are equal:

op transLogsEqual : -> Prop [ctor] .
ceq {< S1 : Site | entityGroups : < EG1 : EntityGroup | transactionLog : TL1 > EGS1 >

< S2 : Site | entityGroups : < EG1 : EntityGroup | transactionLog : TL2 > EGS2 >
REST} |= transLogsEqual = false if TL1 =/= TL2 .

eq {SYSTEM} |= transLogsEqual = true [owise] .

The temporal logic formula

<> [] (allTransFinished /\ entityGroupsEqual /\ transLogsEqual)

says that in all possible executions from the initial state, a state satisfying Prop-
erties 1–3 and where all subsequent states also satisfy those properties, will
eventually be reached.

In the absence of the sophisticated failure handling, this formula should hold
for all possible message delays and transaction (start and execution) times. We
have therefore abstracted from the real-time features of our model, such as mes-
sage delays, execution times, and timers, and have transformed our model into
an untimed model that will exhibit all possible behaviors of the system. Model
checking this property for the initial state initMegastore (without delays) with
the three sites and three transactions can be done in Maude as follows:

Maude> (red modelCheck(initMegastore,
<> [] (allTransFinished /\ entityGroupsEqual /\ transLogsEqual)) .)

result Bool : true

That is, the desired property holds. The model checking took 950 seconds on
an Intel Xeon 1.87Ghz CPU with 128 GB RAM. Reachability analysis showed
that this untimed model has 992,992 states reachable from initMegastore. Both
model checking and reachability analysis from initMegastore extended with a
fourth transaction were aborted due to lack of memory after 11 hours.

5.5 Model Checking the Model with Failure Handling

The analysis in Section 5.4 shows that model checking the untimed model is
unfeasible for four transactions even without the large fault-tolerance part. Fur-
thermore, the fault-tolerance features of Megastore require an extensive use of
timers. Therefore, we model check only the real-time version described in Sec-
tion 4 when including the fault-tolerance part.

Since we consider a finite number of transactions, the desired property must
now also take into account the following possibility: if a failure causes one or
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more of the sites to miss the last update, leaving its coordinator invalidated,
then no further transactions will arrive to initiate a majority read. Therefore,
we use modified versions of the propositions in Section 5.4, that make sure that
we only require equal entitiesState and transactionLog among sites where the
coordinator indicates that the given entity group is up-to-date:

op entityGroupsEqualOrInvalid : -> Prop [ctor] .
ceq {< S1 : Site | coordinator : eglp(EG1, LP) ; EGLP,

entityGroups : < EG1 : EntityGroup | entitiesState : ES1 > EGS1 >
< S2 : Site | coordinator : eglp(EG1, LP) ; EGLP,

entityGroups : < EG1 : EntityGroup | entitiesState : ES2 > EGS2 >
REST} |= entityGroupsEqual = false if ES1 =/= ES2 .

eq {SYSTEM} |= entityGroupsEqualOrInvalid = true [owise] .

We have model checked a number of scenarios, all with three sites, two entity
groups, three transactions (each accessing one item in each entity group). The
parameters we modify are: the number of possible message delays, the possible
start times of a transaction, and the number of failures and their start times. In
the case with possible message delays {20, 100}, possible transaction start times
{10, 50, 200}, and one failure at time 60, the following (unbounded) Real-Time
Maude model checking command verifies the desired property in 1164 seconds:

Maude: (mc initMegastore |=u <> [] (allTransFinished /\ entityGroupsEqualOrInvalid
/\ transLogsEqualOrInvalid) .)

result Bool : true

We summarize the execution time of the above model checking command for
different system parameters, where {n1, . . . , nk} means that the corresponding
value is selected nondeterministically from the set. All the model checking com-
mands that finished executing returned true. DNF means that the execution
was aborted after more than 4 hours.

Msg. delay #Trans Trans. start time #Fail. Fail. time Run (sec)
{20, 100} 4 {19, 80} and {50, 200} 0 - 1367
{20, 100} 3 {10, 50, 200} 1 60 1164
{20, 40} 3 20, 30, and {10, 50} 2 {40, 80} 872
{20, 40} 4 20, 20, 60, and 110 2 70 and {10, 130} 241
{20, 40} 4 20, 20, 60, and 110 2 {30, 80} DNF

{10, 30, 80},and
{30, 60, 120} 3 20, 30, 40 1 {30, 80} DNF

{10, 30, 80},and
{30, 60, 120} 3 20, 30, 40 1 60 DNF

5.6 Model Checking Serializability

The serialization graph for a given execution of a set of committed transactions
is a directed graph where each transaction is represented by a node, and where
there is an edge from a node t1 to another node t2 iff the transaction t1 has
executed an operation on entity e before transaction t2 executed an operation
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on the same entity, and at least one of the operations was a write operation. It is
well known that an execution of multiple transactions is serializable if and only
if its serialization graph is acyclic [21].

If there is only one version of each entity, and every update therefore overwrites
the previous version, the before relation follows real time. In a multi-versioned
replicated data store like Megastore, we require a defined version order <<
on the written entity values to decide the before relation when constructing the
serialization graph. For example: a write operation w(e,v) which creates a version
k of entity e occurs before a current read cr(e) iff cr(e) reads a version l where
k << l according to the selected version order.

Since we require serializability within each entity group only, and every com-
mitted transaction is assigned a unique log position for each entity group it
updates, we use log positions for the version order. This means that if, for ex-
ample, ti reads from log position lp and tk commits an update at log position
lp′, then ti → tk in the serialization graph iff lp < lp′.

When an update transaction ti commits, it produces a message containing:

– the log position and value of each entity it has read; and
– the set of entities written, all of them have the log position assigned to ti.

We therefore add to the state an object of class TransactionHistory containing
the current serialization graph. Each time a transaction commits, this object
reads the above message and updates its serialization graph.

The sort SerGraph defines a set of edges:
var E : Edge .
sort SerGraph . sort Edge . subsort Edge < SerGraph .
op _<->_ : TransId TransId -> Edge [ctor] .
op emptyGraph : -> SerGraph [ctor] .
op _;_ : SerGraph SerGraph -> SerGraph [ctor assoc comm id: emptyGraph] .
eq E ; E = E .

class TransactionHistory | graph : SerGraph .

The proposition isSerializable can then be defined as expected:

op isSerializable : -> Prop [ctor] .
eq {< th : TransactionHistory | graph : GRAPH > REST}

|= isSerializable = not hasCycle(GRAPH) .

We can therefore verify that for each state, the execution up to the current
state is serializable:

Maude: (mc initMegastore |=u [] isSerializable .)

result Bool : true

6 Related Work and Concluding Remarks

Despite the importance of transactional data stores, we are not aware of any
work on formalizing and verifying such systems. We are also not aware of any
detailed description of Megastore itself beyond [2].
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The paper [18] addresses the need for formal analysis of replication and con-
currency control in transactional cloud data stores. Using Megastore as a moti-
vating example, the authors propose a generic framework for concurrency control
based on Paxos, and include a pseudo-code description of Paxos and a proof of
how it can be used to ensure serializability. In contrast, we provide a much more
detailed and formal model not only of Paxos, but of Megastore itself.

The value of Maude for formally analyzing other cloud mechanisms is demon-
strated in [19], where the authors point out possible bottlenecks in a naïve im-
plementation of ZooKeeper for key distribution, and in [7], where the authors
analyze denial-of-service prevention mechanisms using Maude and PVeStA.

Real-Time Maude has been used to model and analyze a wide range of ad-
vanced state-of-the-art systems, including multicast protocols [14], wireless sen-
sor network algorithms [15], and scheduling protocols [12]. In all these applica-
tions, Real-Time Maude analysis uncovered significant design errors that could
be traced back to flaws in the original system. The work presented in this paper
differs fundamentally from those applications of Real-Time Maude: in this case,
our starting point was a fairly brief and informal overview paper on Megastore –
in addition to a number of papers describing the underlying Paxos protocol. We
therefore had to “fill in” a lot of details, in essence developing and formalizing our
own version of the Megastore approach. The available source on Megastore was
not detailed enough to allow us to map flaws found during Real-Time Maude
model checking to flaws in the original description of Megastore. Instead, we
used Real-Time Maude simulation and model checking extensively throughout
our development of this very complex system to improve our model to the point
where we cannot find any flaws during our model checking analyses.

Our main contribution is therefore this fairly detailed executable formal model
of (our version of) Megastore. Minor contributions include general techniques for:
(i) efficiently modeling multicast with nondeterministic message delays in Real-
Time Maude; and (ii) model checking the serializability property of distributed
transactions on replication data in (Real-Time) Maude.

We hope that our formalization contributes to further research on the Mega-
store approach to transactional data stores. In particular, we are planning on
combining Megastore with the FLACS approach [8] to provide serializability
also for transactions accessing multiple entity groups. Other future work in-
cludes defining a probabilistic version of our model in a probabilistic extension
of Maude, and use the PVeStA tool [1] for statistical model checking and more
advanced QoS estimation.
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Abstract. Although energy consumption of wireless sensor network has
been studied extensively, we are far behind in understanding the dynam-
ics of the power consumption along with energy production using har-
vesters. We introduce Energy Harvesting Routing Analysis (EHRA) as
a formal modelling framework to study wireless sensor networks (WSN)
with energy-harvesting capabilities. The purpose of the framework is to
analyze WSNs at a high level of abstraction, that is, before the protocols
are implemented and before the WSN is deployed. The conceptual basis
of EHRA comprises the environment, the medium, computational and
physical components, and it captures a broad range of energy-harvesting-
aware routing protocols. The generic concepts of protocols are captured
by a many-sorted signature, and concrete routing protocols are specified
by corresponding many-sorted algebras.

A first analysis tool for EHRA is developed as a simulator imple-
mented using the functional programming language F#. This simulator
is used to analyze global properties of WSNs such as network fragmen-
tation, routing trends, and energy profiles for the nodes. Three routing
protocols, with a progression in the energy-harvesting awareness, are an-
alyzed on a network that is placed in a heterogeneous environment.

1 Introduction

A Cyber-Physical System (CPS) is a system featuring a tight combination of its
computational and physical elements and the coordination between them. The
term CPS is used to emphasize the importance of the intense link between the
computational and physical elements, rather than focussing on just the compu-
tational elements, which often is the case for embedded systems. This heteroge-
neous nature is recognized as a main challenge in modelling CPSs [5]. We study
a special class of CPSs namely Wireless Sensor Networks.

A Wireless Sensor Network (WSN) is a distributed network of sensor nodes,
deployed in a physical environment. Each node collects information, also called
observations, about its environment, e.g. environmental monitoring and control,
healthcare monitoring and traffic control, to name a few. This information is
processed either at the node, in the network, at a so-called base station, or in
any combination of these. Collected information is ultimately gathered at the
base station, where it is further analysed.

S. Iida, J. Meseguer, and K. Ogata (Eds.): Futatsugi Festschrift, LNCS 8373, pp. 520–540, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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Each node provides two functionalities: sensing and transmitting information
of its local environment, and relaying sensed information from neighbouring
nodes. Fig. 1a shows an architecture of a classical node as well as its environ-
ment comprising the physical environment, where information is sensed, and the
medium through which information is exchanged with neighbouring nodes.

(a) A classic sensor node

(b) An energy-harvesting sensor node

Fig. 1. Architecture of a sensor node

A key issue of a WSN is the unpredictable behaviour of the environment. For
the communication medium, this is handled in the Media Access Control (MAC)
protocol, and for the physical sensing, nothing particular is needed, as this is
just a sampling of information. The requirement of long lifetime of the WSN
is the real challenge. In a classical sensor node, the components (sensor, radio,
computer and memory) are all fuelled from a battery, which means that energy
is used whenever they are active. In order to sustain long lifetime, components
must be designed for low power and they have to be active only when needed.
When sensor nodes are idle most of the time, another challenge is to synchronize
their information exchange. This is typically handled in the MAC protocol.

We are considering WSNs based on zero-power devices, where the battery
is substituted by an energy harvester, which is able to gather energy from the
environment (see Fig. 1b) through light, temperature differences or vibrations,
for example. This adds an extra dimension to the problem because energy is
harvested over time with varying rates that are difficult to predict. This has a
profound impact on how the network is managed, i.e. how information is routed
to the base station. This could be handled by energy-aware routing protocols
trying to balance the traffic to keep nodes alive for as long as possible. For this
to be efficient, a model of energy consumption within a node is needed. This
will allow the routing protocol to predict when a node has too little energy to
be used and hence another sensor node has to be selected. When having energy
harvesting, sensor nodes can regain energy and when fully charged, energy is
“free”, which means that it should be used. Each node then has to have a model
of the dynamics of the energy to be able to balance the usage of nodes.
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An example network showing the challenge with energy-harvesting-aware pro-
tocols is given in Fig. 2, where the nodes are placed in a 7 × 7 grid. There is a
hole of size 3 × 3 where no node is present. Each node can communicate with
(at most) four neighbours which are the closest ones either vertically or horizon-
tally. Throughout this paper we consider energy harvesters that are based on
solar power. The shade of a node is, therefore, relevant, because that influences
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Fig. 2. A network structure with shadowed nodes

the ability to harvest energy. The node at position (1, 1) is the base station and
the purpose of the network is to route observations from the individual nodes to
this base station. To reach the base station, many messages are passing through
two routes along the axes. The challenge of an energy-harvesting-aware routing
protocol is to dynamically adapt the routes to avoid that nodes on “bottleneck
routes” get drained.

This paper, which extends [6], has the following main contributions:

– A formal semantical framework for energy-harvesting-aware wireless sensor
networks, including energy-harvesting-aware protocols. In [6], the presenta-
tions are at an informal level only.

– The framework [6] is extended to deal with probabilistic protocols and it is
shown to capture the probabilistic protocol Energy Aware Routing [17].

– A discrete-event simulator is developed and used to compare three routing
protocols with a progression of energy-harvesting awareness. This is the first
tool development for EHRA. So far these protocols have been analysed using
different dedicated simulators making comparison of results difficult.

We have experimented with model-checking techniques for our framework. These
experiments showed severe scalability problems due to the huge number of paral-
lel components in the nodes as well as in the network and, therefore, a simulation-
based approach was chosen. Our plan is to extend the framework with statistical
model-checking techniques.

Related Work. Discrete-event simulation has often been used to simulate
WSNs and some discrete-event simulators are tailored for WSNs’ characteris-
tics. Avrora, for example, offers both efficiency and accuracy in instruction-level
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simulation [19]. We are interested in more high-level properties. Another ap-
proach is taken by [16], where ReactiveML, a variant of OCaml with reactive
programming constructs [13], is used as a basis for simulating ad-hoc sensor
networks. The environment is expressed in Lucky, a declarative domain-specific
language to describe physical conditions. Energy consumption of a node is de-
scribed in an automata-based model. In their framework, global properties of
WSNs are analyzed but energy harvesting is not considered.

There are also work applying formal methods to the analysis of WSNs. In [3], a
single sensor node is modelled in HyTech, a hybrid automata model checker, and
safety properties are analyzed. At the network level, to alleviate scalability issues
of model-checking, they simulate a network of hybrid automata corresponding
to the WSN and take energy consumption into account. A similar approach is
taken in [15], where Real-Time Maude is used to analyze the Optimal Geograph-
ical Density Control algorithm for WSNs. They use model-checking techniques
to verify functional properties and resort to the corresponding simulator for
performance evaluation. An interesting trade-off between model checking and
simulation is statistical model checking approach. While it gives more reliable
results than simulation, the approach is more scalable than model checking. For
example, Uppaal SMC, a statistical model checker, has been used to verify prop-
erties of the Lightweight Media Access Control protocol [2]. However, none of
the above referred articles addresses energy-harvesting issues.

Several empirical approaches to energy-harvestingWSNs have been proposed,
e.g. [4,10,11,14,18]. In [11], for example, local energy management is used to
reduce latency on routing messages to the base station. But these approaches do
not consider dynamic routes which are essential to energy-harvesting scenarios.
In [12], a mathematical framework is given for examining energy-harvesting-
aware routing in multi-hop WSNs. But this approach is based on the unrealistic
assumption that each node has global knowledge of the whole network.

The Structure of the Paper. Our thesis is that a broad class of energy-
harvesting-aware protocols can be described within a unified conceptual frame-
work. A suggestion of such a unified conceptual framework is presented in the
next section, where we develop: A semantical framework for energy-harvesting-
aware WSNs, the basic concepts of energy-harvesting-aware protocols, and the
generic behaviour of an energy-harvesting-aware node. The basic concepts of
energy-harvesting-aware protocols are expressed as a many-sorted signature, that
is, in terms of a collection of types and specifications of operations. A protocol
is expressed as a corresponding many-sorted algebra.

In Section 3 some evidence supporting the above thesis is collected by ex-
pressing three protocols in the framework. More examples are, of course, needed
to give substantial support for the thesis. Analysis support for such a frame-
work has many advantages: New protocols can be developed within an existing
conceptual basis and different protocols can be compared on “equal term”, that
is, by using the same model of the environment and communication medium,
for example. Furthermore, experiments can be conducted with configurations of
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nodes before the nodes are implemented and deployed in a physical environment.
Section 4 provides a description of a discrete-event simulator for the framework
and the three considered protocols are analyzed in Section 5.

2 The Generic Modelling Framework

We consider networks where nodes are uniquely identified using identifiers id ∈
Id. The purpose of a network is to forward observations o ∈ Observation from
nodes to a so-called base station, see Fig. 2, where an observation could be a
temperature measurement or a recording of a car passing.

In the following we consider a network with N sensor nodes. Each node id
has a local state s ∈ Sid = CompStateid × PhysStateid comprising two parts:

– A computational state cs ∈ CompStateid . A node is equipped with a CPU
(see Fig. 1b) and computations could concern local treatment of observations
and processing related to the protocol.

– A physical state ps ∈ PhysStateid . In order to make the routing energy-
harvesting aware, a node must have the possibility to sample its physical
state, for example, to be able to make decisions on the basis of the actual
energy level of a battery.

A network state s̄ = (s1, . . . , sN ) ∈ S = Sid1
× · · · × SidN

is a vector of N local
states, where si is a local state of node id i for 1 ≤ i ≤ N . A timed network state
is a pair (t, s̄), where t ∈ R≥0 is the time stamp of the network state s̄.

A node id can broadcast amessagem ∈ Msg using the output event sendid (m).
Messages relate to observations and to the energy awareness of the nodes (see
Section 2.2). The asynchronous broadcast of messages is handled as follows:

– A relation t, s̄, id 'S d, sendid (m) expresses that node id can send message
m after delay d ∈ R≥0, i.e. at time t+ d, in the timed network state (t, s̄).

– Two functions initSendid , completeSendid : Sid × Msg → Sid are used to
handle the sending of messages from a node id by expressing the state change
when the sending is initiated and when it is completed. Details about these
functions are deferred until Section 4.2.

Furthermore, s̄ 'E id expresses that the node id is enabled in the network state
s̄. This relation is used to model energy requirement of equipment in nodes.

We model the environments (see Fig. 1b) for observations and energy har-
vesting, and for the medium by three relations 'O,'H and 'M :

– Observation environment: id , t 'O d, o, where t, d ∈ R≥0, expresses that node
id can make the observation o at time t+ d.

– Energy harvesting environment: id , t 'H d, ps , where t, d ∈ R≥0, expresses
that node id has physical state ps at time t+ d.

– Medium: s̄, id 'M id ′ expresses that node id ′ can receive a message from
node id in the network state s̄. We call id ′ a neighbour of id in s̄.

A node id can react to the following input events:



EHRA and Simulation 525

– Sample the physical state. At the sample time, there is an exact match
between physical state of a node and the “real” physical state. The effect of
this event is described by a function:

samplePSid : Sid × PhysState→ Sid

– Sense observation. The effect of this event is described by a function:

senseObsid : Sid × Observation→ Sid

– Receive message. The effect of this event is given by a function:

treatMsgid : Sid ×Msg→ Sid

The semantics of a network is given in terms of a labelled transition system
where we use labels of the following form:

Label = R≥0 × ({ε} ∪ {send(m)idi
| m ∈ Msg and 1 ≤ i ≤ N})

Definition 1. The semantics of a network of N sensor nodes, given the rela-
tions: 'O,'H,'M,'S and 'E, is a labelled transition system (TS , (0, s0),−→),
where S = Sid1 × · · · × SidN , TS = R≥0 × S, s̄0 ∈ S is the initial net-
work state, and −→ ⊆ TS × Label × TS is the transition relation such that:

(t, s̄) = (t, (s1, . . . , sN ))
d,e−→ (t′(s′1, . . . , s

′
N )) = (t′, s̄′) if t′ = t+ d and

– either e = ε and some node idj0 performs an internal event in the form of
sensing an observation or sampling the physical state:

1. s′k = sk, for every node idk that is different from id j0

2. and either
• node id j0 is enabled and sensing an observation o at time t+ d:

s̄ 'E id j0 , id j0 , t 'O d, o and s′j0 = senseObsidj0
(sj0 , o)

• or node id j0 is sampling its physical state at time t+ d:

id j0 , t 'H d, ps and s′j0 = samplePSidj0
(sj0 , ps)

– or e = sendidj0
(m) and node id j0 is enabled and performs a send event

at time t + d, and its enabled neighbours perform internal receive-message
events:

1. s̄ 'E id j0 , s̄, id j0 , t 'S d, sendidj0
(m), s′j0 = completeSend(sj0 ,m),

2. for every enabled neighbour idk of id j0 (i.e. s̄, id j0 'M idk and s̄ 'E idk):

s′k = treatMsgidk
(sk,m) and

3. For any other node idk (i.e. idk �= id j0 and (s̄, id j0 �'M idk or s̄ �'E idk)):

s′k = sk
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Notice that even disabled nodes can sample their physical states. This allows
drained nodes to recover when the energy-harvesting conditions allow so.

An execution is described by a possibly infinite transition sequence:

(t0, s̄0)
d1,e1−→ (t1, s̄1)

d2,e2−→ (t2, s̄2)
t3,e3−→ (t3, s̄3) · · ·

where ti−1 ≤ ti. We require that infinite executions diverge, that is, ti → ∞
when i → ∞. Further restrictions could be imposed, for example, that enabled

transitions are not ignored, that is, it is not the case that s̄i−1
t′i,e

′
i−→ s̄′i and

ti−1 ≤ t′i < ti (where t0 = 0). Notice that such requirements impose restrictions
on 'H,'O and 'S.

2.1 Basic Concepts of Energy-Harvesting-Aware Protocols

Basic concepts that are used when expressing energy-harvesting-aware protocols
are introduced now. They are presented as the many-sorted signature in Fig. 3.
The operations are specific to the node under consideration, but subscripts for
the identity of the node will be left out.

id ∈ Id unique node identifier
o ∈ Observation observation
ps ∈ PhysState physical state
cs ∈ CompState computational state
as ∈ AbsState abstract state
m ∈ Msg message having one of the forms:

obsMsg(dst , o) observation message with node dst ∈ Id as destination
nbMsg(src, as) neighbour message message from node src ∈ Id

next : CompState → Id
updateEnergyState : CompState× PhysState → CompState
updateRoutingState : CompState → CompState
consistent? : CompState → {true, false}
abstractView : CompState → AbsState
updateNeighbourView : CompState× Id× AbsState → CompState
transmitChange? : CompState× CompState → {true, false}

Fig. 3. Fundamental types and operations

The function next: CompState → Id determines the best neighbour to whom
observations should be forwarded in a given computational state.

The computational state may contain data representing the perception of the
physical state and the function updateEnergyState : CompState × PhysState →
CompState synchronizes this perception with the “real” physical state.

Information about available energy in nodes must be exchanged between
neighbours. This local information usually comprises just a condensed version
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of the computational state to limit costly traffic (exchange of huge messages).
Such a condensed computation state is named an abstract state as ∈ AbsState
and the function abstractView : CompState → AbsState computes the abstract
version of a computational state. A predicate transmitChange? : CompState ×
CompState → {true, false} is used to determines whether a change in the com-
putational state is significant enough to cause a message exchange and the func-
tion updateNeighbourView: CompState× Id×AbsState→ CompState updates the
computational state with a new abstract state of a given neighbour.

The routing from a node is determined by knowledge about the energy in the
node itself and in neighbour nodes. When this energy knowledge changes either
due to an internal update of the energy state or to an update of a view of a
neighbour, then the computational state may become inconsistent in the sense
that all neighbours seem “further away” from the base station than the node
itself. It is essential to be able to detect this undesirable situation where there
is no “natural choice” for routing observations and the predicate consistent?:
CompState→ {true, false} is used for that purpose.

The routing part of the computational state is updated by use of the function
updateRoutingState : CompState → CompState with the purpose of creating a
consistent computational state. Hence, it is required that:

consistent?(updateRoutingState(cs)) = true (1)

The Link to the Physical World

A node has an exact perception of its physical state just at the time instants
where it samples its physical state. Between sampling points when sensing obser-
vations or exchanging messages, the perception of the available energy is main-
tained by using a family of cost functions:

costf : PhysState→ PhysState

where f is any of the resource-demanding operation specified in Section 2.1.

2.2 The Generic Behaviour of a Node

A major thesis of this work is that the generic behaviour of a node id can be
defined by composition of the functions in Fig. 3. In particular, we give definitions
for the functions:

samplePSid : Sid × PhysStateid → Sid

senseObsid : Sid × Observation→ Sid

treatMsgid : Sid ×Msg→ Sid

These definitions are given in Fig. 4. Each function definition can be partitioned
into a computational part relating to the operations in the node and a cost
part updating the perception of the physical state. The applications of the cost
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samplePSid ((cs, ps), ps
′) =

let cs ′ = updateRoutingState(updateEnergyState(cs , ps ′))
let ps ′′ = costUpdateEnergyState(costUpdateRoutingState(ps ′))
if ¬transmitChange?(cs , cs ′) then (cs, ps ′′)
else let m = nbMsg(id , abstractView(cs ′))

initSendid (m, (cs ′, costSend(costAbstractView(ps ′′))))

senseObsid ((cs , ps), o) =
initSendid ((cs, costSend(costNext(ps

′))), obsMsg(next(cs), o))

treatMsgid ((cs , ps),m) = case m of
obsMsg(dst , o) → TreatObsMsgid (dst , o, cs , ps)
nbMsg(src, as) → TreatNbMsgid (src, as , cs , ps)

where TreatObsMsgid (dst , o, cs , ps) =
if id �= dst then (cs, ps)
else initSendid ((cs , costSend(costNext(ps))), obsMsg(next(cs), o))

and TreatNbMsgid (src, as , cs , ps) =
let cs ′ = updateNeighbourView(cs , src, as)
let cs ′′ = updateRoutingState(cs ′)
let ps ′ = costUpdateNeighbourView(costUpdateRoutingState(ps))
if ¬transmitChange?(cs, cs ′′) ∧ consistent?(cs ′) then (cs ′, ps ′)
else let m = nbMsg(id , abstractView(cs ′′))

initSendid ((cs
′′, costSend(costAbstractView(ps ′))),m)

Fig. 4. The generic behaviour of node id

functions follow directly the computational part of the definitions, so we just
consider the computational part here.

When the physical state is sampled (samplePSid ((cs , ps), ps
′)), the energy

state must be updated and the routing state is updated as well to preserve con-
sistency of the computational state. If this change is insignificant, then nothing
is broadcasted and just the physical state has changed. (The computational state
cs is kept to preserve the consistency with the neighbours’ view of the node.)
Otherwise, a neighbour message is broadcasted containing the identity of the
node and an abstract view of its new computational state.

When an observation is sensed (senseObsid ((cs , ps), o)), then an observation
message obsMsg(next(cs), o) is broadcasted having the best neighbour for routing
observations, i.e. next(cs), as destination.

If the node is the destination of an observation message, then the observation
is relayed to the best neighbour. If the incoming message is a neighbour message,
then updates of the neighbour view and the routing state are performed, and if
this causes a significant change, then a neighbour message is broadcasted.

Notice that the resulting computational is consistent.

3 Three Routing Protocols

We study three routing protocols: Directed Diffusion (DD) [8], Energy Aware
Routing (EAR) [17], and Distributed Energy Harvesting Aware Routing (DE-
HAR) [9]. Models of DD and DEHAR using our framework are given in [6] so
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they are just informally discussed below, where we also give a formal definition
of EAR. The rationale for choosing these protocols is to examine the framework
under increasing energy-harvesting awareness, where:

– DD is the simplest protocol without any energy-harvesting awareness. It is
used for comparison purpose only.

– EAR has an energy-harvesting awareness that is limited to knowledge of its
immediate neighbours. Furthermore, EAR is using a probabilistic routing
protocol.

– DEHAR has an energy-harvesting awareness that goes beyond its immediate
neighbours.

We use cost functions uniformly on all three protocols. Each operation e.g.
updateRoutingState, updateNeighbourView, send, next and abstractView has an
associated amount of energy consumption. We assume that costs are independent
of message sizes. The protocols will be analyzed using the example network in
Fig. 2.

3.1 Directed Diffusion

The DD protocol is very simple as it always forwards an observation to the
neighbour having the shortest distance (in the number of hops) to the base
station. For example, the node in position (4, 6) in Fig. 2 will always direct its
observations to either node (3, 6) or node (4, 5). All nodes to the left of the
diagonal x = y being above the hole, i.e. x ≤ 4, will definitely use routes that
pass through the “problematic” node (1, 3) in the dark shadow. Such use of the
same low-energy path often leads to energy depletion and network partition.

Since DD uses the shortest routes, it will use less energy than the other
two protocols considered. DD does not make any routing adaptation based on
changes of energy levels. Any energy-harvesting-aware protocol should exhibit a
better exploitation of “free” energy than DD.

We refer to [6] for a formalization of DD using our modelling framework.

3.2 Energy Aware Routing

The main idea behind the EAR protocol is to make a node aware of the energy
level of its immediate neighbours. This knowledge is used

– to avoid sending observations to neighbours having energy levels below a
certain threshold, and

– to use a random selection, based on the current energy metric, of routes to
“energy-sound” neighbours that are closer to the base station.

This should prevent a systematic use of low-energy paths and, in this way, the
network should degrade globally, not locally, and the lifetime of the network
should be extended. But notice that the addition of energy-harvesting awareness
will lead to more network communication due to the exchange of information
about energy levels. Hence, the traffic in the network will increase and an analysis
of energy-harvesting-aware protocols must take these costs into account.

A computational state is a 6-tuple (c, e, ft , pt , rt , nt) ∈ CompState, where
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– c ∈ R≥0 is a cost of choosing the node for forwarding messages,
– e ∈ Energy is an energy level,
– ft ∈ ForwardingMap = Id → R≥0 is a forwarding map that contains costs of
using links to its neighbours,

– pt ∈ ProbabilityMap = Id→ R[0,1] is a probability distribution, where pt(j) is
the probability for choosing neighbour j as the receiver of an observation. It
is required that Σj∈dom(pt)pt(j) = 1,

– rt ∈ EnergyMap = Id → Energy is an energy map that describes the energy
required for communication with the neighbours, and

– nt ∈ NeighbourMap = Id → AbsState is a neighbour map containing an
abstract view of the state of the neighbours. In this case, the abstract state
is simply the cost equivalent of the energy level AbsState = R≥0.

The domains of the maps ft , pt and rt are restricted to identifiers for neighbours
that are closer to the base station (in terms of hop count) than the node under
consideration.

The physical state just comprises the stored energy e ∈ Energy and we assume
that there is a conversion function from energy level to a cost, that is a non-
negative real number. This function is used when the physical state is sampled
and synchronized with the computational state. The cost function is extended
from the physical state to the computational and abstract states in a trivial way:

cost(c, e, ft , pt , rt , nt) = cost(abstractView(c, e, ft , pt , rt , nt)) = c

The function next(c, e, ft , pt , rt , nt) will make a random choice for the desti-
nation of observations on the basis of the probability distribution pt .

The main idea when updating the routing map is to avoid neighbours with
high costs (determined by the constant δ below). The probability distribution is
updated accordingly. The cost of the current node is the weighted cost obtained
using the probability distribution and the routing map [17]:

updateRoutingState(c, e, ft , pt , rt , nt) =
let ft ′ = ft \ {id ∈ dom(ft) | ft(id) < δ · mink ft(k)}
let pt ′ = probabilityDist(ft ′)
let c′ =

∑
k∈dom(pt) pt

′(k) · ft ′(k)
(c′, e, ft ′, pt ′, rt , nt)

where the probability distribution pt ′ = probabilityDist(ft ′) is defined as follows:

pt ′(id) =
1

ft ′(id)∑
k∈dom(ft ′)

1
ft ′(k)

for id ∈ dom(ft). In this distribution neighbours with low costs are more likely
to be chosen than those with high costs.

A computational state (c, e, ft , pt , rt , nt) is consistent if pt is a genuine prob-
ability distribution, that is, if at least one neighbour closer to the base station
has a sufficient energy level.
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The function synchronizing the physical state and the computational state is
defined by:

updateEnergyState((c, e, ft , pt , rt , nt), e′) = (cost(e′), e′, ft , pt , rt , nt)

and the function converting a computational state to an abstract one has a
similar simple definition:

abstractView(c, e, ft , pt , rt , nt) = c

The following function updates the abstract state of a neighbour:

updateNeighbourView((c, e, ft , pt , rt , nt), id , as) =
let r = rt(id)
let C = cost(as) + eα · rβ
let ft ′ = ft + [id → C]
let nt ′ = nt + [id → as ]
(c, e, ft ′, pt , rt , nt ′)

where α and β are weighing factors for finding minimum-energy paths, and
m+[a→ b] is the map obtained from m letting a be mapped to b. The constants
α and β are chosen so that nodes with highest residual energy have smallest costs,
and the cost C of using a link is a sum of the cost of sender and the residual
energy of receiver. We refer to [17] for further details.

A change of a computational state is transmitted to the neighbours just when
the cost difference of the change is above some threshold Kchange ∈ R≥0:

transmitChange?(cs , cs ′) = |cost(cs)− cost(cs ′)| > Kchange

3.3 Distributed Energy Harvesting Aware Routing

The energy-harvesting awareness of EAR is limited to just knowing the energy
levels of the neighbours. The DEHAR protocol [9] develops a technique to dis-
tribute knowledge about energy deficits of nodes in order to avoid heavy traffic
through drained nodes further away in the network.

The main idea behind DEHAR is presented using the example in Fig. 5. The
computational state of each node is initialized to its distance to the base station
and observations are forwarded to the neighbour being closest to the base station.

d
is
t(
cs
)

Node· · · d e f g · · ·
simple distance
energy deficit
energy-faithful adjustment

Fig. 5. DEHAR protocol with consistent nodes using energy-faithful adjustments
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So initially DEHAR works just like DD. For the example in Fig. 5, observations
from d will initially be routed as follows: d→ e→ f → g.

When the energy of a node is depleted, its distance is adjusted with an energy
deficit so that it appears further away from the base station. This is the case
for nodes f and g in the figure. When e receives this adjusted distance of f in a
neighbour message, the computational state of e becomes inconsistent since both
(all) of its neighbours, that is d and f , have further distances to the base station
than e. In this inconsistent state, node e has no neighbour to whom it is natural
to forward observations, and it must update its routing state in order to regain
a consistent state (cf. (1). This is done by adjusting e’s distance with a so-called
energy-faithful adjustments [9], so that it appears further away from the base
station than d and f does. When this adjusted distance of e is communicated
to the neighbours, then f needs a similar energy-faithful adjustment to regain
a consistent state. Now each node is in a consistent state where it can forward
observations in a meaningful manner.

This example shows that the energy deficiencies of nodes f and g are dis-
tributed and they have an influence of routes from node d, which is neither a
neighbour of f nor of g.

We refer to [6] for a formalization of DEHAR using our modelling framework.

4 The F# Model for EHRA

In this section we describe the basic ideas behind the F#-model of the EHRA
framework, with emphasis on the environments, the timing and the communi-
cation parts. The functional programming language F# [7] belongs to the SML
family and F# models resemble models expressed in the constructive parts of
specification languages like VDM and RAISE. The network behaviour is mod-
elled using discrete-event simulation techniques [1].

4.1 The General Setup

We present models for the network topology, the timing of events and the envi-
ronment. In particular, we explain how the relations 'H,'O,'M,'E and 'S are
represented.

The model for the energy harvesting id , t 'H d, ps is focussing on available
light as described by the polymorphic object interface type Environment<’Id>,
which is parameterized with the types ’Id for identities of nodes:

type Environment<’Id> =

abstract light : ’Id -> Time -> float

abstract harvest : ’Id -> Time -> Time -> Energy

Here the light function indicates shadow levels of nodes over time, and the
harvest function estimates an amount of energy that a node can harvest between
two time points. The energy is given by a percentage indication of a relative
energy level:
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type [<Measure>] percent

type Energy = float<percent>

and we use a discrete-time model of time:

type Time = int64<ms>

The unit of measures shows that we use clocks on the millisecond level in the
examples. We assume in the following that a type Id is given for identifiers.

A node is modelled by a polymorphic type using type variables for the com-
putational state ’CS, the physical state ’PS, the abstract state ’AS and for
observations ’Obs:

type Node<’CS,’PS,’AS,’Obs> =

{ ComputationalState : ’CS

PhysicalState : ’PS

Position : Position

Neighbours : Set<Id>

Obs : ’Obs

Ops : Operations<’CS,’PS,’AS,’Obs> }

The object interface type Operations<’CS,’PS,’AS,’Obs> corresponds to the
signature in Fig. 3 and a value of the field Ops denotes a corresponding algebra. A
value of the node type captures the local state of a node. The positions of nodes
are not essential for the approach, but they are often convenient in calculations
of reachable neighbours. In the network in Fig. 2 two nodes are neighbours if the
distance between them is 1. Note that a node maintains a set of the identifiers of
neighbours it can reach. This is used to decide s̄, id 'M id ′ is an efficient manner.

A network state is modelled as a map from identifiers to nodes:

Map<Id, Node<’CS, ’PS, ’AS, ’Obs>>

and a timed network state is called a world and captured by the type:

type World<’CS, ’PS, ’AS, ’Obs> =

{ Time : Time

Network : Map<Id, Node<’CS, ’PS, ’AS, ’Obs>>

Env : Environment<Id> }

Messages and internal events are modelled using algebraic datatypes closely
following the definitions in Section 2:

type Message<’AS, ’Obs> = | ObservationMsg of Id * ’Obs

| NeighbourMsg of Id * ’AS

type InternalEvent<’AS, ’Obs> = | SamplePS of Energy

| SenseObs of ’Obs

| MessageEvt of Message<’AS, ’Obs>

4.2 Discrete-Event Simulation in a Functional Setting

The notion time hopping is central to discrete-event simulation. It is based on a
facility that keeps track of the current time and whenever an event occurs, one
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immediately jumps to the start of the next event. This skip of durations, where
no event occurs, is essential for obtaining efficient simulations. To implement
this, we use time-stamped internal events:

type Event<’AS,’Obs> = Event of Time * Id * InternalEvent<’AS,’Obs>

and organize scheduled events as a priority queue with type PQueue<Event>,
ordered by time stamps. The priority queue is maintained using the standard
operations:

minimum : PQueue<’T> -> ’T

extractMin : PQueue<’T> -> ’T * PQueue<’T>

insert : PQueue<’T> -> ’T -> PQueue<’T>

isEmpty : PQueue<’T> -> bool

The transition steps of Definition 1 are simulated using two functions:

executeInternalEvent : InternalEvent -> Id -> Time -> World -> World

scheduleNextEvent : Id -> World * PQueue<Event> -> PQueue<Event>

where executeInternalEvente id t w returns the new world obtained from w
by execution of internal event e at time t in node id and scheduleNextEvent

id (w, q) gives the new priority queue obtained from q by scheduling the next
event from node id in world w.

The implementation of the function executeInternalEvent follows directly
the definition of the generic behaviour of a node as given in Fig. 4, and this
definition is based on an implementation of the signature specified in Fig. 3.

An implementation of the function scheduleNextEvent is based on imple-
mentations of t, s̄, id 'S d, sendid (m), id , t 'O d, o and id , t 'H d, ps . In the
current version, delays between observations at a given node id are generated
as random numbers on the basis of a specified mean value μ and a standard de-
viation σ. Delays in connection with the other relations are generated similarly
possibly using other mean values and standard deviations.

By function composition, the one-step simulation function

doEvent : Event -> World * PQueue<Event> -> World * PQueue<Event>

is expressed as follows:

let doEvent (Event(t, id, ievt)) (w, pq) =

let w’ = executeInternalEvent ievt id t w

(w’, scheduleNextEvent id (w’, pq))

The discrete-event simulation function

simulate: World * PQueue<Event> -> World * PQueue<Event>

is defined by repeated application of doEvent until the event queue is empty:

let rec simulate(w, evts) = if isEmpty evts then (w, evts)

else let (evt, evts’) = extractMin evts

simulate(doEvent evt (w, evts’))
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In order to start up a “proper” simulation process for a given initial world, an
initialized event queue is used where every node has a scheduled event. This
will ensure that every node is active during the simulation. It is, of course, easy
to make variants of simulate function, where the simulation terminates after
a specified time or after a predefined number of simulation steps, as well as
variants where a trace of the simulation is saved in a file.

5 Experimental Results

In this section we present simulation results for the network shown in Fig. 2 on
the basis of the three protocols in Section 3. These protocols are simulated using
identical node specifications. We assume that each node has a radio range of 1;
that means a node has at most 4 neighbours in the mesh. A simulation day con-
sists of 12 hours of full light and 12 hours of no light. The light shadow gives 75%
efficiency of energy harvesting while the dark shadow reduces energy-harvesting
efficiency to 25%. Observations are generated using a mean value of 900 sec-
onds while mean of energy measure is 1800 seconds. The standard deviation for
generating these events is 10 seconds. Arrivals of events are calculated based on
these values. It gives non-deterministic execution, but different simulation runs
are quite similar in terms of their general behaviours. For the EAR protocol,
we choose the following values δ = 3, α = −2, β = 1 and Kchange = 1. The
simulation time is 30 days equivalent to 720 hours. Fig. 6a shows initial energy
levels, where all sensor nodes are fully charged.

We illustrate energy changes by coloured heatmaps on energy levels for DD,
EAR and DEHAR in Fig. 6b, 6c and 6d. There are five, three and two drained
nodes after 720 simulation hours for DD, EAR and DEHAR respectively. From
the heatmaps of DD and EAR we see fragmented networks where a majority of
nodes cannot send messages to the base station because energy levels of nodes
along the two axes are exhausted. This can easily happen when routing algo-
rithms do not choose paths in an intelligent way.

Although it is not visible in the heatmaps above, network fragmentation hap-
pens early for the DD and EAR protocols. To quantify this, we recorded accu-
mulated number of drained nodes over time in each experiment. The simulations
showed that after 720 hours the DD protocol drained 1.5× as many nodes as
EAR did and 3.5× as many as DEHAR did. In DEHAR experiments, some nodes
might temporarily be out of energy, but they quickly recovered. The reason is
that these nodes are free of duty until they become healthy again.

For DD and EAR protocols, no recovery of nodes was observed. For these two
protocols all observations from nodes at the left side of the line x = 5 (when
y > 1) will pass through the nodes with low energy along the y-axis. The reason
for this is that an EAR node is never sending observations to the neighbour to
the right or the neighbour above as it is making a probabilistic choice between
neighbours that are closer to the base station only. Therefore, EAR can make
probabilistic choices between all shortest paths from a node to the base station;
but it can never choose a longer path. In the EAR-network, observations from
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(b) DD nodes at t = 720h
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(c) EAR nodes at t = 720h
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(d) DEHAR nodes at t = 720h

Fig. 6. Energy levels

the nine nodes in the upper right corner (where x ≥ 5 and y ≥ 5) are either
following paths to the base station along the x-axis or the y axis according to
probabilistic choices. But this is insufficient for preventing a fragmentation of
the network.

The DEHAR nodes have more lively changes in energy levels than the DD
and EAR nodes. To understand the dynamic behaviour of DEHAR, we visualize
the amount of messages passing through each node over the simulation period in
Fig. 7a. This visualization demonstrates flow trend of messages from the colder
regions to the warmer ones in the network (see Fig. 7b). Although node (1, 5)
is just 4 hops away from the base station, it often chooses a longer route for
messages. By using longer routes with high-energy nodes, the DEHAR protocol
is able to give low-energy nodes a chance to regain their energy.

To study the protocols further, we analyzed the number of messages sent by
the protocols and the amount of energy they harvested as functions of time. We
will not present the graphs for these experiments to save space, but just present
the main observations.
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Fig. 7. DEHAR nodes at t = 720h

Each protocol exhibited a linear growth in the number of sent messages ys as
a function of time t:

ys = c · t

where c = 1180 for DD, c = 1389 for EAR, and c = 2083 for DEHAR in
messages/h unit. Hence the DEHAR protocol exchanged almost twice as many
messages as the DD protocol did. The extra overhead of DEHAR paid off because
fragmentation was never observed for DEHAR simulations and the protocol al-
lowed depleted nodes to recover. The EAR protocol exchanged about 18% more
messages than that of DD; but the EAR protocol just maintained a connected
network slightly longer than the DD protocol did, and there was no clear indi-
cation of an advantage of using a probabilistic protocol.

Although the three protocols were simulated in the same conditions, they
behaved quite differently in terms of energy harvesting. In general, DEHAR
harvested 50% and 40% more energy than DD and EAR, respectively. A node
can only harvest energy up to its capacity. That is, when it is fully charged, no
further energy is harvested. Because the trend of DEHAR is to use routes with
high-energy nodes, DEHAR tends to use energy where it is available and allows
nodes that otherwise would not be fully charged to harvest energy.

Two remarks on the setup of the experiments should be emphasized:

– A simple 7 × 7 network was used to be able to interpret the results and
assess the correctness. Much larger networks can be analyzed efficiently by
the tool.

– Homogeneous nodes (same radio range and functionality) were used for
transparency and convenience only. An individual setup of the nodes can
be established when that is desirable.
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6 Conclusions

In this paper, we have presented our analysis framework EHRA for energy-
harvesting WSNs. The conceptual part of the framework is an improvement of
that in [6] in the sense that the relationship between computational parts and
physical parts of systems is clarified, and it is extended to cope with probabilistic
routing protocols. A formal semantical framework for EHRA is presented it is
accompanied with a discrete-event simulator that is developed in the functional
programming language F# in a manner that is very close to the formal model –
this gives confidence about correctness of the implementation and the model. The
simulator is used to analyze global properties of protocols, such as fragmentation,
routing trends and energy-harvesting behaviours in the network.

The EHRA framework was used to model and analyze three routing protocols
Directed Diffusion (DD), Energy Aware Routing (EAR), and Distributed Energy
Harvesting Aware Routing (DEHAR) listed in the increasing order of energy-
harvesting awareness. In particular, DD does not take energy harvesting into
account. In EAR-based networks, a node has energy knowledge of its immediate
neighbours only and will route messages based on a probabilistic choice where
neighbours with more energy are more likely to be chosen than low-energy ones.
Just neighbours being closer to the base station are candidates of this selection
process. In DEHAR-based networks, each node also has knowledge of the energy
levels of its immediate neighbours; but condensed information about the energy
on neighbours’ routes to the base station is added to that knowledge.

These protocols were analyzed on a network having two bottlenecks on routes
to the base station, where the nodes on one of these routes have particular
low energy-harvesting capabilities. The simulations showed that the DD-based
network soon became fragmented because nodes on both problematic routes ran
out of energy. The EAR-based network operated slightly longer before it became
fragmented. An advantage of using a probabilistic protocol to guarantee that at
least some observations would reach the base station could not be observed. The
DEHAR-based network did not get fragmented during the simulation. Further-
more, it exhibited a routing trend where longer routes were used to prevent
low-energy nodes on shorter routes to be drained. This ability to find energy-
efficient detours, i.e. routes that are longer than a shortest path to the base
station, is the main feature of DEHAR that prevented the network from frag-
mentation in our experiments. The DEHAR-based network harvested the most
energy of the three networks and it is the only one that showed an ability to
help drained nodes recover.

This work, therefore, validates the formal conceptual framework and shows
that global properties of interesting energy-harvesting-aware routing protocols
can be analyzed using the simulator.
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Abstract. In this paper we present briefly some of the engineering applications 
of the OTS/CafeOBJ method, conducted by researchers of the National  
Technical University of Athens in recent years. Such domains of applications 
include reactive rule-based systems, context-aware adaptive systems and the 
design by contract paradigm. Other case studies conducted include modeling 
and verification of Social Networks, Semantic Web and Mobile Digital Rights 
Management Systems.Finally, we present a summary of the lessons learned 
from these applications. 

Keywords: OTS/CafeOBJ method, Case studies. 

1 Introduction 

Specification with the OTS/CafeOBJ methodology is a very powerful approach for 
the verification of systems design [9]. The abstraction level provided by the hidden 
algebra formalization allows the engineer to work at a very high level, and to focus on 
the design rather than the implementation details [16]. This can drastically reduce the 
complexity of the verification effort. Also, CafeOBJ uses theorem proving which is 
based on rewriting. Rewriting is an efficient way of implementing equational logic 
and we believe that this approach is easier to learn than other verification techniques 
based on higher logic.  

This paper presents in brief some of the ongoing research under deployment at the 
National Technical University of Athens, Greece (CafeOBJ@NTUA). For more de-
tails please consult the blog http://cafeobjntua.wordpress.com/. The research on the 
engineering applications of the algebraic specification language CafeOBJ [15] and the 
OTS/CafeOBJ method [29] at NTUA, began at 2004 (six doctoral dissertationsand ten 
final year Diploma theses have either been completed or are still in progress at vari-
ous stages). Historically, the first results were published in conference proceedings 
and the main topic of these early conference papers was about the modeling and veri-
fication of mobile systems [31-32]. The main journal publication of this first period of 
research was [30].  This was followed by case studies about modeling and verification 
of authentication protocols for sensor networks, which were conducted [33-35] with 
some interesting results; from them, valuable lessons were learned about the 
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OTS/CafeOBJ method and its real-time extension.More diploma theses followed that 
focused on the verification of mobile DRM standards and the formal analysis of the 
MPEG-2 encoding algorithm and their results were presented in [43] and [25-26], 
respectively. A formal approach to detect malicious users in Social Networks by 
adapting the Confidant protocol of ad-hoc networksis an example of a domain appli-
cation currently under consideration. 

1.1 Prerequisites 

OTS. An Observational Transition System (OTS) [29] is a distributed system that can 
be written in terms of equations. Assuming that there exists a universal state space Y 
and that each datatype D we need to use (including their equivalence relationship) has 
been declared in advance, an OTS S is formally defined as a triplet S = <O,I,T> 
where: 

• O is a finite set of observers. Each o ϵ O is a functiono : Y → D, where D is a data 
type that may differ from observer to observer. Given an OTS S and two states u1, 
u2, the equivalence u1 =s u2 between them with respect to S is defined as; for all o ϵ 
O, o(u1) = o(u2), i.e. two states are considered behaviorally equivalent if all the ob-
servers return for these states the same data values. 

• I is the set of initial states such that I is a subset of Y. 
• T is a set of conditional transitions. Each τ ϵ Τ is a function τ : Y → Yand pre-

serves the equivalence between two states;if u1 =s u2 then τ(u1) =s τ(u2). For each u ϵ Y, τ(u) is called the successor state of u wrt τ. The condition cτ is called the effec-
tive condition of τ. Also, τ(u) = u  if not cτ(u). Finally, observers and transitions 
may be parameterized by data type values. 

CafeOBJ. CafeOBJ is an algebraic specification language and processor [9]. In a 
CafeOBJ module we can declare sorts, operators, variables and equations. There ex-
ists two kinds of sorts; visible sortsthat denote abstract data types and hidden sorts 
that denote the state space of an abstract machine. Two kinds of behavioral operators 
can be applied to hidden sorts: action and observation operators. An observation op-
erator can only be used to observe the inside of an abstract machine while an action 
operator can change its state. Declarations of observation operators and action opera-
tors start with the keywords bop or bops, and those of other operators start with op 
or ops. Finally, declarations of equations start with eq, and those of conditional ones 
with ceq.  

OTS in CafeOBJ. Observational transition systems can be described as behavioral 
specifications in CafeOBJ [29]. The universal state space Y of an OTS is denoted in 
CafeOBJ by a hidden sort and an observer by an observation operator. Any initial 
state in I is denoted by a constant and a transition by an action operator. The  
transitions are defined by describing what the value, returned by each observer in the 
successor state becomes, when the transitions are applied in an arbitrary state u. For 
expressing the effective conditions, conditional equations are used. Finally, in  
the OTS/CafeOBJ theorem proving technique the CafeOBJ system verifies the  
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desiredproperties by using the equations of the theory that defines the OTS as left to 
right rewrite rules. 
 
Behavioral Object Composition. A methodology for behavioral object composi-
tion,which is naturally supported by CafeOBJ, has been defined in [8, 40]. This me-
thodology is hierarchical, since the composition of behavioral objects yields another 
behavioral object. One of the most important contributions of this methodology is that 
it enables the reuse of not only the specifications of the composing objects but their 
proofs as well. The main technical concept underlying the composition method is 
projection operators; these are special observers defined for each composing object to 
obtain its state from the state of the composed object. There are several ways to com-
pose an object.  Parallel Composition (without synchronization),dynamic composition 
(in which component objects are created and deleted dynamically), and composition 
with synchronization, generalizing both former operators [8]. 

2 Ongoing Research 

The first topic we present briefly in this section is the modeling of reactive rule-based 
systems, which are systems that react to the detection of events with appropriate ac-
tions, and are defined by reactive rules. The second is context-aware adaptive systems 
and the need for their formal specification and verification.These systems use infor-
mation from their context and adapt their behavior to cope with changes on it. The 
third topic is on-going research on how to combine the OTS/CafeOBJ approach with 
the Design by Contract paradigm to create a new software development methodology. 
The forth case study is about the Semantic Web and an attempt to reason about its 
technologies in a unified way [27]. The fifth is about the formalization of Social net-
works and the verification of some critical properties these should enjoy [22].The 
final topic presents several results[45,41 and 42] from the application of algebraic 
specifications to the mobile Digital Rights Management standard of the Open Mobile 
Alliance. 

2.1 Reactive Rule-Based Systems 

Reactive rules expressed by Rule Markup Languages are used to define reactive rule-
based systems/agents. Such systems are needed for bridging the gap between the ex-
isting Web, where data sources can only be accessed to obtain information, and the 
dynamic Web, where data sources are enriched with reactive behavior. Examples of 
reactive rule-based systems are e-commerce platforms that react to user actions (put 
an item in the basket), web services that react to notifications (SOAP messages) and 
active databases. The use of reactive rules to specify such reactive systems in a dec-
larative way seems promising. They can supportad-hoc, flexible and dynamic 
workflows that can change at run-time. This allows the system designer to modifythe 
system if the requirements change.  
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Table 2. Invariant properties of the traffic monitoring system 

CafeOBJ notation 

eq inv1(S,N1,N2) = 
not(received(camera(S,N1), 
N2) and received(camera 
(S,N2),N1)) . 

 
eq inv2(S,N1,N2) = 
not(received(camera(S,N1), 
N2) and cansend(camera 
(S,N1),N2)) . 

2.2 Context-Aware Adaptive Systems 

Context-aware adaptive systems are new-technology mobile systems that can sense 
their physical environment (context) and adapt their behavior accordingly. Context 
can be defined as any information that is used to characterize the situation of an entity 
[7]. In the above definition, an entity can be a person, place, or object that is consi-
dered relevant to the interaction between a user and an application, including the user 
and application themselves. Recently, context-awareness has been adopted in the 
development of critical applications. Thus, the need for modeling and verifying the 
behavior of such systems has become stronger.  

In [23] we have applied the OTS/CafeOBJ method to context-aware adaptive sys-
tems.We usedthe methodology of behavioral object composition for the modeling of 
context-aware systems.It wasthen possible to define separately the functionalities of 
the components of the system but also define their interaction. We argue that in this 
way, the proposed framework can naturally express the entity-context dependency 
and the adaptation of the system to cope with changes in the context.A case study of a 
context-aware adaptive system fora decentralized traffic monitoring system is pre-
sented in [20]. This system consists of cameras that monitor the road and communi-
cate through ping-echo messages in order to report failures of cameras. To demon-
strate the expressiveness of our framework we applied it to this traffic monitoring 
system and proved some security properties using the OTS/CafeOBJ methodology. 

Two of the safety properties that were required for the system are shown in table 2. 
The first property states that it is not possible for two cameras to have received ping 
messages from each other at the same time (this would result in a system deadlock). 
The second property declares that it is not possible for a camera to have received a 
ping message from another camera and to be able to send a ping message to that cam-
era. Thisproperty was used as a lemma in order to prove invariant 1. These properties 
are important for the purpose of this system, i.e. the communication of the cameras 
through messages in order to report failures and traffic conditions.  

2.3 Design by Contract 

Algebraic specifications in general can be used in at least two ways. The first and 
most commonly used is to take an existing system, specify it and verify the properties 
that are crucial to the behavior of the system. A disadvantage of this use is that it is 
usually very costly to redesign/implement an already working system if it does not 
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satisfy the desired properties. However this is necessary when we are concerned with 
critical systems. The second, and most cost efficient use, is to apply algebraic specifi-
cations to design the system and verify its behavior before it is created. In this case if 
an error is found, i.e. the system does not satisfy the desired behavior, then, only its 
specification needs to be refined and not the implementation. A disadvantage of this 
use is that there is no guarantee that the final implementation of the system will re-
spect the specification. To this end, there has been some research to use CafeOBJ 
specifications to generate Java code [11, 12]. However, due to the behavioral nature 
of CafeOBJ specifications, in many cases the generated Java code is not usable [12]. 
This makes the previous methodology not a feasible solution to the problem of obtain-
ing an implementation of a CafeOBJ specification which is a model of it. In particular 
the problem in generating code from OTS/CafeOBJ specifications can be tracked to 
the way observation functions are defined. These observations can be thought of as 
experiments conducted to a black box, i.e. only the values they return are observable 
not the way they are calculated. These values are used to characterize the state of the 
system. Thus, OTS/CafeOBJ specifications can be thought of as denoting models 
which only satisfy the specifications behaviorally, i.e. satisfy them for all given expe-
riments. Despite the difficulties of generating code from OTS/CafeOBJ specifications, 
such a methodology is highly valuable when reasoning about real life systems be-
cause many clever implementations used in practice only satisfy their specifications in 
this sense. A typical example is the traditional implementation of sets by lists, where 
union implemented by append fails to strictly satisfy basic laws like commutativity 
and idempotency, but does satisfy them behaviorally [9]. 

On the other hand, there exist specification languages based on the idea of Design 
by Contract (DbC), like the Java Modeling Language (JML [39]), which were created 
to allow the development of tools able to automatically verify that an implementation 
satisfies the specification [6]. These languages use pre- and post- conditions to de-
scribe the intended behavior of an object’s methods in the style of Hoare logic. The 
goal of DbC languages is to verify that the methods satisfy their specifications and not 
to reason about the specifications themselves (i.e. the design of the system). An ob-
vious disadvantage of this approach is that such languages are tied to a single pro-
gramming language (e.g. Java) and cannot be used to reason about systems whose 
implementation requires the combination of languages. Creating such tools for all 
possible combinations of languages does not seem feasible [16].  Additionally, the 
verification of high level security properties and the verification of infinite state sys-
tems is often not possible using solely DbC methods like JML [14, 38]. High level 
security properties usually depend on design decisions that span across several classes 
located in several packages and writing appropriate JML annotations for such proper-
ties is tedious and error-prone because these annotations have to spread all over the 
application, and thus it is not possible to verify their overall correct behavior with the 
JML tools. This is due to the fact that DbC specifications are restricted to a single 
class. Additionally, reasoning about safety properties with JML is based on modeling 
the system as a finite state automaton and thus this approach is unsuitable for many 
real life systems due to the state explosion problem.   
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We have observed that the two approaches, DbC and OTS/CafeOBJ, are comple-
mentary. Thus, despite the fact that in most cases it is not possible to generate code 
directly from an OTS/CafeOBJ specification we argue that it is possible to obtain an 
implementation that is a model of the CafeOBJ specification by first translating it to 
an equivalent JML specification. In particular we propose a software development 
methodology that allows the development of verified critical Java applications con-
sisting of the following steps: 

• The design of the system is specified using the OTS/CafeOBJ method, and the 
desired safety properties are verified by a design engineer using this specification. 

• Next, (some part of) the specification is translated to an equivalent JML.  
• The JML specification is given to a programmer for implementation  
• The Java implementation is verified against the JML specification using the exist-

ing tools. 

The equivalence between OTS/CafeOBJ and JML specifications of step 2 denotes 
that all models of the generated JML specification are models of the original 
OTS/CafeOBJ specification, i.e. showing that the translation is a refinement between 
the two specifications in the sense of [43]. To this end we have been working on a 
translation, from OTS/CafeOBJ to JML (cafe2JML). A preliminary version of this 
translation is presentedin [45]. With this methodology, the design of the system is 
verified using the OTS/CafeOBJ approach which has proved its effectiveness in very 
difficult properties and systems.  Also, because the specification is independent of the 
actual programming language it can be implemented using any combination of lan-
guages. Additionally, due to the nature of the original CafeOBJ specification, the JML 
specification can be implemented in a number of ways, allowing for code optimiza-
tion. For example consider the following OTS/CafeOBJ specification of a simple 
counter, consisting of one observation operation, read, and one transition, add: 

 
mod* COUNTER{ 
protecting(INT + BOOL) 
*[Counter]* 
opinit : -> Counter  
bop add : Int Counter -> Counter 
bop read : Counter->Int 
var I :Int .  
varC : Counter . 
op c-add : Int ->Bool .  
eq c-add(I)= I>= 0 . 
eq read(init)= 0  . 
ceq read(add(I,C))= I + read(C) if c-add(I) . 
ceq add(I,C) = C if not c-add(I).} 

The previous OTS/CafeOBJ specification will generate based on the cafe2JML trans-
lation the following JML specification which defines one method for the observation 
(that does not change the state of the object) and one for the transition (the value ofthe 
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observation when the transition is successfully applied is defined in the contract of 
add): 

public class Counter { 
//@initially (read() == 0) ; 
public Counter(){} 
public /*@ pure @*/ int read(){} 
/*@ public normal_behavior 
@ ensures( I>=0 ==> read()== \old(I + read()) ;  
@ also 
@ ensures I < 0 ==>read() == \old(read()) ; */ 
public void add(int I){}} 

This JML specification can now be implemented in several ways, however if the im-
plementation does satisfy the specification then it will retain the properties of the 
CafeOBJ specification since the JML specification is a refinement of it; 
 
public class Counter {//@initially read() == 0) ; 
privateintthe_read_value ; 
 
public Counter(int UID){the_read_value = 0;} 
public /*@ pure @*/int read(){return the_read_value ;}/*@  
 

/*@ public normal_behavior 
@ ensures (I>=0 ==>read()== \old(I + read()) ;  
@ also 
@ ensures I<0 ==>read() == \old(read()) ; */ 
public void add(intI){ 
if(I>=0)the_read_value=the_read_value + I ; } } 

To evaluate the effectiveness of this methodology we have used cafe2JML to translate 
an OTS/CafeOBJ specification (based on the specification of [40]) of a moderately 
complex ATM system. Next, we created a Java implementation based on the generat-
ed JML specification and successfully verified its compliance using the KEY-project 
[6] plugin for Eclipse Juno. A necessary next step in this research is the development 
of similar translations into other DbC languages (e.g. Spec#, a DbC language for C#).  
Applications of this methodology could also be applied to proof carrying code tech-
niques as we discuss in [44]. 

2.4 The Semantic Web and Algebraic Reasoning: Some First Applications 
Using Behavioral Specifications  

The Semantic Web aims at converting the current web into a "web of data" that can be 
processed directly and indirectly by humans and machines. There exists a strongneed 
for reasoning between and within the various components of the Semantic Web and 
we believe that behavioral algebraic specifications could fill that gap. 
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As a first step towards this direction, we have created an abstract specification of 
the Semantic Web stack using CafeOBJ [27].To demonstratehow our approach can be 
used to specifythe interaction between different SW technologies, we have modeled a 
system consisting of a set of rules and an ontology(two basic SW technologies)as a 
composite Observational Transition System (OTS).Also we showed how reasoning 
about the behavior of the rules in conjunction to the information that can be derived 
from the ontology can be performed.  

First, we specified a simple ontology consisting of the following classes: class Per-
sons, Adults, Drivers, Vehicles and Grownups. These classes describe when someone 
is a person, an adult and so on and the ontology defines the relationships between 
these classes. One such relationship is the following;Driver is a person that drives a 
vehicle. 

Each class was specified as an OTS.For example, a part of the specification of the 
class Personis presented below; according to this specification, classes are collections 
of objects and individuals are instances of objects. The observer /in observes if an 
individual belongs to a class or not. The operator assertis a transition that changes 
the state of the class by asserting that an individual belongs to that class. Finally, the 
sort thing is used to express the fact that every individual is a member of the 
class owl:Thing. 

mod* PersonCLASS{ 
pr(THINGS) 
*[personSet]* 
bop _\in_ : thing personSet ->Bool 
bop assert : thing personSet ->personSet } 

Then,the ontology wasmodeled as a composed OTS that is created from classes 
OTSswith the use of projection operators. 

mod* Ontology{ 
pr(Things + AdultClass + DriverClass + PersonCLASS + Ve-
chicleClass + GrownupCLASS) 
-- projections 
bop adults  : onto ->adultSet 
bop drivers : onto ->driverSet  
bop persons : onto ->personSet 
bopvechicles : onto ->vechicleSet} 

Using appropriate observers we defined class memberships(i.e. describewhensomeone 
is a person, an adult or a member of a certain class in general), subclass and equiva-
lence (i.e. two classes that contain the same individuals) relationships.In this way, 
class inferences (i.e. from a given class membership discover new class membership) 
performed by ontologies’ inference methodswere simulated by CafeOBJ’s rewriting 
system.One class inference that can be derived from this ontology is the follow-
ing;Drivers are grownups, which wasreduced to true using our approach. 
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Second, to demonstrate how reasoning can be performed between rules and ontol-
ogies, we defined another higher level composed OTS, called System, which has the 
ontology as component and as transitions the following rules;If someone is a grown 
up assert that his/her age is greater than 18 years, and On a register request, success-
fully register the user if he/she is older than 18 years old. 

In this higher level OTS, more complex reasoning can be performed by combining 
information from the ontology and the rules.For example one inference that can be 
madeis that;if someone is a driver he/she can register to the desired service, which 
was successfully derived using the OTS/CafeOBJ method.To conclude, we believe 
that the OTS/CafeOBJ method and its abstraction level provided by the hidden alge-
bra approachcan be particularly effective for modeling and verifying heterogeneous 
systems such as the Semantic Web. 

2.5 An Algebraic Specification of Social Networks 

We havecreated a formalization of an abstract social network as the composition of 
behavioral objects by using OTS/CafeOBJ [22].The composed OTS represents the 
social network thatconsists of an arbitrary number of Profile OTSs, which correspond 
to the profiles of the various users. Then, we verified some security properties every 
social network should enjoy,like the one shown in table 3 below. 

Following the proof scores methodology, we successfully verified that the specifi-
cation of the Profile OTS satisfies invariant 1, but its verification failed for the net-
work OTS [22]. For a sub-case of the tag transition (a transition of the social network 
OTS), CafeOBJ returned false. This case was reachable for our system and thus could 
not use any lemma to discard it.  

The problem was derived from the fact that when a user “tags” another user in a 
photo (i.e. publishes a photo with the names of the users that appear in the photo) in a 
real social network, this photo belongs to both users. This property was transferred to 
our specification and caused the violation of invariant 1. 

Table 3. A desired safety property of a social network 

Informal definition CafeOBJ notation 

A user A can see your photo P if your 
profile is open to public, or if your 
profile is visible to your friends and A 
belongs to your friends or if your pro-
file is visible to the friends of your 
friends and A belongs either to your 
friends or to the friends of your friends 
or if your profile is open to a special 
list only and user A belongs to that list 
or finally if user A is yourself. 

eq inv1(S,A,P)=((P /in pho-
toalbum(S))and not((type(S) = 

public)or((type(S) = friend) 
and (A //in friends(S)))or  
((type(S) = ffriend)and((A 
//in friendoffriends(S)or(A 
//in friends(S)))))or(myid(S) 
= A)or((type(S) =splist)and(A 
//in specialist(S)))))implies 
not view3(S,A,P) . 
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The equations defining the transition tag were: 

1.op c-tagFB : AccountidAccountid Placeholder Nat Content 
Sys ->Bool 
2. eq c-tagFB(A1,A2,PH,N,C1,S) = (A1 /in accounts(S)) and 
(A2 /in accounts(S)) and (placetype?(PH) = phototype)   
and ( type?(C1) = picture) and (A1&N&C1//in photoal-
bum(profile(A1,S))) . 
3. ceq profile(A3,tagFB(A1,A2,C1,PH, N,S)) = re-
ceive(C1,A2,PH, profile(A2,S)) if (c-
tagFB(A1,A2,PH,N,C1,S) and (A3 = A2)) . 
4. ceq profile(A3,tagFB(A1,A2,C1,PH,N,S)) = profile(A3 , 
S) if (not(A3 = A1) and c-tagFB(A1,A2,PH,N,C1,S) ) . 

Lines 1 and 2 define the effective condition and state that a user can tag another 
user in a content, if that content is a photo and is located in his photo album. Line 3 
states that if user A2 gets tagged by user A1 then the state of user A2 changes to the 
state of receiving this photo as content and storing it into his photo album. This is 
achieved by stating that the projected state of A2 changes to re-
ceive(C1,A2,PH,profile(A2,S)).Line 4 states that the profile remains un-
changed if the effective condition of the transition rule does not hold.  

By separating the specification of the network from the specifications of the pro-
files the problem was isolated to the design of the composed OTS, not the compo-
nents. This knowledge could then be used to refine the specification of the network 
while maintaining the same specification for the profile OTSs, significantly speeding 
up the refinement. 

2.6 Mobile Digital Rights Management Systems 

Digital Rights Management systems (DRMs) control many aspects of the life cycle of 
digital contents including consumption, management and distribution. The software 
responsible for these actions is called the DRM agent.Two key components of DRM 
systems are the language in which the permissions and constraints on the contents are 
expressed,and the allocation algorithm responsible for determining when an action on 
a content is authorized [13]. The languages are referred to as Rights Expression Lan-
guages (RELs) [13]. A set of permissions and constraints expressed in such a lan-
guage is called a license. In a typical scenario a user will have multiple such licenses 
installed in his agent. The Open Mobile Alliance (OMA) is a well-know DRM stan-
dard organization responsible for the creation of DRM standards in the mobile envi-
ronment [10, 13]. The research presented here is mainly focused on the specification 
and verification of these standards.  
The first problem we attempted to solve was the lack of formal semantics of the 
OMA-REL [13]. The non-existence of this semantics leads to the use of licenses 
whose behavior is uncertain, i.e. they might not behave in the way that the creator of 
the license intended. To solve this problem we defined a formal semantics for  
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Table 4. CafeOBJ specification of the constraints permitted by OMA REL 

 

mod* CONS{ 
pr(CONSTRAINT-SET+NAT+INDIV+SYSTEM+DATE+INTERV) 
op timeCount[ _ , _ ,_ ,_ ] : Nat NatNatNat -> Cons 
op count[_ , _]: Nat Nat -> Cons 
op True : -> Cons 
op accumulated[ _ , _ ] : Nat Nat -> Cons 
op individual[_ , _] : IndInd -> Cons 
op System [_ , _ ] : Sys Sys -> Cons  
op datetime[ _ , _ ] : DtDt -> Cons 
op interval[_] : Interv -> Cons} 

 
OMA-REL and specified it by using CafeOBJ [41].  For example the CafeOBJ speci-
fication of the various constraints that can be expressed by OMA REL is shown on 
table 4. This semantics together with its specification permitted the use of the rewrit-
ing logic implemented by CafeOBJ to reason about when an action on a content is 
allowed (for a given set of licenses and under a set of assumptions that define the 
environment in which the query is to be executed). In this way, it was possible to 
reason and verify the behavior of a license by eliminating any doubts about its beha-
vior [41].  

Table 5. Safety property of the original OMA algorithm 

Informal Definition CafeOBJ notation 

Whenever a license is chosen for a given 
content, then the license is valid at that 
specific time. 

eq inv1(S,L)= ((L= bes-
tLic(S)) and not (L = 
nil)) implies valid(S,L) 

Table 6. The property verified for the proposed algorithm 

Informal Definition CafeOBJ notation 

If there exists a permission P in the set of 
the originally permitted actions by a set 
of licenses LS, and after a series of satis-
factions of user requests P is no longer 
allowed, then the color of P is not white. 

eq inv1(S,P) = (P/in al-
lowed (S)) and (P/in dep-
leted (S)) implies 
not(color(S,P)= white)  

 

 
A key component of the OMA-DRM standard is the algorithm which is responsible 

for selecting what license to use when there are multiple licenses installed referring to 
the same content [13]. It has already been argued that this algorithm causes the loss of 
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rights on contents under certain circumstances [5]. We redesigned this algorithm so as 
to minimize these losses [42]. To reduce the implementation cost, the OMA algorithm 
remained at the core of the redesigned algorithm. However, we had first to verify that 
it satisfied a minimum safety property, which is shown in table 5. This was achieved 
by specifying the DRM agent as an OTS written in CafeOBJ terms and verifying the 
desired safety property with the proof scores method [46]. Next, to ensure that the 
algorithm we proposed did in fact solve the loss of rights problem, it was specified 
using the OTS/CafeOBJ method as well, and we successfully verified that indeed the 
loss of rights is minimized, the property verified can be seen in table 6. 
 
Additional Remarks. The Timed Observational Transition System (TOTS)/CafeOBJ 
method is a version of the OTS/CafeOBJ method for modeling, specificationand veri-
fication of distributed systems and protocols with real time constraints.We have 
worked on a case study from the field of source authenticationprotocols, TESLA pro-
tocol, to show the application of the method to suchcomplex systems. Our approach to 
TESLA and a summary of the experiences gained have been published at [33,37]. 

In another paper [36] we sketch some first steps towards the definition of a proto-
col algebra based on the framework of behavioral algebraic specification. Following 
the tradition of representing protocols as state machines, we use the notion of Obser-
vational Transition System to express them in an executable algebraic specification 
language such as CafeOBJ.  

Finally, we believe that the enrichment of engineering standards and notations 
(such as ASN.1) with algebraic specification techniques will help the smoother adop-
tion of formal methodologies in the community of networking. We have been work-
ing towards a software environment that can translate a protocol to an executable 
algebraic specification language such as CafeOBJ to check critical properties of sys-
tems. More on CafeOBJ/OTS, standards and ASN1 can be found at [2-4]. 

3 Some Lessons Learned and Future Work 

3.1 Lessons Learned 

In contrast to other fully automated verification approaches the proof score methodol-
ogy is computer/human interactive [29]. This allows the designer to understand why 
the design fails to meet the desired properties, if it does. So it is easier to refine the 
specification if the need arises. Proof scoresare used to verify that a property is inva-
riant by induction on the state space of the OTS. The CafeOBJ system verifies the 
inductive steps by using the equations of the theory that defines the OTS as left to 
right rewrite rules[15].However, very often the engine will stop the rewriting process 
before reaching a conclusion. It is then required from the user to split the equations 
defining the state where the rewriting stopped [29]. One of the biggest challenges 
wefaced working with the OTS/CafeOBJ methodology was to make sure that no cases 
were omitted in the proof scores. In real case studies like the above, case splitting can 
be repeated many times and, in doing so, generate proof passages (sub-proof scores) 
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in the range of hundreds. For example, a relatively simple subcase that needed to be 
verified in [46] was defined by the following equations in CafeOBJ terms: 

eq s' = use1(s) . 
eq (useReq(s) = null) = false . 
eq (best(s) = emptyLic) = false . 
eq type3?(labelCP?(find3(useReq(s),best(s))))= once . 
eq (type3?(label?(find4(useReq(s),best(s)))=once)=false . 
eqpossLic(s) = emptyLic . 
eq p /in allowed(s) = true . 
eq (p= perm3?(useReq(s),find3(useReq(s),best(s))))= 
false. 
eq (belong3?(makeReq(p),find3(useReq(s),best(s)))=false . 
eq color(s,p) = white . 
eq p /in depleted(s) = false . 
eq p /in buildPS1(find3(useReq(s),best(s)))= true . 

The engineer has to manually verify that all symmetrically defined states are ac-
counted for, i.e. check that the case defined by the following equations is also covered 
and so on. 

eq s' = use1(s) . 
eq(useReq(s) = null) = false. 
eq (best(s) = emptyLic) = false . 
eq type3?(labelCP?(find3(useReq(s),best(s))))= once . 
eq (type3?(label?(find4(useReq(s),best(s))))= once)= 
false . 
eqpossLic(s) = emptyLic . 
eq p /in allowed(s) = true . 
eq (p=perm3?(useReq(s),find3(useReq(s),best(s))))=false . 
eq (belong3?(makeReq(p),find3(useReq(s),best(s)))=false . 
eq color(s,p) = white . 
eq p /in depleted(s) = false . 
eq p /in buildPS1(find3(useReq(s),best(s)))= false . 

Checking that no case was overlooked is a tedious task, but one very important for the 
correctness of the verification. We believe that a way to systematically keep track of 
all the cases, denoting which cases are still open,would lift a big weight off the shoul-
ders of the engineers.   

Typically in a behavioral specification you define how the values of the observers 
change after the successful application of a transition rule to an arbitrary state. The 
values of these observers may be subject to other constraints as well (in addition to 
the effective condition). An interesting lesson learned during the case studies above-
was that the specifications must be as complete as possible in order to speed up the 
verification process. This means that it is equally important to define what the values 
of the observers become when these extra constraints hold as well as when they do 



 Some Engineering Applications of the OTS/CafeOBJ Method 555 

not hold, although it may seem irrelevant to the specification. For example, it may 
seem sufficient to define only the value of an observer after the application of a transi-
tion as follows [22]: 

ceq view3(acceptfriendrequest(A1,P),A3,Pi) = true if        
((type(P) = friend) and (A3 = A1)) or ((type(P) = 
ffriend) and ((A3 = A1) or (A3 //in friendsoffriends 
(P,friends(P)))))and c-acceptfriendrequest(A1,P) . 

Nevertheless, defining explicitly what the value of the observer is when the conditions 
do not hold can significantly speed up the verification. In the case above this can be 
done by using the following equation: 

ceq view3(acceptfriendrequest(A1,P),A3,Pi)= view3(P,A3 
,Pi) if not (((type(P) = friend) and (A3 = A1)) or           
((type(P) = ffriend) and ((A3 = A1) or (A3 //in friend-
soffriends(P,friends(P))))) andc-
acceptfriendrequest(A1,P)) . 

Otherwise, these unspecified cases will appear as clauses to case splitting in the veri-
fication or even make the discovery of extra lemmas necessary. A specification is 
rather complete when the CafeOBJ engine successfully proves that the default beha-
vioral equivalence (=*=) is congruent with the specification. 

Finally, during the case splitting stage of the verification it is possible to define a 
state that is unreachable w.r.t. the OTS specification. In such cases, if CafeOBJ re-
turns false as the conclusion of the induction, a lemma must be generated to discard 
this case. However, one of the advantages of the case splitting process being compu-
terhuman interactive is that an attentive engineer can reason that the proof score is 
heading towards an unreachable state at a very earlier stage, before CafeOBJ returns 
either true or false. For instance, in the following proof passage CafeOBJ returned 
neither true nor false [46].  

open ISTEP  
eq ((subl,l) = errLic) = false .   
eq belong3?(makeReq(p),find3(r,(subl , l))) = true .   
eq belong3?(makeReq(p),find3(r,subl)) = true .   
eq belong3?(makeReq(p),find3(r,(subl ,(subl' , l)))) = 
false . 
red inv7(p,r,(subl,l),subl') implies istep9 .   
close 

Nonetheless, we were able to reason that the following equations could not hold si-
multaneously in our specification, and we used them to define invariant 7. The formu-
lation of a lemma at this early stage is usually easier and can greatly reduce the size of 
the case splitting thus saving valuable time. 

belong3?(makeReq(p),find3(r,subl)) and  
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notbelong3?(makeReq(p),find3(r,(subl,subl',l)))) . 

3.2 Future Work 

Algebraic specification languages such as CafeOBJ, Maude [19] and CASL [18] have 
well-known advantages for modeling digital systems. In some cases, it is useful to 
attempt to prove that the model—usually couched as a transition system—has certain 
properties. For that purpose, some algebraic specification languages have been 
coupled with interactive theorem-proving systems; CASL, for instance, has been in-
terfaced with HOL/Isabelle [1]. We propose that CafeOBJ should be likewise coupled 
with the interactive proof environment Athena[17] (Athena+CafeOBJ). Then, we plan 
to use Athena+CafeOBJ in various domains of applications such as Semantic Web, e-
services, social networks and braid groups. This research will be part of the research 
project “THALIS” already approved by the Greek Government to promote research 
excellence.   
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Abstract. Dynamic Software Updating (DSU) is a technique for up-
dating running software systems without incurring downtime. However,
a challenging problem is how to design a correct dynamic update so that
the system after being updated will run as expected instead of causing
any inconsistencies or even crashes. The OTS/CafeOBJ method is an
effective and practical approach to specifying and verifying the design of
software. In this paper, we propose an algebraic way of specifying and
verifying the design of dynamic updates in the OTS/CafeOBJ method.
By verifying the design of a dynamic update, we can (1) gain a better
understanding of the update, e.g., how the behavior of the running sys-
tem is affected by the update, (2) identify updating points where the
dynamic update can be safely applied, (3) detect potential errors, and
hence (4) design a safer dynamic update.

1 Introduction

Software systems are inevitably subject to changes in order to fix bugs, or add
new functionality, etc. A traditional way of deploying such changes is first shut-
ting down a running system, then installing new version or applying patches,
and finally relaunching the system. However, there are a class of systems that
provide non-stoppable services such as financial transaction systems, and traffic
control systems. To update such systems, dynamic software updating DSU [1]
is an effective approach in which running software can be updated on the fly
without being shut down and relaunched.

A challenging problem with dynamic updating is how to ensure their correct-
ness and safety so that a system after being updated will behave as expected
instead of causing any inconsistencies or even crashes in the worst case. To make
sure a system can be correctly updated, it is important that the update should
be correctly designed, e.g., how state and behavior are changed, at which points
update can be safely applied, and what properties should be satisfied by updated
systems.

Several studies have been conducted on the correctness of dynamic software
updating. Duggan et al. proposed that dynamic update should be type safe in
that functions must refer to the data of desired types [2,3]. Neamtiu et al. intro-
duced the notion of version consistency, meaning that the calls between functions
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in different versions should be consistent [4]. These properties are necessary to
make sure that dynamic update is correctly performed at the code leve, but not
sufficient. A correct dynamic update also depends upon its logical design, such
as how an old system’s state and behavior are changed, and when update should
be applied. Gupta et al. proposed a formal framework to analyze the validity of
dynamic update [5] by studying whether a reachable state of the new system can
be finally reached by the updated system. However, it is generally undecidable
to check the validity of an update. Hayden et al. proposed an approach to an-
alyzing how the behavior of a system is affected by an update and whether the
change of the behavior satisfies the requirement [6]. Their approach is designed
for the updates in C programs.

Little attention has been paid to the correctness of dynamic updating at the
design level. Our previous work has shown that a correct design of an update is
equally important to its implementation, and proposed an approach to formal-
izing dynamic updating based on three updating models called invoke model,
interrupt model, and relaxed consistency model [7]. In this paper, we classify
dynamic updates into two classes, i.e., instantaneous updating model, and in-
cremental updating model in terms of how state and behavior of old system is
changed by update. We propose an approach to formalizing dynamic updates
that conform to either of the two models in the OTS/CafeOBJ method. The
OTS/CafeOBJ method is an algebraic approach to formalizing and verifying
the design of software systems [8,9]. We choose the OTS/CafeOBJ method for
its flexibility in formalization such as the support of user-defined abstract data
types, and systematic verification approaches, i.e., by compositionally writing
proof scores and searching (or model checking) [10,11]. It also supports the for-
malization and verification of infinite-state systems. Several case studies have
been conducted to demonstrate its effectiveness [12,13,14,15].

By verifying the design of dynamic updates, we can gain a better understand-
ing of the design, identify updating points where the dynamic update can be
safely applied, detect potential errors in update, and hence design a safer one.
To demonstrate the feasibility of our approach, we formalize and verify a sys-
tem, which is dynamically updated from a flawed mutual exclusion protocol to
a correct one. By verification, we find the update may cause the system into a
deadlock state. The verification result helps us find the problem that causes the
deadlock. Compared with other existing approaches [5,6], our approach is more
general in that it is not specific to some concrete dynamic updates and how
they are implemented. Those that conform to the instantaneous or incremental
updating model can be specified and verified in this approach. Moreover, it is
not specific to dynamic updates that are designed and implemented in certain
programming languages.

The rest of this paper is organized as follows. Section 2 presents the two
models of dynamic updating. Section 3 briefly introduces the OTS/CafeOBJ
method. Section 4 describes our approach to formalizing dynamic updates in
the OTS/CafeOBJ method. Section 5 shows a demonstrating example. Section
6 discusses some related work, and Section 7 concludes the paper.
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2 Models of Dynamic Software Updating

We classify dynamic updates into two classes according to how they change the
behavior and state of running systems. In one model, a running system may
be interrupted by a DSU system first before being updated. After update, it is
resumed from where it is interrupted to run the new-version code. In the other
model, there can be a period during which both the old system and the new
system run in parallel. After update is completed, the old system stops, while
the new system keeps running. We call them instantaneous updating model and
incremental updating model. In this section, we describe the two models and
introduce some typical DSU systems that conform to either of them.

2.1 Instantaneous Updating Model

In instantaneous updating model, a system that is running an old version is
first temporarily interrupted in some state when updating condition is satisfied.
Updating is then applied, e.g., loading new-version code into memory, and con-
verting the current old state into a corresponding new one that is consistent
the new version. After updating is completed, the system is resumed from the
generated state to run the new-version code. Thus, the system will behave as a
new system.

Instantaneous updating model is quite suited to dynamic updating to single-
threaded applications, such as web servers vsftpd (a commonly used FTP dae-
mon) and sshd (secure shell daemon). Many DSU systems support instantaneous
dynamic updating. Gupta et al. proposed a way of dynamic updating by using
state transfer [16]. They first suspend the running process, copy it to a new
one using state transfer, and upgrade it with new code. Hicks et al. proposed a
framework for dynamic update based on patches and state transformation [1].
Neamtiu et al. developed a tool called Ginseng for the dynamic update to single-
threaded C programs [17]. Although these DSU systems are different in terms
of their ways of implementing dynamic updates, the ways of how the behav-
ior of systems is affected by updating are the same. Namely, dynamic updates
supported by these DSU systems conform to the instantaneous updating model.

2.2 Incremental Updating Model

In incremental updating model, an old system is gradually updated to running
the new-version code. There is a period during which the old system and the new
one can run in parallel. After updating starts, the old system keeps running, and
a part of the old system can be separately updated once it satisfies the specified
updating condition. The updated part will start to run the new-version code,
with the other part of the system is still running the old-version code. After all
the system is updated, updating is completed, and the whole system behaves
like a new-version system.

Incremental updating model is well suited to dynamic updates of multi-
threaded programs and distributed systems. For instance, when updating a
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multi-threaded program, there may be some threads that cannot be updated
when update is started, e.g., because they are occupying some critical resources.
These threads have to keep running the old version until they reach some state
where updating condition is satisfied. After all threads are updated, the updating
process is completed, and the whole system executes the new version. Updat-
ing distributed systems can be considered similar to updating multi-threaded
programs by viewing each node in systems as thread.

There are some typical DSU systems supporting incremental updating. For
instance, POLUS [18] is designed and implemented for dynamic updating to
multi-threaded C programs. In POLUS, they proposed a relaxed consistency
model for dynamic updating. It allows the parallel execution of both the old
version and new version after updating starts. The states of the two versions
are bidirectionally transformable. The consistency between the two versions is
ensured by the bidirectional write-through synchronization. Podus is suited to
dynamic updating to distributed systems [19]. Kitsune [20] is a general-purpose
dynamic updating tool for both single- and multi-threaded C applications. One
common feature of them is that they all allow the co-existence of the states of
old and new versions during updating, which is different from the instantaneous
updating model. During updating, a system is partially updated when updating
condition is satisfied. Updating is gradually completed when all parts in the
system are updated.

3 The OTS/CafeOBJ Method

The OTS/CafeOBJ method is an algebraic way of formalizing, specifying and
verifying the design of software systems [8,9]. OTS is abbreviated for obser-
vational transition system, a mathematical model of state transition systems.
CafeOBJ is an executable algebraic specification language [21], which is well
suited to specify OTS. The basic idea of the OTS/CafeOBJ method is modeling
a software system as an OTS, specifying the OTS in CafeOBJ, and verifying
system’s properties using CafeOBJ’s theorem proving or searching facilities.

3.1 Observational Transition System (OTS)

In OTS, abstract data types are used to formalize values such as natural num-
bers, Boolean values, and strings in software systems. System’s states are char-
acterized by the values that are returned by a special class of functions called ob-
servers, unlike traditional state transition systems where states are represented
as sets of variables. Transitions between states are also specified by functions
which we call transitions to differ them from ordinary functions.

We suppose that all abstract data types have been predefined for the values
used in a system and denote them by D with different subscripts. Let Υ denote
a universal state space.

Definition 1 (OTSs). An OTS S is a triple 〈O, I, T 〉 such that:
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– O: A set of observers. Each observer is a function o : Υ ×Do1× . . .×Dom →
Do. Two states υ1, υ2 are equal (denoted by υ1 =S υ2) if each observer
returns the same value with the same arguments from the two states.

– I: A set of initial states s.t. I ⊆ Υ .
– T : A set of transitions. Each transition is a function t : Υ×Dt1×. . .×Dtn →

Υ . Each t preserves the equivalence between two states in that if υ1 =S υ2,
then for each yi(i = 1, . . . , n) in Dti, t(υ1, y1, . . . , yn) =S t(υ2, y1, . . . , yn).
Each t has an effective condition c-t : Υ ×Dt1 × . . .×Dtn → B, s.t. for any
state υ if ¬c-t(υ, y1, . . . , yn), t(υ, y1, . . . , yn) =S υ.

OTSs can be specified in CafeOBJ as equational specifications. Each equation
defined for initial states is in the form of:

eq o(υ0, x1, . . . , xm) = T [x1, . . . , xm] .

Keyword eq is used to declare an equation in CafeOBJ. The above equation is
defined for an observer in the form of o : Υ × Do1 × . . . × Dom → Do, where
υ0, xj(j = 1, . . . ,m) are variables of Υ and Doj respectively. T is a term of Do,
representing the value observed by o with arguments x1, . . . , xm in all initial
states.

Each equation defined for an observer o : Υ ×Do1 × . . . ×Dom → Do and a
transition t : Υ ×Dt1 . . .×Dtn → Υ is in the following form:

ceq o(t(υ, y1, . . . , yn), x1, . . . , xm) = T [υ, y1, . . . , yn, x1, . . . , xm]
if c-t(υ, y1, . . . , yn) .

Keyword ceq is used to declare a conditional equation. The equation specifies
all the values observed by o in the state t(υ, y1, . . . , yn), where yi(j = 1, . . . , n) is
a variable of Dti. The condition part is the effective condition of t, which says if
the effective condition holds, the values observed by o in the state t(υ, y1, . . . , yn)
are equal to those represented by the term T . If the effective condition does not
hold, the state t(υ, y1, . . . , yn) is equal to υ, which is formalized by the following
equation:

ceq t(υ, y1, . . . , yn) = υ if not c-t(υ, y1, . . . , yn) .

3.2 Verification in the OTS/CafeOBJ Method

Generally, there are two ways of verifying systems’ properties in the
OTS/CafeOBJ method. One is by theorem proving and the other is by searching
(or model checking).

Verification by Theorem Proving. The basic idea of verification by theorem
proving in CafeOBJ is to construct proof scores for an invariant property by using
CafeOBJ as a proof assistant. Proof scores are instructions that can be executed
in CafeOBJ. Verifying a system’s property is actually a process of writing proof
scores with humans creating the proof plan in which proof should be performed
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and CafeOBJ evaluating proof scores based on the proof plan. If proof scores
are successfully completed and they are evaluated by CafeOBJ as expected, a
desired property is proved.

The strategy of constructing proof scores is by structural induction on system
states and case analysis. In the base case, we check whether the property being
proved holds in the initial states defined in an OTS. If it holds, we continue to
deal with the induction case. Otherwise, the proof fails. In the induction case, we
make a hypothesis that the property being proved holds for a state υ, and check
whether it holds for all possible successor states of υ. If it is true, the proof is
finished, and otherwise fails. During proving, we may need to prove some lemmas,
which are necessary to prove the main property. Interested readers can refer to
[22] for more details of how to construct proof scores in the OTS/CafeOBJ
method.

Verification by Searching (or Model Checking). Searching is another way
of verifying invariant properties in CafeOBJ. By searching, CafeOBJ traverses
the states (or a bounded number of states if the states are infinite) that are
reachable from a given initial state, and check which states satisfy a specific
condition. The condition is the negation of the property in order to find coun-
terexamples of it. Once CafeOBJ returns a solution, it means that there exists
an execution path from an initial state to a state where the property does not
hold, which is considered as a counterexample for the failure of the property.

Searching in CafeOBJ is an effective way to find counterexamples, and par-
ticularly useful when the size of system’s states is reasonably small. A more ef-
ficient searching functionality is implemented in Maude [23], a sibling language
of CafeOBJ. Besides searching, Maude also provides model checking facilities
which are more efficient to find counterexamples of invariant properties and
even liveness properties. An OTS can also be specified in Maude, so that we
can use Maude’s searching and model checking facilities. Some approaches have
been proposed to automatically translate a CafeOBJ specification that specifies
an OTS into Maude for the same purpose [24,25].

Instead of using either theorem proving or searching (or model checking) for
verification, the combination of them is also useful. During constructing proof
scores for an invariant property, we can immediately stop proving once we find a
counterexample for it or for some lemma which is necessary to prove the property.
An approach called induction-guided falsification (IGF) has been proposed to
combine theorem proving and model checking based on modeling a system as an
OTS (see [26] for the details).

4 Formalization of Dynamic Updating by OTS

To design a dynamic update, we should consider five factors, i.e., the old system
Sold which is running and waiting for updating, the new system Snew which will
run after updating, updating model (instantaneous or incremental), updating
condition ϕ specifying under which condition update can be applied, and a state
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transformation function f which is used to convert an old-version state into a
new-version state.

To formalize an update, we assume that both the old and new systems Sold

and Snew have been formalized by two OTSs, i.e., Sold = 〈Oold, Iold, Told〉, and
Snew = 〈Onew, Inew, Tnew〉.

4.1 Formalization of Instantaneous Updating

Suppose that there is an instantaneous update designed to update Sold by Snew.
We define an OTS Sins with Sold and Snew to formalize an instantaneous update.
Sins is defined as follows:

Definition 2 (OTS Sins of instantaneous update). Sins = 〈Oins, Iins, Tins〉:

– Oins = Oold 1 Onew ∪ {status : Υ → B}
– Iins = {υ0|status(υ0) = false, υ0 ∈ Iold}
– Tins = Told 1 Tnew ∪ {update : Υ → Υ}.

Operator 1 denotes a disjoint union of two sets, e.g., Oold1Onew = {(o, v)|v ∈
{old, new}, o ∈ Ov}. In the paper we write ov instead of (o, v) for convenience.
Oins is a disjoint union of Oold and Onew, plus a new observer status. We view
the old system, the new system, and updating from the old system to the new
one as a whole system. In that sense, updating can be considered as an internal
adapting process in adaptive program [27]. We call the states of the whole system
super states, each of which consists of an old state and a new state, plus a flag
indicating whether the old system is updated or not. In Oins, observers that are
from Oold are used to represent the states in old system, and those from Onew

represent the states in new system. We use the observer status to represent the
status of update. It returns false in a given state if it is a state before update,
and otherwise true.

Initial states υ0 in Iins are those initial states in Iold and their status is false,
i.e., status(υ0) = false, indicating that update cannot take place before the old
system starts. Initial states of the new system are undefined in the initial states
in Iins. That is because new system runs from a state which is transformed from
an old state where update takes place. Thus, the initial states of the new system
do not affect how a system is updated.

Set Tins includes both the transitions in the old system and those in the
new one. We introduce a new transition update to formalize the behavior of
updating from Sold to Snew. The effective condition of update is represented by
a state predicate c-update : Υ → B. We assume that the updating condition is
represented by a state predicate ϕ, which returns true for a given old state when
the updating condition is satisfied, and otherwise false. We enhance ϕ. Given a
super state υ, ϕ returns true if it is true for the old state in υ, and otherwise
false. The effective condition of update can be defined by the following equation:

eq c-update(υ) = (not status(υ)) and ϕ(υ) .
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The equation says that the effective condition holds in those states before up-
dating where the updating condition is satisfied. Transition update only takes
affect in those states where c-update is true.

After update takes affect in a super state υ, the old state in υ is transformed
into a new one. It is equal to say that the new state in υ is initialized according to
the old state and transformation function. The transformation can be formalized
as a set of equations. Each of them is defined for an observer in onew in the
following from:

ceq onew(update(υ), x1, . . . , xm) = T if c-update(υ) .

The equation specifies the values observed by onew in the state update(υ). Given
parameters x1, . . . , xm, the left-hand term represents the value observed by onew
in state update(υ) with respect to x1, . . . , xm. The value equals the one of term
T which usually contains the values in the old state in υ. Especially, some values
in the new state are copies of the corresponding values in the old state. In that
case, we use the following equation to specify the new values:

ceq onew(update(υ), x1, . . . , xm) = oold(υ, x1, . . . , xm) if c-update(υ) .

The values in the old state in υ are not affected by updating. Thus, old values
in the state update(υ) are the same as those in υ. Thus, the values observed
by each observer oold are not changed. They can be defined by the following
equation:

eq oold(update(υ), x1, . . . , xm) = oold(υ, x1, . . . , xm) .

Note that the above equation is unconditional. That is because no matter the
effective condition holds or not in υ, the values in the old state in υ are not
affected by transition update.

Update only takes place once in instantaneous updating model. Thus, after
an update takes affect the status of the states afterwards is set true to indicate
update has taken place. The following equation specifies the change of status
when update takes affect:

ceq status(update(υ)) = true if c-update(υ) .

State status is only affected by update. Transitions in both old and new systems
do not change the status. For each transition t : Υ ×D1 . . .×Dn → Υ in Tv, we
have the following equation:

eq status(t(υ, y1, . . . , yn)) = status(υ) .

If the effective condition is not satisfied by a state υ, e.g., υ is a state after
updating, or the updating condition ϕ is not satisfied by υ, transition update
takes no effect on υ. This fact is specified by the following equation:

ceq update(υ) = υ if not c-update(υ) .
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The definition of each transition that is from Told or Tnew should be slightly
revised in Tins. That is because transitions from Told only take effect before
updating, while those from Tnew take effect after updating. Thus, status(υ) =
false should be a part of the effective conditions for the transitions from Told in
state υ. Similarly, status(υ) = true should be a part of the effective conditions
for the transitions from Tnew. We also need to specify the facts that the values in
the old state are not affected by any transitions from Tnew, and similarly those
in the new state are not affected by the transitions from Told. Therefore, for each
observer oold and a transition tnew, they satisfy the following equation:

eq oold(tnew(υ, y1, . . . , yn), x1, . . . , xm) = oold(υ, x1, . . . , xm) .

Similarly, for each observer onew and transition tnew, they satisfy the equation:

eq onew(told(υ, y
′
1, . . . , y

′
n′), x′1, . . . , x′m) = onew(υ, x

′
1, . . . , x

′
m′) .

In this way, we define an OTS Sins that specifies an instantaneous update from
Sold to Snew.

4.2 Formalization of Incremental Updating

Incremental updates allow concurrent execution of both old and new systems,
which makes the formalization more complicated than that of instantaneous
updates. During the current execution, an old state is gradually transformed
into new one. Each transformation may change a fragment of old state. After all
fragments of the old state are transformed, an update is completed. We divide
an old state of system Sold into a set of sub-states. Each sub-state is an updating
unit, meaning that a sub-state is either completely transformed into new one or
completely not transformed.

We make some assumptions on the old systems in order to formalize dynamic
update on it. We assume that in an old state there is a sub-set of such sub-states
they have the same data fields in an old state. To differentiate such sub-states,
let P be a set of index, and each sub-state is indexed with an element in P . We
called them indexed sub-states. We further assume that other sub-states that are
not in the sub-set must be transformed at the same time. We call them unin-
dexed sub-states. These assumptions are reasonable for the dynamic updates on
multi-threaded software systems or distributed systems. Each indexed sub-state
represents the state of a thread or node, while unindexed sub-states represent
shared values and resources in systems.

Suppose that an incremental update is designed for an old system Sold to make
it updated to a new one Snew. We define an OTS Sinc to formalize incremental
updates from Sold to Snew. We further suppose that Sold and Snew are two OTSs
modeling Sold and Snew respectively.

Definition 3 (OTS Sinc of incremental update). Sinc = 〈Oinc, Iinc, Tinc〉:

– Oinc = Oold 1 Onew ∪ O′

– Iinc = {υ0|υ0 ∈ Iold,¬started(υ0),¬updated(υ0, p),¬updated′(υ0)}
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– Tinc = Told 1 Tnew ∪ T ′

where, O′ = {started : Υ → B, updated : Υ × P → B, updated′ : Υ → B}, and
T ′ = {start : Υ → Υ, update′ : Υ → Υ, update : Υ × P → Υ}.

Oinc consists of the observers in Oold and Onew, and three new observers in O′,
i.e., started, updated and updated′. Observer started returns a Boolean value for
a given state, representing whether an update has been started or not. Observer
updated returns a Boolean value for a given indexed sub-state to indicate whether
the sub-state is updated or not. Observer updated′ returns true if sub-states are
updated by update′ in υ, and otherwise false. We assume that updates do not
start from initial states of the old system, i.e., started(υ0) = false, and each
sub-state is not yet updated, i.e., updated(υ0, i) = false for each i ∈ P , and
updated(υ0) = false.

The set Tinc is a disjoint union of Told and Tnew, plus four transitions in T ′.
Transition start specifies the starting of an incremental update. One of the con-
dition of start is that in the current state updating must have not been started.
There may be some other conditions in concrete systems to start updating. Such
conditions should also be specified as part of the effective condition of start.

Next, we explain transitions update and update′, which formalize the updat-
ing of indexed and unindexed sub-states respectively. Suppose that there is an
updating condition of updating indexed sub-states. We use a state predicate
ϕ : Υ × P → B to specify the condition. Namely, ϕ returns true for a given
super state υ and a sub-state whose identifier is i if the sub-state satisfies the
condition, and otherwise false. The effective condition of transition update can
be specified by the following equation:

eq c-update(υ, i) = ϕ(υ, i) and not updated(υ, i) .

By updating, an indexed sub-state is transformed into new corresponding
ones. We define a set of equations to specify the transformation. Each is defined
for an observer in Onew whose observed value is initialized by the transformation.
The equation is of the following form:

ceq onew(update(υ, i), x1, . . . , xm) = T if c-update(υ, i).

The above equation says in the state update(υ, i), the values observed by onew
equals T , where T is a term representing the relation between the values observed
by onew and some values in the old state.

Transition update′ can be defined likewise. We assume that there is an updat-
ing condition of unindexed sub-states according to the design of the update, and
we define a state predicate ϕ′ : Υ → B to specify the condition. The effective
condition of transition update′ can be specified by the following equation:

eq c-update′(υ) = ϕ′(υ) and not updated′(υ) .

Unindexed sub-states are transformed at the same time into new corresponding
ones. We define a set of equations to specify the transformation. Each is defined
for an observer in Onew whose observed value is initialized by the transformation.
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Since it is similar to the equations defined for update, we omit the details in the
paper.

The definitions of transitions in Tinc that are from Told and Tnew need slight
revision, like the formalization of instantaneous updates.

5 A Demonstrating Example

In this section, we use an example to demonstrate how to use the proposed ap-
proach to formalize and verify a concrete dynamic updating. We assume that
a system is running a flawed mutual exclusion protocol, and it is dynamically
updated with a correct one. We design a dynamic update that conforms to the
incremental updating model. By verification, we found that the system after be-
ing updated satisfies mutual exclusion property. However, we also found it may
go to a deadlock state. A counterexample is found. By analyzing the counterex-
ample, we give two solutions to solve the deadlock problem by modifying the
update.

5.1 An Update of a Mutual Exclusion Protocol

First, we explain the flawed mutual protocol, which is being executed by the
running system. The pseudo-code of the protocol is shown as follows:

A flawed mutual exclusion protocol and its state transition diagram
Loop “remainder section”

rs: repeat until locked = false;
ps: locked := true;

“critical section”
cs: locked := false;

ps

rscs

enterflawed waitflawed

exitflawed

Initially, each process is at the remainder section (rs). A process waits at the
pre-critical section (ps) to enter the critical section (cs) until locked becomes
false. It sets locked true, and enters the critical section. It sets locked false when
it is leaving the critical section.

The protocol does not satisfy mutual exclusion because of the non-atomicity
of the action of setting locked true and entering the critical section. It can be
solved by using an atomic operation fetch&store, which takes a variable x and
a value d, and atomically sets x to d and returns the previous value of x. The
revised protocol and the behavior of each process in it are depicted as follows:

A correct mutual exclusion protocol and its state transition diagram
Loop “remainder section”

rs: repeat while fetch&store(locked, true);
“critical section”

cs: locked := false;
rs cs

entercorr

exitcorr

When locked is false, a process atomically sets locked true and enters the critical
section. The revised protocol has been proved to satisfy mutual exclusion in
OTS/CafeOBJ method. We omit the details of the proof in the paper.
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5.2 A Dynamic Updating and Its Formalization

We consider dynamically updating the system that is running the flawed mutual
exclusion protocol to run the correct one. The update is performed in the incre-
mental updating model, and can be started at any moment. When update takes
place, the value of locked in the correct protocol is initialized with the one of
the flawed protocol. After update starts, an old process will switch to executing
the new protocol once it is at the remainder section. If an old process is not in
the remainder section, it has to continue to execute the flawed protocol until
it returns back to the remainder section. The updating is completed after all
processes are updated to the correct protocol.

To formalize the update, we first formalize the flawed protocol and the correct
one as OTSs Sflawed and Scorr respectively. Let L be the set {rs, ps, cs}, and P
be a set of processes’ identifiers. The definition of Sflawed is as follows:

Definition of OTS Sflawed for the flawed mutual exclusion protocol: Sflawed 

〈Oflawed, Iflawed, Tflawed〉.
– Oflawed 
 {pcflawed : Υ × P → L, lockedflawed : Υ → B}
– Iflawed 
 {υ0|pcflawed(υ0, p) = rsflawed ∧ ¬lockedflawed(υ0)}
– Tflawed 
 {waitflawed : Υ × P → Υ, enterflawed : Υ × P → Υ, exitflawed :

Υ × P → Υ}

There are two observers pcflawed and lockedflawed. Given a state υ and a process
identifier p, pcflawed(υ, p) returns a value in L, indicating the location of process
p in υ, and lockedflawed(υ) represents the value of the shared Boolean variable
locked in υ. Iflawed define the set of initial states, where all processes are at
the remainder section, and locked is false. Three transitions are used to specify
the corresponding three actions of each process, i.e., waiting for, entering and
leaving the critical section. We only take enterflawed for example to explain the
definitions of the transitions.

The effective condition is represented by a state predicate c-enterflawed : Υ ×
P → B. A process p can enter the critical section if it is at the ps, which can be
specified by the following equation:

eq c-enterflawed(υ, p) = (pcflawed(υ, p) = ps) .

When c-enterflawed(υ, p) is true, p enters the critical section, and locked is set
true in the state enterflawed(υ, p). The changes are specified by the following two
equations:

ceq pcflawed(enterflawed(υ, p), p
′) = (if p = p′ then cs else pcflawed(υ, p

′) fi)
if c-enterflawed(υ, p) .

ceq lockedflawed(enterflawed(υ, p)) = true if c-enterflawed(υ, p) .

In the above equation p′ is a variable of P , representing an arbitrary process.
It can be the same as p or others. The equation says that only p’s location is
changed by the transition from υ to enterflawed(υ, p). The other two transitions
can be defined likewise.
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The definition of Scorr is similar to Sflawed, except that we only need two
transitions entercorr and exitcorr to formalize process’s behavior because of the
atomicity of the operation fetch&store. We omit the detailed definition of the
two transitions.

Definition of OTS Scorr of the correct mutual exclusion protocol: Scorr 

〈Ocorr, Icorr, Tcorr〉.
– Ocorr 
 {pccorr : Υ × P → L, lockedcorr : Υ → B}
– Icorr 
 {υ0|pccorr(υ, p) = rscorr ∧ ¬lockedcorr(υ0)}
– Tcorr 
 {entercorr : Υ × P → Υ, exitcorr : Υ × P → Υ}

Having the two OTSs Sflawed and Scorr, we can formalize the dynamic update
based on Definition 3, since the update conforms to the incremental updating
model.

Definition of OTS Supd for the dynamic update: Supd 
 〈Oupd, Iupd, Tupd〉.
– Oupd = Oflawed 1 Ocorr ∪ O′

– Iupd = {υ0|υ0 ∈ Iflawed,¬started(υ0),¬updated(υ0, p),¬updated′(υ0)}
– Tupd = Tflawed 1 Tcorr ∪ T ′

O′ and T ′ are the sets of observers and transitions, which are the same as the
ones in Definition 3. The set P in the arity of observers in O′ and transitions
T ′ in Su is the same as the one in Sflawed and Scorr, indicating a set of process’s
identifiers. Namely, the state of each process in the old system is considered as
an indexed sub-state, and there is only one unindexed sub-state, i.e., the value
of locked. The update of each process and the shared Boolean variable locked
is specified by update and update′, respectively. Transition start formalizes the
starting of the update. We explain how the three transitions are defined to specify
the dynamic update.

In the example, we assume that the dynamic update can be started at any
moment. Thus, there is no extra condition for the transition start except that
the update has not been started. After the transition start, the system starts to
be updated. Thus, the effective condition of start and the change of the value
observed by started can be defined by the following two equations:

eq c-start(υ) = not started(υ) .

ceq started(start(υ)) = true if c-start(υ) .

After an update starts, a process must be updated if it is in the remainder
section and not yet updated. Thus, we declare the following equation to define
the effective condition of update:

eq c-update(υ, p) =

started(υ) and not updated(υ, p) and pcflawed(υ, p) = rs .

Once a process is updated, it goes into the remainder section of the correct
protocol, and is marked as updated. The following two equations specify this
updating.
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ceq pccorr(update(υ, p), p
′) =

(if p = p′ then rscorr else pccorr(υ, p
′) fi) if c-update(υ, p) .

ceq updated(update(υ, p), p′) =

(if p = p′ then true else updated(υ, p′) fi) if c-update(υ, p) .

Transition update′ can be defined likewise. It specifies the updating of the
unindexed sub-state, i.e., the value observed by lockedflawed. We assume that the
value can be updated at any state after the update has been started. After being
updated, the value observed by lockedcorr is initialized by the value observed by
lockedflawed. The following two equations specify the effective condition and the
initialization of the value observed by lockedcorr due to the updating.

eq c-update′(υ) = started(υ) and not updated′(υ) .

ceq lockedcorr(update
′(υ)) = lockedflawed(υ) if c-update′(υ) .

5.3 Verification of the Dynamic Update

One basic property the system should enjoy after being updated is mutual ex-
clusion. Another property is deadlock freedom in that the system after being
updated should never reach to a deadlock state. A deadlock state is that the
value of lockedcorr is true but no process is at the critical section. Thus, no pro-
cess can enter the critical section and the value observed by lockedcorr is always
true, leading to deadlock.

Verification by Theorem Proving. For the mutual exclusion property, it is
equal to say that for any state υ which is reachable from an initial state in Iu
and any two processes p1 and p2, if both p1 and p2 are at the critical section of
the correct protocol after the system is updated, p1 and p2 must be the same
one. We use a state predicate μ : Υ × P × P → B to formalize it.

eq μ(υ, p1, p2) =

(pccorr(υ, p1) = cscorr and pccorr(υ, p2) = cscorr implies p1 = p2) .

We prove in CafeOBJ that μ(υ, p1, p2) is true for any p1, p2 in P , and any υ
which is reachable from initial states in Iupd. The proof is based on structural
induction. Three lemmas are used in the proof. The lemmas are also proved in
the same way in CafeOBJ. We omit the details of the proof since it is not the
emphasis of the paper.

Verification by Searching. For the deadlock freedom property, we verify that
a deadlock state can never be reached from any initial state in Iu by using
searching in CafeOBJ. If there are a limited number of processes running in the
system, it is feasible to search all possible states that are reachable from initial
states, and check whether there is a deadlock state.

In the example, we assumed that there are only two processes in the system
and denoted them by pi and pj , respectively. Let υ0 be the corresponding initial
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state in the old system. We want to verify that from υ0 there is no such a state
where pi and pj are not in the critical section of the correct protocol but the
value of locked in the correct protocol is true.

We define a state predicate ρ : Υ → B which returns true if a given state υ is
a deadlocked state.

eq ρ(υ) = (pccorr(υ, pi) = rs and pccorr(υ, pj) = rs and lockedcorr(υ)) .

We use the following CafeOBJ command to search a state υ from υ0 such that
ρ(υ) is true.

red υ0 =(*,*)=>* υ suchThat ρ(υ) .

CafeOBJ returns a state as shown by D in Fig. 1, which means that from the
initial state υ0 there is a path for the system to reach a deadlocked state.

ps

rs

cs

rs

cs

ps

cs

csc

⇒∗

⇓

⇐∗

∗

A B

CD

• : pi, ◦ : pj,© : location, : true, : false, ⇒∗: n-step transition (n ≥ 0).

Solid symbols:the flawed mutual exclusion protocol, dashed symbols: the correct protocol.

The meaning of notations:

rs

rsrs

rs

rs rs

cs cs cs

cs

psps

Fig. 1. A counterexample for the deadlock freedom property caused by the updating

The dynamic update is obviously not safe because the system after being
updated may go into a deadlocked state, though the correct mutual exclusion
protocol is deadlock free. From the counterexample shown in Fig. 1, we recognize
the reason why deadlock happens. Diagram A in the figure denotes the initial
state. It goes to B after pi enters the critical section, and locked in the flawed
protocol is true in B. Then, updating happens. Process pj goes to the remainder
section of the correct protocol, and locked in the correct protocol is set to be
the value of locked in the flawed protocol, i.e., true, as shown in C. From C, pi
leaves the critical section in the flawed protocol, and gets updated at remainder
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section. The whole system reaches D, which is a deadlocked state. One solution
is to set an updating condition for the update of locked. Namely, locked in the
flawed mutual exclusion protocol can be updated only if it is false. We revised
the OTS Scorr based on this change, and verified the deadlock freedom property
again with the new OTS. CafeOBJ returns no solutions, meaning that the revised
dynamic update does not cause deadlock after the system is updated.

6 Related Work

Several studies have been conducted on the correctness of dynamic software up-
dating. They can be grouped into two classes. One studies the correctness at the
code level, such as type safety [2,3] and version consistency [4] as described in
Section 1. They are necessary properties that should be satisfied by any dynamic
updates to make sure systems after being updated can run correctly. The other
class is about the correctness at a higher abstract level, such as validity [16]
and behavioral correctness [6]. They are also useful to analyze how a running
system’s behavior is changed due to updating. However, their formalization is
still at the code level, which may bring difficulties for verification, e.g., the unde-
cidability of validity due to the halting problem of programs [16]. In our earlier
work, we classified dynamic updates into three classes according to how they are
implemented, i.e., interrupt model, invoke model, and relaxed consistency model
[7]. Regardless of the difference in implementation, updates in interrupt model
and invoke model can be considered as instantaneous updates, and those in re-
laxed consistency model as incremental updates. In that sense, the classification
of dynamic updates as instantaneous and incremental updates is more general.

A similar approach has been proposed to study the correctness of adaptive
programs [27], i.e., the adaption of a system between programs due to the sur-
rounding environment. They classified adaptions into different models such as
one-point adaption, guided adaption and overlap adaption. They used a con-
crete example to illustrate their idea of how to formalize the adaptions. At the
behavior level, the adaption of a system can be viewed as a special kind of “up-
dating”, and thus we believe that our formalization approach can also be used
to formalize the adaption of systems.

7 Conclusion

We have presented an approach to formalizing and verifying the design of dy-
namic software updates in the OTS/CafeOBJ method. We classified dynamic
updates into two models, i.e., instantaneous updating model and incremental
updating model. A dynamic update that conforms to either of the two models
can be formalized as an OTS, with which we can formally analyze the update by
verifying whether it satisfies the desired properties. By verification we can un-
derstand better how a system’s behavior is affected by an update, find updating
points where an update can be safely applied, and detect some potential errors
in an update such as errors in state transformation or updating condition. Our
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approach is general in that it is neither specific to a concrete update nor to the
updates that are specific to a concrete programming language.

We are considering conducting more case studies on practical dynamic up-
dates with the proposed approach. Potential cases are dynamic updates to some
prevalent web applications such as vsftpd and sshd. Updates to these applica-
tions confirm to instantaneous updating model. Some are dynamic updates to
multi-threaded applications such as Apache HTTP server. They have been used
as benchmarks by some DSU systems such as POLUS [18], Ginseng [17]. How-
ever, they focus on the implementation of these updates, but pay little attention
to their correctness such as whether the system after being updated satisfies
the properties that are supposed to be satisfied by the system of the new ver-
sion. Such questions can be answered by verifying these dynamic updates in our
proposed approach.

References

1. Hicks, M., Nettles, S.: Dynamic software updating. ACM TOPLAS 27, 1049–1096
(2005)

2. Duggan, D.: Type-based hot swapping of running modules. In: Functional Pro-
gramming, vol. 36, pp. 62–73. ACM (2001)

3. Stoyle, G., Hicks, M., Bierman, G., et al.: Mutatis mutandis: safe and predictable
dynamic software updating. ACM TOPLAS 40, 183–194 (2005)

4. Neamtiu, I., Hicks, M., Foster, J., et al.: Contextual effects for version-consistent
dynamic software updating and safe concurrent programming. In: POPL, vol. 43,
pp. 37–49. ACM (2008)

5. Gupta, D., Jalote, P., Barua, G.: A formal framework for on-line software version
change. IEEE Transactions on Software Engineering 22(2), 120–131 (1996)

6. Hayden, C.M., Magill, S., Hicks, M., Foster, N., Foster, J.S.: Specifying and verify-
ing the correctness of dynamic software updates. In: Joshi, R., Müller, P., Podelski,
A. (eds.) VSTTE 2012. LNCS, vol. 7152, pp. 278–293. Springer, Heidelberg (2012)

7. Zhang, M., Ogata, K., Futatsugi, K.: Formalization and verification of behavioral
correctness of dynamic software updates. Electr. Notes Theor. Comput. Sci. 294,
12–23 (2013)

8. Futatsugi, K., Goguen, J.A., Ogata, K.: Verifying design with proof scores. In:
Meyer, B., Woodcock, J. (eds.) Verified Software. LNCS, vol. 4171, pp. 277–290.
Springer, Heidelberg (2008)

9. Ogata, K., Futatsugi, K.: Proof scores in the OTS/CafeOBJ method. In: Najm, E.,
Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 170–184.
Springer, Heidelberg (2003)

10. Ogata, K., Futatsugi, K.: Compositionally writing proof scores of invariants in the
OTS/CafeOBJ method. J. UCS 19, 771–804 (2013)

11. Ogata, K., Futatsugi, K.: Simulation-based verification for invariant properties in
the OTS/CafeOBJ method. Electr. Notes Theor. Comput. Sci. 201, 127–154 (2008)

12. Kong, W., Ogata, K., Futatsugi, K.: Towards reliable E-Government systems with
the OTS/CafeOBJ method. IEICE Transactions 93-D, 974–984 (2010)

13. Hasebe, K., Okada, M.: Formal analysis of the ikp electronic payment protocols.
In: Okada, M., Babu, C. S., Scedrov, A., Tokuda, H. (eds.) ISSS 2002. LNCS,
vol. 2609, pp. 441–460. Springer, Heidelberg (2003)



Verifying the Design of Dynamic Software Updating 577

14. Ogata, K., Futatsugi, K.: Formal verification of the horn-preneel micropayment
protocol. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI
2003. LNCS, vol. 2575, pp. 238–252. Springer, Heidelberg (2002)

15. Ogata, K., Futatsugi, K.: Formal analysis of the bakery protocol with consideration
of nonatomic reads and writes. In: Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS,
vol. 5256, pp. 187–207. Springer, Heidelberg (2008)

16. Gupta, D., Jalote, P.: On-line software version change using state transfer between
processes. Software: Practice and Experience 23, 949–964 (1993)

17. Neamtiu, I., Hicks, M.W., Stoyle, G., et al.: Practical dynamic software updating
for c. In: PLDI, ACM SIGPLAN, pp. 72–83 (2006)

18. Chen, H., Yu, J., Hang, C., et al.: Dynamic software updating using a relaxed con-
sistency model. IEEE Transactions on Software Engineering (99), 679–694 (2011)

19. Segal, M., Frieder, O.: On-the-fly program modification: Systems for dynamic up-
dating. IEEE Software 10, 53–65 (1993)

20. Hayden, C.M., Smith, E.K., Denchev, M., Hicks, M., Foster, J.S.: Kitsune: Efficient,
general-purpose dynamic software updating for c. In: Proceedings of the ACM
International Conference on Object Oriented Programming Systems Languages
and Applications, pp. 249–264. ACM (2012)

21. Diaconescu, R., Futatsugi, K.: CafeOBJ report: The language. In: Proof Tech-
niques, and Methodologies for Object-Oriented Algebraic Specification, vol. 6
(1998)

22. Ogata, K., Futatsugi, K.: Some tips on writing proof scores in the OTS/CafeOBJ
method. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Goguen
Festschrift. LNCS, vol. 4060, pp. 596–615. Springer, Heidelberg (2006)

23. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

24. Zhang, M., Ogata, K., Nakamura, M.: Translation of state machines from
equational theories into rewrite theories with tool support. IEICE Transactions
on Information and Systems 94-D, 976–988 (2011)

25. Nakamura, M., Kong, W., et al.: A specification translation from behavioral spec-
ifications to rewrite specifications. IEICE Transactions 91-D, 1492–1503 (2008)

26. Ogata, K., Nakano, M., Kong, W., Futatsugi, K.: Induction-guided falsification.
In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 114–131.
Springer, Heidelberg (2006)

27. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive soft-
ware. In: ICSE, pp. 371–380. IEEE (2006)



On Automation of OTS/CafeOBJ Method
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Abstract. The proof scores method is an interactive verification method
in algebraic specification that combines manual proof planning and re-
duction (automatic inference by rewriting). The proof score approach
to software verification coordinates efficiently human intuition and ma-
chine automation. We are interested in applying these ideas to transi-
tion systems, more concretely, in developing the so-called OTS/CafeOBJ
method, a modelling, specification, and verification method of observa-
tional transition systems. In this paper we propose a methodology that
aims at developing automatically proof scores according to the rules of an
entailment system. The proposed deduction rules include a set of generic
rules, which can be found in other proof systems as well, together with a
set of rules specific to our working context. The methodology is exhibited
on the example of the alternating bit protocol, where the unreliability of
channels is faithfully specified.

1 Introduction

This paper is focused on developing the OTS/CafeOBJ method, a modeling,
specification and verification method of Observational Transition Systems (OTS),
which has been previously explored in many case studies [22,8,21,7]. The log-
ical framework used to develop the methodology is that of constructor-based
order-sorted preorder algebra. The signatures are enhanced with a set of con-
structor operators, the sorts of constructors are called constrained, and the sorts
that are not constrained are called loose. The models are those algebras that are
reachable w.r.t. given constructors [1]. For example, given an algebraic signature
(S, F ), where S is the set of sorts and F is the family of function symbols, an
(S, F )-algebra A is reachable w.r.t constructors F c ⊆ F if for any element a ∈ A
there exists a set Y of variables of loose sorts, an evaluation f : Y → A, and a
constructor term t ∈ T(S,F c)(Y ) such that f(t) = a, where f : T(S,F c)(Y )→ A is
the unique extension of f : Y → A to a (S, F c)-morphism. The formulas consist
of universally quantified conditional atoms, where the atomic sentences are of
three types: equations, membership and preorder axioms. 1

The advantages provided by the expressiveness of constructor-based logics
have been previously explored in [2,1], where a method for proving coinductive

1 In Maude literature preorder axioms are known as rewrite rules.
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properties is presented. We propose a methodology for proving inductive prop-
erties of OTS specified with constructor-based logics. Only universally quanti-
fied conditional sentences are considered, a restriction that makes it possible
to use term rewriting to verify system properties. We are interested in reach-
ing a greater level of automation than in [21,8,7,22] by designing proof rules
meant to be used for developing more complex proof tactics, which are imple-
mented in Constructor-based Inductive Theorem Prover (CITP) [11]. In com-
parison with the previous approaches to verifying OTS, the proof scores consist
of simple CITP commands. This has the advantage of making the proofs shorter
and allowing automated reasoning. The present paper presents the verification
methodology supported by CITP.

In [17] a subset of authors give a set of proof rules for constructor-based log-
ics at the abstract level of institutions [13], and a quasi-completeness result is
proved. 2 In [9], the proof rules are lifted up at the level of specifications such that
quasi-completeness is preserved for the specifications with loose semantics de-
notation. 3 The entailment relation is constructed as follows: a basic entailment
relation between specifications and atomic sentences is assumed which, in appli-
cations, is given by the system that assists the proof, for example CafeOBJ [5] or
Maude [4]. This relation is then extended with proof rules for the quantification
over variables of both constrained and loose sorts, logical implication, and case
analysis.

In applications, the specifications are often declared with initial semantics (see
[10] for details about the initial semantics in logics with constructors). Roughly
speaking, less models means more properties to prove, which sometimes require
new inference rules. In order to make the specification calculus defined in [9]
effective in practice, it must be enriched with specialized proof rules for the
initial data types that are often used in our methodology, and supported by
proof tactics that can often be completed automatically. A first such enrichment
is proposed in this paper.

In our approach, a goal SP ' E consists of a specification SP and a set of
formulas E rather than a single formula. By applying a proof rule to a goal
SP ' E we obtain a set of goals SP1 ' E1, . . . , SPn ' En if some preconditions
are satisfied. If it is not the case, the proof rule leaves the goal unchanged. This
slightly general view captures a natural phenomenon related to verification: not
only the formula of the initial goal is changing in the proof process but also the
specification. It is crucial for automation to design proof tactics that preserve the
confluence and termination properties in the proof process. Below we describe
the contributions to the development of OTS/CafeOBJ method:

(1) The simplest tactics implement the proof rules of the specification calculus.
We revise the entailment system defined in [9] to increase its efficiency in

2 Some proof rules contain infinite premises which can only be checked with induction
schemes. As a consequence, the resulting entailment system is not compact.

3 Loose semantics is meant to capture all models that satisfy the axioms of a specifi-
cation while initial semantics describes the initial (or standard) model of the axioms
of a specification.



580 D. Găină et al.

applications: we propose a more general simultaneous induction scheme,
and we refine case analysis such that it can be applied automatically. The
entailment system obtained is then enriched with specialised proof rules for
the predefined data types declared with initial semantics.

(2) We define also derived inference rules which are built by combination of
other tactics. For example, each of the proof rules is coupled with the re-
duction of the ground terms occurring in the formulas to prove to their
normal forms. This has the advantage of preserving the confluence property
of the specifications. We define a simple but efficient tactic to avoid non-
termination processes during verification. The underlying assumption is the
existence of a BOOL specification of boolean values which are protected since
they are used to establish the truth. This tactic reduces a goal of the form
SP ' t = t′ if C∧ b = not b∧ C′ to the empty goal set, where b is a boolean
ground term.

(3) We propose a proof strategy to build automatically a complete proof of a
goal, which basically establishes an application order of the “basic” tactics.
This proof procedure is closely linked to term rewriting and it preserves the
confluence property of specifications during verification.

The strength of the proposed methodology is exhibited on a non-trivial case
study, the alternating bit protocol (ABP). The unreliability of the communi-
cation channels is faithfully modelled by specifying dropping of elements in ar-
bitrary positions of the communication channels. This technique of modelling
non-determinism with underspecified operators and then exploiting that in the-
orem proving is possible due to the expressivity of constructor-based logics.
Structure of the paper. In Section 2, we define the proof rules of the method
and the proof strategy. In Section 3.1, we specify the ABP with unreliable com-
munication channels; the verification methodology is explained by proving a
safety property for ABP. In Section 4, we summarise the conclusions and we
give some future directions for research.

2 Proving Methodology

In this section we revise the entailment system in [9], and we enrich it with spe-
cialised proof rules for the initial data types that are often used in our method-
ology. We also propose tactics to construct proof scores automatically.

2.1 The Underlying Logic

We describe the logical framework underlying the verification methodology. The
logic presented here is more expressive than the one in [9] as it includes mem-
bership and preorder axioms besides equations.

Order-Sorted Algebra (OSA) [20]. An order-sorted signature is a triple (S,≤, F )
with (S,≤) a preorder, i.e. reflexive and transitive, and (S, F ) a many-sorted
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signature. Let Ŝ = S/≡≤ be the set of connected components of S under the
equivalence relation ≡≤ generated by ≤. The equivalence ≡≤ can be extended to
sequences in the usual way. An order-sorted signature is called sensible if for any
two operators σ : w → s and σ : w′ → s′ such that w ≡≤ w′ we have s ≡≤ s′.
Hereafter, we assume that all signatures are sensible.

An order-sorted signature morphism ϕ : (S,≤, F ) → (S′,≤′, F ′) is a many-
sorted signature morphism ϕ : (S, F )→ (S′, F ′) which

(1) preserves subsort overloading (i.e. for all σ ∈ Fw→s ∩ Fw′→s′ with w ≡≤ w′

we have ϕop
(w,s)(σ) = ϕop

(w′,s′)(σ), where ϕop
(w,s) : Fw→s → F ′

ϕ(w)→ϕ(s)), and

such that
(2) ϕst : (S,≤)→ (S′,≤′) is monotonic.

An order-sorted Σ-algebra M , where Σ = (S,≤, F ), is a many-sorted (S, F )-
algebra such that s ≤ s′ implies Ms ⊆Ms′ , and for all σ ∈ Fw→s ∩ Fw′→s′ with
w ≡≤ w′ and m ∈ Mw ∩Mw′

we have Mσ:w→s(m) = Mσ:w′→s′ (m). For each

connected component [s] ∈ Ŝ we let M[s] denote the set
⋃

s′∈[s] Ms′ . An order-

sorted Σ-homomorphism h : M → N is a many-sorted (S, F )-homomorphism
such that for all s ≡≤ s′ and m ∈ Ms ∩Ms′ we have hs(m) = hs′(m). This
defines a category ModOSA(Σ).

Proposition 1. [20] The category ModOSA(Σ) has an initial term algebra TΣ

defined as follows:

– if (w, s) ∈ S∗ × S, σ ∈ Fw→s and t ∈ (TΣ)
w then σ(t) ∈ (TΣ)s,

– if s0 ≤ s, t ∈ (TΣ)s0 then t ∈ (TΣ)s.

Order-Sorted Preorder Algebra (OSPA) [6]. An order-sorted preorder Σ-algebra
M , where Σ = (S,≤, F ), is an order-sorted algebra with an additional preorder

structure (M[s],≤[s]) for each connected component [s] ∈ Ŝ. An order-sorted
preorder Σ-homomorphism h : M → N is an order-sorted homomorphism which
preserves the preorder structure. This defines a category ModOSPA(Σ).

A signature morphism ϕ : (S,≤, F )→ (S′,≤′, F ′) induces a forgetful functor
ModOSPA(ϕ) : ModOSPA(S′,≤′, F ′)→ModOSPA(S,≤, F ) defined as follows:

– for each order-sorted preorder algebra M ′ ∈ |ModOSPA(S′,≤′, F ′)|,
• ModOSPA(ϕ)(M ′)s = M ′

ϕ(s) for all s ∈ S,

• ModOSPA(ϕ)(M ′)σ = M ′
ϕ(σ) for all (w, s) ∈ S∗ × S and σ ∈ Fw→s,

• m1 ≤[s] m2 whenever m1 ≤[ϕ(s)] m2 for all [s] ∈ Ŝ and m1,m2 ∈
ModOSPA(ϕ)(M)[s].

– for each order-sorted preorder homomorphism h′ ∈ ModOSPA(Σ′),
• ModOSPA(ϕ)(h′)s = h′

ϕ(s) for all s ∈ S.

We denote by �ϕ the functor ModOSPA(ϕ). If M ′�ϕ= M then we say that M ′

is a ϕ-expansion of M , and M is the ϕ-reduct of M . If ϕ is a signature inclusion
then we may write M ′�(S,≤,F ) instead of M�ϕ.

For each order-sorted signature Σ = (S,≤, F ) there are three kinds of atomic
sentences:
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(1) equational atoms t = t′, where t, t′ ∈ (TΣ)[s] and [s] ∈ Ŝ,

(2) membership atoms t : s, where t ∈ (TΣ)[s] and [s] ∈ Ŝ,

(3) preorder atoms t⇒ t′, where t, t′ ∈ (TΣ)[s] and [s] ∈ Ŝ.

The set SenOSPA(Σ) of sentences consists of universally quantified conditional
atoms of the form (∀X)atm if atm1∧. . .∧atmn, whereX is a finite set of variables
for Σ, and atm, atmi are atoms. Each order-sorted signature morphism ϕ : Σ →
Σ′ determines a function SenOSPA(ϕ) : SenOSPA(Σ) → SenOSPA(Σ′) which
translates the sentences symbol-wise. When there is no danger of confusion we
denote SenOSPA(ϕ) simply by ϕ.

The satisfaction of a sentence by a model M ∈ ModOSPA(Σ), where Σ =
(S,≤, F ), is defined by induction on the structure of the sentences:

– M |=Σ t = t′ iff Mt = Mt′ ,
– M |=Σ t : s iff Mt ∈Ms,
– M |=Σ t⇒ t′ iff Mt ≤[s] Mt′ ,
– M |=Σ atm if atm1 ∧ . . . ∧ atmn iff M |=Σ atmi for all i ∈ {1, . . . , n} implies

M |=Σ atm,
– M |=Σ (∀X)ρ iff for all ιX -expansions M ′ of M we have M ′ |=Σ[X] ρ.

where t, t′ ∈ (TΣ)[s] are terms, s ∈ S is a sort, atm if atm1 ∧ . . . ∧ atmn ∈
SenOSPA(Σ) is a quantifier-free sentence, (∀X)ρ ∈ SenOSPA(Σ) is any sentence,
ιX : Σ ↪→ Σ[X ] is the extension of Σ with constants from X .

Proposition 2 (The satisfaction condition). For all signature morphisms
ϕ : Σ → Σ′, models M ′ ∈ ModOSPA(Σ′) and sentences ρ ∈ SenOSPA(Σ) we
have M ′�ϕ|=Σ ρ iff M ′ |=Σ′ ϕ(ρ).

Proof. Straightforward, by induction on the structure of the sentences. #$

Constructor-based Order-Sorted Preorder Algebra (COSPA). We apply the
ideas from [17] to define the constructor-based version of OSPA. A constructor-
based order-sorted signature (S,≤, F, F c) consists of an order-sorted signature
(S,≤, F ) and a subfamily of sets of operation symbols F c ⊆ F . A sort s ∈ S is
constrained if there exists w ∈ S∗ such that F c

w→s �= ∅. Let Sc be the set of con-
strained sorts and Sl = S−Sc the set of loose sorts. M ∈ ModOSPA(Σ) is reach-
able w.r.t. the constructors in F c if there exists a function f : Y →M , where Y is
a set of variables of loose sorts, such that f#

s : (T(S,≤,F c)(Y ))s →Ms is surjective

for all s ∈ Sc, where f# : T(S,≤,F c)(Y )→M�(S,≤,F c) is the unique extension of f
to a (S,≤, F c)-homomorphism. The notion of reachability generalises the one in
[1] to the order-sorted case. Let ModCOSPA(S,≤, F, F c) ⊆ ModOSPA(S,≤, F )
be the full subcategory of reachable order-sorted preorder algebras.

A constructor-based order-sorted signature morphism ϕ : (S,≤, F, F c) →
(S′,≤′, F ′, F ′c) consists of an order-sorted signature morphism ϕ : (S,≤, F ) →
(S′,≤′, F ′) such that

(1) constructors are preserved along the signature morphisms, i.e. if σ ∈ F c then
ϕ(σ) ∈ F ′c,



On Automation of OTS/CafeOBJ Method 583

(2) no “new” constructors are introduced for “old” constrained sorts, i.e. if s ∈
Sc and σ′ ∈ (F ′c)w′→ϕ(s) then there exists σ ∈ F c

w→s such that ϕ(σ) = σ′,
and

(3) if s′0 ∈ S′ and s ∈ Sc such that s′0 ≤′ ϕ(s) then there exists s0 ∈ S such that
s0 ≤ s and ϕ(s0) = s′0.

Proposition 3. For all constructor-based order-sorted signature morphisms ϕ :
(S,≤, F, F c) → (S′,≤′, F ′, F ′c), M ′ ∈ |ModCOSPA(S′,≤, F ′, F ′c)| implies
M ′�ϕ∈ |ModCOSPA(S,≤, F, F c)|.

Proof. Let ϕc : (S,≤, F c)→ (S′,≤, F ′c) be the restriction of ϕ to constructors.
It suffices to prove that for all sets Y ′ of variables for (S′,≤′, F ′c, F ′) of loose sorts
there exists a set Y of variables for (S,≤, F, F c) of loose sorts and an assignment
f : Y → T(S′,≤′,F ′c)(Y

′)�ϕc such that the unique extension f# : T(S,≤,F c)(Y )→
T(S′,≤′,F ′c)(Y

′)�ϕc of f to a (S,≤, F c)-homomorphism is a surjection.
Let Y ′ be a set of loose variables for (S′,≤′, F ′, F ′c). We define f : Y →

T(S′,≤′,F ′c)(Y
′)�ϕc as follows:

– for all s ∈ Sc let Ys = ∅.
– for all s ∈ Sl let Ys be a set of fresh variables such that

• if ϕ(s) ∈ S′l then there exists a bijection fs : Ys → Y ′
ϕ(s), and

• if ϕ(s) ∈ S′c then there exists a bijection fs : Ys → T(S′,≤′,F ′c)(Y
′)ϕ(s).

We prove by induction on the structure of the terms t′ ∈ (T(S′,≤′,F ′c)(Y
′))s′ that

if s′ ∈ ϕ(S) then for all s ∈ ϕ−1(s′) there exists t ∈ (T(S,≤,F )(Y ))s such that

f#
s (t) = t′.

(1) For y′ ∈ Y ′
s′ : Assume that s′ ∈ ϕ(S), and fix s ∈ ϕ−1(s′). Then take

t = f−1(y′).
(2) For σ′(t′) ∈ T(S′,≤′,F ′c)(Y

′)s′ : Assume that s′ ∈ ϕ(S), and fix s ∈ ϕ−1(s′).
There exists w ∈ S∗ and σ ∈ Fw→s such that ϕ(σ) = σ′. By the induction
hypothesis, there exists t ∈ (T(S,≤,F )(Y ))w such that f#(t) = t′. It follows

that f#(σ(t)) = σ′(t′).
(3) For s′0 ≤′ s′ and t′ ∈ T(S′,≤′,F ′c)(Y

′)s′0 : Assume that s′ ∈ ϕ(S), and fix

s ∈ ϕ−1(s′). There are two cases.
(a) For s ∈ Sc: There exists s0 ∈ S such that s0 ≤ s and ϕ(s0) = s′0.

By the induction hypothesis, there exists t ∈ T(S,≤,F c)(Y )s0 such that

f#(t) = t′. It follows that t ∈ T(S,≤,F c)(Y )s and we have f#(t) = t′.
(b) For s ∈ Sl: it follows easily by the definition of f .

#$

Hereafter, we work within the context of COSPA, which is the underlying
logic of the methodology presented in this paper. For the sake of simplicity, we
will make the following notations.

Notation 1. For all constructor-based order-sorted signatures (S,≤, F, F c),

1. Sen(S,≤, F, F c) = SenOSPA(S,≤, F ) and
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2. Mod(S,≤, F, F c) = ModCOSPA(S,≤, F, F c).

For all constructor-based order-sorted signature morphisms ϕ : (S,≤, F, F c) →
(S′,≤′, F ′, F ′c),

1. Sen(ϕ) = SenOSPA(ϕ), and
2. Mod(ϕ) is the restriction of the functor

ModOSPA(ϕ) : ModOSPA(S′,≤′, F ′)→ModOSPA(S,≤, F )

to the subcategory ModCOSPA(S′,≤′, F ′, F ′c).

For all M ∈ |Mod(S,≤, F, F c)| and ρ ∈ Sen(S,≤, F, F c) we write M |=(S,≤,F,F c)

ρ instead of M |=(S,≤,F ) ρ. When there is no danger of confusion we drop the
subscript (S,≤, F, F c) from |=(S,≤,F,F c), and we write simply M |= ρ.

The following corollary of Propositions 2 and 3 says that COSPA defined
above is an institution [13].

Corollary 1. For all signature morphisms ϕ : (S,≤, F, F c) → (S′,≤′, F ′, F ′c),
models M ′ ∈ Mod(S′,≤′, F ′, F ′c) and sentences ρ ∈ Sen(S,≤, F, F c) we have
M ′�ϕ|=(S,≤,F,F c) ρ iff M ′ |=(S′,≤′,F ′,F ′c) ϕ(ρ).

A substitution of Σ-terms with variables in Y for variables in X , where Σ =
(S,≤, F, F c), is a S-sorted function θ : X → TΣ(Y ). Note that θ can be canoni-
cally extended to θterm : TΣ(X)→ TΣ(Y ) and θsen : Sen(Σ[X ])→ Sen(Σ[Y ]),
where Σ[X ] and Σ[Y ] are the extensions of Σ with (non-constructor) constants
from X and Y , respectively. When there is no danger of confusion we may
drop the superscripts term and sen from notations. On the semantic side θ,
determines a forgetful functor �θ: Mod(Σ[Y ]) → Mod(Σ[X ]) such that for all
M ∈ Mod(Σ[Y ]), M�θ interprets all symbols in Σ as M , and (M�θ)x = Mθ(x)

for all x ∈ X .

Proposition 4 (The satisfaction condition for substitutions). For all
substitutions θ : X → TΣ(Y ), sentences ρ ∈ Sen(Σ[X ]) and models M ∈
|Mod(Σ[Y ])| we have M�θ|=Σ[X] ρ iff M |=Σ[Y ] θ(ρ).

Proof. Straightforward, by induction on the structure of the sentences. #$
Notation 2. Given t ∈ TΣ(X) and θ : X → TΣ(Y ) such that X = {x1, . . . , xn}
and θ(xi) = ti for all i ∈ {1, . . . , n} then we may write the term θ(t) in the form
t[x1 ← t1, . . . , xn ← tn].

2.2 General Proof Rules

The entailment system in [9] is generalised to COSPA. In addition, we propose
a simultaneous induction scheme which is more general than the structural in-
duction [9], and case analysis is refined such that it can be applied automatically.

A specification SP consists of a signature Sig(SP) , a set of sentences Ax(SP) ⊆
Sen(Sig(SP)), and a class of models Mod(SP) ⊆ Mod(Sig(SP)) such that M |=
Ax(SP) for all M ∈ |Mod(SP)|. A specification morphism ϕ : SP1 → SP2 consists
of a signature morphism ϕ : Sig(SP1)→ Sig(SP2) such that
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(a) Ax(SP2) |= ϕ(Ax(SP1)), and
(b) for all M2 ∈ |Mod(SP2)| we have M2�ϕ∈ |Mod(SP1)|.

This defines a category of specifications SPEC. Below we recall some of the
specification-building operators introduced in [23].

Basic Specification. Any pair (Σ,E) of signature Σ and set of sentences
E is a basic specification with the signature Sig(Σ,E) = Σ, set of sentences
Ax(Σ,E) = E, and class of models Mod(Σ,E) consisting of all Σ-models which
satisfy E.

Sum. For any specifications SP1 and SP2 such that Sig(SP1) = Sig(SP2), SP1∪
SP2 is a specification such that Sig(SP1 ∪ SP2) = Sig(SP1), Ax(SP1 ∪ SP2) =
Ax(SP1) ∪ Ax(SP2), and Mod(SP1 ∪ SP2) = Mod(SP1) ∩Mod(SP2).

Translation. Let SP be a specification and ϕ : Sig(SP) ↪→ Σ a signature
morphism. SP ∗ ϕ is a specification such that Sig(SP ∗ ϕ) = Σ, Ax(SP ∗ ϕ) =
ϕ(Ax(SP)), and Mod(SP ∗ϕ) consisting of all Σ-models M ′ such that the reduct
of M ′ along ϕ is a SP-model, in symbols, M ′�ϕ∈ Mod(SP).

Initiality. Given a class H of model morphisms, for any two specifications SP0
and SP and any signature morphism ϕ : Sig(SP0) → Sig(SP), the free restric-
tion of SP to SP0 through ϕ, denoted SP!H(ϕ, SP0), is a specification such that
Sig(SP!H(ϕ, SP0)) = Sig(SP), Ax(SP!H(ϕ, SP0)) = Ax(SP), and
Mod(SP!H(ϕ, SP0)) = {M ∈ Mod(SP) | there exists M0 ∈ Mod(SP0) and

η : M0 →M�ϕ∈ H such that for all
h0 : M0 → N�ϕ with N ∈Mod(SP)
there exists a unique arrow
h : M → N that satisfies η;h�ϕ= h0}

If H consists of identity morphisms then no “junk” and no “confusion” is
added to the models of SP0. In this case we say that SP0 is imported by SP in
protecting mode. Importations in protecting mode can be realized also by the
operator Translation.

Definition 3. [3] An entailment system for deducing the logical consequences

of specifications is a family of predicates ' def
= {SP ' }SP∈|SPEC| on the sets of

sentences with the following properties:

[lemma]
SP∪ (Sig(SP), E0) ' E SP ' E0

SP ' E

[union]
SP ' E0 SP ' E

SP ' E0 ∪ E
[trans]

SP ' E and ϕ : Sig(SP)→ Σ

SP ∗ ϕ ' ϕ(E)

[sum1]
SP1 ' Γ

SP1 ∪ SP2 ' Γ
[sum2]

SP2 ' Γ

SP1 ∪ SP2 ' Γ

where SP, SP1, SP2 ∈ |SPEC|, Γ ⊆ Sen(Sig(SP1)), and E0, E ⊆ Sen(Sig(SP)).

Definition 4. [3] An entailment system ' = {SP ' }SP∈|SPEC| is sound if SP ' E
implies SP |= E for all specifications SP and sets of sentences E.

Below we define the proof rules that support our verification methodology.
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Simultaneous Induction [SI]. This proof rule is a generalization of the structural
induction, and it can be applied to a goal of the form SP ' {(∀X)ρi | i = 1,m},
where X is a set of constrained variables for Σ , where Σ = Sig(SP), and for
all i ∈ {1, . . . ,m}, ρi is a Σ[X ]-sentence 4. Let F c be the constructors of the
signature Σ. We let CON range over all sort-preserving mappings X → F c, i.e.
for every x ∈ X , the sort of CON(x) is less or equal than the sort of x. For each
mapping CON : X → F c and variable x ∈ X let Zx,CON = z1x,CON . . . z

n
x,CON be a

string of arguments for the constructor CON(x). By an abuse of notation, we let
Zx,CON denote both the string z1x,CON . . . z

n
x,CON and the set {z1x,CON, . . . , znx,CON}. We

define the set of variables ZCON =
⋃

x∈X Zx,CON and the substitution VARCON
# :

X → TΣ(ZCON) by VARCON
#(x) = CON(x)(Zx,CON). Let VARCON range over all sub-

stitutions X → TΣ(ZCON) with the following properties:

(a) VARCON(x) ∈ Zx,CON or VARCON(x) = CON(x)(Zx,CON) for all x ∈ X , and
(b) VARCON(x) ∈ Zx,CON for some x ∈ X .

Since any substitution is sort-decreasing, the sort of VARCON(x) is less or equal
than the sort of x. The function CON gives the induction cases, while the function
VARCON is used to define the induction hypothesis for each case. For all sort-
preserving mappings CON : X → F c we define the following specification:

SPCON = SP ∗ ιZCON
∪ (Σ[ZCON], {VARCON(ρi) | VARCON : X → TΣ(ZCON) and i = 1,m})

where ιZCON
: Σ ↪→ Σ[ZCON]. Simultaneous Induction is defined as follows:

[SI]
SPCON ' VARCON

#(ρi) for all CON : X → F c and i = 1,m

SP ' {(∀X)ρi | i = 1,m}

Note that SPCON consists of the specification SP refined by the induction hy-
pothesis {VARCON(ρi) | VARCON : X → TΣ(ZCON) and i = 1,m}.

Lemma 1. [9] Consider a specification SP and a sentence (∀X)ρ ∈ Sen(Sig(SP)).
Let Σ = Sig(SP) and Σc be the sub-signature of constructors of Σ. We have

(1) SP |= (∀X)ρ iff SP ∗ ιX |= ρ, where ιX : Σ ↪→ Σ[X ], and
(2) if X is a set of variables of constrained sorts then SP |= (∀X)ρ iff SP |=

(∀Y )θ(ρ) for all substitutions θ : X → TΣ(Y ) such that
(a) Y is a finite set of variables of loose sorts, and
(b) θ(x) ∈ TΣc(Y ) for all x ∈ X.

The above lemma is used to prove the soundness of [SI].

Proposition 5. Simultaneous Induction is sound.

Proof. Assume that SPCON |= VARCON
#(ρi) for all CON : X → F c and i = 1,m. Let

Σc = (S,≤, F c) be the sub-signature of constructors, where Σ = (S,≤, F, F c).
By Lemma 1(2) it suffices to show that SP |= (∀Y )θ(ρi) for all i = 1,m and
θ : X → TΣ(Y ) such that

4 Note that (∀X)(∀Y )ρ = (∀X ∪ Y )ρ.
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(1) Y is a finite set of variables of loose sorts, and
(2) θ(x) ∈ TΣc(Y ) for all x ∈ X .

Let θ : X → TΣ(Y ) be such a substitution. We proceed by induction on the
sum of depths of terms in {θ(x) | x ∈ X}, which exists as a consequence of X
being finite. Let CON : X → F c be the sort-preserving mapping such that for all
x ∈ X the topmost constructor of θ(x) is CON(x). For all x ∈ X let Tx = t1x . . . t

n
x

be the string of the intermediate subterms of θ(x). We define the substitution
ψ : ZCON → TΣc(Y ) by ψ(zjx,CON) = tjx.

CON(x)

��
��
��
��
�

��
��

��
��

�
CON(x)

��
��
��
��
�

��
��

��
��

�

z1x,CON

ψ

��. . . znx,CON

ψ

��t1x . . . tnx

By our assumptions we have

SP∗ιZCON
∪(Σ[ZCON], {VARCON(ρj) | VARCON : X → TΣ(ZCON), j = 1,m}) |= VAR

#
CON(ρi)

for all i = 1,m. Since substitutions preserve satisfaction, we obtain

SP∗ιY ∪(Σ[Y ], {ψ(VARCON(ρj))|VARCON :X → TΣ(ZCON), j = 1,m}) |= ψ(VAR#CON(ρi))

for all i = 1,m. Since VAR
#
CON;ψ = θ we have

SP ∗ ιY ∪ (Σ[Y ], {ψ(VARCON(ρj)) | VARCON : X → TΣ(ZCON), j = 1,m}) |= θ(ρi)

for all i = 1,m.
For all substitutions VARCON : X → TΣ(ZCON), the sum of depths of terms

in {ψ(VARCON(x)) | x ∈ X} is strictly less than the sum of depths of terms in
{θ(x) | x ∈ X}. By the induction hypothesis, SP |= (∀Y )ψ(VARCON(ρj)) for all
VARCON : X → TΣ(ZCON) and j = 1,m. By Lemma 1(1), SP ∗ ιY |= ψ(VARCON(ρj))
for all VARCON : X → TΣ(ZCON) and j = 1,m. Since

SP ∗ ιY |= {ψ(VARCON(ρj)) | VARCON : X → TΣ(ZCON), j = 1,m}

and

SP ∗ ιY ∪ (Σ[Y ], {ψ(VARCON(ρj)) | VARCON : X → TΣ(ZCON), j = 1,m}) |= θ(ρi)

where i = 1,m. We obtain SP ∗ ιY |= θ(ρi), where i = 1,m. By Lemma 1(1),
SP |= (∀Y )θ(ρi), where i = 1,m. #$

Case Analysis [CA]. This proof rule divides a goal into a sufficient number of
separate cases. Analysing each such case individually may be enough to prove the
initial goal. We say that E = {(∀X)(∀Y i)u = vi if Condi | i = 1, n} ⊆ Ax(SP )
is a [CA]-set of sentences, where SP is a specification, if
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– X is the set of all variables occurring in u, and

– SP |=
i≤n∨
i=1

(∃Y i)ψ(Condi) for all substitutions ψ : X → TΣ.

Consider a goal SP ' ρ, and a [CA]-set of sentences E ⊆ Ax(SP) as above. Let t
be a ground term occurring in ρ, and t1 a subterm of t which is matched by u,
i.e. there exists a substitution θ : X → TSig(SP) such that θ(u) = t1. We define
Case Analysis as follows:

[CA]
SP ∗ ιY i ∪ (Σ[Y i], θ(Condi)) ' ρ for all i = 1, n

SP ' ρ

where ιY j : Σ ↪→ Σ[Y j ] is the signature inclusion.
In our case study, X consists of a single variable of the sort representing the

state space of the transitional system, and Y j consists of variables added by
the matching equations. The specification SP obviously satisfies the disjunction
i≤n∨
i=1

(∃Y i)ψ(Condi) as the conditions Condi describe all possible patterns of a

sequence.

Proposition 6. Case Analysis is sound.

Proof. Assume that SP ∗ ιY i ∪ (Σ[Y i], θ(Condi)) |= ρ for all i ∈ {1, . . . , n} and
let M ∈ Mod(SP). We prove that M |=Σ ρ. By our assumptions, there exists
j ∈ {1, . . . , n} and a ιY j -expansion M ′ of M , where ιY j : Σ ↪→ Σ[Y j ], such that
M ′ |=Σ[Y j ] θ(Cond

j). Notice that M ′ ∈ Mod(SP ∗ ιY j ∪ (Σ[Y j ], θ(Condj))), and
since SP∗ιY j ∪(Σ[Y j ], θ(Condj)) |= ρ, we haveM ′ |=Σ[Y j ] ρ. Hence M |=Σ ρ. #$

Substitutivity [ST]. We can infer new sentences by substituting terms for vari-
ables. This proof rule is used during the verification process to instantiate sen-
tences that are not executable by rewriting.

[ST ]
(∀Y )ρ ∈ Ax(SP) θ : Y → TSig(SP)(Z)

SP ' (∀Z)θ(ρ)

Proposition 7. Substitutivity is sound.

Proof. The proof is a direct consequence of the satisfaction condition for substi-
tutions (see Proposition 4). #$

Subterm Replacement [SR]. A specialized rule of inference using subterm re-
placement is the basis for term rewriting. Let SP be a specification and (∀X)ρ a
Σ-sentence, where Σ = Sig(SP). Suppose that X = Y ∪ {z}, where z �∈ Y , and
θ, ψ : X → TΣ(Y ) are two substitutions such that θ(y) = ψ(y) = y for all y ∈ Y .

SP ' (∀Y )ψ(ρ) SP ' (∀Y )θ(z) = ψ(z)

SP ' (∀Y )θ(ρ)

The following result is a generalisation of soundness of Subterm Replacement
for many-sorted algebra [12].
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Proposition 8. Subterm Replacement is sound.

Theorem of Constants [TC]. We define the following proof rule for the quantifi-
cation over variables of loose sorts:

[TC]
SP ∗ ιY ' ρ

SP ' (∀Y )ρ

where SP is a specification, (∀Y )ρ is a sentence, and ιY : Sig(SP) ↪→ Sig(SP)[Y ].
Note that even if not all of the variables in Y are of loose sorts if we have proved
SP ∗ ιY ' ρ then we conclude SP ' (∀Y )ρ. This means that there are cases in
practice when we apply [TC] to goals with sentences quantified over variables of
constrained sorts. The following proposition is a corollary of Lemma 1(1).

Proposition 9. Theorem of Constants is sound.

Remark 1. In the verification process we separate variables that are handled
with [SI] from the variables that are dealt with [TC], rather than distinguishing
variables of constrained sorts from variables of loose sorts. In general, this choice
cannot be automated and is entirely up to the user to make.

Implication. The following proof rule is defined for the logical implication:

[IP ]
SP ∪ (Sig(SP), Cond) ' atm

SP ' atm if Cond

where SP is a specification, atm is an atom, and Cond is a conjunction of atoms.

Proposition 10. [9] Implication is sound.

The following theorem is a corollary of Propositions 5-10.

Theorem 1. Consider a sound entailment relation 'b = {SP 'b }SP∈|SPEC| for
proving quantifier-free unconditional atoms. The least entailment relation ' =
{SP ' }SP∈|SPEC| over 'b closed to [SI], [CA], [ST ], [SR], [TC] and [IP ] is sound.

Proof. By Proposition 5-10, the semantic entailment relation {SP |= }SP∈|SPEC|
is closed to [SI], [CA], [ST ], [SR], [TC] and [IP ]. Then the least entailment
relation {SP ' }SP∈|SPEC| closed to [SI], [CA], [ST ], [SR], [TC] and [IP ] is
included in {SP |= }SP∈|SPEC|. #$

2.3 Specialised Proof Rules

When initial semantics is used the above rules are not enough to prove the
desired properties of the specifications. Specialised proof rules (that cannot be
derived from the general inference rules defined in Section 2.2) are needed to
complete the verification process. Since algebraic specification languages have
libraries defining the initial data types often used in applications, it is natural
for the theorem prover supporting the verification to be equipped with deduction
rules for the predefined data types declared with initial semantics.
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Contradiction [CT]. In algebraic specification the boolean data type is often
used to establish the truth. The boolean specification BOOL is defined with initial
semantics and it is imported by any other specification in protecting mode. The
following proof rule is valid for any specification that protects the boolean values.
For any specification morphisms ι : BOOL ↪→ SP such that ι : Sig(BOOL) ↪→
Sig(SP) is an inclusion, we define the following proof rule:

[CT ]
SP ' true => false

SP ' ρ

Proposition 11. Contradiction is sound.

Proof. For any specification morphisms ι : BOOL ↪→ SP and M ∈ |Mod(SP)| we
haveM �|= true => false. If SP |= true => false then SP has no models, which
implies SP |= ρ for any sentence ρ ∈ Sen(Sig(SP)). #$

It follows that negation has been somehow introduced, in a weaker form. For
example, the following sentence (∀Y)true = false if t1 = t2 says that the term
t1 is different from t2.

Less-Equal [LE]. Let NAT denote the specification defined with initial semantics
which includes a sort Nat with two constructors 0 :→ Nat and s : Nat → Nat,
and an ordinary operators <= : Nat Nat → Bool defined by the following sets
of equations:

(∀M) M <= M = true,
(∀M) 0 <= s M = true,
(∀M) s M <= 0 = false,
(∀M, N) s M <= s N = M <= N.

For any specification morphism NAT ↪→ SP such that we have {(sm0 <= t =
true), (t <= sn0 = true)} ⊆ Ax(SP) and n < m, where t ∈ TSig(SP) and n,m ∈
N, we define the following proof rule

[LE]
SP ' ρ

where ρ is any sentence.5

Proposition 12. Less-Equal rule is sound.

Proof. For any specification morphism NAT ↪→ SP such that {sm0 <= t, t <= sn0}
⊆ Ax(SP), we have SP |= sm0 <= sn0. For any M ∈Mod(SP) if n < m then M |=
sn0 <= sm0 and M �|= sn0 = sm0, which is a contradiction with SP |= sm0 <= sn0.
It follows that SP has no models. Hence, for any sentence ρ we have SP |= ρ. #$
5 Note that for all natural numbers n,m ∈ N we have n ≤ m iff sn0 <= sm0, where
sn0 = s . . . s︸ ︷︷ ︸

n times

0 and sn0 <= sm0 stands for sn0 <= sm0 = true.
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Sequence Case Analisys [SC]. Our approach to support the automation of case
analysis is to consider specialized proof rules for various patterns over the data
types. Here we consider the example of sequences. Let SEQUENCE denote the
specification defined with initial semantics which includes a sort Sequence to-
gether with the following constructors: empty denoting the empty sequence, and
an associative operation , denoting the concatenation. The elements of the
sequences are of sort Elt. Let ι : SEQUENCE ↪→ SP be a specification morphism,
where ι : Sig(SEQUENCE) ↪→ Sig(SP) is an inclusion of signatures. Suppose we
want

SP ' (∀Y)atm if Cond ∧ L1, E1, L2, E2, L3= t1, t2 ∧ Cond′

where Li are variables of sort Sequence, Ei are variables of sort Elt, Y ⊇
{L1, L2, L3, E1, E2} is a set of variables, atm is an atom, Cond and Cond′ are
conjunctions of atoms, and t1, t2 ∈ TSig(SP)(Y − {L1, E1, L2, E2, L3})Sequence are
terms that do not contain the variables L1, E1, L2, E2, L3. [SC] divides the above
goal into the following cases:

(1) SP ' (∀Y)atm[L3 ← L3, t2] if Cond[L3 ← L3, t2] ∧ L1, E1, L2, E2, L3 = t1 ∧
Cond′[L3← L3, t2],

(2) SP ' (∀Y′)atm[L2 ← L2, L2′] if Cond[L2 ← L2, L2′] ∧ L1, E1, L2 = t1 ∧
L2′, E2, L3 = t2 ∧ Cond′[L2← L2, L2′], where Y′ = Y ∪ {L2′},

(3) SP ' (∀Y)atm[L1 ← t1, L1] if Cond[L1 ← t1, L1] ∧ L1, E1, L2, E2, L3 = t2 ∧
Cond′[L1← t1, L1]

The above three subgoals describe the following three possibilities: either both
E1 and E2 are in t1, or E1 is in t1 and E2 is in t2, or E1 and E2 are in t2. The
rule [SC] is specific to SEQUENCE, which is declared with initial semantics, and
it cannot be derived from the general proof rules.

Proposition 13. Sequence Case Analysis is sound.

Proof. Assume that

(1) SP |= (∀Y)atm[L3 ← L3, t2] if Cond[L3 ← L3, t2] ∧ L1, E1, L2, E2, L3 = t1 ∧
Cond′[L3← L3, t2],

(2) SP |= (∀Y′)atm[L2 ← L2, L2′] if Cond[L2 ← L2, L2′] ∧ L1, E1, L2 = t1 ∧
L2′, E2, L3 = t2 ∧ Cond′[L2← L2, L2′], where Y′ = Y ∪ {L2′},

(3) SP |= (∀Y)atm[L1 ← t1, L1] if Cond[L1 ← t1, L1] ∧ L1, E1, L2, E2, L3 = t2 ∧
Cond′[L1← t1, L1].

We show SP |= (∀Y)t = t′ if Cond ∧ L1, E1, L2, E2, L3 = t1, t2 ∧ Cond′. Let
M ∈Mod(SP).

We denote by Σ the signature Sig(SP). Let N be a ιy-expansion of M , where
ιy : Σ ↪→ Σ[Y ], such that N |=Σ[Y ] Cond, N |=Σ[Y ] L1, E1, L2, E2, L3 = t1, t2
and N |=Σ[Y ] Cond

′. Since the sequences are protected, there are three possibil-
ities:

(a) NE1 and NE2 are in Nt1,
(b) NE1 is in Nt1, and NE2 is in Nt2, and
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(c) NE1 and NE2 are in Nt2.

We will focus on the first case as the rest of the cases are similar. Without danger
of confusion the interpretation of , into the model N will be denoted also by
, . Since NL1, NE1, NL2, NE2, NL3 = Nt1, Nt2 and both NE1 and NE2 are in Nt1,
there exists n ∈ NSequence such that NL3 = n,Nt2. Let θ : Y → TΣ(Y) be the
substitution which is the identity on Y − {L3} and θ(L3) = L3, t2. Let N ′ be
a ιY-expansion of M such that N ′

L3 = n and N ′
y = Ny for all y ∈ Y − {L3}.

Since t2 does not contain L3 we have N ′
t2 = Nt2. Note that (N ′�θ)L3 = N ′

θ(L3) =

N ′
L3,t2 = n,N ′

t2 = n,Nt2 = NL3. We obtain N ′�θ= N , and since N |=Σ[Y] Cond

and N |=Σ[Y] Cond′, by the satisfaction condition for substitutions, N ′ |=Σ[Y]

Cond[L3← L3, t2] and N ′ |=Σ[Y] Cond
′[L3← L3, t2]. We have

N ′
L1, N

′
E1, N

′
L2, N

′
E2, N

′
L3, N

′
t2 = NL1, NE1, NL2, NE2, n,Nt2 =

NL1, NE1, NL2, NE2, NL3 = Nt1, Nt2 = N ′
t1, N

′
t2

Since the sequences are protected, N ′
L1, N

′
E1, N

′
L2, N

′
E2, N

′
L3 = N ′

t1. We obtain
N ′ |=Σ[Y] L1, E1, L2, E2, L3 = t1. By assumption (1), N ′ |=Σ[Y] atm[L3← L3, t2],
and by the satisfaction condition for substitutions, N |=Σ[Y] atm. #$

[SC] simplifies the formula to prove while [CA] refines the specification of the
goal by adding new equations. The following theorem is a corollary of Theorem 1
and Propositions 11, 12 and 13.

Theorem 2. Consider a sound entailment relation 'b = {SP 'b }SP∈|SPEC| for
proving quantifier-free unconditional atoms. Then the least entailment relation
' = {SP ' }SP∈|SPEC| over 'b closed to [SI], [CA], [ST ], [SR], [TC], [IP ], [CT ],
[LE] and [SC] is sound.

2.4 Tactics

This methodology is designed for algebraic specification languages which are
executable by rewriting. Given a goal SP ' E, the underlying assumption is
that Ax(SP) forms a term rewriting system which is terminating and possibly
confluent. By applying a tactic to a goal it is desirable to preserve termination
and confluence. Note that the proof rules of the specification calculus can be
regarded, upside down, as tactics for decomposing problems.

Reduction [RD]. The basic entailment relation 'b from Theorem 2 is provided by
the system which supports the description of constructor-based specifications.
The present methodology is implemented in CITP [11] which is built on top
of Maude. Given a specification SP, any goal of the form (1) SP ' t = t′, (2)
SP ' t : s and (3) SP ' t ⇒ t′, where t, t′ are ground terms and s is a sort, is
reduced to the empty goal set if (1) t and t′ can be rewritten to the same normal
form by the system using the equations and membership axioms of Ax(SP), (2)
the sort of t is a subsort of s, (3) t can be rewritten to t′ by applying the preorder
axioms of Ax(SP), respectively. Maude search engine is invoked in the third case.
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Inconsistency [IC]. Let BOOL ↪→ SP be a specification morphism. One can easily
prove by induction that SP ' (∀B)t = t′ if Cond ∧B = not B ∧ Cond′, where B
is a variable of sort Bool. By [ST ], SP ' t = t′ if Cond∧ b = not b∧ Cond′ for all
ground terms b of sort Bool. It follows that the entailment system defined above
is closed to the following rule of inference

[IC]
SP ' t = t′ if Cond ∧ b = not b ∧ Cond′

where BOOL ↪→ SP is a specification morphism and (t = t′ if Cond ∧ b = not b ∧
Cond′) is a quantifier-free sentence such that b is a ground term of sort Bool.
[IC] is crucial for the automation since the equation b = not b might cause a
non-terminating process when added to SP by the [IP ] rule.

Normal Forms [NF ]. Algebraic specification languages executable by rewriting
are equipped with a partial function nf SP : TSig(SP) → TSig(SP) for all specifications
SP such that for all t ∈ TSig(SP), nf SP(t) is a normal form of t w.r.t. Ax(SP) if one
exists, and nf SP(t) is undefined, otherwise. Note that SP 'b t = t′ iff nf SP(t) and
nf SP(t

′) are defined and equal.
Let nf SP : Sen(SP) → Sen(SP) be the canonical extension of nf : TSig(SP) →

TSig(SP). The following rule of inference can be obtained by a successive applica-
tion of [SR]:

[NF ]
SP ' nf SP(ρ)

SP ' ρ

where ρ is any sentence.

Proposition 14. The entailment system defined in Theorem 1 is closed to [NF ].

Proof. Let t1 be a ground term occurring in ρ. Since SP 'b t1 = nf (t1), by [SR]
the entailment system of Theorem 1 is closed to the following rule of inference:
SP ' ρ[t1 ← nf (t1)]

SP ' ρ
. Let {t1, . . . , tn} be all ground terms occurring in ρ. Note

that nf (ρ) = ρ[t1 ← nf (t1), . . . , tn ← nf (tn)]. By applying n times the rule [SR]
we get that the entailment system defined in Theorem 1 is closed to [NF ]. #$

In order to preserve the confluence property of specifications in the proof pro-
cess, each application of any of the proof rules above is preceded by a reduction
of the ground terms occurring in the formulas to prove to their normal forms. In
practice, the proof of a goal SP ' ρ stops if nf SP(ρ) is undefined. The following
simple example illustrates the benefit of this tactic.

Example 1. Consider a specification SP with three constant symbols a b c :→ s

and one equation a = b. If we apply [IP ] to SP ' b = c if a = c we get SP ∪
(Sig(SP), {a = c}) ' b = c, and SP ∪ (Sig(SP), {a = c}) is not confluent because
the critical pair c← a→ b is not joinable. On the other hand, if a reduction to
the normal forms is performed then the new goal is SP ' b = c if b = c, which
is reduced to SP ∪ (Sig(SP), {b = c}) ' b = c by [IP ]. By applying [NF ] we
get SP ∪ (Sig(SP), {b = c}) ' c = c; finally SP ∪ (Sig(SP), {b = c}) ' c = c is
discharged by [RD].
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Since [NF ] is coupled with any other proof rule, it will be omitted from the
discussions.

Case Analysis (revisited). In practice, we give labels to conditional equations
used for case analysis. It follows that the [CA]-sets of sentences are part of
the specification. Given a specification SP let CA(SP) = ({(∀Xj)(∀Y i

j )uj =

vij if Condi | i = 1, nj})j∈J ⊆ P(Ax(SP)) be the family of all [CA]-sets of sen-
tences of SP. Consider a ground term t ∈ TSig(SP). We say that t1 is a [CA]-
subterm of t if there exists jt1 ∈ J such that

(1) ujt1
matches t1, i.e. there exists a substitution θt1 : X → TSig(SP) such that

θ(ujt1
) = t1, and

(2) there is no j ∈ J such that uj matches a proper subterm of t1.

Assume a goal SP ' ρ and a ground term t occurring in ρ. Consider the tactic
which consists of successive applications of [CA], one for each [CA]-subterm
of t. This tactic will replace [CA] defined above. In applications, t is selected
automatically from the list of all ground terms which occur in ρ.

Example 2. Consider the specification morphism NAT ↪→ FUN, where FUN is a
specification with two functions over the natural numbers:

(1) F is defined by the following [CA]-set:

{
F(X) = 5 if X <= 7,
F(X) = 1 if 8 <= X.

(2) G is defined by the following [CA]-set:

{
G(Y) = 2 if Y <= 4,
G(Y) = 7 if 5 <= Y.

Suppose we want to prove FUN ' (∀X)9 <= G(F(X)) + G(X) = true. By [TC] the
new goal is FUN ∗ ιX1 ' 9 <= G(F(X1)) + G(X1) = true, where ιX1 : Sig(FUN) ↪→
Sig(FUN)[X1] is the inclusion of signatures. Case analysis is performed with re-
spect to the [CA]-subterms F(X1) and G(X1) of the term 9 <= G(F(X1)) + G(X1).
There are four cases:

(a) X1 <= 4, (c) 8 <= X1 <= 4,
(b) 5 <= X1 <= 7, (d) 8 <= X1.

Note that the cases (a), (b) and (d) are discharged by [RD] while the case (c) is
discharged by [LE]. The corresponding proof tree is depicted in the figure below,
where the circles represent the empty goal set.
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X1 <= 4

X1 <= 7

RD

5 <= X1

X1 <= 7

RD

5 <= X1

8 <= X1

RD

X1 <= 4

8 <= X1

LE

TC

CA

Remark 2. The proof of FUN ' (∀X)9 <= G(F(X))+G(X) = true can be performed
automatically by CITP by giving the command (apply TC CA RD .).

Note that [LE] is applied automatically by CITP without giving an explicit
command. The idea is that the interaction with the user is not needed to dis-
charge goals with inconsistent specifications. Hence, [IC] and [CT ] are applied
also automatically by CITP.

Proof Strategy. Except [SI], all basic tactics are designed for goals consisting
of a specification and a single formula. We make the following convention: if a
tactic different from [SI] is applied to a goal of the form SP ' {ρ1, . . . , ρn}, the
goal is decomposed into a set of subgoals {SP ' ρ1, . . . , SP ' ρn}, and then the
tactic is applied to each SP ' ρi.

The application order of the basic tactics is crucial for automating the proof
process. [SI] is applied first. [TC] is performed before [IC] as [IC] can be applied
only to goals with quantifier-free formulas. [IC] discharges any goal of the form
SP ' atm if Cond∧ b = not b∧ Cond′, otherwise [IC] leaves the goal unchanged.
An application of [IP ] is preceded by an application of [IC]. [RD] attempts to
discharge any goal with an atomic formula. If [RD] fails to complete the proof
then [CT ] and [LE] tactics are used.

The order of tactic applications described above is well-established for all
goals. However, the application of case analysis depends on the problem to solve.
Based on the case studies, we have two proof strategies:

(1) [SI], [CA], [SC], [TC], [IC], [IP ], [RD], [CT ], [LE], and
(2) [SI], [TC], [CA], [IC], [IP ], [RD], [CT ], [LE].

A tactic can be applied to a goal if it has a certain pattern, otherwise the tactic
leaves the goal unchanged. Note that not all OTS are modelled using sequences.
In such a case the application of [SC] leaves the goal unchanged. The advantages
of these proof strategies can be noticed clearly in concrete examples which can
be found at http://www.jaist.ac.jp/~danielmg/citp.html.

The present methodology does not include automatic lemma discovery. It is
for the user to find the appropriate induction scheme for the problem to solve,
and the constrained variables for induction.

http://www.jaist.ac.jp/~danielmg/citp.html
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3 Methodology at Work: ABP Case Study

Alternating Bit Protocol is a communication protocol that enables to send re-
liable messages on unreliable channels. It is often used as a case study, either
for some algebraic formalisms or for tools dedicated to analysis or verification
of concurrent systems. Even if the protocol seems to be simple, its complete
algebraic specification is quite complex and its formal correctness proof is very
large. We show that using our methodology, most of the proving process can be
automated.

Since this section involves the operational semantics of the system that assists
the proofs, we write the formulas in Maude-like notation, meaning that we omit
the universal quantifier and we distinguish ordinary equations from matching
equations.

3.1 The ABP Protocol

We describe briefly the protocol. Two processes, Sender and Receiver, that do
not share any common memory use two channels to communicate with each
other. Sender sends repeatedly a pair < bit1,pac > of a bit and a packet to the
receiver over one of the channels, let’s say channel1. When Sender gets bit1

from Receiver over the other channel, let’s say channel2, it is a confirmation
from Receiver that the packet sent was received. In this case Sender alternates
bit1 and selects the next packet for sending. Receiver puts bit2 into channel2

repeatedly. When Receiver gets a pair < b,p > such that b is different from
bit2 it stores p into a list and alternates bit2. Initially both channels are
empty and the Sender’s bit is different from the Receiver’s bit. We assume that
the channels are unreliable, meaning that the data in the channels may be lost,
but not exchanged or damaged.

The packets sent by Sender to Receiver through channel1 are indexed by the
natural numbers and are of the form pac(0), pac(s0), . . . , pac(sn0), where op

pac : Nat -> Packet is the constructor for packets. The bits sent by both
Sender and Receiver into the communication channels are modelled by the
boolean values true and false. The communication channels and the packets
received by the Receiver are modelled by sequences.

(a) channel1 consists of sequences of pairs of bits and packets of the form
< b1, p1 >, . . . , < bn, pn >.

(b) channel2 consists of sequences of bits of the form b1, . . . , bn.

(c) The list of packets received by Receiver consists of sequences of packets of
the form p1, . . . , pn.

In the OTS/CafeOBJ method the transitions between the states of the system
are modelled with constructor operators. For the ABP specification, the con-
structors are the following ones:
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Constructor Meaning

init : -> Sys Initial state
rec1 : Sys -> Sys Sender receives bits
rec2 : Sys -> Sys Receiver receives pairs of bits & packets
send1 : Sys -> Sys Sender sends pairs of bits & packets
send2 : Sys -> Sys Receiver sends bits
drop1 : Sys -> Sys Dropping one element of channel1
drop2 : Sys -> Sys Dropping one element of channel2

The structure of a state is abstracted by the following observers, each one re-
turning an observable information about the state:

Observer Meaning

channel1 : Sys -> Channel1 Sender-to-Receiver channel
channel2 : Sys -> Channel2 Receiver-to-Sender channel
bit1 : Sys -> Bit Sender’s bit
bit2 : Sys -> Bit Receiver’s bit
next : Sys -> Nat Number of packet sent by Sender
list : Sys -> List Lists of packets received by Receiver

The meaning of an observer is formally described by means of (conditional) equa-
tions. For instance, the value of bit1 after the application of rec1 is described
by the following [CA]-set of conditional equations:

bit1(rec1(S))= bit1(S) if channel2(S)= empty

bit1(rec1(S))= bit1(S) if B,C2 := channel2(S)
∧

B = not bit1(S)

bit1(rec1(S))= not bit1(S) if B,C2 := channel2(S)
∧

B = bit1(S)

More tricky is the specification of loosing data from the channels, because
the dropped elements are arbitrarily chosen. We use “underspecified” operations
to model the dropping actions. For instance, the value of channel1 after the
application of drop1 is specified by two operations p1 r1 : Sys -> Channel1

and the following [CA]-set of conditional equations:

channel1(drop1(S))= p1(S),r1(S) if p1(S),< B,P >,r1(S) := channel1(S)

channel1(drop1(S))= channel1(S) if match(channel1(S),p1(S),r1(S))= false

Roughly speaking, the arguments of p1 and r1 are constructor terms of the
form σn(. . . σ1(init)), where σi ∈ {rec1, . . . , drop2}, and the values returned
are sequences because the communication channels are protected. There are no
equations to define p1 and r1, meaning that each model has its own interpre-
tation of p1 and r1. If channel1(S) is matched by p1(S),< B,P >,r1(S) then
the element < B,P > is dropped, otherwise, drop1 does not affect the system
state. Each model of the specification is deterministic but the non-deterministic
behaviour consists of the different interpretations of the functions p1 and r1 into
the models. An application of drop1 to a given state does not change the values
of bit1, bit2, next and list.

3.2 The Correctness Proof

We will explain our methodology by proving a safety property for ABP. The
protocol is specified using only conditional equations. In order to avoid non-
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termination in the proof process, we use preorder axioms with the semantic of
equality. The proof begins with the following four lemmas:

(1) If channel1 contains bit1 then all bits before bit1 are equal to bit1.

inv1
def
= B’ => bit1(S) if

C1,< B,P >,C2,< B’,P’ >,C3 := channel1(S)
∧

B = bit1(S)

(2) All bits of channel1 are equal to bit1 when bit2 is equal to bit1.

inv2
def
= B => bit1(S) if

C1,< B,P >,C2 := channel1(S)
∧

bit2(S) = bit1(S)

(3) bit2 is equal to bit1 when channel2 contains bit1.

inv3
def
= bit2(S) = bit1(S) if

D1,B,D2 := channel2(S)
∧

B = bit1(S)

(4) If channel2 contains bit1 then all the bits before bit1 are equal to bit1.

inv4
def
= B’ => bit1(S) if

D1,B,D2,B’,D3 := channel2(S)
∧

B = bit1(S)

Remark 3. The invariants inv1, inv2 and inv4 are specified as preorder axioms.
As equations the above invariants would cause non-termination: when [SI] is
applied to the goal ABP ' {inv1, inv2, inv3, inv4}, invi are added as hypothe-
ses to the specification ABP; then an application of inv1, for example, to reduce
a term implies the evaluation of the condition C1,< B,P >,C2,< B’,P’ >,C3

:= channel1(S) that requires another application of inv1, which produces a
non-termination process. Since these hypotheses are needed in the verification
process, i.e., they must be executable, we choose to formalise them as preorder
axioms. In this way, the termination property is preserved and the new (equa-
tional and preorder) axioms are executable.

The invariants cannot be proved independently (without a simultaneous induc-
tion scheme) since the proof of each invariant depends on the rest.

Secondly, we prove the following invariant by (ordinary) structural induction
using the invariants above.

inv5
def
= P => pac(next(S)) if C1,< B,P >,C2 := channel1(S)

∧
B = bit1(S)

The invariant inv5 says that if channel1 contains a pair < B,P > and B is equal
to bit1 then P is equal to pac(next).

When Receiver gets the nth packet it has received pac(0), . . . , pac(n), in this
order. Each pac(i) for i = 0, . . . , n has been received only once, and no other
packet have been received. This property is formalised below.

goal1
def
= mk(next)(S) = pac(next(S)),list(S) if bit1(S) = not bit2(S)

goal2
def
= mk(next)(S) = list(S) if bit1(S) = bit2(S)
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where mk : Nat -> List is defined by

{
mk(0) = pac(0),
mk(s n) = pac(s n)mk(n).

The formu-

las goal1 and goal2 are proved by simultaneous induction using inv2, inv3
and inv5. We present the proof of the four invariants as the rest of the proof is
similar.

Let INV = ABP ∪ (Sig(ABP), {lemma-inc}), where

lemma-inc
def
= true => false if not bit1(S) => bit1(S)

The above axiom says that not bit1(S) and bit1(S) are different for all
system states S. Note that lemma-inc is not executable since the left-hand
side term is ground and the condition contains the variable S. The proof of
INV ' {inv1, inv2, inv3, inv4} is performed with CITP using the proof strategy
[SI], [CA], [SC], [TC], [IC], [IP ], [RD], [CT ]. The goal is generated by the
following command:

(goal INV |-
crl [inv1]: B1:Bit => bit1(S:Sys) if
C1:Channel1,< B:Bit,P:Packet >,C2:Channel1,< B1:Bit,P1:Packet >,C3:Channel1
:= channel1(S:Sys) ∧ B:Bit = bit1(S:Sys) ;

crl [inv2]: B:Bit => bit1(S:Sys) if
C1:Channel1,< B:Bit,P:Packet >,C2:Channel1 := channel1(S:Sys) ∧
bit2(S:Sys) = bit1(S:Sys) ;

ceq [inv3]: bit2(S:Sys) = bit1(S:Sys) if
C2:Channel2,B:Bit,C3:Channel2 := channel2(S:Sys) ∧ B:Bit = bit1(S:Sys)
[metadata "enhanced"];

crl [inv4]: B’:Bit => bit1(S:Sys) if
D1:Channel2,B:Bit,D2:Channel2,B’:Bit,D3:Channel2 := channel2(S:Sys) ∧
B:Bit = bit1(S:Sys) ; )

CITP discharges an equation t1 = t2 with the attribute "enhanced" by proving
t1 => t2. The proof consists of the sequence of commands described below.

(set ind on S:Sys .) --- rec1 ---

(apply SI .) (init lemma-inc by S:Sys <- X1 .) (auto .)

--- init --- --- rec2 ---

(auto .) (init lemma-inc by S:Sys <- X1 .) (auto .)

--- drop1 --- --- send1 ---

(auto .) (auto .)

--- drop2 --- --- send2 ---

(auto .) (auto .)

The variable S is selected for induction. By applying [SI] we obtain seven sub-
goals corresponding to each of the seven constructors:

INV ∗ ιX1 ∪ (Sig(INV)[X1], Γ [S ← X1]) ' Γ [S ← σ(X1)]

where ιX1 : Sig(INV) ↪→ Sig(INV)[X1], X1 is a constant representing an arbitrary
state of the system, σ ∈ {init, rec1, rec2, send1, send2, drop1, drop2}, and
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Γ = {inv1, inv2, inv3, inv4}. For the cases σ = rec1 and σ = rec2, lemma-inc
is instantiated by substituting X1 for S. Then each of the remaining goals is split
into four subgoals corresponding to each invariant. We obtain 28 subgoals that
are discharged automatically by the command (auto .) which uses the proof
strategy [SI], [CA], [SC], [TC], [IC], [IP ], [RD], [CT ]. Note that the application
of [SI] at this point leaves the goal unchanged. The proof tree corresponding to
INV ∗ ιX1 ∪ (Sig(INV)[X1], Γ [S ← X1], lemma-inc[S ← X1]) ' inv2[S ← rec1(X1)]
is depicted in the figure below:

channel1(X1) = empty

RD

IP

TC

B, C2 := channel2(X1)
B = not bit1(X1)

RD

IP

TC

B, C2 := channel2(X1)
B = bit1(X1)

IC

TC

CA

Note that [CA] is performed w.r.t. the [CA]-subterm bit1(rec1(X1)). There
are three cases given by the conditions of the [CA]-set of sentences which defines
the value of bit1 after the execution of rec1 at a given state. The proof tree
corresponding to INV ∗ ιX1 ∪ (Sig(INV)[X1], Γ [S ← X1]) ' inv2[S ← drop1(X1)] is
depicted in the following figure.

p1(X1),<B,P>,r1(X1)

:= channel1(X1)

RD

IP

TC

RD

IP

TC

RD

IP

TC

match(channel1(X1),p1(X1),r1(X1))

= false

RD

IP

TC

CA

SC

In this case, CA is performed w.r.t. the [CA]-subterm channel1(drop1(X1)).
The interested reader can look into http://www.ldl.jaist.ac.jp/citp/ for
tool demonstration.

http://www.ldl.jaist.ac.jp/citp/
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4 Conclusions

We presented a methodology for proving inductive properties of OTS. The pro-
posed method aims at automating the proof score approach to verification. We
revise the entailment system in [9] to increase its efficiency in applications and
we enrich it with a set of specific proof rules for initial data types that are often
used in our methodology. We define proof tactics that preserve confluence and
termination of the specifications in the proof process, and we propose a proof
strategy to apply the tactics automatically. The viability of the methodology
is demonstrated by CITP, a prototype tool implementing the methodology. We
used the ABP example in order to exhibit the main strong points of the proposed
methodology. Algebraic specification languages have standard libraries with pre-
defined modules. In order to perform verification of complex software systems it
is crucial to have tactics for the initial data types that are often used in practice
such as booleans, sequences or natural numbers. The challenge is how to inte-
grate these tactics with the ones for loose semantics and to push the boundaries
of automation.

The logical frameworks underlying tools like Circ [19,16] or Maude ITP [18]
do not include preorder axioms, and are not based on constructors. Circ imple-
ments a similar tactic with the Case Analysis proposed here. Case analysis is
interactive in Maude ITP. Another paper that uses the ABP as a benchmark
example is [14]. The proof in [14] is coinductive and it is based on the circular
coinductive rewriting algorithm [15] implemented in the BOBJ system. In [14],
the unreliability of the communication channels is modelled by “fair streams”,
while here it is modelled by a special dropping operation that is closer to a real
description. With the OTS approach, the ABP specification is closer to a faithful
representation, and since all data types are specified in detail, the proof becomes
more complex.

Future work includes testing of the methodology on other case studies, and
increasing the automation level.
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ported by the Japanese Contract Kakenhi 23220002, and by the Romanian Con-
tract 161/15.06.2010, SMISCSNR 602-12516 (DAK).
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Abstract. The InvA tool supports the deductive verification of safety
properties of infinite-state concurrent systems. Given a concurrent sys-
tem specified as a rewrite theory and a safety formula to be verified,
InvA reduces such a formula to inductive properties of the underlying
equational theory by means of the application of a few inference rules.
Through the combination of various techniques such as unification, nar-
rowing, equationally-defined equality predicates, and SMT solving, InvA
achieves a significant degree of automation, verifying automatically many
proof obligations. Maude Inductive Theorem Prover (ITP) can be used to
discharge the remaining obligations which are not automatically verified
by InvA. Verification of the reliable communication ensured by the Alter-
nating Bit Protocol (ABP) is used as a case study to explain the use of
the InvA tool, and to illustrate its effectiveness and degree of automation
in a concrete way.

1 Introduction

The late Amir Pnueli entitled his invited talk at FM’99 “Deduction is For-
ever” [22]. Pnueli, who had pioneered the use of temporal logic in computer
science as well as many model checking techniques, wanted to remind us that al-
gorithmic verification methods are not enough by themselves and should always
be complemented by deductive verification methods. What is actually happen-
ing is that model checking and theorem proving methods are increasingly used
in tandem, and the borderline between both is becoming more tenuous. Ver-
ification of temporal logic properties, particularly for infinite-state systems, is
an area where both algorithmic and deductive methods can be used, sometimes
together.

In the rewriting logic research program [16], model checking methods and
tools have been extensively developed. However, deductive techniques, while
well-supported for equational specifications with an initial algebra semantics,
do not directly apply to temporal logic formulas. One important exception is
the deductive verification approach with proof scores and the OTS/CafeOBJ
method [9,19], pioneered by Kokichi Futatsugi and his collaborators, for the
verification of invariants of concurrent systems. By using such an approach quite

S. Iida, J. Meseguer, and K. Ogata (Eds.): Futatsugi Festschrift, LNCS 8373, pp. 603–629, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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sophisticated systems have been verified [20,21]. Work on the OTS/CafeOBJ
method has stimulated our own work on deductive verification of concurrent
systems. Indeed, the work presented here is a concrete example of the way in
which we have responded to such an encouraging stimulus. Our main purpose
has been to advance the following goals:

1. Deductive Support for Temporal Logic. Beyond invariants, deductive
reasoning about other temporal logic properties should be supported. For the
moment we have advanced this to support a useful subset of safety properties,
but we hope to extend the methods to also support liveness properties.

2. Reduction of Temporal Verification to Equational Verification. As
much as possible, temporal logic properties should be construed as “syntactic
sugar” for inductive properties of an algebraic specification corresponding to
the system’s states and the predicates satisfied by such states. In this way,
all the wealth of techniques and tools already available to verify properties
of algebraic specifications with an initial algebra semantics can be leveraged.

3. Increased automation. To reduce the verification effort, the level of au-
tomation should be increased as much as possible, both at the level of rea-
soning about temporal properties, and after reducing such properties to in-
ductive proof obligations in equational logic.

Our way to advance goals (1)–(3) has been to develop new deductive verifi-
cation techniques, embody them in the InvA tool [23,24] as part of the Maude
formal environment, and test the practical advancement of goals (1)–(3) through
case studies. We can summarize our present advances as follows. Goals (1) and
(2) have been advanced by (i) identifying a class of commonly used safety proper-
ties; and (ii) developing and proving correct a set of inference rules that reduce
the verification of such safety properties to inductive equational reasoning. A
key technique for this reduction has been the use of unification and narrowing
to prove stability properties in an inductive way. The development of Goal (3)
has been advanced by a combination of automation techniques including: (i)
automation of narrowing and unification in the underlying Maude system; (ii)
automation of certain conditional inferences; (iii) systematic use of equationally-
defined equality predicates [12]; (iv) use of SMT solvers; and (v) use of proof
tactics in the Maude ITP.

Although still work in progress and amenable to many subsequent improve-
ments and extensions, it seems fair to say that the advances in goals (1)–(3)
supported by the InvA tool have been significant. A good way to give a feeling
for such advances is to explain how they have helped in automating a remarkable
amount of proof tasks when verifying a well-known benchmark verified by other
systems, and in particular by the OTS/CafeOBJ methodology and tool, namely,
the reliable communication ensured by the Alternating Bit Protocol. This also
makes it possible to compare our proof efforts with those in OTS/CafeOBJ and
measure advances in Goal (3) in a concrete and meaningful way.

In summary, therefore, this work should be seen in the context of a very
long and broader exchange of ideas with Kokichi Futatsugi and his collabora-
tors in the CafeOBJ group, which has stimulated advances in both Maude and
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CafeOBJ. In particular, it has been a pleasure to discuss our ideas about InvA
with Kokichi Futatsugi and Kazuhiro Ogata, and to benefit from their experi-
ence in the deductive verification of invariants. This work is cordially dedicated
to Kokichi Futasugi in the spirit of such a long term and very fruitful exchange
of ideas.

2 Preliminaries

This paper follows notation and terminology from [15] for order-sorted equational
logic and from [5] for rewriting logic.

An order sorted signature Σ is a tuple Σ = (S,≤, F ) with finite poset of sorts
(S,≤) and a finite S-index set of function symbols F = {Fw,s}(w,s)∈S∗×S . It is
assumed that: (i) each connected component of a sort s ∈ S in the poset ordering
has a top sort, denoted by ks, and (ii) for each operator declaration f ∈ Fs1...sn,s

there is also a declaration f ∈ Fks1 ...ksn ,ks . The collection X = {Xs}s∈S is an
S-sorted family of disjoint sets of variables with each Xs countably infinite. The
set of terms of sort s is denoted by TΣ(X)s and the set of ground terms of sort
s is denoted by TΣ,s, which are assumed nonempty for each s. The expressions
TΣ(X) and TΣ denote the respective term algebras. The set of variables of a
term t is written vars(t) and is extended to sets of terms in the natural way. A
substitution θ is a sorted map from a finite subset dom(θ)⊆X to TΣ(X) and
extends homomorphically in the natural way; ran(θ) denotes the set of variables
introduced by θ and tθ the application of θ to a term t. Substitution θ1θ2 is
the composition of substitutions θ1 and θ2. A substitution θ is called ground iff
ran(θ) = ∅.

A Σ-equation is a Horn clause t = u if γ, where t = u is a Σ-equality with
t, u ∈ TΣ(X)s for some sort s ∈ S, and the condition γ is a finite conjunction
of Σ-equalities

∧
i∈I ti = ui. An equational theory is a tuple (Σ,E) with order-

sorted signature Σ and finite set of Σ-equations E. For ϕ a Σ-equation, (Σ,E) '
ϕ iff ϕ can be proved from (Σ,E) by the deduction rules in [15] iff ϕ is valid
in all models of (Σ,E); assuming TΣ,s �= ∅ for each s ∈ S, (Σ,E) induces the
congruence relation =E on TΣ(X) defined for any t, u ∈ TΣ(X) by t =E u iff
(Σ,E) ' t = u. The expressions TΣ/E(X) and TΣ/E denote the quotient algebras
induced by =E over the algebras TΣ(X) and TΣ , respectively; TΣ/E is the initial
algebra of (Σ,E). An E-unifier for a Σ-equality t = u is a substitution θ such
that tθ =E uθ. A complete set of E-unifiers for a Σ-equality t = u is written
CSUE(t = u) and it is called finitary if it contains a finite number of E-unifiers.
The expression GUE(t = u) denotes the set of ground E-unifiers of a Σ-equality
t = u. A theory inclusion (Σ,E) ⊆ (Σ′, E′) is protecting iff the unique Σ-
homomorphism TΣ/E −→ TΣ′/E′ |Σ to the Σ-reduct of the initial algebra TΣ′/E′

is an isomorphism.
A Σ-rule is a sentence t → u if γ, where t → u is a Σ-sequent with t, u ∈

TΣ(X)s for some sort s ∈ S and the condition γ is a finite conjunction of Σ-
equalities. A rewrite theory is a tuple R = (Σ,E,R) with equational theory
ER = (Σ,E) and a finite set of Σ-rules R. A topmost rewrite theory is a rewrite
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theory R = (Σ,E,R) such that for some top sort s and for each t→ u if γ ∈ R,
the terms t, u satisfy t, u ∈ TΣ(X)s and t /∈ X , and no operator in Σ has s as
argument sort. For R = (Σ,E,R) and ϕ a Σ-rule, R ' ϕ iff ϕ can be obtained
from R by the deduction rules in [5] iff ϕ is valid in all models of R. For ϕ
a Σ-equation, R ' ϕ iff ER ' ϕ. A rewrite theory R = (Σ,E,R) induces the
rewrite relation→R on TΣ/E(X) defined for every t, u ∈ TΣ(X) by [t]E →R [u]E
iff there is a one-step rewrite proof R ' t → u. The expressions R ' t → u and
R ' t

∗→ u respectively denote a one-step rewrite proof and an arbitrary length
(but finite) rewrite proof in R from t to u. The expression TR = (TΣ/E ,

∗→R)
denotes the initial reachability model of R = (Σ,E,R) [5]. A Σ-sequent ϕ is
an inductive consequence of R denoted R � ϕ iff (∀θ : X −→ TΣ)R ' ϕθ iff
TR |= ϕ.

State predicates. A set of state predicates Π for R = (Σ,E,R) can be
equationally-defined by an equational theory EΠ = (ΣΠ , E 1 EΠ). Signature
ΣΠ contains Σ, two sorts Bool ≤ [Bool ] with constants ) and ⊥ of sort Bool ,
predicate symbols p : s −→ [Bool ] for each p ∈ Π , and optionally some aux-
iliary function symbols. Equations in EΠ define the predicate symbols in ΣΠ

and auxiliary function symbols, if any; they protect (Σ,E) and the equational
theory specifying sort Bool , constants ) and ⊥, and the Boolean operations.
It is easy to define a state predicate p ∈ Π as a Boolean combination of other
already-defined state predicates {p1, . . . , pn} in ΣΠ . The reason why p has typ-
ing p : s −→ [Bool ] instead of p : s −→ Bool , is to allow partial definitions of p
with equations that fully define the positive case by equations p(t) = ) if γ, and
either leave the negative case implicit or may only define some negative cases
with equations p(t′) = ⊥ if γ′ without necessarily covering all the cases.

LTL semantics. For p ∈ Π and [t]E ∈ TΣ/E,s, EΠ defines the semantics of p in
TR as follows: it is said that p([t]E) holds in TR iff EΠ ' p(t) = ). This defines a
Kripke structure KΠ

R = (TΣ/E,s,→R, LΠ) with labeling function LΠ such that,
for each [t]E ∈ TΣ/E,s, the semantic equivalence p ∈ LΠ([t]E) iff p([t]E) holds in
TR. Then, all of LTL can be interpreted in KΠ

R in the standard way [6], including
the “always” (�), “next” (©), and “strong implication” (⇒) operators.

Executability conditions. It is assumed that the set of equations of a rewrite
theory R can be decomposed into a disjoint union E 1 B, with B a collec-
tion of axioms (such as associativity, and/or commutativity, and/or identity) for
which there exists a matching algorithm modulo B producing a finite number of
B-matching substitutions, or failing otherwise. It is also assumed that the equa-
tions E can be oriented into a set of ground sort-decreasing, ground confluent,

and ground terminating rules
−→
E modulo B. The expression t ↓Σ,E/B∈ TΣ,s(X)

denotes the E/B-canonical form of t ∈ TΣ(X), which is guaranteed to exist un-
der the executability conditions above mentioned. The rules R in R are assumed
to be ground coherent relative to the equations E modulo B [28].

Free constructors. For R = (Σ,E 1B,R), the signature Ω ⊆ Σ is a signature
of free constructors modulo B iff for each sort s in Σ and t ∈ TΣ,s there is
u ∈ TΩ,s satisfying t =E�B u, and v ↓Σ,E/B=B v for any v ∈ TΩ,s. For the
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development in this paper it is required that t ∈ TΩ(X) for each t→ u if γ ∈ R
(see [23,24] for more details).

3 The Maude Invariant Analyzer Tool: An Overview

The Maude Invariant Analyzer Tool (InvA) is a tool designed for interactively
proving two key safety properties of executable Maude specifications, namely, in-
ductive stability and inductive invariance, plus their combination by strengthen-
ing techniques. The tool mechanizes an inference system that, without assuming
finiteness of the set of initial or reachable states, uses rewriting and narrowing-
based reasoning techniques, in which all temporal logic formulas eventually dis-
appear and are replaced by purely equational conditional sentences. The InvA
tool provides a substantial degree of mechanization and can automatically dis-
charge many proof obligations without user intervention. It is implemented in
the Maude language and exploits rewriting logic’s reflection capabilities, i.e., it
is a Maude specification that takes, as part of its input, a meta-representation
of a Maude specification.

The concept of inductive stability for R = (Σ,E,R) is intimately related to
the notion of the set of states t ∈ TΣ,s of TR that satisfy a state predicate p ∈ Π
and is closed under →R. More precisely, for p ∈ Π and x ∈ Xs, the property p
being inductively stable for R is the safety property:

KΠ
R |= p(x) ⇒ �p(x)

meaning that if p(t) holds in a state t ∈ TΣ,s, then p(u) holds in any state
u ∈ TΣ,s that is reachable from t.

Invariants are among the most important safety properties. Given a set of
initial states characterized by I ∈ Π , a state predicate p ∈ Π being inductively
invariant for R from the set of initial states I is the safety property

KΠ
R |= I(x)⇒ �p(x)

meaning that if I(t) holds in a state t ∈ TΣ,s, then p(u) holds in any state
u ∈ TΣ,s reachable from t. In other words, the invariant p holds for all states
reachable from I. Since the set of initial states is defined in EΠ as a state predicate
I ∈ Π , an equational definition of I can of course capture an infinite set of initial
states.

3.1 Inference System Mechanized in the InvA Tool

Given an inductive stability or inductive invariance property ϕ, the InvA tool
generates equational proof obligations such that, if they hold, then TR |= ϕ. For a
topmost rewrite theory R and a set of state predicates Π specified in Maude, the
InvA tool mechanizes inference rules St, Inv, Str1, Str2, C⇒, Nr1, and Nr2

depicted in Figure 1. Soundness proofs for each one of these inference rules can
be found in [23]. The application of inference rules St, Inv, Str1, and Str2 to
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a given inductive stability or invariance LTL verification goal ultimately reduces
such a goal to simpler inductive equational reasoning that can be handled by
applying rules C⇒, Nr1, and Nr2.

Inference rule St reduces the verification task of the inductive stability of a
predicate p to the simpler condition p⇒©p, which only involves 1-step search
instead of arbitrary depth search. Inference rule Inv reduces the verification task
of inductive invariance to equational implication and inductive stability. Infer-
ence rules Str1 and Str2 are strengthening rules. Inference rule C⇒ handles
equational implications, while rules Nr1 and Nr2 use 1-step narrowing modulo
axioms to handle the symbolic 1-step search, for the temporal next operator, in
formulae of the form p⇒ ©p. Note that any inductive stability and invariance
formula is ultimately reduced to equational reasoning. Thanks to the availabil-
ity since Maude 2.6 of unification modulo commutativity (C), associativity and
commutativity (AC), and modulo these theories plus identities (U), and to the
narrowing modulo infrastructure, the InvA tool can handle modules with op-
erators declared C, CU, AC, and ACU. Furthermore, since unification modulo
the above theory combinations is decidable, and each one yields a finite set of
complete unifiers, the set of proof obligations resulting from applying rules Nr1

and Nr2 is always finite.
Under the executability assumptions, R has a disjoint union E 1 B of equa-

tions, with B a collection of structural axioms on some function symbols in Σ
such as associativity, commutativity, identity, etc., and E a set of ground sort-
decreasing, ground confluent, ground terminating, and ground coherent (w.r.t.
R) equations modulo B. Then, it is key to note that for rules Nr1 and Nr2

and for a combination of free and associative and/or commutative and/or iden-
tity axioms, except for symbols f that are associative but not commutative, a
finitary B-unification algorithm exists. Instead, in general there is no finitary
E 1 B-unification algorithm, but for Ω ⊆ Σ a signature of free equational con-
structors modulo B and a Ω-equality t = u, CSUB(t = u) exactly characterizes
as its ground instances the set GUB(t = u) (see [23, Lemma 2, Chapter 4] for
more details).

3.2 Methodology and Commands Available to the User

The approach for proving inductive stability and invariance properties in the
InvA tool is depicted in Figure 2.

Given a topmost rewrite theory R, an equational specification EΠ for the
state predicates Π , and an inductive safety property ϕ the InvA tool internally
generates equational proof obligations according to the inference system in Fig-
ure 1 and tries to discharge as many of them as possible by using the heuristics
described in Section 3.3. Any proof obligation that cannot be automatically dis-
charged is output to the user so it can be handled interactively in an external
tool such as Maude’s Inductive Theorem Prover (ITP) [7,13] (an experimental
interactive tool for proving properties of the initial algebra TE of an order-sorted
equational theory E written in Maude).
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R � p(x)⇒©p(x)

R � p(x)⇒ �p(x)
St

R � I(x)⇒ p(x) R � p(x)⇒ �p(x)

R � I(x)⇒ �p(x)
Inv

R � I(x)⇒ J(x) R � J(x)⇒ �q(x)
R � q(x)⇒ p(x)

R � I ⇒ �p
Str1

R � I(x)⇒ p(x) R � I(x)⇒ �q(x)
R � q(x) ∧ p(x)⇒©p(x)

R � I(x)⇒ �p(x)
Str2

∧
(q(v)=w if γ′)∈EΠ

EΠ � p(v) = ) if γ′ ∧ w = )

R � q(x)⇒ p(x)
C⇒

∧
(l→r if γ)∈R
(θ,w,γ′)∈Θp

l

EΠ � p(rθ) = ) if γθ ∧ γ′θ ∧ wθ = )

R � p(x)⇒©p(x)
Nr1

∧
(l→r if γ)∈R
(θ,w,γ′)∈Θp

l

EΠ � p(rθ) = ) if γθ ∧ γ′θ ∧ wθ=)∧q(l)θ=)

R � q(x) ∧ p(x)⇒©p(x)
Nr2

where Θp
l =

⋃
(p(v)=w if γ′)∈EΠ

{(θ, w, γ′) | θ ∈ CSUB(l = v)}.

Fig. 1. Inference rules mechanized in the InvA tool
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The user interacts with the InvA tool via commands; the commands available
are the following:

– (help .) shows the list of commands available.
– (analyze-stable <pred> in <module> <module> .) generates the proof obli-

gations for inference St with inference Nr1, for the given predicate. The
first module equationally specifies the state predicate and the second one
the topmost rewrite theory. This command tries to eagerly discharge the
proof obligations; those that cannot be discharged are shown to the user.

– (analyze-stable <pred> in <module> <module> assuming <pred> .) generates
the proof obligations for proving the third premise of inference Str2 with
inference Nr2, for the given predicate and the given modules. The first
module equationally specifies the state predicates and the second one the
topmost rewrite theory. This command tries to eagerly discharge the proof
obligations; those that cannot be discharged are shown to the user.

– (analyze <pred> implies <pred> in <module> .) generates the proof obliga-
tions for proving the given implication in the given module, according to in-
ference C⇒. This command tries to eagerly discharge the proof obligations;
those that cannot be discharged are shown to the user.

– (show pos .) shows the proof obligations computed by the last analyze

command that could not be discharged; those that were discharged are not
shown.

– (show-all pos .) shows all the proof obligations computed by the last analyze
command.

Observe that the analysis commands in InvA give direct tool support for de-
ductive reasoning with some of the inference rules presented here, but not for all
of them. For example, there is no command in InvA directly supporting deduction
with inference rule Inv. Nevertheless, deduction with all inference rules is sup-
ported by InvA via combination of commands. For example, deduction with infer-
ence rule Inv can be achieved by combining the analyze and analyze-stable

commands.

3.3 Proof-Search Heuristics in InvA

After applying rules St, Inv, Str1, Str2, C⇒, Nr1, and Nr2 according to the
user commands, the InvA tool uses rewriting-based reasoning and narrowing pro-
cedures, and SMT decision procedures for automatically discharging as many of
the generated equational proof obligations as possible. For an executable equa-
tional specification EΠ = (ΣΠ , EΠ 1B) and a conditional proof obligation ϕ of
the form

t = u if γ,

the InvA tool applies a proof-search strategy such that, if it succeeds, then the
Kripke structure KΠ

R associated to the initial reachability model TR satisfies
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Fig. 2. Approach for checking inductive stability and invariance properties for rewrite
theories

ϕ. Otherwise, if the proof-search fails, the proof obligation ϕ (or a logically
equivalent variant) is output to the user.

For the proof-search process, the InvA tool first tries to simplify Boolean ex-
pressions in ϕ. During the simplification process, the tool assumes that any oper-
ator ‘∼’ is an equationally defined equality predicate, i.e., an equality enrichment.
Given an order-sorted signature Σ = (S,≤, F ) and an order-sorted equational
theory E = (Σ,E) with initial algebra TE , an equality enrichment [17] of E is
an equational theory E∼ that extends E by defining a Boolean-valued equality
function symbol ‘∼’ that coincides with ‘=’ in TE .

Definition 1. An equational theory E∼=(Σ∼, E∼) is called an equality enrich-
ment of E = (Σ,E), with Σ∼ = (S∼,≤∼, F∼) and Σ = (S,≤, F ), iff

– E∼ is a protecting extension of E;
– the poset of sorts of Σ∼ extends (S,≤) by adding a new sort Bool that

belongs to a new connected component, with constants ) and ⊥ such that
TE∼,Bool = {[)], [⊥]}, with ) �=E∼ ⊥; and

– for each connected component in (S,≤) there is a top sort k ∈ S∼ and a
binary commutative operator ∼ : k k −→ Bool in Σ∼, such that the
following equivalences hold for any ground terms t, u ∈ TΣ,k:

E ' t = u ⇐⇒ E∼ ' (t ∼ u) = ),
E �' t = u ⇐⇒ E∼ ' (t ∼ u) = ⊥.

An equality enrichment E∼ of E is called Boolean iff it contains all the func-
tion symbols and equations making the elements of TE∼,Bool a two-element
Boolean algebra.

Using the information about ‘∼’, a Boolean transformation can be applied
recursively to ϕ with the additional information of the equality enrichment, if
any is defined.



612 C. Rocha and J. Meseguer

The goal of the Boolean transformation process on a conditional proof obliga-
tion ϕ having the form t = u if γ, is to obtain, if possible, an inductively equiv-
alent proof obligation ϕ′ for which the automatic search tests, explained below,
have better chances of success. The following is a description of the Boolean
transformations applied recursively by the InvA tool:

– If t = u in ϕ is such that t is of the form t1 ∼ t2 and u of the form ⊥, then
ϕ is transformed into ) = ⊥ if γ ∧ t1 = t2.

– If v1 = v2, with v1, v2 ∈ TΣ(X)Bool , is any of theΣ-equalities in the condition
γ of ϕ, then:

• If v1 is of the form v11 ∼ v21 and v2 of the form ), then v1 = v2 is replaced
by v11 = v21 .

• If v1 is of the form v11 # · · · # vn1 and v2 of the form ), then v1 = v2 is
replaced by v11 = ) ∧ · · · ∧ vn1 = ). Note that the vi1 have sort Bool .

• If v1 is of the form v11 $ · · · $ vn1 and v2 of the form ⊥, then v1 = v2 is
replaced by v11 = ⊥ ∧ · · · ∧ vn1 = ⊥. Note that the vi1 have sort Bool .

Symbols # and $ are used to represent, respectively, the conjunction and
disjunction function symbols used by the Boolean equality enrichment in Def-
inition 1. Also note that Σ-equalities are unoriented, and thus in the Boolean
transformation the order of terms in the equalities is immaterial.

After the Boolean transformation process is completed, some automatic search
tests are applied to the resulting proof obligation following the strategy described
below. In what follows, it is assumed that ϕ has been already simplified by the
abovementioned Boolean transformations. Furthermore, let t, u, γ be obtained
from t, u, and γ, respectively, by replacing each variable x ∈ X by a new constant
x ∈ X, with Σ ∩X = ∅.

1. Equational simplification. The strategy checks if ϕ holds trivially, i.e., if

t ↓Σ,E/B=B u ↓Σ,E/B

or there is ti=ui in γ such that ti ↓Σ,E/B, ui ↓Σ,E/B∈ TΣ but

ti ↓Σ,E/B �=B ui ↓Σ,E/B .

Some simplifications in the form of reduction to canonical forms can be
made to ϕ, even if they do not yield a trivial proof of ϕ. In some cases, such
canonical reductions are incorporated into ϕ and the Boolean transformation
is used again.

2. Context joinability. It checks whether ϕ is context-joinable [8]. The proof
obligation ϕ is context-joinable iff t and u are joinable in the rewrite theory

Rϕ
E = (Σ(X), B,

−→
E 1 −→γ ), obtained by making variables into constants and

by orienting the equations E as rewrite rules
−→
E and heuristically orienting

each equality ti = ui in γ as a sequent ti → ui in
−→γ .
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3. Unfeasability. It checks if the proof obligation is unfeasible [8]. The proof
obligation ϕ is unfeasible if there is a conjunct ti → ui in −→γ and v, w ∈
TΣ(X) such that Rϕ

E ' ti → v ∧ ti → w, CSUB(v = w) = ∅, and v and w

are strongly irreducible with
−→
E modulo B, i.e., if v and w are such that each

one of its ground instances is in E-canonical form modulo B.
4. SMT Solving. It checks if the proof obligation can be proved by an SMT

decision procedure. The condition γ of the proof obligation ϕ is analyzed
and, if possible, a subformula consisting only of arithmetic subexpressions is
extracted. This subformula has the following property: if it is a contradiction,
then γ is unsatisfiable. Therefore, if the SMT decision procedure answers
that the input subformula is unsatisfiable, then, as in the previous test, ϕ is
unfeasible.

Because of the admissibility assumptions on (Σ,E 1 B), the first test of the
strategy either succeeds or fails in finitely many equational rewrite steps. For
the second and third tests, the strategy is not guaranteed to succeed or fail
in finitely many rewrite steps because the oriented sequents −→γ can falsify a
termination assumption. So, for these last two checks, InvA uses a bound on
the depth of the proof-search. For the fourth test, InvA offers support for integer
linear arithmetic constraints, which is known to be decidable and for which there
are decision procedures already implemented in the SMT solver of choice.

The code in InvA for tests (2) and (3) was borrowed and adapted from the
Church-Rosser Checker Tool [8]. For the test (4), the InvA tool relies on an
extension of Maude with the CVC3 theorem prover available from the Matching
Logic Project [25].

4 The Alternating Bit Protocol

The Alternating Bit Protocol (ABP) [2] is a data layer protocol. It was designed
to achieve reliable full-duplex data transfer between two processes over an unre-
liable half-duplex transmission line in which messages can be lost or corrupted
in a detectable way. The data link layer, the second lowest layer in the OSI seven
layer model, splits data into frames for sending on the physical layer and receives
acknowledgment frames. It performs error checking and re-transmits frames not
received correctly. It provides an error-free virtual channel to the network layer,
the third lowest layer in the OSI layer model.

The overall structure of ABP is illustrated in Figure 3. The protocol comprises
an input stream of data to be transmitted, a sender and a receiver process, each
having a data buffer and a one bit state, a data channel for data-bit pairs called
bit-packets, an acknowledgment channel for bit-packets consisting of a single bit,
and an output data stream. Here is how the protocol works:

– The sender process starts by repeatedly sending bit-packets (b, d1) into the
data channel, where b is the sender’s bit and d1 is the first element of the
input stream.
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– The receiver process starts by waiting until it receives the bit-packet (b, d1),
and then it repeatedly sends b over the acknowledgment channel.

– When the source process receives b, it begins repeatedly sending the bit-
packet (flip(b), d2), where d2 is the second element of the input stream,
which is what the receiver process is now waiting for.

– When the target receives (flip(b), d2), it begins sending packets containing
flip(b).

– At any moment either channel can duplicate or lose its oldest packet, if any.
– And so on ...

data bit data bit
output streamack channelinput stream

data channel

Fig. 3. The Alternating Bit Protocol

The protocol is highly concurrent and non-deterministic because, for instance,
it is unknown how long will it take before a bit-packet gets through. To guarantee
progress, it must be assumed that the channels are fair, in the sense that if the
sender persists, eventually a bit-packet will get through. The reason is that
without this assumption the algorithm is not correct because data transmission
might fail forever. However, this is a fairness assumption that is not needed for
analyzing the reliable communication enforced by the protocol. Remember that
a safety property assures that “nothing bad happens”, even when nothing ever
happens.

4.1 Formal Modeling

The ABP specification in Maude has 9 modules. This section gives an overview;
the full specification can be found in [23].

At the top level, the state space is represented by the top sort Sys defined in
module ABP-STATE, which is a 6-tuple:

sort Sys .

op _:_>_|_<_:_ : iNat Bit BitPacketQueue BitQueue Bit iNatList

-> Sys [ctor] .

The arguments of a state are the data from the input stream currently being
transmitted by the sender (as iNat), the bit of the sender (as Bit), the data
channel (as BitPacketQueue), the acknowledgment channel (as BitQueue), the
bit of the receiver (as Bit), and the output stream (as iNatList).

The sort iNat is that of natural numbers in Peano notation, together with
an equality enrichment. Natural numbers are used to represent packets in the
potentially infinite input stream.
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sort iNat .

op 0 : -> iNat [ctor] .

op s_ : iNat -> iNat [ctor] .

op _~_ : iNat iNat -> Bool [comm] .

Bits are defined in module BIT by sort Bit with two constructor constants, a
‘flipping’ operator, and an equality enrichment:

sort Bit .

ops on off : -> Bit [ctor] .

op flip : Bit -> Bit .

op _~_ : Bit Bit -> Bool [comm] .

eq flip(on)

= off .

eq flip(off)

= on .

Sort BitPacketQueue represents lists of bit-packets, sort BitQueue represents
lists of bits, and sort iNatList represents lists of natural numbers. They are all
lists defined in the usual way: an empty list is identified by the constructor con-
stant nil, “cons” is a constructor binary symbol denoted by juxtaposition, and
append is a defined binary symbol denoted by ‘;’. For instance, sort BitQueue
defined in module BIT-QUEUE is specified as follows:

sort BitQueue .

op nil : -> BitQueue [ctor] .

op __ : Bit BitQueue -> BitQueue [ctor prec 61] .

op _;_ : BitQueue BitQueue -> BitQueue [prec 65] .

eq nil ; BQ:BitQueue

= BQ:BitQueue .

eq B1:Bit BQ1:BitQueue ; BQ2:BitQueue

= B:Bit (BQ1:BitQueue ; BQ2:BitQueue) .

Having covered the basic notation, consider the following ground term of sort
Sys representing a state in the system:

s(0) : on > (off,0) nil | nil < off : (0 nil)

In this state, the packet from the input stream currently being sent is s(0),
the sender’s bit is on, the data channel contains only the bit-packet (off,0),
the acknowledgment channel is empty, the receiver’s bit is off, and the output
stream consists only of the packet 0.

Finally, module ABP specifies the operation of the protocol with 15 rewrite
rules. These rewrite rules model the transmission of the bit-packets through the
data channel, the reception of acknowledgments from the receiver, data duplica-
tion and loss, among other behaviors of the system. For instance, consider the
following five rewrite rules:

rl [send-1] :
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N:iNat : B1:Bit > BPQ:BitPacketQueue

| BQ:BitQueue < B2:Bit : NL:iNatList

=> N:iNat : B1:Bit > BPQ:BitPacketQueue ; ((B1:Bit, N:iNat) nil)

| BQ:BitQueue < B2:Bit : NL:iNatList .

rl [recv-1b] :

N:iNat : on > BPQ:BitPacketQueue

| off BQ:BitQueue < B2:Bit : NL:iNatList

=> s(N:iNat) : off > BPQ:BitPacketQueue

| BQ:BitQueue < B2:Bit : NL:iNatList .

rl [recv-1c] :

N:iNat : off > BPQ:BitPacketQueue

| on BQ:BitQueue < B2:Bit : NL:iNatList

=> s(N:iNat) : on > BPQ:BitPacketQueue

| BQ:BitQueue < B2:Bit : NL:iNatList .

rl [recv-2a] :

N:iNat : B1:Bit > (on,N2:iNat) BPQ:BitPacketQueue

| BQ:BitQueue < on : NL:iNatList

=> N:iNat : B1:Bit > BPQ:BitPacketQueue

| BQ:BitQueue < off : (N2:iNat NL:iNatList) .

rl [dup-1] :

N:iNat : B1:Bit > BP:BitPacket BPQ:BitPacketQueue

| BQ:BitQueue < B2:Bit : NL:iNatList

=> N:iNat : B1:Bit > BP:BitPacket (BP:BitPacket BPQ:BitPacketQueue)

| BQ:BitQueue < B2:Bit : NL:iNatList .

The effects of these rules in a state can be summarized as follows:

[send-1] models the “fifo” placement of the current bit-packet in the data
channel (the acknowledgment channel behaves in the same way).

[recv-1b] models the reception of the acknowledgment the sender was wait-
ing for and thus the sender process immediately updates the packet to be
transmitted with the next available packet from the input stream and flips
its communication bit.

[recv-1c] models the reception of an acknowledgment the sender was not wait-
ing for and thus the acknowledgment is ignored.

[recv-2a] models the reception of a bit-packet whose contents are put in the
output stream.

[dup-1] duplicates the first message in the data channel.

Note that because of rule [recv-1c], for instance, the formal model of the
ABP has potentially infinitely many reachable states: every time a packet is
successfully transmitted, the sender’s counter modeling the input stream is in-
creased by one and then the whole sending process starts over again with the
next packet.
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5 Reliable Communication

The analysis that follows is based on the formal model explained in Section 4.1.
One of the main properties the ABP should enjoy is the reliable communica-

tion property. This means that the protocol makes possible to reliably communi-
cate and deliver information from a source to a destination, even in the presence
of unreliable channels of communication. The goal in this section is to report on
the experience of using the InvA tool in the successful mechanical verification of
this property.

5.1 Formal Specification of the Property

Reliable communication in ABP means that whenever n packets have been de-
livered, these were the first n packets sent in that particular order. Note that
this is a property that must hold for each natural number n and that cannot
be effectively checked by means of direct algorithmic techniques, such as model
checking the ABP specification, even if the set of initial states is finite.

The reliable communication property is expressed by the state predicate
inv-main and is defined as follows:

op inv-main : Sys -> Bool .

eq [inv-main-1] :

inv-main(N:iNat : B:Bit > BPQ:BitPacketQueue

| BQ:BitQueue < B:Bit : NL:iNatList)

= (N:iNat NL:iNatList) ~ gen-list(N:iNat) .

ceq [inv-main-2] :

inv-main(N:iNat : B1:Bit > BPQ:BitPacketQueue

| BQ:BitQueue < B2:Bit : NL:iNatList)

= NL:iNatList ~ gen-list(N:iNat)

if B1:Bit ~ B2:Bit = false .

op gen-list : iNat -> iNatList .

eq gen-list(0)

= (0 nil) .

eq gen-list(s N)

= (s N) gen-list(N) .

State predicate inv-main is fully defined by two equations and uses the aux-
iliary function gen-list. Equation [inv-main-1] considers the case in which
the parity of the sender and receiver bits coincides. In this case, the reliable
communication property holds if and only if the delivered packets correspond to
all but the last packet sent and they are all in order. Equation [inv-main-2]

considers the case in which the parity of the sender and receiver bits does not
coincide. In this case, the reliable communication property holds if and only if
the delivered packets correspond to all packets sent and they are all in order.
Given a natural number n, function gen-list generates the list of the first n
natural numbers in decreasing order.
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Consider the rule [recv-2b] that models packet reception in ABP in order to
motivate the correctness of the reliable communication property:

rl [recv-2b] :

N:iNat : B:Bit > (off,N1:iNat) BPQ:BitPacketQueue

| BQ:BitQueue < off : NL:iNatList

=> N:iNat : B:Bit > BPQ:BitPacketQueue

| BQ:BitQueue < on : (N1:iNat NL:iNatList) .

Note that when a packet N1:iNat is received there is no assumption made about
the relationship between N1:iNat and the current packet from the input stream
N:iNat or the already delivered packets NL:iNatList. In this case, there is no
obvious reason for the reliable communication property to hold, even if a state
initially satisfies this property.

The goal is to prove the ABP inv-main-invariant from init. State predicate
init defines the set of initial states as follows:

op init : Sys -> [Bool] .

eq [init-1] :

init( 0 : on > nil | nil < on : nil)

= true .

eq [init-2] :

init( 0 : off > nil | nil < off : nil)

= true .

The set of initial states for the verification task at hand, as defined by init,
consists of exactly two states. Namely, those states where the packet to be trans-
mitted is 0, the sender and receiver bits coincide, the communication channels
are empty, and no packet has been delivered.

The following verification commands can be given to the InvA tool in order
to check if state predicate inv-main is an inductive invariant from init:

(analyze init(S:Sys) implies inv-main(S:Sys) in ABP-PREDS .)

(analyze-stable inv-main(S:Sys) in ABP-PREDS ABP .)

It is assumed that module ABP-PREDS contains the state predicates and their
corresponding auxiliary function symbols, and module ABP contains the specifi-
cation of ABP, as explained in Section 4.1 and documented in [23].

When the above-mentioned commands, the InvA tool generates the following
output:

Checking ABP-PREDS ||- init(S:Sys) => inv-main(S:Sys) ...

Proof obligations generated: 2

Proof obligations discharged: 2

Success!

Checking ABP-PREDS ||- inv-main(S:Sys) => O inv-main(S:Sys) ...

Proof obligations generated: 30
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Proof obligations discharged: 22

The following proof obligations need to be discharged:

8. from inv-main-2 & recv-2b : pending

inv-main(#7:iNat : #8:Bit > #10:BitPacketQueue

| #11:BitQueue < on :(#9:iNat #12:iNatList)) = true

if off ~ #8:Bit = false

/\ #12:iNatList = gen-list(#7:iNat).

...

The tool generates 32 proof obligations and automatically discharges 24 of them.
The remaining 8 proof obligations are returned to the user; in the snapshot, only
one proof obligation for ground stability that was not automatically discharged
is shown and it is identified by label 8.

Upon inspection of the InvA’s output, it is relatively easy to observe that
inv-main is not an inductive invariant for ABP. Indeed, consider the proof obli-
gation identified by label 8, as show in the snapshot above, and a ground inter-
pretation where #8:Bit is on, #7:iNat and #9:iNat are 0, and #12:iNatList is
the singleton list 0 nil. For this particular ground instantiation, the condition
in the proof obligation is satisfied because on ~ off reduces to false and the
value returned by gen-list on input 0 is the ground list 0 nil. However, by
equation [inv-main-2] in the definition of predicate inv-main, this proof obli-
gation is false because the lefthand side of the conclusion reduces to the Boolean
term 0 nil ~ 0 0 nil, which ultimately reduces to false. This is evidence
of the fact that a stronger predicate is needed, that is, inv-main needs to be
strengthened.

5.2 Strengthening the Invariant

The first observation to make is that the InvA tool would be able to automatically
discharge more proof obligations and also return simpler ones if there were some
mechanism for achieving case analysis on the sort Bit. Since the InvA internals
do not yet offer this feature, a practical approach is to include the case splitting
as part of the predicate’s equational definition (similarly to what was done in
the definition of state predicate init). For instance, state predicate inv is a
finer-grained version of inv-main that exhibits the idea of case splitting on the
sort Bit for the case of the bits in the sender and receiver.

op inv : Sys -> Bool .

eq [inv-1a] :

inv(N:iNat : on > BPQ:BitPacketQueue

| BQ:BitQueue < on : NL:iNatList)

= (N:iNat NL:iNatList) ~ gen-list(N:iNat) .

eq [inv-1a] :

inv(N:iNat : off > BPQ:BitPacketQueue

| BQ:BitQueue < off : NL:iNatList)

= (N:iNat NL:iNatList) ~ gen-list(N:iNat) .

eq [inv-2a] :
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inv(N:iNat : on > BPQ:BitPacketQueue

| BQ:BitQueue < off : NL:iNatList)

= NL:iNatList ~ gen-list(N:iNat) .

eq [inv-2a] :

inv(N:iNat : off > BPQ:BitPacketQueue

| BQ:BitQueue < on : NL:iNatList)

= NL:iNatList ~ gen-list(N:iNat) .

Since the case analysis on the sort Bit is already implemented in predicate
inv, and this is potentially useful for automation in the overall proof, this pred-
icate is preferred over predicate inv-main. The idea is then to strengthen inv

instead of inv-main. Within the overall context of the verification task, the
change of predicate inv-main for inv requires a formal proof of the following
implications:

ABP � init⇒ inv and ABP � inv⇒ inv-main.

These two proof obligations can be analyzed with the help of inference rule C⇒
in Section 3.1. The InvA’s mechanization of this inference rule can automatically
discharge the implications:

Checking ABP-PREDS ||- init(S:Sys) => inv(S:Sys) ...

Proof obligations generated: 2

Proof obligations discharged: 2

Success!

Checking ABP-PREDS ||- inv(S:Sys) => inv-main(S:Sys) ...

Proof obligations generated: 4

Proof obligations discharged: 4

Success!

Finding a strengthening for inv is not an easy task at first sight. The non-
obvious relationships between the channels and the alternating bits, and the
many rules that can concurrently apply to a state make this harder. But it is
the deep understanding of these relationships that guides the proof effort for
obtaining a useful, yet succinct and elegant, strengthening for inv.

The key to it all is that the channels behave under some sort of uniformity
that is parametric on the sender and receiver bits. This notion of uniformity
can be precisely captured with the help of some auxiliary predicates for the
two communication channels. Indeed, consider the following auxiliary predicates
all-packets and good-packet-queue:

op all-packets : BitPacketQueue Bit iNat -> Bool .

eq [ap-1] :

all-packets(nil,B:Bit,N:iNat)

= true .

eq [ap-2] :

all-packets(BP:BitPacket BPQ:BitPacketQueue,B:Bit,N:iNat)

= BP:BitPacket ~ (B:Bit,N:iNat) and
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all-packets(BPQ:BitPacketQueue,B:Bit,N:iNat) .

op good-packet-queue : BitPacketQueue Bit iNat -> Bool .

eq [gpq-1] :

good-packet-queue(nil,B:Bit,N:iNat)

= true .

ceq [gpq-2] :

good-packet-queue((B1:Bit,N1:iNat) BPQ:BitPacketQueue,

B:Bit,N:iNat)

= N:iNat ~ s(N1:iNat) and

good-packet-queue(BPQ:BitPacketQueue,B:Bit,N:iNat)

if B1:Bit = flip(B:Bit) .

eq [gpq-3] :

good-packet-queue((B:Bit,N1:iNat) BPQ:BitPacketQueue,

B:Bit,N:iNat)

= N:iNat ~ N1:iNat and

all-packets(BPQ:BitPacketQueue,B:Bit,N:Nat) .

Predicate all-packets on input BPQ:BitPacketQueue and (B:Bit,N:iNat)

is true if and only if all bit-packets in BPQ have the form (B,N). Predicate
good-packet-queueon input BPQ:BitPacketQueue and (B:Bit,N:iNat) is true
if and only if BPQ can be split into two parts, one of them possibly empty, where
in the initial part of the channel all packets are of the form (flip(B),N-1) and
in the second part of the form (B,N). For example:

good-packet-queue((on,3) (off,4) (off,4) nil, off, 4) = true

good-packet-queue((on,3) (on,3) nil, off, 4) = true

good-packet-queue((off,4) nil, off, 4) = true

good-packet-queue((off,4) (on,4) nil, off, 4) = false

Auxiliary predicates all-bits and good-bit-queue are similar to the aux-
iliary predicates just discussed for channels of bit-packets, but they are about
channels of bits.

op all-bits : BitQueue Bit -> Bool .

eq [ab-1] :

all-bits(nil,B:Bit)

= true .

eq [ab-2] :

all-bits(B1:Bit BQ:BitQueue,B:Bit)

= B1:Bit ~ B:Bit and all-bits(BQ:BitQueue,B:Bit) .

op good-bit-queue : BitQueue Bit -> Bool .

eq [gbq-1] :

good-bit-queue(nil,B:Bit)

= true .

ceq [gbq-2] :
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good-bit-queue(B1:Bit BQ:BitQueue, B:Bit)

= good-bit-queue(BQ:BitQueue,B:Bit)

if B1:Bit = flip(B:Bit) .

eq [gbq-3] :

good-bit-queue(B:Bit BQ:BitQueue, B:Bit)

= all-bits(BQ:BitQueue,B:Bit) .

The strengthening for inv is the state predicate good-queues that uses the
auxiliary predicates above-mentioned:

op good-queues : Sys -> Bool .

eq [good-queues-1a] :

good-queues(N:iNat : on > BPQ:BitPacketQueue |

BQ:BitQueue < on : NL:iNatList)

= all-bits(BQ:BitQueue,on) and

good-packet-queue(BPQ:BitPacketQueue,on,N:iNat) .

eq [good-queues-1b] :

good-queues(N:iNat : off > BPQ:BitPacketQueue |

BQ:BitQueue < off : NL:iNatList)

= all-bits(BQ:BitQueue,off) and

good-packet-queue(BPQ:BitPacketQueue,off,N:iNat) .

eq [good-queues-2a] :

good-queues(N:iNat : on > BPQ:BitPacketQueue |

BQ:BitQueue < off : NL:iNatList)

= good-bit-queue(BQ:BitQueue,off) and

all-packets(BPQ:BitPacketQueue,on,N:iNat) .

eq [good-queues-2b] :

good-queues(N:iNat : off > BPQ:BitPacketQueue |

BQ:BitQueue < on : NL:iNatList)

= good-bit-queue(BQ:BitQueue,on) and

all-packets(BPQ:BitPacketQueue,off,N:iNat) .

State predicate good-queues is fully defined by four equations. It characterizes
the patterns observed on the communication channels, and their relationship
with the alternating bits, in four cases. For example, equation [good-queues-1a]

states that a state in which both bits are on satisfies predicated good-queues if
and only if all bits in the receiver’s queue are on and the sender’s channel can
be split into two parts, where in the initial part of the channel all packets are of
the form (off,N-1) and in the second part of the form (on,N).

As it will be shown, the strengthening good-queues of inv is enough to
prove the correctness of ABP. Figure 4 depicts the full proof-tree for the in-
ductive invariance of inv-main from init that uses state predicates inv and
good-queues.

The next step in the proof is to check

ABP � good-queues∧ inv⇒©inv and

ABP � init⇒ �good-queues,
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2/2

init⇒ inv
C⇒

2/2

init⇒ gq
C⇒

28/48
(48/48)

gq⇒©gq
Nr1

gq⇒ �gq
St

init⇒ �gq
Inv

46/48
(48/48)

gq ∧ inv⇒©inv
Nr2

init⇒ �inv
Str2

4/4

inv⇒ inv-main
C⇒

init⇒ �inv-main
Str1

Fig. 4. Correctness proof of the Alternating Bit Protocol (gq stands for good-queues).
The expression d/g denotes the number g of proof obligations generated and the number
d of proof obligations automatically discharged by the InvA tool; the same expression
in parenthesis has the same meaning but includes the use of the ITP and/or some
auxiliary lemmata. Some trivial inferences have been omitted.

since the following two properties have been already proved:

ABP � init⇒ inv and ABP � inv⇒ inv-main.

When checking good-queues∧inv⇒©inv, the following is the output given
by the InvA tool:

rewrites: 97315 in 348ms cpu (346ms real) (279623 rewrites/second)

Checking ABP-PREDS ||- inv(S:Sys) => O inv(S:Sys)

assuming good-queues(S:Sys) ...

Proof obligations generated: 48

Proof obligations discharged: 46

The following proof obligations could not be discharged:

8. from inv-1a & recv-2b : pending

gen-list(#5:iNat)~(#6:iNat #9:iNatList) = true

if #5:iNat = #6:iNat

/\ all-bits(#8:BitQueue,off) = true

/\ all-packets(#7:BitPacketQueue,off,#5:iNat) = true

/\ gen-list(#5:iNat) = #5:iNat #9:iNatList .

46. from inv-1a & recv-2a : pending

gen-list(#5:iNat)~(#6:iNat #9:iNatList) = true

if #5:iNat = #6:iNat

/\ all-bits(#8:BitQueue,on) = true

/\ all-packets(#7:BitPacketQueue,on,#5:iNat) = true

/\ gen-list(#5:iNat) = #5:iNat #9:iNatList .

The tool generates 48 proof obligations and automatically discharges 46 of them.
The remaining two proof obligations are about properties of lists of natural num-
bers. Note that the Boolean transformation internally implemented by the InvA
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tool (explained in Section 3.1) splits the Boolean conjunctions in the specifi-
cation of good-queues into conditions and the equality predicate ‘∼’ into ‘=’,
whenever it was possible. A proof script for proof obligations 8 and 46, that
automatically discharges these proof obligations, can be given to the ITP as
follows:

(goal po8 : ABP-PREDS |- A{ #5:iNat ; #6:iNat ; #9:iNatList ;

#8:BitQueue ; #7:BitPacketQueue }

(

(#5:iNat) = (#6:iNat) &

(all-bits(#8:BitQueue,off)) = (true) &

(all-packets(#7:BitPacketQueue,off,#5:iNat)) = (true) &

(gen-list(#5:iNat)) = (#5:iNat #9:iNatList)

=>

(gen-list(#5:iNat) ~ (#6:iNat #9:iNatList)) = (true)

)

.)

(auto .)

(goal po46 : ABP-PREDS |- A{ #5:iNat ; #6:iNat ; #9:iNatList ;

#8:BitQueue ; #7:BitPacketQueue }

(

(#5:iNat) = (#6:iNat) &

(all-bits(#8:BitQueue,on)) = (true) &

(all-packets(#7:BitPacketQueue,on,#5:iNat)) = (true) &

(gen-list(#5:iNat)) = (#5:iNat #9:iNatList)

=>

(gen-list(#5:iNat) ~ (#6:iNat #9:iNatList)) = (true)

)

.)

(auto .)

The following is the output of the ITP:

=================================
label-sel: po8#0@0
=================================
A{#5:iNat ; #6:iNat ; #7:BitPacketQueue ; #8:BitQueue ; #9:iNatList}
gen-list(#5:iNat) = #5:iNat #9:iNatList
& all-packets(#7:BitPacketQueue,off,#5:iNat) = true
& all-bits(#8:BitQueue,off) = true & #5:iNat = #6:iNat
==> gen-list(#5:iNat)~(#6:iNat #9:iNatList) = true

+++++++++++++++++++++++++++++++++

rewrites: 10751 in 173ms cpu (181ms real) (61990 rewrites/second)
Eliminated current goal.

q.e.d

+++++++++++++++++++++++++++++++++

rewrites: 9172 in 51ms cpu (51ms real) (177962 rewrites/second)

=================================
label-sel: po46#1@0
=================================
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A{#5:iNat ; #6:iNat ; #7:BitPacketQueue ; #8:BitQueue ; #9:iNatList}
gen-list(#5:iNat) = #5:iNat #9:iNatList
& all-packets(#7:BitPacketQueue,on,#5:iNat) = true
& all-bits(#8:BitQueue,on) = true & #5:iNat = #6:iNat
==> gen-list(#5:iNat)~(#6:iNat #9:iNatList) = true

+++++++++++++++++++++++++++++++++

rewrites: 10751 in 179ms cpu (182ms real) (59745 rewrites/second)
Eliminated current goal.

q.e.d

+++++++++++++++++++++++++++++++++

This completes the proof of:

ABP � good-queues∧ inv⇒©inv.

For the proof of init⇒ �good-queues the InvA tool gives the following output:

rewrites: 10072 in 32ms cpu (35ms real) (314730 rewrites/second)

Checking ABP-PREDS ||- init(S:Sys) => good-queues(S:Sys) ...

Proof obligations generated: 2

Proof obligations discharged: 2

Success!

rewrites: 57223 in 284ms cpu (283ms real) (201476 rewrites/second)

Checking

ABP-PREDS+LEMMATA ||- good-queues(S:Sys) => O good-queues(S:Sys) ...

Proof obligations generated: 48

Proof obligations discharged: 48

Success!

Note that in the proof of inductive stability, module ABP-PREDS+LEMMATA is used
instead of ABP-PREDS. The former module contains 10 lemmata about the aux-
iliary predicates used by state predicate good-queues. Without these lemmata,
the InvA tool discharges automatically only 26 of the 48 proof obligations. See [23]
for a complete explanation of these lemmata and their mechanical proof in the
ITP. This concludes the proof of the inductive invariance of good-queues from
init for ABP.

The main result about the correctness of the ABP is then established mechan-
ically in the InvA with help of the ITP. Namely, the following inductive property
holds:

ABP � init⇒ �inv-main.

See [23] for mechanical proofs of the admissibility of modules ABP, ABP-PREDS,
ABP-PREDS+LEMMATA, and also for the ITP proof scripts used as part of the main
result in this section.

6 Related Work and Concluding Remarks

The Alternating Bit Protocol (ABP) is a well-established benchmark in the proof
technologies that address concurrent, non-deterministic systems. As such, it has



626 C. Rocha and J. Meseguer

been formally studied from different viewpoints using a wealth of formal tech-
niques. They include process algebra [3,4], temporal Petri nets [27], the Calculus
of Constructions [11], and timed rewriting logic [26], among many others.

In the framework of observational transition systems (OTS), ABP has been
formally studied independently by K. Ogata and K. Futatsugi [20], and by K.
Lin and J. Goguen [14]. In the former, the focus is on proving the same invariant
property about reliable communication based on simultaneous induction. In the
latter, the focus is on verifying liveness properties using conditional circular
coinductive rewriting.

Figure 5 presents a comparison between the proof of the reliable communi-
cation property for ABP presented in [20], that uses proof scores, and the one
presented here. This comparison is possible thanks to the authors of [20] who
kindly shared the source code of their case study.

Measure [20] This work
Model LOC 286 208

Model + Predicates LOC 286 + 63 208 + 200
State predicates # 11 3

Lemmata # 7 10
Proof scripts LOC 5189 213

Proof scripts / # predicates LOC 471.8 71

Fig. 5. Comparison of the ABP case study for the reliable communication property
with a similar case study using proof scores in [20]

Note that the human proof effort in [20] is significantly higher than the one
in proving the same property using the approach and tools of Section 3, as
presented in this paper. However, this comparison needs to be taken with a
grain of salt. In particular, the case study using proof scores in [20] does not
benefit from automation techniques, not even for many proof obligations that
are trivial base cases. In contrast, the combined power of InvA and ITP was of
great help, not only because it automatically took care of many simple proof
obligations, but also because of some of its equational inductive techniques such
as cover-set induction [13].

This paper has presented a case study about the deductive analysis of induc-
tive safety properties using the methodology, the proof system, and the Maude
Invariant Analyzer tool (InvA) [23,24]. The subject of study is the Alterating Bit
Protocol: a highly concurrent protocol for reliable data communication across a
lossy channel. The invariant in this case study is about reliable communication,
which is the main safety property of the ABP protocol. As a result of the case
study, a fully mechanized proof for the correctness of the protocol is obtained
with the InvA tool, and with help of Maude’s ITP that was useful for discharg-
ing some equational proof obligations and auxiliary lemmata. The proof relies
heavily on the specification and verification methods developed in [23,24], and
their implementation in the InvA tool.
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Future work should focus on improving the management of proof obligations in
the InvA tool, specially when analyzing large specifications. There is also a need
for improving the proof heuristics used by the tool. As explained in Section 3,
a series of heuristics are employed by the InvA for discharging proof obligations.
However, it should be possible to improve some of them and implement some
new ones. For example, the InvA tool implements some basic heuristic for check-
ing unsatisfiability of numeric conditions modulo SMT. This could perhaps be
combined with equational narrowing, which is already available in Maude. This
should increase the number of proof obligations automatically discharged by the
tool, and thus lessen the proof effort of the user. There is also the need for
improving the techniques available to the user in tools such as the ITP. For in-
stance, inductive techniques such as cover-set induction modulo AC should be
investigated, implemented, and offered to the user. The current ITP version sup-
ports cover-set induction [13] but for the moment not modulo AC. Finally, the
comparison in Figure 5 could be taken a step further by (i) extending the InvA
tool with (semi)automatic lemma discovery by means of symbolic simulation
based on narrowing [1] and rewriting modulo SMT [23], and (ii) by comparing
InvA’s degree of automation with the OTS/CafeOBJ method assisted with auto-
matic and interactive theorem proving tools such as CrÈme [18] and the newly
developed CITP [10].

Acknowledgments. The authors would like to thank the anonymous referees
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dini, A., Klin, B., Ĉırstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 314–328.
Springer, Heidelberg (2011)
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for Rewrite Theory Specifications of OTSs�
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Abstract. We have intensively used proof scores to theorem prove that
equational theory specifications of observational transition systems (OTSs)
have properties. The paper describes a way to theorem prove that rewrite
theory specifications of OTSs have invariant properties by proof score
writing. The method may achieve a more faithfully seamless integration
of model checking and theorem proving because no translation is needed
for system specifications. The Lowe’s modification (NSLPK) of NSPK
authentication protocol is used to describe the method.

Keywords: (bounded) model checking, proof score, rewrite theory spec-
ification, search, theorem proving.

1 Introduction

Retrospect Let “I” refer to the first author in this paragraph. I first met the sec-
ond author (Kokichi Futatsugi) at Tokyo in 1994, when I was finalizing my PhD
project that was about an evolution of Smalltalk to a multiprocessor environ-
ment [1, 2]. When I gave a talk about my PhD project at JAIST in November,
1994, he asked me several questions. One question was in which way I had
confirmed that my design and implementation worked as intended. I did not
understand his true intention and then replied that a number of tests had been
done. I joined his team in 1995, first working on design and implementation of
rewrite engines [3–5]. I, together with him, started the research topic on formal
verification of distributed concurrent systems with algebraic specification tech-
niques in 1999 [6], still pursuing the topic, together with him and some others.
One result is observational transition system (OTS) [7, 8]. I appreciate what he
has done for me. One of the many things is to let me encounter that intriguing
research topic. I have been still questing for an answer to his question that can
convince him.

Let us start the technical part of the introduction of the present paper. OTSs
are state transition systems (or state machines) that have emerged as a sub-
class of behavioral specifications [9, 10] based on UNITY [11]. The CafeOBJ [12]
team led by the second author at JAIST has conducted a number of case studies
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(among which are [13–20]) in which distributed concurrent systems are formal-
ized as OTSs, OTSs are described as equational theory specifications in CafeOBJ
and proof scores written in CafeOBJ are used to theorem prove that systems
(formalized as OTSs) have properties. Proof scores are instructions such that
when executed, if everything evaluates as expected, then some theorems are
proved [21, 22]. Most properties verified are invariant properties, but a class of
liveness ones can be treated [23]. OTS has been evolved into Timed OTS [24]
that has been applied to a non-trivial case [25]. An automatic invariant prover
called Creme has been designed and implemented [26]. The principle and logical
foundation behind OTS and proof scores have been also constructed [21, 22, 27].
A proof assistant has been developed based on the logical foundation [28] and
keeps evolving.

One research topic we have been pursuing is a seamless integration of
model checking and (interactive) theorem proving [29, 30]. We have come up
with a way to describe OTSs as rewrite theory specifications based on concurrent
object-oriented rewrite theory specifications intensively used in the Maude [31]
community so that OTSs can be model checked [32, 33]. We have then designed
a way to translate a class of OTSs described as equational theory specifications
into those as rewrite theory specifications and implemented a translator
[34–37]. As imagined, the approach to the integration we have adopted so far
needs two different system specifications for one system, and this is why trans-
lation from one to the other is required. We were thinking, however, that trans-
lation may prevent the two verification techniques from being integrated suffi-
ciently well in a seamless way. We have then recognized that OTSs described as
rewrite theory specifications can also be used for (interactive) theorem proving
based on proof scores. The present paper describes a way to theorem prove that
rewrite theory specifications of OTSs have invariant properties by proof score
writing. The proposed method uses bounded model checking with depth 1 using
rewriting-based search to discharge induction cases. The method may achieve
a more faithfully seamless integration of model checking and theorem proving
because no translation is needed for system specifications. The Lowe’s modifi-
cation (NSLPK) [38] of NSPK authentication protocol [39] is used to describe
the method. Let us confess that we are not the first who have recognized that
rewrite theory specifications can be used for theorem proving (see the related
work section).

The rest of the paper is organized as follows. Sect. 2 mentions NSPK and gives
a brief introduction to CafeOBJ. Sect. 3 describes integration of model checking
and theorem proving. Sect. 4 outlines how to describe NSPK as a rewrite theory
specification and to model check that NSPK has the nonce secrecy property with
search. Sect. 5 uses NSLPK as an example to describe the proposed method. The
two sections demonstrate that rewrite theory specifications of OTSs can be used
for theorem proving as well as model checking. Sect. 6 mentions some related
work. Sect. 7 concludes the paper.
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2 Preliminaries

2.1 NSPK Authentication Protocol

NSPK[39] can be described as the three message exchanges:

Init: p→ q {np, p}k(q)
Resp: q → p {np, nq}k(p)
Ack: p→ q {nq}k(q)

Each principal such as p and q is given a pair of keys (public and private keys).
{m}k(x) is the ciphertext obtained by encrypting a message (or a tuple of mes-
sages)m with the principal x’s public key. nx is a nonce generated by a principal
x. A nonce is a unique (and unguessable) number that is used once and may be
implemented as a cryptographically secure pseudo random number.

One of the desired properties NSPK should have is the nonce secrecy property
(NSP), which is that any nonces made in sessions that do not involve intruders
are not leaked to the intruders, or equivalently that all nonces that can be gleaned
by the intruders are those made by the intruders or by some other principals to
authenticate the intruders.

Lowe reported on a counterexample showing that NSPK does not have NSP
and proposed the modification [38]. The Lowe’s modification is to include the
sender’s identification in the ciphertext used in a Resp message as follows:

Init: p→ q {np, p}k(q)
RevResp: q → p {np, nq, q}k(p)
Ack: p→ q {nq}k(q)

The modified protocol is called the NSLPK authentication protocol.
We use the standard assumptions for protocol analysis to verify that NS(L)PK

has NSP. Among them are that the cryptosystem used is perfect and the be-
haviors of malicious principals are formalized by the Dolev-Yao most general
intruder[40]. Since we are only interested in NSP that can be expressed as an
invariant property in this paper, it is not necessary to consider blocking of mes-
sages by the intruder.

2.2 CafeOBJ

CafeOBJ and Maude are direct successors of OBJ3 [41], and therefore can be
considered language siblings. Hence, they have lots of features and functionalities
in common. Since CafeOBJ has a large amounts of features and functionalities,
it is impossible to introduce everything about CafeOBJ in this paper. Let us
then describe only the features and functionalities of CafeOBJ that are required
to read the paper.

A sort is a name given to a set of values. Sorts can be partially ordered,
interpreted as subset relations among the sets corresponding to the sorts. Let
PNat, PZero and PNzNat be the sorts given to the set of all natural numbers, the
set of all non-zero natural numbers and the (singleton) set of zero, respectively.
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PNat is the super-sort of PZero and PNzNat, and PZero and PNzNat are the sub-
sorts of PNat. Operators are declared over sorts. Terms are inductively defined
with operators and variables. Equations are used to define (standard) equivalence
relations over terms.

Operators may be (data) constructors. Examples of constructors are as fol-
lows:

op true : → Bool {constr}
op false : → Bool {constr}
op z : → PZero {constr}
op s : PNat→ PNzNat {constr}

where Bool is the sort given to the set of Boolean values. Operators with no
arguments such as true are called constants. true and false are constants of
Bool, denoting the usual Boolean values. z is a constant of PZero, denoting zero.
Given a natural number n, s(n) denotes the successor (n+ 1) of n.

Basic units of specifications in CafeOBJ are modules. BOOL is a built-in module
in which Boolean values are specified. Let PNAT be a module in which natural
numbers are specified. BOOL is declared with tight semantics, and so is PNAT,
which means that BOOL has one model “Boolean values” and PNAT has one model
“natural numbers”. We suppose that BOOL and PNAT are always protected in this
paper.

Let RAND be a module declared with loose semantics, which means that RAND
has a class of models. In RAND, both BOOL (that is automatically imported by
almost all modules) and PNAT are imported, and the following operators are
declared:

op seed : → PNat

op next : PNat→ PNat

Note that they are not constructors. In RAND, we have the equations

eq (seed = next(r)) = false .
eq (next(r) = next(r′)) = (r = r′) .

where r and r′ are variables of PNat. Note that two level equalities coexist in
the two equations: (1) the meta-level (or the language-level) equality and (2) the
object-level equality. The first occurrence of = is the object-level equality and
the second one is the meta-level equality in the first equation. The first and third
occurrences of = are the object-level equality and the second one is the meta-level
equality in the second equation. The object-level equality operator (predicate)
is declared in the built-in module EQL (that is part of BOOL) as follows:

op = : ∗Cosmos∗ ∗Cosmos∗ → Bool {comm}

where an underscore indicates the place in which an argument is put, and comm

declares that the operator is commutative. ∗Cosmos∗ is a special sort in CafeOBJ
and plays a wildcard sort. In EQL, the following equation is declared:

eq (CUX = CUX) = true .
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where CUX is a variable of ∗Cosmos∗.
Since RAND is declared with loose semantics, PNAT is protected and seed is not

a constructor, seed denotes an arbitrary chosen natural number, and moreover
since BOOL is protected, next generates an arbitrary chosen natural number
that has not been generated due to the two equations in RAND. Hence, each
model denoted by RAND is a permutation of all natural numbers. Some trivial
permutations such as 0, 1, 2, . . . and 99, 98, . . . , 0, 199, 198, . . . , ...100, . . . are not
acceptable as cryptographically secure pseudo random numbers because they are
predictable. But, unpredictableness of random numbers is implicitly specified in
the behavior of protocols such that the intruder does not predict any nonces
(random numbers), which works for verification purpose.

Let Intruder be the sort given to the set of intruders and intrdr a constant
of Intruder, denoting the Dolev-Yao most general intruder. Let Prin&Intrdr

be a super-sort of Prin and Intruder. A term of Prin&Intrdr denotes either
a non-intruder principal or the intruder. Let Nonce be the sort given to the set
of nonces. The constructor of nonces is declared as follows:

op n : Prin&Intrdr Prin&Intrdr PNat→ Nonce {constr}

Given two principals p and q that may be the intruder and a random number
r, n(p, q, r) denotes a nonce made by p to authenticate q, where r makes the
nonce unique and unguessable. p and q in n(p, q, r) are meta-information in that
they cannot be seen by any principals including the intruder. There are the
(non-constructor) operators for nonces declared as follows:

op gen : Nonce→ Prin&Intrdr

op forWhom : Nonce→ Prin&Intrdr

The operators are defined in terms of equations as follows:

eq gen(n(p, q, r)) = p .
eq forWhom(n(p, q, r)) = q .

where p, q are variables of Prin&Intrdr and r is a variable of PNat.
Collections that are associative and commutative can be specified straight-

forwardly in CafeOBJ. Such collections are called soups. Let us consider soups
of non-intruder principals. Let PrinSet be the sort given to the set of those
soups. PrinSet is declared as a super-sort of Prin, which implies that a non-
intruder principal is also the singleton soup that only consists of the principal.
The constructors of PrinSet are declared as follows:

op noPrin : → PrinSet {constr}
op : PrinSet PrinSet → PrinSet {constr assoc comm id : noPrin}

The constant noPrin of PrinSet denotes the empty soup of Prin. The juxtapo-
sition operator is associative and commutative as indicated by assoc and comm.
noPrin is an identity of the juxtaposition operator as indicated by id : noPrin.
Let a1, a2, a3 be non-intruder principals. The term a1 a2 a3 denotes the soup
consisting of the three non-intruder principals. Since the juxtaposition operator
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is associative and commutative, a3 a2 a1 and a2 a1 a3 also denote the same soup.
Since we would like to prohibit duplications in soups, we have the equation:

eq a a = a .

where a is a variable of Prin. For any type of soup, in the paper, the juxtaposition
operator is used as a constructor, a constant denoting the empty soup is an
identity of the juxtaposition operator and duplication is not allowed.

Let us consider a simple protocol (system) each of whose states consists of a
soup of non-intruder principals, a soup of nonces and a random number. Those
values are expressed as name/value pairs called observable values. Let OVal be
the sort given to the set of observable values. The following constructors are
used for observable values in the example:

op (prins : ) : PrinSet → OVal {constr}
op (nonces : ) : NonceSet → OVal {constr}
op (rand : ) : PNat → OVal {constr}

Terms that are in the forms (prins : . . .), (nonces : . . .) and (rand : . . .) are called
a prins observable value, a nonces observable value and a rand observable value,
respectively. A state of the simple protocol is expressed as a soup of observable
values. Let Config be the sort given to the set of those soups and a super-sort
of OVal. But, not all terms of Config necessarily express states of the simple
protocol. A term of Config expresses a state of the simple protocol if and only
if prins, nonces and rand observable values appear in the term exactly once,
respectively. The following operator (predicate) is used to check if a given term
of Config expresses a state of the simple protocol:

op isValid : Config → Bool

eq isValid(s)
= (#prins(s) = s(z) and #nonces(s) = s(z) and #rand(s) = s(z)) .

where #prins, #nonces and #rand returns the number of occurrences of the
corresponding observable value in a given term of Config, respectively.

Initially, the soup of principals consists of given principals that participate in
the simple protocol, the soup of nonces is empty (denoted as noNonce) and the
random number is seed. An initial state (denoted as init(as), where as is the
soup of given non-intruder principals) is specified as follows:

op init : PrinSet → Config

eq init(as) = (prins : as) (nonces : noNonce) (rand : seed) .

Let us consider one state transition (actually a set of state transitions) of the
simple protocol such that two different non-intruder principals a, b are arbitrarily
chosen, a nonce n(a, b, r) is made with a, b and the random number r available
and added into the soup of nonces, and a fresh random number is generated.
The state transition is specified in transition rule (or rewrite rules) as follows:

ctrans [Rule1] :
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(prins : (a b as)) (nonces :ns) (rand : r)
⇒
(prins : (a b as)) (nonces : (n(a, b, r) ns)) (rand : next(r))
if not(a = b) .

where Rule1 is the label of the transition rule, a, b are variables of Prin, as
one of PrinSet, ns one of NonceSet and r one of PNat. Specifications that have
transition rules are called rewrite theory (system) specifications, while those
that do not have any transition rules (namely those that only have equations)
are called equational theory specifications.

Given a rewrite theory system specification and a ground term that typically
represents an initial state of the system, CafeOBJ makes it possible to exhaus-
tively traverse all terms reachable from the ground term by zero (or one) or more
state transitions with transition rules in a breadth first manner. This is called
the search functionality (or just search). The search functionality that takes zero
or more state transitions into account is in the form:

red init =(n, d)⇒∗ pattern suchThat cond .

where init is a ground term, pattern a state pattern that may contain variables,
cond a Boolean term whose variables should occur in pattern, and n and d
natural numbers or ∗ denoting the infinity. “suchThat cond” is an option. If
=(n, d)⇒+ is used instead of =(n, d)⇒∗, one or more state transitions are taken
into account. The search functionality performs that traversal up to depth d and
finds terms that match pattern such that cond holds. Substitutions (functions
from variables to terms) obtained by matching those terms with pattern such
that cond holds are called solutions. The search functionality provides at most
n solutions.

If cond is the negation of a state predicate to be proved invariant and pattern
contains enough information such that cond can reduce to either true or false,
then the search functionality can be used to model check that the state predicate
is invariant with respect to the system specification under consideration. Let a, b
be constants of Prin such that a does not equal b. The following search amounts
to bounded model checking up to depth 5 that isValid is invariant with respect
to the simple protocol:

red init(a b) =(1, 5)⇒∗ s suchThat (not isValid(s)) .

where s is a variable of Config. CafeOBJ reports that no solutions (no coun-
terexamples) are found.

Unlike most existing model checkers, init does not need to be made very
concrete. init may contain constants that denote arbitrary values. An arbitrary
state of the simple protocol to which the transition rule Rule1 can be applied is
expressed as (prins : (a b as)) (nonces : ns) (rand : r), where a, b are constants
of Prin denoting arbitrary non-intruder principals, a does not equal b, as is
a constant of PrinSet denoting an arbitrary soup of non-intruder principals,
ns is a constant of NonceSet denoting an arbitrary soup of nonces, and r is a
constant of PNat denoting an arbitrary natural number (a random number). Let
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abstraction

A rewrite theory specification in which 
there may be an infinite number of states 
and an infinite number of instances of 
rewrite rules

An equational abstraction of  the rewrite 
theory specification in which there may be a 
finite number of states and a finite number of 
instances of rewrite rules

Fig. 1. Equational (quotient) abstraction

s refer to the term. The following search finds all successor states of s obtained
by applying Rule1 to s:

red s =(∗, 1)⇒+ s′ .

where s′ is a variable of Config. There are two such successor states:

1. (prins : (a b as)) (nonces : (n(a, b, r) ns)) (rand : next(r))
2. (prins : (a b as)) (nonces : (n(b, a, r) ns)) (rand : next(r))

The following search proves that isValid is preserved by Rule1:

red s =(∗, 1)⇒+ s′ suchThat (not(isValid(s′) == true)) .

Note that t1 == t2 reduces to true if both t1 and t2 reduce to a same term and
false otherwise. If isValid(s′) reduces to true for each s′ of the two successor
states, then the search does not find any solutions and isValid is preserved
by Rule1. Otherwise, the search finds some solutions due to the use of “not”
and “== true”. Since there is no solution, isValid is preserved by Rule1.
isValid(init(as)) reduces to true for a constant as of PrinSet denoting an
arbitrary soup of non-intruder principals, and then if state transitions specified
by Rule1 are only ones that happens in the simple protocol, isValid is invariant
with respect to the simple protocol.

3 Integrations of Model Checking and Theorem Proving

Many attempts have been made to integrate model checking and theorem prov-
ing. This section mentions one attempt for verification and another for falsi-
fication in the algebraic specification community. We also mention two types
of system specifications in CafeOBJ, system specification translation from one
type into the other, and a possibility for a more faithfully seamless integration
of model checking and theorem proving in the section.



638 K. Ogata and K. Futatsugi

an initial state

a state in which
p does not hold

dd+1

an initial state

a state in which
q does not hold

q is model checked instead of p,
where q is one of lemmas used 
for the proof of p by induction

Fig. 2. Induction-guided falsification

3.1 Verification

Equational abstraction [42] is one way to integrate model checking and theorem
proving. A system is described as a rewrite theory specification R in which
there may be an infinite number of different states and a property is expressed
as a linear temporal logic (LTL) formula ϕ. Equational abstraction adds a set
E′ of equations to R, making the quotient specification R/E′ that is called an
equational abstraction of R (see Fig. 1). If (1) R/E′ is executable such that
the set of all equations in it are ground Church-Rosser and terminating, (2) ϕ
is preserved by the quotient simulation from the (concrete) states in R to the
(abstract) ones in R/E′, and (3) there exist a finite number (a small enough
number) of different states in R/E′, then you can model check R/E′ |= ϕ from
which you conclude R |= ϕ. You are supposed to discharge (1) and (2) with
theorem proving. This is why equational abstraction is an integration of model
checking and theorem proving. One case study with equational abstraction is the
verification that a simplified version of the Lamport’s bakery protocol in which
there are two processes has the mutual exclusion and lockout freedom properties.
Since the number given to processes may be increased unboundedly, the state
space of the protocol is infinite even though there are two processes. The case
study uses the observation that the relation between the two numbers owned
by two processes in each state is essential but each actual number is not. The
observation can be used to make an equational abstraction of a rewrite theory
specification of the protocol that satisfies (1), (2) and (3).

3.2 Falsification

Induction-guided falsification (IGF) [29, 30] is another way to integrate model
checking and theorem proving, precisely bounded model checking and induc-
tion often used in theorem proving. Suppose that you have a rewrite theory
specification R and an equational theory specification E for one system to be
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fake11

nonces

n...
network

m1(intrdr,a,b,c1(b,n,a))

...
...

nonces

n...
network

...

...

Fig. 3. A state transition in NSPK (faking an Init message using a nonce n gleaned
by the intruder)

considered. For R, an initial state s0 of R and a state predicate p over R, also
suppose that it is possible to do bounded model checking up to depth d from
s0 in a reasonable amount of time for p, but not to do so up to depth d + 1 or
more. Suppose that there is no state such that p does not hold at depth d or
any shallower positions, but such a state at depth d+ 1 From the assumptions,
only bounded model checking cannot find the state such that p does not hold
in a reasonable amount of time. If that is the case, you attempt to prove that
a state predicate p′ over E that corresponds to p is invariant with respect to E
by induction, and conjecture lemmas. If each lemmas is a necessary one for the
proof of p′, there must be one lemma q′ such that q′ does not hold at depth d.
Hence, you can find a state at depth d such that q′ (precisely a state predicate
over R that corresponds to q′) does not hold, from which you can reach a state
at depth d+ 1 such that p does not hold (see Fig. 2). One case study with IGF
is the falsification that NSPK has the agreement (or authentication) property.
For a rewrite theory specification of NSPK in which two non-intruder principals
and the intruder participate, it is possible to do bounded model checking up to
depth 5 for the property in a reasonable amount of time, but not up to depth
6 or any deeper positions. Hence, no state is found such that the property is
broken with only bounded model checking. Then, the property attempts to be
proved by induction and some lemmas are conjectured. One of the lemmas has
a state at depth 5 in which the lemma does not hold, and such a state can be
found by bounded model checking up to depth 5, from which you reach a state
at depth 6 such that the agreement property is broken.

3.3 Two Types of System Specifications in CafeOBJ

In general, you need to have two types of system specifications for one system to
integrate model checking and theorem proving. One is for model checking and
the other for theorem proving. When writing them in CafeOBJ, the former is
written as an equational theory specification and the latter as a rewrite theory
specification.

Let us consider a state transition depicted in Fig. 3. The state transition called
fake11 is used in a state machine modeling the NS(L)PK authentication protocol
and formalizes faking a message using a nonce n gleaned by the intruder. The
state transition can be described in both equation and transition (rewrite) rule.
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The state transition described in equation looks like

ceq nw(fake11(s, n, a, b)) = m1(intrdr, a, b, c1(b, n, a)) nw(s)
if n ∈ nonces(s) and not(a = b) .

. . .

In this specification, the structure of a state is not explicit [7, 8]. Values that char-
acterize a state can be observed only through operators called observation opera-
tors such as nonces and nw that are used to observe the nonces gleaned by the in-
truder and the network in a state. For example, s is a state and fake11(s, n, a, b)
is the successor state of s after the state transition. nw(s) is the network in s,
and nw(fake11(s, n, a, b)) is the one in fake11(s, n, a, b), which is defined in the
equation.

The equation says that if the intruder intrdr has gleaned a nonce n in a state
s (n ∈ nonces(s)), a message m1(intrdr, a, b, c1(b, n, a)) may be faked, being
put into the network nw(s). A network is formalized as a soup of messages. a
is the seeming sender, b is the receiver but the actual sender is the intruder.
c1(b, n, a) is the body of the message, a ciphertext made by encrypting n and
a (the a’s identification) with the b’s public key. fake11(s, n, a, b) expresses the
next state of the state transition, and nw(fake11(s, n, a, b)) expresses the network
that consists of the newly faked one and those that reside in the previous network
nw(s).

The state transition described in transition rule looks like

ctrans [fake11] :
(nonces : (n ns)) (nw : ms) · · ·
⇒
(nonces : (n ns)) (nw : (m1(intrdr, a, b, c1(b, n, a)) ms)) · · ·
if not(a = b) .

In this specification, a state is expressed as a soup of observable values as de-
scribed in Subsect. 2.2. (nonces : . . .) is a nonces observable value as described
in Subsect. 2.2, but what is contained in it is a soup of nonces gleaned by the
intruder. (nw : . . .) is called a nw observable value whose constructor is declared
as follows:

op (nw : ) : Network → OVal {constr}

where Network is the sort given to the set of soups of messages.

3.4 System Specification Translation

One possible way to integrate model checking and theorem proving seamlessly is
to translate one type of system specification into the other type. We have then
designed and implemented a translator that takes a specific type of an equational
theory system specification into a rewrite theory system specification [36]. For
example, the state transition described in the equation shown in the previous
subsection is translated into the one in transition rule shown in the previous
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subsection. We have proved that the rewrite theory system specification trans-
lated from an equational theory system specification has an invariant property
if and only if the equational theory system specification has the property [37].
Let us note that the rewrite theory system specification translated may have
unbounded number of reachable states and/or an unbounded length of terms
may be needed to express states unless some parameters such as the number of
processes are fixed. Therefore, even if an equational theory system specification
has a counterexample such that the system specification does not have a prop-
erty, the counterexample may not be revealed by conducting (bounded) model
checking of the property for the rewrite theory system specification such that
some parameters are fixed.

After we have proved that the design of the translator has the desired prop-
erty, the translator has been implemented based on the design. Although the
implementation has been done very carefully, however, there might be some un-
intended errors in the implementation because we have not verified that the
implementation had the property. Moreover, there might be some slips in the
proof that the design of the translator has the property because the proof has
not been conducted formally but in a traditional mathematical way.

Let us note that even if you conducted code verification for the implementa-
tion, you would not conclude that the implementation does have the property
because code verification assumes some idealized abstract machine but not a real
machine that is out of scope of formal verification.

3.5 Towards a More Faithfully Seamless Integration

Translation (or transformation) is one of the successful and important techniques
used in computer science. Compilers are the most prominent example. It would
be much preferable, however, not to need to translate between two types of
system specifications for model checking and theorem proving, respectively, be-
cause some unintended subtle errors might be introduced by translation. Hence,
we would like to use one system specification for one system for both model
checking and theorem proving if possible, which may lead to a more faithfully
seamless integration of model checking and theorem proving. One possible can-
didate is rewrite theory specifications as we have shown some potential that
rewrite theory specifications could be used for theorem proving in Subsect. 2.2.
In the rest of the paper, NSPK and NSLPK are used to demonstrate that rewrite
theory specifications can be used for both model checking and theorem proving.

4 Model Checking of NSPK

4.1 System Specification of NSPK

Specifications of random numbers, intruders, non-intruder principals, nonces,
soups of non-intruder principals and soups of nonces are the same as those de-
scribed in Subsect. 2.2.
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Ciphertexts {np, p}k(q), {np, nq}k(p) and {nq}k(q) used in Init, Resp and
Ack messages, respectively, are denoted by terms c1(q, np, p), c2(p, np, nq) and
c3(q, nq), respectively. Their sorts are Cipheri for i = 1, 2, 3, respectively. Let
non(c1(q, np, p)) and gen(c1(q, np, p)) be the nonce np used in the ciphertext
c1(q, np, p) and the principal p that must have made the ciphertext, respectively.

Init, Resp and Ack messages are denoted by terms mi(p?, p, q, ci) for i = 1, 2, 3,
respectively. Their sorts are Msgi for i = 1, 2, 3, respectively. The first argument
p? is the creator (the actual sender) of the message, the second argument p the
seeming sender, the third argument q the receiver and the fourth argument ci
the ciphertext. The first argument is meta-information in that when q receives
mi(p?, p, q, ei), q cannot look at p?. If p? is different from p, then p? is the intruder
and the message has been faked by the intruder. One more sort Msg is used for
messages, which is a super-sort of Msgi for i = 1, 2, 3.

The network is formalized as a soup of messages whose sort is Network. The
empty network is expressed as a constant noMsg of Network. We suppose that
once a message mi(p?, p, q, ei) is put into the network, it will be never deleted, and
if there exists such a message in the network, q can receive it. When q receives
it, q thinks that it has been sent by p. Let ci be a term whose sort is Cipheri
and ms be a term whose sort is Network, and then ci ∈ ms holds if and only if
ms contains a term mi whose sort is Msgi such that mi has ci as its ciphertext.

A state is expressed as a soup of observable values mentioned in Subsect. 2.2
and Subsect. 3.3. The sort of states is Config that is a super-sort of OVal, the
sort of observable values. As in the simple protocol, not all terms of Config
necessarily express states of NSPK. A term of Config expresses a state of
NSPK if and only if nw, rand, prins and nonces observable values appear
in the term exactly once, respectively1. Concretely, a state is in the form
(nw :ms) (rand : r) (prins : as) (nonces :ns), where ms is a soup of messages
that have been sent, r is a random number that will be used next to make a
nonce, as is a soup of non-intruder principals and ns is a soup of nonces that
have been gleaned by the intruder. In the initial state, ms is noMsg, the empty
soup of messages, r is seed, a random number, as is a given soup of non-intruder
principals that participate in the protocol and ns is noNonce. The initial state
is referred to as init(as).

23 transition rules are used to specify the behavior of NSPK. Five of them
exactly obey the protocol and the rest of them fake messages based on nonces
gleaned by the intruder and messages in the network. In the rest of the paper,
let a, b be CafeOBJ variables of Prin, p, q, p′, q′ ones of Prin&Intrdr, as one
of PrinSet, ms one of Network, r one of PNat, n, n′ ones of Nonce, ns one of
NonceSet, s one of Config, c1 one of Cipher1, and c2 one of Cipher2, unless
otherwise stated.

The following three transition rules formalize sending of Init messages by a
non-intruder principal a to another non-intruder principal b, a non-intruder prin-
cipal a to the intruder and the intruder to a non-intruder principal b, respectively,
based on the protocol:

1 The way to express states of NSLPK used in the paper is the same as that of NSPK.
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ctrans [Init1] :
(nw :ms) (rand : r) (nonces :ns) (prins : (a b as))
⇒
(nw : (m1(a, a, b, c1(b, n(a, b, r), a)) ms))
(rand :next(r)) (nonces :ns) (prins : (a b as))
if not(a = b) .

trans [Init2] :
(nw :ms) (rand : r) (nonces :ns) (prins : (a as))
⇒
(nw : (m1(a, a, intrdr, c1(intrdr, n(a, intrdr, r), a)) ms))
(rand :next(r)) (nonces : (n(a, intrdr, r) ns)) (prins : (a as)) .

trans [Init3] :
(nw :ms) (rand : r) (nonces :ns) (prins : (b as))
⇒
(nw : (m1(intrdr, intrdr, b, c1(b, n(intrdr, b, r), intrdr)) ms))
(rand :next(r)) (nonces :ns) (prins : (b as)) .

In the transition rule Init2, since the ciphertext c1(intrdr, n(a, intrdr, r), a)
can be decrypted by the intruder, the nonce n(a, intrdr, r) is gleaned by the
intruder.

The following transition rule formalizes replying to an Init message by sending
a Resp message by the receiver q to the seeming sender p:

trans [Resp] :
(nw : (m1(p′, p, q, c1(q, n, p)) ms)) (rand : r) (nonces :ns) (prins :as)
⇒
(nw : (m2(q, q, p, c2(p, n, n(q, p, r))) m1(p′, p, q, c1(q, n, p)) ms))
(nonces : (if p = intrdr then n(q, p, r) n ns else ns fi))
(rand :next(r)) (prins : as) .

p′ may be different from p. The transition rule says that if the ciphertext
c2(p, n, n(q, p, r)) can be decrypted by the intruder, the intruder gleans the
nonces n and n(q, p, r).

The following transition rule formalizes replying to a Resp message (which is
a reply to an Init message sent by p to q) by sending an Ack message by the
receiver p to the seeming sender q:

trans [Ack] :
(nw : (m2(q′, q, p, c2(p, n, n′)) m1(p, p, q, c1(q, n, p)) ms))
(rand : r) (nonces :ns) (prins : as)
⇒
(nw : (m3(p, p, q, c3(q, n′))

m2(q′, q, p, c2(p, n, n′)) m1(p, p, q, c1(q, n, p))ms))
(nonces : (if q = intrdr then n′ ns else ns fi))
(rand : r) (prins : as) .
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q′ may be different from q. The transition rule says that if the ciphertext c3(q, n′)
can be decrypted by the intruder, the intruder gleans the nonce n′.

Among the remaining 18 transition rules, nine of them formalize faking of
messages based on nonces gleaned by the intruder and the rest formalize faking
of messages based on messages in the network. Three transition rules from the
former ones and one from the latter ones are shown in this paper.

ctrans [Fake11] :
(nw :ms) (rand : r) (nonces : (n ns)) (prins :(a b as))
⇒
(nw : (m1(intrdr, a, b, c1(b, n, a)) ms))
(rand : r) (nonces : (n ns)) (prins : (a b as))
if not(a = b) .

The transition rule Fake11 fakes the Init message m1(intrdr, a, b, c1(b, n, a))
based on a nonce n gleaned by the intruder. The message seems to have been
sent by a non-intruder principal a to another non-intruder principal b, but is
faked by the intruder.

trans [Fake11b] :
(nw :ms) (rand : r) (nonces : (n ns)) (prins :(b as))
⇒
(nw : (m1(intrdr, intrdr, b, c1(b, n, intrdr)) ms))
(rand : r) (nonces : (n ns)) (prins : (b as)) .

The transition rule Fake11b fakes the Init message m1(intrdr, intrdr, b, c1(b, n,
intrdr)) based on a nonce n gleaned by the intruder.

ctrans [Fake21a] :
(nw :ms) (rand : r) (nonces : (n n′ ns)) (prins : (a as))
⇒
(nw : (m2(intrdr, intrdr, a, c2(a, n, n′) ms))
(rand : r) (nonces : (n n′ ns)) (prins : (a as))
if not(n = n′) .

The transition rule Fake21a fakes the Resp message m2(intrdr, intrdr, a, c2(a,
n, n′)) based on two different nonces n, n′ gleaned by the intruder.

trans [Fake22a] :
(nw : (m2(q′, q, p, c2) ms)) (rand : r) (nonces :ns) (prins : (a as))
⇒
(nw : (m2(intrdr, intrdr, a, c2) m2(q′, q, p, c2) ms))
(rand : r) (nonces :ns) (prins : (a as)) .

The transition rule Fake22a fakes the Resp message m2(intrdr, intrdr, a, c2)
based on a Resp message m2(q′, q, p, c2) in the network.
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4.2 Property Specification of NSP

NSP is expressed as an invariant property such that the following state predicate
is invariant with respect to the system specification of NSPK:

op nonSec : Config Nonce→ Bool

eq nonSec(s, n)
= n ∈ nonces(s) implies (gen(n) = intrdr or forWhom(n) = intrdr) .

where nonces(s) returns the soup of nonces that is contained in the nonces

observable value in s2. nonSec(s, n) says that if a nonce n has been gleaned
by the intruder in a state s, n has been generated by the intruder or by a
non-intruder principal to authenticate the intruder. Hence, the verification that
NSPK has NSP is to show that nonSec(s, n) holds for all reachable states s and
all nonces n.

4.3 Model Checking of NSP for NSPK

Let a, b be constants of Prin such that a does not equal b. The following search
performs bounded model checking up to depth 5 that the rewrite theory system
specification of NSPK in which two different non-intruder principals and the
intruder participate has NSP:

red init(a b) =(1, 5)⇒∗ ((nonces : (n ns)) s)
suchThat (not nonSec((nonces : (n ns)) s, n)) .

The search finds a counterexample showing that NSPK does not have NSP,
which is the same as the Lowe’s counterexample (see Fig. 4)3.

5 Theorem Proving of NSLPK

5.1 Modification of System Specification

The difference between NSPK and NSLPK is that the ciphertext used in a
Resp message contains the identification of a principal that has made the ci-
phertext. That is, the ciphertext used in a revised Resp message is in the form
c2(p, np, nq, q). Let non(c2(p, np, nq, q)) and gen(c2(p, np, nq, q)) be the second
nonce nq used in the ciphertext c2(p, np, nq, q) and the principal q that must
have made the ciphertext, respectively. Accordingly, the system specification of
NSPK is modified, becoming that of NSLPK. Among the nine transition rules
shown in Subsect. 4.1, the three transition rules Resp, Ack and Fake21a are
modified. The modified versions of the three transition rules are as follows:
2 For a term s of Config, if there exists exactly one occurrence of nonces observ-
able values in s, nonces(s) returns the soup of nonces in the observable value, and
otherwise it returns noNonce.

3 Let us confess that the model checking described in the subsection has been con-
ducted with Maude instead of CafeOBJ because Maude search functionality is more
efficient than CafeOBJ’s.
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nw: noMsg
nonces: noNonce

nw: m1(a,a,i,c1(i,n(a,i,r),a))
nonces: n(a,i,r)Init2

nw: m1(a,a,i,c1(i,n(a,i,r),a))

nonces: n(a,i,r)

m1(i,a,b,c1(b,n(a,i,r),a))Fake11

nw: m1(a,a,i,c1(i,n(a,i,r),a))

nonces: n(a,i,r)

m1(i,a,b,c1(b,n(a,i,r),a))
m2(b,b,a,c2(a,n(a,i,r),n(b,a,r’))

nw: m1(a,a,i,c1(i,n(a,i,r),a))

nonces: n(a,i,r)

m1(i,a,b,c1(b,n(a,i,r),a))
m2(b,b,a,c2(a,n(a,i,r),n(b,a,r’))
m2(i,i,a,c2(a,n(a,i,r),n(b,a,r’))

nw: m1(a,a,i,c1(i,n(a,i,r),a))

nonces: n(a,i,r) n(b,a,r’)

m1(i,a,b,c1(b,n(a,i,r),a))
m2(b,b,a,c2(a,n(a,i,r),n(b,a,r’))
m2(i,i,a,c2(a,n(a,i,r),n(b,a,r’))
m3(a,a,i,c3(i,n(b,a,r’))

AckFake22a

Resp

Fig. 4. A counterexample showing that NSPK does not have NSP (i stands for intrdr,
r′ stands for next(r), and rand and prins observable values are omitted)

trans [RevResp] :
(nw : (m1(p′, p, q, c1(q, n, p)) ms)) (rand : r) (nonces :ns) (prins :as)
⇒
(nw : (m2(q, q, p, c2(p, n, n(q, p, r), q)) m1(p′, p, q, c1(q, n, p)) ms))
(nonces : (if p = intrdr then n(q, p, r) n ns else ns fi))
(rand :next(r)) (prins : as) .

trans [RevAck] :
(nw : (m2(q′, q, p, c2(p, n, n′, q)) m1(p, p, q, c1(q, n, p)) ms))
(rand : r) (nonces :ns) (prins : as)
⇒
(nw : (m3(p, p, q, c3(q, n′))

m2(q′, q, p, c2(p, n, n′, q)) m1(p, p, q, c1(q, n, p))ms))
(nonces : (if q = intrdr then n′ ns else ns fi))
(rand : r) (prins : as) .

ctrans [RevFake21a] :
(nw :ms) (rand : r) (nonces : (n n′ ns)) (prins : (a as))
⇒
(nw : (m2(intrdr, intrdr, a, c2(a, n, n′, intrdr) ms))
(rand : r) (nonces : (n n′ ns)) (prins : (a as))
if not(n = n′) .

Since the ciphertext used in a Resp message is modified as {np, nq, q}k(p), the
term denoting the ciphertext is modified as c2(p, np, nq, q). But, the transition
rule Fake22a does not need to be modified.

5.2 Theorem Proving of NSP for NSLPK

The proof is conducted by induction on the number of transition rules applied.
In this section, let as be a constant of PrinSet denoting an arbitrary soup of
non-intruder principals, m, n, n′ ones of Nonce denoting arbitrary nonces, ms one
of Network denoting an arbitrary soup of messages, r one of PNat denoting an
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arbitrary natural number (a random number), ns one of NonceSet denoting
an arbitrary soup of nonces, a, b ones of Prin denoting arbitrary non-intruder
principals, and p, q, p′, q′ ones of Prin&Intrdr denoting arbitrary principals that
may be the intruder.

First of all, an operator (predicate) check is declared and defined as follows:

op check : Bool Bool → Bool

eq check(pre, con)
= if (pre implies con) == true then true else false fi .

where pre and con are variables of Bool. check takes as its first argument a con-
junction of instances of lemmas and/or induction hypotheses and as its second
argument a formula to prove in which variables are replaced with constants. If
a sufficiently enough information is not given (cases are not sufficiently split),
pre implies con may reduce to neither true nor false. If pre implies con does
not reduce to true, we would like to have false as the result of check(pre, con).
This is why we use == in the right-hand side of the equation. Let us note that
this is the only place in which == is used.

For the base case, all we have to do is to check if the following term reduces
to true:

check(true, nonSec(init(as), m))

Since the term reduces to true, the base case is discharged. We do not use any
lemmas for the base case, this is why the first argument of check is true.

Let us consider the induction case in which the transition rule Init1 is taken
into account. An arbitrary state of NSLPK to which Init1 can be applied is
expressed as

(nw : ms) (rand : r) (nonces : ns) (prins : (a b as))

such that a does not equal b. Let s refer to the term. The following search finds
all successor states of s obtained by applying Init1 to s:

red s =(∗, 1)⇒+ s′ .

where s′ is a variable of Config. There are two such successor states4:

1. (nw : (m1(a, a, b, c1(b, n(a, b, r), a)) ms)) (rand : next(r)) (nonces : ns)
(prins : (a b as))

2. (nw : (m1(b, b, a, c1(a, n(b, a, r), b)) ms)) (rand : next(r)) (nonces : ns)
(prins : (a b as))

The following search is used to discharge the induction case concerned:

red s =(∗, 1)⇒+ s′ suchThat (not check(nonSec(s, m), nonSec(s′, m))) .

4 The search functionality is not allowed to specify transition rules used for search.
Therefore, we prepare one module M for each transition rule t such that t is the only
transition rule in M and all modules imported by M . This is how one transition rule
is specified for search.
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where nonSec(s, m) is an instance of the induction hypothesis and nonSec(s′, m)
is the formula to prove in the induction case. No solution is found if and only
if check(nonSec(s, m), nonSec(s′, m))) reduces to true for all successor states s′

of s with respect to Init1. If no solution is found, therefore, the induction case
is discharged. In this case, no solution is found and then the induction case is
discharged.

Let us consider the induction case in which the transition rule Init2 is taken
into account. An arbitrary state s of NSLPK to which Init2 can be applied is
expressed as

(nw : ms) (rand : r) (nonces : ns) (prins : (a as))

The search

red s =(∗, 1)⇒+ s′ suchThat (not check(nonSec(s, m), nonSec(s′, m))) .

finds one solution (the substitution mapping s′ to the following term)

(nw : (m1(a, a, intrdr, c1(intrdr, n(a, intrdr, r), a)) ms))
(rand :next(r)) (nonces : (n(a, intrdr, r) ns)) (prins : (a as))

The reason why the search finds the solution is because CafeOBJ does not know
whether m equals n(a, intrdr, r). We then need to split the case into two sub-
cases: (1) m = n(a, intrdr, r) and (2) m �= n(a, intrdr, r). For both sub-cases,
the search does not find any solutions. Hence, the induction case is discharged.

Let us consider the induction case in which the transition rule RevResp is
taken into account. An arbitrary state s of NSLPK to which RevResp can be
applied is expressed as

(nw : (m1(p′, p, q, c1(q, n, p)) ms)) (rand : r) (nonces : ns) (prins : as)

The case is split into the following four sub-cases:

1. p �= intrdr

2. p = intrdr, m = n(q, intrdr, r)
3. p = intrdr, m �= n(q, intrdr, r), m �= n

4. p = intrdr, m �= n(q, intrdr, r), m = n

The search (whose form is exactly the same as those used for the two induction
cases described earlier) finds no solution for the first three sub-cases but one
solution for the last sub-case. The solution is as follows:

(nw : (m2(q, q, intrdr, c2(intrdr, n, n(q, intrdr, r), q))
m1(p′, intrdr, q, c1(q, n, intrdr)) ms))

(rand :next(r)) (nonces : (n(q, intrdr, r) n ns)) (prins : as)

The reason why the search finds the solution is because CafeOBJ knows neither
who has made the nonce n nor for whom it has been made. We may do further
case splitting, but the solution lets us conjecture the following lemma:
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op nonInCiph1 : Config Cipher1→ Bool

eq nonInCiph1(s, c1)
= (c1 ∈ msgs(s) and gen(c1) = intrdr)

implies

(gen(non(c1)) = intrdr or forWhom(non(c1)) = intrdr) .

The lemma says that if there exists an Init message such that the cipher-
text used in the message has been made by the intruder, say m1(p′, intrdr, q,
c1(q, n, intrdr)) in the solution, then the nonce used in the ciphertext, say n

in the solution, has been made by the intruder or for the intruder. When the
lemmas is used, the search becomes

red s =(∗, 1)⇒+ s′

suchThat (not check(nonSec(s, m) and nonInCiph1(s, c1(q, n, intrdr)),
nonSec(s′, m))) .

The search does not find any solutions for the fourth sub-cases. Then, the in-
duction case is discharged as long as the lemma is proved.

Let us consider the induction case in which the transition rule RevAck is taken
into account. An arbitrary state s of NSLPK to which RevAck can be applied is
expressed as

(nw : (m2(q′, q, p, c2(p, n, n′, q)) m1(p, p, q, c1(q, n, p)) ms))
(rand :r) (nonces : ns) (prins : as)

The case is split into the following three sub-cases:

1. q �= intrdr

2. q = intrdr, m �= n′

3. q = intrdr, m = n′

The search that does not use any lemmas finds no solution for the first two
sub-cases but one solution for the last sub-case. The solution is as follows:

(nw : (m3(p, p, intrdr, c3(intrdr, n′)) m2(q′, intrdr, p, c2(p, n, n′, intrdr))
m1(p, p, intrdr, c1(intrdr, n, p)) ms))

(rand :r) (nonces : ns) (prins : as)

The reason why the search finds the solution is because CafeOBJ knows neither
who has made the nonce n′ nor for whom it has been made. The solution lets us
conjecture the following lemma:

op nonInCiph2 : Config Cipher2→ Bool

eq nonInCiph2(s, c2)
= (c2 ∈ msgs(s) and gen(c2) = intrdr)

implies

(gen(non(c2)) = intrdr or forWhom(non(c2)) = intrdr) .

The lemma says that if there exists a Resp message such that the cipher-
text used in the message has been made by the intruder, say m2(q′, intrdr, p,
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c2(p, n, n′, intrdr)) in the solution, then the second nonce used in the cipher-
text, say n′ in the solution, has been made by the intruder or for the intruder.
When the lemmas is used, the search becomes

red s =(∗, 1)⇒+ s′

suchThat (not check(nonSec(s, m) and nonInCiph2(s, c2(p, n, n′, intrdr)),
nonSec(s′, m))) .

The search does not find any solutions for the third sub-case. Then, the induction
case is discharged as long as the lemma is proved.

The remaining 19 induction cases can be discharged without use of any lem-
mas.

Let us consider the induction case in which the transition rule Fake11b is
taken into account for the proof of nonInCiph1. An arbitrary state s of NSLPK
to which Fake11b can be applied is expressed as

(nw: ms) (rand: r) (nonces: (n ns)) (prins: (b as))

The case is split into the following two sub-cases: (1) c1 �= c1(b, n, intrdr) and
(2) c1 = c1(b, n, intrdr). The search

red s =(∗, 1)⇒+ s′

suchThat (not check(nonInCiph1(s, c1), nonInCiph1(s′, c1))) .

finds no solution for the first sub-case but one solution for the second sub-case.
The solution is as follows:

(nw : (m1(intrdr, intrdr, b, c1(b, n, intrdr)) ms))
(rand :r) (nonces : (n ns)) (prins : (b as))

The reason why the search finds the solution is because CafeOBJ knows neither
who has made the nonce n nor for whom it has been made. We can use nonSec

to discharge the second sub-case, making the search become the following:

red s =(∗, 1)⇒+ s′

suchThat (not check(nonInCiph1(s, c1) and nonSec(s, n),
nonInCiph1(s′, c1))) .

The search does not find any solutions and so the induction case, as well as the
sub-case, is discharged. The base case and the remaining 22 induction cases can
be discharged without use of any lemmas.

Let us consider the induction case in which the transition rule Fake21a is
taken into account for the proof of nonInCiph2. An arbitrary state of NSLPK
to which Fake21a can be applied is expressed as

(nw: ms) (rand: r) (nonces: (n n’ ns)) (prins: (a as))

where n does not equal n′. The case is split into the following three sub-cases:

1. c2 = c2(a, n, n′, intrdr)
2. c2 �= c2(a, n, n′, intrdr), c2 = c2(a, n′, n, intrdr)
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3. c2 �= c2(a, n, n′, intrdr), c2 �= c2(a, n′, n, intrdr)

The search

red s =(∗, 1)⇒+ s′

suchThat (not check(nonInCiph2(s, c2), nonInCiph1(s′, c2))) .

finds no solution for the third sub-case but one solution for each of the first two
sub-cases. The solution for the first sub-case is as follows:

(nw : (m2(intrdr, intrdr, a, c2(a, n, n′, intrdr)) ms))
(rand :r) (nonces : (n n′ ns)) (prins : (a as))

The reason why the search finds the solution is because CafeOBJ knows neither
who has made the nonce n′ nor for whom it has been made. We can use nonSec

to discharge the first sub-case, making the search become the following:

red s =(∗, 1)⇒+ s′

suchThat (not check(nonInCiph2(s, c2) and nonSec(s, n′),
nonInCiph2(s′, c1))) .

The search does not find any solutions and then the first sub-case is discharged.
The second sub-case can be discharged likewise with nonSec(s, n). Then, the
induction case is discharged. The base case and the remaining 22 induction
cases can be discharged without use of any lemmas.

Accordingly, we have proved nonSec(s, n), together with two lemmas
nonInCiph1(s, c1) and nonInCiph2(s, c2), for all reachable states s from the ini-
tial state init(as) with 23 transition rules, all nonces n, all ciphertexts c1 used
in Init messages and all ciphertexts c2 used in Resp messages. That is, we have
theorem proved that NSLPK has NSP based on the rewrite theory specification
of NSLPK5.

Let us note that since the agreement (or authentication) property can be
described as an invariant property, we could theorem prove that the rewrite
theory system specification of NSLPK has the property with the proof technique
described in the paper.

6 Related Work

To the best of our knowledge, Rocha and Meseguer are the first who have pro-
posed a way to theorem prove that rewrite theory specifications formalizing
(concurrent) systems have properties. They have proposed a deductive (theorem
proving) approach to verification that rewrite theory specifications have safety

5 We also need to prove that whenever each transition rule is applied to each term
of Config that expresses a state of NSLPK, it generates a term of Config that
also expresses a state of NSLPK. The proof can be straightforwardly done as the
one (described in Subsect. 2.2) that isValid is invariant with respect to the simple
protocol.
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(stable and invariant) properties [43]. The approach reduces temporal logic rea-
soning to equational inductive reasoning. To this end, they present seven proof
rules called G-St, Nr1, G-Inv, C⇒, Str1, Str2 and Nr2. The first two and
next two proof rules are used to reason about stable and invariant properties,
respectively. It is often necessary to strengthen state predicates so that you can
prove that the predicates are invariant with respect to state machines. The last
three proof rules are used to strengthen state predicates. Nr1 and Nr2 use one-
step narrowing modulo axioms (associativity and/or commutativity and/or iden-
tity) [44] to reduce temporal logic reasoning to equational inductive reasoning.
Induction on the number of transition rules applied (used in the present paper)
correspond to G-Inv. G-Inv has two premises. One premise is discharged by
C⇒, which corresponds to the base case. The other premise is a stable property
satisfaction relation that is discharged by G-St and then Nr1, which corre-
sponds to the induction cases. Use of lemmas corresponds to Str1, Str2 and
Nr2. Although there are many things shared by the Rocha and Meseguer’s ap-
proach and ours, theirs uses narrowing to conduct what correspond to induction
cases, while ours uses search based on standard matching (but not unification).
Moreover, we extensively use simultaneous induction [45], namely that each of
the three proof scores for nonSec, nonInCiph1 and nonInCiph2 is composition-
ally written but uses all the three state predicates as induction hypotheses. If
you use Str1, Str2 and Nr2, you first need to prove that the conjunction of the
state predicates is invariant and then reason about nonSec from the conjunction.

Bae, Escobar and Meseguer have proposed a logical model checking in which
(concurrent) systems are specified as rewrite theory specifications [46]. The log-
ical model checking uses a narrowing based logical Kripke structure in which
states may contain logical variables and transition relations are basically one-
step narrowing relations. Since a narrowing based logical Kripke structure may
have an infinite number of states, they use two abstraction techniques called
folding abstraction and equational abstraction such that an infinite number of
states can be made finite. Although equational abstraction applied to a concrete
Kripke structure can only deal with a simplified version of the Lamport’s bakery
protocol in which there are a fixed number of processes, the logical model check-
ing, together with folding abstraction and equational abstraction, can also deal
with the simplified version in which there are an arbitrary number of processes.
Since folding abstraction and equational abstraction may not make an infinite
number of states finite for any narrowing based logical Kripke structure, they
also propose a logical bounded model checking. Our approach to theorem prov-
ing for invariant properties based on rewrite theory specifications uses bounded
model checking with depth 1 with search. But the bounded model checking is
not very concrete, and may have something to do with the (bounded) logical
model checking. One piece of our future work is to clarify the relation between
the (bounded) logical model checking and our approach.

k-induction [47] implemented in Symbolic Analysis Laboratory (SAL) [48] can
verify that a state machine in which there are an infinite number of states has an
invariant property. It uses an SMT based bounded model checker to confirm that
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there are no counterexamples showing that the state machine does not have the
property in depth k − 1, and uses an SMT solver to show that for an arbitrary
computation s0, . . . , sk−1, sk that consists of k + 1 states, if the state predicate
concerned holds in each si for i = 0, . . . , k − 1, then the predicate holds in sk.
Our approach may be regarded as k-induction where k = 1 because bounded
model checking with depth 1 is used to discharge induction cases. It may be
worth pursuing a possibility that our approach can be made what corresponds
to general k-induction.

7 Conclusion

We have described a way to theorem prove that rewrite theory specifications
of OTSs have invariant properties by proof score writing. Our approach uses
bounded model checking with depth 1 using rewriting-based (not narrowing-
based) search, applying to an arbitrary state to which each transition rule can
be applied, to discharge each induction case. The method may achieve a more
faithfully seamless integration of model checking and theorem proving because
no translation is needed for system specifications.

As usual, much work remains ahead to achieve a more faithfully seamless in-
tegration of the two verification techniques. One challenge is to automate proof
score writing for rewrite theory specifications of OTSs. Proof score writing con-
sists in case analysis/splitting and lemma discovery/use. Creme [26], an auto-
matic invariant prover, automates both of them to some extent. Although some
techniques may be used, however, Creme is dedicated to equational theory spec-
ifications of OTSs.

The second author has come up with a way to automate case analysis/splitting
for rewrite theory specifications of OTSs. The method can be implemented in
terms of order-sorted rewriting (not narrowing) modulo axioms and has been
successfully applied to two non-trivial cases, Qlock, a mutual exclusion proto-
col, and ABP, a communication protocol, have some invariant properties. The
method is one potential approach to automating proof score writing for rewrite
theory specifications of OTSs.

As written in Sect. 1, OTSs have emerged as a sub-class of behavioral specifi-
cations, and OTSs described as equational theory specifications can be regarded
as behavioral specifications. Behavioral equivalence [9, 10, 49, 50] is one main
concern in behavioral specifications. We briefly discuss how to prove that a state
predicate is invariant with respect to an OTS described as an equational theory
specification through behavioral equivalence in [45]. It may be worth investi-
gating how to prove that a state predicate is invariant with respect to an OTS
described as a rewrite theory specification through behavioral equivalence. Be-
fore that, however, we need to clarify behavioral equivalence in rewrite theory
specifications.
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