Chapter 9
Stochastic Neural Field Theory

Paul C. Bressloff

Abstract We survey recent work on extending neural field theory to take into
account synaptic noise. We begin by showing how mean field theory can be used
to represent the macroscopic dynamics of a local population of N spiking neurons,
which are driven by Poisson inputs, as a rate equation in the thermodynamic limit
N — oo. Finite-size effects are then used to motivate the construction of stochastic
rate-based models that in the continuum limit reduce to stochastic neural fields. The
remainder of the chapter illustrates how methods from the analysis of stochastic
partial differential equations can be adapted in order to analyze the dynamics of
stochastic neural fields. First, we consider the effects of extrinsic noise on front
propagation in an excitatory neural field. Using a separation of time scales, it is
shown how the fluctuating front can be described in terms of a diffusive-like
displacement (wandering) of the front from its uniformly translating position at long
time scales, and fluctuations in the front profile around its instantaneous position at
short time scales. Second, we investigate rare noise-driven transitions in a neural
field with an absorbing state, which signals the extinction of all activity. In this
case, the most probable path to extinction can be obtained by solving the classical
equations of motion that dominate a path integral representation of the stochastic
neural field in the weak noise limit. These equations take the form of nonlocal
Hamilton equations in an infinite—dimensional phase space.
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9.1 Introduction

The spike trains of individual cortical neurons in vivo tend to be very noisy, having
interspike interval (ISI) distributions that are close to Poisson [58]. The main source
of intrinsic fluctuations at the single cell level is channel noise, which arises from
the variability in the opening and closing of a finite number of ion channels [57].
On the other hand, extrinsic fluctuations in membrane voltage are predominantly
due to synaptic noise. That is, cortical neurons are bombarded by thousands of
synaptic inputs, many of which are not correlated with a meaningful input and
can thus be treated as background synaptic noise [31]. It is not straightforward to
determine how noise at the single cell level translates into noise at the population or
network level. One approach is to formulate the dynamics of a population of spiking
neurons in terms of the evolution of the probability density of membrane potentials —
the so—called population density method [1, 16, 17, 21, 36, 39, 46, 48, 52, 53].
Usually, a simple model of a spiking neuron is used, such as the integrate—and—
fire model [35], and the network topology is assumed to be either fully connected or
sparsely connected. It can then be shown that under certain conditions, even though
individual neurons exhibit Poisson-like statistics, the neurons fire asynchronously
so that the total population activity evolves according to a mean—field rate equation
with a characteristic activation or gain function. This gain firing rate function can
then be used to construct rate—based models. Formally speaking, the asynchronous
state only exists in the thermodynamic limit N — oo, where N determines the
size of the population. This then suggests a possible source of intrinsic noise at the
network level arises from fluctuations about the asynchronous state due to finite size
effects [7,37,41,44,59].

In this chapter we review recent work on incorporating synaptic noise into con-
tinuum neural fields, and methods for analyzing the resulting stochastic dynamics.
Neural field equations can be derived under two basic assumptions: (i) the spike
trains of individual neurons are decorrelated (asynchronuous) so that the total
synaptic input to a neuron is slowly varying and deterministic, and (ii) there exists
a well-defined continuum limit of the resulting network rate equations. So far
there has been no rigorous proof that either of these assumptions hold in large—
scale spiking network models of cortex. In particular, there has been no systematic
scaling up of population density methods to derive continuum neural field models
that take proper account of noise—induced fluctuations and statistical correlations
between neurons at multiple spatial and temporal scales. Consequently, current
formulations of stochastic neural field theory tend to be phenomenologically based.
One approach is to consider a Langevin version of the deterministic neural field
equations involving some form of extrinsic spatiotemporal white noise [15, 32, 38],
whereas another is to treat the neural field equations as the thermodynamic limit
of an underlying master equation [9, 10, 19, 20]. In the latter case, a diffusion
approximation leads to an effective Langevin equation with multiplicative noise.

In order to motivate the construction of stochastic neural field equations, we
begin by reviewing the population density method for analyzing the stochastic
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dynamics of a local population of leaky integrate-and-fire neurons (Sect.9.2),
following along similar lines to Gerstner and Kistler [35]. We then describe how
finite—size effects at the level of local populations can be incorporated into stochastic
versions of rate—based models (Sect. 9.3). In Sect. 9.4 we show how stochastic PDE
methods can be used to analyze traveling waves in stochastic neural fields. Finally,
we derive a path integral formulation of a stochastic neural field and show how this
can be used to analyze rare events (Sect. 9.5). Note that a related survey of stochastic
neural fields can be found in Ref. [12].

9.2 Population Density Method and Mean Field Theory

Integrate-and-fire (IF) neuron models neglect details regarding the spike generation
process by reducing the latter to an all-or-nothing threshold event. That is,
whenever the membrane potential crosses a firing threshold, the neuron fires a
spike, typically modeled as a Dirac delta function, and the membrane potential is
reset to some subthreshold value. Although they are less realistic than conductance—
based models, they have provided a very useful platform for exploring probabilistic
models of spiking neurons [35]. Consider a homogeneous population of N identical
uncoupled leaky IF neurons. The membrane potential (internal state) of the ith
neuron evolves according to the equation
dv; Vi)

7 R + i (1) 9.1
where C, R are the capacitance and resistance of the cell membrane and /;(¢)
represents the sum of synaptic and external currents. The form of the action potential
is not described explicitly. Spikes are formal events characterized by the ordered
sequence of firing times {7/",m € Z} determined by the threshold crossing
conditions

T" = inf{t,t > T" ' |Vi(t) =k, V; > 0}, 9.2)

where « is the firing threshold. Immediately after firing, the potential is reset to a
value V, <k,

lim  Vi(t) = V,. (9.3)
=1+

For simplicity we set V,, = 0, CR = t and absorb C into /;(¢).

Suppose that all neurons in the population receives the same driving current
I, Each neuron also receives a stochastic background input consisting of a set
of spike trains stimulating different synapses labeled k = 1, ..., K. An input spike
of the kth synapse causes a jump of the membrane potential by an amount wy,
and the spikes are generated by a time-dependent Poisson process at a rate v (z).
This means that in each small time interval [¢,¢ 4+ At] the probability that a spike
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arrives on the kth synapse is vi (t) At, and each spike is uncorrelated with any other.
Although the spike rates v (¢) are the same for all neurons, the actual spike trains
innervating different synapses of different neurons are statistically independent. Let
p(v,t) denote the membrane potential density, that is, p(v, ¢)dv is the fraction of
neurons i that have a membrane potential v < V;(¢) < v + dv in the limit N — oo.
Whenever a neuron fires it’s membrane is reset. This has two important implications.
First, conservation of probability implies that

/K p(v,t)dv = 1. 9.4)

Second, the fraction of neurons (probability flux J(k,t)) that flow across the
threshold « per unit time determines the population activity A(t):

N
JGe.) = A@0) = lim_ % dOd s -1, (9.5)
j=1 m

The reset condition means that neurons that “disappear” across threshold “re-enter”
the population at the reset potential v = 0. This implies that there is an absorbing
boundary condition at threshold

ple,t) =0 (9.6)
and a discontinuity in the probability fluxes at reset:
JOF, 1) —J(O0,1) = A®1). 9.7)

The probability density p(v,?) evolves according to the Chapman-Kolmogorov
equation [35]"

d 10
L=~ p(0.) + Rleap(0.0] + ;vk(r)[p(v —wt) = p.0)]. (98)

'Equation (9.8) and various generalizations have been used to develop numerical schemes for
tracking the probability density of a population of synaptically coupled spiking neurons [46,48],
which in the case of simple neuron models, can be considerably more efficient than classical Monte
Carlo simulations that follow the states of each neuron in the network. On the other hand, as
the complexity of the individual neuron model increases, the gain in efficiency of the population
density method decreases, and this has motivated the development of a moment closure scheme
that leads to a Boltzmann-like kinetic theory of IF networks [21,52]. However, as shown in Ref.
[39], considerable care must be taken when carrying out the dimension reduction, since it can
lead to an ill-posed problem over a wide range of physiological parameters. That is, the truncated
moment equations may not support a steady-state solution even though a steady—state probability
density exists for the full system. An alternative approach is to develop a mean field approximation
as highlighted here.



9 Stochastic Neural Field Theory 239

In the limit of small jump amplitudes wg, Eq.(9.8) can be approximated by a
diffusion equation. That is, Taylor expanding to second order in wy, gives

o2(t) 92

d d r—v
P _ P, 99)

E = —% [7 + /L(t) + Iext(t)] p(l},l) +

where p(¢) is the mean background synaptic input

p() =y ve(Owr, (9.10)
k

and o (¢) determines the size of the membrane fluctuations,

o?(t) = Y v ()wy. 9.11)
k

The Fokker-Planck equation determines the time evolution of the probability density
of a membrane potential evolving according to the equivalent stochastic differential
equation (Langevin equation)

dv = —@dt + u(@)dt + o (t)dW(t), 9.12)

where W(t) is a Wiener process,
(dW(t)) =0, (dW(t)dW(t)) =dt (9.13)

In the case of constant rates v, the resulting Langevin equation describes the well
known Ornstein—Uhlenbeck process.

The Fokker—Planck equation (9.9) can be rewritten as a continuity equation
reflecting conservation of probability:

%p(v,t) = —8—avJ(v,t), for v # «,0, (9.14)
where
2
J0.0 = Lo 4 50 + Tl p0) - T2 L pwn 015)
T 2 Jdv

Equations (9.5) and (9.15) together with the absorbing boundary condition (9.6)
implies that

2A(1)
EON

ip(/{,t) = (9.16)

v
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Continuity of p at reset, p(07,7) = p(0™,1), together with Egs. (9.7) and (9.15)
show that there is a discontinuity in the first derivative of p(v,¢) atv = 0:

2A(1)
o2(t)

ip(0+,t) - ip(O‘,t) =— (9.17)
Jv dv

Hence, one has to solve the Fokker—Planck equation (9.9) together with the
boundary conditions (9.6), (9.16), and (9.17).

Now suppose that the background rates v; and external input I are time—
independent so that the total mean input

Io=Teoq + > viwi (9.18)
k

is a constant. The steady—state Fokker—Planck equation implies that the flux

o2 0
J(v) = (—v/T + L)) p(v) — gﬁp(v), (9.19)

with op = >, vk w,% for time-independent rates, is constant except at v = 0 where
it jumps by an amount Ay, which is the steady—state population activity. Taking
J(v) = 0 for v < 0, one can solve Eq. (9.19) to obtain the Gaussian distribution

[_ (v/t — Ip)*

3 ] , forv =<0 (9.20)
0

C
Po(v) = — exp
0o

for some constant ¢;. However, such a solution cannot be valid for v > 0, since it
does not satisfy the absorbing boundary condition po(k) = 0. It turns out that in
this domain the solution is of the form [17,35]

po(v) = %exp [—M] /K exp [M] dx, forO<v <k
0 v

2 2
) 0

9.21)

for some constant c,. Equation (9.19) shows that ¢, = 2J(v) for 0 < v < k with
J(v) = Ay. Continuity of the solution at u = 0 implies that

K _ 2
o =2 M exp [M} d. 9.22)
(oF

00 Joy 0

Finally, the constant ¢, is determined by the normalization condition for p. On
setting Ayg = ¢»/2k, one finds a firing rate
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(k—7lp)/ /700 ) -1
Ay = t\/;/ e’ (1 + erf(v))dv = F(ly), (9.23)
—/TIo/0p

where F is the so—called gain function for the population [17,35,46].

The above analysis assumed that the neurons were independent of each other so
that the only synaptic inputs were from some stochastic background. Now suppose
that we have a fully connected network such that there is an additional contribution
to the synaptic input into each neuron of the form

N

I
Ieet) = 57 D03 8 = Tj") = TA(). (9.24)

j=1 m

where /N is the strength of connection between any pair of neurons within
the population, and we have used the definition (9.5) of the population activity
A(t). Suppose that the neuronal population is in a macroscopic state with constant
activity A(t) = Ao, which is referred to as a state of asynchronous firing. (Formally
speaking, such an asynchronuous state only makes sense in the thermodynamic limit
N — 00.) The steady—state activity can then be determined self—consistently from
Eq. (9.23) by setting

Iy = Tow + [Z VEwg + F0A0:| : (9.25)
k

and solving the implicit equation for Ay in terms of . + Zk viwy, which leads
to an effective gain function Ay = Fer(Lext + Zk Viwy ). One can also determine
the stability of the asynchronous state by considering small perturbations of the
steady—state probability distribution. One finds that in the limit of low noise,
the asynchronous state is unstable and the neurons tend to split up into several
synchronized groups that fire alternately. The overall activity then oscillates several
times faster than the individual neurons [17,36,63]. One of the interesting properties
of the asynchronous state from a computational perspective is that the population
activity can respond rapidly to a step input [35]. The basic intuition behind this is
that in the asynchronous state there will always be a significant fraction of neurons
that are sitting close to the firing threshold so that as soon as a step increase in input
current occurs they can respond immediately. However, the size of the step has to
be at least as large as the noise amplitude o, since the threshold acts as an absorbing
boundary, that is, the density of neurons vanishes as v — «.

So far noise has been added explicitly in the form of stochastic background
activity as described in the paragraph below equation (3). It is also possible for
a network of deterministic neurons with fixed random connections to generate its
own noise [3, 16, 17, 64]. In particular, suppose that each neuron in the population
of N neurons receives input from C randomly selected neurons in the population
with C <« N. The assumption of sparse connectivity means that two neurons
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share only a small number of common inputs. Hence, if the presynaptic neurons
fire stochastically then the input spike trains that arrive at distinct postsynaptic
neurons can be treated as statistically independent. Since the presynaptic neurons
belong to the same population, it follows that each neuron’s output should itself
be stochastic in the sense that it should have a sufficiently broad distribution of
interspike intervals. This will tend to occur if the neurons operate in a subthreshold
regime, that is, the mean total input is below threshold so that threshold crossings
are fluctuation driven.

9.3 Stochastic Rate-Based Models

Now suppose that a network of synaptically coupled spiking neurons is partitioned
into a set of P homogeneous populations with N, = §,N neurons in each
population, ¢ = 1,..., P.Let p denote the population function that maps the single
neuron index i = 1,..., N to the population index « to which neuron i belongs:
p(i) = o. Furthermore, suppose the synaptic interactions between populations
are the same for all neuron pairs. (Relaxing this assumption can lead to additional
sources of stochasticity as explored in Refs. [32,61].) Denote the sequence of firing
times of the j th neuron by {T;”, m € 7Z}. The net synaptic current into postsynaptic
neuron / due to stimulation by the spike train from presynaptic neuron j, with
p(@) = a,p(j) = B, is taken to have the general form Nﬂ_1 Do Paplt — ij),
where N 5 ! D, (1) represents the temporal filtering effects of synaptic and dendritic
processing of inputs from any neuron of population j to any neuron of population c.
(A specific form for @,g(¢) will be given in Sect.9.3.1; a more general discussion
of different choices of ®,g(¢) can be found in the review of Ref. [12].) Assuming
that all synaptic inputs sum linearly, the total synaptic input to the soma of the ith
neuron, which we denote by u; (¢), is

1 d 1
=Y — > @up—-T"= Bup(t —1)— (t')dt'
ui (t) %, st — T /_oo Eﬂ 5(t z)Nﬂ a;(t)dt

Jip(j)=p Jip(j)=p
(9.26)

for all p(i) = o, where a;(t) = ), ., 8(t — Tj'”). That is, a(¢) represents the
output spike train of the jth neuron in terms of a sum of Dirac delta functions.
In order to obtain a closed set of equations, we have to determine the firing times
T]" given by Eq. (9.2), where V; () evolves according to the LIF model (9.1) with
I;(t) — u; (), or the more general conductance-based model

dv;

— = —Ien;(V;, ... is 9.27
U eniVi ) ©0.27)
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supplemented by additional equations for various ionic gating variables [30].
It follows that, after transients have decayed away, u; (t) = u,(¢) for all p(i) = «
with

P
U (t) = Z/ Pop(t —1")ap(t"dr, (9.28)
p=1""%
and a, (¢) is the output activity of the ath population:
1
ay(t) = o Z a;(t) (9.29)
Jsp(H)=8

In general, Eqgs. (9.26) and (9.27) are very difficult to analyze. However, con-
siderable simplification can be obtained if the total synaptic current u;(t) is
slowly varying compared to the membrane potential dynamics given by Eq. (9.27).
This would occur, for example, if each of the homogeneous subnetworks fired
asynchronously as described in Sect.9.2. One is then essentially reinterpreting the
population activity variables u,(¢) and a,(¢) as mean fields of local populations.
(Alternatively, a slowly varying synaptic current would occur if the synapses are
themselves sufficiently slow [13,28].) Under these simplifying assumptions, one can
carry out a short—term temporal averaging of Eq. (9.28) in which the output popula-
tion activity is approximated by the instantaneous firing rate a, (1) = Fy(uy(¢)) with
F, identified with the population gain function calculated in Sect. 9.2. (In practice,
the firing rate function is usually approximated by a sigmoid.) Equation (9.28) then
forms the closed system of integral equations

e (1) =/ Z@aﬂ([—[/)Fa(uﬁ(t/))dZ/. (9.30)
00 %

The observation that finite—size effects provide a source of noise within a local
population then suggests one way to incorporate noise into rate—based models,
namely, to take the relationship between population output activity a,(f) and
effective synaptic current u, (¢) to be governed by a stochastic process.

9.3.1 Neural Langevin Equation

The simplest approach is to assume that population activity is a stochastic variable
Ay (1) evolving according to a Langevin equation (stochastic differential equation)
of the form

TodAy () = [—Ax(t) + F(Uy(2))] dt + 0odWy (1) (9.31)
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with the stochastic current U, (¢) satisfying the integral equation (9.28). Here W, (),
a =1,..., P denotes a set of P independent Wiener processes with

(AW, (1)) = 0. (dWo(1)dWp(1)) = 8 pdt. (9.32)

and o, is the strength of noise in the ath population. In general, the resulting
stochastic model is non-Markovian. However, if we take @u5(f) = wog®@(f) with
&(t) = v~ 'e™"/"H(t) and H(t) the Heaviside function, then we can convert the
latter equation to the form

P
1dU, (1) = | —Ua(t) + Y _ wapAp(t) | dt. (9.33)
p=1
It is important to note that the time constant t, cannot be identified directly with
membrane or synaptic time constants. Instead, it determines the relaxation rate of a

local population to the mean—field firing rate. In the limit 7, — 0, Egs. (9.31) and
(9.33) reduce to a “voltage—based” rate model perturbed by additive noise:

»
1dUo(t) = | —Us(t) + Y wap F(Up (1)) | dt + d Wi (2). (9.34)
B=1

Here W, (1) = Z£=1 WapopWp (1) so that

(AW, (1)) =0, (dWy(t)dWp(t)) = [Z waywﬁyoyz} dt. (9.35)
Y

Thus eliminating the dynamics of the firing rate leads to spatially correlated noise
for the dynamics of Uy. On the other hand, in the limit 7 — 0, we obtain a stochastic
“activity—based” model

TodAg(t) = | —Aa(t) + FO_ wapAa(1)) | dt + 0dWo(0). (9.36)
B

Here the dynamical variable A, represents the firing rate of a local population. For
a detailed discussion of the differences between activity-based and voltage-based
neural rate equations, see Refs. [12,30].

9.3.2 Neural Master Equation

An alternative approach to incorporating noise into the population firing rate has
been developed in terms of a jump Markov process [9, 10, 19, 20, 47]. Such a
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description is motivated by the idea that each local population consists of a discrete
number of spiking neurons, and that finite—size effects are a source of intrinsic rather
than extrinsic noise [7,59]. The stochastic output activity of a local population of N
neurons is now expressed as Ay (t) = Ny (¢)/(NAt) where N, (t) is the number of
neurons in the «th population that fired in the time interval [t — At, t], and At is the
width of a sliding window that counts spikes. Suppose that the discrete stochastic
variables N, () evolve according to a one—step jump Markov process:

Ny(t) — Ny(t) £1:  transition rate 2F(¢), (9.37)

in which .Qj[ (2) are functions of N, (¢) and U,(t) with U,(t) evolving according
to the integral equation (9.28) or its differential version (9.33). Thus, synaptic
coupling between populations occurs via the transition rates. The transition rates
are chosen in order to yield a deterministic rate—based model in the thermodynamic
limit N — o0. One such choice is

NAL ), 2o () = NZ(”. (9.38)

o o

250 =

The resulting stochastic process defined by Egs.(9.37), (9.38) and (9.33) is an
example of a stochastic hybrid system based on a piecewise deterministic process
[14]. That is, the transition rates .Qai (t) depend on U,(t), with the latter itself
coupled to the associated jump Markov according to Eq.(9.33), which is only
defined between jumps, during which U, (¢) evolves deterministically. (Stochastic
hybrid systems also arise in applications to genetic networks [65] and to excitable
neuronal membranes [18, 50].) A further simplification is obtained in the limit
7 — 0, since the continuous variables U,(¢) can be eliminated to give a pure
birth—death process for the discrete variables N, (). Let P(n,?) = Prob[N(z) = n]
denote the probability that the network of interacting populations has configuration
n = (n,ny,...,np) at time ¢,¢ > 0, given some initial distribution P(n, 0). The
probability distribution then evolves according to the birth—death master equation
[9,19,20]

dP(n,1)
dr

D (T = D) (2, ) P(n.1)) + (T, = 1) (27 ) P(n.1))].  (9.39)

o

where .Qoit (n) = .Qai (t) with Ny (t) = ny and U, (¢) = Z,s wapng/(NAt), and E,
is a translation operator: E(fl F(n) = F(ny+) for any function F with n,+ denoting
the configuration with n, replaced by n, + 1. Equation (9.39) is supplemented by
the boundary conditions P(n,t) = 0ifn, = N, + 1 or n, = —1 for some «. The
birth—death master equation (9.39) has been the starting point for a number of recent
studies of the effects of intrinsic noise on neural fields, which adapt various methods
from the analysis of chemical master equations including system size expansions
and path integral representations [9,19,20]. However, there are a number of potential
problems with the master equation formulation. First, there is no unique prescription
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for choosing transition rates that yield a given rate—based model in the mean—field
limit. Moreover, depending on the choice of how the transition rates scale with the
system size N, the statistical nature of the dynamics can be Gaussian-like [9] or
Poisson-like [19,20]. Second, the interpretation of N, (¢) as the number of spikes
in a sliding window of width Az implies that © >> At so the physical justification
for taking the limit ¢ — O is not clear. Finally, for large N the master equation can
be approximated by a Langevin equation with multiplicative noise (in the sense of
Ito), and thus reduces to the previous class of stochastic neural field model [10].

9.3.3 Continuum Limit

So far we have indicated how to incorporate noise into a discrete network of
neuronal populations. In order to obtain a corresponding stochastic neural field
equation it is now necessary to take an appropriate continuum limit. For simplicity,
we will focus on the simplest stochastic rate model given by Egs.(9.31) and
(9.33). The continuum limit of Eq. (9.33) proceeds heuristically as follows. First,
set Uy (1) = U(aAd, t), Au(t) = A(aAd,t) and wyg = pAdw(aAd, BAd) where
p is a synaptic density and Ad is an infinitesimal length scale. Taking the limit
Ad — 0 and absorbing p into w gives

(o]

tdU(x,t) = [-U(x,t) +[ w(x — y)A(y)dyldt. (9.40)

—00

We also assume that the noise strength o, = 0/« Ad and define W, (t)/v Ad =
W(aAd,t). Taking the limit Ad — 0 in Eq. (9.31) with t, = 7 for all « gives

TdA(x,t) = [-A(x,t) + F(U(x,t))]dt + cdW(x,t) (9.41)
with

(dW(x,1)) =0, (dW(x,t)dW(y,t)) = (x — y)dt. (9.42)
In the limit T — O we obtain a stochastic version of a voltage-based neural field
equation, namely,

S ~
tdU(x,t) = [-U(x,t) + / wx —y)FU,t))dyldt + cdW(x,t) (9.43)
—00

with
(o)

w(x —z2)w(y —z)dz. (9.44)

(dW(x,1)) =0, (dW(x,0)dW(y,1)) = dt/
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Similarly, in the limit r — 0 we have a stochastic version of an activity—based
neural field equation

o

—0o0

TdA(x,t) = |:—A(x, t)+ F (/ w(x — y)A(y, t)) dy] dr +dW(x,t). (9.45)

From a numerical perspective, any computer simulation would involve rediscretiz-
ing space and then solving a time—discretized version of the resulting stochastic
differential equation. On the other hand, in order to investigate analytically the
effects of noise on spatiotemporal dynamics, it is more useful to work directly with
stochastic neural fields. One can then adapt various PDE methods for studying noise
in spatially extended systems [55], as illustrated in the next section.

9.4 Traveling Waves in Stochastic Neural Fields

In this section we review some recent work on analyzing traveling waves in
stochastic neural fields [15].

9.4.1 Traveling Fronts in a Deterministic Neural Field

Let us begin by briefly reviewing front propagation in a scalar neural field equation
of the voltage-based form

du(x,t) _

T = —u(x,t) + /oo w(x — x")F(u(x',1))dx . (9.46)

For concreteness F is taken to be a sigmoid function

1

= (9.47)

F(u) =

with gain y and threshold «. In the high—gain limit y — oo, this reduces to the
Heaviside function

1ifu>
Fu) > Hu—x) = ifz <Z (9.48)

The weight distribution is taken to be a positive (excitatory), even function of x,
w(x) > 0 and w(—x) = w(x), with w(x) a monotonically decreasing function of
x for x > 0. The weight distribution is typically taken to be an exponential weight
distribution
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1
w(x) = —e W/, (9.49)
20

where o determines the range of synaptic connections. The latter tends to range
from 100 pm to 1 mm. We fix the units of time and space by setting t = 1,0 = 2.
A homogeneous fixed point solution U™* of Eq. (9.46) satisfies

U* = WoF(U*), W, =/ w(y)dy. (9.50)

—0o0

In the case of a sigmoid function with appropriately chosen gain and threshold, it is
straightforward to show that there exists a pair of stable fixed points U * 1 separated
by an unstable fixed point U, see also Fig.9.3a. In the high gain limit F(U) —
H(U — «) with 0 < k < W, the unstable fixed point disappears and U} = W,
U* = 0. As originally shown by Amari [2], an explicit traveling front solution
of Eq. (9.46) that links U} and U* can be constructed in the case of a Heaviside
nonlinearity. In order to construct such a solution, we introduce the traveling wave
coordinate £ = x — ct, where ¢ denotes the wavespeed, and set u(x,t) = % (§)
with limg oo Z(§) = UI > 0 and limgoo % (§) = 0 such that % (§) only
crosses the threshold « once. Since Eq. (9.46) is equivariant with respect to uniform
translations, we are free to take the threshold crossing point to be at the origin,
% (0) = k, so that Z (§) < k for § > 0 and % (§) > « for £ < 0. Substituting this
traveling front solution into Eq. (9.46) with F(«) = H(u — «) then gives

0

—eUE) +UE) = / Wit — £)dE = /E w()dr = w(E).  ©.51)

where %'(§) = d% /d&. Multiplying both sides of the above equation by e~¢/¢
and integrating with respect to £ leads to the solution

]
U (£) = et/ [K — é / ey/"fv(y)dy:| . (9.52)
0

Finally, requiring the solution to remain bounded as £ — oo (§ — —o0) for ¢ > 0
implies that ¥ must satisfy the condition

1 o0
K= - / e /W (y)dy. (9.53)
¢ Jo

and thus

c

UE) = 1 /0 - e W(y + £)dy. (9.54)
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In the case of the exponential weight distribution (9.49), the relationship between
wavespeed ¢ and threshold « for right-moving fronts is

1
c=cylk)= ﬂ[l —20k] fork <0.5. (9.55)

A similar expression holds for left-moving fronts (¢ < 0) for which 1 > « >
0.5. Using Evans function techniques, it can also be shown that the traveling front
is stable [24, 66]. Finally, given the existence of a traveling front solution for a
Heaviside rate function, it is possible to prove the existence of a unique front in the
case of a smooth sigmoid nonlinearity using a continuation method [29].

9.4.2 Stochastic Neural Field with Extrinsic Noise

Let us now consider a stochastic version of the scalar neural field (9.46) given by
the neural Langevin equation

e o]

—00

qU = [—U(x, 0+ [ we-nFwo. r))dy} di + €' g (U, 0)dW (x.1).

(9.56)
We assume that dW(x, t) represents an independent Wiener process such that

(dW(x,0)) =0, (dW(x,0)dW(x',1")) = 2C([x — x'|/A)8(t — t')dtdt
9.57)

where (-) denotes averaging with respect to the Wiener process. Here A is the
spatial correlation length of the noise such that C(x/A) — §&(x) in the limit
A — 0, and € determines the strength of the noise, which is assumed to be weak.
For the sake of generality, we take the extrinsic noise to be multiplicative rather
than additive. Following standard formulations of Langevin equations [34], the
extrinsic noise term is assumed to be of Stratonovich form. Note, however, that a
Kramers-Moyal expansion of the neural master equation (9.39) yields a Langevin
neural field equation with multiplicative noise of the Ito form [9, 10]. The main
results highlighted below do not depend on the precise form of the noise.

The effects of multiplicative noise on front propagation can be analyzed using
methods previously developed for reaction—diffusion equations [4, 25, 55, 56], as
recently shown in Ref. [15]. The starting point of such methods is the observation
that multiplicative noise in the Stratonovich sense leads to a systematic shift in
the speed of the front (assuming a front of speed ¢ exists when ¢ = 0). This is
a consequence of the fact that (g(U)dW) # 0 even though (dW) = 0. The former
average can be calculated using Novikov’s theorem [45]:

e (g(U(x.1)n(x.1)) = eC(0){g'(U)g(U)). (9.58)
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The above result also follows from Fourier transforming Eq. (9.56) and evaluating
averages using the Fokker—Planck equation in Fourier space [15,55]. Note that in
the limit A — 0, C(0) — 1/Ax where Ax is a lattice cut—off, which is typically
identified with the step size of the spatial discretization scheme used in numerical
simulations. The method developed in Ref. [4] for stochastic PDE:s is to construct
an approximation scheme that separates out the diffusive effects of noise from the
mean drift. Applying a similar method to the neural field equation (9.56) [15], we
first rewrite the equation as

dU(x,1) = [h(U(x, 1) + / : w(x — y)F(U(y, 0)dyldt + &' R(U, x, 1),
(9.59)
where
h(U) = —-U 4 £C(0)g'(U)g(U) (9.60)
and
R, x,1) = g(U)n(x,1) — '*C(0)¢'(U)g (V). (9.61)

The stochastic process R has zero mean (so does not contribute to the effective drift)
and correlation

(R(U,x, )R, x',1")) = (g(U(x,))n(x,)gU, 1)n(x",1) + O(e'?).
(9.62)

The next step in the analysis is to assume that the fluctuating term in Eq. (9.59)
generates two distinct phenomena that occur on different time—scales: a diffusive—
like displacement of the front from its uniformly translating position at long time
scales, and fluctuations in the front profile around its instantaneous position at short
time scales [4,55]. In particular, following Ref. [15], we express the solution U
of Eq.(9.59) as a combination of a fixed wave profile Uy that is displaced by an
amount A(¢) from its uniformly translating mean position £ = x — ¢, and a time—
dependent fluctuation @ in the front shape about the instantaneous position of the
front:

U(x,1) = Up(E — A@t)) + ' 2®(E — A1), 1). (9.63)

Here ¢, denotes the mean speed of the front. The wave profile Uy and associated
wave speed c, are obtained by solving the modified deterministic equation

oo

w(E —EVF(U(§))dE". (9.64)

— Ce

du, B
T hU©) —f_
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Both ¢, and U, depend non—trivially on the noise strength € due to the e—dependence
of the function 4. Thus, ¢, # ¢ for ¢ > 0 and ¢y = ¢, where c is the speed of the
front in the absence of multiplicative noise. It also follows that the expansion (9.63)
is not equivalent to a standard small-noise expansion in . Equation (9.64) is chosen
so that to leading order, the stochastic variable A(¢) undergoes unbiased Brownian
motion with a diffusion coefficient D(e) = O'(¢) (see below). Thus A(t) represents
the effects of slow fluctuations, whereas @ represents the effects of fast fluctuations.

The next step is to substitute the decomposition (9.63) into Eq. (9.59) and expand
to first order in &(g'/?). Imposing Eq. (9.64), after shifting § — £ — A(¢), and
dividing through by &!/? then gives

do(E.1) = Lo ®(£,1)dt + £ V2UJ(§)d A(t) + dR(Up, £, 1) (9.65)

where L is the non-self-adjoint linear operator

dA)

Loa® =a "

+ 1 (Uo(§)A(§) + /_ w(€ —&)VF' (Up(§))A(E)dE']
(9.66)

for any function A(§) € L,(R). The non-self-adjoint linear operator L hasa 1D null
space spanned by Uj(£), which follows from differentiating equation (9.64) with
respect to £. We then have the solvability condition for the existence of a nontrivial
solution of Eq. (9.66), namely, that the inhomogeneous part is orthogonal to the null
space of the adjoint operator. The latter is defined with respect to the inner product

[ sotaede= [ [ise)] e ©0.67)

—00 —

where A(§) and B(§) are arbitrary integrable functions. Hence,

LB = - 0 + HUE)BE) + FUu) [ wie—£1BEE.
(9.68)
Taking the null space of L to be spanned by the function ¥'(£), we have
/Oo V(E) [Ug(§)dAt) + &' *dR(U, £, 1) dE = 0. (9.69)
Thus A(t) satisfies the stochastic ODE
| r@arwn.nas
dA(1) = —¢'/? 2= (9.70)

/_ Y (E)UE)dE
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Using the lowest order approximation dR(Uy, &,t) = g(Uy(§))dW (&, t), we deduce
that (for A(0) = 0)

(A(t)) =0, (A@)*) =2D(e)t 9.71)

where D(¢) is the effective diffusivity

o

/ V(618> (Uo(E))dE
D(s) = {dA(1)dA®')) = =22

- _ 9.72)
[ [ 7/(§)Uo’(§)d§]

9.4.3 Explicit Results for a Heaviside Rate Function

We now illustrate the above analysis by considering a particular example where
the effective speed ¢, and diffusion coefficient D(¢) can be calculated explicitly
[15]. That is, take g(U) = goU for the multiplicative noise term and set
F(U) = H(U — k). (The constant gy has units of ,/length/time.) The determin-
istic equation (9.64) for the fixed profile Uy then reduces to

_cf;l; + Up(&)y(e) = /_ w(E — EVH(Up(€) — k)&, 0.73)
with
y(e) = (1 —egyC(0)), (9.74)

The analysis of the wave speeds proceeds along identical lines to the deterministic
model. Thus, multiplying both sides of Eq. (9.73) by e ~§7®)/¢ and integrating with
respect to £ gives

Ce

, 1 [t .
Up(§) = efre/e |:K -— / e_yy(s)/cfw(y)dyi| . (9.75)
0

Finally, requiring the solution to remain bounded as § — oo (§ — —o0) for ¢, > 0
implies that ¥ must satisfy the condition

1 o0
K= — e 7O/ R (y)dy. (9.76)
Ce Jo

Hence, in the case of the exponential weight distribution (9.49), we have

¢. = 7(©)er (7)) = 5-[1 = 2cy(@) 9.77)
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for ¢, > 0 with c4(x) defined in Eq. (9.55). Assuming that 0 < y(e) < 1, we
see that multiplicative noise shifts the effective velocity of front propagation in the
positive & direction.

In order to calculate the diffusion coefficient, it is first necessary to determine
the null vector ¥ (§) of the adjoint linear operator L* defined by Eq. (9.68). Setting
F(U)= HU —«) and g(U) = goU, the null vector ¥ satisfies the equation

§¢) [

TROY w(E )V (EdE'. 9.78)

V'€ +y@E)7V(E) =—

This can be solved explicitly to give [8]

y(e)
V() =—HE)exp(=I'(e)§). I'(e) = - 9.79)
&
We have used the fact that the solution to Eq. (9.73) is of the form
1 o0
U = [ e+ oy 9.50)
Ce Jo
with w(£) defined in Eq. (9.51) and, hence,
1 o0
Ug(§) = —— [ ey + §)dy. 981)
e JO

Using Eq. (9.79), Eq. (9.72) reduces to the form

[ eresueras
D(e) = 22 (9.82)

oo 2
[ e
0

which can be evaluated explicitly for an exponential weight distribution to give
1 2
D(e) = Esago(l + ol (¢)) (9.83)

In Fig.9.1 we show the temporal evolution of a single stochastic wave front,
which is obtained by numerically solving the Langevin equation (9.56) for F(U) =
H(U — k), g(U) = U and an exponential weight distribution w. In order to
numerically calculate the mean location of the front as a function of time, we
carry out a large number of level set position measurements. That is, the positions
X, (t) are determined such that U(X,(¢t),t) = a, for various level set values
a € (0.5, 1.3k) and the mean location is defined to be X (t) = E[X,(¢)], where
the expectation is first taken with respect to the sampled values a and then averaged
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Fig. 9.1 Numerical simulation showing the propagation of a front solution of the stochastic neural
field equation (9.56) for Heaviside weight function F(U) = H(U —«) with k = 0.35, exponential
weight function (9.49) with ¢ = 2, and multiplicative noise g(U) = U. Noise strength ¢ = 0.005
and C(0) = 10. The wave profile is shown at successive times (a) t = 12 (b) t = 18 and (c)
t = 24, with the initial profile at t = 0 (smooth curve in (a)) given by Eq. (9.80). In numerical
simulations we take the discrete space and time steps Ax = 0.1, A¢ = 0.01. The deterministic part
U, of the stochastic wave is shown by the more advanced curves and the corresponding solution in
the absence of noise (¢ = 0) is shown by the less advanced curves

a b
0.8 8

, 0.6 ol

ox(t) Ce
0.4 4
0.2 2 [
0.0 [ . \\'\'\
0 5 10 15 20 25 30 0.0 0.2 0.3 0.4 0.5
time t threshold «

Fig. 9.2 (a) Variance 0% (¢) of front position as a function of time, averaged over N = 4,096
trials. Same parameter values as Fig.9.1. (b) Plot of wave speed ¢, (black curve) and diffusion
coefficient D(g) (gray curve) as a function of threshold «. Numerical results (solid dots) are
obtained by averaging over N = 4,096 trials starting from the initial condition given by Eq. (9.80).
Corresponding theoretical predictions (solid curves) for ¢, and D(g) are based on Eqgs. (9.77) and
(9.82), respectively. Other parameters are as in Fig. 9.1

over N trials. The corresponding variance is given by o3 (1) = E[(X,(1) — X(1))?].
In Fig. 9.2a, 0 (¢) is plotted as a function of 7. It can be seen that it varies linearly
with 7, consistent with the assumption that there is a diffusive-like displacement of
the front from its uniformly translating position at long time scales. The slope of
the curve then determines the effective diffusion coefficient according to oy (1) ~
2D(e)t. In Fig. 9.2b, the numerically estimated speed and diffusion coefficient are
plotted for various values of the threshold « and are compared to the corresponding
theoretical curves obtained using the above analysis. It can be seen that there is
excellent agreement with the theoretical predictions provided that « is not too large.
Note that as k — 0.5, the wave speed decreases towards zero so that the assumption
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of relatively slow diffusion breaks down. Note that the analysis of freely propagating
fronts can be extended to the case of fronts locked to an externally moving stimulus
[15]. One finds that the latter are much more robust to noise, since the stochastic
wandering of the mean front profile is now described by an Ornstein—Uhlenbeck
process rather than a Wiener process, so that the variance in front position saturates
in the long time limit rather than increasing linearly with time.

9.5 Path Integral Representation of a Stochastic Neural Field

Recently, Buice and Cowan [19] have used path integral methods and renormal-
ization group theory to establish that a stochastic neural field with an absorbing
state, which evolves according to a birth—death master equation of the form (9.39),
belongs to the universality class of directed percolation, and consequently exhibits
power law behavior suggestive of many measurements of spontaneous cortical
activity in vitro and in vivo [6,51]. (If a network enters an absorbing state all activity
is extinguished.) Although the existence of power law behavior is still controversial
[5], the application of path integral methods provides another example of how
analytical techniques familiar in the study of PDEs and chemical master equations
are being adapted to studies of continuum neural fields. (For reviews on path integral
methods for stochastic differential equations see Refs. [22, 60, 67].) In this section,
we show how a stochastic neural field with extrinsic noise and an absorbing state
can be reformulated as a path integral, and use this to estimate the time to extinction
of network activity. A more detailed discussion can be found in Ref. [11]

9.5.1 Pulled Fronts, Absorbing States and Extinction Events

In order to construct a neural field with an absorbing state, it is convenient to
consider an activity—based rather than a voltage-based neural field of the form

o0

‘L’M =—a(x,t)+ F (/ w(x — x’)a(x’,t)dx’) ) (9.84)

at oo

For the moment, we consider an unbounded domain with x € R. We also have the

additional constraint that a(x,¢) > 0 for all (x, t), since the field a(x, t) represents

the instantaneous firing rate of a local population of neurons at position x and time ¢.

Suppose that F(a) in Eq.(9.84) is a positive, bounded, monotonically increasing

function of a with F(0) = 0, lim,_,;+ F’(a) = 1 and lim,—cc F(a) = k for some
positive constant «. For concreteness, we take

0, a<o0
Fla)=3a,0<a <« (9.85)
K, a>k.
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Fig. 9.3 (a) Plots of piecewise linear and sigmoidal firing rate functions. Intercepts of y =
F(Wpa) with straight line y = a determine homogeneous fixed points. Stable (unstable) fixed
pints indicated by filled (unfilled) circles. (b) Stable steady state solution a(x,t) = A;(x) of
neural field equation (9.84) on a finite spatial domain of length L with boundary conditions
a(0,t) = a(L,t) = 0. Here Wy = 1.2,0 = 1,k = 0.4 and L = 5 in the presence of
multiplicative noise, fluctuations can drive the network to the zero absorbing state resulting in
the extinction of activity

A homogeneous fixed point solution a* of Eq. (9.84) satisfies a* = F(Wpa™) with
Wo = ffzo w(y)dy. In the case of the given piecewise linear firing rate function, we
find that if W, > 1, then there exists an unstable fixed point at a* = 0 (absorbing
state) and a stable fixed point at a* = k, see Fig. 9.3a. The construction of a front
solution linking the stable and unstable fixed points differs considerably from that
considered in neural fields with sigmoidal or Heaviside nonlinearities as considered
in Sect. 9.4, where the front propagates into a metastable state. Following the PDE
theory of fronts propagating into unstable states [62], we expect there to be a
continuum of front velocities and associated traveling wave solutions; the particular
velocity selected depends on the initial conditions. Fronts propagating into unstable
states can be further partitioned into two broad categories: the so—called pulled and
pushed fronts [62] emerging from sufficiently localized initial conditions. Pulled
fronts propagate into an unstable state such that the asymptotic velocity is given
by the linear spreading speed v*, which is determined by linearizing about the
unstable state within the leading edge of the front. That is, perturbations around the
unstable state within the leading edge grow and spread with speed v*, thus “pulling
along” the rest of the front. On the other hand, pushed fronts propagate into an
unstable state with a speed greater than v*, and it is the nonlinear growth within
the region behind the leading edge that pushes the front speeds to higher values.
One of the characteristic features of pulled fronts is their sensitivity to perturbations
in the leading edge of the wave. This means that standard perturbation methods
for studying the effects of spatial heterogeneities [43] or external noise fluctuations
[54] break down. The effects of spatial heterogeneities on neural fields that support
pulled fronts is explored elsewhere [11,23].
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Consider a traveling wave solution ./ (x — ct) of Eq. (9.84) with &/ (§) — « as
& - —ooand &7 (§) — 0as & — oo. One can determine the range of velocities ¢ for
which such a solution exists by assuming that o7 (§) &~ e™*¢ for sufficiently large £.
The exponential decay of the front suggests that we linearize equation (9.84), which
in traveling wave coordinates (with t = 1) takes the form

d(§) _ *

—eSp =IO+ / W= E) A EaE (9.86)

However, in order to make the substitution .7 (§) ~ e *¢ we need to restrict the
integration domain of £’ to the leading edge of the front. Suppose, for example that
w(x) is given by the Gaussian distribution

W(x) = ——0 ¥ /207 (9.87)

Given the fact that the front solution <7 (§) is bounded, we introduce a cut-off X
with 0 < X < £, and approximate Eq. (9.86) by

do(§) o N of (N g/
ST =)+ /H Wik — &) (§)dE . (9.88)

Substituting the exponential solution in (9.86) then yields the dispersion relation
¢ = c(A) with

X
c(A) = % [ /_ . w(y)e Mdy — 1} . (9.89)

Finally, we now take the limit X — oo under the assumption that w(y) is an even
function to yield

V) = %[V/(A) —1], (9.90)

where #'(A) = w(L) + w(—A) and w(A) = fooo w(y)e ™ dy is the Laplace
transform of w(x). We are assuming that w(y) decays sufficiently fast as |y| — oo
so that the Laplace transform w(A) exists for bounded, negative values of A. This
holds in the case of the Gaussian distribution (9.87) for which # (1) = Wyet’o?/2,
Hence,

2202)2
ey = W Pl 9.91)
A
If Wy > 1 (necessary for the zero activity state to be unstable) then ¢ (1) is a positive
unimodal function with ¢(1) — coas A — 0 or A — oo and a unique minimum
at A = Ay with Ag. Assuming that the full nonlinear system supports a pulled front
then a sufficiently localized initial perturbation (one that decays faster than e ~*0%)
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will asymptotically approach the traveling front solution with the minimum wave
speed ¢y = ¢(Ag). Note that ¢y ~ o and Ao ~ o\

In the above analysis, the effects of boundary conditions on front propagation
were ignored, which is a reasonable approximation if the size L of the spatial
domain satisfies L >> o, where o is the range of synaptic weights. In the case of a
finite domain, following passage of an invasive activity front, the network settles into
a non-zero stable steady state, whose spatial structure will depend on the boundary

conditions. The steady—state equation takes the form

L
a(x) = F (/0 w(x — x’)a(x’)dx’) ) (9.92)

In the case of Dirichlet boundary conditions, a(0,¢) = a(L,t) = 0 with L > o,
the steady—state will be uniform in the bulk of the domain with a(x) &~ a( except
for boundary layers at both ends. Here ay is the nonzero solution to the equation
ap = F(Wpayp). An example of a steady—state solution is plotted in Fig. 9.3b. (Note
that the sudden drop to zero right on the boundaries reflects the non-local nature of
the neural field equation.)

Now suppose some source of extrinsic noise is added to the neural field
equation (9.84):

dA = [—A + F (/ w(x — y)A(y, t)dy):| dt + eg(A)dW(x,t), (9.93)
s

for 0 < t < T and initial condition A(x,0) = @(x). Here & determines the
noise strength and ¥ = [0, L] denotes the spatial domain of the neural field. We
will assume that g(0) = 0 so that the uniform zero activity state A = 0 is an

absorbing state of the system; any noise—induced transition to this state would then
result in extinction of all activity. An example of multiplicative noise that vanishes
at A = 0 is obtained by carrying out a diffusion approximation of the neural master
equation previously introduced by Buice et al. [19,20], see Bressloff [9, 10]. Based
on the analysis of stochastic traveling waves in Sect. 9.4, we would expect the noise
to induce a stochastic wandering of a pulled front solution of the corresponding
deterministic equation. However, in the case of stochastic PDEs, it has previously
been shown that the stochastic wandering of a pulled front about its mean position
is subdiffusive with varA(¢) ~ ¢'/2, in contrast to the diffusive wandering of a front
propagating into a metastable state for which varA(¢) ~ ¢ [54]. Such scaling is a
consequence of the asymptotic relaxation of the leading edge of the deterministic
pulled front. Since pulled front solutions of the neural field equation (9.84) exhibit
similar dynamics, it suggests that there will also be subdiffusive wandering of these
fronts in the presence of multiplicative noise. This is indeed found to be the case
[15]. Another consequence of the noise is that it can induce a transition from the
quasi-uniform steady state to the zero absorbing state. In the case of weak noise,
the time to extinction is exponentially large and can be estimated using path integral
methods as outlined below, see also Ref. [11].
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9.5.2 Derivation of Path Integral Representation

In order to develop a framework to study rare extinction events in the weak
noise limit, we construct a path integral representation of the stochastic Langevin
equation (9.93) along the lines of Ref. [11]. We will assume that the multiplicative
noise is of Ito form [34]. For reviews on path integral methods for stochastic
differential equations, see Refs. [22, 60, 67]. Discretizing both space and time
with A;,, = AmAd,iAt), Wiu/At/Ad = dW(mAd,iAt), wy,Ad =
w(mAd,nAd) gives

Ai+l.m - Ai,m = [_Ai,m+F (Ad Zn WmnAi,n)] At+%g(Ai.m)m,m + ®m8i,Oa

wherei =0,1,...,N for T = NAt,n =0,..., N for L = N Ad, and
(Wm) =0, (VVi,vai/,m’) = 8i,i’8m,m’~ (9.94)
Let A and W denote the vectors with components A;, and W;, respectively.

Formally, the conditional probability density function for A given a particular
realization of the stochastic process W (and initial condition @) is

P[A|W] = Hn HIN=08 (Ai+l.m - Ai,m + [Ai,m - F (Ad Zn WmnAi,n)] At

— L2 g (A Wim = Pubio) (9.95)

Inserting the Fourier representation of the Dirac delta function,
1 [* _.x ~
Ww=—feﬂwwwﬁ (9.96)
’ 21 J oo

gives

P[A|W]

(9.97)

o0 oo -
/ . / exp =i > Uim (Aig1m — Arm)
—00 —00 i,m
exp % —i Z Ui m |:Ai.m —F (Ad ZwmnA,,nﬂ At
im n

X

X

N N a
GXp{ ZU1)n<Fg(Alm)mrn+@ 810)}1_[1_[ U

Each W, ,, is independently drawn from a Gaussian probability density function
P(Wi,,) = (27)~1/2e™%n/2_ Hence, setting
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Pial= [ PAMWIT] POTaw,,

j.in

and performing the integration with respect to W; , by completing the square, gives

PIA] = / /exp{—zZU,m(A,Hm— Aim)

,m

X exp { —i Y Uim [Af,m ~F (Ad > wmnA,,nﬂ At
im n

11 %

n=0 j=0

X exp { Z ([ZU, m] g (A, m) + lUlmq)m& O)

im

(9.98)

Finally, taking the continuum lim~its Ad — 0, ~and At — 0, N, N — oo for fixed
T, L with A;,, - A(x,t) and iU; ,,/Ad — U(x,t) results in the following path
integral representation of a stochastic neural field:

P[A] = / e SUllgQ (9.99)
with
~ T ~
S[A,U] = / / U(x,t) |:At(x,t) + A(x,t) - F (/ w(x — y)A(y,t)dy)
zJo x
—P(x)8(t) — %lj(x, 1g?(A(x, z))] drdsx. (9.100)
Here 2U denotes the path-integral measure

N N 7
~ dU;,Ad
2U = lim —
N.N-00 HUO ]1:[0 2mi
Given the probability functional P[A], a path integral representation of various
moments of the stochastic field A can be constructed [22]. For example, the mean
field is

({A(x, 1)) = / Ax,1)e S5 490 (9.101)
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whereas the two—point correlation is
(A, )AX, 1)) =/A(x,t)A(x’,t’)e’S[Am@A@U. (9.102)

Another important characterization of the stochastic neural field is how the mean
activity (and other moments) respond to small external inputs (linear response
theory). First, suppose that a small external source term A(x,t) is added to the
right-hand side of the deterministic version (g = 0) of the field equation (9.93).
Linearizing about the time—dependent solution A(x, ¢) of the unperturbed equation
(h = 0) leads to an inhomogeneous linear equation for the perturbed solution
o(x,t) = A (x,t) — A(x,1):

d
% _ ety F ( / Wx — A, r)dy) / W — )0,y + h(x, 1),
) )

ot
(9.103)

Introducing the deterministic Green’s function or propagator % (x, ¢; x’, t") accord-
ing to the adjoint equation

- % =68(x—xN8(t —t") —G(x,t:x', 1)) (9.104)

+/ F’ (/ w(y — 2)A(z, t')dz) w(x' — V)% (x.,t; y.t')dy
D) x

with % (x,1;x",t") = 0 for t < t’ (causality), the linear response is given by

t
o(x,1) =/ / Go(x,t;x  tYh(X', t")df dx' . (9.105)
-z

In other words, in terms of functional derivatives

SA(x,1)
" —@(x, b x ). 9.106
Sh(x' 1) o(x,2:x7,1") ( )
Now suppose that a corresponding source term [ dx [ dr h(x, 1)U (x,1) is added to
the action (9.100). The associated Green’s function for the full stochastic model is
defined according to

G(x,t;x' 1) = W = ((A(x, U (x', 1)) (9.107)

with

lim 4 (x,t;x',t") = 8§(x — x')

t_”-,i-



262 P.C. Bressloff

and 4(x,t;x’,t") = 0 fort < t’. The above analysis motivates the introduction of
the generating functional

Z[J, j] _ / o~ SIATI+/x j;)T[ff(x,t)](x,t)+J~(x,t)A(x.t)]dxdt@A@[7. (9.108)

Various moments of physical interest can then be obtained by taking functional
derivatives with respect to the “current sources” J, J. For example,

({A(x, 1)) = Sf(x,t)Z[J’ J] L (9.109)
8 8 i

{AGx, AKX, 1)) = oo /)Z[J, 7] L 9.110)
8 8 i

({A(x, ) A 1)) = ST ) Z[J.J] L ©.111)

9.5.3 Hamiltonian-Jacobi Dynamics and Population
Extinction in the Weak-Noise Limit

In Ref. [11], the path-integral representation of the generating functional (9.108)
is used to estimate the time to extinction of a metastable non—trivial state. That is,
following along analogous lines to previous studies of reaction—diffusion equations
[27, 42], the effective Hamiltonian dynamical system obtained by extremizing
the associated path integral action is used to determine the most probable or
optimal path to the zero absorbing state. (Alternatively, one could consider a WKB
approximation of solutions to the corresponding functional Fokker-Planck equation
or master equation [26,33,40].) In the case of the neural field equation, this results
in extinction of all neural activity. For a corresponding analysis of a neural master
equation with x—independent steady states, see Refs. [9 10].

The first step is to perform the rescalings A— A /0% and J—>J /02, so that the
generating functional (9.108) becomes

Z[J, j] _ / e—a_ZS[A,ZNJ]-i-o_ZfEfOT[ff(x,t)J(x,t)+f(x.t)A(x,t)]dtdx9A90. (9.112)

In the limit 0 — 0, the path integral is dominated by the “classical” solutions
q(x,t), p(x,t), which extremize the exponent or action of the generating
functional:

§S[A, A]
SA(x,1) i

=—J(x.1), M =—J(x,1). (9.113)
SA(x, )|, _
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In the case of zero currents J = J = 0, these equations reduce to

dg(x,t) _ 8Aq.pl  dpx.0) _ 74, p)
ot Sp(x,1) ot 8q(x,1)

(9.114)
where
Sta.rl = | T[ [, pnicas = #lq. gl a [ pex00mas,
such that
%”[q,p]=[2p(x,t) [—q(x,t)+F(/EW(x—y)q(y,t)dy)
+%p(x,z)g2(q(x,z))}dx (9.115)

Equations (9.114) take the form of a Hamiltonian dynamical system in which ¢ is
a “coordinate” variable, p is its “conjugate momentum” and ¢ is the Hamiltonian
functional. Substituting for .7 leads to the explicit Hamilton equations

dq(x, F - dy) + &\ 9.116
(Bt ¥ =—q(x.0) + F ([ wx = y)g(y.0)dy) + p(x.1)g*(q(x.1)) (9.116)

ap(x, F

pf‘; 2 - px.t) + [ F' [y w(y —2)q(z. 0)dz) w(y — x) p(y. 1)dy

+p*(x,1)g(q(x.1))g' (q(x.1)) 9.117)

It can be shown that g(x,t), p(x,t) satisfy the same boundary conditions as the
physical neural field A(x, t) [49]. Thus, in the case of periodic boundary conditions,
qg(x + L,t) = q(x,t) and p(x + L,t) = p(x,t). It also follows from the
Hamiltonian structure of Eqgs. (9.116) and (9.117) that there is an integral of motion
given by the conserved “energy” E = J¢q, p].

The particular form of .72 implies that one type of solution is the zero energy
solution p(x,t) = 0, which implies that g(x,?) satisfies the deterministic scalar
neural field equation (9.84). In the # — oo limit, the resulting trajectory in the infi-
nite dimensional phase space converges to the steady state solution &4 = [¢,(x), 0],
where ¢, (x) satisfies Eq. (9.92). The Hamiltonian formulation of extinction events
then implies that the most probable path from [g,(x), 0] to the absorbing state is the
unique zero energy trajectory that starts at &4 at time ¢ = —oo and approaches
another fixed point & = [0, p.(x)] at t = 400 [27,49]. In other words, this
so—called activation trajectory is a heteroclinic connection 0422 (or instanton
solution) in the functional phase space [¢(x), p(x)]. It can be seen from Eq. (9.117)
that the activation trajectory is given by the curve
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—q(x) + F (5 w(x — y)q(y)dy)

= F.lq]l = — 9.118
p(x) «lq] ) (9.118)
so that
— Tim F _ . q(x)
Pe(x) = ;E)I%)Jx[q] =-(W - 1)(}1_% W, (9.119)

assuming F(q) ~ g for 0 < ¢ < 1. Note that the condition that p,(x) exists
and is finite is equivalent to the condition that there exists a stationary solution to
the underlying functional Fokker—Planck equation — this puts restrictions on the
allowed form for g. For the zero energy trajectory emanating from & att = —oo,
the corresponding action is given by

SO:/OO/ p(x,0)§(x, t)dxdr, (9.120)
—o00 J X

and up to pre-exponential factors, the estimated time 7, to extinction from the
steady—state solution ¢, (x) is given by [27,49]

Inz, ~ 0 2S,. (9.121)

For x—dependent steady—state solutions ¢,(x), which occur for Dirichlet boundary
conditions and finite L, one has to solve Egs.(9.116) and (9.117) numerically.
Here we will consider the simpler case of x—independent solutions, which occur
for periodic boundary conditions or Dirichlet boundary conditions in the large L
limit (where boundary layers can be neglected). Restricting to x-independent state
transitions, the optimal path is determined by the Hamilton equations (9.116) and
(9.117):

G =—q+F W)+ pg(q) (9.122)

—p=—p+WF Woq) p + p’g(@)g'(q) (9.123)

In Fig.9.4 we plot the various constant energy solutions of the Hamilton
equations (9.122) and (9.123) for the differentiable rate function F(g) = tanh(q)
and multiplicative noise factor g(¢) = ¢°. In the first case p, = 0.2 and in the
second p, = 0. The zero—energy trajectories are highlighted as thicker curves. Let
us first consider the case s = 1/2 for which p, = 0.2, see Fig. 9.4a. As expected,
one zero—energy curve is the line p = 0 along which Eq.(9.122) reduces to
the x—independent version of Eq.(9.84). If the dynamics were restricted to the
one—dimensional manifold p = 0 then the non—zero fixed point &+ = (qo,0)
with g0 = F(Whqo) would be stable. However, it becomes a saddle point of the
full dynamics in the (g, p) plane, reflecting the fact that it is metastable when
fluctuations are taken into account. A second zero—energy curve is the absorbing
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a o4 b o,
0.3 ozl
0.2 .
01|
o1 = =
A o
p 0 ad p 0 +
-0.1 :
£ -0.1
-0.2 - .
03 | 02
4\?
-0.4 0.3
0 01 02 03 04 05 06 07 08 0 01 02 03 04 05 06 07 08
q q

Fig. 9.4 Phase portrait of constant energy trajectories for the Hamiltonian system given by
Eqgs. (9.122) and (9.123) with F(g) = tanh(q) and g(q) = ¢° for ¢ > 0. Zero—energy trajectories
are indicated by thick curves. The stable and unstable fixed points of the mean—field dynamics are
denoted by &4 and O_. (a) s = 1/2: There exists a non-zero fluctuational fixed point & that is
connected to 04 via a zero—energy heteroclinic connection. The curve &4 P is the optimal path
from the metastable state to the absorbing state. (b) s = 1/4: There is no longer a fluctuational
fixed point & so the optimal path is a direct heteroclinic connection between &4 and 0_

line ¢ = 0 which includes two additional hyperbolic fixed points denoted by
O0_ = (0,0) and & = (0, p.) in Fig.9.4. O_ occurs at the intersection with the
line p = 0 and corresponds to the unstable zero activity state of the deterministic
dynamics, whereas &7 is associated with the effects of fluctuations. Moreover, there
exists a third zero—energy curve, which includes a heteroclinic trajectory joining
O_ att = —oo to the fluctuational fixed point & at t = +o0. This heteroclinic
trajectory represents the optimal (most probable) path linking the metastable fixed
point to the absorbing boundary. For s < 1/2, p, = 0 and the optimal path is
a heteroclinic connection from &4 to &—. In both cases, the extinction time t, is
given by Eq. (9.121) with

P
So = / pdq, (9.124)
O+

where the integral evaluated along the heteroclinic trajectory from &4 to &2, which
is equal to the area in the shaded regions of Fig. 9.4.

Note that since the extinction time is exponentially large in the weak noise limit,
it is very sensitive to the precise form of the action Sy and thus the Hamiltonian .77
This implies that when approximating the neural master equation of Buice et al.
[19,20] by a Langevin equation of the form (9.93) with o ~ 1/+/N, where N is the
system size, the resulting Hamiltonian differs from that obtained directly from the
master equation and can thus generate a poor estimate of the extinction time. This
can be shown either by comparing the path integral representations of the generating
functional for both stochastic processes or by comparing the WKB approximation
of the master equation and corresponding Fokker—Planck equation. This particular
issue is discussed elsewhere for neural field equations [9, 10].
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