
Chapter 8
Heterogeneous Connectivity in Neural Fields:
A Stochastic Approach

Chris A. Brackley and Matthew S. Turner

Abstract One of the traditional approximations applied in Amari type neural field
models is that of a homogeneous isotropic connection function. Incorporation of
heterogeneous connectivity into this type of model has taken many forms, from
the addition of a periodic component to a crystal-like inhomogeneous structure. In
contrast, here we consider stochastic inhomogeneous connections, a scheme which
necessitates a numerical approach. We consider both local inhomogeneity, a local
stochastic variation of the strength of the input to different positions in the media,
and long range inhomogeneity, the addition of connections between distant points.
This leads to changes in the well known solutions such as travelling fronts and
pulses, which (where these solutions still exist) now move with fluctuating speed
and shape, and also gives rise to a new type of behaviour: persistent fluctuations
in activity. We show that persistent activity can arise from different mechanisms
depending on the connection model, and show that there is an increase in coherence
between fluctuations at distant regions as long-range connections are introduced.

8.1 Introduction

Continuum neural field models of the type proposed by Amari [1, 2] (see also
Chap. 3) have been used as a model for cortical tissue, describing phenomena such
as travelling fronts and pulses of activity [12, 27], stationary and breathing bumps
[15, 16, 18, 28], and instabilities leading to pattern formation such as might be
responsible for visual hallucinations [6, 22] (see also Chaps. 1, 4, and 7). Much of
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this work uses the assumption that neural connectivity in the tissue is homogeneous
and isotropic. This simplification may give an adequate first order approximation of
the behaviour of the tissue in some situations (e.g. fronts of activity in cortical slices
[11]), but it is mainly motivated by the fact that it leads to much more tractable
equations. There have been several attempts to include more realistic connections in
this type of model: for example travelling fronts in a periodically varying connection
function have been studied in Refs. [7, 9, 13, 25], whilst Ref. [8] considers a crystal
like structure for connectivity such as might be expected in the visual cortex, and
long range point connections have been studied in Refs. [5, 24, 26, 29]. Spatial
inhomogeneity can also be introduced via external input to the fields [10, 17, 18].

In this chapter we take a different approach, and consider quenched stochastic
inhomogeneous connections which are introduced in addition to a homogeneous
component. To achieve this we numerically construct spatially continuous, stochas-
tic connection functions. With such a scheme it is not possible to solve the field
equations analytically, so instead we use approximation and numerical methods.

We consider a two population continuum model, given in two dimensions by

�u
@u

@t
C u.x; t / D

Z
�

w.x; x0/f
�
u.x0; t /

�
dx0 � gv.x; t /;

�v
@v

@t
C v.x; t / D f .u.x; t // ; (8.1)

where � denotes the extent of the system. The field u.x; t / describes an excitatory
neural population and v.x; t / local inhibition (which can be interpreted either as
an inhibitory neural population, or as nonlinear local feedback). We set the time
units of the system by choosing �u D 1; �v and g give the relative response time
and strength of the inhibition. We employ the usual approximation for the firing rate
function, taking it to be a step at threshold � , i.e. f .u/ D �.u��/where 0 < � < 1.

For the inhomogeneous connection function w.x; x0/ we consider two different
forms. First in Sect. 8.2 we consider a local inhomogeneity where the connection
weight varies with position, but there are no long range connections; then in
Sect. 8.3 we consider a connection function in which long range connections can be
introduced by varying a single parameter. In both cases we examine the well known
solutions of propagating fronts and pulses of activity in one dimension, before
describing a new type of behaviour—namely persistent fluctuations of activity—in
both one and two dimensional systems.

We perform numerical simulations of Eq. (8.1) by discretizing space, and then
using a 4th order Runge-Kutta algorithm to solve a set of first order ordinary
differential equations. If the connection function w.x; x0/ is chosen carefully, the
integral on the right hand side of the equation for u.x; t / can be written as a
convolution. Although this leads to some loss of generality, the convolution theorem
can then be exploited—using a fast Fourier transform algorithm [19] the integral can
be very efficiently solved.
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8.2 Local Inhomogeneity in Connection Density

There is some experimental evidence [21] that the number of synapses between
two neurons is a Gaussian function of their separation. Thus we adopt a Gaussian
connection function, and add to it a small inhomogeneous perturbation. In this
section we assume that there are no long distance connections and write our
connection function in 1D as

w.x; x0/ D wH.x � x0/Œ1C A.w1.x/C w2.x
0//�; (8.2)

where wH is a normalised Gaussian function

wH.y/ D 1p
�
e�y2 ; (8.3)

and the constant A gives the magnitude of the inhomogeneous connections. The
unit width of the homogeneous function defines the spatial length scale of the
connections (and all lengths given in the rest of the chapter are quoted in these units).
For w1 and w2 we numerically generate functions which vary stochastically (but
continuously) in space with Gaussian statistics, zero mean, and unit mean squared,
and which are auto-correlated on a length � (there is no correlation between the
functions). We include two different functions (of x and x0) in order to remove
any bi-directionality in the connections; for simplicity each is a different stochastic
realisation of the function with the same statistics. This can loosely be thought
to represent additional (to the homogeneous) connections into point x and out of
point x0. It is this separability of the connection function which allows the integral
to be written as a convolution. Note that although the functions are constructed
stochastically, they do not vary with time, so the dynamics of the system are entirely
deterministic.

The inhomogeneity is therefore characterised by its magnitudeA, and correlation
length �. We identify two different regimes, � < 1 and � > 1. The first represents
local heterogeneity in the connections, i.e., on length scales less than the width of
wH ; the second can be interpreted as variation of connection strength on lengths
larger than the width of wH , i.e., locally the connections appear homogeneous, but
the overall connection density varies on longer length scales. For the latter case it is
important to note that whilst connection density varies on long length scales in this
regime, we have not included any long range connections. We also note that since
u.x; t/ represents a population of excitatory neurons, only a positive connection
function makes physical sense. Thus in the present work we only consider values of
A that are small enough so that w.x; x0/ remains positive for all x, x0.

8.2.1 Travelling Fronts and Pulses

We first examine the effect of local stochastic connectivity on the well known
solutions to Eq. (8.1) in 1D, i.e. travelling fronts and pulses [27]. We treat the
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inhomogeneity as a small perturbation to the system; initially we add a constant
additional connection weight 	 to a homogeneous function wH.y/, later replacing
this with the inhomogeneous connections 	 ! 	.x; x0/ D AŒw1.x/C w2.x0/�, and
expanding 	.x; x0/ D N	 C ı	.x; x0/ about N	 D 0. We consider the equations

�u
@u

@t
C u.x; t/ D

Z
�

wH.x � x0/.1C 	/f
�
u.x0; t /

�
dx0 � gv.x; t/;

�v
@v

@t
C v.x; t/ D f .u.x; t// ; (8.4)

where wH.y/ is given in Eq. (8.3). The uniform steady states are found by setting
@tu D @tv D 0 and assuming no x dependence. These are then given by the pairs
of values of u and v which simultaneously solve

u D .1C 	/f .u/ � gv;
v D f .u/: (8.5)

The stability of the points can be shown in the standard way by expanding u.x; t/ D
Nu C ıue!t and v.x; t/ D Nv C ıve!t in Eq. (8.4), and then finding the eigenvalues
!. There are stable fixed points at .Nu1; Nv1/ D .0; 0/ and .Nu3; Nv3/ D .1C 	 � g; 1/,
and an unstable saddle point at .Nu2; Nv2/ D .�; 1/; note that the fixed point .Nu3; Nv3/
only exists if 1C	 �g > � . Travelling wave fronts are possible when there are two
stable steady states—the front connects a region in the .Nu1; Nv1/ state with a region
in the .Nu3; Nv3/ state.

The speed of the front can be found by following Ref. [12]. The equations for
u.x; t/ and v.x; t/ can be solved using the Green’s functions


u.s/ D
(

1
�u
e�s=�u s � 0;

0 s < 0;
and 
v.s/ D

(
1
�v
e�s=�v s > 0;

0 s � 0;
(8.6)

and a change of variables � D x�ct can be used to transform to a co-moving frame
where the front is stationary with shape given by

q.�/ D
Z 1

0


u.s/ Œ u.� C cs/ � g v.� C cs/� ds; (8.7)

where

 u.�/ D
Z 1

�1
.1C 	/wH.y/f .q.� � y//dy; (8.8)

 v.�/ D
Z 1

0


v.s/f .q.� C cs//ds: (8.9)
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The boundary conditions are q.0/ D � , with q.�/ < � for � > 0, and q.�/ > � for
� < 0. Since the firing rate is taken to be a step function f .u/ D �.u � �/, these
integrals can be solved, and then the front speed c is given by

� D
8<
:

1C	
2

h
1 � e 1

4c2
�
1 � erf. 1

2c
/
�i
c > 0;

1C	
2

h
1C e

1

4c2
�
1C erf. 1

2c
/
�i
c < 0:

(8.10)

which can be solved numerically (a different choice of wH.y/ can lead to analytic
solutions). Figure 8.1a, b show how c depends on � and 	 ; there is a minimum value
of 	 below which there is no front solution. There is no dependence on �v or g. It
can be shown using the Evans’ function method [14] that when both stable fixed
points .Nu1; Nv1/ and .Nu3; Nv3/ exist, the moving front solution is also stable.

So far we have proceeded as in Ref. [12], except for the inclusion of the constant
	 which represents the additional connections that are added to the system. The
extension to spatially varying connections is simply a matter of the replacement
	 ! 	.x; x0/ D AŒw1.x/C w2.x0/�. Equation (8.8) becomes

 u.�/ D
Z 1

�1
�
1C 	.x; x0/

�
wH.y/f .q.� � y//dy: (8.11)

We assume for the moment that this replacement does not change the fact that there
are two stable steady states; we shall discuss what happens if this is not the case
at the end of this section. Considering first the regime where � is shorter than the
unit width of the homogeneous connection function and the length c�v , we find that
the inhomogeneity will be averaged out, and effectively 	.x; x0/ D 0. That is to
say, the integral in Eq. (8.11) is effectively an average of 	.x; x0/ over the width of
the function wH.y/; since in the � < 1 regime 	.x; x0/ varies on a length scale
much shorter than this and has zero mean, we expect behaviour to be the same as
the homogeneous case.

In the limit of large � (which we argued above is biologically relevant), w2.x0/
will vary on length scales much longer than the width of the homogeneous
connections wH.y/, and so in the integral we can approximate w2.x0/ � w2.x/
and then 	.x; x0/ � 	.x/ D AŒw1.x/ C w2.x/�. We then proceed to expand
	.x/ D N	 C ı	.x/ about N	 D 0. We argue that the speed c is given by a function
c D h.	/ (the solution to Eq. (8.10)), and expand to second order, giving

c D h. N	/C ı	h0. N	/C ı	2

2
h00. N	/C O.ı	3/: (8.12)

Since the connection function is composed of Gaussian distributed functions with
zero mean, we know that N	 D 0 and hı	2i D 2A2, hı	4i D 6A4 etc. and the odd
moments are zero, with A the amplitude of the inhomogeneity. We can therefore
write the mean and variance of the speed
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a b

c d

Fig. 8.1 Plots (a) and (b) show, for the homogeneous system given by Eq. (8.4), how the front
propagation speed c varies with � (at constant 	) and 	 (at constant � ) respectively. Note that there
is a minimum value of 	 below which the front solution does not exist. There is no dependence
on �v or g, and where moving front solutions exist they are stable. Plots (c) and (d) show how
the mean and variance of the speed of a front travelling through an inhomogeneous system with
two stable steady state solutions depends on the magnitude of the inhomogeneous connections A.
Points, diamonds and squares show results for � D 0:5; 5 and 10 respectively, averaged over 10
realisations of the stochastic connections. The solid line gives the analytic result for the variance
of c derived in the large � limit (Eq. (8.13)). The other parameters used are � D 0:1 and g D 0:2

hci D h.0/C A2h00.0/C O.ı	4/;

h.c � hci/2i D 2A2h0.0/2 C 1

2
A4h00.0/2 C O.ı	4/: (8.13)

From inspection of the plot of c against 	 (Fig. 8.1b) there is an approximately
linear relationship at 	 D 0; thus we approximate the first derivative h0.0/ as a
constant (found numerically from Eq. (8.10) to be h0.0/ D 2:835) and neglect higher
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derivatives. We therefore expect the mean speed to be independent of A at linear
order, and the variance to vary as A2.

We test these predictions by using numerical simulations of an inhomogeneous
system where there are two stable steady states throughout, and where initial
conditions have been chosen so as to lead to travelling fronts (for example an initial
condition with a discontinuity in the u variable, u.x < 0; t D 0/ D 1; u.x >

0; t D 0/ D 0; v.x; t D 0/ D 0). Figure 8.1c, d show how the mean and variance
of the speed of the front vary with A for several values of �. The averages are
over not only the speed of a single front as it moves through the system, but also
over many systems with different realisations of the stochastic connections. We
find that for small A the mean speed is approximately constant, but for larger A
our approximation fails, as the mean speed starts to decrease. The solid line shows
the equation 2h0.0/A2 with h0.0/ D 2:835, and we find that this becomes a better
approximation as � increases.

As well as travelling front solutions, homogeneous models of this type can
also support travelling pulses. Again we investigate the effect of inhomogeneous
connections by first considering a homogeneous additional connection weight 	 ,
before expanding about this. As shown in Ref. [12] the derivation of the speed
and shape of a travelling pulse follows in a similar manner to that of the front,
but with boundary conditions q.0/ D q.�/ D � , q.�/ > � for 0 � � < �

and q.�/ < � otherwise; i.e. the pulse has width �. Since this system is isotropic,
solutions with c > 0 and c < 0 will be identical under the transformation x ! �x,
so we only consider c > 0. Analysing Eq. (8.4) with these boundary conditions,
we find equations relating c and � to g, � , �u and 	 (similar to Eq. (8.10) for the
fronts). Figure 8.2 shows the dependence of pulse width and speed on 	 and g
for � D 0:1 and �v = 1. Note that for some parameters there are two branches of
solutions. The stability can again be found by constructing an Evans function, which
allows identification of a stable and an unstable branch.

To examine whether the system still supports travelling pulses in the presence
of inhomogeneous connections we proceed as before, and replace 	 ! 	.x/ D
N	 C ı	.x/, and consider the � > 1 case. From Fig. 8.2 we find that stable solutions
only exist at 	 D 0 for large g, and that they only exist over a narrow range of 	 .
This means that in a typical system we require large g and small hı	2i for there to
be a significantly large regions where pulses are stable. We observe that in such a
system there are regions in which we can initiate a travelling pulse which will move
with fluctuating speed and width; the pulse cannot propagate into regions in which
locally a stable pulse solution does not exist, i.e. a pulse will die if it encounters
such a region.

In summary front solutions exist and are stable in a homogeneous system
provided there are two stable steady states and 	 is greater than some minimum
value which depends on the firing threshold � (Fig. 8.1b). Pulse solutions are only
stable for a small range of 	 and g. With inhomogeneous connections fronts can
still propagate provided there remains two stable steady states, and pulses can
be initiated and propagate only in the regions in which they are locally stable.
Fluctuations in the speed of fronts and pulses which arise due to stochasticity in
firing, rather than in connectivity are studied in Chap. 9 of this book.
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a

c d

b

Fig. 8.2 Plots showing how the speed and width of a travelling pulse in the homogeneous system
given by Eq. (8.4) vary with the constant 	 , for different values of the inhibitory population strength
g. The upper branches are found to be stable (heavy lines) and the lower branches are unstable
(light lines). Other parameters are � D 0:1 and �v D 1

We have so far examined inhomogeneous systems in which there are either one
or two stable steady states everywhere in the system; we now turn our attention to
what happens if this is not the case.

If we define the function

W.x/ D
Z L

0

wH.x � x0/Œ1C A.w1.x/C w2.x
0//�dx0 � g; (8.14)

then from Eq. (8.1) one notes that if W.x/ > � for all x, then by setting the
derivatives to zero and assuming u.x; t/ D u.x/ the steady states are given by

Nu.x/ D W.x/f .Nu.x// ; (8.15)
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i.e. Nu1.x/ D 0 and Nu3.x/ D W.x/. If the condition W.x/ > � is not true for all
x, then in the regions where W.x/ < � there is only one steady state (Nu1 D 0); for
values of x where there are two steady states, the system can exist in the upper state
only locally. In such a system a new kind of behaviour can be observed. Broadly
speaking, we see patches of high activity, patches of low activity and regions which
fluctuate between the two. Such persistent fluctuations have not previously been
observed in neural field models without the addition of external input.

8.2.2 Persistent Fluctuations

In this section we examine in more detail this new type of fluctuating behaviour.
In order to qualitatively understand how the fluctuations arise in systems with
stochastic inhomogeneous connections we also examine some deterministic inho-
mogeneous connection functions. We then quantitatively study the patterns of
activity in the stochastic system in the fluctuating state, seeking to understand
what this behaviour might mean for information transfer across neural tissue. This
involves measurements of the mean and mean squared activity, and spatial and
temporal correlations in the activity patterns, and consider how these depend on the
properties of the underlying connections. The same fluctuating behaviour is seen in
both 1D and 2D systems.

Figure 8.3 shows an example of a 1D system where we observe persistent
fluctuations in u.x; t/ at some values of x. Also shown is the time evolution of
the activity, both at some arbitrarily chosen points in the system, and on average.
We find that at some points u appears to oscillate periodically, whilst at others it
appears more chaotic. The spatially averaged activity1 hu.x; t/ix appears to fluctuate
chaotically. (In fact a numerical measurement of the Lyapunov exponents of the
discretized approximation of the system shows this to be a limit cycle with an
extremely long period.)

So, what parameter values are required in order to see the fluctuating behaviour?
Firstly, the inhibition strength g must be large enough in order that there are some
regions of the system where there are two stable steady states, and some regions
where there is only one. We also find that both the amplitude, A, and and length
scale, �, of the connections must not be too small, otherwise, for some realisations
of the connections, the activity drops to the lower steady state across the whole
system. To initiate fluctuations there must be some initial excitation in the regions
of the system with two stable steady states, either via the initial conditions or a
transient external input. The fluctuations are then seen to persist indefinitely once
any external input is removed.

1Angled brackets and subscripts denote averages. For example h: : :ix;t denotes average over both
space and time.
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Fig. 8.3 Top: Plots showing snapshots of the activity u as a function of x at different times t ,
whilst a 1D system is undergoing persistent fluctuations. Black lines show u.x; t/, grey lines show
W.x/ (Eq. (8.14)), and the dotted line shows � D 0:1. Bottom: Plots showing how u varies in time
during persistent fluctuations, at different randomly chosen points xi and on average. For all plots
the other parameters are g D 0:8, �v D 1, A D 0:3 and � D 5

The existence of the fluctuating state depends on the particular realisation of
the connections, as well as their statistical properties. In order to understand why
we do or do not observe persistent fluctuations for a particular realisation of the
inhomogeneity, we examine some carefully chosen deterministic inhomogeneous
connection functions. Observing the behaviour of this simpler system allows us to
more easily understand how the fluctuations arise.
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8.2.2.1 Simple Deterministic Connection Function

In 1D, in the large � limit the field equations can be written

�u
@u

@t
C u.x; t/ D Œ1C A .w1.x/C w2.x//�

Z L

0

wH.x � x0/f
�
u.x0; t /

�
dx0

�gv.x; t/;

�v
@v

@t
C v.x; t/ D f .u.x; t// ; (8.16)

where we have approximated w2.x0/ � w2.x/, since the width of the function wH
is much less than �. If instead of using stochastic functions we choose w2.x/ D 0,
and w1.x/ a piecewise linear function, we can construct a system with a region with
two stable steady states (Nu1 D 0, and Nu3 D 1), a region with a single steady state
(Nu1 D 0), and a boundary region where w1.x/ has constant gradient. The resulting
W.x/ as defined by Eq. (8.14) is shown in Fig. 8.4a. If the system is set up with the
initial condition u.x; t/ � � for all x, then after a short transient time the result is
a region where u.x; t/ D 1 for all t , a region where u.x; t/ D 0 for all t , and a
boundary region where u fluctuates. That is to say, a “bump” in w1.x/ gives rise to
a bump of activity with fluctuating boundaries.

In Fig. 8.4b–e we show how periodic fluctuations of the edges of the activity
bump occur. A retracting front of activity forms in the “boundary region”; as this
front retracts a small growing “side bump” forms. When the peak of this side bump
reaches threshold, u grows rapidly and the direction of movement of the front
changes. The front moves out into the region which can only support the Nu1 D 0

steady state before retracting again, and the process repeats. The fluctuations are
therefore a consequence of the non-monotonicity of the front at the edges of the
highly connected bump, which originates from the presence of the local inhibitory
field. A higher density of connections allows the tissue to reside in an active state
and this activity spreads into the region with a lower connection density. In this
region there are insufficient excitatory connections to sustain the high activity, and
as the inhibitory field v increases the front moves back into the highly connected
region. The time scale of the fluctuations is determined by the relaxation time of
the inhibition �v . We also find that the frequency of the fluctuations increases with
the gradient of W.x/ in the boundary region (as well as depending on � , �v , and g).
Also the width of the fluctuating region increases as �v increases.

A slightly different choice of W.x/ can produce a bump of activity with
fluctuating boundaries which emits travelling pulses. As we saw in the previous
section there is a narrow range of values of 	 for which stable travelling pulse
solutions exist. If the region adjacent to the bump has w1.x/ consistent with this,
pulses can propagate into it. The rate at which they are emitted depends on the
gradient of the edges of the bump in W.x/.

Breathing bumps and pulse emitting bumps have also been observed in homoge-
neous connection models. In Ref. [10] it was shown that stationary fronts and pulses
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a b

c d

e

Fig. 8.4 Plot (a) shows an example deterministic W.x/ (solid line) with different regions where
there are either two or one stable steady states. At the boundary between these regions,W.x/ varies
continuously and in this example has a constant gradient of 0:1. The dotted line shows the threshold
� D 0:1. Plots (b)–(d) show how the activity fluctuates at the edge of the “bump” in W.x/, via
the generation of a “side bump”. Solid black lines show u.x; t/, grey lines show W.x/ and dotted
lines show the threshold � . Arrows show the direction of motion of the front. Plot (e) shows how
the mean activity varies with time. After an initial transient there is periodic oscillation

can be generated in a homogeneous connection model with linear feedback via the
introduction of a spatially varying external input; if the magnitude of the input is
increased, the system goes through a Hopf bifurcation to an oscillating state. In
Ref. [15] spike frequency adaption (where the dynamics of the threshold depend on
activity) was introduced, giving rise to stationary bumps which go unstable in favour
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of breathing solutions. In both of these cases the mechanism for the generation of
the oscillations is different to the one described here. Here the oscillations arise as a
result of inhomogeneity in the connections.

By examining this simple deterministic inhomogeneity in the connections we
obtain a better qualitative understanding of what is taking place in the case of
stochastic connection functions. In that case, the observed behaviour is a result
of many “breathing bumps” (with characteristic width �), which fluctuate with a
frequency which depends on the local gradient of W.x/. These bumps may interact
with each other, some emitting pulses. For small A and small � (i.e. in a regime
where regions with W.x/ > � do not have large spatial extent) the retracting
fronts of activity may meet before the “side bumps” have grown to reach threshold.
The activity collapses into the lower steady state (Nu1 D 0), and this is typically
irreversible. This explains why for some realisations of the stochastic connections
(and systems of finite size) we find u.x; t/ ! 0 for all x after a short transient
time. In general, requirements for fluctuations are that W.x/ has non-zero gradient
(a requirement for the growth of “side bumps”), that � must be close enough to
Nu1 D 0, and that the bumps in W.x/ are wide enough so that the peaks of the side
bumps reach threshold before the retracting fronts meet.

8.2.3 Activity Patterns and Correlations

We now return to the case of stochastic connections in 1D, and examine how
the properties of w1.x/ and w2.x/ effect the fluctuations. The dependence of the
magnitude A and length scale � of the inhomogeneous connections, on the mean
and mean squared activity during persistent fluctuations is shown in Fig. 8.5. As one
would expect, increasing A leads to an increase in the mean activity hu.x; t/ix;t .
There is also an increase in the amplitude of the fluctuations, i.e. hu.x; t/2ix;t
increases. In contrast, variation of � has little impact on the mean and mean squared
activity, except at small �. In that case, the regions where W.x/ > � are small,
and we expect fewer regions where the activity fluctuates; i.e. the majority of the
system sits in the lower steady state, leading to a reduced activity on average. We
note that for A & 1=

p
2 the connection function becomes unphysical as it is likely

that w.x; x0/ will be negative for some x; x0.
The length � can, however, determine the length and time scales of the

fluctuations. We define respectively the spatial and temporal correlation functions

Cx.X/ D hıux.x; t/ıux.x CX; t/ix;t
hıux.x; t/2ix;t ; (8.17)

Ct.�/ D hıut .x; t/ıut .x; t C �/ix;t
hıut .x; t/2ix;t ; (8.18)
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Fig. 8.5 Plots showing how the amplitude A and correlation length � of the connections effect the
spatial mean and mean squared of the activity. Top left and right show the effect of varying A at
fixed correlation lengths � D 5 (points) and � D 0:5 (diamonds). Bottom left and right show the
effect of varying � at fixed A D 0:1 (points) and A D 1 (diamonds). All results are averages from
10 realisations of the connections, with errors given by the standard deviation over realisations

where ıux.x; t/ D u.x; t/� hu.x; t/ix and ıut .x; t/ D u.x; t/� hu.x; t/it . As well
as averaging over x and t for a single system, we also average over many different
simulations with different realisations of the stochastic connections. From the spatial
correlation function we can measure a correlation length l , defined to the the length
over which Cx.X/ drops by a factor e�1. As is shown in Fig. 8.6a–c, for large A
the correlation length of the fluctuating activity is close to that of the underlying
connection functions.2 That is to say, as the strength of the inhomogeneity increases,
the activity patterns become more entrained to the structure of the connections.

We turn now To temporal correlations. In the previous subsection we found that
for a single “bump” in connection density, the frequency of the fluctuations depends
on the gradient of the functionW.x/. To see whether this is also true in the stochastic
case we define a “characteristic gradient” of the inhomogeneous component of the
connections

2We note that due to the finite size of the system each realisation of the connections has a
correlation length not quite equal to �, so we also show the measured mean value for the correlation
length of the connections.
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a

d

b c

e f

Fig. 8.6 Plots (a)–(c) show how the correlation length of the connections effects the correlation
length in u.x; t/ for different values of A. Results are averages over 10 realisations of the
inhomogeneous connections, with error given by the standard deviation. Also shown (grey line)
is the average measured correlation length of the functions w1.x/ and w2.x/; the shaded region
shows the standard deviation. Plot (d) shows the time correlation function Ct .�/ as defined by
Eq. (8.18). The grey line is from a system with � D 0:4 and the black from � D 5, both with
A D 0:3. Plot (e) shows the fast Fourier transform of the time correlation functions for the same
systems. Finally, (f) shows how the characteristic gradient mrms of the connection function effects
the principal frequency of the fluctuating activity (black points). We include results from systems
with A D 0:1, A D 0:3 and A D 1, with � varying between 2 and 5 (since our definition of
characteristic gradient only makes sense for � > 1). For comparison (grey points) we also show
the frequency of fluctuations from a system with a deterministic connection function containing a
single gradient, as shown in Fig. 8.4a

mrms D A

vuut
*�
dw1
dx

C dw2
dx

�2+
: (8.19)

Expanding the square gives

*�
dw1
dx

C dw2
dx

�2+
D

*�
dw1
dx

�2
C

�
dw2
dx

�2
C 2

dw1
dx

dw2
dx

+
D 2

*�
dw1
dx

�2+
;
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where we have used the fact the hdxw1i D hdxw2i and hdxw1dxw2i D 0, because
there is no correlation between w1 and w2 (dx denotes derivative with respect to x).
From the construction of the functions w1 and w2 we have

*�
dw1
dx

�2+
D 1

�2
; (8.20)

which gives a characteristic gradient of connections in the system of

mrms D A
p
2

�
: (8.21)

We note that this quantity is only relevant in the large � limit, since we have used
the approximation w2.x0/ � w2.x/.

To examine how variation of mrms effects the fluctuations, we consider the
Fourier transform of the function Ct.�/ (Fig. 8.6e), i.e. we look at the frequency
of the fluctuations. We take the frequency component with the largest amplitude
to be the “principal frequency” of the fluctuations. Figure 8.6f shows how the
principal frequency depends on mrms; also shown is the same measurement for
the deterministic inhomogeneity examined in the previous section (Fig. 8.4a). In
general as the characteristic gradient of the connections increases, the frequency of
the fluctuations increases; for the stochastic connections the frequency reaches a
maximum between 0.1 and 0.15 Hz.

8.2.4 Persistent Fluctuations in 2D

In this section we examine results from 2D simulations. Due to the high com-
putational overhead we consider smaller systems and fewer realisations of the
connections than in the 1D case. Although this means that the results for the 2D
case may be less reliable, reassuringly we see qualitatively the same behaviour as in
1D.

We focus on the regime in which we observe persistent fluctuations; Fig. 8.7
shows snapshots of u.x; t/ at different times. We also show the dependence of
the correlation length of the stochastic connection functions on the correlations
in the activity. The grey solid line shows the measured correlation lengths of the
underlying connection functions w1.x/ and w2.x0/. The points show the measured
correlation length of the activity, and we see behaviour the same as in the 1D case; as
A increases the patterns in activity become slave to the correlations in the underlying
connections.
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Fig. 8.7 Top: Colour plots of u.x; t / for a 2D system undergoing persistent fluctuations. Param-
eters are � D 5, A D 0:3, g D 0:8, and � D 0:1. The system is a square of side L D 30.
Bottom: Plot showing how the input correlation length � of the underlying 2D connections effects
the measured correlation length of the fluctuating activity for various A. The grey lines show the
measured correlation length of functions w1.x/ and w2.x0/ with the shaded region showing the
error in this. All results are averaged over five realisations of the stochastic connections

8.3 Long Range Connections

In the previous section we described a model of inhomogeneous stochastic con-
nections, however these have all been local in nature. That is to say, there are
no connections between distant points, only spatial variation in the local density
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of connections. As detailed in Ref. [4], stochastic long range connections can be
introduced into Eq. (8.1) via the following connection function

w.x; x0/ D wH.x � x0/C AwI .jx � x0j/ �
w1.x/C w2.x0/

�
: (8.22)

As before wH is a homogeneous Gaussian connection function (Eq. (8.3)), and
w1.x/ and w2.x0/ are numerically generated stochastic functions representing
additional connections into and out of the tissue at point x and x0 respectively. This
time however we choose these functions such that they are always positive. The
function wI can be thought of as an envelope for the inhomogeneous connections;
we choose a power law function

wI .y/ D N
jyj�˛

1C jyj�˛ ; (8.23)

where the exponent ˛ determines the range of the connections, and N is chosen
such that

R
�

wI .y/dy D 1. If ˛ > 1, wI is a narrow function, and we recover a
local connection model; for ˛ < 1, wI is a wide function and can extend throughout
the system, i.e. there are a small number of long range connections between distant
points. Figure 8.8a–c show typical realisations of w.x; x0/ in 1D for different values
of ˛.

In the large ˛ (local connections) regime, wave front solutions exist as in
Sect. 8.2, provided two stable steady states solutions exist across the whole system.
These are given by

Nu.x/ D W.x/f .Nu/ ; (8.24)

where we now define

W.x/ D 1C A

Z
�

wI .x � x0/
�
w1.x/C w2.x0/

�
dx0 � g: (8.25)

For the small ˛ (long range connections) regime activity no longer propagates
throughout the system at a finite speed: due the long range connections a local
external stimulus can lead to the system entering the upper steady state at all points
in the system.

As with the model described in the previous section, for some choice of
parameters A and g, the system can support persistent fluctuations of activity. For
the case of local connections (large ˛) fluctuations arise when there are some regions
of the system which have two stable steady states, and other regions in which there
is only one. There are regions in which u ! Nu1 D 0, regions in which u ! Nu3, and
connecting regions where u fluctuates.

In the regime of long range connections (small ˛) there is slightly different
behaviour. There are fluctuations of activity at every point throughout the system.
There are large large regions (where W.x/ > �) in which u fluctuates coherently
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a b c

d

Fig. 8.8 Top: Plots showing the connection function in Eq. (8.22) for a 1D system with (a) ˛ D 6,
(b) ˛ D 1, and (c) ˛ D 0:1. Note that the homogeneous peak of wH is present in each case.
In (c) the long range “tails” of the inhomogeneous connections have a small amplitude due to
the normalisation N . Bottom: Average coherence (see Eq. (8.26)) of a 1D system with A D 1:9

and g D 2:9, averaged over 10 realisations of the connections for ˛ D 6 (solid line) and ˛ D 0:1

(dotted line). The standard deviation is shown by the shaded regions (Figure adapted from Ref. [4])

remaining above � , and smaller regions where u fluctuates more quickly about � . As
detailed in Ref. [4] the fluctuations originate in regions whereW.x/ cuts through the
threshold � , much as for the model discussed in the previous section. Here though,
due to long range connections spanning the length of the system, this also leads to
fluctuations at all other points.

In order to quantify the “coherently” fluctuating regions we use the following
quantity to characterize fluctuations at points x and x0:

� .X/ D
� hu.x; t/u.x �X; t/i2t
hu.x; t/2it hu.x �X; t/2it

	
x

; (8.26)

where hereX D x�x0, and as before angled brackets with subscripts denote average
over space or time. A value of � .X/ D 1 means that points separated by a distance
X have activity which is fluctuating synchronously; a small value of � .X/ means
that fluctuations in these regions are fluctuating interdependently. Figure 8.8 shows
that in a system with ˛ < 1 the long range connections give rise to fluctuations
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which are coherent over large regions of the system. Similar results are obtained for
2D systems.

8.4 Conclusions

We have demonstrated that travelling front solutions in a continuum neural field
model are robust to the addition of small amplitude, inhomogeneous, stochastic
(local) connections, provided there is only weak inhibitory feedback. The wavefront
connects a region in a quiescent Nu1 D 0 steady state with a region in a spatially
varying Nu3 D Nu3.x/ steady state, and travels with a time varying velocity. This
provides a mechanism for the fluctuation in speed of travelling fronts of activity
such as observed in “1D” slices of neural tissue (like those studied in Ref. [11]).
Via a simple expansion 	.x/ D N	 C ı	.x/ predictions can be made about the
dependence of the resulting distribution of front speeds on the magnitude of the
inhomogeneity. The mean speed of a front of activity remains largely unaffected
by the inhomogeneity. The variance of the speed is independent of A when the
inhomogeneity is correlated on lengths shorter than 1, and grows with A2 if the
connections are correlated on lengths longer than 1 (in units of the width of the
homogeneous connections). If the magnitude of the inhomogeneityA or the strength
of the inhibition g are large enough to destabilise the upper steady state (i.e.
W.x/ < � for some x), then there will be regions of the system through which
the front cannot propagate.

Persistent fluctuations of activity are a new type of behaviour for continuum
neural field models. By studying a simple deterministic connection function we
have identified the origin of the fluctuations, and explained why such behaviour
is observed for some realisations of the connections, but not others. All of the
results presented in this chapter arise from initial conditions where u > � across the
entire system, meaning that the system will show persistent fluctuations if it is able
to support them. A more natural scenario would be an initially quiescent system
(u D 0), which is then excited by a transient, possibly spatially heterogeneous,
external input. This could be likened to an idea initially suggested by Hebb in
Ref. [20] known as cortical reverberation; Hebb hypothesised that a particular weak
input pattern might elicit a large persistent response from a system, whereas a
different, stronger, input pattern may have little effect. In terms of the present model,
a short lived spatially varying input pattern may excite some regions of the system
into the persistently fluctuating state; a different input (for example to a region where
there is no upper steady state) may only excite the system for the duration of the
input. This can also be linked to models of working memory [30], where a localised
stimulus excites a region into an active state, and this high activity is maintained
after the stimulation has ceased.

By examining correlations in the fluctuating activity, we find that, except for
very small values of � and A, the patterns follow the underlying connection
functions w1 and w2. We expect this in the large � regime since we can make the
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approximation that w2.x0/ does not vary within the width of the inhomogeneous
connections, and u.x; t/ will closely followW.x/. A natural question to ask is “Can
we say anything about connectivity from measuring spatial correlations in activity
patterns?” This could lead to testable predictions in experimental work, for example
using fluorescent dyes [3].

In two dimensional systems with local inhomogeneous connections we find
persistent fluctuations which are qualitatively the same as in 1D. Aside from the
simple extensions to planar fronts and pulses, one could study, for example, the
propagation of high activity from a locally excited region. In a homogeneous system
the 2D analogue of planar fronts is an expanding circular region of high activity [23];
in an inhomogeneous model the high activity region would likely be irregularly
shaped, and there could be, for example, channels of higher connectivity down
which activity could propagate more rapidly, or conversely “barrier” regions with
lower connectivity.

Finally we have shown that persistent fluctuations can also be found in systems
with long range inhomogeneous connections. By allowing additional connections
over long distances, fluctuations can become synchronised in different regions.
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