
Chapter 7
Spots: Breathing, Drifting and Scattering
in a Neural Field Model

Stephen Coombes, Helmut Schmidt, and Daniele Avitabile

Abstract Two dimensional neural field models with short range excitation and long
range inhibition can exhibit localised solutions in the form of spots. Moreover,
with the inclusion of a spike frequency adaptation current, these models can also
support breathers and travelling spots. In this chapter we show how to analyse the
properties of spots in a neural field model with linear spike frequency adaptation.
For a Heaviside firing rate function we use an interface description to derive a
set of four nonlinear ordinary differential equations to describe the width of a
spot, and show how a stationary solution can undergo a Hopf instability leading
to a branch of periodic solutions (breathers). For smooth firing rate functions we
develop numerical codes for the evolution of the full space-time model and perform
a numerical bifurcation analysis of radially symmetric solutions. An amplitude
equation for analysing breathing behaviour in the vicinity of the bifurcation point
is determined. The condition for a drift instability is also derived and a center
manifold reduction is used to describe a slowly moving spot in the vicinity of this
bifurcation. This analysis is extended to cover the case of two slowly moving spots,
and establishes that these will reflect from each other in a head-on collision.

7.1 Introduction

Given the well known laminar structure of real cortical tissue it is natural to
formulate neural field models in two spatial dimensions. For models with short
range excitation and long range inhibition these have long been known to support
localised solutions in the form of spots (commonly called bumps in one dimensional
models). They are of particular interest to the neuroscience community since
spatially localised bumps of activity have been linked to working memory (the
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temporary storage of information within the brain) in prefrontal cortex [17].
Perhaps not surprisingly their initial mathematical study was limited to solutions
of one-dimensional models, and see [5, 12] for a review. With a further reduction in
model complexity obtained by considering an effective single population model,
obviating the need to distinguish between excitatory and inhibitory neuronal
populations, Amari [1] showed for a Heaviside firing rate that bump solutions
come in pairs, and that it is only the wider of the two that is stable. It was a
surprisingly long time before Pinto and Ermentrout [24] demonstrated that a fuller
treatment of inhibitory dynamics would allow a dynamic (Hopf) instability that
could actually destabilise a wide bump. Blomquist et al. [3], further showed that
this could lead to the formation of a stable breathing (spatially localised time
periodic) solution. However, it is now known that inhibitory feedback is not the
only way to generate dynamic instabilities of localised states, and a number of
other physiological mechanisms are also possible. These include localised drive
to the tissue [16], threshold accommodation (whereby the firing threshold is itself
dynamic, mimicking a refractory mechanism) [6], synaptic depression [19], and
spike frequency adaptation [8]. In comparison to their one dimensional counterparts,
spots and their instabilities in two dimensions have received far less attention.
Notable exceptions to this include the work of Laing and Troy [21] (focusing on
numerical bifurcation analysis for smooth firing rates), Folias and Bressloff [15,16]
(focusing on localised drive), Owen et al. [23] (using an Evans function analysis to
probe instabilities), and Coombes et al. [8] (using an interface approach). These last
three pieces of work all focus on the Heaviside firing rate function.

In this chapter we develop new results for the description of spots in a two
dimensional neural field model with spike frequency adaptation with both Heaviside
and smooth firing rate choices. The techniques we develop are quite generic and may
also be adapted to treat the other physiological mechanisms mentioned above for
the generation of dynamic spot instabilities. We focus on a planar single population
model that can be written as an integro-differential equation of the form

1

˛

@u.r; t /
@t

D �u.r; t /C
Z
R2

dr0w.jr � r0j/f .u.r0; t // � ga.r; t /; (7.1)

@a.r; t /
@t

D �a.r; t /C u.r; t /; (7.2)

where r D .x1; x2/ 2 R
2 and t 2 R

C. Here the variable u represents synaptic
activity and the kernel w represents anatomical connectivity. In real cortical tissues
there are an abundance of metabolic processes whose combined effect is to modulate
neuronal response. It is convenient to think of these processes in terms of local
feedback mechanisms that modulate synaptic currents, described by the field a.
Here, g 2 R is the strength of the negative feedback. We shall take the firing rate to
be a sigmoidal function, such as

f .u/ D 1

1C e�ˇ.u�h/ ; (7.3)
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Fig. 7.1 A plot of the
anatomical connectivity
function describing short
range excitation and long
range inhibition. The form of
w.r/, as expressed in (7.4),
for A1 D 1 D ˛1,
A2 D �3=4, and ˛2 D 1=4,
generates a two dimensional
wizard hat function

where ˇ > 0 controls the steepness of the sigmoid around the threshold value h.
Throughout the rest of this paper we shall work with the radially symmetric choice
w.r/ D w.r/, with r D jrj. To allow for some explicit calculations (though many of
the results we develop do not require such a choice), we shall use the representation

w.r/ D
NX
iD1

AiK0.˛i r/; Ai 2 R; ˛i > 0; (7.4)

where K�.x/ is the modified Bessel function of the second kind, of order �. For an
appropriate combination of coefficients Ai and ˛i this can generate an anatomical
connectivity describing short range excitation and long range inhibition, with a
wizard hat shape, as shown in Fig. 7.1.

In Sect. 7.2 we focus on a Heaviside firing rate and show how to extend the
Amari interface approach to treat the spike frequency adaptation term. We develop
a reduced description of a spot in terms of a set of four coupled nonlinear ordinary
differential equations (ODEs). We solve these numerically, to find a narrow and
wide branch of spot solutions that annihilate in a saddle-node bifurcation (with
increasing threshold). The branch of wide spots is found to support a Hopf instability
to a stable breathing solution. We move away from the Heaviside case in Sect. 7.3,
and develop an equivalent partial differential equation (PDE) model that allows for
straight-forward numerical implementation. We use this to probe radially symmetric
solutions for models with sigmoidal firing rates, and not only confirm the results
of our Heaviside analysis but show how results vary as one moves away from
the limit of steep sigmoids. In Sect. 7.4 we develop an amplitude equation for
analysing breathing behaviour (for a smooth firing rate function) in the vicinity
of the bifurcation point. The condition for a drift instability, which describes the
transition of a stationary spot to a (non-circular) travelling spot, is derived in
Sect. 7.5. In Sect. 7.6 a center manifold reduction is used to describe a slowly
moving spot in the vicinity of this bifurcation, and extended to cover the case of
two slowly moving spots in Sect. 7.7. Interestingly the coupled ODE model for the
spot pair can be analysed to show that these will reflect from each other in a head-
on collision. Finally, in Sect. 7.8 we discuss natural extensions of the work in this
Chapter.
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7.2 Heaviside Firing Rate and Interface Dynamics

In the limit ˇ ! 1 the firing rate function (7.3) approximates a Heaviside function
H.u � h/, and it is possible to explicitly construct localised states. Here we show
how to extend the standard Amari interface approach to treat linear spike frequency
adaptation. For simplicity we shall focus on radially symmetric solutions. A more
general framework for describing the evolution of spreading interfaces that lack
such a symmetry has recently been developed in [8]. We shall not pursue this here.

First let us rewrite the pair of Eqs. (7.1) and (7.2) in the form of a second order
differential system:

ut t C .1C ˛/ut C ˛.1C g/u D ˛. C  t/; (7.5)

where  .r; t / D R
B.r0;t /

dr0 w.jr � r0j/, and B.r; t / D frju.r; t / � hg. For
radially symmetric spot solutions of radius R.t/ that intersect the threshold exactly
once (so that the active region is a single, simply connected region) we have that
.u.r; t /;  .r; t // D .u.r; t/;  .r; t// with

 .r; t/ D
Z 2�

0

d�
Z R.t/

0

w
�p

r2 C r 02 � 2rr0 cos �
�
r 0dr 0: (7.6)

Here R.t/ is defined by the level set condition u.R.t/; t/ D h. Differentiating this
with respect to time gives an equation for the velocity of the spot interface in the
form

dR

dt
D � @u.r; t/=@t

@u.r; t/=@r

ˇ̌
ˇ̌
rDR

; (7.7)

Using (7.5) we may derive ODEs for v D @u.r; t/=@t jrDR and z D
@u.r; t/=@r jrDR as

dv

dt
C .1C ˛/v C ˛.1C g/h D ˛ Œ C  t �jrDR ; (7.8)

d2z

dt 2
C .1C ˛/

dz

dt
C ˛.1C g/z D ˛

@

@r
Œ C  t �

ˇ̌
ˇ̌
rDR

; (7.9)

where we have assumed that R is slowly evolving so that dz=dt D dR=dtzR C
zt � zt . Hence, we may generate a system of four nonlinear ODEs for .R; v; z; y/
to describe the evolution of the (radially symmetric) spot:

dR

dt
D �v

z
; (7.10)

dv

dt
D �.1C ˛/v � ˛.1C g/hC ˛�.R/ � ˛Rv˚.R/=z; (7.11)
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dz

dt
D y; (7.12)

dy

dt
D �.1C ˛/y � ˛.1C g/z C ˛� .R/ � ˛R2v˝.R/=z; (7.13)

where

�.R/ D
Z 2�

0

d�
Z R

0

w.
p
R2 C r2 � 2Rr cos �/rdr; (7.14)

˚.R/ D
Z 2�

0

d�w.R.�//; R.�/ D R
p
2.1 � cos �/; (7.15)

� .R/ D
Z 2�

0

d�
Z R

0

w0.
p
R2 C r2 � 2Rr cos �/p
R2 C r2 � 2Rr cos �

.R � r cos �/rdr; (7.16)

˝.R/ D
Z 2�

0

d�
w0.R.�//

R.�/
.1 � cos �/: (7.17)

For the anatomical connectivity function (7.4) then we have explicitly (using the
summation properties of Bessel functions and Graf’s formula) that

�.R/ D 2�

NX
iD1

Ai

�
1

˛2i
� R

˛i
K1.˛iR/I0.˛iR/

�
; (7.18)

˚.R/ D 2�

NX
iD1

AiK0.˛iR/I0.˛iR/; (7.19)

� .R/ D � 0.R/ �R˚.R/ D �2�R
NX
iD1

AiK1.˛iR/I1.˛iR/; (7.20)

˝.R/ D ˚ 0.R/=.2R/ D 2�

NX
iD1

Ai

�
1

2R2
� ˛i

R
K1.˛iR/I0.˛iR/

�
: (7.21)

Here I�.x/ is the modified Bessel function of the first kind.
Steady states of (7.10)–(7.13) are given by .R; v; z; y/ D .R; 0; � .R/=

.1 C g/; 0/, where R is a solution of �.R/ D .1 C g/h. We can reconstruct
the spatial profile of the stationary spot from knowledge of its radius by using
q.r/ D  .r/=.1 C g/, where  .r/ is given by (7.6) with R.t/ D R. This can be
explicitly calculated as

 .r/ D 2�R

NX
iD1

AiLi .r/; (7.22)
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where

Li.r/ D

8̂
<̂
ˆ̂:

1

˛i
I1.˛iR/K0.˛i r/ r � R

1

˛2i R
� 1

˛i
I0.˛i r/K1.˛iR/ r < R

: (7.23)

Here we restrict our attention to only those values of R that satisfy our original
hypothesis, namely that the spot is a simply-connected active region.

The Jacobian of the system (7.10)–(7.13) around the steady state has one pair of
eigenvalues given by

� D �.1C ˛/˙ p
.1 � ˛/2 � 4˛g
2

; (7.24)

and another pair that satisfy �2 � �J CK D 0, where

J D �.1C ˛/ � ˛.1C g/R
˚.R/

� .R/
; K D ˛.1C g/

� 0.R/
� .R/

: (7.25)

A Hopf bifurcation is possible when J D 0 and K > 0. Using (7.20) we see that
this can happen when

R
˚.R/

� .R/
D � .1C ˛/

˛.1C g/
; ˛g > 1: (7.26)

which recovers a result in [8] obtained via a different method. The frequency of
oscillation at the Hopf bifurcation is given by

p
˛g � 1.

The system of ODEs (7.10)–(7.13) is solved numerically with AUTO-07P [9]
to generate the bifurcation diagram in Fig. 7.2 for a wizard hat function given
by (7.4) with N D 2, A1 D .2�/�1, A2 D �.2�	/�1, ˛1 D 1, ˛2 D 
,
with 	; 
 > 0. As expected we see a branch of wide spots and narrow spots
that annihilate in a saddle-node bifurcation with increasing h. The inclusion of
spike-frequency adaptation now allows for a pair of Hopf bifurcations on the wide
branch of solutions, marked as HB1 and HB2, determined by Eq. (7.26). Further
numerical exploration shows that HB1;2 give rise to a branch of periodic orbits,
describing radially-symmetric breathers, whose period increases to infinity with
decreasing h. This gives rise to homoclinic orbits, and we denote the associated
homoclinic bifurcation points by M1;2. Only the branch of breathers emanating from
HB2 is stable and it undergoes a sequence of period-doubling bifurcations in a small
region of parameter space, as shown in the inset of Fig. 7.2, where h varies between
0:03609 and 0:03611.

In Fig. 7.3 we repeat the continuation for ˛ D 1:25. As expected, the branch
of spots is the same as Fig. 7.2, but its stability properties change: the Hopf
bifurcations HB1;2 shift along the branch and are now connected in parameter space.
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Fig. 7.2 Bifurcation diagram for spot solutions with a Heaviside firing rate function. Solid
(dashed) lines are stable (unstable). Branches of periodic orbits originate from Hopf bifurcations of
stationary spots. Top: branches of periodic solutions terminate at global homoclinic bifurcations M1

and M2. Solutions emanating from HB2 are initially stable and destabilise close to M2, where the
branch undergoes a sequence of period-doubling bifurcations in a small region of parameter space
(the inset shows h between 0:03609 and 0:03611). Bottom: stable periodic solutions between HB2
and M2, with increasingly high periods, projected on the .V;R/-plane and the .V;R;Z/-space.
Parameters are 	 D 4, 
 D 0:5, g D 1, and ˛ D 1:2

Moreover, stable breathers emanating from HB2 destabilise at a limit point rather
than a global bifurcation. On the same plot, we show points along the branch where
stationary spots become unstable with respect to azimuthal instabilities with Dm

symmetry (m D 2; : : : ; 8). Such critical points satisfy the equation (see [8] and also
Chap. 3 )

R

j� 0.R/j
Z 2�

0

d� cos.m�/w
�
R.�/

� D
PN

iD1 AiKm.˛iR/Im.˛iR/PN
iD1 AiK1.˛iR/I1.˛iR/

D 1; (7.27)
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Fig. 7.3 Bifurcation diagram for spot solutions with a Heaviside firing rate function. Parameters
as in Fig. 7.2 with the exception of ˛, which is set to 1.25. The branch of steady states coincides
with the one in Fig. 7.2, as expected, but its stability depends on ˛: in this case HB1 and HB2 are
connected in parameter space and stable breathers destabilise at a limit point. We also show points
along the branch where spots become unstable to planar perturbations with D2; : : : ;D8 symmetry

for m D 2; 3; : : :, where �.R/ and R.�/ are defined in (7.14) and (7.15). We point
out that, following the branch for ˛ D 1:25 from bottom to top, the Hopf bifurcation
HB2 occurs before the D2 instability, while the situation is reversed for ˛ D 1:2 (not
shown). In Sect. 7.5 we further show that a solution with a drift instability, leading to
a travelling spot, can occur as g increases through 1=˛ (and note that the condition
˛g > 1 is necessary for a breathing instability). A further weakly nonlinear analysis
would be necessary to understand the competition between drifting and breathing at
g D 1=˛.

The proximity of the limit point LP1 to the Hopf bifurcation HB1 (similarly
to what was found for the case ˛ D 1:2 in Fig 7.2, where we also have the
global bifurcation M1) suggests the possibility of a Bogdanov-Takens codimension
2 bifurcation. This scenario is present in a similar model (with localised drive) [15]
and is confirmed by the two-parameter continuations plotted in Fig. 7.4.

7.3 Equivalent PDE Model and Numerical Bifurcation
Analysis

In the previous section we derived a set of ODEs describing localised radially-
symmetric solutions to (7.1) and (7.2), in the case when the firing rate f is a
Heaviside function. It is interesting to compute similar solutions when f is a smooth
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Fig. 7.4 Two-parameter continuations of the saddle-node bifurcation (solid), and Hopf bifurca-
tions (dashed) of the stationary spots. Figure 7.2 corresponds to slices at g D 1 (in the left panel)
and ˛ D 1:2 (in the right panel). Figure 7.3 corresponds to a slice ˛ D 1:25 (in the right panel).
The curves meet at a Bogdanov-Takens bifurcation. Curves of homoclinic bifurcations M1;2 are
not shown

sigmoidal function, such as the one in (7.3). In this section, we follow ideas in
[7, 13, 21] (and see also Chap. 5) that allow us to reformulate the nonlocal model
defined by (7.1), (7.2), and (7.4), as a local model more suitable for direct numerical
simulation and numerical continuation.

We begin by writing time-independent solutions of (7.1) and (7.2) as
.u.r; t /; a.r; t // D .q.r/; q.r//, where

q.r/ D 1

1C g

Z
R2

dr0w.jr � r0j/f .q.r0//: (7.28)

A spot is a radially-symmetric solution of (7.28) such that q.r/ D q.r/. We shall
denote the (vector) spot solution by S.r/ D .q.r/; q.r//. Other localised solutions
with dihedral symmetries of the regular polygon are also expected, and may arise
via bifurcations of spots. This has been established for the case of a Heaviside firing
rate [8], though we will not pursue this further here.

By re-arranging and taking a two dimensional Fourier transform of (7.28) we
obtain

.1C g/ Oq.k/ D Ow.k/1f ı q .k/; Ow.k/ D
NX
iD1

2�Ai

˛2i C k2
: (7.29)

By taking the inverse Fourier transform of (7.29), we obtain a nonlinear PDE of the
form

0 D �.1C g/L1q C L2f .q/; (7.30)



196 S. Coombes et al.

where L1 and L2 are linear differential operators containing even spatial derivatives
up to order 2N and 2N � 2 respectively (using the result that the inverse Fourier
transform of k2 is �r2). The PDE formulation (7.30) is formally equivalent
to (7.28).

In a similar way, it is possible to study the stability of stationary states with
respect to radial perturbations. System (7.1) and (7.2) is written as a PDE

L1.˛
�1@tu C u C ga/ D L2f .u/;

at D u � a:
(7.31)

Linear stability to radial perturbations can be inferred by posing u.r; t/ D q.r/ C
Q.r/e�t , a.r; t/ D q.r/C A.r/e�t and linearising L2f .u/ around q.r/, giving the
generalised eigenvalue problem

�L1Q D L2

�
f 0.q/Q

�
; � D 1C �

˛
C g

1C �
: (7.32)

We can then compute stationary solutions of system (7.1) and (7.2) and their
spectra by prescribing suitable boundary conditions for (7.30) and (7.32) and dis-
cretising the operators L1 and L2: for steady states, we use Newton’s iterations to
solve (7.30); a few eigenvalues are then computed (without inverting L1) applying
Arnoldi iterations to (7.32). In passing, we note that it is also possible to study
stability of radial solutions with respect to perturbations with dihedral symmetry,
albeit this requires an amendment of the generalised eigenvalue problem (7.32).

Let us consider, for illustrative purposes, the wizard hat kernel used in Sect. 7.2
so that:

L1 D �1 � �2
r C
2
r ; L2 D �3 � �4
r ; (7.33)

where 
r D @rr C r�1@r is the Laplacian operator expressed in radial coordinates
and

�1 D 
2; �2 D 1C 
2; �3 D 
2 � 1

	
; �4 D 1 � 1

	
: (7.34)

We then solve the nonlinear boundary-value problem

0 D �.1C g/.�1 � �2
r C
2
r/q C .�3 � �4
r/f .qIh; ˇ/; r 2 .0; L/

(7.35)

0 D @rq.0/ D @rrrq.0/; 0 D @rq.L/ D @rrrq.L/; (7.36)

whose solutions can be continued in any of the control parameters 
, 	 , h, ˇ and g.
We point out that, while equilibria of (7.1) and (7.2) do not depend upon ˛, this
parameter influences their stability. The boundary-value problem (7.35) and (7.36)
features no-flux boundary conditions at r D L, as in [20], but other choices are also
possible: alternatively, one could pose q.L/ D @rrq.L/ D 0.
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Fig. 7.5 Localised spots
found as solutions to the
boundary-value
problem (7.35). Top: branches
of spots for various values of
the sigmoidal firing-rate
steepness, ˇ; on the vertical
axis we plot a measure of the
active region, that is, R is the
largest number such that
q.R/ D h; the Heaviside
branch is obtained by
continuing equilibria of the
system (7.10)–(7.13). Bottom:
representative solutions along
the branch ˇ D 100. Control
parameters: 	 D 4, 
 D 0:5,
g D 1, L D 30

We discretised (7.35) via second order centred finite differences with 3,200 grid
points, on a domain with L D 30 and implemented a numerical continuation
code written in MATLAB. Stability computations are performed using MATLAB’s
in-built function eigs. In Fig. 7.5 we show a set of h-continuations for several
values of the parameter ˇ. These bifurcation diagrams are plotted in terms of the
largest coordinate R 2 Œ0; L� for which q.R/ D h; if q.r/ < h for all r 2 Œ0; L�,
as in pattern 4 of Fig. 7.5, we set R D 0. This allows us to compare steady
states of (7.1) and (7.2), for increasingly high values of the sigmoidal firing rate
steepness parameter ˇ, with steady states of (7.10)–(7.13), which correspond to the
Heaviside limit. Our numerical results show that the PDE formulation recovers the
Heaviside case when ˇ ! 1, as confirmed also from the stability computations,
contained in Fig. 7.6. Small-amplitude localised spots are unstable (bottom part of
the branches) for our choice of control parameters, namely 	 D 4, 
 D 0:5,
g D 1, L D 30 and ˛ D 1:2. The branch features a saddle-node bifurcation
and two Hopf bifurcations, which delimit a region of stable stationary spots.
We also plot the spectra corresponding to the Hopf bifurcations, noting that the
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Fig. 7.6 Stability of radial spots for two solution branches of Fig. 7.5, namely Heaviside (red)
and ˇ D 300 (light blue). The bottom part of the branch is unstable and restabilises at a Hopf
bifurcation (HB1). The branch becomes unstable at a second Hopf bifurcation (HB2). At the Hopf
bifurcation points, we computed the corresponding eigenvalues for the Heaviside case (7.10)–
(7.13) (red panels) and the first 10 eigenvalues obtained via (7.32) (light blue panels). Parameters:
˛ D 1:25, and other parameters as in Fig. 7.5

PDE formulation reproduces correctly the Hopf eigenvalues: other PDE eigenvalues
(8, in the computations of Fig. 7.6) are clustered around the eigenvalues found using
the interface approach (Heaviside firing rate) in Sect. 7.2. For steep sigmoids, the
position of HB1;2 changes slightly with respect to the Heaviside case.

Close to the HB2, we expect to find a branch of stable breathers, which
can be found by direct numerical simulation of (7.31) with radially-symmetric
operators (7.33). The time stepping is done without providing an explicit inverse
of the operator L1, but recasting (7.31) as

�
˛�1L1 0

0 1

	
@t

�
u
a

	
D

��L1 �gL1

1 �1
	 �

u
a

	
C

�
L2f .u/
0

	
; (7.37)

discretising the left-hand side with a block-diagonal, sparse, time-independent mass
matrix and then employing MATLAB’s ode23s solver with RelTol=1e-3 and
AbsTol=1e-6. In the simulations of Fig. 7.7, we started from a stationary spot on
the stable branch, decreased the value of h quasi-statically every 2;000 time units
(corresponding to at least 100 oscillation cycles of the breathers) and found stable
solutions with various amplitudes, spatial extensions and oscillation periods.

We notice that the breathers found with steep sigmoids have smaller ampli-
tudes with respect to the ones found for the ODE model (7.10)–(7.13) (Fig. 7.3).
Furthermore, the latter disappear at a limit point, while the former persist for much
smaller values of the threshold h. This is to be expected as the ODE model is
only valid under the assumption of a slowly varying R. In general we find that
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Fig. 7.7 Breathers originating from HB2 for ˇ D 300. Direct numerical simulations of (7.31) with
radially-symmetric operators (7.33) show the existence of stable breathers, which are identified
with the minimum and maximum of R.t/ during an oscillation period (red dots). As the threshold
value h decreases, we find breathers with larger amplitudes, wider spatial extensions and longer
periods. Numerical parameters as in Fig. 7.6

r
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t
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200

−0.06

0.14

u

Fig. 7.8 Radial defect found by direct numerical simulation of system (7.31) with linear operators
L1, L2 given by (7.33). This solution is found on a large domain, L D 90, for h D 0:034 and
shallow sigmoidal firing rate, ˇ D 50. Other parameters as in Fig. 7.6

the existence and stability of breathers depends sensitively on the steepness of the
sigmoid: for instance, setting ˇ D 30 and repeating the experiment of Fig. 7.7
leads to a trivial spatially-homogeneous equilibrium; on the other hand, increasing
the sigmoid steepness to ˇ D 50 leads to the formation of radial defects, that is,
solutions in which a stable breather core emits periodically a travelling wave (see
Fig. 7.8). Since our patterns are radially symmetric, these solutions correspond to a
radial source emitting periodically travelling rings. Similar coherent structures were
previously analysed in [25], continued in parameter space in [2] and their existence
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was also reported in a nonlocal model with linear adaptation and localised stationary
input by Folias and Bressloff [15].

7.4 Amplitude Equations for Breathing

Here we focus on a sigmoidal firing rate, such as given by (7.3), and show how to
develop a description of the amplitude of a breathing solution just beyond the point
of a breathing instability. We closely follow the ideas in [18], which were originally
developed for the study of a three component reaction diffusion equation. A related
analysis for one dimensional neural field models (and Heaviside firing rate function)
can be found in [14] (and see also Chap. 4).

It is convenient to introduce the vector X D .u; a/ and the vector field F , and
write the model (7.1) and (7.2) in the form

Xt D F .X I �/; (7.38)

where � represents a vector of system parameters, e.g. � D .˛; g; ˇ; h/, and

F .X I �/ D MX C ˛w ˝ F.X/; (7.39)

with

M D
��˛ �˛g
1 �1

	
; F .X/ D

�
f .u/
0

	
: (7.40)

Here the symbol ˝ denotes a two-dimensional spatial convolution.
Linearising about (7.28) gives

@tV D L V; (7.41)

where

L D M C ˛w ˝ f 0.q/
�
1 0

0 0

	
: (7.42)

For separable solutions of the form V.r; t / D �.r/e�t , we generate an eigenvalue
problem:

L � D ��: (7.43)

Since the operator L is in general not self-adjoint, then the eigenvalues, �,
and eigenfunctions, �.r/, may be complex. Because of translation and rotation
invariance we expect the existence of an eigenvalue with � D 0. The stationary spot
is stable if all other eigenvalues have negative real part. For a breathing instability we
are interested in the case that a pair of complex conjugate eigenvalues pass through
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the imaginary axis under variation of some parameter, namely L � D ˙i!�.
Moreover, we shall focus on the case of radially symmetric breathing motions so that
�.r/ D �.r/. We shall assume that a stationary spot S exists for a set of parameters
� D �c for which F .S I �c/ D 0. We now introduce a small parameter � 2 R

and write � D �c C �.0; 0; 1; 0; : : : ; 0/, where the non-zero entry is associated to
the system parameter that we wish to vary (and we only consider co-dimension 1
bifurcations here). In this case

Xt D F .X I �c/C �	.X/; (7.44)

where �	.X/ D F .X I �cC�/�F .X I �c/. For small � we expect to find a solution
of the form

X.r; t / D S.r/C A.t/ei!t .�.r/C �ı�.r//C cc C �.r; t /; (7.45)

where cc denotes the complex conjugate of the previous term. Here A.t/ is a slowly
evolving amplitude (At � �A), �ı� is an unknown perturbation, and � represents
a decaying function in an orthogonal space to spanf�g. Substituting into (7.44) and
equating terms in ei!t gives an equation that relates A and ı�:

�A .L � i!/ ı� D PA� � �A	 0� � 1

2
A2AF

000

�2�: (7.46)

Here the multiplication of vectors �2� is interpreted component wise, � denotes the
complex conjugate of �, 	 0 is the Fréchet derivative of 	 with respect toX evaluated
at X D S and F .n/ is the nth Fréchet derivative of F with respect to X evaluated
at X D S :

F .n/ D ˛w ˝ dn

dqn
f .q/

�
1 0

0 0

	
: (7.47)

According to the Fredholm alternative, Eq. (7.46) is solvable as long as the right
hand side is orthogonal to the kernel of the operator L � i!. It is now convenient to
introduce the operator L �Ci!, where L � is adjoint to, and has the same symmetry
properties as L . We shall denote the corresponding zero eigenfunction of L � C i!

by ��. We define the inner product of two vector functions a and b as

ha j bi D
Z
R2

dra.r/ � b.r/; (7.48)

where the dot � denotes a vector dot product. Projecting (7.46) onto �� and using
the fact that h�� j .L � i!/ı�i D 0 we obtain an equation for the evolution of the
complex amplitude A.t/:

PA D A.M1jAj2 CM2�/; (7.49)
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where

M1 D h�� j F
000

�2�i
2h�� j �i ; M2 D h�� j 	 0�i

h�� j �i : (7.50)

This analysis provides the basis for understanding the bifurcation diagrams obtained
numerically in Sect. 7.3 and their criticality. Equation (7.49) has a trivial solution
A D 0 describing a stationary spot, which for ReM2 < 0 is a stable focus. If ReM2

increase through zero the spot becomes unstable. For Re M2 > 0 there is a non-
trivial periodic solution A.t/ D Rei˝t , where

R D
s

��Re M2

Re M1

; ˝ D �Im M2 CR2Im M1: (7.51)

This non-trivial solution, describing a breather, is stable for Re M1 < 0 (supercrit-
ical bifurcation) and unstable for Re M1 > 0 (subcritical bifurcation). Considering
a variation in the parameter g around some critical value gc then

	 0 D @M

@g

ˇ̌
ˇ̌
gDgc

D
�
0 �˛
0 0

	
: (7.52)

In the Appendix we show that �� can be written in closed form as a linear
transformation of �:

�� D f 0.q/
�
1=.˛g/ 0

0 �1
	
�: (7.53)

This means that we only have to numerically solve L � D i!� to compute the
coefficients M1 and M2 in (7.49).

As well as a breathing bifurcation it is also possible for a stationary spot to
undergo an instability to a travelling spot, via a drift instability. This has been
recently studied for the case of a Heaviside firing rate [8]. Next we show how to
analyse the case of a smooth firing rate.

7.5 Drifting

Here we adapt an argument in [23] to show how a spot can undergo an instability
to a drifting pulse as g is increased through 1=˛. From invariance of the full system
(under rotation and translation) there exist Goldstone modes �i D @S.r/=@xi , i D
1; 2, such that

L �i D 0: (7.54)
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One of the possible destabilisations of the spot S occurs when one of the other
modes exactly coincides with �i under parameter variation. Because of this
parameter degeneracy a generalised eigenfunction  i of L appears:

L i D ��i : (7.55)

The solvability condition for (7.55) leads to an equation defining the bifurcation
point in the form

h��i j �i i D 0; (7.56)

where ��i is the eigenfunction of the operator L � with zero eigenvalue. More clearly
we write L ��

�
i D 0 and L � 

�
i D ���i , normalised by h i j �j i D h i j  �

j i D 0,
and

h�i j  �
j i D h i j ��j i D �ıi;j : (7.57)

Using (7.53) the inner product in Eq. (7.56) can be easily calculated, giving

0 D


1

˛g
� 1

� Z
R2

drf 0.q.r//


@q.r/

@xi

�2
: (7.58)

Hence, a spot will lose stability as g increases through 1=˛ and begin to drift
(translate). Note that a model of synaptic depression can also destabilise a spot in
favour of a travelling pulse [4].

7.6 Center Manifold Reduction: Particle Description

Here we adapt the technique in [11], originally developed to describe spot dynamics
in multi-component reaction-diffusion equations, to derive a reduced description
of a slowly moving spot. Beyond a drift instability, and for small �, we expect to
find a solution of (7.44) that is a translating spot. In terms of a translation operator
�.p/u.r; t / D u.r � p; t /, p 2 R

2 we may write this solution as

X.r; t / D �.p/

2
4S.r/C

2X
jD1

aj .t/ j .r/C �.r; t /

3
5 ; (7.59)

where p denotes the location of the spot, a1;2 are time dependent amplitudes, and �
is a function in an orthogonal space to spanf�i ;  ig. Differentiating X with respect
to t gives

Xt D �.p/

2
4� Pp � rrX C

2X
jD1

Paj j C �t

3
5 : (7.60)
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Using (7.59) we may calculate the first term on the right hand side of (7.60) using

Pp � rrX D Pp � rrS.r/C a1 Pp � rr 1.r/C a2 Pp � rr 2.r/C Pp � rr�.r; t /: (7.61)

The corresponding right hand side of (7.44) for the solution (7.59) can be
expanded as

�.p/

8<
:�

2X
jD1

aj �jCL �C1

2
F

00

W 2C1

6
F

000

W 3C�	.S.r/C�	 0.S.r//WC : : :

9=
; ;

(7.62)

where the N th power of the vector W D P
j aj j C � is interpreted component

wise. Taking the inner product of both sides of (7.44) with  �
i gives

hXt j  �
1 i D � Pp1h�1 j  �

1 i; (7.63)

hXt j  �
2 i D � Pp2h�2 j  �

2 i;
hF .X I �c/C �	.X/ j  �

1 i D �a1h�1 j  �
1 i;

hF .X I �c/C �	.X/ j  �
2 i D �a2h�2 j  �

2 i:
Using (7.44) and equating expressions in (7.63) gives an equation for the evolution
of the spot position as

Pp D a: (7.64)

Hence we may interpret a as the spot velocity. To determine the dynamics for a we
write � as a function that is quadratic in the amplitudes ai and linear in �:

� D a21V1.r/C a22V2.r/C a1a2V3.r/C �V4.r/: (7.65)

Demanding that terms at this order balance requires

a1a�rr 1Ca2a�rr 2 D L �C 1

2
F

00

.a� /2C�	.S/;  D . 1;  2/: (7.66)

Equating terms in aiaj and � shows that

�L V1.r/ D 1

2
F

00

. 1/
2 C rx1 1; (7.67)

�L V2.r/ D 1

2
F

00

. 2/
2 C rx2 2; (7.68)

�L V3.r/ D F
00

 1 2 C rx2 1 C rx1 2; (7.69)

�L V4.r/ D 	.S.r//: (7.70)
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Here multiplication of vectors  i j is interpreted component wise. We now take

the inner product of both sides of (7.44) with ��i :

hXt j ��1i D � Pp1h�x1 j ��1i C Pa1h 1 j ��1i; (7.71)

hXt j ��2i D � Pp2h�x2 j ��2i C Pa2h 2 j ��2i; (7.72)

hF .X I �c/C �	.X/ j ��i i D hL �C 1

2
F

00

W 2 C 1

6
F

000

W 3 C �	.S.r//

C �	 0.S.r//W j ��i i: (7.73)

Making use of (7.66) and working to only cubic order in the amplitudes so that
W 2 � .a �  /2 C 2.a �  /� and W 3 � .a �  /3 we find that

� Paj D hF 00

.a �  /� j ��j i C 1

6
hF 000

.a �  /3 j ��j i C �h	 0.S/.a �  / j ��j i

C ha � rr� j ��j i: (7.74)

Introducing the complex amplitude a D a1 C ia2 gives us the Stuart-Landau
equation

Pa D a.M1jaj2 CM2�/; (7.75)

where

�M1 D 1

6
hF 000

 3
1 j ��1i C hF 00

 1V
2
1 j ��1i C h@x1V1 j ��1i; (7.76)

�M2 D hF 00

 1V4 j ��1i C h	 0.S/ 1 j ��1i C h@x1V4 j ��1i: (7.77)

Hence, there is a pitchfork equation with branches of solutions .a1; a2/ D .0; 0/

(a standing spot) and jaj2 D �M2�=M1 for M2�=M1 < 0 and M1;2 ¤ 0

(a travelling spot). Beyond a drift instability the speed of the travelling spot will
scale as

pj�M2=M1j for small �. Treating g as the bifurcation parameter we see
that the speed scales as

p
g � 1=˛, which compares well with direct numerical

simulations near the bifurcation point (not shown).

7.7 Scattering

For anatomical interactions which decay exponentially quickly, such as Mexican or
wizard hat functions, then we would expect a neural field model with a single spot
solution to also support multiple spots, at least for some large separation between
spots. This then begs the question of how spots interact when they come close
together. Interestingly it has already been found numerically that spots in a model
with spike frequency adaptation can scatter like dissipative solitons [8]. Here we
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adapt techniques originally developed by Ei et al. [10, 11], for multi-component
reaction diffusion systems, to show that two slowly moving spots will reflect from
each other in a head-on collision.

We introduce the sum of two spots with centers offset by a vector h as

S.rI h/ D S.r/ � S.r � h/; S.r/ D S.jrj/: (7.78)

We then consider solutions of the form

X.r; t / D �.p/ ŒS.rI h/C a �  .r/C b �  .r � h/C �.r; t /� : (7.79)

We may then adapt the technique of Sect. 7.6, closely following [11], to derive the
equations of motion for .p;h; a;b/ as

Pp D a C G1.h/; (7.80)

Ph D b � a C G1.h/ � G2.h/; (7.81)

Pa D rW.a/C H1.h/; (7.82)

Pb D rW.b/C H2.h/; (7.83)

where

G1.h/ D
"

hF .S.�I h// j  �
1 i

hF .S.�I h// j  �
2 i

#
G2.h/ D

"
hF .S.� C hI h// j  �

1 i
hF .S.� C hI h// j  �

2 i

#
; (7.84)

H1.h/ D
"

hF .S.�I h// j ��1i
hF .S.�I h// j ��2i

#
H2.h/ D

"
hF .S.� C hI h// j ��1i
hF .S.� C hI h// j ��2i

#
; (7.85)

and

W.x/ D 1

4
M1jxj4 C 1

2
�M2jxj2: (7.86)

Now for a spot shape like that of (7.23) we may use the asymptotic properties
of K0.r/ to see that q.r/ � exp.�r/=pr for large r . We expect similar decay
properties of spots in the case of steep sigmoidal firing rates. In this case we can use
results from [11], valid as h D jhj ! 1, to represent the interaction functions in
the form

Gi.h/ D .�1/i�1G0 1p
h

e�he; Hi .h/ D .�1/i�1H0

1p
h

e�he; e D h
h
;

(7.87)

for constants G0 and H0, which we shall assume to be positive.
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Fig. 7.9 Phase plane for the
dynamical system (7.89),
showing nullclines and some
typical trajectories. The
consequence for spot-spot
interactions is that for small �
then slowly moving spots will
scatter from each other by
reflection. Parameters are
� D M2 D G0 D H0 D 0:1

and M2 D �0:5

Now consider the interaction of two travelling pulses, with one centred at p and
another at �p moving on a line joining their centres so that the separation between
them is h D 2p. For simplicity we shall take p to be along the x1 axis and write
p D p.1; 0/ and set a D a.1; 0/. In this case we have that

Pp D aCG0f .p/; Pa D M1a
3 CM2a�CH0f .p/; (7.88)

where f .p/ D e�2p=
p
2p. Introducing z D f .p/ we may rewrite this dynamical

system as

Pz D �2zQ.z/ŒaCG0z�; Pa D H0z � f .a/; (7.89)

where Q.z/ D 1 C .4f �1.z//�1 > 0 and f .a/ D �M1a
3 � M2a�. There are

stationary solutions of (7.89) in the .a; z/ plane at .v�; 0/, .0; 0/, and .vC; 0/, where
v˙ D ˙p�M2�=M1 (withM1 < 0 andM2� > 0). Linear stability analysis around
a stationary solution gives a pair of eigenvalues that determine stability in the form
�1 D �2a and �2 D �f 0.a/. Hence the only stable solution is .vC; 0/. An analysis
of the phase plane, see Fig. 7.9, shows that trajectories that start with a < 0 and
small z (namely spots moving with negative velocity toward each other from far
apart) ultimately move to a D vC > 0 with small z so that the spots reverse their
motion and travel with positive velocity away from each other. Hence we expect two
travelling spots to reflect from each other, as shown in a simulation of the full model
in Fig. 7.10.

7.8 Discussion

In this chapter we have shown how to analyse the properties of spots in planar neural
field models with spike frequency adaptation, using a mixture of techniques ranging
from direct numerical simulations, through amplitude equations to explicit results
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Fig. 7.10 Results of a direct numerical simulation of two scattering spots in the neural field model
with Heaviside firing rate and parameters 	 D 4, 
 D 0:5, g D 0:5 and ˛ D 5. The overall spatial
domain has a size of 51:2 � 51:2 of which we see a zoomed set of seven snapshots at indicated
times

for the special case of a Heaviside firing rate function using an interface approach.
There are a number of natural extensions of this work that may be developed. The
scattering theory that we developed is valid only for slowly moving spots, which is
expected to be the case when model parameters are near to that defining the onset
of a drift instability for a single spot. However, numerical simulations show that
fast moving spots may scatter differently to slow moving ones, with the possibility
of fusion and annihilation, as well as repulsion. In this case it is likely that these
more complicated scenarios can be understood using the scattor theory of Nishiura
et al. [22]. In this framework the scattering process is understood in terms of the
stable and unstable manifolds of a certain unstable pattern that has the form of a two-
lobed peanut shape. These solutions are expected to arise via a symmetry breaking
bifurcation of spots to solutions with D2 symmetry (generated by rotations of � ,
and reflection across a central axis). The computation of the scattor requires the
numerical calculation of non-rotationally symmetric solutions, and the numerical
schemes for PDEs that we have described here are easily generalised. Moreover, for
the Heaviside firing rate we can use a formulation in [8] to express such solutions
purely as line integrals, with a substantial reduction in dimensionality that will
facilitate an exhaustive numerical bifurcation analysis. The interaction of drift and
peanut modes of instability is known to generate a rotational motion of travelling
spots, at least in three component reaction diffusion equations [26]. It should also
be possible to extend the center manifold reduction developed here to describe the
behaviour of localised solutions in the neighbourhood of such a co-dimension two
bifurcation point. Finally, we flag up the utility of the interface approach in two
spatial dimensions for analysing not only localised states, but extended solutions
such as spirals [20]. All of the above are topics of ongoing research and will be
reported upon elsewhere.

Acknowledgements The authors would like to acknowledge useful discussions with Paul
Bressloff, Grégory Faye, Carlo Laing and David Lloyd that have helped to improve the presentation
of the ideas in this chapter.
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Appendix

To establish that �� can be written as a linear transformation of � we proceed by
writing M D P diag .�C; ��/ P�1, where P D ŒvC v��, and v˙ are the right
eigenvectors of M :

v˙ D
�

˛g

�.˛ C �˙/

	
; (7.90)

with

�˙ D �.1C ˛/˙ p
.1 � ˛/2 � 4˛g
2

: (7.91)

In this case we may recast the eigenvalue problem L � D �� as

�
�C 0

0 ��

	
P�1� C ˛w ˝ f 0.q/P�1

�
1 0

0 0

	
� D �P�1�: (7.92)

Similarly we may write M� D R diag .�C; ��/ R�1, where R D ŒwC w��, and
w˙ are the right eigenvectors of M�:

w˙ D
�

1

˛ C �˙

	
: (7.93)

The adjoint operator L � can be found as

L � D M� C f̨ 0.q/w ˝
�
1 0

0 0

	
: (7.94)

By inspection it can be seen that the adjoint equation L ��� D ��� has a solution

�� D f 0.q/RP�1�; (7.95)

which can be evaluated to give (7.53). Here we make use of the result that

PR�1
�
1 0

0 0

	
RP�1 D

�
1 0

0 0

	
: (7.96)
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