
Chapter 6
Numerical Simulation Scheme of One- and Two
Dimensional Neural Fields Involving
Space-Dependent Delays

Axel Hutt and Nicolas Rougier

Abstract Neural Fields describe the spatiotemporal dynamics of neural
populations involving spatial axonal connections between neurons. These neuronal
connections are delayed due to the finite axonal transmission speeds along the
fibers inducing a distance-dependent delay between two spatial locations. The
numerical simulation in 1-dimensional neural fields is numerically demanding but
may be performed in a reasonable run time by implementing standard numerical
techniques. However 2-dimensional neural fields demand a more sophisticated
numerical technique to simulate solutions in a reasonable time. The work presented
shows a recently developed numerical iteration scheme that allows to speed up
standard implementations by a factor 10–20. Applications to some pattern forming
systems illustrate the power of the technique.

6.1 Introduction

Finite transmission speed in physical systems has attracted research for decades.
Previous work on heat diffusion has shown experimentally that the transmission
speed (also called propagation speed in the literature) is finite in certain media [14,
16]. These results do not show accordance to classical diffusion theory implying
infinite transmission speed. To cope with this problem theoretically, Cattaneo was
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one of the first to insert delayterms into the diffusion equation to achieve a finite
transmission speed [5].

Recently, an integral model has been proposed which takes into account a
finite transmission speed as a space-dependent retardation [10]. It was shown
that the Cattaneo-equation can be derived from this model. This model is well-
established in computational neuroscience and known as the neural field model.
It describes the activity evolution in a neural population involving finite transmission
speed along axonal fibres. The neural field model has been shown to model
successfully neural activity known from experiments [3, 9]. In the recent decades,
neural fields have been studied analytically and numerically in one and two spatial
dimensions [15, 19], while previous studies considered finite axonal transmission
speeds in one-dimensional models only [1,2,6,11]. To our best knowledge, only few
previous studies considered analytically and numerically finite transmission speeds
in two-dimensional neural fields. The current work presents a recently developed
method [13] to reveal finite transmission speed effects in two-dimensional systems.

The subsequent paragraphs derive a novel fast numerical scheme to simulate the
corresponding evolution equations in one and then in some detail in two spatial
dimensions. Stimulus-induced activity propagation in two spatial dimensions is
studied numerically to illustrate the delayed activity spread. We find numerically
transmission delay-induced breathers.

The underlying model considers a one-dimensional line ˝ with length l or a two-
dimensional rectangle spatial domain ˝ with side length l , in both cases assuming
periodic boundary conditions. In addition, the center of the coordinate system is
chosen to be the center of the domain in the following. Then the neural population
activity V.x; t /, i.e. the mean membrane potential, at spatial location x 2 ˝ and
time t obeys the evolution equation

�
@

@t
V .x; t / D I.x; t / � V.x; t / C

Z
˝

d ny K.jx � yj/S
�
V

�
y; t � jx � yj

c

��

(6.1)

with n D 1 or n D 2, the synaptic time constant � , the external stimulus I.x; t /, the
finite axonal transmission speed c and the nonlinear transfer function S . Moreover,
the spatial interaction is non-local and is given by the spatial synaptic connectivity
kernel K.jx � yj/, that depends on the distance between two spatial locations x and
y only.

6.2 The Novel Principle

For notational simplicity, let us consider a one-dimensional spatial domain. Then
the integral on the right hand side of Eq. (6.1) can be re-written as
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with �max D l=c. This shows that the introduction of the space-time kernel
L.x; t/ D K.x/ı.jxj=c � t / allows us to write the single space integral as two
integrals: one spatial convolution and one integral over delays. To understand the
logic of the computation, let us discretize the time and space by t ! tn D n�t ,
x ! xm D m�x with n 2 N0; m 2 Z0; jmj < M=2 and l D M�x. This implies
that the speed c also takes discrete values. We obtain

L.x; t/ ! L.xm; tn/ � K.m�x/ı ..�x=c/jmj � n�t/

D Kmı

�
�t

�
�x

c�t
jmj � n

��

D Kmı .�t .r jmj � n//

D Kmı .jmj�t .r � n=jmj//
� Kmıjmj;n=r

with Km D K.m�x/, r D �x=.c�t/. The last equation shows that L.xm; tn/ �
K˙n=r ¤ 0 only if r is rational number with r D n=m and thus

c D �x

�t

1

r
D �x

�t

m

n

is discrete.

6.3 The Numerical Implementation in Two Spatial
Dimensions

To investigate the activity propagation in detail, we derive a novel iteration scheme
for the numerical integration of (6.1) for n D 2. Since the integral over space in (6.1)
is not a convolution in the presence of a finite transmission speed c, one can not
apply directly fast numerical algorithms such as the Discrete Fast Fourier transform
(DFT) to calculate the integral. Hence the numerical integration of (6.1) is very time
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consuming with standard quadrature techniques. For instance, with a discretization
of the spatial domain by N 2 grid intervals and applying the Gaussian quadrature
rule for the spatial integral, it would be necessary to compute N 4 elements in each
time step which is very time-consuming in the case of a good spatial resolution. The
work [13] proposes a fast numerical method that is based on the DFT and resembles
the Ritz-Galerkin method well-established to solve partial differential equations.

As in the previous section, the integral in (6.1) reads

A.x; t / D
Z

˝

d 2y K.jx � yj/S
�
V

�
y; t � jx � yj

c

��
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0

d�L.x � y; �/SŒV .y; t � �/�; (6.3)

with �max D l=
p

2c, the novel spatial delaykernel L.x; �/ D K.x/ı.jxj=c � �/ and
the delta-distribution ı.�/. These simple calculations show that A may be written as a
two-dimensional spatial convolution, but with a new delayed spatio-temporal kernel
L that now considers the past activity. The form (6.2) has been used previously to
study spatio-temporal instabilities in one- and two-dimensional neural fields [19].

The new delay kernel L is independent of time t and is computed on the delay
interval only. Hence it represents the contribution of the current and past activity
to the current activity at time t . In addition A implies multiple delays and the
corresponding delay distribution function depends strongly on the spatial kernel K.
In other words, axonal transmission speeds represent a delay distribution as found
before in other contexts [7, 12].

Figure 6.1 illustrates the construction of the kernel: given the kernel function K in
space (Fig. 6.1, left), L.x; �/ is generated by cutting out a ring of radius c� (Fig. 6.1,
right hand side). In a continuous spatial domain these rings are infinitely thin,
whereas a spatially discretized domain yields finite ring widths, see the paragraphs
below for more details.

Now let us derive the rules to compute A numerically. The periodic boundary
conditions implied lead to discrete wave vectors kmn D .km; kn/ with kp D
2�p=l; p 2 Z0. The Fourier series of V.x; t / reads

V.x; y; t/ D 1

l

1X
m;nD�1

QVmn.t/ei.kmxCkny/ (6.4)
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Fig. 6.1 The construction of the delay-kernel L.x; �/. Assuming a spatial kernel (left image), L

exhibits rings with radius c� (images on the right for different delay times) which is the interaction
distance of the system at the delay time �

with the Fourier vector component QVmn.t/ D QV .km; kn; t/ and the spatial Fourier
transform

QVmn.t/ D 1

l

Z l=2

�l=2

dx
Z l=2

�l=2

dyV.x; y; t/e�i.kmxCkny/ : (6.5)

Inserting (6.4) into (6.3) and applying (6.5) leads to

A.x; y; t/ D
1X

m;nD�1
ei.kmxCkny/

Z �max

0

dT QLmn.T / QSmn.t � T /; (6.6)

with the spatial Fourier transforms of L.x; t / QLmn.t/; QSmn.t/ and the nonlinear
functional SŒV .x; t /�. Moreover

QLmn.T / D c2

l

Z l=2c

�l=2c

Z l=2c

�l=2c

ı.j�j � T /K.jc�j/e�ickmn�d 2� : (6.7)

After obtaining A.x; y; t/ in the Fourier space for a continuous spatial domain,
now we discretize the spatial domain to gain the final numerical scheme. To this
end, ˝ is discretized in a regular spatial grid of N � N elements with grid interval
�x D l=N . Hence x ! xn D n�x; n D �N=2; : : : ; N=2 � 1. By virtue of this
discretization, we can approximate (6.6) and (6.7) by applying the rectangular ruleR b

a
f .x/dx � �x

PN=2�1

nD�N=2 f .xn/. The error is E < .b � a/�x2f 00.�/=24; a <

� < b for twice-differentiable functions f , i.e. the rectangular rule is a good
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approximation for smooth functions and large enough N . The same holds true for
the discretization of the time integral and Eq. (6.7) reads

QLmn.Tu/ D l

N 2�t

N=2X
k;pD�N=2

Lkp.Tu/ e�i2�.kmCnp/=N (6.8)

with the discrete version of the delay kernel L

Lkp.Tu/ D ı.��
p

k2 C p2; Tu/K.jxkpj/:

The symbol ı.�; �/ is identical to the Kronecker symbol and is introduced for
notational convenience. By virtue of the isotropy of the spatial interactions, in
addition we find the simple relation

Lkp.Tu/ D K.uc�t/:

In other words the width of the rings in Fig. 6.1 is c�t . In these latter calculations,
we introduced the time discretization �kp D .k; p/�� , �� D �x=c, T ! Tu D
u�t and ı.� � T / ! ınu=�t for � ! �n.

Although the relation Lkp.Tu/ D K.uc�t/ seems to be quite intuitive and
elucidates the discrete ring structure of L, it does not give directly the condition
which grid point .k; p/ belongs to which delay ring. This condition may be read off
the Kronecker symbol: u is an integer number and hence ı.��

p
k2 C p2; Tu/ D 1

if Œ��
p

k2 C p2=�t� D u with the integer operation Œa� that cuts off the decimal
numbers. Consequently the grid points .k; p/ that contribute to the delay time Tu

obey

u � �x

c�t

p
k2 C p2 < u C 1; u D 0; 1; 2; : : : ; umax

with umax D Œ�max=�t�, i.e. they lie in a ring with inner and outer radius .c�t=�x/u
and .c�t=�x/.u C 1/, respectively.

Moreover, the definition of Lkp.Tu/ allows us to derive some conditions on
the numerical parameters. The ring width in Fig. 6.1 is �r D c�t=�x which
is the number of spatial grid intervals. Hence the maximum radius of a ring is
l=

p
2�x and hence the maximum transmission speed that can be implemented

is cmax D l=
p

2�t . Since cmax ! 1 for �t ! 0, the transmission speed
c > cmax in the discrete scheme is equivalent to an infinite transmission speed
in the analytical original model and the finiteness of cmax results from the time
discretization. Moreover, c ! cmax yields �max ! 0, i.e. the transmission delay
vanishes.

We add that the maximum wave number is kmax D 2�=�x and, by the definition
of �x, the number of Fourier modes is limited to N .
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Combining the latter results now Eq. (6.6) reads

A.xr ; ys; tv/ D
N=2�1X

m;nD�N=2

ei2�.mrCns/=N �
umax�1X

uD0

QLmn.Tu/ QSmn.tv � Tu/ : (6.9)

With the standard definition of the two-dimensional Discrete Fourier Transform

DFTŒA�kp D
X
n;m

Anme�i2�.nkCmp/=N ; n; m 2 Œ�N=2I N=2 � 1�

and its inverse (IDFT) correspondingly, we find finally

A.x; tv/ D l2

N 2
IDFT

"
umax�1X

uD0

DFT ŒL.Tu/� � DFT ŒS.tv � Tu/�

#
: (6.10)

Some numerical implementations of the DFT assume that the index n runs in the
interval Œ0I N � 1�. In this case, Eq. (6.10) is also valid but DFTŒA�kp is modulated
by a factor e�i�.kCp/ D .�1/kCp .

In practice, DFTŒL.Tu/� is computed once for all Tu in the beginning of the
simulation since it does not depend on the system activity. Moreover, for N D
2n; n 2 N , the discrete Fourier transform may be implemented numerically by a
Fast Fourier transform, that speeds up the numerical computation dramatically. This
possible algorithm choice represents the major advantage of the proposed method
compared to other non-convolution methods.

The discrete version of A can be applied to any explicit or implicit numerical
integration scheme. For instance, the numerical Euler scheme stipulates

QVmn.ti C �t/ D QVmn.ti / C �t

�
.Imn.ti / � QVmn.ti /

C�t

�

L3

N 4

dX
uD0

DFT ŒL.tu/�mn � DFT ŒS.tv � tu/�mn/ (6.11)

where Imn.t/ is the Fourier transform of the input I.x; t / and one obtains V.x; tv/

by applying Eq. (6.4).
In the following, we study analytically and numerically the response to an

external stimulus. At first, let us consider a small input. Then the response is
linear about the systems’ stationary state. Since we are interested in responses that
approach the stationary state after removal of the stimulus, it is necessary to ensure
the linear stability of the stationary state.

The stationary state of Eq. (6.1) constant in space and time implies V0 D
�SŒV0� C I0 for a constant input I0 with the kernel norm � D R

˝
K.x/d 2x.
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Considering small additional external inputs NI .x; t / D I.x; t /�I0, small deviations
u.x; t / D V.x; t / � V0 from this stationary state obey

du.x; t /

dt
D �u.x; t / C NI .x; t / C s0

Z
˝

K.x � y/u .y; t � jx � yj=c/ dy2: (6.12)

with s0 D ıSŒV �=ıV; V D V0. Now expanding u.x; t / into a spatial Fourier series
according to Eq. (6.4) and applying a temporal Laplace transform to each Fourier
mode amplitude, we find the characteristic equation

� C 1 D
Z

˝

K.x/eikx��jxj=c d 2x (6.13)

with the wave vector k D .km; kn/t and the Lyapunov exponent � 2 C . The
stationary state V0 is linearly stable if Re.�/ < 0.

Now let us consider the spatio-temporal response of the system involving the
spatially periodic interactions

K.x/ D Ko

2X
iD0

cos.ki x/ exp.�jxj=	/

with

ki D kc.cos.
i /; sin.
i //
t ; 
i D i�=3 :

This kernel reflects spatial hexagonal connections which have been found, e.g., in
layer 2/3 of the visual cortex in monkeys [17]. Stimulating the stable system by a
small external input in the presence of the finite transmission speed c elucidates the
transmission delay effect on the linear response. This delay effect has attracted some
attention in previous studies on the activity propagation in the visual cortex [4, 18].
For the given kernel, the characteristic equation (6.13) reads

� C 1 D
2X

iD0

fC.�; 
i / C f�.�; 
i /

with

f˙.�; 
i / D 1=

q
.1=	 C �=c/2 C k2 C k2

c ˙ 2kkc cos.
i � �/
3

and k D k.cos.�/; sin.�//t . The numerical simulation applies parameters which
guarantee the stability of the stationary state.

Figure 6.2 shows snapshots of the simulated spatio-temporal response of the
system about a stable stationary state applying the numerical scheme (6.11).
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Fig. 6.2 Spatio-temporal response activity to the external stimulus I.x; t / D I0 C e�x2=	2
I

for the spatial connectivity function K.x/ given by the numerical simulation of Eq. (6.1). Used
(dimensionless) parameters are Ko D 0:1; c D 10; l D 10; kc D 10�=l; 	 D 10; 	I D
0:2; N D 512; � D 1; �t D 0:005. Moreover, I0 D 2:0, SŒV � D 2=.1 C exp.�5:5.V � 3///

and V0 D 2:00083. The initial values are chosen to V.x; �/ D V0 for the delay interval
�l=

p
2c � � � 0. Introducing the temporal and spatial scale � D 10 ms and � D 1:0 mm,

the results reflect the spatio-temporal activity with transmission speed c D 1:0 m/s and the domain
length l D 10 mm, which are realistic values for layer 2/3 in visual cortex. Then the points A and
B are located at a distance dA D 2:1 mm and dB D 3:8 mm from the stimulus onset location at
the origin, respectively. The bar in the plots is 0:83 mm long

We observe the lateral activity propagation starting from the stimulus location in
the domain centre. The spreading activity reveals the maxima of axonal connections
close to previous experimental findings [17]. To validate the numerical results, we
take a closer look at two single spatial locations, denoted A and B in Fig. 6.2 at
distance dA and dB from the stimulus location in the center. Before stimulus onset,
they show the stationary activity constant in time. After stimulus onset, it takes the
activity some time to propagate from the stimulus location to these distant points,
e.g. the transmission delays dA=c D 3:3 ms and dB=c D 6:2 ms. Figure 6.2 shows
that the activity reaches the locations A and B about these times for the first time as
expected. This finding validates the numerical algorithm proposed above.

We investigate whether the transmission delay induces oscillatory instabilities in
the presence of external input. The following brief numerical study is motivated by
previous theoretical studies on breathers [8]. In that study, the authors computed
analytically conditions for Hopf-bifurcations from stimulus-induced stable standing
bumps in a neural model involving spike rate adaption. The presence of the spike
rate adaption permits the occurrence of the Hopf-bifurcation. The corresponding
control parameter of these instability studies is the magnitude of the applied external
stimulus. In contrast, the present model does not consider spike rate adaption to
gain a Hopf-bifurcation, but consider transmission delays. We decreases the axonal
transmission speed from large speeds, i.e. increases the transmission delay, to evoke
a delay-induced Hopf-bifurcation while keeping the other parameters constant.

Let us assume an anisotropic Gaussian stimulus

I.x; t / D I0e�xt ˙�1x=2

with the 2�2 diagonal variance matrix ˙�1 with ˙�1
ii D 1=	2

i ; i D 1; 2. Moreover
the spatial kernel K.x/ represents locally excitatory and laterally inhibitory connec-
tions and the transfer function is the Heaviside function SŒV � D HŒV � Vthresh�.
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Fig. 6.3 One cycle of a transmission delay-induced breathers evoked by an anisotropic external
stimulus. The spatial connectivity function is chosen to K.r/ D 10 exp.�r=3/=.18�/ �
14 exp.�r=7/=.98�/ and the input magnitude and variances are I0 D 10 and ˙�1

11 D 3; ˙�1
22 D 5,

respectively. Other parameters are c D 100, l D 30, N D 512, � D 1, �t D 0:05 and Vthresh D
0:005. The initial values are chosen to V.x; �/ D 0 for the delay interval �L=

p
2c � � � 0

The numerical computation of Eq. (6.1) applying the numerical scheme (6.11) yields
delay-induced breathers in two dimensions. Figure 6.3 shows the temporal sequence
of a single oscillation cycle. To our best knowledge such delay-induced breathers in
two dimensions have not been found before.

6.4 Conclusion

We have motivated briefly a one-dimensional numerical method to integrate a spatial
integral involving finite transmission speeds. Moreover we have derived analytically
and validated numerically in detail a novel numerical scheme for two-dimensional
neural fields involving transmission delay that includes a convolution structure
and hence allows the implementation of fast numerical algorithms, such as Fast
Fourier transform. We have demonstrated numerically a transmission delay-induced
breather [13]. To facilitate future applications of the algorithm, the implementation
code for both numerical examples is made available for download.1 We point out
that the method can be easily extended to higher dimensions.

In future research, the transmission delay will play an important role in the
understanding of fast activity propagations whose time scales are close to the
transmission delay, e.g. in the presence of ultra-fast pulses and/or at spatial
nanometer scales. An open source Graphical User interface written in Python for
a user-friendly application of the method proposed will be available soon.2

1http://www.loria.fr/~rougier/coding/index.html
2NeuralFieldSimulator: https://gforge.inria.fr/projects/nfsimulator/

http://www.loria.fr/~rougier/coding/index.html
https://gforge.inria.fr/projects/nfsimulator/
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