Chapter 5
PDE Methods for Two-Dimensional
Neural Fields

Carlo R. Laing

Abstract We consider neural field models in both one and two spatial dimensions
and show how for some coupling functions they can be transformed into equivalent
partial differential equations (PDEs). In one dimension we find snaking families of
spatially-localised solutions, very similar to those found in reversible fourth-order
ordinary differential equations. In two dimensions we analyse spatially-localised
bump and ring solutions and show how they can be unstable with respect to
perturbations which break rotational symmetry, thus leading to the formation of
complex patterns. Finally, we consider spiral waves in a system with purely positive
coupling and a second slow variable. These waves are solutions of a PDE in two
spatial dimensions, and by numerically following these solutions as parameters are
varied, we can determine regions of parameter space in which stable spiral waves
exist.

5.1 Introduction

Neural field models are generally considered to date back to the 1970s [1, 41],
although several earlier papers consider similar equations [4, 25]. These types of
equations were originally formulated as models for the dynamics of macroscopic
activity patterns in the cortex, on a much larger spatial scale than that of a single
neuron. They have been used to model phenomena such as short-term memory [36],
the head direction system [43], visual hallucinations [19,20], and EEG rhythms [7].

C.R. Laing (I)

Institute of Natural and Mathematical Sciences, Massey University, Private Bag 102-904 NSMC,
Auckland, New Zealand

e-mail: c.r.laing@massey.ac.nz

S. Coombes et al. (eds.), Neural Fields, DOI 10.1007/978-3-642-54593-1_5, 153
© Springer-Verlag Berlin Heidelberg 2014


mailto:c.r.laing@massey.ac.nz

154 C.R. Laing

Perhaps the simplest formulation of such a model in one spatial dimension is

Ju(x, 0o
u(ax; D=ty + /_oo w(x = y) f(u(y, 1))dy (5.1)

where

e wis symmetric, i.e. w(—x) = w(x),
o limyeo w(x) =0,
o
I o v?/(x)dx. < 00,
¢ w(x) is continuous,

and f is a non-decreasing function with lim,—,_» f(#) = 0 and lim,—o f (1) =
1 [12, 36]. The physical interpretation of this type of model is that u(x,t) is
the average voltage of a large group of neurons at position x € R and time
t, and f(u(x,t)) is their firing rate, normalised to have a maximum of 1. The
function w(x) describes how neurons a distance x apart affect one another. Typical
forms of this function are purely positive [6], “Mexican hat” [19, 26] (positive for
small x and negative for large x) and decaying oscillatory [18, 36]. To find the
influence of neurons at position y on those at position x we evaluate f(u(y,t)) and
weight it by w(x — y). The influence of all neurons is thus the integral over y of
w(x — y) f(u(y,t)). In the absence of inputs from other parts of the network, u
decays exponentially to a steady state, which we define to be zero. Equation (5.1) is
a nonlocal differential equation, with the nonlocal term arising from the biological
reality that we are modelling. Typically, researchers are interested in either “bump”
solutions of (5.1), for which f(u(x)) > 0 only on a finite number of finite, disjoint
intervals, or front solutions which connect a region of high activity to one of zero
activity [12] (see Chap.7). Note that this type of model is invariant with respect
to spatial translations, which is reflected in the fact that w appears as a function of
relative position only (i.e. x — y), not the actual values of x and y.

The function f is normally thought of as a sigmoid (although other functions
are sometimes considered [26]), and in the limit of infinite steepness it becomes
the Heaviside step function [12, 36]. In this case stationary solutions are easily
constructed since to evaluate the integral in (5.1) we just integrate w(x — y) over
the interval(s) of y where f(u(y,t)) = 1. The stability of these solutions can be
determined by linearising (5.1) about them and using the fact that the derivative of
the Heaviside function is the Dirac delta function [6,40].

When f is not a Heaviside, constructing stationary solutions becomes more
difficult and we generally have to do so numerically. A stationary solution of (5.1)
satisfies

u(x) = / W — y) £ u(y))dy. (5.2)

In all but Sect.5.4 of this chapter we consider only spatially-localised solutions,
i.e. ones for which u# and all of its relevant spatial derivatives decay to zero as
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|x| — oo. Generally speaking, integral equations such as (5.2) are not studied in
as much detail as differential equations. As a result more methods for analysis—
and software packages—exist for the numerical solution of differential equations,
as opposed to integral equations. For these reasons we consider rewriting (5.2) as a
differential equation for the function u(x). The key to doing so is to recognise that
the integral in (5.2) is a convolution. This observation provides several equivalent
ways of converting (5.2) into a differential equation.

The first method involves recalling that the Fourier transform of the convolution
of two functions is the product of their Fourier transforms. Thus, denoting by
Fu](k) the Fourier transform of u(x), where k is the transform variable, Fourier
transforming (5.2) gives

Flul(k) = Flw](k) x F[f)](k) (5.3)

where “Xx” indicates normal multiplication. Suppose that the Fourier transform of w
was a rational function of k2, i.e.

P(k?)
Q(k?)

Flw](k) = (5.4)

where P and Q are polynomials. Multiplying both sides of (5.3) by O (k?) we obtain
O (k) x Ful(k) = P(k?) x F[f(w)](k) (5.5)

Recalling that if the Fourier transform of u(x) is F[u](k), then the Fourier transform
of u”(x) is —k? F[u](k), the Fourier transform of u"”(x) is k*F[u](k) and so on,
where the primes indicate spatial derivatives, taking the inverse Fourier transform
of (5.5) gives

Diu(x) = D, f(u(x)) (5.6)

where D and D, are linear differential operators involving only even derivatives
associated with Q and P respectively [32]. As an example, consider the decaying
oscillatory coupling function

w(x) = e ? (b sin |x| + cos x) (5.7)

where b is a parameter (plotted in Fig. 5.1 (left) for b = 0.5), which has the Fourier
transform
4b(b* + 1)
k4 4+ 2(b2 — k2 + (B2 + 1)?

(5.8)
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Fig. 5.1 Left: w(x) given by (5.7) when b = 0.5. Right: f(u) given by (5.21) fork = 0.1,h =1

For this example D, is just the constant 45(b% + 1) and

d4
D, = e —2(b* — ) + »* +1)? (5.9)
X

and thus (for this choice of w) Eq. (5.2) can be written

d4

o —2(b* — 1) + (b* + D%u = 4b(b* + 1) f(u(x)). (5.10)
Our decision to consider only spatially-localised solutions validates the use of
Fourier transforms and gives the boundary conditions for (5.10), namely

lim (u,u',u”,u") = (0,0,0,0). (5.11)

x—>=+o00

The other method for converting (5.2) into a differential equation is to recall
that the solution of an inhomogeneous linear differential equation can be formally
written as the convolution of the Green’s function of the linear differential operator
together with the appropriate boundary conditions, and the function on the right
hand side (RHS) of the differential equation. Thus if w was such a Green’s function,
we could recognise (5.2) as being the solution of a linear differential equation with
f(u) as its RHS.

Using the example above one can show that the Green’s function of the
operator (5.9) with boundary conditions (5.11), i.e. the solution of

d4

— —2(b* — 1) Y0+ 1w = 8(x) (5.12)

satisfying (5.11), where § is the Dirac delta function, is

e~ "1 (b sin |x| + cos x)

wlx) = 4b(h% + 1)

(5.13)
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and thus the solution of (5.10)—(5.11) is (5.2). This second method, of recognising
that the coupling function w is the Green’s function of a linear differential operator,
is perhaps less easy to generalise, so we concentrate mostly on the first method in
this chapter. An important point to note is that the Fourier transform method applies
equally well to (5.1), i.e. the full time-dependent problem. Using the function (5.7)
and keeping the time derivative one can convert (5.1) to

02 du(x,t)

84
[—7—2w?—ngﬁ+uﬂ+nﬂ(an+- Y

)=4mw+nfwu¢»
ox

(5.14)

Clearly stationary solutions of (5.14) satisfy (5.10), but keeping the time dependence
in (5.14) enables us to determine the stability of these stationary solutions via
linearisation about them.

Note that the Fourier transform of (1/2)e~! is 1/(1 + k2), and thus for this
coupling function (5.2) is equivalent to

82
Also, the Fourier transform of the “wizard hat” w(x) = (1/4)(1 — |x)e™ ™! is
k2/(1 + k?)?, giving the differential equation [12]
2\’ 9

and thus a variety of commonly used connectivity functions are amenable to this
type of transformation. (See also [26] for another example.)

The model (5.1) assumes that information about activity at position y propagates
instantaneously to position x, but a more realistic model could include a distance-
dependent delay:

du(x, o —
% :—u(x,l)—l—/_oow(x—y)f (u (y,t—g))dy (5.17)

where v > 0 is the velocity of propagation of information. Equation (5.17) can be
written
du(x,t)
ot

= —u(x,t) + ¥(x,1) (5.18)

where

Vi) = /_ /_ K(x — y.t — ) f(u(y. $))dy ds (5.19)
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and K(x,t) = w(x)d8(t — |x|/v) [12,33]. Recognising that both integrals in (5.19)
are convolutions, and making the choice w(x) = (1/2)e™ !, one can take Fourier
transforms in both space and time and convert (5.19) to

2 2
(a_ + 2v3 +v? — vzaT) V(x.1) = (v2 + va%) fu(x, 1)) (5.20)

This equation was first derived by [30], and these authors may well have been the
first to use Fourier transforms to convert neural field models to PDEs. We will not
consider delays here, but see [15] for a recent approach in two spatial dimensions.

5.2 Results in One Spatial Dimension

We now present some results of the analysis of (5.14), similar to those in [36]. From
now on we make the specific choice of the firing rate function

fu) = e/ H(u— ) (5.21)

where ¥ > 0 and & € R are parameters, and H is the Heaviside step function. The
function (5.21) for typical parameter values is shown in Fig. 5.1 (right). Note that if
h > 0 then f(0) = 0.

We start with a few comments regarding Eqgs. (5.10) and (5.11). Firstly, Eq. (5.10)
is reversible under the involution (u, u’, u”, u"") + (u, —u’, u”, —u"") [18]. Secondly,
spatially-localised solutions of (5.10) can be regarded as homoclinic orbits to the
origin, i.e. orbits for which u and all of its derivatives tend to zero as x — =o0.
Linearising (5.10) about the origin one finds that it has eigenvalues b +i and —b £1i,
i.e. the fixed point at the origin is a bifocus [34], and thus the homoclinic orbits spiral
into and out of the origin. Thirdly, Eq. (5.10) is Hamiltonian, and homoclinic orbits
to the origin satisfy the first integral

2
" — (u"”) .

B> =D+ B*+1)?0wm) =0 (5.22)
where
e 4bf(s)
Ou) = /0 (s ~ )ds (5.23)

This Hamiltonian nature can be exploited to understand the solutions of (5.10)—
(5.11) and the bifurcations they undergo as parameters are varied [18]. See for
example [11] for more details on homoclinic orbits in reversible systems.

We are interested in stationary spatially-localised solutions of (5.14), and how
they vary as parameters are varied. Figure 5.2 shows the result of following such
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Fig. 5.2 Spatially-localised 3
steady states of (5.14) as a
function of &. The vertical
axis is the maximum over the
domain of u(x). Solid curves

indicate stable while dashed 2t iy E
indicate unstable. The
solutions at points A, B and C 1510 A |

=
are shown in Fig. 5.3. Other S /
parameters are =
b =025k =0.1 1+ 7 1
05 et 1
0 ’ - | 1 L I I
-0.2 0 0.2 0.4 0.6 0.8 1
h

Fig. 5.3 Spatially-localised
steady states of (5.14) at the

three points marked A, B and

Cin Fig.5.2. Other

parameters are

b =025k =0.1 -

solutions as the parameter 4 (firing threshold) is varied. As was found in [18, 35]
the family of solutions forms a “snake” with successively more large amplitude
oscillations added to the solution as one moves from one branch of the snake to
the next in the direction of increasing max (u). (Note that b, not h, was varied
in [18,35].) Similar snakes of homoclinic orbits have been found in other reversible
systems of fourth-order differential equations [10, 42], and Faye et al. [21] very
recently analysed snaking behaviour in a model of the form (5.1).

Figure 5.3 shows three solutions from the family shown in Fig. 5.2, allat h = 0.5.
Solutions at A and C are stable, and are referred to as “l-bump” and “3-bump”
solutions, respectively, since they have 1 and 3, respectively, regions for which
u > h. The solution at B is an unstable 3-bump solution. Stability of solutions
was determined by linearising (5.14) about them. The curve in Fig. 5.2 shows N-
bump solutions which are symmetric about the origin, where N is odd. A similar
curve exists for N even (not shown) and asymmetric solutions also exist [17]. In
summary, spatially-localised solutions of (5.10) are generic and form families which
are connected in a snake-like fashion which can be uncovered as parameters are
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varied. For more details on (5.10)—(5.11) the reader is referred to [36]. We next
consider the generalisation of neural field models to two spatial dimensions and
again investigate spatially-localised solutions.

5.3 Two Dimensional Bumps and Rings

Neural field equations are easily generalised to two spatial dimensions, and the
simplest are of the form

du(x, 1)
ot

= —ux) + [ W=y f(uty.0)dy (5.24)

where x € R? and w and f have their previous meanings. Note that w is a function of
the scalar distance between points x and y. Spatially-localised solutions of equations
of the form (5.24) have only recently been analysed in any depth [9, 16,22-24,29,
35,38]. The study of such solutions is harder than in one spatial dimension for the
following reasons:

» Their analytical construction involves integrals over subsets of the plane rather
than over intervals.

* The determination of the stability of, say, a circular stationary solution is more
difficult because perturbations which break the rotational symmetry must be
considered.

e Numerical studies require vastly more mesh points in a discretisation of the
domain.

However, the use of the techniques presented in Sect. 5.1 has been fruitful for the
construction and analysis of such solutions. One important point to note is that the
techniques cannot be applied directly when the function w is one of the commonly
used ones mentioned above. For example, if w(x) = e™ — Me™" (of Mexican-hat
type when 0 < M < 1 and 0 < m < 1) then its Fourier transform is

1 Mm
(1 + k232 (m? 4+ k[>)3?

Flwl(k]) = (5.25)

where k € R? is the transform variable. Rearranging and then taking the inverse
Fourier transform one faces the question as to what a differential equation containing
an operator like (1— V?)%/?2 actually means [15]. One way around this is to expand a
term like (1 + |k|?)*/? around |k| = O as 1+ (3/2)|k|> + O(|k|*) and keep only the
first few terms, thus (after inverse transforming) giving one a PDE. This is known
as the long wavelength approximation [37]; see [15] for a discussion.

A more fruitful approach is to realise that neural field models are qualitative
only, and we can gain insight from models in which the functions w and f are
qualitatively correct. Thus we have some freedom in our choice of these functions.
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The approach of Laing and co-workers [32,35,36] was to use this freedom to choose
not w, but its Fourier transform. If the Fourier transform of w is chosen so that the
Fourier transform of (5.24) can be rearranged and then inverse transformed to give
a simple differential equation, and the resulting function w is qualitatively correct
(i.e. has the same general properties as connectivity functions of interest) then one
can make much progress.

As an example, consider the case when

A
Fw](Ik[) = Bt (KE—M) (5.26)

where A, B and M are parameters [35]. Taking the Fourier transform of (5.24),
using (5.26), and rearranging, one obtains

{k|* —2M|k|* + B+ M*} F [u + %} (k) = AF[ f(u)](k) (5.27)

and upon taking the inverse Fourier transform one obtains the differential equation

du

[V*+2MV? + B + M?] (u+ ”

) = Af(u) (5.28)
The function w is then defined as the inverse Fourier transform of its Fourier
transform, i.e.

. *° sJo(xs)

where Jj is the Bessel function of the first kind of order 0 [35]. (w(x) is the Hankel
transform of order 0 of F[w].) Figure 5.4 shows a plot of w(x) for parameter values
M = 1,A = 04,B = 0.1. We see that it is of a physiologically-plausible
form, qualitatively similar to that shown in Fig.5.1 (left). We have thus formally
transformed (5.24) into the PDE (5.28).

As a start we consider spatially-localised and rotationally-invariant solutions
of (5.28), which satisfy

¥ 29 19 19 ¥ 19 d
[ + +——+2M(7+;7)+(B+M2)}(u+—”)

art oy 292 rdar a2 rd ot
= Af(u) (5.30)
with
u u

=0 and lim
r—>00

du %u u
ar =0 = 93 (u, FPEwL m) = (0,0,0,0) (5.31)

r=0
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Fig. 5.4 The function w(x) 2
defined by (5.29) for
parameter values
M=1,A=04,B=0.1

Fig. 5.5 Solutions 5
of (5.30)—(5.31) with
u(0) > 0and u”(0) <Oasa
function of A. Other ar i
parameter values:
k=005M=1A= = 37 1
0.4, B = 0.1. The solution E{
u(r) at the point indicated by € 5l |
the circle is shown in Fig. 5.6
(left)
1 L 4
0
-0.2 0.6

where u is now a function of radius r and time ¢ only. We can numerically find
and then follow stationary solutions of (5.30)—(5.31) as parameters are varied. For
example, Fig.5.5 shows the effects of varying & for solutions with #(0) > 0 and
u”(0) < 0. We see a snaking curve similar to that in Fig.5.2, and as we move up
the snake, on each successive branch the solution gains one more large amplitude
oscillation.

For any particular solution, %(r) on the curve in Fig. 5.5 one can find its stability
by linearising (5.28) about it. To do this we write

u(r,0,t) =u(r) + ev(t, r)cos (mo) (5.32)

where 0 < ¢ <« 1 and m > 0 is an integer, the azimuthal index. We choose this
form of perturbation in order to find solutions which break the circular symmetry of
the system. Substituting (5.32) into (5.28) and keeping only first order terms in € we
obtain
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0.4

0.2

A(m)

Fig. 5.6 Left: the solid curve shows u(r) at the point indicated by the circle in Fig. 5.5. The dashed
curve shows the eigenfunction p(r) corresponding to A(6). Right: A(m) for the solution shown
solid in the left panel. The integer with largest A is N = 6

9t 29 IMP? —2m? —1\ 92 N 2m? + 1+ 2Mr*\ 9
ort  rord ar?

r3 ar
m* —4m? + (B + M?)r* — 2Mm*r? v
+ vt

72

r4 ot

) =Af'(Wv (5.33)
Since this equation is linear in v we expect solutions of the form v(r, ) ~ u(r)e*
as t — oo, where A is the most positive eigenvalue associated with the stability of
u (which we assume to be real) and . (r) is the corresponding eigenfunction.

Thus to determine the stability of a circularly-symmetric solution with radial
profile u(r), we solve (5.33) for integer m > 0 and determine A(m). If N is the
integer for which A(N) is largest, and A(N) > 0, then this circularly-symmetric
solution will be unstable with respect to perturbations with Dy symmetry, and the
radial location of the growing perturbation will be given by (r).

For example, consider the solution shown solid in the left panel of Fig. 5.6. This
solution exists at & = 0.42, so in terms of active regions (where u > h) this solution
corresponds to a central circular bump with a ring surrounding it. Calculating A (m)
for this solution we obtain the curve in Fig.5.6 (right). (We do not need to be
restricted to integer m for the calculation.) We see that for this solution N = 6, and
thus we expect a circularly-symmetric solution of (5.28) with radial profile given
by u(r) to be unstable at these parameter values, and most unstable with respect to
perturbations with D¢ symmetry. The eigenfunction p(r) corresponding to A(6) is
shown dashed in Fig. 5.6 (left). It is spatially-localised around the ring at r &~ 7, so
we expect the instability to appear here.

Figure 5.7 shows the result of simulating (5.28) with an initial condition formed
by rotating the radial profile in Fig.5.6 (left) through a full circle in the angular
direction, and then adding a small random perturbation to u at each grid point. The
initial condition is shown in the left panel and the final state (which is stable) is
shown in the right panel. We see the formation of six bumps at the location of the
first ring, as expected. This analysis has thus successfully predicted the appearance
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20 20

Fig. 5.7 A simulation of (5.28) with initial condition corresponding to %(r) in Fig. 5.6. Left: initial
condition. Right: stable final state. u(r, 0) is plotted vertically

max(u)

-01 O 01 02 03 04 05
h

Fig. 5.8 Solutions of (5.30)—(5.31) with u(0) < 0 and «”(0) > 0 as a function of /. Other
parameter values: k = 0.05, M =1, A = 0.4, B = 0.1. The solutions u(r) at the points A and B
are shown in Fig. 5.9 (left) and Fig. 5.11 (left), respectively

of a stable “7-bump” solution from the initial condition shown in Fig. 5.7 (left). (We
used a regular grid in polar coordinates, with domain radius 30, using 200 points
in the radial direction and 140 in the angular. The spatial derivatives in (5.28) were
approximated using second-order accurate finite differences.)

We can also consider stationary solutions of (5.30)—(5.31) for which u(0) < 0
and ¥”(0) > 0, i.e. which have a “hole” in the centre. Following these solutions
as h is varied we obtain Fig.5.8. As in Fig.5.5 we see a snake of solutions, with
successive branches having one more large amplitude oscillation. We will consider
the stability of two solutions on the curve in Fig. 5.8; first, the solution at point A,
shown in the left panel of Fig. 5.9. This solution corresponds to one with just a single
ring of active neurons. Calculating A(m) for this solution we obtain the curve in
Fig.5.9 (right), and we see that a circularly-symmetric solution of (5.28) with radial
profile given by this #%(r) will be most unstable with respect to perturbations with
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-0.1
0 10 20 30 0 1 2 3 4 5
r m

Fig. 5.9 Left: the solid curve shows u(r) at the point indicated by the point A in Fig.5.8. The
dashed curve shows the eigenfunction () corresponding to A(3). Right: A(m) for the solution
shown solid in the left panel. The integer with largest A is N = 3

1 2,

0 1.
-1 | 1 0.
_2 1

20 . -20

-10 : .
0 20 20
10 0
20 o0

Fig. 5.10 A simulation of (5.28) with initial condition corresponding to #(r) in Fig.5.9. Left:
initial condition. Right: stable final state. u(r, 0) is plotted vertically

D3 symmetry. The eigenfunction p(r) corresponding to N = 3 is shown dashed in
Fig. 5.9 (left), and it is localised at the first maximum of u(r).

Figure 5.10 shows the result of simulating (5.28) with an initial condition formed
by rotating the radial profile in Fig.5.9 (left) through a full circle in the angular
direction, and then adding a small random perturbation to u at each grid point. The
initial condition is shown in the left panel and the final state (which is stable) is
shown in the right panel. We see the formation of three bumps at the first ring, as
expected.

Now consider the solution at point B in Fig. 5.8. This solution, shown in Fig. 5.11
(left) corresponds to one with two active rings. An analysis of its stability is shown
in Fig. 5.11 (right) and we see that it is most unstable with respect to perturbations
with Dy symmetry, and that these should appear at the outer ring. Figure 5.12 shows
the result of simulating (5.28) with an initial condition formed by rotating the radial
profile in Fig.5.11 (left) through a full circle in the angular direction, and then
adding a small random perturbation to u at each grid point. The initial condition
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Fig. 5.11 Left: the solid curve shows u(r) at the point indicated by the point B in Fig.5.8. The
dashed curve shows the eigenfunction () corresponding to A(9). Right: A(m) for the solution
shown solid in the left panel
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Fig. 5.12 A simulation of (5.28) with initial condition corresponding to u(r) in Fig.5.11. Left:
initial condition. Right: stable final state. u(r, 0) is plotted vertically

is shown in the left panel and the final state (which is stable) is shown in the right
panel. We see the formation of nine bumps at the second ring, as expected.

In summary we have shown how to analyse the stability of rotationally-
symmetric solutions of the neural field equation (5.24), where w is given by (5.29),
via transformation to a PDE. Notice that for all functions # shown in the left panels
of Figs.5.6, 5.9 and 5.11, A(0) < 0, i.e. these are stable solutions of (5.30).
However, they are unstable with respect to some perturbations which break their
rotational invariance. The stable states for all three examples considered consist of
a small number of spatially-localised active regions.

Similar results to those presented in this section were obtained subsequently
by [38] using a Heaviside firing rate function, which allowed for the construction
of an Evans function to determine stability of localised patterns. These authors
also showed that the presence of a second, slow variable could cause a rotational
instability of a pattern like that in Fig.5.10 (right), resulting in it rotating at
a constant speed. Very recently, instabilities of rotationally-symmetric solutions
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were addressed by considering the dynamics of the interface dividing regions of
high activity from those with low activity, again using the Heaviside firing rate
function [14] (and Coombes chapter). Several other authors have also recently
investigated symmetry breaking bifurcations of spatially-localised bumps [9, 16].
We now consider solutions of two-dimensional neural field equations which are not
spatially-localised, specifically, spiral waves.

5.4 Spiral Waves

The function w used in the previous section was of the decaying oscillatory type
(Fig.5.4). Another form of coupling of interest is purely positive, i.e. excitatory.
However, without some form of negative feedback, activity in a neural system
with purely excitatory coupling will typically spread over the whole domain. With
the inclusion of some form of slow negative feedback such as spike frequency
adaptation [13] or synaptic depression [31], travelling pulses of activity are pos-
sible [1, 12, 19]. In two spatial dimensions the analogue of a travelling pulse is a
spiral wave [2,3], which we now study. Let us consider the system

D) _ )+ Bf w(lx — y)Fu(y, 0))dy — a(x,1)  (5.34)
ot Q
. aa(a’;’ D _ autx.r) —atx.1) (5.35)

where £2 C R? which, in practice, we choose to be a disk, and the firing rate function
is

1

F(u) = PP/t

(5.36)
where & and f are parameters. This system is very similar to that in [24] and is the

two-dimensional version of that considered in [23,39]. If we choose the coupling
function to be

® sJo(rs)
= —_——d 5.37
win = [ s (537)
then, using the same ideas as above (and ignoring the fact that we are not dealing

with spatially-localised solutions) (5.34) is equivalent to

[VE =V +1] (3“(8’; ) +ux,t) +a(x, t)) = BF(u(x, 1)) (5.38)
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Fig. 5.13 The function w(r)
defined by (5.37)

-0.2 :
0 2 4 6 8
r
We choose boundary conditions
%u(r, 0,1
u(R.0.1) = U001 (5.39)
ar? r=R

for all 6 and ¢,where R is radius of the circular domain and we have written u in
polar coordinates. The two differences between the system considered here and that
in [32] are that here we use the firing rate function F (Eq. (5.36)), which is non-
zero everywhere (the function f (Eq.(5.21)) was used in [32]), and the boundary
conditions given in (5.39) are different from those in [32].

The function w(r) defined by (5.37) is shown in Fig.5.13 and we see that it
is positive and decays monotonically as r — oo. For a variety of parameters, the
system (5.34)—(5.35) supports a rigidly-rotating spiral wave on a circular domain. To
find and study such a wave we recognise that rigidly-rotating patterns on a circular
domain can be “frozen” by moving to a coordinate frame rotating at the same speed
as the pattern [2, 3, 5]. These rigidly rotating patterns satisfy the time-independent
equations

[V* = V2 +1] (—wg—g +u+ a) = BF(u) (5.40)
da _ 4 (5.41)
—WT— = AU —a .
30

where @ is the rotation speed of the pattern and 6 is the angular variable in
polar coordinates. Rigidly rotating spiral waves are then solutions of (5.40)—(5.41),
together with a scalar “pinning” equation [2, 32] which allows us to determine
as well as u and a. In practice, one solves (5.41) to obtain a as a function of u and
substitutes into (5.40), giving the single equation for u
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Fig. 5.14 w as a function of
A for spiral wave solutions 051
of (5.40)—(5.41). Solid curves b,*{ N
are stable, dashed unstable. !
The spiral wave at points
marked “a”, “b” and “c” are
shown in Fig. 5.15. Other
parameters are h = 0.6, f =
20,7t = 3,B = 3.5. The
domain has radius 35

1.6 1.8 2 22 2.4

A
[V4— V2 +1] (l—wi+A|:l—wri:|_l>u=BF(u) (5.42)
a0 36 '

Having found a solution u of (5.42) its stability can be determined by linearis-
ing (5.34)—(5.35) about (u, a), where

0
(1 T 89) a = Au (5.43)
As we have done in previous sections, we can numerically follow solutions of (5.42)
as parameters are varied, determining their stability.

In Fig.5.14 we show w as a function of A and also indicate the stability of
solutions. Interestingly, there is a region of bistability for moderate values of A.
Typical solutions (of both u and a) at three different points on the curve are shown
in Fig. 5.15. In agreement with the results in [32] we see that as A (the strength of
the negative feedback) is decreased, more of the domain becomes active, and as A is
increased, less of the domain is active. The results of varying & (the threshold of the
firing rate function) are shown in Fig. 5.16. We obtain results quite similar to those
in Fig. 5.14—as h is decreased, more of the domain becomes active, and vice versa,
and we also have a region of bistability. Figure 5.17 shows the result of varying t:
for large 7 the spiral is unstable. The bifurcations seen in Figs.5.14, 5.16 and 5.17
are all generic saddle-node bifurcations. In principle they could be followed as two
parameters are varied, thus mapping out regions of parameter space in which stable
spiral waves exist.

We conclude this section by noting that spiral waves have been observed
in simulations which include synaptic depression rather than spike frequency
adaptation [8,31], and also seen experimentally in brain slice preparations [27,28].
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Fig. 5.15 Solutions of (5.40)—(5.41) at the three points marked in Fig. 5.14. The left column shows
u and the right column shows a. The top, middle and bottom rows correspond to points “a”, “b”

and “c”, respectively
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Fig. 5.16 o as a function of A for spiral wave solutions of (5.40)-(5.41). Solid curves are stable,
dashed unstable. Other parameters are A = 2, f = 20,7 = 3, B = 3.5. The domain has radius 35
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Fig. 5.17 o as a function of t for spiral wave solutions of (5.40)—(5.41). Solid curves are stable,
dashed unstable. The right panel is an enlargement of the left. Other parameters are A = 2,8 =
20, B = 3.5, h = 0.6. The domain has radius 35

5.5 Conclusion

This chapter has summarised some of the results from [32, 35, 36], in which neural
field equations in one and two spatial dimensions were studied by being converted
into PDEs via a Fourier transform in space. In two spatial dimensions we showed
how to investigate the instabilities of spatially-localised “bumps” and rings of
activity, and also how to study spiral waves. An important technique used was the
numerical continuation of solutions of large systems of coupled, nonlinear, algebraic
equations defined by the discretisation of PDEs. Since the work summarised here
was first published a number of other authors have used some of the techniques
presented here to further investigate neural field models [9, 15,21,26,31,33].
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