
Chapter 3
Heaviside World: Excitation
and Self-Organization of Neural Fields

Shun-ichi Amari

Abstract Mathematical treatments of the dynamics of neural fields become much
simpler when the Heaviside function is used as an activation function. This is
because the dynamics of an excited or active region reduce to the dynamics of the
boundary. We call this regime the Heaviside world. Here, we visit the Heaviside
world and briefly review bump dynamics in the 1D, 1D two-layer, and 2D cases.
We further review the dynamics of forming topological maps by self-organization.
The Heaviside world is useful for studying the learning or self-organization equation
of receptive fields. The stability analysis shows the formation of a continuous map
or the emergence of a block structure responsible for columnar microstructures.
The stability of the Kohonen map is also discussed.

3.1 Introduction

The dynamics of excitations in a neural field, first proposed by Wilson and Cowan
[18], are described by nonlinear partial integro-differential equations. The dynamics
include rich phenomena, but sophisticated mathematical techniques are required for
solving the equations. Amari [3] analyzed dynamical behavior rigorously by using
the Heaviside activation function and showed the existence and stability of a bump
solution as well as a traveling bump solution. The Heaviside activation function,
instead of a general sigmoid function, makes it possible to analyze the dynamics
and to obtain explicit solutions. This framework is called the Heaviside world.

The dynamics of excitation patterns can be reduced to much simpler dynamics
of the boundaries of an excitation region [3] in the Heaviside world. In a one-
dimensional field, the boundaries of a simple excitation pattern consist of two points,
and hence, their dynamics can be described by ordinary differential equations.
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The boundaries consist of a closed curve in the 2D case. The dynamical behavior of
a curve is not so simple but it is still much simpler than the original field equation.
See Coombes, Schmit and Bojak [7] and Bressloff [5] for detailed mathematical
techniques in the 2D case.

The present Chapter will briefly review the results of pattern dynamics in
the Heaviside world. It further demonstrates the dynamics of learning (self-
organization) in a neural field, and it elucidates the mechanism of formation of
a topological map to fit the environmental information. A model for forming a
topological map was proposed by Willshaw and von der Malsburg [16], and it was
analyzed by Takeuchi and Amari [15] (see also Amari [4]). Kohonen [11] proposed
an engineering model for forming a topological map. We show that the Heaviside
world works even in this situation and is applicable to a Kohonen-type map, as was
studied in Kurata [12].

3.2 Dynamics of Excitation in a Homogeneous Neural Field

3.2.1 1D 1-Layer Field

We begin with a simplest case of a 1D neural field X with one layer. Let x be a
position coordinate of the field. The dynamics are described by

�
@u.x; t/

@t
D �u.x; t/ C

Z
w
�
x � x0� f

�
u
�
x0; t

��
dx0 C s.x; t/: (3.1)

Here, u.x; t/ is the average membrane potential of neurons at a position x at time
t; w .x; x0/ is the synaptic connection weight from a position x0 to x; f .u/ is the
activation function such that z D f .u/ is the output of neurons at x and s.x; t/ is
the external stimuli applied to x at t . A threshold is included in the term of external
stimuli. The Heaviside world assumes that the activation function is the Heaviside
function:

f .u/ D
�

1; u > 0;

0; u � 0:
(3.2)

We further assume that the field is homogeneous and the connections are
symmetric:

w
�
x; x0� D w

�ˇ̌
x � x0 ˇ̌� : (3.3)

First, we shall study the case in which the external stimuli s.x; t/ is a constant.
Given u.x; t/, the active region of X is defined by

A.t/ D fxj u.x; t/ > 0g : (3.4)
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The equation is then rewritten as

�
@u.x; t/

@t
D �u C

Z
A

w
�
x � x0� dx0 C s: (3.5)

It is not easy to solve the equation even in this simplified case. We assume a bump
solution such that u.x; t/ is positive only in an interval Œx1; x2�; that is, the active or
excited region is

A.t/ D Œx1.t/; x2.t/� : (3.6)

Note that the boundary points of A.t/ satisfy

u fxi .t/; tg D 0; i D 1; 2: (3.7)

By differentiating this with respect to t , we get

˛i

dxi .t /

dt
C @u .xi ; t/

@t
D 0; (3.8)

where

˛i D @u .xi ; t/

@x
: (3.9)

Therefore, the dynamics of the boundaries are described by

�
dxi

dt
D � 1

˛i

�Z
A

w
�
xi � x0� dx0 C s

�
(3.10)

Let us define

W.x/ D
Z x

0

w
�
x0� dx0: (3.11)

Thus, we find

Z
A

w
�
xi � x0� dx0 D

Z x2

x1

w
�
xi � x0� dx0 (3.12)

D W .x2 � x1/ ; (3.13)

so that

@u .xi ; t/

@t
D 1

�
fW .x2 � x1/ C sg : (3.14)
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The equations of the boundaries have a simple expression:

dxi .t /

dt
D � 1

�˛i

fW .x2 � x1/ C sg : (3.15)

Here, ˛1 and ˛2 are the slopes of the waveform u.x; t/ at x1 and x2, and hence,

˛1 > 0; ˛2 < 0: (3.16)

Since ˛i are variables depending on the waveform, (3.15) is not a closed expression
of the boundaries xi .t/. However, the Heaviside world tells us lots of information
on its dynamics.

An equilibrium solution, if it exists, satisfies

W .x2 � x1/ C s D 0: (3.17)

Note that the width of the active region is

a.t/ D x2.t/ � x1.t/: (3.18)

The dynamics have a simple form,

da.t/

dt
D 1

�˛
fW.a/ C sg (3.19)

where

1

˛
D 1

˛1

� 1

˛2

> 0: (3.20)

The equilibrium solution a satisfies

W.a/ C s D 0: (3.21)

Moreover, by considering the variational equation of (3.19), we see that it is stable
when and only when

w.a/ D W 0.a/ < 0: (3.22)

The waveform of a stable bump solution is explicitly obtained from (3.5) as

u.x/ D
Z a

0

w
�
x � x0� dx0 C s D W.x/ C W.a � x/ C s: (3.23)

Obviously, when u.x/ is a stable bump solution, u.x � c/ is also a stable bump
solution for any constant c. Hence, stable solutions form a one-dimensional set of
solutions fu.x � c/g, which is a line attractor [14].
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We studied the case in which s is constant. When s is not constant but has a
spatial distribution s.x/, a bump moves toward its maximum. Let us assume that an
external stimulus s.x/ is suddenly applied and consider how the stable bump moves.
The velocity of a bump is described by the equation of motion of its center,

1

2

d

dt
.x1 C x2/ � 1

�˛1

fs .x2/ � s .x1/g ; (3.24)

which depends on the intensity of external stimuli at s .x1/ and s .x2/. The tracking
ability of a bump has been analyzed with detail in another solvable model [10, 19],
where the Hermite world is used instead of the Heaviside world.

3.2.2 1D Field with Two Layers

We can easily study the equation of a field with two layers, one excitatory and one
inhibitory. The equations are

�E

@uE.x; t/

@�
D �uE.x; t/ C wEE � f ŒuE�

�wEI � f ŒuI � C sE; (3.25)

�I

@uI .x; t/

@t
D �uI .x; t/ C wIE � f ŒuE� � wII � f ŒuI � C sI ; (3.26)

where uE.x; t/ and uI .x; t/ are the potentials of excitatory and inhibitory layers,
respectively, and the connection weights are wEE.x/, wEI.x/, wIE.x/ and wII.x/,
depending on the originating layer and terminating layer of excitation and inhibition,
with a convolution operator �, such as

wEE � f ŒuE� D
Z

wEE
�
x � x0� f

�
uE

�
x0�� dx0: (3.27)

We can analyze the dynamics of the boundary points of active regions in the
excitatory and inhibitory layers in a similar manner to obtain a bump solution.

We shall first consider a uniform oscillatory solution in the Heaviside world.
The uniform solutions, uE.t/ and uI .t/, do not depend on the position x, so that
the equations are simple ordinary differential equations

�E

duE.t/

dt
D �uE C WEEf .uE/ � WEIf .uI / C sE; (3.28)

�I

duI .t/

dt
D �uI C WIEf .uE/ C sI ; (3.29)
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where WEE etc. are, for example,

WEE D
Z 1

�1
WEE.x/ dx: (3.30)

We put WII D 0 for simplicity’s sake. The equations show the population dynamics
of excitatory and inhibitory neuron pools proposed by Amari [1, 2] and Wilson and
Cowan [18] as a model of neural oscillators. The state space is u D .uE; uI /.
When we use the Heaviside world, we have piecewise linear equations, linear in
each quadrant of u, determined by uE ? 0, and uI ? 0.

The equations can be written as

�
du
dt

D �u C Nuk; k D I; II; III; IV (3.31)

in the k-th quadrant, where

NuI D s C
 

WEE � WEI

WIE

!
; I W uE > 0; uI > 0; (3.32)

NuII D s C
 

�WEI

0

!
; II W uE < 0; uI > 0; (3.33)

NuIII D s; III W uE < 0; uI < 0; (3.34)

NuIV D s C
 

WEE

WIE

!
; IV W uE > 0; uI < 0; (3.35)

where

s D
 

sE

sI

!
: (3.36)

In the k-th quadrant, the dynamical flow is linear converging to Nuk , but Nuk

is not necessarily in the k-th quadrant (see Fig. 3.1). The direction of the flow
changes when u.t/ intersects the coordinate axes and enters another quadrant. The
dynamical behaviors depend on the positions of Nuk . They are monostable, bistable,
and oscillatory, as studied in Amari [1,2] and Wilson and Cowan [18]. We show the
existence and stability of an oscillatory solution in the Heaviside world.

Theorem 1. A stable oscillation exists when WEE < WEI for an adequate s such
that the parallelepiped NuI NuII NuIII NuIV encircles the origin.

The existence and stability are clearly shown in Fig. 3.1. In this case Nuk does
not exist in the k-th quadrant and there are no equilibrium states. The oscillatory
solution is hence globally stable.
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Fig. 3.1 Limit cycle ABCD
of oscillation in the
two-layers 1D field

In addition to a stationary bump solution, a moving bump solution exists in this
field, where such a solution does not exist in a one-layer field. By using moving
coordinates, we get

� D x � ct; (3.37)

where c is the velocity of the bump, we have an explicit solution of a moving bump
when certain conditions are satisfied. It was analyzed in Amari [3] so that we will
not describe it here. The existence of a breathing solution shows the richness of the
solutions to these equations. The Heaviside world makes it easier to analyze bump
solutions [8, 9].

3.2.3 2D Field of Neural Excitation

The equation of a one layer 2D field is described as

�
@u.x; t /

@t
D �u.x; t / C

Z
w
�
x � x0� f

�
u
�
x0; t

��
dx0 C s; (3.38)

where x D .x1; x2/ is the coordinates of the field and w.x/ is a radially symmetric
connection function. Let A.t/ be an active region in the Heaviside world on which
u.x; t / > 0. Let xA be a point on the boundary of A. It satisfies

u .xA; t/ D 0: (3.39)



104 S. Amari

Let us denote the gradient of a waveform by

˛ D @u.x; t /

@x
: (3.40)

Then, by differentiating (3.39), we arrive at an equation which describes the motion
of the boundary of the excited region:

˛ � dxA

dt
D �@u .xA; t/

@t
D �1

�

	Z
A

w
�
xA � x0� dx0 C s



: (3.41)

The equilibrium solution satisfies

Z
A

w
�
xA � x0� dx0 C s D 0: (3.42)

The equilibrium solution having an active region A is written as

u.x/ D
Z

A

w
�
x � x0� dx0 C s: (3.43)

When w.x/ is a radially symmetric function, the radially symmetric equilibrium
solution of radius a satisfies

u.x/ > 0; jxj < a; (3.44)

u.x/ < 0; jxj > 0: (3.45)

The equilibrium radius a is obtained from

QW .a/ C s D 0; (3.46)

where

QW .a/ D
Z 2a

0

2rw.r/ cos�1 r

2a
dr: (3.47)

However, its stability condition is not easy to determine, because the variational
equation for stability has freedom of deformation of A not only in the radial
direction, but also of the shape of the boundary circle. The stability was first
analyzed in Amari, a Japanese book. See Bressloff and Coombes [6] for later
developments. We use polar coordinates .r; �/ to write down the variation of the
excited region. Let us write

u.r; �; t/ D u.r; �/ C "v.�; t/; (3.48)
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where u.r; �/ is the equilibrium solution, " is a small constant and v.�; t/ denotes
the shape of the variation. We use the Fourier expansion of v.�; t/. The stability
condition is given by

�n D 1

c

Z 2�

0

w

�
2a

ˇ̌
ˇ̌cos

�

2

ˇ̌
ˇ̌
�

cos n�d� � 1 < 0; n D 0; 2; 3; � � � : (3.49)

where

c D
Z 2�

0

w

�
2a

ˇ̌
ˇ̌cos

�

2

ˇ̌
ˇ̌
�

cos �d�: (3.50)

We can extend the idea to a two-layer field having rich dynamical phenomena
such as multiple bumps, spiral waves, breathing waves and others. See Chap. 7 in
this book. Lu, Sato, and Amari [13] studied traveling bumps and their collisions in
a 2D field by simulation. However, the analysis is difficult even in the Heaviside
world. See Coombes, Schmidt and Bojak [7] for further developments. Wu and
colleagues [10, 19] use another technique of total inhibition, which uses a Gaussian
approximation of the bump’s shape and its Hermite expansion. This leads us to
another world called the Hermite world.

3.3 Self-Organization of Neural Fields

3.3.1 Field Model of Self-Organization

We shall study the self-organization of a 1D homogeneous neural field X which
receives inputs from another 1D neural field Y . Fields X and Y have position
coordinates x and y, respectively. The input signal to X is assumed to be a
bump solution of Y . The neural field X receives stimuli from a bump signal a.y/

concentrated around a position y, and they induce a bump solution u.x/ of X

centered at x. This establishes a correspondence of the positions y and x of two
fields Y and X (Fig. 3.2). When Y is a retinal field responsible for the external
light stimuli and X is a visual cortex, both being 2D, the correspondence is called a
retinotopic map. The map is generated by self-organization of neural fields.

We assume that a bump of Y centered at y0 is composed of the activities of
neurons at y,

a
�
yI y0� D a

�
y � y0� ; (3.51)

where a.y/ is a unimodal waveform of a bump solution. The activities a.yI y0/
of Y stimulate neurons of X . The connection weight from the position y of Y

to the position x of X is written as s.x; y/. We also assume that neurons at x

receive an inhibitory input of constant intensity a0 with a synaptic weight s0.x/.
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Fig. 3.2 Self-organization
of field X by receiving
stimuli from field Y

Hence, the total amount of input stimuli given to the neurons at x caused by a .yI y0/
is written as

S
�
x; y0� D

Z
s.x; y/a

�
yI y0� dy � s0.x/a0: (3.52)

The dynamics of excitation in field X is described as follows: Given an input
a .yI y0/, the neurons at x calculate the inputs S .x; y0/ by using (3.52) and u.x; t/

changes subject to the dynamics,

�
@u.x; t/

@t
D �u.x; t/ C w � f Œu� C S

�
x; y0� : (3.53)

The inputs S .x; y0/ depend on the connection weights s.x; y/ and s0.x/. The con-
nection weights are modified in the process of neural activation. This modification
is learning or self-organization. We assume a Hebb type of learning rule: Synaptic
weight s .x; y/ increases in proportion to the input a .yI y0/ when the neuron at x

fires and decays with a small time constant. We also assume that a Hebbian rule
applies to an inhibitory synapse. For neurons at x, the learning rule is written as

� 0 @s .x; y/

@t
D �s .x; y/ C cf Œu.x; t/� a.yI y0/; (3.54)

� 0 @s0.x/

@t
D �s0.x/ C c0f Œu.x; t/� a0: (3.55)

Here, � 0 is a time constant which is much larger than that of the neural excitation,
and c and c0 are different constants. We also assume that the inhibitory input a0 is
always constant.

A bump excitation of Y randomly appears around the position y0. Let p .y0/ be
the probability density of a bump appearing at y0. A bump a .yI y0/ continues for a
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duration which is sufficiently large compared with � for forming a stable bump in
X , but sufficiently small compared with the time constant � 0 of learning. Hence, we
use the adiabatic approximation and consider the following equation of learning,

� 0 @s.x; y/

@t
D �s.x; y/ C cf

�
U
�
x; y0�� a.yI y0/; (3.56)

� 0 @s0.x/

@t
D �s0.x/ C c0f

�
U
�
x; y0�� a0; (3.57)

where the current excitation u.x; t/ is replaced by the stationary state U .x; y0/
given rise to by input a .yI y0/,

U
�
x; y0� D

Z
w
�
x � x0� f

�
U
�
x0; y0�� dx0 C S

�
x; y0� : (3.58)

Considering that � 0 is large, before s.x; y/ and s0.x/ change substantially, a number
of bumps a .yI y0/ at various y0 are randomly chosen. Hence, we further use an
averaging approximation for stochastic choices of y0. Let h�i denote the average
over all possible input bumps a .y; y0/;

hf �
U
�
x; y0�� a

�
yI y0�i D

Z
p
�
y0�f

�
U
�
x; y0�� a

�
yI y0� dy0: (3.59)

Accordingly, we get the fundamental equations of learning,

� 0 @s.x; y/

@t
D �s.x; y/ C chf �

U
�
x; y0�� a.yI y0/i; (3.60)

� 0 @s0.x/

@t
D �s0.x/ C c0hf �

U
�
x; y0��ia0: (3.61)

We thus have two important field quantities U.x; y0/ and S.x; y0/, both of
which depend on s.x; y/ and s0.x/ and are hence modified by learning. By
differentiating (3.52) and substituting (3.56) and (3.57), we obtain the dynamic
equation describing the change of S.x; y/,

� 0 @S.x; yI t /

@t
D �S.x; yI t / C

Z
k
�
y � y0� f

�
U
�
x; y0��p

�
y0� dy0; (3.62)

where we put

k
�
y � y0� D c

Z
a
�
y00 � y

�
a
�
y00 � y0� dy00 � c0a0: (3.63)

This term shows how two stimuli centered at y and y0 overlap. The topology of Y

is represented in it (see Fig. 3.3).
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( )k y

y

Fig. 3.3 Shape of k.y/

defined in (3.63)

Equation (3.62) can be written as

� 0 @S .x; y0/
@t

D �S C k ı f ŒU �; (3.64)

where ı is another convolution operator defined by

k ı f ŒU � D
Z

p
�
y0� k

�
y � y0�f

�
U
�
x; y0�� dy0: (3.65)

3.3.2 Dynamics of the Receptive Field

An equilibrium solution U .x; y0/ is determined by (3.58), depending on s .x; y0/
and s0.x/. Let A be a region on X � Y such that

A D f.x; y/ jU.x; y/ > 0g : (3.66)

The receptive field R.x/ of a neuron at x is a region of Y such that

U.x; y/ > 0; y 2 R.x/: (3.67)

That is, neurons at x are excited by an input bump around y. We assume that it is
an interval,

R.x/ D Œr1.x/; r2.x/� ; (3.68)

so that A is bounded by two lines y D r1.x/ and y D r2.x/ (see Fig. 3.4). The size
of the receptive field is

r.x/ D r2.x/ � r1.x/: (3.69)
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Fig. 3.4 Boundary lines of
the active region A in X-Y
plane, which represents
receptive fields

In contrast, when a bump around y is used, the active region is

A.y/ D Œx1.y/; x2.y/� ; (3.70)

where

x1.y/ D r�1
2 .y/; x2.x/ D r�1

1 .y/: (3.71)

The length of the active region of X is

Nx.y/ D r�1
2 .y/ � r�1

1 .y/: (3.72)

We use the following notations: For an input bump at around y D r1.x/, the excited
region is Œx � l1; x� and for an input bump at around y D r2.x/, the excited region
is Œx; x C l2�. This implies

l1 D x � r�1
2 fr1.x/g ; (3.73)

l2 D r�1
1 fr2.x/g � x: (3.74)

The equilibrium U.x; y/ of (3.58) changes as a result of the change in S.x; yI t /

or s.x; yI t / and s0.xI t /. By differentiating (3.58) and using (3.64), we get

� 0 @U.x; yI t /

@t
D �S C � 0 @

@t
w � f ŒU � C k ı f ŒU � (3.75)

D �U C w � f ŒU � C � 0 @

@t
w � f ŒU � C k ı f ŒU �: (3.76)

The dynamical equation governing changes in the receptive field R.x/ is gotten
by observing the boundary of A, that is r1.x/ and r2.x/. We use
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@U .x; ri ; t /

@t

@ri .x; t/

@t
C @U .x; ri ; t /

@t
D 0 (3.77)

to derive the equations of @ri .x; t/=dt in the Heaviside world.

Theorem 2. The dynamics describing the boundaries of the receptive field is
given by

� 0 .˛1 C ˇ1/
@r1.x; t/

@t
� � 0ˇ1

@r2 .x � l1; t/

@t
D �W .l1/ � K.r/ � s; (3.78)

� 0 .˛2 � ˇ2/
@r2.x; t/

@t
C � 0ˇ2

@r1 .x C l2; t/

@t
D �W .l2/ � K.r/ � s; (3.79)

where li D li .x; t/, r D r.x; t/ and

W.l/ D
Z l

0

w.x/ dx; (3.80)

K.r/ D
Z r

0

k.y/ dy; (3.81)

˛i D @U .x; ri ; t /

@y
; i D 1; 2 (3.82)

ˇ1 D �w .l1/

�
@r2 .x � l1; t/

@x
; (3.83)

ˇ2 D �w .l2/

�
@r1 .x C l2; t/

@x
: (3.84)

Proof. To evaluate @U=@t at y D r1, we first calculate K ıf ŒU � at r1.x/. We easily
have
Z

k
�
r1 � y0� f

�
U
�
x; y0�� dy0 D

Z r2

r1

k
�
r1 � y0� dy0 D K .r2 � r1/ ; (3.85)

where we have used K.r/ D K.�r/ and we have assumed that the distribution of
input stimuli of Y is uniform, p .y0/ D 1, by normalizing the length of Y equal to
1. Similarly, we have

Z
w
�
x � x0�f

�
U
�
x0; r1

��
dx0 D

Z x

x�l1

w
�
x � x0� D W .l1/ : (3.86)

Hence,

@

@t
w � f ŒU � D w .l1/

@l1

@t
(3.87)
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at y D r1. Therefore,

� 0 @U .x; r1/

@t
D � 0w .l1/

@l1

@t
C W .l1/ C K.r/ C s: (3.88)

We need to evaluate w .l1/ @l1=@t . By differentiating

r2 .x � l1/ D r1.x/ (3.89)

with respect to t , we get

@r1.x/

@t
D @r2 .x � l1/

@t
� @r2 .x � l1/

@x

@l1.x/

@t
: (3.90)

We substitute @l1=@t obtained from (3.90) in (3.88), and we finally get (3.78).
Calculations at y D r2 yield (3.79).

3.3.3 Equilibrium Solution of Learning

The equilibrium solutions NU and NS of the dynamics of learning are derived by
putting @S=@t D 0 in (3.62). They satisfy the following equations

NU .x; y/ D w � f Œ NU � C NS; (3.91)

NS.x; y/ D k ı f Œ NU �; (3.92)

In order to understand the formation of a topological map from Y to X and its
stability, we consider a simple situation: We eliminate the boundary conditions by
assuming that both Y and X are rings, where we normalize the lengths of the rings
equal to 1, LX D LY D 1.

We then search for an equilibrium solution of (3.78) and (3.79). Since the
equilibrium solution satisfies

W .l1/ C K.r/ C s D 0; (3.93)

W .l2/ C K.r/ C s D 0; (3.94)

it is easy to see that

l1.x/ D l2.x/ D l.x/: (3.95)

As can be seen from Fig. 3.4, we get

l.x/ D l fx C l.x/g ; mod 1: (3.96)
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Y

X

( )2r x

( )1r x

Fig. 3.5 Continuous map
from Y to X

When l.x/ is continuous, it has only a constant solution (see Takeuchi and
Amari [15]),

l.x/ D Nl : (3.97)

This implies

r.x/ D Nr (3.98)

and hence r2.x/ is a shift of r1.x/, r2.x/ D r1.x/ C Nr .
The solution

r1.x/ D x C c; (3.99)

r2.x/ D x C c C Nr (3.100)

is an equilibrium for any constant c. This gives a natural correspondence between
Y and X (Fig. 3.5). Now, let us study its stability.

However, first, there is a delicate problem as to whether other equilibrium
solutions exist or not. When Nl is a rational number,

Nl D m

n
; (3.101)

we find that

r1.x/ D x C c C g.x/ (3.102)

r2.x/ D x C c C Nr C g.x/ (3.103)

is also an equilibrium solution, where g.x/ is a periodic function with a period 1=n.
This is a rippled solution, but we may disregard the ripple when n is large.
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3.3.4 Stability of the Equilibrium Solution

We shall study the stability of the simple equilibrium solution (3.99), (3.100) in
order to check if the continuous topological mapping is stable. We put c D 0 and
perturb the solution as

r1.x; t/ D x C "v1.x; t/ (3.104)

r2.x; t/ D x C Nr C "v2.x; t/ (3.105)

where " is a small constant. The variational equation is

� 0.˛ C ˇ/
@v1.x; t/

@t
� � 0ˇ

@v2

�
x � Nl ; t

�
@t

D ˇ
˚
v2

�
x � Nl ; t

� � v1.x; t/
�

� k . Nr/ fv2.x; t/ � v1.x; t/g ; (3.106)

� 0.˛ C ˇ/
@v2.x; t/

@t
� � 0ˇ

@v1

�
x C Nl ; t

�
@t

D �ˇ
˚
v2.x; t/ � v1

�
x C Nl ; t

��

C k . Nr/ fv2.x; t/ � v1.x; t/g ; (3.107)

where

˛ D @ NU .x; r1.x//

@y
; ˇ D �w

� Nl�
�

dr1.x/

dt
: (3.108)

We expand v1 and v2 in a Fourier series,

v1.x; t/ D
X

V1.n; t/ exp fi2n�xg ; (3.109)

v2.x; t/ D
X

V2.n; t/ exp fi2n�xg : (3.110)

The variational equation then separates for every n, giving ordinary differential
equations for each n D 0; 1; � � � :

� 0An

d

dt

	
V1.n; t/

V2.n; t/



D Bn

	
V2

V2



; n D 0; 1; � � � ; (3.111)

where

An D
	

˛ C ˇ �ˇ Nzn

�ˇzn ˛ C ˇ



; Bn D

	
k � ˇ ˇ Nzn � k

ˇzn � k k � ˇ



; (3.112)
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Fig. 3.6 Stability of
continuous solutions:
(a) stable, (b) unstable

Y

X

Fig. 3.7 Simulation result
of block formation in
unstable case

Bn D exp
˚
i2n� Nl�. The stability depends on the eigenvalues �:

det j�An � Bnj D 0: (3.113)

We shall omit the detailed derivation, since they are rather technical (see Takeuchi
and Amari [15]).

Theorem 3. The equilibrium solution is stable when and only when

k . Nr/ < 0; w
� Nl� < 0: (3.114)

Roughly speaking, the continuous map is stable when the length of the receptive
field Nr is wider than the length Nl of the active region of the input field, and is unstable
otherwise. (See Fig. 3.6a for the stable and Fig. 3.6b for unstable solutions.) We can
also analyze the stability of a rippled solution, but the result is the same.

The variational analysis does not tell what will happen in the unstable case.
Computer simulations show that both X and Y are divided into discrete blocks,
and there exists a mapping from a block of Y to a block of X (see Fig. 3.7).
The topology of X and Y is preserved in the discretized sense. When an input
bump is in a block of Y , then all the neurons in the corresponding block of X are
excited. This might explain the mechanism behind the formation of microscopic
columnar structures observed in the cerebrum. This mechanism is important when
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Y has more dimensions than X . For example, let us consider the case where Y is a
set of stimuli given to the retina. We assume that a bar with an arbitrary orientation
is presented at any position on the retina. The set of stimuli is three-dimensional,
having two dimensions corresponding to the positions of a bar and one dimension
corresponding to the orientation of the bar. In this case, Y D R2 � S1. Such stimuli
are mapped to the visual cortex X D R2. It is known that X decomposes into
an aggregate of blocks called a column. The position of a bar is mapped to the
position of blocks of X in a discretized manner and keeps the topography. There is
a microstructure inside a block such that the orientation of the bar is continuously
mapped inside a columnar block. This is the wisdom of nature expressed through
evolution. Our theory might explain it.

When p .y0/ is not uniform, some part of Y is stimulated more frequently than
the other part. It is plausible that a frequently stimulated part of Y has a finer
representation occupying a larger part of X . This effect is analyzed in [4].

3.3.5 Kohonen Map

Kohonen [11] proposed a neural mechanism of self-organization, which generates a
topological map from the space of input signals to a neural field. It is an engineering
model simplifying the Willshaw and Malsburg model [17] such that the dynamics of
neural excitation are omitted. This mechanism is applicable to various engineering
problems and is known as Kohonen’s SOM (self-organizing map).

The input signal field Y gives a vector-valued output a.y0/, when position y0 is
activated. In the previous case, this is a bump a .yI y0/ in Y . Here, we regard this
as a vector a .y0/ whose components are a .yI y0/ ; y 2 Y . In our previous case,
Y is 1-dimensional and the activation vector is a .y0/ D a .yI y0/. We regard the
distribution a .yI y0/ over y 2 Y as a vector a.y0/. The output layer X is a neural
field, typically 2-dimensional. A neuron at position x has a connection weight vector
s.x/. When it receives an input signal a .y0/, it calculates the inner product of s.x/

and a .y0/, obtaining

u
�
x; y0� D s.x/ � a

�
y0� D

Z
s.x; y/a

�
yI y0� dy; (3.115)

where we have put s.x/ D s.x; y/. The neurons of X are not recurrently connected
and no dynamics of excitation take place in X in the Kohonen model. Instead,
the activation f Œu.x/� of the neural field is decided by a simple rule stated in
the following. The neuron at position x is said to be the winner when it has the
highest value of u .x; y0/ when a stimulus a .y0/ is applied. The winner neuron Nx
corresponding to input a.y0/ is hence defined by

Nx.a/ D arg max
x

u
�
x; a

�
y0�� : (3.116)
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When the absolute values of vector a and weight s are normalized to 1, the winner
is the neuron whose weight s.x/ is closer to the input pattern vector a.

We then define a neighborhood of a neuron x by using a distance function
d .x; x0/. The neighborhood N.x/ of x is a set of positions x0 given by

N.x/ D ˚
x0 ˇ̌d �x; x0� � c

�
(3.117)

for a constant c. When Nx is the winner for input a, the neurons in the neighborhood
of Nx are excited. Hence, we have

f
�
u
�
x; y0�� D

�
1; x 2 N . Nx/ ;

0; otherwise:
(3.118)

This is the Heaviside world, although the excited neurons are determined by this
simple rule, not by recurrent dynamics.

The connection weight vector s.x/ of an excited neuron x 2 N . Nx/ changes
according to a Hebb-like rule: The weight vector s.x/ moves toward the input a,
and then, the normalization takes place. Hence, the rule is written as

s.x/ ! s.x/ C "a

js.x/ C "aj � f1 � " ja � sjg s C "a (3.119)

for small constant ", when x belongs to the neighborhood N f Nx.a/g. The weight
vectors outside the neighborhood do not change.

We use the continuous time version of learning and rewrite the dynamics of s.x/

in the differential equation,

� 0 ds.x/

dt
D �s C "h˚a �y0� � a

�
y0� � s.x/

�
s.x/i: (3.120)

Here, we use the adiabatic assumption such that the time constant � 0 of learning is
sufficiently small compared with the duration in which a randomly chosen stimulus
a .y0/ is applied.

Let us see if a topological map between Y and X is formed stably by the Kohonen
SOM mechanism. K. Kurata analyzed this problem in his doctoral dissertation and
in a Japanese paper [12]. He proved that, when Y and X are one-dimensional,
the continuous topological map y D r.x/ is always neutrally stable. He also
analyzed the case when Y is one-dimensional and X is two-dimensional. Then, self-
organization embeds Y as a curve in X . He showed that there are three possibilities
depending on the sizes of the abscissa and ordinate of X .

Consider the map

Y ! X W x1.y/ D y; (3.121)

x2.y/ D c: (3.122)
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map of Y

X X Xa b c

Fig. 3.8 Stability of Kohonen map: (a) 1-D Y is stably embedded, (b) unstable and block
structure emerges, (c) unstable and wave emerges

This is an equilibrium solution (Fig. 3.8a). It is stable or unstable, depending on
the parameters. There are two types of instability. In one case, it is unstable in the
vertical direction, so that a wave pattern emerges (see Fig. 3.8c). The second case is
that it is unstable in the horizontal direction, so that the block structure emerges (see
Fig. 3.8b). This is an interesting but regrettably not well known result.

3.4 Conclusions

The study of dynamics of a neural field is currently a ‘hot’ research topic. However,
its mathematical treatment is difficult. When one approximates the activation
function by the Heaviside function, the dynamics can be dramatically simplified
and one can find exact results in some cases. This is the Heaviside world, in which
the dynamics of an active region can be analyzed in terms of the dynamics of its
boundary. The Heaviside world recaptures previous important results including the
formation of a topological (topographic) map in the cortex.

The Heaviside world plays an important role in the analysis of topographic map
formation. We analyzed a one-dimensional mapping, and proved that a topological
map is unstable under a certain condition. In such a case, a block structure or
micro-columnar structure emerges. This analysis may account for the formation of
columnar microstructures in the visual cortex.
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