
Chapter 14
Neural Field Modelling of the
Electroencephalogram: Physiological Insights
and Practical Applications

David T. J. Liley

Abstract The aim of this chapter is to outline a mean field approach to modelling
brain activity that has been particularly successful in articulating the genesis of
rhythmic electroencephalographic activity in the mammalian brain. In addition to
being able to provide a physiologically consistent explanation for the genesis of
the alpha rhythm, as well as expressing an array of complex dynamical phenomena
that may be of relevance to understanding cognition, the model is also capable of
accounting for many of the macroscopic electroencephalographic effects associated
with anaesthetic action, a feature often missing in similar formulations. This chapter
will then conclude with an example of how the physiological insights afforded by
this mean field modelling approach can be translated into improved methods for the
clinical monitoring of depth of anaesthesia.

14.1 Introduction

In recent years there has been a resurgence of interest in utilising the electroen-
cephalogram (EEG) to understand brain function. While it was the first functional
measure of brain function [1, 32], unlike the subsequently developed blood oxygen
level dependent functional magnetic resonance (fMRI) and radionuclide imag-
ing techniques, it has generally been viewed as too coarse in its spatial field
of view to reveal anything meaningful about the inner workings of the brain.
However with the limitations of fMRI becoming all too apparent and recent
advances in our understanding of the anatomical and physiological organization
of cortex challenging simplistic views of cortex being just an axo-synaptically
coupled network of neurons, EEG, together with its electromagnetic counterpart the
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magnetoencephalogram (MEG), is re-emerging not only as an important functional
measure of brain activity, but also as the basis about which physiologically
meaningful mesoscopic formulations of cortical dynamics can be formulated [46].

The EEG is a sensitive measure of behavioural and cognitive state [53]. Sponta-
neous EEG reveals characteristic and systematic changes during sleep and anaesthe-
sia [34], whereas time locked and/or averaged EEG, has been shown to be a sensitive
indicator of cognitive performance and function [63]. In disease it can exhibit fea-
tures of singular diagnostic importance – from spike and wave activity characteristic
of epilepsy to the wicket rhythms pathognomonic for the transmissible spongiform
encephalopathy known as Creutzfeldt-Jakob disease [55]. Nevertheless despite our
detailed empirical knowledge regarding the patterns and features of EEG our under-
standing of the physiological genesis of such patterns is comparatively meagre.

While the biophysical origins of the EEG are relatively well established [57] the
mechanisms responsible for its dynamical genesis, despite decades of investigation,
remain uncertain. For example it was previously believed that the alpha rhythm, a
characteristic waxing and waning oscillation of between 8 and 13 Hz, was restricted
to the occipital lobe and was due to cortical tissue being driven by oscillatory activity
arising from the thalamus [5] or to the existence of distributed subpopulations of
pyramidal neurons having some form of intrinsic rhythmicity [47]. However we now
believe that dynamical activity in the EEG emerges from a panoply of interactions
between neuronal and non-neuronal cell populations in cortex [48]. How then do
we theoretically instantiate such a view so that we can use it to explain existing
electroencephalographic phenomena and make the predictions necessary for its
ontological justification?

Two broad theoretical approaches declare themselves as frameworks for under-
standing the genesis of the EEG. The most obvious is to assume that cortex is
a network of neurons and model the individual neurons and their interactions.
Apart from the obvious problem of dealing with the computational tractability of
simulating the hundreds of thousands of neurons, and their connections, that underly
a typical scalp EEG electrode, is the issue of how much physiological detail to
include and how to meaningfully parameterise it. We now know that the functional
structure of cortex extends well beyond neurons and their axosynaptic interactions.
Glial cells, originally thought to only provide structural and biochemical support to
the neuronal parenchyma, have been shown to regulate neuronal activity through
a “tripartite” synapse – a complex involving an astrocyte and the pre- and post-
synaptic terminals of a pair of neurons [31]. Add to this the suggestions of new
modes of neuronal interaction (e.g. the axo-myelenic synapse) [73], potential
ephaptic (local field) [74] and diffusive (gap junction) neuronal coupling [69],
volume (extrasynaptic) neurotransmission [23] and non-synaptic plasticity [52], let
alone the known complexities of single neuronal function, then not only does a
network motivated approach to understanding the EEG seem daunting, it comes
with considerable uncertainties as to how much detail should be included.

A preferable approach then to articulating the genesis of the EEG will be one
that (i) has spatiotemporal scales commensurate with EEG and ECoG (ii) is able
to deal with the uncertainties of structural, and therefore functional, composition
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of cortical tissue and (iii) handles the sparseness of neuronal firing [8] and the
unreliability of neuronal interconnectivity that arise as a consequence of low in
vivo synaptic release probabilities [12]. The framework of mean field modelling, in
which interactions between individual elements are replaced by effective averages,
has emerged as one powerful way to address these requirements while at the same
time remaining physiologically and anatomically pertinent [22, 46].

Commencing with the pioneering works of Beurle [10], Freeman [26], Nunez
[56], Wilson and Cowan [77,78], and Amari [4], mean field models of the EEG have
evolved from being relatively abstract biomathematical formulations to frameworks
that will be central for the analysis, organization and integration of large volumes
of high dimensional functional imaging data [21]. The aim of this chapter is to
describe one mean field modelling approach that has been developed to account
for electrorhythmogenesis of the mammalian EEG and to illustrate its relevance to
understanding the modulation of cortical activity during health and disease.

14.2 A Mean Field Model of Electrocortical Rhythmogenesis

Despite the avowed advantages of a mean field approach over a network approach
in understanding the genesis of rhythmic activity in the EEG, almost all mean field
approaches take as their starting point the physiological and anatomical properties
of axo-synaptically coupled networks of neurons. Commencing with the work of
Beurle [10], in which cortex was modelled as a continuous network of spatially
uniform, fixed firing threshold, excitatory neurons devoid of any membrane or
synaptic dynamics, mean field models have evolved to include many of the most
significant anatomical and physiological features immanent to cortical tissue. Of
these models one of the more successful in generating dynamics consistent with
that of human EEG is that of Liley et al. [11, 40–42]. This model differs from other
well known mean-field formulations in (i) explicitly separating the synaptic kinetics
of cortical excitatory and inhibitory neuronal activity (cf. [66]) (ii) not needing to
explicitly model cortico-thalamic feedback in order to generate cortical rhythms (cf.
[66]) (iii) separating out intracortical (short-range) and cortico-cortical (long range)
fibre connectivity (cf. [37]) (iv) including the full panoply of local feedforward
and feedback excitatory and inhibitory coupling (cf. [35]) and (vi) incorporating
synaptic reversal potentials such that a conductance-based mean neuron (see below)
is defined (cf. [35, 66, 76]).

In essence the model of Liley et al. [11, 40–42] is constructed at the scale
of the cortical macrocolumn – an approximately barrel shaped region extending
through the entire thickness of the cortical sheet that has a lateral extent within the
cortical sheet of the order of the characteristic scale of pyramidal neuron recurrent
collaterals. Within this column, extending across all cortical layers, are distributed
populations of excitatory and inhibitory neurons interacting with each other by
all possible feedforward and feedback axo-dendritic connections. Macrocolumns
then interact with each other by the axons of the excitatory pyramidal neurons
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Fig. 14.1 Model topology (Figure reproduced with permission from [25])

that pierce through the bottom layer of cortex to form the long range cortico-
cortical conduction system. The topological organization of this model is well
known and is depicted in Fig. 14.1 in which the interactions within and between two
cortical macrocolumns are shown. In this model “equations-of-motion” for the soma
membrane potentials of excitatory and inhibitory neurons, averaged over the spatial
extent of the macrocolumn, are defined. Cortical activity is then described by the
spatiotemporal evolution of these mean excitatory, he , and inhibitory, hi , membrane
potentials. The connection with electrophysiological experiment is through he ,
which is assumed to be linearly related to the EEG. Excitatory and inhibitory
neurons are modelled as a single passive resistor-capacitor circuit in which all
synaptically induced postsynaptic currents(Ilk) flow. On this basis the following
conductance-based mean neuron can be defined:

�k@t hk D hr
k � hk .r; t/ C

X

lDe;i

h
eq

lk � hk .r; t/

jheq

lk � hr
kj Ilk .r; t/ ; (14.1)

where r 2 R
2 is position on the cortical sheet and double subscripts represent first

source and then target.1 Postsynaptic “currents” 2 (Ilk) are weighted by the ionic
driving forces, which are defined to be unity at the resting membrane potential
hr

k such that a unitary postsynaptic potential can be simply parameterised. The
remaining parameters are defined in Table 14.1.

The dynamics of the postsynaptic “currents” (Ilk) are described by a critically
damped oscillator driven by the mean rate (i.e. the mean field) of incoming
excitatory or inhibitory axonal pulses, Alk :

.@t C �lk/2 Ilk .r; t/ D e�lk�lk � Alk .r; t/ (14.2)

1Where in contrast to other authors we have adopted a “anatomical” index ordering.
2We are being quite sloppy with our terminology here as these “currents” are more correctly
identified as being conductances but have units of volts as a consequence of being weighted by
ionic driving forces normalised to be unity at rest.
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Table 14.1 Liley model parameters (Table reproduced with permission from [45])

Definition Min., Max. Units

hr
k Resting membrane potential �80; � 60 mV

�k Passive membrane decay time 5; 150 ms
h

eq
ek Excitatory reversal potential �20; 10 mV

h
eq
ik Inhibitory reversal potential �90; hr

k � 5 mV
�ek EPSP peak amplitude 0:1; 2:0 mV
�ik IPSP peak amplitude 0:1; 2:0 mV
1=�ek EPSP rise time to peak 1; 10 ms
1=�ik IPSP rise time to peak 2; 100 ms
N ˛

ek No. of excitatory cortico-cortical synapses kDeW 2;000; 5;000
k D iW 1;000; 3;000

–

N
ˇ

ek No. of excitatory intracortical synapses 2;000; 5;000 –

N
ˇ

ek No. of inhibitory intracortical synapses 100; 1;000 –
vek Axonal conduction velocity 0:1; 1 mm

ms
1=�ek Decay scale of cortico-cortical connectivity 10; 100 mm
Smax

k Maximum firing rate 0:05; 0:5 ms�1

�k Firing threshold �55; � 40 mV
�k Standard deviation of firing threshold 2; 7 mV
pek Extracortical synaptic input rate 0; 10 ms�1

In general the Alk is comprised of cortically local, cortically distant and
extracortical/subcortical axonal pulses. Because subcortical and cortically distant
axonal pulses arise exclusively from excitatory neurons, Aek and Aik are defined as

Aek .r; t/ D N
ˇ

ekSe Œhe .r; t/� C 	ek .r; t/ C pek .r; t/ ; (14.3)

Aik .r; t/ D N
ˇ

ikSi Œhi .r; t/� ; (14.4)

where N
ˇ

lkSl , the mean number of connections from local neuronal population l

times their mean firing rate Sl , models local inputs to target population k, pek

represents extracortical (thalamic) excitatory sources and 	ek pulses arriving across
larger distances via the excitatory cortico-cortical fibre system.

The lynchpin of the mean field formulation is the closure of the macroscopic
equations (14.1)–(14.4) by the definition of Sl . In rate based models it is typically
assumed that mean population firing rates are an instantaneous function of the
respective mean soma membrane potential. One very general form for Sl in which
mean firing rates monotonically increase with hk , are bounded below by zero and
above by a maximal firing rate and has a flexible shape is [41]

Sl Œhl .r; t/� D Smax
l � Smax

l .1 C expfp2Œhl .r; t/ � �l �=�lg/�
l (14.5)

which for 
l D 1 reduces to the well-known symmetric sigmoid function.
Axonal pulses that propagate locally through intracortical fibre systems are

assumed to result in conduction delays that are negligible in comparison to the
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delays induced by neurotransmitter activation and the passive electrical properties
of dendrites. However such delays cannot be ignored for axonal pulses that are
propagated by the long range cortico-cortical fibre systems. In the simplest case
of a single cortico-cortical conduction velocity vek and an exponential fall off
in the strength of cortico-cortical connectivity with increasing distance between
source and target neuronal populations of characteristic scale 1=�ek it can be shown
that the propagation of 	ek can be approximately described by the following two-
dimensional telegraph equation

�
.@t C vek�ek/2 � 3

2
v2

ekr2

�
	ek .r; t/ D v2

ek �2
ek N ˛

ek Se Œhe .r; t/� ; (14.6)

where N ˛
ek is the total number of excitatory synaptic connections formed by long-

range cortico-cortical axons on local population k. Robinson et al. [65] and Jirsa
and Haken [37] have both defined similar long-range propagators.

Equations (14.1)–(14.6) typically define the model of Liley et al. and in addition
to being able to reproduce the main features of spontaneous human EEG gives rise
to a rich repertoire of interesting and/or novel dynamical activity.

14.2.1 Model Extensions

While the physiological specificity of the model of Liley can be easily extended
by the addition of sub-populations of excitatory and inhibitory neurons or by the
inclusion of ancillary axonal conduction systems of differing characteristic scales
and conduction velocities, the resulting formulation, while arguably of greater
biological veracity, will have a substantially augmented phase space. In non-
linear systems larger phase spaces make it more difficult to characterise system
dynamics. It is therefore fortunate that there are a number of modifications and
extensions that can be made to the model of Liley et al. that further supplement
its physiological relevance without causing its phase space to expand. Further such
modifications can be utilised by other mean field approaches aimed at modelling
cortical electrorhythmogenesis.

A simple modification of the equation describing the dynamics of the postsy-
naptic currents enables independent adjustments of the rise and decay times of the
unitary postsynaptic potential so defined [11]. By defining Ilk to satisfy

Œ@t C �.�/�Œ@t C Q�.�/�I.r; t/ D Q�.�/e�.�/=�0� � A.r; t/ ; (14.7)

�.�/ D ��0=.e� � 1/ ; Q� D �.�/e� (14.8)

where we have dropped the subscripts for clarity, 1=�0 defines the time to peak of,
and � > 0 controls the decay of, the unitary postsynaptic potential. It is worth noting
that Eq. (14.7) reduces to Eq. (14.2) as � ! 0.
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Fig. 14.2 The independent adjustment of the rise and decay times of the modelled unitary post-
synaptic potential enables the more faithful modelling of physiologically and pharmacologically
induced alterations in bulk neurotransmitter kinetics and dendritic cable properties

Why might such a formulation be useful? Firstly, isoflurane, a volatile halo-
genated anaesthetic, has been shown to prolong the decay time of the unitary
inhibitory postsynaptic potential as well as reducing the peak amplitude of both
excitatory and inhibitory postsynaptic potentials [7, 49]. Based on experiment �0, �

and � can then be defined to be functions of extracellular anaesthetic concentration
such that the effects of isoflurane on the EEG can be modelled. By taking this
approach Bojak and Liley [11] have been able to account for the increases in low
frequency power in the human EEG induced by isoflurane action. Secondly, the bulk
voltage-dependence of excitatory postsynaptic potential amplitude and time course,
that arises as a consequence of a N-methyl-d-aspartate (NMDA)-mediated synaptic
component, can plausibly be approximated by such a formulation by allowing � ,
�0 and � to be functions of the mean soma membrane potential h i.e. � .h/, �0.h/

and �.h/. At present no work has been performed in this regard however it may
offer a fruitful way forward towards modelling the bulk effects of behaviourally
or pharmacologically induced alterations in NMDA-mediated receptor activity
(Fig. 14.2).

In the model of Liley et al., and other related mean field formulations [37, 56,
65, 72], it is typically assumed that activity propagated between distant cortical
areas by the cortico-cortical conduction system is by fibres of relatively uniform
conduction velocity. However empirical measurement, either by direct physiological
measurement of conduction latencies or indirectly via histological measurement
of axonal diameter and the subsequent mapping to conduction velocity, suggests
that propagation velocities of the cortico-cortical fibres are instead rather broadly
distributed [60, 64]. While such broad distributions are easily incorporated in
integral mean field formulations, at least until recently, it has not been possible to
include them in the computationally more efficient and tractable mean field partial
differential formulations. However as shown in Bojak and Liley [11] by defining
	ek to satisfy
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Fig. 14.3 It is computationally convenient to describe pulse propagation by the long range cortico-
cortical conduction system by a partial differential formulation. The long range propagator defined
by Eq. (14.6) is simple to implement but assumes that the axonal velocity distribution is sharply
peaked (top left) about a central value with the synaptic connectivity having an integrable infinite
divergence at r D 0 (bottom left). Empirically however, cortico-cortical axonal velocities are
found to be quite broadly distributed. Fortunately a partial differential propagator can be found
that assumes a broad distribution of axonal conduction velocities (top right) while retaining a
monotonic decay in axonal fibre density as a function of distance (bottom right)

�
@t C Ovek

2 O�ek

. O�2
ek � r2/

�n

	ek.r; t/ D 2�n Ovn
ek

O�n
ek N ˛

ek SeŒh.r; t/� (14.9)

a marginal velocity distribution, fek.v/, of the form

fek.v/ D 2nv Ov2n
ek

.v2 C Ov2
ek/nC1

(14.10)

is implied for the propagation of axonal pulses by long-range fibres. Based on fits to
callosal fibre data obtained from humans it is estimated that n D 4 and Ovek �
19 m s�1. Such a formulation preserves monotonically decreasing connectivity
between source and target regions as a function of increasing separation (Fig. 14.3).
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14.3 Dynamical Features

Despite the structural simplicity of the defining mean field equations, they reveal
a rich repertoire of dynamics in the physiologically admissible parameter space.
While much of this is of physiological relevance we will in this section restrict
our discussion to the dynamical properties and features that have some degree of
mathematical novelty.

14.3.1 A Novel Route to Chaos

The brain is undoubtably a structured and highly complex dynamical system.
Attempts to characterise and explain the structured emergence of such complex
activity face many hurdles not the least of which is experimental. How do we
measure the state of a complex system in the presence of substantial physiological
measurement noise? Attempts to determine whether the brain supports the existence
of deterministic dynamical macroscopic brain states are inevitably frustrated by the
noisy and non-stationary time series data obtained from EEG, MEG or resting state
fMRI. Might the existence of theoretical evidence for such complexity help guide
and motivate such empirical explorations? In this regard the chaotic dynamical
behaviour of a macrocolumnar reduction of the Liley model, and its parametric
organization, might be relevant to this quest. By ignoring long range connectivity
the Liley model’s phase space can be dramatically reduced in size – yet retain
considerable dynamical complexity. For example by assuming �ik � �i , �ek � �e

N ˛
ek D 0, and under some weak assumptions of convergence, Eqs. (14.1)–(14.4) can

be rewritten as [15]

�k@t hk D hr
k � hk C

X

lDe;i

e�lk

h
eq

lk � hk

jheq

lk � hr
kj f�lN

ˇ

lkIl C .1 � ılk/Œplk � N
ˇ

lkpl �=�lg

(14.11)

.@t C �k/2Ik D Sk.hk/ C pk (14.12)

where pe D pee=N
ˇ
ee , pi D pii =N

ˇ
ii and ılk is the Kronecker delta. It is

worth noting that our “synaptic currents” have been trivially rescaled to have
units of s�1. For a range of physiologically admissible parameter values these
simplified equations are, not surprisingly, capable of producing aperiodic behaviour
characteristic of deterministic chaos. However what is perhaps surprising is that
such chaotic activity arises through a number of routes, one of which is quite
unusual. Initial numerical explorations involving the full set of equations, in which
long range connectivity was ignored, revealed extensive chaos in a parameter plane
defined by pee and pei. Subsequently it was shown that such chaos was spawned
by a co-dimension one homoclinic bifurcation, known as a Shil’nikov saddle-node
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bifurcation3 located in an unphysiological region of the .pee; pei/ parameter plane
[75]. However, even though this co-dimension one bifurcation is located in an
unphysiological region of parameter space it nevertheless organizes the qualitative
behaviour of the emerging dynamics in the physiological meaningful parameter
space. Interestingly this route to chaos occurs in the vicinity of a codimension
three, focus type, degenerate Bogdanov-Takens point, suggesting that there might
exist an organising centre for the qualitative organization of dynamics in an even
larger region of parameter space. Importantly for the same parameter set the
reduced Eqs. (14.11) also give rise to chaos [15] in the .pee; pei / parameter plane
spawned by an identical Shil’nikov saddle-node bifurcation at unphysiological (i.e.
negative) values of pee and pei . Such a reduction may therefore aid in the efficient
characterisation of high co-dimension organising centres.

14.3.2 Metabifurcations

One of the limitations in performing a bifurcation analysis on a high dimensional
system is the difficulty in establishing a canonical parameter set from which
to explore the qualitative organization of the parameter space and to relate it
to physiologically meaningful or significant behaviour. Often parameter sets are
degenerate, in the sense that parametrically widely separated sets can produce
similar, physiologically relevant, behaviour. For example [25] numerically gen-
erated over 70,000 parameter sets for the spatially homogeneous (i.e. r2	ek D
0) Liley model that gave rise to electroencephalographically and physiologically
plausible behaviour: parameters within empirically established ranges, alpha band
oscillatory activity, ‘1=f ’ low frequency activity and modelled mean neuronal firing
rates .20 s�1. A subsequent principal components analysis revealed that the first
ten principal components cumulatively accounted for less than 50 % of the total
parametric variance i.e. the structure of the parameter space could not be appreciably
simplified by assuming linear combinations of parameters. Therefore how might
we investigate the qualitative dynamical properties of the model’s physiological
admissible parameter space? One possible solution is to attempt to partition the
parameter space based on a classification of the patterns of bifurcation diagrams
obtained by continuing in one or more appropriately chosen parameters, and to
determine the conditions under which, if any, inter-bifurcation pattern transition
occurs. We refer to such a general method as a “metabifurcation analysis”.

3If a saddle node has a single homoclinic orbit, then a unique limit cycle will form when the
equilibrium disappears. This is often referred to as a saddle-node on an invariant circle bifurcation.
If a saddle node has two or more homoclinic orbits then infinitely many saddle limit cycles (i.e.
chaos) appear when the equilibrium disappears. In general this is referred to as a Shil’nikov saddle-
node bifurcation. These bifurcations should not be confused with either saddle node (fold) or
saddle-homoclinic bifurcations.
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How might such a metabifurcation analysis proceed? It is known that in the
Liley model inhibition is found to be a very sensitive locus of dynamical control.
Small alterations in modelled inhibitory coupling strengths and neurotransmitter
kinetics sensitively induce changes in model stability, excitability and frequencies of
driven and autonomous oscillatory modes. It has been theorised that such sensitivity
can explain many of the electroencephalographic features of � -amino butyric acid
(GABA)-ergic anaesthetic action (see Sect. 14.4.1.1). On this basis [25] constructed
two-dimensional parameter continuations in an .R; k/ plane defined by �ik ! R�ik

and N
ˇ
ii ! kN

ˇ
ii . As pik � 0 variations in R and k enable the independent spec-

ification of global and individual population changes in inhibitory input coupling
strength. Two dimensional continuations in .R; k/ were then performed for a large
number of randomly chosen parameter sets, for the spatially homogeneous Liley
model, selected to exhibit electroencephalographically and physiological plausible
dynamical behaviour.

Based on the analysis of 405 randomly chosen parameter sets it was found that
topologically the bifurcation diagrams conformed to two broad patterns or families
(Fig. 14.4). For one of the families (F1) two, almost parallel, lines of saddle-nodes
(equilibrium) partition the .R; k/ plane into three major regions. For the other family
(F2) the .R; k/ plane is characterised by the presence of two cusp points, such that
the region containing three equilibria is the union of two separated wedge-shaped
areas with the cusps as their vertices. In both families emergent Hopf bifurcations
interact with the saddle node bifurcations by so-called fold-Hopf points. The two
families could be distinguished by differences in the distribution of certain parame-
ters, with the parameter distributions accounting for the greatest dissimilarity being
in �e , the mean excitatory neuronal membrane time constant, and �e , the standard
deviation in the excitatory neuron mean firing threshold. In particular �F1

e ; �F1
e <

�F 2
e ; �F 2

e . In general it is found that parameter sets belonging to F1 are associated
with a more restricted dynamical repertoire than parameter sets belonging to F2.

Topological transitions between the two types of families can be induced by
changes in pee and pei . In general reductions in pei in parameter sets belonging
to F1 result in the topological metamorphosis of the .R; k/ bifurcation diagram to
that of F2. Specifically decreasing pei results in the appearance of two cusp points
via a so-called swallow tail bifurcation until the bifurcation diagram resembles that
of F2. A similar topological transition is induced from F1 to F2 if a metabifurcation
parameter pee is instead increased.

What, if at all, might be the physiological significance of such “metabifurca-
tions”? Two speculations present themselves. Firstly the metabifurcation parameters
pee and pei model thalamic input, and therefore suggest an alternative role for
thalamus other than its classically defined character as a relay station for periph-
erally derived sensory information. Because changes in pee and pei transfigure the
topological organization of bifurcations in the .R; k/ plane we might hypothesise
that thalamic activity modulates, and in a sense selects, the cortical dynamical land-
scape. Viewed from this perspective sensory input may be conceived as configuring
the possible domain of the cortical response in addition to initiating it. Further by
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Fig. 14.4 Schematic diagram illustrating two topological families of bifurcation diagrams
obtained by the classification of continuations in the .R; k/ parameter plane of �400 parameter
sets chosen to exhibit physiologically and electroencephalographically admissible behaviour. Also
illustrated are the parameters identified to most sensitively effect topological transitions between
the two families. Numerical analysis reveals that parameter sets belonging to family 1 have a more
restricted repertoire of dynamical behaviour than those belonging to family 2. For further details
see [25] (Figure adapted from [25])

considering thalamocortical feedback the possibility is opened up for some form
of auto-regulation of cortical dynamics: cortical feedback through thalamus could
initiate a sequence of transitions between topologically distinct bifurcation patterns
and thus the cortical dynamical repertoire could be reconfigured “on the fly”, and
on a time scale quite distinct to activity dependent synaptic plasticity. The second
speculation concerns activity dependent changes in �e and �e . The widely held view
is that learning principally involves modifications of synaptic strength. However
there exists an alternative, though less well known, view in which learning may also
involve non-synaptic processes, such as modulations in voltage dependent mem-
brane conductances, that manifest themselves in alterations in neuronal excitability
[52]. For example widely identified non-synaptic changes observed during learning
include changes in neuronal input resistance and alterations in neuronal burst/spike
threshold. The mean field correlates of these single neuron properties include �e

and �e . Thus we might speculate that activity dependent changes in �e and �e cause
long lasting changes in the cortical dynamical landscape, and that these alterations
contribute to the behavioural changes observed during learning.

14.3.3 Multistability

Many systems in nature exhibit multistability: when starting from different initial
conditions the system can evolve into different attractors with quite different long
term behaviour. The term “generalised multistability” was coined in order to
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distinguish it from “trivial multistability” which arises from the co-existence of
multiple stable fixed points. Subsequent to its initial theoretical and experimental
delineation it is now a well described phenomenon in neuroscience, optics and
condensed matter physics.

In neuroscience one of the most extensive examples of generalised multistability
is found in the R15 Aplysia neuron model in which five different limit cycles and
two chaotic attractors are found to co-exist [16]. Functionally multistability might
provide a mechanism whereby transient changes in neural activity or sensory input
induce persistent changes in oscillatory activity. Such oscillatory mode shifts may
therefore directly initiate changes in behaviour or perception, or act as a dynamical
substrate from which further activity dependent modulations in dynamics arise.
While relatively well studied in the context of single neuron dynamics, multistability
at the cortical population level has been little appraised either experimentally or
theoretically. However emerging evidence does suggest that resting alpha (8–13 Hz)
band activity can be decomposed into distinct high and low amplitude modes
[27], and that this can be interpreted as evidence for cortical population level
multistability [28]. It is therefore natural to ask whether such multistable activity
can be found in the Liley model.

It is shown in [20] that a macrocolumnar version (i.e. N ˛
ek D 0) of the Liley

model is able to support the co-existence of two limit cycle attractors and one
chaotic attractor in an initial condition space. The limit cycle attractors consist
of (i) a high amplitude, high firing rate (�300 s�1), limit cycle with a dominant
frequency of �5 Hz and a strong first harmonic �10 Hz, and (ii) a low amplitude,
low firing rate (�20 s�1), limit cycle with a dominant frequency of �10 Hz. The set
of initial conditions which gives rise to the low amplitude limit cycle is embedded
in a sea of initial conditions which gives rise to a small amplitude chaotic attractor
(largest Lyapunov exponent D 3:4 s�1; Kaplan-Yorke dimension D 2:086 ˙ 0:003)
having a dominant frequency in the alpha band. Surrounding the initial conditions of
these low amplitude dynamics is an extensive region of large-amplitude limit cycle
dynamics.

Unlike multistable dynamics observed in a similar mean field model [28], the
multistable dynamics in this model does not arise due to noise driving in the
vicinity of a sub-critical Hopf bifurcation. Parametric continuations in pee instead
reveals that a high amplitude limit cycle, born from a subcritical Hopf bifurcation at
large pee , surrounds chaos born through a period doubling cascade at small pee in
which is embedded a low amplitude limit cycle orbit that appears to arise through a
homoclinic bifurcation at intermediate values of pee .

14.4 Physiological Relevance

One of the strengths of the model of Liley is the physiological relevance of
its parameterisation. All model parameters correspond to quantities that can be
physiologically and anatomically independently measured, and thus the important
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question can be asked: to what extent does the physiologically admissible model
parameter space produce behaviour that is both physiologically and electroen-
cephalographically tenable? For example can the model of Liley account for the
electroencephalographically observed alpha rhythm in the context of a physiolog-
ically meaningful parameterisation? Being able to account for the alpha rhythm
would signal the suitability of this model as one basis to account for bulk
perturbations in dynamical brain activity that are observed to occur in health, disease
and during drug administration.

14.4.1 The Resting Alpha Rhythm

Between 1926 and 1929 Hans Berger laid the foundations for the development of
electroencephalography in humans [32]. While canine EEG had been discovered
many decades earlier [17], it was Berger who first described the alpha rhythm (8–
13 Hz), its occipital dominance and its attenuation in response to mental effort and
opening of the eyes. The intervening years have revealed that alpha band activity is
not restricted to occipital cortex. Alpha band activity is recordable over much of the
cortical surface and is reactive (i.e. enhanced or attenuated) in response to a much
wider variety of cognitive activity than just opening and closing the eyes. For this
reason it is often preferable to refer to 8–13 Hz electroencephalographic activity as
alpha band activity rather than as the alpha rhythm.

Despite amassing a great deal of knowledge regarding the phenomenology of
alpha band activity we remain comparatively ignorant regarding the physiological
basis for its genesis: does it (i) arise from intrinsic oscillatory activity in individ-
ual cortical neurons (ii) stem from oscillatory thalamic activity directly driving
populations of cortical neurons or (iii) emerge through the reverberant activity
generated by reciprocal interactions of synaptically connected neuronal populations
in cortex, and/or through such reciprocal interactions between cortex and thalamus?
Theoretically the last of these is the most interesting and the one best addressed
by the mean field modelling approach. Specifically, for a range of physiologically
admissible parameter values the model of Liley reveals a wide array of deterministic
and noise-driven dynamics that includes alpha band activity [11, 41]. In particular,
physiologically plausible alpha band activity can appear in three distinct dynamical
scenarios: linear noise driven, limit-cycle, and chaotic dynamics. For appropriate
parameterisations linearisations of the defining equations about a stable singular
point reveals alpha band oscillatory activity in he and hi at physiologically plausible
firing rates (0:1–20 s�1), as well as rhythmic activity in other bands of electroen-
cephalographic interest. In the case of electroencephalographically plausible alpha
band activity (full-width-half-maximum of the peak alpha band frequency &5)
linearisation reveals model activity to be essentially determined by conjugate pairs
of weakly damped poles at alpha band frequencies. The physiological plausibility
of these linearisations suggests that resting EEG may be viewed as a filtered random
linear process. Indeed empirical analysis has found that, except for short bursts
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Fig. 14.5 Analytical fluctuation spectra for 86 physiologically admissible parameter sets chosen
to exhibit plausible mean resting neuronal firing rates and resting alpha band activity, as well as
a biphasic surge during simulated anaesthetic action. For details of parameters and method of
calculation refer to [11]

of subdural and scalp-recorded EEG, the alpha rhythm is indistinguishable from
linearly filtered white noise [70, 71]. On this basis we might reasonably assert that
“resting” cortex is dynamically in a state of marginal linear stability.

In the Liley model, based on a range of heuristic search strategies [11],
physiologically and electroencephalographically plausible alpha band activity is
found to be widely, but sparsely, distributed over the whole biologically valid
parameter space without easily discernable structure in most parameter dimensions.
For example by randomly searching the physiologically admissible parameter space
[11] found that of 7 � 109 randomly generated parameter sets 73;454 (�0:001 %)
produced electroencephalographically plausible alpha band activity (Fig. 14.5).
However as it is likely there are biological co-dependencies between various model
parameters such sparseness may be artificial.

By analysing the response of model dynamics to small parameter perturbations it
is found that emergent alpha band activity is particularly sensitive to alterations
in those parameters that characterise inhibitory action. This in turn suggests a
novel mechanism for alpha band rhythmogenesis: alpha band oscillatory activity
arises from reverberant activity between populations of inhibitory interneurons.
To see this consider the following sequence of events – (i) initially (basally)
excited inhibitory neurons, following a delay related to the characteristic time of
inhibitory neurotransmitter kinetics, are inhibited due to negative feedback and
thus inhibitory neuronal firing rates decrease (ii) because the activity of inhibitory
neurons has decreased feedback inhibition is reduced and thus inhibitory neuronal
firing rates increase again and return to basal levels on a time scale related
to the characteristic time of inhibitory neurotransmitter kinetics (iii) once mean
inhibitory firing rates return to basal levels feedback inhibition between inhibitory
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neurons is again strengthened and mean inhibitory firing rate again decrease and
the cycle then repeats. Such oscillatory activity then “slaves” population excitatory
neuronal activity and thus gives rise to alpha band variations in scalp recorded
electroencephalographic activity [43].

Thus the model of Liley hypothesises that (i) resting alpha band activity is a
marginally stable rhythm and (ii) inhibition is a sensitive locus for the dynamical
control of alpha band oscillations. These hypotheses have important implications
for the functional role of alpha band oscillations during cognition and their
physiological control and pharmacological modulation. For example parameter sets
chosen to produce electroencephalographically plausible linear noise driven alpha,
as well as a surge in total EEG power during modelled anaesthetic induction, can
under small parametric perturbations produce autonomous gamma band (>30 Hz)
oscillatory activity. Gamma band oscillations are thought to be the sine qua non
of cognitive functioning. Indeed there exists much evidence to suggest that the
emergence of synchronised gamma-band activity (local field potential or EEG)
functional underpins perceptual binding and subserves the processes of cortical
computation [29]. Thus the existence of weakly damped, noise-driven, linear alpha
activity may be a dynamical precursor to gamma band electroencephalographic
activity, and more generally as a physiologically meaningful state from which
transitions can be made from or to. From this perspective the alpha rhythms may
be better viewed as readiness rhythms and not idling or resting rhythms as is often
asserted.

What physiological factors may drive such transitions? Given that cortical
population dynamics are hypothesised to be particularly sensitive to variations in
inhibitory activity it may represent a target for control by the relatively sparse
thalamocortical afferents. Averaged over cortex, less than 2–3 % of all synapses can
be attributed to thalamocortical projections [13]. While thalamocortical afferents
synapse onto both excitatory (pyramidal) and inhibitory layer IV cortical neurons
the strength of such synaptic connections may be far from uniform across the
respective target neuronal populations. For example studies in rat barrel cortex show
that cortical inhibitory neurons receive thalamocortical synapses that are on average
five-fold stronger (in terms of evoked inhibitory postsynaptic amplitude) than those
received by nearby pyramidal neurons [50]. In this way relatively weak excitatory
thalamocortical input to inhibitory cortical neuronal populations (pei ) may be able
to precipitate transitions in cortical state. Thus thalamic input arising from either
first-order thalamic relay neurons being driven directly by incoming sensory/sub-
cortical input, or from higher-order thalamic relay neurons driven by feedback from
cortex, may, rather than only “driving” cortex act also to “modulate” cortical activity
(in the sense of [68]).

While we have speculated that cortical inhibition may be a sensitive target
for the control of alpha band activity by thalamocortical afferents at present the
empirical evidence for such an assertion is weak. Fortunately stronger evidence
for the hypothesised role of inhibitory modulation in the regulation and control of
alpha band activity exists. Of particular interest and relevance is the fact that the
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endogenous and exogenous pharmacological modulation of GABAergic activity is
known to perturb the resting alpha rhythm.

14.4.1.1 Endogenous Pharmacological Modulation

Surprisingly the EEG is known to undergo systematic changes in women during
their menstrual cycle. In particular it has been observed that during the late and mid-
luteal phases alpha band activity is enhanced. For example [19] observed that the
mean occipital alpha band activity increased by 0.3 Hz during the luteal phase and
that the average time course of acceleration followed the time course of increases in
blood progesterone levels. Similar changes in alpha band activity during oestrus are
observed in other studies [6, 9, 61]. How do such changes implicate modulations in
GABAergic activity?

Progesterone, a steroid hormone involved in the female menstrual cycle, is
metabolised to a high degree to the neurosteroids allopregnanolone and preg-
nanolone which are potent positive allosteric modulators of GABA subtype A
(GABAA) receptor activity such that GABA action is potentiated [33, 62]. These
neurosteroids bind to discrete sites on the GABAA receptors that are distinct to those
that bind ethanol, benzodiazepine, barbiturates and a range of general anaesthetic
agents. During the mid and late luteal phases progesterone concentrations are
highest and thus their effect in modulating GABAergic function is maximal. The
model of Liley predicts that the antagonism of GABAergic activity (increases in
�ik) should alter the spectral features of resting alpha band activity. In particular
the model predicts that increases in �ii will increase the frequency, and reduce
the damping (i.e. reduce the full-width-half-maximum) of the alpha-band linear
resonance, whereas increasing �ie will produce the opposite effect. On this basis
the model of Liley would predict that the neurosteroids allopregnanolone and
pregnanolone potentiate GABAergic activity in cortical inhibitory neurons to a
greater degree than in cortical excitatory neurons. Is such a prediction supported
by pharmacological differences in the properties of GABAA receptors in excitatory
and inhibitory neurons?

Structurally GABAA receptors are composed of 5 membrane spanning protein
subunits that are assembled from a family of at least 18 subunits (˛1�6, ˇ1�3,
�1�3, �1�3, ı, �, � ) that determine, among other properties, their pharmacological
profiles [59]. A range of studies have established that they are heterogeneously
distributed across brain areas and neuronal subtypes [30, 58]. In cortex the most
abundant receptor isoforms are ˛1ˇ2=3�2 and ˛2ˇ2=3�2 differentially localised to
inhibitory and excitatory cortical neurons respectively. In general the ˛1ˇ2=3�2

and ˛2ˇ2=3�2 isoforms exhibit differential binding affinities for benzodiazepines.
Indeed the presence of the ˛ subunit isoform exerts a major effect on the affinity
and efficacy of ligands at the benzodiazepine binding site. It is thought that
the neurosteroids allopregnanolone and pregnanolone evince similar differential
binding affinities based on the demonstrated importance of the ˛ subunit for the
binding of neurosteroids [33]. Thus the prediction of the Liley model regarding the
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predominant target of neurosteroid action is consistent with the known molecular
pharmacology. As the next section will discuss, the differential ligand-binding
affinity of GABA receptor isoforms may be relevant to understanding the actions
that anesthetics and sedatives have on the EEG.

14.4.1.2 Exogenous Pharmacological Modulation

General anaesthetic agents induce profound reversible alterations in brain activity
and behaviour. While positron emission tomography and fMRI have revealed
a range of non-uniform reductions in inferred cerebral neuronal activity during
anaesthetic drug action [2, 3, 39], to date only changes in the EEG have been
reliably correlated with the clinically documented effects of anaesthesia [14]. In
general during the progression to deep anaesthesia the EEG undergoes a series
of well described quantitative changes: (i) the EEG is transiently activated such
that beta band (13–30 Hz) oscillatory activity is increased and alpha band activity
is decreased (the so-called “beta buzz”) (ii) the EEG is slowed (reduction in
median and spectral edge frequencies), the alpha rhythm is abolished, and total
EEG power transiently increases (the “biphasic response”) (iii) the appearance of
isoelectric (defined as <5 
V peak-peak amplitude) periods lasting many seconds
separated by short bursts of high amplitude slow, sharp or spiking activity – a
phenomenon known as burst suppression. While not all anaesthetic agents produce
these changes (notable exceptions being nitrous oxide, xenon and ketamine – agents
often collectively referred to as “dissociatives”) they are sufficiently general to
motivate systematic processed EEG approaches to the clinical monitoring of depth
of anaesthesia.

To what extent can these features be explained by known anaesthetic molecular
pharmacology? Countless studies have revealed the synaptic GABAA receptor to
be one of the most important molecular targets mediating the action of anaesthetic
and sedative agents [24, 67]. It has been established that a variety of anaesthetic
agents reduce the peak amplitude, and selectively prolong the decay, of the
inhibitory postsynaptic potential [7]. On this basis [11] have shown that many of the
electroencephalographic features of “typical” anaesthesia can be accounted for by
the model of Liley by utilising a description that enables the independent adjustment
of rise and decay times of the inhibitory postsynaptic potential i.e. Eq. (14.7). By
parameterising �ik and �ik as a function of anaesthetic concentration (c) on the
basis of experimental measurement, modelled EEG slows, and exhibits a transient
increase in total power, with increasing c for appropriately chosen “base” parameter
sets. While such bulk effects of anaesthetic action can be produced by homogeneous
variations of �ik and �ik , other well known electroencephalographic effects might
only be explained by assuming that inhibitory postsynaptic potentials in inhibitory
neurons are differentially modulated by anaesthetic action compared to inhibitory
postsynaptic potentials in excitatory neurons.

In [43] it was theorised, on the basis of empirical EEG evidence involving
the benzodiazepine alprazolam, that the well documented benzodiazepine “beta
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Fig. 14.6 Top left: differences in binding affinity, KA, and maximal modulatory response, �max,
for three hypothetical positive allosteric modulators of the GABAA receptor. Top right: the
GABAA receptor is a co-assembly (oligimer) of five protein subunits, the interfaces of which
contain binding sites for GABA and benzodiazepines. Bottom: summary of the major GABAA

receptor isoforms found in cortical neurons [30, 51]. The type of ˛ subunits present determines
the pharmacological properties of the given isoform. Isoforms containing the ˛1 subunit have a
BZ1-type pharmacology (bind zolpidem and CL218,872 with high affinity), whereas those co-
assembled with the ˛2 isoform have a BZ2-type pharmacology (bind zolpidem and CL218,872
with low affinity)

buzz” could be explained by assuming that benzodiazepines acted with greater
efficacy at GABAergic synapses on inhibitory neurons that at GABAergic synapses
on excitatory neurons (see Fig. 14.6). Such differential potency accords with the
empirically established cellular distribution of GABAA receptor isoforms that
exhibit ligand-based differences in the potentiation of GABA induced activity.
As discussed previously the high affinity (to zolpidem and CL218,872) GABAA

receptor isoform ˛1ˇ2=3�2 is found predominantly in cortical inhibitory neurons
whereas the low affinity GABAA receptor isoform ˛2ˇ2=3�2 is chiefly localised to
cortical excitatory neurons [30]. The differential effects of modulating feed-forward
and feed-back may also be relevant to understanding the electroencephalographic
actions of propofol.

Propofol (2,6-di-isopropylphenol) is a widely used intravenous anaesthetic agent
that is distinguished in that, rather than uniformly attenuating alpha band activity,
instead elicits strong increases in frontal alpha band (10–13 Hz) activity in addition
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to the typical increases in slow wave activity seen with other anaesthetic agents.
While it has been suggested that this “alpha” rhythm emerges because propofol
enhances feed-forward GABAA conductances in cortical pyramidal neurons such
that thalamocortical feedback is strengthened [18], another possibility suggests
itself. Propofol, like the benzodiazepines and the neurosteroids, allosterically
enhances GABA-mediated activation of GABAA receptor activity to a degree
depending on its isoform. For example [38] found that in recombinant GABAA

receptors expressed in Xenopus oocytes, that those consisting of the isoform
˛1ˇ2=3�2 were potentiated to a much greater degree (maximum potentiation com-
pared to baseline �1;400 %) by propofol than those of the ˛2ˇ2=3�2 (maximum
potentiation compared to baseline �500 %) isoform. From a theoretical perspective
feed-back disinhibition of cortical inhibitory neuronal activity would then be
favoured over the feed-forward inhibition of cortical excitatory neuronal activity
and thus alpha band activity would be promoted.

14.4.2 Mass Action and the Monitoring of Anaesthetic Action

To date depth of anaesthesia monitoring has relied on a range of heuristic data driven
approaches to objectively define optimal levels of hypnosis such that intraoperative
awareness is minimised. The most successful of these approaches are arguably
those that are based upon the analysis of spontaneous or time locked electroen-
cephalographic activity. Of these approaches the Bispectral Index in particular has
become commonplace in clinical anaesthesia [14]. However its use occurs in the
context of a number of well documented limitations (i) not all hypnotic agents
are reliably detected (e.g. nitrous oxide and the short acting synthetic opioids
being quintessential examples), and (ii) the index admits of no clear physiological
interpretation as it has been constructed to act as a quantitative surrogate for an
ostensibly subjective state.

Given that the model of Liley can offer potential explanation for the electrorhyth-
mogenesis of the resting EEG and its perturbation by a range of factors that include
sedative and anaesthetic agents, it may have some utility in monitoring the cerebral
effects of general anaesthesia and thus resolve some of the uncertainties associated
with the use of the Bispectral Index. While in principle it is possible to estimate
parameters of the Liley model on the basis of real data, and to investigate how
they correlate with anaesthesia, practically the difficulties are substantial given
the model’s non-linear partial differential formulation and its high dimensional
parameter space. Fortunately many of the model’s important qualitative properties
can be understood through a linearisation of the form [41, 43]

He.k; !/ Dg.h�
e ; q0/

!M C PM
mD1 bm.kI h�

e ; q/!M�k

!N C PN
nD1 an.kI h�

e ; q/!N �n
Pee.k; !/ (14.13)

Dg.h�
e ; q/Ge.k; !I h�

e ; q/Pee.k; !/ (14.14)
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where it has been assumed that only the excitatory input to the excitatory cortical
neuronal population is non-zero. He.k; !/ and Pee.k; !/ are the Fourier transforms
of he.r; t/ and pee.r; t/ respectively. Ge.k; !I q/ is defined as the electrocortical
transfer function and arises from the linearisation about a spatially homogeneous
stable singular point h�

e for a given set of model parameters q, and g.h�
e ; q0/

represents a factored out common term depending on a subset of model parameters
q0 2 q. By assuming �lk � �l and �ek � �e , N and M can be set
to 8 and 5 respectively. Such a linearisation reveals that under physiologically
plausible parameterisations Ge.k; !/ gives resonances corresponding to all the
major EEG frequency bands [41]. Thus such a linearisation implies that resting
EEG can theoretically be understood as arising from a filtered spatio-temporal
random process. This is of particular physiological relevance when it is considered
that EEG during rest and anaesthesia is typically found to be indistinguishable
from a white-noise process [36, 70, 71]. On this basis Eq. (14.13) suggests a quite
specific signal processing strategy by which to estimate Ge.k; !/ and changes
in Pe . By assuming (i) a matching of poles and zeros in transforming from the
continuous to discrete time domains and (ii) a restricted range of wavenumbers k

over which physiologically relevant model linear EEG activity occurs Eq. (14.13)
can be rewritten in the discrete time domain as [43]

He.z/ D kd q.q0/
1 C PkD5

kD1 bk.q/z�k

1 C PkD8
kD1 ak.q/z�k

P.z/ (14.15)

where kd is a constant required to match the gain in going from continuous to
discrete time and z D ei!=fs with fs being the sampling frequency. By assuming
P.z/ describes a band-limited white-noise process Eq. (14.15) can be written as the
following fixed-order autoregressive moving average (ARMA) process

heŒn� D �
kD8X

kD1

akheŒn � k� C
kD5X

kD0

bkuŒn � k�; or (14.16)

A.z/heŒn� D B.z/uŒn� (14.17)

where uŒn� � kd q.q0/pŒn� is a stationary uncorrelated random process and A.z/ D
1 C PkD8

kD1 akz�k and B.z/ D 1 C PkD5
kD1 bkz�k . Tracking the state of this estimated

electrocortical filter and its innovating input will provide one possible measure for
characterising the cortical effects of anaesthesia. One easily calculated measure of
the state of the estimated electrocortical filter is the scaled mean pole location,
a1. The innovating input can be estimated, by assuming that the factor kd g.q0/
remains invariant to any intervention, as

p
VarŒZ�1fA.z/S.z/=B.z/g� where Z�1 is

the inverse Z-transform. These respective measures are referred to as the Cortical
State (CS) and Cortical Input respectively, and have been useful in differentiating
the electroencephalographic effects of the hypnotic propofol and the analgesic
remifentanil (an ultra-short acting synthetic opioid). Figure 14.7 illustrates the
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Fig. 14.7 Box-and-whisker plots for the derived electroencephalographic measures CI and CS,
during propofol-remifentanil anaesthesia, as a function of the modified Observer’s Assessment
of Alertness/Sedation (OAA/S) score for 0, 2 and 4 ng/ml effect site remifentanil concentrations.
The modified OAA/S scale is a measure of alertness and sedation: 5 = responds readily to name,
4 = responds lethargically to name, 3 = responds to name called loudly and repeatedly, 2 = responds
to mild prodding/shaking, 1 = responds only after painful stimulus, 0 = completely unresponsive.
Boxes represent interquartile ranges, lines enclosed within boxes median values, whiskers represent
largest/smallest values and crosses outliers (Figure adapted from [44])

differences in the response of CS and CI as a function of the Observers Assessment
of Alertness/Sedation (OAA/S) (OAA/S = 5 is fully responsive, OAA/S = 0 is
completely unresponsive) and the level of analgesia (0, 2 or 4 ng/ml remifentanil).
On this basis we can speculate that CS is a measure of hypnosis and CI is a measure
of nociception.

14.5 Conclusion

The aim of this chapter has been to give an account of a relatively simple
neural field model of the resting EEG and to briefly illustrate some of its more
interesting dynamical features as well as speculating on its physiological relevance
in accounting for resting alpha band activity and its perturbation by a range of
endogenous and exogenous pharmacological factors. In particular we discussed
the predicted sensitivity of model dynamics to differential perturbations in cortical
inhibition and how this might account for the electroencephalographic effects of
anesthetics that act principally through GABAergic agonism. We argued that to
first approximation anesthetics alter noise-driven linear properties of the resting
EEG. However it is known that anesthetics are also able to induce quite profound
qualitative alterations in the EEG. At high levels of many sedative and anaesthetic
agents the EEG can exhibit burst suppression. Typically the burst suppression
pattern consists of bursts of high amplitude slow, sharp or spiking activity separated



14 Neural Field Modelling of the EEG 389

by periods of near iso-electricity (suppression) [54]. As anaesthetic depth increases
the periods of burst become shorter. While it is often assumed that the burst-
suppression pattern arises from slow thalamic oscillations driving cortex, the fact
that the pattern survives following cortical deafferentation suggests that it arises
as a consequence of intrinsic dynamical properties of cortical tissue. Therefore
the challenge of ours, and similar models, is to account for this phenomenon in
the context of a plausible physiological framework and the known molecular and
cellular targets associated with anaesthetic action.

There is an emerging practical utility for mean field models as evinced by our
simple fixed order ARMA approach. While this single-electrode approach can, at
least in principle, be easily extended to the multi-electrode case by the suitable
definition of a multivariate (vector) ARMA model the real challenge is to estimate
actual model parameters from empirical data and to see if they accord with known
physiology. At present the action of anaesthetic agents would appear to provide the
most robust context in which to estimate model parameters as they can be directly
associated with known cellular and molecular targets of action.
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