
Chapter 13
A Dynamic Neural Field Approach to Natural
and Efficient Human-Robot Collaboration

Wolfram Erlhagen and Estela Bicho

Abstract A major challenge in modern robotics is the design of autonomous
robots that are able to cooperate with people in their daily tasks in a human-like
way. We address the challenge of natural human-robot interactions by using the
theoretical framework of Dynamic Neural Fields (DNFs) to develop processing
architectures that are based on neuro-cognitive mechanisms supporting human joint
action. By explaining the emergence of self-stabilized activity in neuronal popu-
lations, Dynamic Field Theory provides a systematic way to endow a robot with
crucial cognitive functions such as working memory, prediction and decision mak-
ing. The DNF architecture for joint action is organized as a large scale network of
reciprocally connected neuronal populations that encode in their firing patterns spe-
cific motor behaviors, action goals, contextual cues and shared task knowledge. Ulti-
mately, it implements a context-dependent mapping from observed actions of the
human onto adequate complementary behaviors that takes into account the inferred
goal of the co-actor. We present results of flexible and fluent human-robot coopera-
tion in a task in which the team has to assemble a toy object from its components.

13.1 Introduction

Recent advances in robotics technology make the design of socially interactive
robots that work closely with ordinary people in their day-to-day work a realistic
goal [20]. Research in such human-centered robotics requires to address a wealth
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of new interdisciplinary topics from cognitive psychology, artificial intelligence
and neuroscience that go well beyond traditional mathematical issues of robotics
research for industrial applications [38]. As fundamentally social beings, we are
experts in joint activity in order to realize a common goal. We therefore have
high expectancies about an engaging and pleasant interaction with another agent.
Humans achieve their remarkable fluent organization of joint activity in routine
tasks, such as preparing the dinner table, by continuously monitoring the partner’s
actions, and predicting them effortlessly in terms of their outcomes [40]. Based on
this prediction, an adequate complementary action can be timely selected among
all potential behaviors that the task currently affords. To ensure user acceptance,
a socially interactive robot that is supposed to substitute a human in a cooperative
task should equally contribute to the coordination and synchronization of behaviors
among the co-actors. It is thus crucial to endow the robot with high-level cognitive
functions such as action understanding, decision making and memory.

Given the large variety of disciplines involved in the emerging field of human-
friendly robotics, it is perhaps not surprising that different design approaches
toward more natural human-robot interaction have been proposed. Conceptually,
they may be broadly classified in top-down, symbolic views on human-like (social)
intelligence and more bottom-up, neurodynamics and embodied notions [30]. The
predominant top-down approach is inspired by traditional artificial intelligence (AI)
models that address the complex problem of selecting an adequate complementary
behavior as a sequence of logical operations performed on discrete symbols. The
robotics implementations are thus based on formal logic and formal linguistic sys-
tems [32]. Good examples are architectures inspired by the theoretical framework
of joint intention theory [1, 8, 28]. This framework provides a rigorous logical
treatment of how sub-plans of individual agents committed to a common task can
be meshed into joint activity. A defining feature of the symbolic approach is that
information processing is set up in stages from perception to cognition to action.
A perceptual subsystem first converts sensory information about external events
into inner symbols to represent the state of the world. Next, this information is used
along with representations of current goals, memories of past events and beliefs
about the partner’s intention to decide about the course of action. On this planning
level, actions are formulated as logical operators with preconditions and effects that
change the world in a discrete fashion and instantaneously. The abstract plan is then
transformed into motor representations of the robotics system that are finally used
to generate arm and hand trajectories in order to realize the plan.

The symbolic, disembodied view on how to decide what to do has provided
many impressive examples of intelligent behaviors in artificial agents (for review see
[46]). However, it is now widely recognized by the robotics and cognitive science
communities that the symbolic framework based on serial stages of processing has
notoriously problems to cope with real-time interactions in dynamic environments
[26, 30, 32]. In human-robot interaction tasks, the robot has to reason about a world
that may change at any instance of time due to actions taken by the user. Even if
we consider that the processing in the perceptual and decision modules would allow
to continuously update the robot’s plan in accordance with the user’s intention, the
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extra processing step needed to embody the abstract action plan in the autonomous
robot would challenge the fluent and seemingly effortless coordination of decisions
and actions that characterizes human joint action in familiar tasks.

In order to advance toward a more online view of high-level social cognition,
our group at the University of Minho has developed and tested over the last
couple of years a neurodynamics approach based on the theoretical framework
of Dynamic Neural Fields (DNF) [12]. The DNF modelfor natural human-robot
interaction that we present in this chapter implements known neuro-cognitive
processing mechanisms supporting dynamic social interactions in humans and
other primates [40]. Converging lines of experimental evidence in behavioral and
neuro-cognitive studies suggest that the interaction between sensory, cognitive
and motor processes in the brain is much more interactive and integrated as
previously thought. For instance, neural correlates of decision making seem to be
inconsistent with the notion that a central decision maker completes its operation
before activating the motor structures to perform the action plan [25]. Instead, the
process of action selection may be best understood as a winner-takes-all competition
between multiple neuronal population representations of motor behaviors that the
environment currently affords [7]. The advantage of such a dynamic competition
process for flexible behavior is obvious. Since the flow of sensory information
is continuously used to partially specify several potential actions, the system is
prepared to quickly adjust to a changing world. Different neural pathways carrying
different sources of information demonstrate the tight coupling between visual and
motor systems (for review see [35]). For instance, according to the concept of
object affordances [24], the perception of a graspable object immediately activates
to some extent the neuronal representations of potential motor interactions with that
object. The final decision to execute a certain action, represented by a sufficiently
activated subpopulation, may depend on additional contextual cues and the current
behavioral goal. Very important for social interactions, an impressive body of
experimental evidence from behavioral and neurophysiological studies investigating
action and perception in a social context shows that when we observe other’s actions
corresponding motor representations in our motor system become activated (for
a recent review see [36]). In a cooperative joint action context like transferring
an object to a partner, this automatic action resonance mechanism has been
interpreted as evidence that the likelihood of performing a complementary motor
program is increased, that is, the ‘receiver’ immediately prepares a complementary
grasping behavior that ensures a safe and robust object transfer [33]. For more
complex joint action settings for which the mapping from observed actions onto
adequate complementary behaviors is not as clear, the observer has first to predict
the partner’s ongoing action in terms of the future effects in the environment.
The action resonance mechanism is believed to support also the high-level cognitive
functionality of action understanding and goal inference [36]. The key idea here
is that the observer internally simulates the outcome of perceived actions using
his/her own motor representations that have become associated with representations
of action goals during learning and practice. The notion that motor representations
are crucially involved in a higher-cognitive function like generating expectations
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about the future is clearly inconsistent with serial information processing theories
of cognitive behavior.

The DNF modelof cooperative joint action is organized as a large scale network
of reciprocally connected neuronal populations that encode in their firing patterns
specific motor behaviors, action goals, contextual cues and shared task knowledge
[5, 6]. Although some level of functional modularity exists in the network, it is
important to notice that the formation and maintenance of a behavioral decision is
not represented in the discharge pattern of “motor” neurons alone, but is distributed
among all currently active populations in the network.

The activity in each local population evolves continuously in time under the
influence of external input from connected neuronal pools or the sensory system and
recurrent excitatory and inhibitory interactions within the population. Central for the
design of cognitive agents, the recurrent interactions support the existence of self-
sustained bumps of activation. Persistent population activity allows us for instance to
implement a working memory function in the robot to cope with temporally missing
sensory information, or to simulate future environmental inputs that may inform the
current decision process about a goal-directed behavior [12].

As a specific mathematical formulation of a DNF, we adopt Amari’s model for
pattern formation in neural populations since it allows analytical treatment [2].
This is an important advantage when trying to design a complex robot control
architecture for real-world experiments.

The chapter is organized as follows: first, we give an overview about the
neuro-cognitive foundations of the DNF model and describe its mathematical imple-
mentation. We then illustrate the coordination of actions and decisions between
human user and robot organized by the network dynamics in a joint action task in
which the two teammates have to jointly assemble a toy object from its components.

13.2 Dynamic Neural Field Model of Joint Action

As a working definition, joint action can be regarded as any form of social interac-
tion whereby two or more individuals coordinate their actions in space and time to
bring about a change in the environment. Crucial building blocks for successful
joint action coordination are the capacities to recognize actions performed by
others, and to integrate predicted effects of own and others’ behaviors in the action
selection process [40]. What are the neural bases of efficient social interactions?
The discovery of the so-called mirror neuron system first in monkey and later in
human gives strong support for the hypothesis that observing actions performed by
another individual elicit a motor activation in the brain of the observer similar to
that which occurs when the observer plans his/her own goal-directed action (for a
recent review see [36]). This automatic action resonance mechanism has given rise
to the hypothesis that covert motor simulations support action understanding in a
social context without the costs that are associated with conscious mental processes
or explicit communication.
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Mirror neurons in premotor cortex of monkeys (area F5) become active both
when the monkey performs a specific motor act like grasping an object and when it
observes another individual making a similar action. Importantly, for most mirror
neurons the congruency between the observed and the executed motor act is
relatively broad. This suggests that their discharge is not related to the fine details
of the movements but codes the goal of the observed or executed motor act.

Object manipulation tasks typically involve a series of action phases like
reaching, grasping, lifting, holding and placing that are bounded by specific sensory
events defining subgoals of the task [18]. Distinct populations of mirror neurons
are assumed to represent the functional goals of these successive action phases.
Mirror neurons have been also described in areas PFG and PF of the inferior parietal
lobe (IPL). These areas are anatomically connected with premotor area F5 and with
higher visual areas in the superior temporal sulcus (STS). STS neurons discharge
during hand-object interactions similar to those encoded by F5 neurons. The
difference seems to be that STS neurons do not discharge during overt movements.
STS neurons thus might provide mirror neurons with a visual description of goal-
directed motor acts.

The hypothesis that the discharge of neuronal populations in the STS-PFG/
PF-F5 circuit plays a key role in action understanding and goal inference has
obtained strong support from a series of neurophysiological experiments. It has
been shown for instance that grasping mirror neurons are activated also when the
critical part of the observed action, the hand-object interaction, is hidden behind a
screen and can thus only be inferred from additional contextual information (e.g.,
the presence of a graspable object behind the occluding surface [45]). In a recent
study, Fogassi and colleagues [19] reported that IPL mirror neurons, in addition
to recognize the goal of an observed motor act, discriminate identical grasping
behaviors according to the final goal of the action sequence in which the motor act
is embedded (e.g., grasping for eating versus grasping for placing in a container).
They further argued that because the discriminated motor act is part of a specific
chain of motor primitives associated with a specific goal representation most likely
in prefrontal cortex (PFC), the monkey could predict at the time of the grasping
the ultimate goal of the observed action and, thus read the motor intention of the
acting individual. Of course, the discrimination of the grasping behavior is only
possible because of an additional contextual cue (e.g., the presence of a container
in the scene). This suggests that the simulation process in IPL mirror neurons is
not exclusively shaped by input from STS but also depends on input from goal and
object representations.

Figure 13.1 sketches the multi-layered dynamic field model of joint action
consisting of various neural populations that are associated through hand-coded
synaptic links (not all are shown to avoid crowding). As a central part, it integrates
a previous DNF model of action understanding and goal-directed imitation inspired
by the mirror system [15]. Ultimately, the distributed network implements a flexible
mapping between observed and executed actions that takes into account the inferred
goal of the co-actor, contextual cues and shared task knowledge.
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Fig. 13.1 Joint action model consisting of a distributed network of interconnected neural popula-
tions. It implements a flexible mapping from observed actions (layer AOL) onto complementary
actions (layer AEL) taking into account the inferred action goal of the partner (layer IL), contextual
cues (layer OML) and shared task knowledge (layer CSGL). The goal inference capacity is based
on motor simulation (layer ASL)

An observed hand movement that is recognized by the vision system as a partic-
ular movement primitive (e.g. a whole hand-grasping-from above) is represented by
suprathreshold activity of a specific neuronal population in the action observation
layer (AOL). Input from AOL to corresponding populations in the action simulation
layer (ASL) may activate together with input from the object memory layer (OML)
and the common sub-goals layer (CSGL) specific chains of movement primitives
that are linked to neuronal representation of the ultimate action goal in the intention
layer (IL) [16]. Suprathreshold population activity in IL will drive one or more
associated populations in the action execution layer (AEL) that represent possible
complementary motor behaviors. Similar to ASL, the motor behaviors are organized
in chains of motor primitives like reaching-grasping-placing. There are different
ways how to represent the temporal order and the timing of motor sequences in the
dynamic field framework [17,37]. To simplify the present robotics experiments with
its emphasis on competitive action selection, we have not modeled these chains as a
sequential activation of individual neural populations, but represent the entire motor
behavior by a single pool of neurons.

The final decision in AEL depends not only on the input from IL but also on input
from OML and CSGL. OML contains neuronal population representations of the
various objects in the scene. It is organized in two layers that discriminate whether
a specific object is within the user’s or within the robot’s reachable space. Input
from OML automatically pre-activates neural representations of associated motor
behaviors in AEL. Specifically for the joint assembly task, possible object-directed
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behaviors include the transfer of the object to the co-actor or a direct placement
of the object as part of the assembly work. In addition, communicative gestures
like for instance pointing to the specific component may be used in joint activity to
attract the co-actor’s attention [4]. Efficient task performance requires to carry out
the steps in the task in the correct order, without repeating or omitting actions in the
sequence. This behavioral planning heavily depends on the predicted consequences
of intended actions (i.e. a change in the state of the target object [43]). The common
subgoals layer CSGL contains neuronal representation of desired end results of
individual assembly steps that can be realized by associated motor representations
in AEL and that are recognized by the vision system. Neurophysiological evidence
suggests that in sequential tasks, distinct subpopulations in PFC represent already
achieved subgoals and subgoals that have still to be accomplished [22]. In line
with this finding, CSGL contains two connected DNF layers with population
representations of past and future events. Input from the vision system about
the achievement of a specific subgoal activates the corresponding population in
the past layer, which in turn inhibits the corresponding goal representation and
simultaneously excites one or more populations in the future layer. They represent
in their activity patterns predicted end result of subsequent assembly steps that the
current state of the assembly work affords. Important for the fluency of the team
behavior, the updating of subgoals in CGSL may not only be triggered by direct
input from the vision system but also by input from IL representing the inferred
motor intention of the co-actor. This allows the observer to prepare future actions in
response to anticipated rather than observed action outcomes [5, 6].

13.3 Model Details

In their seminal work, Wilson and Cowan [48] and Amari [2] introduced Dynamic
Neural Fieldsas rate models of cortical population dynamics that abstract from the
biophysical details of neural firing. The architecture of this model class reflects the
hypothesis that strong excitatory and inhibitory interactions within local populations
that receive synaptic input from multiple connected neuronal pools form a basic
mechanism of cortical information processing. As shown in numerous simulation
studies, dynamic neural field models are powerful enough to reproduce neural
population dynamics observed in neurophysiological experiments (e.g., [14]), and to
understand the basic mechanisms underling a large variety of experimental findings
on the perceptual and behavioral level (for review see [39]).

For the design of the robot control architecture for natural human-robot inter-
actions, we adopt the model of a single layer of a homogeneous neural network
consisting of excitatory and inhibitory neurons proposed by Amari [2]. This model
allows for a rigorous analysis of the existence and stability of characteristics
solutions such as local excitations or “bumps”. In the following, we give a brief
overview about the techniques developed by Amari, and explain the adaptations
we have made to cope with the specific needs of the robotics implementations.
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The dynamics of each population in the distributed network shown in Fig. 13.1 is
governed by the equation:

�
@u.x; t/

@t
D �u.x; t/ C S.x; t/

C
Z 1

1
w.x � x0/f .u.x0; t //dx0 � h (13.1)

where u.x; t/ is the average activity of neuron x at time t and parameter � > 0

defines the time scale of the field dynamics. The globally inhibitory input h > 0

determines the resting state to which the activity of neuron x relaxes without
external input S.x; t/ � 0. The integral term in Eq. 13.1 describes the interactions
within the populations which are chosen of lateral-inhibition type:

w.x/ D A exp.�x2=2�2/ � winhib (13.2)

where A > 0 and � > 0 describe the amplitude and the standard deviation of a
Gaussian, respectively. For simplicity, the long-range inhibitory interactions are
assumed to be constant, winhib > 0, implementing a competition between subpopu-
lations that are sufficiently separated in space. Note that distinct neural populations
encoding entire temporal behaviors like grasping, holding or placing seem to be
spatially segregated in the mirror neuron areas [35]. Interpreting the metric of neural
interactions in anatomical space like in Amari’s original model is thus possible.
However, the metric distance might be also defined in an abstract psychological
space [41]. In this case, functionally distinct behaviors associated with specific goals
would be represented by spatially separate, competing pools of neurons whereas
similar motor behaviors associated with the same goal (e.g., grasping with different
grip types) would be represented by partially overlapping populations.

Amari assumes for his analysis of pattern formation that the output function
f .u/,which gives the firing rate of a neuron with input u, is the Heaviside step
function, i.e., f .u/ D 0 for u � 0 and f .u/ D 1 otherwise. To model a more
gradually increasing impact of the recurrent interactions on the population dynamics
we apply a smooth and differentiable output function of sigmoid shape with slope
ˇ and threshold u0:

f .u/ D 1

1 C exp .�ˇ.u � u0//
: (13.3)

It has been shown by Kishimoto and Amari [29] that many of the results concerning
the existence and stability of localized activity patterns obtained with a step output
function take over to the more general case of the sigmoid.

The model parameters are chosen to guarantee that the population dynamics
is bi-stable, that is, the attractor state of a stable “bump” coexists with a stable
homogeneous resting state. A sufficiently strong transient input S.x; t/ may drive
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the neural population beyond threshold, f .u/ > u0. The resting state loses stability
and a localized activation pattern evolves. In the various layers of the network
model, these bumps represent memorized information about object location, the
inferred action goal of the co-actor or a decision for a specific complementary
behavior. Weaker external input signals from connected populations lead to a
subthreshold activation pattern for which the contribution of recurrent interactions
is negligible. It is important to note, however, that this preshaping by weak input
may nevertheless influence the robot’s behavior. Since the level of pre-activation
affects the rate at which a suprathreshold activation pattern rises [13], a pre-activated
population has a computational advantage over a population at resting level and thus
has a higher probability to influence the decision process in AEL.

For the case of a step output function, the conditions for the existence and
stability of a single bump of length a in the presence of a stationary external input
S.x/ can be easily derived following Amari’s approach (see Chap. 3 for details). For
the robotics experiments we are specifically interested in the existence of localized
excitation in response to symmetric, bell-shaped input. Given the definition

W.x/ D
Z x

0

w.x0/dx0 (13.4)

the length a of the bump satisfies in this case

S.x0 C a=2/ D h � W.a/ (13.5)

where x0 denotes the position of the maximum S.x/. If h > 0 is chosen such that

Wm D max
x>0

W.x/ > h (13.6)

holds, there exist two solutions Oa and a, with Oa < a, but only the larger excitation
pattern is stable (for details see [2]).

We assume that the time dependent input from a connected population uj to
a target population ui has a separable form Si .x; t/ D S.x/gj .t/ where S.x/ is
modeled as a Gaussian function and gj .t/ D 1 if f .uj / > u0 and gj .t/ D 0

otherwise. In other words, a stationary input is applied during the period of
suprathreshold activity in uj . Numerical studies show that the evolving localized
activation in uj could have been directly used as input pattern as well. However,
assuming a constant input shape allows us to closely follow Amari’s analysis. The
total input from all connected populations and external sources (e.g., vision system,
also modeled as Gaussian signal) to ui is then given by

Si.x; t/ D k
X

j

gj.t/Aj exp.�.x � xi/
2=2�2/ (13.7)
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where k > 0 is a scale factor to guarantee that the total external input remains small
compared with the recurrent interactions within the local population.

To model different cognitive functions like working memory or decision making
in the various layers of the model, we specifically adapt the basic field equation
given by Eq. 13.1. To implement in OML, AOL and CSGL a working memory
function, it is important that a bump remains after cessation of the transient stimulus
that has initially driven its evolution. The condition Wm > h > 0 guarantees the
existence of a stable bump for S.x/ D 0 which, however, has a slightly smaller
width compared to the bump in the presence of input. We call this solution self-
sustained to distinguish it from a suprathreshold activity pattern that becomes
self-stabilized only because of the presence of external input. In this case, equation
S.x0Ca=2/ D h�W.a/ has a solution which represents a stable localized activation
but h > Wm holds, that is, the field dynamics is in the mono-stable regime and
suprathreshold activity will decay to rest state without external support.

To represent and memorize simultaneously multiple items, a multi-bump solution
is required. An interaction kernel with long-range, constant inhibition (Eq. 13.2)
may sustain multiple localized activity patterns without external inputs with addi-
tional stabilization mechanisms [12,44]. For simplicity, we have used for the current
robotics experiments kernels with limited spatial range to exclude mutual compe-
tition between multiple memories. An alternative solution that we are currently
exploring for the robotics work is to use coupling functions with multiple zero-
crossings, modeling excitatory interactions also at larger distances [17, 31].

The memory is continuously updated in accordance with input from the vision
system indicating a change in the external world (e.g., a new location of a specific
object). To implement the “forgetting” process, we use a simple first-order dynamics
with an appropriate time scale for the (local) adaptation of the inhibitory input h to
destabilize an existing bump [3]:

dh

dt
D �rh;minch.h � hmin/ � rh;max.1 � ch/.h � hmax/ (13.8)

where jhmaxj < Wm and jhminj > Wm are the two limit values for h that define the bi-
stable and the mono-stable regime, respectively. The rate of change for destabilizing
a memory function in case of an existing bump (ch D 1) or restoring in the absence
of a bump (ch D 0) is given by the parameters rh;min > 0 and rh;max > 0.

To meet the real-time constraints of action selection and goal inference in a
continuously changing environment, we apply in ASL, AEL and in the CSGL
layer representing future subtaks a field dynamics with self-stabilized rather than
self-sustained activation patterns. A decision to select a certain motor behavior
that takes into account the most likely goal of the co-actor’s current action, is
temporally stabilized by sufficient strong support of external and internal evidence,
but will automatically lose stability if this evidence changes in favor of a competing
behavior.
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13.4 Setup of Human-Robot Experiments

To test the dynamic neural field model of joint action in human-robot experiments,
we have adopted a joint assembly paradigm in which the team has to construct a toy
‘vehicle’ from components that are initially distributed on a table (Fig. 13.2).

The toy object consists of a round platform with an axle on which two wheels
have to be attached and fixed with a nut. Subsequently, four columns that differ in
their color have to be plugged into corresponding holes in the platform. The placing
of another round object on top of the columns finishes the task. The components
were designed to limit the workload for the vision and the motor system of the
robot.

It is assumed that each teammate is responsible to assemble one side of the
toy. Since the working areas of the human and the robot do not overlap, the
spatial distribution of components on the table obliges the team to coordinate
and synchronize handing-over sequences. In addition, some assembly steps require
that one co-worker helps the other by fixating a part in a certain position. It
is further assumed that both teammates know the construction plan and keep
track of the subtasks which have been already completed by the team. The prior
knowledge about the sequential execution of the assembly work is represented in the
connectivity between the two layers of CSGL encoding already achieved and still
to be accomplished assembly steps. Since the sequential order of tasks execution is
not unique, at each stage of the construction the execution of several subtasks may
be simultaneously possible.

The humanoid robot ARoS used in the experiments has been built in our lab. It
consists of a stationary torus on which a 7 Degrees of Freedom (DOFs) AMTEC arm
(Schunk GmbH) with a 3-fingers dexterous gripper (Barrett Technology Inc.) and a
stereo camera head are mounted. A speech synthesizer (Microsoft Speech SDK 5.1)
allows the robot to communicate the result of its goal inference and decision making
processes to the human user [4].

The information about object class, position and pose is provided by the vision
system. The object recognition combines color-based segmentation with template
matching derived from earlier learning examples [47]. The same technique is also
used for the classification of object-directed, static hand postures such as grasping
and communicative gestures such as pointing.

The selection of a specific complementary behavior in AEL has to be translated
into a collision-free arm and hand trajectory. As an important constraint for efficient
joint action coordination, the robotics motion should be perceived by the user
as smooth and goal-directed To achieve realistic temporal motor behaviors like
reaching, gasping and manipulating objects we apply a global planning technique in
posture space. It is formalized as a nonlinear optimization problem and allows us to
integrate constraints obtained from human reaching and grasping movements such
as for instance bell-shaped velocity profiles of the joints (for details see [10]).
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Fig. 13.2 Joint action
scenario: the human-robot
team has to assemble a ‘toy
vehicle’ from components
that are initially distributed
on a table

13.5 Results

In the following we illustrate the coordination of decisions and actions between
the human and the robot in the joint assembly task by presenting video snapshots
of the interactions and the associated neuronal population representations in the
model network. In the examples shown, we focus for simplicity on the initial
phase of the construction to explain from the perspective of the robot the impact
of action observation on action selection in varying context.1 As summarized in
Table 13.1, there are 9 possible goal-directed sequences and communicative gestures
that distinct populations in AEL and ASL represent.

At any time of the human-robot interaction only a few of these action alterna-
tives are simultaneously possible, that is, are supported by input from connected
populations. Figure 13.3 illustrates the competition between action alternatives in
AEL and the decisions linked to overt behavior of the robot.2 It is important to
notice, however, that the competition process in ASL and AEL also works for more
complex scenarios with a larger set of possible complementary behaviors (e.g., a
household scenario [34], full construction of the ‘toy vehicle’ [6]). The number
of competing action representations only affects the time it takes to stabilize a
suprathreshold activation pattern representing a decision [13].

1But see http://www.youtube.com/watch?v=A0qemfXnWiE for a video with the complete con-
struction task.
2Video of the human-robot interactions depicted in Fig. 13.3 can be found in http://dei-s1.dei.
uminho.pt/pessoas/estela/Videos/JAST/Video_Fig4_Aros_Human_Toy_Vehicle.mpg.

http://www.youtube.com/watch?v=A0qemfXnWiE
http://dei-s1.dei.uminho.pt/pessoas/estela/Videos/JAST/Video_Fig4_Aros_Human_Toy_Vehicle.mpg
http://dei-s1.dei.uminho.pt/pessoas/estela/Videos/JAST/Video_Fig4_Aros_Human_Toy_Vehicle.mpg
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Table 13.1 Goal-direct sequences and communicative gestures

Action Sequence of motor primitives Short description

A1 reach wheel ! grasp ! attach attach wheel
A2 reach wheel ! grasp ! handover give wheel
A3 reach hand ! grasp wheel ! attach receive wheel to attach
A4 reach nut ! grasp ! attach attach nut
A5 reach nut ! grasp ! handover give nut
A6 reach hand ! grasp nut ! attach receive nut to attach
A7 hold out hand request piece
A8 point to wheel point to wheel
A9 point to nut point to nut

c

b

aFig. 13.3 Sequence of
decisions in AEL and
corresponding robot
behavior: (a) Temporal
evolution of total input to
AEL. (b) Temporal evolution
of field activity showing the
competition process and the
sequence of decisions ‘give
wheel’, ‘insert wheel’,
‘point to nut’ and ‘insert nut’.
(c) The four snapshots
illustrate corresponding
events of the human-robot
interactions
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13.5.1 Selection Based on an Anticipatory Model of Action
Observation and Shared Task Knowledge

A cornerstone of fluent human social interactions is the ability to predict the
outcomes of others’ action sequences. It allows individuals to prepare actions in
responses to events in the environment that will occur only a considerable time
ahead. For a robot that is supposed to assist a human user in a shared task, a goal
inference capacity should be used to select an action that best serves the user’s
future needs. But even if the human co-worker hesitates and does not show any overt
behavior, a fluent team performance requires that the robot is able to take initiative
and to select an action in accordance with the shared task knowledge.

These cognitive capacities are tested in the experiment depicted in Fig. 13.4
(video snapshots) and Fig. 13.5 (field activities). The experiment starts by placing
the platform on the table. The vision input updates the task representation in CSGL
and the activity of two populations representing the possible subgoals of attaching
the wheels become suprathreshold. Initially, the two wheels are located in the
working area of the human while the two nuts are located in the workspace of the
robot. As shown in snapshots S1–S2 (Fig. 13.4), the human reaches and grasps a
wheel. At the moment of the grasping, ARoS anticipates that the co-actor’s motor
intention is to mount the wheel on his side. It immediately decides to reach for a nut
to hold it out for the human since according to the assembly plan it is the component
that he will need next.

The capacity to infer the goal of the user at the time of grasping is possible
because how the partner grasps an object conveys information about what he intends
do with it. The robot has sequences of motor primitives in its motor repertoire that
associate the type of grasping with specific final goals. A grasping from above is
used to attach a wheel to the axle whereas using a side grip is the most comfortable
and secure way to hand the wheel over to the co-actor. The observation of an above
grip (represented in AOL) together with information about the currently active
subgoal (attach wheel on the user’s side in CSGL) trigger an activation peak in ASL
that represents the simulation of the corresponding ‘reaching-grasping-inserting’
chain (see panel a in Fig. 13.5, time interval T0–T1), which automatically activates
the underlying goal, ‘insert wheel’, in the intention layer (see panel b in Fig. 13.5,
time interval T0–T1; see also snapshot S1 in Fig. 13.4). Whenever the activation
pattern in IL rises above threshold it initiates a dynamic updating process in the
second layer of CSGL, which represents the next possible subgoal(s) for the team
(see panel c in Fig. 13.5; see also snapshot S2 in Fig. 13.4, time interval T0–T1).
The shared task representation allows the robot to select a complementary action
that serves the user’s future goal of fixing the wheel with a nut, i.e. the evolving
activation pattern in AEL (panel d in Fig. 13.5, time interval T0–T1) reflects the
decision to ‘give a nut’ to the human.

Since the robot has no wheel in its working area, an alternative decision would
be to request a wheel from the user to attach it on its side of the platform. The
robot’s choice to first serve the human is the result of slight differences in input
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Fig. 13.4 Video snapshots that illustrate the capacity of the robot to infer goals, take initiative and
anticipate the user’s future needs

strength from populations in CSGL to associated action representations in AEL.
These differences favor the execution of the user’s subtasks over the subtasks that
are under the control of the robot.

However, as illustrated in snapshot S3 (Fig. 13.4), in this experiment the human
does not attach the wheel. Instead he places the wheel back on the table, then
hesitates and does not show any object-directed action. As a consequence, no
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Fig. 13.5 Field activities in layers ASL, IL, CSGL and AEL for the experiment in Fig. 13.4.
(a) Temporal evolution of input to ASL (top) and field activity in ASL (bottom). (b) Temporal
evolution of field activity in IL. (c) Updating of CSGL layer representing future subgoals based on
the inferred motor intention of the user (in IL). (d) Temporal evolution of input to AEL (top) and
of activity in AEL (bottom)

suprathreshold activation exists at that time in ASL (see panel a, Fig. 13.5, time
interval T1–T2) and activity below threshold in IL indicates that the robot has
currently not attributed any action goal to the co-actor (see panel b, Fig. 13.5, time
interval T1–T2). The robot now takes initiative and decides to request a wheel to
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mount it on its side of the platform (snapshot S4, Fig. 13.4). This change in decision
is possible because the population representing the previously selected (but not yet
executed) behavior to transfer a nut is not supported anymore by input from IL. On
the other hand, information about currently possible subgoals and the location of
parts in the two working areas create sufficiently strong input to AEL to trigger a
self-stabilized activation of the population representing the ‘request-wheel’ gesture
(panel d, Fig. 13.5, time interval T1–T2).

Subsequently, the human grasps the wheel with a side grip (snapshot S5,
Fig. 13.4). This information coded in AOL (not shown) together with information
about currently active subgoals trigger a bump in ASL that represents the simulation
of the corresponding ‘reach-grasp-handover’ chain (panel a, Fig. 13.5, time interval
T2–T3), which in turn automatically activates the underlying goal representation
‘give wheel’ in IL (panel b in Fig. 13.5, time interval T2–T3). The evolving
suprathreshold activation in AEL (panel d, Fig. 13.5, time interval T2–T3) shows
the robot’s decision to receive the wheel and attach it (see also snapshots S6–S7
in Fig. 13.4). When the robot has attached the wheel, the vision input updates the
task representations in CSGL and a new bump encoding the subsequent subgoal
‘insert nut on robot’s side’ evolves (panel c, Fig. 13.5, time interval time T2–T3).
The second possible subgoal ‘insert wheel on user’s side’ remains active.

Next, the user grasps again a wheel from above, ARoS predicts as before that
the user will attach the wheel on his side (panel b in Fig. 13.5, time interval T3–T4)
and decides to hand over a nut to fix the wheel (snapshots S8–S9 in Fig. 13.4; see
panel d in Fig. 13.5, time interval T3–T4). Note that an alternative decision in AEL
could be to ‘grasp and attach a nut on the robot’s side’. The input from OML (not
shown) indicating that the two nuts are located in the workspace of the robot together
with the input from CSGL support the two action alternatives in AEL. As explained
above, the decision process appears to be biased toward serving the human first due
to the difference in input strengths from suprathreshold population activity in CSGL.
As can be seen in the snapshots S9–S11 (Fig. 13.4), the user attaches the wheel, and
subsequently grasps the nut from the robot’s hand to plug it on the axle. As the
vision system detects the change in the target object, the representations of already
achieved subgoals in the memory layer of CSGL are updated accordingly and the
subgoal ‘insert nut on robot’s side’ becomes active (not shown). As a consequence,
a bump in AEL evolves that represents the decision of the robot to grasp and attach
a nut on its side of the platform (see panel d in Fig. 13.5, time interval T4–T5). The
overt robot behavior is depicted in snapshots S12–S14 (Fig. 13.4).

13.5.2 Understanding Partially Occluded Actions

In the previous example, we have seen that the robot could infer through motor
simulation the co-actor’s motor intention from the way the object is grasped. But
what happens when the robot cannot directly observe the hand-object interaction?
In natural environments with multiple objects and occluding surfaces this is a
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Fig. 13.6 Snapshots of a video showing action understanding of partially occluded actions.
Snapshot S1 shows the view of the vision system of the robot

common scenario. The capacity to discern the user’s motor intention and to select an
appropriate complementary behavior should of course not be disrupted by missing
information about the grip type used. The firing of mirror neurons in similar
occluder paradigms suggests that working memory about objects in the scene and
shared task information about what the user should do in a specific situation may
sustain the motor simulation process. This is illustrated in the following interaction
scenario in which only the reaching part of the user’s action sequence can be
observed (see Fig. 13.6).

In this experiment, one wheel and the two nuts are located within the working
area of the robot while the second wheel is located in the user’s workspace. Initially
all objects are visible for the robot and their locations can thus be memorized in
OML. Then a box is introduced into the scene. The robot sees the user’s hand
disappearing behind the occluding surface but remembers that there is a wheel
behind it. Figure 13.73 illustrates the goal inference mechanism in this situation.

The corresponding population in AOL (not shown) codes only the reaching
behavior. The currently possible subgoals represented in CSGL are ‘insert wheel

3For the video see http://www.youtube.com/watch?v=7t5DLgH4DeQ.

http://www.youtube.com/watch?v=7t5DLgH4DeQ
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Fig. 13.7 Field activities for the experiment in Fig. 13.6. (a) Temporal evolution of activity
in OML. (b) Temporal evolution of CSGL activity representing currently possible subgoals.
(c) Temporal evolution of input to ASL (top) and of activity in ASL (bottom)

on user’s side’ and ‘insert wheel on robot’s side’ (panel b in Fig. 13.7). The inputs
from AOL and CSGL to ASL thus pre-activate the representations of two competing
action chains associated with two possible motor intentions. The additional input
necessary for goal inference comes from the information about the memorized
location of the wheels in the two workspaces represented in OML (see panel a in
Fig. 13.7). These inputs trigger the evolution of a self-stabilized activation peak in
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Fig. 13.8 Field activities in IL, CSGL and AEL for the experiment in Fig. 13.6. (a) Temporal
evolution of activity in IL. (b) Updating of future subgoals for the user in CSGL based on input
from IL. (c) Temporal evolution of input to AEL (top) and of activity in AEL (bottom)

ASL representing the action sequence ‘reach wheel-grasp-insert’ (see panel c in
Fig. 13.7; see also snapshot S2 in Fig. 13.6). This suprathreshold activation in turn
induces the evolution of a bump in IL representing the inferred goal of the human
to insert the wheel (see panel a in Fig. 13.8). Input from IL triggers a dynamic
updating process in the second layer of the CSGL, representing the next possible
subgoal(s) for the user (see panel b in Fig. 13.8). This allows the robot, as explained
in the previous example, to select a complementary action that serves the user’s
future needs. As can be seen when comparing the pattern of localized activation that
evolves in AEL, the robot decides to serve the human by grasping a nut for handing
it over (see panel c in Fig. 13.8 and snapshots S3–S5 in Fig. 13.6).

Note that the simplification for the current robotics work to represent an entire
action sequence like reaching-grasping-attaching in a single population does not
affect the mechanisms supporting the simulation of partially occlude actions in ASL.
A chain of coupled populations of mirror neurons representing individual motor
acts [19] may become sequentially activated above threshold by assuming that all
individual population of the chain are pre-activated by input from OML and CSGL,
and the initial “reaching” population gets additional input from the corresponding
neuronal pool in the action observation layer [16].
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13.6 Discussion

This work showed that Dynamic Neural Fields provide a powerful theoretical
framework for designing autonomous robots able to naturally interact with humans
in challenging real-word environments. Flexible and intelligent robot behavior in a
social context cannot be purely explained by a stimulus-reaction paradigm in which
the system merely maps in a pre-determined manner current environmental inputs
onto overt behavior. Dynamic neural fields explain the emergence of persistent
neural activation patterns that allow a cognitive agent to initiate and organize
behavior informed by past sensory experience, anticipated future environmental
inputs and distal behavioral goals. The DNF architecture for joint action reflects the
notion that cognitive representations, that is, all items of memory and knowledge,
consist of distributed, interactive, and overlapping networks of cortical populations
([21]). Network neurons showing suprathreshold activity are participating in the
selection of actions and their associated consequences. Since the decision-making
normally involves multiple, distributed representations of potential actions that
compete for expression in overt performance, the robot’s goal-directed behavior is
continuously updated for the current environmental context. Important for decision
making in a collaborative setting, inferring others’ goals from their behavior is
realized by internal motor simulation based on the activation of the same joint
representations of actions and their environmental effects (“mirror mechanism”,
[36]). Through this automatic motor resonance process, the observer becomes
aligned with the co-actor in terms of actions and goals. This alignment allows the
robot to adjust its behavior without explicit communication to those of the human
co-actor in space and time (for an integration of verbal communication in the DNF
architecture see [4]).

The implementation of aspects of real-time social cognition in a robot based on
continuously changing patterns of neuronal activity in a distributed, interactive net-
work strongly contrasts with traditional AI approaches. They realize the underlying
cognitive processes as the manipulation of discrete symbols that are qualitatively
distinct and entirely separated from sensory and motor information.We do not
deny that the sequence of decisions shown in our robotics experiments could be
implemented by symbolic planning as well. In fact, similar joint assembly tasks
have been used in the past to test AI-style control architectures for human-robot
interactions [1, 28, 42]. Typically, these architectures include a dedicated module
that organize the high-level task of intention coordination using rule-based logic.
However, the additional planning step which is needed to link the representation
of every high-level decision to the level of action preparation for the robot’s
actuators greatly reduces the efficiency of those representations. This makes it hard
or even impossible to achieve the impressive flexibility and fluency of human team
performance.

The functional neural field architecture shares many features with neural network
models that also take the known connectivity and functional role of different
brain areas into account to explain cognitive behavior. For instance, Eliasmith and
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colleagues [11] have recently tested a large-scale network of populations of spiking
neurons in various tasks ranging from pattern recognition and completion to basic
semantic reasoning. The network is presented with sequences of simple visual
characters and controls a simulated robot arm drawing these characters. Like in the
DNF model of joint action, task and context information is able to autonomously
change the information flow between subsystems of the brain-inspired network
architecture to generate goal-directed behavior. However, the central role of stable
attractor states of the population dynamics for higher level cognition (e.g., internal
simulation, decision making, working memory) postulated and analyzed by the
dynamic neural field approach (see also the discussion in Chap. 12) is much
less emphasized. Different to our current robotics implementations, the large-
scale neural network performs the compression operations from higher-dimensional
input spaces to lower-dimensional functional spaces that we assume for the DNF
representations. We are currently testing learning algorithms that may explain for
instance how neural populations in layers AOL and IL representing specific grasping
categories develop from observing the trajectories of different grasping behaviors.

In the experiments reported here, the robot-human team executed the individual
assembly steps without errors and in the correct temporal order. It is important
to keep in mind, however, that decisions based on noisy or incomplete sensory
information and anticipated environmental inputs may fail. It is thus no surprise
that execution and prediction errors occur with some probability in complex real-
world scenarios such as the joint assembly task. To work efficiently as a team,
it is important that these errors are detected and compensated by one or both
team members before success is compromised. Neurophysiological and behavioral
findings suggest that similar neural mechanisms are involved in monitoring one’s
own and other’s task performance [40] We have described in detail elsewhere
how the basic DNF model of joint action coordination can be extended to include
also an action monitoring function [6]. The key idea is that specific populations
integrate activity from connected neural pools or external sensory signals that carry
the conflicting information. For instance, the user might want to transfer a nut to
the robot but a nut has been already attached at the robot’s construction side. To
detect the conflict between the inferred intention of the user and the state of the
construction it is sufficient to postulate that input from IL and CSGL may drive the
target population beyond threshold. This suprathreshold activity may then produce
(inhibitory) biasing effects for the competition between action representations in
AEL. In the example, the prepotent complementary behavior of receiving the nut
has to be suppressed to favor a correct response like a communicative pointing at
the attached object. As integral part of the distributed network, the action monitoring
thus provides just another input to the dynamic action selection process.

The applications in the domain of cognitive robotics provide new challenges
for the theoretical analysis of dynamic neural fields. Most current mathematical
studies are exclusively concerned with the existence and stability of characteristic
patterns like bumps or traveling waves [9]. They do not address the spatio-temporal
properties that external inputs must satisfy to generate those patterns when applied
to a field at rest or in a pre-activated state. For instance, multi-bump solutions that
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we and others apply as a memory model for multiple items or sequential events [17]
are known to exist when a coupling function with oscillatory decay is used [31].
From an application point of view, analyzing the spatial properties of the inputs
(e.g., width, relative distance etc.) that may generate multi-bump solutions when
they are presented simultaneously or in sequential order is of highest importance
(Ferreira, Erlhagen and Bicho, in preparation).

The present robotics implementations with hand-coded synaptic links between
connected populations are based on the seminal analytical studies of Amari and
co-workers on the formation of patterns with stationary localized stimuli. For the
robotics domain, it would be highly desirable to combine the field dynamics with
a learning dynamics that would allow us to establish the inter-field connections in
the distributed network during training and practice. According to the principle first
enunciated by Hebb [27], memory is formed by associative synaptic modulations
of connections between neuronal assemblies simultaneously excited. Important
for cognitive control, persistent population activity allows the learning system
to establish associations between transient events separated in time. In previous
simulation studies, we have shown for instance that a rate-based Hebbian learning
rule (for review of mathematical formulations see [23]) can be applied to establish
the goal-directed mappings for action simulation in the mirror circuit [15, 16].
A more rigorous understanding of the field dynamics with the weighted, self-
stabilized activity from connected populations as non-stationary input would be an
important contribution for the design of an autonomous learning system.

Dynamic approaches to robotics and cognition have been often criticized to
address mainly lower-level cognitive phenomena like sensory-motor coordination,
path planning or perception and not the high-level cognitive capacities which are
characteristics of human beings [46]. Being able to synthesize in an embodied
artificial agent the cognitive demands of real-time cooperative interactions with
a human co-actor shows that dynamic neural field theory provides a promising
research program for bridging this gap.
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