
Chapter 11
Universal Neural Field Computation

Peter beim Graben and Roland Potthast

Abstract Turing machines and Gödel numbers are important pillars of the theory
of computation. Thus, any computational architecture needs to show how it could
relate to Turing machines and how stable implementations of Turing computation
are possible. In this chapter, we implement universal Turing computation in a
neural field environment. To this end, we employ the canonical symbologram
representation of a Turing machine obtained from a Gödel encoding of its symbolic
repertoire and generalized shifts. The resulting nonlinear dynamical automaton
(NDA) is a piecewise affine-linear map acting on the unit square that is partitioned
into rectangular domains. Instead of looking at point dynamics in phase space,
we then consider functional dynamics of probability distribution functions (p.d.f.s)
over phase space. This is generally described by a Frobenius-Perron integral
transformation that can be regarded as a neural field equation over the unit square
as feature space of a Dynamic Field Theory (DFT). Solving the Frobenius-Perron
equation yields that uniform p.d.f.s with rectangular support are mapped onto
uniform p.d.f.s with rectangular support, again. We call the resulting representation
dynamic field automaton.
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11.1 Introduction

Studying the computational capabilities of neurodynamical systems has commenced
with the groundbreaking 1943 article of McCulloch and Pitts [27] on networks of
idealized two-state neurons that essentially behave as logic gates. Because nowadays
computers are nothing else than large-scale networks of logic gates, it is clear that
computers can in principle be build up by neural networks of McCulloch-Pitts units.
This has also been demonstrated by a number of theoretical studies reviewed in
[46]. However, even the most powerful modern workstation is, from a mathematical
point of view, only a finite state machine due to its rather huge, though limited
memory, while a universal computer, formally codified as a Turing machine [20,51],
possesses an unbounded memory tape.

Using continuous-state units with a sigmoidal activation function, Siegelmann
and Sontag [43] were able to prove that a universal Turing machine can be imple-
mented by a recurrent neural network of about 900 units, most of them describing
the machine’s control states, while the tape is essentially represented by a plane
spanned by the activations of just two units. The same construction, employing a
Gödel code [17,19] for the tape symbols, has been previously used by Moore [29,30]
for proving the equivalence of nonlinear dynamical automata and Turing machines.
Along a different vain, deploying sequential cascaded networks, Pollack [36] and
later Moore [31] and Tabor [48, 49] introduced and further generalized dynamical
automata as nonautonomous dynamical systems. An even further generalization of
dynamical automata, where the tape space becomes represented by a function space,
led Moore and Crutchfield [32] to the concept of a quantum automaton (see [6] for
a review and some unified treatment of these different approaches).

Quite remarkably, another paper from McCulloch and Pitts published in 1947
[34] already set up the groundwork for such functional representations in continuous
neural systems. Here, those pioneers investigated distributed neural activation over
cortical or subcortical maps representing visual or auditory feature spaces. These
neural fields are copied onto many layers, each transforming the field according to
a particular member of a symmetry group. For these, a number of field functionals
is applied to yield a group invariant that serves for subsequent pattern detection. As
early as in this publication, we already find all necessary ingredients for a Dynamic
Field Architecture: a layered system of neural fields defined over appropriate feature
spaces [14, 42] (see also Chaps. 12 and 13 in this volume).

We begin this chapter with a general exposition of dynamic field architectures
in Sect. 11.2 where we illustrate how variables and structured data types on the one
hand and algorithms and sequential processes on the other hand can be implemented
in such environments. In Sect. 11.3 we review known facts about nonlinear dynami-
cal automata and introduce dynamic field automata from a different perspective. The
chapter is concluded with a short discussion about universal computation in neural
fields.
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11.2 Principles of Universal Computation

As already suggested by McCulloch and Pitts [34] in 1947, a neural, or likewise,
dynamic field architecture is a layered system of Dynamic Neural Fields ui .x; t/ 2
R where 1 � i � n (i; n 2 N) indicates the layer, x 2 D denotes spatial position
in a suitable d -dimensional feature space D � R

d and t 2 R
C
0 time. Usually, the

fields obey the Amari neural field equation [2]

�i
@ui .x; t/

@t
D �ui .x; t/Ch.x/C

nX

jD1

Z

D

wij.x; y/f .uj .y; t// dyCpi .x; t/; (11.1)

where �i is a characteristic time scale of the i -th layer, h.x/ the unique resting
activity, wij.x; y/ the synaptic weight kernel for a connection to site x in layer i
from site y in layer j ,

f .u/ D 1

1C e�ˇ.u��/ (11.2)

is a sigmoidal activation function with gain ˇ and threshold � , and pi .x; t/ external
input delivered to site x in layer i at time t . Note, that a two-layered architecture
could be conveniently described by a one-layered complex neural field z.x; t/ D
u1.x; t/C iu2.x; t/ as used in [6, 7, 11].

Commonly, Eq. (11.1) is often simplified in the literature by assuming one
universal time constant � , by setting h D 0 and by replacing pi through appropriate
initial, ui .x; 0/, and boundary conditions, ui .@D; t/. With these simplifications, we
have to solve the Amari equation

�
@ui .x; t/

@t
D �ui .x; t/C

nX

jD1

Z

D

wij.x; y/f .uj .y; t// dy (11.3)

for initial condition ui .x; 0/, stating a computational task. Solving that task is
achieved through a transient dynamics of Eq. (11.3) that eventually settles down
either in an attractor state or in a distinguished terminal state Ui.x; T /, after elapsed
time T . Mapping one state into another, which again leads to a transition to a third
state and so on, we will see how the field dynamics can be interpreted as a kind of
universal computation, carried out by a program encoded in the particular kernels
wij.x; y/, which are in general heterogeneous, i.e. they are not pure convolution
kernels: wij.x; y/ ¤ wij.jjx � yjj/ [5, 22].

11.2.1 Variables and Data Types

How can variables be realized in a neural field environment? At the hardware-
level of conventional digital computers, variables are sequences of bytes stored
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in random access memory (RAM). Since a byte is a word of eight bits and since
nowadays RAM chips have about 2–8 GB, the computer’s memory appears as an
approximately 8�4 �109 binary matrix, similar to an image of black-white pixels. It
seems plausible to regard this RAM image as a discretized neural field, such that
the value of u.x; t/ at x 2 D could be interpreted as a particular instantiation
of a variable. However, this is not tenable for at least two reasons. First, such
variables would be highly volatile as bits might change after every processing cycle.
Second, the required function space would be a ‘mathematical monster’ containing
highly discontinuous functions that are not admitted for the dynamical law (11.3).
Therefore, variables have to be differently introduced into neural field computers by
assuring temporal stability and spatial smoothness.

We first discuss the second point. Possible solutions of the neural field equation
(11.3) must belong to appropriately chosen function spaces that allow the storage
and retrieval of variables through binding and unbinding operations. A variable
is stored in the neural field by binding its value to an address and its value is
retrieved by the corresponding unbinding procedure. These operations have been
described in the framework of Vector Symbolic Architectures [16,44] and applied to
Dynamic Neural Fields by beim Graben and Potthast [6] through a three-tier top-
down approach, called Dynamic Cognitive Modeling, where variables are regarded
as instantiations of data types of arbitrary complexity, ranging from primitive
data types such as characters, integers, or floating numbers, over arrays (strings,
vectors and matrices) of those primitives, up to structures and objects that allow
the representation of lists, frames or trees. These data types are in a first step
decomposed into filler/role bindings [44] which are sets of ordered pairs of sets
of ordered pairs etc., of so-called fillers and roles. Simple fillers are primitives
whereas roles address the appearance of a primitive in a complex data type. These
addresses could be, e.g., array indices or tree positions. Such filler/role bindings can
recursively serve as complex fillers bound to other roles. In a second step, fillers
and roles are identified with particular basis functions over suitable feature spaces
while the binding is realized through functional tensor products with subsequent
compression (e.g. by means of convolution products) [35, 45].

Since the complete variable allocation of a conventional digital computer can
be viewed as an instantiation of only one complex data type, namely an array
containing every variable at a particular address, it is possible to map a total variable
allocation onto a compressed tensor product in function space of a dynamic field
architecture. Assuming that the field u encodes such an allocation, a new variable
' in its functional tensor product representation is stored by binding it first to a
new address  , yielding ' ˝  and second by superimposing it with the current
allocation, i.e. u C ' ˝  . Accordingly, the value of ' is retrieved through an
unbinding h C; ui where  C is the adjoint of the address  where ' is bound
to. These operations require further underlying structure of the employed function
spaces that are therefore chosen as Banach or Hilbert spaces where either adjoint or
bi-orthogonal basis functions are available (see [4, 6, 7, 11, 38] for examples).

The first problem was the volatility of neural fields. This has been resolved using
attractor neural networks [18, 21] where variables are stabilized as asymptotically
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stable fixed points (as in Chap. 3). Since a fixed point is defined through Pui .x; t/D 0,
the field obeys the equation

ui .x; t/ D
nX

jD1

Z

D

wij.x; y/f .uj .y; t// dy : (11.4)

This is often achieved by means of a particularly chosen kernel wii.jjx � yjj/
with local excitation and global inhibition, often called lateral inhibition kernels
[14, 42].

11.2.2 Algorithms and Sequential Processes

Conventional computers run programs that dynamically change variables. Programs
perform algorithms that are sequences of instructions, including operations upon
variables, decisions, loops, etc. From a mathematical point of view, an algorithm
is an element of an abstract algebra that has a representation as an operator on
the space of variable allocations, which is well-known as denotational semantics
in computer science [50]. The algebra product is the concatenation of instructions
being preserved in the representation which is thereby an algebra homomorphism
[4, 6]. Concatenating instructions or composing operators takes place step-by-step
in discrete time. Neural field dynamics, as governed by Eq. (11.3), however requires
continuous time. How can sequential algorithms be incorporated into the continuum
of temporal evolution?

Looking first at conventional digital computers again suggests a possible solu-
tion: computers are clocked. Variables remain stable during a clock cycle and gating
enables instructions to access variable space. A similar approach has recently been
introduced to dynamic field architectures by Sandamirskaya and Schöner [40, 41].
Here a sequence of neural field activities is stored in a stack of layers, each stabilized
by a lateral inhibition kernel. One state is destabilized by a gating signal provided by
a condition-of-satisfaction mechanism playing the role of the ‘clock’ in this account.
Afterwards, the decaying pattern in one layer, excites the next relevant field in a
subsequent layer.

Another solution, already outlined in our Dynamic Cognitive Modeling frame-
work [6], identifies the intermediate results of a computation with saddle fields
that are connected along their respective stable and unstable manifolds to form
stable heteroclinic sequences [1, 5, 39]. We have utilized this approach in [7] for a
dynamic field model of syntactic language processing. Moreover, the chosen model
of winnerless competition among neural populations [15] allowed us to explicitly
construct the synaptic weight kernel from the filler/role binding of syntactic phrase
structure trees [7].
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11.3 Dynamic Field Automata

In this section we elaborate our recent proposal on dynamic field automata [8] by
crucially restricting function spaces to spaces with Haar bases which are piecewise
constant fields u.x; t/ for x 2 D, i.e.

u.x; t/ D
(
˛.t/ W x 2 A.t/
0 W x … A.t/ (11.5)

with some time-dependent amplitude ˛.t/ and a possibly time-dependent domain
A.t/ � D. Note, that we consider only one-layered neural fields in the sequel for
the sake of simplicity.

For such a choice, we first observe that the application of the nonlinear activation
function f yields another piecewise constant function over D:

f .u.x; t// D
(
f .˛.t// W x 2 A.t/
f .0/ W x … A.t/ ; (11.6)

which can be significantly simplified by the choice f .0/ D 0, that holds, e.g., for the
linear identity f D id, for the Heaviside step function f D � or for the hyperbolic
tangens, f D tanh.

With this simplification, the input integral of the neural field becomes

Z

D

w.x; y/f .u.y; t// dy D
Z

A.t/

w.x; y/f .˛.t// dy D f .˛.t//

Z

A.t/

w.x; y/ dy :

(11.7)

When we additionally restrict ourselves to piecewise constant kernels as well,
the last integral becomes

Z

A.t/

w.x; y/ dy D wjA.t/j (11.8)

with w as constant kernel value and jA.t/j the measure (i.e. the volume) of the
domain A.t/. Inserting (11.7) and (11.8) into the fixed point equation (11.4) yields

u0 D jA.t/j � w � f .u0/ (11.9)

for the fixed point u0. Next, we carry out a linear stability analysis

Pu D �u C jA.t/jwf .u/ (11.10)

D �.u0 C .u � u0//C jA.t/jw
�
f .u0/C f 0.u0/ � .u � u0/

�
CO.ju � u0j2/

D
�

� 1C jA.t/jwf 0.u0/
�

� .u � u0/CO.ju � u0j2/ :
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Fig. 11.1 Stability of
piecewise constant neural
field u0.x; t/ over a domain
A � D. Shown are the
sigmoidal activation function
f .u/ (solid) and u (dotted)
for comparison. The axes
here are given in terms of
absolute numbers without
unit as employed in
Eqs. (11.2) or (11.3)

Thus, we conclude that if jA.t/jwf 0.u0/ < 1, then Pu < 0 for u > u0 and conversely,
Pu > 0 for u < u0 in a neighborhood of u0, such that u0 is an asymptotically stable
fixed point of the neural field equation.

Of course, linear stability analysis is a standard tool to investigate the behavior
of dynamic fields around fixed points [5]. For our particular situation it is visualized
in Fig. 11.1. When the solid curve displaying jA.t/jwf .u/ is above u (the dotted
curve), then the dynamics (11.10) leads to an increase of u, indicated by the arrows
pointing to the right. In the case where jA.t/jwf .u/ < u, a decrease of u is obtained
from (11.10). This is indicated by the arrows pointing to the left. When we have
three points where the curves coincide, Fig. 11.1 shows that the setting leads to two
stable fixed-points of the dynamics. When the activity field u.x/ reaches any value
close to these fixed points, the dynamics leads them to the fixed-point values u0.

11.3.1 Turing Machines

For the construction of dynamic field automata through neural fields we consider
discrete time that might be supplied by some clock mechanism. This requires the
stabilization of the fields (11.5) within one clock cycle which can be achieved
by self-excitation with a nonlinear activation function f as described in (11.10),
leading to stable excitations as long as we do not include inhibitive elements, where
a subsequent state would inhibit those states which were previously excited.

Next we briefly summarize some concepts from theoretical computer sci-
ence [6, 20, 51]. A Turing machine is formally defined as a 7-tuple MTM D
.Q;N;T; ı; q0; b; F /, whereQ is a finite set of machine control states, N is another
finite set of tape symbols, containing a distinguished ‘blank’ symbol b, T � N n fbg
is input alphabet, and

ı W Q � N ! Q � N � fL;Rg (11.11)
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Fig. 11.2 Example state transition from (a) to (b) of a Turing machine with ı.1;a/ D .2;b; R/

is a partial state transition function, the so-called ‘machine table’, determining the
action of the machine when q 2 Q is the current state at time t and a 2 N is
the current symbol at the memory tape under the read/write head. The machine
moves then into another state q0 2 Q at time t C 1 replacing the symbol a by
another symbol a0 2 N and shifting the tape either one place to the left (‘L’) or to
the right (‘R’). Figure 11.2 illustrates such a state transition. Finally, q0 2 Q is a
distinguished initial state and F � Q is a set of ‘halting states’ that are assumed
when a computation terminates [20].

A Turing machine becomes a time- and state-discrete dynamical system by
introducing state descriptions, which are triples

s D .˛; q; ˇ/ (11.12)

where ˛; ˇ 2 N� are strings of tape symbols to the left and to the right from the
head, respectively. N� contains all strings of tape symbols from N of arbitrary, yet
finite, length, delimited by blank symbols b. Then, the transition function can be
extended to state descriptions by

ı� W S ! S ; (11.13)

where S D N� �Q�N� now plays the role of a phase space of a discrete dynamical
system. The set of tape symbols and machine states then becomes a larger alphabet
A D N [Q.

Moreover, state descriptions can be conveniently expressed by means of bi-
infinite ‘dotted sequences’

s D : : : ai
�3ai�2ai�1 :ai0ai1ai2 : : : (11.14)

with symbols aik 2 A. In Eq. (11.14) the dot denotes the observation time t D 0

such that the symbol left to the dot, ai
�1 , displays the current state, dissecting the

string s into two one-sided infinite strings s D .˛0; ˇ/ with ˛0 D ai
�1ai�2ai�3 : : : as

the left-hand part in reversed order and ˇ D ai0ai1ai2 : : :



11 Universal Neural Field Computation 307

In symbolic dynamics, a cylinder set [28] is a subset of the space AZ of bi-
infinite sequences from an alphabet A that agree in a particular building block of
length n 2 N from a particular instance of time t 2 Z, i.e.

C.n; t/ D Œai1 ; : : : ; ain � D fs 2 AZ j stCk�1 D aik ; k D 1; : : : ; ng (11.15)

is called n-cylinder at time t 2 Z. When now t < 0; n > jt j C 1 the cylinder
contains the dotted word w D s�1:s0 and can therefore be decomposed into a pair
of cylinders .C 0.jt j; t /; C.jt j C n � 1; 0// where C 0 denotes reversed order of the
defining strings again.

A generalized shift [29,30] emulating a Turing machine is a pairMGS D .AZ; �/

where AZ is the space of dotted sequences with s 2 AZ and � W AZ ! AZ is
given as

�.s/ D �F.s/.s ˚G.s// (11.16)

with

F W AZ ! Z (11.17)

G W AZ ! Ae ; (11.18)

where � W AZ ! AZ is the left-shift known from symbolic dynamics [26], F.s/ D l

dictates a number of shifts to the right (l < 0), to the left (l > 0) or no shift at all
(l D 0), G.s/ is a word w0 of length e 2 N in the domain of effect (DoE) replacing
the content w 2 Ad , which is a word of length d 2 N, in the domain of dependence
(DoD) of s, and s ˚G.s/ denotes this replacement function.

A generalized shift becomes a Turing machine by interpreting ai
�1 as the current

control state q and ai0 as the tape symbol currently underneath the head. Then the
remainder of ˛ is the tape left to the head and the remainder of ˇ is the tape right to
the head. The DoD is the word w D ai

�1 :ai0 of length d D 2.
As an instructive example we consider a toy model of syntactic language

processing. In order to process a sentence such as “the dog chased the cat”, linguists
often derive a context-free grammar (CFG) from a phrase structure tree (see [10] for
a more detailed example). In our case such a CFG could consist of rewriting rules

S ! NP VP (11.19)

VP ! V NP (11.20)

NP ! the dog (11.21)

V ! chased (11.22)

NP ! the cat (11.23)

where the left-hand side always presents a nonterminal symbol to be expanded into
a string of nonterminal and terminal symbols at the right-hand side. Omitting the
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Table 11.1 Sequence of state transitions of the generalized shift processing the well-formed string
“the dog chased the cat” (NP V NP). The operations are indicated as follows: “predict (X)”
means prediction according to rule (X) of the context-free grammar; attach means cancelation
of successfully predicted terminals both from stack and input; and “accept” means acceptance of
the string as being well-formed

Time State Operation

0 S . NP V NP predict (11.19)
1 VP NP . NP V NP attach
2 VP . V NP predict (11.20)
3 NP V . V NP attach
4 NP . NP attach
5 � . � accept

lexical rules (11.21–11.23), we regard the symbols NP;V, denoting ‘noun phrase’
and ‘verb’, respectively, as terminals and the symbols S (‘sentence’) and VP (‘verbal
phrase’) as nonterminals.

A generalized shift processing this grammar is then prescribed by the mappings

S:a 7! VP NP:a
VP:a 7! NP V:a
a:a 7! �:�

(11.24)

where the left-hand side of the tape is now called ‘stack’ and the right-hand side
‘input’. In (11.24) a 2 T stands for an arbitrary input symbol. The empty word
is indicated by �. Note the reversed order for the stack left of the dot. The first
two operations in (11.24) are predictions according to a rule of the CFG while the
last one is an attachment of input material with already predicted material, to be
understood as a matching step.

With this machine table, a parse of the sentence “the dog chased the cat”
(NP V NP) is then obtained in Table 11.1.

11.3.2 Nonlinear Dynamical Automata

Applying a Gödel encoding [6, 17, 19]

x D  .˛0/ WD
1X

kD1
 .ai

�k
/b�k
L (11.25)

y D  .ˇ/ WD
1X

kD0
 .aik /b

�k�1
R

to the pair s D .˛0; ˇ/ from the Turing machine state description (11.14) where
 .aj / 2 N0 is an integer Gödel number for symbol aj 2 A and bL; bR 2 N are the
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numbers of symbols that could appear either in ˛0 or in ˇ, respectively, yields the
so-called symbol plane or symbologram representation x D .x; y/T of s in the unit
square X [13, 23].

The symbologram representation of a generalized shift is a nonlinear dynamical
automaton (NDA) [6,9,10] which is a triple MNDA D .X;P; ˚/ where .X;˚/ is a
time-discrete dynamical system with phase spaceX D Œ0; 1�2 � R

2, the unit square,
and flow ˚ W X ! X . P D fD	 j	 D .i; j /; 1 � i � m; 1 � j � n;m; n 2 Ng
is a rectangular partition of X into pairwise disjoint sets, D	 \D
 D ; for 	 ¤ 
,
covering the whole phase space X D S

	 D	 , such that D	 D Ii � Jj with real
intervals Ii ; Jj � Œ0; 1� for each bi-index 	 D .i; j /. The cells D	 are the domains
of the branches of ˚ which is a piecewise affine-linear map

˚.x/ D
 
a	x
a	y

!
C
 
�	x 0

0 �	y

!
�
�
x

y

�
; (11.26)

when x D .x; y/T 2 D	 . The vectors .a	x; a
	
y/
T 2 R

2 characterize parallel

translations, while the matrix coefficients �	x; �
	
y 2 R

C
0 mediate either stretchings

(� > 1), squeezings (� < 1), or identities (� D 1) along the x- and y-axes,
respectively.

Hence, the NDA’s dynamics, obtained by iterating an orbit fxt 2 X jt 2 N0g from
initial condition x0 through

xtC1 D ˚.xt / (11.27)

describes a symbolic computation by means of a generalized shift [29, 30] when
subjected to the coarse-graining P .

The domains of dependence and effect (DoD and DoE) of an NDA, respectively,
are obtained as images of cylinder sets under the Gödel encoding (11.25). Each
cylinder possesses a lower and an upper bound, given by the Gödel numbers 0 and
bL � 1 or bR � 1, respectively. Thus,

inf. .C 0.jt j; t /// D  .ai
jtj
; : : : ; ai1 /

sup. .C 0.jt j; t /// D  .ai
jtj
; : : : ; ai1 /C b

�jt j
L

inf. .C.jt j C n � 1; 0/// D  .ai
jtjC1

; : : : ; ain/

sup. .C.jt j C n � 1; 0/// D  .ai
jtjC1

; : : : ; ain/C b
�jt j�nC1
R ;

where the suprema have been evaluated by means of geometric series [9]. Thereby,
each part cylinder C is mapped onto a real interval Œinf.C /; sup.C /� � Œ0; 1� and
the complete cylinder C.n; t/ onto the Cartesian product of intervals R D I �
J � Œ0; 1�2, i.e. onto a rectangle in unit square. In particular, the empty cylinder,
corresponding to the empty tape �:� is represented by the complete phase space
X D Œ0; 1�2.
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Fig. 11.3 Symbologram of the NDA processing the string “the dog chased the cat” (NP V NP).
(a) Domains of dependence (DoD) of actions: identity (white), predict (gray), and attach (black).
(b) Domains of effect (DoE): images of prediction (gray), black rectangles from (a) are mapped
onto the whole unit square during attachment

Fixing the prefixes of both part cylinders and allowing for random symbolic
continuation beyond the defining building blocks, results in a cloud of randomly
scattered points across a rectangle R in the symbologram [10]. These rectangles
are consistent with the symbol processing dynamics of the NDA, while individual
points x 2 Œ0; 1�2 no longer have an immediate symbolic interpretation. Therefore,
we refer to arbitrary rectangles R 2 Œ0; 1�2 as to NDA macrostates, distinguishing
them from NDA microstates x of the underlying dynamical system.

Coming back to our language example, we create an NDA from an arbitrary
Gödel encoding. Choosing

 .NP/ D 0 (11.28)

 .V/ D 1 (11.29)

 .VP/ D 2 (11.30)

 .S/ D 3 (11.31)

we have bL D 4 stack symbols and bR D 2 input symbols. Thus, the symbologram
is partitioned into eight rectangles. Figure 11.3 displays the resulting (a) DoD and
(b) DoE.

11.3.3 Neural Field Computation

Next we replace the NDA point dynamics in phase space by functional dynamics
in Banach space. Instead of iterating clouds of randomly prepared initial conditions
according to a deterministic dynamics, we consider the deterministic dynamics of
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probability measures over phase space. This higher level of description that goes
back to Koopman et al. [24,25] has recently been revitalized for dynamical systems
theory [12].

The starting point for this approach is the conservation of probability as
expressed by the Frobenius-Perron equation [33]

�.x; t / D
Z

X

ı.x � ˚t�t 0.x0//�.x0; t 0/dx0 ; (11.32)

where �.x; t / denotes a probability density function over the phase space X at time
t of a dynamical system, ˚t W X ! X refers to either a continuous-time (t 2 R

C
0 )

or discrete-time (t 2 N0) flow and the integral over the delta function expresses the
probability summation of alternative trajectories all leading into the same state x at
time t .

In the case of an NDA, the flow is discrete and piecewise affine-linear on the
domains D	 as given by Eq. (11.26). As initial probability distribution densities
�.x; 0/ we consider uniform distributions with rectangular support R0 � X ,
corresponding to an initial NDA macrostate,

u.x; 0/ D 1

jR0jR0.x/ ; (11.33)

where

A.x/ D
(
0 W x … A
1 W x 2 A (11.34)

is the characteristic function for a set A � X . A crucial requirement for these
distributions is that they must be consistent with the partition P of the NDA, i.e.
there must be a bi-index 	 D .i; j / such that the support R0 � D	 .

Inserting (11.33) into the Frobenius-Perron equation (11.32) yields for one
iteration

u.x; t C 1/ D
Z

X

ı.x � ˚.x0//u.x0; t /dx0 : (11.35)

In order to evaluate (11.35), we first use the product decomposition of the
involved functions:

u.x; 0/ D ux.x; 0/uy.y; 0/ (11.36)

with

ux.x; 0/ D 1

jI0jI0.x/ (11.37)
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uy.y; 0/ D 1

jJ0jJ0.y/ (11.38)

and

ı.x � ˚.x0// D ı.x � ˚x.x0//ı.y � ˚y.x0// ; (11.39)

where the intervals I0; J0 are the projections of R0 onto x- and y-axes, respectively.
Correspondingly, ˚x and ˚y are the projections of ˚ onto x- and y-axes, respec-
tively. These are obtained from (11.26) as

˚x.x0/ D a	x C �	xx
0 (11.40)

˚y.x0/ D a	y C �	yy
0 : (11.41)

Using this factorization, the Frobenius-Perron equation (11.35) separates into

ux.x; t C 1/ D
Z

Œ0;1�

ı.x � a	x � �	xx0/ux.x0; t /dx0 (11.42)

uy.y; t C 1/ D
Z

Œ0;1�

ı.y � a	y � �	yy0/uy.y0; t /dy0 (11.43)

Next, we evaluate the delta functions according to the well-known lemma

ı.f .x// D
X

lWsimple zeros

jf 0.xl /j�1ı.x � xl/ ; (11.44)

where f 0.xl / indicates the first derivative of f in xl . Equation (11.44) yields for the
x-axis

x	 D x � a	x
�	x

; (11.45)

i.e. one zero for each 	-branch, and hence

jf 0.x0
	/j D �	x : (11.46)

Inserting (11.44), (11.45) and (11.46) into (11.42), gives

ux.x; t C 1/ D
X

	

Z

Œ0;1�

1

�	x
ı

�
x0 � x � a	x

�	x

�
ux.x

0; t /dx0

D
X

	

1

�	x
ux

�
x � a	x
�	x

; t

�
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Next, we take into account that the distributions must be consistent with the
NDA’s partition. Therefore, for given x 2 D	 there is only one branch of ˚
contributing a simple zero to the sum above. Hence,

ux.x; t C 1/ D 1

�	x
ux

�
x � a	x
�	x

; t

�
: (11.47)

Our main finding is now that the evolution of uniform p.d.f.s with rectangular
support according to the NDA dynamics Eq. (11.35) is governed by

u.x; t / D 1

j˚t.R0/j˚
t .R0/.x/ ; (11.48)

i.e. uniform distributions with rectangular support are mapped onto uniform distri-
butions with rectangular support [8].

For the proof we first insert the initial uniform density distribution (11.33) for
t D 0 into Eq. (11.47), to obtain by virtue of (11.37)

ux.x; 1/ D 1

�	x
ux

�
x � a	x
�	x

; 0

�
D 1

�	x

1

jI0jI0
�
x � a	x
�	x

�
:

Deploying (11.34) yields

I0

�
x � a	x
�	x

�
D
8
<

:
0 W x�a	x

�	x
… I0

1 W x�a	x
�	x

2 I0 :

Let now I0 D Œp0; q0� � Œ0; 1� we get

x � a	x
�	x

2 I0

” p0 � x � a	x
�	x

� q0

” �	xp0 � x � a	x � �	xq0

” a	x C �	xp0 � x � a	x C �	xq0

” ˚x.p0/ � x � ˚x.q0/

” x 2 ˚x.I0/ ;

where we made use of (11.40). Moreover, we have

�	xjI0j D �	x.q0 � p0/ D q1 � p1 D jI1j
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with I1 D Œp1; q1� D ˚x.I0/. Therefore,

ux.x; 1/ D 1

jI1jI1.x/ :

The same argumentation applies to the y-axis, such that we eventually obtain

u.x; 1/ D 1

jR1jR1.x/ ; (11.49)

with R1 D ˚.R0/ the image of the initial rectangle R0 � X . Thus, the image of
a uniform density function with rectangular support is a uniform density function
with rectangular support again.

Next, assume (11.48) is valid for some t 2 N. Then it is obvious that (11.48) also
holds for t C 1 by inserting the x-projection of (11.48) into (11.47) using (11.37),
again. Then, the same calculation as above applies when every occurrence of 0 is
replaced by t and every occurrence of 1 is replaced by t C 1. By means of this
inductive proof we have implemented an NDA by a dynamically evolving field.
Therefore, we call this representation dynamic field automaton (DFA).

The Frobenius-Perron equation (11.35) can be regarded as a time-discretized
Amari dynamic neural field equation (11.3). Discretizing time according to Euler’s
rule with increment �t D � where � is the time constant of the Amari equation
(11.3) yields

�
u.x; t C �/ � u.x; t /

�
C u.x; t / D

Z

D

w.x; y/f .u.y; t // dy

u.x; t C �/ D
Z

D

w.x; y/f .u.y; t // dy :

For � D 1 and f .u/ D u the Amari equation becomes the Frobenius-Perron
equation (11.35) when we set

w.x; y/ D ı.x � ˚.y// (11.50)

where ˚ is the NDA mapping from Eq. (11.27). This is the general solution of the
kernel construction problem [6, 38]. Note that ˚ is not injective, i.e. for fixed x the
kernel is a sum of delta functions encoding the influence from different parts of the
space X D Œ0; 1�2.

Finally we carry out the whole construction for our language example. This
yields the field dynamics depicted in Fig. 11.4.
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Fig. 11.4 Dynamic field automaton for processing the string “the dog chased the cat” (NP V NP)
according to Table 11.1. The NDA states become rectangular supports of uniform distributions
which are mapped onto uniform distributions with rectangular supports during discrete temporal
evolution

11.4 Discussion

Turing machines and Gödel numbers are important pillars of the theory of computa-
tion [20,47]. Thus, any computational architecture needs to show how it could relate
to Turing machines and in what way stable implementations of Turing computation
is possible. In this chapter, we addressed the question how universal Turing
computation could be implemented in a neural field environment as described by the
Amari field equation (11.1). To this end, we employed the canonical symbologram
representation [13,23] of the machine tape as the unit square, resulting from a Gödel
encoding of sequences of states.

The action of the Turing machine on a state description is given by a state flow on
the unit square which led to a Frobenius-Perron equation (11.32) for the evolution of
uniform probability densities. We have implemented this equation in the neural field
space by a piecewise affine-linear kernel geometry on the unit square which can be
expressed naturally within a neural field framework. We also showed that stability
of states and dynamics both in time as well as its encoding for finite programs is
achieved by the approach.

However, our construction essentially relied upon discretized time that could be
provided by some clock mechanism. The crucial problem of stabilizing states within
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every clock cycle could be principally solved by established methods from dynamic
field architectures. In such a time-continuous extension, an excited state, represented
by a rectangle in one layer, will only excite a subsequent state, represented by
another rectangle in another layer when a condition-of-satisfaction is met [40, 41].
Otherwise rectangular states would remain stabilized as described by Eq. (11.10).
All these problems provide promising prospects for future research.
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12. Budišić, M., Mohr, R., Mezić, I.: Applied Koopmanism. Chaos 22(4), 047510 (2012)
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