
Chapter 10
On the Electrodynamics of Neural Networks

Peter beim Graben and Serafim Rodrigues

Abstract We present a microscopic approach for the coupling of cortical activity,
as resulting from proper dipole currents of pyramidal neurons, to the electromag-
netic field in extracellular fluid in presence of diffusion and Ohmic conduction.
Starting from a full-fledged three-compartment model of a single pyramidal neuron,
including shunting and dendritic propagation, we derive an observation model for
dendritic dipole currents in extracellular space and thereby for the dendritic field
potential that contributes to the local field potential of a neural population. Under
reasonable simplifications, we then derive a leaky integrate-and-fire model for the
dynamics of a neural network, which facilitates comparison with existing neural
network and observation models. In particular, we compare our results with a
related model by means of numerical simulations. Performing a continuum limit,
neural activity becomes represented by a neural field equation, while an observation
model for electric field potentials is obtained from the interaction of cortical dipole
currents with charge density in non-resistive extracellular space as described by
the Nernst-Planck equation. Our work consistently satisfies the widespread dipole
assumption discussed in the neuroscientific literature.

10.1 Introduction

Hans Berger’s 1924 discovery of the human electroencephalogram (EEG) [11]
lead to a tremendous research enterprise in clinical, cognitive and computational
neurosciences [58]. However, one of the yet unresolved problems in the biophysics

P. beim Graben (�)
Bernstein Center for Computational Neuroscience, Göttingen, Germany Department of German
Studies and Linguistics, Humboldt-Universität zu Berlin, Berlin, Germany

S. Rodrigues
School of Computing and Mathematics, Centre for Robotics and Neural Systems, University
of Plymouth, Plymouth, UK

S. Coombes et al. (eds.), Neural Fields, DOI 10.1007/978-3-642-54593-1__10,
© Springer-Verlag Berlin Heidelberg 2014

269



270 P. beim Graben and S. Rodrigues

of neural systems is understanding the proper coupling of complex neural network
dynamics to the electromagnetic field, that is macroscopically measurable by means
of neural mass potentials, such as local field potential (LFP) or electroencephalo-
gram. One requirement for this understanding is a forward model that links the
‘hidden’ activities of billions of neurons in mammalian brains and their propagation
through neural networks to experimentally accessible quantities such as LFP and
EEG. Utilizing terminology from theoretical physics, we call the operationally
accessible quantities observables and an integrative forward model an observation
model. Yet, there is an ongoing debate in the literature whether field effects, i.e.
the feedback from mass potentials to neural activity, plays a functional role in the
self-organization of cortical activity (e.g. [40]). Such field effects have recently
been demonstrated via experiments on ephaptic interaction [31]. Thus a theoretical
framework for observation forward and feedback models is mandatory in order
to describe the coupling between neural network activity and the propagation
of extracellular electromagnetic fields in clinical, computational and cognitive
neurosciences, e.g. for treatment of epilepsy [55] or for modeling cognition-related
brain potentials [8, 46].

Currently, there is ample evidence that the generators of neural field potentials,
such as cortical LFP and EEG are the cortical pyramidal cells (sketched in Fig. 10.1).
They exhibit a long dendritic trunk separating mainly excitatory synapses at the
apical dendritic tree from mainly inhibitory synapses at the perisomatic basal
dendritic tree [23, 60]. When both kinds of synapses are simultaneously active,
inhibitory synapses generate current sources and excitatory synapses current sinks
in extracellular space, causing the pyramidal cell to behave as a microscopic
dipole surrounded by its characteristic electrical field. This dendritic dipole field is
conveniently described by its associated electrodynamic potential, the dendritic field
potential (DFP). Dendritic fields superimpose to the field of a cortical dipole layer,
which is measurable as cortical LFP, due to the geometric arrangement of pyramidal
cells in a cortical column. There, pyramidal cells exhibit an axial symmetry and
they are aligned in parallel to each other, perpendicular to the cortex’ surface, thus
forming a palisade of cell bodies and dendritic trunks. Eventually, cortical LFP gives
rise to the EEG measurable at the human’s scalp [27, 53, 58].

Weaving the above phenomena into a mathematical and biophysical plausible
observation model that represents correctly the multi-spatiotemporal characteristics
of LFP is a non-trivial task. The difficulty results from the complexity of brain
processes that operate at several spatial and temporal scales. On one hand the
organization of the brain, from single neuron scales to that of whole brain regions,
changes its connectivity from almost probabilistic to highly structured as discussed
above in the case of the cortical columns. On the other hand, temporal dynamics
in time scales ranges from milliseconds for discrete events like spikes to hours and
even longer for synaptic plasticity and learning. Hence, there is strong interaction
between the different spatiotemporal scales [12, 45], which directly contribute to
complex oscillatory dynamics, e.g., to mixed-mode oscillations [25, 29]. Thus it
is not clear how and when to break down complex brain processes into simpler
‘building blocks’ where analysis can be made. Despite these peculiarities, various
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Fig. 10.1 Sketch of a cortical
pyramidal neuron with
extracellular current dipole
between spatially separated
excitatory (open bullet) and
inhibitory synapses (filled
bullet). Neural in- and outputs
are indicated by the jagged
arrows. The z-axis points
toward the scull. Current
density j is given by
dendritic current I1 through
cross section area A as
described in the text

mathematical and computational approaches have been proposed in order to estab-
lish coarse-graining techniques and how to move from one scale to another.

Most studies for realistically simulating LFP, typically for the extracellular fluid
in the vicinity of a neuron, have been attempted by means of compartmental models
[2,48,54,57] where every compartment contributes a portion of extracellular current
to the DFP that is given by Coulomb’s equation in conductive media [5,7,53]. How-
ever, because compartmental models are computationally expensive, large-scale
neural network simulations preferentially employ point models, based either on
conductance [36, 50] or population models [39, 56, 64, 65] where neural mass
potentials are estimated either through sums (or rather differences) of postsynaptic
potentials [24] or of postsynaptic currents [50]. In particular, the model of Mazzoni
et al. [50] led to a series of recent follow-up studies [51, 52] that address the
correlations between numerically simulated or experimentally measured LFP/EEG
and spike rates by means of statistical modeling and information theoretic measures.

To adequately explain field potentials measured around the dendritic tree of an
individual cortical pyramidal cell (DFP), in extracellular space of a cortical module
(LFP), or at a human’s scalp (EEG), Maxwell’s electromagnetic field equations,
specifically the continuity equation describing conservation of charge have to be
taken into account. However, coupling the activity of discrete neural networks to
the continuous electromagnetic field is difficult since neural network topology is
not embedded into physical space as an underlying metric manifold. This can be
circumvented by employing continuous neural networks as investigated in neural
field theory (NFT) [1, 15, 18, 38, 41, 66]. In fact previous studies [42, 47] gave the
first reasonable accounts for such couplings in NFT population models that are
motivated by the corresponding assumptions for neural mass models (cf. Chap. 17
in this volume). Jirsa et al. [42] relate the impressed current density in extracellular
space to neural field activity. On the other hand, Liley et al. [47] consider LFP as
average somatic membrane potential being proportional to the neural field. Their
model found a number of successful applications [13, 14, 22] (see also Chap. 14).
However, both approaches [42,47] are not concerned with the microscopic geometry
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around the field generators, the cortical pyramidal cells. Therefore, they do not take
pyramidal dipole currents into account.

Another problem with the aforementioned neural field approaches is that the
extracellular space has either been completely neglected, or only implicitly been
taken into account by assuming that cortical LFP is proportional to either membrane
potentials or synaptic currents as resulting from a purely resistive medium. That
means, dipole currents in the extracellular space have been completely abandoned.
However, recent studies indicate that at least the resistive property of the extra-
cellular space is crucial [49], but more interestingly, it has been revealed that
diffusion currents, represented by their corresponding Warburg impedances [59],
cannot be neglected in extracellular space as they may substantially contribute to
the characteristic power spectra of neural mass potentials [3, 4, 6, 27].

In this chapter, we outline a theoretical framework for the microscopic coupling
of continuous neural networks, i.e. neural fields, to the electromagnetic field,
properly described by dipole currents of cortical pyramidal neurons and diffusion
effects in extracellular space. As a starting point we use a three-compartment model
for a single pyramidal cell [7,26,63] and derive the evolution law for the activity of a
neural network. These derivations additionally include observation equations for the
extracellular dipole currents, which explicitly incorporate extracellular resistivity
and diffusion. Subsequently, we demonstrate that our approach can be related to
previous modeling strategies, by considering reasonable simplifications. Herein, we
intentionally and specifically simplify our approach to a leaky integrate-and-fire
(LIF) model for the dynamics of a neural network, which then shows the missing
links that previous modeling approaches failed to incorporate to account for a
proper dipole LFP observation model. In particular, we compare our results with the
related model by Mazzoni et al. [50] by means of numerical simulations. Moreover,
performing the continuum limit (yet à la physique) for the network yields an Amari-
type neural field equation [1] coupled to the Maxwell equations in extracellular fluid,
while an observation model for electric field potentials is obtained from the inter-
action of cortical dipole currents with charge density in non-resistive extracellular
space as described by the Nernst-Planck equation. Thereby, our work provides for
the first time a biophysically plausible observation model for the Amari-type neural
field equations and crucially, it gives estimates for the local field potentials that
satisfy the widespread dipole assumption discussed in the neuroscientific literature.

10.2 Pyramidal Neuron Model

Inspired by earlier attempts to approximate the complex shape of cortical pyrami-
dal neurons by essentially three passively coupled compartments [7, 26, 63], we
reproduce in Fig. 10.2 the electronic equivalent circuit of beim Graben [7] for
the i th pyramidal cell (Fig. 10.1) in a population of P pyramidal neurons here.
This parsimonious circuit allows to derive our observation model. It comprises one
compartment for the apical dendritic tree where pi excitatory synapses are situated
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(for the sake of simplicity, we only show one synapse here), another one for the soma
and perisomatic basal dendritic tree, populated with qi mainly inhibitory synapses
(again, only one synapse is shown here), and a third one for the axon hillock where
membrane potential is converted into spike trains by means of an integrate-and-
fire mechanism. Note that nonlinear fire mechanisms of Hodgkin-Huxely type can
be incorporated as well. In total we consider N populations of neurons, arranged
in two-dimensional layers �n � R

2 (i D n; : : : ; N ). Neurons in layers 1 to M
should be excitatory, neurons in layersM C 1 to N should be inhibitory and layer 1
exclusively contains the P cortical pyramidal cells in our simplified treatment. The
total number of neurons should be K.

Excitatory synapses are schematically represented by the left-most branch of
Fig. 10.2 as ‘phototransistors’ [7] in order to indicate that they comprise quanta-
gated resistors, namely ion channels whose resistance depends on the concentration
of ligand molecules which are either extracellular neurotransmitters or intracellular
metabolites [44]. There, the excitatory postsynaptic current (EPSC) at a synapse
between a neuron j from layers 1 to M and neuron i is given as

I E
ij .t/ D

�E
ij .t/

RE
ij

.Vi1.t/ �EE
ij / : (10.1)

Here, the time-dependent function �E
ij .t/ reflects the neurotransmitter-gated opening

of postsynaptic ion channels. Usually, this function is given as a sum of character-
istic excitatory impulse response functions �E.t/ that is elicited by one presynaptic
spike, i.e.

�.t/ D
X

�

�.t � t�/ (10.2)

where t� denote the ordered spike arrival times. Moreover, RE
ij comprises the

maximum synaptic conductivity as well as the electrotonic distance between the
synapse between neuron j and i and i ’s trigger zone, both expressed as resistance.
Vi1.t/ is the membrane potential of neuron i ’s compartment 1, i.e. the apical
dendritic tree and EE

ij is the excitatory reversal potential of the synapse j ! i .
We can conveniently express �.t/ through the spike rate [10, 18]

a.t/ D
X

�

ı.t � t�/ (10.3)

by means of a temporal convolution (‘�’ denotes convolution product)

�.t/ D
Z t

�1
�.t � t 0/a.t 0/ dt 0 D .� � a/.t/ : (10.4)

Furthermore, the apical dendritic compartment 1 is characterized by a particular
leakage resistance R1 and by a capacity C1, reflecting the temporary charge storage
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capacity of the membrane. Both, R1 and C1 are correlated with the compartment’s
membrane area [26]. The battery EM denotes the Nernst resting potential [43, 62].

The middle branch of Fig. 10.2 describes the inhibitory synapses (also displayed
as ‘phototransistors’ [7]) between a neuron k from layers M C 1 to N and neuron
i . Here, inhibitory postsynaptic currents (IPSC)

I I
ik.t/ D

� I
ik.t/

RI
ik

.Vi2.t/ �E I
ik/ ; (10.5)

described by a similar channel opening function � I.t/, shunt the excitatory branch
with the trigger zone when compartment’s 2 membrane potential Vi2.t/ is large
due to previous excitation. Also Eqs. (10.2) and (10.3) hold for another postsy-
naptic impulse response function �I.t/, characteristic for inhibitory synapses. The
resistance of the current paths along the cell plasma is given by RI

ik. Finally, EI
ik

denotes the inhibitory reversal potential of the synapse k ! i . Also the somatic
and perisomatic dendritic compartment 2 possesses its specific leakage resistance
R2 and capacity C2.

The cell membrane at the axon hillock [36] itself is represented by the branch
at the right hand side described by another RC-element consisting of R3 and C3.
Action potentials, ı.t � t�/, are generated by a leaky integrate-and-fire mechanism
[50] as indicated by a ‘black box’ when the membrane potential Ui.t/ crosses a
certain threshold �i > 0 from below at time t� , i.e.

Ui.t�/ � �i : (10.6)

Afterwards, membrane potential is reset to some steady-state potential [50]

Ui.t�C1/ E : (10.7)

and the integration of the differential equations can be restarted at time t D t�C1 C
�rp after interrupting the dynamics for a refractory period �rp .

The three compartments are coupled through longitudinal resistors, RA, RB, RC,
RD where RA; RB denote the resistivity of the cell plasma and RC; RD that of
extracellular space [37]. Yet, in extracellular space not only Ohmic but also diffusion
currents are present [3, 4, 6, 32–34, 61]. These are taken into account by the current
source Ji connected in parallel to RD. However, for convenience, diffusion currents
in the extracellular space between compartments 2 and 3 are disregarded following
an adiabatic approximation.

Finally, the membrane potentials at compartments 1, Vi1, 2, Vi2, and 3, Ui , as
the dynamical state variable as well as the DFP ˚i are shown in Fig. 10.2. The
latter drops along the extracellular resistor RD. For the aim of calculation, the mesh
currents Ii1 (current in the apical compartment 1 of neuron i ), Ii2 (current in somatic
and perisomatic compartment 2 of neuron i ) and Ii3 (the leaky integrate-and-fire
(LIF) current in compartment 3 of neuron i ) are indicated.
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The circuit in Fig. 10.2 obeys Kirchhoff’s laws; first for currents:

Ii1 D C1 dVi1
dt
C Vi1 �EM

R1
C

piX

jD1
I E

ij (10.8)

Ii2 D C2 dVi2
dt
C Vi2 �EM

R2
C

qiX

kD1
I I

ik (10.9)

Ii3 D C3 dUi
dt
C Ui �EM

R3
(10.10)

Ii3 D Ii1 � Ii2 ; (10.11)

and second, for voltages:

Vi1 D .RA CRD/Ii1 C .RB CRC/Ii3 C Ui �RDJi (10.12)

Vi2 D .RB CRC/Ii3 C Ui (10.13)

˚i D RD.Ii1 � Ji / ; (10.14)

where the postsynaptic currents I E
ij and I I

ik are given through (10.1) and (10.5). Here,
pi is the number of excitatory and qi the number of inhibitory synapses connected
to neuron i , respectively.

Subtracting (10.13) from (10.12) yields the current along the pyramidal cell’s
dendritic trunk

Ii1 D Vi1 � Vi2 CRDJi

RA CRD
: (10.15)

The circuit described by Eqs. (10.8–10.14) shows that the neuron i is likely to fire
when the excitatory synapses are activated. Then, the LIF current Ii3 equals the
dendritic current Ii1. If, by contrast, also the inhibitory synapses are active, the den-
dritic current Ii1 follows the shortcut between the apical and perisomatic dendritic
trees and only a portion could evoke spikes at the trigger zone (Eq. (10.10)). On
the other hand, the large dendritic current Ii1, diminished by some diffusion current
Ji , flowing through the extracellular space of resistance RD

i , gives rise to a large
DFP ˚i .

In order to simplify the following derivations, we first gauge the resting potential
toEM D 0. Then, excitatory synapses are characterized byEE

ij > 0, while inhibitory
synapses obey EI

ik < 0. Combining Eqs. (10.8–10.13) entails

C1
dVi1
dt
C Vi1

R1
C

piX

jD1
I E

ij D
Vi1 � Vi2 CRDJi

RA CRD
(10.16)
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C2
dVi2
dt
C Vi2

R2
C

qiX

kD1
I I

ik D
Vi1 � Vi2 CRDJi

RA CRD
� Vi2 � Ui
RB CRC

(10.17)

C3
dUi
dt
C Ui

R3
D Vi2 � Ui
RB CRC

: (10.18)

10.2.1 General Solution of the Circuit Equations

Next we follow Bressloff’s [16] argumentation and regard the compartmental
voltages as auxiliary variables that are merged into a two-dimensional vector
Vi D .Vi1; Vi2/

T which is subject to elimination. We only keep Eq. (10.18) as the
evolution law of the entire state vector U D .Ui /iD1;:::;K of the neural network.
Inserting the postsynaptic currents from (10.1) and (10.5) into Eqs. (10.16, 10.17)
and temporarily assuming an arbitrary time-dependence for the functions �.t/ from
Eq. (10.2) (in fact, the �.t/ are given through the presynaptic spike rates and are thus
nonlinear functions of the entire state U), we obtain a system of two inhomogeneous
linear differential equations that can be compactly written in matrix form as

d

dt
Vi .t / D Hi .t / � Vi .t /CGi .t / ; (10.19)

with

Hi .t / D
0

B@
1
C1

�
� 1
R1

C 1
RACRD �P

j

�E
ij .t/

RE
ij

�
� 1
C1.RACRD/

1
C2.RACRD/

1
C2

�
� 1
R2

� 1
RACRD � 1

RBCRC �P
k
� I

ik.t/

RI
ik

�

1

CA

(10.20)

and

Gi .t / D
0

@
P

j

�E
ij .t/E

E
ij

C1R
E
ij
C RD

C1.RACRD/
Ji .t/

P
k

� I
ik.t/E

I
ik

C2R
I
ik
C RD

C2.RACRD/
Ji .t/C 1

C2.RBCRC/
Ui .t/

1

A : (10.21)

Initial conditions start with V D 0 in the infinite past t D �1 for the sake of
convenience.

Obviously, the time-dependence of the transition matrix H.t/ is due to the
shunting terms �.t/. In order to solve (10.19) one first considers the associated
homogeneous differential equation

d

dt
Wi .t / D Hi .t / �Wi .t / (10.22)
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whose general solutions are given as the columns of

Wi .t / D TetHi .t/ ; (10.23)

where T denotes the time-ordering operator [20, 21]. Using the integral (10.23), a
particular solution of the inhomogeneous equation (10.19) is then obtained by the
variation of parameter method as

Vi .t / D
Z t

�1
Xi .t; t

0/ �Gi .t
0/ dt 0 (10.24)

with matrix-valued Green’s function

Xi .t; t
0/ DWi .t / �Wi .t

0/�1 : (10.25)

Therefore, the compartmental voltages are obtained as

Vi˛.t/ D
2X

ˇD1

Z t

�1
�i˛ˇ.t; t

0/giˇ.t 0/ dt 0 D
2X

ˇD1
�i˛ˇ � giˇ (10.26)

with components Xi .t; t
0/ D .�i˛ˇ.t; t 0//˛ˇ and Gi .t

0/ D .giˇ.t 0//ˇ , ˛; ˇ D 1; 2.

10.2.2 Observation Model

In order to derive the general observation equations for the DFP of the three-
compartment model, we insert the formal solutions (10.26) and the inhomogeneity
(10.21) into Eq. (10.15) and obtain

Ii1.t/ D 1

RA CRD

Z t

�1

.�i11.t; t
0/��i21.t; t 0//

"
X

j

EE
ij

C1R
E
ij

�E
ij .t/C RD

C1.RA CRD/
Ji .t/

#
C

.�i12.t; t
0/� �i22.t; t

0//

"
X

k

E I
ik

C2R
I
ik

� I
ik.t/C RD

C2.RA CRD/
Ji .t/C 1

C2.RB CRC/
Ui .t/

#
dt 0C

RD

RA CRD
Ji .t/ ; (10.27)

which can be reshaped by virtue of the convolutions (10.4) to
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Ii1 D 1

RA CRD

"
X

j

EE
ij

C1R
E
ij

.�i11��i21/��E�ajC RD

C1.RA CRD/
.�i11��i21/�Ji

#
C

1

RA CRD

"
X

k

E I
ik

C2R
I
ik

.�i12 � �i22/ � �I � ak C RD

C2.RA CRD/
.�i12 � �i22/ � JiC

1

C2.RB CRC/
.�i12 � �i22/ � Ui

#
C RD

RA CRD
Ji : (10.28)

Introducing new impulse response functions that simultaneously account for
synaptic transmission (�) and dendritic propagation (�) by

 i˛1 D �i˛1 � �E (10.29)

 i˛2 D �i˛2 � �I (10.30)

yields

Ii1D 1

RACRD

"
X

j

EE
ij

C1R
E
ij

. i11� i21/�ajC RD

C1.RA CRD/
.�i11��i21/�Ji

#
C

1

RA CRD

"
X

k

E I
ik

C2R
I
ik

. i12 �  i22/ � ak C RD

C2.RA CRD/
.�i12 � �i22/ � JiC

1

C2.RB CRC/
.�i12 � �i22/ � Ui

#
C RD

RA CRD
Ji : (10.31)

Eventually we obtain the DFP of neuron i as the potential dropping along the resistor
RD caused by the current through it (Eq. (10.14)), i.e.

˚i D RD

RA CRD

(
X

j

EE
ij

C1R
E
ij

. i11 � i21/ � aj C
X

k

E I
ik

C2R
I
ik

. i12 � i22/ � akC
"

RD

C1.RA CRD/
.�i11 � �i21/C RD

C2.RA CRD/
.�i12 � �i22/ �RAı

#
� JiC

1

C2.RB CRC/
.�i12 � �i22/ � Ui

)
(10.32)
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10.2.3 Neurodynamics

Equation (10.32) reveals that the DFP is driven by the neuron’s state variable Ui , by
the entirety of postsynaptic potentials caused by spike trains ai and by the diffusion
currents Ji . The state variables and the spike trains are given by the network’s
evolution equation that is straightforwardly derived along the lines of Bressloff [16]
again. To this end, we insert Vi2.t/ as the solution of (10.26) into the remaining
Eq. (10.18) to get

C3.R
B C RC/

dUi
dt
C
�
1C RB CRC

R3

�
Ui D �i21 � gi1 C �i22 � gi2 : (10.33)

Next, we insert the inhomogeneity (10.21) again and obtain

C3.R
B CRC/

dUi
dt
C
�
1C RB CRC

R3

�
Ui D

X

j

EE
ij

C1R
E
ij

�i21 � �E
ijC

RD

C1.RA CRD/
�i21 � Ji C

X

k

E I
ik

C2R
I
ik

�i22 � � I
ik C

RD

C2.RA CRD/
�i22 � JiC

1

C2.RB CRC/
�i22 � Ui : (10.34)

Utilizing the convolutions (10.4) once more, yields

C3.R
B CRC/

dUi
dt
C
�
1C RB CRC

R3

�
Ui D

X

j

EE
ij

C1R
E
ij

�i21 � �E � ajC

X

k

E I
ik

C2R
I
ik

�i22 � �I � ak C RD

C1.RA CRD/
�i21 � Ji C RD

C2.RA CRD/
�i22 � JiC

1

C2.RB CRC/
�i22 � Ui : (10.35)

which becomes

C3.R
B CRC/

dUi
dt
C
�
1C RB CRC

R3

�
Ui � 1

C2.RB CRC/
�i22 � Ui D

X

j

EE
ij

C1R
E
ij

 i21 �aj C
X

k

E I
ik

C2R
I
ik

 i22 �akC RD

RA CRD

�
1

C1
�i21 C 1

C2
�i22

�
�Ji

(10.36)
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after inserting the Green’s functions (10.29) and (10.30) again. Equation (10.36)
together with (10.3), (10.6) and (10.7) determine the dynamics of a network with
three-compartment pyramidal neurons.

10.3 Leaky Integrate-and-Fire Model

The most serious difficulty for dealing with the neurodynamical evolution equa-
tions (10.36, 10.3, 10.6, 10.7) and the DFP observation equation (10.32) is the
inhomogeneity of the matrix Green’s function Xi .t; t

0/ involved through the time-
ordering operator and the time-dependence of Hi .t /.

10.3.1 Simplification

In a first approximation Hi becomes time-independent by neglecting the shunting
terms [20, 21]. Then, the matrix Green’s function Xi .t; t

0/ becomes

X.t; t 0/ D X.t � t 0/ D e.t�t 0/H D Q.t�t 0/ (10.37)

with

Q D eH (10.38)

and

H D
0
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RBCRC

�

1

A ; (10.39)

i.e. the transition matrix H, and consequently also the Green’s function, do not
depend on the actual neuron index i any more. In this case, analytical methods
can be employed [16].

However, for the present purpose, we employ another crucial simplification by
choosing the electrotonic parameters in such a way that �22.t/ � ı.t/. By virtue of
this choice the dendritic filtering of compartment 2 is completely neglected. Then,
the neural evolution equation (10.36) turns into
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C3.R
B CRC/

dUi
dt
C C2R3.R

B CRC/C C2.RB CRC/2 � O�R3
C2R3.RB CRC/
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ij
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(10.40)

where all kernels lost their neuron index i . Additionally, some time constant O�
results from the temporal convolution. Multiplying next with

r D C2R3.R
B CRC/

C2R3.RB CRC/C C2.RB CRC/2 � O�R3 (10.41)

yields a leaky integrate-and-fire (LIF) model

�
dUi
dt
CUi D

X

j

wE
ij  21�aj C

X

k

wI
ik  22�akC	

�
1

C1
�21 C 1

C2
ı

�
�Ji (10.42)

where we have introduced the following parameters:

• Time constant

� D rC3.RB CRC/ (10.43)

• Excitatory synaptic weights

wE
ij D r

EE
ij

C1R
E
ij

> 0 (10.44)

• Inhibitory synaptic weights

wI
ik D r

E I
ik

C2R
I
ik

< 0 (10.45)

• Diffusion coefficient

	 D r RD

RA CRD
: (10.46)

Moreover, we make the same approximation for the DFP (10.32) and obtain
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C1R
E
ij
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ik
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ik

. 12 � ı/ � akC
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(10.47)

as the observation equation of the LIF model.
Equations (10.42, 10.47) still exhibit some redundancy, seeing that the kernel

 21 always relates to excitatory synapses while the kernel  22 refers to inhibitory
synapses. We could thus absorb these kernel indices into the presynaptic neuron
indices by introducing new kernels

 j D
(
 21 W j excitatory

 22 W j inhibitory
(10.48)


j D
(
 11 �  21 W j excitatory

 12 � ı W j inhibitory :
(10.49)

These kernels entail

�
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� Ji (10.50)
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.�12�ı/ �RAı

#
� Ji C

1

C2.RB CRC/
.�12 � ı/ � Ui

)
(10.51)

after also dropping the redundant excitatory/inhibitory superscripts. Thus, the
indices i; j now extend over the entire network of K units.

Because the relevance of diffusion currents is controversially discussed in the lit-
erature [3,6,32–34], we could provisionally neglect these for further simplification:
Ji D 0 which leads to
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�
dUi
dt
C Ui D

X

j

wij  j � aj (10.52)

˚i D RD

r.RA CRD/
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X

j

wij 
j � aj C 1

C2.RB CRC/
.�12 � ı/ � Ui

)
:

(10.53)

10.3.2 Simulation

We have extensively discussed the system (10.52, 10.53) under the further
assumption �12 D ı in a recent paper [9], and herein we present further
numerical simulations under different external stimulation input. In particular,
we simulate a cortical tissue as a LIF network (10.52), comprising of 1,000
interneurons and 4,000 pyramidal neurons interconnected randomly via an
Erdős-Rényi graph with connection probability of 0.2. We refer the reader
to [9] on how the somatic, dendritic and extracellular electrotonic parameters
are estimated and how these are related to the phenomenological parameters
of Mazzoni et al. [50]. All other parameters such as steady state voltages,
refractory period, synaptic latencies, thresholds and others can also be found
therein. Thalamic inputs are the only source of noise, which attempt to account
for both cortical heterogeneity and spontaneous activity. This is achieved by
modeling a two level noise, where the first level is an Ornstein-Uhlenbeck
process superimposed with a constant or periodic signal and the second
level is a time varying inhomogeneous Poisson process. Thus, we have the
following time varying rate, �.t/, that feeds into an inhomogeneous Poisson
process:

�n
dn.t/

dt
D �n.t/C �n

s
2

�n
�.t/ (10.54)

�.t/ D Œc0 C n.t/C (10.55)

where �.t/ represents Gaussian white noise, c0 represents a constant signal
(but equally could be periodic or other), and the operation Œ�C is the
threshold-linear function, ŒxC D x if x > 0, ŒxC D 0 otherwise, which
circumvents negative rates. The constant signal c0 can range between 1:2

and 2:6 spikes/ms. Note also that periodic or more complex ‘naturalistic’
signals can be applied, but we have herein kept it simple just for illustrative
purposes. The parameters of the Ornstein-Uhlenbeck process are �n D 16 ms
and the standard deviation �n D 0:4 spikes/ms; also refer to [50] for these
parameters.



10 Electrodynamics of Neural Networks 285

The network simulations were run under the Brian Simulator, which is a Python
based environment [35]. We focus on resistive extracellular case and compare
between our DFP ˚i measure (10.53) and the Mazzoni LFP measure (MPLB)
defined herein as the sum of the moduli of excitatory and inhibitory synaptic
currents:

V MPLB
i D

X

j

jwE
ij  21 � aj j C

X

k

jwI
ik  22 � akj (10.56)

In addition, Mazzoni et al. [50] take the sum of V MPLB
i across all pyramidal

neurons. To provide a comparison we will also consider the sum of our proposed
DFP measure (10.53), but also contrast it with its average. Thus we compare the
following models of local field potentials:

L1 D
X

i

V MPLB
i (10.57)

L2 D
X

i

˚i (10.58)

L3 D 1

P

X

i

˚i ; (10.59)

where P is the number of pyramidal neurons. Subsequently, we run the network
for 2 s with three different noise levels, specifically, receiving constant signals
with rates 1:2, 1:6 and 2:4 spikes/ms as depicted in Fig. 10.3. We report two
main striking differences between LFP measures Eqs. (10.57), (10.58) and (10.59),
namely in frequency and in amplitude. The L1 responds instantaneously to the
spiking network activity by means of high frequency oscillations. Moreover, L1
exhibits a large amplitude overestimating experimental LFP/EEG measurements
that typically vary between 0.5 and 2 mV [45, 58]. In contrast, L2 and L3 respond
more smoothly to population activity and it is noticeable that our LFP estimates
represent the low-pass filtered thalamic input. Clearly, both L2 and L3 have same
time profile, however, the L3 measures comparably with experimental LFP, that
is, in the order of millivolts (although its not contained within the experimental
range 0.5–2 mV). Thus we do concede that further work is required to improve
our estimates. A minor improvement could be attained by applying a weighted
average to mimic the distance of an electrode to a particular neuron. However, more
biophysical modeling work is in demand as other neural effects, such as neuron-
glia interaction and other effects, could be required to bring down these estimates to
experimental results.
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Fig. 10.3 Dynamics of the network and LFP comparisons: the three columns represent different
runs of the network for three different rates, 1.2, 1.6 and 2.4 spikes/ms. In each column, all panels



10 Electrodynamics of Neural Networks 287

10.4 Continuum Neural Field Model

So far we have considered the electrical properties of neural networks containing
cortical pyramidal cells by means of equivalent circuits of a three-compartment
model. In order to link these properties to the electromagnetic field in extracellular
space, we need an embedding of the network topology into physical metric space
R
3. This is most easily achieved in the continuum limit of neural field theory.

10.4.1 Rate Model

Starting with the approximation from Sect. 10.3, we first transform our LIF approach
into a rate model. According to Eq. (10.3), a spike train is represented by a sum over
delta functions. In order to obtain the number of spikes in a time interval Œ0; t , one
has to integrate Eq. (10.3), yielding

n.t/ D
Z t

0

a.t 0/ dt 0 :

Then, the instantaneous spike rate per unit time is formally regained as the original
signal Eq. (10.3), through

d

dt
n.t/ D a.t/ : (10.60)

A spike train a.t/ arriving at the presynaptic terminal of an axon causes changes
in the conductivity of voltage-gated calcium channels. Therefore, calcium current
flows into the synaptic button evoking the release of neurotransmitter into the
synaptic cleft which is essentially a stochastic Bernoulli process [7, 44], where the
probability P.k/ for releasing k transmitter vesicles obeys a binomial distribution

P.k/ D
 
Y

k

!
pk.1 � p/Y�k ; (10.61)

with Y the number of allocated vesicles in the button and p the elementary
probability that an arriving action potential releases one vesicle.
�
Fig. 10.3 (continued) show the same 250 ms (extracted from 2 s simulations). The top panels (a–
c) represent thalamic inputs with the different rates. The second top panels (d–f) correspond to a
raster plot of the activity of 200 pyramidal neurons. Panels (g–i) depict average instantaneous firing
rate (computed on a 1 ms bin) of interneurons and panels (j-l) correspond to average instantaneous
firing rate of pyramidal neurons. Panels (m–o) show the LFPL1 (Eq. (10.57)) which is the Mazzoni
et al. measure [50]. Panels (p–r) and (s–u) depict our proposed LFP measures L2 (Eq. (10.58)) and
L3 (Eq. (10.59)), respectively. Note and compare the different order of magnitudes between the
three LFP measures
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In the limit of large numbers, the binomial distribution can be replaced by a
normal distribution

P.k/ D 1
p
2�y.1 � p/ exp

�
� .k � y/2
2y.1 � p/

�
; (10.62)

where y D Yp is the average number of allocated transmitter vesicles. Due to this
stochasticity of synaptic transmission, even the dynamics of a single neuron should
be treated in terms of statistic ensembles in probability theory. Hence, we describe
the state variables Ui.t/ by a normal distribution density �.u; t / with mean NU.t/
and variance �2, and determine the firing probability as

r.t/ D Pr.U.t/ � �/ D
Z 1

�

�.u; t / du D 1

2
erfc

 
� � NUp
2�

!
; (10.63)

with ‘erfc’ as the complementary error function accounting for the cumulative
probability distribution. Thereby, the stochastic threshold dynamics is characterized
by the typical sigmoidal activation functions. In computational neuroscience, the
complementary error function is often approximated by the logistic function

f .u/ D 1

1C e��.u��/

with parameters gain � and threshold � . Using f as nonlinear activation function,
the firing probability r.t/ D f .U.t// for mean membrane potential U is closely
related to the instantaneous spike rate a.t/ (Eq. (10.60)) via

a.t/ D amax r.t/ D amax f .U / (10.64)

with maximal spike rate amax which can be absorbed by f :

f .u/ D amax

1C e��.u��/ : (10.65)

Inserting (10.64) and (10.65) into our LIF model (10.50) yields a leaky integrator
rate (LIR) model [10, 19]

�
dUi
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C Ui D

X

j

wij  j � f .Uj /C 	
�
1
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�21 C 1
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ı

�
� Ji : (10.66)
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10.4.2 Neuroelectrodynamics

Next we perform the continuum limit Ui.t/ ! un.x; t / à la physique under
the assumption of identical neural properties within each population. The sum in
Eq. (10.66) may converge under suitable smoothness assumptions upon the synaptic
weight matrix wij and the convolution kernels.1 Then a continuous two-dimensional
vector x 2 �n replaces the neuron index i , while n becomes a population
index. The population layers �n become two-dimensional manifolds embedded in
three-dimensional physical space such that x 2 �n is a two-dimensional projection
of a vector r 2 C � R

3 (C denoting cortex). Or, likewise, r D .x; z/, as indicated
in Fig. 10.1.

As a result, Eq. (10.66) passes into the Amari equation [1]

�
@

@t
ui .x; t /C ui .x; t / D

X

k

Z

�k

wik.x; x0/  .x0; t / � f .uk.x0; t // dx0 C hi .x; t /

(10.67)

with input current hi .x; t / delivered to neuron layer i at site x 2 �i . The synaptic
weight kernels wik.x; x

0/ and the synaptic-dendritic impulse response  .x0; t / are
obtained from the synaptic weight matrix, and from the Green’s functions  j .t/,
respectively.

This neural field equation is complemented by the continuum limit of the
extracellular dendritic dipole current density through cross section area A with
normal vector nA, shown in Fig. 10.1, which is obtained from (10.31), i.e.

j.r; t / D lim
i!x

nA
A
Ii1 D

D
X

k

Z

�k

Qw1k.r; r0/ 
.r0; t / � f .uk.r0; t //C �1.t/ � jD.r; t /C �2.t/ � u1.r; t / ;

(10.68)

where we have introduced a modified synaptic weight kernel Qw and two new
convolution kernels �j that are related to the electrotonic parameters of the discrete
model (10.31). The proper diffusion current jD.r; t / must be related to the gradient
of the charge density �.r; t / according to Fick’s law

jD.r; t / D �DD.r; t /r�.r; t / ; (10.69)

1A rigorous treatment of the continuum limit for neural networks requires techniques from
stochastic analysis such as mean-field approaches or system-size expansions as carried out by
Faugeras et al. [30] and Bressloff [17] (see also Chap. 9).
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where the diffusion tensor DD.r; t / accounts for inhomogeneities and unisotropies
of extracellular fluid, as being reflected by diffusion tensor imaging (DTI) [4,5]. For
layer 1 of pyramidal neurons the input is then given by the diffusion current jD.r; t /.
Therefore, the input to the Amari equation (10.67) becomes

hi .x; t / D �ıi1	ADD.r; t / � r�.r; t / (10.70)

with Kronecker’s ıik and appropriately redefined 	.
For further treatment of the electrodynamics of neural fields in linear but

inhomogeneous and unisotropic media, we need Ohm’s law

j�.r; t / D � .r; t / � E.r; t / ; (10.71)

where � .r; t / is the conductivity tensor and E the electric field strength. In case of
negligible magnetic fields, we can introduce the dendritic field potential ' via

E D �r' : (10.72)

The diffusion current (10.69) and Ohmic current (10.71) together obey the
Nernst-Planck equation [43, 62]

j D �DD � r�C � � E : (10.73)

In the diffusive and conductive extracellular fluid, we additionally have

• Einstein’s relation [28]

DD D kBTq� (10.74)

• Conductivity

� D �� ; (10.75)

where kB denotes the thermodynamic Boltzmann constant, T temperature, q the
ion charge, and � the ion’s mobility tensor related to the fluid’s viscosity [43, 62].
Inserting (10.74, 10.75) into (10.73) yields

j D �kBTq� � r�C � � E� : (10.76)

This form of the Nernst-Planck equation has to be augmented by a continuity
equation

r � jC @�

@t
D 0 (10.77)
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reflecting the conservation of charge as a consequence of Maxwell’s equations, and
by the first Maxwell equation

r � D D � (10.78)

where

D D � � E (10.79)

introduces the electrical permittivity tensor �.
Inserting (10.79) into (10.78) first gives

� � .r � E/ D � � .r � �/ � E : (10.80)

Next, we take the divergence of the Nernst-Planck equation (10.76), which yields
after consideration of the continuity equation (10.77)

r � j D �kBTqr � .� � r�/Cr � .� � E�/

��
@�

@t
D �kBTq� � Œ.r � �/ � .r�/C ���C

� � .r � �/ � E�C � � � � .r � E/�C � � � � E � r� :

Introducing the commutator Œ�;� D � � � � � � �, we can write

��
@�

@t
D �kBTq� � Œ.r � �/ � .r�/C ���C � � .r � �/ � E�C

Œ�;� � .r � E/�C � � �2 � � � .r � �/ � E�C � � � � E � r� ;
where we have also utilized (10.80).

Using the Nernst-Planck equation (10.76) once more, we eliminate the electric
field

E D ��1 �
�

jC kBTq� � r�
�

�
(10.81)

thus

� �
@�

@t
D �kBTq� � Œ.r ��/ � .r�/C���C � � r.ln �/ � .jC kBTq� � r�/C
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� �
�

jC kBTq� � r�
�

�
� r� : (10.82)
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The solution of (10.82) provides the extracellular charge density �.x; t / depen-
dent on the extracellular driving currents j that are delivered by the neural field
equations (10.67, 10.68, 10.70). Inserting both �.x; t / and j into (10.81) yields the
DFP

� r' D ��1 �
�

jC kBTq� � r�
�

�
(10.83)

via (10.72).
These equations of neuroelectrodynamics can be considerably simplified by

assuming a homogeneous and isotropic medium. In that case (10.82) reduces to

� �
@�

@t
D �kBTq� � ���C � � �2 C � �

�
jC kBTq� � r�

�

�
� r� ; (10.84)

which is a kind of Fokker-Planck equation for the charge density. Taking only the
first term of the r.h.s. into account, we obtain a diffusion equation whose stationary
solution gives rise to the Warburg impedance of extracellular space [3, 4, 6, 59].

10.5 Discussion

In this contribution we outlined a biophysical theory for the coupling of microscopic
neural activity to the electromagnetic field as described by the Maxwell equations,
in order to adequately explain neural field potentials, such as DFP, LFP, and EEG.
To that aim we have started from the widely accepted assumption, that cortical
LFP/EEG mostly reflect extracellular dipole currents of pyramidal cells [53, 58].
This assumption has lead us to recent work suggesting that both Ohmic and diffusion
currents contribute to LFP/EEG generation [3,6,32–34]. In addition, the assumption
has placed a further challenge in that the geometry of the cortical pyramidal cells
should be incorporated. Accounting for the geometry of the cell seemed to imply
that one loses the computational efficiency of point models and we had to resort to
compartmental models. However, herein we have proposed a framework showing
how to circumvent these apparent difficulties to finally derive a biophysically
plausible observation model for the Amari neural field equation [1], with additional
dipole currents coupled to the Maxwell’s equations.

We have first proposed a full-fledged three-compartment model of a single
pyramidal cell decomposed into the apical dendritic tree for the main of excitatory
synapses, the soma and the perisomatic dendritic tree that harbors mainly the
inhibitory synapses, and the axon hillock exhibiting the neural spiking mecha-
nism. In addition, the extracellular space was represented by incorporating both
Ohmic and diffusive impedances, thus assuming that the total current through the
extracellular fluid is governed by the Nernst-Planck equation. This has enabled
us to account for the Warburg impedance. From this starting point and successive
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simplifications we have derived the evolution law of the circuit, represented as an
integro-differential equation. In the continuum limit this evolution law went into the
Amari neural field equation, augmented by an observation equation for dendritic
dipole currents, that are coupled to Maxwell’s equations for the electromagnetic
field in extracellular fluid.

Moreover we have demonstrated how to simplify and derive from our proposed
three-compartment model a standard LIF network which then have enabled us
to compare our LFP measure with other LFP measures found in the literature.
Herein, we specifically have chosen to compare with the Mazzoni et al. work [50],
that proposed the LFP to be the sum of the moduli of inhibitory and excita-
tory currents. Thus, we have proceeded by mapping our biophysical electrotonic
parameters to the phenomenological parameters implemented in Mazzoni’s LFP
model [50]. However, now with the advantage that our LFP measure accounts
for the extracellular currents and the geometry of the cell. Subsequently, we have
compared different simulation runs between our LIF network model and that of
Mazzoni et al. [50]. This comparison indicates that the Mazzoni et al. model
systematically overestimates LFP amplitude by almost one order of magnitude and
also systematically overestimates LFP frequencies. For more detailed discussion we
refer the interested reader to [9].

At the present stage, we note that there is still a long way to fully explain the
spatiotemporal characteristics of LFP and EEG. For example, the polarity reversals
observed in experimental LFP/EEG as an electrode traverses different cortical layers
are not accounted for in our current model. This is explained with the direction of the
dipole currents, which is constrained, in the sense that current sources are situated
at the perisomatic and current sinks are situated at apical dendritic tree. Taking this
polarity as positive also entails positive DFP and LFP that could only change in
strength. However, it is straightforward to adapt our model by fully incorporating
cortical layers III and VI, for example. Yet another aspect that was not looked in the
present work, was that of ephaptic interactions [31,37,40,55] between neurons and
the LFP which could act via a mean-field coupling as an order parameter thereby
entraining the local populations to synchronized activity. A possible biophysical
basis for this phenomena could be polarization of neurons induced by electric
fields that are generated by ionic charges. As a consequence, this could alter the
voltage dependent conductances, triggering changes of the neuronal dynamics, such
as spiking and the activity of glia cells. We have not accounted for this effect in a
biophysical sense yet, however, we could phenomenologically describe this mean-
field coupling through a modulation of firing thresholds as outlined in [7].
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