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Preface

The Neural Field: A Framework for Brain Data Integration?

This book presents a perspective on the advancing subject of neural fields—that
is, theories of brain organization and function in which the interaction of billions
of neurons is treated as a continuum. The intention is to reduce the enormous
complexity of neuronal interactions to simpler, population properties that are
tractable by analytical mathematical tools. By so doing, it is hoped that the theory
of brain function can be reduced to its essence, without becoming lost in a wealth
of inessential detail. Naturally, this begs the questions of what the “essence”
is, and what detail is inessential [1]. The questions themselves are timely for
more than neural field theory. Putting aside the most profound of philosophical
issues—the existential relation between objective brain function and subjective
consciousness—at the cellular level, research has achieved detailed knowledge of
individual neuron physiology, and at the gross level, considerable knowledge of
sensory processing, the generation of movement and the functional locations in the
brain of memory, learning, emotion and decision-making. Yet our knowledge of
the functional details of all these processes remains vague, and little surpasses the
views held by Sherrington [4]. The ever-accumulating body of experimental data,
gathered with ever-improving observational techniques, continues to promise that
fundamental understanding of the modes of operation of the brain may be possible—
yet the goal seems also to move away, like a mirage, because, despite the mass
of data, there is no agreed means to achieve the needed integration. A crisis of
confidence looms. It is to be hoped that such a crisis is a healthy state—the darkness
before the dawn—analogous to the problems of systematic biology before Darwin,
or of astronomy before Kepler, or, more recently, of atomic physics before Bohr, but
hope alone will not suffice.

Aware of the risk of becoming trapped in an overwhelming mass of undigested
detail, large groups of scientists are joining forces to address the problems of
integration. While organizing collaborative efforts of scale unprecedented in neu-
roscience, all concerned agree on the importance both of technological advances
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and of theoretical development, but there are many differences of opinion on
the best and shortest route to success. In Europe the Human Brain Project [6]
is aimed at large scale simulation of the brain, employing very detailed cellular
properties. In the United States, the Brain Activity Map [5] seeks to establish a
functional connectome of the entire brain, and the MindScope Project [3] intends to
obtain a complete model of the mouse visual cortex. The BRAIN (Brain Research
through Advancing Innovative Neurotechnologies) Initiative [7] aims to accelerate
techniques for study of the brain.

Unresolved questions and fears, around which controversy centres, are:
Do we yet have enough detailed data on structure? How much knowledge of

exact connectivity in the brain is enough? Established anatomical techniques are not
depleted of possibility to resolve more detail, and very sophisticated new technology
is being deployed to add further to this. Yet the capacity of individuals to undergo
profound brain damage or deformity of brain development without loss of essential
function makes the need for such precise detail seem questionable.

Might some crucial type of data still be missing? Controversy over the role
of electrical coupling of neurons, and that of glial cells, over and above signal
transmission via axon-synaptic couplings, continues to simmer. Might there be
rules of synaptic connection that are not apparent, because the pattern cannot be
ascertained within the billions of neurons involved?

To reveal essential patterns of activity, do different types of data have to be
obtained using concurrent recording methods? All existing techniques offer a
window on brain function limited in scale or in resolution in space or time. That
is, only a comparatively few cells can be observed at once, the brain’s electric
and magnetic fields are relatively blurred in space, and the brain’s blood flow, as
observed by functional magnetic resonance imaging, is limited to relatively slow
variations. None match the scale, speed, and detail relevant to cognition, and the task
of making sufficient conjoint observations, in realistic waking contexts, is daunting
to say the least.

What then is a reasonably observable explainable unit of the brain? Professor
Eric Kandel advocates the complete analysis of a fly or worm brain, as an initial
step in the mega-collaborations [2], but in what way, exactly, is a worm’s brain more
fundamental than, say, a sympathetic ganglion, or a fly’s brain than a sensory-motor
reflex?

If all the most important observable data is already available, or will become so,
will sufficient computer power enable a working brain to be simulated? If this were
achieved, would we be any the wiser, or simply unable to understand the functioning
of the simulation, just as we cannot understand that upon which the simulation
would be based? And would the simulation not, itself, be a person? Thus making
our justification for subjecting it to manipulation and interference in the interests of
science a little ethically questionable?

Obviously there is no way of knowing the answers to such questions without
already having a sufficient unified theoretical understanding of brain function,
within which old and new observations can be seen in context. Neural Field Theory
hopes to discover such a unification, using as its guiding light explanation of the
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large scale observable fields of brain activity, and expecting as this account proceeds
an emergent insight into neural information processing. In contrast to its close
relative, neural network theory, it seeks explanations beyond the interaction of
smaller numbers of neurons, depending instead on the properties of small neural
groups to define the properties of the continuum. The layout of this book reflects
these intents.

After a brief tutorial, in the first half of the book and beginning from an historical
perspective, differing approaches to formulating and analysing equations for neural
fields are presented, and in their variety also revealing an underlying unity of
conception. Stochastic dynamics are discussed, as well as means of introducing
more anatomically and physiologically realistic properties to neural field equations.

The second half of the book begins by addressing the question of embodiment
of universal computation within neural fields, and moves on to cognitive processes.
Detailed models with cortical connectivity approaching that of the mammalian brain
and the relationship to the large-scale electrical fields of the brain follow, and the
book concludes with an attempt to show how fundamental field dynamics may play
a part in the brain’s embryonic development.

Thus a preliminary framework is discernible—methods now exist with the
potential to unify material drawn from many branches of neuroscience, guiding their
synthesis towards working models that can be tested against observable physical
and cognitive properties of the working brain. The framework remains frail, and
although the concepts involved seem largely internally consistent, in detail—for
instance in the choice of parameters applied in different work—the work reported
here is not entirely so. It is not yet possible to say the elusive “essence” referred
to in the first paragraph has been captured. But the hopes held at the dawn of this
subject appear to have been justified, and future prospects encouraging.

Stephen Coombes
Peter beim Graben

Roland Potthast
James Wright
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Chapter 1
Tutorial on Neural Field Theory

Stephen Coombes, Peter beim Graben, and Roland Potthast

Abstract The tools of dynamical systems theory are having an increasing impact
on our understanding of patterns of neural activity. In this tutorial chapter we
describe how to build tractable tissue level models that maintain a strong link
with biophysical reality. These models typically take the form of nonlinear integro-
differential equations. Their non-local nature has led to the development of a set of
analytical and numerical tools for the study of spatiotemporal patterns, based around
natural extensions of those used for local differential equation models. We present
an overview of these techniques, covering Turing instability analysis, amplitude
equations, and travelling waves. Finally we address inverse problems for neural
fields to train synaptic weight kernels from prescribed field dynamics.

1.1 Background

Ever since Hans Berger made the first recording of the human electroencephalo-
gram (EEG) in 1924 [8] there has been a tremendous interest in understanding
the physiological basis of brain rhythms. This has included the development of
mathematical models of cortical tissue – which are often referred to as neural field
models. One of the earliest of such models is due to Beurle [9] in the 1950s,
who developed a continuum description of the proportion of active neurons in
a randomly connected network. This was followed by work of Griffith [40, 41]
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2 S. Coombes et al.

in the 1960s, who also published two books that still make interesting reading
for modern practitioners of mathematical neuroscience [42, 43]. However, it were
Wilson and Cowan [88,89], Nunez [67] and Amari [3] in the 1970s who provided the
formulations for neural field models that is in common use today (see Chaps. 2 and 3
in this book). Usually, neural field models are conceived as neural mass models
describing population activity at spatiotemporally coarse-grained scales [67, 89].
They can be classified as either activity-based [89] or voltage-based [3, 67] models
(see [14, 64] for discussion).

For their activity-based model Wilson and Cowan [88,89] distinguished between
excitatory and inhibitory sub-populations, as well as accounted for refractoriness.
This seminal model can be written succinctly in terms of the pair of partial integro-
differential equations:

@E

@t
D �E C .1 � rEE/SEŒwEE ˝E � wEI ˝ I �;

@I

@t
D �I C .1 � rI I /SI ŒwIE ˝E � wII ˝ I �: (1.1)

Here E D E.r; t / is a temporal coarse-grained variable describing the proportion
of excitatory cells firing per unit time at position r at the instant t . Similarly the
variable I represents the activity of an inhibitory population of cells. The symbol
˝ represents spatial convolution, the functions wab.r/ describe the weight of all
synapses to the ath population from cells of the bth population a distance jrj away,
and ra is proportional to the refractory period of the ath population (in units of
the population relaxation rate). The nonlinear function Sa describes the expected
proportion of neurons in population a receiving at least threshold excitation per
unit time, and is often taken to have a sigmoidal form. In many modern uses of the
Wilson-Cowan equations the refractory terms are often dropped. For exponential or
Gaussian choices of the connectivity function the Wilson-Cowan model is known
to support a wide variety of solutions, including spatially and temporally periodic
patterns (beyond a Turing instability), localised regions of activity (bumps and
multi-bumps) and travelling waves (fronts, pulses, target waves and spirals), as
reviewed in [19, 20, 32] and in Chaps. 4, 5, 7 or 8.

Further work on continuum models of neural activity was pursued by Nunez
[67] and Amari [2, 3] under natural assumptions on the connectivity and firing
rate function. Amari focused on local excitation and distal inhibition which is an
effective model for a mixed population of interacting inhibitory and excitatory
neurons with typical cortical connections (commonly referred to as Mexican hat
connectivity), and formulated a single population (scalar) voltage-based model
(without refractoriness) for activity u D u.r; t / of the form

@u

@t
D �uC w˝ f .u/; (1.2)
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for some sigmoidal firing rate function f and connectivity function w. For the case
that f is a Heaviside step function he showed how exact results for localised states
(bumps and travelling pulses) could be obtained.

Since the original contributions of Wilson, Cowan, Nunez and Amari similar
models have been used to investigate a variety of neural phenomena, including
electroencephalogram (EEG) and magnetoencephalogram (MEG) rhythms [51, 52,
64, 68] (cf. Chaps. 10, 14, and 17), geometric visual hallucinations [16, 33, 84],
mechanisms for short term memory [62, 63], feature selectivity in the visual
cortex [7], motion perception [39], binocular rivalry [54], and anaesthesia [65]
(cf. Chaps. 14 and 15). Neural field models have also found applications in
autonomous robotic behaviour [30] (Chap. 13), embodied cognition [81] (Chap. 12),
and Dynamic Causal Modelling [28] (Chap. 17), as well as being studied from an
inverse problems perspective [5, 75]. As well as an increase in the applications
of models like (1.1) and (1.2) in neuroscience, there has been a push to develop
a deeper mathematical understanding of their behaviour. This has led to results
in one spatial dimension about the existence and uniqueness of bumps [58] and
waves [34] with smooth sigmoidal firing rates, as well as some constructive
arguments that generalise the original ideas of Amari for a certain class of smoothed
Heaviside firing rate functions [23, 69]. Other mathematical work has focused on
geometric singular perturbation analysis as well as numerical bifurcation techniques
to analyse solutions in one spatial dimension [62, 72, 73]. More explicit progress
has been possible for the case of Heaviside firing rate functions, especially as
regards the stability of solutions using Evans functions [22]. The extension of
results from one to two spatial dimensions has increased greatly in recent years
[24,37,56,60,61,70,85] (see Chap. 7). This style of work has also been able to tackle
physiological extensions of minimal neural field models to account for axonal delays
[21, 48, 50, 67] (included in the original Wilson-Cowan model and then dropped for
simplicity), dendritic processing [15], and synaptic depression [55]. In contrast to
the analysis of spontaneously generated patterns of activity, relatively little work has
been done on neural fields with forcing. The exceptions perhaps being the work in
[38] (for localised drive) and global period forcing in [78]. However, much of the
above work exploits idealisations of the original models (1.1) and (1.2), especially
as regards heterogeneity and noise, to make mathematical progress. More recent
work that tackles heterogeneity (primarily using simulations) can be found in [11]
(also in Chap. 8), whilst perturbation theory and homogenisation techniques are
developed in [13, 24, 80], and functional analytic results in [36]. The treatment of
stochastic neural field models is a very new area, and we refer the reader to the
recent review by Bressloff [14] and to Chaps. 2 and 9, which also covers methods
from non-equilibrium statistical physics that attempt to move beyond the mean-field
rate equations of the type exemplified by (1.1) and (1.2). However, it is fair to say
that the majority of neural field models in use today can trace their roots back to the
seminal work of Wilson and Cowan, Nunez and Amari.

In this chapter we will develop the discussion of a particular neural field model
that incorporates much of the spirit of (1.1) and (1.2), though with refinements that
make a stronger connection to models of both synaptic and dendritic processing.
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We will then show how to analyse these models with techniques from dynamical
systems before going on to discuss inverse problems in neural field theory.

1.1.1 Synaptic Processing

At a synapse, presynaptic firing results in the release of neurotransmitters that
causes a change in the membrane conductance of the postsynaptic neuron. This
postsynaptic current may be written

Is D g.V � Vs/; (1.3)

where V is the voltage of the postsynaptic membrane, Vs is its reversal potential and
g is a conductance. This is proportional to the probability that a synaptic receptor
channel is in an open conducting state. This probability depends on the presence
and concentration of neurotransmitter released by the presynaptic neuron. The sign
of Vs relative to the resting potential (assumed to be zero) determines whether the
synapse is excitatory (Vs > 0) or inhibitory (Vs < 0).

The effect of some synapses can be described with a function that fits the shape
of the postsynaptic response due to the arrival of action potential at the presynaptic
release site. A postsynaptic conductance change g.t/ would then be given by

g.t/ D g�.t � T /; t � T; (1.4)

where T is the arrival time of a presynaptic action potential and �.t/ fits the shape
of a realistic postsynaptic conductance. A common (normalised) choice for �.t/ is
a difference of exponentials:

�.t/ D
�
1

˛
� 1
ˇ

��1
Œe�˛t � e�ˇt �H.t/; (1.5)

or the ˛-function:

�.t/ D ˛2te�˛tH.t/; (1.6)

where H is a Heaviside step function. The conductance change arising from a train
of action potentials, with firing times Tm, is given by

g.t/ D g
X
m

�.t � Tm/: (1.7)

We note that both the forms for �.t/ above can be written as the Green’s function
of a linear differential operator, so that Q� D ı, where
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Q D
�
1C 1

˛

d

dt

��
1C 1

ˇ

d

dt

�
; (1.8)

for (1.5) and one simply sets ˇ D ˛ to obtain the response describing an ˛-function.

1.1.2 Dendritic Processing

Dendrites form the major components of neurons. They are complex branching
structures that receive and process thousands of synaptic inputs from other neurons.
It is well known that dendritic morphology plays an important role in the function
of dendrites. A nerve fibre consists of a long thin, electrically conducting core
surrounded by a thin membrane whose resistance to transmembrane current flow
is much greater than that of either the internal core or the surrounding medium.
Injected current can travel long distances along the dendritic core before a signif-
icant fraction leaks out across the highly resistive cell membrane. Conservation
of electric current in an infinitesimal cylindrical element of nerve fibre yields a
second-order linear partial differential equation (PDE) known as the cable equation.
Let V.x; t/ denote the membrane potential at position x along a uniform cable at
time t measured relative to the resting potential of the membrane. Let � be the cell
membrane time constant, � the space constant and r the membrane resistance, then
the basic uniform (infinite) cable equation is

�
@V.x; t/

@t
D �V.x; t/C �2 @

2V .x; t/

@x2
C rI.x; t/; x 2 .�1;1/; (1.9)

where we include the source term I.x; t/ corresponding to external input injected
into the cable. diffusion along the dendritic tree generates an effective spatiotem-
poral distribution of delays as expressed by the associated Green’s function of the
cable equation in terms of the diffusion constant D D �2=� . In response to a unit
impulse at x0 at t D 0 and taking V.x; 0/ D 0 the dendritic potential behaves as
V.x; t/ D G1.x � x0; t /, where

G1.x; t/ D 1p
4�Dt

e�t=�e�x2=.4Dt/H.t/: (1.10)

The Green’s function G1.x; t/ (derived in Appendix 1) determines the linear
response to an instantaneous injection of unit current at a given point on the tree.
Using the linearity of the cable equation one may write the general solution as

V.x; t/ D
Z t

�1
dt 0
Z 1

�1
dx0G1.x � x0; t � t 0/I.x0; t 0/

C
Z 1

�1
dx0G1.x � x0; t /V .x0; 0/: (1.11)
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Note that for notational simplicity we have absorbed a factor of r=� within the
definition of the source term I.x; t/. For example, assuming the soma is at x D 0,
V.x; 0/ D 0 and the synaptic input is a train of spikes at x D x0, I.x; t/ D ı.x �
x0/

P
m ı.t � Tm/ we have that

V.0; t/ D
X
m

G1.x0; t � Tm/: (1.12)

1.2 Tissue Level Firing Rate Models with Axo-Dendritic
Connections

At heart modern biophysical theories assert that EEG signals from a single scalp
electrode arise from the coordinated activity of�106 pyramidal cells in cortex [27].
These are arranged with their dendrites in parallel and perpendicular to the cortical
surface. When synchronously activated by synapses at the proximal dendrites
extracellular current flows (parallel to the dendrites), with a net membrane current
at the synapse. For excitatory (inhibitory) synapses this creates a sink (source) with
a negative (positive) extracellular potential. Because there is no accumulation of
charge in the tissue the proximal synaptic current is compensated by other currents
flowing in the medium causing a distributed source in the case of a sink and vice-
versa for a synapse that acts as a source. Hence, at the population level the potential
field generated by a synchronously activated population of cortical pyramidal cells
behaves like that of a dipole layer. Although the important contribution that single
dendritic trees make to generating extracellular electric field potentials has been
realised for some time, and can be calculated using Maxwell equations [71], they
are typically not accounted for in neural field models. The exception to this being
the work of Bressloff, reviewed in [15] and in Chap. 10.

In many neural population models it is assumed that the interactions are mediated
by firing rates rather than action potentials (spikes) per se. To see how this might
arise we rewrite (1.7) in the equivalent form

Qg D g
X
m

ı.t � Tm/: (1.13)

If we perform a short-time average of (1.13) over some time-scale � and assume
that � is sufficiently slow so that hQgit is approximately constant, where

hxit D 1

�

Z t

t��
x.s/ds; (1.14)

then we have that Qg D f , where f is the instantaneous firing rate (number of
spikes per time �). For a single neuron (real or synthetic) experiencing a constant
drive it is natural to assume that this firing rate is a function of the drive alone. If for
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the moment we assume that a neuron spends most of its time close to rest such that
Vs�V � Vs , and absorb a factor Vs into g, then for synaptically interacting neurons
this drive is directly proportional to the conductance state of the presynaptic neuron.
Thus for a single population with self-feedback we are led naturally to equations
like:

Qg D w0f .g/; (1.15)

for some strength of coupling w0. A common choice for the population firing rate
function is the sigmoid

f .g/ D 1

1C exp.�ˇ.g � h// ; (1.16)

which saturates to one for large g. This functional form, with threshold h and
steepness parameter ˇ, is approximately obtained for a unimodal distribution of
firing thresholds among the population [88]. Note that the notion of a slow response
would also be expected in a large globally coupled network which was firing
asynchronously (so that mean field signals would be nearly constant).

To obtain a tissue level model in one spatial dimension we simply consider g D
g.x; t/, with x 2 R, and introduce a coupling function and integrate over the domain
to obtain

Qg D
Z 1

�1
w.x; y/f .g.y; t �D.x; y/=v//dy; (1.17)

or equivalently

g.x; t/ D
Z t

�1
ds�.t � s/

Z 1

�1
w.x; y/f .g.y; s �D.x; y/=v//dy: (1.18)

Here we have allowed for a communication delay, that arises because of the
finite speed, v, of the action potential, where D.x; y/ measures the length of the
axonal fibre between points at x and y. The coupling function w.x; y/ represents
anatomical connectivity, and is often assumed to be homogeneous so that w.x; y/ D
w.jx � yj/. It is also common to assume that D.x; y/ D jx � yj.

Following the original work of Bressloff (reviewed in [15]) we now develop the
cable modelling approach of Rall [82] to describe a firing rate cortical tissue model
with axo-dendritic patterns of synaptic connectivity. For simplicity we shall consider
only an effective single population model in one (somatic) spatial dimension to
include a further dimension representing position along a (semi-infinite) dendritic
cable. The firing rate in the somatic (cell body) layer is taken to be a smooth function
of the cable voltage at the soma, which is in turn determined by the spatiotemporal
pattern of synaptic currents on the cable. For an illustration see Fig. 1.1.
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Fig. 1.1 Diagram of a one dimensional neural field model. In this illustration the dendritic tree is
drawn with a branched structure. For the sake of simplicity the neural field model is only developed
here for unbranched dendrites. However, this can be naturally generalised using the “sum-over-
trips” approach of Abbott et al. for passive dendrites [1] and Coombes et al. [25] for resonant
dendrites

The voltage V.�; x; t/ at position � � 0 along a semi-infinite passive cable with
somatic coordinate x 2 R can then be written:

@V

@t
D �V

�
CD@

2V

@�2
C I.�; x; t/: (1.19)

Here, I.�; x; t/ is the synaptic input (and remember that we absorb within this
a factor r=� ), and we shall drop shunting effects and take this to be directly
proportional to a conductance change, which evolves according to the usual neural
field prescription (cf. Eq. (1.18)) as

g.�; x; t/ D
Z t

�1
ds�.t � s/

Z 1

�1
dyW.�; x; y/f .h.y; s �D.x; y/=v//: (1.20)

The function W.�; x; y/ describes the axo-dendritic connectivity pattern and the
field h is taken as a measure of the drive at the soma. As a simple model of h we
shall take it to be the somatic potential and write h.x; t/ D V.0; x; t/. For no flux
boundary conditions @V.�; x; t/=@�j�D0 D 0, and assuming vanishing initial data,
the solution to (1.19) at � D 0 becomes

V.� D 0; x; t/ D 	.G ˝ g/.� D 0; x; t/; G D 2G1 (1.21)

for some constant of proportionality 	 > 0, where G1.x; t/ is given by (1.10) and
here the operator ˝ denotes spatiotemporal convolution over the .�; t/ coordinates.
Note that in obtaining (1.21) we have used the result that the Green’s function
(between two points � and � 0) for the semi-infinite cable with no flux boundary
conditions can be written as G1.� � � 0; t /CG1.� C � 0; t / [1, 86].
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Further assuming that the axo-dendritic weights can be decomposed in the
product form W.�; x; y/ D P.�/w.jx � yj/ then the equation for h takes the form

h.x; t/ D 	
Z t

�1
dsF.t � s/

Z s

�1
ds0�.s � s0/

Z 1

�1
dyw.jx � yj/f .h.y; s0 �D.x; y/=v//;

(1.22)

where

F.t/ D
Z 1

0

d�P.�/G.�; t/: (1.23)

We regard Eq. (1.22) as a natural extension of the Amari model (1.2) to include
synaptic and dendritic processing as well as axonal delays. Note that the Amari
model is recovered from (1.22) in the limit v ! 1, �.t/ D e�tH.t/, and F.t/ D
ı.t/=	.

1.2.1 Turing Instability Analysis

To assess the pattern forming properties of the model given by (1.22) it is useful to
perform a Turing instability analysis. This describes how a spatially homogeneous
state can become unstable to spatially heterogeneous perturbations, resulting in
the formation of periodic patterns. To illustrate the technique consider the one-
dimensional model without dendrites or axonal delays, obtained in the limit v !1
and F.t/! ı.t/:

h.x; t/ D 	
Z 1

0

ds�.s/
Z 1

�1
dyw.jyj/f .h.x � y; t � s//: (1.24)

One solution of the neural field equation is the spatially uniform resting state
h.x; t/ D h0 for all x; t , defined by

h0 D 	f .h0/
Z 1

�1
w.jyj/dy: (1.25)

Here we have used the fact that � is normalised, namely that
R1
0

ds�.s/ D 1. We
linearise about this state by letting h.x; t/! h0C h.x; t/ so that f .h/! f .h0/C
f 0.h0/u to obtain

h.x; t/ D 	ˇ
Z 1

0

ds�.s/
Z 1

�1
dyw.y/h.x � y; t � s/; ˇ D f 0.h0/: (1.26)
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Fig. 1.2 A plot of the
Fourier transform of the
weight kernel Ow.p/
illustrating how its shape
(with a maximum away from
the origin) can determine a
Turing instability defined by
the condition 	ˇ Ow.pc/ D 1

This has solutions of the form e�teipx, with a dispersion curve:

1 D 	ˇ Q�.�/ Ow.p/; Ow.p/ D
Z 1

�1
dyw.jyj/e�ipy; Q�.�/ D

Z 1

0

ds�.s/e��s:

(1.27)

We recognise Ow as the Fourier transform of w and Q� as the Laplace transform of �.
The uniform steady state is linearly stable if Re�.p/ < 0 for all p 2 R, p ¤ 0.
For the choice �.t/ D ˛e�˛tH.t/ (so that Q D .1 C ˛�1d=dt /) then Q�.�/ D
.1C�=˛/�1. In this case, since w.x/ D w.�x/ then Ow.p/ is a real even function of
p and the stability condition is simply

Ow.p/ < 1

ˇ	
; for all p 2 R; p ¤ 0: (1.28)

Now consider the case that Ow.p/ has a positive maximum Owmax at p D ˙pc , that
is Ow.pc/ D Owmax and Ow.p/ < Owmax for all p ¤ pc . For ˇ < ˇc , where ˇc D
1=.	 Owmax/, we have 	 Ow.p/ � 	 Owmax < 1=ˇ for all p and the resting state is linearly
stable. At the critical point ˇ D ˇc (see Fig. 1.2) we have ˇc	 Ow.pc/ D 1 and
ˇc	 Ow.p/ < 1 for all p ¤ pc . Hence, �.p/ < 0 for all p ¤ pc , but �.pc/ D 0. This
signals the point of a static instability due to excitation of the pattern e˙ipcx. Beyond
the bifurcation point, ˇ > ˇc , �.pc/ > 0 and this pattern grows with time. In fact
there will typically exist a range of values of p 2 .p1; p2/ for which �.p/ > 0,
signalling a set of growing patterns. As the patterns grow, the linear approximation
breaks down and nonlinear terms dominate the behaviour. The saturating property
of f tends to create patterns with finite amplitude, that scale as

p
ˇ � ˇc close

to bifurcation and have wavelength 2�=pc . If pc D 0 then we would have a bulk
instability resulting in the formation of another homogeneous state.

A common choice for w.x/ is a Mexican hat function which represents short-
range excitation and long-range inhibition. An example of such a function is a
difference of two exponentials:

w.x/ D 

h
e��1jxj � � e��2jxji ; (1.29)
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with � < 1, �1 > �2 > 0 and 
 D C1. (The case 
 D �1, which represents
short-range inhibition and long-range excitation will be considered below in the full
model.) The Fourier transform Ow.p/ is calculated as:

Ow.p/ D 2

�

�1

�21 C p2
� � �2

�22 C p2
�
; (1.30)

from which we may determine pc as

p2c D
�21
p
� �2=�1 � �22

1 �p� �2=�1 : (1.31)

Hence, pc ¤ 0 when � > .�2=�1/
3. Note that for 
 D �1 then pc D 0 and a static

Turing instability does not occur.
For the full model (1.22) with D.x; y/ D jx � yj the homogeneous steady state,

h.x; t/ D h0 for all x; t , satisfies

h0 D 	f .h0/
Z 1

0

F.s/ds
Z 1

�1
dyw.jyj/; (1.32)

and the spectral equation takes the form

1 D 	ˇ Ow.p; �/ Q�.�/ QF .�/; Ow.p; �/ D
Z 1

�1
dyw.jyj/e�ipye��jyj=v; ˇ D f 0.h0/:

(1.33)

Compared to (1.27) it is now possible for complex solutions for � to be supported –
allowing for the possibility of dynamic (as opposed to static) Turing instabilities to
occur. These occur when Im� ¤ 0 at the bifurcation point.

For example, in the limit v ! 1 then Ow.p; �/ ! Ow.p/ and for �.t/ D
˛e�˛tH.t/ we have that

1C �=˛ D 	ˇ Ow.p/ QF .�/: (1.34)

A necessary condition for a dynamic instability (Re� D 0 and Im� ¤ 0) is that
there exists a pair !, p ¤ 0 such that

1C i!=˛ D 	ˇ Ow.p/ QF .i!/: (1.35)

Equating real and imaginary parts (and using the fact that Ow.p/ 2 R) gives us the
pair of simultaneous equations

1 D 	ˇ Ow.p/C.!/; !=˛ D 	ˇ Ow.p/S.!/; (1.36)
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where C.!/ D Re QF .i!/ and S.!/ D Im QF .i!/. Note that C.!/ DR1
0

dsF.s/ cos.!s/ � jC.0/j. Hence (dividing the above equations) if there is
a non-zero solution to

!c

˛
DH .!c/; H .!c/ � S.!c/

C.!c/
; (1.37)

then the bifurcation condition, ˇ D ˇd , for a dynamic instability is defined by

ˇd	 Ow.pmin/ D 1

C.!c/
; (1.38)

which should be contrasted with the bifurcation condition, ˇ D ˇs , for a static
instability, namely

ˇs	 Ow.pmax/ D 1

C.0/
; (1.39)

where

Ow.pmin/ D min
p
Ow.p/; Ow.pmax/ D max

p
Ow.p/: (1.40)

Assuming that Ow.pmin/ < 0 < Ow.pmax/, a dynamic Turing instability will occur if
ˇ < ˇs and pmin ¤ 0, whereas a static Turing instability will occur if ˇs < ˇ and
pmax ¤ 0.

For the Mexican hat function (1.29) with 
 D C1 (short-range excitation, long-
range inhibition), a dynamic Turing instability is not possible since pmin D 0.
However, it is possible for bulk oscillations to occur instead of static patterns when

Ow.pc/ < �C.!c/
C.0/

j Ow.0/j; (1.41)

with pc given by (1.31). On the other hand, when 
 D �1 (short-range inhibition,
long-range excitation) a dynamic instability can occur since pmin D pc and pmax D
0, provided that

Ow.0/ < �C.!c/
C.0/

j Ow.pc/j: (1.42)

As an explicit example consider the choice P.�/ D ı.� � �0/ (so that the synaptic
contact occurs at a fixed distance �0 > 0 from the soma). In this case F.t/ D
G.�0; t/ with Laplace transform (calculated in Appendix 2):

QF .�/ D e��.�/�0
D�.�/

; �2.�/ D .1=� C �/=D: (1.43)
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Fig. 1.3 A plot of the
function H.!/ for
D D � D 1 with �0 D 2,
showing a non-zero solution
of (1.37) for ˛ D 1. This
highlights the possibility of a
dynamic Turing instability
(!c ¤ 0) in a dendritic neural
field model with short-range
inhibition and long-range
excitation

In this case we may calculate the real and imaginary parts of QF .i!/ as

C.!/ D 1p
1=�2 C !2 e�AC.!/�0 ŒAC.!/ cos.A�.!/�0/ � A�.!/ sin.A�.!/�0/�

(1.44)

S.!/ D � 1p
1=�2 C !2 e�AC.!/�0 ŒAC.!/ sin.A�.!/�0/C AC.!/ cos.A�.!/�0/�;

(1.45)

where
p
.1=� C i!/=D D AC.!/C iA�.!/ and

A˙.!/ D
q
Œ
p
1=.�D/2 C !2=D2 ˙ 1=.�D/�=2: (1.46)

A plot of H.!/ is shown in Fig. 1.3, highlighting the possibility of a non-zero
solution of (1.37) for a certain parameter set (and hence the possibility of a dynamic
instability).

For a discussion of dynamic Turing instabilities with finite v we refer the reader
to [87]. For the treatment of more general forms of axo-dendritic connectivity (that
do not assume a product form) we refer the reader to [12, 17].

The extension of the above argument to two dimensions shows that the linearised
equations of motion have solutions of the form e�teip�r, r;p 2 R

2, with � D �.p/,
p D jpj as determined by (1.33) with

Ow.p; �/ D
Z
R2

drw.jrj/e�ip�re��jrj=v: (1.47)

Near bifurcation we expect spatially periodic solutions of the form exp i Œp1xCp2y�,
p2c D p21 C p22 . For a given pc there are an infinite number of choices for p1 and
p2. It is therefore convenient to restrict attention to doubly periodic solutions that
tessellate the plane. These can be expressed in terms of the basic symmetry groups of
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hexagon, square and rhombus. Solutions can then be constructed from combinations
of the basic functions eipcR�r, for appropriate choices of the basis vectors R. If 
is the angle between two basis vectors R1 and R2, we can distinguish three types
of lattice according to the value of : square lattice ( D �=2), rhombic lattice
(0 <  < �=2) and hexagonal ( D �=3). Hence, all doubly periodic functions
may be written as a linear combination of plane waves

h.r/ D
X
j

Aj eipcRj �r C cc; jRj j D 1; (1.48)

where cc stands for complex-conjugate. For hexagonal lattices we use R1 D .1; 0/,
R2 D .�1;p3/=2, and R3 D .1;

p
3/=2. For square lattices we use R1 D .1; 0/,

R2 D .0; 1/, while the rhombus tessellation uses R1 D .1; 0/, R2 D .cos �; sin �/.

1.2.2 Weakly Nonlinear Analysis: Amplitude Equations

A characteristic feature of the dynamics of systems beyond an instability is the
slow growth of the dominant eigenmode, giving rise to the notion of a separation
of scales. This observation is key in deriving the so-called amplitude equations.
In this approach information about the short-term behaviour of the system is
discarded in favour of a description on some appropriately identified slow time-
scale. By Taylor-expansion of the dispersion curve near its maximum one expects
the scalings Re� � ˇ � ˇc; p � pc �

p
ˇ � ˇc , close to bifurcation, where ˇ

is the bifurcation parameter. Since the eigenvectors at the point of instability are
of the type A1ei.!c tCpcx/ C A2ei.!c t�pcx/ C cc, for ˇ > ˇc emergent patterns are
described by an infinite sum of unstable modes (in a continuous band) of the form
e�0.ˇ�ˇc/tei.!c tCpcx/eip0

p
ˇ�ˇcx . Let us denote ˇ D ˇcC �2ı where � is arbitrary and

ı is a measure of the distance from the bifurcation point. Then, for small � we can
separate the dynamics into fast eigen-oscillations ei.!c tCpcx/, and slow modulations
of the form e�0�

2teip0�x . If we set as further independent variables � D �2t for the
modulation time-scale and � D �x for the long-wavelength spatial scale (at which
the interactions between excited nearby modes become important) we may write
the weakly nonlinear solution as A1.�; �/ei.!c tCpcx/CA2.�; �/ei.!c t�pcx/Ccc. It is
known from the standard theory [47] that weakly nonlinear solutions will exist in the
form of either travelling waves (A1 D 0 or A2 D 0) or standing waves (A1 D A2).

We are now in a position to derive the amplitude equations for patterns emerging
beyond the point of an instability for a neural field model. These are also useful for
determining the sub- or super-critical nature of the bifurcation. For clarity we shall
first focus on the case of a static instability, and consider the example system given
by (1.18) with �.t/ D e�tH.t/ and v ! 1, equivalent to the Amari model (1.2).
In this case the model is conveniently written as an integro-differential equation:
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@g

@t
D �g C w˝ f .g/; (1.49)

where the symbol˝ denotes spatial convolution (assuming w.x; y/ D w.jx � yj/).
We first Taylor expand the nonlinear firing rate around the steady state g0:

f .g/ D f .g0/C ˇ1.g � g0/C ˇ2.g � g0/2 C ˇ3.g � g0/3 C : : : ; (1.50)

where ˇ1 D f 0.g0/, ˇ2 D f 00.g0/=2 and ˇ3 D f 000.g0/=6. We also adopt the
perturbation expansion

g D g0 C �g1 C �2g2 C �3g3 C : : : : (1.51)

After rescaling time according to � D �2t and setting ˇ1 D ˇc C �2ı, where ˇc is
defined by the bifurcation condition ˇc D 1= Ow.pc/, we then substitute into (1.49).
Equating powers of � leads to a hierarchy of equations:

g0 D f .g0/
Z 1

�1
w.jyj/dy; (1.52)

0 D L g1; (1.53)

0 D L g2 C ˇ2w˝ g21; (1.54)

dg1
d�
D L g3 C ıw˝ g1 C 2ˇ2w˝ g1g2 C ˇ3w˝ g31; (1.55)

where

L g D �g C ˇcw˝ g: (1.56)

The first equation fixes the steady state g0. The second equation is linear with
solutions g1 D A.�/eipcx C cc (where pc is the critical wavenumber at the static
bifurcation). Hence the null space of L is spanned by e˙ipcx . A dynamical equation
for the complex amplitudeA.�/ (and we do not treat here any slow spatial variation)
can be obtained by deriving solvability conditions for the higher-order equations, a
method known as the Fredholm alternative. These equations have the general form
L gn D vn.g0; g1; : : : ; gn�1/ (with L g1 D 0). We define the inner product of two
periodic functions (with periodicity 2�=pc) as

hU; V i D pc

2�

Z 2�=pc

0

U �.x/V .x/dx; (1.57)

where � denotes complex conjugation. It is simple to show that L is self-adjoint
with respect to this inner product (see Appendix 3), so that

hg1;L gni D hL g1; gni D 0: (1.58)
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Hence we obtain the set of solvability conditions

he˙ipcx; vni D 0; n � 2: (1.59)

The solvability condition with n D 2 is automatically satisfied, since w ˝ g21 D
Ow.2pc/ŒA2e2ipcxC cc�C 2jAj2 Ow.0/, and we make use of the result heimpcx; einpcxi D
ım;n. For n D 3 the solvability condition (projecting onto eCipcx) is

heipcx;
dg1
d�
� ıw˝ g1i D ˇ3heipcx;w˝ g31i C 2ˇ2heipcx;w˝ g1g2i: (1.60)

The left-hand side is easily calculated, using w˝ g1 D Ow.pc/ŒAeipcx C cc�, as

dA

d�
� ı Ow.pc/A D dA

d�
� ˇ�1

c ıA; (1.61)

where we have made use of the bifurcation condition ˇc D 1= Ow.pc/. To evaluate
the right-hand side we use the result that w ˝ g31 D Ow.pc/ŒA3ei3pcx C cc� C
3jAj2 Ow.pc/ŒAeipcx C cc�, to obtain

heipcx;w˝ g31i D 3ˇ�1
c AjAj2: (1.62)

The next step is to determine g2. From (1.54) we have that

� g2 C ˇcw˝ g2 D �ˇ2
˚ Ow.2pc/ŒA2e2ipcx C cc�C 2jAj2 Ow.0/� : (1.63)

We now set

g2 D ACe2ipcx C A�e�2ipcx C A0 C g1: (1.64)

The constant  remains undetermined at this order of perturbation but does not
appear in the amplitude equation for A.�/. Substitution into (1.63) and equating
powers of eipcx gives

A0 D 2ˇ2jAj2 Ow.0/
1 � ˇc Ow.0/ ; AC D ˇ2A

2 Ow.2pc/
1 � ˇc Ow.2pc/ ; A� D A�C; (1.65)

where we have used the result that w ˝ g2 D Ow.2pc/ŒACe2ipcx C A�e�2ipcx� C
Ow.0/A0 C ŒA Ow.pc/eipcx C cc�. We then find that

heipcx;w˝ g1g2i D Ow.pc/ŒACA� C A0A�: (1.66)

Combining (1.61), (1.62) and (1.66) we obtain the Stuart-Landau equation

ˇc
dA

d�
D A.ı � ˚ jAj2/; (1.67)
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where

˚ D �3ˇ3 � 2ˇ22
� Ow.2pc/
1 � ˇc Ow.2pc/ C

2 Ow.0/
1 � ˇc Ow.0/

�
: (1.68)

Introducing A D Rei� we may rewrite Eq. (1.67) as

ˇc
dR

d�
D ıR � ˚R3; d�

d�
D 0: (1.69)

Hence, the phase of A is arbitrary (� D const) and the amplitude has a pitchfork
bifurcation which is super-critical for ˚ > 0 and sub-critical for ˚ < 0.

Amplitude equations arising for systems with a dynamic instability are treated in
[87]. The appropriate amplitude equations are found to be the coupled mean-field
Ginzburg–Landau equations describing a Turing–Hopf bifurcation with modulation
group velocity of O.1/.

1.2.2.1 Amplitude Equations for Planar Neural Fields

In two spatial dimensions the same ideas go across and can be used to determine
the selection of patterns, say stripes vs. spots [31]. In the hierarchy of Eqs. (1.52)–
(1.55) the symbol ˝ now represents a convolution in two spatial dimensions. The
two dimensional Fourier transform Ow takes the explicit form

Ow.p1; p2/ D
Z 1

�1
dx
Z 1

�1
dyw.x; y/ei.p1xCp2y/; (1.70)

and the inner product for periodic scalar functions defined on the plane is taken as

hU; V i D 1

j˝j
Z
˝

U �.r/V .r/dr; (1.71)

with˝ D .0; 2�=pc/� .0; 2�=pc/. We shall assume a radially symmetric kernel so

that Ow .p1; p2/ D Ow
�q

p21 C p22
�

. One composite pattern that solves the linearised

equations is

g1.x; y; �/ D A1.�/eipcx C A2.�/eipcy C cc: (1.72)

For A1 D 0 and A2 ¤ 0 we have a stripe, while if both A1 and A2 are non-
zero, and in particular equal, we have a spot. Here pc is defined by the condition
ˇc D 1= Ow.pc/. The null space of L is spanned by fe˙ipcx; e˙ipcyg, and we may
proceed as for the one dimensional case to generate a set of coupled equations for
the amplitudes A1 and A2. It is simple to show that

heipcx;w˝ g31i D 3ˇ�1
c A1.jA1j2 C 2jA2j2/: (1.73)
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Assuming a representation for g2 as

g2 D ˛0 C ˛1e2ipcx C ˛2e�2ipcx C ˛3e2ipcy C ˛4e�2ipcy C ˛5eipc .xCy/

C ˛6e�ipc .xCy/ C ˛7eipc .x�y/ C ˛8e�ipc .x�y/ C g1; (1.74)

allows us to calculate

heipcx;w˝ g1g2i D ˇ�1
c Œ˛0A1 C ˛1A�

1 C ˛5A�
2 C ˛7A2�: (1.75)

Balancing terms in (1.54) gives

˛0 D 2ˇ2.jA1j2 C jA2j2/ Ow.0/
1 � ˇc Ow.0/ ; ˛1 D ˇ2A

2
1 Ow.2pc/

1 � ˇc Ow.2pc/ ; (1.76)

˛5 D 2ˇ2A1A2 Ow.
p
2pc/

1 � ˇc Ow.
p
2pc/

; ˛7 D 2ˇ2A1A
�
2 Ow.
p
2pc/

1 � ˇc Ow.
p
2pc/

: (1.77)

Combining the above yields the coupled amplitude equations:

ˇc
dA1
d�
D A1.ı � ˚ jA1j2 � � jA2j2/; (1.78)

ˇc
dA2
d�
D A2.ı � ˚ jA2j2 � � jA1j2/; (1.79)

where

˚ D �3ˇ3 � 2ˇ22
�

2 Ow.0/
1 � ˇc Ow.0/ C

Ow.2pc/
1 � ˇc Ow.2pc/

�
; (1.80)

� D �6ˇ3 � 4ˇ22
"

Ow.0/
1 � ˇc Ow.0/ C

2 Ow.p2pc/
1 � ˇc Ow.

p
2pc/

#
: (1.81)

The stripe solution A2 D 0 and jA1j D
p
ı=˚ (or vice versa) is stable if and only

if � > ˚ > 0. The spot solution jA1j D jA2j D
p
ı=.˚ C �/ is stable if and only

if ˚ > � > 0. Hence, stripes and spots are mutually exclusive as stable patterns.
In the absence of quadratic terms in f , namely ˇ2 D 0, then � D �6ˇ3 and
˚ D �3ˇ3 so that for an odd firing rate function like f .x/ D tanh x ' x � x3=3
then ˇ3 < 0 and so � > ˚ and stripes are selected over spots. The key to the
appearance of spots is non-zero quadratic terms, ˇ2 ¤ 0, in the firing rate function;
without these terms spots can never stably exist. For a Mexican hat connectivity then
Ow.p2pc/ > Ow.2pc/ and the quadratic term of � is larger than that of ˚ so that as
jˇ2j increases then spots will arise instead of stripes.

The technique above can also be used to determine amplitude equations for more
general patterns of the form
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g1.r; �/ D
NX
jD1

Aj .�/e
ipcRj �r: (1.82)

For further discussion we refer the reader to [32, 84].

1.2.3 Brain Wave Equations

Given the relatively few analytical techniques for investigating neural field models
one natural step is to make use of numerical simulations to explore system
dynamics. For homogeneous models we may exploit the convolution structure
of interactions to develop fast Fourier methods to achieve this. Indeed we may
also exploit this structure further to obtain equivalent PDE models [61] (see also
Chap. 5), and recover the brain wave equation often used in EEG modelling [49,67].

For example consider a one-dimensional neural field model with axonal delays:

Qg D  ;  .x; t/ D
Z 1

�1
dyw.jx � yj/f .g.y; t � jx � yj/=v/: (1.83)

The function  .x; t/ may be expressed in the form

 .x; t/ D
Z 1

�1
ds
Z 1

�1
dyG.x � y; t � s/�.y; s/; (1.84)

where

G.x; t/ D ı.t � jxj=v/w.x/; (1.85)

can be interpreted as another type of Green’s function, and we use the notation

�.x; t/ D f .g.x; t//: (1.86)

Introducing Fourier transforms of the following form

 .x; t/ D 1

.2�/2

Z 1

�1

Z 1

�1
ei.kxC!t/ .k; !/dkd!; (1.87)

allows us to write

 .k; !/ D G.k; !/�.k; !/; (1.88)

assuming the Fourier transform of f .u/ exists. It is straightforward to show that the
Fourier transform of (1.85) is
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G.k; !/ D �.!=v C k/C �.!=v � k/; (1.89)

where

�.E/ D
Z 1

0

w.x/e�iExdx: (1.90)

We shall focus on a common form of (normalised) exponential synaptic footprint:

w.x/ D 1

2�
exp.�jxj=�/; �.E/ D 1

2�

1

��1 C iE
; � > 0: (1.91)

We now exploit the product structure of (1.88) and properties of (1.89) to
re-formulate the original integral model in terms of a PDE. Using (1.89) and (1.91)
we see that

G.k; !/ D 1

�

A.!/

A.!/2 C k2 ; A.!/ D 1

�
C i !

v
: (1.92)

We may now write (1.88) as .A.!/2 C k2/ .k; !/ D A.!/�.k; !/=� , which upon
inverse Fourier transforming gives the PDE:

�
A 2 � @xx

�
 D 1

�
A �; A D

�
1

�
C 1

v
@t

�
: (1.93)

This is a type of damped wave equation with an inhomogeneity dependent on (1.86).
This equation has previously been derived by Jirsa and Haken [49] and studied
intensively in respect to the brain-behaviour experiments of Kelso et al. [53]. For
the numerical analysis of travelling wave solutions to (1.93) we refer the reader
to [21].

The same approach can also be used in two spatial dimensions, and here
G.k; !/ D G.k; !/ would be interpreted as the three dimensional integral
transform:

G.k; !/ D
Z 1

�1
ds
Z
R2

drG.r; s/e�i.k�rC!s/: (1.94)

For the choice w.r/ D e�r=�=.2�/, we find that (see Appendix 4)

G.k; !/ D A.!/

.A2.!/C k2/3=2 ; (1.95)

which, unlike in one spatial dimension, is not a ratio of polynomials in k and !.
The problem arises as of how to interpret ŒA 2 � r2�3=2. In the long-wavelength
approximation one merely expands G.k; !/ around k D 0 for small k, yielding a
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“nice” rational polynomial structure which is then manipulated as described above
to give the PDE:

�
A 2 � 3

2
r2
�
 D �: (1.96)

This model has been intensively studied by a number of authors in the context of
EEG modelling, see for example [10, 77, 83]. For an alternative approximation to
the long-wavelength one we refer the reader to [26].

1.3 Travelling Waves and Localised States

As well as global periodic patterns neural field models are able to support localised
solutions in the form of standing bumps and travelling pulses of activity. For clarity
of exposition we shall focus on a one-dimensional neural field model with axonal
delays:

g.x; t/ D
Z 1

�1
dyw.y/

Z 1

0

ds�.s/f ı g.x � y; t � s � jyj=v/: (1.97)

Following the standard approach for constructing travelling wave solutions to
PDEs, such as reviewed by Sandstede [79], we introduce the coordinate � D x � ct
and seek functionsU.�; t/ D g.x�ct; t/ that satisfy (1.97). In the .�; t/ coordinates,
the integral equation (1.97) reads

U.�; t/ D
Z 1

�1
dyw.y/

Z 1

0

ds�.s/f ıU.��yCcsCcjyj=v; t�s�jyj=v/: (1.98)

The travelling wave is a stationary solution U.�; t/ D q.�/ (independent of t ), that
satisfies

q.�/ D
Z 1

0

�.s/ .� C cs/ds;  .�/ D
Z 1

�1
w.y/f ı q.� � y C cjyj=v/dy:

(1.99)

To determine stability we linearise (1.98) about the steady state q.�/ by writing
U.�; t/ D q.�/C u.�; t/, and Taylor expand, to give

u.�; t/ D
Z 1

�1

dyw.y/

Z 1

0
ds�.s/f 0.q.��yC csC cjyj=v//u.��yC csC cjyj=v; t � s� jyj=v/:

(1.100)

Of particular importance are bounded smooth solutions defined on R, for each
fixed t . Thus one looks for solutions of the form u.�; t/ D u.�/e�t . This leads to the
eigenvalue equation u D L u:
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u.�/ D
Z 1

�1

dyw.y/

Z 1

��yCcjyj=v

ds

c
�.��=c C y=c � jyj=v C s=c/e��.��=cCy=cCs=c/f 0.q.s//u.s/:

(1.101)

Let �.L / be the spectrum of L . We shall say that a travelling wave is linearly
stable if

maxfRe.�/ W � 2 �.L /; � ¤ 0g � �K; (1.102)

for some K > 0, and � D 0 is a simple eigenvalue of L . In general the normal
spectrum of the operator obtained by linearising a system about its travelling wave
solution may be associated with the zeros of a complex analytic function, the so-
called Evans function. This was originally formulated by Evans [35] in the context
of a stability theorem about excitable nerve axon equations of Hodgkin-Huxley type.
Next we show how to calculate the properties of waves and bumps for the special
case of a Heaviside firing rate function, f .g/ D H.g � h/, for some constant
threshold h.

1.3.1 Travelling Front

As an example consider travelling front solutions such that q.�/ > h for � < 0 and
q.�/ < h for � > 0. It is then a simple matter to show that

 .�/ D
( R1

�=.1�c=v/ w.y/dy � � 0R1
�=.1Cc=v/ w.y/dy � < 0

: (1.103)

The choice of origin, q.0/ D h, gives an implicit equation for the speed of the wave
as a function of system parameters. The construction of the Evans function begins
with an evaluation of (1.101). Under the change of variables z D q.s/ this equation
may be written

u.�/ D
Z 1

�1
dyw.y/

Z q.1/

q.��yCcjyj=v/
dz

c
�.q�1.z/=c � �=c C y=c � jyj=v/

� e��.q�1.z/=c��=cCy=c/ ı.z � h/
jq0.q�1.z//ju.q

�1.z//: (1.104)

For the travelling front of choice we note that when z D h, q�1.h/ D 0 and (1.104)
reduces to

u.�/ D u.0/

cjq0.0/j
Z 1

�1
dyw.y/�.��=c C y=c � jyj=v/e��.y��/=c : (1.105)
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From this equation we may generate a self-consistent equation for the value of the
perturbation at � D 0, simply by setting � D 0 on the left hand side of (1.105). This
self-consistent condition reads

u.0/ D u.0/

cjq0.0/j
Z 1

�1
dyw.y/�.y=c � jyj=v/e��y=c: (1.106)

Importantly there are only nontrivial solutions if E .�/ D 0, where

E .�/ D 1 � 1

cjq0.0/j
Z 1

�1
dyw.y/�.y=c � jyj=v/e��y=c: (1.107)

From causality �.t/ D 0 for t � 0 and physically c < v so

E .�/ D 1 � 1

cjq0.0/j
Z 1

0

dyw.y/�.y=c � y=v/e��y=c: (1.108)

We identify (1.108) with the Evans function for the travelling front solution
of (1.97). The Evans function is real-valued if � is real. Furthermore, (i) the complex
number � is an eigenvalue of the operator L if and only if E .�/ D 0, and (ii) the
algebraic multiplicity of an eigenvalue is equal to the order of the zero of the Evans
function.

Consider the choice �.t/ D e�tH.t/ and w.x/ D e�jxj=2. Assuming c > 0 the
travelling front (1.99) is given in terms of (1.103) which takes the explicit form

 .�/ D
(
1
2
em�� � � 0
1 � 1

2
emC� � < 0

; m˙ D v

c ˙ v : (1.109)

The speed of the front is determined from the condition q.0/ D h as

c D v.2h � 1/
2h � 1 � 2hv : (1.110)

The Evans function is easily calculated as

E .�/ D �

c C .1 � c=v/C �; (1.111)

where we use the result from (1.99) and (1.103) that cq0.0/ D R1
0
�.y=c �

y=v/w.y/dy. The equation E .�/ D 0 only has the solution � D 0. We also have
that E 0.0/ > 0 showing that � D 0 is a simple eigenvalue. Hence, the travelling
wave front for this example is linearly stable.

We refer the reader to [22] for further examples of wave calculations in other
neural field models.
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1.3.2 Stationary Bump

Here we construct static (time-independent) patterns of the form g.x; t/ D q.x/ for
all t . Using (1.97) gives

q.x/ D
Z 1

�1
w.x � y/H.q.y/ � h/dy: (1.112)

We shall assume the synaptic kernel has a Mexican hat shape given by

w.x/ D .1 � jxj/e�jxj; (1.113)

and look for solutions of the form limx!˙1 q.x/ D 0, with q.x/ � h for x1 < x <
x2 (see inset of Fig. 1.4). In this case the exact solution is given simply by

q.x/ D
Z x2

x1

w.x � y/dy: (1.114)

For the Mexican hat function (1.113), a simple calculation gives

q.x/ D

8̂̂
<
ˆ̂:
g.x � x1/ � g.x � x2/ x > x2

g.x2 � x/C g.x � x1/ x1 � x � x2
g.x2 � x/ � g.x1 � x/ x < x1

; (1.115)

where g.x/ D xe�x . The conditions q.x1/ D h and q.x2/ D h both lead to the
equation

�e�� D h; (1.116)

describing a family of solutions with � D .x2 � x1/. Hence, homoclinic bumps are
only possible if h < 1=e. The full branch of solutions for � D �.h/ is shown in
Fig. 1.4. Here we see a branch of wide solutions (� > 1) and a branch of thinner
solutions (� < 1) that connect in a saddle-node bifurcation at � D 1.

One of the translationally invariant solutions may be picked by imposing a phase
condition q.0/ D q0, where q0 � max q.x/ D �e��=2 (which occurs at .x1Cx2/=2
using (1.115)).

To determine stability we use the result that q0.x/ D w.x � x1/ � w.x � x2/ so
that the eigenvalue equation (1.101), with c D 0, reduces to

u.x/ D Q�.�/
jw.0/ � w.�/j Œw.x � x1/u.x1/e

��jx�x1j=v C w.x � x2/u.x2/e��jx�x2j=v�;

(1.117)
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Fig. 1.4 Bump width as a
function of h, as determined
by Eq. (1.116) for a step
function firing rate function
and Mexican hat
kernel (1.113). The inset
shows the shape of a bump. A
linear stability analysis shows
that the upper branch of
solutions is stable, and the
lower branch unstable

where Q�.�/ D R1
0
�.s/e��sds. The equality in (1.117) implies that if u.x1;2/ D 0

then u.x/ D 0 for all x. We now examine the matrix equation obtained from (1.117)
at the points x D x1;2,

�
u.x1/
u.x2/

�
D Q�.�/
jw.0/ � w.�/j

�
w.0/ w.�/e��j�j=v

w.�/e��j�j=v w.0/

� �
u.x1/
u.x2/

�
: (1.118)

Non-trivial solutions are only possible if

1

Q�.�/ D
w.0/˙ w.�/e��j�j=v

jw.0/ � w.�/j : (1.119)

Solutions will be stable if Re.�/ < 0. It is a simple matter to check that there is
always one solution with � D 0. For an exponential synapse Q�.�/ D .1C �=˛/�1
and we see that as v ! 1 solutions are only stable if .w.0/ C w.�//=jw.0/ �
w.�/j < 1. This is true if w.�/ D exp.��/.1 � �/ < 0. Hence, of the two
possible branches of� D �.h/, it is the one with largest� that is stable. In the other
extreme where v ! 0 it is simple to show that real and positive values for � can
only occur when w.�/ > 0. Hence, as v is varied there are no new instabilities due
to real eigenvalues passing through zero. However, for finite conduction velocities it
is possible that solutions may destabilise via a Hopf bifurcation. By writing � D i!
the conditions for a Hopf bifurcation, where Re.�/ D 0 and Im.�/ ¤ 0, are obtained
from the simultaneous solution of

1 D w.0/C w.�/ cos.!j�j=v/
jw.0/ � w.�/j ;

!

˛
D �w.�/ sin.!j�j=v/

jw.0/ � w.�/j : (1.120)

Eliminating sin.!j�j=v/ between these two equations gives

!2 D ˛2

jw.0/ � w.�/j2
�
w2.�/ � fjw.0/ � w.�/j � w.0/g2� : (1.121)
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The condition that ! ¤ 0 requires the choice w.�/ > w.0/, which does not hold
for (1.113). Hence, the presence of axonal delays neither affects the existence or
stability of bump solutions.

1.3.3 Interface Dynamics

For zero axonal delays (v !1) and �.t/ D ˛e�˛tH.t/ the existence and stability
of bumps may be investigated using the alternative techniques of Amari [3]. We use
the threshold condition g.xi ; t/ D h to define the locations x1;2 from which we
obtain the equations of motion of the boundary as

dxi
dt
D � gt

gx

ˇ̌
ˇ̌
xDxi .t/

: (1.122)

It is then possible to calculate the rate of change of the interval�.t/ D x2.t/�x1.t/
using

1

˛
gt .x; t/ D �g.x; t/C

Z x2.t/

x1.t/

w.x � y/dy: (1.123)

Then (for a single bump)

d�

dt
D ˛

�
1

c1
C 1

c2

��Z �

0

w.jyj/dy � h
�
; (1.124)

where

c1 D @g.x1; t/

@x
; �c2 D @g.x2; t/

@x
: (1.125)

Hence, making the convenient assumption that @g.xi ; t/=@x is roughly constant, the
equilibrium solution defined by

R �
0

w.jyj/dy D h is stable if

d

d�

Z �

0

w.jyj/dy D w.�/ < 0: (1.126)

We thus recover the result obtained with the Evans function method (widest bump
is stable).

It is also possible to recover results about travelling fronts in the interface
framework (at least for v !1). In this case it is natural to define a pattern boundary
as the interface between a high and low activity state. Let us assume that the front is
such that g.x; t/ > h for x < x0.t/ and g.x; t/ � h for x � x0.t/ then (1.97), for
the choice �.t/ D e�tH.t/, reduces to
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gt .x; t/ D �g.x; t/C
Z 1

x�x0.t/
w.y/dy: (1.127)

Introducing z D ux and differentiating (1.127) with respect to x gives

zt .x; t/ D �z.x; t/ � w.x � x0.t//: (1.128)

Integrating (1.128) from �1 to t (and dropping transients) gives

z.x; t/ D �e�t
Z t

�1
esw.x � x0.s//ds: (1.129)

We may now use the interface dynamics, g.x0.t/; t/, defined by:

Px0 D � gt
gx

ˇ̌̌
ˇ
xDx0.t/

; (1.130)

to study the speed c > 0 of a front, defined by Px0 D c. In this case x0.t/ D ct

(where without loss of generality we set x0.0/ D 0) and from (1.127) and (1.128)
we have that

gt jxDx0.t/ D �hC Qw.0/; gxjxDx0.t/ D �Qw.1=c/=c; (1.131)

where Qw.�/ D R1
0

e��sw.s/ds. Hence from (1.130) the speed of the front is given
implicitly by the equation

h D Qw.0/ � Qw.1=c/: (1.132)

To determine stability of the travelling wave we consider a perturbation of the
interface and an associated perturbation of g. Introducing the notation O	 to denote
perturbed quantities to a first approximation we will set OgxjxD Ox0.t/ D gxjxDct ,
and write Ox0.t/ D ct C ıx0.t/. The perturbation in g can be related to the
perturbation in the interface by noting that the perturbed and unperturbed boundaries
are defined by a level set condition so that g.x0; t/ D h D Og. Ox0; t/. Introducing
ıg.t/ D gjxDct � OgjxD Ox0.t/ we thus have the condition that ıg.t/ D 0 for all t .
Integrating (1.127) (and dropping transients) gives

g.x; t/ D e�t
Z t

�1
dses

Z 1

x�x0.s/
dyw.y/; (1.133)

and Og is obtained from (1.133) by simply replacing x0 by Ox0. Using the above we
find that ıg is given (to first order in ıx0) by

ıg.t/ D 1

c

Z 1

0

dse�s=cw.s/Œıx0.t/ � ıx0.t � s=c/� D 0: (1.134)
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This has solutions of the form ıx0.t/ D e�t , where � is defined by E .�/ D 0, with

E .�/ D 1 � Qw..1C �/=c/Qw.1=c/ : (1.135)

A front is stable if Re� < 0.
As an example consider the choice w.x/ D e�jxj=2, for which Qw.�/ D .� C

1/�1=2. In this case the speed of the wave is given from (1.132) as

c D 1 � 2h
2h

; (1.136)

and

E .�/ D �

1C c C �: (1.137)

Note that these results recover Eqs. (1.110) and (1.111) in the limit v ! 1, as
expected. Hence, the travelling wave front for this example is neutrally stable.

For a recent extension of the Amari interface dynamics to planar neural field
models we refer the reader to [24].

1.4 Inverse Neural Modelling

While neural modelling is concerned with the study of the dynamics which arise in
the framework of neural activity on the basis of some given connectivity function
w, inverse neural modelling studies the construction of such connectivity kernels
w.x; y/ given a prescribed dynamics of the activity fields u.x; t/.

1.4.1 Inverse Problems

Here, we focus on the investigation of a kernel construction for the Amari
equation (1.2) with a homogeneous kernel function w or its inhomogeneous version

�
@u

@t
.x; t/ D �u.x; t/C

Z
D

w.x; y/f .u.y; t//dy; x 2 D; t � 0; (1.138)

with some constant � > 0, where D 
 R
m is some bounded domain in space

dimension m 2 N. Let us assume that on D the field u.x; t/ is given for x 2 D; t 2
Œ0; T / with some final time T > 0. This is usually called the full field inverse neural
problem. The task is to find a kernel w.x; y/ such that Eq. (1.138) with kernel w
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and initial condition u.x; 0/ has u.x; t/ as its unique solution for all x 2 D and
t 2 Œ0; T /.

Since u.x; t/ is given, we can define

 .x; t/ WD � @u

@t
.x; t/C u.x; t/; x 2 D; t 2 Œ0; T / (1.139)

and

'.x; t/ WD f .u.x; t//; x 2 D; t 2 Œ0; T /: (1.140)

With the functions (1.139) and (1.140) we transform the dynamics (1.138) into

 .x; t/ D
Z
D

w.x; y/'.y; t/dy; x 2 D; t 2 Œ0; T /: (1.141)

Equation (1.141) is an integral equation for the unknown connectivity function w.
We first remark that since the integration in (1.141) is carried out with respect to

the variable y, and since the kernel '.y; t/ of the integral operator

.Kg/.t/ WD
Z
D

'.y; t/g.y/dy; t 2 Œ0; T /; (1.142)

is dependent on y and t only, the spatial coordinate x 2 D can be considered as a
parameter, i.e. the integral equation is indeed a family of integral equations

Kwx D  .x; 	/; x 2 D; (1.143)

with different left-hand sides  .x; 	/ for x 2 D, where we use the notation wx WD
w.x; 	/.

We need to answer questions of uniqueness, existence and stability for the inverse
neural task. It will turn out, that the inverse neural field problem shares basic features
with many other inverse problems as described for example in [18,29,57,74]. Most
inverse problems are ill-posed in the sense of Hadamard [44]. A problem is called
well-posed, if

1. For given input data it has at most one solution (uniqueness),
2. For any input data there exists a solution (existence),
3. The solution depends continuously on the input data (stability).

A problem which is not well-posed, is called ill-posed. Clearly, ill-posedness
depends on the spaces under consideration, an appropriate condition can make non-
unique problems uniquely solvable, the choice of appropriate norms can make an
instable problem stable. But often, the spaces are dependent on the particular applied
setup, and it is not possible to control input functions for example in spaces which
need to take care of an infinite number of derivatives. This means that ill-posedness
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naturally appears in many inverse problems and needs to be taken care of. This is
true also for the inverse neural field problem above.

It is well-known [59] that a compact operator K W X ! Y from an infinite
dimensional normed space X into an infinite dimensional normed space Y cannot
have a bounded inverse, since otherwise the identity operator I D K�1 ı K
would be compact, which cannot be the case. Integral operators with continuous
or weakly-singular kernels on bounded sets are compact in the spaces of continuous
or L2-integrable functions, since we find a sequence of finite-dimensional approxi-
mations to the kernels. As a consequence we obtain compactness of the operator K
defined in (1.142) in the spaces BC.D/ and L2.D/. Thus, the inverse neural field
problem under consideration is ill-posed in the sense described by the conditions
(1)–(3). The kernel w does not depend stably on the right-hand side  2 BC.D/
or  2 L2.D/. We need to stabilize the solution to the inverse problem, which is
usually carried out by some regularization method. We will introduce regularization
further down.

Here, we first show that the inverse neural field problem is neither uniquely
solvable nor is it exactly solvable at all in the general case where a function
u.x; t/ is prescribed (cf. [5]). To see its non-uniqueness we consider the case where
u.x; t/ D 0 for x 2 M and t 2 Œ0; T / on some set M 
 D. Let Qw ¤ 0 be a
kernel which is zero for x; y 62 M and arbitrary for x; y 2 M . Then, for a solution
w1.x; y/ of the inverse problem the kernel w2 WD w1 C Qw ¤ w2 is another different
solution, since it does not change the dynamical behaviour of u. Thus, the inverse
problem is non-unique.

In general, the non-uniqueness can be characterized as follows. We define

V WD spanf'.	; t / W t 2 Œ0; T /g (1.144)

as a subset of L2.D/. Then, Kg D 0 can be written as

hv; gi D 0 forall v 2 V , g 2 V ?: (1.145)

Thus, the inverse neural field problem is unique inL2.D/ if and only if V D L2.D/,
which is equivalent to V ? D f0g. It means that the time dynamics of the field
'.	; t / D f .u.	; t // covers all dimensions of the space L2.D/. Any element Qw of
V ? can be added to a solution kernel w and will not change the dynamics of the
neural field u.

Existence of solutions in a space X with for example X D L2.D/ or X D
BC.D/ is equivalent to the condition

 .x; 	/ 2 K.X/ for all x 2 D: (1.146)

Assume that u.x; 	/ 2 Cn.Œ0; T //, but u.x; 	/ 62 CnC1.Œ0; T // and let f be analytic.
Then Kg 2 Cn.Œ0; T // for any g 2 L2.D/, but  D �@u=@t C u 2 Cn�1.Œ0; T //,
 62 Cn.Œ0; T //. As a consequence there cannot be a solution to the inverse neural
field equation inL2.D/ in this case. In general the inverse neural field problem does
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not have a solution. But we will be able to construct approximate solutions. To this
end we need to introduce regularization techniques.

Consider a compact linear operator K W X ! Y from a Hilbert space X into
a Hilbert space Y . We denote its adjoint by K�. Then, we denote the nonnegative
square roots �n of the eigenvalues of the self-adjoint compact operator K�K as
singular values of the operator K, see for example [59]. We assume that �n are
ordered according to its size, such that �1 � �2 � : : :. The singular vector for �n
is denoted by vn, n 2 N. Then, the set of vectors

gn WD 1

�n
Kvn; n 2 N; (1.147)

is an orthonormal system in Y , such that we have

Kv D
1X
nD1

�nhv; vnign (1.148)

for elements v 2 X . Equation (1.148) is known as the spectral representation of K
with respect to its singular system. We also note that

Kvn D �ngn; K�gn D �nvn (1.149)

for all n 2 N. If K is injective, then the inverse of the operator K is given by

K�1g D
1X
nD1

1

�n
hg; gnivn (1.150)

for an element g 2 Y .
If the operator K is compact, then the singular values �n need to tend to zero

for n ! 1. This also means that 1=�n tends to infinity. The spectral coefficients
hg; gni of the function g 2 Y are multiplied by a large number 1=�n, which reflects
the unboundedness of the operator K�1. The image space of K in Y is given by the
elements g 2 Y for which we have

1X
nD1

1

�2n
hg; gni2 <1: (1.151)

Picard’s theorem (cf. [18]) states that Kv D g has a solution in X if and only
if (1.151) is satisfied for g 2 Y .

The basic idea of regularization is to replace the unbounded term 1=�n in (1.150)
by a bounded term. The method is called spectral damping, since it damps the
unbounded modes of K�1g. A regularization operator R˛ W Y ! X is defined by

R˛g WD
1X
nD1

q.˛/n hg; gnivn: (1.152)
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Here, ˛ > 0 is denoted as regularization parameter and the damping factors q.˛/n
need to be bounded for n 2 N. The choice

q.˛/n WD
(

1
�n
; n � 1=˛

0; otherwise;
(1.153)

is known as spectral cut-off. The damping

q.˛/n WD
�n

˛ C �2n
; n 2 N; (1.154)

is known as Tikhonov regularization. In operator terms, Tiknonov regularization can
be written as

R˛ D .˛I CK�K/�1K�; ˛ > 0: (1.155)

Tikhonov regularization can be equivalently obtained by minimizing the Tikhonov
functional

�˛.v/ WD kvk2 C kKv � gk2 (1.156)

over v 2 X . The minimizer v˛ of (1.156) is calculated by v˛ D R˛g. The operator
R˛ is a bounded operator from Y to X . It converges pointwise to the inverse K�1,
i.e. we have

R˛g! K�1g; ˛ !1 (1.157)

for each g 2 K.X/, see for example [59], where one can also find the norm estimate

kR˛k � 1

2
p
˛
; ˛ > 0: (1.158)

From (1.154) we also observe that kR˛k ! 1 for ˛ ! 0.
We can now apply regularization to the solution of the integral equation fam-

ily (1.143). With R˛ defined via (1.155) we calculate a regularized reconstruction
kernel w˛.x; y/ on x; y 2 D by

w˛.x; 	/ WD R˛ .x; 	/; x 2 D: (1.159)

Numerically, the reconstruction can be carried out using a grid xk , k D 1; : : : ; ND in
the domain D and some time discretization tj , j D 1; : : : ; NT . Then, K is approxi-
mated by a matrix K in R

NT �ND and  .x; t/ by a matrix � in R
ND�NT , where each

column corresponds to a time tj , j D 1; : : : ; NT . The kernel w is approximated by
a matrix W in R

ND�ND , with entries wk;` which reflect the connectivity from y` to
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xk for k; ` 2 f1; : : : ; NDg. Now, the integral equation (1.143) corresponds to the
matrix equation

KWT D �T : (1.160)

The regularized solution of (1.160) is calculated by

WT
˛ D .˛I CKTK/�1KT �T : (1.161)

Further regularization methods such as a gradient scheme, also known as backprop-
agation algorithm for neural learning, can be found in [5].

We close this methodological part by looking into a slightly more general form
than (1.143). The task is to construct an integral operator

.Wg/.x/ WD
Z
D

w.x; y/g.y/dy; x 2 D (1.162)

which maps a given family vj 2 L2.D/, j 2 J , of functions with some index set J
into its images gj 2 L2.D/, j 2 J , i.e. we search W such that

Wvj D gj ; j 2 J: (1.163)

Now consider some orthonormal system .'n/n2N. If W is an integral operator, we
can develop its kernel w.x; 	/ into its Fourier series with respect to .'n/n2N, i.e.

w.x; y/ D
1X
nD1

	 Z
D

w.x; y/'n.y/dy


'n.y/

D
1X
nD1
.W'n/.x/'n.y/

D
1X
nD1

 n.x/'n.y/ x; y 2 D (1.164)

with  n.x/ WD .W'n/.x/. This means that for every orthonormal system .'n/n2N
the kernel w is given by the sum over the products of 'n.y/ with its image element
 n.x/, x; y 2 D. The sum (1.164) is known as Hebbian learning rule in the
framework of neural networks. It has originally been suggested by Hebb [46] as
a mechanism based on physiological arguments. Here, it is a consequence of the
Fourier theorem.

Equation (1.164) shows that the Hebbian learning rule is exact for learning the
dynamics on orthonormal patterns. Of course, in general training patterns are no
longer orthonormal and then the Hebb rule inhibits strong errors due to cross-talk
between the patterns under consideration. In this case, the above approach based
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on regularization is the correct modification and extension of this approach which
yields better and stable results.

One important restriction for the task (1.163) needs to be noted at this point.
Clearly, we have transformed the inverse problem into a linear equation. Assume
that we have a state v which is linearly dependent on the states v1; : : : ; vN . Then,
we are not completely free to choose the image of v, but it is determined by the
images of vj , for j D 1; : : : ; N via the consistency condition A

Wv D W
	 NX
jD1

˛j vj



D

NX
jD1

˛jW vj : (1.165)

Only if the consistency condition is satisfied, we can expect to obtain solvability of
Eq. (1.163).

A second important consistency condition B is coming from the time-dynamical
aspect of the inverse problem. Of course, to excite some pulse at time t 2 Œ0; T /,
we need other pulses to be active in a neighborhood of t . The activity needs to
be large enough such that the threshold given by the function f is reached. Thus,
in the form (1.138) we cannot expect to obtain a solvable inverse problem, if the
consistency conditions of type A and B are violated.

We also refer to [75] for an interpretation of the above approach in terms of
bi-orthogonal basis functions, which are numerically realized by the Moore-Penrose
pseudoinverse given by K� WD .KTK/�1KT and which is stabilized by Tikhonov
regularization (1.155) whenK is an ill-posed operator as for the inverse neural field
problem.

1.4.2 Cognitive Modelling

Finally, we apply the inverse methods and its theory to problems of Dynamic
Cognitive Modeling as suggested in [4, 5, 75]. The basic task here is to gain a
better understanding of cognitive processes by mapping them into a dynamic field
environment. The dynamical fields are then understood as neural activity patterns,
which leads to the above inverse neural field or neural kernel construction problem.

The first step of dynamic cognitive modeling is to formulate some cognitive
process in an abstract environment. In the easiest possible case we can consider a
sequence of mental representations sj , j D 1; 2; : : : ; Nj . These states live in some
space Z, the mental state space. We now construct a structure preserving mapping
� W Z ! X into the Hilbert space X D L2.D/ of functions on a domain D.
Here, we obtain a discrete sequence of states vj , j D 1; : : : ; Nj in X . A continuous
time dynamics can then be obtained by regarding the states vj as saddle nodes that
are connected along a stable heteroclinic sequence (SHS) [76], using Haken’s order
parameter approach [45]. Here, we employ either compactly supported functions
� W R! R of class C2 with �.0/ D 1 and �.s/ D 0 for jsj � �t or Gaussians
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�.s/ D e��s2 ; s 2 R; (1.166)

and define a temporal dynamics by

u.x; t/ WD
NjX
jD1

vj .x/�.t � tj /; x 2 D; t 2 Œ0; T /; (1.167)

where tj are the points in time where the states vj have maximal excitation. We then
solve the inverse neural field problem (1.141) with (1.167) as input. The result is a
neural kernel w which generates the dynamical representation of the above cognitive
process in activation space. An application of this approach to syntactic language
processing and its tentative relation to event-related brain potentials can be found
in [6].

More complicated processes can be carried out in a similar way. For example,
we can study elementary logical activity such as OR, AND or XOR. The logical
representation consists of variables a1 and a2 as input variables and an output
variable b, which takes states in f0; 1g depending on the particular logical gate
which we consider. The logical tables constitute our abstract logical space Z.
As second step we map this space into a dynamical environment and construct
a time-continuous dynamics. This is carried out by identifying the variables with
coefficients of particular states v1, v2 and vout in X D L2.D/. The dynamics can
now be constructed as in (1.167), i.e. we choose times t D 0 on which the variables
a1 and a2 take their input states, i.e. they are either equal to 1 or equal to 0 for v� ,
� D 1; 2. The output time is set to t D T .

Consistency. We now have to decide whether a direct transition from states at
t D 0 to t D T leads to a consistent inverse problem. For the AND and for
the OR operator this is feasible, but XOR cannot be realized directly due to the
inconsistence of the corresponding image vectors as described in (1.165). The XOR
logic in its simplest form tries to map

.0; 0/ 7! 0, .1; 0/ 7! 1, .0; 1/ 7! 1, .1; 1/ 7! 0

But the coefficients of the state .1; 1/ of v1 and v2 are the linear combination of
.1; 0/ and .0; 1/, i.e. we cannot reach 0 as its image coefficient for vout when
we map .1; 0/ onto 1 and .0; 1/ onto 1 as well. We cannot expect to model the
nonlinear XOR dynamics based on a linear equation. This observation, called
the XOR problem, has played a large role historically, when Minsky and Papert
investigated the capabilities of the perceptron [66]. As shown in [75] in a neural
field environment the problem has a simple solution by extending the dynamics.
In a discrete environment this would correspond to the introduction of multi-layer
networks, as it has been carried out for neural networks. Here, we employ two
further states v3 and v4, such that v1; : : : ; v4; vout are linearly independent. Then,
we choose t1 WD T=2 and decompose the task into the OR map from v1; v2 onto v3
at time t1, the AND map from v1; v2 onto v4 at time t1, a plain transition from v3
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to vout and an inhibition from v4 to vout . Our dynamics within a time interval T=2
based on five linearly independent states can be written as

(1) .0; 0; 0; 0; 0/ 7! .0; 0; 0; 0; 0/, (5) .0; 0; 1; 0; 0/ 7! .0; 0; 0; 0; 1/,
(2) .1; 0; 0; 0; 0/ 7! .0; 0; 1; 0; 0/, (6) .0; 0; 0; 1; 0/ 7! .0; 0; 0; 0; 0/,
(3) .0; 1; 0; 0; 0/ 7! .0; 0; 1; 0; 0/, (7) .0; 0; 1; 1; 0/ 7! .0; 0; 0; 0; 0/,
(4) .1; 1; 0; 0; 0/ 7! .0; 0; 1; 1; 0/,

The time dynamics is now realized by an application of the rules in the interval
Œ0; t1/ first and then again in the interval Œt1; T / based on the order parameter
approach (1.167). We obtain a set of consistent pairs of states and their neuro-
dynamical images. The result is a set of four dynamical activation patterns or
neural fields u1.x; t/; : : : ; u4.x; t/ representing XOR, which are consistent with a
neuro dynamical environment. We solve the inverse problem (1.141) or (1.160),
respectively, to construct a kernel w.x; y/ which now realizes the neural dynamics
on the given states v1; : : : ; v4 and vout .

We show one possible realization with states which are Gaussian functions on
the domain D D Œ0; 10� � Œ�5; 5�

vk.x/ D e�� jx�z.k/j2 ; for k D 1; 2; vout .x/ D e�� jx�z.out /j2 ; (1.168)

for x 2 D with points z.1/ D .0:2; 3/, z.2/ D .0:2;�3/ and z.out/ D .9; 0/ and � D 2
as well as

v3.x/ D 0:5 	 .1C sin.2x2/ 	 sin.2x1// 	 e�Q� jx1�z
.3/
1 j2 ;

v4.x/ D 0:5 	 .1C cos.2x2/ 	 cos.2x1// 	 e�Q� jx1�z
.3/
2 j2 ; (1.169)

for x 2 D with Q� D 0:3 and z.3/1 D 5. The time interval has been selected as Œ0; T �
with T D 10 and a choice of the order parameter functions (1.166) with � D 2.

The states v1, v2 and vout are localized states in neural space. The states v3
and v4 are distributed space over some region of the neural space, which we have
kept separate from the support of v1, v2 and vout here for better visibility. This
demonstrates that we can solve the inverse neural field problem with macrostates
which are distributed over a large region of our neural space. We are not bound to
localized neural pulses, as it is often used for neural modelling.

For the numerical tests we have chosen nt D 40 time steps for the training and a
discretization of n1�n2 D 55�56 points in our neural space. Then, the calculations
can be carried out in some seconds in MATLAB R�. We show three time slices
of the both the training pulses as well as their reconstruction via the neural field
equation (1.138) in Fig. 1.5. The plots are taken at the times t D 6 	 T

nt
D 1:53,

t D 18 	 T
nt
D 4:62 and t D 36 	 T

nt
D 9:23.

To avoid an inverse crime (cf. [18]), i.e. the testing of an inversion method on the
same grid which was used to generate the data, here we have chosen a finer time-
grid with nt D 80 for the neural field equation for carrying out the simulation after
construction of the kernel w.
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Fig. 1.5 We show three time slices of two pulses which enter the activation space at time t D 0

at states v1 and v2. They lead to the excitation of the states v3 and v4 and then vout is excited or
inhibited. The images show the original pattern (left) and the pattern which is generated by the
neural field equation (right), where we used a time discretization which was finer than the training
pattern to avoid an inverse crime
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Appendix 1

The Green’s function for the infinite cable equation satisfies the PDE

Gt D �G
�
CDGxx; G.x; 0/ D ı.x/: (1.170)
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If we introduce the Fourier transform

G.k; t/ D
Z 1

�1
e�ikxG.x; t/dx; G.x; t/ D 1

2�

Z 1

�1
eikxG.k; t/dk (1.171)

then we may obtain the ordinary differential equation

Gt.k; t/ D ��.k/G.k; t/; G.k; 0/ D 1; �.k/ D 1

�
CDk2; (1.172)

with solution G.k; t/ D G.k; 0/ exp.��.k/t/. Performing an inverse Fourier
transform gives

G.x; t/ D 1

2�

Z 1

�1
dkeikxe��.k/t D e�t=�e�x2=4Dt 1

2�

Z 1

�1
e�DtŒkCix=2Dt�2dk

(1.173)

D 1p
4�Dt

e�t=�e�x2=.4Dt/; (1.174)

where we complete the square in (1.173) and use the fact that
R1

�1 exp.�x2/dx Dp
� .

Appendix 2

Introducing the Laplace transform of G.x; t/ as G.x; �/, where

G.x; �/ D
Z 1

0

dse��sG.x; s/; (1.175)

means that we may transform (1.85) to obtain

�
�2.�/ � dxx

�
G.x; �/ D ı.x/=D; �2.�/ D .1=� C �/=D: (1.176)

This second order ordinary differential equation has the solution

G.x; �/ D e��.�/jxj

2D�.�/
: (1.177)

Appendix 3

Introduce periodic functions U.x/ and V.x/ and write using Fourier series as
U.x/ DP1

nD�1 Une2� inx=
 and V.x/ DP1
nD�1 Vne2� inx=
, where 
 D 2�=pc .
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In this case,

Œw˝ V �.x/ D
Z 1

�1
dyw.jyj/V .x � y/

D
X
n

Z 1

�1
dyw.jyj/Vne2� in.x�y/=


D
X
n

Vne2� inx=
wn; wn D
Z 1

�1
dyw.jyj/e�2� iny=
: (1.178)

Hence, we may now calculate

hU;w˝ V i D 1




Z 


0

X
n

U �
n e�2� inx=


X
m

Vmwme2� imx=


D
X
m

U �
mVmwm; (1.179)

where we make use of the result that
R 

0

e2�ix.m�n/=
=
 D ın;m. Similarly we find

hw˝ U; V i D
X
m

U �
mVmw�

m D hU;w˝ V i; (1.180)

where we make use of the fact that wm D w�
m. From (1.56) we have that

hU;L V i D �hU; V i C ˇchU;w˝ V i D �hU; V i C ˇchw˝ U; V i D hLU; V i:
(1.181)

Hence L is self-adjoint.

Appendix 4

For w.r/ D exp.�r=�/=.2�/ we may calculate Eq. (1.94) as

G.k; !/ D .2�/�1
Z 1

�1
ds
Z
R2

dre�jrj=� ı.s � jrj=v/e�i.k�rC!s/;

D .2�/�1
Z 2�

0

Z 1

0

e�ikr cos �e�Arrdrd�

D �.2�/�1 @
@A

Z 2�

0

1

AC ik cos �
d�; (1.182)
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where A.!/ D 1=� C i!=v. This may be evaluated using a (circular) contour
integral in the complex plane to give

G.k; !/ D A.!/

.A.!/2 C k2/3=2 : (1.183)
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Chapter 2
A Personal Account of the Development
of the Field Theory of Large-Scale Brain
Activity from 1945 Onward

Jack Cowan

Ah, but a man’s reach should exceed his grasp, Or what’s a
heaven for?

Robert Browning (1855)

Abstract In this paper I give my personal perspective on the development of a field
theory of large-scale brain activity. I review early work by Pitts, Wiener, Beurle and
others, and give an account of the development of the mean-field Wilson-Cowan
equations. I then outline my reasons for trying to develop a stochastic version of
these equations, and recall the steps leading to the discovery that one can use field
theory and the van Kampen system-size expansion of a neural master equation to
obtain stochastic Wilson-Cowan equations. I then describe how stochastic neural
field theory led to the discovery that there is a directed percolation phase transition
in large-scale brain activity, and how the stochastic Wilson-Cowan equations can
provide insight into many aspects of large-scale brain activity, such as the generation
of fluctuation-driven avalanches and oscillations.

2.1 Introduction

Sometime between 1945 and 1948 Walter Pitts (1923–1969) wrote a rough draft of
a paper entitled “Statistical mechanics of the nervous system” (Fig. 2.1).

He never published anything on this topic, but in 1961 he loaned me a draft
to look at and to hand-copy. No one else except Norbert Wiener (1894–1964),
and perhaps Warren McCulloch (1898–1969) and Jerry Lettvin (1920–), has ever
seen this draft. It is written using the notation in the original 1943 McCulloch-Pitts
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Fig. 2.1 Walter Pitts c. 1946

paper [50], and used combinatorics and probabilistic reasoning to compute statistics
associated with the moments of large-scale activity. Figure 2.2 shows the opening
page of the draft:

The only result I could find in the draft is that there are no equilibrium
points in a large random net. (This was probably because Pitts looked only at the
linearized net.)

Perhaps it was another draft that Wiener saw, because in 1946 he wrote the
following comment on Pitts’ work:

Besides the long-distance connections of the brain, made by tracts of white matter, there are
also the random connections of short fibers between nearby cells. The anatomical picture
of the cortex suggests that we may usefully employ statistical methods in the study of its
function. This work has been taken up brilliantly by Walter Pitts. He finds that, under many
conditions, the approximation to the activity of the cortex should not be made on a basis of
rest and the zero basal activity. Proceeding from this, he has developed the wave equations
of the cortex. These promise to give an interpretation of the electroencephalogram. He has
also suggested the exploration of the connections between the different parts of the cortex
by suitable stimulation of regions and the observance of the frequency-response at several
points.

In 1964 when I was a visitor at the Electrical Engineering Department at Imperial
College, London (supported by a contract with the US Department of the Navy,
Office of Naval Research) Wiener and I decided to work together on these problems,
but unfortunately he died before we got going, so I carried on alone (Fig. 2.3).

I had started earlier, as part of my tenure as a research assistant in MIT’s Research
Laboratory of Electronics in the Neurophysiology Group run by McCulloch, Pitts,
and Lettvin. During conversations with McCulloch and Pitts, and Wiener in 1962,
I asked McCulloch and Pitts what kind of mathematics they thought was needed to
represent large-scale brain activity. McCulloch was happy with the McCulloch-Pitts
model, but to my surprise Pitts told me to look for differential equations that could
be treated analytically. Wiener on the other hand suggested I look at a stochastic
treatment involving path integrals, about which I had listened to in a series of
lectures Wiener gave several years earlier [77]. Unfortunately, at the time, I didn’t
really understand Wiener’s lectures or remarks. It took me the best part of 40 years to
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Fig. 2.2 Facsimile of the first page of Pitts’ unpublished manuscript
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Fig. 2.3 Norbert Wiener
c. 1958

fully understand the deep insights that Wiener tried to convey to me! So I followed
up Pitts’ suggestion which I did understand! In line with this the first problem I
confronted was that, as Pitts had understood, the McCulloch-Pitts neuron model is
too simple a representation of realistic neural properties. The leaky “integrate-and-
fire” model that succeeded it [72], is a much more realistic model, however neither
model generates analytically tractable equations.

2.2 Lotka-Volterra Dynamics

Instead I used an analogy with Lotka-Volterra ecological dynamics. This dynamics
was explored by [42]. Kerner started from the Lotka-Volterra equations [49, 75],
which can be written in the form:

dNr

dt
D �rNr C 1

ˇr

X
s

˛srNsNr (2.1)

where Nr.t/ represents the number of individuals of the r th species at time t , and
where the sum runs over 2n interacting species, of whom n are predators, and the
remaining n are prey. This implies that for predators �r < 0, whereas for prey
�r > 0, and also that

˛sr C ˛rs D 0; ˛rr D 0 (2.2)

The stationary states qr of this system of equations satisfy the condition

�r C 1

ˇr

X
s

˛srqs D 0 (2.3)

Kerner showed that if one introduces the new variable vr such that

Nr D qrevr (2.4)
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then Eq. (2.1) can be rewritten in the form

ˇr
dvr

dt
D
X
s

˛srqs.e
vs � 1/ (2.5)

from which Kerner then showed, using Eq. (2.2) that

X
r

�r .e
vr � vr/ D G D constant (2.6)

where �r D ˇrqr , and therefore that Eq. (2.5) can be rewritten in the form

dvr

dt
D
 X

s

�sr
@

@vs

!
G; �sr D ˛sr

ˇsˇr
D ��rs (2.7)

Thus the Lotka-Volterra equations are a form of Hamilton’s equations of classical
mechanics in disguise, and G is the Hamiltonian.

It follows that one can treat the network activity with the methods of equilibrium
statistical mechanics. Let Pr be the probability that one species will have its vr in
the interval .vr ; vr C dvr/. Kerner showed that Pr is given by

Prdvr D e�Gr=�

Zr
dvr (2.8)

where � is the analog of temperature, equal to the mean square fluctuations of vr
about qr . This probability can be rewritten in terms of the variable nr D Nr=qr as

P.nr/dnr D n˛�r�1r e�˛�rnr
˛�

�˛�r
r � .˛�r /

dnr (2.9)

where ˛ D 1=� . As Kerner notes in his paper, this is the analog of the Maxwell-
Boltzmann distribution. In this case P.nr/ is the well-known gamma-density
defined on the interval .0;1/.

2.2.1 A Neural Analogy

Of course the Lotka-Volterra equations are an imperfect representation of population
dynamics. In particular they lack the self-interaction term ˛rrN

2
r , the Verhulst-Pearl

term which essentially dissipates the “energy” G. The dynamics induced by such a
term differs greatly from that of the Hamiltonian form described above. However
Kerner’s analysis of the Lotka-Volterra dynamics suggested to me sometime during
the summer of 1963, a way to write down an analogous equation for interacting
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populations of excitatory and inhibitory neurons. Thus inhibitory neurons would be
analogs of predators and excitatory ones of prey. However without interactions the
growth equation is simple exponential growth, which is not a good representation
of the neural firing rate/current equation. But the Verhulst-Pearl term can be used to
solve this problem. Consider the equation

dNr

dt
D �rNr � ˛rrN

2
r D �rNr.1 � ırNr/ (2.10)

where ır D ˛rr=�r . This is a form of the Verhulst-Pearl or logistic equation [60,74].
It can be reduced to the very simple form

dvr

dt
D �r ; vr D ln

Nr

1 � ırNr (2.11)

with solution

Nr.t/ D 1

ır C e�vr .t/ (2.12)

This is one form of the logistic curve. I therefore introduced a logistic variant of the
Lotka-Volterra equations as a neural network model., i.e.

dNr

dt
D
 
�r C 1

ˇr

X
s

˛srNs

!
Nr.1 �Nr/ (2.13)

where Nr.t/ after appropriate scaling now represents the rate at which the r th
neuron is activated, and where the constants �r and ˇr are suitably redefined.

The stationary states of this system still follow Eq. (2.3), and Eq. (2.13) reduces to

dvr

dt
D
 X

s

�sr
@

@vs

!
G (2.14)

as before, where

Nr

1 �Nr D qre
vr (2.15)

and

X
r

ˇr Œln.1C qrevr / � qrvr � D G D constant (2.16)



2 Field Theory of Brain Activity from 1945 Onward 53

The single oscillator

large oscillations about qi = 2
1

small oscillations about qi = 2
1

the stationary state qi = 2
1

large oscillations about qi = 4
3

sums of several independent oscillators

2
1

about qi
,s =

4
3about qi

,s =

Fig. 2.4 Marginally stable
oscillations in the logistic
network (Reprinted
from [21])

Thus there is also a Hamiltonian mechanics form of the logistic variant of the Lotka-
Volterra equations, and an analog for a network of couple excitatory and inhibitory
neurons.

However, note that the coupling coefficients ˛sr are still skew-symmetric, i.e.,
they satisfy the conditions of Eq. (2.2). This implies that the eigenvalues of the
weight matrix defining the dynamics of perturbations of the stationary states qr
are pure imaginary. Thus the qr are only marginally stable. The network equations
lack a true Verhulst-Pearl “friction” or damping term that would make the stationary
states asymptotically stable. The effects of this skew-symmetry are seen in Fig. 2.4.

It will be seen that small oscillations are approximately sinusoidal, but large
oscillations become more like periodic square waves. This is the saturating effect
of the Verhulst-Pearl term. Although it is not shown in the figure, the effects of
noise on the simulation is to convert sinusoidal waves eventually into square waves,



54 J. Cowan

since the dynamics is marginally stable. Of more interest are the traces of the sum
of several independent oscillators showing bursts of oscillatory activity that look
remarkably like the alpha bursts found in EEG recordings.

It now follows from the analogy that one can also write down the analog of the
Maxwell-Boltzmann distribution for such a network of coupled neurons. It takes the
form given in Eq. (2.8) or in terms of the variable Nr

P.Nr/dNr D N˛�r�1
r .1 �Nr/˛.ˇr��r /�1
BŒ˛�r ; ˛.ˇr � �r /� dNr (2.17)

where BŒx; y� is the beta function, and P.Nr/ is the beta-density defined on the
interval (0,1). Various “observables” can be deduced from this expression, including
the “temperature”, and the effective coupling strengths of the network. An account
of this work can be found in [23].

The logistic network I had introduced seemed promising. But of course the fatal
flaw in the formulation, was that the dynamics is non-generic in the mathematical
sense. Any perturbations of the stationary states will result eventually in large-
amplitude fluctuations and oscillations. Sometime in 1967 I therefore recast the
logistic model in a slightly different format [22]. I formulated it as the difference
equation

Nr.t C �/ D f Œ
NX
sD1

wrsNs C hr � (2.18)

for a network of N neurons coupled with weights wrs external stimuli hr , and the
firing rate function

f Œx� D .1C e�x/�1 (2.19)

suitably normalized and scaled.
A differential equation version of this model is

�
dNr

dt
D �Nr C f Œ

NX
sD1

wrsNs C hr � (2.20)

This is the sigmoid or “canonical” [41] or firing-rate model. I did not realize at the
time that I had invented a neural model that could be used to solve the perceptron
training problem [64, 66], or to formalize the analogy between neural networks and
magnetic systems suggested by [25,40,48] in part because I was completely focused
on trying to develop a statistical mechanics of neural networks.

The important point is that the network represented in Eq. (2.20) is much more
generic than the skew-symmetric weight network (or for that matter any symmetric
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weight network). It has arbitrary weight values, and a decay constant, and therefore
the possibility that its stationary states are asymptotically stable to perturbations.
However it seemed difficult to analyze (although [5, 6] did obtain some results on
the generic statistical mechanics problem.) I therefore started to look at a more
statistical approach to the problem.

2.3 Population Dynamics

I had noticed in the course of this work that the structure of Eq. (2.20) is closely
related to an equation for neural population activity introduced by [10]. The method
introduced by Beurle was very interesting. He focused, not on the activation of
individual neurons, but on the fraction of neurons becoming active per unit time in
a given volume element of a slab of model cortex consisting of randomly connected
neurons. Thus Beurle’s formulation used a continuum approximation of the network
I was considering. This means that the quantity Nr.t/ maps into n.x; t / a firing-rate
density. Beurle then introduced the ansatz that

n.x; t C �/ D q.x; t /gŒn.x; t /� (2.21)

where q.x; t / is the density of quiescent neurons in the given volume element, and
gŒx� is the fraction of neurons receiving exactly threshold excitation. (There is an
implicit assumption that individual neurons are of the integrate-and-fire variety.)

There are three points to note here.

1. By assuming that n.t C �/ D q.t/gŒn.t/� Beurle ignored the effects of
fluctuations and correlations on the dynamics. It is not true that q and gŒn� are
statistically independent quantities, as was first pointed out by [69].

2. The ansatz is incorrect. gŒn� should be the fraction of neurons receiving at least
threshold excitation, as was first noted by [71]. I deduced this myself in 1966
and subsequently confirmed this point in discussions with Violet Cane (1916–
2008) a distinguished mathematical statistician then at Newnham College and the
Cambridge Statistical Laboratory. But the correct gŒn� is essentially a continuum
version of f ŒNr �, and so the corrected version of Beurle’s ansatz takes the form

n.x; t C �/ D q.x; t /f Œn.x; t /�

D
�
1 �

Z t

t�r
n.x; t /

�

�f
�Z t

�1
dt0
Z 1

�1
dx0˛.t � t 0/Œˇ.x � x0/n.x0; t 0/C h.x; t 0/�

�

(2.22)
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where

q.x; t / D 1 �
Z t

t�r
n.x; t / (2.23)

where r D 1ms is the (absolute) refractory period or width of the action
potential, and

˛.t � t 0/ D ˛0e�.t�t 0/=� ; ˇ.x � x0/ D be�jx�x0j=� (2.24)

are, respectively, the impulse response function and spatially homogeneous
weighting function of the continuum model.

3. Beurle’s formulation does not explicitly incorporate a role for inhibitory neurons.
Despite these flaws in the formulation, Beurle’s ansatz, when corrected

seemed to be closely related to the sigmoid model, especially if we rewrite
Eq. (2.22) in network form, in which case it becomes

nr.t C �/ D
�
1 �

Z t

t�r
nr .t/

�
f

"Z t

�1
dt0˛.t � t 0/Œ

NX
sD1

wrsns C hr.t 0/�
#

(2.25)

This was the state of my understanding of the problem when I worked at
Imperial College, London from 1962–1967, where my (nominal) supervisor was
the Hungarian physicist and inventor Dennis Gabor (1900–1979), who received the
1971 Nobel prize in Physics for his invention of holography. In the fall of 1967
I became Professor and Chairman of the Committee on Mathematical Biology at
the University of Chicago, succeeding Nicholas Rashevsky (1899–1984). I was
very fortunate to have been mentored at Imperial College initially in 1956–1957
by Arthur Porter (1910–2010), then by Gabor, who had deep insights into many
problems in physics, communication and information theory, and cybernetics; and
of course I was also very fortunate in being mentored by McCulloch and Pitts at MIT
from 1960–1962, and having teachers there like Wiener and Claude Shannon (1916–
2001), the founder of Information Theory.

2.3.1 The Wilson-Cowan Equations

In the summer of 1969 Hugh Wilson joined me as a Postdoctoral Fellow. Wilson
was a recent graduate of the Chemistry department at the University of Chicago,
was very well informed about statistical approaches to chemical and biological
problems, was a pleasure to work with and we set to work on this problem. The
results of our efforts were published in [79, 80]. Essentially what we did, was to
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time coarse-grain Eq. (2.25) [43], and add an explicit inhibitory term, to obtain
(in network form)

�
dEr
dt
D �Er.t/C .1 � rEr.t// fE

"
MX
sD1

wEE
rs Es �

NX
sD1

wEI
rs Is C hEr .t/

#

�
dIr
dt
D �Ir .t/C .1 � rIr .t// fI

"
MX
sD1

wIE
rsEs �

NX
sD1

wII
rsIs C hIr .t/

#

(2.26)

or in continuum form

�
@E.x; t /
@t

D �E.x; t /C .1 � rE.x; t //

�fE
�Z 1

�1
�Edx0ˇEE.x � x0/E.x0; t /

�
Z 1

�1
�Idx0ˇEI.x � x0/I.x0; t /C hE.x; t /

�

�
@I.x; t /
@t

D �I.x; t /C .1 � rI.x; t //

�fI
�Z 1

�1
�Edx0ˇIE.x � x0/E.x0; t /

�
Z 1

�1
�Idx0ˇII.x � x0/I.x0; t /C hI .x; t /

�
(2.27)

whereM and �E , andN and �I are, respectively, the numbers and packing densities
of excitatory and inhibitory cells in the cortical slab. These are the Wilson-Cowan
equations.

However, there is an important difference between the continuum version and
the network version. In the former version we define f Œx� as the fraction of cells
receiving at least threshold excitation, per unit time in the appropriate volume
element. This can be represented as

f Œx� D
Z x

�1
P.xTH/dxTH D

Z 1

�1
#Œx � xTH�P.xTH/dxTH D h#Œx�i (2.28)

where #Œx� is the Heaviside step function and h#Œx�i is the average of #Œx� over the
probability distribution of thresholds P.xTH/. This indicates that the Wilson-Cowan
equations represent the dynamics of a population of integrate-and-fire neurons
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Fig. 2.5 Architecture of an E=I network (Reprinted from [80])

in which there is a random distribution of thresholds, or equivalently, a random
distribution of synaptic weights.

The most important new property of the Wilson-Cowan equations was that their
dynamics had attractors, i.e. equilibria which are asymptotically stable. Figure 2.5
shows the architecture of a typical E=I network, and Fig. 2.6 shows some of these
attractors, and their properties.

The first panel (upper-left) of Fig. 2.6 shows the response of a linear array of
coupled E=I pairs to an excitatory stimulus of a certain width. The initial response
is at the top. It will be seen that after some delay the response shows some edge-
enhancement. It turns out that if the parameters of the network are chosen so that the
recurrent excitation provided by ˇEE is not too strong, then the response is transient,
whereas if ˇEE is dominant, then a maintained and localized response occurs, and
the activity of the array is bistable, as shown in the upper right panel. On the other
hand in case the feedback loop characterized by the product ˇEIˇIE is dominant
then the activity exhibits an asymptotically stable limit-cycle oscillation that is also
localized. The localization property occurs if the range of connectivity specified by
the space constants �rs is such that �IE > �EE, i.e., the lateral excitatory to inhibitory
range must be greater than the recurrent excitatory to excitatory range. Finally the
lower-right panel shows the result of disinhibition of the array, e.g., by raising the
thresholds for inhibition. The localization property disappears and a local stimulus
gives rise to propagating solitary waves of excitation followed by inhibition.
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Fig. 2.6 Responses of the E=I network to various excitatory stimuli. Solid curves represent the
response of the excitatory population, dashed lines that of the inhibitory population. See text for
details (Reprinted from [80])
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2.4 A Master Equation Approach

The Wilson-Cowan equations proved to be very influential (see a recent review
by [27]). However, there still remained the problem that the Beurle ansatz ignores
the effects of correlations and fluctuations, so the Wilson-Cowan equations are
mean field equations, i.e., the quantities E.x; t / and I.x; t /, in addition to being
time-coarse-grained, are also ensemble averages associated with an underlying
probability density of the fractions of activated excitatory and inhibitory neurons in
a cortical slab. In 1978 I started to work on this problem. By 1979 I had formulated a
“master equation” for the evolution of such a probability density, but refrained from
submitting anything for publication then, since I wasn’t completely satisfied with
the results.

I considered first the problem of a single spatially homogeneous network of N
excitatory cells. Let Pn.t/ be the probability that a fraction n=N is active at time t .
I then formulated the master equation

dPn.t/

dt
D ˛Œ.nC 1/PnC1 � nPn�C .N � nC 1/f Œs.n � 1/�Pn�1

�.N � n/f Œs.n/�Pn (2.29)

where ˛ is the rate at which activated neurons become quiescent, and s.n/ is the
total current or excitation driving each neuron in the population. I assumed in this
simplified model that each neuron receives a signal weighted by w0=N from each
of N other neurons in the population, so that

s.n/ D w0nC h (2.30)

where h is an external current.
I then used a truncation of the Kramers-Moyal expansion of the master equation

[45, 55] to derive a Fokker-Planck equation for the evolution of the fraction e.t/ D
n.t/=N of active neurons, i.e.,

@

@t
P.e; t/ D � @

@e
ŒK1.e/P.e; t/�C 1

2N

@2

@e2
ŒK2.e/P.e; t/� (2.31)

where P.e; t/ D NPn.t/ and

K1.e/ D �˛e C .1 � e/f Œs.e/�; K2.e/ D ˛e C .1 � e/f Œs.e/� (2.32)



2 Field Theory of Brain Activity from 1945 Onward 61

It was then possible to write down a spatial generalization of Eq. (2.31) as a
functional Fokker-Planck equation taking the form

@

@t
P.e.x/; t/ D

Z
dx
�
� ı

ıe.x/
ŒK1.e.x//P.e.x/; t/�

C 1

2N

ı2

ıe.x/2
ŒK2.e.x//P.e.x/; t/�

�
(2.33)

where

K1.e.x// D �˛e.x/C .1 � e.x//f Œs.e.x//�;
K2.e.x// D ˛e.x/C .1 � e.x//f Œs.e.x//� (2.34)

I was then able to show that the first moment equations for e.x/ satisfied the
Wilson-Cowan equations. However the Wilson-Cowan equations do not contain any
second moment terms—they are closed. I therefore decided, at the time (1979), not
to pursue the Fokker-Planck approach. In retrospect this was a mistake. In recent
work with Benayoun, van Drongelen and Wallace (to be discussed later) it is shown
that a different Fokker-Planck equation, obtained from the system-size expansion of
the master equation [59, 73] does give results that go well beyond those obtained
with the Wilson-Cowan equations.

2.5 Field Theory

I therefore started to look for another way to analyze a generalization of the master
equation to space-dependent neural interactions. At this time I started spending my
summers at the Los Alamos National Laboratories, and ended up in the summer
of 1983, introducing two physicists there, David Sharp and Alan Lapedes, to the
problem of analyzing neural networks. Later that year Lapedes found two articles
by [29, 30] which showed how to analyze classical many-particle systems and
diffusion controlled chemical reactions, using the operator techniques of quantum
mechanics and quantum field theory. Later we also found another relevant article
by [37]. I immediately recognized that there should be a way to analyze neural
networks with such techniques. However, it was not until late summer 1984 that I
found a way to correctly apply these operator techniques to neural networks.

Consider once again the master equation given by Eq. (2.29), extended to the
spatially inhomogeneous case. Let nr=Nr be the fraction of active cells at time t in
the r th population of Nr cells, and let P Œn; t � be the probability of the configuration
n D fn1; n2; 	 	 	 ; nr ; 	 	 	 ; n˝g existing at time t . The extended master equation then
takes the form
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dPŒn; t �
dt

D ˛
X
r

Œ.nr C 1/P ŒnrC; t � � nrP Œn; t ��

C
X
r

Œ.N � nr C 1/f Œs.nr � 1/�P Œnr�; t � � .N � nr/f Œs.nr /�P Œn; t ��

(2.35)

where nr˙ D fn1; n2; 	 	 	 ; nr ˙ 1; 	 	 	 ; n˝g. Thus there are a total of ˝ locally
homogeneous populations.

Following [73] I rewrote Eq. (2.35) using the one-step operators

Eṙ f .n/ D f .nr˙/ (2.36)

i.e.,

dPŒn; t �
dt

D
X
r

�
˛.E C

r � 1/nr C .E �
r � 1/.Nr � nr/f Œs.nr /�

�
P Œn; t � (2.37)

Note that the total number of cells Nr in the r th population comprises nr active
cells and Nr � nr D qr quiescent cells, so that

nr C qr D Nr (2.38)

Thus Eq. (2.37) can be rewritten slightly in the form

dPŒn; t �
dt

D
X
r

�
˛.E C

r � 1/nr C .E �
r � 1/qrf Œs.nr /�

�
P Œn; t � (2.39)

This master equation is in a form suitable for mapping into the operator formalism
used by Doi and Grassberger-Scheunert. I was not aware that there was also similar
work by [63] who was also working near Lapedes and Sharp in T-division at the Los
Alamos National Laboratory!

2.5.1 The Operator Map

At around this time I obtained another grant from the ONR, specifically to develop
this work, and I now followed Doi in introducing the formalism of quantum
mechanics and quantum field theory into the neural network problem. In doing so
I recognized that there are essentially two ways to do this, and several differing
routes to follow in deriving equations. One way is to assume that individual cortical
neurons occupy the vertices of a lattice with spacing L, the other is to assume, as
above, that at each vertex there is a homogeneous population of neurons. I first
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considered the individual neuron case, and introduced the occupation number
formalism of quantum mechanics [31].

Let Q.t/ and A.t/ denote, respectively, the number of quiescent and activated
neurons at time t , in a d -dimensional hypercubic lattice containing a neuron at each
vertex, where

Q.t/C A.t/ D N (2.40)

Let a neural state vector be denoted by

j˝i D j�1; �2; 	 	 	 ; �r ; 	 	 	 ; �N i (2.41)

where �r indicates that the neuron at the r th vertex is in the quiescent “q” or else
activated “a” state. This is the occupation number representation, in the Dirac
“bra” and “ket” vector notation. Evidently j˝i ranges from the configuration
jq1; q2; 	 	 	 ; qr ; 	 	 	 ; qN i in which every neuron in the lattice is quiescent, to the
configuration ja1; a2; 	 	 	 ; ar ; 	 	 	 ; aN i in which every neuron in the lattice is acti-
vated. Evidently there are 2N such configurations. Given that there are about 3:1011

neurons in human cortex, the number of possible configurations is googleplexian.
Let P Œ˝.t/� be the probability of finding the N -neuron lattice in the state j˝i at

time t , and let

jP Œt�i D
X
˝

P Œ˝.t/�j˝i; (2.42)

be a neural probability state vector, where

X
˝

P Œ˝.t/� D 1 (2.43)

At this point there were two choices on how to proceed. (1) Follow the Doi
method and introduce creation and annihilation operators, to represent the state
transitions in Eq. (2.39), or (2) Use matrices to represent the state transitions. In
my notes I used method 1, but in the first published version of this work I used
method 2 [24]. In the end the two methods give the same results. In this article
we look at both methods. Consider first the Doi method. Let the empty or vacuum
state be denoted by the vector j0i. Let �r and ��r denote, respectively, operators that
create active and quiescent neurons at the r th vertex, and let r and �r denote the
corresponding operators that annihilate such states and return the r th vertex to the
vacuum state. Thus these operators satisfy the rules:

�r j0i D ar ; r jari D 0I h0j�r D 0; h0jr D ar
��r j0i D qr ; �r jari D 0I h0j��r D 0; h0j�r D qr (2.44)
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where h0j is the dual of j0i, and also the commutation rules

r
�

r 0 � �r 0r D Œr ; �r 0 � D ı.r � r 0/; Œr ; r 0 � D Œ�r ; �r 0 � D 0
�r�

�

r 0 � ��r 0�r D Œ�r ; ��r 0 � D ı.r � r 0/; Œ�r ; �r 0 � D Œ��r ; ��r 0 � D 0 (2.45)

Thus these operators are bosonic [31].
The next step is to rewrite the one-step operators of Eq. (2.39) in terms of these

operators. The translation is easy. It takes the form

.E C
r � 1/! ��r r � �r r ; .E �

r � 1/! �r �r � ��r �r (2.46)

whence Eq. (2.39) transforms to

d

dt
jP Œt�i D

X
r

�
˛.��r r � �r r /C .�r �r � ��r �r /f Œs.�r r /�

� jP Œt�i (2.47)

Thus the master equation is now expressed in terms of bosonic operators. The first
term expresses the decay of activation at the rate ˛, the second the increase of
activation at the rate f Œs�.

In reformulating the master equation in such a fashion, at first I found the use
of bosonic operators a bit confusing, since in physics bosonic commutation rules
allow no exclusion principle. It seemed that many neural states could exist at the
same vertex. However the master equation conserves probability equation (2.43),
and also the total number of neurons and neural states is fixed atN . These properties
imply that if initially j˝.0/i is a configuration of initial states, one state to each
vertex, then all subsequent configurations will also be “physical”. Thus for master
equations bosonic operators do not cause any problems. (In spite of this, Lapedes,
Sharp and I had made an earlier attempt in the spring of 1984, to incorporate an
exclusion property into the formulation, but we could not get it to work.)

2.5.2 Coherent States

The next step in the Doi method is to introduce the coherent state representation.
Let

j˛ai D exp.˛a
X
r

�r /j0i; h˛aj D h0j exp.˛a
X
r

r /

j˛qi D exp.˛q
X
r

��r /j0i; h˛qj D h0j exp.˛q
X
r

�r / (2.48)
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be coherent states [35]. Such states satisfy the equations

r j˛ai D ˛aj˛ai; h˛aj�r D ˛ah˛aj; �r j˛qi D ˛qj˛qi; h˛qj��r D ˛qh˛qj
(2.49)

i.e., they are eigenstates of the creation and annihilation operators r and �r etc.
I was able to use these coherent states to re-express the master equation in

the coherent state representation and to find a coherent state representation of the
functional differential equation satisfied by the moment generating functional. I also
began the derivation of a coherent state path integral, and so finally began to explore
the path that, in retrospect, Wiener had outlined for me, 23 years earlier! However
I got a bit bogged down in the details, and in 1987 I started to explore the other
approach I had seen was possible, that of using vectors and matrices to express the
neural state transitions.

I therefore considered the following encoding of the problem. Let the vectors jqi
and jai denoting quiescent and activated neural states be represented, respectively,
by the column vectors

jqi D
�
0

1

�
; jai D

�
1

0

�
(2.50)

Now consider the Pauli spin matrices representing the Lie Group SU.2/ [33]

�1 D
�
0 1

1 0

�
; �2 D

�
0 �{
{ 0

�
; �3 D

�
1 0

0 �1
�

(2.51)

and the associated raising and lowering operators

�˙ D 1

2
.�1 ˙ {�2/ (2.52)

It is easy to show that

�Cjqi D jai; ��jai D jqi (2.53)

The neural master equation can now be expressed in the form

d

dt
jP Œt�i D

X
r

"
˛.1 � �Cr /��r C .1 � ��r /�Crf Œ

X
s

.wrs�Cs��s/�
#
jP Œt�i

(2.54)

I recognized that the spin operator expression on the rhs of Eq. (2.54) was a
generalization of the Regge spin-Hamiltonian of quantum field theory, i.e. of the
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spin-Hamiltonian at the core of what is now called Reggeon Field Theory [3, 38]

H D
X
r

"
˛.�Cr � 1/��r C .��r � 1/�Cr 	

X
s

�Cs��s

#
(2.55)

This seemed promising. I had successfully mapped the mathematics of neural
networks into the language of spins in quantum field theory, in particular into a
generalization of the Regge spin model.

The formal solution of Eqs. (2.47) and (2.54) takes the form

jP Œt�i D exp

�
�
Z t

0

H.�/d�

�
jP Œ0�i (2.56)

where H.t/ is given, respectively, by the expressions

H1.t/ D
X
r

"
˛.�r r � ��r r /C .��r �r � �r �r /f Œ

X
s

wrs
�
s s�

#
(2.57)

and

H2.t/ D
X
r

"
˛.�Cr � 1/��r C .��r � 1/�Crf Œ

X
s

wrs�Cs��s�
#

(2.58)

In retrospect it seems evident that there is a map between these two representations
of the master equation. Indeed there is such a map, provided by the Schwinger
decomposition [68] of �C and �� into, respectively,

�
� ��

�
�C
�


�

�
D �� I �

� ��
�
��
�


�

�
D �� (2.59)

However in 1987 I was not aware of this, and treated the two approaches separately. I
therefore decided to work with the spin representation, and proceeded to investigate
the details of the solution given in Eq. (2.56).

2.5.3 Moment Generating Equations and Spin-Coherent States

Extracting information from this integral solution seemed difficult. I decided to
follow Doi again, and to introduce a suitable family of coherent states, the spin-
coherent states of [62] and [39] which take the form

j˛i D exp.
X
r

˛?r �Cr /j0i; h˛j D h0j exp.
X
r

˛r��r / (2.60)

where ˛ is a complex number.
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It can be easily shown that

h˛j˝i D ˛�11 ˛�22 	 	 	˛�rr 	 	 	˛�NN (2.61)

and that

h˛jP Œt�i D h˛
X
˝

P Œ˝.t/�j˝i D
X
˝

P Œ˝.t/�h˛j˝i D G.˛1˛2 	 	 	˛N ; t/
(2.62)

G.˛1˛2 	 	 	˛N ; t/ is the moment generating function for the probability distribu-
tion P Œt�.

I was then able to show that G.t/ satisfies the PDE

@G

@t
D
"X

r

˛.D˛r � 1/ @
@˛r
C . @

@˛r
� 1/D˛rf Œ

X
s

wrsD˛s
@

@˛s
�

#
G (2.63)

where

D˛r D ˛r.1 � @

@˛r
/ (2.64)

i.e., the moment generating PDE expressed in the oscillator algebra representa-
tion [62].

2.5.4 A Neural Network Path Integral

The content of Eqs. (2.63) and (2.64) can be summarized in a Wiener-Feynman path
integral [67]. Using standard techniques I was able to write an expression for the
transition probability P Œ˝.t/j˝.t 0/� D GŒ˝; t j˝; t 0� as the coherent state path
integral

Z Y
r

D˛r.�/ exp

"
�
Z t

t 0
d�
X
r

f1
2
.
@

@t
D˛rD˛

?
r �D˛r

@

@t
D˛?r / �H2.D˛r ;D˛

?
r /g
#

(2.65)

where

D˛r.�/ D . 2
�
/n lim
n!1

nY
jD1

d.Rl ˛r.j //d.Im ˛r.j //

.1C ˛r.j /˛?r .j //3
(2.66)

This propagator is sometimes written as an expectation wrt the Wiener measure
Z Y

r

D˛r.�/
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as

GŒ˝; t j˝; t 0� D hexp

�
�
Z t

t 0
d�L2.D˛r ;D˛

?
r /

�
i (2.67)

where

L2.D˛r ;D˛
?
r / D

X
r

f1
2
.
@

@t
D˛rD˛

?
r �D˛r

@

@t
D˛?r / �H2.D˛r ;D˛

?
r /g

(2.68)

is the neural network Lagrangian. Such a path integral can be used to construct the
moment generating functional that generates the statistics of the network activity.

2.6 Back to the Master Equation

However, there remained a major problem: the Wiener measure given in Eq. (2.66)
is complicated, and in fact the path integral is defined on a non-Euclidean manifold.
In 1990 I did not know how to calculate anything with this integral! At this point I
took on a new Physics graduate student, Toru Ohira, who expressed an interest in
working on the statistics of neural networks. Although we weren’t able to make
much immediate progress on the path integral problem, we did look at various
other aspects of the general problem, by using the master equation in the spin
representation, and the associated moment generating function. We were able to
show that the equal-time moments can be obtained as

h�1.t/�2.t/ 	 	 	 �r.t/ 	 	 	 i D
X
˝

.�1.t/�2.t/ 	 	 	 �r.t/ 	 	 	 /P Œ˝; t �

D . @
@˛1

@

@˛2
	 	 	 @
@˛r
	 	 	 /G.˛; t/ j˛D1 (2.69)

and that an analog of the Bogoliubov-Born-Green-Kirkwood-Yvon or BBGKY
hierarchy of coupled moment equations exists, i.e.

@

@t
h�r.t/i D �˛h�r.t/i C h.1 � �r/f

"X
s

wrs�s

#
i;

@

@t
h�r.t/�s.t/i D �2˛h�r.t/�s.t/i C h.1 � �r/�sf

"X
u

wru�u

#
i

Ch.1 � �s/�rf
"X

u

wsu�u

#
i; 	 	 	

(2.70)
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To gain some insight into this model we assumed that

f Œx� D x; wrs D w0.ır;s�1 C ır;sC1/ (2.71)

i.e., we linearized f Œx� and limited the connectivity to nearest neighbors in a one-
dimensional lattice.

With these conditions the model became equivalent to the contact process [47],
whose spin-Hamiltonian is that of Eq. (2.55), modulo the restriction to a one-
dimensional lattice, and is therefore isomorphic to Reggeon Field Theory in one
dimension. This process has been studied using both analytical methods and
computer simulations [28,36]. It was found to have an active steady state for ˛ < ˛c
and a totally quiescent, vacuum state for ˛ > ˛c . Thus the 1C1-dimensional contact
process has a phase transition at a critical value of the decay constant ˛ D ˛c .

We investigated this process in our neural network framework by looking at two
quantities, � D N�1P

rh�ri and � D N�1P
rh�r�rC1i under the assumption

that all three-point moments factor into products of one- and two-point moments.
This was our moment-closure hypothesis. This allowed us to write coupled moment
equations for � and �

@

@t
� D .1 � ˛/� � �

@

@t
� D �.1C 2˛/� � ��C �.1C �/ (2.72)

For this approximation the steady states satisfy

�! 1 � 2˛ .˛ < 0:5/; �! 0 .˛ > 0:5/ (2.73)

However, these steady state values did not match Monte Carlo simulations very well
over a broad range of values of the decay constant ˛.

2.6.1 A System-Size Expansion of the Master Equation

We therefore turned to a more systematic way to approximate the master equation,
the system-size expansion introduced by [73]. This approximation provides a
systematic small parameter expansion of the master equation given in Eq. (2.29),
using the basic assumption that the fluctuations about the value n.t/ of the number
of active neurons in a population of N neurons are of order

p
N . Thus let

n.t/ D N.t/CpN�.t/ (2.74)

where .t/ satisfies the macroscopic equation

@

@t
 D �˛ C .1 � /f Œs./� (2.75)
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which is a form of the Wilson-Cowan equation for a single neural population. Note
that Eq. (2.74) implies that the fluctuations are Gaussian, and that this is valid only
for fluctuations about a stable fixed point 0 of the macroscopic equation.

The variable �.t/ represents Gaussian fluctuations of n.t/ with distribution
˘.�; t/d� D P.n; t/dn. We now expand the van Kampen one-step operators,
Eq. (2.36) in terms of � using Eq. (2.74) as

E C D 1C 1p
N

@

@�
C 1

N

@2

@�2
C 	 	 	 ; E � D 1 � 1p

N

@

@�
C 1

N

@2

@�2
� 	 	 	

(2.76)

On substituting these expressions for E ˙ into the master equation given in
Eq. (2.37) and collecting terms of O.

p
N/ we obtain


@

@t
 C ˛ � .1 � /f Œs./�

�
@

@�
˘ D 0 (2.77)

assuming that  satisfies the macroscopic equation (2.75).
Similarly collecting terms of O.1/ gives the Fokker-Planck equation

@

@t
˘ D � @

@�
fK1.; �/g˘ C 1

2

@2

@�2
fK2.; �/g˘ (2.78)

where

K1.; �/ D �.˛ C f Œs./�/� C .1 � /�f 0Œs./�; K2.; �/ D ˛ C .1 � /f Œs./�
(2.79)

Note that the coefficients K1 and K2 are quite different from those obtained from
the Kramers-Moyal expansion, given in Eq. (2.31). In particular K2 is independent
of N .

Let

� D n

N
D  C �p

N
D  C � (2.80)

It now follows from Eqs. (2.75) and (2.78), that

d

dt
� D �˛�C .1 � �/f Œs.� � �/�C �.1 � �C �/f 0Œs.� � �/�C 	 	 	

d

dt
� D �˛� � �f Œs.� � �/�C �.1 � �C �/f 0Œs.� � �/�C 	 	 	 (2.81)

These equations can be truncated and numerically integrated. Figures 2.7 and 2.8
show comparison of the results for (A) the macroscopic equation, and (B)
Eqs. (2.81) under various conditions:
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Fig. 2.7 Comparison of numerical solutions of (A) the macroscopic equation, and (B) Eqs. (2.81)
for ˛ = (a) 0.2, (b) 0.493, and (c) 0.9, and initial conditions � D 0:5 and � = (A) 0.01, and (B) 0.0
(Redrawn from [59])

Fig. 2.8 Comparison of Monte Carlo simulations of the master equation for (A) high (0.08), and
(B) low (0.006) connectivities per neuron. Initial conditions random and varying ˛ (Redrawn
from [59])
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It will be seen that for intermediate values of the decay constant ˛ there is a
big difference between the mean-field macroscopic equations, and those resulting
from the system-size expansion, which incorporate the effects of fluctuations. In
particular the fluctuations kill any persistent activated state. The reader is referred
to [59] for more details.

2.7 Another Look at Path Integrals

The final computation Ohira and I carried out was to derive a bosonic path integral.
The results can be found in [58]. (At that time, 1993, I was not aware of the
important paper by [61], on formulating such path integrals.) The resulting integral
had the desired property that the Wiener measure was on a Euclidean domain, so,
in principle, we could calculate statistics. Unfortunately it was not clear from the
form of the path integral how to proceed, and we did not follow up the calculation.
In retrospect this was another mistake on my part, and it was not until 2002
that another Physics graduate student, Michael Buice, who was very well-trained
in the techniques of quantum field theory and the renormalization group, joined
me and chose to work on the problem, that we started to make progress again.
However Ohira and I had established the close connection with Reggeon Field
Theory that I had earlier guessed at, and we had shown that the van Kampen system-
size expansion produced equations that went beyond the mean-field macroscopic
Wilson-Cowan equations. However, it must be said that I did not have these results
clearly in my mind until Buice joined me, and we were able to greatly clarify and
expand upon them.

2.7.1 Bosonic Path-Integrals for Neural Networks

Buice and I reviewed all my earlier efforts and we ended up with a much clearer and
simpler account of the derivation of the bosonic path integrals for both two-state and
three-state neural models, than I had formulated in 1986–1990. (In what follows I
will confine this discussion to the two-state model.)

Our starting point was Eq. (2.47) for the bosonic master equation. This describes
the stochastic evolution of neural activity, as specified by the configuration state
vector

j ˝i Dj �1; �2; 	 	 	 ; �r ; 	 	 	 ; �N i

from some initial configuration j ˝.0/i to the current one j ˝.t/i. However, many
observations indicate that the numbers of activated neurons at any instant are rather
low, i.e. the distribution of active neurons is sparse. Thus most configurations are
not far from the ground state j q1; q2; 	 	 	 ; qr ; 	 	 	 ; qN i. This suggested that we could
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simplify the bosonic master equation by assuming that most of the time the network
is in the ground state in which the fraction of cells in the quiescent state is unity, i.e,
that the number operator

X
r

��r �r D 1 (2.82)

which implies that ��r D �r D 1. This reduces Eq. (2.47) to the form

d

dt
jP Œt�i D

X
r

�
˛.r � �r r /C .�r � 1/f Œs.�r r /�

� jP Œt�i (2.83)

At this point we introduced a shift in the representation of the number operator

X
r

�r r !
X
r

.�r C 1/r (2.84)

which allows us to write all products of the form hu j vi in the form hu j v0 j 0i, i.e.
as a vacuum expectation. The effect of such a shifted representation is to simplify
Eq. (2.83) still further, to the form

d

dt
jP Œt�i D

X
r

��˛�r r C �r f Œs.�r r C r/�� jP Œt�i (2.85)

Instead of representing this in terms of the spin coherent states, Eq. (2.60), which
led to Eq. (2.54), the spin-coherent state master equation, we were now able to
use instead the simpler Glauber states of Eq. (2.48), since the neural model is now
effectively a one-state model, to obtain from the reduced bosonic master equation
of Eq. (2.85), its coherent state representation

d

dt
jP Œt�i D

X
r

Œ�˛ Q'r'r C Q'rf Œs. Q'r'r C 'r/�� jP Œt�i (2.86)

where we introduced a change of notation for the Glauber coherent states

˛a ! '; ˛q ! # (2.87)

and Q'; Q# are, respectively, the adjoints of '; # .
Thus the Glauber coherent state Hamiltonian for a sparsely firing two-state neural

network is simply that of the one-state Hamiltonian

H3.t/ D
X
r

Œ˛ Q'r'r � Q'rf Œs. Q'r'r C 'r/�� (2.88)
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and the solution of Eq. (2.86) is

jP Œt�i D exp

�
�
Z t

0

H3.�/d�

�
jP Œ0�i (2.89)

We then followed the standard methodology to end up with an expression for the
propagator GŒ˝; t j˝; t 0� as

GŒ˝; t j˝; t 0� D hexp

�
�
Z t

t 0
d�L3. Q'r ; 'r /

�
i (2.90)

with respect to the Wiener measure

Z
D Q'
.�/D'
.�/

where

D'
.�/D Q'
.�/ D
Y
r

D'r.�/D Q'r.�/ D . 1
�
/n lim
n!1

Y
r

nY
jD0

d Q'r.j /d'r.j /

(2.91)

and

L3. Q'r ; 'r / D
X
r

�
Q'r @
@t
'r CH3. Q'r ; 'r /

�
(2.92)

is the neural network Lagrangian. The integral of the Lagrangian is referred to as
the action S. Q'r ; 'r /, i.e.

S. Q'r ; 'r / D
Z t

t 0
d�L3. Q'r ; 'r / (2.93)

and the entire path integral solution of the master equation is written as the
expectation over the Wiener measure as

hexpŒ�S. Q'r ; 'r /�i :

In addition Buice and I introduced the moment generating functional (MGF)

Z
� QJr.t/; Jr .t/� D ˝expŒ�S. Q'r ; 'r /C QJ 	 ' C J 	 Q'�

˛
(2.94)

where

QJ 	 ' D
Z

dt
X
r

QJr.t/'r .t/; J 	 Q' D
Z

dt
X
r

Jr .t/ Q'r.t/ (2.95)
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By functional differentiation w.r.t. the auxiliary variables J and QJ and then setting
them equal to zero, we can obtain all joint moments of the variables '.x; t/ and
Q'.x; t/. Here then was the result that satisfied my efforts to obtain a statistical theory
of large-scale neural activity. This was what Wiener had suggested I look for in
1962. It took 40 years! The details can be found in [12] and in [13, 14].

2.7.2 Observables of Neural Activity

Given this method of calculating neural statistics, we now confronted the problem
of how to interpret our formalism. As I noted earlier, there are two differing
interpretations of the variables representing neural activity. In the first interpretation
�r is interpreted to be the indicator of spiking activity, equal to 0 if the cell at site
r is quiescent, equal to 1 if it is activated. In the second interpretation, �r takes
values in the interval Œ0; 1� and indicates the fraction of N cells in a homogeneous
population located at the r th lattice site that are activated at a given time t . Buice and
I introduced another related possibility, that 'r the coherent state representation of
�r , is the number of activations of the cell at site r in a time bin of width�, i.e. of the
spike count of the cell at the r th lattice site. As such it fluctuates, so that h'r.t/i is
the mean spike count at the r th lattice site. The bosonic character of 'r is not an issue
in this interpretation. Since h'r.t/i is proportional to the mean current density ir .t/
and therefore to the local field potential (LFP) vr.t/, the fundamental observables of
our formulation are directly related to spike counts obtained by binning, or to LFPs.
In addition we can also compute the correlations C.x � x0; t � t 0/ D h'r.t/'r 0.t 0/i
and D.x � x0; t � t 0/ D hvr.t/vr 0.t 0/i the properties of which provide important
information about neocortical dynamics near the critical points of phase transitions.

2.7.3 The Effective Spiking Model

The full model action can also be written in the thermodynamic [N ! 1] and
continuum [L! 0] approximations as

S . Q'.x; t/; '.x; t// D
Z t

0

dt

�Z
ddxŒ Q'.x; t/@t'.x; t/C ˛ Q'.x; t/'.x; t/

� Q'.x; t/f Œs. Q'.x; t/'.x; t/C '.x; t//�� (2.96)

where the input current is

s. Q'.x; t/'.x; t/C '.x; t// D
Z
ddy w.x � y/. Q'.y; t/'.y; t/C '.y; t//C h.x; t/

(2.97)



76 J. Cowan

where w.x/ is the distribution of weights, and h.x; t/ is an external stimulus. Buice
and I referred to this action as that of the effective spike model. There was also an
initial condition which could be incorporated into the action if necessary.

It is then just a matter of applying the standard techniques of quantum field theory
to produce predictions from this action. The main technique is a form of perturbation
theory adapted to computing moments from the path integral incorporating the
effective spike action. In fact the MGF when the interactions are zero, w.x/ D 0,
can be expressed as

Z0Œ QJ ; J � D exp

�
�
Z

dt dt0dd xddx0 QJ .x; t/�.x; t I x0; t 0/Js.x0; t 0/
�

(2.98)

where �.x; t I x0; t 0/ is the solution of the linearized equation

.
@

@t
C ˛/�.x; t I x0; t 0/ D ı.t � t 0/ıd .x � x0/ (2.99)

i.e.

�.x; t I x0; t 0/ D e�˛.t�t 0/�.t � t 0/ıd .x � x0/ (2.100)

known as the Green’s function or propagator of Eq. (2.99), and

Js.x; t/ D J.x; t/C f Œh.x; t/�C p.x/ı.t � t0/ (2.101)

where p.x/ is the probability of a single spike occurring in the interval .x; xCdx/ at
t D t0, i.e., an initial condition equal to a Poisson distribution with mean rate p.x/.
Z0Œ QJ ; J � is called the MGF for the free action S0. Q'; '/ with w D 0. It follows

immediately from this MGF that the first moment of the free, uncoupled neural
network can be written as

h'.x; t/i D ı

ı QJ .x; t/Z0Œ
QJ ; J � j QJ ;JD0D p.x/e�˛.t�t0/ C

Z t

t0

dt0e�˛.t�t 0/f Œh.x; t 0/�

(2.102)

The quantity h'.x; t/i is the mean spike count, analogous to nr in our earlier
analysis. Evidently it is the solution of the equation

.
@

@t
C ˛/h'.x; t/i D f Œh.x; t/�C p.x/ı.t � t0/ (2.103)

Similarly the quantity

h'.x; t/ Q'.x0; t 0/i D ı

ı QJ .x0; t 0/
ı

ı QJ .x; t/Z0Œ
QJ ; J � j QJ ;JD0D �.x0; t 0I x; t/

(2.104)
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is a solution of Eq. (2.99) and gives the linear response to a small change in activity
at the location x.

In case w ¤ 0 perturbation theory about the free action must be used to compute
corrections to the expressions given above. All the techniques developed in quantum
field theory, Feynman diagrams and renormalization Group Techniques, can be used
to perform such computations. We obtained the general formula

ın

ı QJ n
ım

ıJm
ZŒ QJ ; J � j QJ ;JD0D

X
k

.�1/k
kŠ

˝
ŒSw. Q'; '/�k'n Q'm

˛
(2.105)

where Sw. Q'; '/ D S. Q'; '/ � S0. Q'; '/ for the perturbative corrections to the
moments.

2.7.4 Variational Techniques

One of the main reasons for introducing the path-integral approach pioneered by
[77] and by [32] is that there is a close connection between the action S. Q'; '/ and
certain paths from the initial to the final state. In fact the most probable path is
obtained by assuming that S satisfies a form of the Euler-Lagrange equations of
variational calculus. The result is

�
ıS.'a/

ı'a

�
D 0 (2.106)

where 'a D f Q'; 'g. Using Eq. (2.96) gives

@t h'.x; t/i D �˛h'.x; t/i C hf Œw ? ' C h.x; t/�i (2.107)

where ? means spatial convolution, and it follows from the fact that Q'.x; t/ is a
representation of intrinsic neural fluctuations, that h Q'.x; t/i D 0.

Inspection of this equation indicates that depending on the nature of the firing
rate function f Œx�, the mean spike count h'.x; t/i is coupled to many higher
moments. The simplest assumption that breaks this coupling is to assume that all
higher moments decompose into products of h'.x; t/i. The result is the mean-field
or macroscopic equation

@t h'.x; t/i D �˛h'.x; t/i C f Œw ? h'i C h.x; t/� (2.108)

This is a version of Eq. (2.27), the sparse firing rate Wilson-Cowan equation for a
single homogeneous population of neurons.

The next level of approximation is the assumption that the higher moments
are Gaussian and factor into products of the mean and the variance h'.x; t/i
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and h'.x; t/'.x0; t 0/i, and the propagator h'.x; t/ Q'.x0; t 0/i. Using the variational
condition

�
'.x0; t 0/

ıS.'a/

ı'a.x; t/

�
D 0 (2.109)

together with the causality condition that any moments with a factor Q'.x; t/,
t > t 0 multiplying '.x0; t 0/ must vanish, and the definitions C Œx; t I x0; t 0/ D
h'.x; t/'.x0; t 0/i � h'.x; t/ih'.x0; t 0/i and h'.x; t/i D a.x; t/, gives the following
equations

@ta.x; t/ D �˛a.x; t/C f Œs.x; t/�

C
Z Z

ddx0ddx00f 00Œs.x; t/�w.x; x00/w.x; x0/C Œx0; t W x00; t �

@t�.x; t I x0; t 0/ D �˛�.x; t I x0; t 0/C
Z
ddx00f 0Œs.x; t/�w.x; x00/�.x00; t I x0; t 0/

Cı.x � x0/ı.t � t 0/

�@t 0�.x; t I x0; t 0/ D �˛�.x; t I x0; t 0/C
Z
ddx00f 0Œs.x00; t /�w.x; x00/�.x0; t 0I x00; t /

Cı.x � x0/ı.t � t 0/ (2.110)

and

@tC Œx; t I x0; t 0� D �˛C Œx; t I x0; t 0�C
Z
ddx00f 0Œs.x; t/�w.x; x00/C Œx00; t I x; t �

C
Z
ddx00 �f 0Œs.x; t/�w.x; x00/a.x00; t 0/C f 0Œs.x00; t /�w.x00; x/a.x; t/

�
�.x0; t 0I x00; t /

(2.111)

These equations extend the Wilson-Cowan equation for a single homogeneous
neural population to include the effects of fluctuations and correlations beyond
mean-field effects. Buice and I were able to show under what conditions this
truncation of the hierarchy of moment equations is valid [13].

It turns out that the magnitude of the effects of fluctuations and correlations is
connected with the mean-field dynamics described by the Wilson-Cowan equations.
Recall that Wilson and I discovered that neural network dynamics has stable fixed
points or attractors. At or near attractors fluctuations and correlations tend to
be small, and in fact scale with O.1=

p
	N/ for fluctuations, and O.1=	N/ for

correlations, where N is the number of neurons in the local population, and 	N is
the number of contacts or synapses per neuron. The constant 	 has been estimated
to be about 0:025 [70] which translates to about 4,000 synapses for most neocortical
cells, and N � 150;000 in a local neocortical population. Thus the Wilson-Cowan
equations are a good model for neocortical dynamics near attractors. However there
are also marginally stable fixed points which signal a transition from one attractor to
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another. These are the critical points of phase transitions. Buice and I calculated the
stability properties of the attractor in our single population model, and found that
the eigenvalue equation is

� D �˛ C f 0 	 w.p/ (2.112)

where f 0 is the slope of the firing rate function at the fixed point, and w.p/ is the
Fourier transform of the weighting function w.x/. Thus there is a critical point when
˛ D ˛c D f 0 	 w.p/. So if ˛ > ˛c; � < 0 and the fixed point is an attractor, and the
fluctuations and correlations decay, whereas as ˛ ! ˛c; �! 0 the fluctuations and
correlations have an increasing effect, and the fixed point becomes a critical point.

Buice and I then derived the following condition for the existence of mean-field
behavior, namely that the inequality

�
w2
w0

�2
� jf

00jw0A
f 0 L4�dd ; Ld D 1p

2

s
f 0w2

˛ � f 0w0
D
s
D

�
(2.113)

is satisfied, where � D ˛ � f 0w0, D D 1
2
f 0w2 is the effective diffusion constant,

w0 D
R

w.x/dx and w2 D
R
x2w.x/dx are, respectively, the zeroth and second

moments of the weight function w.x/ and Ld is the effective diffusion length of
the activity [13]. Thus only the bulk parameters of the neocortical model, f 0 and
f 00 which relate to the probability distribution of thresholds, and w0 and w2 which
relate to the total number and variance of the weights, and ˛ which is the decay rate
of spiking activity, and finally the dimension d of the cortical slab, appear in the
inequality.

2.7.5 Renormalizing the Action

These considerations can be made more precise by renormalizing the action using
methods introduced by [78]. Buice and I applied these techniques to the path integral
given in Eq. (2.96). The result is the renormalized Hamiltonian

S . Q'; '/ D
Z t

0

dt
Z
ddxŒ Q'@t' C � Q'' �D0 Q'r2' � g0 	 . Q' � '/ 	 Q''� (2.114)

where �, D0, and g0 are renormalized constants. This result was the payoff for
my 40 years of work since the renormalized action is that of Reggeon field
theory, otherwise known as directed percolation or DP, equivalent to a branching-
aggregating random walk. Thus we had successfully mapped the mathematics
of stochastic neural network dynamics into that of a specific type of percolation
process.
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If we look again at Eq. (2.113) we can now interpret the dimension d D 4 as the
upper critical dimension of the DP phase transition. This is the dimension at which
the condition� D 0 no longer causes the inequality to be violated, thus guaranteeing
mean field behavior for d � 4. In fact neural connectivity is quite dense, since there
are about 4;000 contacts per cell. and in our continuum approximation it makes
sense that the effective dimension d � 4. This implies that as an approximation,
we can use the mean field scaling exponents of the DP phase transition, which are
ˇ D 1; �? D 1=2; �k D 1, where ˇ is related to the probability that an active cell
at a given site decays, �? and �k are related, respectively, to spatial and temporal
correlation lengths of the activity at multiple sites. Given such values we can write
down the approximate form of the renormalized propagators for subcritical, critical,
and supercritical states of our neural network model, based on the calculations of
[1, 2, 7] and [19]. The results are as follows: for the subcritical state, we obtain

GR.x � x0; t � t 0/ / .t � t 0/�2 expŒ� .x � x
0/2

4.t � t 0/ � �.t � t
0/� (2.115)

which is nothing more than simple diffusion with decay. The renormalized decay
constant � > 0 in the subcritical case. Exactly at the critical point, where � D 0 the
renormalized propagator is approximated by

GR.x � x0; t � t 0/ / .t � t 0/�2 expŒ� .x � x
0/2

4.t � t 0/ � (2.116)

which is just simple diffusion with D0 D 1.
That this is the case can be seen by examining the form of the free propagator in

momentum space, written as

G0.p; t � t 0/ D e�˛.t�t 0/�.t � t 0/ (2.117)

or more correctly the unrenormalized propagator GI .p; t � t 0/ for the case when
w ¤ 0, i.e.

GI .p; t � t 0/ D e�Œ˛�f 0w.p/�.t�t 0/�.t � t 0/ D e�Œ�CDp2�.t�t 0/�.t � t 0/ (2.118)

It is easy to show that Fourier transforming GI .p; t � t 0/ gives the propagator in
coordinate space, i.e.

GI .x � x0; t � t 0/ / ŒD.t � t 0/��2 expŒ� .x � x
0/2

4D.t � t 0/ � �.t � t
0/� (2.119)

In the renormalized case, the effective diffusion constant D ! D0 D 1 in case
d � 4, so that the renormalized subcritical and critical propagators correspond to
those obtained directly from GI .x � x0; t � t 0/.
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The supercritical case, however, is different. The result is

GR.x � x0; t � t 0/ / �2�Œp�.t � t 0/� j x � x0 j� (2.120)

This is a propagating front, effectively the surface of a hypersphere, with amplitude
�2 / h'i2, and speed

p
�. Thus as any disturbance becomes more and more

supercritical, its amplitude increases rapidly and its speed increases more slowly.
This case is very interesting in the light of the early work of [16] on the responses
of isolated neocortical slabs to current pulses, which exhibited fronts propagating at
a velocity of approximately 15 cm/s.

More recently observations by [46] and [57] have indicated that the resting
state of the neocortex has properties described quite precisely by the subcritical
renormalized propagator, and that when stimulated, neocortical activity develops
properties well described by the mean field Wilson-Cowan equations, in that long-
range correlations characteristic of states just below or near criticality decay in favor
of localized states that are only correlated with the stimulus.

2.7.6 Avalanches

In another series of experiments on isolated slabs lightly anaestheized with ethyl-
ether, [16] observed bursts of activity from a number of randomly occurring sites.
Moreover, any variation in the level of anaesthetic, either up or down, abolished
such bursts. Sixty years later these bursts were studied systematically by [8] using
an 8 � 8 microelectrode array to record LFPs in isolated neocortical slabs. Their
major finding was that spontaneous neural activity is close to being scale-free—the
number of bursts of a given size (i.e.N , the number of activated electrodes per burst)
is power function of the burst size n, such that

N.n/ / n�˛; ˛ D 3

2
(2.121)

Using the field theory Buice and I calculated the predicted value of ˛ assuming that
spontaneous neural activity is at a critical point. The result was

˛ D
�
1C ˇ

�.4C z/ � ˇ
�

(2.122)

where ˇ; � and z are critical exponents. Assuming that these exponents are those of
mean-field DP, ˇ D 1; � D 1=2; z D 2, so that ˛ D 3

2
. This is the exponent of

mean-field critical branching [4] in which one active neuron gives rise to just one
other active neuron. Thus as Beggs and Plenz had suggested, the critical branching
process describes quite accurately spontaneous neural activity in cortical slices. In
recognition of this Beggs and Plenz called the random bursts of neural activity
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avalanches, thus making contact with the extensive literature on avalanches and
criticality in phase transitions. What we had added is that such a branching process
occurs in mean-field directed percolation.

2.7.7 Calculations Concerning Brain Rhythms and Spike
Statistics

Buice and I also carried out some further calculations on neocortical properties
that could be deduced from the field theory. Consider, for example, the Laplace
transform of the renormalized subcritical propagator, which has the simple form

GR.p; !/ D 1

�C p2 C {! (2.123)

and therefore its power spectrum is

GR.p; !/G
�
R.p; !/ D

1

.�C p2/2 C !2 (2.124)

In the spatially homogeneous state, p D 0, this reduces to

j GR.p; !/ j2D 1

�2 C !2 (2.125)

We plot the function K j GR.p; !/ j2 with K D 75 and � D 3 on the same
graph as that of the power spectrum of human EEG [65]. The result is shown in
Fig. 2.9. It will be seen that the function 75=.3 C !2/ provides a good fit to the
EEG baseline. This was an important result. It established that the EEG baseline
spectrum was that of Brownian motion, with a 1=!2 tail. Of course sitting on top of
the Brownian baseline are multiple peaks, corresponding to various brain rhythms,
the most prominent of which are the Alpha (9Hz) and Beta (18Hz) rhythms of the
occipital cortex. I will describe a model for the generation of such rhythms in a later
section.

The tail !�2 however suggested an interesting way to generate a tail equal to
!�1 for the power spectrum of spontaneous neural spiking activity recorded with
microelectrodes. We based our analysis on a result of [44] who showed that a time
series of particle counts generated by some branching process whose correlations
correspond to a power spectrum with a 1=!2 tail, has itself a !�1 tail. Since we
had shown that the EEG spectrum, and the closely related local field potential
(LFP) [14] had a !�2 tail, here was a simple derivation of the 1=! tail of the power
spectrum of spontaneous spiking activity. Interestingly, [26] derived such a spectrum
by assuming that neural threshold fluctuations were Brownian motion! Here was a
direct connection with our calculation that the neural field has a Brownian motion
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Fig. 2.9 Fit of the function
75=3C !2 to EEG data
(Reprinted from [14])

spectrum! The reader is referred to [14] for a fuller discussion of this, and many
other results.

2.7.8 Closed Moment Equations

Buice graduated in 2007 and left to become a post-doctoral fellow at NIH with
Carson Chow. We had managed to solve many of the problems I had gotten stuck
on, and had ended up with the statistical field theory that I had aspired to several
decades earlier. Buice and I continued to work on some further aspects of the theory,
and were joined by Chow in an effort to find a more principled way to derive closed
moment equations from the field theory. The results of this work are to be found
in [15]. The equations we obtained are essentially those described in Eq. (2.111).

In what follows I describe the special case of a localized finite sized network ofN
neurons coupled in a spatially homogeneous all-to-all fashion, since it illustrates the
essential features of the moment closure problem. The equations in this simplified
case reduce to

d

dt
a.t/ D �˛a.t/C f Œs.t/�C 1

2
f 00Œs.t/�w20C.t/

d

dt
C.t/ D �2�C.t/C 2w0

N
f 0Œs.t/�a.t/ (2.126)
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where

a.t/ D 1

N

X
i

ai .t/; C.t/ D 1

N 2

X
ij

Cij.t/; s.t/ D w0a.t/C h.t/ (2.127)

and Cij.t/ is the pair correlation function for cells at the vertices i and j of the
presumed neural lattice. Thus a.t/ is the mean activity in the network, and C.t/ is
the covariance of the activity. The important feature of these equations is that they
are coupled moment equations, so that the mean is affected by the covariance and
vice-versa.

Equation (2.126) can be solved for C at the fixed point dta.t/ D dtC.t/ D 0.
The result is

C0 D w0
�N

f 0Œs0�a0 (2.128)

Thus C0 / .�N/�1. But it follows from Eq. (2.112) that � D ��0, the eigenvalue
of the mean field equation

d

dt
a.t/ D �˛a.t/C f Œs.t/�

in the spatially homogeneous case, so that C0 / .��0N /�1. So as long as
the fixed point fa0; C0g is stable, �� > 0, C.t/ will become smaller with
increasing numbers of neurons N , and its effects on the network dynamics can
be discounted. This is a finite-size effect: for large enough N , the mean-field
equation is a good model of the dynamics, any small effects of the correlations
can be well represented by Eq. (2.126). Conversely, as � ! 0 so that the fixed
point approaches a critical point, �N will diminish and correlations will grow. Thus
Eqs. (2.126) become singular at the critical point, and the correlations and intrinsic
fluctuations dominate the dynamics. Thus the neighborhood of the critical point can
be described as a fluctuation dominated region [18], and the renormalization group
technique, or its mathematical equivalent—singular perturbation theory [20], must
be used to analyze this region. This conclusion also holds for the general spatially
inhomogeneous case.

Figure 2.10 shows a plot of some solutions of the spatially inhomogeneous
network case, for Poisson initial conditions with ai .0/ D 2; Cij.0/ D 0 and ˛ D 0:9
where ˛ D 1:0 at the critical point. It will be seen that the mean field equations fail
to capture the true behavior of the network. While the coupled moment equations
do better, they do not give an accurate representation of the true behavior. Evidently
˛ D 0:9 is too close to criticality.

These results are consistent with those Ohira and I obtained in 1997 (see Figs. 2.7
and 2.8), using the system-size expansion of the master equation, in that the mean
field prediction of a non-zero active state is incorrect. It became clear to me,
and independently to Buice and Chow, sometime in 2008, that there was a close
connection between the closed moment equations we had obtained, and equations
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Fig. 2.10 a.t/ versus t for ˛ D 0:9, N D 10. Upper lines are solutions of mean-field theory,
lower lines are solutions of the spatially inhomogeneous equations, and black lines are expectation
values of data from simulations of the underlying Markov process, carried out using the Gillespie
algorithm [34] (Reprinted from [15])

that could be obtained using the van Kampen system size expansion of the master
equation. I started to writeup some notes on this connection when Paul Bressloff,
now at Oxford University, saw a preprint of the manuscript Buice, Chow, and I had
submitted for publication, which we had placed in the public domain in Arxiv.org.
Working with his customary lightning speed Bressloff wrote and published a paper
on this topic [11] which formalized this connection, and greatly clarified, at least
for me, a number of the issues I had grappled with over the years. In particular,
the paper looked at the different ways in which one can develop the field theory by
starting either from the spike count as a measure of neural activity, as Buice and I
had done, versus using the fraction of activated cells in a population comprising N
cells, as a measure of the activity, which I had used to formulate the original master
equation in 1979. This paper made clear to me a result Buice had obtained when still
my student, that what physicists call the one-loop correction to the free propagator
of our theory, generates the same formulas as do the moment equations obtained
from the system-size expansion of the master equation.

2.8 Stochastic Wilson-Cowan Equations

There remained the problem of using all this mathematical physics machinery to
analyze more realistic models of the neocortex. For example, the models Ohira,
Buice and I had developed did not distinguish between excitatory,E, and inhibitory,
I , neurons, as did the mean-field Wilson-Cowan equations. It therefore remained a
goal of mine to extend the field theory to cover such a distinguishing feature of the
neocortex. By this time (2008), I had two other graduate students working with me,
Edward Wallace (Mathematics) and Marc Benayoun (Pediatric Neurology), and a
local collaborator Wim van Drongelen (Pediatrics), with whom I jointly supervised
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Benayoun. After much animated discussion Wallace and Benayoun succeeded in
convincing me to look again at the Fokker-Planck approach to modeling E=I

networks, which I had more-or-less given up in favor of the field theory approach.
The result was a master equation for the E=I case, and subsequently a Fokker-
Planck equation derived from the master equation via the system-size expansion.
The details can be found in [9].

2.8.1 The E=I Master Equation

We first introduced an extension of Eq. (2.29) for a single homogeneous population
comprising M excitatory, and N inhibitory neurons, i.e. the master equation for
Pm;n.t/, the probability of finding m active excitatory and n active inhibitory
neurons at time t

dPm;n.t/

dt
D ˛EŒ.mC 1/PmC1;n �mPm;n�
C.M �mC 1/fEŒsE.m � 1; n/�Pm�1;n
�.M �m/fEŒsE.m; n/�Pm;n
C˛I Œ.nC 1/Pm;nC1 � nPm;n�
C.N � nC 1/fI ŒsI .m; n � 1/�Pm;n�1
�.N � n/fI ŒsI .m; n/�Pm;n (2.129)

where

sE.m; n/ D wEEm � wEInC hE; sI .m; n/ D wIEm � wIInC hI (2.130)

are the currents driving the neurons.
A straightforward generalization of this to the case of ˝ such populations is

dPŒm;nI t �
dt

D ˛E
X̋
rD1
fŒ.mr C 1/P ŒmrC;nI t � �mrP Œm;nI t �

C .Mr �mr C 1/fEŒsE.mr � 1; nr /�P Œmr�;nI t �
� .Mr �mr/fEŒsE.mr ; nr /�P Œm;nI t �g

C˛I
X̋
rD1
fŒ.nr C 1/P Œm;nCI t � � nrP Œm;nI t ��

C .Nr � nr C 1/fI ŒsI .mr ; nr � 1/�P Œm;n�I t �
� .Nr � nr/fI ŒsI .m; n/�P Œm;nI t �g (2.131)
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where

sE.mr ; nr / D
X
s

wEE
rs ms �

X
s

wEI
rs ns C hE

sI .mr ; nr / D
X
s

wIE
rsms �

X
s

wII
rsns C hI (2.132)

are the currents driving the neurons. Application of the van Kampen system-size
expansion to this master equation generates, to lowest order, the Wilson-Cowan
equations, and to the next order Fokker-Planck and Langevin equations for the
fluctuations.

Let

mr

Mr

D Er C �rp
Mr

;
nr

Nr
D Ir C �rp

Nr
(2.133)

It then follows from the system-size expansion that to O.1/

dEr
dt
D �˛EEr C .1 �Er/fEŒwEE

r ? Er � wEI
r ? Ir C hEr �

dIr
dt
D �˛I Ir C .1 � Ir /fI ŒwIE

r ? Er � wII
r ? Ir C hIr � (2.134)

i.e. the mean-field Wilson-Cowan equations for coupled E=I populations on a
lattice.

Similarly, to O. 1p
N
/ we obtain the coupled linear fluctuation or Langevin

equations

d

dt

�
�r
�r

�
D A

�
�r
�r

�
C
�p

2˛EEr;0 	
	 p

2˛I Ir;0

��
�r
�r

�
(2.135)

assuming �r .0/ D �r.0/ D 0, where the matrix Ar is the Jacobian of Eq. (2.134), B
is the diagonal matrix

Br D
�p

2˛EEr;0 	
	 p

2˛I Ir;0

�
(2.136)

�r and �r are independent white noise variables, and Er;0 and Ir;0 are the fixed point
values of Er.t/ and Ir .t/, respectively.

At O. 1
N
/ we obtain lattice versions of Eq. (2.126) extended to deal with E=I

populations.
In [9] we used this Langevin equation to analyze the effects of fluctuations on the

dynamics of a single homogeneous coupled E=I neocortical population, in case the
mean-field fixed point fE0; I0g is a stable node. Equation (2.135) describes Gaussian
fluctuations of the activity about such a node. We noticed in simulations that large
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fluctuations tended to occur as the level of inhibition approaches that of excitation.
This gives rise to the so-called balanced condition in which the net excitation per
neuron is balanced by its net inhibition. In such a condition we can introduce the
additional symmetries wEE D wIE D wE; wEI D wII D wI ; wE D wI , and
M D N , and the linear transformation

˙ D 1

2
.E C I /; � D 1

2
.E � I / (2.137)

so that the total input current is

s D w0˙ C w1�C h (2.138)

where w0 D wE � wI ;w1 D wE C wI whence in the balanced case w0  w1.
(In my earlier work with Buice on the one population model, we had tacitly

assumed that the net difference between excitation and inhibition was represented
by w0 the total synaptic weight per neuron, so that that � D ˛ � f 0w0 ! ˛ as
w0 ! 0 would give a stable node for positive decay constant ˛.)

Equation (2.134), in the homogeneous case, now transforms to the simpler form:

d˙

dt
D �˛˙ C .1 �˙/f Œw0˙ C w1�C h�

d�

dt
D ��.˛ C f Œw0˙ C w1�C h�/ (2.139)

which has a fixed point, the stable node f˙0; 0g. Evidently ˙0 is left unchanged by
variations in w1, since �0 D 0.

Similarly Eq. (2.140) takes the form

d

dt

�
�˙
��

�
D
���1 wFF

	 ��2
��

�˙
��

�
C
p
˛˙0

�
�˙
��

�
(2.140)

where �1 D ˛ C f Œs0� C .1 � ˙0/w0f 0Œs0�; �2 D ˛ C f Œs0�, and wFF D
.1 �˙0/w1f 0Œs0�. The matrix

���1 wFF

	 ��2
�

(2.141)

has eigenvalues ��1 and �2. It is easy to see that w0 small and positive (wE slightly
larger than wI ) implies that the eigenvalues are small and negative, so that the fixed
point f˙0; 0g is a weakly stable node. The effect of expression wFF is referred to
as hidden feedforward [56], hidden because the linear transformation of Eq. (2.137)
is required to make it explicit, feedforward because fluctuations in � affect ˙
but not vice-versa. The net effect of such terms is that small changes in �� lead
to larger changes in �˙ , the magnitude of which increases with wFF. This effect is
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Fig. 2.11 Coefficient of variation (CV) plotted against feedforward weight wFF, from simulations
with other parameters fixed, w0 D 0:2, h D 0:001 andN D 800. The time bin width is T D 1ms.
Note that the feedforward weight depends linearly on w1 (Reprinted from [9])

referred to as balanced amplification [56]. Evidently in a population subject to small
fluctuations, large wFF and small w0 can generate large sustained fluctuations of �˙ .

We can express the details of this effect more precisely by calculating the
stationary value of varŒ Q̇ � the variance of the total activity of the E=I population of
N neurons as

varŒ Q̇ � D varŒ�˙ �

N
D ˛˙0

2N�1

�
1C w2FF

�2.�2 C �1/
�

(2.142)

Evidently the fluctuations of Q̇ increase with wFF, and also increase as �1; �2 ! 0,
so that varŒ Q̇ � / .�1N /�1, which is similar to the result of Eq. (2.128) for the one
population case.

Figure 2.11 shows the result of a simulation in which the coefficient of variation
of time-binned spike counts, a measure of varŒ Q̇ �=h Q̇ i, as a function of wFF.

It will be seen that the CV increases monotonically with wFF. Thus the amplitude
of fluctuations is determined in large part by large wFF, and small eigenvalues. It
is clear that these are the conditions which generate neural avalanches. To support
this deduction, we carried out simulations of a network of 800 sparsely connected
neurons, given the same balanced amplification conditions as in the previous cases.
Figure 2.12 shows the results.

It will be seen that avalanches occur with an approximate power law distribution
even in the spatially inhomogeneous sparse case, and even when the eigenvalues
are small but non-zero negative, i.e. even when the fixed point f˙0; 0g is a weakly
stable node. Thus it may be the case that criticality is not a necessary condition for
the appearance of approximate power laws in the statistics of spontaneous neural
activity.
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a b c

Fig. 2.12 Results from an excitatory and inhibitory network with N D 800, with 17 %
connectivity. (a): Raster plot and mean firing rate (solid plot). (b): Avalanche size distribution.
Lower curve: Poisson statistics. Blue line: Power law statistics with slope ˇ � �2:5. (c): Inter-
spike-interval distribution. Exponential statistics (Reprinted from [9])

Fig. 2.13 Results from an excitatory and inhibitory network with N D 800, hE D 0:325;wEE D
wIE D 1;wEI D 1:6;wII D 1. (a): Raster plot and mean firing rate (solid plot) of the network.
Lower half excitatory neurons, upper half inhibitory neurons. (b): Normalized power spectrum of
the excitatory population in simulation (lower curve) and from Eq. (2.135) (upper curve). The
peak occurs at a frequency !0 � 100Hz (Reprinted from [76])

2.8.2 Work in Progress

It is evident that there are many new problems to investigate. Among them
are two problems concerning further effects of fluctuations and correlations on
neural dynamics near weakly stable nodes and foci. Thus from Eq. (2.135) we
can calculate the power spectrum of the total excitatory activity in a homogeneous
E=I population in case the fixed point fE0; I0g is a weakly stable focus [17, 76].
Figure 2.13 shows a plot of this spectrum. It will be seen that unlike the one
population model, there is a pronounced peak in the spectrum on top of the
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Brownian motion baseline. This raises the possibility that fluctuation driven finite
size effects may play a role in the origin of brain oscillations or rhythms.

In fact it can also be shown that this property is present in the more general case
of multiple populations of sizeNr; r D 1; 2; 	 	 	 ; ˝, in which case there are multiple
peaks with amplitudes proportional to Rl.�r/2Nr .

As a final example we note another piece of work in progress. Consider
Eqs. (2.126) and (2.127) containing O. 1

N
/ terms, in which pair correlations have

an effect. One can show that there exists a fixed point in such equations which is
a weakly stable focus. Thus even a single homogeneous population of neurons can
generate oscillations if the effects of pair correlations are non-negligible. In such a
case, we can linearize these equations about such a fixed point to obtain solutions of
the eigenvalue equation for its stability.

The result (Buice and Cowan In Preparation) is that

�˙ D �3
2
�˙ 1

2

�
�2 C 4f 00w30

N
.f 0 C f 00Œs0 � h�/

� 1
2

(2.143)

where � D ˛ � f 0w0. These eigenvalues are complex and represent weakly
damped oscillations. In the limit ˛ ! ˛c D f 0w0, corresponding to � ! 0, this
formula reduces to the purely imaginary complex conjugate eigenvalues of a Hopf
bifurcation to a limit cycle, i.e.

�˙ ! �c;˙ D ˙w3=20p
N
{
�jf 00j.f 0 C f 00a0w0/

� 1
2 (2.144)

Interestingly this is exactly the result we obtained in 2006 (unpublished) by
calculating one-loop corrections to the propagator of the one population model,
which we now know is equivalent to the system size expansion of the master
equation. This result indicated something that may prove to be important, namely
the frequency of the resulting oscillations scales inversely with

p
N , provided

f 00 < 0. This is a property that is not seen in the lower order fluctuation analysis. If
we interpret such oscillations to be associated with some kind of periodic travelling
front or wave-like neocortical disturbance, then we can infer that the period of such
a travelling disturbance scales with

p
N . There is in fact some data which relates

the wavelength of synchronous oscillations to
p
N . Figure 2.14 shows, for example,

the relation between the wavelength � of synchronous epileptiform oscillations as
measured with surface EEG electrodes, and the number of electrodes N involved.

It will be seen that �2 is linearly proportional to N , and therefore the period � of
the oscillation (assuming simple harmonic waves) is linearly proportional to

p
N .

The details can be seen in [14].
It seems plausible that fluctuations and correlations of neocortical activity near

criticality play an important role in the generation of the various oscillations seen in
such activity.
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Fig. 2.14 Wavelength �
of synchronous EEG as
a function of electrode
number N . W. VanDrongelen
(Personal Communication
2007) (Reprinted from [14])

2.9 Concluding Remarks

The past is a foreign country:
they do things differently there.

L.P. Hartley: The Go-Between (1953)

Evidently there is a great difference between the state of knowledge about neural
networks in 1945, and what we now know today. Even when I started to think
seriously about biological neural networks in 1962, apart from the earlier papers
of Uttley and Beurle, there was not too much in the literature to provide guidance.
Today the situation is different. Neuroscience has made great strides since 1945,
and the modeling of biological neural networks is beginning to make much better
contact with the experimental literature.

My initial idea about an analogy between neural networks and Lotka-Volterra
systems seems to have stood the test of time. Currently there is a substantial
amount of work on what has been called Stochastic Lattice Lotka-Volterra Sys-
tems (SLLVS), both using field theory [53, 54] and the van Kampen system-size
expansion [51, 52], that closely parallels the work on neural networks described
here. As we have shown, the two methodologies are closely related. However the
system-size expansion breaks down at criticality, whereas the renormalization group
method enables field theory to work even at criticality, and leads to the prediction
of a universal phase transition in neural network dynamics, the DP phase transition,
known to be equivalent to a branching and aggregating process. This in turn leads
to the interpretation of the critical branching found in neural avalanches by Beggs
and Plenz, as mean-field directed percolation, and to the use of the renormalized
subcritical, critical, and supercritical propagators of DP as models of large-scale
neural activity. Finally work on neural avalanches and oscillations using the system
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size expansion has made it clear that in the stochastic Wilson-Cowan equations,
proximity to a critical point either through a weakly stable node or focus is necessary
for their generation. Both avalanches and such oscillations can therefore be seen as
fluctuation driven finite-sized effects.

It seems clear to me that many problems involving the large-scale dynamics
of neocortical activity can now be analyzed using these methodologies. My job is
nearly done!

Acknowledgements I would like to acknowledge with thanks the financial support from ONR
on two separate contracts, and that from the Grant Foundation and the James S. McDonnell
Foundation, which greatly facilitated the development of this work. I will always appreciate
the many contributions to this work made by my Postdoctoral Fellow and later colleague Hugh
Wilson in the early days of this work, and the more recent contributions of my graduate students
Toru Ohira, Michael Buice, Edward Wallace and Marc Benayoun, and of my collaborators Paul
Bressloff and Wim van Drongelen, and of Nigel Goldenfeld and his graduate student Tom Butler
at the University of Illinois, Urbana-Champaign, not to speak of the many other colleagues at
the University of Chicago who, over the years since 1967, have provided much stimulation and
constructive criticism.

References

1. Abarbanel, H., Broznan, J.: Structure of the vacuum singularity in Reggeon field theory. Phys.
Lett. B 48, 345–348 (1974)

2. Abarbanel, H., Broznan, J., Schwimmer, A., Sugar, R.: Intercept of the Pomeron. Phys. Rev.
D 14(2), 632–646 (1976)

3. Abarbanel, H., Broznan, J., Sugar, R., White, A.: Reggeon field theory: formulation and use.
Phys. Rep. 21(3), 119–182 (1975)

4. Alstrom, P.: Mean-field exponents for self-organized critical phenomena. Phys. Rev. A 38(9),
4905–4906 (1988)

5. Amari, S.I.: A method of statistical neurodynamics. Kybernetik 14, 201–215 (1974)
6. Amari, S.I., Yoshida, K., Kanatani, K.: A mathematical foundation for statistical neurodynam-

ics. SIAM J. Appl. Math. 33, 95–126 (1977)
7. Amati, D., Marchesini, G., Ciafoloni, M., Parisi, G.: Expanding disc as a dynamical vacuum

instability in Reggeon field theory. Nucl. Phys. B 114, 483–504 (1976)
8. Beggs, J., Plenz, D.: Neuronal avalanches in neocortical circuits. J. Neurosci. 23(35), 11167–

11177 (2003)
9. Benayoun, M., Cowan, J., van Drongelen, W., Wallace, E.: Avalanches in a stochastic model

of spiking neurons. PLoS Comput. Biol. 6(7), e1000846 (2010)
10. Beurle, R.L.: Properties of a mass of cells capable of regenerating pulses. Philos. Trans. R.

Soc. Lond. B 240(669), 55–94 (1956)
11. Bressloff, P.: Stochastic neural field theory and the system-size expansion. SIAM J. Appl.

Math. 70(5), 1488–1521 (2009)
12. Buice, M.: Neural networks, field theory, directed percolation, and critical branching. Ph.D.

thesis, University of Chicago (2005)
13. Buice, M.A., Cowan, J.D.: Field theoretic approach to fluctuation effects for neural networks.

Phys. Rev. E 75, 051919 (2007)
14. Buice, M., Cowan, J.: Statistical mechanics of the neocortex. Prog. Biophys. Theor. Biol.

99(2,3), 53–86 (2009)



94 J. Cowan

15. Buice, M.A., Cowan, J.D., Chow, C.C.: Systematic fluctuation expansion for neural network
activity equations. Neural Comput. 22(2), 377–426 (2010)

16. Burns, B.D.: Some properties of isolated cerebral cortex in the unanaesthetized cat. J. Physiol.
112, 156–175 (1951)

17. Butler, T., Benayoun, M., Wallace, E., van Drongelen, W., Goldenfeld, N., Cowan, J.:
Evolutionary constraints on visual cortex architecture from the dynamics of hallucinations.
PNAS 109(2), 606–609 (2012)

18. Cai, D., Tao, L., Shelley, M., McLaughlin, D.: An effective kinetic representation of
fluctuation-driven neuronal networks with application to simple and complex cells in visual
cortex. Proc. Nat. Acad. Sci. USA 101(20), 7757–7762 (2004)

19. Cardy, J., Sugar, R.: Directed percolation and Reggeon field theory. J. Phys. A 13, L423–L427
(1980)

20. Chen, L.Y., Goldenfeld, N., Oono, Y.: Renormalization group and singular perturbations:
multiple scales, boundary layers, and reductive perturbation theory. Phys. Rev. E 54(1), 376–
394 (1996)

21. Cowan, J.: A mathematical theory of central nervous activity. Ph.D. thesis, Imperial College
of Science and Technology, University of London (1967)

22. Cowan, J.: Statistical mechanics of nervous nets. In: Caianiello E.R. (ed.) Neural Networks,
pp. 181–188. Springer, Berlin/Heidelberg/New York (1968)

23. Cowan, J.: A statistical mechanics of nervous activity. In: Gerstenhaber, M. (ed.) Some
Mathematical Questions in Biology, vol. 2. American Mathematical Society, Providence (1971)

24. Cowan, J.D.: Stochastic neurodynamics. In: Touretzsky, D., Lippman, R., Moody, J. (eds.)
Advances in Neural Information Processing Systems, vol. 3, pp. 62–68. Morgan Kaufmann,
San Mateo (1991)

25. Cragg, B., Temperley, H.: The organization of neurones: a cooperative analogy. Electroen-
cephalogr. Clin. Neurophysiol. 6, 85–92 (1954)

26. Davidsen, J., Schuster, H.: Simple model for 1=f ˛ noise. Phys. Rev. E 65(2), 026120–026123
(2002)

27. Destexhe, A., Sejnowski, T.: The Wilson-Cowan model, 36 years later. Biol. Cybern. 101(1),
1–2 (2009)

28. Dickman, R.: Nonequilibrium lattice models: series analysis of steady states. J. Stat. Phys.
55(5–6), 997–1026 (1989)

29. Doi, M.: Second quantization representation for classical many-particle system. J. Phys. A
Math. Gen. 9(9), 1465–1477 (1976)

30. Doi, M.: Stochastic theory of diffusion controlled reaction. J. Phys. A Math. Gen. 9(9), 1479–
1495 (1976)

31. Fetter, A., Walecka, J.: Quantum Theory of Many-Particle Systems. McGraw-Hill, New York
(1971)

32. Feynman, R.P.: Space–time approach to non–relativistic quantum mechanics. Rev. Mod. Phys.
20(2), 367–387 (1948)

33. Georgi, H.: Lie Algebras in Particle Physics. Benjamin Books, Menlo Park (1982)
34. Gillespie, D.: The chemical Langevin equation. J. Chem. Phys. 113(1), 297–306 (2000)
35. Glauber, R.: Photon correlations. Phys. Rev. Lett. 10(3), 84–86 (1963)
36. Grassberger, P., de la Torre, A.: Reggeon field theory (Schlögle’s first model) on a lattice:

Monte carlo calculations of critical behaviour. Ann. Phys. 122, 373–396 (1979)
37. Grassberger, P., Scheunert, M.: Fock–space methods for identical classical objects. Fortschr.

Phys. 28, 547–578 (1980)
38. Gribov, V.: A Reggeon diagram technique. Sov. Phys. JETP 26, 414 (1968)
39. Hecht, K.: The Vector Coherent State Method. Springer, New York (1987)
40. Hopfield, J.: Neural networks and physical systems with emergent collective computational

properties. Proc. Nat. Acad. Sci. 79, 2554–2558 (1982)
41. Hoppensteadt, F., Izhikevich, E.: Weakly Connected Neural Networks. Springer, New York

(1997)



2 Field Theory of Brain Activity from 1945 Onward 95

42. Kerner, E.: A statistical mechanics of interacting species. Bull. Math. Biophys. 19, 121–146
(1957)

43. Kirkwood, J.: The statistical mechanical theory of transport processes i: general theory. J.
Chem. Phys. 14(2), 180–201 (1946)

44. Kobayashi, T.: f �1 series generated by using the branching process model. J. Phys. A 22,
L931–L938 (1989)

45. Kramers, H.: Brownian motion in a field of force and the diffusion model of chemical reactions.
Physica 7(4), 284–304 (1940)

46. Lampl, I., Reichova, I., Ferster, D.: Synchronous membrane potential fluctuations in neurons
of the cat visual cortex. Neuron 22, 361–374 (1999)

47. Liggett, T.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer,
New York (1985)

48. Little, W.: The existence of persistent states in the brain. Math. Biosci. 19, 101–120 (1974)
49. Lotka, A.: Elements of Physical Biology. Williams and Wilkins Co., Baltimore (1925)
50. McCulloch, W., Pitts, W.: A logical calculus of ideas immanent in nervous tissue. Bull. Math.

Biophys. 5, 115–133 (1943)
51. McKane, A., Newman, T.: Stochastic models in population biology and their deterministic

analogs. Phys. Rev. E 70(4), 41902 (2004)
52. McKane, A., Newman, T.: Predator-prey cycles from resonant amplification of demographic

stochasticity. Phys. Rev. Lett. 94(21), 218102 (2005)
53. Mobilia, M., Georgiev, I., Taüber, U.: Fluctuations and correlations in lattice models of

predator-prey interactions. Phys. Rev. E 73(4), 04093–04096 (2006)
54. Mobilia, M., Georgiev, I., Taüber, U.: Phase transitions and spatio-temporal fluctuations in

stochastic Lotka-Volterra models. J. Stat. Phys. 123(6), 1061–1097 (2006)
55. Moyal, J.: Stochastic processes and statistical physics. J. R. Stat. Soc. B 11(2), 150–210 (1949)
56. Murphy, B., Miller, K.: Balanced amplification: a new mechanism of selective amplification of

neural activity patterns. Neuron 61(4), 635–648 (2009)
57. Nauhaus, I., Busse, L., Carandini, M., Ringach, D.: Stimulus contrast modulates functional

connectivity in visual cortex. Nat. Neurosci. 12(1), 70–76 (2009)
58. Ohira, T.: A master equation approach to stochastic neurodynamics. Ph.D. thesis, University

of Chicago (1993)
59. Ohira, T., Cowan, J.: Stochastic neurodynamics and the system size expansion. In: Ellacort,

S., Anderson, I. (eds.) Proceedings of the First International Conference on the Mathematics
of Neural Networks, pp. 290–294. Kluwer, Boston (1997)

60. Pearl, R.: The growth of populations. Q. Rev. Biol. 2, 532–548 (1927)
61. Peliti, L.: Path integral approach to birth–death processes on a lattice. J. Phys. 46, 1469–1483

(1985)
62. Perelomov, A.: Generalized Coherent States and Their Applications. Springer, New York

(1986)
63. Rose, H.: Renormalised kinetic theory for nonequilibrium many-particle classical systems. J.

Stat. Phys. 20(4), 415–447 (1980)
64. Rosenblatt, F.: The perceptron, a probabilistic model for information storage and organization

in the brain. Psychol. Rev. 62, 386–408 (1958)
65. Rowe, D., Robinson, P., Rennie, C.: Estimation of neurophysiological parameters from the

waking EEG using a biophysical model of brain dynamics. J. Theor. Biol. 231, 413–433
(2004)

66. Rumelhart, D., Hinton, G., Williams, R.: Learning internal representations by error propaga-
tion. In: Rumelhart, D., McClelland, J. (eds.) Parallel Distributed Processing: Explorations in
the Microstructure of Cognition. I: foundations. MIT, Cambridge (1986)

67. Schulman, L.: Techniques and Applications of Path Integration. Wiley, New York (1981)
68. Schwinger, J.: On angular momentum. In: Biedenharn, L., van Dam, H. (eds.) Quantum Theory

of Angular Momentum, pp. 229–279. Academic, New York (1965)
69. Smith, D., Davidson, C.: Maintained activity in neural nets. J. ACM 9(2), 268–279 (1962)



96 J. Cowan

70. Stevens, C.: How cortical interconnectedness varies with network size. Neural Comput. 1,
473–479 (1989)

71. Uttley, A.: The probability of neural connexions. Proc. R. Soc. Lond. B 144(915), 229–240
(1955)

72. Uttley, A.: A theory of the mechanism of learning based on the computation of conditional
probabilities. In: Proceedings of the 1st International Congress on Cybernetics, Namur,
pp. 830–856. Gauthier-Villars, Paris (1956)

73. Van Kampen, N.: Stochastic Processes in Physics and Chemistry. North Holland, Amster-
dam/New York (1981)

74. Verhulst, P.: Recherches mathématiques sur la loi d’accroissment de la population. Mem. Acad.
R. Belg. 18, 1–38 (1845)

75. Volterra, V.: Leçons sur la Théorie Mathématique de la Lutte pour la Vie. Gauthier-Villars,
Paris (1931)

76. Wallace, E., Benayoun, M., van Drongelen, W., Cowan, J.: Emergent oscillations in networks
of stochastic spiking neurons. PLoS ONE 6(5), e14804 (2011)

77. Wiener, N.: Nonlinear Problems in Random Theory. MIT, Cambridge (1958)
78. Wilson, K.: Renormalization group and critical phenomena. I. Renormalization group and the

Kadanoff scaling picture. Phys. Rev. B 4(9), 3174–3183 (1971)
79. Wilson, H., Cowan, J.: Excitatory and inhibitory interactions in localized populations of model

neurons. Biophys. J. 12, 1–22 (1972)
80. Wilson, H., Cowan, J.: A mathematical theory of the functional dynamics of cortical and

thalamic nervous tissue. Kybernetik 13, 55–80 (1973)



Chapter 3
Heaviside World: Excitation
and Self-Organization of Neural Fields

Shun-ichi Amari

Abstract Mathematical treatments of the dynamics of neural fields become much
simpler when the Heaviside function is used as an activation function. This is
because the dynamics of an excited or active region reduce to the dynamics of the
boundary. We call this regime the Heaviside world. Here, we visit the Heaviside
world and briefly review bump dynamics in the 1D, 1D two-layer, and 2D cases.
We further review the dynamics of forming topological maps by self-organization.
The Heaviside world is useful for studying the learning or self-organization equation
of receptive fields. The stability analysis shows the formation of a continuous map
or the emergence of a block structure responsible for columnar microstructures.
The stability of the Kohonen map is also discussed.

3.1 Introduction

The dynamics of excitations in a neural field, first proposed by Wilson and Cowan
[18], are described by nonlinear partial integro-differential equations. The dynamics
include rich phenomena, but sophisticated mathematical techniques are required for
solving the equations. Amari [3] analyzed dynamical behavior rigorously by using
the Heaviside activation function and showed the existence and stability of a bump
solution as well as a traveling bump solution. The Heaviside activation function,
instead of a general sigmoid function, makes it possible to analyze the dynamics
and to obtain explicit solutions. This framework is called the Heaviside world.

The dynamics of excitation patterns can be reduced to much simpler dynamics
of the boundaries of an excitation region [3] in the Heaviside world. In a one-
dimensional field, the boundaries of a simple excitation pattern consist of two points,
and hence, their dynamics can be described by ordinary differential equations.
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The boundaries consist of a closed curve in the 2D case. The dynamical behavior of
a curve is not so simple but it is still much simpler than the original field equation.
See Coombes, Schmit and Bojak [7] and Bressloff [5] for detailed mathematical
techniques in the 2D case.

The present Chapter will briefly review the results of pattern dynamics in
the Heaviside world. It further demonstrates the dynamics of learning (self-
organization) in a neural field, and it elucidates the mechanism of formation of
a topological map to fit the environmental information. A model for forming a
topological map was proposed by Willshaw and von der Malsburg [16], and it was
analyzed by Takeuchi and Amari [15] (see also Amari [4]). Kohonen [11] proposed
an engineering model for forming a topological map. We show that the Heaviside
world works even in this situation and is applicable to a Kohonen-type map, as was
studied in Kurata [12].

3.2 Dynamics of Excitation in a Homogeneous Neural Field

3.2.1 1D 1-Layer Field

We begin with a simplest case of a 1D neural field X with one layer. Let x be a
position coordinate of the field. The dynamics are described by

�
@u.x; t/

@t
D �u.x; t/C

Z
w
�
x � x0� f �u �x0; t

��
dx0 C s.x; t/: (3.1)

Here, u.x; t/ is the average membrane potential of neurons at a position x at time
t;w .x; x0/ is the synaptic connection weight from a position x0 to x; f .u/ is the
activation function such that z D f .u/ is the output of neurons at x and s.x; t/ is
the external stimuli applied to x at t . A threshold is included in the term of external
stimuli. The Heaviside world assumes that the activation function is the Heaviside
function:

f .u/ D

1; u > 0;
0; u � 0: (3.2)

We further assume that the field is homogeneous and the connections are
symmetric:

w
�
x; x0� D w

�ˇ̌
x � x0 ˇ̌� : (3.3)

First, we shall study the case in which the external stimuli s.x; t/ is a constant.
Given u.x; t/, the active region of X is defined by

A.t/ D fxj u.x; t/ > 0g : (3.4)
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The equation is then rewritten as

�
@u.x; t/

@t
D �uC

Z
A

w
�
x � x0� dx0 C s: (3.5)

It is not easy to solve the equation even in this simplified case. We assume a bump
solution such that u.x; t/ is positive only in an interval Œx1; x2�; that is, the active or
excited region is

A.t/ D Œx1.t/; x2.t/� : (3.6)

Note that the boundary points of A.t/ satisfy

u fxi .t/; tg D 0; i D 1; 2: (3.7)

By differentiating this with respect to t , we get

˛i
dxi .t /

dt
C @u .xi ; t/

@t
D 0; (3.8)

where

˛i D @u .xi ; t/

@x
: (3.9)

Therefore, the dynamics of the boundaries are described by

�
dxi
dt
D � 1

˛i

�Z
A

w
�
xi � x0� dx0 C s

�
(3.10)

Let us define

W.x/ D
Z x

0

w
�
x0� dx0: (3.11)

Thus, we find

Z
A

w
�
xi � x0� dx0 D

Z x2

x1

w
�
xi � x0� dx0 (3.12)

D W .x2 � x1/ ; (3.13)

so that

@u .xi ; t/

@t
D 1

�
fW .x2 � x1/C sg : (3.14)
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The equations of the boundaries have a simple expression:

dxi .t /

dt
D � 1

�˛i
fW .x2 � x1/C sg : (3.15)

Here, ˛1 and ˛2 are the slopes of the waveform u.x; t/ at x1 and x2, and hence,

˛1 > 0; ˛2 < 0: (3.16)

Since ˛i are variables depending on the waveform, (3.15) is not a closed expression
of the boundaries xi .t/. However, the Heaviside world tells us lots of information
on its dynamics.

An equilibrium solution, if it exists, satisfies

W .x2 � x1/C s D 0: (3.17)

Note that the width of the active region is

a.t/ D x2.t/ � x1.t/: (3.18)

The dynamics have a simple form,

da.t/

dt
D 1

�˛
fW.a/C sg (3.19)

where

1

˛
D 1

˛1
� 1

˛2
> 0: (3.20)

The equilibrium solution a satisfies

W.a/C s D 0: (3.21)

Moreover, by considering the variational equation of (3.19), we see that it is stable
when and only when

w.a/ D W 0.a/ < 0: (3.22)

The waveform of a stable bump solution is explicitly obtained from (3.5) as

u.x/ D
Z a

0

w
�
x � x0� dx0 C s D W.x/CW.a � x/C s: (3.23)

Obviously, when u.x/ is a stable bump solution, u.x � c/ is also a stable bump
solution for any constant c. Hence, stable solutions form a one-dimensional set of
solutions fu.x � c/g, which is a line attractor [14].
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We studied the case in which s is constant. When s is not constant but has a
spatial distribution s.x/, a bump moves toward its maximum. Let us assume that an
external stimulus s.x/ is suddenly applied and consider how the stable bump moves.
The velocity of a bump is described by the equation of motion of its center,

1

2

d

dt
.x1 C x2/ � 1

�˛1
fs .x2/ � s .x1/g ; (3.24)

which depends on the intensity of external stimuli at s .x1/ and s .x2/. The tracking
ability of a bump has been analyzed with detail in another solvable model [10, 19],
where the Hermite world is used instead of the Heaviside world.

3.2.2 1D Field with Two Layers

We can easily study the equation of a field with two layers, one excitatory and one
inhibitory. The equations are

�E
@uE.x; t/

@�
D �uE.x; t/C wEE � f ŒuE�
�wEI � f ŒuI �C sE; (3.25)

�I
@uI .x; t/

@t
D �uI .x; t/C wIE � f ŒuE� � wII � f ŒuI �C sI ; (3.26)

where uE.x; t/ and uI .x; t/ are the potentials of excitatory and inhibitory layers,
respectively, and the connection weights are wEE.x/, wEI.x/, wIE.x/ and wII.x/,
depending on the originating layer and terminating layer of excitation and inhibition,
with a convolution operator �, such as

wEE � f ŒuE� D
Z

wEE
�
x � x0� f �uE �x0�� dx0: (3.27)

We can analyze the dynamics of the boundary points of active regions in the
excitatory and inhibitory layers in a similar manner to obtain a bump solution.

We shall first consider a uniform oscillatory solution in the Heaviside world.
The uniform solutions, uE.t/ and uI .t/, do not depend on the position x, so that
the equations are simple ordinary differential equations

�E
duE.t/

dt
D �uE CWEEf .uE/ �WEIf .uI /C sE; (3.28)

�I
duI .t/

dt
D �uI CWIEf .uE/C sI ; (3.29)
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where WEE etc. are, for example,

WEE D
Z 1

�1
WEE.x/ dx: (3.30)

We put WII D 0 for simplicity’s sake. The equations show the population dynamics
of excitatory and inhibitory neuron pools proposed by Amari [1, 2] and Wilson and
Cowan [18] as a model of neural oscillators. The state space is u D .uE; uI /.
When we use the Heaviside world, we have piecewise linear equations, linear in
each quadrant of u, determined by uE ? 0, and uI ? 0.

The equations can be written as

�
du
dt
D �uC Nuk; k D I; II; III; IV (3.31)

in the k-th quadrant, where

NuI D sC
 
WEE �WEI

WIE

!
; I W uE > 0; uI > 0; (3.32)

NuII D sC
 
�WEI

0

!
; II W uE < 0; uI > 0; (3.33)

NuIII D s; III W uE < 0; uI < 0; (3.34)

NuIV D sC
 
WEE

WIE

!
; IV W uE > 0; uI < 0; (3.35)

where

s D
 
sE

sI

!
: (3.36)

In the k-th quadrant, the dynamical flow is linear converging to Nuk , but Nuk
is not necessarily in the k-th quadrant (see Fig. 3.1). The direction of the flow
changes when u.t/ intersects the coordinate axes and enters another quadrant. The
dynamical behaviors depend on the positions of Nuk . They are monostable, bistable,
and oscillatory, as studied in Amari [1,2] and Wilson and Cowan [18]. We show the
existence and stability of an oscillatory solution in the Heaviside world.

Theorem 1. A stable oscillation exists when WEE < WEI for an adequate s such
that the parallelepiped NuI NuII NuIII NuIV encircles the origin.

The existence and stability are clearly shown in Fig. 3.1. In this case Nuk does
not exist in the k-th quadrant and there are no equilibrium states. The oscillatory
solution is hence globally stable.
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Fig. 3.1 Limit cycle ABCD
of oscillation in the
two-layers 1D field

In addition to a stationary bump solution, a moving bump solution exists in this
field, where such a solution does not exist in a one-layer field. By using moving
coordinates, we get

� D x � ct; (3.37)

where c is the velocity of the bump, we have an explicit solution of a moving bump
when certain conditions are satisfied. It was analyzed in Amari [3] so that we will
not describe it here. The existence of a breathing solution shows the richness of the
solutions to these equations. The Heaviside world makes it easier to analyze bump
solutions [8, 9].

3.2.3 2D Field of Neural Excitation

The equation of a one layer 2D field is described as

�
@u.x; t /

@t
D �u.x; t /C

Z
w
�
x � x0� f �u �x0; t

��
dx0 C s; (3.38)

where x D .x1; x2/ is the coordinates of the field and w.x/ is a radially symmetric
connection function. Let A.t/ be an active region in the Heaviside world on which
u.x; t / > 0. Let xA be a point on the boundary of A. It satisfies

u .xA; t/ D 0: (3.39)
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Let us denote the gradient of a waveform by

˛ D @u.x; t /

@x
: (3.40)

Then, by differentiating (3.39), we arrive at an equation which describes the motion
of the boundary of the excited region:

˛ 	 dxA

dt
D �@u .xA; t/

@t
D �1

�

�Z
A

w
�
xA � x0� dx0 C s

�
: (3.41)

The equilibrium solution satisfies

Z
A

w
�
xA � x0� dx0 C s D 0: (3.42)

The equilibrium solution having an active region A is written as

u.x/ D
Z
A

w
�
x � x0� dx0 C s: (3.43)

When w.x/ is a radially symmetric function, the radially symmetric equilibrium
solution of radius a satisfies

u.x/ > 0; jxj < a; (3.44)

u.x/ < 0; jxj > 0: (3.45)

The equilibrium radius a is obtained from

QW .a/C s D 0; (3.46)

where

QW .a/ D
Z 2a

0

2rw.r/ cos�1 r
2a

dr: (3.47)

However, its stability condition is not easy to determine, because the variational
equation for stability has freedom of deformation of A not only in the radial
direction, but also of the shape of the boundary circle. The stability was first
analyzed in Amari, a Japanese book. See Bressloff and Coombes [6] for later
developments. We use polar coordinates .r; �/ to write down the variation of the
excited region. Let us write

u.r; �; t/ D u.r; �/C "v.�; t/; (3.48)
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where u.r; �/ is the equilibrium solution, " is a small constant and v.�; t/ denotes
the shape of the variation. We use the Fourier expansion of v.�; t/. The stability
condition is given by

�n D 1

c

Z 2�

0

w

�
2a

ˇ̌̌
ˇcos

�

2

ˇ̌̌
ˇ
�

cosn�d� � 1 < 0; n D 0; 2; 3; 	 	 	 : (3.49)

where

c D
Z 2�

0

w

�
2a

ˇ̌
ˇ̌cos

�

2

ˇ̌
ˇ̌� cos �d�: (3.50)

We can extend the idea to a two-layer field having rich dynamical phenomena
such as multiple bumps, spiral waves, breathing waves and others. See Chap. 7 in
this book. Lu, Sato, and Amari [13] studied traveling bumps and their collisions in
a 2D field by simulation. However, the analysis is difficult even in the Heaviside
world. See Coombes, Schmidt and Bojak [7] for further developments. Wu and
colleagues [10, 19] use another technique of total inhibition, which uses a Gaussian
approximation of the bump’s shape and its Hermite expansion. This leads us to
another world called the Hermite world.

3.3 Self-Organization of Neural Fields

3.3.1 Field Model of Self-Organization

We shall study the self-organization of a 1D homogeneous neural field X which
receives inputs from another 1D neural field Y . Fields X and Y have position
coordinates x and y, respectively. The input signal to X is assumed to be a
bump solution of Y . The neural field X receives stimuli from a bump signal a.y/
concentrated around a position y, and they induce a bump solution u.x/ of X
centered at x. This establishes a correspondence of the positions y and x of two
fields Y and X (Fig. 3.2). When Y is a retinal field responsible for the external
light stimuli and X is a visual cortex, both being 2D, the correspondence is called a
retinotopic map. The map is generated by self-organization of neural fields.

We assume that a bump of Y centered at y0 is composed of the activities of
neurons at y,

a
�
yIy0� D a �y � y0� ; (3.51)

where a.y/ is a unimodal waveform of a bump solution. The activities a.yIy0/
of Y stimulate neurons of X . The connection weight from the position y of Y
to the position x of X is written as s.x; y/. We also assume that neurons at x
receive an inhibitory input of constant intensity a0 with a synaptic weight s0.x/.
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Fig. 3.2 Self-organization
of field X by receiving
stimuli from field Y

Hence, the total amount of input stimuli given to the neurons at x caused by a .yIy0/
is written as

S
�
x; y0� D

Z
s.x; y/a

�
yIy0� dy � s0.x/a0: (3.52)

The dynamics of excitation in field X is described as follows: Given an input
a .yIy0/, the neurons at x calculate the inputs S .x; y0/ by using (3.52) and u.x; t/
changes subject to the dynamics,

�
@u.x; t/

@t
D �u.x; t/C w � f Œu�C S �x; y0� : (3.53)

The inputs S .x; y0/ depend on the connection weights s.x; y/ and s0.x/. The con-
nection weights are modified in the process of neural activation. This modification
is learning or self-organization. We assume a Hebb type of learning rule: Synaptic
weight s .x; y/ increases in proportion to the input a .yIy0/ when the neuron at x
fires and decays with a small time constant. We also assume that a Hebbian rule
applies to an inhibitory synapse. For neurons at x, the learning rule is written as

� 0 @s .x; y/
@t

D �s .x; y/C cf Œu.x; t/� a.yIy0/; (3.54)

� 0 @s0.x/
@t

D �s0.x/C c0f Œu.x; t/� a0: (3.55)

Here, � 0 is a time constant which is much larger than that of the neural excitation,
and c and c0 are different constants. We also assume that the inhibitory input a0 is
always constant.

A bump excitation of Y randomly appears around the position y0. Let p .y0/ be
the probability density of a bump appearing at y0. A bump a .yIy0/ continues for a
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duration which is sufficiently large compared with � for forming a stable bump in
X , but sufficiently small compared with the time constant � 0 of learning. Hence, we
use the adiabatic approximation and consider the following equation of learning,

� 0 @s.x; y/
@t

D �s.x; y/C cf
�
U
�
x; y0�� a.yIy0/; (3.56)

� 0 @s0.x/
@t

D �s0.x/C c0f
�
U
�
x; y0�� a0; (3.57)

where the current excitation u.x; t/ is replaced by the stationary state U .x; y0/
given rise to by input a .yIy0/,

U
�
x; y0� D

Z
w
�
x � x0� f �U �x0; y0�� dx0 C S �x; y0� : (3.58)

Considering that � 0 is large, before s.x; y/ and s0.x/ change substantially, a number
of bumps a .yIy0/ at various y0 are randomly chosen. Hence, we further use an
averaging approximation for stochastic choices of y0. Let h	i denote the average
over all possible input bumps a .y; y0/;

hf �U �x; y0�� a �yIy0�i D
Z
p
�
y0�f �U �x; y0�� a �yIy0� dy0: (3.59)

Accordingly, we get the fundamental equations of learning,

� 0 @s.x; y/
@t

D �s.x; y/C chf �U �x; y0�� a.yIy0/i; (3.60)

� 0 @s0.x/
@t

D �s0.x/C c0hf �U �x; y0��ia0: (3.61)

We thus have two important field quantities U.x; y0/ and S.x; y0/, both of
which depend on s.x; y/ and s0.x/ and are hence modified by learning. By
differentiating (3.52) and substituting (3.56) and (3.57), we obtain the dynamic
equation describing the change of S.x; y/,

� 0 @S.x; yI t /
@t

D �S.x; yI t /C
Z
k
�
y � y0� f �U �x; y0��p �y0� dy0; (3.62)

where we put

k
�
y � y0� D c

Z
a
�
y00 � y� a �y00 � y0� dy00 � c0a0: (3.63)

This term shows how two stimuli centered at y and y0 overlap. The topology of Y
is represented in it (see Fig. 3.3).
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Fig. 3.3 Shape of k.y/
defined in (3.63)

Equation (3.62) can be written as

� 0 @S .x; y0/
@t

D �S C k ı f ŒU �; (3.64)

where ı is another convolution operator defined by

k ı f ŒU � D
Z
p
�
y0� k �y � y0�f �U �x; y0�� dy0: (3.65)

3.3.2 Dynamics of the Receptive Field

An equilibrium solution U .x; y0/ is determined by (3.58), depending on s .x; y0/
and s0.x/. Let A be a region on X � Y such that

A D f.x; y/ jU.x; y/ > 0g : (3.66)

The receptive field R.x/ of a neuron at x is a region of Y such that

U.x; y/ > 0; y 2 R.x/: (3.67)

That is, neurons at x are excited by an input bump around y. We assume that it is
an interval,

R.x/ D Œr1.x/; r2.x/� ; (3.68)

so that A is bounded by two lines y D r1.x/ and y D r2.x/ (see Fig. 3.4). The size
of the receptive field is

r.x/ D r2.x/ � r1.x/: (3.69)
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plane, which represents
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In contrast, when a bump around y is used, the active region is

A.y/ D Œx1.y/; x2.y/� ; (3.70)

where

x1.y/ D r�1
2 .y/; x2.x/ D r�1

1 .y/: (3.71)

The length of the active region of X is

Nx.y/ D r�1
2 .y/ � r�1

1 .y/: (3.72)

We use the following notations: For an input bump at around y D r1.x/, the excited
region is Œx � l1; x� and for an input bump at around y D r2.x/, the excited region
is Œx; x C l2�. This implies

l1 D x � r�1
2 fr1.x/g ; (3.73)

l2 D r�1
1 fr2.x/g � x: (3.74)

The equilibrium U.x; y/ of (3.58) changes as a result of the change in S.x; yI t /
or s.x; yI t / and s0.xI t /. By differentiating (3.58) and using (3.64), we get

� 0 @U.x; yI t /
@t

D �S C � 0 @
@t

w � f ŒU �C k ı f ŒU � (3.75)

D �U C w � f ŒU �C � 0 @
@t

w � f ŒU �C k ı f ŒU �: (3.76)

The dynamical equation governing changes in the receptive field R.x/ is gotten
by observing the boundary of A, that is r1.x/ and r2.x/. We use
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@U .x; ri ; t /

@t

@ri .x; t/

@t
C @U .x; ri ; t /

@t
D 0 (3.77)

to derive the equations of @ri .x; t/=dt in the Heaviside world.

Theorem 2. The dynamics describing the boundaries of the receptive field is
given by

� 0 .˛1 C ˇ1/ @r1.x; t/
@t

� � 0ˇ1
@r2 .x � l1; t/

@t
D �W .l1/ �K.r/ � s; (3.78)

� 0 .˛2 � ˇ2/ @r2.x; t/
@t

C � 0ˇ2
@r1 .x C l2; t/

@t
D �W .l2/ �K.r/ � s; (3.79)

where li D li .x; t/, r D r.x; t/ and

W.l/ D
Z l

0

w.x/ dx; (3.80)

K.r/ D
Z r

0

k.y/ dy; (3.81)

˛i D @U .x; ri ; t /

@y
; i D 1; 2 (3.82)

ˇ1 D �w .l1/

�
@r2 .x � l1; t/

@x
; (3.83)

ˇ2 D �w .l2/

�
@r1 .x C l2; t/

@x
: (3.84)

Proof. To evaluate @U=@t at y D r1, we first calculateK ıf ŒU � at r1.x/. We easily
have
Z
k
�
r1 � y0� f �U �x; y0�� dy0 D

Z r2

r1

k
�
r1 � y0� dy0 D K .r2 � r1/ ; (3.85)

where we have used K.r/ D K.�r/ and we have assumed that the distribution of
input stimuli of Y is uniform, p .y0/ D 1, by normalizing the length of Y equal to
1. Similarly, we have

Z
w
�
x � x0�f �U �x0; r1

��
dx0 D

Z x

x�l1
w
�
x � x0� D W .l1/ : (3.86)

Hence,

@

@t
w � f ŒU � D w .l1/

@l1

@t
(3.87)
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at y D r1. Therefore,

� 0 @U .x; r1/
@t

D � 0w .l1/
@l1

@t
CW .l1/CK.r/C s: (3.88)

We need to evaluate w .l1/ @l1=@t . By differentiating

r2 .x � l1/ D r1.x/ (3.89)

with respect to t , we get

@r1.x/

@t
D @r2 .x � l1/

@t
� @r2 .x � l1/

@x

@l1.x/

@t
: (3.90)

We substitute @l1=@t obtained from (3.90) in (3.88), and we finally get (3.78).
Calculations at y D r2 yield (3.79).

3.3.3 Equilibrium Solution of Learning

The equilibrium solutions NU and NS of the dynamics of learning are derived by
putting @S=@t D 0 in (3.62). They satisfy the following equations

NU.x; y/ D w � f Œ NU �C NS; (3.91)

NS.x; y/ D k ı f Œ NU �; (3.92)

In order to understand the formation of a topological map from Y to X and its
stability, we consider a simple situation: We eliminate the boundary conditions by
assuming that both Y and X are rings, where we normalize the lengths of the rings
equal to 1, LX D LY D 1.

We then search for an equilibrium solution of (3.78) and (3.79). Since the
equilibrium solution satisfies

W .l1/CK.r/C s D 0; (3.93)

W .l2/CK.r/C s D 0; (3.94)

it is easy to see that

l1.x/ D l2.x/ D l.x/: (3.95)

As can be seen from Fig. 3.4, we get

l.x/ D l fx C l.x/g ; mod 1: (3.96)
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Fig. 3.5 Continuous map
from Y to X

When l.x/ is continuous, it has only a constant solution (see Takeuchi and
Amari [15]),

l.x/ D Nl : (3.97)

This implies

r.x/ D Nr (3.98)

and hence r2.x/ is a shift of r1.x/, r2.x/ D r1.x/C Nr .
The solution

r1.x/ D x C c; (3.99)

r2.x/ D x C c C Nr (3.100)

is an equilibrium for any constant c. This gives a natural correspondence between
Y and X (Fig. 3.5). Now, let us study its stability.

However, first, there is a delicate problem as to whether other equilibrium
solutions exist or not. When Nl is a rational number,

Nl D m

n
; (3.101)

we find that

r1.x/ D x C c C g.x/ (3.102)

r2.x/ D x C c C Nr C g.x/ (3.103)

is also an equilibrium solution, where g.x/ is a periodic function with a period 1=n.
This is a rippled solution, but we may disregard the ripple when n is large.
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3.3.4 Stability of the Equilibrium Solution

We shall study the stability of the simple equilibrium solution (3.99), (3.100) in
order to check if the continuous topological mapping is stable. We put c D 0 and
perturb the solution as

r1.x; t/ D x C "v1.x; t/ (3.104)

r2.x; t/ D x C Nr C "v2.x; t/ (3.105)

where " is a small constant. The variational equation is

� 0.˛ C ˇ/@v1.x; t/
@t

� � 0ˇ
@v2

�
x � Nl ; t�
@t

D ˇ ˚v2 �x � Nl ; t� � v1.x; t/�

� k . Nr/ fv2.x; t/ � v1.x; t/g ; (3.106)

� 0.˛ C ˇ/@v2.x; t/
@t

� � 0ˇ
@v1

�
x C Nl ; t�
@t

D �ˇ ˚v2.x; t/ � v1 �x C Nl ; t��

C k . Nr/ fv2.x; t/ � v1.x; t/g ; (3.107)

where

˛ D @ NU .x; r1.x//
@y

; ˇ D �w
� Nl�
�

dr1.x/

dt
: (3.108)

We expand v1 and v2 in a Fourier series,

v1.x; t/ D
X

V1.n; t/ exp fi2n�xg ; (3.109)

v2.x; t/ D
X

V2.n; t/ exp fi2n�xg : (3.110)

The variational equation then separates for every n, giving ordinary differential
equations for each n D 0; 1; 	 	 	 :

� 0An
d

dt

�
V1.n; t/

V2.n; t/

�
D Bn

�
V2

V2

�
; n D 0; 1; 	 	 	 ; (3.111)

where

An D
�
˛ C ˇ �ˇ Nzn
�ˇzn ˛ C ˇ

�
; Bn D

�
k � ˇ ˇ Nzn � k
ˇzn � k k � ˇ

�
; (3.112)
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Bn D exp
˚
i2n� Nl�. The stability depends on the eigenvalues �:

det j�An � Bnj D 0: (3.113)

We shall omit the detailed derivation, since they are rather technical (see Takeuchi
and Amari [15]).

Theorem 3. The equilibrium solution is stable when and only when

k . Nr/ < 0; w
� Nl� < 0: (3.114)

Roughly speaking, the continuous map is stable when the length of the receptive
field Nr is wider than the length Nl of the active region of the input field, and is unstable
otherwise. (See Fig. 3.6a for the stable and Fig. 3.6b for unstable solutions.) We can
also analyze the stability of a rippled solution, but the result is the same.

The variational analysis does not tell what will happen in the unstable case.
Computer simulations show that both X and Y are divided into discrete blocks,
and there exists a mapping from a block of Y to a block of X (see Fig. 3.7).
The topology of X and Y is preserved in the discretized sense. When an input
bump is in a block of Y , then all the neurons in the corresponding block of X are
excited. This might explain the mechanism behind the formation of microscopic
columnar structures observed in the cerebrum. This mechanism is important when
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Y has more dimensions than X . For example, let us consider the case where Y is a
set of stimuli given to the retina. We assume that a bar with an arbitrary orientation
is presented at any position on the retina. The set of stimuli is three-dimensional,
having two dimensions corresponding to the positions of a bar and one dimension
corresponding to the orientation of the bar. In this case, Y D R2 � S1. Such stimuli
are mapped to the visual cortex X D R2. It is known that X decomposes into
an aggregate of blocks called a column. The position of a bar is mapped to the
position of blocks of X in a discretized manner and keeps the topography. There is
a microstructure inside a block such that the orientation of the bar is continuously
mapped inside a columnar block. This is the wisdom of nature expressed through
evolution. Our theory might explain it.

When p .y0/ is not uniform, some part of Y is stimulated more frequently than
the other part. It is plausible that a frequently stimulated part of Y has a finer
representation occupying a larger part of X . This effect is analyzed in [4].

3.3.5 Kohonen Map

Kohonen [11] proposed a neural mechanism of self-organization, which generates a
topological map from the space of input signals to a neural field. It is an engineering
model simplifying the Willshaw and Malsburg model [17] such that the dynamics of
neural excitation are omitted. This mechanism is applicable to various engineering
problems and is known as Kohonen’s SOM (self-organizing map).

The input signal field Y gives a vector-valued output a.y0/, when position y0 is
activated. In the previous case, this is a bump a .yIy0/ in Y . Here, we regard this
as a vector a .y0/ whose components are a .yIy0/ ; y 2 Y . In our previous case,
Y is 1-dimensional and the activation vector is a .y0/ D a .yIy0/. We regard the
distribution a .yIy0/ over y 2 Y as a vector a.y0/. The output layer X is a neural
field, typically 2-dimensional. A neuron at position x has a connection weight vector
s.x/. When it receives an input signal a .y0/, it calculates the inner product of s.x/

and a .y0/, obtaining

u
�
x; y0� D s.x/ 	 a �y0� D

Z
s.x; y/a

�
yIy0� dy; (3.115)

where we have put s.x/ D s.x; y/. The neurons of X are not recurrently connected
and no dynamics of excitation take place in X in the Kohonen model. Instead,
the activation f Œu.x/� of the neural field is decided by a simple rule stated in
the following. The neuron at position x is said to be the winner when it has the
highest value of u .x; y0/ when a stimulus a .y0/ is applied. The winner neuron Nx
corresponding to input a.y0/ is hence defined by

Nx.a/ D arg max
x

u
�
x; a

�
y0�� : (3.116)
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When the absolute values of vector a and weight s are normalized to 1, the winner
is the neuron whose weight s.x/ is closer to the input pattern vector a.

We then define a neighborhood of a neuron x by using a distance function
d .x; x0/. The neighborhood N.x/ of x is a set of positions x0 given by

N.x/ D ˚x0 ˇ̌d �x; x0� � c � (3.117)

for a constant c. When Nx is the winner for input a, the neurons in the neighborhood
of Nx are excited. Hence, we have

f
�
u
�
x; y0�� D


1; x 2 N . Nx/ ;
0; otherwise:

(3.118)

This is the Heaviside world, although the excited neurons are determined by this
simple rule, not by recurrent dynamics.

The connection weight vector s.x/ of an excited neuron x 2 N . Nx/ changes
according to a Hebb-like rule: The weight vector s.x/ moves toward the input a,
and then, the normalization takes place. Hence, the rule is written as

s.x/! s.x/C "a
js.x/C "aj � f1 � " ja 	 sjg sC "a (3.119)

for small constant ", when x belongs to the neighborhood N f Nx.a/g. The weight
vectors outside the neighborhood do not change.

We use the continuous time version of learning and rewrite the dynamics of s.x/

in the differential equation,

� 0 ds.x/

dt
D �sC "h˚a �y0� � a

�
y0� 	 s.x/� s.x/i: (3.120)

Here, we use the adiabatic assumption such that the time constant � 0 of learning is
sufficiently small compared with the duration in which a randomly chosen stimulus
a .y0/ is applied.

Let us see if a topological map between Y andX is formed stably by the Kohonen
SOM mechanism. K. Kurata analyzed this problem in his doctoral dissertation and
in a Japanese paper [12]. He proved that, when Y and X are one-dimensional,
the continuous topological map y D r.x/ is always neutrally stable. He also
analyzed the case when Y is one-dimensional andX is two-dimensional. Then, self-
organization embeds Y as a curve in X . He showed that there are three possibilities
depending on the sizes of the abscissa and ordinate of X .

Consider the map

Y ! X W x1.y/ D y; (3.121)

x2.y/ D c: (3.122)
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X X Xa b c

Fig. 3.8 Stability of Kohonen map: (a) 1-D Y is stably embedded, (b) unstable and block
structure emerges, (c) unstable and wave emerges

This is an equilibrium solution (Fig. 3.8a). It is stable or unstable, depending on
the parameters. There are two types of instability. In one case, it is unstable in the
vertical direction, so that a wave pattern emerges (see Fig. 3.8c). The second case is
that it is unstable in the horizontal direction, so that the block structure emerges (see
Fig. 3.8b). This is an interesting but regrettably not well known result.

3.4 Conclusions

The study of dynamics of a neural field is currently a ‘hot’ research topic. However,
its mathematical treatment is difficult. When one approximates the activation
function by the Heaviside function, the dynamics can be dramatically simplified
and one can find exact results in some cases. This is the Heaviside world, in which
the dynamics of an active region can be analyzed in terms of the dynamics of its
boundary. The Heaviside world recaptures previous important results including the
formation of a topological (topographic) map in the cortex.

The Heaviside world plays an important role in the analysis of topographic map
formation. We analyzed a one-dimensional mapping, and proved that a topological
map is unstable under a certain condition. In such a case, a block structure or
micro-columnar structure emerges. This analysis may account for the formation of
columnar microstructures in the visual cortex.
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Chapter 4
Spatiotemporal Pattern Formation in Neural
Fields with Linear Adaptation

G. Bard Ermentrout, Stefanos E. Folias, and Zachary P. Kilpatrick

Abstract We study spatiotemporal patterns of activity that emerge in neural fields
in the presence of linear adaptation. Using an amplitude equation approach, we
show that bifurcations from the homogeneous rest state can lead to a wide variety of
stationary and propagating patterns on one- and two-dimensional periodic domains,
particularly in the case of lateral-inhibitory synaptic weights. Other typical solutions
are stationary and traveling localized activity bumps; however, we observe exotic
time-periodic localized patterns as well. Using linear stability analysis that perturbs
about stationary and traveling bump solutions, we study conditions for the activity
to lock to a stationary or traveling external input on both periodic and infinite
one-dimensional spatial domains. Hopf and saddle-node bifurcations can signify
the boundary beyond which stationary or traveling bumps fail to lock to external
inputs. Just beyond a Hopf bifurcation point, activity bumps often begin to oscillate,
becoming breather or slosher solutions.

4.1 Introduction

Neural fields that include local negative feedback have proven very useful in
qualitatively describing the propagation of experimentally observed neural activity
[26, 39]. Disinhibited in vitro cortical slices can support traveling pulses and spiral
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waves [27, 53], suggesting that some process other than inhibition must curtail
large-scale neural excitations. A common candidate for this negative feedback is
spike frequency adaptation, a cellular process that brings neurons back to their
resting voltage after periods of high activity [2, 48]. Often, adaptation is modeled
as an additional subtractive variable in the activity equation of a spatially extended
neural field [26, 38, 39]. Pinto, in his PhD dissertation with Ermentrout, explored
how linear adaptation leads to the formation of traveling pulses [38]. Both singular
perturbation theory and the Heaviside formalism of Amari (see Chap. 3 and [1])
were used to analyze an excitatory network on the infinite spatial domain [38, 39].
At the same time, Hansel and Sompolinsky showed adaptation leads to traveling
pulses (traveling bumps) in a neural field on the ring domain [26]. In the absence
of adaptation, excitatory neural fields generate stable traveling fronts [21, 25].
For weak adaptation, the model still supports fronts which undergo a symmetry
breaking bifurcation, leading to bidirectional front propagation at a critical value
of the adaptation rate [6]. In fact, adaptive neural fields generate a rich variety
of spatiotemporal dynamics like stimulus-induced breathers [7], spiral waves (see
Chap. 5 and [27]), drifting spots (see Chap. 7), multipulse solutions [52], and self-
sustained oscillations [46]. Coombes and Owen have implemented a related model,
employing nonlinear adaptation, that is shown to generate breathers, traveling
bumps, and more exotic solutions [11]. However, it has been shown that great
care must taken when performing stability analysis of such a model [29]. Thus,
we restrict the contents of this chapter to analyzing models with linear adaptation.

We review a variety of results concerning bifurcations that arise in spatially
extended neural fields when an auxiliary variable representing linear adaptation is
included [13, 23, 25, 31]. In particular, we study the dynamics of the system of non-
local integro-differential equations [10, 26, 35, 39]

�
@u.x; t/

@t
D �u.x; t/ � ˇv.x; t/C

Z
D

w.x � y/F.u.y; t//dy C I.x; t/; (4.1a)

1

˛

@v.x; t/

@t
D u.x; t/ � v.x; t/: (4.1b)

The variable u.x; t/ represents the total synaptic input arriving at location x 2 D in
the network at time t . We fix time units by setting � D 1 without loss of generality.
The convolution term represents the effects of recurrent synaptic interactions, and
w.x � y/ D w.y � x/ is a reflection-symmetric, distance-dependent synaptic
weight function encoding the strength of connections between location y and x. The
nonlinearity F is a transfer function that converts the synaptic inputs to an output
firing rate. Local negative feedback v.x; t/ represents the effects of spike frequency
adaptation [2, 26, 39, 48], occurring at rate ˛ with strength ˇ. Finally, I.x; t/
represents an external spatiotemporal input. In Sect. 4.2, we begin by analyzing
bifurcations from the rest state on one- and two-dimensional periodic domains in
the absence of any input (I.x; t/ � 0) with the use of amplitude equations. We
show that a lateral-inhibitory synaptic weight organizes activity of the network into
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a wide variety of stationary and propagating spatiotemporal patterns. In Sect. 4.3,
we study the processing of external inputs on a ring domain (D D .��; �/). Since
adaptation can lead to spontaneous propagation of activity, inputs must move at a
speed that is close to the natural wavespeed of the network to be well tracked by its
activity. Finally, in Sect. 4.4, we study bifurcations of stationary and traveling bumps
in a network on the infinite spatial domain (D D .�1;1/). Both natural and
stimulus-induced bump solutions are analyzed. Depending on whether the synaptic
weight function is purely excitatory or lateral-inhibitory, either spatial mode of a
stimulus-locked bump can destabilize in a Hopf bifurcation, leading to a breather
or a slosher. Conditions for the locking of traveling bumps to moving inputs are
discussed as well.

4.2 Bifurcations from the Homogeneous State

The simplest type of analysis that can be done with continuum neural field models
is to study bifurcations from the homogeneous state. As in [13], we focus on the
one-dimensional ring model, and then make some comments about the dynamics
of systems in two space dimensions with periodic boundary conditions. Here, our
domain is either the ring (D D .��; �/) or the square (D D .��; �/ � .��; �/)
with periodic boundary conditions. With some abuse of notation, x is either a scalar
or a two-dimensional vector. The function w.x/ is periodic in its coordinates and
furthermore, we assume that it is symmetric in one-dimension and isotropic in two-
dimensions. Translation invariance and periodicity assures us that

R
D

w.x�y/dy D
W0: A constant steady state has the form

u.x; t/ D Nu; where .1C ˇ/Nu D W0F.Nu/:

Since F is monotonically increasing with F.�1/ D 0 and F.C1/ D 1, we
are guaranteed at least one root. To simplify the analysis further, we assume that
F.u/ D k.f .u/ � f .0//=f 0.0/ with f .u/ D 1=.1C exp.�r.u � uth/// as in [13].
Note that F.0/ D 0 and F 0.0/ D k which serves as our bifurcation parameter. With
this assumption, Nu D Nv D 0 is the homogeneous rest state.

To study the stability, we linearize, letting u.x; t/ D Nu C q.x; t/ and v.x; t/ D
NuC p.x; y/ so that to linear order in q.x; t/; p.x; t/ we have

@q

@t
D �q.x; t/C k

Z
˝

w.x � y/q.y; t/ dy � ˇp.x; t/ (4.2)

@p

@t
D ˛.�p.x; t/C q.x; t//:

Because w.x/ is translational invariant and the domain is periodic, solutions to the
linearized equations have the form exp.�t/ exp.in 	 x/ where in one-dimension n is
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an integer and in two-dimensions, it is a pair of integers, .n1; n2/: Let m D jnj be
the magnitude of this vector (scalar) and let

W.m/ WD
Z
˝

w.y/e�in�y dy:

(The isotropy of w guarantees that the integral depends only on the magnitude of n.)
We then see that � must satisfy

�

�
�1
�2

�
D
��1C kWm �ˇ

˛ �˛
��

�1
�2

�
; (4.3)

where .�1; �2/T is a constant eigenvector.
There are several cases with which to contend, and we now describe them. The

easiest parameter to vary in this system is the sensitivity, k (This is the slope of F
at the equilibrium point). The trace of this matrix is T .m/ WD �.1C ˛/C kW.m/
and the determinant is D.m/ WD ˛Œ1 C ˇ � kW.m/�: Note that W.0/ D W0 and
W.m/! 0 asm!1: The uniform state is linearly stable if and only if T .m/ < 0

and D.m/ > 0 for all m: If W.m/ < 0, then both stability conditions hold, so,
consider the sets kT

m D .1C ˛/=W.m/ and kD
m D .1C ˇ/=W.m/ which represent

critical values of k where the trace and determinant vanish respectively. We are
interested in the minimum of these sets over all values ofm whereW.m/ > 0: Let n
denote the critical wavenumber at which W.m/ is maximal. It is clear that if ˛ > ˇ
then the determinant vanishes at a lower value of k than the trace does and vice
versa. That is, there is a critical ratio R D ˇ=˛ such that if R > 1, then the trace is
critical (and there is a Hopf bifurcation) while if R < 1, the determinant is critical
(and there is a stationary bifurcation). The ratio R is the product of the strength
and the time constant of the adaptation. If the adaptation is weak and fast, there is
a steady state bifurcation, while if it is large and slow, there is a Hopf bifurcation.
Curtu and Ermentrout [13] studied the special case where R is close to 1. At R D 1,
there is a double zero eigenvalue at the critical wavenumber m and thus a Takens-
Bogdanov bifurcation. For the rest of this section, let m� denote the value of jnj
at which W.m/ is maximal. We also assume that W.m�/ > 0: For one dimension,
n D ˙m� and in two spatial dimensions, at criticality, n D .n1; n2/ where m� Dq
n21 C n22: For concreteness and illustration of the results, we use f .u/ D 1=.1C

exp.�r.u � uth/// with two free parameters that set the shape of f and thus F: We
remark that (i) if uth D 0, then F 00.0/ D 0 and (ii) for a range of uth surrounding
0, F 000.0/ < 0: We also use w.x/ D Aap=2 exp.�ax2/ � Bbp=2 exp.�bx2/ (where
p is the dimension of the domain) and note that W.m/ D �.A exp.�m2=a/ �
B exp.�m2=b//. With A D 5; a D 0:125; B D 4; b D 0:005, this kernel has a
fairly narrow Mexican hat profile.
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Fig. 4.1 Space-time plots of
the solutions to (4.1). (a)
Stationary stripes for
k D 0:24, ˇ D 0, ˛ D 0:1,
uth D 0:05, and r D 0:25;
(b) Traveling waves with
parameters as in (a), but
ˇ D 0:25; k D 0:26; uth D 0:05;
(c) Standing waves with
parameters as in A;B , but
uth D 0:3

4.2.1 One Spatial Dimension

4.2.1.1 Zero Eigenvalue

In the case of R < 1, the bifurcation is at a zero eigenvalue and we expect a spatial
pattern that has the form u.x; t/ D z exp.im�x/ C c.c (here c.c means complex
conjugates) and

zt D z.a.k � kc/ � bjzj2/

where a and b are complicated, but readily computed, functions of w, F 00.0/2, and
F 000.0/: Both a; b are real, a > 0, and for our choice of w and F , we have b > 0:

The non-zero solution to this equation is z D Ae�i� where A2 D a.k � kc/=b
and� is an arbitrary constant corresponding to a phase-shift of the periodic pattern.
The solution exists as long as k � kc (since a; b are positive) and, furthermore,
the solution is stable. Thus as we increase k, we expect to see a spatially periodic
pattern emerge that has the form

u.x/ D
p
a.k � kc/=b cos.m�x C�/CO.k � kc/:

Figure 4.1a shows a simulation of Eq. (4.1) where we have discretized the one-
dimensional ring into 100 units. In this caseW.m/ takes its maximum atm� D 4, so
as expected, we see a stationary pattern consisting of four peaks. In the case where
m� D 1, (which occurs for sufficiently broad inhibition) these spatially periodic
patterns are interpreted as localized activity for tuning in a directionally based neural
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system [26, 54]. This single stationary “bump” can be perturbed and pinned with
external stimuli as we see in subsequent sections of this chapter.

4.2.1.2 Imaginary Eigenvalues

When R > 1 (strong or slow adaptation), then the trace vanishes at a lower critical
k than the determinant. Let m� > 0 be the critical wavenumber and i! be the
imaginary eigenvalue. Then u.x; t/ has the form

u.x; t/ D z.t/ei.!t�m�x/ C w.t/ei.!tCm�x/ C c.c

where

z0 D zŒ.a1 C ia2/.k � kc/ � .b1 C ib2/jzj2 � .c1 C ic2/jwj2� (4.4)

w0 D wŒ.a1 C ia2/.k � kc/ � .b1 C ib2/jwj2 � .c1 C ic2/jzj2�:

These coefficients can be computed for (4.1) (and, indeed, for a variant of the
equations, [13] computes them explicitly) and they depend only on F 00.0/2, F 000.0/,
W.2m/, W.m/, ˛, and ˇ: In particular, with our choice of f .u/ and for uth not
large, b1; c1 > 0: There are three distinct types of nontrivial solutions: .z;w/ 2
f.Z; 0/; .0;Z/; .Y; Y /g, where:

Z D Aei˝t ; Y D Bei�t ;
˝ D .a2 � a1b2=b1/.k � kc/; � D .a2 � a1.b2 C c2/=.b1 C c1//.k � kc/;
A2 D .a1=b1/.k � kc/; B2 D .a1=.b1 C c1//.k � kc/:

Solutions of the form .Z; 0/; .0;Z/ correspond to traveling wavetrains with oppo-
site velocities and those of the form .Y; Y / correspond to standing time-periodic
waves. To see this, we note that the solutions have the form

u.x; t/ D <fzei.!tCm�x/ C wei.!t�m�x/g;

so that for the solution, .Z; 0/, we get

u.x; t/ D A cos..! C˝/t Cm�x/;

while for the .Y; Y / case

u.x; t/ D B cos..! C�/t/ cos.m�x/:

The traveling (standing) waves are stable if and only if c1 > b1 (resp. c1 < b1) and,
importantly, if F 00.0/ is zero or close to zero (that is, uth � 0), then c1 > b1 no
matter what you choose for the other parameters. Thus, for uth small, we expect to
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Fig. 4.2 Three different
cases of critical wavenumbers
in the square lattice. The
critical wavenumbers are
(from out to in),
f.˙1; 0/; .0;˙1/g,
f.˙2; 1/; .˙2;�1/,.˙1; 2/; .˙1;�2/g
and
f.˙3; 4/; .˙3;�4/,.˙4; 3/; .˙4;�3/,
.˙5; 0/; .0;˙5/g

see only stable traveling waves. Figure 4.1b, c shows simulations of (4.1) for two
different choices of uth; near zero, the result is traveling waves, while for uth D 0:3,
standing waves emerge. Choosing the interaction kernel, w.x/, so that m� D 1,
leads to a single traveling pulse or bump of activity which, itself, can be entrained
and perturbed by external stimuli (see the next sections).

4.2.2 Two Spatial Dimensions

While most of the focus in this chapter is on one space dimension, the theory
of pattern formation is much richer in two-dimensions and Eq. (4.1) provides an
excellent example of the variety of patterns. The isotropy of the weight matrix
implies that the eigensolutions to the linear convolution equation (4.2) have the
form exp.in 	 x/: In two dimensions, n is a two-vector of integers. We then obtain
exactly the same formula for the determinant and the trace as in one-dimension,
however, m D jnj in this case so that there are at least two distinct eigenvectors and
their complex conjugates and there are often many more. Figure 4.2 illustrates three
cases where m� D 1;

p
5; 5 corresponding to 4, 8, and 12 different pairs .n1; n2/:

We treat and numerically illustrate several possibilities by discretizing (4.1) on a
50�50 array. Our choice of w.x/ gives a maximum atm� D 2which is the simplest
case.

4.2.2.1 Zero Eigenvalue

The simplest possible case in two dimensions has only four distinct wave
vectors (inner circle in Fig. 4.2). For example, if m� D 2, then n 2
f.2; 0/; .0; 2/; .�2; 0/; .0;�2/g. (Note that in cases where there are only four vec-
tors, the critical waves have either of the two forms: .k; 0/; .0; k/; .�k; 0/; .0;�k/
or .k; k/; .k;�k/; .�k;�k/; .�k; k/.) If we write x D .x1; x2/, then, u.x; t/ has
the form u.x1; x2; t/ D z1 exp.i2x1/C z2 exp.i2x2/C c.c and
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z0
1 D z1.a.k � kc/ � bjz1j2 � cjz2j2/; (4.5)

z0
2 D z2.a.k � kc/ � bjz2j2 � cjz1j2/;

where as in the one-dimensional case, b; c depend on F 00.0/2; F 000.0/: All coeffi-
cients are real and can be computed. They are all positive for our choices of F.u/:
We let zj D Aj ei�j and we then find that

A0
1 D A1.a.k � kc/ � bA21 � cA22/;

A0
2 D A2.a.k � kc/ � bA22 � cA21/:

It is an elementary calculation to show that there are three types of solutions,
.z1; z2/ D f.r1; 0/; .0; r1/; .r2; r2/gwhere r21 D a.k�kc/=b, r22 D a.k�kc/=.bCc/:
For this example, the first two solutions correspond to vertical and horizontal stripes
respectively and the third solution represents a spotted or checkerboard pattern.
Stripes (spots) are stable if and only if b < c (resp. b > c) [16]. As in the
traveling/standing wave case above, if F 00.0/ is zero (uth D 0), then, c > b and
there are only stable stripes [16]. The resulting stationary patterns look identical to
those in Fig. 4.3a, b without the implied motion. (To get stationary patterns, choose,
e.g., ˇ D 0, r D 3, and uth D 0 for stripes or uth D 0:3 for spots.)

This case (of two real amplitude equations) is the simplest case. The criti-
cal wave vector can be more complicated, for example, if m� D p

5, then,
n 2 f.1; 2/; .1;�2/; .2; 1/; .2;�1/; .�1;�2/; .�1; 2/; .�2;�1/; .�2; 1/g for which
there are eight eigenvectors and the solution has the form

u.x; t/ D
4X

jD1
zj .t/e

inj �x C c.c;

where nj D .1; 2/; : : : and zj satisfy the four independent amplitude equations

z0
1 D z1.a.k � kc/ � bjz1j2 � cjz2j2 � d jz3j2 � ejz4j2/;

z0
2 D z2.a.k � kc/ � bjz2j2 � cjz1j2 � d jz4j2 � ejz3j2/;

z0
3 D z3.a.k � kc/ � bjz3j2 � cjz4j2 � d jz1j2 � ejz2j2/;

z0
4 D z4.a.k � kc/ � bjz4j2 � cjz3j2 � d jz2j2 � ejz2j2/:

As in Eqs. (4.5), since a; : : : ; e are all real coefficients, this model can be reduced
to the analysis of a four dimensional real system. Dionne et al. [15] derive and
analyze this case (among many others). In the context of neural fields, Tass [49] and
Ermentrout [17] provide stability conditions for the equilibria, all of which consist
of zj taking on values of some A ¤ 0 or 0. For example, the pure patterns z1 D A,
z2; z3; z4 D 0 are stable if and only if a < fb; c; dg, there are also pairwise mixed
solutions (checkerboards) of the form z1 D z2 D A0, z3 D z4 D 0, etc., and fully
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nonzero solutions, z1 D z2 D z3 D z4 D A00 which are stable if a > fdCc�b; dC
b�c; bCc�dg:We remark that the triplet solutions zj D zk D zl D A000 are never
stable and that if F 00.0/ D 0, then only stripes (one zj , nonzero).

In two spatial dimensions, m� D 1 can correspond to a single bump of activity
which has been used to model hippocampal place cells [28]. For narrower inhibition,
the more complex patterns describe the onset of geometric visual hallucinations
[5, 18, 49, 50]. Simple geometric hallucinations take the form of spirals, pinwheels,
bullseyes, mosaics, and honeycombs [33]. When transformed from the retinocentric
coordinates of the eyeball to the coordinates of the visual cortex, these patterns take
the form of simple geometric planforms such as rolls, hexagons, squares, etc. [45].
Thus, spontaneous bifurcations to patterned activity form a natural model for the
simple visual patterns seen when the visual system is perturbed by hallucinogens,
flicker [43] or other excitation. (See [3] for a comprehensive review.)

4.2.2.2 Imaginary Eigenvalues

The case of imaginary eigenvalues on a square lattice is quite complicated and only
partially analyzed. Tass [50] has studied this case extensively when there are no even
terms in the nonlinear equations (corresponding to ut D 0 in our model). Silber and
Knobloch [47] provide a comprehensive and extremely readable analysis of case
where there are four critical wavenumbers.

Let us first consider the four dimensional case and take as a specific example:
n 2 f.2; 0/; .0; 2/; .�2; 0/; .0;�2/g: In this case, the firing rate has the form:

u.x; t/ D z1e
i2x1Ci!t C z2e

i2x2Ci!t C z3e
�i2x1Ci!t C z4e

�i2x2Ci!t C c.c:

The complex amplitudes zj satisfy normal form equations ([47], equation 5.3):

z0
1 D z1Œa.k � kc/ � bjz1j2 � cN1 � dN2� � eNz3z2z4 (4.6)

z0
2 D z2Œa.k � kc/ � bjz2j2 � cN2 � dN1� � eNz4z1z3

z0
3 D z3Œa.k � kc/ � bjz3j2 � cN1 � dN2� � eNz1z2z4

z0
4 D z4Œa.k � kc/ � bjz4j2 � cN2 � dN1� � eNz2z1z3

where N1 D jz1j2 C jz3j2 and N2 D jz2j2 C jz4j2: Here, a; : : : ; e are all complex
numbers; a depends only on the linearized equation, while b; : : : ; e depend on
F 00.0/2; F 000.0/ and w.x/: For the case of no quadratic nonlinearities (ut D 0),
b D c D d D e: There are many qualitatively different solutions to this system
which correspond to interesting patterns. Silber and Knobloch [47] describe each of
them as well as their conditions for stability. Travelling roll patterns (TR) consist
of either horizontal or vertical traveling waves that are constant along one direction.
They correspond to solutions to Eq. (4.6) where exactly one zj ¤ 0: Standing rolls
correspond to z1 D z3 ¤ 0, z2 D z4 D 0: (Note, the contrary case with z1 D z3 D 0
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a b

c

d

Fig. 4.3 Two-dimensional time-periodic patterns with period T in (4.1) for ˇ D 0:25; ˛ D 0:1:
(a) k D 0:1; r D 3; uth D 0; (b) k D 0:09; r D 5; uth D 0:3; (c) k D 0:085; r D 3; uth D 0; (d)
k D 0:09; r D 3; uth D 0

and z2 D z4 ¤ 0 are also standing rolls.) Traveling squares or spots correspond to
z1 D z2 ¤ 0 and z3 D z3 D 0: Standing squares (a blinking checkerboard pattern)
correspond to z1 D z2 D z3 D z4 ¤ 0: A very interesting pattern that we see is the
alternating roll pattern where horizontal blinking stripes switch to vertical blinking
stripes. These correspond to solutions of the form z1 D �iz2 D z3 D �iz4 ¤ 0.
Figure 4.3 illustrates the results of simulations of Eq. (4.1) on the square doubly
periodic domain in the case where m� D 2: Thus, all the patterns show two spatial
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cycles along the principle directions. In the simulations illustrated in the figure,
we change uth; r which affect the values of F 00.0/; F 000.0/ and thus the values of
the coefficients of the normal form, (4.6). The relative sizes of these coefficients
determine both the amplitude and the stability of the patterns. Figure 4.3a shows
the TR solutions for uth D 0 (which makes F 00.0/ vanish), while panel b shows
a traveling spot pattern. Neither of these patterns can be simultaneously stable.
However, there can be other patterns that stably coexist. Figure 4.3c illustrates
the “alternating roll” pattern in which there is a switch from vertical to horizontal
standing roles. Figure 4.3d shows a pattern that combines a standing roll (alternating
vertical stripes) with a checkerboard pattern in between.

Dawes [14] has partially analyzed the more complicated case in which there
are 8 critical wave vectors, for example m� D p5 in Fig. 4.2. All of the patterns
we described above are also found as solutions to his amplitude equations. In some
specific cases, he finds evidence of chaotic behavior. Thus, even near the bifurcation,
we can expect the possibility of complex spatiotemporal dynamics in models like
present equations. Tass [50] also considers this case, but only when the quadratic
terms (e.g., F 00.0/) are zero. Obviously, there is a great reduction in the complexity
of the patterns and the resulting possibilities are restricted. The m� D 5 case has, to
our knowledge, not yet been analyzed.

4.2.3 Summary of Pattern Formation

On a periodic one-dimensional domain, Eq. (4.1) can undergo a variety of bifurca-
tions from the homogeneous state and these can be reduced via the construction
of normal forms to one or two ordinary differential equations for the complex
amplitudes. These bifurcations are generic in the sense that you can expect them
to happen as you vary a single parameter. If you have the freedom to vary several
parameters, then it is possible to arrange them so that multiple instabilities occur at
the same time. For example [19] looked at the Wilson-Cowan neural field equations
whenW.m/ D W.mC1/with corresponding imaginary eigenvalues (a double Hopf
bifurcation). More recently, [13] studied (4.1) near R D 1:When R D 1, recall that
both the trace and the determinant vanish at the critical wave number and critical
sensitivity k: Thus, there is a Bogdanov-Takens bifurcation. The normal form is
more complicated in this case; however for (4.1), the only solutions that were found
were the stationary periodic patterns, standing waves, and traveling waves.

In two spatial dimensions, the dynamics is considerably richer due the symmetry
of the square allowing for many critical wave vectors to become unstable simulta-
neously. The richness increases with the size of the critical wavenumber m�. As a
ballpark estimate, the critical wavenumber is proportional to the ratio of the domain
size and the spatial scale of the connectivity function w.x/: Thus, for, say, global
inhibition, the critical wavenumber is close to 1 and the possible patterns are very
simple. We remark that by estimating the spatial frequency of visual hallucinations,
it is possible to estimate the characteristic length scale in visual cortex [5].
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4.3 Response to Inputs in the Ring Network

We now consider the effects of linear adaptation in the ring model [13, 26] in the
presence of external inputs. We show that adaptation usually degrades the ability of
the network to track input locations. We consider the domainD D .��; �/ and take
w to be the cosine function [26]

w.x � y/ D cos.x � y/; (4.7)

so w.x � y/ ? 0 when jx � yj 7 �=2. Networks with lateral-inhibitory synaptic
weights like (4.7) are known to sustain stable stationary bumps [1, 4, 8, 26]. Many
of our calculations are demonstrated in the case that the firing rate function f is the
Heaviside step function (see Chaps. 3, 5, 7 and [1, 4, 8, 39]).

F.u/ � H.u � �/ D

1 W x > �;
0 W x < �: (4.8)

We consider both stationary and propagating inputs with the simple functional form

I.x; t/ D I0 cos.x � c0t/; (4.9)

so they are unimodal in x. We study the variety of bifurcations that can arise in the
system (4.1) due to the inclusion of adaptation and inputs.

For vanishing adaptation (ˇ ! 0), we find stable stationary bumps. For
sufficiently strong adaptation, the input-free (I0 D 0) network (4.1) supports
traveling bumps (pulses). The network locks to moving inputs as long as their
speed is sufficiently close to that of naturally arising traveling bumps. Otherwise,
activity periodically slips off of the stimulus or sloshes about the vicinity of the
stimulus location. Previously, Hansel and Sompolinsky [26] studied many of these
results, and recently [31] reinterpreted many of these findings in the context of
hallucinogen-related visual pathologies.

4.3.1 Existence of Stationary Bumps

First, we study existence of stationary bump solutions in the presence of stationary
inputs .I.x; t/ � I.x//. Assuming stationary solutions .u.x; t/; v.x; t// D
.U.x/; V .x// to (4.1) generates the single equation

.1C ˇ/U.x/ D
Z �

��
w.x � y/F.U.y//dy C I.x/: (4.10)
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For a cosine weight kernel (4.7), we can exploit the trigonometric identity

cos.x � y/ D cos y cos x C siny sin x; (4.11)

and consider the cosine input (4.9), which we take to be stationary (c0 D 0). This
suggests looking for even-symmetric solutions

U.x/ D
�
AC I0

1C ˇ
�

cos x; (4.12)

so that the amplitude of (4.12) is specified by the implicit equation

A D 1

1C ˇ
Z �

��
cos y F..AC .1C ˇ/�1I0/ cos y/dy: (4.13)

For a Heaviside firing rate function (4.8), we can simplify the implicit equa-
tion (4.13), using the fact that (4.12) is unimodal and symmetric so that U.x/ > �

for x 2 .�a; a/ for solutions A > 0. First of all, this means that the profile of U.x/
crosses through threshold � at two distinct points [1, 4, 8]

U.˙a/ D ŒAC .1C ˇ/�1I0� cos a D � ) a D cos�1
�

.1C ˇ/�
.1C ˇ/AC I0

�
:

(4.14)

The threshold condition (4.14) converts the integral equation (4.13) to

A D 1

1C ˇ
Z a

�a
cos ydy D 2

1C ˇ

s
1 � .1C ˇ/2�2

..1C ˇ/AC I0/2 ; (4.15)

which can be converted to a quartic equation and solved analytically [30].
In the limit of no input I0 ! 0, the amplitude of the bump is given by the pair of

real roots of (4.15)

A˙ D
p
1C .1C ˇ/� ˙p1 � .1C ˇ/�

1C ˇ ; (4.16)

so there are two bump solutions. As is usually found in lateral inhibitory neural
fields, the wide bump (C) is stable and the narrow bump (�) is unstable in the
limit of vanishing adaptation (ˇ ! 0) [1, 4, 12, 40]. At a critical ˇ, the wide bump
undergoes a drift instability leading to a traveling bump.

4.3.2 Linear Stability of Stationary Bumps

We now compute stability of the bump (4.12) by studying the evolution of small,
smooth, separable perturbations. By plugging u D U.x/C .x/e�t and v D V.x/C
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.x/e�t (where j .x/j  1 and j.x/j  1) into (4.1), Taylor expanding, and
truncating to first order we find the linear system

.�C 1/ .x/ D �ˇ.x/C
Z �

��
w.x � y/F 0.U.y// .y/dy; (4.17)

.�C ˛/.x/ D ˛ .x/: (4.18)

For the cosine weight function (4.7), we apply the identity (4.11) and substi-
tute (4.18) into (4.17) to yield the single equation

Q.�/ .x/ D .�C ˛/.A cos x CB sin x/ (4.19)

where Q.�/ D .�C ˛/.�C 1/C ˛ˇ and

A D
Z �

��
cos xF 0.U.x// .x/dx; B D

Z �

��
sin xF 0.U.x// .x/dx: (4.20)

We can then plug (4.19) into the system of equations (4.20) and simplify to yield

Q.�/A D .�C ˛/
�Z �

��
F 0.U.x//dx � .1C ˇ/2A

.1C ˇ/AC I0
�

A ; (4.21)

Q.�/B D .�C ˛/.1C ˇ/2A
.1C ˇ/AC I0 B; (4.22)

where we have used the fact that integrating (4.13) by parts yields

A D AC .1C ˇ/�1I0
1C ˇ

Z �

��
sin2 x F 0..AC .1C ˇ/�1I0/ cos x/dx;

as well as the fact that the off-diagonal terms vanish, since their integrands are odd.
This means that the eigenvalues determining the linear stability of the bump (4.12)
are of two classes: (a) those of even perturbations so  .x/ D cos x and (b) those of
odd perturbations where  .x/ D sin x. We primarily study eigenvalues associated
with odd perturbations, given by the quadratic equation

�2 C Œ1C ˛ � .1C ˇ/˝��C ˛.1C ˇ/.1 �˝/ D 0; ˝ D .1C ˇ/A
.1C ˇ/AC I0 :

(4.23)

We can use (4.23) to study two bifurcations of stationary bumps in the system (4.1).
First, we show a drift instability arises in the input-free (I0 D 0) network, leading
to a pitchfork bifurcation whose resultant attracting solutions are traveling bumps
[10, 13, 26, 35, 39]. Second, we show that in the input-driven system (I0 > 0), an
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Fig. 4.4 (a) Partition of (I0,˛�1) parameter space into different dynamical behaviors of the bump
solution (4.12) for Heaviside firing rate (4.8). Numerical simulation of the (b) drift instability of
the bump (4.12) in the case of no input (I0 D 0); (c) sloshing oscillatory instability in the case of
input I0 D 0:1; and (d) translation variant propagation in the case of weak input I0 D 0:05. Other
parameters are � D 0:5, ˛ D 0:1, and ˇ D 0:2

oscillatory instability arises where the edges of the “slosh” periodically. This is a
Hopf bifurcation, which also persists for moving inputs (c0 > 0).

In the limit of no input (I0 ! 0), ˝ ! 1, so (4.23) reduces to

�2 C Œ˛ � ˇ�� D 0: (4.24)

There is always a zero eigenvalue, due to the translation symmetry of the input-
free network [1, 40]. Fixing adaptation strength ˇ, we can decrease the rate ˛ from
infinity to find the other eigenvalue crosses zero when ˛ D ˇ. We mark this point in
our partition of parameter space into different dynamical behaviors in Fig. 4.4a. This
non-oscillatory instability results in a traveling bump, indicated by the associated
shift eigenfunction (sin x). Traveling pulses can propagate in either direction, so the
full system (4.1) undergoes a pitchfork bifurcation. We demonstrate the instability
resulting in a traveling bump in Fig. 4.4b.

We could also ensure that instabilities associated with even perturbations (cos x)
of the bump (4.12) do not occur prior to this loss of instability of the odd
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perturbation. For brevity, we omit this calculation. Numerical simulations (as shown
in Fig. 4.4b) verify odd perturbations are the first to destabilize. Therefore, we would
always expect that as ˛ is decreased from infinity, the first instability that arises is
associated with odd perturbations of the bump, leading to a drift instability and thus
a traveling bump solution (see Fig. 4.4).

For nonzero input (I0 > 0), the primary bifurcation of the stable (wide) stationary
bump solution is shown to be oscillatory. To identify the location of this Hopf
bifurcation, we plug the ansatz � D i! into (4.23) to find

�!2 C i Œ.1C ˛/ � .1C ˇ/˝��C ˛.1C ˇ/.1 �˝/ D 0: (4.25)

Equating real and imaginary parts of (4.25), we find a Hopf bifurcation occurs when

˛H D .1C ˇ/˝ � 1; (4.26)

with onset frequency

!H D
p
˛.1C ˇ/.1 �˝/: (4.27)

Since ˝ 2 .0; 1/ when I0 > 0, we know that !H > 0 for all parameter values
we consider. Therefore, there is never an instability with purely real eigenvalues
associated with odd perturbations, in the case of nonzero input. We show the curve
of Hopf bifurcations in (I0,˛�1) parameter space in Fig. 4.4a as well as a simulation
of the resulting oscillatory solution in Fig. 4.4c. Studies of input-driven excitatory
networks reveal it is the even mode that destabilizes into oscillations, yielding
reflection symmetric breathers [22, 23]. Here, due to the lateral inhibitory kernel,
the odd eigenmode destabilizes, leading to sloshing breathers [22, 42]. As in the
case of the drift instability, we should ensure that instabilities associated with even
perturbations do not arise prior to the Hopf bifurcation. We have ensured this for the
calculations of Fig. 4.4 but do not show this explicitly here.

Finally, we note a secondary bifurcation which leads to dynamics that evolves as
a propagating pattern with varying width (see Fig. 4.4d). Essentially, the “sloshing”
bump breaks free from the attraction of the pinning stimulus and begins to
propagate. As it passes over the location of the stimulus, it expands. Such secondary
bifurcations have been observed in adaptive neural fields on infinite spatial domains
too [23]. While we cannot develop a linear theory for this bifurcation, we can
determine the location of this bifurcation numerically.

4.3.3 Existence of Traveling Bumps

Our linear stability analysis of stationary bumps predicts the existence of traveling
bumps for substantially slow and strong adaptation. We can also show that when
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a moving input is introduced, the system tends to lock to it if it has speed
commensurate with that of the natural wave. Converting to a wave coordinate frame
� D x � c0t where we choose the stimulus speed c0, we can study traveling
wave solutions .u.x; t/; v.x; t// D .U.�/; V .�// of (4.1) with the second order
differential equation [23]

�c20U 00.�/C c0.1C ˛/U 0.�/ � ˛.1C ˇ/U.�/ D G.�/ (4.28)

where

G.�/ D
�
c

d

d�
� ˛

��Z �

��
w.� � y/F.U.y//dy C I.� C�I /

�
; (4.29)

and�I specifies the spatial shift between the moving input and the pulse that tracks
it. In the case of a cosine weight kernel (4.7) and input (4.9), we can apply the
identity (4.11)–(4.29) so we may write Eq. (4.28) as

�c20U 00.�/C c0.1C ˛/U 0.�/ � ˛.1C ˇ/U.�/ D C cos � CS sin �: (4.30)

where

C D
Z �

��
cos x

�
c0F

0.U.x//U 0.x/ � ˛F.U.x//� dx � I0.˛ cos�I C c0 sin�I /;

(4.31)

S D
Z �

��
sin x

�
c0F

0.U.x/U 0.x/ � ˛F.U.x///� dx C I0.˛ sin�I � c0 cos�I /:

(4.32)

By treating C and S as constants, it is straightforward to solve the second order
differential equation (4.30) to find

U.�/ D .c20 � ˛ � ˛ˇ/ŒC cos � CS sin ��C c0.1C ˛/ŒC sin � �S cos ��

.c20 � ˛.1C ˇ//2 C c20.1C ˛/2
:

(4.33)

In the case of a Heaviside firing rate function (4.8), we can evaluate the integral
terms of C and S directly. First, we break the translation symmetry of the system
by fixing the threshold crossing points, U.�/ D U.� � �/ D � . This specifies
the input shift parameter �I as well. We also require that the superthreshold region
U.�/ > � when x 2 .� ��;�/ and U.�/ < � otherwise. This yields

C D ˛ sin�C c0.1 � cos�/ � I0.˛ cos�I C c0 sin�I /; (4.34)

S D c0 sin� � ˛.1 � cos�/C I0.˛ sin�I � c0 cos�I /: (4.35)
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Plugging this into (4.33) and imposing threshold conditions, we have the system

X1Œsin� � I0 cos�I � �X2Œ1 � cos� � I0 sin�I �

.c20 � ˛.1C ˇ//2 C c20.1C ˛/2
D �; (4.36)

X1Œsin� � I0 cos.� ��I /�CX2Œ1 � cos� � I0 sin.� ��I /�

.c20 � ˛.1C ˇ//2 C c20.1C ˛/2
D �; (4.37)

where X1 D c20 C ˛2.1C ˇ/ and X2 D c30 C c0˛2 � c0˛ˇ, which we could solve
the numerically (see [31]).

In the limit of no input (I0 ! 0), we can treat c D c0 as an unknown parameter.
By taking the difference of (4.37) and (4.36) in this limit, we see that we can
compute the speed of natural waves by studying solutions of

c3 C c˛2 � c˛ˇ D 0; (4.38)

a cubic equation providing up to three possible speeds for a traveling bump solution.
The trivial c D 0 solution is the limiting case of stationary bump solutions that
we have already studied and is unstable when ˛ < ˇ. In line with our bump
stability predictions, for ˛ � ˇ, we have the two additional solutions c˙ D
˙p˛ˇ � ˛2, which provides a right-moving (C) and left-moving (�) traveling
bump solution. The pulse widths are then given applying the expression (4.38)
into (4.36) and (4.37) and taking their mean to find sin� D .1 C ˛/� . Thus, we
can expect to find four traveling bump solutions, two with each speed, that have
widths �s D � � sin�1Œ�.1 C ˛/� and �u D sin�1Œ�.1C ˛/�. We can find, using
linear stability analysis, that the two traveling bumps associated with the width �s
are stable [35, 39].

4.3.4 Linear Stability of Traveling Bumps

To analyze the linear stability of stimulus-locked traveling bumps (4.33), we study
the evolution of small, smooth, separable perturbations to (U.�/; V .�/). To find this,
we plug the expansions u.x; t/ D U.�/ C  .�/e�t and v.x; t/ D V.�/ C .�/e�t
(where j .�/j  1 and j.�/j  1) and truncate to first order to find the linear
equation [10, 25, 56]

�c0 0.�/C .�C 1/ .�/ D �ˇ.�/C
Z �

��
w.� � y/F 0.U.y// .y/dy; (4.39)

�c00.�/C .�C ˛/.�/ D ˛ .�/: (4.40)

For the cosine weight function (4.7), we can apply the identity (4.11), so that upon
converting the system to a second order differential equation, we

�c20 00 C c.2�C 1C ˛/ 0 � Œ.�C 1/.�C ˛/C ˛ˇ� D A cos � CB sin �;
(4.41)
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where

A D �.�C ˛/
Z �

��
cos �F 0.U.�// .�/d� C c0

Z �

��
sin �F 0.U.�// .�/d�;

(4.42)

B D �c0
Z �

��
cos �F 0.U.�// .�/d� � .�C ˛/

Z �

��
sin �F 0.U.�// .�/d�:

(4.43)

Employing periodic boundary conditions  .��/ D  .�/ and  0.��/ D  0.�/
and treating A and B as constants, it is then straightforward to solve (4.41) to find

 .�/ D P2A �P1B

Dp

cos � C P1A CP2B

Dp

sin �: (4.44)

where P1 D c0.2� C 1 C ˛/, P2 D c20 � Œ.� C 1/.� C ˛/ C ˛ˇ�, and Dp D
P2

1 CP2
2 . We can then use self-consistency to determine the constants A and B,

which implicitly depend upon  itself. In the case that the firing rate function is a
Heaviside (4.8), we can reduce this to a pointwise dependence, so that

A D c0 sin� .� ��/
jU 0.� ��/j C .�C ˛/

�
 .�/

jU 0.�/j C
cos� .� ��/
jU 0.� ��/j

�
; (4.45)

B D c0
�
 .�/

jU 0.�/j C
cos� .� ��/
jU 0.� ��/j

�
� .�C ˛/ sin� .� ��/

jU 0.� ��/j ; (4.46)

and we can write the solution

 .�/ DC1 cos � CS1 sin �

Dp

 .�/

jU 0.�/j C
C2 cos � CS2 sin �

Dp

 .� ��/
jU 0.� ��/j ;

where

C1 DP2.�C ˛/ �P1c0; S1 DP1.�C ˛/CP2c0;

C2 DP1..�C ˛/ sin� � c0 cos�/CP2.c0 sin�C .�C ˛/ cos�/;

S2 DP1..�C ˛/ cos�C c0 sin�/CP2.c0 cos� � .�C ˛/ sin�/:

Applying self consistency, we have a 2 � 2 eigenvalue problem � D Ap� , where

� D
�

 .�/

 .� ��/
�
; Ap D

�
A�� A��

A�� A��

�
; (4.47)

with

A�� D � C1
DpjU 0.�/j ; A�� D � C2

DpjU 0.� ��/j ;
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Fig. 4.5 Sloshing instability of stimulus-locked traveling bumps (4.33) in adaptive neural field
(4.1) with Heaviside firing rate (4.8). (a) Dependence of stimulus locked pulse width� on stimulus
speed c0, calculated using the implicit equations (4.36) and (4.37). (a) Zeros of the Evans function
E .�/ D det.Ap � I /, with (4.47), occur at the crossings of the zero contours of ReE .�/ (black)
and ImE .�/ (grey). Presented here for stimulus speed c0 D 0:042, just beyond the Hopf bifurcation
at cH � 0:046. Breathing instability occurs in numerical simulations for (b) c0 D 0:036 and (c)
c0 D 0:042. (d) When stimulus speed c0 D 0:047 is sufficiently fast, stable traveling bumps lock.
Other parameters are � D 0:5, ˛ D 0:05, ˇ D 0:2, and I0 D 0:1

A�� D S1 sin� � C1 cos�

DpjU 0.�/j ; A�� D S2 sin� � C2 cos�

DpjU 0.� ��/j :

Then, applying the approach of previous stability analyses of traveling waves in
neural fields [10, 25, 56], we examine nontrivial solutions of � D Ap� so that
E .�/ D 0, where E .�/ D det.Ap � I / is called the Evans function of the traveling
bump solution (4.33). Since no other parts of the spectrum contribute to instabilities
in this case, the traveling bump is linearly stable as long as Re � < 0 for all �
such that E .�/ D 0. We can find the zeros of the Evans function by following the
approach of [10, 25] and writing � D � C i! and plotting the zero contours of Re
E .�/ and Im E .�/ in the .�; !/-plane. The Evans function is zero where the lines
intersect.

We present examples of this analysis in Fig. 4.5. As shown, we can use the
implicit equations (4.36) and (4.37) to compute the width of a stimulus-locked
pulse as it depends upon the speed of the input in the case of a Heaviside firing rate
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function (4.8). In parameter regime we show, there are two pulses for each parameter
value, either both are unstable or one is stable. As the speed of stimuli is decreased,
a stable traveling bump undergoes a Hopf bifurcation. For sufficiently fast stimuli, a
stable traveling bump can lock to the stimulus, as shown in Fig. 4.5d. However, for
sufficiently, slow stimuli, the speed of natural traveling bumps of the stimulus free
network is too fast to track the stimuli. Therefore, an oscillatory instability results.
We plot the zeros of the Evans functions associated with this instability in Fig. 4.5a.
The sloshing pulses that result are pictured in Fig. 4.5b, c. Note that, as was shown
in [31], it is possible for pulses to destabilize due to stimuli being too fast. In this
context, such an instability occurs through a saddle-node bifurcation, rather than a
Hopf.

4.4 Activity Bumps on the Infinite Line

We consider neural field (4.1) with a Heaviside firing rate function F.u/ D H.u��/
with firing threshold � where u.x; t/ and v.x; t/ are defined along the infinite
line with u.x; t/; v.x; t/ ! 0 as x ! ˙1. The even-symmetric synaptic weight
function w is assumed to be either excitatory .w.x/ > 0/ or of Mexican hat form
(locally positive, laterally negative) satisfying

R1
�1 w.y/dy < 1. We consider

stationary activity bumps in Sect. 4.4.1 and traveling activity bumps in Sect. 4.4.2
and examine the cases of (i) bumps generated intrinsically by the network with
no input .I.x; t/ D 0/ and (ii) bumps induced by a localized, excitatory input
inhomogeneity .I.x; t/ > 0/ which can be either stationary .I.x// or traveling
.I.x� ct// with constant speed c. The input is assumed to have an even-symmetric,
Gaussian-like profile satisfying I.x/! 0 as x ! ˙1.

4.4.1 Natural and Stimulus-Induced Stationary Activity Bumps

Existence of Stationary Bumps. An equilibrium solution of (4.1) is expressed as
.u.x; t/; v.x; t//T D .Uı.x/; Vı.x//T and satisfies Vı.x/ D Uı.x/ and

.1C ˇ/Uı.x/ D
Z 1

�1
w.x � y/H.Uı.y/ � �/ dy C I.x/: (4.48)

We follow the approach of Amari [1] to use the Heaviside firing rate and make the
ansatz of an even-symmetric stationary bump Uı.x/ that is centered about x D 0,
is superthreshold Uı.x/ > � for x 2 .�a; a/, satisfies Uı.˙ a/ D � , and is
subthreshold otherwise with Uı.x/ ! 0 as x ! ˙1 (see Fig. 4.6). That the
stationary bump is centered about x D 0 is by choice both (i) in the case of no
input (I.x/ D 0) due to translation symmetry of the bump and (ii) in the presence
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a b c

Fig. 4.6 (a) Stationary bump profile Uı.x/ with halfwidth a. Bifurcation curves satisfying (4.50)
and illustrating the dependence of a on the bifurcation parameter Iı are shown in (b) for ˇ < ˛

and in (c) for ˛ < ˇ. Black (gray) denote stability (instability) of the stationary bump. SN denotes
a saddle-node bifurcation andH˚ andH� denote Hopf bifurcations with respect to the sum mode
˝C and difference mode ˝�, respectively. Parameters are Nwe D 1; �e D 1; Nwi D 0:4; �i D 2,
� D 0:3, ˛ D 0:025, ˇ D 1, � D 1:2 (Figure adapted from Folias [22])

of a stationary input (I.x/ ¤ 0) where the stationary bump and the input share the
same center, which is set to be x D 0. The profile Uı.x/ of the stationary bump can
then be expressed as

.1C ˇ/Uı.x/ D
Z a

�a
w.x � y/ dy C I.x/ D

h
W.x C a/ �W.x � a/C I.x/

i
(4.49)

where W.x/ D R x
0

w.y/ dy. The bump halfwidth a is then determined by
requiring (4.49) to satisfy the threshold conditions Uı.˙ a/ D � which, by even
symmetry, result in

W.2a/C I.a/ D .1C ˇ/�: (4.50)

This determines the existence of the stationary bump if all assumptions are satisfied.
Condition (4.50) was solved numerically in Fig. 4.6 where w and I were taken to be

w.x/ D Nwep
��e
e�.x=�e/2 � Nwip

��i
e�.x=�i /2 ; I.x/ D Iı e�.x=�/2 : (4.51)

Existence Results for Stationary Bumps for General w and Gaussian-like I .

CASE I: No Input .I.x/ D 0/. For an excitatory weight function .w.x/ > 0/,
stationary bumps exist and satisfy (4.50) when parameters permit
.0 < � < limx!1W.x//; however, they are always linearly unstable
[22,23,39]. The case of a Mexican hat weight function w is an extension
of the Amari neural field [1] with the existence equation containing
an extra factor due to adaptation .W.2a/ D �.1 C ˇ//; however, the



4 Spatiotemporal Pattern Formation in Neural Fields 141

dynamics of the adaptation variable v additionally governs the stability
of the stationary bump [22]. In particular, if ˛ < ˇ, stationary bumps
are always unstable. Stable bumps in the scalar model of Amari can
extend to this model only for ˛ > ˇ, and a stable bump for ˛ > ˇ

destabilizes as ˛ decreases through ˛ D ˇ leading to a drift instability
[22] that gives rise to traveling bumps.

CASE II: Localized Excitatory Input .I.x/ > 0/. A variety of bifurcation
scenarios can occur [22, 23], and, importantly, stationary bumps can
emerge in a saddle-node bifurcation for strong inputs in parameter
regimes where stationary bumps do not exist for weak or zero input as
shown in Fig. 4.6. When stationary bumps exist for ˛ > ˇ, the stability
of a bump is determined directly by the geometry of the bifurcation
curves [22, 23] (e.g., see Fig. 4.6). As ˛ decreases through ˛ D ˇ, a
Hopf bifurcation point emerges from a saddle-node bifurcation point
(associated with the sum mode ˝C) and destabilizes a segment of a
branch of stable bumps for ˛ < ˇ. Generally, Hopf bifurcations occur
with respect to either of two spatial modes ˝˙ (discussed later), and
their relative positions (denoted by H˚ and H�, respectively, on the
bifurcation curves in Fig. 4.6) can switch depending on parameters [22].

Stability of Stationary Bumps. By setting u.x; t/ D Uı.x; t/ C Q'.x; t/ and
v.x; t/ D Vı.x; t/C Q .x; t/, we study the evolution of small perturbations . Q'; Q /T

in a Taylor expansion of (4.1) about the stationary bump .Uı; Vı/T: To first order in
. Q'; Q /T, the perturbations are governed by the linearization

@t Q' D � Q' � ˇ Q C
Z 1

�1
w.x � y/H 0�Uı.y/ � �

� Q'.y; t/ dy;
1
˛
@t Q D C Q' � Q :

(4.52)

Separating variables, we set Q'.x; t/ D e�t'.x/ and Q .x; t/ D e�t .x/ in (4.52)
where .';  /T 2 C 1

u .R;C
2/ denoting uniformly continuously differentiable vector-

valued functions u W R �! C
2. This leads to the spectral problem for � and .';  /T

M

�
'

 

�
D �

�
'

 

�
; M

�
'

 

�
D

��1 �ˇ
˛ �˛

��
'

 

�
C
�
N '

0

�
; (4.53)

where N '.x/ D R1
�1 w.x � y/H 0.Uı.y/ � �/ '.y/ dy. The essential spectrum

lies in the left-half complex plane and plays no role in instability [22, 23]. To
calculate the point spectrum, define �.�/ D �C1C ˛ˇ

�C˛ and reduce (4.53) to
 .x/ D � ˛

�C˛
�
'.x/ and

�.�/'.x/ D w
�
x � a�

jU 0
ı.Ca/j '.a/ C w

�
x C a�

jU 0
ı.�a/j '.�a/: (4.54)
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Setting x D ˙ a in (4.54) yields a compatibility condition for the values of '.˙a/

	

ı � �.�/ I


�
'.Ca/
'.�a/

�
D 0; 
ı D 1

jU 0
ı.a/j

�
w.0/ w.2a/

w.2a/ w.0/

�
:

Consequently, nontrivial solutions of (4.53) exist when det .
ı � �.�/I/ D 0,
thereby identifying eigenvalues �. The point spectrum comprises two pairs of
eigenvalues �C

˙
, ��

˙
and eigenfunctions vC

˙
; v�

˙
defining two characteristic spatial

modes [22, 23]:
Sum mode: eigenvalues �

C

˙
and eigenfunctions vC

˙
.x/ D ˝C.x/ .�

C

˙
C ˛; ˛

�T
;

�
C

˙
.a/ D � 1

2
$C ˙ 1

2

q
$ 2

C � 4�C ; ˝C.x/ D w.x � a/C w.x C a/;

Difference Mode: eigenvalues �
�

˙
and eigenfunctions v�

˙
.x/ D ˝�.x/.�

�

˙
C˛; ˛�T

,

�
�

˙
.a/ D � 1

2
$� ˙ 1

2

p
$ 2

�
� 4�� ; ˝�.x/ D w.x � a/ � w.x C a/;

where˝C.x/ is even-symmetric,˝�.x/ is odd-symmetric, and $˙; �˙ are given by

$˙.a/ D 1C ˛ � ˝˙.a/
jU 0

ı.a/j ; �˙.a/ D ˛

�
1C ˇ � ˝˙.a/

jU 0
ı.a/j

�
:

Stability Results for Stationary Bumps for General w and Gaussian-like I .

CASE I: No Input .I.x/ D 0/ [22,23,25,41]. Since jU 0ı.a/j D ˝�.a/=.1C ˇ/,
��.a/ D 0 and we can redefine the eigenvalues ��

˙
as ��

C
� 0 and

��
�
D ˇ � ˛. The persistent 0-eigenvalue ��

C
� 0 corresponds to

the translation invariance of the stationary bump and is associated with
an eigenfunction in the difference mode ˝�. The other eigenfunction
in the difference mode (associated with ��

�
) is stable for ˇ < ˛ and

unstable for ˛ < ˇ. Thus, for ˛ < ˇ, a stationary bump is always
linearly unstable. For ˇ < ˛, a stationary bump can be linearly stable
for a Mexican hat weight function (if w.2a/ < 0) but is always unstable
for an excitatory weight function (w.x/ > 0) [22]. For ˇ < ˛, it is not
possible for a stable stationary bump to undergo a Hopf bifurcation and,
as ˇ is increased through ˛, a stable stationary bump undergoes a drift
instability due to eigenvalue ��

�
increasing through 0 [22]. Interestingly,

a multibump solution in (4.1) on a two-dimensional domain is capable
of undergoing a bifurcation to a rotating traveling multibump solution
[37].

CASE II: Localized Excitatory Input .I.x/ > 0/ [7, 22, 23]. The input inhomo-
geneity (I.x/ ¤ 0) breaks translation symmetry and ��

C
¤ 0 gener-

ically. A stationary bump is linearly stable when Re�C
˙
;Re��

˙
< 0

which reduce to the conditions
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˝C.a/

jU 0ı.a/j
< 1Cˇ if ˛ > ˇ;

˝˙.a/

jU 0ı.a/j
< 1C˛ if ˛ < ˇ:

For any stationary bump Uı.x/, (4.49) implies .1 C ˇ/jU 0ı.a/j D
w.0/�w.2a/CjI 0.a/j. Consequently, the stability conditions translate,
in terms of the gradient jI 0.a/j, to

˛ > ˇ W ˇ̌
I 0.a/

ˇ̌
> DSN .a/ � 2w.2a/;

˛ < ˇ W ˇ̌
I 0.a/

ˇ̌
> DH.a/ �

( �ˇ�˛
1C˛

�
˝C.a/C 2w.2a/; w.2a/ � 0;�ˇ�˛

1C˛
�
˝�.a/; w.2a/ < 0.

jI 0.a/j D DSN .a/ denotes a saddle-note bifurcation point and jI 0.a/j D
DH.a/ denotes a Hopf bifurcation where a pair of complex eigenvalues
associated with one of the two spatial modes ˝˙ crosses into the
right-half plane. If w.2a/ > 0 at the Hopf bifurcation point, the sum
mode ˝C destabilizes and gives rise to a breather—a time-periodic,
localized bump-like solution that expands and contracts. If w.2a/ < 0

at the Hopf bifurcation point, the difference mode ˝� destabilizes and
gives rise to a slosher—a time-periodic localized solution that instead
sloshes side-to-side as shown in Fig. 4.7. Sloshers were also found to
occur in [26]. Nonlinear analysis of the Hopf bifurcation reveals that,
to first order, the breather and slosher are time-periodic modulations of
the stationary bump Uı.x/ based upon the even and odd geometry of
the sum and difference modes, respectively [22]. The bifurcation can
be super/subcritical, which can be determined from the normal form
or amplitude equation derived in [22]. Stimulus-induced breathers can
undergo further transitions, e.g., period doubling, and can also exhibit
mode-locking between breathing and emission of traveling bumps
(when supported by the network) [23, 25]. Alternatively, stationary and
breathing fronts occur in the case of step function input inhomogeneities
I.x/ [6, 7]. Hopf bifurcation of radially symmetric stationary bumps
extends to (4.1) on two-dimensional domains, leading to a variety
of localized time-periodic solutions including nonradially symmetric
oscillatory structures [23, 24].

4.4.2 Natural and Stimulus-Locked Traveling Activity Bumps

Existence of Traveling Bumps. We simultaneously consider the two cases of
natural traveling bumps .I.x; t/ D 0/ and stimulus-locked traveling bumps which
are locked to a stimulus I.x; t/ D I.x�ct/ traveling with constant speed c. Natural
traveling bumps in neural field (4.1) on the infinite line D D .�1;1/ were first
considered in [38, 39] and can occur in the absence of an input or in a region of the
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Fig. 4.7 Destabilization of spatial modes ˝C.x/ and ˝�.x/, as the bifurcation parameter Iı

is varied through a Hopf bifurcation, can give rise to a stable breather or slosher, respectively,
depending on the relative position of the bifurcation points for each spatial mode (e.g., H˚ and
H�, Fig. 4.6c). (a) a plot of u.x; t/ exhibiting a breather arising from destabilization of the sum
mode˝C.x/ for Iı D 1:9; Nwi D 0; ˇ D 2:75; ˛ D 0:1; � D 0:375. (b) a plot of u.x; t/ exhibiting
a slosher arising from destabilization of the difference mode ˝�.x/ for Iı D 1:5; Nwi D 0:4; �i D
2; ˇ D 2:6; ˛ D 0:01; � D 0:35. Common parameters: � D 1:2; Nwe D 1; �e D 1

neural medium where an input is effectively zero [23, 25]. An important distinction
between the two cases is that the natural traveling bump in the absence of the input is
translationally invariant and we have stability with respect to a family of translates,
whereas in the stimulus-locked case there is a fixed position of the bump relative to
the input.

Assume u.x; t/ D U.x � ct/ and v.x; t/ D V.x � ct/ in (4.1) and, in traveling
wave coordinates � D x � ct, make the assumption that the activity U.�/ is
superthreshold U.�/ > � for � 2 .�1; �2/, satisfies U.�1;2/ D � , and is substhreshold
otherwise with U.�/ ! 0 as � ! ˙1. Consequently, the profile of the bump
satisfies

�c U� D �U � ˇV C
Z 1

�1
w.� � �/H.U.�/ � �/ d�C I.�/;

� c
˛
V� D CU � V:

(4.55)

Variation of parameters [25, 55] can be used to solve (4.55) to construct the profile
.Uc; Vc/

T of the traveling bump which can be expressed as [25]

Uc.�/ D .1 � ��/MC.�/ � .1 � �C/M�.�/

Vc.�/ D �˛
�
MC.�/ � M�.�/

�
:

where m.�/ D W.� � �1/ �W.� � �2/C I.�/,

M˙.�/ D 1

c.�C���/

Z 1

�

e
�

˙
c .���/m.�/ d�; �˙ D 1

2

�
1C˛˙

p
.1�˛/2 �4˛ˇ

�
;

and 0 < Re�� � Re�C. Since m.�/ is dependent upon �1; �2, the threshold
conditions Uc.�i / D � , where i D 1; 2 and �1 < �2, determine the position of
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the two threshold crossings of the bump relative to the position of the input I.�/.
This results in consistency conditions for the existence of a stimulus-locked traveling
bump:

� D .1 � ��/MC.�1/ � .1 � �C/M�.�1/;

� D .1 � ��/MC.�2/ � .1 � �C/M�.�2/:

These determine the existence of a traveling bump (provided the profile satisfies the
assumed threshold conditions) and also include the case of natural waves (Iı D 0)
with the difference being that the conditions instead determine the width a D �2��1
of any translate of the bump and its wave speed c which is selected by the network.
Note that existence equations for the traveling bump in (4.55) can also be derived
using a second order ODE formulation [23, 39] or an integral formulation [9].

Existence Conditions for a Positive, Exponential w and Gaussian I . For explicit
calculations in this section, w and I are taken to be

w.x/ D Nwe
2�e
e�jxj=�e ; I.x � ct/ D Iı e�..x�ct/=�/2 : (4.56)

CASE I: Natural Traveling Bump .I.�/ D 0/ with Speed c [9, 23, 25, 39, 41].
In the absence of an input, translation invariance of the bump allows
the simplification .�1; �2/ D .0; a/ where the wave speed c and bump
width a are naturally selected by the network according to the following
threshold conditions [25]

� D JC.�a/; � D K.�a/; (4.57)

where K.�/ D J�.�/ �HC.�/CH�.�/, and, for w given in (4.56),

J˙.�/ D
.˛˙ c/

�
1 � e��

2.c˙�C/.c˙��/
; H˙.�/ D

c2.1 � ��/
�
1 � e �˙

c �
�

�˙.c2 � �2

˙
/.�C���/

:

(4.58)

Note that .c ˙ �C/.c ˙ ��/ D c2 ˙ c.1C ˛/C ˛.1C ˇ/: Existence
equations (4.57) were solved numerically in Fig. 4.8b indicating two
branches of traveling bumps for small ˛. The wide, faster bump is found
to be stable and the narrow, slower bump is unstable.
Detailed analyses of the existence of natural traveling bumps can be
found in [41, 52], including the case where the homogeneous state has
complex eigenvalues [52]. A singular perturbation construction for the
pulse was carried out for smooth firing rate functions F in [39]. For
moderate values of ˇ traveling fronts occur in (4.1) and were shown to
undergo a front bifurcation in the form of a cusp bifurcation with respect
to the wave speed of the front [6].
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s
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a b c

Fig. 4.8 (a) Traveling bump profile. (b) Bifurcation curves for natural traveling bumps (Iı D 0)
in (4.1) in the (˛; a)-plane and (˛; c)-plane. The stable branch (black) of wide, fast bumps and the
unstable branch (gray) of narrow, slow bumps annihilate in a saddle-node bifurcation at a critical
value ˛c � 0.341. (c) Regions of existence (white) of the stimulus-locked traveling bumps in the
(c, Iı)-plane for fixed � D 1; ˛ D 0:03. The left and right regions form tongues that issue from
the unstable cu and stable cs natural traveling bumps, respectively. The curve of Hopf bifurcations
within the left tongue is shown in gray, above which the bump is stable (s) and below which it is
unstable (u). Stable traveling breathers bifurcate from the left branch (solid gray) Hopf curve, and
stationary bumps correspond to the intersection of the tongue and the line c = 0. When bumps and
breathers are unstable or do not exist, there is mode-locking between breathing and the emission of
natural traveling bumps. Parameters in (b) and (c): � = 0.3, ˇ = 2.5, Nwe D �e D 1; Nwi D 0 (Figure
adapted from Folias and Bressloff [25])

CASE II: Stimulus-Locked Traveling Bump .I.�/ ¤ 0/ with Speed c [25]. The
wave and stimulus speeds c are identical, and the threshold conditions
for .�1; �2/ are [25]

� D K.�1 � �2/ C TC.�1/ � T�.�1/;

� D JC.�1 � �2/ C TC.�2/ � T�.�2/;
(4.59)

where K; JC are given in (4.58) and T˙ arises from the input and is
given by

T˙.�/ D
p
� �Iı
2 c

�
1 � ��

�C � ��

�
exp

	�˙�

c
C
h�˙�

2c

i2 

erfc

	 �
�
C �˙�

2c



;

with erfc.z/ denoting the complementary error function. Equa-
tion (4.59) can be solved numerically to determine the regions of
existence of stimulus-locked traveling bumps as both the speed c

and amplitude Iı are varied (assuming Uc.�/ satisfies the threshold
assumptions). This allows us to connect the stationary bumps to natural
traveling bumps via stimulus-locked traveling bumps as shown in
Fig. 4.8. This analysis for stimulus-locked fronts was carried out in [6]
and an extension of stimulus-locked bumps for a general smooth firing
rate function F was studied in [20].
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Stability of Traveling Bumps. By setting u D Uc C Q' and v D Vc C Q , we study
the evolution of small perturbations . Q'; Q /T in the linearization of (4.1) about the
traveling bump .Uc; Vc/

T which, in traveling wave coordinates, are governed by

@t Q' D c@� Q' � Q' � ˇ Q C
Z 1

�1
w.� � �/H 0.Uc.�/ � �/ Q'.�; t/d�;

@t Q D c@� Q C ˛ Q' � ˛ Q :
(4.60)

Separating variables by setting Q'.�; t/ D e�t'.�/ and Q .�; t/ D e�t .�/ in (4.60),
where .';  /T 2 C 1

u .R;C
2/, leads to the spectral problem for � and .';  /T

.LCN/

�
'

 

�
D �

�
'

 

�
(4.61)

where

L D c
@

@�
�
�
1 ˇ

�˛ ˛

�
; N

�
'

 

�
D
 
1

0

!�
w.� � �1/

jU 0
c .�1/j '.�1/C w.� � �2/

jU 0
c .�2/j '.�2/

�
:

The essential spectrum lies within the set D D fz W Re z 2 Œ�Re�C;�Re���g,
where Re�˙ > 0, inducing no instability [25, 41, 55]. Stability is then determined
by elements of the point spectrum that lie in the region R D fz W Re z > �Re��g
which can be calculated using an Evans function. In particular, we determine a
condition for .L C N � �I/ to have a bounded inverse. The Evans function E.�/

subsequently arises from the condition that .L C N � �I/ is not invertible and
.LC N � �I/ D 0 has nontrivial solutions. We set u D .';  /T and use variation
of parameters [25,55] to construct a bounded inverse for .LCN��I/ based on the
integral kernel

M.�; �; �/ D 1
cˇ.�C���/

h
ΦC.�/

ˇ̌
Φ�.�/

ih
ΨC.�/

ˇ̌
Ψ�.�/

iT

(4.62)

where ŒAŠB� denotes the matrix with column vectors A and B, respectively, and

Φ˙.�/ D
�

ˇ

�˙�1

�
e

�
�C�

˙
c

�
� ; Ψ˙.�/ D ˙

�
1���

ˇ

�
e�
�
�C�

˙
c

�
� :

For Re .�/ > ���, we can express .LCN � �I/u D �f, where f D .f1; f2/T, as

u.�/ �
Z 1

�

M.�; �; �/Nu.�/ d� D
Z 1

�

M.�; �; �/f.�/ d�: (4.63)
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From (4.63),  is calculated in terms of '.�1/, '.�2/, F2, and �,' are determined by

'.�/ �
1.�; �/'.�1/ �
2.�; �/'.�2/ D F1.�/ (4.64)

where M 11 denotes the .1;1/ entry of M in (4.62) and i D 1; 2 in the expression below


i.�; �/ D
Z 1

�

M 11.�; �; �/
w.� � �i /
jU 0

c
.�i /j d�;

 
F1.�/

F2.�/

!
D
Z 1

�

M.�; �; �/ f.�/ d�:

By the Hölder inequality, 
i and F1;2 are bounded for all � 2 R and f 2 C 0
u .R;C

2/.
A compatibility condition that determines the values of '.�1/ and '.�2/ is produced
by substituting � D �1 and � D �2 into (4.64) to obtain the matrix equation

�
I �
.�/

��
'.�1/

'.�2/

�
D
�
F1.�1/

F1.�2/

�
; 
.�/ D

"

1.�; �1/ 
2.�; �1/


1.�; �2/ 
2.�; �2/

#

which has a unique solution if and only if det.I�
.�// ¤ 0, resulting in a bounded
inverse .L C N � �I/�1 defined on all of C 0

u .R;C
2/. Conversely, we cannot invert

the operator for � such that det.I�
.�// D 0; in which case .LCN��/u D 0 has
nontrivial solutions corresponding to eigenvalues � and eigenfunctions .';  /T in
the point spectrum. Thus, for Re .�/ > ���, we can express the Evans function as

E.�/ D det
�
I �
.�/�; Re .�/ > ���; (4.65)

which has eigenvalues � given by its zero set.

Evans Function for an Exponential Weight w and Gaussian-like Input I . The
following gives an explicit construction of the Evans function for natural .Iı D 0/

and stimulus-locked .Iı > 0/ traveling bumps in (4.1) with a Heaviside firing rate
function, exponential weight distribution and Gaussian input given in (4.56). For
natural traveling bumps (Iı D 0), by translation invariance we set .�1; �2/ D .0; a/.

For Re .�/ > ���, the Evans function E.�/ is given by [25]

E.�/ D
�
1 � �C.�/

jU 0
c
.�1/j

��
1 � �C.�/

jU 0
c
.�2/j

�
� �C.�/�.�; �1 � �2/

jU 0
c
.�1/U 0

c
.�2/

ˇ̌ ;

where

�˙.�/ D .1 � ��/c

.�C���/.c2 � .�C �˙/2/
; �˙.�/ D �C ˛ ˙ c

2.�C �C ˙ c/.�C �� ˙ c/ ;

�.�; �/ D ��.�/e
2� C �C.�/ e

h
�C�CCc

c

i
� � ��.�/ e

h
�C��Cc

c

i
�
:
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Since the zero set of the Evans function E.�/ comprises solutions of a transcendental
equation, the eigenvalues � can be determined numerically by finding the intersec-
tion points of the zero sets of the real and imaginary parts of the Evans function
which was used to determined the stability results in Fig. 4.8. Hopf bifurcations,
identified by complex conjugate eigenvalues crossing the imaginary axis, can give
rise to traveling breathers or mode-locking between breathing and the emission of
natural traveling bumps [25].

For various treatments of the stability of natural traveling bumps and Evans
functions in (4.1) see [4, 10, 25, 41, 44, 55], and a comparison between different
approaches is found in [44]. Zhang developed the Evans function and analyzed the
stability of traveling bumps in the singularly perturbed case 0 < ˛  1 [55].
Finally, on one-dimensional domains, traveling multibump waves were studied in
[52], and traveling waves have been extended to the case of inhomogeneous synaptic
coupling in [32] and asymmetric coupling [51]. On two-dimensional domains,
circular waves/target patterns [23], spiral waves [34, 52], traveling and rotating
multibumps [37], and the collision of traveling bumps [36] have also been examined.
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Chapter 5
PDE Methods for Two-Dimensional
Neural Fields

Carlo R. Laing

Abstract We consider neural field models in both one and two spatial dimensions
and show how for some coupling functions they can be transformed into equivalent
partial differential equations (PDEs). In one dimension we find snaking families of
spatially-localised solutions, very similar to those found in reversible fourth-order
ordinary differential equations. In two dimensions we analyse spatially-localised
bump and ring solutions and show how they can be unstable with respect to
perturbations which break rotational symmetry, thus leading to the formation of
complex patterns. Finally, we consider spiral waves in a system with purely positive
coupling and a second slow variable. These waves are solutions of a PDE in two
spatial dimensions, and by numerically following these solutions as parameters are
varied, we can determine regions of parameter space in which stable spiral waves
exist.

5.1 Introduction

Neural field models are generally considered to date back to the 1970s [1, 41],
although several earlier papers consider similar equations [4, 25]. These types of
equations were originally formulated as models for the dynamics of macroscopic
activity patterns in the cortex, on a much larger spatial scale than that of a single
neuron. They have been used to model phenomena such as short-term memory [36],
the head direction system [43], visual hallucinations [19,20], and EEG rhythms [7].

C.R. Laing (�)
Institute of Natural and Mathematical Sciences, Massey University, Private Bag 102-904 NSMC,
Auckland, New Zealand
e-mail: c.r.laing@massey.ac.nz

S. Coombes et al. (eds.), Neural Fields, DOI 10.1007/978-3-642-54593-1__5,
© Springer-Verlag Berlin Heidelberg 2014

153

mailto:c.r.laing@massey.ac.nz


154 C.R. Laing

Perhaps the simplest formulation of such a model in one spatial dimension is

@u.x; t/

@t
D �u.x; t/C

Z 1

�1
w.x � y/f .u.y; t//dy (5.1)

where

• w is symmetric, i.e. w.�x/ D w.x/,
• limx!1 w.x/ D 0,
•
R1

�1 w.x/dx <1,
• w.x/ is continuous,

and f is a non-decreasing function with limu!�1 f .u/ D 0 and limu!1 f .u/ D
1 [12, 36]. The physical interpretation of this type of model is that u.x; t/ is
the average voltage of a large group of neurons at position x 2 R and time
t , and f .u.x; t// is their firing rate, normalised to have a maximum of 1. The
function w.x/ describes how neurons a distance x apart affect one another. Typical
forms of this function are purely positive [6], “Mexican hat” [19, 26] (positive for
small x and negative for large x) and decaying oscillatory [18, 36]. To find the
influence of neurons at position y on those at position x we evaluate f .u.y; t// and
weight it by w.x � y/. The influence of all neurons is thus the integral over y of
w.x � y/f .u.y; t//. In the absence of inputs from other parts of the network, u
decays exponentially to a steady state, which we define to be zero. Equation (5.1) is
a nonlocal differential equation, with the nonlocal term arising from the biological
reality that we are modelling. Typically, researchers are interested in either “bump”
solutions of (5.1), for which f .u.x// > 0 only on a finite number of finite, disjoint
intervals, or front solutions which connect a region of high activity to one of zero
activity [12] (see Chap. 7). Note that this type of model is invariant with respect
to spatial translations, which is reflected in the fact that w appears as a function of
relative position only (i.e. x � y), not the actual values of x and y.

The function f is normally thought of as a sigmoid (although other functions
are sometimes considered [26]), and in the limit of infinite steepness it becomes
the Heaviside step function [12, 36]. In this case stationary solutions are easily
constructed since to evaluate the integral in (5.1) we just integrate w.x � y/ over
the interval(s) of y where f .u.y; t// D 1. The stability of these solutions can be
determined by linearising (5.1) about them and using the fact that the derivative of
the Heaviside function is the Dirac delta function [6, 40].

When f is not a Heaviside, constructing stationary solutions becomes more
difficult and we generally have to do so numerically. A stationary solution of (5.1)
satisfies

u.x/ D
Z 1

�1
w.x � y/f .u.y//dy: (5.2)

In all but Sect. 5.4 of this chapter we consider only spatially-localised solutions,
i.e. ones for which u and all of its relevant spatial derivatives decay to zero as
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jxj ! 1. Generally speaking, integral equations such as (5.2) are not studied in
as much detail as differential equations. As a result more methods for analysis—
and software packages—exist for the numerical solution of differential equations,
as opposed to integral equations. For these reasons we consider rewriting (5.2) as a
differential equation for the function u.x/. The key to doing so is to recognise that
the integral in (5.2) is a convolution. This observation provides several equivalent
ways of converting (5.2) into a differential equation.

The first method involves recalling that the Fourier transform of the convolution
of two functions is the product of their Fourier transforms. Thus, denoting by
F Œu�.k/ the Fourier transform of u.x/, where k is the transform variable, Fourier
transforming (5.2) gives

F Œu�.k/ D F Œw�.k/ � F Œf .u/�.k/ (5.3)

where “�” indicates normal multiplication. Suppose that the Fourier transform of w
was a rational function of k2, i.e.

F Œw�.k/ D P.k2/

Q.k2/
(5.4)

whereP andQ are polynomials. Multiplying both sides of (5.3) byQ.k2/we obtain

Q.k2/ � F Œu�.k/ D P.k2/ � F Œf .u/�.k/ (5.5)

Recalling that if the Fourier transform of u.x/ is F Œu�.k/, then the Fourier transform
of u00.x/ is �k2F Œu�.k/, the Fourier transform of u0000.x/ is k4F Œu�.k/ and so on,
where the primes indicate spatial derivatives, taking the inverse Fourier transform
of (5.5) gives

D1u.x/ D D2f .u.x// (5.6)

where D1 and D2 are linear differential operators involving only even derivatives
associated with Q and P respectively [32]. As an example, consider the decaying
oscillatory coupling function

w.x/ D e�bjxj.b sin jxj C cos x/ (5.7)

where b is a parameter (plotted in Fig. 5.1 (left) for b D 0:5), which has the Fourier
transform

4b.b2 C 1/
k4 C 2.b2 � 1/k2 C .b2 C 1/2 : (5.8)
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Fig. 5.1 Left: w.x/ given by (5.7) when b D 0:5. Right: f .u/ given by (5.21) for 	 D 0:1; h D 1

For this example D2 is just the constant 4b.b2 C 1/ and

D1 D d4

dx4
� 2.b2 � 1/ d

2

dx2
C .b2 C 1/2 (5.9)

and thus (for this choice of w) Eq. (5.2) can be written

d4u

dx4
� 2.b2 � 1/d

2u

dx2
C .b2 C 1/2u D 4b.b2 C 1/f .u.x//: (5.10)

Our decision to consider only spatially-localised solutions validates the use of
Fourier transforms and gives the boundary conditions for (5.10), namely

lim
x!˙1.u; u

0; u00; u000/ D .0; 0; 0; 0/: (5.11)

The other method for converting (5.2) into a differential equation is to recall
that the solution of an inhomogeneous linear differential equation can be formally
written as the convolution of the Green’s function of the linear differential operator
together with the appropriate boundary conditions, and the function on the right
hand side (RHS) of the differential equation. Thus if w was such a Green’s function,
we could recognise (5.2) as being the solution of a linear differential equation with
f .u/ as its RHS.

Using the example above one can show that the Green’s function of the
operator (5.9) with boundary conditions (5.11), i.e. the solution of

d4w

dx4
� 2.b2 � 1/d

2w

dx2
C .b2 C 1/2w D ı.x/ (5.12)

satisfying (5.11), where ı is the Dirac delta function, is

w.x/ D e�bjxj.b sin jxj C cos x/

4b.b2 C 1/ (5.13)



5 PDE Methods for Two-Dimensional Neural Fields 157

and thus the solution of (5.10)–(5.11) is (5.2). This second method, of recognising
that the coupling function w is the Green’s function of a linear differential operator,
is perhaps less easy to generalise, so we concentrate mostly on the first method in
this chapter. An important point to note is that the Fourier transform method applies
equally well to (5.1), i.e. the full time-dependent problem. Using the function (5.7)
and keeping the time derivative one can convert (5.1) to

�
@4

@x4
� 2.b2 � 1/ @

2

@x2
C .b2 C 1/2

��
u.x; t/C @u.x; t/

@t

�
D 4b.b2C1/f .u.x; t//

(5.14)

Clearly stationary solutions of (5.14) satisfy (5.10), but keeping the time dependence
in (5.14) enables us to determine the stability of these stationary solutions via
linearisation about them.

Note that the Fourier transform of .1=2/e�jxj is 1=.1 C k2/, and thus for this
coupling function (5.2) is equivalent to

�
1 � @2

@x2

�
u D f .u/ (5.15)

Also, the Fourier transform of the “wizard hat” w.x/ D .1=4/.1 � jxj/e�jxj is
k2=.1C k2/2, giving the differential equation [12]

�
1 � @2

@x2

�2
u D � @2

@x2
f .u/ (5.16)

and thus a variety of commonly used connectivity functions are amenable to this
type of transformation. (See also [26] for another example.)

The model (5.1) assumes that information about activity at position y propagates
instantaneously to position x, but a more realistic model could include a distance-
dependent delay:

@u.x; t/

@t
D �u.x; t/C

Z 1

�1
w.x � y/f

�
u

�
y; t � jx � yj

v

��
dy (5.17)

where v > 0 is the velocity of propagation of information. Equation (5.17) can be
written

@u.x; t/

@t
D �u.x; t/C  .x; t/ (5.18)

where

 .x; t/ �
Z 1

�1

Z 1

�1
K.x � y; t � s/f .u.y; s//dy ds (5.19)
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and K.x; t/ D w.x/ı.t � jxj=v/ [12, 33]. Recognising that both integrals in (5.19)
are convolutions, and making the choice w.x/ D .1=2/e�jxj, one can take Fourier
transforms in both space and time and convert (5.19) to

�
@2

@t2
C 2v @

@t
C v2 � v2 @

2

@x2

�
 .x; t/ D

�
v2 C v @

@t

�
f .u.x; t// (5.20)

This equation was first derived by [30], and these authors may well have been the
first to use Fourier transforms to convert neural field models to PDEs. We will not
consider delays here, but see [15] for a recent approach in two spatial dimensions.

5.2 Results in One Spatial Dimension

We now present some results of the analysis of (5.14), similar to those in [36]. From
now on we make the specific choice of the firing rate function

f .u/ D e�	=.u�h/2H.u � h/ (5.21)

where 	 > 0 and h 2 R are parameters, and H is the Heaviside step function. The
function (5.21) for typical parameter values is shown in Fig. 5.1 (right). Note that if
h > 0 then f .0/ D 0.

We start with a few comments regarding Eqs. (5.10) and (5.11). Firstly, Eq. (5.10)
is reversible under the involution .u; u0; u00; u000/ 7! .u;�u0; u00;�u000/ [18]. Secondly,
spatially-localised solutions of (5.10) can be regarded as homoclinic orbits to the
origin, i.e. orbits for which u and all of its derivatives tend to zero as x ! ˙1.
Linearising (5.10) about the origin one finds that it has eigenvalues b˙i and�b˙i ,
i.e. the fixed point at the origin is a bifocus [34], and thus the homoclinic orbits spiral
into and out of the origin. Thirdly, Eq. (5.10) is Hamiltonian, and homoclinic orbits
to the origin satisfy the first integral

u0u000 � .u
00/2

2
� .b2 � 1/.u0/2 C .b2 C 1/2Q.u/ D 0 (5.22)

where

Q.u/ �
Z u

0

�
s � 4bf .s/

b2 C 1
�

ds (5.23)

This Hamiltonian nature can be exploited to understand the solutions of (5.10)–
(5.11) and the bifurcations they undergo as parameters are varied [18]. See for
example [11] for more details on homoclinic orbits in reversible systems.

We are interested in stationary spatially-localised solutions of (5.14), and how
they vary as parameters are varied. Figure 5.2 shows the result of following such
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Fig. 5.3 Spatially-localised
steady states of (5.14) at the
three points marked A, B and
C in Fig. 5.2. Other
parameters are
b D 0:25; 	 D 0:1

solutions as the parameter h (firing threshold) is varied. As was found in [18, 35]
the family of solutions forms a “snake” with successively more large amplitude
oscillations added to the solution as one moves from one branch of the snake to
the next in the direction of increasing max .u/. (Note that b, not h, was varied
in [18,35].) Similar snakes of homoclinic orbits have been found in other reversible
systems of fourth-order differential equations [10, 42], and Faye et al. [21] very
recently analysed snaking behaviour in a model of the form (5.1).

Figure 5.3 shows three solutions from the family shown in Fig. 5.2, all at h D 0:5.
Solutions at A and C are stable, and are referred to as “1-bump” and “3-bump”
solutions, respectively, since they have 1 and 3, respectively, regions for which
u > h. The solution at B is an unstable 3-bump solution. Stability of solutions
was determined by linearising (5.14) about them. The curve in Fig. 5.2 shows N -
bump solutions which are symmetric about the origin, where N is odd. A similar
curve exists for N even (not shown) and asymmetric solutions also exist [17]. In
summary, spatially-localised solutions of (5.10) are generic and form families which
are connected in a snake-like fashion which can be uncovered as parameters are
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varied. For more details on (5.10)–(5.11) the reader is referred to [36]. We next
consider the generalisation of neural field models to two spatial dimensions and
again investigate spatially-localised solutions.

5.3 Two Dimensional Bumps and Rings

Neural field equations are easily generalised to two spatial dimensions, and the
simplest are of the form

@u.x; t /
@t

D �u.x; t /C
Z
R2

w.jx � yj/f .u.y; t //dy (5.24)

where x 2 R
2 and w and f have their previous meanings. Note that w is a function of

the scalar distance between points x and y. Spatially-localised solutions of equations
of the form (5.24) have only recently been analysed in any depth [9, 16, 22–24, 29,
35, 38]. The study of such solutions is harder than in one spatial dimension for the
following reasons:

• Their analytical construction involves integrals over subsets of the plane rather
than over intervals.

• The determination of the stability of, say, a circular stationary solution is more
difficult because perturbations which break the rotational symmetry must be
considered.

• Numerical studies require vastly more mesh points in a discretisation of the
domain.

However, the use of the techniques presented in Sect. 5.1 has been fruitful for the
construction and analysis of such solutions. One important point to note is that the
techniques cannot be applied directly when the function w is one of the commonly
used ones mentioned above. For example, if w.x/ D e�x �Me�mx (of Mexican-hat
type when 0 < M < 1 and 0 < m < 1) then its Fourier transform is

F Œw�.jkj/ D 1

.1C jkj2/3=2 �
Mm

.m2 C jkj2/3=2 (5.25)

where k 2 R
2 is the transform variable. Rearranging and then taking the inverse

Fourier transform one faces the question as to what a differential equation containing
an operator like .1�r2/3=2 actually means [15]. One way around this is to expand a
term like .1Cjkj2/3=2 around jkj D 0 as 1C .3=2/jkj2CO.jkj4/ and keep only the
first few terms, thus (after inverse transforming) giving one a PDE. This is known
as the long wavelength approximation [37]; see [15] for a discussion.

A more fruitful approach is to realise that neural field models are qualitative
only, and we can gain insight from models in which the functions w and f are
qualitatively correct. Thus we have some freedom in our choice of these functions.
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The approach of Laing and co-workers [32,35,36] was to use this freedom to choose
not w, but its Fourier transform. If the Fourier transform of w is chosen so that the
Fourier transform of (5.24) can be rearranged and then inverse transformed to give
a simple differential equation, and the resulting function w is qualitatively correct
(i.e. has the same general properties as connectivity functions of interest) then one
can make much progress.

As an example, consider the case when

F Œw�.jkj/ D A

B C .jkj2 �M/2
(5.26)

where A;B and M are parameters [35]. Taking the Fourier transform of (5.24),
using (5.26), and rearranging, one obtains

˚jkj4 � 2M jkj2 C B CM2
�
F

�
uC @u

@t

�
.k/ D AFŒf .u/�.k/ (5.27)

and upon taking the inverse Fourier transform one obtains the differential equation

�r4 C 2Mr2 C B CM2
� �

uC @u

@t

�
D Af .u/ (5.28)

The function w is then defined as the inverse Fourier transform of its Fourier
transform, i.e.

w.x/ D A
Z 1

0

sJ0.xs/

B C .s2 �M/2
ds (5.29)

where J0 is the Bessel function of the first kind of order 0 [35]. (w.x/ is the Hankel
transform of order 0 of F Œw�.) Figure 5.4 shows a plot of w.x/ for parameter values
M D 1;A D 0:4; B D 0:1. We see that it is of a physiologically-plausible
form, qualitatively similar to that shown in Fig. 5.1 (left). We have thus formally
transformed (5.24) into the PDE (5.28).

As a start we consider spatially-localised and rotationally-invariant solutions
of (5.28), which satisfy
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Fig. 5.5 Solutions
of (5.30)–(5.31) with
u.0/ > 0 and u00.0/ < 0 as a
function of h. Other
parameter values:
	 D 0:05;M D 1;A D
0:4; B D 0:1. The solution
u.r/ at the point indicated by
the circle is shown in Fig. 5.6
(left)

where u is now a function of radius r and time t only. We can numerically find
and then follow stationary solutions of (5.30)–(5.31) as parameters are varied. For
example, Fig. 5.5 shows the effects of varying h for solutions with u.0/ > 0 and
u00.0/ < 0. We see a snaking curve similar to that in Fig. 5.2, and as we move up
the snake, on each successive branch the solution gains one more large amplitude
oscillation.

For any particular solution, u.r/ on the curve in Fig. 5.5 one can find its stability
by linearising (5.28) about it. To do this we write

u.r; �; t/ D u.r/C ��.t; r/ cos .m�/ (5.32)

where 0 < �  1 and m � 0 is an integer, the azimuthal index. We choose this
form of perturbation in order to find solutions which break the circular symmetry of
the system. Substituting (5.32) into (5.28) and keeping only first order terms in � we
obtain
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Fig. 5.6 Left: the solid curve shows u.r/ at the point indicated by the circle in Fig. 5.5. The dashed
curve shows the eigenfunction �.r/ corresponding to �.6/. Right: �.m/ for the solution shown
solid in the left panel. The integer with largest � is N D 6
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Since this equation is linear in � we expect solutions of the form �.r; t/ � �.r/e�t
as t ! 1, where � is the most positive eigenvalue associated with the stability of
u (which we assume to be real) and �.r/ is the corresponding eigenfunction.

Thus to determine the stability of a circularly-symmetric solution with radial
profile u.r/, we solve (5.33) for integer m � 0 and determine �.m/. If N is the
integer for which �.N / is largest, and �.N / > 0, then this circularly-symmetric
solution will be unstable with respect to perturbations with DN symmetry, and the
radial location of the growing perturbation will be given by �.r/.

For example, consider the solution shown solid in the left panel of Fig. 5.6. This
solution exists at h D 0:42, so in terms of active regions (where u > h) this solution
corresponds to a central circular bump with a ring surrounding it. Calculating �.m/
for this solution we obtain the curve in Fig. 5.6 (right). (We do not need to be
restricted to integer m for the calculation.) We see that for this solution N D 6, and
thus we expect a circularly-symmetric solution of (5.28) with radial profile given
by u.r/ to be unstable at these parameter values, and most unstable with respect to
perturbations with D6 symmetry. The eigenfunction �.r/ corresponding to �.6/ is
shown dashed in Fig. 5.6 (left). It is spatially-localised around the ring at r � 7, so
we expect the instability to appear here.

Figure 5.7 shows the result of simulating (5.28) with an initial condition formed
by rotating the radial profile in Fig. 5.6 (left) through a full circle in the angular
direction, and then adding a small random perturbation to u at each grid point. The
initial condition is shown in the left panel and the final state (which is stable) is
shown in the right panel. We see the formation of six bumps at the location of the
first ring, as expected. This analysis has thus successfully predicted the appearance
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Fig. 5.7 A simulation of (5.28) with initial condition corresponding to u.r/ in Fig. 5.6. Left: initial
condition. Right: stable final state. u.r; �/ is plotted vertically
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Fig. 5.8 Solutions of (5.30)–(5.31) with u.0/ < 0 and u00.0/ > 0 as a function of h. Other
parameter values: 	 D 0:05;M D 1;A D 0:4; B D 0:1. The solutions u.r/ at the points A and B
are shown in Fig. 5.9 (left) and Fig. 5.11 (left), respectively

of a stable “7-bump” solution from the initial condition shown in Fig. 5.7 (left). (We
used a regular grid in polar coordinates, with domain radius 30, using 200 points
in the radial direction and 140 in the angular. The spatial derivatives in (5.28) were
approximated using second-order accurate finite differences.)

We can also consider stationary solutions of (5.30)–(5.31) for which u.0/ < 0

and u00.0/ > 0, i.e. which have a “hole” in the centre. Following these solutions
as h is varied we obtain Fig. 5.8. As in Fig. 5.5 we see a snake of solutions, with
successive branches having one more large amplitude oscillation. We will consider
the stability of two solutions on the curve in Fig. 5.8; first, the solution at point A,
shown in the left panel of Fig. 5.9. This solution corresponds to one with just a single
ring of active neurons. Calculating �.m/ for this solution we obtain the curve in
Fig. 5.9 (right), and we see that a circularly-symmetric solution of (5.28) with radial
profile given by this u.r/ will be most unstable with respect to perturbations with
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Fig. 5.10 A simulation of (5.28) with initial condition corresponding to u.r/ in Fig. 5.9. Left:
initial condition. Right: stable final state. u.r; �/ is plotted vertically

D3 symmetry. The eigenfunction �.r/ corresponding to N D 3 is shown dashed in
Fig. 5.9 (left), and it is localised at the first maximum of u.r/.

Figure 5.10 shows the result of simulating (5.28) with an initial condition formed
by rotating the radial profile in Fig. 5.9 (left) through a full circle in the angular
direction, and then adding a small random perturbation to u at each grid point. The
initial condition is shown in the left panel and the final state (which is stable) is
shown in the right panel. We see the formation of three bumps at the first ring, as
expected.

Now consider the solution at point B in Fig. 5.8. This solution, shown in Fig. 5.11
(left) corresponds to one with two active rings. An analysis of its stability is shown
in Fig. 5.11 (right) and we see that it is most unstable with respect to perturbations
withD9 symmetry, and that these should appear at the outer ring. Figure 5.12 shows
the result of simulating (5.28) with an initial condition formed by rotating the radial
profile in Fig. 5.11 (left) through a full circle in the angular direction, and then
adding a small random perturbation to u at each grid point. The initial condition
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Fig. 5.12 A simulation of (5.28) with initial condition corresponding to u.r/ in Fig. 5.11. Left:
initial condition. Right: stable final state. u.r; �/ is plotted vertically

is shown in the left panel and the final state (which is stable) is shown in the right
panel. We see the formation of nine bumps at the second ring, as expected.

In summary we have shown how to analyse the stability of rotationally-
symmetric solutions of the neural field equation (5.24), where w is given by (5.29),
via transformation to a PDE. Notice that for all functions u shown in the left panels
of Figs. 5.6, 5.9 and 5.11, �.0/ < 0, i.e. these are stable solutions of (5.30).
However, they are unstable with respect to some perturbations which break their
rotational invariance. The stable states for all three examples considered consist of
a small number of spatially-localised active regions.

Similar results to those presented in this section were obtained subsequently
by [38] using a Heaviside firing rate function, which allowed for the construction
of an Evans function to determine stability of localised patterns. These authors
also showed that the presence of a second, slow variable could cause a rotational
instability of a pattern like that in Fig. 5.10 (right), resulting in it rotating at
a constant speed. Very recently, instabilities of rotationally-symmetric solutions
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were addressed by considering the dynamics of the interface dividing regions of
high activity from those with low activity, again using the Heaviside firing rate
function [14] (and Coombes chapter). Several other authors have also recently
investigated symmetry breaking bifurcations of spatially-localised bumps [9, 16].
We now consider solutions of two-dimensional neural field equations which are not
spatially-localised, specifically, spiral waves.

5.4 Spiral Waves

The function w used in the previous section was of the decaying oscillatory type
(Fig. 5.4). Another form of coupling of interest is purely positive, i.e. excitatory.
However, without some form of negative feedback, activity in a neural system
with purely excitatory coupling will typically spread over the whole domain. With
the inclusion of some form of slow negative feedback such as spike frequency
adaptation [13] or synaptic depression [31], travelling pulses of activity are pos-
sible [1, 12, 19]. In two spatial dimensions the analogue of a travelling pulse is a
spiral wave [2, 3], which we now study. Let us consider the system

@u.x; t /
@t

D �u.x; t /C B
Z
˝

w.jx � yj/F.u.y; t //dy � a.x; t / (5.34)

�
@a.x; t /
@t

D Au.x; t / � a.x; t / (5.35)

where˝ 
 R
2 which, in practice, we choose to be a disk, and the firing rate function

is

F.u/ D 1

1C e�ˇ.u�h/ : (5.36)

where h and ˇ are parameters. This system is very similar to that in [24] and is the
two-dimensional version of that considered in [23, 39]. If we choose the coupling
function to be

w.r/ D
Z 1

0

sJ0.rs/

s4 C s2 C 1ds (5.37)

then, using the same ideas as above (and ignoring the fact that we are not dealing
with spatially-localised solutions) (5.34) is equivalent to

�r4 � r2 C 1�
�
@u.x; t /
@t

C u.x; t /C a.x; t /
�
D BF.u.x; t // (5.38)
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We choose boundary conditions

u.R; �; t/ D @2u.r; �; t/

@r2

ˇ̌
ˇ̌
rDR
D 0 (5.39)

for all � and t ,where R is radius of the circular domain and we have written u in
polar coordinates. The two differences between the system considered here and that
in [32] are that here we use the firing rate function F (Eq. (5.36)), which is non-
zero everywhere (the function f (Eq. (5.21)) was used in [32]), and the boundary
conditions given in (5.39) are different from those in [32].

The function w.r/ defined by (5.37) is shown in Fig. 5.13 and we see that it
is positive and decays monotonically as r ! 1. For a variety of parameters, the
system (5.34)–(5.35) supports a rigidly-rotating spiral wave on a circular domain. To
find and study such a wave we recognise that rigidly-rotating patterns on a circular
domain can be “frozen” by moving to a coordinate frame rotating at the same speed
as the pattern [2, 3, 5]. These rigidly rotating patterns satisfy the time-independent
equations

�r4 � r2 C 1�
�
�! @u

@�
C uC a

�
D BF.u/ (5.40)

�!� @a
@�
D Au � a (5.41)

where ! is the rotation speed of the pattern and � is the angular variable in
polar coordinates. Rigidly rotating spiral waves are then solutions of (5.40)–(5.41),
together with a scalar “pinning” equation [2, 32] which allows us to determine !
as well as u and a. In practice, one solves (5.41) to obtain a as a function of u and
substitutes into (5.40), giving the single equation for u
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Having found a solution u of (5.42) its stability can be determined by linearis-
ing (5.34)–(5.35) about .u; a/, where

�
1 � !� @

@�

�
a D Au (5.43)

As we have done in previous sections, we can numerically follow solutions of (5.42)
as parameters are varied, determining their stability.

In Fig. 5.14 we show ! as a function of A and also indicate the stability of
solutions. Interestingly, there is a region of bistability for moderate values of A.
Typical solutions (of both u and a) at three different points on the curve are shown
in Fig. 5.15. In agreement with the results in [32] we see that as A (the strength of
the negative feedback) is decreased, more of the domain becomes active, and as A is
increased, less of the domain is active. The results of varying h (the threshold of the
firing rate function) are shown in Fig. 5.16. We obtain results quite similar to those
in Fig. 5.14—as h is decreased, more of the domain becomes active, and vice versa,
and we also have a region of bistability. Figure 5.17 shows the result of varying � :
for large � the spiral is unstable. The bifurcations seen in Figs. 5.14, 5.16 and 5.17
are all generic saddle-node bifurcations. In principle they could be followed as two
parameters are varied, thus mapping out regions of parameter space in which stable
spiral waves exist.

We conclude this section by noting that spiral waves have been observed
in simulations which include synaptic depression rather than spike frequency
adaptation [8, 31], and also seen experimentally in brain slice preparations [27, 28].
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20; B D 3:5; h D 0:6: The domain has radius 35

5.5 Conclusion

This chapter has summarised some of the results from [32, 35, 36], in which neural
field equations in one and two spatial dimensions were studied by being converted
into PDEs via a Fourier transform in space. In two spatial dimensions we showed
how to investigate the instabilities of spatially-localised “bumps” and rings of
activity, and also how to study spiral waves. An important technique used was the
numerical continuation of solutions of large systems of coupled, nonlinear, algebraic
equations defined by the discretisation of PDEs. Since the work summarised here
was first published a number of other authors have used some of the techniques
presented here to further investigate neural field models [9, 15, 21, 26, 31, 33].
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Chapter 6
Numerical Simulation Scheme of One- and Two
Dimensional Neural Fields Involving
Space-Dependent Delays

Axel Hutt and Nicolas Rougier

Abstract Neural Fields describe the spatiotemporal dynamics of neural
populations involving spatial axonal connections between neurons. These neuronal
connections are delayed due to the finite axonal transmission speeds along the
fibers inducing a distance-dependent delay between two spatial locations. The
numerical simulation in 1-dimensional neural fields is numerically demanding but
may be performed in a reasonable run time by implementing standard numerical
techniques. However 2-dimensional neural fields demand a more sophisticated
numerical technique to simulate solutions in a reasonable time. The work presented
shows a recently developed numerical iteration scheme that allows to speed up
standard implementations by a factor 10–20. Applications to some pattern forming
systems illustrate the power of the technique.

6.1 Introduction

Finite transmission speed in physical systems has attracted research for decades.
Previous work on heat diffusion has shown experimentally that the transmission
speed (also called propagation speed in the literature) is finite in certain media [14,
16]. These results do not show accordance to classical diffusion theory implying
infinite transmission speed. To cope with this problem theoretically, Cattaneo was
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one of the first to insert delayterms into the diffusion equation to achieve a finite
transmission speed [5].

Recently, an integral model has been proposed which takes into account a
finite transmission speed as a space-dependent retardation [10]. It was shown
that the Cattaneo-equation can be derived from this model. This model is well-
established in computational neuroscience and known as the neural field model.
It describes the activity evolution in a neural population involving finite transmission
speed along axonal fibres. The neural field model has been shown to model
successfully neural activity known from experiments [3, 9]. In the recent decades,
neural fields have been studied analytically and numerically in one and two spatial
dimensions [15, 19], while previous studies considered finite axonal transmission
speeds in one-dimensional models only [1,2,6,11]. To our best knowledge, only few
previous studies considered analytically and numerically finite transmission speeds
in two-dimensional neural fields. The current work presents a recently developed
method [13] to reveal finite transmission speed effects in two-dimensional systems.

The subsequent paragraphs derive a novel fast numerical scheme to simulate the
corresponding evolution equations in one and then in some detail in two spatial
dimensions. Stimulus-induced activity propagation in two spatial dimensions is
studied numerically to illustrate the delayed activity spread. We find numerically
transmission delay-induced breathers.

The underlying model considers a one-dimensional line˝ with length l or a two-
dimensional rectangle spatial domain ˝ with side length l , in both cases assuming
periodic boundary conditions. In addition, the center of the coordinate system is
chosen to be the center of the domain in the following. Then the neural population
activity V.x; t /, i.e. the mean membrane potential, at spatial location x 2 ˝ and
time t obeys the evolution equation

�
@

@t
V .x; t / D I.x; t / � V.x; t /C

Z
˝

dny K.jx � yj/S
�
V

�
y; t � jx � yj

c

��

(6.1)

with n D 1 or n D 2, the synaptic time constant � , the external stimulus I.x; t /, the
finite axonal transmission speed c and the nonlinear transfer function S . Moreover,
the spatial interaction is non-local and is given by the spatial synaptic connectivity
kernel K.jx� yj/, that depends on the distance between two spatial locations x and
y only.

6.2 The Novel Principle

For notational simplicity, let us consider a one-dimensional spatial domain. Then
the integral on the right hand side of Eq. (6.1) can be re-written as



6 Numerical Simulations of Neural Fields 177

Z
˝

dz K.jx � zj/S
�
V

�
z; t � jx � zj

c

��

D
Z
˝

dz
Z 1

�1
dt0 ı

� jx � zj
c
� .t � t 0/

�
K.jx � zj/SŒV .z; t 0/�

D
Z
˝

dz
Z 1

�1
dt0L.x � z; t � t 0/SŒV .z; t 0/�

D
Z
˝

dz
Z �max

0

d�L.x � z; �/SŒV .z; t � �/�;

with �max D l=c. This shows that the introduction of the space-time kernel
L.x; t/ D K.x/ı.jxj=c � t / allows us to write the single space integral as two
integrals: one spatial convolution and one integral over delays. To understand the
logic of the computation, let us discretize the time and space by t ! tn D n�t ,
x ! xm D m�x with n 2 N0; m 2 Z0; jmj < M=2 and l D M�x. This implies
that the speed c also takes discrete values. We obtain

L.x; t/! L.xm; tn/ � K.m�x/ı ..�x=c/jmj � n�t/

D Kmı

�
�t

�
�x

c�t
jmj � n

��

D Kmı .�t .r jmj � n//
D Kmı .jmj�t .r � n=jmj//
� Kmıjmj;n=r

with Km D K.m�x/, r D �x=.c�t/. The last equation shows that L.xm; tn/ �
K˙n=r ¤ 0 only if r is rational number with r D n=m and thus

c D �x

�t

1

r
D �x

�t

m

n

is discrete.

6.3 The Numerical Implementation in Two Spatial
Dimensions

To investigate the activity propagation in detail, we derive a novel iteration scheme
for the numerical integration of (6.1) for n D 2. Since the integral over space in (6.1)
is not a convolution in the presence of a finite transmission speed c, one can not
apply directly fast numerical algorithms such as the Discrete Fast Fourier transform
(DFT) to calculate the integral. Hence the numerical integration of (6.1) is very time
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consuming with standard quadrature techniques. For instance, with a discretization
of the spatial domain by N2 grid intervals and applying the Gaussian quadrature
rule for the spatial integral, it would be necessary to compute N4 elements in each
time step which is very time-consuming in the case of a good spatial resolution. The
work [13] proposes a fast numerical method that is based on the DFT and resembles
the Ritz-Galerkin method well-established to solve partial differential equations.

As in the previous section, the integral in (6.1) reads

A.x; t / D
Z
˝

d2y K.jx � yj/S
�
V

�
y; t � jx � yj

c

��

D
Z
˝

d2y

Z 1

�1
dt0ı

� jx � yj
c
� .t � t 0/

�
K.jx � yj/SŒV .y; t 0/�

D
Z
˝

d2y

Z 1

�1
dt0L.x � y; t � t 0/SŒV .y; t 0/� (6.2)

D
Z
˝

d2y

Z �max

0

d�L.x � y; �/SŒV .y; t � �/�; (6.3)

with �max D l=
p
2c, the novel spatial delaykernel L.x; �/ D K.x/ı.jxj=c � �/ and

the delta-distribution ı.	/. These simple calculations show thatAmay be written as a
two-dimensional spatial convolution, but with a new delayed spatio-temporal kernel
L that now considers the past activity. The form (6.2) has been used previously to
study spatio-temporal instabilities in one- and two-dimensional neural fields [19].

The new delay kernel L is independent of time t and is computed on the delay
interval only. Hence it represents the contribution of the current and past activity
to the current activity at time t . In addition A implies multiple delays and the
corresponding delay distribution function depends strongly on the spatial kernel K.
In other words, axonal transmission speeds represent a delay distribution as found
before in other contexts [7, 12].

Figure 6.1 illustrates the construction of the kernel: given the kernel functionK in
space (Fig. 6.1, left),L.x; �/ is generated by cutting out a ring of radius c� (Fig. 6.1,
right hand side). In a continuous spatial domain these rings are infinitely thin,
whereas a spatially discretized domain yields finite ring widths, see the paragraphs
below for more details.

Now let us derive the rules to compute A numerically. The periodic boundary
conditions implied lead to discrete wave vectors kmn D .km; kn/ with kp D
2�p=l; p 2 Z0. The Fourier series of V.x; t / reads

V.x; y; t/ D 1

l

1X
m;nD�1

QVmn.t/e
i.kmxCkny/ (6.4)
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Fig. 6.1 The construction of the delay-kernel L.x; �/. Assuming a spatial kernel (left image), L
exhibits rings with radius c� (images on the right for different delay times) which is the interaction
distance of the system at the delay time �

with the Fourier vector component QVmn.t/ D QV .km; kn; t/ and the spatial Fourier
transform

QVmn.t/ D 1

l

Z l=2

�l=2
dx
Z l=2

�l=2
dyV.x; y; t/e�i.kmxCkny/ : (6.5)

Inserting (6.4) into (6.3) and applying (6.5) leads to

A.x; y; t/ D
1X

m;nD�1
ei.kmxCkny/

Z �max

0

dT QLmn.T / QSmn.t � T /; (6.6)

with the spatial Fourier transforms of L.x; t / QLmn.t/; QSmn.t/ and the nonlinear
functional SŒV .x; t /�. Moreover

QLmn.T / D c2

l

Z l=2c

�l=2c

Z l=2c

�l=2c
ı.j�j � T /K.jc�j/e�ickmn�d2� : (6.7)

After obtaining A.x; y; t/ in the Fourier space for a continuous spatial domain,
now we discretize the spatial domain to gain the final numerical scheme. To this
end, ˝ is discretized in a regular spatial grid of N � N elements with grid interval
�x D l=N . Hence x ! xn D n�x; n D �N=2; : : : ; N=2 � 1. By virtue of this
discretization, we can approximate (6.6) and (6.7) by applying the rectangular ruleR b
a
f .x/dx � �x

PN=2�1
nD�N=2 f .xn/. The error is E < .b � a/�x2f 00.�/=24; a <

� < b for twice-differentiable functions f , i.e. the rectangular rule is a good
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approximation for smooth functions and large enough N . The same holds true for
the discretization of the time integral and Eq. (6.7) reads

QLmn.Tu/ D l

N 2�t

N=2X
k;pD�N=2

Lkp.Tu/ e�i2�.kmCnp/=N (6.8)

with the discrete version of the delay kernel L

Lkp.Tu/ D ı.��
p
k2 C p2; Tu/K.jxkpj/:

The symbol ı.	; 	/ is identical to the Kronecker symbol and is introduced for
notational convenience. By virtue of the isotropy of the spatial interactions, in
addition we find the simple relation

Lkp.Tu/ D K.uc�t/:

In other words the width of the rings in Fig. 6.1 is c�t . In these latter calculations,
we introduced the time discretization �kp D .k; p/�� , �� D �x=c, T ! Tu D
u�t and ı.� � T /! ınu=�t for � ! �n.

Although the relation Lkp.Tu/ D K.uc�t/ seems to be quite intuitive and
elucidates the discrete ring structure of L, it does not give directly the condition
which grid point .k; p/ belongs to which delay ring. This condition may be read off
the Kronecker symbol: u is an integer number and hence ı.��

p
k2 C p2; Tu/ D 1

if Œ��
p
k2 C p2=�t� D u with the integer operation Œa� that cuts off the decimal

numbers. Consequently the grid points .k; p/ that contribute to the delay time Tu

obey

u � �x

c�t

p
k2 C p2 < uC 1; u D 0; 1; 2; : : : ; umax

with umax D Œ�max=�t�, i.e. they lie in a ring with inner and outer radius .c�t=�x/u
and .c�t=�x/.uC 1/, respectively.

Moreover, the definition of Lkp.Tu/ allows us to derive some conditions on
the numerical parameters. The ring width in Fig. 6.1 is �r D c�t=�x which
is the number of spatial grid intervals. Hence the maximum radius of a ring is
l=
p
2�x and hence the maximum transmission speed that can be implemented

is cmax D l=
p
2�t . Since cmax ! 1 for �t ! 0, the transmission speed

c > cmax in the discrete scheme is equivalent to an infinite transmission speed
in the analytical original model and the finiteness of cmax results from the time
discretization. Moreover, c ! cmax yields �max ! 0, i.e. the transmission delay
vanishes.

We add that the maximum wave number is kmax D 2�=�x and, by the definition
of �x, the number of Fourier modes is limited to N .
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Combining the latter results now Eq. (6.6) reads

A.xr ; ys; tv/ D
N=2�1X

m;nD�N=2
ei2�.mrCns/=N �

umax�1X
uD0

QLmn.Tu/ QSmn.tv � Tu/ : (6.9)

With the standard definition of the two-dimensional Discrete Fourier Transform

DFTŒA�kp D
X
n;m

Anme
�i2�.nkCmp/=N ; n;m 2 Œ�N=2IN=2 � 1�

and its inverse (IDFT) correspondingly, we find finally

A.x; tv/ D l2

N 2
IDFT

"
umax�1X

uD0
DFT ŒL.Tu/� � DFT ŒS.tv � Tu/�

#
: (6.10)

Some numerical implementations of the DFT assume that the index n runs in the
interval Œ0IN � 1�. In this case, Eq. (6.10) is also valid but DFTŒA�kp is modulated
by a factor e�i�.kCp/ D .�1/kCp .

In practice, DFTŒL.Tu/� is computed once for all Tu in the beginning of the
simulation since it does not depend on the system activity. Moreover, for N D
2n; n 2 N , the discrete Fourier transform may be implemented numerically by a
Fast Fourier transform, that speeds up the numerical computation dramatically. This
possible algorithm choice represents the major advantage of the proposed method
compared to other non-convolution methods.

The discrete version of A can be applied to any explicit or implicit numerical
integration scheme. For instance, the numerical Euler scheme stipulates

QVmn.ti C�t/ D QVmn.ti /C �t

�
.Imn.ti / � QVmn.ti /

C�t
�

L3

N 4

dX
uD0

DFT ŒL.tu/�mn � DFT ŒS.tv � tu/�mn/ (6.11)

where Imn.t/ is the Fourier transform of the input I.x; t / and one obtains V.x; tv/
by applying Eq. (6.4).

In the following, we study analytically and numerically the response to an
external stimulus. At first, let us consider a small input. Then the response is
linear about the systems’ stationary state. Since we are interested in responses that
approach the stationary state after removal of the stimulus, it is necessary to ensure
the linear stability of the stationary state.

The stationary state of Eq. (6.1) constant in space and time implies V0 D
	SŒV0� C I0 for a constant input I0 with the kernel norm 	 D R

˝
K.x/d2x.
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Considering small additional external inputs NI .x; t / D I.x; t /�I0, small deviations
u.x; t / D V.x; t / � V0 from this stationary state obey

du.x; t /
dt

D �u.x; t /C NI .x; t /C s0
Z
˝

K.x � y/u .y; t � jx � yj=c/ dy2: (6.12)

with s0 D ıSŒV �=ıV; V D V0. Now expanding u.x; t / into a spatial Fourier series
according to Eq. (6.4) and applying a temporal Laplace transform to each Fourier
mode amplitude, we find the characteristic equation

�C 1 D
Z
˝

K.x/eikx��jxj=c d 2x (6.13)

with the wave vector k D .km; kn/
t and the Lyapunov exponent � 2 C . The

stationary state V0 is linearly stable if Re.�/ < 0.
Now let us consider the spatio-temporal response of the system involving the

spatially periodic interactions

K.x/ D Ko

2X
iD0

cos.kix/ exp.�jxj=�/

with

ki D kc.cos.i /; sin.i //
t ; i D i�=3 :

This kernel reflects spatial hexagonal connections which have been found, e.g., in
layer 2/3 of the visual cortex in monkeys [17]. Stimulating the stable system by a
small external input in the presence of the finite transmission speed c elucidates the
transmission delay effect on the linear response. This delay effect has attracted some
attention in previous studies on the activity propagation in the visual cortex [4, 18].
For the given kernel, the characteristic equation (6.13) reads

�C 1 D
2X
iD0

fC.�; i /C f�.�; i /

with

f˙.�; i / D 1=
q
.1=� C �=c/2 C k2 C k2c ˙ 2kkc cos.i � �/

3

and k D k.cos.�/; sin.�//t . The numerical simulation applies parameters which
guarantee the stability of the stationary state.

Figure 6.2 shows snapshots of the simulated spatio-temporal response of the
system about a stable stationary state applying the numerical scheme (6.11).
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Fig. 6.2 Spatio-temporal response activity to the external stimulus I.x; t / D I0 C e�x2=�2I

for the spatial connectivity function K.x/ given by the numerical simulation of Eq. (6.1). Used
(dimensionless) parameters are Ko D 0:1; c D 10; l D 10; kc D 10�=l; � D 10; �I D
0:2;N D 512; � D 1;�t D 0:005. Moreover, I0 D 2:0, SŒV � D 2=.1 C exp.�5:5.V � 3///

and V0 D 2:00083. The initial values are chosen to V.x; �/ D V0 for the delay interval
�l=p2c � � � 0. Introducing the temporal and spatial scale � D 10ms and � D 1:0mm,
the results reflect the spatio-temporal activity with transmission speed c D 1:0m/s and the domain
length l D 10mm, which are realistic values for layer 2/3 in visual cortex. Then the points A and
B are located at a distance dA D 2:1mm and dB D 3:8mm from the stimulus onset location at
the origin, respectively. The bar in the plots is 0:83mm long

We observe the lateral activity propagation starting from the stimulus location in
the domain centre. The spreading activity reveals the maxima of axonal connections
close to previous experimental findings [17]. To validate the numerical results, we
take a closer look at two single spatial locations, denoted A and B in Fig. 6.2 at
distance dA and dB from the stimulus location in the center. Before stimulus onset,
they show the stationary activity constant in time. After stimulus onset, it takes the
activity some time to propagate from the stimulus location to these distant points,
e.g. the transmission delays dA=c D 3:3ms and dB=c D 6:2ms. Figure 6.2 shows
that the activity reaches the locations A and B about these times for the first time as
expected. This finding validates the numerical algorithm proposed above.

We investigate whether the transmission delay induces oscillatory instabilities in
the presence of external input. The following brief numerical study is motivated by
previous theoretical studies on breathers [8]. In that study, the authors computed
analytically conditions for Hopf-bifurcations from stimulus-induced stable standing
bumps in a neural model involving spike rate adaption. The presence of the spike
rate adaption permits the occurrence of the Hopf-bifurcation. The corresponding
control parameter of these instability studies is the magnitude of the applied external
stimulus. In contrast, the present model does not consider spike rate adaption to
gain a Hopf-bifurcation, but consider transmission delays. We decreases the axonal
transmission speed from large speeds, i.e. increases the transmission delay, to evoke
a delay-induced Hopf-bifurcation while keeping the other parameters constant.

Let us assume an anisotropic Gaussian stimulus

I.x; t / D I0e�xt˙�1x=2

with the 2�2 diagonal variance matrix˙�1 with˙�1
ii D 1=�2i ; i D 1; 2. Moreover

the spatial kernelK.x/ represents locally excitatory and laterally inhibitory connec-
tions and the transfer function is the Heaviside function SŒV � D HŒV � Vthresh�.
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Fig. 6.3 One cycle of a transmission delay-induced breathers evoked by an anisotropic external
stimulus. The spatial connectivity function is chosen to K.r/ D 10 exp.�r=3/=.18�/ �
14 exp.�r=7/=.98�/ and the input magnitude and variances are I0 D 10 and˙�1

11 D 3;˙�1
22 D 5,

respectively. Other parameters are c D 100, l D 30, N D 512, � D 1, �t D 0:05 and Vthresh D
0:005. The initial values are chosen to V.x; �/ D 0 for the delay interval �L=p2c � � � 0

The numerical computation of Eq. (6.1) applying the numerical scheme (6.11) yields
delay-induced breathers in two dimensions. Figure 6.3 shows the temporal sequence
of a single oscillation cycle. To our best knowledge such delay-induced breathers in
two dimensions have not been found before.

6.4 Conclusion

We have motivated briefly a one-dimensional numerical method to integrate a spatial
integral involving finite transmission speeds. Moreover we have derived analytically
and validated numerically in detail a novel numerical scheme for two-dimensional
neural fields involving transmission delay that includes a convolution structure
and hence allows the implementation of fast numerical algorithms, such as Fast
Fourier transform. We have demonstrated numerically a transmission delay-induced
breather [13]. To facilitate future applications of the algorithm, the implementation
code for both numerical examples is made available for download.1 We point out
that the method can be easily extended to higher dimensions.

In future research, the transmission delay will play an important role in the
understanding of fast activity propagations whose time scales are close to the
transmission delay, e.g. in the presence of ultra-fast pulses and/or at spatial
nanometer scales. An open source Graphical User interface written in Python for
a user-friendly application of the method proposed will be available soon.2

1http://www.loria.fr/~rougier/coding/index.html
2NeuralFieldSimulator: https://gforge.inria.fr/projects/nfsimulator/

http://www.loria.fr/~rougier/coding/index.html
https://gforge.inria.fr/projects/nfsimulator/
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Chapter 7
Spots: Breathing, Drifting and Scattering
in a Neural Field Model

Stephen Coombes, Helmut Schmidt, and Daniele Avitabile

Abstract Two dimensional neural field models with short range excitation and long
range inhibition can exhibit localised solutions in the form of spots. Moreover,
with the inclusion of a spike frequency adaptation current, these models can also
support breathers and travelling spots. In this chapter we show how to analyse the
properties of spots in a neural field model with linear spike frequency adaptation.
For a Heaviside firing rate function we use an interface description to derive a
set of four nonlinear ordinary differential equations to describe the width of a
spot, and show how a stationary solution can undergo a Hopf instability leading
to a branch of periodic solutions (breathers). For smooth firing rate functions we
develop numerical codes for the evolution of the full space-time model and perform
a numerical bifurcation analysis of radially symmetric solutions. An amplitude
equation for analysing breathing behaviour in the vicinity of the bifurcation point
is determined. The condition for a drift instability is also derived and a center
manifold reduction is used to describe a slowly moving spot in the vicinity of this
bifurcation. This analysis is extended to cover the case of two slowly moving spots,
and establishes that these will reflect from each other in a head-on collision.

7.1 Introduction

Given the well known laminar structure of real cortical tissue it is natural to
formulate neural field models in two spatial dimensions. For models with short
range excitation and long range inhibition these have long been known to support
localised solutions in the form of spots (commonly called bumps in one dimensional
models). They are of particular interest to the neuroscience community since
spatially localised bumps of activity have been linked to working memory (the
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temporary storage of information within the brain) in prefrontal cortex [17].
Perhaps not surprisingly their initial mathematical study was limited to solutions
of one-dimensional models, and see [5, 12] for a review. With a further reduction in
model complexity obtained by considering an effective single population model,
obviating the need to distinguish between excitatory and inhibitory neuronal
populations, Amari [1] showed for a Heaviside firing rate that bump solutions
come in pairs, and that it is only the wider of the two that is stable. It was a
surprisingly long time before Pinto and Ermentrout [24] demonstrated that a fuller
treatment of inhibitory dynamics would allow a dynamic (Hopf) instability that
could actually destabilise a wide bump. Blomquist et al. [3], further showed that
this could lead to the formation of a stable breathing (spatially localised time
periodic) solution. However, it is now known that inhibitory feedback is not the
only way to generate dynamic instabilities of localised states, and a number of
other physiological mechanisms are also possible. These include localised drive
to the tissue [16], threshold accommodation (whereby the firing threshold is itself
dynamic, mimicking a refractory mechanism) [6], synaptic depression [19], and
spike frequency adaptation [8]. In comparison to their one dimensional counterparts,
spots and their instabilities in two dimensions have received far less attention.
Notable exceptions to this include the work of Laing and Troy [21] (focusing on
numerical bifurcation analysis for smooth firing rates), Folias and Bressloff [15,16]
(focusing on localised drive), Owen et al. [23] (using an Evans function analysis to
probe instabilities), and Coombes et al. [8] (using an interface approach). These last
three pieces of work all focus on the Heaviside firing rate function.

In this chapter we develop new results for the description of spots in a two
dimensional neural field model with spike frequency adaptation with both Heaviside
and smooth firing rate choices. The techniques we develop are quite generic and may
also be adapted to treat the other physiological mechanisms mentioned above for
the generation of dynamic spot instabilities. We focus on a planar single population
model that can be written as an integro-differential equation of the form

1

˛

@u.r; t /
@t

D �u.r; t /C
Z
R2

dr0w.jr � r0j/f .u.r0; t // � ga.r; t /; (7.1)

@a.r; t /
@t

D �a.r; t /C u.r; t /; (7.2)

where r D .x1; x2/ 2 R
2 and t 2 R

C. Here the variable u represents synaptic
activity and the kernel w represents anatomical connectivity. In real cortical tissues
there are an abundance of metabolic processes whose combined effect is to modulate
neuronal response. It is convenient to think of these processes in terms of local
feedback mechanisms that modulate synaptic currents, described by the field a.
Here, g 2 R is the strength of the negative feedback. We shall take the firing rate to
be a sigmoidal function, such as

f .u/ D 1

1C e�ˇ.u�h/ ; (7.3)
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Fig. 7.1 A plot of the
anatomical connectivity
function describing short
range excitation and long
range inhibition. The form of
w.r/, as expressed in (7.4),
for A1 D 1 D ˛1,
A2 D �3=4, and ˛2 D 1=4,
generates a two dimensional
wizard hat function

where ˇ > 0 controls the steepness of the sigmoid around the threshold value h.
Throughout the rest of this paper we shall work with the radially symmetric choice
w.r/ D w.r/, with r D jrj. To allow for some explicit calculations (though many of
the results we develop do not require such a choice), we shall use the representation

w.r/ D
NX
iD1

AiK0.˛i r/; Ai 2 R; ˛i > 0; (7.4)

where K�.x/ is the modified Bessel function of the second kind, of order �. For an
appropriate combination of coefficients Ai and ˛i this can generate an anatomical
connectivity describing short range excitation and long range inhibition, with a
wizard hat shape, as shown in Fig. 7.1.

In Sect. 7.2 we focus on a Heaviside firing rate and show how to extend the
Amari interface approach to treat the spike frequency adaptation term. We develop
a reduced description of a spot in terms of a set of four coupled nonlinear ordinary
differential equations (ODEs). We solve these numerically, to find a narrow and
wide branch of spot solutions that annihilate in a saddle-node bifurcation (with
increasing threshold). The branch of wide spots is found to support a Hopf instability
to a stable breathing solution. We move away from the Heaviside case in Sect. 7.3,
and develop an equivalent partial differential equation (PDE) model that allows for
straight-forward numerical implementation. We use this to probe radially symmetric
solutions for models with sigmoidal firing rates, and not only confirm the results
of our Heaviside analysis but show how results vary as one moves away from
the limit of steep sigmoids. In Sect. 7.4 we develop an amplitude equation for
analysing breathing behaviour (for a smooth firing rate function) in the vicinity
of the bifurcation point. The condition for a drift instability, which describes the
transition of a stationary spot to a (non-circular) travelling spot, is derived in
Sect. 7.5. In Sect. 7.6 a center manifold reduction is used to describe a slowly
moving spot in the vicinity of this bifurcation, and extended to cover the case of
two slowly moving spots in Sect. 7.7. Interestingly the coupled ODE model for the
spot pair can be analysed to show that these will reflect from each other in a head-
on collision. Finally, in Sect. 7.8 we discuss natural extensions of the work in this
Chapter.
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7.2 Heaviside Firing Rate and Interface Dynamics

In the limit ˇ !1 the firing rate function (7.3) approximates a Heaviside function
H.u � h/, and it is possible to explicitly construct localised states. Here we show
how to extend the standard Amari interface approach to treat linear spike frequency
adaptation. For simplicity we shall focus on radially symmetric solutions. A more
general framework for describing the evolution of spreading interfaces that lack
such a symmetry has recently been developed in [8]. We shall not pursue this here.

First let us rewrite the pair of Eqs. (7.1) and (7.2) in the form of a second order
differential system:

ut t C .1C ˛/ut C ˛.1C g/u D ˛. C  t/; (7.5)

where  .r; t / D R
B.r0;t /

dr0 w.jr � r0j/, and B.r; t / D frju.r; t / � hg. For
radially symmetric spot solutions of radius R.t/ that intersect the threshold exactly
once (so that the active region is a single, simply connected region) we have that
.u.r; t /;  .r; t // D .u.r; t/;  .r; t// with

 .r; t/ D
Z 2�

0

d�
Z R.t/

0

w
	p

r2 C r 02 � 2rr0 cos �


r 0dr 0: (7.6)

Here R.t/ is defined by the level set condition u.R.t/; t/ D h. Differentiating this
with respect to time gives an equation for the velocity of the spot interface in the
form

dR

dt
D � @u.r; t/=@t

@u.r; t/=@r

ˇ̌̌
ˇ
rDR

; (7.7)

Using (7.5) we may derive ODEs for v D @u.r; t/=@t jrDR and z D
@u.r; t/=@r jrDR as

dv

dt
C .1C ˛/v C ˛.1C g/h D ˛ Œ C  t �jrDR ; (7.8)

d2z

dt 2
C .1C ˛/dz

dt
C ˛.1C g/z D ˛ @

@r
Œ C  t �

ˇ̌
ˇ̌
rDR

; (7.9)

where we have assumed that R is slowly evolving so that dz=dt D dR=dtzR C
zt � zt . Hence, we may generate a system of four nonlinear ODEs for .R; v; z; y/
to describe the evolution of the (radially symmetric) spot:

dR

dt
D �v

z
; (7.10)

dv

dt
D �.1C ˛/v � ˛.1C g/hC ˛�.R/ � ˛Rv˚.R/=z; (7.11)
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dz

dt
D y; (7.12)

dy

dt
D �.1C ˛/y � ˛.1C g/zC ˛$ .R/ � ˛R2v˝.R/=z; (7.13)

where

�.R/ D
Z 2�

0

d�
Z R

0

w.
p
R2 C r2 � 2Rr cos �/rdr; (7.14)

˚.R/ D
Z 2�

0

d�w.R.�//; R.�/ D R
p
2.1 � cos �/; (7.15)

$ .R/ D
Z 2�

0

d�
Z R

0

w0.
p
R2 C r2 � 2Rr cos �/p
R2 C r2 � 2Rr cos �

.R � r cos �/rdr; (7.16)

˝.R/ D
Z 2�

0

d�
w0.R.�//

R.�/
.1 � cos �/: (7.17)

For the anatomical connectivity function (7.4) then we have explicitly (using the
summation properties of Bessel functions and Graf’s formula) that

�.R/ D 2�
NX
iD1

Ai


1

˛2i
� R
˛i
K1.˛iR/I0.˛iR/

�
; (7.18)

˚.R/ D 2�
NX
iD1

AiK0.˛iR/I0.˛iR/; (7.19)

$ .R/ D � 0.R/ �R˚.R/ D �2�R
NX
iD1

AiK1.˛iR/I1.˛iR/; (7.20)

˝.R/ D ˚ 0.R/=.2R/ D 2�
NX
iD1

Ai


1

2R2
� ˛i
R
K1.˛iR/I0.˛iR/

�
: (7.21)

Here I�.x/ is the modified Bessel function of the first kind.
Steady states of (7.10)–(7.13) are given by .R; v; z; y/ D .R; 0; $ .R/=

.1 C g/; 0/, where R is a solution of �.R/ D .1 C g/h. We can reconstruct
the spatial profile of the stationary spot from knowledge of its radius by using
q.r/ D  .r/=.1 C g/, where  .r/ is given by (7.6) with R.t/ D R. This can be
explicitly calculated as

 .r/ D 2�R
NX
iD1

AiLi .r/; (7.22)
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where

Li.r/ D

8̂
<̂
ˆ̂:

1

˛i
I1.˛iR/K0.˛i r/ r � R
1

˛2i R
� 1

˛i
I0.˛i r/K1.˛iR/ r < R

: (7.23)

Here we restrict our attention to only those values of R that satisfy our original
hypothesis, namely that the spot is a simply-connected active region.

The Jacobian of the system (7.10)–(7.13) around the steady state has one pair of
eigenvalues given by

� D �.1C ˛/˙
p
.1 � ˛/2 � 4˛g
2

; (7.24)

and another pair that satisfy �2 � �J CK D 0, where

J D �.1C ˛/ � ˛.1C g/R˚.R/
$ .R/

; K D ˛.1C g/�
0.R/
$ .R/

: (7.25)

A Hopf bifurcation is possible when J D 0 and K > 0. Using (7.20) we see that
this can happen when

R
˚.R/

$ .R/
D � .1C ˛/

˛.1C g/ ; ˛g > 1: (7.26)

which recovers a result in [8] obtained via a different method. The frequency of
oscillation at the Hopf bifurcation is given by

p
˛g � 1.

The system of ODEs (7.10)–(7.13) is solved numerically with AUTO-07P [9]
to generate the bifurcation diagram in Fig. 7.2 for a wizard hat function given
by (7.4) with N D 2, A1 D .2�/�1, A2 D �.2��/�1, ˛1 D 1, ˛2 D �,
with �; � > 0. As expected we see a branch of wide spots and narrow spots
that annihilate in a saddle-node bifurcation with increasing h. The inclusion of
spike-frequency adaptation now allows for a pair of Hopf bifurcations on the wide
branch of solutions, marked as HB1 and HB2, determined by Eq. (7.26). Further
numerical exploration shows that HB1;2 give rise to a branch of periodic orbits,
describing radially-symmetric breathers, whose period increases to infinity with
decreasing h. This gives rise to homoclinic orbits, and we denote the associated
homoclinic bifurcation points by M1;2. Only the branch of breathers emanating from
HB2 is stable and it undergoes a sequence of period-doubling bifurcations in a small
region of parameter space, as shown in the inset of Fig. 7.2, where h varies between
0:03609 and 0:03611.

In Fig. 7.3 we repeat the continuation for ˛ D 1:25. As expected, the branch
of spots is the same as Fig. 7.2, but its stability properties change: the Hopf
bifurcations HB1;2 shift along the branch and are now connected in parameter space.
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Fig. 7.2 Bifurcation diagram for spot solutions with a Heaviside firing rate function. Solid
(dashed) lines are stable (unstable). Branches of periodic orbits originate from Hopf bifurcations of
stationary spots. Top: branches of periodic solutions terminate at global homoclinic bifurcations M1

and M2. Solutions emanating from HB2 are initially stable and destabilise close to M2, where the
branch undergoes a sequence of period-doubling bifurcations in a small region of parameter space
(the inset shows h between 0:03609 and 0:03611). Bottom: stable periodic solutions between HB2
and M2, with increasingly high periods, projected on the .V;R/-plane and the .V;R;Z/-space.
Parameters are � D 4, � D 0:5, g D 1, and ˛ D 1:2

Moreover, stable breathers emanating from HB2 destabilise at a limit point rather
than a global bifurcation. On the same plot, we show points along the branch where
stationary spots become unstable with respect to azimuthal instabilities with Dm

symmetry (m D 2; : : : ; 8). Such critical points satisfy the equation (see [8] and also
Chap. 3 )

R

j� 0.R/j
Z 2�

0

d� cos.m�/w
�
R.�/

� D
PN

iD1 AiKm.˛iR/Im.˛iR/PN
iD1 AiK1.˛iR/I1.˛iR/

D 1; (7.27)
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Fig. 7.3 Bifurcation diagram for spot solutions with a Heaviside firing rate function. Parameters
as in Fig. 7.2 with the exception of ˛, which is set to 1.25. The branch of steady states coincides
with the one in Fig. 7.2, as expected, but its stability depends on ˛: in this case HB1 and HB2 are
connected in parameter space and stable breathers destabilise at a limit point. We also show points
along the branch where spots become unstable to planar perturbations with D2; : : : ;D8 symmetry

for m D 2; 3; : : :, where �.R/ and R.�/ are defined in (7.14) and (7.15). We point
out that, following the branch for ˛ D 1:25 from bottom to top, the Hopf bifurcation
HB2 occurs before the D2 instability, while the situation is reversed for ˛ D 1:2 (not
shown). In Sect. 7.5 we further show that a solution with a drift instability, leading to
a travelling spot, can occur as g increases through 1=˛ (and note that the condition
˛g > 1 is necessary for a breathing instability). A further weakly nonlinear analysis
would be necessary to understand the competition between drifting and breathing at
g D 1=˛.

The proximity of the limit point LP1 to the Hopf bifurcation HB1 (similarly
to what was found for the case ˛ D 1:2 in Fig 7.2, where we also have the
global bifurcation M1) suggests the possibility of a Bogdanov-Takens codimension
2 bifurcation. This scenario is present in a similar model (with localised drive) [15]
and is confirmed by the two-parameter continuations plotted in Fig. 7.4.

7.3 Equivalent PDE Model and Numerical Bifurcation
Analysis

In the previous section we derived a set of ODEs describing localised radially-
symmetric solutions to (7.1) and (7.2), in the case when the firing rate f is a
Heaviside function. It is interesting to compute similar solutions when f is a smooth
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Fig. 7.4 Two-parameter continuations of the saddle-node bifurcation (solid), and Hopf bifurca-
tions (dashed) of the stationary spots. Figure 7.2 corresponds to slices at g D 1 (in the left panel)
and ˛ D 1:2 (in the right panel). Figure 7.3 corresponds to a slice ˛ D 1:25 (in the right panel).
The curves meet at a Bogdanov-Takens bifurcation. Curves of homoclinic bifurcations M1;2 are
not shown

sigmoidal function, such as the one in (7.3). In this section, we follow ideas in
[7, 13, 21] (and see also Chap. 5) that allow us to reformulate the nonlocal model
defined by (7.1), (7.2), and (7.4), as a local model more suitable for direct numerical
simulation and numerical continuation.

We begin by writing time-independent solutions of (7.1) and (7.2) as
.u.r; t /; a.r; t // D .q.r/; q.r//, where

q.r/ D 1

1C g
Z
R2

dr0w.jr � r0j/f .q.r0//: (7.28)

A spot is a radially-symmetric solution of (7.28) such that q.r/ D q.r/. We shall
denote the (vector) spot solution by S.r/ D .q.r/; q.r//. Other localised solutions
with dihedral symmetries of the regular polygon are also expected, and may arise
via bifurcations of spots. This has been established for the case of a Heaviside firing
rate [8], though we will not pursue this further here.

By re-arranging and taking a two dimensional Fourier transform of (7.28) we
obtain

.1C g/ Oq.k/ D Ow.k/1f ı q .k/; Ow.k/ D
NX
iD1

2�Ai

˛2i C k2
: (7.29)

By taking the inverse Fourier transform of (7.29), we obtain a nonlinear PDE of the
form

0 D �.1C g/L1q CL2f .q/; (7.30)



196 S. Coombes et al.

where L1 and L2 are linear differential operators containing even spatial derivatives
up to order 2N and 2N � 2 respectively (using the result that the inverse Fourier
transform of k2 is �r2). The PDE formulation (7.30) is formally equivalent
to (7.28).

In a similar way, it is possible to study the stability of stationary states with
respect to radial perturbations. System (7.1) and (7.2) is written as a PDE

L1.˛
�1@tuC uC ga/ D L2f .u/;

at D u � a:
(7.31)

Linear stability to radial perturbations can be inferred by posing u.r; t/ D q.r/ C
Q.r/e�t , a.r; t/ D q.r/C A.r/e�t and linearising L2f .u/ around q.r/, giving the
generalised eigenvalue problem

�L1Q D L2

�
f 0.q/Q

�
; � D 1C �

˛
C g

1C �: (7.32)

We can then compute stationary solutions of system (7.1) and (7.2) and their
spectra by prescribing suitable boundary conditions for (7.30) and (7.32) and dis-
cretising the operators L1 and L2: for steady states, we use Newton’s iterations to
solve (7.30); a few eigenvalues are then computed (without inverting L1) applying
Arnoldi iterations to (7.32). In passing, we note that it is also possible to study
stability of radial solutions with respect to perturbations with dihedral symmetry,
albeit this requires an amendment of the generalised eigenvalue problem (7.32).

Let us consider, for illustrative purposes, the wizard hat kernel used in Sect. 7.2
so that:

L1 D �1 � �2�r C�2
r ; L2 D �3 � �4�r ; (7.33)

where �r D @rr C r�1@r is the Laplacian operator expressed in radial coordinates
and

�1 D �2; �2 D 1C �2; �3 D �2 � 1
�
; �4 D 1 � 1

�
: (7.34)

We then solve the nonlinear boundary-value problem

0 D �.1C g/.�1 � �2�r C�2
r/q C .�3 � �4�r/f .qIh; ˇ/; r 2 .0; L/

(7.35)

0 D @rq.0/ D @rrrq.0/; 0 D @rq.L/ D @rrrq.L/; (7.36)

whose solutions can be continued in any of the control parameters �, � , h, ˇ and g.
We point out that, while equilibria of (7.1) and (7.2) do not depend upon ˛, this
parameter influences their stability. The boundary-value problem (7.35) and (7.36)
features no-flux boundary conditions at r D L, as in [20], but other choices are also
possible: alternatively, one could pose q.L/ D @rrq.L/ D 0.
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Fig. 7.5 Localised spots
found as solutions to the
boundary-value
problem (7.35). Top: branches
of spots for various values of
the sigmoidal firing-rate
steepness, ˇ; on the vertical
axis we plot a measure of the
active region, that is, R is the
largest number such that
q.R/ D h; the Heaviside
branch is obtained by
continuing equilibria of the
system (7.10)–(7.13). Bottom:
representative solutions along
the branch ˇ D 100. Control
parameters: � D 4, � D 0:5,
g D 1, L D 30

We discretised (7.35) via second order centred finite differences with 3,200 grid
points, on a domain with L D 30 and implemented a numerical continuation
code written in MATLAB. Stability computations are performed using MATLAB’s
in-built function eigs. In Fig. 7.5 we show a set of h-continuations for several
values of the parameter ˇ. These bifurcation diagrams are plotted in terms of the
largest coordinate R 2 Œ0; L� for which q.R/ D h; if q.r/ < h for all r 2 Œ0; L�,
as in pattern 4 of Fig. 7.5, we set R D 0. This allows us to compare steady
states of (7.1) and (7.2), for increasingly high values of the sigmoidal firing rate
steepness parameter ˇ, with steady states of (7.10)–(7.13), which correspond to the
Heaviside limit. Our numerical results show that the PDE formulation recovers the
Heaviside case when ˇ ! 1, as confirmed also from the stability computations,
contained in Fig. 7.6. Small-amplitude localised spots are unstable (bottom part of
the branches) for our choice of control parameters, namely � D 4, � D 0:5,
g D 1, L D 30 and ˛ D 1:2. The branch features a saddle-node bifurcation
and two Hopf bifurcations, which delimit a region of stable stationary spots.
We also plot the spectra corresponding to the Hopf bifurcations, noting that the
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Fig. 7.6 Stability of radial spots for two solution branches of Fig. 7.5, namely Heaviside (red)
and ˇ D 300 (light blue). The bottom part of the branch is unstable and restabilises at a Hopf
bifurcation (HB1). The branch becomes unstable at a second Hopf bifurcation (HB2). At the Hopf
bifurcation points, we computed the corresponding eigenvalues for the Heaviside case (7.10)–
(7.13) (red panels) and the first 10 eigenvalues obtained via (7.32) (light blue panels). Parameters:
˛ D 1:25, and other parameters as in Fig. 7.5

PDE formulation reproduces correctly the Hopf eigenvalues: other PDE eigenvalues
(8, in the computations of Fig. 7.6) are clustered around the eigenvalues found using
the interface approach (Heaviside firing rate) in Sect. 7.2. For steep sigmoids, the
position of HB1;2 changes slightly with respect to the Heaviside case.

Close to the HB2, we expect to find a branch of stable breathers, which
can be found by direct numerical simulation of (7.31) with radially-symmetric
operators (7.33). The time stepping is done without providing an explicit inverse
of the operator L1, but recasting (7.31) as

�
˛�1L1 0

0 1

�
@t

�
u
a

�
D
��L1 �gL1

1 �1
� �

u
a

�
C
�
L2f .u/
0

�
; (7.37)

discretising the left-hand side with a block-diagonal, sparse, time-independent mass
matrix and then employing MATLAB’s ode23s solver with RelTol=1e-3 and
AbsTol=1e-6. In the simulations of Fig. 7.7, we started from a stationary spot on
the stable branch, decreased the value of h quasi-statically every 2;000 time units
(corresponding to at least 100 oscillation cycles of the breathers) and found stable
solutions with various amplitudes, spatial extensions and oscillation periods.

We notice that the breathers found with steep sigmoids have smaller ampli-
tudes with respect to the ones found for the ODE model (7.10)–(7.13) (Fig. 7.3).
Furthermore, the latter disappear at a limit point, while the former persist for much
smaller values of the threshold h. This is to be expected as the ODE model is
only valid under the assumption of a slowly varying R. In general we find that
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Fig. 7.7 Breathers originating from HB2 for ˇ D 300. Direct numerical simulations of (7.31) with
radially-symmetric operators (7.33) show the existence of stable breathers, which are identified
with the minimum and maximum of R.t/ during an oscillation period (red dots). As the threshold
value h decreases, we find breathers with larger amplitudes, wider spatial extensions and longer
periods. Numerical parameters as in Fig. 7.6

r
900

t

0

200

−0.06

0.14

u

Fig. 7.8 Radial defect found by direct numerical simulation of system (7.31) with linear operators
L1, L2 given by (7.33). This solution is found on a large domain, L D 90, for h D 0:034 and
shallow sigmoidal firing rate, ˇ D 50. Other parameters as in Fig. 7.6

the existence and stability of breathers depends sensitively on the steepness of the
sigmoid: for instance, setting ˇ D 30 and repeating the experiment of Fig. 7.7
leads to a trivial spatially-homogeneous equilibrium; on the other hand, increasing
the sigmoid steepness to ˇ D 50 leads to the formation of radial defects, that is,
solutions in which a stable breather core emits periodically a travelling wave (see
Fig. 7.8). Since our patterns are radially symmetric, these solutions correspond to a
radial source emitting periodically travelling rings. Similar coherent structures were
previously analysed in [25], continued in parameter space in [2] and their existence
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was also reported in a nonlocal model with linear adaptation and localised stationary
input by Folias and Bressloff [15].

7.4 Amplitude Equations for Breathing

Here we focus on a sigmoidal firing rate, such as given by (7.3), and show how to
develop a description of the amplitude of a breathing solution just beyond the point
of a breathing instability. We closely follow the ideas in [18], which were originally
developed for the study of a three component reaction diffusion equation. A related
analysis for one dimensional neural field models (and Heaviside firing rate function)
can be found in [14] (and see also Chap. 4).

It is convenient to introduce the vector X D .u; a/ and the vector field F , and
write the model (7.1) and (7.2) in the form

Xt D F .X I �/; (7.38)

where � represents a vector of system parameters, e.g. � D .˛; g; ˇ; h/, and

F .X I �/ D MX C ˛w˝ F.X/; (7.39)

with

M D
��˛ �˛g
1 �1

�
; F .X/ D

�
f .u/
0

�
: (7.40)

Here the symbol ˝ denotes a two-dimensional spatial convolution.
Linearising about (7.28) gives

@tV D L V; (7.41)

where

L DM C ˛w˝ f 0.q/
�
1 0

0 0

�
: (7.42)

For separable solutions of the form V.r; t / D .r/e�t , we generate an eigenvalue
problem:

L  D �: (7.43)

Since the operator L is in general not self-adjoint, then the eigenvalues, �,
and eigenfunctions, .r/, may be complex. Because of translation and rotation
invariance we expect the existence of an eigenvalue with � D 0. The stationary spot
is stable if all other eigenvalues have negative real part. For a breathing instability we
are interested in the case that a pair of complex conjugate eigenvalues pass through
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the imaginary axis under variation of some parameter, namely L  D ˙i!.
Moreover, we shall focus on the case of radially symmetric breathing motions so that
.r/ D .r/. We shall assume that a stationary spot S exists for a set of parameters
� D �c for which F .S I �c/ D 0. We now introduce a small parameter � 2 R

and write � D �c C �.0; 0; 1; 0; : : : ; 0/, where the non-zero entry is associated to
the system parameter that we wish to vary (and we only consider co-dimension 1
bifurcations here). In this case

Xt D F .X I �c/C ��.X/; (7.44)

where ��.X/ D F .X I �cC�/�F .X I �c/. For small � we expect to find a solution
of the form

X.r; t / D S.r/C A.t/ei!t ..r/C �ı.r//C ccC �.r; t /; (7.45)

where cc denotes the complex conjugate of the previous term. Here A.t/ is a slowly
evolving amplitude (At � �A), �ı is an unknown perturbation, and � represents
a decaying function in an orthogonal space to spanfg. Substituting into (7.44) and
equating terms in ei!t gives an equation that relates A and ı:

�A .L � i!/ ı D PA � �A� 0 � 1
2
A2AF

000

2: (7.46)

Here the multiplication of vectors 2 is interpreted component wise,  denotes the
complex conjugate of , � 0 is the Fréchet derivative of � with respect toX evaluated
at X D S and F .n/ is the nth Fréchet derivative of F with respect to X evaluated
at X D S :

F .n/ D ˛w˝ dn

dqn
f .q/

�
1 0

0 0

�
: (7.47)

According to the Fredholm alternative, Eq. (7.46) is solvable as long as the right
hand side is orthogonal to the kernel of the operator L � i!. It is now convenient to
introduce the operator L �Ci!, where L � is adjoint to, and has the same symmetry
properties as L . We shall denote the corresponding zero eigenfunction of L �C i!
by �. We define the inner product of two vector functions a and b as

ha j bi D
Z
R2

dra.r/ 	 b.r/; (7.48)

where the dot 	 denotes a vector dot product. Projecting (7.46) onto � and using
the fact that h� j .L � i!/ıi D 0 we obtain an equation for the evolution of the
complex amplitude A.t/:

PA D A.M1jAj2 CM2�/; (7.49)
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where

M1 D h
� j F 000

2i
2h� j i ; M2 D h

� j � 0i
h� j i : (7.50)

This analysis provides the basis for understanding the bifurcation diagrams obtained
numerically in Sect. 7.3 and their criticality. Equation (7.49) has a trivial solution
A D 0 describing a stationary spot, which for ReM2 < 0 is a stable focus. If ReM2

increase through zero the spot becomes unstable. For Re M2 > 0 there is a non-
trivial periodic solution A.t/ D Rei˝t , where

R D
s
��Re M2

Re M1

; ˝ D �Im M2 CR2Im M1: (7.51)

This non-trivial solution, describing a breather, is stable for Re M1 < 0 (supercrit-
ical bifurcation) and unstable for Re M1 > 0 (subcritical bifurcation). Considering
a variation in the parameter g around some critical value gc then

� 0 D @M

@g

ˇ̌
ˇ̌
gDgc

D
�
0 �˛
0 0

�
: (7.52)

In the Appendix we show that � can be written in closed form as a linear
transformation of :

� D f 0.q/
�
1=.˛g/ 0

0 �1
�
: (7.53)

This means that we only have to numerically solve L  D i! to compute the
coefficients M1 and M2 in (7.49).

As well as a breathing bifurcation it is also possible for a stationary spot to
undergo an instability to a travelling spot, via a drift instability. This has been
recently studied for the case of a Heaviside firing rate [8]. Next we show how to
analyse the case of a smooth firing rate.

7.5 Drifting

Here we adapt an argument in [23] to show how a spot can undergo an instability
to a drifting pulse as g is increased through 1=˛. From invariance of the full system
(under rotation and translation) there exist Goldstone modes i D @S.r/=@xi , i D
1; 2, such that

L i D 0: (7.54)
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One of the possible destabilisations of the spot S occurs when one of the other
modes exactly coincides with i under parameter variation. Because of this
parameter degeneracy a generalised eigenfunction  i of L appears:

L i D �i : (7.55)

The solvability condition for (7.55) leads to an equation defining the bifurcation
point in the form

h�i j i i D 0; (7.56)

where �i is the eigenfunction of the operator L � with zero eigenvalue. More clearly
we write L �

�
i D 0 and L � 

�
i D ��i , normalised by h i j j i D h i j  �

j i D 0,
and

hi j  �
j i D h i j �j i D �ıi;j : (7.57)

Using (7.53) the inner product in Eq. (7.56) can be easily calculated, giving

0 D
�
1

˛g
� 1

�Z
R2

drf 0.q.r//
�
@q.r/

@xi

�2
: (7.58)

Hence, a spot will lose stability as g increases through 1=˛ and begin to drift
(translate). Note that a model of synaptic depression can also destabilise a spot in
favour of a travelling pulse [4].

7.6 Center Manifold Reduction: Particle Description

Here we adapt the technique in [11], originally developed to describe spot dynamics
in multi-component reaction-diffusion equations, to derive a reduced description
of a slowly moving spot. Beyond a drift instability, and for small �, we expect to
find a solution of (7.44) that is a translating spot. In terms of a translation operator
�.p/u.r; t / D u.r � p; t /, p 2 R

2 we may write this solution as

X.r; t / D �.p/
2
4S.r/C

2X
jD1

aj .t/ j .r/C �.r; t /
3
5 ; (7.59)

where p denotes the location of the spot, a1;2 are time dependent amplitudes, and �
is a function in an orthogonal space to spanfi ;  ig. Differentiating X with respect
to t gives

Xt D �.p/
2
4� Pp 	 rrX C

2X
jD1
Paj j C �t

3
5 : (7.60)
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Using (7.59) we may calculate the first term on the right hand side of (7.60) using

Pp 	 rrX D Pp 	 rrS.r/C a1 Pp 	 rr 1.r/C a2 Pp 	 rr 2.r/C Pp 	 rr�.r; t /: (7.61)

The corresponding right hand side of (7.44) for the solution (7.59) can be
expanded as

�.p/

8<
:�

2X
jD1

aj jCL �C1
2
F

00

W 2C1
6
F

000

W 3C��.S.r/C�� 0.S.r//WC : : :
9=
; ;

(7.62)

where the N th power of the vector W D P
j aj j C � is interpreted component

wise. Taking the inner product of both sides of (7.44) with  �
i gives

hXt j  �
1 i D � Pp1h1 j  �

1 i; (7.63)

hXt j  �
2 i D � Pp2h2 j  �

2 i;
hF .X I �c/C ��.X/ j  �

1 i D �a1h1 j  �
1 i;

hF .X I �c/C ��.X/ j  �
2 i D �a2h2 j  �

2 i:
Using (7.44) and equating expressions in (7.63) gives an equation for the evolution
of the spot position as

Pp D a: (7.64)

Hence we may interpret a as the spot velocity. To determine the dynamics for a we
write � as a function that is quadratic in the amplitudes ai and linear in �:

� D a21V1.r/C a22V2.r/C a1a2V3.r/C �V4.r/: (7.65)

Demanding that terms at this order balance requires

a1a	rr 1Ca2a	rr 2 D L �C 1
2
F

00

.a	 /2C��.S/;  D . 1;  2/: (7.66)

Equating terms in aiaj and � shows that

�L V1.r/ D 1

2
F

00

. 1/
2 Crx1 1; (7.67)

�L V2.r/ D 1

2
F

00

. 2/
2 Crx2 2; (7.68)

�L V3.r/ D F
00

 1 2 Crx2 1 Crx1 2; (7.69)

�L V4.r/ D �.S.r//: (7.70)
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Here multiplication of vectors  i j is interpreted component wise. We now take

the inner product of both sides of (7.44) with �i :

hXt j �1i D � Pp1h�x1 j �1i C Pa1h 1 j �1i; (7.71)

hXt j �2i D � Pp2h�x2 j �2i C Pa2h 2 j �2i; (7.72)

hF .X I �c/C ��.X/ j �i i D hL �C 1

2
F

00

W 2 C 1

6
F

000

W 3 C ��.S.r//

C �� 0.S.r//W j �i i: (7.73)

Making use of (7.66) and working to only cubic order in the amplitudes so that
W 2 � .a 	  /2 C 2.a 	  /� and W 3 � .a 	  /3 we find that

� Paj D hF 00

.a 	  /� j �j i C
1

6
hF 000

.a 	  /3 j �j i C �h� 0.S/.a 	  / j �j i

C ha 	 rr� j �j i: (7.74)

Introducing the complex amplitude a D a1 C ia2 gives us the Stuart-Landau
equation

Pa D a.M1jaj2 CM2�/; (7.75)

where

�M1 D 1

6
hF 000

 3
1 j �1i C hF

00

 1V
2
1 j �1i C h@x1V1 j �1i; (7.76)

�M2 D hF 00

 1V4 j �1i C h� 0.S/ 1 j �1i C h@x1V4 j �1i: (7.77)

Hence, there is a pitchfork equation with branches of solutions .a1; a2/ D .0; 0/

(a standing spot) and jaj2 D �M2�=M1 for M2�=M1 < 0 and M1;2 ¤ 0

(a travelling spot). Beyond a drift instability the speed of the travelling spot will
scale as

pj�M2=M1j for small �. Treating g as the bifurcation parameter we see
that the speed scales as

p
g � 1=˛, which compares well with direct numerical

simulations near the bifurcation point (not shown).

7.7 Scattering

For anatomical interactions which decay exponentially quickly, such as Mexican or
wizard hat functions, then we would expect a neural field model with a single spot
solution to also support multiple spots, at least for some large separation between
spots. This then begs the question of how spots interact when they come close
together. Interestingly it has already been found numerically that spots in a model
with spike frequency adaptation can scatter like dissipative solitons [8]. Here we
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adapt techniques originally developed by Ei et al. [10, 11], for multi-component
reaction diffusion systems, to show that two slowly moving spots will reflect from
each other in a head-on collision.

We introduce the sum of two spots with centers offset by a vector h as

S.rIh/ D S.r/ � S.r � h/; S.r/ D S.jrj/: (7.78)

We then consider solutions of the form

X.r; t / D �.p/ ŒS.rIh/C a 	  .r/C b 	  .r � h/C �.r; t /� : (7.79)

We may then adapt the technique of Sect. 7.6, closely following [11], to derive the
equations of motion for .p;h; a;b/ as

Pp D aCG1.h/; (7.80)

Ph D b � aCG1.h/ �G2.h/; (7.81)

Pa D rW.a/CH1.h/; (7.82)

Pb D rW.b/CH2.h/; (7.83)

where

G1.h/ D
"
hF .S.	Ih// j  �

1 i
hF .S.	Ih// j  �

2 i

#
G2.h/ D

"
hF .S.	 C hIh// j  �

1 i
hF .S.	 C hIh// j  �

2 i

#
; (7.84)

H1.h/ D
"
hF .S.	Ih// j �1i
hF .S.	Ih// j �2i

#
H2.h/ D

"
hF .S.	 C hIh// j �1i
hF .S.	 C hIh// j �2i

#
; (7.85)

and

W.x/ D 1

4
M1jxj4 C 1

2
�M2jxj2: (7.86)

Now for a spot shape like that of (7.23) we may use the asymptotic properties
of K0.r/ to see that q.r/ � exp.�r/=pr for large r . We expect similar decay
properties of spots in the case of steep sigmoidal firing rates. In this case we can use
results from [11], valid as h D jhj ! 1, to represent the interaction functions in
the form

Gi.h/ D .�1/i�1G0 1p
h

e�he; Hi .h/ D .�1/i�1H0

1p
h

e�he; e D h
h
;

(7.87)

for constants G0 and H0, which we shall assume to be positive.
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Fig. 7.9 Phase plane for the
dynamical system (7.89),
showing nullclines and some
typical trajectories. The
consequence for spot-spot
interactions is that for small �
then slowly moving spots will
scatter from each other by
reflection. Parameters are
� D M2 D G0 D H0 D 0:1

and M2 D �0:5

Now consider the interaction of two travelling pulses, with one centred at p and
another at �p moving on a line joining their centres so that the separation between
them is h D 2p. For simplicity we shall take p to be along the x1 axis and write
p D p.1; 0/ and set a D a.1; 0/. In this case we have that

Pp D aCG0f .p/; Pa DM1a
3 CM2a�CH0f .p/; (7.88)

where f .p/ D e�2p=
p
2p. Introducing z D f .p/ we may rewrite this dynamical

system as

Pz D �2zQ.z/ŒaCG0z�; Pa D H0z � f .a/; (7.89)

where Q.z/ D 1 C .4f �1.z//�1 > 0 and f .a/ D �M1a
3 � M2a�. There are

stationary solutions of (7.89) in the .a; z/ plane at .v�; 0/, .0; 0/, and .vC; 0/, where
v˙ D ˙

p�M2�=M1 (withM1 < 0 andM2� > 0). Linear stability analysis around
a stationary solution gives a pair of eigenvalues that determine stability in the form
�1 D �2a and �2 D �f 0.a/. Hence the only stable solution is .vC; 0/. An analysis
of the phase plane, see Fig. 7.9, shows that trajectories that start with a < 0 and
small z (namely spots moving with negative velocity toward each other from far
apart) ultimately move to a D vC > 0 with small z so that the spots reverse their
motion and travel with positive velocity away from each other. Hence we expect two
travelling spots to reflect from each other, as shown in a simulation of the full model
in Fig. 7.10.

7.8 Discussion

In this chapter we have shown how to analyse the properties of spots in planar neural
field models with spike frequency adaptation, using a mixture of techniques ranging
from direct numerical simulations, through amplitude equations to explicit results
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Fig. 7.10 Results of a direct numerical simulation of two scattering spots in the neural field model
with Heaviside firing rate and parameters � D 4, � D 0:5, g D 0:5 and ˛ D 5. The overall spatial
domain has a size of 51:2 � 51:2 of which we see a zoomed set of seven snapshots at indicated
times

for the special case of a Heaviside firing rate function using an interface approach.
There are a number of natural extensions of this work that may be developed. The
scattering theory that we developed is valid only for slowly moving spots, which is
expected to be the case when model parameters are near to that defining the onset
of a drift instability for a single spot. However, numerical simulations show that
fast moving spots may scatter differently to slow moving ones, with the possibility
of fusion and annihilation, as well as repulsion. In this case it is likely that these
more complicated scenarios can be understood using the scattor theory of Nishiura
et al. [22]. In this framework the scattering process is understood in terms of the
stable and unstable manifolds of a certain unstable pattern that has the form of a two-
lobed peanut shape. These solutions are expected to arise via a symmetry breaking
bifurcation of spots to solutions with D2 symmetry (generated by rotations of � ,
and reflection across a central axis). The computation of the scattor requires the
numerical calculation of non-rotationally symmetric solutions, and the numerical
schemes for PDEs that we have described here are easily generalised. Moreover, for
the Heaviside firing rate we can use a formulation in [8] to express such solutions
purely as line integrals, with a substantial reduction in dimensionality that will
facilitate an exhaustive numerical bifurcation analysis. The interaction of drift and
peanut modes of instability is known to generate a rotational motion of travelling
spots, at least in three component reaction diffusion equations [26]. It should also
be possible to extend the center manifold reduction developed here to describe the
behaviour of localised solutions in the neighbourhood of such a co-dimension two
bifurcation point. Finally, we flag up the utility of the interface approach in two
spatial dimensions for analysing not only localised states, but extended solutions
such as spirals [20]. All of the above are topics of ongoing research and will be
reported upon elsewhere.

Acknowledgements The authors would like to acknowledge useful discussions with Paul
Bressloff, Grégory Faye, Carlo Laing and David Lloyd that have helped to improve the presentation
of the ideas in this chapter.
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Appendix

To establish that � can be written as a linear transformation of  we proceed by
writing M D P diag .�C; ��/ P�1, where P D ŒvC v��, and v˙ are the right
eigenvectors of M :

v˙ D
�

˛g

�.˛ C �˙/

�
; (7.90)

with

�˙ D �.1C ˛/˙
p
.1 � ˛/2 � 4˛g
2

: (7.91)

In this case we may recast the eigenvalue problem L  D � as

�
�C 0

0 ��

�
P�1 C ˛w˝ f 0.q/P�1

�
1 0

0 0

�
 D �P�1: (7.92)

Similarly we may write M� D R diag .�C; ��/ R�1, where R D ŒwC w��, and
w˙ are the right eigenvectors of M�:

w˙ D
�

1

˛ C �˙

�
: (7.93)

The adjoint operator L � can be found as

L � DM� C f̨ 0.q/w˝
�
1 0

0 0

�
: (7.94)

By inspection it can be seen that the adjoint equation L �� D �� has a solution

� D f 0.q/RP�1; (7.95)

which can be evaluated to give (7.53). Here we make use of the result that

PR�1
�
1 0

0 0

�
RP�1 D

�
1 0

0 0

�
: (7.96)
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Chapter 8
Heterogeneous Connectivity in Neural Fields:
A Stochastic Approach

Chris A. Brackley and Matthew S. Turner

Abstract One of the traditional approximations applied in Amari type neural field
models is that of a homogeneous isotropic connection function. Incorporation of
heterogeneous connectivity into this type of model has taken many forms, from
the addition of a periodic component to a crystal-like inhomogeneous structure. In
contrast, here we consider stochastic inhomogeneous connections, a scheme which
necessitates a numerical approach. We consider both local inhomogeneity, a local
stochastic variation of the strength of the input to different positions in the media,
and long range inhomogeneity, the addition of connections between distant points.
This leads to changes in the well known solutions such as travelling fronts and
pulses, which (where these solutions still exist) now move with fluctuating speed
and shape, and also gives rise to a new type of behaviour: persistent fluctuations
in activity. We show that persistent activity can arise from different mechanisms
depending on the connection model, and show that there is an increase in coherence
between fluctuations at distant regions as long-range connections are introduced.

8.1 Introduction

Continuum neural field models of the type proposed by Amari [1, 2] (see also
Chap. 3) have been used as a model for cortical tissue, describing phenomena such
as travelling fronts and pulses of activity [12, 27], stationary and breathing bumps
[15, 16, 18, 28], and instabilities leading to pattern formation such as might be
responsible for visual hallucinations [6, 22] (see also Chaps. 1, 4, and 7). Much of
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this work uses the assumption that neural connectivity in the tissue is homogeneous
and isotropic. This simplification may give an adequate first order approximation of
the behaviour of the tissue in some situations (e.g. fronts of activity in cortical slices
[11]), but it is mainly motivated by the fact that it leads to much more tractable
equations. There have been several attempts to include more realistic connections in
this type of model: for example travelling fronts in a periodically varying connection
function have been studied in Refs. [7, 9, 13, 25], whilst Ref. [8] considers a crystal
like structure for connectivity such as might be expected in the visual cortex, and
long range point connections have been studied in Refs. [5, 24, 26, 29]. Spatial
inhomogeneity can also be introduced via external input to the fields [10, 17, 18].

In this chapter we take a different approach, and consider quenched stochastic
inhomogeneous connections which are introduced in addition to a homogeneous
component. To achieve this we numerically construct spatially continuous, stochas-
tic connection functions. With such a scheme it is not possible to solve the field
equations analytically, so instead we use approximation and numerical methods.

We consider a two population continuum model, given in two dimensions by

�u
@u

@t
C u.x; t / D

Z
�

w.x; x0/f
�
u.x0; t /

�
dx0 � gv.x; t /;

�v
@v

@t
C v.x; t / D f .u.x; t // ; (8.1)

where � denotes the extent of the system. The field u.x; t / describes an excitatory
neural population and v.x; t / local inhibition (which can be interpreted either as
an inhibitory neural population, or as nonlinear local feedback). We set the time
units of the system by choosing �u D 1; �v and g give the relative response time
and strength of the inhibition. We employ the usual approximation for the firing rate
function, taking it to be a step at threshold � , i.e. f .u/ D �.u��/where 0 < � < 1.

For the inhomogeneous connection function w.x; x0/ we consider two different
forms. First in Sect. 8.2 we consider a local inhomogeneity where the connection
weight varies with position, but there are no long range connections; then in
Sect. 8.3 we consider a connection function in which long range connections can be
introduced by varying a single parameter. In both cases we examine the well known
solutions of propagating fronts and pulses of activity in one dimension, before
describing a new type of behaviour—namely persistent fluctuations of activity—in
both one and two dimensional systems.

We perform numerical simulations of Eq. (8.1) by discretizing space, and then
using a 4th order Runge-Kutta algorithm to solve a set of first order ordinary
differential equations. If the connection function w.x; x0/ is chosen carefully, the
integral on the right hand side of the equation for u.x; t / can be written as a
convolution. Although this leads to some loss of generality, the convolution theorem
can then be exploited—using a fast Fourier transform algorithm [19] the integral can
be very efficiently solved.
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8.2 Local Inhomogeneity in Connection Density

There is some experimental evidence [21] that the number of synapses between
two neurons is a Gaussian function of their separation. Thus we adopt a Gaussian
connection function, and add to it a small inhomogeneous perturbation. In this
section we assume that there are no long distance connections and write our
connection function in 1D as

w.x; x0/ D wH.x � x0/Œ1C A.w1.x/C w2.x
0//�; (8.2)

where wH is a normalised Gaussian function

wH.y/ D 1p
�
e�y2 ; (8.3)

and the constant A gives the magnitude of the inhomogeneous connections. The
unit width of the homogeneous function defines the spatial length scale of the
connections (and all lengths given in the rest of the chapter are quoted in these units).
For w1 and w2 we numerically generate functions which vary stochastically (but
continuously) in space with Gaussian statistics, zero mean, and unit mean squared,
and which are auto-correlated on a length � (there is no correlation between the
functions). We include two different functions (of x and x0) in order to remove
any bi-directionality in the connections; for simplicity each is a different stochastic
realisation of the function with the same statistics. This can loosely be thought
to represent additional (to the homogeneous) connections into point x and out of
point x0. It is this separability of the connection function which allows the integral
to be written as a convolution. Note that although the functions are constructed
stochastically, they do not vary with time, so the dynamics of the system are entirely
deterministic.

The inhomogeneity is therefore characterised by its magnitudeA, and correlation
length �. We identify two different regimes, � < 1 and � > 1. The first represents
local heterogeneity in the connections, i.e., on length scales less than the width of
wH ; the second can be interpreted as variation of connection strength on lengths
larger than the width of wH , i.e., locally the connections appear homogeneous, but
the overall connection density varies on longer length scales. For the latter case it is
important to note that whilst connection density varies on long length scales in this
regime, we have not included any long range connections. We also note that since
u.x; t/ represents a population of excitatory neurons, only a positive connection
function makes physical sense. Thus in the present work we only consider values of
A that are small enough so that w.x; x0/ remains positive for all x, x0.

8.2.1 Travelling Fronts and Pulses

We first examine the effect of local stochastic connectivity on the well known
solutions to Eq. (8.1) in 1D, i.e. travelling fronts and pulses [27]. We treat the
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inhomogeneity as a small perturbation to the system; initially we add a constant
additional connection weight � to a homogeneous function wH.y/, later replacing
this with the inhomogeneous connections � ! �.x; x0/ D AŒw1.x/C w2.x0/�, and
expanding �.x; x0/ D N� C ı�.x; x0/ about N� D 0. We consider the equations

�u
@u

@t
C u.x; t/ D

Z
�

wH.x � x0/.1C �/f �u.x0; t /
�

dx0 � gv.x; t/;

�v
@v

@t
C v.x; t/ D f .u.x; t// ; (8.4)

where wH.y/ is given in Eq. (8.3). The uniform steady states are found by setting
@tu D @tv D 0 and assuming no x dependence. These are then given by the pairs
of values of u and v which simultaneously solve

u D .1C �/f .u/ � gv;
v D f .u/: (8.5)

The stability of the points can be shown in the standard way by expanding u.x; t/ D
Nu C ıue!t and v.x; t/ D Nv C ıve!t in Eq. (8.4), and then finding the eigenvalues
!. There are stable fixed points at .Nu1; Nv1/ D .0; 0/ and .Nu3; Nv3/ D .1C � � g; 1/,
and an unstable saddle point at .Nu2; Nv2/ D .�; 1/; note that the fixed point .Nu3; Nv3/
only exists if 1C� �g > � . Travelling wave fronts are possible when there are two
stable steady states—the front connects a region in the .Nu1; Nv1/ state with a region
in the .Nu3; Nv3/ state.

The speed of the front can be found by following Ref. [12]. The equations for
u.x; t/ and v.x; t/ can be solved using the Green’s functions

�u.s/ D
(

1
�u
e�s=�u s � 0;

0 s < 0;
and �v.s/ D

(
1
�v
e�s=�v s > 0;

0 s � 0; (8.6)

and a change of variables � D x�ct can be used to transform to a co-moving frame
where the front is stationary with shape given by

q.�/ D
Z 1

0

�u.s/ Œ u.� C cs/ � g v.� C cs/� ds; (8.7)

where

 u.�/ D
Z 1

�1
.1C �/wH.y/f .q.� � y//dy; (8.8)

 v.�/ D
Z 1

0

�v.s/f .q.� C cs//ds: (8.9)
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The boundary conditions are q.0/ D � , with q.�/ < � for � > 0, and q.�/ > � for
� < 0. Since the firing rate is taken to be a step function f .u/ D �.u � �/, these
integrals can be solved, and then the front speed c is given by

� D
8<
:

1C�
2

h
1 � e 1

4c2
�
1 � erf. 1

2c
/
�i
c > 0;

1C�
2

h
1C e 1

4c2
�
1C erf. 1

2c
/
�i
c < 0:

(8.10)

which can be solved numerically (a different choice of wH.y/ can lead to analytic
solutions). Figure 8.1a, b show how c depends on � and � ; there is a minimum value
of � below which there is no front solution. There is no dependence on �v or g. It
can be shown using the Evans’ function method [14] that when both stable fixed
points .Nu1; Nv1/ and .Nu3; Nv3/ exist, the moving front solution is also stable.

So far we have proceeded as in Ref. [12], except for the inclusion of the constant
� which represents the additional connections that are added to the system. The
extension to spatially varying connections is simply a matter of the replacement
� ! �.x; x0/ D AŒw1.x/C w2.x0/�. Equation (8.8) becomes

 u.�/ D
Z 1

�1
�
1C �.x; x0/

�
wH.y/f .q.� � y//dy: (8.11)

We assume for the moment that this replacement does not change the fact that there
are two stable steady states; we shall discuss what happens if this is not the case
at the end of this section. Considering first the regime where � is shorter than the
unit width of the homogeneous connection function and the length c�v , we find that
the inhomogeneity will be averaged out, and effectively �.x; x0/ D 0. That is to
say, the integral in Eq. (8.11) is effectively an average of �.x; x0/ over the width of
the function wH.y/; since in the � < 1 regime �.x; x0/ varies on a length scale
much shorter than this and has zero mean, we expect behaviour to be the same as
the homogeneous case.

In the limit of large � (which we argued above is biologically relevant), w2.x0/
will vary on length scales much longer than the width of the homogeneous
connections wH.y/, and so in the integral we can approximate w2.x0/ � w2.x/
and then �.x; x0/ � �.x/ D AŒw1.x/ C w2.x/�. We then proceed to expand
�.x/ D N� C ı�.x/ about N� D 0. We argue that the speed c is given by a function
c D h.�/ (the solution to Eq. (8.10)), and expand to second order, giving

c D h. N�/C ı�h0. N�/C ı�2

2
h00. N�/C O.ı�3/: (8.12)

Since the connection function is composed of Gaussian distributed functions with
zero mean, we know that N� D 0 and hı�2i D 2A2, hı�4i D 6A4 etc. and the odd
moments are zero, with A the amplitude of the inhomogeneity. We can therefore
write the mean and variance of the speed
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a b

c d

Fig. 8.1 Plots (a) and (b) show, for the homogeneous system given by Eq. (8.4), how the front
propagation speed c varies with � (at constant �) and � (at constant � ) respectively. Note that there
is a minimum value of � below which the front solution does not exist. There is no dependence
on �v or g, and where moving front solutions exist they are stable. Plots (c) and (d) show how
the mean and variance of the speed of a front travelling through an inhomogeneous system with
two stable steady state solutions depends on the magnitude of the inhomogeneous connections A.
Points, diamonds and squares show results for � D 0:5; 5 and 10 respectively, averaged over 10
realisations of the stochastic connections. The solid line gives the analytic result for the variance
of c derived in the large � limit (Eq. (8.13)). The other parameters used are � D 0:1 and g D 0:2

hci D h.0/C A2h00.0/C O.ı�4/;

h.c � hci/2i D 2A2h0.0/2 C 1

2
A4h00.0/2 C O.ı�4/: (8.13)

From inspection of the plot of c against � (Fig. 8.1b) there is an approximately
linear relationship at � D 0; thus we approximate the first derivative h0.0/ as a
constant (found numerically from Eq. (8.10) to be h0.0/ D 2:835) and neglect higher
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derivatives. We therefore expect the mean speed to be independent of A at linear
order, and the variance to vary as A2.

We test these predictions by using numerical simulations of an inhomogeneous
system where there are two stable steady states throughout, and where initial
conditions have been chosen so as to lead to travelling fronts (for example an initial
condition with a discontinuity in the u variable, u.x < 0; t D 0/ D 1; u.x >

0; t D 0/ D 0; v.x; t D 0/ D 0). Figure 8.1c, d show how the mean and variance
of the speed of the front vary with A for several values of �. The averages are
over not only the speed of a single front as it moves through the system, but also
over many systems with different realisations of the stochastic connections. We
find that for small A the mean speed is approximately constant, but for larger A
our approximation fails, as the mean speed starts to decrease. The solid line shows
the equation 2h0.0/A2 with h0.0/ D 2:835, and we find that this becomes a better
approximation as � increases.

As well as travelling front solutions, homogeneous models of this type can
also support travelling pulses. Again we investigate the effect of inhomogeneous
connections by first considering a homogeneous additional connection weight � ,
before expanding about this. As shown in Ref. [12] the derivation of the speed
and shape of a travelling pulse follows in a similar manner to that of the front,
but with boundary conditions q.0/ D q.�/ D � , q.�/ > � for 0 � � < �

and q.�/ < � otherwise; i.e. the pulse has width �. Since this system is isotropic,
solutions with c > 0 and c < 0 will be identical under the transformation x ! �x,
so we only consider c > 0. Analysing Eq. (8.4) with these boundary conditions,
we find equations relating c and � to g, � , �u and � (similar to Eq. (8.10) for the
fronts). Figure 8.2 shows the dependence of pulse width and speed on � and g
for � D 0:1 and �v = 1. Note that for some parameters there are two branches of
solutions. The stability can again be found by constructing an Evans function, which
allows identification of a stable and an unstable branch.

To examine whether the system still supports travelling pulses in the presence
of inhomogeneous connections we proceed as before, and replace � ! �.x/ D
N� C ı�.x/, and consider the � > 1 case. From Fig. 8.2 we find that stable solutions
only exist at � D 0 for large g, and that they only exist over a narrow range of � .
This means that in a typical system we require large g and small hı�2i for there to
be a significantly large regions where pulses are stable. We observe that in such a
system there are regions in which we can initiate a travelling pulse which will move
with fluctuating speed and width; the pulse cannot propagate into regions in which
locally a stable pulse solution does not exist, i.e. a pulse will die if it encounters
such a region.

In summary front solutions exist and are stable in a homogeneous system
provided there are two stable steady states and � is greater than some minimum
value which depends on the firing threshold � (Fig. 8.1b). Pulse solutions are only
stable for a small range of � and g. With inhomogeneous connections fronts can
still propagate provided there remains two stable steady states, and pulses can
be initiated and propagate only in the regions in which they are locally stable.
Fluctuations in the speed of fronts and pulses which arise due to stochasticity in
firing, rather than in connectivity are studied in Chap. 9 of this book.
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a

c d

b

Fig. 8.2 Plots showing how the speed and width of a travelling pulse in the homogeneous system
given by Eq. (8.4) vary with the constant � , for different values of the inhibitory population strength
g. The upper branches are found to be stable (heavy lines) and the lower branches are unstable
(light lines). Other parameters are � D 0:1 and �v D 1

We have so far examined inhomogeneous systems in which there are either one
or two stable steady states everywhere in the system; we now turn our attention to
what happens if this is not the case.

If we define the function

W.x/ D
Z L

0

wH.x � x0/Œ1C A.w1.x/C w2.x
0//�dx0 � g; (8.14)

then from Eq. (8.1) one notes that if W.x/ > � for all x, then by setting the
derivatives to zero and assuming u.x; t/ D u.x/ the steady states are given by

Nu.x/ D W.x/f .Nu.x// ; (8.15)
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i.e. Nu1.x/ D 0 and Nu3.x/ D W.x/. If the condition W.x/ > � is not true for all
x, then in the regions where W.x/ < � there is only one steady state (Nu1 D 0); for
values of x where there are two steady states, the system can exist in the upper state
only locally. In such a system a new kind of behaviour can be observed. Broadly
speaking, we see patches of high activity, patches of low activity and regions which
fluctuate between the two. Such persistent fluctuations have not previously been
observed in neural field models without the addition of external input.

8.2.2 Persistent Fluctuations

In this section we examine in more detail this new type of fluctuating behaviour.
In order to qualitatively understand how the fluctuations arise in systems with
stochastic inhomogeneous connections we also examine some deterministic inho-
mogeneous connection functions. We then quantitatively study the patterns of
activity in the stochastic system in the fluctuating state, seeking to understand
what this behaviour might mean for information transfer across neural tissue. This
involves measurements of the mean and mean squared activity, and spatial and
temporal correlations in the activity patterns, and consider how these depend on the
properties of the underlying connections. The same fluctuating behaviour is seen in
both 1D and 2D systems.

Figure 8.3 shows an example of a 1D system where we observe persistent
fluctuations in u.x; t/ at some values of x. Also shown is the time evolution of
the activity, both at some arbitrarily chosen points in the system, and on average.
We find that at some points u appears to oscillate periodically, whilst at others it
appears more chaotic. The spatially averaged activity1 hu.x; t/ix appears to fluctuate
chaotically. (In fact a numerical measurement of the Lyapunov exponents of the
discretized approximation of the system shows this to be a limit cycle with an
extremely long period.)

So, what parameter values are required in order to see the fluctuating behaviour?
Firstly, the inhibition strength g must be large enough in order that there are some
regions of the system where there are two stable steady states, and some regions
where there is only one. We also find that both the amplitude, A, and and length
scale, �, of the connections must not be too small, otherwise, for some realisations
of the connections, the activity drops to the lower steady state across the whole
system. To initiate fluctuations there must be some initial excitation in the regions
of the system with two stable steady states, either via the initial conditions or a
transient external input. The fluctuations are then seen to persist indefinitely once
any external input is removed.

1Angled brackets and subscripts denote averages. For example h: : :ix;t denotes average over both
space and time.
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Fig. 8.3 Top: Plots showing snapshots of the activity u as a function of x at different times t ,
whilst a 1D system is undergoing persistent fluctuations. Black lines show u.x; t/, grey lines show
W.x/ (Eq. (8.14)), and the dotted line shows � D 0:1. Bottom: Plots showing how u varies in time
during persistent fluctuations, at different randomly chosen points xi and on average. For all plots
the other parameters are g D 0:8, �v D 1, A D 0:3 and � D 5

The existence of the fluctuating state depends on the particular realisation of
the connections, as well as their statistical properties. In order to understand why
we do or do not observe persistent fluctuations for a particular realisation of the
inhomogeneity, we examine some carefully chosen deterministic inhomogeneous
connection functions. Observing the behaviour of this simpler system allows us to
more easily understand how the fluctuations arise.
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8.2.2.1 Simple Deterministic Connection Function

In 1D, in the large � limit the field equations can be written

�u
@u

@t
C u.x; t/ D Œ1C A .w1.x/C w2.x//�

Z L

0

wH.x � x0/f
�
u.x0; t /

�
dx0

�gv.x; t/;

�v
@v

@t
C v.x; t/ D f .u.x; t// ; (8.16)

where we have approximated w2.x0/ � w2.x/, since the width of the function wH
is much less than �. If instead of using stochastic functions we choose w2.x/ D 0,
and w1.x/ a piecewise linear function, we can construct a system with a region with
two stable steady states (Nu1 D 0, and Nu3 D 1), a region with a single steady state
(Nu1 D 0), and a boundary region where w1.x/ has constant gradient. The resulting
W.x/ as defined by Eq. (8.14) is shown in Fig. 8.4a. If the system is set up with the
initial condition u.x; t/ � � for all x, then after a short transient time the result is
a region where u.x; t/ D 1 for all t , a region where u.x; t/ D 0 for all t , and a
boundary region where u fluctuates. That is to say, a “bump” in w1.x/ gives rise to
a bump of activity with fluctuating boundaries.

In Fig. 8.4b–e we show how periodic fluctuations of the edges of the activity
bump occur. A retracting front of activity forms in the “boundary region”; as this
front retracts a small growing “side bump” forms. When the peak of this side bump
reaches threshold, u grows rapidly and the direction of movement of the front
changes. The front moves out into the region which can only support the Nu1 D 0

steady state before retracting again, and the process repeats. The fluctuations are
therefore a consequence of the non-monotonicity of the front at the edges of the
highly connected bump, which originates from the presence of the local inhibitory
field. A higher density of connections allows the tissue to reside in an active state
and this activity spreads into the region with a lower connection density. In this
region there are insufficient excitatory connections to sustain the high activity, and
as the inhibitory field v increases the front moves back into the highly connected
region. The time scale of the fluctuations is determined by the relaxation time of
the inhibition �v . We also find that the frequency of the fluctuations increases with
the gradient of W.x/ in the boundary region (as well as depending on � , �v , and g).
Also the width of the fluctuating region increases as �v increases.

A slightly different choice of W.x/ can produce a bump of activity with
fluctuating boundaries which emits travelling pulses. As we saw in the previous
section there is a narrow range of values of � for which stable travelling pulse
solutions exist. If the region adjacent to the bump has w1.x/ consistent with this,
pulses can propagate into it. The rate at which they are emitted depends on the
gradient of the edges of the bump in W.x/.

Breathing bumps and pulse emitting bumps have also been observed in homoge-
neous connection models. In Ref. [10] it was shown that stationary fronts and pulses
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c d
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Fig. 8.4 Plot (a) shows an example deterministic W.x/ (solid line) with different regions where
there are either two or one stable steady states. At the boundary between these regions,W.x/ varies
continuously and in this example has a constant gradient of 0:1. The dotted line shows the threshold
� D 0:1. Plots (b)–(d) show how the activity fluctuates at the edge of the “bump” in W.x/, via
the generation of a “side bump”. Solid black lines show u.x; t/, grey lines show W.x/ and dotted
lines show the threshold � . Arrows show the direction of motion of the front. Plot (e) shows how
the mean activity varies with time. After an initial transient there is periodic oscillation

can be generated in a homogeneous connection model with linear feedback via the
introduction of a spatially varying external input; if the magnitude of the input is
increased, the system goes through a Hopf bifurcation to an oscillating state. In
Ref. [15] spike frequency adaption (where the dynamics of the threshold depend on
activity) was introduced, giving rise to stationary bumps which go unstable in favour
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of breathing solutions. In both of these cases the mechanism for the generation of
the oscillations is different to the one described here. Here the oscillations arise as a
result of inhomogeneity in the connections.

By examining this simple deterministic inhomogeneity in the connections we
obtain a better qualitative understanding of what is taking place in the case of
stochastic connection functions. In that case, the observed behaviour is a result
of many “breathing bumps” (with characteristic width �), which fluctuate with a
frequency which depends on the local gradient of W.x/. These bumps may interact
with each other, some emitting pulses. For small A and small � (i.e. in a regime
where regions with W.x/ > � do not have large spatial extent) the retracting
fronts of activity may meet before the “side bumps” have grown to reach threshold.
The activity collapses into the lower steady state (Nu1 D 0), and this is typically
irreversible. This explains why for some realisations of the stochastic connections
(and systems of finite size) we find u.x; t/ ! 0 for all x after a short transient
time. In general, requirements for fluctuations are that W.x/ has non-zero gradient
(a requirement for the growth of “side bumps”), that � must be close enough to
Nu1 D 0, and that the bumps in W.x/ are wide enough so that the peaks of the side
bumps reach threshold before the retracting fronts meet.

8.2.3 Activity Patterns and Correlations

We now return to the case of stochastic connections in 1D, and examine how
the properties of w1.x/ and w2.x/ effect the fluctuations. The dependence of the
magnitude A and length scale � of the inhomogeneous connections, on the mean
and mean squared activity during persistent fluctuations is shown in Fig. 8.5. As one
would expect, increasing A leads to an increase in the mean activity hu.x; t/ix;t .
There is also an increase in the amplitude of the fluctuations, i.e. hu.x; t/2ix;t
increases. In contrast, variation of � has little impact on the mean and mean squared
activity, except at small �. In that case, the regions where W.x/ > � are small,
and we expect fewer regions where the activity fluctuates; i.e. the majority of the
system sits in the lower steady state, leading to a reduced activity on average. We
note that for A & 1=

p
2 the connection function becomes unphysical as it is likely

that w.x; x0/ will be negative for some x; x0.
The length � can, however, determine the length and time scales of the

fluctuations. We define respectively the spatial and temporal correlation functions

Cx.X/ D hıux.x; t/ıux.x CX; t/ix;thıux.x; t/2ix;t ; (8.17)

Ct.�/ D hıut .x; t/ıut .x; t C �/ix;thıut .x; t/2ix;t ; (8.18)
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Fig. 8.5 Plots showing how the amplitude A and correlation length � of the connections effect the
spatial mean and mean squared of the activity. Top left and right show the effect of varying A at
fixed correlation lengths � D 5 (points) and � D 0:5 (diamonds). Bottom left and right show the
effect of varying � at fixed A D 0:1 (points) and A D 1 (diamonds). All results are averages from
10 realisations of the connections, with errors given by the standard deviation over realisations

where ıux.x; t/ D u.x; t/� hu.x; t/ix and ıut .x; t/ D u.x; t/� hu.x; t/it . As well
as averaging over x and t for a single system, we also average over many different
simulations with different realisations of the stochastic connections. From the spatial
correlation function we can measure a correlation length l , defined to the the length
over which Cx.X/ drops by a factor e�1. As is shown in Fig. 8.6a–c, for large A
the correlation length of the fluctuating activity is close to that of the underlying
connection functions.2 That is to say, as the strength of the inhomogeneity increases,
the activity patterns become more entrained to the structure of the connections.

We turn now To temporal correlations. In the previous subsection we found that
for a single “bump” in connection density, the frequency of the fluctuations depends
on the gradient of the functionW.x/. To see whether this is also true in the stochastic
case we define a “characteristic gradient” of the inhomogeneous component of the
connections

2We note that due to the finite size of the system each realisation of the connections has a
correlation length not quite equal to �, so we also show the measured mean value for the correlation
length of the connections.
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b c
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Fig. 8.6 Plots (a)–(c) show how the correlation length of the connections effects the correlation
length in u.x; t/ for different values of A. Results are averages over 10 realisations of the
inhomogeneous connections, with error given by the standard deviation. Also shown (grey line)
is the average measured correlation length of the functions w1.x/ and w2.x/; the shaded region
shows the standard deviation. Plot (d) shows the time correlation function Ct .�/ as defined by
Eq. (8.18). The grey line is from a system with � D 0:4 and the black from � D 5, both with
A D 0:3. Plot (e) shows the fast Fourier transform of the time correlation functions for the same
systems. Finally, (f) shows how the characteristic gradient mrms of the connection function effects
the principal frequency of the fluctuating activity (black points). We include results from systems
with A D 0:1, A D 0:3 and A D 1, with � varying between 2 and 5 (since our definition of
characteristic gradient only makes sense for � > 1). For comparison (grey points) we also show
the frequency of fluctuations from a system with a deterministic connection function containing a
single gradient, as shown in Fig. 8.4a

mrms D A
vuut
*�
dw1
dx
C dw2

dx

�2+
: (8.19)

Expanding the square gives

*�
dw1
dx
C dw2

dx

�2+
D
*�
dw1
dx

�2
C
�
dw2
dx

�2
C 2dw1

dx

dw2
dx

+
D 2

*�
dw1
dx

�2+
;
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where we have used the fact the hdxw1i D hdxw2i and hdxw1dxw2i D 0, because
there is no correlation between w1 and w2 (dx denotes derivative with respect to x).
From the construction of the functions w1 and w2 we have

*�
dw1
dx

�2+
D 1

�2
; (8.20)

which gives a characteristic gradient of connections in the system of

mrms D A
p
2

�
: (8.21)

We note that this quantity is only relevant in the large � limit, since we have used
the approximation w2.x0/ � w2.x/.

To examine how variation of mrms effects the fluctuations, we consider the
Fourier transform of the function Ct.�/ (Fig. 8.6e), i.e. we look at the frequency
of the fluctuations. We take the frequency component with the largest amplitude
to be the “principal frequency” of the fluctuations. Figure 8.6f shows how the
principal frequency depends on mrms; also shown is the same measurement for
the deterministic inhomogeneity examined in the previous section (Fig. 8.4a). In
general as the characteristic gradient of the connections increases, the frequency of
the fluctuations increases; for the stochastic connections the frequency reaches a
maximum between 0.1 and 0.15 Hz.

8.2.4 Persistent Fluctuations in 2D

In this section we examine results from 2D simulations. Due to the high com-
putational overhead we consider smaller systems and fewer realisations of the
connections than in the 1D case. Although this means that the results for the 2D
case may be less reliable, reassuringly we see qualitatively the same behaviour as in
1D.

We focus on the regime in which we observe persistent fluctuations; Fig. 8.7
shows snapshots of u.x; t/ at different times. We also show the dependence of
the correlation length of the stochastic connection functions on the correlations
in the activity. The grey solid line shows the measured correlation lengths of the
underlying connection functions w1.x/ and w2.x0/. The points show the measured
correlation length of the activity, and we see behaviour the same as in the 1D case; as
A increases the patterns in activity become slave to the correlations in the underlying
connections.
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Fig. 8.7 Top: Colour plots of u.x; t / for a 2D system undergoing persistent fluctuations. Param-
eters are � D 5, A D 0:3, g D 0:8, and � D 0:1. The system is a square of side L D 30.
Bottom: Plot showing how the input correlation length � of the underlying 2D connections effects
the measured correlation length of the fluctuating activity for various A. The grey lines show the
measured correlation length of functions w1.x/ and w2.x0/ with the shaded region showing the
error in this. All results are averaged over five realisations of the stochastic connections

8.3 Long Range Connections

In the previous section we described a model of inhomogeneous stochastic con-
nections, however these have all been local in nature. That is to say, there are
no connections between distant points, only spatial variation in the local density
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of connections. As detailed in Ref. [4], stochastic long range connections can be
introduced into Eq. (8.1) via the following connection function

w.x; x0/ D wH.x � x0/C AwI .jx � x0j/ �w1.x/C w2.x0/
�
: (8.22)

As before wH is a homogeneous Gaussian connection function (Eq. (8.3)), and
w1.x/ and w2.x0/ are numerically generated stochastic functions representing
additional connections into and out of the tissue at point x and x0 respectively. This
time however we choose these functions such that they are always positive. The
function wI can be thought of as an envelope for the inhomogeneous connections;
we choose a power law function

wI .y/ D N
jyj�˛

1C jyj�˛ ; (8.23)

where the exponent ˛ determines the range of the connections, and N is chosen
such that

R
�

wI .y/dy D 1. If ˛ > 1, wI is a narrow function, and we recover a
local connection model; for ˛ < 1, wI is a wide function and can extend throughout
the system, i.e. there are a small number of long range connections between distant
points. Figure 8.8a–c show typical realisations of w.x; x0/ in 1D for different values
of ˛.

In the large ˛ (local connections) regime, wave front solutions exist as in
Sect. 8.2, provided two stable steady states solutions exist across the whole system.
These are given by

Nu.x/ D W.x/f .Nu/ ; (8.24)

where we now define

W.x/ D 1C A
Z
�

wI .x � x0/
�
w1.x/C w2.x0/

�
dx0 � g: (8.25)

For the small ˛ (long range connections) regime activity no longer propagates
throughout the system at a finite speed: due the long range connections a local
external stimulus can lead to the system entering the upper steady state at all points
in the system.

As with the model described in the previous section, for some choice of
parameters A and g, the system can support persistent fluctuations of activity. For
the case of local connections (large ˛) fluctuations arise when there are some regions
of the system which have two stable steady states, and other regions in which there
is only one. There are regions in which u! Nu1 D 0, regions in which u! Nu3, and
connecting regions where u fluctuates.

In the regime of long range connections (small ˛) there is slightly different
behaviour. There are fluctuations of activity at every point throughout the system.
There are large large regions (where W.x/ > �) in which u fluctuates coherently
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a b c

d

Fig. 8.8 Top: Plots showing the connection function in Eq. (8.22) for a 1D system with (a) ˛ D 6,
(b) ˛ D 1, and (c) ˛ D 0:1. Note that the homogeneous peak of wH is present in each case.
In (c) the long range “tails” of the inhomogeneous connections have a small amplitude due to
the normalisation N . Bottom: Average coherence (see Eq. (8.26)) of a 1D system with A D 1:9

and g D 2:9, averaged over 10 realisations of the connections for ˛ D 6 (solid line) and ˛ D 0:1

(dotted line). The standard deviation is shown by the shaded regions (Figure adapted from Ref. [4])

remaining above � , and smaller regions where u fluctuates more quickly about � . As
detailed in Ref. [4] the fluctuations originate in regions whereW.x/ cuts through the
threshold � , much as for the model discussed in the previous section. Here though,
due to long range connections spanning the length of the system, this also leads to
fluctuations at all other points.

In order to quantify the “coherently” fluctuating regions we use the following
quantity to characterize fluctuations at points x and x0:

� .X/ D
� hu.x; t/u.x �X; t/i2t
hu.x; t/2it hu.x �X; t/2it

�
x

; (8.26)

where hereX D x�x0, and as before angled brackets with subscripts denote average
over space or time. A value of � .X/ D 1 means that points separated by a distance
X have activity which is fluctuating synchronously; a small value of � .X/ means
that fluctuations in these regions are fluctuating interdependently. Figure 8.8 shows
that in a system with ˛ < 1 the long range connections give rise to fluctuations
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which are coherent over large regions of the system. Similar results are obtained for
2D systems.

8.4 Conclusions

We have demonstrated that travelling front solutions in a continuum neural field
model are robust to the addition of small amplitude, inhomogeneous, stochastic
(local) connections, provided there is only weak inhibitory feedback. The wavefront
connects a region in a quiescent Nu1 D 0 steady state with a region in a spatially
varying Nu3 D Nu3.x/ steady state, and travels with a time varying velocity. This
provides a mechanism for the fluctuation in speed of travelling fronts of activity
such as observed in “1D” slices of neural tissue (like those studied in Ref. [11]).
Via a simple expansion �.x/ D N� C ı�.x/ predictions can be made about the
dependence of the resulting distribution of front speeds on the magnitude of the
inhomogeneity. The mean speed of a front of activity remains largely unaffected
by the inhomogeneity. The variance of the speed is independent of A when the
inhomogeneity is correlated on lengths shorter than 1, and grows with A2 if the
connections are correlated on lengths longer than 1 (in units of the width of the
homogeneous connections). If the magnitude of the inhomogeneityA or the strength
of the inhibition g are large enough to destabilise the upper steady state (i.e.
W.x/ < � for some x), then there will be regions of the system through which
the front cannot propagate.

Persistent fluctuations of activity are a new type of behaviour for continuum
neural field models. By studying a simple deterministic connection function we
have identified the origin of the fluctuations, and explained why such behaviour
is observed for some realisations of the connections, but not others. All of the
results presented in this chapter arise from initial conditions where u > � across the
entire system, meaning that the system will show persistent fluctuations if it is able
to support them. A more natural scenario would be an initially quiescent system
(u D 0), which is then excited by a transient, possibly spatially heterogeneous,
external input. This could be likened to an idea initially suggested by Hebb in
Ref. [20] known as cortical reverberation; Hebb hypothesised that a particular weak
input pattern might elicit a large persistent response from a system, whereas a
different, stronger, input pattern may have little effect. In terms of the present model,
a short lived spatially varying input pattern may excite some regions of the system
into the persistently fluctuating state; a different input (for example to a region where
there is no upper steady state) may only excite the system for the duration of the
input. This can also be linked to models of working memory [30], where a localised
stimulus excites a region into an active state, and this high activity is maintained
after the stimulation has ceased.

By examining correlations in the fluctuating activity, we find that, except for
very small values of � and A, the patterns follow the underlying connection
functions w1 and w2. We expect this in the large � regime since we can make the
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approximation that w2.x0/ does not vary within the width of the inhomogeneous
connections, and u.x; t/ will closely followW.x/. A natural question to ask is “Can
we say anything about connectivity from measuring spatial correlations in activity
patterns?” This could lead to testable predictions in experimental work, for example
using fluorescent dyes [3].

In two dimensional systems with local inhomogeneous connections we find
persistent fluctuations which are qualitatively the same as in 1D. Aside from the
simple extensions to planar fronts and pulses, one could study, for example, the
propagation of high activity from a locally excited region. In a homogeneous system
the 2D analogue of planar fronts is an expanding circular region of high activity [23];
in an inhomogeneous model the high activity region would likely be irregularly
shaped, and there could be, for example, channels of higher connectivity down
which activity could propagate more rapidly, or conversely “barrier” regions with
lower connectivity.

Finally we have shown that persistent fluctuations can also be found in systems
with long range inhomogeneous connections. By allowing additional connections
over long distances, fluctuations can become synchronised in different regions.
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Chapter 9
Stochastic Neural Field Theory

Paul C. Bressloff

Abstract We survey recent work on extending neural field theory to take into
account synaptic noise. We begin by showing how mean field theory can be used
to represent the macroscopic dynamics of a local population of N spiking neurons,
which are driven by Poisson inputs, as a rate equation in the thermodynamic limit
N !1. Finite-size effects are then used to motivate the construction of stochastic
rate-based models that in the continuum limit reduce to stochastic neural fields. The
remainder of the chapter illustrates how methods from the analysis of stochastic
partial differential equations can be adapted in order to analyze the dynamics of
stochastic neural fields. First, we consider the effects of extrinsic noise on front
propagation in an excitatory neural field. Using a separation of time scales, it is
shown how the fluctuating front can be described in terms of a diffusive–like
displacement (wandering) of the front from its uniformly translating position at long
time scales, and fluctuations in the front profile around its instantaneous position at
short time scales. Second, we investigate rare noise-driven transitions in a neural
field with an absorbing state, which signals the extinction of all activity. In this
case, the most probable path to extinction can be obtained by solving the classical
equations of motion that dominate a path integral representation of the stochastic
neural field in the weak noise limit. These equations take the form of nonlocal
Hamilton equations in an infinite–dimensional phase space.
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9.1 Introduction

The spike trains of individual cortical neurons in vivo tend to be very noisy, having
interspike interval (ISI) distributions that are close to Poisson [58]. The main source
of intrinsic fluctuations at the single cell level is channel noise, which arises from
the variability in the opening and closing of a finite number of ion channels [57].
On the other hand, extrinsic fluctuations in membrane voltage are predominantly
due to synaptic noise. That is, cortical neurons are bombarded by thousands of
synaptic inputs, many of which are not correlated with a meaningful input and
can thus be treated as background synaptic noise [31]. It is not straightforward to
determine how noise at the single cell level translates into noise at the population or
network level. One approach is to formulate the dynamics of a population of spiking
neurons in terms of the evolution of the probability density of membrane potentials –
the so–called population density method [1, 16, 17, 21, 36, 39, 46, 48, 52, 53].
Usually, a simple model of a spiking neuron is used, such as the integrate–and–
fire model [35], and the network topology is assumed to be either fully connected or
sparsely connected. It can then be shown that under certain conditions, even though
individual neurons exhibit Poisson–like statistics, the neurons fire asynchronously
so that the total population activity evolves according to a mean–field rate equation
with a characteristic activation or gain function. This gain firing rate function can
then be used to construct rate–based models. Formally speaking, the asynchronous
state only exists in the thermodynamic limit N ! 1, where N determines the
size of the population. This then suggests a possible source of intrinsic noise at the
network level arises from fluctuations about the asynchronous state due to finite size
effects [7, 37, 41, 44, 59].

In this chapter we review recent work on incorporating synaptic noise into con-
tinuum neural fields, and methods for analyzing the resulting stochastic dynamics.
Neural field equations can be derived under two basic assumptions: (i) the spike
trains of individual neurons are decorrelated (asynchronuous) so that the total
synaptic input to a neuron is slowly varying and deterministic, and (ii) there exists
a well–defined continuum limit of the resulting network rate equations. So far
there has been no rigorous proof that either of these assumptions hold in large–
scale spiking network models of cortex. In particular, there has been no systematic
scaling up of population density methods to derive continuum neural field models
that take proper account of noise–induced fluctuations and statistical correlations
between neurons at multiple spatial and temporal scales. Consequently, current
formulations of stochastic neural field theory tend to be phenomenologically based.
One approach is to consider a Langevin version of the deterministic neural field
equations involving some form of extrinsic spatiotemporal white noise [15, 32, 38],
whereas another is to treat the neural field equations as the thermodynamic limit
of an underlying master equation [9, 10, 19, 20]. In the latter case, a diffusion
approximation leads to an effective Langevin equation with multiplicative noise.

In order to motivate the construction of stochastic neural field equations, we
begin by reviewing the population density method for analyzing the stochastic
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dynamics of a local population of leaky integrate-and-fire neurons (Sect. 9.2),
following along similar lines to Gerstner and Kistler [35]. We then describe how
finite–size effects at the level of local populations can be incorporated into stochastic
versions of rate–based models (Sect. 9.3). In Sect. 9.4 we show how stochastic PDE
methods can be used to analyze traveling waves in stochastic neural fields. Finally,
we derive a path integral formulation of a stochastic neural field and show how this
can be used to analyze rare events (Sect. 9.5). Note that a related survey of stochastic
neural fields can be found in Ref. [12].

9.2 Population Density Method and Mean Field Theory

Integrate-and-fire (IF) neuron models neglect details regarding the spike generation
process by reducing the latter to an all–or–nothing threshold event. That is,
whenever the membrane potential crosses a firing threshold, the neuron fires a
spike, typically modeled as a Dirac delta function, and the membrane potential is
reset to some subthreshold value. Although they are less realistic than conductance–
based models, they have provided a very useful platform for exploring probabilistic
models of spiking neurons [35]. Consider a homogeneous population ofN identical
uncoupled leaky IF neurons. The membrane potential (internal state) of the i th
neuron evolves according to the equation

C
dV i

dt
D �Vi .t/

R
C Ii .t/ (9.1)

where C;R are the capacitance and resistance of the cell membrane and Ii .t/
represents the sum of synaptic and external currents. The form of the action potential
is not described explicitly. Spikes are formal events characterized by the ordered
sequence of firing times fT mi ;m 2 Zg determined by the threshold crossing
conditions

T mi D infft; t > T m�1jVi .t/ D 	; PVi > 0g; (9.2)

where 	 is the firing threshold. Immediately after firing, the potential is reset to a
value Vr < 	,

lim
t!ŒT mi �C

Vi .t/ D Vr : (9.3)

For simplicity we set Vr D 0, CR D � and absorb C into Ii .t/.
Suppose that all neurons in the population receives the same driving current

I ext. Each neuron also receives a stochastic background input consisting of a set
of spike trains stimulating different synapses labeled k D 1; : : : ; K. An input spike
of the kth synapse causes a jump of the membrane potential by an amount wk ,
and the spikes are generated by a time-dependent Poisson process at a rate �k.t/.
This means that in each small time interval Œt; t C �t� the probability that a spike
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arrives on the kth synapse is �k.t/�t , and each spike is uncorrelated with any other.
Although the spike rates �k.t/ are the same for all neurons, the actual spike trains
innervating different synapses of different neurons are statistically independent. Let
p.v; t/ denote the membrane potential density, that is, p.v; t/dv is the fraction of
neurons i that have a membrane potential v � Vi .t/ � vC dv in the limit N !1.
Whenever a neuron fires it’s membrane is reset. This has two important implications.
First, conservation of probability implies that

Z 	

�1
p.v; t/dv D 1: (9.4)

Second, the fraction of neurons (probability flux J.	; t/) that flow across the
threshold 	 per unit time determines the population activity A.t/:

J.	; t/ D A.t/ � lim
N!1

1

N

NX
jD1

X
m

ı.t � T mj /: (9.5)

The reset condition means that neurons that “disappear” across threshold “re-enter”
the population at the reset potential v D 0. This implies that there is an absorbing
boundary condition at threshold

p.	; t/ D 0 (9.6)

and a discontinuity in the probability fluxes at reset:

J.0C; t / � J.0�; t / D A.t/: (9.7)

The probability density p.v; t/ evolves according to the Chapman-Kolmogorov
equation [35]1

@p

@t
D 1

�

@

@v
Œvp.v; t/C RIextp.v; t/�C

X
k

�k.t/Œp.v � wk; t/ � p.v; t/�: (9.8)

1Equation (9.8) and various generalizations have been used to develop numerical schemes for
tracking the probability density of a population of synaptically coupled spiking neurons [46, 48],
which in the case of simple neuron models, can be considerably more efficient than classical Monte
Carlo simulations that follow the states of each neuron in the network. On the other hand, as
the complexity of the individual neuron model increases, the gain in efficiency of the population
density method decreases, and this has motivated the development of a moment closure scheme
that leads to a Boltzmann–like kinetic theory of IF networks [21, 52]. However, as shown in Ref.
[39], considerable care must be taken when carrying out the dimension reduction, since it can
lead to an ill–posed problem over a wide range of physiological parameters. That is, the truncated
moment equations may not support a steady-state solution even though a steady–state probability
density exists for the full system. An alternative approach is to develop a mean field approximation
as highlighted here.
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In the limit of small jump amplitudes wk , Eq. (9.8) can be approximated by a
diffusion equation. That is, Taylor expanding to second order in wk gives

@p

@t
D � @

@v

h�v
�
C �.t/C Iext.t/

i
p.v; t/C �2.t/

2

@2

@v2
p.v; t/; (9.9)

where �.t/ is the mean background synaptic input

�.t/ D
X
k

�k.t/wk; (9.10)

and �.t/ determines the size of the membrane fluctuations,

�2.t/ D
X
k

�k.t/w
2
k: (9.11)

The Fokker-Planck equation determines the time evolution of the probability density
of a membrane potential evolving according to the equivalent stochastic differential
equation (Langevin equation)

dV D �V.t/
�

dtC �.t/dtC �.t/dW.t/; (9.12)

where W.t/ is a Wiener process,

hdW.t/i D 0; hdW.t/dW.t/i D dt (9.13)

In the case of constant rates �k , the resulting Langevin equation describes the well
known Ornstein–Uhlenbeck process.

The Fokker–Planck equation (9.9) can be rewritten as a continuity equation
reflecting conservation of probability:

@

@t
p.v; t/ D � @

@v
J.v; t/; for v ¤ 	; 0; (9.14)

where

J.v; t/ D 1

�
Œ�v C �.t/C Iext.t/� p.v; t/ � �

2.t/

2

@

@v
p.v; t/: (9.15)

Equations (9.5) and (9.15) together with the absorbing boundary condition (9.6)
implies that

@

@v
p.	; t/ D �2A.t/

�2.t/
: (9.16)
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Continuity of p at reset, p.0C; t / D p.0�; t /, together with Eqs. (9.7) and (9.15)
show that there is a discontinuity in the first derivative of p.v; t/ at v D 0:

@

@v
p.0C; t / � @

@v
p.0�; t / D �2A.t/

�2.t/
: (9.17)

Hence, one has to solve the Fokker–Planck equation (9.9) together with the
boundary conditions (9.6), (9.16), and (9.17).

Now suppose that the background rates �k and external input Iext are time–
independent so that the total mean input

I0 D Iext C
X
k

�kwk (9.18)

is a constant. The steady–state Fokker–Planck equation implies that the flux

J.v/ D .�v=� C I0/p.v/ � �
2
0

2

@

@v
p.v/; (9.19)

with �0 D P
k �kw2k for time-independent rates, is constant except at v D 0 where

it jumps by an amount A0, which is the steady–state population activity. Taking
J.v/ D 0 for v < 0, one can solve Eq. (9.19) to obtain the Gaussian distribution

p0.v/ D c1

�0
exp

�
� .v=� � I0/

2

�20

�
; for v � 0 (9.20)

for some constant c1. However, such a solution cannot be valid for v > 0, since it
does not satisfy the absorbing boundary condition p0.	/ D 0. It turns out that in
this domain the solution is of the form [17, 35]

p0.v/ D c2

�20
exp

�
� .v=� � I0/

2

�20

� Z 	

v

exp

�
.x=� � I0/2

�20

�
dx; for 0 < v � 	

(9.21)

for some constant c2. Equation (9.19) shows that c2 D 2J.v/ for 0 < v � 	 with
J.v/ D A0. Continuity of the solution at u D 0 implies that

c1 D c2

�0

Z 	

v

exp

�
.x=� � I0/2

�20

�
dx: (9.22)

Finally, the constant c2 is determined by the normalization condition for p. On
setting A0 D c2=2	, one finds a firing rate
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A0 D
"
�
p
�

Z .	��I0/=p��0

�p
�I0=�0

ev
2

.1C erf.v//dv

#�1
� F.I0/; (9.23)

where F is the so–called gain function for the population [17, 35, 46].
The above analysis assumed that the neurons were independent of each other so

that the only synaptic inputs were from some stochastic background. Now suppose
that we have a fully connected network such that there is an additional contribution
to the synaptic input into each neuron of the form

Irec.t/ D �0

N

NX
jD1

X
m

ı.t � T mj / D �0A.t/; (9.24)

where �0=N is the strength of connection between any pair of neurons within
the population, and we have used the definition (9.5) of the population activity
A.t/. Suppose that the neuronal population is in a macroscopic state with constant
activity A.t/ D A0, which is referred to as a state of asynchronous firing. (Formally
speaking, such an asynchronuous state only makes sense in the thermodynamic limit
N ! 1.) The steady–state activity can then be determined self–consistently from
Eq. (9.23) by setting

I0 D Iext C
"X

k

�kwk C �0A0
#
; (9.25)

and solving the implicit equation for A0 in terms of Iext CPk �kwk , which leads
to an effective gain function A0 D Feff.Iext CPk �kwk/. One can also determine
the stability of the asynchronous state by considering small perturbations of the
steady–state probability distribution. One finds that in the limit of low noise,
the asynchronous state is unstable and the neurons tend to split up into several
synchronized groups that fire alternately. The overall activity then oscillates several
times faster than the individual neurons [17,36,63]. One of the interesting properties
of the asynchronous state from a computational perspective is that the population
activity can respond rapidly to a step input [35]. The basic intuition behind this is
that in the asynchronous state there will always be a significant fraction of neurons
that are sitting close to the firing threshold so that as soon as a step increase in input
current occurs they can respond immediately. However, the size of the step has to
be at least as large as the noise amplitude � , since the threshold acts as an absorbing
boundary, that is, the density of neurons vanishes as v ! 	.

So far noise has been added explicitly in the form of stochastic background
activity as described in the paragraph below equation (3). It is also possible for
a network of deterministic neurons with fixed random connections to generate its
own noise [3, 16, 17, 64]. In particular, suppose that each neuron in the population
of N neurons receives input from C randomly selected neurons in the population
with C  N . The assumption of sparse connectivity means that two neurons
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share only a small number of common inputs. Hence, if the presynaptic neurons
fire stochastically then the input spike trains that arrive at distinct postsynaptic
neurons can be treated as statistically independent. Since the presynaptic neurons
belong to the same population, it follows that each neuron’s output should itself
be stochastic in the sense that it should have a sufficiently broad distribution of
interspike intervals. This will tend to occur if the neurons operate in a subthreshold
regime, that is, the mean total input is below threshold so that threshold crossings
are fluctuation driven.

9.3 Stochastic Rate–Based Models

Now suppose that a network of synaptically coupled spiking neurons is partitioned
into a set of P homogeneous populations with N˛ D ı˛N neurons in each
population, ˛ D 1; : : : ; P . Let p denote the population function that maps the single
neuron index i D 1; : : : ; N to the population index ˛ to which neuron i belongs:
p.i/ D ˛. Furthermore, suppose the synaptic interactions between populations
are the same for all neuron pairs. (Relaxing this assumption can lead to additional
sources of stochasticity as explored in Refs. [32,61].) Denote the sequence of firing
times of the j th neuron by fT mj ; m 2 Zg. The net synaptic current into postsynaptic
neuron i due to stimulation by the spike train from presynaptic neuron j , with
p.i/ D ˛; p.j / D ˇ, is taken to have the general form N�1

ˇ

P
m ˚˛ˇ.t � T mj /,

where N�1
ˇ ˚˛ˇ.t/ represents the temporal filtering effects of synaptic and dendritic

processing of inputs from any neuron of population ˇ to any neuron of population ˛.
(A specific form for ˚˛ˇ.t/ will be given in Sect. 9.3.1; a more general discussion
of different choices of ˚˛ˇ.t/ can be found in the review of Ref. [12].) Assuming
that all synaptic inputs sum linearly, the total synaptic input to the soma of the i th
neuron, which we denote by ui .t /, is

ui .t / D
X
ˇ

1

Nˇ

X
j Ip.j /Dˇ

˚˛ˇ.t � T mj / D
Z t

�1

X
ˇ

˚˛ˇ.t � t 0/ 1
Nˇ

X
j Ip.j /Dˇ

aj .t
0/dt0

(9.26)

for all p.i/ D ˛, where aj .t/ D P
m2Z ı.t � T mj /. That is, aj .t/ represents the

output spike train of the j th neuron in terms of a sum of Dirac delta functions.
In order to obtain a closed set of equations, we have to determine the firing times
T mi given by Eq. (9.2), where Vi .t/ evolves according to the LIF model (9.1) with
Ii .t/! ui .t /, or the more general conductance-based model

C
dVi
dt
D �Icon;i.Vi ; : : :/C ui ; (9.27)
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supplemented by additional equations for various ionic gating variables [30].
It follows that, after transients have decayed away, ui .t / D u˛.t/ for all p.i/ D ˛

with

u˛.t/ D
PX
ˇD1

Z t

�1
˚˛ˇ.t � t 0/aˇ.t 0/dt0; (9.28)

and a˛.t/ is the output activity of the ˛th population:

a˛.t/ D 1

N˛

X
j Ip.j /Dˇ

aj .t/ (9.29)

In general, Eqs. (9.26) and (9.27) are very difficult to analyze. However, con-
siderable simplification can be obtained if the total synaptic current ui .t / is
slowly varying compared to the membrane potential dynamics given by Eq. (9.27).
This would occur, for example, if each of the homogeneous subnetworks fired
asynchronously as described in Sect. 9.2. One is then essentially reinterpreting the
population activity variables u˛.t/ and a˛.t/ as mean fields of local populations.
(Alternatively, a slowly varying synaptic current would occur if the synapses are
themselves sufficiently slow [13,28].) Under these simplifying assumptions, one can
carry out a short–term temporal averaging of Eq. (9.28) in which the output popula-
tion activity is approximated by the instantaneous firing rate a˛.t/ D F˛.u˛.t//with
F˛ identified with the population gain function calculated in Sect. 9.2. (In practice,
the firing rate function is usually approximated by a sigmoid.) Equation (9.28) then
forms the closed system of integral equations

u˛.t/ D
Z t

�1

X
ˇ

˚˛ˇ.t � t 0/F˛.uˇ.t 0//dt0: (9.30)

The observation that finite–size effects provide a source of noise within a local
population then suggests one way to incorporate noise into rate–based models,
namely, to take the relationship between population output activity a˛.t/ and
effective synaptic current u˛.t/ to be governed by a stochastic process.

9.3.1 Neural Langevin Equation

The simplest approach is to assume that population activity is a stochastic variable
A˛.t/ evolving according to a Langevin equation (stochastic differential equation)
of the form

�˛dA˛.t/ D Œ�A˛.t/C F.U˛.t//� dtC �˛dW˛.t/ (9.31)
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with the stochastic current U˛.t/ satisfying the integral equation (9.28). HereW˛.t/,
˛ D 1; : : : ; P denotes a set of P independent Wiener processes with

hdW˛.t/i D 0; hdW˛.t/dWˇ.t/i D ı˛;ˇdt; (9.32)

and �˛ is the strength of noise in the ˛th population. In general, the resulting
stochastic model is non-Markovian. However, if we take ˚˛ˇ.t/ D w˛ˇ˚.t/ with
˚.t/ D ��1e�t=�H.t/ and H.t/ the Heaviside function, then we can convert the
latter equation to the form

�dU˛.t/ D
2
4�U˛.t/C

PX
ˇD1

w˛ˇAˇ.t/

3
5 dt: (9.33)

It is important to note that the time constant �˛ cannot be identified directly with
membrane or synaptic time constants. Instead, it determines the relaxation rate of a
local population to the mean–field firing rate. In the limit �˛ ! 0, Eqs. (9.31) and
(9.33) reduce to a “voltage–based” rate model perturbed by additive noise:

�dU˛.t/ D
2
4�U˛.t/C

PX
ˇD1

w˛ˇF.Uˇ.t//

3
5 dtC d QW˛.t/: (9.34)

Here QW˛.t/ DPP
ˇD1 w˛ˇ�ˇWˇ.t/ so that

hd QW˛.t/i D 0; hd QW˛.t/d QWˇ.t/i D
"X

�

w˛�wˇ��
2
�

#
dt: (9.35)

Thus eliminating the dynamics of the firing rate leads to spatially correlated noise
for the dynamics ofU˛ . On the other hand, in the limit � ! 0, we obtain a stochastic
“activity–based” model

�˛dA˛.t/ D
2
4�A˛.t/C F.X

ˇ

w˛ˇA˛.t//

3
5 dtC �˛dW˛.t/: (9.36)

Here the dynamical variable A˛ represents the firing rate of a local population. For
a detailed discussion of the differences between activity-based and voltage-based
neural rate equations, see Refs. [12, 30].

9.3.2 Neural Master Equation

An alternative approach to incorporating noise into the population firing rate has
been developed in terms of a jump Markov process [9, 10, 19, 20, 47]. Such a
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description is motivated by the idea that each local population consists of a discrete
number of spiking neurons, and that finite–size effects are a source of intrinsic rather
than extrinsic noise [7,59]. The stochastic output activity of a local population of N
neurons is now expressed as A˛.t/ D N˛.t/=.N�t/ where N˛.t/ is the number of
neurons in the ˛th population that fired in the time interval Œt ��t; t �, and�t is the
width of a sliding window that counts spikes. Suppose that the discrete stochastic
variables N˛.t/ evolve according to a one–step jump Markov process:

N˛.t/! N˛.t/˙ 1 W transition rate ˝˙̨.t/; (9.37)

in which ˝˙̨.t/ are functions of N˛.t/ and U˛.t/ with U˛.t/ evolving according
to the integral equation (9.28) or its differential version (9.33). Thus, synaptic
coupling between populations occurs via the transition rates. The transition rates
are chosen in order to yield a deterministic rate–based model in the thermodynamic
limit N !1. One such choice is

˝C̨.t/ D N�t

�˛
F.U˛.t//; ˝�̨.t/ D N˛.t/

�˛
: (9.38)

The resulting stochastic process defined by Eqs. (9.37), (9.38) and (9.33) is an
example of a stochastic hybrid system based on a piecewise deterministic process
[14]. That is, the transition rates ˝˙̨.t/ depend on U˛.t/, with the latter itself
coupled to the associated jump Markov according to Eq. (9.33), which is only
defined between jumps, during which U˛.t/ evolves deterministically. (Stochastic
hybrid systems also arise in applications to genetic networks [65] and to excitable
neuronal membranes [18, 50].) A further simplification is obtained in the limit
� ! 0, since the continuous variables U˛.t/ can be eliminated to give a pure
birth–death process for the discrete variables N˛.t/. Let P.n; t / D ProbŒN.t/ D n�
denote the probability that the network of interacting populations has configuration
n D .n1; n2; : : : ; nP / at time t; t > 0, given some initial distribution P.n; 0/. The
probability distribution then evolves according to the birth–death master equation
[9, 19, 20]

dP.n; t /

dt
D
X
˛

�
.T˛ � 1/

�
˝�̨.n/P.n; t /

� C .T�1
˛ � 1/

�
˝C̨.n/P.n; t /

��
; (9.39)

where ˝˙̨.n/ D ˝˙̨.t/ with N˛.t/ D n˛ and U˛.t/ DPˇ w˛ˇnˇ=.N�t/, and E˛

is a translation operator: E˙1
˛ F.n/ D F.n˛˙/ for any function F with n˛˙ denoting

the configuration with n˛ replaced by n˛ ˙ 1. Equation (9.39) is supplemented by
the boundary conditions P.n; t / � 0 if n˛ D N˛ C 1 or n˛ D �1 for some ˛. The
birth–death master equation (9.39) has been the starting point for a number of recent
studies of the effects of intrinsic noise on neural fields, which adapt various methods
from the analysis of chemical master equations including system size expansions
and path integral representations [9,19,20]. However, there are a number of potential
problems with the master equation formulation. First, there is no unique prescription
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for choosing transition rates that yield a given rate–based model in the mean–field
limit. Moreover, depending on the choice of how the transition rates scale with the
system size N , the statistical nature of the dynamics can be Gaussian–like [9] or
Poisson–like [19, 20]. Second, the interpretation of N˛.t/ as the number of spikes
in a sliding window of width �t implies that � � �t so the physical justification
for taking the limit � ! 0 is not clear. Finally, for large N the master equation can
be approximated by a Langevin equation with multiplicative noise (in the sense of
Ito), and thus reduces to the previous class of stochastic neural field model [10].

9.3.3 Continuum Limit

So far we have indicated how to incorporate noise into a discrete network of
neuronal populations. In order to obtain a corresponding stochastic neural field
equation it is now necessary to take an appropriate continuum limit. For simplicity,
we will focus on the simplest stochastic rate model given by Eqs. (9.31) and
(9.33). The continuum limit of Eq. (9.33) proceeds heuristically as follows. First,
set U˛.t/ D U.˛�d; t/; A˛.t/ D A.˛�d; t/ and w˛ˇ D ��dw.˛�d; ˇ�d/ where
� is a synaptic density and �d is an infinitesimal length scale. Taking the limit
�d ! 0 and absorbing � into w gives

�dU.x; t/ D Œ�U.x; t/C
Z 1

�1
w.x � y/A.y/dy�dt: (9.40)

We also assume that the noise strength �˛ D �=
p
�d and define W˛.t/=

p
�d D

W.˛�d; t/. Taking the limit �d ! 0 in Eq. (9.31) with �˛ D O� for all ˛ gives

O�dA.x; t/ D Œ�A.x; t/C F.U.x; t//� dtC �dW.x; t/ (9.41)

with

hdW.x; t/i D 0; hdW.x; t/dW.y; t/i D ı.x � y/dt: (9.42)

In the limit O� ! 0 we obtain a stochastic version of a voltage-based neural field
equation, namely,

�dU.x; t/ D Œ�U.x; t/C
Z 1

�1
w.x � y/F.U.y; t//dy�dtC �d QW .x; t/ (9.43)

with

hd QW .x; t/i D 0; hd QW .x; t/d QW .y; t/i D dt
Z 1

�1
w.x � z/w.y � z/d z: (9.44)
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Similarly, in the limit � ! 0 we have a stochastic version of an activity–based
neural field equation

O�dA.x; t/ D
�
�A.x; t/C F

�Z 1

�1
w.x � y/A.y; t/

�
dy

�
dtC dW.x; t/: (9.45)

From a numerical perspective, any computer simulation would involve rediscretiz-
ing space and then solving a time–discretized version of the resulting stochastic
differential equation. On the other hand, in order to investigate analytically the
effects of noise on spatiotemporal dynamics, it is more useful to work directly with
stochastic neural fields. One can then adapt various PDE methods for studying noise
in spatially extended systems [55], as illustrated in the next section.

9.4 Traveling Waves in Stochastic Neural Fields

In this section we review some recent work on analyzing traveling waves in
stochastic neural fields [15].

9.4.1 Traveling Fronts in a Deterministic Neural Field

Let us begin by briefly reviewing front propagation in a scalar neural field equation
of the voltage-based form

�
@u.x; t/

@t
D �u.x; t/C

Z 1

�1
w.x � x0/F.u.x0; t //dx0: (9.46)

For concreteness F is taken to be a sigmoid function

F.u/ D 1

1C e��.u�	/ (9.47)

with gain � and threshold 	. In the high–gain limit � ! 1, this reduces to the
Heaviside function

F.u/! H.u � 	/ D

1 if u > 	
0 if u � 	 (9.48)

The weight distribution is taken to be a positive (excitatory), even function of x,
w.x/ � 0 and w.�x/ D w.x/, with w.x/ a monotonically decreasing function of
x for x � 0. The weight distribution is typically taken to be an exponential weight
distribution
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w.x/ D 1

2�
e�jxj=� ; (9.49)

where � determines the range of synaptic connections. The latter tends to range
from 100%m to 1mm. We fix the units of time and space by setting � D 1; � D 2.

A homogeneous fixed point solution U � of Eq. (9.46) satisfies

U � D W0F.U
�/; W0 D

Z 1

�1
w.y/dy: (9.50)

In the case of a sigmoid function with appropriately chosen gain and threshold, it is
straightforward to show that there exists a pair of stable fixed points U �˙ separated
by an unstable fixed point U �

0 , see also Fig. 9.3a. In the high gain limit F.U / !
H.U � 	/ with 0 < 	 < W0, the unstable fixed point disappears and U �C D W0,
U �� D 0. As originally shown by Amari [2], an explicit traveling front solution
of Eq. (9.46) that links U �C and U �� can be constructed in the case of a Heaviside
nonlinearity. In order to construct such a solution, we introduce the traveling wave
coordinate � D x � ct , where c denotes the wavespeed, and set u.x; t/ D U .�/

with lim�!�1 U .�/ D U �C > 0 and lim�!1 U .�/ D 0 such that U .�/ only
crosses the threshold 	 once. Since Eq. (9.46) is equivariant with respect to uniform
translations, we are free to take the threshold crossing point to be at the origin,
U .0/ D 	, so that U .�/ < 	 for � > 0 and U .�/ > 	 for � < 0. Substituting this
traveling front solution into Eq. (9.46) with F.u/ D H.u � 	/ then gives

� cU 0.�/CU .�/ D
Z 0

�1
w.� � � 0/d� 0 D

Z 1

�

w.x/dx � Ow.�/; (9.51)

where U 0.�/ D dU =d� . Multiplying both sides of the above equation by e��=c
and integrating with respect to � leads to the solution

U .�/ D e�=c
"
	 � 1

c

Z �

0

e�y=c Ow.y/dy

#
: (9.52)

Finally, requiring the solution to remain bounded as � ! 1 (� ! �1) for c > 0

implies that 	 must satisfy the condition

	 D 1

c

Z 1

0

e�y=c Ow.y/dy; (9.53)

and thus

U .�/ D 1

c

Z 1

0

e�y=c Ow.y C �/dy: (9.54)
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In the case of the exponential weight distribution (9.49), the relationship between
wavespeed c and threshold 	 for right-moving fronts is

c D cC.	/ � 1

2	
Œ1 � 2�	� for 	 < 0:5: (9.55)

A similar expression holds for left-moving fronts (c < 0) for which 1 > 	 >

0:5. Using Evans function techniques, it can also be shown that the traveling front
is stable [24, 66]. Finally, given the existence of a traveling front solution for a
Heaviside rate function, it is possible to prove the existence of a unique front in the
case of a smooth sigmoid nonlinearity using a continuation method [29].

9.4.2 Stochastic Neural Field with Extrinsic Noise

Let us now consider a stochastic version of the scalar neural field (9.46) given by
the neural Langevin equation

dU D
�
�U.x; t/C

Z 1

�1
w.x � y/F.U.y; t//dy

�
dtC "1=2g.U.x; t//dW.x; t/:

(9.56)

We assume that dW.x; t/ represents an independent Wiener process such that

hdW.x; t/i D 0; hdW.x; t/dW.x0; t 0/i D 2C.Œx � x0�=�/ı.t � t 0/dtdt0;
(9.57)

where h	i denotes averaging with respect to the Wiener process. Here � is the
spatial correlation length of the noise such that C.x=�/ ! ı.x/ in the limit
� ! 0, and � determines the strength of the noise, which is assumed to be weak.
For the sake of generality, we take the extrinsic noise to be multiplicative rather
than additive. Following standard formulations of Langevin equations [34], the
extrinsic noise term is assumed to be of Stratonovich form. Note, however, that a
Kramers-Moyal expansion of the neural master equation (9.39) yields a Langevin
neural field equation with multiplicative noise of the Ito form [9, 10]. The main
results highlighted below do not depend on the precise form of the noise.

The effects of multiplicative noise on front propagation can be analyzed using
methods previously developed for reaction–diffusion equations [4, 25, 55, 56], as
recently shown in Ref. [15]. The starting point of such methods is the observation
that multiplicative noise in the Stratonovich sense leads to a systematic shift in
the speed of the front (assuming a front of speed c exists when " D 0). This is
a consequence of the fact that hg.U /dWi ¤ 0 even though hdWi D 0. The former
average can be calculated using Novikov’s theorem [45]:

"1=2hg.U.x; t//�.x; t/i D "C.0/hg0.U /g.U /i: (9.58)
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The above result also follows from Fourier transforming Eq. (9.56) and evaluating
averages using the Fokker–Planck equation in Fourier space [15, 55]. Note that in
the limit � ! 0, C.0/ ! 1=�x where �x is a lattice cut–off, which is typically
identified with the step size of the spatial discretization scheme used in numerical
simulations. The method developed in Ref. [4] for stochastic PDEs is to construct
an approximation scheme that separates out the diffusive effects of noise from the
mean drift. Applying a similar method to the neural field equation (9.56) [15], we
first rewrite the equation as

dU.x; t/ D Œh.U.x; t//C
Z 1

�1
w.x � y/F.U.y; t//dy�dtC "1=2R.U; x; t/;

(9.59)

where

h.U / D �U C "C.0/g0.U /g.U / (9.60)

and

R.U; x; t/ D g.U /�.x; t/ � "1=2C.0/g0.U /g.U /: (9.61)

The stochastic processR has zero mean (so does not contribute to the effective drift)
and correlation

hR.U; x; t/R.U; x0; t 0/i D hg.U.x; t//�.x; t/g.U.x0; t 0/�.x0; t 0/i C O."1=2/:
(9.62)

The next step in the analysis is to assume that the fluctuating term in Eq. (9.59)
generates two distinct phenomena that occur on different time–scales: a diffusive–
like displacement of the front from its uniformly translating position at long time
scales, and fluctuations in the front profile around its instantaneous position at short
time scales [4, 55]. In particular, following Ref. [15], we express the solution U
of Eq. (9.59) as a combination of a fixed wave profile U0 that is displaced by an
amount �.t/ from its uniformly translating mean position � D x � c"t , and a time–
dependent fluctuation ˚ in the front shape about the instantaneous position of the
front:

U.x; t/ D U0.� ��.t//C "1=2˚.� ��.t/; t/: (9.63)

Here c" denotes the mean speed of the front. The wave profile U0 and associated
wave speed c" are obtained by solving the modified deterministic equation

� c� dU0

d�
� h.U0.�// D

Z 1

�1
w.� � � 0/F.U0.� 0//d� 0: (9.64)
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Both c" andU0 depend non–trivially on the noise strength " due to the "–dependence
of the function h. Thus, c" ¤ c for " > 0 and c0 D c, where c is the speed of the
front in the absence of multiplicative noise. It also follows that the expansion (9.63)
is not equivalent to a standard small–noise expansion in ". Equation (9.64) is chosen
so that to leading order, the stochastic variable �.t/ undergoes unbiased Brownian
motion with a diffusion coefficient D."/ D O."/ (see below). Thus �.t/ represents
the effects of slow fluctuations, whereas ˚ represents the effects of fast fluctuations.

The next step is to substitute the decomposition (9.63) into Eq. (9.59) and expand
to first order in O."1=2/. Imposing Eq. (9.64), after shifting � ! � � �.t/, and
dividing through by "1=2 then gives

d˚.�; t/ D OL ı ˚.�; t/dtC "�1=2U 0
0.�/d�.t/C dR.U0; �; t/ (9.65)

where OL is the non–self–adjoint linear operator

OL ı A.�/ D c" dA.�/
d�

C h0.U0.�//A.�/C
Z 1

�1
w.� � � 0/F 0.U0.� 0//A.� 0/d� 0�

(9.66)

for any functionA.�/ 2 L2.R/. The non-self-adjoint linear operator OL has a 1D null
space spanned by U 0

0.�/, which follows from differentiating equation (9.64) with
respect to � . We then have the solvability condition for the existence of a nontrivial
solution of Eq. (9.66), namely, that the inhomogeneous part is orthogonal to the null
space of the adjoint operator. The latter is defined with respect to the inner product

Z 1

�1
B.�/ OLA.�/d� D

Z 1

�1

h OL�B.�/
i
A.�/d� (9.67)

where A.�/ and B.�/ are arbitrary integrable functions. Hence,

OL�B.�/ D �c" dB.�/

d�
C h0.U0.�//B.�/C F 0.U0.�//

Z 1

�1
w.� � � 0/B.� 0/d� 0:

(9.68)

Taking the null space of OL to be spanned by the function V .�/, we have
Z 1

�1
V .�/

�
U 0
0.�/d�.t/C "1=2dR.U0; �; t/

�
d� D 0: (9.69)

Thus �.t/ satisfies the stochastic ODE

d�.t/ D �"1=2
Z 1

�1
V .�/dR.U0; �; t/d�Z 1

�1
V .�/U 0

0.�/d�

: (9.70)
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Using the lowest order approximation dR.U0; �; t/ D g.U0.�//dW.�; t/, we deduce
that (for �.0/ D 0)

h�.t/i D 0; h�.t/2i D 2D."/t (9.71)

where D."/ is the effective diffusivity

D."/ D "hd�.t/d�.t 0/i D "

Z 1

�1
V .�/2g2.U0.�//d�

�Z 1

�1
V .�/U 0

0.�/d�

�2 : (9.72)

9.4.3 Explicit Results for a Heaviside Rate Function

We now illustrate the above analysis by considering a particular example where
the effective speed c" and diffusion coefficient D."/ can be calculated explicitly
[15]. That is, take g.U / D g0U for the multiplicative noise term and set
F.U / D H.U � 	/. (The constant g0 has units of

p
length=time.) The determin-

istic equation (9.64) for the fixed profile U0 then reduces to

� c" dU0

d�
C U0.�/�."/ D

Z 1

�1
w.� � � 0/H.U0.� 0/ � 	/d� 0; (9.73)

with

�."/ D .1 � "g20C.0//; (9.74)

The analysis of the wave speeds proceeds along identical lines to the deterministic
model. Thus, multiplying both sides of Eq. (9.73) by e���."/=c" and integrating with
respect to � gives

U0.�/ D e��."/=c"

"
	 � 1

c"

Z �

0

e�y�."/=c" Ow.y/dy

#
: (9.75)

Finally, requiring the solution to remain bounded as � !1 (� ! �1) for c" > 0
implies that 	 must satisfy the condition

	 D 1

c"

Z 1

0

e�y�."/=c" Ow.y/dy: (9.76)

Hence, in the case of the exponential weight distribution (9.49), we have

c" D �."/cC.�."/	/ D �

2	
Œ1 � 2	�."/� (9.77)
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for c" > 0 with cC.	/ defined in Eq. (9.55). Assuming that 0 � �."/ � 1, we
see that multiplicative noise shifts the effective velocity of front propagation in the
positive � direction.

In order to calculate the diffusion coefficient, it is first necessary to determine
the null vector V .�/ of the adjoint linear operator OL� defined by Eq. (9.68). Setting
F.U / D H.U � 	/ and g.U / D g0U , the null vector V satisfies the equation

c"V
0.�/C �."/V .�/ D � ı.�/

U 0
0.0/

Z 1

�1
w.� 0/V .� 0/d� 0: (9.78)

This can be solved explicitly to give [8]

V .�/ D �H.�/ exp .�� ."/�/ ; � .�/ D �."/

c"
: (9.79)

We have used the fact that the solution to Eq. (9.73) is of the form

U0.�/ D 1

c"

Z 1

0

e�� ."/y Ow.y C �/dy; (9.80)

with Ow.�/ defined in Eq. (9.51) and, hence,

U 0
0.�/ D �

1

c"

Z 1

0

e�� ."/yw.y C �/dy: (9.81)

Using Eq. (9.79), Eq. (9.72) reduces to the form

D."/ D "

Z 1

0

e�2� ."/�U0.�/2d�
�Z 1

0

e�� ."/�U 0
0.�/d�

�2 ; (9.82)

which can be evaluated explicitly for an exponential weight distribution to give

D."/ D 1

2
"�g20.1C �� ."// (9.83)

In Fig. 9.1 we show the temporal evolution of a single stochastic wave front,
which is obtained by numerically solving the Langevin equation (9.56) for F.U / D
H.U � 	/, g.U / D U and an exponential weight distribution w. In order to
numerically calculate the mean location of the front as a function of time, we
carry out a large number of level set position measurements. That is, the positions
Xa.t/ are determined such that U.Xa.t/; t/ D a, for various level set values
a 2 .0:5	; 1:3	/ and the mean location is defined to be X.t/ D EŒXa.t/�, where
the expectation is first taken with respect to the sampled values a and then averaged
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Fig. 9.1 Numerical simulation showing the propagation of a front solution of the stochastic neural
field equation (9.56) for Heaviside weight function F.U / D H.U�	/with 	 D 0:35, exponential
weight function (9.49) with � D 2, and multiplicative noise g.U / D U . Noise strength � D 0:005

and C.0/ D 10. The wave profile is shown at successive times (a) t D 12 (b) t D 18 and (c)
t D 24, with the initial profile at t D 0 (smooth curve in (a)) given by Eq. (9.80). In numerical
simulations we take the discrete space and time steps�x D 0:1;�t D 0:01. The deterministic part
U0 of the stochastic wave is shown by the more advanced curves and the corresponding solution in
the absence of noise ." D 0) is shown by the less advanced curves
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Fig. 9.2 (a) Variance �2X .t/ of front position as a function of time, averaged over N D 4;096

trials. Same parameter values as Fig. 9.1. (b) Plot of wave speed c" (black curve) and diffusion
coefficient D."/ (gray curve) as a function of threshold 	. Numerical results (solid dots) are
obtained by averaging overN D 4;096 trials starting from the initial condition given by Eq. (9.80).
Corresponding theoretical predictions (solid curves) for c" and D."/ are based on Eqs. (9.77) and
(9.82), respectively. Other parameters are as in Fig. 9.1

over N trials. The corresponding variance is given by �2X.t/ D EŒ.Xa.t/� NX.t//2�.
In Fig. 9.2a, �2X.t/ is plotted as a function of t . It can be seen that it varies linearly
with t , consistent with the assumption that there is a diffusive–like displacement of
the front from its uniformly translating position at long time scales. The slope of
the curve then determines the effective diffusion coefficient according to �2X.t/ �
2D."/t . In Fig. 9.2b, the numerically estimated speed and diffusion coefficient are
plotted for various values of the threshold 	 and are compared to the corresponding
theoretical curves obtained using the above analysis. It can be seen that there is
excellent agreement with the theoretical predictions provided that 	 is not too large.
Note that as 	 ! 0:5, the wave speed decreases towards zero so that the assumption
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of relatively slow diffusion breaks down. Note that the analysis of freely propagating
fronts can be extended to the case of fronts locked to an externally moving stimulus
[15]. One finds that the latter are much more robust to noise, since the stochastic
wandering of the mean front profile is now described by an Ornstein–Uhlenbeck
process rather than a Wiener process, so that the variance in front position saturates
in the long time limit rather than increasing linearly with time.

9.5 Path Integral Representation of a Stochastic Neural Field

Recently, Buice and Cowan [19] have used path integral methods and renormal-
ization group theory to establish that a stochastic neural field with an absorbing
state, which evolves according to a birth–death master equation of the form (9.39),
belongs to the universality class of directed percolation, and consequently exhibits
power law behavior suggestive of many measurements of spontaneous cortical
activity in vitro and in vivo [6,51]. (If a network enters an absorbing state all activity
is extinguished.) Although the existence of power law behavior is still controversial
[5], the application of path integral methods provides another example of how
analytical techniques familiar in the study of PDEs and chemical master equations
are being adapted to studies of continuum neural fields. (For reviews on path integral
methods for stochastic differential equations see Refs. [22, 60, 67].) In this section,
we show how a stochastic neural field with extrinsic noise and an absorbing state
can be reformulated as a path integral, and use this to estimate the time to extinction
of network activity. A more detailed discussion can be found in Ref. [11]

9.5.1 Pulled Fronts, Absorbing States and Extinction Events

In order to construct a neural field with an absorbing state, it is convenient to
consider an activity–based rather than a voltage-based neural field of the form

�
@a.x; t/

@t
D �a.x; t/C F

�Z 1

�1
w.x � x0/a.x0; t /dx0

�
: (9.84)

For the moment, we consider an unbounded domain with x 2 R. We also have the
additional constraint that a.x; t/ � 0 for all .x; t/, since the field a.x; t/ represents
the instantaneous firing rate of a local population of neurons at position x and time t .
Suppose that F.a/ in Eq. (9.84) is a positive, bounded, monotonically increasing
function of a with F.0/ D 0, lima!0C F 0.a/ D 1 and lima!1 F.a/ D 	 for some
positive constant 	. For concreteness, we take

F.a/ D
8<
:
0; a � 0
a; 0 < a � 	
	; a > 	:

(9.85)
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Fig. 9.3 (a) Plots of piecewise linear and sigmoidal firing rate functions. Intercepts of y D
F.W0a/ with straight line y D a determine homogeneous fixed points. Stable (unstable) fixed
pints indicated by filled (unfilled) circles. (b) Stable steady state solution a.x; t/ D As.x/ of
neural field equation (9.84) on a finite spatial domain of length L with boundary conditions
a.0; t/ D a.L; t/ D 0. Here W0 D 1:2; � D 1; 	 D 0:4 and L D 5 in the presence of
multiplicative noise, fluctuations can drive the network to the zero absorbing state resulting in
the extinction of activity

A homogeneous fixed point solution a� of Eq. (9.84) satisfies a� D F.W0a
�/ with

W0 D
R1

�1 w.y/dy. In the case of the given piecewise linear firing rate function, we
find that if W0 > 1, then there exists an unstable fixed point at a� D 0 (absorbing
state) and a stable fixed point at a� D 	, see Fig. 9.3a. The construction of a front
solution linking the stable and unstable fixed points differs considerably from that
considered in neural fields with sigmoidal or Heaviside nonlinearities as considered
in Sect. 9.4, where the front propagates into a metastable state. Following the PDE
theory of fronts propagating into unstable states [62], we expect there to be a
continuum of front velocities and associated traveling wave solutions; the particular
velocity selected depends on the initial conditions. Fronts propagating into unstable
states can be further partitioned into two broad categories: the so–called pulled and
pushed fronts [62] emerging from sufficiently localized initial conditions. Pulled
fronts propagate into an unstable state such that the asymptotic velocity is given
by the linear spreading speed v�, which is determined by linearizing about the
unstable state within the leading edge of the front. That is, perturbations around the
unstable state within the leading edge grow and spread with speed v�, thus “pulling
along” the rest of the front. On the other hand, pushed fronts propagate into an
unstable state with a speed greater than v�, and it is the nonlinear growth within
the region behind the leading edge that pushes the front speeds to higher values.
One of the characteristic features of pulled fronts is their sensitivity to perturbations
in the leading edge of the wave. This means that standard perturbation methods
for studying the effects of spatial heterogeneities [43] or external noise fluctuations
[54] break down. The effects of spatial heterogeneities on neural fields that support
pulled fronts is explored elsewhere [11, 23].
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Consider a traveling wave solution A .x � ct/ of Eq. (9.84) with A .�/ ! 	 as
� ! �1 and A .�/! 0 as � !1. One can determine the range of velocities c for
which such a solution exists by assuming that A .�/ � e��� for sufficiently large � .
The exponential decay of the front suggests that we linearize equation (9.84), which
in traveling wave coordinates (with � D 1) takes the form

� c dA .�/

d�
D �A .�/C

Z 1

�1
w.� � � 0/A .� 0/d� 0: (9.86)

However, in order to make the substitution A .�/ � e��� we need to restrict the
integration domain of � 0 to the leading edge of the front. Suppose, for example that
w.x/ is given by the Gaussian distribution

w.x/ D W0p
2��2

e�x2=2�2 : (9.87)

Given the fact that the front solution A .�/ is bounded, we introduce a cut-off X
with �  X  � , and approximate Eq. (9.86) by

� c dA .�/

d�
D �A .�/C

Z �CX

��X
w.� � � 0/A .� 0/d� 0: (9.88)

Substituting the exponential solution in (9.86) then yields the dispersion relation
c D c.�/ with

c.�/ D 1

�

�Z X

�X
w.y/e��ydy � 1

�
: (9.89)

Finally, we now take the limit X ! 1 under the assumption that w.y/ is an even
function to yield

c.�/ D 1

�
ŒW .�/ � 1� ; (9.90)

where W .�/ D Ow.�/ C Ow.��/ and Ow.�/ D R1
0

w.y/e��ydy is the Laplace
transform of w.x/. We are assuming that w.y/ decays sufficiently fast as jyj ! 1
so that the Laplace transform Ow.�/ exists for bounded, negative values of �. This
holds in the case of the Gaussian distribution (9.87) for which W .�/ D W0e�

2�2=2.
Hence,

c.�/ D W0e�
2�2=2 � 1
�

: (9.91)

IfW0 > 1 (necessary for the zero activity state to be unstable) then c.�/ is a positive
unimodal function with c.�/ ! 1 as � ! 0 or � ! 1 and a unique minimum
at � D �0 with �0. Assuming that the full nonlinear system supports a pulled front
then a sufficiently localized initial perturbation (one that decays faster than e��0x)
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will asymptotically approach the traveling front solution with the minimum wave
speed c0 D c.�0/. Note that c0 � � and �0 � ��1.

In the above analysis, the effects of boundary conditions on front propagation
were ignored, which is a reasonable approximation if the size L of the spatial
domain satisfies L � � , where � is the range of synaptic weights. In the case of a
finite domain, following passage of an invasive activity front, the network settles into
a non–zero stable steady state, whose spatial structure will depend on the boundary
conditions. The steady–state equation takes the form

a.x/ D F
�Z L

0

w.x � x0/a.x0/dx0
�
: (9.92)

In the case of Dirichlet boundary conditions, a.0; t/ D a.L; t/ D 0 with L � � ,
the steady–state will be uniform in the bulk of the domain with a.x/ � a0 except
for boundary layers at both ends. Here a0 is the nonzero solution to the equation
a0 D F.W0a0/. An example of a steady–state solution is plotted in Fig. 9.3b. (Note
that the sudden drop to zero right on the boundaries reflects the non-local nature of
the neural field equation.)

Now suppose some source of extrinsic noise is added to the neural field
equation (9.84):

dA D
�
�AC F

�Z
˙

w.x � y/A.y; t/dy

��
dtC "g.A/dW.x; t/; (9.93)

for 0 � t � T and initial condition A.x; 0/ D ˚.x/. Here " determines the
noise strength and ˙ D Œ0; L� denotes the spatial domain of the neural field. We
will assume that g.0/ D 0 so that the uniform zero activity state A � 0 is an
absorbing state of the system; any noise–induced transition to this state would then
result in extinction of all activity. An example of multiplicative noise that vanishes
at A D 0 is obtained by carrying out a diffusion approximation of the neural master
equation previously introduced by Buice et al. [19, 20], see Bressloff [9, 10]. Based
on the analysis of stochastic traveling waves in Sect. 9.4, we would expect the noise
to induce a stochastic wandering of a pulled front solution of the corresponding
deterministic equation. However, in the case of stochastic PDEs, it has previously
been shown that the stochastic wandering of a pulled front about its mean position
is subdiffusive with var�.t/ � t 1=2, in contrast to the diffusive wandering of a front
propagating into a metastable state for which var�.t/ � t [54]. Such scaling is a
consequence of the asymptotic relaxation of the leading edge of the deterministic
pulled front. Since pulled front solutions of the neural field equation (9.84) exhibit
similar dynamics, it suggests that there will also be subdiffusive wandering of these
fronts in the presence of multiplicative noise. This is indeed found to be the case
[15]. Another consequence of the noise is that it can induce a transition from the
quasi-uniform steady state to the zero absorbing state. In the case of weak noise,
the time to extinction is exponentially large and can be estimated using path integral
methods as outlined below, see also Ref. [11].



9 Stochastic Neural Field Theory 259

9.5.2 Derivation of Path Integral Representation

In order to develop a framework to study rare extinction events in the weak
noise limit, we construct a path integral representation of the stochastic Langevin
equation (9.93) along the lines of Ref. [11]. We will assume that the multiplicative
noise is of Ito form [34]. For reviews on path integral methods for stochastic
differential equations, see Refs. [22, 60, 67]. Discretizing both space and time
with Ai;m D A.m�d; i�t/, Wi;m

p
�t=�d D dW.m�d; i�t/, wmn�d D

w.m�d; n�d/ gives

AiC1;m � Ai;m D
��Ai;mCF ��dPn wmnAi;n

��
�tC

p
�tp
�d
g.Ai;m/Wi;m C ˚mıi;0;

where i D 0; 1; : : : ; N for T D N�t , n D 0; : : : ; ON for L D ON�d , and

hWi;mi D 0; hWi;mWi 0;m0i D ıi;i 0ım;m0 : (9.94)

Let A and W denote the vectors with components Ai;m and Wi;m respectively.
Formally, the conditional probability density function for A given a particular
realization of the stochastic process W (and initial condition ˚) is

P ŒAjW� DQn

QN
iD0 ı

�
AiC1;m � Ai;m C

�
Ai;m � F

�
�d

P
n wmnAi;n

��
�t

�
p
�tp
�d
g.Ai;m/Wi;m � ˚mıi;0



: (9.95)

Inserting the Fourier representation of the Dirac delta function,

ı.Ai;m/ D 1

2�

Z 1

�1
e�i QAi;mAi;md QUi;m; (9.96)

gives

P ŒAjW� D
Z 1

�1
: : :

Z 1

�1
exp

(
�i
X
i;m

QUi;m .AiC1;m � Ai;m/
)

(9.97)

� exp

(
�i
X
i;m

QUi;m
"
Ai;m � F

 
�d

X
n

wmnAi;n

!#
�t

)

� exp

(
i
X
i;m

QUi;m
 p

�tp
�d

g.Ai;m/Wi;m C ˚mıi;0
!) ONY

nD0

NY
jD0

d QUj;n
2�

:

Each Wi;m is independently drawn from a Gaussian probability density function

P.Wi;m/ D .2�/�1=2e�W 2
i;m=2. Hence, setting
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P ŒA� D
Z 1

�1
P ŒAjW�

Y
j;n

P.Wj;n/dWj;n

and performing the integration with respect to Wj;n by completing the square, gives

P ŒA� D
Z 1

�1
: : :

Z 1

�1
exp

(
�i
X
i;m

QUi;m .AiC1;m � Ai;m/
)

� exp

(
�i
X
i;m

QUi;m
"
Ai;m � F

 
�d

X
n

wmnAi;n

!#
�t

)

� exp

(X
i;m

�
Œi QUi;m�2g2.Ai;m/ �t

2�d
C i QUi;m˚mıi;0

�) Y
nD0

NY
jD0

d QUj;n
2�

:

(9.98)

Finally, taking the continuum limits �d ! 0, and �t ! 0, N; ON ! 1 for fixed
T;L with Ai;m ! A.x; t/ and i QUi;m=�d ! QU .x; t/ results in the following path
integral representation of a stochastic neural field:

P ŒA� D
Z

e�SŒA; QU �D QU (9.99)

with

SŒA; QU � D
Z
˙

Z T

0

QU .x; t/
�
At.x; t/C A.x; t/ � F

�Z
˙

w.x � y/A.y; t/dy

�

�˚.x/ı.t/ � 1
2
QU.x; t/g2.A.x; t//

�
dtdx: (9.100)

Here D QU denotes the path-integral measure

D QU D lim
N; ON!1

ONY
nD0

NY
jD0

d QUj;n�d
2�i

:

Given the probability functional P ŒA�, a path integral representation of various
moments of the stochastic field A can be constructed [22]. For example, the mean
field is

hhA.x; t/ii D
Z
A.x; t/e�SŒA; QU �DAD QU ; (9.101)
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whereas the two–point correlation is

hhA.x; t/A.x0; t 0/ii D
Z
A.x; t/A.x0; t 0/e�SŒA; QU �DAD QU : (9.102)

Another important characterization of the stochastic neural field is how the mean
activity (and other moments) respond to small external inputs (linear response
theory). First, suppose that a small external source term h.x; t/ is added to the
right–hand side of the deterministic version (g � 0) of the field equation (9.93).
Linearizing about the time–dependent solution A.x; t/ of the unperturbed equation
(h � 0) leads to an inhomogeneous linear equation for the perturbed solution
'.x; t/ D Ah.x; t/ � A.x; t/:
@'

@t
D �'.x; t/C F 0

�Z
˙

w.x � y/A.y; t/dy

�Z
˙

w.x � y/'.y; t/dyC h.x; t/:
(9.103)

Introducing the deterministic Green’s function or propagator G0.x; t I x0; t 0/ accord-
ing to the adjoint equation

� @G0
@t 0
D ı.x � x0/ı.t � t 0/ � G0.x; t I x0; t 0/ (9.104)

C
Z
˙

F 0
�Z

˙

w.y � z/A.z; t 0/d z

�
w.x0 � y/G0.x; t Iy; t 0/dy

with G0.x; t I x0; t 0/ D 0 for t � t 0 (causality), the linear response is given by

'.x; t/ D
Z

�˙

Z t

G0.x; t I x0; t 0/h.x0; t 0/dt0dx0: (9.105)

In other words, in terms of functional derivatives

ıA.x; t/

ıh.x0; t 0/
D G0.x; t I x0; t 0/: (9.106)

Now suppose that a corresponding source term
R

dx
R

dt h.x; t/ QU.x; t/ is added to
the action (9.100). The associated Green’s function for the full stochastic model is
defined according to

G .x; t I x0; t 0/ � ıhhA.x; t/ii
ıh.x0; t 0/

D hhA.x; t/ QU.x0; t 0/ii (9.107)

with

lim
t!t 0

C

G .x; t I x0; t 0/ D ı.x � x0/
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and G .x; t I x0; t 0/ D 0 for t � t 0. The above analysis motivates the introduction of
the generating functional

ZŒJ; QJ � D
Z

e�SŒA; QU �CR˙ R T0 Œ QA.x;t/J.x;t/C QJ .x;t/A.x;t/�dxdtDAD QU : (9.108)

Various moments of physical interest can then be obtained by taking functional
derivatives with respect to the “current sources” J ; QJ . For example,

hhA.x; t/ii D ı

ı QJ .x; t/ZŒJ;
QJ �
ˇ̌̌
ˇ
JD QJD0

(9.109)

hhA.x; t/A.x0; t 0/ii D ı

ı QJ .x; t/
ı

ı QJ .x0; t 0/
ZŒJ; QJ �

ˇ̌
ˇ̌
JD QJD0

(9.110)

hhA.x; t/ QA.x0; t 0/ii D ı

ı QJ .x; t/
ı

ıJ.x0; t 0/
ZŒJ; QJ �

ˇ̌̌
ˇ
JD QJD0

: (9.111)

9.5.3 Hamiltonian–Jacobi Dynamics and Population
Extinction in the Weak-Noise Limit

In Ref. [11], the path-integral representation of the generating functional (9.108)
is used to estimate the time to extinction of a metastable non–trivial state. That is,
following along analogous lines to previous studies of reaction–diffusion equations
[27, 42], the effective Hamiltonian dynamical system obtained by extremizing
the associated path integral action is used to determine the most probable or
optimal path to the zero absorbing state. (Alternatively, one could consider a WKB
approximation of solutions to the corresponding functional Fokker–Planck equation
or master equation [26, 33, 40].) In the case of the neural field equation, this results
in extinction of all neural activity. For a corresponding analysis of a neural master
equation with x–independent steady states, see Refs. [9, 10].

The first step is to perform the rescalings QA! QA=�2 and QJ ! QJ=�2, so that the
generating functional (9.108) becomes

ZŒJ; QJ � D
Z

e���2SŒA; QU �C��2
R
˙

R T
0 Œ QA.x;t/J.x;t/C QJ .x;t/A.x;t/�dtdxDAD QU : (9.112)

In the limit � ! 0, the path integral is dominated by the “classical” solutions
q.x; t/; p.x; t/, which extremize the exponent or action of the generating
functional:

ıSŒA; QA�
ıA.x; t/

ˇ̌̌
ˇ̌

QADp;ADq
D � QJ .x; t/; ıSŒA; QA�

ı QA.x; t/

ˇ̌̌
ˇ̌

QADp;ADq
D �J.x; t/: (9.113)
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In the case of zero currents J D QJ D 0, these equations reduce to

@q.x; t/

@t
D ıH Œq; p�

ıp.x; t/
;

@p.x; t/

@t
D �ıH Œq; p/

ıq.x; t/
; (9.114)

where

SŒq; p� D
Z T

0

�Z
˙

p.x; t/ Pq.x; t/dx �H Œq; p�

�
dt �

Z
˙

p.x; 0/˚.x/dx;

such that

H Œq; p� D
Z
˙

p.x; t/

�
�q.x; t/C F

�Z
˙

w.x � y/q.y; t/dy

�

C1
2
p.x; t/g2.q.x; t//

�
dx (9.115)

Equations (9.114) take the form of a Hamiltonian dynamical system in which q is
a “coordinate” variable, p is its “conjugate momentum” and H is the Hamiltonian
functional. Substituting for H leads to the explicit Hamilton equations

@q.x; t/

@t
D �q.x; t/C F �R

˙
w.x � y/q.y; t/dy

�C p.x; t/g2.q.x; t// (9.116)

@p.x; t/

@t
D �p.x; t/C R

˙
F 0 �R

˙
w.y � z/q.z; t /d z

�
w.y � x/p.y; t/dy

Cp2.x; t/g.q.x; t//g0.q.x; t// (9.117)

It can be shown that q.x; t/; p.x; t/ satisfy the same boundary conditions as the
physical neural fieldA.x; t/ [49]. Thus, in the case of periodic boundary conditions,
q.x C L; t/ D q.x; t/ and p.x C L; t/ D p.x; t/. It also follows from the
Hamiltonian structure of Eqs. (9.116) and (9.117) that there is an integral of motion
given by the conserved “energy” E DH Œq; p�.

The particular form of H implies that one type of solution is the zero energy
solution p.x; t/ � 0, which implies that q.x; t/ satisfies the deterministic scalar
neural field equation (9.84). In the t !1 limit, the resulting trajectory in the infi-
nite dimensional phase space converges to the steady state solution OC D Œqs.x/; 0�,
where qs.x/ satisfies Eq. (9.92). The Hamiltonian formulation of extinction events
then implies that the most probable path from Œqs.x/; 0� to the absorbing state is the
unique zero energy trajectory that starts at OC at time t D �1 and approaches
another fixed point P D Œ0; pe.x/� at t D C1 [27, 49]. In other words, this
so–called activation trajectory is a heteroclinic connection OCP (or instanton
solution) in the functional phase space Œq.x/; p.x/�. It can be seen from Eq. (9.117)
that the activation trajectory is given by the curve
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p.x/ D FxŒq� � �
�q.x/C F �R

˙
w.x � y/q.y/dy

�
g.q.x//2

(9.118)

so that

pe.x/ D lim
q!0

FxŒq� D �.W0 � 1/ lim
q!0

q.x/

g.q.x//2
; (9.119)

assuming F.q/ � q for 0 < q  1. Note that the condition that pe.x/ exists
and is finite is equivalent to the condition that there exists a stationary solution to
the underlying functional Fokker–Planck equation – this puts restrictions on the
allowed form for g. For the zero energy trajectory emanating from OC at t D �1,
the corresponding action is given by

S0 D
Z 1

�1

Z
˙

p.x; t/ Pq.x; t/dx dt; (9.120)

and up to pre-exponential factors, the estimated time �e to extinction from the
steady–state solution qs.x/ is given by [27, 49]

ln �e � ��2S0: (9.121)

For x–dependent steady–state solutions qs.x/, which occur for Dirichlet boundary
conditions and finite L, one has to solve Eqs. (9.116) and (9.117) numerically.
Here we will consider the simpler case of x–independent solutions, which occur
for periodic boundary conditions or Dirichlet boundary conditions in the large L
limit (where boundary layers can be neglected). Restricting to x-independent state
transitions, the optimal path is determined by the Hamilton equations (9.116) and
(9.117):

Pq D �q C F .W0q/C pg2.q/ (9.122)

� Pp D �p CW0F
0 .W0q/ p C p2g.q/g0.q/ (9.123)

In Fig. 9.4 we plot the various constant energy solutions of the Hamilton
equations (9.122) and (9.123) for the differentiable rate function F.q/ D tanh.q/
and multiplicative noise factor g.q/ D qs . In the first case pe D 0:2 and in the
second pe D 0. The zero–energy trajectories are highlighted as thicker curves. Let
us first consider the case s D 1=2 for which pe D 0:2, see Fig. 9.4a. As expected,
one zero–energy curve is the line p D 0 along which Eq. (9.122) reduces to
the x–independent version of Eq. (9.84). If the dynamics were restricted to the
one–dimensional manifold p D 0 then the non–zero fixed point OC D .q0; 0/

with q0 D F.W0q0/ would be stable. However, it becomes a saddle point of the
full dynamics in the .q; p/ plane, reflecting the fact that it is metastable when
fluctuations are taken into account. A second zero–energy curve is the absorbing



9 Stochastic Neural Field Theory 265

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.3

-0.2

-0.1

0

0.1

0.2

0.3a b

Fig. 9.4 Phase portrait of constant energy trajectories for the Hamiltonian system given by
Eqs. (9.122) and (9.123) with F.q/ D tanh.q/ and g.q/ D qs for q > 0. Zero–energy trajectories
are indicated by thick curves. The stable and unstable fixed points of the mean–field dynamics are
denoted by OC and O�. (a) s D 1=2: There exists a non-zero fluctuational fixed point P that is
connected to OC via a zero–energy heteroclinic connection. The curve OCP is the optimal path
from the metastable state to the absorbing state. (b) s D 1=4: There is no longer a fluctuational
fixed point P so the optimal path is a direct heteroclinic connection between OC and O�

line q D 0 which includes two additional hyperbolic fixed points denoted by
O� D .0; 0/ and P D .0; pe/ in Fig. 9.4. O� occurs at the intersection with the
line p D 0 and corresponds to the unstable zero activity state of the deterministic
dynamics, whereas P is associated with the effects of fluctuations. Moreover, there
exists a third zero–energy curve, which includes a heteroclinic trajectory joining
O� at t D �1 to the fluctuational fixed point P at t D C1. This heteroclinic
trajectory represents the optimal (most probable) path linking the metastable fixed
point to the absorbing boundary. For s < 1=2, pe D 0 and the optimal path is
a heteroclinic connection from OC to O�. In both cases, the extinction time �e is
given by Eq. (9.121) with

S0 D
Z P

OC

pdq; (9.124)

where the integral evaluated along the heteroclinic trajectory from OC to P , which
is equal to the area in the shaded regions of Fig. 9.4.

Note that since the extinction time is exponentially large in the weak noise limit,
it is very sensitive to the precise form of the action S0 and thus the Hamiltonian H .
This implies that when approximating the neural master equation of Buice et al.
[19,20] by a Langevin equation of the form (9.93) with � � 1=pN , whereN is the
system size, the resulting Hamiltonian differs from that obtained directly from the
master equation and can thus generate a poor estimate of the extinction time. This
can be shown either by comparing the path integral representations of the generating
functional for both stochastic processes or by comparing the WKB approximation
of the master equation and corresponding Fokker–Planck equation. This particular
issue is discussed elsewhere for neural field equations [9, 10].
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Chapter 10
On the Electrodynamics of Neural Networks

Peter beim Graben and Serafim Rodrigues

Abstract We present a microscopic approach for the coupling of cortical activity,
as resulting from proper dipole currents of pyramidal neurons, to the electromag-
netic field in extracellular fluid in presence of diffusion and Ohmic conduction.
Starting from a full-fledged three-compartment model of a single pyramidal neuron,
including shunting and dendritic propagation, we derive an observation model for
dendritic dipole currents in extracellular space and thereby for the dendritic field
potential that contributes to the local field potential of a neural population. Under
reasonable simplifications, we then derive a leaky integrate-and-fire model for the
dynamics of a neural network, which facilitates comparison with existing neural
network and observation models. In particular, we compare our results with a
related model by means of numerical simulations. Performing a continuum limit,
neural activity becomes represented by a neural field equation, while an observation
model for electric field potentials is obtained from the interaction of cortical dipole
currents with charge density in non-resistive extracellular space as described by
the Nernst-Planck equation. Our work consistently satisfies the widespread dipole
assumption discussed in the neuroscientific literature.

10.1 Introduction

Hans Berger’s 1924 discovery of the human electroencephalogram (EEG) [11]
lead to a tremendous research enterprise in clinical, cognitive and computational
neurosciences [58]. However, one of the yet unresolved problems in the biophysics
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of neural systems is understanding the proper coupling of complex neural network
dynamics to the electromagnetic field, that is macroscopically measurable by means
of neural mass potentials, such as local field potential (LFP) or electroencephalo-
gram. One requirement for this understanding is a forward model that links the
‘hidden’ activities of billions of neurons in mammalian brains and their propagation
through neural networks to experimentally accessible quantities such as LFP and
EEG. Utilizing terminology from theoretical physics, we call the operationally
accessible quantities observables and an integrative forward model an observation
model. Yet, there is an ongoing debate in the literature whether field effects, i.e.
the feedback from mass potentials to neural activity, plays a functional role in the
self-organization of cortical activity (e.g. [40]). Such field effects have recently
been demonstrated via experiments on ephaptic interaction [31]. Thus a theoretical
framework for observation forward and feedback models is mandatory in order
to describe the coupling between neural network activity and the propagation
of extracellular electromagnetic fields in clinical, computational and cognitive
neurosciences, e.g. for treatment of epilepsy [55] or for modeling cognition-related
brain potentials [8, 46].

Currently, there is ample evidence that the generators of neural field potentials,
such as cortical LFP and EEG are the cortical pyramidal cells (sketched in Fig. 10.1).
They exhibit a long dendritic trunk separating mainly excitatory synapses at the
apical dendritic tree from mainly inhibitory synapses at the perisomatic basal
dendritic tree [23, 60]. When both kinds of synapses are simultaneously active,
inhibitory synapses generate current sources and excitatory synapses current sinks
in extracellular space, causing the pyramidal cell to behave as a microscopic
dipole surrounded by its characteristic electrical field. This dendritic dipole field is
conveniently described by its associated electrodynamic potential, the dendritic field
potential (DFP). Dendritic fields superimpose to the field of a cortical dipole layer,
which is measurable as cortical LFP, due to the geometric arrangement of pyramidal
cells in a cortical column. There, pyramidal cells exhibit an axial symmetry and
they are aligned in parallel to each other, perpendicular to the cortex’ surface, thus
forming a palisade of cell bodies and dendritic trunks. Eventually, cortical LFP gives
rise to the EEG measurable at the human’s scalp [27, 53, 58].

Weaving the above phenomena into a mathematical and biophysical plausible
observation model that represents correctly the multi-spatiotemporal characteristics
of LFP is a non-trivial task. The difficulty results from the complexity of brain
processes that operate at several spatial and temporal scales. On one hand the
organization of the brain, from single neuron scales to that of whole brain regions,
changes its connectivity from almost probabilistic to highly structured as discussed
above in the case of the cortical columns. On the other hand, temporal dynamics
in time scales ranges from milliseconds for discrete events like spikes to hours and
even longer for synaptic plasticity and learning. Hence, there is strong interaction
between the different spatiotemporal scales [12, 45], which directly contribute to
complex oscillatory dynamics, e.g., to mixed-mode oscillations [25, 29]. Thus it
is not clear how and when to break down complex brain processes into simpler
‘building blocks’ where analysis can be made. Despite these peculiarities, various
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Fig. 10.1 Sketch of a cortical
pyramidal neuron with
extracellular current dipole
between spatially separated
excitatory (open bullet) and
inhibitory synapses (filled
bullet). Neural in- and outputs
are indicated by the jagged
arrows. The z-axis points
toward the scull. Current
density j is given by
dendritic current I1 through
cross section area A as
described in the text

mathematical and computational approaches have been proposed in order to estab-
lish coarse-graining techniques and how to move from one scale to another.

Most studies for realistically simulating LFP, typically for the extracellular fluid
in the vicinity of a neuron, have been attempted by means of compartmental models
[2,48,54,57] where every compartment contributes a portion of extracellular current
to the DFP that is given by Coulomb’s equation in conductive media [5,7,53]. How-
ever, because compartmental models are computationally expensive, large-scale
neural network simulations preferentially employ point models, based either on
conductance [36, 50] or population models [39, 56, 64, 65] where neural mass
potentials are estimated either through sums (or rather differences) of postsynaptic
potentials [24] or of postsynaptic currents [50]. In particular, the model of Mazzoni
et al. [50] led to a series of recent follow-up studies [51, 52] that address the
correlations between numerically simulated or experimentally measured LFP/EEG
and spike rates by means of statistical modeling and information theoretic measures.

To adequately explain field potentials measured around the dendritic tree of an
individual cortical pyramidal cell (DFP), in extracellular space of a cortical module
(LFP), or at a human’s scalp (EEG), Maxwell’s electromagnetic field equations,
specifically the continuity equation describing conservation of charge have to be
taken into account. However, coupling the activity of discrete neural networks to
the continuous electromagnetic field is difficult since neural network topology is
not embedded into physical space as an underlying metric manifold. This can be
circumvented by employing continuous neural networks as investigated in neural
field theory (NFT) [1, 15, 18, 38, 41, 66]. In fact previous studies [42, 47] gave the
first reasonable accounts for such couplings in NFT population models that are
motivated by the corresponding assumptions for neural mass models (cf. Chap. 17
in this volume). Jirsa et al. [42] relate the impressed current density in extracellular
space to neural field activity. On the other hand, Liley et al. [47] consider LFP as
average somatic membrane potential being proportional to the neural field. Their
model found a number of successful applications [13, 14, 22] (see also Chap. 14).
However, both approaches [42,47] are not concerned with the microscopic geometry
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around the field generators, the cortical pyramidal cells. Therefore, they do not take
pyramidal dipole currents into account.

Another problem with the aforementioned neural field approaches is that the
extracellular space has either been completely neglected, or only implicitly been
taken into account by assuming that cortical LFP is proportional to either membrane
potentials or synaptic currents as resulting from a purely resistive medium. That
means, dipole currents in the extracellular space have been completely abandoned.
However, recent studies indicate that at least the resistive property of the extra-
cellular space is crucial [49], but more interestingly, it has been revealed that
diffusion currents, represented by their corresponding Warburg impedances [59],
cannot be neglected in extracellular space as they may substantially contribute to
the characteristic power spectra of neural mass potentials [3, 4, 6, 27].

In this chapter, we outline a theoretical framework for the microscopic coupling
of continuous neural networks, i.e. neural fields, to the electromagnetic field,
properly described by dipole currents of cortical pyramidal neurons and diffusion
effects in extracellular space. As a starting point we use a three-compartment model
for a single pyramidal cell [7,26,63] and derive the evolution law for the activity of a
neural network. These derivations additionally include observation equations for the
extracellular dipole currents, which explicitly incorporate extracellular resistivity
and diffusion. Subsequently, we demonstrate that our approach can be related to
previous modeling strategies, by considering reasonable simplifications. Herein, we
intentionally and specifically simplify our approach to a leaky integrate-and-fire
(LIF) model for the dynamics of a neural network, which then shows the missing
links that previous modeling approaches failed to incorporate to account for a
proper dipole LFP observation model. In particular, we compare our results with the
related model by Mazzoni et al. [50] by means of numerical simulations. Moreover,
performing the continuum limit (yet à la physique) for the network yields an Amari-
type neural field equation [1] coupled to the Maxwell equations in extracellular fluid,
while an observation model for electric field potentials is obtained from the inter-
action of cortical dipole currents with charge density in non-resistive extracellular
space as described by the Nernst-Planck equation. Thereby, our work provides for
the first time a biophysically plausible observation model for the Amari-type neural
field equations and crucially, it gives estimates for the local field potentials that
satisfy the widespread dipole assumption discussed in the neuroscientific literature.

10.2 Pyramidal Neuron Model

Inspired by earlier attempts to approximate the complex shape of cortical pyrami-
dal neurons by essentially three passively coupled compartments [7, 26, 63], we
reproduce in Fig. 10.2 the electronic equivalent circuit of beim Graben [7] for
the i th pyramidal cell (Fig. 10.1) in a population of P pyramidal neurons here.
This parsimonious circuit allows to derive our observation model. It comprises one
compartment for the apical dendritic tree where pi excitatory synapses are situated
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(for the sake of simplicity, we only show one synapse here), another one for the soma
and perisomatic basal dendritic tree, populated with qi mainly inhibitory synapses
(again, only one synapse is shown here), and a third one for the axon hillock where
membrane potential is converted into spike trains by means of an integrate-and-
fire mechanism. Note that nonlinear fire mechanisms of Hodgkin-Huxely type can
be incorporated as well. In total we consider N populations of neurons, arranged
in two-dimensional layers �n 
 R

2 (i D n; : : : ; N ). Neurons in layers 1 to M
should be excitatory, neurons in layersM C 1 to N should be inhibitory and layer 1
exclusively contains the P cortical pyramidal cells in our simplified treatment. The
total number of neurons should be K.

Excitatory synapses are schematically represented by the left-most branch of
Fig. 10.2 as ‘phototransistors’ [7] in order to indicate that they comprise quanta-
gated resistors, namely ion channels whose resistance depends on the concentration
of ligand molecules which are either extracellular neurotransmitters or intracellular
metabolites [44]. There, the excitatory postsynaptic current (EPSC) at a synapse
between a neuron j from layers 1 to M and neuron i is given as

I E
ij .t/ D

�E
ij .t/

RE
ij

.Vi1.t/ �EE
ij / : (10.1)

Here, the time-dependent function �E
ij .t/ reflects the neurotransmitter-gated opening

of postsynaptic ion channels. Usually, this function is given as a sum of character-
istic excitatory impulse response functions �E.t/ that is elicited by one presynaptic
spike, i.e.

�.t/ D
X
�

�.t � t�/ (10.2)

where t� denote the ordered spike arrival times. Moreover, RE
ij comprises the

maximum synaptic conductivity as well as the electrotonic distance between the
synapse between neuron j and i and i ’s trigger zone, both expressed as resistance.
Vi1.t/ is the membrane potential of neuron i ’s compartment 1, i.e. the apical
dendritic tree and EE

ij is the excitatory reversal potential of the synapse j ! i .
We can conveniently express �.t/ through the spike rate [10, 18]

a.t/ D
X
�

ı.t � t�/ (10.3)

by means of a temporal convolution (‘�’ denotes convolution product)

�.t/ D
Z t

�1
�.t � t 0/a.t 0/ dt 0 D .� � a/.t/ : (10.4)

Furthermore, the apical dendritic compartment 1 is characterized by a particular
leakage resistance R1 and by a capacity C1, reflecting the temporary charge storage
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capacity of the membrane. Both, R1 and C1 are correlated with the compartment’s
membrane area [26]. The battery EM denotes the Nernst resting potential [43, 62].

The middle branch of Fig. 10.2 describes the inhibitory synapses (also displayed
as ‘phototransistors’ [7]) between a neuron k from layers M C 1 to N and neuron
i . Here, inhibitory postsynaptic currents (IPSC)

I I
ik.t/ D

� I
ik.t/

RI
ik

.Vi2.t/ �E I
ik/ ; (10.5)

described by a similar channel opening function � I.t/, shunt the excitatory branch
with the trigger zone when compartment’s 2 membrane potential Vi2.t/ is large
due to previous excitation. Also Eqs. (10.2) and (10.3) hold for another postsy-
naptic impulse response function �I.t/, characteristic for inhibitory synapses. The
resistance of the current paths along the cell plasma is given by RI

ik. Finally, EI
ik

denotes the inhibitory reversal potential of the synapse k ! i . Also the somatic
and perisomatic dendritic compartment 2 possesses its specific leakage resistance
R2 and capacity C2.

The cell membrane at the axon hillock [36] itself is represented by the branch
at the right hand side described by another RC-element consisting of R3 and C3.
Action potentials, ı.t � t�/, are generated by a leaky integrate-and-fire mechanism
[50] as indicated by a ‘black box’ when the membrane potential Ui.t/ crosses a
certain threshold �i > 0 from below at time t� , i.e.

Ui.t�/ � �i : (10.6)

Afterwards, membrane potential is reset to some steady-state potential [50]

Ui.t�C1/ E : (10.7)

and the integration of the differential equations can be restarted at time t D t�C1 C
�rp after interrupting the dynamics for a refractory period �rp .

The three compartments are coupled through longitudinal resistors, RA, RB, RC,
RD where RA; RB denote the resistivity of the cell plasma and RC; RD that of
extracellular space [37]. Yet, in extracellular space not only Ohmic but also diffusion
currents are present [3, 4, 6, 32–34, 61]. These are taken into account by the current
source Ji connected in parallel to RD. However, for convenience, diffusion currents
in the extracellular space between compartments 2 and 3 are disregarded following
an adiabatic approximation.

Finally, the membrane potentials at compartments 1, Vi1, 2, Vi2, and 3, Ui , as
the dynamical state variable as well as the DFP ˚i are shown in Fig. 10.2. The
latter drops along the extracellular resistor RD. For the aim of calculation, the mesh
currents Ii1 (current in the apical compartment 1 of neuron i ), Ii2 (current in somatic
and perisomatic compartment 2 of neuron i ) and Ii3 (the leaky integrate-and-fire
(LIF) current in compartment 3 of neuron i ) are indicated.
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The circuit in Fig. 10.2 obeys Kirchhoff’s laws; first for currents:

Ii1 D C1 dVi1
dt
C Vi1 �EM

R1
C

piX
jD1

I E
ij (10.8)

Ii2 D C2 dVi2
dt
C Vi2 �EM

R2
C

qiX
kD1

I I
ik (10.9)

Ii3 D C3 dUi
dt
C Ui �EM

R3
(10.10)

Ii3 D Ii1 � Ii2 ; (10.11)

and second, for voltages:

Vi1 D .RA CRD/Ii1 C .RB CRC/Ii3 C Ui �RDJi (10.12)

Vi2 D .RB CRC/Ii3 C Ui (10.13)

˚i D RD.Ii1 � Ji / ; (10.14)

where the postsynaptic currents I E
ij and I I

ik are given through (10.1) and (10.5). Here,
pi is the number of excitatory and qi the number of inhibitory synapses connected
to neuron i , respectively.

Subtracting (10.13) from (10.12) yields the current along the pyramidal cell’s
dendritic trunk

Ii1 D Vi1 � Vi2 CRDJi

RA CRD
: (10.15)

The circuit described by Eqs. (10.8–10.14) shows that the neuron i is likely to fire
when the excitatory synapses are activated. Then, the LIF current Ii3 equals the
dendritic current Ii1. If, by contrast, also the inhibitory synapses are active, the den-
dritic current Ii1 follows the shortcut between the apical and perisomatic dendritic
trees and only a portion could evoke spikes at the trigger zone (Eq. (10.10)). On
the other hand, the large dendritic current Ii1, diminished by some diffusion current
Ji , flowing through the extracellular space of resistance RD

i , gives rise to a large
DFP ˚i .

In order to simplify the following derivations, we first gauge the resting potential
toEM D 0. Then, excitatory synapses are characterized byEE

ij > 0, while inhibitory
synapses obey EI

ik < 0. Combining Eqs. (10.8–10.13) entails

C1
dVi1
dt
C Vi1

R1
C

piX
jD1

I E
ij D

Vi1 � Vi2 CRDJi

RA CRD
(10.16)
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C2
dVi2
dt
C Vi2

R2
C

qiX
kD1

I I
ik D

Vi1 � Vi2 CRDJi

RA CRD
� Vi2 � Ui
RB CRC

(10.17)

C3
dUi
dt
C Ui

R3
D Vi2 � Ui
RB CRC

: (10.18)

10.2.1 General Solution of the Circuit Equations

Next we follow Bressloff’s [16] argumentation and regard the compartmental
voltages as auxiliary variables that are merged into a two-dimensional vector
Vi D .Vi1; Vi2/

T which is subject to elimination. We only keep Eq. (10.18) as the
evolution law of the entire state vector U D .Ui /iD1;:::;K of the neural network.
Inserting the postsynaptic currents from (10.1) and (10.5) into Eqs. (10.16, 10.17)
and temporarily assuming an arbitrary time-dependence for the functions �.t/ from
Eq. (10.2) (in fact, the �.t/ are given through the presynaptic spike rates and are thus
nonlinear functions of the entire state U), we obtain a system of two inhomogeneous
linear differential equations that can be compactly written in matrix form as

d

dt
Vi .t / D Hi .t / 	 Vi .t /CGi .t / ; (10.19)

with

Hi .t / D
0
B@

1
C1

�
� 1
R1

C 1
RACRD �P

j

�E
ij .t/

RE
ij

�
� 1
C1.RACRD/

1
C2.RACRD/

1
C2

	
� 1
R2

� 1
RACRD � 1

RBCRC �P
k
� I

ik.t/

RI
ik



1
CA

(10.20)

and

Gi .t / D
0
@

P
j

�E
ij .t/E

E
ij

C1R
E
ij
C RD

C1.RACRD/
Ji .t/P

k

� I
ik.t/E

I
ik

C2R
I
ik
C RD

C2.RACRD/
Ji .t/C 1

C2.RBCRC/
Ui .t/

1
A : (10.21)

Initial conditions start with V D 0 in the infinite past t D �1 for the sake of
convenience.

Obviously, the time-dependence of the transition matrix H.t/ is due to the
shunting terms �.t/. In order to solve (10.19) one first considers the associated
homogeneous differential equation

d

dt
Wi .t / D Hi .t / 	Wi .t / (10.22)
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whose general solutions are given as the columns of

Wi .t / D TetHi .t/ ; (10.23)

where T denotes the time-ordering operator [20, 21]. Using the integral (10.23), a
particular solution of the inhomogeneous equation (10.19) is then obtained by the
variation of parameter method as

Vi .t / D
Z t

�1
Xi .t; t

0/ 	Gi .t
0/ dt 0 (10.24)

with matrix-valued Green’s function

Xi .t; t
0/ DWi .t / 	Wi .t

0/�1 : (10.25)

Therefore, the compartmental voltages are obtained as

Vi˛.t/ D
2X

ˇD1

Z t

�1
�i˛ˇ.t; t

0/giˇ.t 0/ dt 0 D
2X

ˇD1
�i˛ˇ � giˇ (10.26)

with components Xi .t; t
0/ D .�i˛ˇ.t; t 0//˛ˇ and Gi .t

0/ D .giˇ.t 0//ˇ , ˛; ˇ D 1; 2.

10.2.2 Observation Model

In order to derive the general observation equations for the DFP of the three-
compartment model, we insert the formal solutions (10.26) and the inhomogeneity
(10.21) into Eq. (10.15) and obtain

Ii1.t/ D 1

RA CRD

Z t

�1

.�i11.t; t
0/��i21.t; t 0//

"X
j

EE
ij

C1R
E
ij

�E
ij .t/C RD

C1.RA CRD/
Ji .t/

#
C

.�i12.t; t
0/� �i22.t; t

0//

"X
k

E I
ik

C2R
I
ik

� I
ik.t/C RD

C2.RA CRD/
Ji .t/C 1

C2.RB CRC/
Ui .t/

#
dt 0C

RD

RA CRD
Ji .t/ ; (10.27)

which can be reshaped by virtue of the convolutions (10.4) to



10 Electrodynamics of Neural Networks 279

Ii1 D 1

RA CRD

"X
j

EE
ij

C1R
E
ij

.�i11��i21/��E�ajC RD

C1.RA CRD/
.�i11��i21/�Ji

#
C

1

RA CRD

"X
k

E I
ik

C2R
I
ik

.�i12 � �i22/ � �I � ak C RD

C2.RA CRD/
.�i12 � �i22/ � JiC

1

C2.RB CRC/
.�i12 � �i22/ � Ui

#
C RD

RA CRD
Ji : (10.28)

Introducing new impulse response functions that simultaneously account for
synaptic transmission (�) and dendritic propagation (�) by

 i˛1 D �i˛1 � �E (10.29)

 i˛2 D �i˛2 � �I (10.30)

yields

Ii1D 1

RACRD

"X
j

EE
ij

C1R
E
ij

. i11� i21/�ajC RD

C1.RA CRD/
.�i11��i21/�Ji

#
C

1

RA CRD

"X
k

E I
ik

C2R
I
ik

. i12 �  i22/ � ak C RD

C2.RA CRD/
.�i12 � �i22/ � JiC

1

C2.RB CRC/
.�i12 � �i22/ � Ui

#
C RD

RA CRD
Ji : (10.31)

Eventually we obtain the DFP of neuron i as the potential dropping along the resistor
RD caused by the current through it (Eq. (10.14)), i.e.

˚i D RD

RA CRD

( X
j

EE
ij

C1R
E
ij

. i11 � i21/ � aj C
X
k

E I
ik

C2R
I
ik

. i12 � i22/ � akC
"

RD

C1.RA CRD/
.�i11 � �i21/C RD

C2.RA CRD/
.�i12 � �i22/ �RAı

#
� JiC

1

C2.RB CRC/
.�i12 � �i22/ � Ui

)
(10.32)
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10.2.3 Neurodynamics

Equation (10.32) reveals that the DFP is driven by the neuron’s state variable Ui , by
the entirety of postsynaptic potentials caused by spike trains ai and by the diffusion
currents Ji . The state variables and the spike trains are given by the network’s
evolution equation that is straightforwardly derived along the lines of Bressloff [16]
again. To this end, we insert Vi2.t/ as the solution of (10.26) into the remaining
Eq. (10.18) to get

C3.R
B C RC/

dUi
dt
C
�
1C RB CRC

R3

�
Ui D �i21 � gi1 C �i22 � gi2 : (10.33)

Next, we insert the inhomogeneity (10.21) again and obtain

C3.R
B CRC/

dUi
dt
C
�
1C RB CRC

R3

�
Ui D

X
j

EE
ij

C1R
E
ij

�i21 � �E
ijC

RD

C1.RA CRD/
�i21 � Ji C

X
k

E I
ik

C2R
I
ik

�i22 � � I
ik C

RD

C2.RA CRD/
�i22 � JiC

1

C2.RB CRC/
�i22 � Ui : (10.34)

Utilizing the convolutions (10.4) once more, yields

C3.R
B CRC/

dUi
dt
C
�
1C RB CRC

R3

�
Ui D

X
j

EE
ij

C1R
E
ij

�i21 � �E � ajC

X
k

E I
ik

C2R
I
ik

�i22 � �I � ak C RD

C1.RA CRD/
�i21 � Ji C RD

C2.RA CRD/
�i22 � JiC

1

C2.RB CRC/
�i22 � Ui : (10.35)

which becomes

C3.R
B CRC/

dUi
dt
C
�
1C RB CRC

R3

�
Ui � 1

C2.RB CRC/
�i22 � Ui D

X
j

EE
ij

C1R
E
ij

 i21 �aj C
X
k

E I
ik

C2R
I
ik

 i22 �akC RD

RA CRD

�
1

C1
�i21 C 1

C2
�i22

�
�Ji

(10.36)
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after inserting the Green’s functions (10.29) and (10.30) again. Equation (10.36)
together with (10.3), (10.6) and (10.7) determine the dynamics of a network with
three-compartment pyramidal neurons.

10.3 Leaky Integrate-and-Fire Model

The most serious difficulty for dealing with the neurodynamical evolution equa-
tions (10.36, 10.3, 10.6, 10.7) and the DFP observation equation (10.32) is the
inhomogeneity of the matrix Green’s function Xi .t; t

0/ involved through the time-
ordering operator and the time-dependence of Hi .t /.

10.3.1 Simplification

In a first approximation Hi becomes time-independent by neglecting the shunting
terms [20, 21]. Then, the matrix Green’s function Xi .t; t

0/ becomes

X.t; t 0/ D X.t � t 0/ D e.t�t 0/H D Q.t�t 0/ (10.37)

with

Q D eH (10.38)

and

H D
0
@ 1
C1

	
� 1
R1
C 1

RACRD



� 1
C1.RACRD/

1
C2.RACRD/

1
C2

	
� 1
R2
� 1

RACRD � 1
RBCRC



1
A ; (10.39)

i.e. the transition matrix H, and consequently also the Green’s function, do not
depend on the actual neuron index i any more. In this case, analytical methods
can be employed [16].

However, for the present purpose, we employ another crucial simplification by
choosing the electrotonic parameters in such a way that �22.t/ � ı.t/. By virtue of
this choice the dendritic filtering of compartment 2 is completely neglected. Then,
the neural evolution equation (10.36) turns into
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C3.R
B CRC/

dUi
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C C2R3.R
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(10.40)

where all kernels lost their neuron index i . Additionally, some time constant O�
results from the temporal convolution. Multiplying next with

r D C2R3.R
B CRC/

C2R3.RB CRC/C C2.RB CRC/2 � O�R3 (10.41)

yields a leaky integrate-and-fire (LIF) model

�
dUi
dt
CUi D

X
j

wE
ij  21�aj C

X
k

wI
ik  22�akC	

�
1

C1
�21 C 1

C2
ı

�
�Ji (10.42)

where we have introduced the following parameters:

• Time constant

� D rC3.RB CRC/ (10.43)

• Excitatory synaptic weights

wE
ij D r

EE
ij

C1R
E
ij

> 0 (10.44)

• Inhibitory synaptic weights

wI
ik D r

E I
ik

C2R
I
ik

< 0 (10.45)

• Diffusion coefficient

	 D r RD

RA CRD
: (10.46)

Moreover, we make the same approximation for the DFP (10.32) and obtain
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(10.47)

as the observation equation of the LIF model.
Equations (10.42, 10.47) still exhibit some redundancy, seeing that the kernel

 21 always relates to excitatory synapses while the kernel  22 refers to inhibitory
synapses. We could thus absorb these kernel indices into the presynaptic neuron
indices by introducing new kernels

 j D
(
 21 W j excitatory

 22 W j inhibitory
(10.48)

�j D
(
 11 �  21 W j excitatory

 12 � ı W j inhibitory :
(10.49)

These kernels entail

�
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X
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�
� Ji (10.50)

˚i D RD

r.RA CRD/

( X
j

wij �j � aj C

"
RD

C1.RACRD/
.�11 � �21/C RD

C2.RACRD/
.�12�ı/ �RAı

#
� Ji C

1

C2.RB CRC/
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)
(10.51)

after also dropping the redundant excitatory/inhibitory superscripts. Thus, the
indices i; j now extend over the entire network of K units.

Because the relevance of diffusion currents is controversially discussed in the lit-
erature [3,6,32–34], we could provisionally neglect these for further simplification:
Ji D 0 which leads to
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�
dUi
dt
C Ui D

X
j

wij  j � aj (10.52)

˚i D RD

r.RA CRD/

( X
j

wij �j � aj C 1

C2.RB CRC/
.�12 � ı/ � Ui

)
:

(10.53)

10.3.2 Simulation

We have extensively discussed the system (10.52, 10.53) under the further
assumption �12 D ı in a recent paper [9], and herein we present further
numerical simulations under different external stimulation input. In particular,
we simulate a cortical tissue as a LIF network (10.52), comprising of 1,000
interneurons and 4,000 pyramidal neurons interconnected randomly via an
Erdős-Rényi graph with connection probability of 0.2. We refer the reader
to [9] on how the somatic, dendritic and extracellular electrotonic parameters
are estimated and how these are related to the phenomenological parameters
of Mazzoni et al. [50]. All other parameters such as steady state voltages,
refractory period, synaptic latencies, thresholds and others can also be found
therein. Thalamic inputs are the only source of noise, which attempt to account
for both cortical heterogeneity and spontaneous activity. This is achieved by
modeling a two level noise, where the first level is an Ornstein-Uhlenbeck
process superimposed with a constant or periodic signal and the second
level is a time varying inhomogeneous Poisson process. Thus, we have the
following time varying rate, �.t/, that feeds into an inhomogeneous Poisson
process:

�n
dn.t/

dt
D �n.t/C �n

s
2

�n
�.t/ (10.54)

�.t/ D Œc0 C n.t/�C (10.55)

where �.t/ represents Gaussian white noise, c0 represents a constant signal
(but equally could be periodic or other), and the operation Œ	�C is the
threshold-linear function, Œx�C D x if x > 0, Œx�C D 0 otherwise, which
circumvents negative rates. The constant signal c0 can range between 1:2

and 2:6 spikes/ms. Note also that periodic or more complex ‘naturalistic’
signals can be applied, but we have herein kept it simple just for illustrative
purposes. The parameters of the Ornstein-Uhlenbeck process are �n D 16 ms
and the standard deviation �n D 0:4 spikes/ms; also refer to [50] for these
parameters.
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The network simulations were run under the Brian Simulator, which is a Python
based environment [35]. We focus on resistive extracellular case and compare
between our DFP ˚i measure (10.53) and the Mazzoni LFP measure (MPLB)
defined herein as the sum of the moduli of excitatory and inhibitory synaptic
currents:

V MPLB
i D

X
j

jwE
ij  21 � aj j C

X
k

jwI
ik  22 � akj (10.56)

In addition, Mazzoni et al. [50] take the sum of V MPLB
i across all pyramidal

neurons. To provide a comparison we will also consider the sum of our proposed
DFP measure (10.53), but also contrast it with its average. Thus we compare the
following models of local field potentials:

L1 D
X
i

V MPLB
i (10.57)

L2 D
X
i

˚i (10.58)

L3 D 1

P

X
i

˚i ; (10.59)

where P is the number of pyramidal neurons. Subsequently, we run the network
for 2 s with three different noise levels, specifically, receiving constant signals
with rates 1:2, 1:6 and 2:4 spikes/ms as depicted in Fig. 10.3. We report two
main striking differences between LFP measures Eqs. (10.57), (10.58) and (10.59),
namely in frequency and in amplitude. The L1 responds instantaneously to the
spiking network activity by means of high frequency oscillations. Moreover, L1
exhibits a large amplitude overestimating experimental LFP/EEG measurements
that typically vary between 0.5 and 2 mV [45, 58]. In contrast, L2 and L3 respond
more smoothly to population activity and it is noticeable that our LFP estimates
represent the low-pass filtered thalamic input. Clearly, both L2 and L3 have same
time profile, however, the L3 measures comparably with experimental LFP, that
is, in the order of millivolts (although its not contained within the experimental
range 0.5–2 mV). Thus we do concede that further work is required to improve
our estimates. A minor improvement could be attained by applying a weighted
average to mimic the distance of an electrode to a particular neuron. However, more
biophysical modeling work is in demand as other neural effects, such as neuron-
glia interaction and other effects, could be required to bring down these estimates to
experimental results.
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Fig. 10.3 Dynamics of the network and LFP comparisons: the three columns represent different
runs of the network for three different rates, 1.2, 1.6 and 2.4 spikes/ms. In each column, all panels
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10.4 Continuum Neural Field Model

So far we have considered the electrical properties of neural networks containing
cortical pyramidal cells by means of equivalent circuits of a three-compartment
model. In order to link these properties to the electromagnetic field in extracellular
space, we need an embedding of the network topology into physical metric space
R
3. This is most easily achieved in the continuum limit of neural field theory.

10.4.1 Rate Model

Starting with the approximation from Sect. 10.3, we first transform our LIF approach
into a rate model. According to Eq. (10.3), a spike train is represented by a sum over
delta functions. In order to obtain the number of spikes in a time interval Œ0; t �, one
has to integrate Eq. (10.3), yielding

n.t/ D
Z t

0

a.t 0/ dt 0 :

Then, the instantaneous spike rate per unit time is formally regained as the original
signal Eq. (10.3), through

d

dt
n.t/ D a.t/ : (10.60)

A spike train a.t/ arriving at the presynaptic terminal of an axon causes changes
in the conductivity of voltage-gated calcium channels. Therefore, calcium current
flows into the synaptic button evoking the release of neurotransmitter into the
synaptic cleft which is essentially a stochastic Bernoulli process [7, 44], where the
probability P.k/ for releasing k transmitter vesicles obeys a binomial distribution

P.k/ D
 
Y

k

!
pk.1 � p/Y�k ; (10.61)

with Y the number of allocated vesicles in the button and p the elementary
probability that an arriving action potential releases one vesicle.
�
Fig. 10.3 (continued) show the same 250 ms (extracted from 2 s simulations). The top panels (a–
c) represent thalamic inputs with the different rates. The second top panels (d–f) correspond to a
raster plot of the activity of 200 pyramidal neurons. Panels (g–i) depict average instantaneous firing
rate (computed on a 1 ms bin) of interneurons and panels (j-l) correspond to average instantaneous
firing rate of pyramidal neurons. Panels (m–o) show the LFPL1 (Eq. (10.57)) which is the Mazzoni
et al. measure [50]. Panels (p–r) and (s–u) depict our proposed LFP measures L2 (Eq. (10.58)) and
L3 (Eq. (10.59)), respectively. Note and compare the different order of magnitudes between the
three LFP measures
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In the limit of large numbers, the binomial distribution can be replaced by a
normal distribution

P.k/ D 1p
2�y.1 � p/ exp

�
� .k � y/2
2y.1 � p/

�
; (10.62)

where y D Yp is the average number of allocated transmitter vesicles. Due to this
stochasticity of synaptic transmission, even the dynamics of a single neuron should
be treated in terms of statistic ensembles in probability theory. Hence, we describe
the state variables Ui.t/ by a normal distribution density �.u; t / with mean NU.t/
and variance �2, and determine the firing probability as

r.t/ D Pr.U.t/ � �/ D
Z 1

�

�.u; t / du D 1

2
erfc

 
� � NUp
2�

!
; (10.63)

with ‘erfc’ as the complementary error function accounting for the cumulative
probability distribution. Thereby, the stochastic threshold dynamics is characterized
by the typical sigmoidal activation functions. In computational neuroscience, the
complementary error function is often approximated by the logistic function

f .u/ D 1

1C e��.u��/

with parameters gain � and threshold � . Using f as nonlinear activation function,
the firing probability r.t/ D f .U.t// for mean membrane potential U is closely
related to the instantaneous spike rate a.t/ (Eq. (10.60)) via

a.t/ D amax r.t/ D amax f .U / (10.64)

with maximal spike rate amax which can be absorbed by f :

f .u/ D amax

1C e��.u��/ : (10.65)

Inserting (10.64) and (10.65) into our LIF model (10.50) yields a leaky integrator
rate (LIR) model [10, 19]

�
dUi
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C Ui D

X
j

wij  j � f .Uj /C 	
�
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ı

�
� Ji : (10.66)
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10.4.2 Neuroelectrodynamics

Next we perform the continuum limit Ui.t/ ! un.x; t / à la physique under
the assumption of identical neural properties within each population. The sum in
Eq. (10.66) may converge under suitable smoothness assumptions upon the synaptic
weight matrix wij and the convolution kernels.1 Then a continuous two-dimensional
vector x 2 �n replaces the neuron index i , while n becomes a population
index. The population layers �n become two-dimensional manifolds embedded in
three-dimensional physical space such that x 2 �n is a two-dimensional projection
of a vector r 2 C 
 R

3 (C denoting cortex). Or, likewise, r D .x; z/, as indicated
in Fig. 10.1.

As a result, Eq. (10.66) passes into the Amari equation [1]

�
@

@t
ui .x; t /C ui .x; t / D

X
k

Z
�k

wik.x; x0/  .x0; t / � f .uk.x0; t // dx0 C hi .x; t /

(10.67)

with input current hi .x; t / delivered to neuron layer i at site x 2 �i . The synaptic
weight kernels wik.x; x

0/ and the synaptic-dendritic impulse response  .x0; t / are
obtained from the synaptic weight matrix, and from the Green’s functions  j .t/,
respectively.

This neural field equation is complemented by the continuum limit of the
extracellular dendritic dipole current density through cross section area A with
normal vector nA, shown in Fig. 10.1, which is obtained from (10.31), i.e.

j.r; t / D lim
i!x

nA
A
Ii1 D

D
X
k

Z
�k

Qw1k.r; r0/ �.r0; t / � f .uk.r0; t //C �1.t/ � jD.r; t /C �2.t/ � u1.r; t / ;

(10.68)

where we have introduced a modified synaptic weight kernel Qw and two new
convolution kernels �j that are related to the electrotonic parameters of the discrete
model (10.31). The proper diffusion current jD.r; t / must be related to the gradient
of the charge density �.r; t / according to Fick’s law

jD.r; t / D �DD.r; t /r�.r; t / ; (10.69)

1A rigorous treatment of the continuum limit for neural networks requires techniques from
stochastic analysis such as mean-field approaches or system-size expansions as carried out by
Faugeras et al. [30] and Bressloff [17] (see also Chap. 9).
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where the diffusion tensor DD.r; t / accounts for inhomogeneities and unisotropies
of extracellular fluid, as being reflected by diffusion tensor imaging (DTI) [4,5]. For
layer 1 of pyramidal neurons the input is then given by the diffusion current jD.r; t /.
Therefore, the input to the Amari equation (10.67) becomes

hi .x; t / D �ıi1	ADD.r; t / 	 r�.r; t / (10.70)

with Kronecker’s ıik and appropriately redefined 	.
For further treatment of the electrodynamics of neural fields in linear but

inhomogeneous and unisotropic media, we need Ohm’s law

j&.r; t / D � .r; t / 	 E.r; t / ; (10.71)

where � .r; t / is the conductivity tensor and E the electric field strength. In case of
negligible magnetic fields, we can introduce the dendritic field potential ' via

E D �r' : (10.72)

The diffusion current (10.69) and Ohmic current (10.71) together obey the
Nernst-Planck equation [43, 62]

j D �DD 	 r�C � 	 E : (10.73)

In the diffusive and conductive extracellular fluid, we additionally have

• Einstein’s relation [28]

DD D kBTq� (10.74)

• Conductivity

� D �� ; (10.75)

where kB denotes the thermodynamic Boltzmann constant, T temperature, q the
ion charge, and � the ion’s mobility tensor related to the fluid’s viscosity [43, 62].
Inserting (10.74, 10.75) into (10.73) yields

j D �kBTq� 	 r�C � 	 E� : (10.76)

This form of the Nernst-Planck equation has to be augmented by a continuity
equation

r 	 jC @�

@t
D 0 (10.77)
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reflecting the conservation of charge as a consequence of Maxwell’s equations, and
by the first Maxwell equation

r 	 D D � (10.78)

where

D D � 	 E (10.79)

introduces the electrical permittivity tensor �.
Inserting (10.79) into (10.78) first gives

� 	 .r 	 E/ D � � .r 	 �/ 	 E : (10.80)

Next, we take the divergence of the Nernst-Planck equation (10.76), which yields
after consideration of the continuity equation (10.77)

r 	 j D �kBTqr 	 .� 	 r�/Cr 	 .� 	 E�/

��
@�

@t
D �kBTq� 	 Œ.r 	 �/ 	 .r�/C ����C

� 	 .r 	 �/ 	 E�C � 	 � 	 .r 	 E/�C � 	 � 	 E 	 r� :

Introducing the commutator Œ�;�� D � 	 � � � 	 �, we can write

��
@�

@t
D �kBTq� 	 Œ.r 	 �/ 	 .r�/C ����C � 	 .r 	 �/ 	 E�C

Œ�;�� 	 .r 	 E/�C � 	 �2 � � 	 .r 	 �/ 	 E�C � 	 � 	 E 	 r� ;
where we have also utilized (10.80).

Using the Nernst-Planck equation (10.76) once more, we eliminate the electric
field

E D ��1 	
�

jC kBTq� 	 r�
�

�
(10.81)

thus

� �
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�

�
	 r� : (10.82)
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The solution of (10.82) provides the extracellular charge density �.x; t / depen-
dent on the extracellular driving currents j that are delivered by the neural field
equations (10.67, 10.68, 10.70). Inserting both �.x; t / and j into (10.81) yields the
DFP

� r' D ��1 	
�

jC kBTq� 	 r�
�

�
(10.83)

via (10.72).
These equations of neuroelectrodynamics can be considerably simplified by

assuming a homogeneous and isotropic medium. In that case (10.82) reduces to

� �
@�

@t
D �kBTq� 	 ���C � 	 �2 C � 	

�
jC kBTq� 	 r�

�

�
	 r� ; (10.84)

which is a kind of Fokker-Planck equation for the charge density. Taking only the
first term of the r.h.s. into account, we obtain a diffusion equation whose stationary
solution gives rise to the Warburg impedance of extracellular space [3, 4, 6, 59].

10.5 Discussion

In this contribution we outlined a biophysical theory for the coupling of microscopic
neural activity to the electromagnetic field as described by the Maxwell equations,
in order to adequately explain neural field potentials, such as DFP, LFP, and EEG.
To that aim we have started from the widely accepted assumption, that cortical
LFP/EEG mostly reflect extracellular dipole currents of pyramidal cells [53, 58].
This assumption has lead us to recent work suggesting that both Ohmic and diffusion
currents contribute to LFP/EEG generation [3,6,32–34]. In addition, the assumption
has placed a further challenge in that the geometry of the cortical pyramidal cells
should be incorporated. Accounting for the geometry of the cell seemed to imply
that one loses the computational efficiency of point models and we had to resort to
compartmental models. However, herein we have proposed a framework showing
how to circumvent these apparent difficulties to finally derive a biophysically
plausible observation model for the Amari neural field equation [1], with additional
dipole currents coupled to the Maxwell’s equations.

We have first proposed a full-fledged three-compartment model of a single
pyramidal cell decomposed into the apical dendritic tree for the main of excitatory
synapses, the soma and the perisomatic dendritic tree that harbors mainly the
inhibitory synapses, and the axon hillock exhibiting the neural spiking mecha-
nism. In addition, the extracellular space was represented by incorporating both
Ohmic and diffusive impedances, thus assuming that the total current through the
extracellular fluid is governed by the Nernst-Planck equation. This has enabled
us to account for the Warburg impedance. From this starting point and successive
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simplifications we have derived the evolution law of the circuit, represented as an
integro-differential equation. In the continuum limit this evolution law went into the
Amari neural field equation, augmented by an observation equation for dendritic
dipole currents, that are coupled to Maxwell’s equations for the electromagnetic
field in extracellular fluid.

Moreover we have demonstrated how to simplify and derive from our proposed
three-compartment model a standard LIF network which then have enabled us
to compare our LFP measure with other LFP measures found in the literature.
Herein, we specifically have chosen to compare with the Mazzoni et al. work [50],
that proposed the LFP to be the sum of the moduli of inhibitory and excita-
tory currents. Thus, we have proceeded by mapping our biophysical electrotonic
parameters to the phenomenological parameters implemented in Mazzoni’s LFP
model [50]. However, now with the advantage that our LFP measure accounts
for the extracellular currents and the geometry of the cell. Subsequently, we have
compared different simulation runs between our LIF network model and that of
Mazzoni et al. [50]. This comparison indicates that the Mazzoni et al. model
systematically overestimates LFP amplitude by almost one order of magnitude and
also systematically overestimates LFP frequencies. For more detailed discussion we
refer the interested reader to [9].

At the present stage, we note that there is still a long way to fully explain the
spatiotemporal characteristics of LFP and EEG. For example, the polarity reversals
observed in experimental LFP/EEG as an electrode traverses different cortical layers
are not accounted for in our current model. This is explained with the direction of the
dipole currents, which is constrained, in the sense that current sources are situated
at the perisomatic and current sinks are situated at apical dendritic tree. Taking this
polarity as positive also entails positive DFP and LFP that could only change in
strength. However, it is straightforward to adapt our model by fully incorporating
cortical layers III and VI, for example. Yet another aspect that was not looked in the
present work, was that of ephaptic interactions [31,37,40,55] between neurons and
the LFP which could act via a mean-field coupling as an order parameter thereby
entraining the local populations to synchronized activity. A possible biophysical
basis for this phenomena could be polarization of neurons induced by electric
fields that are generated by ionic charges. As a consequence, this could alter the
voltage dependent conductances, triggering changes of the neuronal dynamics, such
as spiking and the activity of glia cells. We have not accounted for this effect in a
biophysical sense yet, however, we could phenomenologically describe this mean-
field coupling through a modulation of firing thresholds as outlined in [7].
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Chapter 11
Universal Neural Field Computation

Peter beim Graben and Roland Potthast

Abstract Turing machines and Gödel numbers are important pillars of the theory
of computation. Thus, any computational architecture needs to show how it could
relate to Turing machines and how stable implementations of Turing computation
are possible. In this chapter, we implement universal Turing computation in a
neural field environment. To this end, we employ the canonical symbologram
representation of a Turing machine obtained from a Gödel encoding of its symbolic
repertoire and generalized shifts. The resulting nonlinear dynamical automaton
(NDA) is a piecewise affine-linear map acting on the unit square that is partitioned
into rectangular domains. Instead of looking at point dynamics in phase space,
we then consider functional dynamics of probability distribution functions (p.d.f.s)
over phase space. This is generally described by a Frobenius-Perron integral
transformation that can be regarded as a neural field equation over the unit square
as feature space of a Dynamic Field Theory (DFT). Solving the Frobenius-Perron
equation yields that uniform p.d.f.s with rectangular support are mapped onto
uniform p.d.f.s with rectangular support, again. We call the resulting representation
dynamic field automaton.

P. beim Graben (�)
Department of German Studies and Linguistics, Humboldt-Universität zu Berlin, Berlin, Germany

Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin,
Berlin, Germany
e-mail: peter.beim.graben@hu-berlin.de

R. Potthast
Department of Mathematics and Statistics, University of Reading, Reading, Berkshire, UK

Deutscher Wetterdienst, Offenbach, Germany

S. Coombes et al. (eds.), Neural Fields, DOI 10.1007/978-3-642-54593-1__11,
© Springer-Verlag Berlin Heidelberg 2014

299

mailto:peter.beim.graben@hu-berlin.de


300 P. beim Graben and R. Potthast

11.1 Introduction

Studying the computational capabilities of neurodynamical systems has commenced
with the groundbreaking 1943 article of McCulloch and Pitts [27] on networks of
idealized two-state neurons that essentially behave as logic gates. Because nowadays
computers are nothing else than large-scale networks of logic gates, it is clear that
computers can in principle be build up by neural networks of McCulloch-Pitts units.
This has also been demonstrated by a number of theoretical studies reviewed in
[46]. However, even the most powerful modern workstation is, from a mathematical
point of view, only a finite state machine due to its rather huge, though limited
memory, while a universal computer, formally codified as a Turing machine [20,51],
possesses an unbounded memory tape.

Using continuous-state units with a sigmoidal activation function, Siegelmann
and Sontag [43] were able to prove that a universal Turing machine can be imple-
mented by a recurrent neural network of about 900 units, most of them describing
the machine’s control states, while the tape is essentially represented by a plane
spanned by the activations of just two units. The same construction, employing a
Gödel code [17,19] for the tape symbols, has been previously used by Moore [29,30]
for proving the equivalence of nonlinear dynamical automata and Turing machines.
Along a different vain, deploying sequential cascaded networks, Pollack [36] and
later Moore [31] and Tabor [48, 49] introduced and further generalized dynamical
automata as nonautonomous dynamical systems. An even further generalization of
dynamical automata, where the tape space becomes represented by a function space,
led Moore and Crutchfield [32] to the concept of a quantum automaton (see [6] for
a review and some unified treatment of these different approaches).

Quite remarkably, another paper from McCulloch and Pitts published in 1947
[34] already set up the groundwork for such functional representations in continuous
neural systems. Here, those pioneers investigated distributed neural activation over
cortical or subcortical maps representing visual or auditory feature spaces. These
neural fields are copied onto many layers, each transforming the field according to
a particular member of a symmetry group. For these, a number of field functionals
is applied to yield a group invariant that serves for subsequent pattern detection. As
early as in this publication, we already find all necessary ingredients for a Dynamic
Field Architecture: a layered system of neural fields defined over appropriate feature
spaces [14, 42] (see also Chaps. 12 and 13 in this volume).

We begin this chapter with a general exposition of dynamic field architectures
in Sect. 11.2 where we illustrate how variables and structured data types on the one
hand and algorithms and sequential processes on the other hand can be implemented
in such environments. In Sect. 11.3 we review known facts about nonlinear dynami-
cal automata and introduce dynamic field automata from a different perspective. The
chapter is concluded with a short discussion about universal computation in neural
fields.
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11.2 Principles of Universal Computation

As already suggested by McCulloch and Pitts [34] in 1947, a neural, or likewise,
dynamic field architecture is a layered system of Dynamic Neural Fields ui .x; t/ 2
R where 1 � i � n (i; n 2 N) indicates the layer, x 2 D denotes spatial position
in a suitable d -dimensional feature space D 
 R

d and t 2 R
C
0 time. Usually, the

fields obey the Amari neural field equation [2]

�i
@ui .x; t/

@t
D �ui .x; t/Ch.x/C

nX
jD1

Z
D

wij.x; y/f .uj .y; t// dyCpi .x; t/; (11.1)

where �i is a characteristic time scale of the i -th layer, h.x/ the unique resting
activity, wij.x; y/ the synaptic weight kernel for a connection to site x in layer i
from site y in layer j ,

f .u/ D 1

1C e�ˇ.u��/ (11.2)

is a sigmoidal activation function with gain ˇ and threshold � , and pi .x; t/ external
input delivered to site x in layer i at time t . Note, that a two-layered architecture
could be conveniently described by a one-layered complex neural field z.x; t/ D
u1.x; t/C iu2.x; t/ as used in [6, 7, 11].

Commonly, Eq. (11.1) is often simplified in the literature by assuming one
universal time constant � , by setting h D 0 and by replacing pi through appropriate
initial, ui .x; 0/, and boundary conditions, ui .@D; t/. With these simplifications, we
have to solve the Amari equation

�
@ui .x; t/

@t
D �ui .x; t/C

nX
jD1

Z
D

wij.x; y/f .uj .y; t// dy (11.3)

for initial condition ui .x; 0/, stating a computational task. Solving that task is
achieved through a transient dynamics of Eq. (11.3) that eventually settles down
either in an attractor state or in a distinguished terminal state Ui.x; T /, after elapsed
time T . Mapping one state into another, which again leads to a transition to a third
state and so on, we will see how the field dynamics can be interpreted as a kind of
universal computation, carried out by a program encoded in the particular kernels
wij.x; y/, which are in general heterogeneous, i.e. they are not pure convolution
kernels: wij.x; y/ ¤ wij.jjx � yjj/ [5, 22].

11.2.1 Variables and Data Types

How can variables be realized in a neural field environment? At the hardware-
level of conventional digital computers, variables are sequences of bytes stored
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in random access memory (RAM). Since a byte is a word of eight bits and since
nowadays RAM chips have about 2–8 GB, the computer’s memory appears as an
approximately 8�4 	109 binary matrix, similar to an image of black-white pixels. It
seems plausible to regard this RAM image as a discretized neural field, such that
the value of u.x; t/ at x 2 D could be interpreted as a particular instantiation
of a variable. However, this is not tenable for at least two reasons. First, such
variables would be highly volatile as bits might change after every processing cycle.
Second, the required function space would be a ‘mathematical monster’ containing
highly discontinuous functions that are not admitted for the dynamical law (11.3).
Therefore, variables have to be differently introduced into neural field computers by
assuring temporal stability and spatial smoothness.

We first discuss the second point. Possible solutions of the neural field equation
(11.3) must belong to appropriately chosen function spaces that allow the storage
and retrieval of variables through binding and unbinding operations. A variable
is stored in the neural field by binding its value to an address and its value is
retrieved by the corresponding unbinding procedure. These operations have been
described in the framework of Vector Symbolic Architectures [16,44] and applied to
Dynamic Neural Fields by beim Graben and Potthast [6] through a three-tier top-
down approach, called Dynamic Cognitive Modeling, where variables are regarded
as instantiations of data types of arbitrary complexity, ranging from primitive
data types such as characters, integers, or floating numbers, over arrays (strings,
vectors and matrices) of those primitives, up to structures and objects that allow
the representation of lists, frames or trees. These data types are in a first step
decomposed into filler/role bindings [44] which are sets of ordered pairs of sets
of ordered pairs etc., of so-called fillers and roles. Simple fillers are primitives
whereas roles address the appearance of a primitive in a complex data type. These
addresses could be, e.g., array indices or tree positions. Such filler/role bindings can
recursively serve as complex fillers bound to other roles. In a second step, fillers
and roles are identified with particular basis functions over suitable feature spaces
while the binding is realized through functional tensor products with subsequent
compression (e.g. by means of convolution products) [35, 45].

Since the complete variable allocation of a conventional digital computer can
be viewed as an instantiation of only one complex data type, namely an array
containing every variable at a particular address, it is possible to map a total variable
allocation onto a compressed tensor product in function space of a dynamic field
architecture. Assuming that the field u encodes such an allocation, a new variable
' in its functional tensor product representation is stored by binding it first to a
new address  , yielding ' ˝  and second by superimposing it with the current
allocation, i.e. u C ' ˝  . Accordingly, the value of ' is retrieved through an
unbinding h C; ui where  C is the adjoint of the address  where ' is bound
to. These operations require further underlying structure of the employed function
spaces that are therefore chosen as Banach or Hilbert spaces where either adjoint or
bi-orthogonal basis functions are available (see [4, 6, 7, 11, 38] for examples).

The first problem was the volatility of neural fields. This has been resolved using
attractor neural networks [18, 21] where variables are stabilized as asymptotically
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stable fixed points (as in Chap. 3). Since a fixed point is defined through Pui .x; t/D 0,
the field obeys the equation

ui .x; t/ D
nX

jD1

Z
D

wij.x; y/f .uj .y; t// dy : (11.4)

This is often achieved by means of a particularly chosen kernel wii.jjx � yjj/
with local excitation and global inhibition, often called lateral inhibition kernels
[14, 42].

11.2.2 Algorithms and Sequential Processes

Conventional computers run programs that dynamically change variables. Programs
perform algorithms that are sequences of instructions, including operations upon
variables, decisions, loops, etc. From a mathematical point of view, an algorithm
is an element of an abstract algebra that has a representation as an operator on
the space of variable allocations, which is well-known as denotational semantics
in computer science [50]. The algebra product is the concatenation of instructions
being preserved in the representation which is thereby an algebra homomorphism
[4, 6]. Concatenating instructions or composing operators takes place step-by-step
in discrete time. Neural field dynamics, as governed by Eq. (11.3), however requires
continuous time. How can sequential algorithms be incorporated into the continuum
of temporal evolution?

Looking first at conventional digital computers again suggests a possible solu-
tion: computers are clocked. Variables remain stable during a clock cycle and gating
enables instructions to access variable space. A similar approach has recently been
introduced to dynamic field architectures by Sandamirskaya and Schöner [40, 41].
Here a sequence of neural field activities is stored in a stack of layers, each stabilized
by a lateral inhibition kernel. One state is destabilized by a gating signal provided by
a condition-of-satisfaction mechanism playing the role of the ‘clock’ in this account.
Afterwards, the decaying pattern in one layer, excites the next relevant field in a
subsequent layer.

Another solution, already outlined in our Dynamic Cognitive Modeling frame-
work [6], identifies the intermediate results of a computation with saddle fields
that are connected along their respective stable and unstable manifolds to form
stable heteroclinic sequences [1, 5, 39]. We have utilized this approach in [7] for a
dynamic field model of syntactic language processing. Moreover, the chosen model
of winnerless competition among neural populations [15] allowed us to explicitly
construct the synaptic weight kernel from the filler/role binding of syntactic phrase
structure trees [7].
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11.3 Dynamic Field Automata

In this section we elaborate our recent proposal on dynamic field automata [8] by
crucially restricting function spaces to spaces with Haar bases which are piecewise
constant fields u.x; t/ for x 2 D, i.e.

u.x; t/ D
(
˛.t/ W x 2 A.t/
0 W x … A.t/ (11.5)

with some time-dependent amplitude ˛.t/ and a possibly time-dependent domain
A.t/ 
 D. Note, that we consider only one-layered neural fields in the sequel for
the sake of simplicity.

For such a choice, we first observe that the application of the nonlinear activation
function f yields another piecewise constant function over D:

f .u.x; t// D
(
f .˛.t// W x 2 A.t/
f .0/ W x … A.t/ ; (11.6)

which can be significantly simplified by the choice f .0/ D 0, that holds, e.g., for the
linear identity f D id, for the Heaviside step function f D � or for the hyperbolic
tangens, f D tanh.

With this simplification, the input integral of the neural field becomes

Z
D

w.x; y/f .u.y; t// dy D
Z
A.t/

w.x; y/f .˛.t// dy D f .˛.t//
Z
A.t/

w.x; y/ dy :

(11.7)

When we additionally restrict ourselves to piecewise constant kernels as well,
the last integral becomes

Z
A.t/

w.x; y/ dy D wjA.t/j (11.8)

with w as constant kernel value and jA.t/j the measure (i.e. the volume) of the
domain A.t/. Inserting (11.7) and (11.8) into the fixed point equation (11.4) yields

u0 D jA.t/j 	 w 	 f .u0/ (11.9)

for the fixed point u0. Next, we carry out a linear stability analysis

Pu D �uC jA.t/jwf .u/ (11.10)

D �.u0 C .u � u0//C jA.t/jw
	
f .u0/C f 0.u0/ 	 .u � u0/



CO.ju � u0j2/

D
	
� 1C jA.t/jwf 0.u0/



	 .u � u0/CO.ju � u0j2/ :
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Fig. 11.1 Stability of
piecewise constant neural
field u0.x; t/ over a domain
A 	 D. Shown are the
sigmoidal activation function
f .u/ (solid) and u (dotted)
for comparison. The axes
here are given in terms of
absolute numbers without
unit as employed in
Eqs. (11.2) or (11.3)

Thus, we conclude that if jA.t/jwf 0.u0/ < 1, then Pu < 0 for u > u0 and conversely,
Pu > 0 for u < u0 in a neighborhood of u0, such that u0 is an asymptotically stable
fixed point of the neural field equation.

Of course, linear stability analysis is a standard tool to investigate the behavior
of dynamic fields around fixed points [5]. For our particular situation it is visualized
in Fig. 11.1. When the solid curve displaying jA.t/jwf .u/ is above u (the dotted
curve), then the dynamics (11.10) leads to an increase of u, indicated by the arrows
pointing to the right. In the case where jA.t/jwf .u/ < u, a decrease of u is obtained
from (11.10). This is indicated by the arrows pointing to the left. When we have
three points where the curves coincide, Fig. 11.1 shows that the setting leads to two
stable fixed-points of the dynamics. When the activity field u.x/ reaches any value
close to these fixed points, the dynamics leads them to the fixed-point values u0.

11.3.1 Turing Machines

For the construction of dynamic field automata through neural fields we consider
discrete time that might be supplied by some clock mechanism. This requires the
stabilization of the fields (11.5) within one clock cycle which can be achieved
by self-excitation with a nonlinear activation function f as described in (11.10),
leading to stable excitations as long as we do not include inhibitive elements, where
a subsequent state would inhibit those states which were previously excited.

Next we briefly summarize some concepts from theoretical computer sci-
ence [6, 20, 51]. A Turing machine is formally defined as a 7-tuple MTM D
.Q;N;T; ı; q0; b; F /, whereQ is a finite set of machine control states, N is another
finite set of tape symbols, containing a distinguished ‘blank’ symbol b, T 
 Nn fbg
is input alphabet, and

ı W Q � N! Q � N � fL;Rg (11.11)
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Fig. 11.2 Example state transition from (a) to (b) of a Turing machine with ı.1;a/ D .2;b; R/

is a partial state transition function, the so-called ‘machine table’, determining the
action of the machine when q 2 Q is the current state at time t and a 2 N is
the current symbol at the memory tape under the read/write head. The machine
moves then into another state q0 2 Q at time t C 1 replacing the symbol a by
another symbol a0 2 N and shifting the tape either one place to the left (‘L’) or to
the right (‘R’). Figure 11.2 illustrates such a state transition. Finally, q0 2 Q is a
distinguished initial state and F 
 Q is a set of ‘halting states’ that are assumed
when a computation terminates [20].

A Turing machine becomes a time- and state-discrete dynamical system by
introducing state descriptions, which are triples

s D .˛; q; ˇ/ (11.12)

where ˛; ˇ 2 N� are strings of tape symbols to the left and to the right from the
head, respectively. N� contains all strings of tape symbols from N of arbitrary, yet
finite, length, delimited by blank symbols b. Then, the transition function can be
extended to state descriptions by

ı� W S ! S ; (11.13)

where S D N��Q�N� now plays the role of a phase space of a discrete dynamical
system. The set of tape symbols and machine states then becomes a larger alphabet
A D N [Q.

Moreover, state descriptions can be conveniently expressed by means of bi-
infinite ‘dotted sequences’

s D : : : ai�3ai�2ai�1 :ai0ai1ai2 : : : (11.14)

with symbols aik 2 A. In Eq. (11.14) the dot denotes the observation time t D 0

such that the symbol left to the dot, ai�1 , displays the current state, dissecting the
string s into two one-sided infinite strings s D .˛0; ˇ/ with ˛0 D ai�1ai�2ai�3 : : : as
the left-hand part in reversed order and ˇ D ai0ai1ai2 : : :
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In symbolic dynamics, a cylinder set [28] is a subset of the space AZ of bi-
infinite sequences from an alphabet A that agree in a particular building block of
length n 2 N from a particular instance of time t 2 Z, i.e.

C.n; t/ D Œai1 ; : : : ; ain � D fs 2 AZ j stCk�1 D aik ; k D 1; : : : ; ng (11.15)

is called n-cylinder at time t 2 Z. When now t < 0; n > jt j C 1 the cylinder
contains the dotted word w D s�1:s0 and can therefore be decomposed into a pair
of cylinders .C 0.jt j; t /; C.jt j C n � 1; 0// where C 0 denotes reversed order of the
defining strings again.

A generalized shift [29,30] emulating a Turing machine is a pairMGS D .AZ; �/

where AZ is the space of dotted sequences with s 2 AZ and � W AZ ! AZ is
given as

�.s/ D �F.s/.s ˚G.s// (11.16)

with

F W AZ ! Z (11.17)

G W AZ ! Ae ; (11.18)

where � W AZ ! AZ is the left-shift known from symbolic dynamics [26], F.s/ D l
dictates a number of shifts to the right (l < 0), to the left (l > 0) or no shift at all
(l D 0), G.s/ is a word w0 of length e 2 N in the domain of effect (DoE) replacing
the content w 2 Ad , which is a word of length d 2 N, in the domain of dependence
(DoD) of s, and s ˚G.s/ denotes this replacement function.

A generalized shift becomes a Turing machine by interpreting ai�1 as the current
control state q and ai0 as the tape symbol currently underneath the head. Then the
remainder of ˛ is the tape left to the head and the remainder of ˇ is the tape right to
the head. The DoD is the word w D ai�1 :ai0 of length d D 2.

As an instructive example we consider a toy model of syntactic language
processing. In order to process a sentence such as “the dog chased the cat”, linguists
often derive a context-free grammar (CFG) from a phrase structure tree (see [10] for
a more detailed example). In our case such a CFG could consist of rewriting rules

S! NP VP (11.19)

VP! V NP (11.20)

NP! the dog (11.21)

V! chased (11.22)

NP! the cat (11.23)

where the left-hand side always presents a nonterminal symbol to be expanded into
a string of nonterminal and terminal symbols at the right-hand side. Omitting the
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Table 11.1 Sequence of state transitions of the generalized shift processing the well-formed string
“the dog chased the cat” (NP V NP). The operations are indicated as follows: “predict (X)”
means prediction according to rule (X) of the context-free grammar; attach means cancelation
of successfully predicted terminals both from stack and input; and “accept” means acceptance of
the string as being well-formed

Time State Operation

0 S . NP V NP predict (11.19)
1 VP NP . NP V NP attach
2 VP . V NP predict (11.20)
3 NP V . V NP attach
4 NP . NP attach
5 � . � accept

lexical rules (11.21–11.23), we regard the symbols NP;V, denoting ‘noun phrase’
and ‘verb’, respectively, as terminals and the symbols S (‘sentence’) and VP (‘verbal
phrase’) as nonterminals.

A generalized shift processing this grammar is then prescribed by the mappings

S:a 7! VP NP:a
VP:a 7! NP V:a
a:a 7! �:�

(11.24)

where the left-hand side of the tape is now called ‘stack’ and the right-hand side
‘input’. In (11.24) a 2 T stands for an arbitrary input symbol. The empty word
is indicated by �. Note the reversed order for the stack left of the dot. The first
two operations in (11.24) are predictions according to a rule of the CFG while the
last one is an attachment of input material with already predicted material, to be
understood as a matching step.

With this machine table, a parse of the sentence “the dog chased the cat”
(NP V NP) is then obtained in Table 11.1.

11.3.2 Nonlinear Dynamical Automata

Applying a Gödel encoding [6, 17, 19]

x D  .˛0/ WD
1X
kD1

 .ai�k /b
�k
L (11.25)

y D  .ˇ/ WD
1X
kD0

 .aik /b
�k�1
R

to the pair s D .˛0; ˇ/ from the Turing machine state description (11.14) where
 .aj / 2 N0 is an integer Gödel number for symbol aj 2 A and bL; bR 2 N are the
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numbers of symbols that could appear either in ˛0 or in ˇ, respectively, yields the
so-called symbol plane or symbologram representation x D .x; y/T of s in the unit
square X [13, 23].

The symbologram representation of a generalized shift is a nonlinear dynamical
automaton (NDA) [6,9,10] which is a triple MNDA D .X;P; ˚/ where .X;˚/ is a
time-discrete dynamical system with phase spaceX D Œ0; 1�2 
 R

2, the unit square,
and flow ˚ W X ! X . P D fD� j� D .i; j /; 1 � i � m; 1 � j � n;m; n 2 Ng
is a rectangular partition of X into pairwise disjoint sets, D� \D� D ; for � ¤ �,
covering the whole phase space X D S

� D� , such that D� D Ii � Jj with real
intervals Ii ; Jj 
 Œ0; 1� for each bi-index � D .i; j /. The cells D� are the domains
of the branches of ˚ which is a piecewise affine-linear map

˚.x/ D
 
a�x
a�y

!
C
 
��x 0

0 ��y

!
	
�
x

y

�
; (11.26)

when x D .x; y/T 2 D� . The vectors .a�x; a
�
y/
T 2 R

2 characterize parallel

translations, while the matrix coefficients ��x; �
�
y 2 R

C
0 mediate either stretchings

(� > 1), squeezings (� < 1), or identities (� D 1) along the x- and y-axes,
respectively.

Hence, the NDA’s dynamics, obtained by iterating an orbit fxt 2 X jt 2 N0g from
initial condition x0 through

xtC1 D ˚.xt / (11.27)

describes a symbolic computation by means of a generalized shift [29, 30] when
subjected to the coarse-graining P .

The domains of dependence and effect (DoD and DoE) of an NDA, respectively,
are obtained as images of cylinder sets under the Gödel encoding (11.25). Each
cylinder possesses a lower and an upper bound, given by the Gödel numbers 0 and
bL � 1 or bR � 1, respectively. Thus,

inf. .C 0.jt j; t /// D  .aijtj ; : : : ; ai1 /
sup. .C 0.jt j; t /// D  .aijtj ; : : : ; ai1 /C b�jt j

L

inf. .C.jt j C n � 1; 0/// D  .aijtjC1
; : : : ; ain/

sup. .C.jt j C n � 1; 0/// D  .aijtjC1
; : : : ; ain/C b�jt j�nC1

R ;

where the suprema have been evaluated by means of geometric series [9]. Thereby,
each part cylinder C is mapped onto a real interval Œinf.C /; sup.C /� 
 Œ0; 1� and
the complete cylinder C.n; t/ onto the Cartesian product of intervals R D I �
J 
 Œ0; 1�2, i.e. onto a rectangle in unit square. In particular, the empty cylinder,
corresponding to the empty tape �:� is represented by the complete phase space
X D Œ0; 1�2.
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Fig. 11.3 Symbologram of the NDA processing the string “the dog chased the cat” (NP V NP).
(a) Domains of dependence (DoD) of actions: identity (white), predict (gray), and attach (black).
(b) Domains of effect (DoE): images of prediction (gray), black rectangles from (a) are mapped
onto the whole unit square during attachment

Fixing the prefixes of both part cylinders and allowing for random symbolic
continuation beyond the defining building blocks, results in a cloud of randomly
scattered points across a rectangle R in the symbologram [10]. These rectangles
are consistent with the symbol processing dynamics of the NDA, while individual
points x 2 Œ0; 1�2 no longer have an immediate symbolic interpretation. Therefore,
we refer to arbitrary rectangles R 2 Œ0; 1�2 as to NDA macrostates, distinguishing
them from NDA microstates x of the underlying dynamical system.

Coming back to our language example, we create an NDA from an arbitrary
Gödel encoding. Choosing

 .NP/ D 0 (11.28)

 .V/ D 1 (11.29)

 .VP/ D 2 (11.30)

 .S/ D 3 (11.31)

we have bL D 4 stack symbols and bR D 2 input symbols. Thus, the symbologram
is partitioned into eight rectangles. Figure 11.3 displays the resulting (a) DoD and
(b) DoE.

11.3.3 Neural Field Computation

Next we replace the NDA point dynamics in phase space by functional dynamics
in Banach space. Instead of iterating clouds of randomly prepared initial conditions
according to a deterministic dynamics, we consider the deterministic dynamics of
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probability measures over phase space. This higher level of description that goes
back to Koopman et al. [24,25] has recently been revitalized for dynamical systems
theory [12].

The starting point for this approach is the conservation of probability as
expressed by the Frobenius-Perron equation [33]

�.x; t / D
Z
X

ı.x � ˚t�t 0.x0//�.x0; t 0/dx0 ; (11.32)

where �.x; t / denotes a probability density function over the phase space X at time
t of a dynamical system, ˚t W X ! X refers to either a continuous-time (t 2 R

C
0 )

or discrete-time (t 2 N0) flow and the integral over the delta function expresses the
probability summation of alternative trajectories all leading into the same state x at
time t .

In the case of an NDA, the flow is discrete and piecewise affine-linear on the
domains D� as given by Eq. (11.26). As initial probability distribution densities
�.x; 0/ we consider uniform distributions with rectangular support R0 
 X ,
corresponding to an initial NDA macrostate,

u.x; 0/ D 1

jR0j�R0.x/ ; (11.33)

where

�A.x/ D
(
0 W x … A
1 W x 2 A (11.34)

is the characteristic function for a set A 
 X . A crucial requirement for these
distributions is that they must be consistent with the partition P of the NDA, i.e.
there must be a bi-index � D .i; j / such that the support R0 
 D� .

Inserting (11.33) into the Frobenius-Perron equation (11.32) yields for one
iteration

u.x; t C 1/ D
Z
X

ı.x � ˚.x0//u.x0; t /dx0 : (11.35)

In order to evaluate (11.35), we first use the product decomposition of the
involved functions:

u.x; 0/ D ux.x; 0/uy.y; 0/ (11.36)

with

ux.x; 0/ D 1

jI0j�I0.x/ (11.37)
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uy.y; 0/ D 1

jJ0j�J0.y/ (11.38)

and

ı.x � ˚.x0// D ı.x � ˚x.x0//ı.y � ˚y.x0// ; (11.39)

where the intervals I0; J0 are the projections of R0 onto x- and y-axes, respectively.
Correspondingly, ˚x and ˚y are the projections of ˚ onto x- and y-axes, respec-
tively. These are obtained from (11.26) as

˚x.x0/ D a�x C ��xx0 (11.40)

˚y.x0/ D a�y C ��yy0 : (11.41)

Using this factorization, the Frobenius-Perron equation (11.35) separates into

ux.x; t C 1/ D
Z
Œ0;1�

ı.x � a�x � ��xx0/ux.x0; t /dx0 (11.42)

uy.y; t C 1/ D
Z
Œ0;1�

ı.y � a�y � ��yy0/uy.y0; t /dy0 (11.43)

Next, we evaluate the delta functions according to the well-known lemma

ı.f .x// D
X

lWsimple zeros

jf 0.xl /j�1ı.x � xl/ ; (11.44)

where f 0.xl / indicates the first derivative of f in xl . Equation (11.44) yields for the
x-axis

x� D x � a�x
��x

; (11.45)

i.e. one zero for each �-branch, and hence

jf 0.x0
�/j D ��x : (11.46)

Inserting (11.44), (11.45) and (11.46) into (11.42), gives

ux.x; t C 1/ D
X
�

Z
Œ0;1�

1

��x
ı

�
x0 � x � a

�
x

��x

�
ux.x

0; t /dx0

D
X
�

1

��x
ux

�
x � a�x
��x

; t

�
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Next, we take into account that the distributions must be consistent with the
NDA’s partition. Therefore, for given x 2 D� there is only one branch of ˚
contributing a simple zero to the sum above. Hence,

ux.x; t C 1/ D 1

��x
ux

�
x � a�x
��x

; t

�
: (11.47)

Our main finding is now that the evolution of uniform p.d.f.s with rectangular
support according to the NDA dynamics Eq. (11.35) is governed by

u.x; t / D 1

j˚t.R0/j�˚
t .R0/.x/ ; (11.48)

i.e. uniform distributions with rectangular support are mapped onto uniform distri-
butions with rectangular support [8].

For the proof we first insert the initial uniform density distribution (11.33) for
t D 0 into Eq. (11.47), to obtain by virtue of (11.37)

ux.x; 1/ D 1

��x
ux

�
x � a�x
��x

; 0

�
D 1

��x

1

jI0j�I0
�
x � a�x
��x

�
:

Deploying (11.34) yields

�I0

�
x � a�x
��x

�
D
8<
:
0 W x�a�x

��x
… I0

1 W x�a�x
��x
2 I0 :

Let now I0 D Œp0; q0� 
 Œ0; 1� we get

x � a�x
��x

2 I0

” p0 � x � a�x
��x

� q0
” ��xp0 � x � a�x � ��xq0
” a�x C ��xp0 � x � a�x C ��xq0
” ˚x.p0/ � x � ˚x.q0/
” x 2 ˚x.I0/ ;

where we made use of (11.40). Moreover, we have

��xjI0j D ��x.q0 � p0/ D q1 � p1 D jI1j
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with I1 D Œp1; q1� D ˚x.I0/. Therefore,

ux.x; 1/ D 1

jI1j�I1.x/ :

The same argumentation applies to the y-axis, such that we eventually obtain

u.x; 1/ D 1

jR1j�R1.x/ ; (11.49)

with R1 D ˚.R0/ the image of the initial rectangle R0 
 X . Thus, the image of
a uniform density function with rectangular support is a uniform density function
with rectangular support again.

Next, assume (11.48) is valid for some t 2 N. Then it is obvious that (11.48) also
holds for t C 1 by inserting the x-projection of (11.48) into (11.47) using (11.37),
again. Then, the same calculation as above applies when every occurrence of 0 is
replaced by t and every occurrence of 1 is replaced by t C 1. By means of this
inductive proof we have implemented an NDA by a dynamically evolving field.
Therefore, we call this representation dynamic field automaton (DFA).

The Frobenius-Perron equation (11.35) can be regarded as a time-discretized
Amari dynamic neural field equation (11.3). Discretizing time according to Euler’s
rule with increment �t D � where � is the time constant of the Amari equation
(11.3) yields

�
u.x; t C �/ � u.x; t /

�
C u.x; t / D

Z
D

w.x; y/f .u.y; t // dy

u.x; t C �/ D
Z
D

w.x; y/f .u.y; t // dy :

For � D 1 and f .u/ D u the Amari equation becomes the Frobenius-Perron
equation (11.35) when we set

w.x; y/ D ı.x � ˚.y// (11.50)

where ˚ is the NDA mapping from Eq. (11.27). This is the general solution of the
kernel construction problem [6, 38]. Note that ˚ is not injective, i.e. for fixed x the
kernel is a sum of delta functions encoding the influence from different parts of the
space X D Œ0; 1�2.

Finally we carry out the whole construction for our language example. This
yields the field dynamics depicted in Fig. 11.4.
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Fig. 11.4 Dynamic field automaton for processing the string “the dog chased the cat” (NP V NP)
according to Table 11.1. The NDA states become rectangular supports of uniform distributions
which are mapped onto uniform distributions with rectangular supports during discrete temporal
evolution

11.4 Discussion

Turing machines and Gödel numbers are important pillars of the theory of computa-
tion [20,47]. Thus, any computational architecture needs to show how it could relate
to Turing machines and in what way stable implementations of Turing computation
is possible. In this chapter, we addressed the question how universal Turing
computation could be implemented in a neural field environment as described by the
Amari field equation (11.1). To this end, we employed the canonical symbologram
representation [13,23] of the machine tape as the unit square, resulting from a Gödel
encoding of sequences of states.

The action of the Turing machine on a state description is given by a state flow on
the unit square which led to a Frobenius-Perron equation (11.32) for the evolution of
uniform probability densities. We have implemented this equation in the neural field
space by a piecewise affine-linear kernel geometry on the unit square which can be
expressed naturally within a neural field framework. We also showed that stability
of states and dynamics both in time as well as its encoding for finite programs is
achieved by the approach.

However, our construction essentially relied upon discretized time that could be
provided by some clock mechanism. The crucial problem of stabilizing states within
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every clock cycle could be principally solved by established methods from dynamic
field architectures. In such a time-continuous extension, an excited state, represented
by a rectangle in one layer, will only excite a subsequent state, represented by
another rectangle in another layer when a condition-of-satisfaction is met [40, 41].
Otherwise rectangular states would remain stabilized as described by Eq. (11.10).
All these problems provide promising prospects for future research.
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Chapter 12
A Neural Approach to Cognition Based
on Dynamic Field Theory

Jonas Lins and Gregor Schöner

Abstract How may cognitive function emerge from the different dynamic prop-
erties, regimes, and solutions of neural field equations? To date, this question has
received much less attention than the purely mathematical analysis of neural fields.
Dynamic Field Theory (DFT) aims to bridge the ensuing gap, by bringing together
neural field dynamics with principles of neural representation and fundamentals of
cognition. This chapter provides review of each of these aspects. We show how
dynamic fields can be viewed as mathematical descriptions of activation patterns in
neural populations that arise due to sensory and motor events; how field dynamics
in DFT give rise to a set of stable states and associated instabilities that provide
the elementary building blocks for cognitive processes; and how these properties
can be brought to bear in the construction of neurally grounded process models
of cognition. We conclude that DFT provides a valuable framework for linking
mathematical descriptions of neural activity to actual sensory, motor, and cognitive
functionality and behavioral signatures thereof.

12.1 Introduction

Much theoretical work has been dedicated to studying neural field equations at an
abstract, mathematical level, focusing on the dynamic properties of the solutions
(this book provides review of many of the latest efforts in this direction). Much
less attention has been directed at understanding how function, in particular, how
cognition may emerge from the different dynamic regimes and solutions of neural
fields. This has left a gap between the mathematical models of neural fields
that capture neurophysiology and theoretical models of neural function. Where is
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cognition in all the neural dynamics? May universal principles be identified that
capture how the neural substrate rises to the demands of cognition?

Addressing these questions requires a theory that seamlessly integrates schemes
of neural representation, fundamentals of cognition, and neural field dynamics.
To ground the theory in neurophysiology, we must examine how neural activity
captures and represents specific features of the world. To identify which properties
of neural mechanisms enable them to support cognitive processes, we need a clear
definition of cognition. Finally, a mathematical formalization must be chosen that
endows neural fields with appropriate dynamical properties. In addition, such a
mathematical theory must account for data from behavioral experiments that are
observable indices of underlying cognitive processes.

In this chapter, we first address how patterns of neural activity represent
attributes of sensory stimuli and of motoric actions. This provides the foundation
for an operational theory of cognition based on dynamic neural fields, that we
sketch next. We review core concepts of Dynamic Field Theory (DFT; [26]), a
theoretical framework that implements elementary forms of cognition as process
models in neural field architectures, explains behavioral data, and generates testable
predictions. We then briefly address the critical features of cognition, and discuss
how DFT accounts for these properties. We conclude the chapter by describing
an exemplary DFT architecture that illustrates how the sketched principles may be
applied to model higher-level cognitive function.

12.2 Grounding DFT in Neurophysiology

To get a sense for how neural fields may represent percepts, actions, or cognitive
states, we start with single neurons and then move to populations of neurons within
a given area of the brain.

Neural tuning is the classical concept that links the activity of a neuron, located
somewhere within the neural networks of the brain, with the external conditions to
which the organism is exposed, either through sensory stimulation or through an
action initiated by the organism. Most neurons in the higher nervous system are
active only while a stimulus or motor parameter (e.g., color, shape, or movement
direction) is within a restricted range. Within this range, the discharge rate is often
a non-monotonic function of the parameter. These functions, called tuning curves,
are obtained by plotting discharge rate against the manipulated parameter. In many
cases, tuning curves are Gaussian or alike (although more complex schemes exist),
centered around a “preferred” value of the parameter. For instance, neurons in visual
cortex might respond vigorously to a particular direction of visual motion, while the
spike rate falls off gracefully when the direction deviates more and more from that
direction.

Tuning is found in the brain for a wealth of parameters. Classical examples
include tuning to the position of stimuli on sensory surfaces, such as the location
of a visual stimulus on the retina or of a tactile stimulus on the skin (tuning curves
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for spatial position are equivalent to receptive field profiles; [19,28]). In other cases,
it is motor space, such as the target position of a saccade [21] or the direction of
a hand movement [8], that determines the activation of neurons. Cells may also be
tuned to non-spatial feature dimensions like orientation [15] or color [4]. As a more
complex example, neurons in visual area V4 are tuned to the curvature of object
boundaries at specific angular positions relative to the object center [24]. In general,
neurons tend to be sensitive and tuned to more than one dimension at the same time.

It is apparent from these examples that neurons often signal information about
specific aspects of the sensed environment or of behavioral events. For brain
areas close to the sensory or motor surfaces, it is relatively straightforward to
determine tuning curves, by recording from neurons in a number of different sample
conditions. Schwartz, Kettner and Georgopoulos [27], for instance, recorded the
activity of 568 motor cortical neurons of monkeys while these performed hand
movements in different directions. In each trial, the monkeys reached from a central
position to one of eight possible targets that were distributed in three-dimensional
space. In the great majority of the recorded cells, discharge rate depended on the
direction of movement. The tuning curves were well described by cosine functions
of the angle formed between the current movement direction and the cell’s preferred
movement direction.

Tuning in motor cortex is therefore broad, relatively uniform, and the preferred
values are broadly distributed, covering the entire dimension. As a result, the tuning
curves of different neurons strongly overlap [8]. This is common in most areas of
the brain and suggests that sensory or motor parameters are represented by neural
populations: For any specific value of a sensory or motor parameter, say, a particular
reaching direction, a large ensemble of neurons is active. The activation pattern
induced by any individual stimulus or motor condition is best characterized as a
distribution of activation within a neural population. But does the entire distribution
matter, or do only the neurons contribute whose preferred values are closest to
current parameter value, the neurons at the very center of the distribution?

According to the population coding hypothesis, information about currently
coded parameter values is indeed represented jointly by all active neurons, with each
neuron contributing according to its level of activation. Georgopoulos, Kettner, and
Schwartz [10] tested this hypothesis for the coding of movement direction in motor
cortex. Using the same experimental data as Schwartz et al. ([27]; see above), they
determined a population vector [9] for each reaching movement and compared it to
the actual movement direction. The population vector is a weighted vector sum of
the preferred direction vectors of all active neurons, each preferred direction vector
being weighted with the neuron’s current spike rate (this is the theoretical mean
of the distribution of population activation in circular statistics). The population
vector turned out to be an excellent predictor of movement direction. Importantly,
including more neurons in the population vector yielded more precise predictions,
suggesting that indeed all neurons contributed to the behavioral outcome of the
activation pattern.

Other findings lend more direct support to the population coding hypothesis by
demonstrating that weakly activated neurons contribute to the coded estimate. In
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Metric dimension

Population
activation

Fig. 12.1 To construct the distribution of population activation (DPA) for a particular parameter
value (arrow), the tuning curves of the individual neurons (long dashed lines) are weighted by
the respective neurons’ firing rates. The weighted curves (short dashed lines) are then summed to
obtain the DPA (solid line) over the coded dimension. Since neurons with preferred values close to
the specified parameter value have higher firing rates, their curves contribute more strongly to the
DPA. This leads to a peak at the position corresponding to the specified value, indicating that this
value is currently represented by the population

the superior colliculus, for instance, saccade targets are coded in a topographic
map of retinal space. saccades are rapid eye movements that serve to fixate a target
position. Each saccade is accompanied by a blob of activity within the neural map,
the position of which specifies the retinal target. Crucially, saccadic endpoints can
be influenced by pharmacologically deactivating peripheral regions of the activity
blob, even though neurons in these regions are only weakly activated, compared to
the cells in the blob center [21]. Similarly, stimulation experiments in the middle
temporal visual area (MT) show that the perception of visual motion direction
is readily influenced by artificially induced activity peaks in the neural map of
movement direction, even when the artificial peak is far from the visually induced
peak [11]. Activity seems to be integrated across the whole map.

Apart from corroborating the population coding hypothesis, the population
vector method is a first step toward an interpretation of neural population activity.
However, the population vector reduces the entire distribution of activity to one
single value, discarding potentially meaningful information about its exact shape.
Behaviorally relevant information potentially contained in multiple peaks of the
distribution or in the shape of activation peaks is lost. Detecting the impact of
these properties requires appropriate experimental paradigms and a method for
constructing activity distributions from the firing of discrete neurons.

A way to do this is to construct the distribution of population activation (DPA;
[5]). Although different variants of this method have been used [2, 3, 16], the basic
rationale is to compute distributions from entire tuning curves rather than from the
discrete preferred values of the neurons (Fig. 12.1).

First, the tuning curves of the recorded neurons are determined from a set of
reference conditions (e.g., a sample of movement directions) and their amplitudes
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Fig. 12.2 Temporal evolution of a DPA during a reaching task, constructed from the firing of
about 100 motor cortical neurons of a monkey [2]. The DPA is defined over the space of possible
movement directions (targets). The DPA shown was obtained in a trial where the directional precue
consisted of three adjacent lights (i.e., high directional uncertainty). The position of the three lights
is indicated in the plot by thick black lines. From the occurrence of the preparatory signal (PS)
onwards, a broad peak of activation emerges that is centered over the precued directions. It remains
above activity baseline throughout the preparatory period. As the response signal (RS) occurs,
activity sharpens, increases and shifts position, resulting in a pronounced peak centered around the
final movement direction (Adapted from [2])

are normalized. The DPA of any particular test condition is then obtained as
a weighted sum of these tuning curves. The weighting factors are the neurons’
average spike rates in the test condition. The sum is normalized by the number of
neurons and additional normalization steps compensate for uneven sampling from
the distribution of preferred values. The DPA obtained this way is defined over the
same parameter dimension as the tuning curves.

Bastian, Schöner, and Riehle [2] demonstrated that the shape of a DPA correlated
with behavioral constraints. In the behavioral paradigm, monkeys reached from
a central button to one of six target lights arranged around it in a hexagonal
shape. Each trial started with the monkey pressing and holding the center button.
A preparatory period followed, in which varied amounts of information about the
upcoming movement direction were provided, by turning on one, two, or three
adjacent lights. After one second one of the cued lights was turned to a different
color as a definite response signal, prompting the monkey to move its hand to that
light.

Immediately after the onset of the preparatory signal, a peak developed in the
DPA, centered over the precued directions (Fig. 12.2).

This activation remained above baseline throughout the preparatory period and
increased slowly after the response signal was supplied. Thus, information about
the potential movement directions was retained throughout this period. Moreover,
the shape of the peak reflected the precision of prior information: more informative
precues (i.e., fewer cue lights) led to higher and sharper peaks. When the definite
response signal occurred, the peak sharpened and shifted toward the position
corresponding to the cued movement direction, reaching its maximum height about



324 J. Lins and G. Schöner

100 ms before movement initiation. In this final stage, the shape of the peak was
approximately equal for all conditions. In addition, Bastian and colleagues found
that the shape of the DPA predicted reaction times (measured as the time from the
occurrence of the response signal to movement onset): Broader, less pronounced
peaks during the preparatory period corresponded to longer reaction times than
sharp, pronounced peaks. Apparently, it took more time for broader peaks to reach
sufficient concentration and height to initiate motor action. These findings show that
the shape of the DPA impacts on behavior and that DPA shape may reflect different
degrees of certainty or precision.

Using very similar techniques, Cisek and Kalaska [3] showed that multimodal
DPAs may express different discrete choices of parameter values. They found that
DPAs in premotor cortex can simultaneously represent two precued movement
directions (only one of which is later realized). Clearly, the population vector is
unable to represent such multi-valued information.

To summarize, peaks in DPAs pertain to macroscopically relevant perceptual or
behavioral conditions, and the exact shape of the distribution carries information
that may observably impact behavior. Thus, DPAs provide an appropriate level of
consideration to assess the functional relevance of neural activity patterns.

12.3 Dynamic Field Theory

Dynamic Field Theory (DFT) builds on the finding that the relevant information
is carried by distributions of activation among populations of neurons rather than
by single cells. Via the DPA method, DFT is tightly linked to the physiology of
population coding. DFT describes the evolution in time of activation patterns in
neural populations. The activation patterns are modeled as Dynamic Neural Fields
(DNFs) that are defined over continuous metric dimensions and evolve continuously
in time. The fields may be defined over virtually any perceptual, behavioral or
cognitive dimension, such as color, retinal position, tone pitch, movement direction,
or allocentric spatial position. Special focus is laid on modeling lateral neural
interactions within the fields, endowing them with a particular set of stable attractor
states. These stable states correspond to meaningful representational conditions,
such as the presence or absence of a particular value along the coded dimension.
Instabilities that lead to switches between the different stable states are brought
about by sufficient changes in the configuration of the external input a field receives.

The particular mathematical form of field dynamics adopted by DFT has first
been analyzed by Amari ([1]; see also [12, 34]):

� Pu.x; t/ D �u.x; t/C s.x; t/C hC
Z

w.x � x0/�.u.x0; t // dx0 (12.1)

Here, u.x; t/ is the field of activation, defined over the metric dimension, x, and
time, t . From a neurophysiological viewpoint, the activation, u, can be interpreted
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as a correlate to the mean membrane potential of a group of neurons. The time
scale of the relaxation process is determined by � . The field has a constant resting
level, h, and may receive localized patterns of external input, s.x; t/. The last term
describes lateral interactions between different field sites. Here, � is a sigmoidal
function implementing a soft threshold for field output, and w is an interaction
kernel that specifies the strength of interactions between different field sites as a
function of their metric distance. The kernel typically has a Mexican hat shape,
implementing local excitation and surround inhibition, usually with added global
inhibition. This means that field sites coding for similar parameter values excite
each other, while mutual inhibition predominates between field sites that code for
very different values. The sigmoidal threshold function ensures that only sufficiently
activated field sites generate output and impact on other sites. The field output can
be viewed as corresponding to the mean spike rate of a group of neurons.

In the absence of supra-threshold activation, no output is generated. In this case,
the entire field relaxes to the stable attractor that is set by the resting level (which
usually resides well below the output threshold). A flat distribution indicates the
absence of any specific information about the coded dimension.

When weak, localized input is applied, the attractor at the respective field site
is shifted toward the output threshold. As long as the threshold is not reached,
though, the field state remains purely input-driven and activation thus simply traces
the shape of the input (Fig. 12.3a). Although there is now some structure to the
distribution, this state still indicates the absence of conclusive information.

If, in contrast, the localized input is sufficiently strong to push a section of the
field above threshold, output is generated and lateral interaction kicks in. Provided
the parameters of the interaction kernel are within an appropriate range, lateral
interaction promotes the formation of a localized peak of activation (Fig. 12.3b).
Local excitation further elevates activation around the input position, whereas more
distant field sites are depressed by global inhibition and/or surround inhibition,
which prevents the peak from dispersing. Due to these properties we refer to this
as a self-stabilized peak.

We call the transition from a sub-threshold solution to a self-stabilized peak the
detection instability, because it corresponds to the decision that a coherent, well-
defined item is present in the input stream. Peaks are units of representation in
this sense, indicating that a particular parameter value is present in the sensory
environment, as part of a motor plan, or as the contents of memory. The encoded
value itself – what is being perceived, planned, or memorized – is specified by the
position of the peak along the metric dimension. Peak height and width, on the other
hand, may reflect certainty, intensity and precision (analogous to DPAs).

Conversely, we call it the reverse detection instability when an existing self-
stabilized peak vanishes. This happens when the localized input that brought about
the peak is sufficiently reduced in strength. For example, when the input is removed
entirely, the peak attractor becomes unstable and disappears, while the resting level
attractor reappears, to which the system then relaxes. Decreasing the input strength
successively will also eventually trigger the reverse detection instability. However,
local excitation to a degree shields existing peaks from decaying. The system will
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Fig. 12.3 Left column: Stable states reached by dynamic neural fields (solid lines and long dashed
line) as a result of localized Gaussian inputs of different strengths (dotted lines). Right column:
Corresponding plots of the rate of change as a function of activation at the peak position, x0 (note
that these plots are only approximate, as they do not take into account the impact of other field
sites on the rate of change at x0 via lateral interactions). Attractors are marked by filled dots,
repellors by open dots. (a) Weak input results in a purely input-driven sub-threshold peak, which
is a monostable attractor state. (b) High levels of input that bring activation above threshold result
in output generation and lateral interactions, thus leading to a self-stabilized peak. This state as
well is monostable. (c) For intermediate input strengths the system reaches a bistable state. The
current state then depends on the system’s prior state. Here, the self-stabilized peak (solid line)
corresponds to the attractor on the right side, which is reached from high levels of activation. The
sub-threshold peak (long dashed line) corresponds to the left attractor, which is reached from low
levels of activation

thus stick to the detection decision across a range of input strengths that would
not have triggered the detection instability in the first place. The system is bistable
over this range, with the peak attractor and the input-driven attractor coexisting
(Fig. 12.3c). The field state then depends on which basin of attraction it resided in
prior to the change of input strength. In other words, the state of the system depends
on its activation history, it displays hysteresis.

Hysteresis stabilizes decisions against random fluctuations and perturbations. In
the nervous system, such fluctuations may arise due to the inherent variability in
neural firing or as the result of currently ongoing but unrelated neural processes.
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Under such conditions a lack of hysteresis would lead to constantly fluctuating deci-
sions for near-threshold input. It is thus unsurprising that signatures of hysteresis are
a common finding in behavioral experiments (for review, see [13]). For instance, per-
ceptual hysteresis has been reported for single-element apparent-motion [14]. In the
experiment, participants were shown two squares with differing luminance. While
the participants were watching, the squares constantly exchanged their luminance
values, which created a percept of either flicker or apparent motion between them. In
each trial participants reported at multiple time points which of the two percepts they
currently experienced. The decisive variable predicting whether motion or flicker
was perceived was background-relative-luminance contrast (BRLC). BRLC is the
strength of luminance change between individual frames in relation to how much
the spots’ average luminance differs from background luminance. High BRLC led
to motion percepts more frequently than low BRLC. Hysteresis was observed when
BRLC was changed continuously during the trials in a descending or ascending
manner. The BRLC value at which the motion percept was lost in descending trials
was lower than the value at which the motion percept was established in ascending
trials. This suggests that within a certain range of BRLC values motion perception
is bistable.

Another fundamental attractor state in DFT is the self-sustained peak state.
self-sustained peaks arise in much the same way as self-stabilized ones: When
localized, excitatory input brings activation above threshold, output is generated,
driving lateral interactions that support peak formation. The difference lies in the
balance of excitation and inhibition. A field supports self-sustained peaks if local
excitation is sufficiently strong, relative to inhibition, to by itself prevent peaks
from decaying after the input is removed. In this regime, peaks decay only when the
level of activation is sufficiently decreased, locally or globally, by external inhibitory
input or by endogenous inhibitory interactions. Otherwise, self-sustained peaks may
persist indefinitely, even in the absence of localized input. The self-sustained regime
enables DNFs to support the functionality of the neural process of working memory
(see also, [6], and the original [7]), which will be illustrated in Sect. 12.5.

We have so far considered only single localized inputs. But natural environments
are usually richly structured – visual scenes are cluttered with objects, auditory
signals arrive from multiple directions, and so forth – which in turn implies a variety
of potential behavioral goals and movement targets. Several inputs may be equally
salient due to, say, equal brightness, contrast, or loudness. Under such conditions
multiple stimuli compete for processing and behavioral impact. In terms of DNFs,
this amounts to a field receiving multiple localized inputs at the same time. DFT
provides dynamic mechanisms that mediate selection in such situations.

The selection of saccade targets is a well-studied example, which has been
addressed in detail by DFT modeling efforts. We base the following considerations
on those efforts, mainly on a model by Wilimzig, Schneider, and Schöner [33],
which in turn complements prior modeling work [20, 31].

Saccades are rapid eye movements that serve to quickly fixate targets in visual
space. Saccade trajectories are planned prior to the initiation of the movement and
are not adjusted afterwards. The metrics of saccades are specified in the superior
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colliculus, a mid-brain structure that integrates cortical and direct visual input in a
topographic map of visual space. Activation bumps in this map specify the vertical
and horizontal extent of saccades. It is thought that the superior colliculus plays
an important role in both target selection and saccade initiation. The DNFs in the
model sketched below can be viewed as roughly corresponding to the respective
neural populations in the superior colliculus.

The model consists of a selection level and an initiation level. Each level is
constituted by a DNF with local excitation and global inhibition, defined over the
space of saccadic endpoints (i.e., retinal space). The space is modeled as one-
dimensional, which is sufficient to capture most experimental paradigms. We will
restrict our considerations to the selection level, where selection between different
visual targets occurs.

Items in the visual field are fed into the selection field as localized, Gaussian-
shaped input patterns. When a single target item generates sufficient input, the
detection instability occurs, resulting in the formation of a self-stabilized peak of
activation in the field. Although the model of Wilimzig et al. accounts for several
experimental findings with regard to the case of a single target as well, we are
here primarily interested in situations in which at least two targets are presented
simultaneously. What happens in the double target case depends on the exact
configuration of the two inputs and on activation biases that may be caused by
stochastic perturbations or by imbalances between the two stimuli.

We first consider the case of two visual items that are equally salient and
spatially remote from each other. Also, we will assume that there are no stochastic
perturbations, and thus no random activation biases. Due to their equal saliency,
both items generate input of the exact same strength. Furthermore, the large distance
between the items ensures that there is no interaction between the resulting peaks,
except for homogenous global inhibition. As a consequence, two supra-threshold
peaks emerge that are somewhat less pronounced than in the single input case, as
the sum of global inhibition is larger. The resulting field state is a fixed point of the
system, but it is not stable.

This becomes apparent when an activation bias is introduced. One source of
such imbalance are stochastic perturbations caused by neuronal variability or by
other ongoing neural processes (the saccade model implements stochastic variability
as Gaussian white noise). Random fluctuations of activity may provoke selection
decisions by strengthening or weakening one of the competing peaks. Another
source of imbalance is the relative strength of the inputs themselves. In a visual
context, the strength of an input may be associated, for instance, to the brightness or
contrast of a stimulus. Regardless of its source, an imbalance in favor of one of the
peaks leads to increased activation and excitation around this location, increasing
the height of the peak above that of its competitor. The ensuing increase in global
inhibition suppresses the weaker peak, eventually reducing it to an input-driven
bump. The single-peak state resulting from this selection decision is bistable, with
both peak attractors coexisting (Fig. 12.4a).

However, multiple inputs do not always result in selection, but may also lead
to fusion. This has been shown empirically for the case of saccades by Ottes, van



12 A Neural Approach to Cognition Based on Dynamic Field Theory 329

A
ct

iv
at

io
n

Feature dimension

Selected
peak

A
ct

iv
at

io
n

Feature dimension

a

b

Fig. 12.4 Stable states reached by dynamic neural fields (solid lines and long dashed line) as a
result of different patterns of localized Gaussian input (dotted lines). (a) Competition between
peaks occurs when two inputs are applied at distant positions. Only at one location is a self-
stabilized peak formed (solid line), while the other is suppressed by inhibition. The state resulting
from this selection decision is bistable, with the alternative state (long dashed line) continuing
to coexist as an attractor. Which state is reached depends on the field’s prior activation history,
imbalances between the inputs, and noise. (b) Two close inputs can result in a monostable fused
peak state, with a single peak at an average location between the inputs

Gisbergen, and Eggermont [23]. Their participants made saccades from a fixation
point to a green stimulus whenever it appeared. In some trials, a red stimulus
appeared alongside the green stimulus. Although the participants were instructed to
ignore the red item, the first saccade they made often landed at an average position
between the two stimuli. Such averaging saccades occurred much more frequently
when the stimuli were spatially close than when they were widely separated.

This phenomenon is as well captured by the saccade model. It is, in fact, a feature
of DNFs in general. As observed by Ottes et al., whether selection or fusion occurs
depends to a large part on the inputs’ metrics. Specifically, two inputs tend to result
in a single peak at an average position if they are so close to each other that the
regions of input-induced activation are subject to mutual excitation. In that case,
the activation propagates from the two input positions towards the center between
them, eventually forming a single peak (Fig. 12.4b). The state with fused peak is
monostable for very close inputs. When the distance between them is increased
after a fused peak has already established, it becomes bistable at some point. That
is, although the fused peak persists, applying the same input configuration to a
previously inactive field would result in a selection decision. If the distance is
increased even more, the attractor of the fused peak eventually becomes unstable
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and disappears. The field then relaxes to the now monostable selection state. We
call this the fusion/selection instability.

In the model of Wilimzig et al. inhibition is not implemented via the same
interaction kernel as excitation, but it is instead mediated by an additional layer of
interneurons. This layer receives excitatory input from the main, purely excitatory
field and projects back global inhibition to it. On the one hand, this implementation
of inhibition was chosen to accord to Dale’s law, which states, roughly put, that each
neuron releases the same set of neurotransmitters at all of its synapses. Assuming
that DNFs capture homogeneous neural populations, this means that a field’s output
can be either excitatory or inhibitory, but not both. On the other hand, using a
separate inhibitory field has the effect of delaying the impact of inhibition compared
to that of local excitation. Due to the different roles of excitation and inhibition in
the fusion and selection of peaks this gives rise to a specific association between the
latency and the type of saccades. Saccades with lower latencies are more likely to
target an average position between the stimuli, while later saccades tend to select
one target. This effect has also been found empirically [23].

Note that the maximum number of peaks that a DNF can support depends on
the balance of excitation and inhibition. Fields in DFT are not generally constrained
to a single peak. However, the number of peaks is usually quite limited through
inhibition. This is particularly relevant when modeling explicit capacity limits in
cognition, such as those in working memory or attentional function.

12.4 DFT as an Approach to Cognition

Through the dynamic properties described in the previous section, DNFs acquire
capabilities that are at the core of cognition: making decisions and maintaining
the outcome of these decisions. Detection decisions make neural representations
to some extent independent from the continuous input stream. Selection decisions
further decouple the contents of neural representations from the immediate input, by
separating items into those that impact processing and those that are ignored. The
specific stability properties of DNFs ensure that the outcomes of these decisions are
shielded from changes in the input, and retained as long as needed.

The paramount importance of these capabilities for cognition is perhaps best
illustrated by considering an alternative approach, one that may seem more straight-
forward at first glance, but that faces profound issues when it comes to cognition –
exactly because it lacks the capabilities described above.

To start with, the nervous system is immersed in a continuously changing
environment, facing a continuous stream of sensory input. A simple way to guide
behavior based on this type of input is to use some form of continuous closed-
loop control system. That is, a mechanism that continuously maps sensory input
and feedback to motor action, according to an appropriate function. Such systems
may perform intriguingly complex control tasks. Many simple biological organisms
work this way, as well as many systems of the human body, such as the regulation
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of blood pressure. Could cognition be nothing more than the input-driven evolution
of activation in a system of this type? To put it more radically, may cognition work
on the same principles as the regulation of blood pressure? Such a view has indeed
been advanced by some (e.g., [32]).

The problem with such systems is that the linkage between their different
subparts is seamless from input to output. The value of every variable is uniquely
specified at any point in time and there are no discontinuities between the input and
the output stage. As a consequence, subparts of such systems cannot shield their
own state from the continuous input stream or from the impact of other subparts. So
the output of the system is basically a transformed version of the input stream that is
tightly coupled to the input at all times. There is also no way of how such a system
may represent the absence of information. Control variables cannot be “empty”.
Conversely, the emergence of new states is always strongly affected by previous
states. Due to these properties, the emergence of decisive hallmarks of cognition
and behavior cannot be explained by such systems.

One of these hallmarks is the discreteness of behavioral events. How may
discrete behavioral events be initiated and terminated on the basis of purely
continuous processes? There must be a gap somewhere in between continuous input,
intermediate processes, and behavior, that cannot be explained in terms of systems
as the one described above.

On a closer look, the problem does not apply to motor action alone, but extends to
those capabilities of the brain that are often regarded as “higher” forms of cognition.
For example, mental imagery, working memory, sequence generation – all these
faculties have in common that their functioning requires a degree of independence
from the current sensory or motor environment. Working memory initially requires
sensory input to store, but after storage has been achieved, it requires that the stored
information be shielded from being overwritten by new input. Imagery is essentially
defined by the independence of a perceptual brain state from current sensory input.
Actions in a controlled sequence that works toward some distal goal (e.g., making
coffee) need to be shielded against distracting input that would trigger unrelated
behavior (e.g., taking a cup and cleaning it).

Thus, at the heart of cognition lies the nervous system’s capability to generate,
maintain, and act upon inner states that are, to a degree, independent from current
sensory input. Mechanisms are needed that decouple the representations upon which
cognitive operations are carried out from the immediate sensed world (and from
each other). On the other hand, behavior and cognition still need to be closely linked
to the sensory surfaces, else we would think and act completely aloof. This is the
core assumption of the stance of embodied cognition [25]. Cognition and behavior
are still flexible, in that they can be updated online if relevant new input is detected.
So what is needed is a balance between decoupling and coupling that allows only
certain input to impact on downstream systems, cognition, and action, but which
nonetheless allows these decisions to be changed if appropriate.

DFT effectively implements these demands. Note that the decisive capabilities,
detection, selection, and appropriate stability, are realized in each individual field.
This means that elementary forms of cognition happen at already very low levels
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of computation rather than being dependent on complex architectures. We have
considered some concrete examples for this in the previous section (e.g., in the
context of the saccade model). However, the stability of individual fields also allows
for the construction of modular field architectures, which may implement more
complex cognitive tasks and employ layers farther removed from the immediate
sensory and motor surfaces. We conclude the chapter by considering such an
architecture.

12.5 Modeling Visual Working Memory and Change
Detection with Dynamic Neural Fields

Our considerations are based on a model originally proposed by Johnson and
colleagues [17, 18] that is rooted in a general DFT approach to visual and spatial
cognition [29, 30]. The model addresses the two closely linked cognitive domains
of visual working memory and change detection. Visual working memory stores
recent visual input over durations in the order of seconds and makes this information
available to other processes. Change detection means comparing the contents of
visual working memory to newly incoming visual input. Combining visual working
memory and change detection yields a strategy for detecting changes in visual
scenes despite the frequent interruptions of the visual input stream by saccades and
blinks.

Change detection can be probed experimentally by showing to the participant a
display with several simple visual items, such as colored dots, that differ along at
least one feature dimension (e.g., [22]). After a short delay of normally less than
a second a test display is presented that is either identical to the previous one or
in which one of the items has changed with respect to one feature (e.g., an item
may have changed color). Participants then indicate whether or not they perceive a
change, by responding “different” or “same”.

To perform this task, the items in the first display need to be perceived and
encoded into working memory. The resulting representation must then be shielded
from new input and maintained over the delay. Finally, the contents of visual
working memory must be compared to the test display, which requires integrating
working memory and perception.

As a first step in accomplishing this, a system must be capable of retaining
information in the absence of input. self-stabilized peaks are well-suited for
perception, since they are quite tightly linked to the presence of input, but they decay
when the input is removed for a longer period of time. working memory therefore
requires a different dynamic regime, namely, the self-sustained one. Because DNFs
can operate in only one regime at a time, perception and working memory require
separate fields. The model by Johnson and colleagues thus employs a perceptual
field and a working memory field (Fig. 12.5).
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The different functional roles of these fields arise from their different sources of
excitatory input (dashed gray line and solid arrows in Fig. 12.5) and the different
dynamic regimes in which they operate. The perceptual field receives direct feature
input from the visual scene (taking the form of Gaussians) and operates in a self-
stabilized regime. The working memory field receives its main excitatory input from
the perceptual field (and weak direct visual input) and operates in a self-sustained
regime. The integration of perception and working memory is achieved through a
shared layer of inhibitory interneurons. This layer operates in a purely input driven
regime and receives excitatory input from both the perceptual and the working mem-
ory field. In turn, the inhibitory layer sends back broad (but localized) inhibition to
both other fields (dashed arrows in Fig. 12.5). That is, surround inhibition in both the
perceptual and the working memory field is mediated by the inhibitory interlayer,
as well as mutual inhibition between the perceptual and the working memory field.
All fields are defined over a metrically scaled visual feature dimension.

We first consider how a single feature input (corresponding to, say, a single
colored item) is encoded perceptually, encoded to working memory, maintained
over a delay, and compared to a subsequent input. For this we refer to the simulation
results shown in Fig. 12.6.

In model terms, presenting a visual item amounts to providing localized input to
the perceptual field (and a much weaker version of the same input to the working
memory field). If the input is sufficiently strong, the perceptual field undergoes the
detection instability, leading to a self-stabilized peak (Fig. 12.6, t D 400). This
step corresponds to the perceptual encoding of the input feature value. Once the
peak has established, the perceptual field provides localized input to the working
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Fig. 12.6 Simulation of change detection in the three-layer DNF architecture. (a) Evolution of
field activation over simulation time steps, in response to the pattern of feature input shown in
the topmost plot. (b) Snapshots of the model state at selected time steps. At t D 400 the single
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memory field, leading to a self-sustained working memory peak. This corresponds
to encoding the feature value into working memory. As soon as the external input is
removed, the perceptual peak destabilizes and decays, while the working memory
peak is maintained over the delay in the absence of input (Fig. 12.6, t D 800).

The change detection functionality naturally emerges from this setup. Mediated
by the inhibitory layer, the sustained working memory peak leads to inhibition of the
perceptual field at the field site corresponding to the feature value held in memory.
The resulting activation trough is critical, because it ensures that new input to the
perceptual field reaches threshold only if the test item is sufficiently different from
the value held in memory. The change detection mechanism thus comes into effect
in a completely autonomous manner when new input arrives. If the test item is very
similar to the retained one, the visual input to the perceptual field coincides with the
center of the trough of inhibition (Fig. 12.6, t D 1;200). This makes it unlikely that
the output threshold is reached. Accordingly, the absence of a peak in the perceptual
field and the concurrent presence of a peak in the working memory field at test time
indicate that no change has been detected (“same” response). If, in contrast, the test
item is metrically sufficiently different from the first one, the visual input peak is
somewhat displaced from the center of the trough (Fig. 12.6, t D 1;600). It thus
impacts on a field site where inhibition is less pronounced, so that the output thresh-
old is reached more easily. Therefore, supra-threshold activation in the perceptual
field at test time means that a change has been detected (“different” response).

Note that the same/different decision can be made explicit by introducing two
self-excitatory, mutually inhibitory dynamical nodes, a “same” node and a “differ-
ent” node. The “different” node receives summed activation from the perceptual
field, while the “same” node receives summed activation from the working memory
field. To force a decision at test time, a boost of activation is applied to both
nodes, leading to the selection of one alternative, depending on the ratio of supra-
threshold activation in the perceptual and the working memory field. These nodes
were introduced to enable comparisons of the model performance with behavioral
data [17]. For simplicity we omit this detail in our considerations.

�
Fig. 12.6 (continued) localized input (dashed green line) has led to a self-stabilized peak in the
perceptual field, which projects to both the working memory field and the inhibitory field. Due
to the self-sustaining regime of the working memory field, the peak there is maintained in the
absence of input (t D 800). Through the inhibitory field it creates a trough of inhibition in the
perceptual field. If at test the same or a very similar item is shown .t D 1;200/ the input-driven
hump in the perceptual field coincides with a region of the trough where there is strong inhibition.
This makes it unlikely that the output threshold is reached. If, in contrast, the difference between
the test item and the retained item is sufficiently large .t D 1;600/, the input impacts on a less
strongly inhibited region of the perceptual field so that the threshold is reached more easily. The
projection of the new perceptual peak to the working memory field may lead to the updating of
working memory with an additional peak that is then as well maintained over periods without
input .t D 2;100/. Alternatively, an existing memory peak may be suppressed and replaced if the
new input is relatively close to an existing one (t D 2;600)
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Apart from signaling change, a peak in the perceptual field may have the effect
of updating the contents of working memory. Depending on the metric distance
between the already existing peaks and the new input, this can either mean that a
completely new peak is established (for remote items; Fig. 12.6, t D 1;600), leading
to a stable multi-peak solution (Fig. 12.6, t D 2;100), or that an existing peak
destabilizes and is replaced by the new peak (for close items; Fig. 12.6, t D 2;600).

The functionality we have described so far generalizes to multiple items. When
several different inputs are applied in the encoding phase, a multi-peak solution
arises and persists in the working memory field (Fig. 12.7a, b). Change detection
then works in the same way as for single items. However, with a larger number of
items, interactions between the retained peaks can lead to effects not observed in
the case of a single item. For example, because the level of inhibition increases with
the number of peaks in working memory, there is a capacity limit with respect to
the total number of items that can be retained (about four in this particular model).
This limit can lead to the deletion of existing peaks by new input (“forgetting”),
to incomplete encoding of multi-item displays, or to failure to encode new input.
The all-or-none property of working memory in the model – a stable peak is either
formed or not – is consistent with behavioral data [35].

A counter-intuitive prediction made by the model is that change detection should
be enhanced when two metrically close items are retained in working memory and
a new, slightly different item is presented. This is because inhibition in the model is
not global, but local, and tied to the position of peaks, so that nearby peaks inhibit
each other more strongly than other peaks. Close peaks in working memory are thus
less pronounced than more isolated ones (Fig. 12.7b).

Because the peaks are smaller, they also lead to slightly less inhibition and a
shallower trough in the perceptual field. This makes it more likely that new input
within the area of the trough reaches threshold and generates a “different” response.
Therefore, the same degree of difference between a test item and a retained item
can result in either a “same” or a “different” response, depending on whether the
nearest working memory peak is relatively isolated (Fig. 12.7c) or has other peaks
in its vicinity (Fig. 12.7d). This prediction has been confirmed empirically [17].

Other behavioral evidence that has been successfully captured by the model
includes the selection of inputs for encoding into working memory (e.g., based on
saliency) and the mutual repulsion of retained values along the feature dimension.

To summarize, the model provides a neurally plausible process account for visual
working memory and change detection, captures diverse behavioral data, and has
been a source of new, testable predictions. This example illustrates that, by virtue
of its modularity, DFT is well suited to capture not only elementary aspects of
cognition, but also more complex (or “higher”) cognitive acts.
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Fig. 12.7 Enhancement of change detection in the three-layer architecture due to similar items
being held in working memory. (a) Encoding of three items into working memory, two close ones
and an isolated one. (b) The two close peaks in working memory inhibit each other and are thus
less pronounced than the isolated one. In turn, the trough of inhibition in the perceptual field caused
by the isolated peak is slightly more pronounced than the trough caused by the joint impact of the
two close peaks. (c) If the item shown at test is similar to the isolated peak, the input coincides with
the deeper trough, making an erroneous “same” response more probable. (d) Here the test item is
instead similar to one of the close items. Although the degree of similarity is the same as in (c),
the threshold is reached more easily since the new input falls into a region of the shallower trough,
having to overcome less inhibition

12.6 Conclusions

We have reviewed how neural fields may be viewed as mathematical descriptions
of distributions of population activation. Their dynamics, captured in Dynamic
Field Theory, leads to a set of stable states, sub-threshold solutions, self-stabilized
peaks, self-sustained peaks, and associated instabilities, the detection, selection, and
memory instability. From these, cognitive properties of dynamic neural processes
emerge. By linking neural field dynamics to behavioral signatures of sensory, motor,
and cognitive function, DFT provides an interface between neurally grounded
process models and cognition. The instabilities of DFT provide critical properties of
cognitive processes, most prominently, the capability to both isolate cognitive states
from distractor input or interaction, while at the same time maintaining the capacity
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to link cognitive processes to ongoing sensory and motor processes as well as to
other concurrent cognitive processes.

Much work remains to be done to ground all cognition in neural processing. DFT
has helped make the first steps, emphasizing the embodied nature of cognition. The
frontier now is to move such principles toward higher cognition.
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Chapter 13
A Dynamic Neural Field Approach to Natural
and Efficient Human-Robot Collaboration

Wolfram Erlhagen and Estela Bicho

Abstract A major challenge in modern robotics is the design of autonomous
robots that are able to cooperate with people in their daily tasks in a human-like
way. We address the challenge of natural human-robot interactions by using the
theoretical framework of Dynamic Neural Fields (DNFs) to develop processing
architectures that are based on neuro-cognitive mechanisms supporting human joint
action. By explaining the emergence of self-stabilized activity in neuronal popu-
lations, Dynamic Field Theory provides a systematic way to endow a robot with
crucial cognitive functions such as working memory, prediction and decision mak-
ing. The DNF architecture for joint action is organized as a large scale network of
reciprocally connected neuronal populations that encode in their firing patterns spe-
cific motor behaviors, action goals, contextual cues and shared task knowledge. Ulti-
mately, it implements a context-dependent mapping from observed actions of the
human onto adequate complementary behaviors that takes into account the inferred
goal of the co-actor. We present results of flexible and fluent human-robot coopera-
tion in a task in which the team has to assemble a toy object from its components.

13.1 Introduction

Recent advances in robotics technology make the design of socially interactive
robots that work closely with ordinary people in their day-to-day work a realistic
goal [20]. Research in such human-centered robotics requires to address a wealth
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of new interdisciplinary topics from cognitive psychology, artificial intelligence
and neuroscience that go well beyond traditional mathematical issues of robotics
research for industrial applications [38]. As fundamentally social beings, we are
experts in joint activity in order to realize a common goal. We therefore have
high expectancies about an engaging and pleasant interaction with another agent.
Humans achieve their remarkable fluent organization of joint activity in routine
tasks, such as preparing the dinner table, by continuously monitoring the partner’s
actions, and predicting them effortlessly in terms of their outcomes [40]. Based on
this prediction, an adequate complementary action can be timely selected among
all potential behaviors that the task currently affords. To ensure user acceptance,
a socially interactive robot that is supposed to substitute a human in a cooperative
task should equally contribute to the coordination and synchronization of behaviors
among the co-actors. It is thus crucial to endow the robot with high-level cognitive
functions such as action understanding, decision making and memory.

Given the large variety of disciplines involved in the emerging field of human-
friendly robotics, it is perhaps not surprising that different design approaches
toward more natural human-robot interaction have been proposed. Conceptually,
they may be broadly classified in top-down, symbolic views on human-like (social)
intelligence and more bottom-up, neurodynamics and embodied notions [30]. The
predominant top-down approach is inspired by traditional artificial intelligence (AI)
models that address the complex problem of selecting an adequate complementary
behavior as a sequence of logical operations performed on discrete symbols. The
robotics implementations are thus based on formal logic and formal linguistic sys-
tems [32]. Good examples are architectures inspired by the theoretical framework
of joint intention theory [1, 8, 28]. This framework provides a rigorous logical
treatment of how sub-plans of individual agents committed to a common task can
be meshed into joint activity. A defining feature of the symbolic approach is that
information processing is set up in stages from perception to cognition to action.
A perceptual subsystem first converts sensory information about external events
into inner symbols to represent the state of the world. Next, this information is used
along with representations of current goals, memories of past events and beliefs
about the partner’s intention to decide about the course of action. On this planning
level, actions are formulated as logical operators with preconditions and effects that
change the world in a discrete fashion and instantaneously. The abstract plan is then
transformed into motor representations of the robotics system that are finally used
to generate arm and hand trajectories in order to realize the plan.

The symbolic, disembodied view on how to decide what to do has provided
many impressive examples of intelligent behaviors in artificial agents (for review see
[46]). However, it is now widely recognized by the robotics and cognitive science
communities that the symbolic framework based on serial stages of processing has
notoriously problems to cope with real-time interactions in dynamic environments
[26, 30, 32]. In human-robot interaction tasks, the robot has to reason about a world
that may change at any instance of time due to actions taken by the user. Even if
we consider that the processing in the perceptual and decision modules would allow
to continuously update the robot’s plan in accordance with the user’s intention, the
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extra processing step needed to embody the abstract action plan in the autonomous
robot would challenge the fluent and seemingly effortless coordination of decisions
and actions that characterizes human joint action in familiar tasks.

In order to advance toward a more online view of high-level social cognition,
our group at the University of Minho has developed and tested over the last
couple of years a neurodynamics approach based on the theoretical framework
of Dynamic Neural Fields (DNF) [12]. The DNF modelfor natural human-robot
interaction that we present in this chapter implements known neuro-cognitive
processing mechanisms supporting dynamic social interactions in humans and
other primates [40]. Converging lines of experimental evidence in behavioral and
neuro-cognitive studies suggest that the interaction between sensory, cognitive
and motor processes in the brain is much more interactive and integrated as
previously thought. For instance, neural correlates of decision making seem to be
inconsistent with the notion that a central decision maker completes its operation
before activating the motor structures to perform the action plan [25]. Instead, the
process of action selection may be best understood as a winner-takes-all competition
between multiple neuronal population representations of motor behaviors that the
environment currently affords [7]. The advantage of such a dynamic competition
process for flexible behavior is obvious. Since the flow of sensory information
is continuously used to partially specify several potential actions, the system is
prepared to quickly adjust to a changing world. Different neural pathways carrying
different sources of information demonstrate the tight coupling between visual and
motor systems (for review see [35]). For instance, according to the concept of
object affordances [24], the perception of a graspable object immediately activates
to some extent the neuronal representations of potential motor interactions with that
object. The final decision to execute a certain action, represented by a sufficiently
activated subpopulation, may depend on additional contextual cues and the current
behavioral goal. Very important for social interactions, an impressive body of
experimental evidence from behavioral and neurophysiological studies investigating
action and perception in a social context shows that when we observe other’s actions
corresponding motor representations in our motor system become activated (for
a recent review see [36]). In a cooperative joint action context like transferring
an object to a partner, this automatic action resonance mechanism has been
interpreted as evidence that the likelihood of performing a complementary motor
program is increased, that is, the ‘receiver’ immediately prepares a complementary
grasping behavior that ensures a safe and robust object transfer [33]. For more
complex joint action settings for which the mapping from observed actions onto
adequate complementary behaviors is not as clear, the observer has first to predict
the partner’s ongoing action in terms of the future effects in the environment.
The action resonance mechanism is believed to support also the high-level cognitive
functionality of action understanding and goal inference [36]. The key idea here
is that the observer internally simulates the outcome of perceived actions using
his/her own motor representations that have become associated with representations
of action goals during learning and practice. The notion that motor representations
are crucially involved in a higher-cognitive function like generating expectations
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about the future is clearly inconsistent with serial information processing theories
of cognitive behavior.

The DNF modelof cooperative joint action is organized as a large scale network
of reciprocally connected neuronal populations that encode in their firing patterns
specific motor behaviors, action goals, contextual cues and shared task knowledge
[5, 6]. Although some level of functional modularity exists in the network, it is
important to notice that the formation and maintenance of a behavioral decision is
not represented in the discharge pattern of “motor” neurons alone, but is distributed
among all currently active populations in the network.

The activity in each local population evolves continuously in time under the
influence of external input from connected neuronal pools or the sensory system and
recurrent excitatory and inhibitory interactions within the population. Central for the
design of cognitive agents, the recurrent interactions support the existence of self-
sustained bumps of activation. Persistent population activity allows us for instance to
implement a working memory function in the robot to cope with temporally missing
sensory information, or to simulate future environmental inputs that may inform the
current decision process about a goal-directed behavior [12].

As a specific mathematical formulation of a DNF, we adopt Amari’s model for
pattern formation in neural populations since it allows analytical treatment [2].
This is an important advantage when trying to design a complex robot control
architecture for real-world experiments.

The chapter is organized as follows: first, we give an overview about the
neuro-cognitive foundations of the DNF model and describe its mathematical imple-
mentation. We then illustrate the coordination of actions and decisions between
human user and robot organized by the network dynamics in a joint action task in
which the two teammates have to jointly assemble a toy object from its components.

13.2 Dynamic Neural Field Model of Joint Action

As a working definition, joint action can be regarded as any form of social interac-
tion whereby two or more individuals coordinate their actions in space and time to
bring about a change in the environment. Crucial building blocks for successful
joint action coordination are the capacities to recognize actions performed by
others, and to integrate predicted effects of own and others’ behaviors in the action
selection process [40]. What are the neural bases of efficient social interactions?
The discovery of the so-called mirror neuron system first in monkey and later in
human gives strong support for the hypothesis that observing actions performed by
another individual elicit a motor activation in the brain of the observer similar to
that which occurs when the observer plans his/her own goal-directed action (for a
recent review see [36]). This automatic action resonance mechanism has given rise
to the hypothesis that covert motor simulations support action understanding in a
social context without the costs that are associated with conscious mental processes
or explicit communication.
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Mirror neurons in premotor cortex of monkeys (area F5) become active both
when the monkey performs a specific motor act like grasping an object and when it
observes another individual making a similar action. Importantly, for most mirror
neurons the congruency between the observed and the executed motor act is
relatively broad. This suggests that their discharge is not related to the fine details
of the movements but codes the goal of the observed or executed motor act.

Object manipulation tasks typically involve a series of action phases like
reaching, grasping, lifting, holding and placing that are bounded by specific sensory
events defining subgoals of the task [18]. Distinct populations of mirror neurons
are assumed to represent the functional goals of these successive action phases.
Mirror neurons have been also described in areas PFG and PF of the inferior parietal
lobe (IPL). These areas are anatomically connected with premotor area F5 and with
higher visual areas in the superior temporal sulcus (STS). STS neurons discharge
during hand-object interactions similar to those encoded by F5 neurons. The
difference seems to be that STS neurons do not discharge during overt movements.
STS neurons thus might provide mirror neurons with a visual description of goal-
directed motor acts.

The hypothesis that the discharge of neuronal populations in the STS-PFG/
PF-F5 circuit plays a key role in action understanding and goal inference has
obtained strong support from a series of neurophysiological experiments. It has
been shown for instance that grasping mirror neurons are activated also when the
critical part of the observed action, the hand-object interaction, is hidden behind a
screen and can thus only be inferred from additional contextual information (e.g.,
the presence of a graspable object behind the occluding surface [45]). In a recent
study, Fogassi and colleagues [19] reported that IPL mirror neurons, in addition
to recognize the goal of an observed motor act, discriminate identical grasping
behaviors according to the final goal of the action sequence in which the motor act
is embedded (e.g., grasping for eating versus grasping for placing in a container).
They further argued that because the discriminated motor act is part of a specific
chain of motor primitives associated with a specific goal representation most likely
in prefrontal cortex (PFC), the monkey could predict at the time of the grasping
the ultimate goal of the observed action and, thus read the motor intention of the
acting individual. Of course, the discrimination of the grasping behavior is only
possible because of an additional contextual cue (e.g., the presence of a container
in the scene). This suggests that the simulation process in IPL mirror neurons is
not exclusively shaped by input from STS but also depends on input from goal and
object representations.

Figure 13.1 sketches the multi-layered dynamic field model of joint action
consisting of various neural populations that are associated through hand-coded
synaptic links (not all are shown to avoid crowding). As a central part, it integrates
a previous DNF model of action understanding and goal-directed imitation inspired
by the mirror system [15]. Ultimately, the distributed network implements a flexible
mapping between observed and executed actions that takes into account the inferred
goal of the co-actor, contextual cues and shared task knowledge.
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Fig. 13.1 Joint action model consisting of a distributed network of interconnected neural popula-
tions. It implements a flexible mapping from observed actions (layer AOL) onto complementary
actions (layer AEL) taking into account the inferred action goal of the partner (layer IL), contextual
cues (layer OML) and shared task knowledge (layer CSGL). The goal inference capacity is based
on motor simulation (layer ASL)

An observed hand movement that is recognized by the vision system as a partic-
ular movement primitive (e.g. a whole hand-grasping-from above) is represented by
suprathreshold activity of a specific neuronal population in the action observation
layer (AOL). Input from AOL to corresponding populations in the action simulation
layer (ASL) may activate together with input from the object memory layer (OML)
and the common sub-goals layer (CSGL) specific chains of movement primitives
that are linked to neuronal representation of the ultimate action goal in the intention
layer (IL) [16]. Suprathreshold population activity in IL will drive one or more
associated populations in the action execution layer (AEL) that represent possible
complementary motor behaviors. Similar to ASL, the motor behaviors are organized
in chains of motor primitives like reaching-grasping-placing. There are different
ways how to represent the temporal order and the timing of motor sequences in the
dynamic field framework [17,37]. To simplify the present robotics experiments with
its emphasis on competitive action selection, we have not modeled these chains as a
sequential activation of individual neural populations, but represent the entire motor
behavior by a single pool of neurons.

The final decision in AEL depends not only on the input from IL but also on input
from OML and CSGL. OML contains neuronal population representations of the
various objects in the scene. It is organized in two layers that discriminate whether
a specific object is within the user’s or within the robot’s reachable space. Input
from OML automatically pre-activates neural representations of associated motor
behaviors in AEL. Specifically for the joint assembly task, possible object-directed
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behaviors include the transfer of the object to the co-actor or a direct placement
of the object as part of the assembly work. In addition, communicative gestures
like for instance pointing to the specific component may be used in joint activity to
attract the co-actor’s attention [4]. Efficient task performance requires to carry out
the steps in the task in the correct order, without repeating or omitting actions in the
sequence. This behavioral planning heavily depends on the predicted consequences
of intended actions (i.e. a change in the state of the target object [43]). The common
subgoals layer CSGL contains neuronal representation of desired end results of
individual assembly steps that can be realized by associated motor representations
in AEL and that are recognized by the vision system. Neurophysiological evidence
suggests that in sequential tasks, distinct subpopulations in PFC represent already
achieved subgoals and subgoals that have still to be accomplished [22]. In line
with this finding, CSGL contains two connected DNF layers with population
representations of past and future events. Input from the vision system about
the achievement of a specific subgoal activates the corresponding population in
the past layer, which in turn inhibits the corresponding goal representation and
simultaneously excites one or more populations in the future layer. They represent
in their activity patterns predicted end result of subsequent assembly steps that the
current state of the assembly work affords. Important for the fluency of the team
behavior, the updating of subgoals in CGSL may not only be triggered by direct
input from the vision system but also by input from IL representing the inferred
motor intention of the co-actor. This allows the observer to prepare future actions in
response to anticipated rather than observed action outcomes [5, 6].

13.3 Model Details

In their seminal work, Wilson and Cowan [48] and Amari [2] introduced Dynamic
Neural Fieldsas rate models of cortical population dynamics that abstract from the
biophysical details of neural firing. The architecture of this model class reflects the
hypothesis that strong excitatory and inhibitory interactions within local populations
that receive synaptic input from multiple connected neuronal pools form a basic
mechanism of cortical information processing. As shown in numerous simulation
studies, dynamic neural field models are powerful enough to reproduce neural
population dynamics observed in neurophysiological experiments (e.g., [14]), and to
understand the basic mechanisms underling a large variety of experimental findings
on the perceptual and behavioral level (for review see [39]).

For the design of the robot control architecture for natural human-robot inter-
actions, we adopt the model of a single layer of a homogeneous neural network
consisting of excitatory and inhibitory neurons proposed by Amari [2]. This model
allows for a rigorous analysis of the existence and stability of characteristics
solutions such as local excitations or “bumps”. In the following, we give a brief
overview about the techniques developed by Amari, and explain the adaptations
we have made to cope with the specific needs of the robotics implementations.
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The dynamics of each population in the distributed network shown in Fig. 13.1 is
governed by the equation:

�
@u.x; t/

@t
D �u.x; t/C S.x; t/

C
Z 1

1
w.x � x0/f .u.x0; t //dx0 � h (13.1)

where u.x; t/ is the average activity of neuron x at time t and parameter � > 0

defines the time scale of the field dynamics. The globally inhibitory input h > 0

determines the resting state to which the activity of neuron x relaxes without
external input S.x; t/ � 0. The integral term in Eq. 13.1 describes the interactions
within the populations which are chosen of lateral-inhibition type:

w.x/ D A exp.�x2=2�2/ � winhib (13.2)

where A > 0 and � > 0 describe the amplitude and the standard deviation of a
Gaussian, respectively. For simplicity, the long-range inhibitory interactions are
assumed to be constant, winhib > 0, implementing a competition between subpopu-
lations that are sufficiently separated in space. Note that distinct neural populations
encoding entire temporal behaviors like grasping, holding or placing seem to be
spatially segregated in the mirror neuron areas [35]. Interpreting the metric of neural
interactions in anatomical space like in Amari’s original model is thus possible.
However, the metric distance might be also defined in an abstract psychological
space [41]. In this case, functionally distinct behaviors associated with specific goals
would be represented by spatially separate, competing pools of neurons whereas
similar motor behaviors associated with the same goal (e.g., grasping with different
grip types) would be represented by partially overlapping populations.

Amari assumes for his analysis of pattern formation that the output function
f .u/,which gives the firing rate of a neuron with input u, is the Heaviside step
function, i.e., f .u/ D 0 for u � 0 and f .u/ D 1 otherwise. To model a more
gradually increasing impact of the recurrent interactions on the population dynamics
we apply a smooth and differentiable output function of sigmoid shape with slope
ˇ and threshold u0:

f .u/ D 1

1C exp .�ˇ.u � u0//
: (13.3)

It has been shown by Kishimoto and Amari [29] that many of the results concerning
the existence and stability of localized activity patterns obtained with a step output
function take over to the more general case of the sigmoid.

The model parameters are chosen to guarantee that the population dynamics
is bi-stable, that is, the attractor state of a stable “bump” coexists with a stable
homogeneous resting state. A sufficiently strong transient input S.x; t/ may drive
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the neural population beyond threshold, f .u/ > u0. The resting state loses stability
and a localized activation pattern evolves. In the various layers of the network
model, these bumps represent memorized information about object location, the
inferred action goal of the co-actor or a decision for a specific complementary
behavior. Weaker external input signals from connected populations lead to a
subthreshold activation pattern for which the contribution of recurrent interactions
is negligible. It is important to note, however, that this preshaping by weak input
may nevertheless influence the robot’s behavior. Since the level of pre-activation
affects the rate at which a suprathreshold activation pattern rises [13], a pre-activated
population has a computational advantage over a population at resting level and thus
has a higher probability to influence the decision process in AEL.

For the case of a step output function, the conditions for the existence and
stability of a single bump of length a in the presence of a stationary external input
S.x/ can be easily derived following Amari’s approach (see Chap. 3 for details). For
the robotics experiments we are specifically interested in the existence of localized
excitation in response to symmetric, bell-shaped input. Given the definition

W.x/ D
Z x

0

w.x0/dx0 (13.4)

the length a of the bump satisfies in this case

S.x0 C a=2/ D h �W.a/ (13.5)

where x0 denotes the position of the maximum S.x/. If h > 0 is chosen such that

Wm D max
x>0

W.x/ > h (13.6)

holds, there exist two solutions Oa and a, with Oa < a, but only the larger excitation
pattern is stable (for details see [2]).

We assume that the time dependent input from a connected population uj to
a target population ui has a separable form Si .x; t/ D S.x/gj .t/ where S.x/ is
modeled as a Gaussian function and gj .t/ D 1 if f .uj / > u0 and gj .t/ D 0

otherwise. In other words, a stationary input is applied during the period of
suprathreshold activity in uj . Numerical studies show that the evolving localized
activation in uj could have been directly used as input pattern as well. However,
assuming a constant input shape allows us to closely follow Amari’s analysis. The
total input from all connected populations and external sources (e.g., vision system,
also modeled as Gaussian signal) to ui is then given by

Si.x; t/ D k
X

j

gj.t/Aj exp.�.x � xi/
2=2�2/ (13.7)
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where k > 0 is a scale factor to guarantee that the total external input remains small
compared with the recurrent interactions within the local population.

To model different cognitive functions like working memory or decision making
in the various layers of the model, we specifically adapt the basic field equation
given by Eq. 13.1. To implement in OML, AOL and CSGL a working memory
function, it is important that a bump remains after cessation of the transient stimulus
that has initially driven its evolution. The condition Wm > h > 0 guarantees the
existence of a stable bump for S.x/ D 0 which, however, has a slightly smaller
width compared to the bump in the presence of input. We call this solution self-
sustained to distinguish it from a suprathreshold activity pattern that becomes
self-stabilized only because of the presence of external input. In this case, equation
S.x0Ca=2/ D h�W.a/ has a solution which represents a stable localized activation
but h > Wm holds, that is, the field dynamics is in the mono-stable regime and
suprathreshold activity will decay to rest state without external support.

To represent and memorize simultaneously multiple items, a multi-bump solution
is required. An interaction kernel with long-range, constant inhibition (Eq. 13.2)
may sustain multiple localized activity patterns without external inputs with addi-
tional stabilization mechanisms [12,44]. For simplicity, we have used for the current
robotics experiments kernels with limited spatial range to exclude mutual compe-
tition between multiple memories. An alternative solution that we are currently
exploring for the robotics work is to use coupling functions with multiple zero-
crossings, modeling excitatory interactions also at larger distances [17, 31].

The memory is continuously updated in accordance with input from the vision
system indicating a change in the external world (e.g., a new location of a specific
object). To implement the “forgetting” process, we use a simple first-order dynamics
with an appropriate time scale for the (local) adaptation of the inhibitory input h to
destabilize an existing bump [3]:

dh

dt
D �rh;minch.h � hmin/ � rh;max.1 � ch/.h � hmax/ (13.8)

where jhmaxj < Wm and jhminj > Wm are the two limit values for h that define the bi-
stable and the mono-stable regime, respectively. The rate of change for destabilizing
a memory function in case of an existing bump (ch D 1) or restoring in the absence
of a bump (ch D 0) is given by the parameters rh;min > 0 and rh;max > 0.

To meet the real-time constraints of action selection and goal inference in a
continuously changing environment, we apply in ASL, AEL and in the CSGL
layer representing future subtaks a field dynamics with self-stabilized rather than
self-sustained activation patterns. A decision to select a certain motor behavior
that takes into account the most likely goal of the co-actor’s current action, is
temporally stabilized by sufficient strong support of external and internal evidence,
but will automatically lose stability if this evidence changes in favor of a competing
behavior.
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13.4 Setup of Human-Robot Experiments

To test the dynamic neural field model of joint action in human-robot experiments,
we have adopted a joint assembly paradigm in which the team has to construct a toy
‘vehicle’ from components that are initially distributed on a table (Fig. 13.2).

The toy object consists of a round platform with an axle on which two wheels
have to be attached and fixed with a nut. Subsequently, four columns that differ in
their color have to be plugged into corresponding holes in the platform. The placing
of another round object on top of the columns finishes the task. The components
were designed to limit the workload for the vision and the motor system of the
robot.

It is assumed that each teammate is responsible to assemble one side of the
toy. Since the working areas of the human and the robot do not overlap, the
spatial distribution of components on the table obliges the team to coordinate
and synchronize handing-over sequences. In addition, some assembly steps require
that one co-worker helps the other by fixating a part in a certain position. It
is further assumed that both teammates know the construction plan and keep
track of the subtasks which have been already completed by the team. The prior
knowledge about the sequential execution of the assembly work is represented in the
connectivity between the two layers of CSGL encoding already achieved and still
to be accomplished assembly steps. Since the sequential order of tasks execution is
not unique, at each stage of the construction the execution of several subtasks may
be simultaneously possible.

The humanoid robot ARoS used in the experiments has been built in our lab. It
consists of a stationary torus on which a 7 Degrees of Freedom (DOFs) AMTEC arm
(Schunk GmbH) with a 3-fingers dexterous gripper (Barrett Technology Inc.) and a
stereo camera head are mounted. A speech synthesizer (Microsoft Speech SDK 5.1)
allows the robot to communicate the result of its goal inference and decision making
processes to the human user [4].

The information about object class, position and pose is provided by the vision
system. The object recognition combines color-based segmentation with template
matching derived from earlier learning examples [47]. The same technique is also
used for the classification of object-directed, static hand postures such as grasping
and communicative gestures such as pointing.

The selection of a specific complementary behavior in AEL has to be translated
into a collision-free arm and hand trajectory. As an important constraint for efficient
joint action coordination, the robotics motion should be perceived by the user
as smooth and goal-directed To achieve realistic temporal motor behaviors like
reaching, gasping and manipulating objects we apply a global planning technique in
posture space. It is formalized as a nonlinear optimization problem and allows us to
integrate constraints obtained from human reaching and grasping movements such
as for instance bell-shaped velocity profiles of the joints (for details see [10]).
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Fig. 13.2 Joint action
scenario: the human-robot
team has to assemble a ‘toy
vehicle’ from components
that are initially distributed
on a table

13.5 Results

In the following we illustrate the coordination of decisions and actions between
the human and the robot in the joint assembly task by presenting video snapshots
of the interactions and the associated neuronal population representations in the
model network. In the examples shown, we focus for simplicity on the initial
phase of the construction to explain from the perspective of the robot the impact
of action observation on action selection in varying context.1 As summarized in
Table 13.1, there are 9 possible goal-directed sequences and communicative gestures
that distinct populations in AEL and ASL represent.

At any time of the human-robot interaction only a few of these action alterna-
tives are simultaneously possible, that is, are supported by input from connected
populations. Figure 13.3 illustrates the competition between action alternatives in
AEL and the decisions linked to overt behavior of the robot.2 It is important to
notice, however, that the competition process in ASL and AEL also works for more
complex scenarios with a larger set of possible complementary behaviors (e.g., a
household scenario [34], full construction of the ‘toy vehicle’ [6]). The number
of competing action representations only affects the time it takes to stabilize a
suprathreshold activation pattern representing a decision [13].

1But see http://www.youtube.com/watch?v=A0qemfXnWiE for a video with the complete con-
struction task.
2Video of the human-robot interactions depicted in Fig. 13.3 can be found in http://dei-s1.dei.
uminho.pt/pessoas/estela/Videos/JAST/Video_Fig4_Aros_Human_Toy_Vehicle.mpg.

http://www.youtube.com/watch?v=A0qemfXnWiE
http://dei-s1.dei.uminho.pt/pessoas/estela/Videos/JAST/Video_Fig4_Aros_Human_Toy_Vehicle.mpg
http://dei-s1.dei.uminho.pt/pessoas/estela/Videos/JAST/Video_Fig4_Aros_Human_Toy_Vehicle.mpg
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Table 13.1 Goal-direct sequences and communicative gestures

Action Sequence of motor primitives Short description

A1 reach wheel ! grasp ! attach attach wheel
A2 reach wheel ! grasp ! handover give wheel
A3 reach hand ! grasp wheel ! attach receive wheel to attach
A4 reach nut ! grasp ! attach attach nut
A5 reach nut ! grasp ! handover give nut
A6 reach hand ! grasp nut ! attach receive nut to attach
A7 hold out hand request piece
A8 point to wheel point to wheel
A9 point to nut point to nut

c

b

aFig. 13.3 Sequence of
decisions in AEL and
corresponding robot
behavior: (a) Temporal
evolution of total input to
AEL. (b) Temporal evolution
of field activity showing the
competition process and the
sequence of decisions ‘give
wheel’, ‘insert wheel’,
‘point to nut’ and ‘insert nut’.
(c) The four snapshots
illustrate corresponding
events of the human-robot
interactions
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13.5.1 Selection Based on an Anticipatory Model of Action
Observation and Shared Task Knowledge

A cornerstone of fluent human social interactions is the ability to predict the
outcomes of others’ action sequences. It allows individuals to prepare actions in
responses to events in the environment that will occur only a considerable time
ahead. For a robot that is supposed to assist a human user in a shared task, a goal
inference capacity should be used to select an action that best serves the user’s
future needs. But even if the human co-worker hesitates and does not show any overt
behavior, a fluent team performance requires that the robot is able to take initiative
and to select an action in accordance with the shared task knowledge.

These cognitive capacities are tested in the experiment depicted in Fig. 13.4
(video snapshots) and Fig. 13.5 (field activities). The experiment starts by placing
the platform on the table. The vision input updates the task representation in CSGL
and the activity of two populations representing the possible subgoals of attaching
the wheels become suprathreshold. Initially, the two wheels are located in the
working area of the human while the two nuts are located in the workspace of the
robot. As shown in snapshots S1–S2 (Fig. 13.4), the human reaches and grasps a
wheel. At the moment of the grasping, ARoS anticipates that the co-actor’s motor
intention is to mount the wheel on his side. It immediately decides to reach for a nut
to hold it out for the human since according to the assembly plan it is the component
that he will need next.

The capacity to infer the goal of the user at the time of grasping is possible
because how the partner grasps an object conveys information about what he intends
do with it. The robot has sequences of motor primitives in its motor repertoire that
associate the type of grasping with specific final goals. A grasping from above is
used to attach a wheel to the axle whereas using a side grip is the most comfortable
and secure way to hand the wheel over to the co-actor. The observation of an above
grip (represented in AOL) together with information about the currently active
subgoal (attach wheel on the user’s side in CSGL) trigger an activation peak in ASL
that represents the simulation of the corresponding ‘reaching-grasping-inserting’
chain (see panel a in Fig. 13.5, time interval T0–T1), which automatically activates
the underlying goal, ‘insert wheel’, in the intention layer (see panel b in Fig. 13.5,
time interval T0–T1; see also snapshot S1 in Fig. 13.4). Whenever the activation
pattern in IL rises above threshold it initiates a dynamic updating process in the
second layer of CSGL, which represents the next possible subgoal(s) for the team
(see panel c in Fig. 13.5; see also snapshot S2 in Fig. 13.4, time interval T0–T1).
The shared task representation allows the robot to select a complementary action
that serves the user’s future goal of fixing the wheel with a nut, i.e. the evolving
activation pattern in AEL (panel d in Fig. 13.5, time interval T0–T1) reflects the
decision to ‘give a nut’ to the human.

Since the robot has no wheel in its working area, an alternative decision would
be to request a wheel from the user to attach it on its side of the platform. The
robot’s choice to first serve the human is the result of slight differences in input
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Fig. 13.4 Video snapshots that illustrate the capacity of the robot to infer goals, take initiative and
anticipate the user’s future needs

strength from populations in CSGL to associated action representations in AEL.
These differences favor the execution of the user’s subtasks over the subtasks that
are under the control of the robot.

However, as illustrated in snapshot S3 (Fig. 13.4), in this experiment the human
does not attach the wheel. Instead he places the wheel back on the table, then
hesitates and does not show any object-directed action. As a consequence, no
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Fig. 13.5 Field activities in layers ASL, IL, CSGL and AEL for the experiment in Fig. 13.4.
(a) Temporal evolution of input to ASL (top) and field activity in ASL (bottom). (b) Temporal
evolution of field activity in IL. (c) Updating of CSGL layer representing future subgoals based on
the inferred motor intention of the user (in IL). (d) Temporal evolution of input to AEL (top) and
of activity in AEL (bottom)

suprathreshold activation exists at that time in ASL (see panel a, Fig. 13.5, time
interval T1–T2) and activity below threshold in IL indicates that the robot has
currently not attributed any action goal to the co-actor (see panel b, Fig. 13.5, time
interval T1–T2). The robot now takes initiative and decides to request a wheel to
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mount it on its side of the platform (snapshot S4, Fig. 13.4). This change in decision
is possible because the population representing the previously selected (but not yet
executed) behavior to transfer a nut is not supported anymore by input from IL. On
the other hand, information about currently possible subgoals and the location of
parts in the two working areas create sufficiently strong input to AEL to trigger a
self-stabilized activation of the population representing the ‘request-wheel’ gesture
(panel d, Fig. 13.5, time interval T1–T2).

Subsequently, the human grasps the wheel with a side grip (snapshot S5,
Fig. 13.4). This information coded in AOL (not shown) together with information
about currently active subgoals trigger a bump in ASL that represents the simulation
of the corresponding ‘reach-grasp-handover’ chain (panel a, Fig. 13.5, time interval
T2–T3), which in turn automatically activates the underlying goal representation
‘give wheel’ in IL (panel b in Fig. 13.5, time interval T2–T3). The evolving
suprathreshold activation in AEL (panel d, Fig. 13.5, time interval T2–T3) shows
the robot’s decision to receive the wheel and attach it (see also snapshots S6–S7
in Fig. 13.4). When the robot has attached the wheel, the vision input updates the
task representations in CSGL and a new bump encoding the subsequent subgoal
‘insert nut on robot’s side’ evolves (panel c, Fig. 13.5, time interval time T2–T3).
The second possible subgoal ‘insert wheel on user’s side’ remains active.

Next, the user grasps again a wheel from above, ARoS predicts as before that
the user will attach the wheel on his side (panel b in Fig. 13.5, time interval T3–T4)
and decides to hand over a nut to fix the wheel (snapshots S8–S9 in Fig. 13.4; see
panel d in Fig. 13.5, time interval T3–T4). Note that an alternative decision in AEL
could be to ‘grasp and attach a nut on the robot’s side’. The input from OML (not
shown) indicating that the two nuts are located in the workspace of the robot together
with the input from CSGL support the two action alternatives in AEL. As explained
above, the decision process appears to be biased toward serving the human first due
to the difference in input strengths from suprathreshold population activity in CSGL.
As can be seen in the snapshots S9–S11 (Fig. 13.4), the user attaches the wheel, and
subsequently grasps the nut from the robot’s hand to plug it on the axle. As the
vision system detects the change in the target object, the representations of already
achieved subgoals in the memory layer of CSGL are updated accordingly and the
subgoal ‘insert nut on robot’s side’ becomes active (not shown). As a consequence,
a bump in AEL evolves that represents the decision of the robot to grasp and attach
a nut on its side of the platform (see panel d in Fig. 13.5, time interval T4–T5). The
overt robot behavior is depicted in snapshots S12–S14 (Fig. 13.4).

13.5.2 Understanding Partially Occluded Actions

In the previous example, we have seen that the robot could infer through motor
simulation the co-actor’s motor intention from the way the object is grasped. But
what happens when the robot cannot directly observe the hand-object interaction?
In natural environments with multiple objects and occluding surfaces this is a
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Fig. 13.6 Snapshots of a video showing action understanding of partially occluded actions.
Snapshot S1 shows the view of the vision system of the robot

common scenario. The capacity to discern the user’s motor intention and to select an
appropriate complementary behavior should of course not be disrupted by missing
information about the grip type used. The firing of mirror neurons in similar
occluder paradigms suggests that working memory about objects in the scene and
shared task information about what the user should do in a specific situation may
sustain the motor simulation process. This is illustrated in the following interaction
scenario in which only the reaching part of the user’s action sequence can be
observed (see Fig. 13.6).

In this experiment, one wheel and the two nuts are located within the working
area of the robot while the second wheel is located in the user’s workspace. Initially
all objects are visible for the robot and their locations can thus be memorized in
OML. Then a box is introduced into the scene. The robot sees the user’s hand
disappearing behind the occluding surface but remembers that there is a wheel
behind it. Figure 13.73 illustrates the goal inference mechanism in this situation.

The corresponding population in AOL (not shown) codes only the reaching
behavior. The currently possible subgoals represented in CSGL are ‘insert wheel

3For the video see http://www.youtube.com/watch?v=7t5DLgH4DeQ.

http://www.youtube.com/watch?v=7t5DLgH4DeQ
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Fig. 13.7 Field activities for the experiment in Fig. 13.6. (a) Temporal evolution of activity
in OML. (b) Temporal evolution of CSGL activity representing currently possible subgoals.
(c) Temporal evolution of input to ASL (top) and of activity in ASL (bottom)

on user’s side’ and ‘insert wheel on robot’s side’ (panel b in Fig. 13.7). The inputs
from AOL and CSGL to ASL thus pre-activate the representations of two competing
action chains associated with two possible motor intentions. The additional input
necessary for goal inference comes from the information about the memorized
location of the wheels in the two workspaces represented in OML (see panel a in
Fig. 13.7). These inputs trigger the evolution of a self-stabilized activation peak in
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Fig. 13.8 Field activities in IL, CSGL and AEL for the experiment in Fig. 13.6. (a) Temporal
evolution of activity in IL. (b) Updating of future subgoals for the user in CSGL based on input
from IL. (c) Temporal evolution of input to AEL (top) and of activity in AEL (bottom)

ASL representing the action sequence ‘reach wheel-grasp-insert’ (see panel c in
Fig. 13.7; see also snapshot S2 in Fig. 13.6). This suprathreshold activation in turn
induces the evolution of a bump in IL representing the inferred goal of the human
to insert the wheel (see panel a in Fig. 13.8). Input from IL triggers a dynamic
updating process in the second layer of the CSGL, representing the next possible
subgoal(s) for the user (see panel b in Fig. 13.8). This allows the robot, as explained
in the previous example, to select a complementary action that serves the user’s
future needs. As can be seen when comparing the pattern of localized activation that
evolves in AEL, the robot decides to serve the human by grasping a nut for handing
it over (see panel c in Fig. 13.8 and snapshots S3–S5 in Fig. 13.6).

Note that the simplification for the current robotics work to represent an entire
action sequence like reaching-grasping-attaching in a single population does not
affect the mechanisms supporting the simulation of partially occlude actions in ASL.
A chain of coupled populations of mirror neurons representing individual motor
acts [19] may become sequentially activated above threshold by assuming that all
individual population of the chain are pre-activated by input from OML and CSGL,
and the initial “reaching” population gets additional input from the corresponding
neuronal pool in the action observation layer [16].
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13.6 Discussion

This work showed that Dynamic Neural Fields provide a powerful theoretical
framework for designing autonomous robots able to naturally interact with humans
in challenging real-word environments. Flexible and intelligent robot behavior in a
social context cannot be purely explained by a stimulus-reaction paradigm in which
the system merely maps in a pre-determined manner current environmental inputs
onto overt behavior. Dynamic neural fields explain the emergence of persistent
neural activation patterns that allow a cognitive agent to initiate and organize
behavior informed by past sensory experience, anticipated future environmental
inputs and distal behavioral goals. The DNF architecture for joint action reflects the
notion that cognitive representations, that is, all items of memory and knowledge,
consist of distributed, interactive, and overlapping networks of cortical populations
([21]). Network neurons showing suprathreshold activity are participating in the
selection of actions and their associated consequences. Since the decision-making
normally involves multiple, distributed representations of potential actions that
compete for expression in overt performance, the robot’s goal-directed behavior is
continuously updated for the current environmental context. Important for decision
making in a collaborative setting, inferring others’ goals from their behavior is
realized by internal motor simulation based on the activation of the same joint
representations of actions and their environmental effects (“mirror mechanism”,
[36]). Through this automatic motor resonance process, the observer becomes
aligned with the co-actor in terms of actions and goals. This alignment allows the
robot to adjust its behavior without explicit communication to those of the human
co-actor in space and time (for an integration of verbal communication in the DNF
architecture see [4]).

The implementation of aspects of real-time social cognition in a robot based on
continuously changing patterns of neuronal activity in a distributed, interactive net-
work strongly contrasts with traditional AI approaches. They realize the underlying
cognitive processes as the manipulation of discrete symbols that are qualitatively
distinct and entirely separated from sensory and motor information.We do not
deny that the sequence of decisions shown in our robotics experiments could be
implemented by symbolic planning as well. In fact, similar joint assembly tasks
have been used in the past to test AI-style control architectures for human-robot
interactions [1, 28, 42]. Typically, these architectures include a dedicated module
that organize the high-level task of intention coordination using rule-based logic.
However, the additional planning step which is needed to link the representation
of every high-level decision to the level of action preparation for the robot’s
actuators greatly reduces the efficiency of those representations. This makes it hard
or even impossible to achieve the impressive flexibility and fluency of human team
performance.

The functional neural field architecture shares many features with neural network
models that also take the known connectivity and functional role of different
brain areas into account to explain cognitive behavior. For instance, Eliasmith and



362 W. Erlhagen and E. Bicho

colleagues [11] have recently tested a large-scale network of populations of spiking
neurons in various tasks ranging from pattern recognition and completion to basic
semantic reasoning. The network is presented with sequences of simple visual
characters and controls a simulated robot arm drawing these characters. Like in the
DNF model of joint action, task and context information is able to autonomously
change the information flow between subsystems of the brain-inspired network
architecture to generate goal-directed behavior. However, the central role of stable
attractor states of the population dynamics for higher level cognition (e.g., internal
simulation, decision making, working memory) postulated and analyzed by the
dynamic neural field approach (see also the discussion in Chap. 12) is much
less emphasized. Different to our current robotics implementations, the large-
scale neural network performs the compression operations from higher-dimensional
input spaces to lower-dimensional functional spaces that we assume for the DNF
representations. We are currently testing learning algorithms that may explain for
instance how neural populations in layers AOL and IL representing specific grasping
categories develop from observing the trajectories of different grasping behaviors.

In the experiments reported here, the robot-human team executed the individual
assembly steps without errors and in the correct temporal order. It is important
to keep in mind, however, that decisions based on noisy or incomplete sensory
information and anticipated environmental inputs may fail. It is thus no surprise
that execution and prediction errors occur with some probability in complex real-
world scenarios such as the joint assembly task. To work efficiently as a team,
it is important that these errors are detected and compensated by one or both
team members before success is compromised. Neurophysiological and behavioral
findings suggest that similar neural mechanisms are involved in monitoring one’s
own and other’s task performance [40] We have described in detail elsewhere
how the basic DNF model of joint action coordination can be extended to include
also an action monitoring function [6]. The key idea is that specific populations
integrate activity from connected neural pools or external sensory signals that carry
the conflicting information. For instance, the user might want to transfer a nut to
the robot but a nut has been already attached at the robot’s construction side. To
detect the conflict between the inferred intention of the user and the state of the
construction it is sufficient to postulate that input from IL and CSGL may drive the
target population beyond threshold. This suprathreshold activity may then produce
(inhibitory) biasing effects for the competition between action representations in
AEL. In the example, the prepotent complementary behavior of receiving the nut
has to be suppressed to favor a correct response like a communicative pointing at
the attached object. As integral part of the distributed network, the action monitoring
thus provides just another input to the dynamic action selection process.

The applications in the domain of cognitive robotics provide new challenges
for the theoretical analysis of dynamic neural fields. Most current mathematical
studies are exclusively concerned with the existence and stability of characteristic
patterns like bumps or traveling waves [9]. They do not address the spatio-temporal
properties that external inputs must satisfy to generate those patterns when applied
to a field at rest or in a pre-activated state. For instance, multi-bump solutions that
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we and others apply as a memory model for multiple items or sequential events [17]
are known to exist when a coupling function with oscillatory decay is used [31].
From an application point of view, analyzing the spatial properties of the inputs
(e.g., width, relative distance etc.) that may generate multi-bump solutions when
they are presented simultaneously or in sequential order is of highest importance
(Ferreira, Erlhagen and Bicho, in preparation).

The present robotics implementations with hand-coded synaptic links between
connected populations are based on the seminal analytical studies of Amari and
co-workers on the formation of patterns with stationary localized stimuli. For the
robotics domain, it would be highly desirable to combine the field dynamics with
a learning dynamics that would allow us to establish the inter-field connections in
the distributed network during training and practice. According to the principle first
enunciated by Hebb [27], memory is formed by associative synaptic modulations
of connections between neuronal assemblies simultaneously excited. Important
for cognitive control, persistent population activity allows the learning system
to establish associations between transient events separated in time. In previous
simulation studies, we have shown for instance that a rate-based Hebbian learning
rule (for review of mathematical formulations see [23]) can be applied to establish
the goal-directed mappings for action simulation in the mirror circuit [15, 16].
A more rigorous understanding of the field dynamics with the weighted, self-
stabilized activity from connected populations as non-stationary input would be an
important contribution for the design of an autonomous learning system.

Dynamic approaches to robotics and cognition have been often criticized to
address mainly lower-level cognitive phenomena like sensory-motor coordination,
path planning or perception and not the high-level cognitive capacities which are
characteristics of human beings [46]. Being able to synthesize in an embodied
artificial agent the cognitive demands of real-time cooperative interactions with
a human co-actor shows that dynamic neural field theory provides a promising
research program for bridging this gap.
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Chapter 14
Neural Field Modelling of the
Electroencephalogram: Physiological Insights
and Practical Applications

David T. J. Liley

Abstract The aim of this chapter is to outline a mean field approach to modelling
brain activity that has been particularly successful in articulating the genesis of
rhythmic electroencephalographic activity in the mammalian brain. In addition to
being able to provide a physiologically consistent explanation for the genesis of
the alpha rhythm, as well as expressing an array of complex dynamical phenomena
that may be of relevance to understanding cognition, the model is also capable of
accounting for many of the macroscopic electroencephalographic effects associated
with anaesthetic action, a feature often missing in similar formulations. This chapter
will then conclude with an example of how the physiological insights afforded by
this mean field modelling approach can be translated into improved methods for the
clinical monitoring of depth of anaesthesia.

14.1 Introduction

In recent years there has been a resurgence of interest in utilising the electroen-
cephalogram (EEG) to understand brain function. While it was the first functional
measure of brain function [1, 32], unlike the subsequently developed blood oxygen
level dependent functional magnetic resonance (fMRI) and radionuclide imag-
ing techniques, it has generally been viewed as too coarse in its spatial field
of view to reveal anything meaningful about the inner workings of the brain.
However with the limitations of fMRI becoming all too apparent and recent
advances in our understanding of the anatomical and physiological organization
of cortex challenging simplistic views of cortex being just an axo-synaptically
coupled network of neurons, EEG, together with its electromagnetic counterpart the
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magnetoencephalogram (MEG), is re-emerging not only as an important functional
measure of brain activity, but also as the basis about which physiologically
meaningful mesoscopic formulations of cortical dynamics can be formulated [46].

The EEG is a sensitive measure of behavioural and cognitive state [53]. Sponta-
neous EEG reveals characteristic and systematic changes during sleep and anaesthe-
sia [34], whereas time locked and/or averaged EEG, has been shown to be a sensitive
indicator of cognitive performance and function [63]. In disease it can exhibit fea-
tures of singular diagnostic importance – from spike and wave activity characteristic
of epilepsy to the wicket rhythms pathognomonic for the transmissible spongiform
encephalopathy known as Creutzfeldt-Jakob disease [55]. Nevertheless despite our
detailed empirical knowledge regarding the patterns and features of EEG our under-
standing of the physiological genesis of such patterns is comparatively meagre.

While the biophysical origins of the EEG are relatively well established [57] the
mechanisms responsible for its dynamical genesis, despite decades of investigation,
remain uncertain. For example it was previously believed that the alpha rhythm, a
characteristic waxing and waning oscillation of between 8 and 13 Hz, was restricted
to the occipital lobe and was due to cortical tissue being driven by oscillatory activity
arising from the thalamus [5] or to the existence of distributed subpopulations of
pyramidal neurons having some form of intrinsic rhythmicity [47]. However we now
believe that dynamical activity in the EEG emerges from a panoply of interactions
between neuronal and non-neuronal cell populations in cortex [48]. How then do
we theoretically instantiate such a view so that we can use it to explain existing
electroencephalographic phenomena and make the predictions necessary for its
ontological justification?

Two broad theoretical approaches declare themselves as frameworks for under-
standing the genesis of the EEG. The most obvious is to assume that cortex is
a network of neurons and model the individual neurons and their interactions.
Apart from the obvious problem of dealing with the computational tractability of
simulating the hundreds of thousands of neurons, and their connections, that underly
a typical scalp EEG electrode, is the issue of how much physiological detail to
include and how to meaningfully parameterise it. We now know that the functional
structure of cortex extends well beyond neurons and their axosynaptic interactions.
Glial cells, originally thought to only provide structural and biochemical support to
the neuronal parenchyma, have been shown to regulate neuronal activity through
a “tripartite” synapse – a complex involving an astrocyte and the pre- and post-
synaptic terminals of a pair of neurons [31]. Add to this the suggestions of new
modes of neuronal interaction (e.g. the axo-myelenic synapse) [73], potential
ephaptic (local field) [74] and diffusive (gap junction) neuronal coupling [69],
volume (extrasynaptic) neurotransmission [23] and non-synaptic plasticity [52], let
alone the known complexities of single neuronal function, then not only does a
network motivated approach to understanding the EEG seem daunting, it comes
with considerable uncertainties as to how much detail should be included.

A preferable approach then to articulating the genesis of the EEG will be one
that (i) has spatiotemporal scales commensurate with EEG and ECoG (ii) is able
to deal with the uncertainties of structural, and therefore functional, composition
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of cortical tissue and (iii) handles the sparseness of neuronal firing [8] and the
unreliability of neuronal interconnectivity that arise as a consequence of low in
vivo synaptic release probabilities [12]. The framework of mean field modelling, in
which interactions between individual elements are replaced by effective averages,
has emerged as one powerful way to address these requirements while at the same
time remaining physiologically and anatomically pertinent [22, 46].

Commencing with the pioneering works of Beurle [10], Freeman [26], Nunez
[56], Wilson and Cowan [77,78], and Amari [4], mean field models of the EEG have
evolved from being relatively abstract biomathematical formulations to frameworks
that will be central for the analysis, organization and integration of large volumes
of high dimensional functional imaging data [21]. The aim of this chapter is to
describe one mean field modelling approach that has been developed to account
for electrorhythmogenesis of the mammalian EEG and to illustrate its relevance to
understanding the modulation of cortical activity during health and disease.

14.2 A Mean Field Model of Electrocortical Rhythmogenesis

Despite the avowed advantages of a mean field approach over a network approach
in understanding the genesis of rhythmic activity in the EEG, almost all mean field
approaches take as their starting point the physiological and anatomical properties
of axo-synaptically coupled networks of neurons. Commencing with the work of
Beurle [10], in which cortex was modelled as a continuous network of spatially
uniform, fixed firing threshold, excitatory neurons devoid of any membrane or
synaptic dynamics, mean field models have evolved to include many of the most
significant anatomical and physiological features immanent to cortical tissue. Of
these models one of the more successful in generating dynamics consistent with
that of human EEG is that of Liley et al. [11, 40–42]. This model differs from other
well known mean-field formulations in (i) explicitly separating the synaptic kinetics
of cortical excitatory and inhibitory neuronal activity (cf. [66]) (ii) not needing to
explicitly model cortico-thalamic feedback in order to generate cortical rhythms (cf.
[66]) (iii) separating out intracortical (short-range) and cortico-cortical (long range)
fibre connectivity (cf. [37]) (iv) including the full panoply of local feedforward
and feedback excitatory and inhibitory coupling (cf. [35]) and (vi) incorporating
synaptic reversal potentials such that a conductance-based mean neuron (see below)
is defined (cf. [35, 66, 76]).

In essence the model of Liley et al. [11, 40–42] is constructed at the scale
of the cortical macrocolumn – an approximately barrel shaped region extending
through the entire thickness of the cortical sheet that has a lateral extent within the
cortical sheet of the order of the characteristic scale of pyramidal neuron recurrent
collaterals. Within this column, extending across all cortical layers, are distributed
populations of excitatory and inhibitory neurons interacting with each other by
all possible feedforward and feedback axo-dendritic connections. Macrocolumns
then interact with each other by the axons of the excitatory pyramidal neurons
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Fig. 14.1 Model topology (Figure reproduced with permission from [25])

that pierce through the bottom layer of cortex to form the long range cortico-
cortical conduction system. The topological organization of this model is well
known and is depicted in Fig. 14.1 in which the interactions within and between two
cortical macrocolumns are shown. In this model “equations-of-motion” for the soma
membrane potentials of excitatory and inhibitory neurons, averaged over the spatial
extent of the macrocolumn, are defined. Cortical activity is then described by the
spatiotemporal evolution of these mean excitatory, he , and inhibitory, hi , membrane
potentials. The connection with electrophysiological experiment is through he ,
which is assumed to be linearly related to the EEG. Excitatory and inhibitory
neurons are modelled as a single passive resistor-capacitor circuit in which all
synaptically induced postsynaptic currents(Ilk) flow. On this basis the following
conductance-based mean neuron can be defined:

�k@thk D hrk � hk .r; t/C
X
lDe;i

h
eq

lk � hk .r; t/
jheqlk � hrkj

Ilk .r; t/ ; (14.1)

where r 2 R
2 is position on the cortical sheet and double subscripts represent first

source and then target.1 Postsynaptic “currents” 2 (Ilk) are weighted by the ionic
driving forces, which are defined to be unity at the resting membrane potential
hrk such that a unitary postsynaptic potential can be simply parameterised. The
remaining parameters are defined in Table 14.1.

The dynamics of the postsynaptic “currents” (Ilk) are described by a critically
damped oscillator driven by the mean rate (i.e. the mean field) of incoming
excitatory or inhibitory axonal pulses, Alk :

.@t C �lk/2 Ilk .r; t/ D e�lk�lk 	 Alk .r; t/ (14.2)

1Where in contrast to other authors we have adopted a “anatomical” index ordering.
2We are being quite sloppy with our terminology here as these “currents” are more correctly
identified as being conductances but have units of volts as a consequence of being weighted by
ionic driving forces normalised to be unity at rest.
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Table 14.1 Liley model parameters (Table reproduced with permission from [45])

Definition Min., Max. Units

hrk Resting membrane potential �80; � 60 mV
�k Passive membrane decay time 5; 150 ms
h

eq
ek Excitatory reversal potential �20; 10 mV
h

eq
ik Inhibitory reversal potential �90; hrk � 5 mV
�ek EPSP peak amplitude 0:1; 2:0 mV
�ik IPSP peak amplitude 0:1; 2:0 mV
1=�ek EPSP rise time to peak 1; 10 ms
1=�ik IPSP rise time to peak 2; 100 ms
N˛
ek No. of excitatory cortico-cortical synapses kDeW 2;000; 5;000

kD iW 1;000; 3;000
–

N
ˇ

ek No. of excitatory intracortical synapses 2;000; 5;000 –

N
ˇ

ek No. of inhibitory intracortical synapses 100; 1;000 –
vek Axonal conduction velocity 0:1; 1 mm

ms
1=
ek Decay scale of cortico-cortical connectivity 10; 100 mm
Smax
k Maximum firing rate 0:05; 0:5 ms�1

�k Firing threshold �55; � 40 mV
�k Standard deviation of firing threshold 2; 7 mV
pek Extracortical synaptic input rate 0; 10 ms�1

In general the Alk is comprised of cortically local, cortically distant and
extracortical/subcortical axonal pulses. Because subcortical and cortically distant
axonal pulses arise exclusively from excitatory neurons, Aek and Aik are defined as

Aek .r; t/ D Nˇ

ekSe Œhe .r; t/�C ek .r; t/C pek .r; t/ ; (14.3)

Aik .r; t/ D Nˇ

ikSi Œhi .r; t/� ; (14.4)

where Nˇ

lkSl , the mean number of connections from local neuronal population l
times their mean firing rate Sl , models local inputs to target population k, pek
represents extracortical (thalamic) excitatory sources and ek pulses arriving across
larger distances via the excitatory cortico-cortical fibre system.

The lynchpin of the mean field formulation is the closure of the macroscopic
equations (14.1)–(14.4) by the definition of Sl . In rate based models it is typically
assumed that mean population firing rates are an instantaneous function of the
respective mean soma membrane potential. One very general form for Sl in which
mean firing rates monotonically increase with hk , are bounded below by zero and
above by a maximal firing rate and has a flexible shape is [41]

Sl Œhl .r; t/� D Smax
l � Smax

l .1C expfp2Œhl .r; t/ � �l �=�lg/�	l (14.5)

which for 	l D 1 reduces to the well-known symmetric sigmoid function.
Axonal pulses that propagate locally through intracortical fibre systems are

assumed to result in conduction delays that are negligible in comparison to the
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delays induced by neurotransmitter activation and the passive electrical properties
of dendrites. However such delays cannot be ignored for axonal pulses that are
propagated by the long range cortico-cortical fibre systems. In the simplest case
of a single cortico-cortical conduction velocity vek and an exponential fall off
in the strength of cortico-cortical connectivity with increasing distance between
source and target neuronal populations of characteristic scale 1=
ek it can be shown
that the propagation of ek can be approximately described by the following two-
dimensional telegraph equation

�
.@t C vek
ek/

2 � 3
2
v2ekr2

�
ek .r; t/ D v2ek 
2

ek N
˛
ek Se Œhe .r; t/� ; (14.6)

where N˛
ek is the total number of excitatory synaptic connections formed by long-

range cortico-cortical axons on local population k. Robinson et al. [65] and Jirsa
and Haken [37] have both defined similar long-range propagators.

Equations (14.1)–(14.6) typically define the model of Liley et al. and in addition
to being able to reproduce the main features of spontaneous human EEG gives rise
to a rich repertoire of interesting and/or novel dynamical activity.

14.2.1 Model Extensions

While the physiological specificity of the model of Liley can be easily extended
by the addition of sub-populations of excitatory and inhibitory neurons or by the
inclusion of ancillary axonal conduction systems of differing characteristic scales
and conduction velocities, the resulting formulation, while arguably of greater
biological veracity, will have a substantially augmented phase space. In non-
linear systems larger phase spaces make it more difficult to characterise system
dynamics. It is therefore fortunate that there are a number of modifications and
extensions that can be made to the model of Liley et al. that further supplement
its physiological relevance without causing its phase space to expand. Further such
modifications can be utilised by other mean field approaches aimed at modelling
cortical electrorhythmogenesis.

A simple modification of the equation describing the dynamics of the postsy-
naptic currents enables independent adjustments of the rise and decay times of the
unitary postsynaptic potential so defined [11]. By defining Ilk to satisfy

Œ@t C �.�/�Œ@t C Q�.�/�I.r; t/ D Q�.�/e�.�/=�0� 	 A.r; t/ ; (14.7)

�.�/ D ��0=.e� � 1/ ; Q� D �.�/e� (14.8)

where we have dropped the subscripts for clarity, 1=�0 defines the time to peak of,
and � > 0 controls the decay of, the unitary postsynaptic potential. It is worth noting
that Eq. (14.7) reduces to Eq. (14.2) as � ! 0.
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Fig. 14.2 The independent adjustment of the rise and decay times of the modelled unitary post-
synaptic potential enables the more faithful modelling of physiologically and pharmacologically
induced alterations in bulk neurotransmitter kinetics and dendritic cable properties

Why might such a formulation be useful? Firstly, isoflurane, a volatile halo-
genated anaesthetic, has been shown to prolong the decay time of the unitary
inhibitory postsynaptic potential as well as reducing the peak amplitude of both
excitatory and inhibitory postsynaptic potentials [7, 49]. Based on experiment �0, �
and � can then be defined to be functions of extracellular anaesthetic concentration
such that the effects of isoflurane on the EEG can be modelled. By taking this
approach Bojak and Liley [11] have been able to account for the increases in low
frequency power in the human EEG induced by isoflurane action. Secondly, the bulk
voltage-dependence of excitatory postsynaptic potential amplitude and time course,
that arises as a consequence of a N-methyl-d-aspartate (NMDA)-mediated synaptic
component, can plausibly be approximated by such a formulation by allowing � ,
�0 and � to be functions of the mean soma membrane potential h i.e. � .h/, �0.h/
and �.h/. At present no work has been performed in this regard however it may
offer a fruitful way forward towards modelling the bulk effects of behaviourally
or pharmacologically induced alterations in NMDA-mediated receptor activity
(Fig. 14.2).

In the model of Liley et al., and other related mean field formulations [37, 56,
65, 72], it is typically assumed that activity propagated between distant cortical
areas by the cortico-cortical conduction system is by fibres of relatively uniform
conduction velocity. However empirical measurement, either by direct physiological
measurement of conduction latencies or indirectly via histological measurement
of axonal diameter and the subsequent mapping to conduction velocity, suggests
that propagation velocities of the cortico-cortical fibres are instead rather broadly
distributed [60, 64]. While such broad distributions are easily incorporated in
integral mean field formulations, at least until recently, it has not been possible to
include them in the computationally more efficient and tractable mean field partial
differential formulations. However as shown in Bojak and Liley [11] by defining
ek to satisfy
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Fig. 14.3 It is computationally convenient to describe pulse propagation by the long range cortico-
cortical conduction system by a partial differential formulation. The long range propagator defined
by Eq. (14.6) is simple to implement but assumes that the axonal velocity distribution is sharply
peaked (top left) about a central value with the synaptic connectivity having an integrable infinite
divergence at r D 0 (bottom left). Empirically however, cortico-cortical axonal velocities are
found to be quite broadly distributed. Fortunately a partial differential propagator can be found
that assumes a broad distribution of axonal conduction velocities (top right) while retaining a
monotonic decay in axonal fibre density as a function of distance (bottom right)

�
@t C Ovek

2 O
ek

. O
2
ek � r2/

�n
ek.r; t/ D 2�n Ovnek O
n

ek N
˛
ek SeŒh.r; t/� (14.9)

a marginal velocity distribution, fek.v/, of the form

fek.v/ D 2nv Ov2nek
.v2 C Ov2ek/nC1 (14.10)

is implied for the propagation of axonal pulses by long-range fibres. Based on fits to
callosal fibre data obtained from humans it is estimated that n D 4 and Ovek �
19m s�1. Such a formulation preserves monotonically decreasing connectivity
between source and target regions as a function of increasing separation (Fig. 14.3).
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14.3 Dynamical Features

Despite the structural simplicity of the defining mean field equations, they reveal
a rich repertoire of dynamics in the physiologically admissible parameter space.
While much of this is of physiological relevance we will in this section restrict
our discussion to the dynamical properties and features that have some degree of
mathematical novelty.

14.3.1 A Novel Route to Chaos

The brain is undoubtably a structured and highly complex dynamical system.
Attempts to characterise and explain the structured emergence of such complex
activity face many hurdles not the least of which is experimental. How do we
measure the state of a complex system in the presence of substantial physiological
measurement noise? Attempts to determine whether the brain supports the existence
of deterministic dynamical macroscopic brain states are inevitably frustrated by the
noisy and non-stationary time series data obtained from EEG, MEG or resting state
fMRI. Might the existence of theoretical evidence for such complexity help guide
and motivate such empirical explorations? In this regard the chaotic dynamical
behaviour of a macrocolumnar reduction of the Liley model, and its parametric
organization, might be relevant to this quest. By ignoring long range connectivity
the Liley model’s phase space can be dramatically reduced in size – yet retain
considerable dynamical complexity. For example by assuming �ik � �i , �ek � �e
N ˛
ek D 0, and under some weak assumptions of convergence, Eqs. (14.1)–(14.4) can

be rewritten as [15]

�k@thk D hrk � hk C
X
lDe;i

e�lk
h
eq

lk � hk
jheqlk � hrkj

f�lN ˇ

lkIl C .1 � ılk/Œplk �Nˇ

lkpl �=�lg

(14.11)

.@t C �k/2Ik D Sk.hk/C pk (14.12)

where pe D pee=N
ˇ
ee , pi D pii=N

ˇ
ii and ılk is the Kronecker delta. It is

worth noting that our “synaptic currents” have been trivially rescaled to have
units of s�1. For a range of physiologically admissible parameter values these
simplified equations are, not surprisingly, capable of producing aperiodic behaviour
characteristic of deterministic chaos. However what is perhaps surprising is that
such chaotic activity arises through a number of routes, one of which is quite
unusual. Initial numerical explorations involving the full set of equations, in which
long range connectivity was ignored, revealed extensive chaos in a parameter plane
defined by pee and pei. Subsequently it was shown that such chaos was spawned
by a co-dimension one homoclinic bifurcation, known as a Shil’nikov saddle-node
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bifurcation3 located in an unphysiological region of the .pee; pei/ parameter plane
[75]. However, even though this co-dimension one bifurcation is located in an
unphysiological region of parameter space it nevertheless organizes the qualitative
behaviour of the emerging dynamics in the physiological meaningful parameter
space. Interestingly this route to chaos occurs in the vicinity of a codimension
three, focus type, degenerate Bogdanov-Takens point, suggesting that there might
exist an organising centre for the qualitative organization of dynamics in an even
larger region of parameter space. Importantly for the same parameter set the
reduced Eqs. (14.11) also give rise to chaos [15] in the .pee; pei / parameter plane
spawned by an identical Shil’nikov saddle-node bifurcation at unphysiological (i.e.
negative) values of pee and pei . Such a reduction may therefore aid in the efficient
characterisation of high co-dimension organising centres.

14.3.2 Metabifurcations

One of the limitations in performing a bifurcation analysis on a high dimensional
system is the difficulty in establishing a canonical parameter set from which
to explore the qualitative organization of the parameter space and to relate it
to physiologically meaningful or significant behaviour. Often parameter sets are
degenerate, in the sense that parametrically widely separated sets can produce
similar, physiologically relevant, behaviour. For example [25] numerically gen-
erated over 70,000 parameter sets for the spatially homogeneous (i.e. r2ek D
0) Liley model that gave rise to electroencephalographically and physiologically
plausible behaviour: parameters within empirically established ranges, alpha band
oscillatory activity, ‘1=f ’ low frequency activity and modelled mean neuronal firing
rates .20 s�1. A subsequent principal components analysis revealed that the first
ten principal components cumulatively accounted for less than 50 % of the total
parametric variance i.e. the structure of the parameter space could not be appreciably
simplified by assuming linear combinations of parameters. Therefore how might
we investigate the qualitative dynamical properties of the model’s physiological
admissible parameter space? One possible solution is to attempt to partition the
parameter space based on a classification of the patterns of bifurcation diagrams
obtained by continuing in one or more appropriately chosen parameters, and to
determine the conditions under which, if any, inter-bifurcation pattern transition
occurs. We refer to such a general method as a “metabifurcation analysis”.

3If a saddle node has a single homoclinic orbit, then a unique limit cycle will form when the
equilibrium disappears. This is often referred to as a saddle-node on an invariant circle bifurcation.
If a saddle node has two or more homoclinic orbits then infinitely many saddle limit cycles (i.e.
chaos) appear when the equilibrium disappears. In general this is referred to as a Shil’nikov saddle-
node bifurcation. These bifurcations should not be confused with either saddle node (fold) or
saddle-homoclinic bifurcations.
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How might such a metabifurcation analysis proceed? It is known that in the
Liley model inhibition is found to be a very sensitive locus of dynamical control.
Small alterations in modelled inhibitory coupling strengths and neurotransmitter
kinetics sensitively induce changes in model stability, excitability and frequencies of
driven and autonomous oscillatory modes. It has been theorised that such sensitivity
can explain many of the electroencephalographic features of � -amino butyric acid
(GABA)-ergic anaesthetic action (see Sect. 14.4.1.1). On this basis [25] constructed
two-dimensional parameter continuations in an .R; k/ plane defined by �ik ! R�ik

and Nˇ
ii ! kN

ˇ
ii . As pik � 0 variations in R and k enable the independent spec-

ification of global and individual population changes in inhibitory input coupling
strength. Two dimensional continuations in .R; k/ were then performed for a large
number of randomly chosen parameter sets, for the spatially homogeneous Liley
model, selected to exhibit electroencephalographically and physiological plausible
dynamical behaviour.

Based on the analysis of 405 randomly chosen parameter sets it was found that
topologically the bifurcation diagrams conformed to two broad patterns or families
(Fig. 14.4). For one of the families (F1) two, almost parallel, lines of saddle-nodes
(equilibrium) partition the .R; k/ plane into three major regions. For the other family
(F2) the .R; k/ plane is characterised by the presence of two cusp points, such that
the region containing three equilibria is the union of two separated wedge-shaped
areas with the cusps as their vertices. In both families emergent Hopf bifurcations
interact with the saddle node bifurcations by so-called fold-Hopf points. The two
families could be distinguished by differences in the distribution of certain parame-
ters, with the parameter distributions accounting for the greatest dissimilarity being
in �e , the mean excitatory neuronal membrane time constant, and �e , the standard
deviation in the excitatory neuron mean firing threshold. In particular �F1e ; �F1e <

�F2e ; �F2e . In general it is found that parameter sets belonging to F1 are associated
with a more restricted dynamical repertoire than parameter sets belonging to F2.

Topological transitions between the two types of families can be induced by
changes in pee and pei . In general reductions in pei in parameter sets belonging
to F1 result in the topological metamorphosis of the .R; k/ bifurcation diagram to
that of F2. Specifically decreasing pei results in the appearance of two cusp points
via a so-called swallow tail bifurcation until the bifurcation diagram resembles that
of F2. A similar topological transition is induced from F1 to F2 if a metabifurcation
parameter pee is instead increased.

What, if at all, might be the physiological significance of such “metabifurca-
tions”? Two speculations present themselves. Firstly the metabifurcation parameters
pee and pei model thalamic input, and therefore suggest an alternative role for
thalamus other than its classically defined character as a relay station for periph-
erally derived sensory information. Because changes in pee and pei transfigure the
topological organization of bifurcations in the .R; k/ plane we might hypothesise
that thalamic activity modulates, and in a sense selects, the cortical dynamical land-
scape. Viewed from this perspective sensory input may be conceived as configuring
the possible domain of the cortical response in addition to initiating it. Further by
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Fig. 14.4 Schematic diagram illustrating two topological families of bifurcation diagrams
obtained by the classification of continuations in the .R; k/ parameter plane of �400 parameter
sets chosen to exhibit physiologically and electroencephalographically admissible behaviour. Also
illustrated are the parameters identified to most sensitively effect topological transitions between
the two families. Numerical analysis reveals that parameter sets belonging to family 1 have a more
restricted repertoire of dynamical behaviour than those belonging to family 2. For further details
see [25] (Figure adapted from [25])

considering thalamocortical feedback the possibility is opened up for some form
of auto-regulation of cortical dynamics: cortical feedback through thalamus could
initiate a sequence of transitions between topologically distinct bifurcation patterns
and thus the cortical dynamical repertoire could be reconfigured “on the fly”, and
on a time scale quite distinct to activity dependent synaptic plasticity. The second
speculation concerns activity dependent changes in �e and �e . The widely held view
is that learning principally involves modifications of synaptic strength. However
there exists an alternative, though less well known, view in which learning may also
involve non-synaptic processes, such as modulations in voltage dependent mem-
brane conductances, that manifest themselves in alterations in neuronal excitability
[52]. For example widely identified non-synaptic changes observed during learning
include changes in neuronal input resistance and alterations in neuronal burst/spike
threshold. The mean field correlates of these single neuron properties include �e
and �e . Thus we might speculate that activity dependent changes in �e and �e cause
long lasting changes in the cortical dynamical landscape, and that these alterations
contribute to the behavioural changes observed during learning.

14.3.3 Multistability

Many systems in nature exhibit multistability: when starting from different initial
conditions the system can evolve into different attractors with quite different long
term behaviour. The term “generalised multistability” was coined in order to
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distinguish it from “trivial multistability” which arises from the co-existence of
multiple stable fixed points. Subsequent to its initial theoretical and experimental
delineation it is now a well described phenomenon in neuroscience, optics and
condensed matter physics.

In neuroscience one of the most extensive examples of generalised multistability
is found in the R15 Aplysia neuron model in which five different limit cycles and
two chaotic attractors are found to co-exist [16]. Functionally multistability might
provide a mechanism whereby transient changes in neural activity or sensory input
induce persistent changes in oscillatory activity. Such oscillatory mode shifts may
therefore directly initiate changes in behaviour or perception, or act as a dynamical
substrate from which further activity dependent modulations in dynamics arise.
While relatively well studied in the context of single neuron dynamics, multistability
at the cortical population level has been little appraised either experimentally or
theoretically. However emerging evidence does suggest that resting alpha (8–13 Hz)
band activity can be decomposed into distinct high and low amplitude modes
[27], and that this can be interpreted as evidence for cortical population level
multistability [28]. It is therefore natural to ask whether such multistable activity
can be found in the Liley model.

It is shown in [20] that a macrocolumnar version (i.e. N˛
ek D 0) of the Liley

model is able to support the co-existence of two limit cycle attractors and one
chaotic attractor in an initial condition space. The limit cycle attractors consist
of (i) a high amplitude, high firing rate (�300 s�1), limit cycle with a dominant
frequency of �5Hz and a strong first harmonic �10Hz, and (ii) a low amplitude,
low firing rate (�20 s�1), limit cycle with a dominant frequency of�10Hz. The set
of initial conditions which gives rise to the low amplitude limit cycle is embedded
in a sea of initial conditions which gives rise to a small amplitude chaotic attractor
(largest Lyapunov exponentD 3:4 s�1; Kaplan-Yorke dimensionD 2:086˙ 0:003)
having a dominant frequency in the alpha band. Surrounding the initial conditions of
these low amplitude dynamics is an extensive region of large-amplitude limit cycle
dynamics.

Unlike multistable dynamics observed in a similar mean field model [28], the
multistable dynamics in this model does not arise due to noise driving in the
vicinity of a sub-critical Hopf bifurcation. Parametric continuations in pee instead
reveals that a high amplitude limit cycle, born from a subcritical Hopf bifurcation at
large pee , surrounds chaos born through a period doubling cascade at small pee in
which is embedded a low amplitude limit cycle orbit that appears to arise through a
homoclinic bifurcation at intermediate values of pee .

14.4 Physiological Relevance

One of the strengths of the model of Liley is the physiological relevance of
its parameterisation. All model parameters correspond to quantities that can be
physiologically and anatomically independently measured, and thus the important
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question can be asked: to what extent does the physiologically admissible model
parameter space produce behaviour that is both physiologically and electroen-
cephalographically tenable? For example can the model of Liley account for the
electroencephalographically observed alpha rhythm in the context of a physiolog-
ically meaningful parameterisation? Being able to account for the alpha rhythm
would signal the suitability of this model as one basis to account for bulk
perturbations in dynamical brain activity that are observed to occur in health, disease
and during drug administration.

14.4.1 The Resting Alpha Rhythm

Between 1926 and 1929 Hans Berger laid the foundations for the development of
electroencephalography in humans [32]. While canine EEG had been discovered
many decades earlier [17], it was Berger who first described the alpha rhythm (8–
13 Hz), its occipital dominance and its attenuation in response to mental effort and
opening of the eyes. The intervening years have revealed that alpha band activity is
not restricted to occipital cortex. Alpha band activity is recordable over much of the
cortical surface and is reactive (i.e. enhanced or attenuated) in response to a much
wider variety of cognitive activity than just opening and closing the eyes. For this
reason it is often preferable to refer to 8–13 Hz electroencephalographic activity as
alpha band activity rather than as the alpha rhythm.

Despite amassing a great deal of knowledge regarding the phenomenology of
alpha band activity we remain comparatively ignorant regarding the physiological
basis for its genesis: does it (i) arise from intrinsic oscillatory activity in individ-
ual cortical neurons (ii) stem from oscillatory thalamic activity directly driving
populations of cortical neurons or (iii) emerge through the reverberant activity
generated by reciprocal interactions of synaptically connected neuronal populations
in cortex, and/or through such reciprocal interactions between cortex and thalamus?
Theoretically the last of these is the most interesting and the one best addressed
by the mean field modelling approach. Specifically, for a range of physiologically
admissible parameter values the model of Liley reveals a wide array of deterministic
and noise-driven dynamics that includes alpha band activity [11, 41]. In particular,
physiologically plausible alpha band activity can appear in three distinct dynamical
scenarios: linear noise driven, limit-cycle, and chaotic dynamics. For appropriate
parameterisations linearisations of the defining equations about a stable singular
point reveals alpha band oscillatory activity in he and hi at physiologically plausible
firing rates (0:1–20 s�1), as well as rhythmic activity in other bands of electroen-
cephalographic interest. In the case of electroencephalographically plausible alpha
band activity (full-width-half-maximum of the peak alpha band frequency &5)
linearisation reveals model activity to be essentially determined by conjugate pairs
of weakly damped poles at alpha band frequencies. The physiological plausibility
of these linearisations suggests that resting EEG may be viewed as a filtered random
linear process. Indeed empirical analysis has found that, except for short bursts
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Fig. 14.5 Analytical fluctuation spectra for 86 physiologically admissible parameter sets chosen
to exhibit plausible mean resting neuronal firing rates and resting alpha band activity, as well as
a biphasic surge during simulated anaesthetic action. For details of parameters and method of
calculation refer to [11]

of subdural and scalp-recorded EEG, the alpha rhythm is indistinguishable from
linearly filtered white noise [70, 71]. On this basis we might reasonably assert that
“resting” cortex is dynamically in a state of marginal linear stability.

In the Liley model, based on a range of heuristic search strategies [11],
physiologically and electroencephalographically plausible alpha band activity is
found to be widely, but sparsely, distributed over the whole biologically valid
parameter space without easily discernable structure in most parameter dimensions.
For example by randomly searching the physiologically admissible parameter space
[11] found that of 7 � 109 randomly generated parameter sets 73;454 (�0:001%)
produced electroencephalographically plausible alpha band activity (Fig. 14.5).
However as it is likely there are biological co-dependencies between various model
parameters such sparseness may be artificial.

By analysing the response of model dynamics to small parameter perturbations it
is found that emergent alpha band activity is particularly sensitive to alterations
in those parameters that characterise inhibitory action. This in turn suggests a
novel mechanism for alpha band rhythmogenesis: alpha band oscillatory activity
arises from reverberant activity between populations of inhibitory interneurons.
To see this consider the following sequence of events – (i) initially (basally)
excited inhibitory neurons, following a delay related to the characteristic time of
inhibitory neurotransmitter kinetics, are inhibited due to negative feedback and
thus inhibitory neuronal firing rates decrease (ii) because the activity of inhibitory
neurons has decreased feedback inhibition is reduced and thus inhibitory neuronal
firing rates increase again and return to basal levels on a time scale related
to the characteristic time of inhibitory neurotransmitter kinetics (iii) once mean
inhibitory firing rates return to basal levels feedback inhibition between inhibitory



382 D.T.J. Liley

neurons is again strengthened and mean inhibitory firing rate again decrease and
the cycle then repeats. Such oscillatory activity then “slaves” population excitatory
neuronal activity and thus gives rise to alpha band variations in scalp recorded
electroencephalographic activity [43].

Thus the model of Liley hypothesises that (i) resting alpha band activity is a
marginally stable rhythm and (ii) inhibition is a sensitive locus for the dynamical
control of alpha band oscillations. These hypotheses have important implications
for the functional role of alpha band oscillations during cognition and their
physiological control and pharmacological modulation. For example parameter sets
chosen to produce electroencephalographically plausible linear noise driven alpha,
as well as a surge in total EEG power during modelled anaesthetic induction, can
under small parametric perturbations produce autonomous gamma band (>30Hz)
oscillatory activity. Gamma band oscillations are thought to be the sine qua non
of cognitive functioning. Indeed there exists much evidence to suggest that the
emergence of synchronised gamma-band activity (local field potential or EEG)
functional underpins perceptual binding and subserves the processes of cortical
computation [29]. Thus the existence of weakly damped, noise-driven, linear alpha
activity may be a dynamical precursor to gamma band electroencephalographic
activity, and more generally as a physiologically meaningful state from which
transitions can be made from or to. From this perspective the alpha rhythms may
be better viewed as readiness rhythms and not idling or resting rhythms as is often
asserted.

What physiological factors may drive such transitions? Given that cortical
population dynamics are hypothesised to be particularly sensitive to variations in
inhibitory activity it may represent a target for control by the relatively sparse
thalamocortical afferents. Averaged over cortex, less than 2–3 % of all synapses can
be attributed to thalamocortical projections [13]. While thalamocortical afferents
synapse onto both excitatory (pyramidal) and inhibitory layer IV cortical neurons
the strength of such synaptic connections may be far from uniform across the
respective target neuronal populations. For example studies in rat barrel cortex show
that cortical inhibitory neurons receive thalamocortical synapses that are on average
five-fold stronger (in terms of evoked inhibitory postsynaptic amplitude) than those
received by nearby pyramidal neurons [50]. In this way relatively weak excitatory
thalamocortical input to inhibitory cortical neuronal populations (pei ) may be able
to precipitate transitions in cortical state. Thus thalamic input arising from either
first-order thalamic relay neurons being driven directly by incoming sensory/sub-
cortical input, or from higher-order thalamic relay neurons driven by feedback from
cortex, may, rather than only “driving” cortex act also to “modulate” cortical activity
(in the sense of [68]).

While we have speculated that cortical inhibition may be a sensitive target
for the control of alpha band activity by thalamocortical afferents at present the
empirical evidence for such an assertion is weak. Fortunately stronger evidence
for the hypothesised role of inhibitory modulation in the regulation and control of
alpha band activity exists. Of particular interest and relevance is the fact that the
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endogenous and exogenous pharmacological modulation of GABAergic activity is
known to perturb the resting alpha rhythm.

14.4.1.1 Endogenous Pharmacological Modulation

Surprisingly the EEG is known to undergo systematic changes in women during
their menstrual cycle. In particular it has been observed that during the late and mid-
luteal phases alpha band activity is enhanced. For example [19] observed that the
mean occipital alpha band activity increased by 0.3 Hz during the luteal phase and
that the average time course of acceleration followed the time course of increases in
blood progesterone levels. Similar changes in alpha band activity during oestrus are
observed in other studies [6, 9, 61]. How do such changes implicate modulations in
GABAergic activity?

Progesterone, a steroid hormone involved in the female menstrual cycle, is
metabolised to a high degree to the neurosteroids allopregnanolone and preg-
nanolone which are potent positive allosteric modulators of GABA subtype A
(GABAA) receptor activity such that GABA action is potentiated [33, 62]. These
neurosteroids bind to discrete sites on the GABAA receptors that are distinct to those
that bind ethanol, benzodiazepine, barbiturates and a range of general anaesthetic
agents. During the mid and late luteal phases progesterone concentrations are
highest and thus their effect in modulating GABAergic function is maximal. The
model of Liley predicts that the antagonism of GABAergic activity (increases in
�ik) should alter the spectral features of resting alpha band activity. In particular
the model predicts that increases in �ii will increase the frequency, and reduce
the damping (i.e. reduce the full-width-half-maximum) of the alpha-band linear
resonance, whereas increasing �ie will produce the opposite effect. On this basis
the model of Liley would predict that the neurosteroids allopregnanolone and
pregnanolone potentiate GABAergic activity in cortical inhibitory neurons to a
greater degree than in cortical excitatory neurons. Is such a prediction supported
by pharmacological differences in the properties of GABAA receptors in excitatory
and inhibitory neurons?

Structurally GABAA receptors are composed of 5 membrane spanning protein
subunits that are assembled from a family of at least 18 subunits (˛1�6, ˇ1�3,
�1�3, �1�3, ı, �, � ) that determine, among other properties, their pharmacological
profiles [59]. A range of studies have established that they are heterogeneously
distributed across brain areas and neuronal subtypes [30, 58]. In cortex the most
abundant receptor isoforms are ˛1ˇ2=3�2 and ˛2ˇ2=3�2 differentially localised to
inhibitory and excitatory cortical neurons respectively. In general the ˛1ˇ2=3�2
and ˛2ˇ2=3�2 isoforms exhibit differential binding affinities for benzodiazepines.
Indeed the presence of the ˛ subunit isoform exerts a major effect on the affinity
and efficacy of ligands at the benzodiazepine binding site. It is thought that
the neurosteroids allopregnanolone and pregnanolone evince similar differential
binding affinities based on the demonstrated importance of the ˛ subunit for the
binding of neurosteroids [33]. Thus the prediction of the Liley model regarding the
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predominant target of neurosteroid action is consistent with the known molecular
pharmacology. As the next section will discuss, the differential ligand-binding
affinity of GABA receptor isoforms may be relevant to understanding the actions
that anesthetics and sedatives have on the EEG.

14.4.1.2 Exogenous Pharmacological Modulation

General anaesthetic agents induce profound reversible alterations in brain activity
and behaviour. While positron emission tomography and fMRI have revealed
a range of non-uniform reductions in inferred cerebral neuronal activity during
anaesthetic drug action [2, 3, 39], to date only changes in the EEG have been
reliably correlated with the clinically documented effects of anaesthesia [14]. In
general during the progression to deep anaesthesia the EEG undergoes a series
of well described quantitative changes: (i) the EEG is transiently activated such
that beta band (13–30 Hz) oscillatory activity is increased and alpha band activity
is decreased (the so-called “beta buzz”) (ii) the EEG is slowed (reduction in
median and spectral edge frequencies), the alpha rhythm is abolished, and total
EEG power transiently increases (the “biphasic response”) (iii) the appearance of
isoelectric (defined as <5%V peak-peak amplitude) periods lasting many seconds
separated by short bursts of high amplitude slow, sharp or spiking activity – a
phenomenon known as burst suppression. While not all anaesthetic agents produce
these changes (notable exceptions being nitrous oxide, xenon and ketamine – agents
often collectively referred to as “dissociatives”) they are sufficiently general to
motivate systematic processed EEG approaches to the clinical monitoring of depth
of anaesthesia.

To what extent can these features be explained by known anaesthetic molecular
pharmacology? Countless studies have revealed the synaptic GABAA receptor to
be one of the most important molecular targets mediating the action of anaesthetic
and sedative agents [24, 67]. It has been established that a variety of anaesthetic
agents reduce the peak amplitude, and selectively prolong the decay, of the
inhibitory postsynaptic potential [7]. On this basis [11] have shown that many of the
electroencephalographic features of “typical” anaesthesia can be accounted for by
the model of Liley by utilising a description that enables the independent adjustment
of rise and decay times of the inhibitory postsynaptic potential i.e. Eq. (14.7). By
parameterising �ik and �ik as a function of anaesthetic concentration (c) on the
basis of experimental measurement, modelled EEG slows, and exhibits a transient
increase in total power, with increasing c for appropriately chosen “base” parameter
sets. While such bulk effects of anaesthetic action can be produced by homogeneous
variations of �ik and �ik , other well known electroencephalographic effects might
only be explained by assuming that inhibitory postsynaptic potentials in inhibitory
neurons are differentially modulated by anaesthetic action compared to inhibitory
postsynaptic potentials in excitatory neurons.

In [43] it was theorised, on the basis of empirical EEG evidence involving
the benzodiazepine alprazolam, that the well documented benzodiazepine “beta
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Fig. 14.6 Top left: differences in binding affinity, KA, and maximal modulatory response, �max,
for three hypothetical positive allosteric modulators of the GABAA receptor. Top right: the
GABAA receptor is a co-assembly (oligimer) of five protein subunits, the interfaces of which
contain binding sites for GABA and benzodiazepines. Bottom: summary of the major GABAA

receptor isoforms found in cortical neurons [30, 51]. The type of ˛ subunits present determines
the pharmacological properties of the given isoform. Isoforms containing the ˛1 subunit have a
BZ1-type pharmacology (bind zolpidem and CL218,872 with high affinity), whereas those co-
assembled with the ˛2 isoform have a BZ2-type pharmacology (bind zolpidem and CL218,872
with low affinity)

buzz” could be explained by assuming that benzodiazepines acted with greater
efficacy at GABAergic synapses on inhibitory neurons that at GABAergic synapses
on excitatory neurons (see Fig. 14.6). Such differential potency accords with the
empirically established cellular distribution of GABAA receptor isoforms that
exhibit ligand-based differences in the potentiation of GABA induced activity.
As discussed previously the high affinity (to zolpidem and CL218,872) GABAA

receptor isoform ˛1ˇ2=3�2 is found predominantly in cortical inhibitory neurons
whereas the low affinity GABAA receptor isoform ˛2ˇ2=3�2 is chiefly localised to
cortical excitatory neurons [30]. The differential effects of modulating feed-forward
and feed-back may also be relevant to understanding the electroencephalographic
actions of propofol.

Propofol (2,6-di-isopropylphenol) is a widely used intravenous anaesthetic agent
that is distinguished in that, rather than uniformly attenuating alpha band activity,
instead elicits strong increases in frontal alpha band (10–13 Hz) activity in addition
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to the typical increases in slow wave activity seen with other anaesthetic agents.
While it has been suggested that this “alpha” rhythm emerges because propofol
enhances feed-forward GABAA conductances in cortical pyramidal neurons such
that thalamocortical feedback is strengthened [18], another possibility suggests
itself. Propofol, like the benzodiazepines and the neurosteroids, allosterically
enhances GABA-mediated activation of GABAA receptor activity to a degree
depending on its isoform. For example [38] found that in recombinant GABAA

receptors expressed in Xenopus oocytes, that those consisting of the isoform
˛1ˇ2=3�2 were potentiated to a much greater degree (maximum potentiation com-
pared to baseline �1;400%) by propofol than those of the ˛2ˇ2=3�2 (maximum
potentiation compared to baseline�500%) isoform. From a theoretical perspective
feed-back disinhibition of cortical inhibitory neuronal activity would then be
favoured over the feed-forward inhibition of cortical excitatory neuronal activity
and thus alpha band activity would be promoted.

14.4.2 Mass Action and the Monitoring of Anaesthetic Action

To date depth of anaesthesia monitoring has relied on a range of heuristic data driven
approaches to objectively define optimal levels of hypnosis such that intraoperative
awareness is minimised. The most successful of these approaches are arguably
those that are based upon the analysis of spontaneous or time locked electroen-
cephalographic activity. Of these approaches the Bispectral Index in particular has
become commonplace in clinical anaesthesia [14]. However its use occurs in the
context of a number of well documented limitations (i) not all hypnotic agents
are reliably detected (e.g. nitrous oxide and the short acting synthetic opioids
being quintessential examples), and (ii) the index admits of no clear physiological
interpretation as it has been constructed to act as a quantitative surrogate for an
ostensibly subjective state.

Given that the model of Liley can offer potential explanation for the electrorhyth-
mogenesis of the resting EEG and its perturbation by a range of factors that include
sedative and anaesthetic agents, it may have some utility in monitoring the cerebral
effects of general anaesthesia and thus resolve some of the uncertainties associated
with the use of the Bispectral Index. While in principle it is possible to estimate
parameters of the Liley model on the basis of real data, and to investigate how
they correlate with anaesthesia, practically the difficulties are substantial given
the model’s non-linear partial differential formulation and its high dimensional
parameter space. Fortunately many of the model’s important qualitative properties
can be understood through a linearisation of the form [41, 43]

He.k; !/ Dg.h�
e ; q

0/
!M CPM

mD1 bm.kIh�
e ; q/!

M�k

!N CPN
nD1 an.kIh�

e ; q/!
N�n Pee.k; !/ (14.13)

Dg.h�
e ; q/Ge.k; !Ih�

e ; q/Pee.k; !/ (14.14)
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where it has been assumed that only the excitatory input to the excitatory cortical
neuronal population is non-zero.He.k; !/ and Pee.k; !/ are the Fourier transforms
of he.r; t/ and pee.r; t/ respectively. Ge.k; !I q/ is defined as the electrocortical
transfer function and arises from the linearisation about a spatially homogeneous
stable singular point h�

e for a given set of model parameters q, and g.h�
e ; q

0/
represents a factored out common term depending on a subset of model parameters
q0 2 q. By assuming �lk � �l and 
ek � 
e , N and M can be set
to 8 and 5 respectively. Such a linearisation reveals that under physiologically
plausible parameterisations Ge.k; !/ gives resonances corresponding to all the
major EEG frequency bands [41]. Thus such a linearisation implies that resting
EEG can theoretically be understood as arising from a filtered spatio-temporal
random process. This is of particular physiological relevance when it is considered
that EEG during rest and anaesthesia is typically found to be indistinguishable
from a white-noise process [36, 70, 71]. On this basis Eq. (14.13) suggests a quite
specific signal processing strategy by which to estimate Ge.k; !/ and changes
in Pe . By assuming (i) a matching of poles and zeros in transforming from the
continuous to discrete time domains and (ii) a restricted range of wavenumbers k
over which physiologically relevant model linear EEG activity occurs Eq. (14.13)
can be rewritten in the discrete time domain as [43]

He.z/ D kdq.q0/
1CPkD5

kD1 bk.q/z�k

1CPkD8
kD1 ak.q/z�k P.z/ (14.15)

where kd is a constant required to match the gain in going from continuous to
discrete time and z D ei!=fs with fs being the sampling frequency. By assuming
P.z/ describes a band-limited white-noise process Eq. (14.15) can be written as the
following fixed-order autoregressive moving average (ARMA) process

heŒn� D �
kD8X
kD1

akheŒn � k�C
kD5X
kD0

bkuŒn � k�; or (14.16)

A.z/heŒn� D B.z/uŒn� (14.17)

where uŒn� � kdq.q0/pŒn� is a stationary uncorrelated random process and A.z/ D
1CPkD8

kD1 akz�k and B.z/ D 1CPkD5
kD1 bkz�k . Tracking the state of this estimated

electrocortical filter and its innovating input will provide one possible measure for
characterising the cortical effects of anaesthesia. One easily calculated measure of
the state of the estimated electrocortical filter is the scaled mean pole location,
a1. The innovating input can be estimated, by assuming that the factor kdg.q0/
remains invariant to any intervention, as

p
VarŒZ�1fA.z/S.z/=B.z/g� where Z�1 is

the inverse Z-transform. These respective measures are referred to as the Cortical
State (CS) and Cortical Input respectively, and have been useful in differentiating
the electroencephalographic effects of the hypnotic propofol and the analgesic
remifentanil (an ultra-short acting synthetic opioid). Figure 14.7 illustrates the
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Fig. 14.7 Box-and-whisker plots for the derived electroencephalographic measures CI and CS,
during propofol-remifentanil anaesthesia, as a function of the modified Observer’s Assessment
of Alertness/Sedation (OAA/S) score for 0, 2 and 4 ng/ml effect site remifentanil concentrations.
The modified OAA/S scale is a measure of alertness and sedation: 5 = responds readily to name,
4 = responds lethargically to name, 3 = responds to name called loudly and repeatedly, 2 = responds
to mild prodding/shaking, 1 = responds only after painful stimulus, 0 = completely unresponsive.
Boxes represent interquartile ranges, lines enclosed within boxes median values, whiskers represent
largest/smallest values and crosses outliers (Figure adapted from [44])

differences in the response of CS and CI as a function of the Observers Assessment
of Alertness/Sedation (OAA/S) (OAA/S = 5 is fully responsive, OAA/S = 0 is
completely unresponsive) and the level of analgesia (0, 2 or 4 ng/ml remifentanil).
On this basis we can speculate that CS is a measure of hypnosis and CI is a measure
of nociception.

14.5 Conclusion

The aim of this chapter has been to give an account of a relatively simple
neural field model of the resting EEG and to briefly illustrate some of its more
interesting dynamical features as well as speculating on its physiological relevance
in accounting for resting alpha band activity and its perturbation by a range of
endogenous and exogenous pharmacological factors. In particular we discussed
the predicted sensitivity of model dynamics to differential perturbations in cortical
inhibition and how this might account for the electroencephalographic effects of
anesthetics that act principally through GABAergic agonism. We argued that to
first approximation anesthetics alter noise-driven linear properties of the resting
EEG. However it is known that anesthetics are also able to induce quite profound
qualitative alterations in the EEG. At high levels of many sedative and anaesthetic
agents the EEG can exhibit burst suppression. Typically the burst suppression
pattern consists of bursts of high amplitude slow, sharp or spiking activity separated
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by periods of near iso-electricity (suppression) [54]. As anaesthetic depth increases
the periods of burst become shorter. While it is often assumed that the burst-
suppression pattern arises from slow thalamic oscillations driving cortex, the fact
that the pattern survives following cortical deafferentation suggests that it arises
as a consequence of intrinsic dynamical properties of cortical tissue. Therefore
the challenge of ours, and similar models, is to account for this phenomenon in
the context of a plausible physiological framework and the known molecular and
cellular targets associated with anaesthetic action.

There is an emerging practical utility for mean field models as evinced by our
simple fixed order ARMA approach. While this single-electrode approach can, at
least in principle, be easily extended to the multi-electrode case by the suitable
definition of a multivariate (vector) ARMA model the real challenge is to estimate
actual model parameters from empirical data and to see if they accord with known
physiology. At present the action of anaesthetic agents would appear to provide the
most robust context in which to estimate model parameters as they can be directly
associated with known cellular and molecular targets of action.
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Chapter 15
Equilibrium and Nonequilibrium Phase
Transitions in a Continuum Model
of an Anesthetized Cortex

D. Alistair Steyn-Ross, Moira L. Steyn-Ross, and Jamie W. Sleigh

Abstract In this chapter we investigate a range of dynamic behaviors accessible
to a continuum model of the cerebral cortex placed close to the anesthetic phase
transition. If the anesthetic transition from the high-firing (conscious) to the low-
firing (comatose) state can be modeled as a jump between two equilibrium states of
the cortex, then we can draw an analogy with the vapor-to-liquid phase transition of
the van der Waals gas of classical thermodynamics. In this analogy, specific volume
(inverse density) of the gas maps to cortical activity, with pressure and temperature
being the analogs of anesthetic concentration and subcortical excitation. It is well
known that at the thermodynamic critical point, large fluctuations in specific volume
are observed; we find analogous critically-slowed fluctuations in cortical activity
at its critical point. Unlike the van der Waals system, the cortical model can also
exhibit nonequilibrium phase transitions in which the homogeneous equilibrium
can destabilize in favor of slow global oscillations (Hopf temporal instability),
stationary structures (Turing spatial instability), and chaotic spatiotemporal activity
patterns (Hopf–Turing interactions). We comment on possible physiological and
pathological interpretations for these dynamics. In particular, the turbulent state may
correspond to the cortical slow oscillation between “up” and “down” states observed
in nonREM sleep and clinical anesthesia.
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15.1 Introduction

Over the past decade the authors have presented a series of articles [26–28, 31]
describing a theoretical model for the bulk electrodynamical behavior of the cortex
undergoing a general anesthetic-induced phase transition. We picture the cortex as
a continuum mass of excitable tissue in which populations of neurons are densely
interlinked not only by chemical synapses but also by direct electrical connections
known as gap junctions. The time evolution of the spatially-averaged excitatory and
inhibitory soma voltages are governed by a set of eight coupled partial differential
equations; full details are provided in the Appendix.

general anesthetic drugs, such as the commonly-used agent propofol, act by pro-
longing the duration of the inhibitory postsynaptic potential (IPSP), thus boosting
the strength of chemical inhibition in a concentration-dependent manner [7, 14],
and, at higher concentrations, can reduce the strength of inhibitory gap-junction
coupling [33]. The drug-induced boost in chemical inhibition tends to lower the
overall level of cortical activity. When incorporated into our cortical model, we
find that this reduction in cortical tone can either be smooth and continuous, or
abrupt and step-like, depending on the relative balance of inhibitory drive versus
background excitation from subcortical sources.

These alternative descents into anesthesia—either smooth or abrupt—can be
visualized by tracing them onto a manifold of equilibrium states obtained by
solving the cortical equations for their homogenous steady-state values. This means
that we set all time- and space-dependencies to zero, so for the moment there
is no noise, no gap-junction diffusion, no wave propagations through the cortical
continuum, and no point-to-point long-range axonal connections. Although highly
idealized, this homogeneous steady-state cortex provides a useful reference which
guides our analysis by allowing us to investigate the conditions under which
interesting spatiotemporal dynamics—generated by interacting spatial and temporal
instabilities—can emerge spontaneously when the time- and space-dependencies are
re-enabled.

Figure 15.1a shows a representative manifold of equilibrium states for our ideal-
ized homogeneous cortex; these equilibria are distributed across a two-dimensional
“anesthesia domain” with inhibition (anesthetic drug effect) and excitation (subcor-
tical tone) displayed on mutually-perpendicular axes. The presence of a reentrant
“fold” indicates that, for certain combinations of inhibition and excitation, the
cortex has access to three alternative states of cortical activity: a high-firing “up”
state, a low-firing “down” state, and an intermediate unstable mode that serves as a
separatrix between these activated and quiescent states.

The form of the equilibrium manifold for the cortex (Fig. 15.1a) invites an
analogy with thermodynamic states of matter (Fig. 15.1b). For a pure substance, the
gaseous, liquid, and solid states can be located on a pressure–volume–temperature
(P -v-T ) thermodynamic phase diagram of equilibrium states: the specific volume
v (volume per unit mass; inverse density) is determined by both temperature T
and applied pressure P . The isotherms (lines of constant temperature) drawn on
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Fig. 15.1 Analogy between cortical equilibrium states and thermodynamic states of matter.
(a) Distribution of equilibrium firing rates for a homogeneous noiseless cortex as a multi-valued
function of inhibitory and excitatory drives. Control parameter � sets the anesthetic effect; (V rest

is an additive offset representing background cortical excitation. Yellow curve marks the edge of
the reentrant fold; dashed-black curve shows the projection of this edge onto the lower and upper
surfaces, bounding the zone of multiple steady states. Red-green-blue curve shows distribution
of steady states for varying anesthetic inhibition at constant cortical excitation (V rest D 1:5mV
(see green curve of Fig. 15.2a). CP marks the critical point at which high- and low-firing states
become indistinguishable. (b) Classical pressure–temperature–volume (p-v-T ) thermodynamic
phase diagram showing solid, liquid and gas phases of a pure substance. CP marks the critical
point at which gas and liquid become indistinguishable (Adapted from Fig. 2–6 of Sears and
Salinger [23])
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Fig. 15.1b show how a change of phase from vapor to liquid, and then from
liquid to solid, can be organized by increasing pressure while maintaining constant
temperature. Thus changes in pressure can result in phase transitions between
distinct states of matter. If we make the identifications

pressure; P $ anesthetic inhibition; �

temperature; T $ subcortical excitation; (V rest
e

specific volume; v $ cortical firing rate; Qe

then compression along a cortical “isotherm” corresponds to suppression of cortical
activity via increase in anesthetic inhibition (at constant subcortical excitation),
causing a phase transition from the high-firing “up” state to the low-firing “down”
state; this transition can be either abrupt and first-order (e.g., (D 1:5mV) in
Fig. 15.2a, or smoothly continuous (e.g., ( D 3:0mV) and second-order. Thus one
might identify the low-density state of thermodynamics (vapor) with the activated
up-state of the cortex,1 and the high-density thermodynamic state (liquid) with the
quiescent down-state,

vapor $ high-firing up-state of cortex

liquid $ low-firing down-state

The reentrant fold in the Fig. 15.1a distribution of cortical equilibria demarcates
the region in which the cortex can exist in either the high- or low-firing state; the
mid-branch equilibrium states are unstable. The analogous vapor–liquid coexistence
region in the Fig. 15.1b thermodynamic diagram has been simplified by collapsing
what would have been reentrant p-vs-v isotherms onto horizontal lines of constant
pressure. This simplification is achieved by applying a “Maxwell construction”2

to determine an effective pressure that equalizes the area deviations of the curved
isotherm above and below the constructed line (see Fig. 15.2b for an illustration).

The indicative vapor–liquid isoclines in Fig. 15.1b can be made quantitative using
van der Waals 1873 gas model which provides a reasonable description of the
condensation behavior of near-ideal gases such as hydrogen and helium,

	
P C a

v2



.v � b/ D RT (15.1)

where a and b are constants for any given gas, and R is the universal gas constant.
The .Pc; vc; Tc/ coordinate of the critical point of Fig. 15.1b marks the location at

1Of course, the (specific volume) 
 (firing rate) analogy is not perfect: the volume of a gas can
increase without limit, but cortical firing rate is limited by biological constraints, implemented in
the model by imposing a maximum firing rate Qmax

e (see Table 15.1).
2See http://en.wikipedia.org/wiki/Maxwell_construction

http://en.wikipedia.org/wiki/Maxwell_construction
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Table 15.1 Symbol definitions and standard values for cortical model

Symbol Description Value Unit

�e;i Neuron time constant 0.040, 0.040 s

V rev
e;i Reversal potential at dendrite 0, �70 mV

V rest
e;i Neuron resting potential �64, �64 mV

(V rest
e;i Offset to resting potential 1:5, 0 mV

�e Excitatory synaptic gain 1:00� 10�3 mV s

�0i Inhibitory synaptic gain at zero anesthetic �1:05� 10�3 mV s

�e Excitatory rate-constant 170 s�1

�0i Inhibitory rate-constant at zero anesthetic 90–100 s�1

D2 i $ i gap-junction diffusive coupling strength 0–0.26 cm2

D1 e $ e gap-junction diffusive coupling strength D2=100 cm2

N ˛
eb Longer-range e ! b axonal connectivity 2000 –

N
ˇ
eb;ib Local e ! b, i ! b axonal connectivity 800, 600 –

hsc
ebi e ! b tonic flux entering from subcortex 300 s�1

˛ Subcortical noise scale-factor 0.2 –

v Axonal conduction speed 140 cm s�1


eb Inverse-length scale for e ! b axonal connections 4 cm�1

Qmax
e;i Maximum firing rate 30, 60 s�1

�e;i Sigmoid threshold voltage �58:5;�58:5 mV

�e;i Standard deviation for threshold 3, 5 mV

Lx;y Length and width of cortical sheet 25, 25 cm

Subscript label b means destination cell can be either of type e (excitatory) or i (inhibitory)

which liquid and vapor states become indistinguishable. After rescaling pressure,
volume, and temperature as multiples of their respective critical values,

P 0 D P=Pc; v0 D v=vc; T 0 D T=Tc
the van der Waals equation of state can be restated in the dimensionless form [23],

�
P 0 C 3

v02

� �
3v0 � 1� D 8T 0: (15.2)

This reduced form is known as the law of corresponding states that applies to any
van der Waals gas. To simplify notation, we now drop the primes. Figure 15.2b plots
Eq. (15.2) for a family of five van der Waals isotherms bracketing the .Pc; vc; Tc/ D
.1; 1; 1/ critical point. When plotted as a P -vs-v graph, the slope of the Tc isotherm
at the critical point is zero, and this is also a point of inflection,

�
@P

@v

�
T

ˇ̌̌
ˇ̌
.Pc ;vc ;Tc/

D 0; and

�
@2P

@v2

�
T

ˇ̌̌
ˇ̌
.Pc ;vc ;Tc/

D 0:
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Conversely, the slope of the v-vs-P graph is infinite here, .@v=@P /T ! 1,
implying that the specific volume (and its inverse, density) of the van der Waals
gas will be exquisitely sensitive to minor fluctuations in pressure. Indeed, the
critical point is characterized by the phenomenon of critical opalescence in which
molecular-level fluctuations between vapor and liquid phases grow to micron length
scales, causing strong scattering of light and a cloudy appearance to the mixture of
phases [24].

The analogous critical point for the model cortex can be identified on the
( D 2:5398 cortical “isotherm” of Fig. 15.2a. This special point corresponds to
the apex of the fold of the Fig. 15.1a manifold of steady states: here, the three firing-
rate solutions merge to the single value Qe=s�1 � 9:44. By analogy with the van
der Waals gas, because .@Qe=@�/( ! 1 here, we expect a divergent increase in
cortical fluctuations as anesthetic effect approaches its critical value, � ! �c . In
fact, such divergences in cortical response are not confined to trajectories passing
through the critical point: as we will demonstrate in the next section, any transition
that approaches a fold in the steady-states manifold will exhibit divergent growth of
critically-slowed fluctuations.

The remainder of the chapter is structured as follows. We simulate an anesthetic-
induced phase transition from the up- (high-firing) to the down- (low-firing) state
along a (V rest

e “isotherm” as a possible representation of induction of anesthesia.
We describe this up! down state change as an equilibrium phase transition because
the cortex is transiting from one homogeneous equilibrium state to another.

We then place the cortex at the critical point, and alter two parameters to
demonstrate emergence of two distinct classes of symmetry-breaking nonequi-
librium phase transitions in the cortical model. By reducing the inhibitory rate
constant �i that governs the timeliness of the inhibitory postsynaptic potential, we
can generate a temporal or Hopf instability that causes whole-of-cortex oscillations.
Alternatively, by increasing the strength of diffusive gap-junction coupling D2

between inhibitory neurons, we can precipitate a spatial or Turing instability that
forms structured patterns of cortical activity. Finally, if both instabilities are allowed
to interact, then slow chaotic spatiotemporal oscillations can emerge. We conclude
the chapter with a discussion of possible physiological interpretations of these
distinct phase transition types. In the Appendix, we list the cortical equations and
tabulate the parameter values used in the model, describe the parameterization of
anesthetic drug effect, and explain how the linear stability analysis was performed.

15.2 Induction of Anesthesia as an Equilibrium
Phase Transition

We simulate induction of anesthesia by iterating the cortical equations (15.3)–(15.7)
(listed in section “Model Equations” of Appendix) for slowly incrementing steps
in drug inhibitory effect starting from � D 0:94 on the up-state branch of the
(V rest

e D 2:0mV “isotherm” (the “(D 2:0” curve in Fig. 15.2a). We deliberately
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Fig. 15.3 Linear stability predictions for homogeneous cortex close to turning point near �i D
1:0539. Solid and dashed curves show respectively the real and imaginary parts of the dominant
eigenvalue ƒ as a function of wavenumber q. (a) Top branch is marginally stable: ƒ.q D 0/

approaches zero from below, implying globally-slowed decay times 1=ƒ and exaggerated low-
frequency responsiveness. (b) Bottom branch is strongly stable: perturbations will be rapidly
damped. Settings: (V rest

e D 2:0mV, �0i D 100 s�1, D2 D 0

suppress the possibility of emergent temporal and spatial instabilities with appropri-
ate choices for inhibitory postsynaptic potential (IPSP) rate constant (�0i D 100 s�1),
and for inhibitory gap-junction diffusion strength (D2D 0) respectively. These
parameter selections permit direct observation of the critical slowing and growing of
noise-induced fluctuations about homogeneous equilibrium as the cortex gradually
approaches the upper-branch turning point.

These selections were guided by analysis of the linear stability dispersion graphs
for the cortical equations (see section “Linear Stability Analysis for Homogenous
Stationary States” of Appendix for details). We plot the real and imaginary parts
of the dominant eigenvalue, ƒ.q/ D ˛.q/ C i!.q/ as a function of wavenumber
q, looking for regions for which the growth term, ˛, changes sign from negative
(exponential damping: equilibrium is stable) to positive (predicting exponential
growth of perturbations: equilibrium state has become unstable).

For our default parameter settings (�0i D 100 s�1, D2 D 0), we find that all
points along the ( D 2:0 “isotherm” are strongly stable (i.e., ˛.q/ is significantly
negative across the full range of wavenumbers), except for coordinates approaching
the turning points marking the extremum for the up! down (induction) or the
down! up (emergence) state changes. As illustrated in Fig. 15.3a, a homogenous
equilibrium state close to the upper-branch turning point is only marginally stable,
since the dominant eigenvalue is trending towards zero from below, becoming
precisely zero at the turning point. This indicates that noise-induced perturbations
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Fig. 15.4 Numerical simulation of the cortical equations showing induction of anesthesia as a
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Qe for two positions on the cortical grid (black and gray traces) superimposed on the distribution
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e (thin-black trace). (b) Firing-rate fluctuations ıQe D Qe�QSS
e

for the two time-series displayed in panel-a. (c) Fluctuation power Pe computed from the spatial
variance across the 120 � 120 cortical grid at each time-step. Simulation settings: Duration: 20 s;
time-step (t D 0:4ms; stimulus: continuous low-intensity subcortical white noise

are predicted to produce fluctuation responses whose lifetimes and amplitudes will
become more pronounced as increasing drug effect moves the cortex inexorably
towards the turning point for anesthetic induction. Fluctuations about the up-state
will grow in scale and spatial extent until eventually the entire cortex fluctuates into
the low-firing down-state.

These predictions are verified in the numerical simulations reported in
Fig. 15.4 showing induction of anesthesia along the (V rest

e D 2mV “isotherm”
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with �0i D 100 s�1, D2D 0. As expected, Fig. 15.4a shows that the Qe excitatory
firing rates at two representative grid-points follow closely the QSS

e homogeneous
equilibrium curve right up until the turning point; then activity “falls” onto the
low-firing bottom branch corresponding to the unconscious comatose state. Of
greater interest are the ıQe firing-rate fluctuations of Fig. 15.4b, since changes in
the spectral content and amplitude of these deviations from equilibrium provide
an early warning of the impending state change. The continuous low-intensity
subcortical white noise provides a subtle background signal that constantly probes
cortical susceptibility to random stimuli. It is evident from Fig. 15.4b that the noise-
induced fluctuations simultaneously become stronger and slower as the turning
point is approached, so that the transition itself can be viewed as an “infinite
period” (i.e., zero frequency) giant fluctuation into the new (lower-branch) state.

We can also track the divergent growth in fluctuation power by computing the
spatial variance Pe D varŒQe.x; y/� across 120�120 cortical grid: Fig. 15.4c shows
that the intensity of spatial fluctuations increases by about a factor of 40 during the
course of the induction. Previously [26], we have suggested that this surge in critical
fluctuations might provide a natural explanation for the counterintuitive biphasic
drug effect observed across a range of inductive anesthetic agents [16, 17]: a drug
intended to suppress brain activity can provoke an excitatory EEG response as the
point of induction is approached.

15.3 Critical Fluctuations at the “Opalescent” Point

We now place the cortex “exactly” at the critical cusp at which the three-root region
collapses to a single root. This is the point labeled “CP” on Figs. 15.1a and 15.2a,
and corresponds to the vapor–liquid equivalence point at coordinate .P; v; T / D
.1; 1; 1/ for a reduced van der Waals gas (see Fig. 15.2b and Eq. (15.2)).

Unlike the van der Waals gas, the critical point for the cortical equations cannot
be located analytically. Instead we must perform a two-dimensional numerical
search within the three-root region of the equilibrium manifold, marching alter-
nately along the � and (V rest

e orthogonal directions, eventually converging to
the point where the three roots smoothly coalesce to a single solution. In fact,
it is not possible to identify this critical coordinate exactly. Using MATLAB’s
IEEE-754 double-precision floating-point arithmetic, the best estimate we can
achieve (after several thousand binary-search iterations) for the critical coordinate is
.�I (I Qe/c � .1:1032 3341 0877 578I 2:5397 7874 0236 721I 9:4385˙ 0:0024/,
with respective units 1, mV, s�1. At this particular .�;(/c coordinate, we find three
equilibrium firing rates:Qe D Œ9:4409; 9:4399; 9:4362� s�1, and this spread of val-
ues provides the uncertainty estimate in .Qe/c . We find that further iterations do
not improve convergence. Thus .Qe/c is only known to a precision of 3 significant
figures, 13 orders of magnitude less precise than the values for �c and (c . This
failure to locate the critical firing rate more precisely is a natural consequence of the
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Fig. 15.5 Stability predictions at critical point CP (Fig. 15.2a) showing effect of variations in
inhibitory rate-constant �0i (s�1) and inhibitory diffusion D2 (cm2): (a) Critical homogeneous
stability .�0i ;D2/ D .100; 0/. (b) Temporal instability .�0i ;D2/ D .90; 0/: all wavenumbers
q < 0:168 cm�1 are unstable, with frequencies ranging from 0 to 2 Hz. Outcome is a �2-Hz Hopf
oscillation (Fig. 15.7). (c) Spatial instability .�0i ;D2/ D .100; 0:26/: A band of spatial frequencies
is unstable, with peak instability near 0:26waves/cm. A stationary Turing pattern is expected
(Fig. 15.8). (d) Combined q D 0 and Turing instabilities .�0i ;D2/ D .90; 0:26/. Outcome is
chaotic spatiotemporal oscillations (Fig. 15.9). Solid and dashed curves show real and imaginary
parts of the dominant eigenvalue respectively

manifold topology: at the critical point, the gradients .@Qe=@�/c and .@Qe=@(/c
both become infinite, so equilibrium firing rates become exquisitely sensitive to tiny
variations in either anesthetic pressure � or subcortical excitation (.

Figure 15.5 shows the linear stability predictions for the cortical model placed
“at” the .�; (; Qe/c critical point. Leaving the IPSP rate-constant and inhibitory
diffusion strength unchanged from their default values (�0i D 100 s�1; D2 D 0;
same as for Figs. 15.3 and 15.4) produces the disperson curves of Figs. 15.5a. The
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Fig. 15.6 Noise-perturbed simulations at cortical critical point .�i ; (V rest
e =mV/ � .1:1032;

2:5398/ marked CP in Fig. 15.2. With �0i D 100 s�1 and D2 D 0, Fig. 15.5a predicts that no
temporal or spatial instabilities are expected. Cortical equations are iterated for 20 s. (a) Bird’s-eye
view of excitatory firing-rate activity Qe across the 120 � 120 cortical grid at final time t D 20 s
(red = raised activity; blue = reduced activity). (b) Time-series of cortical activity at two points
x D 20, x D 80 down the grid midline y D 60. (c) Space-time strip-chart of cortical activity
along the y D 60midline as a function of time. Critical fluctuations show activity that is correlated
over space and time

top-branch dominant eigenvalue has a real part that is almost precisely zero at zero
wavenumber (ƒ.q D 0/ � �5 � 10�6 s�1), and more negative elsewhere. This
means that the homogeneous equilibrium state is marginally stable: noise-induced
fluctuations will be very long-lived and correlated throughout the cortex.

The simulation results of Fig. 15.6 illustrate the emergence over 20 s of large,
slow firing-rate fluctuations whose spatial variance, Pe & 4� 10�3 s�2, exceeds the
power recorded at the biphasic induction peak of Fig. 15.4c. The space–time record
in Fig. 15.6c shows formation of correlated “cloudy” structures that persist over
space and time that we might identify with the critical opalescence phenomenon
characterizing the liquid–gas equivalence point of a van der Waals gas.

15.4 Nonequilibrium Phase Transitions in the Cortical Model

We have characterized the anesthetic state change of Sect. 15.2 as an equilibrium
phase transition because the model cortex transits from one homogeneous station-
ary phase—the activated up-state—to another homogeneous phase—the comatose
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Fig. 15.7 Stochastic simulation run at critical point CP with inhibitory rate-constant lowered to
�0i D 90 s�1 to precipitate a temporal instability (diffusion remains unchanged at D2 D 0).
(a) Bird’s-eye snapshot of excitatory activity Qe across the cortical grid at t D 20 s. (b) Time-
series of cortical activity at two points (x D 20; 80 down y D 60midline). (c) Space-time chart of
cortical activity along the y D 60 midline. Figure 15.5b predicts emergence of long-wavelength
low-frequency waves; these rapidly organize into synchronous �1.6-Hz whole-of-cortex Hopf
oscillations

down-state; significantly, both the source and the destination states lie on the man-
ifold of equilibrium states. We now examine three examples of cortical transitions
to nonequilibrium states in which the cortex (i) oscillates coherently in time via
emergence of a Hopf instability, or (ii) breaks up into a stationary spatial pattern
via a Turing instability, or (iii) generates a complex spatiotemporal wave dynamics
arising from interactions between the Hopf and Turing instabilities. Although
these latter examples can be described as “far from equilibrium”, Figs. 15.7–15.9
show that the emergent dynamics tends to organize itself into periodic or chaotic
excursions about the destabilized homogeneous equilibrium state.

15.4.1 Emergence of Hopf Instability

We now make a small adjustment to �0i , the rate-constant governing the time-course
of the inhibitory alpha-function impulse response at the postsynaptic membrane:
we reduce the rate-constant from its default value of �0i D 100 to 90 s�1, delaying
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Fig. 15.8 Stochastic simulation run at critical point CP with inhibitory diffusion raised to D2 D
0:26 cm2 to provoke a spatial (Turing) instability (IPSP rate-constant has been restored to default,
�0i D 100 s�1). (a) Bird’s-eye snapshot of grid activity Qe at t D 20 s. (b) Time-series of cortical
activity at 60 sample points evenly spaced down the y D 60 midline. (c) Space–time chart of
cortical activity along the y D 60 midline. Figure 15.5c predicts emergence of a stationary pattern
at wavenumber q � 0:26waves/cm, consistent with the emergent pattern of �6 blue (low-firing)
islands per 25 cm length of cortex

the time to IPSP peak from 10.0 to 11.1 ms. Applying this apparently minor
change at the CP critical equilibrium point .�i ; (V rest

e =mV/ � .1:1032; 2:5398/

of Figs. 15.1a and 15.2a causes a significant change to the stability properties at
the critical point—comparing the linear dispersion graphs of Fig. 15.5b against
Fig. 15.5a (default), we see that a range of slow spatial frequencies 0� q.
0:168 cm�1, and their associated temporal frequencies 0 � !=2� . 2:0Hz, are
predicted to become unstable, with peak instability predicted at q D 0 (i.e., infinite
wavelength).

The simulation result in Fig. 15.7 demonstrates that the homogeneous steady
state is no longer stable, and, within a few seconds, the competing but weaker long-
wavelength unstable modes rapidly quench in favor of a coherent whole-of-cortex
temporal oscillation of frequency �1.6 Hz that we classify as a Hopf mode.

15.4.2 Emergence of Turing Instability

We can precipitate a spatial instability in cortical firing-rate activity by restoring
the IPSP rate-constant to its �0i D 100 s�1 default value (to suppress the Hopf
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Fig. 15.9 Critical-point simulation with inhibitory PSP rate-constant and diffusion strength set
to �0i D 90 s�1 and D2 D 0:26 cm2 respectively. This combination allows Hopf (Fig. 15.7)
and Turing (Fig. 15.8) instabilities to interact. (a) Bird’s-eye snapshot of grid activity Qe at
t D 20 s. (b) Time-series of cortical activity at two points (x D 20; 80 along the y D 60

midline). Oscillations are now incoherent. (c) Power spectrum forQe fluctuations over final 13 s of
simulation, expressed in dB relative to 10 Hz. Reference line shows a power law f �3:4. (d) Space-
time chart of cortical activity along the y D 60midline. Figure 15.5d predicts competition between
an unstable q D 0 homogeneous mode and a Turing mode at q � 0:2waves/cm; the outcome is
chaotic traveling wavefronts that generate slow (�1 Hz) oscillations in firing rate

instability), then boosting the strength of inhibitory gap-junction diffusion from
D2 D 0 to 0.26 cm2. Because excitatory diffusion D1 is presumed to be much
weaker than inhibitory diffusion (D1 D D2=100), conditions are now favorable
for spontaneous emergence of spatial patterning. This is evident from the disper-
sion panels of Fig. 15.5: the low-frequency wave-instability of panel-B has been
suppressed and replaced in panel-c by a broad-spectrum Turing pattern (stationary
wave) with a wavenumber peak near q D 0:26waves/cm. For a square cortex of
side-length 25 cm, we expect the resulting Turing pattern to have a wavelength of
�4 cm, but this linear analysis cannot provide more detailed information about the
final pattern structure.

Figure 15.8 shows the results of a stochastic simulation with inhibitory diffusion
set toD2 D 0:26 cm2. The cortex is initialized at the CP homogeneous critical point,
and immediately starts evolving towards a two-dimensional patterned configuration.
The dominant inhibitory diffusion causes the cortex to clump into islands of lowered
activity (colored blue), surrounded by seas of relatively higher activity (red), with
roughly symmetric excursions above and below the homogeneous equilibrium firing
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rate of �9.44 s�1. As seen in panels-b (time-series) and -c (space–time chart), the
Turing pattern is almost fully developed after about 2 s.

15.4.3 Mixed Modes: Hopf–Turing Interactions

We can investigate interaction between the Hopf (temporal) and Turing (Turing)
instabilities by simultaneously lowering the inhibitory PSP rate-constant to �0i D
90 s�1 while raising the inhibitory diffusion strength to D2 D 0:26 cm2. The linear
dispersion graph of Fig. 15.5d predicts a competition between a stationary Turing
mode at wavenumber q � 0:2 cm�1 and an instability at q D 0, but there is no
indication of any temporal oscillations in the dominant eigenvalue spectrum.

The simulation result of Fig. 15.9 confirms that the q D 0 homogeneous mode is
indeed unstable, but as the cortex “falls away” from the uniform state, slow Hopf-
like�1.2 Hz temporal oscillations develop which, after a few seconds, break up into
turbulent spatiotemporal patterns. By running paired noise-free simulations from
closely similar initial conditions (not shown here), we find exponential divergence
in trajectories (i.e., positive dominant Lyapunov exponent) indicating that Hopf–
Turing interactions can produce patterns that are chaotic in space and time.

15.5 Discussion

It is self-evident that the brain has access to a multitude of distinct activity states,
with wake, sleep, and anesthetic-induced coma being three of the more grossly
obvious examples. Although EEG and fMRI sensing modalities reveal that these
brain states are essentially dynamical and unsteady, it does not seem unreasonable
to suggest that, to first approximation, one can map a given brain state to a particular
coordinate within a suitably chosen domain of homogenous equilibrium states, and
to consider the spatiotemporal dynamics for that state either as a small fluctuation—
or as a large oscillation in space and time—about the equilibrium reference. For the
wake-to-anesthesia transition we selected anesthetic inhibition (�i ) and subcortical
excitation ((V rest

e ) to represent orthogonal wake–sleep control parameters, with
excitatory firing rate (Qe) representing the level of cortical activation.

The significant feature of the Fig. 15.1a manifold of equilibrium states is the
presence of a multiroot region, suggesting that, for certain regions of the sleep–wake
domain, the brain can switch activity states by moving from one equilibrium point
(e.g., the “up” state of wakefulness) to another (e.g., the “down” state of comatose
unconsciousness). We characterize this change as an equilibrium phase transition
because both states can be located on the stable branches of the equilibrium
manifold.

For default parameter settings, the model predicts a first-order jump transition
between states at the point of loss of consciousness (LOC); this should be associated
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with a pronounced growth in low-frequency fluctuation power as the saddle-node
bifurcation point is approached. In earlier work [26, 28, 30], we have suggested
that this fluctuation power surge might provide an explanation for the paradoxical
boost in delirium-like brain activity on approach to the point of anesthetic induction
[16, 17].

A similar boost in fluctuation power is expected for the recovery of consciousness
(ROC), but because this second bifurcation point generally occurs at a lower drug
concentration (except for trajectories passing through the CP critical point), the EEG
power peak for recovery will be hysteretically displaced from that for induction.
This prediction of two power surges per induction–recovery cycle is consistent with
clinical reports by Kuizenga et al. [16, 17]. This hysteretic separation between the
points of anesthetic induction and recovery will provide a form of “neural inertia”
that acts to preserve the current behavioral state. Strong evidence for anesthetic
neural inertia in insects (fruit flies) and mammals (mice) has been reported in a
recent paper by Friedman et al. [8].

15.5.1 Critical Fluctuations

We highlighted an analogy between our cortical model and the vapor $ liquid
phase transition of classical thermodynamics (more accurately: thermostatics). If
gas pressure P and gas temperature T can be mapped to anesthetic “pressure” �i
and subcortical “temperature”(V rest

e , then specific volume v (inverse density) could
be analogous to cortical firing rate Qe such that the “up” and “down” states of the
cortex become the vapor and liquid states of a van der Waals substance. The van
der Waals model predicts the existence of a critical point CP at which liquid and
vapor states are indistinguishable, and which is characterized by the phenomenon
of critical slowing: noise-evoked divergent density fluctuations that become slower
and larger on close approach to CP. The corresponding critical point on the cortical
manifold also displays divergent behavior: extreme sensitivity to small perturbations
about the equilibrium point (Fig. 15.6).

We find that it is not necessary to traverse the CP critical point in order to observe
critically-slowed fluctuations: it is sufficient to closely approach any of the saddle–
node turning points on the anesthetic induction “isotherms” of Fig. 15.2a, so in this
sense, the locus of saddle–node bifurcations locates a set of “secondary” critical
points. The discontinuous phase transition behavior associated with a saddle–node
annihilation was demonstrated in Fig. 15.4.

15.5.2 Nonequilibrium Phase Transitions in the Cortex

Unlike the van der Waals gas, the cortical model can also exhibit nonequilibrium
phase transitions in which the homogeneous equilibrium state can destabilize in
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favor of either (i) a whole-of-cortex temporal oscillation (Hopf instability), or (ii) a
symmetry-breaking stationary spatial pattern of cortical activity (Turing instability),
or (iii) a complex dynamical spatiotemporal pattern resulting from interacting Hopf–
Turing instabilities.

For the particular set of cortical parameters listed in Table 15.1, a low-frequency
(�1.6-Hz) Hopf instability can be evoked by imposing a 10 % reduction to �i ,
the rate-constant for the inhibitory postsynaptic potential (Fig. 15.7), while a
stationary Turing structure will spontaneously precipitate from homogeneous rest
if the inhibitory gap-junction diffusion strength is boosted from D2 D 0 (all gap
junctions closed) toD2 D 0:26 cm2 (Fig. 15.8). And if both parameters are changed
simultaneously, the result is a dynamic interaction between Hopf and Turing
instabilities giving a turbulent mix of slow traveling waves of cortical activity that
permeates the entire cortex (Fig. 15.9).

Several authors [15, 19, 34] have identified the pure-Hopf oscillatory mode with
the pathological state of grand mal seizure. In the present model, emergence of
this temporal instability is associated with delayed responsiveness at the inhibitory
chemical synapses (i.e., reduction in �i rate-constant H) prolonged time-to-
peak for inhibitory postsynaptic potential) paired with weak gap-junction diffusion
between inhibitory neurons (i.e., D2 � 0). If this is the case, then boosting
inhibitory diffusion—by opening gap junctions to allow competitive interaction
between Hopf and Turing modes—should be protective against seizure; conversely,
blocking inhibitory gap junctions will tend to increase propensity to seizure. While
there is clinical evidence in support of this idea [12, 32, 36], other workers have
reported the opposite effect (e.g., [9, 13, 21]), namely that gap-junction blockers
have an anticonvulsant effect. More clinical and modeling work will be required to
resolve this discrepancy.

Strong inhibitory diffusion tends to suppress oscillations in favor of a stationary
Turing pattern. The extreme case of a frozen Turing “crystal” of cortical activa-
tions and inactivations is probably pathological since there is no opportunity for
information transfer across the cortex. However, Turing structuring may be relevant
to early brain development when the immature brain is richly endowed with gap
junctions [3] and the conditions for formation of permanent Turing patterns are
most favorable. Cartwright [4] has proposed that the morphogenesis of the maze-
like features of the gyri and sulci of the cortex is a Turing solution, but his
speculation posits an axonal guidance competition between (unknown) inhibitor
and activator chemical species rather than a gap-junction process dominated by
inhibitory diffusion.

Suitable tuning of the inhibitory synaptic rate-constant �i and inhibitory gap-
junction diffusivity D2 locates a codimension-2 Turing–Hopf bifurcation point at
which Turing and Hopf instabilities are delicately balanced, giving rise to oscillating
Turing patterns and traveling waves. These interactions can produce a chaotic
dynamics typified by large-amplitude traveling wavefronts whose passage generates
broad-spectrum (0.1–3-Hz) slow oscillations between “up” and “down” states
(Fig. 15.9). This chaotic dynamics may correspond to the cortical slow oscillations
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seen in NREM sleep and anesthesia [20, 25]. This putative Turing–Hopf dynamical
mechanism for the slow oscillation is complementary to, and quite distinct from, the
classical explanations that assume slow modulations of ionic currents (e.g., [2]).

15.5.3 Effect of Anesthesia on Sub-brain Structures

Our model assumes that anaesthetic drugs have no effect on either the subcortical
tone sc entering the cortex, or on the cortical resting potential V rest

e . In practice,
sedative concentrations of propofol and isoflurane have been found to inhibit the
aminergic brain-stem centers which should result in a decrease in resting potential.
Thus a more realistic induction-of-anaesthesia trajectory on the manifold would
be along the “diagonal” (towards the reader) in Fig. 15.1a—rather than following
an exact (V rest

e “isotherm”. However, the degree of direct anesthetic supression
(or even activation) of aminergic activity is uncertain, so the actual trajectories are
unknown. Another unresolved question is the effect of intense structured input into
the (anesthetised) cortex from the thalamus: in particular, the oscillatory bursting
that gives rise to sleep-like spindle (10–14 Hz) patterns in the EEG. We plan to
incorporate a thalamic structure into the cortical model to permit exploration of
thalamocortical interactions during wake, sleep, and anesthesia.

There is accumulating experimental evidence that the loss of consciousness that
occurs with both GABAergic and nonGABAergic general anesthesia is strongly
associated with loss of long-range functional connectivity in the brain [1, 10, 18];
it seems that this long-range connectivity has to be associated with information-rich
activity in order for consciousness to be present. Although there is a paradoxical
anesthetic boost in long-range spindle synchrony, these 10–14-Hz waveforms are of
stereotypical shape and are information-poor [5].

It should be possible to test and refine our model by applying an appropriate
form of Bayesian methodology (such as dynamic causal modeling) to clinical data
in order to infer the likely trajectories across the manifold, as has been done recently
for sleep staging [6].

15.5.4 Multiple Equilibria and Cortical Self-Organization

Implicit in our model construction is the idea that, in order to maximise flexibility
and speed of response, the healthy cortex operates in regions that are never far
from points of bifurcation and controlled instability. Referring to Fig. 15.1a, this
means that we expect the cortical operating point to be located within—or close
to—the reentrant fold, allowing access to multiple equilibrium states. Induction
of anesthesia can be viewed as an enforced traversal of the manifold leading to a
phase transition-like switching between high- and low-firing states of the cortex and



15 Nonequilibrium Phase Transitions Under Anesthesia 411

an abrupt loss of consciousness. Similarly, the observation of drug hysteresis—the
awakening of a patient at a lower level of anesthetic concentration than that required
to put her to sleep—can be visualized as traversals of distinct induction and recovery
trajectories.

We find that when the cortical operating point is located within—or close to—
the multiroot domain, the model can exhibit a wide and diverse range of dynamical
behaviors. But at locations far from the fold (not shown here), the response to
stimulus is typically weak and stereotyped—the cortex becomes “too stable” and is
no longer “fit for purpose” in an interactive biological sense. If diversity of response
is biologically desirable, then we propose that there exists an (as yet unknown) self-
organizing principle that biases the cortex towards its multiroot region, permitting
both equilibrium and nonequilibrium phase transition-like changes in brain state.
If this idea is correct, then there must exist multiple redundant neurobiological
mechanisms that work to ensure that the brain remains close to its bifurcation points.
The grand challenge will be to identify the nature of this self-organizing learning
rule.

Appendix

Model Equations

The cortex is modeled as a 2-D continuum of excitatory and inhibitory neurons,
interconnected via resistive gap junctions and neurotransmitter-mediated chemical
synapses. The spatially-averaged excitatory (inhibitory) soma potentials Ve (Vi )
obey partial differential equations,

�e
@Ve

@t
D V rest

e C(V rest
e � Ve C Œ�e  ee˚ee C �i  ie˚ie�CD1r2Ve ; (15.3)

�i
@Vi

@t
D V rest

i � Vi C Œ�e  ei˚ei C �i  ii˚ii�CD2r2Vi ; (15.4)

with chemical-synaptic inputs Œ: : :� enclosed in square brackets, and gap-junction
inputs entering as diffusion terms Dr2Ve;i . Here, �b (b D e; i ) is the soma time-
constant; V rest

b is the soma resting voltage; �b is the chemical synaptic strength with
�e > 0 (EPSP) and �i < 0 (IPSP). These strengths are scaled by dimensionless
reversal-potential functions  ab (a D e; i ),

 ab.t/ D V rev
a � Vb.t/
V rev
a � V rest

b

;

that are normalized to unity when the neuron is at its resting voltage, and are zero
when the membrane voltage reaches the relevant reversal potential (see Table 15.1
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for values). The ˚eb;ib functions in Eqs. (15.3, 15.4) are chemical-synaptic input
fluxes obeying second-order differential equations,

�
d

dt
C �e

�2
˚eb D �2e

�
N˛

eb 
˛
eb.t/CNˇ

ebQe.t/C sc
eb.t/

�
; (15.5)

�
d

dt
C �i

�2
˚ib D �2i N

ˇ
ib Qi.t/; (15.6)

with dendritic rate constants �e;i . The cortico-cortical and local connectivities N˛

and Nˇ scale their respective incoming fluxes ˛ , Qe;i respectively; these fluxes
are supplemented by an unstructured subcortical stimulation sc modeled as a small
white-noise variation �.t/ about a constant tone hsci,

sc
eb.t/ D hsc

ebi C ˛

q
hsc

ebi �eb.t/;

where ˛ is a dimensionless noise-amplitude scale-factor. The local fluxes Qe;i in
Eqs. (15.5, 15.6) are defined by a sigmoidal mapping from soma voltage to firing
rate,

Qe;i .t/ D
Qmax
e;i

1C exp Œ�C .Ve;i .t/ � �e;i / =�e;i � ;

with C D �=
p
3. Here, � is the population-average threshold for firing, � is its

standard deviation, and Qmax is the maximum firing rate.
The cortico-cortical flux ˛ in Eq. (15.5) is generated by excitatory sources

Qe.r; t /, and obeys a 2-D damped wave equation [22],

"�
@

@t
C v
eb

�2
� v2r2

#
˛eb.r; t / D .v 
eb/

2 Qe.r; t / ; (15.7)

where 
eb is the inverse-length scale for e ! b axonal connections, and v is the
axonal conduction speed.

The r2 diffusion terms in Eqs. (15.3, 15.4) describe the voltage contribution
arising from gap-junction currents between adjacent neurons. Gap-junction i -to-i
coupling between inhibitory interneurons is substantially more abundant than e-to-e
coupling between excitatory neurons [3], and in layer-1 of cortex, over 90 %
of the neural density is inhibitory [35], suggesting the existence of a syncytium
of interneuron-to-interneuron diffusive scaffolding that spans the cortex. In view of
the relative dominance of i -to-i diffusion, we set the e-to-e diffusion strengthD1 to
be small fraction of inhibitory diffusion D2 (viz. D1 D D2=100), with D2 being an
adjustable parameter (see [29] for detailed derivation and estimation ofD2 diffusive
coupling).
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Modeling Propofol Anesthesia

Inductive anesthetic agents, such as propofol, suppress neural activity by prolonging
the opening of GABA (gamma�aminobutyric acid) channels on the postsynaptic
neuron [7], allowing increased influx of chloride ions leading to hyperpolarization.
We model propofol effect by simultaneously scaling both the inhibitory synaptic
strength �i (in Eqs. (15.3, 15.4)) and the dendritic rate-constant �i (Eq. (15.6)) by
a dimensionless scale-factor � that is set to unity in the absence of propofol, and
which grows proportionately to propofol concentration,

�i ! ��0i ; �i ! �0i =�

where �0i and �0i are the anesthetic-free default values. This scaling prolongs the
duration of the inhibitory postsynaptic potential (IPSP) without altering its peak
amplitude [14] so that the area of the IPSP response (representing total charge
transfer) increases linearly with drug concentration. We note that at very high
propofol concentrations—well above the clinically relevant range—the charge-
transfer versus drug-concentration curve shows saturation effects [14], but the
assumption of linearity is accurate at low concentrations, and has been used by Hutt
and Longtin [11] in their anesthesia modeling.

Linear Stability Analysis for Homogenous Stationary States

Equations (15.3–15.7) define the cortical model in terms of two first-order (Ve;i
soma voltages), and six second-order (˚ee;eiI ˚ie;iiI ee;ei firing-rate fluxes) partial
differential equations (DEs). If we disable the subcortical noise and take note of
the parameter symmetries evident in Table 15.1 (viz., N˛

ee D N˛
ei ; N

ˇ
ee D N

ˇ
ei ;

N
ˇ
ie D Nˇ

ii ), the cortical system reduces to a set of two first-order and three second-
order DEs, equivalent to eight first-order equations. We locate the homogenous
equilibrium states by eliminating all space- the time-derivatives in differential
equations (15.3–15.7) .r2 D 0I @=@t D @2=@t2 D 0/, then solving (numerically)
the resulting set of nonlinear coupled algebraic equations for the steady-state firing
rates .Qe;Qi / of the excitatory and inhibitory neural populations as a function of
anesthetic effect � and resting potential offset �V rest

e . The resulting distribution of
homogeneous stationary states are displayed in Figs. 15.1a and 15.2a.

We define an eight-variable state vector XD �
Ve; Vi ; ˚eb; P̊eb; ˚ib; P̊ ib; eb; Peb

�T

with homogeneous equilibrium value X.0/. We examine the linear stability of this
stationary state by imposing a small spatiotemporal disturbance ıX about X.0/,

X.t; r/ D X.0/ C ıX.t; r/
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with ıX being a plane-wave perturbation

ıX.t; r/ D ıX.t/ eiq�r D ıX.0/ eƒt eiq�r ;

where q is the wavevector with wavenumber jqj D q, andƒ is an eigenvalue whose
real part gives the growth rate of the ıX.0/ initial perturbation: if Re.ƒ/ > 0,
an instability is predicted. Substituting X D X.0/ C ıX into Eqs. (15.3–15.7) and
retaining only linear terms results in the matrix equation,

d

dt
ıX D J.q/ ıX ;

where J is an 8 � 8 Jacobian matrix in which the r2 Laplacians for excitatory and
inhibitory diffusion (Eqs. 15.3, 15.4), and wave propagation (Eq. 15.7) appear as
�q2 terms. The eight eigenvalues owned by J describe the linearized dynamics
of the homogeneous cortex. For each wavenumber q, we extract and plot the
dominant eigenvalue—i.e., that eigenvalue whose real part is most positive (or least
negative)—since this describes the most strongly growing (or most long-lived) mode
at a given spatial frequency. The resulting ƒ vs q dispersion curves are shown in
Figs. 15.3 and 15.5.

Although the linear dispersion curve provides valuable guidance regarding the
onset of instability (i.e., when the real part of the dominating eigenvalue will
approach zero), it cannot predict accurately the new dynamics that will emerge
once the homogeneous steady state has lost stability and the nonlinear terms can
no longer be ignored. This mismatch between linear dispersion prediction and
actual simulation outcome is nicely illustrated in Fig. 15.5b which suggests a zero-
frequency instability at zero wavenumber will interact with a low frequency wave
instability, while the simulation of Fig. 15.7 shows that the actual outcome is a
1.6-Hz Hopf oscillation at q D 0. Similarly, Fig. 15.5d indicates a zero-frequency
instability at q D 0 competing with a stationary Turing, but the Fig. 15.9 simulation
shows destabilization in favor of strongly turbulent unsteady interactions between
Hopf and Turing instabilities.
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Chapter 16
Large Scale Brain Networks of Neural Fields

Viktor Jirsa

Abstract Neural fields describe neural activations continuous in space and time.
Neurons at a particular location in the brain receive input from its local neighbors
and from far distant neuronal populations. Both types of connectivity, local and
global, contribute approximately equally to the complete connectivity, but differ
qualitatively in their connection topology. The local connectivity is characterized
by a connection density that monotonously decreases with the distance, typically
independent of the location in the brain, whereas the global connectivity is
characterized by sparse long-range connections (Connectome) between brain areas.
In this chapter I discuss some developments of local-global descriptions of neural
fields culminating in the international neuroscience project The Virtual Brain.

16.1 Introduction

The binome Structure-Function has intrigued human mankind across all disciplines
of science for many centuries. Paradoxically, it is nowhere as exciting and as little
understood as in system neuroscience. The human brain – on the system level – is
effectively a network. A network is composed of network nodes and network links.
Traditionally researchers choose a level of observation for the network nodes, such
as neurons, neuronal populations or complexes composed of neurons, astrocytes and
glial cells. Less commonly discussed, and more difficult to justify, is the selection
of network links. About half of all synaptic connections in a given area stem from
intracortical fibers and are hence of short length and local, typically smaller than
1 cm [7]. The other half of incoming fibers is corticocortical (global) and originates
in distant regions with length distributions of 1–20 cm and a mean value of about
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8 cm [45]. The two fiber systems are differentiated also regarding time delays via
signal transmission and topology. The local fibers are typically not myelinated (with
the exception of fibers from interneurons that tend to be longer) and the signal
transmission is slow with speeds of 0.1–1 m/s. The associated time delays are on
the order of 1–10 ms. The connectivity of the short fiber system is translationally
invariant and the connection density falls off exponentially with increasing distance.
The global fiber system is differently organized. Its axons are all myelinated and
make up the white matter with characteristic transmission speeds of 6–9 m/s and
transmission delays on the order of 10–100 ms. The key difference to the local
fiber system is its sparse connectivity, which is not translationally invariant and
has become to be known under the expression connectome, the finite and countable
set of connections of corticocortical white matter fibers [12]. In the following I will
discuss some of the developments over the last 20 years that have dealt with the
interplay of local and global connectivity and have lead to the conception of The
Virtual Brain, a large scale modeling and simulation platform [38, 53].

16.2 Mathematical Formulation of a Large-Scale Brain
Network of Neural Fields

Let  .x; t/ be the neural field capturing the population activity at time point t and
position x. Unless explicitly stated I will consider scalar neural fields for reasons
of simplicity. A full vectorial formulation is provided in [54]. The dynamics of the
neural field can then be described by the following integro-differential equation:

P .x; t/ D N. .x; t// C
Z
T

G.t � s/.
Z
�

Whom.jx � yj/SŒ .y; t � jx � yj=c/�dy

C
Z
�

Whet .x; y/SŒ .y; t � jx � yj=v/�dy/ds (16.1)

where N denotes the nonlinearity of the neural mass model and the dot indicates
the first time derivative. The transfer function G.t � s/ is identified with a mean
synaptic transfer process. The spatial domain of the neural field is denoted by �
where x 2 � D Œ0; L� and L is the spatial length of the neural field. The local
homogeneous connectivity function,Whom.jx� yj/, is translationally invariant (see
Fig. 16.1). The global connectivity function is not translationally invariant and is
called heterogeneous, Whet .x; y/ 6D Whet .jx � yj/. The parameters c and v are the
propagation velocities through the homogeneous and heterogeneous connections,
respectively. The general network of neural fields in (16.1) represents one of the
most general formulations of brain network dynamics. Derivatives thereof are used
in many applications and will be discussed in the following as a function of the
degree, to which they incorporate realistic connectivity.
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Fig. 16.1 Local fiber system
is homogeneous: The
distribution of synaptic
footprints as a function of
distance is translationally
invariant. The horizontal axis
shows the distance x for three
example distributions h.x/

16.3 Homogeneous Approximations of Neural Fields

A key approximation allowing the development of detailed neural field models
applied to real world problems was the assumption of homogeneous connectivity.
This assumption was motivated by the fact that the connection density decreases
with the corticocortical fiber length. Mathematically this is captured through
translationally invariant integral kernels Whom.jx � yj/ (see Fig. 16.1), which finds
its roots in classic works including [1, 44, 57, 58]. At that time more detailed large-
scale connectivity of the full primate brain was unavailable routinely, hence the
introduction of homogeneous connectivity scaled up to the full brain was proposed
as a first approximation [44]. The approach proved successful for the study of
certain phenomena as observed in large-scale brain systems including spontaneous
activity [8, 23, 42, 49, 51, 59, 60], evoked potentials [50], anesthesia [3, 29], epilepsy
[9] and sensorimotor coordination [34, 35]. In Fig. 16.2 two connectivity matrices
are plotted: on the left, a realistic connectivity matrix of the two hemispheres of
the human brain, the Connectome, is plotted. Brain areas are ordered along the
horizontal and vertical axes, separating the hemispheres. The grey values code
for the strength of a connection. On the right of Fig. 16.2, the homogeneous
approximation of the connectivity matrix is plotted.

After having made the homogeneous connectivity approximation, Jirsa and
Haken introduced the Green’s function method into neural field theory [34, 35] to
link the integral field formulation with the partial differential equation formulation
of neural fields. Various researchers have since then explored the pattern forming
capacities of neural fields as a general tool to study principles of spatiotemporal
pattern formation [41]. Since synaptic processes act typically on a short time scale
� compared to the dynamics of  .x; t/, most neural field approaches also neglect
or truncate them at first order of � (but see [30] for treatments of gamma-distributed
synaptic footprint). Linearizing the nonlinear population dynamics N around its
fixed point solution, the neural field equation can be written as
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Fig. 16.2 Large-scale brain connectivity. Left: the human connectome is represented as a connec-
tivity matrix. The brain areas are ordered along its two axes and the entries of the matrix quantify
the strength of a link between two areas. The connectivity strengths are coded in grey scale.
Intrahemispheric connections can be easily recognized in the distributions within two quadrants.
Right: the connectivity matrix is shown after applying a homogeneous translationally invariant
approximation

OK�1 .x; t/ D : : :C� P .x; t/C .x; t/ D
Z
�

w.j x�y j/	SŒ .y; t�j x � y j
c

/�dy;

(16.2)

where OK�1 is the inverse of the integral operator linked to the synaptic transfer
G.t � s/ and w.j x � y j/ is the novel integral kernel as shown in Fig. 16.2. The
neural field equation (16.2) is a nonlinear retarded differential-integral equation with
a spatially invariant integral kernel. To gain a first intuition of the neural field’s
dynamics, the following simplifications may be made: we set � D 0 and assume the
cortical surface � to be one-dimensional with its connectivity w.j x � y j/ as

w.j x � y j/ D 1

2�
e�jx�yj=� (16.3)

Then the method of Green’s functions [34, 35, 45, 49] may be applied which
transforms (16.2) into the Fourier-space of physical space-time; we reshuffle the
terms in the equation and perform a back-transformation into physical space-time.
The resulting equation is a local nonlinear partial differential equation of the form

R .x; t/C .!20 � c24/  .x; t/C 2!0 P .x; t/ D .!20 C !0
@

@t
/ 	 SŒ .x; t/� (16.4)

where !0 D c=� > 0 and the one-dimensional Laplacian 4 D @2

@x2
. Without

any input the left-hand-side is a damped wave equation and allows for oscillatory
dynamics. The spatially uniform pattern is generally stable, if the slope of the
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sigmoid function S[.] on the right-hand-side of (16.4) is sufficiently small, though
transient wave propagation may occur following small discrete perturbations [49].
If the slope increases beyond a threshold, then the spatially uniform state is
destabilized and wave propagation may occur. Coombes et al. [15] discuss the
effects of connectivity strengths, which do not decrease with increasing distance,
but rather remain constant within a finite regime. In this case, it is not sufficient
to describe the spatiotemporal dynamics by a local partial differential equation as
in (16.4), but non-local delayed terms arise.

To achieve better realism [37] expanded this equation to two dimensions and
defined the neural field on the biologically realistically folded cortical hemisphere
employing EEG and MEG forward solutions to obtain simulation imaging signals
that could be compared directly to empirical data for the first time.

In Fig. 16.3 the stimulus excites the neural sheet at site A, x D x0, and
initiates wave propagation by means of a circular traveling wave front undergoing
attenuation in space and in time. The time courses of the neural ensembles are
plotted for the sites A and B, where the latter is more distant to the stimulus
site. For several selected time points the spatiotemporal activity patterns on the
sphere are plotted in the top row of Fig. 16.3. Here and in the following the
color code represents �max to Cmax as blue goes through black to red and
yellow. In the rows below, the same neural activity patterns are represented on
the unfolded cortex and on the folded cortex for the same time points. Here the
circular traveling wave structure is preserved in all three representations, which
may be understood by the fact that the symmetry of the connectivity imposes
constraints upon the range of the observable spatiotemporal dynamics. Effectively,
an introduction of heterogeneity into the connectivity will break this symmetry and
reorganize the dynamics spatiotemporally. From this perspective, it is not surprising
that almost all modeling efforts based on this homogeneous approximation focus
on the temporal organization of brain dynamics rather than the organization of
brain topographies and its temporal evolution. This was pointed out early on
[37] and a suggestion was made to integrate biologically realistic diffusion tensor
weighted imaging (DTI) based connectivity into full brain modeling efforts, which
is nowadays at the core of connectome based modeling efforts. Recent studies [46]
have systematically investigated the degree, to which homogeneous approximations
may serve to understand realistic connection topologies and have concluded that
homogeneous approximations are more appropriate for mesoscopic descriptions
of brain activity, but less well suited to address full brain network dynamics.
These insights underwrite the need to incorporate realistic connectivity into large
scale brain network models and integrate the models with neuroinformatics tools
for common brain imaging signatures such as electroencephalography (EEG),
magnetoencephalography (MEG) and functional Magnetic Resonance Imaging
(fMRI) [4, 5, 53].
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Fig. 16.3 Stimulus evoked activity of neural fields on the sphere (top row), inflated cortex (second
row) and folded cortex (third row). The time evolution is plotted along the rows for six separate
time points. The bottom panel shows the time course of the stimulus (red line) and the activation
pattern for two individual sites on the spherical surface (Modified after [37])

16.4 Homogeneous Modeling of Neural Fields and First
Heterogeneous Extensions

The neural field dynamics with local and global couplings is determined by
Eq. (16.1). Now consider a neural field with short range local connectivity and a
single heterogeneous connection at two points of the field. The latter connection
has been termed a two-point connection [36]. Neural field architectures with two-
point connections have been investigated in theoretical and computational detail
as a function of connection parameters (signal transmission speeds, connection
strengths) [32,47,48] or distributions of two-point connections [6]. Random matrix
theory has been used to study the effects of random connectivity on network
dynamics, but only with one constant time delay for signal propagation [22, 31].
Much insight can be gained on the effects of heterogeneities by considering the limit
case of zero local coupling, when the system then reduces to the abstract model of
two coupled oscillators described by the following delay differential equation [32]:

Pxi .t/ D ��xi .t/C �ij xj .t � �/ (16.5)

with i; j D 1; 2I i ¤ j . The time-dependent amplitude of the i th oscillator is
defined by xi 2 R and the discrete time delay by � 2 R

C
0 . Letting B D .�ij /
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Fig. 16.4 Stability surface for the system of two coupled oscillators with delay at � D 0:1.
The surface defines the minimal delay value as a function of the coupling strengths of the two
heterogeneous connections. The region denoted by S shows the stable regions while U shows the
regions where the system is always unstable. SU shows the regions where the system is unstable
above the critical surface and stable below it

be the coupling matrix, the system can be written in the vector/matrix form as:

Px.t/ D ��x.t/C Bx.t � �/ (16.6)

Following [33], we can decompose B according to B D E�1�E where � is
the Jordan form with eigenvalues ˇ D ˙p�12�21 and matrix E contains the
corresponding eigenvectors Oe. Multiplying (16.6) from the left with E we obtain:

EPx.t/ D ��Ex.t/C �Ex.t � �/ (16.7)

If we set the eigenmodes to u.t/ D Oex.t/, Eq. (16.7) reduces to a decoupled
representation of the dynamics of the system in terms of the eigenmodes as follows:

Pu.t/ D ��u.t/C ˇu.t � �/ (16.8)

The stability properties of the above one-dimensional delay differential equation
have been widely studied. Assuming a solution of the form u.t/ D e�t ; � 2 C, the
stability condition is determined by the following characteristic equation:

H.�/ D �C � � ˇe��� D 0 (16.9)

Notice that any solution of (16.8) satisfying <Œ�� < 0 is stable and when <Œ��
becomes positive, the system destabilizes. On the critical surface parameterized by
�; �12; �21 and � , the solution � of the characteristic equation is purely imaginary,
i.e., � D =Œ�� D i!; ! 2 R

C
0 . This surface represents the boundary at which

the system changes stability and is shown in Fig. 16.4. A stability change through
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<Œ�� D 1 is impossible [16], hence every instability must occur at the surface
defined by � D i!. Using the characteristic polynomial H.�/ for � D i! with
some algebra we can show that:

d<Œ��
d�

D �Re
h@H=@�
@H=@�

i
D !2

jKj2 > 0 ; � D i! (16.10)

whereK D ˇ�Cei!� . The above result implies that as � increases across the critical
surface from below, the equilibrium state always destabilizes and remains unstable
for all larger � . It is noteworthy that manipulations of a variety of parameters
including excitability �, connection strength �ij and transmission speeds (via time
delay � ) do not alter the topology of the parameter space in Fig. 16.4, but rather
translate and rotate the existing hypersurfaces [32]. We do not know however to
what degree this property translates to more complex architectures as described by
[6] or below in Sect. 16.6.

16.5 Full Brain Network Modeling Using the Connectome

With the increasing availability of structural information on the global fiber system,
the Connectome, it has become possible to investigate the connectivity-specific
dynamic characteristics of the brain network. I wish to emphasize this aspect here:
Connectome-based modeling finds its primary usefulness in exploring the effects of
connectivity upon network dynamics. So far it remains an open question to what
degree the inclusion of biophysical detail of neural mass models aids in improving
our understanding of full brain network dynamics. Generally there are three
ingredients in full-brain network modeling. The first ingredient of these models
is the anatomical structure. In all models the structural information is extracted
from databases compiling different type of tracing studies (e.g. for the macaque
cortex this information is provided by the CoCoMac neuroinformatics [40]), or
from DTI/DSI (diffusion tensor Imaging/ Diffusion Spectrum Imaging) techniques
[27]. The second ingredient is the signal transmission time delays. Generally time
delays do not alter the stationary spatial patterns in a network, but they do change
their stability [14]. Though time delays play an essential role in the synchronization
behaviour of oscillatory patterns, it is less clear to what extent they influence patterns
of spiking neurons. The third ingredient of the models is the type of intrinsic
dynamics of the local nodes. It is here where typically a large range of models
has been employed. Models considered simple oscillatory dynamics [13,19,24,25],
chaotic dynamics [28], and detailed realistic neural mass models; the latter include,
for instance, ensembles of excitatory and inhibitory populations of spiking neurons
coupled through N-Methyl-D-aspartic acid (NMDA ), alpha-amino-3-hydroxy-5-
methylisoxazole-4-propionic acid (AMPA) and gamma-Aminobutyric acid (GABA)
synaptic dynamics [17]. All these modeling approaches have discretized the neural
fields into network nodes and only focussed on the global connections via the
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Connectome, ignoring the local intracortical connectivity. Through this approach,
the large-scale network models began to display spatiotemporal pattern formation
with biologically realistic spatial patterns. Spiegler and Jirsa [54] systematically
investigated in this context the relevance of the local contributions to the overall
connectivity and provided guidelines for choosing the right spatial distribution
function for given anatomical and geometrical constraints.

This type of full brain network modeling has been applied extensively to the
exploration of the intrinsic activity of the brain network at rest. Experimentally,
the first demonstration of a resting state network (RSN) using functional Mag-
netic Resonance Imaging (fMRI) was given in the seminal paper of Biswal and
colleagues [2] where temporal fluctuations in the blood oxygen level dependent
(BOLD) signal were exploited to examine the cross-correlation (that is, functional
connectivity) between activity in the primary motor cortex (M1) and other brain
regions independent of any overt task. Spatially, the functional connectivity pattern
seemed to mimic the pattern of activation seen when subjects executed an overt
motor response. This observation led to a veritable explosion of empirical work
exclusively focused on the identification and characterization of these resting state
networks [26, 43, 52]. Theoretical modeling efforts of RSN dynamics focussed
on full brain network modeling using the connectome (see for a review [20]). In
particular a new hypothesis emerged regarding the working point of the full brain
network at rest: [25] demonstrated that the resting state emerges from noise-induced
transient fluctuations around the stable equilibrium state of a full brain network
of coupled FitzHugh-Nagumo oscillators just below the edge of a bifurcation. The
noise provokes fluctuations between different multi-stable oscillatory brain states in
a network of Wilson-Cowan oscillators, again in the neighborhood of the critical
point, but above the edge of instability [19]. In these models, it is the underlying
anatomical structure that shapes the structure of the dynamical landscape, which
then the fluctuations of the network model can explore. The time delays may
alter the location of the instability, but will not change the actual structure of
spatial patterns in the dynamical landscape. These are the insights we gained when
discussing the neural field models with embedded heterogeneous fibers in Sect. 16.2.
At the edge of the critical instability of any model the spatial correlations of the
noisy excursions are mainly shaped by the anatomical structure. The degree to
which the RSNs are expressed depends on the proximity to the instability, which is
determined by the space-time structure of the couplings, that is the topology of the
connectivity and its associated time delays. The global dynamics of a brain working
at a critical point amplifies the underlying structure of the anatomical connections
and of its interactions with the local dynamics.

These results are best illustrated in Fig. 16.5 where we follow the lines of thought
as described in [21]. The network node model of a local brain area consists of
a population of integrate-and-fire spiking neurons with excitatory (AMPA and
NMDA) and inhibitory (GABA-A) synaptic receptor types. The nodes are connected
using a large-scale anatomical connection matrix obtained from human subjects
via DTI/DSI tractography [17, 27]. Let us assume that the control parameter is the
coupling strength G across different brain areas. The global dynamical states of
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Fig. 16.5 Resting State Network dynamics is critical. Top: The fit between both the empirical and
the simulated functional connectivity is measured by the Pearson correlation coefficient. In the
same plot, the second bifurcation line obtained below is also shown. The best fit of the empirical
data is observed at the brink of the second bifurcation. Middle: Bifurcation diagrams characterizing
the stationary states of the brain system as a function of the scaling of the connectivity strength,
which acts as a control parameter. The number of different possible stable states is plotted.
For small values of the global connectivity strength, only one stable state exists, namely the
spontaneous state characterized by low firing activity in all cortical areas. For a critical value of
connectivity strength a first bifurcation emerges where at least one new multi-stable state appears
while the spontaneous state is still stable. For even larger values of connectivity strength, a second
bifurcation appears where the spontaneous state becomes unstable. Bottom: The two bifurcations
are illustrated in a landscape diagram

the system can be described by a so-called bifurcation diagram, which captures the
stationary states (attractors) of the system as a function of the coupling strength. For
low coupling strength, only a trivial stable spontaneous state, characterized by an
asynchronous low level of firing activity in all brain areas, is stable. By increasing
the coupling strength at the first bifurcation point, new stable attractors emerge.
These new attractors reflect increased activity in some brain areas, defining the
emergence and stabilization of specific networks of brain areas. In Fig. 16.5, this
is shown in the landscape cartoon on the bottom, and in the bifurcation diagram
on top of that, where the maximal rate activity in the brain is plotted. After the
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first bifurcation a new branch appears evidencing the emergence of new attractors.
Nevertheless, after this first bifurcation, the spontaneous state is still stable. Only
after a second bifurcation the spontaneous state loses stability. It is precisely at
the edge of this second bifurcation point, where the brain seems to operate. In the
top panel, we show the fitting between the empirical and simulated resting BOLD
functional connectivity. The best fitting (maximal correlation) occurs exactly at the
edge of the second bifurcation, where the trivial spontaneous state loses its stability
and therefore the noisy fluctuations of the dynamics are able to explore and reflect
the structure of the other “cognitive” attractors shaped by the underlying anatomy.

16.6 The Virtual Brain

The research described so far has led to the development of the international
research project The Virtual Brain (see www.thevirtualbrain.org and [53] for
details). The Virtual Brain (TVB) is a neuroinformatics platform, which simulates
large scale brain network dynamics using neural fields with the embedded Connec-
tome. In line with previous studies, TVB incorporates a biologically realistic, large
scale connectivity of brain regions in the primate brain. The long-range connectivity
is mediated by white matter fibre tracts as identified by tractography based methods
[27], or obtained from CoCoMac neuroinformatics database [40]. Two types of
brain connectivity are distinguished in TVB, that is region-based and surface-
based connectivity. In the former case, the networks comprise discrete nodes and
connectivity, in which each network node models the neural population activity of a
brain region connected via interregional fibres, the Connectome, as described in the
previous Sect. 16.5. The connectivity matrix defines the connection strengths and
time delays via signal transmission between all network nodes. In the latter case of
surface-based connectivity, cortical and subcortical areas are modeled on a much
finer and more realistic scale. The connectivity comprises the local intracortical
homogeneous and the global corticocortical fibres, the Connectome. Due to the fine
spatial sampling, in particular of the cortical surface, the neural activity of coupled
neural masses approximates the spatially continuous neural field [18, 54]. There is
also a wide choice of neural mass models in TVB that are placed on each network
node (for instance [10, 55, 56, 58]).

In TVB, our main interest is to provide the researcher with a neuroinfor-
matics platform that allows asking questions on how connectivity influences and
drives the processes on the macroscopic brain network scale. Researchers from
different backgrounds can benefit from an integrative software platform including
a supporting framework for data management (generation, organization, storage,
integration and sharing) and a simulation core written in Python. TVB allows the
reproduction and evaluation of personalized configurations of the brain by using
individual subject or patient data. This facilitates an exploration of the consequences
of pathological changes in the system as well as permitting the investigation of
potential ways to counteract such unfavorable processes. In particular, neural field

www.thevirtualbrain.org
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Fig. 16.6 Work flow in The Virtual Brain (TVB). From top left, clockwise: TVB is a neu-
roinformatics platform integrating biologically realistic structural constraints on connectivity and
geometry with simulations of neural fields. The geometry of the cortical surface in 3D is integrated
with the short-range connectivity (grey matter) to build neural fields on the folded cortical
surface. The set of white matter fibers (long range) comprising the Connectome is embedded
into the total connectivity matrix. Each network node holds a neural mass model, that receives
input from all the network links. The signal transmission via the Connectome is time-delayed
due to finite transmission speeds. As a whole the elements define the full brain network and
allow for large-scale simulations under manipulations of the connectivity, neural mass model
parameters or external stimulations. The output of the simulations are the BOLD, and electro-
and magnetoencephalographic (EEG, MEG) signatures as observed in non-invasive human brain
imaging

simulations performed on the folded cortical surface generate the biologically
realistic electrographic and magnetographic (EEG, MEG) time series, as well as
the volumetric fMRI time series that researchers are used to from human brain
imaging. The architecture of TVB supports interaction with MATLAB packages,
for example, in order to perform graph theoretic network analyses, the well known
Brain Connectivity Toolbox has been integrated into TVB. TVB can be used in



16 Large Scale Brain Networks of Neural Fields 429

a client-server configuration, such that it can be remotely accessed through the
Internet thanks to its web based HTML5, JS and WebGL graphical user interface.
Otherwise, TVB is also accessible as a standalone cross-platform Python library
and application, and users can interact with the scientific core through the Python
interactive scripting interface IDLE, enabling easy modeling, development and
debugging of the scientific kernel. This second interface makes it possible to extend
TVB by combining it with other libraries and modules developed by the Python
scientific community. TVB is available from http://thevirtualbrain.org.

16.7 Conclusions and Final Remarks

Traditional neural field models are characterized by translationally invariant integral
kernels reflecting the connectivity of the brain network. Such models are dominated
though by either short range connectivity and are not suited to describe large scale
brain models; or they suffer from the low pass filtering properties in the spatial
domain (Laplacian approximation of a realistic large-scale connectivity) and do
not capture the spatial details of the spatiotemporal organization. To overcome
this limitation the suggestion was made to integrate biologically realistic DTI
based connectivity into full brain modeling efforts. Large scale brain dynamics
are basically expected to reflect the underlying anatomical connectivity between
brain areas [11, 20], even though structural connectivity is not the only constraint.
The transmission delays also play an essential role in shaping the brain network
dynamics [19, 25, 36, 38, 39]. Toy models of neural fields with embedded hetero-
geneous fibers allow to study and illustrate the effects of the interplay between
the local and global fiber systems, as well as the effect of the time delays. These
studies underwrite the need to incorporate realistic connectivity into large scale
brain network models. In this sense The Virtual Brain (TVB) has evolved from
a research program seeking to identify and reproduce realistic full brain network
dynamics, on the basis of empirical connectivity and neural field models.
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Chapter 17
Neural Fields, Masses and Bayesian Modelling

Dimitris A. Pinotsis and Karl J. Friston

Abstract This chapter considers the relationship between neural field and mass
models and their application to modelling empirical data. Specifically, we consider
neural masses as a special case of neural fields, when conduction times tend to zero
and focus on two exemplar models of cortical microcircuitry; namely, the Jansen-
Rit and the canonical microcircuit model. Both models incorporate parameters
pertaining to important neurobiological attributes, such as synaptic rate constants
and the extent of lateral connections. We describe these models and show how
Bayesian inference can be used to assess the validity of their field and mass
variants, given empirical data. Interestingly, we find greater evidence for neural field
variants in analyses of LFP data but fail to find more evidence for such variants,
relative to their neural mass counterparts, in MEG (virtual electrode) data. The key
distinction between these data is that LFP data are sensitive to a wide range of
spatial frequencies and the temporal fluctuations that these frequencies contain. In
contrast, the lead fields, inherent in non-invasive electromagnetic recordings, are
necessarily broader and suppress temporal dynamics that are expressed in high
spatial frequencies. We present this as an example of how neuronal field and mass
models (hypotheses) can be compared formally.

17.1 Introduction

This chapter reviews recent developments in the modelling of brain imaging data
that exploits neural field theory. We focus on the Bayesian optimization of model
parameters, called Dynamic Causal Modelling (DCM) and its application in the
context of neural fields [18, 46]. This framework is part of the academic freeware
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Statistical Parametric Mapping1 (SPM), which is a popular platform for analyzing
neuroimaging data, used by several neuroscience communities worldwide. DCM
allows for a formal (Bayesian) statistical analysis of cortical network connectivity,
based upon realistic biophysical models of brain responses. It is this particular
feature of DCM—the unique combination of generative models with optimization
techniques based upon (variational) Bayesian principles—that furnishes a novel way
to characterize brain organization. In particular, it provides answers to questions
about how the brain is wired and how it responds in different situations. In this
chapter, we first present the general framework with an emphasis on the role
of neural fields. We then consider particular applications, in the context of LFP
[39] and MEG data [56] and show how DCM allows one to adjudicate between
alternative models of brain imaging data, such as neural masses and fields. This
comparison is based upon the free energy approximation to Bayesian model
evidence that comprises both accuracy and complexity (see e.g. [19]). This allows
one to adjudicate among competing models, in terms of explanations for data that
are both accurate and parsimonious.

17.1.1 Neural Masses and Fields

Neural mass models are a particular case of neural fields, where the (hidden
neuronal) states of populations of neurons are functions of time only. Such models
can generate temporal responses from one or several interconnected populations
and have been used successfully to explain empirical electrophysiological data from
local field potentials (LFP) and EEG/MEG (see e.g. [28,31,34,35,37,49,57–59]) To
date, neural mass models have been largely based upon point sources and formulated
using ordinary differential equations (ODEs). A key challenge in this area has been
to model observed signals as being generated by continuous and spatially distributed
neuronal activity, of the sort observed directly using high density multi-electrode
arrays and optical imaging. Here, we consider how one can address this challenge
using neural field models.

Neural field models model current fluxes as continuous processes on a cortical
manifold, using integro-differential or partial differential equations (PDEs) (see [13]
for a review and also [2,4–6,8–10,16,17,21,25,26,32,33,41,42,47,50–53]). These
models have also been used to study anaesthetic action and associated macroscopic
electroencephalographic effects (for a review, see [30]).The key advance that neural
field models offer, over conventional neural mass models, is that they embody
spatial parameters (like the density and extent of lateral connections). This means,
in principle, one can estimate the spatial parameters of cortical infrastructures
generating electrophysiological signals (and infer changes in those parameters
over different levels of an experimental factor) from empirical data. This rests on

1http://www.fil.ion.ucl.ac.uk/spm/.
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modelling responses not just in time but also over space. Clearly, to exploit this
sort of model, one needs to measure the temporal dynamics of observed cortical
responses over different spatial scales; for example, with high-density recordings,
at the epidural or intracortical level. However, the impact of spatially extended
dynamics is not restricted to expression over space but can also have profound
effects on temporal (e.g., spectral) responses at one point (or averaged locally over
the cortical surface). This means that neural field models can also play a key role in
the modelling of non-invasive electrophysiological data that does not resolve spatial
activity directly.

17.1.2 Neural Fields as Models for Empirical Data

The modelling of electrophysiological signals depends upon models of how they
are generated in source space and how the resulting (hidden) neuronal states are
detected by sensors. At the source level we consider two neural field models that
are inspired by biophysical considerations: an extension of a widely used mass
model introduced by Jansen and Rit comprising three neural populations [24];
and a canonical microcircuit field model, where the pyramidal cell population of
the previous model is split into two subpopulations. This separates the sources
of forward and backward connections in cortical hierarchies that have proven
useful to explain several aspects of distributed cortical computations in theoretical
neurobiology.

In terms of the mapping from source to sensor space, we use a conventional lead
field formulation (that is expanded in terms of spatial basis functions) and focus
on the ensuing observations of power spectra of the sort considered in conventional
time-series analysis. There is a long history of modelling steady-state (or ongoing)
activity spectra, associated with neural fields, usually in models of the whole cortex;
e.g., [25]. Robinson and colleagues [50] have developed a neurophysiologically
grounded model of corticothalamic activity, which reproduces many properties of
empirical EEG signals; such as the spectral peaks seen in various sleep states
and seizure activity. Technically, the spectra summarizing the response of cortical
sources can be defined in terms of transfer functions, mapping endogenous neuronal
fluctuations to observed responses [15,40,51–53]. We will derive transfer functions
and expressions for the spectral responses for sources that comprise multiple layers.
This allows us to model the spectral activity of cortical fields as measured on
the cortical surface and to also compute the corresponding spectral responses, as
measured by invasive (LFP ) and non-invasive (MEG ) electrophysiological sensors
in an efficient manner.

The resulting scheme can be regarded as inverting population models of the
Amari type—using real data—with a particular focus on Bayesian model inversion.
Previous work in a similar vein includes the use of Kalman filters to develop
estimation schemes for both neural mass [49, 58] and neural field models of a
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single population [20, 55]. In a related approach, [11] replaced the standard dipole
source—used in neural mass models—with the principal Fourier mode of a neural
field, for the particular case of exponentially decaying synaptic density over the
cortical surface. In [36], the authors used a combination of linear and nonlinear
optimisation methods to invert a two-layered neural field model of voltage-sensitive
dye data, describing inhibitory and excitatory populations (without conduction
delays). Finally, the inverse problem for the neural field equation was rigorously
studied in [44].

17.2 Generative Models for Cross Spectral Densities

Dynamic Causal Modelling (DCM) allows for the comparison and estimation of
biophysically plausible models of fMRI, EEG, MEG and LFP data [12, 18, 37–39].
DCM calls on an underlying generative model to predict observed data. As with
other state-space models, Dynamic Causal Models are based on a combination of
evolution equations for the hidden neuronal states with static observer equations:

PV .t/ D f .V; U; �/
Y.t/ D L.V; �/ (17.1)

where V.t/ 2 R and U.t/ 2 R are vectors of hidden state variables and
inputs respectively, Y.t/ are the predicted time series and we use � to denote
the parameters of the model. Many generative models can be cast in the form of
Eq. (17.1): these include neural mass models, such as the Jansen and Rit model
[24] considered below. Most DCMs for electrophysiological data have been based
on neural mass models, which use point sources (e.g., equivalent current dipoles)
and preclude spatially extended dynamics. The DCM introduced in [46] allows for
an explicit modelling of the spatiotemporal aspects of cortical activity. This means
one can make inferences about parameters pertaining to the topographic distribution
of cortical sources from LFP and M/EEG data; like the extent of connectivity
and the conduction velocity of axonal propagation. Furthermore, including spatial
parameters allows one to explain some effects that other models such as neural
masses attribute to time parameters. In particular, neural field models characterize
the propagation of electrical activity on the cortex to provide a more complete
parameterization of the mechanisms generating cortical responses. In the models
considered here, the postsynaptic convolution of presynaptic inputs is described by
a second-order ODE or two first-order ODEs pertaining to voltage and current. This
means that the left hand side of Eq. (17.1) is augmented with the second derivative
of hidden (depolarization) states. For cortical sources comprising of n layers, our
neural field formulation is based on the following extension of Eq. (17.1)
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RV D �2B PV � B2V CD ˝ F ı V CG ı U
Y.t/ D

Z
L.x; '/ 	 V.x; t/ dx

D ˝Q D
“

D.x � x0; t � t 0/ 	Q.x0; t 0/ dx0 dt0

V.x; t/ D

2
64
�1.x; t/
:::

�n.x; t/

3
75 ;

(17.2)

where the n�1 vector V.t/ 2 R
n of hidden neuronal states in each layer in Eq. (17.1)

is replaced by V.x; t/ 2 R
n; both this vector and the input U.x; t/ 2 R

n are explicit
functions of both space and time. The dynamics of cortical sources now conform to
integrodifferential equations, as implied by the spatiotemporal convolution denoted
by˝ on the right hand side of Eq. (17.2).

In the above equation, D.x; t/ is a n � n smooth (analytic) matrix-valued
connectivity function or kernel; F W R

n ! R
n is a nonlinear mapping from

postsynaptic depolarization to presynaptic firing rates at each point on the cortical
manifold and B is a n � n matrix encoding average synaptic decay rates. In short,
Eq. (17.2) says that the rate of change of voltage in each layer comprises three
terms; the first is a simple decay, the second is due to presynaptic inputs from
other parts of the cortical manifold and the final part is due to external inputs,
where G W Rn ! R

n maps the inputs to the motion of hidden states. It is the
second component, involving the convolution with the connectivity kernel D.x; t/
that embodies lateral interactions over the cortical manifold. In terms of the observer
function, the linear mapping from hidden states to observed signal now becomes a
m � n matrix function of source space L.x; '/ encoding the contribution of the n
hidden states to each of m sensors.

17.2.1 The Jansen and Rit Model

In this section, we provide a brief review of the well-known Jansen and Rit (JR)
neural mass model [24]. In the JR model, each cortical source is modelled with three
subpopulations: excitatory spiny stellate input cells, inhibitory interneurons and
deep excitatory output pyramidal cells (for classical approaches to modelling such
populations with neural fields, see e.g. [1, 15, 40, 62]). For simplicity, we consider
a single source, noting that extensions to multiple sources involve adding extrinsic
(between-source) connections or kernels. The JR model is a particular instance of
Eq. (17.1) (where the convolution of presynaptic input is second-order):

RV C 2B PV D �2B2V � ABF ı V CG ı U
Y D L 	 V: (17.3)
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Here, A and B are the 3 � 3 matrices of synaptic parameters controlling the
maximum postsynaptic responses and the rate-constants of postsynaptic filtering
and G is a column vector:

A D diag.me;mi ;me/

B D diag.	e; 	i ; 	e/

G D
2
4 	eme

0

0

3
5 (17.4)

As above F W R3 ! R
3 is a nonlinear mapping from depolarization to firing and

U.x; t/ 2 R
3 is the external input to each population. Note that there is only one

input and this input enters the first (spiny stellate) population. Based on cortical
microcircuitry of intrinsic connections, the JR model prescribes the mapping F W
R
3 ! R

3 in terms of nonlinear firing rate functions of the depolarization in the
three populations. Writing out Eq. (17.3) in full we have

R�1 C 2	e P�1 C 	2e �1 D 	eme.d13 	 �.�3/C U/
R�2 C 2	i P�2 C 	2i �2 D 	imid23 	 �.�3/
R�3 C 2	e P�3 C 	2e �3 D 	eme.d31 	 �.�1/ � d32 	 �.�2//

(17.5)

where �a.t/ W a D 1; 2; 3 denotes the expected depolarization in the a-th population
(excitatory stellate, inhibitory population and excitatory pyramidal respectively) and
the sigmoid firing rate function is

�.�a/ D 1

1C exp.r.� � �a// : (17.6)

Here, r and � are parameters that determine the shape of this sigmoid activation
function. In particular, r is synaptic gain and � is the postsynaptic potential at
which the half of the maximum firing rate is elicited. In Eq. (17.5), dab 	 �.�b/ is
(endogenous) presynaptic input to the a-th population from the b-th and corresponds
to the mapping F ı V . See Fig. 17.1 for a schematic of this model.

17.2.2 The Canonical Microcircuit Model

Recent work suggests that superficial layers of visual cortex oscillate preferentially
at gamma frequencies, while deep layers primarily oscillate at lower alpha/beta
frequencies [7]. Since forward connections originate largely from superficial layers
and backward connections primarily originate from deep layers, these spectral
asymmetries suggest that forward connections use faster (gamma) temporal fre-
quencies, while backward connections may employ lower (beta) frequencies—
a suggestion that has experimental support [54]. These asymmetries mandate
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Fig. 17.1 This schematic summarizes the equations of motion or state equations that specify a
Jansen and Rit neural mass model of a single source. This model contains three populations, each
loosely associated with a specific cortical subpopulation or layer. The second-order differential
equations describe changes in hidden states (e.g., voltage) that subtend observed local field
potentials or EEG signals. These differential equations effectively implement a linear convolution
of presynaptic activity to produce postsynaptic depolarization. Average firing rates within each
subpopulation are then transformed through a nonlinear (sigmoid) voltage-firing rate function to
provide inputs to other populations. These inputs are weighted by connection strengths

something quite remarkable: namely, a synthesis and segregation of forward and
backward output from afferent input. This segregation can only arise from local
neuronal computations that are formally structured and precisely interconnected.
The canonical microcircuit is a detailed proposal for such a laminar-specific
intracortical architecture that describes how information flows through the cortical
column. This model is based on findings in the primary visual cortex [14] but recent
work [29, 61] indicates that similar microcircuits exist in other regions—such as
somatosensory and motor cortex.

Douglas and Martin recorded intracellular potentials from cells in area 17 of
the cat, while they stimulated cortical afferents, and noticed a strong compartmen-
talization of the superficial and deep cell properties—reflected in slow superficial
responses and fast input layer responses. The authors created a conductance-based
model that reproduced the evolution of excitation and inhibition through the cortical
circuit with great precision. This model contained three groups of cells: superficial
and deep pyramidal cells, and a common pool of inhibitory cells. All three pools
of neurons receive thalamic drive—although the thalamic drive to deep layer cells
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was weaker than the other inputs. All neuronal populations had self-connectivity,
and are interconnected with the other populations. Finally, inhibition was stronger
onto the deep pyramidal population. This model was able to reproduce the features
observed in their electrophysiological recordings—including the latency difference
between superficial and input layer neurons—and has served to establish several
basic properties that are now believed to be replicated in other cortical areas:
first, although superficial and deep compartments are strongly interconnected, their
response properties are also segregated. Second, cortex is not under tonic inhibition,
rather, both excitation and inhibition are generated by afferent thalamic input and
both shape ongoing cortical responses. Third, the canonical microcircuit can amplify
thalamic inputs to generate self-sustaining activity, while also maintaining a delicate
balance between excitation and inhibition—so as to prevent runaway excitation.

Previous computational modelling studies indicate that this circuitry allows
the cortex to optimally organize and integrate bottom-up, lateral, and top-down
information [48]. Douglas and Martin suggest that the rich anatomical connectivity
of superficial layer 2/3 pyramidal cells allows them to collect information from all
relevant top-down, lateral, and bottom-up inputs, and—through processing in the
dendritic tree—select the most likely interpretation of its subcortical inputs. For a
discussion and more details about the canonical microcircuit and its potential role
in predictive coding we refer the reader to [3].

Haeusler and Maass used Hodgkin and Huxley neurons to build a realistic micro-
circuit model and showed that a cortical column—whose connectivity conforms
to the canonical microcircuit—can perform various computations efficiently, in
relation to a column with random connectivity [23]. By collapsing two pairs of
cell types in the Haeusler and Maass model, while preserving the topology of the
connectivity, one obtains the canonical microcircuit (CMC) depicted in Fig. 17.2:
this circuit comprises four populations: excitatory spiny stellate input cells (17.1),
inhibitory interneurons (17.2), deep excitatory pyramidal cells (17.3) and superficial
excitatory pyramidal cells (17.4). The corresponding evolution equations for the
neuronal states (the analogues of Eq. 17.5) are (see also Fig. 17.2):

R�1 C 2	e P�1 C 	2e �1 D 	1me.�d14 	 �.�4/C d11 	 �.�1/ � d12 	 �.�2/C U/
R�2 C 2	i P�2 C 	2i �2 D 	2mi .d21 	 �.�1/C d22 	 �.�2/C d23 	 �.�3//
R�3 C 2	e P�3 C 	2e �3 D 	3me.�d32 	 �.�2/C d33 	 �.�3//
R�4 C 2	e P�4 C 	2e �4 D 	4me.d41 	 �.�1/C d44 	 �.�4//

(17.7)

17.2.3 Neural Field Extensions of the Canonical Microcircuit
and Jansen-Rit Models

In this section, we transcribe the neural mass models described above into neural
fields. In the case of fields, we consider spatially extended sources occupying
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Fig. 17.2 This figure shows the evolution equations that specify a Canonical Microcircuit neural
mass model of a single source. This model contains four populations occupying different cortical
layers: the pyramidal cell population of the JR model is here split into two subpopulations allowing
a separation of the sources of forward and backward connections in cortical hierarchies. As with the
JR model, second-order differential equations mediate a linear convolution of presynaptic activity
to produce postsynaptic depolarization. This depolarization gives rise to firing rates within each
sub-population that provide inputs to other populations

bounded manifolds (patches) in different layers that lie beneath the cortical surface.
In this setting, each subpopulation of a neural mass model now becomes a layer in
the cortical sheet. The dynamics of cortical sources conform to integrodifferential
equations, such as the Wilson-Cowan or Amari equations, where coupling is param-
eterised by matrix-valued coupling kernels—namely, smooth (analytic) connectivity
matrices that also depend on time and space. Assuming that the connectivity kernels
dij.x; t/ appearing in Eq. (17.2) factorize into dij.x; t/ D 	ij.jxj/ı.t � vijjxj/,
Eq. (17.2) becomes

. RV C 2B PV C B2V /.x; t/ D AB
Z
K.x � x0/F ı V.x0; t � jx � x0jv/ dx0 C GU

(17.8)

where v is the inverse speed at which spikes propagate along connections and
interactions among populations—within and across macrocolumns—are described
by the connectivity kernel K D K.i/ C K.e/. This form provides an explicit
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parameterization of conduction delays that will be exploited later, when using the
field model as an observation model. One can see that in the infinite speed limit
v D 0 the spatial convolution in Eq. (17.8) disappears (to within a scaling constant)
and we recover the neural mass Eqs. (17.3).

For both the canonical microcircuit and the Jansen and Rit models, the intrinsic
connectivity K.i/ is an exponentially decaying kernel, commonly used in the
literature to account for excitatory and inhibitory interactions (see e.g. [46]). The
extrinsic connectivity kernelK.e/ was introduced in [22,45] to model patchy lateral
(horizontal) connections and is characterized by non-central peaks allowing for
differences in (and estimation of) the range and dispersion of lateral connections,
summarized in terms of the parameters ha and caa, respectively. The canonical
microcircuit (CMC) field model we consider here is described by Eq. (17.8), where
the connectivity kernel is given by

K D K.i/ CK.e/

K.i/ D

2
6664
k
.i/
11 k

.i/
12 0 k

.i/
14

k
.i/
21 k

.i/
22 k

.i/
23 0

0 k
.i/
32 k

.i/
33 0

k
.i/
41 0 0 k

.i/
44

3
7775 ; K.e/ D

2
6664
k
.e/
11 0 0 0

0 k
.e/
22 0 0

0 0 k
.e/
33 0

0 0 0 k
.e/
44

3
7775

k
.i/
ab .x/ D 1

2
aabe

�cabjxj

k
.e/
aa .x/ D 1

2
caa.e

�caajx�haj C e�caajxChaj/:

(17.9)

Here, the parameters aab and cab encode the strength (analogous to the number
of synaptic connections) and extent of intrinsic connections between cortical
layers. The intrinsic connections can be regarded as inter-laminar connections
within a macrocolumn, while the extrinsic—between macrocolumn connections—
correspond to horizontal connections and connect layers of the same type at a
distance ha, see Fig. 17.3.

This kernel models sparse intrinsic connections in cortical circuits that mediate
both local and non-local interactions and allows one to estimate properties of
lateral interactions that are particularly relevant in the context of data obtained
from retinotopically mapped visual cortex. We will see an example of this using
an attention task and MEG data below. On the other hand, to illustrate the Jansen
and Rit field model in non-mapped cortex, we will use data from the auditory
cortex under anaesthesia and neglect extrinsic connectivity; that is K.e/ D 0. In
this example, we will use the same exponential decaying form, as for the CMC field
model above, namely the function K.x/ D K.i/.x/, where

K.i/ D

2
64
0 0 k

.i/
13

0 0 k
.i/
23

k
.i/
31 k

.i/
32 0

3
75 (17.10)

and k.i/ab are given by Eq. (17.9).
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Fig. 17.3 Connectivity kernel describing a combination of patchy but isotropic distributions by
using connectivity kernels with non-central peaks. This kernel models sparse intrinsic connections
in cortical circuits that mediate both local and non-local interactions. In other words, neurons talk
both to their immediate neighbours and receive input from remote populations who share the same
functional selectivity; see Eq. (17.9) (The insert is modified from www.ini.uzh.ch/node/23776)

17.2.4 Power Spectra of Neural Fields

In what follows, we describe the generative or forward mapping from external
inputs (exogenous neuronal fluctuations) to observed spectral responses for a single
cortical source. This allows one to compare the predictions of our model with real
data and requires a mapping of neuronal states (the depolarisation fields above) to
sensors—called the lead field. The lead field allows one to infer hidden parameters
characterizing the deployment of sources on the cortical surface, even when there
is no explicit spatial information in the data; see also [50]. The lead field samples
particular spatiotemporal frequencies, depending on the sensitivity profile of the

www.ini.uzh.ch/node/23776
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sensors used. For example, if the lead field has a narrow spatial support (e.g., when
using LFP electrodes), its spatial Fourier transform will be broad and it will be
sensitive to a wide range of spatial frequencies. Conversely, when the lead field
sees a large part of the cortical surface (e.g., non-invasive EEG sensors), the spatial
Fourier transform will be narrow and only fluctuations in low spatial frequencies
will contribute to the observed cross-spectra.

The lead field is parameterised by ' as a continuous gain function L.x; '/ over
the cortical patch that is applied to a mixture of neuronal (depolarisation) states
at each point on the patch. In the case of the CMC field model, this mixture
is determined by four coefficients Q D Œq1q2q3q4�, while the gain function is
parameterised in terms of the coefficients L.k; '/ of a spatial Fourier basis set:

L.x; '/ D
X
k

L.k; '/eikx: (17.11)

The predicted response at an LFP or virtual electrode—for a given set of neural and
lead field parameters � is obtained by integrating over the cortical patch

y.t; �/ D
Z
L.x; '/.Q 	 V.x; t// dx; (17.12)

which leads to a spectral response of the form

Y.!; �/ D
X
k

L.k; '/.Q 	 T .k; !/U.k; !//: (17.13)

The predicted spectral response measured by the sensor is therefore

g.!; �/ D Y.!; �/Y �.!; �/
DP

k jL.k; '/j2QT.k; !/gu.k; !/T .k; !/
�QT ;

(17.14)

where gu.k; !/ D jU.k; !/j2 is the auto-power spectrum of external input. The
above expression depends upon the transfer function T .k; !/ associated with the
evolution Equations of the model, which we will derive below.

For the case of MEG virtual electrodes and LFP data we consider here, the
gain function has a simple Gaussian form, which we parameterize in terms of its
dispersion ' such that L.x; '/ D e�x2=2'2—noting that the amplitude is fixed to
avoid redundancy with the parameters Q. This leads to Fourier coefficients of the
form L.k; '/ D e�2�2'2k2 and Eq. (17.14) becomes

g.!; �/ D
X
k

ˇ̌
ˇe�2�2'2k2

ˇ̌
ˇ2 QT.k; !/gu.k; !/T .k; !/

�QT : (17.15)
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The function T .k; !/ can be derived by assuming that the neural field defined by
Eq. (17.2) is perturbed around a spatially homogeneous steady-state attained in the
absence of external or exogenous perturbations, (see also [45, 46]):

V0 D B�1A 	 F.V0/
Z
K.x/ dx: (17.16)

Using linear systems analysis, we define the transfer function of a field model with
the following relation

T .k; !/ D P.k; !/

U.k; !/
; (17.17)

where U.k; !/ is the two dimensional Fourier transform of external input:

U.k; !/ D FT.U.x; t//

D
“

U.x; t/e�ikxCi!t dt dx
(17.18)

and P.k; !/ is the Fourier transform of the perturbations around the steady-state
solution. Given the transfer function, we can characterise the spectral response of
the system to any external input, in terms of the underlying connectivity kernel,
propagation velocities and post-synaptic response function: Substituting V.x; t/ D
V0 C P.x; t/ into Eq. (17.2) and expanding F ı V around V0, we obtain a second-
order expression for the perturbations P.x; t/

RP C 2B PP D �B2P C AB�D ˝ P C GU

�ab D @�.�aD0/
@�b

D
8<
:

rer�

.1C er�/2 ; a D b
0; a ¤ b;

(17.19)

where � is the gain of the nonlinear mapping between depolarisation and firing
rate. Equations (17.17) and (17.19) provide the transfer function of our canonical
microcircuit neural field model. Taking the Fourier transform of Eq. (17.19) and
substituting into Eq. (17.17) gives:

T .k; !/ D .�!2I4 � 2i!B C B2 � J.k; !//�1G
J.k; !/ D ABD.k; !/�;

(17.20)

where J.k; !/ is a 4� 4 matrix incorporating the synaptic parameters, connectivity
parameters and gain matrix and D.k; !/ is the Fourier transform of the spatiotem-
poral connectivity: see Eq. (17.22) below.

In summary, Eq. (17.20) provides a transfer function mapping from exoge-
nous inputs or fluctuations acting upon each neuronal layer and the resulting
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spatiotemporal response in source space. This transfer function is specified com-
pletely by synaptic and connectivity parameters implicit in the neural field model.

Substituting Eq. (17.20) into Eq. (17.15), we obtain an expression for the pre-
dicted spectra as a mixture of contributions from each population weighted by
qa.a D 1; : : : ; 4/:

g.!; �/ DP
a;k qaWa.k; !/

Wa.k; !/ D
ˇ̌
ˇe�2�2'2k2	1meSa.k; !/R

�1.k; !/
ˇ̌
ˇ2 gu.k; !/:

(17.21)

The term Sa.k; !/R
�1.k; !/ in (17.21) expresses the relative contribution of each

population to the predictions at the source level and depends upon the particular
form of the connections among these populations. It can be seen from Eq. (17.9),
that this ratio depends upon the (Fourier transforms of) intrinsic and extrinsic
connectivity;

D
.i/
ab .k; !/ D

aab.cab � i)!/

c2ab � )2ab!
2 � 2i)cab! C k2

D
.e/
aa .k; !/ D caa

2

�
e�hacaac� � ei)ha!�2hacaa.c�˛ C ˇ/

4k2�2 C c�c�

Ce
i)ha!cC˛ � e�hacaacC C ei)ha!�hacaaˇ

4k2�2 C cCcC

�

˛ D cos.2hak�/; ˇ D 2k� sin.2hak�/
cC D caa C i)!; c� D caa � i)!:

(17.22)

In particular, R.k; !/ and Sa.k; !/ are given by

R.k; !/ D �V14.k; !/.�V23.k; !/CQ2.k; !/Q3.k; !//

CQ4.k; !/Œ�V23.k; !/Q1.k; !/

CQ3.k; !/.�V12.k; !/CQ1.k; !/Q2.k; !//�

S1.k; !/ D �Q4.k; !/.�V23.k; !/CQ2.k; !/Q3.k; !//

S2.k; !/ D D.i/
21 .k; !/�	2miQ3.k; !/Q4.k; !/

S3.k; !/ D �D.i/
21 .k; !/D

i
32.k; !/�

2	2	3memiQ4.k; !/

S4.k; !/ D D.i/
41 .k; !/�	4me.�V23.k; !/CQ2.k; !/Q3.k; !//

(17.23)

where the functions Qa.k; !/ and Vab.k; !/ depend on the Fourier transforms
D
.i/
ab .k; !/ and D.e/

aa .k; !/ as follows:

Qa.k; !/ D �	2a C �.D.i/
aa .k; !/CD.e/

aa .k; !//	ama C 2i	a! C !2
Vab.k; !/ D D.i/

ab .k; !/D
.i/
ba .k; !/�

2	a	bmamb:
(17.24)

In summary, the predicted spectral response at the sensor for the CMC field model
is given by:
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g.!; �/ D
X
k

ˇ̌
ˇ̌̌
e�2�2'2k2	1me

X
a

qaSa.k; !/

ˇ̌
ˇ̌̌2
gu.k; !/; (17.25)

where the functions Sa.k; !/ and R.k; !/ are defined by (17.23). Equation (17.25)
reflects the fact that the predicted spectral responses of the system are coupled to its
spatial as well as its temporal properties; these properties are encoded in the transfer
functions Sa.k; !/ and R.k; !/ through the underlying connectivity functions
Dab.k; !/. In turn, these are specified by the synaptic parameters associated with
the canonical microcircuit � 2 fmi ;me; 	i ; 	e; r; �g and the spatial parameters � 2
faab; cab; ha; vabg that encode intrinsic and extrinsic connections among different
layers and neighbouring columns or points on the cortical circuits.

The predicted spectral responses for the JR field model obeying Eq. (17.8) with
connectivity determined by Eq. (17.10) are also given by an equation of the form of
Eq. (17.25) above (with a D 1; 2; 3) where the functions Sa.k; !/ and R.k; !/ are
now given by:

S1.k; !/ D �D
.i/
32 .k;!/

D
.i/
31 .k;!/

S2.k; !/C .	e C i!/2.	i C i!/2
S2.k; !/ D D.i/

23 .k; !/D
.i/
31 .k; !/�

2	e	imemi

S3.k; !/ D D.i/
31 .k; !/�	eme.	i C i!/2

R.k; !/ D �D.i/
23 .k; !/D

.i/
32 .k; !/�

2	e	imemi .	e C i!/2
C.	i C i!/2

	
	4e C 4i	3e! � 4i	e!3 C !4

�	2e .D.i/
13 .k; !/D

.i/
31 .k; !/�

2m2
e C 6!2/



:

(17.26)

17.3 Neural Fields as Dynamic Causal Models

17.3.1 Probabilistic Models of Empirical Data and Their
Inversion

To complete our specification of a generative model, we assume that the observed
cross-spectra gy are a mixture of predicted spectra, channel and Gaussian observa-
tion noise

gy.!/ D g.!; �/C gn.!; �/C �y
gu.!; �/ D ˛u C ˇu

!
; gn.!; �/ D ˛n C ˇn

!
;

Re.�/ � N .0;˙.!; �//; Im.�/ � N .0;˙.!; �//:

(17.27)

Here, g.!; �/C gn.!; �/ are the predictions of the data features gy.!/ and �y are
the corresponding prediction errors with covariance ˙.!; �/. The spectra of the
neuronal fluctuations or input gu.!; �/, are assumed to be spatially white; namely,
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they are independent of spatial frequency. However both input and noise spectra are
modelled as a mixture of white and coloured fluctuations over time. In particular, we
have introduced extra free parameters � 
 f˛n; ˛u; ˇn; ˇug controlling the spectra
of the inputs and channel noise.

Equation (17.27) provides the basis for our generative model and entails free
parameters controlling the spectra of the inputs and channel noise as well as the
amplitude of observation error. Gaussian assumptions about the observation error
mean that we have a probabilistic mapping from all of the unknown parameters
to observed (spectral) data features. Inversion of this model means estimating,
probabilistically, the free parameters from the data.

Having prescribed the generative model of our DCM, we can now turn to its
inversion via Bayesian techniques. Almost universally, the fitting or inversion of
Dynamic Causal Models optimizes variational free energy. Variational free energy
serves as a bound approximation to the log-evidence lnp.gy jM/ for a model
M . This optimization is carried out with respect to a variational density q.�/ on
the unknown model parameters. By construction, the free energy bound ensures
that when the variational density maximizes free energy, it approximates the true
posterior density over parameters, q.�/ � p.� jgy;M/. At the same time, the free
energy itself approximates the log-evidence (log-marginal likelihood of the data).
The (approximate) conditional density and (approximate) log-evidence are used for
inference on parameters and models respectively. In other words, one first compares
different models (e.g. neural fields and masses) using their log-evidence and then
turns to inferences on parameters, under the model selected. One usually assumes
the conditional density has a Gaussian form q.�/ D N .�; C /. This is known as the
Laplace assumption. The conditional density is quantified by the most likely value
of the parameters, � and their conditional covariance C that encodes uncertainty
about the estimates and their conditional dependencies. Under this assumption about
the variational density and Gaussian observation noise, the free energy has a very
simple form:

F D G.�/C 1
2

ln j@��Gj
G D H � 1

2
Re.�.�//T ��1Re.�.�// � 1

2
Im.�.�//T ��1Im.�.�//

H D � 1
2
�.�/T˝�1�.�/ � 1

2
ln j� j � 1

2
ln j˝j

� D � � :
(17.28)

Here, �.�/ 2 R are prediction errors on the parameters, in relation to their prior
density p.� jm/ D N .;˝/. Model complexity in Eq. (17.28) corresponds to the
� 1
2
�T˝�1� term: This reports the deviation of the estimated parameters from their

prior expectations and effectively penalizes the free energy objective function in
proportion to the degrees of freedom used to explain the data. A full description of
the resulting Variational Laplace scheme can be found in [19].

The underlying generative model generally admits a unique solution during
model inversion; this follows from the use of biophysically plausible priors over
the biophysical parameters. Tables 17.1 and 17.2 describe the priors over synaptic
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Table 17.1 Prior expectations of parameters of the CMC field model

Parameter Physiological interpretation Prior mean

me;mi Maximum postsynaptic depolarisation 8, 32 (mV)
	1; 	2; 	3; 	4 Postsynaptic rate constants 1/2, 1/2, 1/16, 1/28 (ms�1)
a22; a33; a41 Amplitude of intrinsic connectivity kernels 3,200
a12; a44; a23; a32 800,800,1,600,1,600
a11; a14; a21 9,600,4,000,4,800

cab Spatial decay of connectivity kernels


0:6 a ¤ b

2 a D b
(mm�1)

ha Separation between columns 4.5 (mm)
r; � Parameters of the postsynaptic firing rate function 0.54, 0
v Inverse conduction speed 1.5 s/m
 Dispersion of the lead field

p
2=20

Table 17.2 Priors of parameters of the JR field model

Parameter Physiological interpretation Prior mean

˛13; ˛23; ˛31; ˛32 Amplitude of intrinsic connectivity kernels 2,000, 8,000, 2,000, 1,000

parameters for the CMC and JR field models; as well as parameters pertaining to
the spatial structure of cortical sources. These priors are based on the modelling
literature, while others come from the experimental literature [27]. In general, priors
are chosen to restrict parameter estimates to a physiologically meaningful range.
However, it should be noted that the precise values of the priors are not important:
the inversion scheme has the latitude to accommodate deviations from these values
to optimise model evidence.

In what follows, we apply the theory of preceding sections to real electrophysio-
logical data to illustrate the sorts of questions and quantitative characterisations that
are enabled by combining neural field models with dynamic causal modelling.

17.3.2 LFP Auditory Cortex Data

We will first formulate neural mass models as a special case of neural field models
by simply setting the conduction times to zero. This provides a useful perspective on
the relationship between these two models, in terms of the implicit assumptions we
make when modelling observed data. A pragmatic advantage of emulating neural
mass models, with a transit time of zero, is that we can apply precise shrinkage
priors to conduction times to facilitate model comparison. In other words, it provides
a simple means of comparing models with and without spatial dynamics (with
and without prior constraints on conduction or transit times). In particular, we
first consider the mass and field variants of the JR model and assume that output
comes primarily from pyramidal cells. The corresponding predictions for neural
fields and masses are shown in Fig. 17.4. These predictions are based on model
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Fig. 17.4 Real data (dashed line) and model predictions (full line) showing a spectral profile that
is typically seen under anaesthesia. We observe a better fit of the field, relative to the mass model,
in particular for low frequencies

fits or inversions using local field potentials recorded from primary (A1) auditory
cortex in the Lister hooded rat, following the application of the anaesthetic agent
Isoflurane (see [39] for details) under acoustic white noise stimuli at a level of 83 dB.
In brief, 10 min of recordings were extracted from the continuous time domain data
and down-sampled to a sampling rate of 125 Hz. Frequency domain data-features
were obtained from this epoch using a vector autoregression model of order eight.
The model predictions of Fig. 17.4 illustrate nicely the difference between the field
and mass models: one can see that the neural field model has approximated the
preponderance of low frequencies more accurately than the neural mass model.
This is because it has extra degrees of freedom; namely conduction velocity and the
extent of lateral connections. These extend the repertoire of predictions to include
those afforded by spatial dynamics. Crucially, the log-evidence for the neural field
model was 1271 above the log-evidence for the neural mass model. This suggests
that there is a very strong evidence for spatial dynamics over the cortical manifold in
these auditory cortex data [43]. Recall that the model fit is based on optimising the
free energy bound to model-evidence. The free energy is just the difference between
a term quantifying accuracy (goodness of fit) and a term quantifying complexity.
This means the inversion provides explanations for empirical data that are both
accurate and parsimonious.

Clearly, the choice of an appropriate model depends upon the question of
interest; in particular, neural fields are appropriate for addressing questions about
the deployment of sources on the cortical surface and induced spatial dynamics.
However, the above example highlights that neural field models can be more
appropriate than mass models, from a Bayesian perspective, even if the spatial
parameters of a neuronal model are not the focus of study: In the context of our
Bayesian scheme, each model is scored using a free energy bound on model-
evidence, where better models have a higher free energy. This provides a principled
way to compare (score) different modes or hypotheses about how neuronal time-
series are generated.
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Fig. 17.5 Real data (dashed line) and model predictions (full line) for spectra in the gamma band
obtained from the human visual cortex during an attention task [56]. We observe that the fits of
both the field and mass models are equally good with no manifest differences

17.3.3 MEG Data from the Visual Cortex

We now turn to MEG data that summarise the spectral expression of endogenous
activity in the visual cortex of (twelve) human subjects described in detail in [56].
We used an adaptive spatial filter or beamformer [60] to obtain estimates of ongoing
neuronal activity in primary visual cortex. This provides estimates of electrical
cortical activity based on a weighted combination of sensors—sometimes referred
to as a virtual electrode. We then used the CMC model describing inter-laminar and
lateral intra-laminar interactions and inverted its mass and field variants. In these
illustrative inversions, the synaptic and spatial parameters were optimized and the
intermodal distance ha was fixed to a physiologically plausible value. We computed
the log evidence ratio (using the free energy approximation) comparing field and
mass variants at the group level. As above, the neural mass model was formulated
as a special case of the neural field model by shrinking the conduction times to zero.
Contrary to our earlier result, we found no evidence in favour of the neural field
model (the relative log evidence between mass and field models was on average
2.62): see Fig. 17.5 for spectral fits of an exemplar subject.

This highlights the fact that the best model depends upon the data modelled.
It also underlines the importance of combining a neuronal model with a spatial
forward model: although both auditory and visual cortices are thought to conform
to the local homogeneity constraints implicit in neural field models, the loss of
spatial frequency resolution—with non-invasive data—might render neural field
models unnecessary, in relation to neural mass models. Our failure to establish
a significantly greater evidence for neural field models, in the present model
comparison, is intuitively sensible because non-invasive MEG data have much lower
spatial resolution than the LFP data we used in the previous model comparison.
This observation speaks to the potential importance of using spatially resolved data
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to take full advantage of neural field models. Data with high signal to noise ratio
and wide brain coverage—such as those afforded by ECoG sensors or multi-array
grids—can, in principle, disclose a full spectrum of spatiotemporal dynamics at
different scales, which may be important for an informed (efficient) estimate of
spatial parameters in neural field models.

17.4 Conclusions

By exploiting a combination of neural field modelling and Bayesian inference, we
have shown that Dynamic Causal Modelling can help appraise biophysical models
for explaining electrophysiological data. We have focused on two main classes of
biophysical models of brain activity, the so-called neural field and mass models
and have considered their application to modelling empirical LFP and MEG data.
Bayesian model comparison—using a variational free energy approximation to
log model evidence—suggests neural field models provide a better explanation
of empirical data if, and only if, there is sufficient spatial frequency information
in the data. In other words, we found greater evidence for neural field models
in analyses of LFP data but failed to find more evidence for neural field models,
relative to neural mass models, in MEG (virtual electrode) data. The key distinction
between these different modalities is that the LFP data is sensitive to a wide range
of spatial frequencies and the temporal fluctuations that these frequencies contain.
In contrast, the lead fields inherent in non-invasive electromagnetic recordings are
necessarily broader and suppress temporal dynamics that are expressed in high
spatial frequencies. This is a nice example of modelling with neural mass and field
models that highlights the key role of both data and biophysically informed models
in hypothesis testing and model comparison.
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Chapter 18
Neural Field Dynamics and the Evolution
of the Cerebral Cortex

James J. Wright and Paul D. Bourke

Abstract We describe principles for cortical development which may apply both
to the evolution of species, and to the antenatal development of the cortex of indi-
viduals. Our account depends upon the occurrence of synchronous oscillation in the
neural field during embryonic development, and the assumption that synchrony is
linked to cell survival during apoptosis. This leads to selection of arrays of neurons
with ultra-small-world characteristics. The “degree of separation” power law is
supplied by the combination of neuron sub-populations with differing exponential
axonal tree distributions, and consequently, in the visual cortex, connections emerge
in anatomically realistic patterns, with an ante-natal arrangement which projects
signals from the surrounding cortex onto each macrocolumn, in a form analogous to
the projection of a Euclidean plane onto a Möbius strip. Simulations of signal flow
explain cortical responses to moving lines as functions of stimulus velocity, length
and orientation. With the introduction of direct visual inputs, under the operation
of Hebbian learning, development of mature selective response “tuning” to stimuli
“features” then takes place, overwriting the earlier ante-natal configuration. Further
assuming similar development principles apply to inter-areal interactions in the
developing cortex, a general principle for the evolution of increasingly complicated
sensory-motor sequences, at both species-evolution and individual time-scales, is
implicit.
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18.1 Introduction

This chapter outlines the wider biological motivation of recent work from our group,
in which we have applied neural field theory to the embryological development
of the primary visual cortex. The embryogenesis of brains appears to mirror the
phylogenetic history of the brains of antecedent species, and neurodevelopment and
later learning must, throughout life, take place hand-in-hand. So, perhaps it will be
of value to consider neuron dynamics within this evolutionary and developmental
context? This idea is hardly new—in relation to neural networks it can be traced
back through Hebb [42] to William James [50], and beyond. In its anatomical
aspects, it is given its strongest evolutionary context in the works of Papez [76],
Yakovlev [110], Sperry [88], and MacLean [57, 69]. In these latter works, the
process of encephalization was explained in terms of the drive toward ever more
neurons, and of the advantages of envelopment of the “older” (species’) brain within
the “newer” brain, thus providing centripetal/centrifugal control and supervisory
functions, so that the function of hard-wiring circuits was not lost as progressively
flexible “new” circuits were added, at paleo-cortical, and then neo-cortical level.
Two corollary aspects of this evolutionary sequence have been less emphasised, but
seem also to be important. The first aspect seems almost too obvious to require
stating—the developing neural organization must retain, as cortical size increases,
a primary capacity to convert information delivered to the sensory cortices into
motor outputs, beginning from simple sensory-motor systems exemplified by the
tadpole tectum [45]. Perhaps less obviously, it seems that there must be a modular
principle for sensory-motor signal conversions, such that new pieces of cortex can be
“inserted”, without disruption of antecedent functions. The latter aspect has gained
in importance since the classic works of MacLean and his precursors. As encephal-
ization increases, there is are corollary demands to minimize information transfer
times and physical size, while maximizing total synaptic connectivity and total
information storage capacity, all the while minimizing metabolic demand as much as
possible. In approaching an optimum neuronal assembly, there is a synergy between
the need to maximize connectivity, minimize connection distances, and maximize
information storage capacity, for the following reason: as encephalization increases,
the small neurons of small, primitive creatures give way to long, attenuated neurons
of large, advanced creatures. This increases the connectivity of each neuron, and
is compatible with an efficient connection system among the neurons, for which
some “ultra-small-world” arrangement [21] would be optimal. The tendency toward
attenuation of neurons has a limit at which the neuron, described as a fractal object,
approaches a dimension of three—i.e., as large a surface area of synaptic contacts as
possible, for as small a cell volume as possible. Assuming the supply of metabolites
is subject to some upper practical limit, there must also result an increasing
competition for crucial metabolites among synapses. There is good evidence that
competition between synapses for resource takes place at a number of anatomical
sites (e.g., [7,40,51,61,74]). If there was only enough critical metabolite for half the
synapses to operate at maximum capacity, then, as well as generating a maximum
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Fig. 18.1 Surface-to-volume ratios of dendrites, and competition for critical metabolites. Atten-
uated dendrites of a neuron with fractal dimension approaching three (left), are contrasted with
less attenuated dendrites of a neuron with fractal dimension markedly less than three (right). To
the right of each neuron, synapses and post-synaptic membranes are represented schematically.
For the more “developed” neuron, where cell surface to volume is high, arrows indicate the flow
of a critical metabolite away from inactive synapses to active synapses, induced by demand—
a competition that need not take place when dendritic surface area is relatively reduced. Model
neurons constructed by diffusion-aggregation [103]

of synapses, attenuation plus competition could maximize the possible Shannon
entropy of the synaptic states, by maximizing the complexity of possible neural
signal pathways among the neurons (See Fig. 18.1 ). If variation of the supply of
metabolites fluctuates with firing states of the network, and there are a multiplicity of
critical factors, and consequently of time-scales of their supply, conditional Markov
processes of great complexity are possible, from which ensemble those beneficial to
survival must be selected.

Since “ontogeny recapitulates phylogeny”, and the considerations above have
determined the pathway followed by species-level natural selection, then what is
their analogue during individual development? During embryogenesis there is a
further happy convergence of effects, which at first seem antagonistic. The active
firing of the neurons, which seems to add a burden of metabolic demand to the
developing cells may assist the avoidance of cell-death by apoptosis, and may do
so in a way which leads to an efficient primary organizational underpinning for
the learning of ever-more complicated sensory-motor sequences in post-natal life.
We next sketch relevant background findings, before presenting application of these
principles to problems of development of the primary visual cortex (V1). We have
concentrated on the primary visual cortex because of the wealth of experimental
data that has been gathered in that cortical area, but we intend our treatment to be
more general, and applicable to the cortex more widely, as is later described.
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18.1.1 Genetic Expression, Cell Firing and Apoptosis
in Cortical Development

The emergence of functional neuronal organization and connectivity in the develop-
ing cerebral cortex depends on differentiation, proliferation and migration of neu-
rons [44]. Early, thalamus-independent (i.e., sensory-pathway-independent) steps in
the process of cortical arealization take place on the basis of information intrinsic
to the cells, as proposed by Rakic in his protomap hypothesis [78]. It is these
genetic programmes that lead to the characteristic cellular shapes of different
populations of neurons during the stages of cell differentiation. However, factors
not simply explained by direct gene expression in the cells seem to be important.
Action potential generation is present from early embryonic development (e.g.,
[5]) and plays a part in the development of cortical microcircuitry [111]. As cell
differentiation proceeds, programmed cell death plays a major role. Fragmented
nuclear DNA markers suggest that the bulk of differentiating neurons die soon
after they are generated, and the majority of the cells that die are in the fastest
proliferating regions [12]. Cell firing itself is not essential to synaptic development,
since cultured neurons blocked from generating action potentials by xylocaine
continue to develop synapses [65]. Yet, although the generation of action potentials
must greatly increase metabolic demands, synchronous action potential generation
appears to protect against apoptosis, since neurons in neonatal cerebral cortical
slices show increased apoptosis when their capacity to enter into synchronous firing
is disrupted by pharmacological means [43]. Embryonic neurons developing in
vitro develop synchronous firing, and as their growth proceeds, also show self-
organization into “small world” networks [22].

We propose that synchronous firing and protection from apoptosis are related
because competition among developing neurons and synapses, although mediated
by trophic factors [39,94,97,98], is ultimately a competition for available metabolic
energy, and that pulse synchrony increases uptake of critical metabolic resources,
perhaps by some collective pumping action. Consequently, cell groups interlinked
in such a way as to fire in maximum synchrony can supply themselves with sufficient
resource to survive, while others cannot.

18.1.2 Cell Firing and Synchronous Oscillation

Synchronous oscillation of pulses and local field potentials is a ubiquitous aspect
of cortical activity [16, 26, 27, 37, 87] and has been proposed as a solution to
the “binding problem” of perceptual grouping and cognitive processing [27, 87].
Synchrony is not absolute, but refers to occurrence of maximum cross-correlation
at zero lag, and is a broadband phenomenon in the temporal frequency domain [16].
Detailed models of synchronous firing in specific cell assemblies [26, 83, 87, 89,
95, 100] do not explain the synchrony seen in neuron cultures, brain slices, or the
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early foetal brain. A more fundamental mechanism that is a universal property of
networks with summing junctions including dendrites [20, 80, 107] is applicable,
however, and appears in simulations that also accurately reproduce spectra, cross-
correlations and excitatory/inhibitory timings characteristic of activated cortex [104,
105]. In these simulations synchrony results from interaction of waves travelling
in opposite directions, and increases in amplitude toward an ideal steady-state in
which there is sustained symmetrical exchange of signals between all excitatory
neurons [105], associated with concurrent local excitatory/inhibitory oscillation.
That is, synchrony reflects an oscillatory steady-state with bidirectional equality of
signal exchange. Unidirectional traveling waves are transient deviations from that
equilibrium of exchange.

18.1.3 Unresolved Issues in the Development of V1

18.1.3.1 The Geometry of Response Organization

Since the discovery that individual cells in V1 respond with an orientation pref-
erence (OP) to visual lines of differing orientation [48], attempts to analyze the
response organization and explain its relationship to cortical function [92, 99, 102]
have played a pivotal role in neuroscience. The surface organization of OP in V1 has
recently been compared with appropriate random surrogates, and shown, in some
species at least, to approximate an hexagonal rotational periodicity in which each
roughly delineated macrocolumnar unit exhibits all values of OP arrayed around
a pinwheel [68, 75]. Varying chirality and orientation of the pinwheels achieves
continuity of OP at the columnar margins, thus producing linear zones and saddles.
In any individual, irregular variation from the average periodicity occurs, and some
species—particularly those with smaller brains and hence visual cortices—exhibit
little or no sign of this ordering. Because of this marked interspecies variation,
serious doubt has been expressed that the pattern is of functional significance at
all, since response maps are absent in some species without those species having
any apparent deficit in vision [47].

18.1.3.2 The Superficial Patch System

A further puzzle of intracortical V1 organization is posed by the superficial patch
system. This system, composed of relatively long-range, largely excitatory [46, 59]
patchy connections [35, 81] is ubiquitous in cortex [67] and has a functional
relationship to OP. Patchy connections develop before sensory afferents reach the
cortex [18,23,77,82] and do not arise or terminate in the vicinity of OP singularities.
They link areas of common OP (“like-to-like”) over distances several times the
diameter of a macrocolumn [17, 36, 63, 68], are periodic on roughly the same
interval as OP, and are largely patch-reciprocal [4,81]. Just as for maps of response
properties, there is variation of patchy connection orderliness between species [68].
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18.1.3.3 Model Characterization of Primary Feature Responses

Explanation of organization of OP has been attempted in a group of now-classical
theories, which we will refer to as “standard models”, following the comparative
description of Swindale [92]. Dimension reduction methods [24, 25, 52] show that
the response maps of OP, eye preference (OC), direction preference (DP) and
spatial frequency preference (SF) are consequences of requiring continuity and
completeness of representation of each response property, in a two-dimensional
representation in which every type of response property occurs within any small
area on the surface of V1 [19, 92]. The same ordering can also be explained
as a consequence of competitive Hebbian learning among small neighborhood
assemblies of excitatory neurons [38]. All standard models depend on seeding with
oriented lines, in one way or another [24,38,64,70,71,90,91,93,99] and otherwise
similar models avoiding this limitation do not accurately reproduce response maps
[54–56, 60]. Initial belief that response to simple oriented lines in the visual field
formed the basis of OP maps has been undermined in two ways. Firstly, maps of
OP appear in the cortex prior to visual experience [11, 85, 101], and although it
is argued that structured stimuli may arise from retinal inputs in the absence of
visual experience [1,75,79], the absence of particular visual stimuli in the post-natal
environment eliminates subsequent neural response to those stimuli [10] indicating
that direct visual experience is essential at some stage. Secondly, and more recently,
Basole and colleagues, who tested OP using stimulus lines moving at different
speeds, and oriented at differing angles to the line of movement of the stimulus,
found OP to be a function of these variables to such a degree that for lines oriented
non-orthogonally to the direction of movement, OP could vary progressively with
increments of speed to an asymptotic limit of 90ı [8, 9]. This effect was attenuated
for lines of progressively greater length. Standard models could not account for
these effects, and to salvage the standard models in essence, if not specifics,
subsequent workers explained these results by considering the temporal and spatial
frequencies associated with the moving stimuli. Issa and colleagues [6, 49] showed
responses to specific features could be explained by fitting six parameters—OP, SF
preference, and temporal frequency preference, and the tuning bandwidths of all
three. This description is referred to as the spatio-temporal filter model.

18.2 Developmental Synergy of Apoptosis and Synchrony,
Applied to V1

Wright and Bourke [106, 109] used a generic form of neural field equations for an
idealised, isotropic, neural field, within which individual neurons are embedded.
This represents the developing cortex’s potential isotropic connections, from which
actual connections are selected during development, by the combined unfolding
of genetic cascades, and of apoptosis. The scale of the field is that of a cortical
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area such as V1, representing intracortical connections rather than cortico-cortical.
Thus, the density of connection between neurons declines with increasing separation
of their cell bodies [15]. The high non-linearity of synapto-dendritic summations
are linearized at the field level, and axonal conduction speed is considered single-
valued. Subject to these strictures, these general equations include the minimum
relevant features:
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Qp.q; t / D f˙.Vp.q; t //CEp.q; t / : (18.5)

Subscript p 2 fe; ig refers to excitatory or inhibitory neurons; superscript qr0 refers
to synaptic connection from r0 to q where q; r0 are cortical positions in domain D,
occupied by single neurons. 'qr0

p .t/ is the flux of pulses reaching presynapses at

the neuron at q, from the neuron at r0.  qr0

p .t/ is the synaptic current generated

by 'qr0

p .t/. �p.q; t / is the aggregate synaptic current of type p generated at q.
Vp.q; t / is the soma membrane potential (relative to the resting potential) generated

at q. Qp.q; t / is the pulse emission rate at q. f qr0

p is the probability density of
occurrence of presynapses generated by axons of the neuron at r0 terminating
at q. v is axonal conduction speed. M qr0

p .t/ is the impulse response function
transforming presynaptic flux to synaptic current. Gp.t/ is the impulse response
function transforming synaptic current into dendritic potentials. f˙.Vp.q; t // is a
sigmoid function describing the local conversion of dendritic potentials into the rate
of generation of action potentials. Ep.q; t / is a driving noise, arising from intrinsic
random cell action potentials.

Restriction of the field to the scale of a cortical area carries several implications,
all because the probability of connections between any two neurons declines with
distance of separation. Firstly, descriptively we can consider “reciprocal couplings”
as an idealization/representation of field coupling symmetry, and in some instances
reciprocal couplings will in fact exist. Secondly because of more generally dense
connections among near neighbours, smoothing at dendritic summation requires
that Qp.q; t / is spatially and temporally “brown”—i.e., has high correlation at
short distances and times of separation. Thirdly, in the sparsely connected network,
the average “degree” of separation—i.e., the average number of neighboring cells
traversed by synaptic connections linking one cell to another—will also increase in
proportion to physical distance of separation.
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A further crucial property upon which our results depend is the occurrence of
gamma oscillation in the cortical field, when the cortex is sufficiently excited, as
occurs in the developing mammalian cortex in later foetal development [58, 62].
Experimental observations [32,33,41] show intrinsic cortical oscillation arises from
alternating excitatory cell and inhibitory cell firing at lags 1=4 of the period of
oscillation. Simulations of the oscillations [104, 105] show that travelling waves
are thus generated, the intersection of which produces broadband synchrony. In
conditions of uniform cortical excitation without strong perturbation from external
inputs the exchange of pulses between all cells reaches an equilibrium—that is, a
steady-state of symmetrical exchange of signals between excitatory cells at any two
positions on the cortex, so that in the oscillating field over sufficient intervals, T ,

1

T

Z T

0

'e.q; t / � N'e dt D 1

T

Z T

0

'e.r0; t / � N'e dt (18.6)

where N'p is the time-average presynaptic flux, uniform throughout the cortical
field. Since conduction delays are short compared to the period of oscillation, the
equality of Eq. (18.6) is generally approached even when T is smaller than the
period of oscillation [20], and because there are equal time-lags in both directions of
conduction excitatory pulse trains throughout the cortex have maximum correlation
at zero lag.

Zero-lag synchronous oscillation thus entails presynaptic pulse synchrony, with
a magnitude of presynaptic flux variation that can be defined respectively for
individual synapses, and in aggregate, as
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J qr0

is RMS presynaptic flux variation between q and r0, and J is the aggregate of
J qr0

over the cortex. The assumption that selection of neurons that survive apoptosis
depends on maximization of J has a series of important consequences.

18.2.1 Selection of Scale-Free Small-World Configurations
of Neurons

For any given level of cortical excitation, J is greatest for that ensemble of C
connected neurons, in which excitatory pulses arrive at dendrites, from all sources at
differing distances of separation, as closely in-phase as possible, so as to maximize
their summation. Axonal delays, small compared to the period of gamma oscillation,
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contribute a phase difference between cell firing at r0 and the arrival of presynaptic
pulses at q, of

�˚qr0 D 2� jq � r0j
Pv

(18.9)

whereP is the period of oscillation. Therefore that ensemble selected by its capacity
to maximize presynaptic synchrony must approach minimal total axonal length,
L D R

D

R
D
jq � r0j dq dr0, and minimization of this length also minimizes the

metabolic requirements of the axons.
It has been shown generally [21] for all systems of connected elements, the

path length in a topological sense is at a minimum where degree distribution
follows a power law. As was pointed out in conjunction with Eqs. (18.1)–(18.5),
in our idealised neural field, average degree of separation, in the topological sense,
increases linearly as metric distance of separation of the cell bodies, so that if L,
their total length of axonal connections, is minimal, then the path length in the
topological sense is also minimal, and the degree distribution is that of a scale-
free, or ultra-small world. Therefore, the connection density between cells versus
their metric distance of separation should also be approximated by a power-law
distribution. Further, according to Cohen and Havlin [21]

L � log logC (18.10)

so the metabolic efficiency of the connection system is further enhanced if the
surviving cells are linked into a continuum, as opposed to separate pools of neurons.
The number of neighbouring excitatory cells connected to a given excitatory neuron,
as a function of distance of separation, is proportional to 2� � f qr0

e .jq � r0j/ and
intracortical axonal trees have approximately exponential density/range relations
[15, 84], therefore, because a power function can be fitted exactly by a sum
of exponential functions, an ultra-small-world connectivity can be achieved by
sets of populations of cells with differing axonal characteristic lengths. During
embryogenesis primal cells divide sequentially by layer [78, 86] with differences
in growth pattern and characteristic axonal length programmed in sequential cell
divisions. For simplicity, we consider only two populations of excitatory cells, with
cell bodies partially separated by layer, but with intermingled axonal and dendritic
trees, and axonal tree connection probabilities described by
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f
qR
˛ refers to the axonal trees with longest axonal extensions, and f qr

ˇ refers to the
axonal trees with short axonal extension, thus �˛ < �ˇ .N D N˛CNˇ is the number
of synapses received/generated by each cell. Distances from r0 to q are substituted
as r � R to indicate equal distances, q � r and q � R, measured along the axonal
trees of the respective populations.

The further defining characteristic of small-world connectivity—the occurrence
of connection nodes—emerges as a consequence of the formation of the superficial
patch system, as follows.

18.2.2 The Origin of the Superficial Patch System

The two populations of cells and the synapses they give rise to can be referred
to as ˛-cells and synapses, and ˇ-cells and synapses. We first make a provisional
assumption (later justified on a species-specific basis) that Nˇ � N˛ , so that ˛-
cells with long-range axons are embedded among much more numerous ˇ-cells.
Applying Eqs. (18.11) and (18.12) via Eq. (18.1) to find values of J qr0

in Eq. (18.7)
as functions of jq � r;Rj, shows that

J qr D J qR if jq � r;Rj D x (18.13)

J qr > J qR if jq � r;Rj < x
J qr < J qR if jq � r;Rj > x

where x D �
ln
N˛�˛

Nˇ�ˇ
2�.�ˇ � �˛/ .

Consequently [106, 109] it can be shown that J (Eq. (18.8)) is at a maximum if
ˇ-cells are clustered so they make reciprocal connections at minimum distance and
maximum density (ˇ-clusters), and ˛-cells also form clusters (˛-clusters) making
reciprocal synaptic connections at distances greater than x, so that they may form
multiple patches of synaptic connections, skipping from ˛-cluster to ˛-cluster. Also,
˛-clusters are necessarily placed at the vertices of hexagons tiling the cortical
surface, with each hexagon embracing a ˇ-cluster, while reciprocal connections
between ˛- and ˇ-cells occur at cluster margins, over distances approximate to x.
Analogy to the superficial patch system in larger-brained species is apparent. See
Fig. 18.2.

As noted earlier, hexagonal symmetry of OP and the superficial patch system
is an idealization that is roughly approached in some species, while in others it is
effectively absent [47]. Since approximation of a power law distribution by two
populations of neurons requires N˛ n Nˇ if �˛ n �ˇ , this case is more
closely approached for larger cortical sizes, and the patchy connection system
will have higher orderliness and hexagonal rotational symmetry. If �˛ < �ˇ by
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Fig. 18.2 Pale circles:
neurons coupled by
short-range connections.
Black circles: neurons
coupled by long-range patchy
connections. Grey
background: neurons
receiving connections of both
types. Dashed lines are of

length x D �
ln
N˛�˛

Nˇ�ˇ
2�.�ˇ � �˛/

.

Top: Nˇ o N˛ . Bottom:
N˛ > Nˇ

a small amount, as in animals with small cortical size, then Nˇ is not necessarily
greater than N˛ , and an ordered hexagonal structure need not be apparent. Such
reduction of the apparent orderliness does not imply the absence of “small world”
connectivity, nor imply impairment of function. As a corollary, the same principle of
development may apply widely throughout the cortex, as the emergence of clearly
defined macrocolumns is determined by the availability of cell types with marked
differences in axonal length. This appears to be the case for V1 in particular, whereas
elsewhere, resolution into clear macrocolumns is not so apparent [47].
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18.2.3 Self-Organization of Pre-vision Response Properties

Turning from optimization of energy demand of axons, to that of dendrites, we can
modify Eq. (18.2) [106, 109] to

 qr0

e .t/ D � qr0

M qr0

e .t/ � 'qr0

e .t/ (18.14)

where � qr0

is the available fraction of the metabolic supply rate needed to attain
maximum current flow, and M qr0

e .t/ includes terms for synaptic adaptation and
impulse decay, and, most importantly, for presynaptic synergy [96].

Since we have assumed increasing synaptic current in synchronously activated
synapses increases the available metabolic supply, the value of � qr0

must follow
that of  qr0

e .t/, and as well as inter-cellular competition between assemblies of
neurons, we assume competition takes place between adjacent individual synapses
arising from the same neuron. Therefore those neurons that survive apoptosis must
have found an efficient deployment of resource to the synapses best positioned to
maximize the magnitude of synchrony. Since any two adjacent synapses arising
from the same pre-synaptic neuron may terminate on the same, or different, post-
synaptic neurons, then if they terminate on the same neuron their conditions are
essentially identical. If they terminate on different neurons, then the relevant values
of J q—their respective synaptic cooperativity with other synapses terminating
on the same cell—need not identical—and their competition for resources would
lead, via the feedback between  qr0

e .t/ and � qr0

, to low synaptic current at one
synapse, and high current at the other. Just what the physiological corollary of these
opposite high and low-activity states is, and the critical metabolic component for
which the synapses compete, we do not specify. A likely, but by no means unique
contributing factor is the supply of extracellular calcium [66]. Whatever the critical
component(s), the important consequence is that, at synchronous equilibrium,
closely situated neurons each receiving synapses from the same cell, must have
either high, or low, pulse correlations with each other.

We can term those synapses that are transmitting impulses more strongly
near equilibrium “saturated” synapses, and those which are more quiescent, but
potentially able to be activated, “sensitive” synapses, and can consider what spatial
patterns of saturated connections would best meet the requirement to maximize
synchrony. Here a further property of the neural field commented on in relation
to Eqs. (18.1)–(18.5)—higher spatial cross-correlation of pulses and field potentials
at shorter range—has a decisive impact on the equilibrium pattern of synaptic
saturations, in concert with the need for saturated and sensitive synapses to be
generated on adjacent post-synaptic neurons. Then, for reasons further argued in
[106, 109], the emergent patterns, diagrammed in Fig. 18.3, have the following
properties:
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(a) Saturated connections within each ˇ-cluster form a re-entrant network analo-
gous to a Möbius strip.

(b) Saturated connections between the ˛-cluster system and each of the ˇ-clusters
form a projection between scales which is homeomorphic, preserving topolog-
ical identity between scales, and thus mapping a disk to a Möbius strip, and
imposing an orientation and chirality on each ˇ-cluster.

(c) Cells in the ˛-system are linked by saturated synapses.
(d) Saturated connections between ˇ-clusters must project to each of their six

neighbors as closely as possible to mirror symmetry, with both saturated and
sensitive synapses linking points homologous with respect to position in the ˛-
system—that is to say, points with similar OP as classically measured with low
object speeds. The necessarily broken symmetry permits the particular pattern
generated to be one of a large set of possible combinations.

Further analogy between the hypothetical ˛- and ˇ-systems and real anatomical
structures can now be drawn. As well as the ˛-system’s congruence with the super-
ficial patch system, the ˇ-systems, each with a dense system of local connections
that are centrally spared from patchy connections, are analogous to macrocolumns
each centred about an OP singularity. The distribution of OP for lines of orientation
0 � � to angles 0 � 2� in pinwheels about a singularity finds analogy in the
wrapping of a Euclidean plane onto a Möbius strip. It has also been earlier shown
that arrangements of adjacent pinwheels in broken mirror symmetry match classical
OP maps [108]. These relations are shown in Figs. 18.3 and 18.4.

Just as OP organization in some species is apparent before eye opening, so too is
the organization into OD columns [11, 31]. Explanation of this can be included in
the present model by an argument similar to that of Erwin and Miller, who suppose
the correlation of cell firing at short distances of separation of V1 cells to be greater
than the correlation of visual inputs over a similar distance. This forces a columnar
OD organization because of instability—in the present model’s terms, the resulting
disruption of the synchronous field at equilibrium produced by binocular inputs to
the same cells—resolved by formation of columns in Turing patterns.

18.2.4 Consequently, Following Eye-Opening. . .

After eye opening, visual inputs will provoke ordered departures from the average
equilibrium condition.

The emergent map at equilibrium, by which the patchy connections over a part of
V1 link to positions within each macrocolumn, can be expressed as 1:1 projection
from a disk on a Euclidean plane (the global map), P, to a Möbius strip (the local
map), pŒ2�—the square brackets Œ2� indicating the map’s resemblance, if viewed from
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Fig. 18.3 Top Equilibrium disposition of saturated and sensitive synapses. Black circles represent
cell bodies and dendrites. Synapses are indicated as saturated (solid) or sensitive (dashed)
terminations of axons. Reciprocal connections between ˛-patches (patchy connections) form
an hexagonal array. (Other connections, although shown as unidirectional, are also reciprocal.)
A representative pair of connections from ˛-cells to the ˇ-patch is displayed in the upper-and
lower aspects of the figure. At the centre of the figure, saturated and sensitive synapses show the
network’s analogy to a Möbius-strip within a ˇ-patch (macrocolumn). To the right, representative
links from the central macrocolumn to cells at homologous positions in neighboring macrocolumns
are indicated. Bottom “Like to like” saturated patchy connections map the same part of the
surrounding cortical field onto homologous cell positions on the Möbius configuration within each
macrocolumn, while at short range “like to like” saturated synaptic connections also form between
homologous positions between local maps
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Fig. 18.4 Simulated and real
maps of orientation
preference in V1, from [108].
Top: Simulation. Colours of
the spectrum, from red to
violet, represent average OP
of V1 neurons for
slow-moving visual lines of
orientation 0� � . Adjacent
macrocolumns, of diameter
approx 300%m are set within
an hexagonal frame (the
patch system) with OP
forming colour wheels about
OP singularities. Orientations
and chiralities of the colour
wheels are arranged to
approach a minimum total of
angular disparity from mirror
reflection of OP between each
macrocolumn and its
neighbours. Bottom: Real OP.
Visualized in the tree shrew
by [13]. Superficial patchy
connections are demarcated
in black by a selective stain.
Scale of macrocolumns is
approximate to that of the
simulation

a third dimension, to a 2:1 map formed by squaring a complex vector. In polar
coordinates,

P.jR � Cj j; #/ 7! pŒ2�.jr � Cj j;˙# C '/ (18.15)

where Cj is the origin of both P and pŒ2� for the j -th local map, and corresponds to
the position of the OP singularity in that macrocolumn. # is the polar angle of R,
chirality of the local map is indicated by ˙# , and ' is the orientation of the local
map relative to the global map. # C ' can be defined on the range 0 � 2� in both
local and global maps, but is represented with apparent angle doubling in the local
map, producing an apparent superposition of angles # and # C '. This describes
the form of “contextual” connections [3, 53].

With eye-opening, let O.P; t / be a visual image projected to V1 by the direct
visual pathway. Laterally travelling waves of pulses and local field potentials
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transmit that image to each local map with a point to point delay, jR�rj
v

, where v
now represents wave speed, so that

O.P; t / 7! O

�
pŒ2�; t C jR � rj

v

�
(18.16)

Suppose O.P; t / is a segment of the image of a visual line, travelling with uniform
velocity, Vx , on the cortical surface, along an x-axis directed toward a macrocolumn
with its singularity at Cj ,O has a component of its extension on the x-axis,Ox , and
an orthogonal component of extension, on the y-axis,Oy .Kx is the dominant spatial
frequency of Ox , and Ky is the dominant spatial frequency of Oy . Then the local
map projection of O has a transformed spatial frequency in the x-axis but not in the
y-axis—i.e.:

kx / v

v ˙ Vx Kx (18.17)

ky / Ky ; (18.18)

where kx; ky are the spatial frequencies in the local map projection of O , and the
sign ˙ in Eq. (18.17) depends on whether O is approaching or departing from Cj .
That is,O’s orientation in the global map is projected to the local map, with Doppler
shift, producing an apparent difference in orientation, ı# ;

ı# D
ˇ̌̌
ˇtan�1 Ky

Kx

� tan�1 ky
kx

ˇ̌̌
ˇ (18.19)

Laterally transmitted contextual signals generally do not trigger cell firing, until the
classic receptive field (cRF) is directly stimulated [3, 53] via the visual pathway.
The cells that fire are those that reflect the supra-threshold summations of sub-
threshold signals conveyed over the contextual, patchy, connections, and the direct
pathway. The summation of contextual and direct cRF inputs will act as an impulse
causing a transient breakdown of equilibrium, during which synapses that were in
both saturated and sensitive state in equilibrium briefly generate substantial synaptic
currents (see Fig. 18.5). Action potentials are triggered transiently in surrounding
cells. Subsequently there is a restoration toward the equilibrium state on withdrawal
of the stimulus. During the breakdown the mapping of activity from the global to
the local map becomes

O.P; t / 7! O

�
p2; t C jR � rj

v

�
(18.20)

The change from Eq. (18.16) made by removal of the square brackets from pŒ2�

represents the breakdown’s form, as itself a map from global to local scale,
resembling a 2:1 complex-multiplication map, as initially described by Alexander
et al. [2].
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Fig. 18.5 Red line is the projection, via the direct visual pathway, of a line in the (monocular)
visual field, oriented at 45ı to the line of passage, and moving from left to right across a system
of 7 macrocolumns in V1. Green lines represent the image of the red line, transmitted laterally
with delay, by patchy (contextual) connections. Bright illumination against the cortical background
represents the field of supra-threshold summation of direct pathway and contextual inputs, firing
cells with a preferred orientation/velocity/length relation to the red line

18.2.5 Post-natal Effects of Learning, the Spatio-Temporal
Filter Model, Dimension Reduction, and “Like To Like”
Connections

Following eye opening, stimuli with regularly repeated spatial and temporal struc-
ture reach V1. Exposure to a repeated stimulus will leads to permanent synaptic
consolidation of connections, in accordance with physiological versions of the
Hebb rule, and the spatio-temporal learning rule [28–30, 72, 73, 96], overlaying
any consolidated connections formed in the ante-natal, equilibrium condition.
As remarked in the Introduction, Baker and Issa [6] have shown that all V1 response
features can be described in terms of six variables—optimal values of orientation
preference, spatial frequency preference, and temporal frequency preference, each
associated with a Gaussian bandwidth of tuning of the cortical response to these
features. These define three hypothetical filter processes. Stimulus variables in the
present model have equivalents to those used in the spatio-temporal filter model.
These are:

Spatio-temporal model Present model

Object orientation Orientation relative to the y-axis defined for Eqs. (18.17) and (18.18)
Object velocity Vx
Object drift angle tan�1ŒKy=Kx�

Object spatial frequency Kx= cos.tan�1ŒKy=Kx�/

Object temporal frequency VxKx

Repeated stimulation with a particular stimulus will therefore lead, under
Hebbian learning, to maximization of the response to that stimulus, thus creating an
apparent “tuning” of particular neurons to that particular combination of stimulus
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features. Thus, the spatio-temporal model can be regarded as a consequence of
the present model. Optimization by learning of the parameters for each of the
three filters must be competitive between adjacent cells, providing the necessary
condition for fitting response maps with continuity and completeness, by dimension-
reduction methods [24, 25, 52]. Finally, the consolidation of saturated long-range
patchy connections by Hebbian learning would result in mature “like to like”
connections.

18.3 Simulations: A Critical Test

A critical test of our model, then, is whether we can reproduce in simulation the
results of Basole et al. [8], without appeal to a priori feature-specific responses
to orientation, spatial frequency, or temporal frequency, as in the spatio-temporal
filter model—the band-width of tuning regarded as a post-natal effect, and not a
primary explanation. Equation (18.20) was applied in simulations of an hexagonal
array of seven adjacent macrocolumns. Results reported in Fig. 18.6 are for the
central macrocolumn of the array of seven. Examples from the array are shown
in Fig. 18.5, which shows the orthogonal transformation of apparent OP from the
lowest to the highest bar speed for a moving line stimulus oriented at 45ı to its
line of passage. Again, details of the simulation and controls are given elsewhere
[106, 109].

18.3.1 Effect of Object Velocity on Apparent Orientation
Preference

A moving line in the visual field, relayed by the direct visual pathway to the cRF
of each macrocolumn is represented as a red bar. In a single simulation the red
bar travelled across the entire hexagonal array from left to right, with constant
speed, direction and orientation. The orientation of the red bar to the line of passage
is measured as bar angle from degrees, where the bar is oriented orthogonally
to the direction of travel, to ˙90ı, where the bar is oriented in the direction of
travel. The lag-transmitted image of the red bar, relayed as subthreshold activation
to each macrocolumn via the superficial patch system, is shown in green, with
illumination about the zone of subthreshold activation, to indicate that input to
the cRF from the direct visual pathway and contextual signals caused triggering of
action potentials. The average angle from the macrocolumn singularity to the centers
of action potential generation (i.e., all points on the green line with illumination) was
calculated at each time-step, and shown as a black arrow, thus indicating the part of
the macrocolumn with a response preference (apparent OP) for the particular bar
movement. A change in the sector of the macrocolumn that is maximally stimulated
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Fig. 18.6 Change in
apparent OP, and standard
error of the estimate, as a
function of bar speed to wave
speed, for lines at different
orientations to their directions
of motion. Bar length 6 units

is equivalent to an equal change in the angle of approach of the bar needed to
maintain stimulation of the same sector. The black arrow angle was averaged over
a window beginning after the red bar had passed the center of the macrocolumn.
Combinations of bar-length, orientation of the bar to the direction of movement,
and bar speed, were then systematically varied in separate simulations. Their effects
on OP, measured at the central local map of the hexagonal group, were obtained as
OP difference,�—a measure of the change in OP as a function of these variables.
The reference OP, 0 2 Œ0; �/, was the OP found at the lowest bar speed applied
(bar speed/wave speed = 0.1) and the apparent OP, 1 2 Œ0; �/, was the OP found
at higher speeds.

Systematic results are shown in Fig. 18.6, which graphs OP difference versus bar
speed/wave speed, for bar angles to ˙90ı, calculated for a bar length of 6 units.
Variation of bar length showed progressive lessening of the effect of velocity on OP
for greater bar lengths.

For the case of bar-angle 0ı (a line oriented orthogonally to its direction of
passage, as in classical measurements of OP) no OP difference is seen until, as bar
speed approaches wave speed, a 90ı change in apparent OP takes place at a single
increment in speed. This corresponds to transition to a “motion streak”, as object
movement blurs resolution in the direction of motion. Increasing OP difference with
bar speed at other bar angles is a more gradual development of the same effect—that
is, mixing of responses to object speed and to object orientation.

These results match the findings of Basole et al. [8] and are consistent with effects
of Doppler shifting of the image transferred from the global to the local map and
further selected by the time of activation of the cRF.
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To exclude alternative explanations, similar simulations were performed in which
contextual (green bar) responses were constrained to occur only with a limited
angular response within a macrocolumn. That is, a restricted response to the line,
according only to its orientation was imposed, in analogy to conventional models of
OP, but with conduction delays of “like to like” fibers included. Then, systematic
variation of OP with bar velocity did not occur. A further comparison can be made
to the predicted anatomical structure that would emerge if there were no competition
for resources between synapses from the same neuron. In that case, OP maps would
emerge with any given stimulus orientation represented twice about a singularity—
which is not the case.

18.4 Conclusion

From our initial conjecture regarding the evolutionary path to encephalization,
we have deduced a model of self-organization in V1 that explains otherwise
disparate experimental data, and data which has presented paradoxes to standard
explanations. The model’s properties also approach a biological optimum, achieving
minimum metabolic cost per neuron, minimum total axonal length per connection,
and efficient packing, minimizing transmission delays. In effect, the decline of
stimulus cross-correlation with increasing distance in visual sensory space, and
the corresponding decline of cortical pulse cross-correlation with increasing dis-
tance of cell separation, permits development of an internal reference frame for
representation of visual events prior to direct visual experience—a tabula rasa—
upon which subsequent learning can be etched. In the pre-vision state, synaptic
couplings at equilibrium are highly orderly, thus offering high information storage
capacity, as complex visual correlations become stored by subsequent Hebbian
consolidation.

Beyond V1, we speculate that the model may be generally applicable throughout
the neocortex. Cortical structure and dynamics, including patch connections, are
similar throughout the cortex, and stimulus cross-correlations decline with distance
in all sensory modalities—most obviously so for somatic sensation, but also with
tone and position in the auditory system. The spatial distribution and intermixing of
odour receptors (reviewed by Freeman [32]) implies an analogy even for olfaction.
Similar ultra-small world representations might therefore form for all sensory
cortices. Although outside primary sensory cortices a similar degree of orderliness
of connections is not apparent, that does not exclude the applicability of the
model elsewhere, because, as we have seen, the model may be applicable to V1
even in those species which lack strong anatomical ordering, and readily apparent
orderliness is a geometrical consequence only for those cortical areas made up of
cells with particularly long patch connections.

The principles of the model may also generalize to inter-areal interactions, during
embryogenesis. Cortical areas project to and from other areas via cortico-cortical
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connections, which, because their axons diverge and overlap at their terminations,
project substantial parts of one area onto another, and are generally reciprocal
between areas [14, 15]. We have argued above, that, because co-variance of activity
declines with metric distance at both the scale of the patchy connections and
within a macrocolumn, a homeotypic mapping between scales can emerge. By
similar arguments, sets of macrocolumns at both the lower, V1, level and higher
levels, could resonate with, and form preferential connections with, superimposed
and overlapping groups at the other level, in accord with the developmental
selection requirement to maximize joint synchrony. With the occurrence of eye-
opening, Hebbian learning would then begin to overwrite the equilibrium resonance
configuration between areas, in analogy to the process at intra-areal level—
with the added property of associating concurrent patterns of activity in the V1
macrocolumns. A beginning on defining these reciprocal interrelations has been
made elsewhere [106].

Consequently, we may come to an analysis of information flow in the brain’s
neural networks, in a new way. It has long been known that a macroscopic level,
sensory inputs to, and motor outputs from, the cortex are arranged into topographic
maps. The present model extends the topographic format to the millimetric scale,
and implies that the raw material of cortical information flow is the interaction
of spatially organized images. This differs from standard concepts of feature
detection, which have dominated conceptions of cortical function since Hubel
and Wiesel’s famous observations of 1959 [48]. On the Möbius strip, spatial
relationships of sensory representations maintain nearest-neighbour relations, and
distances from singularities are associated with the distribution of conduction delay
from surrounding cortex. Subsequent Hebbian-strengthened connections can bridge
points with higher spatio-temporal correlations than accounted for by physical
distance of separation in sensory space alone. When the same notion is extended to
inter-areal connections, superposition of projections to higher cortical areas permits
responses to ever more complex “features” combining stimulus aspects that are
separated in visual space. At the ultimate level of expression at the motor cortex,
the same organizational model is applicable in the reverse way to that of the sensory
cortex—with pyramidal motor neurons substituted for direct visual pathway inputs.
The resulting organization is one in which signal flows from sensory inputs to
motor cortices could generate organized sensory-motor sequences in response to
both externally generated inputs, and to autonomous, internally generated signals
[32, 34, 105]. Cortico-cortical connections would permit extension to almost any
level of hierarchical complexity—a modular property facilitating the evolution of
encephalization.
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