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1 École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
erman.ayday@epfl.ch

2 University of Waterloo, Waterloo, Canada
3 Sophia Genetics, Lausanne, Switzerland

Abstract. Geneticists prefer to store patients’ aligned, raw genomic
data, in addition to their variant calls (compact and summarized form of
the raw data), mainly because of the immaturity of bioinformatic algo-
rithms and sequencing platforms. Thus, we propose a privacy-preserving
system to protect the privacy of aligned, raw genomic data. The raw
genomic data of a patient includes millions of short reads, each com-
prised of between 100 and 400 nucleotides (genomic letters). We propose
storing these short reads at a biobank in encrypted form. The proposed
scheme enables a medical unit (e.g., a pharmaceutical company or a hos-
pital) to privately retrieve a subset of the short reads of the patients
(which include a definite range of nucleotides depending on the type
of the genetic test) without revealing the nature of the genetic test to
the biobank. Furthermore, the proposed scheme lets the biobank mask
particular parts of the retrieved short reads if (i) some parts of the pro-
vided short reads are out of the requested range, or (ii) the patient does
not give consent to some parts of the provided short reads (e.g., parts
revealing sensitive diseases). We evaluate the proposed scheme to show
the amount of unauthorized genomic data leakage it prevents. Finally,
we implement the proposed scheme and assess its practicality.
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1 Introduction

Genomics holds great promise for better predictive medicine and improved diag-
noses. However, genomics also comes with a risk to privacy [4] (e.g., revelation
of an individual’s genetic properties due to the leakage of his genomic data). An
increasing number of medical units (pharmaceutical companies or hospitals) are
willing to outsource the storage of genomes generated in clinical trials. Acting as
a third party, a biobank could store patients’ genomic data that would be used
by the medical units for clinical trials. In the meantime, the patient can also
benefit from the stored genomic information by interrogating his own genomic
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data, together with his family doctor, for specific genetic predispositions, sus-
ceptibilities and metabolical capacities. The major challenge here is to preserve
the privacy of patients’ genomic data while allowing the medical units to operate
on specific parts of the genome (for which they are authorized).

We can put the research on genomic privacy in three main categories: (i) re-
identification of anonymized genomic data [12,13,17,18], (ii) cryptographic algo-
rithms to protect genomic data [6–9,14,16], and (iii) private clinical genomics
[11]. To the best of our knowledge, none of the existing works on genomic pri-
vacy addresses the issue of private processing of aligned, raw genomic data (i.e.,
sequence alignment/map files), which is crucial to enable the use of genomic
data in clinical trials.

Sequence alignment/map (SAM and its binary version BAM) files are the de
facto standards used to store the aligned1, raw genomic data generated by next-
generation DNA sequencers and bioinformatic algorithms. There are hundreds
of millions of short reads (each including between 100 and 400 nucleotides) in
the SAM file of a patient. Typically, each nucleotide is present in several short
reads in order to have sufficiently high coverage of each patient’s DNA.

In general, geneticists prefer storing aligned, raw genomic data of the patients
(i.e., their SAM files), in addition to their variant calls (which include each
nucleotide on the DNA sequence once, hence is much more compact) due to
the following reasons: (i) Bioinformatic algorithms and sequencing platforms
for variant calling are currently not yet mature, and hence geneticists prefer to
observe each nucleotide in several short reads. (ii) If a patient carries a disease,
which causes specific variations in the diseased cells (e.g., cancer), his DNA
sequence in his healthy cells will be different from those diseased. Such variations
can be misclassified as sequencing errors by only looking at the patient’s variant
calls (rather than his short reads). And (iii) due to the rapid evolution of genomic
research, geneticists do not know enough to decide which information should
really be kept and what is superfluous, hence they prefer to store all outcome of
the sequencing process as SAM files.

In this paper, we propose a privacy-preserving system for the storage, retrieval
and processing of the SAM files. In a nutshell, the proposed scheme stores the
encrypted SAM files of the patients at a biobank and it provides the requested
range of nucleotides (on the DNA sequence) to a medical unit (for a genetic
test) while protecting the patients’ genomic privacy. It is important to note that
the proposed scheme enables the privacy-preserving processing of the SAM files
both for individual treatment (when the medical unit is embodied in a hospital)
and for genetic research (when the medical unit is embodied in a pharmaceu-
tical company). The main contributions of this paper are summarized in the
following:

1. We develop a privacy-preserving framework for the retrieval of encrypted
short reads (in the SAM files) from the biobank without revealing the scope
of the request to the biobank.

1 Alignment is with respect to the reference genome, which is assembled by the
scientists.
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2. We develop an efficient system for obfuscating (i.e., masking) specific parts
of the encrypted short reads that are out of the requested range of the med-
ical unit (or that the patient prefers to keep secret) at the biobank before
providing them to the medical unit.

3. We show the benefit of masking by evaluating the information leak to the
medical unit, with and without the masking is in place.

4. We implement the proposed privacy-preserving system by using real genomic
data, evaluate its efficiency, and show its practicality.

2 Genomic Background

The DNA sequence data produced by DNA sequencing consists of millions of
short reads, each typically including between 100 and 400 nucleotides (A,C,G,T),
depending on the type of sequencer. These reads are randomly sampled from
a human genome. Each read is then bioinformatically treated and positioned
(aligned) to its genetic location to produce a so-called SAM file. There are hun-
dreds of millions of short reads in the SAM file of one patient.

The privacy-sensitive fields of a short read are (i) its position with respect to
the reference genome, (ii) its cigar string (CS), and (iii) its content (including
the nucleotides from {A, T,G,C}).

A short read’s position denotes the position of the first aligned nucleotide
in its content, with respect to the reference genome. The position of a short
read is in the form Li,j = 〈xi|yj〉, where xi represents the chromosome number
(xi ∈ [1, 23] as there are 23 chromosomes in the human genome) and yj represents
the position of its first aligned nucleotide on chromosome xi (yj ∈ [1, 240M] as
the maximum number of nucleotides on a chromosome is around 240 million).
The cigar string (CS) of a short read expresses the variations in the content of
the short read. The CS includes pairs of nucleotide lengths and the associated
operations. The operations in the CS indicate some properties about content
of the short read such as which nucleotides align with the reference, which are
deleted from the reference, and which are insertions that are not in the reference
(without revealing the content of the short read). Finally, the content of a short
read includes the nucleotides. We provide more details about the SAM files in [5].

There are several types of DNA variations in the human genome, among
which the single nucleotide polymorphism (SNP) is the most common. A SNP is
a position in the genome holding a nucleotide that varies between individuals.
Recent discoveries show that the susceptibility of a patient to several diseases
can be computed from his SNPs [1]. Thus, we focus on the SNPs of a patient
when evaluating the information leakage in Sect. 6.

3 Overview of the Proposed Solution

We assume that the sequencing and encryption of the genomes are done at a cer-
tified institution (CI), which is a trusted entity. Short reads are encrypted after
the sequencing, and encrypted SAM files of the patients are stored at a biobank
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(for security, efficiency, and availability). We note that a private company (e.g.,
cloud storage service) or the government could play the role of the biobank.
When a medical unit (MU) requests a specific range of nucleotides (on the DNA
sequence of one or multiple patients) for a genetic test, the biobank provides all
the short reads that include at least one nucleotide from the requested range. We
assume that an MU is a broad unit consisting of many sub-units (e.g., physicians
or specialized clinics) that can potentially request nucleotides from any parts of
a patient’s genome. To avoid the biobank from associating the conducted genetic
tests with the patients, we hide both the real identities of the patients (using
pseudonyms) and the types of the conducted tests from the biobank.2 We hide
the types of the conducted tests from the biobank by permuting the positions
of the short reads, and then using order preserving encryption (OPE) on the
positions of the short reads. OPE is a deterministic encryption scheme whose
encryption function preserves numerical ordering of the plaintexts [3].

As each short read includes between 100 and 400 nucleotides, some short
reads that are provided to the MU might include information out of the MU’s
requested range of genomic data, as in Fig. 1. Similarly, some provided short
reads might contain privacy-sensitive SNPs of the patient, hence the patient
might not give consent to reveal such parts, as in Fig. 2. Therefore we mask such
parts of the encrypted short reads at the biobank, without decrypting them using
an efficient algorithm.

Fig. 1. Parts to be masked in the short
reads for out-of-range content.

Fig. 2. Parts to be masked in a short
read based on patient’s consent. The
patient does not give consent to reveal
the dark parts of the short read.

The cryptographic keys of each patient are stored on a masking and key
manager (MK) by using the patient’s pseudonym (hence the participation of
the patient is not required in the protocol).3 The MK can also be embodied in
the government or a private company. To avoid the MK from associating the
2 Knowing the MU (e.g., the name of the hospital) the biobank could de-anonymize

an individual using other sources (e.g., by associating the time of the test and the
location of the MU with the location patterns of the victim).

3 Following our discussions with geneticists and medical doctors, we conclude that
the patient’s involvement in the genetic tests is not desired for the practicality of
the protocol (e.g., when a pharmaceutical company conducts genetic research on
thousands of patients).
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genetic tests with the patients, we do not reveal the identities of the MUs or the
patients to the MK.

4 Threat Model

We consider the following models for the attacker:

• A curious party at the biobank (or a hacker who breaks into the biobank),
who tries (i) to infer the genomic sequence of a patient from his stored genomic
data and (ii) to associate the type of the genetic test (e.g., the disease for which
the patient is being tested, which can be inferred from the nucleotides requested
by the MU) with the patient being tested.
• A curious party at the MK (or a hacker who breaks into the MK), who tries
(i) to infer the genomic sequence of a patient from his stored cryptographic keys
and the information provided by the biobank and (ii) to associate the type of
the genetic test with the patient being tested.
• A curious party at an MU, who can be considered either as an attacker who
hacks into the MU’s system or a disgruntled employee who has access to the
MU’s database. The goal of such an attacker is to obtain the private genomic
data of a patient for which it is not authorized.

We assume that the biobank, the MK, and the MUs honestly follow the
protocols and provide correct information to the other parties. Finally, collusion
between the parties (i.e., the biobank, the MK, and an MU) is not allowed in
our threat model and we assume that laws could enforce this.

5 Privacy-Preserving Processing of Raw Genomic Data

5.1 Cryptographic Keys and Encryption of the Short Reads

Fig. 3. Division, permutation and mapping of the posi-
tions on the whole genome.

We represent the position
of a short read (Li,j =
〈xi|yj〉) as a 35-bit number,
where the first 5 bits repre-
sent the chromosome num-
ber (xi) and the remaining
30 bits represent the posi-
tion of the short read in the
corresponding chromosome
(yj). If the positions of the
short reads were encrypted
following this representa-
tion, the biobank could
infer the approximate posi-
tions of the short reads as
a result of using OPE.
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To avoid this, we first divide the positions on the whole genome into parts
of equal lengths, permute these parts, and then modify the positions in each
part based on the permutation. In Fig. 3, we show such an example, in which
the positions on the genome are divided into parts of length 40 million (totaling
75 parts as there are 3 billion nucleotides in the human genome). For example,
chromosome 1 is divided into 6 parts (11, 12, . . . , 16), where the last part includes
positions from both the first and second chromosomes. After division, all parts
are permuted and mapped to different positions. As a result of the new mapping,
the new position of a short read at Li,j = 〈xi|yj〉 becomes M(Li,j) = 〈k〉〈xi|yj〉,
where M(.) is the mapping function for patient P, and k is the mapping of the
corresponding part. For example, the position of a short read located in the first
part of the first chromosome (part 11 in Fig. 3) becomes M(Li,j) = 〈3〉〈xi|yj〉
after the permutation and mapping. Thus, for each patient, we re-define the
positions of the short reads based on this new positioning, before encrypting the
positions of the short reads using OPE. By doing so, we also change the ordering
of the encrypted positions of the short reads. As a consequence, a curious party
at the biobank cannot infer which part of the patient’s genome is queried by the
MU from the stored (encrypted) positions of the short reads. Finally, we assume
that the MK keeps the mapping table MP (showing the mapping of each part
in each chromosome) for each patient. Note that as the permutation is done
differently for each patient, the biobank cannot infer if two different patients are
having a similar genetic test.

The different parts of each short read are encrypted as follows: (i) The posi-
tions of the short reads are encrypted using order preserving encryption (OPE),
(ii) the cigar string (CS) of each short read is encrypted using a semantically
secure symmetric encryption function (SE), and (iii) the content of each short
read is encrypted using a stream cipher (SC). We note that an SC also provides
semantic security, and although we really need an SC for the encryption of the
content, one can also use an SC for the encryption of the CS.

We represent the key used for the semantically secure encryption scheme
between two parties i and j as Ki,j . The symmetric OPE key that is used
to encrypt the positions of the short reads of patient P is represented as KO

P .
Further, the master key of patient P, which is used to generate the keys of the SC
is represented as MP . We denote KCi,j

P as the SC key used to encrypt the content
of the short read whose position is Li,j (where Ci,j represents the content of the
short read with position Li,j). We compute K

Ci,j

P = H(MP ,F(Li,j , Si,j), Li,j),
where Li,j is the (starting) position of the corresponding short read (on the DNA
sequence), Si,j is a random salt to provide different keys for the short reads with
the same positions, and H is a pseudorandom function. Moreover, F(Li,j , Si,j) is
a function that generates a nonce from the position and the random salt of the
corresponding short read. We represent the public-key encryption of message
m under the public key of i as E(Ki,m), the encryption of message m via a
semantically secure symmetric encryption function (SE) using the symmetric
key between i and j as ESE(Ki,j ,m), and the OPE of message m using the OPE
key of P as EOPE(KO

P ,m). Furthermore, we represent the SC encryption of the
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Posi 9 10 11 12 13 14 16 17 * * 21 22 23 24 25 26 27 28

Content of SR in 
the SAM file a t g T A A A T G C T A T G C G A G

Plaintext content 
in binary 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0 1 1

Key stream 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 1 0 0

Encrypted 
content (XOR) 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1

Masking vector 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Random masking

string 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 1 0 1 1

Masked enc. 
content (XOR) 1 1 1 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 0 0

Decrypted binary
content (XOR) 0 1 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0

Decrypted T G C T A A A G G C T G A T G G C A

CS of the SR before masking 3S3M1D2M2I3N8M

12

Input parameters

Output parameters

A 00

T 01

C 10

G 11

(a)

(b) (c)

Fig. 4. Illustrative example for the encryption, masking and decryption of the con-
tent of a short read (SR). (a) Content of the SR (the 2 stars between positions 17
and 21 represent the positions at which the SR has insertions, G and C), its binary
representation, the key stream to encrypt the corresponding content, and the format
of the encrypted content. Furthermore, following the discussion in Sect. 5.2, we illus-
trate the masking process considering the range of the requested nucleotides and the
patient’s consent (in (c)). Finally, we show the format of the decrypted binary content.
(b) Encoding format of the nucleotides. (c) Properties of the corresponding short read.
We provide more details about different letters in the CS in [5].

EOPE( ,POSITION) ESE( ,CS) ESC( ,CONTENT) RAND.SALT

Fig. 5. Format of an encrypted short read. The size of each field is discussed in Sect. 7.

content of a short read as ESC(KCi,j

P , Ci,j), where Ci,j represents the content of
the short read at Li,j . In Fig. 4(a), we illustrate how the content of a short read
is translated to plaintext bits and encrypted using SC (by XOR-ing the content
with the key stream). Finally, in Fig. 5, we illustrate the format of an encrypted
short read.

We assume that the certified institution (CI), where the patient’s DNA is
sequenced and analyzed, has KO

P , MP , and KP,CI (KP,CI is used to encrypt the
CSs of the short reads) for the initial encryption of the patient’s genomic data.
These keys are then deleted from the CI after the sequencing, alignment, and
encryption. We also assume that for each patient P, the MK stores KO

P , MP ,
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and KP,CI along with the mapping table MP (as discussed before). Finally, the
MU only stores the public key of the MK, KMK .

5.2 Proposed Protocol

Typically, a specialist at the MU (e.g., a physician at the hospital or a specialized
clinic connected to the hospital) requests a range of nucleotides (on the DNA
sequence of one or more patients) from the biobank (either for a personal genetic
test or for clinical research). For simplicity of the presentation, we assume that
the request is for a specific range of nucleotides of patient P. We illustrate the
connections between the parties that are involved in the protocol in Fig. 6(a).
In the following, we describe the steps of the proposed protocol (these steps are
also illustrated in Fig. 6(b)).

• Step 1: The patient (P) provides a sample (e.g., his saliva) along with his
permission to the certified institution (CI) for sequencing.
• Step 2: The CI does the sequencing and constructs the SAM file of the patient.
The short reads of the patient are also encrypted at the CI (as discussed in
Sect. 5.1).
• Step 3: The CI sends the encrypted SAM file to the biobank along with the
corresponding pseudonym of the patient. The CI also sends KO

P , MP , KP,CI ,
and the mapping table MP for patient P directly to the MK via a secure channel
(we do not illustrate this step in Fig. 6). We note that the first 3 steps of the
protocol are executed only once.
• Step 4: A specialized sub-unit at the MU requests nucleotides from the range
[RL, RU ] (RL being the lower bound and RU being the upper bound of the
requested range) on the DNA sequence of patient P for a genetic test. We
note that an access control unit stores the authorizations (i.e., access rights)
of the original request owners (e.g., specialist at a hospital) to different parts
of the genomic data. In our setting, the MU checks the access rights of the
original request owner before forwarding the request to the biobank. Once, the
MU verifies that the original request owner has the sufficient access rights to
the requested range of nucleotides, the MU generates a one-time session key
KMK,MU , which will be used for the secure communication between the MU
and the MK. The MU encrypts this session key with the public key of the MK
to obtain E(KMK ,KMK,MU ).

The MU encrypts the lower and upper bounds of the requested range with
KMK,MU to obtain ESE(KMK,MU , RL||RU ) and sends the corresponding request
to the biobank along with the pseudonym of the patient P, the identification of
the MU4, E(KMK ,KMK,MU ), and ESE(KMK,MU ,ΩP ), where ΩP is the
pseudonymized consent of the patient.5 The MK uses this pseudonymized con-
sent ΩP to generate the masking vectors (as in Step 9).
4 We reveal the real identity of the MU to the biobank to make sure that the request

comes from a valid source.
5 ΩP denotes the positions on the patient’s genome for which the patient does not

give consent to the original request owner (e.g., specialized sub-unit at the MU).
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CI Biobank MK MU

1) Sample

2) Sequencing and 
Encryption @ CI

3) Encrypted short reads
4) E[Requested range of nucleotides], ID of the MU, E[session key], E[consent] 

6) E[upper and lower bound of the range]

7) Private retrieval of 
the reads @ biobank

8) E[positions], E[CSs]  and random salts of short reads

9) Construction of the 
masking vectors @ MK

11) Masking @ biobank
12) E[masked short reads], E[modified CSs]

E[positions] and E[decryption keys]

10) Masking request, E[modified CSs]
E[positions] and E[decryption keys]

5) E[Requested range of nucleotides], E[session key], E[consent] 

fied 

(CI)

Biobank Medical Unit 
(MU)

Curious 
Party

Masking and 
Key Manager 

(MK)

Curious 
Party

Curious 
Party

Specialized
Sub-unit

Fig. 6. (a) Connections between the parties in the proposed protocol. (b) The opera-
tions and message exchanges in the proposed protocol.

• Step 5: Once the biobank verifies that request comes from a valid source6,
it forwards ESE(KMK,MU , RL||RU ), and ESE(KMK,MU ,ΩP ), along with the
pseudonym of the patient, and the encrypted session key E(KMK ,KMK,MU )
to the MK.
• Step 6: The MK decrypts the session key to obtain KMK,MU and decrypts the
request (ESE(KMK,MU , RL||RU )) to obtain RL and RU . As we discussed before,
the position of a short read is the position of the first aligned nucleotide in its
content. Let Γ be the maximum number of nucleotides in a short read. Then,
the short reads with position in [RL − Γ, RL − 1] might also include nucleotides
from the requested range ([RL, RU ]) in their contents. Thus, the MK re-defines
the lower bound of the request as RL − Γ in order to make sure that all the
short reads (which include at least one nucleotide from the requested range of
nucleotides) are retrieved by the biobank.

Next, the MK determines where (RL − Γ) and RU are mapped to following
the mapping table MP of patient P (as discussed in Sect. 5.1). If both (RL − Γ)
and RU are on the same part (e.g., in Fig. 3), then the MK computes the range
of short read positions (to be retrieved by the biobank) as [M(RL −Γ),M(RU )],
where M(.) is the mapping function for patient P. Otherwise (if they are not on
the same part), due to the permutation of the parts, the MK generates multiple
ranges of short read positions to make sure all short reads including at least
one nucleotide from [RL, RU ] are retrieved by the biobank. For simplicity of the
presentation, we assume (RL−Γ) and RU are on the same part. Finally, the MK
computes the encrypted range [EOPE(KO

P ,M(RL−Γ)),EOPE(KO
P ,M(RU ))], and

sends this encrypted range to the biobank (with pseudonym of P).
• Step 7: The biobank retrieves all the short reads (in the SAM file of patient P)
whose encrypted positions (EOPE(KO

P ,M(Li,j))) are in the set Δ = {EOPE(KO
P ,

M(Li,j)) :EOPE(KO
P ,M(RL−Γ)) ≤EOPE(KO

P ,M(Li,j)) ≤ EOPE(KO
P ,M(RU ))}.

6 We assume that the biobank has a list of valid MUs, whose requests it will answer.
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As OPE preserves the numerical ordering of the plaintext positions, the biobank
constructs the set Δ without accessing the plaintext positions of the short reads.
• Step 8: The biobank provides Δ along with the corresponding encrypted CSs
and the random salt values of the short reads to the MK.
• Step 9: The MK decrypts the corresponding positions and the CSs of the
retrieved short reads by using KO

P and KP,CI in order to construct the masking
vectors for the biobank. These masking vectors prevent the leakage of out-of-
range content (in Fig. 1) and non-consented nucleotides (in Fig. 2) to the MU, as
we discussed in Sect. 3. We note that from the positions and the CSs of the short
reads, the MK cannot infer the locations or contents of the patient’s privacy-
sensitive point mutations (e.g., SNPs), which are typically used to evaluate the
predispositions of the patients for various diseases. These privacy-sensitive point
mutations can only be inferred when the CS is used together with the content
of the short read (which is not revealed to the MK).

The MK can determine the actual position of a short read from its mapped
position as the MK has the mapping table MP for patient P (i.e., it can infer Li,j

from M(Li,j) using MP ). Using the position and the CS of a short read, the MK
can determine the exact positions of the nucleotides in the content of a short read
(but not the contents of the nucleotides, because the contents are encrypted and
stored at the biobank). Using this information, the MK can determine the parts
in the content of the short read that are out of the requested range [RL, RU ].
Furthermore, the MK can also determine whether the short read includes any
nucleotide positions for which the patient P does not give consent. Therefore, the
MK constructs binary masking vectors indicating the positions in the contents
of the short reads that are needed to be masked by the biobank before sending
the retrieved short reads to the MU. We provide the details of the algorithm to
construct the masking vectors in [5]. In Fig. 4(a), we illustrate how the masking
vector is constructed for the corresponding short read, when the requested range
of nucleotides is [10, 20] and for a given set of nucleotide positions for which the
patient P does not give consent (as in Fig. 4(c)).

The MK also modifies the CS of each short read (if it is marked for masking)
according to the nucleotides to be masked. That is, the MK modifies the CS such
that the masked nucleotides are represented with a new operation “O” in the
CS. By doing so, when the MU receives the short reads, it can see which parts
of them are masked. In Fig. 4(c), we illustrate how the CS of the corresponding
short read changes as a result of the masking vector in Fig. 4(a). Then, the MK
generates the decryption keys for each short read (whose position is in Δ) by
using the master key of the patient (MP ), positions of the shorts read, and the
random salt values.7

• Step 10: The MK encrypts the positions, the (modified) CSs, and the gener-
ated decryption keys of the contents of the short reads, using KMK,MU . Then, it
sends the masking vectors along with the encrypted positions, CSs and decryp-
tion keys to the biobank. We note that in this step, the MK encrypts the actual
7 The generation of the decryption keys for the SC is the same as the generation of

the encryption keys as we discussed in Sect. 5.1.
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positions of the short reads (e.g., Li,j instead of M(Li,j)) as these positions will
be eventually decrypted and used by the MU, and the MU does not need to
know the mapping table MP of the patient.
• Step 11: The biobank conducts the masking by XOR-ing the bits of the
encrypted content of each short read (whose position is in Δ) with a random
masking string. Each entry (bit) of the random masking string is assigned as
follows: (i) If the corresponding entry is set for masking in the masking vector,
it is assigned with a random binary value, and (ii) it is assigned with zero,
otherwise. We provide the details of the algorithm to perform the masking at the
biobank in [5]. Furthermore, in Fig. 4(a), we illustrate how the masked encrypted
content for the corresponding short read is constructed by XOR-ing the random
masking string with the encrypted content.
• Step 12: Finally, the biobank sends the encrypted positions, CSs and decryp-
tion keys (generated in Step 10 by the MK) along with the masked contents
(generated in Step 11 by the biobank) to the MU. The MU decrypts the received
data and obtains the requested nucleotides of the patient.

6 Evaluation

Focusing on the leakage of genomic data, we evaluate the proposed privacy-
preserving system by using real genomic data to show (i) how the leakage of
genomic data from the short reads threatens the genomic privacy of a patient,
and (ii) how the proposed masking technique helps to prevent this leakage. We
assume that the MU requests a specific range of nucleotides of patient P (e.g.,
for a genetic test) from the biobank. In practice, the requested range can include
from one to thousands of nucleotides depending on the type of the genetic test.

First, without the masking in place, we observe the ratio of unauthorized
genomic data (i.e., number of nucleotides provided to the MU that are out of
the requested range) to the authorized data (i.e., number of nucleotides within
the requested range) for various request sizes. For simplicity, we assume that
all the nucleotides within the requested range are considered as consented data
(i.e., the situation in Fig. 2 is not considered); and only those that are out of the
requested range (but still provided to the MU via the short reads) are considered
as the unauthorized data. For the patient’s DNA profile (i.e., SAM file), we use
a real human DNA profile [2] (with an average coverage of 8, meaning each
nucleotide is present, on the average, in 8 short reads in the SAM file, and each
short read includes at most 100 nucleotides) and we randomly choose the ranges
of requested nucleotides from the entire genome of the patient. We illustrate our
results in Fig. 7. We observe that for small request sizes, the amount of leakage
(of unauthorized data) is very high compared to the size of authorized data.
As the leakage vanishes (e.g., the ratio in Fig. 7 becomes 0) with the proposed
masking technique, we do not show the leakage when the proposed masking
technique is in place in Figs. 7, 8, 9, 10.

Using the same DNA profile, we also observe the evolution in the amount
of leaked genomic data over time. For simplicity of the presentation, we assume



144 E. Ayday et al.

slotted time and that the MU conducts a genetic test on the patient at each
time slot (by requesting a particular range of nucleotides from a random part of
his genome). In Fig. 8, we illustrate the amount of genomic data (i.e., number of
nucleotides) that is leaked to the MU in 100 time-slots. The jumps in the number
of leaked nucleotides (at some time-slots) is due to the fact that some requests
might retrieve more short reads comprised of more out-of-range nucleotides. As
before, leakage becomes 0 when masking is in place, which shows the crucial role
of the proposed scheme.
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Fig. 7. Ratio of unauthorized genomic
data to the authorized data vs. the size
of the requested range of nucleotides,
when there is no masking in place.
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Fig. 8. Number of leaked nucleotides
vs. time for various request sizes, when
there is no masking in place.

We also study the information leakage, focusing on the leaked single nucleotide
polymorphisms (SNPs) of the patient as a result of different sizes of requests
(from random parts of the patient’s genome). In Fig. 9, we illustrate the num-
ber of SNPs leaked to the MU in 100 time-slots. We observe that the number
of leaked SNPs is more than twice the number of authorized SNPs (which are
within the requested range of nucleotides). When the proposed masking tech-
nique is in place, the number of leaked SNPs (outside the requested range)
becomes 0 in Fig. 9.

Finally, we study the genomic data leakage (number of leaked nucleotides
and SNPs) when the MU tests the susceptibility of the patient [2] to a particular
disease (i.e., when the MU asks for the set of SNPs of the patient that are used
to test the corresponding disease). For this study, we use real disease markers [1].
We note that for this type of test, the size of the requested range of nucleotides
(by the MU) for a single SNP is typically 1, but the SNPs are from several
parts of the patient’s genome. In Fig. 10, we illustrate the genomic data leakage
of the patient as a result of various disease susceptibility tests each requiring
a different number of SNPs from different parts of the patient’s genome (on
the x-axis we illustrate the number of SNPs required for each test). We again
observe that the leaked SNPs, as a result of different disease susceptibility tests,
reveal privacy-sensitive data about the patient. For example, leaked SNPs of the
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patient as a result of a test for the Alzheimer’s disease could leak information
about the patient’s susceptibility to “smoking behavior” or “diabetes” (in [5],
we list the nature of some important leaked SNPs due to some susceptibility
tests in Fig. 10). Similar to the previous cases, the number of leaked nucleotides
and SNPs is 0 when masking is in place.

0 20 40 60 80 100
0

100

200

300

400

500

time−slot

# 
re

ve
al

ed
 S

N
P

s

0 20 40 60 80 100
0

25

50

75

100

time−slotS
iz

e 
o

f 
re

q
u

es
te

d
 r

an
g

e

Authorized SNPs
Leaked SNPs

Fig. 9. Number of leaked SNPs vs.
time for various request sizes, when
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7 Implementation and Complexity Analysis

We implemented the proposed system and assessed its storage requirement and
complexity on an Intel Core i7-2620M CPU with a 2.70 GHz processor under
Windows 7, using Java. As before, for the patient’s SAM file, we used a real DNA
profile [2] including around 300 million short reads (each short read including at
most 100 nucleotides).

We used the Salsa20 stream cipher [10] and the implementation of OPE
from [15]. We also used CCM mode of AES (with key size of 256-bits) for the
secure communication between the MK and the MU, and RSA (with key size of
2048-bits) for the public-key encryption.

We structured the fields in the encrypted short read (in Fig. 5) as follows:
We reserved the first 8-bytes for the encrypted position of the short read (via
OPE). To save storage, we devoted the next 64-bytes of the encrypted short
read to the CS and the content of the short read. As the input size of the stream
cipher is 64-bytes, we encrypted the CS together with the content and other
(header) information of the short read using the stream cipher. That is, out
of the 64-byte input of the stream cipher, we allocated the first 20-bytes for
the CS, the next 25-bytes for the content (as each short read in the used DNA
profile includes at most 100 nucleotides), and the remaining 19-bytes for the
remaining information about the short read (or padding). Finally, the last byte
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of the short read includes the plaintext random salt. Consequently, we computed
the storage cost as 21.6 GB per patient. We note that stream cipher encryption
does not increase the size of the data as it is the XOR of the key stream with the
plaintext. The storage overhead (due to the proposed privacy-preserving scheme)
is due to the encryption of the positions of the short reads by using OPE.

We also evaluated the computation times for different steps of the pro-
posed scheme. The detailed computation times of different steps of the protocol
can be found in [5]. Overall, it takes approximately 5 s for the MU to receive
the requested range of nucleotides of the patient (Steps 4–12) after privacy-
preserving retrieval and masking (for a range size of 100, which includes on
the average 23 short reads), which shows the efficiency and practicality of the
proposed scheme. We note that the computation time of the whole process is
dominated by the retrieval of the reads at the biobank (which does not involve
any cryptographic operations). Therefore, we can easily claim that the cost of
cryptographic operations is not a bottleneck for the proposed protocol.

8 Conclusion

In this paper, we have introduced a privacy-preserving system for the storage,
retrieval, and processing of aligned, raw genomic data (i.e., SAM files). We are
confident that the proposed scheme will accelerate genomic research, because
clinical-trial participants will be more willing to consent to the sequencing of
their genomes if they are ensured that their genomic privacy is preserved.
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