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Abstract. The information infrastructure that pervades urban environ-
ments represents a major opportunity for collecting information about
Human mobility. However, this huge potential has been undermined by
the overwhelming privacy risks that are associated with such forms of
large scale sensing. In this research, we are concerned with the problem of
how to enable a set of autonomous sensing nodes, e.g. a Bluetooth scan-
ner or a Wi-Fi hotspot, to collaborate in the observation of movement
patterns of individuals without compromising their privacy. We describe
a novel technique that generates Precedence Filters and allows prob-
abilistic estimations of sequences of visits to monitored locations and
we demonstrate how this technique can combine plausible deniability
by an individual with valuable information about aggregate movement
patterns.
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1 Introduction

The ubiquity of the information technology infrastructure that increasingly per-
vades urban environments constitutes a major opportunity for sensing Human
activity. The large scale collection of such data may give new insights into the
dynamics of city life and the digital fingerprint of the urban environment.

Wi-fi and Bluetooth hotspots are particularly interesting for that purpose.
Given their widespread presence and their inherent communication with personal
devices, they can easily be leveraged as general purpose platforms for massive
sensing and actuation in urban spaces. However, this huge potential has been
undermined by the overwhelming privacy risks that are associated with such
forms of large scale sensing. Given that many detectable devices would be per-
sonal devices, their presence at a particular location is a reliable representation
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of the presence of the respective owner. Consequently, a record of Bluetooth
or Wi-Fi sightings holds the potential to become a large scale tracking system
capable of detecting the presence, movements and patterns of individuals.

In this research, we are concerned with the problem of how to enable a set
of autonomous sensing nodes, e.g. a Bluetooth scanner or a Wi-Fi hotspot, to
collaborate in the observation of movement patterns of individuals without com-
promising their privacy. Our approach is based on a stochastic technique that
can characterize the sequence of presences in the monitored areas, with a para-
meterized fidelity that protects user privacy. Our Precedence Filters algorithm
combines properties found on counting bloom filters and vector clocks, provid-
ing a solid approach to the detection of sequences of presences. It enables us to
provide probabilistic answers to questions such as: “Are the individuals in this
art gallery likely to have visited a given art museum first?” or, in a shopping
mall, “Which shops are visited most likely after the movie theater? and before
the theater?”. The data collection system can be calibrated in a way that each
individual (actually its MAC address pseudonym) has a given chance, say 50 %,
of not having been in a reported location or done a given reported transition,
thus protecting its privacy and supporting plausible deniability.

To support the evaluation of the approach, we compare the accuracy of the
causality traces estimated by the application of the algorithm with the ground
truth corresponding to the causality traces generated from perfect information
about node transitions. The evaluation confirms the expectations that a higher
fidelity on collective movement patterns can be supported by lower fidelity in
the individual traces.

2 Related Work

Anonymity. Tang et. al [19] describe a sensing method through which per-
sonal devices can become anonymous sensors reporting the number of nearby
devices without compromising their own or other peoples privacy. In this case,
individuals do not need to be sensed, and this work demonstrates how given
a specific sensing goal, it can be possible to devise a technique that limits the
collected information to those goals and thus significantly improves the privacy
vs utility tradeoff. The use of pseudonyms is perhaps the most obvious way to
achieve anonymity when individuals need to be identified in subsequent obser-
vations. However, using the same pseudonym for a long time makes it easy for
an attacker to gather enough history on an individual to infer its habits or true
identity. This is particularly true for spatial data. Previous work has shown how
anonymous location traces can easily be re-identified by considering the likely
home address of a person [13] or the Home/Work location pair [10].

To try to mitigate this issue, Beresford and Stajano in [4] proposed an idea
which relied upon pseudonym exchange. They introduced two new concepts: mix
zone and application zone. The aim is to conceal information in the mix zone
so that users can safely change pseudonyms when getting in and out of these
zones. Based on a different concept, k-anonymity, Gruteser and Grunwald [11]
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were the first to investigate anonymity as a method to attain location privacy.
According to them, a subject is considered to be k-anonymous with regard to
location information, if and only if she is indistinguishable from at least k − 1
other subjects with respect to a set of quasi-identifier attributes. Bigger values
of k correspond to higher degrees of anonymity.

Mokbel et al. in [18] use the k-anonymity concept as well. They presented the
Casper framework which consists of two main components, a location anonymizer
and a privacy-aware query processor. The location anonymizer blurs the loca-
tion information about each user according to that user’s defined preferences
(minimum area Amin in which she wants to hide and minimum value for k). The
query processor adjusts the functionality of traditional location-based databases
to be privacy-aware. It does so by returning cloaked areas instead of exact points
when queried for location information.

Our technique can be described as a form of anonymity, but because we never
register any individual identifier, the technique is not prone to re-identification
attacks that could compromise the entire trace of previous locations of an
individual.

Obfuscation. Obfuscation based techniques usually degrade the “quality” of
the information in order to provide privacy protection. Even tough this may seem
comparable to what k-anonymity based techniques do, there is a key difference:
obfuscation based techniques allow the actual identity of the user to be revealed
(thus making it suitable for applications that require authentication or offer some
sort of personalization [15]). Duckam and Kulik [7] were the ones who introduced
the idea of obfuscation for location privacy. They talk about three distinct types
of imperfection that can be present in spatial information: Inaccuracy - lack
of correspondence between information and reality. E.g. “Paris is in Spain”;
Imprecision - lack of specificity. E.g. “Paris is in Europe”; Vagueness - using
fuzzy borderlines [8]. E.g. “Paris is in Western Europe”. Any of these types of
imperfection can be used to obfuscate an individual’s location. Another example
of an obfuscation based approach was shown by Ardagna et al. in [2] and later
improved in [1,3]. Their obfuscation process numerically represents a relative
accuracy loss in a location measurement.

Even though there are several techniques that allow reducing the quality of
raw location information, we found no approach that allows for the characteri-
zation of device sighting sequences with adjustable fidelity.

3 System Model

The model in which we base our work assumes the existence of a network of
heterogeneous and autonomous nodes that collaborate in the tracking process.
While we may consider various types of sensing nodes, for the remainder of
this paper we will assume the use of Bluetooth devices. In this case, our sensing
node would be some sort of Bluetooth scanner with the ability to discover nearby
devices and obtain information about their MAC address, the timestamp of the
sighting, among others.
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Our model does not impose restrictions on the type of information collected
by the scanners or how it is used by the local node. We do, however, want to
limit the information that each node is going to share with the rest of the system
to the minimum information possible that is still able to support the detection
of movement patterns. We need to be able to detect the same device on different
nodes, and for this specific purpose we will only use the device’s MAC address.

In their everyday life and depending on their specific needs, people visit
several different places. For instance, a person P1 wants to buy a new laptop.
To do so, she visits store S1 which does not have the model she wants. She then
visits store S2 which is out of stock and afterwards store S3 where the price
is a little steep. She ends up buying the laptop in store S4. To represent this
behavior we introduce the concept of mobility traces. A mobility trace is simply
the representation of the places visited in the order by which they were visited.
In this specific case, the mobility trace of P1 is MTP1 = {S1, S2, S3, S4}. Our
mechanism, Precedence Filters, allows the recording of information relative to the
individual traces of people, in a manner compatible with plausible deniability.
That information can later be processed to obtain more accurate data about
the habits of the aggregate of all individuals. For instance, in this example, the
order in which the stores were visited might be an indicator of their popularity.

Whenever a device is sensed, the sighting node records that event locally. This
information is then used in the computation of device transitions between the
system’s multiple nodes. The place where that computation occurs depends on
the system’s architecture. Our mechanism can be deployed in either centralized
or decentralized architectures. In a centralized system configuration, the compu-
tation has to be done in the server since only it has enough information to do so.
Each node only shares its local information with the server. On the other hand,
with a decentralized architecture, nodes can do the processing locally. The local
information each node possesses is shared with the other nodes, thus allowing
all the nodes to have access to the data. Both models have advantages and dis-
advantages. For instance, the centralized approach is not fault tolerant, if the
server crashes the tracking system stops working. Compared to the centralized
version, the decentralized model also has greater availability as a result of the
information redundancy. However, as a consequence of the exchange of informa-
tion between all the nodes, the decentralized scenario has a bigger burden on
the network.

In order to achieve the goal we set ourselves, and taking into account the
constrains presented by our model, our solution is based upon the following set
of assumptions:

– Even though we cannot make assumptions about how each individual node will
handle the observed Bluetooth addresses, our solution should never require
the Bluetooth address or any other information that could uniquely identify
individuals to ever leave the sensing node.

– No system element should, at any given time, have all the information neces-
sary to accurately determine the path of a single individual.
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– There are no communication failures in the system and the exchange of infor-
mation between any two nodes is faster than the time it takes for a person to
move between them, i.e., when a person goes from node A to node B, node
B must already have the information that she was in A.

4 Precedence Filter Algorithm

This section describes the behavior of Precedence Filters. However, to do so, we
must first do a brief overview of the techniques in which they are based, namely
Counting Bloom Filters [9] and Vector Clocks [12,17].

4.1 Bloom Filters

Bloom Filters (BFs) were created in 1970 [5] by B.H. Bloom. They are a sim-
ple and space efficient data structure for set representation where membership
queries are allowed. Bloom Filters allow false positives but do not allow false
negatives, i.e, when querying a filter about the existence of an element in a
given set, if the answer is no, then the element is definitely not in the set, but if
the answer is yes, the element might be in the set.

A Bloom Filter for representing a set of n items S = {x1, x2, x3, . . . , xn} is
traditionally implemented using an array of M bits, all initially set to 0. Then,
k independent hash functions are used {h1, h2, . . . , hk}, each one mapping the
element of the set into a random number uniformly distributed over the range
{1, . . . ,M}. For each element x of the set (x ∈ S) the bits of the positions hi(x)
are all set to 1 for 1 ≤ i ≤ k. A location can be set to 1 multiple times. Due to the
independence of the hash functions, nothing prevents collisions in the outputs.
In extreme cases it is possible to have h1(x) = h2(x) = . . . = hk(x). To prevent
this, we use the variant of Bloom Filters presented in [6] which partitions the M
bits among the k hash functions, creating k slices of m = M/k bits. This ensures
that each item added to the filter is always described by k bits. Given a Bloom
Filter BFS , checking if an element z ∈ BFS , consists in verifying whether all
hi(z) are set to 1. If they aren’t, then z is definitely not present on the filter.
Otherwise, if all the bits are set to 1, then it is assumed that z belongs to BFS

although that assumption might be wrong. This false positive probability exists
because the tested indices might have been set by the insertion of other elements.
Figure 1 illustrates such an example.

The false positive probability P can be obtained using equation P = pk,
where p is the ratio between the number of set bits in the slice and the slice size
m. The fill ratio p can be obtained through equation p = 1 −

(
1 − 1

m

)n.
Furthermore, given a maximum false positive probability P , and the number

n of distinct elements to store, equations k = log2
(
1
P

)
and m = n∗|lnP |

k∗(ln2)2 can be
used to estimate the optimal number of bits required by a Bloom Filter to store
those n elements, M = m ∗ k.
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Fig. 1. Bloom filter with k = 3, M = 21 and m = 7, containing elements {x, y, z}.
Querying for the presence of element w yields a false positive.

Counting Bloom Filters. Counting Bloom Filters (CBFs) were presented in
[9]. In a Counting Bloom Filter, each position is a small counter rather than a
single bit. When an item is inserted the corresponding counters are incremented,
and when the item is deleted the same counters are decremented. We just have
to choose sufficiently large counters, in order to avoid counter overflow.

4.2 Vector Clocks

In order to better understand how Vector Clocks work, we must first comprehend
the concept of causality. Causality is a relation through which we can connect
two events, a first event (known as the cause) and a second one (the effect).

In the context of Distributed Systems, causality is expressed using the
happens-before relation [14] denoted by the → symbol. For instance, given 2
events, x → y, reads as x happened-before y, and means y might be a conse-
quence of x.

Vector Clocks were introduced by Colin Fidge [12] and Friedemann Mat-
tern [17] in 1988 and are a practical implementation of the happens-before con-
cept. In this algorithm, each process Pi has a vector of integer values VC i[1..n]
where n is the number of processes, maintained by the following set of rules:

1. In the beginning, all the positions from the vector are set to 0.
2. Each time the state of a process Pi changes (send, receive or internal event),

it must increment the value VC i[i], i.e, (VC i[i] = VC i[i] + 1).
3. Each time a process Pi sends a message, its vector VC i is sent.
4. When a process Pi receives a message m, it must update its vector using the

formula:
∀x : VC i[x] = max(VC i[x],m.VC [x]), where m.VC symbolizes the vector
clock attached to m.

Vector Clocks are able to accurately represent the causality relation and the
partial order it defines. Given any two distinct events x and y:

∀(x, y) : (x → y) ⇐⇒ (VC x < VC y)
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Where VC x < VC y stands for:

(∀k : VC x[k] ≤ VC y[k] ∧ (∃k : VC x[k] < VC y[k]))

4.3 Precedence Filters

By applying some of the previously mentioned general constructs of distributed
systems to the mobility sensing scenario, Bluetooth scanners can be treated
as processes and device sightings as state transition events. Precedence Filters
(PFs) are based upon this idea and provide accurate mobility information, at a
macroscopic level, without neglecting individual privacy. Precedence Filters can
be seen as a vector clock [12,17] implementation, whose difference is the use of
Counting Bloom Filters [9] (one for each node in the system) by the PFs instead
of integers (one per process) used by vector clocks.

With that in mind, Precedence Filters work as follows: supposing we have a
set of Bluetooth scanners (nodes) S, each node n ∈ S has a Precedence Filter
PFn. That PF is in turn composed of a map of Counting Bloom Filters, one
for each node z ∈ S. We use notation PF z

n to refer to the CBF for scanner z
belonging to PFn.

All CBFs are initially set to 0, use the same set of hash functions K and
have the same fixed size M = m ∗ k. Once calculated, the value M cannot be
changed. This limitation has to do with ensuring that the same device is correctly
identified across the several nodes (upon detection it will be mapped to the same
indices). Precedence Filters can also be seen as a matrix where the number of
rows is equal to the number of nodes in the system and the number of columns
is equal to M .

Each time a node n detects a device d, its Precedence Filter PFn is updated
according to the following set of rules:

1. Using the set of hash functions K, the node n calculates the set of indices
Id. Id consists on the output from the K hash functions regarding device d,
Id =

⋃
f∈K f(d).

2. Node n sends the set of indices Id to all other nodes in S.
3. Each one of the z nodes belonging to Z (Z = S\{n}) replies with a set

of tuples RId
z . Rz contains the previously required Id along with the set of

values that each of the CBFs belonging to PF z had stored in those indices,
RId

z = {(i,PF z
z[i]) | ∀i ∈ Id}.

4. Upon the reception of the replies from the other nodes, node n updates its
own indices Id on the CBFs relative to the other nodes with the maximum
value received, PF z

n[i] = max(RId
z [i]),∀z ∈ Z,∀i ∈ Id, where RId

z [i] = v ⇒
(i, v) ∈ RId

z .
5. Lastly, n updates the indices Id on its own CBF (PFn

n). For each index
i ∈ Id,PFn

n[i] = max(PF s
n[i])+1,∀s ∈ S. By adding 1 to the maximum value

stored in the other nodes, the current node “dominates” them in the operation
that returns the causality between the visited places. In other words, this is
the key to obtaining the order in which the places were visited.



58 N. Gonçalves et al.

This set of rules allows the Precedence Filters to record information about
the precedence of the locals visited by a device. Given a set of indices Id for
device d and any pair of scanners x and y, we say that the sighting of d in x
precedes the one in y, x � y if:

x � y ⇐⇒ PFx[Id] < PF y[Id]

Where PFx[Id] < PF y[Id] stands for:

∀i ∈ Id : PFx
x[i] < PF y

y[i]

Mobility traces, used in our model to describe the behavior of individuals,
characterize a total order between the places visited. This means that it is always
possible to establish an order between any two places in the mobility trace.
However, being based upon the happens-before relation [14], Precedence Filters
represent partial orders. In this particular case, for each of the nodes/locations,
they can only “remember” the last time each device was sighted in a given place.
For instance, given the mobility trace

MTP = {S1, S2, S1, S3, S2, S4, S1}

where scanners S1 and S2 are visited more than once, in the best case scenario
PFs can obtain CTP = {S3, S2, S4, S1}, which we will refer as a causality trace.
This is a consequence of the irreflexivity and antisymmetry properties from the
happens-before relation. However, we can look at this as a feature of Precedence
Filters, a sort of automatic data degradation. It ensures that the length of the
record of sightings for any device has an upper bound equal to the number of
scanners in the tracking system.

The level of privacy offered by Precedence Filters can be further customized
by adjusting the CBFs’ false positive ratio P . The higher the ratio, the greater
the inaccuracy of the PFs. The occurrence of false positives in the CBFs results in
the appearance of fictitious transitions, i.e., the causal trace obtained from query-
ing the filters, contains transitions which are non-existent in the original trace.
This property also makes unfeasible the use of sets of indexes as pseudonyms as
indexes can be shared by different devices. These properties are what allow indi-
vidual users to plausibly deny the fidelity of the data extracted from Precedence
Filters.

Ignoring constant and logarithmic factors, the communication and space stor-
age scalability of the technique is dominated by the number of scanners S and
the expected number of devices to monitor, D. Each scanner needs to store
state that is linear with the number of devices O(D). One should note however,
that due to lossy compression only a fraction of the bit size of a MAC address
is needed, with smaller fractions for higher privacy (and lower fidelity). As a
whole, the system stores state O(SD), and this would be the server state for a
centralized setup. Each time a device is sighted at a given scanner, its network
link will have a communication load of O(S) and induce O(1) communication in
other scanner links, as it collects logarithmic information on a constant number
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of positions k at all other scanners. Thus, the maximum communication load
induced per sighting is linear on the number of scanning sites.

5 Metrics and Data Sets

To assess the estimation quality of Precedence Filters we compared the set
of transitions obtained from querying the Precedence Filters with the set of
transitions obtained from the causality traces (baseline), which were themselves
obtained from mobility traces. For instance, given the mobility trace MTP =
{S1, S2, S2, S1, S3}, we calculate its causality trace according to the happens-
before relation (that only contains last sighting in each place), CTP = {S2, S1,
S3}. Then we extract the set of transitions, denoted T , from that causality trace,
T (CTp) = {(S2, S1), (S2, S3), (S1, S3)}. Each transition is a two location tuple
where the first location causally precedes the second. In our scenario, that means
the device was seen in the first location before being sighted at the second loca-
tion. This set of transitions is then finally compared to a similar set of transitions
obtained from the PFs, T (PF ).

Metrics. To support the evaluation of Precedence Filters, we used two dif-
ferent metrics. The individual metric which measures the false probability of
statements like the following – “ individual X visited location S1 before visit-
ing location S2”. For each user u, this is done by calculating the cardinality of
the difference between the transitions belonging to the causality trace (T (CTu))
and the transitions extracted from the Precedence Filter (T (PFu)), according
to Eq. 1.

#((T (CTu)
⋃

T (PFu)) \ (T (CTu)
⋂

T (PFu)))
#(T (PFu))

(1)

The individual metric calculates the relative amount of incorrect information
(information that is on the CTs and not on the PFs and vice-versa) returned
by the Precedence Filters. However, given the assumption that the exchange
of information between nodes is faster than people, our system never forgets
information, i.e., T (CT ) ⊆ T (PF ). Therefore, Eq. 1 can be simplified, resulting
in Eq. 2.

#(T (PFu) \ T (CTu))
#(T (PFu))

(2)

The global metric quantifies the inaccuracy of information regarding the
relative weight of specific transitions. This enables us to establish the rela-
tive importance of each type of transition, i.e., to know the inherent error in
statements like - “2 % of the transitions are from Restaurant Y to Cafe Z”.
Assuming that, U represents the universe of all users, APF =

⊎
u∈U T (PFu)

and ACT =
⊎

u∈U T (CTu) are respectively the multiset union of all transitions
in the Precedence Filters and in the Causality Traces and that A[t] is multiset
composed only of the t transitions in A, the global metric for each transition
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t ∈ A is calculated according to Eq. 3. For each transition, we calculate the
absolute difference between its relative weight in the Precedence Filter and its
relative weight in the actual Causality Traces. Then we divide that number by its
weight on the Precedence Filters. This gives us the relative error of the relative
weight of the transition.

∣
∣
∣#APF [t]

#APF
− #ACT [t]

#ACT

∣
∣
∣

#APF [t]
(3)

Real Data Set. To evaluate the PFs’ performance we used a real data set with
information about Bluetooth sightings by static nodes. This data set was taken
from Leguay et al.’s work [16]. To collect this information, the authors handed
out a set of Bluetooth enabled devices called iMotes to a group of users who
carried them in their day-to-day. Additionally, the authors installed Bluetooth
scanners in several places with the purpose of registering the sightings of iMotes.
The dataset contains 18 static nodes and 9244 distinct device IDs, 6439 of which
have been sighted only once and were therefore removed. This leaves us with 2805
devices, whose average mobility trace size is approximately 4 and maximum size
is 11. Figure 2(a) shows the distribution of total and distinct sightings for all
scanners. As expected, not all places have the same popularity, some are more
visited than others, thus the bigger number of Bluetooth sightings.

Synthetic Data Set. Still in the context of evaluating the PF’s performance,
we built a synthetic trace generator. Our motivation came from the need to
simulate scenarios with arbitrary number of locations and users.

In a first approach, we tried fitting the statistic distribution of the real data
set using a negative exponential distribution. This would have allowed us to
choose an arbitrary number of sensors, users and trace length. However, after
evaluation with Pearson’s Chi-Square test, it turned out to be a bad fitting.

(a) Real data set (b) Synthetic data set

Fig. 2. Number of total and distinct device sightings across the scanners
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This might be solvable by switching to a more complex distribution function.
Instead we chose to work with the empiric distribution. On this second approach,
it was decided to use the same number of sensors as the real data set, i.e. 18. This
allowed us to simulate the popularity of each sensor/place using the number of
sightings from the real data set as weights. The larger the number of sightings
at a sensor, the bigger its weight is, and the more likely it is to be chosen.
Each node is defined by two parameters, unique sightings and total sightings.
We only made use of the latter. The use of replication1 enabled us to create a
simpler and less error prone simulator, capable of producing as many users as
we want, as well as mobility traces with arbitrary length. The downside of not
using the unique number of sightings is that we are assuming that even though
places have different weights, they are the same for everyone, i.e. everyone has
the same probability of choosing a given place, everyone is an “average” person.

Figure 2(b) shows the synthetic distribution obtained using the approach
mentioned above. As expected the results are very similar but not a perfect
match. There is a correlation between the number of total and unique sightings
which stems from the use of the “average” person model. Also, the curve from
the synthetic data set is smoother, it does not suffer from the “noise” inherent
to raw real data.

6 Evaluation

Using the metrics and data sets previously mentioned, we tested the Precedence
Filter’s inaccuracy across several scenarios, varying both the number of devices
and the length of the mobility traces. Furthermore, each of the scenarios was
tested with multiple different settings for the Counting Bloom Filter’s maxi-
mum false positive probability. A good performance is reflected through high
inaccuracy values for individual information together with low values for global
inaccuracy.

As can be seen in Figs. 3, 4, 5 and 6, by increasing the false positive prob-
ability of CBFs, inaccuracy increases as well. Inaccuracy is manifested via the
occurrence of fake (visible on PFs only) transitions, i.e., fictitious transitions. As
the false probability increases, so does the percentage of fake transitions. This is
easily explainable. In Bloom Filters, false positives denote elements wrongfully
considered as belonging to the set. Given that in PFs Bloom Filters are used
to record device sightings, the occurrence of false positives generates fake device
sightings, which in turn give origin to fictitious transitions.

As previously explained, both data sets use 18 scanning nodes, what differs
is the number of devices and the length of the mobility traces. To describe
the parameters of each scenario, the following notation is used in the cap-
tions: Synthetic/Real-[number of devices]-[maximum trace length]-[average trace
length].

1 In statistics, replication is the repetition of an experiment or observation in the same
or similar conditions.
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(a) Synthetic-2805-11-4 (b) Real-2805-11-4

Fig. 3. Comparison between real and synthetic data set, with same parameters

(a) Synthetic-2805-11-4 (b) Synthetic-10000-11-4 (c) Synthetic-100000-11-4

Fig. 4. Synthetic data sets with increasing number of devices

Figure 3 shows the comparison between a synthetic data set and the real
data set. This synthetic data set will serve as the baseline for all tests because it
simulates both the number of devices and trace length found in the real data set.
Our technique performs better with data from the synthetic data set (Fig. 3(a))
than it does with data from the real one (Fig. 3(b)). This is a consequence of the
average person simplification we did for the synthetic data sets. Figure 2 shows
that while the number of total sightings is approximately equal in both data
sets, the number of unique sightings is usually bigger in synthetic data set. This
means that the real data set has a greater number of repeated sightings by user,
which in turn means that the average length of the causality traces is smaller,
i.e., even if both data sets have the same number of users and similar sized
mobility traces, the causality traces in the real data set are smaller, explaining
the worse performance of our technique.

For both these data sets, there is a point where the individual accuracy is
greater than the global one, however, when the individual inaccuracy is approx-
imately 50%, the global inaccuracy is higher than what is desirable. This is a
result of the low number of individuals and small mobility trace sizes of both
data sets, as supported by Figs. 4, 5 and 6.
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(a) Synthetic-2805-11-4 (b) Synthetic-2805-50-16 (c) Synthetic-2805-100-30

Fig. 5. Synthetic data sets with increasing trace sizes

(a) Synthetic-2805-11-4 (b) Synthetic-10000-50-16 (c) Synthetic-100000-100-30

Fig. 6. Synthetic data sets with increasing number of devices and trace sizes

Keeping the length of mobility traces constant, Fig. 4 shows that Precedence
Filter’s global inaccuracy drops by increasing the number of devices to 104, and
then again, although little, by increasing that number to 105. In both scenar-
ios, for a false positive probability of 0.8, PFs provide global inaccuracy below
20% while ensuring that in average, 50% of the information about any given
individual is incorrect.

Keeping the same number of devices, while increasing the length of the mobil-
ity traces also improves the Precedence Filter’s global accuracy, as depicted in
Fig. 5. For instance, Fig. 5(c) shows that by increasing the average and maximum
values for mobility traces respectively to 30 and 100, our technique offers a global
error of about 15%, while providing 50% of inaccuracy for individual informa-
tion. Increasing both the number of devices and the length of the mobility traces
yields the better results, which is not surprising given both the previous results.

In a scenario with 105 users whose maximum and average mobility trace sizes
are respectively 100 and 30, depicted in Fig. 6(c), our technique has a global
inaccuracy a little higher than 10% while providing an individual inaccuracy
of 50%. This means that, on average, half of the information about individual
transitions is wrong, which we consider to be a value compatible with plausible
deniability. To recap, our technique registers information user transitions. Each
user has a set of transitions, and the individual metric measures, in average, the
percentage of those which are fictitious/false. The global metric, on the other
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hand, returns the average error regarding the information about the popularity
of specific transitions/paths. Increasing the false positive probability of CBFs
increases the total number of occurrences of transitions, which is why the indi-
vidual accuracy drops; yet the relative weight of each transition remains more
stable, thus the behavior of the global inaccuracy lines.

7 Conclusion

Vast amounts of collective movement patterns could be harnessed and put to
good use in city planning, ad placement, and traffic congestion prevention. The
limitations are no longer of a technological nature and suitable infrastructures
are often in place that could allow mass sensing. Our stance is that privacy is a
key limiting factor in this area.

We have presented a technique that provides Precedence Filters. Using aggre-
gation of probabilistic information about sequences of visits to monitored loca-
tions, this technique is able to reveal information about the relative frequency of
transitions. In practice, frequent transitions can lead to optimizations in trans-
portation systems, discount policies in businesses and museums, and many other
potential applications.

To evaluate the technique we first had to define and propose new metrics to
analyze trace estimation quality. Evaluation was based on a robust trace driven
simulation, from a real mobility dataset, complemented with simulations over
longer synthetic traces that allowed a comprehensive analysis of the long term
properties, for higher numbers of users and longer traces.

The resulting technique is highly adjustable in the degree of privacy and
degradation of fidelity that is required in each potential setting. An important
overall property is the ability to give good quality collective traces from lower
quality individual traces. This brings the best of both worlds, high individual
privacy and good collective statistics.
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