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Abstract. The paper deals with the implementation and benchmark-
ing of cryptographic primitives on contemporary smart-cards and smart-
phones. The goal of the paper is to analyze the demands of today’s
common theoretical cryptographic constructions used in privacy-enhanc-
ing schemes and to find out whether they can be practically implemented
on off-the-shelf hardware. We evaluate the performance of all major
platforms of programmable smart-cards (JavaCards, .NET cards and
MultOS cards) and three reference Android devices (a tablet and two
smart-phones). The fundamental cryptographic primitives frequently
used in advanced cryptographic constructions, such as user-centric
attribute-based protocols and anonymous credential systems, are eval-
uated. In addition, we show how our results can be used for the estima-
tion of the performance of existing and future cryptographic protocols.
Therefore, we provide not only benchmarks of all modern programmable
smart-card platforms but also a tool for the performance estimation of
privacy-enhancing schemes which are based on popular zero-knowledge
proof of knowledge protocols.

Keywords: Cryptography · Privacy · Benchmark · Primitives · Proof
of knowledge protocols · Smart-cards · Smart-phones

1 Introduction

With the increasing number and complexity of electronic services and trans-
actions, the role of cryptography becomes more and more important. While
the classical cryptographic algorithms for ensuring data confidentiality, authen-
ticity and integrity are mostly well analyzed [1,2], the modern cryptographic
primitives which are used as the building blocks of many advanced privacy-
enhancing schemes remain theoretical and without any evaluation on real-world
devices. Therefore, the goal of this paper is to identify the most frequent cryp-
tographic primitives, which are being used in, e.g., digital identity protection
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schemes, attribute-based authentication schemes and credential schemes, and
analyze these primitives on commercially available devices.

For our benchmarks, we chose mobile and personal devices. The reason is
that these devices are becoming the most popular ones for personal electronic
transactions. For user authentication, eIDs and access control, the smart-cards
are already the most preferred devices. For Internet transactions, the mobile
phones and tablets are becoming the best choice for many users today. Thus,
we chose smart-cards, mobile phones and tablets as the platforms for our bench-
marks. We ran the benchmarks on all major programmable smart-card plat-
forms, namely on JavaCards [3], .NET cards [4] and MultOS cards [5]. We chose
Android as the platform for the smart-phone and tablet benchmarks because
Android, together with Apple iOS, is the preferred operating system for mobile
devices worldwide [6].

1.1 Related Work

We consider classical cryptographic constructions, such as RSA signatures, DSA
signatures, hashes and symmetric block ciphers, to be well analyzed according to
their speed on low-performance devices. A complex analysis of modern symmet-
ric encryption algorithms is provided in [1]. Here, a selection of 12 block ciphers
is evaluated on 8-bit microcontrollers. Furthermore, the paper [2] deals with
the benchmarking of modern hash functions. A selection of 15 hashes (some of
them in more versions) was evaluated on 8-bit microcontrollers. These rigorous
benchmarks can be taken as a rich source of information when implementing the
classical cryptographic systems.

On the other hand, there is a lack of information when someone needs to
implement advanced privacy-enhancing schemes which employ provably secure
protocols such as Σ-protocols [7], proof of knowledge (PK) protocols [8] or cryp-
tographic commitments [9]. In fact, there are many theoretical cryptographic
schemes which use these constructions without any analysis of implementabil-
ity. The most well-known examples are group signature schemes [10], verifiable
encryption schemes [11], anonymous credential systems [12] and Vehicular Ad-
hoc Networks (VANETs). Unfortunately, only little information about the per-
formance of these protocols can be inferred from the implementation papers
[14,15]. These papers usually provide information about the overall performance
of the schemes, but little about the performance of the building blocks used.
Other papers [13,16] present only partial information. Since the building blocks
are usually shared among many privacy-enhancing schemes, the information
about their performance would be very useful for the evaluation of many unim-
plemented schemes and newly emerging theoretical constructions.

1.2 Our Contribution

In this paper, we provide benchmarks of selected cryptographic primitives on
all major smart-card platforms and three Android devices. We chose the cryp-
tographic primitives which are commonly used in modern privacy-enhancing
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schemes and which have not been evaluated on resource-limited devices yet.
These primitives are described in Sect. 2. The testing environment is described
in Sect. 3. The actual benchmarks are included in Sect. 4. Finally, short analy-
sis of results and the examples of how to use our results for the performance
estimation of novel schemes is provided in Sects. 4.3 and 4.4.

2 Cryptographic Constructions

We briefly introduce the cryptographic constructions selected for benchmarking
in this section. We chose the constructions and protocols which are often used
in privacy-enhancing schemes. These constructions work as the building blocks
and are modularly used in many today’s schemes (such as IBM’s Idemix [17],
Microsoft’s U-Prove [18], HM12 [19], etc.). These and similar schemes are further
used in many privacy-enhancing applications (such as access control services,
inter-vehicular communication, electronic IDs, e-cash) whose description is out
of scope of this paper.

2.1 Classical Algorithms

We call well-known cryptographic algorithms, such as block ciphers, digital signa-
tures and hash functions, the classical algorithms. These algorithms are usually
provided directly by the API (Application Programming Interface) of almost all
smart-cards and smart-phones. The examples of most common classical algo-
rithms are DES [20], 3DES, AES [21] block ciphers and RSA [22], DSA [23]
digital signatures and MD5 [24], SHA-1, SHA-2 [25] hash functions.

2.2 Commitment Schemes

A cryptographic commitment scheme can be used in scenarios where a user is
required to bind to a number (e.g., a secret key) without disclosing it. There
are two properties which must be fulfilled. They are the hiding property and the
binding property.

– Hiding property: it is difficult1 to learn the secret number from the knowl-
edge of the commitment.

– Binding property: once committed to a number, the user cannot change it
without changing the commitment.

Discrete Logarithm Commitment Scheme. Mostly, the DL commitment
scheme works with the subgroup Z

∗
q of a multiplicative group Z

∗
p. The subgroup

Z
∗
q is defined by a generator g of order q in mod p, where q and p are large primes

and q divides p − 1. The same group is used in the Digital Signature Algorithm
(DSA) [23]. Numbers g, q, p are system parameters which are made public. To
commit to a number w < q, a user computes c = gw mod p. The user can later
decide to open the commitment by making w public.
1 It is either impossible or computationally unfeasible.
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Pedersen Commitment Scheme. The systems parameters g, q, p, used in the
DL commitment scheme, can be also used in the Pedersen scheme [9]. Addition-
ally, one more generator h is used. It is important that logg h mod p is unknown to
the user. The commitment to a secret number w is computed as c = gwhr mod p
where r is a random number smaller than q chosen by the user. The user can
later decide to open the commitment by making (w, r) public.

2.3 Proof of Knowledge of Discrete Logarithm Protocols

The proof of knowledge (PK) protocols can be used by a Prover to give a proof of
knowledge of discrete logarithm (PKDL). Using the proof of knowledge protocol,
the Prover is able to convince a Verifier that he knows w = logg cmod p from
the aforementioned DL commitment without actually disclosing the secret value
w. In the CS notation [8], which we use throughout the paper, the protocol is
denoted as PK{w : c = gw mod p}. The most used practical PKDL protocol for
general groups, called Schnorr protocol [26], is recalled in Fig. 15 in Appendix.

2.4 Proof of Discrete Logarithm Equivalence

Using the proof of knowledge protocols, it is easy to give a proof that two different
DL commitments c1, c2 were constructed using the same exponent w, so that w =
logg1 c1 = logg2 c2 mod p. For this type of proof, the proof of discrete logarithm
equivalence (PDLE) protocols can be used. The protocol is then denoted as
PK{w : c1 = gw1 mod p ∧ c2 = gw2 mod p}. A practical example based on the
Schnorr protocol is recalled in Fig. 16 in Appendix.

2.5 Signatures and Other Derived PK Protocols

In the last three sections, we introduced simple cryptographic primitives which
are very often used as the building blocks in more advanced schemes. In our
examples, we described very simple protocols only. Nevertheless, these proto-
cols can be modularly combined in much more complex systems. For example,
the proof of knowledge protocols can be adapted to the proofs of knowledge
of DL representation of a public value c with respect to multiple generators
g1, g2, . . . , gi. Such a protocol is described in CS notation as PK{(w1, w2, . . . , wi) :
c = gw1

1 gw2
2 . . . gwi

i mod p}. Also, PK protocols can be used for proving the knowl-
edge and equivalence of discrete logarithms of different representations. The pro-
tocol PK{(w1, w3) : c1 = gw1

1 gw2
2 gw3

3 ∧ c2 = gw2
1 gw3

3 mod p} is a simple example
in CS notation. The number of possible variations is unlimited. The work [8] can
be taken as a fundamental reference for the construction of PK protocols.

By using the Fiat-Shamir heuristic [27], all the PK protocols can run non-
interactively. Then, a hash H of all protocol parameters is used. All protocols
shown in the Appendix are non-interactive. This adaptation leads to signature
schemes. By taking our simple PKDL protocol from Sect. 2, we can get a digi-
tal signature protocol where w works as a private key. The protocol uses a hash
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function H of the message and all protocol parameters. For reference, the signa-
ture proof of knowledge protocol (SPK) is depicted in Fig. 17 in Appendix. All
PK protocols can be easily adapted to signatures using this approach [27].

In previous sections, we considered only examples based on the simple DSA
group [23]. But also different groups can be used in PK protocols (e.g., RSA
group [22], Okamoto-Uchiyama (OU) group [28], etc.). Still, the atomic opera-
tions of these protocols remain the same. Namely, modular arithmetic, random
number generation and hash functions are used. That is the reason why we imple-
mented these atomic operations in our benchmarks. Based on their performance,
we can compute the actual performance of PK protocols and subsequently the
performance of advanced systems based on PK protocols.

3 Selected Devices and Benchmark Settings

This chapter contains the information about the benchmark settings and about
the software/hardware we used.

3.1 Selected Devices

The evaluation of cryptographic primitives was carried out using all major smart-
card platforms, namely JavaCards [3], .NET cards [4] and MultOS cards [5].
Furthermore, we implemented the benchmark tests on the Android platform,
namely on Android smart-phones and an Android tablet.

JavaCards. JavaCard platform [3] provides a development and runtime envi-
ronment for applications (called applets) written in Java. In our benchmarks, we
used Oberthur Technologies ID-One Cosmo V7.0-A [29,30] and Gemalto TOP

Table 1. The specification of the JavaCards used in our benchmarks.

Software specifications
Card type Oberthur ID-One V7.0-A Gemalto TOP IM GX4
Type JavaCard JavaCard
Transfer protocol T=0, T=1 T=0, T=1
Asymmetric crypto RSA upto 2048, EC upto 521 b RSA upto 2048 bits
Symmetric crypto DES, 3DES, AES 3DES, AES
Hash SHA1, SHA2 SHA1

Hardware specifications
Chip Atmel AT90SC256144RCFT S3CC9TC
CPU 8/16 bit 16 bit
Internal/External clock 40 MHz/3.4 MHz Unknown
RAM memory 8 kB 10 kB
ROM/EEPROM 256 kB/144 kB 384 kB/74 kB
Temperature range −25 ◦C to +85 ◦C −25 ◦C to +85 ◦C
Modular arithmetic API No No
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Table 2. The specification of the .NET cards and the MultOS cards used in bench-
marks.

Software specifications
OS type .NET MultOS MultOS
Card type .NET V2+ ML2-80K-65 ML3-36K-R1
Asymmetric crypto RSA 2048 bits RSA 2048, EC 384 RSA 2048, EC 512

bits bits
Symmetric crypto 3DES, AES DES, 3DES, AES DES, 3DES, AES
Hash SHA1, SHA2, MD5 SHA1, SHA2 SHA1, SHA2

Hardware specifications
Chip SLE 88CFX4000P SLE66CLX800PEM SLE78CLXxxxPM
CPU 32 bit 16 bit 16 bit
Internal/External clock 66 MHz/10 MHz 30 MHz/7.5 MHz 33 MHz/7.5 MHz
RAM memory 16 kB 702 + 9604 B 1088 + 960 B
ROM/EEPROM 80 kB/400 kB 236 kB/78 kB 280 kB/60 kB
Temperature range −25 ◦C to +85 ◦C −25 ◦C to +85 ◦C −25 ◦C to +85 ◦C
Modular API No Yes Yes

IM GX4 [31] cards. The hardware specification of these cards is described in
Table 1.

.NET Smart-Cards. .NET smart-card platform [4] provides very similar fea-
tures as JavaCards for applications developed using any language of the .NET
framework. In our benchmarks, we used the Gemalto .NET V2+ cards. The
hardware specification of these cards is described in Table 2.

MultOS Smart-cards. The last smart-card platform we used for benchmarking
is the MultOS platform [5]. In comparison to JavaCard and .NET cards, MultOS
allows the development of applications in both high level languages (Java and C)
and assembly language. This provides developers with much wider opportunities
and better access to hardware. In particular, only the MultOS cards allow the
direct big-integer modular operations through the default API. The hardware
specification of MultOS ML2-80K-65 and ML3-36K-R1 cards is described in
Table 2.

Mobile Devices. The Android devices form a different group which is incompa-
rable to smart-cards. While smart-cards are very resource-limited devices with
extremely low RAM and slow CPUs, the mobile phones and tablets resemble
more classical PCs. They have strong CPUs with frequency over 1 GHz and
enough RAM (hundreds of megabytes). Still, these devices are extremely mobile
and very popular for personal electronic transactions. Due to this reason, we
included them to our benchmarks. The hardware of selected Android devices is
described in Table 3.
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Table 3. The specification of the Android devices used in our benchmarks.

Software specifications
Device type Samsung Galaxy Samsung Galaxy ASUS TF 300T

S i9000 Nexus I9250M
Android version v2.1 (Eclair) v4.0 (ICS) v4.0 (ICS)

Hardware specifications
Chip Cortex-A8 Dual-core Cortex-A9 Quad-core Cortex-A9
Frequency 1 GHz/45 nm 1.2 GHz/45 nm 1.2 GHz/45 nm
GPU PowerVR SGX540 PowerVR SGX540 ULP GeForce
RAM memory 512 MB 1024 MB 1024 MB
ROM/Storage 2 GB/8(16) GB 2 / 16 GB 2 GB/16(32) GB

3.2 Measured Operations and Keylengths

In the Sect. 2, we showed the cryptographic commitments and proof of knowledge
protocols. We included only simple examples to illustrate these primitives. Nev-
ertheless, these basic constructions can be modularly compiled into advanced
systems. The discrete logarithm commitments, proof of knowledge of discrete
logarithm protocols and proofs of discrete logarithm equivalence protocols are
the building blocks of many complex modern systems [17–19]. But still, even
the complex systems are based on the same atomic operations as the primitives
selected by us. It can be observed from Sect. 2 that only random number gener-
ation, hash functions and big-integer modular arithmetic operations are needed
for all selected protocols. Namely, the following operations are required.

– RNG - Random Number Generation: on all platforms and devices, we
measured the time of generation of large random numbers of length 160 bits
(RNG 160 operation) and 560 bits (RNG 560 operation).

– Hash Functions: on all platforms and devices, we measured the time of
computation of following hash functions.

• SHA1 4256: SHA1 of 4256 bit random data2

• SHA1 7328: SHA1 of 7328 bit random data
• SHA1 20000: SHA1 of 20000 bit random data
• SHA2 8448: SHA2 of 8448 bit random data
• SHA2 14592: SHA2 of 14592 bit random data
• SHA2 20000: SHA2 of 20000 bit random data

– Big-Integer Modular Arithmetic Operations: it can be observed from
our cryptographic overview in Sect. 2 that the proof of knowledge protocols
heavily rely on arithmetic operations in groups where the discrete logarithm
operation is hard to compute. Namely, modular operations with moduli in
orders of thousand bits are required. These operations are usually available

2 The size of data hashed reflects the requirements of PK protocols.
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on the PC platform in the form of BigInt libraries (such as OpenSSL, Bouncy
Castle, etc.). Unfortunately, these libraries are missing on smart-cards. Only
the MultOS platform supports direct modular operations. Thus, the following
operations were implemented and measured on all selected platforms and
devices. The bit-lengths of moduli and operands were selected according to
the most popular group sizes in cryptography (1024 and 2048 bit modulus).

• MExp1024 160: Modular Exponentiation with 1024 b modulus and
160 b exponent

• MExp1024 368: Modular Exponentiation with 1024 b modulus and
368 b exponent

• MExp2048 160: Modular Exponentiation with 2048 b modulus and
160 b exponent

• MExp2048 560: Modular Exponentiation with 2048 b modulus and
560 b exponent

• MMult1024: Modular Multiplication with 1024 b modulus and operands
• MMult2048: Modular Multiplication with 2048 b modulus and operands

– Big-Integer Arithmetic Operations: additionally to modular operations,
some non-modular (plain) big-integer operations were implemented as they
are contained in PK protocols which operate in hidden order groups.

• Mult320: Multiplication of two 320 b numbers
• Sub400: Subtraction of two 400 b numbers

Although the above selected bit-length combinations do not include all the vari-
ants used in today’s cryptographic schemes, they represent a sample which can
be further interpolated to get the estimation of other bit-lengths. Thus, an esti-
mate of smart-card performance of any new protocol, which is based on above
operations, can be created.

3.3 Benchmark Environment

The hardware selected for our benchmarks is described in Sect. 3. The operations
measured on the hardware are listed in the previous Sect. 3.2. We measured the
time necessary for the computation of each operation 25 times. We present
the arithmetic mean of these values. The resulting time does not include the
time of communication with the device (sending inputs and receiving results).
The code was implemented by a single person on smart-cards and by a single
person on Android devices. Thus, the influence of different programming styles
is eliminated. We tried to use the default API of our cards as much as possible.
To increase the speed of computation, we used the RSA encryption method
to implement modular exponentiation. For many operations (e.g., for modular
arithmetic), only some cards, namely those running MultOS, were providing the
necessary interface. On the rest, we had to implement our methods.
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4 Benchmark Results

We divided our results into a smart-card section and an Android section. The
graphs in the next two sections show the time in milliseconds of the operations
specified in the Sect. 3.2 above.

4.1 Benchmarks on Smart-card Devices

Figures 1, 2, 3, 4, 5, 6 and 7 show the time in milliseconds of operations specified
in captions.

4.2 Benchmarks on Android Mobile Devices

Figures 8, 9, 10, 11, 12, 13 and 14 show the time in milliseconds of operations
specified in captions.

4.3 Results Analysis

Smart-Cards.It was possible to implement all required operations on all selected
cards with the exception of MultOS ML2-80K-65 card which is lacking the sup-
port of SHA2 and 2048 b modular exponentiation. In many operations, the JavaC-

Fig. 1. RNG 160 (blue) and RNG 560 (red)

Fig. 2. SHA1 4256 (blue), SHA1 7328 (red) and SHA1 20000 (green)
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Fig. 3. SHA2 8448 (blue), SHA2 14592 (red) and SHA2 20000 (green)

Fig. 4. MExp1024 160 (blue) and MExp1024 368 (red)

Fig. 5. MExp2048 160 (blue) and MExp2048 560 (red)

Fig. 6. MMult1024 (blue), MMult2048 (red)
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Fig. 7. Mult320 (blue) and Sub400 (red)

Fig. 8. RNG 160 (blue) and RNG 560 (red)

Fig. 9. SHA1 4256 (blue), SHA1 7328 (red) and SHA1 20000 (green)

Fig. 10. SHA2 8448 (blue), SHA2 14592 (red) and SHA2 20000 (green)
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Fig. 11. MExp1024 160 (blue) and MExp1024 368 (red)

Fig. 12. MExp2048 160 (blue) and MExp2048 560 (red)

Fig. 13. MMult1024 (blue), MMult2048 (red)

Fig. 14. Mult320 (blue) and Sub400 (red)
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ard Oberthur ID-one v7.0a is very fast (in particular, in random number genera-
tion and 1024 b modular exponentiation). Often, the bit-length of inputs (crypto-
graphic group size) does play a significant role, for example in the case of modu-
lar exponentiation. Thus, we recommend to plan ahead before implementing and
choose the right balance between speed and security (group size). Even with mod-
ern smart-cards, operations in 2048 b groups might be too demanding. When imple-
menting complex privacy-enhancing schemes, operations in 2048 b groups would
be probably too slow. Also, a big difference among cards appears when the mod-
ular multiplication and non-modular operations are needed. This is the case of
all PK protocols where a group with unknown order is used (such as RSA group
[22], OU group [28]). Then, the MultOS cards are much faster than the rest due to
their direct support of these operations in API, in particular due to their built-in
support of accelerated modular multiplication.

Android Devices. It is no surprise that most operations are several hundred
times faster on Android devices than on smart-cards. All primitives can be
easily implemented on Android. Due to the high performance, we recommend
using larger (and safer) 2048-bit groups and more recent primitives (e.g., SHA-2
instead of SHA-1 or MD5).

4.4 Performance Estimation of Selected Protocols and Schemes

Using the results of our benchmarks, we estimated the theoretical performance of
the protocols introduced in the Sect. 2 and of some well-known privacy-enhancing
schemes like Idemix of IBM [13], U-Prove of Microsoft [18] and HM12 [19]. All
protocols are evaluated using 1024 bit groups and 160 bit secrets. All the scheme
estimates include only the time of operations needed for proving the ownership
of an anonymous token (we use the same approach as in [13]) and do not include
any communication/management overhead. Furthermore, we used the closest
bit-length of inputs. Thus, the numbers in Table 4 should be considered estimates
only.

We created the estimates using our implementation of atomic operations.
From the knowledge of the construction of the advanced protocols and the knowl-
edge of performance of underlying operations, we were able to predict the per-
formance of protocols. To find out the correctness of our estimates, we compared
our results with existing, real implementations. Since they use smart-cards of dif-
ferent specifications, the comparison is rough only. The IBM’s Idemix has been
previously implemented on JavaCards [13]. The proving protocol of the 1280 bit
version took 7.5 s. Our estimates of the 1024 b version are 4.5 and 9.4 s, depend-
ing on the concrete type of our JavaCard. The Microsoft’s U-Prove scheme has
been implemented on the MultOS platform [5]. The proving protocol took 0.55
son an unspecified MultOS-family card. Our estimates on our MultOS cards are
0.63 and 0.82 s, depending on the concrete type of the MultOS card. Based on
these results, we consider our estimates highly accurate. Using our benchmarks,
it is possible to easily predict the approximate time of newly designed protocols
or cryptographic schemes.
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Table 4. Performance estimation based on benchmarks.

Time in ms
S1 S2 S3 S4 S5 A1 A2 A3

c = gw (DL commitment) 186 476 165 226 58 6 4 4
c = gwhr (Pedersen commitment) 580 1161 717 513 195 12 9 8
PK{w : c = gw} 325 830 433 352 222 15 10 9
PK{w : c1 = gw1 ∧ c2 = gw2 } 529 1494 646 605 313 30 20 18
SPK{w : c = gw}(m) 354 842 498 393 332 15 10 9
Idemix 4519 9433 7270 4219 4208 153 100 91
U-Prove 837 1618 1295 827 633 13 9 8
HM12 2540 6016 3312 2509 1467 102 68 62

Glossary:
S1: Oberthur Technologies ID-One Cosmo V7.0-A
S2: Gemalto TOP IM GX4
S3: Gemalto .NET V2+
S4: MultOS ML2-80K-65
S5: MultOS ML3-36K-R1
A1: Samsung Galaxy S i9000 (smart-phone)
A2: Samsung Galaxy Nexus I9250M (smart-phone)
A3: ASUS TF 300T (tablet)

5 Conclusion

In this paper, we provide the performance evaluation of modern cryptographic
primitives on smart-cards and mobile devices. In particular, selected atomic oper-
ations which are the core of many privacy-enhancing protocols and schemes
are implemented on all major programmable smart-card platforms and on the
Android platform. The results can be used for the evaluation of many existing
and newly appearing schemes. Using the results of implementation of all oper-
ations used in PK protocols, it is possible to predict the performance of any
protocol or scheme which is composed of DL-based commitments and/or DL-
based proof of knowledge protocols. In particular, it is possible to predict the
performance of very popular computational zero-knowledge protocols.

Even with the fastest smart-cards on the market, it is quite difficult to achieve
reasonable execution times. Though, with the right choice of hardware, in par-
ticular, with hardware-accelerated cards, it is possible.

We showed our performance estimates of today’s most preferred privacy-
enhancing anonymous credential schemes on all 8 devices. When compared to
existing implementations, we almost match the real performance when similar
hardware is used. Thus, our benchmarks can be used by cryptography designers
to easily predict the performance of their protocols and schemes before imple-
menting on smart-cards and Android devices.

Acknowledgment. This research work is funded by projects SIX CZ.1.05/2.1.00/03.
007; theTechnologyAgencyof theCzechRepublic projectsTA02011260 andTA03010818;
the Ministry of Industry and Trade of the Czech Republic project FR-TI4/647.
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Appendix

Simple examples of Proof of Knowledge (PK) protocols. All operations are in a
group Z

∗
p of order q where discrete logarithm is hard to compute and l1, l2 are

security parameters. More information about PK protocols in [8].

refiireVrevorP
g, p, c = gw

r ∈R {0, 1}l1

c̄ = gr mod p
e = H(g, p, c, c̄)
z = r − ew

e, z−−−−−−−−−−−−−−−−−−−−−−−→ c̄ = gzce mod p

Check: e
?
= H(g, p, c, c̄)

Fig. 15. Schnorr’s proof of knowledge of discrete logarithm protocol PK{w : c = gw}.

VerifierProver
c1 = gw1 , c2 = gw2 , g1, g2, p

r ∈R {0, 1}l1

c̄1 = gr1 mod p
c̄2 = gr2 mod p
e = H(g1, g2, p, c1, c2, c̄1, c̄2)
z = r − ew

e, z−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ c̄1 = gz1c
e
1 mod p

c̄2 = gz2c
e
2 mod p

Check: e
?
= H(g1, g2, p, c1, c2, c̄1, c̄2)

Fig. 16. Proof of discrete logarithm equivalence PK{w : c1 = gw1 ∧ c2 = gw2 }.

Prover Verifier
g, p, c = gw

r ∈R {0, 1}l1

c̄ = gr mod p
e = H(g, p, c, c̄,message)
z = r − ew

message, e, z−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
c̄

?≡ gzce mod p

Check: e
?≡ H(g, p, c, c̄,message)

Fig. 17. Schnorr’s signature SPK{w : c = gw}(message).
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