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Abstract. This paper examines the problem of providing a robust non-
invasive authentication service for mobile users in a smart environment.
We base our work on the persistent authentication model (PAISE), which
relies on available sensors to track principals from the location where they
authenticate, e.g., through a smart card based access control system, to
the location where the authentication is required by a location-based
service. The PAISE model is extended with remote biometrics to pre-
vent the decay of authentication confidence when authenticated users
encounter and interact with other users in the environment. The result
is a calm approach to authentication, where mobile users are transpar-
ently authenticated towards the system, which allows the provision of
location-based services. The output of the remote biometrics are fused
using error-rate-based fusion to solve a common problem that occurs
in score level fusion, i.e., the scores of each biometric system are usu-
ally incompatible, as they have different score ranges as well as different
probability distributions.

We have integrated remote biometrics with the PAISE prototype
and the experimental results on a publicly available dataset, show that
fusion of two remote biometric modalities, facial recognition and appear-
ance analysis, gives a significant improvement over each of the individual
experts. Furthermore, the experimental results show that using remote
biometrics increases the performance of tracking in persistent authentica-
tion, by identifying principals who are difficult to track due to occlusions
in crowded scenes.

1 Introduction

What is in a face? Judging by children’s drawings, two circles for the eyes, a line
for the mouth, and perhaps a dot for the nose makes a face. While seemingly
simple, these archetypical features distil faces down to their basic forms and
resemble Haar-like features, which are used in face detection methods to find
faces in real-time with robust results [1,2].
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Faces are what allow us to differentiate people in a group. It might be a child
identifying family members in an old photograph, or security personnel identi-
fying people from their passport photos in the airport. Our faces are the most
visible characteristic we have, and together with traits such as fingerprints, palm
prints, DNA, and iris patterns possess a high discriminative power. In contrast,
hair colour, skin colour, gait, height, and weight all have low discriminative power.

The discriminative power of these traits must be considered in security sen-
sitive biometric applications where the performance of the biometric system is
important, for instance in some airports, where holders of biometric passports
can go through automated gates that authenticate them using facial-recognition.
These security sensitive applications of biometric authentication requires robust
and accurate results, but, at the same time they must satisfy user demands of a
non-invasive and user friendly authentication process.

In his vision of ubiquitous computing, Mark Weiser states that technology
must be calm [3,4] in order to allow users to focus on their primary tasks. This
implies that any authentication technology should require minimal attention
from the users, which excludes the use of many authentication techniques, such
as passwords or fingerprints. This lends itself to the use of remote biometrics,
that is, biometric characteristics that are measurable from a distance without
user interaction, such as facial recognition, appearance or gait analysis.

In this paper we extend our Persistent Authentication model (PAISE ) [5,6]
with continuous authentications using remote biometrics. The PAISE model
combines traditional authentication mechanisms with location information and
tracking of principals. The goal in persistent authentication is to translate user
authentication from a single event to a lasting session. The model uses strategi-
cally placed authentication points to establish an initial authentication session
and principals are then tracked throughout the environment. In this paper we
explore the addition of remote biometrics, which are regularly measured to pre-
vent the decay of authentication confidence when authenticated users encounter
and interact with other users in the environment. This multi-factor approach
gives robust results by utilising the strengths of an interaction-based authentica-
tion system with the continuous evaluation of an unobtrusive biometric system.

One of the key applications of persistent authentication is to allow secure pro-
vision of location-based services, through calm authentication of mobile users in
the smart environment. Indoor location systems have seen an increase in popular-
ity in recent years. In particular, tracking of inhabitants in indoor environments
have become vital in hospitals to locate and page staff, in homes for elderly peo-
ple, and in industry for applications in logistics, warehousing and automation.
Persistent authentication extends these applications by utilising the credentials
associated with each principal’s authentication session. This allows persistent
authentication to act as the context manager in a sensor enhanced access con-
trol system [7], providing a fine-grained and flexible access control mechanism.
The PAISE model makes it possible to take informed decisions based on the
user’s credentials, for instance, detecting that the cleaning personnel are access-
ing a restricted area, or that the carrier delivering goods is entering the premise
through the loading area.
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The users credentials are captured by the access control mechanism and
provided to the persistent authentication system, which tracks the users and, as
needed, verifies the identity of the users based on their biometric characteristics.
To do so, a specialised algorithm, known as a biometric expert, processes a
sample of the characteristic, referred to as the modality. The expert extracts a
small amount of data containing the minutia features of the characteristic, called
the biometric signature, which represents the unique aspect of the modality. The
biometric signature is compared to a reference database, called the template,
which links the true identity of the person to the previously captured biometric
samples for that person. A match score is generated between the sample and
the template, reflecting the expert’s confidence in the identity of the person.
Alternatively, the expert can be used for identification purposes, in which the
persons signature is compared to all templates and the best match returned,
however, in this paper we focus on biometric verification.

The main challenge in biometric verification is that the process is not reli-
able: an expert may reject a genuine user, or conversely, an expert may accept an
impostor. A biometric expert may have insufficient discriminative power, espe-
cially within a large group [8], or adverse environmental conditions, such as dust
or poor luminosity, can affect the quality of biometric acquisition. These factors
are further compounded when using remote biometrics as the quality and reso-
lution of the biometric acquisition is significantly lower due to the uncontrolled
acquisition process.

The reliability of remote biometrics can be improved by employing multiple
biometric experts and fusing their outputs. In this paper we use Error-Rate-based
Fusion [9], a novel fusion strategy that transforms individual scores into objec-
tive evidences and combines them using Bayesian inference. In more details, let
us assume that an expert generates a match score yi and the expert takes a
decision that the claimant is genuine. The false acceptance rate (FAR) at the
decision threshold yi represents the probability that the claimant is an impos-
tor. Similarly, the false rejection rate (FRR) at the threshold yi represents the
intrinsic probability of incorrectly rejecting a genuine user. Bayesian inference is
used to combine the false acceptance and false rejection rates of different scores,
calculated by different experts, and generate a confidence value representing the
probability that claimant is genuine.

We evaluate the performance of our error-rate-based fusion strategy using
two biometric experts, facial recognition and appearance analysis, on the pub-
licly available CAVIAR dataset [10]. Our experimental results show a significant
improvement in the error rate compared to the performance of each individual
expert. In addition, we evaluate the increased tracking accuracy and persistence
gained by including remote biometrics in the persistent authentication system.
Our results show that including remote biometrics significantly improves track-
ing by identifying principals who are difficult to track due to environmental
factors or occlusions in crowded scenes.

The rest of this paper is organised in the following way: an overview of the
remote biometrics used in this paper is given in Sect. 2. Fusion of biometric
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experts and a quick overview of error-rate-based fusion is presented in Sect. 3.
Persistent authentication and the PAISE model are presented in Sect. 4. Our
experimental results are presented in Sect. 5 and related work is examined in
Sect. 6. Finally, Sect. 7 presents our conclusion and outlines the directions for
future work.

2 Remote Biometrics

Compared to their intrusive counterparts, remote biometrics have a lower dis-
criminative power and a higher error rate [11], but they are non-invasive and
allow continuous authentication. This ensures a calm authentication process
without user interaction. The two biometric characteristics we focus on in this
paper are facial recognition and appearance analysis based on colour profiles. Our
faces possess a high discriminative power, whereas our appearance, in terms of
hair and skin colour and the clothes we wear, have a low discriminative power.

For facial recognition we use a linear subspace technique to project high-
dimensional data into a lower dimensional subspace by linearly combining
features. Principal Component Analysis (PCA) [12] and Linear Discriminant
Analysis (LDA) [13] are well established linear subspace techniques and are con-
sidered the most robust methods for face recognition [14].

Consider a set of N facial images x1,x2, ...,xN with values in an n-dimensional
image space. A linear transformation maps this n-dimensional image space into
a lower m-dimensional feature space y1,y2, ...,yN such that yk represents xk by
introducing a transformation vector W such that:

yk = WTxk k = 1, 2, ..., N

For the transformation to accurately represent the original data, it is impor-
tant to retain the highest possible variation, thus the objective is to find a
subspace in which the variance is maximised. Let the total scatter matrix ST be
defined as:

ST =
N∑

k=1

(xk − μ)(xk − μ)T

Where μ is the mean of all the images. The output is a set of n-dimensional
eigenvectors w1,w2, ...,wm corresponding to the m largest eigenvalues, which
account for the most variance in the training set. Since these eigenvectors have
the same dimension as the original images, they are referred to as Eigenfaces [12].

In PCA, classification can be performed in this reduced feature space, for
instance using a nearest neighbour classifier. However, a drawback of this app-
roach is, that much of the variation we seek to maximise is caused by illumi-
nation changes [15], thus with images of faces under changing illumination the
projected feature space will contain variation due lighting and not necessarily
due to class separability. Consequently, the points in the projected space will
not be well clustered. A better approach is to use Linear Discriminant Analysis,
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where classification is performed by selecting W in such a way that the ratio
of the between-class scatter SB and the within-class scatter SW is maximised.
With the between-class scatter matrix defined as

SB =
c∑

i=1

Ni(μi − μ)(μi − μ)T

and the within-class scatter matrix defined as

SW =
c∑

i=1

∑

xk∈Xi

(xk − μi)(xk − μi)T

where μi is the mean image of class Xi, and Ni is the number of samples in
class Xi. A projection, Wopt is then found, that maximises the class separability
criterion

Wopt = arg max
W

=
|WTSBW |
|WTSWW |

For appearance analysis we use colour profiles, calculated using histogram
comparison. Colour histograms are widely used for content-based image retrieval
[16] as they are fast to compute, and despite their simplicity, have attractive
properties. Since they contain no spatial information they are largely invariant to
rotation and translation of objects in the image. Additionally, colour histograms
are robust against partial occlusions and changes in camera viewpoint [17].

Colour histograms are typically represented in the RGB colorspace, and the
difference between two histograms h1, h2 are expressed by the chi-squared dis-
tance:

χ2(h1, h2) =
1
2

∑

k

(h1k − h2k)2

h1k + h2k

To reduce the error rate of the remote biometric experts, the output of each
of these experts are fused, which increases the robustness of the evaluation.

3 Fusion of Biometric Experts

The main challenge in biometric fusion is that different biometric experts generate
matching scores in different domains, and that these domains usually follow differ-
ent probability distributions. Therefore, score normalisation and transformation
are required to make the scores compatible, which are error prone processes. More-
over, the existing parametric models assume a certain distribution of scores which
also introduces errors in the fusion process.

In our fusion strategy, error-rate-based fusion, we use measures of false
acceptances and false rejections, which have the same definitions across differ-
ent experts, and therefore do not need any normalisation. We work in a non-
parametric model, namely we estimate false acceptance and false rejection rates
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for certain discrete levels of thresholds. Further, the fused output is a confi-
dence measure, which is a continuous probability value; therefore, the decision
errors associated with a binary decision do not occur. In the following, we give a
brief overview of error-rate-based fusion, and we refer interested readers to the
complete algorithm presented in Ingwar et al. [9].

For biometric verification we consider two class labels, A and Ā, where A is
assigned when the expert concludes that a claimant is genuine, and Ā is assigned
if the authentication status of the claimant is unknown. If the claimant is A but
the expert wrongly labels him Ā then this event is called a false rejection (FR).
Similarly, if the claimant is not A and an expert wrongly labels him A then
this event is called a false acceptance (FA). The false acceptance and the false
rejection rates (FAR and FRR) correspond to the fractions of FA and FR events
taken over all genuine and impostor access.

Let us consider N biometrics experts. The output of the i -th expert is a
match score, yi ∈ R, where 1 ≤ i ≤ N .

For a decision threshold Δi, the decision function is defined as follows:

decision(Δi, yi) =
{

accept if yi ≥ Δi

reject otherwise

With the match score yi, let the functions FAR(yi) and FRR(yi) be the
false acceptance rate and false rejection rates of the i -th expert with Δi =
yi. Since yi ∈ R, these functions are continuous, such that FAR(yi) ∈ R and
FRR(yi) ∈ R. For precise evaluation of FAR(yi) and FRR(yi), we use a non-
parametric approach, and model them as step functions, in which Δi can only
take m different values: Δi ∈ {δ1i , . . . , δmi }, where δ1i < · · · < δmi . We call these
values of Δi error decision thresholds (EDTs). This means that FAR(yi) and
FRR(yi) are defined over a set of m EDTs.

Fig. 1. Error Decision Thresholds (EDTs). Plot of the probability density functions of
typical expert scores with the point of Equal Error Rate (EER) shown.
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The different values of Δi are illustrated in Fig. 1, with a typical plot of the
probability density functions (PDF) of expert scores. The figure illustrates that
the match score for a genuine user is distributed on larger values as compared to
that of an impostor. The figure also shows the point of equal error rate, where
the false acceptances and false rejections have the same values.

To illustrate an error-rate-based fusion system, consider a verification sys-
tem that contains N biometric experts. When biometric data of a claimant is
available from the sensors, the system invokes the experts with the claimed iden-
tity A. Each expert extracts the relevant biometric signature from the data and
compares the extracted signature with the signature templates of A. Each expert
then generates a match score yi, and we compute FAR(yi) and FRR(yi) and fuse
the match score based on Bayesian inference.

The system has an a-priori confidence that the claimant is A, which is
represented as the probability measure, Pr(A). The complementary confidence
that the claimant is not A is 1 - Pr(A). We compute a-posteriori confidence,
Pr(A|yi ≥ Δi), i.e., the probability that the claimant is A after receiving the
evidence yi that meets the decision threshold Δi. For brevity, we do not include
the decision threshold in the probability expressions, and therefore we write
Pr(A|yi ≥ Δi) as Pr(A|yi). The value of the a-posteriori confidence is com-
puted as follows:

Pr(A|yi) =
TAR(yi)Pr(A)

TAR(yi)Pr(A) + FAR(yi)(1 − Pr(A))
(1)

With TAR being the true acceptance rate, i.e. 1−FRR(yi). Equation 1 allows
us to fuse the outputs of N experts, by taking into account the prior confidence
level. To get an intuitive feeling of Eq. 1, let us consider a traditional verification
expert, which is assumed to be error free, e.g., a password-based authentication
of claimant, A, on a computer terminal. If the password is correct then the
computer has full confidence that the claimant is A. For such an expert, the
values of FAR and FRR are assumed to be zero. As expected, the confidence is
evaluated to 1 in Eq. 1 independent of a-priori confidence. In fact, any expert
for which the value of FAR is zero will generate the confidence value of 1, which
is consistent with the fact that with zero false acceptances no impostor can ever
be accepted by the expert.

4 Persistent Authentication

The goal in persistent authentication is to translate authentication from a single
event to a lasting session. We track principals from the point where they authen-
ticate and throughout the environment. We use closed-circuit television (CCTV)
cameras and image processing algorithms to provide the location data, and then
employ filtering techniques to associate the location with target principals in
consecutive frames.
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Fig. 2. Overview of the components in the persistent authentication model.

The core component of the PAISE model combines data from the authenti-
cation system, the smart environment and the biometrics experts, tracks authen-
ticated principals and forwards this information to a location-based service. An
overview of the components in the persistent authentication model are shown in
Fig. 2. The figure shows how the three components, the authentication system,
the smart environment and the biometric experts interface with the core PAISE
component.

The authentication mechanism handles authentication of principals and pro-
vides the initial authentication of the principal. The operation of the authenti-
cation mechanism is external to the persistent authentication model, thus state-
of-the-art solutions are supported, such as intrusive biometrics, smart-cards,
wearable tokens, or a combination resulting in multimodal authentication [18].

The smart environment delivers the sensor data needed for tracking. In this
paper we use a smart environment that consists of a camera-based location
system. CCTV cameras are used to both track principals and to gather remote
biometric samples.

The biometric experts process the modalities of the principals captured by
the smart environment and returns an estimate of their identity. As mentioned
in Sect. 2, the two remote biometrics explored in this paper are facial recognition
and appearance analysis.

Finally, the persistent authentication component must: 1. Identify the prin-
cipals and their locations from the video data and track them throughout the
environment, 2. Associate the initial authentication sessions with the correspond-
ing principals, and 3. Continuously provide the biometrics modalities of each
tracked principal to the biometric experts and evaluate the feedback. The out-
put is the location of each principal, the associated authentication sessions and
the confidence in this assertion.

To identify principals in a video steam, we use image segmentation. In image
segmentation objects that share certain characteristics are identified and labeled.
In persistent authentication, this means assigning one label to the principals and
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Fig. 3. Background segmentation. For each pixel in the image a label w is inferred
denoting the absence or presence of a foreground object.

another label to their surroundings. The principals are then referred to as the
image foreground and their surroundings as the image background.

A binary label wi ∈ {0, 1} is assigned to each pixel xi in the image, indicat-
ing whether it is part of a known background (w = 0) or if it belongs to the
foreground (w = 1), determined by the recent history of each pixel x1, ...,xn

modelled as a Gaussian Mixture Model [19,20]. The probability that a new pixel
x belongs to the foreground is then given by:

Pr(x|w = 1) =
K∑

k=1

λkN (μk, Σk)

where μ1...K and Σ1...K are the means and covariances of the normal distribu-
tions and λ1...K are positive valued weights that sum to one. The combination of
these normal distributions allows the Gaussian mixture model to describe com-
plex multi-modal probability densities. The Gaussian mixture model is robust
to noise and changes in illumination and it handles reflections and shadows well,
making it particular suited for indoor surveillance applications. A typical result
of the labelling process is shown in Fig. 3. The first image shows a complex
scene, captured by a CCTV camera, containing five principals annotated with
circles. The second image shows the output of the Gaussian mixture model, a
black-and-white binary image. The white pixels in the binary image, also called
the blobs, indicate the presence of a principal, and the figure shows that all five
principals have been correctly identified.

With the foreground objects identified and labeled, we track them throughout
the environment. The objective of the tracking is to associate the location of
target principals in consecutive video frames. This association can be especially
difficult when multiple users are in the environment, when users are occluded,
or when the quality of the images are poor due to environmental conditions. In
these situations the tracking system relies on the correlation of principals over
time, either inferred from the physical properties of the environment or from a
model which describes how the location of the target might change for different
possible motions of the principals.
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We use a combination of spatial-temporal coherence, filtering and flow tech-
niques to ensure consistent tracking in consecutive frames. The spatial-temporal
coherence uses the physical reality of the world to infer correlation. Spatial coher-
ence describes the correlation between signals at different points in space, while
temporal coherence describes the correlation between signals observed at dif-
ferent moments in time. In tracking this is used to infer correlation based on
the speed and trajectory of the principals, which must be consistent with the
physical restrictions of the environment.

In addition to the spatial-temporal coherence, we filter the output of the
image segmentation process with the Kalman filter [21,22], which in essence
is a sensor fusion algorithm that uses the system dynamics model to form an
estimate of the system’s state, which improves tracking under rapidly changing
environmental conditions.

Finally dense optical flow [23,24] is used as a global approach, that is not
affected by labelling ambiguities to ensure consistent tracking even in noisy sit-
uations. In optical flow it is assumed that when a pixel moves from one frame
to another, its intensity or colour does not change. This is a combination of a
number of assumptions about the reflectance properties and illumination of the
scene and is known as the brightness constancy. Solving the brightness constancy
results in the magnitude and direction of motion for each pixel in the image. By
comparing the displacement to the Kalman filter estimate, tracking becomes
possible even when principals are partially occluded, as their direction in the
environment helps to differentiate them. Additionally, as the optical flow analy-
sis is applied directly to the image it helps ensure that errors in the labelling
process does not carry over into the tracking process.

Tracked principals continuously have their remote biometrics measured and
compared to a signature database. This database contains all previous matching
signatures and, optionally, high quality enrolment signatures. For each biometric
characteristic a set of false acceptance and false rejection rates (FAR and FRR)
values are generated. These values are fused, using error-rate-based fusion, which
helps reduce the impact of the high error rate of remote biometrics. The result is
a biometric confidence score in the identity of the principal, i.e., the confidence
on the assertion that a blob has a certain identity. This score is matched with
the trackers current confidence score, which turns the confidence into a dynamic
value based on positive biometric signatures.

A dynamic score allows the system to take occlusions and other noisy mea-
surements into consideration when determining the confidence in identity, such
that, when principal moves through the environment, the confidence in his iden-
tity changes based on the quality of the tracking. An example is shown in Fig. 4.
The figure shows two paths, a solid line that corresponds to the motion of a
principal A and a dashed lined that corresponds the motion of a principal who
is not A, denoted, Ā. Events on the paths have timestamps, and the time t0
corresponds to the initial authentication, where A is authenticated using an
interactive authentication mechanism, giving an initial confidence of 1.
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Fig. 4. Confidence in the identity of A. The confidence in A’s identity decrease when
the paths of A and Ā intersect and increase with positive biometric signatures.

The principals are reliably tracked from the point of initial authentication
until the time t1, where occlusions causes ambiguities in the labelling process,
which, in turn, causes ambiguity in which of the paths the tracked principal A
is following. As a result, the confidence in the identity of A is lowered. How
much the confidence is lowered depends on the output of the tracking algorithm,
but for the sake of the example, we assume that there is an equal chance of A
following either path.

The remote biometrics of A are continuously measured and at time t2, t3 and
t4 a positive signature is captured. The resulting biometric confidence score is
used to increase the confidence in the identity of A. As A can only follow either
the solid line or on the dashed line, the confidence for A on both lines must
sum to 1. Therefore, an increase in the confidence on the solid line automat-
ically decrease the confidence that A is following dashed line. The increase in
confidence depends on the quality of the biometric sample and the output of the
biometric expert. This cycle of decreasing confidence due to noise or occlusions
and increasing confidence with positive signatures continues as long as A is in
the environment.

5 Experimental Results

In this section we present and discuss our experimental results. We evaluate how
remote biometrics, namely facial recognition and appearance analysis, perform
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when implemented in a persistent authentication system. Both of these charac-
teristics are measured from a distance, and authentication is performed contin-
uously by sampling the modality recurrently.

The data used for the experiments are from the CAVIAR dataset [10]. The
dataset comprises of a number of clips that show the frontal view of a corridor in
a shopping centre. The clips include people walking alone, meeting with others,
conversing, and window shopping. All the video clips are filmed in half-resolution
PAL standard (384 × 288 pixels, 25 frames per second) and compressed using
MPEG2.

We track each principal in the video and sample the modalities as they are
available. As the setting is a corridor with principals walking in both directions,
then principals are not always facing the camera and as a result, the facial expert
is only able to extract modalities from a subset of the total principals. In contrast,
the appearance expert is always available, though the area that is considered may
contain little relevant information due to occlusions of the tracked principal. In
the dataset 32 unique principals have been identified by both the facial and the
appearance expert, on which we test the performance of our error-rate-based
fusion technique. We measure the performance of the tracking by recording the
number of frames each principal have been successfully tracked by the persistent
authentication system and compare this to the ground truth. In addition, we run
the experiments again, this time tracking the principals using only the filtering
and flow techniques to evaluate the performance without the biometric experts.

The 32 unique subjects are tracked over multiple video clips, in varying poses
and illumination. An example of the captured faces for three principals are shown
in Fig. 5. The resolution of the video data is low, and as a result, the resolution
of the facial images are very low at 50 × 50 pixels.

We use the first captured face to construct an initial training set, then for each
subsequently captured face, we calculate the error rate using leave-one-out cross-
validation, after which the new face is added to the training set. It may happen

Fig. 5. Example of the captured faces for three principals from the CAVIAR dataset.
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Table 1. Error rates of the biometric experts

Biometric expert Error rate

Facial expert 4.72 %
Apperance expert 5.01 %
Error-rate-based fusion 1.44%

that a high number of biometric modalities are captured, thus we limit the size of
the training set to the six most recently captured images. In a production system,
we recommend using high quality enrolment signatures as the initial training
set and augmenting the training set with good quality captured samples. The
process is completed for both biometric experts and each step is monitored by a
human expert who records the performance of the system and of each biometric
experts. The resulting error rates are shown in Table 1.

The table shows that the overall performance of the system when using error-
rate-based fusion is significantly lower than any of the individual experts. Our
fusion technique has an error rate of 1.44 %, which is expected given the per-
formance of the individual experts and the results are in line with the results
published in earlier work [9]. The increase in performance is due to the fact that
we weigh the decision given by each expert based on their FAR and FRR values
as outlined in Eq. 1; a result, in our error-rate-based fusion strategy, the conflict
between experts are more likely to be resolved in favour of the best performing
expert.

The individual biometric experts have an error rate of 4.72 % for the facial
expert and 5.01 % for the appearance expert. We conjecture that the relatively
high error rate of the facial expert is caused by the very low resolution of the
training images and the greatly varied poses of the principals. However, this
shows that even in adverse conditions the LDA method gives robust results. The
performance of the appearance expert is not as affected by the low resolution
and thus the results are comparable to our previous studies.

Fig. 6. Computed track lengths vs. ground truth for the CAVIAR dataset
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To evaluate the impact of the remote biometrics we compare the performance
of the tracking in persistent authentication to the performance without using
biometric experts. We use the training data acquired from the CAVIAR dataset
and track each of the 32 principals from the point they enter the scene. We
measure the number of frames each principal is successfully tracked, with and
without the biometric experts, and compare this to the ground truth.

The results are shown in Fig. 6, which charts the results for each the 32
tracks. The majority of the tracks have few or no occlusions and no drop-outs
(principals leaving the scene completely), and in these situations both systems
achieve near perfect tracking of the principals. The accuracy of the tracking
drops when occlusions and drop-outs occur, for instance when principals enter a
shop or when multiple principals crowd the scene. The system may completely
lose track of a principal, in this case the remote biometrics are used to re-
associate the session with the correct principal. As a result, the system using
remote biometrics greatly outperforms the other system for a number of the
tracks, which is most profound in the tracks 7, 13 and 21.

6 Related Work

In this section, we explore the state of the art related to continuous authentica-
tion.

Corner and Noble [25–27] examine the problem of authentication when mobile
devices are lost or users leave a workstation logged in. They define traditional
authentication mechanisms as persistent because they rarely limit the duration
that the authentication is valid, so a user may leave a computer logged in for
several days. This means that anyone who steals a device that is logged in or
gets physical access to the workstation may usurp the authentication of the orig-
inal user. They define a transient authentication mechanism, where all data in
the system is encrypted and a small authentication token, worn by the user, is
needed to provide access to the encrypted data, thus ensuring that access can
only be granted when the token is in close proximity to the system. The token
stores the cryptographic keys and the proximity mechanism is based on short
range wireless communication.

The definitions of persistent and transient authentication by Corner and
Noble are device centric, authentication sticks to the device as long as the user
is present, so restrictions are put on the users, e.g., they have to wear the authen-
tication token. This creates problems when authentication tokens are forgotten,
borrowed or lost. Our definition of persistent authentication is user centric, which
means that authentication sticks to the user as long as the tracking is considered
reliable. This means that any authentication mechanism, e.g., passwords, PIN
or biometrics, can be used and that no additional requirements are placed on
the user.

Bardram et al. [28] define a context-aware user authentication mechanism,
where users need a smart card to identify themselves to the system and an RFID
based tracking system that is used to authenticate the user. This adds complexity
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for the users, by requiring them to carry two tokens, without offering significantly
improved convenience, i.e., the user still has to insert the smart card into the
system whenever authentication is required. In comparison, our method removes
the need to perform repeated authentication actions.

Klosterman and Ganger [29] define a continuous biometric-enhanced authen-
tication mechanism, which uses a biometric authentication module, based on face
recognition, to periodically re-authenticate users who are logged in to the system.
If, at some point, the biometrics of the user sitting in front of the monitor does
not correspond to the biometrics of the authenticated user, re-authentication is
required. This means that continuous authentication is achieved without addi-
tional requirements placed on the user, but their system authenticate a specific
user at a specific location, whereas we propose to track the user so that his
authentication may be reused in different locations.

Altinok and Turk [30] present an approach for temporal integration based
on uncertainty propagation over time for a multimodal biometric system. Their
method operates continuously by computing expected values as a function of
time differences. The system generates continuous results in terms of confidence
in the identity of the user, which makes it possible to adjust the security level
accordingly in real time. Experimental results with simulated data of face, voice,
and fingerprints have shown that the system can provide continuous authenti-
cation results which are consistently better than the individual components of
the system. The authors conclude that comparing these preliminary results to a
true multimodal database is very important for continued work in the field.

Sim et al. [31] develop a continuous authentication system based on multi-
modal remote biometrics in a Bayesian framework that combines both temporal
and modality information holistically. This approach allows the system to evalu-
ate the probability that the user is still present even when there is no observation.
The authors are successful in integrating results from a fingerprint biometric
classifier with a face classifier and develop a model that intuitively separates the
uncertainty of the dynamic model from that of the sensor model. Muncaster and
Turk [32] take similar approach as [31], but use a Dynamic Bayesian Network to
achieve continuous authentication using multimodal biometrics. The advantage
of a dynamic Bayesian network is its ability to account for more hidden variables
and by modelling more hidden variables, the network is capable of modelling
important contextual information. Both approaches focus on a controlled envi-
ronment, such as a workstation, where an impostor hijacks a logged-in session.
In comparison, persistent authentication operates in an uncontrolled and uncon-
strained environment, where the sessions are user centric, requiring an impostor
to displace a legitimate user instead of hijacking an empty workstation.

Niinuma and Park [33] propose a framework for continuous authentication
that uses soft biometrics traits, similar to the appearance analysis presented
in this paper. The proposed framework automatically registers soft biometric
traits every time the user login and fuses soft biometric matching with conven-
tional authentication schemes, namely password and face biometric. The pro-
posed scheme has high tolerance to the user’s posture and the experimental
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results show the effectiveness of the proposed method for continuous authenti-
cation. The authors make a number of assumptions about the pose of the users
and the location of the body for appearance analysis, furthermore, occlusions
are handled on a very ad hoc basis. In contrast, persistent authentication uses
image segmentation to locate users which ensures that the regions of interest are
correctly identified for appearance analysis, additionally, advance filtering algo-
rithms are used to ensure occlusions does not revert the authentication session
and require the user to start over.

7 Conclusion

In this paper we examined the problem of providing a robust non-invasive
authentication service for mobile users in a smart environment. We used the
persistent authentication model, PAISE, to track principals and employed con-
tinuous authentication, based on remote biometrics, to identify principals and
re-associate lost authentication sessions. The result is a calm approach to authen-
tication, where mobile users are transparently authenticated towards the system,
which allows the provision of location-based services.

We used error-rate-based fusion to solve a common problem that occurs in
score level fusion, i.e., the scores of individual experts are usually incompatible,
as they have different score ranges as well as different probability distributions.
In our fusion strategy, we use error rates (false acceptance and false rejection
rates), which have the same definitions across different domains, and therefore
does not require any normalisation.

We evaluated our error-rate-based fusion strategy on two remote biometric
modalities, namely facial recognition and appearance analysis. Our experimental
results on a publicly available dataset, show that our fusion strategy gives a
significant improvement over each of the individual experts. This increase in
accuracy is especially useful for security sensitive biometric applications where
the performance of the biometric system is important. We further evaluated the
performance of the persistent authentication system with regard to the accuracy
of the tracking. Our results show that using remote biometrics help identify
principals who are difficult to track due to occlusions in crowded scenes. In
addition, remote biometrics allows the system to re-identify principals who drop
out of view of the camera and re-enter at a later stage.

Finally, we conclude that the PAISE model provides a useful abstraction for
authentication systems, which may greatly improve the usability of traditional
user authentication.
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