
Joaquin Garcia-Alfaro · Georgios Lioudakis
Nora Cuppens-Boulahia · Simon Foley
William M. Fitzgerald (Eds.)

 123

LN
CS

 8
24

7

8th International Workshop, DPM 2013, and
6th International Workshop, SETOP 2013
Egham, UK, September 12–13, 2013
Revised Selected Papers

Data Privacy Management
and Autonomous
Spontaneous Security

Lecture Notes in Computer Science 8247

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

For further volumes:
http://www.springer.com/series/7410

http://www.springer.com/series/7410

Joaquin Garcia-Alfaro • Georgios Lioudakis
Nora Cuppens-Boulahia • Simon Foley
William M. Fitzgerald (Eds.)

Data Privacy Management
and Autonomous
Spontaneous Security

8th International Workshop, DPM 2013, and
6th International Workshop, SETOP 2013
Egham, UK, September 12–13, 2013
Revised Selected Papers

123

Editors
Joaquin Garcia-Alfaro
Telecom SudParis
Evry
France

Georgios Lioudakis
National Technical University of Athens
Athens
Greece

Nora Cuppens-Boulahia
Telecom Bretagne
Cesson Sévigné
France

Simon Foley
University College Cork
Cork
Ireland

William M. Fitzgerald
IDA Ovens
EMC Information Systems International
Cork
Ireland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-642-54567-2 ISBN 978-3-642-54568-9 (eBook)
DOI 10.1007/978-3-642-54568-9
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014934122

LNCS Sublibrary: SL4 – Security and Cryptology

� Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword from the DPM 2013 Program Chairs

This volume contains the proceedings of the 8th Data Privacy Management Interna-
tional Workshop (DPM 2013), held in Egham, UK, at Royal Holloway, University of
London, during September 12–13, 2013, in conjunction with the 18th annual Euro-
pean research event in Computer Security (ESORICS 2013) symposium. It includes a
revised version of the papers selected for presentation at the workshop. Previous
issues of the DPM workshop were held in 2012 in Pisa (Italy), 2011 in Leuven
(Belgium), 2010 in Athens (Greece), 2009 in Saint Malo (France), 2007 in Istanbul
(Turkey), 2006 in Atlanta (USA), and 2005 in Tokyo (Japan).

The aim of DPM is to promote and stimulate the international collaboration and
research exchange on areas related to the management of privacy-sensitive informa-
tion. This is a very critical and important issue for organizations and end-users. It
poses several challenging problems, such as translation of high-level business goals
into system level privacy policies, administration of sensitive identifiers, data inte-
gration and privacy engineering, among others.

In response to the call for participation, 46 submissions were received. Each
submission was evaluated on the basis of significance, novelty, and technical quality.
All submissions went through a careful anonymous review process (three or more
reviews per submission) aided by 49 Technical Program Committee members and 31
additional referees. In the end, 13 full papers, accompanied by five short papers, were
presented at the event. The final program also included three invited talks by Steven J.
Murdoch (University of Cambridge), Emil Lupu (Imperial College London), and John
Borking (former Privacy Commissioner and Board Member of the Dutch Data Pro-
tection Authority in The Hague). Our special thanks to Steven, Emil, and John for
accepting our invitation and for their presence during the event and talks.

We would like to thank everyone who helped at organizing the event, including all
the members of the Organizing Committee of both ESORICS and DPM 2013. In
particular, we would like to highlight and acknowledge the tremendous efforts of the
ESORICS 2013 General Chair Keith Mayes and his team. Thank you Keith for all
your help and support with DPM. Our gratitude goes also to Pierangela Samarati,
Steering Committee Chair of the ESORICS Symposium, for all her arrangements to
make possible the satellite events. Our special thanks to the General Chairs of DPM
2013, Josep Domingo-Ferrer and Maryline Laurent, as well as Steering Committee
member Guillermo Navarro-Arribas, for their unconditional help since the beginning
of this event. Last but by no means least, we thank all the DPM 2013 Program
Committee members, additional reviewers, all the authors who submitted papers, and
all the workshop attendees.

Finally, we want to acknowledge the support received from the sponsors of the
workshop: Institute Mines-Telecom, CNRS Samovar UMR 5157, Telecom SudParis,
UNESCO Chair in Data Privacy, and National Technical University of Athens.

January 2014 Joaquin Garcia-Alfaro
Georgios Lioudakis

8th International Workshop
on Data Privacy Management—DPM 2013

Program Committee Chairs

Joaquin Garcia-Alfaro Telecom SudParis, France
Georgios Lioudakis National Technical University of Athens, Greece

Workshop General Chairs

Josep Domingo-Ferrer Universitat Rovira i Virgili, Spain
Maryline Laurent Telecom SudParis, France

Program Committee

Esma Aimeur Université de Montreal, Canada
Michel Barbeau Carleton University, Canada
John Borking Borking Consultancy, The Netherlands
Jens-Matthias Bohli NEC Laboratories Europe, Germany
Ana Cavalli Telecom SudParis, France
Frederic Cuppens Telecom Bretagne, France
Nora Cuppens-Boulahia Telecom Bretagne, France
Roberto Di Pietro Roma Tre University of Rome, Italy
Nicola Dragoni Technical University of Denmark, Denmark
Christian Duncan Quinnipiac University, USA
David Evans University of Derby, UK
Sara Foresti Università degli Studi di Milano, Italy
Sebastien Gambs University of Rennes 1, France
Flavio D. Garcia Radboud University Nijmegen, The Netherlands
Paolo Gasti New York Institute of Technology, USA
Francesca Gaudino Baker & McKenzie Law Firm, Italy
Stefanos Gritzalis University of the Aegean, Greece
Marit Hansen Unabhängiges Landeszentrum für Datenschutz,

Germany
Artur Hecker Telecom ParisTech, France
Jordi Herrera Autonomous University of Barcelona, Spain
Iakovos Venieris National Technical University of Athens, Greece
Dimitra Kaklamani National Technical University of Athens, Greece
Panos Kampanakis Cisco Systems, USA
Georgia Kapitsaki University of Cyprus, Cyprus

Sokratis Katsikas University of Piraeus, Greece
Evangelos Kranakis Carleton University, Canada
Jean Leneutre Telecom ParisTech, France
Giovanni Livraga Università degli Studi di Milano, Italy
Javier Lopez University of Malaga, Spain
Brad Malin Vanderbilt University, USA
Sotirios Maniatis Hellenic Authority for Communications Privacy,

Greece
Chris Mitchell Royal Holloway, UK
Refik Molva Eurecom, France
Krish Muralidhar University of Kentucky, USA
Guillermo Navarro-Arribas Autonomous University of Barcelona, Spain
Silvio Ranise Fondazione Bruno Kessler, Italy
Kai Rannenberg Goethe University Frankfurt, Germany
Indrajit Ray Colorado State University, USA
Yves Roudier Eurecom, France
Mark Ryan University of Birmingham, UK
Claudio Soriente ETH Zürich, Switzerland
Alessandro Sorniotti IBM Research, Switzerland
Traian M. Truta Northern Kentucky University, USA
Yasuyuki Tsukada NTT Communication Science Laboratories, Japan
Jens Weber University of Victoria, Canada
Lena Wiese University of Göttingen, Germany
Yanjiang Yang Institute for Infocomm Research, Singapore
Nicola Zannone Eindhoven University of Technology, The Netherlands
Melek Önen Eurecom, France

Steering Committee

Josep Domingo-Ferrer Universitat Rovira i Virgili, Spain
Joaquin Garcia-Alfaro Telecom SudParis, France
Guillermo Navarro-Arribas Autonomous University of Barcelona, Spain
Vicenç Torra Artificial Intelligence Research Institute, Spain

VIII 8th International Workshop on Data Privacy Management—DPM 2013

Additional Reviewers

Achilleas Achilleos
Ahmad Sabouri
Alessio Di Mauro
Ana Nieto
Anderson Morais
Anis Bkakria
Aouadi Mohamed

Christian Kahl
David Galindo
David Nuñez
Elisa Costante
Eugenia Papagiannakopoulou
Fatbardh Veseli
Flavio Lombardi

Gurchetan S. Grewal
Ian Batten
Jia Liu
Jiangshan Yu
Jose Luis Vivas
Kaoutar Elkhiyaoui
Khalifa Toumi
Maria Karyda
Maria Koukovini

Monir Azraoui
Montserrat Batet
Sara Hajian
Sebastiaan De Hoogh
Sokratis Vavilis
Tarik Moataz
Vasilios Katos
Xiaoping Che

8th International Workshop on Data Privacy Management—DPM 2013 IX

Foreword from the SETOP 2013 Program Chairs

These are the proceedings of the 6th International Workshop on Autonomous and
Spontaneous Security (SETOP 2013).

The purpose of this workshop is to bring together researchers to explore challenges
in the automated configuration of security. In this volume you will find papers on a
range of topics related to authentication and authorization, mobile security and
vulnerabilities.

The workshop program also included invited talks by Steven Murdoch (University
of Cambridge, UK) on ‘‘Quantifying and Measuring Anonymity’’ and by Emil Lupu
(Imperial College London) on ‘‘Pervasive Autonomous Systems: Challenges in Policy
based Adaptation and Security.’’

As with previous years, SETOP was a satellite workshop of the European Sym-
posium on Research in Computer Security (ESORICS). We are grateful to the ES-
ORICS 2013 Organizing Committee for agreeing to host SETOP-2013 and especially
to ESORICS General Chair Keith Mayes for his assistance and support.

We are grateful to the many people who contributed to the success of the work-
shop. The members of the Program Committee and external reviewers. The Publi-
cations Chair, William Fitzgerald assembled the workshops proceedings and ensured
its timely publication.

Finally, the workshops would not be possible without the authors who submitted
papers, the presenters, and attendees.

We hope you enjoy reading the proceedings.

January 2014 Joaquin Garcia-Alfaro
Georgios Lioudakis

Nora Cuppens-Boulahia
Simon Foley

6th International Workshop on Autonomous
and Spontaneous Security—SETOP 2013

Program Committee Chairs

Research Track

Simon Foley University College Cork, Ireland
Nora Cuppens-Boulahia Telecom Bretagne, France

Industrial Track

Edgardo Montes de Oca Montimage, France

Workshop General Chairs

Ana Cavalli Telecom SudParis, France
Frédéric Cuppens Telecom Bretagne, France

Publicity and Publication Chair

William Fitzgerald University College Cork, Ireland

Webmaster

Said Oulmakhzoune Telecom Bretagne, France

Program Committee

Fabien Autrel Telecom Bretagne, France
Gildas Avoine Catholic University of Louvain, Belgium
Michele Bezzi SAP Research, France
Christophe Bidan Supelec, France
Carlo Blundo University of Salerno, Italy
Joan Borrell-Viader UAB, Spain
Jordi Castella-Roca Rovira i Virgili University, Spain
Iliano Cervesato Carnegie Mellon University, Qatar
Stelvio Cimato Università degli Studi di Milano, Italy
Mauro Conti Università di Padova, Italy
Ernesto Damiani Università degli Studi di Milan, Italy
Sabrina De Capitani di Vimercati Università degli Studi di Milano, Italy

Josep Domingo-Ferrer Rovira i Virgili University, Spain
William Fitzgerald University College Cork, Ireland
Sara Foresti Università degli Studi di Milano, Italy
Jerome Francois University of Luxembourg, Luxembourg
Joaquin Garcia-Alfaro Telecom SudParis, France
Stefanos Gritzalis University of the Aegean, Greece
Olivier Heen Technicolor, France
Wei Jiang Missouri University of S&T, USA
Sokratis Katsikas University of Piraeus, Greece
Florian Kerschbaum SAP Research, France
Evangelos Kranakis Carleton University, Canada
Marie Noelle Lepareux Thales, France
Javier Lopez University of Malaga, Spain
Giovanni Livraga Università degli Studi di Milano, Italy
Wissam Mallouli Montimage, France
Guillermo Navarro-Arribas Autonomous University of Barcelona, Spain
Marie Nuadi EADS-Cassidian, France
Andreas Pashalidis K.U. Leuven, Belgium
Nicolas Prigent Supelec, France
Yves Roudier Eurecom, France
Thierry Sans Carnegie Mellon University, Qatar
George Spanoudakis City University London, UK
Radu State University of Luxembourg, Luxembourg
Ari Takanen Codenomicon, Finland
Bachar Wahbi Percevio, France

Steering Committee

Ana-Rosa Cavalli Telecom SudParis, France
Frédéric Cuppens Telecom Bretagne, France
Nora Cuppens-Boulahia Telecom Bretagne, France
Jean Leneutre Telecom ParisTech, France
Yves Roudier Eurecom, France

XIV 6th International Workshop on Autonomous and Spontaneous Security

Contents

Keynote Address

Quantifying and Measuring Anonymity . 3
Steven J. Murdoch

Data Privacy Management

Performance Evaluation of Primitives for Privacy-Enhancing
Cryptography on Current Smart-Cards and Smart-Phones 17

Jan Hajny, Lukas Malina, Zdenek Martinasek, and Ondrej Tethal

Practical Packing Method in Somewhat Homomorphic Encryption 34
Masaya Yasuda, Takeshi Shimoyama, Jun Kogure,
Kazuhiro Yokoyama, and Takeshi Koshiba

Collaborative and Privacy-Aware Sensing for Observing Urban Movement
Patterns . 51

Nelson Gonçalves, Rui José, and Carlos Baquero

Parallel Implementation of GC-Based MPC Protocols
in the Semi-Honest Setting . 66

Mauro Barni, Massimo Bernaschi, Riccardo Lazzeretti,
Tommaso Pignata, and Alessandro Sabellico

Privacy Analysis of a Hidden Friendship Protocol 83
Florian Kammüller and Sören Preibusch

Anonymous and Transferable Electronic Ticketing Scheme 100
Arnau Vives-Guasch, M. Magdalena Payeras-Capellà,
Macià Mut-Puigserver, Jordi Castellà-Roca, and Josep-Lluís Ferrer-Gomila

Privacy-Preserving Publish/Subscribe: Efficient Protocols
in a Distributed Model . 114

Giovanni Di Crescenzo, Brian Coan, John Schultz, Simon Tsang,
and Rebecca N. Wright

Privacy-Preserving Processing of Raw Genomic Data 133
Erman Ayday, Jean Louis Raisaro, Urs Hengartner, Adam Molyneaux,
and Jean-Pierre Hubaux

Using Search Results to Microaggregate Query Logs Semantically 148
Arnau Erola and Jordi Castellà-Roca

http://dx.doi.org/10.1007/978-3-642-54568-9_1
http://dx.doi.org/10.1007/978-3-642-54568-9_2
http://dx.doi.org/10.1007/978-3-642-54568-9_2
http://dx.doi.org/10.1007/978-3-642-54568-9_3
http://dx.doi.org/10.1007/978-3-642-54568-9_4
http://dx.doi.org/10.1007/978-3-642-54568-9_4
http://dx.doi.org/10.1007/978-3-642-54568-9_5
http://dx.doi.org/10.1007/978-3-642-54568-9_5
http://dx.doi.org/10.1007/978-3-642-54568-9_6
http://dx.doi.org/10.1007/978-3-642-54568-9_7
http://dx.doi.org/10.1007/978-3-642-54568-9_8
http://dx.doi.org/10.1007/978-3-642-54568-9_8
http://dx.doi.org/10.1007/978-3-642-54568-9_9
http://dx.doi.org/10.1007/978-3-642-54568-9_10

Legal Issues About Metadata Data Privacy vs Information Security 162
Manuel Munier, Vincent Lalanne, Pierre-Yves Ardoy, and Magali Ricarde

Privacy-Preserving Multi-Party Reconciliation Secure in the Malicious Model . . . 178
Georg Neugebauer, Lucas Brutschy, Ulrike Meyer, and Susanne Wetzel

Differentially Private Smart Metering with Battery Recharging 194
Michael Backes and Sebastian Meiser

AppGuard – Fine-Grained Policy Enforcement for Untrusted Android
Applications . 213

Michael Backes, Sebastian Gerling, Christian Hammer, Matteo Maffei,
and Philipp von Styp-Rekowsky

Autonomous and Spontaneous Security

Reference Monitors for Security and Interoperability in OAuth 2.0. 235
Ronan-Alexandre Cherrueau, Rémi Douence, Jean-Claude Royer,
Mario Südholt, Anderson Santana de Oliveira, Yves Roudier,
and Matteo Dell’Amico

Remote Biometrics for Robust Persistent Authentication 250
Mads I. Ingwar and Christian D. Jensen

Classifying Android Malware through Subgraph Mining 268
Fabio Martinelli, Andrea Saracino, and Daniele Sgandurra

Introducing Probabilities in Contract-Based Approaches
for Mobile Application Security . 284

Gianluca Dini, Fabio Martinelli, Ilaria Matteucci, Andrea Saracino,
and Daniele Sgandurra

Advanced Detection Tool for PDF Threats . 300
Quentin Jerome, Samuel Marchal, Radu State, and Thomas Engel

Enforcing Input Validation through Aspect Oriented Programming. 316
Gabriel Serme, Theodoor Scholte, and Anderson Santana de Oliveira

Lightweight Cryptography for Embedded Systems – A Comparative
Analysis . 333

Charalampos Manifavas, George Hatzivasilis, Konstantinos Fysarakis,
and Konstantinos Rantos

Short Papers

A Simulation of Document Detection Methods and Reducing False Positives
for Private Stream Searching . 353

Michael Oehler and Dhananjay S. Phatak

XVI Contents

http://dx.doi.org/10.1007/978-3-642-54568-9_11
http://dx.doi.org/10.1007/978-3-642-54568-9_12
http://dx.doi.org/10.1007/978-3-642-54568-9_13
http://dx.doi.org/10.1007/978-3-642-54568-9_14
http://dx.doi.org/10.1007/978-3-642-54568-9_14
http://dx.doi.org/10.1007/978-3-642-54568-9_15
http://dx.doi.org/10.1007/978-3-642-54568-9_16
http://dx.doi.org/10.1007/978-3-642-54568-9_17
http://dx.doi.org/10.1007/978-3-642-54568-9_18
http://dx.doi.org/10.1007/978-3-642-54568-9_18
http://dx.doi.org/10.1007/978-3-642-54568-9_19
http://dx.doi.org/10.1007/978-3-642-54568-9_20
http://dx.doi.org/10.1007/978-3-642-54568-9_21
http://dx.doi.org/10.1007/978-3-642-54568-9_21
http://dx.doi.org/10.1007/978-3-642-54568-9_22
http://dx.doi.org/10.1007/978-3-642-54568-9_22

Dynamic Anonymous Index for Confidential Data 362
Guillermo Navarro-Arribas, Daniel Abril, and Vicenç Torra

Are On-Line Personae Really Unlinkable? . 369
Meilof Veeningen, Antonio Piepoli, and Nicola Zannone

On the Privacy of Private Browsing – A Forensic Approach 380
Kiavash Satvat, Matthew Forshaw, Feng Hao, and Ehsan Toreini

Privacy-Preserving Trust Management Mechanisms from Private Matching
Schemes . 390

Oriol Farràs, Josep Domingo-Ferrer, and Alberto Blanco-Justicia

Author Index . 399

Contents XVII

http://dx.doi.org/10.1007/978-3-642-54568-9_23
http://dx.doi.org/10.1007/978-3-642-54568-9_24
http://dx.doi.org/10.1007/978-3-642-54568-9_25
http://dx.doi.org/10.1007/978-3-642-54568-9_26
http://dx.doi.org/10.1007/978-3-642-54568-9_26

Keynote Address

Quantifying and Measuring Anonymity

Steven J. Murdoch(B)

University of Cambridge Computer Laboratory, Cambridge, UK
Steven.Murdoch@cl.cam.ac.uk

http://www.cl.cam.ac.uk/~sjm217/

Abstract. The design of anonymous communication systems is a rel-
atively new field, but the desire to quantify the security these systems
offer has been an important topic of research since its beginning. In recent
years, anonymous communication systems have evolved from obscure
tools used by specialists to mass-market software used by millions of peo-
ple. In many cases the users of these tools are depending on the anonymity
offered to protect their liberty, or more. As such, it is of critical impor-
tance that not only can we quantify the anonymity these tools offer, but
that the metrics used represent realistic expectations, can be communi-
cated clearly, and the implementations actually offer the anonymity they
promise. This paper will discuss how metrics, and the techniques used to
measure them, have been developed for anonymous communication tools
including low-latency networks and high-latency email systems.

1 Introduction

Anonymous communication systems seek to hide patterns visible in communica-
tions to obscure relationships between people and the activities they carry out,
typically over the Internet. Such systems have become increasingly popular as
a result of the Internet developing into an important tool in the support and
promotion of human rights. Examples of uses include the publication of videos
showing human rights abuses, journalists soliciting information on government
corruption, and law enforcement agencies monitoring websites operated by orga-
nized crime.

In all these examples there are motivated individuals who would want to dis-
cover the identity of the users of the anonymous communication system. Therefore
it is of critical importance that the level of protection that the anonymous commu-
nication system provides is well understood. Overestimating the level might result
in users putting themselves at unacceptable amounts of risk; underestimating the
level might result in users avoiding using a system unnecessarily.

The task of measuring the level of anonymity offered by anonymous commu-
nication tools is challenging particularly because of the narrow safety margins
which they necessarily offer. A system operating perfectly can only hide the real
sender or receiver of a message within the ranks of the users of that system.
An attacker who wants to de-anonymise a user can often also take into account

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 3–13, 2014.
DOI: 10.1007/978-3-642-54568-9 1, c© Springer-Verlag Berlin Heidelberg 2014

4 S.J. Murdoch

auxiliary information collected through means other than monitoring the anony-
mous communication system.

For example, suppose a company discovers that a whistleblower has leaked
documents, sent through an anonymous communication system, proving that
management have authorised the bribing of government officials. If that anony-
mous communication system only had a million users that day, then there are
at most a million candidates for who leaked the document. Intersecting the set
of users of the system with the set of people who had access to the documents
in question might leave only a handful of possibilities. Even a small amount of
information disclosed by the anonymous communication system could leave the
whistleblower singled out.

In contrast, encryption systems draw their strength from the large number
of possible keys that could have been used to encrypt the information – far more
than the number of users of the system. Adding to the key length imposes a
linear cost to users of the system but increases the time needed to attack the
system exponentially. As a result, modern encryption systems have a very large
safety margin and so even serious weaknesses in encryption algorithms rarely
have a practical effect on their security.

Therefore research on anonymous communication systems has focussed on
improving security through increasing their number of users and decreasing the
information disclosed to an observer. However, achieving either of these goals
typically comes at a significant cost to users by reducing network capacity. As a
result, it is not feasible to achieve the same safety margins that encryption sys-
tems offer and so it is important to develop ways to accurately measure the level
of protection offered by anonymous communication systems. Then appropriate
design choices can be made to provide the right trade-off between performance
and security.

2 Email Mixes

One of the early applications of anonymous communication technology was to
email. In a scheme proposed by Chaum [2] a user selects one or more “mixes” as
a path through which his message should be sent. Messages are encrypted by a
sender under multiple layers of public-key encryption (Fig. 1). Outside each layer
of encryption is the address of the next mix, which allows messages to be routed.
This mix can remove the next layer of encryption, and will find the address of
the next mix in the path to which the message should be sent. Once the message
reaches the last mix in the path, the plaintext of the message will be available
along with the address of the ultimate destination of the message.

Each mix will see the immediate source of the message and the immedi-
ate destination. Therefore the first mix will know the sender’s address but not
the recipient’s, and the last mix will know the recipient’s address, but not the
sender’s. Similarly, someone observing messages flowing through the network
will not be able to match incoming messages to outgoing messages based on the
content because a decryption operation is carried out at each step which only

Quantifying and Measuring Anonymity 5

A

B

C

DFor Mix 2

For D

Kpub 2

Mix 1
Kpriv 1

Mix 2
Kpriv 2

Mix 3
Kpriv 3

For C

Kpub 3

For Mix 3

Kpub 1

Kpub 3

Fig. 1. A two-hop mix network. A is sending a message to C, via Mix 1 then Mix 3. B
is sending a message to D via Mix 3 then Mix 2

a specific mix has the private key necessary to perform, and message lengths
are fixed. Messages are also delayed at each mix, for a random period of time
or until a particular number of messages have been received by a mix (or some
combination of these) so as to complicate matching based on the time messages
are sent and received.

In this way, the email mix network provides “unlinkability” [6] to messages
because the attacker should not be able to link which messages entering the
mix network correspond to which messages leaving the mix network. The mix
network can also be seen to offer anonymity to its users – for each message
leaving the network it should not be possible to establish its sender and for each
message entering the network it should not be possible to establish its recipient.
An attacker does however know a list of possible candidate senders for each
message which leaves the network – the “sender anonymity set”. Similarly there
is a “recipient anonymity set” for each message sent.

2.1 Measuring Anonymity

Much of the research on email mixes has focussed on how to quantify the
anonymity provided. Berthold et al. [1] proposed to simply count the size (“car-
dinality”) of the anonymity set: a larger list of candidates for the true sender
or receiver corresponds to better anonymity. By taking the logarithm of the set
size, base 2, this quantity can be expressed in bits. An ideal anonymous com-
munication system will have an anonymity set size of the number of users and
the probability of each user being the sender or recipient of a particular message
will be equal. Looking at the anonymity set as a probability distribution over
possible senders/receivers of a message, the ideal anonymous communication
system produces the uniform distribution.

6 S.J. Murdoch

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Anonymity set members (N=20)

P
ro

ba
bi

lit
y

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Anonymity set members (N=20)

P
ro

ba
bi

lit
y

Fig. 2. Two possible distributions over a 20-element anonymity set. The left distribu-
tion is uniform (all elements at 1

20
); the right has one element at probability 1

2
and the

others at 1
38

However real anonymous communication systems will not achieve this ideal.
It is typically possible to distinguish senders from recipients by observing the
direction of flow of data. Also by taking into account that it will be unlikely (for
usability reasons) that mixes will delay messages for a long period of time, not
every possible sender/recipient will be equally likely the true sender/recipient. In
an extreme case an attacker may know that a single user may almost certainly be
the sender of a message yet based on cardinality this system is indistinguishable
from an ideal one of the same size, as shown in Fig. 2.

For this reason, other proposed metrics take into account the unevenness of
the probability distribution. One such metric is the “degree of anonymity” pro-
posed by Reiter et al. [7]. Although originally developed for analysing a system
for anonymising web traffic it can equally be applied to email mixes. The 6 point
scale is described in Table 1.

The degree of anonymity metric differentiates between the two anonymity
set distributions of Fig. 2. The left graph shows that users are beyond suspicion
whereas the right is barely probable innocence. For all reasonable purposes, the
left graph corresponds to a better system so taking into account the unevenness
of the distribution has produced a better metric, but ignoring the cardinality of
the set has a weakness too.

For example, an anonymity set probability distribution over 101 senders, with
the most likely sender having probability 0.01 and others probability 0.0099 offers
possible innocence. Whereas an uniform anonymity set probability distribution
over 4 senders has each sender assigned a probability of 0.25. Although the
latter system has a better degree of anonymity, the probability of an attacker
successfully identifying a user is much higher than the former.

It therefore follows that both cardinality and unevenness of distribution
should be taken into account, and so Shannon entropy was proposed as a metric
by Serjantov and Danezis [8]. Here, if the probability that user i was the true
sender is pi, and there are N members of the anonymity set, then the entropy

Quantifying and Measuring Anonymity 7

Table 1. The 6-point degree of anonymity scale

Degree Attacker observation

Best anonymity Absolute privacy No evidence whether or not a sender
sent any message

Beyond suspicion A sender sent a message, but all
senders are equally likely to have
sent any message

Probable innocence A sender is no more likely to have
been the originator of a message
than to not have been

Possible innocence A sender has a nontrivial probabil-
ity of not being the originator of a
message

Exposed The originator has been identified
Worst anonymity Provably exposed The originator has been identified

and the identity can be proven to
others

of the anonymity set S is:

H(S) = −
N∑

i=1

pi log2 (pi)

For the probability distributions in Fig. 2, the left distribution has entropy
≈ 4.32 bits (the same as the cardinality, in bits – log2(20)), but the right dis-
tribution only has entropy ≈ 3.12. The anonymity set discussed above, of 101
senders with one at probability 0.01 and others at 0.0099, gives entropy 6.66 bits
(only 10−5 % less than the entropy of the uniform distribution over 101 senders).
Whereas the uniform distribution over 4 senders is 2. We can see that entropy
takes into account both cardinality and unevenness, and also gives similar values
to similar distributions, but it is still possible to find examples which raise the
question of whether entropy is the best metric.

For example, in Fig. 3 the two very different distributions have the same
entropy. However, from the perspective of an attacker the anonymity might be
very different. The de-anonymisation of communications is seldom used as an
end in itself, but rather to guide further investigation. An attacker analysing the
left distribution would need to investigate 10 senders before getting a 50 % prob-
ability of having found the right sender. In contrast the attacker could achieve
the same goal with the right distribution after trying only one user.

One way of differentiating between the two distributions is to note that the
number of users is rarely under direct control of the system designer so a rea-
sonable metric could examine the ratio between the security of the ideal system
for a given user base to the actual security achieved for the same user base.
This metric was proposed as the “degree of anonymity” by Diaz et al. [3], but
to differentiate from the Crowds degree in Table 1 we will use the term “nor-

8 S.J. Murdoch

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Anonymity set members (N=20)

P
ro

ba
bi

lit
y

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Anonymity set members (N=101)

P
ro

ba
bi

lit
y

Fig. 3. Two possible distributions. The left graph is the same as in Fig. 2 – the uniform
distribution over 20 senders. The right diagram is a probability distribution over 101
senders, with one having probability 1

2
and the others having probability 1

200
. Both

have entropy log2(20) ≈ 4.32

malized entropy” to refer to the Diaz degree. Where H(S) is the entropy of the
anonymity set S and N is the cardinality of the anonymity set, the normalized
entropy is defined as:

d(S) =
H(S)

log2(N)

However, even when the sizes and entropy of the anonymity sets are the
same there may be questions as to which distribution is better. For example,
the two distributions in Fig. 4 have the same entropy (≈ 3.12) and cardinal-
ity (20) and therefore the same normalized entropy. They also have the same
degree of anonymity – probable innocence. The left distribution has one sender
at probability 1

20 and the other 19 at 1
38 . The right distribution has 5 senders

at probability a
5 and the other 15 at 1−a

15 where a ≈ 0.86 is the solution to the
equation defined by Tóth et al. [9]:

a log2
(a

5

)
+ (1 − a) log2

(
1 − a

15

)
=

log2
(
1
2

)

2
+

19 log2
(

1
38

)

38

Considering an attacker able to investigate one possible sender, the left dis-
tribution is worse for privacy, with a 50 % chance that the attacker will succeed
compared to 17.2 % for the right. On the other hand an attacker able to inves-
tigate 5 senders will succeed in the left distribution with probability 61 % but
86 % with the right distribution. Tóth et al. [9] proposed using min-entropy –
− log2 (maxi pi) to quantify the minimum security achieved by any user, which
matches the effective security in the case of an attacker able to investigate one
sender. Under this metric the left distribution gives 1 bit and the right gives
≈ 2.54 bits.

Quantifying and Measuring Anonymity 9

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Anonymity set members (N=20)

P
ro

ba
bi

lit
y

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Anonymity set members (N=20)

P
ro

ba
bi

lit
y

Fig. 4. Two possible distributions, with identical cardinality (≈ 4.32 bits), entropy
(≈ 3.12 bits) and normalized entropy (≈ 0.72)

In fact, cardinality, entropy and min-entropy are all special cases of Rényi
entropy, for α = 0, α → 1 and α → ∞ respectively where:

Hα(S) =
1

1 − α
log2

(
N∑

i=1

pi
α

)

Figure 5 shows Hα(S) over a range of α for the anonymity set distributions
in Figs. 3 and 4. As expected, cardinality depends only on the number of senders
and min-entropy depends only on the probability of the most-likely sender. For
many values of α there can be a conceivable model of the attacker in which the
Hα(S) will make sense as a metric for anonymity. For example H0 will be the
number of questions that the attacker needs to ask if a question can eliminate
half of the candidates; H→1 will be the same if the attacker can choose questions
which will eliminate an arbitrary subset of the anonymity set. H→∞ represents
the security if the attacker can investigate one user.

3 Low-Latency Anonymous Communication Systems

As we have seen above, metrics implicitly define a threat model in terms of the
attacker’s strategy. Measuring the security of a network according to a metric
also requires defining the attacker’s capabilities. For email mixes the attacker
capability commonly assumed is “global-passive” – the attacker can monitor the
entire network but cannot interfere with network traffic nor view the internal
processing of any mix. There is debate as to whether this is appropriate as few
attackers can monitor the entire Internet, and computer security is not good
enough to ensure that email mixes are not compromised. However where the
global-passive model fails is the analysis of low-latency general-purpose anony-
mous communication system.

The leading low-latency anonymous communication system is Tor [4]. It is
capable of anonymising any TCP-based protocol, and it introduces very low lev-
els of delay compared to email mixes (milliseconds rather than days). It therefore
has much wider applicability and so has far more users than any email mix. Users

10 S.J. Murdoch

α

H
α

02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N

101=N 101=N

02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N

02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N 02=N

0.001 0.1 1 10 1000

0
1

2
3

4
5

6
7

Fig. 5. Rényi entropy for four anonymity set distributions for a range of α

Entry Middle Exit

Data

User
TLS link encryption

circuit
encryption

data content visible
to evesdropper

traffic patterns
visible to evesdropper

1d ae cd 59 ... e4 50 de 5a ...00 02 28 be ...

Fig. 6. Use of encryption in Tor. Telescoping circuit encryption shares keys between
the user and each of the nodes in the circuit. On top of the circuit encryption, TLS
authenticated encryption is performed on a link basis. Together, the circuit and link
encryption ensure that incoming and outgoing traffic on a node cannot be linked based
on content, but it may be linkable based on timing patterns

send traffic through the network by building a “circuit” through 1 or more (usu-
ally 3) Tor nodes, with nested layers of symmetric encryption, to fulfil a similar
purpose as the nested public-key encryption of email mixes. Symmetric keys
are negotiated with authenticated Diffie-Hellman key agreement. On top of the
circuit-level encryption, TLS tunnels are maintained between each pair of Tor
nodes which are exchanging traffic.

Figure 6 shows how encryption is performed in Tor. Unlike email mixes how-
ever, Tor does not attempt to make all messages the same length as others. This is
because TCP network traffic is highly variable and maintaining a constant rate of
traffic would either dramatically reduce the maximum bandwidth of the network

Quantifying and Measuring Anonymity 11

or add a massive amount of overhead. Therefore, like any other proposed low-
latency general-purpose anonymous communication system, an attacker moni-
toring the entire Internet would be able to correlate network connections entering
and leaving the network.

Since analysing a low-latency anonymous communication network under the
global-passive model leads to the conclusion that any system is insecure, met-
rics assuming the global-passive model do not help guide the design of low-
latency anonymous communication systems intended to defend against other
threat models. It is therefore advantageous to directly measure the probability
that the user’s security will be compromised, under the assumptions of the actual
attackers’ capabilities, rather than using proxies for this probability such as the
various types of entropy.

This is the approach used by Murdoch and Watson [5] to analyse the security
of Tor directly, against an adversary who wishes to insert malicious nodes into
the network so as to de-anonymize users. The goal of this analysis was to discover
which of proposed schemes, for selecting Tor nodes in a circuit, is more secure.
One candidate scheme was to select from nodes uniformly at random and another
is that a user would select nodes with a probability weighted proportional to
how much bandwidth that node has available. While the uniform selection had
a higher entropy, the bandwidth-weighted scheme had better security.

1 5 50 500 5000

1e
+0

1
1e

+0
3

1e
+0

5

Malicious nodes injected (log scale)

B
an

dw
id

th
 p

er
 n

od
e

(k
B

/s
) (

lo
g

sc
al

e)

1 5 50 500 5000

1e
+0

1
1e

+0
3

1e
+0

5

Malicious nodes injected (log scale)

B
an

dw
id

th
 p

er
 n

od
e

(k
B

/s
) (

lo
g

sc
al

e)

Compromised paths (%)

0 20 40 60 80 100

Fig. 7. Probability of path compromise for two different circuit selection algorithms –
uniform on left and bandwidth weighted on right

12 S.J. Murdoch

The result can be seen in Fig. 7. In these figures, each point shows a particular
attacker strategy in terms of the number of malicious nodes added and the
bandwidth given to each node. The colour shows what proportion of circuits
will be compromised as a result. The attacker capabilities are represented as a
line on the graph, showing what is the maximum investment possible: in this case
the attacker has a bandwidth budget of 100 MB/s and can distribute this over
a small number of high-bandwidth nodes or a large number of low-bandwidth
nodes. The left graph shows the uniform-selection scenario, where the optimum
attacker strategy will be to have a large number of low-bandwidth nodes resulting
in 80 % of circuits compromised. In contrast, the right shows the bandwidth
weighted scenario where no matter how the attacker allocates resources, no more
than 20 % of circuits will be compromised.

4 Conclusions

The above examples have shown a few examples from the wide variety of metrics
for anonymous communication networks. These range from the discrete levels of
the anonymity degree through various types of entropy then to directly quan-
tifying the probability of user compromise. Each has their own advantages in
terms of how easy they are to calculate for a given system, how simple a sum-
mary they provide, how versatile they are in terms of possible attacker models,
and how representative the measurement is of the practical security provided.
The narrow safety margins which necessarily follow from the problem-space that
anonymous communication systems exist in poses challenges not only for sys-
tem design but also quantification of security. Some of the lessons learnt by the
anonymous communication community may be more widely applicable, and it is
likely that much knowledge from other fields can contribute to the development
of better metrics for anonymous communication systems.

References

1. Berthold, O., Pfitzmann, A., Standtke, R.: The disadvantages of free MIX routes
and how to overcome them. In: Federrath, H. (ed.) Anonymity 2000. LNCS, vol.
2009, pp. 30–45. Springer, Heidelberg (2001)

2. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–90 (1981)

3. Dı́az, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In: Din-
gledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68. Springer,
Heidelberg (2003)

4. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium (August 2004)

5. Murdoch, S.J., Watson, R.N.M.: Metrics for security and performance in low-latency
anonymity systems. In: Borisov, N., Goldberg, I. (eds.) PETS 2008. LNCS, vol. 5134,
pp. 115–132. Springer, Heidelberg (2008)

Quantifying and Measuring Anonymity 13

6. Pfitzmann, A., Hansen, M.: A terminology for talking about privacy by data mini-
mization: anonymity, unlinkability, undetectability, unobservability, pseudonymity,
and identity management (Aug 2010), http://dud.inf.tu-dresden.de/literatur/
Anon Terminology v0.34.pdf, v0.34

7. Reiter, M., Rubin, A.: Crowds: anonymity for web transactions. ACM Trans. Inf.
Syst. Secur. 1(1), 66–92 (1998)

8. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity.
In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53.
Springer, Heidelberg (2003)

9. Tóth, G., Hornák, Z., Vajda, F.: Measuring anonymity revisited. In: Liimatainen,
S., Virtanen, T. (eds.) Proceedings of the Ninth Nordic Workshop on Secure IT
Systems. pp. 85–90 (November 2004)

http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf,
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf,

Data Privacy Management

Performance Evaluation of Primitives
for Privacy-Enhancing Cryptography

on Current Smart-Cards and Smart-Phones

Jan Hajny1(B), Lukas Malina1, Zdenek Martinasek1, and Ondrej Tethal2

1 Cryptology Research Group, Department of Telecommunications,
Brno University of Technology, Brno, Czech Republic

{hajny,crypto}@feec.vutbr.cz
http://crypto.utko.feec.vutbr.cz

2 OKsystem, Prague, Czech Republic
tethal@oksystem.cz

Abstract. The paper deals with the implementation and benchmark-
ing of cryptographic primitives on contemporary smart-cards and smart-
phones. The goal of the paper is to analyze the demands of today’s
common theoretical cryptographic constructions used in privacy-enhanc-
ing schemes and to find out whether they can be practically implemented
on off-the-shelf hardware. We evaluate the performance of all major
platforms of programmable smart-cards (JavaCards, .NET cards and
MultOS cards) and three reference Android devices (a tablet and two
smart-phones). The fundamental cryptographic primitives frequently
used in advanced cryptographic constructions, such as user-centric
attribute-based protocols and anonymous credential systems, are eval-
uated. In addition, we show how our results can be used for the estima-
tion of the performance of existing and future cryptographic protocols.
Therefore, we provide not only benchmarks of all modern programmable
smart-card platforms but also a tool for the performance estimation of
privacy-enhancing schemes which are based on popular zero-knowledge
proof of knowledge protocols.

Keywords: Cryptography · Privacy · Benchmark · Primitives · Proof
of knowledge protocols · Smart-cards · Smart-phones

1 Introduction

With the increasing number and complexity of electronic services and trans-
actions, the role of cryptography becomes more and more important. While
the classical cryptographic algorithms for ensuring data confidentiality, authen-
ticity and integrity are mostly well analyzed [1,2], the modern cryptographic
primitives which are used as the building blocks of many advanced privacy-
enhancing schemes remain theoretical and without any evaluation on real-world
devices. Therefore, the goal of this paper is to identify the most frequent cryp-
tographic primitives, which are being used in, e.g., digital identity protection

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 17–33, 2014.
DOI: 10.1007/978-3-642-54568-9 2, c© Springer-Verlag Berlin Heidelberg 2014

http://crypto.utko.feec.vutbr.cz

18 J. Hajny et al.

schemes, attribute-based authentication schemes and credential schemes, and
analyze these primitives on commercially available devices.

For our benchmarks, we chose mobile and personal devices. The reason is
that these devices are becoming the most popular ones for personal electronic
transactions. For user authentication, eIDs and access control, the smart-cards
are already the most preferred devices. For Internet transactions, the mobile
phones and tablets are becoming the best choice for many users today. Thus,
we chose smart-cards, mobile phones and tablets as the platforms for our bench-
marks. We ran the benchmarks on all major programmable smart-card plat-
forms, namely on JavaCards [3], .NET cards [4] and MultOS cards [5]. We chose
Android as the platform for the smart-phone and tablet benchmarks because
Android, together with Apple iOS, is the preferred operating system for mobile
devices worldwide [6].

1.1 Related Work

We consider classical cryptographic constructions, such as RSA signatures, DSA
signatures, hashes and symmetric block ciphers, to be well analyzed according to
their speed on low-performance devices. A complex analysis of modern symmet-
ric encryption algorithms is provided in [1]. Here, a selection of 12 block ciphers
is evaluated on 8-bit microcontrollers. Furthermore, the paper [2] deals with
the benchmarking of modern hash functions. A selection of 15 hashes (some of
them in more versions) was evaluated on 8-bit microcontrollers. These rigorous
benchmarks can be taken as a rich source of information when implementing the
classical cryptographic systems.

On the other hand, there is a lack of information when someone needs to
implement advanced privacy-enhancing schemes which employ provably secure
protocols such as Σ-protocols [7], proof of knowledge (PK) protocols [8] or cryp-
tographic commitments [9]. In fact, there are many theoretical cryptographic
schemes which use these constructions without any analysis of implementabil-
ity. The most well-known examples are group signature schemes [10], verifiable
encryption schemes [11], anonymous credential systems [12] and Vehicular Ad-
hoc Networks (VANETs). Unfortunately, only little information about the per-
formance of these protocols can be inferred from the implementation papers
[14,15]. These papers usually provide information about the overall performance
of the schemes, but little about the performance of the building blocks used.
Other papers [13,16] present only partial information. Since the building blocks
are usually shared among many privacy-enhancing schemes, the information
about their performance would be very useful for the evaluation of many unim-
plemented schemes and newly emerging theoretical constructions.

1.2 Our Contribution

In this paper, we provide benchmarks of selected cryptographic primitives on
all major smart-card platforms and three Android devices. We chose the cryp-
tographic primitives which are commonly used in modern privacy-enhancing

Performance Evaluation of Primitives for Privacy-Enhancing 19

schemes and which have not been evaluated on resource-limited devices yet.
These primitives are described in Sect. 2. The testing environment is described
in Sect. 3. The actual benchmarks are included in Sect. 4. Finally, short analy-
sis of results and the examples of how to use our results for the performance
estimation of novel schemes is provided in Sects. 4.3 and 4.4.

2 Cryptographic Constructions

We briefly introduce the cryptographic constructions selected for benchmarking
in this section. We chose the constructions and protocols which are often used
in privacy-enhancing schemes. These constructions work as the building blocks
and are modularly used in many today’s schemes (such as IBM’s Idemix [17],
Microsoft’s U-Prove [18], HM12 [19], etc.). These and similar schemes are further
used in many privacy-enhancing applications (such as access control services,
inter-vehicular communication, electronic IDs, e-cash) whose description is out
of scope of this paper.

2.1 Classical Algorithms

We call well-known cryptographic algorithms, such as block ciphers, digital signa-
tures and hash functions, the classical algorithms. These algorithms are usually
provided directly by the API (Application Programming Interface) of almost all
smart-cards and smart-phones. The examples of most common classical algo-
rithms are DES [20], 3DES, AES [21] block ciphers and RSA [22], DSA [23]
digital signatures and MD5 [24], SHA-1, SHA-2 [25] hash functions.

2.2 Commitment Schemes

A cryptographic commitment scheme can be used in scenarios where a user is
required to bind to a number (e.g., a secret key) without disclosing it. There
are two properties which must be fulfilled. They are the hiding property and the
binding property.

– Hiding property: it is difficult1 to learn the secret number from the knowl-
edge of the commitment.

– Binding property: once committed to a number, the user cannot change it
without changing the commitment.

Discrete Logarithm Commitment Scheme. Mostly, the DL commitment
scheme works with the subgroup Z

→
q of a multiplicative group Z

→
p. The subgroup

Z
→
q is defined by a generator g of order q in mod p, where q and p are large primes

and q divides p − 1. The same group is used in the Digital Signature Algorithm
(DSA) [23]. Numbers g, q, p are system parameters which are made public. To
commit to a number w < q, a user computes c = gw mod p. The user can later
decide to open the commitment by making w public.
1 It is either impossible or computationally unfeasible.

20 J. Hajny et al.

Pedersen Commitment Scheme. The systems parameters g, q, p, used in the
DL commitment scheme, can be also used in the Pedersen scheme [9]. Addition-
ally, one more generator h is used. It is important that logg h mod p is unknown to
the user. The commitment to a secret number w is computed as c = gwhr mod p
where r is a random number smaller than q chosen by the user. The user can
later decide to open the commitment by making (w, r) public.

2.3 Proof of Knowledge of Discrete Logarithm Protocols

The proof of knowledge (PK) protocols can be used by a Prover to give a proof of
knowledge of discrete logarithm (PKDL). Using the proof of knowledge protocol,
the Prover is able to convince a Verifier that he knows w = logg cmod p from
the aforementioned DL commitment without actually disclosing the secret value
w. In the CS notation [8], which we use throughout the paper, the protocol is
denoted as PK{w : c = gw mod p}. The most used practical PKDL protocol for
general groups, called Schnorr protocol [26], is recalled in Fig. 15 in Appendix.

2.4 Proof of Discrete Logarithm Equivalence

Using the proof of knowledge protocols, it is easy to give a proof that two different
DL commitments c1, c2 were constructed using the same exponent w, so that w =
logg1 c1 = logg2 c2 mod p. For this type of proof, the proof of discrete logarithm
equivalence (PDLE) protocols can be used. The protocol is then denoted as
PK{w : c1 = gw1 mod p ∧ c2 = gw2 mod p}. A practical example based on the
Schnorr protocol is recalled in Fig. 16 in Appendix.

2.5 Signatures and Other Derived PK Protocols

In the last three sections, we introduced simple cryptographic primitives which
are very often used as the building blocks in more advanced schemes. In our
examples, we described very simple protocols only. Nevertheless, these proto-
cols can be modularly combined in much more complex systems. For example,
the proof of knowledge protocols can be adapted to the proofs of knowledge
of DL representation of a public value c with respect to multiple generators
g1, g2, . . . , gi. Such a protocol is described in CS notation as PK{(w1, w2, . . . , wi) :
c = gw1

1 gw2
2 . . . gwi

i mod p}. Also, PK protocols can be used for proving the knowl-
edge and equivalence of discrete logarithms of different representations. The pro-
tocol PK{(w1, w3) : c1 = gw1

1 gw2
2 gw3

3 ∧ c2 = gw2
1 gw3

3 mod p} is a simple example
in CS notation. The number of possible variations is unlimited. The work [8] can
be taken as a fundamental reference for the construction of PK protocols.

By using the Fiat-Shamir heuristic [27], all the PK protocols can run non-
interactively. Then, a hash H of all protocol parameters is used. All protocols
shown in the Appendix are non-interactive. This adaptation leads to signature
schemes. By taking our simple PKDL protocol from Sect. 2, we can get a digi-
tal signature protocol where w works as a private key. The protocol uses a hash

Performance Evaluation of Primitives for Privacy-Enhancing 21

function H of the message and all protocol parameters. For reference, the signa-
ture proof of knowledge protocol (SPK) is depicted in Fig. 17 in Appendix. All
PK protocols can be easily adapted to signatures using this approach [27].

In previous sections, we considered only examples based on the simple DSA
group [23]. But also different groups can be used in PK protocols (e.g., RSA
group [22], Okamoto-Uchiyama (OU) group [28], etc.). Still, the atomic opera-
tions of these protocols remain the same. Namely, modular arithmetic, random
number generation and hash functions are used. That is the reason why we imple-
mented these atomic operations in our benchmarks. Based on their performance,
we can compute the actual performance of PK protocols and subsequently the
performance of advanced systems based on PK protocols.

3 Selected Devices and Benchmark Settings

This chapter contains the information about the benchmark settings and about
the software/hardware we used.

3.1 Selected Devices

The evaluation of cryptographic primitives was carried out using all major smart-
card platforms, namely JavaCards [3], .NET cards [4] and MultOS cards [5].
Furthermore, we implemented the benchmark tests on the Android platform,
namely on Android smart-phones and an Android tablet.

JavaCards. JavaCard platform [3] provides a development and runtime envi-
ronment for applications (called applets) written in Java. In our benchmarks, we
used Oberthur Technologies ID-One Cosmo V7.0-A [29,30] and Gemalto TOP

Table 1. The specification of the JavaCards used in our benchmarks.

Software specifications
Card type Oberthur ID-One V7.0-A Gemalto TOP IM GX4
Type JavaCard JavaCard
Transfer protocol T=0, T=1 T=0, T=1
Asymmetric crypto RSA upto 2048, EC upto 521 b RSA upto 2048 bits
Symmetric crypto DES, 3DES, AES 3DES, AES
Hash SHA1, SHA2 SHA1

Hardware specifications
Chip Atmel AT90SC256144RCFT S3CC9TC
CPU 8/16 bit 16 bit
Internal/External clock 40 MHz/3.4 MHz Unknown
RAM memory 8 kB 10 kB
ROM/EEPROM 256 kB/144 kB 384 kB/74 kB
Temperature range −25 ◦C to +85 ◦C −25 ◦C to +85 ◦C
Modular arithmetic API No No

22 J. Hajny et al.

Table 2. The specification of the .NET cards and the MultOS cards used in bench-
marks.

Software specifications
OS type .NET MultOS MultOS
Card type .NET V2+ ML2-80K-65 ML3-36K-R1
Asymmetric crypto RSA 2048 bits RSA 2048, EC 384 RSA 2048, EC 512

bits bits
Symmetric crypto 3DES, AES DES, 3DES, AES DES, 3DES, AES
Hash SHA1, SHA2, MD5 SHA1, SHA2 SHA1, SHA2

Hardware specifications
Chip SLE 88CFX4000P SLE66CLX800PEM SLE78CLXxxxPM
CPU 32 bit 16 bit 16 bit
Internal/External clock 66 MHz/10 MHz 30 MHz/7.5 MHz 33 MHz/7.5 MHz
RAM memory 16 kB 702 + 9604 B 1088 + 960 B
ROM/EEPROM 80 kB/400 kB 236 kB/78 kB 280 kB/60 kB
Temperature range −25 ◦C to +85 ◦C −25 ◦C to +85 ◦C −25 ◦C to +85 ◦C
Modular API No Yes Yes

IM GX4 [31] cards. The hardware specification of these cards is described in
Table 1.

.NET Smart-Cards. .NET smart-card platform [4] provides very similar fea-
tures as JavaCards for applications developed using any language of the .NET
framework. In our benchmarks, we used the Gemalto .NET V2+ cards. The
hardware specification of these cards is described in Table 2.

MultOS Smart-cards. The last smart-card platform we used for benchmarking
is the MultOS platform [5]. In comparison to JavaCard and .NET cards, MultOS
allows the development of applications in both high level languages (Java and C)
and assembly language. This provides developers with much wider opportunities
and better access to hardware. In particular, only the MultOS cards allow the
direct big-integer modular operations through the default API. The hardware
specification of MultOS ML2-80K-65 and ML3-36K-R1 cards is described in
Table 2.

Mobile Devices. The Android devices form a different group which is incompa-
rable to smart-cards. While smart-cards are very resource-limited devices with
extremely low RAM and slow CPUs, the mobile phones and tablets resemble
more classical PCs. They have strong CPUs with frequency over 1 GHz and
enough RAM (hundreds of megabytes). Still, these devices are extremely mobile
and very popular for personal electronic transactions. Due to this reason, we
included them to our benchmarks. The hardware of selected Android devices is
described in Table 3.

Performance Evaluation of Primitives for Privacy-Enhancing 23

Table 3. The specification of the Android devices used in our benchmarks.

Software specifications
Device type Samsung Galaxy Samsung Galaxy ASUS TF 300T

S i9000 Nexus I9250M
Android version v2.1 (Eclair) v4.0 (ICS) v4.0 (ICS)

Hardware specifications
Chip Cortex-A8 Dual-core Cortex-A9 Quad-core Cortex-A9
Frequency 1 GHz/45 nm 1.2 GHz/45 nm 1.2 GHz/45 nm
GPU PowerVR SGX540 PowerVR SGX540 ULP GeForce
RAM memory 512 MB 1024 MB 1024 MB
ROM/Storage 2 GB/8(16) GB 2 / 16 GB 2 GB/16(32) GB

3.2 Measured Operations and Keylengths

In the Sect. 2, we showed the cryptographic commitments and proof of knowledge
protocols. We included only simple examples to illustrate these primitives. Nev-
ertheless, these basic constructions can be modularly compiled into advanced
systems. The discrete logarithm commitments, proof of knowledge of discrete
logarithm protocols and proofs of discrete logarithm equivalence protocols are
the building blocks of many complex modern systems [17–19]. But still, even
the complex systems are based on the same atomic operations as the primitives
selected by us. It can be observed from Sect. 2 that only random number gener-
ation, hash functions and big-integer modular arithmetic operations are needed
for all selected protocols. Namely, the following operations are required.

– RNG - Random Number Generation: on all platforms and devices, we
measured the time of generation of large random numbers of length 160 bits
(RNG 160 operation) and 560 bits (RNG 560 operation).

– Hash Functions: on all platforms and devices, we measured the time of
computation of following hash functions.

• SHA1 4256: SHA1 of 4256 bit random data2

• SHA1 7328: SHA1 of 7328 bit random data
• SHA1 20000: SHA1 of 20000 bit random data
• SHA2 8448: SHA2 of 8448 bit random data
• SHA2 14592: SHA2 of 14592 bit random data
• SHA2 20000: SHA2 of 20000 bit random data

– Big-Integer Modular Arithmetic Operations: it can be observed from
our cryptographic overview in Sect. 2 that the proof of knowledge protocols
heavily rely on arithmetic operations in groups where the discrete logarithm
operation is hard to compute. Namely, modular operations with moduli in
orders of thousand bits are required. These operations are usually available

2 The size of data hashed reflects the requirements of PK protocols.

24 J. Hajny et al.

on the PC platform in the form of BigInt libraries (such as OpenSSL, Bouncy
Castle, etc.). Unfortunately, these libraries are missing on smart-cards. Only
the MultOS platform supports direct modular operations. Thus, the following
operations were implemented and measured on all selected platforms and
devices. The bit-lengths of moduli and operands were selected according to
the most popular group sizes in cryptography (1024 and 2048 bit modulus).

• MExp1024 160: Modular Exponentiation with 1024 b modulus and
160 b exponent

• MExp1024 368: Modular Exponentiation with 1024 b modulus and
368 b exponent

• MExp2048 160: Modular Exponentiation with 2048 b modulus and
160 b exponent

• MExp2048 560: Modular Exponentiation with 2048 b modulus and
560 b exponent

• MMult1024: Modular Multiplication with 1024 b modulus and operands
• MMult2048: Modular Multiplication with 2048 b modulus and operands

– Big-Integer Arithmetic Operations: additionally to modular operations,
some non-modular (plain) big-integer operations were implemented as they
are contained in PK protocols which operate in hidden order groups.

• Mult320: Multiplication of two 320 b numbers
• Sub400: Subtraction of two 400 b numbers

Although the above selected bit-length combinations do not include all the vari-
ants used in today’s cryptographic schemes, they represent a sample which can
be further interpolated to get the estimation of other bit-lengths. Thus, an esti-
mate of smart-card performance of any new protocol, which is based on above
operations, can be created.

3.3 Benchmark Environment

The hardware selected for our benchmarks is described in Sect. 3. The operations
measured on the hardware are listed in the previous Sect. 3.2. We measured the
time necessary for the computation of each operation 25 times. We present
the arithmetic mean of these values. The resulting time does not include the
time of communication with the device (sending inputs and receiving results).
The code was implemented by a single person on smart-cards and by a single
person on Android devices. Thus, the influence of different programming styles
is eliminated. We tried to use the default API of our cards as much as possible.
To increase the speed of computation, we used the RSA encryption method
to implement modular exponentiation. For many operations (e.g., for modular
arithmetic), only some cards, namely those running MultOS, were providing the
necessary interface. On the rest, we had to implement our methods.

Performance Evaluation of Primitives for Privacy-Enhancing 25

4 Benchmark Results

We divided our results into a smart-card section and an Android section. The
graphs in the next two sections show the time in milliseconds of the operations
specified in the Sect. 3.2 above.

4.1 Benchmarks on Smart-card Devices

Figures 1, 2, 3, 4, 5, 6 and 7 show the time in milliseconds of operations specified
in captions.

4.2 Benchmarks on Android Mobile Devices

Figures 8, 9, 10, 11, 12, 13 and 14 show the time in milliseconds of operations
specified in captions.

4.3 Results Analysis

Smart-Cards.It was possible to implement all required operations on all selected
cards with the exception of MultOS ML2-80K-65 card which is lacking the sup-
port of SHA2 and 2048 b modular exponentiation. In many operations, the JavaC-

Fig. 1. RNG 160 (blue) and RNG 560 (red)

Fig. 2. SHA1 4256 (blue), SHA1 7328 (red) and SHA1 20000 (green)

26 J. Hajny et al.

Fig. 3. SHA2 8448 (blue), SHA2 14592 (red) and SHA2 20000 (green)

Fig. 4. MExp1024 160 (blue) and MExp1024 368 (red)

Fig. 5. MExp2048 160 (blue) and MExp2048 560 (red)

Fig. 6. MMult1024 (blue), MMult2048 (red)

Performance Evaluation of Primitives for Privacy-Enhancing 27

Fig. 7. Mult320 (blue) and Sub400 (red)

Fig. 8. RNG 160 (blue) and RNG 560 (red)

Fig. 9. SHA1 4256 (blue), SHA1 7328 (red) and SHA1 20000 (green)

Fig. 10. SHA2 8448 (blue), SHA2 14592 (red) and SHA2 20000 (green)

28 J. Hajny et al.

Fig. 11. MExp1024 160 (blue) and MExp1024 368 (red)

Fig. 12. MExp2048 160 (blue) and MExp2048 560 (red)

Fig. 13. MMult1024 (blue), MMult2048 (red)

Fig. 14. Mult320 (blue) and Sub400 (red)

Performance Evaluation of Primitives for Privacy-Enhancing 29

ard Oberthur ID-one v7.0a is very fast (in particular, in random number genera-
tion and 1024 b modular exponentiation). Often, the bit-length of inputs (crypto-
graphic group size) does play a significant role, for example in the case of modu-
lar exponentiation. Thus, we recommend to plan ahead before implementing and
choose the right balance between speed and security (group size). Even with mod-
ern smart-cards, operations in 2048 b groups might be too demanding. When imple-
menting complex privacy-enhancing schemes, operations in 2048 b groups would
be probably too slow. Also, a big difference among cards appears when the mod-
ular multiplication and non-modular operations are needed. This is the case of
all PK protocols where a group with unknown order is used (such as RSA group
[22], OU group [28]). Then, the MultOS cards are much faster than the rest due to
their direct support of these operations in API, in particular due to their built-in
support of accelerated modular multiplication.

Android Devices. It is no surprise that most operations are several hundred
times faster on Android devices than on smart-cards. All primitives can be
easily implemented on Android. Due to the high performance, we recommend
using larger (and safer) 2048-bit groups and more recent primitives (e.g., SHA-2
instead of SHA-1 or MD5).

4.4 Performance Estimation of Selected Protocols and Schemes

Using the results of our benchmarks, we estimated the theoretical performance of
the protocols introduced in the Sect. 2 and of some well-known privacy-enhancing
schemes like Idemix of IBM [13], U-Prove of Microsoft [18] and HM12 [19]. All
protocols are evaluated using 1024 bit groups and 160 bit secrets. All the scheme
estimates include only the time of operations needed for proving the ownership
of an anonymous token (we use the same approach as in [13]) and do not include
any communication/management overhead. Furthermore, we used the closest
bit-length of inputs. Thus, the numbers in Table 4 should be considered estimates
only.

We created the estimates using our implementation of atomic operations.
From the knowledge of the construction of the advanced protocols and the knowl-
edge of performance of underlying operations, we were able to predict the per-
formance of protocols. To find out the correctness of our estimates, we compared
our results with existing, real implementations. Since they use smart-cards of dif-
ferent specifications, the comparison is rough only. The IBM’s Idemix has been
previously implemented on JavaCards [13]. The proving protocol of the 1280 bit
version took 7.5 s. Our estimates of the 1024 b version are 4.5 and 9.4 s, depend-
ing on the concrete type of our JavaCard. The Microsoft’s U-Prove scheme has
been implemented on the MultOS platform [5]. The proving protocol took 0.55
son an unspecified MultOS-family card. Our estimates on our MultOS cards are
0.63 and 0.82 s, depending on the concrete type of the MultOS card. Based on
these results, we consider our estimates highly accurate. Using our benchmarks,
it is possible to easily predict the approximate time of newly designed protocols
or cryptographic schemes.

30 J. Hajny et al.

Table 4. Performance estimation based on benchmarks.

Time in ms
S1 S2 S3 S4 S5 A1 A2 A3

c = gw (DL commitment) 186 476 165 226 58 6 4 4
c = gwhr (Pedersen commitment) 580 1161 717 513 195 12 9 8
PK{w : c = gw} 325 830 433 352 222 15 10 9
PK{w : c1 = gw1 ∧ c2 = gw2 } 529 1494 646 605 313 30 20 18
SPK{w : c = gw}(m) 354 842 498 393 332 15 10 9
Idemix 4519 9433 7270 4219 4208 153 100 91
U-Prove 837 1618 1295 827 633 13 9 8
HM12 2540 6016 3312 2509 1467 102 68 62

Glossary:
S1: Oberthur Technologies ID-One Cosmo V7.0-A
S2: Gemalto TOP IM GX4
S3: Gemalto .NET V2+
S4: MultOS ML2-80K-65
S5: MultOS ML3-36K-R1
A1: Samsung Galaxy S i9000 (smart-phone)
A2: Samsung Galaxy Nexus I9250M (smart-phone)
A3: ASUS TF 300T (tablet)

5 Conclusion

In this paper, we provide the performance evaluation of modern cryptographic
primitives on smart-cards and mobile devices. In particular, selected atomic oper-
ations which are the core of many privacy-enhancing protocols and schemes
are implemented on all major programmable smart-card platforms and on the
Android platform. The results can be used for the evaluation of many existing
and newly appearing schemes. Using the results of implementation of all oper-
ations used in PK protocols, it is possible to predict the performance of any
protocol or scheme which is composed of DL-based commitments and/or DL-
based proof of knowledge protocols. In particular, it is possible to predict the
performance of very popular computational zero-knowledge protocols.

Even with the fastest smart-cards on the market, it is quite difficult to achieve
reasonable execution times. Though, with the right choice of hardware, in par-
ticular, with hardware-accelerated cards, it is possible.

We showed our performance estimates of today’s most preferred privacy-
enhancing anonymous credential schemes on all 8 devices. When compared to
existing implementations, we almost match the real performance when similar
hardware is used. Thus, our benchmarks can be used by cryptography designers
to easily predict the performance of their protocols and schemes before imple-
menting on smart-cards and Android devices.

Acknowledgment. This research work is funded by projects SIX CZ.1.05/2.1.00/03.
007; theTechnologyAgencyof theCzechRepublic projectsTA02011260 andTA03010818;
the Ministry of Industry and Trade of the Czech Republic project FR-TI4/647.

Performance Evaluation of Primitives for Privacy-Enhancing 31

Appendix

Simple examples of Proof of Knowledge (PK) protocols. All operations are in a
group Z

→
p of order q where discrete logarithm is hard to compute and l1, l2 are

security parameters. More information about PK protocols in [8].

refiireVrevorP
g, p, c = gw

r ∈R {0, 1}l1

c̄ = gr mod p
e = H(g, p, c, c̄)
z = r − ew

e, z−−−−−−−−−−−−−−−−−−−−−−−→ c̄ = gzce mod p

Check: e
?
= H(g, p, c, c̄)

Fig. 15. Schnorr’s proof of knowledge of discrete logarithm protocol PK{w : c = gw}.

VerifierProver
c1 = gw1 , c2 = gw2 , g1, g2, p

r ∈R {0, 1}l1

c̄1 = gr1 mod p
c̄2 = gr2 mod p
e = H(g1, g2, p, c1, c2, c̄1, c̄2)
z = r − ew

e, z−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ c̄1 = gz1c
e
1 mod p

c̄2 = gz2c
e
2 mod p

Check: e
?
= H(g1, g2, p, c1, c2, c̄1, c̄2)

Fig. 16. Proof of discrete logarithm equivalence PK{w : c1 = gw1 ∧ c2 = gw2 }.

Prover Verifier
g, p, c = gw

r ∈R {0, 1}l1

c̄ = gr mod p
e = H(g, p, c, c̄,message)
z = r − ew

message, e, z−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
c̄

?≡ gzce mod p

Check: e
?≡ H(g, p, c, c̄,message)

Fig. 17. Schnorr’s signature SPK{w : c = gw}(message).

32 J. Hajny et al.

References

1. Eisenbarth, T., et al.: Compact implementation and performance evaluation
of block ciphers in attiny devices. In: Mitrokotsa, A., Vaudenay, S. (eds.)
AFRICACRYPT 2012. LNCS, vol. 7374, pp. 172–187. Springer, Heidelberg (2012)

2. Balasch, J., Ege, B., Eisenbarth, T., Gérard, B., Gong, Z., Güneysu, T., Heyse,
S., Kerckhof, S., Koeune, F., Plos, T., Pöppelmann, T., Regazzoni, F., Standaert,
F.X., Assche, G.V., Keer, R.V., van Oldeneel tot Oldenzeel, L., von Maurich, I.:
Compact implementation and performance evaluation of hash functions in attiny
devices. IACR Cryptology ePrint Archive (2012)

3. Oracle: Javacard. http://www.oracle.com/technetwork/java/javacard/downloads/
index.html (2013)

4. Gemalto: .net card. http://www.gemalto.com/products/dotnet card/ (2013)
5. MultOS: Multos card. http://www.multos.com (2013)
6. Deloitte: The deloitte open mobile survey 2012. http://www.deloitte.com/assets/

Dcom-Norway/Local%20Assets/Documents/Publikasjoner%202012/deloitte
openmobile2012.pdf (2012)

7. Cramer, R.: Modular design of secure, yet practical cryptographic protocols. Ph.D.
thesis, University of Amsterdam (1996)

8. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete
logarithms. Technical report (1997)

9. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

10. Chaum, D., Van Heyst, E.: Group signatures. In: Proceedings of the 10th Annual
International Conference on Theory and Application of Cryptographic Techniques,
EUROCRYPT’91, pp. 257–265. Springer, Heidelberg (1991)

11. Stadler, M.A., Fujisaki, E., Okamoto, T.: A practical and provably secure scheme
for publicly verifiable secret sharing and its applications. In: Nyberg, K. (ed.)
EUROCRYPT 1998. LNCS, vol. 1403, pp. 32–46. Springer, Heidelberg (1998)

12. Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, p. 93. Springer, Heidelberg (2001)

13. Bichsel, P., Camenisch, J., Groß, T., Shoup, V.: Anonymous credentials on a stan-
dard java card. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security, CCS ’09, pp. 600–610. ACM, New York (2009)

14. Mostowski, W., Vullers, P.: Efficient u-prove implementation for anonymous cre-
dentials on smart cards. In: Rajarajan, M., Piper, F., Wang, H., Kesidis, G. (eds.)
SecureComm 2011. LNICST, vol. 96, pp. 243–260. Springer, Heidelberg (2012)

15. Hajny, J.: Anonymous authentication for smartcards. Radioengineering 19(2), 363–
368 (2010)

16. Malina, L., Hajny, J.: Accelerated modular arithmetic for low-performance devices.
In: 34th International Conference on Telecommunications and Signal Processing,
pp. 131–135. IEEE (2011)

17. Camenisch, J., et al.: Specification of the identity mixer cryptographic
library. Technical report. http://domino.research.ibm.com/library/cyberdig.
nsf/1e4115aea78b6e7c85256b360066f0d4/eeb54ff3b91c1d648525759b004fbbb1?
OpenDocument (2010)

18. Paquin, C.: U-prove cryptographic specification v1.1. Technical report. http://
research.microsoft.com/apps/pubs/default.aspx?id=166969 (2011)

http://www.oracle.com/technetwork/java/javacard/downloads/index.html
http://www.oracle.com/technetwork/java/javacard/downloads/index.html
http://www.gemalto.com/products/dotnet_card/
http://www.multos.com
http://www.deloitte.com/assets/Dcom-Norway/Local%20Assets/Documents/Publikasjoner%202012/deloitte_openmobile2012.pdf
http://www.deloitte.com/assets/Dcom-Norway/Local%20Assets/Documents/Publikasjoner%202012/deloitte_openmobile2012.pdf
http://www.deloitte.com/assets/Dcom-Norway/Local%20Assets/Documents/Publikasjoner%202012/deloitte_openmobile2012.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c85256b360066f0d4/eeb54ff3b91c1d648525759b004fbbb1?OpenDocument
http://domino.research.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c85256b360066f0d4/eeb54ff3b91c1d648525759b004fbbb1?OpenDocument
http://domino.research.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c85256b360066f0d4/eeb54ff3b91c1d648525759b004fbbb1?OpenDocument
http://research.microsoft.com/apps/pubs/default.aspx?id=166969
http://research.microsoft.com/apps/pubs/default.aspx?id=166969

Performance Evaluation of Primitives for Privacy-Enhancing 33

19. Hajny, J., Malina, L.: Unlinkable attribute-based credentials with practical revo-
cation on smart-cards. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp.
62–76. Springer, Heidelberg (2013)

20. FIPS: Data encryption standard. In: Federal Information Processing Standards
Publication, FIPS PUB 46, 46–2 (1977)

21. FIPS: Advanced encryption standard (aes). In: Federal Information Processing
Standards Publication, FIPS PUB 197, pp. 1–47 (2001)

22. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)

23. National Institute of Standards and Technology (U.S.) : Digital Signature Standard
(DSS) [electronic resource]. U.S. Deptartment of Commerce, National Institute of
Standards and Technology, Gaithersburg (2009)

24. Rivest, R.: The md5 message-digest algorithm. http://www.ietf.org/rfc/rfc1321.
txt (1992)

25. FIPS: Secure hash standard (shs) (2012)
26. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4, 161–174

(1991)
27. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification

and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

28. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer,
Heidelberg (1998)

29. Id-one cosmo v7.0: Technical report, French Network and Information Security
Agency (Agence Nationale de la Scurit des Systmes dInformation (ANSSI)).
http://www.ssi.gouv.fr/IMG/certificat/anssi-cc-cible 2009-36en.pdf (2009)

30. Atmel: At90sc256144rcft datasheet. http://datasheet.elcodis.com/pdf2/104/7/
1040758/at90sc256144rcft.pdf (2007)

31. NIST: Gemxpresso r4 e36/e72 pk—multiapp id 36k/72k—top im gx4. http://csrc.
nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp771.pdf (2009)

http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc1321.txt
http://www.ssi.gouv.fr/IMG/certificat/anssi-cc-cible_2009-36en.pdf
http://datasheet.elcodis.com/pdf2/104/7/1040758/at90sc256144rcft.pdf
http://datasheet.elcodis.com/pdf2/104/7/1040758/at90sc256144rcft.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp771.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp771.pdf

Practical Packing Method in Somewhat
Homomorphic Encryption

Masaya Yasuda1(B), Takeshi Shimoyama1, Jun Kogure1,
Kazuhiro Yokoyama2, and Takeshi Koshiba3

1 Fujitsu Laboratories Ltd., Kamikodanaka 4-chome,
Nakahara-ku, Kawasaki 211-8588, Japan

{yasuda.masaya,shimo-shimo,kogure}@jp.fujitsu.com
2 Department of Mathematics, Rikkyo University, Nishi-Ikebukuro,

Tokyo 171-8501, Japan
kazuhiro@rikkyo.ac.jp

3 Division of Mathematics, Electronics and Informatics,
Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo,

Sakura, Saitama 338-8570, Japan
koshiba@mail.saitama-u.ac.jp

Abstract. Somewhat homomorphic encryption is public key encryp-
tion supporting a limited number of both additions and multiplications
on encrypted data, which is useful for performing fundamental compu-
tations with protecting the data confidentiality. In this paper, we focus
on the scheme proposed by Lauter, Naehrig and Vaikuntanathan (ACM
CCSW 2011), and present two types of packed ciphertexts based on their
packing technique. Combinations of two types of our packing method give
practical size and performance for wider computations such as statistical
analysis and distances. To demonstrate its efficiency, we implemented the
scheme with our packing method for secure Hamming distance, which is
often used in privacy-preserving biometrics. For secure Hamming dis-
tance between two binary vekoshiba@mail.saitama-u.ac.jpctors of 2048-
bit, it takes 5.31 ms on an Intel Xeon X3480 at 3.07 GHz. This gives
the best performance in the state-of-the-art work using homomorphic
encryption.

Keywords: Somewhat homomorphic encryption · Ring-LWE assump-
tion · Packed ciphertexts · Secure Hamming distance

1 Introduction

Homomorphic encryption is public key encryption with the additional property
that it supports some operations on encrypted data. This gives a useful method
in performing meaningful computations with protecting the data privacy. The
recent development of cloud storage and computing allows users to outsource
their data to cloud services. On the other hand, new privacy concerns for both
individuals and business have risen (see [10]). With homomorphic encryption,

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 34–50, 2014.
DOI: 10.1007/978-3-642-54568-9 3, c© Springer-Verlag Berlin Heidelberg 2014

Practical Packing Method in Somewhat Homomorphic Encryption 35

users send their data in encrypted form to the cloud, and the cloud still can
perform computations on encrypted data. Since all data in the cloud are in
encrypted form, the confidentiality of users’ data is preserved irrespective of any
actions in the cloud. Therefore this encryption would give a powerful tool to
break several barriers to the adoption of cloud services for various uses.

In cryptography, homomorphic encryption schemes proposed before 2000 can
only support simple operations such as either additions or multiplications on
encrypted data (see [12,18,26] for examples), and hence the applications of these
schemes are very limited (typical applications of additive schemes are electronic
voting and cash). The first scheme supporting both additions and multiplica-
tions is the BGN scheme [3] proposed in 2005, which is based on pairings on
elliptic curves. However, the BGN scheme can handle a number of additions but
one-depth multiplications on encrypted data. In 2009, Gentry in [15] proposed a
concrete construction for a fully homomorphic encryption (FHE) scheme, which
supports arbitrary operations on encrypted data. After Gentry’s breakthrough
work, a lot of FHE schemes have been proposed (see [6–8,14,15] for examples),
and FHE has strongly been expected to be applied to various areas, mainly
including cloud computing. However, currently known FHE schemes are imprac-
tical (see [11,16,17] for implementation results), and it is believed to need a long
way for the use in real life.

In this paper, we focus on somewhat homomorphic encryption (SHE), which
is known as a building block for the FHE construction. Although SHE can sup-
port only a limited number of both additions and multiplications, it is much
faster and more compact than FHE. Therefore SHE can give a practical solution
in wide applications, and it is coming to attention to research on applications
with SHE schemes (see [22], and also [4] for recent work). However, compared to
the other privacy-preserving techniques, (somewhat) homomorphic encryption
has a difficulty on the performance and the size. For the problem, we present a
new technique in SHE, and demonstrate its efficiency in a concrete application.

1.1 Our Contributions

We summarize our main contributions as follows:

– The special message encoding enables us to reduce both the encrypted
data size and the performance in several computations. In their work [22],
Lauter, Naehrig and Vaikuntanathan introduce an SHE scheme based on the
ring learning with errors (ring-LWE) assumption and present some message
encoding techniques, which give efficient computations of private statistic on
encrypted data. In this paper, we present a new packing method in the same
scheme, which can be considered as an extension of their techniques. Our
extension is to give two types of packed ciphertexts (see Sect. 3.1), and to make
use of the homomorphic structure of the scheme for wider computations over
packed ciphertexts (see Sect. 3.2). In particular, our packing method gives a
practical performance for the inner product, the Hamming and the Euclidean
distances on encrypted data.

36 M. Yasuda and et al.

– To demonstrate the efficiency, we apply the SHE scheme with our packing
method to privacy-preserving biometrics, in which secure Hamming distance
is used to measure the similarity of two biometric feature vectors. Our imple-
mentation results show that our packing method gives faster performance
compared to the state-of-the-art prior work using homomorphic encryption
(see Sect. 4.5 and Table 1).

1.2 Comparison with the Other Packing Methods

Smart and Vercauteren in [29] propose the polynomial-CRT (Chinese Remainder
Theorem) packing method, which is useful to perform SIMD (Single Instruction
- Multiple Data) operations on encrypted data. The polynomial-CRT packing
method is applied in the work [17] for evaluating the AES circuit homomorphi-
cally in a leveled FHE scheme of [6]. Furthermore, while the polynomial-CRT
packing method can be applied only in ring-LWE based schemes, Brakerski, Gen-
try and Halevi in [6] extend SIMD notions to the standard LWE based scheme
of [8] using the packing method of [27]. Our packing method cannot be applied
for SIMD operations, but it is very easier to handle and much more efficient
for evaluating fundamental computations compared to the packing methods as
introduced above. However, it would be more interesting by combining ours and
the polynomial-CRT packing method.

Notation. For two integers z and d, let [z]d denote the reduction of z modulo d
included in the interval [−d/2, d/2) (the reduction of z modulo d included in the
interval [0, d) is denoted by zmod d as usual). For a vector a = (a1, a2, . . . , an),
let ||a||→ denote the ≈-norm defined by maxi |ai|. We let →a, b∞ denote the inner
product of two vectors a and b. Finally, we let lg(q) denote the logarithm value
of an integer q with base 2.

2 Preliminaries: Somewhat Homomorphic Encryption

In this section, we give the basic construction of the SHE scheme proposed
in the work of [22], which is a slightly modification of Brakerski and Vaikun-
tanathan’s scheme [7,8]. The security of the scheme is based on the polynomial
LWE assumption described in [7, Sect. 2], which is a simplified version of the
ring-LWE assumption of [24].

2.1 Construction

We need the following four parameters (according to an application scenario,
these parameters should be appropriately chosen):

n : an integer of 2-power, which defines the base ring R := Z[x]/(f(x)) with
the cyclotomic polynomial f(x) = xn +1 of degree n. This parameter is often
called the lattice dimension.

Practical Packing Method in Somewhat Homomorphic Encryption 37

q : a prime number with q ≡ 1 mod 2n, which defines the base ring Rq :=
R/qR = Fq[x]/(f(x)) for a ciphertext space.

t : an integer with t < q to determine a plaintext space Rt := Ft[x]/(f(x)).
σ : the parameter to define a discrete Gaussian error distribution χ := DZn,σ

with the standard deviation σ. In practice, we take σ = 4 ∼ 8.

Key Generation. We choose an element R ⇐ s ← χ, and then sample a
random element a1 ∈ Rq and an error R ⇐ e ← χ. Set pk = (a0, a1) with
a0 := −(a1 · s + t · e) as the public key and sk = s as the secret key.

Encryption. For a plaintext m ∈ Rt and pk = (a0, a1), the encryption samples
R ⇐ u, f, g ← χ and compute the ‘fresh’ ciphertext given by

Enc(m, pk) = (c0, c1) = (a0u + tg + m,a1u + tf) ∈ (Rq)2,

where m ∈ Rt is considered as an element of Rq in the natural way.

Decryption. For a ciphertext ct = (c0, . . . , cξ) ∈ (Rq)ξ+1 (note that the homo-
morphic multiplication defined below makes the ciphertext length longer)., the
decryption with the secret key sk = s is computed by

Dec(ct, sk) := [m̃]qmod t ∈ Rt,

where m̃ =
∑ξ

i=0 cis
i ∈ Rq For the secret key vector s := (1, s, s2, . . .), we can

also write Dec(ct, sk) = [→ct, s∞]qmod t.

Homomorphic Operations. Let ct = (c0, . . . , cξ), ct∞ = (c∞
0, . . . , c

∞
η) be two

ciphertexts. The homomorphic addition “�” is computed by component-wise
addition of ciphertexts, namely, we have

ct � ct∞ := (c0 + c∞
0, . . . , cmax(ξ,η) + c∞

max(ξ,η)) ∈ Rmax(ξ,η)+1
q ,

by padding with zeros if necessary. Similarly, the homomorphic subtraction is
computed by component-wise subtraction. Furthermore, the homomorphic mul-
tiplication “∗” is computed by

ct ∗ ct∞ := (ĉ0, . . . , ĉξ+η),

where we consider ct, ct∞ as elements of Rq[z] by an embedding map (Rq)r ⇐
(v0, . . . , vr−1) ⊆→ ∑r−1

i=0 viz
i ∈ Rq[z] for any r ≥ 1, and compute

ξ+η∑

i=0

ĉiz
i :=

(
ξ∑

i=0

ciz
i

⎧
·
(

η∑

i=0

c∞
iz

i

⎧
∈ Rq[z].

38 M. Yasuda and et al.

2.2 Correctness

By correctness, we mean that the decryption can recover the operated result over
plaintexts after some homomorphic operations over ciphertexts. It follows from
the proof of [22, Lemma 3.3] that the homomorphic operations over ciphertexts
correspond to the ring structure of the plaintext space Rt, namely, we have

Dec(ct � ct∞, sk) = m + m∞ ∈ Rt,

Dec(ct ∗ ct∞, sk) = m × m∞ ∈ Rt,

for ciphertexts ct, ct∞ corresponding to plaintexts m,m∞, respectively. However,
the scheme merely gives SHE (not FHE), and its correctness holds under the
following condition (see the proof of [22, Lemma 3.3]):

Lemma 1 (Condition for Correct Decryption). For a ciphertext ct, the
decryption Dec(ct, sk) recovers the correct result if →ct, s∞ ∈ Rq does not wrap
around mod q, namely, if ||→ct, s∞||→ is smaller than q/2.

3 Practical Packing Method

For reduction of both the size and the performance, Lauter, Naehrig and Vaikun-
tanathan in [22] introduce some message encoding techniques. Their main tech-
nique is to encode integers in a single ciphertext so that it enables us to efficiently
compute their sums and products over the integers (see [22, Sect. 4.1]). Their idea
is to break an integer M of at most n bits into a binary vector (M0, . . . , Mn−1),
create a polynomial given by (note that n is the lattice dimension parameter
described in Sect. 2)

pm(M) :=
n−1∑

i=0

Mix
i (1)

of degree (n−1), and finally encrypt M as ctpack(M) := Enc (pm(M), pk), where
we consider pm(M) as an element of Rt for sufficiently large t. Note that we have
pm(M)|x=2 = M for any integer M of n bits. For two integers M,M ∞ of n bits,
the homomorphic addition of ctpack(M) and ctpack(M ∞) gives the polynomial
addition pm(M) + pm(M ∞) on encrypted data by the correctness of the scheme,
and it also gives the integer addition M + M ∞ since pm(M) + pm(M ∞)|x=2 =
M + M ∞. However, the integer multiplication M · M ∞ causes a problem since the
polynomial multiplication pm(M) · pm(M ∞) has larger degree than n in general.
Their solution is to encode integers of at most n/d bits if we need to perform d
times homomorphic multiplications over ciphertexts. Their solution is acceptable
in computing low degree multiplications such as the standard deviation.

3.1 Definition of Our Packing Method

In contrast to their packing method, we present a new packing method for encod-
ing vectors (of course, our method is easily applied for encoding integers as their

Practical Packing Method in Somewhat Homomorphic Encryption 39

work). Our idea is based on theirs, and our packing method can be considered
as an extension of their technique. Unlike their technique, we give two types of
packed ciphertexts in order to make use of the ring structure of the plaintext
space Rt for wider computations over packed ciphertexts. While their method
only gives efficient private statistic such as the mean and the standard devia-
tion, our method gives wider computations such as basic statistical analysis and
distances. Now, let us define our packing method for encoding vectors.

Definition 1. For a vector A = (A0, A1, . . . , An−1) of length n, we define two
types of packed ciphertexts as follows:

(i) As the Eq. (1), set pm1(A) :=
n−1∑

i=0

Aix
i. For sufficiently large t, we consider

the above polynomial to be an element of Rt, and then we define ct
(1)
pack(A) :=

Enc (pm1(A), pk) as the packed ciphertext of the first type. This type is almost
same as given in [22].

(ii) Unlike the first type, set pm2(A) := −
n−1∑

i=0

Aix
n−i. As the second type, we

define ct
(2)
pack(A) := Enc (pm2(A), pk).

By the above definition, we always pack a vector of length n into a single
ciphertext irrespective of types. Hence, compared to coefficient-wise encryption,
our method considerably reduces the encrypted data size.

3.2 Computations Over Packed Ciphertexts

Due to two types of our packing method, we can efficiently perform some mean-
ingful computations over packed ciphertexts. We begin with the following result
on an efficient computation of the inner product:

Proposition 1 (Secure Inner Product). For two vectors A,B of length
n, let ct denote the ciphertext given by the homomorphic multiplication of
ct

(1)
pack(A) and ct

(2)
pack(B). Let m0 denote the constant term of the decryption

result Dec(ct, sk) ∈ Rt. Then we have m0 ≡ →A,B∞ mod t. In other words, the
constant term of the decryption result gives the inner product of two vectors A
and B for sufficiently large t.

Proof. Since the homomorphic operations over ciphertexts correspond to the
ring structure of the plaintext space Rt (see Sect. 2.2), the decryption result
Dec(ct, sk) is equal to the polynomial multiplication pm1(A) × pm2(B) in Rt.

40 M. Yasuda and et al.

Set A = (A0, . . . , An−1) and B = (B0, . . . , Bn−1). Then

pm1(A) × pm2(B) =

(
n−1∑

i=0

Aix
i

⎧
×

⎛

⎝−
n−1∑

j=0

Bjx
n−j

⎞

⎠

= −
n−1∑

i=0

AiBix
n + (the other terms)

= →A,B∞ + (non-constant terms)

in Rt since xn = −1. This completes the proof of this proposition. ��
Proposition 1 shows that our packing method enables us to compute the

inner product of two vectors of length n by only one time homomorphic multi-
plication over packed ciphertexts. Actually, in Definition 1, we take two types
of our packing method so that the result of Proposition 1 holds. Note that our
packing method specializes in R = Z[x]/(xn + 1). In the following, we present
some fundamental examples of the possible computations, and describe how to
compute them over packed ciphertexts (in particular, our packing method gives
an efficient computation of the Hamming and the Euclidean distances):

Basic Private Statistic. For n integers A0, . . . , An−1, we set A=(A0, . . . , An−1)
and pack integers Ai’s into the packed ciphertext ct

(1)
pack(A) of the first type,

and/or ct
(2)
pack(A) of the second type. In the following, we give how to compute

some basic private statistic over packed ciphertexts:

Sum, and Mean For the sum of n integers A0, . . . , An−1 on encrypted data, we
need to define two polynomials

C1 := −
n−1∑

i=0

xn−i and C2 :=
n−1∑

i=0

xi,

which canbe precomputed in implementation. For the packed ciphertext ct(1)pack(A),

let ct denote the ciphertext given by the homomorphic multiplication ct
(1)
pack(A) ∗

C1, where we consider C1 as an element of Rq and the homomorphic multiplication
is computed in the same way as in Sect. 2. From a similar argument in the proof
of Proposition 1, the constant term of the decryption of the ciphertext ct gives the
sum

∑n−1
i=0 Ai since the homomorphic multiplication ct

(1)
pack(A) ∗ C1 corresponds

to the multiplication pm1(A) × C1 in Rt and its polynomial is equal to

(
n−1∑

i=0

Aix
i

⎧
×

⎛

⎝−
n−1∑

j=0

xn−j

⎞

⎠ =
n−1∑

i=0

Ai + (non-constant terms).

Practical Packing Method in Somewhat Homomorphic Encryption 41

Similarly, for ct(2)pack(A), the homomorphic multiplication ct
(2)
pack(A)∗C2 also gives

the sum
∑n−1

i=0 Ai over packed ciphertexts. For the mean M :=
∑n−1

i=0 Ai

n
, we

have no efficient division on encrypted data. Therefore, after we compute the
sum over packed ciphertexts as described above and decrypt it, we divide the
sum by n over plaintexts as in [22].

Variance, and Standard Deviation While the mean is the average of a set of
numbers, the variance is a measure of the dispersion around the mean. The
variance is denoted by σ2 (the standard deviation is denoted by σ as in Sect. 2),

and it is σ2 =
∑n−1

i=0 (Ai − M)2

n
which can be rewritten as

σ2 =
1
n

n−1∑

i=0

A2
i − M2. (2)

Given two packed ciphertexts ct
(1)
pack(A) and ct

(2)
pack(A), it follows from Proposi-

tion 1 that the homomorphic multiplication ct
(1)
pack(A) ∗ ct(2)pack(A) gives the sum

of squares
∑n−1

i=0 A2
i on encrypted data. After we compute the mean M and the

sum of squares
∑n−1

i=0 A2
i over two packed ciphertexts ct

(1)
pack(A) and ct

(2)
pack(A)

and decrypt them, we can derive σ2 by computing the expression (2) over plain-
texts. The standard deviation is defined as the square root of the variance. To
obtain σ, we take the square root over plaintexts after computing the variance
σ2 as described above.

Basic Statistical Analysis. Let (X,Y) = (X0, Y0), . . . , (Xn−1, Yn−1) be a
pair of two variables with n independent integer sample pairs (Xi, Yi). Consider
ct

(i)
pack(X) and ct

(i)
pack(Y) for i = 1, 2, where X = (X0, . . . , Xn−1) and Y =

(Y0, . . . , Yn−1) denote two vectors of length n. We give how to compute basic
statistical analysis over packed ciphertexts.

Covariance The covariance measures the linear relationship between two vari-
ables X and Y , and its formula is written as

cov(X,Y) =
1

n − 1

n−1∑

i=0

(Xi − MX) (Yi − MY) ,

where MX (resp. MY) denotes the mean of the variable X (resp. Y). Its alter-
native expression is given by

cov(X,Y) =
1

n − 1

(
n−1∑

i=0

XiYi − nMXMY

⎧
. (3)

By Proposition 1 and the above arguments, the inner product
∑n−1

i=0 XiYi and
two means MX and MY can be efficiently computed. After computing the

42 M. Yasuda and et al.

inner product
∑n−1

i=0 XiYi and two means MX ,MY over packed ciphertexts and
decrypt them, we derive the covariance cov(X,Y) by computing the expression
(3) over plaintexts.

Correlation The correlation examines the relationship between two variables. It

is written as r(X,Y) =
cov(X,Y)

σXσY
, where σX (resp. σY) denotes the standard

deviation of the variable X (resp. Y). We can efficiently compute the covariance
cov(X,Y) and two standard deviations σX , σY over packed ciphertexts, and
hence we can also compute the correlation.

Basic Distances. For two vectors A and B of length n, we give how to compute
some basic distances over packed ciphertexts as follows:

Hamming Distance The Hamming distance between two strings of same length
is the number of positions at which the corresponding symbols are different. It
is often used to search for similar words, or to measure the similarity of two
feature vectors mainly in biometric authentication. For two binary vectors A,B
of length n, the Hamming distance is computed by dH(A,B) =

∑n−1
i=0 Ai ⊕

Bi =
∑n−1

i=0 (Ai + Bi − 2AiBi), where ⊕ denotes the XOR operation. Hence the
Hamming distance over packed ciphertexts is computed by

ct
(1)
pack(A) ∗ C1

︸ ︷⎡ ⎣
∑

Ai

� ct
(2)
pack(B) ∗ C2

︸ ︷⎡ ⎣
∑

Bi

� (−2ct(1)pack(A)) ∗ ct
(2)
pack(B)

︸ ︷⎡ ⎣
−2
∑

AiBi

(4)

from Proposition 1 and the above arguments. In particular, the above equation
tells us that it requires only two times homomorphic additions and three times
homomorphic multiplications to compute the Hamming distance between two
binary vectors of length n over packed ciphertexts ct

(1)
pack(A) and ct

(2)
pack(B). For

example, in the case n = 2048 which we take in Sect. 4 below, our packing
method gives us a powerful efficiency (cf. in coefficient-wise encryption, we need
at least n = 2048 times homomorphic multiplications in this case).

Euclidean Distance The Euclidean distance is an ordinary distance between two
points. For two non-binary vectors A,B of length n, the Euclidean distance is
the square root of the value

∑n−1
i=0 (Ai − Bi)2 =

∑n−1
i=0

(
A2

i + B2
i − 2AiBi

⎤
. By

Proposition 1, the computation

ct
(1)
pack(A) ∗ ct

(2)
pack(A) � ct

(1)
pack(B) ∗ ct

(2)
pack(B) � (−2ct(1)pack(A)) ∗ ct

(2)
pack(B)

gives us the value
∑n−1

i=0 (Ai − Bi)2 over packed ciphertexts. Therefore, after we
compute

∑n−1
i=0 (Ai − Bi)2 over packed ciphertexts and decrypt it, we can derive

the Euclidean distance by taking the square root.

Remark 1. In the use of homomorphic encryption, it is difficult to perform com-
putations such as the median and the 1-norm on encrypted data since we can
not compare two values without the decryption.

Practical Packing Method in Somewhat Homomorphic Encryption 43

4 Application to Privacy-Preserving Biometrics

In this section, we apply the SHE scheme with our packing method to a concrete
application, and demonstrate the efficiency. As an application example, we take
privacy-preserving biometric authentication. We begin with its background and
related work.

4.1 Background and Related Work

Biometrics authentication (or biometrics) is to identify clients by their physical
characteristic such as fingerprint, iris, vein and DNA. Compared to the com-
monly used ID/password authentication, it has the advantage that clients do
not remember their long and complex password, and its use is rapidly expand-
ing (see [30]). On the other hand, concerns for the privacy and the security
are also increasing. In particular, it is important to protect templates, which are
stored biometric feature data, since once leaked templates can be neither revoked
nor replaced. There are three main approaches for privacy-preserving biometrics
(see [1] or [20]).

(1) Feature transformation approach, in which biometric feature data are trans-
formed to random data by using a client-specific key. Cancelable biometrics
and biohashing are typical. This approach is practical in performance, but
it is no longer secure if the client’s key is leaked.

(2) Biometric cryptosystem approach is based on error-correcting codes, and
includes fuzzy vault and fuzzy commitment. Since this approach needs to
have strong restriction of authentication accuracy, both practical and secu-
rity issues are controversial.

(3) Homomorphic encryption approach, in which the privacy of biometric feature
data are protected by homomorphic encryption, and the similarity of two
feature data is measured on encrypted data by metrics such as the Hamming
and the Euclidean distances. As long as the secret key is securely managed by
a trusted party, it enables biometric authentication system to be considerably
secure. However, the performance and the encrypted data size are main
issues.

Related Work on Homomorphic Encryption Approach. We focus on
the homomorphic encryption approach, and summarize its previous work. In
2006, Schoenmakers and Tuyls in [28] proposed secure computations suitable
for privacy-preserving biometrics using the Paillier scheme [26], which is addi-
tively homomorphic. In 2010, Osadchy et al. in [25] designed a new face recogni-
tion algorithm and proposed an efficient secure face identification system, called
SCiFI, with the Paillier scheme and the oblivious transfer protocol. Their secure
two-party computation is based on the work of [21]. In SCiFI, a feature vector
extracted from face image is always represented as a binary vector of 900-bit,
and the Hamming distance is used as a metric to compare two feature vectors.
Their implementation showed that it took 310 ms to compute secure Hamming

44 M. Yasuda and et al.

distance with the Paillier scheme of a 1024-bit modulus. Currently, SCiFI is
known as one of the state-of-the-art privacy-preserving biometric authentication
systems suitable for real life. In 2011, Blanton and Gasti in [2] developed secure
protocols for iris and fingerprints. Their secure computation is similar to SCiFI,
but they use the DGK scheme [13], which is an additive one with shorter cipher-
texts than the Paillier scheme. In their protocol, an iris feature vector is always
represented as a binary vector of 2048-bit and the Hamming distance is used as
in SCiFI. Their implementation showed that it took 150 ms to compute secure
Hamming distance with the DGK scheme of a 1024-bit modulus. Finally, in our
preprint paper [31], we proposed a new secure protocol with the SHE scheme
based on ideal lattices. Its protocol is based on the work of [19], and involves
three parties unlike SCiFI and the protocol of [2]. Due to a similar packing
method as presented in this work, it took 18.10 ms to compute secure Hamming
distance of two feature vectors of 2048-bit with the SHE scheme of a 4096 lattice
dimension. This is about 8 times faster than the protocol of [2] when we ignore
the PC performance.

4.2 Secure Protocol with Our Packing Method

Using the SHE scheme with our packing method, we give a secure protocol based
on our previous work [31] (we remark that in [31] we use the SHE scheme based
on ideal lattices, which is not different in this work). As in the work of [31], our
protocol involves three parties, a client server C, a computation server S with a
database D, and finally an authentication server A. In our protocol, we assume
that the authentication server A is a trusted party to manage the secret key
sk of the SHE scheme. Furthermore, we assume that biometric data are always
represented as binary vectors of 2048-bit for various biometrics, and we will
not refer how to generate feature vectors. In the following, we give our secure
protocol of biometric authentication with ID:

Setup Phase The authentication server A generates the public key pk and the
secret key sk of the SHE scheme (see Sect. 2 for the key generation, and see
also Sect. 4.3 for suitable key parameters), and distributes only pk to both
the client server C and the computation server S.

Enrollment Phase

1. The client server C generates a feature vector A from client’s biometric
data such as fingerprints, encrypts A into a packed ciphertext ct(1)pack(A)

of the first type, and sends only ct
(1)
pack(A) with client’s ID to the com-

putation server S.
2. The computation server S stores ct

(1)
pack(A) in D as a template.

Authentication Phase

1. As in the enrollment phase, the client server C generates a feature vector
B from client’s biometric data, encrypts B into a packed ciphertext
ct

(2)
pack(B) of the second type, and sends only ct

(2)
pack(B) with client’s ID

to the computation server S.

Practical Packing Method in Somewhat Homomorphic Encryption 45

2 The computation server S extracts the template ct(1)pack(A) corresponding
to client’s ID from the database D. Then S computes secure Hamming
distance ctH defined by (4) in Sect. 3.2 over packed ciphertexts ct(1)pack(A)

and ct
(2)
pack(B), and sends only ctH to A.

3. The authentication server A decrypts ctH with the secret key sk to
obtain the Hamming distance dH(A,B). Finally, the server A returns
the authentication result ‘OK’ (resp. ‘NG’) if dH(A,B) ≤ T (resp. oth-
erwise), where T denotes a pre-defined threshold.

Feature of Our Protocol. Our secure protocol could have the following
feature:

– Confidentiality (the computer server S does not learn any information about
clients’ biometric data): All data in S are in encrypted form, and especially,
our protocol is secure against the hill climbing attack as long as the secret key
is securely managed by the authentication server A. Therefore we hope that we
could use the cloud as S for outsourcing storage of templates and computation
resources of secure Hamming distance. The use of cloud computing would
reduce the cost in adopting biometric authentication.

– Template protection (the identity theft is hard even if a template is stolen):
When a malicious client steals a template ct

(1)
pack(A), he can not know A with-

out sk. Furthermore, when he sends ct(1)pack(A) to S instead of ct(2)pack(B) in the
authentication phase, the authentication would fail with very high probability
due to our asymmetric packing methods (it would be hard to compute the
Hamming distance between A and A without the packed ciphertext ct(2)pack(A)
of the second type, and hence he could not obtain scores smaller than T).

– Availability (the use of multiple client servers is easy): Once the authentication
server A distributes pk to multiple client servers, they can start to use the
system (cf. symmetric key encryption).

4.3 Choosing Key Parameters

As remarked in Sect. 2, key parameters (n, q, t, σ) of the SHE scheme should be
appropriately chosen in order to achieve both the security and the correctness of
the scheme according to an application scenario. We consider secure Hamming
distance as the scenario in this section. The method to choose key parameters
is based mainly on the work of [22].

Correctness. We first need to consider the correctness. For two binary vectors
A and B of 2048-bit, let ctH denote a ciphertext of secure Hamming distance
defined by the Eq. (4) over packed ciphertexts ct(1)pack(A) and ct

(2)
pack(B). It follows

from Lemma 1 that the correctness for the ciphertext ctH is satisfied if

||→ctH , s∞||→ < q/2. (5)

46 M. Yasuda and et al.

By the correctness of the scheme, the element →ctH , s∞ is equal to
〈
ct

(1)
pack(A), s

〉
· ≈C1, s∈ +

〈
ct

(2)
pack(B), s

〉
· ≈C2, s∈ − 2

〈
ct

(1)
pack(A), s

〉
·
〈
ct

(2)
pack(B), s

〉

in the ring Rq (see the proof of [22, Lemma 3.3]). When we set U to be an
upper bound of the ≈-norm size ||→ct, s∞||→ for any fresh ciphertext ct ∈ (Rq)2,
the above equation on the element →ctH , s∞ gives an inequality ||→ctH , s∞||→ ≤
2nU + 2nU2 by the fact that ||→Ci, s∞||→ = ||Ci||→ = 1 for i = 1, 2 and
||→ct(1)pack(A), s∞||→, ||→ct(2)pack(B), s∞||→ ≤ U (we also use the fact that ||a+b||→ ≤
||a||→ + ||b||→ and ||a · b||→ ≤ n · ||a||→||b||→ for any two elements a, b ∈ Rq).
As in the work of [22], we take U to be the value 2tσ2

√
n, which is an experi-

mental estimation (see the proof of [22, Lemma 3.3] for details). Then we have
||→ct, s∞||→ ≤ 2nU + 2nU2 ≈ 8n2t2σ4. Therefore, by the inequality (5), we esti-
mate that the correctness for the ciphertext ctH is satisfied if

16n2t2σ4 < q, (6)

which condition gives a lower bound of the prime q for the correctness.

Chosen Parameters. Next we consider to take concrete parameters. As in the
work [22], we take σ = 8 to make the SHE scheme secure against the combi-
natorial attack. We also set t = 2048 as the plaintext space parameter, which
is enough to compute the Hamming distance of two binary vectors of 2048-bit.
Furthermore, we need n ≥ 2048 in order to pack a binary vector A or B of
length 2048 into a single ciphertext with our packing method (see Definition 1).
When we take n = 2048, the equality (6) tells us that the correctness for the
ciphertext ctH is satisfied if q > 260. Then let us fix

(n, q, t, σ) = (2048, 61-bit, 2048, 8). (7)

Security Level of Chosen Parameters. Finally, we consider the security
of parameters (7). The security of the scheme relies on the polynomial LWE
assumption of [7]. According to the analysis in the work of [22] (their analysis
is based on the methodology of Lindner and Peikert [23]), the security of the
assumption is determined by the root Hermite factor δ derived from the rela-
tion c · q/σ = 22

√
nlg(q)lg(δ), where c is the constant determined by the attack

advantage, and we assume c = 3.758 (see [22, Appendix A] for details). For
parameters (7), we have δ ≈ 1.0050 by the above relation. According to recent
work [9], the factor δ ≈ 1.005 is estimated to have more than 80-bit security
with an enough margin (the authors in [22] estimate that similar parameters
(n, q, t, σ) = (2048, 58-bit, 1024, 8) as (7) have 120-bit security level). Therefore
we conclude that parameters (7) satisfy both the enough security and the cor-
rectness.

Practical Packing Method in Somewhat Homomorphic Encryption 47

Table 1. A comparison with related work using homomorphic encryption

Protocols Performance of Size increase rate Homomorphic

(feature vector size) secure hamming by encryption† encryption scheme
(cipher. size)

SCiFI [25] 310 ms(a) 2048 times Paillier-1024
(900-bit) (230 KByte) (additive scheme)

Protocol of [2] 150 ms(b) 1024 times DGK-1024
(2048-bit) (262 KByte) (additive scheme)

Previous work‡ [31] 18.10 ms(c) about 80 times ideal lattices-4096
(2048-bit) (19 KByte) (SHE)

This work 5.31ms(c) about 120 times ring-LWE-2048
(2048-bit) (31KByte) (SHE)

†denotes the ratio of (encrypted feature vector size)/(plain feature vector size)
‡uses a similar packing method as in this work
(a)on an 8 core machine of 2.6 GHz AMD Opteron processors with 1 GByte memory
(b)on an Intel Core 2 Duo 2.13 GHz with 3 GByte memory
(c)on an Intel Xeon X3480 at 3.07 GHz with 16 GByte memory

4.4 Implementation Results

For parameters (7), we implemented the SHE scheme with our packing method
for secure Hamming distance given by the Eq. (4). Our experiments ran on an
Intel Xeon X3480 at 3.07 GHz with 16 GByte memory, and we used our software
library written with assembly language x86 64 for computations in the base ring
Rq = Fq[x]/(xn + 1) of the ciphertext space. In particular, we implemented the
Karatsuba multiplication and the Montgomery reduction algorithms for efficient
multiplication in Rq. The sizes and the performances are shown as follows (see
[22, Sect. 1.2 or Sect. 5] for a comparison):

– The size of pk = (a0, a1) ∈ R2
q is 2n · lg(q) ≈ 31 KByte, and the size of

sk = s ∈ Rq is n · lg(q) ≈ 16 KByte. A fresh ciphertext has two elements in
the ring Rq, and hence its size is 2n · lg(q) ≈ 31 KByte.

– The key generation (excluding the prime generation) ran in 1.89 ms, packed
encryption irrespective of types took 3.65 ms, secure Hamming distance over
packed ciphertexts took 5.31 ms, and finally the decryption took 3.47 ms. In
our implementation, it took about 0.001 ms (4,837 clock cycles) to compute
one polynomial addition, and it also took about 1.56 ms (4,793,850 clock
cycles) to compute one polynomial multiplication in the ring Rq. For secure
Hamming distance ctH , we implemented the computation

ctH = ct
(1)
pack(A) ∗ C1 � ct

(2)
pack(B) ∗ C2 � (−2ct(1)pack(A)) ∗ ct

(2)
pack(B)

= −1
2

⎦(
2ct(1)pack(A) − C2

)
∗

(
2ct(2)pack(B) − C1

)
− C1 ∗ C2

}
,

whose size is 3n · lg(q) ≈ 46.5 KByte (we did not use the relinearization tech-
nique described in [22, Sect. 3.2.3] for reducing ring elements of a ciphertext).

48 M. Yasuda and et al.

It mainly requires only one time homomorphic multiplication when we pre-
compute C1, C2 and C1 ∗ C2.

4.5 Comparison with Related Work

In Table 1, we give a comparison of our protocol with related work described in
Sect. 4.1 on the performance and the encrypted data size for secure Hamming dis-
tance (all encryption schemes are estimated to have more than 80-bit security).
Table 1 shows that our protocol has the best performance in the state-of-the-
art work. Due to our packing method, our protocol is much faster and more
compact than SCiFI [25] and the protocol of [2] using additively homomorphic
encryption. In particular, our protocol is about 30 times faster and about 8 times
shorter than the protocol of [2]. Furthermore, Table 1 shows that compared to
the SHE scheme based on ideal lattices, the ring-LWE based SHE scheme is
about 3 times faster but about 1.5 times longer. Note that the ring-LWE based
scheme only needs 2048 lattice dimension to achieve 80-bit security while the
ideal lattices based scheme needs 4096 lattice dimension. When we use 2048
lattice dimension in the ideal lattices based scheme, the performance is almost
same as in this work.

Finally, let us compare our protocol with one using the BGN scheme [3]. The
BGN scheme uses pairing computations on elliptic curves for its homomorphic
multiplication. As well described in [22, Sect. 1.2], the homomorphic multiplica-
tion in the BGN scheme is very slower than that in lattice-based encryption such
as the ring-LWE and the ideal lattices schemes. Furthermore, we can not use
our packing method in the BGN scheme, and hence it needs 2048 homomorphic
multiplications for secure Hamming distance between two vectors of 2048-bit.
Even if we use very fast implementation taking 1 ms for one pairing computa-
tion, it takes about 2048 ms ≈ 2 s. Therefore we estimate that our protocol is
much faster than the BGN scheme.

References

1. Belguechi, R., Alimi, V., Cherrier, E., Lacharme, P., Rosenberger, C.: An
overview on privacy preserving biometrics. http://cdn.intechopen.com/pdfs/
17038/InTech-An overview on privacy preserving biometrics.pdf

2. Blanton, M., Gasti, P.: Secure and efficient protocols for iris and fingerprint iden-
tification. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp.
190–209. Springer, Heidelberg (2011)

3. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

4. Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D.J.: Private database queries
using somewhat homomorphic encryption. In: Jacobson, M., Locasto, M., Mohas-
sel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 102–118. Springer,
Heidelberg (2013)

http://cdn.intechopen.com/pdfs/17038/InTech-An_overview_on_privacy_preserving_biometrics.pdf
http://cdn.intechopen.com/pdfs/17038/InTech-An_overview_on_privacy_preserving_biometrics.pdf

Practical Packing Method in Somewhat Homomorphic Encryption 49

5. Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based homomor-
phic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778,
pp. 1–13. Springer, Heidelberg (2013)

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Innovations in Theoretical Computer
Science-ITCS 2012, pp. 309–325. ACM (2012)

7. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

8. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Foundations of Computer Science-FOCS 2011, pp. 97–106.
IEEE (2011)

9. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011)

10. Cloud Security Alliance (CSA), Security guidance for critical areas of focus in cloud
computing. https://cloudsecurityalliance.org/csaguide.pdf, December 2009

11. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryp-
tion over the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011)

12. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 103–118. Springer, Heidelberg (1997)

13. Damg̊ard, I., Geisler, M., Krøig̊ard, M.: Homomorphic encryption and secure com-
parison. J. Appl. Crypt. 1(1), 22–31 (2008)

14. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

15. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Symposium on
Theory of Computing-STOC 2009, pp. 169–178. ACM (2009)

16. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (2011)

17. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012)

18. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
keeping secrete all partial information. In: Symposium on Theory of Computing-
STOC 1982, pp. 365–377. ACM (1982)

19. Hattori, M., Matsuda, N., Ito, T., Takashima, K., Yoneda, T.: Provably-secure can-
celable biometrics using 2-DNF evaluation. J. Inf. Process. 20(2), 496–507 (2012)

20. Jain, A.K., Nandakumar, K., Nagar, A.: Biometric template security (review arti-
cle). EURASIP J. Adv. Sig. Process 2008, 1–17 (2008)

21. Jarrous, A., Pinkas, B.: Secure hamming distance based computation and its appli-
cations. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS
2009. LNCS, vol. 5536, pp. 107–124. Springer, Heidelberg (2009)

22. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be
practical?. In: ACM Workshop on Cloud Computing Security Workshop-CCSW
2011, pp. 113–124. ACM (2011)

https://cloudsecurityalliance.org/csaguide.pdf

50 M. Yasuda and et al.

23. Lindner, R., Peikert, C.: Better key sizes (and Attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

24. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010)

25. Osadchy, M., Pinkas, B., Jarrous, A., Moskovich, B.: SCiFI - a system for secure
face recognition. In: IEEE Security and Privacy, pp. 239–254. IEEE Computer
Society (2010)

26. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

27. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008)

28. Schoenmakers, B., Tuyls, P.: Efficient binary conversion for paillier encrypted val-
ues. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 522–537.
Springer, Heidelberg (2006)

29. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes.
Cryptogr. 71, 57–81 (2014)

30. U.S. Department of Homeland Security, Privacy impact assessment for the bio-
metric storage system. http://www.dhs.gov/xlibrary/assets/privacy/privacy pia
cis bss.pdf, 28 March, 2007

31. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Packed homo-
morphic encryption based on ideal lattices and its application to biometrics. In:
Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES Work-
shops 2013. LNCS, vol. 8128, pp. 55–74. Springer, Heidelberg (2013)

http://www.dhs.gov/xlibrary/assets/privacy/privacy_pia_cis_bss.pdf
http://www.dhs.gov/xlibrary/assets/privacy/privacy_pia_cis_bss.pdf

Collaborative and Privacy-Aware Sensing for
Observing Urban Movement Patterns

Nelson Gonçalves1, Rui José2, and Carlos Baquero1(B)

1 HASLab, INESC Tec & Universidade do Minho, Braga, Portugal
goncalvesnelson@gmail.com, cbm@di.uminho.pt

2 Centro Algoritmi, Universidade do Minho, Braga, Portugal
rui@dsi.uminho.pt

Abstract. The information infrastructure that pervades urban environ-
ments represents a major opportunity for collecting information about
Human mobility. However, this huge potential has been undermined by
the overwhelming privacy risks that are associated with such forms of
large scale sensing. In this research, we are concerned with the problem of
how to enable a set of autonomous sensing nodes, e.g. a Bluetooth scan-
ner or a Wi-Fi hotspot, to collaborate in the observation of movement
patterns of individuals without compromising their privacy. We describe
a novel technique that generates Precedence Filters and allows prob-
abilistic estimations of sequences of visits to monitored locations and
we demonstrate how this technique can combine plausible deniability
by an individual with valuable information about aggregate movement
patterns.

Keywords: Privacy · Mobility traces · Bloom filters · Vector clocks

1 Introduction

The ubiquity of the information technology infrastructure that increasingly per-
vades urban environments constitutes a major opportunity for sensing Human
activity. The large scale collection of such data may give new insights into the
dynamics of city life and the digital fingerprint of the urban environment.

Wi-fi and Bluetooth hotspots are particularly interesting for that purpose.
Given their widespread presence and their inherent communication with personal
devices, they can easily be leveraged as general purpose platforms for massive
sensing and actuation in urban spaces. However, this huge potential has been
undermined by the overwhelming privacy risks that are associated with such
forms of large scale sensing. Given that many detectable devices would be per-
sonal devices, their presence at a particular location is a reliable representation

Financed by the ERDF – European Regional Development Fund through the COM-
PETE Programme (operational programme for competitiveness) and by National
Funds through the FCT – Fundação para a Ciência e a Tecnologia (Foundation for
Science and Technology) within project “FCOMP - 01-0124-FEDER-022701”.

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 51–65, 2014.
DOI: 10.1007/978-3-642-54568-9 4, c© Springer-Verlag Berlin Heidelberg 2014

52 N. Gonçalves et al.

of the presence of the respective owner. Consequently, a record of Bluetooth
or Wi-Fi sightings holds the potential to become a large scale tracking system
capable of detecting the presence, movements and patterns of individuals.

In this research, we are concerned with the problem of how to enable a set
of autonomous sensing nodes, e.g. a Bluetooth scanner or a Wi-Fi hotspot, to
collaborate in the observation of movement patterns of individuals without com-
promising their privacy. Our approach is based on a stochastic technique that
can characterize the sequence of presences in the monitored areas, with a para-
meterized fidelity that protects user privacy. Our Precedence Filters algorithm
combines properties found on counting bloom filters and vector clocks, provid-
ing a solid approach to the detection of sequences of presences. It enables us to
provide probabilistic answers to questions such as: “Are the individuals in this
art gallery likely to have visited a given art museum first?” or, in a shopping
mall, “Which shops are visited most likely after the movie theater? and before
the theater?”. The data collection system can be calibrated in a way that each
individual (actually its MAC address pseudonym) has a given chance, say 50 %,
of not having been in a reported location or done a given reported transition,
thus protecting its privacy and supporting plausible deniability.

To support the evaluation of the approach, we compare the accuracy of the
causality traces estimated by the application of the algorithm with the ground
truth corresponding to the causality traces generated from perfect information
about node transitions. The evaluation confirms the expectations that a higher
fidelity on collective movement patterns can be supported by lower fidelity in
the individual traces.

2 Related Work

Anonymity. Tang et. al [19] describe a sensing method through which per-
sonal devices can become anonymous sensors reporting the number of nearby
devices without compromising their own or other peoples privacy. In this case,
individuals do not need to be sensed, and this work demonstrates how given
a specific sensing goal, it can be possible to devise a technique that limits the
collected information to those goals and thus significantly improves the privacy
vs utility tradeoff. The use of pseudonyms is perhaps the most obvious way to
achieve anonymity when individuals need to be identified in subsequent obser-
vations. However, using the same pseudonym for a long time makes it easy for
an attacker to gather enough history on an individual to infer its habits or true
identity. This is particularly true for spatial data. Previous work has shown how
anonymous location traces can easily be re-identified by considering the likely
home address of a person [13] or the Home/Work location pair [10].

To try to mitigate this issue, Beresford and Stajano in [4] proposed an idea
which relied upon pseudonym exchange. They introduced two new concepts: mix
zone and application zone. The aim is to conceal information in the mix zone
so that users can safely change pseudonyms when getting in and out of these
zones. Based on a different concept, k-anonymity, Gruteser and Grunwald [11]

Collaborative and Privacy-Aware Sensing 53

were the first to investigate anonymity as a method to attain location privacy.
According to them, a subject is considered to be k-anonymous with regard to
location information, if and only if she is indistinguishable from at least k − 1
other subjects with respect to a set of quasi-identifier attributes. Bigger values
of k correspond to higher degrees of anonymity.

Mokbel et al. in [18] use the k-anonymity concept as well. They presented the
Casper framework which consists of two main components, a location anonymizer
and a privacy-aware query processor. The location anonymizer blurs the loca-
tion information about each user according to that user’s defined preferences
(minimum area Amin in which she wants to hide and minimum value for k). The
query processor adjusts the functionality of traditional location-based databases
to be privacy-aware. It does so by returning cloaked areas instead of exact points
when queried for location information.

Our technique can be described as a form of anonymity, but because we never
register any individual identifier, the technique is not prone to re-identification
attacks that could compromise the entire trace of previous locations of an
individual.

Obfuscation. Obfuscation based techniques usually degrade the “quality” of
the information in order to provide privacy protection. Even tough this may seem
comparable to what k-anonymity based techniques do, there is a key difference:
obfuscation based techniques allow the actual identity of the user to be revealed
(thus making it suitable for applications that require authentication or offer some
sort of personalization [15]). Duckam and Kulik [7] were the ones who introduced
the idea of obfuscation for location privacy. They talk about three distinct types
of imperfection that can be present in spatial information: Inaccuracy - lack
of correspondence between information and reality. E.g. “Paris is in Spain”;
Imprecision - lack of specificity. E.g. “Paris is in Europe”; Vagueness - using
fuzzy borderlines [8]. E.g. “Paris is in Western Europe”. Any of these types of
imperfection can be used to obfuscate an individual’s location. Another example
of an obfuscation based approach was shown by Ardagna et al. in [2] and later
improved in [1,3]. Their obfuscation process numerically represents a relative
accuracy loss in a location measurement.

Even though there are several techniques that allow reducing the quality of
raw location information, we found no approach that allows for the characteri-
zation of device sighting sequences with adjustable fidelity.

3 System Model

The model in which we base our work assumes the existence of a network of
heterogeneous and autonomous nodes that collaborate in the tracking process.
While we may consider various types of sensing nodes, for the remainder of
this paper we will assume the use of Bluetooth devices. In this case, our sensing
node would be some sort of Bluetooth scanner with the ability to discover nearby
devices and obtain information about their MAC address, the timestamp of the
sighting, among others.

54 N. Gonçalves et al.

Our model does not impose restrictions on the type of information collected
by the scanners or how it is used by the local node. We do, however, want to
limit the information that each node is going to share with the rest of the system
to the minimum information possible that is still able to support the detection
of movement patterns. We need to be able to detect the same device on different
nodes, and for this specific purpose we will only use the device’s MAC address.

In their everyday life and depending on their specific needs, people visit
several different places. For instance, a person P1 wants to buy a new laptop.
To do so, she visits store S1 which does not have the model she wants. She then
visits store S2 which is out of stock and afterwards store S3 where the price
is a little steep. She ends up buying the laptop in store S4. To represent this
behavior we introduce the concept of mobility traces. A mobility trace is simply
the representation of the places visited in the order by which they were visited.
In this specific case, the mobility trace of P1 is MTP1 = {S1, S2, S3, S4}. Our
mechanism, Precedence Filters, allows the recording of information relative to the
individual traces of people, in a manner compatible with plausible deniability.
That information can later be processed to obtain more accurate data about
the habits of the aggregate of all individuals. For instance, in this example, the
order in which the stores were visited might be an indicator of their popularity.

Whenever a device is sensed, the sighting node records that event locally. This
information is then used in the computation of device transitions between the
system’s multiple nodes. The place where that computation occurs depends on
the system’s architecture. Our mechanism can be deployed in either centralized
or decentralized architectures. In a centralized system configuration, the compu-
tation has to be done in the server since only it has enough information to do so.
Each node only shares its local information with the server. On the other hand,
with a decentralized architecture, nodes can do the processing locally. The local
information each node possesses is shared with the other nodes, thus allowing
all the nodes to have access to the data. Both models have advantages and dis-
advantages. For instance, the centralized approach is not fault tolerant, if the
server crashes the tracking system stops working. Compared to the centralized
version, the decentralized model also has greater availability as a result of the
information redundancy. However, as a consequence of the exchange of informa-
tion between all the nodes, the decentralized scenario has a bigger burden on
the network.

In order to achieve the goal we set ourselves, and taking into account the
constrains presented by our model, our solution is based upon the following set
of assumptions:

– Even though we cannot make assumptions about how each individual node will
handle the observed Bluetooth addresses, our solution should never require
the Bluetooth address or any other information that could uniquely identify
individuals to ever leave the sensing node.

– No system element should, at any given time, have all the information neces-
sary to accurately determine the path of a single individual.

Collaborative and Privacy-Aware Sensing 55

– There are no communication failures in the system and the exchange of infor-
mation between any two nodes is faster than the time it takes for a person to
move between them, i.e., when a person goes from node A to node B, node
B must already have the information that she was in A.

4 Precedence Filter Algorithm

This section describes the behavior of Precedence Filters. However, to do so, we
must first do a brief overview of the techniques in which they are based, namely
Counting Bloom Filters [9] and Vector Clocks [12,17].

4.1 Bloom Filters

Bloom Filters (BFs) were created in 1970 [5] by B.H. Bloom. They are a sim-
ple and space efficient data structure for set representation where membership
queries are allowed. Bloom Filters allow false positives but do not allow false
negatives, i.e, when querying a filter about the existence of an element in a
given set, if the answer is no, then the element is definitely not in the set, but if
the answer is yes, the element might be in the set.

A Bloom Filter for representing a set of n items S = {x1, x2, x3, . . . , xn} is
traditionally implemented using an array of M bits, all initially set to 0. Then,
k independent hash functions are used {h1, h2, . . . , hk}, each one mapping the
element of the set into a random number uniformly distributed over the range
{1, . . . ,M}. For each element x of the set (x ∈ S) the bits of the positions hi(x)
are all set to 1 for 1 ≤ i ≤ k. A location can be set to 1 multiple times. Due to the
independence of the hash functions, nothing prevents collisions in the outputs.
In extreme cases it is possible to have h1(x) = h2(x) = . . . = hk(x). To prevent
this, we use the variant of Bloom Filters presented in [6] which partitions the M
bits among the k hash functions, creating k slices of m = M/k bits. This ensures
that each item added to the filter is always described by k bits. Given a Bloom
Filter BFS , checking if an element z ∈ BFS , consists in verifying whether all
hi(z) are set to 1. If they aren’t, then z is definitely not present on the filter.
Otherwise, if all the bits are set to 1, then it is assumed that z belongs to BFS

although that assumption might be wrong. This false positive probability exists
because the tested indices might have been set by the insertion of other elements.
Figure 1 illustrates such an example.

The false positive probability P can be obtained using equation P = pk,
where p is the ratio between the number of set bits in the slice and the slice size
m. The fill ratio p can be obtained through equation p = 1 − (

1 − 1
m

)n.
Furthermore, given a maximum false positive probability P , and the number

n of distinct elements to store, equations k = log2
(
1
P

)
and m = n→|lnP |

k→(ln2)2 can be
used to estimate the optimal number of bits required by a Bloom Filter to store
those n elements, M = m ∗ k.

56 N. Gonçalves et al.

x,y,z{ }

w

hash_fun2
hash_fun3

hash_fun1

Fig. 1. Bloom filter with k = 3, M = 21 and m = 7, containing elements {x, y, z}.
Querying for the presence of element w yields a false positive.

Counting Bloom Filters. Counting Bloom Filters (CBFs) were presented in
[9]. In a Counting Bloom Filter, each position is a small counter rather than a
single bit. When an item is inserted the corresponding counters are incremented,
and when the item is deleted the same counters are decremented. We just have
to choose sufficiently large counters, in order to avoid counter overflow.

4.2 Vector Clocks

In order to better understand how Vector Clocks work, we must first comprehend
the concept of causality. Causality is a relation through which we can connect
two events, a first event (known as the cause) and a second one (the effect).

In the context of Distributed Systems, causality is expressed using the
happens-before relation [14] denoted by the → symbol. For instance, given 2
events, x → y, reads as x happened-before y, and means y might be a conse-
quence of x.

Vector Clocks were introduced by Colin Fidge [12] and Friedemann Mat-
tern [17] in 1988 and are a practical implementation of the happens-before con-
cept. In this algorithm, each process Pi has a vector of integer values VC i[1..n]
where n is the number of processes, maintained by the following set of rules:

1. In the beginning, all the positions from the vector are set to 0.
2. Each time the state of a process Pi changes (send, receive or internal event),

it must increment the value VC i[i], i.e, (VC i[i] = VC i[i] + 1).
3. Each time a process Pi sends a message, its vector VC i is sent.
4. When a process Pi receives a message m, it must update its vector using the

formula:
∀x : VC i[x] = max(VC i[x],m.VC [x]), where m.VC symbolizes the vector
clock attached to m.

Vector Clocks are able to accurately represent the causality relation and the
partial order it defines. Given any two distinct events x and y:

∀(x, y) : (x → y) ⇐⇒ (VC x < VC y)

Collaborative and Privacy-Aware Sensing 57

Where VC x < VC y stands for:

(∀k : VC x[k] ≤ VC y[k] ∧ (∃k : VC x[k] < VC y[k]))

4.3 Precedence Filters

By applying some of the previously mentioned general constructs of distributed
systems to the mobility sensing scenario, Bluetooth scanners can be treated
as processes and device sightings as state transition events. Precedence Filters
(PFs) are based upon this idea and provide accurate mobility information, at a
macroscopic level, without neglecting individual privacy. Precedence Filters can
be seen as a vector clock [12,17] implementation, whose difference is the use of
Counting Bloom Filters [9] (one for each node in the system) by the PFs instead
of integers (one per process) used by vector clocks.

With that in mind, Precedence Filters work as follows: supposing we have a
set of Bluetooth scanners (nodes) S, each node n ∈ S has a Precedence Filter
PFn. That PF is in turn composed of a map of Counting Bloom Filters, one
for each node z ∈ S. We use notation PF z

n to refer to the CBF for scanner z
belonging to PFn.

All CBFs are initially set to 0, use the same set of hash functions K and
have the same fixed size M = m ∗ k. Once calculated, the value M cannot be
changed. This limitation has to do with ensuring that the same device is correctly
identified across the several nodes (upon detection it will be mapped to the same
indices). Precedence Filters can also be seen as a matrix where the number of
rows is equal to the number of nodes in the system and the number of columns
is equal to M .

Each time a node n detects a device d, its Precedence Filter PFn is updated
according to the following set of rules:

1. Using the set of hash functions K, the node n calculates the set of indices
Id. Id consists on the output from the K hash functions regarding device d,
Id =

⋃
f∞K f(d).

2. Node n sends the set of indices Id to all other nodes in S.
3. Each one of the z nodes belonging to Z (Z = S\{n}) replies with a set

of tuples RId
z . Rz contains the previously required Id along with the set of

values that each of the CBFs belonging to PF z had stored in those indices,
RId

z = {(i,PF z
z[i]) | ∀i ∈ Id}.

4. Upon the reception of the replies from the other nodes, node n updates its
own indices Id on the CBFs relative to the other nodes with the maximum
value received, PF z

n[i] = max(RId
z [i]),∀z ∈ Z,∀i ∈ Id, where RId

z [i] = v ⇒
(i, v) ∈ RId

z .
5. Lastly, n updates the indices Id on its own CBF (PFn

n). For each index
i ∈ Id,PFn

n[i] = max(PF s
n[i])+1,∀s ∈ S. By adding 1 to the maximum value

stored in the other nodes, the current node “dominates” them in the operation
that returns the causality between the visited places. In other words, this is
the key to obtaining the order in which the places were visited.

58 N. Gonçalves et al.

This set of rules allows the Precedence Filters to record information about
the precedence of the locals visited by a device. Given a set of indices Id for
device d and any pair of scanners x and y, we say that the sighting of d in x
precedes the one in y, x � y if:

x � y ⇐⇒ PFx[Id] < PF y[Id]

Where PFx[Id] < PF y[Id] stands for:

∀i ∈ Id : PFx
x[i] < PF y

y[i]

Mobility traces, used in our model to describe the behavior of individuals,
characterize a total order between the places visited. This means that it is always
possible to establish an order between any two places in the mobility trace.
However, being based upon the happens-before relation [14], Precedence Filters
represent partial orders. In this particular case, for each of the nodes/locations,
they can only “remember” the last time each device was sighted in a given place.
For instance, given the mobility trace

MTP = {S1, S2, S1, S3, S2, S4, S1}

where scanners S1 and S2 are visited more than once, in the best case scenario
PFs can obtain CTP = {S3, S2, S4, S1}, which we will refer as a causality trace.
This is a consequence of the irreflexivity and antisymmetry properties from the
happens-before relation. However, we can look at this as a feature of Precedence
Filters, a sort of automatic data degradation. It ensures that the length of the
record of sightings for any device has an upper bound equal to the number of
scanners in the tracking system.

The level of privacy offered by Precedence Filters can be further customized
by adjusting the CBFs’ false positive ratio P . The higher the ratio, the greater
the inaccuracy of the PFs. The occurrence of false positives in the CBFs results in
the appearance of fictitious transitions, i.e., the causal trace obtained from query-
ing the filters, contains transitions which are non-existent in the original trace.
This property also makes unfeasible the use of sets of indexes as pseudonyms as
indexes can be shared by different devices. These properties are what allow indi-
vidual users to plausibly deny the fidelity of the data extracted from Precedence
Filters.

Ignoring constant and logarithmic factors, the communication and space stor-
age scalability of the technique is dominated by the number of scanners S and
the expected number of devices to monitor, D. Each scanner needs to store
state that is linear with the number of devices O(D). One should note however,
that due to lossy compression only a fraction of the bit size of a MAC address
is needed, with smaller fractions for higher privacy (and lower fidelity). As a
whole, the system stores state O(SD), and this would be the server state for a
centralized setup. Each time a device is sighted at a given scanner, its network
link will have a communication load of O(S) and induce O(1) communication in
other scanner links, as it collects logarithmic information on a constant number

Collaborative and Privacy-Aware Sensing 59

of positions k at all other scanners. Thus, the maximum communication load
induced per sighting is linear on the number of scanning sites.

5 Metrics and Data Sets

To assess the estimation quality of Precedence Filters we compared the set
of transitions obtained from querying the Precedence Filters with the set of
transitions obtained from the causality traces (baseline), which were themselves
obtained from mobility traces. For instance, given the mobility trace MTP =
{S1, S2, S2, S1, S3}, we calculate its causality trace according to the happens-
before relation (that only contains last sighting in each place), CTP = {S2, S1,
S3}. Then we extract the set of transitions, denoted T , from that causality trace,
T (CTp) = {(S2, S1), (S2, S3), (S1, S3)}. Each transition is a two location tuple
where the first location causally precedes the second. In our scenario, that means
the device was seen in the first location before being sighted at the second loca-
tion. This set of transitions is then finally compared to a similar set of transitions
obtained from the PFs, T (PF).

Metrics. To support the evaluation of Precedence Filters, we used two dif-
ferent metrics. The individual metric which measures the false probability of
statements like the following – “ individual X visited location S1 before visit-
ing location S2”. For each user u, this is done by calculating the cardinality of
the difference between the transitions belonging to the causality trace (T (CTu))
and the transitions extracted from the Precedence Filter (T (PFu)), according
to Eq. 1.

#((T (CTu)
⋃ T (PFu)) \ (T (CTu)

⋂ T (PFu)))
#(T (PFu))

(1)

The individual metric calculates the relative amount of incorrect information
(information that is on the CTs and not on the PFs and vice-versa) returned
by the Precedence Filters. However, given the assumption that the exchange
of information between nodes is faster than people, our system never forgets
information, i.e., T (CT) ⊆ T (PF). Therefore, Eq. 1 can be simplified, resulting
in Eq. 2.

#(T (PFu) \ T (CTu))
#(T (PFu))

(2)

The global metric quantifies the inaccuracy of information regarding the
relative weight of specific transitions. This enables us to establish the rela-
tive importance of each type of transition, i.e., to know the inherent error in
statements like - “2 % of the transitions are from Restaurant Y to Cafe Z”.
Assuming that, U represents the universe of all users, APF =

⊎
u∞U T (PFu)

and ACT =
⊎

u∞U T (CTu) are respectively the multiset union of all transitions
in the Precedence Filters and in the Causality Traces and that A[t] is multiset
composed only of the t transitions in A, the global metric for each transition

60 N. Gonçalves et al.

t ∈ A is calculated according to Eq. 3. For each transition, we calculate the
absolute difference between its relative weight in the Precedence Filter and its
relative weight in the actual Causality Traces. Then we divide that number by its
weight on the Precedence Filters. This gives us the relative error of the relative
weight of the transition.

∣∣∣#APF [t]
#APF

− #ACT [t]
#ACT

∣∣∣
#APF [t]

(3)

Real Data Set. To evaluate the PFs’ performance we used a real data set with
information about Bluetooth sightings by static nodes. This data set was taken
from Leguay et al.’s work [16]. To collect this information, the authors handed
out a set of Bluetooth enabled devices called iMotes to a group of users who
carried them in their day-to-day. Additionally, the authors installed Bluetooth
scanners in several places with the purpose of registering the sightings of iMotes.
The dataset contains 18 static nodes and 9244 distinct device IDs, 6439 of which
have been sighted only once and were therefore removed. This leaves us with 2805
devices, whose average mobility trace size is approximately 4 and maximum size
is 11. Figure 2(a) shows the distribution of total and distinct sightings for all
scanners. As expected, not all places have the same popularity, some are more
visited than others, thus the bigger number of Bluetooth sightings.

Synthetic Data Set. Still in the context of evaluating the PF’s performance,
we built a synthetic trace generator. Our motivation came from the need to
simulate scenarios with arbitrary number of locations and users.

In a first approach, we tried fitting the statistic distribution of the real data
set using a negative exponential distribution. This would have allowed us to
choose an arbitrary number of sensors, users and trace length. However, after
evaluation with Pearson’s Chi-Square test, it turned out to be a bad fitting.

(a) Real data set (b) Synthetic data set

Fig. 2. Number of total and distinct device sightings across the scanners

Collaborative and Privacy-Aware Sensing 61

This might be solvable by switching to a more complex distribution function.
Instead we chose to work with the empiric distribution. On this second approach,
it was decided to use the same number of sensors as the real data set, i.e. 18. This
allowed us to simulate the popularity of each sensor/place using the number of
sightings from the real data set as weights. The larger the number of sightings
at a sensor, the bigger its weight is, and the more likely it is to be chosen.
Each node is defined by two parameters, unique sightings and total sightings.
We only made use of the latter. The use of replication1 enabled us to create a
simpler and less error prone simulator, capable of producing as many users as
we want, as well as mobility traces with arbitrary length. The downside of not
using the unique number of sightings is that we are assuming that even though
places have different weights, they are the same for everyone, i.e. everyone has
the same probability of choosing a given place, everyone is an “average” person.

Figure 2(b) shows the synthetic distribution obtained using the approach
mentioned above. As expected the results are very similar but not a perfect
match. There is a correlation between the number of total and unique sightings
which stems from the use of the “average” person model. Also, the curve from
the synthetic data set is smoother, it does not suffer from the “noise” inherent
to raw real data.

6 Evaluation

Using the metrics and data sets previously mentioned, we tested the Precedence
Filter’s inaccuracy across several scenarios, varying both the number of devices
and the length of the mobility traces. Furthermore, each of the scenarios was
tested with multiple different settings for the Counting Bloom Filter’s maxi-
mum false positive probability. A good performance is reflected through high
inaccuracy values for individual information together with low values for global
inaccuracy.

As can be seen in Figs. 3, 4, 5 and 6, by increasing the false positive prob-
ability of CBFs, inaccuracy increases as well. Inaccuracy is manifested via the
occurrence of fake (visible on PFs only) transitions, i.e., fictitious transitions. As
the false probability increases, so does the percentage of fake transitions. This is
easily explainable. In Bloom Filters, false positives denote elements wrongfully
considered as belonging to the set. Given that in PFs Bloom Filters are used
to record device sightings, the occurrence of false positives generates fake device
sightings, which in turn give origin to fictitious transitions.

As previously explained, both data sets use 18 scanning nodes, what differs
is the number of devices and the length of the mobility traces. To describe
the parameters of each scenario, the following notation is used in the cap-
tions: Synthetic/Real-[number of devices]-[maximum trace length]-[average trace
length].

1 In statistics, replication is the repetition of an experiment or observation in the same
or similar conditions.

62 N. Gonçalves et al.

(a) Synthetic-2805-11-4 (b) Real-2805-11-4

Fig. 3. Comparison between real and synthetic data set, with same parameters

(a) Synthetic-2805-11-4 (b) Synthetic-10000-11-4 (c) Synthetic-100000-11-4

Fig. 4. Synthetic data sets with increasing number of devices

Figure 3 shows the comparison between a synthetic data set and the real
data set. This synthetic data set will serve as the baseline for all tests because it
simulates both the number of devices and trace length found in the real data set.
Our technique performs better with data from the synthetic data set (Fig. 3(a))
than it does with data from the real one (Fig. 3(b)). This is a consequence of the
average person simplification we did for the synthetic data sets. Figure 2 shows
that while the number of total sightings is approximately equal in both data
sets, the number of unique sightings is usually bigger in synthetic data set. This
means that the real data set has a greater number of repeated sightings by user,
which in turn means that the average length of the causality traces is smaller,
i.e., even if both data sets have the same number of users and similar sized
mobility traces, the causality traces in the real data set are smaller, explaining
the worse performance of our technique.

For both these data sets, there is a point where the individual accuracy is
greater than the global one, however, when the individual inaccuracy is approx-
imately 50%, the global inaccuracy is higher than what is desirable. This is a
result of the low number of individuals and small mobility trace sizes of both
data sets, as supported by Figs. 4, 5 and 6.

Collaborative and Privacy-Aware Sensing 63

(a) Synthetic-2805-11-4 (b) Synthetic-2805-50-16 (c) Synthetic-2805-100-30

Fig. 5. Synthetic data sets with increasing trace sizes

(a) Synthetic-2805-11-4 (b) Synthetic-10000-50-16 (c) Synthetic-100000-100-30

Fig. 6. Synthetic data sets with increasing number of devices and trace sizes

Keeping the length of mobility traces constant, Fig. 4 shows that Precedence
Filter’s global inaccuracy drops by increasing the number of devices to 104, and
then again, although little, by increasing that number to 105. In both scenar-
ios, for a false positive probability of 0.8, PFs provide global inaccuracy below
20% while ensuring that in average, 50% of the information about any given
individual is incorrect.

Keeping the same number of devices, while increasing the length of the mobil-
ity traces also improves the Precedence Filter’s global accuracy, as depicted in
Fig. 5. For instance, Fig. 5(c) shows that by increasing the average and maximum
values for mobility traces respectively to 30 and 100, our technique offers a global
error of about 15%, while providing 50% of inaccuracy for individual informa-
tion. Increasing both the number of devices and the length of the mobility traces
yields the better results, which is not surprising given both the previous results.

In a scenario with 105 users whose maximum and average mobility trace sizes
are respectively 100 and 30, depicted in Fig. 6(c), our technique has a global
inaccuracy a little higher than 10% while providing an individual inaccuracy
of 50%. This means that, on average, half of the information about individual
transitions is wrong, which we consider to be a value compatible with plausible
deniability. To recap, our technique registers information user transitions. Each
user has a set of transitions, and the individual metric measures, in average, the
percentage of those which are fictitious/false. The global metric, on the other

64 N. Gonçalves et al.

hand, returns the average error regarding the information about the popularity
of specific transitions/paths. Increasing the false positive probability of CBFs
increases the total number of occurrences of transitions, which is why the indi-
vidual accuracy drops; yet the relative weight of each transition remains more
stable, thus the behavior of the global inaccuracy lines.

7 Conclusion

Vast amounts of collective movement patterns could be harnessed and put to
good use in city planning, ad placement, and traffic congestion prevention. The
limitations are no longer of a technological nature and suitable infrastructures
are often in place that could allow mass sensing. Our stance is that privacy is a
key limiting factor in this area.

We have presented a technique that provides Precedence Filters. Using aggre-
gation of probabilistic information about sequences of visits to monitored loca-
tions, this technique is able to reveal information about the relative frequency of
transitions. In practice, frequent transitions can lead to optimizations in trans-
portation systems, discount policies in businesses and museums, and many other
potential applications.

To evaluate the technique we first had to define and propose new metrics to
analyze trace estimation quality. Evaluation was based on a robust trace driven
simulation, from a real mobility dataset, complemented with simulations over
longer synthetic traces that allowed a comprehensive analysis of the long term
properties, for higher numbers of users and longer traces.

The resulting technique is highly adjustable in the degree of privacy and
degradation of fidelity that is required in each potential setting. An important
overall property is the ability to give good quality collective traces from lower
quality individual traces. This brings the best of both worlds, high individual
privacy and good collective statistics.

References

1. Ardagna, C.A., Cremonini, M., Damiani, E., De Capitani di Vimercati, S., Sama-
rati, P.: Location privacy protection through obfuscation-based techniques. In:
Barker, S., Ahn, G.-J. (eds.) Data and Applications Security 2007. LNCS, vol.
4602, pp. 47–60. Springer, Heidelberg (2007)

2. Ardagna, C.A., Cremonini, M., De Capitani di Vimercati, S., Samarati, P.: A
middleware architecture for integrating privacy preferences and location accuracy.
In: Venter, H., Eloff, M., Labuschagne, L., Eloff, J., von Solms, R. (eds.) New
Approaches for Security, Privacy and Trust in Complex Environments, pp. 313–
324. Springer, Boston (2007)

3. Ardagna, C.A., Cremonini, M., De Capitani di Vimercati, S., Samarati, P.: An
obfuscation-based approach for protecting location privacy. IEEE Trans. Depend-
able Secure Comput. 8(1), 13–27 (2011)

4. Beresford, A., Stajano, F.: Location privacy in pervasive computing. IEEE Perva-
sive Comput. 2(1), 46–55 (2003)

Collaborative and Privacy-Aware Sensing 65

5. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

6. Chang, F., Chang, F., chang Feng, W.: Approximate caches for packet classifica-
tion. In: In IEEE INFOCOM, pp. 2196–2207 (2004)

7. Duckham, M., Kulik, L.: A formal model of obfuscation and negotiation for location
privacy. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005.
LNCS, vol. 3468, pp. 152–170. Springer, Heidelberg (2005)

8. Duckham, M., Mason, K., Stell, J., Worboys, M.: A formal approach to imper-
fection in geographic information. Comput. Environ. Urban Syst. 25(1), 89–103
(2001)

9. Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary cache: a scalable wide-area
web cache sharing protocol. In: IEEE/ACM Transactions on Networking, pp. 254–
265 (1998)

10. Golle, P., Partridge, K.: On the anonymity of home/work location pairs. Pervasive
Comput. 5538, 390–397 (2009)

11. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through
spatial and temporal cloaking. In: Proceedings of the 1st International Conference
on Mobile Systems, Applications and Services, pp. 31–42. ACM (2003)

12. Fidge, C.J.: Timestamps in message-passing systems that preserve the partial
ordering. Aust. Comput. Sci. Commun. 10(1), 56–66 (1988)

13. Krumm, J.: Inference attacks on location tracks. In: LaMarca, A., Langheinrich,
M., Truong, K.N. (eds.) Pervasive 2007. LNCS, vol. 4480, pp. 127–143. Springer,
Heidelberg (2007)

14. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21, 558–565 (1978). doi:10.1145/359545.359563

15. Langheinrich, M.: Privacy by design principles of privacy-aware ubiquitous sys-
tems. In: Abowd, G.D., Brumitt, B., Shafer, S.A.N. (eds.) Ubicomp 2001. LNCS,
vol. 2201, pp. 273–291. Springer, Heidelberg (2001)

16. Leguay, J., Lindgren, A., Scott, J., Friedman, T., Crowcroft, J.: Opportunistic
content distribution in an urban setting. In: Proceedings of the 2006 SIGCOMM
Workshop on Challenged Networks, pp. 205–212. ACM (2006)

17. Mattern, F.: Virtual time and global states of distributed systems. In: Workshop
on Parallel and Distributed Algorithms (1988)

18. Mokbel, M., Chow, C., Aref, W.: The new casper: query processing for location
services without compromising privacy. In: Proceedings of the 32nd International
Conference on Very Large Data Bases, pp. 763–774. VLDB Endowment (2006)

19. Tang, K.P., Keyani, P., Fogarty, J., Hong, J.I.: Putting people in their place:
an anonymous and privacy-sensitive approach to collecting sensed data in loca-
tion based applications. In: SIGCHI Conference on Human Factors in Computing
Systems, vol. 8, pp. 93–102. ACM (2006)

http://dx.doi.org/10.1145/359545.359563

Parallel Implementation of GC-Based MPC
Protocols in the Semi-Honest Setting

Mauro Barni1, Massimo Bernaschi2, Riccardo Lazzeretti1(B),
Tommaso Pignata1, and Alessandro Sabellico2

1 Information Engineering and Mathematical Science Department,
University of Siena, Siena, Italy

barni@dii.unisi.it, {riccardo.lazzeretti,pignata.tommaso}@gmail.com,
2 Institute of Applied Computing, National Research Council of Italy, Rome, Italy

{massimo.bernaschi,a.sabellico}@gmail.com

Abstract. Parallel computing offers the chance of improving the effi-
ciency of Garbled Circuit technique in multi-party computation pro-
tocols. We propose two different types of parallelization: fine-grained,
based on the parallel evaluation of gates, and coarse grained, based on
the parallelization of macro-blocks. To analyze the efficiency of paral-
lel implementation, a biometric scenario, having an intrinsically parallel
nature, is considered. Moreover our approach is compared to previous
works by using a privacy preserving implementation of AES encryption.
We show that both fine-grained and coarse-grained solutions provide sig-
nificant runtime improvements. Better results are obtained by the coarse-
grained parallelization, which, however, can be exploited only when the
same block is used more than once in parallel, whereas fine-grained par-
allelization can be applied to any garbled circuit.

Keywords: Parallel computing · Multi-party computation · Signal
processing in the encrypted domain · Garbled circuits

1 Introduction

Rapid technological advances in multi-party signal processing have given rise to
a variety of new signal processing applications for which security aspects can no
longer be dealt with by classical cryptographic methods. The classical security
model is targeted toward protecting the communication of two trusted parties
against a potentially malevolent third party. In such cases, it is sufficient that
secure cryptographic primitives are applied on top of transmission and processing
modules. In an increasing number of applications, however, the classical security
model is no longer adequate since at least one of the parties involved in the
communication, distribution or processing of the data may not be trustworthy.

Multi-Party Computation (MPC) provides a clever way to process data with-
out revealing any details about the data itself during the processing. When
the to-be-processed data is a signal [11,20], MPC is customarily referred to as

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 66–82, 2014.
DOI: 10.1007/978-3-642-54568-9 5, c© Springer-Verlag Berlin Heidelberg 2014

Parallel Implementation of GC-Based MPC Protocols 67

S.P.E.D. (Signal Processing in the Encrypted Domain), since signal protection
is usually achieved by encrypting the signals and processing them in encrypted
form. Possible applications of MPC are virtually endless. For example, a data-
base server may be untrustworthy [1], creating the need to hide the content
of queries to the database server, while still allowing the query to be resolved.
As another example, we may consider a remote diagnosis service [4,21], where
a non-trusted party is tasked with processing sensitive medical data without
leaking the private data of the patient (including the diagnosis results). The
use of MPC for biometric identification and access control is also gaining pop-
ularity since it permits to protect the privacy of the biometric owners in client
server applications. Many types of biometries have been addressed in S.P.E.D.
analysis, including: face recognition [10], fingerprinting identification [2,3], iris
identification [23], etc. Besides the scenarios already outlined, we also recall user
preferences [12], watermarking [9], digital rights management [14].

In a two-party computation (2PC) protocol, two players, usually referred
to as Alice and Bob, are interested in cooperating to evaluate a given public
function z = f(x; y), where x and y are the inputs owned by Alice and Bob
respectively, and where neither Alice nor Bob wants to disclose her/his inputs
to the other party. At the end of the protocol, the output will be available to
one party between Alice and Bob, or to both of them. Yao’s Garbled Circuits
theory (GC) [30,31] is one of the most used approaches to private computing.
In its seminal work, Yao showed that any polynomial size functionality f(·) can
be evaluated privately in a constant number of rounds, with polynomial com-
munication and computational overhead. GC allows the evaluation of the binary
circuit implementing f(x, y) on input bits privately owned by Alice and Bob, so
that the final result is available to one of them (or both), whereas intermedi-
ate values cannot be discovered by any of the parties. Yao’s protocol has long
been thought to be of theoretical interest only due to its complexity. However,
recent works have shown several ways to improve GCs efficiency, making them
usable even in practical scenarios. Parallel evaluation of circuits is surely one
of such methods, however even though it is known that GC can benefit from
parallelization, no benchmark analysis has been provided before.

In this paper we describe two ways whereby parallel computing can signifi-
cantly improve the GC efficiency. Parallel computing has been used in scientific
applications for decades in fields like fluid dynamics, material science, weather
forecasts. Recently, due to the difficulties of further reducing the clock rate of the
processors, all CPU vendors are investing, for the sake of better performance, on
multi and many-core architectures, so parallel processing is becoming common
practice in many other fields. Due to specific features of GC, briefly recalled in
Sect. 2, parallel processing of GC requires a paradigm that entails an overhead
as limited as possible for the management of parallel tasks.

Related Work. Several implementations of GC have been already proposed, start-
ing from Fairplay [24], FairplaySPF [27], Tasty [15], etc. To the best of our knowl-
edge, currently, the most efficient implementation in the semi-honest setting is
the one presented in [16].

68 M. Barni et al.

Recently also some parallel implementations have been proposed. In [29],
GPU is used for parallel implementation of specific operations needed by the
GC protocol, whereas [13] uses GPU processors for GC implementation in the
malicious setting.

Our Contribution. In this paper we demonstrate that GC can take advantage of
parallel computation, especially when the representation of the required func-
tionality results in a very large circuit. We address two different types of paral-
lelization: the first one, fine-grained parallelization, is based on the parallelization
of the single gates composing a circuit, while the second one, coarse-grained par-
allelization, is based on macro-blocks parallelization. The proposed solutions are
evaluated by running them on multi-core processors. In particular, we resort to
threads for parallel processing of GC since they run very efficiently on modern
CPUs and offer all the synchronization mechanisms required to prevent race con-
ditions in the evaluation of GC. For our tests a biometric identification scenario
has been chosen, for its high parallel nature. Moreover, to compare our results to
previous implementations, a privacy preserving implementation of AES encryp-
tion [8] has been tested as well.

Outline. In Sect. 2 the basis of the GC scheme is presented; in Sect. 3 we present
our parallel implementations, whose application to privacy preserving biometric
scenarios and AES encryption is presented in Sect. 4, together with the obtained
results and a security analysis. Finally some conclusions are provided in Sect. 5.

2 Preliminaries

Garbled circuit (GC) is an elegant method for secure function evaluation of
boolean circuits. The general idea of GCs, going back to Yao [30,31], is to encrypt
(garble) each wire and gate with a symmetric encryption scheme.

Yao’s Protocol. At a high-level, Yao’s GC protocol works as follows: in the setup
phase, the constructor (Bob) generates an encrypted version of the function f

(represented as boolean circuit), called garbled circuit f̃ . To that purpose, he
assigns to each wire wi of f two randomly chosen garbled values w̃0

i , w̃1
i (sym-

metric keys) of t bits each (security parameter set equal to t = 80 for short-term
security), that correspond to the respective values 0 and 1. Note that w̃v

i does
not reveal any information about the plain value v as both keys look random.
Then, for each gate of f , the constructor creates helper information in form of a
garbled table T̃i that allows to decrypt only the output key from the gate’s input
keys. Each table is used to find the correct value of the output wire of the gate
given a specific value on each of the garbled gate’s input wires. By expressing
the functionality of a given gate as γ = G(α, β), where α ≈ {0, 1} and β ≈ {0, 1}
are the input wires of the gate while γ ≈ {0, 1} is the gate’s output wire, then
the garbled computation table is a random permutation of Ew̃α

(
Ew̃β(w̃γ|check)

)

for all the four possible input pairs, (α, β), using some symmetric encryption

Parallel Implementation of GC-Based MPC Protocols 69

function Ekey(·) and appending a check sequence to the garbled output that
helps the identification of the correct row.

The garbled circuit f̃ , consisting of the garbled tables generated from the
gates, is sent to the evaluator (Alice). Later, in the online phase, Alice obliviously
obtains the garbled values x̃ and ỹ corresponding to the plain inputs x and y of
Alice and Bob, respectively. To convert a plain input bit yi of Bob into its garbled
version, Bob simply sends the key ỹyi

i to Alice. Similarly, Alice must obtain the
garbled secret x̃xi

i corresponding to her input bit xi, avoiding that Bob learns
xi. This can be achieved by running, possibly in parallel, for each bit xi of x, a
1-out-of-2 Oblivious Transfer (OT) protocol [25]. OT is a cryptographic protocol
taking as input Alice’s choice bit b = xi and Bob’s strings s0 = x̃0

i and s1 = x̃1
i .

The protocol guarantees that Alice obtains only the chosen string sb = x̃xi
i while

Bob learns no information on b = xi. Afterwords, Alice evaluates the garbled
circuit f̃ on x̃, ỹ by evaluating the garbled gates one-by-one decrypting the rows
of the associated tables, where the correct decryption is identified by the check
sequence. Finally, Alice obtains the corresponding garbled output values z̃ which
can be decrypted into the corresponding plain output z = f(x, y).

OT implementation. To efficiently implement OT, the following techniques are
used:

Pre-computing OT [6] allows moving computation and communication bur-
den to the setup phase, where both parties run the OT protocol on random
inputs. This makes secrets generation independent from circuit execution. Then,
in the more time-critical online phase, Alice and Bob use those random inputs
to mask their real inputs with a one-time pad. OT secrets, that have been pro-
duced in the offline phase, are “consumed” by retrieving them from the files,
where they have been stored by the offline generator procedure. The same secret
is never used twice in the same or other circuits.

Extending OT efficiently [17] allows for the reduction of the computation
complexity during the setup phase by replacing n parallel OTs of t-bit-strings
with t parallel OTs of t-bit strings performed in the opposite direction, followed
by other computations that extends the number of OT.

Implementation over elliptic curves permits the implementation of efficient
OT protocols, evaluating n parallel OTs of α-bit strings, implemented efficiently
with the protocol of [25] over elliptic curves. The use of elliptic curves allows to
perform operations on and transmit shorter cyphertexts with respect to group
Zn. Unfortunately the computation complexity of the protocol increases, but
the communication complexity reduction results in a significant decrease of the
execution time, since communication between parties is a critical component of
the execution.

Optimized GCs. While Yao’s GC formulation does not take into account the
problem of the efficiency, many improvements have been proposed in the last
years. The principal improvements can be summarized as follows.

First of all for efficient implementation of GC, a random oracle H(·) is
used. It is usually instantiated with a suitably chosen cryptographic hash

70 M. Barni et al.

function such as SHA-256 [26]. Hence symmetric encryption of the gate rows is
performed as

Ew̃α

(
Ew̃β(w̃γ|check)

)
= (w̃γ|check) → H(w̃α|w̃β|s) (1)

where s is a gate identifier.
The point and permute technique [24] allows the evaluator to decrypt directly

the correct row, resulting in a double advantage: only a single call to the encryp-
tion function for each gate is needed during evaluation and the check sequence is
no longer necessary, reducing the dimension of the garbled tables. The idea is to
associate a single permutation bit χi ≈ {0, 1} to each wire i. The garbled value
associated to the wire is w̃i|ci, where ci = bi → χi. Each row of the garbled table
is hence computed as (w̃γ|cγ) → H(w̃α|w̃β|s) and the rows of the garbled tables
are permuted according to the input permutation bits. In such a way, during
evaluation, the correct row is directly selected by observing cα and cβ.

Another important improvement is the free-XOR technique [19]. Garbled
XOR gates require no garbled table and negligible computation. A global key
Δ is randomly chosen and the secrets for each wire i are generated so that
w̃i

1 = w̃i
0 → Δ. The output wire of a XOR gate having input wires α and β is

computed as (w̃γ|cγ) = (w̃α|cα) → (w̃β|cβ).
Finally Garbled Row Reduction [28] can also be used to reduce the size of

non-XOR gates by eliminating a row in each garbled table, resulting in a ∞ 25%
reduction of non-XOR gate garbling, transmission and evaluation times.

Our implementation. To evaluate the benefits provided by parallel evaluation,
we implemented our version of GC tools. Our C++ implementation of Garbled
Circuits relies on the object-oriented paradigm to guarantee reusable code and
consistent modules interaction. absence does not compromise the comparison
between the sequential GC implementation and the parallel implementations.

We consider that by using the extending OT technique, blocks of 1 million
OTs are precomputed and stored, so that when a given number of OT are evalu-
ated online, the same number of precomputed OTs are picked, used and removed
from the memory. In our implementation we evaluate ∞200000 offline OTs in a
second. It is important to underline that we consider the function f that Alice
and Bob are going to jointly evaluate, to be known before they have the input
values, hence garbling and garbled circuit transmission can also be performed in
the setup phase.

3 Circuit Parallelization

As mentioned above, many recent works have improved the efficiency of GC.
Hereafter, we demonstrate that the evaluation of GC can also take advantage
from parallel execution. Parallel processing can be used for both OT, where bits
are independent from each other, and processing of those gates that, depending
on the circuit, can be garbled/evaluated in any order.

Parallel Implementation of GC-Based MPC Protocols 71

With respect to other GC implementations, in OT parallelization, we have
parallelized secrets generation, by computing multiple bits at the same time and
the protocol used to securely exchange secrets, the Bellare-Micali protocol [7],
whose computation is divided in offline and online phases. Gate parallelization
strongly depends on the characteristics of the to be evaluated function, so a flex-
ible and low-overhead parallelization technique is required. Threads fulfill both
requirements: on multi-processor or multi-core systems, they can concurrently
be assigned to each processor or core running a thread of the same process (or
task) and the time required to create and synchronize them is much lower with
respect to standard processes. Threads are supported at both language (e.g.,
Java) and operating system level (pthreads in Unix-like OS and winthreads in
Windows). In the present work we resort to pthreads programmed in C++ and
the resulting GC evaluation engine runs seamlessly under Unix and Mac OS.
Porting to Windows is possible simply by replacing the calls to pthreads with
invocation of winthreads primitives.

Two different kinds of parallelization are considered: fine-grained, corre-
sponding to classic parallelization of single gates evaluation and our new sub-
division of the circuit into layers, where with layer we intend a subset of the
circuit’s gates that can be evaluated independently from other gates by Gar-
bler and Evaluator; and coarse-grained, considered here for the first time where
macro blocks composing the circuit are parallelized. Inside each macro block,
gates can again be evaluated in parallel.

3.1 Fine-Grained Parallelization

In fine-grained parallelization, the gates of the circuit are subdivided into layers,
such that all the gates in the same layer can be evaluated in parallel. No special
attention is needed during circuit design, that is performed as usual. Later, the
circuit is parsed, so that the gates are sorted to ease the parallel execution. The
gates connected only to input wires are placed in layer 0. Then the gates having,
at least, one input wire coming from a gate in layer 0 are placed in layer 1. The
procedure is then iterated on all the gates, placing a gate having input wires
obtained as output from two gates respectively already in layers i and j, in layer
max(i, j)+1. In the end of the scanning procedure, all the gates of the circuit are
grouped in layers. Almost contemporaneously to us, a similar scheme for gate
parallelization has been proposed also in [13], although their target platform are
the Graphics Processing Units (GPU).

It is important to underline that the sorted circuit can be garbled and evalu-
ated sequentially or by using threads that permit the parallel elaboration of gates
in the same layer. This permits a sequential execution from a single core system,
while in multi core systems, to prevent from incurring in a slow down caused by
an insufficient work load for each thread, there is a minimum number of gates per
thread that can be executed in parallel. If the number is lower than the threshold
the execution is serialized. If we indicate with Δt the time that can be saved by
running the level in parallel, we have the condition Δt = St − (Pt + C) > 0 if

72 M. Barni et al.

St − Pt > C where Pt is the execution time in parallel, St is the serial execu-
tion time and C is the overhead introduced by the management of the threads
(creation, synchronization, etc.).

Having different garbling/evaluation procedures, we analyze separately the
parallelization of XOR gates and non-XOR gates. Thanks to [19], circuits are
designed to reduce the number of non-XOR gates and, as a result, XOR gates
are usually the most common gate type (e.g., in our circuits 74 %, on average).
As expected, the computational burden necessary to execute them is less than
that required by other gates. Nevertheless for large circuits there is such a high
number of XOR gates per level to justify parallelization on this phase. As a
matter of fact, we obtain a good speedup when executing in parallel XOR gates
for large circuits. Non-XOR gates are generic gates that can have an arbitrary
number of inputs and any truth table (usually plain gates are often used to
execute AND, OR operations with 2 inputs). That class of gates has a major
impact on computation time since, for each gate, it is necessary to cipher its truth
table associated to the possible secrets’ combinations on inputs. The ciphering
requires the execution of a SHA-256 hash function and several XOR operations
on the gate secret inputs. For non-XOR gates we have parallelized only the
creation and the ciphering of the truth table. This is in charge of the Garbler
that afterward sends the result through the communication channel. NOT gates,
that can be also evaluated for free, are not very expensive in computational
terms and also relatively few even for large circuits. As a consequence, we did
not develop a parallel procedure for the execution of NOT gates.

In our solution we resort to CPU threads for parallelization since the grain of
the computation hardly justifies the usage of hundreds of relatively slow cores
like those available in a GPU. CPU threads have a very low creation overhead
and can be managed in a dynamic way depending on the features of the circuit
under evaluation (i.e., the number of gates in each layer).

3.2 Coarse-Grained Parallelization

A macro block parallelization presents many advantages, but requires some sub-
stantial changes in the protocol. The possibility of dividing a circuit in blocks
makes the circuit representation easier, since the developer can design and test
small parts of the circuit. Moreover, there is no need to repeat the design of
identical parts of the circuit, as often happens in protocols where the same oper-
ation is repeated on different inputs. Finally this solution reduces the overhead
introduced by thread management, since, while in fine-grained parallelization in
each layer a thread is created and then destroyed for each gate, here a thread is
created for groups of gates.

To design a circuit by using macro blocks it is necessary to define also secret
inputs and outputs, besides the classical evaluator and garbler inputs and out-
puts. A secret input is a sequence of bits, obtained as output from another macro
block, that can not be revealed to either the garbler and the evaluator. In prac-
tice, secret inputs/outputs are used to connect different blocks. Obviously, in
the design phase, particular attention must be paid to the dimension of secret

Parallel Implementation of GC-Based MPC Protocols 73

inputs and outputs to avoid inconsistency problems. For a good design, it can
be useful to handle the evaluator and garbler input association phase by using
one or more blocks that accept plain inputs and return the associated secrets.

During garbling it is important to use the same global key Δ for all the
circuits, then garbling is performed as usual, paying attention to the pair of input
secrets. Obviously, if the same macro-block is used more than once in the circuit
(with different secret inputs), each instance needs to be garbled independently
from the others, because, as usual, if the same garbled circuit is evaluated twice
with different inputs, the security of the protocol is compromised. Garbling of
macro blocks that can be processed in parallel is assigned to different threads.

Evaluation is performed as usual, the only change consists in the requirement
of storing the secrets obtained as outputs of a block to assign them to the inputs
of another block. Macro blocks that can be evaluated in parallel are assigned to
different threads.

Even if blocks evaluated in parallel can be different, when the same block
is garbled/evaluated multiple times in parallel, the operations performed by the
threads can be driven together, because they perform the same operation on
different values. Beyond the easy design and the parallelization, this solution
results in another, non negligible, advantage: the file containing the description
of a macro block that is garbled/evaluated multiple times in parallel is read only
once, reducing the memory load.

4 Analysis

To provide an analysis of the benefits introduced by the parallel evaluation we
consider a biometric matching problem and AES encryption of a large amount
of data. For both scenarios, we compare the sequential implementation to the
parallel implementations (fine-grained, coarse grained and coarse-grained with
fine-grained parallelization inside the blocks). We show how the results change
as a function of the number of available threads and the time needed by each
phase of the computation. Finally we provide a security analysis of the two
implementations.

4.1 Iris Identification

As first example, we consider the iris identification protocol proposed in [23],
modified so that the final result is the index of the best match, if exceeding a
given threshold, instead of a simple answer that specifies if the tested biometry
is in the database or not. The parameters are chosen according to the original
paper and their values are specified during the description.

In such protocol, the biometric server, Bob, has an iris gallery which stores
the iris features {X1, . . . , Xn} of n = 1023 members. Xi is a binary vector
denoted as (xi,1, . . . , xi,α), where α = 2048. The user, Alice, provides a probe
q = (q1, . . . , qα) and evaluates the GC which produces a match if there exists at

74 M. Barni et al.

least an i ≈ {1, . . . , n} such that d(q,Xi) < ε for a similarity threshold ε. d(q,Xi)
is a modified Hamming Distance (HD) defined below:

d(q,Xi) :=
D(q,Xi)

M(q,Xi)
=

||(q ⊗ Xi) ∩ maskq ∩ maskXi ||
||maskq ∩ maskXi ||

, (2)

where ≡ denotes XOR, ∼ AND, and || · || the norm of the binary vector; maskq

and maskXi
are the corresponding binary masks that zero out the unusable

portion of the irises due to occlusion by eyelids and eyelash, specular reflections,
boundary artifacts of lenses, or poor signal-to-noise ratio. Considering that masks
do not disclose sensitive information about the subjects, as demonstrated in [23],
a common mask can be used. Mask filtering is performed in the plain domain
on all the irises by Alice and Bob and together they can compute the distances

d′(q,Xi) :=
HD(mask(q),mask(Xi))

||CM || , (3)

where HD(·) denotes the Hamming distance and mask(·) is the masking function
with the common mask, identified by CM .

At this point, given an acceptance threshold ε, the index of the best match
can be obtained as arg min(ε, {d→(q,Xi)}n

i=1). If the return value is equal to 0
there is no match. We underline that, for simplicity, we can reformulate the
problem as

arg min(||CM || ε , {HD(mask(q),mask(Xi)}n
i=1). (4)

The protocol can be implemented by the circuit shown in Fig. 1, where the
Hamming distance is computed by XOR gates between the two inputs and a
COUNTER circuit [5], whereas the argMIN tree is implemented as in [18]. The
circuit is composed by approximately 6.3 millions of gates, 1.1 millions of which
are non-free gates.

While fine-grained parallelization is applied on a single circuit implementing
Fig. 1, segmented in 356 layers, coarse-grained parallelization needs subdivision
into sub-blocks. We can identify the following blocks, whose composition is shown
in Fig. 2:

− n Garbler input interfaces for Bob’s iris templates, each one converting one
α-bit long input in α t-bit long secrets;
− 1 Evaluator input interface for Alice’s iris template query, converting one α-bit
long input in α secrets;
- 1 Garbler input interface for acceptance threshold ε, converting one ⇐log2 α←-bit
long input in ⇐log2 α← secrets;
− n Hamming distances, each one having 2 inputs composed by α secrets and 1
output composed by ⇐log2 α← secrets;
- 1 argMIN tree, having n inputs represented with ⇐log2 α← secrets and returning
an index represented with ⇐log2 n + 1← bits (output interface is included in the
block).

Parallel Implementation of GC-Based MPC Protocols 75

Hamming
distance

Hamming
distance

Hamming
distance

Hamming
distance

MIN MINMIN

∈ CM ∈ ε

mask(q)

mask(X1) mask(X2) mask(X3) mask(XN)

MIN

min index

argMIN TREE

Fig. 1. Iris identification scheme.

Hamming
distance

Hamming
distance

Hamming
distance

Hamming
distance

∈ CM ∈ εmask(q) mask(X1) mask(X2) mask(X3) mask(XN)

min index

Garbler
input

interface

Evaluator
input

interface

MIN
level 1

MIN
level 1

MIN
level 1

MIN
level log2 N

Garbler
input

interface

Garbler
input

interface

Garbler
input

interface

Garbler
input

interface

Fig. 2. Block subdivision of iris identification scheme for coarse-grained parallelization.

The index of the best match is obtained by a reverse argMIN tree having
⇐log2 n + 1← levels and n + 1 inputs, where the input0 is the threshold and
the inputi is the output of the i-th Hamming distance. The i-th level (i =
0 . . . ⇐log2 n + 1← − 1) is composed by ⇐ n+1

2i+1 ← MIN blocks. Each MIN selector
circuit in level 0 outputs the secret relative to the minimum value together with

76 M. Barni et al.

even
inputs

odd
inputs

inN−1 inN−2

pos|min

in0in1

1N/2

inN−1

0|inN−1

MIN
level i

pos|min

note:
N = n+1

2i+1 MIN
level i

false MIN
level i

inN−2 inN−3

pos|min

in0in1

1(N − 1)/2

MIN
level i

pos|min

MIN
level i

(N − 1)/2 + 1

Fig. 3. Subtree level composition

a secret related to a bit signaling whether the minimum value is in the left (1)
or in the right (0) input. The other MIN selector circuit in the tree has two
input values coming from the two sub-trees connected to their inputs. These
values are composed by the highest sub-tree’s input and the relative position in
the sub-tree. The MIN selector circuit outputs the secrets corresponding to the
highest value concatenated with the subtree index, preceded by a bit assuming
the value 0 whether the output comes from right subtree or 1 if it comes from
left subtree. In such a way, we obtain the relative index of the new sub-tree.
The MIN circuit in the final level outputs the plain index to Alice, Bob or both.
Considering that the input bitlength changes at each level, a different circuit has
to be described for each level. It is important to note that if in a level the number
of k inputs is odd, we need k/2 MIN selectors, but if k is even, (k − 1)/2 max
selectors are needed. In the second case the last value needs to be propagated to
the next level and the bit 0 has to be concatenated. This can be done through
a false MIN selector circuit, as shown in Fig. 3. Hence in a level i each MIN
block has 2 inputs represented by ⇐log2 α← + i secrets and 1 output represented
by ⇐log2 α← + i + 1 secrets. The final MIN block (level ⇐log2 n + 1← − 1) differs
from the others because its output is composed by ⇐log2 n + 1← bits.

It is important to note that all the sub-circuits placed in the same level
in Fig. 2 (input interfaces, HDs, MINs of level i) can be evaluated in parallel.
Moreover only a description file for each block type is necessary.

We suppose that server and client perform garbling, OT precomputation and
transmission of the garbled circuit offline, to provide the most efficient compu-
tation when real data is available. As already mentioned, OT precomputation
is performed by using the OT extension protocol that, in our case, performs

Parallel Implementation of GC-Based MPC Protocols 77

Table 1. Runtimes (in seconds) of iris identification protocol by using sequential imple-
mentation (S), fine-grained (FG) parallelization, coarse-grained parallelization (CG),
or both. 8 cores have been used in parallel implementations.

Phase S FG CG CG+FG
O

ffl
in

e Garbling 9.772 3.475 2.175 1.860
OT Prec. 0.010 0.010 0.010 0.010
Garbled table Tx 1.701 1.314 0.036 0.690

O
n
li
n
e Bob’s secret Tx 0.338 0.378 0.130 0.158

Alice’s secret Tx 0.002 0.003 0.002 0.002
Evaluation 3.437 2.899 1.019 1.765

∞1.000.000 OTs offline in abount 5 s, hence the OT precomputation runtime
reported in the table is the portion of the time referred to 2048 OTs (the same
implementation is used for all the solutions). Tests have been performed on a sys-
tem with two Intel Xeon E5-2609@2.4 GHz with 10 Mbytes of cache and 16 Gbyte
of RAM connected to a Fast Ethernet network (100 Mb/s.). Each ES-2609 has
four cores, hence the total number of available cores is eight.

Table 1 shows the different implementation runtimes needed for each element
of the protocol when 8 threads are used (except for sequential implementation).
During the offline phase the same OT precomputation protocol has been used
for all the solutions. We can easily observe that all the parallel solutions provide
better runtimes with respect to the sequential solution. As expected, the par-
allelization of the single gates introduces a management overhead greater than
the one introduced by macroblock parallelization. On the other hand, the use of
gate parallelization inside parallelized macroblocks produces worst results with
respect to the coarse-grained parallelization, but the solution is still preferable
than fine grained parallelization.

Figure 4 shows the offline, online and total runtimes of the different imple-
mentations as a function of the number of threads. We can see that the perfor-
mance increase with the number of threads, especially in the solutions that rely
on coarse grained parallelization having a trend that is inversely proportional
to the number of threads used. Indeed the results are affected by the number
of cores available and their turnover due to the system inactivity time. We can
observe that, having 8 cores, there is no more improvement if more than 16
threads are used.

4.2 AES Encryption

As a second test case, we evaluate our solution on the commonly used circuit for
oblivious 128 bit AES encryption1 [8]. This circuit is often used as benchmark
in MPC implementations for boolean functions, due to its relatively random
1 Boolean circuit description kindly provided by Benny Pinkas, Thomas Schneider,

Nigel P. Smart and Stephen C. Williams.

78 M. Barni et al.

Fig. 4. Iris execution times.

Table 2. Runtimes (in seconds) of AES encryption protocol by using sequential imple-
mentation (S) and fine-grained (FG) parallelization. 8 cores have been used in parallel
implementations. We run Huang et al. implementation in the same hardware used for
our tests.

Phase S FG Huang et al.

O
ffl

in
e OT Prec. 0.001 0.001 0.540

Garbling 0.133 0.082
0.898

Garbled table Tx 0.039 0.044

O
n
li
n
e Bob’s secret Tx 0.000 0.000 0.038

Alice’s secret Tx 0.013 0.002 0.086
Evaluation 0.066 0.017 0.311

structure and large size. The idea is to encrypt a value known by Alice by using
an encryption key known by Bob.

Parallel Implementation of GC-Based MPC Protocols 79

AES AES AES

block0 block1 blockn−1encryption
key k

AESk(block0) AESk(block1) AESk(blockn−1)

Fig. 5. Two-party computation of 128-bit AES on large amount of data.

Fig. 6. Multiple AES execution times.

Here we are interested to compare our sequential and fine-grained implemen-
tations to the one described in [16]. The obtained results are shown in Table 2.

For a single AES implementation, macroblock parallelization cannot be used,
anyway fine-grained parallelization guarantees better results than sequential
implementation. To compare our solution to other implementations, we run
Huang et al. code [16] on the same computer used for our tests, obtaining results
worse than ours. Again we can also observe that fine-grained parallelization offers
better performance than serial execution.

To extend our analysis, we used the AES circuit as a block in a coarse grained
parallelization of a circuit encrypting more than 128 bits provided by Alice by
using the 128 bit encryption key of Bob, as shown in Fig. 5.

For our tests we imagine to encrypt a gray-scaled image of size 256 × 256
pixels, hence n = 4096 AES encryption blocks are evaluated in parallel by using
coarse-grained parallelization. Considering that associating a secret to an input
available on the evaluator side is more expensive than associating a secret to an
input available on the garbling side, Alice, having 256 × 256 × 8 input bits, acts
as garbler, whereas Bob, having 128 input bits, acts as evaluator. In Fig. 6 we
can observe the offline, online and total runtime of the protocol. As expected,
parallel evaluation of AES blocks provides a significant improvement, confirming
again that runtime decreases as ∞ 1/threads and by using 16 threads each AES
takes less than 4 ms online.

80 M. Barni et al.

4.3 Security Analysis

Parallel processing of single gates does not compromise the security of the proto-
col. As a matter of fact, the view of Alice and Bob in the fine-grained paralleliza-
tion is equal to the one (except for the different order) obtained in the classical
implementation. Coarse grained parallelization produces many GCs from a small
number of description files that are combined to evaluate a more complex func-
tionality. Again the view of Alice and Bob is equal to that obtained by evaluating
a single larger garbled circuit in the common sequential implementation. Hence,
being the security for Yao’s protocol in the semi-honest model demonstrated in
[22], also security of parallel implementations is granted.

5 Conclusions

In this paper we have shown that parallel processing can significantly improve
the efficiency of Garbled Circuit technique in multi-party computation proto-
cols. Two different types of parallelization have been proposed. Fine-grained
parallelization allows the parallel evaluation of any garbled circuit processed to
identify layers containing independent gates that can be evaluated concurrently.
Coarse grained parallelization is based on the parallelization of macro-blocks and
can be used whenever the same block is evaluated in parallel on different data.

The efficiency of the parallel implementations has been analyzed by address-
ing a biometric scenario, having an intrinsic parallel nature, and AES encryption.
We demonstrated that both fine-grained and coarse-grained solutions provide
significant runtime improvements. Macroblock parallelization is preferable when
allowed by the intrinsic nature of the application, such as in a biometric identifi-
cation scenario, otherwise gate parallelization can be used. The joint use of both
techniques, by evaluating in parallel macroblocks, whose gates are still processed
in parallel, results in a slight improvement.

Considering the results provided in this paper, efficient circuits for parallel
GC evaluation could have different shapes with respect to circuits for classical
sequential GC. By using coarse-grain parallelization a circuit designer is no more
focused on the development of a whole optimized circuit, but to design blocks
that can be evaluated in parallel, even if some gates can be superfluous. In fine-
grained parallelization, even if reducing the number of non-XOR gates is still
important, sometimes circuits with more gates can be evaluated more efficiently
than others if they are characterized by a high level of parallelization. For exam-
ple, having 8 threads available, the parallel evaluation of 4 gates can be more
efficient than the sequential evaluation of only two gates. An accurate analysis
of this issue is left for future research.

To extend our analysis, we are interested to apply our solutions to Garbled
Circuits in a malicious setting and running the protocols on GPUs.

References

1. Agrawal, R., Srikant, R.: Privacy-preserving data mining. ACM Sigmod Rec. 29(2),
439–450 (2000)

Parallel Implementation of GC-Based MPC Protocols 81

2. Barni, M., Bianchi, T., Catalano, D., Di Raimondo, R., Donida Labati, R., Failla,
P., Fiore, D., Lazzeretti, R., Piuri, V., Piva, A., Scotti, F.: A privacy-compliant
fingerprint recognition system based on homomorphic encryption and fingercode
templates. In: IEEE Fourth International Conference on Biometrics: Theory, Appli-
cations and Systems, BTAS 2010 (2010)

3. Barni, M., Bianchi, T., Catalano, D., Di Raimondo, R., Donida Labati, R., Failla,
P., Fiore, D., Lazzeretti, R., Piuri, V., Piva, A., Scotti, F.: Privacy-preserving
fingercode authentication. In: 12th ACM Workshop on Multimedia and Security,
MM&Sec 2010 (2010)

4. Barni, M., Failla, P., Lazzeretti, R., Sadeghi, A.-R., Schneider, T.: Privacy-
preserving ECG classification with branching programs and neural networks. IEEE
Trans. Inf. Forensics Secur. 6(2), 452–468 (2011)

5. Barni, M., Guajardo, J., Lazzeretti, R.: Privacy preserving evaluation of signal
quality with application to ECG analysis. In: Second IEEE International Workshop
on Information Forensics and Security, WIFS 2010 (2010)

6. Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO
1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995)

7. Bellare, M., Micali, S.: Non-interactive oblivious transfer and applications. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, Heidelberg
(1990)

8. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-The Advanced Encryption
Standard. Springer, Heidelberg (2002)

9. Deng, M., Bianchi, T., Piva, A., Preneel, B.: An efficient buyer-seller watermarking
protocol based on composite signal representation. In: Proceedings of the 11th
ACM Workshop on Multimedia and Security, pp. 9–18. ACM (2009)

10. Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.:
Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS
2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009)

11. Erkin, Z., Piva, A., Katzenbeisser, S., Lagendijk, R.L., Shokrollahi, J., Neven,
G., Barni, M.: Protection and retrieval of encrypted multimedia content: when
cryptography meets signal processing. EURASIP J. Inf. Secur. 2007, 17 (2007)

12. Erkin, Z., Veugen, T., Toft, T., Lagendijk, R.I.: Generating private recommenda-
tions efficiently using homomorphic encryption and data packing. IEEE Trans. Inf.
Forensics Secur. 7(3), 1053–1066 (2012)

13. Frederiksen, T.K., Nielsen, J.B.: Fast and maliciously secure two-party computa-
tion using the GPU. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R.
(eds.) ACNS 2013. LNCS, vol. 7954, pp. 339–356. Springer, Heidelberg (2013)

14. Barni, M., Lazzeretti, R., Orlandi, C.: Processing encrypted signals for DRM
applications. In: Hartung, F., Kalker, T., Lian, S. (eds.) Digital Rights Manage-
ment: Technology, Standards and Applications. CRC Press, Boca Raton (2013, To
appear)

15. Henecka, W., Kögl, S., Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: TASTY: tool
for automating secure two-partY computations. In: ACM Computer and Commu-
nications Security (CCS’10), pp. 451–462 (2010). http://www.trust.rub.de/tasty/

16. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: USENIX Security Symposium. http://MightBeEvil.org
(2011)

17. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

http://www.trust.rub.de/tasty/
http://MightBeEvil.org

82 M. Barni et al.

18. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: How to combine homomorphic
encryption and garbled circuits. In: Signal Processing in the Encrypted Domain-
First SPEED Workshop-Lousanne, 100 p. (2009)

19. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building
blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji,
A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg
(2009)

20. Lagendijk, R.L., Erkin, Z., Barni, M.: Encrypted signal processing for privacy
protection: conveying the utility of homomorphic encryption and multiparty com-
putation. IEEE Signal Process. Mag. 30(1), 82–105 (2013)

21. Lazzeretti, R., Guajardo, J., Barni, M.: Privacy preserving ECG quality evaluation.
In: Proceedings of ACM Workshop on Multimedia and Security (MM&SEC). ACM
(2012)

22. Lindell, Y., Pinkas, B.: A proof of YAO’s protocol for secure two-party
computation. J. Cryptology 22(2), 161–188 (2009). Preliminary version at
http://eprint.iacr.org/2004/175

23. Luo, Y., Samson, S.C., Pignata, T., Lazzeretti, R., Barni, M.: An efficient protocol
for private iris-code matching by means of garbled circuits. In: Special Session on
Emerging Topics in Cryptography and Image Processing, International Conference
on Image Processing (ICIP) (2012)

24. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay – a secure two-party com-
putation system. In: USENIX Security Symposium (Security’04). http://www.cs.
huji.ac.il/project/Fairplay (2004)

25. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: ACM-SIAM Sym-
posium on Discrete Algorithms (SODA’01), pp. 448–457. Society for Industrial and
Applied Mathematics (2001)

26. NIST. US Department of Commerce, National Institute of Standards and Tech-
nology (NIST): Federal Information Processing Standard Publication 180–2,
Announcing the SECURE HASH STANDARD (August 2002). http://csrc.nist.
gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

27. Paus, A., Sadeghi, A.-R., Schneider, T.: Practical secure evaluation of semi-
private functions. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D.
(eds.) ACNS 2009. LNCS, vol. 5536, pp. 89–106. Springer, Heidelberg (2009).
http://www.trust.rub.de/FairplaySPF

28. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009)

29. Pu, S., Duan, P., Liu, J.-C.: Fastplay–a parallelization model and implementation
of smc on cuda based gpu cluster architecture. Technical report, Cryptology ePrint
Archive, Report 2011/097, 2011 (2011)

30. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science, pp. 160–164 (1982)

31. Yao, A.C.: How to Generate and Exchange Secrets. In IEEE Symposium on Foun-
dations of Computer, Science (FOCS’86), pp. 162–167 (1986)

http://www.cs.huji.ac.il/project/Fairplay
http://www.cs.huji.ac.il/project/Fairplay
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

Privacy Analysis of a Hidden Friendship
Protocol

Florian Kammüller1(B) and Sören Preibusch2

1 Middlesex University, London, UK
f.kammueller@mdx.ac.uk

2 Microsoft Research, Cambridge, UK
spr@microsoft.com

Abstract. Friendship relations are a defining property of online social
networks. On the one hand, and beyond their cultural interpretation,
they sustain access control mechanisms and are privacy-enhancing by
limiting the proliferation of personal information. On the other hand,
the publicity of friendship links is privacy-invasive. We outline a dis-
tributed authentication protocol based on hidden friendship links that
has been suggested in earlier work. We then investigate its formalisation
and, using model-checking, we carry out a mechanised analysis of the
protocol that enables the revision and rectification of the earlier version.
We thus demonstrate more generally how model-checking and epistemic
logic can be used for the detection of privacy and security vulnerabilities
in authentication protocols for social networks.

1 Introduction

In this paper, we present a formal analysis of a protocol that offers the possibil-
ity to declare friendships for social network as hidden. This protocol has been
designed by one of the authors [PB09]. Friendship lists conform to the friend
of a friend (FOAF) ontology [FOA10,BM10] a machine readable description
of persons, their activities and their relations to other people and objects. In
social networks users advocate and promote own and others’ networks. There-
fore, public lists of friends – FOAF lists – are published on social networks
sites. Friendship relations can have a negative impact on privacy since inference
about unpublished friendship links becomes possible if a linked friend publishes
personal information.

In a distributed environment, like social networks without a central control,
the security control over these FOAF lists cannot be guaranteed by a centralized
unit but should be self-administered. This motivates a distributed procedure and
format to specify lists of friends and control access and distribution of those.
Users may publish public lists of friends themselves but for privacy it is necessary
that also hidden friends are available to validate communications. The paper
[PB09] suggests a solution to this problem by proposing a public key based
protocol. Public and hidden friendship relations can be encoded uniformly in

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 83–99, 2014.
DOI: 10.1007/978-3-642-54568-9 6, c© Springer-Verlag Berlin Heidelberg 2014

84 F. Kammüller and S. Preibusch

one public FOAF file with no need to serve different friends lists based on the
credentials a requesting client presents.

However, further analysis of the friendship protocol shows there are possibil-
ities to undermine the security and privacy that is intended to be granted by it.
We provide a formal analysis of this protocol using the modelchecker MCMAS
for belief logic that is well suited for this kind of tasks as it can model knowledge
of principals involved in a protocol.

Often protocols are only secure within certain given boundaries and under
certain strong assumptions. These assumptions need to be verified again in a
new scenario like social networks since privacy is an issue there and has not
been a central concern in classic security protocols. Verification techniques for
classic security protocols, i.e., formal modeling and automated verification, are
likely to be beneficial in this new scenario. Formal specification of security proto-
cols leads naturally to a mechanical analysis with model-checking tools. Security
protocols are a good application area for this technology providing analysis and
re-engineering possibilities, e.g. [KMPS12]. Fewer case studies exist for privacy
related protocols and also more generic security scenario analysis, e.g. insider
threats [KP13]. The current work adds to the body of work exploring the bound-
aries of such formal analyses.

In this paper, we investigate the hidden friendship protocol for social net-
works for security and privacy vulnerabilities (Sects. 2 and 3). We expose a replay
attack on the originally proposed protocol enabling illicit data access. The tech-
nique we are using for the analysis is a specific extension of classic model check-
ing given by the modelchecker MCMAS [LQR09] which implements a so-called
epistemic logic of beliefs (Sect. 3.2). Epistemic logic quite naturally gives rise to
expressing privacy in social networks because we can formally express that some
outsider, like the intruder, does not know certain facts like hidden friendship
relations (Sect. 4). A mechanised verification using MCMAS reveals that the
intruder I can successfully impersonate legitimate friend B encoded in a FOAF
list; moreover, privacy is violated in proximity to this attack (Sect. 5). We are
able to patch the security weakness by requiring further authentication steps.

2 The Hidden Friendship Protocol

2.1 Hidden Friendship Relations Increase Privacy Doubly

Friendship relations are a defining property of online social networks [BP09];
they empower users to create links with fellow members on the network. Besides
their (culture-dependent) social interpretation, these friendship links also sustain
higher-level access control mechanisms. Private photo collections or extended
profile information can be specified to be inaccessible, but for a member’s friends.
In restricting access to user-generated content, friendship relations are privacy
enhancing.

Typically, friendship relations are a canonical type of relationship, poten-
tially refined into more specialised forms of links, such as kinship or romantic
relationships. Online social network operators often have a business interest in

Privacy Analysis of a Hidden Friendship Protocol 85

making a member’s ties to other users public. Whilst some networks provide
their members with the ability to configure whether and to whom their list of
friends should be visible, the global market leader Facebook abolished the abil-
ity to hide one’s list – provoking harsh criticism [Fac09]. As a result, the social
graph of this network has now become practically world-readable.

In addition to auser’s profilewith self- and foreign-generated content, her group
membership and friendship relations are a most valuable resource for extracting
information from a network. The codified and consciously self-established nature
of friendship links allows for easy extraction and useful mining in an automated
manner. From a marketer’s perspective, friendship links are helpful in identifying
opinion-leaders and potential lead-users. There is also an understanding that
socio-demographics propagate along links and allow to infer blank attribute values
such as a user’s nationality or age with high confidence [ZG09].

Friendship relations can have a negative impact on privacy since inference
about unpublished friendship links becomes possible if a linked friend publishes
personal information. Hidden friendship relations mitigate this dual privacy
nature as they allow selective hiding of one’s connections [PB09]. A hidden
friendship relation is understood to carry the same rights for the two parties
involved as does a public friendship relation. The difference is that knowledge of
the existence of this friendship link is confined to the friends alone. The require-
ment of symmetry and the desire for reflexivity will be assumed for public and
hidden friendship relations alike.

Repeatedly articulated concerns from a network’s user base following changes
in their friends’ lists visibility settings are an indicator online users actually want
to decide for themselves how visible their cliques are (Fig. 1 and [Fac09]). As
another example, prior to an overhaul of the MySpace profile pages [MyS08], all
member pages displayed the complete list of friends. As a result, a plethora of
stylesheet (CSS) snippets was available from third-parties to visually hide one’s
friends – without actually removing it from the HTML markup.

Whilst it is conceptually easy to implement selectively hidden friendship rela-
tions in a centralised online social network such as today’s mainstream Web plat-
forms, the implementation becomes less straightforward when moving towards
a distributed social network without a superordinate body to provide authen-
tication and enforce access controls. In a centralised network, the operator is
typically aware of a user’s credentials who has previously logged in. These can
be matched against permission settings defined by other users and equally stored
on this central server. Hidden friendship relations then becomes an issue of deliv-
ering request-specific views on a user’s list of friends; a hidden friendship link
will not be included in the list unless it involves the requesting party.

Contribution. This first application of epistemic logics to online privacy and
security scenarios demonstrates, how existing software engineering techniques
can uncover and heal potential vulnerabilities in social access control protocols.
To the best of our knowledge, we pioneer model-checking for protocol verification
in the context of privacy on the social and semantic Web.

Attacker Model. We assume Dolev-Yao channels, that is all communication
channels can be overheard, messages intercepted, and new fake messages sent.

86 F. Kammüller and S. Preibusch

0

500

new front-page
launched

public friends lists
announced plus

follow-up

Fig. 1. Number of comments solicited by postings on the editorial blog of a medium-
sized German social network operator over the entire year 2006. Two subsequent post-
ings announcing friends lists will be publicly visible by default attracted 195 and 225
comments respectively. A similarly controversial topic had only been the relaunch of
the frontpage of the social network.

The latter point includes what is commonly known as spoofing: messages can be
sent with fake sender addresses. An attacker has a finite ability to store messages
and files. We also assume that untrustworthy people can join the social network,
that is, attackers are normal members of the social network. Moreover, we assume
secure keys and the usual cryptographic infrastructure for distributed systems
as described next.

2.2 Self-Published Lists of Friends in Decentralised Architectures

In a truly distributed scenario, there will be no central authority to store and
manage authorisation credentials, and neither will it be possible to rely on such
a centralised body to authenticate users. Whilst distributed scenarios appeal
per se as they provide stronger privacy and allow users to remain in control
of their digital assets [Fed11], design for distributed access control is also a
pragmatic approach. On the move, mobile device users may be unable to connect
to a central server when connectivity is unavailable or prohibitively expensive,
including opportunity costs such as latency. Users shall be able to grant and to
deny access to resources locally, without having to delegate to a central service.
Notwithstanding, users may wish to delegate subsequent authorisation requests.
A typical application would be spontaneous encounters during which media files
are shared between portable devices.

Privacy Analysis of a Hidden Friendship Protocol 87

We envision a usage scenario for hidden friendship relations that does not
rely on a central authority for authentication and authorisation. All the same, we
do not deny there is an infrastructure of centrally provided commodity services
such as email providers, Web hosters, cloud storage, certificate authorities, and
connections to which may be established opportunistically. Also, we assume that
fundamental Internet infrastructure such as a domain name system are available
and can be relied upon.

In a peer-to-peer environment, friendship links shall be encoded in self-
published lists of friends. Any given user should be able to draft a list of her
friends and publish it as a resource on the Web, under a given URL. We envi-
sion that a user’s existing personal information management infrastructure, such
as Outlook, may act as a tool and data source to generate such a public list of
friends. Entries in the public list of friends would then correspond to contact
details in the private database, where more information may be held. On the
semantic Web, the FOAF standard [FOA10] has emerged as a machine-readable
format for publishing profile information about oneself along with links to FOAF
files from other people, marked as friends.

We envision deployment for situations like the following: Alice and some close
colleagues are having an after-work party at the pub. She wants to share photos
with them she has shot during a recent hike. Access should be limited to people
Alice lists in her FOAF file. Colleagues she has listed will find that their mobile
devices can retrieve the media files from Alice’s camera directly via Bluetooth.
To protect their privacy (and her own), Alice has decided not to list some of her
contacts under their real names but to hide their identity so that others will not
become aware of their relationship. From this point of view, hidden friendship
relations can also be seen as an analogy to the BCC recipient header in emails.

2.3 Lists of Friends Encode Secret and Public Friendship Relations

The FOAF standard describes a vocabulary one can use to describe oneself and
people as well as things (in a broad sense) one is connected to in an XML
document. In the wild, FOAF files exhibit a range of depth regarding the degree
of detail the author has gone into. An example of a FOAF file is presented at the
end of this section. FOAF files can be merged into more comprehensive FOAF
files by matching the data items published across these different files concerning
the same person or thing.

To leverage the potential of FOAF as a single contact and profile base data
repository, we expect that public and hidden links to other people will be stored
in the same public FOAF file. The difference in visibility is semantic rather than
presentational or syntactic. This unified storage opens the route for uniform
treatment of both links, although some restrictions remain.

To emphasise the conceptual level of the hidden friendship protocol and to
abstract from the various rendering formats for the same semantic information,
we will subsequently use a condensed notation for FOAF files instead of an
XML-like syntax.

88 F. Kammüller and S. Preibusch

<?xml version="1.0" encoding="utf-8"?>

<rdf:RDF xmlns:rdf=

"http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:foaf="http://xmlns.com/foaf/0.1/"

xmlns:dc="http://purl.org/dc/terms/">

<foaf:PersonalProfileDocument rdf:about=""

dc:available="2013-02-15T13:00Z"

dc:issued=2013-02-15T13:00Z">

<foaf:primaryTopic rdf:resource="#soeren" />

<dc:creator rdf:resource="#soeren" />

<foaf:maker rdf:resource="#soeren" />

<dc:source rdf:resource=

"http://preibusch.de/projects/hidden-friends/

samples/soeren.foaf" />

</foaf:PersonalProfileDocument>

<foaf:Person rdf:ID="soeren">

<foaf:name>Soeren Preibusch</foaf:name>

<foaf:title>Mr</foaf:title>

<foaf:mbox rdf:resource=

"mailto:spr@microsoft.org"/>

<foaf:homepage rdf:resource= "http://preibusch.de/"/>

<foaf:knows><foaf:Person>

<foaf:name>Alice Allington</foaf:name>

<foaf:mbox>aallington@example.com</foaf:mbox>

</foaf:Person></foaf:knows>

<foaf:knows><foaf:Person>

<foaf:name>Bob Burnsteen</foaf:name>

<foaf:mbox>bburnsteen@example.com</foaf:mbox>

</foaf:Person></foaf:knows>

<foaf:knows><foaf:Person>

<foaf:nick>UwKjv2KIV4FFWoB827G7</foaf:nick>

</foaf:Person></foaf:knows>

<foaf:knows><foaf:Person>

<foaf:nick>VIlYvMmw8viTZdfEMIGW</foaf:nick>

</foaf:Person></foaf:knows>

<foaf:knows rdf:ID="Dg3SloiNr5X6UFfIOqLP" />

<foaf:knows rdf:resource=

"mailto:F.Kammueller@mdx.ac.uk"/>

</foaf:Person>

</rdf:RDF>

Privacy Analysis of a Hidden Friendship Protocol 89

3 Protocol Steps

3.1 Notation for Formal Verification

Users A, B, C and so forth engage in public and hidden friendship relations.

Intruder I, different from the users noted above, will try to impersonate them
to fraudulently access restricted resources by misusing their credentials.

FOAF files noted foaf , will be published by users. The original author of a
FOAF file will be noted in subscript, so that foafA will be A’s FOAF file. A
user’s FOAF file is made up by profile information about the author, which will
be condensed to an identifier or name, nameA for simplicity. More generally,
such an identifier could be a URI, such as an email address, as suggested by the
FOAF specification.

Friend entries in FOAF files are an unordered set made up of users’ names such
as nameC (in the case of public friendship relations) and of tokens that do not
reveal the identity of the respective hidden friend, noted KB→A for a token in
foafA produced by B and sent to A to be recorded for later authentication of
B to A.

Points in time will be referred to as R|t which denotes the resource R such as a
FOAF file at the time t. We may write foafA| t0 to refer to A’s FOAF file at
the time t0 which may evolve to foafA| t1.

We will use the compact notation

foafA = (nameA, t, {nameC , nameD,KB→A})

for A’s FOAF file published at time t that lists her public friends C and D as
well as the token KB→A provided by B as a hidden friend. The time-stamp t is
to be read as the date this FOAF file was published (i.e. made available online
for public retrieval) rather than the time it was actually retrieved.

The listing shown in Sect. 2.3 shows a sample FOAF file which will be used
as a demonstration example. Using the condensed notation, this file can be
represented as

foafS = (“Soeren Preibusch”, "2013-02-15T13:00Z",
{“Alice Allington”, “Bob Burnsteen”,KX→S ,KY →S , . . . })

with X and Y being hidden friends who only the author of this FOAF file knows
(besides X and Y , respectively).

Note that for both hidden and public friendship links, there are varying
levels of verbosity: combining different semantic Web technologies, RDF and the
more specialised vocabulary FOAF in this case, equivalent semantic links may
be encoded differently.

Cryptographic Assumptions. We assume a public key infrastructure, i.e. pub-
lic/private key pairs are available to all principals. The hidden friendship entries

90 F. Kammüller and S. Preibusch

KA→B are public keys of A for the friendship with B. The corresponding private
key is written as K−1

A→B . For public and private key we assume that they are
inverse functions, i.e., for any number n we have that K−1

A→B(KA→B(n)) = n.

3.2 Establishing a Hidden Friendship Relation

Establishing a hidden friendship relation according to the procedure described
in [PB09] is depicted in the Figs. 2 and 3.

Fig. 2. A creates key pair KA→B , K
−1
A→B sending former to B while keeping the latter

in his secret storage [PB09]. Public friends are not shown here.

(i) A and B want to share some media files privately.
(ii) B sets up foafB under urlB , listing C and D as public friends:

foafB = (nameA, t2, {nameC , nameD})
(iii) B becomes a hidden friend with A by putting the friendship-specific public

key KA→B into her foafB . Prior to that, B has received this KA→B from
A who has just generated a new key pair when the hidden friendship was
set up (see Fig. 2). It is A that holds the corresponding private key K−1

A→B

in its secret data storage. Dually, A herself replicates this expansion of her
FOAF file with KB→A sent to her by B as is depicted in Fig. 3. We now
have

foafB = (nameB , t3, {nameC , nameD,KA→B})

and A’s friendship list contains KB→A which A received from B. A holds
K−1

A→B , B holds K−1
B→A. The FOAF files foafA and foafB are publicly

readable with all their content therein.

3.3 Using a Hidden Friendship Relation

We consider now the case where B wants to retrieve media from A with whom he
has a hidden friendship relation according to [PB09]. The state when B makes
his request is described by foafA and foafB , established as described above.

(iv) B wants to retrieve media from A. In making a request for it, he sends along
foafB which contains nameB and KA→B .

Privacy Analysis of a Hidden Friendship Protocol 91

Fig. 3. B creates pair KB→A, K
−1
B→A sending former to A while keeping the latter in

his secret storage [PB09].

(v) A receives B’s request and extracts nameB from it.
(vi) A then applies her secret key K−1

A→B to verify KA→B . On success, B will
be granted access to the file.

4 Temporal and Epistemic Logics

Verification in computer science has two major challenges: abstraction and
automation. Abstraction is necessary to make properties of models decidable.
Many properties of reactive systems are most naturally expressed using some
notion of time. Temporal logics – enabling the statement like “at some time in
the future a certain event occurs” are a particularly well suited abstraction to
express many system properties. The expressivity of temporal logics has found
newborn attention since the advent of model checking as a primary method for
mechanical verification.

Security protocol verification is one of the almost legendary application fields
for model checking since Gavin Lowe has found an attack on the Needham-
Schroeder protocol using the FDR model-checker [Aug95]. It is remarkable, how-
ever, that the FDR does not primarily use temporal logics. There, protocols are
rather abstracted as sequential processes (in CSP) communicating according
to the protocol description, principals synchronizing by incoming or outgoing
messages. Messages encode communication content and enable verification of
cryptographic assumptions.

In the very early days, the BAN logic already used the idea of establishing
“knowledge” of the principals in a protocol session in order to analyse whether
a protocol achieved its goal by inferring whether a principal “believes” in the
authenticity of his partner [BAN90]. The BAN logic implements protocol engi-
neering knowledge in a logical framework in an ad hoc manner but there are
also logical foundations for belief logics. Besides temporal logics, there are other
so-called modal logics that feature knowledge or belief as their modal operator:
epistemic logics [Sta06]. Equal to other modal logics, the world is modelled as a
directed graph over states. Epistemic logic additionally has a set of agents whose
knowledge is defined by the propositions of each world. The modal operators,

92 F. Kammüller and S. Preibusch

K (for “knows”) and B (for “believes”), quantify propositions over agents, for
example M,w ≈ K(A, p) means in world w → M agent A knows p. The formula
is interpreted, similar to the universal A operator in CTLα, as: p holds in w and
all possible worlds w∞ that may be reached from w.

Most interestingly for us, epistemic logics are a useful logical model for com-
puter science. As Cohen and Dams show [CD07] they can naturally be employed
to reason in a complete way about notion of indistinguishability that are at
the heart of many modern security analyses. Observational equivalence, agent
semantics based on history identity, and most prominently information flow the-
ory can be axiomatised [Dam11]. Not surprisingly, BAN and its successor SVO
can be embedded in epistemic logics [CD07].

Moreover, epistemic logics can be verified by model checking [LQR09] – as
one might guess by its resemblance to other modal logics. Another reason why
epistemic logic is well suited – as we will point out in the following section – is
that the focus of security protocols slightly shifts when they are used for privacy.

Epistemic logic quite naturally gives rise to expressing privacy in social net-
works because we can formally express that some outsider, like the intruder,
does not know certain facts like relationships between principals.

The epistemic logic model checker MCMAS, http://www-lai.doc.ic.ac.uk/
mcmas/, contains an expressive subset of CTLα augmented with epistemic logic.
Thereby, temporal properties may be specified together with properties contain-
ing “knows” statements. For example, we can express that if Bob has connected
to Alice then the Intruder knows that Alice and Bob are hidden friends.

BconnectedA -> K(Intruder, AknowsB);

The evident advantages lie first of all in the natural expression of the privacy
related statements. Second, as sketched below, we can also express the “lack”
of knowledge by formalising that an intruder does not know x. For example, we
can express that the Intruder does not know about Alice’s and Bob’s hidden
friendship if they do not communicate.

AG(!BconnectedA -> !K(Intruder, AknowsB));

4.1 Protocol Modelling for the Epistemic Model Checker MCMAS

For mechanised verification, we turn the protocol flow from Sect. 3.2 into a
MCMAS model (see listing shown in Sect. 2.3), with A and B as well as an intruder
I as agents—the atom in MCMAS for a participant in a protocol. In Fig. 4 the
specification of the actor for Alice and Bob are shown and explained in the follow-
ing. The full MCMAS source code of our model is available at https://sites.google.
com/site/floriankammueller/home/resources/hidden friendship mcmas.ispl.

The protocol steps for A and B – called Alice and Bob in the model – and
their state evolution are given in Fig. 4. Agent progress through the protocol is
described by the Evolution sections. State variables such as access (declared
under Vars) are assigned new values (e.g. true) conditional upon the truth of

http://www-lai.doc.ic.ac.uk/mcmas/
http://www-lai.doc.ic.ac.uk/mcmas/
https://sites.google.com/site/floriankammueller/home/resources/hidden_friendship_mcmas.ispl
https://sites.google.com/site/floriankammueller/home/resources/hidden_friendship_mcmas.ispl

Privacy Analysis of a Hidden Friendship Protocol 93

Fig. 4. MCMAS model for the original protocol flow: agent definitions for Alice and
Bob, and Environment. Environment allows using global state.

94 F. Kammüller and S. Preibusch

an appended predicate (if . . .) over the agent’s own and its communication
partner’s state variables and actions.

Which actions are valid at any given protocol step are defined in the Protocol
section and depends on the agent’s own state and on the observables of the
environment it is embedded in. The agent called Environment is a standard
construction in MCMAS that allows to share state variables between agents.
The following section considers the attack properties that we can express on this
model and that MCMAS can proof automatically for us.

5 Attacks on the Hidden Friendship Protocol

There are two attacks on the hidden friendship protocol: a security attack, during
which the intruder tries to break the access control mechanism built on top of the
friendship relations; a privacy attack, during which the intruder learns who the
involved parties of a hidden friendship are. The security attack and the privacy
attack are closely intertwined.

5.1 Security Attack: Breaking the Access Control

We will consider a security attack successful when an intruder I fraudulently
impersonates a friend of A and thereby gains access to restricted resources of
A that A had not intended for I. It corresponds to the breach of the protocol
requirement that only friends should get access.

A mechanised verification using MCMAS reveals that the intruder I can
successfully impersonate the legitimate requester B.

Intuitively, A bases her authorisation decision on receiving the name and
the hidden friendship token by a valid user, but the token is world-readable
and A does not verify that this name is indeed authentic. I can successfully
impersonate B by simply replaying B’s foafB . The entry in the foafB is the
public key KA→B but it does not carry any proof that this key belongs to B
or I.

The intruder can observe the exchange of foafA and foafB as we assume
a Dolev-Yao model in which all communication channels are visible. This is
insufficient to get neither of KA→B nor KB→A since these are not identifiable
in a FOAF file without the corresponding secret key. However, this does not
matter. Although the intruder cannot identify the precise key KA→B , he knows
that the key is contained in foafB. Therefore, he can just replay the foafB to
A and thereby get access.

The MCMAS source code for the agent Intruder is contained in Fig. 5. We
introduce the following central propositions to later express attack goals.

IhiddenfriendA if Intruder.IwithA = true;

BconnectedA if (Bob.currentconnection = alice);

AadmittedB if (Alice.currentpermission = accesstoB);

AknowsB if (Alice.currentpermission = accesstoB and

Bob.currentconnection = alice);

Privacy Analysis of a Hidden Friendship Protocol 95

Fig. 5. Agent definition for the intruder.

The security attack can be checked by the following assertions that are all
checked true when applying the MCMAS tool to the model.

EF(IhiddenfriendA);

AF(BconnectedA -> IhiddenfriendA);

AF(AadmittedB -> IhiddenfriendA);

The security attack shows that it is possible for the Intruder to become a friend
with Alice. It also shows that if B has connected to A or if A had admitted B
access, then this attack will always be successful.

To heal this vulnerability of the hidden friendship protocol [PB09], we need
to introduce authentication when B wants to access A. Sending foafB and thus
proving possession of the dedicated public key KA→B is not sufficient in the
presence of a Dolev-Yao attacker as we have seen in the attack.

Instead, requester B could present proof that he knows the private key K−1
B→A

that corresponds to KB→A (and thereby proving his identity) by generating a
fresh signature with it. We propose to amend the fourth step of the protocol, i.e.
step (iv) in Sect. 3.3. Instead of

B ∞ A| t1 : (nameB , t0, {KA→B}) = foafB

we shall have:

B ∞ A| t1 :
(
nameB , t0,K

−1
B→A (t1) , {KA→B(KS)})

= foafB .

When A receives this request she uses the key KB→A in her foafA received from
B in the Establishment phase (see Sect. 3.2) to first restore the time stamp

KB→A(K−1
B→A (t1)) = t1

96 F. Kammüller and S. Preibusch

and then verify its timeliness, i.e., |t1 − current time| ≡ α where α is a threshold.
The threshold α must be chosen such that it admits reasonable latency in dis-
tributed systems while being small enough to exclude successful observation and
replay by an Intruder. Assuming synchronised clocks this simple authentication
mechanism authenticates B to A and avoids the replay attack within the bound-
aries of reasonable assumptions, e.g. times for threshold α. After authentication,
A’s data must be encrypted with session key KS before allowing B the down-
load. The session key KS has been communicated to A in a form only readable
to A by encrypting it with the public key KA→B in B’s possession.

5.2 Privacy Attack: Breaking the Secrecy of Hidden Friendship
Relations

We will consider a privacy attack successful when an intruder I achieves to learn
nameB from KB→A. It corresponds to the breach of the protocol requirement
that knowledge about who participates in a hidden friendship relation should be
kept to them.

There are two possible scenarios for I to learn the identity of A and B.
First, by monitoring updates in foafA and foafB to correlate the additions of
KB→A and KA→B respectively; second, by iteratively removing KX→B entries
from foafB during replay to A (i.e., the security attack), to observe which entry
corresponds to KA→B .

The first attack variant does not scale and it also fails if I misses some of the
updates in the FOAF files or is unable to correlate them. This could happen if
I records too few or too many updates, some of the latter may be deliberately
introduced noise. The second attack variant requires prior knowledge whom to
target. The set of potential hidden friends must be small. Further, the intruder
has to mount the attack in both directions, identifying both KB→A and KA→B

to successfully learn the identity of the users.
In summary, both attack variants require a history of FOAF files that can be

diff’ed. Diffing cannot be represented in a modelchecker like MCMAS. Because
MCMAS is a CTL model-checker, it supports boolean expressions to construct
temporal formulae, but it does not allow temporal operators within the former.
That is, one cannot write (foafAlice hBA = false) and X((foafAlice hBA
= true)) in MCMAS, to specify that an intruder has observed a change in the
FOAF files as it happened. Instead, we specified that I piggy-backs the security
attack, with X knowsY to be true iff X is hidden friend with Y .

BconnectedA -> K(Intruder, AknowsB);

AadmittedB -> K(Intruder, AknowsB);

AG(!BconnectedA -> !K(Intruder, AknowsB));

As soon as I is able to observe interactions between A and B, the intruder
necessarily breaches the privacy of their relationship. However, the intruder is
not necessarily successful, because it could be impossible for him to observe
the required anterior interactions. The above properties are all checked true

Privacy Analysis of a Hidden Friendship Protocol 97

automatically by MCMAS with respect to the specification given in the previous
section. The last one is also a sanity check that the model is not trivial: the
original idea of protecting hidden friendships by anonymous public keys does
work unless a life connection between two hidden friends is observed by a Dolev-
Yao attacker.

Although potential hidden friends can conceal and encrypt their communica-
tion, their FOAF files are necessarily public. Safeguards against aforementioned
attacks are therefore limited to classical authentication mechanisms. For large
populations, the privacy attack would be beyond our threat model as it requires
powerful means of surveillance.

6 Conclusions and Perspectives for Discussion

Hidden friendship relations provide means to ground access control on recip-
rocally stated interpersonal relationships without revealing the identity of the
partners. Implementation in centralised infrastructures can leverage existing
authentication mechanisms and a global view of access rights. In distributed
scenarios, however, a user’s identity is harder to establish, especially as we focus
on peer-to-peer solutions.

We have provided a more formal statement of the hidden friendship pro-
tocol to make it amenable for automated verification by model checking tools.
MCMAS, a model checker for epistemic logic was chosen as it allows to capture
confidentiality through a modal knowledge operator. As a result of the analy-
sis, we found the previous protocol version [PB09] had been too näıve and was
vulnerable to security and privacy attacks. We were able to patch the security
weakness by requiring authentication and a session key. The privacy weaknesses
were discovered to be a side-effect of the security vulnerability.

Our protocol specification and the subsequent analysis with MCMAS add
to the existing body of model-checking case studies, in particular in the area of
epistemic logics and privacy (as opposed to confidentiality), for which few previ-
ous studies exist. We also demonstrate the usefulness of mechanised verification
for privacy and security in the social and semantic Web.

However, challenges remain. Formalisation of privacy properties turned out
difficult, even with epistemic logic at hand. Regarding the protocol, keeping
the interaction between the two parties minimal is challenging. Also, it remains
to be shown that the extended protocol still allows delegation of authorisation
decisions to third parties such as media hosting services that hold shareable con-
tent on users’ behalf. Eventually, the more sophisticated the features of hidden
friendship, the less likely their implementation and the possibility for unified
management of both hidden an public friendship links.

As a result of the presentation at the workshop some interesting sugges-
tions for future work have been made. A possibility that we plan to address
are comparative formalisations of the extended protocol in the dedicated pro-
tocol analysis tools AVISPA [ABB+05] and ProVerif [BS11]. Both tools sup-
port expression of cryptographic primitives like public key infrastructure and

98 F. Kammüller and S. Preibusch

are suitable to examine the cryptographic extension proposed in the current
paper. Moreover, the ProVerif tool enables the statement of observable equiva-
lence based on bisimulation relations since it is an implementation of the applied
χ-calculus. This additional feature would enable experimenting with a mecha-
nized analysis of privacy properties of the extended version of the protocol.

References

[ABB+05] Armando, A., et al.: The AVISPA tool for the automated validation of
internet security protocols and applications. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg
(2005). http://www.avispa-project.org/publications.html

[Aug95] Lowe, G.: An attack on the needham-schroeder public-key authentication
protocol. Inf. Process. Lett. 56, 131–133 (1995)

[BAN90] Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM
Trans. Comput. Syst. 8, 18–36 (1990)

[BM10] Brickley, D., Miller, L.: FOAF Vocabulary Specification 0.97. Namespace
document, January 2010

[BP09] Bonneau, J., Preibusch, S.: The privacy jungle: on the market for data
protection in social networks. In: The Ninth Workshop on the Economics
of Information Security (WEIS 09), March 2009

[BS11] Blanchet, B., Smyth, B.: ProVerif 1.85: Automatic Cryptographic Protocol
Verifier, User Manual and Tutorial (2011)

[CD07] Cohen, M., Dam, M.: A complete axiomatization of knowledge and cryp-
tography. In: Proceedings of the 22nd IEEE Symposium on Logic in Com-
puter Science (LICS 2007), 10–12 July 2007, Wroclaw, Poland, pp. 77–88.
IEEE Computer Society (2007)

[Dam11] Dam, M.: A little knowledge goes a bit further. invited talk. In: Annual
Meeting of Priority Program RS3 – Reliably Secure Software Systems
(2011)

[Fac09] Facebook. Updates on your new privacy tools (2009)
[Fed11] Federated Social Web Europe. Federated social architectures and proto-

cols, privacy on the federated social web (2011)
[FOA10] FOAF project. The Friend of a Friend (FOAF) project (2010)

[KMPS12] Kammüller, F., Mapp, G., Patel, S., Sani, A.S.: Engineering security
pro tocols with modelchecking – radius-sha256 and secured simple proto-
col. In: International Conference on Internet Monitoring and Protection,
ICIMP’12 (2012)

[KP13] Kammüller, F., Probst, C.W.: Invalidating policies using structural infor-
mation. In: Workshop on Research in Insider Threats WRIT’13 - IEEE
CS Security and Privacy Workshops, SPW (2013)

[LQR09] Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: a model checker for the
verification of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.)
CAV 2009. LNCS, vol. 5643, pp. 682–688. Springer, Heidelberg (2009)

[MyS08] MySpace. Profile 2.0 launch - check it out :) (2008)

http://www.avispa-project.org/publications.html

Privacy Analysis of a Hidden Friendship Protocol 99

[PB09] Preibusch, S., Beresford, A.R.: Establishing distributed hidden friendship
relations. In: Seventeenth International Workshop on Security Protocols
(2009)

[Sta06] Stanford Encyclopedia of Philosophy. Epistemic logic (2006)
[ZG09] Zheleva, E., Getoor, L.: To join or not to join: the illusion of privacy in

social networks with mixed public and private user profiles. In: Proceed-
ings of the 18th International Conference on World Wide Web (WWW
’09), pp. 531–540. ACM, New York (2009)

Anonymous and Transferable Electronic
Ticketing Scheme

Arnau Vives-Guasch1, M. Magdalena Payeras-Capellà2,
Macià Mut-Puigserver2, Jordi Castellà-Roca1(B),

and Josep-Llúıs Ferrer-Gomila2

1 Departament d’Enginyeria Informàtica i Matemàtiques,
Universitat Rovira i Virgili, Av. Päısos Catalans 26, 43007 Tarragona, Spain

{arnau.vives,jordi.castella}@urv.cat
2 Dpt. de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears,

Ctra. de Valldemossa, km 7,5., 07122 Palma de Mallorca, Spain
{mpayeras,macia.mut,jlferrer}@uib.es

Abstract. Electronic tickets demonstrate, without the use of paper, the
possession of an authorization or access to a determined service. In this
scenario, some security requirements must be accomplished. Moreover,
some determined services should guarantee the anonymity of the users
in the system. In addition to these requirements, the transferability of
a ticket from one user to another (without involving a third party) is
useful but also generates other issues to be solved in terms of security, as
several attacks could be performed. In this article we present an electronic
ticketing system with anonymity and transferability based on the use of
group signatures, giving a solution to enable linkability between several
group signatures, and also proving their ownership with the use of Zero-
Knowledge Proofs (ZKPs).

Keywords: E-ticketing · E-commerce · Transferability · Privacy ·
Security

1 Introduction

Information technologies (IT) are being extended progressively in our society.
Users can access online services regardless of place and time. For example, they
can purchase a movie or theater ticket online. Nonetheless, in some cases, they
have to print the ticket to access to the service. In other words, the process is
not completely electronic because a printed ticket is required.

Thanks to the introduction of smartphones, all the processes can be per-
formed electronically. These devices offer a good computation power, high stor-
age capacity, and also different communication technologies, such as Near Field
Communication (NFC). All these features can be available on a small device.
That allows mobility and flexibility and makes the system perfectly suitable for
management, e-ticketing and e-payment schemes [5]. Electronic tickets can be

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 100–113, 2014.
DOI: 10.1007/978-3-642-54568-9 7, c© Springer-Verlag Berlin Heidelberg 2014

Anonymous and Transferable Electronic Ticketing Scheme 101

defined as a representation of the owner’s rights to act as a user of a deter-
mined service, preserving the same requirements as the ones offered in paper
format. We would like to emphasize the following properties: anonymity and
transferability.

In the same way as paper tickets, electronic tickets have different properties
according to the services where they are used. These services can be classified by
the anonymity offered. For instance, a plane e-ticket cannot be anonymous: the
identity of the passenger is a fixed parameter that is part of the e-ticket. In the
e-tickets with revocable anonymity, the beneficiary can use the ticket demon-
strating its possession but without any need of identification. This modality
helps to avoid fraud related to the reuse of e-tickets. E-tickets with non-revocable
anonymity are not linked to a user at all. The user who owns this e-ticket is the
one who can use this service. The verification phase of the e-ticket should check
if it has previously been used. For that reason, we need some kind of centralized
verification. This alternative would not be applied when we are talking about
reusable e-tickets (e.g. monthly tickets), with which many uses can be given by
the same user.

Regarding the transferability property, there are several e-ticket sales and
distribution companies that allow the e-ticket transfer1,2. Nonetheless, the typ-
ical transfers of e-tickets are performed through a central service and are non-
anonymous. Moreover, recent studies in related fields incorporate transferability
as a desired requirement [2,11]. We would like to transfer an electronic ticket in
the same way that we can transfer a paper ticket, i.e. anonymously and without
the participation of a central service. In such system, we should note that we
are giving the rights linked to that ticket to another user when we transfer a
ticket. In some cases, it needs a change in the beneficiary role, because some
service parameters are affected: the right to transfer, the service disposal and
the beneficiary identity. According to the right to transfer, the tickets can be
granted to another user with (resale) or without any counterpart (loan).

We can find new systems using cryptographic techniques that enable the
online e-ticket issue and verification [3,6,8,10,12,13].

These actions are really important if the users purchase the electronic tickets
before their use, and the e-ticket is not able to be used everywhere with an online
connection to a central database. In [13] a recent implementation of electronic
tickets over mobile devices with NFC technology has been performed. Another
example is the InMoDo system (Mobile Phone as a Ticket)3, which has been
adopted by the Swedish national train company, among others.

In some concrete systems, the receiver of an electronic ticket uses smartcards
to carry it. This is the case of Oyster card for public transport in London. This
system was designed in order to make the scanners work independently when
the central system connectivity was down.
1 http://www.ticketmaster.com/transfer
2 https://www.e-ticket.lu
3 http://inmodo.com/

http://www.ticketmaster.com/transfer
https://www.e-ticket.lu
http://inmodo.com/

102 A. Vives-Guasch et al.

1.1 Contribution

A complete survey in this field can be found in [9]. The previous proposals already
analysed use a central service that synchronizes the transfer of e-tickets between
the users and does not allow revocable anonymity. Thus, the main goal of our
contribution is to preserve the security properties of (a) revocable anonymity,
where the identity of users could be only revealed in case of misbehaviour, (b)
transferability, where the electronic tickets can be transferred as a resale or loan
without the collaboration of a central service, and (c) short-term linkability,
where the user can easily demonstrate that she is the same user at both moments
of receiving the ticket and later transferring it. This can be achieved by using
the same cryptographic technique, short-term linkability with group signatures.
By fulfilling these security requirements, they could allow to deploy transferable
electronic ticketing in real scenarios.

1.2 Document Organization

First, Sect. 2 details a brief background explaining the cryptographic techniques.
In Sect. 3, we explain all the system proposal with its desired properties, the
entities and the phases. The security analysis is performed in Sect. 4, and in
Sect. 5, we finally state the conclusions and future work.

2 Background

We use the short group signature (BBS) scheme [1] in order to verify that a user
is a correct member of a certain group of users. Next, we introduce the main
definitions related to the BBS signature, both the group signatures scheme and
the Zero-Knowledge Proof (ZKP) of the group signatures.

2.1 Group Signatures Scheme

In this section we specify the procedures (KeyGenG, SignG, V erifyG, OpenG,
SignLinkableG, V erifyLinkableG) to be further used in the protocol with their
parameters. KeyGenG, SignG, V erifyG and OpenG are constructed from the
same BBS scheme [1]. Both SignLinkableG and V erifyLinkableG have also
been constructed in [7]. Consider bilinear groups G1 and G2 with respective
generators g1 and g2.

Definition 1 The q-Strong Diffie-Hellman problem (q-SDH). Given two
cyclic groups G1 and G2 of prime order p, two randomly chosen generators g1 ≈
G1 and g2 ≈ G2 of their respective groups, with an isomorphism ψ : G2 → G1

where g1 = ψ(g2), the q-SDH problem is a hard computational problem where
the (q+2)-tuple (g1, g2, g

γ
2 , gγ2

2 , ..., gγq

2) ≈ G1 × Gq+1
2 is the input and the pair

(g
1

x+γ

1 , x) ≈ G1 × Zp is the output, for some x ≈ Z
→
p such that x + γ ∞= 0.

Anonymous and Transferable Electronic Ticketing Scheme 103

Definition 2 The Decision Linear Diffie-Hellman problem (DLIN).
Given a cyclic group G1 of order p, and taking u, v, h, ua, vb, hc ≈ G1 as input,
where u, v, h ≈ G1 randomly chosen generators, and random a, b, c ≈ Zp, and
output yes if a + b = c and no otherwise.

Suppose that the SDH assumption holds on (G1, G2), and that the DLIN assump-
tion holds on G1. The scheme uses a bilinear map e : G1 ×G2 → GT and a hash
function H : {0, 1}→ → Z

→
p. The public values are g1, u, v, h ≈ G1 and g2, w ≈ G2.

Here w = gγ
2 for some secret γ ≈ Zp. The functions are:

– KeyGenG(n). This algorithm takes a parameter n as input, which is the
number of members of the group. The algorithm has the following steps:
1. select a random value h

R≡ G1\{1G1} and gmsk = (ξ1, ξ2) where ξ1, ξ2
R≡

Z
→
p, and set u, v ≈ G1 such that uξ1 = vξ2 = h;

2. select γ
R≡ Z

→
p and set w = gγ

2 ; and
3. generate for each user Ui, 1 ∼ i ∼ n, an SDH tuple (Ai, xi) by performing:

select xi
R≡ Z

→
p and set Ai ≡ g

1/(γ+xi)
1 . The parameter γ is the private

master key of the group key issuer.
– SignG(gpk, gsk[i],M). Given a group public key gpk = (g1, g2, h, u, v, w), a

private user’s key gsk[i] = (Ai, xi) and a message M ≈ {0, 1}→, compute and
output a signature of knowledge σ = (T1, T2, T3, c, sα, sβ , sx, sδ1 , sδ2). Note
that the tuple (T1, T2, T3) is the linear encryption of A, that is: (T1, T2, T3) =
(uα, vβ , Ahα+β) for α, β

R≡ Zp. There are also some helper values δ1 ≡ xα
and δ2 ≡ xβ. The parameter c is the self-generated challenge (hash of the
information in the commit information of the proof of knowledge). Finally,
(sα, sβ , sx, sδ1 , sδ2) are the response values of the proof of knowledge.
1. select α, β

R≡ Zp and compute the linear encryption of A: (T1, T2, T3) ≡
(uα, vβ , Ahα+β) together with the helper values δ1 ≡ xα and δ2 ≡ xβ;

2. select rα, rβ , rx, rδ1 , rδ2
R≡ Zp and compute the values R1 ≡ urα , R2 ≡

vrβ , R3 ≡ e(T3, g2)rx · e(h,w)−rα−rβ · e(h, g2)−rδ1−rδ2 , R4 ≡ T rx
1 · u−rδ1 ,

R5 ≡ T rx
2 · v−rδ2

3. compute the challenge: c ≡ H(M,T1, T2, T3, R1, R2, R3, R4, R5)
4. compute the values sj ≡ rj + cj for j ≈ {α, β, x, δ1, δ2}
5. output σ ≡ (T1, T2, T3, c, sα, sβ , sx, sδ1 , sδ2).

– V erifyG(gpk,M, σ). Given a group public key gpk = (g1, g2, h, u, v, w), a
message M and a group signature σ = (T1, T2, T3, c, sα, sβ , sx, sδ1 , sδ2), verify
that σ is a valid signature of the message.
1. re-derive R1, R2, R3, R4, R5: R̃1 ≡ usα/T c

1 , R̃2 ≡ vsβ /T c
2 ,

R̃3 ≡ e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sδ1−sδ2 · (e(T3, w)/e(g1, g2))c,
R̃4 ≡ T sx

1 /usδ1 , R̃5 ≡ T sx
2 /vsδ2

2. checks that c
?= H(M,T1, T2, T3, R̃1, R̃2, R̃3, R̃4, R̃5).

– OpenG(gpk, gmsk,M, σ). This algorithm is used in order to trace a signa-
ture to a concrete signer inside the group. It is only available for the group
manager, as she is the holder of the gmsk master key and knows all the
pairs (Ai, xi). Given a group public key gpk = (g1, g2, h, u, v, w), the group

104 A. Vives-Guasch et al.

master private key gmsk = (ξ1, ξ2), a message M and a signature σ =
(T1, T2, T3, c, sα, sβ , sx, sδ1 , sδ2), it proceeds as follows. First, recover the user’s
A by performing A ≡ T3/(T ξ1

1 · T ξ2
2). If the elements {Ai} of the user’s pri-

vate keys are given to the group manager, then she can look up the user index
corresponding to the identity A recovered from the signature.

– SignLinkableG(gpk, gsk[i],M ∞, σ, α, β). Given a group public key gpk, a pri-
vate user’s key gsk[i], a new message M ∞, a previous signature σ, and the
values α, β used for that signature, compute and output a signature σ∞. In
order to use this procedure correctly, it is defined as follows:
• First use: standard SignG(gpk, gsk[i],M) obtaining a group signature σ

and using (α, β).
• Further uses: SignLinkableG(gpk, gsk[i],M ∞, σ, α, β):

1. use the same pair (α, β) producing the same linear encryption of A as
in the first time: (T1, T2, T3) = (uα, vβ , Ahα+β); and

2. given a message M ∞, sign the message and output a signature σ∞ ≡
(T1, T2, T3, c

∞, s∞
α, s∞

β , s∞
x, s∞

δ1
, s∞

δ2
) where

c∞ ≡ H(M ∞, T1, T2, T3, R
∞
1, R

∞
2, R

∞
3, R

∞
4, R

∞
5) ≈ Zp.

It becomes trivial to verify that several signatures are produced by the same
user, as the information (T1, T2, T3) is public in the same signature. In addi-
tion, the random values (rα, rβ , rx, rδ1 , rδ2) must be different from the previous
times, that is: (rα

∞ ∞= rα, rβ
∞ ∞= rβ , rx

∞ ∞= rx, rδ1
∞ ∞= rδ1 , rδ2

∞ ∞= rδ2) in order not
to reveal information.

– V erifyLinkableG(σ, σ∞). This algorithm takes two signatures σ and σ∞ as
input and outputs true or false depending on whether the signatures have
been produced by the same signer’s pseudonym: (T1

?= T1
∞, T2

?= T2
∞,

T3
?= T3

∞).

2.2 ZKP of the Group Signatures Scheme

In our proposal, both standard and linkable group signatures are used, as they
enable to verify the internal message information as well as to verify that deter-
mined signatures related to the same event or e-ticket belong to the same anony-
mous user. Despite these advantages, the signatures are generated by the same
user, and the verifications can be performed offline, that is, the verifier does
not take a role during the signature generation, so this verification needs to be
performed. Then we detail the procedures ZKPGCommit, ZKPGResponse and
ZKPGV erify:

– ZKPGCommit(M→). This procedure is performed by the user that wants to
demonstrate (prover) to another user (verifier) that she is the right holder of
the ticket. This part is the commitment, the first procedure. Given a public
group key gpk = (g1, g2, h, u, v, w), a group private key for the user gsk[i] =
(Ai, xi) and a signed message M→ = (M,σ) where σ = (T1, T2, T3, c, sα, sβ , sx,
sδ1 , sδ2), it generates the commitment m∞ = (T1, T2, T3, R

∞
1, R

∞
2, R

∞
3, R

∞
4, R

∞
5) as

output.

Anonymous and Transferable Electronic Ticketing Scheme 105

1. we have to demonstrate the ownership of the values (α, β, x, δ1, δ2) that
have been generated by the signature of M→, keeping then the resulting
values with the linear encryption of A: (T1, T2, T3) = (uα, vβ , Ahα+β);

2. the values rα
∞, rβ

∞, rx
∞, rδ1

∞, rδ2
∞ R≡ Zp are selected and then the following

values are generated:
(a) R∞

1 ≡ urα
′
; R∞

2 ≡ vrβ
′
;

(b) R∞
3 ≡ e(T3, g2)rx

′ · e(h,w)−rα
′−rβ

′ · e(h, g2)−rδ1
′−rδ2

′
;

(c) R∞
4 ≡ T rx

′
1 · u−rδ1

′
; R∞

5 ≡ T rx
′

2 · v−rδ2
′
.

3. the output m∞ = (T1, T2, T3, R
∞
1, R

∞
2, R

∞
3, R

∞
4, R

∞
5) is generated.

– ZKPGResponse(m∞, c∞). This procedure is the second part of the ZKP, where
the user responds to the challenge of the verifier given a first commitment.
Given a commitment m∞ where m∞ = (T1, T2, T3, R

∞
1, R

∞
2, R

∞
3, R

∞
4, R

∞
5) and a

challenge c∞ given by the verifier, the prover generates the response s∞ =
(sα

∞, sβ
∞, sx

∞, sδ1
∞, sδ2

∞) where their values are given by: s∞
j ≡ r∞

j + c∞j for
j ≈ {α, β, x, δ1, δ2}

– ZKPGV erify(m∞, c∞, s∞). This part is performed by the verifier to check that
the commitment, challenge and response of the ZKP match. Given a commit-
ment m∞ where m∞ = (T1, T2, T3, R∞

1, R∞
2, R∞

3, R∞
4, R∞

5), a challenge c∞ given
by the verifier, and the response s∞ = (sα

∞, sβ
∞, sx

∞, sδ1
∞, sδ2

∞) provided by the
prover, the verifier checks
1. usα

′ ?= T c′
1 · R∞

1; vsβ
′ ?= T c′

2 · R∞
2;

2. e(T3, g2)sx
′ · e(h,w)−sα

′−sβ
′ · e(h, g2)−sδ1

′−sδ2
′ ?= (e(g1, g2)/e(T3, w))c′ · R∞

3;
3. T sx

′
1 · u−sδ1

′ ?= R∞
4; T sx

′
2 · v−sδ2

′ ?= R∞
5.

3 Description of the System

In this section, we describe our system proposal. First of all, the security require-
ments to achieve are briefly introduced in Sect. 3.1. Then, the details of the
protocol are presented in Sect. 3.2.

3.1 Requirements

We can classify e-ticket requirements into two categories [9]. On the one hand,
we have security requirements, and on the other hand we have functional require-
ments for e-tickets.

The desired main security requirements for our proposal are:

– Authenticity: the generated ticket is demonstrably genuine.
– Non-repudiation: the issuer of the ticket cannot deny its generation.
– Integrity: the ticket cannot be modified after its issue.
– Revocable anonymity: the ticket is anonymous, but if the user performs an

unauthorized use, then it can be identified.
– Short-term linkability: different movements of a same user, although anony-

mous, cannot be traced between them, in order to avoid generation of profiles.
However, a user could demonstrate being the same user in determined move-
ments of a same journey/action, or to demonstrate ownership of an action.

106 A. Vives-Guasch et al.

– Non-overspending: the ticket cannot be used more times than the established
in the issue.

– Transferability: the ticket can be transferred to other users, without losing
any of the requirements previously stated.

The functional requirements considered are the following:

– Validity time: the ticket can be valid until an established time.
– Online/Offline: ticket verification can require (or not) a connection to the

Internet or a centralized system for checking.

3.2 Details of the Protocol

There are three main entities in the system, User (U), Issuer (I) and Service
provider (P), and also a Group Manager MG that only interacts in case of
conflict. There are six phases: Ticket Issue, between I and U ; Ticket Transfer
(first time), between two users U1 and U2; Ticket Transfer (following ‘k’ times),
also between two users U1 and U2; Ticket Verification (standard), between U
and P; Ticket Verification (transferred), also between U and P; and finally the
Revocation of anonymity phase, which is only used in case of conflict, and which
can be called by the Group Manager MG .

Ticket Issue. In this protocol, U receives a valid ticket from I in order to be
later used, or transferred. It works as follows:

1. I generates and sends a random value nα
R≡ Zp;

2. U :
(a) selects the service Sv;
(b) generates V→ = (V, V̂), where V = (Sv, nα, flag issue) and V̂ =

SignG(gpk, gsk[i],V) is the group signature;
(c) sends V→ to I;

3. I:
(a) verifies the group signature: V erifyG(gpk,V, V̂);
(b) generates the ticket information: T = (Sn,V,Ti,Tv,Tc) where the ticket

includes V received from U , Sn as the ticket serial number, Ti as the date
of issue, Tv as the validity time, and Tc as the terms and conditions;

(c) signs the ticket: T→ = SignI(T) where this signature could be a standard
RSA-like signature; and

(d) sends the ticket T→ to U ;
4. U verifies the signature of T→.

Ticket Transfer (First Time). In this protocol, U1 transfers the original
ticket to U2 by giving the permission to use it with a group signature which is
linked to the commitment of the issued ticket V→. It works as follows:

Anonymous and Transferable Electronic Ticketing Scheme 107

1. U1:
(a) generates a commitment mβ0 = ZKPGCommit(T→); and
(b) sends the commitment and the ticket (mβ0 ,T

→);
2. U2:

(a) verifies the information and signature of T→: V erifyI(T→);
(b) verifies the group signature: V erifyG(gpk,T.V,T.V̂);
(c) generates a random value nλ0

R≡ Zp; and
(d) generates the first challenge with the number of transferred times k =

0 and the agreed price for the transfer: cβ0 = H(nλ0 , k = 0, price,
flag transfer) and sends it;

3. U1:
(a) generates the response sβ0 = ZKPGResponse(mβ0 , cβ0);
(b) generates a random value nβ0

R≡ Zp; and
(c) sends (sβ0 , nβ0);

4. U2:
(a) verifies the response: ZKPGV erify(mβ0 , cβ0 , sβ0); and
(b) generates W0

→ = (W0, Ŵ0) where W0 = (nβ0 ,T
→, flag transfer) and its

group signature Ŵ0 = SignG(gpk, gsk[i],W0) and sends it;
5. U1:

(a) verifies the group signature: V erifyG(gpk,W0, Ŵ0); and
(b) generates X0

→ = (X0, X̂0) where X0 = W0
→ and X̂0 is a group signature

which is linkable only to V→:
X̂0 = SignLinkableG(gpk, gsk[i],W0

→, V̂, α, β), and sends it;
6. U2:

(a) verifies the group signature: V erifyG(gpk,X0, X̂0) and
(b) verifies that the two signatures have been performed by the same user:

V erifyLinkableG(T.V̂, X̂0). X0
→ works as a transfer agreement of the

ticket of the user U1 to the user U2.

Ticket Transfer (Following ‘k’ Times). In this protocol, U1 transfers the
(already transferred in the past) ticket Xk−1 to U2 by giving the permission to
use it with a group signature which is linked to the commitment of the ticket
previously received.

1. U1:
(a) generates a commitment mβk

= ZKPGCommit(Xk−1); and
(b) sends the commitment and ticket (mβk

,Xk−1);
2. U2:

(a) verifies the information and signature of T→: V erifyI(T→), the group
signature: V erifyG(gpk,V, V̂), and the linkability of the two group sig-
natures of the beginning of the first transfer:
V erifyLinkableG(X̂0,T.V̂);

(b) for each transfer ⇐i ≈ [0, k), verifies the group signatures
V erifyG(gpk,Xi, X̂i) and V erifyG(gpk,Wi, Ŵi), and checks the linkabil-
ity of V erifyLinkableG(X̂i, Ŵi−1) if i > 0;

108 A. Vives-Guasch et al.

(c) generates a random value nλk

R≡ Zp; and
(d) generates the first challenge: cβk

= H(nλk
, k, price, flag transfer) (with

the price agreed for the transfer) and sends it;
3. U1:

(a) generates the response sβk
= ZKPGResponse(mβk

, cβk
);

(b) generates a random value nβk

R≡ Zp; and
(c) sends (sβ0 , nβ0);

4. U2:
(a) verifies the response: ZKPGV erify(mβk

, cβk
, sβk

); and
(b) generates Wk

→ = (Wk, Ŵk) where Wk = (nβk
,Xk−1, flag transfer) and its

group signature is Ŵk = SignG(gpk, gsk[i],Wk) and sends it;
5. U1:

(a) verifies the group signature: V erifyG(gpk,Wk, Ŵk); and
(b) generates Xk

→ = (Xk, X̂k) where Xk = Wk
→ and X̂k is a group signature

which is linkable only to Wk−1
→:

X̂k = SignLinkableG(gpk, gsk[i],Wk
→, Ŵk−1, α, β), and sends it;

6. U2:
(a) verifies the group signature: V erifyG(gpk,Xk, X̂k); and
(b) verifies that the two signatures have been performed by the same user:

V erifyLinkableG(X̂k, Ŵk−1). Xk
→ works as a transfer agreement of the

ticket of the user U1 to the user U2.

Ticket Verification (Standard). This protocol is used when no transfer has
been performed since its issue. Here, U shows the ticket to P in order to be
verified to receive the associated service. It works as follows:

1. U sends the ticket T→ to P;
2. P:

(a) verifies the information and signature of T→; and
(b) generates a random value nγ

R≡ Zp and sends it back;
3. U generates Y→ = (Y, Ŷ) where Y = (nγ ,T.Sn, flag spend standard) with a

group signature which is linkable only to V→:
Ŷ = SignLinkableG(gpk, gsk[i],Y, V̂, α, β);

4. P:
(a) verifies the group signature: V erifyG(gpk,Y, Ŷ) and that the two signa-

tures are generated by the same user:
V erifyLinkableG(T.V̂, Ŷ); and

(b) store T.Sn in P’s centralized database.

Ticket Verification (Transferred). This protocol is used when some transfer
has been performed since its issue. Here, U shows the ticket to P in order to be
verified and receive the associated service. It works as follows:

Anonymous and Transferable Electronic Ticketing Scheme 109

1. U sends the transferred ticket Xk
→ to P;

2. P:
(a) verifies the information and signature of Xk

→: V erifyI(T→) and
V erifyG(gpk,Xk, X̂k). The service provider P can detect if the ticket has
been transferred or not depending on its content;

(b) verifies that the two signatures which are included into the ticket have
been generated by the same user: V erifyLinkableG(X̂0,T.V̂).

(c) for all the transfers, ⇐i ≈ [0, k]: verify all the group signatures
V erifyG(gpk,Xi, X̂i) and V erifyG(gpk,Wi, Ŵi), and also the linkability
of Wi−1

→ : V erifyLinkableG(X̂i, Ŵi−1) where needed; and
(d) generates a random nγ

R≡ Zp and sends it back;
3. U generates Y→ = (Y, Ŷ) where Y = (nγ ,T.Sn, flag spend transferred) and its

linkable group signature to Wk
→ as follows:

Ŷ = SignLinkableG(gpk, gsk[i],Y, Ŵk, α, β);
4. P:

(a) verifies the group signature: V erifyG(gpk,Y, Ŷ) and that the two signa-
tures are generated by the same user:
V erifyLinkableG(Ŵk, Ŷ) where the ticket receiver has then to demon-
strate that is the same user both in the transfer and verification phases;
and

(b) store T.Sn in P’s centralized database.

Revocation of Anonymity. To spend an e-ticket, any user has to do a new
signature at the 3rd step of the ticket verification phase. In case of controversy
(such as a e-ticket overspending case), the group manager MG could take part
in the resolution of the controversy and revoke the anonymity of the signer that
misbehaved by calling the OpenG procedure.

4 Security and Transferability of the System

In this section we discuss the security properties of our protocol. The discussion
is organized in four propositions that state the security features of the scheme.
Then the respective claims discuss and provide evidence to support propositions’
arguments. This discussion does not provide any demonstration of the security
of the cryptographic primitives and does not pretend to be a formal analysis of
the security of the protocol, but it substantiates the security properties of the
protocol. The common security properties of authenticity, non-repudiation and
integrity, which are based on the security of the signature scheme used by I,
are attested in the Proposition 1, then revocable anonymity in Proposition 2,
non-overspending in Proposition 3 and, finally, Proposition 4 is devoted to the
requirement of transferability.

Proposition 1. The proposed e-ticketing system preserves authenticity, non-
repudiation and integrity of the e-ticket.

110 A. Vives-Guasch et al.

Claim 1. It is computationally infeasible to make a new fraudulent e-ticket.

Security Argument. A valid e-ticket has the form T→ = (T,SignI(T)). Then,
the first step that P does when an e-ticket is received is the verification of the
signature. The Ticket Verification protocol will continue only if this verification
is positive; otherwise, P refuses U ’s request. Thus, making a new fraudulent valid
e-ticket would be equivalent to breaking the signature scheme, which would be
computationally infeasible as we have supposed that I uses a secure signature
scheme.

Claim 2. The issuer I can not deny the emission of a valid e-ticket.

Security Argument. A valid e-ticket has I’s signature and the signature scheme
used is secure. Consequently, the identity of the issuer is associated to the ticket
i.e. the signature is a non-repudiation evidence of origin.

Claim 3. The content of the e-ticket cannot be modified.

Security Argument. Suppose that someone modifies the content of the ticket,
then a new I’s signature has to be generated over the modified content; other-
wise, the e-ticket will not pass the verification i.e. it will not be valid. Again, if
it is computationally infeasible to forge I’s signature, it is infeasible to modify
the content of the e-ticket.

Proposition 2. The e-ticketing system described in Sect. 3 is anonymous. The
offered service is revocable anonymous.

Claim 4. The protocol to get an e-ticket is anonymous.

Security Argument. The user establishes a connection with the ticket issuer I
in order to receive the e-ticket. This connection could be established through an
anonymous channel like TOR [4], guaranteeing then the user’s privacy. There
are current contributions4 that have implemented TOR for mobile devices with
Android. Additionally, the user does not use any personal authentication method
to get the e-ticket. I generates and sends the e-ticket to U if she accredits to
be member of the group of users by producing a valid group signature over a
challenge sent by I. The V erifyG(V) procedure performed by I cannot identify
the user.

Claim 5. An e-ticket has revocable anonymity.

Security Argument. A valid e-ticket does not have any information related to the
user’s identity. The e-ticket is generated by I who does not know the user’s iden-
tity as we have discussed in the previous claim. The only item inside the e-ticket
that can identify the user is the group signature V and only the group man-
ager MG can reveal this information by performing OpenG(gpk, gmsk,M, σ),
because it is the only entity that knows gmsk. Therefore, e-tickets can be spent
anonymously but the anonymity can be revoked by MG . MG plays the role of
a trusted third party, thus it will only do that by law enforcement.
4 http://sourceforge.net/apps/trac/silvertunnel/wiki/TorJavaOverview

http://sourceforge.net/apps/trac/silvertunnel/wiki/TorJavaOverview

Anonymous and Transferable Electronic Ticketing Scheme 111

Claim 6. In spite of the anonymity of the e-ticket, a fake user cannot spend an
e-ticket impersonating another user.

Security Argument. In order to spend the e-ticket, the legitimate U has to
prove the ownership of the e-ticket by means of a linkable signature Y with
the element V, placed inside the e-ticket. An illegitimate U cannot perform
properly the SignLinkableG operation: the fraud will be detected because the
V erifyLinkableG() operation performed at the ticket verification protocol will
warn P about this impersonation attack.

Proposition 3. The protocol controls overspending.

Claim 7. If the ticket is only validated by one P, the verification can be offline
and P can control any overspending attempt.

Security Argument. P maintains a database with the serial numbers of the e-
tickets already validated (i.e used). P can check both the issuer’s signature and
whether the e-ticket has not been spent before by using the information stored
in the database. So the provider does not need to contact any party during the
validation of an e-ticket.

Claim 8. If the ticket is validated with several providers, all P’s must then be
connected and share a database of spent tickets.

Security Argument. The set of providers maintains a shared database with the
serial numbers of the e-tickets that have been already validated. The contents of
this database are used by the providers to decide if they accept and validate a
new ticket. So the provider does not need a connection with the issuer during the
verification of an e-ticket, but the set of providers must share a database instead,
so that the overspending can then be detected and the identity of the overspender
can be revealed by the group manager through the OpenG(gpk, gmsk,M, σ)
procedure.

Proposition 4. Users can transfer their e-ticket to other users making use of
the proposed scheme. The transferability operation among users preserves the
security properties no matter how many transfers of the e-ticket have been made.

Claim 9. A transferred e-ticket can guarantee authenticity, non-repudiation and
integrity properties as a non-transferred e-ticket.

Security Argument. During a transfer, the format of the e-ticket is not sub-
stantially altered. Only a new group signature of the new owner is added to the
e-ticket so that the properties of the signature keep authenticity, non-repudiation
and integrity of the transferred e-ticket since the discussion of the Proposition 1
is already valid.

Claim 10. A transferred e-ticket preserves the anonymity of its owner.

Security Argument. During a transfer, the owner of the e-ticket proves its own-
ership with a ZKP operation in order not to disclose her identity. The receiver

112 A. Vives-Guasch et al.

of the transferred e-ticket includes a new group signature in it, so her identity
is similarly protected in the same way, as we see in the step 4 of the ticket
verification protocol (transferred version).

Claim 11. A transferred ticket cannot be overspent.

Security Argument. The overspending detection procedure described in Propo-
sition 3 is also valid for transferred e-tickets as well as the anonymity revocation
which can be made using OpenG(gpk, gmsk,M, σ) because this property relies
on the verification made by P on the serial number of the e-ticket stored in the
database. The transfer of any e-ticket does not change its serial number.

5 Conclusions

We have presented a proposal for an electronic ticketing system which guarantees
the anonymity for their users and also allows the transferability of the tickets
between them through payment or loan.

The proposed scheme is anonymous, as in the ticket issue protocol, a group
signature scheme has been used, which allows the issuer to verify that the user
belongs to a valid group of users, yet cannot identify which one she is. If the
user tries to commit fraud, the group manager can revoke her anonymity.

Moreover, the protocol introduces the requirement of ticket transferability
between two users. This property aims to increase the system flexibility since
users can share their tickets with friends or they can give them to other users. To
do that, we use a linkable group signature scheme. With this technique, group
signatures from the users involved in the transfer operation are used in order to
generate a ticket transfer agreement, which could be further used as an evidence
proof in case of any conflict between the parties. As future work, the main goal
will be to develop and evaluate the performance of the protocol in a mobile
platform, in order to check its feasibility.

Disclaimer and Acknowledgements. This work was partially supported by the
Spanish Ministry of Science and Innovation [eAEGIS TSI2007-65406-C03-01, ARES--
CONSOLIDER INGENIO 2010 CSD2007-00004, Audit Transparency Voting Process
IPT-430000-2010-31, CO-PRIVACY TIN2011-27076-C03-01, ICWT TIN2012-32757,
BallotNext IPT-2012-0603-430000]; and the Government of Catalonia [2009 SGR1135].
The authors are solely responsible for the views expressed in this paper, which do not
necessarily reflect the position of UNESCO nor commit that organization.

References

1. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

2. Canard, S., Gouget, A.: Anonymity in transferable e-cash. In: Bellovin, S.M., Gen-
naro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp.
207–223. Springer, Heidelberg (2008)

Anonymous and Transferable Electronic Ticketing Scheme 113

3. Chen, Y.-Y., Chen, C.-L., Jan, J.-K.: A mobile ticket system based on personal
trusted device. Wirel. Pers. Commun. Int. J. 40(4), 569–578 (2007)

4. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium (2004)

5. Ghiron, S., Sposato, S., Medaglia, C., Moroni, A.: NFC ticketing: a prototype and
usability test of an NFC-based virtual ticketing application. In: Workshop on Near
Field Communication 2009, NFC ’09, pp. 45–50. IEEE, February 2009

6. Heydt-Benjamin, T.S., Chae, H.-J., Defend, B., Fu, K.: Privacy for public trans-
portation. In: Danezis, Ge, Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 1–19.
Springer, Heidelberg (2006)

7. Isern-Deyà, A.P., Vives-Guasch, A., Mut-Puigserver, M., Payeras-Capellà, M.,
Castellà-Roca, J.: A secure automatic fare collection system for time-based or
distance-based services with revocable anonymity for users. Comput. J. 56, 1198–
1215 (2012)

8. Jorns, O., Jung, O., Quirchmayr, G.: A privacy enhancing service architecture for
ticket-based mobile applications. In: Availability, Reliability and Security, Vienna,
Austria, pp. 374–383, ARES 2007 - The International Dependability Conference,
vol. 24, April 2007

9. Mut-Puigserver, M., Payeras-Capellà, M.M., Ferrer-Gomila, J.-L., Vives-Guasch,
A., Castellà-Roca, J.: A survey of electronic ticketing applied to transport. Comput.
Secur. 31(8), 925–939 (2012)

10. Quercia, D., Hailes, S.: Motet: mobile transactions using electronic tickets. In:
Proceedings of the Security and Privacy for Emerging Areas in Communications
Networks, vol. 24, pp. 374–383, Greece, Sept. 2005

11. Sunitha, N., Amberker, B., Koulgi, P.: Transferable e-cheques: an application of
forward-secure serial multi-signatures. In: Ao, S.-I., Rieger, B., Chen, S.-S. (eds.)
Advances in Computational Algorithms and Data Analysis. Lecture Notes in Elec-
trical Engineering, vol. 14, pp. 147–157. Springer, Netherlands (2009)

12. Vives-Guasch, A., Castellà-Roca, J., Payeras-Capella, M., Mut, M.: An electronic
and secure automatic fare collection system with revocable anonymity for users.
In: Advances in Mobile Computing & Multimedia (MoMM) (2010)

13. Vives-Guasch, A., Payeras-Capellà, M.M., Mut-Puigserver, M., Castellà-Roca, J.,
Ferrer-Gomila, J.L.: A secure e-ticketing scheme for mobile devices with near field
communication (NFC) that includes exculpability and reusability. IEICE E95–
D(1), 78–93 (2012)

Privacy-Preserving Publish/Subscribe: Efficient
Protocols in a Distributed Model

Giovanni Di Crescenzo1(B), Brian Coan1, John Schultz2,
Simon Tsang1, and Rebecca N. Wright3

1 Applied Communication Sciences, Basking Ridge, NJ, USA
{gdicrescenzo,bcoan,stsang}@appcomsci.com

2 Spread Concepts, Bethesda, MD, USA
jschultz@spreadconcepts.com

3 Rutgers University, New Brunswick, NJ, USA
rebecca.wright@rutgers.edu

Abstract. We consider the problem of modeling and designing effi-
cient and privacy-preserving publish/subscribe protocols in a distributed
model where parties can act as publishers or subscribers or both, and
there are no brokers or other types of parties. The problem is particu-
larly challenging as privacy demands on such protocols come with effi-
ciency limitations; most notably, the publisher must send messages as
long as the publications to all parties, and the cryptographic techniques
to perform the publish/subscribe match need to be based on asymmetric
cryptographic operation which are known to be less efficient than their
symmetric counterpart.

Our main result is a distributed publish/subscribe protocol which
addresses and essentially nullifies the impact of both efficiency limita-
tions, without sacrificing the required privacy properties. Our construc-
tion is based on very efficient design of a novel cryptographic tool, of
independent interest, called ‘hybrid conditional oblivious transfer proto-
col’, as it resembles hybrid encryption, where asymmetric encryption is
only used to transfer a short key, which enables (much more efficient)
symmetric encryption of a long message.

1 Introduction

Publish/subscribe protocols address the problem of publishing data items to
interested participants. They come in many different formulations and varia-
tions, as well surveyed in [1]. In this paper’s formulation of the problem, a
publish/subscribe protocol can be considered a distributed protocol between
multiple participants who can, at any given time, act as subscribers (with sub-
scription keywords, called interests) or publishers (with data items and related
publication keywords, called topics). The publisher would like to distribute a
data item to the subscribers if there is a match between the data item’s topics
and a subscriber’s interests, with no help from brokers or other types of par-
ties. These protocols find applications in a large number of areas, and are of

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 114–132, 2014.
DOI: 10.1007/978-3-642-54568-9 8, c© Springer-Verlag Berlin Heidelberg 2014

Privacy-Preserving Publish/Subscribe: Efficient Protocols 115

interest in essentially every area where distributed systems are used. In most
applications, however, privacy is a sensitive issue that may even deter from the
implementation or use of a publish/subscribe system. For instance, in finance,
a publish/subscribe system assisting a market maker could allow subscribers
to submit their interest in companies and publishers to issue data relative to
companies; however, by revealing company names and data from either the sub-
scribers or the publishers, it may not only impact participants’ privacy but also
significantly alter the market’s pricing process and overall integrity.

In this paper we investigate the modeling and design of distributed pub-
lish/subscribe protocols which preserve the privacy of subscribers’ interests and
of publishers’ data items and topics. We start by observing that such privacy
demands come with at least two main efficiency limitations. First, while in non-
private publish/subscribe protocols, a publisher can send data items only to
matching subscribers, this cannot happen in protocols with privacy demands,
as this would reveal the subset of matching subscribers (and thus, information
about their interests) to the publisher. In fact, we make the rather discour-
aging observation that the publisher must send a message at least as long as
the data item to each of the subscribers, regardless of whether the publication
matches their interests or not. Second, computing which subscribers are entitled
to data items can be shown, using well-known fundamental results in cryptogra-
phy [2], to require asymmetric cryptographic operations, which are well-known
to be less efficient than their symmetric counterparts, the difference being sig-
nificant in applications with high data arrival rates, which are not uncommon
publish/subscribe scenarios. In particular, general solutions from the area of
secure function evaluation protocols (e.g., [3,4]) suffer from similar inefficiency
drawbacks.

Our Contribution. We design a publish/subscribe protocol that not only
addresses the mentioned efficiency limitations, but achieves desirable privacy and
efficiency properties. Specifically, our protocol satisfies a highly desirable set of
requirements: publication correctness (i.e. subscribers obtain a data item if their
subscription predicate is satisfied by their interests and the data item’s topics),
privacy of interests (i.e., against a malicious adversary corrupting the publisher),
privacy of topics and data items (i.e., against an honest-but-curious adversary
corrupting even all the subscribers), and efficiency (i.e., the publication, which
is the real-time part of the protocol, only requires a small rate of public-key
cryptography operations per item). We overcome the two efficiency limitations
as follows: first, we perform cryptographic processing of data items only once
for all subscribers, by encrypting the data item once and distributing the key
only to matching subscribers; then, we minimize the use of asymmetric crypto-
graphic operations in distributing the encrypting key by using a novel hybrid
cryptographic primitive (i.e., starting with asymmetric cryptographic operations
and then continuing with symmetric ones for the rest of the protocol lifetime).
Specifically, our protocol uses new constructions for conditional oblivious trans-
fer (COT) protocols [5], called hybrid COT protocols, where the first execution
of such a subprotocol requires asymmetric cryptography operations, while all

116 G. Di Crescenzo et al.

remaining ones, when based on the same private inputs, do not. We prove pri-
vacy properties using a natural adaptation of the real/ideal security definition
approach (frequently used in cryptography), and show that our protocol leaks
no information to the publisher or to all subscribers. We also describe mea-
surements of the protocol’s publication latency, which, for large and practical
parameter ranges, is only a small (≈ 8) constant slower than a distributed pub-
lish/subscribe system with no privacy. Our techniques for hybrid COT protocols
can also be extended to more general conditions than equality.

Related Work. Some papers have proposed interesting publish/subscribe pro-
tocols with some security or privacy properties (e.g., [6–11]). All these papers
fall short of meeting our combined functionality and privacy requirements for a
mixture of reasons, including a different set of security and/or privacy require-
ments (i.e., they often require privacy against intermediate routing nodes or
privacy only against one party, or rely on trusted broker parties). None of these
papers proves privacy properties in a formal, cryptographic model for private
publish/subscribe protocols. Our previous paper in the area [12] proposes a solu-
tion with privacy provable in a cryptographic model but in a different participant
model (i.e., using an intermediate broker to achieve even greater efficiency). We
could not find any paper studying hybrid COT protocols; the seemingly closest
paper [13] first studied a related problem about precomputing 1-out-of-2 obliv-
ious transfer protocols, which is however different in at least 2 important ways
(i.e., it is about 1-out-of-2 oblivious transfer instead of equality-based COT, and
it performs several oblivious transfers in the preprocessing phase instead of one).
Equality-based COT protocols were already presented in [5,14–17], which how-
ever did not consider the problem of designing hybrid constructions. The COT
concept is a variant of oblivious transfer, which was first introduced by [18].

2 Models and Definitions

We detail models and definitions of interest during our investigation of private
and distributed publish/subscribe protocols: data, participant, network and pro-
tocol models and correctness, privacy and efficiency requirements.

Data Model. We consider the following data objects or structures. The data
items to be published are digital documents and are represented as binary strings
of length αd. To each data item, we associate d publication keywords, also denoted
as topics, taken from a set, called the dictionary, known to all parties, and
assumed, for simplicity, to be the set of all αt-bit strings. To each party, we
associate c subscription keywords, also denoted as interests, taken from the dic-
tionary. Moreover, each party has a public file to post information accessible
by all other participants (as for a public-key infrastructure in cryptography).
Finally, each party has a list of all other system participants. For simplicity,
length and number variables αd, αt, d, c are defined as system parameters with
value known to all parties; however, smaller values can be accommodated by
simple padding techniques. Data items and associated topics are assumed to be

Privacy-Preserving Publish/Subscribe: Efficient Protocols 117

either generated by or streamed to a publisher, at possibly high rate. Although
we target high data arrival rates, we only deal with scenarios where an execution
of the publish/subscribe protocol ends before the next data item is streamed to
a publisher. Generalizations to other data arrival scenarios are possible, but not
further discussed in this paper.

Participant and Network Model. We consider a distributed model with n+1
participants P1, . . . , Pn+1, all assumed to be efficient (i.e., running in proba-
bilistic polynomial-time in a common security parameter, denoted in unary as
1σ). Two participant roles are possible at any given time; specifically, a par-
ticipant can act as a publisher, also denoted as P , when it publishes a data
item to all other participants; or can act as a subscriber, also denoted as Si, for
i → {1, . . . , n}, when it posts its interests or receives another party’s publication.
Each participant is able to communicate with all others and post on its own
public file (also implicitly defining a communication channel with all other par-
ties) . We consider a confidential and authenticated network (this assumption is
without loss of generality as parties can use a security protocol like TLS) with
no loss of transferred data or of party connectivity.

Protocol Model. A publish/subscribe protocol includes the following
subprotocols:

Init: participants P1, . . . , Pn+1, may interact and/or post messages on their pub-
lic files to initialize their data structures and/or cryptographic keys. Formally,
on input security parameter 1σ, protocol Init returns public and secret outputs
for all parties.

Subscribe: Party Pi, for i → {1, . . . , n + 1}, acting as a subscriber, posts its
updated subscription (based on its latest set of interests) on its public file, with-
out interacting with any other party. Formally, on input security parameter 1σ,
a party index i → {1, . . . , n + 1}, and a set of interests int1, . . . , intc, algorithm
Subscribe returns a public and a secret output, where the public output is posted
on Pi’s public file.

Publish: Party Pi, for i → {1, . . . , n + 1}, acting as a publisher, distributes the
data item to the subscribers (i.e., all remaining n participants) based on the data
item’s topics and on the other participants’ subscriptions. In terms of distribution
strategy, we consider a protocol that follows the so-called ‘push mode’: as soon
as a new data item arrives, along with its topics, it is processed by the publisher
towards the subscribers. Formally, on input security parameter 1σ to all parties,
and a data item m and a set of topics top1, . . . , topd as private inputs of publisher
P , protocol Publish returns a private output for the i-th subscriber, for i →
{1, . . . , n+1}, which is either empty or equal to the data item m. Generalizations
to other distribution strategies, like the so-called ‘pull mode’, are possible but
not further discussed in this paper.

Requirements. We now briefly describe publication correctness, privacy and
efficiency requirements. Let χ be a security parameter. A function over the set
of natural numbers is negligible if for all sufficiently large χ → N , it is smaller

118 G. Di Crescenzo et al.

than 1/p(χ), for any polynomial p. We say that a subscriber Si is entitled to data
item m if at least one of subscriber Si’s interests int1, . . . , intc is equal to any
one of the topics top1, . . . , topd associated with m. We address publish/subscribe
protocols that satisfy the following classes of requirements.

Correctness. The probability of the following two events is negligible in the secu-
rity parameter: (a) after executing Init and Subscribe, Si is entitled to m but does
not receive m as output from Publish; (b) after executing Init and Subscribe, Si

is not entitled to m but Si receives m as output from Publish. Formally, for each
data item m and associated topics top1, . . . , topd, each subscriber Si with inter-
ests int1, . . . , intc, the probability φ that, after an execution of Init on input 1σ,
an execution of Subscribe on input int1, . . . , intc, and an execution of Publish on
input m, top1, . . . , topd, one of the following two events happens, is negligible in
χ: (a) at least one of subscriber Si’s interests int1, . . . , intc is equal to at least
one of the topics top1, . . . , topd but Si’s output at the end of the publication
subprotocol is ∞= m; (b) at least one of subscriber Si’s interests int1, . . . , intc is
equal to at least one of the topics top1, . . . , topd but Si’s output at the end of
the publication subprotocol is = m.

Privacy: We consider two privacy requirements: against a potentially malicious
publisher, and against a coalition of honest-but-curious subscribers (i.e., sub-
scribers who follow the protocol but can perform arbitrary computation at the
end in their attempt to violate privacy properties). First, consider an efficient
and potentially malicious publisher; we require that after an execution of proto-
cols Init,Subscribe and Publish, any such participant learns no additional infor-
mation about the subscribers’ interests. Second, consider a coalition of efficient
and honest-but-curious subscribers who did not subscribe to a data item m; we
require that after an execution of protocols Init,Subscribe and Publish, any such
coalition learns no additional information about the data item or its associated
topics.

Towards a formal definition, we recall the notions of computational indistin-
guishability and participant’s view. Two distribution ensembles {D0

σ : χ → N}
and {D1

σ : χ → N} are computationally indistinguishable if for any efficient algo-
rithm A, the quantity |Prob[x ≡ D0

σ : A(x) = 1] − Prob[x ≡ D1
σ : A(x) = 1]|

is negligible in χ (i.e., no efficient algorithm can distinguish if a random sample
came from one distribution or the other). A participant’s view in a protocol (or
a set of protocols) is the distribution of the sequence of messages, inputs and
internal random coins seen by the participant while running the protocol (or the
set of protocols).

We use a natural adaptation of the real/ideal privacy definition framework,
which is commonly used in the cryptography literature. A formal definition for
the privacy requirement according to this framework goes, briefly speaking, as
follows. For any efficient (i.e., probabilistic polynomial time) adversary Adv cor-
rupting one of the two party types (i.e., either a publisher P or some subset
of all subscribers S1, . . . , Sn), there exists an efficient algorithm Sim (called
the simulator), such that Adv’s view in the “real world” and Sim’s output in
the “ideal world” are computationally indistinguishable, where these two worlds

Privacy-Preserving Publish/Subscribe: Efficient Protocols 119

are defined as follows. In the real world, runs of the Init subprotocol, Subscribe
algorithm and Publish subprotocol are executed, while Adv acts as the corrupted
participant(s). In the ideal world, each run of the Init subprotocol, Subscribe algo-
rithm and Publish subprotocol is replaced with an ‘ideal execution’ that does not
reveal any additional information, in addition to system parameters, inputs and
outputs intended by the publish/subscribe functionality. Thus, we define these
ideal executions of Init, Subscribe and Publish as follows:

1. Ideal-Init, on input security parameter 1σ, returns all system parameters and
a done string to all participants.

2. Ideal-Subscribe, on input a sequence of c interests int1, . . . , intc from a sub-
scriber Si, returns a done string to Si.

3. Ideal-Publish, on input a data item m and a sequence of d topics top1, . . . , topd

of known length from a publisher P , returns the data item m to each sub-
scriber Si for which at least one of Si’s interests is equal to at least one of
the topics top1, . . . , topd, and a done string to all remaining subscribers and
publisher P .

Efficiency: The protocol’s latency is measured as the time taken by a sequential
execution of subprotocol Init, algorithm Subscribe, and subprotocol Publish (as
a function of χ and other system parameters). The protocol’s communication
complexity (resp., round complexity) is defined as the length (resp., number)
of the messages, as a function of χ and other system parameters, exchanged
by publisher and subscribers during subprotocols Init,Publish. Even if we will
mainly focus our efficiency analysis on publication latency, our design targets
minimization of all the mentioned efficiency metrics.

We observe that in any protocol satisfying privacy against the publisher, the
latter cannot tell if a subscriber receives the data item or not. Because this
holds regardless of the distribution of the data item’s content, it also holds for
random data items, which cannot be compressed. We thus obtain the following

Proposition 1. In any publish/subscribe protocol in our model, satisfying pri-
vacy against the publisher, in the Publish protocol, the publisher needs to send
at least αd bits to each subscriber.

Although we have focused our formalization on the correctness, privacy and
efficiency properties, we note that our design has targeted a number of addi-
tional security properties, which are however obtained using well-known tech-
niques. Specifically, properties like confidentiality of the communication between
all participants, message sender authentication, message receiver authentication,
and communication integrity protection, can be immediately obtained by using
a security protocol like TLS.

3 Hybrid Conditional Oblivious Transfer

In this section we formally define the notion of hybrid COT protocols, and then
design one such protocol for the equality condition, under the intractability of
the Decisional Diffie-Hellman problem.

120 G. Di Crescenzo et al.

Equality Conditional Oblivious Transfer (eq-COT): Definition. Infor-
mally, an eq-COT protocol is a 2-party protocol where a sender wants to privately
transfer a message to a receiver in a way that the only leaked information is the
sender’s message when the equality predicate evaluates to 1 with private inputs
from sender and receiver. Here, we slightly adapt the formal definition from [5]
to consider the equality predicate and to more easily express the hybrid COT
definition later. Then an eq-COT protocol is a pair (Alice,Bob) of probabilis-
tic polynomial algorithms where Alice’s (respectively, Bob’s) private input is a
string xa (resp., xb); ma denotes Alice’s message, mb denotes Bob’s output at the
end of the protocol, and the following requirements hold: (Transfer Correctness)
if xa = xb then the probability that mb ∞= ma is negligible; if xa ∞= xb and ma is
uniformly distributed, then the distribution of mb is uniform and independent
from ma; (Privacy against Bob) if xa ∞= xb then for any efficient adversary Adv
corrupting Bob, the protocol’s communication transcript reveals no information
to Adv about ma; (Privacy against Alice) for any efficient adversary Adv cor-
rupting Alice, the protocol’s communication transcript reveals no information
to Adv about whether xa = xb or not.

Hybrid Equality Conditional Oblivious Transfer (h-eq-COT). Infor-
mally, an h-eq-COT protocol is a 2-party, 2-phase, protocol that allows Alice
to perform an eq-COT of an arbitrary number of messages to Bob, as follows. In
a first phase, called h-eq-COT protocol, asymmetric phase, Alice and Bob exe-
cute a single preliminary eq-COT of a κ-bit random symmetric key ka, based
on asymmetric cryptography techniques, where ka denotes Alice’s input and kb

denotes the key received by Bob at the end of this phase. In a second phase,
called h-eq-COT protocol, symmetric phase, Alice and Bob execute an eq-COT of
a message ma, based on symmetric cryptography techniques, where Alice takes
as input ka,ma and Bob takes as input kb and receives mb at the end of this
phase. That is, in all symmetric phase executions of the eq-COT protocol Alice
and Bob take as input the symmetric key returned at the end of the prelimi-
nary eq-COT protocol (i.e., the same key if xa = xb or random and independent
keys otherwise.) The formal definition of an h-eq-COT protocol is derived by
extending the one for an eq-COT protocol and is omitted here.

Our h-eq-COT Protocol. Similarly to almost all known efficient 1-out-of-2 oblivi-
ous transfer (OT) protocols (e.g., [16,17,19]), we base our hybrid COT protocol
on an encryption scheme with suitable malleability and/or homomorphism prop-
erties. In particular, we use the Decisional Diffie-Hellman problem [20] and its
properties, as done in El-Gamal encryption [21] and in the 1-out-of-2 OT pro-
tocol from [19], the latter is well known to have especially the latter having
desirable security and performance properties.

Informally speaking, the h-eq-COT protocol can be described as follows.
First, in the preliminary eq-COT protocol, Bob posts an asymmetric encryption
of string xb, where the encryption scheme used allows Alice to later manipulate
this encryption and transform it, without knowing xb, into an encryption of
kb = ka(xb/xa)rmod p, for some random value r, where ka is Alice’s input secret
key. In this way, if xb = xa, Bob receives an encryption of kb = ka, which he

Privacy-Preserving Publish/Subscribe: Efficient Protocols 121

can decrypt; while if xb ∞= xa, Bob receives an encryption of a random key
kb independently distributed from ka. More formally, this preliminary eq-COT
protocol goes as follows:

1. Using a public random source, Alice and Bob uniformly and independently
choose χ-bit primes p, q such that p − 1 is a multiple of q, a generator g for
the q-order subgroup Gq of Zp, and a random key kh → {0, 1}κ that defines
an efficiently invertible map Mκ,p from {0, 1}κ to Gq

2. Bob computes x→
b = Mκ,p(kh, xb), where x→

b → Gq

3. Bob randomly chooses r0, r1 → Zq, computes h = gr0mod p, u = gr1mod p
and v = hr1(x→

b)mod p and sends (h, u, v) to Alice
4. Alice computes x→

a = Mκ,p(kh, xa), where x→
a → Gq; randomly chooses ka →

{0, 1}κ and computes k→
a = Mκ,p(kh, ka), where k→

a → Gq; and randomly
chooses s0, s1 → Zq

5. Alice computes w = gs0us1mod p and z = hs0(v/x→
a)s1 · k→

amod p and sends
w, z to Bob

6. Bob computes k→
b = zw−r0mod p, and kb = M−1

κ,p(kh, k→
b), for kb → {0, 1}κ

7. Bob returns: kb.

At any later time, to perform an eq-COT transfer of any message m, Alice
uses key ka and Bob uses key kb, and both use an arbitrary symmetric encryp-
tion scheme, denoted as (KG,E,D), where E (resp., D) is the encryption (resp.,
decryption) algorithm. Alice can just perform a symmetric encryption of data
item m based on ka and Bob would be able to decrypt the right item whenever
kb = ka, which holds whenever Alice’s private input xa is equal to Bob’s private
input xb. For efficiency purposes, we use another session key so that Bob does
not need to decrypt the (potentially long) message when the decryption is not
successful. More formally, this preliminary eq-COT protocol goes as follows:

1. Alice randomly chooses a session key skeya → {0, 1}κ

2. Alice computes an encryption of message m as M = E(skeya,ma), and values
c = E(ka, skeya) and tag = E(skeya, 0κ), and sends (M, c, tag) to Bob

3. Bob computes skeyb = D(kb, c) and checks if tag = E(skeyb, 0κ);
if not, Bob returns: ∼.
if yes, Bob computes mb = D(skeyb,M) and returns: mb.

We also designed variants of the above constructions based on [16,17], but we
omit them here, as they seemed slightly less efficient.

Properties. Building on results from [5,19,21], we obtain the following properties
for the above h-eq-COT protocol:

1. If Alice and Bob are honest, and xa = xb, then at the end of the protocol the
value mb obtained by Bob is equal to the value ma transferred by Alice.

2. If Alice is honest, and xa ∞= xb, then for any polynomial-time adversary
Adv corrupting Bob, at the end of the protocol, Adv learns no additional
information about Alice’s input xa or the message ma.

122 G. Di Crescenzo et al.

3. The message (h, u, v) from Bob to Alice can be efficiently simulated by return-
ing a random triple from (Gq)3, and the simulated triple is computationally
indistinguishable from the same triple in the real execution assuming the
intractability of the Decisional Diffie-Hellman problem. This implies that any
polynomial-time adversary corrupting Alice does not learn anything about
xb.

4. When xa = xb, the messages (w, z) and (M, c, tag) sent by Alice to Bob can
be efficiently simulated against an adversary corrupting Bob and having xb as
input and obtaining mb as output, and the simulation’s output is distributed
exactly as in the real execution;

5. When xa ∞= xb, the messages (w, z) and (M, c, tag) sent by Alice to Bob can
be efficiently simulated against an adversary corrupting Bob and having xb as
input, and the simulation’s output is computationally indistinguishable from
the same messages in the real execution, assuming the security of the used
encryption scheme (KG,E,D).

Proof of properties. We now sketch a proof of properties 1-5 of our h-eq-COT
protocol.

Proof of property 1. To see that property 1 is satisfied, we prove two facts: (a) if
Alice and Bob are honest and xa = xb then at the end of h-eq-COT, asymmetric
phase, it holds that kb = ka; (b) if Alice and Bob are honest and ka = kb then
at the end of h-eq-COT, symmetric phase, it holds that mb = ma.

To prove (a), observe that xa = xb implies x→
a = x→

b and thus

z = hs0(v/x→
a)s1 ·k→

a = hs0(hr1x→
b/x→

a)s1 ·k→
a = hs0+r1s1 ·k→

a = gr0s0+r0r1s1 ·k→
amod p.

Then we have that

w−r0 = (gs0us1)−r0mod p = g−r0s0−r0r1s1mod p,

from which we see that k→
b = zw−r0mod p = k→

a, which implies that

kb = M−1
κ,p(kh, k→

b) = M−1
κ,p(kh, k→

a) = ka.

To prove (b), observe that ka = kb implies that

skeyb = D(kb, c) = D(ka, c) = D(ka, E(ka, skeya)) = skeya

and therefore E(skeyb, 0κ) = E(skeya, 0κ) and

mb = D(skeyb,M) = D(skeya,M) = D(skeya, E(skeya,ma)) = ma.

Proof of Property 2 (Sketch). Similarly as for property 1, we can show that
when xa ∞= xb, for any h, u, v sent by an adversary playing as Bob, we have that
k→

b = k→
a ·(x→

b/x→
a)s1mod p, for some x→

b = vh−r1mod p. Since si is random, we have
that k→

b is random and independent from k→
a, and thus cannot be used by Adv

to obtain any information about ma or xa from the message (M, c, tag) sent by
Alice.

Privacy-Preserving Publish/Subscribe: Efficient Protocols 123

Proof of Property 3 (Sketch). This property follows by the observation that the
(u, v) is an El-Gamal encryption of x→

b and thus the well-known fact that the
tuple (g, h, u, v) is computationally indistinguishable from a random tuple from
(Gq)4.

Proof of Property 4 (Sketch). To prove this property, we now show a simulator
Sim that, when xa = xb, efficiently simulates the messages (w, z) and (M, c, tag)
sent by Alice to Bob, and using xb and mb as input, and show that the simula-
tion’s output is distributed exactly as in the real execution.

Sim generates (w, z) exactly as Alice does, with the only apparent difference
that it uses xb instead of xa. Sim can do that since it has the exact same
inputs ka and xa as Alice, and we are considering the case xa = xb. Specifically,
Sim randomly chooses s0, s1 → Zq, and ka → {0, 1}κ, and generates w, z as
w = gs0us1mod p and z = hs0(v/x→

b)
s1 · k→

amod p, where x→
b = Mκ,p(kh, xb) and

k→
a = Mκ,p(kh, ka).

Analogously, Sim generates (M, c, tag) exactly as Alice does, with the only
apparent difference that it uses mb instead of ma. Sim can do that since it
has the exact same inputs ka and ma as Alice, and we are considering the case
xa = xb, which implies that ma = mb.

Proof of Property 5 (Sketch). To prove this property, we now show a simulator
Sim that, when xa ∞= xb, efficiently simulates the messages (w, z) and (M, c, tag)
sent by Alice to Bob, using xb as input, and show that the simulation’s output is
computationally indistinguishable from the same messages in the real execution,
assuming the security of the used encryption scheme (KG,E,D).

Sim generates w, z as two random and independent values in Zp. By using
an analogue property of the oblivious transfer protocol from [19], we obtain that
the output of this simulation is equally distributed to the same pair in the real
execution.

Moreover, Sim generates (M, c, tag) as encryptions of random messages of
the same length of the messages encrypted in the real execution. By a standard
hybrid argument, this triple is computationally indistinguishable from the triple
generated in the real execution, assuming the security of the used encryption
scheme (KG,E,D).

4 A Distributed Publish/Subscribe Protocol

In this section we describe our distributed publish/subscribe protocol. We start
with a formal statement of the properties of our protocol, then discuss the known
and new cryptographic primitives used in the protocol, and give an informal
description, a detailed description, and a proof of the properties of our protocol.

Theorem 1. In the model of Sect. 2, there exists (constructively) a distributed
publish/subscribe protocol satisfying the following properties: (1) publication
correctness with error negligible in security parameter χ; (2) privacy against any
efficient adversary corrupting a publisher P , under the hardness of the Decisional

124 G. Di Crescenzo et al.

Diffie-Hellman problem; (3) privacy against any efficient and honest-but-curious
adversary corrupting an arbitrary subset of subscribers, under the security of the
symmetric encryption scheme (KG,E,D) used; (4) non-interactive subscription;
(5) one-message publication.

An important claim of our paper is that our protocol, in addition to satisfying
Theorem 1, has highly desirable publication latency. In our testing experiments
we verified that for a large domain of practical parameter values, the publication
latency of our protocol remains within a small constant factor (i.e., 8) worse
than the publication latency of a protocol performing the same functionality but
offering no privacy guarantee. An example chart for these results is described at
the end of this section.

4.1 Informal Description

Our goal is to design a distributed publish/subscribe protocol where the sub-
scription phase is non-interactive (i.e., each subscriber simply posts a message
on its public file), the publication protocol requires a single message from pub-
lisher to subscribers, and where the publisher is allowed to be malicious and
the subscribers are allowed to collude in their attempt to violate the privacy
requirements, as specified in Sect. 2.

A high-level view of our protocol can be given as follows. During the ini-
tialization subprotocol, the parties agree on common cryptographic parameters
using publicly available randomness. During the subscription phase, a subscriber
simply runs an asymmetric encryption algorithm to compute an encryption of
each one to its interests, and posts such encryptions on its public file. During
the publication phase, a publisher sends a single message to all subscribers so
that this message, combined with the instructions run by a subscriber, form a
conditional oblivious transfer of the data item to be published. Here, the condi-
tion is the subscription predicate (i.e., at least one of the subscriber’s interests
is equal to at least one of the data item’s topics). This is reduced to running,
for each (data item topic, subscriber interest) pair, an equality-COT where the
condition is equality between the data item topic and the subscriber’s interest
in this pair.

Now, a main goal in the design of our protocol is to minimize the use of asym-
metric cryptographic primitives, which are well known to be less efficient than
their symmetric counterpart. Specifically, to minimize this efficiency degradation,
we use them in a way that is reminiscent of the very practical ‘hybrid encryption’
approach, where an asymmetric encryption scheme is only used once per commu-
nication session to establish the key for a symmetric encryption scheme, and the
latter is used for all message encryptions required in the future. Then, we realize
a ‘hybrid’ equality-COT protocol where for each publisher and subscriber, the
first of such transfers for a given (data item topic, subscriber interest) pair is
performed using asymmetric primitives and all following ones for the same pair
re-use the symmetric key established during the first one, using memoization.
Then we use an hybrid equality-COT, as described in Sect. 3, which uses: (1) for

Privacy-Preserving Publish/Subscribe: Efficient Protocols 125

Publisher
(any party can be a publisher)

Subscriber
(any party can be a subscriber)

Item, topics

Send subscriber-specific hybrid (x=y)-COT answers to each subscriber

Discrete logarithm parameters, generated from
common randomness or by a designated party and send to others

Encrypt all current interests x and post
encryptions on public file. These also act as the
first message of a hybrid (x=‘topic’)-COT protocol

Generate encryption of data item; for each encryption
of interest x and all bits in publication metadata,

generate second message of hybrid (x=y)-COT
protocol if y is a topic or a random value otherwise;

recycle this transfer’s key for later use with block
cipher wrt same (interest encryption, topic) pair

If COT is successful, then decrypt data item

Init

Distributed
Publish

Distributed
Subscribe

Fig. 1. Informal description of our publish/subscribe protocol

the symmetric part, an equality-COT based on symmetric encryption; and (2)
for the asymmetric part, El-Gamal encryption [21] and a novel variant of the
most efficient known oblivious transfer protocol [19]. Using asymmetric encryp-
tion helps, among other things, avoiding low-entropy guessing attacks on the
subscribers’ interests and publisher’s topics.

An informal pictorial description of our protocol can be found in Fig. 1.

4.2 Detailed Description

We proceed with a formal description of our distributed publish/subscribe pro-
tocol (see Fig. 2 for a pictorial description).

Protocol Preliminaries: A point-to-point secure communication protocol such
as TLS is assumed to be used for all exchanged communication.

Init: In the initialization subprotocol, parties P1, . . . , Pn+1 run the following
instructions:

1. Let ρ be a sufficiently long random string available to all parties; if such a
string is not available, P1, . . . , Pn+1 run a multi-party key-agreement protocol
to generate one

2. P1, . . . , Pn+1 use ρ to generate the triple (p, q, g) as defined in the initialization
subprotocol of the h-eq-COT protocol

126 G. Di Crescenzo et al.

Publisher Subscriber

{ w,z,c : for all interests, topics}, M

ElGamal public key parameters pkp = (p, q, g)

Post {(h,u,vx) = el-gamal-encpkp (interest x):
for all interests x} on public site

M = E(k,item), c = E(kpair,k)
(w,z) = h-eq-OT-send(c, vx / (topic y)),
store kpair
reuse it later with symmetric encryption for
same (interest encryption, topic) pair

k = D(ktriple,c), item = D(k,M)

Init

Publish

Subscribe

k = h-eq-OT-receive(w,z,vx)

Item, topics

Fig. 2. Our publish/subscribe protocol

Subscribe: Recall that a subscriber Si’s subscription is formally represented as
a sequence of c interests int1, . . . , intc, for some integer c ⇐ 1. To subscribe, Si

runs the following instructions:

1. For j = 1, . . . , c,
let intj denote subscriber Si’s jth interest
Si uses triple (p, q, g) to compute a value hj and an asymmetric encryption

(uj , vj) of intj , as done in h-eq-COT protocol, asymmetric phase, step 1
Si sets ipj = (hj , uj , vj)

2. Si posts (ip1, . . . , ipc) on its public file

Publish: We assume that a participant, acting as a publisher P , somehow
originates a new data item m, associated with a number d of topics. In the
Publish subprotocol, involving P and all remaining participants, acting as sub-
scribers S1, . . . , Sn, the following instructions are repeated for each subscriber
Si, i = 1, . . . , n.

1. P computes a random key kp → {0, 1}κ, and an encryption of data item m as
M = E(kp,m), and sends M to Si

2. P computes tag = E(kp, 0κ), and sends tag to Si

3. For h = 1, . . . , d,
for j = 1, . . . , c,

each current interest pseudonym ipj from Ci, where j = 1, . . . , cp,
if P and Si had not yet executed the key transfer for this
(interest encryption (uj , vj), topic toph) pair,

Privacy-Preserving Publish/Subscribe: Efficient Protocols 127

P randomly chooses kpair,p → {0, 1}κ

P uses the h-eq-COT protocol, asymm. phase, to transfer kpair,p to Si

let kpair,s,i be the key received by Si at the end of this subprotocol
P uses the h-eq-COT protocol, symm. phase, to transfer kp to Si,

where P uses kpair,p and Si uses kpair,s,i as additional input
let kh,j

s,i be the key received by Si at the end of this subprotocol
if P and Si had already executed the key transfer for this
(interest encryption (uj , vj), topic toph) pair,
P uses the h-eq-COT protocol, symm. phase, to transfer kp to Si,

where P uses kpair,p and Si uses kpair,s,i as additional input
let kh,j

s,i be the key received by Si at the end of this subprotocol
4. Si checks if tag = E(kh,j

s,i , 0κ) for some h → {1, . . . , d} and j → {1, . . . , c}
5. if yes, then Si computes m = D(kh,j

s,i ,M) for the found h, j values, and returns:
m; else Si returns: ∼

In the rest of this section we discuss why our protocol satisfies publication cor-
rectness, privacy and efficiency properties, as defined in Sect. 2.

4.3 Properties: Correctness, Privacy and Efficiency

Publication Correctness: To prove that our protocol satisfies this require-
ment, we need to show the facts (a) and (b) as from the requirement definition.

To see that fact (a) is satisfied, assume that one of subscriber Si’s interests,
denoted as inth, is equal to one of the data item’s topics, denoted as topj . Then,
by Property 1 of the h-eq-COT protocol, when run on input topj as Alice’s input
and inth as Bob’s input, the key kh,j

s,i received by Si, when playing as Bob, is
equal to the key kp sent by P , when playing as Alice, and used to encrypt the
data item m as M . Accordingly, Si can successfully decrypt M and receive the
data item m with probability 1.

To see that fact (b) is satisfied, assume that all of subscriber Si’s interests
are different from all of the data item’s topics. Then, by Property 2 of the h-
eq-COT protocol, when run on input a topic as Alice’s input and an interest
as Bob’s input, all keys kh,j

s,i received by Si, when playing as Bob, are random
and independent from the key kp sent by P , when playing as Alice, and used
to encrypt the data item m as M . Accordingly, Si can successfully decrypt M
and receive the data item m with probability smaller than (cd)β(χ), for some
negligible function β, which is negligible in χ.

Privacy. Our protocol achieves privacy against an efficient and potentially mali-
cious adversary that corrupts the publisher and against an efficient and honest-
but-curious adversary that corrupts any subset of the subscribers. Accordingly,
we divide the proof of this property into these two cases. In both cases, the sim-
ulation of the Init protocol directly follows from the simulatability properties of
the key agreement protocol used (if necessary). Thus, we only focus on the sim-
ulation of the output of the Subscribe algorithm and of the Publish subprotocol.

128 G. Di Crescenzo et al.

Here, in both cases, which we now discuss, we show the existence of an efficient
simulator algorithm that simulates Adv’s view.

Adv corrupts P: In this case, the simulation mainly follows from the simulation
specified in Property 3 of our h-eq-COT protocol. Specifically, assume an efficient
adversary, denoted as Adv, corrupts the publisher P . For any such Adv, we
show a simulator Sim that produces a view for Adv in the ideal world (while
posing as P) that is computationally indistinguishable from Adv’s view in the
real world (while posing as P), during the execution of the Init, Subscribe and
Publish protocols.

To simulate Adv’s view from the subscription phase, Sim invokes the ideal
Subscribe functionality, which only returns a done string to P . Then, the mes-
sages posted by the subscribers on their public file are generated by Sim as in
the simulation specified in Property 3 of our h-eq-COT protocol.

To simulate Adv’s view in the Publish subprotocol, on input the data item
m and topics top1, . . . , topd, Sim invokes the ideal Publish functionality, which
returns a done string to P , and then runs Adv on input m, top1, . . . , topd to
obtain P ’s messages to all subscribers. If P does not return such a message,
then Sim simply halts.

The proof that Sim’s simulation in the ideal world is computationally indis-
tinguishable from Adv’s view in the real world, follows from Property 3 of our
h-eq-COT protocol, which holds under the intractability of the Decisional Diffie-
Hellman problem.

Adv Corrupts an Arbitrary Subset of Subscribers: In this case, the simulation
mainly follows from the simulation specified in Properties 4 and 5 of our h-eq-
COT protocol. Specifically, assume an efficient and honest-but-curious adversary,
denoted as Adv, corrupts a subset of subscribers, or even all of them. For any
such Adv, we show a simulator Sim that produces a view for Adv in the ideal
world (while posing as the corrupted subscribers) that is computationally indis-
tinguishable from Adv’s view in the real world. To simulate the output of the
Subscribe algorithm, given as input interests int1, . . . , intc for each corrupted
subscriber, Sim does the following. It invokes the ideal Subscribe functionality,
which only returns a done string to all subscribers. Then it invokes the corrupted
subscribers to directly obtain the message they post on their public file. Finally,
it simulates the messages posted by the uncorrupted subscribers on their public
file, exactly as done in the previous case; that is, again using the simulation
specified in Property 3 of our h-eq-COT protocol.

Finally, to simulate the Publish subprotocol, Sim invokes the ideal Publish
functionality, possibly obtaining (or not) data item m as output for the corrupted
subscribers, depending on whether at least one of the topics top1, . . . , topd is
equal to at least one of the interests int1, . . . , intc or not, for each specific sub-
scriber in the corrupted subset. In the former case, Sim has to simulate the
strings (w, z) and (M, c, tag) sent by P and can use data item m to do that per-
fectly, by running P ’s algorithm. Specifically, Sim runs the simulator as specified
in Property 4 of our h-eq-COT protocol. In both cases, Sim can simulate the
strings sent to the subscribers by P as part of each execution of the h-eq-COT

Privacy-Preserving Publish/Subscribe: Efficient Protocols 129

protocol by running the simulator as specified in Property 4 of our h-eq-COT
protocol, where it is also proved that the simulation from Sim is equally distrib-
uted to Adv’s view in the real world.

In the latter case, Sim has to again simulate the strings (w, z) and (M, c, tag)
sent by P but does not have data item m this time. However, Sim can run the
simulator as specified in Property 5 of our h-eq-COT protocol. Here, the proof
that the simulation from Sim in the ideal world is computationally indistinguish-
able from Adv’s view in the real world, follows from Property 5 of our h-eq-COT
protocol, which holds under the security of the encryption scheme used.

Efficiency. By inspection, we verify that in our publish/subscribe protocol the
subscription is non-interactive, in that each subscriber only posts a message
on its public file (which is from then on readable by any publisher), and the
publication only requires a single message from a publisher to all subscribers.
Our protocol’s efficient communication complexity is also easy to verify.

It remains of interest to evaluate the publication latency metric, under vary-
ing parameter values. We implemented both our protocol, denoted as P3.0, and
another publish/subscribe protocol, called P0, that only addresses communica-
tion privacy and integrity properties using the TLS protocol on all messages
between parties, and does not address any privacy on interests, topics or data
items between publisher and subscribers.

We note that in P0 the publisher only communicates to the matching sub-
scribers, while this cannot happen in P3.0 or otherwise its privacy property
would be violated, due to Proposition 1. Thus, it is of interest to ask whether
we can avoid the communication overhead of sending an encryption of the data
item to all subscribers, especially in applications where the data item is large.
Accordingly, we also implemented a protocol, denoted as P3.1, as the following
variant of P3.0:

1. During the Publish subprotocol, the publisher sends the encryption E(k,m)
of the data item to a third party, called repository server, together with a
random value t = E(k, nonce), acting as an access token.

2. The publisher runs the same, previously defined, Publish subprotocol, this
time publishing token t instead of a data item

3. All subscribers that received key k and token t send t to the repository server
4. If the repository server receives a valid access token from a subscriber, he

sends to this subscriber the associated encryption E(k,m) of the data item
5. The subscriber uses k to retrieve the data item.

We performed testing on a collection of 6 Dell PowerEdge 1950 processors
and one Dell PowerEdge 2950 processor. Subscribers were divided in 4 groups
of size 25 each, and each group was run on a PowerEdge 1950 processor. The
publisher was run on a dedicated 1950 processor, the third party was run on
dedicated 1950 processor, and the testing control was run on the 2950 processor.
All initialization, subscription, and publication traffic was run over a dedicated
gigabit Ethernet LAN. Testing control and collection of timing measurement
traffic was isolated on a separate dedicated gigabit Ethernet LAN.

130 G. Di Crescenzo et al.

Fig. 3. Publication latency measurements for P3.0, P3.1, and P0

We compared P3.0. P3.1 and P0 against three sets of parameters, each test
with a publication rate of 1 item per second, with values 1 K, 10 K, 100 K, and
1000 K bytes for data items, with 10 matching subscribers and 10 topics per
item. (see Fig. 3). Tests were run dozens of times over a period of several weeks
and results were consistently the same over all the runs (i.e. there is nothing
stochastic in the experiments). A resulting performance chart can be found in
Fig. 3.

In particular, we observe that the performance of the P3.0 protocol is always
within a small constant (e.g., ≈ 8) of the performance of P0. This is remarkable,
in light of the fact that P3.0 sends information to all participants (to safeguard
privacy against the publisher), while P0 is only sending the data item to the
interested participants. Our protocol P3.1, employing a repository server, has
performance very close to that of P0 (in other words, it achieves high perfor-
mance and moderately satisfactory privacy properties, but at the cost of having
to trust the repository server).

5 Conclusions

We formally defined a distributed model for publish/subscribe protocols where
participants can act as publishers or as subscribers in any given publication
transaction. In this challenging model, we showed that solutions with provable
privacy and efficiency are possible. In particular, two inherent efficiency limi-
tations (the use of asymmetric cryptography operations and the fact that data

Privacy-Preserving Publish/Subscribe: Efficient Protocols 131

items need to be sent to all subscribers) can be mitigated to have only a very
small impact on performance, allowing private solutions with efficiency compa-
rable to non-private solutions. This is achieved without the need of a broker (as
required in our recent solution [12]). Our approach, based on a novel crypto-
graphic primitive (i.e., hybrid conditional oblivious transfer protocols), can also
be generalized to more elaborate publish/subscribe conditions.

Acknowledgements. Many thanks go to Jim Burns and Jonathan Stanton for use-
ful technical conversations. This work was supported by the Intelligence Advanced
Research Projects Activity (IARPA) via Department of Interior National Business
Center (DoI/NBC) contract number D12PC00520. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright annotation hereon. Disclaimer: The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or
the U.S. Government.

References

1. Eugster, PTh, Felber, P., Guerraoui, R., Kermarrec, A.-M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)

2. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations.In: Proceedings of the ACM STOC, pp. 44–61 (1989)

3. Yao, A.C.-C.: Protocols for secure computations. In: Proceedings of the IEEE
FOCS 1982, pp. 160–164 (1982)

4. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Proceedings of the ACM
STOC, pp. 218–229 (1987)

5. Di Crescenzo, G., Ostrovsky, R., Rajagopalan, S.: Conditional oblivious transfer
and timed-release encryption. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol.
1592, pp. 74–89. Springer, Heidelberg (1999)

6. Raiciu, C., Rosenblum, D.S.: Enabling confidentiality in content-based pub-
lish/subscribe infrastructures. In: Proceedings of the SecureComm 2006, pp. 1–11
(2006)

7. Minami, K., Lee, A.J., Winslett, M., Borisov, N.: Secure aggregation in a pub-
lish/subscribe system. In: Proceedings of the WPES 2008, pp. 95–104 (2008)

8. Shikfa, A., Onen, M., Molva, R.: Privacy-preserving content-based pub-
lish/subscribe networks. In: Gritzalis, D., Lopez, J. (eds.) SEC 2009. IFIP AICT,
vol. 297, pp. 270–282. Springer, Heidelberg (2009)

9. Tariq, M.A., Koldehofe, B., Altaweel, A., Rothermel, K.: Providing basic security
mechanisms in broker-less publish/subscribe systems. In: Proceedings of the ACM
DEBS, pp. 38–49 (2010)

10. Ion, M., Russello, G., Crispo, B.: Supporting publication and subscription confi-
dentiality in pub/sub networks. In: Jajodia, S., Zhou, J. (eds.) SecureComm 2010.
LNICST, vol. 50, pp. 272–289. Springer, Heidelberg (2010)

11. Choi, S., Ghinita, G., Bertino, E.: A privacy-enhancing content-based pub-
lish/subscribe system using scalar product preserving transformations. In: Bringas,
P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010, Part I. LNCS, vol. 6261,
pp. 368–384. Springer, Heidelberg (2010)

132 G. Di Crescenzo et al.

12. Di Crescenzo, G., Burns, J., Coan, B., Schultz, J., Stanton, J., Tsang, S., Wright,
R.N.: Efficient and private three-party publish/subscribe. In: Lopez, J., Huang, X.,
Sandhu, R. (eds.) NSS 2013 LNCS, vol. 7873, pp. 278–292. Springer, Heidelberg
(2013)

13. Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO
1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995)

14. Di Crescenzo, G.: Private selective payment protocols. In: Frankel, Y. (ed.) FC
2000. LNCS, vol. 1962, pp. 72–89. Springer, Heidelberg (2001)

15. Di Crescenzo, G.: Privacy for the stock market. In: Syverson, P.F. (ed.) FC 2001.
LNCS, vol. 2339, pp. 259–278. Springer, Heidelberg (2002)

16. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001)

17. Lipmaa, H.: Verifiable homomorphic oblivious transfer and private equality test.
In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 416–433. Springer,
Heidelberg (2003)

18. Michael, O.: Rabin: How to exchange secrets with oblivious transfer. Technical
report TR-81, Aiken Computation Lab, Harvard University (1981)

19. Moni, N., Pinkas, B.: Efficient oblivious transfer protocols. In: Proceedings of the
SODA 2001, pp. 448–457 (2001)

20. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

21. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

Privacy-Preserving Processing
of Raw Genomic Data

Erman Ayday1(B), Jean Louis Raisaro1, Urs Hengartner2, Adam Molyneaux3,
and Jean-Pierre Hubaux1

1 École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
erman.ayday@epfl.ch

2 University of Waterloo, Waterloo, Canada
3 Sophia Genetics, Lausanne, Switzerland

Abstract. Geneticists prefer to store patients’ aligned, raw genomic
data, in addition to their variant calls (compact and summarized form of
the raw data), mainly because of the immaturity of bioinformatic algo-
rithms and sequencing platforms. Thus, we propose a privacy-preserving
system to protect the privacy of aligned, raw genomic data. The raw
genomic data of a patient includes millions of short reads, each com-
prised of between 100 and 400 nucleotides (genomic letters). We propose
storing these short reads at a biobank in encrypted form. The proposed
scheme enables a medical unit (e.g., a pharmaceutical company or a hos-
pital) to privately retrieve a subset of the short reads of the patients
(which include a definite range of nucleotides depending on the type
of the genetic test) without revealing the nature of the genetic test to
the biobank. Furthermore, the proposed scheme lets the biobank mask
particular parts of the retrieved short reads if (i) some parts of the pro-
vided short reads are out of the requested range, or (ii) the patient does
not give consent to some parts of the provided short reads (e.g., parts
revealing sensitive diseases). We evaluate the proposed scheme to show
the amount of unauthorized genomic data leakage it prevents. Finally,
we implement the proposed scheme and assess its practicality.

Keywords: Genomics · Privacy · Bioinformatics · Raw genomic data

1 Introduction

Genomics holds great promise for better predictive medicine and improved diag-
noses. However, genomics also comes with a risk to privacy [4] (e.g., revelation
of an individual’s genetic properties due to the leakage of his genomic data). An
increasing number of medical units (pharmaceutical companies or hospitals) are
willing to outsource the storage of genomes generated in clinical trials. Acting as
a third party, a biobank could store patients’ genomic data that would be used
by the medical units for clinical trials. In the meantime, the patient can also
benefit from the stored genomic information by interrogating his own genomic

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 133–147, 2014.
DOI: 10.1007/978-3-642-54568-9 9, c© Springer-Verlag Berlin Heidelberg 2014

134 E. Ayday et al.

data, together with his family doctor, for specific genetic predispositions, sus-
ceptibilities and metabolical capacities. The major challenge here is to preserve
the privacy of patients’ genomic data while allowing the medical units to operate
on specific parts of the genome (for which they are authorized).

We can put the research on genomic privacy in three main categories: (i) re-
identification of anonymized genomic data [12,13,17,18], (ii) cryptographic algo-
rithms to protect genomic data [6–9,14,16], and (iii) private clinical genomics
[11]. To the best of our knowledge, none of the existing works on genomic pri-
vacy addresses the issue of private processing of aligned, raw genomic data (i.e.,
sequence alignment/map files), which is crucial to enable the use of genomic
data in clinical trials.

Sequence alignment/map (SAM and its binary version BAM) files are the de
facto standards used to store the aligned1, raw genomic data generated by next-
generation DNA sequencers and bioinformatic algorithms. There are hundreds
of millions of short reads (each including between 100 and 400 nucleotides) in
the SAM file of a patient. Typically, each nucleotide is present in several short
reads in order to have sufficiently high coverage of each patient’s DNA.

In general, geneticists prefer storing aligned, raw genomic data of the patients
(i.e., their SAM files), in addition to their variant calls (which include each
nucleotide on the DNA sequence once, hence is much more compact) due to
the following reasons: (i) Bioinformatic algorithms and sequencing platforms
for variant calling are currently not yet mature, and hence geneticists prefer to
observe each nucleotide in several short reads. (ii) If a patient carries a disease,
which causes specific variations in the diseased cells (e.g., cancer), his DNA
sequence in his healthy cells will be different from those diseased. Such variations
can be misclassified as sequencing errors by only looking at the patient’s variant
calls (rather than his short reads). And (iii) due to the rapid evolution of genomic
research, geneticists do not know enough to decide which information should
really be kept and what is superfluous, hence they prefer to store all outcome of
the sequencing process as SAM files.

In this paper, we propose a privacy-preserving system for the storage, retrieval
and processing of the SAM files. In a nutshell, the proposed scheme stores the
encrypted SAM files of the patients at a biobank and it provides the requested
range of nucleotides (on the DNA sequence) to a medical unit (for a genetic
test) while protecting the patients’ genomic privacy. It is important to note that
the proposed scheme enables the privacy-preserving processing of the SAM files
both for individual treatment (when the medical unit is embodied in a hospital)
and for genetic research (when the medical unit is embodied in a pharmaceu-
tical company). The main contributions of this paper are summarized in the
following:

1. We develop a privacy-preserving framework for the retrieval of encrypted
short reads (in the SAM files) from the biobank without revealing the scope
of the request to the biobank.

1 Alignment is with respect to the reference genome, which is assembled by the
scientists.

Privacy-Preserving Processing of Raw Genomic Data 135

2. We develop an efficient system for obfuscating (i.e., masking) specific parts
of the encrypted short reads that are out of the requested range of the med-
ical unit (or that the patient prefers to keep secret) at the biobank before
providing them to the medical unit.

3. We show the benefit of masking by evaluating the information leak to the
medical unit, with and without the masking is in place.

4. We implement the proposed privacy-preserving system by using real genomic
data, evaluate its efficiency, and show its practicality.

2 Genomic Background

The DNA sequence data produced by DNA sequencing consists of millions of
short reads, each typically including between 100 and 400 nucleotides (A,C,G,T),
depending on the type of sequencer. These reads are randomly sampled from
a human genome. Each read is then bioinformatically treated and positioned
(aligned) to its genetic location to produce a so-called SAM file. There are hun-
dreds of millions of short reads in the SAM file of one patient.

The privacy-sensitive fields of a short read are (i) its position with respect to
the reference genome, (ii) its cigar string (CS), and (iii) its content (including
the nucleotides from {A, T,G,C}).

A short read’s position denotes the position of the first aligned nucleotide
in its content, with respect to the reference genome. The position of a short
read is in the form Li,j = ≈xi|yj→, where xi represents the chromosome number
(xi ∞ [1, 23] as there are 23 chromosomes in the human genome) and yj represents
the position of its first aligned nucleotide on chromosome xi (yj ∞ [1, 240M] as
the maximum number of nucleotides on a chromosome is around 240 million).
The cigar string (CS) of a short read expresses the variations in the content of
the short read. The CS includes pairs of nucleotide lengths and the associated
operations. The operations in the CS indicate some properties about content
of the short read such as which nucleotides align with the reference, which are
deleted from the reference, and which are insertions that are not in the reference
(without revealing the content of the short read). Finally, the content of a short
read includes the nucleotides. We provide more details about the SAM files in [5].

There are several types of DNA variations in the human genome, among
which the single nucleotide polymorphism (SNP) is the most common. A SNP is
a position in the genome holding a nucleotide that varies between individuals.
Recent discoveries show that the susceptibility of a patient to several diseases
can be computed from his SNPs [1]. Thus, we focus on the SNPs of a patient
when evaluating the information leakage in Sect. 6.

3 Overview of the Proposed Solution

We assume that the sequencing and encryption of the genomes are done at a cer-
tified institution (CI), which is a trusted entity. Short reads are encrypted after
the sequencing, and encrypted SAM files of the patients are stored at a biobank

136 E. Ayday et al.

(for security, efficiency, and availability). We note that a private company (e.g.,
cloud storage service) or the government could play the role of the biobank.
When a medical unit (MU) requests a specific range of nucleotides (on the DNA
sequence of one or multiple patients) for a genetic test, the biobank provides all
the short reads that include at least one nucleotide from the requested range. We
assume that an MU is a broad unit consisting of many sub-units (e.g., physicians
or specialized clinics) that can potentially request nucleotides from any parts of
a patient’s genome. To avoid the biobank from associating the conducted genetic
tests with the patients, we hide both the real identities of the patients (using
pseudonyms) and the types of the conducted tests from the biobank.2 We hide
the types of the conducted tests from the biobank by permuting the positions
of the short reads, and then using order preserving encryption (OPE) on the
positions of the short reads. OPE is a deterministic encryption scheme whose
encryption function preserves numerical ordering of the plaintexts [3].

As each short read includes between 100 and 400 nucleotides, some short
reads that are provided to the MU might include information out of the MU’s
requested range of genomic data, as in Fig. 1. Similarly, some provided short
reads might contain privacy-sensitive SNPs of the patient, hence the patient
might not give consent to reveal such parts, as in Fig. 2. Therefore we mask such
parts of the encrypted short reads at the biobank, without decrypting them using
an efficient algorithm.

Fig. 1. Parts to be masked in the short
reads for out-of-range content.

Fig. 2. Parts to be masked in a short
read based on patient’s consent. The
patient does not give consent to reveal
the dark parts of the short read.

The cryptographic keys of each patient are stored on a masking and key
manager (MK) by using the patient’s pseudonym (hence the participation of
the patient is not required in the protocol).3 The MK can also be embodied in
the government or a private company. To avoid the MK from associating the
2 Knowing the MU (e.g., the name of the hospital) the biobank could de-anonymize

an individual using other sources (e.g., by associating the time of the test and the
location of the MU with the location patterns of the victim).

3 Following our discussions with geneticists and medical doctors, we conclude that
the patient’s involvement in the genetic tests is not desired for the practicality of
the protocol (e.g., when a pharmaceutical company conducts genetic research on
thousands of patients).

Privacy-Preserving Processing of Raw Genomic Data 137

genetic tests with the patients, we do not reveal the identities of the MUs or the
patients to the MK.

4 Threat Model

We consider the following models for the attacker:

• A curious party at the biobank (or a hacker who breaks into the biobank),
who tries (i) to infer the genomic sequence of a patient from his stored genomic
data and (ii) to associate the type of the genetic test (e.g., the disease for which
the patient is being tested, which can be inferred from the nucleotides requested
by the MU) with the patient being tested.
• A curious party at the MK (or a hacker who breaks into the MK), who tries
(i) to infer the genomic sequence of a patient from his stored cryptographic keys
and the information provided by the biobank and (ii) to associate the type of
the genetic test with the patient being tested.
• A curious party at an MU, who can be considered either as an attacker who
hacks into the MU’s system or a disgruntled employee who has access to the
MU’s database. The goal of such an attacker is to obtain the private genomic
data of a patient for which it is not authorized.

We assume that the biobank, the MK, and the MUs honestly follow the
protocols and provide correct information to the other parties. Finally, collusion
between the parties (i.e., the biobank, the MK, and an MU) is not allowed in
our threat model and we assume that laws could enforce this.

5 Privacy-Preserving Processing of Raw Genomic Data

5.1 Cryptographic Keys and Encryption of the Short Reads

Fig. 3. Division, permutation and mapping of the posi-
tions on the whole genome.

We represent the position
of a short read (Li,j =
≈xi|yj→) as a 35-bit number,
where the first 5 bits repre-
sent the chromosome num-
ber (xi) and the remaining
30 bits represent the posi-
tion of the short read in the
corresponding chromosome
(yj). If the positions of the
short reads were encrypted
following this representa-
tion, the biobank could
infer the approximate posi-
tions of the short reads as
a result of using OPE.

138 E. Ayday et al.

To avoid this, we first divide the positions on the whole genome into parts
of equal lengths, permute these parts, and then modify the positions in each
part based on the permutation. In Fig. 3, we show such an example, in which
the positions on the genome are divided into parts of length 40 million (totaling
75 parts as there are 3 billion nucleotides in the human genome). For example,
chromosome 1 is divided into 6 parts (11, 12, . . . , 16), where the last part includes
positions from both the first and second chromosomes. After division, all parts
are permuted and mapped to different positions. As a result of the new mapping,
the new position of a short read at Li,j = ≈xi|yj→ becomes M(Li,j) = ≈k→≈xi|yj→,
where M(.) is the mapping function for patient P, and k is the mapping of the
corresponding part. For example, the position of a short read located in the first
part of the first chromosome (part 11 in Fig. 3) becomes M(Li,j) = ≈3→≈xi|yj→
after the permutation and mapping. Thus, for each patient, we re-define the
positions of the short reads based on this new positioning, before encrypting the
positions of the short reads using OPE. By doing so, we also change the ordering
of the encrypted positions of the short reads. As a consequence, a curious party
at the biobank cannot infer which part of the patient’s genome is queried by the
MU from the stored (encrypted) positions of the short reads. Finally, we assume
that the MK keeps the mapping table MP (showing the mapping of each part
in each chromosome) for each patient. Note that as the permutation is done
differently for each patient, the biobank cannot infer if two different patients are
having a similar genetic test.

The different parts of each short read are encrypted as follows: (i) The posi-
tions of the short reads are encrypted using order preserving encryption (OPE),
(ii) the cigar string (CS) of each short read is encrypted using a semantically
secure symmetric encryption function (SE), and (iii) the content of each short
read is encrypted using a stream cipher (SC). We note that an SC also provides
semantic security, and although we really need an SC for the encryption of the
content, one can also use an SC for the encryption of the CS.

We represent the key used for the semantically secure encryption scheme
between two parties i and j as Ki,j . The symmetric OPE key that is used
to encrypt the positions of the short reads of patient P is represented as KO

P .
Further, the master key of patient P, which is used to generate the keys of the SC
is represented as MP . We denote KCi,j

P as the SC key used to encrypt the content
of the short read whose position is Li,j (where Ci,j represents the content of the
short read with position Li,j). We compute K

Ci,j

P = H(MP ,F(Li,j , Si,j), Li,j),
where Li,j is the (starting) position of the corresponding short read (on the DNA
sequence), Si,j is a random salt to provide different keys for the short reads with
the same positions, and H is a pseudorandom function. Moreover, F(Li,j , Si,j) is
a function that generates a nonce from the position and the random salt of the
corresponding short read. We represent the public-key encryption of message
m under the public key of i as E(Ki,m), the encryption of message m via a
semantically secure symmetric encryption function (SE) using the symmetric
key between i and j as ESE(Ki,j ,m), and the OPE of message m using the OPE
key of P as EOPE(KO

P ,m). Furthermore, we represent the SC encryption of the

Privacy-Preserving Processing of Raw Genomic Data 139

Posi 9 10 11 12 13 14 16 17 * * 21 22 23 24 25 26 27 28

Content of SR in
the SAM file a t g T A A A T G C T A T G C G A G

Plaintext content
in binary 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0 1 1

Key stream 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 1 0 0

Encrypted
content (XOR) 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1

Masking vector 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Random masking

string 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 1 0 1 1

Masked enc.
content (XOR) 1 1 1 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 0 0

Decrypted binary
content (XOR) 0 1 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0

Decrypted T G C T A A A G G C T G A T G G C A

CS of the SR before masking 3S3M1D2M2I3N8M

12

Input parameters

Output parameters

A 00

T 01

C 10

G 11

(a)

(b) (c)

Fig. 4. Illustrative example for the encryption, masking and decryption of the con-
tent of a short read (SR). (a) Content of the SR (the 2 stars between positions 17
and 21 represent the positions at which the SR has insertions, G and C), its binary
representation, the key stream to encrypt the corresponding content, and the format
of the encrypted content. Furthermore, following the discussion in Sect. 5.2, we illus-
trate the masking process considering the range of the requested nucleotides and the
patient’s consent (in (c)). Finally, we show the format of the decrypted binary content.
(b) Encoding format of the nucleotides. (c) Properties of the corresponding short read.
We provide more details about different letters in the CS in [5].

EOPE(,POSITION) ESE(,CS) ESC(,CONTENT) RAND.SALT

Fig. 5. Format of an encrypted short read. The size of each field is discussed in Sect. 7.

content of a short read as ESC(KCi,j

P , Ci,j), where Ci,j represents the content of
the short read at Li,j . In Fig. 4(a), we illustrate how the content of a short read
is translated to plaintext bits and encrypted using SC (by XOR-ing the content
with the key stream). Finally, in Fig. 5, we illustrate the format of an encrypted
short read.

We assume that the certified institution (CI), where the patient’s DNA is
sequenced and analyzed, has KO

P , MP , and KP,CI (KP,CI is used to encrypt the
CSs of the short reads) for the initial encryption of the patient’s genomic data.
These keys are then deleted from the CI after the sequencing, alignment, and
encryption. We also assume that for each patient P, the MK stores KO

P , MP ,

140 E. Ayday et al.

and KP,CI along with the mapping table MP (as discussed before). Finally, the
MU only stores the public key of the MK, KMK .

5.2 Proposed Protocol

Typically, a specialist at the MU (e.g., a physician at the hospital or a specialized
clinic connected to the hospital) requests a range of nucleotides (on the DNA
sequence of one or more patients) from the biobank (either for a personal genetic
test or for clinical research). For simplicity of the presentation, we assume that
the request is for a specific range of nucleotides of patient P. We illustrate the
connections between the parties that are involved in the protocol in Fig. 6(a).
In the following, we describe the steps of the proposed protocol (these steps are
also illustrated in Fig. 6(b)).

• Step 1: The patient (P) provides a sample (e.g., his saliva) along with his
permission to the certified institution (CI) for sequencing.
• Step 2: The CI does the sequencing and constructs the SAM file of the patient.
The short reads of the patient are also encrypted at the CI (as discussed in
Sect. 5.1).
• Step 3: The CI sends the encrypted SAM file to the biobank along with the
corresponding pseudonym of the patient. The CI also sends KO

P , MP , KP,CI ,
and the mapping table MP for patient P directly to the MK via a secure channel
(we do not illustrate this step in Fig. 6). We note that the first 3 steps of the
protocol are executed only once.
• Step 4: A specialized sub-unit at the MU requests nucleotides from the range
[RL, RU] (RL being the lower bound and RU being the upper bound of the
requested range) on the DNA sequence of patient P for a genetic test. We
note that an access control unit stores the authorizations (i.e., access rights)
of the original request owners (e.g., specialist at a hospital) to different parts
of the genomic data. In our setting, the MU checks the access rights of the
original request owner before forwarding the request to the biobank. Once, the
MU verifies that the original request owner has the sufficient access rights to
the requested range of nucleotides, the MU generates a one-time session key
KMK,MU , which will be used for the secure communication between the MU
and the MK. The MU encrypts this session key with the public key of the MK
to obtain E(KMK ,KMK,MU).

The MU encrypts the lower and upper bounds of the requested range with
KMK,MU to obtain ESE(KMK,MU , RL||RU) and sends the corresponding request
to the biobank along with the pseudonym of the patient P, the identification of
the MU4, E(KMK ,KMK,MU), and ESE(KMK,MU ,ΩP), where ΩP is the
pseudonymized consent of the patient.5 The MK uses this pseudonymized con-
sent ΩP to generate the masking vectors (as in Step 9).
4 We reveal the real identity of the MU to the biobank to make sure that the request

comes from a valid source.
5 ΩP denotes the positions on the patient’s genome for which the patient does not

give consent to the original request owner (e.g., specialized sub-unit at the MU).

Privacy-Preserving Processing of Raw Genomic Data 141

CI Biobank MK MU

1) Sample

2) Sequencing and
Encryption @ CI

3) Encrypted short reads
4) E[Requested range of nucleotides], ID of the MU, E[session key], E[consent]

6) E[upper and lower bound of the range]

7) Private retrieval of
the reads @ biobank

8) E[positions], E[CSs] and random salts of short reads

9) Construction of the
masking vectors @ MK

11) Masking @ biobank
12) E[masked short reads], E[modified CSs]

E[positions] and E[decryption keys]

10) Masking request, E[modified CSs]
E[positions] and E[decryption keys]

5) E[Requested range of nucleotides], E[session key], E[consent]

fied

(CI)

Biobank Medical Unit
(MU)

Curious
Party

Masking and
Key Manager

(MK)

Curious
Party

Curious
Party

Specialized
Sub-unit

Fig. 6. (a) Connections between the parties in the proposed protocol. (b) The opera-
tions and message exchanges in the proposed protocol.

• Step 5: Once the biobank verifies that request comes from a valid source6,
it forwards ESE(KMK,MU , RL||RU), and ESE(KMK,MU ,ΩP), along with the
pseudonym of the patient, and the encrypted session key E(KMK ,KMK,MU)
to the MK.
• Step 6: The MK decrypts the session key to obtain KMK,MU and decrypts the
request (ESE(KMK,MU , RL||RU)) to obtain RL and RU . As we discussed before,
the position of a short read is the position of the first aligned nucleotide in its
content. Let Γ be the maximum number of nucleotides in a short read. Then,
the short reads with position in [RL − Γ, RL − 1] might also include nucleotides
from the requested range ([RL, RU]) in their contents. Thus, the MK re-defines
the lower bound of the request as RL − Γ in order to make sure that all the
short reads (which include at least one nucleotide from the requested range of
nucleotides) are retrieved by the biobank.

Next, the MK determines where (RL − Γ) and RU are mapped to following
the mapping table MP of patient P (as discussed in Sect. 5.1). If both (RL − Γ)
and RU are on the same part (e.g., in Fig. 3), then the MK computes the range
of short read positions (to be retrieved by the biobank) as [M(RL −Γ),M(RU)],
where M(.) is the mapping function for patient P. Otherwise (if they are not on
the same part), due to the permutation of the parts, the MK generates multiple
ranges of short read positions to make sure all short reads including at least
one nucleotide from [RL, RU] are retrieved by the biobank. For simplicity of the
presentation, we assume (RL−Γ) and RU are on the same part. Finally, the MK
computes the encrypted range [EOPE(KO

P ,M(RL−Γ)),EOPE(KO
P ,M(RU))], and

sends this encrypted range to the biobank (with pseudonym of P).
• Step 7: The biobank retrieves all the short reads (in the SAM file of patient P)
whose encrypted positions (EOPE(KO

P ,M(Li,j))) are in the set Δ = {EOPE(KO
P ,

M(Li,j)) :EOPE(KO
P ,M(RL−Γ)) ≡EOPE(KO

P ,M(Li,j)) ≡ EOPE(KO
P ,M(RU))}.

6 We assume that the biobank has a list of valid MUs, whose requests it will answer.

142 E. Ayday et al.

As OPE preserves the numerical ordering of the plaintext positions, the biobank
constructs the set Δ without accessing the plaintext positions of the short reads.
• Step 8: The biobank provides Δ along with the corresponding encrypted CSs
and the random salt values of the short reads to the MK.
• Step 9: The MK decrypts the corresponding positions and the CSs of the
retrieved short reads by using KO

P and KP,CI in order to construct the masking
vectors for the biobank. These masking vectors prevent the leakage of out-of-
range content (in Fig. 1) and non-consented nucleotides (in Fig. 2) to the MU, as
we discussed in Sect. 3. We note that from the positions and the CSs of the short
reads, the MK cannot infer the locations or contents of the patient’s privacy-
sensitive point mutations (e.g., SNPs), which are typically used to evaluate the
predispositions of the patients for various diseases. These privacy-sensitive point
mutations can only be inferred when the CS is used together with the content
of the short read (which is not revealed to the MK).

The MK can determine the actual position of a short read from its mapped
position as the MK has the mapping table MP for patient P (i.e., it can infer Li,j

from M(Li,j) using MP). Using the position and the CS of a short read, the MK
can determine the exact positions of the nucleotides in the content of a short read
(but not the contents of the nucleotides, because the contents are encrypted and
stored at the biobank). Using this information, the MK can determine the parts
in the content of the short read that are out of the requested range [RL, RU].
Furthermore, the MK can also determine whether the short read includes any
nucleotide positions for which the patient P does not give consent. Therefore, the
MK constructs binary masking vectors indicating the positions in the contents
of the short reads that are needed to be masked by the biobank before sending
the retrieved short reads to the MU. We provide the details of the algorithm to
construct the masking vectors in [5]. In Fig. 4(a), we illustrate how the masking
vector is constructed for the corresponding short read, when the requested range
of nucleotides is [10, 20] and for a given set of nucleotide positions for which the
patient P does not give consent (as in Fig. 4(c)).

The MK also modifies the CS of each short read (if it is marked for masking)
according to the nucleotides to be masked. That is, the MK modifies the CS such
that the masked nucleotides are represented with a new operation “O” in the
CS. By doing so, when the MU receives the short reads, it can see which parts
of them are masked. In Fig. 4(c), we illustrate how the CS of the corresponding
short read changes as a result of the masking vector in Fig. 4(a). Then, the MK
generates the decryption keys for each short read (whose position is in Δ) by
using the master key of the patient (MP), positions of the shorts read, and the
random salt values.7

• Step 10: The MK encrypts the positions, the (modified) CSs, and the gener-
ated decryption keys of the contents of the short reads, using KMK,MU . Then, it
sends the masking vectors along with the encrypted positions, CSs and decryp-
tion keys to the biobank. We note that in this step, the MK encrypts the actual
7 The generation of the decryption keys for the SC is the same as the generation of

the encryption keys as we discussed in Sect. 5.1.

Privacy-Preserving Processing of Raw Genomic Data 143

positions of the short reads (e.g., Li,j instead of M(Li,j)) as these positions will
be eventually decrypted and used by the MU, and the MU does not need to
know the mapping table MP of the patient.
• Step 11: The biobank conducts the masking by XOR-ing the bits of the
encrypted content of each short read (whose position is in Δ) with a random
masking string. Each entry (bit) of the random masking string is assigned as
follows: (i) If the corresponding entry is set for masking in the masking vector,
it is assigned with a random binary value, and (ii) it is assigned with zero,
otherwise. We provide the details of the algorithm to perform the masking at the
biobank in [5]. Furthermore, in Fig. 4(a), we illustrate how the masked encrypted
content for the corresponding short read is constructed by XOR-ing the random
masking string with the encrypted content.
• Step 12: Finally, the biobank sends the encrypted positions, CSs and decryp-
tion keys (generated in Step 10 by the MK) along with the masked contents
(generated in Step 11 by the biobank) to the MU. The MU decrypts the received
data and obtains the requested nucleotides of the patient.

6 Evaluation

Focusing on the leakage of genomic data, we evaluate the proposed privacy-
preserving system by using real genomic data to show (i) how the leakage of
genomic data from the short reads threatens the genomic privacy of a patient,
and (ii) how the proposed masking technique helps to prevent this leakage. We
assume that the MU requests a specific range of nucleotides of patient P (e.g.,
for a genetic test) from the biobank. In practice, the requested range can include
from one to thousands of nucleotides depending on the type of the genetic test.

First, without the masking in place, we observe the ratio of unauthorized
genomic data (i.e., number of nucleotides provided to the MU that are out of
the requested range) to the authorized data (i.e., number of nucleotides within
the requested range) for various request sizes. For simplicity, we assume that
all the nucleotides within the requested range are considered as consented data
(i.e., the situation in Fig. 2 is not considered); and only those that are out of the
requested range (but still provided to the MU via the short reads) are considered
as the unauthorized data. For the patient’s DNA profile (i.e., SAM file), we use
a real human DNA profile [2] (with an average coverage of 8, meaning each
nucleotide is present, on the average, in 8 short reads in the SAM file, and each
short read includes at most 100 nucleotides) and we randomly choose the ranges
of requested nucleotides from the entire genome of the patient. We illustrate our
results in Fig. 7. We observe that for small request sizes, the amount of leakage
(of unauthorized data) is very high compared to the size of authorized data.
As the leakage vanishes (e.g., the ratio in Fig. 7 becomes 0) with the proposed
masking technique, we do not show the leakage when the proposed masking
technique is in place in Figs. 7, 8, 9, 10.

Using the same DNA profile, we also observe the evolution in the amount
of leaked genomic data over time. For simplicity of the presentation, we assume

144 E. Ayday et al.

slotted time and that the MU conducts a genetic test on the patient at each
time slot (by requesting a particular range of nucleotides from a random part of
his genome). In Fig. 8, we illustrate the amount of genomic data (i.e., number of
nucleotides) that is leaked to the MU in 100 time-slots. The jumps in the number
of leaked nucleotides (at some time-slots) is due to the fact that some requests
might retrieve more short reads comprised of more out-of-range nucleotides. As
before, leakage becomes 0 when masking is in place, which shows the crucial role
of the proposed scheme.

0 20 40 60 80 100
10

0

10
1

10
2

Size of the requested range of nucleotides

le

ak
ed

 n
u

cl
eo

ti
d

es
 /

au

th
o

ri
ze

d
 n

u
cl

eo
ti

d
es

Fig. 7. Ratio of unauthorized genomic
data to the authorized data vs. the size
of the requested range of nucleotides,
when there is no masking in place.

0 20 40 60 80 100
0

250

500

750

1000

time−slot

le

ak
ed

 n
u

cl
eo

ti
d

es

0 20 40 60 80 100
0

25

50

75

100

time−slotS
iz

e
o

f
re

q
u

es
te

d
 r

an
g

e

Fig. 8. Number of leaked nucleotides
vs. time for various request sizes, when
there is no masking in place.

We also study the information leakage, focusing on the leaked single nucleotide
polymorphisms (SNPs) of the patient as a result of different sizes of requests
(from random parts of the patient’s genome). In Fig. 9, we illustrate the num-
ber of SNPs leaked to the MU in 100 time-slots. We observe that the number
of leaked SNPs is more than twice the number of authorized SNPs (which are
within the requested range of nucleotides). When the proposed masking tech-
nique is in place, the number of leaked SNPs (outside the requested range)
becomes 0 in Fig. 9.

Finally, we study the genomic data leakage (number of leaked nucleotides
and SNPs) when the MU tests the susceptibility of the patient [2] to a particular
disease (i.e., when the MU asks for the set of SNPs of the patient that are used
to test the corresponding disease). For this study, we use real disease markers [1].
We note that for this type of test, the size of the requested range of nucleotides
(by the MU) for a single SNP is typically 1, but the SNPs are from several
parts of the patient’s genome. In Fig. 10, we illustrate the genomic data leakage
of the patient as a result of various disease susceptibility tests each requiring
a different number of SNPs from different parts of the patient’s genome (on
the x-axis we illustrate the number of SNPs required for each test). We again
observe that the leaked SNPs, as a result of different disease susceptibility tests,
reveal privacy-sensitive data about the patient. For example, leaked SNPs of the

Privacy-Preserving Processing of Raw Genomic Data 145

patient as a result of a test for the Alzheimer’s disease could leak information
about the patient’s susceptibility to “smoking behavior” or “diabetes” (in [5],
we list the nature of some important leaked SNPs due to some susceptibility
tests in Fig. 10). Similar to the previous cases, the number of leaked nucleotides
and SNPs is 0 when masking is in place.

0 20 40 60 80 100
0

100

200

300

400

500

time−slot

re

ve
al

ed
 S

N
P

s

0 20 40 60 80 100
0

25

50

75

100

time−slotS
iz

e
o

f
re

q
u

es
te

d
 r

an
g

e

Authorized SNPs
Leaked SNPs

Fig. 9. Number of leaked SNPs vs.
time for various request sizes, when
there is no masking in place.

5 10 15 20 25 30 35 40 45
0

100

200

300

400

500

600

SNPs required for the susceptibility test

le
ak

ed
 S

N
P

s
0

1000

2000

3000

4000

5000

6000

le

ak
ed

 n
u

cl
eo

ti
d

es

Leaked SNPs − Breast cancer
Leaked SNPs − Cardiovascular disease
Leaked SNPs − Alzheimer’s disease
Leaked SNPs − ALS
Leaked SNPs − Type II Diabetes Mellitus
Leaked SNPs − Crohn’s disease
Leaked SNPs − Multiple sclerosis
Leaked SNPs − Ischemic stroke
Leaked SNPs − Lung cancer
Leaked SNPs − Parkinson’s disease
Leaked SNPs − Leukemia
Leaked nucleotides

Fig. 10. Number of leaked SNPs and
nucleotides during the susceptibility
test to different diseases when there is
no masking in place. The values on the
right y-axis correspond to the number
of leaked nucleotides.

7 Implementation and Complexity Analysis

We implemented the proposed system and assessed its storage requirement and
complexity on an Intel Core i7-2620M CPU with a 2.70 GHz processor under
Windows 7, using Java. As before, for the patient’s SAM file, we used a real DNA
profile [2] including around 300 million short reads (each short read including at
most 100 nucleotides).

We used the Salsa20 stream cipher [10] and the implementation of OPE
from [15]. We also used CCM mode of AES (with key size of 256-bits) for the
secure communication between the MK and the MU, and RSA (with key size of
2048-bits) for the public-key encryption.

We structured the fields in the encrypted short read (in Fig. 5) as follows:
We reserved the first 8-bytes for the encrypted position of the short read (via
OPE). To save storage, we devoted the next 64-bytes of the encrypted short
read to the CS and the content of the short read. As the input size of the stream
cipher is 64-bytes, we encrypted the CS together with the content and other
(header) information of the short read using the stream cipher. That is, out
of the 64-byte input of the stream cipher, we allocated the first 20-bytes for
the CS, the next 25-bytes for the content (as each short read in the used DNA
profile includes at most 100 nucleotides), and the remaining 19-bytes for the
remaining information about the short read (or padding). Finally, the last byte

146 E. Ayday et al.

of the short read includes the plaintext random salt. Consequently, we computed
the storage cost as 21.6 GB per patient. We note that stream cipher encryption
does not increase the size of the data as it is the XOR of the key stream with the
plaintext. The storage overhead (due to the proposed privacy-preserving scheme)
is due to the encryption of the positions of the short reads by using OPE.

We also evaluated the computation times for different steps of the pro-
posed scheme. The detailed computation times of different steps of the protocol
can be found in [5]. Overall, it takes approximately 5 s for the MU to receive
the requested range of nucleotides of the patient (Steps 4–12) after privacy-
preserving retrieval and masking (for a range size of 100, which includes on
the average 23 short reads), which shows the efficiency and practicality of the
proposed scheme. We note that the computation time of the whole process is
dominated by the retrieval of the reads at the biobank (which does not involve
any cryptographic operations). Therefore, we can easily claim that the cost of
cryptographic operations is not a bottleneck for the proposed protocol.

8 Conclusion

In this paper, we have introduced a privacy-preserving system for the storage,
retrieval, and processing of aligned, raw genomic data (i.e., SAM files). We are
confident that the proposed scheme will accelerate genomic research, because
clinical-trial participants will be more willing to consent to the sequencing of
their genomes if they are ensured that their genomic privacy is preserved.

Acknowledgements. We would like to thank Jurgi Camblong, Pierre Hutter, Zhenyu
Xu, Wolfgang Huber, and Lars Steinmetz for their useful comments.

References

1. http://www.eupedia.com/genetics/medical dna test.shtml
2. ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA06984/
3. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for

numeric data. In: Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data, pp. 563–574 (2004)

4. Ayday, E., Cristofaro, E.D., Tsudik, G., Hubaux, J.P.: The chills and thrills of
whole genome sequencing. arXiv:1306.1264 (2013). http://arxiv.org/abs/1306.1264

5. Ayday, E., Raisaro, J.L., Hengartner, U., Molyneaux, A., Hubaux, J.P.: Privacy-
preserving processing of raw genomic data. EPFL-REPORT-187573 (2013).
https://infoscience.epfl.ch/record/187573

6. Ayday, E., Raisaro, J.L., Hubaux, J.P.: Personal use of the genomic data: privacy
vs. storage cost. In: Proceedings of IEEE Global Communications Conference,
Exhibition and Industry Forum (Globecom) (2013)

7. Ayday, E., Raisaro, J.L., Hubaux, J.P.: Privacy-enhancing technologies for medical
tests using genomic data (short paper). In: 20th Annual Network and Distributed
System Security Symposium (NDSS) (2013)

http://www.eupedia.com/genetics/medical_dna_test.shtml
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA06984/
http://arxiv.org/abs/1306.1264
https://infoscience.epfl.ch/record/187573

Privacy-Preserving Processing of Raw Genomic Data 147

8. Ayday, E., Raisaro, J.L., McLaren, P.J., Fellay, J., Hubaux, J.P.: Privacy-
preserving computation of disease risk by using genomic, clinical, and environmen-
tal data. In: Proceedings of USENIX Security Workshop on Health Information
Technologies (HealthTech) (2013)

9. Baldi, P., Baronio, R., De Cristofaro, E., Gasti, P., Tsudik, G.: Countering GAT-
TACA: efficient and secure testing of fully-sequenced human genomes. In: Proceed-
ings of ACM CCS ’11, pp. 691–702 (2011)

10. Bernstein, D.J.: The Salsa20 family of stream ciphers. In: Robshaw, M., Billet, O.
(eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Heidel-
berg (2008). http://dx.doi.org/10.1007/978-3-540-68351-3 8

11. Chen, Y., Peng, B., Wang, X., Tang, H.: Large-scale privacy-preserving mapping of
human genomic sequences on hybrid clouds. In: NDSS’12: Proceeding of the 19th
Network and Distributed System Security Symposium (2012)

12. Fienberg, S.E., Slavkovic, A., Uhler, C.: Privacy preserving GWAS data sharing.
In: Proceedings of the IEEE ICDMW ’11, December 2011

13. Gymrek, M., McGuire, A.L., Golan, D., Halperin, E., Erlich, Y.: Identifying per-
sonal genomes by surname inference. Science 339(6117), 321–324 (2013)

14. Jha, S., Kruger, L., Shmatikov, V.: Towards practical privacy for genomic compu-
tation. In: Proceedings of the 2008 IEEE Symposium on Security and Privacy, pp.
216–230 (2008)

15. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: protect-
ing confidentiality with encrypted query processing. In: Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles (2011)

16. Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.: Privacy preserving error
resilient DNA searching through oblivious automata. In: CCS ’07: Proceedings of
the 14th ACM Conference on Computer and Communications Security (2007)

17. Wang, R., Li, Y.F., Wang, X., Tang, H., Zhou, X.: Learning your identity and
disease from research papers: information leaks in genome wide association study.
In: Proceedings of ACM CCS ’09, pp. 534–544 (2009)

18. Zhou, X., Peng, B., Li, Y.F., Chen, Y., Tang, H., Wang, X.F.: To release or not to
release: evaluating information leaks in aggregate human-genome data. In: Atluri,
V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 607–627. Springer, Hei-
delberg (2011)

Using Search Results to Microaggregate Query
Logs Semantically

Arnau Erola(B) and Jordi Castellà-Roca

Departament d’Enginyeria Informàtica i Matemàtiques,
UNESCO Chair in Data Privacy, Universitat Rovira i Virgili, Av. Päısos Catalans 26,

43007 Tarragona, Spain
{arnau.erola,jordi.castella}@urv.cat

Abstract. Query log anonymization has become an important challenge
nowadays. A query log contains the search history of the users, as well
as the selected results and their position in the ranking. These data
are used to provide a personalized re-ranking of results and trend stud-
ies. However, query logs can disclose sensitive information of the users.
Hence, query logs must be submitted to an anonymization process to
guarantee that: (a) no sensitive information can be linked to an identity;
(b) the analysis of the anonymized data produces similar results than
the original data, i.e. minimize data distortion. Latest anonymization
approaches utilize microaggregation, a statistical disclosure control tech-
nique that provides a privacy comparable with k-anonymity, attempting
to minimize the data distortion. We propose a new method that uses
search results to optimize microaggregation, providing more data relia-
bility than the existing methods.

Keywords: Privacy · Web search · Microaggregation · k-anonymity ·
Query logs · Semantics · Semantic microaggregation

1 Introduction

The query logs stored by Web Search Engines (WSE) contain valuable infor-
mation for researchers and marketing companies, as they allow the study of
users’ behavior or any changes in users’ trends [1]. Furthermore, WSE can use
query logs to improve users’ experience by providing advanced functionalities
such as personalizing search results (disambiguating terms and predicting user
interests), autocompleting search terms, or correcting spelling mistakes [2].

However, the attractiveness of the advanced functionalities obtained from
storing query logs can be counteracted by the privacy problems they present.
Queries can contain sensitive information (e.g. religion, sexuality, politics etc.)
and can disclose the identity of the user (e.g. a query contains the passport
number). Note that a query itself can contain information about several issues,
for instance, a simple query such as Drug Clinic Portland is probably disclosing
that the user lives in Portland and has some problems with drugs. Thus, queries,

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 148–161, 2014.
DOI: 10.1007/978-3-642-54568-9 10, c© Springer-Verlag Berlin Heidelberg 2014

Using Search Results to Microaggregate Query Logs Semantically 149

like microdata (data about an individual), can be classified into the following
categories, which are not mutually exclusive, depending on their content:

– Identifier Queries. The queries univocally identify the query owner. For
example, the query contains the passport number, the credit card number or
the full name. Such queries are usually removed because they are not valuable
for advanced functionalities and constitute a high privacy threat.

– Quasi-identifier Queries. These queries cannot identify a user. However,
in combination or with the help of external information (for instance, the
information of public databases), they can univocally identify a user. The zip
code, age, first name, etc. are some examples.

– Confidential Queries. The queries contain sensitive information of the users.
For example, queries related with religion, illnesses, investments, etc.

– Non-confidential Queries.1 The queries do not contain sensitive informa-
tion. Country names and favorite sports can be some examples. However, they
can also constitute an identity disclosure risk because in combination they can
form a quasi-identifier.

Accordingly, query logs must be submitted to an anonymization process
prior to their publication. It involves some data modifications which reduce
the probability of disclosing personal information, but at the same time they
reduce the data utility. This is a trade-off between utility and privacy, which
implies that the greater the privacy, the greater the information loss will be.
However, although data have been anonymized, personal information can be
inferred from the remaining data. The AOL’s case [4], where some individuals
were re-identified, is an example.

This study is aimed at exploring the preservation of users’ privacy in the
dissemination or storage of query logs. To that end, we take the privacy criterion
of offering a desired privacy protection. Thus, the main objective is to attain it
while maximizing the data utility.

As some authors have stated, the utility in textual data, as query logs are, is
related with the semantics [5,6]. To that end, we propose an optimization of the
microaggregation method for query logs that groups the users with more similar
targets, with the help of the selected results.

The paper is organized in the following sections: Section 2 introduces the
related work. The notation used and the similarity metric is presented in Sect. 3.
In Sect. 4, we detail our proposal and in Sect. 5 we discuss the evaluation mea-
sures. Finally, we present the obtained results and the conclusions in Sects. 6
and 7, respectively.
1 Note that a user can consider some information private or not according to her

beliefs, i.e. whereas a user can consider her religion a public issue, another user can
consider this information private. Determining what information is private or not is
out of the scope of this paper. For this reason, we consider that all the information
has the same importance and is private, as is made in [3].

150 A. Erola and J. Castellà-Roca

2 Related Work

Microaggregation [7] is a Statistical Disclosure Control (SDC) technique
used to prevent re-identification. Although it was initially proposed to protect
microdata, it can be adapted to protect query logs [8–11]. It works by creating
clusters of at least k users and by replacing their logs by a new log called cen-
troid, which is representative of the group. The centroid is usually created with
random queries of the users in each cluster. The privacy achieved is comparable
to k-anonymity [12], for the fact that there are at least k users with the same
log. While improving privacy, data transformations make data imprecise and
distorted, reducing their reliability and utility. Data utility can be defined as
their fitness to perform an analysis, i.e. the results obtained from the original
data and the transformed data are the same or really close.

However, due to the trade-off between privacy and utility, data utility is
usually preserved to perform a specific analysis. In other words, a data set may
be useful for some kind of analysis, but not for others. In microaggregation,
data utility depends on the clustering method, where the optimum solution is
to cluster the users with more similar queries [13]. As k is an input parameter
of the method, the only thing that can be done to optimize microaggregation is
to maximize data homogeneity [14].

The first approaches to anonymize query logs remove or delete queries in
order to avoid identity disclosures [15–17]. However, they only achieve an accept-
able level of privacy if the data are deeply perturbed [15].

Recently, microaggregation has been used to anonymize query logs [8–11]
and to maximize data utility. Authors in [9] use the edit distance to compute
queries’ similarities. However, edit distance only takes into account the spelling
similarities of the queries, and different queries can point to the same target. For
instance, both Freddie Mercury and Queen singer refer to information about
Freddie Mercury.

Authors in [3] use semantic taxonomies to anonymize query logs for the
first time. They generalize query terms using WordNet [18]. However, Wordnet
is a general-purpose dictionary that can only deal with simple concepts, and
proper names are not included. For this reason, a lot of original queries are
not published, thus losing a large amount of information. Erola et. al. [10,11]
introduces the concept of semantic microaggregation, which consists in clustering
users according to what they were looking for. In order to interpret queries, it
retrieves the semantics of query terms by using the ODP [19] (see Sect. 3.1), a
directory of the Web, as a knowledge source. Note that neither WordNet nor
ODP can address sentences, only terms.

Retrieving the semantics of query terms can produce a change or loss in
meaning. For example, the ambiguous term mercury acquires different mean-
ings in the queries mercury planet, mercury element and Mercury, Freddie.
Moreover, the other query terms, such as Freddie, can also be ambiguous by
themselves. Consequently, clustering query logs according to the semantics of
the query terms can increase the information loss. A criterion that can help
in achieving better data homogeneity may be to cluster queries searching for

Using Search Results to Microaggregate Query Logs Semantically 151

the same information. By pursuing this idea, we propose to use the selected
results instead of queries in order to retrieve the real interest of the user (query
meaning).

3 Notation and Background

For notation purposes, let U = {u1, . . . , un} be a set of n users, being |U | = n.
Their respective set of queries (logs) are Q = {Q(u1), . . . , Q(un)}, where Q(ui) =
{q(1ui

), . . . , q(mi
ui

)} are the set of queries of user ui and |Q(ui)|, their number.
After the clustering process, the set of clusters Z = {z1, . . . , zγ} is obtained,

being zi = {u(1zi
), . . . , u(k′

zi
)} the set of users that belong to cluster zi and k′ the

cluster size, where 2k > k′ ≥ k. Let Centzi
be the centroid of cluster zi and

|Centzi
| its size, i.e. the number of queries that it contains.

3.1 ODP Similarity Metric

ODP [19] is the most widely distributed database of web content classified by
humans. ODP directory is hierarchically structured in themes, and web sites are
hand-classified on them, thus forming the ODP tree. Figure 1 shows an example
of this classification. Observe that categories can be divided into levels, where
the root category is the most generic one.

Open Directory Categories (1-5 of 100)

1. Recreation: Autos: Makes and Models: Audi (18)

2. Recreation: Autos: Makes and Models: Audi: Clubs (8)

3. Recreation: Autos: Makes and Models: Audi: A4 (5)

4. Recreation: Autos: Makes and Models: Audi: TT (4)

5. Recreation: Autos: Makes and Models: Audi: Clubs: United Kingdom (2)

Fig. 1. Example of ODP query result.

In order to measure the semantic similarity of two queries classified in the
ODP hierarchy, we use the measure ODPsim introduced in [11]. To that end,
we define a working depth level l ∈ {1, . . . , L}, being L the maximum depth
considered. So in Fig. 1, when l = 1, we are referring to the root level, i.e.
Recreation; and the next level is Recreation : Autos :; when l = 2, and so on.

Let Cl = {c(1l), . . . , c(ml

l)} be the set of possible categories at depth level l in
the ODP tree. Let ui be a user and Q(ui) = {q(1ui

), . . . , q(pi
ui

)}, her set of queries.
We denote Cl(ui) = {cl(1ui

), . . . , cl(pi
ui

)} as the set of categories of ui at level l,
being cl(ji

ui
) the category corresponding to the classification of the query q(ji

ui
) in

the ODP hierarchy at depth level l. |Cl(ui)| = pi is the number of categories of
user ui, and |cji

l (ui)| is the number of queries classified in the category cji
l that

ui has.

152 A. Erola and J. Castellà-Roca

Thus, given two users ui and uj , ODPsim is defined as:

OPDsim(ui, uj) =
L∑

l=1

{|cl| : cl ∈ {Cl(ui) ∩ Cl(uj)}} (1)

where |cl| is the number of categories that users ui and uj have in common - the
minimum between |cl(ui)| and |cl(uj)| at level l -. Note that ODPsim returns
a similarity value, whose weight is maximum when the matching (similarity) is
maximum.

4 Our Proposal in Detail

Previous semantic microaggregation algorithms split queries into terms, thus
changing the semantics of the queries and producing an information loss in the
protected logs. We propose a semantic microaggregation method to solve this
problem. In the first step, we find the semantics of all the queries by submitting
them to a WSE (in our case, Google). Then, we classify the search results in
the ODP hierarchy and we cluster the users with more common real interests,
thus reducing the distortion of the centroid. To that end, we present our system
divided in two parts:

1. Semantic interpretation: we obtain the semantics of the query by submitting
it to the WSE.

2. Microaggregation using ODP: we cluster the logs according to the classifica-
tion of the search results and we then aggregate them.

4.1 Semantic Interpretation

Using the search results of a WSE to retrieve meanings is not new, they were
already used in [20,21]. However, this is the first time that a WSE is used to
anonymize query logs, to the best of our knowledge.

Roughly speaking, this part of the method is a pre-process of the queries for
the microaggregation. For each query in the users’ logs, we want to obtain the
url that represents the interest of the user, i.e. the query semantics. Obviously,
if this process is made by a WSE, it can select the url clicked by the user.
Analogously, if we have a query log that contains the urls selected by the users,
we can also use them.

However, this situation does not always happen. AOL logs are anonymized
(most of the urls are deleted) and a significant amount of the urls are obsolete
(AOL logs date from 2006). Therefore, we must redo the search to obtain the
urls that users had probably selected. To that end, we take into account the
work presented in [22], which states that a 68 % of the users of WSEs click a
search result within the first page of results. Even more relevant is the fact that a
92 % of the users click a result within the first three pages of search results. Note
that WSEs attempt to rank the search results according to the users’ interests,

Using Search Results to Microaggregate Query Logs Semantically 153

i.e. the links which could probably be more interesting for the users appear in
the first positions of the rank.

Accordingly, we consider that the first urls returned by the WSE are those
more reliable according to the interests of the users. Thus, for each query in the
users’ logs, the query is searched in the WSE, and the first ranked url, which is
not a sponsored link or a wikipedia link, is stored. Hereafter, we consider that
URL = {URL(u1), . . . , URL(un)} are the set of results selected from the Google
searches, being URL(ui) = {url(1ui

), ..., url(pi
ui

)} the set of urls of user ui, and
url(ji

ui
) the selected result when query q(ji

ui
) was submitted.

4.2 Microaggregation Using ODP

The urls are cut at domain name because ODP does not contain all the urls of
every domain. Wikipedia links are not stored because they can contain a large
amount of topics and the url wikipedia.org is always classified in the same ODP
category.

The first step is to obtain the ODP categories for all the urls corresponding
to the queries in the logs, i.e. the set of categories Cl(U) = {Cl(u1), . . . , Cl(un)}
can be obtained at level l. This process is described in Algorithm 1.

Next, we microaggregate the users trying to maintain the maximum data
homogeneity. We use Eq. 1 (see Sect. 3) to calculate the similarity between users,
where the maximum weight means maximum matching. Thus, we take two steps:

1. Clustering: users are clustered into groups according to their semantics.
2. Aggregation: we calculate the centroid of each cluster and then replace the

users’ logs with the centroid.

Algorithm 1. Algorithm to classify the urls in the ODP
Require: the maximum depth l for the ODP categories
Require: the set of users U = {ui, . . . , un}
Require: the set of urls URL(ui) = {url(1ui

), . . . , url(pi
ui

)} of each user ui

Ensure: the set of categories Cl(ui) = {cl(
1
ui

), . . . , cl(
pi
ui

)} of each user ui

for ui ≈ {u1, . . . , un} do
for url(j

ui
) ≈ URL(ui) = {url(1ui

), . . . , url(pi
ui

)} do
obtain the category cl(

j
ui

) at depth l for url(j
ui

) using ODP;
end for

end for
return Cl

Clustering. Algorithm 2 describes the clustering process. Briefly, it groups the
k most similar users of U . Then, if there are enough users to form a new cluster
(k ≤ |U |), the selected users (the k most similar in U) are deleted from U and a
new cluster is formed with the remaining users. It continues until there are not
enough users to form a new cluster. If there are users remaining, they are added
to the last formed cluster.

154 A. Erola and J. Castellà-Roca

Aggregation. Zi are sets of users and Q(zi) contains the queries of all users
in Zi. Cl(zi) is the set of categories of Q(zi). We use expression 2 to determine
which queries of Q(zi) have to appear in the centroid. We obtain the number of
queries classified in category ct

l , which will appear in the centroid using Eq. 2.

|cl(t
Centzi

)| =

k′∑
i=1

|cl(t
ui
zi

)|
|Q(ui

zi
)|

k′ × |Centzi
| (2)

being

|Centzi
| =

|Q(zi)|
k′ (3)

Therefore,Centzi
contains |cl(t

Centzi
)| queries of the category ct

l . These queries
are selected randomly among those that are inQzi

and are classified in cl. As these
queries belong to the same category, we can assume they have the same semantics.

Algorithm 2. Algorithm for computing the clusters Z = {z1, . . . , zγ} of users
Require: the maximum depth l for the ODP categories
Require: the set of users U = {u1, . . . , un}
Require: the set of categories Cl(ui) = {cl(

1
ui

), . . . , cl(
pi
ui

)} for each user ui ≈ U
Require: the clusters size k
Ensure: the clusters Z = {z1, . . . , zγ} of users for γ = ∈n/k→

while |U | ≡ k do
obtain the cluster z with 2k − 1 > |z| ≡ k users using Algorithm 3 and Cl(U);
remove the users ui ≈ z from U ;
add z to the set Z

end while
return Cl

5 Evaluation

We have evaluated our proposal by using a random set of 840 users selected from
the AOL files, where each one has submitted between 400 and 600 queries. In
total, we have near 400, 000 queries. Simulations are performed for cluster sizes
k between 2 and 30, and for depth level l = 5. We have not considered levels
above 5 because only 35 % of the queries can be classified beyond this level [11].

We have chosen Google to perform our tests because of its popularity,
but we could have chosen any other web search engine to carry out our
experiments.

Next, we present two measures to evaluate the utility and the privacy obtained
with the microaggregation.

Using Search Results to Microaggregate Query Logs Semantically 155

Algorithm 3. Algorithm for computing a cluster z

Require: the set of categories Cl(U)
Require: the clusters size k
Ensure: a cluster z with 2k > |z| ≡ k users

z ← ∅
obtain ui, uj | max ODPSIM (ui, uj)
add uj , ui to the set z;
Cl(ui) = Cl(ui) ∪ Cl(uj)
remove Cl(uj)
while (|z| < k) and |Cl(U)| > 0) do

obtain uj | max ODPSIM (ui, uj)
add uj to the set z;
Cl(ui) = Cl(ui) ∪ Cl(uj)
remove Cl(uj)

end while
if (|Cl(U)| < k) then

add all uj ≈ Cl to z;
end if
return z

5.1 Utility and Privacy

The result of the microaggregation process is a log that contains queries of all
the users clustered together. Its utility is conditioned by the data homogeneity,
i.e. how similar the original log and the centroid are. This similarity is not
conditioned by the spelling mistakes or alternative queries but by the meaning
of the queries. Hence, we evaluate the utility of the queries according to their
classification in the ODP tree.

We have used three classic similarity coefficients to evaluate the data utility
(ODP classification homogeneity): the Jaccard coefficient, the Sokal and Sneath
coefficient and the Dice coefficient. Table 1 shows their expressions.

Thus, for cluster sizes (k) between 2 and 30 and maximum level l, we have
calculated the three coefficients between the original logs and their corresponding
centroids, which are generated with our proposal, the method that also uses ODP
to classify the query terms [11], and a random scheme (microaggregation with
random clustering). The performance of our scheme can be compared with the
performance of two other schemes by dividing the coefficients (see Eq. 4), where
the utility of our proposal is the numerator and the utility of the other proposals,

Table 1. Similarity coefficients between two sets S1 and S2

Coefficient Formula

Jaccard |S1∩S2|
|S1∪S2|

Sokal and Sneath |S1∩S2|
2×(|S1|+|S2|)−3×|S1∩S2|

Dice 2×|S1∩S2|
|S1|+|S2|

156 A. Erola and J. Castellà-Roca

the denominator. Reference [11] has been selected for comparison as it is the only
anonymization method for query logs, which uses the semantics of the queries
to cluster the users.

UtilityCoefy
(Cprop, Cx) =

n∑
i=1

Coefy(Corig(ui), Cprop(ui))

n∑
i=1

Coefy(Corig(ui), Cx(ui))
(4)

where Corig are the logs with the original categories, Cprop are the generated
logs with our proposal, and Cx are the generated logs with the proposal [11] or
the random proposal. Coefy is the coefficient chosen among the three proposed
(Jaccard, Sokal and Sneath,Dice), which ranges from 0 to 1.

Regarding privacy, a log can be considered private if it does not allow to
uniquely identify any user. Microaggregation [12] provides k-anonymity at user
level, so the privacy of a user is guaranteed by k − 1 other users.

We propose to evaluate the linkability between the original logs and the
microaggregated logs by using the previous coefficients with the queries as input
data, that is, how many queries of the original log also appear in the microaggre-
gated log. Linkability can be seen as a privacy measure, since it evaluates how
many information about a user it is being exposed. The less common queries they
have, the more privacy she will achieved. This measure is expressed by Eq. 5.
Note that the linkability achieved by our proposal is now the denominator, and
the linkability of the other proposals is the numerator.

Another issue of particular interest in query logs privacy is the disambigua-
tion of a user. In a microaggregated log, a user can be disambiguated if her
queries can be isolated. Disambiguation means that her queries can be distin-
guished from the queries of the other users. This is possible if the queries are
about different topics, they are in different languages, etc. For instance, con-
sider Bob knows that Alice hates dogs and he saw Alice’s anonymized log, which
contains the queries American monster trucks and retriever dogs. Bob can infer
that the second query (retriever dogs) is not from Alice, as he knows that Alice
is not interested in dogs. We think that our approach reduces the possibility to
disambiguate the queries of a user, as the queries in the same cluster are more
similar.

LinkabilityCoefy
(Qprop, Qx) =

n∑
i=1

Coefy(Qorig(ui), Qx(ui))

n∑
i=1

Coefy(Qorig(ui), Qprop(ui))
(5)

where Qorig is the set of original query logs, Qprop(i) are the logs generated with
our proposal and Qx(i) are the query logs generated with the proposal [11] or
the random proposal.

Using Search Results to Microaggregate Query Logs Semantically 157

6 Results

Figure 2 shows the comparison of the utility obtained using our method with
the method presented in [11] and a random microaggregation (microaggregation
with a random clustering). The respective coefficient values are represented in
Table 2. The three similarity coefficients used provide close results, thus support-
ing the validity of the obtained results. When we compare our method with [11]
(Fig. 2(a)), the former achieves a maximum of 64 % utility improvement when
k = 15 (according to the Sokal and Sneath coefficient), although it improves the
utility in all cluster sizes. Thus, we can argue that it is easier to match categories
using urls than query terms, as the latter are difficult to be interpreted or clas-
sified in the knowledge base correctly. Moreover, since categories can represent

Utility RANDOM (b)

Utility [11] (a)

Fig. 2. Utility comparison of our solution with the existing work.

158 A. Erola and J. Castellà-Roca

Table 2. Utility coefficients

Our proposal

k Jaccard Sokal Dice

2 42.63 27.6 59.25

3 30 18 45.37

4 24.5 14 38.6

5 21.73 12.5 34.93

10 15.4 8.58 26.1

15 13.16 7.19 22.73

20 11.75 6.36 20.58

30 9.89 5.26 17.7

SORT [11]

Jaccard Sokal Dice

35.71 21.78 52.55

23.07 13.06 37.41

17.76 9.76 30.09

14.92 8.08 25.9

9.63 5.07 17.5

8.04 4.2 14.81

7.24 3.77 13.43

6.521 3.38 12.17

Random

Jaccard Sokal Dice

32.4 20 47.1

19.56 11 31.6

14.64 8 24.91

12.2 6.6 21.26

7.46 3.91 13.69

6 3.15 11.29

5.39 2.79 10.13

4.84 2.49 9.1

Table 3. Linkability coefficients

Our proposal

k Jaccard Sokal Dice

2 24.27 14.32 37.99

3 15.67 8.84 26.24

4 11.05 6.09 19.17

5 8.99 4.95 15.75

10 4.54 2.46 8.16

15 2.73 1.43 5.09

20 2.34 1.23 4.34

30 1.4 0.7 2.68

SORT [11]

Jaccard Sokal Dice

33.4 20.07 50.04

20.16 11.22 33.51

14.44 7.79 25.21

11.28 5.98 20.2

5.49 2.82 10.39

3.67 1.87 7.07

2.81 1.42 5.46

1.99 1 3.89

Random

Jaccard Sokal Dice

33.58 20.19 50.24

20.33 11.32 33.77

14.69 7.93 25.59

11.56 6.13 20.7

5.8 2.99 10.94

4.02 2.03 7.72

3.13 1.59 6.06

2.32 1.1732 4.52

the conceptualizations of the urls, this approach enables a semantically-coherent
clustering of logs.

We can also observe in Fig. 2(a) that the improvement is higher in cluster
sizes between 10 and 20, increasing from 2 to 10 and decreasing above k = 20.
We presume that working with larger sets of users could outperform the results,
because we could presumably find more similar users when the number of users
is greater.

Figure 2(b) shows that the improvement of our method is even better com-
pared with a random microaggregation. However, the most interesting is to
observe that the method [11] achieves better data utility than the random
microaggregation. This is due to the fact that some queries are composed by
few terms, and their interpretation in the knowledge base can be correct. In our
dataset, 40 % of the queries have 3 or less terms. Thus, we can determine that
the interpretation of query terms produces less precise conceptualizations of the
queries, but it still works better than a random microaggregation.

Figure 3 shows the linkability reduction of queries using our proposal com-
pared with the proposal [11] and a random microaggregation. The respective
coefficient values are represented in Tables 2 and 3. We can observe that our
method achieves a significant reduction of the number of real queries that can

Using Search Results to Microaggregate Query Logs Semantically 159

 0

 20

 40

 60

 80

 100

 120

 5 10 15 20 25 30
K

Jaccard
Sokal
Dice

Linkability [11]

 0

 20

 40

 60

 80

 5 10 15 20 25 30
K

Linkability RANDOM

Fig. 3. Linkability comparison of our solution with the existing work.

be found in the original logs as well as in the centroid. In the proposal [11], the
reduction is about 30 % in median, and 40 % in the random microaggregation.
Thus, it seems clear that our method reduces the risks of privacy disclosures.

It is interesting to observe that [11] only obtains slightly better results than
the random microaggregation. This is an effect of the clustering part, which has
group users with few common interests, and the aggregation part, which has
selected queries at random without taking into account their frequencies.

7 Conclusions

Query logs need to be anonymized in order to guarantee the privacy of the users.
However, this process involves data utility loss. Query logs utility is related

160 A. Erola and J. Castellà-Roca

with the semantics of the queries, which represent the users’ interests. Existing
privacy-protection proposals use query terms in order to extract their semantics.
However, as we stated in the results section, this reduces the homogeneity of the
clustered data.

We have proposed a microaggregation method that uses a WSE and ODP in
order to interpret the semantics of the queries. Hence, the interpretation of the
real meaning of the queries is more precise. To the best of our knowledge, it is
the first time that search results are used to anonymize query logs.

As we have seen in the results section, our method reduces the introduced
data perturbation due to the fact that we do not lose information by classifying
the queries, but we provide more data utility than the previous version [11] and
a random microaggregation. Moreover, generated logs disclose less real informa-
tion about the user, thus providing more privacy. Also note that the clustering
heuristic we use is quite greedy. However it is similar to the one used in [11], so
our improvement is solely based on the new similarity function. Using a cluster-
ing heuristic as MDAV can improve the achieved results.

This study has established that it was a flaw to interpret queries in a knowl-
edge base, because in some cases, the real interest of the user cannot be obtained.
It is not only due to the terms ambiguity, but due to the limitations of the knowl-
edge base. The use of urls in order to interpret the user’s interests give us the
possibility to explore new knowledge representation forms. One possibility is to
use a bipartite graph of queries and urls, where the urls with more edges in com-
mon (url - query) can represent closer topics or interests. However, the amount
of data needed to create a coherent graph should be studied.

Acknowledgements. This work was partly supported by the European Commis-
sion under FP7 project Inter-Trust, by the Spanish Ministry of Science and Inno-
vation (through projects eAEGIS TSI2007-65406-C03-01, CO-PRIVACY TIN2011-
27076-C03-01, ARES-CONSOLIDER INGENIO 2010 CSD2007-00004, Audit Trans-
parency Voting Process IPT-430000-2010-31 and BallotNext IPT-2012-0603-430000)
and by the Government of Catalonia (under grant 2009 SGR 1135).

References

1. Richardson, M.: Learning about the world through long-term query logs. ACM
Trans. Web 2, 1–27 (2008)

2. Xiong, L., Agichtein, E.: Towards privacy-preserving query log publishing. In: Ami-
tay, E., Murray, C.G., Teevan, J. (eds) Query Log Analysis: Social and Technologi-
cal Challenges. A Workshop at the 16th International World Wide Web Conference
(WWW 2007) (2007)

3. He, Y., Naughton, J.: Anonymization of set-valued data via top-down, local gen-
eralization. Proc. VLDB Endowment 2(1), 934–945 (2009)

4. Adar, E.: User 4XXXXX9: anonymizing query logs. In: Query Log Analysis: Social
and Technological Challenges. A Workshop at the 16th International World Wide
Web Conference (WWW 2007) (2007)

5. Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and
lexical taxonomy (1997)

Using Search Results to Microaggregate Query Logs Semantically 161

6. Xu, J., Wang, W., Pei, J., Wang, X., Shi, B., Fu, A.W.: Utility-based anonymization
for privacy preservation with less information loss. SIGKDD Explor. Newsl. 8(2),
21–30 (2006)

7. Defays, D., Nanopoulos, P.: Panels of enterprises and confidentiality: the small
aggregates method. In: Proceedings of the 92 Symposium on Design and Analysis
of Longitudinal Surveys, Statistics Canada, pp. 195–204 (1993)

8. Hong, Y., He, X., Vaidya, J., Adam, N., Atluri, V.: Effective anonymization of
query logs. In: CIKM ’09: Proceeding of the 18th ACM Conference on Information
and Knowledge Management, pp. 1465–1468 (2009)

9. Navarro-Arribas, G., Torra, V., Erola, A., Castellà-Roca, J.: User k-anonymity for
privacy preserving data mining of query logs. Inf. Process. Manage. 48(3), 476–487
(2012)

10. Erola, A., Castellà-Roca, J., Navarro-Arribas, G., Torra, V.: Semantic microag-
gregation for the anonymization of query logs. In: Domingo-Ferrer, J., Magkos, E.
(eds.) PSD 2010. LNCS, vol. 6344, pp. 127–137. Springer, Heidelberg (2010)

11. Erola, A., Castellà-Roca, J., Navarro-Arribas, G., Torra, V.: Semantic microag-
gregation for the anonymization of query logs using the open directory project.
SORT-Stat. Oper. Res. Trans. 35(Special issue), 25–40 (2011)

12. Samarati, P.: Protecting respondents identities in microdata release. IEEE Trans.
Knowl. Data Eng. 13(6), 1010–1027 (2001)

13. Domingo-Ferrer, J., Mateo-Sanz, J.M.: Practical data-oriented microaggregation
for statistical disclosure control. IEEE Trans. Knowl. Data Eng. 14, 189–201 (2002)

14. Domingo-Ferrer, J., Sebé, F., Solanas, A.: A polynomial-time approximation to
optimal multivariate microaggregation. Comput. Math. Appl. 55(4), 714–732
(2008)

15. Cooper, A.: A survey of query log privacy-enhancing techniques from a policy
perspective. ACM Trans. Web 2(4), 1–27 (2008)

16. Korolova, A., Kenthapadi, K., Mishra, N., Ntoulas, A.: Releasing search queries and
clicks privately. In: WWW ’09: Proceedings of the 18th International Conference
on World Wide Web, pp. 171–180 (2009)

17. Poblete, B., Spiliopoulou, M., Baeza-Yates, R.: Website privacy preservation for
query log publishing. In: Bonchi, F., Malin, B., Saygın, Y. (eds.) PInKDD 2007.
LNCS, vol. 4890, pp. 80–96. Springer, Heidelberg (2008)

18. Miller, G.: WordNet - About Us. WordNet. Princeton University, Princeton (2009)
19. ODP. Open directory project (2011)
20. Sætre, R., Tveit, A., Steigedal, T.S., Lægreid, A.: Semantic annotation of biomed-

ical literature using google. ICCSA 3, 327–337 (2005)
21. Gligorov, R., Aleksovski, Z., Kate, W., F. Van Harmelen, B.: Using google distance

to weight approximate ontology matches. In: Proceedings of the WWW-07, pp.
767–776. ACM Press (2007)

22. iprospect.com, inc, iProspect Blended Search Results Study. http://www.
iProspect.com (2009)

http://www.iProspect.com
http://www.iProspect.com

Legal Issues About Metadata Data
Privacy vs Information Security

Manuel Munier1(B), Vincent Lalanne1,
Pierre-Yves Ardoy2, and Magali Ricarde3

1 University of Pau and Pays Adour, LIUPPA, Mont de Marsan, France
manuel.munier@univ-pau.fr

2 University of Pau and Pays Adour, Pau, France
3 BackPlan Company, Project Communication Control, Pau, France

Abstract. For the purposes of our work we use the concept of meta-
data to implement enterprise digital right management mechanisms in
an intelligent document environment. Such metadata allows us to firstly
define contextual security rules and secondly to ensure the information
traceability. However, its use may have legal implications, especially with
regard to metadata that can be stored (see personal data, privacy), how
it should be stored (see probative value in case of litigation, digital foren-
sics) or computer processing in which it may be involved. Another topical
issue is the storage and the processing of data using a service provider:
the cloud. We must ensure, however, that this solution does not lead to
a loss of information controllability for the company. This article aims
to position our work with respect to these legal issues.

Keywords: Privacy · Metadata · Information security · Socio-economic
issues

1 Introduction

Whatever business areas, new information technologies (ADSL, laptops, smart-
phones, tablets,. . .) lead us to exchange and store more and more information.
Their content has also evolved. Data is more and more complex (notions of
structured documents, whole archives, or even complete projects). Nowadays,
public data is sometimes combined with more confidential data (notion of access
restriction). Moreover, we carry our data on usb stick or in our smartphones
and share it via (possibly unsecured) wireless communications like 3G, wifi or
bluetooth. In the information society, the reliability of the data we handle has
become a major issue in terms of security.

Security criteria most commonly used are confidentiality (assurance that
information is shared only among authorized persons or organizations), integrity
(assurance that the information is authentic and complete), availability (assur-
ance that the systems responsible for delivering, storing and processing infor-
mation are accessible when needed, by those who need them) and traceability
(ability to chronologically interrelate uniquely identifiable entities in a way that
is verifiable).

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 162–177, 2014.
DOI: 10.1007/978-3-642-54568-9 11, c© Springer-Verlag Berlin Heidelberg 2014

Legal Issues About Metadata Data Privacy vs Information Security 163

Regarding confidentiality, usage control models introduced the notion of con-
text in order to express dynamic security rules in a policy: temporal contexts,
spatial contexts, prerequisite contexts, provisional contexts,. . . To enable or
disable these contexts the information system must collect and store various
metadata: date, IP address used, user location,. . . This metadata can later be
used for traceability purposes, including use as evidence in case of litigation.
Some of this metadata can, however, be considered as personal data of the user
and thus bring privacy concerns. Metadata is one of the important keys to the
success of the data warehousing and business intelligence effort since the mid
nineties of the last century. Data warehouses are designed to manage and store
the data whereas the business intelligence focuses on the usage of the data to
facilitate reporting and analysis [1,2]. The term metadata refers to “data about
data”. However, the concept of metadata is not (yet) a well-known concept of
the law.

The remainder of this paper is organized as follows: Sect. 2 presents our moti-
vations for the use of metadata and usage control mechanisms to enforce infor-
mation security; this section also presents a concrete case study in the context
of business documents; we developed this example with our partner company
BackPlanTM 1; in Sect. 3 we present two areas of our research activities related
to information security using the concept of metadata and how metadata can be
useful for usage control, traceability and information system monitoring; Sect. 4,
using examples of jurisprudence, highlights the need to formalize the metadata
necessary to enforce the security policy and the framework in which they can
be used order to comply the regulations; Sect. 5 presents some socio-economic
issues underlying the storage of data (and metadata) in the today information
society; Sect. 6 concludes the paper and presents some of our perspectives.

2 Motivations

As we stated at the beginning of this article, information technology (IT) allows
us to share more and more information in the form of documents whose structure
becomes more complex. Whether in the context of a “simple” information dis-
semination (unidirectional communication from a content provider to the users)
or a collaborative work environment (several actors interact to complete tasks
with a common goal but possibly different objectives), it is therefore neces-
sary to implement security mechanisms that go beyond a simple access control:
usage control (how partners can use a document: obligations, workflows, del-
egation rules,. . .), information consistency management (e.g. some documents
may reference others), traceability (monitoring of actions, metadata attached to
information),. . .

We do not give here all the details of our case study. This section focuses on
the use of metadata to improve information security (traceability, usage control)
and legal issues that may arise.
1 BackPlanTM, Project Communication Control

http://www.backplan.fr.

http://www.backplan.fr

164 M. Munier et al.

2.1 Sample Application

Consider an Oil & Gas project as the construction of a pipeline or an oil instal-
lation. The information system consists of numerous documents, it has a central
role, its structure and development evolve along with the progress of the project:
the documentation must always precede action (design, work procedures). Doc-
umentation is a requirement at the closure of the project along with verifications
(records, the minutes,. . .). The document evolves at the same rate as the project.
These documents are specifications, drawings, records of expertise, procedures,
records,. . .

Business Aspects. Such a project obviously involves many partners and sub-
contractors. Here is a representative example of a project timeline (Fig. 1):

– 1st level design: Basic Engineering. This step is performed by the land surveyor
who makes a topographical survey of the site where the work will be done.

– 2nd level design: Detailed Engineering. This is the design phase of the project
itself with the aim, in particular, to minimize the environmental and human
constraints; it is performed by an engineering company that will plan the
work and the construction will be launched from this plan. This level involves
various partners (civil engineering, pipefitters, instrumentation engineering,
utilities,. . .) who share many documents.

– Statement of works: numerous buried and air, public or private networks, go
through the territory (water, electricity, gases, dangerous products, telecom-
munications, irrigation,. . .). Further to accidents, it is imperative to localize
very exactly their position. So, during the realization of a project of construc-
tion, gas pipeline for example, companies have the obligation to question a
centralized information system common to all the French territory.

– Construction phase: it is based on engineering documents and work pro-
cedures. It comes with many documents that are intended to demonstrate
compliance of the book in terms of quality and regulatory standards (e.g.
multifluid standard, water code, capacity under pressure). As-builts will have
to justify the differences for the administration.

Fig. 1. Oil & Gas project timeline

Legal Issues About Metadata Data Privacy vs Information Security 165

– At the end of construction the land surveyor will come again, and verify
the topographic survey: this is a control operation of a project to verify the
differences from the planned location and update the data (to know where
everything is). The engineering documents then pass status “As built”. This
operation can also update the geographic information system (GIS) of the
place. As-builts must be attached to requests for authorization to operate
sent to administrations (also signed by the legal representative).

As we have stated, the stakeholders will handle many documents. Because
of the nature of this type of project, a multitude of corporate associations has
to work on the same documents. Where from requires it to manage the com-
munications between these interfaces. Besides, it will be necessary to be able to
guarantee that each works with documents “up to date” or that the last modifi-
cations in date were well taken into account before the “publication” of certain
results (cf. usage control and collaborative work management). There can also
occur unforeseen circumstances during the project.

Information Security Aspects. We propose to improve the security of infor-
mation in two directions: metadata management and usage control.

Metadata. It could be used to “bind” reviews, certifications, good practice guides,
standards, and other minutes to design documents and reports within the infor-
mation system. The aim is to improve traceability, both in the design process
(concept of workflow) in case of litigation (concept of proof of conformity, dig-
ital forensics). Take for example a phase control such as checking the welding
of a pipe2; it would be interesting to use metadata to improve the traceability
of the process for purposes of validation and/or evidence: photos geotagged (to
certify checkpoints), metadata associated with the plans,. . . Since several part-
ners are working on such a project, everyone could also attach some metadata
to the information: confidence and trustworthiness indicators, impact risk of a
change,. . . This metadata would permit to calculate various performance indi-
cators for monitoring the stakeholders’ tasks or new metadata for information
they produce.

In case of transfer of work this metadata would allow to improve the follow-
up of the project towards the buyer: operations history, context decisions (stan-
dards, studies), how and why they have been taken, etc. . .

Usage Control. Here are some examples of security rules that we would imple-
ment to control how partners use documents:

– It is possible to write a deliverable of the project only if confidence in the
various technical documents exceeds a certain threshold. It is a dynamic access
control based on trust (whether in a document or a stakeholder).

2 The sections of pipe are welded every 12 to 15 m. These welds should be checked:
radiography, analysis by a certified individual, hydraulic tests. These controls are
spread over time and generate many records that are, once made, a legal value.

166 M. Munier et al.

– The security rules may prohibit access to parts of the document based on
location data. This prevents, for example, on a site (or train) an unknown
person takes sensitive information over the shoulder of someone.

– A responsive access control may require a partner (or subcontractor), via a
mechanism of pre-obligation to accept the terms of a contract (non-disclosure
agreement, delegation of responsibility, deadlines,. . .) before accessing a plan
and contribute to the design.

– A user control would be to require a partner to complete parts of design
documents (e.g. inform the radii of curvature of the pipe, write the study of
soil before drilling) before a deadline if he wants to stay a project member
(notions of punishment and penalty).

– The usage control can also define collective obligations. For example, each
stakeholder must have reread each concept study in which they participate at
least 7 days before the deadline for validation.

Legal Issues. These are just some examples of opportunities. But the use of
metadata is not easy to understand from a legal point of view! First, regarding
the collection and storage, some of this metadata can be in the domain of per-
sonal data (including geolocation). But their use to enable/disable contextual
security policies (permissions, obligations,. . .) or calculate some indicators (e.g.
trust in a stakeholder, document quality) are automatically processes and are
therefore subject to a number of regulatory frameworks. Add to that the concepts
of accountability and sanctions mentioned above and it is obvious that meta-
data has now become essential elements of information systems. They should be
considered as full data and be secured along with “classic” information.

Section 4 gives more details on requirements to formalize metadata necessary
to the security policy and how metadata can be used. One of the objectives is
that this metadata can be used as evidence in case of litigation (cf. probative
value) while respecting the laws on privacy.

2.2 BackPlanTM

BackPlanTM is a French company providing document management services and
collaboration workflow applications to improve project communication, trans-
parency across the project, ability to manage schedule and risks, reliable indica-
tors and regulatory compliance. From the engineering phases to the construction
phases, projects involve different companies. All of them will use the collabora-
tion solution BackPlanTM to ensure consistency of information across the project
and a complete audit trail of project communication. BackPlanTM document
management services are currently provided on a server hosted in a data center:
the document registry.

Using metadata (as data about data) would allow BackPlanTM to enhance
existing services and to offer new services to their customers. During the course
of the project, metadata would be used to calculate many indicators for project
progress, compliance with deadlines, completion status of the various docu-
ments,. . . Once the project is completed, the company makes and delivers to its

Legal Issues About Metadata Data Privacy vs Information Security 167

customers the case-file containing all the business documents for project trace-
ability. In terms of risk management, in case of litigation this information can be
used to identify those responsible for error or prove that during the construction
phase of the project the standards in force at that time have been complied with.

3 Metadata and Information Security

Our research activities take place in the field of information system security.
Issues related to the legal framework for the use of metadata were raised when we
wanted to implement contextual security rules to perform usage control within
two areas of research: the development of a secure autonomous document archi-
tecture, and the study of service oriented architecture security. This metadata
will obviously be used during the life cycle of the document to perform usage
control. But they can also be accessed later for traceability of actions performed
and thus serve as evidence in case of litigation or for digital forensics.

This section focuses on the use of metadata to improve information security.
In our work this “data about data” allows us to implement security mechanisms
such as dynamic security policies, collaborative work management, calculation
of confidence and trustworthiness indicators,. . . The use of metadata is not,
however, trivial in terms of the law and these technological possibilities must
not make us forget the legal issues (see Sect. 4). In addition, this metadata can
be more important than the data to which it is associated (see Sect. 5).

3.1 Intelligent Document Architecture

As part of our research we developed a multi-view model for secure data ware-
house [3] and we proposed E-DRM3 architecture based on secure autonomous
documents [4]. While “traditional” information systems centralize all the data
on a server which users must connect, we have chosen to define an approach
where security mechanisms are relocated closer to the user. However, unlike
“conventional” DRM architectures that require the use of a dedicated player
(which is responsible for enforcing the security policy), we decided to embed
these security mechanisms within the document following object-oriented app-
roach: a document is an autonomous entity capable of ensuring by itself the
security of the information it contains and controlling how this information is
used. Such a document is a kind of information system on its own embedding
both a data warehouse and various security modules (access control, usage con-
trol, metadata,. . .). Users can thus exchange the document directly and safely
without having to connect to a central site.

The core of our architecture, namely the security kernel, relies on the OrBAC
model [5] to express security policies in terms of permissions, prohibitions and
obligations between a subject, an object and an action. These security rules are
dynamic, that is to say, they can be “adapted” to the context of the actions [6–8]:

3 E-DRM: Enterprise Digital Right Management.

168 M. Munier et al.

activation or deactivation of rules, the execution of an action triggers the insertion
of an obligation,. . . OrBAC model supports various kinds of contexts: temporal
context (depends on the time at which the subject is requesting for an access to the
system), spatial context (depends on the subject (geo)location), user-declared con-
text (depends on the subject objective or purpose), prerequisite context (depends
on characteristics that join the subject, the action and the object) and provisional
context (depends on previous actions the subject has performed in the system).
The embedded information system must therefore provide the information
required to check that conditions associated with the context definition are satis-
fied or not. To do this, either it has direct access to the host system (e.g. a global
clock to check the temporal context) or it uses metadata carried by the actions
and the nodes contained in the embedded database.

Our approach therefore relies heavily on the concept of metadata, both for
collection (traceability) and for context activation (dynamic security rules) or,
eventually, computing various indicators throughout the uses (confidence, trust-
worthiness) as works published in [9–12].

3.2 Service Oriented Architecture Security

Service Oriented Architectures (SOA) offer new opportunities for the intercon-
nection of systems. However, infrastructure design using external services (which
we do not control) and/or exposing new services outside the company raises
new problems for the information system security because these new technolo-
gies introduce new vulnerabilities and therefore new risks. It concerns not only
the classical criteria as confidentiality, integrity and availability, but also new
concepts like traceability, trustworthiness and controllability. Our work aims to
propose an approach for risk management which is based on the ISO/IEC 27005
standard: we propose a development of this standard so that it can fully take
into account the type “service” as web services and cloud services [13].

To develop a security model for communications in inter-organisational infor-
mation systems we also use a usage control oriented approach as presented above.
In this context, the use of metadata for traceability of communications (via these
services) allow us to compute indicators that will be used to monitor the infor-
mation system [14]. Our goal is that companies can keep control over their
information, despite the use of cloud technologies.

3.3 Data Privacy Concerns

Preliminary tests on our self-protecting document architecture, performed with
predefined metadata, allowed us to implement dynamic security rules for usage
control. These experiments have also led us to concern ourselves with the privacy
of metadata.

According to the ISO 8402 standard, traceability is the ability to trace the
history, use or location of an entity by means of recorded identifications. In our
architecture, an entity corresponds to an autonomous collaborative work docu-
ment. History, identification, registration and use are relevant concepts. As we

Legal Issues About Metadata Data Privacy vs Information Security 169

mentioned above, user localization can be an interesting metadata for expressing
contextual security rules. But a document could then reveal the presence of a
user at a given time in a certain place, or the various revisions which followed
one another leading to the final of a contractual document ! So we must not only
focus on the metadata that is collected, but also protect it from unauthorized
use and control how it can be used (e.g. automatic computation of indicators).
Basically, the problem of leakage and/or misuse of information is already known.
However, in our approach, the “massive” collection of metadata “of any kind”
can effectively exacerbate the problem.

A concrete example is presented in the article [15] entitled “Metadata: the
ghosts haunting e-documents”. This story demonstrates the risks of exchanging
files with embedded data in negotiating a contract. During negotiations, partners
used a common word processing program, Microsoft Word, to edit and propose
revisions to the contract, and they utilized the program’s track changes feature
to allow the other side to see the specific changes proposed. They e-mailed the
electronic draft, complete with embedded data, back and forth to each other
between rounds of revisions. But without using anything but Microsoft Word’s
inherent functions, someone can reveal hidden internal comments from adverse
party concerning terms of the contract, negotiating positions,. . . In doing so,
a stakeholder can be aware of confidential business information and use it to
pressure his opponent.

This article also raises an interesting question: is that stakeholder (in this
case a lawyer) bound by the same obligations that apply when documents in a
misaddressed envelope are received or, conversely, is the stakeholder free to use
and review the embedded information?

4 Metadata and Legal Issues

As it has been said from the beginning of this article, our works rely highly
on the concept of metadata, both in the collection (traceability) for activation
contexts (dynamic safety) and, in the course of time, the computation of various
indicators over time (confidence rating or trustworthiness value). Note that, for
the moment, the elements of study in this section relate only to the French law.
For the scaling of our work, the specificities of each country should obviously be
considered.

The concept of metadata is not a well-known concept of the law. Composed
of the Greek prefix meta- referring to the reference to itself, the term metadata
refers to data within data, data which defines limits or describe other data. That
data is varied and can include durations, dates, places, elements to identify peo-
ple,. . . In a very precise domain, however law gives a definition to metadata.
Article L.127-1, 6→ of the Environmental Code actually specifies that it is the
“information describing sets and spatial data services, making possible their dis-
covery, their inventory and their use”. However, this definition, the first one
put by a legal text, does not report the diversity which hides under the term of
metadata.

170 M. Munier et al.

Metadata raises three types of difficulties: their collection, their storage and
their use. First of all, problems raise with regards to their collection. Very often,
its collection is done unbeknown to the authors, at the least in the ignorance of
the concerned entities. Concerning the law, this raises the question of the right
of access to information contained in metadata and above all the question of
the right to know the information is collected. Another difficulty arises straight
away: the entity who collects the metadata is not even aware he is making such
a collection, it is only, subsequent to the collection, that the meditative elements
are discovered and used.

Secondly, metadata raises the question of its storage. This storage implies
guaranteeing conservation, not only of the authenticity of the metadata (which
refers to the question of the collection and the reliability of the source), but also
of its integrity, its stability. What is at the heart of the matter is ultimately to
require the reliability of the metadata. It is not only important that it is stored in
good conditions, it is also necessary as to ensure its availability, its accessibility,
what is needed to be know, by whom, for how long and under which conditions.

Finally, metadata raises the problem of its usage. Such a usage may be done
in good faith, as for example in the implementation of security mechanisms, but
it can also in bad faith, the metadata being diverted from its original usage or
be subject to falsification.

Potentially metadata affects all fields of the law and it is difficult or even
useless to apprehend it in the abstract. It consists in identifying areas where the
use of metadata is likely to raise specific questions without claiming complete-
ness. Also note that this is a primary questioning limited to the French domestic
law.

4.1 Evidence of Law

It is mainly in the field of the law of evidence that the rare decisions of the court
of appeal which refers to metadata are found.

In civil law, proof of a legal act can be give by any means, nevertheless within
certain conditions. It is in particular required that the evidence be reported fairly
and that the type of evidence is reliable. Even if the rules are significantly differ-
ent from criminal law, the reliability requirement is definitely common to both
domains. This reliability requirement is obviously at the heart of the admissibil-
ity of an electronic document, proofwise. Article 1316-1 of the Civil Code thus
provides that, for proof of legal acts “the writing in electronic form is admissi-
ble in evidence equal to a written document on paper, provided that the person
who issued the document and its establiment and storage are executed under the
conditions so that its integrity can be duly identified.” It is thus not a surprise
that the rare decisions referring to metadata require its reliability.

This is foremost the case of the Ruling of the First President of the Paris
Court of Appeal on 25 October 2011, Juris-Data N→ 2011-025553 and October
25, 2011 (unpublished, N→ 09/14462, 09/14501)4. In this specific case, a company
4 See also Orders of November 15, 2011 or August 31, 2012 from the First President

of the Paris Court given in matters relating to anticompetitive practices.

Legal Issues About Metadata Data Privacy vs Information Security 171

filed a legal complaint against the search and seising in its premises authorized
by local competent authorities with regards to the investigation of anticom-
petitive practices. Even if the legal problem did not directly address the issue
of metadata, the Court nevertheless adopted the argument of the Competent
Authority at the end of which “the structure of a particular Outlook mail file
and the obligation not to change the state of the computer visited nor the char-
acteristics of a file (metadata in the file itself: title, author size, dates, location,
and signature,. . .) necessarily imply the complete seising of the mail file after
verifying that it contains elements falling within the scope of the authorization.”
In all cases the emphasis is on the requirement that it should seize the entire
Outlook messaging so as not to affect the reliability of the input by an alteration
of metadata contained in the messages.

In a judgment of the Court of Appeal of Versailles, Ch.1, Sect. 1 of 30 Sep-
tember 2010 (unpublished, N→ 09/03831), an applicant pressed on the metadata
contained in photographs to prove his position as author of the photographs. The
Court retained the metadata elements as evidence noting that these included the
identity of the author, the date and time of shooting, the name of the manufac-
turer of the device, the model of the latter and the description of the camera
settings. If metadata may in itself not demonstrate the source of the photographs,
it is however the elements which can establish the paternity and can therefore
be very useful in the case of a counterfait lawsuit. Within the same context,
the Labour Chamber of the Court of Appeal of Rennes retained, in a judgment
of 20 September 2011 (unpublished, RG N→ 10/05183), that the production of
metadata may be used to determine the creation date of an advertising brochure
while noting that the reliability of the latter is not discussed.

It is of course conceivable that metadata can serve as evidence in a variety
of areas. It can thus be used to prove the absence of an employee. In telework,
metadata opens up the possibility to determine whether the employee has met
with his working hours. Thus, arise questions of the distinction between personal
time and working time, respect of privacy and where the boundaries of the
employer’s power are situated.

Beyond relations between employer and employees, metadata may be of inter-
est in relationships between business partners or directors of a company. It could
for example be used to demonstrate that this officer or that employee was respon-
sible for the disclosure of a trade secret (Article L.621-1 of the Intellectual Prop-
erty Code and L.1227-1 of the Labour Code).

Moreover, in the context of the mission of prevention and repression mea-
sures of illegal downloading which lie within the Hadopi law, metadata can be
useful to show which person is actually responsible for downloading illegal copy-
right protected work. In July 2013, French legislators struck down the heavy-
handed Hadopi online copyright law. Under the law’s “three strikes” rule, users
who violated copyright restrictions three or more times could be punished by
having their Internet connections cut. But Hadopi suffered great controversy
when France’s highest court, the Constitutional Council, declared access to the

172 M. Munier et al.

internet a basic human right. French legislators are now seeking policy reforms
that will shift the focus of law enforcement towards commercial piracy issues.

These are obviously only a few possible usages of metadata, an exhaustive
list does not seem possible or at least very delicate.

4.2 Privacy and Individual Liberties

Indeed, metadata may contain information about people, whether it concerns
identification or location. For instance, a picture of a group of friends can be
published on the Internet (we recall that The Internet is a public space) it may
contain the names of the people in the picture, the place where it was taken, the
date and time of the snapshot (tags on Facebook photos).

So these are issues that concern not only image rights (assuming the image
was published without the agreement of different people), but also the respect
of someone’s privacy set by Article 9 of the Civil Code. For a number of reasons,
in fact, a person may want a certain amount of information not to be disclosed.
(such date, such time,. . .).

If the concept of metadata is just beginning to be understood by the law, it
has on the other hand understood those of personal data. It concerns information
that can directly or indirectly identify individuals (Information Act N→ 78-17
of 6 January 1978, Directive 95/46/EC of October 23, 1995). The concept of
metadata does necessarily correspond to the concept of personal data insofar
metadata may contain information which is not necessarily information which
can be used to identify a person (information about location, time spent on a
file,. . .). They may, however, raise questions which may be of interest to privacy.

As such, metadata collection is likely to be considered as a collection of
personal data. In this sense it seems possible to read Deliberation N→ 2011-
423 of 15 December CNIL 2011 authorizing the company GEOLSEMANTICS
to implement, on a trial basis, as part of a research project, the treatment of
personal data, necessary for the development of a tool, called SAIMSI (eng:
follow adaptive inter-lingual and multi-source information). The metadata items
concerned are those attached to the collected documents, that is to say, those
“corresponding of how the information was collected (if applicable: document
URL source, date of registration, date, time and place of the issue body text and
the source)”.

4.3 Digital Protection and Intellectual Creations

The French DADVSI Act of 1 August 2006 introduced the ability to protect
intellectual works by systems which limit or prohibit any copying. In French law,
these devices are called Technical Protection Measures (MTP), better known by
the acronym DRM (Digital Right Management). The Intellectual Property Act
has developed a complete,relatively complex system, designed to ensure that
such DRM can not be used by producers or publishers aimed at anticompetitive
purposes unrelated to the protection of copyrights. The presence of DRM should

Legal Issues About Metadata Data Privacy vs Information Security 173

thus not prevent interoperability, that is to say the ability for the works to be
read by the most diverse materials.

5 Metadata and Socio-Economic Issues

In the information society today, metadata becomes sometimes more important
than the data which it is associated. Whether in the field of privacy (personal
data) or professional (business data of a company), many companies have devel-
oped their business on it. Lately, the media focus on large multinational compa-
nies such as Google, Facebook or Microsoft regarding the protection of privacy
and personal data. This is a hot topic that scares the public. In the professional
world, same issues arise about critical data of companies (e.g. research & devel-
opment, business strategy). This is the case for example of the BackPlanTM com-
pany whose business uses metadata on information exchanged between partici-
pants for project communication control.

The objective of this section is not to criticize the practices of a particular
country or to denigrate the work of a particular company. We just want to
highlight the socio-economic issues about information in today’s society and the
need to harmonize the laws of different countries to define an international legal
framework.

5.1 Data are Future’s Power

We live in a transitional period, the digitization of everything: people, society,
organizations, knowledge, interactions,. . . Data is the basic building block of the
information society. Its quantity is growing exponentially: we are talking about
Big Data. The physical infrastructure of the information society, telecommuni-
cation systems, storage facilities and data processing, new online services, are
industries experiencing unprecedented growth. Data per se offers tremendous
potential that we begin to use to generate new knowledge.

Personal data, both that produced by the users (texts, photos, videos,. . .)
and that generated by the systems we use often unknowingly, is the heart of
the economy of the information society, and therefore the heart of the economy.
Control of the data also allows control of certain markets, which currently are
already using U.S. electronic commerce tools in some areas. Control of the infor-
mation society gives power still difficult to evaluate and far beyond the areas of
the market economy.

Data capture is the top priority in some countries such as the United States
or China (which hold respectively 72 % and 16 % of the top 50 sites worldwide).
In both countries, national data remain under control of the domestic industry.
And both aspire to collect the data at the international level.

5.2 Data Location

Geographical location of the cloud provider can have a real impact on the pro-
tection and confidentiality of data.

174 M. Munier et al.

Legal Obligations. Sensitive data can be stored using a cloud computing solution.
But for a French company, for example, it is necessary to check that the provider
undertakes to keep these documents in France. Otherwise, the company may
be unable to ensure that the processing of personal data complies with the
legislation in force for it (e.g. in France: duration of data retention, ability to
modify and delete information,. . .).

Similarly, it is generally necessary to comply with certain legal tax obliga-
tions: prohibition to store account books outside the European Union, manda-
tory reporting to the tax authorities in order to store electronic invoices outside
the national territory,. . .

The “USA PATRIOT Act” Dutch legal researchers have published a study [16]
that highlights the importance for a European company to choose a European
provider to outsource the processing of personal data or information vital to the
company. Indeed, since the establishment of the USA PATRIOT Act, U.S. law
allows security services to access all personal data [17]:

– data from U.S. companies, even if the data is physically stored on the Euro-
pean territory

– data from their subsidiaries, even if they are located in another country in
the world

– data stored on servers that are hosted in the United States, even if the com-
pany that owns the servers is of another nationality

The U.S. government has now established a legal arsenal which allows per-
sonal data control of foreign citizens, including Europeans, by leveraging its
major companies such as Facebook, Google or Microsoft. At the end of 2012,
the European Parliament’s Committee on Civil Liberties, Justice and Home
Affairs (“LIBE”) released a study titled “Fighting cyber crime and protecting
privacy in the cloud” [18]. Authors denounce the “Foreign Intelligence and Sur-
veillance Act” (FISA). This amendment expressly authorizes U.S. intelligence
agencies (NSA, CIA,. . .) to wiretap (without judicial authorization) U.S. citi-
zens communicating with foreigners suspected of terrorism or spying. Shortly,
a secret tribunal is now able to issue a warrant, secret too (the “secret” for
actions may be required for an indefinite period), forcing American companies
to deliver to U.S. intelligence agencies the private data of foreign users. There-
fore your information may be duplicated, stored and disclosed to third parties
without notifying you. . . In December 2012 the amendment was extended until
2017.

Our aim is not to pass judgment on the “USA PATRIOT Act” and other
secret projects such as Riot or PRISM (since 2007 and revealed in june 2013
by Edward Snowden). We simply point out that in the current legislation, a
European company with strong constraints on the information confidentiality
must therefore be vigilant when choosing a service provider (data location and
nationality of the provider).

Legal Issues About Metadata Data Privacy vs Information Security 175

5.3 Towards a European CNIL

The European Parliament has made good progress on the reform of the EU leg-
islation on data protection proposed almost a year ago by the Commission [19].
The United States, which are reforming their own legislation, call for transat-
lantic regulatory convergence, noting that they are just as demanding as the
Europeans in this area. The EU has the ambition to become the global standard
for data protection, suggesting (according to the authors) that the United States
are more lax.

One of the most controversial issues is the requirement of equivalent stan-
dards to allow European data transfer to a third country for processing. The
problem also arises for global corporations (e.g. Google), whose processing prac-
tices should be approved by the Union, while the United States would continue
to use their codes of conduct.

In January 2013 the European Parliament presented its preliminary report
on the future reform of the EU Directive on the protection of personal data in
response to proposals from the European Commission. Wishing to strengthen the
protection of data of its citizens, Europe is about to start revising the measures
that came into force in 1995 ensuring wanting to replace Directive 95/46/EC on
the protection of data by a European regulation that all Member States should
apply without discussion. This reform will require the creation of an independent
administrative authority, ie a European CNIL, which will enforce the rules on
data protection, which could take the form of an independent agency.

However, for the French Data Protection Authority (“CNIL”), the text pro-
posed by the European Justice Commissioner Viviane Reding “presents consid-
erable progress” but also “elements of concern”. The President of the CNIL,
Isabelle Falque-Pierrotin acknowledges that it has the “major advantage” to
submit to the European law all data processing on a European resident by a
company not established in Europe: in other words it is the European law that
would apply to a French victim of abuse by an American internet company,
for example. But, says the President of the CNIL, the European text raises the
problem of the concept of “principal place of business”, according to which the
competent regulatory authority in the event of a dispute with a European citizen
is that of the place where the company and not the complainant.

5.4 Synthesis

The political and economic authorities have become aware of the need to estab-
lish an international legal framework to control the collection, storage and use
of data. Metadata associated with data is also included. It is indeed value of
the highest importance for companies whose business is the management of
information.

6 Conclusion

Confidence in the data that we handle every day is one of the major chal-
lenges of the information society. There are many mechanisms that allow us to

176 M. Munier et al.

collect, store and process huge amounts of data and especially data on this data:
metadata. Metadata is an essential tool for information security: usage control
for document sharing and cloud security, digital forensics, evidence in case of
litigation,. . .

Technological possibilities must not however make us forget the legal issues.
The objective being to implement a security policy and to ensure information
traceability, it is essential to respect existing regulations regarding the metadata
that can be stored (see personal data, privacy), how it should be stored (see
probative value) and computer processing in which it may be involved.

Through this article we want to raise awareness of potential abuses related to
the use of such metadata. Some work has already been done to preserve privacy.
An example is the anonymization of data [20,21]. These are not always suitable
for our problem of usage control where precisely some indicators should not be
anonymous. In the context of E-DRM we talk about business projects between
partners. Thus our approach is rather to formalize this “collaboration agree-
ment”. For the IT community, this will be in terms of language as specification
for metadata to be collected, by what means, how it is stored and what will be
the use. For the legal community, it must first qualify the metadata: should it be
treated as “traditional” data or should it receive a specific legal regime? Once
defined the legal framework, we can study together under what conditions it is
possible to use metadata and, in the other way, what are the metadata necessary
to apply certain laws. For instance, in the Oil & Gas case study described in
Sect. 2.1, it will now be necessary to include in the contract between companies
(“collaboration agreements”) the insertion or the deletion of this metadata. For
instance, should metadata appear within documents delivered at the end of the
project?

Finally, in Sect. 5 we discussed some socio-economic issues underlying the
mass storage of data (and metadata) in the today information society. Beyond
collaboration between partners on a project, we must also study the use of service
providers on the “cloud” (storage or processes). These technologies have become
unavoidable for companies although they introduce new vulnerabilities for the
information security (loss of information controllability). These threats are not
just technical (hardware, software, network). They can also be political, which
requires the definition of an international legal framework for data protection.

References

1. Inmon, W.H.: Tech topic: What is a data warehouse? Prism Solutions, 1 pp. (1995)
2. Kimball, R., Ross, M., Thornthwaite, W., Mundy, J., Becker, B.: The Data Ware-

house Lifecycle Toolkit, 2nd edn. Wiley Publishing, New York (2008)
3. Munier, M.: A multi-view approach for embedded information system security. In:

CRiSIS, pp. 65–72. IEEE (2010)
4. Munier, M., Lalanne, V., Ricarde, M.: Self-protecting documents for cloud storage

security. In: TrustCom, pp. 1231–1238. IEEE (2012)
5. Kalam, A.A.E., Benferhat, S., Miège, A., Baida, R.E., Cuppens, F., Saurel, C.,

Balbiani, P., Deswarte, Y., Trouessin, G.: Organization based access control. In:
POLICY, pp. 120–131. IEEE Computer Society (2003)

Legal Issues About Metadata Data Privacy vs Information Security 177

6. Elrakaiby, Y., Cuppens, F., Cuppens-Boulahia, N.: From contextual permission
to dynamic pre-obligation: an integrated approach. In: ARES, pp. 70–78. IEEE
Computer Society (2010)

7. Cuppens, F., Cuppens-Boulahia, N.: Modeling contextual security policies. Int. J.
Inf. Sec. 7(4), 285–305 (2008)

8. Cuppens, F., Miège, A.: Modelling contexts in the or-bac model. In: ACSAC, pp.
416–427. IEEE Computer Society (2003)

9. Bertino, E., Lim, H.-S.: Assuring data trustworthiness - concepts and research
challenges. In: Jonker, W., Petković, M. (eds.) SDM 2010. LNCS, vol. 6358, pp.
1–12. Springer, Heidelberg (2010)

10. Zheng, X., Maillé, P., Le, C.T.P., Morucci, S.: Improving the efficiency of collab-
orative work with trust management. In: Agoulmine, N., Bartolini, C., Pfeifer,
T., O’Sullivan, D. (eds.) Integrated Network Management, pp. 1172–1179. IEEE
(2011)

11. Zheng, X., Maillé, P., Le, C.T.P., Morucci, S.: Trust mechanisms for efficiency
improvement in collaborative working environments. In: MASCOTS, pp. 465–467.
IEEE (2010)

12. Le, C.T.P., Cuppens, F., Cuppens, N., Maillé, P.: Evaluating the trustworthiness
of contributors in a collaborative environment. In: Bertino, E., Joshi, J.B.D. (eds.)
CollaborateCom 2008. LNICST, vol. 10, pp. 451–460. Springer, Heidelberg (2009)

13. Lalanne, V., Munier, M., Gabillon, A.: Information security risk management in a
world of services. In: PASSAT (2013)

14. Jaramillo, E., Munier, M., Aniorté, P.: Information security in business intelligence
based on cloud: a survey of key issues and the premises of a proposal. In: WOSIS
(2013)

15. Hricik, D., Scott, C.E.: Metadata: the ghosts haunting e-documents. In: FindLaw,
March 2008

16. Van Hoboken, J., Arnbak, A., Van Eijk, N.: Cloud computing in higher education
and research institutions and the USA PATRIOT Act. Social Science Research
Network Working Paper Series, November 2012

17. Lee, L.T.: USA PATRIOT ACT and telecommunications: privacy under attack.
Rutgers Comput. Tech. LJ 29, 371 (2003)

18. EU: Fighting cyber crime and protecting privacy in the cloud. EU Parliament
(2012)

19. EU: Proposal for a Regulation of the European Parliament and of the Council on
the protection of individuals with regard to the processing of personal data and
on the free movement of such data (General Data Protecting Regulation). Comm.
European Communities, Bruxelles (2012)

20. Guarda, P., Zannone, N.: Towards the development of privacy-aware systems. Inf.
Softw. Technol. 51(2), 337–350 (2009)

21. Zhou, B., Pei, J., Luk, W.: A brief survey on anonymization techniques for privacy
preserving publishing of social network data. SIGKDD Explor. Newsl. 10(2), 12–22
(2008)

Privacy-Preserving Multi-Party Reconciliation
Secure in the Malicious Model

Georg Neugebauer1(B), Lucas Brutschy1, Ulrike Meyer1, and Susanne Wetzel2

1 Department of Computer Science, RWTH Aachen University, Aachen, Germany
neugebauer@itsec.rwth-aachen.de

2 Department of Computer Science, Stevens Institute of Technology, Hoboken, USA

Abstract. The problem of fair and privacy-preserving ordered set rec-
onciliation arises in a variety of applications like auctions, e-voting, and
appointment reconciliation. While several multi-party protocols have
been proposed that solve this problem in the semi-honest model, there
are no multi-party protocols that are secure in the malicious model so
far. In this paper, we close this gap. Our newly proposed protocols are
shown to be secure in the malicious model based on a variety of novel
non-interactive zero-knowledge-proofs. We describe the implementation
of our protocols and evaluate their performance in comparison to proto-
cols solving the problem in the semi-honest case.

Keywords: Privacy-enhancing technologies · Secure multi-party com-
putation · Cryptographic protocols · Zero-knowledge proofs · Malicious
model

1 Introduction

In many applications, multiple parties need to jointly compute a function of
their individual inputs, while keeping the inputs to the function private from
each other. Secure multi-party computation solves this problem without the use
of a trusted third party (TTP). Seminal work in this area [2,27] shows that
any functionality that can be modeled as a Boolean or arithmetic circuit can be
computed in private. As these early generic solutions exhibit a high complexity
for the computation of some functionality, a second line of research focuses on
developing protocols that can compute only specific functionality but in a very
efficient way. Today, both approaches coexist and results arguing in favor devel-
oping special purpose protocols [7,8] as well as such arguing in favor of generic
approaches have been published recently [10,15].

One such specific functionality is the reconciliation of ordered sets first intro-
duced in [19,20] for the two-party case and generalized to multiple parties in
[21,23]. As shown in [18], reconciliation of appointments, some types of elec-
tronic auctions, and certain e-voting schemes can be reduced to solving this
problem. For example, when reconciling an appointment between multiple par-
ties, each party can be considered to have a private input set of possible dates and

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 178–193, 2014.
DOI: 10.1007/978-3-642-54568-9 12, c© Springer-Verlag Berlin Heidelberg 2014

Privacy-Preserving Multi-Party Reconciliation Secure 179

order these dates according to its individual preferences. A privacy-preserving
reconciliation protocol uses these ordered input sets to determine a date which
is a fair choice given the preferences expressed by each party, without revealing
anything else about the ordered inputs to the other parties or even to a TTP.

The protocols proposed in [19–21,23] are shown to be secure only in the
semi-honest model, that is, under the assumption that all parties follow the
prescribed actions of the protocol while trying to extract as much information
as possible from their view of the protocol run. In [17] the problem of malicious
attackers, i.e. attackers that may deviate from the protocol, is solved for the
two-party case. To the best of our knowledge, however, there are currently no
multi-party ordered set reconciliation protocols which are secure in the malicious
model. This is mainly due to the fact that a straightforward generalization of
the two-party protocols is already highly inefficient for the semi-honest case [23].
The semi-honest multi-party protocols introduced in [23] therefore substantially
differ in their design from the two-party protocols suggested in [19].

In this paper we propose multi-party protocols solving the reconciliation on
ordered sets problem that are provably secure in the malicious model. Our con-
structions are based on the semantically secure, additively homomorphic Pail-
lier cryptosystem [26] and a series of non-interactive zero-knowledge proofs to
provide verifiable set operations. Here, we propose a new homomorphic linear
equations proof which enables more efficient verifiable set operations than the
ones previously proposed in [16]. In addition, we describe our implementation of
the newly proposed protocols and evaluate their performance in comparison to
the most efficient currently known semi-honest protocols proposed in [21].

2 Preliminaries

Adversary Models. In secure multi-party computation two adversary mod-
els are commonly used: the semi-honest and the malicious model. Both models
assume the existence of pairwise encrypted and authenticated channels between
the participating parties, such that external attackers do not have to be consid-
ered. A semi-honest adversary is an insider attacker that tries to infer as much
(secret) information as possible from its view of a protocol run, but strictly fol-
lows the prescribed actions of the protocol. A malicious adversary is an insider
attacker that can almost arbitrarily deviate from the protocol except refusal to
participate in the protocol, manipulation of its own input, and protocol abor-
tion. To prove that a protocol is privacy-preserving in the malicious model the
simulation paradigm is used, which compares the real-world execution of the
protocol to an ideal-world execution. In the ideal world, all parties provide their
inputs to a trusted third party, which computes the correct output and provides
the results to each party. In the real world, in addition to the protocol’s correct
output, the adversary learns all messages exchanged between the parties and all
randomness generated during the execution of the protocol. One shows that it
is possible to construct a simulator which, given the ideal output, can generate
a transcript that is identical to the real protocol execution. If such a transcript

180 G. Neugebauer et al.

can be generated using only the knowledge of the ideal execution, the protocol
is privacy-preserving in the malicious model. For a formal definition see [4,13].

Definition 1 (Ordered Sets and Ranking Functions [21]). Let D be a set
called the domain. (S,<) ≈ 2D × 2D×D is called ordered set if < is a strict
total order on S. As a shorthand, we write {x1 > ... > xk} for the ordered set
({x1..., xk} , {(xj , xi) |1 → i < j → k }). The ranking function rankS : S ∞ N is
defined by rankS (xi) = k − i + 1.

Definition 2 (Composition Schemes [21]). Let (S1, <1) , ..., (Sn, <n) be
ordered sets. The ordered set

(
S1 ≡ ... ≡ Sn,→{S1,..,Sn}

)
is the combined ordered

set of (S1, <1) , ..., (Sn, <n) w.r.t. f if →{S1,..,Sn} is the order induced by the func-
tion f : (S1 ≡ ... ≡ Sn) ∞ R. The function f is called the composition scheme.
The minimum of ranks composition scheme (MR) is defined by the function
f(x) = min {rankS1(x), ..., rankSn

(x)} . The sum of ranks composition scheme
(SR) is defined by the function f(x) = rankS1(x) + ... + rankSn

(x).

Definition 3 (Privacy-Preserving Reconciliation onOrdered Sets [21]).
A multi-party reconciliation protocol on ordered sets for an order composition
scheme f (MPROSf) is a multi-party protocol between n parties P1, ..., Pn each
with an input (Si, <i) of size k drawn from the same domain D. Upon completion
of the protocol, each party learns (X, t) with:

X = arg max
x→(S1∞...∞Sn)

f(x) t = max
x→(S1∞...∞Sn)

f(x)

where arg maxx→Df(x) = {x|∼y ≈ D : f(y) → f(x)}

A protocol run is said to be privacy-preserving in the semi-honest (the malicious)
model iff no semi-honest (malicious) party learns anything about the inputs and
preferences of the other parties, except what can be deduced from the output (X, t)
of the protocol and his own private input set.

The Paillier Cryptosystem. In this paper, we make use of a threshold version
of the probabilistic public-key cryptosystem proposed by Paillier [9,12,26]. The
cryptosystem is additively homomorphic and semantically secure under compu-
tational assumptions. Let Epk(·) be the encryption function with public key pk.
In an additively homomorphic cryptosystem, there is an operation +h such that
Epk(a + b) = Epk(a) +h Epk(b) and +h can be computed efficiently given only
Epk(a), Epk(b), and pk. We denote the homomorphic summation by

∑̃
.

A (t, n)-threshold cryptosystem is a cryptosystem with a public key pk and
n private key shares sk1, ..., skn. Using a private key share, a party can compute
a partial decryption of a ciphertext. To successfully recover the plaintext of a
given ciphertext, t of the n key shares are required to compute and combine t
decryption shares to obtain the plaintext.

Encryption. Epk (m)
def
= gmrN mod N2 for any plaintext m ≈ Z

⊆
N , where

r ≈ Z
⊆
N is selected uniformly at random.

Privacy-Preserving Multi-Party Reconciliation Secure 181

Homomorphic Addition. For two ciphertexts α, β ≈ ZN2 , the operation +h

is given by α +h β
def
= α · β mod N2, where α, β ≈ ZN2 .

Homomorphic Scalar Multiplication. For a ciphertext α ≈ ZN2 and a scalar
s ≈ Z

⊆
N , the operation ×h is defined by s ×h α

def
= αs mod N2.

Privacy-Preserving Multiset Operations. Our protocols make use of the
privacy-preserving operations on multisets, i.e., sets in which elements may occur
more than once, introduced by Kissner et al. [16]. In these operations a private
input multiset Si = {si,1, ..., si,k} of party Pi is encoded by the polynomial
fi(x) =

∏k
j=1 (x − si,j). The coefficients of this polynomial are encrypted with

an additively homomorphic cryptosystem.

Union: For an encrypted polynomial φ and a plaintext polynomial g, representing
the two sets F and G of arbitrary size, a polynomial representation of the union
F ⇐G can be computed by homomorphic polynomial multiplication: φ×h g. The
product contains all roots of f and g with the summed up multiplicity. From
the decryption of φ ×h g one cannot learn more information than from F ⇐ G,
as proven in Theorem 1 of [16].

Intersection: For two encrypted polynomials φ, γ representing two sets F and
G of equal size, the intersection can be computed by the term φ ×h s +h γ ×h r.
Here, s and r are random polynomials of degree deg(φ). The roots of the result
polynomial are those common to φ and γ (with minimum multiplicity) and thus
represent the elements of F ≡ G. Again, from the decryption of the resulting
polynomial, one cannot learn more than from F ≡ G (Theorem 3 in [16]).

Set Reduction: For an encrypted polynomial γ representing a multiset G one
can compute the element reduction Rdt (G) by the term

∑̃t

i=0γ
(i) ×h Fi ×h ri.

Here, each ri is chosen uniformly at random and each Fi is a fixed polynomial
of degree i such that, i.e., gcd (F0, ..., Ft) = 1. The result Rdt(G) contains all
elements a ≈ G with multiplicity max{b − t, 0}, if an element a has multiplicity
b in G. Again, see [16] for an in-depth discussion of correctness and security.

Privacy-Preserving Reconciliation. The protocols for reconciliation on orde-
red sets proposed in [21] are based on the privacy-preserving set operations intro-
duced above. In particular, the protocol for the minimum of ranks composition
scheme works as follows. Let Si = {si,1 > ... > si,k} be the input set of party
Pi. Then, the protocol operates in rounds. In round 1 → l → k of the protocol,
the parties compute

⋂n
i=1{si,1, . . . , si,l}. If the resulting set is empty the parties

continue with round l + 1. If the resulting set is non-empty, the resulting set
contains the common elements of all parties with the maximum minimum of
ranks value k − l + 1. The protocol for the sum of ranks composition scheme
computes

Rdt

(
renc (S1) ⇐ ... ⇐ renc (Sn)

)
≡ (

S1 ≡ ... ≡ Sn

)
.

182 G. Neugebauer et al.

Here, renc (Si) denotes an encoding of the multiset Si in which each element
occurs with the multitude indicated by its rank. I.e., the highest ranked element
sik occurs k times while the lowest ranked element s1 occurs only once. The
details of the protocols as well as the proof of correctness and security in the
semi-honest model can be found in [21]. We detail how our new protocols differ
from these protocols in Sect. 4.

Zero-Knowledge Proofs of Knowledge. Suppose a prover P has knowledge
of an x such that (y, x) ≈ R for some relation R and a public value y. He wants to
convince a verifier V of this knowledge without revealing anything but this fact.
A protocol that realizes this functionality is called a zero-knowledge proof of
knowledge (ZKPK) protocol. Any ZKPK protocol must satisfy three properties:
First, it must be correct, i.e., if the prover knows x, then the prover can convince
the verifier that he knows x. Second, it must be sound, i.e., without knowledge
of x, a prover can not convince the verifier. Third, it must satisfy the property of
zero-knowledgeness, i.e., the verifier learns nothing but the fact that P knows an
x such that (y, x) ≈ R. For a more formal definition of these properties, see [13].
A well known form of ZKPK protocols are Σ-Protocols, which are interactive
two-party protocols in which the verifier generates a random challenge. The so-
called Fiat-Shamir heuristic [11] is an efficient generalization to the multi-party
setting by replacing the challenge generated by the verifier by the result of a
hash function. Those protocols are known as non-interactive ZKPK protocols.
The security of Fiat-Shamir-based proof protocols is given in the random oracle
model [1].

Proof of Plaintext Knowledge: In a proof of plaintext knowledge for the Paillier
cryptosystem, a prover tries to prove to the verifier that he knows m, r such
that y = gm · rN mod N2 for a known ciphertext y. Interactive variants of the
plaintext knowledge proof for the Paillier cryptosystem were proposed in [5,6].

Proof of Correct Multiplication: Suppose two parties know the three ciphertexts
α, β, γ. In the proof of correct multiplication, the prover shows that he knows
the plaintext m of γ and that m ←h α = β. Interactive variants of the correct
multiplication proof for the Paillier cryptosystem were proposed in [5,6].

Proof of a Subset Relation Using Verifiable Shuffles: Consider a set of plaintext
values D. In our setting, the prover selects a subset S of k distinct elements
from D in an unknown order and sends encryptions in a verifiable manner to
the other parties. More formally, we need a verifiable shuffle protocol [14,25]. In
our setting, we use a protocol proposed by Nguyen et al. [25], since it can be
applied directly in the Paillier cryptosystem, can be made non-interactive using
the Fiat-Shamir heuristic and runs in linear time in the size of domain D.

Verifiable Threshold Decryption: In order to prove that a party correctly com-
puted the partial decryption in a threshold version for the Paillier cryptosystem,
we use an adaption of techniques by Fouque et al. [12].

Privacy-Preserving Multi-Party Reconciliation Secure 183

3 Novel ZK-Proofs

We provide novel non-interactive ZK-Proofs that allow us to specify new proto-
cols for verifiable set union, intersection, and reduction operations. In particular,
we convert the interactive proof for plaintext knowledge and correct multiplica-
tion [5,6] into non-interactive ZKPK. We present a new ZKPK for homomorphic
linear equations and show how this can be used to construct ZKPK for verifiable
set operations. We show that these new ZKPKs are more efficient than the ones
previously proposed in [16].

Proof of Plaintext Knowledge and Correct Multiplication. We turn
the interactive ZKPK’s proposed in [6] into non-interactive proofs using the
strong variant of the Fiat-Shamir heuristic. The algorithms and detailed proofs
for correctness, special soundness, and special honest-verifier zero-knowledge are
given in the extended version of our paper [22].

Proof of a Homomorphic Linear Equation. Assume the following linear
equation, where α1, ..., αp, β are Paillier ciphertexts and m1...mp are
Paillier plaintexts m1 ←h α1 +h ... +h mp ←h αp = β. It is possible to construct
a proof for the correctness of a homomorphic linear equation, where the scalar
factors are only known to the verifier in encrypted form. For an equation with p
linear factors we perform p plaintext knowledge proofs in parallel, together with
an additional constraint that the given equation holds, similar to the construc-
tion proving correct multiplication.

Algorithm 1 lists the steps required to construct and verify the corresponding
proof. αi range over the ciphertext factors involved in the computation, β is the
result of the equation, mi are the secret scalar factors used in the multiplications,
ri the secret randomization factors used for encrypting those to γi, and pidPi

is
a random value assigned to each party. We use a single challenge, but p+1 com-
mitments and 2p + 1 responses in our proof. The algorithms and detailed proofs
for correctness, special soundness, and special honest-verifier zero-knowledge are
given in the extended version of our paper [22].

Complexity: The proof consists of a hash, p random Paillier plaintexts (with
random values) and an additional random value of size b. For p linear factors,
we need to perform p binary exponentiations with a Paillier modulus N of size
b, thus we have the computation complexities O

(
p · b3

)
.

Next, we show how to construct proofs for computations on polynomials.
Basically, the proofs are based on parallel execution of several linear homomor-
phic equation proofs, but using a common challenge for all protocols. This is
commonly referred to as And-Composition of proofs [3].

Proof of Correct Polynomial Operations. We start with the construction of
proofs for the correct multiplication of polynomials. For a polynomial f let E(f)
denote the coefficient-wise encryption of f and let the corresponding Greek letter

184 G. Neugebauer et al.

Algorithm 1. Construction and verification of a linear equation proof

Specification:

ZKPK

{
m1, ..., mp

r1, ..., rp, R

∣∣∣∣
[α1 ≈h m1 +h ... +h αp ≈h mp]R = β

∈ ∧p
i=1 γi = E(mi, ri)

}

Construction:
(1) Select random m◦

i, r
◦
i → Z

∗
N for i → {1, .., p} and R◦ → Z

∗
N

(2) Compute equation commitment tR =
[
α1 ≈h m◦

1 +h ... +h αp ≈h m◦
p

]
R′

(3) Compute plaintext knowledge commitments ti = E(m◦
i, r

◦
i)

(4) Get a challenge c = h(pidP , g, α1, ..., αp, γ1, ..., γp, β, tR, t1, ..., tp)
(5) For i → {1, ..., p}, compute responses m◦◦

i = m◦
i − cmi mod N

and r◦◦
i = r◦

i · r−c
i mod N

(6) Compute R◦◦ = R◦ · R−c

(7) Send (c, m◦◦
1 , ..., m◦◦

p , r◦◦
1 , ..., r◦◦

p , R◦◦)
Verification:

(1) Reconstruct equation commitment
t◦
R = βc

[
α1 ≈h m◦◦

1 +h ... +h αp ≈h m◦◦
p

]
R′′

(2) For i → {1, ..., p}, reconstruct plaintext commitments t◦
i = gm′′

i r◦◦N
i γc

i

(3) Verify h(pidP , g, α1, ..., αp, β, t◦
R, t◦

1, ..., t
◦
p) = c

φ denote the tuple of the encrypted coefficients. Assume we want to prove that
ψ = f ←h γ for some f and that φ = E(f). To construct a corresponding proof,
we consider the homomorphic polynomial multiplication using the standard long
multiplication of polynomials with homomorphic operations. In this expanded
form, we get a set of deg(ψ) + 1 = deg(f) + deg(γ) + 1 homomorphic linear
constraints. We can denote this proof in general as listed below.

ZKPK

{
(
f0, ..., fdeg(f)

)
∣∣∣∣∣

∧deg(ψ)
i=0

(∑̃i

j=0γj ←h fi−j

)
= ψi

∈ ∧deg(φ)
i=0 φi = E (fi)

}

Here, a coefficient fj of a polynomial f is considered to be zero if j > deg(f) or
j < 0. This enables verifiable set union. The security and correctness of the proof
directly follows from the correctness and security of the used sub-protocols for
plaintext knowledge, correct multiplication and homomorphic linear equations.
This approach can be extended to arbitrary linear expressions of polynomials:

φ1 ←h f1 +h ... +h φs ←h fs = ψ

The construction is analogous to the construction above, only that we have s as
many multiplications in each linear homomorphic constraint.

Verifiable Set Operations. We can construct verifiable set intersection, union,
and reduction operations based on verifiable polynomial multiplication. Note
that the efficiency of each of these operations depends on the efficiency of the

Privacy-Preserving Multi-Party Reconciliation Secure 185

Table 1. Number of challenges, commitments, and responses for a verifiable polynomial
multiplication where each input set consists of k elements

Protocol Challenges Commitments Responses

Several multiplication proofs
Kissner et al. [16] (k + 1)2 2k2 + 4k + 2 3k2 + 6k + 3

Several linear equation proofs
Our new approach 2k + 1 k2 + 4k + 1 2k2 + 6k + 3

polynomial multiplication. Table 1 compares our new verifiable polynomial multi-
plication to the approach proposed by Kissner et al. [16]. This previous approach
is based on proving the correctness of all involved homomorphic multiplications.
This requires the prover to sent all intermediate results to the verifier and pro-
vide one proof per homomorphic multiplication. Our generalization of the mul-
tiplication proof to arbitrary linear expressions enables more efficient ZKPK on
polynomials.

4 MPROS Secure in the Malicious Model

In this section, we propose two new protocols for MPROSMR and MPROSSR

and prove their security in the malicious model. Previous multi-party protocols
[21,23,24] only provide security in the semi-honest model.

4.1 A Malicious Model Protocol for MPROSMR

We first present a malicious model protocol for MPROSMR. We use several
core techniques to inhibit malicious behavior: Encryptions of all chosen random
polynomials, the secret input sets, and all intermediate computation results are
broadcasted to all other parties together with ZKPK’s proving the correctness
of the computations involving those secret values.

Protocol Description: The formal protocol description is shown in Algorithm 2.
Encrypted values are denoted by lower case Greek letters, e.g., δi,j denotes the
encrypted value of di,j . The protocol starts with the distribution of the input
sets. Each party computes a shuffle of the domain, such that the first k ele-
ments represent its input set and proves the correctness of the shuffle. When
all encrypted shuffles have been distributed, the parties verify the proofs of all
other parties. Whenever a proof verification fails, the protocol is aborted. In
Step 2 and 3, all parties compute the set intersection of the polynomials φi,k−t,
verify the corresponding proofs ΠINTERSECT,i and decrypt the result π. In Step
4, the result is tested for emptiness. Based on the outcome, one of two actions
is performed: If the result is non-empty, we have found the correct result and
terminate the protocol. If the result is empty, we repeat the set intersection with
a decreased threshold value t. For this purpose, each party adds the next highest
ranked element di,k−t to its current polynomial φi,k−t using a simple set union

186 G. Neugebauer et al.

Algorithm 2. Malicious model protocol for MPROSMR

Setting: Parties P1, ..., Pn with ordered input sets, chosen from common domain D,
Si = {di,1 > ... > di,k} , i → {1, ..., n}. Each party Pi holds a key share for a
(n, n)-threshold decryption scheme.

1. Initial Polynomial

(a) Each party Pi (i = 1, ..., n)

i. Computes an encrypted shuffle (δi,1, ..., δi,k, ...) of the domain D
where the first k elements denote the input set elements.

ii. Broadcasts the shuffle and correctness proof ΠSHUFFLE,i (see Sect. 2)

(b) Each party Pi (i → {1, ..., n}) for j → {1, .., n}
i. If j ≡= i, verifies ΠSHUFFLE,j

ii. Chooses random polynomial ri,j,1 of degree 1
iii. Computes and commits to ρi,j,1 = E1 (ri,j,1)

2. Set Intersection (Initially t = k − 1. Let φi,1 =
(
E(1), δ−1

i,1

)
)

(a) Each party Pi (i = 1, ..., n).

i. Opens the commitment to ρi,j,k−t

ii. Computes and broadcasts γi =
[∑̃n

j=0 (φj,k−t ≈h ri,j,k−t)
]
r

iii. Broadcasts a proof ΠINTERSECT,i that γi is correctly computed

(b) Each party Pi (i = 1, ..., n)

i. For j → {1, .., n} \ {i} verifies ΠINTERSECT,j

ii. Calculates π =
∑n

i=1 γi

3. Decryption : All parties perform a malicious model threshold decryption of π and
obtain the result polynomial p.

4. Emptiness Test / Set Union

(a) Each party Pi (i = 1, ..., n)

i. Computes the set of elements of Si which are roots of p:
R = {d → Si : (X − d)|p.}

ii. If R ≡= ←, terminates the protocol with result (R, t + 1)
iii. If R = ← and t = 0, terminates the protocol with (←, 0)
iv. Computes and broadcasts φi,k−t+1 = [φi,k−t ≈h (x − di,k−t)]r
v. Broadcasts a proof ΠUNION,i that φi,k−t+1 is correctly computed

(b) Each party Pi (i → {1, ..., n}) for j → {1, .., n}
i. If j ≡= i, verifies ΠUNION,j

ii. Chooses random polynomial ri,j,k−t+1 of degree k − t + 1 and commit to
ρi,j,k−t+1 = E1 (ri,j,k−t+1)

(c) Proceed with Step 2 using t − 1

Privacy-Preserving Multi-Party Reconciliation Secure 187

operation, resulting in the polynomial φi,k−t+1 for the next round. After the
verification of the set union operation, the protocol returns to Step 2.

Correctness: We compute the function Rdt(S1 ≡ ... ≡ Sn) as the semi-honest
variants discussed in [21,23,24]. Assuming that the zero-knowledge proofs of
knowledge are difficult to forge, each party is forced to perform the same com-
putations as in the semi-honest variant of the protocol. Therefore the correctness
results from [21] also apply to our malicious model variant.

Security in the Malicious Model

Setting: The ZK proof protocols are based on Σ-Protocols that have been con-
verted into non-interactive protocols using the Fiat-Shamir heuristic. Since the
verifier does not interact in the proof generation, it is sufficient to show special
honest-verifier zero-knowledge for these protocols, see [13] for more details. We
show the security of the protocol against at most n−1 attackers. This is achieved
with the help of a broadcast of the ZKPK proofs to all n − 1 other parties.

Table 2. The proofs used in Algorithm 2

ΠSHUFFLE,i = ZKPK

{
d1, .., dk

∣∣∣∣∣{d1, .., dk} ∅ D ∈
k∧

i=1

δi = E (di)

}

ΠINTERSECT,i = ZKPK

{
ri,1, ..., ri,n, R

∣∣∣∣∣
γi =

[∑̃n

j=0 (φj ≈h ri,j)
]
R∈ ∧n

l=0 ρi,j = E1(rij)

}

ΠUNION,i,t = ZKPK

{
di,k−t, φi,k−t, R

∣∣∣∣
φi,k−t+1 = [φi,k−t ≈h (x − di,k−t)]R

∈ δi,k−t = E (di,k−t)

}

ZK-Proofs: Our protocol uses several types of proofs, all of which are listed
in Table 2. The proofs for proving the correct set intersection ΠINTERSECT,i

and the proof for correct set union ΠUNION,i,t directly follow from the proofs
outlined in Sect. 3. Note that each union proof ΠUNION,i,t requires a successful
proof verification ΠUNION,i,t+1 with the previously used threshold value t + 1.
Furthermore, we require each party to prove that its chosen subset is part of the
domain using a verifiable shuffle and compute a verifiable decryption as described
in Sect. 2.

Solving the 0-Polynomial Problem: Malicious attackers can manipulate the pro-
tocol by inserting 0-polynomials in the protocol, i.e., polynomials where all coef-
ficients are set to zero. Other parties can not detect these polynomials, as they
only receive encrypted versions and by the semantic security of the cryptosystem
it is infeasible to check if it encrypts a zero or not. We solve the problem in the
following manner: The first coefficient of polynomials that are chosen by a party
is always assumed to be a known encryption of 1 (E1), compare Step 1.b.iii. and
4.b.ii. in Algorithm 2. Since all such computations are reblinded before they are
sent to the other parties, this does not reduce the security of the protocol.

188 G. Neugebauer et al.

Simulation Proof.

Theorem 1. Assuming that the additively homomorphic, threshold cryptosys-
tem E(·) is semantically secure and the specified ZKPK’s and proofs of correct
decryption cannot be forged, then in the protocol in Algorithm 2, for any coalition
Γ of at most n− 1 colluding players, there is a player (or group of players) SIM
operating in the ideal model, such that the views of the players in the ideal model
are computationally indistinguishable from the views of the honest players and
Γ in the real model.

We give the algorithm for a simulator SIM in the ideal world that represents
one or more honest participants and executes the above protocol with the set of
potentially malicious and colluding parties P1, ..., Pl. In addition, the simulator
performs the ideal world protocol with the trusted third party TTP. The sim-
ulator SIM acts as a translator between the real world protocol and the ideal
world protocol and acts as the honest parties Pl+1, ..., Pn in the protocol with
the malicious parties. The intuition of the simulation proof is as follows:

If we can generate all protocol messages from only the interaction with the
trusted third party, which, in the ideal world, does not leak any information
about the private inputs of parties Pl+1, ..., Pn, then the exchanged protocol
messages can not contain more information, than the information provided in
the ideal world, i. e., the output of an MPROS protocol, compare Definition 3.
We give the simulator the power to extract values from ZKPK’s which is a com-
mon approach in malicious model security proofs [4,13]. The algorithm for the
simulator is given in Algorithm 3. The simulator starts by constructing random
inputs to the real-world protocol, i.e., selecting a random ordered set of size k
and constructing and sending the corresponding encryptions and proofs (Step 1).
The random inputs are used in place of the real inputs of the honest parties,
which ensures that no information is leaked in the first step.

After receiving the encryptions and the proofs from the malicious parties,
the simulator then uses the extractors given in the soundness proofs of the zero-
knowledge proof protocols to extract the private sets from the provided proofs
(Step 2). This makes it possible to perform the ideal-world protocol with the
TTP and the honest parties (Steps 3 and 4). After receiving the result of the
protocol from the TTP, the simulator proceeds with the protocol execution in the
real model until threshold value t = m−1 (Step 5). Then, it inserts a polynomial
representation of the result into the real-world protocol execution by choosing
the random polynomials ri,j,m−1 accordingly (Step 6). Under the assumption
of a semantically secure threshold cryptosystem, the views of the players in the
ideal model given by the simulator are computationally indistinguishable from
the views in the real model. The protocol output is given by Definition 3 and is
the same for the ideal and the real model (Step 6). ∗⊆

Complexity Analysis. Let n denote the number of parties, k the number of
inputs, b the bit size of the modulus, and D the domain of inputs. We have
the computation complexity O

((|D| + k3 · n
) · n · b3

)
for each party. The com-

putations in the malicious model protocol are O(n) more complex compared

Privacy-Preserving Multi-Party Reconciliation Secure 189

Algorithm 3. Simulation Algorithm for MPROSMR

1. For each simulated honest party Pi → Φ

(a) Generate an ordered set of random values Ri of size k
(b) Follow Step 1a) according to the protocol, using Ri as input

2. For each malicious party Pi → Γ , extract from the received proof ΠSHUFFLE,i the
private ordered set Si

3. Send the extracted ordered sets {Si|Pi → Γ} to TTP
Each honest party Pi → Φ sends its set Si to TTP

4. TTP computes and sends the following results to SIM and the honest players

A = argmax
x∈(S1∩...∩Sn)

{
min

1≤i≤n
ranki(x)

}

m = max
x∈(S1∩...∩Sn)

{
min

1≤i≤n
ranki(x)

}

5. For t = k − 1, ..., m follow the protocol (Steps 1b - 4) for each simulated honest
party Pi → Φ with input Ri and each malicious party Pi → Γ with input Si

6. For t = m − 1 and each simulated honest party Pi → Φ and every Pj → (Φ ∪ Γ)

(a) Select random polynomial s of size (k − (m − 1) − |A|)
(b) Compute polynomial p =

∏
a∈A(x − a) · s

(c) Select the remaining polynomials ri,j (of the honest parties) such that∑n
i=1 fi,m−1

(∑n
j=1 ri,j,m−1

)
= p. See [16], Lemma 2 for a proof that these

ri,j exist. Commit to the random polynomials ri,j,m−1.

7. Follow and complete the protocol for each party

to [21], because we have to verify n − 1 proofs in each step. The shuffle proof
verification (which depends on the size of the domain D), increases the com-
plexity by a factor of O

(|D| · n · b3
)

for n − 1 such verifications. The commu-
nication of the protocol is tightly coupled with the computation, since each
computation needs to be proven by a corresponding proof sent over the net-
work. The size of all messages exchanged over the network is therefore bound by
O

((|D| + k3 · n
) · n · b

)
. Compared to the semi-honest variants [21], the commu-

nication complexity is increased due to the additional transmission of ZK-proofs.

4.2 A Malicious Model Protocol for MPROSSR

Similar to the minimum of ranks protocol, a malicious model protocol for ordered
set reconciliation with the sum of ranks composition scheme can be constructed.
The most important difference between the construction of the sum of ranks pro-
tocol and the minimum of ranks protocol is that the former also uses set reduc-
tion. To compute a set reduction, we need a sum of polynomial multiplications
which can be proven secure using the usual zero-knowledge proof construction

190 G. Neugebauer et al.

Table 3. Overview of MPROS protocols proposed in this paper or previous work

Problem Model Comp./Comm. Complexity

MPROSMR Semi-honest, standard model, [21] O
(
k3 · n · b3

)
O
(
k2 · n · b

)
Malicious, random oracle model, Sect. 4 O

((|D| + k3 · n
) · n · b3

)
O
((|D| + k3 · n

) · n · b
)

MPROSSR Semi-honest, standard model, [21] O
(
k6 · n4 · b3

)
O
(
k3 · n3 · b

)
Malicious, random oracle model, Sect. 4 O

((|D| + k5 · n4
) · k · n · b3

)
O
((|D| + k5 · n4

) · k · n · b
)

described in Sect. 3. Otherwise, the protocol is similar to the semi-honest con-
structions of Neugebauer et al. [21,23,24]. Using the techniques from this paper,
a protocol for the sum of ranks composition scheme with computation complex-
ity O

((|D| + n4 · k5
) · n · k · b3

)
and O

((|D| + n4 · k5
) · n · k · b

)
communication

complexity can be constructed. The formal protocol description is given in the
extended version of our paper. Table 3 summarizes the results in theory. All four
protocols are polynomial-time bounded with respect to the number of parties n
and inputs k.

5 Implementation and Evaluation

Implementation. Our core implementation is written in Java version 1.7.0.
We used the GNU Multiple Precision Arithmetic Library (GMP) version 5.0.5
to efficiently compute expensive arithmetic operations such as modular exponen-
tiation using a native C++ library with Java Native Interface (JNI). We imple-
mented the Paillier cryptosystem as the additively homomorphic cryptosystem.
Secure channels are established via SSL, threshold key shares are predistributed,
and communication is asynchronous. We implemented our ZK-framework for the
Paillier cryptosystem, both MPROS protocols presented in [21] as well as our
malicious model variants of MPROSMR and MPROSSR, see Sect. 4. We evaluate
the performance of all four MPROS protocols denoted as MR, MR-zk, SR, and
SR-zk with respect to computation and communication overhead. Therefore,
we measure the runtime and count the number of bytes transmitted for each
party. Whenever possible, we used parallelization by simultaneous computation
in threads — depending on the number of available CPU cores.

Test Environment. The setup consists of 10 identical systems each with a
2.93 GHz i7 CPU 870 and 16 GB RAM running a 64-bit Linux with kernel ver-
sion 3.2.0. All systems are connected via secure channels using TLS. Keys are
distributed at start-up. We tested all protocols with up to 10 parties and varied
the number of inputs. We tested for a keysize of 1024 and 2048 bit.

Privacy-Preserving Multi-Party Reconciliation Secure 191

Fig. 1. Comparison of MR-zk and MR for n = 5 and k = 5

Test Results. In Fig. 1, we present our results for the minimum of ranks with a
reasonable keysize of b = 1024 bit varying the number of parties or the number
of inputs for n = 5 and k = 5. As expected from theory, the runtime for the
malicious model variant MR-zk is higher than for the semi-honest variant MR.
For an input domain D of 200 elements and up to 20 inputs k, we have a
runtime of up to 4 min for MR-zk and up to 12 s for MR. Also, the amount of
data transmitted is higher for the malicious model variants with, e.g., 2.5 MB for
MR-zk compared to 0.5 MB for MR in case of 20 inputs. Both protocols MR and
MR-zk show linear behavior with respect to the number of parties n due to
the parallelized proof verification. The results for the sum of ranks composition
scheme can be found in the extended version of our paper. As a conclusion, the
notion of a stronger security model comes at the price of slower protocols and the
need to transmit more data. The protocol MR-zk is roughly twenty times slower
than MR and the transmitted data is ten times higher than in case of MR.

6 Conclusion

We designed and implemented the first multi-party protocols for ordered set rec-
onciliation which are provably secure in the malicious model. Our security proofs
are based on a novel framework for secure computation on Paillier-encrypted
polynomials which is resistant against malicious attackers. Our theoretical analy-
sis of the asymptotic complexity of our new protocols is confirmed by the prac-
tical evaluation of our implementation.

References

1. Bellare, M., Rogaway, P.: Random oracles are practical. In: Computer and Com-
munications Security - CCS 1993, pp. 62–73. ACM (1993)

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: ACM Symposium on
Theory of Computing - STOC 1988, pp. 1–10. ACM (1988)

3. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete
logarithms. Technical report, ETH Zürich (1997)

4. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptology 13, 143–202 (1998)

192 G. Neugebauer et al.

5. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. Cryptology ePrint Archive, 2000/055 (2000)

6. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 280–300. Springer, Heidelberg (2001)

7. De Cristofaro, E., Tsudik, G.: Experimenting with fast private set intersection. In:
Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang, X.
(eds.) TRUST 2012. LNCS, vol. 7344, pp. 55–73. Springer, Heidelberg (2012)

8. Cristofaro, E., Tsudik, G.: On the performance of certain private set intersection
protocols. Cryptology ePrint Archive, Report 2012/054 (2012)

9. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol.
1992, pp. 119–136. Springer, Heidelberg (2001)

10. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

11. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology-CRYPTO
1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1986)

12. Fouque, P.-A., Pointcheval, D.: Threshold cryptosystems secure against chosen-
ciphertext attacks. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.
351–368. Springer, Heidelberg (2001)

13. Goldreich, O.: Foundations of cryptography: Basic applications, vol. 2. Cambridge
University Press, Cambridge (2004)

14. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. J. Cryptology
23, 546–579 (2002)

15. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better
than custom protocols. In: NDSS (2012)

16. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

17. Mayer, D., Wetzel, S.: Verifiable private equality test: enabling unbiased 2-party
reconciliation on ordered sets in the malicious model. In: 7th Symposium on Infor-
mation, Computer and Communications Security, ASIACCS. ACM (2012)

18. Mayer, D.A., Neugebauer, G., Meyer, U., Wetzel, S.: Enabling fair and privacy-
preserving applications using reconciliation protocols on ordered sets. In: IEEE
Sarnoff Symposium 2011, pp. 1–6. IEEE (2011)

19. Meyer, U., Wetzel, S.: Distributed privacy-preserving policy reconciliation. In: ICC
2007, pp. 1342–1349. IEEE (2007)

20. Meyer, U., Wetzel, S., Ioannidis, S.: New advances on privacy-preserving policy
reconciliation. Cryptology ePrint Archive, 2010/064 (2010)

21. Neugebauer, G., Brutschy, L., Meyer, U., Wetzel, S.: Design and implementation
of privacy-preserving reconciliation protocols. In: 6th PAIS. ACM (2013)

22. Neugebauer, G., Brutschy, L., Meyer, U., Wetzel, S.: Privacy-preserving multi-
party reconciliation secure in the malicious model (extended version). Cryptology
ePrint Archive, Report 2013/655 (2013)

23. Neugebauer, G., Meyer, U., Wetzel, S.: Fair and privacy-preserving multi-party
protocols for reconciling ordered input sets. In: Burmester, M., Tsudik, G., Magliv-
eras, S., Ilić, I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 136–151. Springer, Heidelberg
(2011)

Privacy-Preserving Multi-Party Reconciliation Secure 193

24. Neugebauer, G., Meyer, U., Wetzel, S.: Fair and privacy-preserving multi-party
protocols for reconciling ordered input sets (extended version). Cryptology ePrint
Archive, Report 2010/512 (2011)

25. Nguyen, L., Safavi-Naini, R., Kurosawa, K.: Verifiable shuffles: a formal model
and a paillier-based efficient construction with provable security. In: Jakobsson,
M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 61–75. Springer,
Heidelberg (2004)

26. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

27. Yao, A.C.: Protocols for secure computations. In: Symposium on Foundations of
Computer Science - SFCS 1982, pp. 160–164. IEEE (1982)

Differentially Private Smart Metering
with Battery Recharging

Michael Backes1,2 and Sebastian Meiser2(B)

1 Center for IT-Security, Privacy and Accountability (CISPA),
Saarbrücken, Germany

2 Saarland University, Saarbrücken, Germany
meiser@cs.uni-saarland.de

Abstract. The energy industry has recently begun using smart meters
to take fine-grained readings of energy usage. These smart meters enable
flexible time-of-use billing, forecasting, and demand response, but they
also raise serious user privacy concerns. We propose a novel technique
for provably hiding sensitive power consumption information in the over-
all power consumption stream. Our technique relies on a rechargeable
battery that is connected to the household’s power supply. This bat-
tery is used to modify the household’s power consumption by adding
or subtracting noise (i.e., increasing or decreasing power consumption),
in order to establish strong privacy guarantees in the sense of differ-
ential privacy. To achieve these privacy guarantees in realistic settings,
we first investigate the influence of, and the interplay between, capac-
ity and throughput bounds that batteries face in reality. We then pro-
pose an integrated method based on noise cascading that allows for
recharging the battery on-the-fly so that differential privacy is retained,
while adhering to capacity and throughput constraints, and while keep-
ing the additional consumption of energy induced by our technique to a
minimum.

1 Introduction

The energy industry has recently begun using smart meters to take fine-grained
readings of energy usage, enabling flexible time-of-use billing, forecasting, and
demand response [9]. Among enabling dynamic tariffs, the fine-grained metering
of energy consumption enables more accurate forecasts, which is expected to lead
to an overall saving of energy. Smart metering is currently being widely promoted
in the United States, European Union, and Asia as part of the modernization
of the electronic grid [1,2]; to this end, 4.3 billion dollars has been allocated by
the U.S government for the smart grids [22], with similar programs in progress
in the EU and Asia.

In addition to all these undisputed advantages, smart meters also raise seri-
ous user privacy concerns [5]: Smart meters provide highly accurate consumption
data to the corresponding electricity provider. These data naturally include per-
sonal, privacy-sensitive data, e.g., information about when certain devices were
active.

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 194–212, 2014.
DOI: 10.1007/978-3-642-54568-9 13, c© Springer-Verlag Berlin Heidelberg 2014

Differentially Private Smart Metering with Battery Recharging 195

If metering is performed sufficiently long in small time intervals, personal
information can be disaggregated from the overall consumption stream. For
instance, non-intrusive appliance load monitoring techniques [16,19,20] already
allow for identifying common electronic devices such as personal computers, laser
printers, or light bulbs in the overall consumption stream [8], and even to tell
apart different TV programs [15].

To address these privacy concerns, privacy-aware solutions for smart meter-
ing are currently receiving increasing attention both in the research community
and in ongoing standardization processes, e.g., [24]. In fact, the current absence
of accepted solutions to tackle these privacy concerns caused a deadlock in the
mandatory deployment of smart meters in the Netherlands [10], because of the
common belief that smart metering is necessarily privacy-invasive. In this paper,
we join the line of research that is working on changing this belief: we present a
privacy-aware technique for smart metering that achieves strong privacy guar-
antees while simultaneously preserving the promises of smart metering.

1.1 Our Contributions

We propose a novel technique for provably hiding sensitive power consumption
information in the overall power consumption stream. Our technique relies on
a rechargeable battery that is connected to the household’s power supply, and
that appropriately modifies the overall consumption stream by suitably adding
or subtracting noise, in order to establish strong privacy guarantees in the sense
of differential privacy.

In addition to economic considerations, any solution must respect the fact
that a battery adheres to hard resource constraints, such as its capacity (bound-
ing the overall amount of energy that can be stored) and its throughput (bound-
ing the amount of energy that can be charged/retrieved within a given time
interval). Moreover, a battery will naturally get depleted over time if it con-
stantly provides energy that is used as noise; a depleted battery will eventu-
ally put all privacy guarantees at stake. These limitations in particular render
existing general-purpose approaches infeasible, because they typically require
higher capacity and throughput than what a real-life battery can offer; more-
over privacy-aware battery recharging is not considered in these approaches.

To achieve strong privacy guarantees in such realistic settings, we propose
a novel technique for provably hiding sensitive power consumption information
in the overall power consumption stream, using a rechargeable battery as a
buffer and applying Laplacian noise to the consumption itself by either pro-
viding (discharging) or consuming (charging) energy by the battery. We first
investigate the influence of, and the interplay between, capacity and through-
put bounds of the battery to the overall approach (while still ignoring battery
recharging issues), and develop a technique that achieves privacy guarantees in
such resource-bounded settings.

We subsequently explore the more involved case of recharging the battery.
The complication which arises here is that recharging corresponds to additional
energy consumption, which is observable to the adversary by assumption.

196 M. Backes and S. Meiser

We propose an integrated method that allows for recharging the battery on-
the-fly so that differential privacy is retained, while adhering to capacity and
throughput constraints, and while keeping the additional consumption of energy
induced by our technique to a minimum. The central idea is to follow a novel
cascading approach for generating differentially private noise: we consider the
added noise for recharging the battery as a function that one makes differentially
private by appropriately adding (a much smaller amount of) noise. To avoid that
this small amount of noise is observable, we impose the assumption that this
small additional energy consumption can be hidden in the overall consumption
stream. Among other options, this can be achieved by continuously drawing a
small, constant amount of energy that is sufficient for the recharging process,
and by discarding all energy that exceeds the actual noise demand for recharging
the battery in a differentially private manner.1

We show that meaningful differential privacy guarantees in such resource-
bounded settings can be achieved, in particular using privacy-aware battery
recharging. More precisely we focus on a simplistic model that captures all
aspects necessary for analyzing the benefits of privacy-aware battery-recharging
in smart metering. The privacy guarantee is based on hiding individual device
activations in a stream of smart meter data. A more comprehensive model that
additionally captures activation patterns of devices over several timeslots or the
privacy of consumer behavior patterns is considered future work. Moreover, we
provide a correspondence between the parameters of the battery such as capac-
ity and throughput with the obtained privacy guarantees, and we evaluate the
applicability of our techniques by means of examples.

1.2 Further Related Work

Privacy concerns in smart metering have been studied in several existing works
in the recent past. Anderson and Fuloria [5,6] analyze the security economics of
electricity metering, in particular the conflicting interests among stakeholders.
Quinn [25] and Cavoukian et al. [9] investigate legal aspects of smart meters. The
privacy of billing is investigated by Danezis et al. [18,27] and Molina-Markham
et al. [23]. They in particular identify the private information that current meters
might leak, and propose protocol adaptations for anonymizing individual mea-
surements. In contrast to our work, these works require a trusted third party
for anonymization, as well as changes in the existing communication protocols;
moreover, in contrast to differential privacy guarantees, the resulting privacy
assurances and the overall consequences are less clear. Similarly, Garcia and
Jacobs [14] propose to use homomorphic encryption to achieve privacy for indi-
vidual measurements, but the lack of a proper perturbation of the aggregate
does not make the result differentially private, and the resulting privacy inter-
pretations are again unclear.
1 We stress that we wish to avoid wasting any energy in general. Our solution discards

only the small amount of energy that arises for generating the noise of the battery
recharging process.

Differentially Private Smart Metering with Battery Recharging 197

Prior work on differential privacy in smart metering or on the smart use of
batteries to achieve privacy guarantees comprises [3,4,11,13,18,21,26,28,29].

The paper that we consider most closely related to ours is the promising
contribution of Acs et al. [4]. They were first to propose the smart use of a
battery in order to achieve and rigorously show differential privacy guarantees.
In contrast to our work, they do not consider battery recharging, and hence
only obtain meaningful privacy guarantees if battery exhaustion is not an issue,
and hence if metering is performed over a short period of time. Moreover, the
magnitude of noise that they apply in their Laplacian technique depends on
which appliances will be activated in the stream in the future, which only works
in settings in which future activations can be accurately predicted, or at least
reasonably estimated.

Papers that strive for differential privacy guarantees, yet without consider-
ing a battery (and hence in particular without the corresponding benefits gained
from privacy-friendly recharging) include [3,11,26,28]. Acs and Castelluccia [3]
use aggregation over a large number of smart meters, add noise to the smart
meter output, and encrypt the result before delivery to the energy provider.
Danezis et al. [11] propose to add noise to customer bills to hide the user con-
sumption behavior. Rastogi and Nath [26] pursue a similar approach but add
noise in a distributed manner to improve performance. These approaches require
the currently deployed smart meters to be replaced by new, provably trustworthy
ones. Shi et al. [28] investigate untrusted aggregators of data. Their approach
induces a separation between billing and the actual consumption of electricity;
this allows for cheating behaviors, e.g., by applying noise with a slightly positive
attitude, corresponding to seemingly increased energy consumption.

The use of a battery for privacy-preserving smart metering is discussed in
[21,29]. Varodayan and Khisti [29] consider a simplistic model where both the
battery and the load of the appliances have Boolean state; differential privacy is
not considered there. McLaughlin et al. [21] propose to radically smooth the con-
sumption level to counter some common techniques for non-intrusive appliance
load monitoring techniques. We consider this a promising approach; however, it
currently still lacks any formalized privacy guarantees.

1.3 Outline of the Paper

In Sect. 2, we review the concept and the definition of differential privacy. Section 3
presents our model of privacy-aware smart metering in the presence of a
resource-bounded battery. Section 4 investigates differential privacy guarantees in
such resource-bounded settings, yet without taking battery recharging into
account. Section 5 proposes our technique for privacy-aware battery recharging,
and establishes corresponding differential privacy guarantees. Section 6 highlights
the relationship between the individual parameters (such as the battery’s resource
constraints and measurement times) and the obtained privacy guarantees, and
explores two concrete use cases. Section 7 discusses our guarantees and the prac-
tical feasibility of our approach. Section 8 concludes.

198 M. Backes and S. Meiser

2 Preliminaries

In this paper we use a variant of differential privacy, as introduced in [12], as
a measurement for the amount of private information leaked by a smart meter.
Differential privacy was originally invented as a measurement for the amount of
information leaked by answering a statistical query to a database. The notion of
differential privacy that we use is approximate differential privacy, as introduced
in [13]. In contrast to differential privacy, approximate differential privacy allows
for an additional error α.

In the original setting of statistical databases, (approximate) differential pri-
vacy intuitively ensures that adding a single entry to the database (or deleting
one from it) does not significantly change the answer given to differentially pri-
vate statistical queries. Usually this is achieved by adding noise to the output.
From observing the (noisy) answer to the query, a passive observer cannot deter-
mine whether a specific entry is included in the data set or not, no matter which
additional information an observer might possess about other entries.

The main difference between the data base setting and the smart meter
setting is that we are not interested in single readings of a smart meter, or, more
formally, single applications of a function to a specific data set. Instead, we wish
to apply a function to a stream of data. We hence extend the basic definition of
(approximate) differential privacy to streams in a standard way, similar to [17].

Definition 1 ((χ, α)-Differential Privacy on Streams). A probabilistic algo-
rithm F : P(D) → R for a set D provides (χ, α)-differential privacy on streams if
for all (possibly countably infinite) streams φ,φ→ of sets Dk,D→

k ⊆ D, differing in
at most one element d ∈ D at one point i and all sets S of finite and countably
infinite streams over R,

Pr[F (φ) ∈ S] ≤ eα · Pr[F (φ→) ∈ S] + α,

where with F (φ) we denote the stream we get when applying F to each element
of the stream φ individually. The probability is taken over the randomness of F .

The smart meter measures the energy load sum in every time interval, so D
corresponds directly to the set of all devices, while Dk and D→

k correspond to the
devices active in a particular time slot.

3 Privacy-Aware Smart Metering

In this section we present our model of privacy-aware smart metering by means of
a battery. We introduce further notation used in the paper, specify the notion of
a household, and define the information gained by the smart meter. We finally
define two constraints that we focus on in this paper: the battery’s resources
throughput and capacity .

Differentially Private Smart Metering with Battery Recharging 199

Fig. 1. Notation overview, not including notation for privacy-aware battery recharging
(Sect. 5).

3.1 Notation

A household, together with its appliances, is represented by a set of possibly
active devices D. We assume this set to be finite, fixed and known to adversaries,
i.e., we are able to provide strong privacy guarantees even if D is known to the
adversary. A smart meter measures the energy load on a regular basis. We denote
the time interval between two measurements of the smart meter with κt. Thus,
for our model it suffices to consider a starting time t0 and times ti = t0 + i · κt
for all natural numbers i ∈ N.

We assume for simplicity that devices can only be activated/deactivated at
times ti. Thus, a device can be either active (consuming energy) or inactive (not
consuming energy) throughout the whole interval. We denote the devices that
are active in between ti−1 and ti as Di ⊆ D. We write φ = [D1,D2, . . .] for
the list/stream of active devices over time. This assumption does not weaken
our guarantees: if a device is only partially active in between two time slots, its
consumption will be lower (and deviate from the expected consumption), which
makes it harder to link the information to the device.

The consumption function f : D → R assigns to each device d ∈ D the
amount of energy load it consumes during one time slot (of length κt). We
assume that the consumption of devices d does not vary over time, so f(d)
is independent of the time slot i in which the device is active. Although this
simplification is in contrast to tome attacks that rely on specific patterns of
devices, we can model devices with varying consumption for different time slots
by adding one device for each consumption level. The net consumption of all
devices in a set X ⊆ D is expressed by leveraging the function f to the powerset
of D, i.e., f : P(D) → R, with f(X) =

∑
d∞X

f(d).

This quantity is the final output the smart meter can read if no noise is
added. To achieve differential privacy, we add noise to the output of f . Without
considering the limitations of our battery at this stage, we define a probabilistic
function F : P(D) → R with F (X) = f(X) + r with r ← Lap

(
ξf
α

)
, i.e., where

r is the noise we add to f(X).

200 M. Backes and S. Meiser

In our model this noise is drawn from a battery. We denote the battery level
at the end of a time slot i (i.e., at time ti) with bl(i). Thus, the change during
a time slot is denoted κbl(i) = bl(i) − bl(i − 1) (Fig. 1).

3.2 Modeling Throughput Restrictions

A battery’s throughput denotes the amount of energy we can draw out of the
battery or recharge into it during one time slot. Since we use the battery only
for generating the Laplacian noise that we add to the net consumption, this
means that the throughput constitutes an inherent limit for the amount of noise
that can be added in one step. For simplicity reasons the battery behavior is
considered linear, i.e., the throughput is independent of its current energy level.
In practice this can be achieved, e.g., by using a slightly larger battery and
ensuring that it is does not reach the non-linear zones.

The Laplacian noise added by F can, although with small probability, reach
values of arbitrary magnitude, which cannot be achieved in deployed solutions.
We thus define a throughput-respecting function Fb based on F that takes into
account the throughput bound b of our battery. Moreover, we extend Fb to its 0-
bounded variant F b by capping the load function for the smart meter at 0; this
models that we do not permit to sell, discard or waste energy for economical
reasons, which in particular excludes trivial approaches that consume enormous
amounts of energy to boost the application of noise.2

Definition 2 (Throughput-Respecting and 0-Bounded Variant of F).
Given a function F with F (x) = f(x) + R for a deterministic function f
and a random variable R. Given a bound for the throughput b, we define the
throughput-respecting variant Fb of F as follows:

Fb(x) =

⎧
⎛

⎝

F (x) if |R| ≤ b
f(x) + b if R > b
f(x) − b if − R > b.

We define the 0-bounded variant F b of Fb as F b(x) = max(0, Fb(x)).

3.3 Adding Capacity Restrictions

A battery not only limits the energy output during a specific time interval κt,
but also the total amount of stored energy: its capacity. For the sake of simplicity
we consider the capacity to be a fixed value c that does not change over time
and that also does not depend on the load drained out of the battery.3

2 Selling electricity would be an alternative. However, an accurate treatment would
additionally require a detailed cost model; moreover selling electricity after drawing
it from the provider is typically not economical. We thus do not further consider this
case.

3 In practice, the amount of energy that a battery can provide usually is slightly
smaller when under heavy load; we ignore this here.

Differentially Private Smart Metering with Battery Recharging 201

The actual output we provide and that is being transmitted by the smart
meter depends on the battery’s capacity: If the battery is exhausted or fully
charged, we naturally cannot add noise in the respective direction to the net
load of our devices anymore. Building upon F b as in Definition 2, we define an
overall, bounded mechanism F that, starting with an initial battery level bl(0),
adds noise only as long as the capacity is not exceeded in either direction. As soon
as the capacity is exceeded, F stops adding noise and output the net demand f of
our devices instead. The output of F constitutes the output that is transmitted
to the energy provider by the smart meter.

Definition 3 (Bounded Mechanism). Given a function F with F (x) = f(x)+
R for a deterministic function f and a random variable R, a capacity bound c
and a throughput bound b, we define the corresponding bounded mechanism F

as follows, where bl(i − 1) is the battery level before step i, Ri the noise added

by F b during step i and sk =
k∑

j=1

Rj the sum of all noise added until step k:

F(Di) =
⎞

f(Di) if ∃k ≤ i. sk > c − bl(0) ∨ −sk > bl(0)
F b(Di) otherwise.

The new battery level is bl(i) := bl(i − 1) + (F(Di) − f(Di)).

As soon as the capacity is exceeded, we are facing a situation where our privacy
guarantees are at stake. We can, however, give an upper bound for the probability
that this happens and integrate it into the overall privacy result that we derive
in the upcoming section.

4 Privacy-Aware Smart Metering (Without Battery
Recharging)

In this section we investigate the privacy guarantees of our bounded mechanism
F, i.e., the privacy guarantees that we obtain in a resource-bounded scenario.
To this end, we investigate which probabilities influence the statistical distances
between F and F b (the influence of throughput constraints) as well as between
F b and F (the influence of capacity constraints), and develop concrete bounds
for these probabilities, depending only on the throughput and capacity values
of the battery as well as the magnitude of the noise (specified by κf and χ1).
Finally, we combine these results in order to show that F is (χ1, α1)-differentially
private for an arbitrary χ1 and for concrete bounds for α1, which depend on the
constraints of our battery and the chosen value for χ1. We stress that aside from
the fact that the battery can be charged when positive noise is added, battery
“recharging”, i.e., restoring the battery status to a secure value, is not considered
in this section. Thus, we can reach situations in which the battery gets depleted
(then yielding trivial privacy guarantees with χ1 or α1 greater than 1). Battery
recharging, and the benefits that can be drawn from it, are addressed in Sect. 5.

202 M. Backes and S. Meiser

4.1 Differential Privacy and Statistical Distance

We start by exploring the relation between the statistical distance of two func-
tions and differential privacy. First, recall that if our battery was unbounded, we
could simply realize the function F by computing F (Di) = f(Di)+Lap

(
ξf
α1

)
for

sets of devices Di ⊆ D, where the Laplacian noise is drawn from the (unbounded)
battery and where κf = max

d∞D
f(d) is the sensitivity of the function f to which

we add the noise. Adding noise in this manner corresponds to the common app-
roach4 to guarantee (χ, α)-differential privacy with α = 0. For ρ = α

ξf , the noise
added by the standard technique is Lap(1

η), the scaled symmetric exponential

distribution with standard deviation of
√

2 1
η with a variance of 2

(
ξf
α

)2

. The

probability density function is p(x) = η
2 · e−|x|·η.

We now relate this case to our setting with a resource-bounded battery. To
this end, we first show that differential privacy can be transferred between two
functions (for increasing values of α), provided that their statistical distance is
sufficiently small.

Definition 4 (Statistical Distance). The statistical distance between two
distributions X and Y over a set U is defined as

d(X,Y) = max
S⊆U

(|Pr[X ∈ S] − Pr[Y ∈ S]|).

The following lemma relates differential privacy and the statistical distance.

Lemma 1. Given two probabilistic functions F and G with the same input
domain, where F is (χ, α1)-differentially private. If for all possible inputs x we
have that the statistical distance on the output distributions of F and G is:
d(F (x), G(x)) ≤ α2, then G is (χ, α1 + (eα + 1)α2)-differentially private.

The proofs of all lemmas and theorems are postponed to the extended version
for space reasons [7]. We note that this lemma is not tailored to our setting of
streams, but applies to arbitrary types of inputs.

4.2 Privacy Guarantees for Throughput Restrictions

For relating the case with unbounded throughput and the throughput-bounded
case, we first determine the statistical distance between F and Fb, and subse-
quently exploit Lemma 1 in a suitable manner. We first observe that if one does
not consider streams but only individual timeslots, Fb differs from F if and only if
the randomness added by F is of a larger magnitude than the throughput bound
b. Consequently, the statistical distance between F and Fb can be bounded as
follows:
4 For this work we only consider Laplacian noise. Applying other, e.g., already bounded

noise distributions or other masking techniques is considered future work.

Differentially Private Smart Metering with Battery Recharging 203

Lemma 2. Given an (χ, α)-differentially private function F with F (x) = f(x)+
R for a deterministic function f and a random variable R. Then for all x, the
statistical distance between F and Fb is at most d(F (x), Fb(x)) ≤ Pr [|R| > b] .

We now derive a concrete bound for this probability, depending on χ, the sensi-
tivity κf of f , and the throughput bound b.

Lemma 3. Given a function F with F (x) = f(x)+Lap (κf/χ) for a determinis-
tic function f , and a throughput bound b ∈ R

+, the probability that the Laplacian
noise Lap (κf/χ) applied to f is larger than b is bounded by Pr

⎠∣∣∣Lap
(

ξf
α

)∣∣∣ > b
]

= e− b·γ
αf .

Moreover, if Fb is (χ, α)-differentially private, then also its 0-bounded variant
F b is (χ, α)-differentially private, because one can, without further knowledge,
compute F b(x) from Fb(x) for every x.

4.3 Privacy Guarantees for Capacity Restrictions

Including bounds for the capacity requires an approach beyond considering single
steps only, since the probability to exceed the capacity in step i also depends on
the noise added in previous steps. In fact, if one considered an arbitrarily long
time interval during which random Laplacian noise is added, any finite capacity
would naturally be exceeded (if there is no recharging). We exclude this case,
similar to existing prior works, by restricting us to consumption streams of a
certain length n. We exploit how to overcome this restriction by tackling the
problem of privacy-aware battery recharging during runtime in Sect. 5.

Similar to how we deal with throughput restrictions, we exploit the statisti-
cal distance (now on streams of length n) and subsequently apply Lemma 1. To
combine this result with our result on throughput, we immediately bound the dis-
tance between F b and F: These functions differ on consumption streams of length
n if and only if the capacity is exceeded at least once. Recall that the battery is
only used to generate noise added to the net consumption f . We first assume that
the battery level is optimally placed at bl(0) = c

2 at the beginning of our time
interval. Consequently, the probability to exceed the capacity is bounded by the
probability that the sum of the noise added in all steps exceeds c

2 .

Lemma 4. Given an (χ1, 0)-differentially private function F with F (x) = f(x)+
Lap

(
ξf
α1

)
. If the corresponding bounded mechanism F has capacity bound c and

throughput bound b, then for all consumption streams φ of length n, the statistical
distance between F and F b when starting with battery level bl(0) = c

2 is at most

d(F(φ), F b(φ)) ≤ Pr

⎡

⎣∃k ≤ n

∣∣∣∣∣∣

k∑

j=1

Fb(Dj) − f(Dj)

∣∣∣∣∣∣
>

c

2

⎤

⎦ .

204 M. Backes and S. Meiser

Recall that we might cap the noise not only at the throughput bound b, but also
if the load measured by the smart meter would be negative. Thus, the expected
value of the noise is different from zero. We now derive an estimate for the
probability to exceed the capacity at least once:

Lemma 5. Given an (χ1, 0)-differentially private function F with F (x) = f(x)+
Lap

(
ξf
α1

)
. For all t > 0, the probability that the Laplacian noise exceeds the

capacity for c ≥ 2(n + t) · ξf
α1

in at least one of the n steps is bounded by

Pr

⎡

⎣∃k ≤ n

∣∣∣∣∣∣

k∑

j=1

Fb(Dj) − f(Dj)

∣∣∣∣∣∣
>

c

2

⎤

⎦ ≤ 2n

t2
.

This estimate constitutes a bound for the statistical distance between F b

and F.

4.4 Obtaining an Overall Privacy Guarantee

We now combine our results on throughput and capacity constraints to obtain
an overall result on differential privacy for F. We consider streams of length n
and also impose the assumption that the battery level is set to bl(0) = c

2 at
the beginning. The following theorem follows directly from the results we have
shown in this section.

Theorem 1. Given an (χ1, 0)-differentially private function F . If the corre-
sponding bounded mechanism F has capacity bound c and throughput bound b,
and bl(0) set to c

2 , then F is (χ1, α1)-differentially private on all consumption
streams of length n with α1 = (eα1 + 1) · (Pb + Pc) where Pb is the statistical
distance between F and Fb and Pc is the statistical distance between F b and F.

Obtaining concrete bounds for differential privacy can be achieved by plugging
in values for Pb (Lemmas 2 and 3) and Pc (Lemmas 4 and 5).

5 Privacy-Aware Smart Metering with Battery
Recharging

In the last section, we have established privacy guarantees for settings in which
battery recharging is not considered. In this section, we propose an integrated
method that allows for recharging the battery on-the-fly, so that meaningful
privacy guarantees for more comprehensive use cases can be achieved.

We start with a general explanation what makes privacy-aware battery
recharging in the context of smart metering a sophisticated task. After that,
we describe our solution to overcome the underlying problems, and which addi-
tional assumptions we have to impose.

Differentially Private Smart Metering with Battery Recharging 205

The General Problem of Privacy-Aware Battery Recharging. We
develop a privacy-preserving technique for recharging the battery at runtime,
i.e., while using the battery for generating noise. If we simply recharge the bat-
tery level to the target level of c

2 every n steps via the power line, the energy
consumption is modified accordingly and the adversary learns the sum of the
noise. This information is sufficient to distinguish the streams, and hence to
break differential privacy.

Our Solution: Differentially-Private Noise Generation via Cascading.
We pursue the following idea for countering this effect, which constitutes a novel
cascading approach for generating differentially private noise: we consider the
amount of recharged energy as a function, and make this function differentially
private by appropriately adding noise. We show that the additional noise is much
smaller than the noise we add directly to the consumption, essentially since the
new noise is only used every n steps instead of every step. If desired, this process
can be continued, by making this smaller noise differentially private again, and
so on. In this paper, we do not formalize this further, i.e., we work with a cascade
of depth one.

In a nutshell, this cascading approach transforms the problem of generating a
large amount of noise that must be unobservable for an adversary into generating
a much smaller, unobservable amount of noise. However, this smaller amount of
noise still corresponds to energy consumption that is measured by the smart
meter and thus observable by the adversary; hence if we use the battery itself to
generate this additional noise, we still leak the amount of noise added by F in the
long run: Assume we restore the battery level to a state c

2 + r for a noisy value
r. The randomness r hides all but a small part of the information about noise
added to the net load in the critical time step i. When we recharge the battery
again after n additional steps, information about r is leaked. After recharging
the battery sufficiently often, the value of r can be estimated precisely with a
high probability, and differential privacy breaks down.

In order to circumvent this inherent problem, we impose the assumption that
the amount of additional noise can be hidden in the overall consumption using
appropriate techniques. We outline two possible techniques for achieving this in
practice. First, one can assume the existence of a distinct, small secondary energy
source, e.g., home-owned solar panels, that is unobservable by the adversary
and solely used for the recharging process. Second, if we drop the assumption
that we do not discard any energy at all, we can simply continuously draw a
small, constant amount of energy from the primary source that is sufficient for
the recharging process, and discard all energy that exceeds the actual battery
recharging demand. For simplicity of notation in the following, we assume that
this additional energy is stored in a distinct, small second battery, and then used
to recharge the primary battery as described below. (In practice, both batteries
would typically coincide.) We stress that the amount of energy that is wasted
for the recharging process only depends on the amount of secondary noise, but
not on the amount by which the (primary) battery is recharged.

206 M. Backes and S. Meiser

5.1 The Battery Recharging Mechanism

We define the battery recharging mechanism Fc as follows: it builds on the
definition of F, but instead restores its energy every n steps. We additionally
reserve an amount binc = b of throughput. The total amount of throughput for
the battery is thus increased to btotal = b + binc = 2b, i.e., the total amount
of throughput is twice as high as in the restricted setting for n steps without
battery recharging. When n steps have passed, we compare the current battery
level bl(i) with the target level c

2 . We do not try to hide the approximate amount
of energy that we need in order to restore the battery. The precise value, however,
is hidden by Laplacian noise. We postpone the precise definition of Fc to the
extended version [7].

5.2 Differential Privacy of the Battery Recharging Mechanism

To obtain a privacy guarantee for Fc, we employ a conservative approach: We
first show that when ignoring the leakage due to recharging, Fc does not leak
more information than F, for which we already gave a privacy guarantee. Then,
we calculate the leakage due to recharging and combine both results. An outline
of the proof, together with the Lemmas that lead to our final result, can be
found in the extended version [7].

Finally we present the main theorem of this paper. It states that the battery-
recharging mechanism Fc is indeed (χ1 + χ2, α1 + α2)-differentially private on
infinite consumption streams for arbitrary values χ1 and χ2, and we give upper
bounds for the values of α1 and α2, depending on the sensitivity of f (κf), the
privacy guarantee itself (χ1, χ2) and the resource limits of our primary (b, c) and
secondary battery (c2nd).

Theorem 2. Given an (χ1, 0)-differentially private function F with F (x) =
f(x) + Lap

(
ξf
α1

)
for a deterministic function f . If the corresponding capacity-

regulating mechanism Fc, when using recharging noise with distribution Lap
(

ξf
α2

)

has throughput bound btotal = 2 · b = 2 · binc and capacity bound ctotal =
c + c2nd, and given a secondary battery that provides at least an amount of c2nd

energy every n steps, then for every initial battery level bl(0), Fc is (χ1 + χ2, α)-
differentially private on (possibly infinite) consumption streams with

α = (eα1 + 1) · (Pb + Pc) + (eα2 + 1) · Pc2nd
, where

– Pb is the statistical distance between F and F b.
– Pc is the statistical distance between F b and F.
– Pc2nd

≤ e− c2nd·γ2
αf (more details in the extended version [7]).

We can formulate several instantiations of this theorem, e.g., by combining the
theorem with the concrete bounds for the statistical distances proven in this
paper. A corollary for Theorem 2 can be found in the extended version [7].

Differentially Private Smart Metering with Battery Recharging 207

5.3 Interpretation

We stress that the bounds derived in these results are not necessarily tight,
but they allow for a flexible adjustment to different situations. For instance, we
can freely decide the amount of noise to be added to the consumption, or to
exclude certain devices from the set of devices we wish to hide, e.g., devices
with a very high consumption (in this case we just compute the sensitivity κf
over the subset D∗ as κf = max

d∞D∗
f(d)). This enables us to derive strong privacy

guarantees for those devices that one considers particularly privacy-critical, such
as TV, Laptop or other electronic media. Concentrating on particular devices
does not require any changes to the physical installation of the battery, but solely
a different treatment of the required noise.

If one increases the secondary battery’s capacity c2nd, we can further reduce
the amount of energy that needs to be drawn unobservably, e.g., by means of
a secondary energy source: We can compute the probability that the secondary
battery is exceeded over m iterations and get the same privacy guarantee for
a smaller share of capacity per iteration. Using this technique and the bounds
presented in this paper, the costs for restoring the battery status can (asymp-
totically) be reduced to 2ξf

α2
for each restoring process.

6 Evaluation and Concrete Use Cases

In this section, we further highlight the relationship between the individual
parameters (such as the battery’s resource constraints and measurement time)
and the obtained privacy guarantees. For the sake of illustration, we moreover
explore a concrete, realistic use case and analyze which privacy guarantees can
be achieved under which resource assumptions.

Figure 2(a) displays the relationship between the required battery capacity
and the privacy parameter α that can be guaranteed by applying Lemma 5.
Similarly, Fig. 2(b) shows the relationship between this capacity and the number
of steps n for which the capacity has to be provided. In Fig. 2(c) we depict the

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

0.00 0.20 0.40 0.60 0.80 1.00

C
ap

ac
ity

 (
di

vi
de

d
by

 Δ
f)

δ

Capacity necessary for reaching a certain δ for n=20 steps

ε1 = 0.18
ε1 = 0.33

ε1 = 0.5

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

0.00 20.00 40.00 60.00 80.00 100.00

C
ap

ac
ity

 (
di

vi
de

d
by

 Δ
f)

Number of steps n

Capacity necessary for n steps (using δ = 0.1)

ε1 = 0.18
ε1 = 0.33

ε1 = 0.5

0.00

10.00

20.00

30.00

40.00

50.00

0.00 0.20 0.40 0.60 0.80 1.00

T
hr

ou
gh

pu
t (

di
vi

de
d

by
 Δ

f)

δ

Throughput necessary for δ

ε1 = 0.18
ε1 = 0.33

ε1 = 0.5

Fig. 2. Amount of capacity and throughput required, depending on the parameters α,
β and n.

208 M. Backes and S. Meiser

relationship between battery throughput and the obtained privacy guarantees.
The values α in the graphs denote the amount of privacy loss we face for the
considered parameters (see Theorem 2). For the graphs, we divided the values for
capacity and throughput by the sensitivity κf of our consumption sum function.
This allows to reason about the relation of the different parameters independent
from the appliances themselves. If, e.g., a TV with a consumption of 130 W is
to be hidden and we aim at β1 = 0.33 and α = 0.1, the battery has to have a
throughput of at least about 9 · 130 W per step (time in between two readings).

6.1 A Concrete Use Case: Hiding TV Activation

For the sake of illustration, we finally investigate the concrete use case of hiding
a TV device in the overall consumption stream. We consider three different TV
devices with different power consumptions.

We assume a standard American household with an average consumption of
about 30 kWh per day, according to the U.S. Energy Information Administration.
Within this household, we consider the following three TV devices: (1) a 42”
plasma TV with 335 W, (2) a 29” CRT TV with 130 W, and (3) a 19” LCD
TV with 36 W. In the following we write κ1f to denote the sensitivity we have
when to hide the plasma TV, and similarly κ2f for the CRT TV and κ2f for the
LCD TV. We will work with the following parameters: The smart meter sends
the current load sum every κt = 5 min, which corresponds to one of the most
commonly used time intervals in smart metering [21]. We consider an off-the-
shelf rechargeable battery, and we assume that the throughput of the battery
is sufficiently high so that the battery can be fully discharged within one hour.
We consider an additional resource consumption of 3 kWh per day to recharge
the secondary battery. Naturally, hiding whether or not the TV is activated also
hides which TV program is being watched.

For our computation we hence obtain the following parameters: κ1f =
335W · κt ≈ 28Wh, κ2f = 130W · κt ≈ 11 Wh, and κ3f = 36W · κt = 3 Wh.
The values for α heavily depend on the selection of χ. Note that the optimal
choice of n and the optimal relation of χ1 to χ2 also depend on χ; additionally the
choice of n can influence the guarantees. We aim to achieve a privacy guarantee
of (0.33, 0.1)-differential privacy in this example; hence we can choose χ1 ≥ 0
and χ2 ≥ 0 freely as long as χ1 + χ2 ≤ 0.33. We can even choose n freely, which
denotes the number of steps between consecutive rechargings.

We exemplarily show several sample calculations (the parameters χ1, χ2, and
n have been determined experimentally to obtain improved results for the indi-
vidual scenarios):

(1) For the 42” plasma TV with 335 W, we set χ1 ≈ 0.13 and χ2 ≈ 0.20 and n to
60 (i.e., we restore the battery status every 5 h). We then obtain (0.33, 0.1)-
differential privacy if one uses a battery with 11 kWh or more.

(2) For the 29” CRT TV with 130 W, we set χ1 ≈ 0.15 and χ2 ≈ 0.18 and
n to 50 (i.e., we restore the battery status every 4.17 h). We then obtain
(0.33, 0.1)-differential privacy if one uses a battery with 3.7 kWh or more.

Differentially Private Smart Metering with Battery Recharging 209

(3) For the 19” LCD TV with 36 W, we set χ1 ≈ 0.21 and χ2 ≈ 0.12 and n to
10 (i.e., we restore the battery status every 50 minutes). We then obtain
(0.33, 0.1)-differential privacy if one uses a battery with 0.82 kWh or more.

7 Discussion

Adversary Model. In our model, in contrast to other solutions, the smart
meter is not trusted. We consider a smart-meter adversary that has access to
the power consumption of a household and that can make regular readings of
this consumption. This adversary is, in a sense, honest-but-curious. The battery
can be bought and installed by the consumer itself, without the need of any
cooperation from the smart meter or the electricity company.

Privacy Guarantees. With our solution we can give (mathematically) strong
privacy guarantees. However, the interpretation of these results is not trivial.

Formally we can only guarantee to hide a single activation of a single device.
In practice, a realistic adversary can not keep track of all other device activa-
tions, which means that the uncertainty of an adversary covers more than one
activation. However, we can only expect to hide which device (from a set of not-
too-greedy devices) was activated and when. If the consumer in question follows
a daily routine with almost no variation, our adversary can find out this routine.
Moreover our solution does not hide the large bulk of device activations. The
adversary might still be able to infer whether or not the consumer is at home
(large consumption) or not (small consumption). Our solution does, however,
counter many practical attacks, as the addition of random noise makes it hard
to analyze the data. The parameters (κf , χ) should be modified whenever the
privacy policy of a consumer changes, which might be, e.g., after buying a new
TV, if this TV consumes more energy.

Hiding the total consumption sum for several (say k) points in time, e.g.,
by setting κf ≈ k· total consumption, naturally is much more expensive. We
consider this out of scope for our solution.

Usefulness. Since our solution adds the noise not to a numerical value, but to
the actual consumption of the consumer, the readings of the smart meter are not
influenced. In contrast to other works on smart meters, in our case there is no
difference between the actual consumption and the smart meter readings (and
outputs, if the smart meter is honest).

Thus, in our case the common measure of “usefulness” that is often used when
analyzing the practical value of differential privacy should be defined differently.
We suggest discussing the practical feasibility of our solution.

Practical Feasibility. The Laplacian noise generation can be done efficiently
by applying a relatively simple function to a (normal, uniform) random or
pseudorandom variable. The generation of large quantities of noise is stress-
ful for a battery and will in practical use most likely result in a reduced life-time

210 M. Backes and S. Meiser

of the battery. We could envision a solution that uses capacitors instead of (or
additionally to) a battery to improve the life-cycle of the battery.

In contrast to works that rely on modifying the smart meter, our solution
does not come without cost, as installing a sufficiently large battery might be
expensive. However, since our solution does not require cooperation, the decision
about applying this solution can be made by each individual consumer.

8 Conclusions

We have proposed a novel technique for provably hiding sensitive power con-
sumption information in the overall power consumption stream. Our technique
relies on a rechargeable battery that is used to modify the household’s power
consumption by adding or subtracting noise (i.e., increasing or decreasing power
consumption), in order to establish strong privacy guarantees in the sense of dif-
ferential privacy. To achieve these privacy guarantees in realistic settings, we have
investigated the influence of, and the interplay between, capacity and through-
put bounds that batteries face in reality. Based on these observations, we have
proposed an integrated method based on noise cascading that allows for recharg-
ing the battery on-the-fly so that differential privacy is retained, while adhering
to capacity and throughput constraints, and while keeping the additional con-
sumption of energy induced by our technique to a minimum.

References

1. Energy Independence and Security Act of 2007. One Hundred Tenth Congress of
the United States of America (2007)

2. Directive 2009/72/EC of the European Parliament and of the Council. Official
Journal of the European Union (2009)

3. Ács, G., Castelluccia, C.: I have a DREAM! (DiffeRentially privatE smArt Meter-
ing). In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958,
pp. 118–132. Springer, Heidelberg (2011)

4. Acs, G., Castelluccia, C., Lecat, W.: Protecting against physical resource monitor-
ing. In: Proceedings of 10th Annual ACM Workshop on Privacy in the Electronic
Society (WPES), pp. 23–32. ACM (2011)

5. Anderson, R., Fuloria, S.: On the security economics of electricity metering. In:
Workshop on the Economics of Information Security (WEIS) (2010)

6. Anderson, R., Fuloria, S.: Who controls the off switch? In: Proceedings of the
1st IEEE International Conference on Smart Grid Communications (SmartGrid-
Comm), pp. 96–101. IEEE Press (2010)

7. Backes, M., Meiser, S.: Differentially private smart metering with battery
recharging. Technical report, Saarland University. http://eprint.iacr.org/2012/
183 (Online)

8. Baranski, M., Voss, J.: Detecting patterns of appliances from total load data using
a dynamic programming approach. In: Proceedings of the 4th IEEE International
Conference on Data Mining (ICDM), pp. 327–330. IEEE Press (2004)

http://eprint.iacr.org/2012/183
http://eprint.iacr.org/2012/183

Differentially Private Smart Metering with Battery Recharging 211

9. Cavoukian, A., Polonetsky, J., Wolf, C.: Smartprivacy for the smart grid: embed-
ding privacy into the design of electricity conservation. Identity Inf. Soc. 3, 275–
294 (2010)

10. Cuijpers, C.: No to mandatory smart metering: does not equal privacy. http://
vortex.uvt.nl/TILTblog/?p=54 (Online)

11. Danezis, G., Kohlweiss, M., Rial, A.: Differentially private billing with rebates.
In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp.
148–162. Springer, Heidelberg (2011)

12. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg
(2006)

13. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, our-
selves: privacy via distributed noise generation. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006)

14. Garcia, F.D., Jacobs, B.: Privacy-friendly energy-metering via homomorphic
encryption. In: Cuellar, J., Lopez, J., Barthe, G., Pretschner, A. (eds.) STM
2010. LNCS, vol. 6710, pp. 226–238. Springer, Heidelberg (2011)

15. Greveler, U., Justus, B., Loehr, D.: Hintergrund und experimentelle Ergebnisse
zum Thema Smart Meter und Datenschutz. Technical report, Fachhochschule
Münster (2011)

16. Hart, G.: Nonintrusive appliance load monitoring. Proc. IEEE 80(12), 1870–1891
(1992)

17. Hubert Chan, T.-H., Shi, E., Song, D.: Private and continual release of statistics.
In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis,
P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 405–417. Springer, Heidelberg
(2010)

18. Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-friendly aggregation for the
smart-grid. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol.
6794, pp. 175–191. Springer, Heidelberg (2011)

19. Lam, H., Fung, G., Lee, W.: A novel method to construct taxonomy electrical
appliances based on load signatures. IEEE Trans. Consum. Electron. 53(2), 653–
660 (2007)

20. Laughman, C., Lee, K., Cox, R., Shaw, S., Leeb, S., Norford, L., Armstrong, P.:
Power signature analysis. IEEE Power Energy Mag. 1(2), 56–63 (2003)

21. McLaughlin, S., McDaniel, P., Aiello, W.: Protecting consumer privacy from elec-
tric load monitoring. In: Proceedings of the 18th ACM Conference on Computer
and Communications Security (CCS), pp. 87–98. ACM (2011)

22. Merritt, R.: Stimulus: DoE readies $4.3 billion for smart grid. EE Times (2009)
23. Molina-Markham, A., Shenoy, P., Fu, K., Cecchet, E., Irwin, D.: Private memoirs

of a smart meter. In: Proceedings of the 2nd ACM Workshop on Embedded
Sensing Systems for Energy-Efficiency in Building (BuildSys), pp. 61–66. ACM
(2010)

24. T. S. G. I. Panel. Cyber security strategy and requirements. Technical report
7628, National Institute of Standards and Technology

25. Quinn, E.L.: Privacy and the new energy infrastructure. Soc. Sci. Res. Netw. 09,
1995–2008 (2009)

26. Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series
with transformation and encryption. In: Proceedings of the 2010 International
Conference on Management of Data (SIGMOD), pp. 735–746. ACM (2010)

http://vortex.uvt.nl/TILTblog/?p=54
http://vortex.uvt.nl/TILTblog/?p=54

212 M. Backes and S. Meiser

27. Rial, A., Danezis, G.: Privacy-preserving smart metering. In: Proceedings of the
10th Annual ACM Workshop on Privacy in the Electronic Society (WPES), pp.
49–60. ACM (2011)

28. Shi, E., Chan, T.-H.H., Rieffel, E., Chow, R., Song, D.: Privacy-preserving aggre-
gation of time-series data. In: Proceedings of the 18th Annual Network & Dis-
tributed System Security Symposium (NDSS) (2011)

29. Varodayan, D., Khisti, A.: Smart meter privacy using a rechargeable battery: min-
imizing the rate of information leakage. In: Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2011)

AppGuard – Fine-Grained Policy Enforcement
for Untrusted Android Applications

Michael Backes1,2, Sebastian Gerling1, Christian Hammer1, Matteo Maffei1,
and Philipp von Styp-Rekowsky1(B)

1 Saarland University, CISPA, Saarbrücken, Germany
2 Max Planck Institute for Software Systems (MPI-SWS), Saarbrücken, Germany

styp-rekowsky@cs.uni-saarland.de

Abstract. Android’s success makes it a prominent target for malicious
software. However, the user has very limited control over security-relevant
operations. This work presents AppGuard, a powerful and flexible secu-
rity system that overcomes these deficiencies. It enforces user-defined
security policies on untrusted Android applications without requiring
any changes to a smartphone’s firmware, root access, or the like. Fine-
grained and stateful security policies are expressed in a formal specifi-
cation language, which also supports secrecy requirements. Our system
offers complete mediation of security-relevant methods based on callee-
site inline reference monitoring and supports widespread deployment. In
the experimental analysis we demonstrate the removal of permissions
for overly curious apps as well as how to defend against several recent
real-world attacks on Android phones. Our technique exhibits very little
space and runtime overhead. The utility of AppGuard has already been
demonstrated by more than 1,000,000 downloads.

Keywords: Android · Runtime enforcement · Security policies · Inline
reference monitoring · Rewriting

1 Introduction

The rapidly increasing number of mobile devices creates a vast potential for
misuse. Mobile devices store a plethora of information about our personal lives,
and GPS, camera, or microphone offer the ability to track us at all times. The
always-online nature of mobile devices makes them a clear target for overly curi-
ous or maliciously spying apps and Trojan horses. For instance, social network
apps were recently criticized for silently uploading the user’s entire contacts onto
external servers [17,42]. While this behavior became publicly known, users are
most often not even aware of what an app actually does with their data. Addi-
tionally, fixes for security vulnerabilities in the Android OS often take months
until they are integrated into vendor-specific OSs. Between Google’s fix with a
public vulnerability description and the vendor’s update, an unpatched system
becomes the obvious target for exploits.

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 213–231, 2014.
DOI: 10.1007/978-3-642-54568-9 14, c© Springer-Verlag Berlin Heidelberg 2014

214 M. Backes et al.

Android’s security concept is based on isolation of third-party apps and access
control [1]. Access to personal information has to be explicitly granted at install
time: When installing an app a list of permissions is displayed, which have to
be granted in order to install the app. Users can neither dynamically grant and
revoke permissions at runtime, nor add restrictions according to their personal
needs. Further, users (and often even developers, cf. [23,26]) usually do not have
enough information to judge whether a permission is indeed required.

Contributions. To overcome the aforementioned limitations of Android’s secu-
rity system, we present a novel policy-based security framework for Android
called AppGuard.

– AppGuard takes an untrusted app and user-defined security policies as input
and embeds the security monitor into the untrusted app, thereby delivering a
secured self-monitoring app.

– Security policies are formalized in an automata-based language that can be
configured in AppGuard. Security policies may specify restrictions on method
invocations as well as secrecy requirements.

– AppGuard is built upon a novel approach for callee-site inline reference mon-
itoring (IRM). We redirect method calls to the embedded security monitor
and check whether executing the call is allowed by the security policy. Tech-
nically, this is achieved by altering method references in the Dalvik VM. This
approach does not require root access or changes to the underlying Android
architecture and, therefore, supports widespread deployment as a stand-alone
app. It can handle even JAVA reflection (cf. Sect. 3) and dynamically loaded
code.

– Secrecy requirements are enforced by storing the secret within the security
monitor. Apps are just provided with a handle to that secret. This mechanism
is general enough to enforce the confidentiality of data persistently stored on
the device (e.g., address book entries or geolocation) as well as of dynamically
received data (e.g., user-provided passwords or session tokens received in a
single sign-on protocol). The monitor itself is protected against manipulation
of its internal state and forceful extraction of stored secrets.

– We support fully-automatic on-the-phone instrumentation (no root required)
of third-party apps as well as automatic updates of rewritten apps such that
no app data is lost. Our system has been downloaded by about 1,000,000 users
(aggregated from [5,12,34]) and has been invited to join the Samsung Apps
market.

– Our evaluation on typical Android apps has shown very little overhead in
terms of space and runtime. The case studies demonstrate the effectiveness of
our approach: we successfully revoked permissions of excessively curious apps,
demonstrate complex policies, and prevent several recent real-world attacks on
Android phones, both due to in-app and OS vulnerabilities. We finally show
that for the vast majority of 25,000 real-world apps, our instrumentation does
not break functionality, thus demonstrating the robustness of our approach.

Key Design Decisions and Closely Related Work. Researchers have pro-
posed several approaches to overcome the limitations of Android’s security

AppGuard – Fine-Grained Policy Enforcement 215

system, most of which require modifications to the Android platform. While
there is hope that Google will eventually introduce a more fine-grained security
system, we decided to directly integrate the security monitor within the apps,
thereby requiring no change to the Android platform. The major drawback of
modifying the firmware and platform code is that it requires rooting the device,
which may void the user’s warranty and affect the system stability. Besides,
there is no general Android system but a plethora of vendor-specific variants
that would need to be supported and maintained across OS updates. Finally,
laymen users typically lack the expertise to conduct firmware modifications,
and, therefore, abstain from installing modified Android versions.

Aurasium [45], a recently proposed tool for enforcing security policies in
Android apps, rewrites low-level function pointers of the libc library in order to
intercept interactions between the app and the OS. A lot of the functionality
that is protected by Android’s permission system depends on such system calls
and thus can be intercepted at this level. A limitation of this approach is that
the parameters of the original Java requests need to be recovered from the sys-
tem calls’ low-level byte arrays in order to differentiate malicious requests from
benign ones, which “is generally difficult to write and test” [45] and may break in
the next version of Android at Google’s discretion. Similarly, mock return values
are difficult to inject at this low level. In contrast, we designed our system to
intercept high-level Java calls, which allows for more flexible policies. In partic-
ular we are able to inject arbitrary mock return values, e.g. a proxy object that
only gives access to certain data, in case of policy violations. Additionally, we
are able to intercept security-relevant methods that do not depend on the libc
library. As an example consider the policy that systematically replaces MD5,
which is nowadays widely considered an insecure hashing algorithm, by SHA-1.
Since the implementation of MD5 does not use any security-relevant function-
ality of the libc library, this policy cannot be expressed in Aurasium. Finally,
it is worth to mention that both Aurasium and AppGuard offer only limited
guarantees for apps incorporating native code. Aurasium can detect an app that
tries to perform security-relevant operations directly from native code, under the
assumption, however, that the code does not re-implement the libc functionality.
Our approach can monitor Java methods invoked from native code, although it
cannot monitor system calls from native code.

Jeon et al. [35] advocate to place the reference monitor into a separate appli-
cation. Their approach removes all permissions from the monitored app, as all
calls to sensitive functionality are done in the monitoring app. This is fail-safe
by default as it prevents both reflection and native code from executing such
functionality. However, it has some drawbacks: If a security policy depends on
the state of the monitored app, this approach incurs high complexity and over-
head as all relevant data must be marshaled to the monitor. Besides, the monitor
may not yet be initialized when the app attempts to perform security-relevant
operations. Finally, this approach does not follow the principle of least privilege
since the monitor must have the permissions of all monitored apps, making it a
prominent target for privilege escalation attacks [9]. We propose a different

216 M. Backes et al.

approach: Although the security policies are specified and stored within App-
Guard, the policy enforcement mechanism is directly integrated and performed
within the monitored apps. The policy configuration file is passed as input to
the security monitor embedded in each app, thereby enabling dynamic policy
configuration updates. This approach does not involve any inter-procedure calls
and obeys the principle of least privilege, as AppGuard requires no special per-
missions. Hence, AppGuard is not prone to privilege escalation attacks.

Table 1. Comparison of Android IRM approaches

Feature 1 2 3 4 5 6 7 8 Runtime Overhead (%)

Aurasium [45] � – I � – – – 14-35
Dr. Android [35] � – E – – – 10-50
I-ARM-Droid [15] � – I – – – � 16
AppGuard � � I � � � � 1-12

Legend: 1. No Firmware Mod. 2. On Phone Instr./Updates 3. Monitor
4. Native Methods 5. Reflection 6. Policy Lang. 7. Data Secrecy
8. Parametric Joinpoints; �: full support, : partial support

Table 1 compares AppGuard with the most relevant related work that does
not modify the firmware. Up to now, no other system can instrument an app
and update apps directly on the phone. Dr. Android has an external mon-
itor (E) accessed via IPC; the other three approaches use internal monitors
(I). Aurasium can monitor security-relevant native methods, Dr. Android only
removes their permissions, which may lead to unexpected program termination,
whereas our tool can prevent calls to sensitive Java APIs from native code. Both
Aurasium and AppGuard handle reflection; Dr. Android does not handle it; I-
ARM-Droid prevents it altogether. AppGuard is the only system that offers a
high-level specification language for policies and supports hiding of secret data
from e.g. untrusted components in the monitored app. Both Aurasium and Dr.
Android only support a fixed set of joinpoints where a security policy can be
attached to. In contrast, I-ARM-Droid and AppGuard can instrument calls to
any Java method. The last column displays the runtime overhead incurred in
micro-benchmarks as reported by the respective authors. AppGuard is compet-
itive in terms of runtime overhead with respect to concurrent efforts. In our
previous work [44] we presented the initial idea for diverting method calls in the
Dalvik VM with a rudimentary implementation for micro-benchmarks only. It
did not support a policy language, secrecy, and on-the-phone instrumentation,
and did not include case studies. A recent tool paper [3] presented a previous
version of AppGuard, which is based on caller-site instrumentation.

2 AppGuard

Runtime policy enforcement for third-party apps is challenging on unmodi-
fied Android systems. Android’s security concept strictly isolates different apps

AppGuard – Fine-Grained Policy Enforcement 217

installed on the same device. Communication between apps is only possible via
Android’s inter-process communication (IPC) mechanism. However, such com-
munication requires both parties to cooperate, rendering this channel unsuitable
for a generic runtime monitor. Apps cannot gain elevated privileges to observe
the behavior of other apps.

AppGuard tackles this problem by following an approach pioneered by
Erlingsson and Schneider [21] called inline reference monitor (IRM). The basic
idea is to rewrite an untrusted app such that the code that monitors the app
is directly embedded into its code. To this end, IRM systems incorporate a
rewriter or inliner component, that injects additional security checks at criti-
cal points into the app’s bytecode. This enables the monitor to observe a trace
of security-relevant events, which typically correspond to invocations of trusted
system library methods from the untrusted app. To actually enforce a security
policy, the monitor controls the execution of the app by suppressing or altering
calls to security-relevant methods, or even terminating the program if necessary.

In the IRM context, a policy is typically specified by means of a security
automaton that defines which sequences of security-relevant events are accept-
able. Such policies have been shown to express exactly the policies enforceable
by runtime monitoring [43]. Ligatti et al. differentiate security automata by their
ability to enforce policies by manipulating the trace of the program [37]. Some
IRM systems [16,21] implement truncation automata, which can only terminate
the program if it deviates from the policy. However, this is often undesirable in
practice. Edit automata [37] transform the program trace by inserting or sup-
pressing events. Monitors based on edit automata are able to react gracefully to
policy violations, e.g., by suppressing an undesired method call and returning a
mock value, thus allowing the program to continue.

App
Monitor

App

Rewriter

Policies

logging

configManage-
ment

Fig. 1. Schematics of AppGuard

AppGuard is an IRM system for Android with the transformation capabilities
of an edit automaton. Figure 1 provides a high-level overview of our system. We
distinguish three main components:

1. A set of security policies. On top of user-defined and app-specific policies,
AppGuard provides various generic security policies that govern access to

218 M. Backes et al.

platform API methods which are protected by coarse-grained Android per-
missions. These methods comprise, e.g., methods for reading personal data,
creating network sockets, or accessing device hardware like the GPS or the
camera. As a starting point for the security policies, we used a mapping from
API methods to permissions [23].

2. The program rewriter. Android apps run within a register-based Java VM
called Dalvik. Our rewriter manipulates Dalvik executable (dex) bytecode of
untrusted Android apps and embeds the security monitor into the untrusted
app. The references of the Dalvik VM are altered so as to redirect the method
calls to the security monitor.

3. A management component. AppGuard offers a graphical user interface that
allows the user to set individual policy configurations on a per-app basis. In
particular, policies can be turned on or off and parameterized. In addition, the
management component keeps a detailed log of all security-relevant events,
enabling the user to monitor the behavior of an app.

3 Architecture

AppGuard [5] is a stand-alone Android app written in Java and C that comprises
about 9000 lines of code. It builds upon the dexlib library, which is part of the
smali disassembler for Android by Ben Gruver [30], for manipulating dex files.
The size of the app package is roughly 2 Mb.

Instrumentation. IRM systems instrument a target app such that the control
flow of the program is diverted to the security monitor whenever a security-
relevant method is about to be invoked. There are two strategies for passing
control to the monitor: Either at the call-site in the app code, right before the
invocation of the security-relevant method, or at the callee-site, i.e. at the begin-
ning of the security-relevant method. The latter strategy is simpler and more
efficient, because callee sites are easily identified and less in number [7]. Further-
more, callee-site rewriting can handle obfuscated apps as it does not require to
“understand” the untrusted code. Unfortunately, in our setting, standard callee-
site rewriting is not feasible for almost all security-relevant methods, as they are
defined in Android system libraries, which cannot be modified.

In order to achieve the same effect as callee-site rewriting, AppGuard uses
a novel dynamic call-interposition approach [44]. It diverts calls to security-
relevant methods to functions in the monitor (called guards) that perform a
security check. In order to divert the control flow we replace the reference to a
method’s bytecode in the VM’s internal representation (e.g., a virtual method
table) with the reference to our security guard. The security guards reside in an
external library that is dynamically loaded on app startup. Therefore, we do not
need to reinstrument the app when a security policy is modified. Additionally, we
store the original reference in order to access the original function later on, e.g.,
in case the security check grants the permission to execute the security-critical
method. This procedure also reduces the risk of accidentally introducing infinite
loops by a policy since we usually call the original method.

AppGuard – Fine-Grained Policy Enforcement 219

With this approach, invocations of security-relevant methods do not need to
be rewritten statically. Instead, we use Java Native Interface (JNI) calls at run-
time to replace the references to each of the monitored functions. More precisely,
we call the JNI method GetMethodID() which takes a method’s signature, and
returns a pointer to the internal data structure describing that method. This
data structure contains a reference to the bytecode instructions associated with
the method, as well as metadata such as the method’s argument types or the
number of registers. In order to redirect the control flow to our guard method, we
overwrite the reference to the instructions such that it points to the instructions
of the security guard’s method instead. Additionally, we adjust the intercepted
method’s metadata (e.g., number of registers) to be compatible with the guard
method’s code. This approach works both for pure Java methods and methods
with a native implementation.

Figure 2 illustrates how to redirect a method call using our instrumenta-
tion library. Calling Instrumentation.replaceMethod() replaces the instruc-
tion reference of method foo() of class com.test.A with the reference to the
instructions of method bar() of class com.test.B. The call returns the original
reference, which we store in a variable A foo. Calling A.foo() will now invoke
B.bar() instead. The original method can still be invoked by Instrumentation.
callOriginalMethod(A foo). Note that the handle A foo will be a secret of the
security monitor in practice. Therefore, the original method can no longer be
invoked directly by the instrumented app.

Fig. 2. Example illustrating the functionality of the instrumentation library

Policies. We developed a high-level policy language called SOSPoX in order to
express and characterize the security policies supported by AppGuard. SOSPoX
is based on SPoX [31,32] and is a direct encoding of edit automata. SOSPoX
policies enable the specification of constraints on the execution of method calls
as well as changes of the control flow. This includes the specification of a graceful
reaction to policy violations, e.g., by suppressing an undesired method call and
returning a mock value, thus allowing the program to continue. Furthermore,
SOSPoX offers support for confidentiality policies. Data returned by method
invocations are labeled as either confidential or public: confidential data can
only be processed by the methods authorized by the policy. In general, we can
specify information flow policies that prevent both explicit flows (i.e., through

220 M. Backes et al.

assignments) and implicit flows (i.e., through the control flow of the program).
This can be achieved by a policy disallowing the processing of confidential data.
Declassification policies allow selected methods to process confidential data and
the returned results are labeled as public. For instance, we can specify that the
return value of a function that returns our credit card number is to be kept
secret, but that the encryption of the returned credit card number counts as
declassification and is no longer secret (cf. Fig. 3). Due to space constraints we
omit the technical details of our policies and refer to [2] for a more comprehensive
presentation and additional policy examples.

Fig. 3. Security automaton exemplifying declassification by encryption

Rewriter. The task of the rewriter component is to insert code into the tar-
get app, which dynamically loads the monitor package into the app’s virtual
machine. To ensure instrumentation of security-sensitive methods before their
execution, we create an application class that becomes the superclass of the
existing application class1. Our new class contains a static initializer, which
becomes the very first code executed upon app startup. The initializer uses a
custom class loader to load our monitor package. Afterwards, it calls an initial-
izer method in the monitor that uses the instrumentation library to rewrite the
method references.

Separation of Secrets. Policies in our system can specify that the return
values of certain functions are to be kept secret. In order to prevent an app from
leaking secret values, we control access to these secrets. To this end, the monitor
intercepts all calls to methods that the policy annotates as “secret-carrying”, i.e.
methods that can produce secret output or receive secret input. Whenever the
invocation of such a method produces a new secret output, the monitor returns a
dummy value, which serves as a reference to the secret for further processing. If
such a secret reference is passed to a method that supports secret parameters, the
trampoline method invokes the original method with the corresponding secret
instead and returns either the actual result or a new secret reference, in case the
return value was marked as secret in the policy. The dummy reference values
do not contain any information about the secret itself and are thus innocuous if
processed by any method that is not annotated in the policy.

Management. The management component of AppGuard monitors the behav-
ior of instrumented apps and offers policy configuration at runtime (cf. Fig. 4).
This configuration is provided to the instrumented app as a world-readable file.
1 In case no application class exists, we register our class as the application class.

AppGuard – Fine-Grained Policy Enforcement 221

Its location is hardcoded into the monitor during the rewriting process. This is
motivated by the fact that invocations of security-relevant methods can occur
before the management app is fully initialized and able to react on Android
IPC. The management component provides a log of all security-relevant method
invocations for each app (cf. Fig. 4), which enables the user to make informed
decisions about the policy configuration. Invocations are reported to the man-
agement app using a standard Android Service component. The asynchronous
nature of Android IPC is not an issue, since security-relevant method invocations
that occur before the service connection is established are buffered locally.

Fig. 4. Screenshots of the AppGuard user interface: Permission configuration (left),
and log of security-relevant operations (right). The Brightest Flashlight Free app was
chosen for exemplary purposes only, with no further implications to its security.

Monitor Protection. In our system, the inlined monitor is part of the mon-
itored app. A malicious app might try to circumvent the monitor by tamper-
ing with its internal state. Furthermore, an app could try to subvert secrecy
policies by directly extracting stored secrets from the monitor. Since the mon-
itor package containing secret data and pointers to the original methods is
unknown at compile time and due to strong typing, a malicious app would

222 M. Backes et al.

need to rely on reflection to access the monitor. To thwart such attacks, we
implement a ReflectionPolicy that intercepts function calls to the Reflection
API. In particular, we monitor operations that access Java classes and fields like
java.lang.Class->forName() or java.lang.Class->getField() and thereby
effectively prevent access to the monitor package.

Deployment. On unmodified Android systems, app sandboxing prevents direct
modifications of the code of other apps installed on the device. AppGuard lever-
ages the fact that the app packages of installed third-party apps are stored in a
world-readable location in the filesystem. Thus the monitor is capable of inlin-
ing any app installed on the device by processing the corresponding apk file. In
the end, AppGuard produces a self-monitoring app package that replaces the
original version. Since stock Android does not allow automatic (un)installation
of other apps, the user is prompted to confirm both the removal of the original
app as well as the installation of the instrumented app. Moreover, we ask the
user to enable the OS-option “Unknown sources: Allow installation of apps from
sources other than the Play Store”. Due to these two user interactions, no root
privileges are required for AppGuard.

All Android apps need to be signed with a developer key. Since our rewriting
process breaks the original signature, we sign the modified app with a new key.
Apps signed with the same key can access each other’s data if they declare so in
their manifests. Thus, we sign rewritten apps with keys based on their original
signatures in order to preserve the original behavior. In particular, two apps that
were originally signed with the same key, are signed with the same new key after
the rewriting process.

Finally, due to the different signature, instrumented apps would no longer
receive automatic updates, which may negatively impact device security. There-
fore, AppGuard assumes the role of the Play Store app and checks for updates of
instrumented apps. If a new version is found, AppGuard prompts to download
the app package, instruments it and replaces the existing version of the app.

4 Experimental Evaluation

In this section we present the results of our experimental evaluation. We used
a Google Galaxy Nexus smartphone (1.2 GHz, two cores, 1 GB RAM) with
Android version 4.1.2 for on-the-phone evaluations and a notebook with an Intel
Core i5-2520M CPU (2.5 GHz, two cores, hyper-threading) and 8 GB RAM for
our off-the-phone evaluations.

4.1 Robustness and Performance Evaluation

Robustness. We tested AppGuard on more than 25,000 apps from two differ-
ent app markets and report the results in Table 2. The stability of the origi-
nal apps is tested using the UI/Application Exerciser Monkey provided by the
Android framework with a random seed and 1000 injected events (third column).

AppGuard – Fine-Grained Policy Enforcement 223

To evaluate the robustness of the rewriting process we check the validity of the
generated dex file (fourth column) and test the stability of the instrumented app
using the UI Monkey with the random seed (fifth column). Note that we only
consider the stability of instrumented apps where the original did not crash.

The reported numbers indicate a very high reliability of the instrumentation
process: we found no illegal dex file and over 99 % of the stable apps were also
stable after the instrumentation. The majority of the remaining 1 % does not
handle checked exceptions gracefully (e.g. IOException), which may be thrown
by AppGuard when suppressing a function call. This bad coding style is not
found in popular apps. Other apps terminate when they detect a different app
signature. In rare cases, the mock values returned by suppressed function calls
violate an invariant of the program. Note, however, that our test with the UI
Monkey does not check for semantic equivalence.

Table 2. Robustness of rewriting and monitoring

App market Apps Stable Dex verified Stable instr.

Google Play 9508 8783 9508 (100 %) 8744 (99.6 %)
SlideMe 15974 14590 15974 (100 %) 14469 (99.1 %)
Total 25482 23373 25482 (100 %) 23213 (99.3 %)

Performance. AppGuard modifies apps installed on an Android device by
adding code at the bytecode level. We analyze the time it takes to rewrite an
app and its impact on both size and execution time of the modified app. Table 3
provides an overview of our performance evaluation for the rewriting process.
We tested AppGuard with 8 apps and list the following results for each of the
apps: size of the original app package (Apk), size of the classes.dex file, and
the duration of the rewriting process both on the laptop and smartphone (PC
and Phone, respectively).

The size of the classes.dex file increases on average by approximately
3.7 Kb. This increase results from merging code that loads the monitor pack-
age into the app. Since we perform callee-site rewriting and load the our exter-
nal policies dynamically, we only have this static and no proportional increase
of the original dex file. For a few apps (e.g. Angry Birds) the instrumentation
time is dominated by re-building and compressing the app package file (which
is essentially a zip archive). The evaluation also clearly reveals the difference in
computing power between the laptop and the phone. While the rewriting process
takes considerably more time on the phone than on the laptop, we argue that
this should not be a major concern as the rewriter is only run once per app.

The runtime overhead introduced by the inline reference monitor is mea-
sured through micro-benchmarks (cf. Table 4.) We compare the execution time
of single function calls in three different settings: the original code with no instru-
mentation, the instrumented code with disabled policies (i.e. policy enforcement
turned off.), and the incurred overhead. We list the average execution time for

224 M. Backes et al.

Table 3. Sizes of apk and dex files with rewriting time on PC and phone.

App (version) Size [Kb] Time [sec]
Apk Dex PC Phone

Angry Birds (2.0.2) 15018 994 5.8 39.3
APG (1.0.8) 1064 1718 0.7 10.1
Barcode Scanner (4.0) 508 352 0.1 2.6
Chess Free (1.55) 2240 517 0.3 4.2
Dropbox (2.1.1) 3252 869 0.5 10.2
Endomondo (7.0.2) 3263 1635 0.7 16.6
Facebook (1.8.3) 4013 2695 1.2 26.4
Instagram (1.0.3) 12901 3292 3.0 44.3
Post mobil (1.3.1) 858 1015 0.2 5.8
Shazam (3.9.0) 3904 2642 1.2 26.1
Tiny Flashlight (4.7) 1287 485 0.1 2.9
Twitter (3.0.1) 2218 764 0.3 8.9
Wetter.com (1.3.1) 4296 958 0.4 10.7
WhatsApp (2.7.3581) 5155 3182 0.8 27.7
Yuilop (1.4.2) 4879 1615 0.8 19.7

Table 4. Runtime comparison with micro-benchmarks for normal function calls
and guarded function calls with policies disabled as well as the introduced runtime
overhead.

Function call Original call (ms) Guarded call (ms) Overhead (%)

Socket− >< init > () 0.0186 0.0212 21.4%
ContentResolver− > query() 19.5229 19.4987 0.8%
Camera− > open() 74.498 79.476 6.4%

each function call. For all function calls the instrumentation adds a small run-
time overhead due to additional code. If we enabled policies, the changed control
flow usually leads to shorter execution times and renders them incomparable.
Even with disabled policies the incurred runtime overhead is negligible and does
not adversely affect the app’s performance.

4.2 Case Study Evaluation

We evaluate our framework in several case studies by applying different policies
to real world apps from Google Play [28] (cf. Table 3 for the analyzed versions).
As a disclaimer, we would like to point out that we use apps from the market for
exemplary purposes only, without implications regarding their security unless
we state this explicitly.

For our evaluation, we implemented 9 different policies. Five of them
are designed to revoke critical Android platform permissions, in particular the
Internet permission (InternetPolicy), access to camera and audio hardware
(CameraPolicy, AudioPolicy), and permissions to read contacts and calen-
dar entries (ContactsPolicy, CalendarPolicy). Furthermore, we introduce a

AppGuard – Fine-Grained Policy Enforcement 225

complex policy that tracks possible fees incurred by untrusted applications
(CostPolicy). The HttpsRedirectPolicy and MediaStorePolicy address secu-
rity issues in third-party apps and the OS. Finally, the ReflectionPolicy
described in Sect. 3 monitors invocations of Java’s Reflection API and an app-
specific policy. In the following case studies, we highlight 7 of these policies and
evaluate them in detail on real-world apps.

Our case studies focus on (a) the possibility to revoke standard Android per-
missions. Additionally, it is possible to (b) enforce fine-grained policies that are
not supported by Android’s existing permission system. Our framework provides
quick-fixes and mitigation for vulnerabilities both in (c) third-party apps and
(d) the operating system2. Finally, we present a general security policy that is
completely independent of Android’s permission system.

Revoking Android permissions. Many Android applications request more
permissions than necessary. AppGuard gives users the chance to safely revoke
permissions at any time at a fine-grained level.

Case study: Twitter. As an example for the revocation of permissions, we chose
the official app of the popular micro-blogging service Twitter. It attracted atten-
tion in the media [42] for secretly uploading phone numbers and email addresses
stored in the user’s address book to the Twitter servers. While the app “offi-
cially” requests the permissions to access both Internet and the user’s contact
data, it did not indicate that this data would be copied off the phone as part
of the “Find friends” feature that makes friend suggestions based on the user’s
address book. As a result of the public disclosure, the current version of the app
now explicitly informs the user before uploading any personal information.

To prevent leakage of private information, we block access to the user’s con-
tact list. Since friends can also be added manually, AppGuard’s ContactsPolicy
protects the user’s privacy while losing only minor convenience functionality. The
actual policy enforcement is done by monitoring queries to the ContentResolver,
which serves as a centralized access point to Android’s various databases. Data is
identified by a URI, which we examine to selectively block queries to the contact
list by returning a mock result object. Our tests were carried out on an older
version of the Twitter app, which was released prior to their fix.

Case study: Tiny Flashlight. The app either uses the camera’s flash LED as
a flashlight, or turns the whole screen white and requests the permissions to
access the Internet and the camera. Manual analysis indicates that the Inter-
net permission is only required to display online ads. However, together with
the camera, this app could potentially be abused for spying purposes, which
would be hard to detect without detailed code or traffic analysis. AppGuard
can block Internet access of the app with the InternetPolicy, which blocks
the in-app ads. We monitor constructor calls of the various Socket classes, the
2 By providing policy recommendations based on a crowdsourcing approach, even

laymen users can enforce complex policies (e.g. to fix OS vulnerabilities).

226 M. Backes et al.

java.net.url.openConnection() method as well as several other network I/O
functions, and throw an IOException if access to the Internet is forbidden.

Enforcing fine-grained policies. AppGuard can also add new restrictions
to functionalities that are not restricted by the current permission system or
that are already protected, but not in the desired way. For example, from the
user’s point of view most apps should only communicate with a limited set of
servers. The wetter.com app provides weather information and should only com-
municate with its servers to query weather information. The InternetPolicy of
AppGuard provides fine grained Internet access based on per-app white-listing of
web servers. For this app we restrict Internet access with the regular-expression
^(.+\.)?wetter\.com$, which blocks potentially harmful connections to other
servers. White-listing can be configured in the management interface by selecting
from a list of hosts the app has already attempted to connect to.

Quick-fixes for vulnerabilities in third-party apps. Although most apps
use encrypted https for the login procedures to web servers, there are apps that
return to unencrypted http after successful login, thereby transmitting their
authentication tokens in plain text over the Internet. Attackers could eavesdrop
on the connection to impersonate the user [36].

Endomondo Sports Tracker returns to http after successful login, thereby
leaking the authentication token. As the Web server supports https for the
whole session, the HttpsRedirectPolicy of AppGuard enforces the permanent
usage of https, which protects the user’s account and data from identity theft.
Depending on the monitored function, we return the redirected https connection
or the content from the redirected connection.

Mitigation for operating system vulnerabilities. We also found our tool
useful to mitigate operating system vulnerabilities. As we cannot change the
operating system itself, we instrument all apps with a global security policy
to prevent exploits. For example, Android apps do not require a special per-
mission to access the photo storage. Any app with the Internet permission
could thus leak private photos without the user’s knowledge. We address this
problem with a global MediaStorePolicy policy that monitors calls to the
ContentResolver object. Moreover, any app could use the Android browser
to leak arbitrary data, by sending an appropriate Intent. The InternetPolicy
monitors the startActivity(Intent) calls and throws an exception if the par-
ticular intent is not allowed. It thereby also prevents the local cross-site scripting
attack [4] against the Android browser that was present up to Android 2.3.4.
Using a combination of VIEW intents, it was possible to trick the browser into
executing arbitrary JavaScript code within the domain of the attacker’s choice,
which enabled the attacker to steal login information or even silently install
additional apps.

Threats to validity. Like any IRM system, AppGuard’s monitor runs within
the same process as the target app. This makes it vulnerable to attacks from
malicious apps that try to bypass or disable the security monitor. Our instrumen-
tation technique is robust against attacks from Java code, as this code is strongly

AppGuard – Fine-Grained Policy Enforcement 227

typed. It can handle cases like reflection or dynamically loaded libraries. How-
ever, a malicious app could use native code to disable the security monitor by
altering the references we modified or tampering with the AppGuard’s bytecode
instructions or data structures. To prevent this, we could block the execution
of any untrusted native code by intercepting calls to System.loadLibrary(),
which is, however, not a viable solution in practice. Currently, AppGuard warns
the user if an app attempts to execute untrusted native code.

In order to assess the potential impact of native code on our approach, we
analyzed the percentage of apps that rely on it. Our evaluation [2] on 25,000
apps (cf. Table 5) revealed that about 15 % include native libraries, which is high
compared to the 5 % of apps reported in [46]. We conjecture that this difference
is due to the composition of our sample. It consists of 30 % games, which on
Android frequently build upon native code based game engines (e.g., libGDX or
Unity) to improve performance. Ignoring games, we found only 9 % of the apps
to be using native code, which makes AppGuard a safe solution for over 90 % of
these apps.

Table 5. Ratio of apps using native code

App market Overall Games No games
Apps Nat. code Apps Nat. code Apps Nat. code

Google Play 9508 2212 (23 %) 2838 1110 (39 %) 6670 1102 (16 %)
SlideMe 15974 1693 (10 %) 5920 1244 (21 %) 10054 449 (4.5 %)
Total 25482 3905 (15 %) 8758 2354 (26 %) 16724 1551 (9.2 %)

AppGuard monitors the invocation of security-relevant methods, which are
typically part of the Android framework API. By reimplementing parts of this
API and directly calling into lower layers of the framework, a malicious app
could circumvent the security monitor. This attack vector is always available
to attackers in IRM systems that monitor method invocations. Furthermore,
AppGuard is not designed to be stealthy: due to the resigning of apps, instru-
mentation transparency cannot be guaranteed. There are many apps that verify
their own signature (e.g. from the Amazon AppStore). If they rely on Android
API to retrieve their own signature, however, AppGuard can hook these func-
tions to return the original signature, thus concealing its presence. An app could
also detect the presence of AppGuard by looking for the presence of AppGuard
classes in the virtual machine. In the end, both of these attacks boil down to an
arms race, that a determined attacker will win. Up to now, we did not detect
any app that tried to explicitly circumvent AppGuard.

Our instrumentation approach relies only on the layout of Dalvik’s internal
data structure for methods, which has not changed since the initial version of
Android. However, our instrumentation system could easily be adapted if the
layout were to change in future versions of Android.

Android programs are multi-threaded by default. Issues of thread safety could
therefore arise in the monitor when considering stateful policies that take the

228 M. Backes et al.

relative timing of events in different threads into account. While we did not yet
experiment with such policies, we plan to extend our system to support race-free
policies [14] in the future. In contrast, policies that atomically decide whether
to permit a method call are also correct in the multithreaded setting.

5 Further Related Work

Researchers have worked on various security aspects of Android and proposed
many security enhancements. One line of research [10,18,19,27,41] targets the
detection of privacy leaks and malicious third-party apps. Another line of work
analyzed Android’s permission based access control system. Barrera et al. [6] con-
ducted an empirical analysis of Android’s permission system on 1,100 Android
apps and suggested improvements to its granularity. Felt et al. [24] analyzed
the effectiveness of app permissions using case studies on Google Chrome exten-
sions and Android apps. The inflexible and coarse-grained permission system of
Android inspired many researchers to propose extensions [20,29,38–40]. Conti et
al. [13] integrate a context-related policy enforcement mechanism into Android.
Fragkaki et al. [25] present an external reference monitor approach to enforce
coarse grained secrecy and integrity policies called SORBET. In contrast, our
intention was to deploy the system to unmodified stock Android phones.

The concept of IRMs has received considerable attention in the literature.
It was first formalized by Erlingsson and Schneider in the development of the
SASI/PoET/PSLang systems [21,22], which implement IRM’s for x86 assembly
code and Java bytecode. Several other IRM implementations for Java followed.
Polymer [8] is a IRM system based on edit automata, which supports composi-
tion of complex security policies from simple building blocks. The Java-MOP [11]
system offers a rich set of formal policy specification languages. IRM systems
have also been developed for other platforms. Mobile [33] is an extension to
Microsoft’s .NET Common Intermediate Language (CIL) that supports certi-
fied inline reference monitoring. Finally, the S3MS.NET Run Time Monitor [16]
enforces security policies expressed in a variety of policy languages for .NET
desktop and mobile applications on Windows phones.

6 Conclusions

We presented a practical approach to enforce high-level, fine-grained security
policies on stock android phones. It is built upon a novel approach for callee-site
inline reference monitoring and provides a powerful framework for enforcing arbi-
trary security and secrecy policies. Our system instruments directly on the phone
and allows automatic updates without losing user data. The system curbs the
pervasive overly curious behavior of Android apps. We enforce complex stateful
security policies and mitigate vulnerabilities of both third-party apps and the
OS. AppGuard goes even one step beyond being capable of efficiently protecting
secret data from misuse in untrusted apps. Our experimental analysis demon-
strates the robustness of the approach and shows that the overhead in terms

AppGuard – Fine-Grained Policy Enforcement 229

of space and runtime are negligible. The case studies illustrate how AppGuard
prevents several real-world attacks on Android. A recent release of AppGuard
has already been downloaded by more than 1,000,000 users.

Acknowledgement. We thank the anonymous reviewers for their comments. This
work was supported by the German Ministry for Education and Research (BMBF)
through funding for the Center for IT-Security, Privacy and Accountability (CISPA)
and both the initiative for excellence and the Emmy Noether program of the German
federal government. Further, we would like to thank Bastian Könings for pointing us
to interesting Android apps.

References

1. Android.com: Security and permissions. http://developer.android.com/guide/
topics/security/security.html (2012)

2. Backes, M., Gerling, S., Hammer, C., Maffei, M., von Styp-Rekowsky, P.: App-
Guard - Fine-Grained Policy Enforcement for Untrusted Android Applications.
Technical Report A/02/2013, Saarland University (April 2013)

3. Backes, M., Gerling, S., Hammer, C., Maffei, M., von Styp-Rekowsky, P.: App-
Guard - enforcing user requirements on Android apps. In: Piterman, N., Smolka,
S. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 543–548. Springer, Heidelberg (2013)

4. Backes, M., Gerling, S., von Styp-Rekowsky, P.: A Local Cross-Site Scripting
Attack Against Android Phones. http://www.infsec.cs.uni-saarland.de/projects/
android-vuln/android xss.pdf (2011)

5. Backes SRT: SRT AppGuard : mobile Android security solution. http://www.
srt-appguard.com/en/

6. Barrera, D., Kayacık, H.G., van Oorschot, P.C., Somayaji, A.: A methodology
for empirical analysis of permission-based security models and its application to
android. In: Proceedings of the 17th ACM Conference on Computer and Commu-
nication Security (CCS 2010), pp. 73–84 (2010)

7. Bauer, L., Ligatti, J., Walker, D.: A Language and System for Composing Security
Policies. Technical Report TR-699-04, Princeton University (January 2004)

8. Bauer, L., Ligatti, J., Walker, D.: Composing security policies with polymer. In:
Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation (PLDI 2005), pp. 305–314 (2005)

9. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R., Shastry, B.:
Towards taming privilege-escalation attacks on android. In: Proceedings of the
19th Annual Network and Distributed System Security Symposium (NDSS 2012)
(2012)

10. Chaudhuri, A., Fuchs, A., Foster, J.: SCanDroid: Automated Security Certification
of Android Applications. Technical Report CS-TR-4991, University of Maryland.
http://www.cs.umd.edu/avik/papers/scandroidascaa.pdf (2009)

11. Chen, F., Roşu, G.: Java-MOP: a monitoring oriented programming environment
for Java. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp.
546–550. Springer, Heidelberg (2005)

12. Chip: SRT AppGuard. http://www.chip.de/downloads/
SRT-AppGuard-Android-App 56552141.html

http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/security/security.html
http://www.infsec.cs.uni-saarland.de/projects/android-vuln/android_xss.pdf
http://www.infsec.cs.uni-saarland.de/projects/android-vuln/android_xss.pdf
http://www.srt-appguard.com/en/
http://www.srt-appguard.com/en/
http://www.cs.umd.edu/avik/papers/scandroidascaa.pdf
http://www.chip.de/downloads/SRT-AppGuard-Android-App_56552141.html
http://www.chip.de/downloads/SRT-AppGuard-Android-App_56552141.html

230 M. Backes et al.

13. Conti, M., Nguyen, V.T.N., Crispo, B.: CRePE: context-related policy enforcement
for Android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010.
LNCS, vol. 6531, pp. 331–345. Springer, Heidelberg (2011)

14. Dam, M., Jacobs, B., Lundblad, A.: Security monitor inlining and certification for
multithreaded Java. In: Mathematical Structures in Computer Science. Cambridge
University Press, New York (2011)

15. Davis, B., Sanders, B., Khodaverdian, A., Chen, H.: I-ARM-Droid: A rewriting
framework for in-app reference monitors for Android applications. In: Mobile Secu-
rity Technologies 2012 (MoST 12) (2012)

16. Desmet, L., Joosen, W., Massacci, F., Naliuka, K., Philippaerts, P., Piessens, F.,
Vanoverberghe, D.: The S3MS.NET run time monitor. Electron. Notes Theor.
Comput. Sci. 253(5), 153–159 (2009)

17. von Eitzen, C.: Apple: future iOS release will require user permission for apps to
access address book. http://h-online.com/-1435404 (February 2012)

18. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
TaintDroid: an information-flow tracking system for realtime privacy monitoring on
smartphones. In: Proceedings of the 9th Usenix Symposium on Operating Systems
Design and Implementation (OSDI 2010), pp. 393–407 (2010)

19. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of Android application
security. In: Proceedings of the 20th Usenix Security Symposium (2011)

20. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application
certification. In: Proceedings of the 16th ACM Conference on Computer and Com-
munication Security (CCS 2009), pp. 235–245 (2009)

21. Erlingsson, Ú., Schneider, F.B.: IRM enforcement of Java stack inspection. In:
Proceedings of the 2002 IEEE Symposium on Security and Privacy (Oakland 2002),
pp. 246–255 (2000)

22. Erlingsson, U., Schneider, F.B.: SASI enforcement of security policies: a retrospec-
tive. In: Proceedings of the 1999 Workshop on New Security Paradigms (NSPW
1999), pp. 87–95 (2000)

23. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demys-
tified. In: Proceedings of the 18th ACM Conference on Computer and Communi-
cation Security (CCS 2011) (2011)

24. Felt, A.P., Greenwood, K., Wagner, D.: The effectiveness of application permis-
sions. In: Proceedings of the 2nd Usenix Conference on Web Application Develop-
ment (WebApps 2011) (2011)

25. Fragkaki, E., Bauer, L., Jia, L., Swasey, D.: Modeling and enhancing Android’s
permission system. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012.
LNCS, vol. 7459, pp. 1–18. Springer, Heidelberg (2012)

26. Gibler, C., Crussel, J., Erickson, J., Chen, H.: AndroidLeaks: Detecting Privacy
Leaks in Android Applications. Technical Report CSE-2011-10, University of Cal-
ifornia, Davis (2011)

27. Gilbert, P., Chun, B.G., Cox, L.P., Jung, J.: Vision: automated security validation
of mobile apps at app markets. In: Proceedings of the 2nd International Workshop
on Mobile Cloud Computing and Services (MCS 2011) (2011)

28. Google Play. https://play.google.com/store (2012)
29. Grace, M., Zhou, Y., Wang, Z., Jiang, X.: Systematic detection of capability leaks

in stock Android smartphones. In: Proceedings of the 19th Annual Network and
Distributed System Security Symposium (NDSS 2012) (2012)

30. Gruver, B.: Smali: a assembler/disassembler for Android’s dex format. http://code.
google.com/p/smali/

http://h-online.com/-1435404
https://play.google.com/store
http://code.google.com/p/smali/
http://code.google.com/p/smali/

AppGuard – Fine-Grained Policy Enforcement 231

31. Hamlen, K.W., Jones, M.: Aspect-oriented in-lined reference monitors. In: Pro-
ceedings of the 3rd ACM SIGPLAN Workshop on Programming Languages and
Analysis for Security (PLAS 2008), pp. 11–20 (2008)

32. Hamlen, K.W., Jones, M.M., Sridhar, M.: Chekov: Aspect-Oriented Runtime Mon-
itor Certification via Model-Checking. Technical Report UTDCS-16-11, University
of Texas at Dallas (May 2011)

33. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Certified in-lined reference monitor-
ing on.NET. In: Proceedings of the 1st ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security (PLAS 2006), pp. 7–16 (2006)

34. Heise: SRT AppGuard. http://www.heise.de/download/
srt-appguard-pro-1187469.html

35. Jeon, J., Micinski, K.K., Vaughan, J.A., Reddy, N., Zhu, Y., Foster, J.S., Mill-
stein, T.: Dr. Android and Mr. Hide: Fine-Grained Security Policies on Unmodified
Android. Technical Report CS-TR-5006, University of Maryland (December 2011)

36. Könings, B., Nickels, J., Schaub, F.: Catching AuthTokens in the Wild - The
Insecurity of Google’s ClientLogin Protocol. Technical Report, Ulm University.
http://www.uni-ulm.de/in/mi/mi-mitarbeiter/koenings/catching-authtokens.
html (2011)

37. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for
run-time security policies. Int. J. Inf. Secur. 4(1–2), 2–16 (2005)

38. Nauman, M., Khan, S., Zhang, X.: Apex: extending Android permission model and
enforcement with user-defined runtime constraints. In: Proceedings of the 5th ACM
Symposium on Information, Computer and Communication Security (ASIACCS
2010), pp. 328–332 (2010)

39. Ongtang, M., Butler, K.R.B., McDaniel, P.D.: Porscha: policy oriented secure con-
tent handling in Android. In: Proceedings of the 26th Annual Computer Security
Applications Conference (ACSAC 2010), pp. 221–230 (2010)

40. Ongtang, M., McLaughlin, S.E., Enck, W., McDaniel, P.: Semantically rich
application-centric security in Android. In: Proceedings of the 25th Annual Com-
puter Security Applications Conference (ACSAC 2009), pp. 340–349 (2009)

41. Portokalidis, G., Homburg, P., Anagnostakis, K., Bos, H.: Paranoid Andoird: ver-
satile protection for smartphones. In: Proceedings of the 26th Annual Computer
Security Applications Conference (ACSAC 2010), pp. 347–356 (2010)

42. Sarno, D.: Twitter stores full iPhone contact list for 18 months, after scan. http://
articles.latimes.com/2012/feb/14/business/la-fi-tn-twitter-contacts-20120214
(February 2012)

43. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)

44. von Styp-Rekowsky, P., Gerling, S., Backes, M., Hammer, C.: Idea: callee-site
rewriting of sealed system libraries. In: Jürjens, J., Livshits, B., Scandariato, R.
(eds.) ESSoS 2013. LNCS, vol. 7781, pp. 33–41. Springer, Heidelberg (2013)

45. Xu, R., Säıdi, H., Anderson, R.: Aurasium - practical policy enforcement for
Android applications. In: Proceedings of the 21st Usenix Security Symposium
(2012)

46. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: detecting
malicious apps in official and alternative Android markets. In: Proceedings of the
19th Annual Network and Distributed System Security Symposium (NDSS 2012)
(February 2012)

http://www.heise.de/download/srt-appguard-pro-1187469.html
http://www.heise.de/download/srt-appguard-pro-1187469.html
http://www.uni-ulm.de/in/mi/mi-mitarbeiter/koenings/catching-authtokens.html
http://www.uni-ulm.de/in/mi/mi-mitarbeiter/koenings/catching-authtokens.html
http://articles.latimes.com/2012/feb/14/business/la-fi-tn-twitter-contacts-20120214
http://articles.latimes.com/2012/feb/14/business/la-fi-tn-twitter-contacts-20120214

Autonomous
and Spontaneous Security

Reference Monitors for Security
and Interoperability in OAuth 2.0

Ronan-Alexandre Cherrueau1, Rémi Douence1, Jean-Claude Royer1(B),
Mario Südholt1, Anderson Santana de Oliveira2, Yves Roudier3,

and Matteo Dell’Amico3

1 École des Mines de Nantes, Nantes, France
Jean-Claude.Royer@mines-nantes.fr

2 SAP Applied Research, Mougins, France
3 EURECOM, Sophia Antipolis, France

Abstract. OAuth 2.0 is a recent IETF standard devoted to providing
authorization to clients requiring access to specific resources over HTTP.
It has been pointed out that this framework is potentially subject to secu-
rity issues, as well as difficulties concerning the interoperability between
protocol participants and application evolution. As we show in this paper,
there are indeed multiple reasons that make this protocol hard to imple-
ment and impede interoperability in the presence of different kinds of
client. Our main contribution consists in a framework that harnesses a
type-based policy language and aspect-based support for protocol adap-
tation through flexible reference monitors in order to handle security,
interoperability and evolution issues of OAuth 2.0. We apply our frame-
work in the context of three scenarios that make explicit variations in
the protocol and show how to handle those issues.

Keywords: Aspect oriented programming · Interoperability · OAuth
protocol · Reference monitor · Security · Type system

1 Introduction

Web services and applications are implemented more and more frequently using
open standards for security goals such as WS-policy for SOAP-based services,
and, more commonly as part of RESTful APIs, OpenID for authentication as well
as OAuth for authorization. OAuth has gained a lot of interest, its 2.0 version
recently becoming an IETF standard. All major internet players (Google, Face-
book, Microsoft, among others) have already released API’s to allow resource
access delegation in web applications using this standard.

Although the specifications of the standard are sufficiently clear, develop-
ers often have difficulties to correctly implement all of its features. There are

This work has been partially supported by the CESSA ANR project (ANR 09-SEGI-
002-01, http://cessa.gforge.inria.fr) and the A4Cloud project (FP7 317550, http://
www.a4cloud.eu/).

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 235–249, 2014.
DOI: 10.1007/978-3-642-54568-9 15, c© Springer-Verlag Berlin Heidelberg 2014

http://cessa.gforge.inria.fr
http://www.a4cloud.eu/
http://www.a4cloud.eu/

236 R.-A. Cherrueau et al.

frequently subject to general problems concerning security and interoperability.
For example, the design of OAuth 2.0 has put forward simplicity instead of secu-
rity when choosing to support bearer tokens, which do not require to prove the
possession of a cryptographic key. Token confidentiality relies then on storage and
transport security (SSL/TLS); therefore, all resources mediated via OAuth 2.0
would be exposed if the transport layer security breaks (in the following, we will
use simply “OAuth” instead of OAuth 2.0).

Another problem developers face when using OAuth is to actually produce
interoperable implementations. The OAuth standard is not simply an authenti-
cation and delegation protocol, but an “authorization framework,” whose design
was heavily influenced by enterprise use cases. In order to support those use
cases, the standard allows for extensibility and defines several components as
optional. The standard also specifies several important features only partially,
such as client registration, authorization server capabilities, and endpoint dis-
covery, all features that are fundamental to automate service compositions in
real implementations.

In this paper we provide a framework that integrates three main features in
order to enable programmers to handle such security and interoperability issues,
as well as related evolution scenarios: (i) an abstract and typed language for
the high-level definition of security policies over service interactions, (ii) the
HiPoLDS [10] model for flexible reference monitors, and (iii) aspect-oriented
programming techniques for the manipulation of service implementations. More
concretely, we provide four corresponding contributions. First, we show how to
use a type system with explicit channel types and service subtypes in order to
provide correctness guarantees over service compositions and to improve inter-
operability of the OAuth framework. Second, we harness the high level abstract
policy language HiPoLDS for the definition of flexible reference monitors that
help enforcing policies on the message level. Third, we leverage a set of aspect-
oriented secure software development techniques to manage the evolution of
service security capabilities and decouple them from the underlying service imple-
mentation; overall, we thus increase the dependability of OAuth deployments.
Finally, we apply these techniques in the context of three realistic scenarios that
exhibit security, interoperability and evolution issues of the OAuth standard.

This paper is structured as follows. Section 2 introduces the OAuth frame-
work and some of its issues. Section 3 is dedicated to the description of the typed
service language and the techniques for service manipulation we use. An applica-
tion to OAuth in the context of three scenarios is described in Sect. 4. We finish
with related work in Sect. 5 and a conclusion.

2 The OAuth 2.0 Authorization Framework

OAuth is an IETF standard devoted to providing authorization to clients requir-
ing access to specific resources over HTTP. The standard was issued as RFC
6749 [22] in October 2012 and is not compatible with the first version. Sev-
eral web application providers are currently using this framework, among them:

Reference Monitors for Security and Interoperability in OAuth 2.0 237

Google, GitHub, Windows Live, and Facebook. OAuth defines several proto-
cols for resource owners to grant third-party access to their resources without
exposing their passwords to resource users.

2.1 The Authorization Code Flow Case Study

We will concentrate our study on a central part of the protocol, the Authoriza-
tion Code Flow (or ACF), which is described in Sect. 4.1 of the standard. The
general architecture is depicted in Fig. 1. This protocol assumes several parties
with different roles. The Resource Owner (RO) is an entity (either a human
being, the end-user, or some software he uses) that grants access to some pro-
tected resources. A client (C) is a third-party application requesting the use of
resources owned by the resource owner. The Authorization Server (AS) is a soft-
ware application dedicated to checking client rights to access protected resources
and delivering related access tokens. The User Agent (UA) is a software appli-
cation which mediates communications between the client, the resource owner,
and the authorization server. The authorization server has two HTTP endpoints:
The authorization request (arep) and the token request (trep), while the client
requires only one endpoint (crep). There are two types of clients: confidential or
public depending if they are capable (or not) of maintaining the confidentiality
of their credentials (password, identity, authorization code, token, ...). To get an
access token the client C interacts with the authorization server in order to first
get an authorization code. This authorization code is delivered by the AS to the
client on the behalf of the resource owner. The client and the resource owner
do not directly interact in this setting. The protocol assumes that the RO and
the clients are registered to the AS. At registration time the confidential client
gives an identifier and a URI. For a public client, the authentication method is
optional and depends from the AS requirements.

Fig. 1. The Authorization Code Flow (ACF)

238 R.-A. Cherrueau et al.

The communication steps of the Authorization Code Flow, depicted in Fig. 1,
are as follows:

1. C initiates a request and directs UA to AS. C includes its identifier, a state,
and optionally a scope and a URI in the message.

2. RO is authenticated via its user agent UA. In this step RO grants or denies
access to C.

3. AS replies to C (via UA) with either an authorization code or an error code.
4. C requests an access token from AS. C uses the token endpoint and includes

its authorization code, and a URI to redirect the reply.
5. AS authenticates C and checks that the authorization code was previously

delivered to C. Authentication is mandatory for confidential clients or if an
authentication scheme has been previously established with a public client.
AS also checks that if a URI was provided, it is the same as the URI provided
when C requested the authorization code. If all these controls are valid, AS
sends a token to the redirection URI (and optionally a refresh token).

The OAuth framework specifies further details about the authorization code and
token in RFC 6750 [23]. The recommended time life for an authorization code is
10 minutes and it must not be used more than once. Access tokens are credentials
used to access the protected resources stored on a resource server and they have
a specific scope and a duration limit.

2.2 Interoperability, Security and Evolution Issues

We now present the relevant problems faced by OAuth implementations.

Interoperability. The OAuth standard has been criticized1 for its likelihood
in producing non-interoperable implementations. There are multiple sources for
this problem. A large number of components are optional, for example; tokens
may assume the “bearer” or “MAC” formats according to the standard, or yet
SAML assertions may be used [21]. Furthermore, several components are only
partially defined in the standard; this applies, in particular, for the client regis-
tration process, server authorization capabilities, and endpoint discovery mecha-
nism. Generally, developers of OAuth client application are interested in creating
services that are as flexible as possible in order to be able to access data from
multiple resource servers. Because of the interoperability issues, this requires the
handling of a large number of distinct settings for each different authorization
server, raising maintainability and reusability difficulties.

Evolution. As OAuth is a web authorization framework, its adoption in diverse
enterprise scenarios is to be expected. Existing implementations need to be mod-
ified in order to cover requirements coming from the enterprise world: resource
owners, for example, are unlikely to be individuals but rather organizations.
Therefore we envisage in this paper a scenario where authorization needs to be
obtained from a user on behalf of its organization.
1 See, e.g., Hammer: http://hueniverse.com/2012/07/oauth-2-0-and-the-road-to-hell.

http://hueniverse.com/2012/07/oauth-2-0-and-the-road-to-hell

Reference Monitors for Security and Interoperability in OAuth 2.0 239

Security. Several security problems of OAuth are known and the specification
warns about a number of potential security issues (Sect. 10 of [22]). Furthermore,
threats related to injection attacks and the insufficient protection of credentials
have also been investigated [4,12].

3 A Typed Framework for Policy Enforcement

In this section we introduce the framework we leverage to solve the security,
evolution and interoperability problems of OAuth. Our solution relies on a
typed policy language for service interactions and two main concepts for service
manipulations: aspect-oriented programming and reference monitors for policy
enforcement.

3.1 Typed Service Interactions

We propose to use a rich type system for service interactions which is sound even
in presence of attackers [2]. This type system is defined using so-called semantic
typing [5], it supports negation, intersection and union types which are conve-
nient in a query or declarative context. Adding subtyping is important for two
main reasons: (i) it extends dynamic channel discovery since required services
may be provided by more specific ones and (ii) it improves interoperability, a
client can connect to various compatible services. Since we can discover new
channels at runtime, type inference is done at message reception time. Type
inference checks that the message is well-formed and computes the types of the
discovered channels in the messages.

Concretely, our type system provides the following types: Classic basic
types (like String, Integer, ...), structured types as labeled type list
("label"[Type],Type), record types ({"label":Type; ...}) and type for chan-
nels (or URIs) that are denoted <Type>. We have also negation types (NOT Type),
union types (Type + Type), and intersection types (Type & Type). Furthermore
we type provided endpoints (channel, URI) as well as required ones. For the def-
inition of the type system, see [2].

This type system has the following benefits: (i) it makes explicit a contract
that has to be obeyed by servers and clients, (ii) it is subject to verification
and avoids some ill-formed messages that result from errors or code injection
attacks, (iii) it provides powerful and declarative means to define properties of
data, channels and parties in communications, (iv) it supports subtyping which
is convenient for more flexible discovery and interoperability. Currently the type
system and its machinery has been implemented as a Java library. Work on the
integration of the type system in Apache’s service framework CXF is on-going.

3.2 Security Domains and Policies

In order to extend OAuth with security policies about resource access, we are
using the HiPoLDS language we defined in [10]. Security policies in HiPoLDS

240 R.-A. Cherrueau et al.

rely on the description of the information flows between so-called policy domains.
Those domains can capture both component and protocol entities. Policies are
expressed using rules that match with the content or with specific properties
of the information flow. In particular, HiPoLDS describes patterns in the flow
based on the notion of information tag, a construct of the policy language used
to annotate the message with security metadata. Some tags can relate to the
content of a message payload, at different levels in a protocol stack, like the IP
address, some field value at a given offset in the payload, or an encrypted blob
in some other part of the message; alternately, other tags refer to more struc-
tural component or protocol concepts. In particular, the type system described
above can be seen as an example of the latter category: types can be introduced
into HiPoLDS rules by annotating the message with a specific information tag.
Payload related tags can also be identified through message annotation at the
type inference phase. Section 4.2 illustrates both situations.

3.3 Monitors and Aspects

The implementation of both the type system and of policy enforcement at the
protocol level can be done with reference monitors [8,18]. Reference monitors
represent a flexible solution to evolve existing applications without modifying
their code. They act as wrappers around agents and intercept incoming and out-
going messages. Many actions can be associated with messages: control, remove,
modify, resend, etc. This is for instance a good way to add extra control on mes-
sages to avoid some attacks. In our case, we use monitors, implemented using
the HiPoLDS rules, to secure the storage of credentials and to oblige agents to
use SSL/TLS connections as advocated by the OAuth standard.

Sometimes we need more intrusive actions to modify the internal code of
agents. In this case we propose to use an aspect-oriented approach to complement
the monitors. To this end, we have defined a (new) aspect system for Apache’s
CXF service framework, see [3] for a publicly available implementation. This
aspect system enables programmers to statically or dynamically modify service
compositions, interceptor definitions and Java-based implementations of CXF
services. The events that trigger modifications are defined in terms of finite-
state based sequences of service invocations, interceptor calls or features of the
service implementation. Once such events are identified, new Java code may be
injected or used to replace existing code.

4 Application to OAuth

We now demonstrate how our techniques can overcome the issues impacting
OAuth introduced in Sect. 2.2. To this end we consider a workflow from the
banking domain, see Fig. 2, as part of which a bank and an insurance company
together provide services to private customers.

Alice is a customer of the bank where she has contracted a loan. The bank
proposes Alice to use third party services to acquire an insurance concerning her

Reference Monitors for Security and Interoperability in OAuth 2.0 241

Fig. 2. Enterprise usage of OAuth

loan and buy a share portfolio. For that, Alice uses her web browser to open the
web service from the insurance company, which requests access to her loan data
stored at the bank. In OAuth terms, Alice is thus the resource owner with her
web browser as user agent, the insurance company plays the role of the client,
and the bank acts as a resource and an authorization server. Note that Alice is
not bound to use only the service of the insurance company (as she is the only
responsible for her personal data); she can therefore choose to use any other
client registered to the bank’s authorization server.

In the following we consider three OAuth-related extension scenarios and
show how our framework solves the interoperability and evolution issues raised
by these scenarios.

4.1 Type-Based Definition of OAuth-Conform Interactions

Scenario 1. As a first interoperability scenario we assume that the client, the
insurance company, was built to work with an existing AS server, e.g., provided
by its headquarters, which does not issue refresh tokens. Provided that the same
client will request access to resources held in the resource server, the problem
now is to equip or modify the client implementation such that it will also be
able to use refresh tokens, as imposed by the AS from Alice’s bank.

Another token-related interoperability issue consists in different types of
access tokens. The OAuth standard allows for bearer and MAC tokens. For
instance, the client was built to use bearer tokens, whereas the Bank server
requires the MAC token type.

Solution. In order to handle incompatibilities between stakeholders we have
to be able to define suitable channel types for the endpoints for OAuth-related
interactions and then provide suitable types for the different token types as
discussed in Scenario 1 above.

242 R.-A. Cherrueau et al.

The client endpoint (called redirection URI of the client and noted crep)
should receive rich information from the AS, and its type can be defined as

crep = < ({"grant":AuthCode; "state":State}
+ Token + DenyError) & Secure >

On this endpoint the client can receive an authentication code with a state or
a token or an error, this is a union type noted +. It further specifies that the
client should receive secure information with an intersection type (noted &). Each
type should be as complex as needed, for instance specifying the various cases of
errors or the fact that the authorization code and the token have a time duration.
Agents are responsible to implement the types and to use values according to
their types, types explicit a contract the interacting parties must observe.

The authorization endpoint provided by the bank has type:

arep = < ({ "id":Credents ; "state":State }
⊕ Scope ⊕ C.crep) & Secure >

Mandatory information (client identifier, secret and state) are collected in a
record type, while optional information (scope and client redirection URI) is
typed using the ⊕ operator. This is a syntactic sugar for a combination of record
and union types defining optional information type. Note that we found the
provided C.crep type from C in arep since the client has the option to send its
proper URI to the AS.

In the first scenario we need different kinds of token, which can be represented
by the subtype hierarchy depicted in Fig. 3. The hierarchy uses unrelated types
for “real” tokens and refresh tokens because the latter are not used for resource
access but for token management. The client URI should be connected to several
servers and with two required endpoints (AS.crep (3) and AS.crep (5)). Com-
ponent typing rules imply that these required endpoints should be supertypes
of the C.crep channel type. For instance, <(Token + DenyError) & Secure>
or <MACToken> are such supertypes (this can be easily shown using the rules
in Appendix A Table 1). The type-checking ensures this control and excludes
dynamic type errors.

In Scenario 1, the client should receive either tokens from the insurance AS, or
tokens and refresh tokens from the bank AS. All of this token information could
be secured using either bearer or MAC kinds of token. We have then to change
the crep type. We can use for instance, one endpoint with the following type:
crep = <(AuthCode + Token + {"token":Token; "refresh":RefreshToken}
+ DenyError) & Secure>.

To evolve the client, we encapsulate it into a reference monitor which manages
types, incoming and outgoing messages. To handle the different interoperability
situations, the monitor for the client could either have a unique general URI
as above or several dedicated URIs connected to each server endpoint. Defining
only one endpoint for the client is better at least from a coupling point of view.
Decreasing component coupling increases the endpoint type complexity and this
requires a powerful type system as the one proposed here. In this case, the

Reference Monitors for Security and Interoperability in OAuth 2.0 243

Fig. 3. A UML like hierarchy of tokens

adaptation code checks the dynamic type of the received values in messages and
triggers additional codes. This is the place where HiPoLDS rules or aspects can
be used as shown below.

4.2 Extending the OAuth Framework Using a Policy

Scenario 2. The OAuth framework describes the overall protocol to grant
clients access tokens to the resource server using the Authorization Code Flow.
We consider here a scenario in which we need to extend the protocol in order to
handle additional security strategies.

Consider that David, a bank employee, needs to analyze the profitability of
the fund he manages. In order to do so, he uses an external service from the stock
market analysis company E Stock to evaluate the fund portfolio that contains
no personally identifiable information about bank customers. Clearly, E Stock
is acting as a client with respect to the Bank, which still plays the role of a
resource server and owner.

The difference to OAuth’s standard protocol is here that David cannot be
considered as the only resource owner since the actual data owner is the bank.
Furthermore, we consider another requirement: banks today typically need to
ensure additional accountability guarantees with respect to their employees’
behavior. For instance, David should not be able to delegate access to arbi-
trary external services. He should also not be able to delegate access to stock
managed by the bank outside of his fund portfolio.

Solution. The OAuth framework thus has to be extended with the enforcement
of a mandatory security policy defined by the bank with respect to its employ-
ees’ actions. The User Agent’s authentication is therefore itself subject to the
granting of an authorization by the bank.

The implementation of this mandatory access control on top of OAuth depends
essentially on the entity that runs the AS. If it is the bank, then the AS provides
a perfect point of enforcement; otherwise, if the AS is managed by a third party,
the bank will need to intercept messages between the client and the AS. In the
latter case, an aspect based implementation of the reference monitor is necessary
as network traffic is likely encrypted (the use of an SSL/TLS secure session being

244 R.-A. Cherrueau et al.

typically recommended in the OAuth framework), whereas in the former case, the
reference monitor can be directly introduced by the bank after decryption.

In this scenario, a HiPoLDS reference monitor at the bank would make sure
that David only authorizes reading data about stock from his own portfolio,
and that the client is an acceptable third party, as identified among a set of
authorized services. The following HiPoLDS rule expresses these constraints, by
dropping messages not conforming to the policy:

m:arep, m.scope.obj in Funds,
(m.id not in AuthorizedServices

or (m.scope.obj not in Portfolio[useragent]))
=> m is dropped

HiPoLDS rules are composed of two parts: the left part, before the ‘=>’ con-
struct, performs pattern matching on messages; the right part defines the security
mechanisms that should apply – dropping the message, in this case. The m:arep
clause applies when m is annotated with the arep information tag. Tags can be
associated with a message based on either type inference and/or the structure of
the message payload (we do not describe this here for brevity). m.scope.obj and
m.id are extracted from the actual message content, part of which can also be
identified from the type. In the example, m.scope.obj identifies the list of stocks
in the fund E Stock will be granted access to, and m.id refers to E Stock. Finally,
Funds and AuthorizedServices are sets, respectively comprising object iden-
tifiers on funds and external clients authorized to access fund data. Portfolio
is a mapping between identifiers of user agents of employees (useragent) to the
set of object identifiers for fund data.

4.3 Harnessing Types for Aspect-Based Security

Scenario 3. Finally, we consider a scenario that requires some limited invasive
modifications by OAuth stakeholders to the implementation of OAuth-related
services. The OAuth standard mandates that sensitive data items e.g. autho-
rization grants, tokens, and client credentials are stored securely. Developers
frequently fail to adopt the best security mechanisms to protect assets, leading
to vulnerable implementations. We consider a scenario in which security-relevant
information, such as tokens, have to be stored at a remote user agent.

Solution. The OAuth standard contains a number of prescriptions that do not
directly restrict the communication between stakeholders but instead manage
security-relevant data has to be handled as part of service implementations.
It restricts, for instance, how the user-agent’s authenticated state (e.g., session
cookie, HTML5 local storage) is to be stored (see OAuth standard, Sect. 10.12).
It prescribes that this data has to be kept in a location accessible only to the
client and the user-agent. While this may be some common encrypted portion

Reference Monitors for Security and Interoperability in OAuth 2.0 245

of the memory, it may also involve the use of special-purpose secured storage
services, for instance, if the client uses a user agent remotely.

In order to ensure the use of a correct secure storage strategy, a combination
of type-based security enforcement and aspect-based adaptation is used: the
types that guide service discovery are extended in order to indicate the need of
a particular storage strategy depending on the channel configuration between
stakeholders and aspects are used to modify the implementation of services in
order to use secure storage services if needed.

In the case of a remote user agent, the resource owner has to provide a
typed channel for communication between the resource owner and the agent.
Its type information makes explicit the need for a particular storage strategy.
The strategy is then implemented using an aspect, by statically encapsulating
the original token data structure in the user agent by a secure data structure.
Alternatively, aspects can be used to dynamically encrypt the tokens and store
them in a suitable data structure.

5 Related Work

We discuss related work in this section belonging to four domains: OAuth secu-
rity issues, types for services, security policy languages, and service evolution,
notably using aspects.

OAuth Security Issues. The main document describing OAuth 2.0 is [22] for a
comprehensive OAuth security model and analysis. Several classes of attacks are
discussed: key and secret storing and transmission, client authentication, token
and refresh token, cross-site request forgery, guessing and phishing attacks, click-
jacking, open redirectors and code injection. A real example of security problem
with Twitter and OAuth 1.0a was described in [16]. Pai et al. [12] uses the spec-
ification language Alloy and a SAT solver to discover security counterexample.
In [4], the authors claim to find dozens of previously unknown vulnerabilities
in connecting social networking like Twitter and Facebook with websites like
Yahoo and WordPress.

Types for Services. The type system of [13] is based on a nested record type
system with collections and universal polymorphism. This type system is neither
recursive nor does it allow channel mobility; its checking algorithm is expensive
even in this restricted setting. Sans and Cervesato [17] deal with an abstract
model that covers code mobility which we do not address, we are only con-
cerned with remote procedure calls. On the other hand, they consider functions
rather than channels and they do not support sum types, nor recursive types.
They require a centralized typing table collecting types of services published
everywhere in the Internet and assume that this repository can be trusted. A
distributed and typed π-calculus for mobile agents is described in [15]. The type

246 R.-A. Cherrueau et al.

system considers malicious agents with erroneous types. Type safety is enforced
by dynamically type checking agents when they enter a site. In contrast to our
work they do not consider channel discovery or subtyping. The last piece of
work is [6] which applies semantics subtyping to the π-calculus. Despite the
presence of a precise orchestration, their typing rules for services are similar to
ours. We are not concerned with a precise process algebra for agent behaviors
and this point is shared with all work on session types. But we focused on
typing the communications between several agents leading to similar rules than
in component systems (see [19]) and we also consider type attacks from malicious
agents.

Security Policy Languages. With respect to security policy languages,
HiPoLDS is particularly suited for this setting because it is especially designed
for complex distributed architectures, taking into account the fact that different
security policies apply in different parts of the distributed system according to
its security levels, and not all execution environments where services are run-
ning can be controlled. Notice that XACML [11] can be used in conjunction
with OAuth 2.0 (e.g. for scope definitions), but it is not suited to describe the
reference monitor behavior.

Similarly to HiPoLDS, Law Governed Interactions (LGI) [20] provides a hier-
archical way of specifying the architecture of a distributed systems and security
policies that apply only to a subset of such a system; policy enforcement is
performed by reference monitors. Domains are governed by a mandatory policy,
their law. However, the approach fails short to account for multiple stakeholders,
since it does not consider that the enforcement might not always be possible - or
at least not by an authority that is trusted enough to ensure the application of
the law. Thus LGI requires that all reference monitors (running at any location
of the distributed system) to be trusted by all participating entities: a strong
assumption that cannot be applied in our scenario.

The same assumption is present in SPL [14], a language that like HiPoLDS
allows to specify security requirements at different levels of abstraction. In addi-
tion to the requirement of trusting reference monitors, SPL is limited to access
control policies, and does not allow specifying rules that results in reference
monitors altering the messages that are passed between monitors, for example
by encrypting content or by adding signatures or other type of security metadata.

The ConSpec language [1] aims at defining the behavior of reference monitors
with a simple policy language similarly to our approach. This proposal focuses
on the instrumentation of the control flow of an object-oriented program using
before- and after- method modifiers. In contrast, our work aims at the high-level
description of information flows, in particular materialized by the notions of
messages, their types, and information tags. In our approach, a message can be
mapped at the instrumentation phase to the interception of a protocol message
at a client, a server, or an intermediate party, or to the inlining of a reference
monitor controlling inter-component information flows at a protocol endpoint.

Reference Monitors for Security and Interoperability in OAuth 2.0 247

Furthermore, ConSpec addresses neither the specification of multiple overlapping
security policies, as illustrated in Scenario 2 for instance, nor the definition of
roles or groups.

Service Evolution and Aspects. Service evolution can be achieved in a flex-
ible and non intrusive way using reference monitors [18] as long as only the con-
tents and recipients of messages have to be modified. Frequently, these changes
are performed using dedicated monitors and reconfigurations of orchestrations,
for instance, using aspects that modify BPEL-based service compositions (as,
e.g., AO4BPEL [7]). Our approach to service evolution is novel in that our refer-
ence monitors are derived from HiPoLDS policy definitions and that our aspect
system supports invasive modifications to service interceptors and implementa-
tions [9] that are required to resolve some security and interoperability issues of
OAuth 2.0 (notably the scenario in Sect. 4.3).

6 Conclusion

The OAuth 2.0 protocol is an IETF standard already adopted by major internet
application providers. However, it is often difficult to ensure that the implemen-
tation of authorization protocols are secure and interoperable because of the
many optional features and different protocol flows of the OAuth framework.
In this paper we use a type-based policy language in conjunction with reference
monitors and aspect-oriented programming in order to tackle these issues. Types
enable the precise definition of communicated data and the rigorous analysis of
input data. Further, we integrate a policy language based on security domain and
abstract rules to express security. Types and policies are implemented thanks to
a reference monitor mechanism which encapsulates the agents that have to be
adapted. For advanced evolutions that require invasive modifications of service
interceptors and implementations, we use a new aspect-based system for ser-
vice manipulation. Finally, we have shown three realistic evolution scenarios for
which we have solved problems of input validation, interoperability and security
issues. Future work is planned on the complete implementation of our framework
on top of Apache’s CXF web service model and its integration with RESTful
service models.

A Subtyping Rules and Endpoint Types Tables

Table 1 presents the main subtyping rules required in this paper and we give
in Table 2 the endpoint types (without the refresh token option) in ACF. In
these tables X.name denotes a provided service named name from agent X. The
notation X.name (<numbering>) corresponds to a required endpoint connected
to X.name.

248 R.-A. Cherrueau et al.

Table 1. Main subtyping rules

Table 2. ACF provided and required endpoint types table

References

1. Aktug, I., Naliuka, K.: Conspec - a formal language for policy specification. ENTCS
197(1), 45–58 (2008). (Proceedings of REM 2007)

2. Allam, D., Douence, R., Grall, H., Royer, J.-C., Südholt, M.: Well-typed services
cannot go wrong. Rapport de recherche RR-7899, INRIA, May 2012

3. Ascola team. An aspect framework for CXF. http://a4cloud.gforge.inria.fr/doku.
php?id=start:aspect4cxf, January 2013

4. Bansal, C., Bhargavan, K., Maffeis, S.: Discovering concrete attacks on website
authorization by formal analysis. In: CSF 2012, Cambridge, MA, USA, pp. 247–
262. IEEE (2012)

5. Castagna, G., Frisch, A.: A gentle introduction to semantic subtyping. In: Caires,
L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005.
LNCS, vol. 3580, pp. 30–34. Springer, Heidelberg (2005)

6. Castagna, G., De Nicola, R., Varacca, D.: Semantic subtyping for the pi-calculus.
Theor. Comput. Sci. 398(1–3), 217–242 (2008)

7. Charfi, A., Mezini, M.: Aspect-oriented web service composition with AO4BPEL.
In: (LJ) Zhang, L.-J., Jeckle, M. (eds.) ECOWS 2004. LNCS, vol. 3250, pp. 168–
182. Springer, Heidelberg (2004)

8. Chebaro, O., Allam, D., Grall, H., et al.: Mechanisms for property preservation.
Technical Report Deliverable D2.4, CESSA Project, July 2012

http://a4cloud.gforge.inria.fr/doku.php?id=start:aspect4cxf
http://a4cloud.gforge.inria.fr/doku.php?id=start:aspect4cxf

Reference Monitors for Security and Interoperability in OAuth 2.0 249

9. Cherrueau, R.-A., Chebaro, O., Südholt, M.: Flexible and expressive aspect-based
control over service compositions in the cloud. In: 4th International Workshop on
Variability & Composition (VariComp). ACM DL, March 2013

10. Dell’Amico, M., Serme, G., Idrees, M.S., de Oliveira, A.S., Roudier, Y.: Hipolds: a
hierarchical security policy language for distributed systems. Information Security
Technical Report (2012)

11. OASIS. eXtensible Access Control Markup Language (XACML) Version 3.0. Tech-
nical report, OASIS, January 2013

12. Pai, S., Sharma, Y., Kumar, S., Pai, R.M., Singh, S.: Formal verification of oauth
2.0 using alloy framework. In: CSNT ’11, pp. 655–659. IEEE Computer Society,
Washington DC (2011)

13. Pu, K.Q.: Service description and analysis from a type theoretic approach. In:
ICDE Workshops, pp. 379–386 (2007)

14. Ribeiro, C., Ferreira, P.: A policy-oriented language for expressing security speci-
fications. Int. J. Netw. Secur. 5(3), 299–316 (2007)

15. Riely, J., Hennessy, M.: Trust and partial typing in open systems of mobile agents.
J. Autom. Reasoning 31(3–4), 335–370 (2003)

16. Paul, R.: Compromising twitter’s oauth security system. Technical report, Ars
Technica (2010)

17. Sans, T., Cervesato, I.: QWeSST for type-safe web programming. In: 3rd Interna-
tional Workshop on Logics, Agents, and Mobility (2010)

18. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)

19. Costa Seco, J., Caires, L.: A basic model of typed components. In: Bertino, E. (ed.)
ECOOP 2000. LNCS, vol. 1850, pp. 108–128. Springer, Heidelberg (2000)

20. Serban, C., Zhang, W., Minsky, N.: A decentralized mechanism for application
level monitoring of distributed systems. In: Proceedings of CollaborateCom 2009,
pp. 1–10. IEEE (2009)

21. IETF Web Authorization (OAuth) Working Group. SAML 2.0 profile for OAuth
2.0 client authentication and authorization grants. Technical Report V 17, Internet
Engineering Task Force (IETF)

22. IETF Web Authorization (OAuth) Working Group. The OAuth 2.0 authorization
framework. Technical Report RFC 6749, Internet Engineering Task Force (IETF),
October 2012

23. IETF Web Authorization (OAuth) Working Group. The OAuth 2.0 authorization
framework: bearer token usage. Technical Report RFC 6750, Internet Engineering
Task Force (IETF), October 2012

Remote Biometrics for Robust Persistent
Authentication

Mads I. Ingwar(B) and Christian D. Jensen

Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Kongens Lyngby, Denmark

{ming,cdje}@dtu.dk

Abstract. This paper examines the problem of providing a robust non-
invasive authentication service for mobile users in a smart environment.
We base our work on the persistent authentication model (PAISE), which
relies on available sensors to track principals from the location where they
authenticate, e.g., through a smart card based access control system, to
the location where the authentication is required by a location-based
service. The PAISE model is extended with remote biometrics to pre-
vent the decay of authentication confidence when authenticated users
encounter and interact with other users in the environment. The result
is a calm approach to authentication, where mobile users are transpar-
ently authenticated towards the system, which allows the provision of
location-based services. The output of the remote biometrics are fused
using error-rate-based fusion to solve a common problem that occurs
in score level fusion, i.e., the scores of each biometric system are usu-
ally incompatible, as they have different score ranges as well as different
probability distributions.

We have integrated remote biometrics with the PAISE prototype
and the experimental results on a publicly available dataset, show that
fusion of two remote biometric modalities, facial recognition and appear-
ance analysis, gives a significant improvement over each of the individual
experts. Furthermore, the experimental results show that using remote
biometrics increases the performance of tracking in persistent authentica-
tion, by identifying principals who are difficult to track due to occlusions
in crowded scenes.

1 Introduction

What is in a face? Judging by children’s drawings, two circles for the eyes, a line
for the mouth, and perhaps a dot for the nose makes a face. While seemingly
simple, these archetypical features distil faces down to their basic forms and
resemble Haar-like features, which are used in face detection methods to find
faces in real-time with robust results [1,2].

Christian D. Jensen—The research leading to these results has received funding from
the [European Union] [European Atomic Energy Community] Seventh Framework
Programme ([FP7/2007-2013] [FP7/2007-2011]) under grant agreement n [242497].

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 250–267, 2014.
DOI: 10.1007/978-3-642-54568-9 16, c© Springer-Verlag Berlin Heidelberg 2014

Remote Biometrics for Robust Persistent Authentication 251

Faces are what allow us to differentiate people in a group. It might be a child
identifying family members in an old photograph, or security personnel identi-
fying people from their passport photos in the airport. Our faces are the most
visible characteristic we have, and together with traits such as fingerprints, palm
prints, DNA, and iris patterns possess a high discriminative power. In contrast,
hair colour, skin colour, gait, height, and weight all have low discriminative power.

The discriminative power of these traits must be considered in security sen-
sitive biometric applications where the performance of the biometric system is
important, for instance in some airports, where holders of biometric passports
can go through automated gates that authenticate them using facial-recognition.
These security sensitive applications of biometric authentication requires robust
and accurate results, but, at the same time they must satisfy user demands of a
non-invasive and user friendly authentication process.

In his vision of ubiquitous computing, Mark Weiser states that technology
must be calm [3,4] in order to allow users to focus on their primary tasks. This
implies that any authentication technology should require minimal attention
from the users, which excludes the use of many authentication techniques, such
as passwords or fingerprints. This lends itself to the use of remote biometrics,
that is, biometric characteristics that are measurable from a distance without
user interaction, such as facial recognition, appearance or gait analysis.

In this paper we extend our Persistent Authentication model (PAISE) [5,6]
with continuous authentications using remote biometrics. The PAISE model
combines traditional authentication mechanisms with location information and
tracking of principals. The goal in persistent authentication is to translate user
authentication from a single event to a lasting session. The model uses strategi-
cally placed authentication points to establish an initial authentication session
and principals are then tracked throughout the environment. In this paper we
explore the addition of remote biometrics, which are regularly measured to pre-
vent the decay of authentication confidence when authenticated users encounter
and interact with other users in the environment. This multi-factor approach
gives robust results by utilising the strengths of an interaction-based authentica-
tion system with the continuous evaluation of an unobtrusive biometric system.

One of the key applications of persistent authentication is to allow secure pro-
vision of location-based services, through calm authentication of mobile users in
the smart environment. Indoor location systems have seen an increase in popular-
ity in recent years. In particular, tracking of inhabitants in indoor environments
have become vital in hospitals to locate and page staff, in homes for elderly peo-
ple, and in industry for applications in logistics, warehousing and automation.
Persistent authentication extends these applications by utilising the credentials
associated with each principal’s authentication session. This allows persistent
authentication to act as the context manager in a sensor enhanced access con-
trol system [7], providing a fine-grained and flexible access control mechanism.
The PAISE model makes it possible to take informed decisions based on the
user’s credentials, for instance, detecting that the cleaning personnel are access-
ing a restricted area, or that the carrier delivering goods is entering the premise
through the loading area.

252 M.I. Ingwar and C.D. Jensen

The users credentials are captured by the access control mechanism and
provided to the persistent authentication system, which tracks the users and, as
needed, verifies the identity of the users based on their biometric characteristics.
To do so, a specialised algorithm, known as a biometric expert, processes a
sample of the characteristic, referred to as the modality. The expert extracts a
small amount of data containing the minutia features of the characteristic, called
the biometric signature, which represents the unique aspect of the modality. The
biometric signature is compared to a reference database, called the template,
which links the true identity of the person to the previously captured biometric
samples for that person. A match score is generated between the sample and
the template, reflecting the expert’s confidence in the identity of the person.
Alternatively, the expert can be used for identification purposes, in which the
persons signature is compared to all templates and the best match returned,
however, in this paper we focus on biometric verification.

The main challenge in biometric verification is that the process is not reli-
able: an expert may reject a genuine user, or conversely, an expert may accept an
impostor. A biometric expert may have insufficient discriminative power, espe-
cially within a large group [8], or adverse environmental conditions, such as dust
or poor luminosity, can affect the quality of biometric acquisition. These factors
are further compounded when using remote biometrics as the quality and reso-
lution of the biometric acquisition is significantly lower due to the uncontrolled
acquisition process.

The reliability of remote biometrics can be improved by employing multiple
biometric experts and fusing their outputs. In this paper we use Error-Rate-based
Fusion [9], a novel fusion strategy that transforms individual scores into objec-
tive evidences and combines them using Bayesian inference. In more details, let
us assume that an expert generates a match score yi and the expert takes a
decision that the claimant is genuine. The false acceptance rate (FAR) at the
decision threshold yi represents the probability that the claimant is an impos-
tor. Similarly, the false rejection rate (FRR) at the threshold yi represents the
intrinsic probability of incorrectly rejecting a genuine user. Bayesian inference is
used to combine the false acceptance and false rejection rates of different scores,
calculated by different experts, and generate a confidence value representing the
probability that claimant is genuine.

We evaluate the performance of our error-rate-based fusion strategy using
two biometric experts, facial recognition and appearance analysis, on the pub-
licly available CAVIAR dataset [10]. Our experimental results show a significant
improvement in the error rate compared to the performance of each individual
expert. In addition, we evaluate the increased tracking accuracy and persistence
gained by including remote biometrics in the persistent authentication system.
Our results show that including remote biometrics significantly improves track-
ing by identifying principals who are difficult to track due to environmental
factors or occlusions in crowded scenes.

The rest of this paper is organised in the following way: an overview of the
remote biometrics used in this paper is given in Sect. 2. Fusion of biometric

Remote Biometrics for Robust Persistent Authentication 253

experts and a quick overview of error-rate-based fusion is presented in Sect. 3.
Persistent authentication and the PAISE model are presented in Sect. 4. Our
experimental results are presented in Sect. 5 and related work is examined in
Sect. 6. Finally, Sect. 7 presents our conclusion and outlines the directions for
future work.

2 Remote Biometrics

Compared to their intrusive counterparts, remote biometrics have a lower dis-
criminative power and a higher error rate [11], but they are non-invasive and
allow continuous authentication. This ensures a calm authentication process
without user interaction. The two biometric characteristics we focus on in this
paper are facial recognition and appearance analysis based on colour profiles. Our
faces possess a high discriminative power, whereas our appearance, in terms of
hair and skin colour and the clothes we wear, have a low discriminative power.

For facial recognition we use a linear subspace technique to project high-
dimensional data into a lower dimensional subspace by linearly combining
features. Principal Component Analysis (PCA) [12] and Linear Discriminant
Analysis (LDA) [13] are well established linear subspace techniques and are con-
sidered the most robust methods for face recognition [14].

Consider a set of N facial images x1,x2, ...,xN with values in an n-dimensional
image space. A linear transformation maps this n-dimensional image space into
a lower m-dimensional feature space y1,y2, ...,yN such that yk represents xk by
introducing a transformation vector W such that:

yk = WTxk k = 1, 2, ..., N

For the transformation to accurately represent the original data, it is impor-
tant to retain the highest possible variation, thus the objective is to find a
subspace in which the variance is maximised. Let the total scatter matrix ST be
defined as:

ST =
N∑

k=1

(xk − μ)(xk − μ)T

Where μ is the mean of all the images. The output is a set of n-dimensional
eigenvectors w1,w2, ...,wm corresponding to the m largest eigenvalues, which
account for the most variance in the training set. Since these eigenvectors have
the same dimension as the original images, they are referred to as Eigenfaces [12].

In PCA, classification can be performed in this reduced feature space, for
instance using a nearest neighbour classifier. However, a drawback of this app-
roach is, that much of the variation we seek to maximise is caused by illumi-
nation changes [15], thus with images of faces under changing illumination the
projected feature space will contain variation due lighting and not necessarily
due to class separability. Consequently, the points in the projected space will
not be well clustered. A better approach is to use Linear Discriminant Analysis,

254 M.I. Ingwar and C.D. Jensen

where classification is performed by selecting W in such a way that the ratio
of the between-class scatter SB and the within-class scatter SW is maximised.
With the between-class scatter matrix defined as

SB =
c∑

i=1

Ni(μi − μ)(μi − μ)T

and the within-class scatter matrix defined as

SW =
c∑

i=1

∑

xk→Xi

(xk − μi)(xk − μi)T

where μi is the mean image of class Xi, and Ni is the number of samples in
class Xi. A projection, Wopt is then found, that maximises the class separability
criterion

Wopt = arg max
W

=
|WTSBW |
|WTSWW |

For appearance analysis we use colour profiles, calculated using histogram
comparison. Colour histograms are widely used for content-based image retrieval
[16] as they are fast to compute, and despite their simplicity, have attractive
properties. Since they contain no spatial information they are largely invariant to
rotation and translation of objects in the image. Additionally, colour histograms
are robust against partial occlusions and changes in camera viewpoint [17].

Colour histograms are typically represented in the RGB colorspace, and the
difference between two histograms h1, h2 are expressed by the chi-squared dis-
tance:

χ2(h1, h2) =
1
2

∑

k

(h1k − h2k)2

h1k + h2k

To reduce the error rate of the remote biometric experts, the output of each
of these experts are fused, which increases the robustness of the evaluation.

3 Fusion of Biometric Experts

The main challenge in biometric fusion is that different biometric experts generate
matching scores in different domains, and that these domains usually follow differ-
ent probability distributions. Therefore, score normalisation and transformation
are required to make the scores compatible, which are error prone processes. More-
over, the existing parametric models assume a certain distribution of scores which
also introduces errors in the fusion process.

In our fusion strategy, error-rate-based fusion, we use measures of false
acceptances and false rejections, which have the same definitions across differ-
ent experts, and therefore do not need any normalisation. We work in a non-
parametric model, namely we estimate false acceptance and false rejection rates

Remote Biometrics for Robust Persistent Authentication 255

for certain discrete levels of thresholds. Further, the fused output is a confi-
dence measure, which is a continuous probability value; therefore, the decision
errors associated with a binary decision do not occur. In the following, we give a
brief overview of error-rate-based fusion, and we refer interested readers to the
complete algorithm presented in Ingwar et al. [9].

For biometric verification we consider two class labels, A and Ā, where A is
assigned when the expert concludes that a claimant is genuine, and Ā is assigned
if the authentication status of the claimant is unknown. If the claimant is A but
the expert wrongly labels him Ā then this event is called a false rejection (FR).
Similarly, if the claimant is not A and an expert wrongly labels him A then
this event is called a false acceptance (FA). The false acceptance and the false
rejection rates (FAR and FRR) correspond to the fractions of FA and FR events
taken over all genuine and impostor access.

Let us consider N biometrics experts. The output of the i -th expert is a
match score, yi ∈ R, where 1 ≤ i ≤ N .

For a decision threshold Δi, the decision function is defined as follows:

decision(Δi, yi) =
{

accept if yi ≥ Δi

reject otherwise

With the match score yi, let the functions FAR(yi) and FRR(yi) be the
false acceptance rate and false rejection rates of the i -th expert with Δi =
yi. Since yi ∈ R, these functions are continuous, such that FAR(yi) ∈ R and
FRR(yi) ∈ R. For precise evaluation of FAR(yi) and FRR(yi), we use a non-
parametric approach, and model them as step functions, in which Δi can only
take m different values: Δi ∈ {δ1i , . . . , δ

m
i }, where δ1i < · · · < δmi . We call these

values of Δi error decision thresholds (EDTs). This means that FAR(yi) and
FRR(yi) are defined over a set of m EDTs.

Fig. 1. Error Decision Thresholds (EDTs). Plot of the probability density functions of
typical expert scores with the point of Equal Error Rate (EER) shown.

256 M.I. Ingwar and C.D. Jensen

The different values of Δi are illustrated in Fig. 1, with a typical plot of the
probability density functions (PDF) of expert scores. The figure illustrates that
the match score for a genuine user is distributed on larger values as compared to
that of an impostor. The figure also shows the point of equal error rate, where
the false acceptances and false rejections have the same values.

To illustrate an error-rate-based fusion system, consider a verification sys-
tem that contains N biometric experts. When biometric data of a claimant is
available from the sensors, the system invokes the experts with the claimed iden-
tity A. Each expert extracts the relevant biometric signature from the data and
compares the extracted signature with the signature templates of A. Each expert
then generates a match score yi, and we compute FAR(yi) and FRR(yi) and fuse
the match score based on Bayesian inference.

The system has an a-priori confidence that the claimant is A, which is
represented as the probability measure, Pr(A). The complementary confidence
that the claimant is not A is 1 - Pr(A). We compute a-posteriori confidence,
Pr(A|yi ≥ Δi), i.e., the probability that the claimant is A after receiving the
evidence yi that meets the decision threshold Δi. For brevity, we do not include
the decision threshold in the probability expressions, and therefore we write
Pr(A|yi ≥ Δi) as Pr(A|yi). The value of the a-posteriori confidence is com-
puted as follows:

Pr(A|yi) =
TAR(yi)Pr(A)

TAR(yi)Pr(A) + FAR(yi)(1 − Pr(A))
(1)

With TAR being the true acceptance rate, i.e. 1−FRR(yi). Equation 1 allows
us to fuse the outputs of N experts, by taking into account the prior confidence
level. To get an intuitive feeling of Eq. 1, let us consider a traditional verification
expert, which is assumed to be error free, e.g., a password-based authentication
of claimant, A, on a computer terminal. If the password is correct then the
computer has full confidence that the claimant is A. For such an expert, the
values of FAR and FRR are assumed to be zero. As expected, the confidence is
evaluated to 1 in Eq. 1 independent of a-priori confidence. In fact, any expert
for which the value of FAR is zero will generate the confidence value of 1, which
is consistent with the fact that with zero false acceptances no impostor can ever
be accepted by the expert.

4 Persistent Authentication

The goal in persistent authentication is to translate authentication from a single
event to a lasting session. We track principals from the point where they authen-
ticate and throughout the environment. We use closed-circuit television (CCTV)
cameras and image processing algorithms to provide the location data, and then
employ filtering techniques to associate the location with target principals in
consecutive frames.

Remote Biometrics for Robust Persistent Authentication 257

Fig. 2. Overview of the components in the persistent authentication model.

The core component of the PAISE model combines data from the authenti-
cation system, the smart environment and the biometrics experts, tracks authen-
ticated principals and forwards this information to a location-based service. An
overview of the components in the persistent authentication model are shown in
Fig. 2. The figure shows how the three components, the authentication system,
the smart environment and the biometric experts interface with the core PAISE
component.

The authentication mechanism handles authentication of principals and pro-
vides the initial authentication of the principal. The operation of the authenti-
cation mechanism is external to the persistent authentication model, thus state-
of-the-art solutions are supported, such as intrusive biometrics, smart-cards,
wearable tokens, or a combination resulting in multimodal authentication [18].

The smart environment delivers the sensor data needed for tracking. In this
paper we use a smart environment that consists of a camera-based location
system. CCTV cameras are used to both track principals and to gather remote
biometric samples.

The biometric experts process the modalities of the principals captured by
the smart environment and returns an estimate of their identity. As mentioned
in Sect. 2, the two remote biometrics explored in this paper are facial recognition
and appearance analysis.

Finally, the persistent authentication component must: 1. Identify the prin-
cipals and their locations from the video data and track them throughout the
environment, 2. Associate the initial authentication sessions with the correspond-
ing principals, and 3. Continuously provide the biometrics modalities of each
tracked principal to the biometric experts and evaluate the feedback. The out-
put is the location of each principal, the associated authentication sessions and
the confidence in this assertion.

To identify principals in a video steam, we use image segmentation. In image
segmentation objects that share certain characteristics are identified and labeled.
In persistent authentication, this means assigning one label to the principals and

258 M.I. Ingwar and C.D. Jensen

Fig. 3. Background segmentation. For each pixel in the image a label w is inferred
denoting the absence or presence of a foreground object.

another label to their surroundings. The principals are then referred to as the
image foreground and their surroundings as the image background.

A binary label wi ∈ {0, 1} is assigned to each pixel xi in the image, indicat-
ing whether it is part of a known background (w = 0) or if it belongs to the
foreground (w = 1), determined by the recent history of each pixel x1, ...,xn

modelled as a Gaussian Mixture Model [19,20]. The probability that a new pixel
x belongs to the foreground is then given by:

Pr(x|w = 1) =
K∑

k=1

λkN (μk, Σk)

where μ1...K and Σ1...K are the means and covariances of the normal distribu-
tions and λ1...K are positive valued weights that sum to one. The combination of
these normal distributions allows the Gaussian mixture model to describe com-
plex multi-modal probability densities. The Gaussian mixture model is robust
to noise and changes in illumination and it handles reflections and shadows well,
making it particular suited for indoor surveillance applications. A typical result
of the labelling process is shown in Fig. 3. The first image shows a complex
scene, captured by a CCTV camera, containing five principals annotated with
circles. The second image shows the output of the Gaussian mixture model, a
black-and-white binary image. The white pixels in the binary image, also called
the blobs, indicate the presence of a principal, and the figure shows that all five
principals have been correctly identified.

With the foreground objects identified and labeled, we track them throughout
the environment. The objective of the tracking is to associate the location of
target principals in consecutive video frames. This association can be especially
difficult when multiple users are in the environment, when users are occluded,
or when the quality of the images are poor due to environmental conditions. In
these situations the tracking system relies on the correlation of principals over
time, either inferred from the physical properties of the environment or from a
model which describes how the location of the target might change for different
possible motions of the principals.

Remote Biometrics for Robust Persistent Authentication 259

We use a combination of spatial-temporal coherence, filtering and flow tech-
niques to ensure consistent tracking in consecutive frames. The spatial-temporal
coherence uses the physical reality of the world to infer correlation. Spatial coher-
ence describes the correlation between signals at different points in space, while
temporal coherence describes the correlation between signals observed at dif-
ferent moments in time. In tracking this is used to infer correlation based on
the speed and trajectory of the principals, which must be consistent with the
physical restrictions of the environment.

In addition to the spatial-temporal coherence, we filter the output of the
image segmentation process with the Kalman filter [21,22], which in essence
is a sensor fusion algorithm that uses the system dynamics model to form an
estimate of the system’s state, which improves tracking under rapidly changing
environmental conditions.

Finally dense optical flow [23,24] is used as a global approach, that is not
affected by labelling ambiguities to ensure consistent tracking even in noisy sit-
uations. In optical flow it is assumed that when a pixel moves from one frame
to another, its intensity or colour does not change. This is a combination of a
number of assumptions about the reflectance properties and illumination of the
scene and is known as the brightness constancy. Solving the brightness constancy
results in the magnitude and direction of motion for each pixel in the image. By
comparing the displacement to the Kalman filter estimate, tracking becomes
possible even when principals are partially occluded, as their direction in the
environment helps to differentiate them. Additionally, as the optical flow analy-
sis is applied directly to the image it helps ensure that errors in the labelling
process does not carry over into the tracking process.

Tracked principals continuously have their remote biometrics measured and
compared to a signature database. This database contains all previous matching
signatures and, optionally, high quality enrolment signatures. For each biometric
characteristic a set of false acceptance and false rejection rates (FAR and FRR)
values are generated. These values are fused, using error-rate-based fusion, which
helps reduce the impact of the high error rate of remote biometrics. The result is
a biometric confidence score in the identity of the principal, i.e., the confidence
on the assertion that a blob has a certain identity. This score is matched with
the trackers current confidence score, which turns the confidence into a dynamic
value based on positive biometric signatures.

A dynamic score allows the system to take occlusions and other noisy mea-
surements into consideration when determining the confidence in identity, such
that, when principal moves through the environment, the confidence in his iden-
tity changes based on the quality of the tracking. An example is shown in Fig. 4.
The figure shows two paths, a solid line that corresponds to the motion of a
principal A and a dashed lined that corresponds the motion of a principal who
is not A, denoted, Ā. Events on the paths have timestamps, and the time t0
corresponds to the initial authentication, where A is authenticated using an
interactive authentication mechanism, giving an initial confidence of 1.

260 M.I. Ingwar and C.D. Jensen

Fig. 4. Confidence in the identity of A. The confidence in A’s identity decrease when
the paths of A and Ā intersect and increase with positive biometric signatures.

The principals are reliably tracked from the point of initial authentication
until the time t1, where occlusions causes ambiguities in the labelling process,
which, in turn, causes ambiguity in which of the paths the tracked principal A
is following. As a result, the confidence in the identity of A is lowered. How
much the confidence is lowered depends on the output of the tracking algorithm,
but for the sake of the example, we assume that there is an equal chance of A
following either path.

The remote biometrics of A are continuously measured and at time t2, t3 and
t4 a positive signature is captured. The resulting biometric confidence score is
used to increase the confidence in the identity of A. As A can only follow either
the solid line or on the dashed line, the confidence for A on both lines must
sum to 1. Therefore, an increase in the confidence on the solid line automat-
ically decrease the confidence that A is following dashed line. The increase in
confidence depends on the quality of the biometric sample and the output of the
biometric expert. This cycle of decreasing confidence due to noise or occlusions
and increasing confidence with positive signatures continues as long as A is in
the environment.

5 Experimental Results

In this section we present and discuss our experimental results. We evaluate how
remote biometrics, namely facial recognition and appearance analysis, perform

Remote Biometrics for Robust Persistent Authentication 261

when implemented in a persistent authentication system. Both of these charac-
teristics are measured from a distance, and authentication is performed contin-
uously by sampling the modality recurrently.

The data used for the experiments are from the CAVIAR dataset [10]. The
dataset comprises of a number of clips that show the frontal view of a corridor in
a shopping centre. The clips include people walking alone, meeting with others,
conversing, and window shopping. All the video clips are filmed in half-resolution
PAL standard (384 × 288 pixels, 25 frames per second) and compressed using
MPEG2.

We track each principal in the video and sample the modalities as they are
available. As the setting is a corridor with principals walking in both directions,
then principals are not always facing the camera and as a result, the facial expert
is only able to extract modalities from a subset of the total principals. In contrast,
the appearance expert is always available, though the area that is considered may
contain little relevant information due to occlusions of the tracked principal. In
the dataset 32 unique principals have been identified by both the facial and the
appearance expert, on which we test the performance of our error-rate-based
fusion technique. We measure the performance of the tracking by recording the
number of frames each principal have been successfully tracked by the persistent
authentication system and compare this to the ground truth. In addition, we run
the experiments again, this time tracking the principals using only the filtering
and flow techniques to evaluate the performance without the biometric experts.

The 32 unique subjects are tracked over multiple video clips, in varying poses
and illumination. An example of the captured faces for three principals are shown
in Fig. 5. The resolution of the video data is low, and as a result, the resolution
of the facial images are very low at 50 × 50 pixels.

We use the first captured face to construct an initial training set, then for each
subsequently captured face, we calculate the error rate using leave-one-out cross-
validation, after which the new face is added to the training set. It may happen

Fig. 5. Example of the captured faces for three principals from the CAVIAR dataset.

262 M.I. Ingwar and C.D. Jensen

Table 1. Error rates of the biometric experts

Biometric expert Error rate

Facial expert 4.72 %
Apperance expert 5.01 %
Error-rate-based fusion 1.44%

that a high number of biometric modalities are captured, thus we limit the size of
the training set to the six most recently captured images. In a production system,
we recommend using high quality enrolment signatures as the initial training
set and augmenting the training set with good quality captured samples. The
process is completed for both biometric experts and each step is monitored by a
human expert who records the performance of the system and of each biometric
experts. The resulting error rates are shown in Table 1.

The table shows that the overall performance of the system when using error-
rate-based fusion is significantly lower than any of the individual experts. Our
fusion technique has an error rate of 1.44 %, which is expected given the per-
formance of the individual experts and the results are in line with the results
published in earlier work [9]. The increase in performance is due to the fact that
we weigh the decision given by each expert based on their FAR and FRR values
as outlined in Eq. 1; a result, in our error-rate-based fusion strategy, the conflict
between experts are more likely to be resolved in favour of the best performing
expert.

The individual biometric experts have an error rate of 4.72 % for the facial
expert and 5.01 % for the appearance expert. We conjecture that the relatively
high error rate of the facial expert is caused by the very low resolution of the
training images and the greatly varied poses of the principals. However, this
shows that even in adverse conditions the LDA method gives robust results. The
performance of the appearance expert is not as affected by the low resolution
and thus the results are comparable to our previous studies.

Fig. 6. Computed track lengths vs. ground truth for the CAVIAR dataset

Remote Biometrics for Robust Persistent Authentication 263

To evaluate the impact of the remote biometrics we compare the performance
of the tracking in persistent authentication to the performance without using
biometric experts. We use the training data acquired from the CAVIAR dataset
and track each of the 32 principals from the point they enter the scene. We
measure the number of frames each principal is successfully tracked, with and
without the biometric experts, and compare this to the ground truth.

The results are shown in Fig. 6, which charts the results for each the 32
tracks. The majority of the tracks have few or no occlusions and no drop-outs
(principals leaving the scene completely), and in these situations both systems
achieve near perfect tracking of the principals. The accuracy of the tracking
drops when occlusions and drop-outs occur, for instance when principals enter a
shop or when multiple principals crowd the scene. The system may completely
lose track of a principal, in this case the remote biometrics are used to re-
associate the session with the correct principal. As a result, the system using
remote biometrics greatly outperforms the other system for a number of the
tracks, which is most profound in the tracks 7, 13 and 21.

6 Related Work

In this section, we explore the state of the art related to continuous authentica-
tion.

Corner and Noble [25–27] examine the problem of authentication when mobile
devices are lost or users leave a workstation logged in. They define traditional
authentication mechanisms as persistent because they rarely limit the duration
that the authentication is valid, so a user may leave a computer logged in for
several days. This means that anyone who steals a device that is logged in or
gets physical access to the workstation may usurp the authentication of the orig-
inal user. They define a transient authentication mechanism, where all data in
the system is encrypted and a small authentication token, worn by the user, is
needed to provide access to the encrypted data, thus ensuring that access can
only be granted when the token is in close proximity to the system. The token
stores the cryptographic keys and the proximity mechanism is based on short
range wireless communication.

The definitions of persistent and transient authentication by Corner and
Noble are device centric, authentication sticks to the device as long as the user
is present, so restrictions are put on the users, e.g., they have to wear the authen-
tication token. This creates problems when authentication tokens are forgotten,
borrowed or lost. Our definition of persistent authentication is user centric, which
means that authentication sticks to the user as long as the tracking is considered
reliable. This means that any authentication mechanism, e.g., passwords, PIN
or biometrics, can be used and that no additional requirements are placed on
the user.

Bardram et al. [28] define a context-aware user authentication mechanism,
where users need a smart card to identify themselves to the system and an RFID
based tracking system that is used to authenticate the user. This adds complexity

264 M.I. Ingwar and C.D. Jensen

for the users, by requiring them to carry two tokens, without offering significantly
improved convenience, i.e., the user still has to insert the smart card into the
system whenever authentication is required. In comparison, our method removes
the need to perform repeated authentication actions.

Klosterman and Ganger [29] define a continuous biometric-enhanced authen-
tication mechanism, which uses a biometric authentication module, based on face
recognition, to periodically re-authenticate users who are logged in to the system.
If, at some point, the biometrics of the user sitting in front of the monitor does
not correspond to the biometrics of the authenticated user, re-authentication is
required. This means that continuous authentication is achieved without addi-
tional requirements placed on the user, but their system authenticate a specific
user at a specific location, whereas we propose to track the user so that his
authentication may be reused in different locations.

Altinok and Turk [30] present an approach for temporal integration based
on uncertainty propagation over time for a multimodal biometric system. Their
method operates continuously by computing expected values as a function of
time differences. The system generates continuous results in terms of confidence
in the identity of the user, which makes it possible to adjust the security level
accordingly in real time. Experimental results with simulated data of face, voice,
and fingerprints have shown that the system can provide continuous authenti-
cation results which are consistently better than the individual components of
the system. The authors conclude that comparing these preliminary results to a
true multimodal database is very important for continued work in the field.

Sim et al. [31] develop a continuous authentication system based on multi-
modal remote biometrics in a Bayesian framework that combines both temporal
and modality information holistically. This approach allows the system to evalu-
ate the probability that the user is still present even when there is no observation.
The authors are successful in integrating results from a fingerprint biometric
classifier with a face classifier and develop a model that intuitively separates the
uncertainty of the dynamic model from that of the sensor model. Muncaster and
Turk [32] take similar approach as [31], but use a Dynamic Bayesian Network to
achieve continuous authentication using multimodal biometrics. The advantage
of a dynamic Bayesian network is its ability to account for more hidden variables
and by modelling more hidden variables, the network is capable of modelling
important contextual information. Both approaches focus on a controlled envi-
ronment, such as a workstation, where an impostor hijacks a logged-in session.
In comparison, persistent authentication operates in an uncontrolled and uncon-
strained environment, where the sessions are user centric, requiring an impostor
to displace a legitimate user instead of hijacking an empty workstation.

Niinuma and Park [33] propose a framework for continuous authentication
that uses soft biometrics traits, similar to the appearance analysis presented
in this paper. The proposed framework automatically registers soft biometric
traits every time the user login and fuses soft biometric matching with conven-
tional authentication schemes, namely password and face biometric. The pro-
posed scheme has high tolerance to the user’s posture and the experimental

Remote Biometrics for Robust Persistent Authentication 265

results show the effectiveness of the proposed method for continuous authenti-
cation. The authors make a number of assumptions about the pose of the users
and the location of the body for appearance analysis, furthermore, occlusions
are handled on a very ad hoc basis. In contrast, persistent authentication uses
image segmentation to locate users which ensures that the regions of interest are
correctly identified for appearance analysis, additionally, advance filtering algo-
rithms are used to ensure occlusions does not revert the authentication session
and require the user to start over.

7 Conclusion

In this paper we examined the problem of providing a robust non-invasive
authentication service for mobile users in a smart environment. We used the
persistent authentication model, PAISE, to track principals and employed con-
tinuous authentication, based on remote biometrics, to identify principals and
re-associate lost authentication sessions. The result is a calm approach to authen-
tication, where mobile users are transparently authenticated towards the system,
which allows the provision of location-based services.

We used error-rate-based fusion to solve a common problem that occurs in
score level fusion, i.e., the scores of individual experts are usually incompatible,
as they have different score ranges as well as different probability distributions.
In our fusion strategy, we use error rates (false acceptance and false rejection
rates), which have the same definitions across different domains, and therefore
does not require any normalisation.

We evaluated our error-rate-based fusion strategy on two remote biometric
modalities, namely facial recognition and appearance analysis. Our experimental
results on a publicly available dataset, show that our fusion strategy gives a
significant improvement over each of the individual experts. This increase in
accuracy is especially useful for security sensitive biometric applications where
the performance of the biometric system is important. We further evaluated the
performance of the persistent authentication system with regard to the accuracy
of the tracking. Our results show that using remote biometrics help identify
principals who are difficult to track due to occlusions in crowded scenes. In
addition, remote biometrics allows the system to re-identify principals who drop
out of view of the camera and re-enter at a later stage.

Finally, we conclude that the PAISE model provides a useful abstraction for
authentication systems, which may greatly improve the usability of traditional
user authentication.

References

1. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple
features. In: Computer Vision and Pattern Recognition (2001)

2. Jones, M., Viola, P.: Robust real-time object detection. In: Workshop on Statistical
and Computational Theories of Vision (2001)

266 M.I. Ingwar and C.D. Jensen

3. Weiser, M., Brown, J.: Designing calm technology. PowerGrid J. 1, 1–5 (1996)
4. Weiser, M.: The computer for the 21st century. Scientific American 265(3), 66–75

(1991)
5. Kirschmeyer, M., Hansen, M.S.: Persistent authentication in smart environments.

IMM-THESIS: 2008–16, Technical University of Denmark (2008)
6. Ingwar, M.I., Jensen, C.D.: Towards secure intelligent buildings. In: Proceedings

of the 5th Nordic Workshop on Dependability and Security (NODES’11) (2011)
7. Jensen, C.D., Geneser, K., Willemoes-Wissing, I.C.: Sensor enhanced access con-

trol: extending traditional access control models with context-awareness. In:
Fernández-Gago, C., Martinelli, F., Pearson, S., Agudo, I. (eds.) IFIPTM 2013.
IFIP AICT, vol. 401, pp. 177–192. Springer, Heidelberg (2013)

8. Cole, S.: More than Zero: accounting for error in latent fingerprint identification.
J. Crim. Law Criminol. (1973-) 95(3), 985–1078 (2005)

9. Ingwar, M.I., Ahmed, N., Jensen, C.D.: Error-rate-based fusion of biometric
experts. In: PST2013 International Conference on Privacy, Security and Trust
(PST) (2013)

10. Fisher, R.: CAVIAR Test Case Scenarios (2004)
11. Bhattacharyya, D.: Biometric authentication: a review. Int. J. u-and e-Service 2(3),

13–28 (2009)
12. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86

(1991)
13. Fisher, R.: The use of multiple measurements in taxonomic problems. Ann. Hum.

Genet. 7(2), 179–188 (1936)
14. Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. Fisherfaces: recogni-

tion using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell.
19(7), 711–720 (1997)

15. Adini, Y., Moses, Y., Ullman, S.: Face recognition: the problem of compensating
for changes in illumination direction. Pattern Anal. Mach. Intell. 19(7), 721–732
(1997)

16. Flickner, M., Sawhney, H., Niblack, W.: Query by image and video content: the
QBIC system. Computer 28(9), 23–32 (1995)

17. Kakumanu, P., Makrogiannis, S., Bourbakis, N.: A survey of skin-color modeling
and detection methods. Pattern Recogn. 40(3), 1106–1122 (2007)

18. O’Gorman, L.: Comparing passwords, tokens, and biometrics for user authentica-
tion. Proc. IEEE 91(12), 2021–2040 (2003)

19. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time
tracking. Comput. Vis. Pattern Recogn. 2, 246–252 (1999)

20. Stauffer, C., Grimson, W.: Learning patterns of activity using real-time tracking.
IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 747–757 (2000)

21. Kalman, R.: A new approach to linear filtering and prediction problems. J. Basic
Eng. 82, 35–45 (1960)

22. Welch, G., Bishop, G.: An introduction to the Kalman filter. Technical report,
University of North Carolina (1995)

23. Farneback, G.: Fast and accurate motion estimation using orientation tensors and
parametric motion models. In: Proceedings of 15th International Conference on
Pattern Recognition (2000)

24. Farneback, G.: Very high accuracy velocity estimation using orientation tensors,
parametric motion, and simultaneous segmentation of the motion field. In: Pro-
ceedings of the Eighth International Conference on Computer Vision 2001, ICCV
2001 (2001)

Remote Biometrics for Robust Persistent Authentication 267

25. Corner, M., Noble, B.: Zero-interaction authentication. In: Proceedings of the 8th
Annual International Conference on Mobile Computing and Networking, pp. 1–11
(2002)

26. Noble, B.D., Corner, M.D.: The case for transient authentication. In: Proceedings
of the 10th Workshop on ACM SIGOPS European Workshop: Beyond the PC -
EW10 , p. 24 (2002)

27. Corner, M., Noble, B.: Protecting applications with transient authentication. In:
International Conference on Mobile Systems, Applications, and Services (MobiSys)
(2003)

28. Bardram, J.E., Kjær, R.E., Pedersen, M.Ø.: Context-aware user authentication -
supporting proximity-based login in pervasive computing. In: Dey, A.K., Schmidt,
A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS, vol. 2864, pp. 107–123. Springer,
Heidelberg (2003)

29. Klosterman, A., Ganger, G.: Secure continuous biometric-enhanced authentication.
Technical report, Parallel Data Laboratory (2000)

30. Altinok, A., Turk, M.: Temporal integration for continuous multimodal biometrics.
In: Proceedings of the Workshop on Multimodal User Authentication (1) (2003)

31. Sim, T., Zhang, S.: Continuous verification using multimodal biometrics. Pattern
Anal. Mach. Intell. 29(4), 562–570 (2007)

32. Muncaster, J., Turk, M.: Continuous multimodal authentication using dynamic
Bayesian networks. In: Proceedings of the 2nd Workshop of Multimodal User
Authentication (2006)

33. Niinuma, K., Park, U., Jain, A.K.: Soft biometric traits for continuous user authen-
tication. IEEE Trans. Inf. Forensics Secur. 5(4), 771–780 (2010)

Classifying Android Malware
through Subgraph Mining

Fabio Martinelli1, Andrea Saracino1,2, and Daniele Sgandurra1(B)

1 Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa, Italy
{fabio.martinelli,daniele.sgandurra}@iit.cnr.it

2 Dipartimento di Ingegneria dell’Informazione, Università di Pisa, Pisa, Italy
andrea.saracino@iet.unipi.it

Abstract. Current smartphones are based upon the concept of apps,
which are lightweight applications that are distributed through on-line
marketplaces, such as Google Play (for Android devices). Unfortunately,
this market-centric model is affected by several major security and trust
issues, due to the fact that anyone can easily create, and deploy through
the market, a malicious app that could potentially lead to a massive
malware spread.

In this paper, we propose a framework to classify Android malware
based upon the concept of common patterns of actions executed by mali-
cious applications. The basic idea is to extract, from known malware, a
subset of frequent subgraphs of system calls that are executed by most
of the malware. This set of subgraphs constitutes a database of known
malicious features. Then, when a new application is downloaded from a
market, it is first run in a sandbox to monitor its behavior. This will
result in an execution trace that may contain some of the subgraphs pre-
viously found in malware. The resulting vector of the found subgraphs
is given to a classifier that returns its decision in terms of a likely mal-
ware or not. Preliminary tests executed both on known good apps and
malware confirm the effectiveness and quality of our proposal.

Keywords: Intrusion detection system · Android · Mobile security ·
Malware · Classification

1 Introduction

In the last years, smartphones have drastically changed their nature by increas-
ing the number and complexity of their capabilities. In fact, smartphones now
offer a larger amount of services and applications than those offered by personal
computers. At the same time, an increasing number of security threats targeting
smartphones has emerged. Malicious users and hackers are taking advantage of

The research leading to these results has received funding from the EU Sev-
enth Framework Programme (FP7/2007-2013) under grant n. 256980 (NESSoS),
n. 257930 (Aniketos), from PRIN Security Horizons funded by MIUR with D.D.
23.10.2012 n. 719, and EIT ICT Labs activity 13077.

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 268–283, 2014.
DOI: 10.1007/978-3-642-54568-9 17, c© Springer-Verlag Berlin Heidelberg 2014

Classifying Android Malware through Subgraph Mining 269

both the limited capabilities of mobile devices and the lack of standard security
mechanisms to design mobile-specific malware that access sensitive data, steal
the user’s phone credit, or deny access to some device functionalities. In partic-
ular, Android is the platform that currently has the highest number of malware.
Three factors are the main sources of these security threats: (1) a widespread
platform, (2) a readily accessible development tools, and (3) a sufficient attacker
motivation (usually, monetary).

To mitigate these security threats, various mobile-specific Intrusion Detection
Systems (IDSes) have been recently proposed. Most of these IDSes are behavior-
based, i.e. they do not rely on a database of malicious code signatures, as in
the case of signature-based IDSes. A behavior-based (or anomaly-based) IDS is
a system that attempts to learn the normal behavior of an application. To this
end, the system is firstly trained by receiving as input a set of parameters that
describes the way an application normally behaves. Secondly, during the normal
usage, the IDS is able to recognize as suspicious any application behavior that
strongly differs from those well-known, i.e. learnt during the first phase.

In this paper, we describe CAMAS, a framework for Classification of Android
MAlware through Subgraphs. CAMAS extracts execution traces from several
malicious applications and then it mines common subgraphs from these traces.
Meaningful subgraphs are selected through a refinement process. Afterwards,
these meaningful subgraphs are searched in the execution traces of newly down-
loaded applications to discover misbehaviors. In the end, a classifier analyzes
these data concerning found subgraphs in the downloaded application to assess
if this application should be considered malicious or not.

The main contributions of the paper are the following:
– CAMAS, a framework for the Classification of Android MAlware through

Subgraphs mining;
– the definition of an app’s behavior using a vector of features, where each

feature is a subgraph of actions;
– the definition of an algorithm to refine mined frequent subgraphs (SubGraph-

Miner);
– the definition of an algorithm to find frequent subgraphs in running applica-

tions (SubgraphFinder);
– an implementation of CAMAS in Java of the tracing, subgraphs mining and

classification; graphs are exported in GML (Graph Modeling Language);
– CAMAS has been tested on 12 real malware and good apps.

The rest of the paper is organized as follows. Section 2 introduces CAMAS
and discusses its methodology to classify malware. Section 3 reports some prelim-
inary experiments that show the effectiveness of the proposed approach. Finally,
after discussing some related works in Sect. 4, Sect. 5 concludes by discussing
some future extensions.

2 CAMAS Framework

To identify misbehaviors performed by malicious applications, we need a frame-
work to analyze the application behavior at a lowest possible level, since at the

270 F. Martinelli et al.

user’s level it might by hard to notice malicious actions. The proposed framework
CAMAS (Classification of Android MAlware through Subgraphs) firstly ana-
lyzes malware executions at the lowest level (i.e., at the system call level), and
then it mines for common execution subgraphs, by looking for subgraphs that
are frequent among the analyzed malware. In the next step, CAMAS analyzes
applications that are downloaded from marketplaces and it monitors their execu-
tions in a sand-boxed environment. If the analyzed executions contain suspicious
subgraphs, the application is considered malicious. This analysis is performed
by a classifier, which learns to recognize executions of malicious applications by
looking at the suspicious subgraphs that they include. The whole classification
process can be summarized in the following steps:

1. Collection of malicious executions extracted from a database of known Android
malware (application tracing);

2. Mining of common subgraphs across the malware executions (subgraph fea-
tures extraction);

3. Extraction of application execution patterns, executed in a sandbox mode
(safe application execution);

4. Search of suspicious subgraphs in the extracted application execution (sub-
graphs locator);

5. Classification of the monitored application (application classification).

In the following, we discuss the methodology and tools that CAMAS uses to
extract subgraphs, to perform subgraphs mining and to classify Android appli-
cations.

2.1 Malware Subgraphs Mining

To build a representative set of malware behaviors, CAMAS needs to find actions
that are frequently performed by malware. In the proposed framework, these
actions are represented by subgraphs of system calls. At a high level, the steps
performed to extract the common pattern of malware behavior, are the following:

– Malware monitoring, through system call tracing;
– Graph creation, using cluster of related system calls;
– Common subgraphs extraction (subgraph mining) across malware, by carefully

choosing the frequency, nodes number and edges number.

These phases are discussed in detail in the following.

Malware Monitoring. In the first phase, a set of known malicious applications
are installed on an Android device and are monitored while performing misbe-
haviors. CAMAS needs to ensure that these misbehaviors are performed during
the monitoring phase. To this end, during the training phase only, CAMAS
exploits the intrusion detection system MADAM [1], which is able to detect
with a good accuracy common Android malware misbehaviors. The monitoring
is performed at the system-call level: to perform the monitoring at this level,
CAMAS includes a Linux kernel module that hooks the issued system calls and

Classifying Android Malware through Subgraph Mining 271

stores the sequence of calls in a shared buffer. Afterward, the shared buffer is
analyzed by an Android application, which builds a graph of system calls, which
we call execution trace (or simply trace), which describes the execution of the
monitored malware.

Graph Creation. For each malware, multiple traces are collected and then
are merged together to build a multi-graph of system calls, i.e. a graph where
each node is a system call and the directed edges represent the transition from
a system call to the next one. Formally, a system call trace is expressed through
an oriented graph G = (V,E), where each system call is a node vi ∈ V , and
edges ei,j ∈ E represent the transition from a system call vi into the next
one vj . In the resulting graph, each edge is labelled with a sequence number
that represents the position in the trace of a transition from a system call to
the next one. The resulting graph may contain more occurrences of the same
edge, i.e. ∃ei1,j1 , ei2,j2 with i1 = i2 and j1 = j2, or edges in-going and outgoing
from the same node, i.e. ∃ei,j with i = j. This graph type is known in graph
theory as multi-graph. Several execution traces (i.e. multi-graphs) are merged.
The operation of merging two multi-graphs G1 = (V1, E1) and G2 = (V2, E2),
returns a new graph G3 = (V3, E3) with V3 = V1 ∪ V2 and E3 = E1 ∪ E2.

Both the Linux kernel-module and the Android application that reads the
shared buffer are based upon the PICARD framework [2] and are included in
the GraphCreator CAMAS component. PICARD is the first framework that has
introduced the concept of ActionNode, i.e. a subgraph of related and consecu-
tive system calls in an execution trace. ActionNodes represent high-level and
complex operations (actions). The concept of ActionNodes is exploited by the
GraphCreator to build execution graphs. To this end, the trace of system calls
issued by the tested malware is converted into a multi-graph of ActionNodes,
which results more expressive than a graph of simple system calls. Currently, an
ActionNode is composed by the automaton of the system calls performed consec-
utively on the same file. We would like to point out that CAMAS GraphCreator is
expressive enough to exploit any relation of system calls and alternative notions
of relations among system calls can be used, such as their criticality level. In
the end, for each tested malware, the GraphCreator returns a multi-graph of
ActionNodes.

Subgraph Mining. After having generated the multi-graphs of ActionNodes
from malware executions, CAMAS exploits a mining algorithm to find common
execution subgraphs from these multi-graphs. Set of frequent subgraphs with
an increasing number of ActionNodes are extracted from the traces using the
ParSeMiS [3] toolset. The rationale behind this approach is that malware which
perform similar misbehavior should show common actions in their execution
graphs. The ParSeMiS toolset returns the set of subgraphs with the same struc-
ture, which can be found in at least a chosen (high) percentage of malicious
different malware executions. The most important parameter used during this
phase is the frequency of these subgraphs, i.e. the percentage of malware having
the same subgraph in their multi-graphs of ActionNodes. A low number means

272 F. Martinelli et al.

that the mined subgraphs are found in only some malware, whereas a high num-
ber means that the mined subgraphs are found in almost all of the malware.
Keep in mind that in this last case also subgraphs that are frequent in any kind
of apps (i.e., even good ones) could be found. Hence, it might not be always the
case that a high number of frequency means a more representative feature of
malware. This is handled by a refinement process.

Some other parameters that can be configured during the subgraph mining
are the minimum edge and the minimum node number contained in each mined
subgraphs. In fact, the number of common subgraphs mined can be extremely
high, in the order of 105. Such a number of features is not suitable for a pattern
recognition problem, since many subgraphs may be non-representative. For this
reason, a fine refinement process is performed on the mined subgraphs, to find
those features that are more representative. The refinement process implements
these steps:

1. Select subgraphs that exist in at least 50 % of the analyzed malware.
2. Since graphs with few nodes are too generic and non representative of specific

behavior, the minimum number of nodes in mined subgraphs is gradually
increased, starting from a number of nodes that is set to an acceptable size
after a refinement process, so as not to produce too many subgraphs, and
gradually increased until common subgraphs are not found anymore.

3. Increase the percentage of analyzed malware required to contain a mined
subgraph and go back to step 2.

4. Save common subgraphs in the database in a common format (GML).

A simplified version of the CAMAS algorithm to mine frequent subgraphs in
shown in Algorithm 1.

Keep in mind that the algorithm is manually refined at each round to pro-
duce a significative number of subgraphs, i.e. features. This means that, for
each frequency value, firstly CAMAS tries to discover the number of nodes
and edges for which the number of found subgraphs is at an acceptable level.

Set frequency at 50% of the analyzed number of malware;
Set node frequency at an acceptable size after a refinement process;
while frequency ≤ 100% do

mine for commons subgraphs;
if there are still subgraphs then

add found subgraphs to frequency-node-edges.GML file;
increase nodes number;

else
increase frequency of 1 step;
set node frequency at an acceptable size after a refinement process;

end

end

Algorithm 1: Simplified Algorithm to Mine Frequent Subgraphs

Classifying Android Malware through Subgraph Mining 273

Fig. 1. First part of CAMAS workflow: graph generation and subgraphs mining

Then, it gradually increases these values until subgraphs are not found anymore.
This means that, even if the number of subgraphs found is somehow propor-
tional to the number of tested malware, this number is also kept limited in all
the configurations in such a way that the number of features is not extremely
high.

To further refine the selection process, the subgraphs that are also common to
some non-malicious applications are removed. To this end, ActionNodes graphs
are also extracted from good applications, i.e. non-infected applications, and
then analyzed by CAMAS to mine subgraphs that are in common with mali-
cious applications. Usually, these subgraphs are related to common operations,
performed by several applications, and, hence, are not significative in the clas-
sification process. In the end, the remaining subgraphs, i.e. those only found in
malware, are considered suspicious and meaningful for the classification process.

274 F. Martinelli et al.

These graphs are stored in a database of subgraphs, which are expressed in
Graph Markup Language (GML) format.

The CAMAS module SubGraphMiner implements all of the functions
described above. The parameters for the SubGraphMiner are the minimum sub-
graph frequency, the minimum number of ActionNodes and subgraph edges, and
can be easily configured. Figure 1 pictorially depicts the graph generation and
subgraphs mining phases.

2.2 Classifying Android Applications

Once the malicious subgraphs database has been created, CAMAS analyzes the
behaviors of unknown (e.g., recently downloaded) applications to state if they
are infected or they hide malicious code. A monitored application is firstly run in
a sandbox for a sufficiently long time interval simulating at best real use-cases.
However, being in a sandbox, even if the application is malicious, it can cause
only limited damage. An example of sandbox is the Android device emulator,
which is able to emulate any function of a real device, but no hardware can be
damaged, nor USIM card data or money can be stolen. Notice that a sandbox
could be implemented also by a real device with full functionalities, in which we
are not interested if it is damaged.

Also in this case, after having monitored the application in a sandbox,
a multi-graph of ActionNodes is built from its execution traces. Notice that
ActionNodes are uniquely identified in the training phase, i.e. each ActionNode
is uniquely identified by a number in such a way that if there are two nodes
of two different (sub)graphs with the same identifier, then it means they have
the same internal structure. This step is required when searching for known
malware subgraphs inside applications, since the framework exploits the GML
format that omits the semantics of the node (i.e., the structure of the ActionN-
odes). Hence, without this unique identification, two subgraphs could end up in
being recognized as equal (because they have the same structure), even if only
their identification (syntax) is the same, but their semantics (internal structure)
is different. Some examples of ActionNodes found in the tested malware set are
shown in Fig. 3: each picture is subscribed by the unique ActionNode identifier,
where each ActionNode is composed by several system call nodes.

To discover whether the ActionNodes multi-graph of a monitored applica-
tion includes some malicious subgraphs, a CAMAS application, SubgraphFinder,
has been implemented. For each malicious subgraph MSi in the database, Sub-
graphFinder checks if MSi exists in the monitored application multi-graph.
Then, SubgraphFinder generates a binary vector of n elements, where n is the
total number of malicious subgraphs stored in the database of malware. Each
element i of this vector is set to 1 if the subgraph MSi is found in the monitored
application, 0 otherwise. At the end, this vector is given to a classifier to test
whether the application is considered a malware or not.

Figure 2 pictorially depicts the subgraphs finding and classification phases.

Classifying Android Malware through Subgraph Mining 275

Fig. 2. Second part of CAMAS workflow: subgraphs finding and classification

3 Preliminary Experiments

In this section, we discuss some preliminary results, by showing the various
phases of the classification process on some real Android genuine applications
and malware. In the malware subgraph mining phase, we have collected repre-
sentative malicious subgraphs from 12 real malware belonging to the following
classes:

– SMS Trojans: maliciously send stealthy SMS messages to leak the user
credit, maliciously submit the user to premium services, or send to the attacker
user’s private data.

– Private Data Trojans: maliciously retrieve private data like contact lists,
IMEI and IMSI codes, received/sent SMS messages. Then, these data are sent
to an external server controlled by the attacker through an available Internet
connection.

– Rootkits: malware that obtain root privileges, exploiting a system weakness,
then open a backdoor for the attacker. Installing other malicious applications,
send private data to the attacker, or acting as a C&C bot are typical behaviors
of a smartphone infected by a rootkit.

The misbehaviors that are made by these malware can be hardly identified by
users, since no visible traces are generally left.

276 F. Martinelli et al.

The whole CAMAS framework has been implemented in Java, except for the
tracing kernel module (written in C), and is composed of about 3,000 lines of
code. The testbed of the experiments was:

– Android emulator with modified kernel (2.6.29), which logs the trace system
calls on text files;

– CAMAS is run on an external server, which receives log files and runs Sub-
GraphMiner (during the training phase) and then SubgraphFinder (during
the monitoring phase).

3.1 Malicious Patterns Collection

In the first phase, we have monitored the behavior of 12 Android real malware1,
belonging to different classes of malware. The malware were hidden in good-
looking applications, found on both official and unofficial online markets, which
work correctly from a user perspective (and, hence, hard to identify as malicious
at the highest level).

We report here the monitored malware package name:

– KMIN
• com.km.launcher

– ROOT EXPLOIT
• com.z4mod.z4root:three
• Super.mobi.eraser
• com.z4mod.z4root
• com.zft
• com.itfunz.itfunzsupertools
• com.droiddream.android.afdvancedfm
• com.aps.hainguyen273.app2card

– SMS TROJAN
• tp5x.WGt12
• com.software.installer

– MOGAVA
• ir.sharif.iranianfoods

As previously said, the CAMAS kernel module logs system calls issued
by these applications, by checking if the name of the current process, called
current->comm, which is the name of the current running process inside the
Linux kernel, is equal to one of the malware names previously reported. Concur-
rently, a Java activity of a CAMAS module reads periodically from the shared
buffer the trace of system calls and generates a file for each application, which
contains the traces of all the issued system calls and their parameters. The
sequence of systems calls constitutes a graph that, using GraphCreator, (i) is
converted into a graph of ActionNodes (ii) is exported using Graph Markup
Language (GML) format and stored in a database. Finally, GraphCreator joins
all the files together into a single GML file, to facilitate to process of subgraph
mining. In the next Section, we discuss how the GML file with all multi-graphs
is mined to find frequent subsets.
1 Found at http://contagiominidump.blogspot.it/.

http://contagiominidump.blogspot.it/

Classifying Android Malware through Subgraph Mining 277

Fig. 3. ActionNodes examples

3.2 Subgraph Mining

From the GML containing all the malware multi-graphs, CAMAS SubGraph-
Miner extracts those subgraphs that are common across malware multi-graphs.
To this end, CAMAS implements Algorithm 1. To show an example of subgraph
mining across malware, Table 1 shows the sequence of commands executed by
CAMAS SubgraphFinder on a GML file containing all the 12 tested malware
multi-graphs of ActionNodes (in the example, this file is called 12Malware.gml).
Each of these commands returns a GML file containing a set of subgraphs with:

– different frequency (parameter --minimumFrequency),
– node count (parameter --minimumNodeCount),
– edge count (parameter --minimumEdgeCount).

To be able to distinguish all the subgraphs that will be used by Sub-
graphFinder for the vector features, each file has the following name format:
12Malware-frequency-nodecount-edgecount.gml. As an example, in Table 1 Sub-
graphFinder outputs 10 features from the first file, i.e. all the common subgraphs
across malware with at least 10 nodes and at least 12 edges and found in at least
7 malware out of 12. In the example, since SubgraphFinder has been scheduled to
generate 3 different subgraphs collections (respectively, 12Malware-7-10-12.gml,
12Malware-7-9-14.gml, 12Malware-7-8-14.gml), the length of the feature vector
is the sum of all the subgraphs found in these 3 files. Hence, in the end, in this
example the vector has length 10 + 15 + 16, i.e. 41.

Figure 4 reports an example of one of the subgraphs found in the GML file:
keep in mind that each node identifier (2, 3, 4, etc.) refers to an ActionNode

278 F. Martinelli et al.

Table 1. Exploiting SubGraphMiner to find common subgraphs

Fig. 4. Subgraph example

identifier. As an example, node 9 of the subgraph shown in Fig. 4 refers to the
ActionNode of Fig. 3 with identifier 9.

After this phase, CAMAS exploits this database of subgraphs to locate mali-
cious subgraphs in the monitored executions of applications. As previously said,
this monitoring is performed in a controlled environment to avoid that unwanted
malicious executions may damage the smartphone.

3.3 Run-Time Classification

When monitoring applications to find subgraphs, the presence or absence of a
subgraph in the monitored execution of an application is used as feature to dis-
cern between a malicious application and a good one. For each new application,
several graphs are generated that represent the application usage. The union
of these graphs for a new application XYZ is converted into a multi-graph of

Classifying Android Malware through Subgraph Mining 279

ActionNodes and is stored in a file XYZ.gml. After this phase, CAMAS Sub-
graphFinder searches if each of the subgraphs stored in GML subgraph files
(such as 12Malware-7-10-12.gml, 12Malware-7-9-14.gml, 12Malware-7-8-14.gml
of the previous examples) are found in XYZ.gml and then exploits computational
intelligence tools, i.e. Bayesian classifiers and artificial neural networks (ANN),
to distinguish a malicious execution from a good one. Suppose that the database
of malicious features is composed of n elements (41 in the previous example),
then SubgraphFinder builds a vector of n elements by searching if each of the n
subgraphs is present in the XYZ.GML file. Each element of the vector is set to
1 if the subgraph at the i-th position exists in the XYZ.GML file. The element
is set to 0 otherwise.

Following this methodology, we have collected data from 13 malicious appli-
cations and 7 good ones. Namely, the genuine applications are the follow-
ing: AngryBirds, FruitNinja, Google Calendar, Launcher, Android Contact
Manager, Calculator and Messages, whereas the malicious applications have
been reported previously. We have collected more than 500 distinct runs, and
in the end CAMAS has managed to find 80 distinct vectors. From these vec-
tors, there are 33 vectors that are considered as belonging to the malicious class.
Hence, the other 47 vectors extracted from runs of non malicious applications
are considered genuine. We have used this dataset to extract training and test-
ing sets, using the holdout method, which selects 70 % of the vectors to be used
for the training set and the remaining 30 % to be used as testing set. In the
experiments, the following classifiers have been used:

– linear discriminant classifier (LDC),
– quadratic discriminant classifier (QDC),
– k-nearest neighbor (K-NN),
– artificial neural networks (ANN).

The K-NN classifier, with a number of neighbors k = 2, has produced the best
results that we report here in form of a confusion matrix (see Table 2). On the
testing set, all the malicious vectors have been classified as malicious, whilst 2
good vectors have been wrongly classified as malicious.

As far as regards the overhead of the whole CAMAS framework, we can
partition it in the following classes:

– tracing overhead: less than 1 %;
– graph generation overhead: less than 1 s;

Table 2. Confusion matrix for testing set

Good Malicious

Good 12 2 14
Malicious 0 10 10

12 12 24

280 F. Martinelli et al.

– graph mining overhead: manually tuned to avoid the generation of files with
thousand of subgraphs. When refined, usually it takes 1-2 s for each subgraph
collection;

– graph searching overhead: order of milliseconds;
– classification overhead: order of milliseconds.

Hence, in the preliminary tests, the framework is able to detect all the exe-
cutions of malicious applications and the false positive rate can be considered
reasonable. The same holds for the run-time and off-line overhead.

4 Related Work

Crowdroid [4] is a machine learning-based framework that recognizes Trojan-like
malware on Android smartphones, by analyzing the number of times each sys-
tem call has been issued by an application during the execution of an action that
requires user interaction. A genuine application differs from its trojanized ver-
sion, since it issues different types and a different number of system calls. Crow-
droid builds a vector of n features (the Android system calls). Differently from
this approach, in CAMAS the vector of features is composed by n subgraphs of
system calls, which better describes the behavior of malware. A similar approach
is presented in [5], which also considers the system call parameters to discern
between normal system calls and malicious ones. CAMAS exploits system call
parameters as well to create ActionNodes, i.e. cluster of file-related system calls,
based upon the file descriptor parameter. Another system that exploits system
calls and computational intelligence is presented in [1], which is an anomaly-
based intrusion detection system that, differently from Crowdroid, monitors the
system globally, but it may not be able to detect some trojanized application
if their behavior faithfully represents the good ones. Differently from this work,
CAMAS is also able to detect the malicious application.

Another IDS that relies on machine learning techniques is Andromaly [6],
which monitors both the smartphone and user’s behaviors by observing several
parameters, spanning from sensors activities to CPU usage. 88 features are used
to describe these behaviors; the features are then pre-processed by feature selec-
tion algorithms. The authors developed four malicious applications to evaluate
the ability to detect anomalies. In CAMAS, we have tested only real applica-
tions/malware found on online market and/or malware repository.

Similarly to CAMAS sandboxed execution, [7] proposes AASandbox to per-
form static and dynamic analysis on Android apps to automatically detect sus-
picious applications using a sandboxing. However, in CAMAS user’s inputs are
not generated by the Monkey tool, but they are part of a analysis phase in which
users actively interact with the monitored application. Another work on sand-
boxed analysis of Android malware is presented in [8]. DroidAnalytics [9] is a
malware analytic system for malware collection, signature generation and associ-
ation based on similarity score by analyzing the system at the app/class/method
level. CAMAS, on the other hand, works at the system call level and can be
extended at any Android level.

Classifying Android Malware through Subgraph Mining 281

Barrera et al. [10] presents a methodology to empirically analyze permission-
based security models which makes novel use of the Self-Organizing Map (SOM).
The paper analyzes 1,100 Android apps and identifies some trends in how devel-
opers use the Android permissions model, such as that while Android has a large
number of permissions restricting access to advanced functionality on devices,
only a small number of these permissions are actually used by developers. Sanz et
al. [11] proposes a methodology for categorizing Android apps through machine-
learning techniques that, to represent each application, extracts different feature
sets, such as the frequency of occurrence of the printable strings, the different
permissions of the application itself and the permissions of the app. The seman-
tics of the features of CAMAS, differently from these approaches, are found at
the lowest possible level, i.e. at the kernel-level. This means that even if at the
highest-level, i.e. permission-level and/or user-level, a feature may be considered
un-harmful, because common among several applications (a permission encom-
passes several possible usage of the permission itself), at the lowest level it is
possible to actually discriminate a good usage of a permission and/or user-level
action from a bad one.

Damopoulos et al. [12] introduces iDMA, a software for iOS able to dynami-
cally monitor and analyze the behavior of any running application in terms API
calls. The authors have created behavioral profiles from tested applications and
malware that have been evaluated through machine learning classifiers. Enck et
al. and Ongtang et al. [13,14] propose Kirin security service for Android, which
performs lightweight certification of applications to mitigate malware at install
time. Kirin certification uses security rules that match undesirable properties in
security configuration bundled with applications. Schmidt et al. [15] performs
static analysis on the executables to extract functions calls usage using readelf
command. Hence, these calls are compared with malware executables for classi-
fication. Differently from these approaches, CAMAS performs the analysis of the
applications at run-time (in a sand-boxed environment) to be able to spot mali-
cious actions also in obfuscated applications. Finally, [16] surveys some security
solutions for mobile devices.

5 Conclusions and Future Work

We have presented CAMAS, a tool for the analysis and classification of mali-
cious Android applications, through pattern recognition on execution graphs.
The framework analyzes behaviors at system-call level and exploits the concept
of ActionNode to increase the system expressiveness. The framework finds com-
mon subgraphs in malware executions and classifies other apps by searching for
common patterns of the previously mined subgraphs. The framework is highly
configurable and can be easily extended to monitor and analyze other event
types.

A future extension considers the detection of high level and security relevant
events, such as network actions. We are also planning to increase the number of
monitored system calls and explore different relations used to build ActionNodes,

282 F. Martinelli et al.

such as the criticality class of system calls. Finally, a future extension will include
a larger dataset and different types of classifiers and feature-selection algorithms.

References

1. Dini, G., Martinelli, F., Saracino, A., Sgandurra, D.: MADAM: a multi-level anom-
aly detector for android malware. In: Kotenko, I., Skormin, V. (eds.) MMM-ACNS
2012. LNCS, vol. 7531, pp. 240–253. Springer, Heidelberg (2012)

2. Aldini, A., Martinelli, F., Saracino, A., Sgandurra, D.: A collaborative framework
for generating probabilistic contracts. In: Smari, W.W., Fox, G.C. (eds.): Proceed-
ings of the 2013 IEEE International Conference on Collaboration Technologies and
Systems, SECOTS 2013, pp. 139–143. IEEE Computer Society (2013)

3. Philippsen, M.: Parsemis: the parallel and sequential mining suite. http://www2.
informatik.uni-erlangen.de/EN/research/ParSeMiS

4. Burguera, I., Zurutuza, U., Nadijm-Tehrani, S.: Crowdroid: behavior-based mal-
ware detection system for android. In: SPSM ’11, October 2011. ACM (2011)

5. Mutz, D., Valeur, F., Vigna, G.: Anomalous system call detection. ACM Trans.
Inf. Syst. Secur. 9(1), 61–93 (2006)

6. Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y.: “Andromaly”: a behav-
ioral malware detection framework for android devices. J. Intell. Inf. Syst. 38(1),
161–190 (2012)

7. Blasing, T., Batyuk, L., Schmidt, A.D., Camtepe, S., Albayrak, S.: An android
application sandbox system for suspicious software detection. In: 2010 5th Inter-
national Conference on Malicious and Unwanted Software (MALWARE), pp. 55–62
(2010)

8. Reina, A., Fattori, A., Cavallaro, L.: A system call-centric analysis and stimulation
technique to automatically reconstruct android malware behaviors. In: Proceedings
of the 6th European Workshop on System Security (EUROSEC), Prague, Czech
Republic, April 2013 (2013)

9. Zheng, M., Sun, M., Lui, J.C.: Droidanalytics: a signature based analytic system
to collect, extract, analyze and associate android malware. In: 12th IEEE Interna-
tional Conference on Trust, Security and Privacy in Computing and Communica-
tions (TrustCom 13), Melbourne, Australia, July 2013 (2013)

10. Barrera, D., Kayacik, H.G., van Oorschot, P.C., Somayaji, A.: A methodology
for empirical analysis of permission-based security models and its application to
android. In: Proceedings of the 17th ACM Conference on Computer and Commu-
nications Security, CCS ’10, pp. 73–84. ACM, New York (2010)

11. Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P.: On the automatic
categorisation of android applications. In: 2012 IEEE Consumer Communications
and Networking Conference (CCNC), pp. 149–153 (2012)

12. Damopoulos, D., Kambourakis, G., Gritzalis, S., Park, S.: Peer-to-Peer Netw. Appl.
5, 1–11 (2012)

13. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application
certification. In: CCS ’09: Proceedings of the 16th ACM Conference on Computer
and Communications Security, pp. 235–245. ACM, New York (2009)

14. Ongtang, M., McLaughlin, S., Enck, W., McDaniel, P.: Semantically rich
application-centric security in android. In: Proceedings of the 2009 Annual Com-
puter Security Applications Conference, ACSAC ’09, December 2009, pp. 340–349
(2009)

http://www2.informatik.uni-erlangen.de/EN/research/ParSeMiS
http://www2.informatik.uni-erlangen.de/EN/research/ParSeMiS

Classifying Android Malware through Subgraph Mining 283

15. Schmidt, A.D., Bye, R., Schmidt, H.G., Clausen, J.H., Kiraz, O., Yüksel, K.A.,
Çamtepe, S.A., Albayrak, S.: Static analysis of executables for collaborative mal-
ware detection on android. In: Proceedings of IEEE International Conference on
Communications, ICC 2009, Dresden, Germany, 14–18 June 2009, pp. 1–5. IEEE
(2009)

16. La Polla, M., Martinelli, F., Sgandurra, D.: A survey on security for mobile devices.
IEEE Commun. Surv. Tutorials 15(1), 446–471 (2013)

Introducing Probabilities in Contract-Based
Approaches for Mobile Application Security

Gianluca Dini1, Fabio Martinelli2, Ilaria Matteucci2, Andrea Saracino1,2,
and Daniele Sgandurra2(B)

1 Dipartimento di Ingegneria dell’Informazione, Università di Pisa, Pisa, Italy
gianluca.dini,andrea.saracino@iet.unipi.it

2 Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa, Italy
{fabio.martinelli,ilaria.matteucci,

daniele.sgandurra}@iit.cnr.it

Abstract. Security for mobile devices is a problem of capital impor-
tance, especially due to new threats coming from malicious applications.
This has been proved by the increasing interest of the research commu-
nity on the topic of security on mobile devices. Several security solutions
have been recently proposed, to address the uprising threats coming from
malicious applications. However, several mechanisms may result not flex-
ible enough, hard to apply, or too coarse grained, e.g. several critics have
been raised against the Android permission system.

We argue that, it is possible to obtain more flexible security tools
and finer grained security requirements by introducing probability mea-
surements.

In this paper we discuss how to introduce probabilistic clauses into
the Security-by-Contract and the Security-by-Contract-with-Trust frame-
works, revising the main building blocks and providing tools to write
probabilistic contracts and policies. A proof-of-concept implementation
on Android system has also been presented.

Keywords: Probabilistic contract · Probabilistic policy compliance ·
Contract-based security approaches · Run-time enforcement

1 Overview

New generation mobile devices (e.g., smartphones and tablets) are becoming
day-by-day more powerful and popular. The growth in computing power, ubiq-
uitousness and capabilities of these devices has been parallelized by the growth of
available applications, specifically developed for smartphones and tablets. How-
ever, these applications may be not completely secure. In fact, malicious devel-
opers strive to design and deliver applications that may damage both users and

The research leading to these results has received funding from the EU Sev-
enth Framework Programme (FP7/2007-2013) under grant n. 256980 (NESSoS),
n. 257930 (Aniketos), from PRIN Security Horizons funded by MIUR with D.D.
23.10.2012 n. 719, and EIT ICT Labs activity 13077.

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 284–299, 2014.
DOI: 10.1007/978-3-642-54568-9 18, c© Springer-Verlag Berlin Heidelberg 2014

Introducing Probabilities in Contract-Based Approaches 285

devices. In particular some applications may hide a Trojan horse that, even if it
looks unharmful, in background it performs malicious actions that the users did
not expect to happen.

The current security model, which rules (i) if an application can be safely
installed on the device, (ii) what kind of actions the application may execute
once installed, still suffers from several weaknesses, in particular in its capacity
of expressing proper contracts. Semantics of current security models is too näıve
since it is either based upon trust relationships or upon statements of purpose.
In the first case, users accept to run an application if they trust the provider.
In the second one, providers state the security relevant actions performed by an
application and it is up to the users to decide whether run the application if they
consider these operations safe. In the former case the trust level of the trusted
entity also determines the code privileges, essentially relegating an application
into the “all or nothing” policy, while in the latter case the semantics is too-
coarse grained (e.g., Android permissions) or hardly usable. For example, in
the Android system, security relevant actions are declared through permissions,
which are difficult to understand for average users.

In this paper, we introduce probability aspects into the workflow of two
contract-based approaches developed for mobile devices, namely the Security-by
Contract [1] (S × C) and the Security-by-Contract-with-Trust [2,3] (S × C × T)
frameworks. These two approaches integrate several security techniques to build
a chain of trust, which, in the end, ensures that the downloaded application will
execute only security actions that are allowed by the user’s policy. To this end,
we introduce a probabilistic description of the behavior of an application and a
more expressive version of the user’s security requirements. Indeed, the current
models only permit the definition of a set of allowed actions, e.g., the Android
permission system (first box of Fig. 1). More expressive policies which take in
account a possible action history are modelled through automata that represent
allowed executions.

We propose a probabilistic automata-based model that enables the develop-
ers to define more expressive contracts through probabilistic clauses, e.g., how
often a security-relevant action may happen. The same expressiveness is given
to users to specify security policies. Since we include probabilistic clauses in the
specification of contracts and policies, the security mechanisms involved into the
workflows of S × C and S × C × T has to be redefined. Hence, we present a new
workflow for both S×C and S×C×T framework in which each module is updated
to support probabilistic functions. The advantage of using probabilities is the
possibility of describing more realistic usage scenarios for an application. In fact,
many applications depend on user inputs or context information and it is difficult
to define realistic policies based upon boolean conditions only. In these models,
all the possible execution paths are considered legal. Hence, a low-probability
operation is considered valid even if performed several times. For this reason, we
introduce probabilities in the definition of security clauses to define more fine-
grained contracts and policies. These descriptions better fit real application use

286 G. Dini et al.

Fig. 1. Graphical representation of the improvement in policies expressiveness.

cases and can be defined without alteration of the Security-By-Contract-with-
Trust workflow. Finally, we propose an extension to the Android permission sys-
tem, which includes the security properties of Probabilistic Security-By-Contract
with Trust in the most popular operative system for mobile devices.

The paper is structured as follows. Section 2 introduces the main concepts of
contract-based approaches and briefly recalls the Security-by-Contract and the
Security-by-Contract-with-Trust frameworks. In Sect. 3, we propose a probabilis-
tic version of both Security-by-Contract and Security-by-Contract-with-Trust.
Section 4 presents an application of the proposed approach in Android systems,
proposing some extension to the current framework. In Sect. 5, we discuss some
related work, while Sect. 6 briefly concludes.

2 Contract-Based Approaches

Contract-based approaches, such as the Security-by-Contract [1] (S×C) and the
Security-by-Contract-with-Trust [2,3] (S × C × T) frameworks, have been devel-
oped for mobile devices, . They integrate several security techniques to build a
chain of trust by sequentially applying them to safely execute applications. The
three cornerstones of these security frameworks are application code A, applica-
tion contract C, and client policy P , where a contract is a formal, complete, and
correct specification of an application security relevant behavior, e.g., security

Introducing Probabilities in Contract-Based Approaches 287

critical virtual machine API call, or critical system calls [4]. A policy is a for-
mal complete specification of the acceptable security-relevant behavior allowed
to applications executed on the platform [4]. We assume that both contract and
policy are syntactically described by exploiting the same language.

The basic idea of a contract-based approach is the usage of the contract for
guaranteeing that security aspects are satisfied. More in detail, using the con-
tract, it is possible to check at deploy time, i.e., before the application execution,
if the application satisfies the user policy or not. Let ≈ denote the compliance
between two of the previous elements. A contract-based approach guarantees
that

A ≈ C ≈ P → A ≈ P (1)

In the following, we describe the Security-by-Contract (S × C) and the
Security-by-Contract-with-Trust (S × C × T) frameworks as approaches that
integrate the described techniques to guarantee security at application execu-
tion time.

2.1 Towards Security Techniques

Several techniques have been proposed to tackle specific security aspects. Almost
all the following are integrated into the S× C or into the S × C × T frameworks.

Application-Contract Matching. It enables statically verification of an appli-
cation code by using a third-party provided proof and also its validation. The
proof is linked to the application code. Verifying the proof validity is more
efficient than generating it. The verification procedure follows the steps of
the proof and, if all of them are correct, validates its conclusion. Examples of
this approach are the proof-carrying code [5] and the model-carrying code [6]
methods.

Contract Policy Matching. It statically analyzes the compliance of a speci-
fication, e.g., a contract, with a specified security policy.

Enforcement/Monitoring. The run-time enforcement approach consists of
running an application code inside the scope of a controller that checks,
step-by-step, the executed operations. At each operation, the behavior of
the considered application is compared with the consumer policy (policy
enforcement), and prevents violations by modifying the application behavior
at run time, e.g., forbidding non-allowed operations.
This approach differs from monitoring that just observes the behavior of the
application and at the end of the executions it could also provide information
(e.g., audit, logs) for understanding its behavior, e.g., if the code does not
work as described by its contract (contract monitoring).

Metrics Manager. Security metrics aim at assessing security threats. For
instance, metrics can describe a system in terms of its reputation in a com-
munity, number of past, successful interactions or average number of failures
per year. Then, these values are exploited for taking security aware deci-
sions. Among the others, trust, risk, and probability aspects are receiving
major interest.

288 G. Dini et al.

Fig. 2. The Security-by-Contract process.

2.2 Security-by-Contract and Security-by-Contract-with-Trust in a
Nutshell

The Security-by-Contract paradigm (S × C) provides a full characterization of
the contract-based interaction. It combines different functionalities in an inte-
grated way (see Fig. 2). In particular, it includes a module for automatically
checking the formal correspondence between code and contract (Application-
Contract matching). If the result is negative, then the monitor is run to enforce
the policy (Policy Enforcement), otherwise a matching between the contract and
the policy (Contract-Policy Matching) is performed to establish if the contract
is compliant with the policy. In this case, the code is executed without overhead
(Safe Execution), otherwise the policy is enforced again (Policy Enforcement).

Along this research line, in [2,3] S×C has been extended in order to deal also
with the concept of trust. The new framework is named Security-by-Contract-
with-Trust (S × C × T) (Fig. 3). S × C × T consists of integrating the S × C
paradigm with a monitoring infrastructure for trust management. As a matter
of fact, a crucial point of the S×C architecture is the verification of the relation
that exists between the application and its contract. Usually, nowadays a mobile
application is installed only if its origin is trusted. This means that users can
reject or accept the signature of the application provider based upon the trust
level. S × C × T extends S × C in two different phases: at deploy-time, replacing
the app-contract matching with a Trust Evaluator module. This component
sets the monitoring state, and at run-time it applies the contract monitoring
procedure for tuning the provider trust level. In fact, the S × C architecture has
been extended by adding a component for the contract monitoring to check if
the contract adheres to the actual execution of the application and, according
to the answer, it updates the provider level of trust.

Introducing Probabilities in Contract-Based Approaches 289

Fig. 3. The Security-by-Contract-with-Trust process.

The advantages of these contract-based frameworks are that they are able
to identify unsafe applications before and without running them. In particular,
using the contract-policy matching functionality, it checks at deploy-time if the
declared behavior of the application is compliant with the required policy. This
check, along with the assurance that the application code is compliant with the
application contract, which is obtained through the application-contract match-
ing module (S × C) or by the trust evaluator (S × C × T), guarantees that the
application satisfies the user requirements. Anytime the contract-policy match-
ing finds that a contract is not compliant with the policy, the application is run
in a controlled way through the enforcement module. It is worth noticing that
the cost, in terms of energy, of running a contract policy matching is much lower
than performing the enforcement. Hence, unsafe applications are not run at all
by the user and possible unsafe application are run in a controlled way. This
leads to an attack risk reduction.

3 Probabilistic Security-by-Contract and Probabilistic
Security-by-Contract-with-Trust

In this section, we describe a probabilistic version of both S × C and S × C × T
architectures. It is worth noticing that, in both cases the original workflow is not
changed. Only the components are modified in such a way that, on one hand,
they are able to cope with probability metrics and, on the other hand, Eq. 1 still
holds for an appropriate choice of the notion of compliance.

Let us assume that both probabilistic contract and probabilistic policy are
expressed through the same formalism.

290 G. Dini et al.

Probabilistic contract and policy will be modelled as (substochastic) genera-
tive probabilistic automata [7,8].

Definition 1. A fully probabilistic or generative automata is a tuple (S,Act, P)
consisting of a finite set S of states, a set of actions Act, and a transition
probability function

P : S × Act × S ∞ [0, 1]

A generative automata is said to be stochastic if
∑

a→Act

∑

t→S

P (s, a, t) = 1

for all s ≡ S for all a ≡ Act. On the other hand, a generative automata is said
to be semistochastic or substochastic if

∑

a→Act

∑

t→S

P (s, a, t) < 1

for all s ≡ S for all a ≡ Act. For C ∼ S, we put P (s, a, C) =
∑

t→C P (s, a, t). A
state s ≡ S is said to be terminal iff

∑
a,t P (s, a, t) = 0.

Hereafter, we consider generative automata such that for each action there is
only one possible transition for each action a ≡ Act.

3.1 Probabilistic Security-by-Contract Workflow

Being the Security-By-Contract framework modular, introducing probability
metrics implies the substitution of some components with their probabilistic
counterpart. The Probabilistic Security-by-Contract workflow is depicted
in Fig. 4.

Probabilistic application contract matching is verified using some static
validation techniques able to deal with probabilistic description of behav-
ior. For instance, as proof carrying code [5] is used in S × C, here we can
use the Probabilistic Proof Carrying Code, e.g., [9,10]. In particular, this
method guarantees that, for all possible k-length execution traces whose
probability is calculated as Pk =

∏k
i=1 P (si, ai, ti), the application is consid-

ered compliant if Pk > θk, where θk is a given threshold value 0 < θk < 1
dependent from the length of the execution trace.

Probabilistic contract policy matching is performed by checking the com-
pliance between a contract and a policy. According to the level of required
accuracy, several relations can be considered in order to verify the compli-
ance between probabilistic contract and policy. In S×C, the contract-policy
matching function checks if the contract and the policy are similar. This
means that for each action described in the contract, we check if there exists
the same action described in the policy and the description of the transition
are similar again. Hence, we assume that the policy specifies a rule for each

Introducing Probabilities in Contract-Based Approaches 291

Fig. 4. Workflow for Probabilistic Security-by-Contract

security relevant action, which we call SecAction.
Referring to the notion of ε-simulation given in [11], hereafter, we define a
slightly different ε-simulation.

Definition 2. A relation R ∼ S × S is a relation of positive ε-simulation,
where ε ≡ [0, 1] if whenever (s, s∞) ≡ R, then ⇐a ≡ SecAction, ⇐W ≡ S

∑

t→W

P (s, a, t) ←
∑

t′→R(W)

P (s∞, a, t∞) ←
∑

t→W

(P (s, a, t) + ε)

where R(W) is the set of all states that are in relation with states in W trough
R. We say that s is ε-simulated by s∞, written s ∈ε s∞, if (s, s∞) ≡ R for some
relation of ε-simulation R on S. The idea is that, while the ε-simulation
allows a deviation of a values ε ≡ [−1, 1], here, we are only interested in
positive values of ε. Hence, the probabilistic distribution of the contract
have to be less than the probability distribution of the policy of, at most, a
value ε.
It is worth noticing that, according to our assumptions, having a positive
ε-simulation R means that whether (s, s∞) ≡ R then, for each action a ≡
SecAction,

P (s, a, t) ← P (s∞, a, t∞) ← P (s, a, t) + ε

and (t, t∞) ≡ R.
Enforcement of Probabilistic Policies is performed when either the appli-

cation is not compliant with the contract, or the contract is not compliant
with the policy.
At each step, the enforcement computes the probability that the applica-
tion performs a specific security relevant action a, starting from the current

292 G. Dini et al.

state s, P p(s, a, t), where t is the destination state of the transition and p
is the expected one stated by the policy. This computation exploits history-
based concerning the current execution of the application. The computation
of the probability of the execution trace is similar to the one described in the
application-contract matching module P p

k =
∏k

i=1 P p(si, ai, ti). The appli-
cation is considered compliant if P p

k > θk, where θk is the same considered in
the application-contract module. The enforcement denies the non compliant
operation sequence, ensuring that the policy is correctly enforced.

It is worth noticing that Eq. 1 holds. Indeed, the fact that C ≈ε P means
that Pk ← P p

k because

Pk =
k∏

i=1

P (si, ai, ti) ←
k∏

i=1

P p(si, ai, ti) = P p
k

Hence, θk < Pk ← P p
k Let ≈Θ be the compliance relation used in both application-

contract matching and enforcement mechanisms, where Θ denotes the set of
threshold values θk for any k-length execution trace, and let us consider to use
the positive ε-simulation for the contract-policy matching then the following
holds

A ≈Θ C ≈ε P → A ≈Θ P

3.2 Probabilistic Security-by-Contract-with-Trust

Let us introduce probability also into the S × C × T architecture. Referring to
[2,3], the application-contract matching functionality is replaced by the Trust
evaluator due to the fact that it is not always possible to statically check the
compliance of the application with its contract. Hence, we consider a trusted
marketplace that provides trusted information about the compliance between
the application and its contract. These measurements are computed using com-
pliance feedback received by remote devices running the framework.

The Probabilistic Security-by-Contract-with-Trust workflow is depicted in
Fig. 5 and its components are described hereafter.

Trust Evaluator assesses the trust level of the application to be compliance
with its contract. Also in this case, the compliance relation that we consider
is the same used in S × C, i.e., ≈Θ. Note that even when the developer does
not provide a contract for the application, according to [12], it is possible
to automatically generate the probabilistic contract of an application. Let us
assume that the marketplace is able to generate it. In this case the level of
trust we consider is the level of reliability of the probabilistic contract as
complete description of the application behavior.
Probabilistic Contract Generation. The contract is generated by ana-

lyzing either application executions or the application code [12], i.e., the
application control-flow is analyzed to explore all possible executions,
and associating to each execution a probability. The union of all the

Introducing Probabilities in Contract-Based Approaches 293

Fig. 5. Workflow for Probabilistic Security-by-Contract-with-Trust

possible executions constitutes all the possible sequences of states that
an application can follow. From these sequences of states, if we only
focus on the security relevant actions executed by an application, i.e.,
SecActions, then the contract is represented by a probabilistic automa-
ton Q = (V, SecAction, P), where the nodes V = {v1, v2, ..., vn} is
related to the set of states, SecAction is the set of SecActions performed
by a specific application, and P is the probabilistic transition function
P : V ×SecAct×V ∞ [0, 1] defined as follows: let mul(vi, a, vj) be num-
ber of times that the action a is executed in the state vi for reaching the
state vj and let mul(vi) be the number of output arcs from vi. Hence,
for all state vi ≡ V ,

P (vi, a, vj) =
mul(vi, a, vj)

mul(vi)

for each vj reached by vi through an action a. P (vk, a, vl) = 0 is asso-
ciated to any missing edge between vk and vl. It is worth noticing that
this model is a generative one.

Probabilistic Contract-Policy Matching. Also in this case, the matching
is performed by checking if there exists a probabilistic simulation relation
or an ε-simulation between the probabilistic contract and the probabilistic
policy. It is worth noticing that, in any case, a probabilistic automata is
returned. Hence, we can exploit the same functionalities we have described
in the Probabilistic Security-by-Contract workflow.

Probabilistic Contract Monitor. The contract monitor is performed when
both the trust level is greater than a policy-defined threshold and the con-
tract policy matching returns a positive answer. This is because, also for

294 G. Dini et al.

Probabilistic Security-by-Contract-with-Trust holds the Eq. 1. If no viola-
tion is detected, then the application worked as expected. Otherwise, we are
dealing with a non-compliant contract. In this case, if the contract is pro-
vided by the developer, the marketplace has to reduce the level of trust of
the application. On the other hand, if we are dealing with the automatically
generated contract, the marketplace has to update the contract by taking
into account also the trace that contains the violation.

Probabilistic Contract Monitor and Policy Enforcement. Similarly to a
pure enforcement framework in Probabilistic S × C, our system guarantees
that executions are policy-compliant. However, monitoring contracts during
these executions can also provide a useful feedback. Hence, in this scenario,
both policy enforcement and contract monitoring are active. To reduce the
overhead of the monitoring, the contract monitor is only activated on a sta-
tistical base depending on the level of trust of the application.

4 Use Case: Android System and Applications

A possible use-case for the probabilistic contract model is represented by the
mobile operative system Android.

Android is an app-based mobile operative system: it allows users to download
and install applications specifically designed for Android devices. The Android
operative system is a complex framework that relies on a generic Linux kernel
and several libraries written in high level languages that enable the interac-
tion with all the device components. Applications offer several functionalities
exploiting the various interfaces and components of the device, by also accessing
resources that are security-critical, such as network interfaces, call dialer, SMS
manager, or even private data like contact lists, social network passwords, device
IMEI and SIM number. Due to the high number of security-critical resources,
smartphones and tablets are susceptible to a higher number of security issues
than personal computers. In fact, starting from 2009, the number of attacks tar-
geted to mobile devices has strongly increased [13]. In particular, in 2011 and
2012 several malicious applications (malware) have been developed specifically
for Android devices.

Android already includes a contract-like system, based upon the concepts
of permissions and manifest. In Android each application comes shipped with
a document called AndroidManifest.xml (manifest for short) that describes
the application components and declares the security actions performed by the
application. If an application has to perform some critical operations, such as
to access a device resource, or to read/write sensitive information, this has to
be declared it in the manifest file. To enforce this contract, a component on the
system-side called Permission Checker constantly enforces the policy by denying
each operation for which the permission has not been declared in the manifest
file. Several criticisms have been raised against this system, which results too
coarse-grained [14] and too much reliant on user knowledge and expertise [15].

Introducing Probabilities in Contract-Based Approaches 295

The main problem of this approach is that the acceptance policy for an appli-
cation’s requested permission is “all or nothing”, that is, the user cannot accept
only a subset of the required permissions.

We argue that is possible to enhance the Android permission system increas-
ing its expressiveness, including in Android the probabilistic Security-By-
Contract model. This is discussed in the next subsection.

4.1 Extended Manifest and Trust Evaluator

The first step to extend the Android permission system is the extension of the
manifest file to include a description of the probabilistic automata. The manifest
file is written in eXtensible Markup Language (XML), in which the inclusion of
additional data is straightforward. Exploiting this feature of the XML language,
we extend the manifest introducing a new xml tag: <contract clause>. This
tag contains a description of the contract probabilistic automaton in Graph
Markup Language (GML). GML gives an XML-like description of a graph or
automaton and can be easily embedded in an XML document. In this way,
the <contract clause> tag is not analyzed by the Android system, which only
checks the ordinary permissions.

Hence, in our proposed framework, the manifest file comes as a contract
divided in two parts. The first one is filled by the developer and specifies the
application components and permissions. The second part, which can be filled
either by the developer or directly by a trusted third party, e.g. the Google Play
market, contains the probabilistic contract. Since in Android the main vector
for application distribution is the on-line marketplace, Google Play, the trust
relationship is not directly established between users and developers. Developers
build a trust relationship with the market, which decides how much it trusts the
applications coming from a developer. This trust value is added to the manifest
file. The trust value is analyzed by the Trust Evaluator component, which decides
whether the application is trusted or not.

Example 1. “The probability that an SMS is sent to a number not in the contact
list is lesser than 3 %”. In Android there are several SMS manager applications
which can be downloaded and installed, which may automatically send SMS
messages (memo or post-poned sending). These applications should send SMS
to known numbers and to unknown ones in a limited amount of times only.
This avoids, for example the unwilling subscription to premium services. Simply
using the Android permissions SEND SMS and READ CONTACTS, it is not possible
to implement such a policy, that even if simple requires a greater expressivity
than the one provided by Android. Using probabilistic automaton, the definition
of such a policy is straightforward.

4.2 Policy Manager, Matching and Enforcement

The Policy Manager is used to specify the security policies, which can be either
global or per-application. This component presents a simple user interface that

296 G. Dini et al.

allows users to define policies. Moreover this component is able to learn user
behaviors concerning security relevant actions, e.g. learning the average of SMS
messages sent each day, and to instantiate a proper policy accordingly. In this
scenario, the policy manager either receives as input (i) the user-policy, either
written in a policy-specification language or even in natural language or (ii) is
learnt by monitoring the user behavior. Afterwards, the policy is translated in a
probabilistic automata, which can be used for contract-policy matching or policy
enforcement.

The contract-policy matching verifies if the policy expressed in the mani-
fest matches the policy provided by the Policy Manager. This control is exe-
cuted at deploy time. If the contract does not match the policy, the user is
prompted to decide if she wants to abort the installation, or install however
the application with a run-time policy enforcement. The Security-By-Contract-
with-Trust enforcement extends the one performed by the permission checker,
ensuring that the defined policies are always enforced. Figure 6 depicts a work-
flow of the Security-By-Contract-with-Trust extension on Android devices.

Notice that for the sake of clarity, the Application-Contract Matching com-
ponent has not been included in Fig. 6. This task is, in fact, demanded to the
Trusted Third Party.

Fig. 6. Inclusion of Security-By-Contract on Android

Introducing Probabilities in Contract-Based Approaches 297

5 Related Work

In the last decade, the Security-by-Contract framework [1] has been extended
and applied in several ways and in different scenarios. For instance, in [2,3] the
extension of the Security-by-Contract with Trust manager has been presented.
Furthermore, in [3] it has been instantiated in a marketplace scenario and in par-
ticular, it is integrated with a trust manager able to manage feedback obtained
by the monitoring module. Another application scenario is the one of web service
[16,17].

From the quantitative perspective, the problem of finding an optimal con-
trol strategy is considered by Easwaran et al. in [18] in the context of software
monitoring, where the system is represented as a Directed Acyclic Graph, and
where rewards and penalties with correcting actions are taken into account, thus
using dynamic programming to find the optimal solution. Similarly, an encoding
of access control mechanisms using Probabilistic Decision Process is proposed
in [19], where the optimal policy can be derived by solving the corresponding
optimization problem. From a different perspective, Bielova and Massacci pro-
pose in [20] a notion of distance among traces, thus expressing that if a trace is
not secure, it should be edited to a secure trace close to the non-secure one, thus
characterizing enforcement strategies by the distance from the original trace they
create. A system that exploits system calls to detect non-compliant application
is presented in [21]. Referring to probabilistic models, probabilistic contracts has
been firstly introduced in [22] for analyzing reliability and availability aspects of
systems. The generation of probabilistic contract has been made by analyzing
the occurrences of system calls. In [23] a scheme for intrusion detection using
probabilistic automata is proposed. This system exploits system calls and hidden
Markov models and is able to detect efficiently denial of service attacks. Refer-
ence [24] presents another system based upon system calls and Markov models
to detect intrusions. This system analyzes the arguments of the system calls but
is oblivious of the system call sequence. System call sequence and determinis-
tic automata have been used in [25] to detect anomalies, which are detected
when system call sequences differ from an execution trace known to be good.
PIGA-virt [26] is a framework devoted on checking the behaviour of programs
at run-time based upon administrator expressed security policies.

6 Conclusion and Future Work

In this paper, we have discussed the current limitations of the semantics of
the security models for mobile applications. To this end, we have presented
a probabilistic version of the Security-by-Contract with Trust, which is able to
guarantee definition and enforcement of probabilistic requirements. We have dis-
cussed the advantages in terms of expressiveness achieved including probability
in the S × C × T framework. Finally, we have shown a possible use-case, includ-
ing S × C × T in the Android operative system, showing the feasibility of the
proposed approach.

298 G. Dini et al.

Future extensions to this work will be the definition of probabilistic for-
malisms and languages, which should be used to programmatically define prob-
abilistic contracts and policies, then to verify their compliance. This language
should be equivalent in expressiveness to the probabilistic automata that we have
used to express policies and contracts. Furthermore, we are going to include the
presented framework in real mobile devices, investigating if it is possible to dis-
tribute it as common mobile application, which can give users a way to better
handle security on their mobile devices.

References

1. Dragoni, N., Martinelli, F., Massacci, F., Mori, P., Schaefer, C., Walter, T., Vetil-
lard, E.: Security-by-contract (S × C) for software and services of mobile systems.
In: At Your Service - Service-Oriented Computing from an EU Perspective. MIT
Press, Cambridge (2008)

2. Costa, G., Dragoni, N., Lazouski, A., Martinelli, F., Massacci, F., Matteucci, I.:
Extending Security-by-Contract with quantitative trust on mobile devices. In: Pro-
ceeding of the Fourth International Conference on Complex, Intelligent and Soft-
ware Intensive Systems, pp. 872–877. IEEE Computer Society (2010)

3. Costa, G., Dragoni, N., Issarny, V., Lazouski, A., Martinelli, F., Massacci, F., Mat-
teucci, I., Saadi, R.: Security-by-Contract-with-Trust for mobile devices. JOWUA
1(4), 75–91 (2010)

4. Greci, P., Martinelli, F., Matteucci, I.: A framework for contract-policy matching
based on symbolic simulations for securing mobile device application. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 221–236. Springer, Heidelberg
(2008)

5. Necula, G.C.: Proof-carrying code. In: Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’97), pp.
106–119 (1997)

6. Sekar, R., Venkatakrishnan, V., Basu, S., Bhatkar, S., DuVarney, D.C.: Model-
carrying code: a practical approach for safe execution of untrusted applications. In:
Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles,
pp. 15–28 (2003)

7. Hermanns, H., Parma, A., Segala, R., Wachter, B., Zhang, L.: Probabilistic logical
characterization. Inf. Comput. 209(2), 154–172 (2011)

8. Baier, C., Engelen, B., Majster-Cederbaum, M.: Deciding bisimilarity and similar-
ity for probabilistic processes. J. Comput. Syst. Sci. 60(1), 187–231 (2000)

9. Sharkey, M.I.: Probabilistic proof-carrying code. Ph.D. thesis, Carleton University
(2012)

10. Tsukada, Y.: Interactive and probabilistic proof of mobile code safety. Autom.
Software Eng. 12(2), 237–257 (2005)

11. Desharnais, J., Laviolette, F., Tracol, M.: Approximate analysis of probabilistic
processes: logic, simulation and games. In: Proceedings of the 2008 Fifth Interna-
tional Conference on Quantitative Evaluation of Systems, QEST ’08, pp. 264–273.
IEEE Computer Society, Washington DC (2008)

12. Aldini, A., Martinelli, F., Saracino, A., Sgandurra, D.: A collaborative framework
for generating probabilistic contracts. In: Smari, W.W., Fox, G.C. (eds.) Proceed-
ings of the 2013 IEEE International Conference on Collaboration Technologies and
Systems, SECOTS 2013, pp. 139–143. IEEE Computer Society, San Diego (2013)

Introducing Probabilities in Contract-Based Approaches 299

13. Juniper Networks Global Threat Center: Malicious Mobile Threats Report
2010/2011 (2011)

14. Zhou, Y., Zhang, X., Jiang, X., Freeh, V.W.: Taming information-stealing smart-
phone applications (on android). In: McCune, J.M., Balacheff, B., Perrig, A.,
Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) TRUST 2011. LNCS, vol. 6740, pp.
93–107. Springer, Heidelberg (2011)

15. Felt, A.P., Ha, E., Egelman, S., Haney, A., Chin, E., Wagner, D.: Android permis-
sions: user attention, comprehension, and behavior. Technical report, Electrical
Engineering and Computer Sciences, University of California at Berkeley (2012)
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-26.html

16. Dragoni, N., Massacci, F.: Security-by-contract for web services. In: SWS, pp. 90–
98 (2007)

17. Gadyatskaya, O., Massacci, F., Philippov, A.: Security-by-Contract for the OSGi
platform. In: Gritzalis, D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IFIP
AICT, vol. 376, pp. 364–375. Springer, Heidelberg (2012)

18. Easwaran, A., Kannan, S., Lee, I.: Optimal control of software ensuring safety and
functionality. Technical Report MS-CIS-05-20, University of Pennsylvania (2005)

19. Martinelli, F., Morisset, C.: Quantitative access control with partially-observable
markov decision processes. In: Proceedings of CODASPY ’12, pp. 169–180. ACM
(2012)

20. Bielova, N., Massacci, F.: Predictability of enforcement. In: Erlingsson, Ú.,
Wieringa, R., Zannone, N. (eds.) ESSoS 2011. LNCS, vol. 6542, pp. 73–86. Springer,
Heidelberg (2011)

21. Dini, G., Martinelli, F., Saracino, A., Sgandurra, D.: MADAM: a multi-level anom-
aly detector for android malware. In: Kotenko, I., Skormin, V. (eds.) MMM-ACNS
2012. LNCS, vol. 7531, pp. 240–253. Springer, Heidelberg (2012)

22. Delahaye, B., Caillaud, B., Legay, A.: Probabilistic contracts: a compositional rea-
soning methodology for the design of stochastic systems. In: 10th International
Conference on Application of Concurrency to System Design (ACSD), 2010, IEEE
(2010)

23. Hoang, X.A., Hu, J.: An efficient hidden Markov model training scheme for anom-
aly intrusion detection of server applications based on system calls. In: 12th IEEE
International Conferecence on Networks, ICON 2004. vol. 2, pp. 470–474. IEEE
(2004)

24. Maggi, F., Matteucci, M., Zanero, S.: Detecting intrusions through system call
sequence and argument analysis. IEEE Trans. Dependable Secure Comput. 7(4),
381–395 (2010)

25. Koresow, A.P.: Intrusion detection via system call traces. Software 14(5), 35–42
(1997)

26. Briffaut, J., Lefebvre, E., Rouzaud-Cornabas, J., Toinard, C.: PIGA-Virt: an
advanced distributed MAC protection of virtual systems. In: Alexander, M., et
al. (eds.) Euro-Par 2011, Part II. LNCS, vol. 7156, pp. 416–425. Springer, Heidel-
berg (2012)

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-26.html

Advanced Detection Tool for PDF Threats

Quentin Jerome(B), Samuel Marchal, Radu State, and Thomas Engel

SnT - University of Luxembourg, 4 rue Alphonse Weicker, 2721
Luxembourg, Luxembourg

{quentin.jerome,samuel.marchal,radu.state,thomas.engel}@uni.lu
http://wwwen.uni.lu/snt

Abstract. In this paper we introduce an efficient application for mali-
cious PDF detection: ADEPT. With targeted attacks rising over the
recent past, exploring a new detection and mitigation paradigm becomes
mandatory. The use of malicious PDF files that exploit vulnerabilities
in well-known PDF readers has become a popular vector for targeted
attacks, for which few efficient approaches exist. Although simple in the-
ory, parsing followed by analysis of such files is resource-intensive and
may even be impossible due to several obfuscation and reader-specific
artifacts. Our paper describes a new approach for detecting such mali-
cious payloads that leverages machine learning techniques and an effi-
cient feature selection mechanism for rapidly detecting anomalies. We
assess our approach on a large selection of malicious files and report the
experimental performance results for the developed prototype.

Keywords: PDF files · Malware detection · Machine learning

1 Introduction

Targeted attacks remain among the highly relevant persistent threat vectors.
The past year has seen a dramatic rise in targeted attacks using PDF files as
propagation vector1,2. Exploiting several zero-day vulnerabilities against popular
readers (primarily from Adobe)3, these attacks are difficult to mitigate for two
main reasons. The first is related to users not perceiving the opening of PDF files
as dangerous. Browsers plugins that automatically render PDF files make drive-
by contamination even easier, since the user merely needs to visit a malicious
site in order to get compromised. The second reason is the complex structure of
PDF files, which makes their parsing quite challenging. Obfuscation techniques
can thwart most of the available PDF parsing libraries, while still allowing error-
tolerant readers to parse the file and thus compromise the system. Sometimes,
1 http://thehackernews.com/2013/02/chinese-malware-campaign-beebus-target.html
2 http://www.securelist.com/en/blog/774/A Targeted Attack Against The Syrian

Ministry of Foreign Affairs
3 http://www.securelist.com/en/analysis/204792255/Kaspersky Security Bulletin

2012 The overall statistics for 2012

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 300–315, 2014.
DOI: 10.1007/978-3-642-54568-9 19, c© Springer-Verlag Berlin Heidelberg 2014

http://thehackernews.com/2013/02/chinese-malware-campaign-beebus-target.html
http://www.securelist.com/en/blog/774/A_Targeted_Attack_Against_The_Syrian_Ministry_of_Foreign_Affairs
http://www.securelist.com/en/blog/774/A_Targeted_Attack_Against_The_Syrian_Ministry_of_Foreign_Affairs
http://www.securelist.com/en/analysis/204792255/Kaspersky_Security_Bulletin_2012_The_overall_statistics_for_2012
http://www.securelist.com/en/analysis/204792255/Kaspersky_Security_Bulletin_2012_The_overall_statistics_for_2012

Advanced Detection Tool for PDF Threats 301

even a slight change in a PDF file can make it unreadable to most libraries and
still produce a working exploit for proprietary readers.

In this paper, we consider the mitigation of this attack, which has as major
contributions, the followings:

– We propose an n-gram-based application to detect and mitigate attacks lever-
aging PDF vulnerabilities;

– This method does not rely on semantic parsing and thus is not prone to
vulnerability exploitation found in PDF parsing libraries;

– We evaluate the performance of our system on a comprehensive dataset and
report very good results for performance, speed and accuracy;

– We compare our tool with academic work;
– We provide a web service implementation of our approach.

Our paper is structured as follows: we start out in Sect. 2 with an overview
of malicious PDF files and highlight some of the recent vulnerabilities exploited
by this threat. Section 3 details the overall architecture of our system. Section 4
presents the dataset used for the tuning of our approach. We describe the exper-
iments performed and validation in Sect. 5. In Sect. 6, we compare our tool to
previous work and we introduce our web service implementation. Section 7 dis-
cusses relationships with prior work and we conclude the paper and discuss
future work in the Sect. 8.

2 Malicious PDF

In this section, we introduce some lesser-known facts about the PDF language.
We first present the basis of the PDF language. We next show some general ways
used by rogue authors to craft malicious files. Finally we justify the challenges
that our work must address by pointing out the analysis difficulties concerning
PDF files.

2.1 PDF, A Programming Language

The PDF language is a PDL (Page Description Language). This type of lan-
guage was created to avoid dependencies between documents and hardware.
Thus, when someone wants to open a PDF document, it has only to own an
application known as a Reader in order to interpret and understand the PDF
language. This feature provides high portability because the resultant document
is not hardware or OS dependant. This interesting property has made PDF an
attractive alternative to platform-specific documents like Microsoft Word files.
PDF files are now widely used on the Web and unfortunately have also become
an attractive vector for malware propagation. Before showing how malicious
PDF documents are crafted, we explain the basis of this uncommon language.

We can consider PDF as a collection of various types of object. According to
the PDF reference [1], we can enumerate these different types:

302 Q. Jerome et al.

– Boolean: Number (integer or real) and String values
– Names
– Array: collection of objects
– Dictionary: collection of objects indexed by their names (type Name)
– Streams: contain encoded data as text or images of the document
– Null objects

To be correctly interpreted and displayed, a PDF must contain some basic parts,
ordered as follows.

1. A header, which contains the PDF language version number
2. The document body, which contains all objects
3. A cross-reference table containing offsets of all objects (whether currently in

use or deleted by an incremental update) and version number of those objects
4. A trailer containing the cross-reference table offset.

The purpose of the cross-reference table is to retrieve objects efficiently. As men-
tioned above, it contains versions of objects which can be modified by updates.
Once an object is deleted, its current version in the cross-reference table is mod-
ified to become the next generation number (version) of this object. Updated
objects are appended to the end of the file with a corresponding cross-reference
table modification.

Here we enumerate some existing ways to craft malicious documents. Indeed,
by design PDF provides a large range of possibilities to create malicious doc-
uments. The most-abused features are, for instance, additional features such
as JavaScript. Other features proper to a rich language can be used by rogue
authors as well. Indeed, because of its popularity, PDF embeds an increasing
number of features which offer new possibilities and flaws within the source
code. We notice two large categories of attacks relying on PDF language: feature-
based and exploit-based attacks. Feature-based attacks leverage only language
features such as \OpenAction, which allows a task to be executed when some-
one opens the document. In [2] the authors illustrate this by crafting phishing
attacks relying on such features. Exploit based attacks are more nasty since
those rely on vulnerability exploitation. If such an attack succeed, the victim’s
machine becomes compromised and the attacker can control it remotely. This
kind of attacks is even more critical for companies when a workstation becomes
infected. We distinguish three families of attacks exploiting vulnerabilities in
common PDF readers:

1. Attacks based only on JavaScript, which rely on a flaw in the JavaScript API
and need JavaScript to be exploited;

2. Attacks relying on JavaScript only for payload delivery. For instance, before
exploitation, a former step of heap spraying [3] can be performed. This tech-
nique aims at preparing the heap to control memory allocation and increase
the success rate of jumping into the landing zone that the attacker wants;

Advanced Detection Tool for PDF Threats 303

Table 1. Vulnerabilities

Adobe Reader version(s) Target Flaws CVE-ID

9.1, 8.1.4, 7.1.1 and
earlier

JavaScript API
getAnnots()

Resource
Management
Errors (CWE-399)

CVE-2009-1492

8.1.2 and earlier JavaScript API
util.printf()

Stack-based buffer
overflow
(CWE-119)

CVE-2008-2992

8.1.1 and earlier JavaScript method
in EScript.api

Code Injection
(CWE-94)

CVE-2007-5663

10.1.1 and earlier on
Windows and Mac
OS, 9.x through
9.4.6 on UNIX

U3D Unknown (probably
heap overflow)

CVE-2011-2462

9.x through 9.1.2 authplay.dll Code injection
(CWE-94)

CVE-2009-1862

9.0 and earlier J2BIG Heap pointer
corruption
(CWE-119)

CVE-2009-0658

8.x before 8.3.1, 9.x
before 9.4.6, 10.x
before 10.1.1

CoolType.dll Stack-based buffer
overflow
(CWE-119)

CVE-2011-2441

8.x before 8.2.5 and
9.x before 9.4

ActiveX Input validation
(CWE-20)

CVE-2010-2888

9.x before 9.3.2, and
8.x before 8.2.2

Unspecified Buffer overflow
(CWE-119)

CVE-2010-0198

3. Attacks that do not need JavaScript at all. For instance classical stack based
buffer overflow flaws could directly allow arbitrary code execution without a
previous heap preparation and thus do not need JavaScript.

In Table 1, we illustrate some real examples of the vulnerabilities cited previ-
ously. The information was gathered from the Metasploit4 database and from the
NIST National Vulnerability Database5. The CWE – Common Weakness Enu-
meration – references were retrieved from the MITRE6 database. We can see in
this table that several Reader versions and OSs can be targeted, increasing the
attractiveness of such attacks.

2.2 Challenges

As shown in Table 1, several Readers are vulnerable to exploitation. Hence it is
very difficult to perform classical dynamic analysis. All the vulnerable software
should be grouped in a common monitoring environment in order to cover the
4 http://www.metasploit.com/
5 http://nvd.nist.gov/
6 http://cwe.mitre.org/data/slices/2000.html

http://www.metasploit.com/
http://nvd.nist.gov/
http://cwe.mitre.org/data/slices/2000.html

304 Q. Jerome et al.

whole range of threats. Whence choosing a static detection approach is sound
in that particular case. However we must face other problems, specific to static
analysis.

The PDF language offers its own obfuscation facilities like representing Name
or String objects in hexadecimal form. In addition, another way to obfuscate
PDF documents is to use cascade filters to encode Streams objects. In this
fashion, the attacker is able to encode the same stream twice or even more with
different algorithms. This technique is straightforward to use for an attacker
and difficult to reverse engineer. For instance, according to the version 1.7 of the
PDF documentation [1], the PDF language provides about 10 filters, including
one to encrypt streams.

Object reference can be used to increase the obfuscation level as well. This
allows calling an object which is defined elsewhere in the document. It is worth
noting that the physical representation of the file does not matter, only the
logical structure is important for the Reader.

Another technique often used in malicious files is JavaScript string obfus-
cation, which has been heavily abused in the past in web based attacks. For
instance, using the eval() function on an encoded part of the script complicates
static analysis.

These aforementioned obfuscation methods are massively used within mali-
cious documents and makes the reverse engineer of files harder. A comprehensive
study is performed in [4] and is a relevant example of analysis issues. To avoid
time consuming and prone to error desobfuscation, we were motivated to use n-
grams as features to represent documents. In addition, extracting n-grams does
not require semantic parsing as done in previous works [5,6]. Since the Pop-
pler library used in these approaches can be vulnerable7, using it for detecting
malicious documents is not relevant.

3 Tool Description and Architecture

The ADEPT architecture, presented in this section, is designed to provide both
accuracy and performance. A well-known technique for automated detection is
machine learning-based classification. This method leverages features associated
with malware and benign files and uses them to build a model. The latter is used
to classify files depending on their features. Figure 1 shows the architecture of
the tool.

3.1 Feature Selection

The first step is to choose relevant features representing both regular and mali-
cious PDF. We choose n-gram to achieve this. N-grams are substrings of length
n extracted by sliding over the input character by character. Formally, a n-gram
sequence denoted E by :
7 http://www.securityfocus.com/archive/1/526364/30/0/threaded

http://www.securityfocus.com/archive/1/526364/30/0/threaded

Advanced Detection Tool for PDF Threats 305

Fig. 1. System architecture

≈s → S→, where S→ is the word set of a given alphabet S, ≈n → N
→, where n is

the n-gram length :

E = {s[i; i + n], i → [0, L − n] ∞ N}
where s[i; j] denotes the substring extracted from s containing characters between
indexes i and j. L denotes the length of the string s.

For example, in the string malicious and for n = 3 we extract the following
n-grams set {∞mal∞;∞ ali∞;∞ lic∞;∞ ici∞;∞ cio∞;∞ iou∞;∞ ous∞}. The number of n-grams is
N = L − (n − 1) ≡ L and constitutes an upper bound to the number of distinct
n-grams that we could extract from a given file.

3.2 Model Building Block

This module extracts relevant features to build the final model used for malware
detection. This task is time consuming due to the intensive process of n-grams
extraction. However, as the model is built only once, its processing time is not
an issue.

N-grams Extractor. This entity parse PDF documents and extracts all n-
grams from them. It also permits to gather n-grams for collection of documents.

N-grams Selector. The selector identifies the most relevant n-grams (or fea-
tures) to include in the model. While, in theory, all features can be used, fast
processing of PDF files is possible only when a subset of all possible n-grams is
used. Thereby, only the most frequent n-grams are selected among our document
corpus. During a preliminary study of our dataset, we noticed that malicious doc-
uments are shorter than benign files. To make our approach size independent,
we opted for a binary count of n-grams. Hence, each document is represented

306 Q. Jerome et al.

by a binary vector where each component stands for a n-gram, set to one if the
n-gram appears in the document, zero otherwise.

Once features are selected, we need to retrieve the binary occurrence of these
features in the initial dataset (step 3 in Fig. 1). In the end of step 3 we get a
matrix where each line corresponds to a file and each column to one selected
n-gram. This data is ready to train a machine learning algorithm in step 4. We
discuss the learning algorithm embedded in our tool in Sect. 5.2.

3.3 Detection Block

Model. This entity results from the machine learning algorithm which builds
a model based on data gathered in the preceding block. This model is used
now as a classifier input. In order to find the best classifier, we performed the
experiments detailed in Sect. 5.

Classifier. Classifier is strongly related to the learning algorithm because it
takes a model previously learned as an input parameter for further comparison
(step 5). At the same time, it takes a feature vector extracted from a file that we
want to classify (step 7). The classifier determines if the feature vector extracted
from a file fits a benign or a malicious profile, according to the model that has
been learned previously.

4 Dataset Introduction

This section presents the preliminary study made on the dataset detailed in
Table 2. In order to compare our findings and benchmark our approach with
respect to previous studies we use the datasets introduced in [5]: D1,D2 and D3.
The dataset D4 is used further in this paper to evaluate our approach.

Our whole dataset was provided by VirusTotal8. For each dataset we have a
set of detected files and a set of undetected ones. Files were labelled as detected
by Virustotal if at least one anti-virus package among 42 reported an alert.
In contrast, all files labelled as undetected passed through anti-virus packages
without raising any alert.

While we analyzed some PDF documents manually – with the PDFTool9

toolkit – we observed that many files had the same structure and almost the
same size, but a different hash code. The physical and logical structure of these
files were indeed very similar. We assumed that many malicious documents have
been generated by exploit kit like BlackHole10 or Metasploit11. Indeed, two hash-
ing values calculated can be very different if only one byte differs between the two
files. However this high degree of similarity produces misleading results during
the calibration phase of the tool. The reason is that if we have different files with
8 https://www.virustotal.com/
9 http://blog.didierstevens.com/programs/pdf-tools/

10 http://en.wikipedia.org/wiki/Blackhole exploit kit
11 http://www.metasploit.com/

https://www.virustotal.com/
http://blog.didierstevens.com/programs/pdf-tools/
http://en.wikipedia.org/wiki/Blackhole_exploit_kit
http://www.metasploit.com/

Advanced Detection Tool for PDF Threats 307

Table 2. Datasets introduction

D1 D2 D3 D4
det. undet. det. undet. det. undet. det. undet.

Date of collection 2010-11-03 2011-01-19 2011-02-17 2012-12-21
Number of files 7,592 7,768 6,465 9,993 11,634 22,490 3892 3474
Dataset size 873MB 13GB 429MB 13GB 1.5GB 29GB 223MB 3.5GB
Average file size 118KB 1.8MB 67KB 1.4MB 129KB 1.4MB 57KB 1MB
Number of different files 476 unknown 367 unknown 822 unknown 173 unknown

small dissimilarities, the likelihood of taking into account these dissimilarities is
low. As a consequence, if we want to evaluate our tool with common machine
learning assessment techniques, we would probably test our tool on previously
seen instances. Moreover, similarities do not contribute to model building. There-
fore we assume that files are different on the PDFID output basis. PDFID is part
of the PDFTool toolkit and reflects the internal structure of a given file.

5 Experiments

Here, we present the methodology we follow to find the best classification algo-
rithm for our feature set. To achieve this, we used Weka [7], a well-known machine
learning toolkit.

5.1 Experimental Description

In order to find out the best combination of n-gram/classifier, we ran a ten-fold
cross-validation test on a labelled – benign or malign – document corpus. We
chose to experiment with several well-known classification methods that range
from tree and rule based classifiers to Support Vector Machine (SVM). To make
an n-fold cross-validation, we firstly partition our dataset into n subsets. We then
take (n−1) subsets to train a machine learning algorithm and the remaining one
for testing. In order to test each instance available in the dataset we do this n
times. Ten folds are most frequently used to obtain significant results[8]. What
we want is a classifier that gives the best prediction capabilities. To reach this
goal, we must deal with the file similarity problem that we mentioned in Sect. 4.
To overcome this issue, we use only different files on the PDFID output basis.
By doing this, we provide a worst case scenario that gives us a lower bound on
detection capability for our tool.

Following we enumerate the settings used for those experiments:

– 843 malicious files gathered from datasets D1 and D2. This is the sum of
different files in each dataset;

– 843 regular files randomly chosen in D1 and D2;
– We selected the 10,000 most frequent features in order to build the model.

We determined that n-grams occurring less did not contribute to the model
significantly.

308 Q. Jerome et al.

Fig. 2. Classification results for several classifiers

We use a balanced dataset, as recommended by the machine-learning com-
munity [9] to avoid over-fitting and under-fitting issues.

Figure 2 depicts classification performances for each combination of n-gram/
classifier that we experimented. On the y axis, we plot the F-Measure also known
as F-1 score. The F-Measure is defined as follows:

F-measure = 2(Recall·Precision)
Recall+Precision

where Recall = Instances in class i classified as belonging to class i
Instances in class i

and Precision = Instances in class i classified as belonging to class i
Instances classified as belonging to class i

We used this metric to assess our tool since it evaluates both the retrieving
capability of the tool through the Recall metric as well as the prediction capa-
bility through the Precision. Based on the results depicted in Fig. 2, we choose
LibLINEAR as classification algorithm coupled with 4-grams to build our detec-
tion mechanism since this combination of feature bring the best results with
F-Measure = 92.50%.

5.2 Classifiers Details

This section describes how LibLINEAR [10] works in details. It is an implemen-
tation of a support vector machine (SVM) classifier. The aim of SVM classifi-
cation is to calculate the equation of the boundary between two sets of labelled
instances (PDF files in our case) characterized by n features. In this n dimen-
sional problem, it must find the equation of an hyperplane. The shape of the
hyperplane can be linear, polynomial, radial or sigmoidal and is determined by a

Advanced Detection Tool for PDF Threats 309

kernel function. The kernel maps data into a space, in which it can be separated
by an hyperplane. LibLINEAR is faster than LibSVM because it does not map
instances into higher dimensional space, but instead it tries directly to separate
instances in the initial vector space [10]. Thus, the computational complexity of
the algorithm grows linearly with the number of instances.

More formally, by doing a LibLINEAR classification, the learning algorithm
solves the following optimization problem:

minw,b{1
2

∼ w ∼2 +C
∑n

i=1
ξ(w;xi, yi)}

subject to yi(w · xi − b) ⇐ 1 ≈ 0 ← i ← n

where yi is the class of instance i
where xi represents an instance i
and w is the normal to the hyperplane.

The C parameter represents margin rigidity: the higher it is, the softer are
margins. This means that we allow misclassified instances to contribute to the
model. In contrast, when margins are more rigid, we do not allow those instances
to be part of the model. We have to be careful in choosing this parameter because
it can lead to under-fitting or over-fitting problems. While the former would
represent more our training sample rather than the instance population, the
latter would be too general. To find the good value for C, a grid search is
usually performed. This consists in varying the parameter and doing a cross
validation for each variation. Parameter offering the best cross-validation result
is adopted. After a grid search we were able to determine that C = 0.03125 is the
optimum value. The ξ(w;xi, yi) term is the loss function, which approximates
the misclassification degree of instance i.

6 Evaluation and Use-Case

We present in this section a real-life use-case for such a detection tool. We firstly
define what we mean by such a scenario and then we evaluate our tool. Lastly, we
compare our approach with PJScan, another tool aiming at detecting malicious
PDF files.

6.1 Real-Life Use-Case

Before going further into this evaluation, we propose to define what we mean by
a real-life use-case. Following we point out two points of interest for running our
experiments:

1. We must use a training set older than the files we want to detect;
2. We must assess our tool on a realistic dataset of malicious files.

In order to satisfy the first condition, we use the three older datasets introduced
in Sect. 4 to train the tool. As a result, we do the training with 24,327 files in

310 Q. Jerome et al.

Table 3. Realistic scenario evaluation

class. as mal. class. as .reg Recall Precision F-Measure
Malicious 3667 224

97.00% 96.85% 96.92%
Undetected 8 3466

both classes extracted from D1,D2 and D3. For the evaluation set, we use the
most recent dataset, namely D4. In using these settings for the experiments, we
also assess the viability of our approach regarding the threat evolution since the
training set contains files two years older than files used for testing. Concern-
ing the second requirement, we do not pay attention to the similarity problem
between learning and testing. This makes sense since the tool must be able to
find threats present in its knowledge base. Moreover, it is possible that some
files in the testing set share similarities between them. To quantify the similarity
between learning and testing, we found that 50 have the same hashing signa-
ture and 416 have a similar PDFID fingerprint. For this experiment we use the
settings defined in the previous section.

We can see immediately in Table 3 that the results are better than for the
previous experiments. This can be partly explained by the fact that we used
many more files than for our evaluation with Weka. Another reason is that in
this test case, we did not filter the initial dataset as we did in our first experiment.
This allows us to assess the real capabilities of the tool in terms of prediction
and identifying known threats. We can also note the low false positive rate –
benign files incorrectly classified as malicious – of 0.23 % as well as a very good
classification accuracy of 96.85 %. This is a valuable attribute in a detection tool
since only few false alarms are raised. Furthermore, we point out that files having
the same hashing signature or similar PDFID fingerprint that files in the model
were all well classified.

To have a better idea of which files remain undetected by the tool we extracted
some pertinent information from misclassified files. The first point of interest is
that among these 224 files there are 67 different PDFID outputs. We verified
that no file with any of these outputs was in our training data. We can assume
that these files are new attacks that our tool did not have in its training set.
We also found that 399 files in our evaluation set had one of these PDFID sig-
nature. This means that we correctly identified 175 of these files while 224 were
misclassified. If these 399 files are really totally new threat, relatively to the tool
knowledge, we can not hope detecting new threats with 100 % accuracy.

For sake of space, we do not present the detailed throughput assessment of
this detection mechanism. However, it is worth noting that we can process around
hundred regular documents per minute on a desktop computer with an Intel Core
I5 processor and 8 GB of RAM. We mean by regular documents documents that
we are used to deal with on a daily basis. Since malicious files are lightweight,
the tool performs faster detection on these but a scenario containing only rogue
files seems to be unlikely.

Advanced Detection Tool for PDF Threats 311

Table 4. PJScan evaluation

class. as mal. class. as .reg Recall Precision F-Measure
Malicious 209 49

88.89 68.67 77.48
Undetected 3 31

6.2 Comparisons

In this section we compare our approach with previous academic work in this
area. Therefore, we compare our results against the detection capabilities of
PJScan [5]. To make the comparison as fair as possible we use exactly the same
scenario we defined in the previous section.

Comparison with Academic Work. Here we summarize the experiments
that we ran in order to compare our tool to PJScan. We chose to compare our
tool to PJScan because it is well documented and its source code is open12.
We do not present a run-time performance comparison with PJScan because
we ran it on a virtual machine due to compatibility issues. Before use, PJScan
needs to be trained on a malicious training sample. As PJScan uses One Class
SVM classification, the model has to be built using only one class. To satisfy
this requirement we fed the model with the malicious files that we used in our
training set. We expected very different results from our own because PJScan
deals only with documents containing JavaScript.

Table 4 summarizes the results provided by PJScan. The tool was only able to
process 3.9 % of the test set. According to the output of the tool, the remaining
files were skipped because no information was found in them. In this situation,
the tool is unable to classify files and thus does not take any decision. However, in
reality we need to take decisions regarding unknown files. Thus, we can conclude
that this tool does not fit well with a real-life scenario. To be fair we compare
both approaches according to the file that PJScan is able to process. From this
comparison, we can conclude that our approach outperforms PJScan since it has
a better accuracy, 96.85 % for ADEPT against 82.19 % for PJScan.

6.3 Web Service Implementation

We briefly present here a web interface implementation of our tool. We devel-
oped a front end that makes the tool more user-friendly than the command
line version. The service is hosted at http://www.secan-lab.uni.lu/pdfchecker
and provides a VirusTotal-like graphical interface. The user can choose either
to scan a file or try to retrieve a scan result for a previously scanned file by
providing its SHA-256 signature. The result provides useful information to the
user by showing the first and the last submission date. In addition, we also pro-
vide a PDFID-like output from another tool that we have developed. This tool
actually extends the work done for PDFID and does it faster, up to 30 times
12 http://sourceforge.net/p/pjscan/home/Home/

http://www.secan-lab.uni.lu/pdfchecker
http://sourceforge.net/p/pjscan/home/Home/

312 Q. Jerome et al.

for big files (>25.0 MB). This tool also warns the user when the file he scanned
contains dangerous features. This extra-feature is particularly useful when the
tool misclassified a document.

7 Related Work

In this section we present the related work concerning PDF analysis and auto-
mated PDF detection. We also mention some relevant papers about the general
topic of malware detection that drove us to build such a detection mechanism.

7.1 PDF Analysis

Several approaches exist for PDF analysis. We can find both static and dynamic,
or even hybrid methods. While our tool addresses the problem of malicious file
detection we cite here some analysis tools, helpful when we must deal with
unknown threats. Outputs from analysis tools are often used as input for a
detection mechanism.

PdfTools13, developed by Didier Stevens, is an analysis toolkit consisting of
PDFID and PDF-PARSER. The former gives statistics about potentially mali-
cious features which are embedded in a PDF while the second is a parser that
displays the PDF code in a readable format. Another static tool, PDF Struc-
tazer, is presented in [2]. It can be used to analyse, create or modify PDF files.
In the same paper, the authors show the power of the PDF language by imple-
menting phishing attacks using only language features. Itext14 is an open source
and free library providing ways of automating PDF creation and modification.
Almost all features provided by the PDF language are supported; References
[11] provides an introduction and practical guide.

A dynamic approach is implemented in CWSandbox [12], an application
which monitors malware execution in a sandboxed environment. Its dynamic
analysis monitors features such as file modification, changes made to the Win-
dows registry and processes created. Post execution, the application provides a
detailed report directly readable by analysts who can take a decision concerning
the file. This tool has been adapted for malicious PDF15, which is certainly its
main problem concerning PDF detection. However, as noted previously, some
exploits run only on particular Adobe Reader version. Thus before running a
malicious file in a sandboxed environment, we need to know which version is
targeted. In [13] the authors introduce MIST, means of interpreting output from
online platforms such as CWSandbox. The resulting instruction can subsequently
be used for a machine learning based classification.
13 http://blog.didierstevens.com/programs/pdf-tools/
14 http://itextpdf.com/itext.php
15 http://honeyblog.org/archives/12-Analyzing-Malicious-PDF-Files.html

http://blog.didierstevens.com/programs/pdf-tools/
http://itextpdf.com/itext.php
http://honeyblog.org/archives/12-Analyzing-Malicious-PDF-Files.html

Advanced Detection Tool for PDF Threats 313

7.2 Malicious PDF Detection

A combination of both types of analysis is implemented in MDScan [14] in order
to detect malicious PDF files. MDScan first detects malicious code by parsing the
document. The extracted code is then monitored in an emulator emulating pro-
viding a subset of the functionalities available in the Adobe API. Because some
API functions have not yet been implemented; the detection can be defeated if
malicious file exploit an unimplemented function. Schmitt et al. present PDF
Scrutinizer in [15]. The approach combines both static and dynamic analysis to
detect malicious PDF files containing JavaScript.

In [5], Laskov et al. describe PJScan, a static detection based on machine
learning. They focus on malicious PDFs containing JavaScript. They use a
JavaScript extractor and then treat extracted code to transform it in a stan-
dard token representation. A learning algorithm is then applied to the tokenized
sequence in order to detect malicious patterns. The authors leveraged approaches
introduced in [16], where lexical analysis associated with a learning method is
applied to detect drive-by download attacks.

A recent tool is proposed in [17] where the authors leverage several meta-
data extraction combined with machine learning in order to determine whether
a file is likely to be malicious or not. Another approach, based on the hierar-
chical structure of PDF documents combined with machine learning has been
presented in [6]. Although this approach seems to have good performances, it is
still vulnerable to parser vulnerabilities since it uses the libpoppler library.

7.3 Malware Analysis

We have done previous work in machine learning techniques for security in [18–
20], but focussed more on the network traffic monitoring and not the system
level defines.

In [21] the authors present a detection solution that, like ours, is based on
n-gram associated with learning techniques. Their experiments tested different
classifiers and different values of n. They address malicious Windows binary (PE
files) detection. While their approach targets malicious code in binary format,
ours approach deals with ASCII encoded files. Additionally, while their approach
leverages information gain in feature selection, ours uses most frequent features.

N-gram analysis is used in [22] in order to detect file types. This type of
analysis can be used to tag unknown files or to detect files which try to disquise
their content. To reach their goal, the authors firstly obtain n-gram distributions
for various file types. Secondly, they compare n-gram distribution of a file under
test with known values to determine its real type. Similar work appears in [23],
where the authors present a way of detecting embedded files within documents.
This method consists in observing variation of n-gram distribution compared to
the expected distribution for a given file format. This method can also be used
to detect embedded files within PDF files.

Wei-Jen Li et al. [24] present a way to analyse malicious Word documents.
Their method is based on static analysis coupled with a dynamic element. Byte
distribution is analysed in an initial static analysis step. They further monitor

314 Q. Jerome et al.

malware behaviour using API hooking techniques. The file is ultimately classified
as a result of these two steps.

In term of full dynamic analysis, TTAnalyze, presented in [25] aims to quickly
identify malicious PE files. To achieve this, the tool monitors both the Windows
API and native API hooks to catch even the stealthiest malware. It evades detec-
tion by the rogue program in avoiding both classic API hooking and breakpoint
setting.

8 Conclusion

This paper describes an accurate detection tool for malicious payload detec-
tion. Our work was motivated by the lack of efficient approaches to mitigate an
advanced persistent threat that has had significant impact recently. We proposed
a method that leverages machine learning and sequence based features in order
to detect malicious PDF files. We have assessed our approach on a very large set
of data that was obtained through the courtesy of VirusTotal. The performance
in both speed and accuracy are very good since it is able to process hundred
files per minutes with 0.23 % of false positives. We plan to extend this work by
integrating additional pieces of information, such as entropy and multiple align-
ment scores. We are also considering to generalize this approach to a larger class
of payload types, but obtaining ground truth datasets for each is a particularly
challenging.

Acknowledgment. The authors would like to thank Prof. Dr. Pavel Laskov for the
support and dataset provided for our experiments. Special thanks also go to the Virus-
Total team for giving us access to several datasets.

References

1. Adobe: PDF reference sixth edition, adobe portable document format, version 1.7
(2006)

2. Filiol, E., Blonce, A., Frayssignes, L.: Portable document format (PDF) security
analysis and malware threats. J. Comput. Virol. 3(2), 75–86 (2007)

3. Daniel, M., Honoroff, J., Miller, C.: Engineering heap overflow exploits with
JavaScript. In: Proceedings of the 2nd Conference on USENIX Workshop on Offen-
sive Technologies, WOOT’08, pp. 1:1–1:6. USENIX Association, Berkeley (2008)

4. Rahman, M.A.: Getting owned by malicious PDF - analysis. Global Information
Assurance Certification Paper (2010)

5. Laskov, P., Šrndić, N.: Static detection of malicious JavaScript-bearing PDF doc-
uments. In: Proceedings of the 27th Annual Computer Security Applications Con-
ference. ACSAC ’11, pp. 373–382. ACM, New York (2011)

6. Šrndic, N., Laskov, P.: Detection of malicious pdf files based on hierarchical doc-
ument structure. In: Proceedings of the 20th Annual Network and Distributed
System Security Symposium (2013)

7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The
WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1),
10–18 (2009)

Advanced Detection Tool for PDF Threats 315

8. Witten, I., Frank, E., Hall, M.: Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann, Amsterdam (2011)

9. Akbani, R., Kwek, S., Japkowicz, N.: Applying support vector machines to imbal-
anced datasets. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.)
ECML 2004. LNCS (LNAI), vol. 3201, pp. 39–50. Springer, Heidelberg (2004)

10. Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: Liblinear: a library for large
linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

11. Lowagie, B.: iText in Action: Creating and Manipulating PDF. Dreamtech Press,
New Delhi (2006)

12. Willems, C., Holz, T., Freiling, F.: Toward automated dynamic malware analysis
using CWSandbox. IEEE Secur. Priv. 5, 32–39 (2007)

13. Trinius, P., Willems, C., Holz, T., Rieck, K.: A malware instruction set for
behavior-based analysis. In: Proceedings of the Conference Sicherheit Schutz und
Zuverlssigkeit SICHERHEIT (TR-2009-07), pp. 1–11 (2011)

14. Tzermias, Z., Sykiotakis, G., Polychronakis, M., Markatos, E.P.: Combining static
and dynamic analysis for the detection of malicious documents. In: Proceedings of
the Fourth European Workshop on System Security. EUROSEC ’11, pp. 4:1–4:6.
ACM, New York (2011)

15. Schmitt, F., Gassen, J., Gerhards-Padilla, E.: Pdf scrutinizer: detecting javascript-
based attacks in pdf documents. In: 2012 Tenth Annual International Conference
on Privacy, Security and Trust (PST), pp. 104–111. IEEE(2012)

16. Rieck, K., Krueger, T., Dewald, A.: Cujo: Efficient detection and prevention of
drive-by-download attacks. In: Proceedings of the 26th Annual Computer Security
Applications Conference, pp. 31–39. ACM (2010)

17. Smutz, C., Stavrou, A.: Malicious PDF detection using metadata and structural
features. In: Proceedings of the 28th Annual Computer Security Applications Con-
ference, pp. 239–248. ACM (2012)

18. François, J., Wang, S., State, R., Engel, T.: BotTrack: tracking botnets using Net-
Flow and PageRank. In: Domingo-Pascual, J., Manzoni, P., Palazzo, S., Pont,
A., Scoglio, C. (eds.) NETWORKING 2011, Part I. LNCS, vol. 6640, pp. 1–14.
Springer, Heidelberg (2011)

19. Wagner, C., Wagener, G., State, R., Engel, T.: Malware analysis with graph kernels
and support vector machines. In: 2009 4th International Conference on Malicious
and Unwanted Software (MALWARE), pp. 63–68. IEEE (2009)

20. Abdelnur, H.J., State, R., Festor, O.: Advanced network fingerprinting. In: Lipp-
mann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230, pp.
372–389. Springer, Heidelberg (2008)

21. Kolter, J., Maloof, M.: Learning to detect and classify malicious executables in the
wild. J. Mach. Learn. Res. 7, 2721–2744 (2006)

22. Li, W., Wang, K., Stolfo, S., Herzog, B.: Fileprints: identifying file types by n-gram
analysis. In: Proceedings from the Sixth Annual IEEE SMC Information Assurance
Workshop. IAW’05, pp. 64–71. IEEE (2005)

23. Stolfo, S.J., Wang, K., Li, W.J.: Fileprint analysis for malware detection. ACM
CCS WORM (2005)

24. Li, W., Stolfo, S., Stavrou, A., Androulaki, E., Keromytis, A.: A study of
malcode-bearing documents. Detection of Intrusions and Malware, and Vulner-
ability, Assessment, pp. 231–250 (2007)

25. Bayer, U., Moser, A., Kruegel, C., Kirda, E.: Dynamic analysis of malicious code.
J. Comput. Virol. 1, 67–77 (2006)

Enforcing Input Validation through Aspect
Oriented Programming

Gabriel Serme1, Theodoor Scholte2, and Anderson Santana de Oliveira2(B)

1 Eurecom, Biot, France
2 SAP Labs, Mougins, France

anderson.santana.de.oliveira@sap.com

Abstract. Injection vulnerabilities are still prevalent today, ranking
first on OWASP top ten threats to software security. Developers often
have trouble to adopt secure coding practices during the software devel-
opment life cycle, failing to prevent these vulnerabilities. This paper
addresses the problem of modular input validation for web applications as
a countermeasure to several kinds of code injection attacks. The solution
relies on annotations that enrich the metadata concerning the applica-
tion’s input parameters. This information is then used to automatically
insert validation code in the target application, using aspect-oriented
programming. Our approach allows to mitigate risks and to maintain
security functionality separated from the application logic.

1 Introduction

Many web applications and web services are prone to input validation vulnera-
bilities. Representative examples of this class include cross-site scripting (XSS),
SQL Injection and command injection. Although input Validation vulnerabilities
are well-known, and have been studied largely in the past decade, vulnerabili-
ties such as SQL Injection and XSS have been dominating the charts for many
years. As a matter of fact, these vulnerabilities have been listed among the most
relevant threats by Top Ten Project hosted by OWASP1 since a decade.

Input validation vulnerabilities have the same root cause: improper saniti-
zation of user-supplied input that result from invalid assumptions made by the
developer on the input of the application.

Injection attacks, that exploit input validation vulnerabilities, are attacks in
which an attacker creates inputs containing special characters and/or markers
that alter the behavior of the targeted application in some undesired way. Such
attacks can have devastating consequences, ranging from information leakage
to privilege escalation in which the attacker can gain full control of the system
under attack.

Injection attacks, also called code injection attacks, can take several
forms:
1 https://www.owasp.org/index.php/Category:OWASP Top Ten Project

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 316–332, 2014.
DOI: 10.1007/978-3-642-54568-9 20, c© Springer-Verlag Berlin Heidelberg 2014

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Enforcing Input Validation with Aspects 317

– SQL injection is the insertion of a SQL query via the input data from the
client to the application. Via this attack, one can obtain sensitive data from
the database, to modify it, or to execute administrative operations on it.

– Command Shell injection allows to insert and to execute commands specified
by an attacker from the input to a vulnerable application, making it to execute
unwanted system commands.

– Cross-site scripting (XSS) attacks: In this type of attack, malicious scripts are
injected into the otherwise benign and trusted web sites. Cross-site scripting
(XSS) attacks occur when an attacker uses a web application to send malicious
code, generally in the form of a browser side script, to a different end user.
Cross-Site scripting vulnerabilities are quite widespread and occur whenever
a web application uses input from a user in the output it generates without
validating or encoding it.

– Other kinds of injection are possible, but the mitigation strategy is similar and
covered by the paper. We can mention for instance XML and XPath injection,
which occur when a web site uses user-supplied information to construct an
XPath query for XML data. By sending intentionally malformed information
into the web site, an attacker can find out how the XML data is structured,
or access data that he may not normally have access to. He may even be able
to elevate his privileges on the web site if the XML data is being used for
authentication (such as an XML based user file).

Preventing input validation vulnerabilities is a complex task. Scholte et al.
have shown in [27] that despite security awareness programs and tools for detect-
ing input validation vulnerabilities, this class of vulnerabilities is still very preva-
lent across web applications and the number of reported vulnerabilities is not
decreasing. The study [27] also shows that he complexity of the attacks exploit-
ing this class of vulnerabilities remained stable, meaning that hackers do not
need to craft more sophisticated injection strings, relying on the easiest vectors
to exploit vulnerable applications.

One of the reasons behind the prevalence of input validation vulnerabilities
is that the application of any techniques to prevent them, relies entirely on the
developers. Although several frameworks do provide libraries containing valida-
tion and sanitization functions, these still need to be explicitly called from the
application logic in order to validate or sanitize the input provided by users. This
has two distinct and important disadvantages: first, developers simply forget (or
ignore) to use the already available input validation functionalities. Second, it
is hard to maintain, update and evolve the application logic independently -
since validation function calls would be scattered along all the application code.
Moreover, the validation functionalities built in web application frameworks do
not have the necessary degree of granularity to handle the validation of a large
number of different data-types an application typically handles.

Since preventing input validation vulnerabilities relies entirely on developers,
prevention techniques that are part of the design and implementation phases of
the software development lifecycle will help in making web applications and web
services more secure.

318 G. Serme et al.

In order to prevent input validation vulnerabilities, all input read by the pro-
gram must undergo a validation and sanitization process. This paper focuses on
input validation which is, essentially, the process of assigning semantic meaning
to unstructured and untrusted inputs to an application, and ensuring that those
inputs respect a set of constraints describing a well-formed input. Depending on
the data type, additional validation checks might be necessary. For example, a
string might contain only allowed characters or the length of the string should
stay within certain boundaries. For numerical input, the validation process might
check if the value stays within the expected range and if the value is signed or
not (positive or negative integer).

We provide a method to prevent input validation vulnerabilities by strictly
separating input validation functionality from the application code. In this way,
the assignment of data types to input can be enforced while maintaining con-
sistency between input validation and application logic. More specifically, the
paper consists in the non-invasive use of Aspect-Oriented Programming in the
automatic generation of input validation code, without altering the business logic
of the concerned application. We performed an evaluation of our approach under
realistic conditions to demonstrate how vulnerabilities can be prevented.

The remainder of the paper is organized as follows:

– Section 2 Explains our methodology to prevent input validation vulnerabili-
ties.

– Section 3 Shows our experimental results.
– Section 4 brings the state of the art in this domain.
– Section 5 summarizes the advantages of the paper focusing on the novelties

we introduce.

2 Input Validation Aspects

Our method for mitigating input validation vulnerabilities requires that appli-
cation developers annotate source code of the application components to be pro-
tected. Annotations are a simple way to extend a given programming language
in a non-invasive way. In our case, the annotations indicate what are the input
parameters and their corresponding enhanced data-types individually. After the
programs are annotated, the tool will generate new executable or object code,
using aspect-oriented programming techniques(AOP) [18].

The term AOP has been coined around 1995 by a group led by Gregor Kicza-
les [18], with the goal to bring proper separation of concerns for cross cutting
functionalities. The aspect concept is composed of several advice/pointcut cou-
ples. Pointcuts allow to define where (points in the source code of an application)
or when (events during the execution of an application) aspects should apply
modifications. Pointcuts are expressed in pointcut languages and often contain
a large number of aspect-specific constructs that match specific structures of
the language in which base applications are expressed, such a pattern language
based on language syntax. Advices are used to define modifications an aspect
may perform on the base application. Advices are often expressed in terms of

Enforcing Input Validation with Aspects 319

some general-purpose language with a small number of aspect-specific exten-
sions, such as the proceed construct that allows the execution of the behavior of
the base application that triggered the aspect application in the first place.

The obtained code will intercept the execution flow whenever an input is
received in order to check whether the input is in conformity to some pre-defined
format. In the case a non-conform input is read by the application, then a pro-
gramming exception is raised.

The methodology we propose assumes that all input parameters in the code
must be annotated by the developer, otherwise the application will not be exe-
cuted. However, this feature can be turned off, allowing the developers to par-
tially annotate the code, or to disregard completely the annotation phase. In
other words, annotating all input parameters in the source code is mandatory
by default.

Correctly annotating the input parameters is critical as it ensures the future
verification of all incoming data. An incorrect validation mechanism can compro-
mise the risk mitigation process. In order to bind correctly the parameters and
variables of interest, we adopt a semi-automatic approach combining user-based
knowledge as well as automatic detection of data types - for instance by using
information gathered from model repositories, database schemas, and so on.

At the design phase the developer has to define the enhanced data types, also
called Global Data Type, that are used across the application. Enhanced data
types have business semantics and provide more precision on the expected user
inputs. Therefore, these data types differ from the basic built-in types from the
programming language. Examples of enhanced data types or Global Data Types
are productID, e-mail address, phone number, address, etc. Abstract types are
added in order to obtain a fine-grained and stronger typing related to variables
and parameters used in the application.

For instance, in a declaration such as String email; the developer would
add the annotation @Email String email; indicating that only strings obeying
a certain pattern for email addresses shall be accepted. The way these patterns
are identified are not specific to our approach, and can be combined with machine
learning techniques, such as the one introduced in [28]. Here, we consider that the
set of enhanced data types is extensible as well as the corresponding validation
functionalities for each extended data types.

The tool is built from three main components, illustrated in Fig. 1. The point-
cut interface adaptor keeps a mapping between enhanced types and validation
functions. This component can also extract data-type information from external
knowledge bases to add meta-data information necessary to the input validation.
Examples of external information sources are service repositories, such as the
SAP Enterprise Services Repository, database schemas, WSDL files, etc. These
sources can provide information on the type structure used in the application
parameters, such that we can infer enhanced data types associated to them. In
these knowledge bases one find further information, such as the required length
for data fields, or enumerated values, which can be useful to gain accuracy in
the input data validation.

320 G. Serme et al.

Fig. 1. Architecture of the tool

The Aspect Engine is responsible for the detection of validation points during
the execution of the application. The Aspect Engine is capable of modifying the
application data flow. It takes into account the type annotations and inserts
data validation code whenever there is an assignment for an input parameter,
called validation point, that is, whenever data is read from untrusted sources or
received from the final users.

A validation point refers to the validation of a specific parameter or vari-
able from the base application. Upon detection of a validation point, the Aspect
Engine extracts parameter’s data-type and looks for an existing validation library.
If the aspect finds a corresponding library, it applies the validation mechanisms
described in the module.

The last component in the architecture consists of an extensible aspect library
where the validation functions for each enhanced data type are given. This library
maps each enhanced data type or Global Data Types, to validation functions
that are represented as aspects. The implementation of validation functions have
a standardized interface in order to ensure compatibility, and the mapping con-
figuration in the pointcut interface adaptor need to be updated accordingly.

As we presented above, the solution comprises different steps and components
to correctly implement an automatic validation during application execution.

Enforcing Input Validation with Aspects 321

Fig. 2. Components and ideal roles

The Fig. 2 presents the different components, and the ideal separation of roles
in the concerns’ processing. In the ideal situation, the application has a business
model that define all business objects. The automation is made possible through
the enhanced data types. Security experts can already propose some enhanced
data types, that can be extended over time. The list of enhanced data types
can also be extended by any developer, although a security expert would have
the most appropriate role to provide clear and accurate information to mitigate
risks. The developers are responsible to develop the application, and can use the
enhanced data types. Security experts are only responsible of providing a vali-
dation library for the enhanced data types, that they can adapt to the business
model specificities.

The regular process to create a new enhanced data type is the following.
When someone identifies a specific data type, he creates an identifier name for
it. This name is released among the application developers and stakeholders.
The Listing 1 is an example used in our application to share data types as a
Java enum.

public enum DataType {

FLIGHT_NUMBER, DATE, EMAIL, NAME, ID, TITLE, SSN, PHONE, ADDRESS, SALARY,

}

Listing 1: Enhanced Data Types as a Java enum

The new available types can be used to taint variables and parameters along
the base application. The Listing 2 shows the different use of our method: the
annotations can apply to a method parameter, a constructor argument, or a class
variable. It provides a large range of possibilities from application to business
model tainting.

In parallel, new names must have their corresponding validation aspects
defined in the validation library. It is possible to define multiple validation
aspects to a single identifier in the validation library. Nothing prevents one to
create different validation mechanisms for a same enhanced data type. The val-
idation behaviour is implemented by the code advice.

322 G. Serme et al.

public class Customer {

private String name;

private String firstname;

@Type(DataType.EMAIL)

private String email;

public void setEmail(@Type(DataType.EMAIL) String email) {

this.email = email;

}

public Customer(String name, String firstname,

@Type(DataType.EMAIL) String email) {

this.name = name;

this.firstname = firstname;

this.email = email;

}

/* ... */

}

Listing 2: Business model can be annotated

In most cases, the behaviour to validate a type can be given in terms of reg-
ular expressions. The handling of regular expressions is frequently provided as
a built-in functionality in many programming languages. A deeper test can be
introduced as the validation library can access the business model. The validation
can therefore validate complex business types, and validate them through differ-
ent means: functional validation, additional technical checks, etc. For instance,
one can verify existence of an e-mail address by contacting mail transfer agents,
or wire transfer validation might involve third parties services. More sophisti-
cated attack vectors would require advanced pattern matching, therefore the
valid input would need to be specified through XML-Schema validation, for
example. This would allow for a more expressive class of languages can be
accepted as input, that is, context-free languages. Once the advice code for a
specific enhanced data type is created, one needs to encapsulate the validation
code in an aspect and to compile it. The generated binaries can then be deployed
in the validation aspect library.

In Fig. 3, we represent the implementation of the Aspect Engine for the pro-
totype we implemented. In the picture, we consider that aspects are inserted
at run-time into the target application. We assume at this point that several
aspects exist in the validation library. The second assumption is that the appli-
cation about to run has accurate meta-information about enhanced data types.

In this implementation, the Aspect Engine is a specialized class loader who
bootstraps all target applications. The first action of the Aspect Engine is to
search for available aspects in the aspect library. As the application code is
loaded, the Aspect Engine gathers the points in the code that will need the
validation and also the applicable validation aspects at those points. If no val-
idation is found for an input parameter, and that the environment is set to
enforce validation for all, the application execution is aborted.

Next, the Aspect Engine will proceed with the execution of the application
code and observe the application execution until it reaches a validation point.
At these points, it detects an enhanced data type annotation used by the base
application and searches among the loaded classes one or more corresponding

Enforcing Input Validation with Aspects 323

Fig. 3. Input validation flowchart

validation aspects. Then the Aspect Engine applies the validation function for
the parameter found. It then loops again to monitor application execution until
its termination.

3 Evaluation

The evaluation of our approach is measured by the ability to mitigate input
validation vulnerabilities while allowing the normal execution of the web appli-
cations. To validate the correct mitigation of security vulnerabilities, we applied
a rigorous test on deliberately insecure web applications, and we compared the
number of reported vulnerabilities prior and after the correction with input val-
idation aspects. We also made sure that the modifications we bring do not break
the normal flow of execution of the application, by manually and intensively
testing the validation library.

We used a black-box testing approach, as it allows to analyze the potential
application attack surface that would be available for externals security experts.

324 G. Serme et al.

We avoided the complexity of whitebox analysis, leveraging on the load-time
weaving of the cross cutting concerns (validation code) into the application run-
time, given that in the present evaluation we want to identify what is the pro-
tection rate achieved with our approach.

For the black-box security tests we used two specific tools specialized in web
application security and audit. They are classically introduced in penetration
testing phase to support automated analysis and collect of security vulnerabili-
ties.

3.1 Penetration Testing Tools

Arachni. Arachni [21] is a web application security scanner framework. It is an
open-source ruby framework to assist testers and administrators in evaluating
the security of web applications. It provides all features which goes from web
application crawling using a spider module to deep packet analysis using blind
SQL module for example. The application is able to activate modules for the
most common web application vulnerabilities: code injection (through several
channels), cross-site scripting, cross-site request forgery, path traversal, remote
and local file inclusion, SQL injection, etc..

W3AF. W3AF [25] is a web application attack and audit framework written
in Python. It helps in finding and exploring web application vulnerabilities. It
comes with several modules to crawl the application and analyze common vul-
nerabilities. The set of vulnerabilities is similar to the ones covered by Arachni,
with some additional modules.

3.2 Analysis

We have applied the steps of our methodology to concrete insecure web appli-
cations. We used the wavsep project [3] as target for our evaluation. wavsep
was designed to test web application security scanners, intentionally containing
vulnerabilities such as: path traversal, remote file inclusion, reflected XSS, blind
and direct SQL injection, and additional flaws. Although wavsep has no specific
data model with business value, being composed by separated projects with Java
Server Pages for each kind of vulnerability, it represents a challenging project to
assess our methodology.

We proceeded as follows. First we added Global Data Types where nec-
essary to cover cases that were not already defined in our validation library.
wavsep uses the following custom types, among others: username, password,
target, msgid, transactionDate, minBalance, description, etc.. We enhanced the
validation library with these types. Listing 3 presents a simple class validation
following our methodology. Second, we created an aspect that wraps around
the request.getParameter() calls, as shown in Listing 4. The validation library
determines the actual Global Data Type from the parameter name (which is a
particular behavior of wavsep), and validate the input, or aborts the request.

Enforcing Input Validation with Aspects 325

From Fig. 1, it shows how one can replace annotations by another layer to iden-
tify the actual enhanced data types.

@Validation(value = DataType.NAME)

public class ValidationName implements ValidationInterface {

final Pattern p = Pattern.compile("\\w{2,15}");

@Override

public boolean doProcess(String str) throws Exception {

Matcher m = p.matcher(str);

return m.matches();

}

}

Listing 3: Simple validation for a Name data type (used for username for exam-
ple).

@Pointcut("call(* *..HttpServletRequest.getParameter(..))")

public void pointcutGetParameter() {

}

@Around("pointcutGetParameter()")

public String wavsepCustom(final ProceedingJoinPoint jp) throws Throwable {

String paramName = (String) jp.getArgs()[0];

String value = (String) jp.proceed(new Object[] { paramName });

DataType type = DataType.valueOf(paramName);

validate(type, value);

return value;

}

Listing 4: Custom adaptation of our methodology to wrap getParameter() inputs
for validation.

Table 1 presents the details of our evaluation. We launched the test appli-
cation on a Tomcat servlet container, without (column “original”) and with
(column “protected”) our validation library. In the second case, we have config-
ured AspectJ to provide load-time weaving of aspects at the start up of the web
application. We performed tests using both Arachni and W3af. For simplicity, we
retained only the vulnerabilities flagged as critical/high, and discarded reports
for the medium or informational issues. The miscellaneous category includes
either unclassified vulnerabilities reported “as is” by w3af, or phishing vector
and code injection detected by Arachni.

The results show that we can reduce the number of detected vulnerabili-
ties to zero in the XSS, directory path traversal, and the remote file inclusion
categories. We have an extremely good rate in the SQL injection category, for
which Arachni reports still three vulnerabilities after protection with our library.
This is explained by the fact that Global Data Types are efficient when appli-
cations use a consistent data model. As wavsep provides no data model, but
only reflected use of input parameters through the request.getParameter() func-
tion of the HTTPServletRequest object, our pointcut interface adaptor module
is probably missing some of the inputs. Our tool was also able to eliminate all
reported vulnerabilities by Arachni in the miscellaneous category, correspond-
ing to phishing vector and code injection. w3af still signals a high number of
unclassified vulnerabilities, but our tool was able to reduce the original score by
almost fifty percent.

Our success rates is partially due to the systematic analysis of the input
received by the application, associating to them a precise data type - activity

326 G. Serme et al.

Table 1. Number of vulnerabilities detected by the Arachni (arac.) and w3af web
application security scanners with a black-box approach on original and protected
wavsep application.

Original Protected

SQL injection arac. 214 3
w3af 107 0

Cross site scripting arac. 185 0
w3af 119 0

Directory path traversal arac. 662 0
w3af 231 0

Remote file inclusion arac. 120 0
w3af 0 0

Miscellaneous arac. 44 0
w3af 552 278

that developers often neglect. Associated to that, our aspects provide exhaustive
validation for all inputs in the application, another point developers tend to
underestimate. As a disclaimer, it is important to mention that besides the fact
we are confident in the prevention of the vulnerabilities detected by prominent
tools such as w3af and Arachni, we cannot state that wavsep will be completely
free of security bugs by using our approach, as these tools may not uncover all
possible vulnerabilities.

4 Related Work

One of the main originalities of the current paper is to addresses the prob-
lem of enforcing input validation through a strict separation between data type
definitions and application logic. However, in the past decade, much research
effort has been spent on making web applications and web services more secure.
Researchers have focused on detection mechanisms including static analysis,
dynamic taint analysis and client-side security mechanisms. In addition to detec-
tion techniques, researchers have also worked on techniques to prevent security
vulnerabilities. We give an overview of the different techniques below.

4.1 Static Analysis

The goal of static analysis is to determine whether tainted data, that is data that
originate from possibly malicious users, reaches sensitive sinks (e.g. vulnerable
points in the program) without being properly sanitized. For this purpose, data
flow analysis techniques that operate on the control flow graph are used. Static
analysis can be applied in cases where source code or bytecode is available. The
advantage it is not necessary to execute the program to detect injection vulnera-
bilities. Unfortunately, approaches based on static analysis suffer from false pos-
itives and false negatives. This is due to imprecise approximations of the control

Enforcing Input Validation with Aspects 327

and data flow available at runtime. In addition, false positives might result from
runtime validation in which the security label of the data (tainted/untainted) is
not changed after the validation.

The WebSSARI project [8] pioneered this line of research. WebSSARI uses a
combination of static and dynamic analysis to detect vulnerabilities in PHP code.
Jovanovic et al. designed Pixy [16,17], a static analyzer tool that features a high-
precision data flow analysis engine that is flow-sensitive, interprocedural, and
context-sensitive and performs alias analysis, literal analysis, and taint analysis.
Another approach that tries to overcome some of the limitations of WebSSARI
is the work by Xie and Aiken [35], their approach performs interprocedural
analysis, is able to model conditional branches and supports dynamic typing.
The work by Wassermann and Su [33] employs a string-analysis based approach
to detect SQL Injection vulnerabilities. It tracks the source of string values and
enforces that user-supplied input is isolated within a SQL query. [34] presents
a static analysis approach to detect Cross-Site Scripting vulnerabilities. It also
employs string analysis techniques.

The research work on static analysis has not been limited to PHP appli-
cations only. Livshits et al. [22] proposed a static analysis approach based on
point-to-point analysis to find code injection vulnerabilities in Java applications.
The tool implementing these techniques has been made available as Eclipse
plug-in.

4.2 Dynamic Taint Analysis

In contrast to static analysis, dynamic taint analysis checks the program at
runtime. In general, approaches based on dynamic tainting assign meta-data to
user-supplied input. All user-supplied data is set to be tainted. When operations
are performed on the input data, this meta-data is preserved. After the saniti-
zation of user-supplied data, the data is set to be ‘untainted’. This allows the
detection if untrusted data reaches a sensitive sink.

Nguyen-Tuong [23] and Pietraszek [24] worked both independently from each
other on dynamic taint propagation. They propose an extension to the PHP
interpreter that tracks tainted input data. The extension proposed by Pietraszek
can either prevent the execution of code or sanitize the input. The approach
proposed by Halfond et al. [6] introduces positive tainting, in this case, only
trusted data is tracked.

Dynamic tainting has also its problems. First of all, the techniques has a rel-
ative large overhead in terms of performance. Moreover, the input data has to be
untainted after a sanitization function. As [1] shows, implementing sanitization
functionality is far from trivial. Furthermore, preventing second order attacks is
difficult as it requires the tracking of data through persistent data stores.

4.3 Client-Side Security Mechanisms

Unfortunately, not all developers of web applications protect effectively and in-
time their applications against Cross-Site Scripting attacks. Therefore, there is a

328 G. Serme et al.

need for client-side solutions to protect users of these web applications. Several
approaches exist that aim to provide client-side protection.

In [11], the authors propose a client-side proxy that detects the use of spe-
cial characters such as ‘¡’ in HTTP traffic. When the proxy detects that the
application response reflects these presumably malicious requests, the traffic is
blocked. Also Noxes [19] is based on the concept of a client-side proxy firewall.
However, this approach tries to improve the user experience of personal firewalls
by introducing some heuristics. In [32], the authors propose browser plugin that
uses static and dynamic tainting techniques to check whether sensitive data is
sent to a different domain than where the Javascript code is downloaded from.

BEEP [13] tries to achieve client-side security by design. It is a policy-based
mechanism that forces the browser to execute only those scripts that are explic-
itly allowed to run specified by the policy.

4.4 Prevention Techniques

Besides the solutions to detect code injection vulnerabilities, there exist several
approaches that prevent code injection vulnerabilities based on sanitization of
data. Data sanitization is the process of transforming data such that the result-
ing data only contains safe characters. In contrast to the traditional practice of
sanitization checks that a developer has to implement in an ad-hoc way, these
frameworks and/or language extensions ensure that documents and/or queries
are automatically protected. Thus, injection vulnerabilities are prevented by con-
struction or by design.

William Robertson et al. propose in [26] a framework that statically enforces
a separation between structure (code) and content (data). In the framework,
an (X)HTML document is represented by nodes that are connected to each
other. The document is a tree of nodes and each node is an instantiation of the
Node type. As a result, the document is strongly typed. Once the document is
constructed, a render function converts the document into a string that can be
send to the client. The render function automatically sanitizes unsafe characters.
The framework also allows developers to specify dynamic SQL queries using an
embedded domain-specific language. The only way to execute SQL queries and
construct documents is through the interfaces provided by the framework. In
this way, sanitization is enforced.

In [15], Johns et al. propose a datatype to enforce the separation between
data and code. With this approach, the developer is forced to use the ELET
datatype to construct foreign code. Once the developer has specified the foreign
code using the ELET datatype, a pre-processor translates the foreign code to
an API representation in the hosting language. Data provided by the hosting
language can be inserted in the foreign code by using a special function. The
main limitation of this approach is that the dynamic construction of foreign
code within the foreign code (e.g. JavaScript’s eval function) is not supported.
Moreover, the dynamic creation of identifier tokens in the foreign language is
not supported. In [14], Johns et al. propose a mechanism to secure web applica-
tions implemented using an interpreted language. A pre-processor marks foreign

Enforcing Input Validation with Aspects 329

code found in the source code as legitimate. After the work performed by the
interpreter, a post-processor identifies all the foreign code that has been injected
by the user/attacker and masks it such that it will not be executed. The main
problem with this approach is that the pre- and post-processors introduce false
positives and false negatives.

4.5 Input Validation

Several web application frameworks support input validation through the use of
annotations. Frameworks such as Spring MVC [30], Hibernate [12] and Struts
2 [4] support a limited set of input validation types. Hibernate is based on the
JSR 303 Bean Validation standard [2]. In contrast to our work, the set of possible
input validation types cannot be extended. Furthermore, these frameworks do
not support the enforcement of validation functions, e.g. a developer is not forced
to validate input. The solutions proposed in [2] and in [7] allow a complete
decoupling of validation code and application logic. However, also these solutions
do not force the developer to specify the inputs along with the types resulting
in less secure applications and a decreased level of quality of data.

Besides frameworks supporting input validation, there exist web application
firewalls that are capable of performing input validation. Web application fire-
walls are placed in front of the web application or web service and all HTTP traf-
fic is routed through the firewall. A firewall can block known malicious requests
(blacklist-approach) or only allow known benign requests (whitelist-approach).
Scott et al. proposed in [29] to secure web applications using web application fire-
walls. Since then, the technique has been commercialized and many vendors offer
application-level firewalls as appliances [9,10,31]. In contrast to our approach,
web application firewalls do not allow to establish and maintain consistency
between the input validation specification and the application code. Moreover,
application-level firewalls support a very limited set of input types which is not
extensible.

Other works have used AOP for validating input to web services. The work
presented in [20] uses aspects to improve web service robustness for SOAP based
services. Input validation grammars and regular expressions are defined with the
help of XML and XPath, what can bring additional vulnerabilities specific to
XML parsing. This work is not focused in security, although SQL injection can
be prevented with this approach. In [5], aspects are used to introduce security
concerns to programs such as authentication, authorization, and input valida-
tion. It proposes an architecture, founded on AOP to integrate these security
objectives, but no implementation is provided.

5 Conclusions

We presented a method and tool to prevent web applications and services to
accept malicious input, which is still today the main vulnerability identified by
OWASP. By adding simple and precise type annotations to existing code, our

330 G. Serme et al.

solution brings a lightweight approach to enrich type information concerning the
expected input for an application. The work derives validation functions that are
modularly integrated into existing applications. The main contributions of the
work we present here are :

– Non-invasive use of aspect-oriented programming, which discharges the devel-
opers from learning a new programming paradigm;

– High degree of automation and the increase program security with minor
effort. Moreover, our approach does not require security expertise from devel-
opers;

– Extensibility: allowing developers to create specific enhanced data types and
their validation aspects;

– Modular integration of new security functionality without disrupting existing
code;

– Security is adopted by design, considering that annotations to all input para-
meters must be provided, but, in order to provide more flexibility to the
solution, an administrator can disable the obligation to annotate all code.

We performed an evaluation of the prototype we implemented, reaching very
high success rates in the elimination of injection vulnerabilities, confirming the
feasibility and usefulness of the approach.

References

1. Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N., Kirda, E., Kruegel, C.,
Vigna, G.: Saner: composing static and dynamic analysis to validate sanitization
in web applications. In: Proceedings of the 2008 IEEE Symposium on Security and
Privacy, SP ’08, pp. 387–401. IEEE Computer Society, Washington, DC (2008).
http://dx.doi.org/10.1109/SP.2008.22

2. Bernard, E., Peterson, S.: JSR 303: bean validation, bean validation expert group.
http://jcp.org/aboutJava/communityprocess/pfd/jsr303/index.html (2009)

3. Chen, S.: The web application vulnerability scanner evaluation project - v1.2.
https://code.google.com/p/wavsep/ (2012)

4. Foundation, T.A.S.: Struts 2. http://struts.apache.org/ (2011)
5. Hafiz, M., Johnson, R.: Improving perimeter security with security-oriented pro-

gram transformations. In: ICSE Workshop on Software Engineering for Secure
Systems, SESS ’09, pp. 61–67 (2009)

6. Halfond, W.G.J., Orso, A., Manolios, P.: Using positive tainting and syntax-aware
evaluation to counter sql injection attacks. In: Proceedings of the 14th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, SIG-
SOFT ’06/FSE-14, pp. 175–185. ACM, New York http://doi.acm.org/10.1145/
1181775.1181797 (2006)

7. Hookom, J.: Validating objects through metadata. http://www.onjava.com/pub/
a/onjava/2005/01/19/metadata validation.html (2005)

8. Huang, Y.W., Yu, F., Hang, C., Tsai, C.H., Lee, D.T., Kuo, S.Y.: Securing web
application code by static analysis and runtime protection. In: WWW ’04: Pro-
ceedings of the 13th International Conference on World Wide Web, pp. 40–52.
ACM, New York (2004)

http://dx.doi.org/10.1109/SP.2008.22
http://jcp.org/aboutJava/communityprocess/pfd/jsr303/index.html
https://code.google.com/p/wavsep/
http://struts.apache.org/
http://doi.acm.org/10.1145/1181775.1181797
http://doi.acm.org/10.1145/1181775.1181797
http://www.onjava.com/pub/a/onjava/2005/01/19/metadata_validation.html
http://www.onjava.com/pub/a/onjava/2005/01/19/metadata_validation.html

Enforcing Input Validation with Aspects 331

9. Imperva: The securesphere web application firewall. http://www.imperva.com/
products/wsc web-application-firewall.html (2011)

10. Inc., B.N.: The barracuda web application firewall. http://www.
barracudanetworks.com/ns/products/web-site-firewall-overview.php (2011)

11. Ismail, O., Etoh, M., Kadobayashi, Y., Yamaguchi, S.: A proposal and implemen-
tation of automatic detection/collection system for cross-site scripting vulnerabil-
ity. In: 18th International Conference on Advanced Information Networking and
Applications, AINA 2004, vol. 1, pp. 145–151 (2004)

12. JBoss: Hibernate validator. http://hibernate.org/subprojects/validator (2011)
13. Jim, T., Swamy, N., Hicks, M.: Defeating script injection attacks with browser-

enforced embedded policies. In: Proceedings of the 16th International Conference
on World Wide Web, WWW ’07, pp. 601–610. ACM, New York (2007). http://
doi.acm.org/10.1145/1242572.1242654

14. Johns, M., Beyerlein, C.: Smask: preventing injection attacks in web applications
by approximating automatic data/code separation. In: Proceedings of the 2007
ACM Symposium on Applied Computing, SAC ’07, pp. 284–291. ACM, New York
(2007). http://doi.acm.org/10.1145/1244002.1244071

15. Johns, M., Beyerlein, C., Giesecke, R., Posegga, J.: Secure code generation for web
applications. In: Massacci, F., Wallach, D., Zannone, N. (eds.) ESSoS 2010. LNCS,
vol. 5965, pp. 96–113. Springer, Heidelberg (2010)

16. Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: a static analysis tool for detecting
web application vulnerabilities (short paper). In: SP ’06: Proceedings of the 2006
IEEE Symposium on Security and Privacy, pp. 258–263. IEEE Computer Society,
Washington, DC (2006)

17. Jovanovic, N., Kruegel, C., Kirda, E.: Precise alias analysis for static detection of
web application vulnerabilities. In: PLAS ’06: Proceedings of the 2006 Workshop
on Programming Languages and Analysis for Security, pp. 27–36. ACM, New York
(2006)

18. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

19. Kirda, E., Krgel, C., Vigna, G., Jovanovic, N.: Noxes: a client-side solution for
mitigating cross-site scripting attacks. In: SAC’06, pp. 330–337 (2006)

20. Laranjeiro, N., Vieira, M., Madeira, H.: Improving web services robustness. In:
IEEE International Conference on Web Services, ICWS 2009, pp. 397–404 (2009)

21. Laskos, T.: Arachni 0.4.2 - web application security scanner framework. http://
www.arachni-scanner.com/ (2013)

22. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in java applications
with static analysis. In: SSYM’05: Proceedings of the 14th Conference on USENIX
Security Symposium, p. 18. USENIX Association, Berkeley (2005)

23. Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., Evans, D.: Automatically
hardening web applications using precise tainting. In: SEC, pp. 295–308 (2005)

24. Pietraszek, T., Berghe, C.V.: Defending against injection attacks through context-
sensitive string evaluation. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS,
vol. 3858, pp. 124–145. Springer, Heidelberg (2006)

25. Riancho, A.: W3af 1.0 - open source web application security scanner. http://w3af.
org/ (2011)

26. Robertson, W., Vigna, G.: Static enforcement of web application integrity through
strong typing. In: Proceedings of the 18th Conference on USENIX Security Sym-
posium, SSYM’09, pp. 283–298. USENIX Association, Berkeley (2009)

http://www.imperva.com/products/wsc_web-application-firewall.html
http://www.imperva.com/products/wsc_web-application-firewall.html
http://www.barracudanetworks.com/ns/products/web-site-firewall-overview.php
http://www.barracudanetworks.com/ns/products/web-site-firewall-overview.php
http://hibernate.org/subprojects/validator
http://doi.acm.org/10.1145/1242572.1242654
http://doi.acm.org/10.1145/1242572.1242654
http://doi.acm.org/10.1145/1244002.1244071
http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
http://w3af.org/
http://w3af.org/

332 G. Serme et al.

27. Scholte, T., Balzarotti, D., Kirda, E.: Have things changed now? an empirical study
on input validation vulnerabilities in web applications. Comput. Secur. 31(3), 344–
356 (2012)

28. Scholte, T., Robertson, W.K., Balzarotti, D., Kirda, E.: Preventing input validation
vulnerabilities in web applications through automated type analysis. In: Bai, X.,
Belli, F., Bertino, E., Chang, C.K., Elçi, A., Seceleanu, C.C., Xie, H., Zulkernine,
M. (eds.) COMPSAC, pp. 233–243. IEEE Computer Society (2012)

29. Scott, D., Sharp, R.: Abstracting application-level web security. In: Proceedings of
the 11th International Conference on World Wide Web, WWW ’02, pp. 396–407.
ACM, New York (2002). http://doi.acm.org/10.1145/511446.511498

30. Source, S.: Spring web mvc. http://www.springsource.org/go-webflow2 (2011)
31. Trustwave: Trustwave webdefend - web application firewall. https://www.

trustwave.com/web-application-firewall.php (2011)
32. Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Krügel, C., Vigna, G.: Cross site

scripting prevention with dynamic data tainting and static analysis. In: NDSS. The
Internet Society (2007)

33. Wassermann, G., Su, Z.: Sound and precise analysis of web applications for injec-
tion vulnerabilities. In: Proceedings of the 2007 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’07, pp. 32–41. ACM,
New York (2007). http://doi.acm.org/10.1145/1250734.1250739

34. Wassermann, G., Su, Z.: Static detection of cross-site scripting vulnerabilities. In:
ICSE ’08: Proceedings of the 30th International Conference on Software Engineer-
ing, pp. 171–180. ACM, New York (2008)

35. Xie, Y., Aiken, A.: Static detection of security vulnerabilities in script-
ing languages. In: Proceedings of the 15th Conference on USENIX
Security Symposium, vol. 15. USENIX Association, Berkeley (2006).
http://portal.acm.org/citation.cfm?id=1267336.1267349

http://doi.acm.org/10.1145/511446.511498
http://www.springsource.org/go-webflow2
https://www.trustwave.com/web-application-firewall.php
https://www.trustwave.com/web-application-firewall.php
http://doi.acm.org/10.1145/1250734.1250739
http://portal.acm.org/citation.cfm?id=1267336.1267349

Lightweight Cryptography for Embedded
Systems – A Comparative Analysis

Charalampos Manifavas1, George Hatzivasilis2(B), Konstantinos Fysarakis2,
and Konstantinos Rantos3

1 Department of Informatics Engineering,
Technological Educational Institute of Crete, Heraklion, Crete, Greece

harryman@epp.teicrete.gr
2 Department of Computer and Informatics Engineering,

Eastern Macedonia and Thrace Institute of Technology, Kavala, Greece
{gchatzivasilis,kfysarakis}@isc.tuc.gr

3 Department of Industrial Informatics,
Technological Educational Institute of Kavala, Kavala, Greece

krantos@teikav.edu.gr

Abstract. As computing becomes pervasive, embedded systems
are deployed in a wide range of domains, including industrial systems,
critical infrastructures, private and public spaces as well as portable and
wearable applications. An integral part of the functionality of these sys-
tems is the storage, access and transmission of private, sensitive or even
critical information. Therefore, the confidentiality and integrity of the
resources and services of said devices constitutes a prominent issue that
must be considered during their design. There is a variety of crypto-
graphic mechanisms which can be used to safeguard the confidential-
ity and integrity of stored and transmitted information. In the context
of embedded systems, however, the problem at hand is exacerbated by
the resource-constrained nature of the devices, in conjunction with the
persistent need for smaller size and lower production costs. This paper
provides a comparative analysis of lightweight cryptographic algorithms
applicable to such devices, presenting recent advances in the field for
symmetric and asymmetric algorithms as well as hash functions. A clas-
sification and evaluation of the schemes is also provided, utilizing relevant
metrics in order to assess their suitability for various types of embedded
systems.

1 Introduction

Embedded computer systems pervade our lives in various forms, from avionics
to e-textiles, automobiles, home automation and wireless sensor nodes. Physi-
cally, Embedded Systems (ESs) range from miniature wearable nodes to large
industrial installations of Programmable Logic Controllers (PLCs).

The security, (i.e. confidentiality, integrity and availability) of networked com-
puter systems is not a novel concern but, in the context of ESs, their various

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 333–349, 2014.
DOI: 10.1007/978-3-642-54568-9 21, c© Springer-Verlag Berlin Heidelberg 2014

334 C. Manifavas et al.

intrinsic and often application specific characteristics render security techniques
developed for personal and enterprise systems unsatisfactory or even inapplica-
ble. Such characteristics habitually include resource constraints (namely compu-
tational capabilities, memory and power), dynamically formulated and remotely
managed or even unmanaged networking as well as operation in hostile environ-
ment and time-critical applications.

An additional differentiating factor of ES security is that applications often
include direct interaction with the physical world. Consequently, a security inci-
dent might lead to asset damage or even personal injury and death. Further-
more, since ESs are often responsible for vital, time-critical applications where
a delay or a speed-up of even a fraction of a second could have dire conse-
quences. Mechanisms used to appropriately fortify embedded systems are based
on robust cryptographic algorithms. However, the inherent limited capabilities
of these resource-constrained devices dictate the use of light schemes.

This paper focuses on the design and implementation aspects of crypto-
graphic mechanisms utilized in resource constrained embedded systems. Similar
works on LWC were first carried out in 2007 [7,45]. In [45], the authors evaluate
hardware and software implementations for lightweight symmetric and asymmet-
ric cryptography. In [7], the authors investigate lightweight hardware and soft-
ware solutions for Wireless Sensor Networks (WSNs). In [46], the authors report
new trends for lightweight hardware block and stream ciphers. In [47], hard-
ware implementations of block ciphers are examined while in [48], the authors
implement and evaluate 12 lightweight block ciphers. Cryptanalytic attacks on
lightweight block ciphers were considered in [49].

2 Lightweight Cryptographic Mechanisms

Embedded devices often have inherent limitations in terms of processing power,
memory, storage and energy. The cryptographic functionality that ESs utilize
to provide tamper resistant hardware and software security functions has direct
impact on the system’s:

– Size: Memory elements constitute a significant part of the module’s surface.
– Cost: Directly linked to the surface of the component.
– Speed: Optimized code provides results faster.
– Power Consumption: The quicker a set of instructions is executed, the quicker

the module can return to an idle state or be put in sleep mode where power
consumption is minimal.

Traditional cryptography solutions focus in providing high levels of secu-
rity, ignoring the requirements of constrained devices. Lightweight cryptogra-
phy (LWC) is a research field that has developed in recent years and focuses in
designing schemes for devices with constrained capabilities in power supply, con-
nectivity, hardware and software. Schemes proposed include hardware designs,
which are typically considered more suitable for ultra-constrained devices, as
well as software and hybrid implementations for lightweight devices.

Lightweight Cryptography for Embedded Systems 335

– Hardware designs implement the exact functionality without redundant com-
ponents. The main design goal is the reduction of the logic gates that are
required to materialize the cipher. This metric is called Gate Equivalent (GE)
[12]. A small GE predisposes that the circuit is cheap and consumes lit-
tle power. For constrained devices an implementation including up to 3000
GE can be considered acceptable while for even smaller devices, like 4-bit
microcontrollers, implementations of 1000 GE are being studied [12]. Energy
consumption and power constraints are other significant factors. Energy con-
sumption is important when a device is running on batteries while power con-
straints affect passive devices, like passive RFID tags, that must be connected
to a host device to operate. Security attacks and relevant countermeasures
that are correlated to power analysis are also considered in hardware designs.

– Software implementations typically only require a microprocessor to operate.
The main design goals are the reduction of memory and processing require-
ments of the cipher. Implementations are optimized for throughput and power
savings. Portability is their main advantage over hardware implementations.

– Hybrid schemes combine the two approaches exploiting the best features from
both. Hardware implements the basic cipher functionality and software per-
forms the data and communication manipulation. A common practice is the
design of cryptographic co-processors. The throughput is mostly affected by
the communication bandwidth between hardware and software components.
Hybrid implementations target on specific communication applications, like
RFID tags, portable devices and Internet servers.

2.1 Symmetric Cryptography

Lightweight and ultra-lightweight ciphers usually offer 80 to 128 bit security
[12]. 80 bit security is considered adequate for constrained devices [23], like
4-bit micro-controllers and RFID tags, while 128 bits is typical for mainstream
applications [1]. For one way authentication, 64 to 80 bit security would
suffice [21].

Three main approaches are followed in implementing lightweight ciphers. In
the first case, researchers try to improve the performance of well-known and
well-studied ciphers such as AES and DES. A state of the art AES [1] hardware
implementation uses 2400 GE and is used as a benchmark for newer ciphers.
In the second case, re-searchers design and implement new ciphers, specific for
this domain. PRESENT [2] is such an example implemented for lightweight and
ultra-lightweight cryptography and is one of the first ciphers that offer a 1000 GE
implementation for ultra-constrained devices. In the third case, researchers mix
features of several ciphers that are well studied and their individual properties
are known.

The absence of decryption is another factor that can reduce the requirements
of such ciphers, especially for ultra-lightweight cryptography. Hummingbird-2
[13] is a combination of cipher and protocol and adopts this strategy. This app-
roach is suitable for devices that need only one way authentication. Furthermore,

336 C. Manifavas et al.

some ciphers like KTANTAN [14] propose that the key should be hard-wired
on the device to further reduce the GE due to the absence of key generation
operations.

Block Ciphers. DES [15] is a traditional block cipher that can be used in
constrained devices although due to its small key sizes, the security level is low.
DESL is a lightweight version of the cipher that achieves 20 % size reduction,
DESX uses key whitening to increase the security level, while DESXL is the
combination of the two variants [15].

Other traditional ciphers that are investigated in this field are AES [1],
Camellia [57], CLEFIA [16] and IDEA [48]. Camellia is approved for use by
the ISO/IEC and the projects NESSIE and CRYPTREC. The hardware imple-
mentation exceeds the 3000 GE bound while the software implementation is fast.
CLEFIA is a 128-bit block size cipher and uses 128-, 192- and 256-bits keys. It
was designed by SONY and is highly efficient both in hardware and software. It
is standardized in ISO 29192-2. IDEA is used in PGP v2.0 and performs well in
embedded software.

PRESENT [12] is a milestone in LWC and the comparison unit for light-
weight ciphers. It is 128-bit block size cipher and uses 80- and 128-bits keys.
It is standardized in ISO 29192-2 and is efficient in both hardware and soft-
ware. PRESENT’s novelties include the replacement of 8 distinct S-Boxes with
a carefully selected single one and a fully wired diffusion layer without any alge-
braic unit.

Hummingbird-2 [13] is a promising ultra-lightweight cipher with a hybrid
structure of block and stream cipher. It can optionally produce a message authen-
tication code (MAC) for each message processed and form a one way authen-
tication protocol. It encrypts data in high rates and its performance is better
than PRESENT’s. Two main drawbacks are the initialization process and the
decryption function. In more detail, an initialization process is necessary before
en/decryption for its stream property and, moreover, the performance decreases
if many small messages are processed. Also, the encryption and decryption oper-
ations are different, therefore the en/decryption implementation is 70 % larger
than the encryption-only version.

The KATAN and KTANTAN family [14] produces low hardware footprint.
KATAN uses a very simple key schedule mechanism and achieves 802 GE.
KTANTAN is proposed for devices where the key is initialized once and remains
unchanged, achieving 462 GE.

SEA [17] supports a scalable software implementation with low-cost encryp-
tion routines. It is parameterized in text, key, and processor size and can produce
low memory requirements, small code size and a limited instruction set.

Newer lightweight block ciphers include TWINE [18], Klein [21], LED [20],
LBlock [19], PUFFIN-2 [22], Piccolo [23], NOEKEON [48] and ITUbee [50].
TWINE, Klein, LED and LBlock balance tradeoffs between hardware and soft-
ware implementations. TWINE achieves a good overall status as PRESENT.
PUFFIN-2 is faster and more lightweight in hardware than PRESENT for en/de-
cryption implementations. Piccolo is the most lightweight block cipher in

Lightweight Cryptography for Embedded Systems 337

hardware and it requires 683 and 758 GE for 80 and 128 bit key size respec-
tively. NOEKEON is reported in LWC for its compact and efficient software
implementation. ITUbee is designed for lightweight software and achieves the
best overall status in this domain.

SIMON and SPECK [51] have been designed by NSA. The ciphers are recently
released, a performance evaluation was presented during the MIT 2013 Legal
Hack-a-Thone. Both ciphers perform well in software and hardware. SIMON
is better in hardware and SPECK is better in software. Nevertheless, Piccolo
achieves a better overall status in hardware.

Furthermore, domain specific ciphers include EPCBC [24] and PRINTcipher
[25]. EPCBC is based on PRESENT and targets in Electronic Product Code
(EPC) encryption applications. EPC aims to replace bar codes with low-cost
passive RFIDS and is an industry standard by EPCglobal. PRINTcipher tar-
gets EPC and Integrated Circuit (IC) printing (i.e. used for the production and
personalization of circuits).

Stream Ciphers. Stream ciphers are an alternative type of symmetric key
ciphers and also well suited to constrained devices. Despite the evolution effort
in the field of lightweight stream ciphers, they remain inferior to lightweight
block ciphers. Their major draw-back is the lengthy initialization phase prior
to first usage. Moreover, there are communication protocols that can’t utilize
stream ciphers. However, they are still in the foreground due to their simplicity
and speed in hardware. They are often used in applications where the plaintext
size is unknown.

Traditional stream ciphers RC4, A5/1 and E0 are considered insecure and
should not be used in new applications [70]. AES in CTR mode is currently the
only secure and widespread solution for stream encryption [70].

As for newer stream ciphers, the most notable are the finalists of the
eSTREAM project [26]. eSTREAM was part of the ECRYPT Network of Excel-
lence, targeted to deliver a small portfolio of promising stream ciphers. They
considered two profiles of ciphers for different applications. Profile 1, includes
ciphers for fast throughput in software, which are faster than the 128-bits AES-
CTR. The finalist ciphers are the HC-128 [61], Rabbit [60], Salsa20 [61] and
SOSEMANUK [61]. Profile 2, includes ciphers that are suitable for highly con-
strained environments and are more compact in hardware than the 80 bits AES.
The finalists are Grain [3], Trivium [4] and MICKEY 2.0 [53]. All finalists are
well-cryptanalyzed and are found secure against all attacks that are faster than
the exhaustive key search attack.

In software, Salsa20/12 is reported as the most suitable for constrained
devices. It uses 256-bit keys and 128-bit initialization vectors. The cipher utilizes
only simple operations of addition, modulo 232, bit rotation and bitwise XOR,
which are efficiently implemented in software. Furthermore the encryption and
decryption operations are identical.

In hardware, Grain [3] and TRIVIUM [4] are the more accepted ones and
have been reported as the most suitable for constrained devices. The key size of
Grain is 80 bits, while the related Grain-128 supports 128-bit keys, and the IV 64

338 C. Manifavas et al.

bits and it requires about 1300 GE to implement. TRIVIUM comes up with an
80 bit secret key, an 80 bit IV and about 2600 GE to implement. It was designed
as an exercise in exploring how far a stream cipher can be simplified without
sacrificing its security, speed or flexibility. It is standardized in ISO 29192-1, as
is ENOCORO [5] which has an equivalent GE size in hardware.

Several newer ciphers are proposed based on eSTREAM candidates, like
BEAN [43], QUAVIUM [44] and WG-7 [27]. BEAN is based on Grain. It sup-
ports binary output production without the need of additional hardware that
was needed in Grain. The weak output function leads to an efficient distinguisher
and a state-recovery attack [56]. In software, it takes less time to generate the
keystream while using the same amount of memory. QUAVIUM is a scalable
extension of TRIVIUM. It uses four TRIVIUM-like shift registers in coupling
connection instead of three shift registers in series connection of the original
TRIVIUM. The hardware implementation is larger than TRIVIUM and the soft-
ware implementation is faster. WG-7 is the new version of WG cipher that was
candidate in eSTREAM. It produces larger throughput than the other candi-
dates and requires less memory. The key size is 80 bits, while the IV is 81 bits
and is parameterized for RFID tags [27].

A2U2 [28] is a domain specific stream cipher. It was designed for the extremely
resource limited environment of printed electronic RFID tags and is based on
the principles of KATAN for efficient hardware. The smaller version requires less
than 300 GE.

Hash Functions. Hash functions are another research field of LWC. The stan-
dardized or widely-used MD5 (8001 GE) [30], SHA-1 (5527 GE) [29] and SHA-2
(10868 GE) [30] and ARMADILLO (4353 GE) [64] are too large to fit in hard-
ware constrained devices (i.e. more than 3000 GE). After the release of the
PRESENT cipher there were many efforts to build novel lightweight hash func-
tions based on PRESENT design principles [31], like C-PRESENT (4600 GE),
H-PRESENT (2330 GE) and PRESENT-DM (1600 GE).

The NIST’s SHA-3 competition [32] in 2012 defined a new function to replace
the older SHA-1 and SHA-2. The finalists [33] were BLAKE, Grostl, JH, Skein
and Keccak, with the latter being the winner. Unfortunately, the SHA-3/Keccak
and the other finalists aren’t much more compact than the previous SHA func-
tions. At this time, all SHA-3 finalists require more than 12000 GE for 128 bit
security. The SHA-3 competition has helped our understanding of hash func-
tions significantly and led to a new design trend of hash functions with sponge
constructions. Keccak is such a function and a lightweight implementation of a
constrained Keccak version [34] was later announced at 2520–5090 GE.

Other new lightweight hash functions with sponge constructions are SQUASH
(6328 GE) [35], GLUON (2071 GE) [36], Quark (1379 GE) [37], Photon (1120
GE) [38] and Spongent [39]. Spongent is the most lightweight hash function
family known so far. Its smallest implementations require 738, 1060, 1329, 1728
and 1950 GE for 88, 128, 160, 224 and 256 bit respectively. It is based on a
sponge construction instantiated with a PRESENT-type permutation, following
the hermetic sponge strategy.

Lightweight Cryptography for Embedded Systems 339

All the state of the art ciphers and hash functions that are mentioned should
be extensively tested for security vulnerabilities before being widely used.

2.2 Asymmetric Cryptography

Asymmetric algorithms and protocols must also be adapted to operate on devices
with the aforementioned resource limitations. This is an elaborate task, since
asymmetric ciphers are computationally far more demanding than their sym-
metric counterparts and are usually used with powerful hardware. The perfor-
mance gap is wider on constrained devices such as 8-bit microcontrollers. Even
an optimized asymmetric algorithm e.g. elliptic-curve cryptography (ECC) is
100 to 1000 times slower than a standard symmetric algorithm like AES which
correlates to two or three orders-of-magnitude higher power consumption.

Traditional Asymmetric Cryptosystems. Traditional public key cryptog-
raphy is based on one-way trapdoor functions. These functions are based on a set
of hard mathematical problems. There are three well established cryptosystems:

1. RSA, Rabin [41] - based on the Integer Factorization Problem (FP)
2. ECC [6]/HECC [7] - based on Elliptic Curve Discrete Logarithm Problem

(ECDLP)
3. ElGamal [68] - based on the Discrete Logarithm Problem In Finite Fields

(DLP)

RSA is the most popular algorithm for asymmetric cryptography and sup-
ports key sizes from 1024 to 4096 bits. As such, it is used as a benchmark for the
various public key cryptosystems researchers propose. However its large hard-
ware footprint and its resource demanding implementations led researchers to
seek for other algorithms for applications in constrained devices.

Rabin is quite similar to RSA. One main difference is the complexity of the
factorization problems that they rely upon. Rabin is proven to be as hard as
the integer factorizations problem, while RSA is not. Also, the encryption for
Rabin is faster but the decryption is less efficient. WIPR [41] is a low-resource
implementation of Rabin in hardware. The implementation shares several archi-
tectural principles with the SQUASH hash function. It requires 4682 GE and
fits on RFID tags and wireless sensor nodes. BluJay [42] is a hybrid Rabin-
based scheme that is suitable for lightweight platforms and is based on WIPR
and Hummingbird-2. The encryption is significantly faster and more lightweight
than RSA and ECC for the same level of security. The hardware implementation
requires less than 3000 GE.

ECC [6] and HECC [7] are considered the most attractive cryptosystems for
embedded systems. They present smaller operand lengths and relatively lower
computational requirements. Their main advantage is the fact that for the same
level of security they offer shorter keys compared to RSA, which leads to smaller
internal state requirements. As the level of security increases, RSA key sizes

340 C. Manifavas et al.

grow much faster than ECC. ECC also produces lightweight software imple-
mentations due to its memory and energy savings. The most known software
implementations [8] are the TinyECC and the WMECC.

HECC is a generalization of elliptic curves. A hyper elliptic curve of genus
1 is an elliptic curve. As the genus increases, the arithmetic of encryption gets
more complicated, but it needs fewer bits for the same level of security. HECC’s
operand size is at least a factor of two smaller than the ECC one. The curves of
genus 2 are of great interest for the research community as higher genus curves
suffer from security attacks. HECC has better performance than ECC and is
more attractive in resource constrained devices.

ElGamal [68] is of no interest for resource constrained platforms. The com-
putation is more intensive than RSA and encryption produces a 2:1 expansion in
size from plaintext to ciphertext. It is also considered vulnerable to some types
of attacks, like chosen ciphertext attacks.

Alternative Asymmetric Cryptosystems. Alternative public key cryptosys-
tems (APKCs) [9] that are based on other mathematical features have become
popular due to their performance and their resistance against quantum comput-
ing. These alternative cryptosystems are based on:

– Hash-Based Cryptography. The Merkle signature scheme (MSS) [40] is a
crypto-system which uses typical hash functions

– Lattice-Based Cryptography. NTRU [10] is the most popular scheme which is
based on the Shortest Vector Problem

– Code-Based Cryptography. McEliece [66] is a popular scheme based on error-
correcting codes

– Multivariate-Quadratic (MQ) Cryptography. MQ [67] is based on the problem
of solving multivariable quadratic equations over finite fields

An MSS implementation with the AES-based hash function [40] has smaller
code size and faster verification process than RSA and ECC. Moreover, the
signature generation is faster than RSA and comparable to ECC. MSS may
gain ground in lightweight asymmetric cryptosystems due to the evolution of
lightweight hash function design.

NTRU [10,11] is the most promising cryptosystem of all APKCs. Encryp-
tion and decryption use only simple polynomial multiplications, which makes
them very fast compared to traditional cryptosystems. NTRU is highly efficient,
suitable for embedded systems and provides a level of security comparable to
RSA and ECC. In hard-ware implementations [11], NTRU is 1,5 times faster
compared to ECC for the same level of security and only has 1/7 of its memory
footprint. The hardware implementation requires almost 3000 GE. In software
implementations [10], NTRU is 200 times faster in key generation, almost 3 times
faster in encryption and about 30 times faster in decryption compared to RSA.
On the other hand, NTRU produces larger output, which may impact the per-
formance of the cryptosystem if the number of transmitted messages is crucial.
It is considered safe when the recommended parameters are used [69]. NTRU
can be efficiently used in embedded systems because of its easy key generation

Lightweight Cryptography for Embedded Systems 341

process, its high speed and its low memory usage. The system is now adopted by
the IEEE P1363 standards under the specifications for lattice-based public-key
cryptography as well as IEEE P1363.1 and ANSI X9.98 Standard for use in the
financial services industry.

The main drawback of McEliece [66] and MQ [67] cryptosystems is the use of
large keys. In comparison to 1924 bit RSA, MQ requires 9690 bytes for the public
key and 879 bytes for the private key. Key sizes impact on the computations that
are performed, the speed, the key storage and the output’s size. The advantage
of these systems is the fast encryption and decryption process that makes them
suitable for high performance applications where messages must be assigned in
real time.

3 Evaluation

We analyze the features of different cryptographic solutions and propose the
more suitable ones for different types of embedded devices. Based on the devices’
capabilities we categorize the solutions in four groups: ultra-lightweight, low-
cost, lightweight and specific domain. Ultra-lightweight implementations fit in
the most constrained devices (in computation capability, memory, power), like
the standard 8051 microcontroller and the ATtiny45. Low-cost devices (e.g.
ATmega128) are cheap and perform a little better than ultra-lightweight ones.
Lightweight devices include the rest of the devices reported in LWC. As specific
domains we consider the EPC encryption applications and IC-printing.

3.1 Hardware Implementations

The hardware implementations are categorized based on chip area. Ultra-
lightweight implementations occupy up to 1000 logic gates, low-cost implementa-
tions occupy up to 2000 logic gates and lightweight implementations occupy up
to 3000 logic gates. The best implementations in each group are selected based
on the figure of merit (FOM) metric [64]. FOM is considered as a fair metric to
compare the energy efficiency of different implementations; the higher the value,
the better.

FOM = throughput [Kbps]/area squared [GE2] (1)

Block ciphers are better than stream ciphers in the three general groups of
devices. Hash functions perform efficiently in low-cost and lightweight devices.
Asymmetric cryptography is feasible only in lightweight devices. For ultra-
lightweight and low-cost devices the key establishment mechanisms based only
on symmetric cryptography can be applied. For the domain specific applications,
the PRINTcipher achieves a better overall status than EPCBC and A2U2.

For ultra-lightweight devices the block ciphers PRINTcipher, KTANTAN,
Piccolo, SIMON, SPECK and LED, and the stream ciphers A2U2 and TRIV-
IUM, as well as the hash functions PHOTON and Spongent are implemented. For
block ciphers, PRINTcipher is considered insecure for wide use as it is designed
for a specific application domain and ignores several types of general attacks.

342 C. Manifavas et al.

KTANTAN is only appropriate in applications where the key is hardcoded on
the device. SIMON and SPECK are newly proposed ciphers. LED consumes high
energy per bit and is inefficient. Piccolo achieves a good overall status and is the
most suitable cipher in this category. Regarding stream ciphers, A2U2 achieves
the best FOM but as a new cipher it is not extensively cryptanalyzed, therefore
the standardized TRIVIUM appears to be the optimal choice. For hash func-
tions, Spongent is the most lightweight choice but PHOTON produces higher
FOM.

Targeting low-cost devices, the block ciphers SIMON, SPECK, PRESENT,
TWINE, KATAN, Klein, DESL, EPCBC, LBlock, PUFFIN-2, the stream cipher
Grain, and the hash functions DM-PRESENT, D-QUARK, and U-QUARK are
implemented (as well as the ones for ultra-lightweight devices). For block ciphers,
PRESENT is standardized and is considered the best solution. TWINE per-
forms similar to PRESENT but is a new cipher. KATAN, Klein, DESL, EPCBC,
LBlock and PUFFIN-2 have worse performance. For stream ciphers, Grain per-
forms better than the ultra-lightweight TRIVIUM. For hash functions, Spongent
is the best while DM-PRESENT, D-QUARK, and U-QUARK produce worse
FOM metrics.

For lightweight devices, the block ciphers Hummingbird-2, AES, DESXL,
DESX and CLEFIA, the stream cipher QUAVIUM, the hash functions
H-PRESENT, Keccak, S-QUARK and SQUASH, and the asymmetric cryptosys-
tems NTRUencrypt and GPS-4/4-F are implemented; in addition to the ones for
ultra-lightweight and low-cost devices. For block ciphers, AES is the best choice.
The standardized PRESENT and CLEFIA are also appropriate. The variants
DESXL and DESX can also be applied as they offer higher level of security
than DES. Hummingbird-2 is another promising candidate. For stream ciphers
TRIVIUM achieves higher FOM than Grain while the new cipher QUAVIUM
isn’t well cryptanalyzed. The hash function DM-PRESENT achieves by far the
best FOM for all the relevant proposals. Keccak as the new SHA-3 function
can also be used. S-QUARK and SQUASH produce poor performance. For the
asymmetric cryptosystems, NTRU appears to be the most suitable.

Table 1 summarizes the best hardware implementation of each examined
cipher that requires less than 3000 GE. The implementations are sorted by the
FOM metric.

3.2 Software Implementations

The software implementations are categorized based on the ROM and RAM
requirements. Ultra-lightweight implementations require up to 4 KB ROM and
256 bytes RAM, low-cost implementations require up to 4 KB ROM and 8 KB
RAM and lightweight implementations require up to 32 KB ROM and 8 KB
RAM. The best implementations in each group are selected based on the com-
bined metric (CM) [48]. CM indicates the tradeoff between implementation size
and performance and smaller values are better.

CM = (code size [bytes] ∗ encryption cycle count [cycles])/block size [bits] (2)

Lightweight Cryptography for Embedded Systems 343

Table 1. Hardware implementations (<3000 GE)

Cipher Key Size
(bits)

Throughput
(Kbps at 100 KHz
higher is better)

GE (lower
is better)

FOM
(higher is
better)

Piccolo [23] 80 237.04 1136 1836
SIMON [51] 96 142.2 1216 962
SPECK [51] 96 220.7 1522 953
PRESENT [12] 80 200 1570 811
TWINE [18] 80 178 1503 787
KTANTAN [14] 80 25.1 688 530
PRINTcipher [25] 80 100 503 395
Piccolo [23] 80 14.81 683 317
SIMON [51] 96 15.8 763 271
KATAN [14] 80 25.1 1054 226
Klein [21] 64 30.9 1220 208
HummingBird-2 [13] 128 80 2159 171
SPECK [51] 96 12 884 153
DESL [15] 56 44.4 1848 130
EPCBC [28] 96 12.12 1008 119
LBlock [19] 80 200 1320 115
AES [1] 128 56.64 2400 98
DESXL [15] 184 44.4 2168 95
DESX [15] 184 44.4 2629 64
CLEFIA [16] 128 39 2488 63
PUFFIN-2 [22] 80 5.2 1083 44
LED [20] 80 3.4 1040 32
A2U2 [28] 56 50 284 620
Grain [53] 80 100 1294 597
TRIVIUM [52] 80 100 2017 245
QUAVIUM [44] 80 - 2372 -
DM-PRESENT [31] 64 387.88 2530 605.98
Spongent [39] 88 17.78 1127 139
PHOTON [38] 80 15.15 1168 111.13
D-QUARK [37] 160 18.18 2819 22.88
H-PRESENT [31] 128 11.45 2330 21.09
U-QUARK [37] 128 11.76 2392 20.56
Keccak-f[400] [34] 128 8 2520 12
S-QUARK [37] 224 3.13 2296 5.93
SQUASH [54] 64 0.2 2646 0.29
NTRUencrypt [55] 57 292.2 2850 359
GPS-4 / 4-F (PRESENT) [2] 80 107.23 2143 233

Again, the block ciphers are more efficient than stream ciphers in the three
general groups of devices. In software, asymmetric cryptography materializes
specific key exchange schemes and communication protocols, like SSL. Due to
the complexity of implementing this functionality, cryptographic libraries are
utilized to enhance the robustness of an application. Hash functions are embod-

344 C. Manifavas et al.

Table 2. Software implementations (<32 KB ROM,<8 KB RAM)

Cipher Key Size
(bits)

ROM (bytes -
lower is better)

RAM (bytes -
lower is better)

Throughput
(Kbps at
4 MHz
higher is
better)

CM (lower
is better)

SPECK [51] 96 152 108 207.8 2926
SIMON [51] 96 198 168 147 5396
ITUbee [50] 80 400 186 109 14685
AES [59] 128 1912 432 256 29875
TWINE [18] 80 1304 414 118 44173
Hummingbird-2 [13] 128 2227 114 200/172 44400
NOEKEON [48] 128 364 32 21.7 66876
IDEA [48] 128 836 232 31 107765
Klein [21] 80 1268 18 42 120757
PRESENT [45] 80 936 0 23.8 156823
SEA [45] 96 2132 0 39 218663
TWINE [18] 80 792 191 13.6 232575
KATAN [48] 80 338 18 3.5 380582
DESL [58] 56 3098 0 30.6 404918
DESXL [45] 184 3192 0 30.4 425483.6
Hummingbird [63] 256 2950 1064 26.5 445081
DES [48] 56 4314 0 29.6 581918
DESX [58] 184 4406 0 29.4 598871
Camellia [57] 128 1262 12 8 631000
Rabbit [60] 128 1714 216 8421 814
WG-7 [27] 80 1100 0 192 45650
Salsa20 [45] 128 1452 280 111 58181
TRIVIUM [62] 80 424 36 6 281960
Grain [62] 80 778 20 6.4 480026
HC128 [61] 128 23100 4556 189.5/189.6 487446
AES [61] 128 6664 88 40/34 654633

ied to these schemes and protocols. Compact libraries, like CyaSSL [65] which
is specifically designed for embedded devices, are suitable for lightweight imple-
mentations. Thus, individual primitive implementations are mainly proposed for
block and stream ciphers.

For ultra-lightweight devices, the block ciphers SPECK, SIMON, ITUbee,
Hummingbird-2, NOEKEON, IDEA, Klein, PRESENT, SEA, TWINE, KATAN,
DESL, DESXL and Camellia and the stream ciphers Rabbit, WG-7, TRIVIUM
and Grain are implemented. For block ciphers, SPECK achieves the best CM
by far. SIMON and ITUbee are also efficient in this domain. Hummingbird-2
and NOEKEON achieve a good overall status. IDEA, Klein, PRESENT, SEA,
TWINE, KATAN, DESL, DESXL and Camellia perform poor in such devices.
For stream ciphers, Rabbit is the best proposal. WG-7 performs well, but as a

Lightweight Cryptography for Embedded Systems 345

new cipher, it isn’t well cryptanalyzed. TRIVIUM and Grain have poor perfor-
mance.

For low-cost devices, the block ciphers AES, TWINE and Hummingbird, and
the stream cipher Salsa20 are implemented (in addition to the ones for ultra-
lightweight devices). All ciphers perform well but achieve lower CM metric than
the proposed ones in ultra-lightweight devices. For lightweight devices, the block
ciphers DES and DESX, and the stream ciphers HC128 and AES in CTR mode
are additionally implemented. All ciphers perform poor in such devices and are
inferior to the proposals in ultra-lightweight and low-cost devices.

Table 2 summarizes the best software implementation of each examined cipher
that requires less than 32 KB ROM and 8 KB RAM. The implementations are
sorted by the CM metric.

4 Conclusions

The aim of this paper was to provide a comparative analysis on lightweight cryp-
tographic algorithms designed for resource-constrained devices. The inherently
limited capabilities of these systems in terms of computing power, memory, stor-
age and energy resources, inevitably limit the effectiveness and the applicability
of well-established cryptographic mechanisms designed for systems where such
resource constraints are not a significant concern.

Such an extensive analysis is considered essential to those planning on uti-
lizing such mechanisms in newly designed systems or applications running on
resource constrained devices. As demonstrated in this work, there is ongoing
research on various aspects of lightweight cryptography. The evaluation of the
robustness and efficiency of pre-existing as well as newly proposed schemes poses
a major challenge to research and development efforts. Overcoming the aforemen-
tioned challenges, however, is necessary for realizing the ubiquitous computing
future.

Acknowledgement. This work was funded by the General Secretarial Research and
Technology (G.S.R.T.), Hellas under the Artemis JU research program nSHIELD (new
embedded Systems arcHItecturE for multi-Layer Dependable solutions) project. Call:
ARTEMIS-2010-1, Grand Agreement No: 269317.

References

1. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

2. Poschmann, A.: Lightweight cryptography - cryptographic engineering for a perva-
sive world. Ph.D. Dissertation, Faculty of Electrical Engineering and Information
Technology, Ruhr-University Bochum, Germany (2009)

3. Hell, M., Johansson, T., Meier, W.: Grain - a stream cipher for constrained envi-
ronments. Int. J. Wirel. Mob. Comput. 2(1), 86–93 (2007)

346 C. Manifavas et al.

4. De Canniere, C., Prenel, B.: Trivium Specifications. eStream Project. http://www.
ecrypt.eu.org/stream/triviump3.html (2008)

5. Watanabe, D., Ideguchi, K., Kitahara, J., Muto, K., Furuichi, H.: Enocoro-80: a
hardware oriented stream cipher. In: Third International Conference on Availabil-
ity Reliability and Security (ARES 08), 4–7 March 2008, pp. 1294–1300 (2008)

6. Hein, D., Wolkerstorfer, J., Felber, N.: ECC is ready for RFID - a proof in silicon.
In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp.
401–413. Springer, Heidelberg (2009)

7. Roman, R., Alcaraz, C., Lopez, J.: A survey of cryptographic primitives and imple-
mentations for hardware-constrained sensor network nodes. J. Mob. Netw. Appl.
12(4), 231–244 (2007)

8. Nizamuddin, N., Ashraf Ch, S., Nasar, W., Javaid, Q.: Efficient signcryption
schemes based on hyperlliptic curve cryptosystem. In: 7th International Confer-
ence on Emerging Technologies (ICET), pp. 1–4 (2011)

9. Guneysu, T., Heyse, S., Paar, C.: The future of high-speed cryptography: new
computing platforms and new ciphers. In: Proceedings of the 21st Edition of the
Great Lakes Symposium on VLSI (GLSVLSI’11) (2011)

10. Shen, X., Du, Z., Chen, R.: Research on NTRU algorithm for mobile java secu-
rity. In: International Conference on Scalable Computing and Communications,
The Eighth International Conference on Embedded, Computing 2009, SCALCOM-
EMBEDDEDCOM’09, pp 366–369 (2009)

11. Kamal, A.A., Youssef, A.M.: An FPGA implementation of the NTRUEncrypt
cryptosystem. In: 2009 International Conference on Microelectronics (ICM), pp.
209–212 (2009)

12. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

13. Engels, D., Saarinen, M.-J.O., Schweitzer, P., Smith, E.M.: The hummingbird-2
lightweight authenticated encryption algorithm. In: The 7th Workshop of RFID
Security and Privacy (RFIDSec 2011), Amherst, Massachusetts, USA (2011)

14. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN - a family
of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

15. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New lightweight DES vari-
ants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer,
Heidelberg (2007)

16. Akishita, T., Hiwatari, H.: Very compact hardware implementations of the block-
cipher CLEFIA. Sony Corporation, Technical Paper, June 2011. http://www.sony.
co.jp/Products/cryptography/clefia/download/data/clefia-hwcompact-20110615.
pdf (2011)

17. Standaert, F.-X., Piret, G., Gershenfeld, N., Quisquater, J.-J.: SEA: a scalable
encryption algorithm for small embedded applications. In: Domingo-Ferrer, J.,
Posegga, J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 222–236.
Springer, Heidelberg (2006)

18. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: a lightweight, ver-
satile block cipher. In: ECRYPT Workshop on Lightweight Cryptography (LC11),
28–29 November, pp. 146–169 (2011)

19. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

http://www.ecrypt.eu.org/stream/triviump3.html
http://www.ecrypt.eu.org/stream/triviump3.html
http://www.sony.co.jp/Products/cryptography/clefia/download/data/clefia-hwcompact-20110615.pdf
http://www.sony.co.jp/Products/cryptography/clefia/download/data/clefia-hwcompact-20110615.pdf
http://www.sony.co.jp/Products/cryptography/clefia/download/data/clefia-hwcompact-20110615.pdf

Lightweight Cryptography for Embedded Systems 347

20. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

21. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: a new family of lightweight block ciphers.
In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer,
Heidelberg (2012). http://rfid-cusp.org/rfidsec/

22. Wang, C., Heys, H.M.: An ultra compact block cipher for serialized architecture
implementations. In: Proceedings of IEEE Canadian Conference on Electrical and
Computer Engineering (CCECE 2009), St. John’s, Newfoundland, May 2009 (2009)

23. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

24. Yap, H., Khoo, K., Poschmann, A., Henricksen, M.: EPCBC - a block cipher suit-
able for electronic product code encryption. In: Lin, D., Tsudik, G., Wang, X.
(eds.) CANS 2011. LNCS, vol. 7092, pp. 76–97. Springer, Heidelberg (2011)

25. Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: a block
cipher for IC-printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 16–32. Springer, Heidelberg (2010)

26. eSTREAM Web Page. http://www.ecrypt.eu.org/stream
27. Luo, Y., Chai, Q., Gong, G., Lai, X.: A lightweight stream cipher WG-7 for RFID

encryptionand authentication. In: IEEE Global Telecommunications Conference
2010 (GLOBECOM 2010), pp. 1-6 (2010)

28. David, M., Ranasinghe, D.C., Larsen, T.: A2U2: a stream cipher for printed elec-
tronics RFID tags. IEEE International Conference on RFID 2011, 176–183 (2011)

29. O’Neill, M.: Low-Cost SHA-1 hash function architecture for RFID tags. In:
Dominikus, S., Aigner, M. (eds.) RFIDSec 2008. http://events.iaik.tugraz.at/
RFIDSec08/Papers/ (2008)

30. Feldhofer, M., Rechberger, C.: A case against currently used hash functions in
RFID protocols. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Work-
shops. LNCS, vol. 4277, pp. 372–381. Springer, Heidelberg (2006)

31. Bogdanov, A., Leander, G., Paar, Ch., Poschmann, A., Robshaw, M.J.B., Seurin,
Y.: Hash functions and RFID tags: mind the gap. In: Oswald, E., Rohatgi, P. (eds.)
CHES 2008. LNCS, vol. 5154, pp. 283–299. Springer, Heidelberg (2008)

32. SHA-3 Contest. http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/
submissions rnd3.html

33. Gaj, K., Homsirikamol, E., Rogawski, M., Shahid, R., Sharif, M.U.: Comprehensive
evaluation of high-speed and medium speed implementations of five SHA-3 final-
ists using Xilinx and Altera FPGAs. In: The 3rd SHA-3 Candidate Conference,
Washington, D.C., 22–23 March 2012 (2012)

34. Kavun, E.B., Yalcin, T.: A Lightweight Implementation of Keccak Hash Function
for Radio-Frequency Identification Applications. In: Ors Yalcin, S.B. (ed.) RFIDSec
2010. LNCS, vol. 6370, pp. 258–269. Springer, Heidelberg (2010)

35. Shamir, A.: SQUASH - a new MAC with provable security properties for highly
constrained devices such as RFID tags. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol.
5086, pp. 144–157. Springer, Heidelberg (2008)

36. Berger, T.P., D’Hayer, J., Marquet, K., Minier, M., Thomas, G.: The GLUON
family: a lightweight hash function family based on FCSRs. In: Mitrokotsa, A.,
Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 306–323. Springer,
Heidelberg (2012)

37. Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: QUARK: A

http://www.ecrypt.eu.org/stream
http://events.iaik.tugraz.at/RFIDSec08/Papers/
http://events.iaik.tugraz.at/RFIDSec08/Papers/
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html

348 C. Manifavas et al.

38. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash
functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011)

39. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
spongent: a lightweight hash function. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011)

40. Rohde, S., Eisenbarth, T., Dahmen, E., Buchmann, J., Paar, C.: Fast hash-
based signatures on constrained devices. In: Grimaud, G., Standaert, F.-X. (eds.)
CARDIS 2008. LNCS, vol. 5189, pp. 104–117. Springer, Heidelberg (2008)

41. Oren, Y., Feldhofer, M.: WIPR - a low-resource public-key identification scheme for
RFID tags and sensor nodes. In: Basin, D.A., Capkun, S., Lee, W. (eds.) WISEC,
pp. 59–68. ACM (2009)

42. Saarinen, M.-J.O.: The BlueJay ultra-lightweight hybrid cryptosystem. In: 2012
IEEE Symposium on Security and Privacy Workshops (SPW), 24–25 May 2012,
pp. 27–32 (2012)

43. Kumar, N., Ojha, S., Jain, K., Sangeeta, L.: BEAN: a lightweight stream cipher.
In: Proceedings of the 2nd International Conference on Security of Information
and Networks (SIN ’09), pp. 168–171 (2009)

44. Tian, Y., Chen, G., Li, J.: QUAVIUM - a new stream cipher inspired by TRIVIUM.
J. Comput. 7(5), 1278–1283 (2012). doi:10.4304/jcp.7.5.1278-1283

45. Eisenbarth, T., Paar, C., Poschmann, A., Kumar, S., Uhsadel, L.: A survey of
lightweight cryptography implementations. IEEE Des. Test Comput. 24(6), 522–
533 (2007)

46. Paar, C., Poschmann, A., Robshaw, M.J.B.: New design in lightweight symmetric
encryption. RFID Secur. 3, 349–371 (2009)

47. Kitsos, P., Sklavos, N., Parousi, M., Skodras, A.N.: A comparative study of hard-
ware architectures for lightweight block ciphers. J. Comput. Electr. Eng. 38(1),
148–160 (2012)

48. Eisenbarth, T., et al.: Compact implementation and performance evaluation
of block ciphers in ATtiny devices. In: Mitrokotsa, A., Vaudenay, S. (eds.)
AFRICACRYPT 2012. LNCS, vol. 7374, pp. 172–187. Springer, Heidelberg (2012)

49. Anjali, A.P., Saibal, K.P.: A survey of Cryptanalysis attacks on lightweight block
ciphers. IRACST - Int. J. Comput. Sci. Inf. Secur. (IJCSITS) 2(2), 65 (2012)

50. Karakoç, F., Demirci, H., Harmancı, A.E.: ITUbee: a software oriented lightweight
block cipher. In: Avoine, G., Kara, O. (eds.) LightSec 2013. LNCS, vol. 8162, pp.
16–27. Springer, Heidelberg (2013)

51. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. IACR, Cryptology
ePrint Archive, 2013. http://eprint.iacr.org/2013/404.pdf (2013)

52. Mentens, N., Genoe, J., Preneel, B., Verbauwhede, I.: A low-cost implementation of
Trivium. In: ECRYPT Workshop, SASC - The State of the Art of Stream Ciphers,
pp. 197–204 (2008)

53. Good, T., Benaissa, M.: Hardware performance of eStream Phase-iii stream cipher
candidates. In: State of the Art of Stream Ciphers Workshop (SASC 2008), Feb-
ruary 2008, pp. 163–173 (2008)

54. Zhilyaev, S.: Evaluating a new MAC for current and next generation RFID. Master
thesis, University of Massachusetts Amherst (2010). http://scholarworks.umass.
edu/cgi/viewcontent.cgi?article=1477&context=theses

55. Gaubatz, G., Kaps, J.-P., Sunar, B.: Public key cryptography in sensor networks—
revisited. In: Castellucia, C., Hartenstein, H., Paar, C., Westhoff, D. (eds.), ESAS
2004. LNCS, vol. 3312, pp. 2–18. Springer, Heideberg (2005)

http://dx.doi.org/10.4304/jcp.7.5.1278-1283
http://eprint.iacr.org/2013/404.pdf
http://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1477&context=theses
http://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1477&context=theses

Lightweight Cryptography for Embedded Systems 349

56. Agren, M.: On some symmetric lightweight cryptographic designs. Ph.D. disserta-
tion, Department of Electrical and Information Technology, Faculty of Engineering,
LTH, Lund University (2012).

57. Cakiroglu, M.: Software implementation and performance comparison of popular
block ciphers on 8-bit low-cost microcontroller. Int. J. Phys. Sci. 5(9), 1338–1343
(2010)

58. Rinne, S., Eisenbarth, T., Paar, C.: Performance analysis of contemporary light-
weight block ciphers on 8-bit microcontrollers (2011)

59. Bos, J.W., Osvik, D.A., Stefan, D.: Fast implementations of AES on various plat-
forms. In: SPEED-CC - Software Performance Enhancement for Encryption and
Decryption and Cryptographic Compilers (2009)

60. Boesgaard, M., Vesterager, M., Christensen, T., Zenner, E.: The stream cipher rab-
bit 1. http://www.ecrypt.eu.org/stream/p3ciphers/rabbit/rabbit p3.pdf (2010)

61. Meiser, G., Eisenbarth, T., Lemke-Rust, K., Paar, C.: Software implementation of
eSTREAM profile I ciphers on embedded 8-bit AVR microcontrollers. In: Workshop
Record State of the Art of Stream Ciphers (SASC 07). Also submitted in: The
eSTREAM Project (2007)

62. Otte, D.: AVR-Crypto-Lib. http://www.das-labor.org/wiki/AVR-Crypto-Lib/en
(2009)

63. Engels, D., Fan, X., Gong, G., Hu, H., Smith, E.M.: Hummingbird: ultra-lightweight
cryptography for resource-constrained devices. In: Sion, R., Curtmola, R., Dietrich,
S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) FC 2010 Workshops. LNCS,
vol. 6054, pp. 3–18. Springer, Heidelberg (2010)

64. Badel, S., Dağtekin, N., Nakahara Jr, J., Ouafi, K., Reffé, N., Sepehrdad, P., Sušil,
P., Vaudenay, S.: ARMADILLO: a multi-purpose cryptographic primitive dedi-
cated to hardware. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 398–412. Springer, Heidelberg (2010)

65. Gaubatz, G., Kaps, J.-P., Sunar, B.: Public Key Cryptography in Sensor Networks
Revisited. In: Castellucia, C., Hartenstein, H., Paar, C., Westhoff, D. (eds.), Pro-
ceeding of the 1st European Workshop on Security in Ad-Hoc and Sensor Networks
ESAS 2004. LNCS, vol. 3312, pp. 218. Springer-Verlag (2004)

66. Shoufan, A., Wink, T., Molter, G., Huss, S., Strentzke, F.: A novel processor archi-
tecture for McEliece cryptosystem and FPGA platforms. In: Proceedings of the
20th IEEE International Conference on Application-specific Systems, Architec-
tures and Processors (ASAP 2009), pp. 98–105 (2009)

67. Yang, B.-Y., Cheng, C.-M., Chen, B.-R., Chen, J.-M.: Implementing minimized
multivariate PKC on low-resource embedded systems. In: Brooke, P.J., Clark, J.A.,
Paige, R.F., Polack, F.A.C. (eds.) SPC 2006. LNCS, vol. 3934, pp. 73–88. Springer,
Heidelberg (2006)

68. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theor. 31(4), 469–472 (1985)

69. Howgrave-Graham, N., Silverman, J.H., Whyte, W.: Choosing parameter sets for
NTRUEncrypt with NAEP and SVES− 3. In: Menezes, A. (ed.) CT-RSA 2005.
LNCS, vol. 3376, pp. 118–135. Springer, Heidelberg (2005)

70. Bjorstad, T.E.: An introduction to new stream cipher designs. In: 25th Chaos
Communication Congress (2008)

http://www.ecrypt.eu.org/stream/p3ciphers/rabbit/rabbit_p3.pdf
http://www.das-labor.org/wiki/AVR-Crypto-Lib/en

Short Papers

A Simulation of Document Detection
Methods and Reducing False Positives

for Private Stream Searching

Michael Oehler(B) and Dhananjay S. Phatak

Cyber Defense Laboratory, Department of Computer Science and Electrical
Engineering, University of Maryland Baltimore County, Baltimore, Maryland

{oehler1,phatak}@umbc.edu

Abstract. Private stream searching is a system of cryptographic meth-
ods that provide a search facility while preserving the confidentiality
of the search criteria and matching documents. This research analyzes
the original documentation detection method of the private search sys-
tem, defines a new detection method based on an appended hash, and
presents an analysis of false positives occurring in both methods. Our
method offers a lower false positive rate than prior work, and integrates
seamlessly into an implementation of private stream searching.

Keywords: Private stream search · Data privacy · Oblivious transfer ·
Simulation

1 Introduction

Rafail Ostrovsky and William Skeith created a Private Stream Search (PSS)
system that conceals the search criteria, performs a search on the encrypted
criteria, and returns matching documents in an encrypted buffer [1]. This private
search system preserves the confidentiality of the search criteria and the search
results from external entities.

We define a new method for document detection that demonstrates a lower
false positive rate than the original method. Our method utilizes a hash of the
document stored to the output buffer, and differs from prior attempts that mea-
sure a Hamming weight. This is an aspect of private searching that has not been
discussed previously. We then adapt our detection method and the iterative
recovery technique presented by Danezis and Diaz [2]. Our improved detection
method reduces the occurrence of a non-recoverable error for this iterative tech-
nique. Our results are thus, relevant for implementers and those researching
private stream searching.

2 Private Stream Search

The private search system created by Ostrovksy [1] is based on the asymmet-
ric cryptosystem defined by Paillier [3], and utilizes the additive homomorphic

J. Garcia-Alfaro et al. (Eds.), DPM 2013 and SETOP 2013, LNCS 8247, pp. 353–361, 2014.
DOI: 10.1007/978-3-642-54568-9 22, c© Springer-Verlag Berlin Heidelberg 2014

354 M.Oehler and D.S. Phatak

property of the cryptosystem. The private search system involves two parties:
a client and an information provider. A client constructs a query. The provider
performs the search, delivers a result, and gains no knowledge of the query or
response. Although the process for private searching is conceptually similar to
a general search, the structures for the query and results differ. There is an
encrypted filter, an output buffer, and computational facets to describe.

If we define Paillier’s encryption routine as E : ZN → ZN2 and the decryption
routine as D : ZN2 → ZN , relative to a public and private key, then the homo-
morphic property can be expressed as: D(E(x) × E(y)) = x + y, for plaintext
messages x and y. Notice that

∏
k E(x) = E(kx), and clearly, E(x)k = E(kx)

for some constant value k ∈ ZN .
The ciphertext from the Paillier cryptosystem is randomized. An encrypted

value is indistinguishable from another, even for the same encrypted value using
the same public key. An encryption of E(1) is indistinguishable from another
value of E(1).

The Query: In Ostrovsky’s system, the client creates a query by selecting
a public dictionary of words D = {w1, w2, w3, . . .} and a set of private keywords
K ⊆ D. The client then constructs an encrypted filter F = {f1, f2, f3, . . . , f|D|},
where fi = E(1) for an associated keyword wi ∈ K. Otherwise, fi = E(0). This
encrypted filter establishes a one-to-one association between words of interest
and all other words in a dictionary without exposing the private keywords. The
client sends the encrypted filter and dictionary to the information provider.

The Search: The information provider creates an output buffer of tuples
B = {(E(0), E(0)), (E(0), E(0)), . . .}, and processes a search as follows:

For each document, d that exists in a data source, extract a set of words W
from d such that W ⊆ D. Compute the encrypted value s =

∏
|W | fi = E(m)

where every value of fi (from F) associates with a corresponding word wi ∈ D.
The value s is the encrypted match value (the client will decrypt this value to
recover the number of distinct keywords present in the document m = |W ∩K|.)
The provider then computes the exponentiation r = sd. The encrypted search
result r is either E(m × d), or E(0) when no keywords occur in the document.

Note that a document d is a numeric representation of a textual document,
network packet, database record, file, etc. For long documents, d may be parti-
tioned. Last, a matching document d is scaled by the match value m.

The provider then saves the result {s, r} to the output buffer. Specifically, the
provider selects random buffer positions B→ ⊆ B, and performs a (pairwise) mod-
ular multiplication, B→ = B→ × {s, r}. The new values for B→ are then reassigned
to their associated positions in B. When no keywords appear in a document
{s, r} = {E(0), E(0)}, the plaintext values of the buffer remain unchanged. Oth-
erwise, multiple copies of the encrypted match value and the scaled document
value {s, r} = {E(m), E(m × d)} are stored in the buffer.

The provider returns the encrypted buffer to the client when done.
The Result: To recover a document, the client decrypts the buffer, per-

forms an integer division, and initiates a document detection routine. Document
detection is discussed further in Sect. 3.1.

A Simulation of Document Detection Methods and Reducing False Positives 355

Intuitively, the selection of a few random buffer positions perpetuates the
survival of at least one document copy (Ostrovsky formally presents this idea as
the color survival theorem.) However, and at a buffer’s capacity, the majority
of buffer positions are chosen multiple times eliminating surviving copies. The
private search system thus, has a non-zero probability that some documents
will not survive. Large buffers may minimize this condition, but this results in
storage inefficiencies that are suboptimal.

3 Related Work

Researchers recognized that a collision of multiple documents in a buffer posi-
tion did not entirely destroy information; a collision only obscures a document.
In fact, a collision produces a linear combination of documents. For exam-
ple, if n documents are stored at a buffer position bx, then the value of bx is
{E(

∑n
i=0 mi), E(

∑n
i=0(mi × di)}. Research has thus, qualified external struc-

tures, additional processes, and leveraged the redundancy of multiple copies to
extract documents that were not recoverable in the original approach.

Bethencourt presented an algorithm for document storage that passes
(encrypted) knowledge of a matching document’s index to the client [4,5]. The
client uses this knowledge to solve a system of linear equations. Specifically, the
provider constructs a second encrypted output buffer, known as the matching-
indices buffer M , and saves the result of a search to buffer positions in M des-
ignated by hash values of the document’s index.

When decrypted, the client uses the matching-indices buffer as a Bloom filter
to validate a document’s membership in the output buffer, and to establish a set
of linear equations to solve. Bethencourt recognizes that the matching-indices
buffer (a Bloom filter) introduces the possibility of a false positive, complicating
a solution [4,5]. Finiasz has also remarked on the asymptotic cost of solving a
system of linear equations with a large number of terms [6].

Danezis and Diaz introduced a simple iterative method for document recovery
that does not incur significant computational cost or the cost of an additional
buffer [2]. In this method, the provider and client use a (truncated) hash of
incremented document values to generate a list of buffer positions: positions =
{H(di),H(di + 1), . . . , h(di + l)}, for each document di and for l document
copies.

Using these l positions, the provider stores a copy of the result {s, r} to
each buffer position via a modular multiplication. The method replaces Ostro-
vsky’s random selection. The salient point is that the client can reconstruct the
same positions, subtract the newly discovered document values from those l.
positions, and repeat until no further documents are discovered or the buffer is
empty.

There is a final issue: the provider must encode a document such that the
client can detect a document’s occurrence in the output buffer. This is addressed
in the Sect. 4.

356 M.Oehler and D.S. Phatak

3.1 Document Detection by k/3 Triples

Ostrovsky defines a probabilistic method that distinguishes a document from a
collision of documents in a buffer position [1].

In this method, the provider appends k-bits to each document, partitions
these bits into k/3 triples, and randomly sets a bit in each triple to 1. The
provider then uses this modified document d→ in the search r = sd

′
. As before,

the provider stores multiple copies of the result {s, r} = {E(m), E(m × d→)} via
modular multiplication to the output buffer.

After decrypting the buffer, the client detects a document if a buffer position
has non-zero values, the number of matching keywords and the scaled document
value, (m,m × d→) are divisible m|(m × d→), and each k/3 triple has a Ham-
ming weight of one. Otherwise, the buffer position stores the sum of 2 or more
documents; a collision.

As an example, assume that the provider searches two documents. The first
document d1 = 5768 is tagged with three randomly selected triples: 48, 28, and
18 when k = 9. The provider appends these triples to the document: d→

1 =
5764218. If this document (privately) matched two keywords then s1 = E(2)
and r1 = E(2)d

′
1 = E(2 × 5764218). The search result would be: {s1, r1} =

{E(2), E(13750428)}.
The provider performs a second search on d2 = 6758, and appends the triples

18, 28, and 48. The modified document is: d→
2 = 6751248. If this document

matched five keywords, the result would be: {s2, r2} = {E(5), E(42616448)}.
To demonstrate a false positive, assume that the provider saves both results to

the same buffer position b0. Recall that modular multiplication in the encrypted
domain produces a summation of plaintext values. When the provider multi-
plies the encrypted results to the buffer, the tuple at b0 becomes E(2 + 5) and
E(13750428 + 42616448), specifically: b0 = {E(7), E(56567068)}.

After decryption, the client divides 56567068/7 = 6532128, detects that the
three triples, 28, 18, and 28 have a Hamming weight of one, and falsely retrieves
a document d = 6538.

We must assure that the occurrence of a false positive in each buffer position
is a rare event. Otherwise, when executing Danezis’s iterative method for docu-
ment recovery, the client would compute incorrect buffer positions, subtract an
incorrect value from these positions, and induce a non-recoverable error.

4 New Method for Document Detection

In our detection method, the provider calculates a hash of the document, appends
k-bits of this hash to the document, and then uses this modified document in the
search: d→ = d||(H(d)&mask) where mask = 2k − 1 and r = sd

′
. The provider

then saves multiple copies of the result {s, r} to the buffer, as before. When
the client retrieves a non-zero value from the buffer, the client removes k-bits,
calculates a hash, and then compares that result with previously removed bits
(the hash calculated by the provider.) If the two hash values match, the client

A Simulation of Document Detection Methods and Reducing False Positives 357

returns the document as a search result. Otherwise, the client knows that the
buffer position contains a linear summation (collision) of documents.

This subtle change imputes a dependency between the document and the
appended bits used to verify that document. Our method is still probabilistic,
and a false positive is still possible. We expect a hash function to provide a
uniform distribution; one collision in 1/2k for k appended bits.

5 A Simulation of Document Detection Methods

We present two simulations that measure the number of false positives from sets
of collisions. In the first, documents are not scaled by m, the number of matching
keywords. This provides a fundamental assessment of the k/3 appended triples
and our appended hash methods. These results are shown in Tables 1 and 2.

The results of the second simulation are presented in Tables 3 and 4, and
reflect the number of false positives in practice. That is, when documents are
scaled by m, and the divisibility of the linear combination of documents is
addressed.

These tables depict the minimum, mean, and maximum number of false pos-
itives. A lower value is better. Simulations were conducted in Mathematica.

To assess the number of false positives, we executed ten trials that randomly
created 1000 documents with values 0 < d < 264, and one to five equally sized
sets of colliding-documents. We appended k-bits to all documents such that the
documents held either k/3 triples or k-bits of an MD5 hash. This produced a set
of 1000 collisions for each method. We used the same documents to minimize
the variation any document may have on each detection method.

There are three remaining conditions: The size of k, the number of colliding
documents, and whether documents are scaled by m. We varied k from 9 to 24
bits, and created collisions with 1 to 5 documents. In the second simulation, the
number of matching keywords m was randomly selected from a range, 1 to 10.

To clarify the construction of a collision, consider the summation of three
documents where three triples are used: d→

0 = 111118, d→
1 = 221218, and d→

2 =
552128. The resulting collision is d =

∑2
i=0 d

→
i = 111118 + 221218 + 552128 =

1104448. Since two documents are added to the initial, this is a 2 Document
Collision. As this example shows, the three triples 4448 have a Hamming weight
of one. This false positive would contribute to the results presented under the
column titled, “2 Document Collision” and along the first row since k = 9.

5.1 Comparing Detection Methods

We begin with an assessment of Ostrovsky’s original detection method that
appends k/3 triples and notice the following: a summation of two unit vectors
in Z

3
2 results in another unit vector two out of nine times (a false positive.) That

is, if we add 1, 2, or 4, there are two such additions that lead to another unit
vector: 1+1 and 2+2. The probability that a false positive occurs in k/3 triples
after a single summation is simply (2/9)k/3.

358 M.Oehler and D.S. Phatak

Table 1. False positives for a summation of k/3 triples per 1000 collisions

k/3 1 Document 2 Document 3 Document 4 Document 5 Document
appended collision collision collision collision collision

triples Min M Max Min M Max Min M Max Min M Max Min M Max

9, 3 triples 4 9.4 13 26 32.1 36 61 77.6 93 43 51.5 58 42 51.5 64
12, 4 triples 1 3.1 6 5 9.3 16 18 33.8 40 14 18 23 6 14.7 21
15, 5 triples 0 0.7 3 0 2.2 5 10 17.2 24 2 6.4 10 4 6.7 10
18, 6 triples 0 0.1 1 0 0.8 3 6 8.4 14 0 2 5 0 2.1 4
21, 7 triples 0 0.1 1 0 0.2 1 0 2.4 6 0 0.8 3 0 0.4 1
24, 8 triples 0 0 0 0 0.1 1 0 1.6 3 0 0.1 1 0 0.4 1

Table 2. False positives for a summation of k-Bit hash values per 1000 collisions

k-Bit 1 Document 2 Document 3 Document 4 Document 5 Document
appended collision collision collision collision collision

hash Min M Max Min M Max Min M Max Min M Max Min M Max

9 0 .5 2 0 0.2 1 0 0.3 1 0 0 0 0 0.1 1
12 0 0.1 1 0 0.1 1 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The result of this first summation leads to six possible states: A triple is either
0, 2, 3, 4, 5, or 6. Thereafter, the summation of additional unit vectors produces
a result in Z8, and a cycle is formed. That is, any unit vector in Z

3
2 added to a

member of Z8 produces a result in Z8. In this cycle, there are 9 summations out
of the 24 possible summations of unit vectors that lead to a false positive. The
probability of a false positive thus, increases to (9/24)k/3 = (3/8)k/3, and as the
number of summations in a collision increases.

We observed this effect in our simulation. Table 1 shows that the number of
false positives increases after a collision of two or more documents: when k = 9,
every triple had one bit set, at a minimum, 4, 26, 61, 43, and then 42 times out
of a thousand collisions for 1 to 5 summations of documents respectively.

We present this effect, because the number of false positives for scaled k/3
triples actually decreased as the number of summations increases. See Table 3.
This may confuse implementers, leading to an incorrect conclusion about these
detection methods in practice. We discuss why this occurs next.

5.2 Detection Methods in Practice

Recall that the provider saves a result {s, r} to a buffer position where s is
the encrypted number of matching keywords, and r is the scaled value of the
document, namely s = E(m) and r = sd

′
= E(m × d→). When a document

matches more than one keyword, the document and appended bits are scaled

A Simulation of Document Detection Methods and Reducing False Positives 359

1 2 3 4 5

50

100

150

200 .

.
. . .

Fig. 1. Number of divisible results vs. Number of summations in a collision

by m. After decryption, the client can only initiate detection if the number of
keywords is a divisor of the document m|(m × d→).

We now consider the number of divisors that occur as a result of a colli-
sion of scaled documents. In this instance, we are looking for a sum of match-
ing keywords that divides the linear combination of scaled document values:∑n

i=0 mi|
∑n

i=0(mi × d→
i).

Figure 1 presents the average number of divisors found in a set of 1000 colli-
sions and for 1 to 5 document collisions. The line with the square and circular
plot-marks represent the number of divisors when the document is appended
with triples and a k-bit hash respectively. Both lines exhibit the same rate of
decay, regardless of the appended detection method. More importantly, the num-
ber of collisions (samples) used in our simulations decreases significantly as the
number of summations in a collision increases.

This means that both detection methods consider fewer candidate collisions
as the number of summations increases. For instance, Fig. 1 shows that when a
single document is added to our initial set of 1000 documents, these summed
and scaled documents (m0d

→
0 + m1d

→
1) are divided by the sum of their matching

keyword values (m0 +m1) approximately 200 times. After four summations, our
experiments considered only 50 collisions.

Tables 3 and 4 present the results of the the detection methods in practice.
For k/3 triples, we observe that when k = 9, every triple had one bit set, at
a minimum, 14, 3, 2, 0, and 0 times out of a thousand collisions and for 1 to
5 summations (Table 3.) This number of false positives is significantly less than
that observed in Table 1. We emphasize then that the reduction in false positives
for the summation of scaled k/3 triples is a result of the reduced dataset size,
and not as a result of the detection method itself.

When comparing Tables 3 and 4, our appended hash method produces fewer
false positives overall. We observe that no false positives occurred when 18 bits
were appended. We emphasize that our method is still probabilistic and that
no singular value for k will suffice. If the output buffer is expected to store
several thousand documents, the size for k must be commensurate with that
buffer size.

360 M.Oehler and D.S. Phatak

Table 3. False positives for sums of scaled k/3 triples per 1000 collisions

k/3 1 Document 2 Document 3 Document 4 Document 5 Document
appended collision collision collision collision collision

triples Min M Max Min M Max Min M Max Min M Max Min M Max

9, 3 triples 14 19.6 28 3 5.5 8 2 4.7 6 0 1.8 4 0 1.3 3
12, 4 triples 5 9.1 14 1 2.6 7 0 1.3 4 0 0.2 1 0 0.3 2
15, 5 triples 3 4.2 7 0 0.6 2 0 0.5 1 0 0.4 0 0 0.2 1
18, 6 triples 0 1.9 6 0 0.1 1 0 0.3 1 0 0 0 0 0 0
21, 7 triples 0 0.5 2 0 0.2 1 0 0 0 0 0.2 1 0 0.1 1
24, 8 triples 0 0.9 3 0 0 0 0 0 0 0 0 0 0 0 0

Table 4. False positives for sums of scaled k-Bit hash values per 1000 collisions

k-Bit 1 Document 2 Document 3 Document 4 Document 5 Document
appended collision collision collision collision collision

hash Min M Max Min M Max Min M Max Min M Max Min M Max

9 0 1.7 4 1 1.4 3 0 1.2 2 0 1.4 4 1 2 3
12 0 0.3 2 0 0.1 1 0 0.4 2 0 0.4 1 0 0.4 2
15 0 0.1 1 0 0.1 1 0 0 0 0 0.1 1 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

However, selecting greater values of k will deduct from the possible number
of bits used to store a document (or partitions of a document.) If the modulus of
the public key is 1024-bits, the implementer deducts k-bits of document storage
per position in the output buffer. Selection of k will be application dependent.

6 Closing Remarks

This research was motivated by seemingly spurious and non-recoverable errors.
We implemented Ostrovsky’s private search, integrated Danezis’s iterative doc-
ument recovery, and created a private packet filtering system [7]. During testing,
our prototype occasionally produced extraneous documents. False positives do
occur. Our immediate recourse added additional triples. However, this reduced
the size of the document stored in a buffer position. We sought an alternative.

Integration of our appended hash method was seamless, produced an imme-
diate improvement, and the analysis presented validates this observation. Imple-
menters should incorporate our appended hash method for document detection,
and benefit from our shared experience.

A Simulation of Document Detection Methods and Reducing False Positives 361

References

1. Ostrovsky, R., Skeith III, W.E.: Private searching on streaming data. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 223–240. Springer, Heidelberg (2005)

2. Danezis, G., Diaz, C.: Space-efficient private search with applications to rateless
codes. In: Dietrich, S., Dhamija, R. (eds.) FC 2007 and USEC 2007. LNCS, vol.
4886, pp. 148–162. Springer, Heidelberg (2007)

3. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer,
Heidelberg (1999)

4. Bethencourt, J., Song, D., Waters, B.: New construction and practical applications
for private stream searching. In: Security and Privacy (SP’06), pp. 132–139 (2006)

5. Bethencourt, J., Song, D., Waters, B.: New techniques for private stream searching.
ACM Trans. Inf. Syst. Secur. (TISSEC) 12(3), 1–32 (2009)

6. Finiasz, M., ramchandran, K.: Private stream search at the same communication
cost as a regular search: role of LDPC codes. In: ISIT’12, pp. 2566–2570 (2012)

7. Oehler, M., Phatak, D.: A private packet filtering language for cyber defense. In:
Annual Symposium on Information Assurance (ASIA’13), pp. 46–55 (2013)

Dynamic Anonymous Index
for Confidential Data

Guillermo Navarro-Arribas1(B), Daniel Abril2, and Vicenç Torra2

1 Department Enginyeria de la Informació i de les Comunicacions (DEIC),
Universitat Autònoma de Barcelona (UAB), Campus de la UAB,

08193 Bellaterra, Catalonia, Spain
gnavarro@deic.uab.cat

2 Institut d’Investigació en Intel.ligència Artificial (IIIA), Consejo Superior de
Investigaciones Cient́ıficas (CSIC), Campus de la UAB,

08193 Bellaterra, Catalonia, Spain

Abstract. In this paper we introduce a k-anonymous vector space model,
which can be used as an index of a set of confidential documents. This
model allows to index, for example, encrypted data. New documents can
be added or removed while maintaining the k-anonymity property of the
vector space.

1 Introduction

We tackle the problem of storing confidential documents in a cloud computing
scenario, where the server storing the documents is not the owner of the docu-
ments. In such cases, users might like to protect their documents by, for example,
encrypting them. This will ensure that the document remains confidential in the
server. It is not only protected from other users, but also ensures that any intru-
sion performed in the systems or security breach will not lead to the disclosure
of the contents of the document.

At the same time, in some scenarios it will be desirable to provide some form
of index or metadata about the stored documents. The metadata could be used
to perform queries on a given set of documents, but also for other information
retrieval tasks. Ideally these metadata should preserve to some extent the privacy
provided by encrypting the documents.

Instead of relying on a strictly cryptographic solution, in this paper we
explore a novel approach inspired by the application of SDC (Statistical Dis-
closure Control) and PPDM (Privacy Preserving Data Mining) techniques to
information retrieval. Our approach is to provide public metadata about the
encrypted documents. The metadata must ensure that a minimum degree of
privacy and anonymity is provided about the documents while presenting some
useful information about them. We have chosen to represent these metadata as a
document vector space model (VSM) [8], which is normally used in information
retrieval systems. In a vector space model, it is common to represent a document
as a vector of terms with an associated frequency-based weight.

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 362–368, 2014.
DOI: 10.1007/978-3-642-54568-9 23, c© Springer-Verlag Berlin Heidelberg 2014

Dynamic Anonymous Index for Confidential Data 363

In Sect. 2 we introduce the motivating scenario. Section 3 introduces the k-
anonymous VSM, and its protection is described in Sect. 4. Finally, Sect. 5 pro-
vides some evaluation results and Sect. 6 concludes the paper.

2 Scenario Description

We contextualize our proposal in a typical cloud computing system or more
precisely as a cloud storage service. We consider a repository of documents, where
each document belongs to a different user. Examples could be a repository of
electronic patient health record, papers submitted to a conference, or a repository
of research project proposals.

We do not deal here with the concrete protocols and processes to imple-
ment the interaction with the user. Intuitively, the user submits an encrypted
document together with the document vector representing the document. The
user (or client software) is free to apply any desired pre-anonymization to the
document vector. Then the server adds the document vector to the VSM. This
process requires, as we will see, the anonymization of such vector. The user can,
on request, delete his document from the server, and its corresponding document
vector is deleted from the VSM.

It is important to note that we consider the server as trusted. That is, the
users trust it to correctly perform the anonymization process. Once a document
vector is anonymized to be included in the VSM, it is deleted by the server. The
fact that the server does not keep the original vectors ensures an additional level
of security in case of an intrusion.

The main objective of our proposal is to anonymize the VSM. Compared to
typical datasets used in SDC and PPDM, the VSM as presented in this work can
be considered a dynamic dataset. We consider that there can be discretionary
insertions and deletions of documents in the server, which has the implications
that document vectors can be added to or removed from the VSM. There are
some proposals dealing with stream data [2,4–7,9,17], which only contemplate
insertions in the dataset. Moreover streaming data assumes that new records
will be inserted in a timely basis, allowing the buffering of new records to be
inserted. The concrete case of dynamic data has scarcely been treated in [15,16].
We depart from these works to introduce the dynamic anonymization using
microaggregation, and it application to VSM.

3 k-Anonymous VSM

In order to maintain the document based anonymity of the VSM, we introduce
the idea of k-anonymous VSM as analogous to classical k-anonymity with respect
to quasi-identifiers in SDC [12,14]. We will introduce the k-anonymous VSM
together with some notation. Given a set of documents D we denote as V (di)
the vector for document di, such that V (di) = (w1,i, . . . , wM,i), where wj,i is
the weight associated to term j in document i. The set of document vectors
D = {V (d1), . . . ,V (dn)} forms the vector space model (VSM). The weight is
normally taken to be a frequency based metric associated with the term [8].

364 G. Navarro-Arribas et al.

Definition 1. A VSM D is a k-anonymous VSM if and only if for every docu-
ment vector V (di) in D there exists at least (k − 1) other document vectors in
D that are indistinguishable from V (di).

In this paper we deal with dynamic data, and its protection if it is not done
properly can lead to inference.

3.1 Inference on Multiple Anonymizations of Dynamic Data

Several works show inference attacks on data with multiple anonymizations,
including streaming data, in terms of l-diversity [2,16]. We do not deal with
confidential attributes, so l-diversity does not apply.

Even so, our VSM data can be vulnerable to inference through intersection of
equivalence classes. This is a common problem in clustering based anonymization
when multiple anonymizations of the same data are released [9,13]. An attacker
can reduce the cardinality for some given quasi-identifier values by intersecting
different equivalence classes that contain some common records, thus, breaking
k-anonymity.

In [13] the authors show that intersection can easily happen in the context
of generalization. The same can be applied to microaggregation. Consider for
instance the generic example from Table 1. For simplicity we will consider a single
numeric attribute in the dataset (age). Note also that the record identifier ri is
given only as a reference to help understand the example, the actual anonymized
dataset (VSM in this case) has only quasi-identifiers, and no other identifiers is
given.

We have an original dataset T with two different 2-anonymous microag-
gregated versions T1, and T2. An attacker with knowledge of both tables, and
knowledge of the aggregation applied (in this case the arithmetic mean) can
easily infer information about the record r3. Given the aggregation operator C,
if C(r1, r2, r3) = 15 in T1 and C(r1, r2) = 12 in T2, it yields r3 = 21. Depending
on the aggregation operator in use, it might not be so easy to infer the value of
r3 and maybe the attacker can only give an estimation or approximate value.

This same problem can arise in the case of dynamic data, so the operations
to insert and remove elements should take it into account.

Table 1. Example of intersection in microaggregated tables.

Record Age

r1 12
r2 12
r3 21
r4 30
r5 30

(a) Original
table T

Record Age

r1 15
r2 15
r3 15
r4 30
r5 30

(b) Microag-
gregated
table T1

Record Age

r1 12
r2 12
r3 27
r4 27
r5 27

(c) Microag-
gregated
table T2

Dynamic Anonymous Index for Confidential Data 365

4 Dynamic Microaggregation of VSM

We introduce our anonymization process by defining the insertion and deletion
operations on the VSM. The data are statically anonymized (see [1]), and then
records can be added or removed. The static anonymization through microag-
gregation can be described as a two step process:

– Partition: Define a partition P on the original data D, where each cluster has
at least k elements. This partition tries to ensure a minimum information loss.

– Aggregation: For each cluster ci ≈ P , substitute each element in the cluster
by its cluster representative or centroid. Usually, an aggregation operator C

is used to compute the centroid ĉi = C({V (dj) | V (dj) ≈ ci}).

We will use following cosine distance function between document vectors:

d(V (d1),V (d2)) = 1 − V (d1) · V (d2)
|V (d1)||V (d2)| (1)

where · is the dot product of the vectors. For the aggregation of the microaggre-
gation step we use a component-wise mean to aggregate vectors:

C({V (d1), . . .V (dn)}) =
1
n

(
n∑

i=1

wi,1, . . . ,
n∑

i=1

wi,M) (2)

Depending on the concrete application other distances and aggregation operators
could be used.

4.1 Simple Document Vector Insertion

Given a k-anonymous VSM D→ = {V ′(d1), . . . ,V ′(dn)}, which forms a partition
P (D→) = {c1, . . . , cv}, we want to insert a new document vector V (d∞). ĉi denotes
the centroid of the cluster ci. In order to do so we follow the procedure:

1. Find the cluster ci ≈ P (D→) such that d(V (d∞), ĉi) → d(V (d∞), ĉj) for all
cj ≈ P (D→).

2. Add the new vector V (d∞) to the cluster ci by applying the perturbation
V ′(d∞) = ĉi to the new vector.

The second step is important in order to prevent inference by intersection.
Computing a new centroid for the cluster will reduce the information loss but
will also lead to inference attacks as the one described in Sect. 3.1.

4.2 Simple Document Vector Deletion

Given a k-anonymous VSM D→ = {V ′(d1), . . . ,V ′(dn)}, which forms a partition
P (D→) = {c1, . . . , cv}, we want to remove a document vector V ′(d∞) ≈ D→. The
deletion has the following steps:

366 G. Navarro-Arribas et al.

Table 2. Example of deletion.

Record Age

r1 10
r2 10
r3 21
r4 21
r5 30
r6 30

(a) T1

Record Age

r1 10
r2 10
r3 21
r4 21
r5 21

(b) T2

1. Identify the cluster ci such that V ′(d∞) ≈ ci, and delete the vector from the
cluster.

2. If |ci| < k find another cluster cj such that d(ĉi, ĉj) → d(ĉi, ĉl) for all cl ≈ D→

and l ∞= i ∞= j.
3. Add the vectors of the cluster ci to the cluster cj . To do so all vectors V ′(di) ≈

ci are perturbed as V ′(di) = ĉj .

Steps 2 and 3 are equivalent to the insertion of elements, no new centroid is
re-computed to avoid inference. There is however an important point to consider
with respect to inference and deletion.

For example, Table 2 shows the deletion of the record r6 from the 2-anonymous
table T1 resulting into table T2. An attacker knowing both tables T1 and T2 will
know that one of the records with value 30 has been deleted and the other has
been merged into the cluster of records with value 25. No record can be identified
or distinguished from the rest with probability higher than 1/k. This is true if
the user has no other knowledge from the records other than the quasi-identifiers.

5 Evaluation

To provide an initial evaluation of the perturbation introduced by our pro-
posal we rely mainly in observing the within cluster homogeneity (SSE). Given
a protected VSM D→ = {V ′(d1), . . . ,V ′(dn)}, with a partition into clusters
P (D→) = {c1, . . . , cv}, and its respective original VSM D = {V (d1), . . . ,V (dn)},
where V ′(di) is the protected version of the vector V (di), we can compute an
SSE as:

SSE(D→) =
∑

ci⊆P (D′)

∑

V (dj)⊆ci

d2(V (dj), ĉi)

where d is the cosine distance. In order to compare sets of documents with
different size, we will divide the SSE by the number of documents in the set to
give a normalized SSE with respect to the number of documents.

We selected 1000 random documents from the R8 subset of the Reuters-21578
dataset [11], containing a collection of classified Reuters news. Stop-words are
removed from the document as well as terms with two or less letters. Once the

Dynamic Anonymous Index for Confidential Data 367

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 100 200 300 400 500 600 700 800 900 1000

N
or

m
al

iz
ed

 S
S

E

Number of Deletions

(a) Deletions

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 100 200 300 400 500 600 700 800 900 1000

N
or

m
al

iz
ed

 S
S

E

Number of Insertions

(b) Insertions

Fig. 1. Normalized SSE for deletions and insertions on the 5-anonymous dataset.

documents are cleaned we apply the Porter stemming algorithm [10], which
considers all words with the same stem as the same word, producing a reduction
in the size of the feature set.

From the initial set of documents we start by generating a 5-anonymous ver-
sion of the set applying the MDAV algorithm [3]. With this set we first apply
consecutive deletion of random elements and then, starting again from the pro-
tected 1000 set, we insert new documents. Figure 1 shows the evolution of the
normalized SSE as elements are deleted or inserted from the 5-anonymous ver-
sion of the dataset.

Note that the values are very low because SSE is divided by the number
of elements in each case. The values of SSE for greatest number of insertions
and deletions give an idea of the SSE value for maximum perturbation. So if we
consider a maximum value of 0.3, then values of 0.1 and 0.05 represent approx-
imately and respectively the 33% and 17%.

6 Conclusions

We have introduced the anonymization of a dynamic vector space model based
on microaggregation. The vector space model can be used as the metadata of
encrypted documents in a typical cloud storage service. The VSM is ensured to
be k-anonymous with respect to the documents, and this property is maintained
while documents can be inserted and deleted from the set. We have presented
here an initial work which can be further developed. We plan to explore the
application of other data privacy techniques and the improvement on reducing
the information loss during insertions and deletions.

Acknowledgments. This Work is partially funded by projects TSI2007-65406-C03-02,
ARES-CONSOLIDER INGENIO 2010 CSD2007-00004, TIN2010-15764, and TIN2011-
27076-C03-03 of the Spanish Government, and by project FP7/2007-2013 (Data without
Boundaries). work contributed by one of the authors was carried out as part of the Com-
puter Science Ph.D. program of the Universitat Autònoma de Barcelona (UAB).

368 G. Navarro-Arribas et al.

References

1. Abril, D., Navarro-Arribas, G., Torra, V.: Vector space model anonymization. In:
Sixteenth International Conference of the Catalan Association of Artificial Intelli-
gence (CCIA 2013) (to appear)

2. Byun, J.-W., Sohn, Y., Bertino, E., Li, N.: Secure anonymization for incremental
datasets. In: Jonker, W., Petković, M. (eds.) SDM 2006. LNCS, vol. 4165, pp.
48–63. Springer, Heidelberg (2006)

3. Domingo-Ferrer, J., Mateo-Sanz, J.M.: Practical data-oriented microaggregation
for statistical disclosure control. IEEE Trans. Knowl. Data Eng. 14, 189–201 (2002)

4. Cao, J., Carminati, B., Ferrari, E., Tan, K.-L.: CASTLE: continuously anonymizing
data streams. IEEE Trans. Dependable Secure Comput. 8(3), 337–352 (2011)

5. De Capitani di Vimercati, S., Foresti, S., Livraga, G.: Privacy in data publishing.
In: Garcia-Alfaro, J., Navarro-Arribas, G., Cavalli, A., Leneutre, J. (eds.) DPM
2010 and SETOP 2010. LNCS, vol. 6514, pp. 8–21. Springer, Heidelberg (2011)

6. Iwuchukwu, T., Naughton, J.F.: K-anonymization as spatial indexing: toward scal-
able and incremental anonymization. In: Proceedings of the 33rd International
Conference on Very Large Data Bases, Vienna, Austria, pp. 746–757 (2007)

7. Li, J., Ooi, B.C., Wang, W.: Anonymizing streaming data for privacy protection.
In: IEEE 24th International Conference on Data Engineering, ICDE 2008, pp.
1367–1369 (2008)

8. Manning, C.D., Raghavan, P., Schütze, H.: An Introduction to Information
Retrieval. Cambridge University Press, Cambridge (2009)

9. Pei, J., Xu, J., Wang, Z., Wang, W., Wang, K.: Maintaining K-anonymity against
incremental updates. In: 19th International Conference on Scientific and Statistical
Database Management, SSBDM 2007 (2007)

10. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
11. Reuters Ltd., Reuters-21578, Distribution 1.0 (2004). http://www.daviddlewis.

com/resources/testcollections/reuters21578
12. Samarati, P.: Protecting respondents identities in microdata release. IEEE Trans.

Knowl. Data Eng. 13(6), 1010–1027 (2001)
13. Stokes, K., Torra, V.: Multiple releases of k-anonymous data sets and k-anonymous

relational databases. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 20(06), 839–
853 (2012)

14. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzzi-
ness Knowl.-Based Syst. 10(5), 557–570 (2002)

15. Truta, T.M., Campan, A.: K-anonymization incremental maintenance and opti-
mization techniques. In: Proceedings of the ACM Symposium on Applied Com-
puting, pp. 380–387 (2007)

16. Xiao, X., Tao, Y.: M-invariance: towards privacy preserving re-publication of
dynamic datasets. In: Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, pp. 689–700 (2007)

17. Zakerzadeh, H., Osborn, S.L.: FAANST: fast anonymizing algorithm for numerical
streaming DaTa. In: Garcia-Alfaro, J., Navarro-Arribas, G., Cavalli, A., Leneutre,
J. (eds.) DPM 2010 and SETOP 2010. LNCS, vol. 6514, pp. 36–50. Springer,
Heidelberg (2011)

http://www.daviddlewis.com/resources/testcollections/reuters21578
http://www.daviddlewis.com/resources/testcollections/reuters21578

Are On-Line Personae Really Unlinkable?

Meilof Veeningen1(B), Antonio Piepoli1,2, and Nicola Zannone1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
m.veeningen@tue.nl

2 Politecnico di Bari, Bari, Italy

Abstract. More and more personal information is available digitally,
both collected by organisations and published by individuals. People may
attempt to protect their privacy by avoiding to provide uniquely identify-
ing information and by providing different information in different places;
however, in many cases, such profiles can still be de-anonymised. Tech-
niques from the record linkage literature can be used for pairwise linking
of databases, and for cross-correlation based on these pairwise results.
However, the privacy implications of these techniques in the on-line set-
ting are not clear: existing experiments depend on quasi-identifiers and
do not focus on cross-correlation. This paper studies the problem of de-
anonymisation and, in particular, cross-correlation of multiple databases
using only non-identifying information in an on-line setting.

1 Introduction

As more and more personal information is available digitally, privacy risks are
becoming a major concern. On the one hand, enterprises and government agen-
cies gather personal information to provide personalized services; on the other
hand, individuals share more and more information about themselves using social
networking. To protect their privacy, individuals often create multiple digital
representations of themselves. They may use different nicknames and provide
different identity attributes to different organisations, or even provide different
values for the same attribute. We call one such representation of an identity a
persona. Intuitively, a persona consists of a set of attributes characterizing a par-
ticular “view” on the individual. Therefore, knowing a persona of an individual
only provides a partial knowledge on that individual.

People’s on-line behaviour suggests a belief that using different personae
prevents linking and hence protects their privacy; however, in reality, personae
can be linked using various techniques [13]. In particular, the pairwise link-
ing problem, i.e., deciding whether or not two given personae are about the
same individual, has attracted attention ever since the seminal paper of Fellegi
and Sunter [12]; see [16] for a recent survey. Multiple personae can be grouped
together based on pairwise decisions using domain-dependent [3,21,24,28] or
domain-independent [4,7] algorithms. Recently, also promising results have been
reached using more fundamental statistical techniques [27].

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 369–379, 2014.
DOI: 10.1007/978-3-642-54568-9 24, c© Springer-Verlag Berlin Heidelberg 2014

370 M. Veeningen et al.

On the other hand, the privacy community has focused on preventing such
linking. As a first step, identifying information should not be not shared, or
only shared using communication protocols that employ appropriate crypto-
graphic primitives [29]; the fact that links remain hidden can then be shown
using formal techniques (e.g., [5,10,30]). However, as argued above, also non-
identifying information can cause privacy leakage: this can be assessed using sta-
tistical frameworks like differential privacy [11], k-anonymity [9], α-diversity [18],
t-closeness [17] and (χ, φ)-anonymisation [2].

Recent works study the privacy implications of techniques for linking in
the on-line social networking setting [14,22,23]. One particular example is the
dataset used by Netflix to improve its recommendation system: although the
dataset was anonymised, it has been de-anonymised using a statistical approach
[22]. More general works try to recover on-line identities from people search
engines [14] or social networking sites [23]. However, these works essentially rely
on quasi-identifiers (rare movies in [22]; names in [14,23]), and do not consider
clustering of information of several sources into one user profile. Koot [15] exper-
imentally assesses privacy leakage by estimating how many people share a given
set of attributes; however, this does not directly give insight into what links can
actually be recovered when such a set of attributes is available.

In this paper, we investigate to what extent multiple personae of an individual
can be linked together using limited information. In particular, we show how to
reconstruct an individual’s identity from personae at different service providers
(e.g., social networks) that do not share any identifiable information (e.g., email
address). We apply existing pairwise linking techniques, and use their output to
cluster different personae using graph-based techniques. To obtain insight into
the difficulty of the linking problem, and to study the robustness of our approach,
we perform a number of experiments.

2 An Illustrative Case Study

To illustrate the privacy implications of sharing personal information on-line, we
consider a scenario consisting of four service providers, namely a music commu-
nity site, a movie community site, and two social networks that resemble Last.fm,
IMDb, Facebook and LinkedIn, respectively. Each service provider stores certain
information about the user (see Fig. 1): e.g., Last.fm stores users’ nickname,
country, gender, and favourite band; IMDb stores nickname, first name, country
of origin, age, and favourite film.

Reconstructing identities from such databases is challenging for several rea-
sons. Clearly, the amount of overlapping attributes between Last.fm and IMDb
(i.e., nickname and country) is not sufficient to reliably determine whether per-
sonae from Last.fm and IMDb belong to the same individuals; similarly for other
providers. In addition, users can provide different values for the same attribute:
e.g., a user may specify a favourite movie on Facebook and another on IMDb, or
use different nicknames at different providers. Also, the information in the data-
bases may contains typos, which makes it difficult to correlate entries stored in

Are On-Line Personae Really Unlinkable? 371

Fig. 1. User personae stored at different service providers. M/F denotes gender; #L
denotes number of languages spoken. Italic attributes do not occur in the low-quality
scenario.

different databases. Finally, the number of personae that each user has is not
known a priori: in our cases, a user can have accounts at any combination of
one, two, three, or four of the above service providers.

Given these challenges, one may think that the availability of different per-
sonae with partially overlapping attributes does not pose a privacy threat. In
this paper, we analyse if this is true by performing experiments to cross correlate
non-identifiable information.

3 Approach

To evaluate the feasibility of building profiles of individuals by linking different
personae, we present a general approach based on well-known techniques from
the literature. We assume that the personae are stored in a number of databases
at different service providers. Databases have different, but not mutually disjoint,
sets of attributes.

The approach consists of two separate phases (Fig. 2): the linking phase and
the clustering phase. The objective of the linking phase is to determine the profile

Fig. 2. Our approach for building individuals’ identities by linking their personae.

372 M. Veeningen et al.

graph for a set of personae, assessing the pairwise probability that two personae
refer to the same person. In the clustering phase, the profile graph is partitioned
into identities (i.e., sets of personae belonging to the same individual). We now
discuss both phases in detail.

3.1 Linking Phase

The linking phases assesses the pairwise probability that two personae refer to
the same individual. For this, we use the values of the attributes shared by
both personae. Because the number and type of attributes shared depends on
which database the two personae are stored in, this phase is executed for each
pair of databases separately. We adapt standard probabilistic record linkage
techniques [12] for the linking phase. The idea of probabilistic record linkage
is to compare the values of all overlapping attributes of a record pair: similar
values increase the link probability, different values decrease it. From now on,
we assume two databases with a non-empty set of overlapping attributes.

Pairwise similarity between attribute values is determined using “similarity
scores” between 0 and 1. For instance, the similarity score of surnames “Smith”
and “Snith” should be close to 1, but the similarity score of surnames “Smith”
and “Jones” should be close to 0. The similarity score should be chosen depend-
ing on the type of attribute, e.g., exact match for attributes with finitely many
values (i.e., score 1 if two attribute values match, and 0 otherwise), or Jaro-
Winkler distance [31] for textual attributes.

Given these similarity scores, probabilistic record linkage can be seen as a
classification problem from machine learning. Classification is the task to deter-
mine, given a training set of observations and the class they belong to, a decision
procedure that assigns classes to new observations. An algorithm that solves the
classification problem is called a classifier. Typically, it first performs a “training
stage” in which it determines internal parameters based on the training set; and
then a “classifier stage” in which it uses the obtained parameters to classify new
observations. In our case, observations are the similarity scores for record pairs;
the classes are “match” and “non-match”.

Thus, we determine the pairwise linking probabilities using a classifier as
follows (steps (1)–(4) in Fig. 2). First, given two training databases and their
known links, we generate a representative number of pairs of records and compute
their similarity scores (1). We then run the training stage of the classifier (2).
(This can be done once independently from the classification databases.) Given
two classification databases, we generate each possible pair of personae from the
two databases (3), and let the classifier compute the probability that the pair
belongs to the “match” class (4).

3.2 Clustering Phase

In the clustering phase, the profile graph is partitioned into clusters representing
profiles of personae about the same individual. We use two different clustering
algorithms. In general, these algorithms consist of two steps (steps (5)–(6) in

Are On-Line Personae Really Unlinkable? 373

Fig. 2): a training step (5) in which parameters are learned from the training
databases, and a clustering step (6) in which the profile graphs corresponding
to classification databases are clustered.

Our first clustering algorithm is threshold transitive closure, a very simple
algorithm against which the performance of other clustering methods can be
measured. The algorithm is parametric in threshold ptct. Given a profile graph,
the clustering step is as follows: (i) construct the undirected, unweighted graph
G containing all nodes of the profile graph, and all edges with weight ≥ ptct; (ii)
return as identity the set of personae corresponding to each connected component
of G.

Our second clustering algorithm is community detection, an algorithm that
recursively applies community detection to cluster personae into profiles. Many
graphs that model real-life phenomena (e.g., friends on social networks, citations
in academia) have a “community structure” in that they contain clusters that
have “dense” connections (i.e., with high-weight edges) between nodes inside the
cluster, and “sparse” connections between nodes from different clusters. Com-
munity detection algorithms aim to find such clusters. In particular, we use the
Louvain method [6], a heuristic algorithm aiming to optimize the modularity
score, a popular metric for community structure.

In practice, it turns out that just using the Louvain method to cluster the
profile graph does not work very well: the communities it finds are too large,
leading to poor results. Therefore, we consider a recursive variant that repeatedly
runs the Louvain method until it provides a stable result. More precisely, we
apply the Louvain method to the complete profile graph. We then recursively
apply the Louvain method to any subgraphs that it produces, until running
Louvain no longer changes the graph; the clusters found in this way are returned
as identities. As we show later, this algorithm does produce reasonable results.
For this algorithm, no parameters need to be learned in the training phase.

4 Experiments

In this section, we present experimental results obtained using our approach.
We first describe our experimental set-up and evaluation framework (Sect. 4.1);
then discuss our main findings (Sect. 4.2). Implementation details, data sets, and
source code are available [25].

4.1 Evaluation Framework

The aim of our experiments is two-fold: we both evaluate the difficulty of building
profiles based on non-identifiable information, and compare the performance of
approaches in various circumstances. In the remainder of this section, we present
the metrics used to evaluate our experimental results and the analysed scenarios.

To compare different approaches, we apply the standard statistical metrics
of precision, recall, and f-measure [19] on pairwise links. Precision specifies what
proportion of found links are real; recall specifies what proportion of real links are

374 M. Veeningen et al.

found; f-measure (the harmonic mean of precision and recall) measures overall
performance. These metrics also work for pairwise linking methods that do not
return clusters. We compare the values of the metrics after the linking phase to
the values after the clustering phase.

To assess the difficulty of building user profiles, we use the entity distribution
(ED) and entity composition (EC) measures proposed in [20]. These metrics
give more insight into how many identities can be recovered than the standard
comparison metrics presented above. The ED value for an actual identity is the
number of clusters that contain a persona belonging to the identity; we provide a
histogram of ED values of all identities. The EC value for a cluster is the number
of different identities that the personae in the cluster belong to; we provide a
histogram of EC values of all clusters.

To assess how different circumstances influence the ability to link data and
the performance of different methods, we perform several experiments. We con-
sider generated datasets corresponding to four databases, shown in Fig. 1, in
three different scenarios:

– In the baseline scenario, we consider 500 different identities, and a realistic
amount of overlap between attributes from the four databases (all attributes
in Fig. 1);

– In the large scenario, we consider 1000 different identities to see how the num-
ber of identities influences performance, while keeping the amount of overlap
the same;

– In the low-overlap scenario, we consider 500 identities, but reduce the overlap
between partial identities by using only the non-italic attributes in Fig. 1.

In each scenario, we vary the amount of personae per identity: in the dense
variant there are on average three partial identities per identity; in the sparse
variant, there are two. Furthermore, in the non-perturbed variant we assume
that data are not affected by perturbations; in the perturbed variant we allow
both spelling mistakes and altogether different attribute values. We get twelve
experiments in total; we repeat each 10 times.

4.2 Results

Building User Profiles. The ED and EC metrics capture to what extent
the profiles of individuals have been recovered. Figure 3 reports average ED and
EC for 10 runs of each experiment. The x-axis shows the number of actual
identities in a profile (for EC) or profiles for an identity (for ED). The y-axis
shows the relative frequencies with which the values occurred. Note that ED and
EC represent a trade-off: the more identities we want to fully recover (hence low
ED values), the more easily wrong personae will also be linked together (hence
high EC values). When the two different clustering methods give a different kind
of trade-off, we discuss both possibilities.

The results suggest that it is possible to recover identities with a fair amount
of accuracy. In the baseline scenario, almost 90 % of identities can be fully recov-
ered (i.e., ED = 1), with an accuracy (i.e., proportion of profiles that have EC = 1)

Are On-Line Personae Really Unlinkable? 375

Fig. 3. ED/EC results of our experiments. Left bars show community detection: blue
bar is ED, dashed bar is EC. Right bars show threshold transitive closure: orange bar
is ED, solid bar is EC. Abbreviations: bline = baseline, low-o = low-overlap, np = non-
perturbed, p = perturbed.

of over 80 % (graph [A]). At the same time, the results clearly show that both
introducing perturbation and reducing the amount of overlapping attributes
make linking more difficult. This is to be expected as both reduce the amount of
information available for linking. When perturbations are introduced, the num-
ber of fully recovered profiles decreases to 45 % (at 44 % accuracy; graph [C]).
When the amount of overlapping attributes is reduced, still 88 % of profiles can
be recovered, but accuracy drops to 69 % (graph [I]). The effect of decreasing
density is mixed: while community detection generally gives decreased recovery
at similar accuracy (hence more difficulty in linking), threshold transitive closure
in many cases gives higher accuracy at similar recovery (hence less difficulty in
linking); we discuss this later when comparing the two methods.

The worst results are found for the perturbed low-overlap case; interestingly,
they occur in the dense variant. Although denseness should make linking easier,
it also means that profiles are larger and thus harder to reconstruct. Apparently,
the second effect outweighs the first: while a 90 % recovery rate is still possible,
this gives an accuracy of 35 % in the sparse case (graph [L]), but of only 9 % in
the dense case (graph [K]).

When considering a larger dataset for our experiments, i.e., in the large
scenario, the percentage of recovered profiles drops from 80 % to 65 % with 65 %
accuracy for community detection (and 97 % with 26 % accuracy for threshold
transitive closure; graph [E]). This is probably due to the fact that the more
personae there are, the more personae of different identities may inadvertently
share similar attribute values.

Finally, even when profiles cannot be fully recovered, partial recovery of pro-
files is almost always possible. Especially in the baseline and large scenarios,

376 M. Veeningen et al.

Table 1. Average precision (“p”)/recall (“r”)/f-measure (“f”) results of our experi-
ments after linking phase (“PW”); community detection (“CD”); and threshold tran-
sitive closure (“TC”). Boldfaced f-measures indicates significantly best result(s). “Pt”
means perturbation.

Dense, no pt Sparse, no pt Dense, pt Sparse, pt

p r f p r f p r f p r f
Baseline PW 0.37 0.83 0.51 0.38 0.83 0.52 0.24 0.68 0.36 0.25 0.68 0.37

CD 0.75 0.84 0.79 0.50 0.82 0.62 0.48 0.58 0.52 0.35 0.60 0.44
TC 0.49 0.91 0.63 0.62 0.83 0.70 0.57 0.30 0.39 0.28 0.60 0.38

Large PW 0.23 0.83 0.36 0.24 0.83 0.37 0.14 0.68 0.23 0.14 0.68 0.23
CD 0.64 0.76 0.69 0.42 0.74 0.53 0.35 0.48 0.40 0.26 0.51 0.34
TC 0.52 0.50 0.51 0.91 0.42 0.57 0.20 0.32 0.24 0.41 0.25 0.31

Low overlap PW 0.26 0.67 0.38 0.26 0.67 0.37 0.14 0.43 0.21 0.14 0.44 0.21
CD 0.50 0.44 0.47 0.32 0.51 0.39 0.20 0.23 0.22 0.15 0.27 0.20
TC 0.45 0.85 0.58 0.58 0.71 0.64 0.34 0.22 0.26 0.38 0.22 0.28

identities seldom end up in more than two profiles. In the best case, 96 % of all
identities are recovered into one or two profiles (at 82 % accuracy; graph [A]);
in the worst case, we still get 58 % (and 63 % of profiles consist of at most two
identities; graph [K]). Thus, even with our general techniques, many links can
be made based on non-identifiable information.

Comparison Between Approaches. We compared the two clustering meth-
ods (community detection, CD, and threshold transitive closure, TC) both to
each other and to pairwise (PW) linking. Note that PW is not able to compile
personae into a profile; actually, pairwise decisions may be incompatible (e.g.,
profile #1 is linked to #2 and #3, but #2 and #3 are not linked). Thus, we
use precision, recall and f-measure (that are also defined in the pairwise case)
for the comparison. The averages over 10 runs of our experiments are shown in
Table 1. In each experiment, the metrics are computed after the linking phase;
and after applying community detection or transitive closure. Bold indicates the
method(s) that returns the statistically significant highest f-measure.

TC and CD have higher f-measures than PW in all experiments; almost
always significantly so. Reducing the amount of overlap or introducing pertur-
bation makes the results of pairwise matching drop considerably. However, the
effect of applying clustering after pairwise matching does not diminish: although
the TC and CD statistics also drop, the difference between TC/CD and PW
generally remains considerable. Thus, exploiting links between more than two
profiles clearly helps to increase performance.

CD generally produces better results than TC in the baseline and large sce-
narios, while TC provides better results in the low overlap scenario. Since the
baseline and large scenarios are characterized by the availability of “enough” link-
ing information, this suggests that CD is “smarter” in exploiting such informa-
tion; however, TC is more robust than CD when the amount of overlap decreases.
When TC has a higher f-measure than CD, TC usually has a higher precision
than CD (in half of the cases, it also has a higher recall). This observation can be

Are On-Line Personae Really Unlinkable? 377

explained by the very high threshold for TC (always ≥ 0.90) chosen to maximise
its f-measure.

The density/sparseness of the dataset also has an effect on the performances
of the considered approaches. Unsurprisingly, the results for PW when reducing
density are generally the same because it considers every pair independently.
More surprisingly, reducing density also hardly reduces the f-measure for TC;
for CD however, there is always such a drop. This can be explained by noting that
CD depends more on the overall structure of the graph, whereas the clustering
of a particular persona in TC is only influenced by a few other persona that it
is strongly linked with.

5 Conclusions and Future Work

In this paper, we studied the feasibility of reconstructing individuals’ identi-
ties by linking only non-identifiable information. In particular, we presented a
generic approach for building individuals’ identities from personae stored in dif-
ferent databases based on two well-known techniques: record linkage and graph
clustering. We applied the approach to several scenarios. The experiments sug-
gest that even without identifiable information, identities can be compiled with
reasonable accuracy.

Although the methods and experiments in this paper already yielded insight-
ful results, both also lead to interesting directions for future work. Possible
improvements to the method include the use of other community detection
methods; iterative approaches to resolve clusters and improve classification; and
non-supervised learning techniques. We did not focus on a computational evalu-
ation in this work; in fact, our current implementation is at least quadratic in the
number of the personae considered. Well-known blocking techniques from record
linkage [16] may be used to increase scalability. Concerning the experiments, one
important step would be to consider (much) larger and real (i.e., non-generated)
datasets, or more accurate perturbation [8]. Precision/recall trade-offs may be
studied using generalised community scores [1,26]. Privacy effects of deliberately
introducing inconsistencies in on-line profiles can be studied by looking at the
performance of perturbed versus non-perturbed data in a mixed dataset.

Acknowledgements. We thank the anonymous reviewers for their useful comments.
This work is funded by the Dutch Sentinel Mobile IDM project (#10522), and the
Dutch national program COMMIT through the THeCS project.

References

1. Arenas, A., Fernández, A., Gómez, S.: Analysis of the structure of complex net-
works at different resolution levels. New J. Phys. 10(5) (2008)

2. Baig, M.M., Li, J., Liu, J., Ding, X., Wang, H.: Data privacy against composition
attack. In: Lee, S., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.)
DASFAA 2012, Part I. LNCS, vol. 7238, pp. 320–334. Springer, Heidelberg (2012)

378 M. Veeningen et al.

3. Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data. ACM
Trans. Knowl. Discov. Data 1(1) (2007)

4. Bilenko, M., Basu, S., Sahami, M.: Adaptive product normalization: Using online
learning for record linkage in comparison shopping. In: Proceedings of the Fifth
IEEE International Conference on Data Mining, pp. 58–65. IEEE (2005)

5. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. J. Log. Algebr. Program. 75(1), 3–51 (2008)

6. Blondel, V.D., Guillaume, J.L., Lambiott, R., Lefebvre, E.: Fast unfolding of com-
munities in large networks. J. Stat. Mech.-Theory Exp. 2008(10) (2008)

7. Chaudhuri, S., Ganti, V., Motwani, R.: Robust identification of fuzzy duplicates.
In: Proceedings of the 21st International Conference on Data Engineering, pp.
865–876. IEEE (2005)

8. Christen, P., Pudjijono, A.: Accurate synthetic generation of realistic personal
information. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.)
PAKDD 2009. LNCS, vol. 5476, pp. 507–514. Springer, Heidelberg (2009)

9. Ciriani, V., de Capitani di Vimercati, S., Foresti, S., Samarati, P.: k-anonymity.
In: Yu, T., Jajodia, S. (eds.) Secure Data Management in Decentralized Systems.
Advances in Information Security, 323rd edn, p. 353. Springer, Heidelberg (2007)

10. Delaune, S., Ryan, M., Smyth, B.: Automatic verification of privacy properties in
the applied pi calculus. In: Proceedings of IFIPTM 2008: Joint iTrust and PST
Conferences on Privacy, Trust Management and Security, IFIP, vol. 263, pp. 263–
278. Springer, Heidelberg (2008)

11. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006, Part II. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg
(2006)

12. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. J. Am. Stat. Assoc. 64(328),
1183–1210 (1969)

13. Getoor, L., Machanavajjhala, A.: Entity resolution: theory, practice & open chal-
lenges. Proc. VLDB Endow. 5(12), 2018–2019 (2012)

14. Gupta, M., Wu, Y.M., Joshi, S.S., Tiwari, A., Nair, A., Ilangovan, E.: On the
linkability of complementary information from free versions of people databases.
SIGMETRICS Perform. Eval. Rev. 40(4), 96–100 (2013)

15. Koot, M.R.: Measuring and predicting anonymity. Ph.D. thesis, University of Ams-
terdam (2012)

16. Köpcke, H., Rahm, E.: Frameworks for entity matching: a comparison. Data Knowl.
Eng. 69(2), 197–210 (2010)

17. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity
and �-diversity. In: Proceedings of International Conference on Data Engineering,
pp. 106–115. IEEE (2007)

18. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: �-diversity:
privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1) (2007)

19. Menestrina, D., Whang, S.E., Garcia-Molina, H.: Evaluating entity resolution
results. Proc. VLDB Endow. 3(1–2), 208–219 (2010)

20. Michelson, M., Macskassy, S.A.: Record linkage measures in an entity centric world.
In: Proceedings of the 4th workshop on Evaluation Methods for Machine Learning
(2009)

21. Méray, N., Reitsma, J., Ravelli, A., Bonsel, G.: Probabilistic record linkage is a
valid and transparent tool to combine databases without a patient identification
number. J. Clin. Epidemiol. 60(9), 883–891 (2007)

Are On-Line Personae Really Unlinkable? 379

22. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets.
In: Proceedings of IEEE Symposium on Security and Privacy, pp. 111–125. IEEE
(2008)

23. Northern, C.T., Nelson, M.L.: An unsupervised approach to discovering and disam-
biguating social media profiles. In: Proceedings of Mining Data Semantics Work-
shop (2011)

24. Singla, P., Domingos, P.: Multi-relational record linkage. In: Proceedings of the
KDD-2004 Workshop on Multi-Relational Data Mining, pp. 31–48. ACM (2004)

25. Piepoli, A., Veeningen, M.: Implementation of identity clustering accompany-
ing paper “are on-line personae really unlinkable?” (version 1.0). http://www.
mobiman.me/downloads/

26. Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Phys.
Rev. E 74, 016110 (2006)

27. Sadinle, M., Fienberg, S.E.: A generalized fellegi-sunter framework for multiple
record linkage with application to homicide record systems. arXiv 1205.3217 (2012)

28. Sapena, E., Padró, L., Turmo, J.: A graph partitioning approach to entity disam-
biguation using uncertain information. In: Nordström, B., Ranta, A. (eds.) GoTAL
2008. LNCS (LNAI), vol. 5221, pp. 428–439. Springer, Heidelberg (2008)

29. Troncoso, C.: Design and analysis methods for privacy technologies. Ph.D. thesis,
KU Leuven (2011)

30. Veeningen, M., de Weger, B., Zannone, N.: Formal privacy analysis of communi-
cation protocols for identity management. In: Jajodia, S., Mazumdar, Ch. (eds.)
ICISS 2011. LNCS, vol. 7093, pp. 235–249. Springer, Heidelberg (2011)

31. Winkler, W.E.: String comparator metrics and enhanced decision rules in the
fellegi-sunter model of record linkage. In: Proceedings of the Section on Survey
Research, pp. 354–359 (1990)

http://www.mobiman.me/downloads/
http://www.mobiman.me/downloads/

On the Privacy of Private Browsing –
A Forensic Approach

Kiavash Satvat, Matthew Forshaw, Feng Hao(B), and Ehsan Toreini

School of Computing Science, Newcastle University, Newcastle, UK
kiavash.satvat@gmail.com,

{m.j.forshaw,feng.hao,Ehsan.Toreini}@ncl.ac.uk

Abstract. Private browsing has been a popular privacy feature built
into all mainstream browsers since 2005. However, despite its prevalent
use, the security of this feature has received little attention from the
research community. In this paper, we present an up-to-date and com-
prehensive analysis of private browsing across four most popular web
browsers: IE, Firefox, Chrome and Safari. We report that all browsers
under study suffer from a variety of vulnerabilities, many of which have
not been reported or known before. Our work highlights the complexity
of the subject and calls for more attention from the security community.

1 Introduction

In 2005, Safari first introduced private browsing, a feature that enables a user to
surf the Internet without leaving traces on her local computer, such as history,
cookies and temporary files [5]. All other mainstream browsers have since added
the feature, including Internet Explorer (IE) [4], Chrome [1] and Firefox [2].

Although the basic aim of private browsing is the same, the implementations
vary greatly across different browsers. This adds significant complexity to the
subject. So far only few researchers have attempted to investigated the subject.
In 2010, Aggarwal et. al. first initiated the security analysis of private browsing
in [5]. In particular, they defined a threat model, surveyed the main usage of
private browsing, reviewed the open source code of Firefox, and studied the
effect of Firefox extension on private browsing. In 2011, Said et al.continued the
investigation by examining the content in the volatile memory and they found
artifacts left in memory about user activities in the private session even after the
session had been closed [6]. Apart from these two publications [5,6], the subject
of the security of private browsing seems to have been mostly neglected by the
research community.

In this paper, we extend the earlier works in several aspects. First, we refine
the threat model in [5] to capture more realistic threats in practice. Second,
we carry out more extensive experiments than [5]: covering not only Firefox,
but also IE, Chrome and Safari. Third, we scrutinise artefacts left from private
browsing from all angles: not only in memory as in [6], but also in disk and
network traffic.

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 380–389, 2014.
DOI: 10.1007/978-3-642-54568-9 25, c© Springer-Verlag Berlin Heidelberg 2014

On the Privacy of Private Browsing – A Forensic Approach 381

2 Research Methodology

In this research work, we took a forensic approach to collect and analyse residual
data left on the host computer after the private browsing session. Virtualisation
was used to prevent any cross-contamination between experiments. In particu-
lar, VMware Player (a free version of VMware) was installed [10]. Windows 7
was chosen based on its popularity among the Internet users. The latest ver-
sions of the four most popular browsers (as in April, 2013 [9]) were installed:
Mozilla Firefox (19.0), Apple Safari (5.1.7), Google Chrome (25.0.1364.97) and
IE (10.0.9200.16521).

For each experiment, a fresh Windows installation with a single web browser
was used. The experiments were carried out for each browser to investigate
possible residual data left in memory or disk after private navigation. To allow
other researchers to easily replicate the experiments, we only used freely available
forensic tools. Finally, all the software tools developed during the course of this
research are released as open source (see [20]). We hope this would help browser
vendors evaluate the security of their products and improve accordingly.

3 Threat Model

Same as in [5], we categorise attackers into two types: local and remote. A local
attacker is someone who has physical access to a user’s machine. The threat
model defined in [5] restricts the local attack to “after the fact” forensics. On the
other hand, it is acknowledged in [5] that the user may have installed third-party
browser extensions before the private session. Our model about a local attacker
is essentially the same as that in [5] but with one difference: we explicitly assume
at least one of the installed third-party extensions were written by an attacker.
Instead of surveying the third-party extensions and speculating their behavior
as in [5], we write our own extensions as if from an attacker’s perspective. This
allows capturing the exact impact of extensions more directly.

For remote attacks, we assume the attacker is capable to engage with the
user in a web browsing session over HTTP(S). This typically happens when
a user navigates to a web site that is controlled by an attacker, whose goal
is to detect whether the user is in the private mode1. As compared with the
model in [5], we have excluded the threat of remote websites tracking users (e.g.,
based on IP addresses [7] or unique browser fingerprints [14]). This is because
private browsing has never been designed to prevent web tracking [1–4]. (We
refer interested readers to other privacy-preserving tools such as TOR [15] for
the prevention of web tracking.)

1 Given the often negative connotation of using the private mode for viewing adult
websites (see [5]), we consider the fact of using the private mode a privacy feature
by itself. If the remote website learns the user is in the private mode, it may push
more adult-oriented advertisement to the user.

382 K. Satvat et al.

Table 1. List of attacks and their applicability to each browser. Those marked with
* contain new results discovered by our study, while others correspond to attacks that
have been previously known but validated again by our study.

Firefox Chrome IE Safari

Domain name system
√ √ √ √

Memory inspection
√ √ √ √

File timestamp − √ − √
Index.dat * N/A N/A

√
N/A

SQLite database crash *
√ √

N/A
√

SQLite added bookmark *
√ √

N/A
√

Extension *
√ √ − √

Cross-mode Interference * N/A
√

N/A N/A
Hyperlink attack

√ √ √ √
Timing attack *

√ √ − √

Against the defined thre at model, we conducted a series of experiments to
assess the security of private browsing among the four most popular browsers:
Firefox, Chrome, IE and Safari. Table 1 summarises the attacks, and their applica-
bility to specific browsers.

4 Local Attacks

4.1 Summary of Previously Known Attacks

Domain Name System (DNS). DNS caching has long been known as a major
threat to private browsing [5]. This vulnerability is caused due to the operating
system caching all DNS queries sent by a web browser. We confirm that this
vulnerability still persists in all browsers three years after it was reported in [5].
Third-party extensions have been developed to address this issue [11,12], but
none of them has been adopted by browser vendors.

Memory Inspection. In 2011, Said et al. reported that artifacts from a private
browsing session were found in the main memory after the end of the session
[6]. We have verified that the same vulnerability still exists in the latest versions
of all fours browsers. After navigating a few websites in the private mode and
closing the session, we inspected the content in RAM and discovered traces of
private navigation, including visited URLs, password and cookies.

File Timestamp. In [5], the authors compared the “last modified date” of files
in the Firefox profile directory before and after private browsing. They found the
timestamps had been changed while file sizes remained the same, which allows
deducing the occurrence of a private session in the past. Our experiments show
the vulnerability has been fixed in the latest version of Firefox (and also IE),
but it still exists in Chrome and Safari.

On the Privacy of Private Browsing – A Forensic Approach 383

4.2 Index.dat

The Index.dat files are binary format log files used by IE to store the user’s
browsing history, cookies, temporary files, etc. We analyse these files in order to
evaluate the correlation between IE’s InPrivate mode and Index.dat files. After
the navigation of the targeted websites in the private mode, we scrutinise residual
traces left in the files. Unlike in some earlier versions of IE, the latest version
has successfully removed the traces of visited websites in the private mode.

However, we found that adding bookmarks in the IE private mode could lead
to information leakage. Bookmarks added during a private session were stored
as standalone files with corresponding creation timestamps. On the other hand,
there is no matching URL for the added bookmark in Histoy.IE5\index.dat.
A comparison between these files could allow an attacker to deduce that the
bookmark was added in the private mode and when. False positives may occur
if the user added a bookmark in the usual mode without visiting the page (e.g.,
right-click over a hyperlink to add it to the bookmarks). However, the false
negatives are always zero.

4.3 SQLite Database

SQLite databases are used by Firefox, Chrome and Safari to store historical
records of browsing activities [13]. We study the correlation between private
browsing and the underlying SQLite database and reveal two vulnerabilities:
one related to the application crash, and the other related to adding bookmarks.

Application Crash. There are many reasons why a browser program may
terminate in an unexpected way, e.g., sudden power loss or system crash. The
critical question is that: if the program terminates in an unexpected way, will it
leave unexpected evidence on disk?

In Firefox, the SQLite database uses the Write Ahead Logging (WAL) mode
to implement database transactions such as atomic commit and rollback. In the
event of application crash, database connections are not closed cleanly and the
WAL files will remain on disk until the browser is restarted. We observed that
the WAL files left from the private mode always had the zero size (since there
were not database updates), while the WAL files left from the usual mode had
non-zero size. Hence, based on the size of a WAL file and its timestamp, an
attacker will be able to deduce that a private session occurred at a specific time.

Chrome implements the SQLite database transactions using Journal files
instead of the WAL files. To speed up the loading, the browser uses two SQLite
databases to store the history records; a primary “History” database and
monthly digests in the form of “History Index YYYY-MM”. In the usual mode,
the browser uses a journal file for each database. However, in the private mode,
it just uses one journal file for the “History” database only. All journal files
will remain on disk in the event of application crash or power loss. Based on
the existence of only one journal file, an attacker can deduce that a private ses-
sion occurred and the timestamp of the file reveals when. Similar to Firefox,
restarting the browser in the usual mode will remove the evidence.

384 K. Satvat et al.

The case of Safari is more serious. Unlike Firefox and Chrome that only use
in-memory SQLite database for private browsing, Safari first writes records of
the visited websites to the database file and then removes them after the browser
is closed normally. We found that if the browser was closed in an abnormal way
(e.g., manual termination), the records of visited websites in the private mode
would remain in the database. The residual data persists on disk even after the
browser is restarted, which poses a serious threat to the user’s privacy. As a
countermeasure, we recommend Safari to adopt in-memory SQLite updates, like
Chrome and Firefox.

Adding Bookmarks. In Firefox, after visiting targeted websites and adding a
bookmark in the private mode, we examine the places.sqlite SQLite database,
which contains records of all visited URLs and added bookmarks. Our investi-
gation revealed that a bookmark added during the private mode was recorded
with empty “title” and “last visit date” fields, disclosing that the bookmark was
added during the private mode at a specific time. It is worse than the earlier IE
case, since the evidence is definite: i.e., zero false positive and zero false negative.
The case of Chrome is similar. The URL for bookmarks added in the private
mode could be found in the “history” SQLite database. Unlike a bookmark
recorded in the usual mode, the “visit count” field was always set to 0 and the
“hidden” field set to 1.

The case of Safari is the most problematic. Under the normal operation,
Safari removes the browsing history in the private mode when the program is
closed. However, we found that as long as the user added one bookmark during
the private navigation, all the websites that were visited during the private
session would remain in the SQLite database. (A bug report on this issue has
been filed to Apple.)

4.4 Extensions

Chrome Extension. We developed a Chrome extension (the source code in
[20]) that, once enabled in the private mode, was able to record detailed user
activities for the duration of a private browsing session. This includes when
the tabs were opened and closed, which web pages were visited and at which
time, how the user moved between tabs and windows, etc. In the latest ver-
sion of Chrome, extensions are disabled in the private mode by default. This
“disable-by-default” policy significantly alleviates the threat. However, the fact
that Chrome allows the private and usual modes to run in parallel renders this
policy ineffective, as we will explain in Sect. 4.5.

Internet Explorer Extension. We developed an IE extension [20] to obtain
the URL and the content of the HTML pages based on using the Browser Helper
Object (BHO) class. Like Chrome, IE disables extensions in the private mode
by default. However, even after we manually enabled extensions in the private
mode, we found the extension had only restricted privilege: in particular, it could
no longer invoke the BHO class. Hence, our attack did not work on IE.

On the Privacy of Private Browsing – A Forensic Approach 385

Safari and Firefox Extensions. We developed similar extensions for Safari
and Firefox [20], which were able to record details of the user’s activities within
a private session [20]. In both Safari and Firefox, extensions are enabled by
default in the private mode. Hence, they are vulnerable to extension attacks.
The countermeasure we recommend is to disable extensions by default in the
private mode, just like in IE and Chrome.

4.5 Cross-Mode Interference

While extensions in Chrome are disabled by default in the private mode, Chrome
allows the usual and private modes to run in parallel, providing the attacker an
opportunity to exploit cross-mode interference.

The attack was motivated by the following observation: the Chrome://memory
page displays all the opened tabs in the browser regardless if they are in the usual
or private mode. Accordingly, we developed an extension [20] using the standard
Chrome extension APIs [18].

The attack works as follows. In the usual mode, the extension is enabled
by default and it is able to invoke standard APIs to list all tabs, each having
a unique ID. If the tab is in the usual mode, the extension can obtain further
details about the tab, such as the page title and URL. However, if the tab is in
the private mode, no response will be given. This lack of response provides an
indication that the queried tab is in the private mode. By periodically polling
the tabs, the extension can detect the existence of a private browsing session,
the number of active tabs opened in the private mode, and when those tabs are
opened and closed.

Chrome also provides experimental APIs (which are enabled in chrome:
//flags) to further enforce the extension’s functionality [19]. In particular, it
provides the following additional information about each tab: the CPU con-
sumption, network bandwidth and Frames Per Section (FPS). This information
is obtainable even for tabs in the private mode.

The extra information allows the attacker to draw an even more fine-grained
profile about the user activities within a private session. Figure 1 shows how the
user’s activities are correlated with the CPU consumption and network band-
width usage. Loading new pages increases the CPU and bandwidth usage at the
same time while scrolling pages only affects the CPU consumption. When one
is watching an HTML5 video, there is a substantial increase of both the CPU
usage and network bandwidth. As a countermeasure, we recommend the browser
should always be run in a single mode. This applies to all other browsers.

5 Remote Attacks

5.1 Hyperlink Attack

A conventional technique adopted by all browsers to distinguish visited links
from unvisited ones is by changing colour, hence improving the user’s browsing

386 K. Satvat et al.

0 50 100 150 200 250
0

50

100

Time (seconds)

C
P

U
 C

on
su

m
pt

io
n

(%
)

0 50 100 150 200 250
0

500

1000

N
et

w
or

k
B

an
dw

id
th

 (
K

B
/s

)

CPU Consumption (%)
Network Bandwidth (KB/s)

Loading new page

User scrolling

Start of
video playback End of

video playback

Fig. 1. Profiling the user activities in the private mode

experience [8]. However, there are noticeable deviations for the same mechanism
to work in the private mode. As we have tested, all browsers started a new
private session with all hyperlinks displayed in blue. Furthermore, in Chrome,
Firefox and Safari, the hyperlink never changes colour even after the user has
clicked the link or visited the URL. (One might argue that this has the benefit of
making it more difficult for the remote website to track the visited pages than in
the usual mode since the color of the hyperlink does not change much; however,
it is worth noting that defence against web tracking is not within the threat
model of private browsing.)

These deviations create an exploit path for a remote attacker. Based on the
difference in the hyperlink colours, the remote attacker is able to tell a private
mode apart from a usual mode. For example, since in Chrome, Firefox and Safari,
the hyperlinks are persistently blue in the private mode, a remote website can
use JavaScript to check the colour of the hyperlinks and easily tell if the user
is currently in the private mode. This vulnerability was first reported in [5] and
we find it still exists in the latest versions of the browsers. However, the case of
IE is different from the rest browsers; the colour of the hyperlink does change
based on the user’s clicking just like in the usual mode. However, the private
mode still deviates from the usual mode in that the former always displays all
hyperlinks in blue in the beginning of the session. Hence, if the remote attacker
is able to regularly engage with the user in more than one sessions (e.g., the
remote attacker controls a news website), he can easily tell if the user is in the
private mode.

As a countermeasure, we suggest to remove deviations of how hyperlinks are
colored between the usual and private modes. The only difference should be
that the private mode does not save any information about visited links after
the session is closed.

On the Privacy of Private Browsing – A Forensic Approach 387

5.2 Timing Attack

In this section, we describe a novel timing attack, which is able to remotely
detect the private mode based on measuring the time of writing a large number
of cookies. We developed a simple PHP and MySQL application to measure the
time taken to write a predefined number of cookies, and then store these results
to a database for further analysis. The Selenium testing framework [17] was used
to automate testing for large-scale experimentation.

We collected extensive timing measurements for the usual and private modes
(100 samples per mode per browser) as training data (see Fig. 2). We then col-
lected further 100 timing measurements for each browser for each mode for
evaluation. The evaluation is based on using a standard z -test [16] (details can
be found in the full version of the paper [20]). There are two types of errors
in the evaluation. One is the False Acceptance Rate (FAR), that is the rate
of a usual session being characterised as the private mode. The other is False
Rejection Rate (FRR), that is the rate of a private session being characterised
as the usual mode. The two error rates vary according to the threshold. Hence,
in the evaluation, we used the Equal Error Rate (EER) where the FRR and
FAR curves intersect. In the ideal case, the EER should be close to 50 %: i.e.,
the chance for the attacker to detect the private/usual mode is no better than
tossing a coin. However, as shown in Table 2, with the exception of IE, a remote
attacker is able to correctly identify the browsing mode with high accuracy.

2100

2200

2300

2400

2500

2600

2700

Normal Private
Chrome (150,000 cookies)

17500

17600

17700

17800

17900

18000

18100

18200

18300

18400

Normal Private
Firefox (20,000 cookies)

2900

3000

3100

3200

3300

3400

Normal Private
Safari (20,000 cookies)

3000

3200

3400

3600

3800

4000

4200

Normal Private
Internet Explorer (50,000 cookies)

Fig. 2. Box plots representing timing data collected for browsers under test.

Table 2. Equal Error Rates for detecting the private mode

Browser Equal Error Rate (EER) (%) Threshold (t)

Google Chrome 1 0
Mozilla Firefox 9 0
Internet Explorer 63 −0.0002
Apple Safari 1 0.0055

388 K. Satvat et al.

6 Conclusion

We have revealed a range of vulnerabilities in the existing implementations of
private browsing. The problems are generally caused by the following factors:
a lack of understanding of the threat model (especially in relation to remote
attacks), a lack of appropriate control of running extension in the private mode
(and neglect of the cross-mode interference) and a lack of rigorous and systematic
test (especially in edge cases such as program crash and adding bookmarks).

References

1. Chrome Private Browsing Mode. https://support.google.com/chrome/bin/answer.
py?hl=en&answer=95464&p=cpn incognito. Accessed April 2013

2. Mozilla Firefox Private Browsing Mode. http://support.mozilla.org/en-US/kb/
private-browsing-browse-web-without-saving-info. Accessed April 2013

3. Safari Private Browsing Mode. http://support.apple.com/kb/PH5000. Accessed
April 2013

4. Internet Explorer Private Browsing Mode. http://windows.microsoft.com/en-us/
windows-vista/what-is-inprivate-browsing. Accessed April 2013

5. Aggarwal, G., Burzstein, E., Jackson, C., Boneh, D.: An analysis of private brows-
ing modes in modern browsers. In: The 19th USENIX Symphosium on Security
(2010)

6. Said, H., Mutawa, A.H., Awadhi, A.I., Guimaraes, M.: Forensic analysis of pri-
vate browsing artifacts. In: International Conference on Innovations in Information
Technology (IIT) (2011)

7. Ruiz-Mart́ınez, A.: A survey on solutions and main free tools for privacy enhancing
Web communications. J. Netw. Comput. Appl. 35(5), 1473–1492 (2012)

8. Collin, J., Bortz, A., Boneh, D., Mitchell, C.J.: Protecting browser state from
web privacy attacks. In: The 15th International Conference on World Wide Web
(WWW) (2006)

9. Most Popular Web Browsers. http://www.w3schools.com/browsers/browsers
stats.asp. Accessed April 2013

10. VMware Player Version 4.0.0. http://www.vmware.com/products/player/.
Accessed April 2013

11. Click & Clean.
https://chrome.google.com/webstore/detail/ghgabhipcejejjmhhchfonmamedcbeod?
utm source=chrome-ntp-icon. Accessed April 2013

12. Clear DNS Cache.
https://addons.mozilla.org/en-us/firefox/addon/clear-dns-cache/. Accessed April
2013

13. Jeon, S., Bang, J., Byun, K.: A recovery method of deleted record for SQLite
database. Pers. Ubiquit. Comput. 16(6), 707–715 (2011)

14. Eckersley, P.: How unique is your web browser? https://panopticlick.eff.org/
browser-uniqueness.pdf. Accessed April 2013

15. The Official Website for the TOR Project. https://www.torproject.org/. Accessed
April 2013

16. Kreyszig, E.: Introductory Mathematical Statistics. Wiley, New York (1970)
17. Selenium. http://seleniumhq.org/. Accessed April 2013

https://support.google.com/chrome/bin/answer.py?hl=en&answer=95464&p=cpn_incognito
https://support.google.com/chrome/bin/answer.py?hl=en&answer=95464&p=cpn_incognito
http://support.mozilla.org/en-US/kb/private-browsing-browse-web-without-saving-info
http://support.mozilla.org/en-US/kb/private-browsing-browse-web-without-saving-info
http://support.apple.com/kb/PH5000
http://windows.microsoft.com/en-us/windows-vista/what-is-inprivate-browsing
http://windows.microsoft.com/en-us/windows-vista/what-is-inprivate-browsing
http://www.w3schools.com/browsers/browsers_stats.asp
http://www.w3schools.com/browsers/browsers_stats.asp
http://www.vmware.com/products/player/
https://chrome.google.com/webstore/detail/ghgabhipcejejjmhhchfonmamedcbeod?utm_source=chrome-ntp-icon
https://chrome.google.com/webstore/detail/ghgabhipcejejjmhhchfonmamedcbeod?utm_source=chrome-ntp-icon
https://addons.mozilla.org/en-us/firefox/addon/clear-dns-cache/
https://panopticlick.eff.org/browser-uniqueness.pdf
https://panopticlick.eff.org/browser-uniqueness.pdf
https://www.torproject.org/
http://seleniumhq.org/

On the Privacy of Private Browsing – A Forensic Approach 389

18. Standard Chrome Extension API. http://developer.chrome.com/extensions/.
Accessed April 2013

19. Experimental Chrome Extension API. http://developer.chrome.com/extensions/
experimental.html. Accessed April 2013

20. Open-Source Software Tools Developed for the Research of Private Browsing.
http://homepages.cs.ncl.ac.uk/m.j.forshaw1/privatebrowsing/

http://developer.chrome.com/extensions/
http://developer.chrome.com/extensions/experimental.html
http://developer.chrome.com/extensions/experimental.html
http://homepages.cs.ncl.ac.uk/m.j.forshaw1/privatebrowsing/

Privacy-Preserving Trust Management
Mechanisms from Private Matching Schemes

Oriol Farràs(B), Josep Domingo-Ferrer, and Alberto Blanco-Justicia

Department of Computer Engineering and Maths, UNESCO Chair in Data Privacy,
Universitat Rovira i Virgili, Av. Päısos Catalans 26, 43007 Tarragona, CA, Spain

{oriol.farras,josep.domingo,alberto.blanco}@urv.cat

Abstract. Cryptographic primitives are essential for constructing pri-
vacy-preserving communication mechanisms. There are situations when
two parties that do not know each other need to exchange sensitive
information over the Internet. Trust management mechanisms make use
of digital credentials in order to establish trust among these strangers.
We present a method to reach an agreement on the credentials to be
exchanged in which the parties can control the disclosure of their creden-
tial preferences. Our method is based on secure two-party computation
protocols for set intersection.

Keywords: Trust management · Secure two-party computation · Set
intersection · Privacy

1 Introduction

Interactions between parties that involve exchanging sensitive information are
part of everyday life. Taking a medical test, paying with a credit card or asking
for directions are examples of such interactions. In all of these cases an individual
or organization C reveals some information to another individual or organiza-
tion S so that S can provide a service to C. Clearly, an exchange of personal
information is more likely to take place if there is trust between the interacting
parties. For instance, people agree on revealing medical data to a doctor in a
medical center, but not to anyone or anywhere. These interactions are easy to
carry out face to face and in a specific context, but they are challenging if per-
formed over the Internet, where personal identification is not obvious and the
physical context is simply not there.

This work was partly supported by the Government of Catalonia under grant 2009
SGR 1135, by the Spanish Government through projects TIN2011-27076-C03-01
“CO-PRIVACY” and CONSOLIDER INGENIO 2010 CSD2007-00004 “ARES”, and
by the European Comission under FP7 project ‘Inter-Trust”. The second author
is partially supported as an ICREA Acadèmia researcher by the Government of
Catalonia; he is with the UNESCO Chair in Data Privacy, but he is solely responsible
for the views expressed in this paper, which do not necessarily reflect the position
of UNESCO nor commit that organization.

J. Garcia-Alfaro et al. (Eds.): DPM 2013 and SETOP 2013, LNCS 8247, pp. 390–398, 2014.
DOI: 10.1007/978-3-642-54568-9 26, c© Springer-Verlag Berlin Heidelberg 2014

Privacy-Preserving Trust Management Mechanisms 391

A first approach is securing the communication using cryptographic pro-
tocols. Using these techniques in combination with public key infrastructures
provides users interacting with remote parties with the certainty that they are
communicating with the real service provider. Furthermore, encrypting commu-
nication prevents third parties from eavesdropping on the transmitted contents.
This has been the basis of secure digital communications and e-commerce, but
recent reports show that authentication is not always enough for users to trust
service providers [17,23].

The special Eurobarometer on data protection and electronic identity [23]
shows that the majority of Europeans are concerned about their behavior being
recorded via payment cards, mobile phones or mobile Internet. Moreover, 43 %
of the respondents claim they have been asked more personal information than
necessary in order to access online services.

Therefore, there is a need to design new access control systems in which not
only the identity of the parties is revealed and assured, but trust is built through
the exchange of valid credentials that contain attributes of the parties. Trust
management mechanisms make use of digital credentials in order to establish
trust between strangers. Trust negotiation schemes are protocols for establishing
trust between parties unknown to each other through the exchange of credentials
and personal information; in such negotiation protocols, the disclosure of this
information is performed according to access control policies determined by the
parties.

Trust management is a building block of many industry-led frameworks. One
example is the Interoperable Trust Assurance Infrastructure (Inter-Trust, [12]), a
project that seeks to develop a framework to support trustworthy applications in
heterogeneous networks and devices, based on the enforcement of interoperable
and changing security policies [2]. Trust negotiation (Fig. 1) is essential in Inter-
Trust to reach agreements on the security policies, the so-called Service Level
Agreements (SLAs). Inter-Trust will incorporate trustworthiness by integrating
legal, social and economic concerns, thereby allowing applications and devices
to negotiate and be constrained by such concerns.

A critical issue in trust management is to preserve the privacy of the users.
During the trust establishment process, the parties can try to learn information
about each other. On the one hand, the service requesters can try to obtain
information about the preferences of the service providers: if the requesters indi-
cate their wish to use specific options, the server is forced to show the different
acceptable options. Since the revealed options may reflect the business model and
the target customers considered by the provider, service providers are reluctant
to show full descriptions of their access policies. On the other hand, requesters
do not want to provide information on the credentials they own unless those
credentials are essential for the transaction.

In summary, service providers are reluctant to show their access policies,
and clients want to disclose as little private information as possible. Therefore,
during the trust establishment process no party should learn any information
about the access policies or preferences of the other parties beyond what is

392 O. Farràs et al.

Negotiation
module

Resource
classification

Negotiation
policies

Policy
evaluation

Access
policies

Exception
treatment
module

Exception
treatment
policies

Negotiation
module

Resource
classification

Negotiation
policies

Policy
evaluation

Access
policies

Exception
treatment
module

Exception
treatment
policies

Service requester Service provider

request

negotiation

answer

Fig. 1. Negotiation module of Inter-Trust

strictly required for trust establishment. Solutions based on trust negotiation
mechanisms [7,10,14–16,20,24,26] control the disclosure of user preferences by
showing the access control policies in a sequential way. However, trust negotiation
mechanisms are oriented to controlling credential disclosure, but the users may
obtain information on the access control policies by playing with the system.
Trust management mechanisms based on secure multiparty computation [18,21,
28] provide higher privacy protection.

1.1 Our Results

We address the problem of constructing a privacy-preserving mechanism for
choosing the credentials to be exchanged. Moreover, we consider that privacy
preservation should be achieved as effortlessly as possible. Therefore, our goal
is to come up with an efficient and privacy-preserving mechanism to determine
the optimal set of informations to be disclosed, according to the preferences
of the two parties. We present a method that is based on secure two-party
computation protocols for set intersection. Specifically, it is constructed from
the private matching schemes in [9].

In our proposal, the client sends a list of options to the server in a private
way. Each option is a combination of credentials the client would agree to show.
The server has a correspondence list that, for each accepted combination of client
credentials, specifies the credentials the server would show. Using secure multi-
party computation techniques, client and server compute the matching options.
Then the server sends to the client the options that match the client’s prefer-
ences. In this way, the server does not learn the preferences of the client, and
the client only learns the specific access policies that match her selected options.

Privacy-Preserving Trust Management Mechanisms 393

Using the Paillier homomorphic cryptosystem [22], the total number of expo-
nentiations needed is O(s + t ln ln s), where s and t are the number of options
specified by the client and the server, respectively.

The rest of this paper is organized as follows. In Sect. 2 we present an intro-
duction to trust management. Section 3 is devoted to private matching schemes.
We present our results in Sect. 4. Section 5 lists conclusions and open problems.

2 Trust Management

Remote communications over the Internet often require the interacting parties
to trust each other, especially when the communication involves the exchange of
private, confidential, or sensitive information. Traditional approaches to establish
trust assume that the parties are known to each other before the communication
takes place. Organizations often sign a SLA and collaboration contracts before
engaging in the exchange of services and information. This approach is not always
possible, because the assumption that the parties are known to each other is
not always true, especially in open environments such as the Internet and the
Web [26].

Secure Sockets Layer (SSL) and its successor Transport Layer Security (TLS)
are cryptographic protocols that provide trust and security to communications
over the Internet. These protocols begin with a negotiation or handshake phase
in which the two parties (normally a client and a server) agree on an encryption
algorithm and a shared key to encrypt the communication. Also, during this
phase the two parties exchange digital certificates in order to authenticate each
other. Even though the use of TLS is widespread, users do not fully trust Internet
service providers, as discussed in the previous section. Therefore, there is a need
to improve existing strategies and/or devise new methods for establishing trust.

More recent approaches to establishing trust are the Automatic Trust Nego-
tiation (ATN) protocols. ATN is based on the exchange of digitally signed cre-
dentials to establish trust and make access control decisions. Digital credentials
are an extension of traditional electronic certificates that only prove the identity
of a user. Credentials can include additional attributes, and hence they can cer-
tify more properties of that user, such as age, permission to perform a certain
activity, membership to a certain organization, etc. In the full version of this
paper [8] we provide an introduction to cryptographic credentials, access control
policies, negotiation techniques, and secure multiparty computation.

3 Private Set Intersection

Secure multiparty computation allows a set of parties to compute a joint function
of their inputs in a secure way without requiring a trusted third party. During
the execution of the protocol the parties do not learn anything about each other’s
input except what is implied by the output itself.

There are two main adversarial models: honest-but-curious and malicious. In
the former model, the players follow the protocol instructions but try to obtain

394 O. Farràs et al.

information about other players’ inputs from the messages they receive. In the
latter model, the adversary may deviate from the protocol in an arbitrary way.
Aumann and Lindell [1] introduced a new model, the covert adversary model. A
covert adversary may deviate from the protocol in an attempt to cheat, but such
deviations are detected by honest parties. In this context, the parties may be
considered rational, that is, acting according to their interests. In game-theoretic
terms, it is assumed that players only try to maximize their utility functions;
hence, all possible deviations from the correct protocol execution have this goal.

The intersection of two sets can be obtained by using the generic construc-
tions based on Yao’s garbled circuit [27]. This technique is very generic, because
it allows computing any arithmetic function, but for most of the functions it is
inefficient. Many of the recent works on two-party computation are focused on
improving the efficiency of these protocols for particular families of functions.
Freedman, Nissim, and Pinkas [9] presented a more efficient method to com-
pute the set intersection that was called private matching scheme. The idea of
Freedman, Nissim, and Pinkas [9] was used in many other works to improve the
computation of set operations. Kissner and Song [13] presented secure multiparty
computation protocols for computing set intersection, multi-set intersection and
other combinatorial operations. They presented constructions for honest-but-
curious adversaries and malicious adversaries. Hazay and Lindell [11] presented
a construction that is secure in the covert model. There are also other interesting
constructions, such as [4,19].

4 A Privacy-Preserving Trust Management Scheme

In this section we present a new mechanism for privacy-preserving trust man-
agement. We consider the following situation. A client C wants to buy a service
from a server S. S needs some personal and financial information about C to
perform the transaction. However, C is reluctant to show private information to
S, because C is not sure that S is trustworthy.

The mechanism we construct is a protocol based on the private matching
scheme of Freedman, Nissim, and Pinkas [9]. Our protocol is secure in the honest-
but-curious model.

Our proposal allows parties C and S to agree on the information they have to
exchange to perform the transaction in a private way. Broadly speaking, C first
sends an encrypted message to S that declares which credentials and personal
information she would be inclined to reveal to S. S cannot read the message,
but he can create an encrypted message containing the options declared by C in
which he agrees, and the information S would reveal in each case. The interest
of our protocol lies in the protection of the preferences of each party. That is, S
does not learn the preferences of C, and C only learns the specific access policies
that match her selected options.

Let EC and ES be the domains of credentials and personal data of C and S,
respectively. Define DC = P(EC) and DS = P(ES), where, for any set A, P(A)
is the power set of A.

Privacy-Preserving Trust Management Mechanisms 395

First C defines different combinations of elements from EC that she would
be ready to show to S. Let X = {a1, . . . , as} ≈ DC be the set of such options.
Independently, S defines Y = {(b1, c1), . . . , (bt, ct)} ≈ DC × DS , the acceptable
combinations (bi, ci) → DC × DS according to his preferences. That is, for every
acceptable combination of elements bi from DC , S would show ci → DS . Observe
that (bi, ci) ∞= (bj , cj) for every 1 ≡ i < j ≡ s, but bi and bj (or ci and cj) may
be equal.

Our scheme can be constructed by means of the Paillier cryptosystem [22]. It
exploits its homomorphic property whereby, given three elements m1,m2,m3, it
is possible to compute efficiently Enc(m1+m2) and Enc(m1 ·m3) from Enc(m1),
Enc(m2), and m3. Our protocol is as follows:

1. C computes the polynomial p(x) =
∏s

i=1(x − ai).
2. C sends Enc(p0), . . . , Enc(ps) to S, where pi is the coefficient of degree

i of p.
3. For every 1 ≡ j ≡ t, S picks a random element rj → Zn and computes

Enc(rj · p(bj) + (bj ||cj)). Then S sends the ciphertexts to C.
4. C decrypts the t ciphertexts.

The result of each decryption is an element from X attached to an element of
DS or a random element.

4.1 Discussion

The parameters for the Paillier cryptosystem are n = p · q, where p and q
are large primes satisfying the properties in [22]. Then we describe X → Zn and
Y ≈ Zn×Zn. A way to encode an option in Zn is the following. First, we establish
an order among the credentials. Given an option {credi1 , credi2 , . . . , crediu} for
some i1 < i2 < . . . < iu, we consider x =

∑u
j=1 2ij . If the domain DC (or DS) is

much larger than the number of realistic options, we can use a hash function [9].
The amount of exponentiations needed is O(s · t), and it can be reduced to
O(s + t ln ln s) [9].

The protocol is secure in the honest-but-curious adversary model. Follow-
ing [9] we can create a protocol that is secure in the malicious adversary model
by means of zero-knowledge proofs. The resulting protocol is much less efficient.

We consider that the previous solution is to be deployed in the typical client-
server context, where the client is usually at a disadvantage. Hence, we offer
higher protection to the client’s privacy than to the server’s privacy. However,
there are other situations in which we need to guarantee a more equitable treat-
ment. In this case, private matchings also provide a natural solution for privacy-
preserving trust management. A solution would be a private matching in which
the inputs contain the preferred options about one’s own credentials and the
other party’s credentials. That is, X,Y ≈ DC × DS . A solution along this line
was presented in [18].

In this work we present a method for agreeing on the credentials to be
exchanged, but we do not analyze the way the credentials are exchanged and

396 O. Farràs et al.

disclosed. There are many schemes for fair exchange of information between dif-
ferent parties. Some recent proposals consider schemes that are secure in the
covert model, as for instance [3,5,6].

5 Related Work

Yao et al. [28] presented Point-Based Trust, a trust management mechanism
built from a tailored secure multiparty computation protocol. The owner of a
resource values the amount of sensitive information of each credential, and the
output of the protocol provides an acceptable combination of the credentials
that minimizes the owner’s privacy loss. A drawback of this scheme is that
this quantitative approach does not take into account the dependencies among
credentials. For instance, a credential A may be useless without a credential B,
or A and B may contain the same information.

In a privacy-reconciliation protocol [18,21], each party holds a private input
set in which the elements are ordered according to the party’s preferences. The
goal of a reconciliation protocol on these ordered sets is to find all common ele-
ments in the parties’ input sets that maximize the joint preferences of the parties.
The main drawback of these schemes is efficiency. The computation of the best
option is, in general, a hard problem and so the protocols are less efficient than
the scheme presented here. Moreover, adding privacy protection to reconciliation
protocols can increase their running time by two orders of magnitude [18,25].

6 Conclusions

In this paper we have presented a privacy-preserving mechanism for trust man-
agement. This work is restricted to the two-party case. Given the preferences
of each party on credential disclosure, our method provides a proposal on the
credentials to be exchanged that is consistent with the parties’ preferences. The
privacy of the parties is preserved because their preferences are protected by a
secure two-party computation protocol for set intersection that is secure in the
honest-but-curious model.

Future work might consider the combination of this trust management method
with fair exchange mechanisms and the integration of these building blocks into
more general frameworks. Moreover, it would be interesting to extend this con-
struction to the covert adversarial model.

References

1. Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for
realistic adversaries. J. Cryptology 23(2), 281–343 (2010)

2. Autrel, F., Cuppens, F., Cuppens-Boulahia, N., Coma, C.: MotOrBAC 2: a security
policy tool. In: Third Joint Conference on Security in Networks Architectures and
Security of Information Systems (SARSSI), pp. 273–287 (2008)

Privacy-Preserving Trust Management Mechanisms 397

3. Buttyán, L., Hubaux, J.-P.: Rational exchange - a formal model based on game
theory. In: Fiege, L., Mühl, G., Wilhelm, U.G. (eds.) WELCOM 2001. LNCS, vol.
2232, pp. 114–126. Springer, Heidelberg (2001)

4. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private
set intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D.
(eds.) ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009)

5. Domingo-Ferrer, J.: Rational privacy disclosure in social networks. In: Torra, V.,
Narukawa, Y., Daumas, M. (eds.) MDAI 2010. LNCS, vol. 6408, pp. 255–265.
Springer, Heidelberg (2010)

6. Domingo-Ferrer, J.: Coprivacy: an introduction to the theory and applications
of co-operative privacy. SORT-Statistics and Operations Research Transactions,
special issue, pp. 25–40 (2011)

7. Dong, C., Dulay, N.: Privacy preserving trust negotiation for pervasive healthcare.
In: Pervasive Health Conference and Workshops, pp. 1–9 (2006)

8. Farràs, O., Domingo-Ferrer, J., Blanco-Justicia, A.: Privacy-preserving trust man-
agement mechanisms from private matching schemes. http://arxiv.org/abs/1308.
2435

9. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, Ch., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004)

10. Frikken, K.B., Li, J., Atallah, M.J.: Trust negotiation with hidden credentials,
hidden policies, and policy cycles. In: NDSS (2006)

11. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)

12. Interoperable Trust Assurance Infrastructure (Inter-Trust). EU Project FP7-ICT
317731, 2012–2014. http://www.inter-trust.eu

13. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

14. Lee, A.J., Winslett, M., Basney, J., Welch, V.: Traust: a trust negotiation based
authorization service. In: Stølen, K., Winsborough, W.H., Martinelli, F., Massacci,
F. (eds.) iTrust 2006. LNCS, vol. 3986, pp. 458–462. Springer, Heidelberg (2006)

15. Lee, A.J., Winslett, M., Perano, K.J.: TrustBuilder2: a reconfigurable framework
for trust negotiation. In: Bertino, E., Ferrari, E., Karabulut, Y., Li, N. (eds.)
IFIPTM 2009. IFIP AICT, vol. 300, pp. 176–195. Springer, Heidelberg (2009)

16. Li, J., Li, N., Winsborough, W.H.: Automated trust negotiation using crypto-
graphic credentials. ACM Trans. Inf. Syst. Secur. 13(1), art. no. 2 (2009)

17. MEF Global Privacy Report 2013
18. Meyer, U., Wetzel, S., Ioannidis, S.: Distributed privacy-preserving policy recon-

ciliation. In: ICC, pp. 1342–1349 (2007)
19. Miyaji, A., Rahman, M.S.: Privacy-preserving two-party rational set intersection

protocol. Informatica 36(2), 277–286 (2012)
20. Nejdl, W., Olmedilla, D., Winslett, M.: PeerTrust: automated trust negotiation for

peers on the semantic web. In: Jonker, W., Petković, M. (eds.) SDM 2004. LNCS,
vol. 3178, pp. 118–132. Springer, Heidelberg (2004)

21. Neugebauer, G., Brutschy, L., Meyer, U., Wetzel, S.: Design and implementation
of privacy-preserving reconciliation protocols. In: EDBT/ICDT Workshops, pp.
121–130 (2013)

22. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

http://arxiv.org/abs/1308.2435
http://arxiv.org/abs/1308.2435
http://www.inter-trust.eu

398 O. Farràs et al.

23. Special Eurobarometer 359: Attitudes on Data Protection and Electronic Identity
in the European Union, June 2011

24. Squicciarini, A., Bertino, E., Ferrari, E., Paci, F., Thuraisingham, B.: PP-trust-X:
a system for privacy preserving trust negotiation. ACM Trans. Inf. Syst. Secur.
10(3), art. no. 12 (2007)

25. Voris, J., Ioannidis, S., Wetzel, S., Meyer, U.: Performance evaluation of privacy-
preserving policy reconciliation protocols. In: POLICY, pp. 221–228 (2007)

26. Winsborough, W.H., Seamons, K.E., Jones, V.E.: Automated trust negotiation.
In: DISCEX, vol. 1, pp. 88–102 (2000)

27. Yao, A.C.-C.: How to generate and exchange secrets. In: FOCS, pp. 162–167 (1986)
28. Yao, D., Frikken, K.B., Atallah, M.J., Tamassia, R.: Point-based trust: define how

much privacy is worth. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol.
4307, pp. 190–209. Springer, Heidelberg (2006)

Author Index

Abril, Daniel 362
Ardoy, Pierre-Yves 162
Ayday, Erman 133

Backes, Michael 194, 213
Baquero, Carlos 51
Barni, Mauro 66
Bernaschi, Massimo 66
Blanco-Justicia, Alberto 390
Brutschy, Lucas 178

Castella-Roca, Jordi 100, 148
Cherreau, Ronan-Alexandre 235
Coan, Brian 114

Dell’amico, Matteo 235
Di Crescenzo, Giovanni 114
Dini, Gianluca 284
Domingo-Ferrer, Josep 390
Douence, Remi 235

Engel, Thomas 300
Erola, Arnau 148

Farras, Oriol 390
Ferrer-Gomila, Josep-Lluis 100
Forshaw, Matthew 380
Fysarakis, Konstantinos 333

Gerling, Sebastian 213
Goncalves, Nelson 51

Hajny, Jan 17
Hammer, Christian 213
Hao, Feng 380
Hatzivasilis, George 333
Hengartner, Urs 133
Hubaux, Jean-Pierre 133

Ingwar, Mads Ingerslew 250

Jensen, Christian Damsgaard 250
Jerome, Quentin 300
Jose, Rui 51

Kammüller, Florian 83
Kogure, Jun 34
Koshiba, Takeshi 34

Lalanne, Vincent 162
Lazzeretti, Riccardo 66

Maffei, Matteo 213
Malina, Lukas 17
Manifavas, Charalampos 333
Marchal, Samuel 300
Martinasek, Zdenek 17
Martinelli, Fabio 268, 284
Matteucci, Ilaria 284
Meiser, Sebastian 194
Meyer, Ulrike 178
Molyneaux, Adam 133
Munier, Manuel 162
Murdoch, Steven J. 3
Mut-Puigserver, Macia 100

Navarro-Arribas, Guillermo 362
Neugebauer, Georg 178

Oehler, Michael 353

Payeras-Capella, M. Magdalena 100
Phatak, Dhananjay S. 353
Piepoli, Antonio 369
Pignata, Tommaso 66
Preibusch, Soren 83

Raisaro, Jean Louis 133
Rantos, Konstantinos 333
Ricarde, Magali 162
Roudier, Yves 235
Royer, Jean-Claude 235

Sabellico, Alessandro 66
Santana De Oliveira, Anderson 235, 316
Saracino, Andrea 268, 284
Satvat, Kiavash 380
Scholte, Theodoor 316
Schultz, John 114
Serme, Gabriel 316
Sgandurra, Daniele 268, 284
Shimoyama, Takeshi 34
State, Radu 300
Styp-Rekowsky, Philipp von 213
Sudholt, Mario 235

Tethal, Ondrej 17
Toreini, Ehsan 380
Torra, Vicenç 362
Tsang, Simon 114

Veeningen, Meilof 369
Vives-Guasch, Arnau 100

Wetzel, Susanne 178
Wright, Rebecca N. 114

Yasuda, Masaya 34
Yokoyama, Kazuhiro 34

Zannone, Nicola 369

400 Author Index

	Foreword from the DPM 2013 Program Chairs
	8th International Workshopon Data Privacy Management—DPM 2013
	Foreword from the SETOP 2013 Program Chairs
	6th International Workshop on Autonomousand Spontaneous Security—SETOP 2013
	Contents
	Keynote Address
	Quantifying and Measuring Anonymity
	1 Introduction
	2 Email Mixes
	2.1 Measuring Anonymity

	3 Low-Latency Anonymous Communication Systems
	4 Conclusions
	References

	Data Privacy Management
	Performance Evaluation of Primitives for Privacy-Enhancing Cryptography on Current Smart-Cards and Smart-Phones
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Cryptographic Constructions
	2.1 Classical Algorithms
	2.2 Commitment Schemes
	2.3 Proof of Knowledge of Discrete Logarithm Protocols
	2.4 Proof of Discrete Logarithm Equivalence
	2.5 Signatures and Other Derived PK Protocols

	3 Selected Devices and Benchmark Settings
	3.1 Selected Devices
	3.2 Measured Operations and Keylengths
	3.3 Benchmark Environment

	4 Benchmark Results
	4.1 Benchmarks on Smart-card Devices
	4.2 Benchmarks on Android Mobile Devices
	4.3 Results Analysis
	4.4 Performance Estimation of Selected Protocols and Schemes

	5 Conclusion
	References

	Practical Packing Method in Somewhat Homomorphic Encryption
	1 Introduction
	1.1 Our Contributions
	1.2 Comparison with the Other Packing Methods

	2 Preliminaries: Somewhat Homomorphic Encryption
	2.1 Construction
	2.2 Correctness

	3 Practical Packing Method
	3.1 Definition of Our Packing Method
	3.2 Computations Over Packed Ciphertexts

	4 Application to Privacy-Preserving Biometrics
	4.1 Background and Related Work
	4.2 Secure Protocol with Our Packing Method
	4.3 Choosing Key Parameters
	4.4 Implementation Results
	4.5 Comparison with Related Work

	References

	Collaborative and Privacy-Aware Sensing for Observing Urban Movement Patterns
	1 Introduction
	2 Related Work
	3 System Model
	4 Precedence Filter Algorithm
	4.1 Bloom Filters
	4.2 Vector Clocks
	4.3 Precedence Filters

	5 Metrics and Data Sets
	6 Evaluation
	7 Conclusion
	References

	Parallel Implementation of GC-Based MPC Protocols in the Semi-Honest Setting
	1 Introduction
	2 Preliminaries
	3 Circuit Parallelization
	3.1 Fine-Grained Parallelization
	3.2 Coarse-Grained Parallelization

	4 Analysis
	4.1 Iris Identification
	4.2 AES Encryption
	4.3 Security Analysis

	5 Conclusions
	References

	Privacy Analysis of a Hidden Friendship Protocol
	1 Introduction
	2 The Hidden Friendship Protocol
	2.1 Hidden Friendship Relations Increase Privacy Doubly
	2.2 Self-Published Lists of Friends in Decentralised Architectures
	2.3 Lists of Friends Encode Secret and Public Friendship Relations

	3 Protocol Steps
	3.1 Notation for Formal Verification
	3.2 Establishing a Hidden Friendship Relation
	3.3 Using a Hidden Friendship Relation

	4 Temporal and Epistemic Logics
	4.1 Protocol Modelling for the Epistemic Model Checker MCMAS

	5 Attacks on the Hidden Friendship Protocol
	5.1 Security Attack: Breaking the Access Control
	5.2 Privacy Attack: Breaking the Secrecy of Hidden Friendship Relations

	6 Conclusions and Perspectives for Discussion
	References

	Anonymous and Transferable Electronic Ticketing Scheme
	1 Introduction
	1.1 Contribution
	1.2 Document Organization

	2 Background
	2.1 Group Signatures Scheme
	2.2 ZKP of the Group Signatures Scheme

	3 Description of the System
	3.1 Requirements
	3.2 Details of the Protocol

	4 Security and Transferability of the System
	5 Conclusions
	References

	Privacy-Preserving Publish/Subscribe: Efficient Protocols in a Distributed Model
	1 Introduction
	2 Models and Definitions
	3 Hybrid Conditional Oblivious Transfer
	4 A Distributed Publish/Subscribe Protocol
	4.1 Informal Description
	4.2 Detailed Description
	4.3 Properties: Correctness, Privacy and Efficiency

	5 Conclusions
	References

	Privacy-Preserving Processing of Raw Genomic Data
	1 Introduction
	2 Genomic Background
	3 Overview of the Proposed Solution
	4 Threat Model
	5 Privacy-Preserving Processing of Raw Genomic Data
	5.1 Cryptographic Keys and Encryption of the Short Reads
	5.2 Proposed Protocol

	6 Evaluation
	7 Implementation and Complexity Analysis
	8 Conclusion
	References

	Using Search Results to Microaggregate Query Logs Semantically
	1 Introduction
	2 Related Work
	3 Notation and Background
	3.1 ODP Similarity Metric

	4 Our Proposal in Detail
	4.1 Semantic Interpretation
	4.2 Microaggregation Using ODP

	5 Evaluation
	5.1 Utility and Privacy

	6 Results
	7 Conclusions
	References

	Legal Issues About Metadata Data Privacy vs Information Security
	1 Introduction
	2 Motivations
	2.1 Sample Application
	2.2 BackPlanTM

	3 Metadata and Information Security
	3.1 Intelligent Document Architecture
	3.2 Service Oriented Architecture Security
	3.3 Data Privacy Concerns

	4 Metadata and Legal Issues
	4.1 Evidence of Law
	4.2 Privacy and Individual Liberties
	4.3 Digital Protection and Intellectual Creations

	5 Metadata and Socio-Economic Issues
	5.1 Data are Future's Power
	5.2 Data Location
	5.3 Towards a European CNIL
	5.4 Synthesis

	6 Conclusion
	References

	Privacy-Preserving Multi-Party Reconciliation Secure in the Malicious Model
	1 Introduction
	2 Preliminaries
	3 Novel ZK-Proofs
	4 MPROS Secure in the Malicious Model
	4.1 A Malicious Model Protocol for MPROSMR
	4.2 A Malicious Model Protocol for MPROSSR

	5 Implementation and Evaluation
	6 Conclusion
	References

	Differentially Private Smart Metering with Battery Recharging
	1 Introduction
	1.1 Our Contributions
	1.2 Further Related Work
	1.3 Outline of the Paper

	2 Preliminaries
	3 Privacy-Aware Smart Metering
	3.1 Notation
	3.2 Modeling Throughput Restrictions
	3.3 Adding Capacity Restrictions

	4 Privacy-Aware Smart Metering (Without Battery Recharging)
	4.1 Differential Privacy and Statistical Distance
	4.2 Privacy Guarantees for Throughput Restrictions
	4.3 Privacy Guarantees for Capacity Restrictions
	4.4 Obtaining an Overall Privacy Guarantee

	5 Privacy-Aware Smart Metering with Battery Recharging
	5.1 The Battery Recharging Mechanism
	5.2 Differential Privacy of the Battery Recharging Mechanism
	5.3 Interpretation

	6 Evaluation and Concrete Use Cases
	6.1 A Concrete Use Case: Hiding TV Activation

	7 Discussion
	8 Conclusions
	References

	AppGuard -- Fine-Grained Policy Enforcement for Untrusted Android Applications
	1 Introduction
	2 AppGuard
	3 Architecture
	4 Experimental Evaluation
	4.1 Robustness and Performance Evaluation
	4.2 Case Study Evaluation

	5 Further Related Work
	6 Conclusions
	References

	Autonomousand Spontaneous Security
	Reference Monitors for Security and Interoperability in OAuth 2.0
	1 Introduction
	2 The OAuth 2.0 Authorization Framework
	2.1 The Authorization Code Flow Case Study
	2.2 Interoperability, Security and Evolution Issues

	3 A Typed Framework for Policy Enforcement
	3.1 Typed Service Interactions
	3.2 Security Domains and Policies
	3.3 Monitors and Aspects

	4 Application to OAuth
	4.1 Type-Based Definition of OAuth-Conform Interactions
	4.2 Extending the OAuth Framework Using a Policy
	4.3 Harnessing Types for Aspect-Based Security

	5 Related Work
	6 Conclusion
	A Subtyping Rules and Endpoint Types Tables
	References

	Remote Biometrics for Robust Persistent Authentication
	1 Introduction
	2 Remote Biometrics
	3 Fusion of Biometric Experts
	4 Persistent Authentication
	5 Experimental Results
	6 Related Work
	7 Conclusion
	References

	Classifying Android Malware through Subgraph Mining
	1 Introduction
	2 CAMAS Framework
	2.1 Malware Subgraphs Mining
	2.2 Classifying Android Applications

	3 Preliminary Experiments
	3.1 Malicious Patterns Collection
	3.2 Subgraph Mining
	3.3 Run-Time Classification

	4 Related Work
	5 Conclusions and Future Work
	References

	Introducing Probabilities in Contract-Based Approaches for Mobile Application Security
	1 Overview
	2 Contract-Based Approaches
	2.1 Towards Security Techniques
	2.2 Security-by-Contract and Security-by-Contract-with-Trust in a Nutshell

	3 Probabilistic Security-by-Contract and Probabilistic Security-by-Contract-with-Trust
	3.1 Probabilistic Security-by-Contract Workflow
	3.2 Probabilistic Security-by-Contract-with-Trust

	4 Use Case: Android System and Applications
	4.1 Extended Manifest and Trust Evaluator
	4.2 Policy Manager, Matching and Enforcement

	5 Related Work
	6 Conclusion and Future Work
	References

	Advanced Detection Tool for PDF Threats
	1 Introduction
	2 Malicious PDF
	2.1 PDF, A Programming Language
	2.2 Challenges

	3 Tool Description and Architecture
	3.1 Feature Selection
	3.2 Model Building Block
	3.3 Detection Block

	4 Dataset Introduction
	5 Experiments
	5.1 Experimental Description
	5.2 Classifiers Details

	6 Evaluation and Use-Case
	6.1 Real-Life Use-Case
	6.2 Comparisons
	6.3 Web Service Implementation

	7 Related Work
	7.1 PDF Analysis
	7.2 Malicious PDF Detection
	7.3 Malware Analysis

	8 Conclusion
	References

	Enforcing Input Validation through Aspect Oriented Programming
	1 Introduction
	2 Input Validation Aspects
	3 Evaluation
	3.1 Penetration Testing Tools
	3.2 Analysis

	4 Related Work
	4.1 Static Analysis
	4.2 Dynamic Taint Analysis
	4.3 Client-Side Security Mechanisms
	4.4 Prevention Techniques
	4.5 Input Validation

	5 Conclusions
	References

	Lightweight Cryptography for Embedded Systems -- A Comparative Analysis
	1 Introduction
	2 Lightweight Cryptographic Mechanisms
	2.1 Symmetric Cryptography
	2.2 Asymmetric Cryptography

	3 Evaluation
	3.1 Hardware Implementations
	3.2 Software Implementations

	4 Conclusions
	References

	Short Papers
	A Simulation of Document Detection Methods and Reducing False Positives for Private Stream Searching
	1 Introduction
	2 Private Stream Search
	3 Related Work
	3.1 Document Detection by k/3 Triples

	4 New Method for Document Detection
	5 A Simulation of Document Detection Methods
	5.1 Comparing Detection Methods
	5.2 Detection Methods in Practice

	6 Closing Remarks
	References

	Dynamic Anonymous Index for Confidential Data
	1 Introduction
	2 Scenario Description
	3 k-Anonymous VSM
	3.1 Inference on Multiple Anonymizations of Dynamic Data

	4 Dynamic Microaggregation of VSM
	4.1 Simple Document Vector Insertion
	4.2 Simple Document Vector Deletion

	5 Evaluation
	6 Conclusions
	References

	Are On-Line Personae Really Unlinkable?
	1 Introduction
	2 An Illustrative Case Study
	3 Approach
	3.1 Linking Phase
	3.2 Clustering Phase

	4 Experiments
	4.1 Evaluation Framework
	4.2 Results

	5 Conclusions and Future Work
	References

	On the Privacy of Private Browsing -- A Forensic Approach
	1 Introduction
	2 Research Methodology
	3 Threat Model
	4 Local Attacks
	4.1 Summary of Previously Known Attacks
	4.2 Index.dat
	4.3 SQLite Database
	4.4 Extensions
	4.5 Cross-Mode Interference

	5 Remote Attacks
	5.1 Hyperlink Attack
	5.2 Timing Attack

	6 Conclusion
	References

	Privacy-Preserving Trust Management Mechanisms from Private Matching Schemes
	1 Introduction
	1.1 Our Results

	2 Trust Management
	3 Private Set Intersection
	4 A Privacy-Preserving Trust Management Scheme
	4.1 Discussion

	5 Related Work
	6 Conclusions
	References

	Author Index

