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Abstract
Many different parameter choice methods have been proposed for regularization
in both deterministic and stochastic settings. The performance of a particular
method in a specific setting and its comparison to other methods is sometimes
hard to predict. This chapter reviews many of the existing parameter choice
methods and evaluates and compares them in a large simulation study for spectral
cutoff and Tikhonov regularization.

The numerical tests deal with downward continuation, i.e., an exponen-
tially ill-posed problem, which is found in many geoscientific applications, in
particular those involving satellite measurements. A wide range of scenarios
for these linear inverse problems are covered with regard to both white and
colored stochastic noise. The results show some marked differences between the
methods, in particular, in their stability with respect to the noise and its type.
We conclude with a table of properties of the methods and a summary of the
simulation results, from which we identify the best methods.

1 Introduction and Inverse Problems Considered

1.1 Introduction

Inverse problems are an important part of geomathematics, especially now in
the age of satellite measurement technologies. Most applications want to use
measurements made at satellite altitude (e.g., by satellite-to-satellite tracking (SST),
satellite gravity gradiometry (SGG), magnetic field measurements) to determine a
geoscientific quantity such as the gravitational potential or the magnetic field on
the Earth’s surface. This process involves some variant of downward continuation,
which is known to be an exponentially ill-posed problem requiring regularization.
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For further details, we refer to Freeden (1999), Freeden and Michel (2004), Freeden
and Gerhards (2013), Lu and Pereverzev (2014), and the references therein.

These ill-posed problems can be expressed mathematically as a linear inverse
problem

Ax D y; (1)

where A is a linear compact operator mapping between two separable Hilbert spaces
X and Y . In practical situations, only a noisy version yı of y is available as data.
Because of the compactness of A, solving (1) for x is unstable, and one needs to
regularize the problem to obtain a reasonable approximate solution (see, e.g., Engl
et al. 1996).

The two most popular regularization methods are spectral cutoff regularization
(also called truncated singular value decomposition) and Tikhonov regularization
(also called ridge regression or Wiener filtering in certain contexts). Spectral cutoff
uses projection onto a subspace spanned by singular vectors corresponding to the
larger singular values of A, while Tikhonov regularization is a penalized variational
approach which shrinks the contribution of the smaller singular values of A. For
both regularization methods, the choice of the regularization parameter is crucial.
Many different methods for choosing this parameter have been proposed, often with
analytical justification in mind. However, this usually requires a particular setting,
and it may not be known how the method performs in all practical situations and
under general conditions.

The paper of Bauer and Lukas (2011) provides a comprehensive review of
most of the existing parameter choice methods and compares them through a large
simulation study. Other more limited comparative studies can be found in Wahba
(1985), Kohn et al. (1991), Thompson et al. (1991), Hanke and Hansen (1993),
Hansen (1994, 1998, Chap. 7), Lukas (1998b), Farquharson and Oldenburg (2004),
Abascal et al. (2008), Åkesson and Daun (2008), Rust and O’Leary (2008), Correia
et al. (2009), Hämarik and Raus (2009), Hämarik et al. (2009, 2011, 2012), Palm
(2010), and Reichel and Rodriguez (2013).

Bauer and Lukas (2011) consider synthetic inverse problems with singular values
having power-type decay. This paper is based on the survey of Bauer and Lukas
(2011), but specifically treats exponentially ill-posed problems closely related to
real applications in geomathematics. For these inverse problems, a thorough and
up-to-date comparative study of parameter choice methods for spectral cutoff and
Tikhonov regularization is provided, taking into account deterministic and stochas-
tic settings. In particular, we investigate the variability of each method both for white
noise and for colored noise. For ease of reference, we list below the subsections
for the parameter choice methods that are considered. Further methods are briefly
discussed in Sect. 4.19 where we also explain why they are left out in this paper.

4.1 Discrepancy principle
4.2 Transformed discrepancy principle
4.3 Modified Discrepancy Principle (MD rule)
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4.4 Monotone error (ME) rule
4.5 Varying discrepancy principle
4.6 Balancing principle, balancing principle (white), fast balancing principle
4.7 Hardened balancing principle, hardened balancing principle (white)
4.8 Quasi-optimality criterion
4.9 L-curve method

4.10 Extrapolated error method
4.11 Modified discrepancy partner (MDP) rule
4.12 Normalized cumulative periodogram method
4.13 Residual method
4.14 Generalized maximum likelihood
4.15 Generalized cross-validation
4.16 Robust generalized cross-validation
4.17 Strong robust GCV
4.18 Modified generalized cross-validation

We introduce the downward continuation problem in Sect. 1.2. Section 2 sum-
marizes regularization of linear inverse problems. In Sect. 3, the design of our
numerical experiments and the main algorithms used for their generation are pre-
sented in brief; we refer to Bauer and Lukas (2011) for a more detailed explanation
of those parts that are similar. All the parameter choice methods are briefly described
in Sect. 4 and their corresponding results are displayed and commented on there. A
summary and conclusions can be found in Sect. 5.

1.2 Inverse Problems Considered

Due to its compactness, the operator A of (1) admits a singular value decomposition
(SVD) f�k; uk; vkgk2N, where fukgk2N and fvkgk2N are orthonormal in X and Y ,
respectively, Auk D �kvk , A�vk D �kuk , and �k > 0 are in decreasing order.
The decay rate of the singular values �k determines the degree of ill-posedness of
the inverse problem. For the inverse problem of downward continuation, we have
X D L2.�R/, i.e., the space of square-integrable functions on the sphere �R of
radius R (radius of a spherical Earth), and Y D L2.�RCh/, i.e., the space of square-
integrable functions on the sphere of radius R C h, where h is the satellite altitude
(assuming a simplified spherical orbit). Then x stands for, e.g., the gravitational
potential on the Earth’s surface and y denotes the same potential at the satellite’s
orbit. The orthonormal systems are given in terms of spherical harmonics Ym;j of
degree m 2 N0 and order j D �m; : : : ; m which are adjusted to the corresponding
radii. Thus, uk D uk.m;j / D 1

R
Ym;j , vk D vk.m;j / D 1

RCh
Ym;j and the singular

values of the operator A W X ! Y of (1) are given by

�k D �k.m;j / D
�

R

R C h

�m

; m 2 N0; j D �m; : : : ; m: (2)
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Note that this operator is the so-called upward continuation, its (generalized)
inverse is the downward continuation. Obviously, the singular values in (2) are
exponentially decreasing, i.e., downward continuation is an exponentially ill-posed
problem. Since there are 2m C 1 spherical harmonics of degree m and the singular
values do not depend on the order j , the singular values occur with this multiplicity.
Note that we use the notation k.m; j / in (2) to indicate the renumbering, which is
given by k.m; j / D m2 C m C 1 C j . It is also well known that there are .M C 1/2

spherical harmonics of degree M or less (see, e.g., Freeden and Gutting (2013) for
a detailed introduction of spherical harmonics and their properties). It should also
be noted that instead of L2-spaces the theory of spherical Sobolev spaces can be
applied.

The SST and SGG problems that are mentioned in the introduction can be
investigated in simplified form such that y is the first or second radial derivative of
the gravitational potential instead of the potential itself. This provides the following
singular values for m 2 N, j D �m; : : : ; m:

�SST
k.m;j / D m C 1

R C h

�
R

R C h

�m

; �SGG
k.m;j / D .m C 1/.m C 2/

.R C h/2

�
R

R C h

�m

:

In both cases, the singular values are still exponentially decreasing as k or m

tend to infinity. Further details can be found in, e.g., Freeden (1999), Freeden and
Michel (2004), Freeden and Gerhards (2013), Freeden and Schreiner (2015), Lu and
Pereverzev (2014), and the references therein. Another ill-posed problem closely
related to downward continuation is the inverse gravimetric problem (see Freeden
and Michel (2004), Michel (2014), and the references therein). While the problems
discussed above are exponentially ill-posed in a formal sense, in practice, where
there is a bound on the degree of the spherical harmonics, the problems may exhibit
behavior of more moderately ill-posed problems. In particular, it is argued in Lu
and Pereverzev (2014) that the SGG problem for the GOCE mission, where the
degree is bounded by 300, can be considered as mildly (polynomially) ill-posed,
with �SGG

k.m;j / � .m C 1=2/�5:5 for 100 � m � 300. This observation also applies to
the finite dimensional problems to be considered in our numerical experiments. For
example, with R D 6;371 km and h D 300 km, the eigenvalues �k.m;j / in (2) satisfy
0:5R4.m C 1=2/�8:5 � �k.m;j / � 3R4.m C 1=2/�8:5 for 100 � m � 300.

2 Preliminaries

In practice, an inverse problem is often discretized (either as the model or for
computation) and/or only a finite set of discrete data is available. Starting with
(1), we distinguish the following three cases which are considered in one common
framework:

Case C1. Infinite dimensional situation, where A is a compact linear operator
mapping between two separable Hilbert spaces X and Y .
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Case C2. Finite dimensional situation, where A is a matrix with large condition
number mapping between X D Rp and Y D Rq , p � q. Assume that rank.A/ D
p. This case is often called a discrete ill-posed problem.

Case C3. Discrete data situation, where the underlying problem is still infinite
dimensional, but we only have measurements yi D y.ti / at the q points
fti giD1;:::;q . Then A is a finite rank operator between X and Y D Rq with the
correspondence .Ax/i D .A1x/.ti /, i D 1; : : : ; q. Assume that rank.A/ D q.
This case is known as a semi-discrete model.

In all cases, the element y 2 Y is perturbed by noise, giving the data yı .

2.1 Regularization Methods

In this paper, we will concentrate on the two main regularization methods that
are used for solving linear inverse problems – spectral cutoff and Tikhonov
regularization. Detailed accounts of these methods can be found, e.g., in Groetsch
(1984), Hofmann (1986), and Engl et al. (1996).

By the use of the singular value decomposition, we obtain

Ax D
RX

kD1

�k hx; uki vk;

where R is 1, p, and q, respectively, in cases C1, C2, and C3 above. Spectral cutoff
regularization is defined by

xı
n D

l.n/X
kD1

��1
k hyı; vkiuk; (3)

where l. � / is an ascending integer-valued function. The traditional choice is l.n/ D
n, but a general l. � / allows us to restrict the regularized solutions to an appropriate
subset, thereby reducing the computation time significantly without affecting the
results.

Tikhonov regularization has a continuous regularization parameter ˛, but in
practice, one often searches over a discrete set. Here we use a geometric sequence
of parameter values ˛n D ˛0qn

˛ , where 0 < q˛ < 1 and n 2 N. Tikhonov
regularization is defined by the variational formulation

xı
n D argmin

x2X
kAx � yık2 C ˛nkxk2

or, equivalently, by

xı
n D .A�A C ˛nI /�1A�yı; (4)
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where A� is the adjoint of A. Here and throughout, the norm meant by k�k refers to
the Hilbert space in use and will be clear from the context.

Note that, for both spectral cutoff and Tikhonov regularization, a larger value
of the index n corresponds to less smoothing. For both methods, let x0

n be the
regularized solution in the case of noise-free data and let A�1

n be the linear
regularization operator that maps yı to xı

n, i.e., it holds that

x0
n D A�1

n y and xı
n D A�1

n yı:

2.2 Deterministic and Stochastic Noise

Several kinds of additive noise models are used in the study of inverse problems (cf.
Eggermont et al. 2014 and the references therein). To describe the major ones, we
will denote yı D y C ı�, where � is a normalized noise element and ı > 0 is the
noise level.

The most common noise model in the classical inverse problems literature is
deterministic noise (cf. Engl et al. 1996), where � 2 Y with k�k � 1, so kyı �yk �
ı. This noise model is quite suitable to represent discretization errors, but it is rather
poor for describing random measurement errors arising in practice.

A practical noise model for a discrete data vector yı 2 Rq (for cases C2 and C3,
see, e.g., Wahba 1990) is yı D y C ı�, where the components �i are i.i.d. random
variables with meanE�i D 0 and varianceE�2

i D 1. Then ı is the standard deviation
of each error component ı�i and Ekyı � yk2 D ı2

Ek�k2 D qı2. This model can be
extended to one involving correlated errors, where "i D ı�i has covariance matrix
C D ŒE."i "j /�.

A stochastic noise model can also be defined in an infinite dimensional setting
(case C1) by using the singular value decomposition of A. Suppose that the Fourier
coefficients hy; vki are known only as the sequence data

yı
k D hy; vki C ı�k D �k hx; uki C ı�k; k 2 N; (5)

where �k D h�; vki are independent normal N .0; 1/ random variables and � is a
zero-mean weak Gaussian random element. This is called a continuous Gaussian
white noise model (cf. Lepskij 1990). Note there is no bound for the error in Y here,
since E

P
.yı

k � hy; vki/2 D P
ı2 is infinite.

Colored noise can be defined by introducing a covariance matrix K for the
random variables �k so that E.�k�l / D Kkl , in which case we have E h�; f i h�; gi DP

kl fkKklgl for any pair f; g 2 Y with fk D hf; vki and gk D hg; vki. A simple
choice is to assume K to be diagonal. Then, if the entries Kkk are increasing, it is
called blue noise, and, if they are decreasing, it is called red noise.

For the finite dimensional case C2, if yı D y C ı� with � � N .0; I /, then,
clearly, using the orthonormal singular vectors vk 2 Rq of A, the model can be
written equivalently as a Gaussian white noise model with finite sequence data.
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2.3 Assumptions on the Solution x (Source Condition)

In most of the literature on regularization, it is assumed that x is a fixed (nonrandom)
element of X . It is known (see, e.g., Cox 1988; Lukas 1988; Engl et al. 1996)
that the error kx � xı

nk or the expected squared error Ekx � xı
nk2 (with respect

to the noise distribution) in the regularized solution (3) or (4) depends on the
abstract smoothness of the unknown solution x. The smoothness assumption made
on x is called a source condition and is usually of the form x 2 R..A�A/s/

for some s > 0 (called Hölder type). However, this form is not suitable for
a severely ill-posed problem, where the singular values of the operator have
exponential decay, while the unknown solution has relatively low smoothness,
in particular for downward continuation. For such problems, it is natural to use
the logarithmic source condition x 2 fu W u D ln�p.A�A/�1v; kvk � Kg
(cf. Mair 1994; Hohage 2000; Pereverzev and Schock 2000). General source
conditions are also used in Mathé and Pereverzev (2003) and Nair et al. (2003).

In the Bayesian approach to inverse problems (cf. Tarantola 1987; Evans and
Stark 2002; Kaipio and Somersalo 2005; Hofinger and Pikkarainen 2007), it is
assumed that x is a random element ofX with some prior distribution. These models
can be formulated in any of the cases C1, C2, or C3 above. It is known (cf. Larkin
1972; Hofmann 1986; Wahba 1990; Fitzpatrick 1991) that, with a Gaussian prior
and independent Gaussian error distribution, the posterior mean given the data is the
solution of a certain Tikhonov regularization problem and the appropriate choice for
the regularization parameter is determined by the variance of x and the noise level
ı. However, in practice both are usually unknown.

2.4 Parameter ChoiceMethod

A parameter choice method is a rule that assigns a value for the regularization
parameter. In the case of a discrete set of parameters, the method selects a value for
the index, which will be denoted by n�. Parameter choice methods can be classified
according to the input used to make the choice. There are three basic types (see, e.g.,
Engl et al. 1996; Bauer and Kindermann 2009):

• A priori method, i.e., n� is a function of ı and information about the smoothness
of x. Since information about x is required, but in practice not known, such
methods are not discussed here.

• A posteriori method, i.e., n� D n�.ı; yı/. The noise level ı is required and has
to be estimated if it is not known.

• Data-driven method, i.e., n� D n�.yı/. The method only requires the data yı as
input. In the literature on deterministic noise, these methods are sometimes called
“heuristic methods”, but this has a negative connotation that is not generally
deserved.
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We will consider several methods of each of the second and third types. For these
methods, if yı contains stochastic noise, then n� is a random variable. Each method
computes an associated function F .n/, and n� is defined as either the point at which
F falls below a threshold (type 1) or the minimizer of F (type 2). Most methods of
type 1 originate from a deterministic setting and use a (sensitive) tuning parameter.
The methods of type 2 mostly come from a stochastic framework or from heuristic
ideas and work without (sensitive) tuning parameters.

2.5 Optimal Regularization Parameter

For the problem Ax D y with data yı , we define the optimal regularization
parameter (index) by

nopt D argmin
n

kx � xı
nk:

If yı contains stochastic noise, then nopt is a random variable. In our numerical
experiments of each parameter choice method, we will assess the accuracy of the
choice n� by computing the inefficiency defined by

kx � xı
n�

k=kx � xı
nopt

k: (6)

The closer this is to 1, the better is the parameter choice. Using stochastic noise with
a large number of replicates of the problem, we can estimate the distribution of the
inefficiencies and hence determine the performance of the method.

It is clear that, since x is unknown, a practical parameter choice method must use
some other known or easily computed/estimated quantities. Many methods use the
norm of the residual defined as kyı � Axı

nk. If the data are finite and the norm is the
Euclidean norm, this is the square root of the usual residual sum of squares, and so
it is easily computed.

Splitting the error kx � xı
nk such that

kx � xı
nk � kx � x0

nk C kx0
n � xı

nk; (7)

the first term (regularization error) is bounded by a decreasing function '.n/

which depends on the source condition and the regularization method. A higher
smoothness s for x 2 R..A�A/s/ improves the rate of decrease. If this is only
possible up to a maximal value s0, this value is the so-called qualification and
the method exhibits saturation. Tikhonov regularization has qualification s0 D
1, while spectral cutoff has infinite qualification (see, e.g., Engl et al. 1996).
Under a logarithmic source condition, slower (logarithmic) rates of decrease are
obtained for standard regularizations, in particular for Tikhonov and spectral cutoff
regularization (Mair 1994; Hohage 2000; Pereverzev and Schock 2000). It follows
that Tikhonov regularization does not exhibit saturation here.
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The second term (propagated noise error) on the right-hand side of (7) can often
be bounded for regularization methods as

kx0
n � xı

nk � ı%.n/; (8)

where % is a known increasing function of n, indicating that, with less smoothing,
there is more influence of the data noise. For spectral cutoff regularization, (8) holds
with %.n/ D ��1

l.n/ and, for Tikhonov regularization, (8) holds with %.n/ D ˛
�1=2
n

(cf. Engl et al. 1996).
In the case of stochastic noise, the risk, i.e., the expected squared error Ekx �

xı
nk2, is considered. For noise with zero mean, instead of (7), the risk can be

decomposed exactly into a sum of squared bias kx � x0
nk2 and variance terms

Ekx0
n � xı

nk2, i.e.,

Ekx � xı
nk2 D kx � x0

nk2 C Ekx0
n � xı

nk2: (9)

The squared bias can be bounded as before and, under suitable assumptions, the
variance can be expressed as ı2%2.n/ for some increasing function %.n/. For white
noise, the spectral cutoff solution (3) has variance

ı2%2.n/ D ı2
EkA�1

n �k2 D ı2

l.n/X
kD1

��2
k (10)

and the Tikhonov regularized solution (4) has variance

ı2%2.n/ D ı2
EkA�1

n �k2 D ı2
X

Œ�k=.�2
k C ˛n/�2: (11)

A much more detailed discussion of the above errors (including minimax results)
in various situations can be found in Cox (1988), Lukas (1988), Engl et al. (1996),
Mair and Ruymgaart (1996), Mathé and Pereverzev (2003), Cavalier et al. (2004),
Bauer (2007), and Hofmann and Mathé (2007).

It should be pointed out that Bakushinskii (1984) states that, for an ill-posed
problem, a parameter choice rule that does not explicitly use the noise level (e.g.,
data-driven rules) cannot yield a regularization method such that the worst-case
error converges to 0 as ı ! 0. This Bakushinskii veto is important for deterministic
noise, but it is not really appropriate for stochastic noise (cf. Bauer and Kindermann
2009; Becker 2011). In this situation, as we shall see, there are data-driven rules
yielding regularization methods that converge with respect to the risk and perform
very well in practice (see also Bauer and Lukas 2011).

For some methods, there are stronger results involving oracle inequalities (see
Cavalier et al. 2002; Candès 2006; Bauer and Reiß 2008; Cavalier 2008), which
provide, for any noise level, a bound on the risk Ekx � xı

nk2 relative to the smallest
possible value of the risk and allow the classification of methods as asymptotically
optimal.
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Similar results exist for some methods with a discrete noisy data vector yı 2
Rq in case C3, where the asymptotic analysis is as q ! 1 with fixed variance
ı2. There are connections between results for the continuous white noise model
and for discrete sampled data. In particular, for function estimation (A D I ) and
other problems, it is known that, under certain conditions, asymptotic results for the
continuous white noise model as ı ! 0 can be translated into asymptotic results for
discrete data as q ! 1 (cf. Brown and Low 1996; Pensky and Sapatinas 2010).

3 Evaluation Process and Experiments

This section presents the design of the evaluation process and numerical experi-
ments that will be used for each parameter choice method described in Sect. 4.

3.1 Construction of Our Numerical Experiments

Each parameter choice method will be assessed using the same large set of test
problems corresponding to downward continuation. The results will be shown for all
situations, independent of any prior knowledge about situations where the method
does not work. For each parameter choice method, the experiments used the same
random seed, so every method had exactly the same set of operators, solutions, and
noisy data to deal with. The experiments were implemented in MATLABr whose
notation we also use to describe the algorithms in this section.

The test problems are finite dimensional problems (case C2), where A W X ! Y
and X D Y D Rq with Euclidean norms. The problems are characterized by the
following parameters:

• Mmax: maximal spherical harmonic degree, i.e., the number of singular values of
A is
q D .Mmax C 1/2;

• h: varying heights in (2) (with R D 6;371 km) determining the speed of the
exponential decay behavior;

• � : (polynomial) decay behavior (smoothness) of x;
• log.N 2S/ : log10 of the noise-to-signal ratio N 2S D .Ekyı � yk2/1=2=kyk;
• ! : noise behavior (corresponds to the color).

Generation of the Operators
The operator A will be taken to be a random diagonal q � q matrix, with diagonal
elements (i.e., eigenvalues or singular values) decaying like

akk � �k D �k.m;j / D
�

R

R C h

�m

; m 2 N0; j D �m; : : : ; m;
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where k.m; j / D m2 C m C 1 C j . A larger value of h corresponds to a more
ill-posed problem, all of which are exponentially ill-posed. The diagonal vector is
generated by the following procedure:

for deg D 0 W Mmax C 10

OrderVector.deg^2 C 1 W .deg C 1/^2/ D degI
end
NumberEigenvalues D .Mmax C 1/^2I
HelpVar D .6;371=.6;371 C h//:^OrderVectorI
Perturb D exp.0:5 � randn.length.HelpVar/; 1/ � 0:52=2/I
HelpOp D sort.HelpVar : � P erturb; ‘descend’/I
A D HelpOp.1 W NumberEigenvalues/I

For each parameter choice method, more than 160,000 trials are done using
about 40,000 up to 120,000 eigenvalues each time, so speed and memory usage
are very important issues. Note that for the maximal degree Mmax we have to
deal with .Mmax C 1/2 eigenfunctions and Mmax can be up to 350 (see Tables 1
and 2) in our tests. For this reason, we use the simplest possible form of an inverse
problem, i.e., diagonal matrices. Because of the singular value decomposition, these
diagonal problems are no less or more ill-posed than other discrete inverse problems.
Furthermore, this approach enables us to see the effects of ill-posedness with almost
no side effects originating from numerical errors due to machine precision and
other machine-dependent errors. In addition, for Gaussian white noise, there is no

Table 1 Test cases for
Tikhonov regularization

h Mmax � log.N 2S/

300 350 2 �4.0

300 350 2 �6.0

300 350 3 �6.0

300 350 3 �8.0

300 350 4 �8.0

300 350 4 �10.0

300 350 5 �8.0

300 350 5 �10.0

500 250 2 �4.0

500 250 2 �6.0

500 250 3 �6.0

500 250 3 �8.0

500 250 4 �8.0

500 250 5 �8.0

500 250 5 �10.0

700 200 2 �6.0

700 200 3 �6.0

700 200 3 �8.0

700 200 4 �8.0

700 200 4 �10.0
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Table 2 Test cases for
ExpCutOff regularization

h Mmax � log.N 2S/

300 300 2 �4.0

300 300 2 �6.0

300 300 3 �6.0

300 300 3 �8.0

300 300 4 �8.0

300 300 4 �10.0

300 200 5 �8.0

300 200 5 �10.0

500 250 2 �4.0

500 250 2 �6.0

500 250 3 �6.0

500 250 3 �8.0

500 250 4 �8.0

500 200 5 �8.0

500 200 5 �10.0

700 200 2 �6.0

700 200 3 �6.0

700 200 3 �8.0

700 200 4 �8.0

700 200 4 �10.0

difference at all in using diagonal matrices to investigate stochastic behavior. This
follows from the invariance of white noise under the orthogonal transformation
involved in the SVD.

We also wanted to ensure that we do not use, even accidently, specific features
of the operator that would help the inversion, but cannot be found in practice
(called “inverse crimes”; see, e.g., Colton and Kress 1998). Therefore, we used a
slight random perturbation of the sequence �k . The procedure balances retaining
the overall exponential decay behavior of the operator including the multiplicity of
its singular values while providing some randomness in this component.

Solution Generation
Each time a solution x is generated, we use the following procedure (the variables
O rderVector and N umberEigenvalues are the same as in Sect. 3.1:

HelpVar D .OrderVector.1 W NumberEigenvalues/ C 1/:^.��/I
Sign D 2 � ceil.2: � rand.NumberEigenvalues; 1// � 3I
Perturb D 1 C 0:1 � randn.NumberEigenvalues; 1/

x D Sign : � Perturb : � HelpVarI
This can be interpreted as generating random Fourier coefficients xk with decay

behavior jxkj D jxk.m;j /j � m�� and random sign of equal probability. A larger
value of � gives a smoother solution x.

For such polynomial decay rates, the Sobolev lemma allows an interpretation in
terms of differentiability, i.e., smoothness. In our setting with 2mC1 eigenfunctions
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(spherical harmonics) of polynomial degree m, this means that we require a decay of
the order of m�1�", for some " > 0 (i.e., � > 1), to guarantee x is square integrable.
Moreover, it is known (see, e.g., Freeden et al. 1998; Freeden 1999; Freeden and
Michel 2004) that for � > r C 2 the function defined by the Fourier coefficients xk ,
jxkj D jxk.m;j /j � m�� , corresponds to an x 2 C .r/, r 2 N0. Therefore, we only
consider � 	 2 in our tests.

An alternative way to generate solutions of different smoothness is through a
source condition. However, using the standard source condition to define x D
.A�A/sx0 for some x0 2 X is not suitable for the downward continuation problem
as it would imply x 2 C .1/ which is of less interest in practice. A more appropriate
logarithmic source condition could be used to generate the solutions, but it is
easier to use the direct approach above. Furthermore, our approach also allows
encapsulation in the software design, i.e., the solution should not “see” the operator
and vice versa. Note that, because the theory of saturation is based on source
conditions, it does not apply directly for our assumed form of x. Nevertheless, we
see similar results and will call these saturation effects.

In our evaluation of the methods, we want to identify the effect of the smoothness
of the solution, determined by the decay behavior of x and characterized by the
parameter �, and also the effect of the noise-to-signal ratio N 2S . To avoid too much
variability in these features of x for different replicates of x, we chose not to use
a colored Gaussian variable for x as in Kaipio and Somersalo (2005) and Bauer
(2007). For a Gaussian random variable, both the norm of x and the decay behavior
of x vary over a large scale, which also affects the noise-to-signal ratio.

Noise Generation
We use a finite stochastic noise model. First, for each replicate y D Ax, the noise
level ı is defined from the input noise-to-signal ratio N 2S as ı D N 2S � kyk=

p
q.

Then, each time a noise vector is generated, we employ the same procedure as in
Bauer and Lukas (2011): we transform y via the discrete cosine transform to the
time domain, add (possibly serially correlated) noise with standard deviation ı, and
transform back. The degree of correlation and color is determined by !. By adding
the noise in a different space from the one used to generate y D Ax, we avoided
potential inverse crimes.

For ! D 0, the noise is simply Gaussian white noise. For ! ¤ 0, the noise is
defined by a moving average process in which both the weights and order depend
on !. The noise has higher correlation for larger !, and it has color red for ! > 0

and color blue for ! < 0 (the algorithm can be found in Bauer and Lukas 2011).
This type of correlation is observed in many practical applications, for example, in
geodesy (cf. Ditmar et al. 2003, 2007).

For our experiments, we considered two scenarios for the noise:

• White noise, i.e., ! D 0

• Colored noise of unknown random color, i.e., ! is chosen as a pseudorandom
variate, uniformly distributed in the interval Œ�0:5; 0:5�.
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Regularization Operators
For the Tikhonov regularization parameter sequence ˛n D ˛0qn

˛ , n 2 N, in (4), we
used 100 values from 1 to 10�14 with logarithmic equal spacing, i.e., ˛0 D 1:3849

and q˛ D 0:7221. The set of test cases for Tikhonov regularization is given in
Table 1. The parameter values for these cases were chosen to achieve a balance
between speed and the representation of a reasonably wide set of problems. In
addition, the parameter values are constrained so that the optimal regularization
parameter lies clearly between 1 and 10�14, i.e., it is not near an endpoint.

For the sequence l.n/ of cutoff points in (3), i.e., for spectral cutoff regular-
ization, we used the same procedure as in Bauer and Lukas (2011). The cutoff
points are chosen such that there is a minimum spacing of 3 and, more importantly,
the cutoff point n C 1 is the first to possess an eigenvalue �k.nC1/ < �k.n/=1:07,
where �k.n/ is the eigenvalue corresponding to the cutoff point n. By this, we can
avoid in most cases that there are two cutoff points corresponding to the same
spherical harmonic degree m. This method is referred to as exponential spectral
cutoff (ExpCutOff), and it also achieves the minimax rate for optimal parameter
choice (cf. Bauer and Pereverzev 2005).

The set of test cases we used for ExpCutOff is given in Table 2. Again, the
parameter values for these cases are constrained so that the optimal parameter nopt

has l.nopt / clearly not near an endpoint.

Maximal Regularization Parameter
For most parameter choice methods, the use of a discrete set of regularization
parameters with a fine enough resolution, as chosen above, does not alter the
behavior of the method. Clearly, for the efficient implementation of these methods,
it is useful to have a bound on the value of nopt (i.e., a maximal regularization
parameter), especially if the method minimizes some function.

For a few parameter choice methods, e.g., the balancing principle (Sect. 4.6), a
maximal index N is an essential input in the algorithm itself. The actual value of N

is not crucial so long as nopt < N and, for the sake of computational efficiency, N

is not too large. For both spectral cutoff and Tikhonov regularization in a stochastic
setting, it is reasonable to define the maximal index as

N D maxfnj%.n/ < 0:5%.1/g; (12)

where Ekx0
n � xı

nk2 D ı2%2.n/ and ı2%2.1/ is the supremum of the variance. We
expect that nopt < N because if n > N , then it follows from (9) that Ekx � xı

nk2 >

0:5Ekx � xı1k2, but we would expect Ekx � xı
nopt

k2 to be much smaller than the
right-hand side.

To obtain N in practice, one either has to have an analytic expression for ı2%2.n/,
as in (10) and (11) for white noise, or a good estimate of it. For any noise color, if
several independent data sets are available, then a good estimate is

ı2%2.n/ � 2�1Meanfkxı
n;i � xı

n;j k2; i ¤ j g: (13)
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In the experiments, we use four data sets to obtain N for the methods that require a
maximal parameter. Often, two sets of data are sufficient (see Bauer 2007 for further
details).

Furthermore, so that all the parameter choice methods can be compared on an
equal basis, we use the same maximal index N for all the methods. For many
methods, the usage of N has almost no effect on the results, but for some methods,
it has the beneficial effect of reducing the number of severely under-smoothed
solutions (see also Bauer and Lukas 2011).

If, in practice, only a single data set is available, then it may not be possible to
estimate ı2%2.n/ if the noise is correlated with unknown covariance. Then one can
define a maximal index N1 by l.N1/ D q for spectral cutoff and by ˛N1 � �2

q for
Tikhonov regularization. For the methods that perform much worse without the use
of the maximal index N , the results for N and N1 may be quite different. However,
for the methods that perform essentially the same with or without the use of N , the
results for N and N1 will be very similar (see Bauer and Lukas 2011).

Runs and Organization of the Results
For each parameter choice method, we performed exactly the same experiments,
constructed as follows:

• For each of the cases in Tables 1 and 2, and for both white noise and random
colored noise, we generated 4 operators A as described in Sect. 3.1.

• For each operator A, we generated 8 solutions x as described in Sect. 3.1.
• For each pair of .A; x/, we generated 8 times 8 different noisy data vectors yı as

described in Sect. 3.1. In the colored noise scenario, each group of 8 data vectors
has a different, randomly chosen color, and within the group, the color is the
same.

This means that, for each test case and noise scenario, there are 2,048 inverse
problems that need to be solved. The hierarchical structure was chosen in order
to considerably reduce the computational cost. In total, this chapter is based on the
solution of more than 3:4 million inverse problems each with an operator of at least
40,000 singular values, in most cases more than twice that number.

For each parameter choice method, we will display the simulation results, i.e.,
the inefficiencies as defined by (6), in one figure, with four panels corresponding
to Tikhonov and ExpCutOff regularization under both the white noise and colored
noise scenarios. Each panel has the following features:

• For each test case (denoted by .h; �; log.N 2S//, with Mmax determined from
Tables 1 and 2), a box plot (marking the lower and upper quartiles) shows the
distribution of computed inefficiencies for the method, with blue whiskers show-
ing the range. The whiskers have maximum length of 4 times the interquartile
range, and outliers beyond this are marked with a red C symbol.

• For each test case, the red middle band in the box shows the median of the
computed inefficiencies, and an open green dot shows the sample mean.
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3.2 Error Comparison in Case of Optimal Solutions

To conclude this section, Fig. 1 shows the distribution of the optimal errors kx �
xı

nopt
k for Tikhonov and ExpCutOff regularization under both the white and colored

noise scenarios. The test cases and replicates are the same as those used for the
simulations in the next section (see Tables 1 and 2). The box plots are constructed
in the same way as described in Sect. 3.1.

The optimal errors differ by several orders of magnitude across the test cases,
mostly because of the different noise levels. In addition, there can be significant
variability within one test case, especially for the colored noise scenario. Depending
on whether the colored noise is at the blue end or red end, both regularization
methods will find it easier or harder, respectively, to extract the solution x, compared
to the white noise situation.

Furthermore, we can see some saturation effects for Tikhonov regularization.
The errors for the parameter sets .300; 4; �8/ and .300; 5; �8/ or .500; 4; �8/ and
.500; 5; �8/ (to a lesser degree also .300; 4; �10/ and .300; 5; �10/) indicate there
is no improvement as the smoothness increases beyond a certain value. Therefore,
for our finite dimensional exponentially ill-posed problems, Tikhonov regularization
behaves in a similar way as for a polynomially ill-posed problem, in line with the
discussion at the end of Sect. 1.2.

Fig. 1 Comparison of optimal errors
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4 Description and Evaluation of Methods

In this section, we will review most of the available parameter choice methods
and evaluate them according to the process outlined in Sect. 3. For each method,
we will start by describing the origin and rationale of the method. Then we will
state the input requirements of the method and the algorithm that we use. This will
be followed by a brief discussion of known theoretical and practical issues about
the method, including whether the method works for other regularization methods.
Finally, we will present the results of the numerical experiments for the method.

The methods are ordered as follows:

• The first group requires knowledge of the noise level ı. We provide the correct ı

in all our tests even though this is usually not available in practice. An estimation
of the noise level might induce further errors.

• The second group requires at least two independent sets of data as input.
• The third group requires no knowledge about the noise.

Many of the methods use a tuning parameter or some other parameter that must
be chosen. For each of these methods, we have used the tuning parameters of Bauer
and Lukas (2011) to allow an easier comparison of the results. However, the setting
might not be optimal for the problems here, and the optimal settings for different
problems might vary significantly. Section 4.19 contains a list of methods that were
not included in this study.

4.1 Discrepancy Principle

The discrepancy principle, which was originally proposed by Phillips (1962) and
then developed and analyzed by Morozov (1966, 1984), is one of the oldest and
most widely used parameter choice procedures (cf. Engl et al. 1996 and references
therein). The rationale is simply that for a good regularized solution, the norm of
the residual should match the noise level ı of the data. Although the method was
originally developed in a deterministic setting, it has also been studied in a discrete,
stochastic setting (see, e.g., Davies and Anderssen 1986; Lukas 1995; Vogel 2002)
and a continuous stochastic setting (see Blanchard and Mathé 2012).

Method The method needs the following input:

• Norms of residuals fAxı
n � yıgn�N until a certain bound is satisfied

• Noise level ı

• Tuning parameter �

In a deterministic setting with kyı � yk � ı, the parameter choice n� is the first n

such that kAxı
n � yık � �ı, where � 	 1 is a tuning parameter. In our stochastic
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setting, with the error in each element of yı 2 Rq having standard deviation ı, the
choice n� is the first n such that

kAxı
n � yık � �ı

p
q (14)

where we use � D 1:5.

Known Issues There has been a lot of work done on the convergence properties
of this method (see, e.g., Groetsch 1984; Morozov 1984; Engl et al. 1996). The
convergence rate in the deterministic setting for Tikhonov regularization is at the
optimal order O.ı2s=.2sC1// if s 2 .0; 1=2�, but at the suboptimal order O.ı1=2/

if s > 1=2. For spectral cutoff, the discrepancy principle gives the optimal order
for any value of s. Under a logarithmic source condition, the discrepancy principle
attains the optimal order for both Tikhonov and spectral cutoff regularization
(see Hohage 2000, Pereverzev and Schock 2000; Nair et al. 2003; Mathé 2006).
In the stochastic setting with a data vector yı 2 Rq containing uncorrelated
errors of variance ı2, for Tikhonov regularization, it is known (cf. Davies and
Anderssen 1986; Lukas 1995; Vogel 2002) that as the sample size q ! 1, the
“expected” discrepancy principle estimate has the optimal rate for the prediction
risk EkAxı

n � yk2 (though, if � D 1, the constant makes it over-smoothing). It is
also order optimal for the X -norm risk Ekxı

n � xk2 if x is not too smooth relative
to the operator A, but otherwise it is order suboptimal (under-smoothing). Lukas
(1998b) shows that for � D 1, the actual estimate is asymptotically unstable in
a relative sense. For spectral cutoff, the “expected” estimate is order optimal for
both the prediction risk and the X -norm risk (cf. Vogel 2002). For a preconditioned
Gaussian white noise model and general linear regularization, Blanchard and Mathé
(2012) show that the discrepancy principle yields suboptimal rates as ı ! 0.

The discrepancy principle is one of the fastest methods available, since one
only needs to compute the residuals until the bound (14) is satisfied. However,
it has the serious drawback that it needs an accurate estimate of the noise level;
even small misestimations can lead to very poor solutions (see Hansen 1998,
Chap. 7). The discrepancy principle has also been applied to and analyzed for
various iterative regularization methods for linear and nonlinear problems in the
deterministic setting (see Hanke and Hansen 1993; Engl et al. 1996; Engl and
Scherzer 2000; Bakushinsky and Smirnova 2005; Kaltenbacher et al. 2008; Jin
and Tautenhahn 2009; and the references therein). It has also been analyzed for
conjugate gradient iteration in a continuous stochastic setting by Blanchard and
Mathé (2012).

Results From Fig. 2, for white noise, the discrepancy principle performs reason-
ably well for spectral cutoff regularization, as well as for Tikhonov regularization
with less smooth solutions. However, significant saturation effects can be seen for
� 	 4. The results for colored noise in Fig. 2 are mediocre, with quite a bit of
variation. However, the performance for Tikhonov regularization is not much worse
than it is for white noise.
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Fig. 2 Inefficiencies of the discrepancy principle

4.2 Transformed Discrepancy Principle

Motivated by the instability of the discrepancy principle to an incorrect noise level,
Raus (1990, 1992) and Hämarik and Raus (2006) developed a parameter choice
method in a deterministic setting where the noise level in the data yı is known only
approximately as Oı.

Method The transformed discrepancy principle needs the following input:

• Norms of transformed residuals fC .Axı
n � yı/gn�N where the operator C

depends on A, the regularization method, and its qualification
• Rough estimate Oı of the noise level ı

• Tuning parameter b

For the stochastic case with yı 2 Rq , it is assumed that a rough estimate Oı of the
error standard deviation ı is known. For Tikhonov regularization, one computes n�
as the least integer n for which

kA�1
n .Axı

n � yı/k � b Oıp
q=

p
˛n ; (15)
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Fig. 3 Inefficiencies of the transformed discrepancy principle

where ˛n D ˛0q
n
˛ and b is some constant satisfying b > � D ..1=4/1=4.3=4/3=4/2 �

0:3248. For spectral cutoff, one computes n� as the least integer n for which

kA�.Axı
n � yı/k � b Oıp

q �l.n/ ; (16)

where b is some constant satisfying b > � D 1=2. We choose b D 1:5� for both
regularization methods.

Known Issues Note that the right-hand side of (15) is an approximate scaled bound
of the propagated noise error kx0

n � xı
nk � ı=

p
˛n. On the left-hand side of (15) is

the norm of the residual transformed to the domain space under the approximate
inverse A�1

n of A. For this reason, we refer to this parameter choice method as the
transformed discrepancy principle.

It was shown in Raus (1992) that, for deterministic noise, the method leads
to optimal convergence rates when the noise level is known exactly, and it also
converges under the assumption that ky � yık D O. Oı/ as Oı ! 0. Consequently,
it is more stable than the discrepancy principle in this case. No knowledge of the
solution smoothness is required. A stronger result involving a deterministic oracle
inequality was shown in Raus and Hämarik (2007) for the usual noise assumption.
The method was also defined and shown to be convergent for problems where the
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operator is only known approximately as A	, where kA	�Ak � 	 (Raus 1992). Like
the discrepancy principle, the method can be applied easily to iterative regularization
methods.

Results Figure 3 shows that the transformed discrepancy principle has good to
acceptable performance for all cases with white noise. Consistent with the theory,
there is no saturation effect for Tikhonov regularization, so in many cases the results
are significantly better than those for the discrepancy principle. However, there
is substantial variation for some cases in the colored noise scenario. The results
for spectral cutoff are slightly better than those of the discrepancy principle. In all
situations, the results are very similar to those of the ME rule (Sect. 4.4).

4.3 Modified Discrepancy Principle (MD Rule)

The modified discrepancy principle (MD rule) was developed by Gfrerer (1987)
and Engl and Gfrerer (1988) and independently by Raus (1984, 1985) for Tikhonov
regularization and general regularization methods in a continuous, deterministic
setting (see also Engl 1993 and Sects. 4.4 and 5.1 in Engl et al. 1996). The basic idea
of the method is to minimize a bound on the squared error of the regularized solution
derived from (7) to yield a practical a posteriori method with optimal convergence
rates. It is also known as the Raus–Gfrerer rule or the minimum bound method.
In Lukas (1998a), the method was adapted to the discrete, stochastic setting for
Tikhonov regularization.

The method was developed for regularization methods defined using the spec-
trum of A�A by xı

˛ D g˛.A�A/A�yı, where lim˛!0 g˛.
/ D 1=
. This includes
Tikhonov regularization, for which g˛.
/ D 1=.
 C ˛/. For such methods, one can
derive from (7) a bound on the squared error of the form

kx � xı
˛k2 � 2.'2.˛; y/ C ı2%2.˛//: (17)

The minimizer of (17) is defined by

f .˛; y/ D �.'2/0.˛; y/=.%2/0.˛/ D ı2: (18)

By using yı in place of y, the parameter choice is defined by f .˛; yı/ D ı2 or
f .˛; yı/ D �2ı2 for a tuning parameter � .

Method To use the MD rule, we need to be able to compute .'2/0.˛; y/ and
.%2/0.˛/ which can be done effectively for Tikhonov and other regularization
methods (see Engl and Gfrerer 1988 and Engl et al. 1996, Sect. 5.1). The method
can also be applied to regularization methods with a discrete parameter, including
spectral cutoff, with the derivatives above replaced by differences. The required
input consists of the following:
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• All regularized solutions fxı
ngn�N until a certain bound is satisfied

• Noise level ı

• Tuning parameter �

For Tikhonov regularization, the function %2.˛/ in the bound (17) is %2.˛/ D ˛�1,
and the parameter choice is defined by

˛

ˇ̌
ˇ̌�Axı

˛ � yı; .A�/
�1 dxı

˛

d˛

�ˇ̌
ˇ̌1=2

D ˛3=2k.AA� C ˛I/�3=2yık D �ı:

Using the discrete set f˛n D ˛0qn
˛g, we can approximate the derivative dxı

˛=d˛ on
the left-hand side with .xı

n�xı
nC1/.�˛n log q˛/�1. For spectral cutoff regularization,

the term ı2%2.˛/ in (17) is ı2��2
l.n/, and the method can be adapted by using

differences. Thus, the parameter choice n� is defined as the first n such that

ˇn

ˇ̌˝
Axı

n � yı; .A�/�1
�
xı

n � xı
nC1

�˛ˇ̌1=2 � �ı; (19)

where

ˇn D
(

˛
1=2
n .� log q˛/�1=2 for Tikhonov with ˛n D ˛0qn

˛;

.��2
l.nC1/ � ��2

l.n//
�1=2 for spectral cutoff:

For the tuning parameter, we use � D 1:5 for Tikhonov regularization and � D 0:5

for spectral cutoff regularization. Note that, for spectral cutoff, this rule is different
from the MD rule defined in Raus and Hämarik (2007) since the latter is just the
usual discrepancy principle for this regularization method.

Known Issues The MD rule was a significant advance on the discrepancy principle
because it achieves the optimal rate of convergence as ı ! 0 for deterministic
noise, and it does so without any knowledge of the smoothness of the solution x

(cf. Gfrerer 1987; Engl and Gfrerer 1988). The method also yields optimal rates for
finite dimensional implementations (cf. Groetsch and Neubauer 1989) and when
the operator is only known approximately (cf. Neubauer 1988). A deterministic
oracle inequality is known for the MD rule with Tikhonov regularization (Raus and
Hämarik 2007; Hämarik et al. 2012).

The discrete, stochastic version of the method, with a particular tuning constant,
is asymptotically (as q ! 1) equivalent to an unbiased risk method (see Lukas
1998a; Cavalier et al. 2002), and, in expectation, it yields the optimal convergence
rate. The unbiased risk method chooses the parameter by minimizing an unbiased
(for white noise) estimate of the risk, i.e., the expected squared error. However, in
Lukas (1998b), it is shown asymptotically and by simulations that both of these
methods are unstable and have high variability (see also Cavalier and Golubev
(2006) for the unbiased risk method). By changing the tuning parameter, it is
possible to improve the stability of the method.



1736 F. Bauer et al.

Fig. 4 Inefficiencies of the MD rule

The modified discrepancy principle can also be applied to iterative regularization
methods for linear problems, and it achieves optimal convergence rates in a
deterministic setting (cf. Engl and Gfrerer 1988). For nonlinear problems, the
method has been extended for Tikhonov regularization and shown to yield optimal
rates (see Scherzer et al. 1993; Jin and Hou 1999). In addition, it has been proposed
in Jin (2000) as the stopping rule for the iteratively regularized Gauss–Newton
method yielding again optimal rates.

Results As seen in Fig. 4, the MD rule performs very well in the white noise
situation, especially for spectral cutoff regularization. However, it does not perform
quite so well for colored noise; in particular, test cases with smoother solutions show
a lot of variability. Consistent with the theory, the median results are much better
than those of the discrepancy principle in the cases with smoother solutions.

4.4 Monotone Error (ME) Rule

The monotone error (ME) rule was proposed in Alifanov and Rumyantsev (1979),
Hämarik and Raus (1999), and Tautenhahn and Hämarik (1999) for various
regularization methods in a deterministic setting, and it was extensively discussed
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along with other similar parameter choice rules by Hämarik and Tautenhahn (2001,
2003). The rule is based on the observation that if n is too small (i.e., too much
smoothing), then the error kx�xı

nk (like the regularization error kx�x0
nk) decreases

monotonically as n increases.

Method As input one needs the following:

• All regularized solutions fxı
ngn�N until a certain bound is satisfied

• Noise level ı

• Tuning parameter �

In contrast to similar methods, no tuning parameter is required. However, in order
to gain some security in the case that ı is only known roughly, a tuning parameter
� 	 1 is advisable. For continuous regularization methods, the algorithm is
formulated by differentiating with respect to the regularization parameter ˛. The
parameter choice ˛� is the largest ˛ such that

ˇ̌
ˇDAxı

˛ � yı; d
d˛

A��1A�1
˛ yı

Eˇ̌ˇ
k d

d˛
A��1A�1

˛ yık � �ı with � 	 1:

In order to use it in our framework, we have generated a simple discretized version
by replacing the differentials with adjacent differences. Then, in the stochastic
setting with yı 2 Rq containing errors of standard deviation ı, the parameter choice
n� is the first n such that

ˇ̌˝
Axı

n � yı; .A�/�1
�
xı

n � xı
nC1

�˛ˇ̌
k.A�/�1

�
xı

n � xı
nC1

� k � �ı
p

q: (20)

We take � D 1:5 for Tikhonov regularization and � D 0:75 for spectral cutoff
regularization.

Known Issues For Tikhonov regularization (and iterated Tikhonov regularization)
in a deterministic setting, the ME rule has some favorable properties (cf. Tautenhahn
and Hämarik 1999). If ˛ > ˛�, then the error kx � xı

˛k decreases monotonically
as ˛ is decreased and so kx � xı

˛�

k < kx � xı
˛k, which provides a useful

bound for parameter selection. Unlike the discrepancy principle (Sect. 4.1), the ME
rule is order optimal for the maximal range of the smoothness index (up to the
qualification). In addition, for any noise level ı, it leads to smaller errors than the
modified discrepancy rule (Sect. 4.3) for the same tuning parameter. With precisely
known ı, the optimal tuning parameter is � D 1. In the case of spectral cutoff
regularization, no optimality results are known.
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In Hämarik and Raus (2009) an alternative discretized version to (20) defines n�
as the first n such that

ˇ̌˝
.Axı

n C Axı
nC1/=2 � yı; .A�/�1

�
xı

n � xı
nC1

�˛ˇ̌
k.A�/�1

�
xı

n � xı
nC1

� k � �ı
p

q:

This version has the advantage that, like the continuous version, the error in xı
n

decreases monotonically as n is increased for n < n�.
The ME rule can also be applied to iterative regularization methods, in particular

Landweber iteration, for which it is order optimal (see Hämarik and Tautenhahn
2001, 2003).

Results Figure 5 shows that the ME rule has mostly good to acceptable perfor-
mance for all cases with white noise. There is substantial variation for some cases in
the colored noise scenario. The performance for Tikhonov regularization is slightly
better than that of the modified discrepancy rule in Fig. 4, which is consistent with
the theory. For both Tikhonov and spectral cutoff regularization, the performance is
almost identical to that of the transformed discrepancy principle in Sect. 4.2.

Fig. 5 Inefficiencies of the ME rule
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4.5 Varying Discrepancy Principle

This method, due to Lu and Mathé (2014) and based on Blanchard and Mathé
(2012), was developed by modifying the usual discrepancy principle to take into
account stochastic noise and to achieve optimal convergence rates in a continuous
stochastic setting. The modification involves a certain weighted form of the
discrepancy with a varying weight.

Method The varying discrepancy principle needs the following input:

• Norms of weighted residuals f.
nI C A�A/�1=2A�.Axı
n � yı/gn�N

• The effective dimension, i.e., the trace of .
nI C A�A/�1A�A

• The noise level ı, where the noise is assumed to be Gaussian white
• Tuning parameter �

The parameter choice is the first n such that

k.
nI C A�A/�1=2A�.Axı
n � yı/k � �ı

p
tr ..
nI C A�A/�1A�A/;

where 
n D ˛n for Tikhonov regularization and 
n D �2
l.n/ for spectral cutoff. For

the tuning parameter � > 1, we use � D 4 for Tikhonov regularization and � D 1:1

for spectral cutoff.

Known Issues The rule was developed for general linear regularization methods as
well as conjugate gradient iteration. In Blanchard and Mathé (2012) the discrepancy
is weighted using a fixed weight parameter 
, and it is shown that this weighted
discrepancy principle is order optimal as ı ! 0 for an appropriate choice of 


depending on the solution smoothness. Based on this optimality result, Lu and
Mathé (2014) proposed varying 
 yielding the a posteriori method above. It is
shown that the method is order optimal provided that the solution has a certain
self-similarity property.

In Blanchard and Mathé (2012) and Lu and Mathé (2014), the regular methods
are combined with an “emergency stop” condition, which defines a maximal
regularization parameter. We have not implemented this condition here, but we
have used the maximal regularization parameter that is common to all the methods
evaluated.

Results As seen in Fig. 6, there are significant saturation effects for � 	 4 in the
Tikhonov case. Apart from that, the performance with white noise is good, almost
as good as for the MD rule in Sect. 4.3. For colored noise, the varying discrepancy
principle does not perform quite so well; in particular, test cases with smoother
solutions show a lot of variability.
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Fig. 6 Inefficiencies of the varying discrepancy principle

4.6 Balancing Principle

The balancing principle, due to Lepskij (1990), was originally derived for sta-
tistical estimation from direct observations in a white noise model. Since then,
it has been developed further for regularization of linear inverse problems (see,
e.g., Goldenshluger and Pereverzev 2000; Tsybakov 2000; Mathé and Pereverzev
2003; Bauer and Pereverzev 2005; Mathé and Pereverzev 2006) and nonlinear
inverse problems (cf. Bauer and Hohage 2005; Bauer et al. 2009) in deterministic
and stochastic settings. The principle aims to balance the known propagated
noise error bound ı%.n/ in (8) with the unknown regularization error (7) by
an adaptive procedure that employs a collection of differences of regularized
solutions.

Method As input one needs the following:

• Maximal index N .
• All regularized solutions fxı

ngn�N up to N .
• An upper bound ı%.n/ for the propagated noise error kx0

n � xı
nk; bounds

are known for spectral cutoff and Tikhonov regularization (see after (8)).
In the stochastic setting, a bound or estimate ı2%2.n/ of the variance
Ekx0

n � xı
nk2.
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• Noise level ı (and the covariance in the stochastic setting if known). Then one
can use known expressions for ı%.n/. Alternatively, if one has two or more
independent sets of data yı

i , then Ekx0
n � xı

nk2 can be estimated by (13).
• Tuning constant �.

Define the balancing functional by

b.n/ D max
n<k�N

˚
4�1kxn � xkk=.ı%.k//

�
: (21)

The smoothed balancing functional (which is monotonically decreasing) is defined
as B.n/ D maxn�k�N fb.k/g. Then the parameter choice n� is the first n such that
B.n/ � �.

In our implementation, we take � D 1. We will consider two input scenarios:

1. There is one data set with ı as the only known property of the noise, in which
case we use the known expressions (10) and (11) of ı2%2.n/ for the white noise
model; we refer to this method as the balancing principle (white). These results
are given in Fig. 7.

2. Four independent sets of data yı
i are available, in which case we use the estimate

(13) for ı2%2.n/. Figure 8 shows the results for the fast balancing variant that is
described in the next paragraph.

In each situation, we use the maximal index N as defined in (12).

Known Issues The balancing principle is one of the few parameter choice methods
for which oracle inequalities for the error are known (cf. Raus and Hämarik 2007;
Bauer et al. 2009), i.e., there are stronger results than rates of convergence alone.
In particular, the balancing principle does not have a saturation problem, and, for
stochastic noise, it is optimal up to at most a log.1=ı/ factor (which has not been
observed in practice).

According to the theory (cf. Mathé and Pereverzev 2003), the constant �

should be 1 in the deterministic setting. In the stochastic setting with continuous
Gaussian white noise, � should be O..log ı�1/1=2/ for mildly ill-posed problems
and O..log log ı�1/1=2/ for severely ill-posed problems (cf. Bauer and Pereverzev
2005).

The constant � acts as a stability parameter. The method is very stable when �

is chosen sufficiently large, but it can be quite unstable if � is chosen too small.
A choice of � 2 Œ0:5; 1:5� appears to give good results, independent of the noise
situation and the inverse problem.

Instead of the balancing functional in (21), one can use the modified version

b.n/ D max
n<k�`.n/

˚
4�1kxn � xkk=.ı%.k//

�
; (22)
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Fig. 7 Inefficiencies of the balancing principle (white) using known ı

Fig. 8 Inefficiencies of the fast balancing principle using four independent data sets
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where `.n/ is an increasing sequence for which %.`.n//=%.n/ 	 ˇ > 1 for some
constant ˇ. This definition requires fewer evaluation steps while also giving a
convergent method (see Mathé and Pereverzev 2003; Bauer and Munk 2007). Our
experience is that, provided ˇ is big enough so that `.n/ � n 	 4, the results are not
distinguishable from those of the original version. In the experiments reported here,
we used `.n/ defined by %.`.n//=%.n/ D 2. The choice of n� as the first n with
b.n/ � � (b.n/ as in (22)) is called the fast balancing principle. This method has
the advantage of requiring a much lower number of computations than the original
version. For the fast balancing principle with `.n/ D nC1 in (22), optimality results
are known (cf. Hämarik and Raus 2009) for Tikhonov and other regularization
methods with deterministic noise, given either the actual or an approximate noise
level.

For a white noise model, instead of using several independent data sets or the
analytic expressions (10) and (11) of ı2%2.n/, one can use the Monte Carlo estimate
%2.n/ � MeankA�1

n
O�i k2, where O�i are synthetic vectors of independent standard

normal pseudorandom variates, together with a known or estimated value of the
noise variance ı2. The same estimate applies to any regularization method with
linear regularization operator A�1

n .

Results In our experiments, the results for the balancing principle and its fast
version with the same input are very hard to distinguish, and therefore we included
only the figure for the fast variant (Fig. 8). Both are listed in Table 4 in our
conclusion (Sect. 5).

The results in Figs. 7 and 8 for the white noise situation are almost identical
for both Tikhonov and spectral cutoff regularization (slightly better for balancing
principle (white) in Fig. 7). The method is stable and performs quite well. In Fig. 8,
the results for colored noise are quite similar (with only slightly more variation)
to those for white noise, since here the method adapts automatically to the noise
color. On the other hand, in Fig. 7, there are a considerable number of outliers for
the colored noise scenario, in particular for smoother solutions x.

4.7 Hardened Balancing Principle

The hardened balancing principle is a modified version of the balancing principle of
Sect. 4.6 in the stochastic setting and was first proposed in Bauer (2007). It has the
advantage that it does not require a tuning parameter.

Method The input is the same as for the balancing principle in Sect. 4.6 without
the tuning parameter and the noise level, so it can be computed parallel to this
one. Furthermore, an expression or approximation of the scaled variance %2.n/ D
ı�2

Ekx0
n � xı

nk2, or any scalar multiple of this (so ı can be unknown), is required.
Define the balancing functional b.n/ as in (21) and smoothed balancing functional
B.n/ D maxn�k�N fb.k/g. The parameter choice is
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n� D argmin
n�N

n
B.n/

p
%.n/

o
: (23)

Obviously, the same choice is obtained if any scalar multiple of %.n/ is used in its
place. We use the same two inputs for (scaled) %.n/ as for the balancing principle:

1. To address the situation of one data set with no knowledge about the noise, we use
the known expressions (10) and (11) of ı2%2.n/ for the white noise model. We
refer to this method as the hardened balancing principle (white), and its results
are depicted in Fig. 9.

2. We estimate ı2%2.n/ using (13) with four independent sets of data yı
i . Figure 10

shows the results.

In each situation, we use the maximal index N in (12). For better computational
efficiency, as for the balancing principle, one can use the modified version of the
balancing functional defined in (22) instead of (21). In our experiments, we used the
modified version with `.n/ defined by %.`.n//=%.n/ D 2.

Known Issues For spectral cutoff regularization, a version of the hardened balanc-
ing principle has been analyzed by Bauer and Reiß (2008) in a Bayesian framework,
with stochastic x and noise, and sequence data. It is shown that the parameter choice

Fig. 9 Inefficiencies of the hardened balancing principle (white)
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Fig. 10 Inefficiencies of the hardened balancing principle using four independent data sets

satisfies an oracle inequality and is optimal (up to a constant independent of the
noise level) with respect to the risk for some error moment. As a consequence,
the method is not prone to saturation. Because the basis of the proofs is the same
as for the quasi-optimality criterion, it is very likely that similar results hold for
Tikhonov regularization, even with deterministic source conditions (cf. Bauer and
Kindermann 2008).

Numerical experiments in Bauer (2007) and Bauer and Reiß (2008) indicate
that the method is very stable. Some care needs to be taken when the Tikhonov
regularization parameter becomes smaller than the smallest eigenvalue of A�A.
However, this situation can be easily (and automatically) detected in practice by
choosing N as in (12).

All remarks in Sect. 4.6 concerning the choice of %.n/ also hold true for the
hardened balancing principle. In particular, for the white noise model, one can use
the Monte Carlo estimate of %2.n/ as for the balancing principle in Sect. 4.6.

Results Figure 9 displays the results for the hardened balancing principle (white),
which uses the variance expressions (10) and (11) for the white noise model. As
expected, it performs very well in the white noise situation, with results that are
almost identical to those in Fig. 10. In the colored noise situation, there is much
more variability – note that there are extreme outliers that lead to some large means
in the spectral cutoff case. The performance for Tikhonov regularization is better in
the cases with less smooth solutions.



1746 F. Bauer et al.

Figure 10 shows that the hardened balancing principle using four independent
data sets for variance estimation is extremely stable for both white and colored noise,
and it has excellent efficiency values in all the test cases for both Tikhonov and
spectral cutoff regularization.

4.8 Quasi-optimality Criterion

The quasi-optimality criterion (see, e.g., Tikhonov and Arsenin 1977; Hofmann
1986) is one of the oldest and simplest available parameter choice methods. It was
originally introduced by Tikhonov and Glasko (1965) and became better known
from the continuous version proposed by Tikhonov and Arsenin (1977). A good
overview of the method and its history can be found in Bauer and Kindermann
(2009).

Method As input for a certain minimization, one needs the following:

• Maximal index N , a suitable value is defined in (12)
• All regularized solutions fxı

ngn�N up to N

The noise level does not need to be known, and there is no tuning parameter. The
parameter choice n� is defined simply as

n� D argmin
n�N

kxı
n � xı

nC1k: (24)

The continuous version for Tikhonov regularization defines the parameter choice by
˛� D argmin

		˛ d
d˛

xı
˛

		. Using a difference quotient in place of the derivative for
the discrete parameters ˛n D ˛0q

n
˛ , it is clear that these versions are consistent.

Known Issues For a discrete set of regularization parameters, the use of a suitable
maximal index is essential. This is because the method is based on a discrete
evaluation of a differential and hence is very sensitive to a situation where the
regularization operators A�1

n are formally different, but are practically the same
due to the finiteness of the considered problem. This happens especially when the
regularization parameter ˛n for Tikhonov regularization falls below the smallest
eigenvalue of the operator A�A. This issue does not apply to infinite dimensional
inverse problems (case C1) and, therefore, is rarely considered in the inverse
problems literature. In order for the quasi-optimality criterion to be successful for
spectral cutoff regularization, the cutoff points l.n/ need to be chosen carefully and
far enough apart (cf. Bauer and Reiß 2008).

The noise can be stochastic (white or colored) or deterministic, but more care is
advised in the deterministic setting because of the conditions on the error (see Bauer
and Kindermann 2008).
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Convergence of Tikhonov regularization with the quasi-optimality criterion was
shown in Leonov (1979) in the discrete (i.e., not ill-posed, but only ill-conditioned)
case with deterministic noise. The question of convergence in infinite dimensional
spaces was discussed in Glasko and Kriksin (1984), where abstract conditions were
given.

Although it has been used successfully in a number of practical situations (see,
e.g., Pohl et al. 2001), the first more concrete proofs for the quasi-optimality
criterion were provided only quite recently – in Bauer and Reiß (2008) for spectral
cutoff regularization in a Bayesian setting and in Bauer and Kindermann (2008)
for Tikhonov regularization with either deterministic or stochastic noise. In both
papers, oracle inequalities are derived under certain conditions, which show that
the method is near optimal and is not prone to saturation. One of the conditions
is that the noise has weight in all frequency components (so, e.g., it is not band
limited), which is usually true in practice. A more theoretical analysis, including
convergence properties, in some deterministic settings was derived in Kinder-
mann and Neubauer (2008) and Neubauer (2008) and generalized in Kindermann
(2011).

For iterative regularization methods, less is known about the behavior of the
quasi-optimality criterion. There are some convergence results in Kindermann and
Neubauer (2008), Neubauer (2008), and Kindermann (2011), for deterministic
noise, in particular a slow convergence rate for Landweber iteration.

Results As seen in Fig. 11, the quasi-optimality criterion has excellent performance
across all the test cases for spectral cutoff and Tikhonov regularization with either
white or colored noise. Keeping in mind that it is computationally the simplest of
the available methods and that it does not require the noise level, the performance is
remarkable.

4.9 L-CurveMethod

The L-curve method, proposed by Hansen (1992, 1998) and Hansen and O’Leary
(1993), is based on the long-known fact that a log-log parametric plot of .kAxı

n �
yık; kxı

nk/ often has a distinct L-shape (cf. Lawson and Hanson 1974). Points on
the vertical part correspond to large n (under-smoothed solutions) and those on the
horizontal part correspond to small n (over-smoothed solutions), which suggests
that the “corner point” of the L-curve should define a good value of the parameter n.
Due to its simplicity and intuitive appeal, the method became popular in a number
of application areas.

Method As input to minimize a certain function, one needs the following:

• Norms of all residuals fAxı
n � yıgn�N

• Norms of the regularized solutions fxı
ngn�N
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Fig. 11 Inefficiencies of the quasi-optimality criterion

The noise level does not need to be known. The parameter choice is defined by the
product of the norms of the residual and regularized solution, i.e.,

n� D argmin
n�N

˚kAxı
n � yıkkxı

nk�
: (25)

Here the “corner point” is defined by the slope of its “tangent” being �1 as
in Reginska (1996) (see also Engl et al. 1996). The generalizations minimize
kAxı

n � yıkkxı
nk� (see Reginska 1996; Lu and Mathé 2013), where � is a tuning

constant, but we will not consider this here.

Known Issues One of the problems with the L-curve approach is that the “corner
point” is not a well-defined notion, and several algorithms have evolved with
different definitions. The first algorithm for Tikhonov regularization used the
maximum curvature of the L-curve (see Hansen and O’Leary 1993; Calvetti et al.
2002). The above algorithm by Reginska (1996) is a simpler alternative, which can
also be applied with discrete regularization parameters. Our experience (see also
Johnstone and Gulrajani 2000) is that these algorithms have similar performance.
Other algorithms are given in Hansen et al. (2007) and the references therein.

Recently, Lu and Mathé (2013) derived the first rigorous optimality result for
the L-curve criterion. They showed, in the deterministic setting, that if the L-curve
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functional defined above has an interior global minimizer, then this choice satisfies
a certain optimality property. However, there is no guarantee that there will be such
a minimizer. In many (but not all) problems, the L-curve method (in its various
forms) has been observed to give a reasonably good and robust parameter choice,
and it can cope with correlated errors (see, e.g., Hanke and Hansen 1993; Hansen
and O’Leary 1993; Hansen 1998; Hansen et al. 2007; Abascal et al. 2008; Åkesson
and Daun 2008; Correia et al. 2009).

However, it is known theoretically that the L-curve method (from Hansen
and O’Leary 1993) has serious limitations (cf. Engl et al. 1996; Yagola et al.
2002): the L-curve corner may not even exist and it is not convergent, neither
in the deterministic setting (under-smoothing) nor in the stochastic setting (over-
smoothing). These effects have been observed in numerical experiments (see, e.g.,
Johnstone and Gulrajani 2000; Hansen 2001). Moreover, finding the L-curve corner
is hard to automate, in particular with discrete regularization parameters. For more
details, we refer to Hanke (1996), Reginska (1996), and Vogel (1996, 2002).

The L-curve method can also be extended to various iterative regularization
methods (see Hanke and Hansen 1993, Hansen 1998, Kilmer and O’Leary 2001,
Farquharson and Oldenburg 2004, Kindermann 2011).

Results As seen in Fig. 12, the L-curve method has very poor performance across
all the test cases for both Tikhonov and spectral cutoff regularization. Note that
“missing” parts in the panels indicate that the inefficiency is very large!

Fig. 12 Inefficiencies of the L-curve method
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4.10 Extrapolated Error Method

This method, developed by Brezinski et al. (2008, 2009) for discrete ill-posed
problems, chooses the regularization parameter by minimizing an estimate of the
2-norm error kx � xı

nk found by an extrapolation procedure.

Method The input required for a certain minimization is:

• Norms of all residuals frn D yı � Axı
ngn�N

• Norms of transformed residuals fA�rngn�N

The parameter choice is

n� D argmin
n�N

fkrnk2=kA�rnkg: (26)

Known Issues The expression krnk2=kA�rnk in (26) is one of a family of extrap-
olated estimates of the error kx � xı

nk (see Brezinski et al. 2008, 2009). In practice,
to calculate the expression accurately for small ˛n in Tikhonov regularization, one
should replace A�rn by the equivalent term ˛nxı

n. There is currently no convergence
analysis to justify the method, but numerical results in Brezinski et al. (2008)
indicate that it is quite robust.

Results As seen in Fig. 13, for white noise, the extrapolated error method performs
reasonably well for spectral cutoff and for certain test cases of Tikhonov regulariza-
tion but rather poorly for smoother solutions (� 	 4). With colored noise, there are
a significant number of poor outliers for smoother solutions. Note that the mean for
the .700; 4; �10/ setting in spectral cutoff with white or colored noise is too large
to fit into the panels. The results are similar to, but slightly worse than, the results
of the discrepancy principle in Fig. 2. However, they show less variation for colored
noise.

We also assessed a related method proposed in Brezinski et al. (2009), which has
krnkkA�rnk=kAA�rnk in place of the expression in (26), but overall it gave much
worse results than the method above.

4.11 Modified Discrepancy Partner (MDP) Rule

Hanke and Raus (1996) developed a general approach to construct a data-driven
rule (requiring no a priori knowledge) from an order-optimal rule (that requires the
noise level ı) in the deterministic setting (see also Hämarik et al. 2009, 2011; Lu
and Mathé 2013). The approach uses a bound on the function defining the order-
optimal rule to implicitly bound the error in the regularized solution. In particular,
they applied the approach to the MD rule for Tikhonov regularization in Sect. 4.3 to
get the modified discrepancy partner (MDP) rule.
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Fig. 13 Inefficiencies of the extrapolated error method

Method The MDP rule requires the following input for a certain minimization:

• All regularized solutions fxı
ngn�N

Neither the noise level ı nor any tuning parameter is necessary. As for the MD
rule, one has to compute the function f in Eq. (18). The MDP rule also uses the
function % in the bound (8), but this is already required in the derivation of f . For
Tikhonov regularization with parameter ˛n D ˛0q

n
˛ , we have %.n/ D ˛

�1=2
n , and,

for spectral cutoff regularization, we have %.n/ D ��1
l.n/. The parameter choice n�

is the minimizer of %.n/	.n/, where 	.n/ D .f .n//1=2 is the left-hand side of (19),
that is,

n� D argmin
n�N

f%.n/ˇn

ˇ̌˝
Axı

n � yı; .A�/�1
�
xı

n � xı
nC1

�˛ˇ̌1=2g: (27)

Known Issues For Tikhonov regularization, Hanke and Raus (1996) derive a bound
for the error which shows that if 	.n�/ is of the same order as kyı � yk, then the
MDP rule achieves the optimal rate of convergence as ı ! 0. They suggest that the
value of 	.n�/ be monitored, and, if it is significantly less than the presumed noise
level, then the parameter choice n� should be rejected. In numerical experiments for
Tikhonov regularization in Hanke and Raus (1996), the MDP rule gives errors that,
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Fig. 14 Inefficiencies of the MDP rule

although greater, are less than twice that of the underlying MD rule. It is observed,
however, that the MDP rule is not convergent (over-smoothing) in the discrete case
as the sample size goes to 1.

It is shown in Hämarik et al. (2009) and Hanke and Raus (1996) that the
proposed approach is quite general, and it can be applied with order-optimal
rules for other regularization methods for linear problems to give useful data-
driven rules. A more theoretical analysis, including convergence properties, in
some deterministic settings was derived in Kindermann (2011), also for iterative
regularization methods.

Results As seen in Fig. 14, the MDP rule has excellent performance across all the
test cases for spectral cutoff in both the white and colored noise situations. For
Tikhonov regularization and white noise, it has performance similar (slightly worse)
to the MD rule in Fig. 4. The behavior for colored noise is better than the MD rule,
but test cases with smoother solutions still show a lot of variability.

4.12 Normalized Cumulative PeriodogramMethod

For the finite dimensional situation with white noise, Rust (2000) suggested using
the periodogram of the residual vector as a diagnostic tool. Building on this,
Hansen et al. (2006) developed a parameter choice method, called the normalized
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cumulative periodogram (NCP) method, and Rust and O’Leary (2008) proposed
a similar method. The basis of these methods is to make the residual as close as
possible to white noise.

Method As input to minimize a certain function, the following is required:

• Norms of all residual vectors fAxı
n � yıgn�N where yı 2 Rq

The noise level does not need to be known. Note that the method is formulated
for stochastic white noise. The (unscaled) periodogram of the residual vector rn D
yı � Axı

n is defined as the vector p with elements pk D jdft.rn/j2, k D 1; : : : ; q,
where dft denotes the discrete Fourier transform. Define the normalized cumulative
periodogram as the vector c D c.rn/ with elements

ci D k.p2; : : : ; piC1/k1=k.p2; : : : ; pq/k1; i D 1; : : : ; q � 1;

where k�k1 is the l1 norm, and let v be the vector with elements vi D i=.q � 1/.
Then the NCP parameter choice is

n� D argmin
n�N

kv � c.rn/k1:

Known Issues There is currently no convergence analysis of the NCP method.
As shown in Hansen et al. (2006), the underlying assumption that the residual
resembles white noise holds only approximately for a range of values of the
Tikhonov regularization parameter ˛ that are not too small, so it is likely that there
are limitations for the method. However, the NCP method and its variant in Rust
and O’Leary (2008) have been shown to perform well on several test problems. It is
clear from the basis of the NCP method that the noise should be white. In principle,
the method can also be applied to iterative methods.

Results Figure 15 shows that the NCP method has quite good performance in the
white noise situation except for Tikhonov regularization with smoother solutions
(� 	 4). By contrast, the method has poor performance in the colored noise scenario
for both Tikhonov and spectral cutoff regularization.

4.13 Residual Method

The residual method was introduced in Bauer and Mathé (2011) for spectral cutoff
regularization in an infinite dimensional Bayesian setting (see also Bauer 2007).
The method is based on minimizing a certain weighted form of the norms of the
residuals, where the weighting penalizes under-smoothing parameter values.



1754 F. Bauer et al.

Fig. 15 Inefficiencies of the NCP method

Method As input to minimize a certain function, one needs the following:

• Norms of all residuals fAxı
n � yıgn�N of the regularized solutions

• A trace function of the operator and the regularization operators

The noise level does not need to be known. Define the operator B D A.I � A�1
n A/.

The parameter choice is defined by

n� D argmin
n�N


 kAxı
n � yık

.trace B�B/1=4

�
: (28)

Known Issues Assuming an appropriate behavior for the random element x, the
residual method for spectral cutoff is a convergent method as ı ! 0 (cf. Bauer and
Mathé 2011), and this holds with noise of unknown moderate color. The rate results
show that the performance improves as the degree of ill-posedness of the problem
increases, though it is not optimal.

It is clear from (28) that this choice is similar in form to generalized cross-
validation (30) of Sect. 4.15. For spectral cutoff regularization, the trace can be
evaluated easily. For Tikhonov regularization, computation of the trace might be
rather expensive if q is large, but more efficient stochastic trace estimators can be
used (see, e.g., Girard 1989; Hutchinson 1989; Golub and von Matt 1997).
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Fig. 16 Inefficiencies of the residual method

Results Figure 16 shows that the residual method has good performance for
spectral cutoff regularization with white noise and mediocre performance with
several outliers for colored noise. Tikhonov regularization shows some severe
saturation effects. The method has slightly better performance when the problem
is more ill-posed (larger values of the height h), and in these cases, it copes quite
well with unknown colored noise. The results are similar to those of the discrepancy
principle in Fig. 2 (slightly better for spectral cutoff, a bit worse for Tikhonov) and
similar (slightly worse) to those of GML for Tikhonov (see Sect. 4.14 below).

4.14 Generalized Maximum Likelihood

As discussed in Sect. 2, the Tikhonov regularized solution for discrete data with
independent Gaussian errors can be interpreted as a Bayes estimate of x if x

is endowed with the prior of a certain zero-mean Gaussian stochastic process
(cf. Eubank 1988; Wahba 1990). Using this interpretation, Wahba (1985) derived
the generalized maximum likelihood (GML) estimate (see also Anderssen and
Bloomfield 1974; Davies 1982; Wecker and Ansley 1983). In the case where
A W Rq ! Rq has full rank and the Euclidean norm is used for regularization, the
GML estimate (which is then an ordinary maximum likelihood estimate) is based
on y � N .0; b.AAT C 
I// for a constant b.
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Method As input to minimize a certain function, the following is needed:

• Sums of squares of all the residuals fAxı
n � yıgn�N where yı 2 Rq

• All eigenvalues of I � AA�1
n , where AA�1

n is the influence matrix mapping yı to
Axı

n

The method is formulated for stochastic white noise where knowledge of the
noise level is not required. GML can be applied for all methods (in particular
Tikhonov regularization) where these input data are known, but it is not appropriate
for spectral cutoff regularization, as seen below. The GML parameter estimate is
defined by

n� D argmin
n�N


 kAxı
n � yık2

.detC .I � AA�1
n //1=q1

�
; (29)

where q1 D rank.I � AA�1
n / and detC is the product of the nonzero eigenvalues.

Known Issues For spectral cutoff, clearly, detC .I � AA�1
n / D 1, so the GML

function is just the residual sum of squares. Therefore, the GML method will
always severely under-smooth. For Tikhonov regularization of polynomially ill-
posed problems with uncorrelated errors in the data, the “expected” GML estimate
has been analyzed in Wahba (1985) and Lukas (1995). As the sample size q ! 1,
the estimate is asymptotically optimal with respect to the prediction risk for “rough”
solutions, i.e., solutions x that behave like a realization of the prior stochastic
process. However, the estimate is suboptimal and under-smoothing for solutions
which are “smoother” than the minimum required by x 2 X . In numerical studies
for spline smoothing (cf. Kohn et al. 1991), the GML method performed well
and was more stable than GCV (see Sect. 4.15). A geometric explanation of this
stability is given in Efron (2001), where it is also shown that GML can suffer serious
bias.

It is known that GML tends to under-smooth when the errors are positively
correlated (see Opsomer et al. 2001). The method can be extended to deal with
correlated errors, where the correlation is known or parametrically specified, and it
performs quite well in this situation for certain smoothing problems (cf. Wang 1998;
Opsomer et al. 2001). Note that for Tikhonov regularization, the detC term in (29)
can be computed using a SVD of A if q is not too large.

Results As seen in Fig. 17 (and noted above), the GML method does not give
reasonable results for spectral cutoff regularization. Note that “missing” entries
correspond to very large inefficiencies. For Tikhonov regularization with white
noise, GML performs well when � is small, but poorly when � 	 4, consistent
with the asymptotic results. The method also performs quite well when � is small in
the colored noise scenario, but otherwise it has poor performance.
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Fig. 17 Inefficiencies of the generalized maximum likelihood

4.15 Generalized Cross-Validation

Generalized cross-validation (GCV), due to Wahba (1977), is a popular method for
practical problems with discrete data and stochastic noise. It originates from the
older method of ordinary cross-validation, whose rationale is to consider all the
“leave-one-out” regularized solutions and choose the parameter that minimizes the
average of the squared prediction errors in using each solution to predict the missing
data value. The calculations can be done without computing all the regularized
solutions. By using a certain weighting of the prediction errors, Craven and Wahba
(1979), Golub et al. (1979), and Wahba (1977, 1990) derived the GCV method,
which has the advantage of being invariant under orthogonal transformations of the
data.

Method As input to minimize a certain function, one needs:

• Sums of squares of all the residuals fAxı
n � yıgn�N where yı 2 Rq

• The trace of the influence matrix AA�1
n mapping yı to Axı

n

The noise level does not need to be known. As discussed below, GCV is best suited
to stochastic white noise. The GCV parameter estimate is defined by
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n� D argmin
n�N


 kAxı
n � yık2

.q�1 tr.I � AA�1
n //2

�
: (30)

Known Issues GCV is closely related to and behaves like the unbiased prediction
risk method (also known as Mallows Cp or CL; see Li 1987; Wahba 1990; Efron
2001). This uses a certain estimate of the prediction risk EkAxı

n � yk2 that is
unbiased if the errors are uncorrelated. Therefore, the GCV estimate is close to
being unbiased as a minimizer of the prediction risk.

It has been analyzed asymptotically for polynomially ill-posed problems. For
Tikhonov regularization, it is known from, e.g., Li (1986), Lukas (1993), and Gu
(2002), that, with uncorrelated errors, GCV is asymptotically optimal with respect
to the prediction risk as the number of data points q ! 1, i.e., the inefficiency,
goes to 1. In addition, if the unknown solution x is not too smooth relative to the
operator, then GCV is order optimal for the X -norm risk Ekxı

n � xk2 (cf. Wahba
and Wang 1990; Lukas 1993; Vogel 2002). This saturation effect is not as serious as
it may seem since one can use GCV to choose the order of regularization (Wahba
1990).

For spectral cutoff regularization, it is known, e.g., from Li (1987) and Vogel
(1986, 2002, Chap. 7), that the GCV method is asymptotically optimal for both
the prediction risk and the X -norm risk. The GCV method has been used widely
and has been observed to perform very well for reasonably large data sets with
uncorrelated errors (white noise). However, it is known (see, e.g., Thompson et al.
1989, Wahba 1990, Kohn et al. 1991, Efron 2001, Kou and Efron 2002, Lukas
2006, 2010) that for smaller data sets or correlated errors of red noise type, the
method is rather unstable, often resulting in under-smoothing. Graphically, the
GCV function in (30) can be very flat near its minimum, it can have multiple
local minima, and the global minimum can be at the extreme endpoint for under-
smoothing.

The term tr.AA�1
n / in the GCV function is a measure of the degrees of

freedom in the regularized solution, i.e., l.n/ for spectral cutoff regularization.
For Tikhonov regularization, it is harder to compute, e.g., by SVD (cf. Hansen
1998; Wahba 1990), bi-/tridiagonalization (cf. Eldén 1984; Gu et al. 1989; Wahba
1990, Chap. 11; Hansen 1998), or trace estimation using stochastic (Monte Carlo)
algorithms (cf. Girard 1989; Golub and von Matt 1997; Hutchinson 1989). Other
efficient algorithms exist for special problems, in particular spline smoothing (see
Hutchinson and de Hoog 1985).

Several extensions of GCV have been proposed to deal with correlated data
in certain smoothing problems, where the correlation is known or parametrically
specified, and good results have been obtained for large sample sizes, e.g., in Wang
(1998) and Opsomer et al. (2001). The GCV method has also been extended in other
directions, including to non-Gaussian data (cf. Gu 2002) and to wavelet thresholding
in Jansen et al. (1997). It can also be applied to iterative regularization methods (see
Wahba 1990, Hanke and Hansen 1993, Hansen 1998, Haber and Oldenburg 2000,
Kilmer and O’Leary 2001, Santos and De Pierro 2003).
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Fig. 18 Inefficiencies of generalized cross-validation

Some other parameter choice methods proposed in the literature have been shown
to be closely related to GCV, in particular the Akaike information criterion (AIC)
of Akaike (1973) and Eubank (1988). In view of its similarity to GCV, we do not
consider this here.

Results As seen in Fig. 18, in the white noise situation, GCV has excellent
performance across all the test cases for spectral cutoff, and it performs very well
for Tikhonov regularization with solutions of lowest smoothness (� D 2) and
reasonably well for � D 3. However, it performs poorly for Tikhonov regularization
with significant saturation effects in the cases where � 	 4. There is no such
problem for spectral cutoff, consistent with the theory. By contrast with the white
noise situation, GCV performs very poorly in all the colored noise experiments.

4.16 Robust Generalized Cross-Validation

In order to overcome the instability of GCV, a robust GCV (RGCV) method has
been developed in Robinson and Moyeed (1989) and Lukas (2006). Like GCV, the
RGCV method has a good rationale in terms of the influence of data values on the
regularized solution.
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Method As input, one needs the same as for GCV (Sect. 4.15) and:

• The trace of the square of the influence matrix .AA�1
n /2

• A robustness parameter � 2 .0; 1/

The noise level does not need to be known. The RGCV parameter estimate is defined
by minimizing a certain function:

n� D argmin
n�N


 kAxı
n � yık2

.q�1 tr.I � AA�1
n //2

�
� C .1 � �/q�1 tr..AA�1

n /2/
��

; (31)

where � 2 .0; 1/ is the robustness parameter (here: � D 0:1). Note that with � D 1

the RGCV method is just GCV.

Known Issues As � is decreased, the method becomes more robust and it is less
likely to choose a large value of n (see Lukas 2006). The effect of the last term of the
RGCV function in (31) is clear graphically. Compared to GCV, the RGCV function
has significantly higher curvature at the minimum point and so the method is much
more stable.

The last term in (31) can also be explained by the fact that, for uncorrelated errors
with variance ı2, we have ı2 tr..AA�1

n /2/ D EkAxı
n �EAxı

nk2, the variance of Axı
n.

In fact, for Tikhonov regularization of polynomially ill-posed problems, it is known
from Lukas (2006, 2008) that as q ! 1, the RGCV function is consistent with a
weighted sum of the prediction risk EkAxı

n�yk2 and the varianceEkAxı
n�EAxı

nk2,
with weights � and 1 � � , respectively. Therefore, the RGCV method places
extra weight on reducing the variability of the regularized solution. As q ! 1,
the RGCV estimate has the same optimal order as the GCV estimate, but it has
a different constant resulting in a slightly larger value (cf. Lukas 2006, 2008).
Consequently, the method does not suffer as badly as GCV from the saturation
effect.

For spectral cutoff regularization, it is clear that tr..AA�1
n /2/ D tr.AA�1

n / is
simply the number of terms in the expansion of xı

n. For Tikhonov regularization,
tr..AA�1

n /2/ can be computed by the use of SVD or bidiagonalization (cf. Grad and
Zakrajšek 1972). It can be expected that RGCV can be extended in the same way as
GCV to iterative regularization methods.

Results As seen in Fig. 19, in the white noise situation, RGCV performs very well
across all the test cases for spectral cutoff and also for Tikhonov regularization with
solutions of lowest smoothness. However, for � 	 4, there is evidence of the same
saturation effect described for GCV, but the effect is slightly smaller here. The
results for colored noise are mediocre, but a big improvement compared to GCV
in Fig. 18. Note that there are extreme outliers leading to some means that are too
large to fit in the panels.
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Fig. 19 Inefficiencies of robust generalized cross-validation

4.17 Strong Robust GCV

The RGCV method in Sect. 4.16 is one of a family of robust GCV methods
developed in Lukas (2008) that also includes the strong robust GCV method,
denoted R1GCV. Like GCV and RGCV, the R1GCV method has a good rationale in
terms of the influence of data values on the regularized solution (see Lukas 2008).

Method As input, one needs the same as for GCV (Sect. 4.15) and:

• The trace of A�1 �
n A�1

n

• A robustness parameter � 2 .0; 1/

The noise level does not need to be known. The R1GCV parameter estimate is
defined by minimizing a certain function:

n� D argmin
n�N


 kAxı
n � yık2

.q�1 tr.I � AA�1
n //2

�
� C .1 � �/q�1 tr..A�1 �

n A�1
n /

��
; (32)

where � 2 .0; 1/ is the robustness parameter (here: � D 0:95). Note that for � D 1

the R1GCV method is just GCV.



1762 F. Bauer et al.

Fig. 20 Inefficiencies of strong robust generalized cross-validation

Known Issues As � is decreased, the method becomes more robust, and it is less
likely than GCV and (generally) RGCV to choose a large value of n (cf. Lukas
2008). The last term in (32) can be explained by the fact that for uncorrelated
errors with variance ı2, we have the variance of xı

n given by Ekxı
n � Exı

nk2 D
ı2 tr..A�1 �

n A�1
n //. In fact, for Tikhonov regularization of polynomially ill-posed

problems, it is known from Lukas (2008) that as q ! 1, the R1GCV function in
(32) is consistent with a weighted sum of the prediction risk EkAxı

n � yk2 and the
varianceEkxı

n �Exı
nk2, with weights � and 1�� , respectively. Since this variance is

measured in a stronger norm than for the variance EkAxı
n �EAxı

nk2, R1GCV places
more weight than even RGCV on reducing the variability of the regularized solution.
If the solution x is sufficiently smooth, then the R1GCV choice of regularization
parameter is order optimal with respect to X -norm risk (see Lukas 2008), and if the
solution is less smooth, then it behaves somewhere between this rate and the optimal
rate with respect to the prediction risk. The method also has good finite sample and
asymptotic properties for problems with correlated errors (cf. Lukas 2010).

If a SVD is used to compute tr.AA�1
n // in (31), then it requires very little extra

work to compute Tn D tr..A�1 �
n A�1

n / in (32). For Tikhonov regularization, Tn can
also be computed as Tn D �D.tr.AA�1

n //, where D is the divided difference
with respect to the regularization parameter (since with continuous Tikhonov
regularization parameter ˛, we have T˛ D �.d=d˛/.tr.AA�1

˛ //) (cf. Lukas 2008).
It can be expected that R1GCV can be extended in the same way as GCV to iterative
regularization methods.
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Results Figure 20 shows that R1GCV mostly performs reasonably well across all
the test cases for spectral cutoff in both the white and colored noise situations. For
Tikhonov regularization, it performs well with solutions of lower smoothness (� �
3), but there is still a significant saturation effect. The results for colored noise are
much better than for GCV or RGCV, but the results for spectral cutoff and white
noise are a little worse than RGCV.

4.18 Modified Generalized Cross-Validation

The modified GCV method involves a simple modification of the GCV function that
is designed to stabilize the method (cf. Cummins et al. 2001; Vio et al. 2004).

Method The required inputs are the same as for GCV (Sect. 4.15) plus:

• A stabilization parameter c > 1

The noise level does not need to be known. The modified GCV estimate is defined
by

n� D argmin
n�N


 kAxı
n � yık2

.q�1 tr.I � cAA�1
n //2

�
; (33)

where c > 1 is the stabilization parameter (here: c D 3). When c D 1, the method
reduces to GCV.

Known Issues The effect of the factor c can be explained in terms of the degrees
of freedom for the regularized solution, defined as df D tr.AA�1

n /, where AA�1
n is

the influence matrix (cf. Cummins et al. 2001). Clearly the factor introduces a pole
at q=c in the objective function as a function of df , which constrains the value of n

so that df < q=c and modifies the function’s shape to prevent under-smoothing.
The modified GCV method for Tikhonov regularization is closely related to the

RGCV method of Sect. 4.16 in the sense that, under appropriate conditions, they are
asymptotically equivalent as the sample size q ! 1 (see Lukas 2008). Clearly, the
modified GCV estimate can be computed in the same way as the GCV estimate of
Sect. 4.15. It can be expected that the modified GCV method can be extended in the
same way as GCV to iterative regularization methods.

Results As seen in Fig. 21, the modified GCV method has reasonably good
performance across all the test cases for spectral cutoff in both the white and colored
noise situations. For Tikhonov regularization, it performs well in the cases with less
smooth solutions, but, like GCV, it suffers from the saturation effect. With c D 3

here, the results for the colored noise situation are similar (slightly better) to those
of R1GCV in Fig. 20.
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Fig. 21 Inefficiencies of modified generalized cross-validation

4.19 Other Methods

There are a few parameter choice methods that, for certain reasons, we did not
consider in our study. These methods and the reasons are listed below. It should
be noted that a method’s omission does not mean that it performs poorly:

• The method is known to behave very much like another method in the study:
– Akaike information criterion (AIC) of Akaike (1973) behaves like GCV (cf.

Eubank 1988).
– The unbiased prediction risk method (also known as Mallows CP or CL)

behaves like GCV (see Li 1987; Wahba 1990; Efron 2001).
– The unbiased risk method of Lukas (1998a) and Cavalier and Golubev (2006)

behaves like the modified discrepancy principle with a particular tuning
constant.

– Rule R1 of Hämarik and Raus (2009) behaves like the fast balancing principle
with `.n/ D n C 1 in (22).

• The method does not generalize in an obvious way to both Tikhonov regulariza-
tion and spectral cutoff regularization:
– Arcangeli’s principle (see Arcangeli 1966; Groetsch and Schock 1984; Nair

and Rajan 2002), which is an early method developed for Tikhonov regular-
ization with deterministic noise
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– Rule R2 of Raus and Hämarik (2009) and Hämarik et al. (2011, 2012), which
was developed for (iterated) Tikhonov regularization with deterministic noise

– Risk hull method of Cavalier and Golubev (2006), which was developed for
spectral cutoff regularization with Gaussian white noise

• The method is difficult to automate:
– Some versions of the L-curve method

• The method requires a heavy load of precomputations, which makes it difficult
to test in our large-scale simulation experiments. Such methods usually make use
of a precise specification of the stochastic noise model, which in practice (at least
at the necessary precision) is not known:
– Risk hull method of Cavalier and Golubev (2006),
– Modified balancing principle of Spokoiny and Vial (2009).

5 Conclusion

In this section, we will summarize the requirements and properties of the parameter
choice methods described in Sect. 4 and then compare them with respect to their
average performance in our numerical experiments. For standard uses, this (in
combination with Bauer and Lukas 2011) should serve as a practical guide through
the jungle of different methods. However, for special problems, the performance
of the methods might be quite different. In addition, for each method, there are
implementation issues which might make one or other method more practical in
certain situations. Most of the methods are based on principles or rationales that
carry over to other regularizations, and so, if a regularization behaves like Tikhonov
or spectral cutoff regularization, then similar results can be expected. Thus, our
results for Tikhonov and spectral cutoff regularization are seen as model results for
regularization methods of low and high qualification, respectively.

5.1 Requirements and Properties

The requirements and general properties of each method are summarized in Table 3.
The methods are split into the three groups according to the input information
required as listed in the beginning of Sect. 4. We provide the following columns
in Table 3:

“Spaces” Function space(s) in which norms/inner products are computed.
“Setting” Data setting, i.e., infinite data possible (1) or finite data required

(q).
“Tuning” Use of tuning parameters (yes/no).
“Complexity” Computational complexity, i.e., all regularized solutions needed

(N) or bisection possible (log).
“Cal.” Requirements for expensive calculations such as traces (tr) or

determinants (det) in each step.
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Table 3 Requirements and general properties of the methods. (D(˙) for the L-curve method
means that there are both positive and negative results)

Method Spaces Tuning Setting Complexity Cal. Proofs Gen.

Disc. princ. Y y 1 log – D+S l+nl

Trans. disc. X y 1 log – D –

MD rule Y y 1 log – D+S l+nl

ME rule Y y 1 log – D –

Vary. disc. X y 1 log tr S l

Bal. pr. (wh.) X y 1 N tr D+S l+nl

Balancing pr. X y 1 N – D+S l+nl

Fast balancing X y 1 log – D+S l

Hardened bal. X n 1 N – S –

Hard. bal. (wh.) X n 1 N tr S –

Quasi-opt. X n 1 log – D+S l

L-curve X ;Y n 1 log – D(˙) –

MDP rule Y n 1 log – D l

Extrap. err. X ;Y n q log – – –

NCP meth. Y n q log – – –

Residual meth. Y n 1 log tr S –

GML Y n q log det S –

GCV Y n q log tr S l

Robust GCV Y y q log tr S –

Str. rob. GCV Y y q log tr S –

Modified GCV Y y q log tr S –

“Proofs” Availability of proofs in a deterministic (D) and/or stochastic (S)
setting.

“Gen.” Generalizations to other regularization methods (mostly Landwe-
ber) for linear (l) or nonlinear (nl) problems.

For further details (input, origin), see the corresponding sections. Note that the
optimal use of a tuning parameter usually improves the results for a certain class of
problems, but setting it incorrectly can give very poor results. Setting the parameter
is especially difficult if there is no theory about its effect on the regularized solution
or if one cannot necessarily check the validity of a certain setting. In practice,
methods without (or with very robust) tuning parameters are usually preferable. All
statements given are to the best knowledge of the authors; some might change in the
course of further research. For further details, we refer to Bauer and Lukas (2011).

5.2 Average Performance

For each method evaluated in Sect. 4, there are four displayed figure panels
(Tikhonov/ExpCutOff with white/colored noise) with a box plot for every test
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Table 4 Mean and median inefficiencies of the methods over all the test cases

ExpCutOff, White ExpCutOff, Color Tikhonov, White Tikhonov, Color
Method Mean Median Mean Median Mean Median Mean Median

Disc. princ. 1.59 1.51 3.14 1.52 5.91 1.53 4.83 1.54

Trans. disc. 1.47 1.43 2.66 1.44 1.32 1.31 4.16 1.30

MD rule 1.12 1.11 1.88 1.13 1.49 1.42 5.98 1.42

ME rule 1.48 1.44 2.63 1.48 1.36 1.38 3.80 1.37

Vary. disc. 1.27 1.26 2.20 1.26 4.60 1.35 3.92 1.42

Bal. pr. (wh.) 1.41 1.36 2.51 1.38 1.91 1.60 7.73 1.59

Balancing pr. 1.41 1.36 1.38 1.35 1.91 1.60 1.83 1.58

Fast balancing 1.48 1.43 1.43 1.42 2.37 1.90 2.24 1.88

Hardened bal. 1.01 1.01 1.01 1.01 1.03 1.02 1.03 1.03

Hard. bal. (wh.) 1.01 1.01 7.50 1.04 1.02 1.02 4.92 1.04

Quasi-opt. 1.05 1.04 1.06 1.05 1.06 1.07 1.06 1.08

L-curve 27,349 1,548 30,140 1,602 2,676 1,024 5,211 1,031

MDP rule 1.05 1.04 1.06 1.06 1.71 1.61 3.28 1.63

Extrap. err. 42.45 1.85 60.85 1.92 7.11 1.57 7.31 1.57

NCP meth. 1.16 1.14 25.08 2.08 3.03 1.13 19.65 1.84

Residual meth. 1.28 1.25 1.87 1.33 9.87 1.95 18.29 2.03

GML 77,361 3,257 73,677 3,140 8.25 2.02 8.31 1.97

GCV 1.00 1.00 1,487 1.66 17.42 3.87 316.4 3.95

Robust GCV 1.09 1.08 717.8 1.39 13.72 3.08 178.8 2.85

Str. rob. GCV 1.60 1.58 2.15 1.58 6.49 1.60 6.61 1.54

Modified GCV 1.19 1.15 1.63 1.16 4.34 1.56 3.87 1.60

case, showing the sample mean(I ) (green ı) and sample median(I ) (red �) of the
computed inefficiencies I . The average performance of the method across all the
test cases is measured using both mean(mean(I )) and median(median(I )), and these
results are displayed in Table 4, which again has three groups according to the input
information required.

The best methods, i.e., those giving the smallest mean and those giving the
smallest median, in the three groups and four situations are marked using boldface.
In most cases, the same method is best for both the mean and median, with both
values close to the ideal value of 1. Several other methods, especially in the colored
noise situation, have a high mean and low median, which means that, while the
method mostly performs well, it also generates a significant number of very poor
outliers. In each of the three groups, the following methods seem to be the best
performers for white and colored noise:

• Noise level ı is known accurately: modified discrepancy principle (ExpCutOff),
transformed discrepancy principle (Tikhonov), monotone error rule (Tikhonov),
and varying discrepancy principle.
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• Several independent data sets are available: hardened balancing principle.
• No extra information: hardened balancing principle (white), quasi-optimality

criterion, modified discrepancy partner rule (ExpCutOff), strong robust GCV
(ExpCutOff), and modified GCV (ExpCutOff).

It should be noted that, in most situations, the best methods that do not require the
noise level performed better than the methods that use the noise level (i.e., those
in the first group). This indicates that one should not use the “known ı” methods
for the sake of performance, but there may be another reason, e.g., computational
efficiency, for doing so.

The conclusions here are consistent with those in the recent numerical studies
of Palm (2010), Bauer and Lukas (2011), Hämarik et al. (2011), and Reichel
and Rodriguez (2013). The three of these other than Bauer and Lukas (2011) use
the set of test problems of Hansen (1994) with uniformly distributed white noise
and colored noise. Comparing the results here with Bauer and Lukas (2011), the
multiplicity of the eigenvalues in our geomathematically motivated tests seems to
have a stabilizing influence on many methods, as they clearly show less variance
and fewer outliers here.

From Table 4, some methods performed much worse for the colored noise
situation than for white noise. In practical applications, where one normally has
only a vague idea of the underlying noise structure, it is usually advisable to opt for
those methods which have good performance for colored noise. This is especially
true as the methods that performed well for colored noise also performed quite well
for the white noise situation. It should be remarked that often the application of the
regularization method requires much more computational effort than the evaluation
of the parameter choice. Therefore, it can be advisable to use several parameter
choice methods to help find the best choice of the parameter.
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