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Abstract
When attempting to simulate sea-level variations precisely, the gravitational
potential of the moving water masses themselves and their capability of mod-
ifying the Earth’s shape have to be considered. Self-attraction and loading
(SAL) describes said effects. We describe SAL theoretically, deriving equations
that allow to compute SAL either with spherical harmonic functions or with a
convolution integral, and show how the equations can be modified to reduce
computational demands of the calculation. Key questions of past and ongoing
research on the topic include a quantification of SAL at periods from days
to years and generated by different processes, the possibility of dynamical
feedbacks, and the question of how SAL can be adequately represented in
various modeling applications. Gravitation being a body force of infinite range,
investigations of SAL include a wide range of processes connected to mass
redistribution. For instance, this includes the fast tidal variability, but also
atmospherically induced ocean dynamics, or mass redistribution on land and in
the atmosphere. Future research is expected to be focused on tidal applications
and to consider SAL on longer time scales as an equilibrium response.

1 Introduction

The distribution of water masses in the world ocean varies permanently on multiple
time scales and is forced by multiple processes. Melting land ice generates water
input into the ocean, changing wind patterns induce ocean currents which in turn
move water masses, and atmospheric pressure fields lead to relocated oceanic water
masses. Additionally, tides induced by the combination of gravitational attraction
by celestial bodies and Earth rotation are superimposed and lead to mass variations
on periods spanning from a few hours to months or years.

All of these mass variations are induced by non-oceanic forces. Yet the image
of water masses and solid Earth reacting passively to these forces oversimplifies
things in several ways: First, it neglects the gravitational attraction that additional
water masses at one location on the Earth exert on water throughout the remainder
of the world ocean. A second reason is the elastic deformation of the seafloor
when being exposed to an additional load. And third, a yielding seafloor entails
a mass redistribution in the Earth’s interior, changing its gravitational potential. The
collection of these phenomena is summarized under the name self-attraction and
loading (SAL) and is not only of interest when simulating tides that repeat within a
couple of hours or days, but is also crucial for projections on time scales of centuries.

Furthermore, the same processes are also at work when masses redistribute on the
continents or in the atmosphere, be it due to the buildup and melting of ice sheets,
the formation of cyclones and anticyclones, or the depletion and replenishment of
groundwater reservoirs. In all cases, the mass distribution can be transformed into an
equivalent two-dimensional field of surface mass density akin to the field of ocean
bottom pressure (OBP) and subsequently be treated with the same mathematical
formalism that was initially developed for tidal applications.
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This formalism can be implemented into ocean models either interactively,
modifying the hydrodynamic equations with a changed potential, or as a correction
to sea-level fields in the post-processing. In both cases, the calculations are
computationally intensive as the water at each point reacts to modified masses at all
other points throughout the ocean. The infinite range of gravitational attraction and
the linkage of distant points through crustal deformation make the full calculations
cumbersome, so adequate simplifications of the formalism are needed in many
applications.

SAL cannot be directly measured since it is merely a secondary force acting
on oceanic water masses, masked by a variety of other forces that influence ocean
dynamics more strongly. It is specifically of interest for modeling applications
in which all relevant forces need to be implemented in order to come up with
geographically heterogeneous sea-level time series. These can, in turn, be validated
with observations.

This chapter is structured as follows: We will begin by formulating the SAL
problem in terms of spherical harmonic functions, then reformulate it as a con-
volution of the generating field with Green’s functions, and discuss the reasoning
behind various attempts of parameterizing the problem. We will then raise the key
questions for the topic, concerning the magnitude of SAL, the different possibilities
of implementing SAL in numerical applications, and the question of computational
efficiency. The discussion of fundamental results in the field of SAL investigations
will be split into a part focussed on tides and a part focussed on nontidal variations.
It will mainly concentrate on the ocean but also touch other subsystems. Future
research directions will be discussed before drawing conclusions from this review.

2 Theory

2.1 Derivation of Spherical Harmonic Equations

We derive the change in gravitational potential induced by self-attraction and
loading following Hendershott (1972), Ray (1998), Müller (2007), and Kuhlmann
et al. (2011). Certain assumptions are made: First, we assume a spherically
symmetrical Earth, neglecting both geometrical deviations due to oblateness and
asymmetries in the density distribution when computing the elastic response, which
is reasonable to first order. Second, we neglect anelastic behavior, which would
result in a time delay in the solid Earth’s response to loading. Elasticity is generally
an adequate assumption when time scales shorter than decades are considered.
Third, we assume that the loads considered are distributed on a spherical shell of
zero thickness. For an extension of the calculations beyond the limitations of these
assumptions, see Klemann et al. (2013, this volume).

Ocean, land hydrology, and atmosphere generate the bulk of their combined
mass variations within a thin shell on the order of 10 km, which is negligibly small
compared to the Earth’s radius of >6;000 km, so we assume that all variable masses
are concentrated on the Earth’s surface.
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Fig. 1 Notations for the
distances and angles
describing two points on a
sphere

The gravitational potential V .p/ at a location p induced by a point mass m at
location q (see Fig. 1 for the notation) can be written as

V .p/ D �
m

pq
(1)

with � being the gravitational constant and pq the distance between p and q. The
contributions from all masses on the sphere need to be summed up in order to obtain
the total potential at point p. We do this by integrating over the surface mass density
�.q/, i.e., the mass per unit area:

V .p/ D �

Z
�0

Z
�0

�.q/

pq
cos �0 d�0 d�0 D �

“
S 0

�.q/

pq
dS 0 (2)

We now rewrite the distance pq in a way that makes spherical harmonic functions
appear, thereby making it possible to insert solid Earth properties into the calcu-
lations via Love numbers. With � the central angle between p and q and R the
sphere’s radius, we can specify the distance between the two points as (Abramowitz
and Stegun 1972, p. 72)

pq D 2R sin

�
�

2

�
D 2R

r
1 � cos �

2
D R

p
2 � 2 cos � . (3)

The series of Legendre polynomials, on the other hand, which will lead toward a
description with spherical harmonics, can be written as

1X
nD0

Pn.cos �/ D 1p
2 � 2 cos �

D R

pq
. (4)

This expression for the distance pq can be inserted into Eq. (2), obtaining for the
gravitational potential
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V .p/ D �

R

“
S 0

�.�0; �0/
1X

nD0

Pn.cos �/dS 0 (5)

D �

R

1X
nD0

“
S 0

�.�0; �0/Pn.cos �/dS 0 . (6)

Note that the spatial dependence of � reduces to the angles �0 and �0, taking
into account that the masses are distributed on a spherical shell of zero thickness.
Since �.�0; �0/ does not depend on n, the integration and the summation could be
interchanged in the second step.

We now consider the decomposition of the surface mass density � into
spherical harmonics. The n-th degree coefficient, implying a sum over all orders
m D 0; : : : ; n which we omit here for brevity, writes down

�n.�; �/ D 2n C 1

4�R2

“
S 0

�.�0; �0/Pn.cos �/dS 0 . (7)

A derivation of this equation for the special case of R D 1 can be found in Smirnow
(1955, p. 427). The integral in Eq. (7) is precisely the one we found in Eq. (6). This
lets us express the potential V .p/ as a sum of spherical harmonic coefficients of the
surface mass density:

V .p/ D �4�R

1X
nD0

�n.�; �/

2n C 1
. (8)

Netwon’s law of universal gravitation reads

jFj D �
m1m2

r2
, (9)

which makes the gravitational constant on the Earth’s surface g equal to

g D �Me

R2
(10)

with Me being the Earth’s mass and R its radius. Inserting this into Eq. (8) leads to
a new expression for the spherical shell’s potential:

V .p/ D 4�R3g

Me

1X
nD0

�n.�; �/

2n C 1
. (11)
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Inserting the mean density of the Earth �e D 3Me=.4�R3/ yields

V .p/ D 3g

�e

1X
nD0

�n.�; �/

2n C 1
. (12)

In applications, especially when ocean models are used, OBP anomalies are more
common than surface mass densities as input fields for SAL calculations. OBP
being the gravitational force exerted by � per area,

p0
B;n.�; �/ D

Z
F�;n.�; �/

dS 0 , (13)

the area element canceling out when rewriting in terms of surface mass den-
sity,

p0
B;n.�; �/ D

Z
g � mn.�; �/

dS 0 D
Z

g � �n.�; �/ � dS 0

dS 0 , (14)

we can replace

p0
B;n.�; �/ D g � �n.�; �/ . (15)

Therefore, the additional potential on a water parcel at location p due to gravitational
attraction by the spherical harmonic functions of bottom pressure anomalies p0

B;n

turns out as

V .p/ D 3

�e

1X
nD0

p0
B;n.�; �/

2n C 1
. (16)

Additionally to this gravitational potential, two terms arise for loading effects.
First, the additional mass lowering the seafloor deforms the Earth elastically by
an amount of h0

nVn=g; second, the mass redistribution within the Earth shifts
the gravitational potential by k0

nVn=g. These two shifts in fact define the Love
numbers h0

n and k0
n (Munk and MacDonald 1960, p. 24; see also Klemann

et al. 2013, this volume). The degree dependence of the Love numbers takes
into account that the elastic properties of the Earth are a function of the spatial
scale of the applied force. The complete potential due to SAL therefore adds up
to

V .p/ D
1X

nD0

.1 C k0
n � h0

n/˛0
np0

B;n.�; �/ with ˛0
n D 3

�e.2n C 1/
. (17)

The generating field p0
B is not necessarily limited to bottom pressure anomalies

caused by oceanic water masses, but can also include mass distributions from
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other sources, such as land hydrology, atmosphere, or cryosphere, restated
in pressure units. The attractive and deformational effects are identical as
long as the assumption of an infinitely thin spherical shell remains sensi-
ble.

2.2 Reformulation withGreen’s Functions

The decomposition of the generating field into spherical harmonic functions is
cumbersome. Alternatively, one can re-substitute the analogous expression to the
definition of the spherical harmonic coefficient from Eq. (7) for the bottom pressure
into Eq. (17), obtaining

V .p/ D
1X

nD0

.1 C k0
n � h0

n/˛0
n

2n C 1

4�R2

“
S 0

pB.�0; �0/Pn.cos �/dS 0 (18)

D
“

S 0

pB.�0; �0/
R

Me

1X
nD0

.1 C k0
n � h0

n/Pn.cos �/dS 0 . (19)

None of the factors before the integral sign depended on the angles �0 or �0, and ˛0
n

could be merged with the fraction. Now, the Green’s function of the problem can be
defined as

G.�/ D R

Me

1X
nD0

.1 C k0
n � h0

n/Pn.cos �/ , (20)

so the potential can be rewritten as

V .p/ D
“

S 0

pB.�0; �0/G.�/dS 0 . (21)

Due to the spherical symmetry, the Green’s function depends only on the central
angle � between the points p and q as well as on constant factors, so it can
be computed once and for all before input data for the generating field is even
considered. This convolution approach can save computing time by eliminating the
need for a decomposition of the generating field into spherical harmonics. It comes
however at the price of an integration over the entire sphere once for the potential
at each point p and again at every time step. It also brings an additional problem:
What is the limit of G.˝/ as ˝ approaches 0? In Eq. (4), this comes down to a
division by zero. A work-around is to distribute the mass onto an extended area
of approximately gridbox size (Stepanov and Hughes 2004). For this distributed
mass, an approximate mean distance to the gridbox center can be calculated, so the
case of ˝ D 0 is avoided. A second option is to iteratively subdivide the identical
grid cell, thereby reducing the mass for which the distance pq is zero. For all other
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subdivisions of the grid cell, SAL can be computed. When a large enough part of the
grid cell mass is taken into account with this method, the remainder at zero distance
may be neglected. In effect, this approach is equivalent to calculating an effective
distance of a grid cell to itself. Since grid cell shapes on a regular grid are latitude
dependent, this effective distance needs to be latitude dependent as well.

2.3 Extensionwith the Sea-Level Equation

The approaches described above assume that a mass distribution invokes a potential
which then needs to be applied to the hydrodynamic equations from which
ocean currents arise. In certain applications, no interactive ocean model is avail-
able, but it is rather attempted to correct available sea-level fields for SAL
effects. In this context, the geoid change induced by the present water masses
needs to be calculated in a gravitationally consistent way, i.e., the ocean mass
itself needs to be considered as a source of gravitation and crustal deforma-
tion modifying the geoid to which it adjusts. The new sea level, adjusted to
the modified geoid, is described by the sea-level equation (Farrell and Clark
1976).

	.�; �/ D �w

g
.G � 	/.�; �/ C 	e � �w

gS 0
oc

“
S 0

oc

.G � 	/.�; �/dS 0 : (22)

The sea level 	 in an ocean of constant water density �w is described as the sum
of a convolution of itself with the Green’s function G.�/, i.e., the sea level’s
contribution as loading described above, and a eustatic contribution 	e to account
for additional masses from, e.g., melting ice caps. The last term ensures mass
conservation and can also be seen as a eustatic contribution. The sea-level equation
can also be extended by permitting the surface of the ocean S 0

oc D S 0
oc.t/, i.e.,

allowing for migrating shorelines. This description has the desired property of
being gravitationally self-consistent, i.e., resulting in a sea-level field that coincides
with the geoid induced by all preceding mass redistributions. The drawback to this
approach is that it is an integral equation that can only be solved iteratively: 	.�; �/

occurs on both sides. Fortunately it turns out that, in most applications, it converges
quickly. Interpreting the meaning of the iterative process, one could say that the
sea level does not simply adjust to the induced potential and thereby reaches a
new equilibrium state. Rather, the adjusting water masses modify the gravitational
potential, which induces new water mass distributions, which modifies the potential,
and so on.

Computing SAL with the sea-level equation becomes necessary mostly for
processes on geological time scales, when melting ice caps, migrating shorelines,
and changes in Earth rotation become relevant. For these processes, a simulation
with a time-stepping model that interactively simulates ocean circulation and
implements SAL as an additional force to which the ocean can react is not feasible,
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but it is necessary to compute approximate equilibrium solutions which rely on the
assumption of an ocean at rest adjusted to the geoid. Numerical implementations
of the solution commonly rely on a pseudo-spectral approach (corresponding to the
formulation with spherical harmonics in Sect. 2.1; see Kendall et al. 2005) or on
spectral finite elements (corresponding to the formulation with Green’s functions in
Sect. 2.2; see Wu 2004).

2.4 Parameterization and Simplification

Implementations of SAL in ocean models, either in the spectral domain with
spherical harmonics or in the spatial domain with Green’s functions, are numerically
intensive. The decomposition of the generating field into spherical harmonics at
every model time step and the back-transformation into the spatial domain after
the gravitational potential has been modified increases in complexity when model
grids of higher resolution are considered, since then the spherical harmonics have
to be computed up to a higher degree and order. The alternative of convolving the
generating field with a Green’s function is not necessarily more efficient either, since
the convolution requires O.N 2/ operations when a grid of N points is considered.
Therefore, various ways of simplifying the problem have been explored.

A radical but commonly used approach of simplification is to set the term

˛0
n.1 C k0

n � h0
n/ D ˇ D const. (23)

in Eq. (17). This does away with the entire decomposition into spherical harmonics
as the induced potential becomes linearly dependent on the generating surface mass
density and goes back to a suggestion by Accad and Pekeris (1978). It implies
approximating the curve in Fig. 2 with a degree-independent constant, which is a
crude assumption, and neglects all far-field effects of distant masses attracting each
other. In effect, it is a local approximation of the elastic response.

Fig. 2 The loading Love
number combination
� 0

n˛n D ˇn as a function of
spherical harmonic degree n

based on the Earth model
used by Farrell (1972) (Figure
taken from Ray 1998). Here,
� 0

n D 1 C k0

n � h0

n and ˛n

correspond to ˛0

n from
Eq. (17) multiplied with the
mean seawater density �w �
1,025 kg/m3

100

0.00

0.05

0.10

g n
′.a

n

0.15

0.20

degree n

0.25

101 102 103
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A different method of simplification consists in cutting off the series in Eq. (17)
at a certain degree nmax, mostly high enough to make use of the full resolution of the
grid the input data is provided on. Choosing a lower nmax reduces the computational
cost. Lower nmax is equivalent to applying a spatial low-pass filter, but if the bulk of
the spectral power is concentrated on long wavelengths, this approach is useful.

Considering Eq. (21), a reduction in computational cost can also be made by
replacing the area of integration, which was the entire surface of the sphere S 0,
by a subset of this surface. This might be done by choosing an upper limit to
the angle � until the contribution to the potential, which according to Eq. (1)
is inversely proportional to the distance between the points p and q, becomes
negligible. Taking into account only the near-field is particularly tempting when
regional model simulations or data sets are used.

Other attempts of simplification have been more heuristic. For instance, Stepanov
and Hughes (2004) suggested to make ˇ in Eq. (23) a function of the local depth
or latitude, exploiting the observational evidence that the spatial scales of mass
anomalies within the ocean are smaller in shallow shelf areas and in higher latitudes.
The degree dependence of ˇ shown in Fig. 2 can be translated into one factor ˇn

corresponding to one spatial scale, determined by its degree n. Even if far-field
effects are still neglected, such varying ˇ values can be adequate if characteristic
length scales of mass variations can be estimated a priori. These approaches come
with drawbacks: If depth- or latitude-dependent length scales are unknown, they
need to be determined with help of the generating fields. For mass variations
on a different time scale or from a different source, say atmospheric instead of
oceanic masses, the dependence needs to be established anew. Different models also
weigh the contributions of superposed effects differently, and different measurement
systems resolve different phenomena in space and time.

3 Key Questions

3.1 Magnitude of SAL on Different Frequencies

Is SAL worth simulating at all, considering the high computational demands?
We are dealing here with a problem that is extraordinarily well understood on a
theoretical level – Newtonian gravitation – but that adds considerable numerical
complexity to the calculation of ocean currents in a model. The initial question in
each application of SAL in an ocean model is therefore directed at the magnitude of
the effect: Is it negligible in view of remaining uncertainties, or not?

This question does not have a simple yes-or-no answer. Depending on temporal
and spatial scale of the generating mass fields as well as level of scientific
understanding and modeling capabilities concerning other processes, answers may
vary. Generally speaking, SAL becomes important when large mass variations
occur over short time periods. An implementation used for tides is not necessarily
appropriate in an application concerned with melting ice caps.
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3.2 Dynamical or Equilibrium Response?

Ocean models typically run at a temporal resolution that is much higher than the
resolution of the desired output fields. In order to appropriately account for wave
propagation or eddy dynamics, internal time steps on the order of minutes may be
necessary, even if, for climatological studies, only daily or monthly mean output
fields are needed. If SAL can be approximated as an equilibrium response to an
additional gravitational potential, inducing only negligibly small additional currents
and not significantly altering the distribution of heat and salt, it can be computed
as a correction to the model output fields. This approach reduces the computational
expenses by orders of magnitude. If, on the other hand, the response of water masses
to the altered potential takes longer than one time step of the model output, feedback
loops make it essential to implement SAL dynamics into the model code at the
point where horizontal currents are computed. The same goes for cases in which
additionally induced currents redistribute, for instance, the oceanic heat content in a
way that alters convection.

3.3 How to Improve Computational Efficiency

Gravitation acts as a body force over an infinite spatial range. Unlike in compu-
tations of frictional effects or pressure gradients, it is not sufficient to have an
exchange of information between neighboring grid cells, but at least in principle,
the entire global mass distribution is needed to compute self-attraction and, equally,
loading effects. This approach consumes a lot of computing time, which is always
one of the bottlenecks in modeling applications. The creation and evaluation of
methods to reduce the computational enormity of the SAL calculations is a recurring
research endeavor.

4 Fundamental Results

4.1 Tidal Variations

Investigations of SAL effects on tides began with Hendershott (1972), who solved
Laplace’s tidal equations with and without accounting for SAL and thereby laying
much of the theoretical groundwork described in Sect. 2. His model of the ocean
was very basic, neglecting crucial phenomena such as dissipation, but his results
concerning SAL are noteworthy nonetheless: SAL modifications to tidal amplitudes
turned out to be of the same order of magnitude as the astronomical forcing potential
itself. Farrell (1972) followed a similar approach, calculating solutions to Laplace’s
tidal equations iteratively. He considered the M2 tide only and separated the
influence of deformational and gravitational potential variations. After convolving
the Green’s function with the M2 tide, he attributed about half of the changes
to nearby (i.e., distances below 3ı) elastic deformation and the other half to the
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Newtonian effect integrated over all distances. Within the elastic deformation, the
hn part caused by vertical surface deformation dominates over the kn part stemming
from a modified Earth gravity field. This led him to suggest the use of local models
for the near-field Earth structure and standard, radially symmetric, Earth models
such as the Gutenberg-Bullen model for the far-field contribution.

Gordeev et al. (1977) reconsidered the problem, computing SAL-affected tides
and accounting for dissipation at the coasts in their ocean model. They concluded
that SAL does not produce a major alteration of the tides’ spatial structure, but that
modifications are important in specific regions of the world’s ocean. In particular,
tidal amplitudes increased in the low and mid-latitudes in the Pacific while
decreasing in the Indian Ocean and in the North Atlantic. Generally, modifications
remained below 20 %, but in some regions they surpassed a factor 1.5 or 2. This is
understandable when considering the far-field impact: Calm regions of the oceans
are influenced by neighboring regions of vigorous tides. Gordeev et al. (1977)
observed modifications particularly of tidal phases amounting to 30ı or more,
a shifting of amphidromes and a turning of nodal zones. Even if, at the time,
observations of open-ocean tides were sparse, it became clear that SAL is an effect
important enough not to be neglected in the computation of tides for applications
where more than an order-of-magnitude accuracy is aimed for.

A groundbreaking advancement came from Accad and Pekeris (1978). They first
calculated SAL as an iterative correction to both the initial M2 and S2 tide. In light of
the mathematical complications that this approach brings along, Accad and Pekeris
(1978) looked at the improved solution (Fig. 3) and noted a marked proportionality
between the uncorrected and the corrected fields of amplitudes, while phase shifts
in their model were minor. They therefore calculated the constant of proportionality
between the two fields. For the M2 tide, this factor ˇ was approximately equal
to 0.085. The simplicity of this approach is tempting: Instead of a cumbersome
convolution, spherical harmonic analysis, or even iterative solutions, the effect
of SAL on tidal amplitudes could be computed by multiplying the generating
field with a constant factor and adding it to the initial solution. The correction of
roughly 10 % would be worth the effort, especially since it comes at virtually no
computational cost.

Later research generally considered SAL to be crucial for an accurate deter-
mination of tidal amplitudes, frequencies, and phases. For example, Zahel (1991)
simulated tides with and without data assimilation and compared solutions with
no SAL, parameterized SAL following Accad and Pekeris (1978), or full SAL.
He particularly noticed an increase in tidal periods when SAL is incorporated
that had heretofore been overlooked. The advent of satellite altimetry in the early
1990s sparked additional interest in tidal phenomena, as open-ocean tides became
observable for the first time and speculations about their characteristics could be
held against measurements. Certain authors attempted to remove tides from the
altimetry data and needed estimates of SAL in order to remove oscillations of the
correct amplitude, frequency, and phase (Egbert et al. 1994). Other authors used
TOPEX/Poseidon satellite altimetry to come up with precise estimates of tidal
amplitudes and phases and to reinvestigate how well the scalar approximations
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Fig. 3 M2 tide in a 2ı model without (top) and with (bottom) SAL considered. Solid lines: Cotidal
lines in Greenwich hours. Dashed lines: Corange lines in centimeters (From Accad and Pekeris
1978)

of SAL would approximate the calculation with the full integral (Ray 1998). The
result is indeed sobering: Ray (1998) concluded that “none is recommended in
general, and most serious applications should use the full integral formulations”.
Especially in shelf areas, the scalar approximation turned out to perform weakly,
since here contributions to sea level from local and open-ocean tides often cancel
out (Fig. 4). When not only the amplitudes but also the phases are considered,
the scalar approximation performed worst in the open ocean. The errors made by
applying it exceed 25 mm, which is roughly a third of the amplitude caused by SAL
in total. The general problem Ray (1998) found was that the optimal ˇ value changes
dramatically from the coast to the open ocean.
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In contrast to the conclusions made by Ray (1998) and Stepanov and Hughes
(2004) made another attempt at parameterization of SAL. They noted that, while
omission of SAL would introduce an error of around 4 cm, a parameterized
inclusion of the effects would at least reduce this error by 50 %. They also suggested
an incremental improvement of the parameterization, defining ˇ as a function of
local depth. The optimal global parameter they computed for their model amounted
to ˇ D 0:12, the same value that (Ray 1998) had determined for the M2 tide in the
open ocean.

Müller (2008) approached the problem from the theoretical side. He considered
tides to be a superposition of free oscillations, i.e., eigenmodes of the world’s
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ocean basins. The expansion coefficient that would define the weight of a particular
eigenmode depends on the resonance depth (the similarity between the forcing
period and the eigenperiod) as well as on the shape factor (the similarity between the
forcing vector and the eigenvector, i.e., the shape of the oscillatory pattern). Müller
(2008) solved the eigenproblem for periods between 9 and 40 h and attempted to
analyze the importance of SAL by computing these eigenmodes once with and once
without accounting for SAL. As earlier authors had noted, frequencies of particular
modes decreased when SAL was applied. The explanation Müller (2008) gave for
this phenomenon is based on the parameterized approximation of SAL which can
be reframed as a modification of gravitational acceleration (gnew D .1�0:085/gold).
In the idealized case of a square basin, it can be shown that the eigenfrequency of
the free oscillation is proportional to

p
g, and the same effect – slightly modified –

rules more complex basins as well. Tides furthermore turned out to be delayed by
SAL. This phase shift between eigenmodes with and without SAL can be formulated
analytically; it is largest if both modes are near-resonant and if the frequency shift
due to SAL is large. In order to simulate, for instance, the maximum tidal elevation
at a certain coastal tide gauge at the correct time, SAL needs to be implemented in
the model.

4.2 Nontidal Variations

Two major developments have led to increased interest in the impact of SAL
on nontidal ocean variations during the past 10 years: First, increased computing
power allows for more complex ocean models, running at higher resolutions and
accounting for more physical processes. Second, the Gravity Recovery and Climate
Experiment (GRACE, Chambers et al. 2004; Schmidt et al. 2006) provides an
unprecedented data set of OBP variations, which is the variable that causes SAL
effects in the first place.

Stepanov and Hughes (2004) started by implementing SAL into the purely
barotropic OCCAM model and simulating 1 month worth of both tidal and
nontidal ocean dynamics, calculating SAL effects anew at each time step with
a Green’s function approach. The shortness of the simulation was required by
the limited availability of computing time and justified by the assumption that
SAL effects of periods longer than 7 days were supposed to yield an equilibrium
response, which could more easily be computed in the post-processing. Since their
implementation slowed the model by a factor of 10, they investigated the capability
of various parameterizations to emulate the SAL effect. Unfortunately, the evaluated
parameterizations turned out to be less capable than in the case of tides. The
underlying problem is the multitude of spatial scales and associated wave speeds in
nontidal ocean variations, which reach from barely resolved mesoscale turbulences
to Rossby waves of planetary scale. If a parameter had to be chosen nevertheless,
Stepanov and Hughes (2004) suggested a value of ˇ D 0:10 which, in their model,
reduced the errors made when SAL is omitted by 30 % on average. In calm oceanic
regions, however, errors due to an inadequate computation of SAL (or none at all)
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turned out to be of the same amplitude as the local OBP signals themselves. The
reason lies in the remote action of gravitation and crustal deformation: Distant but
large OBP variations impact calm regions and produce larger mass variations here
than any other process.

Kuhlmann et al. (2011) investigated possible feedbacks on ocean currents and
density distributions. They implemented SAL into a baroclinic nontidal ocean model
in a way that computing time was increased by merely 16 % and could show that the
dynamical and hydrographic feedbacks are present but small – a result that justifies
correcting sea-level fields in the post-processing. Kuhlmann et al. (2011) were less
optimistic about scalar approximations of the SAL effect, showing that the process is
highly nonlinear both in space, as others had noted, and in time, where the optimal
parameter ˇ turned out to vary by approximately ˙20 % on a multitude of time
scales.

Tamisiea et al. (2010) followed a different approach. They did not compute
SAL effects at every time step during the model run, but rather afterward in the
post-processing, thereby neglecting feedbacks and possibly misrepresenting fast
oscillations. The paper was focussed, however, on the annual cycle. An additional
advantage of their method is the ease with which influences from other subsystems
can be considered. The authors computed the gravito-elastodynamical impacts
of continental, atmospheric, and oceanic masses on sea-level fields, using mass
allocations from respective models or measurements. It was not necessary to couple
the models interactively, nor was input data necessary for every internal model
time step. Since only the equilibrium response of the ocean was to be investigated,
monthly mean fields for all three systems provided enough information.

Figure 5 shows the annual cycle’s amplitude and phase that gravitation and Earth
elasticity impose on their model ocean. Both are dominated by the hydrological
signal. A prominent hydrological annual cycle in Southern Asia (monsoon climate)
and Western Africa attracts water masses toward these regions. Tamisiea et al.
(2010) explained the minimum amplitudes in the Northern Hemisphere by a
cancelation of the regional and global annual cycles: The local mass load is 180ı
phase-shifted with respect to the global water mass in the oceans, so at times of the
year when a maximum snowpack attracts ocean water, the global mean sea level is
at a minimum since the amount of water in the ocean is minimal. These two impacts
cancel out. The effect of atmospheric load on sea level turned out to account for
only a third of the hydrological loads’ amplitude, SAL due to OBP is even smaller.
The globally integrated signal has an amplitude of 9.1 mm and a phase of 268ı.

Vinogradova et al. (2010) followed up on this work, focussing on SAL effects
modifying the annual cycle of OBP rather than sea-surface height. They used
an ocean state estimate from the ECCO project, enhanced by SAL effects which
were in turn driven by hydrological, atmospheric, and dynamic mass fields.
Comparing the three forcing fields, land hydrology turned out to be most important,
similar to what (Tamisiea et al. 2010) had found. The hydrological signature of
Southern Asia caused the most prominent deviations of the OBP field, followed by
atmospherically induced mass variations. The least impact on OBP annual cycles
was the contribution due to dynamically varying ocean water masses themselves.
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Fig. 5 Effect of SAL caused by hydrology on sea-level annual cycle amplitude (top) and phase
(bottom) (From Tamisiea et al. 2010)

Vinogradova et al. (2010) also provided a comparison of their model OBP with
in situ measurements at certain points in the ocean. Accounting for SAL effects
improved the agreement between model and data, but even in the improved model
version, large residuals between model and observation remained. The explained
variance did not exceed 32 %, indicating a large mismatch between the two data sets.
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The authors suggested that the coarse model resolution of 1ı in longitude and lati-
tude as well as the smoothed bathymetry might be responsible for the discrepancy.

In the following, Vinogradova et al. (2011) broadened the scope of their
investigations of SAL effects on sea-surface height caused by land hydrology,
atmospheric pressure, and ocean dynamics. While using the same data as Tamisiea
et al. (2010), they investigated the significance of SAL on subannual, annual, and
interannual time scales. They came to the conclusion, however, that the effects
are strongest on annual periods. Comparing the different subsystems, hydrological
fields turned out to cause the largest sea-surface height variations, followed by ocean
dynamics.

The most recent work on SAL comes from Richter et al. (2013), who considered
a special phenomenon: A warming deep ocean entails an expansion of the water
column and, therefore, an upward shift of the water column’s center of mass.
This creates a pressure gradient in the upper layers of the ocean, causing water
to flow toward the shelf areas. The emerging mass redistribution leads to the known
processes of SAL, even though Richter et al. (2013) chose to compute them with the
sea-level equation (Farrell and Clark 1976), thereby incorporating secondary effects
of changed Earth rotation and migrating shore lines. Since this iterative calculation
is not performed during the model run, dynamical feedbacks are neglected once
again. The input data for the calculation of SAL effects on sea-surface height and
OBP came from three scenarios for the twenty-first-century projections of global
warming, simulated with a coupled atmosphere-ocean general circulation model.

Richter et al. (2013) found the effect to vary strongly in space. It produced
an additional C3 cm of sea-level rise on the North American Atlantic coast and
C2 cm in the Arctic, around Asia, South America, and Australia. These gains were
compensated by �2 cm throughout the central Atlantic, the Indian Ocean, and less
so the Southern Ocean (Fig. 6). All in all, SAL caused a redistribution of water

Fig. 6 Modification of steric
and eustatic sea-level rise due
to SAL effects in a
twenty-first-century
projection of global warming
due to Representative
Concentration Pathway
(RCP) 8.5, which estimates
an additional 8.5 W/m2 of
radiative forcing by the end of
the twenty-first century
(From Richter et al. 2013)
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masses from the southern to the northern hemisphere where the larger shelf areas
are located. The shift of water masses onto shelves increased coastal sea-level rise
by 3–5 % on global average compared to the rise computed from thermal expansion
alone.

5 Future Directions

Future research concerned with SAL will likely cease efforts of parameterizing
an effect that has repeatedly been shown to escape linearization. Certain nontidal
applications will neglect SAL outright, as it has shown to bring only minor
improvements to ocean currents and density distributions. Other applications will
account for SAL in its full complexity, especially in view of increasing availability
of high-capacity computing resources.

One such application is the simulation of tides, where models of higher resolution
and better understanding of various physical processes in the ocean need to account
for SAL changing amplitudes, frequencies, and phases significantly. But also when
projecting regional distributions of sea-level rise on decadal time scales, SAL
and possibly viscoelastic extensions thereof need to be considered, most likely
in the post-processing of the data such as it is often done with the inverse-
barometer correction for changing air pressure. For instance, the reports by the
Intergovernmental Panel on Climate Change (IPCC) have heretofore focussed on
global mean sea-level rise, but projections of regional distributions become more
and more important as climate change leaves the purely scientific arena and sparks
the interest of policymakers concerned with adaptation efforts on the regional and
local level.

Regarding modeling efforts on shorter time scales, the focus on SAL-related
research should lie on the impact of land hydrology on sea-level patterns. Better
measurements of continental water masses, be it with the gravity mission GRACE,
with the soil-moisture satellite SMOS, or with in situ stations and feeding into
hydrological models, can be used to correct sea-level fields. Coupling models of
the various subsystems can lead to further insights on possible interactions.

6 Conclusion

Coming back to the key questions posed in Sect. 3, it can be noted that SAL is
an effect modifying sea level and ocean bottom pressure by roughly 10 %. The
precise magnitude depends, however, on various factors: Since the effects are scale
dependent, different models resolving different processes come up with different
results. The effect varies strongly in space and time, and the relative corrections due
to SAL in calm ocean regions are immense. When tides are concerned, SAL does
not only modify amplitudes but also frequencies and phases.

The dynamical component of SAL corrections needs to be taken into account
predominantly when fast variations, roughly below 1 week, are concerned.
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Tidal applications fulfill this criterion, climate studies mostly do not. The
mechanisms shaping the characteristics of tides could not be understood properly
without implementing the physics of SAL. On the other hand, various authors have
successfully applied SAL in climate studies as a correction in the post-processing,
thereby making it easy to handle numerically. While SAL needs to be included
in the post-processing of ocean models to produce precise sea-level patterns, the
computational expenses of an implementation at every time step are too high to be
justified in most climate-related applications.

Attempts to approximate SAL physics in order to reduce the numerical cost of its
consideration have largely failed. The process is too variable in space and time, and
approximations have repeatedly missed the target of reducing the error by at least
an order of magnitude.

SAL is expected to play an important role in the further investigation of tidal
patterns. These are not only of intrinsic interest but are also needed for the correction
of gravitational measurements or altimetry data; thus a better understanding of the
underlying processes can produce benefits across a wide range of applications. For
nontidal ocean mass variations, mostly hydrology showed impacts of a magnitude
that makes further research promising.
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