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Abstract
Satellite gravity gradiometry (SGG) is an ultrasensitive detection technique of
the space gravitational gradient (i.e., the Hesse tensor of the Earth’s gravitational
potential). In this note, SGG – understood as a spacewise inverse problem of
satellite technology – is discussed under three mathematical aspects: First, SGG
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is considered from potential theoretic point of view as a continuous problem
of “harmonic downward continuation.” The space-borne gravity gradients are
assumed to be known continuously over the “satellite (orbit) surface”; the
purpose is to specify sufficient conditions under which uniqueness and existence
can be guaranteed. In a spherical context, mathematical results are outlined by
the decomposition of the Hesse matrix in terms of tensor spherical harmonics.
Second, the potential theoretic information leads us to a reformulation of the
SGG-problem as an ill-posed pseudodifferential equation. Its solution is dealt
within classical regularization methods, based on filtering techniques. Third, a
very promising method is worked out for developing an immediate interrelation
between the Earth’s gravitational potential at the Earth’s surface and the known
gravitational tensor.

1 Introduction

Due to the nonspherical shape, the irregularities of its interior mass density,
and the movement of the lithospheric plates, the external gravitational field of
the Earth shows significant variations. The recognition of the structure of the
Earth’s gravitational potential is of tremendous importance for many questions in
geosciences, for example, the analysis of present day tectonic motions, the study
of the Earth’s interior, models of deformation analysis, the determination of the sea
surface topography, and circulations of the oceans, which, of course, have a great
influence on the global climate and its change. Therefore, a detailed knowledge of
the global gravitational field including the local high-resolution microstructure is
essential for various scientific disciplines.

Satellite gravity gradiometry (SGG) is a modern domain of studying the char-
acteristics, the structure, and the variation process of the Earth’s gravitational field.
The principle of satellite gradiometry can be explained roughly by the following
model (cf. Fig. 1): several test masses in a low orbiting satellite feel, due to their
distinct positions and the local changes of the gravitational field, different forces,
thus yielding different accelerations. The measurements of the relative accelerations

Fig. 1 The principle of a
gradiometer
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between two test masses provide information about the second-order partial deriva-
tives of the gravitational potential. To be more concrete, differences between the
displacements of opposite test masses are measured. This yields information on the
differences of the forces. Since the gradiometer itself is small, these differences can
be identified with differentials so that a so-called full gradiometer gives information
on the whole tensor consisting out of all second-order partial derivatives of the
gravitational potential, i.e., the Hesse matrix. In an ideal case, the full Hesse matrix
can be observed by an array of test masses.

On 17 March 2009, the European Space Agency (ESA) began to realize the
concept of SGG with the launch of the most sophisticated mission ever to investigate
the Earth’s gravitational field, viz. GOCE (Gravity Field and Steady-State Ocean
Circulation Explorer). ESA’s 1-ton spacecraft carries a set of six state-of-the-art,
high-sensitivity accelerometers to measure the components of the gravity field along
all three axes (see the contribution of R. Rummel in this issue for more details on the
measuring devices of this satellite). GOCE produced a coverage of the entire Earth
with measurements (apart from gaps at the polar regions). For around 20 months,
GOCE gathered gravitational data. After running out of propellant, the GOCE
satellite begun dropping out of this orbit in October 2013 and made an uncontrolled
reentry on 11 November 2013. In order to make this mission successful, ESA and its
partners had to overcome an impressive technical challenge by designing a satellite
that is orbiting the Earth close enough (at an altitude of only 250 km) to collect
high-accuracy gravitational data while being able to filter out disturbances caused,
e.g., by the remaining traces of the atmosphere.

It is not surprising that, during the last decade, the ambitious mission GOCE
motivated many scientific activities such that a huge number of written material
is available in different fields concerned with special user group activities,
mission synergy, calibration as well as validation procedures, geoscientific
progress (in fields like gravity field recovery, ocean circulation, hydrology,
glaciology, deformation, climate modeling, etc.), data management, and so on.
A survey about the recent status is well demonstrated by the “ESA Living
Planet Programme”, which also contains a list on GOCE-publications (see
also the contribution by the ESA-Frascati Group in this issue, for information
from geodetic point of view the reader is referred, e.g., to the notes (Beutler
et al. 2003; ESA 1999, 2007; Rummel et al. 1993), too). Mathematically, the
literature dealing with the solution procedures of problems related to SGG can
be divided essentially into two classes: the timewise approach and the spacewise
approach. The former one considers the measured data as a time series, while
the second one supposes that the data are given in advance on a (closed)
surface.

This chapter is part of the spacewise approach. Its goal is a potential theoretically
reflected approach to SGG with strong interest in the characterization of SGG-data
types and tensorial oriented solution of the occurring (pseudodifferential) SGG-
equations by regularization. Particular emphasis is laid on the transition from scalar
data types (such as the second-order radial derivative) to full tensor data of the Hesse
matrix.
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2 SGG in Potential Theoretic Perspective

Gravity as observed on the Earth’s surface is the combined effect of the gravitational
mass attraction and the centrifugal force due to the Earth’s rotation. The force of
gravity provides a directional structure to the space above the Earth’s surface. It is
tangential to the vertical plumb lines and perpendicular to all level surfaces. Any
water surface at rest is part of a level surface. As if the Earth were a homogeneous,
spherical body gravity turns out to be constant all over the Earth’s surface, the well-
known quantity 9.8 ms�2. The plumb lines are directed toward the Earth’s center
of mass, and this implies that all level surfaces are nearly spherical, too. However,
the gravity decreases from the poles to the equator by about 0.05 ms�2. This is
caused by the flattening of the Earth’s figure and the negative effect of the centrifugal
force, which is maximal at the equator. Second, high mountains and deep ocean
trenches cause the gravity to vary. Third, materials within the Earth’s interior are
not uniformly distributed. The irregular gravity field shapes as virtual surface, the
geoid. The level surfaces are ideal reference surfaces, for example, for heights. In
more detail, the gravity acceleration (gravity) w is the resultant of gravitation v

and centrifugal acceleration c, i.e., w D v C c. The centrifugal force c arises as
a result of the rotation of the Earth about its axis. We assume here, a rotation of
constant angular velocity !0 about the rotational axis x3, which is further assumed
to be fixed with respect to the Earth. The centrifugal acceleration acting on a unit
mass is directed outward perpendicularly to the spin axis. If the �3-axis of an Earth-
fixed coordinate system coincides with the axis of rotation, then we have c.x/ D
�!2

0�3^.�3^x/. Using the so-called centrifugal potential C.x/ D .1=2/!2
0.x2

1Cx2
2 /

we can write c D rC .
The direction of the gravity w is known as the direction of the plumb line, the

quantity jwj is called the gravity intensity (often just gravity). The gravity potential
of the Earth can be expressed in the form: W D V CC . The gravity acceleration w is
given by w = rW D rV CrC . The surfaces of constant gravity potential W .x/ D
const, x 2 R

3, are designated as equipotential (level, or geopotential) surfaces of
gravity. The gravity potential W of the Earth is the sum of the gravitational potential
V and the centrifugal potential C, i.e., W D V C C . In an Earth’s fixed coordinate
system, the centrifugal potential C is explicitly known. Hence, the determination
of equipotential surfaces of the potential W is strongly related to the knowledge
of the potential V . The gravity vector w given by w.x/ D rxW .x/ where the
point x 2 R

3 is located outside and on a sphere around the origin with Earth’s
radius R, is normal to the equipotential surface passing through the same point.
Thus, equipotential surfaces intuitively express the notion of tangential surfaces, as
they are normal to the plumb lines given by the direction of the gravity vector (for
more details see, for example, Heiskanen and Moritz (1967), Freeden and Schreiner
(2009) and the contributions by H. Moritz in this issue).

According to the classical Newton’s Law of Gravitation (1687), knowing the
density distribution � of a body, the gravitational potential can be computed
everywhere in R

3. More explicitly, the gravitational potential V of the Earth’s
exterior is given by
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V .x/ D G

Z
Earth

�.y/

jx � yjdV .y/; x 2 R
3nEarth; (1)

where G is the gravitational constant .G D 6:6742 �10�11m3kg�1s�2/ and dV is the
(Lebesgue-) volume measure. The properties of the gravitational potential (1) in the
Earth’s exterior are appropriately described by the Laplace equation:

�V .x/ D 0; x 2 R
3nEarth: (2)

The gravitational potential V as defined by (1) is regular at infinity, i.e.,

jV .x/j D O

�
1

jxj
�

; jxj ! 1: (3)

For practical purposes, the problem is that in reality the density distribution � is
very irregular and known only for parts of the upper crust of the Earth. It is actually
so that geoscientists would like to know it from measuring the gravitational field.
Even if the Earth is supposed to be spherical, the determination of the gravitational
potential by integrating Newton’s potential is not achievable. This is the reason
why, in simplifying spherical nomenclature, we first expand the so-called reciprocal
distance in terms of harmonics (related to the Earth’s mean radius R) as a series

1

jx � yj D
1X

nD0

2nC1X
j D1

4�R

2n C 1
H R�n�1;k.x/H R

n;k.y/; (4)

where H R
n;k is an inner harmonic of degree n and order k given by

H R
n;k.x/ D 1

R

� jxj
R

�n

Yn;k.�/; x D jxj�; � 2 �; (5)

and H R�n�1;k is an outer harmonic of degree n and order k given by

H R�n�1;k.x/ D 1

R

�
R

jxj
�nC1

Yn;k.�/; x D jxj�; � 2 � (6)

(� is the unit sphere in R
3). Note that the family fYn;kg nD0;1;:::

kD1;:::;2nC1
is an L2.�/-

orthonormal system of scalar spherical harmonics (for more details concerning
spherical harmonics see, e.g., Müller (1966), Freeden et al. (1998), Freeden and
Schreiner (2009), Freeden and Gerhards (2013), and Freeden and Gutting (2013)).
Insertion of the series expansion (4) into Newton’s formula for the external
gravitational potential yields
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V .x/ D G

1X
nD0

2nC1X
kD1

4�R

2n C 1

Z
�int

R

�.y/ H R
n;k.y/ dV .y/ H R�n�1;k.x/: (7)

The expansion coefficients of the series (7) are not computable, since their determi-
nation requires the knowledge of the density function � in the Earth’s interior (see
the introductory chapter and the contribution of V. Michel in this issue). In fact,
it turns out that there are infinitely many mass distributions, which have the given
gravitational potential of the Earth as exterior potential.

Nevertheless, collecting the results from potential theory on the Earth’s gravita-
tional field v for the outer space (in spherical approximation) we are confronted with
the following (mathematical) characterization: v is an infinitely often differentiable
vector field in the exterior of the Earth such that (v1) div v D r �v = 0, curl v = L �v
= 0 in the Earth’s exterior, (v2) v is regular at infinity: jv.x/j D O

�
1=.jxj2/�; jxj !

1. Seen from mathematical point of view, the properties (v1) and (v2) imply that the
Earth’s gravitational field v in the exterior of the Earth is a gradient field v D rV ,
where the gravitational potential V fulfills the properties: V is an infinitely often
differentiable scalar field in the exterior of the Earth such that (V1) V is harmonic
in the Earth’s exterior, and vice versa. Moreover, the gradient field of the Earth’s
gravitational field (i.e., the Jacobi matrix field) v = r v, obeys the following
properties: v is an infinitely often differentiable tensor field in the exterior of the
Earth such that (v1) div v = r� v = 0, curl v D 0 in the Earth’s exterior, (v2) v is
regular at infinity: jv.x/j D O

�
1=.jxj3/�; jxj ! 1, and vice versa. Combining our

identities we finally see that v can be represented as the Hesse tensor of the scalar
field V, i.e., v D r ˝ rV D r.2/V.

The technological SGG-principle of determining the tensor field v at satellite
altitude is illustrated graphically in Fig. 2. The position of a low orbiting satellite is
tracked using GPS. Inside the satellite there is a gradiometer. A simplified model of
a gradiometer is sketched in Fig. 1. The photo of the GOCE satellite is contained in
the contribution of R. Rummel in this issue. An array of test masses is connected
with springs. Once more, the measured quantities are the differences between the
displacements of opposite test masses. According to Hooke’s law, the mechanical
configuration provides information on the differences of the forces. They, however,
are due to local differences of rV . Since the gradiometer itself is small, these
differences can be identified with differentials, so that a so-called full gradiometer
gives information on the whole tensor consisting out of all second-order partial
derivatives of V , i.e., the Hesse matrix v of V .

From our preparatory remarks, it becomes obvious that the potential theoretic
situation for the SGG-problem can be formulated briefly as follows: Suppose the
satellite data v = r ˝ r V are known continuously over the “orbital surface,” the
satellite gravity gradiometry problem amounts to the problem of determining V

from v D r ˝ rV at the “orbital surface.”
Mathematically, SGG is a nonstandard problem of potential theory. The reasons

are obvious:
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Mass
anomaly Earth

Gradiometry

GPS satellites

Fig. 2 The principle of satellite gravity gradiometry (From ESA (1999))

• SGG is ill-posed since the data are not given on the boundary of the domain of
interest, i.e., on the Earth’s surface but on a surface in the exterior domain of the
Earth, i.e., at a certain height.

• Tensorial SGG-data (or scalar manifestations of them) do not form the standard
equipment of potential theory (such as, e.g., Dirichlet or Neumann data). Thus,
it is – at first sight – not clear whether these data ensure the uniqueness of the
SGG-problem or not.

• SGG-data have its natural limit because of the strong damping of the high-
frequency parts of the (spherical harmonic expansion of the) gravitational
potential with increasing satellite heights. For a heuristic explanation of this
calamity, let us start from the assumption that the gravitational potential outside
the spherical Earth’s surface �R with the mean radius R is given by the ordinary
expansion in terms of outer harmonics (confer the identity (7))

V .x/ D
1X

nD0

2nC1X
kD1

Z
�R

V .y/H R�n�1;k.y/d!.y/H R�n�1;k .x/ (8)

(d! is the usual surface measure). Then it is not hard to see that those parts of
the gravitational potential belonging to the outer harmonics H R�n�1;k of order n at
height H above the Earth’s surface �R are damped by a factor ŒR=.R CH/�nC1.
Just a way out of this difficulty is seen in SGG, where, e.g., second-order radial
derivatives of the gravitational potential are available at a height of typically
about 250 km. The second derivatives cause (roughly speaking) an amplification
of the potential coefficients by a factor of order n2. This compensates the
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damping effect due to the satellite’s height if n is not too large. Nevertheless,
in spite of the amplification, the SGG-problem still remains (exponentially)
ill-posed. Altogether, the gravitational potential decreases exponentially with
increasing height, and therefore the process of transforming, the data down to
the Earth surface (usually called “downward continuation”) is unstable.

The non-canonical (SGG)-situation of uniqueness within the potential theoretic
framework can be demonstrated already by a simple example in spherical context:
Suppose that one scalar component of the Hesse tensor is prescribed for all points
x at the sphere �RCH D fx 2 R

3j jxj D R C H g. Is the gravitational potential
V unique on the sphere �R D fx 2 R

3j jxj D Rg? The answer is not positive, in
general. To see this, we construct a counterexample: If b 2 R

3 with jbj = 1 is given,
the second-order directional derivative of V at the point x is bT r ˝rV .x/b. Given
a potential V , we construct a vector field b on �RCH , such that the second-order
directional derivative bT r˝r Vb is zero: Assume that V is a solution of (2) and (3).
For each x 2 �RCH , we know that the Hesse tensor r ˝ rV .x/ is symmetric.
Thus, there exists an orthogonal matrix A.x/ so that A.x/T .r ˝ rV .x//A.x/ D
diag.	1.x/; 	2.x/; 	3.x//, where 	1.x/; 	2.x/; 	3.x/ are the eigenvalues of r ˝
rV .x/. From the harmonicity of V it is clear that 0 D rV .x/ D 	1.x/ C 	2.x/ C
	3.x/. Let 
0 D 31=2.1; 1; 1/T . We define the vector field 
 W �RCH ! R

3 by

.x/ D A.x/
0; x 2 �RCH . Then we obtain


T.x/.r ˝ rV .x//
.x/ D 
T
0 A.x/T.r ˝ rV .x//A.x/
0 (9)

D 1
3
. 1 1 1 /

0
@ 	1.x/ 0 0

0 	2.x/ 0

0 0 	3.x/

1
A

0
@ 1

1

1

1
A

D 1
3
.	1.x/ C 	2.x/ C 	3.x//

D 0:

(10)

Hence, we have constructed a vector field 
 such that the second-order directional
derivative of V in the direction of 
.x/ is zero for every point x 2 �RCH . It
can be easily seen that, for a given V , there exist many vector fields showing the
same properties for uniqueness as the vector field 
. Observing these arguments we
are led to the conclusion that the function V is undetectable from the directional
derivatives corresponding to 
 (see also Schreiner 1994a,b).

It is, however, good news that we are not lost here: As a matter of fact, there do
exist conditions under which only one quantity of the Hesse tensor yields a unique
solution (at least up to low order harmonics). In order to formulate these results,
a certain decomposition of the Hesse tensor is necessary, which strongly depends
on the separation of the Laplace operator in terms of polar coordinates. In order to
follow this path, we start to reformulate the SGG-problem more easily in spherical
context. For that purpose we start with some basic facts specifically formulated on
the unit sphere � D fx 2 R

3j jxj D 1g. As is well-known, any x 2 R
3; x ¤ 0,
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can be decomposed uniquely in the form x D r �, where the directional part is an
element of the unit sphere: � 2 �. Let fYn;mg W � ! R

3, n D 0, 1, . . . , m D 1,
. . . , 2n + 1, be an orthonormal set of spherical harmonics. As is well-known (see,
e.g., Freeden and Schreiner 2009), the system is complete in L2.�/, hence, each
function F 2 L2.�/ can be represented by the spherical harmonic expansion

F .�/ D
1X

nD0

2nC1X
mD1

F ^.n; m/Yn;m.�/; � 2 �; (11)

with “Fourier coefficients” given by

F ^.n; m/ D .F; Yn;m/L2.�/ D
Z

�

F .�/Yn;m.�/ d!.�/: (12)

Furthermore, the (outer) harmonics H�n�1;m W R
3nf0g ! R related to the unit

sphere � are denoted by H�n�1;m.x/ D H 1�n�1;m.x/, where H 1�n�1;m.x/ D
.1=jxjnC1/Yn;m.x=jxj/. Clearly, they are harmonic functions and their restrictions
coincide on � with the corresponding spherical harmonics. Any function F 2
L2.�/ can, thus, be identified with a harmonic potential via the expansion (11),
in particular, this holds true for the Earth’s external gravitational potential. This
motivates the following mathematical model situation of the SGG-problem to be
considered next:

(i) Isomorphism: Consider the sphere �R � R
3 around the origin with radius R >

0. �int
R is the inner space of �R, and �ext

R is the outer space. By virtue of the
isomorphism � 3 � 7! R � 2 �R we assume functions F W �R ! R to
be defined on �. It is clear that the function spaces defined on � admit their
natural generalizations as spaces of functions defined on �R. Obviously, an
L2.�/-orthonormal system of spherical harmonics forms an orthogonal system
on �R (with respect to .�; �/L2.�R/). Moreover, with the relationship � $ R �,
the differential operators on �R can be related to operators on the unit sphere �.
In more detail, the surface gradient r�IR, the surface curl gradient L�IR and the
Beltrami operator ��IR on �R, respectively, admit the representation r�IR D
.1=R/r�I1 D .1=R/r�, L�IR D (1/R/L�I1 D (1/R/L�, ��IR D (1/R2/��I1
= (1/R2/��, where r�, L�, �� are the surface gradient, surface curl gradient,
and the Beltrami operator of the unit sphere �, respectively. For Yn being a
spherical harmonic of degree n we have ��IRYn D �.1=R2/n.n C 1/Yn D
�.1=R2/��Yn.

(ii) Runge Property: Instead of looking for a harmonic function outside and on
the (real) Earth, we search for a harmonic function outside the unit sphere �

(assuming the units are chosen in such a way that the sphere � with radius 1
is inside of the Earth and at the same time not too “far away” from the Earth’s
boundary). The justification of this simplification (see Fig. 3) is based on the
Runge approach (see, e.g., Freeden 1980a; Freeden and Michel 2004): To any
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Fig. 3 The role of the
“Runge sphere” within the
spherically reflected
SGG-problem

Earth

RH

ΩR ΩR+H

harmonic function V outside of the (real) Earth and any given " > 0, there exists
a harmonic function U outside of a sphere inside the (real) Earth such that the
absolute error jV .x/ � U .x/j < " holds true for all points x outside and on the
(real) Earth’s surface.

3 Decomposition of Tensor Fields by Means of Tensor
Spherical Harmonics

Let us recapitulate that any point � 2 � may be represented by polar coordinates in
a standard way

� D t�3 C
p

1 � t2.cos '�1 C sin '�2/; �1 � t � 1; 0 � ' < 2�; t D cos #;

(13)
(# 2 Œ0; ��: (co-)latitude, ': longitude, t : polar distance). Consequently, any
element � 2 � may be represented using its coordinates .'; t/ in accordance
with (13).

For the representation of vector and tensor fields on the unit sphere �, we are led
to use a local triad of orthonormal unit vectors in the directions r , ', and t as shown
by Fig. 4 (for more details the reader is referred to Freeden and Schreiner (2009)
and the references therein).

As is well known, the second-order tensor fields on the unit sphere, i.e., f W � !
R

3 ˝ R
3, can be separated into their tangential and normal parts as follows:

p�;norf D .f�/ ˝ �; (14)

pnor;�f D � ˝ .�T f/; (15)

p�;tanf D f � p�;norf D f � .f�/ ˝ �; (16)
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Fig. 4 Local triads �r , �� , �t

with respect to two different
points � and � on the unit
sphere

 r(h)

 t(h)

 t(ξ)
 r(ξ)

 f (ξ)

 f (h)

ptan;�f D f � pnor;�f D f � � ˝ .�T f/; (17)

pnor;tanf D pnor;�.p�;tanf/ D p�;tan.pnor;�f/ (18)

D � ˝ .�Tf/ � .�T f�/� ˝ �:

The operators pnor;nor, ptan;nor, and ptan;tan are defined analogously. A vector field
f W � ! R

3 ˝ R
3 is called normal if f = pnor;nor f and tangential if f = ptan;tan f. It is

called left normal if f = pnor;� f, left normal/right tangential if f = pnor;tan f, and so on.
The constant tensor fields itan and jtan can be defined using the local triads by

itan D �' ˝ �' C �t ˝ �t ; jtan D � ^ itan D �t ˝ �' � �' ˝ �t : (19)

Spherical tensor fields can be discussed in an elegant manner by the use of certain
differential processes. Let u be a continuously differentiable vector field on �, i.e.,
u 2 C.1/.�/, given in its coordinate form by

u.�/ D
3X

iD1

Ui.�/�i ; � 2 �; Ui 2 C.1/.�/: (20)

Then we define the operators r�˝ and L�˝ by

r�
� ˝ u.�/ D

3X
iD1

.r�
� Ui .�// ˝ �i ; � 2 �; (21)

L�
� ˝ u.�/ D

3X
iD1

�
L�

� Ui .�/
�

˝ �i ; � 2 �: (22)

Clearly, r� ˝ u and L� ˝ u are left tangential. But it is an important fact, that even
if u is tangential, the tensor fields r� ˝ u and L� ˝ u are generally not tangential.
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It is obvious, that the product rule is valid. To be specific, let F 2 C.1/.�/ and u 2
C.1/.�/ (once more, note that the notation u 2 c.1/.�/ means that the vector field u
is a continuously differentiable on �), then

r�
� ˝ .F .�/u.�// D r�

� F .�/ ˝ u.�/ C F .�/r�
� ˝ u.�/; � 2 �: (23)

In view of the above equations and definitions, we accordingly introduce operators
o.i;k/:C.2/(�) ! c.0/.�/ (note that c.0/.�/ is the class of continuous second-order
tensor fields on the unit sphere �) by

o.1;1/

� F .�/ D � ˝ �F .�/; (24)

o.1;2/

� F .�/ D � ˝ r�
� F .�/; (25)

o.1;3/

� F .�/ D � ˝ L�
� F .�/; (26)

o.2;1/

� F .�/ D r�
� F .�/ ˝ �; (27)

o.3;1/

� F .�/ D L�
� F .�/ ˝ �; (28)

o.2;2/

� F .�/ D itan.�/F .�/; (29)

o.2;3/

� F .�/ D
�
r�

� ˝ r�
� � L�

� ˝ L�
�

�
F .�/ C 2r�

� F .�/ ˝ �; (30)

o.3;2/

� F .�/ D
�
r�

� ˝ L�
� C L�

� ˝ r�
�

�
F .�/ C 2L�

� F .�/ ˝ �; (31)

o.3;3/

� F .�/ D jtan.�/F .�/; (32)

� 2 �:

After our preparations involving spherical second-order tensor fields it is not
difficult to prove the following lemma.

Lemma 1. Let F W � ! R be sufficiently smooth. Then the following statements
are valid:

1. o.1;1/ F is a normal tensor field.
2. o.1;2/ F and o.1;3/ F are left normal/right tangential.
3. o.2;1/ F and o.3;1/ F are left tangential/right normal.
4. o.2;2/F , o.2;3/F , o.3;2/ F and o.3;3/ F are tangential.
5. o.1;1/F , o.2;2/F , o.2;3/ F and o.3;2/ F are symmetric.
6. o.3;3/ F is skew-symmetric.
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7. .o.1;2/F /T = o.2;1/ F and .o.1;3/F /T = o.3;1/F .
8. For � 2 �

trace o.i;k/

� F .�/ D
8<
:

F .�/ for .i; k/ D .1; 1/;

2F .�/ for .i; k/ D .2; 2/;

0 for .i; k/ ¤ .1; 1/; .2; 2/:

The tangent representation theorem (cf. Backus 1966, 1967) asserts that if ptan;tan f
is the tangential part of a tensor field f 2 c.2/(�), as defined above, then there exist
unique scalar fields F2;2, F3;3, F2;3, F3;2 such that

Z
�

F2;2.�/ d!.�/ D
Z

�

F3;3.�/ d!.�/ D 0; (33)

Z
�

F3;2.�/.�i � �/ d!.�/ D
Z

�

F2;3.�/.�i � �/ d!.�/ D 0; i D 1; 2; 3; (34)

and

ptan;tanf D o.2;2/F2;2 C o.2;3/F2;3 C o.3;2/F3;2 C o.3;3/F3;3: (35)

Furthermore, the following orthogonality relations may be formulated: Let F; G W
� ! R be sufficiently smooth. Then for all � 2 �, we have o.i;k/

� F (�) � o.i 0;k0/

� F (�)

= 0 whenever we have (i , k/ ¤ (i 0, k0/. The adjoint operators O.i;k/ satisfying

Z
�

o.i;k/F .�/ � f.�/ d!.�/ D
Z

�

F .�/ O.i;k/f.�/ d!.�/; (36)

for all sufficiently smooth functions F W � ! R and tensor fields f W � ! R
3 ˝R

3

can be deduced by elementary calculations. In more detail, for f 2 c(2)(�), we find
(cf. Freeden and Schreiner 2009)

O
.1;1/

� f.�/ D �Tf.�/�; (37)

O
.1;2/

� f.�/ D �r�
� � ptan.�Tf.�//; (38)

O
.1;3/

� f.�/ D �L�
� � ptan.�Tf.�//; (39)

O
.2;1/

� f.�/ D �r�
� � ptan.f.�/�/; (40)

O
.3;1/

� f.�/ D �L�
� � ptan.f.�/�/; (41)

O
.2;2/

� f.�/ D itan.�/ � f.�/; (42)
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O
.2;3/

� f.�/ D r�
� � ptan

�
r�

� � ptan;�f.�/
�

� L�
� � ptan

�
L�

� � ptan;�f.�/
�

�2r�
� � ptan.f.�/�/;

(43)

O
.3;2/

� f.�/ D L�
� � ptan

�
r�

� � ptan;�f.�/
�

C r�
� � ptan

�
L�

� � ptan;�f.�/
�

�2L�
� � ptan.f.�/�/;

(44)

O
.3;3/

� f.�/ D jtan.�/ � f.�/; (45)

� 2 �. Provided that F W � ! R is sufficiently smooth we see that

O
.i 0;k0/

� o.i;k/

� F .�/ D 0 if .i; k/ ¤ .i 0; k0/; (46)

whereas

O
.i;k/

� o.i;k/

� F .�/ D

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

F .�/ if .i; k/ D .1; 1/;

���F .�/ if .i; k/ 2 f.1; 2/; .1; 3/;

.2; 1/; .3; 1/g;
2F .�/ if .i; k/ 2 f.2; 2/; .3; 3/g;

2��.�� C 2/F .�/ if .i; k/ 2 f.2; 3/; .3; 2/g:

(47)

Using this set of operators we can find explicit formulas for the functions Fi;k in the
tensor decomposition theorem.

Theorem 1. (Helmholtz Decomposition Theorem) Let f be of class c.2/ (�/. Then
there exist uniquely defined functions Fi;k 2 C.2/ .�/; .i;k/ 2 f.1; 1/; .1; 2/; : : :;

.3; 3/g with .Fi;k; Y0/L2.�/ D 0 for all spherical harmonic Y0 of degree 0, if (i,k)
2 f.1; 2/; .1; 3/; .2; 1/; .2; 3/; .3; 1/; .3; 2/g and .Fi;k; Y1/L2.�/ D 0 for all spherical
harmonics Y1 of degree 1 if (i,k) 2 f.2; 3/; .3; 2/g, in such a way that

f D
3X

i;kD1

o.i;k/Fi;k; (48)

where the functions � 7! Fi;k.�/; � 2 �, are explicitly given by

F1;1.�/ D O
.1;1/

� f.�/; (49)

F2;2.�/ D 1

2
O

.2;2/

� f.�/; (50)

F3;3.�/ D 1

2
O

.3;3/

� f.�/; (51)
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F1;2.�/ D �
Z

�

G.��I �; �/O.1;2/
� f.�/d!.�/; (52)

F1;3.�/ D �
Z

�

G.��I �; �/O.1;3/
� f.�/d!.�/; (53)

F2;1.�/ D �
Z

�

G.��I �; �/O.2;1/
� f.�/d!.�/; (54)

F3;1.�/ D �
Z

�

G.��I �; �/O.3;1/
� f.�/d!.�/; (55)

F2;3.�/ D �
Z

�

G.��.�� C 2/I �; �/O.2;3/
� f.�/d!.�/; (56)

F3;2.�/ D �
Z

�

G.��.�� C 2/I �; �/O.3;2/
� f.�/d!.�/; (57)

The functions G(��; �, �/ and G(��(�� + 2); �, �/ are the Green functions to
the Beltrami operator �� and its iteration ��(�� + 2), respectively. For more
details concerning the Green functions we refer to Freeden (1980b) and Freeden
and Schreiner (2009).

The decomposition (Theorem 1) will be of crucial importance to verify unique-
ness results for the satellite gravity gradiometry problem in spherical context.

4 Formulation as Pseudodifferential Equation

Suppose that the function H W R3nf0g ! R is twice continuously differentiable.
We want to show how the Hesse matrix restricted to the unit sphere �, i.e.,

h.�/ D rx ˝ rxH.x/jjxjD1; � 2 �; (58)

can be decomposed according to the rules of Theorem 1. In order to evaluate

rx ˝ rxH.x/ D
�

�
@

@r
C 1

r
r�

�

�
˝

�
�

@

@r
C 1

r
r�

�

�
H.r�/; (59)

we first see that

�
@

@r
˝ �

@

@r
H.r�/ D � ˝ �

�
@

@r

�2

H.r�/; (60)
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�
@

@r
˝ 1

r
r�

� H.r�/ D � 1

r2
� ˝ r�

� H.r�/ C 1

r
� ˝ r�

�

@

@r
H.r�/; (61)

1

r
r�

� ˝ �
@

@r
H.r�/ D 1

r
itan.�/

@

@r
H.r�/ C 1

r
r�

�

�
@

@r
H.r�/

�
˝ �; (62)

1

r
r�

� ˝ 1

r
r�

� H.r�/ D 1

r2
r�

� ˝ r�
� H.r�/: (63)

Summing up these terms we find (cf. Freeden and Schreiner 2009)

rx ˝ rxH.x/jjxjD1 D� ˝ �
�

@
@r

�2

H
�
r�

�jrD1 C � ˝ r�
�

�
@
@r

H.r�/jrD1 � H.�/
�

C �r� @
@r

H.r�/jrD1

� ˝ � C r�
� ˝ r�

� H.�/ (64)

C itan.�/ @
@r

H.r�/jrD1:

Using the identities (60)–(63) and the definition of the o.i;k/-operators we are able
to write

rx ˝ rxH.x/jjxjD1 D o.1;1/

�

��
@
@r

�2
H.r�/jrD1

�
C o.1;2/

�

�
@
@r

H.r�/jrD1 � H.�/
�

C o.2;1/

�

�
@
@r

H.r�/jrD1 � H.�/
�

(65)

C o.2;2/

�

�
1
2
��

� H.�/ C @
@r

H.r�/jrD1

�
Co.2;3/

�
1
2
H.�/:

In particular, if we consider an outer harmonic H�n�1;m : x 7! H�n�1;m (x/

with H�n�1;m(r �) = r�.nC1/Yn;m (�), r > 0, � 2 �, we obtain the following
decomposition of the Hesse matrix on the sphere �RCH , i.e., for x 2 R

3 with
jxj D R C H :

r ˝ rH�n�1;m..R C H/ �/ D .n C 1/.n C 2/ 1

.RCH/nC3 o.1;1/

� Yn;m.�/

�.n C 2/ 1

.RCH/nC3�
o.1;2/

� Yn;m.�/ C o.2;1/

� Yn;m.�/
�

� .nC1/.nC2/

2
1

.RCH/nC3 o.2;2/

� Yn;m.�/

C 1
2

1

.RCH/nC3 o.2;3/

� Yn;m.�/:

(66)

Keeping in mind, that any solution of the SGG-problem can be expressed as a
series of outer harmonics and using the completeness of the spherical harmonics
in the space of square-integrable functions on the unit sphere, it follows that the
SGG-problem is uniquely solvable (up to some low order spherical harmonics) by
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the O.1;1/, O.1;2/, O.2;1/, O.2;2/, and O.2;3/ components. To be more specific, we are
able to formulate the following theorem:

Theorem 2. Let V satisfy the following condition V 2 Pot.C.0/.�//; i:e:;

V 2 C.0/.�ext / \ C(2).�ext /; (67)

�V .x/ D 0; x 2 �ext ; (68)

jV .x/j D O

�
1

jxj
�

; jxj ! 1; uniformly for all directions: (69)

Then the following statements are valid:

1. O.i;k/r ˝ r V ..R C H/�/ = 0 if (i; k/ 2 f.1; 3/; .3; 1/; .3; 2/; .3; 3/g.
2. O.i;k/r ˝ r V ..R C H/�/ = 0 for (i; k/ 2 f.1; 1/; .2; 2/g if and only if V = 0.
3. O.i;k/r ˝ r V ..R C H/�/ = 0 for (i; k/ 2 f.1; 2/; .2; 1/g if and only if Vj� is

constant.
4. O.2;3/r ˝ r V ..R C H/�/ = 0 if and only if Vj� is linear combination of

spherical harmonics of degree 0 and 1.

This theorem gives detailed information, which tensor components of the Hesse
tensor ensure the uniqueness of the SGG-problem (see also the considerations due
to Schreiner (1994a) and Freeden et al. (2002), Freeden and Nutz (2011)). Anyway,
for a potential V of class Pot.C.0/.�// with vanishing spherical harmonic moments
of degree 0 and 1 such as the Earth’s disturbing potential (see, e.g., Heiskanen
and Moritz (1967) for its definition) uniqueness is assured in all cases (listed in
Theorem 2).

Since we now know at least in the spherical setting, which conditions guarantee
the uniqueness of an SGG-solution we can turn to the question of how to find a
solution and what we mean with a solution, since we have to take into account
the ill-posedness. To this end, we are interested here in analyzing the problem step
by step. We start with the reformulation of the SGG-problem as pseudodifferential
equation on the sphere, give a short overview on regularization, and show how this
ingredients can be composed together to regularize the SGG-data.

In doing so, we find great help by discussing how classical boundary value
problems in gravitational field of the Earth as well as modern satellite problems
may be transferred into pseudodifferential equations, thereby always assuming the
spherically oriented geometry. Indeed, it is helpful to treat the classical Dirichlet
and Neumann boundary value problem as well as significant satellite problems such
as satellite-to-satellite tracking (SST) and SGG.
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4.1 SGG as Pseudodifferential Equation

Let † � R
3 be a regular surface, i.e., we assume the following properties: (i) †

divides the Euclidean space R
3 into the bounded region †int (inner space) and the

unbounded region †ext (outer space) so that †ext D R
3n†int, † D †int \†ext with ø

= †int \†ext, (ii) †int contains the origin, (iii) † is a closed and compact surface free
of double points, (iv) † is locally of class C(2) (see Freeden and Schreiner (2004),
Freeden and Gerhards (2013) for more details concerning regular surfaces).

From our preparatory considerations (in particular, from the Introduction), it
can be deduced that a gravitational potential of interest may be understood to be
a member of the class V 2 Pot.C.0/.†//, i.e.,

V 2 C.2/.†ext/ \ C.2/.†ext/; (70)

�V .x/ D 0; x 2 †ext; (71)

jV .x/j D O

�
1

jxj
�

; jxj ! 1; uniformly for all directions: (72)

Assume that �R D fx 2 R
3j jxj D Rg is a (Runge) sphere with radius R around

the origin, i.e., a sphere that lies entirely inside †, i.e., �R � †int. On the class
L2.�R/ we impose the inner product .�; �/L2.�R/. Then we know that the functions
1
R

Yn;m

� �
R

�
form an orthonormal set of functions on �R, i.e., given F 2 L2.�R/, its

Fourier expansion reads

F .x/ D
1X

nD0

2nC1X
mD1

1

R2

�
F; Yn;m

� �
R

��
L2.�R/

Yn;m

� x

R

�
; x 2 �R: (73)

Instead of considering potentials that are harmonic outside † and continuous on
†, we now consider potentials that are harmonic outside �R and that are of class
L2.�R/. In accordance with our notation we define

Pot.L2.�R// D
(

x 7!
1X

nD0

2nC1X
mD1

1
R2

�
F; Yn;m. �

R
/
�
L2.�R/

RnC1

jxjnC1 Yn;m

�
x

jxj
�

j F 2 L2.�R/
o

: (74)

Clearly, Pot.L2.�R// is a “subset” of Pot.C0.†// in the sense that if V 2
Pot.L2.�R//, then V j†ext 2 Pot.C0.†//. The “difference” of these two spaces
is not “too large”: Indeed, we know from the Runge approximation theorem (cf.
Freeden 1980a), that for every " > 0 and every V 2 Pot.C0.†// there exists a
OV 2Pot.L2.�R// such that supx2†ext jV .x/ � OV .x/j < �. Thus, in all geosciences,

it is common (but not strictly consistent with the Runge argumentation) to identify
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�R with the surface of the Earth and to assume that the restriction V j�R is of
class L2.�R/. Clearly, we have a canonical isomorphism between L2.�R/ and
Pot.L2.�R//, which is defined via the trace operator, i.e., the restriction to �R and
its harmonic continuation, respectively.

4.2 Upward/Downward Continuation

Let �RCH be the sphere with radius R C H . The system 1
RCH

Yn;m

� �
RCH

�
is

then orthonormal in L2.�RCH /. (We assume H to be the height of a satel-
lite above the Earth’s surface.) Let F 2 Pot.L2.�R// be represented in the
form

x 7!
1X

nD0

2nC1X
mD1

1

R2

�
F; Yn;m

� �
R

��
L2.�R/

RnC1

jxjnC1
Yn;m

�
x

jxj
�

: (75)

Then the restriction of F on �RCH reads

F j�RCH
W x 7!

1X
nD0

2nC1X
mD1

1

R2

�
F; Yn;m

� �
R

��
L2.�R/

RnC1

.R C H/nC1
Yn;m

�
x

R C H

�
:

(76)

Hence, any element 1
R

Yn;m

� �
R

�
of the orthonormal system in L2.�R/ is

mapped to a function Rn=.R C H/n 1/.R C H/ Yn;m (� / .R C H//. The
operation defined in such away is called upward continuation. It is repre-
sentable by the pseudodifferential operator (for more details on pseudod-
ifferential operators the reader should consult Svensson (1983), Schneider
(1997), Freeden et al. (1998), and Freeden (1999), Freeden and Schreiner
(2009)

ƒR;H
up W L2.�R/ ! L2.�RCH /

with associated symbol

�
ƒR;H

up

�^
.n/ D Rn

.R C H/n
: (77)

In other words, we have

ƒR;H
up

�
1

R
Yn;m

� �
R

��
D

�
ƒR;H

up

�^
.n/

1

R C H
Yn;m

� �
R C H

�
: (78)
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The image of ƒR;H
up is given by Picard’s criterion (cf. Theorem 4):

ƒR;H
up .L2.�R// D

�
F 2 L2.�RCH /j

1P
nD0

2nC1P
mD1

�
.RCH/n

Rn

�2

�
�
F; 1

RCH
Yn;m

� �
RCH

��2

L2.�RCH /
< 1

	
:

(79)

The inverse of ƒR;H
up is called the downward continuation operator, ƒ

R;H
down =

(ƒR;H
up /�1. It brings down the gravitational potential at height R C H to the height

R:

ƒ
R;H
down W ƒR;H

up .L2.�RCH // ! L2.�R/

with

ƒ
R;H
down

�
1

R C H
Yn;m

� �
R C H

��
D .R C H/n

Rn

1

R
Yn;m

� �
R

�
(80)

such that the symbol of ƒ
R;H
down is

�
ƒ

R;H
down

�^
.n/ D .R C H/n

Rn
: (81)

It is obvious that the upward continuation is well posed, whereas the downward
continuation generates an ill-posed problem.

4.3 Operator of the First-Order Radial Derivative

Let F 2 Pot.L2.�R// be of the representation (75). If we restrict F to a sphere �

with radius  , we have

1X
nD0

2nC1X
mD1

1

R2

�
F; Yn;m

� �
R

��
L2.�R/

RnC1

nC1
Yn;m

�
x



�
; x 2 �: (82)

Accordingly, the restriction of @
@r

F to � amounts to

1X
nD0

2nC1X
mD1

1

R2

�
F; Yn;m

� �
R

��
L2.�R/

�.n C 1/



RnC1

nC1
Yn;m

�
x



�
: (83)

Thus, the process of forming the first radial derivative at height  constitutes the
pseudodifferential operator ƒ


FND (FND stands for first-order normal derivative)

with the symbol
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�
ƒ


FND

�^
.n/ D �n C 1


: (84)

4.4 Pseudodifferential Operator for SST

The principle of SST is sketched in Fig. 5 (note that two variants of SST are
discussed in satellite techniques, the so-called high-low and the low-low method.
We only explain here the high-low variant, for which the GFZ-satellite CHAMP
(CHAllenging Minisatellite Payload) launched in 2000 and decayed 2010 is a
prototype).

The motion of a satellite in a low orbit such as CHAMP (typical heights are in the
range 200–500 km) is tracked with a GPS receiver. So the relative motion between
the satellite and the GPS-satellites (the latter have a height of approximately
20,000 km) can be measured. Assuming that the motion of the GPS-satellites is
known (in fact, their orbit is very stable because of the large height), one can
calculate the acceleration of the low orbiting satellite. Since the acceleration and the
force acting on the satellite are proportional by Newton’s law, one gets information
about the gradient field rV .p/ at the satellite’s position p. Assuming that the height
variations of the satellite are small, we obtain data information of rV at height H ,
that is on the sphere �RCH . For simplicity, it is useful to consider only the radial
component from these vectorial data, which is the first radial derivative.

SST hi-lo

Earth
mass
anomaly

GPS satellites

Fig. 5 The principle of satellite-to satellite tracking (from ESA (1999), see also Freeden (1999)
and the references therein))
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Thus, given F 2 Pot.L2.�R//, we get the SST-data by a process of upward con-
tinuation and then taking the first radial derivative. Mathematically, SST amounts to
introduce the operator

ƒ
R;H
SST W L2.�R/ ! L2.�RCH /

via

ƒR;H
SST D �ƒRCH

FND ƒR;H
up (85)

(we use the minus sign here, to avoid the minus in the symbol), and get

�
ƒ

R;H
SST

�^
.n/ D Rn

.R C H/2

n C 1

R C H
: (86)

It is easily seen that the Picard criterion (see, e.g., Engl et al. 1997) reads for this
operator

ƒR;H
SST .L2.�R// D

�
F 2 L2.�RCH /j

1P
nD0

2nC1P
mD1

�
.RCH/n

Rn
RCH
nC1

�2

�
�
F; 1

RCH
Yn;m

� �
RCH

��2

L2.�RCH /
< 1

	
:

(87)

4.5 Pseudodifferential Operator of the Second-Order Radial
Derivative

Analogous considerations applied to the operator @2

@r2 on F in (75) at height  yields

1X
nD0

2nC1X
mD1

1

R2

�
F; Yn;m

� �
R

��
L2.�R/

.n C 1/.n C 2/

2

RnC1

nC1
Yn;m

�
x



�
; x 2 �:

(88)
Thus, the second-order radial derivative at height  is represented by the pseudod-
ifferential operator ƒ


SND with the symbol

.ƒ

SND/^.n/ D .n C 1/.n C 2/

2
: (89)

4.6 Pseudodifferential Operator for Satellite Gravity
Gradiometry

If we restrict ourselves for the moment to the second-order radial derivative @2

@r2 V ,
and assume that the height of the satellite is H , we are led to the pseudodifferential
operator describing satellite gravity gradiometry by
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ƒ
R;H
SGG D ƒR

SND C HƒR;H
up

so that

�
ƒR;H

SGG

�^
.n/ D Rn

.R C H/n

.n C 1/.n C 2/

.R C H/2
: (90)

In consequence,

ƒ
R;H
SGG W L2.�R/ ! L2.�RCH /

with

ƒR;H
SGG.L2.�R// D

�
F 2 L2.�RCH /j

1P
nD0

2nC1P
mD1

�
.RCH/n

Rn
.RCH/2

.nC1/.nC2/

�2

� �
F; 1

RCH
Yn;m

� �
RCH

��2

L2.�RCH /
< 1

o
:

(91)

4.7 Survey on Pseudodifferential Operators Relevant in Satellite
Technology

Until now, our purpose was to develop a class of pseudodifferential operators,
which describe, in particular, important operations for actual and future satellite
missions. In what follows, we are interested in a brief mathematical survey about
our investigations. In order to keep the forthcoming notations as simple as possible,
we use the fact that all spheres around the origin are isomorphic. Thus, we consider
the resulting pseudodifferential operators on the unit sphere and ignore the different
heights in the domain of definition of the functions but not in the symbol of
the operators. Hence, we can use the results of the last chapters directly for the
regularization of the satellite problems. If one wants to incorporate the different
heights, one has only to observe the factors R and R C H , respectively.

All pseudodifferential operators are then defined onL2.�/ or on suitable Sobolev
spaces (see Freeden et al. 1998; Freeden 1999). The table above gives a summary
of all the aforementioned operators.

Operator Description Symbol Order

ƒR;H
up Upward continuation operator Rn

.RCH/n �1
ƒ

R;H
down Downward continuation operator .RCH/n

Rn 1
ƒR

FND First-order radial derivative at the Earth surface � .nC1/

R
1

ƒR
SND Second-order radial derivative at the Earth surface .nC1/.nC2/

R2 2

ƒ
R;H
SST Pseudodifferential Operator for satellite-to-satellite

tracking

Rn

.RCH/n
nC1

RCH
�1

ƒ
R;H
SGG Pseudodifferential operator for satellite gravity

gradiometry

Rn

.RCH/n

.nC1/.nC2/

.RCH/2 �1
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Fig. 6 The disturbance potential from EGM96 at the Earth’s surface, in m2/s2

Fig. 7 The disturbance potential from EGM96 at height 250 km in m2/s2

In order to show how these operators work, we give some graphical examples.
We start from the disturbance potential of the NASA, GSFC, and NIMA Earth’s
Gravity Model EGM96 (cf. Lemoine et al. 1998). In Figs. 6–8 we graphically show
the potential at the height of the Earth surface, at the height 250 km and further more
the second-order radial derivative at height 250 km.
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Fig. 8 The second-order radial derivative of the disturbance potential from EGM96 at height
250 km in 10�10/s2

4.8 Classical Boundary Value Problems and Satellite Problems

The Neumann problem of potential theory for the outer space of the sphere �

(based on L2.�/ boundary data) reads as follows: Find V 2 Pot.L2.�// such that
@
@r

V j� D G. Since the trace of V is assumed to be a member of the class L2.�/,
the appropriate space for G is the Sobolev space H�1.�/. Using pseudodifferential
operators as described earlier, this problem reads in an L2.�/-context as follows:
Given G 2 L2.�/, find F 2 L2.�/ such that

ƒR
FNDF D G (92)

with .ƒR
FND/^.n/ D � nC1

R
, n = 0, 1, . . . . Similar considerations show that the

Dirichlet problem transfers to the trivial form Id F D G, where Id is the identity
operator with Id ^.n/ = 1, n = 0,1, . . . .

Evidently, the classical problems of potential theory expressed in pseudodifferen-
tial form are well-posed in the sense that the inverse operators

�
ƒR

FND

��1
and Id�1

are bounded in L2.�/. In contrary, the problems coming from SST and SGG are
ill-posed, as we will see in a moment. To be more concrete, SST intends to obtain
information of V at the Earth’s surface (radius R/ from measurements of the first
radial derivative at the satellite’s height H . Thus, we obtain the problem: Given
G 2 L2.�/, find F 2 L2.�/ so that

ƒ
R;H
SST F D G (93)
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with �
ƒ

R;H
SST

�^
.n/ D Rn

.R C H/n

n C 1

R C H
: (94)

Similarly, SGG is formulated as pseudodifferential equation as follows: Given G 2
L2.�/, find F 2 L2.�/ so that

ƒ
R;H
SGGF D G (95)

with

�
ƒR;H

SGG

�^
.n/ D Rn

.R C H/n

.n C 1/.n C 2/

.R C H/2
: (96)

For more detailed studies in a potential theoretic framework, the reader may wish
to consult Freeden et al. (2002), Freeden and Nutz (2011). The inverses of these
operators possess a symbol which is exponentially increasing as n ! 1. Thus,
the inverse operators are unbounded, or in the jargon of regularization, these
two problems are exponentially ill-posed. By a naive application of the inverse
operator on the right-hand side, one cannot expect to obtain a useful solution.
Thus, regularization strategies have to be applied. Therefore, the basic aspects on
regularization should be presented next.

4.9 A Short Introduction to the Regularization of Ill-Posed
Problems

For the convenience of the reader, we present here a brief course of basic facts on
regularization in a Hilbert space setting, which is useful to understand the solution
strategies in the framework of pseudodifferential equations. The explanations are
based on the monographs of Nashed (1976), Engl et al. (1996) and Kirsch (1996),
where much more additional material can be found even for more general reference
spaces, too.

Let H and K be two Hilbert spaces with inner products .�; �/H and .�; �/K,
respectively. Let

ƒ W H ! K (97)

be a linear bounded operator. Given y 2 K, we are looking for a solution of

ƒx D y: (98)

In accordance to Hadamard (1923), we call such a problem well-posed, if the
following properties are valid:

• For all admissible data, a solution exists.
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• For all admissible data, the solution is unique.
• The solution depends continuously on the data.

In our setting, these requirements can be translated into

• ƒ is injective, i.e., R.ƒ/ D K.
• ƒ is surjective, i.e., N .ƒ/ D f0g.
• ƒ�1 is bounded and continuous.

If one of the three conditions is not fulfilled, the problem (98) is called ill-posed.
It will turn out that the satellite problems we are concerned with are ill-posed, the
largest problem being the unboundedness of the inverse operator ƒ�1.

Let us discuss the consequences of the violations of the above requirements
for the well-posedness of (98). The lack of injectivity of ƒ is perhaps the easiest
problem. The space H can be replaced by the orthogonal complement N .ƒ/?, and
the restriction of the operator ƒ to N .ƒ/? leads to an injective problem.

From practical point of view, one is very often confronted with the problem that
R.ƒ/ ¤ K, since the right-hand side is given by measurements and is, therefore,
disturbed by errors. We assume now that y 2 R.ƒ/ but only a perturbed right-hand
side yı is known. We suppose

jjy � yıjjK < ı: (99)

Our aim is to solve

ƒxı D yı: (100)

Since yı might not be in R.ƒ/, the solution of this equation might not exist, and we
have to generalize what is meant by a solution. xı is called least-squares solution
of (100), if

jjƒxı � yıjjK D inffjjƒz � yıjj jK jz 2 Hg: (101)

The solution of (101) might not be unique, and therefore one looks for the solution
of (101) with minimal norm. xı is called best approximate solution of ƒxı D yı, if
xı is a least-squares solution and

jjxıjjH D inffjjzjjH j z is a least–squares solution of ƒz D yıg (102)

holds.
The notion of a best-approximate solution is closely related to the Moore-Penrose

(generalized) inverse of ƒ (see Nashed 1976). We let

Qƒ W N .ƒ/? ! R.ƒ/
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with

Qƒ D ƒjN .ƒ/? (103)

and define the Moore-Penrose (generalized) inverse ƒC to be the unique linear
extension of Qƒ�1 to

D.ƒC/ D R.ƒ/ C R.ƒ/? (104)

with

N .ƒC/ D R.ƒ/?: (105)

A standard result is provided by

Theorem 3. If y 2 D.ƒC/, then ƒx = y has a unique best-approximate solution
which is given by

xC D ƒCy:

Note that the best-approximate solution is defined for all perturbed data yı 2 K,
whereas the last theorem requires that the right-hand side is an element of D.ƒC/.

A serious problem for ill-posed problems occurs when ƒ�1 or ƒC are not
continuous. This means that small errors in the data or even small numerical noise
can cause large errors in the solution. In fact, in most cases the application of an
unbounded ƒ�1 or ƒC does not make any sense. The usual strategy to overcome
this difficulty is to substitute the unbounded inverse operator

ƒ�1 W R.ƒ/ ! H

by a suitable bounded approximation

R W K ! H:

The operator R is not chosen to be fixed, but dependent on a regularization
parameter ˛. According to Nashed (1976), Kirsch (1996), we are led to introduce
the following definition:

Definition 1. A regularization strategy is a family of linear bounded operators

R˛ W K ! H; ˛ > 0;

so that
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lim
˛!0

R˛ƒx D x for all x 2 H;

i.e., the operators R˛ƒ converge pointwise to the identity.

From the theory of inverse problems (see, e.g., Kirsch 1996) it is also clear that
if ƒ W H ! K is compact and H has infinite dimension (as it is the case for the
application we have in mind), then the operatorsR˛ are not uniformly bounded, i.e.,
there exists a sequence (˛j / with limj !1 ˛j = 0 and

jjR˛j jjL.K;H/ ! 1 for j ! 1: (106)

Note that the convergence of R˛ƒx in Definition 1 is based on y D ƒx, i.e., on
unperturbed data. In practice, the right-hand side is affected by errors and then no
convergence is achieved. Instead, one is (or has to be) satisfied with an approximate
solution based on a certain choice of the regularization parameter.

Let us discuss the error of the solution. For this purpose, we let y 2 R.ƒ/ be the
(unknown) exact right-hand side and yı 2 K be the measured data with

jjy � yıjjK < ı: (107)

For a fixed ˛ > 0, we let

x˛;ı D R˛yı; (108)

and look at x˛;ı as an approximation of the solution x of ƒx D y. Then the error
can be split as follows:

jjx˛;ı � xjjH D jjR˛yı � xjjH
� jjR˛yı � R˛yjjH C jjR˛y � xjjH
� jjR˛jjL.K;H/jjyı � yjjK C jjR˛y � xjjH;

(109)

such that

jjx˛;ı � xjjH � ıjjR˛jjL.K;H/ C jjR˛ƒx � xjjH: (110)

We see that the error between the exact and the approximate solution consists of
two parts: The first term is the product of the bound for the error in the data and the
norm of the regularization parameter R˛ . This term will usually tend to infinity for
˛ ! 0 if the inverse ƒ�1 is unbounded and ƒ is compact (cf. (106)). The second
term denotes the approximation error jj.R˛ � ƒ�1/yjjH for the exact right-hand
side y = ƒx. This error tends to zero as ˛ ! 0 by the definition of a regularization
strategy. Thus, both parts of the error show a diametrically oriented behavior. A
typical picture of the errors in dependence on the regularization parameter ˛ is
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Fig. 9 Typical behavior of
the total error in a
regularization process

Error

Total error

δ Ra L (K,H )

a

RaΛx – x H

sketched in Fig. 9. Thus, a strategy is needed to choose ˛ dependent on ı in order to
keep the error as small as possible, i.e., we would like to minimize

ıjjR˛jjL.K;H/ C jjR˛ƒx � xjjH: (111)

In principle, we distinguish two classes of parameter choice rules: If ˛ = ˛(ı) does
not depend on ı, we call ˛ = ˛(ı) an a priori parameter choice rule. Otherwise ˛ also
depends on yı and we call ˛ = ˛(ı, yı/ an a posteriori parameter choice rule. It is
usual to say a parameter choice rule is convergent, if for ı ! 0 the rule is such that

lim
ı!0

supfjjR˛.ı;yı /y
ı � T CyjjH jyı 2 K; jjyı � yjjK � ıg D 0 (112)

and

lim
ı!0

supf˛.ı; yı/ jyı 2 K; jjy � yıjjK � ıg D 0: (113)

We stop here the discussion of parameter choice rules. For more material the
interested reader is referred to, e.g., Engl et al. (1996) and Kirsch (1996).

The remaining part of this section is devoted to the case that ƒ is compact,
since then we gain benefits from the spectral representations of the operators. If
ƒ W H ! K is compact, a singular system (�n; vn, un/ is defined as follows: f�2

ngn2N
are the nonzero eigenvalues of the self-adjoint operator ƒ*ƒ (ƒ* is the adjoint
operator of ƒ/, written down in decreasing order with multiplicity. The family
fvngn2N constitutes a corresponding complete orthonormal system of eigenvectors
of ƒ*ƒ. We let �n > 0 and define the family fungn2N via un D ƒvn=jjƒvnjjK. The
sequence fungn2N forms a complete orthonormal system of eigenvectors of ƒƒ*,
and the following formulas are valid:

ƒvn D �nun; (114)
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ƒ�un D �nvn; (115)

ƒx D
1X

nD1

�n.x; vn/H un; x 2 H; (116)

ƒ�y D
1X

nD1

�n.y; un/K vn; y 2 K: (117)

The convergence of the infinite series is understood with respect to the Hilbert
space norms under consideration. The identities (116) and (117) are called the
singular value expansions of the corresponding operators. If there are infinitely
many singular values, they accumulate (only) at 0, i.e., limn!1 �n = 0.

Theorem 4. Let (�n; vn, un/ be a singular system for the compact linear operator
ƒ, y 2 K. Then we have

y 2 d.ƒC/ if and only if
1X

nD1

j.y; un/Kj2
�2

n

< 1; (118)

and for y 2 D.ƒC/ it holds

ƒCy D
1X

nD1

.y; un/K
�n

vn: (119)

The condition (118) is the Picard criterion. It says that a best-approximate solution
of ƒx D y exists only if the Fourier coefficients of y decay fastly enough relative
to the singular values.

The representation (119) of the best-approximate solution motivates a method
for the construction of regularization operators, namely by damping the factors
1/�n in such a way that the series converges for all y 2 K. We are looking for
filters

q W .0; 1/ � .0; jjƒjjL.H;K// ! R (120)

such that

R˛y D
1X

nD1

q.˛; �n/

�n

.y; un/Kvn; y 2 K;

is a regularization strategy. The following statement is known, e.g., from Kirsch
(1996).
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Theorem 5. Let ƒ W H ! K be compact with singular system (�n; vn, un). Assume
that q from (120) has the following properties:

1. jq(˛,�)j � 1 for all ˛ > 0 and 0 < � � jjƒjjL.H;K/:

2. For every ˛ > 0 there exists a c(˛) so that jq(˛,�)j � c(˛)� for all 0 < � �
jjƒjjL.H;K/:

3. lim˛!0 q(˛; �) = 1 for every 0 � � � jjƒjjL.H;K/:

Then the operator R˛ W K ! H, ˛ > 0, defined by

R˛y D
1X

nD1

q.˛; �n/

�n

.y; un/K vn; y 2 K; (121)

is a regularization strategy with jjR˛jjL.K;H/ � c.˛/:

The function q is called a regularizing filter for ƒ. Two important examples should
be mentioned:

q.˛; �/ D �2

˛ C �2
(122)

defines the Tikhonov regularization, whereas

q.˛; �/ D
�

1; �2 � ˛;

0; �2 < ˛;
(123)

leads to the regularization by truncated singular value decomposition.

4.10 Regularization of the Exponentially Ill-Posed SGG-Problem

We are now in the position to have a closer look at the role of the regularization
techniques particularly working for the SGG-problem.

In (95), the SGG-problem is formulated as pseudodifferential equation: Given
G 2 L2.�/, find F 2 L2.�/ so that ƒ

R;H
SGGF D G with

�
ƒ

R;H
SGG

�^
.n/ D Rn

.R C H/n

.n C 1/.n C 2/

.R C H/2
: (124)

Switching now to a finite dimensional space (which is then the realization of the
regularization by a singular value truncation), we are interested in a solution of the
representation

FN D
NX

nD1

2nC1X
mD1

F ^.n; m/Yn;m: (125)
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Using a decomposition of G of the form

G D
NX

nD1

2nC1X
mD1

G^.n; m/Yn;m; (126)

we end up with the spectral equations

�
ƒ

R;H
SGG

�^
.n/F ^.n; m/ D G^.n; m/; n D 1; : : : ; N; m D 1; : : : ; 2n C 1:

(127)
In other words, in connection with (125) and (126), we find the relations

F ^.n; m/ D G^.n; m/�
ƒ

R;H
SGG

�^
.n/

; n D 1; : : : ; N; m D 1; : : : ; 2n C 1: (128)

For the realization of this solution we have to find the coefficients G^.n, m/. Of
course, we are confronted with the usual problems of integration, aliasing, and so
on.

The identity (128) also opens the perspective for SGG-applications by ban-
dlimited regularization wavelets in Earth’s gravitational field determination. For
more details, we refer to Freeden et al. (1997), Schneider (1996, 1997), Freeden
and Schneider (1998), Glockner (2002), Hesse (2003), and Freeden and Nutz
(2011). The book written by Freeden (1999) contains non-bandlimited versions of
(harmonic) regularization wavelets. Multiscale regularization by use of spherical up
functions is the content of the papers by Freeden and Schreiner (2004) and Schreiner
(2004).

5 Future Directions

The regularization schemes described above are based on the decomposition
of the Hesse tensor at satellite’s height into scalar ingredients due to geomet-
rical properties (normal, tangential, mixed) as well as to analytical properties
originated by differentiation processes involving physically defined quantities
(such as divergence, curl, etc). SGG-regularization, however, is more suitable
and effective if it is based on algorithms involving the full Hesse tensor such
as from the GOCE mission (for more insight into the tensorial decomposi-
tion of GOCE-data, the reader is referred to the contribution of R. Rummel
in this issue). In addition, see Rummel and van Gelderen (1992) and Rummel
(1997).

Our context initiates another approach to tensor spherical harmonics. Based on
cartesian operators (see Freeden and Schreiner 2009), the construction principle
starts from operators Qo.i;k/

n ; i; k 2 f1; 2; 3g given by
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Qo.1;1/
n F .x/ D �

.2n C 3/x � jxj2rx

� ˝ �
.2n C 1/x � jxj2rx

�
F .x/; (129)

Qo.1;2/
n F .x/ D �

.2n � 1/x � jxj2rx

� ˝ rxF .x/; (130)

Qo.1;3/
n F .x/ D �

.2n C 1/x � jxj2rx

� ˝ .x ^ rx/F .x/; (131)

Qo.2;1/
n F .x/ D rx ˝ �

.2n C 1/x � jxj2rx

�
F .x/; (132)

Qo.2;2/
n F .x/ D rx ˝ rxF .x/; (133)

Qo.2;3/
n F .x/ D rx ˝ .x ^ rx/F .x/; (134)

Qo.3;1/
n F .x/ D .x ^ rx/ ˝ �

.2n C 1/x � jxj2rx

�
F .x/; (135)

Qo.3;2/
n F .x/ D .x ^ rx/ ˝ rx/F .x/; (136)

Qo.3;3/
n F .x/ D .x ^ rx/ ˝ .x ^ rx/F .x/ (137)

for x 2 R
3 and sufficiently smooth functions F W R3 ! R:

Elementary calculations in cartesian coordinates lead us in a straightforward way
to the following result.

Lemma 2. Let Hn; n 2 N0, be a homogeneous harmonic polynomial of degree n.
Then, Qo.i;k/

n Hn is a homogeneous harmonic tensor polynomial of degree deg.i;k/.n/,
where

deg.i;k/.n/ D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

n � 2 for .i; k/ D .2; 2/;

n � 1 for .i; k/ 2 f.2; 3/; .3; 2/g;
n for .i; k/ 2 f.1; 2/; .2; 1/; .3; 3/g;

n C 1 for .i; k/ 2 f.1; 3/; .3; 1/g;
n C 2 for .i; k/ D .1; 1/

(138)

.deg.i;k/.n/ < 0 means that Qo.i;k/
n Hn D 0/.

Applying the operator Qo.1;1/
n to the inner harmonic x 7! jxjnYn.x/jxj/, we are

able to deduce the following relation after some easy calculations

Qo.1;1/
n rnYn.�/jrD1 D .n C 2/.n C 1/o.1;1/Yn.�/ � .n C 2/o.1;2/Yn.�/ � .n C 2/

o.2;1/Yn.�/ � 1
2
.n C 2/.n C 1/o.2;2/Yn.�/ C 1

2
o.2;3/Yn.�/

(139)
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(compare with the identity (66)).
Assuming that {Yn;m}nD0;:::; mD1;:::; 2nC1 is an orthonormal set of scalar spherical

harmonics as before, we are led to introduce the following tensor spherical
harmonics

Qy.i;k/
n;m D � Q
.i;k/

n

��1=2 Qo.i;k/Yn;m; (140)

n D Q0ik; : : : ; m D 1; : : : ; 2n C 1; where

Q0i;k D
8<
:

0; .i; k/ 2 f.1; 1/; .2; 1/; .3; 1/g;
1; .i; k/ 2 f.1; 2/; .1; 3/; .2; 3/; .3; 3/g;
2; .i; k/ 2 f.2; 2/; .3; 2/g

(141)

and

Q
.1;1/
n D .n C 2/.n C 1/.2n � 3/.2n � 1/; (142)

Q
.1;2/
n D 3n4; (143)

Q
.2;1/
n D .n C 2/.n C 1/.2n � 3/.2n � 1/; (144)

Q
.2;2/
n D n.n � 1/.2n C 1/.2n � 1/; (145)

Q
.3;3/
n D n2.n � 1/.2n C 1/; (146)

Q
.1;3/
n D n.n C 1/2.2n C 1/; (147)

Q
.2;3/
n D n2.n C 2/.n C 1/; (148)

Q
.3;1/
n D n2.n C 1/.2n C 1/; (149)

Q
.3;2/
n D n.n C 1/2.2n C 1/; (150)

They are suitable for the solution of tensorial problems due to the following result
involving the spaces l2.�/ and c(�/ of square-integrable and continuous tensor
fields on �, respectively.

Theorem 6. Let fYn;mgnD0;1;:::; mD1;:::; 2nC1 be an L2.�/-orthonormal set of scalar
spherical harmonics. Then, the set

˚Qy.i;k/
n;m



i;kD1;2;3; nDQ0ik;:::; mD1;:::; 2nC1

; (151)
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as defined by (140) forms an l2.�/-orthonormal set of tensor spherical harmonics
which is closed in c(�/ with respect to jj � jjc.�/ and complete in l2.�/ with respect
to .�; �/l2.�/.

Finally we introduce the tensor outer harmonics of degree n, order m, and kind
(i , k/ by (see Freeden and Schreiner 2009; Freeden and Nutz 2011)

h.1;1/IR
�n�1;m.x/ D 1

R

�
R

jxj
�nC3

Qy.1;1/
n;m

�
x

jxj
�

; (152)

h.1;2/IR
�n�1;m.x/ D 1

R

�
R

jxj
�nC1

Qy.1;2/
n;m

�
x

jxj
�

; (153)

h.2;1/IR
�n�1;m.x/ D 1

R

�
R

jxj
�nC1

Qy.2;1/
n;m

�
x

jxj
�

; (154)

h.2;2/IR
�n�1;m.x/ D 1

R

�
R

jxj
�n�1

Qy.2;2/
n;m

�
x

jxj
�

; (155)

h.3;3/IR
�n�1;m.x/ D 1

R

�
R

jxj
�nC1

Qy.3;3/
n;m

�
x

jxj
�

; (156)

h.1;3/IR
�n�1;m.x/ D 1

R

�
R

jxj
�nC2

Qy.1;3/
n;m

�
x

jxj
�

; (157)

h.2;3/IR
�n�1;m.x/ D 1

R

�
R

jxj
�n

Qy.2;3/
un;m

�
x

jxj
�

; (158)

h.3;1/IR
�n�1;m.x/ D 1

R

�
R

jxj
�nC2

Qy.3;1/
n;m

�
x

jxj
�

; (159)

h.3;2/IR
�n�1;m.x/ D 1

R

�
R

jxj
�n

Qy.3;2/
n;m

�
x

jxj
�

; (160)

x 2 R
3nf0g.

These definitions (in particular the one of the kind (1,1)) offer an easy way to
represent the gravitational potential V in the exterior of the sphere with radius R in
terms of the gravitational tensor r ˝ rV at the satellite’s height H . We start with
the observation that

r � r
�

R

jxj
�nC1

1

R
Yn;m

�
x

jxj
�

D
p

.n C 2/.n C 1/.2n � 3/.2n � 1/ h.1;1/IR
�n�1;m:

(161)
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Using the orthonormal basis {1/RYn;m} of the space of square-integrable functions
on �R and f1=.R C H/Qy.i;k/

n;m g of the space of square-integrable tensor fields on
�RCH , the relation (161) can be rewritten as

r � r
�

R

jxj
�nC1

1

R
Yn;m

�
x

jxj
�

D
p

.n C 2/.n C 1/.2n � 3/.2n � 1/

R C H

R

�
R

jxj
�nC3

� 1

R C H
Qy.1;1/

n;m

�
x

jxj
�

: (162)

In other words, the transformation of the potential at height R to the Hesse tensor

at height R C H can be expressed by a pseudodifferential operator Q�R;H

SGG with the
tensorial symbol

Q�R;H^
SGG .n/ D

0
BBBBB@

Qƒ.1;1/IR;H^
SGG .n/ Qƒ.1;2/IR;H^

SGG .n/ Qƒ.1;3/IR;H^
SGG .n/

Qƒ.2;1/IR;H^
SGG .n/ Qƒ.2;2/IR;H^

SGG .n/ Qƒ.2;3/IR;H^
SGG .n/

Qƒ.3;1/IR;H^
SGG .n/ Qƒ.3;2/IR;H^

SGG .n/ Qƒ.3;3/IR;H^
SGG .n/

1
CCCCCA

;

where

Qƒ.1;1/IR;H^
SGG .n/ D p

.n C 2/.n C 1/.2n � 3/.2n � 1/

�
R

R C H

�nC2

and

Qƒ.i;k/IR;H^
SGG .n/ D 0; .i; k/ ¤ .1; 1/:

Hence, the foreward direction of the SGG-problem is described by the pseudodif-

ferential operator Q�R;H

SGG, so that the SGG-problem leads to the pseudodifferential
equation

Q�R;H

SGGV D h: (163)

In order to formulate this equation more concretely, we show how the potential V is
related to its Hesse tensor at height H :
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V .x/ D
1X

nD0

2nC1X
kD1

�
r ˝ rV; h.1;1/IRCH

�n�1;k

�
12.�RCH /

� Q
.1;1/
n

��1=2

�
R C H

R

�nC2
1

jxjnC1
Yn;m

�
x

jxj
�

: (164)

Obviously, the last formula may serve as point of departure for (regularization)
solution techniques to determine V at the Earth’s surface from the full Hesse
tensor v = r ˝ rV at the satellite altitude. Furthermore, as described in Freeden
and Schreiner (2009), Freeden and Nutz (2011), it is not difficult to define tensor
zonal kernels in accordance with this expansion. In particular, they allow multiscale
regularization (solution) schemes based on wavelet methods.

6 Conclusion

Although an impressive rate of the Earth’s gravitational potential can be detected
globally at the orbit of a satellite (like GOCE), the computational drawback of
satellite techniques in geoscientific research is the fact that measurements must be
performed at a certain altitude. Consequently, a “downward continuation” process
must be applied to handle the potential at the Earth’s surface, hence, a loss of
information for the signal is unavoidable. Indeed, “downward continuation” causes
severe problems, since the amount of amplification for the potential is not known
suitably (as an a priori amount) and even small errors in the measurements may
produce huge errors in the potential at the Earth’s surface.

However, it is of great advantage that satellite data are globally available, at
least in principle. Nevertheless, from a mathematical point of view, we are not
confronted with a boundary value of potential theory. Satellite techniques such as
SST and/or SGG require the solution of an inverse problem to produce gravitational
information at the Earth’s surface, where it is needed actually. SST/SGG can be
formulated adequately as (Fredholm) pseudodifferential equation of the first kind,
which is exponentially ill-posed, and this fact makes indispensable the development
of suitable mathematical methods with strong relation to the nature and structure of
the data.

In this respect, it should be mentioned that each approximation’s theoretic
method has its own aim and character. Even more, it is the essence of any numerical
realization that it becomes optimal only with respect to certain specified features.
For example, Fourier expansion methods with polynomial trial functions (spherical
harmonics) offer the canonical “trend-approximation” of low-frequency phenomena
(for global modeling), they offer an excellent control and comparison of spectral
properties of the signal, since any spherical harmonic relates to one frequency. This
is of tremendous advantage for relating data types under spectral aspects. But it is at
the price that the polynomials are globally supported such that local modeling results
into serious problems of economy and efficiency. Bandlimited kernels can be used



Satellite Gravity Gradiometry (SGG): From Scalar to Tensorial Solution 377

for the transition from long-wavelength to short-wavelength phenomena (global to
local modeling) in the signal. Because of their excellent localization properties in
the space domain, the nonbandlimited kernels can be used for the modeling of
short-wavelength phenomena. Local modeling is effective and economic. But the
information obtained by kernel approximations is clustered in frequency bands so
that spectral investigations are laborious and time-consuming. In other words, for
numerical work to be done, we have to make an a priori choice. We have to reflect the
different stages of space/frequency localization so that the modeling process can be
adapted to the localization requirements necessary and sufficient for our geophysical
or geodetic interpretation.

In conclusion, an algorithm establishing an approximate solution for the inverse
SGG-problem has to reflect the intention of the applicant. Different techniques for
regularization are at the disposal of the numerical analyst for global as well as
local purposes. Each effort does give certain progress in the particular field of pre-
defined interest. If a broad field of optimality should be covered, only a combined
approach is the strategic instrument to make an essential step forward. Thus, for
computational aspects of determining the Earth’s gravitational potential, at least a
twofold combination is demanded, viz. combining globally available satellite data
(including the SGG-contribution) with local airborne and/or terrestrial data and
combining tools and means of constructive approximation such as polynomials,
splines, wavelets, etc. Altogether, in numerical modeling of the Earth’s gravitational
potential, there is no best universal method, there exist only optimized procedures
with respect to certain features and the option and the feasibility for their suitable
combination.
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