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Abstract
Since October 2009, ESA’s dedicated satellite gravity mission GOCE (Gravity
Field and Steady-State Ocean Circulation Explorer) observes the global gravity
field of the Earth. The estimation of the model parameters from the original
GOCE observations requires the application of tailored tools of geomathematics
and statistics. One of the main constraints is to compute pure GOCE models,
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which are independent of any other external gravity field information. Up to
now, four releases of global GOCE gravity field models have been computed
and released. Their continuously increasing accuracy is validated by external
gravity field information. A key prerequisite for achieving high-quality results
is the correct stochastic modeling of all input data types in the frame of a
least-squares adjustment procedure based on the rigorous solution of full normal
equation systems. Together with the global gravity field models, parameterized
as coefficients of a spherical harmonic series expansion, also the related error
variance-covariance matrix is generated, which turns out to describe the true
errors of the solutions very accurately. The fourth release achieves global geoid
height accuracies of 3.5 cm and gravity anomaly accuracies below 1 mGal at a
spatial wavelength of 100 km. Further improvements are expected, also because
of the GOCE satellite’s orbit lowering in its final mission phase, which will
further improve the spatial resolution. In addition to these pure GOCE-only
models, in the frame of the GOCO initiative consistent combined gravity field
models are processed by including GRACE and SLR data (improving the long
wavelengths), as well as terrestrial gravity information and satellite altimetry
(improving the high-frequency component). Also for the computation of these
optimum combinations, the tools developed for the GOCE processing can
largely be applied. Numerous fields of application in geodesy, oceanography, and
geophysics can benefit already now from the new GOCE models. As an example,
the derivation of global ocean transport processes from a combination of satellite
altimetry and global gravity information demonstrates that GOCE can contribute
significantly to an improved understanding of processes in system Earth.

1 Introduction

The gravity satellite mission GOCE (Gravity Field and Steady-State Ocean Cir-
culation Explorer), the first Earth Explorer Core Mission in the frame of the
Living Planet Programme executed by the European Space Agency (ESA), was
successfully launched on March 17, 2009 into a very low orbit of only about
255 km altitude. Since October 2009, the mission has been in science mode
and is continuously delivering operational data. The main goal of GOCE is the
determination of the Earth’s static gravity field with unprecedented accuracy and
spatial resolution, with a specification of 2 cm geoid height and 1 mGal gravity
anomaly performance at a spatial wavelength of 100 km (Floberghagen et al.
2011).

The measurement concept of GOCE is based on sensor fusion: The long
wavelength component of the global Earth’s gravity field is derived from high-
precision orbit information of the satellite. In this case, the satellite as a whole
is used as a test mass flying in the irregular gravity field of the Earth, leading to
orbit perturbations. The orbit is determined with a 3D standard deviation of only
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2–3 cm (Bock et al. 2011) by GPS positioning applying satellite-to-satellite tracking
in high-low mode (hl-SST) between the GPS satellites and the low Earth orbiter
GOCE. The medium to short wavelengths down to 80 km are measured by the core
instrument of GOCE, the so-called gravity gradiometer, a payload which has been
manufactured and flown for the very first time ever. Its measurement principle,
satellite gravity gradiometry (SGG), is based on the observation of second-order
derivatives of the Earth’s gravitational potential This is realized by 6 accelerometers
fixed on 3 orthogonal axes symmetrically around the center of mass of the satellite,
measuring acceleration differences on very short baselines of only half a meter
in all 3 dimensions (“differential mode”). Apart from that, the gradiometer also
measures the nonconservative forces, such as the air drag, solar radiation pressure,
or thruster events, as a mean value of two accelerometer readings along one axis
(“common mode”). These nonconservative accelerations are actively compensated
in real time by the drag-free and attitude control system (DFAC) and ion thrusters,
thus keeping the satellite virtually in free fall in the gravity field of the Earth.
Only this permanent drag compensation allows keeping the satellite on a constant
low altitude of only 255 km for the whole mission period of more than 3 years,
enabling gravity field observations close to the Earth and thus achieving a high
spatial resolution of the detail structures of the gravity field. A detailed discussion
of the GOCE measurement principle and the mission setup can be found in Rummel
(2010). In Freeden and Schreiner (2010), SGG is interpreted and discussed as
spacewise inverse problem.

The computation of models of the global gravity field from GOCE orbit (hl-SST)
and gradiometry (SGG) data, and on a later stage also including complementary
satellite and terrestrial gravity field data, is a demanding task. A whole arsenal of
methods of geomathematics, statistics, and numerics, forming tailored processing
algorithms and procedures, have to be applied to achieve optimum solutions (in
least-squares sense). In this contribution, an overview of the statistical toolkit for
the modeling of the global gravity field shall be presented and discussed on the
example of the GOCE mission. More generally, it can also serve as a case study
and recipe for the estimation of large parameter models from a very large number
of observations with arbitrary noise characteristics.

Correspondingly, in Sect. 2, the global gravity field of the Earth and its param-
eterization is described, from which the functional and stochastic models are
derived. Section 3 presents the processing chain, being composed of a toolkit of
statistical and numerical methods. In Sect. 4, the application of these algorithms
to real GOCE data and the resulting global gravity field models are presented. In
Sect. 5, current and future perspectives of the GOCE mission are outlined, such as
combined gravity field modeling by including complementary gravity data, the gain
of accuracy due to improvements in the Level 1b preprocessing methodology, and
the satellite’s orbit lowering in its final mission phase. Finally, in Sect. 6, the main
results are summarized, and the impact of the new GOCE models in different fields
of application is discussed.
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2 The Global Gravity Field: Functional Model

The global Earth’s gravitational potential V is usually parameterized by a spherical
harmonic series expansion, which results from the solution of Laplace equation
�V D 0 in spherical coordinates (radius r , co-latitude # , and longitude �):

V .r; #; �/ D GM

R

LX

nD0

�
R

r

�nC1 nX

mD0

NPnm.cos #/Œ NCnm cos.m�/ C NSnm sin.m�/�

D
LX

nD0

nX

mD0

Anmxnm (1)

where G is the gravitational constant; M and R are the Earth’s mass and reference
radius, respectively; NPnm the fully normalized Legendre polynomials of degree n

and order m; and xnm D f NCnmI NSnmg the corresponding coefficients. Main goal of
global gravity field modeling is to determine the coefficients of the series expansion
f NCnmI NSnmg as well as corresponding error information up to a certain maximum
degree of the series expansion L (in theory, the maximum degree in Eq. (1) is L D
1) in an “optimum” way from the gravity field observations, which are functionals
of the gravitational potential V . Equation (1) represents the basic functional model
and observation equation in the frame of the gravity field solution.

A more precise approximation of the geometrical Earth’s figure is the expansion
in ellipsoidal harmonics (e.g., Grafarend et al. 2010), which is, however, much
more costly from a computational point of view and, therefore, will not be further
considered in this study.

In the case of GOCE, the observations are – apart from kinematic GPS orbit
obtained by precise orbit determination (Bock et al. 2011) – the gravitational
gradients, forming second-order spatial derivatives of the gravitational potential

Vij D @2V

@xi @xj

(2)

in a local rotating reference frame, whose axes xi , with xi D X , Y , Z, are
oriented along the gradiometer axes (Gradiometer Reference Frame; GRF). The
GRF deviates from an ideal, radially oriented local orbit reference frame by 3˚–5˚
(Rummel et al. 2011).

They form a 3 � 3 matrix (the so-called Marussi tensor), which is symmetric�
because of @2

@xi @xj
D @2

@xj @xi

�
and has only five independent elements, due the

Laplace equation �V D VXX C VY Y C VZZ D 0 forming a condition for the
tensor’s trace.

As any measurement device, also the six accelerometers composing the gra-
diometer are affected by noise with specific spectral characteristics. Figure 1 shows
the spectral behavior of the gradiometer noise in terms of a power spectral density
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Fig. 1 Noise PSD of the 6 GOCE gravity gradient components

for all six gradiometer components Vij . The lower performance of the two off-
diagonal components VXY and VYZ by a factor of 100 results from the fact that
each of the six individual accelerometers has two high-sensitive and one less-
sensitive axes. The specific mounting within the gradiometer leads to the fact
that the three in-line components VXX , VY Y , VZZ , holding the main gravity field
information, and VXZ , which is especially sensitive to the main satellite’s rotational
motion, have the highest performance. As it will be discussed in Sect. 3.4, it is
of utmost importance to include this information on the actual gradiometer noise
characteristics as stochastic model in the solution strategy.

3 GOCE Gravity FieldModeling

Figure 2 shows the architectural design of global gravity field processing, which is
composed of a multitude of methods and problems of geomathematics and statistics,
such as statistical methods for outlier detection, stochastic modeling via recursive
digital filters, optimum relative weighting of different data types and groups, regu-
larization to stabilize the solution, parameter estimation by least-squares adjustment,
and covariance propagation, to finally end up with an “optimum” gravity field
solution plus corresponding variance-covariance information.

Here we follow the processing approach of the so-called time-wise method
(TIM; Pail et al. 2010a) to derive TIM gravity field models as a joint effort of
TU München, Graz University of Technology, and University of Bonn. This is
part of the ESA project “High-Level Processing Facility” (Rummel et al. 2004),
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Fig. 2 Architectural design and key processing steps of GOCE gravity field modeling

a consortium of 10 European universities and research institutions, managed by TU
München. Apart from the TIM models, two other processing strategies are applied
within HPF: the “direct method” (DIR; Bruinsma et al. 2010) and the “spacewise
method” (SPW; Migliaccio et al. 2010). While TIM and DIR are based on a least-
squares adjustment approach applied to observations sequentially along the orbit,



It’s All About Statistics: Global Gravity Field Modeling from GOCE and. . . 2351

SPW considers the regional spatial distribution of the observation and applies a
least-squares collocation approach (Moritz 1978).

It is a specific feature of the gravity field modeling method described here that
it produces GOCE-only model in a rigorous sense, i.e., no external gravity field
information is used, neither as reference model nor for constraining the solution.
Correspondingly, the resulting gravity field solutions are based solely on GOCE
data and are independent of any complementary gravity field information.

3.1 Input Data

Key input products to be used for gravity field modeling (product identifiers
according to EGG-C (2010)) comprise:

• Precise Science Orbits: SST_PSO_2I, including the subproducts:
– SST_PKI_2I: kinematic orbits
– SST_PCV_2I: variance-covariance information of orbit positions
– SST_PRD_2I: reduced-dynamic orbits
– SST_PRM_2I: quaternions for transformation from Earth-fixed to inertial

reference frame
• Gravity Gradients in the GRF: EGG_NOM_2
• Attitude Quaternions: EGG_IAQ_2C (corresponds to columns 56–59 of

EGG_NOM_2)

The main objective is to derive a static GOCE gravity field. Therefore, time-variable
signals have to be reduced a priori from the orbit (SST) and gravity gradient
(SGG) measurement time series. Correspondingly, models for temporal gravity
field reduction, such as ephemerides of Sun and Moon (AUX_EPH), ocean tide
models (ANC_TIDE, ANC_TID_2I), correction coefficients for non-tidal temporal
variation signals (SST_AUX_2I), and for Earth rotation (AUX_IERS), have to be
applied.

Additionally, for the processing of gravity fields from orbits, nongravitational
accelerations, as they are measured by the gradiometer in common mode and given
in the product EGG_CCD_2C, are applied.

3.2 Data Preprocessing

The reduction of temporal gravity field signals is mainly important for the SST
observations, since they are sensitive to long-wavelength signals which contain
the largest temporal gravity field signals, while due to the error characteristics of
the gravity gradients as shown in Fig. 1, temporal gravity is usually not visible.
However, it should be emphasized that many temporal gravity field signals show
periodic behavior, such as semidiurnal and diurnal ocean tides. They comprise a
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systematic signal and thus are not fully reduced by averaging and, therefore, play a
more and more significant role the longer the GOCE mission continues.

Outlier detection is applied using an arsenal of statistical methods (Kern et al.
2005) in order to identify at least coarse outliers, resulting in outlier flag files
indicating those epochs which shall not be assembled. However, the fine-tuned
outlier detection can only be done based on the residuals of a previous gravity field
adjustment, because smaller outliers can only be detected on the residual level, but
not on the level of the full signals. Therefore, usually a feedback loop is applied (cf.
Fig. 2) to recompute the gravity field model after outlier detection on the basis of
residuals with an updated outlier flag file and potentially also an updated stochastic
model (cf. Sect. 3.4).

Another preprocessing step is the synchronization of the gravity gradient and
orbit time series, where the orbits are interpolated to the SGG epochs applying a
Newton interpolation scheme (Goiginger and Pail 2007).

3.3 Observation Equations

SGG and SST normal equations (NEQs) are set up separately, where the SST NEQs
are resolved to maximum degrees of 100–150.

The information content of the SST data is exploited by making use of the
precise GOCE orbit expressed in terms of position information including quality
description. Kinematic orbits (SST_PKI) are purely geometrical orbit solutions
solely based on the GPS observations, without including any gravitational and
nongravitational force models. Although the noise level, which is in the order
of 2–3 cm 3D rms (Bock et al. 2011), is higher than for reduced dynamic orbits
(SST_PRD), only when using kinematic orbits it is guaranteed that external gravity
field information is not introduced via the backdoor. For the TIM releases 1–3, the
principle of energy conservation has been applied in an inertial reference frame
(Badura 2006) to derive the gravity field from kinematic orbits. Starting from TIM
release 4, the short-arc method (Mayer-Gürr et al. 2010) is applied. In the energy
conservation method, pseudo-observations in terms of the (scalar) kinetic energy are
computed from the orbit velocities, which have been previously derived from the
kinematic orbit positions by numerical differentiation (Goiginger and Pail 2007).
In contrast, the short-arc method fully exploits the 3D orbit information and thus
outperforms the energy integral method by a factor of about

p
3. The use of the

covariance information (SST_PCV) as stochastic model for the SST observations
shows some advantages especially concerning the correct error description of the
resulting gravity field coefficients (Goiginger and Pail 2010). Details on the SST
processing can be found in Pail et al. (2010a, 2011). In the following, we will mainly
concentrate on the SGG component.

The observation equations of the SGG for the following least squares adjustment
based on a standard Gauss-Markov model can be derived by combining Eqs. (1)
and (2):
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`SGG C v D V GRF
ij C v D

LX

nD0

nX

mD0

.AGRF
ij /nmxnm D ASGGx (3)

Since the measurement accuracy of the off-diagonal gradient tensor components
VXY and VYZ is worse by a factor of about 100, only the other four gravity
gradient components (main diagonal components VXX , VY Y , VZZ and off-diagonal
component VXZ) are used for gravity field modeling. In order to avoid rotation of the
observed gravity gradients V GRF

ij to an ideal Earth-fixed frame, whereby the high-
accuracy gravity gradient components would suffer from a severe deterioration due
to an aliasing of the low-accuracy off-diagonal gradient tensor components VXY and
VYZ , instead the base functions .AGRF

ij /nm are rotated to the GRF before assembling.
The detail procedure is the following: first, the spherical harmonic base functions

for all gravity gradient tensor components are computed in an ideal radial and
north-oriented Earth-fixed reference frame at the satellite’s position, which has been
interpolated from the orbit products for the observation epoch of the gradients.
Then the base functions are rotated to the GRF. The rotation matrix is composed
of two pieces of information: the rotation matrix from the Earth-fixed to the inertial
frame (part of the orbit product SST_PRM, interpolated consistently to the SGG
epochs) and the attitude quaternions providing the rotation from the inertial frame
to the GRF. The combined rotation matrix is then applied to all base function
elements, yielding .AGRF

ij /nm. Finally, only the four selected tensor elements related
to the high-accuracy gravity gradients (ij D XX; YY; ZZ or XZ) are used for
assembling the SGG NEQs.

3.4 Stochastic Modeling

Due to the colored noise characteristics of the gradiometer observations (cf. Fig. 1),
the correct stochastic modeling of the observation errors is a key requirement
to obtain high-quality gravity field solutions. The decreased performance of the
gradiometer in the low-frequency range results in long-wavelength correlations
of the SGG observation noise. In order to demonstrate this effect very lucidly,
Fig. 3 (left column) shows typical amplitudes of the signal (top), the gradiometer
noise (middle), and the actual observations (bottom) containing signal and noise,
of the radial component VZZ at mean satellite altitude, projected to a regional grid.
Evidently, the signal is superimposed with predominantly long-wavelength error
structures, demonstrating the need for an optimum signal-noise separation as main
task of the gravity field adjustment.

Assuming the observation errors to be a stochastic process, causal digital
recursive filters of ARMA type (Auto-Regressive Moving Average) are used to
approximate the error behavior of the observations (Klees et al. 2003; Schuh 1996;
Siemes 2008) and thus to comprise the stochastic model †`, which shall introduce
the actual error information of the gravity gradient observations as weight matrix
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Fig. 3 VZZ gradients [E] in mean orbit altitude projected on a regional grid; top, signal
(degree/order 200); middle, noise; bottom, signal + noise; left column, original gradients (cf.
Sect. 3.4); right column, reprocessed gradients (cf. Sect. 5.2)

and thus as the metric into the NEQs. The basic idea shall be sketched in the
following.

Since the stochastic part of the observations ` is affected by colored noise, we
design a filter F which shall ideally produce, when applied to the colored noise
time series, uncorrelated, normal-distributed random noise with mean � D 0 and
variance �2 D 1. Applying this (lower triangular) filter matrix F to the observation
vector ` and the columns of the design matrix ASGG (in the following abbreviated
by A for the sake of simplicity)

Ǹ D F `; (4a)

NA D FA; (4b)
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the unbiased L2 solution of this Gauss-Markov system is obtained by

Ox D . NAT NA/�1 NAT Ǹ D . NAT I NA/�1 NAT I Ǹ; (5)

where the unit matrix I indicates that ideally the projected (filtered) system should
be fully decorrelated and obeys N .� D 0; �2 D 1/.

Inserting for the filtered quantities Eqs. (4a) and (4b) into Eq. (5) yields

Ox D .AT F T FA/�1AT F T F `: (6)

Comparing Eq. (6) with the solution of a general unbiased Gauss-Markov model
N .0; †`/;

Ox D .AT †�1
` A/�1AT

X�1

`
` (7)

reveals that the inverse variance-covariance matrix of the observations †` can be
expressed by the filter matrix as

†�1
` D F T F: (8)

A computationally efficient way to introduce the stochastic model into the NEQs
is to formulate the filter operation as a digital recursive filter, F D F .ak; bk/, in
time domain, applied to the observation equations. Here we are using causal digital
ARMA filters, which are described by filter coefficients (ak , bk) defining the poles
(AR part) and zeros (MA part) of the filter, respectively, and thus the weights of the
linear combination of elements of the input series ys�k and the filtered output series
Nys�k at the current epoch s:

Nys D
NbX

kD0

bkys�k �
naX

kD1

ak Nys�k : (9)

Technically, this is done by applying these filters to the full observation equation,
i.e., ys stands for both, the observation vector ` and the columns of the design matrix
A, leading ideally to a full decorrelation (whitening) of the time series. In this way,
the gradiometer error information is introduced as the metrics of the NEQ system,
thus describing the weighting of the observations. It shall be emphasized that when
designing the filters, only the amplitude spectrum has to be considered. Since the
normal equations are of quadratic nature, the phase becomes automatically zero
when the filter operator is squared (multiplied by its conjugate complex), as it is
done in the composition of AT F T FA and AT F T F `.

As an example, the red curve in Fig. 4 shows an ARMA filter model (magenta)
for the gradient component VZZ , approximated to the estimate of the gradiometer
noise derived from the residuals of a previous gravity field adjustment (cf. Sect. 3.6).
In order to fit the actual error characteristics more easily, filter cascades composed
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Fig. 4 Noise PSDs and approximated filters of gravity gradient component VZZ for original (cf.
Sect. 2) and reprocessed (cf. Sect. 5.2) gravity gradients

of two (or more) individual filters of different complexity, which are applied

sequentially, can be designed: F D
kQ

iD1

Fi .

Usually, filter orders Na, Nb of 10–50 are sufficient to approximate the gradient
error behavior properly. Special attention has been given to the fact that the designed
filters have a relatively low filter order and thus are computationally efficient.
Applied in time domain and starting with no information from the past, the filters
require a certain period until they work correctly. Therefore, an important aspect is
to design filters that have short warm-up times of only a few hundred to thousand
epochs, which are only used to run the filters, but are not assembled (Stetter 2012).
Therefore, also data gaps and outlier-flagged epochs pose a problem and require
special treatment in order to minimize the data loss (Siemes 2008).

In summary, it shall be emphasized that with this stochastic modeling
procedure, we do not filter out certain spectral components of the gradients,
but we try to give them their proper weight in the course of the gravity field
adjustment.

3.5 Excursion: The Role of theMeasurement Bandwidth

In Sect. 2, it has been shown that the gradiometer performs best within the MBW of
5–100 MHz, where it is approximately white, while below it degrades significantly
toward low frequencies, with 1/frequency characteristics. One of the simplest
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but also questionable approaches to get rid of this colored noise behavior is by
filtering the gradients to the measurement bandwidth. In this subsection, it shall be
demonstrated that this is a highly unfavorable approach. Due to the fact that there
is no one-to-one correspondence between the frequency spectrum of the gravity
gradient time series and the spherical harmonic spectrum of the gravity field, band-
pass filtering represents a highly anisotropic filter in spatial domain, i.e., the filtered
signal will contain completely different spectral signal content in north-south and
east-west direction.

The danger of such an approach becomes evident when such a filtered signal is
then used as the basis for geophysical interpretation. However, the effect of such
an approach can also nicely been shown in the frame of gravity field modeling. For
this purpose, a simplified, simulated test configuration was set up, where the “true”
gravity field signal in terms of gravity gradients VXX , VY Y , and VZZ was synthetized
from a known gravity field model complete to degree/order 200. In two test runs,
different noise time series were superimposed, and the gravity field was recovered
and compared with the “true” input model. While in the first configuration, realistic
noise as shown in Fig. 1 was assumed (blue curve in Fig. 5, top), in the second
test run, a high error level with an amplitude, which is by a factor of 100 higher
than in the MBW, was assumed for all frequencies below and above the MBW
(red dashed curve in Fig. 5, top). This high noise level shall mimic the fact that
we have no (or in our case only very bad) information of the gravity field signal
below the MBW.

The middle row of Fig. 5 shows the mapping of these gradiometer errors to SGG-
only gravity field solutions. In the first configuration (right), almost all coefficients,
except of the very low degrees and the (near)zonal ones (due to the polar gap
problem; cf. Sect. 3.6), can be estimated reasonably well. In contrast, if only the
information within the MBW is considered (left), in addition, mainly the sectorial
and near-sectorial coefficients up to degree/order 120 are retrieved with significantly
reduced accuracy. This proves that the spectral range below the MBW contains
important information for the estimation of coefficients of rather high degree.
Additionally, it shall be emphasized that cutting off the signal at the MBW acts as an
extremely anisotropic filter. This is reflected by the fact that coefficients of a certain
degree (and thus corresponding to a certain spatial wavelength) are retrieved with
very different accuracy. An even more obvious picture of this anisotropic behavior
is provided at the bottom row of Fig. 5, where the corresponding errors in terms of
gravity anomaly deviations from the true reference model up to degree/order 200
are displayed. The weakness of the (near-)sectorial coefficients in the left case is
reflected by the North-South striping structures.

In summary, it can be concluded that the information below the MBW is essential
to process GOCE-only models. The missing gravity field information when filtering
the gravity gradients cannot be fully compensated by an addition of the hl-SST
component, due to the fact that coefficients even up to degree/order 120 are affected.
Equally important, it is dangerous to use band-pass filtered gradients for geophysical
interpretation!
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Fig. 5 Analysis of effect of band-pass filtering of gradients. Top, gravity gradient noise spectra
(exemplarily for VZZ); middle, mapping to SH coefficients; bottom, gravity anomaly error
[mGal]s. Left column, gravity gradients filtered to MBW; right column, full spectral range used

3.6 Normal Equation Setup and Solution

Full normal equation for hl-SST and SGG is assembled separately (cf. Fig. 2). For
a gravity field model up to degree/order 250, about 63,000 parameters and the
corresponding error information in the form of a full variance-covariance matrix
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are solved rigorously on a Linux cluster system, applying least-squares adjust-
ment based on a standard Gauss-Markov model. The complete normal equations
read

.wSGGNSGG C wSST NSST C ˛NCAP / Ox D wSGGnSGG C wSST nSST C ˛nCAP ;

(10)

where N stands for the normal equation matrix of a specific component, N D
AT †�1

` A, and n for the right-hand side, n D AT †�1
` `.

For gravity gradiometry, usually the three main diagonal components VXX , VY Y ,
VZZ and the high-precision off-diagonal component VXZ , defined in the GRF, are
used. However, it can be shown that the high-accuracy off-diagonal gravity gradient
component VXZ (cf. Fig. 1) adds only marginal contributions to the solution, due to
its sensitivity to attitude errors (Pail 2005).

Optimum relative weights w of the individual components are estimated
applying variance component estimation (Koch and Kusche 2002). Due to
the fact that as realistic as possible stochastic models †` are used as metric
of the NEQ (cf. Sect. 3.4), the resulting relative weights usually are close
to “1.”

Specific attention has to be given to constraining the combined NEQ system,
which is usually ill-conditioned mainly due to the so-called polar gap problem.
Since the satellite flies a sun-synchronous orbit with an orbit inclination of i = 96.6˚,
the polar areas are not covered with measurements, leading to a very inhomogeneous
data distribution. It can be shown that the polar gap has a much higher impact on the
ill-conditioning than the downward continuation, by 2–3 magnitudes. To counteract
this problem, the spherical cap regularization approach (Metzler and Pail 2005) was
developed. Here, spherical polar caps are defined as additional normal equations
NCAP , playing the role of the regularization matrix. The corresponding right-hand
side nCAP can either be filled by zeros (corresponding to a constraint toward a zero
model) or by an analytical function which is only defined in the cap region. It can be
shown that with a reasonable choice of the regularization parameter ˛, the impact
of this regularization remains restricted to the polar caps, while the regularization
bias is negligible in those areas which are covered with measurements. An easy
alternative is to apply a classical Kaula regularization only to those coefficients
which are affected by the polar gap, according to the rule of thumb given by Sneeuw
and van Gelderen (1997).

In order to improve the signal-to-noise ratio in the very high degrees, additionally
Kaula regularization is usually applied for all coefficients above a certain degree
(170 for TIM release 1, 180 for releases 2–4). The optimum regularization parameter
˛ is determined jointly with the optimum weights w in the frame of the abovemen-
tioned variance component estimation.

Finally, after combination of all components and their optimum weighting, the
coefficient solution is computed by a parallel Cholesky decomposition scheme (Pail
and Plank 2002), and the corresponding full variance-covariance matrix is obtained
by explicit inversion of the NEQs.
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3.7 Analysis of Residuals

The analysis of the residuals of the gravity field adjustment, i.e., the differences
between the original observations and those computed from the estimated gravity
field coefficients, is a valuable tool to get an idea of the instrument performance,
especially concerning the individual gravity gradient components. In the first
approximation, the power spectral density of the gravity gradient residuals provides
the noise characteristics of the SGG observations and thus of the gradiometer
transition function.

The idea behind this strategy can be outlined as follows: the observation
equations (Eq. 3) can be reformulated using the unknown parameter vector x and
the unknown true errors ":

` � " D A x: (11)

Unbiasedness Ef Oxg D x provided, the residuals v can be considered as estimates
for the (negative) true errors -". A transformation of " into the frequency domain
PSD{"} (corresponding to a (squared) discrete Fourier transform F f"g which is
normalized by a time unit to obtain a spectral density) corresponds to the (true)
gradiometer error PSD. Therefore, the spectral analysis of the residuals PSDfvg
should approximate the gradiometer transition function,

PSDfvg � PSDf"g; (12)

but only if the system is consistent, i.e., in the absence of any systematic errors in
the observations.

The main assumption here is that the sum of all errors projected into the SGG
residuals are dominated by the gradiometer errors themselves, while other errors
resulting from attitude reconstruction and non-precise geolocation due to orbit errors
play a minor role. It can be shown that this assumption is largely true, with the
exception of the very low frequencies, where the attitude errors dominate the total
error budget (Pail 2005). For the purpose of geolocation, orbit accuracies of 2–3 m
would be sufficient. (It should also be emphasized that in the gravity field adjustment
from SGG, only the gravity gradients are assumed as stochastic quantities, while
attitude and orbit are assumed to be known deterministic.)

The gravity gradient residuals are the basis for the stochastic modeling as
described in Sect. 3.4.

3.8 Data Inspection

The correct working of the filters derived in Sect. 3.4 can be proved a posteriori
by applying them to the post-fit residuals of the gravity field adjustment, because
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ideally this operation should lead to a normal distributed white noise time series
with variance �2 D 1. This can be tested applying appropriate hypothesis tests
(Kargoll 2007; Lackner 2006).

As already mentioned in Sect. 3.2, also the main outlier detection is performed in
the frame of gravity field processing based on the gravity gradient residuals, because
they have a much smaller amplitude than the full signal, so that outliers become
more distinct.

3.9 Validation

There are different methods to validate the resulting GOCE gravity field models.
Due to the fact that they represent models with unprecedented accuracy and spatial
resolution, their validation is not an easy task.

A straightforward and commonly used strategy is to compare the new GOCE
models with existing global gravity field models of the pre-GOCE era in regions
where these models are known to be good. Additionally, GOCE results can be
compared in regions with high-quality terrestrial gravity data and with “directly
measured” geoid heights derived from a combination of long-term GPS observations
and spirit leveling. Over the oceans, the geodetic mean dynamic topography (MDT)
can be computed as the difference of the geometric sea surface derived from
satellite altimetry, and the geoid computed from the global model to be validated.
The resulting MDT can then be compared with independently computed MDT
estimates, either derived from ocean models or in situ drifter measurements. The
long-wavelength part can be validated in the frame of orbit tests, by using the gravity
field model in a dynamic orbit solution for low-orbiting satellites and comparing the
integrated orbit with actual GPS observations. An overview of different validation
methods and their application to GOCE gravity fields can be found in Gruber et al.
(2011).

4 Results

In the following, the main results of the releases 1–4 of TIM gravity field models are
discussed, and their performance is assessed and validated. Table 1 summarizes the
main characteristics of these models, such as the maximum degree of resolution, the
gradient data type, the data period, as well as the net number of epochs contained in
the solutions. The last two columns provide their accuracy in terms of global geoid
height and gravity anomaly errors at 100 km spatial resolution (L D 200).

Figure 6 shows the achieved performance in terms of the degree medians of the
formal errors:

�n D medianmf� NCnm
; � NSnm

g (13)
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Table 1 Main characteristics of TIM gravity field models

Model
Max.
degree Gradients Data period

# epochs
(in mio.) � N [cm] (d/o 200) � �g[mGal] (d/o 200)

TIM_R1 224 Original 01/11/2009–
11/01/2010

6.2 10.0 3.0

TIM_R2 250 Original 01/11/2009–
05/07/2010

19.5 6.1 1.8

TIM_R3 250 Original 01/11/2009–
17/04/2011

31.3 4.6 1.3

TIM_R4 250 Reprocessed 01/11/2009–
19/06/2012

69.7 3.2 0.9

Fig. 6 Degree error medians of the GOCE-only TIM gravity field solutions

It illustrates the continuous improvement of the achieved accuracy by including
more and more GOCE data. The gains follow the Gaussian covariance propagation
law of uncorrelated observations of

p
N . Correspondingly, the improvement from

TIM_R1 to TIM_R2, which contains approximately the threefold data volume, is
about

p
3; TIM_R3 improves with respect to TIM_R2 by a factor of almost

p
2

and TIM_R4 with respect to TIM_R3 again by a factor of
p

2. The significantly
improved performance of release 4 in the low degrees results from the switching
from the energy integral to the short-arc method concerning the hl-SST processing
(cf. Sect. 3.3), and additional improvements over the whole spectral range result
from the use of reprocessed gravity gradient products (cf. Sect. 5.2).

Several external validations show that due to the realistic stochastic modeling of
all observation components (SGG components, hl-SST), the formal errors reflect
quite realistically the true accuracies of the TIM gravity models. Figure 7 shows
the global distribution of geoid height accuracies at degree/order 200, resulting
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Fig. 7 Geoid height standard deviations at degree/order 200 derived by covariance propagation
from the full VCM: (a) TIM_R1; (b) TIM_R2; (c) TIM_R3; (d) TIM_R4

from a rigorous covariance propagation of the parameter variance-covariance matrix
(VCM) †. Ox/ to geoid heights. The asymmetry with respect to the equator results
from the specific GOCE orbit configuration, i.e., a slightly larger average orbit
altitude in the Southern Hemisphere. The characteristic structure south of Australia
in TIM_R2 and TIM_R3 reflects data problems of the VYY component. These
erroneous gradient observations have been eliminated regionally, leading to a
smaller number of observations in these regions. This proves that the VCM nicely
reflects specific data anomalies and their impact on the solution.

The estimated cumulative geoid height and gravity anomaly accuracies at
degree/order 200 of the four TIM releases are summarized in Table 1.

The analysis of the formal errors is only one side of the medal to assess the real
accuracy of a gravity model. Therefore, the results have also been compared with
the independent global gravity model EGM2008 (Pavlis et al. 2012), which contains
mainly GRACE data, terrestrial gravity, and satellite altimetry data over the oceans.

Figure 8 shows gravity anomaly differences to EGM2008 up to degree/order
L D 200 for the regions of North America (top) and South America (bottom).
The left column provides difference fields of TIM_R1 and the right column of
TIM_R4. Table 2 summarizes the corresponding standard deviations, computed in
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Fig. 8 Gravity anomaly differences [mGal] to EGM2008 in North America (top row) and South
America (bottom row), for TIM_R1 (left column) and TIM_R4 (right column)

Table 2 Standard deviations of gravity anomaly differences of different GOCE TIM releases and
EGM2008 up to degree/order 200, evaluated in the white rectangle areas marked in Fig. 8. As a
reference, also the standard deviation of the signal is provided

��g[mGal] North America South America

Signal 19:15 42:88

TIM_R1 2:59 10:33

TIM_R2 1:67 10:09

TIM_R3 1:41 10:06

TIM_R4 1:21 10:02

the subregion marked by white rectangles in Fig. 8, for all four TIM releases. In
North America, where the EGM2008 is expected to have very good quality due to
the availability of high-quality ground gravity data, the differences to the GOCE
models are generally small, and the consistency steadily increases with increasing
release number. From this, we can conclude that the TIM models are not affected
by significant systematic errors.

In contrast, in South America, systematic differences to EGM2008 persist for
all GOCE releases. In this region, no or only low-accuracy terrestrial gravity field
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information exists, resulting in large errors also in the global EGM2008 model.
Such significant differences appear also in other regions of the world, such as
central Africa, the Himalaya region, or Antarctica. In these regions, due to GOCE,
high-resolution gravity field information is available for the very first time, and
it is expected that there will be high impact for the geophysical modeling of the
lithosphere, e.g., in the active continental margin of the Andes region or the East
African rift zone.

Another strategy of external validation is the comparison with independent
“direct geoid observations” derived from long-term GPS observations (delivering
ellipsoidal heights h/ and spirit leveling (providing orthometric heights H/, because
their difference is the geoid: N D H � h. According to the methodology described
in Gruber et al. (2011), the models were truncated at a certain maximum degree
and order n and filled up beyond with the combined gravity field model EGM2008
(Pavlis et al. 2012) in order to reduce omission errors. Exemplarily, Fig. 9a shows the
results for Germany, evaluated at 675 GPS/leveling stations, and Fig. 9b for Japan
(873 stations).

In Germany, where the best GPS/leveling data set worldwide is available, the
standard deviation between TIM_R4 and the GPS/leveling observations amounts
to about 4.5 cm at n D 200. Taking into consideration that the GPS/leveling
observations themselves are assumed to have errors in the order of 2–3 cm, this
number is very consistent with the 3.2 cm “formal” error resulting from the
covariance propagation (cf. Table 1). From the results in Japan, we can conclude
that the pure GOCE models TIM_R3 and TIM_R4 perform significantly better than
EGM2008, even though the latter contains also terrestrial gravity data.

Fig. 9 Standard deviation of geoid height differences �N [cm] between gravity field models and
GPS/leveling observations in selected regions: (a) Germany (675 points); Japan (873 points),
truncated at degree/order n
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5 Current and Future Perspectives

5.1 Combined Gravity Field Models

In the frame of the project initiative GOCO (“Gravity Observation Combination”;
www.goco.eu), consistent combination models from GOCE and complementary
gravity field information are computed. With the global gravity model GOCO01S
(Pail et al. 2010b), the first combination solution from GRACE (based on ITG-
Grace2010S; Mayer-Gürr et al. 2010) and GOCE was computed. Meanwhile,
the successor model GOCO03S is available (Mayer-Gürr et al. 2012), which is
based on TIM_R3 NEQs, consistently combined with NEQs from GRACE (ITG-
Grace2010S), 8 years of CHAMP data, and 5 years of satellite laser ranging (SLR)
data to 5 satellites.

Figure 10 shows the formal errors of the model GOCO03S (blue) as well as
its two main contributors TIM_R3 (red) and ITG-Grace2010S (green). Due to its
measurement technology of low-low SST based on K-band microwave ranging,
GRACE is superior in the low to medium degrees of the harmonic spectrum,
while GOCE dominates in the higher degrees and thus provides the increased
spatial resolution. In this way, the main strengths of these two mission concepts
are combined in an optimum way. Also here, the correct stochastic modeling of
the individual components and their correct relative weighting is a prerequisite
for an optimum combination, especially in the overlapping band of the spectrum
where both missions can contribute significantly. Therefore, also in the course of
the computation of these combined solutions, the whole arsenal of geomathematical
and statistical methods as discussed in Sect. 3 find their application.

Fig. 10 Degree error medians of GOCO03S and its two main contributors

www.goco.eu
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In addition to these pure satellite-only models, currently also combination
models including terrestrial gravity field information on the continents and gravity
anomalies derived from satellite altimetry over the oceans are in preparation.
Recently, the combined gravity field model TUM2013C, which is based on full
NEQs complete to degree/order 720 corresponding to approximately 520,000
unknown gravity field coefficients, has been computed (Fecher et al. 2013).
The rigorous solution of these NEQs requires a working memory of more than
2 TB (Fecher et al. 2011) and is performed on a supercomputer at the Leibniz
Rechenzentrum (LRZ) in Munich.

5.2 Improved Level 1b Processing

A further gain in performance of GOCE gravity field models could be achieved by
an improved method for gravity gradient preprocessing in the frame of the Level 0
to Level 1b processing hosted at ESA. The main impact results from an alternative
method for attitude reconstruction from star tracker and gradiometer information
based on a Wiener filter (Stummer et al. 2011) and thus an improved separation of
linear and angular accelerations. The modifications of the Level 1b processor are
described in Stummer et al. (2012). Meanwhile, they have been implemented, and
the GOCE data of the full mission period have been reprocessed.

The right column of Fig. 3 shows the significant reduction of long-wavelength
errors in the new gravity gradient data. While in the original data the observations
were dominated by noise, and therefore features of the gravity field were blurred, in
the reprocessed gravity gradients, the signal clearly dominates. The noise reduction
mainly in the low frequencies can also be observed in the PSDs shown in Fig. 4.

The impact of this improved gravity gradient performance on gravity field
solutions has been assessed by Pail et al. (2013). It could be shown that not only
GOCE gravity field models will benefit, but also the accuracy of combined GOCE-
GRACE models will improve by up to 15 % also in the higher degrees, which
is mainly due to a generally improved performance of the VYY component also
within the MBW and, as a result, improved estimates of the sectorial and near-
sectorial coefficients up to high degrees. Meanwhile, these reprocessed GOCE
gravity gradients have been used to compute the TIM_R4 model (cf. Table 1 and
the discussion of results in Sect. 4).

5.3 GOCE Orbit Lowering

By the end of 2012, there was still fuel left on board of the GOCE satellite for about
one further year of operation. Additionally, over the whole mission lifetime, the
solar activity, and thus also the air drag, has been significantly lower than originally
predicted. Therefore, it was decided to lower the satellite’s orbit from the original
255 km by about 30 km, in order to counteract signal attenuation with altitude and
thus to increase the spatial resolution of the derived gravity field models. This orbit
lowering has meanwhile been performed in four steps. The satellite altitude was
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Fig. 11 Performance prediction of last GOCE phase: relative improvement of gravity field
accuracy per degree due to orbit lowering

decreased by about 8.6 km in August 2012, by further 7 km in November 2012 and
5 km in February 2013, and GOCE reached its �30 km final altitude of about 225 km
in May 2013. GOCE is expected to stay operational at this extremely low altitude
until October 2013.

Figure 11 shows a prediction of the impact of lowering the orbit on the achievable
gravity field performance. The baseline is represented by the black curve, indicating
the performance at the end of the nominal extended mission phase, where full 16
cycles (of about 2 months each) have been completed. A continuation of the mission
at the same height for 3 (light blue) or 6 (green) further cycles at 255 km leads to
further improvements due to more and more data according to the

p
N rule, which

is constant for all harmonic degrees n. Lowering the satellite by 10 km and flying at
245 km for 3 cycles (red) improves the performance over the whole spectral range
compared to the corresponding configuration at 255 km (light blue), but is worse
than remaining at the original altitude with the potential to stay there for 6 cycles.
However, due to the orbit lowering, the high degrees gain more than the low degrees,
which is related to the upward continuation term (r=R/nC1 in Eq. (1).

The blue curves show the relative improvements when lowering the satellite by
20 km and then flying 1 cycle (dashed), 2 cycles (dash-dotted), or 3 cycles (solid)
at this low altitude of 235 km. Evidently, compared to a 6-month mission extension
at 255 km (light blue), which would gain about 8 % in performance, due to the
orbit lowering by 20 km, the gravity field performance can be improved by 22 % at
degree/order 250.

Weighting gains and risks of such an orbit lowering, the huge potential to
improve the estimates of the high-degree coefficients and thus to increase the spatial
resolution of the GOCE gravity field models was the decisive factor for the final
decision to lower the satellite’s orbit in its final phase.
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6 Summary and Conclusions

Global gravity modeling from GOCE satellite data requires the application of an
arsenal of geomathematical and statistical tools. To fulfill the objective to compute
pure GOCE models, which are independent of any other external gravity field
information, sophisticated tailored methods have been developed, implemented, and
operationally applied to compute, up to now, four releases of TIM gravity field
models.

The achievable accuracy increases with the inclusion of more and more GOCE
data, following the Gaussian

p
N rule, and no significant systematics appear. Due

to a realistic stochastic modeling of all observation components, which is the key
to produce high-quality gravity field solutions, the accompanying (formal) error
information in terms of full variance-covariance matrices describes the true errors of
the solutions very well. This could be proven by various external validation studies.
Consequently, with the latest release of GOCE models, the a priori defined main
mission goals could have been largely achieved.

GOCE gravity field models are applied in many geo-scientific disciplines, such
as geodesy, oceanography, and solid Earth geophysics. They are used for the global
unification of height systems, enabling for the very first time the height transfer
over the oceans with reasonable precision. In combination with satellite altimetry,
mesoscale geodetic mean dynamic topography (MDT) estimates and geostrophic
velocities of global ocean currents down to 80 km can be directly observed from
space (Bingham et al. 2011; Knudsen et al. 2011). In this sense, not only the time-
variable gravity as it is measured by GRACE (e.g., Kusche 2010) but also the
static gravity field as provided by GOCE contributes significantly to an improved
understanding of dynamic processes in system Earth.

GOCE gravity field models are also used to constrain density models of
lithospheric structures, e.g., in active continental margin areas (Hosse et al. 2011).
The use of GOCE models will also further improve the opportunity to formulate
models of the crust and to distinguish tectonic lineaments, e.g., in Central-North
Africa (Braitenberg et al. 2012).

The consistent combination of GOCE with complementary gravity field
information results in further improvements in the long-wavelength range (by
GRACE and SLR), and the spatial resolution of satellite-only models can be
improved by combination with terrestrial gravity and satellite altimetry data.
Technically, this leads to very large normal equation systems, which shall be solved
rigorously.

Further improvements of the spatial resolution can be expected from the GOCE
satellite’s orbit lowering by 20 km in its final phase. This data, observed in
a rougher environment, might pose additional challenges to geomathematical
and statistic processing tools to achieve optimum global GOCE gravity field
models.

Acknowledgements The author acknowledges the European Space Agency for the provision of
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