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Abstract
Spherical and harmonic splines are closely related approaches to solve interpo-
lation/approximation as well as boundary value problems on the sphere and on
regular (sphere-like) surfaces, respectively. In any case they lead to a system of
linear equations which requires fast summation methods for the kernel sums.
The fast multipole method achieves just that and is combined in this paper with
a preconditioner using the same decomposition of the computational domain to
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solve the system of linear equations resulting from spherical/harmonic splines.
Due to the localizing nature of splines, regional problems can also be treated with
this approach.

1 Introduction and Generalized Interpolation Problems

1.1 Introduction

Freeden (1981b) and independently Wahba (1981) developed spherical splines
for interpolation and smoothing/approximation problems on the sphere, and it
soon became clear that their idea can be extended to the more general case of
harmonic splines introduced by Freeden (1981a). Since then, harmonic splines have
been suggested for interpolation/approximation on regular surfaces as well as for
the solution of boundary value problems. Convergence results have been found
for both spherical splines and harmonic splines (cf. Freeden 1984a,b, 1987a,b),
many different types of kernels have been introduced and even categorized (cf.
Freeden and Schreiner 2014 and the references therein), and these splines became
an important tool for geosciences with many applications (see, e.g., Freeden
1999; Freeden and Michel 2004; Freeden and Gerhards 2013 and the references
therein).

Since splines lead to a system of linear equations which in case of harmonic
splines has to be densely populated, a major obstacle has always been the solution of
this system. Any iterative solver still requires fast summation methods for the splines
to be efficient. On the sphere, there are several possible choices depending on the
problem at hand: spherical panel clustering (cf. Freeden et al. 1998b; Freeden 1999;
Fengler 2005 and the references therein), spherical FFT for gridded data points, or
spherical NFFT for non-equispaced data (cf. Potts and Steidl 2003; Keiner et al.
2006).

The fast multipole method (FMM) which has been introduced first in two
and then in three dimensions by Rokhlin (1985), Greengard and Rokhlin (1987,
1988), and Greengard (1988) can be combined with harmonic splines for fast
summation and therefore also with spherical splines. Such a combination is used
in Glockner (2002) to solve problems of satellite geodesy with harmonic splines
of one specific type, namely, the singularity kernel. This kernel is also considered
here, because it is the most obvious choice, but we also consider the Abel-Poisson
kernel and use the accelerated version of the FMM that was first introduced in
Greengard and Rokhlin (1997) and Cheng et al. (1999). This approach has also
been applied to the oblique boundary value problem of potential theory in Gutting
(2007, 2012).

The outline of this paper is as follows: In Sect. 1.2 the generalized interpolation
problems are introduced together with the necessary basic definitions. Section 2
summarizes the theory of harmonic splines, spline smoothing as well as spherical
splines. In Sect. 3 we establish the connection between harmonic splines and the
sums that can be computed by the fast multipole method. We summarize the
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adaptive construction of the decomposition of the computational domain and the
kernel expansions that are required. We provide our version of the fast multipole
algorithm for harmonic splines and briefly show the acceleration by the exponential
translation introduced by Greengard and Rokhlin (1997) and Cheng et al. (1999)
as well as our approach to use recombination strategies to reduce the number
of translations. The parameters of the algorithm are investigated and optimized
in Sect. 4. For the iterative solution of the system of linear equations, it is
advisable to use some form of preconditioning. In Sect. 5 we suggest an additive
Schwarz preconditioner based on an overlapping domain decomposition that is
closely related to the decomposition required for the FMM. The results using the
topography of the Earth as boundary surface are presented in Sect. 6, and we give a
short conclusion with some outlook to the future in Sect. 7.

1.2 Generalized Interpolation Problems on Regular Surfaces

With regard to boundary value problems, we define the properties of the boundary
surfaces that are considered such as the regularity of the surface.

Definition 1. A C .k/-regular surface † � R
3 is a surface in R

3 which has to fulfill
the following properties:

(i) † divides R3 into the interior †int and the exterior †ext, where †int is a bounded
region and †ext is an unbounded region.

(ii) The origin is contained in †int.
(iii) † is closed (and therefore compact) and free of double points.
(iv) † is a C .k/-surface, i.e., for each x 2 † there exists a neighborhood U � R

3

of x such that † \ U possesses a C .k/-parametrization.

A C .k;�/-regular surface † � R
3 with � 2 .0; 1/ is a C .k/-regular surface where

every point x 2 † possesses a neighborhood U such that † \ U can locally be
parameterized by a k-times �-Hölder continuously differentiable parametrization.

The extension to C .k;�/-regular surfaces is required for the consideration of oblique
derivative boundary value problems as in Gutting (2012), we do not need it in this
paper.

Now we introduce the interpolation problem on a regular surface such that
interpolation on the sphere can be interpreted as a special case.

Problem 1 (Interpolation on a regular surface). Let † be a C .0/-regular surface.
Let a finite set of points fx1; : : : ; xN g � † on the surface and data Fi , i D 1; : : : ; N

corresponding to these points be given. The aim is to find a function F 2 C .0/.†/

such that F .xi / D Fi , i D 1; : : : ; N .
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Of course, it is also possible to search for F in other function spaces if addi-
tional/other properties of the interpolating function are desired. Often the data Fi are
error affected, and strict interpolation is less desirable than a good approximation
that reduces the errors. Then, the interpolation conditions are reduced to F .xi / �
Fi , i D 1; : : : ; N , and F has to minimize some functional that balances closeness
to the data and smoothness of F , usually with one or several parameters.

The Dirichlet boundary value problem for the exterior space of a regular surface
(of sufficient smoothness) in its classical form is described as follows (cf., e.g.,
Freeden and Gerhards 2013 and the references therein):

Problem 2. Let † be a C .k/-regular surface with k � 2. Let F 2 C .0/ .†/ be a
given boundary function. The task is to find a potential U with the following three
properties:

(i) U 2 C .0/
�
†ext

� \ C .2/ .†ext/ is harmonic in †ext,
(ii) U is regular at infinity, i.e., for jxj ! 1,

jU .x/j D O �jxj�1
�

; (1)

jrU .x/j D O �jxj�2
�

(2)

uniformly with respect to all directions x
jxj .

(iii) U C D F on †, i.e., for all x 2 †,

U C D lim
�! 0
� > 0

U .x C �� .x// D F .x/ ;

where � is the unit normal vector field on † directed into †ext.

It is well known that under these conditions, the Dirichlet boundary value problem
possesses a unique solution (see, e.g., Freeden and Michel 2004; Freeden and
Gerhards 2013). Note that the special case of † D �r , i.e., a sphere of radius r

around the origin, is very well known, and for such results, we refer to Freeden
et al. (1998a), Freeden and Michel (2004), Freeden and Gerhards (2013), and the
references therein.

In this paper we focus on the discrete version of the Problem 2 which requires
only the values of the boundary function in a finite set of points on the surface.

Problem 3. Let † be a C .k/-regular surface with k � 2. Let fx1; : : : ; xN g � † be
a discrete set of N points on the surface. For each point xi , let Fi D U .xi / be given,
where i D 1; : : : ; N .

The task is to determine the potential U 2 C .0/
�
†ext

� \ C .2/ .†ext/ which is
harmonic in †ext and regular at infinity (i.e., (1) and (2) hold) or an approximation
UN to it which fits the data, i.e., for i D 1; : : : ; N ,
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UN .xi / D Fi D U .xi /:

This formulation reduces the Dirichlet boundary value problem to a (generalized)
interpolation problem. We also want to consider regional problems on parts of the
surface †, i.e., in Problem 3 all points xi 2 � ¤ † where � denotes a region
on †. Therefore, our approximation needs to be localizing, and we use harmonic
splines as first suggested in Freeden (1981a, 1982a,b) (see also Freeden and Michel
2004; Freeden and Gerhards 2013 and the references therein for the use of harmonic
splines in boundary value problems of geomathematics).

2 Preliminaries

Spherical harmonics, which we denote by Yn;m (with degree n 2 N0, order
m D �n; : : : ; n), are known to form a complete orthonormal basis of the space
L2.�/ of square-integrable functions on the unit sphere � (see, e.g., Edmonds
1964; Vars̆alovic̆ et al. 1988; Freeden and Gutting 2013). From an approximation
point of view, it is important to note that spherical harmonics fYn;mgn2N0;mD�n;:::;n

form a closed system in C .�/ and are closed and complete in L2.�/. This allows
the representation of square-integrable functions on any sphere �R of radius R > 0

by their Fourier series, where the Fourier coefficients of F 2 L2.�R/ are denoted by

F ^.n; m/ D
Z

�R

F .x/
1

R
Yn;m

�
x
R

�
d!R .x/ : (3)

2.1 Harmonic Splines

Harmonic splines are constructed in such a way that they are subspaces of the space
of harmonic functions on a sphere situated inside the Earth, the so-called Runge
(or Krarup) sphere (see Moritz 2014). Due to the Runge-Walsh approximation
theorem, we can use these functions which possess a larger domain of harmonicity
to approximate the solution of the problem which requires harmonicity only outside
the Earth’s surface (see Freeden 1999; Freeden and Michel 2004 for an extensive
introduction of this technique). Harmonic splines have been introduced in Freeden
(1981a, 1982a,b) and Shure et al. (1982) and their convergence properties are shown
in Freeden (1987a,b). They are closely related to spherical splines which we discuss
in Sect. 2.3. We briefly summarize the main ideas. For more details, the reader is
referred to Freeden (1999) and Freeden and Michel (2004) and the references in
these two books.

At first, we define the Runge sphere �R which is a sphere of radius R around the
origin such that the exterior of the Runge sphere, i.e., �ext

R , contains the exterior of
the regular surface †, i.e., †ext � �ext

R . See also Moritz (2014) where it is called
Krarup sphere.
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We define Sobolev spaces of the form H D H
�
fAngI �ext

R

�
using the Runge

sphere �R and a sequence fAngn2N0
� R which satisfies the summability condition

1X

nD0

2n C 1

4�A2
n

< 1: (4)

Definition 2. The Sobolev space H D H
�
fAngI �ext

R

�
is defined by

H D H
�
fAngI �ext

R

�
D E

�
fAngI �ext

R

�k�kH.fAngI �ext
R /

;

where E
�
fAngI �ext

R

�
� C .1/

�
�ext

R

�
is the set of all functions that are harmonic in

�ext
R , infinitely often differentiable on the Runge sphere �R and regular at infinity

(i.e., (1) and (2) hold) and whose Fourier coefficients F ^.n; m/ with respect to
L2.�R/ (as defined in (3)) fulfill

kF kH�fAngI �ext
R

� D
1X

nD0

nX

mD�n

A2
n

�
F ^.n; m/

�2
< 1 .

H is a Hilbert space with the inner product defined by

hF; GiH�fAngI �ext
R

� D
1X

nD0

nX

mD�n

A2
n F ^.n; m/G^.n; m/

for F; G 2 H
�
fAngI �ext

R

�
.

It is well known (cf. Freeden 1999 and the references therein) that such a space
possesses a so-called reproducing kernel (see Aronszajn 1950 for an overview on
reproducing kernels in general).

Definition 3. Let U be a nonempty set and .X; h�; �iX/ be a separable Hilbert space
of real-valued functions on U . Let fBngn2N0

be a complete orthonormal system in
.X; h�; �iX/. Any function K W U � U �! R of the form

K .x; y/ D
1X

nD0

K^.n/Bn .x/ Bn .y/ (5)

with x; y 2 U and K^.n/ 2 R for n 2 N0 is called an X -product kernel (briefly an
X -kernel).
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An X -kernel K .�; �/ W U � U �! R is called a reproducing kernel (or shortly
repro-kernel) for .X; h�; �iX/ if:

(i) K .x; �/ 2 X for all x 2 U .
(ii) hK .x; �/ ; F iX D F .x/ for all x 2 U and all F 2 X .

If there exists such a repro-kernel in X , then X is called a reproducing kernel Hilbert
space.

It is well known that a reproducing kernel is always unique, and its existence is
equivalent to the boundedness of all evaluation functionals (cf. Aronszajn 1950). In

the space H D H
�
fAngI �ext

R

�
with a summable sequence fAng, the repro-kernel

(5) can be represented by its expansion in Legendre polynomials due to the addition
theorem for spherical harmonics:

KH.x; y/ D
1X

nD0

2n C 1

4�A2
n

1

jxjjyj
�

R2

jxjjyj
�n

Pn

�
x

jxj � y

jyj
�

: (6)

We use these reproducing kernels to define harmonic splines.

Definition 4. Let fL1; : : : ;LN g � H� be a set of N linearly independent bounded
linear functionals on the reproducing kernel Hilbert space H.

Then any function S of the form

S D
NX

iD1

aiLi KH.�; �/

with a set of so-called spline coefficients fa1; : : : ; aN g � R is called an H-
spline relative to fL1; : : : ;LN g. The function space of all H-splines relative to
fL1; : : : ;LN g is denoted by SH .L1; : : : ;LN /.

It should be noted that by construction, any H-spline is harmonic. The interpolating
spline SF for the function F 2 H has to fulfill the interpolation conditions

Li S
F D Li F for i D 1; : : : ; N: (7)

The interpolation conditions (7) can be rewritten as a system of linear equations for
the spline coefficients ai :

NX

iD1

aiLiLj KH.�; �/ D Lj F; j D 1; : : : ; N; (8)
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whose corresponding matrix possesses the entries LiLj KH.�; �/ and is symmetric
and positive definite (for linear functionals L1; : : : ;LN 2 H� which are linearly
independent).

Note that in this paper, we consider only evaluation functionals Lx , i.e., LxF D
F .x/ where x 2 †ext. Furthermore, L1; : : : ;LN are given by Li F D F .xi / where
xi 2 †. Obviously, this suffices to treat Problem 3 as well as any interpolation
problems. The concept of splines can be used for a more general class of problems.
In the following theorem, we summarize the properties of H-splines.

Theorem 1. Let F 2 H and let fL1; : : : ;LN g � H�. Then the H-spline
interpolation problem with the interpolation conditions (7) is uniquely solvable,
and its solution SF 2 SH .L1; : : : ;LN / possesses the following properties:

(i) SF is the H-orthogonal projection of F onto SH .L1; : : : ;LN /.
(ii)

��SF
��
H � kF kH.

(iii) If G 2 H also satisfies the interpolation conditions (7), then the first minimum
property holds:

kGk2
H D �

�SF
�
�2

H C �
�G � SF

�
�2

H ;

i.e., SF is the interpolating function of F in H with minimal norm.
(iv) If G 2 H also satisfies (7) and S 2 SH .L1; : : : ;LN /, then the second

minimum property holds:

kS � Gk2
H D ��SF � G

��2

H C ��S � SF
��2

H :

For the proof and for further details on splines, the reader is referred to Freeden
(1981a, 1987a, 1999) and Freeden et al. (1998a) and the references therein.

The choice An D h
� n

2 , h 2 .0; 1/, fulfills (4) and provides us with the
reproducing kernel called Abel-Poisson kernel (see Fig. 1) which is given by

KH.x; y/ D 1

4�

jxj2jyj2 � h2R4

.jxj2jyj2 C h2R4 � 2hR2x � y/
3
2

: (9)

The sequence An D �
n C 1

2

� 1
2 h

� n
2 , h 2 .0; 1/, also satisfies (4) and leads to the

singularity kernel (see Fig. 2) given by

KH.x; y/ D 1

2�

1

.jxj2jyj2 C h2R4 � 2hR2x � y/
1
2

: (10)
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Fig. 2 The profile of the singularity kernel with h D 0:93 (red), h D 0:9 (green), h D 0:8 (blue),
jxj D jyj D 1, R D 0:999, the angle between x
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running from �� to � (right: a more
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By the Runge-Walsh approximation theorem and an extension of Helly’s theorem
(cf. Yamabe 1950), it is possible to prove the existence of approximations fulfilling
an interpolation condition. Moreover, convergence results for harmonic splines
can be derived that show the convergence to the solution of the continuous
boundary value problem (Problem 2) for an increasing density of data points,
i.e., if the largest data gap goes to zero (cf. Freeden 1987a). For a detailed
analysis, the reader is referred to Freeden and Michel (2004) and the literature
therein.

In this paper we focus on two specific types of splines (using Abel-Poisson
and singularity kernels) and propose methods to quickly compute the sumsP

ai KH
�
xi ; yj

�
for many points. This can be used to solve the systems of linear

equations (8) that occur in the solution of the interpolation problems using harmonic
splines.
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2.2 Smoothing Splines

For noisy data, i.e., Fi D U .xi / C "i � U .xi /, i D 1; : : : ; N , in Problem 3,
it makes no sense to compute an interpolation problem, but an approximation to
U which smoothes the data is required (see Freeden 1981b; Wahba 1990; Freeden
et al. 1997, 1998a for the case of spherical splines, Freeden (1981a, 1999) for the
case of harmonic splines). This smoothing process is achieved by minimizing the
following functional

�.S/ D
NX

iD1

NX

j D1

.Li S � Fi / Cij

�Lj S � Fj

�C ˇ kSkH

in the reproducing kernel Hilbert space H D H
�
fAngI �ext

R

�
. C D .Cik/ 2 R

N �N

denotes a positive definite matrix, and ˇ > 0 is a constant. The following theorem
of Freeden (1999) summarizes the existence and uniqueness of smoothing splines.

Theorem 2. Let Fi , i D 1; : : : ; N , correspond to a set of linearly independent
bounded linear functionals L1; : : : ;LN 2 H�.

Then there exists a unique element S 2 SH .L1; : : : ;LN / such that �.S/ �
�.F / for all F 2 H and �.S/ D �.F / if and only if S D F . This element is
called the smoothing spline. Its spline coefficients ai , i D 1; : : : ; N are uniquely
determined by the system of linear equations

NX

iD1

ai

�LiLj KH.�; �/ C ˇ.C�1/ij

� D Lj F; j D 1; : : : ; N: (11)

The matrix in (11) corresponds to the one in (8) plus ˇC�1 and is still positive
definite. If C is the unit matrix, there is only the one smoothing parameter ˇ, using
a diagonal matrix as C it is possible to introduce weights for the data Fi . The general
case allows the use of C to include covariance information on the data.

The choice of the smoothing parameter(s) can be interpreted as the application
of a parameter choice method in the regularization theory of ill-posed problems. We
refer to Bauer and Lukas (2011) and Bauer et al. (2014) for an up-to-date overview
of methods and literature in the field.

2.3 Spherical Splines

Spherical splines have been introduced by Freeden (1981b) and independently by
Wahba (1981) and can be embedded naturally in the harmonic setting of Sect. 2.1.
On the sphere, i.e., † D �R, no additional Runge sphere is required and the surface
itself can be used to consider the corresponding Sobolev spaces H D H .fAngI �R/
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with respect to a sequence fAng. The summability condition (4) remains the same,
and if it is satisfied by fAng, we again obtain a reproducing kernel. It should be
remarked that on the sphere, this reproducing kernel is a radial basis function
depending only on the distance jx�yj of its two arguments x; y 2 �R. Moreover, it
is possible to consider Sobolev spaces that possess a locally supported reproducing
kernel, i.e., KH.x; y/ D 0 if jx � yj is larger than a threshold value (see Freeden
et al. 1998a and also the categorization in Freeden and Schreiner 2014).

For our purposes, the problem of needing a fast method to evaluate sumsP
ai KH

�
xi ; yj

�
and to solve the system (8) for the spline coefficients remains the

same as before. However, there exists a wider spectrum of fast summation methods
on the sphere such as panel clustering (see Freeden et al. 1998b; Freeden 1999;
Fengler 2005 and the references therein), spherical FFT for gridded data points or
spherical NFFT for non-equispaced data (cf., e.g., Potts and Steidl 2003; Keiner
et al. 2006).

In Freeden et al. (1998a), a more general construction which is orthogonal to
the spherical harmonics of degrees 0 to m is introduced which can be used for
approximation by combining it with the corresponding spherical harmonics. A
combined interpolation and smoothing approach is included as well as spline exact
numerical integration formulas on the sphere.

Convergence results for spherical splines are shown in Freeden (1984a,b) if the
size of the largest data gap goes to zero. We refer the reader to Freeden et al. (1998a)
and Michel (2013) and the references therein for a detailed introduction. It should
be noted that the construction has also been carried over to the three-dimensional
ball (see Michel 2013, 2014b and the references therein).

3 The FastMultipole Method for Splines

In case of harmonic splines, the interpolation conditions lead to a system of linear
equations with a dense matrix whose size is the number of data points. Thus, the
matrix can be large, and the solution of the corresponding system of linear equations
becomes difficult. For spherical splines, we are confronted with the same situation
if we restrict ourselves to the Abel-Poisson kernel and the singularity kernel. Other
(locally supported) spherical kernels can reduce this problem to some degree by
leading to band matrices.

Each reproducing kernel corresponding to a space H defined by the summable
sequence fAng can be written as an infinite Legendre expansion as in (6). For certain
special cases such as the singularity kernel (10) and the Abel-Poisson kernel (9), the
expansion can be reduced to an elementary function. These two reproducing kernels
are closely related to the single pole 1

jx�yj . Because of this connection, the fast
multipole method (FMM), which has been introduced by Rokhlin (1985), Greengard
and Rokhlin (1987, 1988), and Greengard (1988), allows the fast summation of
harmonic splines, i.e., of the sum

P
ai KH.xi ; �/. Thus, the FMM also accelerates

the fast computation of the matrix-vector products occurring in an iterative solver
for (8).
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The two main ideas of the FMM can be described as:

• Subdivision of the computational domain into hierarchical sets of nested cubes
that are organized in an octree data structure,

• Interaction of cubes instead of single points by summarizing all information of a
cube in coefficients of inner/outer harmonics expansions.

This means that cubes interact in two ways: directly, i.e., the kernel is evaluated for
all points in one cube combined with all points in another cube, and the approximate
way, i.e., by translation of the expansion coefficients. The key is to apply the
approximation as often as possible and on the coarsest possible level of the tree
data structure of cubes. Direct evaluation is used only for the closest cubes where
the approximation is not applicable.

The FMM has seen various updates that increase its efficiency (cf., e.g., White
and Head-Gordon 1996; Greengard and Rokhlin 1997; Cheng et al. 1999). We
summarize our implementation and show the application of the FMM to harmonic
and spherical splines. For a more detailed analysis, the reader is referred to Gutting
(2007).

3.1 Kelvin Transform of Reproducing Kernels

The combination between our reproducing kernels and the fundamental solution of
the Laplace equation is the Kelvin transform which can be interpreted as a reflection
on a sphere of radius R around the origin. It is well known from textbooks on
potential theory (cf., e.g., Kellogg 1967; Freeden and Gerhards 2013).

Definition 5. Let � 	 R
3 be a domain, W W � �! R a function. Let the reflection

of � on the sphere �R be given by

�KT D
	

xKT 2 R
3 W R2

jxKTj2 xKT D x 2 �



:

The function

W KT W �KT �! R;

xKT 7! W KT
�
xKT

� D R

jxKTjW
�

R2

jxKTj2 xKT

�
D R

jxKTjW .x/;

is called the Kelvin transform of W with respect to the sphere of radius R.

The Kelvin transform is applied to the reproducing kernels with respect to one
argument (the other is kept fixed). The Kelvin transform KKT

H
�
x; yKT

�
of the

singularity kernel (10) can be computed by its expansion
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KH.x; y/ D
1X

nD0

hn

n C 1
2

2n C 1

4�jxjjyj
�

R2

jxjjyj
�n

Pn

�
x

jxj � y

jyj
�

D 1

2�jyj
1X

nD0

�
hjyKTj�n
jxjnC1

Pn

�
x

jxj � yKT

jyKTj
�

(12)

D 1

2�jyj
1

jx � hyKTj D jyKTj
R

KKT
H
�
x; yKT

�
;

where yKT D R2

jyj2 y and

KKT
H
�
x; yKT

� D 1

2�R

1

jx � hyKTj : (13)

The Kelvin transform KKT
H
�
x; yKT

�
of the Abel-Poisson kernel (9) is given by

KH.x; y/ D 1

4�

jxj2jyj2 � h2R4

.jxj2jyj2 C h2R4 � 2hR2x � y/
3
2

D jyKTj
R

1

4�R

jxj2 � h2jyKTj2
jx � hyKTj3 D jyKTj

R
KKT

H
�
x; yKT� ;

which is related to (13) by

KKT
H
�
x; yKT

� D 1

2�R

��x � rx � 1
2
Id
� 1

jx � hyKTj : (14)

We can summarize both (13) and (14) by the use of the operator Dx such that

KKT
H
�
x; yKT� D 1

2�R
Dx

1

jx � hyKTj ; (15)

where Dx D Id (singularity kernel) or Dx D �x � rx � 1
2
Id (Abel-Poisson kernel).

3.2 Adaptive Decomposition of the Domain

At first, a bounding cube is determined which is large enough such that it contains
all points xi and targets hyKT

j D h R2

jyj j2 yj . This single bounding cube forms
level 0 of the octree structure and is subdivided into eight equally sized cubes
of half its edge length which then form level 1. Each cube is adaptively divided
into nested cubes where a cube of level l has half the edge length of a cube of
level l � 1 as proposed, e.g., by Cheng et al. (1999). The adaptive splitting is
achieved by sorting the points and targets into the currently available cubes. If a



2724 M. Gutting

cube contains more than the prescribed maximal number of points or targets m, it is
split into eight cubes of the next level, and all its points/targets are redistributed
into these eight cubes. All the cubes carry information about other surrounding
cubes (their so-called neighbors) which is required for the application of the kernel
expansion.

The necessary vocabulary (see also Greengard and Rokhlin 1997; Cheng et al.
1999) is summarized in the following definitions.

Definition 6.

• A cube C is called child of the cube B if C results from a single subdivision of
B which in return is named the parent of C .

• A cube that is not further subdivided is called childless or a leaf.
• Cubes are said to be neighbors if they are of the same size (same level) and share

at least one boundary point. Each cube is a neighbor of itself.
• If two cubes are at the same level, but are no neighbors, they are called well

separated, i.e., between these cubes exists at least one cube of their size.

Each cube carries the relevant information about other cubes in four lists as
suggested by Cheng et al. (1999).

Definition 7.

• In list 1 of the childless cube X are all childless cubes directly adjacent to X . List
1 only contains any cubes if X is a leaf, then it always contains at least X itself.

• List 2 of a cube X consists of all children of neighbors of the parent cube of X

which are well separated from X . The cube X does not need to be childless.
• Children of neighbors of the leaf X (or smaller cubes descending from neighbors

of X ) which do not have any point in common with X form list 3. Their parents
have to be adjacent to X . If X is not childless, then list 3 is empty.

• List 4 consists of childless cubes which are neighbors of the parent cube of X ,
but these childless cubes are not adjacent to X .

Notice the following observations:

(i) List 1 is the list of all neighbors.
(ii) All cubes in list 2 of a cube X are of the same size as X .

(iii) The elements of list 3 are all smaller than X , and the distance between them
and X is at least their side length and at most the side length of X .

(iv) List 4 of a cube X only contains cubes that are larger than X . They are
separated from X by a distance that is at least the side length of X and at
most their own edge length.

(v) All members of list 1 and list 4 are leaves, and list 1 and list 3 of a cube X

remain empty if X is not childless.
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After finishing the construction of the octree and sorting all points and targets into
cubes, the algorithm removes childless cubes that contain neither points nor targets.

3.3 Single Pole Expansion

In addition to the decomposition of the domain, the other part of the FMM is the
expansion of the single pole. This is achieved similar to (12) by

1

jx � yj D 1

jy � x0 � .x � x0/j

D
1X

nD0

jx � x0jn
jy � x0jnC1

Pn

�
y � x0

jy � x0j � x � x0

jx � x0j
�

D
1X

nD0

nX

mD�n

I �
n;m.x � x0/On;m.y � x0/; (16)

where jy � x0j > jx � x0j for the expansion center x0 2 R
3. The upper star 
 in

(16) denotes the complex conjugate. Thereby, we use the (complex-valued) outer
and inner harmonics for n 2 N0, m D �n; : : : ; n:

On;m.x/ D
r

4�

2n C 1

p
.n C m/Š.n � m/Š

jxjnC1
Yn;m

�
x

jxj
�

D .�1/m .n � m/Š

jxjnC1
Pn;m.cos #/eim';

In;m.x/ D
r

4�

2n C 1

jxjn
p

.n C m/Š.n � m/Š
Yn;m

�
x

jxj
�

D .�1/m jxjn
.n C m/Š

Pn;m.cos #/eim';

where #; ' are the spherical coordinates of x
jxj . Note that Pn;m are the associated

Legendre functions

Pn;m.t/ D �
1 � t2

�m
2

d m

dtm
Pn.t/; t 2 Œ�1; 1	; n � m � 0:

The symmetry relation Pn;�m.t/ D .�1/m .n�m/Š

.nCm/Š
Pn;m.t/ extends them for negative

orders (cf., e.g., Edmonds 1964; Biedenharn and Louck 1981).
It is well known that translation theorems for these outer and inner harmonics

allow to shift the expansion center (see, e.g., Epton and Dembart 1995 for a detailed
derivation).
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Theorem 3 (Translation Theorem for Outer Harmonics). Let x; y 2 R
3 such

that jxj > jyj. Then the outer harmonic of degree n 2 N0 and order m 2 Z,
�n � m � n, at x � y can be expanded in terms of inner and outer harmonics as
follows:

On;m.x � y/ D
1X

n0D0

n0X

m0D�n0

I �
n0;m0.y/OnCn0;mCm0.x/

D
1X

n0Dn

n0X

m0D�n0

I �
n0�n;m0�m.y/On0;m0.x/: (17)

Note that in (17), we make use of the convention that In;m D 0 if jmj > n.

Theorem 4 (Translation Theorem for Inner Harmonics). Let x; y 2 R
3. Then

the inner harmonic of degree n 2 N0 and order m 2 Z, �n � m � n, at x � y can
be expanded in a finite sum of inner harmonics

In;m.x � y/ D
nX

n0D0

n0X

m0D�n0

.�1/n0

In0;m0.y/In�n0;m�m0.x/:

For orders with jmj > n, we have again by convention In;m D 0.
By applying (17) Theorem 3 allows the translation of an outer harmonics

expansion with expansion center x0 such as

F .x/ D
1X

nD0

nX

mD�n

F ^;O
x0

.n; m/On;m.x � x0/ (18)

which converges uniformly for x 2 �ext
r0

.x0/ with some r0 > 0. �ext
r0

.x0/ denotes the
exterior of the sphere of radius r0 around x0. The outer harmonics series resulting
from the translation possesses the expansion center x1 and the coefficients

F ^;O
x1

.n0; m0/ D
n0X

nD0

nX

mD�n

F ^;O
x0

.n; m/I �
n0�n;m0�m.x0 � x1/: (19)

The expansion converges uniformly for x 2 �ext
r1

.x1/ where �ext
r1

.x1/ � �ext
r0

.x0/.
This translation is called multipole-to-multipole translation (M2M).

By Theorem 3, we also find that the outer harmonics expansion can be translated
into an inner harmonics series centered around x2 which converges uniformly for
x 2 �int

r2
.x2/ if the new ball of convergence is situated completely in �ext

r1
.x1/,

i.e., �int
r1

.x1/ \ �int
r2

.x2/ D ¿. The resulting coefficients of the inner harmonics
expansion are
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F ^;I
x2

.n0; m0/ D
1X

nD0

nX

mD�n

F ^;O
x1

.n; m/.�1/n0CmO�
nCn0;m0�m.x2 � x1/ (20)

and this translation is named multipole-to-local translation (M2L).
Furthermore, Theorem 4 lets us shift the expansion center of such inner

harmonics expansions to the new center x3 which possesses the coefficients

F ^;I
x3

.n0; m0/ D
1X

nDn0

nX

mD�n

F ^;I
x2

.n; m/In�n0;m�m0.x3 � x2/: (21)

and converges uniformly for x 2 �int
r3

.x3/ � �int
r2

.x2/. This translation step is called
local-to-local translation (L2L). For further details, we refer to Gutting (2007) and
the references therein, in particular Epton and Dembart (1995).

3.4 The Fast Multipole Algorithm

Before kernel expansions can be translated, we have to compute multipole expan-
sions, more precisely a first set of expansion coefficients for each cube containing
any points. Thus, only the part of the spline related to a single cube X is considered,
i.e., the kernel functions KH.xi ; �/, where xi 2 X :

F D
NX

iD1
xi 2X

ai KH.xi ; �/ D
NX

iD1
xi 2X

ai

� jyKTj
R

1

2�R
Dx

1

jx � hyKTj
� ˇˇ
ˇ
ˇ̌
xDxi

:

We find the following expansion for jhyKT � x0j > jxi � x0j, xi 2 X , i.e., if x0 is
the center of the cube X , the targets hyKT and the cube X need to fulfill a distance
requirement.

F D jyKTj
R

NX

iD1
xi 2X

ai

 
1

2�R
Dx

1X

nD0

nX

mD�n

I �
n;m.x � x0/On;m.hyKT � x0/

! ˇˇ̌
ˇ
ˇ
xDxi

D jyKTj
R

1X

nD0

nX

mD�n

F ^;O
x0

.n; m/On;m.hyKT � x0/ (22)

where the multipole coefficients F ^;O
x0

.n; m/ of the cube X are given by

F ^;O
x0

.n; m/ D
NX

iD1
xi 2X

ai

�
1

2�R
DxI �

n;m.x � x0/

� ˇˇ̌
ˇ
ˇ
xDxi

: (23)
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These coefficients can be translated to other cubes via relations (19), (20) as
well as (21) as long as the distance requirements are fulfilled by the construction
of the decomposition of the domain into nested cubes. This first step is called
point to multipole (P2M) step. Obviously, the infinite sum in (22) has to be
truncated at degree p. This parameter essentially determines the accuracy of the
algorithm.

At the end of the fast multipole cycle, i.e., after many M2M-, M2L-, L2L-
translations, each cube Y possesses an inner harmonics expansion centered around
the center of the cube. This expansion has to be evaluated at the targets contained
by Y , i.e., the local to targets (L2T) step is performed:

Lj F D F .yj / D
 

jyKTj
R

pX

nD0

nX

mD�n

F ^;I
x0

.n; m/In;m.hyKT � x0/

! ˇˇ
ˇ
ˇ̌
yDyj

; (24)

where the variable y is hidden by yKT D R2

jyj2 y.
In Algorithm 1 we briefly recapitulate the fast multipole algorithm (see, e.g., Car-

rier et al. 1988; Cheng et al. 1999 or Gutting 2007 for our specific implementation).
For the computation of the spline coefficients of the smoothing splines of

Sect. 2.2, we have to consider the system of linear equations (11) instead of (8).

This means that we have to add ˇ
NP

iD1

ai .C�1/ij to the matrix-vector product that

is computed by the FMM. In order to keep a fast algorithm, the matrix C�1 has to
allow a fast summation method or C has to be a sparse matrix. The trivial cases
where C is a diagonal matrix can also be included in the direct evaluation step of
the fast multipole algorithm.

3.5 Acceleration of the Translations

Following the ideas of White and Head-Gordon (1996) (see also Greengard and
Rokhlin 1997; Cheng et al. 1999), the multipole-to-multipole (M2M) and the
local-to-local (L2L) translations can both be accelerated by using Wigner rotation
matrices (cf., e.g., Edmonds 1964; Biedenharn and Louck 1981; Vars̆alovic̆ et al.
1988; Choi et al. 1999). With these rotations, the shift direction becomes the "3-axis;
we shift there and rotate back. This reduces the numerical costs from O �p4

�
in the

M2M and L2L steps to O �p3
�
, since each rotation requires an effort of O �p3

�
and

the shift along the "3-axis is given by

QF ^;O
x1

�
n0; m0� D

n0X

nDjm0j
QF ^;O
x0

�
n; m0� jx0 � x1jn0�n

.n0 � n/Š
; m0 D �n0; : : : ; n0;
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Algorithm 1 Fast Multipole Algorithm

Input:

• A set of points xi 2 †ext (often xi 2 †), i D 1; : : : ; N ,
• a set of coefficients ai , i D 1; : : : ; N ,
• the choice of the type of the reproducing kernel KH (singularity or Abel-Poisson with the

parameter h and the radius of the Runge sphere R),
• a set of evaluation points yj 2 †ext, j D 1; : : : ; M ,
• the degree of the multipole expansion p,
• the maximal number of points per cube m.

Aim: compute the sum

F .yj / D
NX

iD1

ai KH.xi ; yj / for each j D 1; : : : ; M:

Initialization:

• Compute the targets hyKT
j D h R2

jyj j2
yj , j D 1; : : : ; M .

• Create a bounding box that contains all points and all targets, build the adaptive octree, and
sort in all points and targets (as described in the beginning of Sect. 3.2). Set L as the maximum
level, and eliminate all empty cubes.

• Determine list 1 to list 4 of Definition 7. Create a list of all cubes of level l for each level
l D 0; : : : ; L. Collect all leaves in a list.

• Allocate memory for the different expansion coefficients of each cube X : multipole expansion
(coefficient vector MX ), local expansion (coefficient vector LX ).

Fast Multipole cycle:
1. Generation of the multipole coefficients:
For all leaves X : P2M, i.e., compute the multipole coefficients MX of the multipole expansion up
to degree p around the center of X from the points in X as in (23).
For level l D L � 1; : : : ; 2: M2M, i.e., translate the multipole coefficients of the children of X to
X itself for all cubes X of level l via (19).
2. Interaction phase for list 4:
For level l D 2; : : : ; L: for all cubes X of level l : compute the expansion coefficients of an inner
harmonics expansion around the center of X from the points in Y for all cubes Y of list 4 of X

and add them to LX – or use direct evaluation of the kernel sum corresponding to the points in Y

to obtain the result at the targets in X if the number of targets in X � p2 and X is a leaf.
3. Multipole-to-local translation:
For level l D 2; : : : ; L: for all cubes X of level l : use (20) to translate MX to LY for all cubes Y

in list 2 of X .
4. Translation of the inner harmonics expansions:
For level l D 2; : : : ; L � 1: L2L, i.e., translate the local coefficients LX to the children of X (if
there are any) via (21) and add the resulting coefficients to LZ where Z denotes the corresponding
child of X for all cubes X of level l .
5. Evaluation of the expansions and direct interaction:
For all leaves X : L2T, i.e., evaluate the inner harmonics expansion of X at all targets in X as in
(24). Store the result in F .

(continued)



2730 M. Gutting

For all cubes Y in list 1 of X : P2T, i.e., add the direct evaluation of the kernel sum corresponding
to the points in Y at the targets in X to F .
For all cubes Y in list 3 of X : evaluate the multipole expansion around the center of Y (coefficients
MY ) at the targets in X and add the results to F – or use direct evaluation of the kernel sum
corresponding to the points in Y to add the result at the targets in X to F if the number of points
in Y � p2 and Y is a leaf.
6. Reverse the effects of the Kelvin transformation:

QFj D jyKT
j j

R
Fj for j D 1; : : : ; M .

Return the result QF .

for M2M (the tilde indicates that we are dealing with rotated coefficients) and by

QF ^;I
x3

�
n0; m0� D

pX

nDn0

QF ^;I
x2

�
n; m0� jx3 � x2jn�n0

.n � n0/Š
; m0 D �n0; : : : ; n0;

for L2L requiring also an effort of O.p3/. For a detailed description, we refer to
White and Head-Gordon (1996) or Gutting (2007) with all technical details.

For the M2L translation, we follow the idea of Greengard and Rokhlin (1997) and
Cheng et al. (1999) by replacing it with exponential translations which are based on
the representation

1

jx � yj D 1

2�

Z 1

0

e��.x3�y3/

Z 2�

0

ei�..x1�y1/ cos ˛C.x2�y2/ sin ˛/d˛ d�

D
s."/X

kD1

wk

Mk

MkX

j D1

e��k.x3�y3/ei�k..x1�y1/ cos ˛j;kC.x2�y2/ sin ˛j;k/ C O."/

(25)

for points x; y whose Cartesian coordinates satisfy 1 � x3 � y3 � 4 as well as
0 � p

.x1 � y1/2 C .x2 � y2/2 � 4
p

2. The inner integral is discretized using the
trapezoidal rule, i.e., ˛j;k D 2�j

Mk
, j D 1; : : : ; Mk , and the outer integral is treated

with the integration weights wk and the integration points �k , k D 1; : : : ; s."/ for
a chosen accuracy ". wk , �k , Mk can be found in Greengard and Rokhlin (1997),
Yarvin and Rokhlin (1998), and Cheng et al. (1999). The total number of numerical

integration points, i.e., the number of exponential functions, is S."/ D
s."/P

kD1

Mk 2
O �p2

�
, whereas s."/ 2 O.p/ and takes the role of p in determining the accuracy

of the integration.
Since outer harmonics are related to the single pole by Hobson’s formula (cf.

Hobson 1965), a multipole expansion of F with coefficients F ^;O
c .n; m/, center c,

and accuracy " can be transformed by (25) into a series of exponentials (multipole-
to-exponential step, briefly M2X)



Fast Spherical/Harmonic Spline Modeling 2731

F .x/ D
s."/X

kD1

MkX

j D1

W .k; j /e��k
x3�c3

d ei�k.
x1�c1

d cos ˛j;kC x2�c2
d sin ˛j;k/ C O."/; (26)

with the coefficients given by

W .k; j / D
pX

nD0

nX

mD�n

F ^;O
c .n; m/

d nC1

wk

Mk

�n
kimeim˛j;k (27)

for k D 1; : : : ; s."/, j D 1; : : : ; Mk . It is required that c is the center of a box
of edge length d containing the points x and the series of exponentials is valid for
points y with d � x3 � y3 � 4d and 0 � p

.x1 � y1/2 C .x2 � y2/2 � 4
p

2d .
Such exponential expansions can be shifted very efficiently to the new center b,
i.e., to

F .x/ D
s."/X

kD1

MkX

j D1

V .k; j /e��k
x3�b3

d e
i�k

�
x1�b1

d cos ˛j;kC x2�b2
d sin ˛j;k

�

with the new coefficients

V .k; j / D W .k; j /e��k
b3�c3

d e
i�k

�
b1�c1

d cos ˛j;kC b2�c2
d sin ˛j;k

�

(28)

for k D 1; : : : ; s."/, j D 1; : : : ; Mk. This exponential to exponential shift is
abbreviated by X2X.

Afterwards, the exponential expansion is transformed back into an inner harmon-
ics expansion completing the M2L translation step:

F .x/ D
pX

nD0

nX

mD�n

F ^;I
c .n; m/In;m.x � c/ C O."/; (29)

where the coefficients can be computed by this so-called exponential to local (X2L)
step

F ^;I
c .n; m/ D

s."/X

kD1

MkX

j D1

W .k; j /
.��k/n

d n
ime�im˛j;k (30)

for n D 0; : : : ; p, m D �n; : : : ; n. Obviously, the same geometric restrictions hold
as before.

The restrictions on the positions of x and y mean that the exponential translations
are applicable for cubes in list 2 that are situated above the current cube with another
cube in between. However, by combining the idea with rotations of the multipole
expansion using again the Wigner rotation matrices, the exponential translation can
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substitute the M2L translation for all cubes in list 2. Therefore, the list of all well-
separated cubes (list 2) is split into six directional lists (up, down, North, South,
East, and West), and instead of M2L, the following sequence of transformations is
used: (rotation), M2X (27), X2X (28), and X2L (30), (inverse rotation).

Each exponential shift requires numerical costs of O.S."// D O �p2
�
, and

the rotations can be applied using O �p3
�

operations (as do the M2X and X2L
steps). Thus, this improves the performance compared to the M2L step’s O �p4

�

effort. Each cube needs to allocate some additional memory for an outgoing and an
incoming set of coefficients of the sum of exponentials.

Moreover, we can save translations by recombination (see Greengard and
Rokhlin 1997; Cheng et al. 1999; Gutting 2007). If several cubes have the same
target cubes, intermediate stops are performed. No additional memory is required
since we can use the available storage of cubes at a lower level.

In 3D we perform 8 translations from X1; : : : ; X8 to their common parent cube
C , 9 translations from C to B1; : : : ; B9 which are the parent cubes of S1; : : : ; S36

instead of 288 translations from X1; : : : ; X8 to S1; : : : ; S36 as summarized in the
following diagram:

(31)

Not only expansions of Xj , but also of other cubes that have the children of Bk

as target cubes, are collected in the parent cubes Bk and are shifted to the cubes
Sj after all contributions are added. Thus, we only need to perform the translations
from Bk to its children once. This further reduction is the reason that we use two
intermediate stations for the translation. We call this the first stage of recombination.

Similar considerations can be used in other situations where fewer cubes have
common target cubes (second stage of recombination). The corresponding diagram
for the 3D case is given by

(32)
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As before, the final translation is executed only after all contributions arrived in the
cubes Bk . These two stages already cover the complete list for the directions up
and down. For the other four lists, we introduce a third stage. Obviously, we only
consider cubes that have not yet been treated by the first two stages.

If a cube X has a cube Y in one of its directional lists, we collect all other
children of X ’s parent C which also have Y in the corresponding directional list
in the combination list (altogether M cubes). If M > 1, we collect the maximal
number of common cubes in the corresponding directional lists of all cubes of the
combination list in the target cube list (altogether N cubes). If N > 1, all expansions
from cubes in the combination list are shifted to their parent cube C and then to the
cubes of the target cube list. The number of translations is reduced from N � M to
N C M .

Finally, any remaining cubes are treated individually as without the recombination
technique. This procedure can significantly reduce the number of necessary transla-
tions. The algorithm is described and analyzed in full detail in Gutting (2007).

It should also be noted that there are several symmetries in the coefficients of the
exponential expansion since we are dealing with a real-valued function F in (26).
They are used to further reduce the numerical costs (cf. Greengard and Rokhlin
1997; Cheng et al. 1999).

4 Numerical Tests and Results

At first, the effect of the recombination described in the end of Sect. 3.5 is
investigated for a fully populated bounding box. Obviously, this is the ideal case
maximizing the effect of the recombination. The increased efficiency of the X2X
step for the various stages of recombination (see Sect. 3.5; by stage 0 we indicate
the case without recombination) is documented by Tables 1 and 2. Note that the
accuracy s."/ D 26 and the corresponding values for Mk , S."/ from Cheng et al.
(1999) are chosen for this test. The well known symmetries in the exponential
coefficients (see Gutting 2007 for a detailed derivation) are also used to reduce the
computational costs. For a rather sphere-like setting as in the discrete version of the
Dirichlet boundary value problem (Problem 3) or in an interpolation/approximation
problem on the Earth’s surface, the savings reduce to about 30 % because of the
adaptive construction of the octree. This can be seen in Table 3 where an adaptive
decomposition is computed for points randomly distributed between two spheres of
radius 6,356 and 6,378 km. The targets are the Kelvin transforms of these points
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Table 1 Number of exponential translations depending on the stages in the recombination
technique for the fully populated octree with levels 2–5. In brackets in the first column, the number
of cubes in this level is given; the average number of translations per cubes is listed in brackets in
the other columns

Level Stage 0 Stage 1 Stage 2 Stage 3

2 (64) 3;096.48:4/ 1;648.25:8/ 1;000.15:6/ 902.14:1/

3 (512) 53;352.104:2/ 27;792.54:3/ 16;056.31:4/ 13;602.26:6/

4 (4,096) 584;136.142:6/ 302;176.73:8/ 171;640.41:9/ 141;050.34:4/

5 (32,768) 5;398;920.164:8/ 2;784;960.85:0/ 1;570; 680.47:9/ 1;271;850.38:8/

Table 2 Computing times (in seconds) corresponding to the exponential translations of Table 1

Level Stage 0 Stage 1 Stage 2 Stage 3

2 0:61 0:32 0:20 0:18

3 9:96 5:27 3:11 2:67

4 107:89 56:55 32:87 27:34

5 1;040:81 548:03 330:88 263:01

Table 3 Computing times (in seconds) for the exponential translation without and with recombi-
nation (all three stages). Note that the listed times include the M2X and X2L transformations in
both cases

Maximal level Cubes Leaves Without recombination With recombination

4 1,313 1,112 30.8 24.21

4 1,545 1,280 37.37 29.24

5 1,682 1,384 41.62 32.26

5 2,630 2,200 58.74 47.81

with respect to a sphere of radius R D 6;352 km and the parameter h D 0:95. The
adaptive FMM used the parameters p D 23, s."/ D 26, S."/ D 670, m D 130.

Now the truncation degree p is investigated for different accuracies of the
exponential translation s."/. We increase p while s."/ is kept fixed and determine
when the integration error of the exponential translation dominates the truncation
error. This leads to the choices of p for different levels of s."/ given by Table 4.

For the remaining tests in this section, we consider the following test scenario:
We take latitudes and longitudes of the points of a so-called spiral grid (cf.
Rakhmanov et al. 1994) and combine these with a random radius between 6,356.7
and 6,378.1 km. As radius of the Runge sphere, R D 6;356 km is chosen and
h D 0:95. The spline coefficients ai are just random numbers between �1 and
1. We compute

S
�
xj

� D
NX

iD1

aiLjLi KH.�; �/ D
NX

iD1

ai KH
�
xi ; xj

�
; j D 1; : : : ; N;
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Table 4 Resulting truncation
degrees p for different s."/

for the two types of kernels

s."/ Singularity kernel Abel-Poisson kernel
8 4 5

17 12 13
26 23 25

10–12

10–10

10–8

10–6

10–4

10–2

100

0 5 10 15 20 25 30
10–12

10–10

10–8

10–6

10–4

10–2

100

0 5 10 15 20 25 3530

Fig. 3 Error induced by the FMM for the singularity kernel (left) and Abel-Poisson kernel (right)
with exponential translations of different accuracies for s."/ D 8 (red line), s."/ D 17 (cyan line),
s."/ D 26 (green line). For comparison, we include the standard M2L translation (blue line) with
increasing truncation degree p as abscissae

Table 5 Chosen maximal
numbers of points m per cube
for the singularity kernel and
the Abel-Poisson kernel and
the different error levels

s."/ Singularity kernel Abel-Poisson kernel
8 85 75

17 130 140
26 380 240

with exponential translations of different accuracies and without them (using
standard M2L translations). We compare the results to the direct summation without
FMM. The error behavior can be seen in Fig. 3, and together with many further tests
(cf. Gutting 2007), we obtain the values of Table 4.

Finally, the maximal number of points or targets per cube m has a strong
influence on the adaptive octree construction and the performance of the FMM.
If m is too small, there are many cubes each containing only very few points. Thus,
the kernel expansion coefficients no longer combine the information of enough
points to be efficient. If m is too large, there are only few cubes each with a large
number of points. This means that far too often instead of kernel expansion direct
interaction is used. After many empirical tests (cf. Gutting 2007), we came to the
conclusion that the choices for m given by Table 5 lead to a good performance in
our implementation.

After these optimizations of the parameters of the fast multipole algorithm, we
can compare its performance with direct computation and find the break-even points
of our implementation, i.e., the minimal number of points that is necessary for our
algorithm to be faster than the direct approach (see Table 6). Note that such results
are always very dependent on the implementation.
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Table 6 Break-even points
for the singularity kernel and
the Abel-Poisson kernel

s."/ Singularity kernel Abel-Poisson kernel
8 530 360

17 1,160 960
26 2,670 2,250

0
0
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100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

x 104
0

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

x 104

Fig. 4 Break-even points by comparison of computation times (in seconds) for direct (blue line)
and FMM-accelerated (red line) computation (left: singularity kernel, right: Abel-Poisson kernel),
the number of points forms the abscissae

Furthermore, the linear asymptotic behavior which we expect from the FMM
becomes obvious in Fig. 4 compared to the quadratic behavior of the direct
approach. Our implementation turns out to be efficient even for rather small problem
sizes. In general, the Abel-Poisson kernel requires some more computation time
since it leads to a more difficult P2M step.

5 Overlapping Domain Decomposition Preconditioner

The fast multipole algorithm already provides us with an adaptive decomposition of
the computational domain which we also use to improve the condition of the system
of linear equations (8) by using a Schwarz algorithm as preconditioner (see Chan
and Mathew 1994; Smith et al. 1996 and the references therein for an overview).
The basic idea of the Schwarz algorithms is to split up the computational domain
into several (often overlapping) parts, solve the resulting smaller problems for each
part, and combine the partial solutions. We intend to use only one decomposition
for both the FMM and the Schwarz algorithm.

There are two main variants that have different ways to update the residual: In
the multiplicative variant, the residual is updated after each single solution of a
subproblem. In the additive variant, the solutions of the subproblems are merged
after all of them are computed, and the merged result updates the residual (cf.
Beatson et al. 2000; Zhou et al. 2003 for use of these methods in radial basis function
interpolation and Hesse 2002 for use of the multiplicative variant in the context
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Fig. 5 Two-dimensional
illustration of the overlap
(dark blue area) for an
adaptive decomposition of the
domain. The red and light
blue areas belong to list 2 and
3, respectively

of harmonic splines). The multiplicative variant possesses the advantage of not
requiring the full matrix for the update of the residuals, but this is less relevant in the
presence of the FMM which provides a very fast way to (approximately) multiply
with the full matrix. Moreover, the total number of update steps is higher for the
multiplicative variant. Thus, we choose the additive Schwarz algorithm together
with a coarse grid correction and use a residual update of Hybrid-II type (by the
categorization of Smith et al. 1996).

Since all the decomposing of the domain and sorting of points is already part
of the FMM, the only additional work in the initialization of the preconditioner is
the determination of points in the overlapping parts of the subdomains which are
exactly given by the leaves of the octree. The amount of the overlap is controlled by
the parameter #ov, and the area is a part of the directly adjacent cubes, i.e., cubes in
list 1 as set in Definition 7 (white in Fig. 5). The overlap is the blue area in Fig. 5.
Note that #ov D 0, i.e., no overlap at all, is a valid choice. In our problems we
usually do not assume a structured point distribution. The idea for establishing a
coarse grid from our scattered data points is to choose from each subproblem the
point that is closest to the center of the domain and add that point to the coarse grid.
Note that for the preconditioner, we only consider points and ignore the so-called
targets of Sect. 3.2. If a cube only contains targets and none of the points x1; : : : ; xN ,
neither overlap nor coarse grid points are determined for it. After these initialization
steps that need to be computed only once, we can investigate the preconditioning
cycle which yields v D M�1b for a given residual b.

At first, we introduce the restriction matrix for each subdomain. Let M 2 N be
the total number of subdomains and the subdomain Xr , r D 1; : : : ; M , contain Nr

points in the cube and its corresponding overlap. By 
r , we denote the permutation
of the numbers 1; : : : ; N that yields the points x
r .i/ of Xr for the indices i D
1; : : : ; Nr � N . For i D Nr C 1; : : : ; N , the permutation 
r is supposed to give
the remaining indices between 1 and N such that 
r.i/ < 
r.i C 1/ for all i D
Nr C1; : : : ; N �1. With the help of the canonical basis vectors in R

N and the index
permutation 
r , the restriction matrix Rr is defined as
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Rr D

0

B
B
@

eT

r .1/

:::

eT

r .Nr /

1

C
C
A 2 R

Nr �N : (33)

The restriction matrices reduce a vector x 2 R
N to a vector in R

Nr consisting
only of components of x related to Xr . The corresponding transposed matrix
RT

r 2 R
N �Nr is called the prolongation matrix in the multiplicative variant. The

restriction/prolongation matrices R0, RT
0 for the coarse grid are defined analogously

using the corresponding set of points. In the additive variant with overlapping
subdomains, RT

r , r D 1; : : : ; M , stands for the operation of fitting together solutions
corresponding to the subdomains. Several possibilities are available (see Gutting
2007 and the references therein), and we choose to only update components that
correspond to points of the cube in Xr without the overlap. The overlapping
part still plays a role in solving the subproblems, i.e., in Rr and Ar . Obviously,
these restriction and prolongation operators are only written as matrices for the
description of the algorithm; their effect is implemented in the form of index
operations.

Algorithm 2 Overlapping Additive Schwarz Preconditioner

Initialization step:
Find points xi , i D 1; : : : ; Nr , in each domain including overlap and set matrices

Ar D �
KH.xi ; xj /

�
i;jD1;:::;Nr

; r D 1; : : : ; M: (34)

Find the coarse grid and build the corresponding matrix A0 D �
KH.xi ; xj /

�
, where i; j D

1; : : : ; N0 correspond to the indices of the N0 points of the coarse grid. The residual b is given.
Preconditioning cycle:

For r D 1; : : : ; M : Solve Ar zr D Rrb to obtain zr .

Update at the inner points: v D MP

rD1

RT
r zr .

Update the coarse residual and perform coarse grid correction:

vfinal D v C RT
0 A�1

0 R0.b � Av/; (35)

where A denotes the full matrix corresponding to all N points.

Remark 11. The computation of R0Av in (35) stands for the product of an N0 � N -
matrix with a vector in R

N . Since N0 � N , this matrix-vector product is computed
directly in our implementation even though it is of the type for which the FMM
works as fast summation method.

Our implementation solves the subproblems directly, i.e., the matrices Ar are
factorized once in the initialization step.
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Table 7 Splines using the singularity and the Abel-Poisson kernel with N D 8;800 or N D
11;200 points. Computation times (in seconds) and the number of iterations in brackets. The first
line uses a direct solver for comparison; the second line uses GMRES without preconditioning.
Note that we restrict the GMRES algorithm to a maximum of 300 iterations. If no convergence is
achieved by then, we write >300

Singularity Singularity Abel-Poisson Abel-Poisson

#ov (8,800 points) (11,200 points) (8,800 points) (11,200 points)

Direct 331.32 580.30 291.81 577.53

No PC. 1,020.7 (>300) 1,187.84 (>300) 522.76 (84) 747.14 (101)

0.1 108.20 (29) 149.50 (35) 90.29 (13) 131.38 (16)

0.2 52.16 (13) 84.45 (19) 52.48 (7) 63.06 (7)

0.3 38.00 (9) 52.68 (11) 40.26 (5) 50.27 (5)

0.4 32.01 (7) 37.82 (7) 34.71 (4) 50.63 (5)

0.5 26.20 (5) 37.62 (6) 36.23 (4) 46.41 (4)

0.6 29.20 (5) 39.91 (5) 39.33 (4) 53.16 (4)

Algorithm 2 is applied as preconditioner in the well known preconditioned GMRES
algorithm for the iterative solution of systems of linear equations (cf. Saad and
Schultz 1986 for the first formulation of GMRES or, e.g., Saad 2003). The matrix-
vector products with the full matrix A that occur in GMRES are accelerated with
the fast multipole algorithm of Sect. 3.

The overlap parameter #ov which controls the size of the overlapping parts
of the domains (see Fig. 5) plays an important role in the effectiveness of the
preconditioner. Note that the number of overlap points is not directly controlled this
way. On the one hand, a larger overlapping part, i.e., more overlap points, generally
reduces the number of iterations, because the efficiency of the additive Schwarz
preconditioner rises. On the other hand, the number of points related to each domain
also grows, i.e., the effort for each domain increases, and hence the iterations take
more time.

We investigate the following test scenario to determine a good balance. The
Earth’s surface is described by the TerrainBase model (see Hastings and Row 1997),
and we choose the latitudes and longitudes of the data points from a so-called spiral
grid (cf. Rakhmanov et al. 1994), i.e., the points are approximately equidistributed
on the surface for this test. As gravitational data to interpolate, we use the EGM96
model (cf. Lemoine et al. 1998). The fast multipole algorithm is run with s."/ D 17

and corresponding values for p and m (see Sect. 4). The spline parameters are
R D 6;352 km and h D 0:92 for both kernels. From Table 7, we find that the
differences for #ov � 0:4 are rather small. Moreover, the disadvantages of a too
large overlap become more and more evident for more points, in particular more
points in the cubes, e.g., resulting from s."/ D 26 (see Table 5). Therefore, we use
the preconditioner with #ov D 0:4 in our calculations in Sect. 6. Further parameter
studies and tests of other update variants can be found in Gutting (2007).

For smoothing splines, similar restrictions on the matrix C in (11) hold as for
the FMM (see the end of Sect. 3.4). However, the system of linear equations (11) is
typically much better conditioned than (8) because of the smoothing.
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6 Numerical Tests and Results

At first, we consider a global test example putting together all previous parts. In this
section, the FMM is used with s."/ D 26 and the corresponding parameters (see
Sect. 4), and the preconditioner is set up with the overlap parameter #ov D 0:4 as
explained in Sect. 5.

To determine random points on the Earth’s surface, we compute a uniform distri-
bution on a sphere. Since the Earth’s surface is close to a sphere, the distribution can
be expected to be still close to uniform. Of course, even for uniformly distributed
random points, data gaps can occur leading to complications. As test data, we simply
evaluate the EGM96 (using degrees 3–100 here) at N D 100;000 random points on
the Earth’s surface. In Fig. 6, the spline of the gravitational potential and distribution
of the absolute error of the spline interpolation can be seen. Figure 7 provides a
detailed view of the errors at some data gaps.

–600 –400 –200 0 200 400 0.5 1 1.5 2 2.5 3 3.5 4600

Fig. 6 Spline interpolation of the gravitational potential (left) and absolute error distribution
(right), both in m2/s2

0.5 1 1.5 2 2.5 3 3.5 4 0.5 1 1.5 2 2.5 3 3.5 4

Fig. 7 A closer look at some data gaps where the largest error (in m2/s2) occurs in Fig. 6 (right).
The data points are added in magenta
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Fig. 8 Local examples: N D 48;749 randomly distributed points (left) and N D 48;744 points
based on a spiral grid (right) in the region of the Earth’s surface

The singularity kernel is computed with h D 0:98 and R D 6;352 km in just 18
iterations and leads to a mean absolute error of "mabs D 0:0413m2=s2 and a maximal
absolute error of "max D 4:1442 m2=s2.

For our further considerations, we no longer work on the whole surface of the
Earth but restrict ourselves to a region containing South America (65ıS to 30ıN,
110ıW to 10ıW), and only the points within this region are interpolated. As test
data, the EGM96 (using degrees 16–200) is evaluated at N D 48;749 almost
uniformly distributed random points (constructed as before) in the region on the
Earth’s surface (see Fig. 8 (left)).

The resulting spline with the singularity kernel with h D 0:9875 and R D
63;544 km required 32 iterations to obtain the coefficients, and its mean absolute
error is "mabs D 0:0353 m2=s2. The maximal error "max D 8:0492 m2=s2 and occurs
at the boundary of the region (see Fig. 9). Thus, we ignore 2:5 % of the region
at each boundary (see Fig. 10) which reduces both mean and maximal errors to
Q"mabs D 0:0280m2=s2 and Q"max D 3:6544m2=s2, respectively (compare also Figs. 10
to 9). It should be noted that the error naturally is largest at the boundary since there
are no more data points beyond it. Therefore, one can consider everything outside
the region under consideration as one huge data gap.

Finally, we consider another regional example with the Abel-Poisson kernel
(with h D 0:98 and R D 6;354 km) using the spiral grid of Rakhmanov et al.
(1994) mapped to the Earth’s surface as before (see the test scenarios in Sect. 5).
The points (N D 48;744) are illustrated in Fig. 8 (right), and as data we evaluate
again the EGM96 (using degrees 16–360). Our algorithm requires 15 iterations, and
the errors are "mabs D 0:0199 m2=s2 and "max D 10:7790 m2=s2 where the maximal
error again occurs at the boundary of the region (see Fig. 11). Cutting off again
2:5 % of the region at the boundary (see Fig. 12 and compare it to Fig. 11), these
errors reduce to Q"mabs D 0:0046 m2=s2 and Q"max D 0:9984 m2=s2. Obviously, the
more regular distribution of points removes the errors that result from data gaps and
leads to better results.
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Fig. 9 Spline interpolation of the gravitational potential (left) and absolute error distribution
(right) using the singularity kernel and the interpolation points in Fig. 8 (left), both in m2/s2
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Fig. 10 Same results as in Fig. 9, but 2.5 % of the area at the boundary of the region have been
removed

7 Conclusion

Combining the FMM and the additive Schwarz algorithm as preconditioner in the
iterative algorithm GMRES proves to be an efficient solution strategy that can
treat interpolation problems and Dirichlet boundary value problems with many data
points on regular surfaces (e.g., the actual topography of the Earth). It should be
pointed out that our approach is not restricted to a global treatment but also applies
to regional domains as shown by the numerical examples. This can lead to a local
improvement of the gravitational field in areas of particular interest. A global model
(e.g., in terms of spherical harmonics) should first be subtracted from the data and
combined afterwards with the spline solution. In general, the singularity kernel leads
to results slightly faster than the Abel-Poisson kernel.

The spline approach naturally includes spherical boundaries as a special case
and can be extended to spline smoothing with some restrictions (see Sect. 2.2 and
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Fig. 11 Spline interpolation of the gravitational potential (left) and absolute error distribution
(right) using the Abel-Poisson kernel and the interpolation points in Fig. 8 (right), both in m2/s2
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Fig. 12 Same results as in Fig. 11, but 2.5 % of the area at the boundary of the region have been
removed

the end of Sect. 3.4). Note that for smoothing splines, it is well possible to leave
out the preconditioner since the smoothing itself drastically improves the condition
of the matrix. However, the smoothing parameter(s) plays a crucial role in this
approach and must be chosen very carefully or a lot of detail information is lost
to oversmoothing. The combination with parameter choice methods from ill-posed
problems (cf. Bauer and Lukas 2011; Bauer et al. 2014 and the references therein)
is an interesting challenge for the future.

For highly irregular distributions of data points, the spline approach reaches its
limits. The largest data gap in the domain desires a small value of the parameter h,
whereas the closest data points require a larger value of h to avoid ill-conditioning.
Even smoothing splines cannot completely bridge this gap so far though further
investigation is required. However, functional matching pursuit methods can result
in better approximations (see Michel 2014a and the references therein), but so far
these algorithms require large numerical costs.
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