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Abstract
We present a multiresolution analysis of temporal and spatial variations of the
Earth’s gravitational potential by the use of tensor product wavelets which are
built up by Legendre and spherical wavelets for the time and space domain,
respectively. The multiresolution is performed for satellite and hydrological data,
and based on these results we compute correlation coefficients between both data
sets, which help us to develop a filter for the extraction of an improved hydrology
model from the satellite data.
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1 Introduction

The twin satellite gravity mission GRACE (Gravity Recovery And Climate
Experiment) (see Tapley and Reigber 2001; Tapley et al. 2004a,b) provides a huge
amount of data, which enables for the first time to quantify spatial and temporal
variations of the Earth’s gravity field caused by mass transport and mass distribution
with sufficient accuracy (see Swenson et al. 2003; Swenson and Wahr 2006). Most
of the measured gravitational variations belong to hydrological mass distribution,
and the determination of the continental water changes from the GRACE data
is possible with a resolution of 1 cm water column in monthly resolution. This
gives us the opportunity to analyze the hydrological information at different scales
in time and space with respect to topics as, e.g., global water balance and water
transfer, large-scale spatial and temporal variations of terrestrial water storage,
water balances in difficult to access regions, long-term trends of continental water
storage, and identification of hydrological problem zones with respect to water
management and the availability of water resources.

Hydrological data, as, e.g., WGHM (WaterGAP Global Hydrology Model)
(see Döll et al. 2003) used for our computations, are given in the form of
a time series of monthly equivalent water column heights or surface density
variations. These data can be directly transformed to the corresponding gravita-
tional potential by numerical integration over the underlying grid. The classical
approach for modeling the gravitational field of the Earth is to use a truncated
Fourier series based on spherical harmonics where the accuracy of the approx-
imation is given by the maximum degree. A fundamental disadvantage of the
spherical harmonic expansion is the localization of the basis functions (spherical
harmonics) in the frequency domain, which leads to a smearing of the spatial
detail information over the whole globe. The need of a possibility to locally
analyze the gravitational potential led to the development of spherical wavelets
in the Geomathematics Group of the University of Kaiserslautern (Freeden 1999;
Freeden et al. 1998; Freeden and Schneider 1998a; Freeden and Schneider 1998b;
Freeden and Schreiner 2009). The spherical wavelets are kernel functions, which
are constructed using clusters of a finite number of spherical harmonics, and by
this means guarantee a good localization in the space domain. The uncertainty
principle reveals that localization in both frequency and space domain are mutually
exclusive.

Based on the spherical multiresolution analysis we derive a multiresolution
analysis for both time and space domain. This is performed by transferring the
spherical theory to the time domain by the use of Legendre wavelets instead of
spherical wavelets and then by applying the theory of tensor product wavelets
known from the classical multidimensional wavelet analysis. In the classical wavelet
analysis the two dimensions correspond to two directions in space, whereas in our
case the dimensions are the time and space domain (sphere). This method allows us
to reveal both temporal and spatial detail information of time series of gravitational
data (hydrological or satellite data). Finally, we compare the resulting temporal and
spatial detail information and the scale-depending approximations of both data sets
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by computing local and global correlation coefficients. These comparisons reveal
the temporal and spatial regions of bad correlation of the GRACE and WGHM data.
With the objective of improving the existing hydrological models, we finally derive
a filter by weighting the detail information of different scales subject to the local
correlation coefficients.

The layout of the chapter is as follows: In Sect. 2 we give a short presentation
of the multiresolution for Hilbert spaces in order to explain the wavelet concept
because this theory is fundamental for the further course of this chapter. The
combined time-space multiresolution analysis for reconstructing a signal in the
temporal and spatial domain and the theory of correlation coefficients is then
introduced in Sect. 3. Section 4 is concerned with the numerical computations based
on the theory which is presented in the foregoing section. All computations are
performed with data from the satellite mission GRACE and with hydrological data
from WGHM. A first idea for an “optimal” extraction of a hydrological model from
satellite data is presented in Sect. 5 and finally some conclusions are drawn in the
last section.

2 Scientific Relevance of Multiresolution

The concept of multiresolution has been developed by Mallat (1989a,b) and Meyer
(1992) for fast and stable wavelet analysis and synthesis of functions in L2.R/ and
has been transferred to the spherical case by Freeden (see Freeden et al. (1998) and
the references therein).

2.1 Preliminaries

We start with a short recapitulation of some notation and symbols which will
be important within this chapter. Additional information can be found, e.g., in
Müller (1966) and Freeden et al. (1998) and the references therein. The sets of
positive integers, non-negative integers, integers, and real numbers are represented
by N, N0, Z, and R, respectively. The Hilbert space of all real, square-integrable
functions F on �, where � denotes the unit sphere, is called L2(�) with the
scalar product given by .F; G/L2.�/ D R

�
F .�/G.�/d!.�/; F; G 2 L2.�/. The

space of all scalar spherical harmonics Yn W � ! R of degree n is of dimension
2n + 1 and the set fYn;k W � ! R; n 2 N0; k D 1; : : : ; 2nC1g of spherical harmon-
ics of degree n and order k forms an orthonormal basis of L2(�). Thus F 2 L2(�)
can be uniquely represented by a Fourier series F D P1

nD0

P2nC1
kD1 F ^.n; k/Yn;k

(in L2.�/ – sense) with the Fourier coefficients F ^.n; k/ D .F; Yn;k/L2.�/.
Closely related to the spherical harmonics are the Legendre polynomials Pn W
Œ�1; 1� ! R of degree n, n 2 N0. Considering the space L2([�1, 1]) with
scalar product .F; G/L2.Œ�1;1�/ D R 1

�1 F .t/G.t/dt , F , G 2 L2 ([�1, 1]), the
L2([�1, 1])-orthonormal Legendre polynomials P �

n W Œ�1; 1� ! R defined by
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P �
n D �

2nC1
2

� 1
2 Pn, n 2 N0, form an orthonormal basis in L2([�1, 1]). Thus, every

F 2 L2([�1, 1]) can be represented by a Legendre expansion F D P1
nD0 F ^.n/P �

n ,
with the Legendre coefficients F ^.n/ D .F; P �

n /L2.Œ�1;1�/. We conclude this section
mentioning the addition theorem, which states the relation between the Legendre
polynomial of degree n and the spherical harmonics of degree n:

2nC1X

kD1

Yn;k.�/Yn;k.�/ D 2n C 1

4�
Pn.� � �/; �; � 2 �:

2.2 Multiresolution in Hilbert Spaces

Within this subsection, we briefly present the multiresolution analysis in Hilbert
spaces developed in the Geomathematics Group of the University of Kaiserslautern
(see, e.g., Freeden and Schneider (1998b) and the references therein). This theory is
fundamental for the understanding of the time-space multiresolution in Sect. 3.1.

With H we denote a real separable Hilbert space over a certain domain † � R
m

with scalar product .�; �/H. Let fU �
n gn2N0 be an orthonormal system which is

complete in .H; .�; �/H/ and � W † � † ! R an H-product kernel given by
�.x; y/ D P1

nD0 �^.n/U �
n .x/U �

n .y/; x; y 2 †, with symbol f�^.n/gn2N0 . � is
called H-admissible if the following two conditions are satisfied:

(i)
1P

nD0

.�^.n//2 < 1,

(ii)
1P

nD0

.�^.n/U �
n .x//2 < 1; 8x 2 †.

These admissibility conditions ensure that the functions �.x; �/ W † ! R

and �.�; x/ W † ! R, x 2 † fixed, are elements of H. Furthermore,
they guarantee that the convolution of an admissible kernel function � and
a function F 2 H is again in H, where the convolution is defined by
.� � F /.x/ D R

† F .y/�.x; y/dy D †1
nD0�

^.n/F ^.n/U �
n .x/. Fundamental for

the multiresolution analysis are the so-called H-scaling functions which are defined
in such a way that we can interpret them as low-pass filters for functions in H.
We start with the definition of the mother H-scaling function. Let f.ˆ0/

^.n/gn2N0

be the symbol of an H-admissible kernel function which additionally satisfies the
following two conditions:

(i) (ˆ0/
^(0) = 1,

(ii) if n > k then (ˆ0/
^.n/ � (ˆ0/

^.k/.

Then f.ˆ0/^.n/gn2N0 is called the generating symbol of the mother H-scaling
function given by
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ˆ0.x; y/ D
1X

nD0

.ˆ0/^.n/U �
n .x/U �

n .y/; x; y 2 †:

For the definition of the H-scaling function we have to extend this definition by
defining the dilated versions of ˆ0 in the following way: let f.ˆJ /^.n/gn2N0 , J 2 Z,
be an H-admissible symbol satisfying in addition the following properties:

(i) lim
J !1.ˆJ /^.n/ D 1; n 2 N,

(ii) .ˆJ /^.n/ � .ˆJ �1/^.n/; J 2 Z; n 2 N,
(iii) lim

J !�1.ˆJ /^.n/ D 0; n 2 N,

(iv) .ˆJ /^.0/ D 1; J 2 Z.

Then f.ˆJ /^.n/gn2N0 , J 2 Z, is called the generating symbol of an H-scaling
function and J is called the scale. The corresponding family fˆJ gJ 2Z of kernel
functions given by

ˆJ .x; y/ D
1X

nD0

.ˆJ /^.n/U �
n .x/U �

n .y/; x; y 2 †;

is called H-scaling function. The symbols of the associated H-wavelets are defined
with the help of the refinement equation

�
.‰J /^.n/

�2 D �
.ˆJ C1/^.n/

�2 � �
.ˆJ /^.n/

�2
; n 2 N0: (1)

Then, the family f‰J gJ 2Z of H-product kernels defined by

‰J .x; y/ D
1X

nD0

.‰J /^.n/U �
n .x/U �

n .y/; x; y 2 †;

is called H-wavelet associated to the H-scaling function fˆJ g, J 2 Z. The
corresponding mother wavelet is denoted by ‰0.

Our numerical calculations are all performed with the so-called cubic polynomial
wavelet. The corresponding cubic polynomial scaling function is composed by the
symbol

.ˆJ /^.n/ D
�

.1 � 2�J n/2.1 C 21�J n/; 0 � n < 2J ;

0; n � 2J :

Figure 1 shows the scaling function and the wavelet for different scales. The cor-
responding symbols are shown in Fig. 2, where the wavelet symbols are calculated
with the help of the refinement Eq. (1).
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Fig. 1 Cubic polynomial scaling function and wavelet for # 2 Œ��; ��; scale j D 3; 4; 5; 6

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

a b
10 20 30 40 50 60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Scale 3
Scale 4
Scale 5
Scale 6

Scale 3
Scale 4
Scale 5
Scale 6

Symbols of the scaling function:
n     (Φ) j (n)

Symbols of the wavelet:
n     (Ψ) j (n)

Fig. 2 Symbols of the cubic polynomial scaling function and wavelet for n D 0; : : :; 65; scale
j D 3; 4; 5; 6

With the help of the H-scaling functions and H-wavelets we introduce
the scale spaces VJ D fˆJ � ˆJ �F jF 2 Hg and the corresponding detail
spaces WJ D f‰J � ‰J � F jF 2 Hg. The operator TJ (F / = ˆJ * ˆJ * F

can be interpreted as a low-pass filter and the corresponding scale space
represents the approximation (reconstruction) of F at scale J . The operator
RJ .F / D ‰J * ‰J * F can be interpreted as a band-pass filter and the
corresponding detail spaces WJ represent the wavelet approximation (detail
information) of F at scale J . For these scale and detail spaces we have
the decomposition VJ C1 D VJ C WJ . With increasing scale J , the scale
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spaces provide a better and better approximation of the function F , that is
we have the limit relation (in H-sense) limJ !1 ˆJ � ˆJ � F D F . Thus,
we end up in a multiresolution analysis given by the nested sequence of scale
spaces

� � � � VJ � VJ C1 � � � � � H;

and

H D
1[

J D�1
VJ

jj�jjH
:

In particular, we can decompose the space VJ for each scale J 2 Z in one “basic”
scale space and several detail spaces: VJ D VJ0 C PJ �1

j DJ0
Wj .

2.3 Wavelets for the Time and Space Domain

As a matter of fact most of the functions in geophysics and geodesy are of bounded
energy and thus we conclude this section with the Hilbert spaces L2([�1, 1]) used
for the time domain (Legendre wavelets) and L2(�) used for the space domain
(spherical wavelets).

LegendreWavelets
Let H D L2.Œ�1; 1�/ be the space of square-integrable functions F W Œ�1; 1� ! R,
i.e., we let † D Œ�1; 1�. This choice leads to the so-called Legendre wavelets (cf.
Beth and Viell 1998). We already defined the scalar product .F; G/L2.Œ�1;1�/ and
the orthonormal system of Legendre polynomials P �

n . The L2([�1, 1])-admissible
product kernels then are given by

�.s; t/ D
1X

nD0

�^.n/P �
n .s/P �

n .t/; s; t 2 Œ�1; 1�;

and the convolution of � against F is given by

.� � F /.t/ D
1X

nD0

�^.n/F ^.n/P �
n .t/; t 2 Œ�1; 1�:

Spherical Wavelets
In case of the scalar spherical wavelet theory, we let † D � and consider the
Hilbert space H D L2.�/. As an L2(�)-orthonormal system we choose the system
fYn;kgn2N0I kD1;:::;2nC1 of spherical harmonics of degree n and order k. The L2(�)-
product kernels have the following representation
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�.�; �/ D
1X

nD0

2nC1X

kD1

�^.n/Yn;k.�/Yn;k.�/; �; � 2 �;

and the convolution of � against F is given by

.� � F /.�/ D
1X

nD0

2nC1X

kD1

�^.n/F ^.n; k/Yn;k.�/; � 2 �:

3 Key Issues for the Comparison of GRACE andWGHMData

In view of an improvement of existing hydrological models, as e.g., WGHM, by
comparing them with measurements based on GRACE data we first perform a
multiscale analysis and then compute correlation coefficients. The first part of this
section (Sect. 3.1) is therefore dedicated to the tensorial time-space multiresolution
which is a method for the detection of temporal and spatial variations on different
scales, i.e., sizes of the details. In the second part (Sect. 3.2) we compute the local
and global correlation coefficients between GRACE and WGHM data and thus we
are able to quantify the resemblance of both data sets at different scales. Some more
results concerning the comparison of GRACE and WGHM data can be found in
Freeden et al. (2010).

3.1 Tensorial Time-Space Multiresolution

For the combination of the temporal multiresolution based on Legendre wavelets
with the spatial multiresolution based on spherical wavelets we apply the theory
of tensor product wavelets (see, e.g., Louis et al. 1998). This technique allows
the transmission of the one-dimensional multiscale analysis to higher dimensions.
Figure 3 shows the tensorial time-space multiresolution which provides a unique
scale for both space and time domain and three detail parts for each scale, namely
two hybrid and one pure detail part. A detailed introduction to this theory can be
found in Freeden (1999), Maier (2003), Nutz and Wolf (2008), and the references
therein.

Starting point of our considerations is the Hilbert space L2([�1, 1] ��)
where without loss of generality we assume the time interval to be normalized
to the interval [�1, 1]. The scalar product of F , G 2 L2.Œ�1; 1� � �/ is given
by .F; G/L2.Œ�1;1���/ D R 1

�1

R
�

F .t I �/G.t I �/d!.�/dt . We presume that the
time dependency is completely described by the spherical harmonic coefficients
and we have the representation F .t I �/ D P1

nD0

P2nC1
kD1 F ^.n; k/.t/Yn;k.�/,

with F ^.n; k/.t/ D P1
n0D0 F ^.n0I n; k/P �

n0.t/, where F ^.n0I n; k/ D�
F; P �

n0Yn;k

�
L2.Œ�1;1���/

. For notational reasons in the following text n0 will
always denote the summation index in the time domain (Legendre polynomials),
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Multiresolution in Time and Space

Smoothing with decreasing scale

L2([–1, 1] � Ω) → . . . → V~J+1 → V~J → V~J–1 → . . . → V~0
The higher
the scale, 
the finer are
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W
~1
J     W

~1
J–1               W~1

0

W
~2
J     W

~2
J–1     . . .     W~2

0

W
~3
J     W

~3
J–1               W~3

0

Fig. 3 Multiresolution of L2.Œ�1; 1� � �/ with tensor product wavelets

whereas n will be used in the space domain (spherical harmonics). We finally
arrive at

F D
1X

n0D0

1X

nD0

2nC1X

kD1

F ^.n0I n; k/P �
n0Yn;k

in L2.Œ�1; 1� � �/-sense. A multiresolution of the space L2.Œ�1; 1� � �/ is given
by a subset of scale spaces of the form

� � � � QVJ � QVJ C1 � � � � � L2.Œ�1; 1� � �/

and

L2.Œ�1; 1� � �/ D
1[

JD�1
QVJ

jj�jjL2 .Œ�1;1���/

:

In this section we follow the presentation of the tensorial time-space multiresolution
analysis in Nutz and Wolf (2008) for the definition of the scaling function and the
wavelets. Our starting point is the definition of the generating symbol of a time-
space scaling function. Let f.ˆ0

J /^.n0/gn02N0 and f.ˆJ /^.n/gn2N0 , J 2 Z, be the
generating symbols of a temporal scaling function and a spatial scaling function,
respectively. Then the generating symbol of the time-space (tensor product) scaling
function is given by the sequence f. Q̂

J /^.n0I n/gn0;n2N0 , with the symbol of
the scaling function . Q̂

J /^.n0I n/ D .ˆ0
J /^.n0/.ˆJ /^.n/. The family of kernel

functions f Q̂
J gJ 2Z defined by

Q̂
J .s; t I �; �/ D

1X

n0D0

1X

nD0

2nC1X

kD1

. Q̂
J /^.n0I n/P �

n0.s/P �
n0.t/Yn;k.�/Yn;k.�/;
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s; t 2 Œ�1; 1�; �; � 2 �, denotes the time-space (tensor product) scaling functions.
Since we have two refinement equations

�
.‰0

J /^.n0/
�2 D �

.ˆ0
J C1/^.n0/

�2 � �
.ˆ0

J /^.n0/
�2

;

..‰J /^.n//
2 D ..ˆJ C1/^.n//

2 � ..ˆJ /^.n//
2

;

which have to be fulfilled simultaneously we get

�
.ˆ0

J C1/^.n0/
�2

..ˆJ C1/
^.n//

2 D �
.ˆ0

J /^.n0/
�2

..ˆJ /^.n//
2

C �
.‰0

J /^.n0/
�2

..ˆJ /^.n//
2

C �
.ˆ0

J /^.n0/
�2

..‰J /^.n//
2

C �
.‰0

J /^.n0/
�2

..‰J /^.n//
2

:

This leads to the definition of two hybrid wavelets Q‰1
J and Q‰2

J and one pure wavelet
Q‰3

J :

Q‰i
J .s; t I �; �/ D

1X

n0D0

1X

nD0

2nC1X

kD1

� Q‰i
J

�^
.n0I n/P �

n0.s/P �
n0.t/Yn;k.�/Yn;k.�/;

i D 1; 2; 3, with the hybrid and pure wavelet symbols

� Q‰1
J

�^
.n0I n/ D �

ˆ0
J

�^
.n0/.‰J /^.n/;

� Q‰2
J

�^
.n0I n/ D �

‰0
J

�^
.n0/.ˆJ /^.n/;

� Q‰3
J

�^
.n0I n/ D �

‰0
J

�^
.n0/.‰J /^.n/:

We now introduce the time-space convolution of a function F 2 L2.Œ�1; 1� � �/

and a kernel function of the form

�.s; t I �; �/ D
1X

n0D0

1X

nD0

2nC1X

kD1

�^.n0I n/P �
n0.s/P �

n0.t/Yn;k.�/Yn;k.�/:

The time-space convolution of � against F is defined by

.� ? F /.t I �/ D
1R

�1

R

�

�.s; t I �; �/F .sI �/d!.�/ds

D
1P

n0D0

1P
nD0

2nC1P

kD1

�^.n0I n/F ^.n0I n; k/P �
n0.t/Yn;k.�/:

The convolution of two kernel functions is defined in analogous manner. Now let
f Q̂

J g be the time-space scaling functions and
˚ Q‰i

J

�
, i D 1; 2; 3, be the associated

hybrid and pure time-space wavelets at scale J . Then the pure time-space scale
spaces are defined by
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QVJ D ˚ Q̂
J ? Q̂

J ? F j F 2 L2.Œ�1; 1� � �/
�

;

and the first hybrid, the second hybrid, and the pure time-space detail spaces are
given by

QW i
J D ˚ Q‰i

J ? Q‰i
J ? F j F 2 L2.Œ�1; 1� � �/

�
;

i D 1; 2; 3.
We conclude this section with the following two important properties which

guarantee the time-space multiresolution based on tensor product wavelets: let
f Q̂

J g, J 2 Z, be a time-space scaling function and
˚ Q‰i

J

�
, i D 1; 2; 3, J 2 Z, be the

associated hybrid and pure time-space wavelets. Suppose that F 2 L2.Œ�1; 1� � �).
Then

F D lim
J !1

� Q̂
J ? Q̂

J ? F
�

D lim
J !1

0

@ Q̂
J0 ? Q̂

J0 ? F C
JX

j DJ0

3X

iD1

Q‰i
j � Q‰i

j � F

1

A ;

J0 2 Z; holds true in the sense of the L2.Œ�1; 1� � �/-metric. Accordingly, for the
time-space scale spaces and detail spaces we have

QVJ D QVJ0 C
J �1X

j DJ0

3X

iD1

QW i
j

with J; J0 2 Z, and J0 � J . In Fig. 4 a graphical illustration of the time-space
multiscale analysis calculated with GRACE-data is shown.

3.2 Correlation Analysis Between GRACE andWGHM

By the use of the time-space multiresolution analysis, we are in the position to
locally measure spatial and temporal changes in the data. With respect to the
application of the theory to real data sets as, e.g., hydrological or GRACE data,
we need an instrument to compare these results, i.e., we must perform a correlation
analysis. The correlation coefficient is a gauge for the variation of two data sets
and, thus, helps us to interpret the changes of the data at different scales. Based on
the different corresponding detail parts and reconstructions we compute the local
correlation coefficients on the continents which reflect the good and bad accordance
of the two time series. In addition we compute global correlation coefficients by
averaging the local correlation coefficients over the continents.

For the definition of the local and global correlation coefficients of time series
given on the sphere we use the following notation: we assume that we have T 2 N



508 H. Nutz and K. Wolf

180° W
75° N

75° S

Reconstruction at scale 4

60° N

60° S

45° N

45° S

30° N

30° S

15° N

15° S

0°

180° E90° W 90° E0°

180° W
75° N

75° S

First hybrid detail part
at scale 4

60° N

60° S

45° N

45° S

30° N

30° S

15° N

15° S
0°

180° E90° W 90° E0° 180° W
75° N

75° S

Second hybrid detail part
at scale 4

+ +

+

Pure detail part at scale 4

60° N

60° S

45° N

45° S

30° N

30° S

15° N

15° S
0°

180° E90° W 90° E0° 180° W
75° N

75° S

60° N

60° S

45° N

45° S

30° N

30° S

15° N

15° S

180° E90° W 90° E0°

180° W
75° N

75° S

Reconstruction at scale 5

60° N

60° S

45° N

45° S

30° N

30° S

15° N

15° S

0°

180° E90° W 90° E0°

a

b c d

e

Fig. 4 Graphical illustration of the time-space multiresolution analysis computed from a time
series of GRACE data and exemplarily shown for April 2005

points in time and M 2 N grid points. The points in time are denoted by ti
2 [�1, 1], i D 1; : : :; T , whereas all grid points are given by �m 2 �, for
m D 1; : : :; M . Since we must take into account the latitude dependance of the
grid points, we let pm D cos.'m/ be the weight, where 'm denotes the latitude
of the corresponding grid point. We want to compare the values of two different
time series which we denote by F and G, F , G 2 L.Œ�1; 1� � �). Then, the local
correlation coefficient c at some location � 2 � is given by

c.�/ D

TP

iD1

�
F .ti I �/ � NF .�/

� �
G.ti I �/ � NG.�/

�

s
TP

iD1

�
F .ti I �/ � NF .�/

�2
TP

iD1

�
G.ti I �/ � NG.�/

�2

;
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where the weighted mean values are defined by NF .�/D 1
T

PT
iD1 F .ti I �/ and

NG.�/D 1
T

PT
iD1 G.ti I �/. For the global correlation coefficient gc we average the

local correlation coefficients over the corresponding grid points, such that we obtain

gc D

TP

iD1

MP

mD1

pm

�
F .ti I �m/ � NF .�m/

� �
G.ti I �m/ � NG.�m/

�

s
TP

iD1

MP

mD1

pm

�
F .ti I �m/ � NF .�m/

�2
TP

iD1

MP

mD1

pm

�
G.ti I �m/ � NG.�m/

�2

:

4 Fundamental Results

This section is dedicated to numerical results for the tensorial time-space multires-
olution and the correlation analysis between the GRACE and WGHM data. The
computations have been carried out on the basis of 62 monthly data sets of spherical
harmonic coefficients up to degree and order 70 from GRACE and WGHM for
the period of August 2002 till September 2007. These data sets have been made
available to us from GeoForschungszentrum Potsdam, Department 1, Geodesy and
Remote Sensing within the German Ministry of Education and Research (BMBF)
project “Observation System Earth from Space.”

In case of the spatial analysis we exemplarily present the results of the first hybrid
parts of April 2005. The left column of Fig. 5 shows the results based on the GRACE
data and the right one shows the corresponding results in case of WGHM data. Note
that in case of WGHM, measurements have only been achieved on the continents
whereas in case of GRACE data we also have measurements on the oceans. At scale
3 (see Fig. 5a, b) large-area regions are visible. With increasing scale, we have better
and better space localization.

In case of the temporal analysis the time dependent courses of the second
hybrid parts for selected locations, more precisely for Dacca and Kaiserslautern on
the Northern hemisphere and Manaus and Lilongwe on the Southern hemisphere,
are shown (see Fig. 6). Note that Kaiserslautern has moderate seasonal variations
in the water balance, whereas the other three cities are selected exemplarily for
well-known regions of great changes (Ganges and Amazonas basin, region around
Lake Malawi). In Fig. 6 on the left column the time-dependent courses for the
GRACE data and on the right column of Fig. 6 the time dependent courses for the
corresponding results based on WGHM data are shown. The seasonal variations can
be recognized best at scales 4 and 5. Even in case of Kaiserslautern, located in a
region with moderate variations, the course of the second hybrid parts clarifies the
seasonal course.

In Fig. 7, the local correlation coefficients and, additionally, the global correlation
coefficients on the continents between GRACE and WGHM are shown which are
computed from the original data sets (see Fig. 7a) and some low-pass and band-pass
filtered parts for scales 3 and 4 (see Fig. 7b–f). Red regions correspond to a good
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Fig. 5 First hybrid parts of the potentials of April 2005 calculated with cubic polynomial wavelet
in time and space with different scales

correlation of the two underlying time series, whereas the blue regions show the
locations with greater variations. In space domain, scale 3 and scale 4 correspond
to a region of influence of about 8,000 and 4,000 km, respectively, whereas in time
domain we have a time of influence of about 9 and 4 months, respectively.

We now exemplarily consider the results for North and South America in detail
because these regions show very different correlation coefficients for the coarse
reconstruction at scale 3. In case of North America the reconstruction at scale 4
(Fig. 7c) shows a much better correlation than the reconstruction at scale 3 (Fig. 7b).
This is traced back to the fact that the details of the size of scale 3 (8,000 km,
9 months) are better correlated than the reconstruction at scale 3 which leads to
an improvement of the correlation coefficients in case of the reconstruction at
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calculated with cubic polynomial wavelet in time and space with different scales
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scale 4 (4,000 km, 4 months). In South America, we have an excellent correlation
coefficient for the coarse reconstruction at scale 3 which is slightly degraded turning
to scale 4. The reason is that the detail parts at scale 3 are somewhat worse correlated
than the reconstruction at scale 3.

5 Future Directions

In the previous sections, we have presented some mathematical tools for the
spatial and temporal analysis of hydrological and satellite data. We have also
demonstrated how to compare the results of the multiresolution analysis by the
use of correlation coefficients. In order to clarify the local differences between
the hydrological model WGHM and the satellite measurements of GRACE, future
research must now concentrate on the possibilities of how to take advantage of this
knowledge for the improvement of existing hydrological models. In this section,
we therefore try to give a first idea of how to interpret the results achieved from
the multiscale analysis with the aid of the correlation coefficients in view of a
correction of hydrology models. To this end, we propose a filter based on the
correlation coefficients and we assume that we have an improvement if the (global
and local) correlation coefficients of the filtered GRACE and WGHM data are better
than those of the original data. Furthermore, we demand that a very large part of
the original signal is reconstructed in the filtered data. Note that the improvement
of the correlation coefficients and the increase of the percentage of the filtered
signal from the original signal cannot be optimized simultaneously. To find out an
optimal filter we start with computing the local correlation coefficients of GRACE
and WGHM c

.i/
J , J 2 N, i D 1; 2; 3, on the continents for the corresponding

detail parts F * ‰
.i/
J * ‰

.i/
J and the local correlation coefficients of GRACE and

WGHM cJ , J 2 N, of the constructions F * ˆJ * ˆJ . In addition, we compute
the corresponding global correlation coefficients on the continents gc.i/

J , gcJ . Using
these correlation coefficients we derive a weight function w: [�1, 1] ! [0, 1]
defined by

w.k/ D

8
<̂

:̂

0; k � G1;
1

G2�G1
k � G1

G2�G1
; G1 < k < G2;

1; k � G2;

for controlling the influence of the corresponding parts on the resulting
reconstructed signal: if the local correlation coefficient c

.i/
J and cJ , respectively,

is smaller than G1 the corresponding part is not added in the reconstruction
formula (2), whereas in case of a correlation coefficient greater than G2 we add
the entire corresponding part. In case of G1 < k < G2 we weight the corresponding
part in the reconstruction formula (2) (the higher the correlation coefficient the
higher the weights). We finally arrive at the following formula for a reconstruction
of the signal:
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F rec
Jmax

D .ˆJ0 � ˆJ0 � F /.�/w.cJ0 .�//

C
Jmax�1P

j DJ0

3P

iD1

�
‰

.i/
j � ‰

.i/
j � F

�
.�/w

�
c

.i/
j .�/

�
:

(2)

In order to get the percentage of the reconstructed signal F rec D F rec
Jmax

from the
original signal F orig D F we need the energy of a signal F 2 L2.Œ�1; C1� � �),
which is given by jjF jj2

L2.Œ�1;C1���/
D P1

n0D0

P1
nD0

P2nC1
mD1 .F ^.n0I n; m//

2, where

F ^.n0; n, m/ are the time-space Fourier coefficients. The percentage p.F rec, F orig/

is then given by

p
�
F rec; F orig

� D jjF recjjL2.Œ�1;C1���/

jjF origjjL2.Œ�1;C1���/

:

Table 1 shows the percentage of the reconstruction from GRACE data to
the original GRACE data and the correlation coefficients for the correspond-

Table 1 Percentage (third column) of the reconstruction with details up to scale 9 from GRACE
data to the original GRACE data and correlation coefficients (fourth column) for the corresponding
reconstructions between GRACE and WGHM data for different values of G1 and G2

G1 G2 Percentage (in %) Corr. Coeff.

– – 100 (original) 0.75

� 0.9 � 0.8 95.4 0.79

� 0.9 � 0.4 94.4 0.80

� 0.9 0.0 92.7 0.81

� 0.9 0.4 89.2 0.82

� 0.9 0.8 82.6 0.83
� 0.7 � 0.4 94.0 0.81

� 0.7 0.0 92.1 0.82

� 0.7 0.4 88.3 0.83
� 0.7 0.8 81.2 0.84
� 0.5 � 0.4 93.4 0.81

� 0.5 0.0 91.4 0.82

� 0.5 0.4 87.3 0.83
� 0.5 0.8 79.7 0.84
� 0.3 0.0 90.5 0.83
� 0.3 0.4 86.0 0.84
� 0.3 0.8 77.8 0.85
� 0.1 0.0 89.3 0.83
� 0.1 0.4 84.4 0.85
� 0.1 0.8 75.6 0.86

0.1 0.4 82.4 0.85
0.1 0.8 72.9 0.87
0.3 0.4 79.8 0.86
0.3 0.8 69.6 0.88
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ing reconstructions between GRACE and WGHM data for different values of
G1 and G2. Note that all values of the percentage greater than 88 % and all
correlation coefficients greater than 0.83 are in bold numbers. As expected we
realize that with decreasing percentage the correlation coefficient goes up. In
dependence of the parameters G1 and G2 we have to optimize both percent-
age and correlation coefficient. In Table 1 we have the best percentage for
G1 D �0:3 and G2 D 0:0, if we claim a correlation coefficient greater than
0.83.

In Fig. 8 we show the correlation coefficients of the reconstructions of GRACE
and WGHM data for G1 D �0:3 and G2 D 0:0. Especially the regions
with very bad correlation of the original data and the optimal reconstruction
show differences in the local correlation coefficients. To make this more evident,
we additionally in Fig. 9 show the differences of the correlation coefficients of
the optimal reconstruction (G1 D �0:3 and G2 D 0:0) and the correlation
coefficients of the original GRACE and WGHM data. Blue regions in Fig. 9
correspond to regions of good correlation of the hydrological model with the
satellite data because in our reconstruction process (see Formula (2)) we did
not have to do much corrections. Red regions correspond to those regions with
bad correlation coefficient between GRACE and WGHM data. In this case we
had to give up much of the detail information in Formula (2) due to the bad
correlation coefficient. We want to emphasize that the approach presented in this
section is a first idea of how to make use of the information achieved by the
multiresolution analysis in view of improving the existing hydrological models.
In Werth et al. (2009) a comparative overview of filter techniques based on
NSC is given for three global hydrological models (WGHM, GLDAS, and LaD).
Research in cooperation of geoscientists and mathematicians is necessary for further
progress in the field of extracting filter tools based on multiresolution of hydrology
data.

6 Conclusion

The huge amount of data which is provided by the satellite mission GRACE allows
to quantify both spatial and temporal variations of the Earth’s gravity field. For
this reason a time-space multiresolution analysis is presented in this chapter. The
basic idea of this method is to transfer the one-dimensional multiscale analysis to
higher dimensions, more precisely, a tensor product wavelet analysis using Legendre
wavelets for the time domain and spherical wavelets for the space domain is realized.
With the corresponding tensor product wavelets we are able to locally analyze
(in one step) a time series of the gravitational potential. Particularly, the spatial
detail information is not smeared over the whole Earth, which is a disadvantage
of the classical approach based on spherical harmonics. Based on the results of
the tensor product wavelet analysis, we are interested in an extraction of a global
hydrological model from the satellite data, and, thus, in an improvement of already
existing hydrological models. Therefore, the time series of the GRACE data and
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and G2 D 0:0
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Fig. 9 Difference of the correlation coefficients of the optimal reconstruction (G1 D �0:3 and
G2 D 0:0) and the correlation coefficients of the original GRACE and WGHM data

those of the existing hydrological model WGHM are compared using a correlation
analysis. To this end, local and global correlation coefficients between the original
data sets, the detail information, and the reconstructions of GRACE and WGHM
are computed. With the aid of these correlation coefficients we are looking for an
“optimal” reconstruction of the GRACE data, i.e., the aim is to find out an optimal
filter. This is done by constructing a weight function which controls the influence
of the corresponding detail parts on the resulting reconstructed signal. For future
research, it is necessary to interpret these results not only from the mathematical
point of view but also with geoscientifical knowledge in order to extract a reasonable
optimal global hydrology model from the GRACE satellite data.
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