
Chapter 6
Land Surface: Coupled
Footprints

Coupling footprint models to datasets characterizing surface properties is a most
useful endeavour when surface-exchange information is sought (fluxes or
parameters characterizing a surface of interest). Land-cover maps are particularly
helpful in that regard to identify the various land-cover types contributing to the
footprint area. Footprint models require information on characteristics of the
underlying surface for surface-related properties needed in footprint calculations
such as roughness length. Often, area-averaging methods are necessary to deter-
mine the input parameters for the model (see Sect. 2.4). In this chapter, principles
underpinning the coupling of footprint models are described. The application of
the described methods is given in Chap. 8.

6.1 Grid Schema of Surface Characteristics

Coupling footprint model runs with data describing surface characteristics around
a measurement site requires dividing the surrounding landscape into discrete
matrices (Fig. 6.1). In these matrices, each grid cell contains mean attributes of the
area it represents, such as an integer ID that indicates most land cover classes, or
values for e.g. averaged roughness length or stand height. The required spatially
explicit information can best be prepared using typical Geographical Information
System (GIS) software. Alternatively, the matrices can be produced using maps
describing e.g. the land-cover structure in the domain.

The dimensions of the model domain must be sufficiently large to enclose large
footprint areas in stable night time conditions, while the grid resolution has to be
sufficiently high to yield plausible results in convective, unstable conditions with
associated small footprints. The local wind climatology should be taken into
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consideration to reduce processing time in both preparation steps—the creation of
land use maps and footprint simulations. Final settings should be tested with
preliminary model runs based on different input parameters. It is generally rec-
ommended to reduce the size of the grid elements, since higher resolution enables
a realistic representation of smaller scale heterogeneities throughout the model
domain, avoiding the application of complex averaging schemes.

Over heterogeneous terrain, land-cover information is important to control and
investigate the influence of the underlying surface in the footprint of micromete-
orological measurements. Regarding distinguished land cover classes, the scheme
to be chosen needs to be customized for the specific objective of each footprint
study. Many FLUXNET observation sites target to monitor carbon exchange
processes for a specific land-cover type, e.g. mixed forest, so in the simplest case a
land-cover map is required that differentiates this target (forest) from other areas
(non-forest). This approach can be refined into arbitrary levels of details such as
differentiating coniferous from deciduous forests, or dividing one forest type into

Fig. 6.1 Map with grid elements covering the possible footprint area and the effect levels in up-
wind direction from the measuring point at the right side (Published with kind permission of
� 2011 GeoBasis DE/BKG � 2011 Tele Atlas � 2011 Google. All Rights Reserved)
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age classes. Since different land cover classes are often also associated with dif-
ferent roughness lengths which have an impact on the local flow characteristics
and therefore on footprint computation, it is recommended to describe the sur-
rounding landscape as accurately as possible. However, at the bare minimum,
land-cover classes listed in Table 6.1 should be distinguished.

Since the size and position of the footprint area changes with wind direction,
measurement height and atmospheric stability, these factors must be taken into
account when setting up the domain for a specific footprint study. As a general
guideline, suitable matrix sizes are 5 9 5 km2 for tower measurements over tall
forests and 0.5 9 0.5 km2 for experiments (sensor height approximately 2–3 m)
over agricultural areas. Concerning the matrix resolution, information should be
provided for grid elements of 25 9 25 m2 or smaller, as typically provided by
remote sensing data sources such as Landsat. Besides the benefit of representing
small scale heterogeneities adequately, such high resolution matrices are necessary
to project the source weight function onto the grid, particularly in the case of
smaller footprints in unstable conditions.

When remote sensing data is available, the creation of large model domains with
high resolution grids as outlined above should be easily achieved; however, such
high-resolution settings are impractical in the case where matrices have to be pro-
duced from conventional data such as e.g. topographic maps. In addition, compu-
tational demand related to both processing time and memory requirements scale
with the total number of grid cells in the model domain, thus an optimized domain
setup can help increasing the efficiency of the data processing. Figure 6.2 provides a
guideline on customizing the domain size and resolution, based on sensor height.

Concerning the dimensions of the area to be covered by the model domain, the
parameter Dmin defines the minimum fetch in each direction (Fig. 6.2). For
example, if Dmin has a value of 1 km, the resulting minimum-matrix would be a
square of 2 9 2 km2, with the tower located at the center of the area. The second
parameter Dext defines an extended fetch distance into the main wind direction.
The parameter LR gives the required resolution for the given matrix size. The
minimum settings for Dmin, Dext, and LR for specific ranges of the effective

Table 6.1 List of land cover classes for the preparation of a land use matrix from topographical
map information

Surface Comment

Forest If the forest is the target area, the major forest types should be accounted for
deciduous, coniferous, mixed and given their own respective class. In
addition, it is recommended to separate forest sections with different
roughness characteristics (age classes, height)

Settlement Rural settlements, buildings
Traffic areas Roads
Water areas Lakes, rivers
Grassland Permanent grassland, pasture land
Agricultural

areas
Crops of all kind. When possible, several classes should be identified according

to their respective roughness and thermal characteristics
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measurement height zm-eff, typically the height above zero-plane displacement, are
given in Table 6.2. A map covering a larger domain, or with a higher resolution,
will further enhance the accuracy of the footprint approach in the stable as well as
in the convective case.

6.2 Determination of Surface Characteristics

The key surface properties to account for in eddy-covariance footprint computation
are the land-cover types. That parameter is required to incorporate the contribution
of the designated target vegetation to the footprint. Since land-cover types impact
the roughness length, one can see the importance of such an input parameter in
footprint models. It is thus essential to characterize different land-cover types with
individual roughness length values (Sect. 6.2.1). Furthermore, a methodology to
determine the land-cover structure either through topographic maps or remote
sensing techniques is needed (Sect. 6.2.2). Finally, the determination of other area
averaged input data for footprint models is discussed (Sect. 6.3).

6.2.1 Roughness Length

The quality and success of analyses aiming at identifying the contribution of
upwind sources to a point area hinges to a large degree to the judicious choice of

Fig. 6.2 Sketches of the
concept of the matrix
dimensions defined by
parameters Dmin, Dext and LR

with a stream wisest direction
of East-North-East

Table 6.2 Parameter
selection for Dmin, Dext,
and LR (see Fig. 6.2) for the
effective measurement
height zm-eff

zm-eff (m) Dmin (m) Dext (m) LR (m)

\4 600 1,000 50
4–7 1,200 1,600 80
7–10 1,400 2,000 100
10–13 1,400 2,200 100
13–16 1,500 2,400 100
16–20 1,800 3,300 150
20–24 2,100 3,300 150
[24 2,400 3,600 150
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an appropriate roughness length classification. This is most easily accomplished
using an effective roughness length (Fiedler and Panofsky 1972) for a structured
landscape (see also Sect. 2.4.1), including e.g. wake-producing obstacles such as
hedges or lines of trees (see Fig. 6.3). However, such parameters are seldom
available for surfaces that are being studied, leaving the researcher to determine a
mean roughness length through aggregation for individual surface classes. The
authors remind the reader to be aware that a simple parameter aggregation (see
Sect. 2.4) can only be provided if the roughness lengths of the different surfaces
are of similar orders of magnitude.

Roughness lengths of different surface types are available in most of the text-
books with reference to a British standard (ESDU 1972). These data, together with
other classifications, are given in Table 2.1. Another popular roughness length
classification has been published in the European Wind Atlas (Troen and Peterson
1989), which was developed for wind energy applications and as such applies
mainly to open terrain (see Table 2.15). The Wind Atlas classification distin-
guishes only between four general roughness classes and was developed for
landscapes with high wind energy potential. Larger forested areas are assigned a
roughness length value of 0.4 m—a very low estimation compared to other clas-
sification schemes and measured values—reflecting the fact that wind turbines are
usually placed far away from large forests. The reader is thus advised to use
different roughness length classifications spanning a greater range of z0 values for
landscapes dominated by forests. As a third commonly used classification scheme,
the roughness length values proposed by Fiedler, cited in Hasager and Jensen

Fig. 6.3 The typical landscape in Southwest England with rows of bushes or stones against wind
erosion shows that not the roughness of the single fields but the combined roughness of the
structured landscape with of fields and bushes creates the effective roughness of the landscape
(Photograph by Foken)
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(1999), are based on micrometeorological field observations made in various land
cover types within the region of the Upper Rhine Valley, Germany. The fourth
classification scheme cited here (Wieringa 1992) compiles quality-proofed
roughness length measurements from several hundred original publications.
Finally, the last roughness length classification developed by Davenport et al.
(2000) presents effective roughness lengths, assuming a more heterogeneous
characteristic of the given land cover types as in the effective values presented by
Fiedler and Panofsky (1972). Therefore, their values may be slightly larger than
the presented in the other four schemes (Wieringa 1992).

According to a study by Reithmaier et al. (2006), it is critically important to
ensure that the dominating land cover type in the area surrounding the tower be
correctly classified. Therefore, for studies in predominantly forested areas, we
recommend using the classification scheme of Wieringa (1992). In studies over a
more heterogeneous landscape, a classification providing effective roughness
lengths should be preferred (Davenport et al. 2000). A second criterion to take into
account for the choice of a suitable roughness length classification is the footprint
model itself. Some footprint models become numerically unstable for very high
roughness length values, and there is usually a maximum threshold for the ratio of
measuring height zm and the roughness length z0. For example, the analytic model
by Schmid (1997) cannot be applied for ratios of zm/z0 \ 12. Other models are less
sensitive to this ratio, like e.g. the algorithm proposed by Kormann and Meixner
(2001) that uses measured wind velocity and friction velocity instead of roughness
length as input. Since the roughness length can be calculated from wind speed and
friction velocity (e.g. Eq. 2.16), this approach is basically another version of
calculating an effective roughness length.

The use of effective roughness lengths can only replace a full-scale flux
aggregation scheme when the chosen effective roughness length is valid over the
footprint area. Based on readily available classification schemes e.g. Davenport
et al. (2000), this condition is seldom fulfilled. Furthermore, in the paper by Fiedler
and Panofsky (1972), large scale aggregated values are given only for flat land-
scapes (0.42 m), landscapes with small hills (0.99 m), and for hilly regions
(1.42 m). Therefore, an area averaging roughness lengths is generally necessary in
footprint models requiring homogeneous surface properties. Flux aggregation tools
such as the one proposed by Hasager and Jensen (1999) overcome this problem by
averaging the friction instead of the roughness length itself. Note that the rough-
ness length of a certain natural surface technically also depends on influence of the
wind field on the surface; however, such effects should be negligible within this
context.

6.2.2 Remote-Sensing Data

The remote-sensing approach is the method of choice to analyze and describe land
cover structure at a field site. Remote sensing databases have first been used for
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this purpose during large-scale experiments like FIFE (Sellers et al. 1988) or
BOREAS (Sellers et al. 1997) in the 1980s and 1990s. Satellite techniques are a
valuable tool to identify surface patterns for footprint analyses at very high res-
olution of 25 9 25 m2 or smaller (Fig. 6.4). Resolution and sampling frequency
vary by satellite type and employed spectral channels. An overview over available
satellite types is given in Table 6.3. Because of the presence of clouds satellites
providing high-resolution imagery pass over specific regions only at low temporal
resolution. Thus, in many locations, images can only be updated at seasonal
intervals, while changes in land use taking place over shorter timescales. Important
effects such as e.g. crop harvest, leaf development and leaf fall in deciduous forests
and agricultural crops, go undetected.

Satellite remote sensing spectral images have to be corrected to account the
atmospheric influence, particularly in the case when more than one image is used
to classify the land use. If only one image is available, uncorrected images can be
used (Song et al. 2001).

Fig. 6.4 Land use map of the FLUXNET site Hainich DE-Hai based on remote sensing data
from Landsat ETM+ with 30 m resolution (Reithmaier et al. 2006)
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The most common spectral index to detect spatial and temporal variability of
biomass, and therefore evaluate the distribution of land-cover types, is the Nor-
malized Difference Vegetation Index (NDVI). NDVI is based on the difference of
the red reflectance (band 3, Landsat) and the NIR reflectance (band 4):

NDVI ¼ NIR� red

NIRþ red
ð6:1Þ

Differences in red and NIR wavelengths are mainly caused by the canopy
architecture of green vegetation. Using this contrast of reflectance and absorption,
the amount of vegetation present on the surface can be evaluated. It is also nec-
essary to calculate the ratio of the spectral bands 7 und 5 to identify from the
reflectance rocks and soils (Richards 1993). However, these bands are not avail-
able using IKONOS data. The latter provides high resolution information of
canopy cover. This information was successfully used by Kim et al. (2006) to
determine the crown cover of a forest.

While the NDVI is chlorophyll sensitive the Enhanced Vegetation Index (EVI)
represents better the canopy structure including the leaf area index (Huete et al.
2002):

Table 6.3 Remote sensing systems technical specifications

Satellite Landsat 7
(ETM+)

ASTER IKONOS MODIS

Orbital period 16 days 16 days 14 days Daily
Panchromatic 15 9 15 m2 – 0.85 9 0.85 m2

Multispectral 30 9 30 m2 15 9 15 m2 4 9 4 m2 (1,2)
250 9 250 m2

(3–7)
500 9 500 m2

Thermal 60 9 60 m2 90 9 90 m2

Band (multispectral)
1 450–520 nm 450–520 nm (3) 459–479 nm
2 520–600 nm (B1) 520–600 nm 520–600 nm (4) 545–565 nm
3 (red) 630–690 nm (B2) 630–690 nm 630–690 nm (1) 620–670 nm
4 (NIR) 760–900 nm (B3) 760–860 nma 760–900 nm (2) 841–876 nm
5 (SWIR) 1,550–1,730 nm (B4) 1,600–1,700 nm (5) 1,230–1,250 nm

(6) 1,628–1,652 nm
7 (SWIR) 2,080–2,350 nm (B5) 2,185–2,225 nm (7) 2,105–2,155 nm
Band

(thermal)
6 10.4–12.5 lm (B14)

10.25–10.95 lm
(B15)

10.95–11.65 lm
a Nadir, B4: backward scan
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EVI ¼ G
NIR� red

NIRþ C1 � red � C2 � blueþ L
ð6:2Þ

The factors are C1 = 6, C2 = 7.5, and the gain factor G = 2.5 and L = 1. For
the case of the absence of the blue band (MODIS channel 3) the factors can be
changed to C1 = 2.4, C2 = 0.

To convert remote sensing spectral bands into land cover types, standard
classifiers like e.g. the maximum likelihood classifier (Richards 1993) can be
employed (Fig. 6.4). The accuracy of the adopted classifier needs to be determined
based on different statistical tests (Smits et al. 1999), as well as in situ comparisons
over a test area (ground truthing).

Reithmaier et al. (2006) tested the influence of map resolution on the ability of
footprint models to detect the influence of disturbance on eddy-covariance mea-
surements. In a first analysis, they tested how different map resolutions affected the
simulated distribution of the land-use types in the larger area. They found that, at
their test site, the resolution of the images had no impact on the frequency of the
land-use type (see Table 6.4), and the contribution of certain land-cover classes
did not shift significantly between map versions. However, in the same study
Reithmaier et al. (2006) also showed that the higher level of details maintained in
the land cover structure of a remote sensing map can significantly shift footprint
results as compared to the use of a very low resolution map (e.g. a 100 9 100 m2

map read out from topographical maps). As shown in Fig. 6.5, the flux contri-
bution from the target area (here: conifer forest) is much larger using the land use
classification of a topographic map than of those by remote sensing data. This shift
is caused by removing small-scale heterogeneities such as clearings by applying of
a majority filter in coarser maps. Though these areas may appear small and
insignificant, their cumulative effect can be important in the average land-use
classification. Remote sensing identifies these areas, and thus can provide a more
realistic picture of the flux contributions.

Table 6.4 Contribution of different land use types in percentage in the area of the FLUXNET
site Waldstein-Weidenbrunnen (DE-Bay, 36.18 km2) for different resolutions of remote sensing
images (Reithmaier et al. 2006)

Resolution 15 (m) 30 (m) 50 (m) 75 (m) 100 (m)

Conifer 61.1 61.1 61.0 61.2 61.1
Clearings 12.3 12.2 12.1 12.0 11.9
Grassland 5.6 5.6 5.5 5.7 5.6
Summer crops 6.5 6.5 6.6 6.6 6.7
Winter crops 6.2 6.2 6.4 6.3 6.6
Settlements 4.8 4.9 4.9 5.0 5.0
Quarry 0.3 0.3 0.3 0.4 0.4
Unclassified 3.2 3.2 3.1 3.0 2.7

Note, due to a storm event in 2007 the area of clearings is now much larger as given in this table
(Foken et al. 2012)
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In conclusion, the resolution of land-use classification should be high especially
when landscapes are characterized by small-scale heterogeneities. This can be
most effectively realized with the help of remote sensing data. Over more
homogeneous land covers and footprint calculations for stable stratification with
associated larger footprint areas, low resolution maps are acceptable.

Remote sensing data for land use classification were used by several authors
(Hasager et al. 2003; Rebmann et al. 2005; Reithmaier et al. 2006). The main
principle combined land-use classifications that use roughness lengths and to use
averaging procedures for the roughness lengths within the footprint area.

Kim et al. (2006) accumulated the Normalized Difference Vegetation Index
(NDVI) over the footprint area by weighting the NDVI of each grid cell with its
footprint function fi:

NDVIf ¼
XN

i¼1

fi � NDVIið Þ ð6:4Þ

In the same way, they studied the crown closure or stand density. This is
defined as the percentage of the ground covered by vertically projected crown in a
stand. They used the IKONOS panchromatic band with 1 m resolution to detect
the distribution of trees. This is comparable with the aggregation schema used by
Göckede et al. (2004, 2006) and provided in Sect. 6.3.
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Fig. 6.5 Relative flux contribution of the area of interest (AOI, conifer forest) to the measured
flux at the FLUXNET site Waldstein-Weidenbrunnen (DE-Bay) of both, the remote sensing data
set (resolution 15 9 15 m2) and the topographical map (resolution 100 9 100 m2) according to
Reithmaier et al. (2006)
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6.3 Coupling Footprint Results with Surface Information

Procedures to link surface information to footprint areas have been proposed for a
matrix of roughness lengths by Grimmond et al. (1998) and later applied by
Göckede et al. (2004) for use in footprint investigations. According to Göckede
et al. (2004), the source-weight function has to be calculated for each individual
step of the time series (e.g. 30 min intervals), and projected onto the land cover
matrix according to actual meteorological conditions like wind velocity, stability,
or other parameters influencing the output of the type of footprint model chosen.
Weighting factors ranging from zero to one reproducing the source weight func-
tion were assigned to all matrix cells lying within the concentric 10–90 %
isopleths produced by the footprint model, while all matrix cells outside this area
were labelled with a weighting factor of zero (Fig. 6.1). Subsequently, for each
matrix cell, land-cover information (up to N different land cover types) read out
from the matrix was multiplied by the assigned weighting factor (for example,
footprint function of the effect level fP, Eq. 2.94 in combination with Eq. 3.5), and
the final roughness length z0 for the specific measurement was determined as the
linear average of these products:

zo ¼
XN

i¼1

f P
i � z0i

� �
ð6:4Þ

If land cover characteristic such as the roughness length is also an input
parameter in the footprint model, the entire process should be repeated iteratively
with computed roughness lengths as the new input value, until the difference
between input and output roughness length falls below a user-defined threshold.
The first model runs for each 30 min-measurements has to be performed with an
approximate value for the roughness length. Usually, no more than three iterations
are necessary to reach the final roughness length. Because this roughness length
was determined as a linear mean, the algorithms performed a parameter aggre-
gation, while roughness length values provided by the matrix are prepared using a
non-linear flux aggregation approach (see Sect. 2.4.2). From the physical stand-
point, a flux aggregation is better suited method. This approach was used suc-
cessfully by Göckede et al. (2006) and showed to differ from the simple approach.
It can be concluded that the accuracy of the results was significantly improved.
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