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Foreword

Robotics is undergoing a major transformation in scope and dimension. From
a largely dominant industrial focus, robotics is rapidly expanding into human
environments and vigorously engaged in its new challenges. Interacting with,
assisting, serving, and exploring with humans, the emerging robots will in-
creasingly touch people and their lives.

Beyond its impact on physical robots, the body of knowledge robotics has
produced is revealing amuchwider range of applications reaching across diverse
research areas and scientific disciplines, such as: biomechanics, haptics, neu-
rosciences, virtual simulation, animation, surgery, and sensor networks among
others. In return, the challenges of the new emerging areas are proving an abun-
dant source of stimulation and insights for the field of robotics. It is indeed at
the intersection of disciplines that the most striking advances happen.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to
the research community the latest advances in the robotics field on the basis
of their significance and quality. Through a wide and timely dissemination of
critical research developments in robotics, our objective with this series is to
promotemore exchanges and collaborations among the researchers in the com-
munity and contribute to further advancements in this rapidly growing field.

The book Introduction to Humanoid Robotics by Shuuji Kajita, Hirohisa
Hirukawa, Kensuke Harada and Kazuhito Yokoi is an enriched English trans-
lation of a former book in Japanese. The six-chapter collection offers a com-
plete treat on the fundamental methodologies and technologies of humanoid
robotics; namely, kinematics, dynamics, biped walking, motion generation
and simulation. Even though the contents are focused on the achievements
of a huge research effort on the Humanoid Robotics Project undertaken at
the Advanced Institute of Science and Technology in Tsukuba, the material
is of wide interest for virtually any scholar wishing to pursue work in this
fascinating field.

The first contribution to the series on humanoid robots, this volume con-
stitutes a very fine addition to STAR!

Naples, Italy Bruno Siciliano
November 2013 STAR Editor



Preface to English Edition

This book is based on our Japanese text book simply titled “Humanoid
robots.” We wrote the book because we wanted to compile basic knowledge
of analysis and control of humanoid robots in a compact form just for our
small group. It was our surprise and pleasure to learn that the book was
also useful for other people, mostly those who wanted to start research in the
field of humanoid robotics. Translations in Chinese, German and French have
already been published. For the Chinese translation, we express our appre-
ciation to Professor Yisheng Guan at Guangdong University of Technology.
For the French translation, we wish to show our appreciation to Professor
Sophie Sakka at Ecole Centrale de Nantes. Finally, we can release the English
version with great help from Mr. Hajime Saito from the Kawada Robotics
Corporation and Professor Bill Goodwine at the University of Notre Dame.

Although the original book was written nine years ago, we believe the basic
outline of this book is still useful. To include recent results from our group
and others, we have added new sections to Chapters 1, 2 and 4.

A realistic humanoid robot is intriguing to many people no matter their
culture, for it has long been a dream of all people. The challenge to cre-
ate a life-mimicking machine had started thousands of years ago. Although,
we see impressive development now, I never think scientists are close to the
goal. All robotics researchers must sigh over their incompetence looking at
the exquisite mechanism, ourselves. Therefore, we are in the middle of a long
journey. May the journey leads us a prosperous, pleasant and exciting future!

September 2013 On behalf of authors, Shuuji Kajita



Preface to the Original Japanese
Edition

Recent humanoid robots which appear in televisions and exhibitions can walk
and perform impressive dances as if they have actors inside. Many people
might say, “Wow, its wonderful! But how can they do that?” The primary
goal of this book is to answer such questions. The theories and technologies
introduced in this book are actually used to control our humanoid robot,
HRP-2. Similar technologies are also used for other famous humanoid robots
like Honda’s ASIMO and Sony’s QRIO.

If you quickly browse through this text, you will find this book is not easy
to read. Indeed, it is full of equations and other math, which may prove to be
a lethal dose to those with allergic reactions to mathematics. To soften such
an insipid impression and to aid the reader in interpreting and understanding
the equations we put pictures and drawings whenever possible. However we
want to emphasis that those are like music scores composed by the words of
mathematics and physics, which are indispensable to enable such impressive
humanoid robot technology. We also expect that many readers interested in
humanoid robots may come to recognize the importance and indispensable
role of science and technology which truly supports our modern society.

The first chapter was written by Hirohisa Hirukawa, the leader of the Hu-
manoid Robotics research Group (HRG) in the Intelligent Systems Research
Institute (ISRI) of AIST (National Institute of Advanced Industrial Science
and Technology). Chapter 3 is written by Kensuke Harada and Shuuji Ka-
jita in HRG. Chapter 5 was written by Kazuhito Yokoi, the leader of the
Autonomous Behavior Control Research Group in ISRI. Chapter 2, 4 and 6
were written by Shuuji Kajita.

We could not publish this book without help of many other people. First
of all, we express our thanks to Tadahiro Kawada, Takakatsu Isozumi and
other excellent engineers of Kawada Industries, Inc. who have designed and
built marvelous hardware, including the humanoid robot HRP-2. We also
would like to thank to Token Okano and Yuichiro Kawasumi of General
Robotix, Inc. (GRX) who help us everyday by maintaining our robots. We
thank to Kenji Kaneko, Fumio Kanehiro, Kiyoshi Fujiwara, Hajime Saito and



X Preface to the Original Japanese Edition

Mitsuharu Morisawa in HRG, who have been producing excellent research
results. The contents of this book depend on the results of the all HRG
members. Moreover, they gave much valuable advice for the draft of this
book. Haruhisa Kurokawa, the leader of Distributed System Design research
group in ISRI of AIST gave us much important advice for our final draft.
Takashi Nagasaki, who was an undergraduate student of Tsukuba University
pointed out many errata. If there were something valuable in this book, the
authors owe it to the above mentioned people. Of course, it is needless to say,
we are fully responsible for all errata which might still exist in this book.

Finally, we thank to Shigeoki Hirai, the research director of ISRI and
Kazuo Tanie, the former research director of ISRI. We could not complete
this book without having their generous management guidance and support.

December 2004 On behalf of authors, Shuuji Kajita
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Chapter 1

Introduction

A humanoid robot is a robot that has a human-like shape. Since many robots
in scientific fictions look like humans, a humanoid robot may be the default
of robots for most people. On the other hand, it is difficult to claim that
robots should be humanoid robots which are supposed to do some tasks in
the real world, considering that aircrafts do not look like birds. The required
functions for a robot may determine the optimal shape of the robot.

We have to consider what we expect from robots before we investigate
what is the optimal shape of robots. An automobile had become the product
that created the largest industry in the 20th century, since it satisfied human
desires to go to far places and to enjoy driving itself. We should consider
what kinds of the desires robots can satisfy. We claim that robots should be
expected to do tasks which we do not want to do and to be our partners to
enjoy communications. Considering how to realize the functions of robots,
the features of humanoid robots can be summarized as follows; 1. humanoid
robots can work in the environment for humans as it is, 2. humanoid robots
can use tools for humans as it is, and 3. humanoid robots has a human-like
shape.

Let us examine the first feature. The environment of the modern society
is designed for humans. For example, the width of corridor, the height of
a stair, and the position of a handrail are determined to fit the size and
motions of humans. Therefore, we need not modify the human environment
for a robot to operate when the robot has a human shape and move like
a human. An uneven floor has to be made flat, a narrow passage should be
removed and a lift must be available when a robot moves on wheels. It should
be more economical to develop humanoid robots than to modify the whole
environment.

The second feature should imply a similar effect. Most of tools for humans
are designed to be used by humans. For example, the size and shape of chairs
are determined to sit on them, and the height of dining tables are decided to
eat on them. A driver’s cockpit is designed to control a car. The shape of a
screw driver or scissors can be operated best by articulated fingers. The tools
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for humans are likely to be used by humanoid robots as it is. It should be
more economical to used humanoid robots than to re-design numerous tools.

A similar discussion is written in a novel ’The Caves of Steel’ by Issac
Asimov. A world famous professor explains why robots should be humanoid
robots in the novel and has the similar conclusions with us. Honestly speak-
ing, we need years to reach the conclusions. It is amazing that the same
conclusions were already obtained in a fifty-years old novel.

The third feature must need some explanation. A robot is easily personified
when the robot looks like a human. The further a robot is from a human
shape, the less humans feel a human in the robot. It is fun to watch a biped
humanoid robot is dancing, but the dancing of a wheeled robot should be less
attractive. A human-like shape is very important to realize a partner robot
that can make us enjoy. The third feature must be the primary account
why many robots look like humans in scientific fictions. In the real world,
WABOT-1 was developed by Ichiro Kato et al. from Waseda University in
1973 (see Fig.1.1).

WABOT-1 could recognize objects by vision, understand spoken language,
speak by artificial voice, manipulate the objects by two hands, and walk on
biped legs, though the level of the technologies was not so matured. Therefore,
it is reasonable to call WABOT-1 the first humanoid robot. Ichiro Kato’s
group also developed WABOT-2 in 1984 which was able to play a piano (see
Fig.1.1)[68]D WABOT-2 had played a piano at Tsukuba Science Expo’85 in
Japan.

The epoch of humanoids was opened by the astonishing reveal of Honda hu-
manoid P2 in 1996. Honda started a confidential project of humanoid robots
in 1986 when one year had passed after WABOT-2 played a piano. P2, 180
cm height and 210 kg weight, is the first humanoid robot that can walk on

WABOT-1 (1973) WABOT-2 (1984)

Fig. 1.1 Humanoid robots from Waseda University
(Coutesy of Humanoid Robotics Institute, Waseda University)
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biped legs with a sufficient stability and mount a computer and battery on
the body. Honda published P3, 160 cm height and 130 kg weight, in 1997,
and ASIMO, 120 cm weight and 43 kg weight, in 2000. The pictures of P2,
P3 and ASIMO are shown in Fig.1.2.

Fig. 1.2 Humanoid robots from Honda (Coutesy of Honda)

Before P2 was published, the majority in robotics community were pes-
simistic about the development of a biped humanoid robot that can walk
stably. This is the reason why Honda P2 astonished the community. Then
what are the major differences between the conventional humanoid robots
and P2? Let us examine the hardware at first.

Most humanoid robots developed at universities were made by graduate
students or by a small manufacturer. Then the mechanical links of the robots
had to be made by bending or cutting and the whole structure was not rigid
enough. The reduction mechanisms were implemented by heavy gears with
large backlash. By contrast with the old robots, Honda humanoid robots use
casted mechanical links with high rigidity and light weight using most ad-
vanced mechanical CAD. It was obvious that the casted links should have
such properties, but the links were too expensive to be developed by uni-
versity projects. Honda humanoid robots use harmonic drives which have no
backlash. The conventional harmonic drives could transform too little torque
to be applied to biped walking, so Honda developed harmonic drives with
high torque capacity. After Honda P2 was revealed, most advanced humanoid
robots have comparable configurations with those of Honda humanoid robots.

Let us consider the sensors for the robots. Biped walking may not be stable
due to disturbance even when the desired walking pattern is planned to make
the walking stable. Then the walking should be stabilized by a feedback
control that demands appropriate sensors. The humanoid robots developed
in the early stage did not have necessary sensors, but Honda humanoid robots
have accelerometers and gyroscopes, to find the orientation of bodies and six-
axes force/torque sensors to find the contact force/torque between the feet
and the floor.
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The goal of this textbook is to give the theoretical background for the
development of the software to control the well-designed hardware described
above.

Chapter 2 overviews the kinematics of humanoid robots. A representation
of the motions of the robots is presented after the representation of rotations
in three dimensional space, angular velocity vector and the relationship be-
tween the derivatives of the rotation matrices and the angular velocity vector
are described. It is presented how to find the position and orientation of a link
such as a hand or a foot of the robot from given joint angles. The method is
called forward kinematics. Then it is explained how to find the correspond-
ing joint angles from given position and orientation of a specific link. The
computation is the inverse of the forward kinematics, and is called inverse
kinematics. An example of inverse kinematics problems is illustrated in 1.3.
When the configuration of the robot shown in 1.3(a) is given, the problem is
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Fig. 1.3 Example of inverse kinematics of a biped robot; (a) initial configuration,
(b) that at which the right foot is raised by 0.3 [m] and rotated by 20 [deg] about
y-axis

how to find the corresponding joint angles at which the right foot is raised
by 0.3 [m] and rotated by 20 [deg] about Y axis shown in 1.3(b).

Generally speaking, the postion and orientation of a link and the joint
angles are represented by nonlinear equations, since most joints of robots are
rotational ones. The inverse kinematics problem can be solve by finding so-
lutions of the nonlinear equations analytically, but it is unlikely to solve the
nonlinear equations with many variables and a high Bezout number even if
the rotation is parametarized algebraically. However, the relationship between
the derivatives of the postion and rotation of a link and those of the joint
angles can be represented by linear equations, and the inverse kinematics
problem can be solved by finding solutions of the linear equations and inte-
grating the solutions. The coefficient matrix of the linear equations is called
Jacobian, which is an important concept in many fields including robotics.
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Chaper 3 explains the concept of ZMP (Zero-Moment Point) that plays
an important role in the motion control of humanoid robots. When the robot
is falling down, the sole of the supporting foot should not contact with the
ground any more. The ZMP (Zero Moment Point) proposed by Vukobratović
et al. is a criterion to judge if the contact between the sole and the ground can
be kept without solving the corresponding equations of motions. The contact
is kept if the ZMP is an internal point on the sole. When the robot does not
move, the contact is kept when the projection of the center of the mass of
the robot onto the ground is an internal point of the sole. See Fig.1.4. The

ZMP

Support polygon

(a)A standing human (b)A human in action

CoM

Fig. 1.4 Center of the mass, ZMP and supporting polygon

ZMP can be considered to be a dynamic extension of the projection.
The ZMP can be used to plan motion patterns that can make the robot

walk while keeping the contact between the sole of the supporting foot and
the ground. The walking patterns of the majority of humanoid robots have
been generated based on the ZMP after Honda P2 appeared.

The robot may not fall down even when the sole of the supporting foot
left the ground. It can keep walking or standing by controlling the swing leg
and changing the touch down positions. The ZMP criterion is a sufficient
condition to prevent the robot from falling down, and not a necessary one. It
can neither judge rigorously if the contact is kept when the robot walks on
a rough terrain or a stair. When the robot walks while catching a handrail,
the contact may be more stable but the ZMP criterion can not tell how
much the contact should be made stable. Several trials have been made to
extend the criterion, but the generic and rigorous criterion has not been
established so far. Chapter 3 presents the concept of the ZMP, the relationship
between the contact force and the ZMP, the sensing of the ZMP and an
algorithm to compute the ZMP based on the forward dynamics of humanoid
robots, which is overviewed as well.

Chapter 4 describes how the walking patterns of biped robots can be gen-
erated and the walking can be controlled. Generally, the walking patterns are
planned to make the robots walk with no disturbance at first, and a feedback
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control is applied to stabilize the motions. Various methods have been pro-
posed to general the walking patterns. One method is based on the dynamics
of the linear inverted pendulum whose height of the center of the mass is kept
by controlling the contact force and the length of the pendulum. Another one
generates the patterns using the ZMP as the criterion to judge the contact
stability.

Chapter 4 starts from the introduction of a method based on two dimen-
sional linear inverted pendulum, the method is extended to that based on
three dimensional one, and it is applied to generate the patterns of multi-
link models. Fig.1.5 shows the concept of three dimensional linear inverted
pendulum.

x

y

z

O

zc

Fig. 1.5 Concept of three dimensional linear inverted pendulum - the motions of
the center of mass is constrained on a specified plane by controlling the contact
force and the orientation of the plane is independent to the motions of the center
of mass

The ZMP-based method is overviewd as well. The relationship between
the derivatives of the joint angles and the ZMP can be given by nonlinear
differential equations. It is called the ZMP equations. It is difficult to find
trajectories of the joint angles which let the ZMP follow specified ZMP ones
due to the nonlinearity. The ZMP equations were simplified under several
assumptions and their solutions were found by a batch processing in the
early stage. The walking patterns were computed in an offline fashion, even
when Honda P2 was published. Honda developed a realtime method to find
the patterns and applied it to ASIMO. Nishiwaki et al. invented another
realtime algorithm to solve the equations by constraining the motions of
the waist joint onto a horizontal plane. Kajita et al. solved the linearized
equations in realtime by a preview control and applied it to humanoid robot
HRP-2. Chapter 4 explains the methods.

Even when the motion patterns are carefully planned to make the walking
stable, humanoid robots may still tip over due to disturbances caused by ter-
rains of the floor, low rigidness of the mechanical structure and the backlash
of reduction gears. Therefore, it is demanded to find the status of the robot



1 Introduction 7

by sensors including the orientation of the body by an accelerometer and a
gyroscope and the contact force and torque of the feet by a force/torque sen-
sor and to apply some feedback control to stabilize the motions. The present
configurations of the feedback controllers are the combinations of the orien-
tation control of the body, the control of the center of mass, the compliance
control of the feet contact, the impact force control of the foot touch down and
so on. The fine tuning of the feedback controllers has become possible since
the significant progresses were made in the hardware of the robots as men-
tioned above. The chapter overviews the principle of the feedback controllers.
Fig.1.6 shows the motions of the feet of humanoid robot HRP-2 which walks
on a rough terrain with the maximum height of the ramps 2 [cm] and the
maximum inclination of the slopes 5 %. The feedback controls are definetely
necessary to realize the walking.

Fig. 1.6 Feet motions of HRP-2 walking on a rough terrain

Chapter 5 presents how the whole body motions, other than biped walking,
of humanoid robots can be realized. Humanoid robots may lie down, get up,
carry an object, go through a narrow place and dance. AIST realized the first
human-sized humanoid robot that can lie down and get up, which is shown
in Fig.1.7.

This chapter overviews how various whole body motions can be gener-
ated and controlled. It is described how gross motions of the robots can be
generated, including the methods using motion capture systems, graphics
user interface and the searching of the configuration spaces of the robots.
The methods generate the motions with considering neither the dynamics
of the robots nor the contact stability between the robots and the environ-
ments, and therefore the motions may not be executed by real robots and
the robots may fall down in most cases. Besides, the configurations of the
humans whose motions were captured should not identical with those of the
real robots. Various methods have been proposed to solve the problems, in-
cluding the dynamics filters and feedback controllers. The chapter covers the
teleoperations of humanoid robots as well.
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Fig. 1.7 Getting up of humanoid robot HRP-2P

Though biped robots can go up and down stairs, go over ramps and go
through narrow places, the robots may fall down due to the relatively high
center of the mass and smaller footprints with serious damage. The advan-
tages of the robots should be enhanced and the disadvantages be conquered
to let the robots be accepted in the society. AIST realized the falling motion
control of human-sized humanoid robots in Feb. 2003. The motion is like
Ukemi motions of Judo that can minimize the damage of the body when a
player is thrown by the opponent. The controllable falling motion is limited
to the falling backward at present. Sony realized the falling motion control
for various falling motions for QRIO, but QRIO is a rather smaller robot
than the human-size. The impact of the touch down is significantly larger
when a human-sized humanoid robot is falling down, and we should have a
tough hardware and a better controller to handle it. Chapter 5 describes the
falling motion controller as well as the method to realize the lying down and
the getting up.

Chapter 6 presents the algorithms for the dynamics simulation of humanoid
robots. The forward dynamics of a robot is the problem to find the updated
state of the joints of the robot when the current state of the robot and the
generalized force to the joints are given. The inverse dynamics of a robot is the
problem to find the generalize force to the joints to realize the desired updated
state of the robot. The chapter focuses the attention to the forward dynamics,
which starts from that of a rigid body rotating in a gravity-free space and
extends the formulation to include the translational motions of the body. An
example of the computed motion is shown in Fig.1.8. Finally, we consider the
forward dynamics of conneced bodies i.e. robots, which enables the readers to
know how the dynamic simulation of humanoid robots can be implemented.
The method is based on the Newton-Euler equations, and efficient algorithms
to solve the equations were proposed in 1980s. An algorithm developed by
Fetherstone will be described as a representative one.
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Fig. 1.8 A computed motion of a rigid body in a gravity-free space

It was the summary of the textbook. The objective of the textbook is to
give the foundation to develop the software for controlling the various motions
of humanoid robots.

In the following, a perspective of the future of humanoid robotics is
overviewed. A humanoid robot can be an integration platform for various
robotic technologies, since it has two arms and two legs as well as visual and
audio sensors. However, the available computing resource and sensors on the
robot should be rather limited due to the space constraint of the robot. We
have to make the computers and sensors more compact and powerful to fix
the problem. Then more intelligence can be integrated on the platform, and
the focus of humanoid robotics may shift from the mobility to the intelligence
and the applications based on it.

METI (Ministry of Economy, Trade and Industries) of Japan had run
Humanoid Robotics Project (HRP for short) from 1998FY to 2002FY. The
leader of HRP was Hirochika Inoue from the University of Tokyo, and HRP
developed the fundamental technologies for humanoid robots and explored
the applications.

The first feature of humanoid robots is “humanoid robots can work in the
environment for humans as it is”, and the maintenance tasks of an indus-
trial plant had been investigated as an example application of the feature.
Humanoid robot HRP-1 was able to execute the tasks in a mockup of an
industrial plant which includes staris, ramps and pits. Fig.1.9 shows HRP-1
going down stairs in the mockup.

The second feature is “humanoid robots can use tools for humans as it
is”, and the driving of an industrial vehicle was examined as an example of
its applications. The idea is to realize a teleoperation system for an indus-
trial vehicle by making a humanoid robot drive an industrial vehicle and by
controlling the robot by a human operator in a remote space, which can be
applied to rescue works. Fig.1.10 shows that a backhoe is drived by humanoid
robot HRP-1S which is teleoperated by a human operator. HRP-1S wears a
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Fig. 1.9 HRP-1 going down stairs

Fig. 1.10 HRP-1S driving a backhoe

waterproof suit. Some amounts of waterdrop can be seen in the picture by a
carefull observation.

The third feature is “humanoid robots has a human-like shape”, and a
trivial application of the feature is entertainment. Honda ASIMO and Sony
Qrio have appeared in many commercial messages, and a traditional Japanese
dance is reproduced by HRP-2 to realize a digital archive of the dance culture.
Another possible application of the feature is a human simulator to evaluate
tools for humand like a driver cockpit of vehicles and welfare apparatuses.

Humanoid robotics is in the first exiting epoch after 1996, but it is still
very difficult to realize significant products using humanoid robots without
passing through a nightmare period.1 Since humanoid robotics demands a
large scale investiment, we have to realize its new applications every five years
to continue the efforts. If we aim at the realization of a humand robot whose

1 Most innovations had to pass through nightmare periods between that of the fun-
damental research and that of the industrialization, in which the new technologies
were criticized including CAD and industrial robots. Hiroyuki Yoshikawa named
the period “a nightmare period” which is an important stage to grow innovations.
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ability is comparable with that of a human, we may need a century. We should
need a decade at least even if we go ahead to realize an autonomous humanoid
robot. From the viewpoint, we would like to propose the goal of 2010 as
follows; a humanoid robot that can walk on floors in the daily environment,
go up and down stairs and ladders, plan its paths autonomously, fall down
without a serious damage, get up from the floor, step over small obstacles,
pass through narrow spaces, open/close doors, and manipulate an object by
one hand while supporting its body by another hand. It is a humanoid robot
that can go any place where a normal human can go. When the mobility is
realized, the possible applications of the robot should include the maintenance
tasks of industrial plants and the management of hazadous objects. Among
the goals, it is most difficult for a humanoid robot to fall down without a
serious damage. Even when an appopriate control is applied to the robot
when it falls down, the current hardware of the robot is too fragile to keep
the mobility. We need much more works to conquer the problem.

Next, as the goal of 2015, we propose the development of autonomous hu-
manoid robots which are able to execute rather simple tasks autonomously
that can be done easily by humans. To this end, humanoid robots must have
theree dimensional vision that can know the shape, postion and orientation
of an object, a dexterous hand that can manipulate various kinds of objects,
force/torque sensors that can know the state of the manipulated objects, mo-
tion planning and so on. Then the possible applications include assembly of
mechanical structures and unregular manipulation tasks. It may be possible
to produce more than one thousand copies of the robot when the applica-
tions can be realized, and we can claim that we already passed through “the
nightmare period” of humanoid robotics.

As the goal of 2020, we propose the development of a humanoid robot that
can work cooperatively with humans while sharing the common space with
them. The final goal of HRP can be attained when the goal of 2020 is reached.
To this end, humanoid robots must have the intelligence for safety as well
as high autonomy. It is very difficult to realize the safety, since rather large
power should be required for the manipulation and the mobility. It can be
understood more comprehensively when we remember that even humans can
hart others when a narrow space is shared. The robot should be more safe
than a human to be accepted by the society. The efforts like the minimiza-
tion of the power or the coverage by a soft material are not enough for the
purpose, and more sophisticated technologies should be integrated like the
realtime observation of the environemnt and the safety control of arms and
legs. When the safety intelligence is integrated, it may give a chance to realize
the applications like the human care services examined in HRP. It is most
difficult to be realized, but the expected sized of the corresponding market
should be largest, since the robot can be used at home then. “A humanoid
robot for every home” may not be a dream when the mission was completed.

It is very difficult to reach the goal of 2010 from the state of the art in
2005. There is no clear roadmap to attain the goal of 2015. The goal of 2020 is
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just a dream at present. The objective of this textbook is to let more people
learn the foundations of humanoid robotics and spread the use of humanoid
robotics. It should be fantastic news for scientists and engineeers that most
work in the field of humanoid robotics is still waiting to be done. The de-
velopment of the automobile replaced the horse as a mobility tool, and the
development of humanoid robots offers the promise to replace humans as the
bearer of hard and dull tasks. Clearly the goal of humanoid robots alleviat-
ing the more burdensome tasks currently performed by humans is both more
difficult and potentially more significant than the example of the automobile.
We wish that this text may contribute to the ability and inspiration of our
colleagues to strive for such a lofty goal.

The Development at AIST Since 2005

In this section, we present the development at AIST (National Institute of
Advanced Industrial Science and Technology) since the previous section was
written.

In 2005, we developed biped dinosaur robots with the support of New
Energy and Industrial Technology Development Organization (NEDO) and
AIST. The purpose was for exhibitions at the 2005 World Exposition Aichi.
At the same time, our intention was to seek possible applications of biped
technologies in the entertainment industry.

Figure 1.11 shows the developed dinosaur robots [38]. The Tyrannosaurus
Rex robot has a body length of 3.5 m from the head to the tail, a weight
83 kg, and 27 DoF (degrees of freedom). The Parasaurolophus robot has the
same body length, but it has a weight of 81 kg, and 26 DoF. They are 1/3.5
scale of the real dinosaurs. During the exposition of half a year, these robots
successfully performed 1,812 demonstrations and entertained the audience.

As explained in the former section, the Ministry of Economy, Trade and
Industry of Japan conducted the Humanoid Robotics Project (HRP) from
FY (fiscal year) 1998 to FY 2002. One of the project’s outcomes was the
humanoid robot HRP-2, which was developed by Kawada Industries Inc.,
Yaskawa Electric Corporation, the Shimizu Corporation, and AIST [65].
Throughout this book, we will use the HRP-2 as a typical robot to explain
the basics of humanoid robotics.

On the other hand, a HRP-2 robot has limitations in its manipulation
ability and practical working environment, such as a construction site. To
address these limitations, a new humanoid robot HRP-3 was developed in
2007 by Kawada Industries Inc., Kawasaki Heavy Industries, and AIST. This
project was supported by NEDO [67]. Figure 1.12 shows the HRP-3, which
is a humanoid robot of 1606 mm height, 68 kg weight, and 42 total DoF. For
better manipulation ability, the robot has 7 DoF arms and 6 DoF hands (the
HRP-2 has 6 DoF arms and 1 DoF hands). In addition, the whole robot and
hardware was designed to be dust proof and splash proof in consideration of
various environments.
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(a) Walking Tyrannosaurus rex robot (Courtesy of AIST)

(c) The robot and a human (b) Parasaurolophus robot 

Fig. 1.11 The dinosaur robots

(a) HRP-3

(b) Manipulation demonstration

(c) Splash-proof demonstration

Fig. 1.12 HRP-3 and its demonstrations

In 2009, we developed a new humanoid robot, Cybernetic human HRP-4C.
This robot was designed to have body dimensions close to average Japanese
young female [63]. In Fig.1.13(a), we can see HRP-4C has a much more
human-like appearance (left) than our previous HRP-2 (right). The purpose
of this development was to seek humanoid applications in the entertainment
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industry, for example, fashion shows. We also intended the use the robot to
evaluate devices for humans. Using HRP-4C, we realized human-like walking
with toe supporting period (Fig.1.13(b)) [69]. Figure 1.13(c) shows the per-
formance where HRP-4C dances with human dancers. For such performances,
we developed a new software for efficient choreography [122]. The hardware
of HRP-4C has been modified since 2009, and its current specification is 160
cm height, 46 kg weight and total 44 DoF [64].

(a) HRP-4C and HRP-2 (b) Human-like walk experiment

(c) Dance performance with human dancers

Fig. 1.13 Cybernetic human HRP-4C

In 2010, another humanoid robot HRP-4 was developed by Kawada Indus-
tries, Inc. and AIST. Figure 1.14 shows the robot which has a 151 cm height,
39 kg weight and 34 DoF [64]. HRP-4 was designed as a R&D platform which
has a lightweight and slim body compared with our former platform HRP-2.
To realize object manipulation better than HRP-2, the robot has 7 DoF arms
and 2 DoF hands.
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(a) HRP-4 (b) HRP-4 walk experiment 

Fig. 1.14 HRP-4 and its walk experiment

Universities and Research Institutes

Research activities on biped humanoid robots around the world have accel-
erated in the last decades. In Japan, professor Takanishi’s group in Waseda
university has been actively developing many biped humanoid robots follow-
ing professor Kato who built world’s first humanoid robot WABOT-1. In
2006, their WABIAN-2R demonstrated impressive human-like walking with
knee stretched, heel-contact and toe-off motion [142].

Another prominent group is led by professor Inaba in University of Tokyo.
In 2010, they demonstrated HRP-2 which can handle objects of unknown
weight based on online estimation of the operational force [123]. They are also
developing their original biped robot which can balance even when kicked or
otherwise disturbed [52].

ATR Computational Neuroscience Laboratories is studying humanoid
robots from a viewpoint of brain science. Using the humanoid robot CB-i
developed by SARCOS Inc., their biologically feasible balance controller has
been tested [95].

Needless to say, biped humanoid research is not limited in Japan. As re-
markable examples, we can see LOLA by Technische Universität of München
(TUM) [119], HUBO2 by Korea Advanced Institute of Science and Technol-
ogy (KAIST) [12], BHR-2 by Beijing Institute of Technology [148], iCub by
Italian Institute of Technology (IIT), the University of Genoa [34], CHARLI
by Virginia Polytechnic Institute and State University [22], and TORO by
the German Aerospace Center (DLR) [15, 16].
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Companies

There also exist many humanoid robots developed by companies. Since the
surprising debut of the humanoid robot P2 in 1996, Honda, has been carry-
ing on research and development of their ASIMO series. The latest ASIMO
unveiled in 2011 can run at 9 km/m, run backward, hop on one leg or on two
legs continuously [43].

At the EXPO 2005 in Aichi, a party of robots developed by Toyota Motor
Corporation attracted large audiences by their performance in the Toyota
Group Pavilion. Some of them were trumpet playing humanoid robots. In
2007, they revealed another humanoid robot which can play the violin [17].

A South Korean company Samsung Electronics, has been also develop-
ing humanoid robots with the Korean Institute of Science and Technology
(KIST). Their latest humanoid robot is Roboray, which can perform knee-
stretched human-like walk [13].

In 2012, an American robotics design and engineering company, Boston
Dynamics, developed a humanoid robot PETMAN to test chemical protective
clothing [35]. Powered by hydraulic actuators and controlled by advanced
control software, this robot can perform squats, squats while turning and side-
steps with its arms raised overhead, as well as natural human-like walking of
up to 4.8 km/hr.

We cannot purchase above mentioned robots for they were developed as a
part of the long range R&D projects. On the other hand, there already exist
commercially available humanoid robots for research purposes. For example,
Kawada Industries is selling the humanoid robot HRP-4 as a research plat-
form [56]. PAL Robotics in Barcelona has also developed a humanoid robot
REEM-C for sale [102].

Currently, there are many small humanoid robots for research and hobby
use. For example, we can choose NAO by Aldebaran Robotics [1], DARwIn-
OP by ROBOTIS [103], PALRO by FujitSoft [33], or KHR series by Kondo
Kagaku Co. Ltd. [4]

DARPA Robotics Challenge

On April 10, 2012, the Defense Advanced Research Projects Agency (DARPA)
of the United States announced a program , namely, the DARPA Robotics
Challenge (DRC) [3]. It’s primary goal is to develop robotics technologies
which can manage complex tasks in dangerous, degraded, and human en-
gineered environment by utilizing available human hand tools, devices, and
vehicles [5]. DRC is a competition style project where many teams (robots)
compete their performances on the same task. In the trial of December 2013,
the following tasks were specified.

1. Drive a utility vehicle
2. Travel dismounted
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3. Remove debris blocking entry
4. Open a door, enter building
5. Climb an industrial ladder
6. Break through a wall
7. Locate and close valves
8. Carry, unspool, and connect a fire hose

Note that DRC is not limited to the robot configuration being humanoid, but
they are expecting human-like competence for the given tasks. Indeed some
teams have designed non-humanoid robots like CHIMP by Carnegie Mellon
University (CMU) – National robotics Engineering Center (NREC) [2] and
ROBOSIMIAN by NASA – Jet Propulsion Laboratory [45]. Yet however,
dominant participant teams have chosen humanoid robot designs for this
challenge. Moreover, DRC offers an official humanoid robot Atlas developed
by Boston Dynamics. Its copies will be used by seven teams. The DRC final
will be held in December 2014, and with no doubt, the DARPA Robotics
Challenge will have an enormous impact to humanoid robotics research in
the world.



Chapter 2

Kinematics

The theory to analyze the relationship between the position and attitude of a
link and the joint angles of a mechanism is called Kinematics. It is the basis
on which robotics is formed, but the exact same theory is used for computer
graphics as well. Both require mathematics and algorithms which can clearly
represent a moving object in 3D space.

2.1 Coordinate Transformations

Figure 2.1 illustrates the Humanoid Robot HRP-2, which was developed dur-
ing the Humanoid Robotics Project [65]. It has a height of 154 cm, and its
weight including the batteries is 58 kg. It can walk for about one hour us-
ing the batteries alone. The HRP-2 has a total of 30 joints which can be
controlled independently. Fig 2.1(b) shows the names of the Links and the
position of their Local Coordinates.

2.1.1 World Coordinates

Our first task is to clearly define the position of each part of the robot. To do
this we define a special point directly below the robot in its initial position1 as
shown in Fig 2.2. Taking this point as the origin we define a fixed coordinate
system whose x axis faces forward, y axis to the left and z axis faces up.

We will name these coordinates ΣW and hereafter will use this to describe
our robots and their motion. Coordinates such as this one are called World
Coordinates. By using a common coordinate system to define the robot
itself and surrounding objects we can check a safe landing of a foot on the
ground, successful hand grasping of an object, undesired collisions with the
environment, and so on.

1 Actually it is the intersection between a perpendicular line which goes through
the origin of the the Local Coordinates of the Waist Link and the floor.

S. Kajita et al., Introduction to Humanoid Robotics, 19
Springer Tracts in Advanced Robotics 101,
DOI: 10.1007/978-3-642-54536-8_2, c© Springer-Verlag Berlin Heidelberg 2014
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Fig. 2.1 (a) The Humanoid Robot HRP-2. (b) All Links have Names and Local
Coordinates.

Positions defined using World Coordinates are called Absolute Posi-
tions. For example, we describe the absolute position of the left hand tip
in Fig. 2.2 by the following 3D vectors

ph =

⎡
⎣
phx
phy
phz

⎤
⎦ .

We will also use the terms, Absolute Attitude and Absolute Velocity
to show they are defined in the World Coordinates.

2.1.2 Local Coordinates and Homogeneous
Transformations

Lets take a look at how the hand tip position ph changes by the rotation of
the robot’s shoulder. From Fig. 2.3(a) we can see that the absolute position
of the left shoulder is defined by vector pa, and vector r shows the position
of the hand end relative to the shoulder. As we can see from this figure, we
have

ph = pa + r.
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Fig. 2.2 Origin of World Coordinates defined directly below robot in initial posi-
tion. ph is the location of the end of the hands in World Coordinates.

At the open arm pose of Fig. 2.3(b), the absolute hand end position can
be expressed by introducing another vector r′ which points the lifted hand
from the shoulder.

ph = pa + r′. (2.1)

The hand lifts by the vector’s rotation from r to r′ while the shoulder keeps
the same position pa.

Let us think of a local coordinate system Σa which is attached to the
left shoulder as shown in Fig. 2.3. Unlike the world coordinate system which is
fixed to the ground, the local coordinates “move” together with the attached
link.

The local coordinate system Σa is defined by the origin at the shoulder
and the unit vectors that describe the x, y and z axes. The three unit vectors
eax, eay and eaz are defined to be parallel to ΣW at the initial arm down
pose as shown in Fig. 2.3(a). When the robot lifts its arm, Σa rotates about
axis eax with the amount of angle φ as illustrated in Fig. 2.3(b).

The relationship between φ, the shoulder rotation, andΣa can be described
by the following equations

eax =

⎡
⎣
1
0
0

⎤
⎦ , eay =

⎡
⎣

0
cosφ
sinφ

⎤
⎦ , eaz =

⎡
⎣

0
− sinφ
cosφ

⎤
⎦ . (2.2)
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Fig. 2.3 World Coordinates ΣW and Local Coordinates of Arm Σa. (a) Initial
Position: ΣW and Σa are parallel. (b) Σa rotates together with Arm.

Since it is a rotation around the x axis, only eay and eaz change by φ. Let
us define a 3× 3 matrix, Ra as follows:

Ra ≡ [eax eay eaz]. (2.3)

Using the matrix Ra we can describe the relationship between r and r′ in
Fig. 2.3 as follows:

r′ = Rar. (2.4)

In other words, a vector is rotated by multiplying it by the matrix Ra. We
will go over this in more detail in Section 2.2.

Now, let us define the position of the end of the hand in the local coordinate
system Σa as aph. The a at the top left means that it is in the local coordinate
system defined by Σa. From Fig. 2.3(a) we get,

aph = r. (2.5)

In the example shown in Fig. 2.3, Σa and the left arm move as one block, so
vector aph remains constant.

To describe the position of the end of the left arm, we have used two
different notations.

• Position of end of hand ph viewed from from the world coordinate ΣW .
• Position of end of hand aph viewed from the local coordinate Σa.
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The relationship between the two are as follows. From (2.1), (2.4) and
(2.5), we get,

ph = pa +Ra
aph. (2.6)

Equation (2.6) can also be rewritten as,

[
ph

1

]
=

[
Ra pa

0 0 0 1

] [
aph

1

]
. (2.7)

Here we added 0 and 1 to the matrices to match the dimensions and make it
match (2.6). The 4× 4 matrix on the right hand side of the equation comes
from combining the position vector pa and the rotation matrix Ra. This can
be written as,

T a ≡
[

Ra pa

0 0 0 1

]
.

Matrices like this are called Homogeneous transformation matrices2.
The Homogeneous Transformation T a converts points described in arm local
coordinates to world coordinates

[
p
1

]
= T a

[
ap
1

]
.

Note that the point ap can be any point in the left arm, thus the arm
shape can be represented by its aggregation. On the other hand, the arm
configuration (position and orientation) is separately represented by the ma-
trix T a. In general, we can say that a Homogeneous Transformation in
itself describes the position and attitude of an object.

2.1.3 Local Coordinate Systems Local to Local
Coordinate Systems

It is possible to define a Local Coordinate System which has another Local
Coordinate System as it’s parent. In Fig. 2.4(a) we show a Local Coordinate
System Σb which has Σa as it’s parent. Σb moves together with the lower arm
and is set so that the axes are in-line with the axes of Σa when the elbow is
straight. Let us define the rotation angle of the elbow joint as θ. Let us also
define the unit vectors of which are the axes x, y, z of Σb as aebx,

aeby,
aebz

respectively. They are defined as follows,

2 The same matrix is referred to in computer graphics as an Affine transfor-
mation matrix. There is a difference as in an Affine transformation, Ra is not
necessarily a simple rotation matrix (→ Section 2.2) and may include scaling and
shearing as well.
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Fig. 2.4 Arm Local Coordinates Σa and the Lower Arm Local Coordinates Σb

aebx =

⎡
⎣
cos θ
0

sin θ

⎤
⎦ , aeby =

⎡
⎣
0
1
0

⎤
⎦ , aebz =

⎡
⎣
− sin θ

0
cos θ

⎤
⎦ . (2.8)

Since the elbow rotates around the y axis, only the vectors aebx and aebz
change by θ. The vectors are defined in Σa space and thus they have the
indicator a on the top left. Let us define a matrix aRb as a combination of
the three unit vectors.

aRb ≡ [aebx
aeby

aebz] (2.9)

The conversion of bph (in Fig. 2.4(a)) which is in Σb space, to
aph (in Fig.

2.4 (b)) in Σa space becomes as follows

[
aph

1

]
= aT b

[
bph

1

]
. (2.10)

Here we defined a homogeneous transformation aT b as follows

aT b ≡
[

aRb
apb

0 0 0 1

]
.

Note that apb is the origin of Σb viewed from Σa.
By combining the results of (2.10) with (2.7) we get the equation which

converts a point defined in Σb space to world coordinates. The example below
converts the manipulator end point in Σb

[
ph

1

]
= T a

aT b

[
bph

1

]
. (2.11)
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Let us define the product of homogeneous transformation on the right hand
side of the equation as one matrix and call it T b

T b ≡ T a
aT b.

The matrix T b is a Homogeneous Transformation which is in fact Σb de-
scribed in World Coordinates, and it describes the position and attitude of
the forearm. T a describes the amount the shoulder has been turned. aT b

changes together with the amount the elbow is rotated. Therefore we can see
that the description of T b shows the effect of the shoulder and the elbow
rotations.

2.1.4 Homogeneous Transformations and Chain
Rules

What we described above can be generalised. Let us assume we have a mech-
anism which connects the local coordinates Σ1 through ΣN . If we have a Ho-
mogeneous Transformation which describes neighbouring local coordinates
Σi and Σi+1 such as,

iT i+1,

by reiterating through the above process we get the following equation

TN = T 1
1T 2

2T 3 . . .
N−1TN . (2.12)

Here TN is a homogeneous transformation that describes the position and
attitude of the Nth joint. To add another link to the end of this joint we
need to multiply it with the homogeneous transformation matrix from the
right.

This method of multiplying the homogeneous transformation in order to
calculate the coordinate transform matrix is called the chain rule [87]. The
chain rule enables us to calculate the kinematics of an arm with multiple
joints without too much complication.

2.2 Characteristics of Rotational Motion

In the previous section we described the rotation of the robot’s joint with a
3×3 matrix with no explanation. This matrix is called a Rotation Matrix.
It describes the attitude of the link and also notates the rotational motion. In
this section we will go over the characteristics of rotation in three dimensions
using the Rotation Matrix. To simplify we will limit the scope to rotation
around the origin.
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2.2.1 Roll, Pitch and Yaw Notation

The basics of rotation are the rotations around the x, y and z axes, which we
will call Roll, Pitch and Yaw respectively. In Fig. 2.5 we show a triangle that
resides on the xy plane going through Roll, Pitch and Yaw.

roll 

z

x

y

pitch 

z

x

y

yaw 

z

x

y

Fig. 2.5 Roll, Pitch and Yaw using the x, y and z axes. Figure shows the triangle
rotation at every π/18 up to +π/3 [rad]. If we think the triangle is a plane flying
along the x axis, they correspond to a right bank, nose down and left turn.

Below is a list of rotation axes, their names and often used notations.

Rotation Axis Name Notation

x axis Roll φ
y axis Pitch θ
z axis Yaw ψ

To Roll, Pitch and Yaw an object a given angle we need to use the following
matrices

Rx(φ) =

⎡
⎣
1 0 0
0 cosφ − sinφ
0 sinφ cosφ

⎤
⎦

Ry(θ) =

⎡
⎣

cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

⎤
⎦

Rz(ψ) =

⎡
⎣
cosψ − sinψ 0
sinψ cosψ 0
0 0 1

⎤
⎦ .

If we Roll, Pitch and then Yaw a point p around the origin, it will move to
the point,

p′ = Rz(ψ)Ry(θ)Rx(φ)p.
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We can rewrite this as
p′ = Rrpy(φ, θ, ψ)p.

Here we have introduced the following notation

Rrpy(φ, θ, ψ) ≡ Rz(ψ)Ry(θ)Rx(φ)

=

⎡
⎣
cψcθ −sψcφ + cψsθsφ sψsφ + cψsθcφ
sψcθ cψcφ + sψsθsφ −cψsφ + sψsθcφ
−sθ cθsφ cθcφ

⎤
⎦ , (2.13)

where cψ ≡ cosψ, sψ ≡ sinψ, cθ ≡ cos θ, and so on.
The matrix Rrpy(φ, θ, ψ) is also a rotation matrix and it is known that any

given attitude in 3D space can be realized by using this. Therefore, arbitrary
attitude can be represented just by a set of three numbers (φ, θ, ψ), which
are called the Roll-Pitch-Yaw notation or the Z-Y -X Euler angles.

Since the Roll-Pitch-Yaw notation can be easily understood, it is frequently
used to notate attitudes of ships, airplanes, and robots.

2.2.2 The Meaning of Rotation Matrices

There are two different ways to interpret rotation matrices. One is as an
operator that rotates vectors. Figure 2.6(a) shows a vector p rotated by
the rotation matrix R to a new vector p′

p′ = Rp

where p and p′ reside in the same coordinate space.
The second way to interpret R is as the attitude of a local coordinate

space. Figure 2.6(b) shows local coordinate axes (ex, ey, ez) and a point p̄

xe

ye
ze

x

y

z
p'

p

x

y

z

p

Fig. 2.6 Two ways to interpret rotation matrices
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defined in this local coordinates. The rotation matrix is defined as the set of
the coordinate axes, such that

R ≡ [ex ey ez]. (2.14)

The point is represented in world coordinates as

p = Rp̄.

In this case, we merely changed the point of view on a stationary point
without any actual motion.

How can we figure out a rotation matrix used in which meaning, (1) op-
erator to rotate a vector, or (2) attitude of a local frame? We can see it by
checking whether the point exists in the same coordinate space before and
after the calculation. Most of the time, however, it is clear from the context.

2.2.3 Calculating the Inverse of a Rotation Matrix

Let as assume that we have a rotation matrix showing attitude of a local
frame. We will define the unit vectors of this coordinate system as ex ey and
ez. As these unit vectors are at right angles to each other we can say,

eTi ej =

{
1 (i = j)
0 (i �= j)

.

Here eTi ej is the inner product of two vectors. If we calculate product of

the transpose RT and R we get,

RTR =

⎡
⎣
eTx
eTy
eTz

⎤
⎦ [ex ey ez] =

⎡
⎣
eTx ex eTx ey eTx ez
eTy ex eTy ey eTy ez
eTz ex eTz ey eTz ez

⎤
⎦

=

⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦ = E (3×3 identity matrix).

From this we can safely say that RTR = E. If we multiply both sides of this
equation by R−1 from the right,

RT = R−1. (2.15)

Therefore, when we transpose a rotation matrix we get its inverse. Matrices
which have this characteristic are called orthogonal matrices.
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z

Fig. 2.7 A Rotating Cylinder. We define its angular velocity vector to be [0 0 1]T

[rad/s].

2.2.4 Angular Velocity Vector

Next we will define a way to notate rotational speed in three dimensional
space. The simplest example is shown in Fig. 2.7. This figure shows a cylinder
rotating around the z axis at 1 [rad/s]. In this case the rotational velocity of
this object, ω, can be described by

ω =

⎡
⎣
0
0
1

⎤
⎦ . (2.16)

This is called an Angular Velocity Vector. Each element in this vector
has the unit of [rad/s].

An Angular Velocity Vector(ω) has the following characteristics.

1 ω is defined as a unit vector × scalar value

Let a be a unit vector on the rotating axis and q̇ be the rotational speed (a
scalar value). Then the angular velocity vector of the object is their product

ω = aq̇. (2.17)

2 ω describes the velocity of all the points on the rotating
object

Let p be a vector which represents a given point p on the surface of the
object. Let us also define the base of this vector to be somewhere on the
rotation axis. In this case the velocity of point p will be described by ω × p.
The × operator is the cross product or outer product of two vectors and
is defined as follows.
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Fig. 2.8 Definition of Cross Product. v = ω × p represents the velocity of the a
point on the circle. It is at right angles to both ω and p.

By using the two vectors, ω and p we obtain a new vector v which has
the following characteristics (Fig. 2.8)

|v| = |ω||p| sin θ
(v⊥ω) ∩ (v⊥p).

However, there are two vectors that satisfy this condition so we use the
right screw rule and choose the one which matches the direction a right
handed screw will move when turned. This can be represented as

v = ω × p (2.18)

and this is called the “cross product of ω and p”.
When given the elements of ω and p, the cross product can be calculated

as follows. As an exercise we can also check to see that the equations below
can be derived from the above.

ω × p =

⎡
⎣
ωx

ωy

ωz

⎤
⎦×

⎡
⎣
px
py
pz

⎤
⎦ ≡

⎡
⎣
ωypz − ωzpy
ωzpx − ωxpz
ωxpy − ωypx

⎤
⎦ (2.19)

We can say that the cross product has been defined so that it matches the
nature of angular velocity3. The equation below adds “Physical Meaning” to
the angular velocity vector.

(Velocity of Vertex) = ω × (Position of Vertex)

We have used the equations above to visualise the surface velocity of a
rugby ball shaped object (an ellipsoid) rotating at ω as shown in Fig. 2.9. On

3 From this point on we will use this to calculate moment and angular momentum.
The cross product itself is important in electromagnetism. Flemming’s Right
Hand Rule and Left Hand Rule are themselves the result of cross products.
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a rotating object, the velocity can have different magnitudes and directions
depending the location of the point on the surface. The angular velocity
vector represents this fact by using just three elements4.

!

Fig. 2.9 Surface Velocity on an Ellipsoid. The object rotates according to angular
velocity vector ω (Thick Arrow). The resulting surface velocity is represented in
small arrows.

3 ω can be rotated too

Let us multiply both sides of (2.17) using some rotation matrix R

Rω = Raq̇. (2.20)

If we introduce following new vectors,

ω′ = Rω, a′ = Ra

then we can rewrite (2.20) as

ω′ = a′q̇.

This matches the definition in (2.17), so we can see that ω′ is a new angular
velocity vector around the axis defined by a′. Therefore we can say that
an angular velocity vector can be transformed directly by using a rotation
matrix R.
4 If you want strict mathematical facts, the angular velocity vector is called a
pseudovector (or axial vector), and it is treated a little differently from normal
vectors [105]. However within the scope of this book there is no problem in
treating it as a normal vector. In this sense, the torque and angular momentum
are also represented using pseudo-vectors as well.
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Fig. 2.10 Rotation of the Angular Velocity Vector, Position Vector and Velocity
Vector using the rotation matrix R. The relation between the three vectors does
not change after the tranform.

Next let us try to rotate an angular velocity vector, a position vector, and
the corresponding velocity vector using the same rotation matrix R as shown
in Fig. 2.10 which gives

ω′ = Rω, p′ = Rp, v′ = Rv.

Since the spatial relation between these three vectors does not change by this
rotation, the definition of the cross product must be preserved, so

v′ = ω′ × p′. (2.21)

Substituting the rotated vectors v′,ω′ and p′ by their originals Rv,Rω and
Rp, we have

R(ω × p) = (Rω)× (Rp). (2.22)

2.2.5 Differentiation of the Rotation Matrix and
Angular Velocity Vectors

Now let us look into the relationship between the angular velocity vector, ω
and the rotation matrix, R. In Section 2.2.2 we saw that the rotation matrix
R gives the relationship between the local coordinates and world coordinates
of a vertex

p = Rp̄. (2.23)

If we differentiate this equation with respect to time we get the velocity
of the point in the world coordinate space. The position of the point, p̄ does
not move in the local coordinate space so,

ṗ = Ṙp̄. (2.24)

Here we substitute p̄ using the relationship p̄ = RTp to get
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ṗ = ṘRTp. (2.25)

We can use this equation to calculate the velocity of a vertex on the object.
From the previous section we know that ṗ = ω × p so we can safely state

the following relationship

ω × p = ṘRTp. (2.26)

If we remember that the cross product is calculated as follows (2.19),

ω × p =

⎡
⎣
ωx

ωy

ωz

⎤
⎦×

⎡
⎣
px
py
pz

⎤
⎦ =

⎡
⎣
ωypz − ωzpy
ωzpx − ωxpz
ωxpy − ωypx

⎤
⎦ . (2.27)

We can rewrite this as a product of a 3× 3 matrix to obtain.

ω × p =

⎡
⎣

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦
⎡
⎣
px
py
pz

⎤
⎦ ≡ Sp. (2.28)

The matrix we just defined has an interesting characteristic. If we take a
transpose of this matrix we get the same matrix with only the sign inverted.
Matrices such as this are called skew symmetric matrices and satisfy

ST = −S. (2.29)

By comparing (2.26) and (2.28) we can see that ṘRT is in fact a Skew
Symmetric Matrix. This can be proved as follows. First the transpose of a
rotation matrix also happens to be it’s inverse matrix. So,

RRT = E (2.30)

Furthermore, if we take the time derivative of this equation5 we get the
following.

ṘRT +RṘ
T
= 0

(ṘRT )T = −ṘRT

Which proves that ṘRT is in fact a Skew Symmetric Matrix.
In this book we will refer to 3 dimensional vectors taken from Skew Sym-

metric Matrices as the ∨ “wedge” operation. Making a Skew Symmetric Ma-
trix from a 3 dimensional vector will be referred to as taking the ∧ “hat”
operation as follows

5 The derivative of a matrix is to simply take the derivative of all it’s components.
We must take care not to change the order of the multiplication.
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⎡
⎣

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦
∨

=

⎡
⎣
ωx

ωy

ωz

⎤
⎦

⎡
⎣
ωx

ωy

ωz

⎤
⎦
∧

=

⎡
⎣

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦ .

Therefore a cross product can be written as follows.

ω × p = (ω∧)p

To make this equation easier on the eyes we can put the ∧ at the top.6

ω × p = ω̂p

Using these methods of description we can describe the relationship between
a rotation matrix and its angular velocity in (2.26) by

ω̂ = ṘRT (2.31)

or
ω = (ṘRT )∨. (2.32)

2.2.6 Integration of the Angular Velocity Vector and
Matrix Exponential

Lets take a look at how we can integrate an angular velocity vector and get
the rotation matrix. By multiplying both sides of (2.31) by R from the right
we obtain

Ṙ = ω̂R. (2.33)

This equation is important because this gives the relationship between
angular velocity vectors and rotation matrices. We will call this equation the
Basic Equation of Rotation. This equation is a differential equation for
the matrix R so if you integrate this you get a rotation matrix. If the initial
condition is R(0) = E and the angular velocity ω is constant, the solution
is:

R(t) = E + ω̂t+
(ω̂t)2

2!
+

(ω̂t)3

3!
+ . . . . (2.34)

By substituting the above into (2.33) we can confirm that this is correct.
Using the analogy with exponential function we will describe the solution
using eω̂t and will call them matrix exponential. Therefore we define,

6 A lot of text books and papers use [ω×] instead of ω̂ to put an emphasis on the
fact that this is the cross product.
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eω̂t ≡ E + ω̂t+
(ω̂t)2

2!
+

(ω̂t)3

3!
+ . . . . (2.35)

This infinite series can be simplified [101]. First we decompose ω into a
unit vector a and a scalar ω

ω = aω, ω ≡ ‖ω‖, ‖a‖ = 1.

Due to the characteristic â3 = −â, all ân in the higher power terms can
be replaced by â2. Furthermore, using the Taylor series of sin, cos we get the
following equation.

eω̂t = E + â sin(ωt) + â2(1− cos(ωt)) (2.36)

Equation (2.36) is called Rodrigues’ formula and it gives you the rota-
tion matrix directly from a constant angular velocity vector. This equation
together with the basic equation of rotation are the most important equations
in this book.

Equation (2.36) can be seen as giving us the rotation ωt [rad] around the
axis defined by unit vector a. By replacing the rotation angle using θ ≡ ωt,
we obtain

eâθ = E + â sin θ + â2(1− cos θ). (2.37)

This equation is heavily used in kinematic calculation7.

2.2.7 Matrix Logarithm

Having defined the matrix exponential, let us define it’s inverse, the matrix
logarithm

lnR = ln eω̂ ≡ ω̂. (2.38)

This is used to get the angular velocity vector from a given rotation matrix.
The angular velocity vector integrated over one second will equate to the
rotation described by the rotation matrix

ω = (lnR)∨.

The actual calculation is

7 Take note of its similarity with Euler’s formula eiθ = cos θ + i sin θ, which was
called our jewel by Richard Feynman [105].
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(lnR)∨ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[0 0 0]T (if R = E)

π
2

⎡
⎣
r11 + 1
r22 + 1
r33 + 1

⎤
⎦ (else if R is diagonal)

θ l
‖l‖ (otherwise)

(2.39)

given

R =

⎡
⎣
r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤
⎦ ,

l =

⎡
⎣
r32 − r23
r13 − r31
r21 − r12

⎤
⎦ ,

θ = atan2(‖l‖, r11 + r22 + r33 − 1)

where atan2(y, x) is the function that gives you the angle between vector
(x, y) and the x axis. Please refer to the textbook [101] and the related paper
[124] to know their exact derivation.

Using the matrix exponential and the matrix logarithm we can interpolate
between two given rotation matrices R1,R2 as follows.

1. Get the rotation matrix which links the two matrices. R = RT
1 R2

2. Get the equivalent angular velocity vector from this rotation matrix. ω =
(lnR)∨

3. The angular velocity vector in world coordinates is: R1ω
4. The interpolation becomes R(t) = R1e

ω̂t, t ∈ [0, 1].

2.3 Velocity in Three Dimensional Space

In this section we add translational motion to rotation and consider the
velocity of an object moving freely in three dimensional space.

2.3.1 The Linear and Angular Velocity of a Single
Object

A kinematic state of an object in 3D space can be described by the position
of a reference point p in the object and a rotation matrix R for the attitude
of the object as shown in Fig. 2.11. In other words, a pair of (p,R) repre-
sents a local coordinate system attached on the object. For a point on the
object which locates at p̄k in the local coordinates, its position in the world
coordinates is given by

pk = p+Rp̄k. (2.40)
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WΣ

R

p
kp

Fig. 2.11 Position and Attitude of an Object in 3D Space

Let us assume that this object is tumbling through space combining both
translational and rotational motion. The velocity of the point pk can be
derived by differentiating the previous equation with respect to time

ṗk = ṗ+ Ṙp̄k

= v + ω̂Rp̄k

= v + ω × (Rp̄k), (2.41)

where v,ω have been defined as follows

v ≡ ṗ (2.42)

ω ≡ (ṘRT )∨. (2.43)

By making substitutions in (2.41) using (2.40) we obtain

ṗk = v + ω × (pk − p). (2.44)

The velocity of any point in the object can be calculated using this equa-
tion. Therefore we can conclude that:

The motion of an object in 3D space can be represented by a 6 di-
mensional vector [vx vy vz ωx ωy ωz]

T which is a combination of its
linear velocity v and angular velocity ω.
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2.3.2 The Linear and Angular Velocity of Two
Objects

Next we will think about two objects moving in 3D space. Let us assume that
we have been given the local coordinates of these objects as follows

T 1 =

[
R1 p1

0 0 0 1

]
(2.45)

1T 2 =

[
Rd pd

0 0 0 1

]
. (2.46)

The position and attitude of the second object is given to you relative to the
first object as 1T 2. So,

T 2 = T 1
1T 2

=

[
R1 p1

0 0 0 1

] [
Rd pd

0 0 0 1

]

=

[
(R1Rd) (p1 +R1pd)
0 0 0 1

]
. (2.47)

Therefore the position and attitude of the second object in world coordinates
is

p2 = p1 +R1pd (2.48)

R2 = R1Rd. (2.49)

The linear velocity of the second object can be obtained by taking the time
derivative of (2.48).

v2 =
d

dt
(p1 +R1pd)

= ṗ1 + Ṙ1pd +R1ṗd

= v1 + ω̂1R1pd +R1vd

= v1 + ω1 × (R1pd) +R1vd

where, v1 ≡ ṗ1, vd ≡ ṗd.
Here, using (2.48) and rearranging its elements we obtain

v2 = v1 +R1vd + ω1 × (p2 − p1). (2.50)
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Let’s take a moment to think about (2.22) in Section 2.2.4,

R(ω × p) = (Rω)× (Rp) . . . (a)

The left side of this equation can be rewritten as

R(ω × p) = Rω̂p

= Rω̂RTRp

= (Rω̂RT )(Rp). . . . (b)

Comparing equation (a) and equation (b) we can see that

(Rω)∧ = Rω̂RT .

Fig. 2.12 Coordinate Transformation and the Angular Velocity Vector

The angular velocity of the second object can be calculated from (2.49) as
follows

ω̂2 = Ṙ2R
T
2

=
d

dt
(R1Rd)R

T
2

= (Ṙ1Rd +R1Ṙd)R
T
2

= (ω̂1R1Rd +R1ω̂dRd)R
T
2

= ω̂1 +R1ω̂dRdR
T
dR

T
1

= ω̂1 +R1ω̂dR
T
1

where ω1 ≡ (Ṙ1R
T
1 )

∨, ωd ≡ (ṘdR
T
d )

∨.
From Fig. 2.12 we can see that (Rω)∧ = Rω̂RT , so we get

ω̂2 = ω̂1 + (R1ωd)
∧.

By applying ∨ to both sides of this equation we get,

ω2 = ω1 +R1ωd. (2.51)

In summary, we first defined the position and attitude of object 1 and
object 2 as (p1,R1), (p2,R2). If the velocity of object 1 is (v1,ω1) and the
velocity of object 2 relative to object 1 is (vd,ωd), the velocity of object 2
will be given as follows8

8 The linear and angular velocity of the object have simply been combined and
called “velocity”.
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v2 = v1 +R1vd + ω1 × (p2 − p1) (2.52)

ω2 = ω1 +R1ωd. (2.53)

Here R1vd and R1ωd describe the relative velocity between the objects in
world coordinates. If we replace these using Wvd,

Wωd we get,

v2 = v1 +
Wvd + ω1 × (p2 − p1) (2.54)

ω2 = ω1 +
Wωd. (2.55)

Therefore barring the fact that we get an influence of the rotational velocity
the third element of (2.54), the velocity of the object in world coordinates is
simply a sum.

In Fig. 2.13 we have tried to visualise the meaning of (2.55).

 

1
2

1!

2!

1 2+! !

Fig. 2.13 The sum of angular velocity vectors: Object 1 rotates according to an-
gular velocity vector ω1. Object 2 rotates relative to Object 1 at ω2. The angular
velocity of Object 2 in world coordinates is ω1 + ω2.

2.4 Robot Data Structure and Programming

2.4.1 Data Structure

A humanoid robot is a mechanism consisting of many links connect by joints.
To start our analyze, we would like to divide it into smaller units. Among
many possible ways of separation, we present two typical ways in Fig. 2.14.

In Fig. 2.14(a) each joint gets included in the link that is further away
from the trunk. In (b) each joint is defined as a part of the trunk or the link
closer to the trunk. In terms of computer programming the former style is
more convenient. The reason is because all links will include just one joint
so you can use the same algorithm to deal with all the joints. In addition
it also makes adding new joints easier. On the other hand, method (b) will
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(a) Separate into joint+link units (b) Separate into link+joint units

Link

Joint

Fig. 2.14 Dividing a robot structure. In (a) all links have one joint except for
the trunk. In (b) the number of joints in each link differs with each joint. From a
programming perspective the former is easier to deal with.

require links with different numbers of joints. Which in turn makes the com-
puter programming more complex. Please notice that here we are discussing
a conceptual separation of a robot. It is not an absolute requirement to divide
the robot as cleanly as shown in Fig. 2.14.

By joining these links in the correct combination we get the composition
of links that forms a humanoid robot. The connection rule is presented by a
diagram shown in Fig. 2.15 which has a form a tree structure9. In other
words, we could probably say that this structure shows the family tree of
links with the base link as a common ancestor with the extremities being the
youngest members.

However, in the graph of Fig. 2.15 there exist different numbers of branches
(connections) depending on the link, so as we discussed regarding dividing a
robot structure, this representation makes programming difficult.

Alternatively, we could describe the link connection as shown in Fig. 2.16.
In this graph, each link has two connections so that the left lower line connects
to its child link and the right lower line connects to its sister link10. For
example, if you want to know the sister links of RARM, you go along the
lower right connections and gain the links, “LARM”, “RLEG” and “LLEG”.
The parent of these links will be the upper right “BODY” link and the child
will be the lower left “RHAND“ link. At the ends which have no child or sister
link we have used “0”. In conclusion, although this graph looks different, it
represents the same information represented by the graph in Fig. 2.15.

9 A tree graph is a graph with the structure that it has a base from which smaller
branches branch out without forming loops.

10 Usually the word “sibling” is used for this purpose.
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BODY

RARM

RHAND

LARM

LHAND

RLEG

RFOOT

LLEG

LFOOT

(Connecting rule)
Self

child-1 child-2
. . .

child-n

Fig. 2.15 Humanoid Link Connection Description Method 111

BODY

RARM

RHAND

0 0

LARM

LHAND

0 0

RLEG

RFOOT

0 0

LLEG

LFOOT

0 0

0

0

(Connecting rule)
Parent

Eldest Child

Grand Child A Second Child

Grand Child B Third Child

Sister of Parent

Fig. 2.16 Humanoid Link Connection Description Method 2

2.4.2 Programming with Recursions

Next let us look at how we would actually realise a program which would use
these data structures. In preparation, we will convert the information in Fig.
2.16 into a list. Starting with ID number 1 which we use for the base of this
tree, we have given each link an ID number and used them in the following
list.

11 When naming the links in this textbook, we use *R* or *L* as a prefix to show
which side the link is on. So the links in the right arm will be *RARM* and the
left arm will be *LARM*.
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ID name sister child
1 BODY 0 2
2 RARM 4 3
3 RHAND 0 0
4 LARM 6 5
5 LHAND 0 0
6 RLEG 8 7
7 RFOOT 0 0
8 LLEG 0 9
9 LFOOT 0 0

To input this information in Matlab we should type as following.12

>> global uLINK

>> uLINK(1).name = ’BODY’;

>> uLINK(1).sister = 0;

>> uLINK(1).child = 2;

The “>>” above is the Matlab command prompt. uLINK is the name of a
structure used in this textbook, which holds most of the values required in
the calculations. Here we only look at the fields, “name”, “sister” and “child”.
In the first line we declare that we want to use the globally available variable
uLINK. In the next lines, uLINK(1) points to the first uLINK with the ID
number 1. The names after the period specify data field names (name, sister,
child).

In the same way you access the fields in the part which holds the values
link with ID number 2 though uLINK(2).13

>> uLINK(1).name % print the name of the link with ID=1

ans =

BODY

>> uLINK(uLINK(1).child).name % print first child of BODY

ans =

RARM

>> uLINK(uLINK(uLINK(1).child).child).name % first grandchild of BODY

ans =

RHAND

12 In this textbook, we will use Matlab, a product of MathWorks which enables the
user to do matrix calculations interactively. The algorithm itself does not depend
on the language you use, so this program can also be easily implemented in other
languages such as C++ or Java.

13 Once the program starts to get longer you would store these commands in a file
with a suffix “m”, and execute this from the command line.
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If you omit the semi-colon “;” after the name of a variable on the command
line, Matlab will print out all information regarding that variable. By using
this you can check the information stored in this tree whenever you want. In
other words you now have a database of the robot link information.

Figure 2.17 shows you a short script (PrintLinkName.m) which prints all
the names of the links stored in the database.

function PrintLinkName(j)

global uLINK % Refer global variable uLINK

if j ~= 0

fprintf(’j=%d : %s\n’,j,uLINK(j).name); % Show my name

PrintLinkName(uLINK(j).child); % Show my child’s name

PrintLinkName(uLINK(j).sister); % Show my sister’s name

end

Fig. 2.17 PrintLinkName.m: Show the name of all links

This program takes an ID number as input, and check it first. If the ID
is not 0, the program prints the corresponding link name and calls Print-
LinkName with the sister ID number, and then calls PrintLinkName using the
child ID number. If the ID is 0, the program does nothing. After saving this
script with the name PrintLinkName.m, we can execute “PrintLinkName(1)”
on the Matlab command line and get the names of the child links within the
tree under the “BODY” link. Calling a function from inside it is named a
recursive call. Each time this function is called you move downward in the
tree until you reach a node which has neither sister nor child. This gives you a
simple way to visit each node in the tree and to apply a desired computation.

Using the technique of the recursive call, we can easily write a function to
sum up all masses of the links (Fig. 2.18). Here we assume a new data field
“m” was added to hold the mass of the link and it was initialized with the
actual mass of each link.

If the ID number is 0, then the program will return 0 kg because there are
no links to sum (line 4). If the ID number is not 0, then it will return the
sum of the mass of the corresponding link, the total mass of the descendant
links from the sister, and the total mass of the descendant links from the
child (line 6). If you type TotalMass(1) on the command line, this function
will visit all nodes in the tree and return the total mass of the links under the
“BODY” link. Compared with the usual method which checks the existing
links beforehand and sums them, I feel this is much smarter. What do you
think?
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function m = TotalMass(j)

global uLINK

if j == 0

m = 0;

else

m = uLINK(j).m + TotalMass(uLINK(j).sister) + TotalMass(uLINK(j).child);

end

Fig. 2.18 TotalMass.m: Sum of Each Link’s Mass

2.5 Kinematics of a Humanoid Robot

2.5.1 Creating the Model

To explain the kinematics of a humanoid robot, we will use a 12 DoF model
shown in Fig. 2.19, which consists of two legs. The link names and their ID
numbers are indicated in Fig. 2.19(a). Splitting this model by the manner of
Fig. 2.14(a), each link will have just one joint to drive it except the BODY
link. Thus we can identify a link by joint name or its ID number. For example,

R1

R2R3
R4

R5

R7

R1

R6

R11

R10R9R8

R13
R12

ΣW

x

y

z

(a) (b)
Fig. 2.19 (a) Structure of a 12 degree of freedom biped robot. Numbers in brackets
refer to the ID number (b) Rotation matrix which describes attitude of each link.
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z
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a4

a5

a7

a6

a11

a10
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a12

(a) (b)

p1

b2
p2,3,4

p5

p6,7

b6

p11

p8,9,10

b11

b8

p12,13

b12

b5

Fig. 2.20 (a) Joint Axis Vector aj (b) Relative Position Vector bj and the Origin
of Local Coordinates pj

by the ID number 5, we refer the joint RLEG J3 as well as the link of the
right lower leg.

First, we must define the local coordinates for each link. An origin of each
local coordinates can be set anywhere on its own joint axis. For each hip,
however, it is reasonable to assign the origins of the three frames at the same
point where the three joint axes intersect. In the same way, for each ankle,
we assign the origins of two ankle frames on the same point where the two
joint axes intersect.

Then, all rotation matrices which describe attitude of links are set to match
the world coordinates when the robot is in its initial state, standing upright
with fully stretched knees. Therefore we set thirteen matrices as,

R1 = R2 = . . . = R13 = E.

We show the local coordinates defined at this stage in Fig. 2.19(b).
Next we will define the joint axis vectors aj and the relative position vector

bj as indicated in Fig. 2.20. The joint axis vector is a unit vector which
defines the axis of the joint rotation in the parent link’s local coordinates.
The positive (+) joint rotation is defined as the way to tighten a right-hand
screw placed in the same direction with the joint axis vector. Using the knee
joints as an example, the joint axis vectors would be, a5,a11 = [0 1 0]T .
When we rotate this link in the + direction, a straight knee will flex in the
same direction as a human’s. The relative position vector bj is the vector
that indicates where the origin of a local coordinate lies in the parent link’s
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local coordinates. When they lie in the same place as it is in the case of the
ankle roll joint, b7, b13 = 014.

In the following section we will use the description above to calculate
Forward Kinematics, the Jacobian Matrix and Inverse Kinematics. To do
this we will need a lot more information such as the shape, joint angle, joint
velocity, etc. The full list of link parameters is shown in Table 2.1.

Table 2.1 Link Parameters

Link Parameter Symbol for Equation uLINK data field

Self ID j -
Sister ID None sister
Child ID None child
Parent ID i mother
Position in World Coordinates pj p
Attitude in World Coordinates Rj R
Linear Velocity in World Coordinates vj v
Angular Velocity in World Coordinates ωj w
Joint Angle qj q
Joint Velocity q̇j dq
Joint Acceleration q̈j ddq
Joint Axis Vector(Relative to Parent) aj a
Joint Relative Position(Relative to Parent) bj b
Shape(Vertex Information, Link Local) p̄j vertex
Shape(Vertice Information (Point Connections) None face
Mass mj m
Center of Mass(Link Local) c̄j c
Moment of Inertia(Link Local) Īj I

2.5.2 Forward Kinematics: Calculating the Position
of the Links from Joint Angles

Forward Kinematics is a calculation to obtain the position and attitude
of a certain link from a given robot structure and its joint angles. This is
required when you want to calculate the Center of Mass of the whole robot,
when you just want to display the current state of the robot, or when you
want to detect collisions of the robot with the environment. Thus forward
kinematics forms the basis of robotics simulation.

Forward kinematics can be calculated by using the chain rule of homo-
geneous transforms. First we will start off by calculating the homogeneous

14 There is a well known method you can use to describe the link structure of a robot
called the Denavit-Hartenberg (DH) method [18]. We also used this method at
first. However this method has a restriction which requires you to change the
orientation of the link coordinates with each link. We found the implementation
with this restriction to be rather error-prone, so we instead adopted the method
outlined above.
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transform of a single link as shown in Fig. 2.21. We need to set a local coor-
dinate system Σj which has it’s origin on the joint axis. The joint axis vector
seen from the parent coordinates is aj and the origin of Σj is bj . The joint
angle is qj and the attitude of the link when the joint angle is 0 is, E.

iΣ

jΣ

ja

jq

jb

Fig. 2.21 The Position, Attitude and Rotation of a single link aj , bj each specify
the joint axis vector and location of the origin viewed from the parent coordinate
system

The homogeneous transform relative to the parent link is:

iT j =

[
eâjqj bj
0 0 0 1

]
. (2.56)

Next let us assume there are two links as shown in Fig. 2.22. We will
assume that the absolute position and attitude of the parent link pi,Ri is
known. Therefore, the homogeneous transform to Σi becomes:

T i =

[
Ri pi

0 0 0 1

]
. (2.57)

From the chain rule of homogeneous transforms Σj is:

T j = T i
iT j . (2.58)

From (2.56), (2.57) and (2.58) the absolute position (pj) and
attitude (Rj) of Σj can be calculated as being,

pj = pi +Ribj (2.59)

Rj = Rie
âjqj (2.60)

Using this relationship and the recursive algorithm, the Forward Kinemat-
ics can be performed by an extremely simple script shown in Fig. 2.23. To
use this program, we first set the absolute position and attitude of the base
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WΣ

iΣ
jΣ

,i ip R ,j jp R

ja
jq

Fig. 2.22 Relative Position of Two Links

function ForwardKinematics(j)

global uLINK

if j == 0 return; end

if j ~= 1

i = uLINK(j).mother;

uLINK(j).p = uLINK(i).R * uLINK(j).b + uLINK(i).p;

uLINK(j).R = uLINK(i).R * Rodrigues(uLINK(j).a, uLINK(j).q);

end

ForwardKinematics(uLINK(j).sister);

ForwardKinematics(uLINK(j).child);

Fig. 2.23 ForwardKinematics.m calculate forward kinematics for all joints

link (BODY) and all joint angles. Then by executing ForwardKinematics(1),
we can update the positions and attitudes of all links in the robot.

Figure 2.24 shows what the 12 degree of freedom biped robot looks like
when you give it random values for joint angles to all 12 joints. This should
help you to imagine how a simple mechanism embodies a large amount of
complexity.

2.5.3 Inverse Kinematics: Calculating the Joint
Angles from a Link’s Position and Attitude

Next we will discuss how to calculate joint angles when we have the position
and attitude of the body and the foot to realize. What we need to do in this
cases is Inverse Kinematics. For instance, suppose our robot is in the front
of stairs and we want to place one of the foot on the first step whose height
and depth are already known. We certainly need to determine the amount of
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Fig. 2.24 Random poses calculated using ForwardKimematics. The knees are lim-
ited to [0, π][rad], other joints are restricted to [−π

3
, π

3
][rad].

joint rotation for the hip, knee and the ankle. Inverse Kinematics is necessary
for such a case.

There exist both an analytical method and a numerical method of solving
Inverse Kinematics. First we will explain how to solve it analytically. Let’s
focus on the right leg of the model shown in Fig. 2.19. The position and
attitude of the body and right leg will be (p1,R1) and (p7,R7) respectively.
To simplify the equation we will define D, which is the distance between the
Body origin and the hip joint. The upper leg length is A, and the lower leg
length is B, as shown in Fig. 2.25(a). So therefore, the position of the hip
would be
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Fig. 2.25 Calculating Inverse Kinematics of the Legs

p2 = p1 +R1

⎡
⎣
0
D
0

⎤
⎦ .

Next, we calculate the position of the crotch viewed from the ankle coor-
dinate space

r = RT
7 (p2 − p7) ≡ [rx ry rz ]

T . (2.61)

From this we can calculate the distance between the ankle and the hip, which
we will define as

C =
√
r2x + r2y + r2z .

As shown in Fig. 2.25(b), if we consider the triangle ABC we get the angle
of the knee q5. From the cosine rule we get,

C2 = A2 +B2 − 2AB cos(π − q5).

So the angle of the knees will be,

q5 = − cos−1

(
A2 +B2 − C2

2AB

)
+ π.

If we define the angle at the lower end of the triangle as α, from the sine
rule we get,

C

sin(π − q5)
=

A

sinα
.
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So therefore,

α = sin−1

(
A sin(π − q5)

C

)
.

Next we will focus on the ankle local coordinates. As shown in Fig. 2.25(c),
from vector r you can calculate the ankle roll and pitch angles. So,

q7 = atan2(ry , rz)

q6 = −atan2
(
rx, sign(rz)

√
r2y + r2z

)
− α.

The function atan2(y, x) calculates the angle between vector (x, y) and the
x axis as it has already appeared in Section 2.2.7. It is built into Matlab and
is also available as a built-in function in most programming languages. Also
sign(x) is a function that returns +1 if x is a positive value and −1 if it is
negative.

What remains is the yaw, roll and pitch angles at the base of the leg. From
the equations that define each joint

R7 = R1Rz(q2)Rx(q3)Ry(q4)Ry(q5 + q6)Rx(q7),

we obtain

Rz(q2)Rx(q3)Ry(q4) = RT
1 R7Rx(−q7)Ry(−q5 − q6).

By expanding the left side of this equation and calculating the right hand
side we get the following

⎡
⎣
c2c4 − s2s3s4 −s2c3 c2s4 + s2s3c4
s2c4 + c2s3s4 c2c3 s2s4 − c2s3c4

−c3s4 s3 c3c4

⎤
⎦ =

⎡
⎣
R11 R12 R13

R21 R22 R23

R31 R32 R33

⎤
⎦

where c2 ≡ cos q2, and s2 ≡ sin q2.
By looking carefully at the left hand side of this equation we get,

q2 = atan2(−R12, R22) (2.62)

q3 = atan2(R32,−R12s2 +R22c2) (2.63)

q4 = atan2(−R31, R33). (2.64)

An implementation of the above is shown in Fig. 2.2615. For the left leg,
we could invert the sign on D and apply the same program.

This implementation can only be applied to a robot which has the same
layout as the one in Fig. 2.19. If the robot does not have three joint axes
that intersect each other at one point, we need an entirely different algo-
rithm. There are many different algorithms outlined in the robot textbooks

15 As a practical implementation, our program covers the target position exceeding
the leg length and joint angle limits.
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function q = IK_leg(Body,D,A,B,Foot)

r = Foot.R’ * (Body.p + Body.R * [0 D 0]’- Foot.p); % crotch from ankle

C = norm(r);

c5 = (C^2-A^2-B^2)/(2.0*A*B);

if c5 >= 1

q5 = 0.0;

elseif c5 <= -1

q5 = pi;

else

q5 = acos(c5); % knee pitch

end

q6a = asin((A/C)*sin(pi-q5)); % ankle pitch sub

q7 = atan2(r(2),r(3)); % ankle roll -pi/2 < q(6) < pi/2

if q7 > pi/2, q7=q7-pi; elseif q7 < -pi/2, q7=q7+pi; end

q6 = -atan2(r(1),sign(r(3))*sqrt(r(2)^2+r(3)^2)) -q6a; % ankle pitch

R = Body.R’ * Foot.R * Rroll(-q7) * Rpitch(-q6-q5); %% hipZ*hipX*hipY

q2 = atan2(-R(1,2),R(2,2)); % hip yaw

cz = cos(q2); sz = sin(q2);

q3 = atan2(R(3,2),-R(1,2)*sz + R(2,2)*cz); % hip roll

q4 = atan2( -R(3,1), R(3,3)); % hip pitch

q = [q2 q3 q4 q5 q6 q7]’;

Fig. 2.26 IK leg.m Example implementation of an analytical solution to Inverse
Kinematics. CAUTION! When using this program on a real robot, you need to
continuously check whether the joint angles exceed their limits. In the worst case,
you could destroy your robot or otherwise cause major injury or death.

(for instance [96, 127]), but in general it requires a large amount of heavy
calculation, so it is more common to use the numerical solution which we will
go over in the next section.

2.5.4 Numerical Solution to Inverse Kinematics

Compared to solving the inverse kinematics analytically, forward kinematics
calculation is simple (Section 2.5.2). So it isn’t all that far fetched to think of
a trial and error method of solving the inverse kinematics by using forward
kinematics, as shown in Fig. 2.27. A sample algorithm could be,

Step 1. Prepare the position and attitude (pref ,Rref ) of the base link
Step 2. Prepare the position and attitude (pref ,Rref ) of the target link
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Step 3. Define vector q which holds the joint angles from the base link to
the target link

Step 4. Use forward kinematics to calculate the position and attitude (p,R)
of the target link

Step 5. Calculate the difference in position and attitude (Δp, ΔR) =
(pref − p,RTRref )

Step 6. If (Δp, ΔR) are small enough stop the calculation
Step 7. If (Δp, ΔR) are not small enough calculate Δq which would reduce

the error
Step 8. Update joint angles by q := q +Δq and return to Step 4

q

q +

+

,p R,
ref ref

p R

Repeat

Get errors
Calculate

adjustment

Forward 

Kinematics

Current

configuration

Initial joint 

angles
Desired

configuration

Fig. 2.27 Basic Concept Behind Numerical Approach to Inverse Kinematics: Use
forward kinematics to and adjust the joint angles to narrow the difference.

To actually implement this you first need to surmount the next two hurdles.

1. What do we really mean by the position and attitude errors (Δp, ΔR)
being small enough? (Step 6)

2. How do we actually go about calculating Δq, to narrow the gap?
(Step 7)

The first problem can be solved relatively easily. Zero position error and
zero attitude error can be described with the following equations

Δp = 0

ΔR = E.

An example function which returns positive scalar depending on the error
magnitude is the following16

16 A more general function would be err(Δp,ΔR) = α‖Δp‖2 + β‖Δθ‖2. Here α
and β are some positive number with the direction requiring more precision being
larger.



2.5 Kinematics of a Humanoid Robot 55

err(Δp, ΔR) = ‖Δp‖2 + ‖Δθ‖2, (2.65)

Δθ ≡ (lnΔR)∨. (2.66)

This function becomes zero only at both position and attitude error is
zero. You can say the position and attitude errors are small enough when
err(Δp, ΔR) becomes smaller than predefined value, for example 1× 10−6.

How about the second problem? All we really need to do is come up with
a set of joint angles Δq which lowers err(Δp, ΔR). One idea would be to
use random numbers each time. If we are able to lower err(Δp, ΔR) by even
a small amount, we will use it for the joint angles and start over. The robot
uses trial and error to search for the joint angles itself so we have the illusion
of intelligence17.

Although it is an enticing idea, none of the robots today would use this
method. The reason is that there is a method which is much faster and far
more precise. In this method which is called the Newton-Raphson method
we first start off by considering what happens to the position and attitude
(δp, δθ) when you change the joint angles using a minute value of δq

δp = Xp(q, δq) (2.67)

δθ = Xθ(q, δq). (2.68)

Here, Xp and Xθ are unknown, but when δq is small let us say that we
can describe it simply with addition and multiplication. If we use a matrix
we get,

[
δp
δθ

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

J11 J12 J13 J14 J15 J16
J21 J22 J23 J24 J25 J26
J31 J32 J33 J34 J35 J36
J41 J42 J43 J44 J45 J46
J51 J52 J53 J54 J55 J56
J61 J62 J63 J64 J65 J66

⎤
⎥⎥⎥⎥⎥⎥⎦
δq. (2.69)

Here Jij , (i, j = 1 . . . 6) are constants which are defined by the current
position and attitude of the robots links. There are 6 because of the number
of links in the leg. It is too much to write all the components each time so
we will simplify it by

[
δp
δθ

]
= J δq. (2.70)

17 This idea is something anyone would think of, but for some reason a lot of people
tend to think that they are the only ones to think of it. Actually the author
happened to be one of them :-).
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The matrix J is called the Jacobian18. Once we have (2.70) we can cal-
culate the required adjustment by simply taking the inverse of this matrix

δq = λ J−1

[
δp
δθ

]
. (2.71)

This is the equation to calculate the adjustments of the joint angles based
on the errors in position and attitude. The value λ ∈ (0 1] is a coefficient
used to stabilize the numeric calculation. Figure 2.28 shows a sample imple-
mentation of the inverse kinematics algorithm written in Matlab. On the 7th
line you will see the function CalcJacobian which is used to calculate the Ja-
cobian. We will go over this in more detail in the next section. The 10th line
is the actual implementation of (2.71). The operator \ “backslash” efficiently
solves the linear equations without doing explicit matrix inversion.

function InverseKinematics(to, Target)

global uLINK

lambda = 0.5;

ForwardKinematics(1);

idx = FindRoute(to);

for n = 1:10

J = CalcJacobian(idx);

err = CalcVWerr(Target, uLINK(to));

if norm(err) < 1E-6 return, end;

dq = lambda * (J \ err);

for nn=1:length(idx)

j = idx(nn);

uLINK(j).q = uLINK(j).q + dq(nn);

end

ForwardKinematics(1);

end

Fig. 2.28 InvserseKinematics.m Numerical Solution to Inverse Kinematics

The function FindRoute returns the links that you need to go through
to get to the target link from the base link. CalcVWerr is a function which
calculates the difference in position and attitude. You can find implemented
versions of these functions in the appendix at the end of this chapter.

18 From the German mathematician Carl Gustav Jacobi (1804-1851). When math-
ematicians refer to the Jacobian it means the determinant of this matrix, but
when roboticists talk about the Jacobian they usually mean the matrix itself.
Some people think that this is a mistake but this is not something that is local
to Japan, it is done the world over.
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We show an example use of Inverse Kinematics as Matlab command input
in Fig. 2.29. Here we use SetupBipedRobot to set robot data, GoHalfSitting
to get non-singular posture, and DrawAllJoints() to display the biped robot.
The function rpy2rot() is a implementation of (2.13). They can be obtained
from the download material.

>> SetupBipedRobot; % Set robot parameters

>> GoHalfSitting; % Set knee bending posture

>> Rfoot.p = [-0.3, -0.1, 0]’;

>> Rfoot.R = rpy2rot(0, ToRad*20.0,0);

>> InverseKinematics(RLEG_J5, Rfoot);

>> Lfoot.p = [ 0.3, 0.1, 0]’;

>> Lfoot.R = rpy2rot(0, -ToRad*30.0,0);

>> InverseKinematics(LLEG_J5, Lfoot);

>> DrawAllJoints(1); % Show the robot
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Fig. 2.29 Sample using InverseKinematics and Results of Calculation

2.5.5 Jacobian

In the previous section we introduced the Jacobian which gives you the re-
lationship between small joint movements and spatial motion. Through the
Jacobian we can also calculate the torque requirements of the joints in or-
der to generate external forces through the hands and feet. As this is used
extensively in robot control, papers on robotics that do not have a Jacobian
somewhere in them are a rare thing indeed19.

19 We can find out how the Jacobian is used in robotics by reading Dr Yoshikawa’s
textbook [144].
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Below we will go over the actual procedure of calculating the Jacobian.
Figure 2.30 shows a chain with N links floating in space. We will assume
that they are numbered in order from the base (link 1) to the end (link N).
We will assume the end effector (robot hand or foot) is attached to the Nth
link. Furthermore, we will assume that the forward kinematics have been
calculated and the position and attitude of each link is already stored (jth
link has pj , Rj).

WΣ

1p

2p

Np1
Wa

2
Wa

2N −p p

3
Wa

2±q

1
W

N −a

W
Na

(2) (2),N N± ±p µ

Fig. 2.30 Calculating the Jacobian: We consider the motion of the end effector
that results from minute movements in each joint.

In this chain of links, let us assume we kept all the joints fixed except for
the 2nd joint, which we turned by a small angle, δq2. The amount of the end

effector (link N)’s position changed(δp
(2)
N ), and the amount the attitude of

the end effector changed (δθ
(2)
N ) can be calculated by

function J = CalcJacobian(idx)

global uLINK

jsize = length(idx);

target = uLINK(idx(end)).p; % absolute target position

J = zeros(6,jsize);

for n=1:jsize

j = idx(n);

mom = uLINK(j).mother;

a = uLINK(mom).R * uLINK(j).a; % joint axis in world frame

J(:,n) = [cross(a, target - uLINK(j).p) ; a ];

end

Fig. 2.31 CalcJacobian.m: Calculation of Jacobian
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{
δp

(2)
N = Wa2 × (pN − p2)δq2

δθ
(2)
N = Wa2δq2

where Wa2 is the unit vector for the second joint axis with respect to the
world frame

Wa2 = R1a2.

If we apply the same procedure on all the links from the 1st to the Nth
and calculate their sum, we may obtain the change that occurs when all the
joints are rotated by a small amount

{
δpN =

∑N
j=1 δp

(j)
N

δθN =
∑N

j=1 δθ
(j)
N

. (2.72)

We can rewrite the above as a matrix to obtain

[
δpN

δθN

]
=

[
Wa1 × (pN−p1) . . .

WaN−1 × (pN−pN−1) 0
Wa1 . . . WaN−1

WaN

]
⎡
⎢⎢⎢⎣

δq1
δq2
...

δqN

⎤
⎥⎥⎥⎦ .

(2.73)
In other words, the Jacobian J can be described by

J ≡
[
Wa1 × (pN−p1)

Wa2 × (pN−p2) . . .
WaN−1 × (pN−pN−1) 0

Wa1
Wa2 . . . WaN−1

WaN

]
.

(2.74)

This procedure implemented as a Matlab program is shown in Fig. 2.31.

2.5.6 Jacobian and the Joint Velocity

The relationship between the joint velocity and the end effector velocity is
obtained by dividing (2.70) by a small time period δt

1

δt

[
δp
δθ

]
= J

δq

δt
.

Therefore, the joint speed q̇ and the end effector speed (v,ω) are associated
by the following [

v
ω

]
= J q̇. (2.75)

Note that this is the case when the body link is fixed in the space. If the
body link has its own speed as (vB ,ωB), we must use (see Section 2.3)
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[
v
ω

]
= J q̇ +

[
vB + ωB × (p− pB)

ωB

]
. (2.76)

In the following discussion, however, we assume the body link is fixed in
the space for the sake of simplicity. We can calculate the joint speed which
realize the tip speed (v,ω) by the transformation of (2.75)

q̇ = J−1

[
v
ω

]
. (2.77)
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Fig. 2.32 Non-singular posture and singular posture

Let us calculate the joint speed for the two postures in Fig.2.32(a). First
we set up all geometric information of the robot on Matlab command line,
then use FindRoute() to find the path from the body to the right foot. Then
the joint angles are set by using SetJointAngles() such that right hip pitch,
knee pitch, and angle pitch angles to be (−30, 60,−30) deg and 0 degs for
other joints. We can calculate the Jacobian by the following inputs.

>> SetupBipedRobot;

>> idx = FindRoute(RLEG_J5);

>> SetJointAngles(idx,[0 0 -pi/6 pi/3 -pi/6 0])

>> J = CalcJacobian(idx);

Suppose we want to let the foot lift vertically with 0.1m/s, then the joint
speeds can be obtained by (2.77).
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>> dq = J \ [0 0 0.1 0 0 0]’

dq =

0

0

-0.3333

0.6667

-0.3333

0

From this result, we see the joint speeds for the hip pitch, knee pitch and
ankle pitch are (−0.3333, 0.6667,−0.3333) rad/s.

Let us try the same calculation for Fig.2.32(b) whose knee is fully stretched.
For this purpose, we give zeros for all joint angles of right leg, calculate
Jacobian, and obtain the joint speeds.

>> SetJointAngles(idx,[0 0 0 0 0 0])

>> J = CalcJacobian(idx);

>> dq = J \ [0 0 0.1 0 0 0]’

Warning: Matrix is singular to working precision.

dq =

NaN

NaN

NaN

-Inf

Inf

0

In this case, we have gotten an warning message “Matrix is singular to
working precision.” and obtained a joint speed vector consisting NaN (Not
a number) and Inf (Infinity). Thus the calculation collapses at the singular
pose of Fig.2.32(b), where the knee is fully stretched20. This happens because
a robot can never move its foot vertically by applying any joint speeds at this
configuration. A robot pose of such condition is called a singular posture.
Let us observe what happens to an inverse calculation of the Jacobian at this
singular posture.

>> J^(-1)

Warning: Matrix is singular to working precision.

ans =

Inf Inf Inf Inf Inf Inf

Inf Inf Inf Inf Inf Inf

Inf Inf Inf Inf Inf Inf

Inf Inf Inf Inf Inf Inf

Inf Inf Inf Inf Inf Inf

Inf Inf Inf Inf Inf Inf

20 The robot joints can go out of control by illegal commands like NaN and Inf.
Thus we must have warning and errors, but also take care to avoid implementing
control commands with such illegal commands.
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Fig. 2.33 Singular posture examples. In these postures there exist directions in
which the end point cannot move (shown with arrows). In these cases the Jacobian
inverse cannot be solved.

2.5.7 Singular Postures

Examples of singular postures are shown in Fig. 2.33. They are (a) the con-
figuration with fully stretched knees as already explained in the previous
subsection, (b) the pose where the hip yaw axis and the ankle roll axis are
aligned, and (c) the pose where the hip roll axis and the ankle roll axis are
aligned.

When a robot is in a singular posture, the Jacobian becomes a singular
matrix and we cannot calculate its inverse. Let us check this for the case of
Fig. 2.33(b).

>> SetupBipedRobot;

>> idx = FindRoute(RLEG_J5);

>> SetJointAngles(idx,[0 0 -pi/6 pi/3 pi/3 0])

>> J = CalcJacobian(idx);

>> J^(-1)

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 3.760455e-17B

ans =

1.0e+15 *

0 -8.7498 0 4.5465 0 0.0000

0 0.0000 0 0.0000 0 0.0000

-0.0000 0 -0.0000 0 0.0000 0

0.0000 0 0.0000 0 0.0000 0

0.0000 0 -0.0000 0 0.0000 0

0 -8.7498 0 4.5465 0 -0.0000

>> det(J)

ans =

8.9079e-18



2.5 Kinematics of a Humanoid Robot 63

>> rank(J)

ans =

5

At the inverse calculation, we have got a warning message and a meaningless
result with unrealistically huge (≈ 1015) components due to numerical errors.
From the same reason, the determinant is a very small value (≈ 10−17) while
it should be zero for a singular matrix. Finally, the rank of the Jacobian is
five, which indicates the matrix singularity.

2.5.8 Inverse Kinematics with Singularity Robustness

The Newton-Raphson method of Section 2.5.4 does not work correctly around
singular postures because of numerical instability. Let us observe it.
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Fig. 2.34 Inverse kinematics by Newton-Raphson method around a singular con-
figuration

In Fig. 2.34, joint angles were calculated for letting the right foot move
forward from a non-singular pose by using Newton-Raphson method. The
right graph shows the hip pitch, the knee pitch, and the ankle pitch angles at
the given target foot position. Analytical solutions are shown by dotted lines
for comparison. The foot position reached the singularity at the vertical chain
line, then the numerical results started to vibrate and went off the chart (for
example, the knee angle reaches over 8000 deg).

Now, let consider again the relationship between joint speed and end-
effector velocity given by
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ẋ = Jq̇.

Here ẋ is a six dimension vector for the target velocity of the end-effector. Let
us introduce an error vector e since this equality will no longer be satisfied
at singularity.

e := ẋ− Jq̇. (2.78)

We can always make the error e as small as possible, while it cannot reach
zero in general. For this purpose, we define a cost function

E(q̇) =
1

2
eTe. (2.79)

If q̇ minimizes E(q̇), we will have,

∂E(q̇)

∂q̇
= 0. (2.80)

By substituting (2.78) and (2.79), we get

∂E(q̇)

∂q̇
= −JT ẋ+ JTJq̇ = 0. (2.81)

Therefore, q̇ to minimize E(q̇) is obtained by

q̇ = (JTJ)−1JT ẋ. (2.82)

Unfortunately, we cannot use this at singularity because,

det(JTJ) = det(JT ) det(J) = 0.

This means the inverse at the right side of (2.82) is not solvable.
Now, we slightly modify the cost function.

E(q̇) =
1

2
eTe+

λ

2
q̇T q̇ (2.83)

This evaluates the joint speed magnitude as well as the end-effector speed
error. The joint speed is accounted by increasing the positive scalar λ. Again,
by substituting (2.78) and (2.79), we get

∂E(q̇)

∂q̇
= −JT ẋ+ (JTJ + λE)q̇ = 0, (2.84)

where E is an identity matrix of the same size of JTJ . The cost E(q̇) is
minimized by

q̇ = (JTJ + λE)−1JT ẋ. (2.85)
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Even at singularity where det(J) = 0, we can always solve the above equation
by using proper λ. Let us define a new matrix.

q̇ = J#λẋ

J#λ := (JTJ + λE)−1JT . (2.86)

The matrix J#λ is called an SR inverse21.
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Fig. 2.35 Stable inverse kinematics calculation by SR inverse(Levenberg-
Marquardt method)

By using SR inverse matrices, we can guarantee stable calculation of inverse
kinematics at singularity. Figure 2.35 presents the robust and stable inverse
kinematics calculation covering singularity and Fig. 2.36 shows its algorithm.
To realize fast and robust calculation, the parameter λ should be modified
based on the level of convergence. In this algorithm, we adopted a method
proposed by Sugihara [124].

Similar optimization problems frequently appear in computer vision and
machine learning. An iteration algorithm using SR inverse matrices are gen-
erally recognized as a version of Levenberg-Marquardt method [135].

2.5.9 Appendix: Supplementary Functions

The functions below are required in Section 2.5.4 and the succeeding subsec-
tions to calculate the numerical solution to the Inverse Kinematics and the
Jacobian.

21 SR stands for Singularity-Robust [138]. It is also called Damped Least-Square
(DLS) Inverse [135].



66 2 Kinematics

function err_norm = InverseKinematics_LM(to, Target)

global uLINK

idx = FindRoute(to);

wn_pos = 1/0.3; wn_ang = 1/(2*pi);

We = diag([wn_pos wn_pos wn_pos wn_ang wn_ang wn_ang]);

Wn = eye(length(idx));

ForwardKinematics(1);

err = CalcVWerr(Target, uLINK(to));

Ek = err’*We*err;

for n = 1:10

J = CalcJacobian(idx);

lambda = Ek + 0.002;

Jh = J’*We*J + Wn*lambda; %Hk + wn

gerr = J’*We*err; %gk

dq = Jh \ gerr; %new

MoveJoints(idx, dq);

err = CalcVWerr(Target, uLINK(to));

Ek2 = err’*We*err;

if Ek2 < 1E-12

break;

elseif Ek2 < Ek

Ek = Ek2;

else

MoveJoints(idx, -dq); % revert

break,

end

end

Fig. 2.36 InvserseKinematics LM.m Inverse kinematics algorithm to handle
singularities

function idx = FindRoute(to)

global uLINK

i = uLINK(to).mother;

if i == 1

idx = [to];

else

idx = [FindRoute(i) to];

end

Fig. 2.37 FindRoute.m Find a route from the body to the target link
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function SetJointAngles(idx, q)

global uLINK

for n=1:length(idx)

j = idx(n);

uLINK(j).q = q(n);

end

ForwardKinematics(1);

Fig. 2.38 SetJointAngles.m Set joint angles along the specified indexes

function err = CalcVWerr(Cref, Cnow)

perr = Cref.p - Cnow.p;

Rerr = Cnow.R^-1 * Cref.R;

werr = Cnow.R * rot2omega(Rerr);

err = [perr; werr];

Fig. 2.39 CalcVWerr.m Function to calculate the amount of error in the position
and attitude

function w = rot2omega(R)

el = [R(3,2)-R(2,3); R(1,3)-R(3,1); R(2,1)-R(1,2)];

norm_el = norm(el);

if norm_el > eps

w = atan2(norm_el, trace(R)-1)/norm_el * el;

elseif R(1,1)>0 && R(2,2)>0 && R(3,3)>0

w = [0 0 0]’;

else

w = pi/2*[R(1,1)+1; R(2,2)+1; R(3,3)+1];

end

Fig. 2.40 rot2omega.m Transform rotation matrix into the corresponding angular
velocity vector (2.39)



Chapter 3

ZMP and Dynamics

The main topic of this section is the physics of the robot while that of the
foregoing chapter being the geometry.

We first show a method for measuring the ZMP which is an important
physical quantity for humanoid robots. Then we show a method for calculat-
ing the ZMP for a given motion of a humanoid robot. Lastly, we explain a
certain mistake on the ZMP and cases which cannot be handled by using the
ZMP.

3.1 ZMP and Ground Reaction Forces

The base of an industrial robot is fixed to the ground while the sole of a
humanoid robot is not fixed and just contacts with the ground. Because of
this, although the industrial robots can move freely within the joint movable
range, the humanoid robot has to move with keeping the difficult condition of
maintaining contact between the sole and the ground. Here, given a motion
of a humanoid robot, we need to judge whether or not the contact can be
maintained between the sole and the ground. Also, we need to plan a motion
of a humanoid robot maintaining contact between the sole and the ground.
We usually use the ZMP for these kinds of purposes.

3.1.1 ZMP Overview

1 Definition of ZMP

In 1972, Vukobratović and Stepanenko defined the Zero-Moment Point
(ZMP) at the beginning of the paper on control of humanoid robots1.
Everything of the argument regarding the ZMP starts from here.

1 We can find the same definition in the book [81]. Later, some delicate aspects of
the ZMP definition were discussed by Vukobratović and Borovac [88].

S. Kajita et al., Introduction to Humanoid Robotics, 69
Springer Tracts in Advanced Robotics 101,
DOI: 10.1007/978-3-642-54536-8_3, c© Springer-Verlag Berlin Heidelberg 2014
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Fig. 3.1 Definition of Zero-Moment Point (ZMP) [90]

In Fig. 3.1 an example of force distribution across the foot is given. As the
load has the same sign all over the surface, it can be reduced to the resultant
force R, the point of attack of which will be in the boundaries of the foot.
Let the point on the surface of the foot, where the resultant R passed, be
denoted as the zero-moment point, or ZMP in short.

2 ZMP and Support Polygon

(a) Full contact of both feet (b) Partial contact

Fig. 3.2 Support Polygon

We explain the support polygon which is another important concept re-
lated to the ZMP. As shown in Fig. 3.2, let us consider the region formed
by enclosing all the contact points between the robot and the ground by
using an elastic cord braid. We call this region as the support polygon.
Mathematically the support polygon is defined as a convex hull, which is the
smallest convex set including all contact points. Definitions of the convex set
and the convex hull are explained in the appendix of this chapter.

Rather than detailed discussions, we first show a simple and important
relationship between the ZMP and the support polygon, i.e.,
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The ZMP always exists inside of the support polygon.

Here, Vukovratović originally stated “the point which exists inside the bound-
ary of the foot.” In order to illustrate this more concretely, consider the im-
ages in Fig.3.3 illustrating the relationship among the center of mass (CoM),
ZMP and the support polygon while a human stands on the ground. We call
the ground projection of CoM the point where the gravity line from the
CoM intersects the ground. As shown in Fig. 3.3(a), when a human stands
on the ground, the ZMP coincides with the ground projection of CoM. In
such a case, a human can keep balance if the ground projection of CoM is
included strictly inside of the support polygon. On the other hand, when a
human moves dynamically as shown in Fig. 3.3(b), the ground projection of
CoM may exist outside the support polygon. However, the ZMP never exists
outside the support polygon. In the following, we will explain the reason why
the ZMP is always included in the support polygon.

ZMP

Support polygon

(a)A standing human (b)A human in action

CoM

Fig. 3.3 CoG, ZMP, and Support Polygon

3.1.2 2D Analysis

1 ZMP in 2D

In Fig. 3.1, although only the vertical component of the ground reaction
force is shown, the horizontal component of it also exists due to the friction
between the ground and the soles of the feet.

In Fig. 3.4(a) and (b), we separately show the vertical componentρ(ξ) and
the horizontal component σ(ξ) of the ground reaction force per unit length
of the sole. These forces simultaneously act on a humanoid robot.
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21 21

(a) Vertical force (b) Horizontal force

Fig. 3.4 Ground Reaction Force of 2D Model

Let us replace the forces distributed over the sole by a equivalent force and
moment at a certain point in the sole. The force (fx and fz) and the moment
(τ(px)) at the point px in the sole can be expressed by

fx =

∫ x2

x1

σ(ξ)dξ (3.1)

fz =

∫ x2

x1

ρ(ξ)dξ (3.2)

τ(px) = −
∫ x2

x1

(ξ − px)ρ(ξ)dξ. (3.3)

21

τ

Fig. 3.5 Ground Reaction Forces and their Equivalent Force and Moment

Focusing on (3.3) with respect to the moment, let us consider the point
px where moment becomes zero. Considering τ(px) = 0 for (3.3), px can be
obtained as follows:

px =

∫ x2

x1
ξρ(ξ)dξ∫ x2

x1
ρ(ξ)dξ

. (3.4)

Here, ρ(ξ) is equivalent to the pressure since it is the vertical component of
forces per unit length. Thus, px defined in (3.4) is the center of pressure
and is the ZMP defined in the previous section. For 2D cases, since the ZMP
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is a point where the moment of the ground reaction force becomes
zero, it has become the origin of the name.

2 Region of ZMP in 2D

Generally speaking, since the vertical component of the ground reaction force
does not become negative unless magnets or suction cups are attached at the
sole,

ρ(ξ) ≥ 0.

Substituting this relationship into (3.4), we obtain

x1 ≤ px ≤ x2. (3.5)

Equation (3.5) means that the ZMP is included in the segment of contact
between the sole and the ground and does not exist outside it.

21 21 1 2

(a)Almost flat (b)Biased distribution (c)Concentrate at tiptoe

Fig. 3.6 ZMP and Pressure Distribution

Figure 3.6 shows the relationship between the pressure distribution and the
position of the ZMP. As shown in (a), when the reaction force is distributed
over the sole almost equally, the ZMP exists at the center of the sole. On the
other hand, as shown in (b), when the distribution is inclined to the front
part of the sole, the ZMP exists at the front part of the sole. Furthermore,
as shown in (c), when a point at the toe supports all the reaction forces, the
ZMP also exists at the toe. In this case, since the surface contact between the
sole and ground is not guaranteed any longer, the foot begins to rotate about
the toe by only a slight external disturbance applied to the robot. To reduce
the danger of falling down when a humanoid robot moves, it is desirable to
have the ZMP located inside of the support polygon while maintaining a
certain margin from the end.

3.1.3 3D Analysis

We now extend the concept of the ZMP to 3D cases.
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1 Ground Reaction Force in 3D

Let us consider the ground reaction force applied to the robot moving in
3D space from the flat ground. The horizontal component and the vertical
component of the ground reaction forces are shown in Figs. 3.7(a) and (b),
respectively. In actual situations, the sum of these two components is applied
to the robot at the same time.

(a) Vertical reaction forces (b) Horizontal reaction forces

Fig. 3.7 Ground Reaction Force in 3D

Let r = [ξ η 0]T be the position vector defined on the ground. Also, let
ρ(ξ, η) be the vertical component of the ground reaction force applied at a
unit area. The sum of the vertical component of ground reaction force is
expressed as

fz =

∫

S

ρ(ξ, η)dS, (3.6)

where
∫
S
denotes the area integration at the contact between the sole and

the ground. The moment τn(p) of the ground reaction force about a point
p = [px py 0]T can be calculated as

τn(p) ≡ [τnx τny τnz]
T (3.7)

τnx =

∫

S

(η − py)ρ(ξ, η)dS (3.8)

τny = −
∫

S

(ξ − px)ρ(ξ, η)dS (3.9)

τnz = 0.

As well as the 2D cases, assuming

τnx = 0 (3.10)

τny = 0 (3.11)

for (3.8) and (3.9), the point where the moment of the vertical component of
the ground reaction force becomes zero can be expressed as
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px =

∫
S ξρ(ξ, η)dS∫
S
ρ(ξ, η)dS

(3.12)

py =

∫
S ηρ(ξ, η)dS∫
S ρ(ξ, η)dS

. (3.13)

Since ρ(ξ, η) is equivalent to the pressure over the surface of the sole, the
point p is the center of perssure or in other word, ZMP.

On the other hand, let us consider the effect of the horizontal component
of the ground reaction force. Let σx(ξ, η) and σy(ξ, η) be the x and y com-
ponents, respectively, of the horizontal ground reaction forces. The sum of
them can be expressed as

fx =

∫

S

σx(ξ, η)dS (3.14)

fy =

∫

S

σy(ξ, η)dS. (3.15)

The moment τ t(p) of the horizontal ground reaction force about a point p
on the ground surface is expressed as

τ t(p) ≡ [τtx τty τtz]
T (3.16)

τtx = 0

τty = 0

τtz =

∫

S

{(ξ − px)σy(ξ, η)− (η − py)σx(ξ, η)}dS.

These equations mean that the horizontal ground reaction forces generate
the vertical component of the moment.

From the above discussions, we can see that, as shown in Fig. 3.8, the
ground reaction forces distributed over the surface of the sole can be replaced
by the force

f = [fx fy fz]
T ,

and the moment

τ p = τn(p) + τ t(p)

= [0 0 τtz]
T ,

about the ZMP p. When a robot moves, τtz = 0 is not generally satisfied.
Thus, the ZMP is not a point where all components of the moment becomes
zero for 3D cases. The ZMP is defined as the point where the horizontal
component of the moment of the ground reaction forces becomes
zero for 3D cases.
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τ tz

Fig. 3.8 Ground Reaction Forces and Equivalent Force and Moment for 3D
Models

2 Region of ZMP in 3D

Let us define the region of the ZMP for 3D cases. For simplicity, we consider
the ground reaction forces f i = [fix fiy fiz ]

T acting at the discretized points
pi ∈ S (i = 1, · · · , N) as shown in Fig. 3.9. This approximation becomes
more exact as the number of discretized points increases.

N

1

1

N

τ

2

x
y

z

i

Fig. 3.9 Force/Moment at the ZMP Expressed by Forces at Discretized Points

Next, distributed N force vectors are replaced by a force and a moment
vectors acting at the point p as

f =
N∑
i=1

f i (3.17)

τ (p) =

N∑
i=1

(pi − p)× f i. (3.18)

The position of the ZMP can be obtained by setting the first and the second
elements of (3.18) be zero. This yields
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p =

∑N
i=1 pifiz∑N
i=1 fiz

. (3.19)

For ordinary humanoid robots without magnets or suction cups at the
sole, the vertical component of the ground reaction forces becomes zero for
all discretized points, i.e.,

fiz ≥ 0 (i = 1, · · · , N). (3.20)

Here, introducing the new variables αi = fiz/
∑N

j=1 fjz , we obtain

{
αi ≥ 0 (i = 1, · · · , N)∑N

i=1 αi = 1.
(3.21)

Rewriting (3.19) by using αi, the region of the ZMP can be expressed as

p ∈
{

N∑
i=1

αipi

∣∣∣∣∣ pi ∈ S (i = 1, · · · , N)

}
. (3.22)

By comparing (3.21) and (3.22) with the definition of convex hull (3.90) in
section 3.6, we can see that the ZMP is included in the convex hull of the set
S, in other words, the support polygon.

3.2 Measurement of ZMP

This section explains methods for measuring the position of the ZMP by using
several sensors attached at the feet of a humanoid robot. For a biped walking
robots to measure the position of the ZMP, we should consider two cases, i.e.,
(1) the ZMP of each foot considering the reaction force between either
one of the feet and the ground, and (2) the ZMP considering the reaction
force between both feet and the ground. During the double support phase,
these two ZMPs becomes different.

3.2.1 General Discussion

Let us consider the model shown in Fig. 3.10. In this model, there are two
rigid bodies contacting each other where one of them also contacts the ground.
The forces and moments applied by one rigid body to the other are measured
at multiple points. This model imitates the foot of a humanoid robot. When
the robot moves and the foot is forced on the ground, the output of the
force/torque sensor at the foot is generated. By using this sensor information,
the position of the ZMP is measured.
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τ

Fig. 3.10 Definition of Variables with respect to the Position and the Output of
Force/Torque Sensors

Let us assume that, at the points pj (j = 1, · · · , N) with respect to the
reference coordinate system, the forces f j and moments τ j are measured.

Here, the moment about the point p = [px py pz]
T is

τ (p) =
N∑
j=1

(pj − p)× f j + τ j . (3.23)

The position of the ZMP can be obtained by setting the x and y components
of (3.23) be zero and by solving for px and py as

px =

∑N
j=1 {−τjy − (pjz − pz)fjx + pjxfjz}∑N

j=1 fjz
(3.24)

py =

∑N
j=1 {τjx − (pjz − pz)fjy + pjyfjz}∑N

j=1 fjz
(3.25)

where

f j = [fjx fjy fjz ]
T

τ j = [τjx τjy τjz ]
T

pj = [pjx pjy pjz ]
T .

Equations (3.24) and (3.25) are the basis for measuring the position of the
ZMP2.

2 When a foot does not contact the ground, the ZMP position cannot be deter-
mined since the denominators of (3.24) and (3.25) become zero. Therefore, when
measuring the ZMP, we have to introduce a threshold and set px = py = 0 when
the denominator is less than the threshold.
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3.2.2 ZMP of Each Foot

First, focusing on the contact between one foot and the ground, we measure
the ZMP.

1 Measurement Using 6 Axis Force/Torque Sensor

Figure 3.11 shows the foot of the humanoid robot HRP-2 [65]. The ground
reaction force applied to the sole is transmitted to the sensor mount through
rubber bushes and dampers. A 6 axis force/torque sensor is attached at the
sensor mount, and the force is transmitted to the ankle of the robot through
this sensor. The rubber bushes and the dampers are positioned to prevent
large impulse forces from being transmitted to the robot. Since the displace-
ment of them is small, we do not consider the displacement when calculating
the ZMP.

A 6 axis force/torque sensor is coordinated to simultaneously measure the
force f = [fx, fy, fz] and the moment τ = [τx τy τz] applied from outside the
robot. This sensor is mainly used for measuring the force at the end effector
of industrial robots. An example of 6 axis force/torque sensor is shown in
Fig. 3.12. To measure the ZMP of a humanoid robot, the force/torque sensor
must be light and must be strong enough to accept the large impulsive force
applied to the sensor.

To obtain the ZMP from the measured data of 6 axis force/torque sensor,
we set N = 1 in (3.24) and (3.25).

Let the position of the ZMP in the right and the left foot be pR and pL,
respectively, as shown in Fig. 3.13. Especially when the center of measurement

z

yx

Impact absorbing 

rubber

Foot sole

Damper

Adaptor for six-axis 

force sensor

Rubber bush

Frame

Fig. 3.11 Foot of HRP-2 [65].
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Fig. 3.12 An Example of 6 Axis Force/Torque Sensor (courtesy of Nitta Corp.)

Foot

6DOF Force/Torque Sensor

d

Fig. 3.13 Definition of Variables for Calculation of ZMP by 6 Axis Force/Torque
Sensor

of the sensor lies on the z axis of the reference coordinate system, the position
of the ZMP of each foot can be obtained very simply. For the right foot,

pRx = (−τ1y − f1xd)/f1z (3.26)

pRy = (τ1x − f1yd)/f1z (3.27)

where

pR = [pRx pRy pRz ]
T

p1 = [0 0 d]
T
.

2 Measurement of ZMP by Multiple Force Sensors

Next, we explain the method to measure the ZMP by using multiple force
sensors. Fig. 3.14 shows the humanoid robot H5 [70]. To make the foot light,
the ZMP is measured by using twelve force sensing registers: FSR and
sorbothane sandwiched by two aluminum planes (Fig. 3.14(b)). Since the
electric resistance changes according to the applied force, the FSR can be
used as a one dimensional force sensor to measure the vertical component
of ground reaction force.
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FSR SOR B O
T HA NE

(a) H5 (b) Foot design of H5

Fig. 3.14 Humanoid Robot H5 and its Foot
(Courtesy of Dept. of Mechano-Informatics, The Univ. of Tokyo)

To measure the ZMP, the x and y components of the force are set to be 0
in (3.24) and (3.25). As shown in Fig.3.15, when there are N one-dimensional
force sensors, the ZMP can be obtained by

px =

∑N
j=1 pjxfjz∑N
j=1 fjz

(3.28)

py =

∑N
j=1 pjyfjz∑N
j=1 fjz

. (3.29)

Foot

1 DOF Force Sensor

1

Fig. 3.15 Definition of Variables for Calculation of ZMP by Multiple 1 Axis Force
Sensor

Figure 3.16 shows the humanoid robot Morph3 and its foot [129, 120].
Morph3 measures the ZMP by using four 3 axis force sensors attached at
each foot (Fig. 3.16(b)). The 3 axis force sensor measures the 3 dimensional
forces applied to the sole split into four parts. By using this measuring system,
we can obtain measurement on the point of contact. To calculate the ZMP
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3 axes force

sensors

Sole

Top View

Front View

(a) morph3 (b) Foot design of morph3  

Note:"morph3" was co-developed by ERATO Kitano Symbiotic Systems Project of the Japan

Science and Technology Agency and Leading Edge Design. The research and development of

morph3 is currently on-going at the Future Robotics Technology Center (fuRo) of Chiba

Institute of Technology, to which the core researchers transferred to as of June 1st 2003.

Fig. 3.16 Humanoid Robot Morph3 and its Foot

of each foot, the element of moment, τjx and τjy , in (3.24) and (3.25) are set
to be zero.

3.2.3 ZMP for Both Feet Contact

Until the previous section, the position of the ZMP of each foot can be
obtained as pR and pL. The ground reaction forces fR and fL are also
obtained from the sensor information. By using this information, we calculate
the ZMP in the case where both feet are in contact with the ground. By using
(3.24) and (3.25), the ZMP can be obtained as

px =
pRxfRz + pLxfLz

fRz + fLz
(3.30)

py =
pRyfRz + pLyfLz

fRz + fLz
(3.31)

where

fR = [fRx fRy fRz]
T

fL = [fLx fLy fLz]
T

pR = [pRx pRy pRz ]
T

pL = [pLx pLy pLz]
T .

During the single support phase, since the vertical component of the
ground reaction force becomes zero, the ZMP calculated using (3.30) and
(3.31) coincides with the ZMP of the supporting foot. This yields
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Foot
R ight L eft

Foot

Fig. 3.17 Definition of Variables for ZMP for Both Feet Contact

[px py pz]
T =

{
[pRx pRy pRz]

T for support of right foot
[pLx pLy pLz]

T for support of left foot.
(3.32)

We conclude this section stating that, when we consider the balance of
a humanoid robot, we can use (3.30) and (3.31) taking the both feet into
account regardless of the supporting foot.

3.3 Dynamics of Humanoid Robots

From the previous discussion, we can express the ground reaction force acting
upon a humanoid robot by using the ZMP, the linear force, and the moment
about a vertical line passing the ZMP. In this section, we discuss the rela-
tionship between the ground reaction force and the robot’s motion. After
showing basic equations, we explain the principle of it. Lastly, we show some
calculation algorithms.

3.3.1 Humanoid Robot Motion and Ground Reaction
Force

1 Basic Physical Parameters

Let us consider a humanoid robot with arbitrary structure. While it can be
composed of metal, plastic, and ceramics etc., we assume that we can clearly
identify between the robot and other things. We can define the following ten
physical parameters classified into four groups:

Mass: Total Robot’s mass. M [kg]
Center of Mass: Robot’s center of mass. c ≡ [x y z]T [m]
Momentum: Measure of an robot’s translational motion3.
P ≡ [Px Py Pz]

T [Ns]

3 We often call it the linear momentum to distinguish it from the angular momen-
tum.
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Angular Momentum: Measure of robot’s rotational motion about the
origin. L ≡ [Lx Ly Lz]

T [Nms]

We will make clear what the momentum P and the angular momentum L are
subsequently. The dynamics gives laws to these physical quantities. And, its
principle is expressed by the following three equations:

ċ = P/M

Ṗ = fall

L̇ = τ all.

We will explain the meaning of each equation.

2 Dynamics of Translational Motion

The first equation with respect to the translational motion gives the relation-
ship between the velocity of the mass center and the momentum

ċ = P/M. (3.33)

Conversely, we can see from this equation that the momentum is (total
mass)×(velocity of mass center). The second equation with respect to the
translational motion shows how the momentum changes according to the
external forces

Ṗ = fall. (3.34)

where fall denotes the sum of the forces applied to the robot from outside it.
Since the unit of force is [N], we can see from this equation that the unit of
momentum is [Ns]4. Newton’s second law of motion described in “Principia
Mathematica Philosophiae Naturalis” was originally expressed in the style of
(3.34). The familiar relationship between the force and acceleration can be
obtained by deleting P from (3.34) and (3.33).

Let us consider the force applied from outside the robot. The gravitational
force is equally applied to all the components of the robot, and its sum can
be regarded as the force Mg applied at the robot’s center of mass c. Here,
g denotes the gravitational acceleration vector where it is [0 0 − 9.8]T

[m/s2] on the Earth, [0 0 − 1.7]T on the Moon, and and [0 0 − 3.6]T on
Mars. Since the gravitational force is always applied regardless of the robot’s
motion, it is treated separately from other forces,

fall = Mg + f .

4 Let’s confirm that it is coincides with the unit [kgm/s] obtained by mass×velocity.
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While f denotes the force other than the gravity, we consider it as the ground
reaction forces5. Therefore, the equation of translational motion can be ob-
tained by

Ṗ = Mg + f . (3.35)

When a robot stands still, the change of momentum is 0 since the gravita-
tional force balances with the ground reaction force. If the ground reaction
force disappears, the robot’s momentum increases rapidly downward due to
gravity. This is free fall.

3 Dynamics of Rotational Motion

We have the following equation with respect to the rotational motion

L̇ = τ all. (3.36)

This equation shows that the angular momentum changes according to the
sum of the moments, τ all applied from the outside the robot. Since the unit
of the moment is [Nm], we can see from this equation that the unit of angular
momentum is [Nms].

Among the moments applied to the robot, the moment generated by the
gravitational force is given by

τ g = c×Mg.

Let τ be the moment without the gravity effect. The total moment applied
to the robot is given by

τ all = c×Mg + τ .

The equation of rotational motion about the origin can be expressed
as follows:

L̇ = c×Mg + τ . (3.37)

As the moment τ , we consider only the ground reaction moment ap-
plied on the robot. For a robot to stand still, the moment should balance with
the gravitational force. If the ground reaction moment does not balance, the
angular momentum rapidly increases. This is the fall.

3.3.2 Momentum

1 Center of Mass

No matter how complicated a robot structure has, it is ultimately a collection
of atoms. Let us assume that a humanoid robot is composed of N points of

5 As another examples of f , we can consider the reaction force by pushing an
object and the drag at the time of a wind blowing.
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mass. Let mi be the mass of the i-th point. The total mass of the robot is
given by

M =

N∑
i=1

mi.

Let pi be the position of the i-th mass point. The position of the robot’s
center of mass is given by

c =

N∑
i=1

mipi/M. (3.38)

Differentiating the above equation yields

ċ =

N∑
i=1

miṗi/M (3.39)

where miṗi is the momentum of the i-th mass point. As a sum of the mo-
mentum of the individual point masses, the total momentum of the robot is
expressed by

P =

N∑
i=1

miṗi. (3.40)

Here, (3.33) in the previous section can be obtained from (3.39) and (3.40).

ċ = P/M.

2 Dynamics of Momentum

We will derive the dynamics of the robot’s momentum. The equation of mo-
tion of the i-th point mass is given by

mip̈i =

N∑
j=1

f int
ij + fext

i (3.41)

where f int
ij and fext

i denote the force applied to the i-th point mass from the
j-th one and the force applied to the i-th point mass from the outside the
robot. However, due to the law of action and reaction, we obtain

f int
ij = −f int

ji (i �= j).

We note that, since the force applied by the i-th object from itself is zero, we
have f int

ii = 0.
Taking the above relationship into consideration and summing (3.41) for

all point masses of the robot, the force applied to one point mass from another
one is canceled,
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N∑
i=1

mip̈i =

N∑
i=1

fext
i . (3.42)

Equation (3.34) in the previous section can be obtained by using
∑N

i=1 mip̈i =

Ṗ and replacing the sum of the external forces by
∑N

i=1 f
ext
i = fall

Ṗ = fall.

We confirmed that the robot’s momentum does not depend on the internal
forces but depend on the external forces. We note that, without depending on
the robot’s structure, this equation can be always satisfied even if the robot
is composed of flexible materials or liquids.

3.3.3 Angular Momentum

1 Angular and Linear Momentum

L

L

O p
m

m= vP

Fig. 3.18 Relationship between Linear and Angular Momentum L = p× P

As shown in Fig. 3.18, the angular momentum of the i-th point mass about
the origin is defined by

Li = pi × Pi. (3.43)

We should take notice for the following two remarks.

• The angular momentum is a vector and is expressed by an arrow in the
three dimensional space6.

• The angular momentum is not only a property for rotational motion. For
example, by using the above equation, we can calculate the angular mo-
mentum of a point mass moving straight with constant speed. In such
a case, the angular momentum keeps constant (Conservation of angular
momentum).

6 As well as the angular velocity, it is a pseudo vector.
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Let us consider an arbitrary reference point expressed by a vector r other
than the origin. Let L(r) be the angular momentum about the reference point.
The angular momentum of the i-th point mass about the reference point is
given by

L(r)
i = (pi − r)× Pi. (3.44)

The total momentum of the robot about the reference point is

L(r) =

N∑
i=1

(pi − r)× Pi

=

N∑
i=1

pi × Pi − r ×
N∑
i=1

Pi.

Therefore,
L(r) = L − r × P . (3.45)

For example, this equation can be used when we calculate the angular mo-
mentum of the robot about the center of mass.

2 Dynamics of Angular Momentum

Now we obtain the dynamics of angular momentum. Differentiating (3.43)
with respect time yields

L̇i = ṗi × Pi + pi × Ṗi

= ṗi × (miṗi) + pi ×mip̈i.

Since the first term of the right-hand side is 0, we obtain

L̇i = pi ×mip̈i (3.46)

Substituting the equation of motion (3.41) in the previous section into (3.46),
we obtain

L̇i = pi × (
N∑
j=1

f int
ij + f ext

i )

=

N∑
j=1

pi × f int
ij + pi × fext

i . (3.47)

Since the total angular momentum is the sum of that of point masses

L̇ =

N∑
i=1

N∑
j=1

pi × f int
ij +

N∑
i=1

pi × f ext
i . (3.48)
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where the first term of the right-hand side is expressed by

pi × f int
ij + pj × f int

ji = (pi − pj)× f int
ij = rij × f int

ij , (3.49)

where rij denotes the vector from the j-th point mass to the i-th one. Gen-
erally speaking, since vectors of the action and the reaction forces between
two point masses are on the line connecting them, we obtain

rij × f int
ij = 0.

The first term of the right-hand side of (3.48) becomes zero, therefore,

L̇ =
N∑
i=1

pi × f ext
i .

Since the right-hand side of the above equation expresses the moment of
external forces about the origin, we obtain (3.36) in Section 3.3.1 by replacing
the external forces by τ all

L̇ = τ all.

We confirmed that the angular momentum about the origin does not depend
on the internal force but depends on the moment applied from the outside
the robot. Also, this equation is always satisfied regardless of the structure
and the materials of the robot7.

3.3.4 Angular Momentum and Inertia Tensor of
Rigid Body

A rigid body is an ideal object which is stiff enough not to deform. A robot
is usually analyzed by assuming that it is composed of some rigid bodies
connected by joints8.

We now formulate the angular momentum of a rigid body. Let us assume
that a rigid body floats in the space and rotates without affected by external
forces. As explained in Chapter 2, the rotational velocity of a rigid body can
be expressed by the angular velocity vector ω. Let us also assume that the
origin of the reference coordinate system coincides with its center of mass.
The velocity at a point in the rigid body can be expressed by

vi = v(pi) = ω × pi. (3.50)

7 Derivation of the momentum and the angular momentum of the point masses in
this book followed the Goldstein’s Classical Mechanics [36].

8 While this is an approximation, an analysis is accurate enough even if the robot
is modeled by the sum of rigid bodies.
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Substituting (3.50) into (3.43), we can calculate the total angular momentum
of a rigid body by

L =
∑
i

pi × (miω × pi)

=
∑
i

mipi × (−pi × ω)

= (
∑
i

mip̂ip̂
T
i )ω.

We can see that the angular momentum of a rigid body is expressed by
a angular velocity vector multiplied by a coefficient matrix. This matrix is
called inertia tensor and is denoted by I

I ≡
∑
i

mip̂ip̂
T
i . (3.51)

As we can see from its definition, I is a 3× 3 symmetric matrix. The angular
momentum of a rigid body can be calculated by the angular velocity vector
multiplied by the inertia tensor I

L = Iω. (3.52)

We can obtain the inertia tensor of an object with arbitrary shape and with
arbitrary density distribution ν(p) by simply writing (3.51) for continuous
systems

I =

∫

V

ν(p)p̂p̂TdV. (3.53)

We do not need to calculate the inertia tensor of any objects with uniform
density since the inertia tensor with typical shape can be found in various
text books or websites. For example, for a cuboid which length of each edge
is lx, ly and lz and mass is m, it is

I =

⎡
⎣

m
12 (l

2
y + l2z) 0 0
0 m

12 (l
2
x + l2z) 0

0 0 m
12 (l

2
x + l2y)

⎤
⎦ . (3.54)

Let us consider a cuboid whose length of each edge is 0.1× 0.4× 0.9 [m3]
and mass is 36 kg. The inertia tensor of this object is given by

Ī =

⎡
⎣
2.91 0 0
0 2.46 0
0 0 0.51

⎤
⎦ [kgm2].
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Fig. 3.19 (a)Angular Velocity Vector ω and Angular Momentum Vector L of a
Rigid Body (Reference Posture) (b)Rotation of Rigid Body (Relative position of
both vectors ω′ and L′ with respect to the rigid body do not change.)

Figure 3.19(a) shows the angular momentum vector of this object which an-
gular velocity is [1 1 1]T [rad/s]. We can see from this figure that the direction
of the angular momentum is usually different from that of the angular veloc-
ity.

Now, Fig. 3.19(b) shows the rotation of the rigid body by multiplying a
rotation matrix R. If we consider that the object is rotated due to the change
of view point, we can easily understand that the relative position of both the
angular velocity vector and the angular momentum vector with respect to the
rigid body do not change. In other words, due to the change of view point,
ω,L rotates along with the rotation of the rigid body

ω′ = Rω (3.55)

L′ = RL. (3.56)

On the other hand, from (3.52), the angular momentum in the reference
posture is calculated by

L = Īω.

Substituting the above equation into (3.56) and replacingω by ω using (3.55),
we obtain

L′ = (RĪRT )ω′. (3.57)

We can regard that RĪRT is the new inertia tensor. Therefore, the inertia
tensor of a rigid body in any attitude can be calculated from the inertia
tensor Ī at the reference posture and its posture R using

I = RĪRT . (3.58)
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3.3.5 Calculation of Robot’s Center of Mass

From the above discussion, we will calculate the physical parameters for the
dynamics. We first show the method to calculate the robot’s center of mass.
Given the position and orientation of all links, it can be calculated by the
following steps:

Step 1. Calculate the center of mass position of each link in the world
coordinates.
Step 2. Calculate the sum of the moment about the origin generated by
the mass of each link.
Step 3. The position of the center of mass is obtained by dividing the
moment by the total mass.

Let us assume that the center of mass of the j-th link in its local coordinates
is already known as c̄j . The center of mass of the j-th link in the world
coordinate frame is given by

cj = pj +Rj c̄j , (3.59)

where (pj ,Rj) denotes the position and orientation of the link. The total
center of mass can be obtained by dividing the sum of the moment by the
total mass

c =

N∑
j=1

mjcj/M. (3.60)

The program calculating the moment about the origin of the world coor-
dinates is shown in Fig. 3.20. By using this program, we can calculate the
robot’s center of mass as shown in Fig. 3.21.

function mc = calcMC(j)

global uLINK

if j == 0

mc = 0;

else

mc = uLINK(j).m * (uLINK(j).p + uLINK(j).R * uLINK(j).c );

mc = mc + calcMC(uLINK(j).sister) + calcMC(uLINK(j).child);

end

Fig. 3.20 calcMC.m Calculation of the total moment about the origin of the world
coordinates
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function com = calcCoM()

global uLINK

M = TotalMass(1);

MC = calcMC(1);

com = MC / M;

Fig. 3.21 calcCoM.m Calculation of the position of center of mass

3.3.6 Calculation of Link Speed and Angular Velocity

In the following two subsections, we will calculate the total momentum and
the total angular momentum of a robot. For its preparation, we need to obtain
the linear and angular velocity of all the links that compose the robot.

Like we did with the forward kinematics in the previous chapter, let us
compute the velocity of a link which is connected to its parent link. We will
assume that the linear and angular velocity of the parent link i are already
known. With the given joint speed q̇j , the j-th link will have the linear and
angular velocity calculated by

vj = vi + ωi ×Ribj (3.61)

ωj = ωi +Riaj q̇j . (3.62)

Figure 3.22 shows the Matlab code to calculate the speed and angular velocity
of all links using above equation and the recursive algorithm.

function ForwardVelocity(j)

global uLINK

if j == 0 return; end

if j ~= 1

i = uLINK(j).mother;

uLINK(j).v = uLINK(i).v + cross(uLINK(i).w, uLINK(i).R * uLINK(j).b);

uLINK(j).w = uLINK(i).w + uLINK(i).R * (uLINK(j).a * uLINK(j).dq);

end

ForwardVelocity(uLINK(j).sister);

ForwardVelocity(uLINK(j).child);

Fig. 3.22 ForwardVelocity.m Forward Calculation of Velocity
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3.3.7 Calculation of Robot’s Momentum

The momentum of a robot composed of N links is given by

P =

N∑
j=1

mj ċj (3.63)

where ċj denotes the velocity of the j-th link’s center of mass calculated by

ċj = vj + ωj × (Rj c̄j) (3.64)

where (vj ,ωj) denotes the linear and angular velocity of the j-th link.
Figure 3.23 shows the program calculating the momentum of the robot.

function P = calcP(j)

global uLINK

if j == 0

P = 0;

else

c1 = uLINK(j).R * uLINK(j).c;

P = uLINK(j).m * (uLINK(j).v + cross(uLINK(j).w , c1));

P = P + calcP(uLINK(j).sister) + calcP(uLINK(j).child);

end

Fig. 3.23 calcP.m Calculation of Robot’s Momentum

3.3.8 Calculation of Robot’s Angular Momentum

The angular momentum of a robot composed of N links is given by

L =

N∑
j=1

Lj (3.65)

where Lj denotes the angular momentum of the j-th link with respect to the
origin. It is defined by

Lj = cj × Pj +Rj ĪjR
T
j ωj (3.66)

where Īj denotes the inertia tensor of the j-th link with respect to the local
coordinate system. By using this relationship, Fig. 3.24 shows the program
calculating the robot’s angular momentum about the origin.
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function L = calcL(j)

global uLINK

if j == 0

L = 0;

else

c1 = uLINK(j).R * uLINK(j).c;

c = uLINK(j).p + c1;

P = uLINK(j).m * (uLINK(j).v + cross(uLINK(j).w , c1));

L = cross(c, P) + uLINK(j).R * uLINK(j).I * uLINK(j).R’ * uLINK(j).w;

L = L + calcL(uLINK(j).sister) + calcL(uLINK(j).child);

end

Fig. 3.24 calcL.m Calculation of Robot’s Angular Momentum about the Origin

3.4 Calculation of ZMP from Robot’s Motion

By using the above theories and algorithms of robot’s dynamics, we can
calculate the ZMP for given motion of the robot.

3.4.1 Derivation of ZMP

Let us review that the ground reaction force can be expressed by using the
ZMP (p), the force (f) and the moment (τ p) about the vertical line including
the ZMP(Section 3.1.3). Calculating the moment of the ground reaction force,
we obtain

τ = p× f + τ p. (3.67)

The relationships between the ground reaction force and the momen-
tum and between the ground reaction moment and the angular momentum
(Section 3.3.1) are given by

Ṗ = Mg + f (3.68)

L̇ = c×Mg + τ . (3.69)

Substituting (3.67) and (3.68) into (3.69) and solving with respect to τ p, we
obtain

τ p = L̇ − c×Mg + (Ṗ −Mg)× p. (3.70)

In detail, the first and second rows of this equation are

τpx = L̇x +Mgy + Ṗypz − (Ṗz +Mg)py = 0 (3.71)

τpy = L̇y −Mgx− Ṗxpz + (Ṗz +Mg)px = 0 (3.72)
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where

P = [Px Py Pz]
T

L = [Lx Ly Lz ]
T

c = [x y z]T

g = [0 0 − g]T .

Here, we used the fact that the x and y components of the moment about
the ZMP are zero.

Solving the above equations with respect to px and py, we obtain the ZMP
as

px =
Mgx+ pzṖx − L̇y

Mg + Ṗz

(3.73)

py =
Mgy + pzṖy + L̇x

Mg + Ṗz

(3.74)

where pz denotes the height of the ground. For walking on the flat ground,
we have pz = 0.

For example, when a robot stands still, we have Ṗ = L̇ = 0 and

px = x (3.75)

py = y. (3.76)

The ZMP coincides with the ground projection of the center of mass.
Figure 3.25 shows the program calculating the ZMP by using (3.73) and

(3.74).

function [px,py] = calcZMP(c,dP,dL,pz)

global M G

px = (M*G*c(1) + pz * dP(1) - dL(2))/(M*G + dP(3));

py = (M*G*c(2) + pz * dP(2) + dL(1))/(M*G + dP(3));

Fig. 3.25 calcZMP.m Calculation of ZMP

Here, dP(= Ṗ), dL(= L̇) can be calculated by using the numerical differ-
entiation of the momentum and the angular momentum.
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(a) Approximation by point mass system (b) Approximation by a sigle point mass

Fig. 3.26 Approximated multibody system

3.4.2 Calculation of ZMP Using Approximation

We introduce the method to calculate ZMP using the simplified models. Fig.
3.26(a) models the robot neglecting the effect of the inertia tensor of each link
about its center of mass and assuming the robot as a sum of point masses.
In this case, the angular momentum about the origin is given by

L =

N∑
i=1

ci × Pi. (3.77)

Substituting (3.77) into (3.73) and (3.74), the ZMP can be expressed as

px =

∑N
i=1 mi{(z̈i + g)xi − (zi − pz)ẍi}∑N

i=1 mi(z̈i + g)
(3.78)

py =

∑N
i=1 mi{(z̈i + g)yi − (zi − pz)ÿi}∑N

i=1 mi(z̈i + g)
(3.79)

where ci = [xi yi zi]
T . While this equation is an approximation, the ZMP can

be calculated with enough accuracy if we model each link by using multiple
point masses [6].

Next, in the model shown in Fig. 3.26(b), the whole robot is modeled by a
point mass. In this case, the momentum and the angular momentum about
the origin are given by

P = M ċ (3.80)

L = c ×M ċ, (3.81)

where their elements are
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⎡
⎣
Ṗx

Ṗy

Ṗz

⎤
⎦ =

⎡
⎣
Mẍ
Mÿ
Mz̈

⎤
⎦ (3.82)

⎡
⎣
L̇x

L̇y

L̇z

⎤
⎦ =

⎡
⎣
M(yz̈ − zÿ)
M(zẍ− xz̈)
M(xÿ − yẍ)

⎤
⎦ . (3.83)

Substituting the above equation to (3.73) and (3.74), the ZMP can be given
by

px = x− (z − pz)ẍ

z̈ + g
(3.84)

py = y − (z − pz)ÿ

z̈ + g
. (3.85)

We will use (3.84) in Chapter 4 to generate the biped gait pattern.

3.5 Some Notes for ZMP

3.5.1 Two Explanations

By intuitively explaining the relationship between the robot’s motion and the
ZMP, figures of the point-mass model like Fig. 3.27(a) is often introduced.
Here, −Mẍ denotes the virtual force called the inertial force expressing
the reaction generated by the acceleration of an object[8]. Fig. 3.27(a) shows
that the inertial force and the gravity force balance with the ground reaction
force. Here, the forces acting on the robot is apparently the gravity and the
ground reaction forces as shown in 3.27(b). Since it is difficult to show the
balance of forces, we introduced the inertial force. However, we can explain
without introducing the inertial force. In Fig.3.27(c), opposing the gravity
force, the center of mass goes up due to the effect of the ground reaction
force. At the same time, the center of mass is accelerated due to the effect of
it [23]. In this case, the ground reaction force is decomposed into the gravity
compensation and the acceleration forces. Of course, the right results can be
expected by introducing both explanations.

3.5.2 Does ZMP Exist Outside the Support Polygon
due to the Acceleration of the Center of Mass?

The discussions like “Depending on the motion of the robot, may the ZMP
leave the support polygon?” often occurs. Of course, the conclusion is that
“the ZMP never exists outside the support polygon” [37, 88].
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Fig. 3.27 Relationship between Robot’s Motion and ZMP (a) Explanation us-
ing Inertial Force (b) Force acting on Robot (c) Explanation using the Gravity
Compensation Force and Acceleration Force

x

Mg

ZMP?

Fig. 3.28 May the ZMP leave the support polygon if the robot strongly acceler-
ates?

However, as shown in Fig. 3.28, what will happen when robot modeled by
a point mass moves horizontally with high acceleration? If there is enough
friction between the sole and the ground, the horizontal acceleration will not
be barred. As explained above, the ZMP exists on the line defined by the
gravity and inertial forces, and their values can be obtained by substituting
z̈ = 0 and pz = 0 into (3.84)

px = x− zẍ

g
.
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Fig. 3.29 The robot begins to rotate about the heel since the ZMP exists at the
heel due to the highly accelerated center of mass. Since the acceleration in the
vertical direction is generated, the ZMP remains in the support polygon.

The larger the acceleration of the robot becomes, the further from the support
polygon the ZMP can be!

Using Fig. 3.29, we will explain the mistake in this discussion. Since the
center of mass is highly accelerated, the ZMP is shifted to the heel. Then the
robot will begin to rotate about the heel. Since the acceleration in the vertical
direction is generated, we have z̈ > 0. Taking this effect into consideration,
the ZMP should be calculated by

px = x− zẍ

z̈ + g
.

Since z̈ will increase according to the increment of ẍ, the ZMP remains in
the support polygon9.

More concretely, to calculate the ZMP for given motion of the robot using
(3.73) and (3.74), we need to introduce either one of the following precondi-
tions

Precondition A
The sole keeps the surface contact with the ground since it is fixed to the
ground.

Precondition B
The posture and the absolute linear and angular velocity of the robot can
be measured.

We usually use the Precondition A when calculating the ZMP from the
simulated motion of the robot. In this case, the ZMP obtained from (3.73)

9 This is the principle of the “Model ZMP Control” proposed by Honda Motor
Co., Inc. For more concrete discussion, see p.152.
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and (3.74) may exist outside the support polygon10. However, to realize this
situation by real robots, the sole should be fixed to the ground by using suc-
tion cups or magnets. Ordinary humanoid robots cannot realize this situation
since the sole will break contact with the ground.

On the other hand, to calculate the ZMP of a real robot by using (3.73)
and (3.74), we need to introduce the precondition B. This ZMP coincides
with the ZMP measured from the force/torque sensors at the foot and never
exists outside the support polygon.

3.5.3 Limitation of ZMP

Since the ZMP is equivalent to the center of pressure, its physical meaning
is very clear. Also, the relationship between the ZMP and the linear/angular
momentum of the robot can be expressed by a simple equation. Thus, the
ZMP can be a powerful tool to plan the walking motion on the flat ground
with enough friction.

On the other hand, the ZMP cannot be used for the following cases:

[A] We want to determine whether or not the sole slips on the ground
surface.

[B] The ground surface is not flat.
[C] The arms or the hands of a humanoid robot contact the environment.

As for [A], only by using the ZMP information, we cannot judge the slip on
the ground as described in Section 3.1. On the other hand, as for [B] and [C],
although the position of the ZMP changes according to the friction force,
there is a case where the friction force cannot be determined uniquely for
given motion of the robot. Also, the internal forces among the contact points
do not affect the position of the ZMP.

The above problems arise since the ZMP is the two dimensional informa-
tion of the ground reaction force while six dimensional information of the
force/moment is required to determine the transition of contact states11.

Here, we introduce an approach taking the full six dimensional force/
moment into consideration [39].

Let us assume the robot to be a single rigid body. At the point in the rigid
body specified by the vector pB, the force/moment applied by the robot to
the ground can be obtained by

fG
B = M(g − c̈) (3.86)

τG
B = −L̇(c) +M(c− pB)× (g − c̈) (3.87)

10 This ZMP is called the IZMP(Imaginary ZMP) [89].
11 As for [B] and [C], the approach focusing on the moment about the edges of the

convex polygon is proposed [80]. However, the problem remains in the treatment
of the friction forces.
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where L(c) denotes the angular momentum about the center of mass.
Let us consider the infinitesimal translational/rotational displacement
[(δpB)

T (ωB)
T ]T of the rigid body. Let S1(δpB,ωB) be the set of the trans-

lational/rotational displacement of the robot without interfering the environ-
ment. In this case, if the following equation is satisfied

∀(δpB,ωB) ∈ S1(δpB,ωB)[
(fG

B)
T (τG

B)
T
] [

δpB

ωB

]
≤ 0 (3.88)

the robot will not move since the work done by (fG
B, τG

B) is not positive. In
other words, the contact state between the robot and the environment will
not change. In this method, the change of the contact state is determined by
checking whether or not fG

B and τG
B satisfy the above inequalities for given

motion of the robot. This method gives the necessary and sufficient condition
to keep a contact state for the robot walking on the flat ground with enough
friction. On the other hand, this becomes a necessary condition to keep a
contact state when the friction coefficient between the robot and the ground
is low and when the contact points are not limited to the flat ground.

3.6 Appendix: Convex Set and Convex Hull

We explain the convex set and the convex hull which was introduced in
Section 3.1.1 to define the support polygon and in Section 3.1.3 to show
the region of the ZMP. In the robotics research community, the convex hull
is used for grasp analysis by robotic hands and collision avoidance between
objects. Also, in the research community of mathematical programming, the
convex set and the convex hull are the important basic concepts. For more
concrete discussions, please refer [104] for example12.

Convex Set:
A subset S of Rn is defined to be the convex set if

αp1 + (1− α)p2 ∈ S (3.89)

is satisfied for any p1,p2 ∈ S and α, 0 ≤ α ≤ 1. As shown in Fig. 3.30,
(3.89) expresses the segment between p1 and p2 when S is a subset of R2.
In other words, if a segment formed by connecting arbitrary two points
included in the set S is also included in S, this set is defined to be the
convex set.

12 For example, the convex set and the convex hull can be defined for sets which are
not bounded. However, since the contact area between the sole and the ground
is bounded, we explain only for the bounded set in this book.
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(a) Convex set (b) Non-convex set

Fig. 3.30 Definition of Convex Set

Convex Hull:
For a subset S of Rn, the minimum convex set including S is defined to be
the convex hull coS. The set S shown in Fig. 3.31(a) is not the convex set.
The minimum region formed by enclosing the set S by rope corresponds to
the convex hull.

Let us consider the case where the convex hull is the bounded convex
polyhedron. Let pj (j = 1, · · · , N) be the vector of the edges. The convex
hull is defined by

coS =

⎧
⎨
⎩

N∑
j=1

αjpj

∣∣∣∣∣∣
αj ≥ 0,

N∑
j=1

αj = 1, pj ∈ S (j = 1, · · · , N)

⎫
⎬
⎭ . (3.90)

1

(a) Convex hull (b) Bounded convex polyhedron

Fig. 3.31 Definition of Convex Hull



Chapter 4

Biped Walking

What is the meaning of the word “walk”? Oxford Advanced Learner’s Dic-
tionary gives us a concise definition.

walk:
move along at a moderate pace by lifting up and putting down each foot in
turn, so that one foot is on the ground while the other is being lifted
(Oxford Advanced Learner’s Dictionary, Oxford University Press)

Therefore, at least one foot must be in contact with the ground at any mo-
ment during walking. There exist two kind of walking, namely, static walking
and dynamic walking. In “static walking”, the projection of the center of mass
never leaves the support polygon during the walking. In “dynamic walking”,
there exist periods when the projection of the center of mass leaves the sup-
port polygon.

Walk

{
static walk
dynamic walk

Most toy robots perform static walking using large feet. This is not interesting
from the view point of control engineering since it is fairly easy. Nevertheless,
human feet are too small with respect to the height of center of mass to
perform static walking. Indeed we are performing dynamic walking in our
daily life. The walking style with which we are so accustomed can be realized
by dexterous control of the whole body balance which is essentially unstable.
A biped walking machine is, therefore, beyond the scope of conventional
mechanical engineering. This is the reason that so many researchers and
engineers are attracted to biped walking machines as well as humanoid robots.

4.1 How to Realize Biped Walking?

Figure 4.1 shows the basic framework of biped walking control that will be
used throughout this chapter. A set of time series of joint angles for desired
walking is called a walking pattern, and to create it, we use a walking pattern

S. Kajita et al., Introduction to Humanoid Robotics, 105
Springer Tracts in Advanced Robotics 101,
DOI: 10.1007/978-3-642-54536-8_4, c© Springer-Verlag Berlin Heidelberg 2014
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(a)

(b)

Fig. 4.1 Basic control framework in this book: (a)In an ideal condition, a biped
robot can walk by following a walking pattern. (b)In a real environment, a biped
robot need a stabilizer.

generator. In an ideal situation, biped walking can be realized just by giv-
ing a walking pattern to an actual robot (Fig. 4.1(a)). For this purpose, we
must prepare an accurate model of the robot, a stiff mechanism which moves
exactly as commanded and a perfect horizontal floor (a huge surface plate).

On the other hand, in a real situation, a life size humanoid robot can
easily fall down by floor unevenness of only a few millimeters. A humanoid
proportion and mass distribution tends to quickly amplify the posture error
to an unstable level. To suppress this, we need the second software, which
modifies the walking pattern by using gyros, accelerometers, force sensors
and other devices. This is called a stabilizer (Fig. 4.1(b)).

The rest of this chapter is organized as follows. In section 4.2, 4.3 and 4.4,
we explain walking pattern generators and explain stabilizers in section 4.5.
In section 4.6, we spotlight the history of biped walking robot research. In
section 4.7, we introduce a variety of biped control methods which are not
restricted in the framework of Fig. 4.1.
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4.2 Two Dimensional Walking Pattern Generation

In this section, we consider a basic principle of biped walking in 2D and derive
an algorithm for walking pattern generation.

4.2.1 Two Dimensional Inverted Pendulum

Coarse-graining is a powerful method to handle a complex system. In celestial
mechanics, researchers approximate the Sun and the planets as point masses
while they have their own internal structure, and they can still calculate the
orbits of the solar system with sufficient accuracy. In thermodynamics, vast
states of molecules, number of the order of 1023 are coarse-grained as a few
parameters like temperature or entropy, and it makes it possible for us to
predict the thermodynamic phenomenon.

Likewise, to extract an essence of biped locomotion, we make three assump-
tions as coarse-graining on a humanoid robot with more than 30 DOF made
of over thousands of mechanical and electrical parts. First, we assume that
all the mass of the robot is concentrated at its center of mass (CoM). Second,
we assume that the robot has massless legs, whose tips contact the ground
at single rotating joints. At last, we only consider the forward/backward and
the up/down motions of the robot, neglecting lateral motion. In other words,
we assume the robot motion is constrained to the sagittal plane defined by
the axis of walking direction and vertical axis. With these assumptions, we
model a robot as a 2D inverted pendulum as shown in Fig. 4.2.

z

f 

M

r 

x

µ

¿

O

+

Fig. 4.2 2D inverted pendulum: The simplest model for a human or a walking
robot. It consists of the center of mass (CoM) and massless telescopic leg. We mea-
sure the inclination of the pendulum θ from vertical, positive for counter clockwise
rotation.
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The inputs of the pendulum are the torque τ at the pivot and the kick
force f at the prismatic joint along the leg. The dynamics of the pendulum
are described as a couple of differential equations1 as follows

r2θ̈ + 2rṙθ̇ − gr sin θ = τ/M

r̈ − rθ̇2 + g cos θ = f/M.

We can simulate the behavior of the inverted pendulum by integrating them
numerically with given input torque.

One of the important limitations is we cannot use big torque τ since the
feet of biped robot is very small. If a walking robot has a point contact like
a stilt, we must use

τ = 0. (4.1)

In this case, the pendulum will almost always fall down, unless the CoM is
located precisely above the pivot. Even with such a simple pendulum, we
have a variety of falling patterns corresponding to different kick forces, f , as
illustrated in Fig. 4.3.

The most interesting case is Fig. 4.3(d) where the CoM moves horizontally
under the kick force

f =
Mg

cos θ
. (4.2)

Figure 4.4 illustrates the reason for the horizontal motion of the CoM.
Intuitively, we can say the pendulum is keeping the CoM height by extend-

ing its leg as fast as it is falling. We call this the Linear Inverted Pendulum
[115]2.

4.2.2 Behavior of Linear Inverted Pendulum

The Linear Inverted Pendulum provides us a mathematically easy treatment
of dynamics. Let us investigate the horizontal motion.

1 Horizontal Dynamics

By investigating Fig. 4.4 again, we see the horizontal component of the kick
force f remains while the vertical component is canceled by gravity. The
horizontal component accelerates the CoM horizontally, thus we have

Mẍ = f sin θ. (4.3)

1 These equations can be derived by using Lagrange’s method. Joseph-Louis La-
grange (1736-1813) was a French mathematician born in Italy. He is famous as a
discoverer of the Lagrange points, the most suitable area to place space colonies.

2 This is the simplest version of Linear Inverted Pendulum (LIP). The concept
will be extended throughout of this chapter. Also, the LIP is an example of
Zero-dynamics which is discussed in the textbook by Westervelt et al. [24]



4.2 Two Dimensional Walking Pattern Generation 109

Fig. 4.3 Falling inverted pendulum under the various kick force f . The pivot
torque is kept zero (τ = 0) at all time.

By substituting (4.2), we get

Mẍ =
Mg

cos θ
sin θ = Mg tan θ = Mg

x

z

where, x, z gives the CoM of the inverted pendulum. By rewriting above
equation, we obtain a differential equation for the horizontal dynamics of the
CoM

ẍ =
g

z
x. (4.4)

Since we have constant z in a Linear Inverted Pendulum, we can easily
solve this ordinary differential equation

x(t) = x(0) cosh(t/Tc) + Tcẋ(0) sinh(t/Tc) (4.5)

ẋ(t) = x(0)/Tc sinh(t/Tc) + ẋ(0) cosh(t/Tc) (4.6)

Tc ≡
√
z/g
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f 
z

x

µ

O

cosf µ

sinf µ

Mg−

Fig. 4.4 The reason for the horizontal locus of the CoM. The kick force f =
Mg/ cos θ always balance with the gravity acting on the point mass.
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Fig. 4.5 Linear Inverted Pendulum under various initial conditions. CoM height:
z = 0.8 m.
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where Tc is the time constant depending the height of the CoM and gravity
acceleration.

The initial position and velocity are given by x(0), ẋ(0), which together
are called the initial conditions. Figure 4.5 shows the motions under various
initial conditions.

2 Time for Transfer

In many cases, we want to know the time that CoM takes to travel from one
point to another. When an initial condition (x0, ẋ0) and a condition (x1, ẋ1)
at certain moment is given, they are connected by following equations by
using (4.5) and (4.6)

x1 = x0 cosh(τ/Tc) + Tcẋ0 sinh(τ/Tc) (4.7)

ẋ1 = x0/Tc sinh(τ/Tc) + ẋ0 cosh(τ/Tc) (4.8)

where τ is the period that the CoM takes a trip from (x0, ẋ0) to (x1, ẋ1).

By using the relationship of cosh(x) = ex+e−x

2 , sinh(x) = ex−e−x

2 , these
equations can be rewritten as

x1 =
x0 + Tcẋ0

2
eτ/Tc +

x0 − Tcẋ0

2
e−τ/Tc , (4.9)

ẋ1 =
x0 + Tcẋ0

2Tc
eτ/Tc − x0 − Tcẋ0

2Tc
e−τ/Tc . (4.10)

From (4.9)+Tc×(4.10), we get

x1 + Tcẋ1 = (x0 + Tcẋ0)e
τ/Tc .

Therefore, τ can be calculated as

τ = Tc ln
x1 + Tcẋ1

x0 + Tcẋ0
. (4.11)

Similarly, we can calculate τ from (4.9)−Tc×(4.10) as

τ = Tc ln
x0 − Tcẋ0

x1 − Tcẋ1
. (4.12)

Basically, (4.11) and (4.12) gives exactly the same result, except in the
singular case where both of the numerator and denominator go close to zero
in one of the equations.
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4.2.3 Orbital Energy

To understand motions of a linear inverted pendulum intuitively, it is useful
to imagine a potential as shown in Fig. 4.6. Figure 4.6(a) shows the case which
the CoM changes its moving direction when the initial velocity is not enough.
In Fig. 4.6(b), the CoM keeps original moving direction due to sufficient
initial speed. In this case, the CoM undergoes minimum speed at the top of
the potential where the CoM is just above the ankle pivot.

(a) (b)

Fig. 4.6 Linear Inverted Pendulum and imaginary potential

Let us calculate the relationship between this imaginary potential and the
motion of the CoM. We multiply ẋ on both side of the equation of motion
(4.4), then integrate it

ẋ(ẍ− g

z
x) = 0

∫
{ẍẋ− g

z
xẋ}dt = constant.

The result is
1

2
ẋ2 − g

2z
x2 = constant ≡ E. (4.13)

The first term of the left hand side is kinetic energy and the second term
is the imaginary potential energy which is illustrated by Fig. 4.6. In this
calculation, we assume energies per unit mass so that we can omit mass of
the CoM.

Let us call the sum of the kinetic energy and the imaginary potential
energy as, E, the orbital energy3 [36]. Equation (4.13) shows that the orbital
energy is conserved in the motion of Linear Inverted Pendulum.

3 In mechanics, this value is called constant of motion [36].
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In the case of Fig. 4.6(a), where the CoM reverts without getting to the
top of the potential, the orbital energy is given by

E = − g

2z
x2
rev, (4.14)

where xrev is the horizontal position of the CoM at the moment the reversion.
In this case the orbital energy is negative or zero.

In the case of Fig. 4.6(b), where the CoM passes the top of the potential,
the orbital energy is given by

E =
1

2
ẋ2
top, (4.15)

where ẋtop(> 0) is the speed at the instant that the CoM passes above of the
ankle pivot. In this case, the orbital energy is positive.

Suppose we have obtained the CoM position and the speed of an inverted
pendulum at certain instant. By checking the sign of the orbital energy E
calculated by (4.13), we can immediately predict whether the CoM will pass
the potential or not. If E > 0, we can predict the CoM speed at the top of
the potential as

|ẋtop| =
√
2E.

If E < 0, we can predict the position where the CoM will revert as

|xrev| =
√
−2zE

g
.

4.2.4 Support Leg Exchange

Although the motion of a linear inverted pendulum is determined only by
its initial condition, we can control its speed because an initial condition can
be modified by the touchdown timing. As illustrated in Fig. 4.7, a support
exchange of quickened touchdown will decelerate the walking speed, and a
support exchange of delayed touchdown will accelerate the walking. This
corresponds to our experience, for example, we put down our leg quickly on
the ground for sudden stops.

Let us figure out the relationship between a support exchange and the
pendulum motions. Figure 4.8 shows the moment of a support exchange.
The step length is s, the position of the CoM with respect to the former
contact point is xf , and the speed of the CoM at the instant of the exchange
is vf . For simplicity, we assume that the leg support is exchanged instantly,
therefore, vf is the final speed of the previous support phase as well as the
initial speed of the new support phase.
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xf

(a)
xf

(b)
Fig. 4.7 Control of walking speed (with fixed step length) (a) Earlier touchdown
of the next step results slow down (b) Later touchdown of the next step results
speed up

vf

xf
s

z

Fig. 4.8 State of a support leg exchange

By defining the orbital energies before and after the exchange as E1 and
E2 respectively, we have

E1 = − g

2z
x2
f +

1

2
v2f (4.16)

E2 = − g

2z
(xf − s)2 +

1

2
v2f . (4.17)

When the orbital energiesE1, E2 were given, we can calculate the necessary
exchange condition by eliminating vf from (4.16), (4.17) to obtain

xf =
z

gs
(E2 − E1) +

s

2
. (4.18)



4.2 Two Dimensional Walking Pattern Generation 115

The speed at the moment of the exchange can be calculated from (4.16)

vf =

√
2E1 +

g

z
x2
f . (4.19)

4.2.5 Planning a Simple Biped Gait

Let us design a simple walking pattern using the result of former sections. We
assume an ideal biped robot on a level plane walks just one step and stops
(Fig. 4.9). The robot exchanges its support twice and three orbital energies
must be specified.

For the walk start(a→b), the orbital energy is specified by the initial po-
sition of the CoM,

E0 = − g

2z
x2
s.

For the step (b→c→d), the orbital energy is specified by the speed v1 at the
moment that CoM passes over the supporting point

E1 =
1

2
v21 .

For the walk finish (d→e), the orbital energy is specified by the final position
of the CoM.

E2 = − g

2z
x2
e.

Using (4.18), the first support exchange condition xf0 is obtained from
E0, E1, and the second support exchange condition xf1 is obtained from
E1, E2. Desired walking motion is realized by controlling the swing leg so
that those exchanges occur at the right time.

v1

s1xs s2 xe

a b c d e

Fig. 4.9 Specification for a walk of one step forward. We need support leg ex-
changes twice.
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Fig. 4.10 Planned trajectory of the center of mass, position and velocity

Since speed at each exchange are calculated by (4.19), the complete tra-
jectory of each step can be obtained. Figure 4.10 shows the time profile of
the position and the velocity of the CoM. The position graph takes origin
at each support point, therefore, the plot jumps at the moment of support
exchange (b, d) and the amount of the jump indicates the step length. The
velocity graph depicts the dynamic change of CoM speed and the peaks at
support exchange.

4.2.6 Extension to a Walk on Uneven Terrain

Although the method explained so far was limited to a walk on level ground,
we can use the same method for walking on uneven terrain with a small
modification. Let us explain this.

Returning to the inverted pendulum model of Fig. 4.2, we consider the
case that the center of mass moves on a sloped line as illustrated in Fig. 4.11
described by

z = kx+ zc (4.20)

where k is the inclination of the line, zc is the z intersection of the line. We
call the line which the CoM moves along as constraint line.

Let us calculate the kick force f to realize such motion. First, we decompose
the kick force f into the horizontal part fx and the vertical part fz

fx = f sin θ = (x/r)f (4.21)

fz = f cos θ = (z/r)f. (4.22)
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Fig. 4.11 The CoM is controlled to move on the constraint line (broken line) by
the kick force f , while the ankle rotates freely(τ = 0).

To let the CoM move along the constraint line, the sum of the kick force and
the gravity force must be parallel with the constraint line. That is explained
as

fx : fz −Mg = 1 : k. (4.23)

Substituting (4.21) and (4.22) into (4.23) and solving for f , we obtain

f =
Mgr

z − kx
. (4.24)

A simpler equation can be obtained by using the constraint equation (4.20)

f =
Mgr

zc
. (4.25)

Therefore, the CoM moves on a constraint line by applying the kick force f in
proportional with the leg length r (in addition, we need the initial condition
matching the constraint). Such pendulum motions are illustrated in Fig. 4.12.
In this graph, the arrows are indicating the magnitude and direction of the
kick force.

Let us see the dynamics of the CoM under this control. The horizontal
dynamics of the CoM can be obtained by substituting (4.25) into (4.21), and
applying fx = Mẍ to obtain

ẍ =
g

zc
x. (4.26)

Surprisingly, this is identical to (4.4), which was derived for the horizontal
motion of CoM! To make clear the meaning of this result, we display in
Fig. 4.13 the simulation of two inverted pendula moving on different con-
straint lines. The two constraint lines have different slopes but the same in-
tersection zc, and the pendula start from the same horizontal position x0. One
might expect that the pendulum on an ascending line (k > 0) will decelerate
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(a) (b)

Fig. 4.12 Kick force vector and pendulum motion

O
x

z

k>0

k<0

zc

x0 x1

Fig. 4.13 Horizontal motion of a linear inverted pendulum is independent from
the slope of the constraint line.

and the pendulum on an descending line (k < 0) will accelerate. Nevertheless,
the horizontal motions of two pendula are exactly same and they arrive at
x1 simultaneously as shown in Fig. 4.13. This is because the gravity effect is
canceled by the kick force and the pendulum motion is governed only by the
horizontal location of the CoM.

By using this fact, we can easily design a walking pattern on uneven ter-
rain. Fig. 4.14 shows an example planning of stair climbing. First, we set
proper landing points (triangles), then specify constraint lines by connecting
the points which are located at the height of zc from the landing points. By
controlling the CoM to move along these constraint lines, we get the horizon-
tal dynamics of CoM for each step as
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zc

Fig. 4.14 Walking on the stairs by using linear inverted pendulum. (above) Setting
of constraint lines (lower) horizontal velocity of the center of mass.

ẍ =
g

zc
x.

Thus, we can apply the method of the previous section. The lower graph of
Fig. 4.14 indicates that the horizontal speed of the CoM is not affected by
the stair climbing.

By these method, we can easily produce walking patterns for various ground
surface geometries. The authors have developed a simple biped robot (Fig.
4.15) which could walk over stairs and obstacles by real-time sensing [116].

Fig. 4.15 Meltran II, a biped robot with bird-like legs. The light weight legs allows
us to treat this robot as a linear inverted pendulum.
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4.3 3D Walking Pattern Generation

In this section, we extend the linear inverted pendulum to 3D and exam-
ine its nature. Using a 3D linear inverted pendulum, a 3D walking pattern
generation is described.

4.3.1 3D Linear Inverted Pendulum

Let us approximate a biped walking robot in 3D space as an imaginary in-
verted pendulum of Fig. 4.16, which consists of the CoM of the robot and
a massless leg connecting the CoM and the supporting point. We assume
the pendulum can freely rotate about the supporting point and the leg can
change its length by using a kick force f . We can decompose the kick force
f into three components, x,y and z

fx = (x/r)f (4.27)

fy = (y/r)f (4.28)

fz = (z/r)f (4.29)

x

y

z

O

f

M

Fig. 4.16 3D inverted pendulum as an approximated walking robot. The support-
ing point is a spherical joint which allows free rotation. The leg can change its
length by generating a kick force f .
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where r is the distance between the supporting point and the CoM. Only the
kick force and gravity act on the CoM, thus, the motion equation of the CoM
is given

Mẍ = (x/r)f (4.30)

Mÿ = (y/r)f (4.31)

Mz̈ = (z/r)f −Mg. (4.32)

As we did for 2D inverted pendulum, let us consider a constraint for the
CoM. For a 3D inverted pendulum, we introduce a constraint plane defined
as

z = kxx+ kyy + zc, (4.33)

where kx, ky determine the slope and zc determines the height of the con-
straint plane.

To let the CoM move along this plane, we need its acceleration be orthog-
onal to the normal vector of the constraint. Therefore, we need

[f(
x

r
) f(

y

r
) f(

z

r
)−Mg]

⎡
⎣
−kx
−ky
1

⎤
⎦ = 0. (4.34)

By solving this equation for f , and substituting into (4.33), we obtain

f =
Mgr

zc
. (4.35)

The center of mass moves on the constraint plane by applying the kick force f
in proportion to the leg length r. Figure 4.17 shows an image of this motion.

The horizontal dynamics of the CoM can be derived from (4.30) and (4.31)
by substituting the kick force of (4.35) to obtain

ẍ =
g

zc
x, (4.36)

ÿ =
g

zc
y. (4.37)

These are linear equations having zc, the intersection of the constraint plane
as the only parameter. The inclination parameters kx, ky of the constraint
plane do not affect the horizontal motion of the CoM since they are not part
of (4.36) and (4.37). We call such pendulum as 3D linear inverted pendulum4.

4 The 3D linear inverted pendulum was originally discovered by Hara, Yokogawa
and Sadao [59]. It was expanded to take into account of the ankle torque by
Kajita, Matsumoto and Saigo [118].
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Fig. 4.17 3D linear inverted pendulum. The center of mass moves on the constraint
plane by properly controlling the kick force. Inclination of the constraint plane does
not affect to the horizontal motion of the CoM.

4.3.2 Natures of the 3D Linear Inverted Pendulum

The nature of 3D linear inverted pendulum is much more interesting although
it is a concatenation of two 2D linear inverted pendula. Figure 4.18 shows
three trajectories of a 3D linear inverted pendulum whose constraint plane
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Fig. 4.18 Motions of 3D linear inverted pendulum. (a)CoM trajectories in 3D
space (b)Horizontal projections of trajectories.
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has the same z intersection. We can observe an impressive comet-like trajec-
tory having the z intersection [0 0 zc] as the focal point5. We can treat the
dynamics of these three-dimensional trajectories as the projection onto the
xy-plane (Fig. 4.18(b)) by neglecting the inclination of the constraint plane.

1 Kepler’s Second Law

From an analogy from celestial mechanics, let us check Kepler’s second law:
A planet has constant areal speed. Areal velocity varea is area swept by the
line connecting origin and the CoM per unit time and is given as

varea =
1

2
(xẏ − ẋy). (4.38)

We can check the time derivative of areal speed for 3D linear inverted pen-
dulum as follows

d

dt
(varea) =

1

2
(ẋẏ + xÿ − ẍy − ẋẏ)

=
1

2
(xÿ − ẍy) ← (substitute eqs.(4.36) and (4.37))

=
1

2
(x

g

zh
y − g

zh
xy)

= 0.

Thus, the areal speed of 3D linear inverted pendulum is constant6.

2 Rotation of the Reference Frame

Next we consider coordinate transformation from the original reference frame
xy to a new reference frame x′y′ rotated θ from it as in Fig. 4.19. The
transformation is

x = cx′ − sy′ (4.39)

y = sx′ + cy′ (4.40)

c ≡ cos θ, s ≡ sin θ.

5 LIP trajectories are different from comet trajectories which travel around the
Sun. More proper analogy is a trajectory of particles in Rutherford scattering
experiment which proved the existence of the nucleus of an atom. As shown
subsequently, this is indeed a very good analogy.

6 Generally, areal speed is conserved by any motion in a central force field. It
represents the conservation of angular momentum in a different way.



124 4 Biped Walking

O

µ

( , )x y

( , )x yv v

x

y

y′

x′

Fig. 4.19 Horizontal projection of a 3D-LIPM trajectory and the new reference
frame x′y′ rotated θ from the original frame

Let us confirm that the equations of the 3D linear inverted pendulum (4.36)
and (4.37) are still valid in the new frame x′y′. By substituting the coordinate
transformation given by above equations we get

cẍ′ − sÿ′ =
g

zh
(cx′ − sy′) (4.41)

sẍ′ + cÿ′ =
g

zh
(sx′ + cy′). (4.42)

From c×(4.41) +s×(4.42) and −s×(4.41) +c×(4.42) we get the dynamics
represented in x′y′ frame given by

ẍ′ =
g

zc
x′

ÿ′ =
g

zc
y′.

This transformation is possible for any given rotation angle θ. Therefore,
we have confirmed that the 3D linear inverted pendulum dynamics can be
always separated into two orthogonal components independently from the
orientation of the reference frame7.

3 Geometry of 3D Linear Inverted Pendulum Trajectory

We can calculate the geometry of the trajectory using the transformation of
Fig. 4.19 and orbital energies. The orbital energy along the x′ axis of a new
frame is given as

7 Motions under gravity force or electro-static force, which is proportional to in-
verse square of the distance cannot be treated like this.
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E′
x = − g

2zc
(cx+ sy)2 +

1

2
(cẋ+ sẏ)2. (4.43)

This orbital energy E′
x changes by the rotation of the frame θ and takes

extreme value when x′ or y′ correspond to the axis of symmetry of the
trajectory. From

∂E′
x

∂θ
= −A cos 2θ +

B

2
sin 2θ = 0 (4.44)

A ≡ (g/zc)xy − ẋẏ

B ≡ (g/zc)(x
2 − y2)− (ẋ2 − ẏ2)

we can calculate θ which indicates the symmetry axis of the trajectory,

θ =

{
(1/2) tan−1(2A/B) (if B �= 0)
π/4 (if A �= 0, B = 0).

(4.45)

In the case of A = 0, B = 0, the trajectory becomes a straight line toward
origin or a straight line from origin, and the line itself is a symmetry axis.

Suppose we have already chosen the frame x, y to fit the axis of symmetry.
In this case, the orbital energy E′

x must take extreme value with θ = 0. By
substituting θ = 0 into (4.44), we get

(g/zc)xy − ẋẏ = 0.

After transferring the second term to the right side, we square both sides of
the equation to obtain

(g/zc)
2x2y2 = ẋ2ẏ2.

We substitute the following two equations which were derived from the defi-
nition of orbital energy

ẋ2 = 2Ex +
g

zc
x2 ẏ2 = 2Ey +

g

zc
y2

to obtain an equation which represents geometric form of 3D linear inverted
pendulum trajectory given by

g

2zcEx
x2 +

g

2zcEy
y2 + 1 = 0. (4.46)

This is an equation of hyperbola since one of Ex, Ey is negative and the other
is positive8.

8 Hyperbolic trajectories are observed in Rutherford scattering or swing-by tra-
jectories of spacecraft like Voyager I and II. I feel excitement finding similar
trajectories in elementary particles, in planetary space, and in biped locomotion.
Don’t you?!
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4.3.3 3D Walking Pattern Generation

Figure 4.20 shows an example of walking pattern based on the 3D linear
inverted pendulum. By setting a proper constraint plane, we can apply the
same pattern to stairs or an uneven floor.

x
y

Fig. 4.20 Walking pattern on flat floor based on 3D linear inverted pendulum.
Three forward steps from a standstill to a stop.

For three dimensional walking, we need a simultaneous support exchange
for the x and y directions, thus we cannot use the walking pattern generation
explained in Section 4.2.5, which requires an arbitrary time of support ex-
change. In the following discussion, we consider walking with constant pace
of support exchange and denote Tsup for support period of each step.

1 Walk Primitive

Let us define a piece of a 3D linear inverted pendulum trajectory as
Fig. 4.21, which is symmetric about y axis and defined in a period of [0 Tsup].
As previously described, Fig. 4.21(a) is a part of hyperbola. We will call this
piece of trajectory as a walk primitive.

When a support time Tsup and an intersection of constraint plane zc are
given, a walk primitive is uniquely determined by its terminal position (x̄, ȳ)
since it is symmetric. The terminal speed (v̄x, v̄y) can be calculated as follows.

Using the symmetric nature of the walk primitive, the initial condition
along the x axis is (−x̄, v̄x) and the terminal position is x̄. From the analytic
solution of linear inverted pendulum (4.5), we have

x̄ = −x̄C + Tcv̄xS (4.47)
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Fig. 4.21 Walk primitive: basic 3D walking pattern

where

Tc ≡
√

zc
g
, C ≡ cosh

Tsup

Tc
, S ≡ sinh

Tsup

Tc
.

Solving (4.47) for the terminal velocity v̄x gives

v̄x = x̄(C + 1)/(TcS). (4.48)

Likewise, for the y component of the walk primitive, the initial condition is
(ȳ, −v̄y) and the terminal position is ȳ, thus we get the terminal velocity as,

ȳ = ȳC + Tc(−v̄y)S,

v̄y = ȳ(C − 1)/(TcS). (4.49)

Walking primitives allows us to easily produce a walking trajectory. For exam-
ple, a straight walk with step length of 2x̄ can be made by connecting identical
walk primitives, reversing the sign of the y-component after each contact.

2 Walk Parameters

In practical situations like stair climbing or obstacle avoidance, it is frequently
required to directly specify the foot placements. Figure 4.22 illustrates an
example of simple foot placements, which can be represented by using step
length and step width as the following data.

n 1 2 3 4 5

s
(n)
x 0.0 0.3 0.3 0.3 0

s
(n)
y 0.2 0.2 0.2 0.2 0.2

where sx are the step length along the walking direction, and sy are the step
width for lateral direction. We call this data the walk parameters since it is
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Fig. 4.22 Points of foot placement p0 . . . pN . Step length and width are determined
from these points. The rectangles are footprints of a robot.

encoding the foot placements in Fig. 4.22. By putting superscript (n) to indi-

cate the data of n-th step, the n-th footplace (p
(n)
x , p

(n)
y ) can be represented

as
[
p
(n)
x

p
(n)
y

]
=

[
p
(n−1)
x + s

(n)
x

p
(n−1)
y − (−1)ns

(n)
y

]
, (4.50)

where (p
(0)
x , p

(0)
y ) is the place of the first support foot, in this case, the right

foot. If the first support foot was the left foot, we must replace −(−1)n by
+(−1)n in the equation.

The walk primitive for the n-th step can be determined as

[
x̄(n)

ȳ(n)

]
=

[
s
(n+1)
x /2

(−1)ns
(n+1)
y /2

]
. (4.51)

Note that the walk primitive of the n-th step is determined by the n+ 1-th
step length and width. This is necessary for the proper coordination between
foot placements and walking motion.

The terminal velocity of a walk primitive is calculated by (4.48) and (4.49),

[
v̄
(n)
x

v̄
(n)
y

]
=

[
(C + 1)/(TcS)x̄

(n)

(C − 1)/(TcS)ȳ
(n)

]
. (4.52)

The series of walk primitives determined in this way are discontinuous at
the beginning and the end of a set of steps. The method to obtain a continuous
and realizable walking pattern is explained in the next section.
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(a) (b)

p* p*

Fig. 4.23 Walking speed adjustment for fixed step cycle [41, 97] (a) Speed up by
taking a shorter step. (b) Slow down by taking a longer step.

3 Modification of Foot Placements

For a robot walking with fixed step cycle, we can control its speed by adjusting
foot placements9. Its intuitive explanation is depicted in Fig. 4.23.

px*
x

O

zc

x

z

Fig. 4.24 A Linear Inverted Pendulum represented in the ground fixed frame

Let us denote the modified foot placement as p∗x and calculate how it affects
the walking motion. Figure 4.24 illustrates a linear inverted pendulum with
respect to the ground fixed frame10,

9 In the control method of Fig. 4.7 (page.114), the step length was fixed, and the
walking speed was controlled by modifying touch down timing.

10 We will only discuss the motion along x-axis, but the same result is obtained for
y-axis motion.
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ẍ =
g

zc
(x− p∗x). (4.53)

Its analytical solution is,

x(t) = (x
(n)
i − p∗x) cosh(t/Tc) + Tcẋ

(n)
i sinh(t/Tc) + p∗x (4.54)

ẋ(t) =
x
(n)
i − p∗x
Tc

sinh(t/Tc) + ẋ
(n)
i cosh(t/Tc), (4.55)

where x
(n)
i , ẋ

(n)
i are initial conditions at the beginning of the n-th step.

Therefore, the relationship between the foot placement p∗x and the final
state of n-th step is

[
x
(n)
f

ẋ
(n)
f

]
=

[
C TcS

S/Tc C

] [
x
(n)
i

ẋ
(n)
i

]
+

[
1− C
−S/Tc

]
p∗x. (4.56)

Step 1 Set support period Tsup and walk parameters sx, sy. Set initial

position of CoM (x, y) and initial foot placement (p∗x, p
∗
y) = (p

(0)
x , p

(0)
y ).

Step 2 T := 0, n := 0.
Step 3 Integrate equation of linear inverted pendulum (4.53) (and the

equation for y-axis) from T to T + Tsup.
Step 4 T := T + Tsup, n := n+ 1

Step 5 Calculate the next foot place (p
(n)
x , p

(n)
y ) using (4.50).

Step 6 Set the next walk primitive (x̄(n), ȳ(n)) using (4.51) and (4.52).
Step 7 Calculate target state (xd, ẋd) by (4.57). Calculate target state

(yd, ẏd) by corresponding equation.
Step 8 Calculate modified foot placement (p∗x, p

∗
y) by (4.59) (as well as y

component).
Step 9 Goto Step 3.

Fig. 4.25 Algorithm of walking pattern generation based on 3D-LIP

As the target state we use the terminal state of the walk primitive presented
in the ground frame [

xd

ẋd

]
=

[
p
(n)
x + x̄(n)

v̄
(n)
x

]
. (4.57)

Let us calculate the foot placement which ends up the final state closest
to the target (xd, ẋd). The evaluation function can be defined as

N ≡ a(xd − x
(n)
f )2 + b(ẋd − ẋ

(n)
f )2 (4.58)
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where a, b are positive weights. Substituting (4.56) into the evaluation func-
tion and by using ∂N/∂p∗x = 0, we can obtain the foot placement which will
minimize N

p∗x = −a(C − 1)

D
(xd − Cx

(n)
i − TcSẋ

(n)
i )

− bS

TcD
(ẋd − S

Tc
x
(n)
i − Cẋ

(n)
i ) (4.59)

D ≡ a(C − 1)2 + b(S/Tc)
2.

The method of walking pattern generation can be organized as an algo-
rithm shown as Fig. 4.25.

Figure 4.26 shows the generated walking pattern based on the walk pa-
rameters of Fig. 4.22. We can observe a slight back step at the walk start
to obtain acceleration, and a slightly wider step at the walk end to obtain
deceleration. Since such modifications of foot placement are necessary, this
method cannot realize the exact foot placement specified by the walk param-
eters. Nevertheless, since (4.59) guarantees the error converges to zero, the
robot can take a specified foot placement in steady walking.

x

y

Fig. 4.26 Walking pattern generated by the proposed algorithm. Bold line is the
trajectory of the CoM, black circles are modified foot placements. The desired foot
placements are shown by ×. For walk start and walk end, foot placements are
modified largely to obtain proper acceleration and deceleration. zc = 0.8, Tsup =
0.8,a = 10, b = 1.

For diagonal walking, we change sy for each step.

n 1 2 3 4 5

s
(n)
x 0.0 0.2 0.2 0.2 0

s
(n)
y 0.2 0.3 0.1 0.3 0.2

Figure 4.27 shows the pattern generated by this set of walk parameters. If
we set all sx to zero in this set, pure side walking is realized.
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x

y

Fig. 4.27 Example of diagonal walk. To obtain a side step, sy is changed for each
step. zc = 0.8, Tsup = 0.8, a = 10, b = 1.

4 Changing Walk Direction

For changing walk direction, we need to add heading information to our walk
parameters. The direction change taking a step is denoted by sθ as illustrated
in Fig. 4.2811.

x

y
p
0

p
1

p
2

p
3

(2)

xs
(2)

ys

(3)

xs

(3)

ys

(2)s
(3)s

Fig. 4.28 Foot placement definition including change of direction. The heading
direction sθ is measured from x-axis in counter clock-wise direction.

The foot placement of the n-th step (p
(n)
x , p

(n)
y ) is determined by

[
p
(n)
x

p
(n)
y

]
=

[
p
(n−1)
x

p
(n−1)
y

]
+

[
cos s

(n)
θ − sin s

(n)
θ

sin s
(n)
θ cos s

(n)
θ

] [
s
(n)
x

−(−1)ns
(n)
y

]
. (4.60)

11 This is a little bit simpler definition than the method we are using now. For
example, this method cannot generate a stepping turn in place. Finding a better
definition is an exercise for the readers.
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The walk primitive for the n-th step is given by

[
x̄(n)

ȳ(n)

]
=

[
cos s

(n+1)
θ − sin s

(n+1)
θ

sin s
(n+1)
θ cos s

(n+1)
θ

] [
s
(n+1)
x /2

(−1)ns
(n+1)
y /2

]
. (4.61)

The speed of walk primitive is also calculated as

[
v̄
(n)
x

v̄
(n)
y

]
=

[
cos s

(n+1)
θ − sin s

(n+1)
θ

sin s
(n+1)
θ cos s

(n+1)
θ

][
(1 + C)/(TcS)x̄

(n)

(C − 1)/(TcS)ȳ
(n)

]
. (4.62)

One can generate a walking pattern with arbitrary heading control by
using (4.60) instead of (4.50) in walking pattern generation algorithm Step
5, and by using (4.61) and (4.62) instead of (4.51) and (4.51) in the Step 6.

x

y

Fig. 4.29 Walk on an arc. 20 [deg] rotation per step. zc = 0.8, Tsup = 0.8,weights
a = 10, b = 1.

For example, to create a walk on an arc we can use the following parameters
which specifies 20 [deg] rotation per one step.

n 1 2 3 4 5

sx 0.0 0.25 0.25 0.25 0
sy 0.2 0.2 0.2 0.2 0.2
sθ 0 20 40 60 60

Figure 4.29 shows the walking trajectory generated from this walk parameter.

4.3.4 Introducing Double Support Phase

So far, we have been assuming that the support leg of the inverted pen-
dulum model is exchanged instantaneously. However, such abrupt support
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Fig. 4.30 Improvement of support exchange. (a) Instantaneous support exchange
results bending point of CoM speed graph. CoM acceleration jumps from maximum
to minimum. (b) By introducing double support phase, we can obtain continuous
profiles of CoM speed and acceleration.

exchange results the horizontal acceleration jumps from maximum to mini-
mum Fig. 4.30(a). As the result, the robot may suffer huge impacts and may
possibly be damaged.

To obtain a smoother walking pattern which is suitable for real robots,
a double support phase with a predetermined period Tdbl is inserted in the
moment of support leg exchange.

What we need is smooth velocity profiles without sudden changes of slope.
By such motion, we can avoid discontinuous changes of acceleration, thus the
ZMP smoothly transfers from the former support foot to the new support.
For this purpose, we generate velocity profiles using third order polynomials
so that we can specify the speeds and accelerations at the beginning and
the end of a double support period. As the result, the position of CoM is
described by forth order polynomials (Fig. 4.30(b)),

x(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4. (4.63)

The coefficients a0 . . . a4 are determined by position, velocity and acceleration
of the CoM at the instant of support exchange.

By inserting double supports, a robot takes larger step than planned. This
can be compensated by a proportional reduction of walk primitives in ad-
vance. Figure 4.31 shows an example of a walking trajectory with a double
support phase.
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x

y

Fig. 4.31 A walking trajectory with double support periods. The CoM trajectories
while double support phase are indicated by gray lines. The same parameters as were
used in Fig. 4.29 are used. zc = 0.8, Tsup = 0.7, Tdbl = 0.1,weights a = 10, b = 1.

It should be noted that while longer period of double support results
smoother support exchange, it also requires undesirable quicker swing leg
motion. Therefore we have a trade-off in determining Tdbl.

4.3.5 From Linear Inverted Pendulum to Multi-body
Model

The easiest way to generate a walking pattern by using the linear inverted
pendulum is to let the pelvis link follow the CoMmotion of LIP. First, the real
position of the CoM is calculated using a multi-body model and its position
with respect to the pelvis frame is determined. After that, the position of the
pelvis link is directly determined from the liner inverted pendulum assuming
that the relative position of the CoM is kept constant with respect to the
pelvis. In addition, we must calculate the swing foot trajectory so that it
arrives the desired foot place at the specified time of touchdown.

Once we determine the trajectories for the pelvis and the both feet,
the leg joint angles can be obtained by inverse kinematics as explained in
Chapter 2.

This method is based on an assumption that the multi-body dynamics
of the robot can be approximated by a simple inverted pendulum and its
validity can be confirmed by using ZMP described in the former chapter. By
calculating ZMP using multi-body model, we can evaluate the effects of swing
leg reaction and errors in CoM position which were neglected in a linear
inverted pendulum. Figure 4.32 shows two ZMPs, one based on the linear
inverted pendulum, and one based on multi-body dynamics and the proposed
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Fig. 4.32 Comparison of ZMP trajectory (a) ZMP calculated from 3D linear in-
verted pendulummodel (b) ZMP calculated from multi-body dynamics whose pelvis
link moves as 3D-LIP
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Fig. 4.33 Biped robot HRP-2L
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pattern generation. Both of ZMPs are sufficiently close, hence we can conclude
a multi-body dynamics can be simplified as a simple inverted pendulum in
this case.

4.3.6 Implementation Example

Let us see an implementation of the proposed walking pattern generation.
Figure 4.33 shows a biped robot HRP-2L which was developed in “Humanoid
Robotics Project”(HRP). This robot was built to evaluate the leg part of
HRP-2, the humanoid robot which was the final goal of the project. Each
leg has six degrees of freedom and the robot is equipped with a Pentium II

1st step 4th step

8th step 12th step

15th step 19th step

Fig. 4.34 Snapshots of real-time walking control
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933MHz based on-board computer on its body part. The total weight is
58.2 [kg] including batteries of 11.4 [kg] and dummy weights of 22.6 [kg]
which emulates upper body.

The algorithm of Fig. 4.25 can generate a walking pattern where at least
two future steps were given. So we could build a walking control system which
allows real-time step modification by specifying the walk parameter of two
steps in future (sx, sy, sθ) with a joystick. Figure 4.34 shows snapshots of our
experiment of real-time walking control.

4.4 ZMP Based Walking Pattern Generation

4.4.1 Cart-Table Model

Let us think about a new model illustrated in Fig. 4.35. Here, a cart with
mass M runs on a table whose mass is negligibly small. Although the table
foot is too small to keep balance having a cart on the edge of the table, it can
still keep an instantaneous balance if the cart runs with certain acceleration.
We call this a cart-table model.

Since a cart-table model corresponds the case of a single mass at constant
height in section 3.5.2, the ZMP is given as

p = x− zc
g
ẍ. (4.64)

We call this equation a ZMP equation.

M

cz

p
x

O

0ZMPτ =

x��

Fig. 4.35 Cart-table model: Dynamics of walking robot is approximated as a cart
running on a massless table. The state of the running cart determines the center of
pressure which acts from the floor, in other words, the cart changes ZMP.
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On the other hand, the equation of linear inverted pendulum was given as
following (Fig. 4.24).

ẍ =
g

zc
(x− p). (4.65)

By regarding p as ZMP and not a foot place point as we did previously, we
can treat a robot applying ankle torque and a robot in double support phase
in a unified manner [134]. Moreover, we can see that (4.64) and (4.65) are
the same equations with different outlooks.

A linear inverted pendulum model and a cart-table model are compared in
Fig. 4.36. In a linear inverted pendulum model, the CoM motion is generated
by the ZMP (Fig. 4.36(a)), and in a cart-table model, the ZMP is generated
by the CoM motion (Fig. 4.36(b)). Therefore, these two models have opposite
input-output causality.
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Fig. 4.36 Comparison of two models for relationship between ZMP and CoM
(a) A linear inverted pendulum model inputs ZMP and outputs CoM motion. (b)
A cart-table model inputs CoM motion and outputs ZMP.

As we described in the former section, a method based on a linear inverted
pendulum assumes input-output relationship of Fig. 4.36(a) and the walking
pattern is calculated in the following process.

(Specify target CoM motion) ⇒ (Calculate appropriate ZMP)

In this case, it is difficult to plan ZMP as expected. Indeed, we have modified
the ZMP (support foot placement) in the method of the previous section.



140 4 Biped Walking

Now, let us consider a walking pattern generation based on a cart-table
model. In this case, assuming the causal relationship of Fig. 4.36(b), we cal-
culate a walking pattern by the following manner12.

(Specify target ZMP trajectory) ⇒ (Calculate appropriate CoM motion)

As the result, we can obtain a walking pattern which realizes the speci-
fied ZMP trajectory. Let us call such a method ZMP based walking pattern
generation.

4.4.2 Off-Line Walking Pattern Generation

ZMP based walking pattern generation was first proposed by Vukobratović
and Stepanenko in their paper published in 1972 [90], but their algorithm
takes considerable computation time. Then, Takanishi et al. proposed a prac-
tical method which transforms the target ZMP pattern into a Fourier series
by using FFT, solve the ZMP equation (4.64) in the frequency domain and
obtains the CoM trajectory by using inverse FFT [11]13. A pattern generator
based on this method played a particularly important role in the early stage
of the Humanoid Robotics Project.

In this section, we introduce a fast and efficient algorithm that was recently
proposed by Nishiwaki et al. [114]14 Let us discretize the ZMP equation with
a sampling time Δt. For this purpose, the acceleration ẍ is approximated as

ẍi =
xi−1 − 2xi + xi+1

Δt2
, (4.66)

where xi ≡ x(iΔt). Using this approximation, the discretized ZMP equation
is

pi = axi−1 + bxi + cxi+1, (4.67)

ai ≡ −zc/(gΔt2),

bi ≡ 2zc/(gΔt2) + 1,

ci ≡ −zc/(gΔt2).

Putting the equations (4.67) in a column for the period of the specified
(1 . . .N), and representing them as a single matrix equation gives

12 There exist an infinite numbers of possible CoM motions which realize the given
ZMP trajectory, however, almost all of them suffer divergence. Fig. 4.36(b) can
be regarded as a mechanism which guarantees an executable solution.

13 Later, Takanishi’s method was extended to handle real-time pattern generation
[40].

14 Another fast and efficient method was proposed by Nagasaka [93].
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⎡
⎢⎢⎢⎢⎢⎣

p′1
p2
...

pN−1

p′N

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1 + b1 c1 0

a2 b2 c2
. . .

. . .

. . . aN−1 bN−1 cN−1

0 aN bN + cN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

...
xN−1

xN

⎤
⎥⎥⎥⎥⎥⎦
, (4.68)

where p′1, p
′
N are specified by using initial and terminal velocities v1, vN as

p′1 = p1 + a1v1Δt, p′N = pN − cNvNΔt.

Rewriting (4.68) as
p = Ax

gives the representation of the solution by

x = A−1p. (4.69)

Although A is a huge square matrix with several thousands columns and
several thousands lows, there exists an efficient algorithm to compute the
inverse [136] since it is a tridiagonal matrix whose elements are all zeros
except its main diagonal, the adjacent diagonals above and below it.

From this CoM trajectory, we can generate a walking pattern for a multi-
body model by using the method of Section 4.3.5. Then we can calculate the
ZMP trajectory for the multi-body model.

p∗ = RealZMP (x). (4.70)

The function RealZMP () calculates ZMP based on a multi-body model and
p∗ is the obtained ZMP. The ZMP error p∗ − pd contains information about
the difference between the cart-table model and the multi-body model. Again
using (4.69), we can calculate the CoM variation to compensate the ZMP
error

Δx = A−1(p∗ − pd).

The CoM trajectory is updated by

x := x−Δx.

Going back to (4.70), we can repeat the same process until the ZMP error
becomes sufficiently small.

This is a very efficient algorithm. According to Nishiwaki et al. [73] it takes
only 140 [ms] in generating a walking pattern for three steps (3.2 s) of the
humanoid robot H7 [113] which have 32 DOF using dual Pentium II 750MHz.
They have realized joystick controlled real-time walking by generating three
future steps at every step cycle and by properly connecting them.
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4.4.3 On-Line Walking Pattern Generation

In this section, we introduce the pattern generation method which is currently
used for our humanoid robot HRP-2.

1 ZMP Tracking Control

Regarding a cart-table model as a dynamical system, one can imagine a servo
system which realize a target ZMP tracking by feedback control as shown in
Fig. 4.37.

p

Target ZMP

reference

Controller

ref
p + −

Controller

+ −

Controller

+ − p

ZMP

M

u

Fig. 4.37 Servo controller to track the target ZMP

We define a derivative of cart acceleration (jerk) as a system input to treat
a cart-table model in a framework of the standard modern control theory,

u =
...
x .

By using this input, we can rewrite the ZMP equation (4.64) into the following
state space representation

d
dt

⎡
⎣
x
ẋ
ẍ

⎤
⎦ =

⎡
⎣
0 1 0
0 0 1
0 0 0

⎤
⎦
⎡
⎣
x
ẋ
ẍ

⎤
⎦+

⎡
⎣
0
0
1

⎤
⎦u

p =
[
1 0 − zc

g

]
⎡
⎣
x
ẋ
ẍ

⎤
⎦ .

(4.71)

Starting from this equation, the modern control theory gives us a systematic
way to design a controller [55]. However, we cannot obtain an appropriate
walking pattern by using such controllers. For an example, suppose the walk-
ing motion of Fig. 4.38(a) which specifies a robot to walk forward one step
of 30 cm. The target ZMP have step-like change at 1.5 s, but keeps constant
before and after it. Notice that the CoM motion starts before the change of
the ZMP. This means that the cart must move before the change of input in
the system of Fig. 4.37. On the other hand, in an ordinary servo system, we
have the output motion with a certain delay after a change of reference as in
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Fig. 4.38 Input-output causality (a) One step walking. ZMP (broken line), CoM
(bold line). The CoM starts moving before the step change of the ZMP. (b) In an
ordinal servo system, the output (bold line) moves after the change of reference
input (broken line).

Fig. 4.37(b) and this is normal causality. In biped walking pattern generation,
a future information must go back to and affect the past!

2 Preview Control System

Although we need future information, we do not have to develop a time-
machine15. For example, when driving a car, we are always monitoring the
road ahead and using information about the future location of the car for
steering. This can be regarded as using future information for smooth driv-
ing. To appreciate the importance of using such future information, imagine
driving at a high speed on a freeway with the top half of the windshield
obscured, so you can only see a few meters ahead.

A method which utilizes future information is called preview control [128,
82, 86, 130]. Let us introduce a controller design based on this theory.

At the beginning we discretize a continuous-time system of (4.71) using a
sample time of Δt to design a digital controller

{
xk+1 = Axk + buk

pk = cxk
(4.72)

where

xk ≡ [x(kΔt) ẋ(kΔt) ẍ(kΔt) ]T ,

uk ≡ u(kΔt),

pk ≡ p(kΔt),

15 By the way, a realistic time-machine technology which can send a message to the
past using particle physics is depicted in James P. Hogans’s Thrice upon a Time
(Baen Books). This is a master-piece Sci-Fi novel.
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and

A ≡
⎡
⎣
1 Δt Δt2/2
0 1 Δt
0 0 1

⎤
⎦ , b ≡

⎡
⎣
Δt3/6
Δt2/2
Δt

⎤
⎦ ,

c ≡ [ 1 0 −zc/g ].

To let the system output pk follow the target ZMP prefk as closely as
possible, we consider the problem to minimize the following performance

J =

∞∑
j=1

{Q(prefj − pj)
2 +Ru2

j}, (4.73)

where Q, R are positive weights. This is called a tracking control problem.
According to the preview control theory, this performance index J can be
minimized by the following input which uses the future target references up
to N steps [54].

uk = −Kxk + [f1, f2, · · · fN ]

⎡
⎢⎣
prefk+1
...

prefk+N

⎤
⎥⎦ , (4.74)

where
K ≡ (R + bTPb)−1bTPA

fi ≡ (R+ bTPb)−1bT (A− bK)T∗(i−1)cTQ.
(4.75)

The matrix P is a solution of

P = ATPA+ cTQc−ATPb(R + bTPb)−1bTPA (4.76)

which is called a Riccati Equation16.
By observing (4.74), we can see that a preview controller consists of a

state feedback (the first term of right hand side) and a feed-forward of a
inner product between the future target reference up to N steps and the
weights [f1, . . . , fN ] (the second term).

3 Improvement of Preview Controller

We observed an offset tracking error of ZMP in a long distance walking
pattern generated by (4.74). To solve this problem, we rewrote (4.72) into
the following expanded form:

16 You do not have to worry about this complicated matrix equation. By using
a command dlqr of Matlab Control System Toolbox or GNU Octave, you will
immediately obtain the numerical solution of P and K.
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Fig. 4.39 Walking pattern generation by preview control

{
x∗
k+1 = Ãx∗

k + b̃Δuk

pk = c̃x∗
k

, (4.77)

where the new input and state vector were taken as

Δuk ≡ uk − uk−1, Δxk ≡ xk − xk−1,

x∗
k ≡

[
pk
Δxk

]
.

The matrices are

Ã ≡
[
1 cA
0 A

]
, b̃ ≡

[
cb
b

]
,

c̃ ≡ [1 0 0 0].

Let us design a controller for the system of (4.77) to minimize the following
performance

J =
∞∑
j=k

{Q(prefj − pj)
2 +RΔu2

j}. (4.78)

The preview controller is

Δuk = −K̃x∗
k +

N∑
j=1

f̃jp
ref
k+j (4.79)

where K̃, f̃j are gains obtained by substituting Ã, b̃, c̃, Q and R into (4.75)
and (4.76). By summing up equations (4.79) for k = 1, . . . , N , we can obtain
a preview controller for the original system of (4.72):
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uk = −Ks

k∑
i=0

(prefj − pj)−Kxxk +

N∑
j=1

gjp
ref
k+j (4.80)

[
Ks

Kx

]
≡ K̃, gj :=

N+j∑
i=j

f̃i.

A block diagram for a pattern generation based on preview control is
illustrated in Fig. 4.39. The future target ZMP reference is stored in a FIFO
(First-In-First-Out) buffer visualized as a belt conveyer, and its output value
is regarded as the current reference. The preview controller calculates the
control input using the ZMP reference on the FIFO buffer and the state of
the cart. The cart state x, ẋ is the result of the pattern generation, the CoM
motion which satisfies the target ZMP.

The CoM trajectory calculated by the proposed method and the resulted
ZMP are shown in Fig. 4.40. The upper graph is the motion along the walking
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Fig. 4.42 Walk simulation on spiral stairs

direction and the lower graph is for the lateral direction17, and we can see
the proper CoM motions are generated for step-like target ZMP and pulse
like target ZMP, respectively. The preview gain used for this calculation is
shown in Fig. 4.41. Since the preview gain becomes negligibly small at 1.6 s
in this graph, we can conclude that the information more than 1.6 s future
ahead will not contribute the control performance.

Figure 4.42 shows a walking pattern on spiral stairs using the above ex-
plained method.

4.4.4 Dynamics Filter Based on Preview Control

1 Structure of a Dynamics Filter

Since a preview control based pattern generation depends on a cart-table
model, it does not guarantee the stability of the motion which cannot be
represented by the simplified model, for example, significantly changing upper
body posture while walking. In such a case, however, we can use a cart-table
model as an error system around the target motion, and can calculate the
modification of the CoM trajectory to compensate for the ZMP error by using
preview control again.

Figure 4.43 shows the entire structure of the proposed system. The inputs
are the target ZMP (ZMP ref) and the whole state of the robotRobot state,
which consists of the angles and the speeds of all the joints, the pelvis con-
figuration, its speed and angular velocity. We can calculate the ZMP error
(ΔZMP ) from these inputs, and put it into the FIFO buffer. Also put Robot
state into another FIFO. By retrieving Δ ZMP from the FIFO output after a
certain time delay, we have the future ZMP error with respect to the delayed
moment on the FIFO buffer. Thus, we can calculate a proper compensation
of CoM by using preview control. By applying the CoM compensation to
the delayed Robot state, we obtain improved joint trajectories which better
satisfies the target ZMP reference. Generally, a system of Fig. 4.43 is called

17 A plane made of the heading axis and the vertical axis is called sagittal plane
and a plane made of the lateral axis and the vertical axis is called lateral plane.
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Fig. 4.43 Structure of a dynamics filter based on preview control

a dynamics filter. A dynamics filter converts a given motion pattern into an
improved one which satisfies the desired properties [93].

2 Evaluation of the Dynamics Filter

As an example, let us make a pattern where HRP-2 performs a squat in the
middle of walking and goes back to normal walking after that, as shown in
Fig. 4.44. First, we simply add a squatting motion to a walking pattern as-
suming constant height of CoM and the resulted ZMP trajectory is shown in
Fig. 4.45(a). It is observed that the ZMP (bold line) approaches the bound-
ary of the support polygon (dotted lines) and the walking pattern has very
small stability margin. Therefore, the robot falls down immediately after the
squatting motion in the dynamic simulation.

This walking pattern was modified by the dynamics filter of Fig. 4.43 and
we obtained the pattern of Fig. 4.45(b). We used the delay time of 0.8 s for
the FIFO buffers and a preview controller without integrator (see (4.74)).
The maximum absolute ZMP error which was originally 0.11 m decreased to
0.05 m by applying the dynamics filter. Since the new walking pattern has

Fig. 4.44 Example walking pattern obtained preview control based dynamics filter
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Fig. 4.45 Effects of the dynamics filter: ZMP(bold lines) is modified to be inside of
support polygon boundary(dotted line) thus sufficient stability margin is acquired

enough stability margin, the robot could successfully walk in the dynamic
simulation.

The modified walking pattern is shown in Fig. 4.44. By applying the
proposed dynamics filter, we can obtain a realizable walking pattern even
though the original pattern largely deviated from a simple cart-table model
dynamics.

4.4.5 Advanced Pattern Generators

The method of preview control is not the only way for online walking pattern
generation. As one of the practical methods, Harada et al. proposed to use
an analytical solution of the ZMP equation [60]. Later, this was improved
by Morisawa et al. for more efficient and responsive pattern generation [85].
These methods were used to realize HRP-2’s reactive walking.

Preview control belongs the general scheme called Model Predictive Con-
trol (MPC), which calculates the control input by optimizing the future tra-
jectory. Based on MPC, Wieber proposed a walking pattern generation which
does not require a prescribed ZMP [137, 9]. By this method, ZMP and CoM
trajectories can be simultaneously generated from the given profiles of the
support polygon.

4.5 Stabilizer

Figure 4.46 shows snapshots of HRP-2 walking on an uneven floor. As ex-
plained in the beginning of this chapter, in a real environment which contains
unmodeled errors and floor unevenness, a biped robot following a prepared
pattern suffers a rapid evolution of errors between the reference and the ac-
tual state and falls down in a few steps. To suppress the error development
and guarantee the walking motion along the specified walking pattern we use
a stabilizer.
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Fig. 4.46 Feet of HRP-2 walking on an uneven floor

4.5.1 Principles of Stabilizing Control

In this section, we introduce basic principles which are used to construct
a stabilizer. To simplify the descriptions, we explain a method to stabilize
around a state of standstill. Since a stabilizer works to absorb a small errors
around the reference walking pattern, we should not lose generality with this
approach.

1 Control by an Ankle Torque

We can stabilize whole body balance or posture by using the ankle torque of
the support leg by modeling the whole robot as a simple inverted pendulum.
An ankle torque, τ and a linear inverted pendulum have a relationship of

ẍ =
g

zc
x+

1

Mzc
τ. (4.81)

The simplest feedback law to stabilize this pendulum is as following18:

τ = −kpx− kdẋ, (4.82)

where kp, kd are the feedback gains determined for given response frequency
ω and damping coefficient ζ,

kp ≡ M(zcω
2
n + g), kd ≡ 2Mzcζωn.

Although this control law looks easy, its implementation is difficult. First,
accurate control of ankle torque is an extremely difficult problem for most
walking robots equipped with high-reduction gears. Moreover, to realize

18 For a use of more advanced control law, one must consider the problem of in-
tegrator windup, an unexpected accumulation of the integrator while the ankle
torque saturates.
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stable walking, we need fine tuning of feedback gains and torque limiters
to suppress the toe/heel lift-off caused by excessive ankle torque.

This method was used by many biped robots developed in 1980s and 1990s,
for example, WL-10RD by Takanishi et al. [10], Idaten II by Miyazaki and
Arimoto [109, 32], Kenkyaku-2 by Sano and Furuhso [46] and Meltran II by
Kajita and Tani [116].

2 Control by Modifying Foot Placements

The second method based on a inverted pendulum model is to modify foot
placements for the stabilization. For this control, we can apply the same prin-
ciple of the walking speed control explained in section 4.3.3(see Fig.4.23) on
page 129). There are few robots which were stabilized by foot place modifi-
cation, such as BIPER-3, a stilt walker developed by Shimoyama and Miura
[41], and the series of hopping robots by Raibert and his colleagues [97].

3 ZMP Control by CoM Acceleration

Let think about a stabilization method based on a cart-table model. In this
case we must measure the ZMP to design a feedback controller, and by as-
suming the time constant of the ZMP sensor as T , the ZMP equation is

p =
1

1 + sT
(x− zc

g
ẍ). (4.83)

The state space representation having the cart acceleration ẍ as the input is

d

dt

⎡
⎣
p
x
ẋ

⎤
⎦ =

⎡
⎣
−1/T 1/T 0
0 0 1
0 0 0

⎤
⎦
⎡
⎣
p
x
ẋ

⎤
⎦+

⎡
⎣
−zc/(gT )

0
1

⎤
⎦ ẍ. (4.84)

We can design a state feedback law to stabilize this system as

ẍ = −k1p− k2x− k3ẋ. (4.85)

The feedback gains k1, k2, k3 can be determined by a standard control theory
like a pole placement or the LQ optimal control. This control law was in-
troduced as torso position compliance control by Nagasaka, Inaba and Inoue
[70]19. This control law is effective for a walking robot with feet of high stiff-
ness and was used to stabilize humanoid robots H5 and H7[113]. A simpler
but effective controller is proposed by Choi, Kim and You [139].

As an alternative method, Okada, Furuta and Tomiyama proposed a stabi-
lization method based on the CoM acceleration control via dynamic change of

19 In the original work, they used the different procedure to derive the equivalent
control law. Napoleon et al. shows another interpretation for their control law in
terms of the zero-dynamics control theory [94].
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sampling time and implemented to control the biped robot MK.3 and the hu-
manoid robot morph3 [143].

4 Body Posture Control by Crotch Joints

For most walking robots, we desire that the body maintain an upright posture
during walking. The easiest way is to rotate the crotch(hip) joints so that
the body keeps the desired state based on a posture sensor readout. This is
possible even for point contact feet since the torque around the crotch joint
is generated by the friction force on the ground. This control is implemented
in the Raibert’s hopping robots [97], and a humanoid robot developed by
Kumagai et al. [84].

5 Model ZMP Control

As a novel method of body posture control, Hirose, Takenaka et al. proposed
a model ZMP control. According to their explanation, it works as

When the body of the real robot was inclined more forward than the model, the
model body ismore strongly accelerated than the planned trajectory. This changes
the target inertial force and the target ZMP then goes more backward than the
original ZMP, hence producing posture recovery in the real robot [83, 62].

Let us consider the physical meaning of this model ZMP control using a
version of cart-table model of Fig. 4.47. We assume the table foot has a free
rotating joint which inclines the table at an angle of θ relative to the vertical
position. The cart acceleration ẍ corresponds to the body acceleration.
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Fig. 4.47 (a) A cart-table model with free rotating joint. θ is positive in the
clockwise direction. (b) Cart acceleration and the table inclination. Bold lines: with
proper acceleration the table keeps upright (θ̈ = 0), Broken lines: with excessive
acceleration the table rises (θ̈ < 0), Dotted lines: with insufficient acceleration the
table sinks (θ̈ > 0). The model ZMP control uses this phenomenon.
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The equation of motion obtained by Lagrange’s method is

{
(x2 + z2c )θ̈ + ẍzc − g(zc sin θ + x cos θ) + 2xẋθ̇ = τ/M

ẍ+ z̈c − θ̇2x+ g sin θ = f/M
, (4.86)

where τ is the torque acting at the table foot and f is the force to accelerate
the cart on the table. By linearizing the first equation around θ, θ̇ = 0 and
substituting τ = 0, we obtain

(x2 + z2c )θ̈ = gx+ gzcθ − zcẍ. (4.87)

Next, assume the target position of the cart xd is generated by the dynamics
of

ẍd =
g

zc
(xd − pd), (4.88)

where pd is the target ZMP. Intuitively speaking, when the target ZMP is
placed backword (pd < 0) the cart accelerate strongly and when it is placed
forward (pd > 0) the cart acceleration becomes small. Since (4.88) is just a
model to generate the acceleration, the target ZMP can be assigned at the
outside of the support polygon.

Now, suppose we can control the cart acceleration as we want. By substi-
tuting x = xd and (4.88) into (4.87) we get

θ̈ =
gzc

x2
d + z2c

θ +
g

x2
d + z2c

pd. (4.89)

From this result, we can see that the table inclination θ can be controlled by
the target ZMP pd, and its dynamics is determined by the cart position and
gravity acceleration.

6 Impact Absorption by Joint Backdrive

Embedding a joint torque sensor and applying the reference position as a
function of the torque measurement, we can realize a virtual spring-damper
system. Takanishi et al. utilized such system to absorb the vibration at touch-
down impact [10]. Also when a joint has a small reduction ratio (1/1 to
1/50 approximately), it backdrives by the external forces from the environ-
ment thus a position control system behaves as a spring-damper by itself.
Kenkyaku 1, a biped robot developed by Furusho et al. utilized this for its
walking control [47]. Sorao, Murakami and Ohnishi reported an impact ab-
sorption at support exchange using an impedance controller which depends
on a sensor-less torque measurement by disturbance observer [75].

7 Stabilization by LQ Control

A walking robot can be modeled as a multi-input-multi-output (MIMO) sys-
tem having joint torques u as its input vector and output as the state of all
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links. Let us define a state vector x consisting of all the posture and speed
variables of all the links, and linearize the motion equation from u to x. By
a straightforward application of LQ control theory, we get a state feedback
law of

u = −Kx,

where K is a feedback gain which is a huge N × 2N matrix for the number
of joint N . This approach was applied to a 6 DOF biped, CW-2 by Mita et
al. [133] and 12 DOF biped developed by Yoshino [145]. Especially, the latter
work reports that the robot could successfully walk at 3 [km/h] on the floor
with unevenness of 6 [mm].

4.5.2 Stabilizing Control of Honda Humanoid Robot

A practical stabilizing control system is constructed by combining mul-
tiple control principles described above. Let review one such successful
implementation.

Fig. 4.48 Humanoid robot P2 (1996) (By courtesy of Honda Motor Co., Ltd.)

Figure 4.48 shows a humanoid robot P2 developed by Honda Motor Co.,
Ltd. and officially announced in 1996. Its control system has a state-of-art
quality even at the time of this printing.20 and its technology is well disclosed
[83, 62]. The walking control system of P2 is illustrated in Fig. 4.49. The feed-
back path from the body inclination to the ground reaction force corresponds
the ankle torque control described in 1 . It should be noted that the pas-
sive compliant elements inserted in the feet of P2 makes this control easier

20 It is assumed that the same type of controllers are also used for another Honda
humanoids P3 and ASIMO which are the successors of P2.
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Fig. 4.49 The walking control system of Honda P2

to implement. When the robot body gets an excessive inclination the model
ZMP control 5 works to resolve it. The horizontal body displacement error

caused by this is corrected by the foot landing position control 2 . As we see,
a robust walking control of P2 is supported by an ingenious combination of
multiple control schemes.

4.5.3 Advanced Stabilizers

Recently, we proposed a new stabilizer based on a state space model of LIPM
with ZMP control lag [117]. This stabilizer allows our new humanoid robot
HRP-4C to walk on a certain level of uneven ground as well as to perform
human-like walking with toe supporting [69]. One of the key issues of this
stabilizer is a proper setting of the state feedback gain which was discussed by
Sugihara [125]. Another important issue is distribution of the desired ZMP.
A related concept of stabilization based on a total ground force distribution
was discussed by Hyon [42].

A huge disturbance during walking, for example a kick on the body, can
immediately cause the robot to deviate from a preplanned trajectory and
consequently fall down. The robot can avoid falling even in this case, if it
can re-plan the walking pattern by letting the deviated state be the initial
condition. By properly implementing this concept, very robust walking can
be realized [72, 85, 51].

As we discussed in Section 4.5.1, adaptive change of foot placement is a ba-
sic strategy for stabilization. Pratt et al. defined the capture point which is
a point on the ground where the robot can step to achieve its complete stop
[50]. Based on the capture point concept, Englsberger et al. proposed a simple
framework for real-time walking pattern generation and stabilization [44].

4.6 Pioneers of Dynamic Biped Walking Technology

Let us look back in the research history of dynamic biped walking control.
Since the dawn of the robotics research, biped walk was widely recognized as
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a challenge of the highest difficulty. The earliest research to develop hardware
were started by Ichiro Kato in Waseda University in 1966, and by D.C. Witt
in Oxford University in 1968 [68, 19]. As we explained in chapter 1, in 1973,
Kato and his colleagues built the world’s first humanoid robot WABOT-1
which had two arms and two legs and was controlled by a computer. Although
it was a remarkable achievement, WABOT-1 could only perform static walk-
ing. About 1980, there was a big trend of research to realize dynamic biped
walking and many Japanese researchers actively developed theories and robot
hardware. We can see those activities in Special Issue: Biped Walking Robot,
the journal of Robotics Society of Japan, Vol.1, No.3. In 1986, there already
exists many biped robots which could perform dynamic walking as shown in
Fig. 4.50 [27].

In the same year, a group of researchers in Honda Motor Co.,Ltd. started
a secret project of biped walking robot. After complete silence for 10 years21,
their efforts have borne fruit as the humanoid robot P2. The humanoid robot
P2 suddenly appeared with an excellent hardware and walk control technol-
ogy, and it depressed researches who have been working on biped walking
control until that time. At the same time, it also inspired many researchers
by demonstrating the great possibility of humanoid robots. This yielded the
power to start the Humanoid Robotics Project (1998-2002), the national R&D
project of Japan.

People who get used to watch ASIMO or QRIO might think the robots
in Fig. 4.50 are primitive. However, the researchers who developed them
by struggling with poor computers and weak actuators of these days are
the real pioneers of biped walking technology. Indeed, most of the modeling
and control technique for biped walking were developed until those days.
Moreover, I can hardly believe that Honda’s research project was independent
from those many research works already published in 1986. The progress of
science and technology is not done by a genius in one night. There is no
brilliant breakthrough independent from the heritage. Therefore, the true
progress can be done only by the open exchange of ideas in a collaboration
of many researchers, beyond institutes, beyond countries.

4.7 Additional Methods for Biped Control

In this section, we introduce biped robots and controls based on methods
totally different from the concepts so far explained.

21 Compared with universities, it is estimated that more than 100 times the financial
budget as well as manpower was invested by Honda during this time. Since the
robotics community held a mostly negative view on biped robotics in those days,
the long-range vision of the Honda people should be highly respected!
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Waseda Univ. WL-10RD (1984) Gifu Univ. Kenkyaku 2 (1983)

Univ. Tokyo BIPER-3 (1982) Univ. Tokyo BIPER-4 (1983) Tokyo Inst.Tech. BIPMAN2 (1982)

Chiba Univ. CW-2 (1983) Osaka Univ. Idaten II (1982)

Tokyo Inst Tech. MEG-2 (1982)

Fig. 4.50 Biped robots which could walk dynamically before 1986 [27]

4.7.1 Passive Dynamic Walk

Passive dynamic walkers are mechanisms which can walk down a shallow slope
only using potential energy. Tad McGeer intensively analyzed its dynamics
and designed a 2D walker with free knee joints which can perform stunningly
human like walking without any actuation or control [131, 132]. Following
and improving this concept, a 3D passive walker was also realized by Collins,
Wisse and Ruina [111].

Passive dynamic walking has attracted many researchers who are seeking
for the fundamental nature of biped locomotion. There are works analyzing
its chaotic behavior [14, 74] and its robust stability [141].
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In the original paper of McGeer [131], he suggested a “powered” passive
walker, which can walk on a level ground or uphill slopes by adding small ac-
tuators. It is called a semi-passive dynamic walker. There exist theoretical
works [7, 29, 91] and successful implementations were developed by Hobbe-
len and Wisse [21] and by Narioka, Tsugawa and Hosoda [71]. Collins, Ruina,
Tedrake and Wisse have evaluated the power consumption of their successful
semi-passive walkers and estimated that one of their robots is approximately
ten times more efficient in comparison with Honda’s ASIMO [110].

4.7.2 Nonlinear Oscillator and Central Pattern
Generators

A group of researchers are considering that biped walking should not be analyt-
ically planned, but must be the result of nonlinear oscillations emerging from
feedback and dynamic interaction between the system and the environment.

Katoh and Mori built a stilt type biped robot, BIPMAN2, which used a
stable limit cycle generated by a nonlinear oscillator based on a coupled van
der Pol equation. The robot could take one dynamic step forward [100].

Taga et al. simulated a human’s muscle-born system with distributed non-
linear oscillators (Central Pattern Generators: CPGs) and found the sim-
ulated robot can naturally generate walking or running motions which are
robust against disturbances [126].

Inspired from Taga’s work, Hase et al. simulated detailed 3D human model
controlled by a hierarchical CPG system and demonstrated stable 3D walking
and running[61]. They also used a hill-climbing algorithm to optimize the
CPG parameters for various performance indices and reported that walking
patterns with human-like properties were successfully obtained.

Recently, Hyon, Morimoto and Kawato have demonstrated CPG-based
dynamic walking by their human-sized humanoid robot [107].

4.7.3 Learning and Evolutionary Computing

The most radical approach might be to build a robot which can learn or evolve
walking by itself. Doya built a simple biped robot consists of three links,
and a self learning system of hardware in the loop. The system generated
a walking pattern randomly and learned by using a hill-climbing algorithm
using actual traveled distance as its performance index [57]. As the result, the
robot could acquire a variety of walking patterns including a jumping gait
and a tumbling gait which were not expected. de Garis designed a neural
network based walking control system whose weights are tuned by a genetic
algorithm, and simulated a evolution of biped walking [20].

Tedrake et al. designed a 3D semi-passive walker equipped with four ac-
tuators whose motion can be acquired by online reinforcement learning. It
is reported that the robot could learn an adequate walking pattern for the
various floor conditions within about twenty minutes [106].



Chapter 5

Generation of Whole Body Motion
Patterns

In this Chapter we will explain how you generate whole body motion patterns
for a humanoid robot. There is a lot of ongoing research in this area and
the ultimate method is still yet to be created. So therefore we will simply
introduce examples that are being used today.

5.1 How to Generate Whole Body Motion

Let us consider the motion shown in figure 5.1. The Robot has to first move
from a standing posture to a kneeling posture, lift the luggage from the
ground and carry the luggage 1[m] forward. How would you go about gener-
ating Whole Body Motion like this? Intelligent readers would probably have
a plan formed by now.

To generate a walk pattern you can use the methods discussed in the pre-
vious chapter. The problem lies in the way you actually go about generating
the motion to enable the robot to pick up the box. Why can’t you simply use
the same method as used by industrial robot manipulators?

Industrial 6 axes robot manipulators usually come with a device called a
teaching pendant as shown in figure 5.3. This device enables you to set the
initial position and attitude of the end effector, which may be for welding
or painting or grasping. Furthermore, you can set way points through which
the end effector must pass, and the controller will interpolate between these
points and generate control angle trajectories. This is possible because a 6
axes industrial robot manipulator has the minimum amount of joints that
enable it to have 6 degrees of freedom. So if you set the position and attitude
which amounts to 6 degrees of freedom you can solve the joint angles using
inverse kinematics.

The major difference with a robot with many degrees of freedom such as a
humanoid robot, is that even if you set the position and attitude of the end
effector you will not get a unique solution, there will be several. You can try
this out for yourself by grasping a door handle standing up and then squatting

S. Kajita et al., Introduction to Humanoid Robotics, 159
Springer Tracts in Advanced Robotics 101,
DOI: 10.1007/978-3-642-54536-8_5, c© Springer-Verlag Berlin Heidelberg 2014
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t=0[s] t=2[s] t=4[s]

t=7[s] t=9[s] t=13[s]

Fig. 5.1 Simple Task for the HRP-2

down. A further complication is the fact that a humanoid robot is not bolted
down to the floor like an industrial robot manipulator. This means you need
to not only make sure that the initial posture, the intermediate postures and
the goal posture will enable the robot to keep it’s balance, you must be sure
that the ZMP trajectory stays within the support polygon which is defined
by the robot’s contact points with the ground.

Due to this, you will see that the majority of the methods discussed below
will first generate a rough full body motion and the modify it so that the
ZMP trajectory stays within the support polygon. Figure 5.4 shows the steps
that are required to generate full body motion. In step A we first generate
whole body motion to fit the requirements. In step B we make the necessary
adjustments to enable the robot to balance. Most humanoid robots have
sensor feedback loops that keep the robot stable so the actual motion that is
used is a further modification of the trajectory generated in step B1.

5.2 Generating Rough Whole Body Motion

There are around three methodologies that have been proposed for generating
whole body motion that roughly suits your requirements.

1. Use Motion Capture and get data from a human being.

1 If the motion created in step B is perfect step C may not be an absolute necessity.
However, as you probably are aware, the world is not a perfect place so it is not
realistic to think that you can pre-define all the parameters related to the real
world.
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Fig. 5.2 Time Graph of the major joints on the HRP-2. First 7[s] are lifting the
box, 7 to 13[s] is the walking motion.
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Fig. 5.3 A Teaching Pendant(left) and Actual Use(right)
(Photograph courtesy of Yaskawa Electric)
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Fig. 5.4 Flowchart Showing the Generation of Whole Body Motion for a Humanoid
Robot

2. Create a GUI(Graphical User Interface) or use a CAD system.
3. Use high-speed multivariate search methods.

We will go over these in detail below.

5.2.1 Using Motion Capture

Humanoid robots are made to be like human beings, so it is a natural step to
try to use data captured from real human motion. To actually capture this
data, you usually simply use a Motion Capture System2. Fig 5.5 shows motion
capture data of a person dancing the Tsugaru Jongara-bushi(a dance native
to northern Japan)[121]. This enables you to capture whole body motion from
a human being rather easily. However, there are subtle differences between a
humanoid robot and an actual human being. This means you cannot simply
send this data to a robot and expect it to move properly.

2 A system which can record the trajectory of a point is space that has been marked
using specialised markers that the system is tuned to detect. This information is
digitized and stored in a computer.
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Fig. 5.5 Sample Data from Motion Capture of a Person Doing the Tsugaru
Jongara-bushi Dance[121]

5.2.2 Using a Graphical User Interface

In computer generated animation, you see people or humanized animals and
robots, move around as if they exist in the real world. In this sense, tools
that are used for computer graphics are also valid for generating motion for
humanoid robots. A method that has been proposed for generating humanoid
robot motion, is the pin/drag interface [76].

Fig. 5.6 Concept of the Pin/Drag Interface
(Photograph courtesy of Nakamura - Yamane Lab., University of Tokyo)
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The basic concept is shown in fig 5.6. You *pin* the links that should not
move and move the end points you want to move to wherever you want them
to move. By using the Pin/Drag interface, it is possible to create natural
looking3 motion for the whole robot.

Fig. 5.7 Sample Full Body Motion Generated using the Pin/Drag Interface
(Photograph courtesy of Nakamura-Yamane Lab., University of Tokyo)

Fig 5.7 shows motion that was generated with the toes and heels of both
legs and the left hand pinned down. The right hand was them moved down
and then up, by dragging the part in the screen, over a period of four seconds.
You can see that you get a natural looking motion of the robot picking
something up from the floor. However, this motion only satisfies the physical
restraints that you sent during motion generation. It does not satisfy dynamic
restraints such as ZMP. If you use this motion as it is, there is still a possibility
that the robot will fall.

5.2.3 Using High Speed Multivariate Search Methods

While the Use of Motion Capture and GUI based methods may be intuitive
they are still cumbersome and can be time consuming. The third solution is to
use methods such as RRT[48] which do a high speed multivariate search. By
searching the vector space created by all the joints you can generate motion
that satisfies conditions such as reaching under a table without colliding with
obstacles such as the surface of the table[49].

In this method, by preparing 3D data of the Humanoid Robot and it’s sur-
rounding environment you can generate whole body motion such as reaching
under a chair which is shown in fig 5.8, in under 6 seconds, automatically.
With this method, you search for stable postures that satisfy the physical con-
straints and then create joint trajectories that connect the postures smoothly.
Due to this fact, you cannot generate dynamically stable whole body motion.

3 You actually use solutions that make the second order summation minimum.
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Fig. 5.8 Sample Whole Body Motion of Robot Reaching Under Chair, Generated
using RRT Search

5.3 Converting Whole Body Motion Patterns to
Dynamically Stable Motion

Motion created using the methods introduced in section 5.2 are not dynam-
ically stable so you cannot simply use them to control a real robot. So the
next step becomes the conversion of the generated trajectories from a series of
statically stable postures to dynamically stable joint trajectories, as shown in
fig 5.4. In this section we introduce, the Dynamics Filter, the Auto-balancer
and the Strict Trunk Motion Computation. The Dynamics Filtering Method
using Preview Control which we introduced in the previous section is also
one way to convert trajectories to dynamically stable ones.

5.3.1 Dynamics Filter

The Dynamics Filtering Method is a filter that converts physically impossible
whole body motion to a physically feasible one [79][76]. This method consists
of a Controller and an Optimizer(Fig 5.9). The Controller takes the raw

untested trajectory θrefG and the current state of the robot θG, θ̇G as input.
It consists of local and global feedback loops that calculate the next goal
joint acceleration θ̈dG. This goal joint acceleration is not necessarily something
that can be achieved at this point. The Optimizer looks for a solution that
satisfies physical constraints on the robot(floor drag, direction of force from
floor contact points), and also keeps the amount of acceleration required at
the joints θ̈G, minimum.

In Fig. 5.10 top half, we show motion capture data. The bottom half shows
data that has been converted using the Dynamics Filter. You can see that
the positioning of the feet have been converted to more realistic trajectories.
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Fig. 5.9 Concept of the Dynamics Filter[79]

t=0s t=0.4s t=0.8s t=1.2s t=1.6s t=2s

Fig. 5.10 Conversion using the Dynamics Filter
(Photograph Courtesy of Nakamura-Yamane Lab., University of Tokyo)

5.3.2 Auto Balancer

The Auto-Balancer4 performed second order optimization methods to joint
angles at each timestep[147]. In this method, emphasis was on static stability,
so although it cannot be used to stabilize walking, it was a valid for stabiliz-
ing motion in which the robot remained in the same place and the support

4 This name was originally used in a comic called “Patlabor”(Shogakukan) by Yuki
Masami. The system that enabled the robots(called labor’s in the comic) to keep
their balance as called the Auto-Balancer. Tamiya. et. al. who were inspired by
this system used the same name for their system.
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Fig. 5.11 Conversion Using an Auto-Balancer
(Photograph Courtesy of JSK Lab. University of Tokyo)

polygon did not change5. The Auto-Balancer enables the robot to keep it’s
balance by doing the following:

1. Keep the center of the gravity of the robot along an axis that goes through
a given point in the support polygon.

2. Keep the moment around this axis within a given amount.

The amount of moment that is allowed around the axis is calculated from
the conditions that you must satisfy to keep the ZMP point within the sup-
port polygon, and the condition you must satisfy to keep the moment force
below zero until the next time frame. This method of balance compensation
is basically a second order operations research problem that solves for whole
body motion that remains as close to the original requirement as possible.
The Auto-Balancer performs these calculations for all the time steps.

Fig 5.11 shows a case where whole body motion was generated using the
RRT method shown in fig 5.8 and then stabilized using the Auto-Balancer
and then actually performed by the Humanoid Robot H6[49].

5.3.3 Strict Trunk Motion Computation Algorithm

Trunk Motion Compensation Algorithm creates a trajectory for the body
base taking as input the trajectories of the legs, ZMP and the hands. The
calculated result is use as the whole body motion trajectory [53].

Fig 5.12 shows the flowchart used in this algorithm. The assumptions used
in the linearization and collision detection and avoidance are that, the height
of the waist joint is not changed, the simplified model of the arms only move
within the horizontal plane and that the approximated center of gravity of
the upper body is not to be moved along the Z axis. By performing a Fast

5 It is possible to apply this method to walking but it is only valid for doing slow
static walk[112].
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Fig. 5.12 Flowchart to compute the Strict Trunk Motion [53]

Fig. 5.13 Humanoid Robot WABIAN
(Photograph Courtesy of Takanishi Lab, Waseda University)
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Fourier Transform(FFT) on the 3 axis moment around the goal ZMP point
and then performing a inverse FFT transform you can get a good estimate
for the trunk motion. By using this on the actual model of the robot you
can calculate the amount of moment error around the goal ZMP point that
occurred due to the fact that an approximation was used instead of the real
model. By adding and integrating these values you can re-calculated a closer
estimation. By iterating over this whole procedure you can make the solution
converge to an analytical solution.

This algorithm allows you to get an accurate analytical solution but the
downside is that it requires looping over a lot of calculations. So therefore, a
method which make an assumption of the actual error that occurs from the
approximation model based on the moment error from the nth calculation.
By using this method algorithms have been proposed that reduce the amount
of calculation that is required by up to 1/100.

To deal with non recurring motion such as the start and end of a motion,
you can create data that has a long period of time with no motion before
and after the actual motion and apply the same algorithm. The Strict Trunk
Motion Computation [53] is used to generate whole body motion for the
Humanoid Robot WABIAN shown in fig 5.13.

5.4 Remote Operation of Humanoid Robots with
Whole Body Motion Generation

When making Humanoid Robots dance or play instruments you have enough
time to prepare the data so you can use offline motion generation methods.
However if you are using the Humanoid Robot at a location you have never
been to before, or in a new situation you need to generate whole body motion
online, or on the fly in real-time.

Sadly the robot’s awareness of it’s own environment and planning capa-
bilities are no way near as high as we humans. So the methods that have
been proposed try to use this capability that human being have inherently
as much as possible.

Generating motion for humanoid robots is the same in the case for online
as it was offline as shown in fig 5.4. You first generate a rough approximation
(step A), then you modify it to enable the robot to balance properly (step
B) and after that modify again to compensate for dynamic motion (step C).
But things change a lot when you have to do all this on the fly and in real-
time. However rough they may be, creating whole body motion trajectories
in real-time is not an easy task. So when you are doing remote operation
of a humanoid robot, you modify steps A, B above and do the following. In
step A you generate partial body motion trajectories and then in step B you
create whole body motion trajectories that enable the robot to keep stable,
and then in step C you use a stabilizer which keeps the robot stable using
sensor feedback and modify the whole body motion trajectories.
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Below we go over how you go about doing remote operation using whole
body motion with humanoid robots.

For step A we will look at “Remote Generation of Whole Body Motion
using the Operation Point Switching Method”. Step B will focus on “Whole
Body Motion Generation using Split Momentum Control”. We have already
discussed a method which you can use to stabilize the robot using sensor
feedback in the previous chapter.

5.4.1 Remote Generation of Whole Body Motion
Using the Operation Point Switching Method

As humanoid robots have large degrees of freedom, to actually create whole
body motion in real-time you need a large system like a Motion Capture
System. However, humanoid robots aren’t exactly like humans so captured
data cannot be used without modification.

So let us reflect over how exactly we move our bodies daily. People focus
on different areas depending on what they want to do. They switch their
attention to the part that is most important to the operation in hand and
consciously move it. At the same time, the joints that are non-essential to the
operation are moved “unconsciously” to either keep your balance or enable
easier operation of the task at hand.

For instance, when reaching for a bottle on the table, your attention will be
on the hand you are going to use to pick the bottle up. When you are about
to sit down, you will focus your attention on your bottom while lowering your
body towards the chair. When you are going to kick a ball, you focus your
attention on the foot you are going to use to kick the ball(fig 5.14).

locus of attention

subconscious 
movement

subconscious 
movement

locus of attention

locus of attention

subconscious 
movement

Fig. 5.14 Focus your Attention on the Part Essential to the Task at Hand



5.4 Remote Operation of Humanoid Robots 171

The part we focus our attention on is usually moved in a given restricted
amount of degrees of freedom, so it is usually possible to use a simple input
device such as a joystick to indicate the required motion. On the other hand,
the parts that are moved unconsciously can be implemented as part of the
control that enables the robot to stay balanced. This enables you to control
the robot without having to think about the geometric and dynamic differ-
ences between humans and robots. This is the basis of the Attention Point
Switching Method [25].

As an example we will explain the way you would use two joysticks to
generate full body motion for a humanoid robot. First we allocate functions
to the eight buttons on the joysticks as shown in fig 5.15. The functions will
be indication of the head, right/left hands, right/left wrists, the body and
the right/left feet, and the switching between the three coordinates, world,
body and local. The operator presses the button that represents the position
he want to operate and uses the levers to specify direction to generate full
body motion that changes the attitude and position of the body part of the
humanoid robot that is being operated.

Humanoid Robot HRP-1S

head

right wrist

left wrist

torso

right foot

left foot

left hand

right hand

Left Joystick Right Joystick

button 3
for torso 

button 2
for 
right foot

button 2
for 
left foot 

hat switch 
for left hand

hat switch 
for right hand

both button 1 
for walking

button 3
for head

( default for left wrist
          control in
world coordinate frame )

( default for right wrist 
          control in
world coordinate frame )

button 7 for control 
in torso frame

button 8 for control 
in target point frame

world coordinate frame

torso
frame

Fig. 5.15 Example Button Allocation to Joystick for Allocation of Humanoid
Robot Body Part and Operational Coordinates
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5.4.2 Full Body Motion Generation of Stable Motion
Using Split Momentum Control

When you have knowledge of accurate physical parameters of the Humanoid
Robot, you can generate full body motion for the robot by specifying the
amount of change in translational and angular momentum and using this as
a basis for calculating the joint angle speeds. This is called Split Momentum
Control [108].

First you model the humanoid robot using a six degree of freedom body
link that has four open links, which is shown in 5.16.

BΣ

WΣ

iΣ
B i→r

B c→r

Fig. 5.16 Model of Humanoid Robot

By doing this you can use the following equations to calculate the goal
speeds vref

i , goal angular velocities ωref
i body coordinates ΣB velocity vtrg

B ,

angular velocity ωtrg
B

When given the the goal velocity of the end of the limbs vref
i and goal

angular velocity of the end of the limbs ωref
i in limb end coordinates Σi,

defined within the world coordinate ΣW which is fixed to the floor, and the
target velocity vtrg

B and angular velocity ωtrg
B in the body local coordinate

ΣB, the goal joint angles of the ith limb, θ̇
ref

i can be calculated using the
following.

θ̇
ref

i = J−1
i

{[
vref
i

ωref
i

]
−
(
E −r̂B→i

0 E

)[
vtrg
B

ωtrg
B

]}
(5.1)

Here, J−1
i is the general inverse matrix of the Jacobian of the ith limb. E

is a 3× 3 unit vector, rB→i is the vector which starts from the origin of the
body coordinates and ends at the origin of the operational coordinate Σi.
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The operatorˆis the skew symmetric matrix which is equivalent to the cross
product.

The vref
i and ωref

i in eq. 5.1 is defined by the remote operation to be
done. For example, if the operator wants to make a translational movement
with the wrist the operator uses the levers of the remote controller to openly
specify the exact amount of movement to set to the translational velocity
vector vref

1 . During this operation all the elements of the rotational velocity

vector of the right hand, ωref
1 are set to zero together with the rotational

and translational velocity vectors of all the other limbs, vref
i , ωref

i
6.

vtrg
B and ωtrg

B can be calculated using split momentum control using the
following equations. They rely on the humanoid robot’s goal translational
momentum Pref , goal angular momentum around it’s center of gravity Lref

and vref
B , ωref

B which are calculated by autonomously by the robot or speci-
fied by the remote operator.

[
vtrg
B

ωtrg
B

]
= A†S

{[Pref

Lref

]
−

4∑
i=1

(
M i

H i

)
J−1

i

[
vref
i

ωref
i

]}

+(E6 −A†A)

[
vref
B

ωref
B

]
(5.2)

C

A ≡ S

{(
ME −M r̂B→c

0 I

)
−

4∑
i=1

(
M i

Hi

)
J−1

i

(
E −r̂B→i

0 E

)}

M i and Hi are inertia matrices that indicates the effect induced by the
total translational momentum and angular momentum of the robot to the
ith link. M is the robot’s total mass and I is the inertia tensor around the
robot’s center of gravity, rB→C is a potential vector based in the robot’s
body coordinate system ΣB. E6 is a 6 × 6 unit matrix and † denotes a
pseudo inverse matrix. S, which gives you to the moment element that you
want to control, is a n× 6 selection matrix (0 ≤ n ≤ 6) that is described as
follows:

S ≡ [eS1 . . . eSn

]T

Here, eSi is a 6× 1 column vector which has the elements that correspond
to the moment elements you want to control set to 1 and the rest to 07.

6 Within the split momentum control framework it is possible to move the re-
maining limbs to satisfy the required motion. However, as this usually leads to
unpredictable behaviour from the robot it is common to keep the remaining limbs
still.

7 If you set this to control all moment elements A† will not have an area set to
zero so vref

B and ωref
B cannot be controlled by equations 5.1 and 5.2.
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In eq. 5.2, vRef
I and ωRef

I are specified by the remote operator. PRef ,

LRef , vRef
B and ωRef

B can be autonomously calculated by the robot’s control
system. For instance, PRef and LRef can be used to keep the robot balanced.
If we define a coordinate system ΣF as being parallel to the World coordinate
system ΣW with it’s origin at the center of the supporting polygon of the
robot, the relationship between the total translational momentum P and the
translational velocity in the ΣF coordinate system ṙF→c can be described as
follows:

P = M ṙF→c (5.3)

Therefore by calculating the the goal translational momentum Pref using
the next equation, the center of gravity rF→c can be moved to a given position
rref
F→c.

Pref = Mk(rref
F→c − rF→c) (5.4)

The k above is a preset gain. By adding equation 5.4 to the autonomous
controller within the robot, the operator can specify motion while the robot
keeps it’s balance without the operator having to think about the difference
between kinematics and dynamics8.

5.4.3 Application and Experiments with the
Humanoid Robot HRP-2

Fig 5.17 shows a sample implementation of the remote whole body operation
systems we explained in the previous section, on the humanoid robot HRP-
2. The control system mainly consists of the sub-systems, *Input Device
Server*, *Whole Body Motion Generator* and the *Stabilizer* [26].

The *Input Device Server* generates motion for part of the humanoid
robot using inputs based on the operation point switching method of remote
robot operation.. This is implemented on a PC running Linux. The user
generates motion using two three degree of freedom joysticks and the buttons
on them, to set the target translation and rotational velocity of the body
coordinate system ΣB and the link being operated Σi.

The *Whole Body Motion Generator* uses the split momentum method
to generate stable whole body motion for the robot. It is placed within the
robot itself. Motion generated by this component is sent to the I/O control
boards in the PC, and then onto the servo driver boards.

8 For accuracy, using eq. 5.4 alone will only guarantee that the robot’s center of
gravity will stay within the support polygon. But you can get the robot to keep
it’s balance if you also take into consideration the goal angular momentum Lref

around the robot’s center of mass and keeping it to zero, or by keeping the
goal acceleration of the body coordinate system (v̇ref

B , ω̇ref
B ) at sufficiently small

values.



5.4 Remote Operation of Humanoid Robots 175
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Fig. 5.17 Humanoid Robot Whole Body Remote Operation System. Uses the
standardized distributed object system, CORBA to connect input devices.

The *Stabilizer* uses sensor feedback to keep the robot in a stable state.
Fig 5.18 shows images of the HRP-2 being used to pick up a can which is

placed in a different position on the table and throw it away into a rubbish
bin using remote operation.

The actual flow of this operation is as follows:

1. The Humanoid Robot HRP-2 is standing around 3[m] away from the table.
2. The operator first uses the joystick to point the head of the HRP-2 towards

the table to locate the position of the can.
3. When the can is located the robot approaches the can. The operator in-

dicates the direction and speed of the walk using the joysticks.
4. The robot stops and uses a 3D vision system[146] to locate the position of

the can and measures the distance from the can.
5. Based on the detected location data, the robot calculates the trajectory

of the hand and automatically grasps the can.
6. The operator uses remote operation to lift the can and checks that the can

has been grasped properly.
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Fig. 5.18 A Remote Operation Experiment
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7. The robot starts walking again and goes to the rubbish bin and throws
the can away. This part is done completely by remote operation.

At one point the robot grasped the can too tightly and the can got stuck to
it’s hand. However the operator was able to shake the robot’s hand remotely
and therefore was able to drop the can. One of the benefits of implementing
remote operation is the fact that you get this kind of high level error recovery
automatically.

5.5 Reducing the Impact of a Humanoid Robot Falling
Backwards

Anything that is not anchored to the ground can fall over. As shown in fig.
5.19 an object which, like a humanoid robot, has a high center of mass and a
small supporting polygon becomes statically unstable even when tipped over
a small angle.

Fig. 5.19 Relation Between Static Stability and Hight of Center of Mass and
Supporting Polygon Size

Until this point in the book, everything was about how to keep a robot
stable to prevent it from falling down. As you can see from the fact that even
human beings fall over, In reality it is not possible to prevent robots from
falling over altogether. Therefore it is important that humanoid robots are
able to fall over gracefully to prevent themselves from being damaged too
seriously. An example of Impact Reduction Control is the one used on the
HRP-2P [58].

The HRP-2P(fig. 5.20) is the prototype model of the HRP-2. The height
of this humanoid robot is 158cm and the weight is 58kg [66]. On the hip of
the HRP-2P are pads to absorb the shock9. So it is best to hit the ground

9 In the experiment with the robot falling backwards, to improve the impact ab-
sorption of the upper body we added padding to the robot’s back as well.
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with as low velocity as possible. First we divided the fall itself into five states
and the robots motion was controlled differently in each state.

1. SQUATTING State This is the initial state of falling where the robot’s
center of mass deviates too far from the supporting polygon. All control is
stopped and the fall control takes over. It starts to bend the robot’s knees
and also starts to bend the neck, waist and arms so that the robot falls on
its hips.

2. EXTEND1 State The fall proceeds. When the angle made by the ground
and the line that connects the point the robot’s heels touch the ground
and the hip landing point θ(Fig. 5.21) goes below a certain value, the robot
starts to extend it’s knees to decrease the velocity at which the hips hit
the ground. This also makes sure that the robot hits the ground with it’s
hips.

3. TOUCHDOWN State The fall proceeds to the next stage. When angle θ
goes below another value, the robot prepares for landing and stops servo
control of the joints.

4. EXTEND2 State When a certain amount of time elapses after the fall, the
robot extends it’s legs to prevent rolling on it’s head due to the momentum
of the fall.

5. FINISH State After enough time has elapsed and it is detected that the
robot is in a stable state, the joints are extended to prepare for the standing
up motion which we will go over in the next section.

�������

�	
������

���

Fig. 5.20 The Humanoid Robot HRP-2P

By performing this action and reducing the amount of impact the HRP-2P
was able to stand up after falling down as shown in fig. 5.22. The standing
motion will be explained in the next section.
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θ

Fig. 5.21 Definition of Falling Angle θ

Fig. 5.22 Falling Over and Standing Back Up
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5.6 Making a Humanoid Robot Get Up Again

In the previous section we explained how to reduce the impact of a fall so that
the humanoid robot can prevent itself from getting damaged too seriously.
What you need next is to be able to get up again. To do this you need to
be able to get up from the state where the robot is lying on it’s front or it’s
back10. To get up you must keep the robot’s balance but when moving to a
standing state you also need to disturb the robot’s balance as well [28]. So to
stand up you need to divide it into individual motions as shown in fig. 5.23.

1

2 3 4

56

78

9 10

Fig. 5.23 State Chart for Stand Up Motion

All switches between states, except for the transition between states 2 and
3 are statically stable with the center of mass of the robot within the support
polygon of the points that are in contact with the ground. These statically
stable motions can be generated offline and replayed when required.

Due to the restriction of the ankle joint the transition between states 2 and
3 requires dynamic control of balance with the center of mass outside of the
supporting polygon. During the transition from state 3 to 2, the robot must
shift from the state there it is balancing on it’s knees and toes to the state
where the robot is balancing on it’s feet. The pitch angles of the hip joints are
controlled so that body of the robot is moved backwards. When rotation is
detected the robot starts to move the joints to state 2. To prevent the robot
from falling over backwards, we use trunk position compliance control [70] to
keep the robot balanced.

We applied this control to the Humanoid Robot HRP-2P. In figs. 5.24 and
5.25 we show the robot getting up from the state where it is lying face down
and also face up. The t = in this figure shows the amount of time that has

10 In the previous section we only explained how to make the robot land on it’s
back. However it is important that the robot be able to land on it’s front. In this
case the final position would be the state where the robot is lying on it’s front.
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t = 0

t = 30t = 25

t = 20t = 15t = 10t = 5

t = 35

Fig. 5.24 Standing Up Motion with HRP-2 Lying Face down [28]

t = 0

t = 45t = 40t = 35t = 30t = 25

t = 20t = 15t = 10t = 5

Fig. 5.25 Standing Up Motion with HRP-2 Lying Face up [28]

t = 0

t = 30t = 25

t = 20t = 15t = 10t = 5

t = 35

Fig. 5.26 Making HRP-2 Lie Prone [28]

t = 0

t = 30t = 25

t = 20t = 15t = 10t = 5

t = 35 t = 40

Fig. 5.27 Making HRP-2 Lie Face Up [28]
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elapsed. After the falling motion we explained in the previous section (fig.
5.22) we use this control to get up after the robot was made to fall down.

By reversing the state transitions shown in fig. 5.23 you can make the
robot lie down as shown in figs. 5.26 and 5.27. Once the robot is able to
lie down and get back up again the variation of possible motions, such as
crawling underneath a car, increases dramatically.



Chapter 6

Dynamic Simulation

Figure 6.1 shows a falling experiment of the humanoid robot HRP-2P. By
performing a dynamic simulation, we can predict when and how strong
the robot will hit the floor before actually performing such an experiment.
It is also a powerful tool to develop a falling control method to minimize the
landing impact and to develop durable hardware.

Fig. 6.1 Falling and landing experiment of HRP-2P[58]

The goal of this chapter is to show the theory and the practice of dynamic
simulation. First, we will derive the equation of motion for a rotating object
in zero-G space. By developing a simulator for this problem, we develop a
good intuitive understanding of dynamic simulation. In the following sections,
we will develop a complete rigid body simulator by introducing translation,
gravity and contact forces with environment. As one of the more impressive
3D dynamic motions, a spinning top is simulated by our technique.

A dynamic simulation of a robot can be formulated as multiple rigid bodies
connected by joints. At the end of this chapter, we overview an efficient
algorithm developed by Featherstone.

S. Kajita et al., Introduction to Humanoid Robotics, 183
Springer Tracts in Advanced Robotics 101,
DOI: 10.1007/978-3-642-54536-8_6, c© Springer-Verlag Berlin Heidelberg 2014
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6.1 Dynamics of Rotating Rigid Body

We first derive the equation of motion of a rigid body rotating around its
center of mass, then explain a simulation program based on the equation. In
this section, we assume that the CoM of the rigid body is stationary at the
point where the origin of the world frame is placed.

6.1.1 Euler’s Equation of Motion

Let us recall the basics of dynamics we learned in Chapter 3. The momentum
P of an object changes by the applied force vector f :Ṗ = f . By substituting
the definition of momentum P = mṗ, we obtain the Newton’s equation of
motion

f =
d

dt
P ⇒ f = mp̈.

Likewise, the angular momentum L of an object changes by the applied
moment

τ =
d

dt
L. (6.1)

With given angular velocity vector ω and inertia tensor I, an angular mo-
mentum of a rigid body is calculated as

L = Iω. (6.2)

A rigid body of orientation R has the inertia tensor of

I = RĪRT , (6.3)

where Ī is the inertia tensor at the standard posture.
Those are what we have learned in Chapter 3.
Now we can derive the equation of rigid body’s rotation. By substituting

(6.2) and (6.3) into (6.1), we get

τ =
d

dt
(RĪRTω)

= ṘĪRTω +RĪṘ
T
ω +RĪRT ω̇.

By using the basic equation of rotation Ṙ = ω̂R,

τ = ω × (RĪRTω) + (RĪRT )ω̇.

Finally, by replacing the inertia tensor using (6.3), we get the following equa-
tion called Euler’s equation

τ = Iω̇ + ω × Iω. (6.4)
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6.1.2 Simulation of Rigid Body Rotation

Euler’s equation is a bit more complicated than Newton’s one. To understand
its nature, let us perform a simple simulation.

-0.5
0

0.5

-0.5
0

0.5

-0.5

0

0.5

1

time=0.0

-0.5
0

0.5

-0.5
0

0.5

-0.5

0

0.5

1

time=3.0

-0.5
0

0.5

-0.5
0

0.5

-0.5

0

0.5

1

time=6.0

-0.5
0

0.5

-0.5
0

0.5

-0.5

0

0.5

1

time=9.0

Fig. 6.2 Free rotating rigid body in zero-G: In general, free rotation in 3D does
not occur around a fixed axis
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Fig. 6.3 Angular velocity and angular momentum of free rotating rigid body: The
angular velocity changes while the angular momentum remains constant

Suppose a cuboid with dimensions 0.1× 0.4× 0.9 [m3] is freely rotating in
zero-G space around its center of mass. The angular velocity ω changes based
on Euler’s equation (6.4), whereas its posture R changes by the equation of
rotation (2.33) from Chapter 2

ω̇ = −I−1(ω × Iω) (6.5)

Ṙ = ω̂R. (6.6)
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We can integrate these differential equations numerically, assuming the an-
gular acceleration and velocity ω̇, ω are constant during the short period
of Δt using {

ω(t+Δt) = ω(t) + ω̇Δt
R(t+Δt) = eω̂ΔtR(t).

The simulated result is illustrated in Fig. 6.2. While no external forces exist,
we see the object rotates in a complicated manner. The upper graph of Fig.
6.3 shows the change of the angular velocity start from its initial value ω =
[1 1 1]T (rad/s). On the other hand, the angular momentum shown in the lower
graph of Fig. 6.3 keeps constant. This shows conservation of the angular
momentum which is expected, as well as the validity of the simulation.

function L = EulerDynamics(j)

global uLINK

I = uLINK(j).R * uLINK(j).I * uLINK(j).R’; % Inertia tensor

L = I * uLINK(j).w; % Angular momentum

uLINK(j).dw = I (-cross(uLINK(j).w, L)); % Euler’s equation

Fig. 6.4 EulerDynamics.m Calculation of Euler’s equation

Like this simulation, generally, a floating rigid body in 3D space rotates in
a complicated manner which does not have a fixed rotating axis1. The change
of angular velocity is given by (6.5) which gives non-zero angular acceleration
with zero external torque. The origin of the angular acceleration comes from
the change of the inertia tensor, that is, the relocation of mass distribution
caused by rotation.

Figures 6.4 and 6.5 show the Matlab code for the simulation of a rotating
object.

6.2 Spatial Velocity

6.2.1 Speed of Rigid Body

In robotics, we use two different ways to represent the translational speed of
a rigid body in 3D space.

(A) Speed of reference point: Set an appropriate reference point on a rigid
body (ex. the center of mass or the center of the joint), then its speed
in the world frame v1 is regarded as the speed of the rigid body. For the

1 We might have to take care of such rotation to clean up space debris orbiting the
earth which potentially could harm future space crafts.
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global uLINK

lx = 0.1; ly = 0.4; lz = 0.9; % Depth, Width, Height [m]

mass = 36.0; % Mass [kg]

MakeRigidBody(1, [lx ly lz], mass); % Create rigid body

uLINK.p = [0.0, 0.0, 0]’; % Initial position [m]

uLINK.R = eye(3); % Initial posture

uLINK.w = [1, 1, 1]’; % Initial angular velocity [rad/s]

Dtime = 0.02; % Integration time [s]

EndTime = 5.0; % End of simulation [s]

time = 0:Dtime:EndTime;

figure

AX=[-0.5 0.5]; AY=[-0.5 0.5]; AZ=[-0.5 1.0]; % 3D view area

for n = 1:length(time)

L = EulerDynamics(1); % Euler’s equation

uLINK(1).R = Rodrigues(uLINK(1).w, Dtime) * uLINK(1).R; % Rodrigues

uLINK(1).w = uLINK(1).w + Dtime * uLINK(1).dw; % Euler-method

ShowObject; % Show object

end

Fig. 6.5 Simulation code for a free rigid body rotation. See section 6.6.2 for the
subroutines MakeRigidBody and ShowObject.

position of reference point p1, the speed of an arbitrary point p on the
rigid body is given by

v(p) = v1 + ω × (p− p1).

(B) Spatial velocity: The following vector is regarded as the translational
speed of a rigid body [30]

vo = v1 − ω × p1. (6.7)

With given instantaneous state of a rigid body, we obtain a unique vo

despite of the choice of p1 as illustrated in Fig. 6.6. Therefore, we can
regard vo as an intrinsic translational speed of a rigid body. In a world
frame, the speed of a point p on a rigid body moving at (vo,ω) is given
by

v(p) = vo + ω × p. (6.8)

A six dimensional vector made of (vo,ω) is called a spatial velocity of a
rigid body[30, 101].

Usually, translational speed of a rigid body is represented by the way of
(A). Indeed, in chapter 2, we have defined translational speed by (A) taking
a local frame origin as a reference point.
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Fig. 6.6 Definition of spatial velocity: vo = v1 −ω× p1. If we choose a difference
point p2 on the rigid body, vo = v2 − ω × p2 gives the same value. In a two
dimension, when we glue a big grass plate on the rigid body, vo is the speed of
grass passing on the origin.

On the other hand, by using the spatial velocity of (B), the treatment of
acceleration is much simplified, and it finally results Featherstone’s fast dy-
namic calculation which will be discussed at the end of this section. Therefore,
we use the way described in (B) to represent rigid body motions.

6.2.2 Integration of Spatial Velocity

In this section, we explain a method to update the position and the orienta-
tion by integrating a given spatial velocity. Unfortunately, this calculation is
a little bit complicated. Let us rewrite (6.8) which gives the speed of point p
on a rigid body moving at the spatial velocity of (vo,ω) as

[
ṗ
0

]
=

[
ω̂ vo

0 0 0 0

] [
p
1

]
= Ξ

[
p
1

]
(6.9)

where Ξ is a matrix of 4× 4 defined as

Ξ ≡
[

ω̂ vo

0 0 0 0

]
.

If Ξ is constant, the solution of the differential equation (6.9) is given by

[
p(t)
1

]
= eΞt

[
p(0)
1

]
. (6.10)

The matrix exponential eΞt is defined by an infinite series like the rotation
matrix shown in Chapter 2
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eΞt = E +Ξt+
(Ξt)2

2!
+

(Ξt)3

3!
+ . . . . (6.11)

To simplify this infinite series, we first normalize the spatial velocity so that
the norm of the angular velocity becomes one

ωn = ω/‖ω‖
von = vo/‖ω‖
t′ = ‖ω‖t.

By using this, we obtain the following equation2

eΞt =

[
eω̂nt

′
(E − eω̂nt

′
)(ωn × von) + ωnω

T
nvont

′

0 0 0 1

]
. (6.12)

If the angular velocity ω is zero, we cannot normalize the spatial velocity.
However, such case gives a simple translation without rotation, thus we get

eΞt =

[
E vot

0 0 0 1

]
. (6.13)

When the position and orientation of a rigid body was (p(t),R(t)) at time
t and its spatial velocity was given as Ξ, its configuration at t+Δt is given
by [

R(t+Δt) p(t+Δt)
0 0 0 1

]
= eΞΔt

[
R(t) p(t)
0 0 0 1

]
. (6.14)

Equations (6.12),(6.13) and (6.14) can be coded as a Matlab program shown
in Fig. 6.7. In this program a new variable uLINK.vo is introduced to hold
the linear part of the spatial velocity vo.

Figure 6.8 shows the motion of a rigid body under a constant spatial
velocity calculated by the program of Fig. 6.7.

6.3 Dynamics of Rigid Body

In this section, we discuss the dynamics and the simulation method of a rigid
body in 3D space.

6.3.1 Newton-Euler Equations

It is well known that the dynamics of rigid body can be separated into the
translation of the center of mass (CoM) and the rotation around it. Thus
the rigid body dynamics in 3D space is given by the Newton’s equation for

2 For more detailed derivation, see the textbook of Murray, Li and Sastry
[101](pp.39–42).
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function [p2, R2] = SE3exp(j, dt)

global uLINK

norm_w = norm(uLINK(j).w);

if norm_w < eps

p2 = uLINK(j).p + dt * uLINK(j).vo;

R2 = uLINK(j).R;

else

th = norm_w*dt;

wn = uLINK(j).w/norm_w; % normalized vector

vo = uLINK(j).vo/norm_w;

rot= Rodrigues(wn, th);

p2 = rot * uLINK(j).p +(eye(3)-rot)*cross(wn, vo) + wn * wn’ * vo * th;

R2 = rot * uLINK(j).R;

end

Fig. 6.7 SE3exp.m Updating position and orientation based on spatial velocity
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Fig. 6.8 Motion of a rigid body with constant spatial velocity of vo =
[0.3 0 1]T (m/s), ω = [1 0 0]T (rad/s). State of every 0.3 second is displayed dur-
ing the motion of 10 seconds. A trajectory of a rigid body with constant spatial
velocity generally becomes a spiral.

the CoM and the Euler’s equation around it. These equations are called
Newton-Euler equations and are given by

f = mc̈ (6.15)

τ (c) = Iω̇ + ω × Iω, (6.16)
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where f is the external linear force acting on the CoM, m is the mass of
the rigid body, c is the position of CoM with respect to the world frame.
τ (c) is the external moment around CoM, and I,ω are the inertia tensor and
angular velocity represented in the world frame.

6.3.2 Dynamics by Spatial Velocity

Let us rewrite the Newton-Euler equations with spatial velocity. Suppose we
have a rigid body with CoM speed of c and rotating at ω. Its spatial velocity
is calculated by (6.7) as

vo = ċ− ω × c. (6.17)

By differentiating this, we obtain

v̇o = c̈− ω̇ × c− ω × ċ. (6.18)

From (6.18) and (6.17), the acceleration of CoM is given as

c̈ = v̇o − c× ω̇ + ω × (vo + ω × c). (6.19)

By substituting this into Newton’s equation (6.15), we obtain a translational
motion equation under the spatial velocity representation

f = m(v̇o − c × ω̇ + ω × (vo + ω × c)). (6.20)

On the other hand, the force f acting on the CoM and the moment τ (c)

around the CoM create the moment around the origin of the world frame as

τ = τ (c) + c × f . (6.21)

By substituting Euler’s equation (6.16) and (6.20) into (6.21), we obtain a
rotational dynamics under the spatial velocity representation

τ = Iω̇ + ω × Iω +mc× (v̇o − c× ω̇ + ω × (vo + ω × c)). (6.22)

The nasty looking equations (6.20) and (6.22) can be organized as the
following matrix equation. This is the equation of rigid body motion using
spatial velocity

[
f
τ

]
= IS

[
v̇o

ω̇

]
+

[
ω̂ 0
v̂o ω̂

]
IS

[
vo

ω

]
. (6.23)

The matrix IS is a 6× 6 symmetric matrix defined by the following equation

and is called spatial inertia matrix
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IS ≡
[
mE mĉT

mĉ mĉĉT + I

]
. (6.24)

Also, the six dimensional vector [v̇T
o , ω̇

T ]T is called the spatial acceleration.
Note that, the momentum and the angular momentum of a rigid body is

calculated by [P
L
]
= IS

[
vo

ω

]
. (6.25)

6.3.3 Rigid Body Simulation Based on Spatial
Velocity

By using the equation of rigid body motion using spatial velocity (6.23),
we can calculate the spatial acceleration under the given force and moment
(f , τ ) using

[
v̇o

ω̇

]
= (IS)−1

([
f
τ

]
−
[
ω̂ 0
v̂o ω̂

]
IS

[
vo

ω

])
. (6.26)

Fig. 6.9 Rigid body dynamics simulation in zero-G space. The motion of five
seconds under the initial condition of vo = [0.5 0.1 0]T (m/s), ω = [1 0 1]T (rad/s)
and zero external force/torque (configurations of every 0.3 second are shown).

Figure 6.9 shows the result of simulation of floating rigid body in zero-G
space based on this equation (f = τ = 0). The center of mass of the object
moves at constant speed with free rotation observed in section 6.1.2.

The spatial velocity vo and the linear momentum of the simulation is
shown in Fig. 6.10. Although the speed of CoM is constant, we have time
varying spatial velocity vo as the result of the object rotation. Of course the
linear momentum is kept constant.

Rather than using spatial velocity and (6.26), some people may prefer to
use the original Newton-Euler equations (6.15) and (6.16) for such single
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Fig. 6.10 The spatial velocity vo and the linear momentum P of the simulation
of Fig. 6.9. vo changes in time while P keeps constant corresponding the linear
constant speed of the center of mass.

function [P,L] = SE3dynamics(j)

global uLINK

w_c = uLINK(j).R * uLINK(j).c + uLINK(j).p; % Center of mass

w_I = uLINK(j).R * uLINK(j).I * uLINK(j).R’; % Inertia tensor

c_hat = wedge(w_c);

Iww = w_I + uLINK(j).m * c_hat * c_hat’;

Ivv = uLINK(j).m * eye(3);

Iwv = uLINK(j).m * c_hat;

P = uLINK(j).m * (uLINK(j).vo + cross(uLINK(j).w,w_c)); % Lin. momentum

L = uLINK(j).m * cross(w_c,uLINK(j).vo) + Iww * uLINK(j).w; % Ang. momentum

pp = [cross(uLINK(j).w,P);

cross(uLINK(j).vo,P) + cross(uLINK(j).w,L)];

a0 = -[Ivv, Iwv’; Iwv, Iww] pp; % Spatial acceleration

uLINK(j).dvo = a0(1:3);

uLINK(j).dw = a0(4:6);

Fig. 6.11 SE3dynamics.m Equation of rigid body motion

rigid body simulation. Nevertheless please be patient until Section 6.4 where
the advantage of the spatial velocity representation will be shown by the
calculation of multi-body system.

A part of Matlab code used for this simulation is listed in Fig. 6.11. A new
variable uLINK.dvo is introduced to hold the spatial acceleration v̇o.

6.3.4 Simulation of a Spinning Top

Based on the above discussion, let us simulate a spinning top which performs
a very interesting behavior of a rigid body in 3D space.
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The forces acts on a top are (1) gravity on the CoM fg and (2) the floor
reaction force act on the bottom of the top. The first force is given as

f g = [0 0 −mg]T .

The second force only acts when the top is on the floor. Its vertical component
can be calculated by a spring-damper system and the horizontal frictional
forces can be calculated using

fc =

{
[−Df ṗx, −Df ṗy, −Kfpz−Df ṗz]

T
(if pz < 0)

[0, 0, 0]T (if pz > 0)

where p ≡ [px py pz]
T is the bottom of the top. Df is a damping coefficient

and Kf is a spring coefficient to give the floor stiffness.
These forces generates the moment τ around the origin of the world frame

as
τ = c× fg + p× fc.

See Section 6.6.1 to know more about this calculation.
The process of force generation described above is programmed as Fig.

6.12.

function [f,t] = TopForce(j)

global uLINK G Kf Df

w_c = uLINK(j).R * uLINK(j).c + uLINK(j).p; % center of mass

f = [0 0 -uLINK(j).m * G]’; % gravity

t = cross(w_c, f); % gravity moment around the origin

if uLINK(j).p(3) < 0.0 % the top is contacting

v = uLINK(j).vo + cross(uLINK(j).w,uLINK(j).p); % contacting speed

fc = [-Df*v(1) -Df*v(2) -Kf*uLINK(j).p(3)-Df*v(3)]’;

f = f + fc;

t = t + cross(uLINK(j).p, fc);

end

Fig. 6.12 TopForce.m : Force and moment acting on the top

The simulation of a top falling in the gravity of 1G with appropriate initial
angular velocity is shown in Fig. 6.13. We can observe the precession which
appears as a circular motion of the upper end of the spinning shaft.

The simulation code is shown in Fig. 6.14. The spatial acceleration is
calculated by (6.26) and the spatial velocity is updated using

{
vo(t+Δt) = vo(t) + v̇oΔt
ω(t+Δt) = ω(t) + ω̇Δt.
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Fig. 6.13 Simulation of a top falling onto a floor with initial angular velocity of
[0 0 50]T (rad/s). A locus of the upper end of the spinning shaft is shown to visualize
the precession.

global uLINK G Kf Df

G = 9.8;

Kf = 1.0E+4; Df = 1.0E+3; % Floor stiffness[N/m] viscosity[N/(m/s)]

r = 0.2; a = 0.05; c = 0.2; % Top radius, thickness, shaft length/2 [m]

MakeTop(1, r,a,c);

uLINK(1).p = [0 0 0.3]’; % Initial position [m]

uLINK(1).R = Rodrigues([1 0 0],pi/50); % Initial posture

uLINK(1).vo= [0 0 0]’; % Initial speed [m/s]

uLINK(1).w = [0 0 50]’; % Initial spin [rad/s]

Dtime = 0.002;

EndTime = 2.0;

time = 0:Dtime:EndTime;

figure

frame_skip = 3;

AX=[-0.2 0.4]; AY=[-0.3 0.3]; AZ=[0 0.8]; % 3D view area

for n = 1:length(time)

[f,tau] = TopForce(1); % External force

[P,L] = SE3dynamics(1,f,tau); % Acceleration

[uLINK.p, uLINK.R] = SE3exp(1, Dtime); % Update configuration

uLINK(1).w = uLINK(1).w + Dtime * uLINK(1).dw; % Update ang. velocity

uLINK(1).vo= uLINK(1).vo+ Dtime * uLINK(1).dvo; % Update lin. velocity

if mod(n,frame_skip) == 0

ShowObject; % Show the top

end

end

Fig. 6.14 Matlab code to simulate a spinning top. It also shows an animation of
the simulated top. See section 6.6.2 for subroutines MakeTop and ShowObject.

The position and orientation of the top is updated by using the program
of Fig. 6.7 based on (6.14). The calculated top motion is simultaneously
displayed.
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6.4 Dynamics of Link System

In this section, we examine the dynamics of humanoid robot regarded as a
link system made of multiple rigid bodies. Since each rigid body behaves as
we mentioned above, we can obtain the dynamics of the entire system by
their consistent integration.

6.4.1 Forward Kinematics with Acceleration

First, we examine a pair of rigid bodies connected by a joint, which represents
a minimum element of a humanoid robot.

link1

link2

2
a

2
q�

WΣ

2
p

1 1ov !

2 1ov !

Fig. 6.15 Propagation of spatial velocity: link2 obtains relative speed with respect
to link1 by rotating the joint axis a2 at the speed of q̇2

Suppose we have the link1 in the space connected with link2 via rotational
joint as illustrated in Fig. 6.15. When the link1 is stationary, by rotating the
joint a2 at the speed of q̇2, link2 gets angular velocity of

ω2 = a2q̇2. (6.27)

In the spatial velocity representation of Section 6.2, the linear velocity of
link2 is

vo2 = ṗ2 − ω2 × p2

where p2 is the origin of the link2.
Since we are assuming that link1 is stationary, ṗ2 = 0. By substituting

(6.27) into the above equation, we get

vo2 = p2 × a2q̇2. (6.28)
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Equations (6.28) and (6.27) give the relative speed (vo2,ω2) of link2 with
respect to link1.

When the link1 have the spatial velocity (vo1,ω1), we can simply add it
and the spatial velocity of link2 becomes

[
vo2

ω2

]
=

[
vo1

ω1

]
+

[
p2 × a2

a2

]
q̇2. (6.29)

Hereafter, we use following notation to simplify our equations

ξ2 = ξ1 + s2q̇2 (6.30)

ξj ≡
[
voj

ωj

]
, sj ≡

[
pj × aj

aj

]

where ξj is the spatial velocity and sj is the spatial velocity generated by
the joint rotation of unit speed. Both of them are vectors of six dimension.

By differentiating (6.30), we obtain the propagation rule of spatial accel-
eration3

ξ̇2 = ξ̇1 + ṡ2q̇2 + s2q̈2 (6.31)

where ṡ2 can be calculated using

ṡ2 =

[
ω̂1 v̂o1

0 ω̂1

]
s2. (6.32)

Let us assume that we know the position and orientation, the spatial ve-
locity and the spatial acceleration of the robot body. Then if the angles, the
velocity and the acceleration of all joints are also known, we can calculate the
spatial velocities and the spatial accelerations of all links by applying (6.30)
and (6.31) from the body toward the end of limbs. This calculation can be
easily programmed by using recursive algorithm as Fig. 6.16.

6.4.2 Inverse Dynamics of Link System

Next we consider the force and the moment act on each link. For preparation,
let us rewrite the equation of rigid body motion we obtained in section 6.3
by using the spatial velocity vector ξ

[
f
τ

]
= IS ξ̇ + ξ × ISξ (6.33)

where the operator × represents the following calculation.

3 Thanks to the spatial velocity representation we get this simple equation. When
we use a conventional speed of a reference point, we need a more complicated
propagation rule of acceleration[99].
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function ForwardAllKinematics(j)

global uLINK G

if j == 0 return; end

if j ~= 1

mom = uLINK(j).mother;

%% Position and orientation

uLINK(j).p = uLINK(mom).R * uLINK(j).b + uLINK(mom).p;

uLINK(j).R = uLINK(mom).R * Rodrigues(uLINK(j).a, uLINK(j).q);

%% Spatial velocity

sw = uLINK(mom).R * uLINK(j).a; % axis vector in world frame

sv = cross(uLINK(j).p, sw); % p_i x axis

uLINK(j).w = uLINK(mom).w + sw * uLINK(j).dq;

uLINK(j).vo = uLINK(mom).vo + sv * uLINK(j).dq;

%% Spatial acceleration

dsv = cross(uLINK(mom).w, sv) + cross(uLINK(mom).vo, sw);

dsw = cross(uLINK(mom).w, sw);

uLINK(j).dw = uLINK(mom).dw + dsw * uLINK(j).dq + sw * uLINK(j).ddq;

uLINK(j).dvo = uLINK(mom).dvo + dsv * uLINK(j).dq + sv * uLINK(j).ddq;

uLINK(j).sw = sw; % store h1 and h2 for future use

uLINK(j).sv = sv;

end

ForwardAllKinematics(uLINK(j).sister); % Propagate to sister

ForwardAllKinematics(uLINK(j).child); % Propagate to child

Fig. 6.16 Calculate spatial velocity and acceleration of all links

body side

limb side

mother

child
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j¿

1j+−f
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jf
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j¿

Fig. 6.17 Force and moment acting on the j-th link

ξ× =

[
vo

ω

]
× ≡

[
ω̂ 0
v̂o ω̂

]
. (6.34)

Figure 6.17 shows the force and the moment acting on link j. f j , τ j are the
force and the moment from body side (mother) to link i. The environmental
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force and moment directory acting on link i are fE
j , τ

E
j . Effects from the

mother link, environment and reaction effect from the child link cause the
motion of the link i. The equation of motion becomes

[
f j

τ j

]
+

[
fE
j

τE
j

]
−
[
f j+1

τ j+1

]
= IS

j ξ̇j + ξj × IS
j ξj . (6.35)

By rewriting this, we obtain a recurrence equation to give the propagation
of the force and moment

[
f j

τ j

]
= IS

j ξ̇j + ξj × IS
j ξj −

[
fE
j

τE
j

]
+

[
f j+1

τ j+1

]
. (6.36)

function [f,t] = InverseDynamics(j)

global uLINK

if j == 0

f=[0,0,0]’;

t=[0,0,0]’;

return;

end

c = uLINK(j).R * uLINK(j).c + uLINK(j).p; % Center of mass

I = uLINK(j).R * uLINK(j).I * uLINK(j).R’; % Inertia tensor

c_hat = hat(c);

I = I + uLINK(j).m * c_hat * c_hat’;

P = uLINK(j).m * (uLINK(j).vo + cross(uLINK(j).w,c)); % Momentum

L = uLINK(j).m * cross(c,uLINK(j).vo) + I * uLINK(j).w; % Ang.momentum

f0 = uLINK(j).m * (uLINK(j).dvo + cross(uLINK(j).dw,c)) ...

+ cross(uLINK(j).w,P);

t0 = uLINK(j).m * cross(c,uLINK(j).dvo) + I * uLINK(j).dw ...

+ cross(uLINK(j).vo,P) + cross(uLINK(j).w,L);

[f1,t1] = InverseDynamics(uLINK(j).child); % Force and moment form child

f = f0 + f1;

t = t0 + t1;

if j ~= 1

uLINK(j).u = uLINK(j).sv’ * f + uLINK(j).sw’ * t; % Joint torque

end

[f2,t2] = InverseDynamics(uLINK(j).sister); % Force and moment from sister

f = f + f2;

t = t + t2;

Fig. 6.18 Code for inverse dynamics

When the link j was the extreme link, f j+1, τ j+1 becomes zero and we can
calculate f j , τ j . Therefore, when we start the calculation from the extreme
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links, we can obtain the force and moment for all links. The torque uj at
each joint axis can be calculated as

uj = sTj

[
f j

τ j

]
. (6.37)

Those equations are programmed by using recursive algorithm in Fig. 6.18.
This program works correctly when the link system has branches.

The calculation shown in this section is called the inverse dynamics.
By feed-forwarding the joint torque calculated by the inverse dynamics, we
can realize a fast and accurate robot motion. Such control technique is called
the computed torque method. However, to apply the computed torque
method, the first link must be fixed on the ground so that the arbitrary
force and moment can be generated. This is true in the case of industrial
manipulators.

The base link of humanoid robot, the body is not fixed on the ground, thus
there is no guarantee that the robot can obtain the force and moment required
to keep the desired body posture. If the motion pattern was inappropriate,
the position and orientation of the robot body will deviate from the plan.
This can be simulated by integrating the body acceleration. It is a special
variation of the forward dynamics simulation we will discuss in the next
section. In OpenHRP dynamics simulator which was developed in Humanoid
Robotics Project (HRP), this is called a simulation of high-gain mode [31]. In
many cases, such simulation is enough to confirm the stability of the planned
walking pattern.

6.4.3 Forward Dynamics of Link System

Figure 6.19 shows the result of simulation in which all joint torques of HRP-2
are set to zero and the robot drops onto the floor.

Fig. 6.19 Simulation of dropping HRP-2 with zero joint torques

Like this simulation, a robot performs various motion by being subjected
to force and torque from the environment as well as by its own joint torques.
Calculating robot motion under the given joint torques and the external forces
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is called forward dynamics. In this section, we explain the basic calculation
of forward dynamics based on the knowledges we have learned in the previous
sections.

In general, a humanoid robot with n joints have n + 6 degree of freedom
since the body is regarded as free link in 3D space. Its equation of motion
has the following form [140, 77]

uG = AGẍG + bG (6.38)

where AG ∈ R(n+6)×(n+6) is an inertia matrix, bG ∈ R(n+6) is a vector
representing the Coriolis and the centrifugal forces and the gravity. uG is the
input of robot, ẍG is the acceleration. They are defined as

uG ≡
⎡
⎣
fB

τB

u

⎤
⎦ , ẍG ≡

⎡
⎣
v̇oB

ω̇B

q̈

⎤
⎦

where

(fB, τB): Force and moment on the body (except gravity)
(v̇oB, ω̇B): Spatial acceleration of the body
u : All joint torques (u ∈ Rn)
q̈: All joint accelerations (q̈ ∈ Rn).

If we have known AG ∈ R(n+6)×(n+6) and bG ∈ R(n+6), the acceleration
under the given input uG can be calculated as

ẍG = A−1
G (uG − bG). (6.39)

This is the goal of forward dynamics.
Now, let us define a function InvDyn() which calculates joint torques with

given joint accelerations based on the inverse dynamics algorithm explained
in the previous section

uG = InvDyn(ẍG). (6.40)

By comparing (6.38) and (6.40), we see bG can be calculated from InvDyn()
with the acceleration vector ẍG = 0

bG = InvDyn(0). (6.41)

Next, we assume a n + 6 vector δi whose i-th element is one and all other
elements are zero. By setting ẍG = δi, we get

AGδi = InvDyn(δi)− bG. (6.42)

The left hand side of the above equation represents i-th row of the matrix
AG. Therefore, if we repeat the calculation with i changing from 1 to n+ 6,
all component of AG can be obtained. This method is called the unit vector
method and was proposed by Walker and Orin [92].
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Once AG and bG were obtained, it is straightforward to calculate the
acceleration using (6.39). By integrating this, we can perform a dynamic
simulation of robot.

Figure 6.20 gives a Matlab code which calculate the spatial acceleration of
the body and the joint accelerations based on the unit vector method. The
program to calculate InvDyn() is given at Fig. 6.29 in the appendix at the
end of this chapter.

nDoF = length(uLINK)-1+6;

A = zeros(nDoF,nDoF);

b = InvDyn(0);

for n=1:nDoF

A(:,n) = InvDyn(n) - b;

end

% add motor inertia

for n=7:nDoF

j = n-6+1;

A(n,n) = A(n,n) + uLINK(j).Ir * uLINK(j).gr^2;

end

u = [0 0 0 0 0 0 u_joint(2:end)’]’;

ddq = A (-b + u);

uLINK(1).dvo = ddq(1:3);

uLINK(1).dw = ddq(4:6);

for j=1:length(uLINK)-1

uLINK(j+1).ddq = ddq(j+6);

end

Fig. 6.20 Forward dynamics based on the unit vector method

Although the unit vector method is easy to understand and program, its
performance quickly decreases when the number of robot joint increases. The
first problem is the calculation method of the inertia matrix. For a robot with
n joints, the unit vector method performs n + 7 calculations of the inverse
dynamics to obtain AG, bG. Since the time for one inverse dynamics calcula-
tion is proportional to n, the total calculation time increases in proportional
to n(n+ 7). This problem can be solved by introducing an algorithm which
directly calculates the inertia matrix [92, 30].

The second, and more intrinsic problem is to solve (6.39), a huge simulta-
neous linear equations. Although the efficient algorithms like Gauss-Jordan
elimination or LU decomposition are known [136], it always takes time pro-
portional to (n+ 6)3 and it becomes a serious bottle-neck for faster forward
dynamics calculation. In the next section, we introduce the method to solve
this problem.
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6.4.4 Featherstone’s Method

Suppose we have two links connected by a revolutional joint floating in 3D
space as shown in Fig. 6.21. Assuming that we have already known the spatial
acceleration of link1, we want to derive the joint acceleration q̈2 for a given
torque u2. The spatial acceleration of the link2 is given by

ξ̇2 = ξ̇1 + ṡ2q̇2 + s2q̈2. (6.43)

From the acceleration, we can calculate the necessary force and moment by
using the equation of motion.

[
f2

τ 2

]
= IS

2 ξ̇2 + ξ2 × IS
2 ξ2 (6.44)

Moreover, the joint torque u2 is a projection of this force and moment

u2 = sT2

[
f2

τ 2

]
. (6.45)

Substituting (6.43) and (6.44) into this equation and we can solve it for
the joint acceleration

q̈2 =
u2 − sT2 (I

S
2 (ξ̇1 + ṡ2q̇2) + ξ2 × IS

2 ξ2)

sT2 I
S
2 s2

. (6.46)

By this equation, we can immediately calculate the joint acceleration q̈2 for
the given joint torque u2 without dealing with the inertia matrix that ap-
peared in (6.39) of the previous section.

However, we can use (6.46) only if link2 is the outermost link. If we have
extra links starting from link2 as in Fig. 6.22, (6.44) will no longer be valid.
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Fig. 6.21 Two links in space
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Fig. 6.22 Articulated-Body Inertia: IA
2 represents the relationship between the ac-

celeration and the applied force on the link2. The dynamic effects of all mechanisms
(gray part) farther than link2 from the body are taken into consideration.

One way to use (6.46) would be to introduce a new inertia tensor IA
2 which

holds all effects of the extra links farther than link2, which satisfies

[
f2

τ 2

]
= IA

2 ξ̇2 + b2. (6.47)

IA
2 is called articulated-body inertia. An articulated-body inertia matrix

represents the relationship between the acceleration and the force acting on
the link of interest. b2 is the bias force, which includes the Coriolis, centrifugal
and gravity forces and the joint torques acting on the mechanism farther than
the link2.

Featherstone showed that an articulated-body inertia can be calculated by
the recursive equation

IA
j = IS

j + IA
j+1 −

IA
j+1sj+1s

T
j+1I

A
j+1

sTj+1I
A
j+1sj+1

. (6.48)

The bias force can be also calculated by a similar equation.
Suppose we have already calculated the articulated-body inertia and the

bias forces for all links. By substituting (6.47) and (6.43) into (6.45), we
obtain

q̈2 =
u2 − sT2 (I

A
2 (ξ̇1 + ṡ2q̇2) + b2)

sT2 I
A
2 s2

. (6.49)
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That is, the equation which directly calculates the joint acceleration with
the given joint torque. This is the heart of Featherstone’s theory.

In summary, the calculation of forward dynamics can be performed by the
three steps as following.

1. Calculate the position, orientation and spatial velocity of all links from
the body link to the outer links (Forward kinematics).

2. Calculate the articulated-body inertia and the bias force for all links from
the outermost links to the body link.

3. Calculate the joint acceleration by (6.49) and the link spatial acceleration
by (6.43) from the body link to the outer links.

Since each step takes time in proportion to the number of joints, n, the
total calculation time is also proportional to n. Such an algorithm is called to
have the speed of order n, or denoted as O(n). For example, the unit vector
method in the previous section is O(n3) since it takes time in proportional
to cube of n. We implemented the Featherstone algorithm on Matlab. For
HRP-2 (n = 30), it was about twenty times faster than the unit vector
method.

6.5 Background Material for This Section

The basic theory of the motion of object was established in 17th to 18th
century by Newton, Euler and other scientists. However, it was not the end
of research.

Indeed, about twenty years ago, an undergraduate student attempted to
simulate a biped robot of twelve degree of freedom, so he started to calcu-
late the equation of motion by hand. It took whole summer and he needed
a whole notebook to write down the resulted equations. In those days, there
existed commercial simulation software which could handle complicated me-
chanical systems, however, they were extremely expensive and specialized
for computers called engineering workstations whose price was prohibitive.
Moreover, even using such software, it took hours just to simulate a simple
biped robot walking several steps!

Such situation has drastically changed by the efficient and elegant dynamic
calculation we explained in this chapter. These algorithms were developed by
researchers of robotics and aeronautical engineering in 1980s and 1990s. Cur-
rently, the state-of-the-art technology can realize a dynamic simulation with
real-time speed. Moreover, researchers are still working for improvement and
they recently proposed algorithms of O(log(n)) based on parallel computing
[98, 78]. The application of those fast dynamic simulation is not limited to
robotics, but they are also used to analyze satellite motion when the solar
cell panels expand or to visualize realistic scenes by computer graphics in the
movies and interactive computer games.
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6.6 Appendix

6.6.1 Treatment of Force and Moment

In this section, all equations of motion are represented in the world frame,
thus the force and the moment must be written with respect to the world
frame. For example, even for the gravity acting on the CoM of an object,
we must consider its moment around the world frame origin. Although this
seems complicated, we can correctly calculate the interaction between multi
rigid bodies.

The basic rules to convert the force and moment into the world frame are
as follows.

Rule 1: A force f acting on a point p is converted to a force f and a
torque p× f with respect to the world frame (Fig. 6.23(a)).
Rule 2: A moment τ acting on a point p is the same τ with respect to
the world frame (Fig. 6.23(b)).

(a) (b)

f
Of

p

p

O = ×¿ p f

¿

O¿

¿

O O

Fig. 6.23 (a)World frame representation of a force acting on a point (b)World
frame representation of a moment acting on a point

In general, when a force fp and a moment τ p are simultaneously acting on
a point p, they are converted a force and moment fo, τ o around the origin
given by [

fo

τ o

]
=

[
fp

p× fp + τ p

]
. (6.50)

One might think them obvious, we tend to make a curious mistake for this
sort of calculation. The quiz shown in Fig. 6.24 might help to understand
this problem.
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f

¿

O

Fig. 6.24 A person is applying a moment τ gripping the handle of a bar. To
prevent the rotation of the bar, it might be enough to apply an appropriate force
f at the far side of the bar. Assuming this point to be the origin O, doesn’t this
violate the rule 2, which asserts the same moment will appear at the origin? (The
answer is on page 210).

6.6.2 Subroutines

vert = uLINK(1).R * uLINK(1).vertex; % rotation

for k = 1:3

vert(k,:) = vert(k,:) + uLINK(1).p(k); % translation

end

newplot

h = patch(’faces’,uLINK(1).face’,’vertices’,vert’,’FaceColor’,[0.5 0.5 0.5]);

axis equal; view(3); grid on; xlim(AX); ylim(AY); zlim(AZ);

text(0.25, -0.25, 0.8, [’time=’,num2str(time(n),’%5.3f’)])

drawnow

Fig. 6.25 ShowObject.m: Show animation of the object
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function MakeRigidBody(j, wdh, mass)

global uLINK

uLINK(j).m = mass; % mass

uLINK(j).c = [0 0 0]’; % center of mass

uLINK(j).I = [ 1/12*(wdh(2)^2 + wdh(3)^2) 0 0;

0 1/12*(wdh(1)^2 + wdh(3)^2) 0;

0 0 1/12*(wdh(1)^2 + wdh(2)^2)] * uLINK.m; % inertia tensor

uLINK(j).vertex = 0.5*[

-wdh(1) -wdh(2) -wdh(3);

-wdh(1) wdh(2) -wdh(3);

wdh(1) wdh(2) -wdh(3);

wdh(1) -wdh(2) -wdh(3);

-wdh(1) -wdh(2) wdh(3);

-wdh(1) wdh(2) wdh(3);

wdh(1) wdh(2) wdh(3);

wdh(1) -wdh(2) wdh(3);

]’; % vertex points

uLINK(1).face = [

1 2 3 4; 2 6 7 3; 4 3 7 8; 1 5 8 4; 1 2 6 5; 5 6 7 8;

]’; % polygons

Fig. 6.26 MakeRigidBody.m: Setup a monolith and its parameters

function MakeTop(j, r,a,c)

global uLINK

[vertex1,face1] = MakeZcylinder([0 0 c]’,r,a); % shape of disk

[vertex2,face2] = MakeZcylinder([0 0 c]’,0.01,2*c); % shape of shaft

uLINK(j).vertex = [vertex1 vertex2];

face2 = face2 + size(vertex1,2);

uLINK(j).face = [face1 face2];

density = 2.7E+3; % density of aluminum [kg/m^2]

uLINK(j).m = pi*r^2*a*density; % mass of the disk [kg]

uLINK(j).I = [ (a^2 + 3*r^2)/12 0 0;

0 (a^2 + 3*r^2)/12 0;

0 0 r^2/2] * uLINK.m; % inertia tensor of the disk

uLINK(j).c = [0 0 c]’; % center of mass

Fig. 6.27 MakeTop.m: Setup a top and its parameters
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function [vert,face] = MakeZcylinder(pos, radius,len)

a = 10; % regular polygon for circle

theta = (0:a-1)/a * 2*pi;

x = radius*cos(theta);

y = radius*sin(theta);

z1 = len/2 * ones(1,a);

z2 = -z1;

vert = [x x 0 0;

y y 0 0;

z1 z2 len/2 -len/2]; % vertices

for n = 1:3

vert(n,:) = vert(n,:) + pos(n);

end

face_side = [1:a; a+1:2*a; a+2:2*a a+1; 2:a 1];

face_up = [1:a; 2:a 1];

face_up(3:4,:) = 2*a+1; % index of up center

face_down = [a+2:2*a a+1; a+1:2*a];

face_down(3:4,:) = 2*a+2; % index of down center

face = [face_side face_up face_down];

Fig. 6.28 MakeZcylinder.m: Create cylinder shape

function ret = InvDyn(j)

global uLINK

uLINK(1).dvo = [0 0 0]’;

uLINK(1).dw = [0 0 0]’;

if j >= 1 & j <= 3

uLINK(1).dvo(j) = 1;

elseif j >= 4 & j <= 6

uLINK(1).dw(j-3) = 1;

end

for n=1:length(uLINK)-1

if n == j-6

uLINK(n+1).ddq = 1;

else

uLINK(n+1).ddq = 0;

end

end

ForwardAllKinematics(1);

[f,tau] = InverseDynamics(1);

ret = [f’,tau’,uLINK(2:end).u]’;

Fig. 6.29 InvDyn.m: Inverse dynamics by unit vector method
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f −f

¿

O

Fig. 6.30 The answer for the quiz of page 207: To keep the rod stationary, a
person must apply the force −f as well as the moment τ . If the person who is
gripping the handle is on a small boat, he/she will start moving in the direction of
vector f .
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