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Abstract. Finding fast and efficient algorithms for computing the k-error joint 
linear complexity and error multisequence of multisequences is of great 
importance in cryptography, mainly for the security analysis of word based 
stream ciphers. There is no efficient algorithm for finding the error 
multisequence of a prime power periodic multisequence. In this paper we 
propose an efficient algorithm for finding the k-error joint linear complexity 
together with an error multisequence of m fold prime power periodic 
multisequences over Fq ,where char Fq  = p, a  prime.  

Keywords: Word based stream ciphers, Multisequences, Error Joint Linear 
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1 Introduction  

Complexity measures for keystream sequences over finite fields, such as the linear 
complexity and the k-error linear complexity, is of great relevance to cryptology, in 
particular, to the area of stream ciphers. Stream ciphers uses deterministically 
generated pseudorandom sequences to encrypt the message stream. The keystream 
should be a truly random sequence of elements of a finite field. Security of stream 
ciphers depends on the quality of the keystreams and the keystream must possess 
various properties such as having good statistical randomness properties and a high 
linear complexity in suitable sense, so that the keystream sequence cannot be 
predicted from a small portion of its terms of the sequence. 

The vast majority of proposed keystream generators are based on the use of linear 
feedback shift registers (LFSR). The length of the shortest LFSR which generates the 
given sequence is known as the linear complexity of the sequence. A necessary 
requirement for unpredictability of keystream sequence is long period, which can be 
attained by large linear complexity. Developments in stream ciphers point towards an 
interest in word based stream ciphers which require the study of complexity theory of 
multisequences i.e., of parallel streams of finitely many sequences, and of their 
complexity properties ([6-8], [10], [12], [14]). A cryptographically strong sequence 
should not only have a large linear complexity, but also changing a few terms should 
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not cause any significant decrease of the linear complexity. This unfavorable property 
leads to the concept of k-error linear complexity ([9], [13]). Many authors studied 
various properties of k-error linear complexity of single and multisequences 
([1-5], [7], [10 -14]).  In [13] Stamp and Martin gave an efficient algorithm for 
finding the k-error linear complexity of 2n periodic binary sequences. This algorithm 
was later modified by Kaida [2] and he found out the corresponding error vector 
together with the k-error linear complexity. Kaida et al. in [3] further extended this 
algorithm to the case of sequences with period pn over Fq; Char Fq = p.  

There is no efficient algorithm for finding the error multisequence of a prime 
power periodic multisequence. In this paper we propose an efficient algorithm for the 
computation of error multisequence e  together with the k-error joint linear 
complexity of m fold multisequences over Fq of period pn. In other words, we find             
k-error joint linear complexity and an m fold pn periodic multisequence 
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An m fold N periodic multisequence S can be interpreted as an Nm×  matrix over 

q
F  . For defining the k-error joint linear complexity of multisequences, we need the 

following definition of term distance [6]. 

1.1 Definition 1 

Let ),...,,( )1()1()0( −= mSSSS  and ),...,,( )1()1()0( −= mTTTT be two m fold N periodic 

multisequences over 
q

F  .We define the term distance ),( TS
T

δ between S and T as the 

number of entries in S that are different from the corresponding entries in T. 

1.2 Definition 2 

Let ),...,,( )1()1()0( −= mSSSS be an m fold N periodic multisequences over Fq. For an 

integer k ( mNk ≤≤0 ), the k-error joint linear complexity LN,k(S) of S is defined as 
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the smallest possible joint linear complexity obtained by changing k or fewer terms of 
S in its first period of length N and then continuing the changes periodically with 
period N.  In other words  
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where the minimum is taken over all m fold N periodic sequence T over Fq with term 
distance kTS

T
≤),(δ . 

2 Algorithm for Computing the k-error Joint Linear 
Complexity and Error Multisequence 

Let ),...,,( )1()1()0( −= mSSSS be an m fold N periodic multisequences over Fq. 
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and Fu is computed component wise. 
For the computation of k-error joint linear complexity of S, we are forcing the 

value of ω as large as possible in the algorithm, so that (p-ω)M  becomes as small as 
possible in Step II(4) of our algorithm,  under the assumption that the necessary and 
sufficient condition for minimum number of changes in the original multisequence is 
less than or equal to k, obtaining the minimal case ω. This criterion can be achieved 

with introduction of the cost matrix ),...,,( )1()1()0( −= m
NNNN

AAAA  where )(h
N

A is a 

matrix of size Nq ×   defined as 
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Proposed algorithm has n rounds. In each round, a multisequence 
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Using 
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and the value k of allowed term changes, choose the case ω as large as 

possible to make the increment (p-ω)M to the k-error joint linear complexity of S as 
minimum as possible in Step II(4) . If we can force case ω  to happen, then the change 
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For the computation of error multisequence e , we compute the error matrix as  

    10,10,10,)),(()( )( −≤≤−≤≤−≤≤= qjNimhilEME
M

h                        (17) 

where
M

h ilE ),()( is defined as follows. For changing  )(hM
i

s  to 
l

hM
i

s α+)(  under the 

situation that the happening of case ω at Mth step is not altered in the algorithm, we 



 On the k-error Joint Linear Complexity and Error Multisequence over Fq 517 

can change elements )(hN
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periodic multisequence and e is an error multisequence 
 
From the above discussion we can see that the correctness of this algorithm follows 
from that of the Generalized Stamp Martin Algorithm [2]. The time complexity of this 
algorithm is m times that of the time complexity of Generalized Stamp Martin 
Algorithm when applied on a single sequence.  

3 Conclusion 

There is no efficient algorithm for finding the error multisequence of a prime power 
periodic multisequence. In this paper we derived an algorithm for finding the k-error 
joint linear complexity and an error multisequence of an m fold prime power periodic 
multisequence over Fq . Finding the error joint linear complexity spectrum and its 
properties of periodic multisequences over a finite field is also of related interest.  
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