
Collaborative Approach for Data Integrity

Verification in Cloud Computing

Rajat Saxena and Somnath Dey

Department of Computer Science and Engineering,
Indian Institute of Technology Indore, India

{rajat.saxena,somnathd}@iiti.ac.in

Abstract. High security is one of leading restriction for shining up
bright eras and vision of Cloud computing. In latest trend of Cloud,
all the sensitive applications and data are moved towards cloud infras-
tructure and data center which run on virtual computing resources in
the form of virtual machine. The large scale usage of virtualization to
achieve cloud infrastructure brings additional security burden for ten-
ants of a public cloud service. In this paper, we primarily aim to achieve
better data integrity verification technique and help users to utilize Data
as a Service (Daas) in Cloud computing. The experimental results are
included in order to show the effectiveness of the proposed method for
data integrity verification.

Keywords: Proof of Retrievability (PoR), Provable Data Possession
(PDP), Third Party Auditing, Algebraic Signature, Homomorphic TAG.

1 Introduction

Cloud computing is defined as services and applications that are enforced on a
distributed network using virtual resources and accessed by common networking
standards and Internet protocols. It is distinguished from the traditional system
in this manner that resources are virtual and limitless and implementation details
of the physical systems on which software runs are abstracted from the user.

In Cloud, the complexity of security is greatly increased in comparison with
traditional systems. The reason for this is that data is stored and operated in
multi-tenant systems which are distributed over a wider area and shared by un-
related users. In addition, maintenance of security audit logs may be difficult
or impossible for a user that has limited resources. Thus, the role of cloud ser-
vice providers is important that it must devote proper security measures and
resources to maintain privacy preservation and data integrity. It is possible that
cloud provider may delete or sell some non operational data for its greed or profit
that is not used for a long time. It is also possible that an adversary may exploit
this data by performing various attacks. The customer also must ensure that the
provider had taken the proper security measures to protect their information.

There are a number of security threats associates with utility of DaaS in cloud
computing. New security challenges introduced by storing data in the cloud are
following.

G. Mart́ınez Pérez et al. (Eds.): SNDS 2014, CCIS 420, pp. 1–15, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

2 R. Saxena and S. Dey

1. Data integrity: when data stores on cloud storage servers, anyone from
any location can access this data. Cloud is unable to differentiate between
sensitive data from common data thus it enables anyone to access sensitive
data. Tampering the sensitive data causes the data integrity issue. Thus,
there is lack of data integrity in cloud computing.

2. Data theft or loss: The cloud servers are distrusted in terms of both secu-
rity and reliability, which means that data may lost or modified maliciously
or accidentally. Administrative errors may cause data loss (e.g. backup and
restore, data migration, and changing memberships in point to point sys-
tems). Additionally, adversaries may initiate attacks for taking advantage of
control loss over data by data owners.

3. Privacy issues: As most of the servers are external; the vendor should
make sure who is accessing the data and who is maintaining the server. The
cloud vendor also make sure that the customer personal information is well
secured from other operators. This enables vendor to protect the personal
information of customers.

4. Infected application: Vendor should have the complete access to the server
for monitoring and maintenance. This prevents any malicious user from up-
loading any infected application on Cloud which will severely affect the cus-
tomer.

5. Loss of physical control: Cloud customers have their data and program
outsourced to cloud servers. As a result, owners lose direct control on the
data sets and programs. Loss of physical control means that customers are
unable to resist certain attacks and accidents.

6. Data location: In cloud environment data location are not transparent
from customers. The customer doesn’t know where his data is located and
the Vendor does not reveal where all data is stored. The data won’t even be
in the same country of the customer, it might be located anywhere in the
world. It might raise SLA and legal issue.

7. Cross-VM attack via side channels: Cross-VM attack exploits multi-
tenant nature of cloud. In Multi-tenent environment, VMs belonging to dif-
ferent customers may co-reside on the same physical machine. Cross-VM
attack may corrupt whole file structure and leak information from one VM
to another VM.

We concentrate on the data integrity verification issue. It is one of the biggest
concerns with cloud data storage at untrusted servers because it may be possible
that cloud user or /and cloud provider may be malicious. It is also an interesting
problem that how cloud users and cloud providers have trusted to each other for
storing the data and how privacy of the cloud users should be maintained. One
solution of this problem is to perform encryption and decryption operations but
it involves with computational and operational overheads. Another solution of
this problem is to perform data auditing.

Organization. The rest of the paper is organized as follows: In the section 2, we
provide literature survey on data auditing till current state-of-the-art work. In
section 3, we describe our system model and data integrity verification scheme.

Collaborative Approach for Data Integrity Verification 3

Then, we provide security and performance analysis in section 4. Finally, we
conclude in section 5.

2 Literature Survey

Data auditing is a periodic event to assess quality or utility of data for a spe-
cific purpose like to evaluate security, data integrity, privacy preservation and
computational accuracy. Data auditing could be a primary source for shielding
corporate data assets against potential risk and loss. Data auditing relies on a
registry that could be a storage space for information and data assets. during
data auditing, the creation, origin or format of data may be reviewed to assess
its utility and value.

There are two type of approach for data integrity auditing: Probabilistic audit-
ing in which the blocks are randomly selected by using the probabilistic checking
method and Deterministic auditing in which auditors checks the integrity of all
data blocks. Traditional systems for data auditing are PDP and PoR schemes.
Both of these schemes are based on the facts that client directly communicates
with the data storage to produce proof of access, retrieve and possession of the
data. The difference between PDP and POR techniques is that PDP techniques
only produce a proof for recoverable data possession but POR schemes checks
the possession of data and it can recover data in case of data access failure or
data loss. usually a PDP scheme can be transformed into POR scheme by adding
erasure or error correcting codes.

The PDP techniques [1], [2], [3], [4], [5] generates probabilistic proofs of pos-
session by sampling random sets of blocks from the server, which drastically
reduces I/O costs. PDP techniques have two parts of action : First, the client
(verifier) allows to preprocesses the data, keep a small amount of metadata and
then sends whole data to an untrusted data storage server (prover) for storing.
later, Client (verifier) allows to verify with the help of metadata that the data
storage server still possesses the clients original data and stored data has not
been tampered or deleted. In PDP techniques, the client maintains a constant
amount of metadata to verify the proof. The challenge/response protocol trans-
mits a low, constant amount of data that minimizes network communication.
Thus, the PDP schemes for remote data checking support large data sets in
widely distributed storage systems. Table 1 shows the comparative analysis of
the different PDP schemes.

PoR schemes [6], [7], [8], [9], [10] have two parts of action : First, the client
(verifier) allows to store a file on an untrusted data storage server or prover. later,
the client run data audit proof algorithm. This proof help provers to ensure that
it still possesses the clients data file and client can recover the entire file. In
this schemes, an encrypted file randomly embeds a set of randomly-valued check
blocks or Sentinels. The use of sentinel for data auditing minimizes the client
and server storage. It also minimizes the communication complexity of the audit
and the number of file-blocks accessed by server during audit. An auspiciously
executed POR scheme encourages verifiers that the provers presents a protocol

4 R. Saxena and S. Dey

Table 1. Comparison of different PDP Schemes

Properties PDP [1] S-PDP [2] E-PDP [3] D-PDP[4] C-DPDP[5]

Primitives Homomorphic Symmetric Asymmetric key , Rank-based Algebraic
Verifiable key cryptography Authenticated Signature

Tags (HVTs) Cryptography (RSA Modules) Dictionary and
Skip List, RSA Tree

Type of guarantee Probabilistic Probabilistic Probabilistic Probabilistic Probabilistic

Public Verifiability Yes No No No Yes

With the help of TPA No No No No No

Data dynamics Append only(Static) Yes No Yes Yes

Privacy preserving No No Not Supported Not Supported No

Support for sampling Yes Yes No Yes Yes

Probability of detection [1-(1− p)c] [1-(1− p)c] [1-(1− p)c∗s] [1-(1− p)c] [1-(1− p)c∗s]

Table 2. Comparison of different PoR Schemes

Properties PoR [6] C-PoR [7] PoR-HA [8] PoR-TI [9] HAIL [10]

Primitives Error Correcting BLS Error Correcting Adversarial Integrity Protected
Code,Symmetric Signature, Codes,Reed Error Error Correcting

Key Cryptography, Pseudorandom -Solomon Codes Correcting Universal Hash
Sentinel Creation Functions Hitting Sampler Codes Function, MAC
and Permutation

Type of guarantee Probabilistic Probabilistic Probabilistic Probabilistic Probabilistic
/ Deterministic / Deterministic

Public Verifiability No Yes Yes Yes Yes

With the help of TPA No No No No No

Data dynamics No No Append only Append only Yes

Privacy preserving No No No No Yes

Support for sampling Yes Yes Yes Yes Yes

Probability of detection [1-(1− p)c] [1-(1− p)c∗s] [1-(1− p)c] [1-(1− p)c] [1-(1− p)c∗s]

Table 3. Comparison of different Data Auditing Techniques with TPA

Properties Wang et al [11] Wang et al [12] Hao et al [13] Co-PDP[14]

Primitives Bilinear Map, Merkle Hash Tree, RSA based Homomorphic Verifiable
MAC, Homomorphic Aggregate Bilinear Homomorphic Hash Index

Authenticator Signature Verifiable Tags Hierarchy

Type of guarantee Probabilistic Probabilistic Deterministic Probabilistic

Public Verifiability Yes Yes Yes Yes

With the help of TPA Yes Yes Yes Yes

Data dynamics Yes Yes Yes Yes

Privacy preserving Yes Yes Yes Yes

Support for sampling Yes Yes No Yes

Probability of detection [1-(1− p)c] [1-(1− p)c∗s] [1-(1− p)c∗s] Z∗

1. n is the block number, c is the sampling block number and s is the
numbers of sectors in blocks. p is the probability of block corruption in a
cloud server and Pk is the probability of kth cloud server in a multi-cloud.
2.

Z∗ = [1−
∏

pkεp(1− pk)
rk∗c∗s] (1)

Collaborative Approach for Data Integrity Verification 5

interface through which the verifiers can collectively retrieve the file. Table 2
shows the comparative analysis of different PoR schemes.

The issues with PoR and PDP schemes are: These schemes focus on only static
data. These schemes apply for only encrypt files that allows a limited number
of queries. There is a tradeoff between privacy preservation and dynamic data
operations thus some schemes do not preserve privacy. They are complex and
computation intensive and have to be done at the user end. None of this scheme
consider batch auditing process. The effectiveness of these schemes primarily
rests on the preprocessing steps that the user conducts before out-source the data
file. This introduces significant computational and communication complexity
overhead. These techniques provide tradeoff between storage overhead and cost
of communication thus some of this techniques store less storage with high cost.

In cloud scenario, the users might have limited CPU, battery power and com-
munication resource constraints. so, they are not capable to perform data audits.
Instead of them, Third Party Auditors (TPA) are responsible for data audits. A
trusted TPA has certain special expertise and technical capabilities, which the
clients do not have.

The schemes [11], [12], [13], [14] assigns auditing work to single TPA. Trusted
Third Party (TTP) involves an independent outside trusted and authenticate
entity to conduct data audit. External trusted third-party audit mechanism is
important and indispensable for the protection of data security and the reliability
of services in cloud environment. TPA should be able to efficiently audit the
cloud data storage without demanding the local copy of data and introduce no
additional on-line burden to the cloud user. The third party auditing process
should bring in no new vulnerability towards user data privacy.

Table 3 shows comparative analysis of data auditing schemes that has single
TPA. In these schemes, single TPA cannot handle SLA and legal issues for data
possession and prone to single-point failure. For these schemes, error localization
is very difficult to find. All the above schemes provide only binary results about
the storage status for identifying misbehaving server(s). none of these scheme
support multiple TPAs for cross checks and cross authenticate the data integrity
verification, privacy preservation and computation accuracy. There is a tradeoff
between data dynamics, privacy preservation and public verifiability in these
schemes. TPA may simultaneously handle various audit sessions from different
users for their outsourced data files by multi-user setting during efficient auditing
process.

To address the above problems, we propose multiple TPA system in which each
TPA may simultaneously handle various audit sessions from different users for
their outsourced data files. our work utilizes the algebraic signature and homo-
morphic tag for auditing. Algebraic signature use symmetric key techniques to en-
hance efficiency. The running of algebraic signature can achieve high speed from
tens to hundreds of megabytes per second. An algebraic signature allows chal-
lenger to verify data integrity by comparing only the responds returned by the
storage server. for this challenger does not need whole original data for verifica-
tion. Algebraic signature use only small challenges and responses. TPA group need

6 R. Saxena and S. Dey

to store only two secret keys and several randomnumbers. This makes task of TPA
group easy and computation intensive. The efficiency of algebraic schemes permits
the construction of large-scale distributed storage systems in which large amounts
of storage can be verified with maximal efficiency and minimal overhead. The ag-
gregation and algebraic properties of the algebraic signature provide extra benefit
for batch auditing in our design.

By integrating the homomorphic tag with random masking, our protocol guar-
antees that TPA could not learn any knowledge about the data content stored
in the cloud server during the efficient auditing process. Specifically, our contri-
bution in this work can be summarized as the following three aspects:

1. We motivate the public auditing system of data storage security in Cloud
Computing and provide a privacy-preserving auditing protocol with multiple
TPA.

2. To the best of our knowledge, our scheme is the first to support scalable
and efficient public auditing with multiple TPA in the Cloud Computing.
In particular, our scheme achieves batch auditing in which each TPA may
simultaneously handle various audit sessions from different users for their
outsourced data files.

3. We prove the security and justify the performance of our proposed schemes
through concrete experiments and comparisons with the state-of-the-art.

3 The Proposed Scheme

In this section, we present our security protocols for cloud data storage service
with the aforementioned research goals in mind. first we establish notation re-
lated our scheme, then we explain details about algebraic signature. Thereafter,
we discuss our system model that subsequently represent our scheme.

3.1 Notation and Preliminaries

1. ASg (•): denote the Algebraic signature.
2. f(•) is a pseudo-random function (PRF) which maps as follow f : {0, 1}k ×

{0, 1}l −→ {0, 1}l.
3. σ(•) is a pseudo-random permutation (PRP) which maps as follow σ :

{0, 1}k × {0, 1........n}
−→ {0, 1.....n}.

4. Ekt(•) and Dkt(•) : denote the encryption and decryption algorithms.
5. L: the length of a bit string, with typical values L = 16 bits. Each data

block will be divided into equal bit strings on which the algebraic signature
is computed.

6. t : the number of verification.
7. R: the number of blocks required for each challenge.
8. k: the master key, which is used to compute the locations of data blocks to

compute verifiable tags.

Collaborative Approach for Data Integrity Verification 7

9. kt: the tag encryption key, which is used to encrypt the verifiable tags.
10. r1, r2: random numbers chosen from the Galois field.
11. F = F [1], F [2] . . . F [n]: F denotes a file, and F [i] denote a data block of

the file F.
12. T = T1, T2...Tt : T denotes all block tags and Ti denotes one tag of T.

3.2 Algebraic Signature

Algebraic signature [15] of the file blocks which has composition of strings
s0, s1, ..., sn−1 is a kind of hash functions simply defined as follows

ASg(s0, s1,, sn−1) =
n−1∑

s=0

si.g
i (2)

Algebraic signature [16] itself is a single string . The data compression rate

of algebraic signature is the n =F [i]
L , where F [i] is size of a file block and L is

length of string. For example, if the size of a file block F [i] is 1 KB and L = 64

bits, then corresponding algebraic signature is 64 bits and n = F [i]
L = 16, so the

data compression rate of algebraic signature is 16.

Property: Taking the sum of signatures of some file blocks provides the equal
result as taking the signature of sum of corresponding blocks.

ASg(X) +ASg(Y) = ASg(X + Y) (3)

Proof: The property of algebraic signature can be verified as follows.

⇒ ASg(X) +ASg(Y).
⇒ ASg(x0, x1,xn−1) + ASg(y0, y1,yn−1).

⇒
n−1∑
i=0

xi.g
i +

n−1∑
i=0

yi.g
i.

⇒
n−1∑
i=0

(xi + yi).g
i.

⇒ ASg(X + Y) .

We use property of a algebraic signature for tag generation (an algebraic
signature of the sum of some file blocks) which can be calculated solely using
the signatures of the file blocks.

3.3 System Model

We propose a distributed multiple third party data auditing technique.In this
technique, Multiple TPA have shared the huge load responsibility of single TPA
by load balancing. Figure 1, illustrates network architecture for cloud data stor-
age, which incorporates our distributed multiple third party data auditing tech-
nique. This figure divides proposed scheme into three parts:

8 R. Saxena and S. Dey

Fig. 1. System Model

1. Cloud Users: Any end user may interpreted as a cloud user. We assume
that these cloud users have limited resources. Thus, Cloud user is not capa-
ble to perform computation intensive tasks such as data integrity and privacy
preserving audits.

2. Multiple TPA: In this region, TPA is an authorized and authentic entity
that is responsible for data integrity verification and privacy preservation. It also
takes care for the SLA and legal issue related to data migration. We consider
multiple TPA to achieving load balance and batch audits.

3. Cloud Service Provider: In this group, cloud service providers have
established enough infrastructure and resources to provide data storage as a
service for cloud customers. These resources may be distributed across the world.

3.4 Proposed Data Integrity Verification Scheme

We divide whole scheme in 8 parts and working of this parts among system
model provides in Figure 1.

1. Request for Data Integrity Verification:During data audits, cloud users
send request to the TPA group for verification of the data of file F. In TPA
group one TPA can share and distribute this load with other TPA by load
balancing and batch auditing.

Collaborative Approach for Data Integrity Verification 9

2. Forward Request: TPA group use setup operation for generating some ini-
tialization parameters such as the master key k, Homomorphic Tag encryp-
tion key kt and random numbers r1, r2. This initial parameters are common
to all TPA. TPA group forwards request to the cloud service provider on the
sample blocks of physical data centers for checking data integrity.

Algorithm 1. Setup operation

Input: {0, 1}k .
Output: Master key k , Homomorphic Tag Encryption Key kt , Random numbers r1, r2 .

1: Master key k generates by k
R←− {0, 1}k.

2: Homomorphic Tag Encryption Key kt generates by kt
R←− {0, 1}k.

3: Random numbers r1, r2 generates by r1
R←− {0, 1}k and r2

R←− {0, 1}k.

3. Response: Cloud service provider chooses some random sample blocks from
the whole data base related to file F and responses to the TPA group with
c blocks.

4. Homomorphic Tag Generation: Now, TPA group use homomorphic tag
generation algorithm. Each TPA individually chooses random sample blocks
c1, c2,cn from responded c blocks and compute algebraic signature sum
for these blocks as the ASg(s1), ASg(s2) , ASg(sn). Through load bal-
ancing homomorphic tag generation process distribute among all TPA. TPA
group sends entry (F,T) to the cloud service provider for storage.

Algorithm 2. Homomorphic TAG Generation

Input: Random sample blocks c1, c2,cn from responded c blocks .
Output: Entry {F , T}.

1: if the number of verification is t then
2: TPA x has compute t tags with this procedure.

for 0 < i � t
ki = fk(r1 + i)
sx = 0

for 0<j ≤ cx
lj = σki(r2 + j)
sx = sx + F [lj]

3: Compute ASg(sx)

4: ASg(S) =
n∑

x=1

ASg(sx) , where n is the number of TPA’s.

5: Homomorphic Verifiable Tag = ∂i = ASg(S).
6: Ti = Ekt(∂i).
7: end if
8: TPA group send entry {F , T}, which corresponds to file F and all block tags T,

to the cloud service provider for store.

10 R. Saxena and S. Dey

5. Challenge: TPA group computes ki by challenge operation for the ith ver-
ification using the master key k, then sends the (r2, ki) to storage server.

Algorithm 3. Challenge operation

Input: Master Key k, Encryption function fk and random number r1.
Output: Entry {r2, ki } to the storage server.

1: for ith verification, TPA group calculates do
2: ki = fk(r1 + i)
3: end for
4: TPA group sends {r2, ki } to cloud service provider.

6. Proof Generation: In Proof Generation storage server computes the lo-
cations of the requested blocks using ki, computes their sum F ′

i and then
returns to the TPA group (F ′

i , T ′
i), where T ′

i is the homomorphic verifiable
tag stored on cloud service provider corresponding to F ′

i .

Algorithm 4. Proof Generation

Input: F ′
i = 0, random number r2.

Output: Cloud Service Provider return {F ′
i , T

′
i } to TPA group.

1: F ′
i = 0

2: for 0<j ≤ R do
3: lj = σki(r2 + j)
4: F ′

i = F ′
i + F [lj]

5: end for
6: Cloud Service Provider return {F ′

i , T
′
i } to TPA group.

7. Proof Verification: The TPA group decrypts T ′
i using the tag decryption

key kt ,computes the algebraic signature of F ′
i and then verify whether they

are equal. If yes, it indicates that the integrity of file is maintained else the
integrity of file is corrupted.

Algorithm 5. Proof Verification

Input: Decryption key kt, Decryption function Dkt

Output: Verification Result ASg(F
′
i)

?
= ρi

1: ρi = Dkt(T
′
i).

2: Verifies ASg(F
′
i)

?
= ρi.

8. Result Notification: TPA group notify result to the cloud user.

Collaborative Approach for Data Integrity Verification 11

4 Analysis

In this section, we analyze the security strength of our scheme against server
misbehavior and explain why challenge the random blocks can improve the se-
curity strength of our proposed scheme. We also provide performance analysis
based on the obtained result of experiments.

Fig. 2. The Probability of Server misbehavior detection

4.1 Security Analysis

Algebraic signature is ideally suited for use in verifying large amounts of
cloud data stores in remote data centers because of their minimal network im-
pact,reasonable computation loads and resistance to malicious modification. The
use of algebraic signatures compresses file blocks into a very small entity that
can change with little bit change in the block. for large bit string, Algebraic
signature is cryptographically secure in comparison with hash functions such as
MD5 and SHA1.

TPA group chooses c file blocks randomly from n blocks each time. This
sampling incredibly reduces workload on the server, while still achieving server
misbehavior detection with high provability. We assume that out of n blocks,
the server deletes r blocks. X is a discrete random variable which is defined to
the number of blocks chosen by TPA group that match the blocks deleted by the
server. We compute PX , the probability that at least one of the blocks picked by
TPA group matches one of the blocks deleted by server, with following equation.

PX = P{X � 1} = 1− P{X = 0} = 1− {n− r

n
.
n− 1− r

n− 1
.
n− 2− r

n− 2
....

n− c+ 1− r

n− c+ 1
}

(4)

12 R. Saxena and S. Dey

PX indicates the probability of detection of server misbehaviour that depends
on total number of file blocks n, deleted r blocks and challenged c blocks. if
storage server deletes r blocks of the file, then the TPA group will detect server
misbehavior after a challenge for c blocks. Figure 2 exhibit PX for different values
of r, c.

Surprisingly, the TPA group can detect server misbehaviour with a certain
probability by challenge a constant amount of blocks, independently of the total
number of file blocks: e.g., if r = 1% of n, then the client asks for 460 blocks and
300 blocks in order to achieve PX of at least 99% and 95%, respectively. Thus,
our scheme is probabilistic secure approach. Moreover, we can improve detection
probability by performing the detection process more frequently and requesting
more blocks for each challenge. Large enough bit string provides resistance from
accidental collision of similar signatures. For an example, if we choose a 64 bits
signature then collision probability will be 2−64.

We choose 256 bits algebraic signature in our work with minimal collision
probability of 2−256. If the size of a file 1 GB, size of file block F [i] is 8 KB
and length of bit string L = 256 bits, then corresponding algebraic signature

is 256 bits and n = F [i]
L = 256. Thus, our scheme provides data compression

rate 256 for 1GB size file which is huge in cloud environment. This makes pre-
diction task complex for a site that does not knows some secrets to generate a
coherent set of signatures. The additional storage cost for 1 GB size file is =

size−of−file
size−of−algebraic−signature = 4 MB. Thus, additional storage overhead is only 4
MB for 1 GB size file.

4.2 Performance Analysis

From the performance point of view, we focuses on how frequently and efficiently
user verify that storage server can faithfully store his data without retrieving it.
In our scheme, the number of verification and the number of blocks required for
each challenge can be set flexible according to user’s requirement. If data will
not be stored for a long time, user can be set small number of verification and
blocks to further reduce the overload.

The experiment has run on two PCs configured with an Intel core i3-2330M
2.20 GHz and 2 GB RAM. We have configured Citrix Xen Server 6.1.0 on one
PC that is used for file storage. The second PC used as a TPA group that audits
the stored files on the behalf of cloud users. We observe that :

– In setup operation, TPA group generates some secret keys and random
numbers.

– For Homomorphic TAG Generation, each TPA needs to perform t times
PRF, c times PRP operations, c times sum, t times algebraic signature and
symmetric encryption operations. If number of TPA is n, then TPA group
needs to perform t*n times PRF and c*n times PRP operations, c*n times
sum, t*n times algebraic signature and symmetric encryption operations.

– In challenge operation, TPA group only needs to transfer about 512 bits
information for 256 bit secret keys.

Collaborative Approach for Data Integrity Verification 13

– For proof generation, Cloud service provider needs to perform c times PRP
and sum operations, and then it needs to transfer about 8 KB responding
results (for the size block is 8KB).

– For proof verification, TPA group only needs one time decryption and com-
parison operations.

There only symmetric key encryption and decryption, sum, PRF and PRP
operations are used. All operations are simple and efficient in computation. For
our approach number of verification are infinite and server computation complex-
ity, client computation complexity, communication complexity and client storage
complexity are O(1). Thus, our approach can be utilized in cloud storage for very
large data sets.

Fig. 3. The Verification delay for multiple clients

Fig. 4. The Verification overhead at multiple confidence level

14 R. Saxena and S. Dey

We evaluate the verification delay for multiple clients in Figure 3. For 100
clients, the verification delay is about 180 ms. The delay increases quickly, when
we increase the number of clients. When it reaches up to 1000 clients, the veri-
fication delay is about 3560 ms.

We measured the verification overhead for detecting 1% missing or faulty data
at 100%, 99% and 95% confidence in Figure 4. Examining time for all blocks
have linear scaling relationship with the file size. Sampling breaks this relation-
ship between verification time and file size. At 99% confidence the verification
overhead of our scheme is about 2.15 ms for any file. At 95% confidence the
verification overhead of our scheme is about 1.4 ms for any file.

5 Conclusions and Future Work

In this paper, we propose a collective approach for data integrity verification
with multiple third party auditors. This approach uses algebraic signature and
homomorphic verification tag for data integrity verification. Benefits of algebraic
signature and efficiency of homomorphic tag makes it ideally suited for cloud
storage. Experiments shows that the performance bottleneck is bounded by disk
I/O and not by our approach. Fortunately, when the server deletes a fraction of
file, the client can detect server misbehavior with high probability by challenge
a constant amount of blocks.

In near future, we planned to design protocols that supports dynamic data
updating operations with less overhead.

References

1. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable Data Possession at Untrusted Stores. In: Proc. 14th ACM Conf. Com-
puter and Comm. Security, pp. 598–609. ACM (2007)

2. Ateniese, G., Pietro, R.D., Mancini, L.V., Tsudik, G.: Scalable and efficient prov-
able data possession. In: ACM SecureCom (2008)

3. Sebe, F., Domingo-Ferrer, J., Martinez-Balleste, A., Deswarte, Y., Quisquater, J.-J.:
Efficient Remote Data Possession Checking in Critical Information Infrastructures.
IEEE Trans. Knowledge and Data Eng. 20(8), 1034–1038 (2008)

4. Erway, C., Kupcu, A., Papamanthou, C., Tamassia, R.: Dynamic Provable Data
Possession. In: Proc. 16th ACM Conf. Computer and Communication Security
(CCS 2009), pp. 213–222 (2009)

5. Chen, L.: Using algebraic signatures to check data possession in cloud storage.
Future Generation Computer Systems (December 2012)

6. Juels, A., Kaliski, B.S.: PORs: Proofs of retrievability for large files. In: ACM Conf.
Computer and Comm. Security (2007)

7. Shacham, H., Waters, B.: Compact Proofs of Retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

8. Dodis, Y., Vadhan, S.P., Wichs, D.: Proofs of retrievability via hardness amplifi-
cation. In: ACM TCC-2009, pp. 109–127 (2009)

9. Bowers, K.D., Juels, A., Oprea, A.: Proofs of retrievability: Theory and implemen-
tation. In: ACM Workshop on Cloud Computing Security, pp. 43–45 (2009)

Collaborative Approach for Data Integrity Verification 15

10. Bowers, K.D., Juels, A., Oprea, A.: HAIL: A high-availability and integrity layer for
cloud storage. In: Proc. 16th ACM Conference on Computer and Communications
Security, pp. 187–198 (2009)

11. Wang, C., Wang, Q., Ren, K., Lou, W.: Privacy-Preserving Public Auditing for
Data Storage Security in Cloud Computing. In: Proc. IEEE INFOCOM. IEEE
(2010)

12. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling Public Verifiability and
Data Dynamics for Storage Security in Cloud Computing. IEEE Transactions on
Parallel and Distributed Systems 22(5), 847–859 (2011)

13. Hao, Z., Zhong, S., Yu, N.: A Privacy-Preserving Remote Data Integrity Check-
ing Protocol with Data Dynamics and Public Verifiability. IEEE Transactions on
Knowledge and Data Engineering 23(9) (September 2011)

14. Zhu, Y., Wang, H., Hu, Z., Ahn, G.-J., Hu, H., Yau, S.S.: Cooperative Provable
Data Possession. In: Cryptology ePrint Archive, Report 2012/234, pp. 257–265
(2012)

15. Schwarz, T.J.E., Miller, E.L.: Store, forget, and check: using algebraic signatures
to check remotely administered storage. In: Proc. of ICDCS 2006, p. 12 (2006)

16. Litwin, W., Schwarz, T.J.E.: Algebraic signatures for scalable, distributed data
structures. In: ICDE 2004, Boston, MA, pp. 412–423 (2004)

17. Chen, L., Guo, G.: An efficient remote data possession checking in cloud stor-
age. JDCTA: International Journal of Digital Content Technology and its Appli-
cations 5(4), 43–50 (2011)

18. Saxena, R., Ruj, S., Sarma, M.: Collaborative Model for Privacy Preservation and
Data Integrity Verification in Cloud Computing. In: Proceedings of the Security
and Privacy Symposium, IIT Kanpur, Kanpur, India, February 28-March 2 (2013)

	Collaborative Approach for Data IntegrityVerification in Cloud Computing
	1 Introduction
	2 Literature Survey
	3 The Proposed Scheme
	3.1 Notation and Preliminaries
	3.2 Algebraic Signature
	3.3 System Model
	3.4 Proposed Data Integrity Verification Scheme

	4 Analysis
	4.1 Security Analysis
	4.2 Performance Analysis

	5 Conclusions and Future Work
	References

