
Chapter 3
Momentum Flux

We have seen in Chapter 1 that a fluid (either a gas or a liquid) is a
substance that takes the shape of the vessel containing it. We have also seen
that all real fluids have a property called viscosity associated with them.

Let us consider two parallel flat plates with a fluid (say water) in
between them. Now let us consider the situation when the bottom plate is
carefully moved in the x direction with a reasonably small velocity, vx. If
the velocity is small enough, we can assume that the bottom-most liquid
layer adhering to the plate will also move with the same velocity as that of
the plate. The shear stress due to the shear force exerted by the bottom-
most layer of fluid influences the velocity of the fluid layer above it. The
shear stress exerted by the layer above the bottom-most layer influences the
velocity of the layer above it, and so on. The resulting steady state velocity
profile of the fluid between the two plates is given in Fig. 3-1.

Stress is denoted by τyx, where yx refers to the fact that the stress
(force per unit area) that arises due to a force acting in the x direction on
a surface, causes an effect in the y direction. Thus, τyx is a shear stress –
the direction of effect is orthogonal to the direction of motion, and, as we
shall better understand later, τxx is a normal stress. The idea of the flow
being in layers as shown in Fig. 3-1, and the shear stress idea subsequently
conveyed are simplistic, only for didactic purposes. We will make the ideas
more general when needed, later in the chapter.

It can be recalled that the shear or normal stress is force per unit area,
and that force is rate of momentum change (from Newton’s second law).
Or
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72 3 Momentum Flux

Note that although the direction of action is orthogonal in the example
mentioned above, the change happens in the x momentum of the subsequent
layers.

3.1 Rheology

The relationship between the shear stress, τyx and a ‘shear rate’, or velocity

gradient xdv

dy
 was experimentally observed by Isaac Newton as

x
yx

dv

dy
τ = − µ (3.1-1)

The constant of proportionality, µ, is called viscosity, and is a fundamental
material property. Readers interested in acquainting themselves with the
methods to estimate viscosity of gases and liquids, and to evaluate the effect
of temperature and pressure on viscosity can refer to books like Transport
Phenomena (Bird et al. 2002). The above equation is a constitutive equation,
and is called the ‘Newton’s law of viscosity’. Recall that Fick’s I law was
also a constitutive equation. As generalised in Section 2.2.1, it follows the
following relationship: Flux is proportional to the gradient of its primary
driving force.

Dimensionally, shear stress can be written from the introductory section
as

1 1MT (LT )

L L

− −  
  
  

Thus, the dimensions of viscosity are ML–1T–1.

vx(y)

y

x vx

Fig. 3-1 Velocity
distribution of a fluid
between two parallel,
closely spaced plates
with the bottom plate
being moved at a
velocity, vx



If we plot τyx vs xdv

dy
 
 
 

 for the above fluid (water), we get a straight

line passing through the origin as shown in Fig. 3.1-1. Fluids that exhibit
such behaviour are known as Newtonian fluids. As can be expected, not all
fluids are Newtonian – they may exhibit different stress-shear rate behaviours.
Nevertheless, a Newtonian fluid approximation is a good one for many
fluids under certain conditions.

Bingham Plastic

A Bingham plastic fluid exhibits a rheology different from a Newtonian one.
It does not flow until a certain minimum shear stress, τ0, is applied i.e. the
shear rate is zero until τyx< τ0. τ0 is called the ‘yield stress’ for the material.

It can be represented as

0 0ifx
yx yx

dv

dy
τ = τ − µ τ > τ (3.1-2a)

00 ifx
yx

dv

dy
= τ < τ (3.1-2b)

Dilatant (power
law n > 1)

Bingham plastic

Newtonian

Pseudo-plastic (power law n < 1)

τyx

xdv
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−

Fig. 3.1-1 The shear
stress-shear rate
behaviour of various
fluid types
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74 3 Momentum Flux

Power Law Fluids

Newtonian fluids and Bingham plastics have viscosities that are independent
of shear rate. Some fluid viscosities, though, are dependent on their shear
rates. This means that the fluid will either become easier to flow, or more
difficult to flow, with an increase in shear rate. Such fluids are known as
power law fluids because the variation of a particular, ‘apparent viscosity’
with shear rate, is expressed as a power law

1n
x x

yx
dv dv

m
dy dy

−

τ = − (3.1-3)

where the apparent viscosity, µapp, is given as

1

app

n
xdv

m
dy

−

µ = (3.1-4)

where m and n are parameters that are dependent on the fluid.

• If n = 1, the fluid is Newtonian and m = µ (Newtonian viscosity)
• If n < 1, the fluid is shear-thinning or pseudo-plastic
• If n > 1, the fluid is shear-thickening or dilatant

Viscoelastic Fluids

Some fluids show time-dependent behaviour – the shear stress depends on
the shear rate (viscous) as well as on the strain (elastic or Hookean). A
common constitutive equation to describe viscoelastic fluids is the Maxwell
model

yx x
yx

dv

G t dy

∂τµ  τ + = µ − ∂  
(3.1-5)

where G is the shear elastic modulus (Nm–2).
The synovial fluid that lubricates joints in the human body shows

viscoelastic behaviour. It is a complex fluid consisting of proteins out of
which hyaluronic acid is the most important. Mucus and vitreous fluid in
the eye also show viscoelastic behaviour.



Blood

Blood is a complex biological fluid that consists of plasma, which is a
mixture of liquids, proteins, with cells such as erythrocytes, leukocytes, and
others suspended in it. It behaves partially as a Bingham plastic, i.e. it
exhibits a yield stress, and partially as a viscoelastic fluid. Besides the
composition, the complex rheological behaviour of blood also arises from
the ‘clumping’ of erythrocytes (red blood cells) due to the presence of
fibrinogen on their surface.

The Casson model can be used to describe blood rheology. It can be
stated as

1 2
1 21 2 1 2
0

xdv

dy

−
τ = τ + µ (3.1-6)

where τ0 is the yield stress.
The yield stress depends on the volume fraction of erythrocytes in the

blood. The volume fraction of erythrocytes in blood is usually referred to
as the ‘hematocrit’ and has a typical value of 0.4.

At lower shear rates, say < 20 s–1, blood shows a complex behaviour
that necessitates the use of Eq. 3.1-6, whereas at higher shear rates, say
> 100 s–1, blood can be assumed, without loss in accuracy, to behave as
a Newtonian fluid. Blood rheology is highly complex and a lot of work has
been done on this aspect alone so much so that an entire field of study –
hemorheology – is dedicated to it.

3.2 Types of Flows

Osborne Reynolds studied flows at various flow rates and found that the
nature of flow changes with flow rate. Through his now classic, flow
visualisation experiment (Reynolds 1883), Reynolds reported that at low
flow rates, the flow in a pipe is in layers or laminae, and hence can be called
‘laminar flow’. Above a certain flow rate, the flow becomes chaotic, and
is called ‘turbulent flow’. There is a range of flow rates where one cannot
say beforehand whether the flow would be ‘laminar’ or ‘turbulent’. This
range/region is called the ‘transition region’.

A non-dimensional number, called the Reynolds number, can be used to
predict whether the flow will be laminar or turbulent. The Reynolds number
is defined as

Re
vd

N
ρ=

µ
(3.2-1)

3.1 Rheology 75



76 3 Momentum Flux

where ρ is density of the fluid, v is velocity of the fluid, d is pipe diameter
and µ is viscosity of the fluid.

In pipe flow (and only in pipe flow), the following numbers hold:

NRe < 2100 Laminar flow
2100 < NRe < 4000 Transition
NRe > 4000 Turbulent flow

In the initial part of this chapter, we will deal with laminar flow, and then
explicitly address ways to deal with turbulent flows.

3.3 Shell Momentum Balances

Since momentum is a conserved quantity, momentum balance can be used
as a principle to obtain useful relationships. In this section, let us do
momentum balances over a thin shell of fluid. In other words, the thin shell
is the ‘system’ or ‘control volume’ over which the momentum balance is
written. This technique for solving relevant problems is called the ‘shell
balance’ technique.

To illustrate the technique, let us consider the case of flow in a falling
film over an inclined surface (Fig. 3.3-1). Characteristics of such flow are
used to evaluate the rheological properties of biological solutions. For example,
the ‘Bostwick viscometer’ is based on the principle of flow over an inclined
surface.

We know from basic physics that momentum is a conserved quantity
in the absence of external forces. When external forces are present, according

Fig. 3.3-1 Thin
flow over a
surface inclined at
an angle β to the
vertical

Entrance
effects

Exit
effects

β

L
We are interested in this
region where the flow is
well developed i.e. v(z)
≠ f (z). We also neglect
pressure effects.



to Newton’s second law, the rate of change of momentum is equal to the
(vector) sum of the forces that act on the system or the control volume,
in the direction of motion. In the case of a balance on the total mass, we
could write

Rate of total mass Rate of total mass Rate of total mass
0

out of the system into the system accumulation in the system

     − + =     
     

For a system (or a control volume) that has momentum being brought into
it and taken out of it by flowing streams (by convection), a useful form of
Newton’s second law can be written as

Rate of momentum Rate of momentum

out of the system into the system

Rate of momentum Sum of forces acting

accumulation in the system on the system

   −   
   

   
+ =   
    (3.3-1)

At steady state, the accumulation rate can be set to zero, and the balance
becomes

Rate of momentum Rate of momentum Sum of forces acting
0

into the system out of the system on the system

     
− + =     

     

Momentum can enter the shell (system) by: (i) molecular means (momentum
flux) and/or (ii) convection (bulk fluid motion), as illustrated in Fig. 3.3-2.
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78 3 Momentum Flux

Further, there could be many forces that act on the system. For illustration,
let us consider only the gravity forces that act on the whole volume. The
pressure force and the normal force may not be relevant to the direction
considered.

We are interested in vz(x) and τxz(x). Let us first acknowledge that the
rate of momentum is area × momentum flux.

By Molecular Mechanism

Rate of z momentum in, across the surface at x: (LW) τxz|x
Rate of z momentum out, across the surface at x + ∆x: (LW) τxz|x+∆x

By Convection

Rate of z momentum in, across the surface at z = 0: (W ∆x vz) (ρvz)|z=0
Rate of z momentum out, across the surface at z = L: (W ∆x vz) (ρvz)|z=L
Gravity force acting on the fluid in the direction of motion: (L W ∆x) (ρ g
cosβ)

Substituting the above in the momentum balance, Eq. 3.3-1, at steady state,
we get

2 2
0

cos 0xz xz z zz z Lx x x
LW LW W x v W x v LW x g= =+∆τ − τ + ∆ ρ − ∆ ρ + ∆ ρ β =

(3.3-2)

Since we have chosen conditions such that vz ≠ f (z), the third and fourth
terms on the LHS cancel each other. Then, if we divide the equation by
LW∆x and take the limit as ∆x → 0

0
lim cos

xz xzx x x

x
g

x
+∆

∆ →

 τ − τ 
= ρ β 

∆ 

i.e.

cosxzd
g

dx

τ = ρ β (3.3-3)

The solution of the above first order differential equation (DE) is

τxz = ρ g x cosβ + C1 (3.3-4)

To evaluate C1, we need a boundary condition.



Notice that x = 0 is the liquid-gas interface. A standard boundary
condition that can be used at liquid-gas interfaces is that the momentum
flux (hence the velocity gradient) in the liquid phase can be assumed to be
zero for most calculations. i.e.

at x = 0, τxz = 0 (3.3-5)

This boundary condition applied on to the solution given in Eq. 3.3-4 yields,
C1 = 0. Thus

τxz = ρ g x cosβ (3.3-6)

Thus, we have the shear stress distribution, i.e. τxz = f (x).
To obtain the velocity distribution from the shear stress distribution, we

need a link between the two. That link is conveniently provided by the
constitutive equation. For example, if the fluid is Newtonian, we know that

z
xz

dv

dx
τ = − µ

By substituting the constitutive equation in Eq. 3.3-6, we get

coszdv g
x

dx

ρ β = − µ 
(3.3-7)

The solution of the above DE is

2
2

cos

2z
g

v x C
ρ β = − + µ 

(3.3-8)

C2 can be found by another standard boundary condition – at the solid-fluid
interface, the fluid velocity equals the velocity with which the surface itself
is moving. It is assumed that the fluid will cling to any solid surface with
which it is in contact.

Therefore

at x = δ, vz = 0 (3.3-9)

By substituting the boundary condition into the solution, Eq. 3.3-8, we get

2
2

cos

2

g
C

ρ β = δ µ 

Therefore

22 cos
1

2z
g x

v
 ρ δ β  = −  µ δ  

(3.3-10)
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80 3 Momentum Flux

It can be seen that the maximum velocity occurs at x = 0. Therefore

2

,max
cos

2z
g

v
ρ δ β=

µ
(3.3-11)

Now, the average velocity over a cross-section of a film can be computed
using

0 0
, avg

0

0 0

1
w

z

z zw

v dxdy
v v dx

dxdy

δ
δ

δ= =
δ

∫ ∫
∫

∫ ∫
(3.3-12)

(since W can be cancelled in the numerator and the denominator). By
substituting Eq. 3.3-10 in Eq. 3.3-12, we get

22 1

, avg
0

132

0

2

cos
1

2

cos 1

2 3

cos

3

z
g x x

v d

g x x

g

 ρ δ β    = −    µ δ δ    

 ρ δ β    = −    µ δ δ    

ρ δ β=
µ

∫

(3.3-13)

The volume flow rate Q is given by

2

, avg
0 0

cos

3

w

z z
g

Q v dxdy W v W
δ ρ δ β= = δ = δ

µ∫ ∫ (3.3-14)

3.4 Equation of Motion

Let us consider doing momentum balance in three dimensions with the
realisation that momentum is a vector. To do that, let us first consider
Cartesian coordinates and take the same cuboidal element that we considered
for mass balance (Fig. 3.4-1).

As seen earlier, momentum flows into and out of the volume element
by two means:

• convection (by virtue of bulk fluid flow)
• molecular aspects (by virtue of velocity gradients)



Momentum Rate by Convection

For momentum transport by convection, note that ( )v vρ� �

 is momentum flux

(the units can be written down and checked). Thus, the rate of momentum

(momentum per time) is ( ) ,A v vρ� �

 where A is the area. The units work out

as 2
3

kg m m
m .

s sm

 
 
 

There are three components to the rate of momentum: x, y, and z. Each
of these components is, in turn, composed of three other components, as
shown in Fig. 3.4-2.
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( ) yA v vρ�

( ) xA v vρ�

( ) zA v vρ�

A vvρ ��

A(ρ vx)vx

A(ρ vy)vx

A(ρ vz)vx

A(ρ vx)vy

A(ρ vy)vy

A(ρ vz)vy

A(ρ vx)vz

A(ρ vy)vz

A(ρ vz)vz

Fig. 3.4-2 The various
components of the
momentum rate
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X

Fig. 3.4-1 Control
volume (system)
to consider for
momentum
balances
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Now, let us consider only the x component of the momentum rate due
to convection:

Entry Rates
x direction (through the face at x) = (ρvx)vx|x ∆y∆z
y direction (through the face at y) = (ρvy)vx|y ∆x∆z
z direction (through the face at z) = (ρvz)vx|z ∆x∆y

Exit Rates
x direction (through the face at x + ∆x) = (ρvx)vx|x+∆x ∆y∆z
y direction (through the face at y + ∆y) = (ρvy)vx|y+∆y ∆x∆z
z direction (through the face at z + ∆z) = (ρvz)vx|z+∆z ∆x∆y

Thus, the net x momentum rate due to convection is

∆y∆z[(ρvx)vx|x – (ρvx)vx|x+∆x] + ∆x∆z[(ρvy)vx|y – (ρvy)vx|y+∆y]
+ ∆x∆y[(ρvz)vx|z – (ρvz)vx|z+∆z]

Momentum Rate by Molecular Aspects

Now, let us look at the momentum rate through molecular aspects. It can
be recalled, from earlier in this chapter, that shear stress is momentum flux.
Thus, area × shear stress will provide an expression for the momentum rate
through molecular aspects.

To begin, let us consider the force that causes the shear stress. Say that

the force that acts on the face at x (refer to Fig. 3.4-1) is ,s
xF

����

 the force

that acts on the face at y is ,s
yF

����

 and the force that acts on the face at

z is .s
zF

����

 Each of these forces would have three (x, y and z) components,
and the components are detailed below:

components of

S
xx

S S
xxy

S
xz

F

F F

F







����



components of

S
yx

S S
yyy

S
yz

F

F F

F








����

components of

S
zx

S S
zzy

S
zz

F

F F

F







����

Now, let us divide the force components by the appropriate areas to get the
components of the stresses.

components of
xx

xy x

xz

τ


τ τ
τ 

�

components of

yx

yy y

yz

τ
τ τ
τ 

�

components of
zx

zy z

zz

τ


τ τ
τ 

�

τij denotes shear stress when i ≠ j, and normal stress when i = j; both
shear stress and normal stress arise due to molecular aspects.

Let us first consider only the x component of momentum rate due to
molecular aspects.

Entry Rates
x direction = τxx|x∆y∆z
y direction = τyx|y∆x∆z
z direction = τzx|z∆x∆y

Exit Rates
x direction = τxx|x+∆x∆y∆z
y direction = τyx|y+∆y∆x∆z
z direction = τzx|z+∆z∆x∆y
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84 3 Momentum Flux

Thus, the net x momentum rate due to molecular aspects is

∆y∆z[τxx|x – τxx|x+∆x] + ∆x∆z[τyx|y – τyx|y+∆y] + ∆x∆y[τzx|z – τzx|z+∆z]

Forces

Let us consider two important forces that usually act on the volume element,
namely fluid pressure force and gravity. If there are other forces acting on
the volume element, we need to consider them as additive terms in each
direction.

The resultant force in the x direction is

∆y∆z(p|x – p|x+∆x) + ρgx∆x∆y∆z

where p = f (ρ, T).

Accumulation

The accumulation of the x momentum within the volume element is

xv
x y z

t

∂ρ ∆ ∆ ∆  ∂ 

If we substitute the above terms for the x direction in the general momentum
balance equation Eq. 3.3-1, divide by ∆x∆y∆z, and take the limit as ∆x, ∆y,
and ∆z → 0, we get

( )( ) ( ) ( )y x yxx x x z x xx zx
x

v vv v v v v p
g

t x y z x y z x

∂ ρ ∂τ   ∂ ρ ∂ ρ ∂ ρ ∂τ ∂τ ∂= − + + − + + − + ρ   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
(3.4-1)

A similar exercise in the y and z directions would give

( ) ( ) ( ) ( )y x y y y z y xy yy zy
y

v v v v v v v p
g

t x y z x y z y

∂ ρ ∂ ρ ∂ ρ ∂ ρ ∂τ ∂τ ∂τ    ∂= − + + − + + − + ρ   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
(3.4-2)

( )( )( ) ( )y z yzx z xzz z z zz
z

v vv vv v v p
g

t x y z x y z z

∂ ρ ∂τ   ∂ ρ ∂τ∂ ρ ∂ ρ ∂τ ∂= − + + − + + − + ρ   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
(3.4-3)



In compact, vectorial notation

( )
[ . ] [ . ]

Rate of Rate of gain in Rate of gain in Pressure

increase in momentum by momentum by force on

momentum per convection per viscous effects per

unit volume unit volume unit volume

v
vv p g

t

∂ ρ = − ∇ ρ − ∇ τ − ∇ + ρ
∂

�
� � ��� �

�

Gravitational

 the force on the

element per element per

unit volume unit volume
(3.4-4)

There are a couple of terms in Eq. 3.4-4 that could be new. A review of

Eqs. 3.4-1, 3.4-2 and 3.4-3 will reveal that τ�  has 9 terms. τ is a second
order tensor with 9 components that can be represented by

xx xy xz

yx yy yz

zx zy zz

τ τ τ 
 

τ = τ τ τ 
 τ τ τ 

�

See Appendix 1 for more on tensor algebra.

Similarly, vv
��

 is a new concept. Note that it is neither a dot product nor
a cross product. A review of Eqs. 3.4-1 to 3.4-3 (first terms on the LHS)

will reveal that vv
��

 has 9 terms. vv
��

 is known as the ‘dyadic product’ and
is a special form of second order tensor. The dyadic product of two vectors

v
�

 and w
�

 is

x x x y x z

y x y y y z

z x z y z z

v w v w v w

vw v w v w v w

v w v w v w

 
 

=  
 
 

��

See Appendix 1 for more on dyad algebra.
Now, let us consider Eq. 3.4-1 written as

( )( ) ( ) ( )y x yxx x x z x xx zx
x

v vv v v v v p
g

t x y z x y z x

∂ ρ ∂τ   ∂ ρ ∂ ρ ∂ ρ ∂τ ∂τ ∂+ + + = − + + − + ρ   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

The LHS can be expanded as

yx x x x x z
x x x y x z x

vv v v v v v
v v v v v v v

t t x x y y z z

∂ρ ∂ ∂ ∂ρ ∂ ∂ ∂ρ∂ρρ + + ρ + + ρ + + ρ + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

y yx x x xz
x x x y z

v vv v v vv
v v v v v

t t x y z x y z

∂ρ ∂   ∂ ∂ρ ∂ ∂∂ρ∂ρ= ρ + + + + + ρ + ρ + ρ   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
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yx x z
x x x y z

vv v v
v v v v v

t t x x y y z z

∂ ∂ ∂ ∂∂ρ ∂ρ ∂ρ ∂ρ= ρ + + ρ + + ρ + + ρ + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

  yx z
x y z

vv v
v v v

x y z

∂ ∂ ∂
+ ρ + + ∂ ∂ ∂ 

yx z
x x x x y z

vv v
v v v v v v

t x y z x y z

 ∂  ∂ ∂∂ρ ∂ρ ∂ρ ∂ρ  = + ρ + + + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂     

    yx x x
x y z

vv v v
v v v

t x y z

∂ ∂ ∂ ∂
+ ρ + + + ∂ ∂ ∂ ∂ 

{ } xDv
E

Dt
= + ρ

where

yx z
x x y z x

vv v
E v v v v v

t x y z x y z

∂ ∂ ∂∂ρ ∂ρ ∂ρ ∂ρ = + + + + ρ + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂   

Using the equation of continuity, Eq. 1.4.3-6, the first term on the RHS of
the equation above can be written as the negative of the second term on the
RHS. Thus

0y yx xz z
x x

v vv vv v
E v v

x y z x y z

 ∂  ∂   ∂ ∂∂ ∂
= − ρ + + + ρ + + =    ∂ ∂ ∂ ∂ ∂ ∂    

Thus, Eq. 3.4-1 can be written as

yxx xx zx
x

Dv p
g

Dt x y z x

∂τ ∂τ ∂τ ∂ρ = − + + − + ρ ∂ ∂ ∂ ∂ 

The other two components (y and z) of momentum rate can be similarly
expressed and added together, to get a 3-D representation

[ . ]

Viscous Pressure GravitationalMass
Acceleration

Volume forces on force on force on

the element the element the element

per unit volume per unit volume per unit volume

Dv
p g

Dt
ρ = − ∇ τ − ∇ + ρ

×

�
� � �

�

(3.4-5)



Table 3.4-1 The equations of motion in rectangular Cartesian coordinates

x direction

yxx x x x xx zx
x y z x

v v v v p
v v v g

t x y z x x y z

∂τ ∂ ∂ ∂ ∂ ∂ ∂τ ∂τ ρ + + + = − − + + + ρ  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
(A1)

For a Newtonian fluid with constant ρ and µ

2 2 2

2 2 2
x x x x x x x

x y z x
v v v v p v v v

v v v g
t x y z x x y z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ρ + + + = − + µ + + + ρ  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
(A2)

y direction

y y y y xy yy zy
x y z y

v v v v p
v v v g

t x y z y x y z

∂ ∂ ∂ ∂ ∂τ ∂τ ∂τ   ∂ρ + + + = − − + + + ρ   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
(B1)

For a Newtonian fluid with constant ρ and µ

2 2 2

2 2 2
y y y y y y y

x y z y

v v v v v v vp
v v v g

t x y z y x y z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂  ∂
 ρ + + + = − + µ + + + ρ   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

(B2)

z direction

yzz z z z xz zz
x y z z

v v v v p
v v v g

t x y z z x y z

∂τ ∂ ∂ ∂ ∂ ∂ ∂τ ∂τ ρ + + + = − − + + + ρ  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
(C1)

For a Newtonian fluid with constant ρ and µ

2 2 2

2 2 2
z z z z z z z

x y z z
v v v v p v v v

v v v g
t x y z z x y z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ρ + + + = − + µ + + + ρ  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
(C2)

The components of Eq. 3.4-5, in different coordinate systems are given in
Tables 3.4-1 to 3.4-3; the order of the first two terms on the RHS of
Eq. 3.4-5 has been reversed in the tables. To determine velocity distributions
and to derive further useful expressions, we need to represent the stresses
in terms of velocity gradients and fluid properties. The equations in Tables
3.4-4 to 3.4-6, which give the components of the stress tensor for a Newtonian
fluid in the three coordinate systems, can be used toward this objective.

Substituting the expressions from Table 3.4-4 in the momentum balances
for the three directions, we get

2
2 ( . )

3
yx x x

xz
x

vDv v v
v

Dt x x y y x

vv p
g

z x z x

 ∂  ∂ ∂∂ ∂ ρ = µ − µ ∇ + µ +   ∂ ∂ ∂ ∂ ∂    

 ∂ ∂∂ ∂ + µ + − + ρ  ∂ ∂ ∂ ∂  

�

�

(3.4-6)
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Table 3.4-2 The equations of motion in cylindrical coordinates

r direction

2

1 1
( )

r r r r
r z

r rz
rr r

v v v v v v
v v

t r r r z

p
r g

r r r r r z

θ θ

θ θθ

 ∂ ∂ ∂ ∂
ρ + + − + = 

∂ ∂ ∂θ ∂ 

∂ ∂ ∂τ τ ∂τ − − τ + − + + ρ ∂ ∂ ∂θ ∂ 
(A1)

For a Newtonian fluid with constant ρ and µ

2

2 2

2 2 2 2

1 1 2
( )

r r r r
r z

r r
r r

v v v v v v
v v

t r r r z

p v v v
rv g

r r r r r r z

θ θ

θ

 ∂ ∂ ∂ ∂ρ + + − + = 
∂ ∂ ∂θ ∂ 

 ∂ ∂ ∂ ∂ ∂ ∂ − + µ + − + + ρ  ∂ ∂ ∂ ∂θ  ∂θ ∂ 
(A2)

θ direction

2
2

1 1 1
( )

r
r z

z
r

v v v v v v v
v v

t r r r z

p
r g

r r r zr

θ θ θ θ θ θ

θθ θ
θ θ

∂ ∂ ∂ ∂ ρ + + + + = ∂ ∂ ∂θ ∂ 

∂ ∂ ∂τ ∂τ − − τ + + + ρ ∂θ ∂ ∂θ ∂ 
(B1)

For a Newtonian fluid with constant ρ and µ

2 2

2 2 2 2

1 1 1 2
( )

r
r z

r

v v v v v v v
v v

t r r r z

p v v v
rv g

r r r r r r z

θ θ θ θ θ θ

θ θ
θ θ

∂ ∂ ∂ ∂ ρ + + + + = ∂ ∂ ∂θ ∂ 

 ∂ ∂ ∂ ∂ ∂ ∂ − + µ + + + + ρ  ∂θ ∂ ∂ ∂θ  ∂θ ∂ 
(B2)

z direction

1 1
( )

z z z z
r z

z zz
rz z

v v v v v
v v

t r r z

p
r g

z r r r z

θ

θ

∂ ∂ ∂ ∂ ρ + + + = ∂ ∂ ∂θ ∂ 

∂ ∂ ∂τ ∂τ − − τ + + + ρ ∂ ∂ ∂θ ∂ 
(C1)

For a Newtonian fluid with constant ρ and µ

2 2

2 2 2

1 1

z z z z
r z

z z z
z

v v v v v
v v

t r r z

p v v v
r g

z r r r r z

θ∂ ∂ ∂ ∂ ρ + + + = ∂ ∂ ∂θ ∂ 

 ∂ ∂ ∂ ∂ ∂ − + µ + + + ρ  ∂ ∂ ∂  ∂θ ∂ 
(C2)



Table 3.4-3 The equations of motion in spherical coordinates*

r direction

2 2

2
2

sin

1 1 ( sin ) 1
( )

sin sin

r r r r
r

r r
rr r

v v vv v v v v p
v

t r r r r r

r g
r r r rr

φ θ φθ

θθ φφθ θ

 +∂ ∂ ∂ ∂ ∂
ρ + + + − = −  ∂ ∂ ∂θ θ ∂φ ∂ 

τ + τ ∂ ∂ τ θ ∂τ
− τ + + − + ρ ∂ θ ∂θ θ ∂φ 

(A1)

For a Newtonian fluid with constant ρ and µ

2 2

2
2 2 2 2

sin

2 2 2 2
cot

sin

r r r r
r

r r r

v v vv v v v v p
v

t r r r r r

vv
v v v g

r r r r

φ θ φθ

φθ
θ

 +∂ ∂ ∂ ∂ ∂ρ + + + − = −  ∂ ∂ ∂θ θ ∂φ ∂ 

∂ ∂+ µ ∇ − − − θ − + ρ ∂θ ∂φθ 
(A2)

θ direction

2

2
2

cot 1

sin

1 1 ( sin ) 1 cot
( )

sin sin

r
r

r
r

v vv v v v v v v p
v

t r r r r r r

r g
r r r r rr

φ φθ θ θ θ θ θ

θφθθ θ
θ φφ θ

 θ∂ ∂ ∂ ∂ ∂ρ + + + + − = −  ∂ ∂ ∂θ θ ∂φ ∂θ 

∂τ ∂ ∂ τ θ τ θ− τ + + + − τ + ρ ∂ θ ∂θ θ ∂φ 
(B1)

For a Newtonian fluid with constant ρ and µ

2

2
2 2 2 2 2

cot 1

sin

2 2 cos

sin sin

r
r

r

v vv v v v v v v p
v

t r r r r r r

vv v
v g

r r r

φ φθ θ θ θ θ θ

φθ
θ θ

 θ∂ ∂ ∂ ∂ ∂ρ + + + + − = −  ∂ ∂ ∂θ θ ∂φ ∂θ 

∂ ∂ θ+ µ ∇ + − − + ρ ∂θ ∂φθ θ 
(B2)

φ direction

2
2

1
cot

sin sin

1 1 1 2cot
( )

sin

r
r

r
r

v v v v v v v v vv p
v

t r r r r r r

r g
r r r r rr

φ φ φ φ φ φ θ φθ

θφ φφ φ
φ θφ φ

∂ ∂ ∂ ∂  ∂ρ + + + + + θ = − ∂ ∂ ∂θ θ ∂φ θ ∂φ 

∂τ ∂τ τ ∂ θ− τ + + + + τ + ρ ∂ ∂θ θ ∂φ 
(C1)

For a Newtonian fluid with constant ρ and µ

2
2 2 2 2 2

1
cot

sin sin

2 2cos

sin sin sin

r
r

r

v v v v v v v v vv p
v

t r r r r r r

v v v
v g

r r r

φ φ φ φ φ φ θ φθ

φ θ
φ φ

∂ ∂ ∂ ∂  ∂ρ + + + + + θ = − ∂ ∂ ∂θ θ ∂φ θ ∂φ 

 ∂ θ ∂+ µ ∇ − + + + ρ ∂φ ∂φθ θ θ 
(C2)

*Note that 
2

2 2
2 2 2 2 2

1 1 1
sin

sin sin
r

r rr r r

 ∂ ∂ ∂ ∂ ∂   ∇ = + θ +     ∂ ∂ ∂θ ∂θ   θ θ ∂φ 
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Table 3.4-4 Components of the stress tensor for Newtonian fluids in rectangular
Cartesian coordinates

yx
xy yx

vv

y x

∂ ∂τ = τ = − µ + ∂ ∂ 
(A)

y z
yz zy

v v

z y

∂ ∂τ = τ = − µ + ∂ ∂ 
(B)

z x
zx xz

v v

x z

∂ ∂ τ = τ = − µ + ∂ ∂ 
(C)

2
2

3
yx x z

xx

vv v v

x x y z

∂ ∂ ∂ ∂τ = − µ + µ + + ∂ ∂ ∂ ∂ 
(D)

2
2

3
y yx z

yy

v vv v

y x y z

∂ ∂ ∂ ∂τ = − µ + µ + + ∂ ∂ ∂ ∂ 
(E)

2
2

3
yz x z

zz

vv v v

z x y z

∂ ∂ ∂ ∂τ = − µ + µ + + ∂ ∂ ∂ ∂ 
(F)

Table 3.4-5 Components of the stress tensor for Newtonian fluids in cylindrical
coordinates

1 r
r r

v v
r

r r r
θ

θ θ
 ∂ ∂  τ = τ = − µ +  ∂ ∂θ  

(A)

1 z
z z

v v

z r
θ

θ θ
∂ ∂ τ = τ = − µ + ∂ ∂θ 

(B)

z r
zr rz

v v

r z

∂ ∂ τ = τ = − µ + ∂ ∂ 
(C)

2 1 ( ) 1
2

3
r r z

rr
v rv v v

r r r r z
θ∂ ∂ ∂ ∂ τ = − µ + µ + + ∂ ∂ ∂θ ∂ 

(D)

1 2 1 ( ) 1
2

3
r r zv v rv v v

r r r r r z
θ θ

θθ
∂ ∂ ∂ ∂   τ = − µ + + µ + +   ∂θ ∂ ∂θ ∂   

(E)

2 1 ( ) 1
2

3
z r z

zz
v rv v v

z r r r z
θ∂ ∂ ∂ ∂ τ = − µ + µ + + ∂ ∂ ∂θ ∂ 

(F)



Table 3.4-6 Components of the stress tensor for Newtonian fluids in spherical
coordinates

1 r
r r

v v
r

r r r
θ

θ θ
 ∂ ∂  τ = τ = − µ +  ∂ ∂θ  

(A)

sin 1

sin sin

v v

r r
φ θ

θφ φθ
  θ ∂ ∂τ = τ = − µ +  ∂θ θ θ ∂φ  

(B)

1

sin
r

r r

vv
r

r r r
φ

φ φ
  ∂ ∂τ = τ = − µ +  θ ∂φ ∂   

(C)

2

2

2 1 ( ) 1 ( sin ) 1
2

3 sin sin
r r

rr

vv r v v

r r r rr
φθ ∂ ∂ ∂ ∂ θτ = − µ + µ + + 

∂ ∂ θ ∂θ θ ∂φ 
(D)

2

2

1 2 1 ( ) 1 ( sin ) 1
2

3 sin sin
r r

vv v r v v

r r r r rr
φθ θ

θθ
 ∂ ∂ ∂ ∂ θ τ = − µ + + µ + +  ∂θ ∂ θ ∂θ θ ∂φ   

(E)

2

2

1 cot
2

sin

2 1 ( ) 1 ( sin ) 1

3 sin sin

r

r

v v v

r r r

vr v v

r r rr

φ θ
φφ

φθ

∂ θ
τ = − µ + + θ ∂φ 

 ∂ ∂ ∂ θ+ µ + + 
∂ θ ∂θ θ ∂φ 

(F)

2
2 ( . )

3
y y yx

y z
y

Dv v vv
v

Dt x y x y y

v v p
g

z z y y

 ∂  ∂   ∂∂ ∂ρ = µ + + µ − µ ∇    ∂ ∂ ∂ ∂ ∂    

 ∂  ∂∂ ∂+ µ + − + ρ  ∂ ∂ ∂ ∂  

�

�

(3.4-7)

2
2 ( . )

3

yxz z z

z
z

vvDv v v

Dt x x z y z y

v p
v g

z z z

 ∂   ∂ ∂ ∂∂ ∂ ρ = µ + + µ +     ∂ ∂ ∂ ∂ ∂ ∂     

∂∂ ∂ + µ − µ ∇ − + ρ ∂ ∂ ∂ 

�

�

(3.4-8)

The equations of motion (Eqs. 3.4-6 to 3.4-8), equation of state, p = f (ρ),
and variation of µ = f (ρ) completely determine the pressure, density and
velocity components in the flowing Newtonian fluid.

When ρ and µ are constant, since . 0v∇ =
�

�

 according to the continuity
equation, the equation of motion can be written as

2Dv
v p g

Dt
ρ = µ∇ − ∇ + ρ

�

� �

� � (3.4-9)

Equation 3.4-9 is called the Navier-Stokes equation.
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If viscous effects are not important, . 0.∇ τ =
�

�  Then, Eq. 3.4-5 becomes

Dv
p g

Dt
ρ = − ∇ + ρ

�

�

� (3.4-10)

Equation 3.4-10 is called the Euler equation.

3.4.1 Applications of the Equations of Motion: Steady State
Falling Film

The equations of motion given in Tables 3.4-1 to 3.4-3 can be used to solve
problems more easily compared to using shell balances. Note that simpler
equations are available in certain cases (e.g. for Eq. A2 in Table 3.4-3),
which are given in other texts.

To illustrate this, let us solve the steady state falling film problem that
we did in Section 3.3, using the equation of motion.

For convenience in this system geometry, let us use rectangular
coordinates. Let us use Eq. C1 of Table 3.4-1 to get the shear stress profile.
Note that vx = 0, vy = 0. Therefore, only Eq. C1 with vz is relevant.

yzxzz z z z zz
x y z z

v v v v p
v v v g

t x y z z x y z

∂τ ∂τ∂ ∂ ∂ ∂ ∂τ∂ ρ + + + = − − + + + ρ  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
(3.4.1-1)

Since

gz = g cosβ

we get

0 cosxz g
x

∂τ= − + ρ β
∂

which is the same equation as Eq. 3.3-3.
To get the velocity profile of a Newtonian fluid, we can directly begin

from Eq. C2 of Table 3.4-1.

2 2 2

2 2 2
z z z z z z z

x y z z
v v v v v v vp

v v v g
t x y z z x y z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ρ + + + = − + µ + + + ρ    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

= 0, SS
= 0,

vx = 0
= 0,

vy = 0
= 0, vz is
not a f (z)

= 0, chosen
condition

= 0, τyz is
not a f (y)

= 0, τzz is
not a f (z)

= 0, SS
= 0,

vx = 0
= 0,

vy = 0
= 0, vz is
not a f (z)

= 0, chosen
condition

= 0, vz is
not a f (y)

= 0, vz is
not a f (z)



2

2
0 coszv

g
x

∂
= µ + ρ β

∂
(3.4.1-2)

i.e.

coszv
g

x x

∂∂  µ = − ρ β ∂ ∂ 

or

coszv g
x

x

∂ ρ β = −  ∂ µ 

which is the same equation as Eq. 3.3-7.

3.4.2 Flow in a Cylindrical Pipe

Let us consider the laminar flow through a pipe of cylindrical cross-section.
The results have significance in a variety of situations ranging from flow
in micro-devices, flow of body fluids in the human body, and at least as a
first approximation, to the flow of liquids and gases in the bio-process
industry.

Figure 3.4.2-1 shows the laminar flow of a Newtonian fluid down a
cylindrical pipe placed vertically. Let the flow be well-developed, i.e. the

r
zz = 0

vz = 0

Velocity scale

vz = vz,max

τz = 0

Shear stress scale

τrz = τrz,maxz = L

Fig. 3.4.2-1 Velocity
profile and shear stress
profile for a laminar flow
in a cylindrical pipe
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axial velocity at any particular radial position in the pipe is not dependent on
the length, vz ≠ f (z).

Let us derive the profiles of shear rates and velocities across the tube
diameter.

Since the system of interest is cylindrical, it is best to use cylindrical
coordinates here. Thus, the Table 3.4-2 is relevant: since there is no radial
flow, the r component is irrelevant. Similarly, since there is no flow around
the axis of the cylinder, the θ component is irrelevant. The only relevant
component is, thus, the z component.

Let us first use Eq. A2 from Table 3.4-2

2
r r r r

r z
v vv v v v

v v
t r r r z

θ θ ∂ ∂ ∂ ∂
ρ + + − + 

∂ ∂ ∂θ ∂ 

2 2

2 2 2 2

1 1 2
( ) r r

r r
vv vp

rv g
r r r r r r z

θ
  ∂∂ ∂∂ ∂ ∂= − + µ + + + + ρ  

∂ ∂ ∂ ∂θ∂θ ∂  

(3.4.2-1)

The equation reduces to

0 or ( )
p

p f r
r

∂ = ≠
∂

(3.4.2-2)

This is an important insight, i.e. the pressure across the cross-section of a
pipe at a particular length in laminar flow through a pipe does not depend
on the radial position.

Let us next consider Eq. B2 from Table 3.4-2

r
r z

v v v v v v v
v v

t r r r z
θ θ θ θ θ θ∂ ∂ ∂ ∂ ρ + + + + ∂ ∂ ∂θ ∂ 

2 2

2 2 2 2

1 1 1 2
( ) rv vvp
rv g

r r r r r r z
θ θ

θ θ
  ∂ ∂∂∂ ∂ ∂= − + µ + + + + ρ  

∂θ ∂ ∂ ∂θ∂θ ∂  
(3.4.2-3)

(SS)
0

(vr = 0)
0

(vθ = 0)
0

(vθ = 0)
0

(vr ≠ f (z))
(vr = 0)

0

(vr = 0)
0

vr ≠ f (θ)
(vr = 0)

0
(vθ = 0)

0

(vr ≠ f (z))
(vr = 0)

0
(gr = 0)

0

(SS)
0

(vr = 0)
0

(vθ = 0)
0

(vr, vθ = 0)
0

(vθ ≠ f (z))
0

(vθ = 0)
0

vθ ≠ f (θ)
(vθ = 0)

0

vθ ≠ f (z)
(vθ = 0)

0

(gθ = 0)
0

vr ≠ f (θ)
(vr = 0)

0



The equation reduces to

1
0

p

r

∂− =
∂θ

Thus

0
p∂ =

∂θ
or

p ≠ f (θ) (3.4.2-4)

Thus, the pressure does not depend on the angular position in the pipe.
Now, let us consider Eq. C2 from Table 3.4-2

z z z z
r z

vv v v v
v v

t r r z
θ∂ ∂ ∂ ∂ ρ + + + ∂ ∂ ∂θ ∂ 

2 2

2 2 2

1 1z z z
z

v v vp
r g

z r r r r z

 ∂ ∂ ∂∂ ∂  = − + µ + + + ρ  ∂ ∂ ∂  ∂θ ∂ 
(3.4.2-5)

While considering the terms in the above equation, vz ≠ f (θ) because the
flow, in this case, occurs in cylindrical layers. In other words, the axial
velocities at all points at a particular radius, and length do not vary with θ.

z
z

v p
r g

r r r z

∂µ ∂ ∂ − = − + ρ ∂ ∂ ∂ 
(3.4.2-6)

Let us define

P = p – ρgzz

Since gz = g, we can write

( )p P gz P
g

z z z

∂ ∂ − ρ ∂− ρ = =
∂ ∂ ∂

Therefore

zv P
r

r r r z

∂µ ∂ ∂  = ∂ ∂ ∂ 
(3.4.2-7)

We know from Eqs. 3.4.2-2 and 3.4.2-4 that p ≠ f (r) and p ≠ f (θ).
Thus, P = p + ρgz ≠ f (r) and ≠ f (θ).

(SS)
0

(vr = 0)
0

(vθ = 0)
0

(vz ≠ f (z))
0

(vz ≠ f (z))
0

vz ≠ f (θ)
0
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Since p = f (z) alone, the partial derivative on the RHS can be replaced
by an ordinary derivative.

Similarly, vz and r are only f (r); they are not f (θ) or f (z). Thus the
partial derivative on the LHS can also be replaced by ordinary derivative,
and the equation becomes

zdvd dP
r

r dr dr dz

µ   = 
 

(3.4.2-8)

Besides, the LHS is a function of r and the RHS is a function of z, i.e.

( ) ( )df r df z

r dr dz

µ = (3.4.2-9)

This is possible only if each derivative equals a constant, say C1.
Let us take the RHS of Eq. 3.4.2-8 first

1
dP

C
dz

= (3.4.2-10)

Then

P = C1z + C2 (3.4.2-11)

The relevant boundary conditions are

At z = 0, P = P0
At z = L, P = PL

Thus

C2 = P0

      0
1

LP P
C

L

−=

Therefore

0
0

LP P
P z P

L

− = + 
 

(3.4.2-12)

Now let consider the LHS and equate it to the same C1

1
zdvd P

r C
r dr dr L

µ ∆  = = 
 

where ∆P = PL – P0.
Thus

zdvd P r
r

dr dr L

∆  = ×  µ 



Upon integration, we get

2

22
zdv P r

r C
dr L

∆= +
µ

At r = 0, C2 must be equal to 0.
Therefore

2
zdv P r

dr L

∆=
µ

(3.4.2-13)

Integrating this, we get

2

34z
P r

v C
L

∆= +
µ

(3.4.2-14)

Now, using the BC that at r = R, vz = 0 (‘no slip boundary condition’)

2

3 4

P R
C

L

∆= −
µ

Thus

22
2 2 ( )

( ) 1
4 4z

P P R r
v r R

L L R

 ∆ −∆  = − = −  µ µ   
(3.4.2-15)

Therefore, the velocity profile is parabolic across the diameter, as shown in
Fig. 3.4.2-1.

Note that ∆P = PL – P0; typically, for the flow to occur, PL < P0, and
thus (– ∆P) is positive.

The maximum velocity occurs at r = 0 (from Eq. 3.4.2-15), i.e., at the
centre line (axis) of the tube.

2

,max
( )

4z
P R

v
L

−∆=
µ

(3.4.2-16)

The average velocity across the cross-section

               
2
0 0

,avg 2
0 0

R
z

z R

v rdrd
v

rdrd

π

π
∫ ∫ θ

=
∫ ∫ θ

222

0 0

2

( )
1

4

2
2

R P R r
rdrd

L R

R

π  −∆   − θ  µ    =
× π

∫ ∫
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2 22 2

2 20 0 0 0

( )

4

R RP R r
rdrd rdrd

R L R

π π −∆= θ − θ 
π × µ  ∫ ∫ ∫ ∫

2 4

2
0

( )
2 2

4 2 4

R
P R r

L R

  −∆  = × π − π  πµ     

2 2( )
2

4 2 4

P R R

L

 −∆= − π 
πµ  

              
2 2

,avg ,max
( ) ( ) 1

( )
2 4 8 2z z

P R P R
v v

L L

−∆ × −∆= = =
µ × µ

(3.4.2-17)

The volumetric flow rate, Q = Area × vz,avg. Thus

2 2
4( )
( )

8 8

R P R
Q R P

L L

π × −∆ π= = −∆
µ µ

(3.4.2-18)

Thus

 Q  α (– ∆P)
α R4

If the radius is doubled at the same (– ∆P), the volumetric flow rate
increases 16-fold.

Equation 3.4.2-18 is known as the Hagen-Poiseuille (pronounced as
Pwah-zoo-yuh; here ‘oo’ is pronounced as in ‘book’) equation.

Let us now use Eq. C1 of Table 3.4-2 to derive an expression for the
shear stress profile. To visualise τθz, note that the first subscript, θ, refers
to the direction of the velocity gradient, and the second subscript, z, refers
to the direction of the stress or the force. If vz is different at different θ,
then τθz could arise. But, that is not the case here, in a laminar flow. A
similar visualisation would provide τzz ≠ f (z), since vz does not vary with
z for this well developed flow.

z z z z
r z

vv v v v
v v

t r r z
θ∂ ∂ ∂ ∂ ρ + + + ∂ ∂ ∂θ ∂ 

1 1
( ) z zz

rz z
p

r g
z r r r z

θ∂τ ∂τ∂ ∂ = − − τ + + + ρ ∂ ∂ ∂θ ∂ 
(3.4.2-19)

(SS)
(vr = 0)

0
(vθ = 0)

0
(vz ≠ f (z))

0

τzz ≠
(f (z))

0

τθz ≠ f (θ)
0



The terms that remain yield

1
( )rz z

p
r g

r r z

∂ ∂ τ = − + ρ ∂ ∂ 
(3.4.2-20)

If we define P = p – ρgzz, with the recognition that gz = g, we can write
the above equation as

1
( )rz

P
r

r r z

∂ ∂ τ = − ∂ ∂ 
(3.4.2-21)

Using the same argument that we used for solving Eq. 3.4.2-7, the solution
becomes

2rz
P r

C
L

∆ ′τ = − + (3.4.2-22)

B.C.: τrz = 0 at r = 0.
Thus

2rz
P

r
L

∆ τ = − 
 

(3.4.2-23)

The linear profile for τrz is shown in Fig. 3.4.2-1.

3.4.2.1 Capillary Flow

Flow through capillaries, i.e. tubes of very small linear dimension (radius,
in the case of capillaries with circular cross-section) of the order of microns,
is usually laminar. Capillary flows have great significance in microfluidics,
flow through vasculature, flow through porous media, and many other
situations of biological interest. Since the flow is laminar, the equations
developed in the previous section are also applicable for flow through
capillaries of circular cross-section.

Capillary flow arises because the force of attraction (adhesion force)
between the liquid molecules and the molecules of the walls of the capillary
duct are stronger than the attractive forces between the liquid molecules
(cohesive forces). This causes the edges of the fluid near the capillary wall
to rise, and due to cohesion, the liquid follows (or is dragged along by the
stronger adhesion) as a whole, which results in the flow. We know from
high/higher secondary school physics that cohesion results in a force that
is usually represented as a force per unit length, or surface tension, γ. The
capillary pressure due to surface tension at that point, or the meniscus, in
a capillary of radius, r, is given by the appropriate simplification of the
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Young-Laplace equation (pst = γ
1 2

1 1

R R
 + 
 

 where R1 and R2 are the radii of

curvature (see Berg 2009) for a derivation of the Young-Laplace equation) as

2
cosstp

r

γ= θ (3.4.2.1-1)

where θ is the contact angle (wetting angle) between the liquid and the
capillary wall.

Note that this pressure is inversely proportional to the radius of the
duct. It becomes predominant in capillaries, and provides the ‘driving force’
for the bulk flow of the liquid through the capillary, even if other ‘driving
forces’ are absent. When other ‘driving forces’ such as those provided by
a liquid column, or an external pump are present, the pressures can be added
to get the total pressure difference for the flow (– ∆P). For example, to
obtain the flow rate in capillary flow when no other ‘driving forces’ for the
flow are present, the use of the Hagen-Poiseuille relationship, Eq. 3.4.2-18,
gives

4 32
cos cos

8 4
Q r r

L r L

π γ πγ = θ = θ µ   µ
(3.4.2.1-2)

Since the flow rate is a product of the cross-sectional area and the penetration
velocity, the penetration velocity (vp) can be obtained by dividing the above
equation by the cross-sectional area πr2

cos
4p

dL
v r

dt L

γ= = θ
µ

(3.4.2.1-3)

In microfluidic situations, the above equation can be integrated to get the
position of the liquid front along the capillary as a function of time.

Capillary flow in porous media: Porous media is a term that refers to
any medium that has a solid matrix with interconnected interstitial spaces,
through which there is movement of some species of interest. For example,
soil is a porous medium through which water, pollutants, fines, etc., can
travel. Sometimes, interstitial spaces can be considered as a set of capillary
tubes, and thus capillary flow through porous media is an area with wide
applications.

Interestingly, many substances of biological interest can be considered
as porous media. For example, any tissue, including whole organs such as
liver, kidney, heart, brain, etc., can be treated as porous media because they
contain cells that are dispersed, and connected voids through which nutrients,
drugs and other substances travel to reach the cells. Tissue regeneration,
which is used to grow artificial organs, typically happens on a scaffold, and
this system can be considered a porous medium. Similarly, biological pollution



treatment systems such as the trickling filter, or the matrix in which cells
are immobilised in a type of bioreactor, can be treated as porous media.

To obtain the kinetics of liquid movement by capillary flow into a
porous medium, the medium is typically treated as consisting of cylindrical
capillary tubes. Then, the distance penetrated by the liquid into the porous
medium L can be obtained by the Washburn (Washburn 1921) or Rideal
(Rideal 1922) equation, or by the integration of Eq. 3.4.2.1-3 as

0.5
0.5cos

2
L r t

γ = θ µ 
(3.4.2.1-4)

There have been many improvements to this equation that take into account
tortuosity (crooked or non-straight nature of the capillary channels in the
porous medium), wettability of the liquid, and other relevant parameters. As
a starting point for further reading, the interested reader is referred to the
paper by Yang et al. (1988).

3.4.3 Tangential Annular Flow

Tangential annular flow between two concentric cylinders is used in couette-
flow rheometers to measure viscosity of a variety of biological fluids or bio-
products such as xanthan gum. It is also used to study the effects of a
‘defined’ shear on cells (Sahoo et al. 2003). For our study, let us first
consider the tangential annular flow of a Newtonian fluid (Fig. 3.4.3-1). We
are interested in the tangential velocity profile between the cylinders, the
relevant shear stress distribution, and the torque which is required to turn
the outer shaft at steady state.

This is a cylindrical system, and hence it is most convenient to use
cylindrical coordinates for analysis. From Eq. A2 of Table 3.4-2, we get the
equation of motion in the r direction as

2
r r r r

r z
v vv v v v

v v
t r r r z

θ θ ∂ ∂ ∂ ∂ρ + + − + 
∂ ∂ ∂θ ∂ 

2 2

2 2 2 2

1 1 2
( ) r r

r r
vv vp

rv g
r r r r r r z

θ ∂∂ ∂∂ ∂ ∂ = − + µ + − + + ρ  ∂ ∂ ∂ ∂θ  ∂θ ∂ 

= 0,
vθ ≠ f (θ)

= 0,
vr = 0

= 0,
vr = 0

= 0,
vr = 0

= 0,
gr = 0

= 0,
vr = 0

= 0,
vz = 0

= 0, SS
vr = 0

= 0,
vr ≠ f (θ)
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Thus

2v p

r r
θ ∂− ρ = −

∂
(3.4.3-1)

From Eq. B2 of Table 3.4-2 (θ component)

1r
r z

v v v v v v v p
v v

t r r r z r
θ θ θ θ θ θ∂ ∂ ∂ ∂ ∂ ρ + + + + = − ∂ ∂ ∂θ ∂ ∂θ 

2 2

2 2 2 2

1 1 2
( ) rv vv
rv g

r r r r r z
θ θ

θ θ
 ∂ ∂∂∂ ∂ + µ + + + + ρ  ∂ ∂ ∂θ  ∂θ ∂  

(vr = 0)
0= 0 (SS)

vθ ≠ f (θ)
0

(vr = 0)
0

(vz = 0)
0

= 0 (p not
a f (θ))

vθ ≠ f (θ)
0

(gθ = 0)
0

vr ≠ f (θ)
0

vθ ≠ f (θ)
0

Fig. 3.4.3-1 Couette
viscometer

Ω 0

Ω 0

R

vθ

Inner cylinder is stationary
here (can rotate too)

k R



In the above equation, p ≠ f (θ) because the points at different angles at the
same radial position cannot have different pressures.

Thus

1
0 ( )

d d
rv

dr r dr θ
  = µ   

  
(3.4.3-2)

Since r is the only variable, the partial derivatives have been converted into
ordinary derivatives.

For the z component

z z z z
r z

vv v v v
v v

t r r z
θ∂ ∂ ∂ ∂ ρ + + + ∂ ∂ ∂θ ∂ 

2 2

2 2 2

1 1z z z
z

v v vp
r g

z r r r r z

 ∂ ∂ ∂∂ ∂  = − + µ + + + ρ  ∂ ∂ ∂  ∂θ ∂  

Thus

0 z
p

g
z

∂= − + ρ
∂

(3.4.3-3)

Integrating Eq. 3.4.3-3 with the boundary conditions (BCs) given below

At r = kR, vθ = 0 (inner cylinder is stationary)

At r = R, vθ = Ω0 R

1
( ) 0

d d
rv

dr r dr θ
   =    

1
1

( )
d

rv C
r dr θ =

1( )
d

rv C r
dr θ =

Let (rvθ) = m

1
d

m C r
dr

=

         
2

1
22

C r
m C= +

(vr = 0)
0= 0 (SS)

vz ≠ f (θ)
0

(vz = 0)
0

(vz = 0)
0

(vz = 0)
0

(vz = 0)
0
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1
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C r
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            1 2

2

C r C
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Using the first BC, we get

1 20 ( )
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kR
= +
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1 2 2
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Using the second BC, we get

              2 2
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0

1

kR r
R

r kRv
k

k

θ

 Ω − 
 =
 − 
 

(3.4.3-4)

The relevant shear stress distribution can also be obtained by using the
expression for the shear stress components in cylindrical coordinates as
given in Table 3.4-5. From Eq. A

1 r
r

v v
r

r r r
θ

θ
 ∂∂  τ = − µ +  ∂   ∂θ 

In this case

1 r
r

v v
r

r r r
θ

θ
 ∂∂  τ = − µ +  ∂   ∂θ 

Using Eq. 3.4.3-4 (since r is the only independent variable, the partial
derivatives can be replaced with total derivatives), we get
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   − 
 

                 
2

2
0 2 2

1
2

1
r

k
R

k r
θ

  τ = − µΩ   −   
(3.4.3-5)

0(vr ≠ f (θ))
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The torque that is needed to turn the outer cylinder

= Force × Lever arm distance

= – τrθ|r=R × Area × Lever arm distance

(the negative sign before τrθ is to overcome the shear stress by the fluid on
the wall)

= – τrθ|r=R × (2πRL) × R

2
2

0 2 2

1
2 2

1

k
R RL R

k R

  = µΩ × π ×  −   

2
2

0 2
4

1

k
LR

k

 
= πµΩ  

− 
(3.4.3-6)

3.4.4 Dimensionless Numbers and Non-dimensional Analysis

As briefly mentioned in Chapter 2, when certain physical quantities are
combined suitably, the resulting quantity or ‘number’ does not possess any

dimensions. For example, as we have seen in Eq. 3.2-1, the quantity, 
vdρ
µ

is dimensionless, and is called the Reynolds number.
There are many advantages in using non-dimensional numbers, or in

expressing relations in terms of non-dimensional numbers. Such relations
may be applied more generally rather than be restricted to a particular, say,
tube diameter, as we have already seen in Section 3.2 for the occurrence
of, say, laminar flow in tubes. To explain further, it does not matter what
the particular values of fluid density, fluid velocity, fluid viscosity and pipe
diameter are; as long as their appropriate combination, the Reynolds number,
is less than 2100, it will result in laminar flow.

Other advantages in using dimensionless numbers will become evident
in the following sections. Since we have brought up the aspect of non-
dimensional numbers, let us explore one more powerful possibility of obtaining
useful relationships for design and operation, with them. The basis for this
powerful possibility is Buckingham’s pi theorem.

Buckingham’s Pi Theorem

If there are n variables in a problem, and these variables contain m primary
dimensions (e.g. M, L, T, and so three for this combination of primary



dimensions), the equation relating all the variables will have (n – m)
dimensionless groups. Buckingham called these dimensionless groups as π
groups.

Mathematically, it can be expressed as

f (π1, π2,…, πn–m) = 0 (3.4.4-1)

The π groups must be independent of each other. In other words, it must
not be possible to express any π group as some combination of the other
π groups.

Let us look at dimensions first:

Fundamental
Mass [M]
Length [L]
Time [T]

Flow Geometry
Area [L2]
Volume [L3]

Kinematic
Velocity [LT–1]
Acceleration [LT–2]
Kinematic viscosity [L2T–1]

Dynamic
Force [MLT–2]
Pressure [ML–1T–2]
Work [ML2T–2]
Energy [ML2T–2]
Power [ML2T–3]
Momentum [MLT–1]
Density [ML–3]
Viscosity [ML–1T–1]
Surface tension [MT–2]

Two conditions need to be satisfied to successfully apply the method to get
useful relationships:

1. Each of the fundamental dimensions must appear in at least one of the
n variables.
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2. It must not be possible to form a dimensionless group by using some
of the variables themselves or the variables raised to some powers,
within a recurring set. A recurring set is a group of variables that form
the dimensionless groups.

Let us apply this method to a situation that we have already seen – to get
an expression for pressure drop ∆p in a straight pipe (Fig. 3.4.4-1).

∆p is expected to depend on d, l, ρ, µ, v. In other words

f (∆p, d, l, ρ, µ, v) = 0

The set of variables within the brackets is the recurring set.

Number of variables (n): 6
Number of fundamental dimensions (m): 3 (M, L, T)

Therefore, from the Buckingham pi theorem, the number of dimensionless
groups: n – m = 6 – 3 = 3.

Also, from experience, it is known that the recurring set must contain
3 (the same number as the number of dimensionless groups) variables that
cannot themselves be formed into a dimensionless group. Thus, l and d
cannot be chosen together since (l/d) is dimensionless. ∆p, ρ and v cannot
be chosen together since (∆p/ρv2) is dimensionless. Therefore, let us choose
d, v and ρ.

The dimensions are

d = [L]
v = [LT–1]
ρ = [ML–3]

Let us rewrite the dimensions in terms of the chosen variables.

[L] = d
[M] = ρd 3

[T] = dv–1

ρ, µ, v
d

l

Fig. 3.4.4-1 Flow in
a cylindrical pipe



Now let us take the remaining variables, ∆p, l and µ, in turn. First

∆p = [ML–1T–2]

Therefore

∆p[M–1LT2] is dimensionless

Thus

π1 = ∆p (ρd3)–1(d) (d–1v)2

 = ∆p/ρv2

Now, let us consider the length, l

l = [L]

Therefore

l[L]–1 is dimensionless

Thus

π2 = l/d

Now, finally, let us consider µ

µ = [ML–1T–1]

Therefore

µ [M–1LT] is dimensionless

Thus

π3 = µ(ρd3)–1(d) (dv–1)

Reor 1/ N
vd

µ=
ρ

From the Buckingham’s pi theorem

2
Re

1 1
,

p
f

d Nv

∆  =  ρ  

or

2
Re

1 1
a b

p
k

d Nv

∆    =     ρ  

Thus, from a mere dimensional analysis, we know the form of the relationship
between the relevant variables. Let us see the validity of what we have got
by comparing the above relation to what we already know. We had seen
earlier, in pipe flow, the volumetric flow rate
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4

8

p
Q r

l

π∆=
µ

or

      
4

8 2

p d
Av

l

π∆  =  µ  

4
2( / 4)

28 2

p d
d v

l

π∆  π =  µ  

2 4 2( 32) /( ) 32
v l

p vd l d
d d

µ  ∆ = µ × =   
  

2
32

p l

vd dv

∆ µ  =   ρ  ρ  

      
Re

1
32

l

N d
  =     

2
Re

1
, and 1; 32

p l
f a b k

N dv

∆  = = = = ρ  

3.5 Unsteady State Flow

Let us consider a fluid that is initially at rest in a circular tube. At t = 0,

the fluid is set in motion by an axial pressure gradient, say p

L

∆  where ∆p

is the difference in pressure (pressure drop) across the tube of length L.
From the time the pressure gradient is applied to the time the steady state
is achieved, the velocity profile across the cross-section of the tube at, say
a certain location on the length of the tube varies. At that location, let us
study the time-dependant (unsteady state) variation of velocity profiles.
Also, note that we have implicitly assumed that at any time in the tube the
flow will be in cylindrical layers (laminar).

Let us first take Eq. C2 of Table 3.4-2 (the z component of the equation
of motion in cylindrical coordinates), and simplify it by cancelling the
irrelevant terms.



2 2

2 2 2

1 1

z z z z
r z

z z z
z

vv v v v
v v

t r r z

v v vp
r g

z r r r r z

θ∂ ∂ ∂ ∂ ρ + + + ∂ ∂ ∂θ ∂ 

 ∂ ∂ ∂∂ ∂  = − + µ + + + ρ  ∂ ∂ ∂  ∂θ ∂ 

2

2

( )z z z z
z

v v v vp gz
v r

t z z r r r z

∂ ∂ ∂ ∂∂ − ρ µ ∂  ρ + = − + + µ ∂ ∂ ∂ ∂ ∂  ∂
The above equation is very complex to solve. To be able to get some

insights, let us make it amenable to an analytical solution, however tedious
– this can be done by making an approximation, vz ≠ f (z). In other words,
it is assumed that at a particular time, the axial velocity at a particular radial
position does not vary with the length of the tube – this may not be a bad
assumption. Making suitable assumptions and approximations are essential
in engineering practice, and is mostly an art. Thus, the equation to solve
becomes

( )z zv vp gz
r

t z r r r

∂ ∂∂ − ρ µ ∂  ρ = − +  ∂ ∂ ∂ ∂ 
(3.5-1)

with

IC: At t = 0, vz = 0

BC 1: At r = 0, vz = finite or zv

z

∂
∂

 = 0

BC 2: At r = R, vz = 0

Since p does not vary with time once the flow begins or with r (as seen
earlier, and which is also valid here), p – ρgz = P = f (z) alone. Thus, the

partial derivative 
P

z

∂
∂

 can be replaced with the total derivative, 
dP

dz
.

Therefore

Constant
dP P

dz L

∆= =

where

∆P = PL – P0

vz ≠ f (θ)

vr = 0 vθ = 0
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Thus, Eq. 3.5-1 can be written as

z zv vP
r

t L r r r

∂ ∂∆ µ ∂  ρ = − +  ∂ ∂ ∂ 
(3.5-2)

Use of dimensionless variables usually simplifies analysis. Let us define the
following dimensionless variables.

2
,max( ) / 4

z z

z

v v

vP R L
φ = =

−∆ µ
(3.5-3)

ξ = r/R (3.5-4)

2

v t

R
τ = (3.5-5)

where v
µ=
ρ

, the kinematic viscosity.

From the above definitions

2( )

4z
P R

v
L

−∆= φ
µ

r = ξR

2R
t

v

τ=

Thus

                       
2

2

( )

4
zv P R v

t L R

∂ −∆ ∂φ= ×
∂ µ ∂τ

( ) ( )

4 4
zv P P

t L L

∂ ρ −∆ × µ ∂φ −∆ ∂φρ = =
∂ µ ρ ∂τ ∂τ

Further

2 2

2
( ) ( )

4 4 ( )

( ) ( ) 4
z

P R P R
R

L Lv P R
r R

r R R L

   −∆ −∆∂ φ ξ ∂φ   µ µ∂ ξ −∆ ∂φ   = ξ = =
∂ ∂ ξ ∂ ξ µ ∂ξ

2

2

2

( )

( ) 4

1 ( )

4

( ) 1

4

zv P R
r

r r r R R L

P R

LR

P

L

 ∂µ ∂ µ ∂ ξ −∆ ∂φ  =   ∂ ∂ ξ ∂ ξ µ ∂ξ   

µ −∆ ∂ ∂φ = ξ ξ µ ∂ξ ∂ξ 

−∆ ∂ ∂φ = ξ ξ ∂ξ ∂ξ 



Through substitution of the above expressions in Eq. 3.5-2 we get

( ) ( ) ( ) 1

4 4

P P P

L L L

−∆ ∂φ −∆ −∆ ∂ ∂φ = + ξ ∂τ ξ ∂ξ ∂ξ 

1
4

∂φ ∂ ∂φ = + ξ ∂τ ξ ∂ξ ∂ξ 
(3.5-6)

IC: At τ = 0, φ = 0

BC 1: At ξ = 0, φ = finite, or 
∂φ
∂ξ  = 0

BC 2: At ξ = 1, φ = 0

For a steady state flow, we can use Eq. 3.4.2-15 to get

22( )
1

4z
P R r

v
L R

 −∆   = −   µ    

We can write the relationship in terms of dimensionless variables as

φ∞ = 1 – ξ2 (3.5-7)

where φ∞ = φ(τ = ∞) i.e. when steady state is reached.
φ can be written in terms of a ‘steady state’ value and a ‘deviation’

value i.e.

φ(ξ, τ) = φ∞(ξ) – φt(ξ, τ) (3.5-8)

where φt(ξ, τ) is the deviation value that represents the ‘deviation from
steady state’. Thus

( )t∞∂ φ − φ∂φ =
∂τ ∂τ

             ( )t f∞
∂φ= − φ ≠ τ
∂τ

∵

Also

2

( )1 1

(1 )1

1
2

t

t

t

∞∂ φ − φ∂ ∂φ ∂   ξ = ξ  ξ ∂ξ ∂ξ ξ ∂ξ ∂ξ   

 ∂ − ξ − φ∂= ξ 
ξ ∂ξ ∂ξ 

 ∂φ ∂= ξ − ξ −  ξ ∂ξ ∂ξ  
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21
( 2 )

1
4

1
4

t

t

t

∂φ∂  = − ξ − ξ ξ ∂ξ ∂ξ 

 ∂φ ∂  = − ξ − ξ  ξ ∂ξ ∂ξ  

∂φ∂  = − − ξ ξ ∂ξ ∂ξ 

Substituting the above in Eq. 3.5-6, we get

1
4 4t t∂φ ∂φ∂  − = − − ξ ∂τ ξ ∂ξ ∂ξ 

1t t∂φ ∂φ∂  = ξ ∂τ ξ ∂ξ ∂ξ 
(3.5-9)

Now, the initial and boundary conditions are

IC: At τ = 0, φt = φ∞ (by substituting φ = 0 in Eq. 3.5-8)
BC 1: At ξ = 0, φ = finite i.e. (since φ∞ = 0 from Eq. 3.5-7 and φ

= 0 when ξ = 1)
BC 2: At ξ = 1, φt = 0

If we assume that φt(ξ, τ) is separable as

φt(ξ, τ) = f (ξ) . g(τ)

then

andt tdg df
f g

d d

∂φ ∂φ
= = ×

∂τ τ ∂ξ ξ

Therefore

1dg d df
f g

d d d
 = ξ τ ξ ξ ξ 

1dg d df
f g

d d d
 = ξ τ ξ ξ ξ 

1 1 1dg d df

g d f d d
 = ξ τ ξ ξ ξ 

(3.5-10)

Since the LHS is a function of τ alone and the RHS is a function of ξ alone,
for Eq. 3.5-10 to hold at all times, each side must be equal to a constant,
say – k2 (negative); the reason for a negative value will be apparent shortly.



21 dg
k

g d
= −

τ
(3.5-11)

This implies

g = C1 exp (– k2τ) (3.5-12)

If (– k2) is not negative, then g, and consequently φt cannot diminish to zero
at steady state (τ = ∞); thus the constant (– k2) needs to be negative.

Equation 3.5-10 can be written as

21
0

d df
k f

d d
 ξ + = ξ ξ ξ 

(3.5-13)

The boundary conditions are given below

BC 1: At ξ = 0, f = finite, i.e. 
df

dξ
 = 0

BC 2: At ξ = 1, f = 0 (since φt = 0 for all g, note that g = g(τ))

The solution for Eq. 3.5-13 requires knowledge of Bessel functions and
their relationships. The student is directed to other appropriate books (e.g.
Lih 1974) for a better understanding of the same. Here, we merely present
the solution.

The solution is of the form

f = c2J0(kξ) + c3Y0(kξ) (3.5-14)

where J0 is a Bessel function of the I kind

2

0 2
0

( 1)
2( )

( !)

r
r

k

k

J k
r

α

=

ξ −  
 ξ =∑

Y0 is a Weber’s Bessel function of the II kind

0 0 0
2

( ) ( ) (ln 2 ) ( )Y k Y k J k ξ = ξ − − Γ ξ π

where 
1 1 1

lim 1 ln 0.57721
2 3n n

n→∞
 Γ = + + +…+ − = … 
 

 (Euler’s constant),

and 0Y  is a Neumann’s Bessel function of the II kind.

0 0 2
0

( ) ( )
[ ( )]

d
Y k J k

J k

ξξ = ξ
ξ ξ∫

C3 = 0 (from BC 1; otherwise the term would not be finite since Y0(0)
= – ∞)
C2 J0 (k) = 0 (from BC 2).
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Now, C2 cannot be zero since that would result in a trivial solution,
(f = 0). Therefore

J0 (k) = 0

This happens multiple times when k = 2.4048... (= k1), 5.52009 (= k2),
8.6537... (= k3), and so on.

Thus, there are infinite solutions

fn = C2n J0 (knξ) n = 1, 2, 3,… ∞

This implies that

φtn = C′nJ0(knξ) exp (– k2
n τ), n = 1, 2, 3,… ∞

where C′n = C1C2n.
Using the principles of superimposition, orthogonality relationships, and

other relevant aspects of Bessel functions, the final solution is

2 20
31

1

( )
( , ) (1 ) 8 exp( )

( )
n

nn
n n

J k
k

k J k

∞

=

ξ
φ ξ τ = − ξ − − τ∑ (3.5-15)

A representative plot of φ versus ξ for various values of τ is given in
Fig. 3.5-1.

3.6 Pulsatile Flow

In the earlier cases, we had considered a linear, time invariant pressure
gradient. However, flows in the body, e.g. blood flow through the vasculature

Fig. 3.5-1 Profiles of φ at a particular length position on the tube,
versus ξ for various values of τ
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are pulsatile in nature because of the pumping of the heart. In other words,
the pressure gradient varies with time.

Let us consider here a sinusoidal pressure gradient. Although not strictly
valid for blood flow, a time-varying sinusoidal pressure gradient does provide
valuable insights into the nature of pulsatile biological flows. Also, let us
assume that the axial velocity at a particular radial position does not change
with the length of the tube at any given time.

From Eq. C2 of Table 3.4-2 (the z component of the equation of
motion)

z z z z
r z

vv v v v
v v

t r r z
θ∂ ∂ ∂ ∂ ρ + + + ∂ ∂ ∂θ ∂ 

2 2

2 2 2

1 1z z z
z

v v vp
r g

z r r r r z

 ∂ ∂ ∂∂ ∂  = − + µ + + + ρ  ∂ ∂ ∂  ∂θ ∂ 

Note that we have taken vz ≠ f (z) at a particular time. Thus, the remaining
terms yield

( )z zv vp gz
r

t z r r r

∂ ∂∂ − ρ µ ∂  ρ = − +  ∂ ∂ ∂ ∂ 
(3.6-1)

By the same arguments as in Section 3.5 that led to Eq. 3.5-2, we can write

sin
P P

A t
z L

∂ − ∆= + ω
∂

(3.6-2)

where 
P

L

− ∆
 is the average pressure gradient; A and ω are the frequency

and amplitude, respectively, of the periodic pressure function.

Since v
µ =
ρ

, the equation of motion can be written as

1 1 ( )
sinz zv v P A

r t
v t r r r L

∂ ∂∂ − ∆ = + + ω ∂ ∂ ∂ µ µ 
(3.6-3)

We can guess that the solution for vz consists of a steady state part (average
value) and a periodic part (fluctuating value) corresponding to the average
and fluctuating pressure gradients, i.e.

vz (r, t) = –vz(r) + v′z (r, t) (3.6-4)

(vr = 0)
0

(vθ = 0)
0

(vz ≠ f (z))
0

(vz ≠ f (z))
0

vz ≠ f (θ)
0
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Substituting Eq. 3.6-4 in Eq. 3.6-3, and using separation of variables as in
the Section 3.5 with the recognition that –vz(r) is not a function of t, gives
two equations

1 ( )
0 zdvd P

r
r dr dr L

−∆ = +  µ 
(3.6-5)

1
sinz zv v A

r t
v t r r r

′ ′∂ ∂1 ∂= + ω
∂ ∂ ∂ µ

(3.6-6)

The solution of Eq. 3.6-5, as seen in an earlier section is

22( )
1

4z
P R r

v
L R

 −∆   = −   µ    
(3.6-7)

Equation 3.6-6 can be solved by Laplace transforms through a lengthy
procedure, with the boundary conditions as

BC 1: At r = 0, zv

r

′∂
∂

 = 0

BC 2: At r = R, 
zv′  = 0

to yield the following as the other part of the solution – the first part being
the parabolic profile given by Eq. 3.6-7. Here we merely state the combined
solution as follows

22

2 20

4 2 4 21 21 2
4 4

( )
( , ) 1

4

exp( / )2 sin( )

( )

z

k

k

k kk k k

P R r
v r t

L R

r
J

vt RA tR
J v v

R R

∞

=

 −∆   = −   µ    

 α     ω −α ω − φ  + + ρ α α  α   α+ ω  + ω      

∑

(3.6-8)

Thus, the velocity profile at a cross-section varies with time from the basal
parabolic profile. The variation is cyclic, as can be expected from a cyclic
pressure gradient.

3.7 Solutions to Equations

As was evident in the Sections 3.5 and 3.6, the mathematical effort to solve
the formulated equations could be significant. An analytical solution is



reasonably complete, and capable of rendering itself to confident
interpretations due to the continuous nature of this approach. However, an
analytical solution may not be available for all situations. Thus, in many
research problems, it is common to take a numerical approach, such as the
finite element method, to solve the formulated equations. Some level of
expertise is needed for the appropriate use and interpretation of numerical
solutions. Even if one does not possess such expertise, one can team up
with a suitable expert for the solution.

In this section, let us see some formulations for simplifying the solutions
of the differential equations. Two of the common approaches are merely
mentioned in this section. The reader is referred to other texts (Bird et al.
2002) for the details on these approaches.

3.7.1 Stream Function Approach

Velocity is expressed as the gradient of a ‘stream function’ say, ψ. For
example

xv
y

∂ψ= −
∂

yv
x

∂ψ= +
∂

ψ = constant (mathematical representation) indicates streamlines (physical
significance) i.e. the path traced by the particles of fluid under steady flow.

3.7.2 Boundary Layer Theory

The flow is split into two parts:

• Potential flow (away from the wall) (ρ = constant; µ = 0; flow is

irrotational (∇
�

 × v
�

 = 0))
• Boundary layer flow (close to the wall)

3.8 Turbulent Flow

As seen in Section 3.2, above a certain Reynolds number that is dependent
on the system (4000 for pipe flow), the flow turns chaotic or turbulent.
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1
2
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,max

,avg

,max
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4

Laminar flowTurbulent flow

1 1

4 1
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z

z

z

z

v r r

v R R

v

v

P Q Q

    ≅ − = −    
    

≅ =

∆ ∝ ∝

(3.8-1)

(3.8-2)

(3.8-3)

Many flows in the bio-industry occur in the turbulent regime. Turbulent
flow can also occur near artificial valves of the heart, which may result in
wasteful expenditure of pumping energy.

By careful measurements, it has been experimentally shown that for
turbulent flow in a pipe, the time-smoothed components (average quantities

at a point), zv  and ,avgzv  (these terms will become clearer soon) are related

as

Turbulent flow can be visualised as the random motion of packets of fluid
(eddies). For turbulent flow in a tube, the flow is entirely random at the
centre of the tube, i.e. far away from the wall. Near the wall, the fluctuations
of velocity in the axial direction is greater than the fluctuations in the radial
direction. At the wall, the fluctuations are zero.

Let us take a closer look at these fluctuations. We will focus our
attention on the fluid behaviour at one point in the tube (pipe) where
turbulent flow exists. As we are watching it, let us say that the mean
velocity decreases (probably due to a change in the pressure drop causing
the flow, by turning down the pump speed).

The variation of the axial component of the velocity, vz, at the point of
observation, would look like that given in Fig. 3.8-1.

zv  is called the time-smoothed velocity, i.e. the average of vz over a

time interval large enough with respect to the time of turbulent oscillation,
but small enough with respect to the time changes in the pressure drop
causing the flow.

1 at t

z z
ta

v v dt
t

+
= ∫ (3.8-4)

Thus

vz = –vz + v′z (average + fluctuation) (3.8-5)



The pressure at a point will also vary in a similar fashion

p = –p + p′ (3.8-6)

If we take the average of the fluctuations, –vz, since the positive values will
balance the negative values

–v′z = 0 (3.8-7)

Thus, we cannot use –v′z as a measure of turbulence. However, the average

of the squares of the fluctuation values, 2
zv′ , will not be zero and can be

used as a measure of turbulence. In fact

2

,avg

Intensity of turbulence z

z

v

v

′
≡ (3.8-8)

The intensity of turbulence is typically between 0.01 and 0.1.
At the wall, since the fluctuations in the radial component will be

different from those in the axial direction, we need to differentiate between
the two. Researchers have found that near the wall

2 2

,avg ,avg

(Axial) (Radial)z r

z z

v v

v v

′ ′
>

At the centre of the tube the above values are comparable (isotropic
condition).

As long as the eddy size is greater than the mean free path of the
molecules (continuum holds), the

• equation of continuity (mass balance)
• equation of motion (momentum balance)

–vz

v z

ta

t

Fig. 3.8-1 Velocity (vz)
and time-smoothed
velocity ( –vz) at a point
in turbulent flow
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are applicable for turbulent flow. Let us consider the conservation equations
for turbulent flow, at a point and take the case for which we have an
intuitive feel, i.e. the equation in rectangular Cartesian coordinates. For
illustration, let us consider an incompressible flow.

Equation of Continuity

( ) ( ) ( ) 0x x y y z zv v v v v v
x y z

∂ ∂ ∂′ ′ ′+ + + + + =
∂ ∂ ∂

(3.8-9)

Equation of Motion

x direction

2

( ) ( ) ( )( ) ( )( )

( )( ) ( )

x x x x x x y y x x

z z x x x x x

v v p p v v v v v v v v
t x x y

v v v v v v g
z

∂ ∂ ∂ ∂′ ′ ′ ′ ′ ′ρ + = − + − ρ + + + ρ + +∂ ∂ ∂ ∂

∂ ′ ′ ′+ ρ + + + µ∇ + + ρ∂ 
(3.8-10)

Taking the time average of the velocity components, i.e. 
0

1 at

a

v v dt
t

= ∫  over

tas that are large with respect to turbulent oscillations but small with respect
to macro variations, the time-smoothed equation of continuity can be written
as follows (note that the time averaged fluctuations will tend to zero)

0yx z
vv v

x y z

∂∂ ∂
+ + =

∂ ∂ ∂
(3.8-11)

Similarly, the time-smoothed equation of motion can be written as

2

x x x y x z x

x x y x z x x x

p
v v v v v v v

t x x y z

v v v v v v v g
x y z

∂ ∂ ∂ ∂ ∂ ρ = − − ρ + ρ + ρ ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ′ ′ ′ ′ ′ ′− ρ + ρ + ρ + µ∇ + ρ ∂ ∂ ∂ 
(3.8-12)

The third term in brackets on the RHS of Eq. 3.8-12 is the only extra term
when compared to the equation of continuity for laminar flow.



Now, since ρ→v →v = momentum flux or stress, let us say that

( )t
xx x xv v′ ′τ = ρ

( )t
xy x yv v′ ′τ = ρ

and so on.

These are the components of the turbulent momentum flux tensor 
~( )tτ .

The stresses are also known as Reynolds stresses.
In vector notation, the time-smoothed equation of continuity is

. 0v∇ =
� �

(3.8-13)

and the time-smoothed equation of motion is

( ) ( )~ ~
. .

l tDv
p g

Dt

   
   ρ = −∇ − ∇ τ − ∇ τ + ρ   

�

� � �

�

(3.8-14)

The above Eqs. (3.8-9) to (3.8-14) are valid for an incompressible flow.
Similarly, it can be shown that the earlier equations and the tables for
laminar flow are valid if we replace

vi by –vi

p by –p

and ( ) ( )by l t
ij ij ijτ τ + τ

However, to get the velocity profile, we need a relationship between τ and
the velocity gradient.

For laminar flow, we had a theoretical base in terms of constitutive
equations. For turbulent flow, we do not have that luxury. Nevertheless,
many expressions based on experimental observations have been proposed.
Two are given below.

The first is on the same lines as for the laminar case.

( ) ( )t t x
yx

d v

dy
τ = − µ (3.8-15)

where µ(t) is termed as ‘eddy viscosity’ and its value could be hundreds of
times the molecular viscosity.

Another popular expression was formulated by Prandtl. For this
expression, it is assumed that the eddies in the fluid move around in a
fashion similar to that of the molecules in a gas. A ‘mixing length’, l, which
is a function of position represents an idea similar to the ‘mean free path’
in the kinetic theory of gases. The relationship is given as
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( ) 2t x x
yx

d v d v
l

dy dy
τ = − ρ (3.8-16)

For flow in pipes/tubes, the relationship between velocity and distance
(velocity profile) in turbulent flow through Deissler’s empirical formulation
is as follows:

If we define

0

zv
v+ =

τ
ρ

and

0s s+  τ ρ=   ρ µ 

where s = R – r i.e. the radial distance from the wall and τ0 is wall shear
stress at s = 0.

For s+ > 26

1
ln 3.8

0.36
v s+ += + (3.8-17)

For 0 ≤ s+ ≤ 5

v+ = s+ (3.8-18)

And for 0 ≤ s+ ≤ 26

2 20 1 (1 exp{ })

s ds
v

n v s n v s

+ +
+

+ + + +=
+ − −∫ (3.8-19)

where n is Deissler’s constant for tube flow, near the wall. It was found
empirically to be equal to 0.124.

3.9 Macroscopic Aspects: The Engineering Bernoulli Equation

Although the understanding of fluid flow thus far was in good depth, the
mathematical effort was significant. If we can reduce the effort, but still get
acceptable answers, it may be good for engineering design and operation.
The ‘engineering Bernoulli equation’ is useful for this purpose.

To arrive at the engineering Bernoulli equation, one can begin with the
equation of motion, Eq. 3.4-4. The details of the lengthy and mathematically



involved derivation are indicated in different sections of Bird et al. (2002).
Some details are highlighted here.

First, the dot product of the velocity vector, v
�

, is taken with the
equation of motion, i.e. Eq. 3.4-4. Then, skilful rearrangement of terms, the
application of the equation of continuity, and representation of the acceleration
due to gravity term as the negative gradient of a scalar potential per unit
mass (we will do operations similar to some of the above, later in Chapter
4), followed by further rearrangement of terms, leads to an equation of
mechanical energy (the kinetic energy alone, the potential energy alone, and
the sum of kinetic and potential energies are examples of ‘mechanical
energy’), which is given below as Eq. 3.9-1. Please note that the mechanical
energy is not conserved.

2

2

1
12 · ( · ) ( · ) ( · ( · )) ( : )
2

v
v v pv p v v v

t

 ∂ ρ +ρφ      = − ∇ ρ +ρφ − ∇ − −∇ − ∇ τ − − τ ∇  ∂   

� � � � �� � � � �
� �

(3.9-1)

Equation 3.9-1 is a differential equation, which can be integrated over
the volume of the macroscopic system of interest. The integration procedure
needs the knowledge of the three-dimensional Leibniz formula, Gauss
divergence theorem, etc. After further rearrangement of terms, the integrated
equation can be written as

2

2

1
12 ( · ) ( : ) ( )
2

V
s

V V

d v
p

m v gz p v dV v dV W
dt

  ρ +ρφ        = − ∆ + + + ∇ + τ ∇ − −  ρ  

∫
∫ ∫

� �� �
� �

(3.9-2)

where the ∆ represents the difference in the relevant variables between the
two positions, say the ends of the volume of interest e.g. entry and exit
points of a pipe through which a fluid is flowing. Ws refers to the work
done on the fluid, say by a pump, and is the negative of the work done by
the system/control volume on the fluid. Also note that the LHS is the time
derivative of the sum of kinetic and potential energies that is obtained by
integrating Eq. 3.9-1 over the relevant volume.

The term ( · )
V

p v dV∇∫
�

�

 denotes compression or expansion experienced

by the fluid in the relevant volume of interest. It is zero for incompressible
fluids.

The term ( : )
V

v dVτ ∇∫
� �

�  represents what can be simplistically said to be

energy loss due to viscous effects, or viscous dissipation. For Newtonian
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fluids, this term is negative, and thus, represents a loss. However, the same
cannot be generalised to all fluids.

Now, at steady state, the LHS of Eq. 3.9-2 is zero. Further, under the
assumption of a ‘representative streamline’ through the system, and for a

constant mass flow rate ( )m�  between the two positions of interest (say 1

and 2), the following combination of terms can be approximately made:

2

1

1
( · )

V

p
m p v dV m dp ∆ − ∇ ≈ ρ ρ 

∫ ∫
� �

� � (3.9-3)

Further, with the assumption that

3
avg 2 2

avg
avg

( )
or say,

v
v v

v
≈ (3.9-4)

and by division throughout by m� , we can write Eq. 3.9-2, under all the
above assumptions, including that of an incompressible fluid as

� �
2

0
2 s

p v
g x FL W

∆ ∆+ + ∆ + + =
ρ

(3.9-5)

where

� 1
( : )FL v dV

m
= − τ ∇∫

� �
�

�

� 1
s sW W

m
=

�

Equation 3.9-5 is a useful form of the engineering Bernoulli equation.
For design and operation, what is called the friction factor approach

would be the easiest, with an acceptable balance between rigour and ease
of usability. Let us use the friction factor approach for a few practical
situations. As can be seen in the following sections, we invoke the just
developed engineering Bernoulli equation quite extensively.

3.9.1 Friction Factor for Flow through a Straight Horizontal
Pipe

Let us consider a well-developed flow through a straight horizontal pipe
(Fig. 3.9.1-1).



0(v1 = v2) 0(z1 = z2) no shaft work

Let us apply the engineering Bernoulli equation between cross-sections
1 and 2

2
ˆ ˆ 0

2 L s
p v

g z F W
∆ ∆+ + ∆ + + =
ρ

Thus

� p
FL

∆= −
ρ (3.9.1-1)

Note that we have made no assumption regarding the nature of flow (i.e.
whether it is laminar or turbulent). Thus, the above is applicable to both
laminar and turbulent flows.

Let us consider a differential fluid volume which is disc-shaped of
radius R and thickness, ∆z, as shown in Fig. 3.9.1-2. τw will be the wall
shear stress both in laminar and turbulent flows – this is because even in
turbulent flow, the flow closest to the wall is laminar.

A force balance on the differential fluid element yields

p(πR2) – (p + ∆p) (πR2) – τω (2πR∆z) = 0 (3.9.1-2)

1 2

Fig. 3.9.1-1 A section of
the straight horizontal
pipe taken for analysis

Fig. 3.9.1-2 Flow through a straight pipe, and a differential, disc-shaped
fluid element taken for analysis

R

Direction of flow ∆z τws

τws

(P + ∆P)A
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2 2( )( )

( )(2 )

p p R p R

z Rω
+ ∆ π − π− τ =

∆ π

2

p R

zω
∆ τ = −  

 ∆ 

In the limit ∆z → 0

2

dp R

dzω
 τ = − 
 

2
0

dp

dz R
ωτ+ = (3.9.1-3)

For a pipe of length L between points 1 and 2, Eq. 3.9.1-3 can be integrated
to yield

2 1 2
0

p p

L R
ωτ− + =

or

2 1( ) ( )

2 4

p p R p D

L Lω
− − − ∆τ = × = ×

or

4L
p

D
ωτ− ∆ =

Substituting this into Eq. 3.9.1-1, we get

� 4 L
FL

D
ωτ

=
ρ

(3.9.1-4)

Let us define a dimensionless parameter, f, as

( ) 1kF
f

A KE
= ×

′
(3.9.1-5)

where f is the friction factor, Fk is the force exerted by a fluid due to its
motion on the body of interest, A is the appropriate area and KE′ is the
kinetic energy per unit volume.

(A fluid exerts a force on a body in contact with it and of interest. That
force can be thought to consist of two parts, Fs and Fk. Fs is the force that
is exerted even when the fluid is stationary. Fk is the force exerted when
the fluid is in relative motion compared to the body of interest.)



In our case of tube flow, f can be conveniently defined as

222 avgavgavg

( )4
11 2
22

p D
p DLf

L vvv

ω

∆− ×τ −∆≡ = =
  ρρρ 
 

(3.9.1-6)

Thus

2
avg

1

2
v fωτ = ρ (3.9.1-7)

Substituting Eq. 3.9.1-7 in Eq. 3.9.1-4, we get

�

2
2avg
avg

1
4

2 4
2

v f L vL
FL f

D D

 ρ       = =  ρ   

(3.9.1-8)

This �FL  accounts for frictional losses at the pipe wall (skin friction).
Equation 3.9.1-8 can be written as

�

2
avg

2
4

vL
FL f

D

  
 =   

 
 

If we define a ‘hydraulic radius’, rH as

Cross-sectional area

Wetted perimeterHr = (3.9.1-9)

for our pipe

2

4
4H

D
D

r
D

 
π 
 = =
π

Thus

�

2
avg

2H

vL
FL f

r

  
 =    

(3.9.1-10)

This equation, in practice, can be extended to all cross-sectional geometries.
To find the above friction factor for pipe flow, a friction factor chart

(Fig. 3.9.1-3) can be used. The term ‘friction factor’ refers to the Fanning
friction factor, and not the Moody’s friction factor that is normally used in
other (e.g. civil engineering) applications.

• For the laminar regions, we can use 
Re

16
f

N
=
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• For the turbulent regime, we need to use the chart.
• For the intermediate regime (2100 < NRe < 4000), we usually avoid

design.

In the turbulent regime, the friction factor, f is a function of the
roughness factor, k/D (represented as different curves on the friction factor
chart), where k is the roughness length (effective thickness), and D is the
diameter of the pipe.

The laminar region is represented by 
Re

16
f

N
= . The turbulent region

has different curves that correspond to different k/D values of the pipes.
The lowest curve corresponds to a smooth pipe. The curve above that
corresponds to a k/D of 10–4 and the topmost curve corresponds to a k/D
value of 10–3. For values in between, interpolations can be done to obtain
estimates of f.

Example 3.9.1-1

A cleaning liquid used in many Bioprocess industries needs to be piped through
the pipeline system above the ground as shown in Fig. 3.9.1-4.

The pipeline system consists of 50 m of 12" nominal diameter pipe and 20 m
of 8" nominal diameter pipe. All elbows are standard and flanged, and the material
used for the piping is schedule 80 wrought iron pipe. Determine the pressure
drop needed between points 1 and 2 to maintain a flow rate of 0.05 m3s–1. What
is the pumping power that is needed to maintain the flow rate? The density of
the liquid is 870 kg m–3 and its viscosity is 1.375 × 10–3 Pa s.

1.000

0.100

0.010

0.001

Fr
ic

tio
n 

fa
ct

or
 (

f
)

102      103      104      105      106      107

Reynolds number (NRe)

k/D

Fig. 3.9.1-3 Friction
factor chart



Nominal diameter and schedule numbers are standard terminology used in
process industries. They have evolved for historical reasons of communications
between the different people working in the industry. The details of the terminology
are given in various handbooks (e.g. Perry’s Chemical Engineers’ Handbook
2007) and other books too (McCabe et al. 2004).

In brief, the schedule number refers to the working stress and equals

1000 max ,
p

S
 where pmax is allowable working pressure and S is allowable tensile

stress.
The correspondence between nominal diameter, internal diameter, and the

wall thickness is available in many sources, e.g. the references given above.

For a 12" nominal diameter

id = 0.2889 m
∴ cs area = 0.066 m2

For a 8" nominal diameter

id = 0.1937 m
∴ cs area = 0.0297 m2

Also, for wrought iron, roughness factor (k) = 4.6 × 10–5 m.

Let us apply the engineering Bernoulli equation between points 1 and 2 in
the piping network shown in Fig. 3.9.1-4.

2
ˆ ˆ 0

2 L s
P v

g z F W
∆ ∆+ + ∆ + + =
ρ

�
2 2

2 1 2 1
2 1

( )
( ) 0

2

p p v v
g z z FL

− −+ + − + =
ρ

We need to find p2 – p1.

0 (no shaft work)

1

2
5 m

Gate valve
4.5 m

Fig. 3.9.1-4 Details
of the pipeline for
Example 3.9.1-1
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We know that ρ = 870 kg m–3

12
2

2

0.05
1.7 m s

0.0297

V
v

A
−= = =

�

11
1

1

0.05
0.763 m s

0.066

V
v

A
−= = =

�

z2 = 4.5 m; z1 = 5 m

� ?FL =
For a pipe, and different pipe fittings (valves, etc., which are piping network

components), �FL  can be calculated as �
2
avg

2f

v
FL K=  for each fitting, and

added together to get the total �FL . Kf values for some common fittings are

given in brackets next to the fitting: straight pipe 4
L

f
D

 
 
 

; 180° bend (2.2);

90° elbow (0.9); 45° elbow (0.4); tee (1.8); wide open globe valve (15);
wide open gate valve (0.2). In addition, the Kf values for a sudden contraction
and a sudden expansion can be evaluated as follows

Sudden contraction: 0.4 1 b

a

A

A
 − 
 

Sudden expansion: 
2

1 b

a

A

A
 − 
 

where b is smaller diameter and a is larger diameter; vavg is taken at b.
Thus, depending on the fittings in the piping network

�

2
avg4
2f

vL
FL f K

D
 = + 
 ∑

In this case

�

2 2 2 2
avg avg avg avg

12" 12" pipe 8" pipe 8"
4 4

2 2 2 2f f

v v v vL L
FL K f f K

D D
= + + +∑ ∑

To find f, let us use the friction factor chart for which we need the
Reynolds numbers.

5
Re,12" pipe 3

870 0.763 0.289
1.39 10

1.375 10
avv D

N −
ρ × ×= = = ×

µ ×



5
Re,8" pipe 3

870 1.7 0.194
1.47 10

1.375 10
N −

× ×= = ×
×

Both are turbulent flows.
Now, for reading the appropriate curve on the friction factor chart in

the case of a turbulent flow, we need .
k

d

4

12"

0.000046
1.6 10

0.2889

k

d
−= = ×

4

8"

0.000046
2.37 10

0.194

k

d
−= = ×

From the friction factor chart, f12" = 0.0045; f8" = 0.00445.
Pipe fittings: 2(12", 90°) + 2(8", 45°) elbows, 1(12") gate valve, 1(8")

sudden contraction

12"
2 0.9 1 0.2 2.0fK = × + × =∑

8"

0.0297
2 0.4 0.4 1 1.02

0.066fK  = × + − = 
 

∑

Substituting the above in the engineering Bernoulli equation, we get

2 2 21.7 0.763 50 0.763
9.8(45 5) 4 0.0045

870 2 0.289 2

p  ∆ −+ + − + × × × 
 

 

2 2 220 1.7 0.763 1.7
4 0.0045 2 1.02 0

0.194 2 2 2

   
+ × × × + × + × =   

  

4.9 1.154 0.91 2.65 0.582 1.474
870

p∆ = − − − − −

∆p = – 1626.9 Pa or – 1.63 kPa

Pumping power required

= (– ∆p) × ·V

= 1626.9 × 0.05 = 81.3 W = 0.081 kW

Example 3.9.1-2

Stenosis or narrowing of the arteries can cause health difficulties especially
cardiac related ones. If the stenosis happens to be at the place of expansion in
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the arterial cross-section, other difficulties could arise. One of the difficulties is
due to “cavitation” or gas bubble formation followed by rupture. Rupture releases
an enormous amount of energy that can even destroy metallic surfaces. Develop
a criterion in terms of the flow velocities, pressure, and areas for the concept of
cavitation at the stenosis.

Let us apply the engineering Bernoulli equation between planes 1 and 2 in
Fig. 3.9.1-5. Upon cancelling the terms that are not relevant, we get

2 2
2,avg 1,avg2 1

( ) ˆ ˆ 0
2 L s

v vP P
g z F W

−− + + ∆ + + =
ρ

(3.9.1.2-1)

�FL here corresponds to the loss due to contraction. Approximating this
contraction to a sudden contraction, from Example 3.9.1-1 we get

2

1

0.4 1f
A

K
A

 = − 
 

where A is CS area.
Thus

�

2
2,avg2

1

0.4 1
2

vA
FL

A
 = − 
 

Note the velocity we use here to calculate �FL .

0 (no shaft work)(no change in
elevation)

0

1
Pre-stenosis

plane

2
Stenosis

plane

3
Post-stenosis

plane

Fig. 3.9.1-5 Stenosis
(narrowing) in an
artery



Thus

2 2 2
2,avg 1,avg 2,avg2 1 2

1

( )
0.4 1 0

2 2

v v vp p A

A

−−  + + − = ρ  
(3.9.1.2-2)

For cavitation to occur, bubbles of gas need to form or nucleation of gas
bubbles need to take place. To understand the conditions for gas bubble
formation, consider the case of boiling water. In boiling, bubbles begin to
appear when the pressure increases due to temperature increase, and finally
equals the saturated vapour pressure (note that this is not an equilibrium
situation, and thus we cannot apply the phase diagram to find the relevant
temperature-pressure relationship for the vapour and liquid phases). In the
case of cavitation, the approach is from the other direction; the pressure
decreases with increase in velocity of the fluid, and when the pressure
equals or becomes lower than the saturated vapour pressure, bubbles form
and cavitation occurs. Let us define the difference between the actual
pressure and the saturated vapour pressure as pg.

Thus

p2 – p1 = p2g – p1g (3.9.1.2-3)

Also for continuity

1
1 1 2 2 2 1

2

or
A

A v A v v v
A

= = (3.9.1.2-4)

Since the pressure and velocity are inversely related, and since v2 > v1, pg2
= 0 is the condition for the onset of cavitation.

Substituting the above in Eq. 3.9.1.2-2, we get

2 2
1 2 21 2 1

1,avg 1,avg2 2
12 2

1 0.4
1 1 0

2 2
gp A A A

v v
AA A

   − + − + − =    ρ   

2 2 2
1 1,avg 1 1 1

2 2
22 2

1 0.4 0.4 0
2

gp v A A A

AA A

 
− + − + − =  ρ  

                   
2

11 1
2

2 2 1,avg

2
1.4 0.4 1 gpA A

A A v

   − − = ×    ρ   

2
11 1

2
2 2 1,avg

2
1.4 0.4 1 0gpA A

A A v

    − − + =      ρ     

The solution of this quadratic equation provides the condition in terms of
1

2

A

A
 for cavitation to occur, i.e.
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12
2
1,avg1

2

2
0.4 0.4 4 1.4 1

2 1.4

gp

vA

A

  
 ± − × × − + ×  ρ   =

×

1
2
1,avg

2
0.4 0.16 5.6 1

2.8

gp

v

  
 ± + −   ρ  =

If 1

2

A

A
 ≥ the above RHS, pg2 ≤ 0, and cavitation will occur.

3.9.2 Friction Factor for Solids Moving Relative to a Fluid

For solids with a projected area, Ap (area projected on a plane that is normal
to the relative motion direction)

21
( )

2k pF A v f∞
 = ρ 
 

(3.9.2-1)

where v∞ is the free stream velocity or the approach velocity at a large
distance from the object.

Fk is often referred to as the drag force, while f is usually represented
as CD, the drag coefficient. A plot of variation of CD with Reynolds number,
NRe, is available in handbooks, e.g. the one referred to in the earlier section.

When a sphere (Ap = πR2 = πD2/4) of density ρp falls through a fluid
of density ρ, at a terminal velocity of vt (= v∞), a simple force balance
provides

3 34 4

3 3k pF R g R g   = π ρ − π ρ   
   

(3.9.2-2)

Using Eq. 3.9.2-1

2 21
( )

2k tF R v f = π ρ 
 

Equating the above two expressions, we can get an expression for the
friction factor for this case, as

2

4

3
p

t

gD
f

v

ρ − ρ 
=  ρ 

(3.9.2-3)



3.9.3 Friction Factor in Packed Beds

Packed beds are used in biological processes, especially in water and waste
water processing. Certain stages of such processes involve removing
undesirables by microorganisms or other agents in a packed bed.

A rigorous analysis of a packed bed is difficult, because even if an
effort leads to a representative set of mathematical equations, they may not
be easily solvable.

So, let us attempt a simpler analysis using the following assumptions:

• Replace the tortuous flow path inside the bed (Fig. 3.9.3-1) through the
voids by a set of identical parallel conduits of the same length as that
of the bed. Let the radius of each conduit be R, and the total cross-
sectional area of the conduits (number of conduits times the CS area
of each conduit) be S.

• Use a representative hydraulic radius to make the results somewhat
extendable to many cross-sectional geometries.

• Let the particles be uniform with point contacts between them.
• Assume laminar flow in the conduits.

Let us consider that the total drag force (FD) per unit total cross-sectional
area in the parallel conduits is the sum of viscous drag forces (FV), and
inertial drag forces (FI) per unit total CS area (S).

Now, let us focus our attention on each conduit with radius R, for a
while. From Eq. 3.4.2-17 the average velocity in the conduit is

2

avg
( )

8

P R
v

L

−∆=
µ

(3.4.2-17)

v0,avg
Area = S0

Fig. 3.9.3-1 A packed bed.
v0,avg is average superficial
velocity; the average velocity
before the flow reaches the
bed when there are no
additional restrictions to flow
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We also know from the equation just before Eq. 3.9.1-4 that

, ,4 2
( ) orw V w VL L

P
D R

τ τ
−∆ =

The subscript V refers to the viscous component. Substituting the above
expression for (– ∆P) into Eq. 3.4.2-17, we get

2
,

avg

2

8
w VL R

v
R L

τ 
=  
  µ

Transposing, we get

avg
, ,

4
and we know that V

w V w V

v F

R S

µ
τ = τ =

In terms of the hydraulic radius, rH (to generalise it to channels of any
cross-sectional shape)

avgV

H

k vF

S r

µ
= (3.9.3-1)

Now, let us look at the inertial component. The inertial force per unit cross-
sectional area of the conduit

,
I

w I
F

S
= τ

From Eq. 3.9.1-7, we get

2 2
, avg 2 avg

1

2w I v f k vτ = ρ = ρ (3.9.3-2)

Thus, the total drag force per unit conduit area according to the summative
consideration of the viscous and inertial components, is

1 avg 2
2 avg

D

H

k vF
k v

S r

µ
= + ρ (3.9.3-3)

Now, let us focus on the entire bed. Let us define

Volume of voids in the bed

Total bed volume
=∈ (3.9.3-4)

In other words

imaginary conduits

bed

CS area of imaginary conduits in bed ×

CS area of bed ×

L

L
=∈



By one of our earlier assumptions

Limaginary conduits = Lbed

Thus

CS area of imaginary conduits in bed

CS area of bed
= ∈ (3.9.3-5)

By mass conservation, since the mass flow rates through the conduits are
additive, and S = total number of conduits × cross-sectional area of each
conduit.

ρv0,avgS0 = ρvavgS

Since the density is a constant

0,avg

avg 0

v S

v S
= = ∈

or

0,avg
avg

v
v =

∈
(3.9.3-6)

v0,avg i.e. ‘superficial’ or ‘empty tower’ velocity is much easier to measure
compared to vavg.

Now, let us relate the pressure drop across the bed to measurable
parameters. To do that let us focus on the particles in the bed for a while.
The aim is to express the relevant equations in terms of the measurable/
calculable particle parameters.

The total surface area of the particles is AS

As = Np sp (3.9.3-7)

where Np is total number of particles in the bed and sp is area of one
particle.

Assuming uniform particles

0 (1 )Volume of solids in bed
is also

Volume of one particlep
p

S L
N

v

−∈
= = (3.9.3-8)

where S0 is cross-section of empty tower and L is bed length.
Substituting Eq. 3.9.3-7 in Eq. 3.9.3-8, we get

0 (1 )s

p p

A S L

s v

−∈
=

   
0 (1 ) p

s
p

S L s
A

v

−∈
= (3.9.3-9)
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Now

0( )CS area CS area ×

Wetted perimeter Wetted perimeter ×H
s s

S LL S L
r

L A A

∈= = = =

(3.9.3-10)

In the equation above, since we have assumed point contacts between
particles, and hence there is no loss in surface area due to contact, the total
surface area of the particles will equal the total surface area of the conduits.

Substituting As from Eq. 3.9.3-9 into Eq. 3.9.3-10, we get

0

0 (1 ) (1 )
p

H
p p p

vS L
r

S L s v s

∈∈
= =

− ∈ − ∈
(3.9.3-11)

Substituting the above equation in Eq. 3.9.3-3, we get

0 1 0,avg 2
2 0,avg2

(1 ) (1 )p p
D

pp

S L s k v s
F k v

vv

ρ −∈ µ − ∈ 
= + ρ∈   

(3.9.3-12)

We can also express the drag force as the product of (pressure drop) and
(effective area), i.e.

FD = (– ∆p)(S0∈)

Equating the two expressions for the drag force, we get

1 0,avg 2
0 0 2 0,avg2

(1 )1
( ) p p

p p

s k v s
p S S L k v

v v

µ −∈   − ∈ − ∆ ∈ = ρ +      ρ ∈      

1 0,avg 2
2 0,avg3

(1 )( ) 1 p p

p p

s k v sp
k v

L v v

µ − ∈   − ∆ −∈ = +     ρ ρ ∈      
(3.9.3-13)

For a sphere

2

3

6

6

p p

p p
p

s D

v DD

π
= =

π (3.9.3-14)

For any particle, let us define an equivalent diameter Dp as the diameter of
the sphere having the same volume as that of the particle.

Let us also define sphericity, φs as

Surface area of the equivalent sphere

Actual surface areasφ = (3.9.3-15)

2
p

s
p

D

s

π
φ =



Thus

2
p

p
s

D
s

π
=

φ

and therefore

2

3

6

6

p

p s p
s p

Dp

v DD

π∆∴ = =
π φφ

(3.9.3-16)

Values of φs for various commonly used particles are available in handbooks.
Ergun correlated experimental data and found that

1 2
150 1.75

and
36 6

k k= =

Thus, the pressure drop equation can be written as

3

2 2
0,avg 0,avg

( ) 150 1
. . 1.75

(1 ) /

s p

s p

Dp

L Dv v

φ− ∆ ∈ − ∈= +
− ∈ φρ ρ µ

(3.9.3-17)

Equation 3.9.3-17 is called the Ergun equation. The above equation works
well for most packings – except for packings of extreme shape such as
needles, rings or saddles.

By comparison with the friction factor defined earlier, Eq. 3.9.1-6, we
can define the friction factor for a packed bed as

3

2
0,avg

( )

(1 )

s p
pb

p D
f

v L

− ∆ φ ∈
≡

ρ −∈
(3.9.3-18)

Substituting this back into Eq. 3.9.3-17, we get

Re,

150(1 )
1.75pb

s p

f
N

−∈= +
φ (3.9.3-19)

At low NRe,p, 1.75 is negligible in comparison with the other term. Thus,
at low NRe,p

Re,

150(1 )
pb

s p

f
N

− ∈=
φ (3.9.3-20)

This implies that (through substitution of the expression for fpb back into
the above equation)

2 3

2
0,avg

( )
150

(1 )

s pp D

Lv

− ∆ φ ∈
=

µ − ∈
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2 3
0

2
0 0,avg

( ) 150
(1 )

s pS D
p

S v L

φ ∈
− ∆ =

µ − ∈

where S0v0,avg is volumetric flow rate, Q. The above equation is called the
Kozeny-Carman equation.

If φs, Dp, and ∈ are constants

1
( ) andQ p

L
∝ − ∆ ∝

µ
(3.9.3-21)

This is known as Darcy’s law and has many applications.
At large NRe, the first term in the RHS in Eq. 3.9.3-19 becomes negligible.

Under such condition, we get the Blake-Plummer equation, i.e.

3

2
0,avg

( )
. . 1.75

(1 )
s pDp

Lv

φ− ∆ ∈ =
−∈ρ

(3.9.3-22)

The above equations can be used to predict pressure drop across beds.
Hence, the pumping requirements across packed beds can be estimated.

Exercises

1. Succinctly differentiate between

(a) Laminar and turbulent flows
(b) Pseudoplastic and dilatant fluids
(c) Pseudoplastic and viscoelastic fluids
(d) Bingham plastic and power law fluids
(e) Viscosity and kinematic viscosity

2. Which model is an applicable constitutive equation for blood?

3. How do the equation of continuity in Chapter 2 and the equations of motion
given in the tables in this chapter for laminar flow have to be modified so
that they become applicable for turbulent flow?

4. There exists a concept called ‘dynamic similarity’ that makes it possible to
use non-dimensional analysis for scale-up. Read up about the concept of
dynamic similarity.

5. In a micro-processing unit for biological analytes that is based on microfluidics,
multiple channels feed into a heating device that consists of a thin box-like
structure with top and bottom faces that can be heated to increase the
temperature of the fluid flowing through it. Even in the micro-dimensions,



the thickness of the box, d, or the space between the top and the bottom
faces can be considered very small compared to the length and breadth of
the heating box. An incompressible fluid of viscosity, µ, is flowing through
it, and the heating is not turned on. If the pressure drop between the inlet
and outlet of the heating box is a constant, K, derive an expression for the
velocity profile of the fluid between the top and bottom faces of the boxes,
when the flow is well developed; ignore entrance and exit effects. In a
circular capillary section of the same set-up, what would be the flow rate,
if the pressure due to surface tension is the only driving force for bulk flow
in that section?

6. Two glass plates are placed horizontally at a distance of 3d from each other
with a fluid in between them. A third thin rigid sheet (of negligible mass) is
fixed between the plates, at a distance of d from the top plate – the sheet
cannot move. The top plate is moved at a velocity of v ms–1, and the bottom
plate at 2 v ms–1. Determine the velocity profiles at steady state when the
plates are moved (a) in the same direction, and (b) in opposite directions.

7. It is well known that skiing in the snow-filled mountains in the northern
regions of our country is possible because there is water formation from the
snow/ice under the ski, due to pressure. This thin water layer provides the
lubrication needed and makes skiing possible. Interestingly, it can be looked
at as a water layer with the top part being bounded by the ski, and the bottom
by the stationary solid ground (covered with snow/ice). Consider a person
weighing 60 kg skiing on a 15° slope at a speed of 30 km h–1. The ski bottom
surface can be approximated to a rectangle of dimensions 14 × 80 cm2. If the
viscosity of water in the water layer is 1.8 × 10–3 N s m–2, estimate the
thickness of the water layer.

8. Set up the differential equations to obtain the velocity profile of a Newtonian
fluid flowing in laminar flow, in a duct of square cross-section.

9. In one of our earlier studies in our lab that investigated the effects of a
physical stress on the metabolic and genetic responses of cells, we needed
to grow cells over extended periods at defined shear stress. We had used
a co-axial cylinder set-up, and grew cells in the thin annular space between
the cylinders. The outer cylinder was rotated at different rpms, thereby
providing different shear rates, and hence different shear stresses on the
cells. Develop expressions for the shear stress and the shear rate on the cells
in terms of operational parameters, and discuss the expressions developed.

10. A lab deals with a particularly shear sensitive cell line which needs to be
transported from one point to another in a pipe of length L, diameter, D. It
was decided to use laminar flow for transport. Let the critical shear stress
that the cells can tolerate be τcrit, and the corresponding shear rate, assuming
that the fluid is Newtonian be ·γcrit. Let the critical shear stress/rate be in the
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range of shear that occurs in the laminar flow regime. Derive an expression
for the maximum flow rate that can be used to transfer a uniform solution
of the cells, of viscosity, µ, to ensure 80 % survival at the exit.

11. Semi-circular canals in the ear help the brain sense orientations of the head.
They are three half-circular, inter-connected tubes inside the ear which are
orthogonal (perpendicular) to each other. Each semi-circular canal is
approximately a torus with a radius of curvature, say R, and inner radius of
cross-section, a; a << R. Each canal is filled with a fluid called the endolymph,
and contains a gelatinous membrane called cupula, a motion sensor with hair
cells (cilia). The cilia move when the endolymph rushes past it and send a
signal to the brain. The movement in the endolymph is induced as a result
of twisting of the head. Hence a direct relation between angle of twist and
cupula movement helps the brain sense rotations. The endolymph and
cupula densities are constant and equal, under normal conditions, to avoid
the effect of gravity on the cupula. Assume the endolymph to be Newtonian,
with a density, r, and viscosity, n. Formulate a relationship between angular
acceleration of the head with the rotation axis vertically located through the
centre of the head, and cupula deflection in the corresponding semi-circular
canal.

12. Atherosclerosis is a disease caused by the rise in the level of cholesterol
in the body. The proteoglycans carried along the arteries are able to bind
to the lining in the arteries. This leads to plaque build-up in the arteries,
which results in the decrease of artery radius, and abnormal blood pressures.
In a patient with atherosclerosis, the pressure drop in the artery, by some
non-invasive method, was found to be ∆P′, instead of ∆P under normal
conditions. What is the thickness of the plaque built-up on the inner wall
of the artery, if it can be assumed that the plaque covers the entire inner wall
at the relevant region of the artery. Further assume that blood can be
approximated to a Newtonian fluid for this purpose.

13. A student working on the SDS-page experiment prepared the required reagents
for a stacking gel and kept it for his/her partner to process further. When
the partner got to it after about 10 min, (s)he loaded the stacking gel into
the pipette. Due to the time lapsed, the fluid behaves as a Bingham plastic
now. Neglecting the tip of the pipette, find the steady state velocity profile
in the pipette and the mass flow rate of the gel for a given constant pressure
drop exerted by the mechanism in the pipette.

14. The lachrymal sac stores tears, and the tears flow through the lachrymal
duct to the eye. By assuming that the lachrymal duct is a straight pipe of
12 mm length and 1 mm diameter, and by neglecting gravity, estimate the
pressure needed to force the tears into the eyes through the larchrymal duct
at a flow rate of 1.2 mL min–1 in laminar flow. Take the viscosity of the tears
to be 4.4 Pa. s, and its density to be 1000 kg m–3.



15. Pulsatile drug delivery systems have been used to deliver a desired amount
of drug at the desired time and location. Develop an expression for the time
dependent velocity of the drug solution for a given pressure drop, and other
needed parameters.

Some of the exercise problems given above were suggested/formulated by
G. Shashank, G. Vivek Sathvik, D. Divya Vani, I. Pradeep Kumar (6, 8), Akhil Sai
Valluri (7), S. Kousik, Sagar Laygude, Utsav Saxena (10–12), Uma Maheswari,
Namrata Kamat, Kiran, Kemun Khimun, Rashmi Kumari (13, 15), P. Raghavendran,
P. Vivek, K. Ramasamy and M. Ashok (14).

Fully Open-ended Exercise

Estimate the power needed to overcome the frictional drag in the trachea. Use
this to determine the efficiency of the trachea in the respiratory circuit, and
propose an easily measurable physical parameter that can be used to decide
whether a person with respiratory difficulties needs ventilator support. This
problem was formulated by Akhil Sai Valluri, for his CFA exercise (CFA stands
for choose-focus-analyse exercise). See end of Chapter 1 for some details.
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