
Biosystems & Biorobotics

G.K. Suraishkumar

Continuum Analysis 
of Biological Systems
Conserved Quantities, Fluxes and Forces



Biosystems & Biorobotics

Volume 5

Series editor

Eugenio Guglielmelli, Campus Bio-Medico University of Rome, Rome, Italy
e-mail: e.guglielmelli@unicampus.it

Editorial Board

Dino Accoto, Campus Bio-Medico University of Rome, Rome, Italy
Sunil Agrawal, University of Delaware, Newark DE, USA
Fabio Babiloni, Sapienza University of Rome, Rome, Italy
Jose M. Carmena, University of California, Berkeley CA, USA
Maria Chiara Carrozza, Scuola Superiore Sant’Anna, Pisa, Italy
Paolo Dario, Scuola Superiore Sant’Anna, Pisa, Italy
Arturo Forner-Cordero, University of Sao Paolo, São Paulo, Brazil
Masakatsu G. Fujie, Waseda University, Tokyo, Japan
Nicolas Garcia, Miguel Hernández University of Elche, Elche, Spain
Neville Hogan, Massachusetts Institute of Technology, Cambridge MA, USA
Hermano Igo Krebs, Massachusetts Institute of Technology, Cambridge MA, USA
Dirk Lefeber, Vrije Universiteit Brussel, Brussels, Belgium
Rui Loureiro, Middlesex University, London, UK
Marko Munih, University of Ljubljana, Ljubljana, Slovenia
Paolo M. Rossini, University Cattolica del Sacro Cuore, Rome, Italy
Atsuo Takanishi, Waseda University, Tokyo, Japan
Russell H. Taylor, The Johns Hopkins University, Baltimore, MD, USA
David A. Weitz, Harvard University, Cambridge MA, USA
Loredana Zollo, Campus Bio-Medico University of Rome, Rome, Italy

For further volumes:

http://www.springer.com/series/10421



Aims & Scope

Biosystems & Biorobotics publishes the latest research developments in three main areas:
1) understanding biological systems from a bioengineering point of view, i.e. the study of
biosystems by exploiting engineering methods and tools to unveil their functioning principles
and unrivalled performance; 2) design and development of biologically inspired machines
and systems to be used for different purposes and in a variety of application contexts. The
series welcomes contributions on novel design approaches, methods and tools as well as
case studies on specific bioinspired systems; 3) design and developments of nano-, micro-,
macro- devices and systems for biomedical applications, i.e. technologies that can improve
modern healthcare and welfare by enabling novel solutions for prevention, diagnosis, surgery,
prosthetics, rehabilitation and independent living.

On one side, the series focuses on recent methods and technologies which allow multi-
scale, multi-physics, high-resolution analysis and modeling of biological systems. A special
emphasis on this side is given to the use of mechatronic and robotic systems as a tool for
basic research in biology. On the other side, the series authoritatively reports on current theo-
retical and experimental challenges and developments related to the “biomechatronic” design
of novel biorobotic machines. A special emphasis on this side is given to human-machine
interaction and interfacing, and also to the ethical and social implications of this emerging
research area, as key challenges for the acceptability and sustainability of biorobotics tech-
nology.

The main target of the series are engineers interested in biology and medicine, and specif-
ically bioengineers and bioroboticists. Volume published in the series comprise monographs,
edited volumes, lecture notes, as well as selected conference proceedings and PhD theses.
The series also publishes books purposely devoted to support education in bioengineer-
ing, biomedical engineering, biomechatronics and biorobotics at graduate and post-graduate
levels.

About the Cover

The cover of the book series Biosystems & Biorobotics features a robotic hand prosthesis.
This looks like a natural hand and is ready to be implanted on a human amputee to help them
recover their physical capabilities. This picture was chosen to represent a variety of concepts
and disciplines: from the understanding of biological systems to biomechatronics, bioinspira-
tion and biomimetics; and from the concept of human-robot and human-machine interaction
to the use of robots and, more generally, of engineering techniques for biological research and
in healthcare. The picture also points to the social impact of bioengineering research and to its
potential for improving human health and the quality of life of all individuals, including those
with special needs. The picture was taken during the LIFEHAND experimental trials run at
Università Campus Bio-Medico of Rome (Italy) in 2008. The LIFEHAND project tested the
ability of an amputee patient to control the Cyberhand, a robotic prosthesis developed at
Scuola Superiore Sant’Anna in Pisa (Italy), using the tf-LIFE electrodes developed at the
Fraunhofer Institute for Biomedical Engineering (IBMT, Germany), which were implanted
in the patient’s arm. The implanted tf-LIFE electrodes were shown to enable bidirectional
communication (from brain to hand and vice versa) between the brain and the Cyberhand. As
a result, the patient was able to control complex movements of the prosthesis, while receiving
sensory feedback in the form of direct neurostimulation. For more information please visit
http://www.biorobotics.it or contact the Series Editor.



G.K. Suraishkumar

Continuum Analysis
of Biological Systems

Conserved Quantities, Fluxes and Forces

ABC
�

ANAMAYA

C
O

N
S

IS

T
IN

G OF KNO
W

L
E

D
G

E



G.K. Suraishkumar
Department of Biotechnology
Indian Institute of Technology Madras
Sophisticated Analytical Instr. Facility
Chennai
India

ISSN 2195-3562 ISSN 2195-3570 (electronic)
ISBN 978-3-642-54467-5 ISBN 978-3-642-54468-2 (eBook)
DOI 10.1007/978-3-642-54468-2
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014932429

Co-published by Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, Germany
and Anamaya Publishers, F-154/2, Lado Sarai, New Delhi-110030, India.

c© Anamaya Publishers, New Delhi, India 2014

The print edition is sold and distributed by Springer worldwide, except in Malaysia and SAARC
countries - Islamic Republic of Afghanistan, People’s Republic of Bangladesh, Kingdom of Bhutan,
Republic of India, Republic of Maldives, Federal Democratic Republic of Nepal, Islamic Republic of
Pakistan, and Democratic Socialist Republic of Sri Lanka.

The print edition is sold and distributed by Anamaya Publishers in Malaysia and SAARC countries –
Islamic Republic of Afghanistan, People’s Republic of Bangladesh, Kingdom of Bhutan, Republic of
India, Republic of Maldives, Federal Democratic Republic of Nepal, Islamic Republic of Pakistan, and
Democratic Socialist Republic of Sri Lanka.

The electronic edition is sold and distributed by Springer worldwide.

This work is subject to copyright. All rights are reserved by Anamaya Publishers and Springer-Verlag,
whether the whole or part of the material is concerned, specifically the rights of translation, reprinting,
reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reserva-
tion are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically
for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of Anamaya Publishers’ location, in its current version, and permission for use must
always be obtained from Anamaya Publishers. Violations are liable to prosecution under the respective
Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc.
in this publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use. This work may not
be translated in whole or in part without the written permission of Anamaya Publishers.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the author nor the publishers can accept any legal responsibility for any errors or
omissions that may be made. The publishers make no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Foreword 

This textbook should be a welcome addition for teachers and students of 
biotechnology. On the first few pages one encounters words like metabolic 
pathways, enzymes, genes, and aerobic bioreactors. This should suggest to typical 
readers that this book will be “bio-friendly”. 

The general outline of the book is sensible, with mass transport, momentum 
transport, energy transport, and charge transport being discussed in that order. The 
book concludes with a chapter on combined methods of transport. Some topics 
have been omitted from the book, and wisely so. There is only a limited discussion 
of radiative heat transfer, a very complex subject that is perhaps of marginal 
interest in biology and physiology. There is no discussion of the kinetic theory of 
the transport properties, and this topic would be only of marginal interest to the 
intended readership. 

There are problems at the end of each chapter dealing with biological problems, 
as well as in the text itself. At the end of Chapter 4, there is even a “Harry Potter” 
problem to provide a bit of diversion. There are also some open-ended problems at 
the ends of chapters, which should provide material for group or individual 
projects. 

The author has provided units for all quantities introduced, and this should be 
particularly appreciated by the students. The notation is standard throughout, so 
that the reader will have no difficulty in consulting other textbooks and handbooks 
as the need may arise. 

A rather complete appendix on vector and tensor operations appears at the end 
of the book. Here, and throughout the text, standard Gibbs notation is used. This 
will be particularly helpful for any student who has forgotten the definitions of the 
various “del” operations. 

It is a pleasure to recommend this well-balanced and practical volume. 
 

Prof. R.B. Bird 
University of Wisconsin-Madison 

1415 Engineering Drive, Madison, WI 53706, USA 
 

 
 

 



Preface 

It was a bright morning in December 2007, when one of my colleagues walked in 
to my sun-lit office and threw a tantrum that he would not teach a course that he 
had earlier agreed to teach in the Republic (January-May) 2008 semester. Unlike 
in many parts of the world, the seasons in our part of the country can be only 
described as hot, hotter, and hottest. Therefore, I  use two major political events of 
the country to distinguish between the two semesters, at least in my course 
material – the ‘Republic semester’, that contains the Republic day (26th  January) 
and the ‘Independence semester’ containing the Independence day (15th  August). 

Back to the sun-lit morning in 2007: the reasons given by the colleague for not 
wanting to teach the course were, at best irrational. I had to deal with it because I 
was the Department Head then. I feel fortunate and privileged to have been given 
two opportunities to significantly contribute to the set-up of academic departments 
– as the first formal head of the Department of Biotechnology at the Indian 
Institute of Technology (IIT) Madras (2005–2008), and again as the first head of  
the Department of  Biotechnology and Biomedical Engineering at the new IIT at 
Hyderabad (2009–2011). Setting-up a department so that its foundations are 
strong and deep which would enable its significant contributions to an evolving 
field in the future was indeed an exciting task. The related thoughts and converting 
those to actions, with the support of most faculty members in the department, were 
exhilarating, despite minor irritants such as dealing with a few irrational, 
politicaster colleagues. 

I realised that it would be best not to insist that the colleague teach that course, 
to spare the students who would be taking the course. So, I started to look for 
others in the department who could teach the course, but found none, as the 
teaching duties were agreed upon 9 months prior to that time, and they were all set 
to teach their assigned courses. The course for which I was trying to find a lecturer 
was unit operations and transport processes, which was taught from a unit 
operations perspective by the colleague who threw the tantrum. Being in a mind-
set of getting into new things because of the involvement with setting up a new 
department, I thought to myself, ‘how bad can teaching transport be?’, although I 
had never taught transport earlier, and my research had an experimental base. 
Also, I was in my final year as the department head, with a clear realisation that I 
had done my best in whatever I could do for setting up good initial conditions for 
the department, and now, the department had to come up on its own. With that, I 
jumped into the deep end of the pool and decided to teach that course myself in 
the next semester that was beginning in a few days, and it is from the distils from 
this course that this book originated. 
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I did not want to teach transport from a unit operations perspective as the 
earlier person had done because that would seriously limit the confidence of the 
students when they analyse new situations, especially in an evolving field such as 
biological engineering. I had invested significant time in thinking about and 
working on  a  curriculum for  biological engineering that was emerging at that 
time. I had realised that a good engineering curriculum emphasises imparting the 
necessary knowledge in a way that the students understand the knowledge, and 
use it toward analysis and design of appropriate systems. Thus, for example, in a 
biotechnology/biological engineering/related bio…-engineering curriculum there 
need to be courses that either separately or together cover knowledge, 
understanding, analysis and design of the biological systems. 

Therefore, during the first offering of the course in the Republic 2008 semester, 
I taught the course the way I learnt transport over many years, starting with an 
initial exposure through a course, and later, through osmosis and occasional use in 
research. The paradigm-shifting, classic book by Bird, Stewart and Lightfoot was 
the base text, and I made up the examples with a biological flavour from my 
experiences and research. I also found the book, Transport Phenomena in 
Medicine and Biology by M.M. Lih, to be useful. As I taught the course that 
semester, I realised that momentum transport was a little too abstract for first 
mention to students. The mass transport aspects are usually easy to intuitively 
grasp, and hence it seemed a good candidate with which the transport discussion 
could be begun. Further, the concept of charge conservation/transport, which is an 
important principle for biological systems because many biological entities are 
charged, is not explicitly covered in any other book of this kind, especially in the 
context of forces and fluxes. In addition, I realised through experience that it is 
better to introduce the fluxes resulting from primary driving forces, before the 
fluxes that result under the simultaneous action of more than one driving force. 
This approach, and the consequent ‘flow’ of material, provided a better 
understanding of the relevant principles to the students. 

I also realised that about 80% of the students in a typical undergraduate class in 
biotechnology are not naturally talented in mathematics (e.g. they are unable to 
foresee the results of multiple sequential steps), and spend a lot of time in trying to 
understand how the various mathematical steps in a textbook are arrived at; the 
typical textbook usually does not elaborate the intervening steps in a derivation. A 
significant percentage of interested students in a typical class get frustrated when 
they are unable to work out the mathematics. Thus, if the mathematical steps are 
explicitly shown, the appreciation for the rigour in the subject becomes better to 
an average student. Also, it would assure such students that it is possible to master 
the mathematics aspect through effort and focus. Of course, it may be boring to a 
student who is naturally talented in mathematics (less than 20% in a typical 
undergraduate class), and such students can be requested to skip the detailed steps. 

The above were incorporated the next time the course was taught, and 
significantly improved upon the third time. It struck me during the Republic 2009 
semester that the above could be disseminated to a larger audience, and the first 
manuscript was ready in the Republic 2010 semester. I felt that it was good to get 
the students’ perspective on the exercise problems, and assigned the same as a 
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group exercise to students in consecutive years, with a 10% weightage toward the 
final grade. The names of the students who suggested/formulated the exercise 
problems that were selected for inclusion in this book are given just after the 
exercise problems in each chapter. 

I have an interest in the learning process and do experiments on the same. Some 
worthwhile experiments have been better disseminated, and one such is the CFA 
exercise. CFA stands for choose, focus, analyse, respectively, which is a 
completely open-ended exercise designed to develop some desirable skills in 
students. Students needed to choose a problem of relevance to industry or any 
human endeavour and analyse it using the principles learned in class. The 
evaluation was based on originality in approach, 15%, focus level, 15%, depth of 
analysis, 20%, quantum of work, 20%, original contribution, 20%, and 
presentation (mainly communication) 10%. A concise report in the format that the 
student thought would best communicate the work was needed to be submitted a 
week before the last day of classes. The students were told that it will help if the 
problem is chosen well in advance (within the first four weeks) and sufficient 
time, distributed throughout the course duration, is devoted. My students fondly 
remember this exercise even after 15 years of having done them because they 
learnt best through that exercise. Some of those exercises have been included in 
most chapters in the book. 

This book aims to fill the need for a comprehensive book on the analysis of 
biological systems in the continuum regime, in the context of forces and fluxes, to 
provide the student with the required skills to think-out-of-the-box in novelty 
requiring situations at one end, to a full appreciation of the relevant principles and 
its interconnections, at the other end. Also, it aims to be useful to industry 
personnel as a reference for the relevant principles. In the academia, the book can 
be used as a text for a variety of related courses in a biological 
engineering/biotechnology curriculum, such as momentum, heat and mass 
transfer, transport processes, and others. The material can be taught comfortably in 
a one semester 4 credit course in the fourth or the fifth semester. The instructors, 
after covering the basic concepts in the chapters, two to five, can choose the 
relevant combinations of forces and fluxes from the examples given in the sixth 
chapter. The material in the first half of the first chapter is usually covered in great 
detail in an earlier course, say material and energy balances. The instructors can 
use that material to review the earlier course, and introduce the material balance 
formulations for specific use in this course, may be in about three 50-minutes 
classes. 

I would like to acknowledge the following people for their input and support 
toward this book: 

 
• All my students who took the course over the past six years, and have thus 

provided valuable input 
• Archanaa S. and Sandhya Moise, who first converted my hand-written 

notes to a soft copy, Srivatsan, who drew some charts, and Sukanya 
Moudgalya, who provided useful feedback 
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• Professor Robert Byron Bird who wrote the foreword  –  I am truly amazed 
at the ability and commitment of this legend at his age; he read the 
entire 350+ pdf pages of the manuscript in three days flat, and gave excellent 
input to improve the book, including pointing out errors where CV  was used 

in the place of CP! 

• Lokeshwarri, my wife, who in her typical quiet way, whole-heartedly 
supported this effort. At one time, she was more interested than me in seeing 
the book published, and actively sought information on suitable publishers 
from her friends 

• Sreshtaa, my daughter, who provided me an opportunity to think from a 
different perspective that was essential for the book to turn out the way it 
has 

• My professional friends at IIT Bombay who supported me in this long 
journey to publish 

• My  colleagues at  the  Sophisticated Analytical Instrument Facility, 
Chennai at IIT Madras, for which I was responsible; it was during that period 
(2009–2013) when much of the actual writing took place. They cooperated 
well with my timings – I wrote in the mornings closeted in my office, 
and was available for the needed meetings only in the afternoons 

• My primary school classmates from the Christ King Primary School, 
Tambaram, Chennai – getting back in touch with them, some friends much 
more than the others, through the facebook group that I initiated, and email 
messages, put me in touch with my childhood self, and that was of crucial 
importance for me. It is amazing how some special bonds last more than 36 
years even without being in touch! 

 
In addition, thanks for their efforts are due to Anamaya Publishers,  

Mr. Manoj Karthikeyan, and the entire publication team including the technical 
editor, Ms. Jebah, who seemed to be involved with this book, and has done an 
excellent piece of work. 

 
G.K. Suraishkumar 
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Chapter 1
The Principle

There are some physical quantities that are conserved in nature. Examples
include mass (conserved in many cases of engineering interest), energy,
momentum, angular momentum, charge and spin. Conserved quantities are
a boon when appropriate systems need to be designed and analysed. This
is because generally, in most cases, when dealing with equations of the
above quantities, the left-hand side equals the right-hand side (LHS = RHS),
i.e. the above quantities remain unchanged, for example, in a process.

In this book, we will look at the consequences when conservation of
the above mentioned physical quantities are invoked in the context of ‘forces’,
and the relevant ‘fluxes’ that result from the forces in biological systems.
The meaning of the terms ‘forces’ and ‘fluxes’ will become clearer as we
go along.

Let us begin with the principle of conservation of mass and move, as
needed, to conservation of momentum, energy, and charge.

1.1 Conservation of Mass

We know from the physics we learnt at high school that ‘mass can neither
be created nor destroyed’. With more in-depth knowledge, especially about
mass to energy conversion in nuclear reactions, we understood the limitation
of the above conservation principle, and modified the principle to state that
‘mass can neither be created nor destroyed when we consider non-nuclear
processes’. In this book, we limit ourselves to non-nuclear processes (there
is mass to energy conversion in nuclear processes) that occur at velocities
much less than the velocity of light to neglect mass dilation effects, and
hence we can be comfortable using the simpler mass conservation principle.

How do we use the mass conservation principle?

G.K. Suraishkumar, Continuum Analysis of Biological Systems, Biosystems & Biorobotics 5,  3 
DOI: 10.1007/978-3-642-54468-2_1, © Anamaya Publishers, New Delhi, India 2014   



4 1 The Principle

1.1.1 A Convenient Form of the Equation of Mass Conservation

Let us first generate the relevant equation of mass conservation for a
system, which is easier to use. Why are we doing it for a system? If we
do it for a system, the equation becomes general enough to use under a
large variety of situations, as long as the system is appropriately defined. It
may be recalled from a fundamental course in thermodynamics that a
‘system’ is an aspect on which we choose to focus our attention. It could
be a biological cell, or a tiny part of a cell, at one end of the range, to a
vessel in a process plant or the entire process plant itself, at the other end
of the range of length scales with which we are concerned in this book.

The system can be as large as one’s imagination permits, according to
the needs of the analysis, but it cannot be smaller than the space that would
allow us to consider the material as a continuum, if we need to apply the
principles of analysis given in this book. ‘Continuum’ refers to the situation
when there are a large number of unitary particles (say molecules) per unit
volume, and the substance under consideration can be considered as a
continuous one. When the number of molecules per unit volume decreases
below a certain value, the properties of the substance, say density, at the
same position, will fluctuate widely with time. Then, the substance cannot
be considered as being continuous, and we are in the non-continuum regime.
It needs to be understood that the properties of a substance can vary across
the substance, i.e. be a function of the position; such a substance is merely
heterogenous in nature—this does not preclude the application of the
continuum principle for the analysis of such a substance. Further, in biological
systems, as a rule of thumb, if the number of molecules under consideration,
say inside the cell, is less than about 100, we cannot use the continuum
analysis principles. For example, when we are studying the interactions
between proteins or between DNA and proteins, the continuum approach
will not be suitable. Nevertheless, methods of statistical mechanics can be
employed in such cases. This book will limit itself to the continuum regime.

Let us indicate the boundaries of our system by a dashed line, as shown
in Fig. 1.1.1-1.

Let there be n input streams, m output streams and k components.
There are only five things that can happen to any component of interest in
the context of a system:

1. It can enter (cross the system boundaries into) the system or be an
‘input’ to the system (I )

2. It can exit (cross the system boundaries out of) the system or be an
‘output’ from the system (O)

3. It can be generated as a result of say, a reaction in the system (G)



4. It can be consumed as a result of say, a reaction in the system (C)
5. It can accumulate in the system (A)

The quantities shown in brackets above, I, O, G, C and A, denote the
amounts of the species undergoing various fates in the context of the
system.

Intuitively, we can write the following algebraic relationship between
the fates:

I + G – O – C = A (1.1.1-1)

As may already be known, the time rates or amounts per time are more
important to engineers than the actual amounts. For example, let us say that
we are interested in determining the water level in a 50 l bucket with water
at a certain time after we start filling it from a tap. Let us make it slightly
complex by adding that the bucket was initially half full, and that it has a
hole at the bottom through which water flows out. In such cases, the
amounts or volumes are not of interest. It is the flow rates of input (tap)
and output (hole) that are of interest.

If we represent the time rates of I, G, O and C with a dot above the
respective symbols, and the time rate of A by a derivative, a differentiation
of Eq. 1.1.1-1 with respect to time yields

or
∂+ − − = =
∂

� � ��
A dA

I G O C
t dt

(1.1.1-2)

We represent the accumulation rate of A explicitly by a derivative only for
ease of direct application of the equation for analysis. In the above equation,
we converted the partial derivative into a total derivative, because we consider
the system to be a well-mixed one (no variation with position). Also note
that the quantities on the LHS may be constant or may vary with time,
when a large time scale is considered for integration.

Fig. 1.1.1-1 Representation
of a system with inputs
and outputs

1.1 Conservation of Mass 5
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1.2 Application of Mass Conservation to a Biological Cell:
Metabolic Flux Analysis

We know from a basic course in biochemistry that there exist thousands of
bioreaction pathways in the cell, and that they are crucially responsible for
the functioning of the cell. Manipulation of metabolic pathways to improve
bio-product yields is an age-old concept. For example, many empirical
techniques such as random mutagenesis, medium formulations, and r-DNA
technology that is based on a better understanding than the earlier mentioned
techniques, are all directed toward manipulation of metabolic pathways.
Nevertheless, the choice of the gene to be manipulated to improve or
suppress the needed enzymes, or the choice of the substrate to be provided
was decided through extensive experiments or by an intuitive feel. Nowadays,
metabolic flux analysis (MFA) provides us with a more accurate tool to
make a reasonably rational choice of enzymes/genes to manipulate or
appropriate substrate to provide. It is based on the principle of mass
conservation applied on the cell, by considering the cell as the system of
interest. Here, our interest is to represent the rates of the various relevant
reactions inside the cell in a useful form/framework. Further analysis is
required to make sense of, or to use the representation. Such details are
beyond the scope of this text. However, they can be found in books on
metabolic analysis such as that by Stephanoupoulos et al. (1998).

To illustrate the basis for the method, let us consider a few reactions
that occur in the cell, and represent them as shown in Fig. 1.2-1. Let us
consider the cell as our system, and let us indicate the system boundaries
(assume it to be the surface of the cell) by dotted lines as shown in
Fig. 1.2-1. From the figure, it can be seen that So, C and D are extracellular
metabolites; S, A and B are intracellular metabolites. Let the rates of the
individual steps, r0, r1, r2, r3 and r4 be represented as mmole per second,
or in more practical terms, mmole (g cell)–1 s–1. For historical reasons, the
above rates are referred to as metabolic ‘fluxes’, although the term, ‘flux’,
refers to a different quantity in an engineering context, as we will see in
Chapter 2.

Let us first consider the metabolite A. A material balance on the metabolite
A, using the Eq. 1.1.1-2 gives

+ − − =� � �� A
A A A A

dA
I G O C

dt
(1.2-1)

which can be written by combining the terms differently, as

( ) ( )− − − =� � � � A
A A A A

dA
G C O I

dt



or as

(Net generation rate) (Net transport rate)− = A
A A

dA

dt
(1.2-2)

A similar balance can be written for each of the metabolites. Thus, the
number of balances equals the number of metabolites.

Let us write material balances on intracellular variables S, A and B, by
considering the cell as the system. Let us consider r0 as the generation rate.
It can be considered as the transport rate across the cell envelope too.
However, we need to account for it only once, i.e. either as a generation
rate or as a transport (input) rate, not both. In terms of the rates r0 to r4,
we can write the balances using Eq. 1.2-1 as:

0 1 2− − = dS
r r r

dt
(1.2-3)

1 3− = dA
r r

dt
(1.2-4)

2 4− = dB
r r

dt
(1.2-5)

Let us write material balances on extracellular variables, So, C and D, by
considering cell surroundings as our system of interest. Different systems
can be considered for different balances, as long as one is careful not to
mix up the systems while writing each balance (this happens to be a
common error, and needs to be considered while checking the balances).

o
0

dS
r

dt
− = (1.2-6)

S o

r0

S
r2r1

A B
C D

r3 r4

Fig. 1.2-1 An example
of a framework for
metabolic flux analysis

1.2 Application of Mass Conservation to a Biological Cell 7
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3 =
dC

r
dt

(1.2-7)

4 =
dD

r
dt

(1.2-8)

The above equations can be written in a compact form using matrices
as:

o
0

1

2

3

4

1 0 0 0 0

1 1 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0

0 0 0 0 1

S
r

S
r

Ad
r

Bdt
r

C
r

D

−   
    − −     
    −
  =   −     
    
     

      

(1.2-9)

or

. =� � �
d

S r x
dt

(1.2-10)

where �S  is stoichiometric matrix, �r  is reaction rate vector and �x  is state
vector (vector of state variables).

Equation 1.2-10 that can be used to quantify metabolic fluxes (note as
mentioned before that the term ‘flux’ in the metabolic context, is historically
used to denote rates. Its units are moles time–1 or mass time–1. In the next
chapter, we will look at a more consistent definition of flux) based on
experimental data, with further assumptions such as pseudo-steady state,
can also be utilised for various kinds of analysis such as nodal rigidity
analysis, identification of alternate pathways in the cell, calculation of
maximum theoretical yields, genome-scale analysis, and others. The reader
is referred to specialised texts on metabolic analysis (e.g. Stephanoupoulos
et al. 1998) for details.

1.3 Application of Mass Conservation to Macroscopic Systems

Now, let us look at how the mass conservation principle can be applied to
get useful information at a larger length scale, around a biologically relevant
macro-system. Consider a bioreactor, which, as may be known, is a controlled
and instrumented vessel that is used for making bio-products. Let us focus
on one aspect of an aerobic bioreactor, i.e. oxygen supply. An aerobic
bioreactor, as can be recalled, is one that employs oxygen requiring (aerobic)



microorganisms or higher cells to make bio-products. Air is usually the
source of oxygen, and it needs to be humidified before entry into the
bioreactor to minimise evaporation loss of water from the bioreactor contents.
A humidifier is used to achieve the same.

The humidifier is fed with dry air (with no water vapour; it is removed
during the processing of air to avoid contamination of the bioreactor) and
clean liquid water. The liquid water flow rate is 18 cc min–1. If 5 mole %
of oxygen is needed in the output stream of the humidifier for supply to the
bioreactor, let us determine that molar rate at which air should be supplied
to the humidifier, when it operates at steady state.

First, let us represent the situation using a figure, along the values of
interest from the problem statement (Fig. 1.3-1). The molar flow rates of

streams are represented by �M  and the mole fraction in a stream is
represented by x.

Let us consider the humidifier as our system, and let us work with
moles. We prefer to work with moles because of the requirements of the
problem. Mole = mass/molecular mass, and if there is no change in the
species, say due to a reaction during the process, the mole balances on
individual species are as good as the mass balances. Nevertheless, note that
mass is more general, and when unsure, it is safe to balance masses.

We also know that dry air is made of 21 % oxygen and 79 % nitrogen
by volume or mole; let us ignore the other minor components of air for this
problem. Thus, the molar flow rates of oxygen and nitrogen in the air
stream can be written as

2O , air air0.21M M=� � (1.3-1)

2N , air air0.79M M=� � (1.3-2)

The flow rate of H2O is 18 cc min–1 = 18 g min–1 (since the density of
water can be taken as 1 g cc–1) = 1 mole min–1 (molecular mass of H2O
= 18).

2H OM�

airM�

PM�

2O , 0.05Px =

Humidifier

Fig. 1.3-1 The system
considered for analysis

1.3 Application of Mass Conservation to Macroscopic Systems 9
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Now, let us perform the mass balances to find the molar flow rate of
air. Note that since we are doing the analysis at steady state, all the time
derivatives will be zero.

0( )SS

dA
I G O C

dt

=

+ − − =� � ��

O2 Balance

2 2 2 2

0 0

O , in O , generated O , out O , consumed 0M M M M

= =

+ − − =� � � � (1.3-3)

air0.21 0.05 0PM M− =� �

or

air
0.21

0.05PM M=� �

Total Mole Balance

Since there is no generation or consumption of moles in this process,
Eq. 1.3-3 is valid. Thus

2air H O( ) 0PM M M+ − =� � � (1.3-4)

air air
0.21

1 0
0.05

M M+ − =� �

1
air 0.31 mol minM −=�

From experience, it is known that significant practice is needed by average
students before they feel comfortable applying the material balance principle
even to macroscopic systems, although the principle and the mathematics
involved are simple. The above sections are intended to serve as examples
of the material balance principle being applied to biological systems. Some
more exercises for practice are given toward the end of this chapter.



1.3.1 Challenges in Oxygen Supply to Bioreactors

Industrial bioreactors are large vessels, typically 10,000 to 100,000 litres.
Cells multiply in these vessels to reach high concentrations – ten billion
(1010) cells per ml is typical for microorganisms such as bacteria, which
measure about 2 microns in size – and as a result of a complex set of
reactions occurring inside them, make the product of interest. For many
cells, oxygen is a requirement for these reactions to occur.

Nevertheless, supplying oxygen at adequate levels to the bioreactor has
remained a challenge. This is because the normal mode of oxygen supply
by bubbling air (aeration), is inadequate to meet the oxygen needs of the
cells. Augmentation with pure oxygen is usually expensive. Further, the
normal aeration and agitation levels in the bioreactor can result in high shear
(forces which can tear cells apart) levels. Therefore, a related challenge is
that of providing a gentle enough environment in the bioreactor with minimum
shear for the cells to multiply and make products optimally.

The liquid phase oxygen-supply strategy (LPOS) can effectively
overcome both the above challenges (Sriram et al. 1998). It is also relatively
inexpensive. The LPOS involves providing oxygen by using a ‘green
chemical’, hydrogen peroxide, which is added according to the need. The
added hydrogen peroxide is converted to oxygen using an enzyme, catalase,
which is made by the cells, themselves. Although hydrogen peroxide is toxic
at high concentrations, the low concentrations employed in the LPOS do
not harm the cells at all. While studying and analysing the LPOS (Sriram
et al. 1998), material balances play an important role, as may be evident
from some of the exercises at the back of the book.

1.4 Useful Forms of Mass Conservation in Fluid Systems

1.4.1 What is a Fluid?

A fluid – either a gas or a liquid – is a substance that takes the shape of
the vessel containing it. All real fluids have a property called viscosity
associated with them which determines their behaviour under many
circumstances. We will look at this aspect in more detail in a later chapter.

1.3 Application of Mass Conservation to Macroscopic Systems 11
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1.4.2 Useful Derivatives

Before we look at mass conservation in fluids, let us familiarise ourselves
with the kinds of derivatives that we need. Let us say that we are interested
in studying the effect of currents on fish concentration in the ocean. We
are equipped with a sonar based fish counting device on a motor boat with
strong anchors.

The fish concentration c, is a function of space (x, y, z) and time (t).
If we drop our strong anchors, and count the fish, we observe the
concentration at a fixed position. The variation in fish concentration with
time is given by

, ,

∂ 
 ∂ x y z

c

t (1.4.2-1)

i.e. partial derivative of c with respect to t, at constant x, y, z.
Typically, x, y, z are not explicitly shown as constants in the partial

derivative, unless required to avoid confusion.
Now, if we raise the anchor, start the engine of the motor boat and

move about in the ocean, the time rate of change of c is given by the
application of the chain rule as

∂ ∂ ∂ ∂ ∂ ∂ ∂= + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

dc c c x c y c z

dt t x t y t z t

Since, c = f (t, x, y, z), but x = f (t), y = f (t), z = f (t), i.e. only functions
of t, we can replace the partial derivatives with t by total derivatives.

∂ ∂ ∂ ∂= + + +
∂ ∂ ∂ ∂

dc c c dx c dy c dz

dt t x dt y dt z dt (1.4.2-2)

Here, , and
dx dy dz

dt dt dt
 are components of the boat velocity and, ,

c c

x y

∂ ∂
∂ ∂

and 
∂
∂
c

z
 are components of the concentration changes with respect to the

boat’s position at a certain time. Thus, the total derivative reflects the
concentration changes with respect to both time and the observer’s position.

Now, suppose we shut off the engines, but do not drop anchor. Then,

we move about with the velocity of the stream/current/region, v
�

 (local
velocity). When this happens, the change in fish concentration with time

will depend on the local velocity, .v
�

 Such a derivative is called ‘time
derivative for the motion’ or ‘substantial derivative’. It is expressed as



x y z
Dc c c c c

v v v
Dt t x y z

∂ ∂ ∂ ∂= + + +
∂ ∂ ∂ ∂ (1.4.2-3)

where vx, vy, vz are the components of the local velocity .v
�

This can be expressed more compactly in vector notation as

( . )
Dc c

v c
Dt t

∂= + ∇
∂

�

�

(1.4.2-4)

To understand the second term on the RHS in Eq. 1.4.2-4, note that

1 2 3jv v v kv= + +
�

�� �ι

and

j k
x y z

∂ ∂ ∂∇ = + +
∂ ∂ ∂

�

� �ι

, j
� �ι  and k

�

 are the unit vectors in the x, y and z directions, respectively.

Thus, a dot product of the above vectors, which is done by a term-by-term
multiplication of the coefficients for the coefficients of the resultant vector,
would yield the second term on the RHS of the Eq. 1.4.2-3.

When we take the ‘time derivative following the motion’, we follow an
approach called the ‘Lagrangian approach’ (after the French mathematician,
J.L. Lagrange) where we study a tiny element of fluid that follows the
motion of the main body of the fluid. The shape and volume of the element
and the density of the material contained in the element can be different at
different points of the flow, but the mass within the element remains constant.

When the system is a small element that is fixed in space, and is of
constant volume, the approach is called Eulerian (pronounced Oyler, after
the Swiss mathematician and physicist, Leonard Euler). We will predominantly
use the Eulerian approach in this text.

1.4.3 Equation of Continuity for a Single Component System

Let us consider a fixed volume element in the space of volume ∆V = ∆x
∆y ∆z through which the fluid flows. Consider a right-handed coordinate
system for our analysis as shown in Fig. 1.4.3-1.

Let us use the general material balance equation that we have developed
earlier in this chapter.

( )
dA

I G O C I O G C I O P
dt

= + − − = − + − = − +� � � � � � �� � � � (1.4.3-1)

where P�  is the net rate of production.

1.4 Useful Forms of Mass Conservation in Fluid Systems 13
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(x + ∆x, y + ∆y, z + ∆z)

(x, y, z)

Z

Y

X

Fig. 1.4.3-1 A volume
element in a right-
handed coordinate
system

Since we are considering total mass here (no generation and
consumption), the equation reduces to

dA
I O

dt
= − �� (1.4.3-2)

This is a three-dimensional flow. Therefore, we need to consider the
contributions from all directions. Let us do them one by one.

Before that, let us note that ρ (kg m–3) × v (m s–1) = mass flux ρv (kg
m–2 s–1). Thus

Rate of  mass in through the face at  ( ) |

Rate of  mass out through the face at  ( ) |

Rate of  mass in through the face at  ( ) |

Rate of  mass out through the face at  (

x x

x x x

y y

y

x v y z

x x v y z

y v x z

y y v

+∆

= ρ ∆ ∆
+ ∆ = ρ ∆ ∆

= ρ ∆ ∆

+ ∆ = ρ ) |

Rate of  mass in through the face at  ( ) |

Rate of  mass in through the face at  ( ) |

( )
Rate of  mass accumulation within the volume element

( )

y y

z z

z z z

x z

z v x y

z z v x y

V

t
x y z

t

x y z
t

+∆

+∆

∆ ∆

= ρ ∆ ∆
+ ∆ = ρ ∆ ∆

∂ ρ=
∂

∂ρ ∆ ∆ ∆=
∂

∂ρ= ∆ ∆ ∆
∂

Therefore, the mass balance using Eq. 1.4.3-2 yields

{ }

{ }
{ }

( ) | ( ) |

( ) | ( ) |

( ) | ( ) |

x x x x x

y y y y y

z z z z z

x y z y z v v
t

x z v v

x y v v

+∆

+∆

+∆

∂ρ∆ ∆ ∆ = ∆ ∆ ρ − ρ
∂

+ ∆ ∆ ρ − ρ

+∆ ∆ ρ − ρ (1.4.3-3)



If we divide throughout by ∆x∆y∆z, we get

{ } { } { }1 1 1
( ) | ( ) | ( ) | ( ) | ( ) | ( ) |x x x x x y y y y y z z z z zv v v v v v

t x y z+∆ +∆ +∆
∂ρ = ρ − ρ + ρ − ρ + ρ − ρ
∂ ∆ ∆ ∆

When we impose the limit of an infinitesimal volume, i.e. ∆x → 0, ∆y →
0 and ∆z → 0, we get

x y zv v v
t x y z

∂ρ ∂ ∂ ∂ = − ρ + ρ + ρ ∂ ∂ ∂ ∂ 
(1.4.3-4)

In vector notation

( . )v
t

∂ρ = − ∇ ρ
∂

�

�

(1.4.3-5)

Now let us go back to Eq. 1.4.3-4 and expand the RHS using chain rule

yx z
x y z

vv v
v v v

t x x y y z z

∂ ∂ ∂∂ρ ∂ρ ∂ρ ∂ρ= − ρ + + ρ + + ρ + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

Upon rearrangement, we get

yx z
x y z

vv v
v v v

t x y z x y z

∂ ∂ ∂∂ρ ∂ρ ∂ρ ∂ρ+ + + = − ρ + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
(1.4.3-6)

This can be written using our definition of substantial derivative (Eq. 1.4.2-4)
and vector notation as

( . )
D

v
Dt

ρ = − ρ ∇
�

�

(1.4.3-7)

Equations 1.4.3-5 and 1.4.3-7 are useful forms of mass concentration in
fluid systems and are forms of the ‘equation of continuity’ applicable to
‘continuum’ systems when the mean free path of the molecules (distance
travelled by a molecule before colliding with another molecule) is less than
a characteristic length.

When the density of a fluid can be assumed to be constant (fluid is
incompressible), the LHS of the equations of continuity above go to zero.
Thus, for an incompressible fluid, the equation of continuity simplifies to

( . ) 0v∇ =
�

�

(1.4.3-8)

Example 1.4.3-1

A design of a bioprocess device that is expected to handle a liquid presents the
following flow in it. Check whether the design is feasible.

1.4 Useful Forms of Mass Conservation in Fluid Systems 15
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vx = k1(x
2 + y2)

vy = k2(y
2 + z2)

vz = k3(z2 + x2)

Solution

Since the flow equations need to satisfy the continuity equation (recall that the
continuity equation represents mass conservation), it can be checked whether

( . ) 0v∇ =
�

�  for the above flow field. In an expanded representation, we need to

check whether

0x y zv v v
x y z

∂ ∂ ∂ + + = ∂ ∂ ∂ 

The LHS gives

2k1x + 2k2y + 2k3z = 2(k1x + k2y + k3z)

which is clearly not zero except at k1x + k2y + k3z = 0. Thus, the design is feasible
only on the plane k1x + k2y + k3z = 0 which seems highly constrained and may
not be suitable for a reasonably general application.

1.4.4 Equation of Continuity in Different Coordinate Systems

The equation of continuity was first presented in the rectangular coordinate
system since the student can intuitively relate to it. In many situations, such
as while dealing with cylindrical or spherical systems, the rectangular
coordinate system becomes cumbersome to use. It is easier to use the
relevant coordinate systems, and we need to know the equation of continuity
in those systems. The equation of continuity in three commonly used
coordinate systems is presented in Table 1.4.4-1. Some of the details of
conversion from the rectangular coordinate system to other coordinate
systems are given in Appendix 1.



Table 1.4.4-1 The equation of continuity

Rectangular coordinates

( )( ) ( )
0yx z

vv v

t x y z

∂ ρ ∂ρ ∂ ρ ∂ ρ+ + + = ∂ ∂ ∂ ∂ 
(A)

Cylindrical coordinates

1 ( ) 1 ( ) ( )
0r zr v v v

t r r r z
θ∂ρ ∂ ρ ∂ ρ ∂ ρ + + + = ∂ ∂ ∂θ ∂ 

(B)

Spherical coordinates

2

2

( )1 ( ) 1 ( sin ) 1
0

sin sin
r

vr v v

t r r rr
φθ ∂ ρ ∂ρ ∂ ρ ∂ ρ θ+ + + = 

∂ ∂ θ ∂θ θ ∂φ 
(C)

Exercises

1. Succinctly distinguish between:

(a) Continuum and discrete regimes
(b) Total derivative and substantial derivative

2. What are the conditions under which the law of conservation of mass,
Eq. 1.1.1-2, is valid?

3. Through suitable explicit material balances, express the relationships between
the metabolites in the figure below in terms of the stoichiometric matrix,
reaction rate and state vectors. Also in the case when the rates of lactate,
ethanol, and glucose are available from measurements, estimate the rates of
acetate, carbon dioxide, and formate in the system shown.

Glucose

Lactate

Pyruvate

Acetyl CoA
Formate

Acetate Ethanol

rgl

rlac

rC
rfor

rethrac

CO2
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4. Develop the stoichiometric matrix, rate and state vectors for the following
intracellular reaction scheme:

1rA B→
2 0.7rB C→
3 0.5rB D→
4 0.75rC D→
5 0.9rC E→
6 0.6rD F→

A

B

C D

E F

5. An ineffective lecturer uses two chalk pieces to fill a black board of 1 m ×
5 m. At the end of the class, the board is erased. The chalk piece can be
considered cylindrical with a diameter of 1 cm and length, 7.5 cm. Each chalk
piece weighs 3.5 g, and when discarded, its length is reduced to 2 cm. After
the board is erased, what is the average area concentration of the chalk dust
in g cm–2 in the vicinity of the board, which can be taken as 15 cm from the
board. Assume that the dust taken away by the duster and the amount lost
while writing consists of 85 % of the chalk used, and the remaining is
present in the vicinity of the board.

6. In a milk processing plant, curd (yoghurt) is also manufactured. A continuous
centrifuge needs to be used to produce buttermilk that contains less fat, and
cream that contains high fat. If the average need is to process 48,000 kg of
curd containing 4 % fat in an 8 hour shift, continuously, into a buttermilk
stream that contains 0.5 % fat, and a cream stream with 50 % fat, what flow
rates should the processing units for buttermilk and cream be equipped to
handle, on an average?



7. During the studies for the liquid phase oxygen-supply strategy (LPOS) that
was generalised in our laboratory, we performed two kinds of experiments
– one, where the oxygen was supplied using only hydrogen peroxide pulses
and two, where the oxygen was supplied using a combination of hydrogen
peroxide pulses and aeration. Choose a suitable system, and write the
various terms that would contribute to the mass balance on oxygen in the
above two scenarios. (The means of finding the various terms would become
clear only in the later chapters of this book.)

8. Even when only hydrogen peroxide pulses were used in the above problem
on LPOS, since the bioreactor headspace was open to the atmosphere,
albeit, aseptically through an outlet filter, the oxygen from the headspace
would contribute to the balance. Modify the oxygen balance written above
to include this aspect. Again, a way to determine the extent of the contribution
is explained only in Chapter 6 of this text.

9. The flow through a bio-device that is being designed is given by the
following expression

2 2
1 2 3ˆ ˆ ˆ( ) ( ) (2 )r zv k r k r k r zθ= − + θ +� ι ι ι

Check whether the design is feasible or not for an incompressible fluid.

10. Everyone in our hostels uses liquid mosquito repellents. A normal refill
containing 35 ml of the repellent lasts for 45 nights (12 hours a night).
Supposing a student switches it on at 19:00 h, what will be the concentration
of the repellent in the room at 7:00 h, the next morning? Dimensions of the
room are 1.5 × 2 × 3 m3. Assume that the windows and doors are shut, and
that the ceiling fan acts as a stirrer to maintain a uniform distribution of the
repellent in the room.

11. Let us say that n1 mmoles min–1 of air (assume that it contains only N2 and
O2 in a 79:21 molar ratio) are inhaled and n2 mmoles min–1 of a mixture of
N2, O2, H2O and CO2 are exhaled during one cycle of respiration. Find n1
and n2, assuming that the energy is released gradually by oxidising 180 mg
glucose min–1. Also assume that 80 % of the oxygen inhaled is used for the
oxidation of glucose, and the rest is exhaled; that the CO2 arises only from
glucose, and that 10 % of the water formed during respiration is exhaled.

12. Sometime after 2.5 mmoles of a drug are injected into the blood stream of
a human being, its concentration becomes uniform in the blood. For
effectiveness, the drug concentration in the blood needs to be above 100 mM,
and below 500 mM to avoid side effects. When the blood flows through the
kidney, 1 % of the drug is removed. The blood supply rate to the kidney
is 1.5 l min–1. Taking the total volume of blood in the human body to be 5 l,
prescribe a dosage for the drug.

Exercises 19
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Some of the problems above were either suggested or formulated by G. Shashank,
G. Vivek Sathvik, D. Divya Vani, I. Pradeep Kumar (5, 9–11), Shruthy Suresh,
Purnima Padmanabhan (6), P. Raghavendran, P. Vivek, K. Ramasamy and
M. Ashok (12).

Fully Open-ended Exercise

What is the ideal time gap between food intakes to prevent the stomach acid
content from reaching unacceptable values?

(This exercise was formulated by Aparna B. Ganesh, for her CFA exercise –
CFA stands for choose-focus-analyse. The details of the CFA exercise, and its
goals are given in: Sureshkumar GK (2001) A Choose-Focus-Analyse Exercise in
ChE Undergraduate Courses. Chemical Engineering Education 35: 80–84. Aparna’s
report can be found as a link from www.biotech.iitm.ac.in/GK_research.)
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Chapter 2
Mass Flux

In the previous chapter, we discussed the principle of mass balance and
saw how it can be used in terms of mass or mass rates, to analyse, design
and operate biosystems over a wide length scale, i.e. from a cell to a
bioprocess. In this chapter, let us look at a concept that is central to many
engineering disciplines, and especially to biological engineering, namely, flux.

A flux of a quantity is defined as the amount of that quantity that is
transported per unit time across a unit area that is perpendicular to the
direction of transport. Thus, mass flux is defined as the amount of mass
transported per unit time across a unit area that is perpendicular to the
direction of mass transport.

Density × Velocity = 3

kg

m
×

m

s
 = kg m–2 s–1

represents mass flux in appropriate (e.g. fluid) systems.
Mass flux is highly relevant in biological systems. The flux of glucose

across a cell is essential for glycolysis to take place in many cells. The flux
of a product (say ethanol) out of a cell is necessary to keep the cell alive
as well as make the bioprocess viable. The transport of protein from the site
of assembly to the site of function in a cell is essential for the viability of
the cell. The mass flux of oxygen from the blood to the organ where the
cells of the organ use the oxygen as the final electron acceptor is absolutely
essential for the cells, thus, for the organ and ultimately for the animal/
human being to function well.

2.1 Primary Driving Force for Mass Flux

The primary driving force for mass flux is a difference in concentration of
the substance being transported. To understand this better, let us imagine
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22 2 Mass Flux

that a drop of ink is placed carefully, say using a pipette, inside (about
halfway) a beaker containing water. The ink molecules will move away
from the highly concentrated region i.e. where it was placed, to other parts
of the beaker, until the concentration of ink in the beaker is uniform. The
ink particles move because of the thermal energy of the molecules (ink and
water molecules) that results in its random motion. In such cases, we say
that diffusion of the species (ink) has occurred. Although the molecular
motion due to thermal energy is random, the net movement of the species,
or the ink flux in this case, is from a region of high ink concentration to
a region of lower ink concentration.

The primary driving force being a concentration difference is only a
first approximation, as students who understand thermodynamics would
point out, which works well as long as we are restricted to fluxes in a single
phase (gas, liquid, or solid) at dilute concentrations. The actual driving force
is the difference in the chemical potential of the substance being transported.
This works well in a single phase as well as across multiple phases.

Please note that we have used the term, ‘primary’ driving force. This
is because mass flux can be caused by a variety of driving forces as we
will see later in this chapter itself, and in a more structured fashion in
Chapter 6. It so happens that concentration difference is ‘primarily’ or
firstly linked to mass flux. However, we will encounter, even in this chapter,
situations where mass flux (with respect to stationary coordinates) is caused
by the entire fluid moving from one place to another. This is because the
species constitute the fluid, and mass flux occurs when the fluid moves
either due to application of a pressure gradient across a pipe, or because of
gravity, or other factors. In other words, different driving forces cause
mass flux, and concentration difference is considered the ‘primary’ driving
force. Also, note that the primary driving force may not always cause the
largest flux.

2.1.1 Basis for Expressing Mass Flux

Let us first consider the movement of a mixture containing various species. If
vi is the velocity of ith species with respect to stationary coordinates axes, for

a mixture of n species, the local mass average velocity v
�

 can be defined as

1

1

n
i ii

n
ii

v
v =

=

ρ
=

ρ

∑

∑

�

�

(2.1.1-1)

where ρi is the density of the ith species.



Here we are not looking at velocities from the molecular point of view,
but at the ‘species’ level. By ‘species’ level, the thinking is that we consider
a group of molecules of the same species i in a tiny volume element, take
the sum of their individual velocities and divide the sum by the number of
such molecules in that tiny volume element.

Similar to the mass average velocity, a molar average velocity *v
�

 can
also be defined as

1*

1

n
i ii

n
ii

c v
v

c

=

=

=∑

∑

�

�

(2.1.1-2)

where ci is the concentration of species, i.
In a flowing system, the velocity of a species with respect to all species

v
�

 or *v
�

 is of more interest than the velocity with respect to stationary
coordinates.

Thus, the useful quantities in such a system would be

iv v−� �

 = Diffusive velocity of i with respect to v
� (2.1.1-3)

and

*
iv v−� �

 = Diffusion velocity of i with respect to *v
�

(2.1.1-4)

Example 2.1.1-1

To better understand the different velocities that we have just discussed, let us
consider the disinfection of a lab using formaldehyde vapours. Typically, formalin
solutions (~ 40 % w/v of formaldehyde in water) are used to generate formaldehyde
vapours which can kill microorganisms in an enclosed space. Care is taken to seal
all windows and doors with duct tape to prevent leakage of formaldehyde
vapours when the disinfection is carried out. Potassium permanganate (KMnO4)
is added to formalin which results in an exothermic reaction. The increase in
temperature causes the generation of formaldehyde vapours.

Let us assume that we are generating the formaldehyde vapours in a long
cylinder (Fig. 2.1.1-1).

As can be imagined, at a particular time, the mole fraction of formaldehyde,
xA, will vary with the height in the cylinder. Let us consider the horizontal plane

in the cylinder where xA = 
1

.
5

 Say that *v
�

 = 7 units at that plane and *
iv v−� �

= 8 units. Let us calculate the relevant velocities.
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We know that MA = 30 (HCHO) and MB = 29 (air), and recognise that

1

1

1
( )

( )

n
i ii

A A B Bn
A Bii

v
v v v=

=

ρ
= = ρ + ρ

ρ + ρρ

∑

∑

�

� � �

(2.1.1-5)

Also, the mass fraction of A

( )
A

A
A B

m
w

m m
=

+
(2.1.1-6)

If we divide both the numerator and the denominator of the RHS of
Eq. 2.1.1-6 by V, we get

A
A

A B

w
ρ

=
ρ + ρ

(2.1.1-7)

By using Eq. 2.1.1-7 in Eq. 2.1.1-5, and using a similar expression for wB
we get

A A B Bv w v w v= +� � �

(2.1.1-8)

Also

1*

1

1
( )

( )

n
i ii

A A B B A A B Bn
A Bii

c v
v c v c v x v x v

c cc

=

=

= = + = +
+

∑

∑

�

� � � � � (2.1.1-9)

where x = mole fraction.
Given that at the plane

xA = 
1

5

Fig. 2.1.1-1 The system
considered here B

A

A = Formaldehyde (HCHO) MA = 30
B = Air MB = 29



*v
�

 = 7 units (upward direction is taken as positive)
*

Av v−� �

 = 8 units

we can get

Av
�

 = 8 + *v
�

 = 15 units

From *v
�

 = ,A A B Bx v x v+� �

 we get

1 1
7 (15) 1

5 5 Bv = + − 
 

�

5 unitsBv? =�

* 2 units (opposite direction)Bv v? − = −� �

Now, we know that

1
30

5 say, 0.21
1 4

30 29
5 5

A A A
A

A B A A B B

m x M
w

m m x M x M

u
= = = =

+ + u + u

Therefore

wB = 1 – 0.21 = 0.79

0.21 15 0.79 5 7.1 unitsA A B Bv w v w v= + = u + u =� � �

and

7.9 unitsAv v− =� �

2.1 units (opposite direction)Bv v− = −� �

Figure 2.1.1-2 depicts the vartious velocities of formaldehyde and air in the
cylinder.

2.1.2 Mass and Molar Fluxes

The mass flux of a species i with respect to stationary coordinates, as
mentioned in the introductory part of this chapter, is

mass fluxi i in v= ρ� �

(2.1.2-1)
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Similarly, the molar flux can be written as

molar fluxi i iN c v=
�

�

(2.1.2-2)

The mass (or molar) flux of a species i relative to mass average flux (with

a mass average velocity v
�

) is

( ) mass fluxi i ij v v= ρ −
�

� �

(2.1.2-3)

( ) molar fluxi i iJ c v v= −
�

� �

(2.1.2-4)

The mass (or molar) flux of a species i relative to molar average flux (with

a molar average velocity *v
�

) is

* *( ) mass fluxi i ij v v= ρ −
�

� � (2.1.2-5)

* *( ) molar fluxi i iJ c v v= −
�

� � (2.1.2-6)

The fluxes *, andi i iN j J
� ��

 are used more predominantly than the others,

although there may be situations where the usage of other fluxes would be
desirable.

Equation 2.1.2-6 can be written, using 2.1.1-2, as

*
1

1

ni
i i i j jn j

jj

c
J c v c v

c
=

=

= − ∑
∑

�

�

From Eq. 2.1.2-2, and the definition of mole fraction, the above equation
can be written as

*
1

n
i i i jj

J N x N
=

= − ∑
� � �

(2.1.2-7)

Fig. 2.1.1-2 Visualisation
of the various velocities
in the cylinder

15Av =�

5Bv =�

* 8Av v− =� �

7.9Av v− =� �

* 2Bv v− = −� � 2.1Bv v− = −� �



or

* ( )A A A TJ N x N= −
� � �

(2.1.2-8)

where T A BN N N= +
� � �

 for a binary system. Similarly, the mass flux can be

written from Eq. 2.1.2-5 and 2.1.1-1, as

1

1

ni
i i i j jn j

jj

j v v
=

=

ρ
= ρ − ρ

ρ
∑

∑

�

�

From Eq. 2.1.2-1 and the definition of mass fraction, the above equation
can be written as

1

n
i i i jj

j n w n
=

= − ∑
�

� �

(2.1.2-9)

For a binary system

( )A A A A Bj n w n n= − +
�

� � � (2.1.2-10)

Some useful relationships between the above velocities, fluxes, and mass
(or mole) fractions, are covered in the exercises at the end of this chapter.

2.2 A Constitutive Equation

In the previous chapter, we discussed the representation of a general
conservation principle, namely the mass conservation principle. The equation
that represents such a principle is called the ‘conservation equation’ or the
‘equation of change’ which describes the system.

There exists a relationship between the flux of the conserved quantity
and the material (constituent) properties of the system of interest. Such a
relationship is not as generally applicable as the conservation equation, but
is applicable to a class of similar substances. It is called a ‘constitutive
equation’ or a ‘constitutive relationship’.

Usually, a combination of constitutive equations (or equations of state)
and the conservation equation (equation of change) are useful for the analysis
and design of engineering systems.

2.2.1 Fick’s First Law

The relationship between molar flux and concentrations in dilute binary
solutions of non-reacting solutes was developed by Adolph Fick. It is known
as Fick’s I law. It can be represented in one dimension as
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* A A
A AB AB

dc dx
J D c D

dx dx
= − = − (2.2.1-1)

where DAB is the mass diffusivity and it equals DBA.
In the above equation, c is the total concentration, and xA is the mole

fraction of A. Thus, the species A moves relative to the mixture in the
direction of the decreasing mole fraction of A. The derivation of Fick’s I
law is given in Appendix 2.

Of greater importance, note that Eq. 2.2.1-1 says that mass flux is
proportional to the negative of the concentration gradient. In general, any
flux is proportional to the negative of a certain gradient. This gradient is
that of the primary driving force for that particular flux. In this case, the
mass flux is proportional to the gradient of its primary driving force, i.e.
concentration difference.

In three dimensions, Fick’s I law can be represented as

*
A AB AJ c D x= − ∇
� �

(2.2.1-2)

There are various methods to estimate DAB and its dependence on
pressure and temperature. The interested reader can find these methods in
books such as Transport Phenomena by Bird et al. (2002).

Although the remainder of this section better belongs in Chapter 6,
because there are two driving forces for mass transport (concentration
difference and convection through bulk flow), for completeness, especially
of a subsequent material balance aspect in this chapter, let us consider it
here.

Upon substitution of Eq. 2.2.1-2 in Eq. 2.1.2-8, we get

( )AB A A A Tc D x N x N− ∇ = −
� � �

(2.2.1-3)

or

( )

(Diffusion) (Bulk motion)
A AB A A TN c D x x N= − ∇ +

� � �

(2.2.1-4)

where T A BN N N= +
� � �

 for a binary system. Eq. 2.2.1-4 shows that the flux

,AN
�

 relative to stationary coordinates, is the resultant of two vector quantities

( )A Tx N
�

 = Molar flux of A resulting from the

   bulk motion of the liquid

and

*
AB A Ac D x J− ∇ =

� �

 = Molar flux of A resulting from the diffusion
                         superimposed on the bulk flow



In terms of mass, Fick’s first law can be written as

A AB Aj D w= − ρ ∇
��

(2.2.1-5)

The DAB is the same as in Eq. 2.2.1-2.
Substituting Eq. 2.2.1-5 in Eq 2.1.2-10, we get

( )AB A A A TD w n w n− ρ ∇ = −
�

� �

(2.2.1-6)

where T A Bn n n= +� � �

 for a binary system.

2.2.1.1 In Concentrated Solutions

In dilute solutions, the solute-solute interactions can be ignored, whereas in
concentrated solutions, they cannot be ignored. In such a case, the driving
force for mass flux is not the concentration gradient, but the gradient in
chemical potential, PA, as may be known from thermodynamics.

* A A
A AB

c d
J D

RT dz

P= −
�

(2.2.1.1-1)

The above equation can be expressed in terms of the easily measurable
concentration, rather than in terms of the difficult to measure, chemical
potential, as below

*
eff

A
A

dc
J D

dz
= −

�

(2.2.1.1-2)

where

eff
ln

1
ln

A
AB

A

d
D D

d x

J = + 
 

(2.2.1.1-3)

where JA is the activity coefficient of A.
The derivation of the above equation is given in Appendix 3. Nevertheless,

the above equation has limitations because the activity coefficients of many
solutes as a function of their composition are unknown.

2.3 Solution Approaches

Diffusion is highly relevant in biological systems. The function of a cell is
determined by the diffusion of various substances through the cell membrane.
Diffusion of a drug molecule from the blood stream to the site of action
determines the efficacy of the drug, and so on.
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To begin with, let us consider one-dimensional diffusion across a uniform
material. Broadly, there are two approaches to solve relevant problems:
(i) the shell balance approach, and (ii) the application of the relevant conservation
equation, i.e. the equation of continuity in this case of mass conservation.

2.3.1 Shell Balance Approach

Let us consider a material, say a uniform membrane. In this membrane, let
us consider a shell of thickness ∆x through which diffusion occurs normal
to the surface area A in the direction perpendicular to the page (Fig. 2.3.1-1);
L is the thickness of the membrane. The shell will represent the geometry
under consideration. In this case, the shell is a cuboid; in the case of
cylindrical systems, it could be an annular cylinder, and in the case of
spherical coordinates, it could be an annular sphere. Since we balance over
a shell, this approach is called a ‘shell balance’ approach.

A material balance written over the shell (system) on component i
entering at x and leaving at x + ∆x in terms of molar flux, following the
approach presented in Chapter 1, yields

i
i i i i

dA
I O G C

dt
= − + −� � ��

| |i
i x i x x i

c
A x N A N A R A x

t +∆
∂

∆ = − + ∆
∂

(2.3.1-1)

Dividing each term by the volume element, A ∆x gives

| |i i x i x x
i

c N N
R

t x
+∆∂ −

= +
∂ ∆

If we employ the limit ∆x → 0, and use the definition of the derivative

∆x

L

x x + ∆xFig. 2.3.1-1 The ‘shell’
considered for the analysis



i i
i

c N
R

t x

∂ ∂
= − +
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(2.3.1-2)

In this case, the flux Ni results only from diffusion. Thus

* i
i i i

c
N J D

x

∂
= = −

∂

� �

Therefore

2

2
i i

i i
c c

D R
t x

∂ ∂
= +

∂ ∂
(2.3.1-3)

When there is no production of i in the volume, A ∆x, say by a reaction,
then

2

2
i i

i
c c

D
t x

∂ ∂
=

∂ ∂
(2.3.1-4)

The above Eq. 2.3.1-4 is known as Fick’s second law.
Under steady state conditions (no time dependence i.e. concentration

does not vary with time), the LHS of Eq. 2.3.1-4 becomes zero. Thus

2

2
0 i

i
c

D
x

∂
=

∂
(2.3.1-5)

Equation 2.3.1-5 is the one-dimensional diffusion equation under steady
state conditions with no reaction.

In three dimensions, under the same conditions, Fick’s second law can
be written as

20i
i i

c
D c

t

∂
= = ∇

∂
(2.3.1-6)

2.3.2 Continuity (Conservation) Equation Approach

The same result obtained in Eq. 2.3.1-5 can be derived by applying the
material/mass balance equation directly over the relevant system. The shell
balance approach provides an intuitive mechanistic appreciation of the process
for the inexperienced reader, but it could become cumbersome if the situation
is not simple enough. In most cases, the material balance equation approach
is easier to use, although it may seem more abstract to a not so experienced
reader.

In any case, we first need to derive the useful material balance equation
for binary/multi-component systems. This is because the mass balance
equations that we had developed in Chapter 1, i.e.
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( . )v
t

∂ρ = − ∇ ρ
∂

�

�

(1.4.3-5)

and

( . )
D

v
Dt

ρ = − ρ ∇
�

�

(1.4.3-7)

are applicable only to a single component system or to the total mass in a
multi-component system.

Let us first consider a multi-component mixture. Let us take a cuboidal
element, ∆x∆y∆z, fixed in space (same as in Fig. 1.4.3-1) through which
the multi-component mixture is flowing.

Let us apply the mass conservation principle to A, which is a species
in the multi-component mixture. Recall that

dA
I O P

dt
= − +�� � (1.4.3-1)

Thus

AA
x y z

t t

∂ρ∂ = ∆ ∆ ∆
∂ ∂

| ( ) |x Ax xI n y z= ∆ ∆�

| ( ) |y Ay yI n x z= ∆ ∆�

| ( ) |z Az zI n x y= ∆ ∆�

| ( ) |x x Ax x xO n y z+∆ +∆= ∆ ∆�

| ( ) |y y Ay y yO n x z+∆ +∆= ∆ ∆�

| ( ) |z z Az z zO n x y+∆ +∆= ∆ ∆�

AP r x y z= ∆ ∆ ∆�

Substituting the terms in Eq. 1.4.3-1, dividing throughout by the volume
element ∆x∆y∆z, and taking the limit as ∆x → 0, ∆y → 0, ∆z → 0, we get

AyAxA Az
A

nn n
r

t x y z

∂ ∂∂ρ ∂+ + + = ∂ ∂ ∂ ∂ 
(2.3.2-1)

In a compact form

( . )A
A An r

t

∂ρ + ∇ =
∂

�

�

(2.3.2-2)

Note that .A A An v= ρ� �



Equation 2.3.2-2 is the equation of continuity for component A in a
multi-component mixture.

Suppose the mixture is binary with only components A and B. We can
derive the equation of continuity for component B as

( . )B
B Bn r

t

∂ρ + ∇ =
∂

�

�

(2.3.2-3)

For a binary mixture, since ,A B A Bn n v+ = ρ ρ + ρ = ρ� �� � �

 and rA + rB = 0
(recall the definition of rA and rB; in a binary system, rA = – rB), the addition
of Eq. 2.3.2-2 and Eq. 2.3.2-3 yields

( . ) 0v
t

∂ρ + ∇ ρ =
∂

�

�

our earlier total mass balance equation.
Moreover, if the density is constant

( . ) 0v∇ =
�

�

which is the equation of continuity for the total mass balance with constant
density.

If we had used molar units instead of mass units, the extent of general
applicability would be compromised because moles are conserved under
more stringent conditions than is mass. However, in many situations, molar
units are convenient. In terms of moles, the Eqs. 2.3.2-2 and 2.3.2-3 would
have been

( . )A
A A

c
N R

t

∂ + ∇ =
∂

� �

(2.3.2-4)

and

( . )B
B B

c
N R

t

∂ + ∇ =
∂

� �

(2.3.2-5)

Adding the above equations with the realisation that cA + cB = c and
*

A BN N cv+ =
� �

�

 and RA + RB z 0 unless one mole of A produces/results
from one mole of B, we obtain

*( . ) A B
c

cv R R
t

∂ + ∇ = +
∂

�

�

(2.3.2-6)

and for constant c

* 1
( . ) ( )A Bv R R

c
∇ = +
�

�

(2.3.2-7)
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If we replace andA An N
�

�

 in Eq. 2.3.2-2 and Eq. 2.3.2-4 in terms of descriptive

equations, we can get more useful relations.
Let us substitute Eq. 2.2.1-4 in Eq. 2.3.2-4

� �. ( )A
AB A A A B A

c
cD x x N N R

t

∂
 + ∇ − ∇ + + = ∂

� � � �

or

� �*. [ ]A
AB A A A

c
cD x x cv R

t

∂ + ∇ − ∇ + =
∂

� �

�

i.e.

*. ( . )A
A AB A A

c
c v cD x R

t

∂ + ∇ = ∇ ∇ +
∂

� � �

�

(2.3.2-8)

Similarly, let us substitute Eq. 2.2.1-6 in Eq. 2.3.2-2; we get

� �. ( )A
AB A A A B AD w w n n r

t

∂ρ
 + ∇ − ρ ∇ + + = ∂

� �

� �

i.e.

. ( . )A
A AB A Av D w r

t

∂ρ
+ ∇ ρ = ∇ ρ ∇ +

∂

� � �

� (2.3.2-9)

When c and DAB are constant Eq. 2.3.2-8 can be expressed as

2* *( . ) ( . )A
A A AB A A

c
c v v c D c R

t

∂
+ ∇ + ∇ = ∇ +

∂
� � �

� �

or

2*( . ) ( )A A
A AB A A A B

c c
v c D c R R R

t c

∂
+ ∇ = ∇ + − +

∂

� �

� (2.3.2-10)

because * 1
. ( )A Bv R R

c
∇ = +
�

�

 from Eq. 2.3.2-7.

Similarly, when ρ and DAB are constant (for example, ρ is almost
constant in liquid systems when there is no significant change in temperature;
constant DAB is a good assumption in many dilute systems), Eq. 2.3.2-9 can
be expressed as

2( . ) ( . )A
A A AB A Av v D r

t

∂ρ
+ ρ ∇ + ∇ρ = ∇ ρ +

∂

� � �

� �

or

2( . )A
A AB A Av D r

t

∂ρ + ∇ρ = ∇ ρ +
∂

� �

�

(2.3.2-11)

since . 0.v∇ =
�

�



If we divide throughout by MA, the molecular mass of A, we get

2( . )A
A AB A A

c
v c D c R

t

∂ + ∇ = ∇ +
∂

� �

�

(2.3.2-12)

For a multi-component system, one needs to invoke the Maxwell-Stefan
equations to appropriately derive the relevant expressions (Bird et al. 2002).
Let us use the earlier approach for a single component system as it is fairly
simple. Substituting Eq. 2.2.1-2 in the relevant form of Eq. 2.1.2-7 we get

( )A AB A A i iN c D x x N= − ∇ + 6
� �

Substitution of the above equation in Eq. 2.3.2-4 yields

� �. ( )A
AB A A i i A

c
c D x x N R

t

∂
 + ∇ − ∇ + 6 = ∂

� � �

which results in the same equation 2.3.2-8 since now, *.i iN c v6 =
�

�

Through extension of the above argument for the mass basis, we can
see that Eq. 2.3.2-12 is valid for multi-component systems.

This equation can be used to get concentration profiles. The forms of
the equation in various coordinate systems are given in Table 2.3.2-1. Please
note that since the equations have been derived on a molar basis, it is
difficult to apply them in a flow system with changing cross-sectional area;
when the cross-sectional area changes, molar concentrations vary. However,
they are useful in many situations of practical interest (where the cross-
sectional area does not change).

Example 2.3.2-1

Let us get back to the first sentence of this section. We can derive Eq. 2.3.1-5
by applying the material/mass balance equation directly over the relevant system.
The system here is the membrane through which diffusion occurs. Since the
problem deals with a one-dimensional motion and steady state, let us consider
the relevant terms in equation A2 (Table 2.3.2-1), since ρ and DAB can be
considered constant here (A is the species and B is the membrane material). Some
of the terms in the equation can also be equated to zero; the reasons are given
below (SS refers to steady state, and rxn refers to reaction).

Here, since the analysis is being done at SS, the time derivative is zero; since
there is no bulk flow, the velocity components vx, vy and vz are zero; since the
concentration does not vary in the y and z directions, the corresponding (first
and second) derivatives are zero; and since there is no reaction taking place, the
reaction rate is zero.
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Table 2.3.2-1 The equation of continuity of a species, say A, in a multi-component
mixture in various coordinate systems

Rectangular coordinates

AyA Ax Az
A

Nc N N
R

t x y z

∂ ∂ ∂ ∂+ + + = ∂ ∂ ∂ ∂ 
(A1)

When c and DAB are constant

2 2 2

2 2 2
A A A A A A A

x y z AB A
c c c c c c c

v v v D R
t x y z x y z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + + − + + =  ∂ ∂ ∂ ∂ ∂ ∂ ∂   
(A2)

Cylindrical coordinates

1 1
( )A A Az

Ar A
c N N

rN R
t r r r z

θ∂ ∂ ∂ ∂ + + + = ∂ ∂ ∂θ ∂ 
(B1)

When c and DAB are constant

2 2

2 2 2

1

1 1

A A A A
r z

A A A
AB A

c c c c
v v v

t r r z

c c c
D r R

r r r r z

θ
∂ ∂ ∂ ∂ + + + ∂ ∂ ∂θ ∂ 

 ∂ ∂ ∂ ∂ − + + =  ∂ ∂  ∂θ ∂ 
(B2)

Spherical coordinates

2
2

1 1 1
( ) ( sin )

sin sin
AA

Ar A A

Nc
r N N R

t r r rr
φ

θ
∂ ∂ ∂ ∂+ + θ + = ∂ ∂ θ ∂θ θ ∂φ 

(C1)

When c and DAB are constant

2
2

2 2 2 2

1 1

sin

1 1 1
sin

sin sin

A A A A
r

A A A
AB A

c c c c
v v v

t r r r

c c c
D r R

r rr r r

θ φ

�

∂ ∂ ∂ ∂ + + + ∂ ∂ ∂θ θ ∂φ 

 ∂ ∂ ∂ ∂ ∂   − + θ + =    ∂ ∂ ∂θ ∂θ   θ θ ∂φ 
(C2)



2 2 2

2 2 2
A A A A A A A

x y z AB A
c c c c c c c

v v v D R
t x y z x y z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + + − + + =    ∂ ∂ ∂ ∂ ∂ ∂ ∂   

Hence
2

2
0A

AB
C

D
x

∂ =
∂

which is the same equation as earlier (Eq. 2.3.1-5) that has been arrived at without
the shell balance. As mentioned earlier, in many cases, shell balances are
cumbersome, and direct application of the continuity equation is preferred once
the system and its boundaries over which it is applied is clear.

2.4 Steady State Diffusion

Steady state, as briefly mentioned in the previous section, refers to the
condition when the properties of interest at a point in space do not change
with time, i.e. are not functions of time, and thus the time derivatives can
be set to zero. Many real biological diffusion cases can be approximated to
steady state diffusion in one dimension across a ‘lumped’ uniform membrane.
For example, when concentrations are uniform over a surface, the curvature
is not significant, and the thickness is very less compared to the length or
breadth, the above approximation holds; using this approximation, the diffusion
across the surfaces of tissues or large organs such as the skin or the kidney
can be considered as a steady state diffusion.

2.4.1 Steady State Diffusion Across Membranes

There are two broad ways in which diffusion across a membrane can be
viewed

(i) Dissolve-diffuse mechanism: The solute first dissolves in the membrane
and then diffuses through it.

(ii) Diffusion through pores: The solute moves through pores in the
membrane material which is otherwise impermeable to the solute.

= 0 (SS) = 0 (vx = 0) = 0 (vy = 0) = 0 (vz = 0) = 0 (cA z f (y))
= 0 (cA z f (z))

= 0 (no rxn)
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Dissolve-Diffuse Mechanism

A species i diffuses across a membrane of thickness d through the dissolve-
diffuse mechanism (Fig. 2.4.1-1). The concentration of i outside the cell is
co and that inside the cell is cL.

At x = 0, the concentration of i in the membrane is given by Kco, where
K is the partition coefficient of i in the membrane. Partition coefficient is
defined as the ratio of the solute concentrations in two phases at equilibrium,
when a solute is partitioning across the two phases.

cm_x=0 = Kco

and

cm_x=d = KcL

We have assumed that the partition coefficient is the same on both sides
of the membrane. This is a reasonable assumption, but may not be applicable
in situations where solutions on both sides of the membrane are widely
different.

Example 2.4.1-1

Develop an expression for the flux of species i across a membrane by assuming
a dissolve-diffuse mechanism.

c-axis

co

Re-constituted
membrane

cL

x

d

Cell

Fig. 2.4.1-1 The cell membrane
considered here; the membrane
curvature is neglected



Solution

Note that Eq. 2.3.1-5 is applicable here (why? – note that steady state conditions
prevail in the system). But, since diffusion is through a complex membrane, an
effective diffusive coefficient Di,eff needs to be used. Further, since the variation
is only with one variable (the dimension), the partial derivative can be replaced
by a total derivative.

2

,eff 2
0 m

i
d c

D
d x

= (2.4.1-1)

The boundary conditions are:

At x = 0, cm = Kco (2.4.1-2)

x = d, cm = KcL (2.4.1-3)

where K is the partition coefficient defined as the ratio of the species concentration
in the membrane to that in the bulk solution.

The solution obtained by integrating Eq. 2.4.1-1 twice with the realisation
that the second derivative is zero, and hence, the first derivative is a constant
is

cm = C1x + C2 (2.4.1-4)

where C1 and C2 are constants that can be evaluated using boundary conditions.
At x = 0

C2 = Kco (2.4.1-5)

At x = d

KcL = C1d + Kco

Therefore

1
( )o LK c c

C
d

− −= (2.4.1-6)

Now, by substituting Eq. 2.4.1-5 and Eq. 2.4.1-6 in Eq. 2.4.1-4 we get

( )m o o L
x

c Kc K c c
d

= − − (2.4.1-7)

Thus

,eff*
,eff ( )im

i i o L

K Dc
J D c c

x d

∂
= − = −

∂

�

(2.4.1-8)
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Comment

Since this is a steady state process, the flux is a constant, and as the equation
indicates, it is independent of position.

If co > cL the flux is in the positive x direction.
If co < cL the flux is in the negative x direction.

,effiK D

d
 is defined as ‘permeability’ P of the solute i across the membrane.

Note that it is a product of the partition coefficient K and diffusivity Di,eff.
The dependence of permeability on both the above parameters indicates the
dissolve (K)-diffuse (Di,eff) mechanism. Nevertheless, permeability is not an intrinsic
membrane property since it depends on the thickness of the membrane, d.

Also, note that

0|m x

o

c
K

c
==

and we have assumed that to be equal to

|m x d

L

c

c
=

If K < 1, cm_x=0 < co and cm|x=d < cL.
In other words, the concentrations on the membrane surfaces are less than

those in the fluids. Notice the dark-dotted line and the discontinuities at the
surface that represents the species concentration in Fig. 2.4.1-1.

Diffusion through Pores in a Membrane

Let us consider a membrane made up of pores in an impermeant matrix –
a matrix through which solutes cannot dissolve and diffuse. The pores,
however, are filled with a solvent through which the solute diffuses.

When the Pores are Large
When the dimension of the pores are much larger than the solute size, the
permeability can be modified as

' iD K
P

d
  =   W  

ε

where Di is diffusivity of solute i in free solution, K is partition coefficient
of the solute between the solvent in bulk and the solvent in the pores; it can
usually be approximated that the concentration of the solute in bulk and the



solute in the solvent are the same and hence K = 1 is a good approximation,
d is membrane thickness, W is tortuosity (Fig. 2.4.1-2), a measure of the
mean distance travelled by the solute in relation to the thickness of the
membrane and

H = Porosity = Volume fraction of pores in the membrane

 
Volume of pores

Total volume of the membrane including pores
=

When the Pores are Comparable in Size to the Solute
When the pores become sufficiently small, the diffusivity in a pore is less
than that in free solution. This process is sometimes referred to as hindered
diffusion. We give the final expression for the modified permeability in such
a case. The derivation can be found in other sources (e.g. Weiss 1996)

2

" 1
i

a
D F

arP K
d r

  
         = − H W   

where
3 5

1 2.1044 2.089 0.948 for 0.4
a a a a a

F
r r r r r

         − + − �         
         

�

r is pore radius and a is solute radius.

The factor i
a

D F
r

 
 
 

 accounts for the modified diffusivity due to the

small pore size (hydrodynamic hindrance). The factor 
2

1
a

K
r

 − 
 

 accounts

2.4 Steady State Diffusion 41

W = 1 W > 1Fig. 2.4.1-2 Different tortuosities
that are possible in membranes



42 2 Mass Flux

for the modified partitioning of the solute between the solution and the pore
(stearic hindrance).

2.4.2 Steady State Radial Diffusion Across Tubular Walls

There exist many examples of tubular elements in biological systems. For
example, our vascular system (arteries, veins, etc.) are all tubular elements,
to a first approximation. So are the air passages that lead to the lungs.

Example 2.4.2-1

In certain conditions of respiratory difficulty, a drug is administered continuously
through the nasal cavity, at an appropriate dose, to reach the lung tissue by
passing across the bronchiole wall. The concentration of the drug in the air
present in the lumen of the bronchiole is cb at steady state. The drug concentration
in the lung tissue on the other side of the bronchiolar wall is needed to be co
for effectiveness. The inner and outer radii of the bronchiole are Rb and Ro,
respectively (Fig. 2.4.2-1). Let us study this process to get an expression for the
radial drug flux at the inner wall of the bronchiole that is needed to ensure
effectiveness of the drug. Assume that at the region of analysis, the difference
in the drug concentration in the z direction on the bronchiole wall can be
neglected.

Since we are studying a cylindrical system, it will be easier to employ
cylindrical coordinates.

Let us consider the bronchiole wall as our system, the drug as the species
of interest, and then do a mass balance of the species on our system. We can
directly use the equation of continuity in cylindrical coordinates.

Rb

Ro

Fig. 2.4.2-1 The cross-section
of the bronchiole



Consider Eq. B2 from Table 2.3.2-1

2 2

2 2 2

1 1 1A A A A A A A
r z AB A

c c c c c c c
v v v D r R

t r r z r r r r z
θ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂∂   + + + − + + =    ∂ ∂ ∂θ ∂ ∂ ∂    ∂θ ∂ 

Hence

1
0A

AB
C

D r
r r r

 ∂ ∂   =  ∂ ∂  

Since r is the only independent variable here, we can replace the partial
derivatives with total derivatives. Thus

1
0A

AB
dCd

D r
r dr dr

   =  
  

(2.4.2-1)

The boundary conditions are

cA = Kcb at r = Rb (2.4.2-2)

cA = Kco at r = Ro (2.4.2-3)

where K is the distribution coefficient, i.e. the ratio of the drug concentrations
in the two phases at equilibrium. For Eq. 2.4.2-2, the phases are the air
inside the bronchiole and the bronchiole wall. For Eq. 2.4.2-3 the phases are
the air outside the bronchiole and the bronchiole wall.

On solving Eq. 2.4.2-1 (note that for the derivative in the equation to

be zero, r AdC

dr
 = constant, say C1), we get

cA = C1 ln r + C2 (2.4.2-4)

Using the boundary conditions, we can get

1
( )

ln

b o

b

o

K c c
C

R

R

−=
 
 
 

2
ln( )

( )
ln

b
b b o

b

o

R
C Kc K c c

R

R

= − −
 
 
 

Substituting C1 and C2 in Eq. 2.4.2-4 and rearranging, we get

= 0 (SS) = 0 (vr = 0) = 0 (vθ = 0)
= 0 (cA
z f (θ))

= 0
(no rxn)

= 0 (cA
z f (z))

= 0 (cA
z f (z))
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ln
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b

A b b o
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R

rC KC K C C
R

R

 
 
 = − −
 
 
 

(2.4.2-5)

Thus, the flux at Rb
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A AB
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J D

R Rr
r R

R R
=

=

− −∂= − = =
∂    

   
   

�

(2.4.2-6)

2.4.3 Steady State Radial Diffusion Across Spherical Pellets

To illustrate how the mass balance/continuity equation can be used to get
important parameters in a system that is easiest analysed using a spherical
coordinate system, let us consider an example.

Example 2.4.3-1

To improve the yields of ornamental plants, certain growth factors are released
from porous, spherical, ceramic pellets embedded in the soil near the roots. At
the surface of the pellet (r = R), the growth factor concentration in the soil is
co. Far from the surface, the growth factor concentration drops to zero. Develop
an expression for the steady state release rate (moles s–1) of the growth factor
from the pellet.

This is a case of outward diffusion from a sphere, equally in all directions.
It may be easiest to approach spherical geometry using spherical coordinates.

Let us consider the ‘sphere of influence’ of the growth factor as our system
(the roots where the growth factor is consumed are not part of the system), and
use the mass concentration principle (equation of continuity). We can directly
use equation C2 in Table 2.3.2-1, at steady state

2
2

2 2 2 2 2

1 1

sin

1 1 1
sin

sin sin

A A A A
r

A A A
AB A

c c c c
v v v

t r r r

c c c
D r R

r rr r r

θ φ
∂ ∂ ∂ ∂ + + + ∂ ∂ ∂θ θ ∂φ 

 ∂ ∂ ∂∂ ∂   = + θ + +     ∂ ∂ ∂θ ∂θ   θ θ ∂φ 

0 0 (vr = 0) 0 (vθ = 0)

0
(no

reaction)
0 (cA z f (θ))

0 (vφ = 0)

0 (cA z f (φ))



Hence

2
2

1
0A

AB
c

D r
r rr

 ∂ ∂   =  ∂ ∂  

Since r is the only independent variable here, we can replace the partial
derivatives with total derivatives. Thus

2
2

1
0A

AB
dcd

D r
dr drr

   =    
(2.4.3-1)

If we solve the above equation, we get

A
B

c A
r

= − (2.4.3-2)

The boundary conditions (BCs) are

At r = R,  cA = co (2.4.3-3)

At r = f,  cA = 0 (2.4.3-4)

Substituting the above BCs in Eq. 2.4.3-2, we get

and 0o
B

c A A
R

= − =

Thus

B = – R co

Therefore

o
A

c R
c

r
= (2.4.3-5)

The flux *
2

oA
A AB AB

r R r R

c Rc
J D D

r r= =

∂= − =
∂

�

Thus

* AB o
A

D c
J

R
=

�

(2.4.3-6)

2

Release rate = Flux × Area

4

4

AB o

AB o

D c
R

R
D c R

= u S

= S (2.4.3-7)
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2.4.3.1 Enzyme Immobilised on a Porous Spherical Matter

Let us consider an enzyme reaction in which the enzyme is immobilised on
a porous spherical pellet (Fig. 2.4.3-1). The pores could have a high surface
area, say 250 m2g–1. The pellet itself is placed in a fluid environment. Since
the enzyme is immobilised inside the pores of the pellet, the transfer of
substrate to the site of the immobilised enzyme through the pores, and the
transport of product out of the pores are expected to play a major role in
determining the process kinetics. Thus, rather than considering the transport
to and from the surface of the pellet, the transport inside the pores needs
to be considered.

Since it is spherical pellet, let us use spherical coordinates. The relevant
continuity equation (from Table 2.3.2-1, Eq. C2) applied over the spherical
pellet as the system, after cancellation of the inapplicable terms, replacement
of the partial derivative with an ordinary derivative because there is only one
independent variable x, expansion of the only remaining term into a second
order derivative and a first order derivative through chain rule for differentiation,
and with Michaelis-Menten kinetics for the reaction rate, becomes

2
max

eff 2

2

m

v sd s ds
D

r dr K sdr

  c
− + =  c + 

(2.4.3.1-1)

Boundary conditions:

At 0, 0
ds

r
dr

= = (2.4.3.1-2)

r = R, S = So (2.4.3.1-3)

The first boundary condition (Eq. 2.4.3.1-2) arises from the need for
symmetry, i.e. there cannot be a discontinuity in the substrate concentration
at the centre, irrespective of the direction (radius) of approach. In other
words, the substrate concentration at the centre must be the same value

Fig. 2.4.3-1 The porous
pellet



irrespective of the direction (radius) followed to approach it. The only way
that can happen is if the derivative of the substrate concentration at the
centre is zero.

When certain physical quantities are combined suitably, the resulting
quantity or ‘number’ does not possess any dimensions. There are many
advantages in using non-dimensional numbers, or in expressing relations in
terms of non-dimensional numbers. Such relations may become a lot more
general in applicability – they will not be restricted to a particular set of
values of the relevant physical variables. We will see more about non-
dimensional numbers in Chapter 3.

Let us define the needed non-dimensional variables as

o

s
x

s
= (2.4.3.1-4)

r
y

R
= (2.4.3.1-5)

Thus

1
. . . o

o
sds ds dx dy dx dx

s
dr dx dy dr dy R R dy

= = =

2 2

2 2 2

1o os sd s d ds d ds dy d dx d x

dr dr dy dr dr dy R dy Rdr R dy

    = = = =          

Thus, the differential equation becomes

2
max

eff 2 2

2

( )
o o o

m o

s s v s xd x dx
D

yR R dy K s xR dy

  c
− + =  c + 

(2.4.3.1-6)

Dividing throughout by eff
2

,os D

R
 we get

22
max

2
eff

2

( )m o

v x Rd x dx

y dy D K s xdy

c
+ = −

c +

or

2
2max

2
eff

2

1 om

m

vd x dx x
R

sy dy D Kdy x
K

c  + = −  c + 
c  

(2.4.3.1-7)

Similar to non-dimensional quantities mentioned earlier in this section, one
can think of non-dimensional parameters, which are useful for analysis, as
will become apparent later. Let us define some non-dimensional parameters,
as follows:
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3 max

eff

' ' reaction rate
Thiele modulus

' ' diffusion rate

o
m

T
o

v
R s

K a
M

R D s a

c 
 c = = = (2.4.3.1-8)

o

m

s

K
E =

c (2.4.3.1-9)

When so << Kcm, the reaction rate is of first order. Thus, o

m

s

K
E =

c
 accounts

for deviation from first order kinetics. For larger values of E, the reaction
is of zero order, and for smaller values of E, the reaction is of first order.

Thus, Eq. 2.4.3.1-7 can be written as

2
2

2

2
9

1T
d x dx x

M
y dy xdy

+ = −
+ E (2.4.3.1-10)

Boundary conditions:

At y = 1, x = 1 (2.4.3.1-11)

At y = 0, 
dx

dy
 = 0 (2.4.3.1-12)

Solving the differential equation, we can get x vs y (or) s vs r.
We are usually more interested in determining how much the reaction

is hindered due to immobilisation. To find this out, let us define an
effectiveness factor that gives us a measure of the hindrance, and evaluate
the same.

An effectiveness factor can be defined as

Actual reaction rate

Reaction rate in the absence of mass transfer resistanceg[ =

Actual rate vact: At steady state, there should be no accumulation of substrate
or product at the surface. Thus, whatever substrate enters, needs to be
consumed in the pellet for steady state to be valid.

effRate of entry ( 1) p
r R

ds
D A

dr =
= − −

In the above equation, (– 1) is used since the outward radial direction
is taken as positive (s entry is in the negative direction) and Ap is the surface
area of the particle.

eff
act

1

o
p

y

D s dx
v A

R dy =
=



On a volumetric basis

2
eff

act eff
31 1

4
4
3

po o

py y

As D sdx R dx
v D

R dy V R dyR= =

S= =
S

act eff 2
1

3 o

y

s dx
v D

dyR =
= (2.4.3.1-13)

The reaction rate in the absence of the mass transfer resistance is the
reaction rate if the concentration of the substrate is so. Since there is no
hindrance (resistance) to the mass transport, the substrate concentration in
this hypothetical situation would be the same as that at the surface of the
spherical pellet.

maxReaction rate in the absence of mass transfer resistance o

m o

v s

K s

c
=

c +
(2.4.3.1-14)

Thus, from the previous two equations

eff 2
1

max

3 o

y
g

o

m o

s dx
D

dyR

v s

K s

=[ = c
c +

1

2
max

eff3
1

y

o
m

m

dx

dy

vR
sD

K
K

==
c

 c + c 

1

2 1
3

1

y

T

dx
dy

M

==
 
 + E 

(2.4.3.1-15)

2.5 Unsteady State Diffusion

In this section, unlike in the previous section, we will consider the situation
when the concentration of the diffusing molecule changes with time. An
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example is the sorption of a surface modifying agent (SMA) on to the
surface of a material. SMAs are used to promote/dissuade cellular growth
on a surface of interest – it could be the hull of a ship or a container
handling cell solutions. The surface is sometimes exposed to the SMA
containing solution for a certain period to effect the modification.

Example 2.5-1

Let us take the case of a thin surface sorbing SMA from a solution with SMA
concentration, co. The thin surface is placed on the bottom of the vessel containing
the SMA solution. Let us consider the case where the amount of SMA sorbed
is a very small fraction of the total SMA amount present in solution. In such
cases, the SMA concentration far from the surface does not appreciably change
(why?).

Our interest is to find the SMA concentration in solution as a function of
time. It is convenient to consider rectangular coordinates here.

Taking the solution as our system, the continuity equation for SMA written
on our system is Eq. A2 of Table 2.3.2-1

2 2 2

2 2 2
A A A A A A A

x y z AB A
c c c c c c c

v v v D R
t x y z x y z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + + − + + =    ∂ ∂ ∂ ∂ ∂ ∂ ∂   

Thus, the equation reduces to

2

2
A A

AB
c c

D
t z

∂ ∂=
∂ ∂

(2.5-1)

The initial and boundary conditions are

t = 0; z t 0; cA = co (2.5-2)

t t 0; z = 0; cA = cs (2.5-3)

t t 0; z →�f; cA = co (2.5-4)

If we solve Eq. 2.5-1 with the above initial and boundary conditions, we
can get SMA concentration profiles in the solution above the surface at
various times, as shown in Fig. 2.5-1. This particular partial differential
equation (PDE) can be solved by converting it into an ODE. To do that, and
also to make the solution independent of the actual dimensions of each
system, let us define the following dimensionless variables:

A o

s o

c c

c c

−
θ =

− (2.5-5)

= 0 (vx = 0) = 0 (vy = 0) = 0 (vz = 0) = 0 (cA z f (x)) = 0 (cA z f (y)) = 0 (no rxn)



and

4 AB

z

D t
K = (2.5-6)

Note that we have constructed θ = f (K) and K = f (z, t). While using the

chain rule, 
∂θ
∂K

 can be replaced by 
d

d

θ
K

 without any loss in accuracy. The

variable, K, has been constructed to allow the possibility of conversion of
the partial differential equation (PDE) to an ordinary differential equation
(ODE) by combining both the independent terms z and t.

Thus, using the chain rule, from Eq. 2.5-5, we get

( ) .A
s o

c d
c c

t d t

∂ θ ∂K= −
∂ K ∂ (a)

Now the derivative of K with respect to t yields

24 2 4AB AB

z z

t t tD t t D t

∂K ∂ − − K = = = ∂ ∂  
(b)

Substituting Eq. (b) in Eq. (a) we get

( ) .
2

A
s o

c d
c c

t d t

∂ θ K= − −
∂ K (c)

Similarly, the spatial derivatives are transformed into

( ) .A
s o

c d
c c

z d z

∂ θ ∂K= −
∂ K ∂ (d)
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2

2
( ) .A

s o
c d

c c
z d zz

∂ ∂ θ ∂K = −  ∂ K ∂∂  
(e)

Now, since

1

4 ABz D t

∂K =
∂

is independent of z, we can write Eq. (e) as

2

2

( ) ( )

4 4
s o s oA

AB AB

c c c cc d d

z d d zD t D tz

− −∂ ∂ θ ∂θ   = =   ∂ K K ∂ ∂  
(f)

Applying the chain rule, we get

1
.

4 AB

d d

z d z dD t

∂θ θ ∂K θ= =
∂ K ∂ K (g)

Substituting Eq. (g) into Eq. (f) we get

2 2

2 2

( )

4
s oA

AB

c cc d

D tz d

−∂ θ=
∂ K (h)

Now by substituting Eq. (d) and Eq. (h) in Eq. 2.5-1, we get

2

2

( ) ( )

2 4
s o s o

Ab
AB

c c c cd d
D

t d D t d

− K − −θ θ=
K K (i)

which reduces to

2

2
2

d d

d d

θ θ− K =
K K (2.5-7)

The boundary conditions get transformed to

K = 0; θ = 1 (2.5-8)

K�→�f; θ = 0 (2.5-9)

The variable, K, was constructed to simultaneously satisfy the initial condition
(Eq. 2.5-2) and the second boundary condition (Eq. 2.5-4). Thus, we have
successfully transformed a PDE into an ODE in this case. The ODE can
be solved using analytical techniques. For example, let us say

d
u

d

θ=
K



and

2

2

du d

d

θ=
∂K K

Therefore, Eq. 2.5-7 becomes

2
du

u
d

− K =
K

Recognising that the above equation can be written as

ln 2
du

d u d
u

= − K K

ln 2u d= − K K∫
ln u = – K2 + A

Therefore

2
1 exp( )

d
u C

d

θ= = − K
K

This cannot be integrated analytically, except by series expansion

2 2 4 6

1
1! 2! 3!

e−K
K K K= − + − +}

which, when integrated, yields

2 3 5 7

3 1! 5 2! 7 3!
e d C−K K K KK = K− + − +}+

u u u∫
We can get at the solution through another route; let us keep the integral
signs for a few more steps. Integration yields

2
1 2exp( )C d Cθ = − K K+∫ (ac)

Applying the boundary conditions

K = 0; θ = 1

K�→�f; θ = 0

we get

2
1 201 exp( )C d CK== − K K +∫ (bc)

2
1 20 exp( )C d CK→f= − K K +∫ (cc)
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Eliminating C2 from the above two equations, we get

{ }2 2
1 0

2
1

0

1 exp( ) exp( )

exp ( )

C d d

C d

K→f K=

f

− = − K K − − K K

= − K K

∫ ∫

∫ (dc)

Since a series expansion provides

4 6
2 2exp( ) 1

2! 3!

K K− K = − K + − +}

the series expansion can be substituted into the integral for evaluation. The
above definite integral, which is useful in many situations, is called the error
function. The values of the integral between a lower limit of 0, and various
upper limits, are available in standard mathematical tables. When the
expression is evaluated by expanding the series, or by using the error

function values, the value 
2

S
 is got.

Thus, from Eq. (dc)

1
2

C = −
S

Eliminating C2 from equation (ac) and (bc) gives

{ }2 2
1 0

2
1

0

1 exp( ) exp( )

1 exp( )

C d d

C d

K=K K=

K

θ − = − K K − − K K

θ = + − K K

∫ ∫

∫
We need to differentiate between K in the limit on the integral in the equation
above, and the K in the integrand. The K in the integrand is a variable, which
can be replaced by another variable, say x, to give the same meaning. Thus

2 2

0 0

2 2
1 exp( ) 1 exp( )d x dx

K K
θ = − − K K = − −

S S∫ ∫
or

θ = 1 – erf (K)

θ = erfc (K)

where erfc (K) is the complementary error function which is defined as
1 – erf (K). Replacing the non-dimensional variables with their dimensional
equivalents, we get



erfc
4

A o

s o AB

c c z

c c D t

−  =  −  
(2.5-10)

Thus, cA will vary as shown in Fig. 2.5-1.
The flux

*

0 0

0
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( )

A
A AB AB s o

z z
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z

c
J D D c c
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= =
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∂ ∂
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AB s o
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D c c d
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dD t K=

− − θ=
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(2.5-11)

The Leibnitz rule provides the means for differentiating an integral. It says
that if

2

1

( )

( )
( ) ( , )

a t

a t
I t f x t dx= ∫

then

2

1

2

1

( )

( )

( )
2 1

2 1
( )

( , )

( , ) ( ( ), ) ( ( ), )

a t

a t

a t

a t

dI d
f x t dx

dt dt

da da
f x t dx f a t t f a t t

t dt dt

=

∂ = + − ∂ 

∫

∫
Thus, in this case, since

2

0

2
1 exp( )x dx

K
θ = − −

S ∫
the derivative that is needed in Eq. 2.5-11 is

2

0

2
0 exp( )

d d
x dx

d d

Kθ  = − − K K S 
∫

According to the Leibnitz rule

2 2 2

0

2 0
exp( ) exp( ) exp( 0 )

d d d
x dx

d d d

Kθ − ∂ K = − + − K − − K ∂K K KS  
∫

Since the function inside the integral is not a function of K, the first term
is zero, and the last term is zero. Thus

22
exp( )

d

d

θ −= − K
K S
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Process

Making the bolts that are used in the engine
Making the engine
Making the whole car

Characteristic rates

Say, 1 bolt per 5 s
Say, 1 engine per 1 h
Say, 1 car per 10 h

At K = 0

2

00

2exp( ) 2d

d K=K=

 θ − K= − = − K S S 

Therefore, the flux

* ( )AB
A s o

D
J c c

t
= −

S
�

(2.5-12)

2.6 Pseudo Steady State Approximation (PSSA) for Unsteady State
Diffusion

To understand pseudo steady state approximation, let us consider the
processes involved in manufacturing a car. We will focus on three of the
processes as shown below

Process

Enzyme action
Cell growth/division
Natural mutation

Characteristic rates

One in every 10–3 s
One in every 102 s
One in every 108 s

If our interest is in engine-making, the process of bolt-making is fast
enough to be considered at pseudo steady state, i.e. the changes in the rate
of bolt-making (unsteady aspects) will not much affect the rate of engine-
making. Also, the rate of whole-car-making is so slow, that it is not relevant
to the rate of engine-making. Thus, for the interest at hand, i.e. engine-
making, the process of whole-car-making can be taken as ‘frozen’.

Now, let us shift our attention to cellular processes.

If we are interested in cell growth/division, enzyme action can be taken
to be at pseudo steady state, and natural mutation can be considered ‘frozen’.

Now, let us consider a thin membrane through which diffusion of a
species occurs. Take the membrane as the system of interest. If the diffusion



through the membrane is fast enough compared to the changes in the
concentration of the species at the membrane surfaces (in the bulk solutions),
then the diffusion through the membrane can be assumed to take place
under steady state conditions when the interest is in the concentrations at

the membrane surfaces (in the bulk solutions) i.e. mc

t

∂
∂

 can be approximated

to be zero. This is called the pseudo steady state approximation (PSSA).

Example 2.6-1

As seen in Section 2.5, coatings can improve cell adherence to surfaces. Let us
consider a coated porous surface on which cells are grown. Let us also consider
the case in which a growth factor in the medium needs to pass the porous
surface and the coating to reach the cells and ensure good growth.

The permeability of the growth factor through the coating needs to be
determined. Permeability can be measured using a cylindrical vessel separated
into two chambers, A and B, by the material whose permeability is being measured.
Since the coating on the porous surface is too thin to have the necessary
mechanical properties to act as the above-mentioned separator between the two
chambers, another technique is used to find the needed permeability.

The permeability of a membrane with suitable mechanical properties is first
measured. Then, the permeability of the membrane with the ‘coating’ is measured.
The membrane used in the experiment is circular with an area of 1.33 cm2 and the
volume of each chamber (A or B) is 2 cm3. The initial concentration of the growth
factor in chamber A at the start of the experiment is 10 mg l–1, and in chamber
B, 0. The growth factor concentration in chamber B at different times from the
start of the experiment are given in mg l–1 in the following format below: time in
minutes (concentration with membrane, concentration with coated membrane)

0 (0, 0); 20 (0.4, 0.01); 40 (0.7, 0.02); 80 (1.3, 0.035)

We need to determine the growth factor permeability of the coating under PSSA,
since the rate at which the concentration of the growth factor in B changes is
usually much slower than the rate at which the growth factor moves through the
membrane.

The solution strategy is to consider the membrane and the coating to be
‘membranes in series’. Thus, their resistances, or the inverse of their conductances
(permeabilities) are additive. Permeability is equal to DK/L, where D is the
diffusivity, K is the partition coefficient and L is the membrane thickness. The
permeabilities need to be found from the given data of concentrations at various
times.
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Let us first consider the membrane as our system. Application of the equation
of continuity (Eq. A2 from Table 2.3.2-1) for A on this system of interest (the
membrane) yields

2 2 2

2 2 2
A A A A A A A

x y z AB A
c c c c c c c

v v v D R
t x y z x y z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + + − + + =    ∂ ∂ ∂ ∂ ∂ ∂ ∂   

Thus, we get

2

2
0m

m
c

D
x

∂
=

∂
(2.6-1)

where the subscript m implies the membrane, cm is the concentration of A
in the membrane and Dm is the diffusivity of A in the membrane.

We had earlier seen (Eq. 2.4.1-7) the solution of the above DE to be

( )m A A B
x

c Kc K c c
L

= − − (2.6-2)

and the flux

* ( )m m
A A m A B

dc D K
N J D c c

dx L
= = − = −

� �

(2.6-3)

Now, let us call our species A as i (to avoid difficulties with compartment
A) and apply the mass balance of the species i on the compartment A; we
get

i
i i i i

dA
I O G C

dt
= − + −� � ��

The output rate of species i needs to be equal to the transfer rate of the
species, i through the membrane.

Since the flux of i through the membrane is ,i mD K

L
(cA – cB), and the

rate = area × flux

,Rate ( )m i m
A B

A D K
c c

L
= − (2.6-4)

Thus, the mass balance of i becomes

,( )
( )m i mi A A

A B

A D KdA d V c
c c

dt dt L

−
= = −

= 0 (vx = 0) = 0 (vy = 0) = 0 (vz = 0) = 0 (cA z f (y)) = 0 (no rxn)= 0 (cA z f (z))= 0 (PSS)

= 0 = 0 = 0



Since VA is constant

, ( )m i mA
A A B

A D Kdc
V c c

dt L

−
= − (2.6-5)

A mass balance of i on the entire vessel consisting of the compartment A
and B, and the membrane, yields

i
i i i i

dA
I O G C

dt
= − + −� � ��

i.e. 0
dA

dt
=

When each compartment and the membrane are explicitly expressed, the
above equation becomes

( ) ( )
0

m
m

A A B B

c
d V

d V c d V c K
dt dt dt

 
 
 + + =

The partition coefficient K is used to represent all concentrations in consistent
units. Note that the units of cA or cB = moles of i/volume of solution in
chamber A or B, and that the partition coefficient converts the concentration
of i in the membrane into the equivalent solution concentration.

Since the volumes are constant

( ) ( )
0m mA B

A B
V dcd c d c

V V
dt dt K dt

+ + = (2.6-6)

By pseudo steady state approximation, 0mdc

dt
= . Also, we know that VA =

VB. Thus

A Bdc dc

dt dt

−= (2.6-7)

Using the initial conditions (at t = 0)

cA = co (2.6-8)

cB = 0 (2.6-9)

If we integrate Eq. 2.6-7, we get

cA – co = – cB (2.6-10)

Substituting Eq. 2.6-8 in Eq. 2.6-5, we get

,
(2 )A o A

m i m A
c c dC

A D K V
L dt

− = − (2.6-11)

= 0 = 0 = 0= 0
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Integrating Eq. 2.6-11 with the initial conditions cA = co, we get

,2 2
lnm i m A o

A o

A D K c c
t

V L c

− − =  
 

(2.6-12)

A plot of ln 
2 A o

o

c c

c

− 
 
 

 vs. t provides a line of slope ,2 m i m

A

A D K

V L

−
.

Now, recall that the permeability P is defined as (Section 2.4.1) .
DK

L
Thus

m
m

m

D K
P

L
= (2.6-13)

and let us say that Pcl is permeability of the coated layer. Since the membrane
and coated layer act in series for the transport of the growth factor, when
both are present, their resistances (inverse permeability values) are additive

Total

1 1 1

m clP P P
= + (2.6-14)

Thus, if the data is used to plot ln 
2

1A

o

c

c
 − 
 

 vs time, use of the first data

points in the brackets given in the problem statement (with the membrane

alone) gives 
2 m m

A

A P

V

−
 as the slope and the second data points in the

brackets (membrane + coating) gives 
2

.T T

A

A P

V

−
 Equation 2.6-14 can then

be used to determine the permeability of the coating.
The value: Pm = 4.8 × 10–5 cm s–1, PT = 1.1 × 10–6 cm s–1. Therefore

Pcl = 1.08 × 10–6 cm s–1. (Almost the entire resistance for the growth
factor flux in the evaluation system is provided by the coating).

Exercises

1. Succinctly, differentiate between the following:

(a) Conservation equation and constitutive equation
(b) Driving force and flux
(c) Mass average velocity and molar average velocity
(d) Steady state and unsteady state
(e) Steady state and pseudo steady state
(f) Fick’s first and second laws



2. For a binary system of A and B, show that the following relationships hold:

(a)
1

( )A A B B A A A Bv v v w v w v= ρ + ρ = +
ρ

� � � � �

(b) * 1
( )A A B B A A B Bv c v c v x v x v

c
= + = +� � � � �

(c) * * *( ) ( )A A B Bv v w v v w v v− = − + −� � � � � �

(d) * ( ) ( )A A B Bv v x v v x v v− = − + −� � � � � �

(e) A Bn n v+ = ρ� � �

(f) *
A BN N cv+ =

� �

�

(g) 0A Bj j+ =
� �

(h) * * 0A BJ J− =
� �

3. A test tube containing pure ethanol was accidentally left open in a room at
32 °C. The length of the test tube was 15 cm, and the length of the ethanol
column at the bottom was 2 cm. Diffusivity of ethanol in air is 0.135 cm2

s–1. Derive an expression for the partial pressure of ethanol as a function
of the height in the test tube, under steady state conditions. Assume that
air is insoluble in ethanol, and that the vapour pressure of ethanol at 32 °C
is 7853 Pa.

4. A small amount of medicated gel is applied to a reasonably large area of the
skin – thus, we can consider the transfer of the active ingredient into the
skin as a one dimensional process in Cartesian coordinates. The skin is 2 mm
thick. If the effective concentration of the active ingredient at the surface
of the skin for the time of interest can be assumed to remain constant at Cs
– the constancy can be assumed if the amount transported into the skin is
much less than the amount originally in the gel – and the concentration at
a depth of 1.75 m is Ca, find the concentration profile of the active ingredient
in the skin. The diffusivity of the active ingredient in the skin was found
to be DA.

5. The Kirby Bauer test is a test that uses antibiotic impregnated wafers to test
the susceptibility of bacteria to that particular antibiotic. The antibiotic disc
is placed in the middle of an agar plate that has been streaked with the
bacterial suspension. Upon incubation, a zone of clearance (no growth) is
observed if the bacteria are susceptible to the antibiotic. The minimum
inhibitory concentration (MIC) is the lowest concentration of an antibiotic
that will inhibit the visible growth of a microorganism.

In one of the Kirby Bauer test, 2 mm discs with an equivalent (in the
agar) ampicillin concentration of 10 Pg ml–1 was used on a strain. The MIC
is 2 Pg ml–1. The diameter of the zone of clearance on the agar plate was
25 mm. Assuming that the amount of ampicillin in the agar medium is much
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less than that originally present on the disc, find the concentration profile
of ampicillin in the zone of clearance.

6. An agar nutrient medium taken in a test tube is inoculated with bacteria
which has no kanamycin resistance. Assume uniform inoculation throughout
the volume of the agar. A disc containing uniformly distributed kanamycin
is placed at the open end of the agar medium, in the test tube. The growth
of the bacteria is observed after 24 h. If the minimum inhibitory concentration
of the bacteria is known to be co M, find the length upto which bacterial
growth will take place. Assume that the total amount of kanamycin in the
medium is much less than the amount originally present on the disc.

7. A disc shaped piece of wood is floating down the river (transport of wood
by river flow is common). The piece has a radius of 1 m, a thickness of 0.1 m,
and weighs 125 kg when it is dry. Water diffuses through the wood, and let
us say that a steady state has been achieved. Assuming that no water is
present on the exposed (upper) surface of the wood, find the effective
density of that wood piece. Neglect humidity and take the diffusivity of
water in wood to be 5 × 10–6 cm2 s–1.

8. Tapeworms are flatworms that can infect human intestines. They do not
have a separate respiratory system. They take in oxygen directly from their
environment through an envelope consisting of an ectoderm and an endoderm.
If the diffusivity of oxygen through the ectoderm is D1, and through the
endoderm is D2, the oxygen concentration in the environment is Co, and that
needed inside the worm is Ci, find the steady state oxygen concentration
profile in the tapeworm envelope.

9. Aluminium is toxic to plants, and its presence in the soil affects the growth
of its roots. Plants have adapted to this by secreting citrate, which chelate
aluminium, and prevent its entry into the roots. Calculate the steady state
molar flux of citrate through the hemispherical root tip. Take the radius of
the outer surface of the root tip to be Router, and that of the inner surface
to be Rinner. At steady state, the aluminium concentration on the membrane
at the inner root tip surface is 200 PM, and that at the outer root tip surface
can be approximated to be zero.

10. An artery has inner and outer radii, r1 and r2, respectively. The diffusivity
of oxygen varies as follows across the cross-section of the arterial wall

0( )
D

D r
r

=

The artery needs to be replaced by an artificial one, and the artificial artery
has a membrane diffusivity of D0 uniformly across the cross-section of its
wall. What is the thickness of the artificial artery if it needs to function



similar to the natural one in terms of oxygen delivery transport across its
wall?

11. The bird embryo inside the egg takes its oxygen from the air. The process
by which oxygen reaches the embryo is diffusion across the relatively
porous shell, and the not so porous membrane just beneath the shell.
Assuming the membrane thickness to be 100 P, the partition coefficient for
oxygen in this system to be unity, make a rough estimate of the flux of
oxygen across the membrane at a steady state concentration of oxygen
inside the egg (due to consumption by the embryo) of 60 % of the saturated
value in the fluid surrounding the embryo inside the egg. For the purposes
of this estimate, assume that the fluid properties are the same as that of
water.

12. To improve yields of ornamental plants, certain growth factors are released
from porous, spherical, ceramic pellets embedded in the soil near the roots.
At the surface of the pellet (r = R), the growth factor concentration in the
soil is C0. Far from the surface, the growth factor concentration drops to
zero. The growth factor is thus delivered by pure diffusion to the roots.
Nevertheless, the growth factor degrades while in the soil before it reaches
the roots, in a first order fashion with a degradation constant, kd. Set up the
governing equation to describe the transport of the growth factor in the soil,
along with the appropriate boundary conditions.

13. In a certain process, mammalian cells grow inside porous microcarrier beads
of radius, R. A particular substrate, A, is crucial for the desired growth of
the cells under these conditions, and hence there is an interest in determining
the concentration distribution of A inside the bead. The effective diffusivity
of A inside the pores of the bead is DA. The ‘growth reaction’ can be
considered as first order with respect to A, with an appropriate first order
rate constant, k. If the concentration on the surface of the bead is CAs, set
up the differential equation and the appropriate boundary conditions, which
will be needed to obtain an expression for the concentration distribution of
A inside the bead.

14. When the liquid phase oxygen supply strategy (LPOS) was used to cultivate
A. niger (mould), under certain conditions, a pellet morphology was observed.
The hydrogen peroxide added in the extracellular medium, diffuses into the
porous pellet, and breaks down inside the pellet to release oxygen. Set up
the equation and the boundary conditions to obtain the oxygen profile in
the pellet under the above conditions. Assume that the needed parameters
are known.

15. When bacterial cells are made competent and placed in a medium with
plasmid DNA, the DNA diffuses through the plasma membrane. Due to
competence, pores are formed and the DNA rushes through these pores.
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Derive an expression to find the permeability of DNA through the membrane
when the flow rate through the pores is equal to the diffusive flux through
the membrane. Assume that the cells are cylindrical bacterial cells with pores
present only along the curved surface of the cylinder.

16. Cyclosporin is an immunosuppressant drug. It acts by binding to the cytosolic
protein, cyclophilin, in the T-lymphocytes. At steady state, cyclosporin
concentration in the blood is Co, and its concentration in the cytosol of the
lymphocyte is Ci. Assuming lymphocytes to be spherical in shape with
external radius, ro, and internal radius, ri, derive an expression for the molar
flux of cyclosporin into the lymphocyte. The diffusivity of cyclosporin
across the lymphocyte membrane is D; its partition coefficient in the
lymphocyte membrane is K.

17. Can the continuity equations in the form given in Table 2.3.2-1 be applied
when there is a change in cross-sectional area in the direction of transport,
such as in the case of a sudden contraction?

18. Two rivers, say Adyar and Cooum, flowing in the same direction toward the
sea, are separated by a distance, L, in a certain Chennai region. In that
region, the concentration of nickel in the Adyar river is CA and that in the
Cooum river is CC; assume, CC > CA. A cylindrical connection between the
two rivers is made so that the connector length is L, and its diameter is D.
Another connection, in the shape of the frustum of a cone is also made
between the two rivers. The length of the second connector is also L, and
its diameter, d, varies linearly with distance along its axis, x, as follows:

d = dC (1 + kx)

dC = the diameter at the Cooum end, and k = (2L)–1. Assuming that the
waters in the connectors are still (no convection) and that no relevant
chemical reaction takes place, derive an expression for the steady state mole
flux of nickel as a function of x, in (a) the cylindrical connector, and (b) the
frustum of the cone connector. The diffusion coefficient of nickel in the river
water is DNi.

19. Somewhere upstream of the Adyar river compared to the position in the
previous exercise, the government decided to cultivate prawns using the river
water, in a cuboidal pond just next to the river. The size of the prawn cultivation
pond was 75 × 50 × 3 m3, and the connector that brought in river water for
the cultivation into the pond was again cuboidal of size 5 × 5 × 2 m3. A nickel
concentration of say, 5 ppm is toxic to prawns. Assuming that there was no



nickel present initially in the cultivation pond (and the river), if the
concentration in the river rises suddenly to a steady value of 10 ppm, how
long will it take for the nickel in the prawn cultivation pond to reach toxic
levels. Also assume that the waters in the prawn cultivation pond and the
cuboidal connector are still.

20. A normal person gets a small cut and starts bleeding. The clotting process
to stop the blood loss through the cut begins immediately. The clot can be
looked at as a fibrous structure with a pore size that reduces with the
progression of the clot formation, and the blood can be assumed to permeate
through the clot while the bleeding is on. When the pore size in the clot
reduces to that of the RBC radius, a, the bleeding can be expected to end.
If the reduction in pore radius happens from an initial radius of r0, as follows

r (t) = r0(1 + exp(– Ot))–1

estimate (a) permeability as a function of time, (b) clotting time, and (c) total
blood lost.

21. Facilitated diffusion is a process by which some proteins such as permeases
on the membrane help in the transfer of substrate molecules across the
membrane without explicit energy expenditure through ATP breakdown
(passive transport). The process of facilitated diffusion can be viewed as an
enzyme reaction that follows Michaelis-Menten kinetics. Derive an equation
for substrate transport through facilitated diffusion. Verify the model using
the following results for a substrate, S; take vmax = 0.14 mmole (mg-protein
min)–1

Time (s) Intracellular S level, mole (mg-protein)–1

150 0.12
300 0.22
450 0.28
600 0.33

22. A substrate, S, diffuses through a membrane, and gets converted to a
product through a zero order reaction that occurs in the membrane. Derive
an expression for the concentration of S with time in the membrane. Do you
notice anything curious about the expression?

23. The root envelope tissue in plants can be visualised as consisting of layers
of cylindrical sheets, one over the other. Each of those cylindrical sheets are
made of membranes with pores. Thus, in cross-section, a part of each
idealised sheet would appear as membranes of width s, separated by pores
of pore diameter, t, as shown in the figure. Take the inner and outer radii of
curvature for the two arcs of the circles to be Rb and Rc, respectively. What
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is the effective diffusion coefficient for, say a nutrient, in such a structure?
Also develop an expression for the concentration profile of the nutrient in
the envelope.

S t

24. The pulmonary artery carries deoxygenated blood to the lungs, and the
pulmonary vein carries oxygenated blood from the lungs. The transfer of
oxygen from the lungs to the blood in the vasculature, and the transfer of
carbon dioxide from the vasculature to the lungs happens at the microscopic
spherical ends of the gas pathway in the lungs, namely alveoli. The gases
pass through the alveolar wall, basement membrane, and the vascular wall
during the transfer process. Derive an expression for the flux of these gases
in terms of their permeabilities through the three structures, i.e. alveolar wall,
basement membrane and the vascular wall. Taking the partial pressure of
oxygen in the alveoli as 100 mm Hg, and that in the vasculature as 40 mm
Hg, estimate the oxygen flux. Also, taking the partial pressure of carbon
dioxide in the vasculature as 45 mm Hg and that in the alveoli as 40 mm Hg,
estimate the carbon dioxide flux.

25. Valinomycin is a potent toxin. It acts by destabilising the membrane potential.
It binds with K+ with a very high affinity and shields its charge. As a result,
K+ ions diffuse through the cell membrane as ‘uncharged’ species. Estimate
the time taken for the intracellular K+ concentration to reduce to half its
initial level of 100 mM. The extracellular K+ concentration can be taken to
be constant at 10 mM during this process (large extracellular volume, and
hence the addition of valinomycin-K+ complex molecules from the intracellular
space does not appreciably change the concentration). It can be assumed,
for initial estimates, that the concentration of the complex is the same as the
K+ concentrations, in the extra- and intra-cellular spaces. The partition
coefficient of the complex between the membrane and the cytoplasm is 0.8,
which can be assumed to be the same on the extracellular side too. The
diffusivity of the uncharged valinomycin-K+ complex in the membrane can
be taken to be 4 × 10–7 cm2 s–1. The cell can be taken to be a sphere of radius
0.5 P, and membrane thickness, 10 nm.

Some of the above exercise problems were suggested/formulated by G. Shashank,
G. Vivek Sathvik, D. Divya Vani, I. Pradeep Kumar (3), Chaitra Prabhakar, Ashritha
Durvasula, Pasupuleti Sai Shalini, K.M. Sandeep, Sattu Kishore (5, 21, 22, 24),
S. Kousik, Sagar Laygude, Utsav Saxena, G. Vigneshwaran, Dinesh Babu (6, 10),
P. Raghavendran, P. Vivek, K. Ramasamy, M. Ashok (7, 9, 16, 25), Ayush Varma,
Varun Chokshi, Dharav Solanki, T. Jaikiran (8), T. Avaneesh, Sonia Chottani,



Ramaganesh, Roopteja, Moutushi Das (15, 20), Uma Maheswari, Namrata Kamat,
Kiran, Kemun Khimun and Rashmi Kumari (23).

Fully Open-ended Exercise

When should a face mask that is used to protect people against poisonous gases
be replaced? This problem was formulated by Aditi Jain, for her CFA exercise on
a face mask designed for depleted uranium (CFA stands for choose-focus-
analyse exercise; see end of Chapter 1 for a relevant reference). Aditi’s report can
be found as a link from www.biotech.iitm.ac.in/GK_research.
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Chapter 3
Momentum Flux

We have seen in Chapter 1 that a fluid (either a gas or a liquid) is a
substance that takes the shape of the vessel containing it. We have also seen
that all real fluids have a property called viscosity associated with them.

Let us consider two parallel flat plates with a fluid (say water) in
between them. Now let us consider the situation when the bottom plate is
carefully moved in the x direction with a reasonably small velocity, vx. If
the velocity is small enough, we can assume that the bottom-most liquid
layer adhering to the plate will also move with the same velocity as that of
the plate. The shear stress due to the shear force exerted by the bottom-
most layer of fluid influences the velocity of the fluid layer above it. The
shear stress exerted by the layer above the bottom-most layer influences the
velocity of the layer above it, and so on. The resulting steady state velocity
profile of the fluid between the two plates is given in Fig. 3-1.

Stress is denoted by Wyx, where yx refers to the fact that the stress
(force per unit area) that arises due to a force acting in the x direction on
a surface, causes an effect in the y direction. Thus, Wyx is a shear stress –
the direction of effect is orthogonal to the direction of motion, and, as we
shall better understand later, Wxx is a normal stress. The idea of the flow
being in layers as shown in Fig. 3-1, and the shear stress idea subsequently
conveyed are simplistic, only for didactic purposes. We will make the ideas
more general when needed, later in the chapter.

It can be recalled that the shear or normal stress is force per unit area,
and that force is rate of momentum change (from Newton’s second law).
Or

Wyx = 
2 1 1

2 2

Force MLT [M(LT )]T

Area L L
Rate of momentum change

Area
Momentum flux

− − −
= =

=

=
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72 3 Momentum Flux

Note that although the direction of action is orthogonal in the example
mentioned above, the change happens in the x momentum of the subsequent
layers.

3.1 Rheology

The relationship between the shear stress, Wyx and a ‘shear rate’, or velocity

gradient xdv

dy
 was experimentally observed by Isaac Newton as

x
yx

dv

dy
W = − P (3.1-1)

The constant of proportionality, P, is called viscosity, and is a fundamental
material property. Readers interested in acquainting themselves with the
methods to estimate viscosity of gases and liquids, and to evaluate the effect
of temperature and pressure on viscosity can refer to books like Transport
Phenomena (Bird et al. 2002). The above equation is a constitutive equation,
and is called the ‘Newton’s law of viscosity’. Recall that Fick’s I law was
also a constitutive equation. As generalised in Section 2.2.1, it follows the
following relationship: Flux is proportional to the gradient of its primary
driving force.

Dimensionally, shear stress can be written from the introductory section
as

1 1MT (LT )

L L

− −  
  
  

Thus, the dimensions of viscosity are ML–1T–1.

vx(y)

y

x vx

Fig. 3-1 Velocity
distribution of a fluid
between two parallel,
closely spaced plates
with the bottom plate
being moved at a
velocity, vx



If we plot Wyx vs xdv

dy
 
 
 

 for the above fluid (water), we get a straight

line passing through the origin as shown in Fig. 3.1-1. Fluids that exhibit
such behaviour are known as Newtonian fluids. As can be expected, not all
fluids are Newtonian – they may exhibit different stress-shear rate behaviours.
Nevertheless, a Newtonian fluid approximation is a good one for many
fluids under certain conditions.

Bingham Plastic

A Bingham plastic fluid exhibits a rheology different from a Newtonian one.
It does not flow until a certain minimum shear stress, W0, is applied i.e. the
shear rate is zero until Wyx< W0. W0 is called the ‘yield stress’ for the material.

It can be represented as

0 0ifx
yx yx

dv

dy
W = W − P W ! W (3.1-2a)

00 ifx
yx

dv

dy
= W � W (3.1-2b)

Dilatant (power
law n > 1)

Bingham plastic

Newtonian

Pseudo-plastic (power law n < 1)

Wyx

xdv

dy
−

Fig. 3.1-1 The shear
stress-shear rate
behaviour of various
fluid types
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Power Law Fluids

Newtonian fluids and Bingham plastics have viscosities that are independent
of shear rate. Some fluid viscosities, though, are dependent on their shear
rates. This means that the fluid will either become easier to flow, or more
difficult to flow, with an increase in shear rate. Such fluids are known as
power law fluids because the variation of a particular, ‘apparent viscosity’
with shear rate, is expressed as a power law

1n
x x

yx
dv dv

m
dy dy

−

W = − (3.1-3)

where the apparent viscosity, Papp, is given as

1

app

n
xdv

m
dy

−

P = (3.1-4)

where m and n are parameters that are dependent on the fluid.

• If n = 1, the fluid is Newtonian and m = P (Newtonian viscosity)
• If n < 1, the fluid is shear-thinning or pseudo-plastic
• If n > 1, the fluid is shear-thickening or dilatant

Viscoelastic Fluids

Some fluids show time-dependent behaviour – the shear stress depends on
the shear rate (viscous) as well as on the strain (elastic or Hookean). A
common constitutive equation to describe viscoelastic fluids is the Maxwell
model

yx x
yx

dv

G t dy

∂WP  W + = P − ∂  
(3.1-5)

where G is the shear elastic modulus (Nm–2).
The synovial fluid that lubricates joints in the human body shows

viscoelastic behaviour. It is a complex fluid consisting of proteins out of
which hyaluronic acid is the most important. Mucus and vitreous fluid in
the eye also show viscoelastic behaviour.



Blood

Blood is a complex biological fluid that consists of plasma, which is a
mixture of liquids, proteins, with cells such as erythrocytes, leukocytes, and
others suspended in it. It behaves partially as a Bingham plastic, i.e. it
exhibits a yield stress, and partially as a viscoelastic fluid. Besides the
composition, the complex rheological behaviour of blood also arises from
the ‘clumping’ of erythrocytes (red blood cells) due to the presence of
fibrinogen on their surface.

The Casson model can be used to describe blood rheology. It can be
stated as

1 2
1 21 2 1 2
0

xdv

dy

−
W = W + P (3.1-6)

where W0 is the yield stress.
The yield stress depends on the volume fraction of erythrocytes in the

blood. The volume fraction of erythrocytes in blood is usually referred to
as the ‘hematocrit’ and has a typical value of 0.4.

At lower shear rates, say < 20 s–1, blood shows a complex behaviour
that necessitates the use of Eq. 3.1-6, whereas at higher shear rates, say
> 100 s–1, blood can be assumed, without loss in accuracy, to behave as
a Newtonian fluid. Blood rheology is highly complex and a lot of work has
been done on this aspect alone so much so that an entire field of study –
hemorheology – is dedicated to it.

3.2 Types of Flows

Osborne Reynolds studied flows at various flow rates and found that the
nature of flow changes with flow rate. Through his now classic, flow
visualisation experiment (Reynolds 1883), Reynolds reported that at low
flow rates, the flow in a pipe is in layers or laminae, and hence can be called
‘laminar flow’. Above a certain flow rate, the flow becomes chaotic, and
is called ‘turbulent flow’. There is a range of flow rates where one cannot
say beforehand whether the flow would be ‘laminar’ or ‘turbulent’. This
range/region is called the ‘transition region’.

A non-dimensional number, called the Reynolds number, can be used to
predict whether the flow will be laminar or turbulent. The Reynolds number
is defined as

Re
vd

N
ρ=
P

(3.2-1)
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where ρ is density of the fluid, v is velocity of the fluid, d is pipe diameter
and P is viscosity of the fluid.

In pipe flow (and only in pipe flow), the following numbers hold:

NRe < 2100 Laminar flow
2100 < NRe < 4000 Transition
NRe > 4000 Turbulent flow

In the initial part of this chapter, we will deal with laminar flow, and then
explicitly address ways to deal with turbulent flows.

3.3 Shell Momentum Balances

Since momentum is a conserved quantity, momentum balance can be used
as a principle to obtain useful relationships. In this section, let us do
momentum balances over a thin shell of fluid. In other words, the thin shell
is the ‘system’ or ‘control volume’ over which the momentum balance is
written. This technique for solving relevant problems is called the ‘shell
balance’ technique.

To illustrate the technique, let us consider the case of flow in a falling
film over an inclined surface (Fig. 3.3-1). Characteristics of such flow are
used to evaluate the rheological properties of biological solutions. For example,
the ‘Bostwick viscometer’ is based on the principle of flow over an inclined
surface.

We know from basic physics that momentum is a conserved quantity
in the absence of external forces. When external forces are present, according

Fig. 3.3-1 Thin
flow over a
surface inclined at
an angle E to the
vertical

Entrance
effects

Exit
effects

E

L
We are interested in this
region where the flow is
well developed i.e. v(z)
z f (z). We also neglect
pressure effects.



to Newton’s second law, the rate of change of momentum is equal to the
(vector) sum of the forces that act on the system or the control volume,
in the direction of motion. In the case of a balance on the total mass, we
could write

Rate of total mass Rate of total mass Rate of total mass
0

out of the system into the system accumulation in the system

     − + =     
     

For a system (or a control volume) that has momentum being brought into
it and taken out of it by flowing streams (by convection), a useful form of
Newton’s second law can be written as

Rate of momentum Rate of momentum

out of the system into the system

Rate of momentum Sum of forces acting

accumulation in the system on the system

   −   
   

   
+ =   
    (3.3-1)

At steady state, the accumulation rate can be set to zero, and the balance
becomes

Rate of momentum Rate of momentum Sum of forces acting
0

into the system out of the system on the system

     
− + =     

     

Momentum can enter the shell (system) by: (i) molecular means (momentum
flux) and/or (ii) convection (bulk fluid motion), as illustrated in Fig. 3.3-2.
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Further, there could be many forces that act on the system. For illustration,
let us consider only the gravity forces that act on the whole volume. The
pressure force and the normal force may not be relevant to the direction
considered.

We are interested in vz(x) and Wxz(x). Let us first acknowledge that the
rate of momentum is area × momentum flux.

By Molecular Mechanism

Rate of z momentum in, across the surface at x: (LW) Wxz_x
Rate of z momentum out, across the surface at x + ∆x: (LW) Wxz_x+∆x

By Convection

Rate of z momentum in, across the surface at z = 0: (W ∆x vz) (ρvz)_z=0
Rate of z momentum out, across the surface at z = L: (W ∆x vz) (ρvz)_z=L
Gravity force acting on the fluid in the direction of motion: (L W ∆x) (ρ g
cosE)

Substituting the above in the momentum balance, Eq. 3.3-1, at steady state,
we get

2 2
0

cos 0xz xz z zz z Lx x x
LW LW W x v W x v LW x g= =+∆W − W + ∆ ρ − ∆ ρ + ∆ ρ E =

(3.3-2)

Since we have chosen conditions such that vz z f (z), the third and fourth
terms on the LHS cancel each other. Then, if we divide the equation by
LW∆x and take the limit as ∆x → 0

0
lim cos

xz xzx x x

x
g

x
+∆

∆ →

 W − W 
= ρ E 

∆ 

i.e.

cosxzd
g

dx

W = ρ E (3.3-3)

The solution of the above first order differential equation (DE) is

Wxz = ρ g x cosE + C1 (3.3-4)

To evaluate C1, we need a boundary condition.



Notice that x = 0 is the liquid-gas interface. A standard boundary
condition that can be used at liquid-gas interfaces is that the momentum
flux (hence the velocity gradient) in the liquid phase can be assumed to be
zero for most calculations. i.e.

at x = 0, Wxz = 0 (3.3-5)

This boundary condition applied on to the solution given in Eq. 3.3-4 yields,
C1 = 0. Thus

Wxz = ρ g x cosE (3.3-6)

Thus, we have the shear stress distribution, i.e. Wxz = f (x).
To obtain the velocity distribution from the shear stress distribution, we

need a link between the two. That link is conveniently provided by the
constitutive equation. For example, if the fluid is Newtonian, we know that

z
xz

dv

dx
W = − P

By substituting the constitutive equation in Eq. 3.3-6, we get

coszdv g
x

dx

ρ E = − P 
(3.3-7)

The solution of the above DE is

2
2

cos

2z
g

v x C
ρ E = − + P 

(3.3-8)

C2 can be found by another standard boundary condition – at the solid-fluid
interface, the fluid velocity equals the velocity with which the surface itself
is moving. It is assumed that the fluid will cling to any solid surface with
which it is in contact.

Therefore

at x = G, vz = 0 (3.3-9)

By substituting the boundary condition into the solution, Eq. 3.3-8, we get

2
2

cos

2

g
C

ρ E = G P 

Therefore

22 cos
1

2z
g x

v
 ρ G E  = −  P G  

(3.3-10)
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It can be seen that the maximum velocity occurs at x = 0. Therefore

2

,max
cos

2z
g

v
ρ G E=

P
(3.3-11)

Now, the average velocity over a cross-section of a film can be computed
using

0 0
, avg

0

0 0

1
w

z

z zw

v dxdy
v v dx

dxdy

G
G

G= =
G

∫ ∫
∫

∫ ∫
(3.3-12)

(since W can be cancelled in the numerator and the denominator). By
substituting Eq. 3.3-10 in Eq. 3.3-12, we get

22 1

, avg
0

132

0

2

cos
1

2

cos 1

2 3

cos

3

z
g x x

v d

g x x

g

 ρ G E    = −    P G G    

 ρ G E    = −    P G G    

ρ G E=
P

∫

(3.3-13)

The volume flow rate Q is given by

2

, avg
0 0

cos

3

w

z z
g

Q v dxdy W v W
G ρ G E= = G = G

P∫ ∫ (3.3-14)

3.4 Equation of Motion

Let us consider doing momentum balance in three dimensions with the
realisation that momentum is a vector. To do that, let us first consider
Cartesian coordinates and take the same cuboidal element that we considered
for mass balance (Fig. 3.4-1).

As seen earlier, momentum flows into and out of the volume element
by two means:

• convection (by virtue of bulk fluid flow)
• molecular aspects (by virtue of velocity gradients)



Momentum Rate by Convection

For momentum transport by convection, note that ( )v vρ� �

 is momentum flux

(the units can be written down and checked). Thus, the rate of momentum

(momentum per time) is ( ) ,A v vρ� �

 where A is the area. The units work out

as 2
3

kg m m
m .

s sm

 
 
 

There are three components to the rate of momentum: x, y, and z. Each
of these components is, in turn, composed of three other components, as
shown in Fig. 3.4-2.
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( ) yA v vρ�

( ) xA v vρ�

( ) zA v vρ�

A vvρ ��

A(ρ vx)vx

A(ρ vy)vx

A(ρ vz)vx

A(ρ vx)vy

A(ρ vy)vy

A(ρ vz)vy

A(ρ vx)vz

A(ρ vy)vz

A(ρ vz)vz

Fig. 3.4-2 The various
components of the
momentum rate

(x + ∆x, y + ∆y, z + ∆z)

(x, y, z)

Z

Y

X

Fig. 3.4-1 Control
volume (system)
to consider for
momentum
balances
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Now, let us consider only the x component of the momentum rate due
to convection:

Entry Rates
x direction (through the face at x) = (ρvx)vx_x ∆y∆z
y direction (through the face at y) = (ρvy)vx_y ∆x∆z
z direction (through the face at z) = (ρvz)vx_z ∆x∆y

Exit Rates
x direction (through the face at x + ∆x) = (ρvx)vx_x+∆x ∆y∆z
y direction (through the face at y + ∆y) = (ρvy)vx_y+∆y ∆x∆z
z direction (through the face at z + ∆z) = (ρvz)vx_z+∆z ∆x∆y

Thus, the net x momentum rate due to convection is

∆y∆z[(ρvx)vx_x – (ρvx)vx_x+∆x] + ∆x∆z[(ρvy)vx_y – (ρvy)vx_y+∆y]
+ ∆x∆y[(ρvz)vx_z – (ρvz)vx_z+∆z]

Momentum Rate by Molecular Aspects

Now, let us look at the momentum rate through molecular aspects. It can
be recalled, from earlier in this chapter, that shear stress is momentum flux.
Thus, area × shear stress will provide an expression for the momentum rate
through molecular aspects.

To begin, let us consider the force that causes the shear stress. Say that

the force that acts on the face at x (refer to Fig. 3.4-1) is ,s
xF

����

 the force

that acts on the face at y is ,s
yF

����

 and the force that acts on the face at

z is .s
zF

����

 Each of these forces would have three (x, y and z) components,
and the components are detailed below:

components of

S
xx

S S
xxy

S
xz

F

F F

F







����



components of

S
yx

S S
yyy

S
yz

F

F F

F








����

components of

S
zx

S S
zzy

S
zz

F

F F

F







����

Now, let us divide the force components by the appropriate areas to get the
components of the stresses.

components of
xx

xy x

xz

W


W W
W 

�

components of

yx

yy y

yz

W
W W
W 

�

components of
zx

zy z

zz

W


W W
W 

�

Wij denotes shear stress when i z j, and normal stress when i = j; both
shear stress and normal stress arise due to molecular aspects.

Let us first consider only the x component of momentum rate due to
molecular aspects.

Entry Rates
x direction = Wxx_x∆y∆z
y direction = Wyx_y∆x∆z
z direction = Wzx_z∆x∆y

Exit Rates
x direction = Wxx_x+∆x∆y∆z
y direction = Wyx_y+∆y∆x∆z
z direction = Wzx_z+∆z∆x∆y
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Thus, the net x momentum rate due to molecular aspects is

∆y∆z[Wxx_x – Wxx_x+∆x] + ∆x∆z[Wyx_y – Wyx_y+∆y] + ∆x∆y[Wzx_z – Wzx_z+∆z]

Forces

Let us consider two important forces that usually act on the volume element,
namely fluid pressure force and gravity. If there are other forces acting on
the volume element, we need to consider them as additive terms in each
direction.

The resultant force in the x direction is

∆y∆z(p_x – p_x+∆x) + ρgx∆x∆y∆z

where p = f (ρ, T).

Accumulation

The accumulation of the x momentum within the volume element is

xv
x y z

t

∂ρ ∆ ∆ ∆  ∂ 

If we substitute the above terms for the x direction in the general momentum
balance equation Eq. 3.3-1, divide by ∆x∆y∆z, and take the limit as ∆x, ∆y,
and ∆z → 0, we get

( )( ) ( ) ( )y x yxx x x z x xx zx
x

v vv v v v v p
g

t x y z x y z x

∂ ρ ∂W   ∂ ρ ∂ ρ ∂ ρ ∂W ∂W ∂= − + + − + + − + ρ   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
(3.4-1)

A similar exercise in the y and z directions would give

( ) ( ) ( ) ( )y x y y y z y xy yy zy
y

v v v v v v v p
g

t x y z x y z y

∂ ρ ∂ ρ ∂ ρ ∂ ρ ∂W ∂W ∂W    ∂= − + + − + + − +ρ   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
(3.4-2)

( )( )( ) ( )y z yzx z xzz z z zz
z

v vv vv v v p
g

t x y z x y z z

∂ ρ ∂W   ∂ ρ ∂W∂ ρ ∂ ρ ∂W ∂= − + + − + + − +ρ   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
(3.4-3)



In compact, vectorial notation

( )
[ . ] [ . ]

Rate of Rate of gain in Rate of gain in Pressure

increase in momentum by momentum by force on

momentum per convection per viscous effects per

unit volume unit volume unit volume

v
vv p g

t

∂ ρ = − ∇ ρ − ∇ W −∇ +ρ
∂

�
� � ��� �

�

Gravitational

 the force on the

element per element per

unit volume unit volume
(3.4-4)

There are a couple of terms in Eq. 3.4-4 that could be new. A review of

Eqs. 3.4-1, 3.4-2 and 3.4-3 will reveal that W�  has 9 terms. W is a second
order tensor with 9 components that can be represented by

xx xy xz

yx yy yz

zx zy zz

W W W 
 

W = W W W 
 W W W 

�

See Appendix 1 for more on tensor algebra.

Similarly, vv
��

 is a new concept. Note that it is neither a dot product nor
a cross product. A review of Eqs. 3.4-1 to 3.4-3 (first terms on the LHS)

will reveal that vv
��

 has 9 terms. vv
��

 is known as the ‘dyadic product’ and
is a special form of second order tensor. The dyadic product of two vectors

v
�

 and w
�

 is

x x x y x z

y x y y y z

z x z y z z

v w v w v w

vw v w v w v w

v w v w v w

 
 

=  
 
 

��

See Appendix 1 for more on dyad algebra.
Now, let us consider Eq. 3.4-1 written as

( )( ) ( ) ( )y x yxx x x z x xx zx
x

v vv v v v v p
g

t x y z x y z x

∂ ρ ∂W   ∂ ρ ∂ ρ ∂ ρ ∂W ∂W ∂+ + + = − + + − +ρ   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

The LHS can be expanded as

yx x x x x z
x x x y x z x

vv v v v v v
v v v v v v v

t t x x y y z z

∂ρ ∂ ∂ ∂ρ ∂ ∂ ∂ρ∂ρρ + + ρ + + ρ + + ρ + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

y yx x x xz
x x x y z

v vv v v vv
v v v v v

t t x y z x y z

∂ρ ∂   ∂ ∂ρ ∂ ∂∂ρ∂ρ= ρ + + + + + ρ + ρ + ρ   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
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yx x z
x x x y z

vv v v
v v v v v

t t x x y y z z

∂ ∂ ∂ ∂∂ρ ∂ρ ∂ρ ∂ρ= ρ + + ρ + + ρ + + ρ + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

  yx z
x y z

vv v
v v v

x y z

∂ ∂ ∂
+ ρ + + ∂ ∂ ∂ 

yx z
x x x x y z

vv v
v v v v v v

t x y z x y z

 ∂  ∂ ∂∂ρ ∂ρ ∂ρ ∂ρ  = + ρ + + + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂     

    yx x x
x y z

vv v v
v v v

t x y z

∂ ∂ ∂ ∂
+ ρ + + + ∂ ∂ ∂ ∂ 

{ } xDv
E

Dt
= + ρ

where

yx z
x x y z x

vv v
E v v v v v

t x y z x y z

∂ ∂ ∂∂ρ ∂ρ ∂ρ ∂ρ = + + + + ρ + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂   

Using the equation of continuity, Eq. 1.4.3-6, the first term on the RHS of
the equation above can be written as the negative of the second term on the
RHS. Thus

0y yx xz z
x x

v vv vv v
E v v

x y z x y z

 ∂  ∂   ∂ ∂∂ ∂
= − ρ + + + ρ + + =    ∂ ∂ ∂ ∂ ∂ ∂    

Thus, Eq. 3.4-1 can be written as

yxx xx zx
x

Dv p
g

Dt x y z x

∂W ∂W ∂W ∂ρ = − + + − + ρ ∂ ∂ ∂ ∂ 

The other two components (y and z) of momentum rate can be similarly
expressed and added together, to get a 3-D representation

[ . ]

Viscous Pressure GravitationalMass
Acceleration

Volume forces on force on force on

the element the element the element

per unit volume per unit volume per unit volume

Dv
p g

Dt
ρ = − ∇ W −∇ + ρ

u

�
� � �

�

(3.4-5)



Table 3.4-1 The equations of motion in rectangular Cartesian coordinates

x direction

yxx x x x xx zx
x y z x

v v v v p
v v v g

t x y z x x y z

∂W ∂ ∂ ∂ ∂ ∂ ∂W ∂W ρ + + + = − − + + + ρ  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
(A1)

For a Newtonian fluid with constant ρ and µ

2 2 2

2 2 2
x x x x x x x

x y z x
v v v v p v v v

v v v g
t x y z x x y z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ρ + + + = − + P + + + ρ  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
(A2)

y direction

y y y y xy yy zy
x y z y

v v v v p
v v v g

t x y z y x y z

∂ ∂ ∂ ∂ ∂W ∂W ∂W   ∂ρ + + + = − − + + + ρ   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
(B1)

For a Newtonian fluid with constant ρ and µ

2 2 2

2 2 2
y y y y y y y

x y z y

v v v v v v vp
v v v g

t x y z y x y z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂  ∂
 ρ + + + = − +P + + +ρ   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

(B2)

z direction

yzz z z z xz zz
x y z z

v v v v p
v v v g

t x y z z x y z

∂W ∂ ∂ ∂ ∂ ∂ ∂W ∂W ρ + + + = − − + + + ρ  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
(C1)

For a Newtonian fluid with constant ρ and µ

2 2 2

2 2 2
z z z z z z z

x y z z
v v v v p v v v

v v v g
t x y z z x y z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ρ + + + = − + P + + + ρ  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
(C2)

The components of Eq. 3.4-5, in different coordinate systems are given in
Tables 3.4-1 to 3.4-3; the order of the first two terms on the RHS of
Eq. 3.4-5 has been reversed in the tables. To determine velocity distributions
and to derive further useful expressions, we need to represent the stresses
in terms of velocity gradients and fluid properties. The equations in Tables
3.4-4 to 3.4-6, which give the components of the stress tensor for a Newtonian
fluid in the three coordinate systems, can be used toward this objective.

Substituting the expressions from Table 3.4-4 in the momentum balances
for the three directions, we get

2
2 ( . )

3
yx x x

xz
x

vDv v v
v

Dt x x y y x

vv p
g

z x z x

 ∂  ∂ ∂∂ ∂ ρ = P − P ∇ + P +   ∂ ∂ ∂ ∂ ∂    

 ∂ ∂∂ ∂ + P + − + ρ  ∂ ∂ ∂ ∂  

�

�

(3.4-6)

3.4 Equation of Motion 87



88 3 Momentum Flux

Table 3.4-2 The equations of motion in cylindrical coordinates

r direction

2

1 1
( )

r r r r
r z

r rz
rr r

v v v v v v
v v

t r r r z

p
r g

r r r r r z

θ θ

θ θθ

 ∂ ∂ ∂ ∂
ρ + + − + = 

∂ ∂ ∂θ ∂ 

∂ ∂ ∂W W ∂W − − W + − + + ρ ∂ ∂ ∂θ ∂ 
(A1)

For a Newtonian fluid with constant ρ and µ

2

2 2

2 2 2 2

1 1 2
( )

r r r r
r z

r r
r r

v v v v v v
v v

t r r r z

p v v v
rv g

r r r r r r z

θ θ

θ

 ∂ ∂ ∂ ∂ρ + + − + = 
∂ ∂ ∂θ ∂ 

 ∂ ∂ ∂ ∂ ∂ ∂ − + P + − + +ρ  ∂ ∂ ∂ ∂θ  ∂θ ∂ 
(A2)

θ direction

2
2

1 1 1
( )

r
r z

z
r

v v v v v v v
v v

t r r r z

p
r g

r r r zr

θ θ θ θ θ θ

θθ θ
θ θ

∂ ∂ ∂ ∂ ρ + + + + = ∂ ∂ ∂θ ∂ 

∂ ∂ ∂W ∂W − − W + + + ρ ∂θ ∂ ∂θ ∂ 
(B1)

For a Newtonian fluid with constant ρ and µ

2 2

2 2 2 2

1 1 1 2
( )

r
r z

r

v v v v v v v
v v

t r r r z

p v v v
rv g

r r r r r r z

θ θ θ θ θ θ

θ θ
θ θ

∂ ∂ ∂ ∂ ρ + + + + = ∂ ∂ ∂θ ∂ 

 ∂ ∂ ∂ ∂ ∂ ∂ − + P + + + + ρ  ∂θ ∂ ∂ ∂θ  ∂θ ∂ 
(B2)

z direction

1 1
( )

z z z z
r z

z zz
rz z

v v v v v
v v

t r r z

p
r g

z r r r z

θ

θ

∂ ∂ ∂ ∂ ρ + + + = ∂ ∂ ∂θ ∂ 

∂ ∂ ∂W ∂W − − W + + + ρ ∂ ∂ ∂θ ∂ 
(C1)

For a Newtonian fluid with constant ρ and µ

2 2

2 2 2

1 1

z z z z
r z

z z z
z

v v v v v
v v

t r r z

p v v v
r g

z r r r r z

θ∂ ∂ ∂ ∂ ρ + + + = ∂ ∂ ∂θ ∂ 

 ∂ ∂ ∂ ∂ ∂ − + P + + + ρ  ∂ ∂ ∂  ∂θ ∂ 
(C2)



Table 3.4-3 The equations of motion in spherical coordinates*

r direction

2 2

2
2

sin

1 1 ( sin ) 1
( )

sin sin

r r r r
r

r r
rr r

v v vv v v v v p
v

t r r r r r

r g
r r r rr

φ θ φθ

θθ φφθ θ

 +∂ ∂ ∂ ∂ ∂
ρ + + + − = −  ∂ ∂ ∂θ θ ∂φ ∂ 

W + W ∂ ∂ W θ ∂W
− W + + − + ρ ∂ θ ∂θ θ ∂φ 

(A1)

For a Newtonian fluid with constant ρ and µ

2 2

2
2 2 2 2

sin

2 2 2 2
cot

sin

r r r r
r

r r r

v v vv v v v v p
v

t r r r r r

vv
v v v g

r r r r

φ θ φθ

φθ
θ

 +∂ ∂ ∂ ∂ ∂ρ + + + − = −  ∂ ∂ ∂θ θ ∂φ ∂ 

∂ ∂+ P ∇ − − − θ− +ρ ∂θ ∂φθ 
(A2)

θ direction

2

2
2

cot 1

sin

1 1 ( sin ) 1 cot
( )

sin sin

r
r

r
r

v vv v v v v v v p
v

t r r r r r r

r g
r r r r rr

φ φθ θ θ θ θ θ

θφθθ θ
θ φφ θ

 θ∂ ∂ ∂ ∂ ∂ρ + + + + − = −  ∂ ∂ ∂θ θ ∂φ ∂θ 

∂W ∂ ∂ W θ W θ− W + + + − W + ρ ∂ θ ∂θ θ ∂φ 
(B1)

For a Newtonian fluid with constant ρ and µ

2

2
2 2 2 2 2

cot 1

sin

2 2 cos

sin sin

r
r

r

v vv v v v v v v p
v

t r r r r r r

vv v
v g

r r r

φ φθ θ θ θ θ θ

φθ
θ θ

 θ∂ ∂ ∂ ∂ ∂ρ + + + + − = −  ∂ ∂ ∂θ θ ∂φ ∂θ 

∂ ∂ θ+ P ∇ + − − +ρ ∂θ ∂φθ θ 
(B2)

φ direction

2
2

1
cot

sin sin

1 1 1 2cot
( )

sin

r
r

r
r

v v v v v v v v vv p
v

t r r r r r r

r g
r r r r rr

φ φ φ φ φ φ θ φθ

θφ φφ φ
φ θφ φ

∂ ∂ ∂ ∂  ∂ρ + + + + + θ = − ∂ ∂ ∂θ θ ∂φ θ ∂φ 

∂W ∂W W ∂ θ− W + + + + W + ρ ∂ ∂θ θ ∂φ 
(C1)

For a Newtonian fluid with constant ρ and µ

2
2 2 2 2 2

1
cot

sin sin

2 2cos

sin sin sin

r
r

r

v v v v v v v v vv p
v

t r r r r r r

v v v
v g

r r r

φ φ φ φ φ φ θ φθ

φ θ
φ φ

∂ ∂ ∂ ∂  ∂ρ + + + + + θ = − ∂ ∂ ∂θ θ ∂φ θ ∂φ 

 ∂ θ ∂+ P ∇ − + + +ρ ∂φ ∂φθ θ θ 
(C2)

*Note that 
2

2 2
2 2 2 2 2

1 1 1
sin

sin sin
r

r rr r r

 ∂ ∂ ∂ ∂ ∂   ∇ = + θ +     ∂ ∂ ∂θ ∂θ   θ θ ∂φ 
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Table 3.4-4 Components of the stress tensor for Newtonian fluids in rectangular
Cartesian coordinates

yx
xy yx

vv

y x

∂ ∂W = W = − P + ∂ ∂ 
(A)

y z
yz zy

v v

z y

∂ ∂W = W = − P + ∂ ∂ 
(B)

z x
zx xz

v v

x z

∂ ∂ W = W = − P + ∂ ∂ 
(C)

2
2

3
yx x z

xx

vv v v

x x y z

∂ ∂ ∂ ∂W = − P + P + + ∂ ∂ ∂ ∂ 
(D)

2
2

3
y yx z

yy

v vv v

y x y z

∂ ∂ ∂ ∂W = − P + P + + ∂ ∂ ∂ ∂ 
(E)

2
2

3
yz x z

zz

vv v v

z x y z

∂ ∂ ∂ ∂W = − P + P + + ∂ ∂ ∂ ∂ 
(F)

Table 3.4-5 Components of the stress tensor for Newtonian fluids in cylindrical
coordinates

1 r
r r

v v
r

r r r
θ

θ θ
 ∂ ∂  W = W = − P +  ∂ ∂θ  

(A)

1 z
z z

v v

z r
θ

θ θ
∂ ∂ W = W = − P + ∂ ∂θ 

(B)

z r
zr rz

v v

r z

∂ ∂ W = W = − P + ∂ ∂ 
(C)

2 1 ( ) 1
2

3
r r z

rr
v rv v v

r r r r z
θ∂ ∂ ∂ ∂ W = − P + P + + ∂ ∂ ∂θ ∂ 

(D)

1 2 1 ( ) 1
2

3
r r zv v rv v v

r r r r r z
θ θ

θθ
∂ ∂ ∂ ∂   W = − P + + P + +   ∂θ ∂ ∂θ ∂   

(E)

2 1 ( ) 1
2

3
z r z

zz
v rv v v

z r r r z
θ∂ ∂ ∂ ∂ W = − P + P + + ∂ ∂ ∂θ ∂ 

(F)



Table 3.4-6 Components of the stress tensor for Newtonian fluids in spherical
coordinates

1 r
r r

v v
r

r r r
θ

θ θ
 ∂ ∂  W = W = − P +  ∂ ∂θ  

(A)

sin 1

sin sin

v v

r r
φ θ

θφ φθ
  θ ∂ ∂W = W = − P +  ∂θ θ θ ∂φ  

(B)

1

sin
r

r r

vv
r

r r r
φ

φ φ
  ∂ ∂W = W = − P +  θ ∂φ ∂   

(C)

2

2

2 1 ( ) 1 ( sin ) 1
2

3 sin sin
r r

rr

vv r v v

r r r rr
φθ ∂ ∂ ∂ ∂ θW = − P + P + + 

∂ ∂ θ ∂θ θ ∂φ 
(D)

2

2

1 2 1 ( ) 1 ( sin ) 1
2

3 sin sin
r r

vv v r v v

r r r r rr
φθ θ

θθ
 ∂ ∂ ∂ ∂ θ W = − P + + P + +  ∂θ ∂ θ ∂θ θ ∂φ   

(E)

2

2

1 cot
2

sin

2 1 ( ) 1 ( sin ) 1

3 sin sin

r

r

v v v

r r r

vr v v

r r rr

φ θ
φφ

φθ

∂ θ
W = − P + + θ ∂φ 

 ∂ ∂ ∂ θ+ P + + 
∂ θ ∂θ θ ∂φ 

(F)

2
2 ( . )

3
y y yx

y z
y

Dv v vv
v

Dt x y x y y

v v p
g

z z y y

 ∂  ∂   ∂∂ ∂ρ = P + + P − P ∇    ∂ ∂ ∂ ∂ ∂    

 ∂  ∂∂ ∂+ P + − + ρ  ∂ ∂ ∂ ∂  

�

�

(3.4-7)

2
2 ( . )

3

yxz z z

z
z

vvDv v v

Dt x x z y z y

v p
v g

z z z

 ∂   ∂ ∂ ∂∂ ∂ ρ = P + + P +     ∂ ∂ ∂ ∂ ∂ ∂     

∂∂ ∂ + P − P ∇ − + ρ ∂ ∂ ∂ 

�

�

(3.4-8)

The equations of motion (Eqs. 3.4-6 to 3.4-8), equation of state, p = f (ρ),
and variation of P = f (ρ) completely determine the pressure, density and
velocity components in the flowing Newtonian fluid.

When ρ and P are constant, since . 0v∇ =
�

�

 according to the continuity
equation, the equation of motion can be written as

2Dv
v p g

Dt
ρ = P∇ −∇ + ρ

�

� �

� � (3.4-9)

Equation 3.4-9 is called the Navier-Stokes equation.
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If viscous effects are not important, . 0.∇ W =
�

�  Then, Eq. 3.4-5 becomes

Dv
p g

Dt
ρ = − ∇ + ρ

�

�

� (3.4-10)

Equation 3.4-10 is called the Euler equation.

3.4.1 Applications of the Equations of Motion: Steady State
Falling Film

The equations of motion given in Tables 3.4-1 to 3.4-3 can be used to solve
problems more easily compared to using shell balances. Note that simpler
equations are available in certain cases (e.g. for Eq. A2 in Table 3.4-3),
which are given in other texts.

To illustrate this, let us solve the steady state falling film problem that
we did in Section 3.3, using the equation of motion.

For convenience in this system geometry, let us use rectangular
coordinates. Let us use Eq. C1 of Table 3.4-1 to get the shear stress profile.
Note that vx = 0, vy = 0. Therefore, only Eq. C1 with vz is relevant.

yzxzz z z z zz
x y z z

v v v v p
v v v g

t x y z z x y z

∂W ∂W∂ ∂ ∂ ∂ ∂W∂ ρ + + + = − − + + + ρ  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
(3.4.1-1)

Since

gz = g cosE

we get

0 cosxz g
x

∂W= − + ρ E
∂

which is the same equation as Eq. 3.3-3.
To get the velocity profile of a Newtonian fluid, we can directly begin

from Eq. C2 of Table 3.4-1.

2 2 2

2 2 2
z z z z z z z

x y z z
v v v v v v vp

v v v g
t x y z z x y z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ρ + + + = − + P + + + ρ    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

= 0, SS
= 0,

vx = 0
= 0,

vy = 0
= 0, vz is
not a f (z)

= 0, chosen
condition

= 0, Wyz is
not a f (y)

= 0, Wzz is
not a f (z)

= 0, SS
= 0,

vx = 0
= 0,

vy = 0
= 0, vz is
not a f (z)

= 0, chosen
condition

= 0, vz is
not a f (y)

= 0, vz is
not a f (z)



2

2
0 coszv

g
x

∂
= P + ρ E

∂
(3.4.1-2)

i.e.

coszv
g

x x

∂∂  P = − ρ E ∂ ∂ 

or

coszv g
x

x

∂ ρ E = −  ∂ P 

which is the same equation as Eq. 3.3-7.

3.4.2 Flow in a Cylindrical Pipe

Let us consider the laminar flow through a pipe of cylindrical cross-section.
The results have significance in a variety of situations ranging from flow
in micro-devices, flow of body fluids in the human body, and at least as a
first approximation, to the flow of liquids and gases in the bio-process
industry.

Figure 3.4.2-1 shows the laminar flow of a Newtonian fluid down a
cylindrical pipe placed vertically. Let the flow be well-developed, i.e. the

r
zz = 0

vz = 0

Velocity scale

vz = vz,max

Wz = 0

Shear stress scale

Wrz = Wrz,maxz = L

Fig. 3.4.2-1 Velocity
profile and shear stress
profile for a laminar flow
in a cylindrical pipe
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axial velocity at any particular radial position in the pipe is not dependent on
the length, vz z f (z).

Let us derive the profiles of shear rates and velocities across the tube
diameter.

Since the system of interest is cylindrical, it is best to use cylindrical
coordinates here. Thus, the Table 3.4-2 is relevant: since there is no radial
flow, the r component is irrelevant. Similarly, since there is no flow around
the axis of the cylinder, the θ component is irrelevant. The only relevant
component is, thus, the z component.

Let us first use Eq. A2 from Table 3.4-2

2
r r r r

r z
v vv v v v

v v
t r r r z

θ θ ∂ ∂ ∂ ∂
ρ + + − + 

∂ ∂ ∂θ ∂ 

2 2

2 2 2 2

1 1 2
( ) r r

r r
vv vp

rv g
r r r r r r z

θ
  ∂∂ ∂∂ ∂ ∂= − + P + + + + ρ  

∂ ∂ ∂ ∂θ∂θ ∂  

(3.4.2-1)

The equation reduces to

0 or ( )
p

p f r
r

∂ = z
∂

(3.4.2-2)

This is an important insight, i.e. the pressure across the cross-section of a
pipe at a particular length in laminar flow through a pipe does not depend
on the radial position.

Let us next consider Eq. B2 from Table 3.4-2

r
r z

v v v v v v v
v v

t r r r z
θ θ θ θ θ θ∂ ∂ ∂ ∂ ρ + + + + ∂ ∂ ∂θ ∂ 

2 2

2 2 2 2

1 1 1 2
( ) rv vvp
rv g

r r r r r r z
θ θ

θ θ
  ∂ ∂∂∂ ∂ ∂= − + P + + + + ρ  

∂θ ∂ ∂ ∂θ∂θ ∂  
(3.4.2-3)

(SS)
0

(vr = 0)
0

(vθ = 0)
0

(vθ = 0)
0

(vr z f (z))
(vr = 0)

0

(vr = 0)
0

vr z f (θ)
(vr = 0)

0
(vθ = 0)

0

(vr z f (z))
(vr = 0)

0
(gr = 0)

0

(SS)
0

(vr = 0)
0

(vθ = 0)
0

(vr, vθ = 0)
0

(vθ z f (z))
0

(vθ = 0)
0

vθ z f (θ)
(vθ = 0)

0

vθ z f (z)
(vθ = 0)

0

(gθ = 0)
0

vr z f (θ)
(vr = 0)

0



The equation reduces to

1
0

p

r

∂− =
∂θ

Thus

0
p∂ =
∂θ

or

p z f (θ) (3.4.2-4)

Thus, the pressure does not depend on the angular position in the pipe.
Now, let us consider Eq. C2 from Table 3.4-2

z z z z
r z

vv v v v
v v

t r r z
θ∂ ∂ ∂ ∂ ρ + + + ∂ ∂ ∂θ ∂ 

2 2

2 2 2

1 1z z z
z

v v vp
r g

z r r r r z

 ∂ ∂ ∂∂ ∂  = − + P + + + ρ  ∂ ∂ ∂  ∂θ ∂ 
(3.4.2-5)

While considering the terms in the above equation, vz z f (θ) because the
flow, in this case, occurs in cylindrical layers. In other words, the axial
velocities at all points at a particular radius, and length do not vary with θ.

z
z

v p
r g

r r r z

∂P ∂ ∂ − = − + ρ ∂ ∂ ∂ 
(3.4.2-6)

Let us define

P = p – ρgzz

Since gz = g, we can write

( )p P gz P
g

z z z

∂ ∂ − ρ ∂− ρ = =
∂ ∂ ∂

Therefore

zv P
r

r r r z

∂P ∂ ∂  = ∂ ∂ ∂ 
(3.4.2-7)

We know from Eqs. 3.4.2-2 and 3.4.2-4 that p z f (r) and p z f (θ).
Thus, P = p + ρgz z f (r) and z f (θ).

(SS)
0

(vr = 0)
0

(vθ = 0)
0

(vz z f (z))
0

(vz z f (z))
0

vz z f (θ)
0
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Since p = f (z) alone, the partial derivative on the RHS can be replaced
by an ordinary derivative.

Similarly, vz and r are only f (r); they are not f (θ) or f (z). Thus the
partial derivative on the LHS can also be replaced by ordinary derivative,
and the equation becomes

zdvd dP
r

r dr dr dz

P   = 
 

(3.4.2-8)

Besides, the LHS is a function of r and the RHS is a function of z, i.e.

( ) ( )df r df z

r dr dz

P = (3.4.2-9)

This is possible only if each derivative equals a constant, say C1.
Let us take the RHS of Eq. 3.4.2-8 first

1
dP

C
dz

= (3.4.2-10)

Then

P = C1z + C2 (3.4.2-11)

The relevant boundary conditions are

At z = 0, P = P0
At z = L, P = PL

Thus

C2 = P0

      0
1

LP P
C

L

−=

Therefore

0
0

LP P
P z P

L

− = + 
 

(3.4.2-12)

Now let consider the LHS and equate it to the same C1

1
zdvd P

r C
r dr dr L

P ∆  = = 
 

where ∆P = PL – P0.
Thus

zdvd P r
r

dr dr L

∆  = u  P 



Upon integration, we get

2

22
zdv P r

r C
dr L

∆= +
P

At r = 0, C2 must be equal to 0.
Therefore

2
zdv P r

dr L

∆=
P

(3.4.2-13)

Integrating this, we get

2

34z
P r

v C
L

∆= +
P

(3.4.2-14)

Now, using the BC that at r = R, vz = 0 (‘no slip boundary condition’)

2

3 4

P R
C

L

∆= −
P

Thus

22
2 2 ( )

( ) 1
4 4z

P P R r
v r R

L L R

 ∆ −∆  = − = −  P P   
(3.4.2-15)

Therefore, the velocity profile is parabolic across the diameter, as shown in
Fig. 3.4.2-1.

Note that ∆P = PL – P0; typically, for the flow to occur, PL < P0, and
thus (– ∆P) is positive.

The maximum velocity occurs at r = 0 (from Eq. 3.4.2-15), i.e., at the
centre line (axis) of the tube.

2

,max
( )

4z
P R

v
L

−∆=
P

(3.4.2-16)

The average velocity across the cross-section

               
2
0 0

,avg 2
0 0

R
z

z R

v rdrd
v

rdrd

S

S
∫ ∫ θ

=
∫ ∫ θ

222

0 0

2

( )
1

4

2
2

R P R r
rdrd

L R

R

S  −∆   − θ  P    =
u S

∫ ∫
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2 22 2

2 20 0 0 0

( )

4

R RP R r
rdrd rdrd

R L R

S S −∆= θ − θ 
S u P  ∫ ∫ ∫ ∫

2 4

2
0

( )
2 2

4 2 4

R
P R r

L R

  −∆  = u S − S  SP     

2 2( )
2

4 2 4

P R R

L

 −∆= − S 
SP  

              
2 2

,avg ,max
( ) ( ) 1

( )
2 4 8 2z z

P R P R
v v

L L

−∆ u −∆= = =
P u P

(3.4.2-17)

The volumetric flow rate, Q = Area × vz,avg. Thus

2 2
4( )
( )

8 8

R P R
Q R P

L L

S u −∆ S= = −∆
P P

(3.4.2-18)

Thus

 Q  D (– ∆P)
D� R4

If the radius is doubled at the same (– ∆P), the volumetric flow rate
increases 16-fold.

Equation 3.4.2-18 is known as the Hagen-Poiseuille (pronounced as
Pwah-zoo-yuh; here ‘oo’ is pronounced as in ‘book’) equation.

Let us now use Eq. C1 of Table 3.4-2 to derive an expression for the
shear stress profile. To visualise Wθz, note that the first subscript, θ, refers
to the direction of the velocity gradient, and the second subscript, z, refers
to the direction of the stress or the force. If vz is different at different θ,
then Wθz could arise. But, that is not the case here, in a laminar flow. A
similar visualisation would provide Wzz z f (z), since vz does not vary with
z for this well developed flow.

z z z z
r z

vv v v v
v v

t r r z
θ∂ ∂ ∂ ∂ ρ + + + ∂ ∂ ∂θ ∂ 

1 1
( ) z zz

rz z
p

r g
z r r r z

θ∂W ∂W∂ ∂ = − − W + + + ρ ∂ ∂ ∂θ ∂ 
(3.4.2-19)

(SS)
(vr = 0)

0
(vθ = 0)

0
(vz z f (z))

0

Wzz z
(f (z))

0

Wθz z f (θ)
0



The terms that remain yield

1
( )rz z

p
r g

r r z

∂ ∂ W = − + ρ ∂ ∂ 
(3.4.2-20)

If we define P = p – ρgzz, with the recognition that gz = g, we can write
the above equation as

1
( )rz

P
r

r r z

∂ ∂ W = − ∂ ∂ 
(3.4.2-21)

Using the same argument that we used for solving Eq. 3.4.2-7, the solution
becomes

2rz
P r

C
L

∆ cW = − + (3.4.2-22)

B.C.: Wrz = 0 at r = 0.
Thus

2rz
P

r
L

∆ W = − 
 

(3.4.2-23)

The linear profile for Wrz is shown in Fig. 3.4.2-1.

3.4.2.1 Capillary Flow

Flow through capillaries, i.e. tubes of very small linear dimension (radius,
in the case of capillaries with circular cross-section) of the order of microns,
is usually laminar. Capillary flows have great significance in microfluidics,
flow through vasculature, flow through porous media, and many other
situations of biological interest. Since the flow is laminar, the equations
developed in the previous section are also applicable for flow through
capillaries of circular cross-section.

Capillary flow arises because the force of attraction (adhesion force)
between the liquid molecules and the molecules of the walls of the capillary
duct are stronger than the attractive forces between the liquid molecules
(cohesive forces). This causes the edges of the fluid near the capillary wall
to rise, and due to cohesion, the liquid follows (or is dragged along by the
stronger adhesion) as a whole, which results in the flow. We know from
high/higher secondary school physics that cohesion results in a force that
is usually represented as a force per unit length, or surface tension, J. The
capillary pressure due to surface tension at that point, or the meniscus, in
a capillary of radius, r, is given by the appropriate simplification of the
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Young-Laplace equation (pst = J
1 2

1 1

R R
 + 
 

 where R1 and R2 are the radii of

curvature (see Berg 2009) for a derivation of the Young-Laplace equation) as

2
cosstp

r

J= θ (3.4.2.1-1)

where θ is the contact angle (wetting angle) between the liquid and the
capillary wall.

Note that this pressure is inversely proportional to the radius of the
duct. It becomes predominant in capillaries, and provides the ‘driving force’
for the bulk flow of the liquid through the capillary, even if other ‘driving
forces’ are absent. When other ‘driving forces’ such as those provided by
a liquid column, or an external pump are present, the pressures can be added
to get the total pressure difference for the flow (– ∆P). For example, to
obtain the flow rate in capillary flow when no other ‘driving forces’ for the
flow are present, the use of the Hagen-Poiseuille relationship, Eq. 3.4.2-18,
gives

4 32
cos cos

8 4
Q r r

L r L

S J SJ = θ = θ P   P
(3.4.2.1-2)

Since the flow rate is a product of the cross-sectional area and the penetration
velocity, the penetration velocity (vp) can be obtained by dividing the above
equation by the cross-sectional area Sr2

cos
4p

dL
v r

dt L

J= = θ
P

(3.4.2.1-3)

In microfluidic situations, the above equation can be integrated to get the
position of the liquid front along the capillary as a function of time.

Capillary flow in porous media: Porous media is a term that refers to
any medium that has a solid matrix with interconnected interstitial spaces,
through which there is movement of some species of interest. For example,
soil is a porous medium through which water, pollutants, fines, etc., can
travel. Sometimes, interstitial spaces can be considered as a set of capillary
tubes, and thus capillary flow through porous media is an area with wide
applications.

Interestingly, many substances of biological interest can be considered
as porous media. For example, any tissue, including whole organs such as
liver, kidney, heart, brain, etc., can be treated as porous media because they
contain cells that are dispersed, and connected voids through which nutrients,
drugs and other substances travel to reach the cells. Tissue regeneration,
which is used to grow artificial organs, typically happens on a scaffold, and
this system can be considered a porous medium. Similarly, biological pollution



treatment systems such as the trickling filter, or the matrix in which cells
are immobilised in a type of bioreactor, can be treated as porous media.

To obtain the kinetics of liquid movement by capillary flow into a
porous medium, the medium is typically treated as consisting of cylindrical
capillary tubes. Then, the distance penetrated by the liquid into the porous
medium L can be obtained by the Washburn (Washburn 1921) or Rideal
(Rideal 1922) equation, or by the integration of Eq. 3.4.2.1-3 as

0.5
0.5cos

2
L r t

J = θ P 
(3.4.2.1-4)

There have been many improvements to this equation that take into account
tortuosity (crooked or non-straight nature of the capillary channels in the
porous medium), wettability of the liquid, and other relevant parameters. As
a starting point for further reading, the interested reader is referred to the
paper by Yang et al. (1988).

3.4.3 Tangential Annular Flow

Tangential annular flow between two concentric cylinders is used in couette-
flow rheometers to measure viscosity of a variety of biological fluids or bio-
products such as xanthan gum. It is also used to study the effects of a
‘defined’ shear on cells (Sahoo et al. 2003). For our study, let us first
consider the tangential annular flow of a Newtonian fluid (Fig. 3.4.3-1). We
are interested in the tangential velocity profile between the cylinders, the
relevant shear stress distribution, and the torque which is required to turn
the outer shaft at steady state.

This is a cylindrical system, and hence it is most convenient to use
cylindrical coordinates for analysis. From Eq. A2 of Table 3.4-2, we get the
equation of motion in the r direction as

2
r r r r

r z
v vv v v v

v v
t r r r z

θ θ ∂ ∂ ∂ ∂ρ + + − + 
∂ ∂ ∂θ ∂ 

2 2

2 2 2 2

1 1 2
( ) r r

r r
vv vp

rv g
r r r r r r z

θ ∂∂ ∂∂ ∂ ∂ = − + P + − + + ρ  ∂ ∂ ∂ ∂θ  ∂θ ∂ 

= 0,
vθ z f (θ)

= 0,
vr = 0

= 0,
vr = 0

= 0,
vr = 0

= 0,
gr = 0

= 0,
vr = 0

= 0,
vz = 0

= 0, SS
vr = 0

= 0,
vr z f (θ)
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Thus

2v p

r r
θ ∂− ρ = −

∂
(3.4.3-1)

From Eq. B2 of Table 3.4-2 (θ component)

1r
r z

v v v v v v v p
v v

t r r r z r
θ θ θ θ θ θ∂ ∂ ∂ ∂ ∂ ρ + + + + = − ∂ ∂ ∂θ ∂ ∂θ 

2 2

2 2 2 2

1 1 2
( ) rv vv
rv g

r r r r r z
θ θ

θ θ
 ∂ ∂∂∂ ∂ + P + + + + ρ  ∂ ∂ ∂θ  ∂θ ∂  

(vr = 0)
0= 0 (SS)

vθ z f (θ)
0

(vr = 0)
0

(vz = 0)
0

= 0 (p not
a f (θ))

vθ z f (θ)
0

(gθ = 0)
0

vr z f (θ)
0

vθ z f (θ)
0

Fig. 3.4.3-1 Couette
viscometer

: 0

: 0

R

vθ
Inner cylinder is stationary

here (can rotate too)

k R



In the above equation, p z f (θ) because the points at different angles at the
same radial position cannot have different pressures.

Thus

1
0 ( )

d d
rv

dr r dr θ
  = P   

  
(3.4.3-2)

Since r is the only variable, the partial derivatives have been converted into
ordinary derivatives.

For the z component

z z z z
r z

vv v v v
v v

t r r z
θ∂ ∂ ∂ ∂ ρ + + + ∂ ∂ ∂θ ∂ 

2 2

2 2 2

1 1z z z
z

v v vp
r g

z r r r r z

 ∂ ∂ ∂∂ ∂  = − + P + + + ρ  ∂ ∂ ∂  ∂θ ∂  

Thus

0 z
p

g
z

∂= − + ρ
∂

(3.4.3-3)

Integrating Eq. 3.4.3-3 with the boundary conditions (BCs) given below

At r = kR, vθ = 0 (inner cylinder is stationary)

At r = R, vθ = :0 R

1
( ) 0

d d
rv

dr r dr θ
   =    

1
1

( )
d

rv C
r dr θ =

1( )
d

rv C r
dr θ =

Let (rvθ) = m

1
d

m C r
dr

=

         
2

1
22

C r
m C= +

(vr = 0)
0= 0 (SS)

vz z f (θ)
0

(vz = 0)
0

(vz = 0)
0

(vz = 0)
0

(vz = 0)
0
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2

1
22

C r
rv Cθ = +

            1 2

2

C r C
v

rθ = +

Using the first BC, we get

1 20 ( )
2

C C
kR

kR
= +

        2 2
1 2 2

22C C
C

kR kR k R

 = − u = − 
 

Using the second BC, we get

              2 2
0 2 2

2

2

C CR
R

Rk R
: = − u +

2
2 2

0 2 2 2 2

1 1 1 1
1

C C k
R C

R R RRk k k

 −   : = − = − =     
     

                
2 2

0
2 2 1

R k
C

k

:
=

−

                
2 2

0
1 2 2 2

2

1

R k
C

k R k

 :
= −  

− 

                   0
2

2

1k

: = − − 

Therefore

2 2
0 0

2 2

2
·

21 ( 1)

k Rr
v

k k r
θ

: := − +
− −

2 2
0

2 2(1 )

R r k

rk R

 :
= − 

−  

2
0

2 2(1 )

kR r k

rk kR

:  = − −  

2
0 1

1
R r kR

R kR rk
k

:  = − 
 −



0

1

kR r
R

r kRv
k

k

θ

 : − 
 =
 − 
 

(3.4.3-4)

The relevant shear stress distribution can also be obtained by using the
expression for the shear stress components in cylindrical coordinates as
given in Table 3.4-5. From Eq. A

1 r
r

v v
r

r r r
θ

θ
 ∂∂  W = − P +  ∂   ∂θ 

In this case

1 r
r

v v
r

r r r
θ

θ
 ∂∂  W = − P +  ∂   ∂θ 

Using Eq. 3.4.3-4 (since r is the only independent variable, the partial
derivatives can be replaced with total derivatives), we get

                 
0

1r

kR r
R

d r kRr
dr

r k
k

θ

   : −      W = − P  
   −      

0 1
1

R d kR r
r

dr r r kR
k

k

 P:   = − −   
     − 
 

0
2

1
1
R d kR

r
dr kRrk

k

P:   = − −      − 
 

0
3

2
1
R kR

r
rk

k

P:   = − −  
    − 
 

2
0

2

2 1
1

R k

rk
k

P:  = −  
   − 
 

                 
2

2
0 2 2

1
2

1
r

k
R

k r
θ

  W = − P:   −   
(3.4.3-5)

0(vr z f (θ))
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The torque that is needed to turn the outer cylinder

= Force × Lever arm distance

= – Wrθ_r=R × Area × Lever arm distance

(the negative sign before Wrθ is to overcome the shear stress by the fluid on
the wall)

= – Wrθ_r=R × (2SRL) × R

2
2

0 2 2

1
2 2

1

k
R RL R

k R

  = P: u S u  −   

2
2

0 2
4

1

k
LR

k

 
= SP:  

− 
(3.4.3-6)

3.4.4 Dimensionless Numbers and Non-dimensional Analysis

As briefly mentioned in Chapter 2, when certain physical quantities are
combined suitably, the resulting quantity or ‘number’ does not possess any

dimensions. For example, as we have seen in Eq. 3.2-1, the quantity, 
vdρ
P

is dimensionless, and is called the Reynolds number.
There are many advantages in using non-dimensional numbers, or in

expressing relations in terms of non-dimensional numbers. Such relations
may be applied more generally rather than be restricted to a particular, say,
tube diameter, as we have already seen in Section 3.2 for the occurrence
of, say, laminar flow in tubes. To explain further, it does not matter what
the particular values of fluid density, fluid velocity, fluid viscosity and pipe
diameter are; as long as their appropriate combination, the Reynolds number,
is less than 2100, it will result in laminar flow.

Other advantages in using dimensionless numbers will become evident
in the following sections. Since we have brought up the aspect of non-
dimensional numbers, let us explore one more powerful possibility of obtaining
useful relationships for design and operation, with them. The basis for this
powerful possibility is Buckingham’s pi theorem.

Buckingham’s Pi Theorem

If there are n variables in a problem, and these variables contain m primary
dimensions (e.g. M, L, T, and so three for this combination of primary



dimensions), the equation relating all the variables will have (n – m)
dimensionless groups. Buckingham called these dimensionless groups as S
groups.

Mathematically, it can be expressed as

f (S1, S2,…, Sn–m) = 0 (3.4.4-1)

The S groups must be independent of each other. In other words, it must
not be possible to express any S group as some combination of the other
S groups.

Let us look at dimensions first:

Fundamental
Mass [M]
Length [L]
Time [T]

Flow Geometry
Area [L2]
Volume [L3]

Kinematic
Velocity [LT–1]
Acceleration [LT–2]
Kinematic viscosity [L2T–1]

Dynamic
Force [MLT–2]
Pressure [ML–1T–2]
Work [ML2T–2]
Energy [ML2T–2]
Power [ML2T–3]
Momentum [MLT–1]
Density [ML–3]
Viscosity [ML–1T–1]
Surface tension [MT–2]

Two conditions need to be satisfied to successfully apply the method to get
useful relationships:

1. Each of the fundamental dimensions must appear in at least one of the
n variables.
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2. It must not be possible to form a dimensionless group by using some
of the variables themselves or the variables raised to some powers,
within a recurring set. A recurring set is a group of variables that form
the dimensionless groups.

Let us apply this method to a situation that we have already seen – to get
an expression for pressure drop ∆p in a straight pipe (Fig. 3.4.4-1).

∆p is expected to depend on d, l, ρ, P, v. In other words

f (∆p, d, l, ρ, P, v) = 0

The set of variables within the brackets is the recurring set.

Number of variables (n): 6
Number of fundamental dimensions (m): 3 (M, L, T)

Therefore, from the Buckingham pi theorem, the number of dimensionless
groups: n – m = 6 – 3 = 3.

Also, from experience, it is known that the recurring set must contain
3 (the same number as the number of dimensionless groups) variables that
cannot themselves be formed into a dimensionless group. Thus, l and d
cannot be chosen together since (l/d) is dimensionless. ∆p, ρ and v cannot
be chosen together since (∆p/ρv2) is dimensionless. Therefore, let us choose
d, v and ρ.

The dimensions are

d = [L]
v = [LT–1]
ρ = [ML–3]

Let us rewrite the dimensions in terms of the chosen variables.

[L] = d
[M] = ρd 3

[T] = dv–1

ρ, µ, v
d

l

Fig. 3.4.4-1 Flow in
a cylindrical pipe



Now let us take the remaining variables, ∆p, l and µ, in turn. First

∆p = [ML–1T–2]

Therefore

∆p[M–1LT2] is dimensionless

Thus

S1 = ∆p (ρd3)–1(d) (d–1v)2

 = ∆p/ρv2

Now, let us consider the length, l

l = [L]

Therefore

l[L]–1 is dimensionless

Thus

S2 = l/d

Now, finally, let us consider µ

µ = [ML–1T–1]

Therefore

µ [M–1LT] is dimensionless

Thus

S3 = µ(ρd3)–1(d) (dv–1)

Reor 1/ N
vd

P=
ρ

From the Buckingham’s pi theorem

2
Re

1 1
,

p
f

d Nv

∆  =  ρ  

or

2
Re

1 1
a b

p
k

d Nv

∆    =     ρ  

Thus, from a mere dimensional analysis, we know the form of the relationship
between the relevant variables. Let us see the validity of what we have got
by comparing the above relation to what we already know. We had seen
earlier, in pipe flow, the volumetric flow rate
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4

8

p
Q r

l

S∆=
P

or

      
4

8 2

p d
Av

l

S∆  =  P  

4
2( / 4)

28 2

p d
d v

l

S∆  S =  P  

2 4 2( 32) /( ) 32
v l

p vd l d
d d

P  ∆ = P u =   
  

2
32

p l

vd dv

∆ P  =   ρ  ρ  

      
Re

1
32

l

N d
  =     

2
Re

1
, and 1; 32

p l
f a b k

N dv

∆  = = = = ρ  

3.5 Unsteady State Flow

Let us consider a fluid that is initially at rest in a circular tube. At t = 0,

the fluid is set in motion by an axial pressure gradient, say p

L

∆  where ∆p

is the difference in pressure (pressure drop) across the tube of length L.
From the time the pressure gradient is applied to the time the steady state
is achieved, the velocity profile across the cross-section of the tube at, say
a certain location on the length of the tube varies. At that location, let us
study the time-dependant (unsteady state) variation of velocity profiles.
Also, note that we have implicitly assumed that at any time in the tube the
flow will be in cylindrical layers (laminar).

Let us first take Eq. C2 of Table 3.4-2 (the z component of the equation
of motion in cylindrical coordinates), and simplify it by cancelling the
irrelevant terms.



2 2

2 2 2

1 1

z z z z
r z

z z z
z

vv v v v
v v

t r r z

v v vp
r g

z r r r r z

θ∂ ∂ ∂ ∂ ρ + + + ∂ ∂ ∂θ ∂ 

 ∂ ∂ ∂∂ ∂  = − + P + + + ρ  ∂ ∂ ∂  ∂θ ∂ 

2

2

( )z z z z
z

v v v vp gz
v r

t z z r r r z

∂ ∂ ∂ ∂∂ − ρ P ∂  ρ + = − + + P ∂ ∂ ∂ ∂ ∂  ∂
The above equation is very complex to solve. To be able to get some

insights, let us make it amenable to an analytical solution, however tedious
– this can be done by making an approximation, vz z f (z). In other words,
it is assumed that at a particular time, the axial velocity at a particular radial
position does not vary with the length of the tube – this may not be a bad
assumption. Making suitable assumptions and approximations are essential
in engineering practice, and is mostly an art. Thus, the equation to solve
becomes

( )z zv vp gz
r

t z r r r

∂ ∂∂ − ρ P ∂  ρ = − +  ∂ ∂ ∂ ∂ 
(3.5-1)

with

IC: At t = 0, vz = 0

BC 1: At r = 0, vz = finite or zv

z

∂
∂

 = 0

BC 2: At r = R, vz = 0

Since p does not vary with time once the flow begins or with r (as seen
earlier, and which is also valid here), p – ρgz = P = f (z) alone. Thus, the

partial derivative 
P

z

∂
∂

 can be replaced with the total derivative, 
dP

dz
.

Therefore

Constant
dP P

dz L

∆= =

where

∆P = PL – P0

vz z f (θ)

vr = 0 vθ = 0
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Thus, Eq. 3.5-1 can be written as

z zv vP
r

t L r r r

∂ ∂∆ P ∂  ρ = − +  ∂ ∂ ∂ 
(3.5-2)

Use of dimensionless variables usually simplifies analysis. Let us define the
following dimensionless variables.

2
,max( ) / 4

z z

z

v v

vP R L
φ = =

−∆ P
(3.5-3)

[ = r/R (3.5-4)

2

v t

R
W = (3.5-5)

where v
P=
ρ

, the kinematic viscosity.

From the above definitions

2( )

4z
P R

v
L

−∆= φ
P

r = [R

2R
t

v

W=

Thus

                       
2

2

( )

4
zv P R v

t L R

∂ −∆ ∂φ= u
∂ P ∂W

( ) ( )

4 4
zv P P

t L L

∂ ρ −∆ u P ∂φ −∆ ∂φρ = =
∂ P ρ ∂W ∂W

Further
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L Lv P R
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r R R L

   −∆ −∆∂ φ [ ∂φ   P P∂ [ −∆ ∂φ   = [ = =
∂ ∂ [ ∂ [ P ∂[
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( ) 4
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4

zv P R
r

r r r R R L

P R

LR

P

L

 ∂P ∂ P ∂ [ −∆ ∂φ  =   ∂ ∂ [ ∂ [ P ∂[   

P −∆ ∂ ∂φ = [ [ P ∂[ ∂[ 

−∆ ∂ ∂φ = [ [ ∂[ ∂[ 



Through substitution of the above expressions in Eq. 3.5-2 we get

( ) ( ) ( ) 1

4 4

P P P

L L L

−∆ ∂φ −∆ −∆ ∂ ∂φ = + [ ∂W [ ∂[ ∂[ 

1
4

∂φ ∂ ∂φ = + [ ∂W [ ∂[ ∂[ 
(3.5-6)

IC: At W = 0, φ = 0

BC 1: At [ = 0, φ = finite, or 
∂φ
∂[  = 0

BC 2: At [ = 1, φ = 0

For a steady state flow, we can use Eq. 3.4.2-15 to get

22( )
1

4z
P R r

v
L R

 −∆   = −   P    

We can write the relationship in terms of dimensionless variables as

φf = 1 – [2 (3.5-7)

where φf = φ(W = f) i.e. when steady state is reached.
φ can be written in terms of a ‘steady state’ value and a ‘deviation’

value i.e.

φ([, W) = φf([) – φt([, W) (3.5-8)

where φt([, W) is the deviation value that represents the ‘deviation from
steady state’. Thus

( )tf∂ φ − φ∂φ =
∂W ∂W

             ( )t ff
∂φ= − φ z W
∂W

∵

Also

2

( )1 1

(1 )1

1
2

t

t

t

f∂ φ − φ∂ ∂φ ∂   [ = [  [ ∂[ ∂[ [ ∂[ ∂[   

 ∂ − [ − φ∂= [ 
[ ∂[ ∂[ 

 ∂φ ∂= [ − [ −  [ ∂[ ∂[  
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21
( 2 )

1
4

1
4

t

t

t

∂φ∂  = − [ − [ [ ∂[ ∂[ 

 ∂φ ∂  = − [ − [  [ ∂[ ∂[  

∂φ∂  = − − [ [ ∂[ ∂[ 

Substituting the above in Eq. 3.5-6, we get

1
4 4t t∂φ ∂φ∂  − = − − [ ∂W [ ∂[ ∂[ 

1t t∂φ ∂φ∂  = [ ∂W [ ∂[ ∂[ 
(3.5-9)

Now, the initial and boundary conditions are

IC: At W = 0, φt = φf (by substituting φ = 0 in Eq. 3.5-8)
BC 1: At [ = 0, φ = finite i.e. (since φf = 0 from Eq. 3.5-7 and φ

= 0 when [ = 1)
BC 2: At [ = 1, φt = 0

If we assume that φt([, W) is separable as

φt([, W) = f ([) . g(W)

then

andt tdg df
f g

d d

∂φ ∂φ
= = u

∂W W ∂[ [

Therefore

1dg d df
f g

d d d
 = [ W [ [ [ 

1dg d df
f g

d d d
 = [ W [ [ [ 

1 1 1dg d df

g d f d d
 = [ W [ [ [ 

(3.5-10)

Since the LHS is a function of W alone and the RHS is a function of [ alone,
for Eq. 3.5-10 to hold at all times, each side must be equal to a constant,
say – k2 (negative); the reason for a negative value will be apparent shortly.



21 dg
k

g d
= −

W
(3.5-11)

This implies

g = C1 exp (– k2W) (3.5-12)

If (– k2) is not negative, then g, and consequently φt cannot diminish to zero
at steady state (W = f); thus the constant (– k2) needs to be negative.

Equation 3.5-10 can be written as

21
0

d df
k f

d d
 [ + = [ [ [ 

(3.5-13)

The boundary conditions are given below

BC 1: At [ = 0, f = finite, i.e. 
df

d[
 = 0

BC 2: At [ = 1, f = 0 (since φt = 0 for all g, note that g = g(W))

The solution for Eq. 3.5-13 requires knowledge of Bessel functions and
their relationships. The student is directed to other appropriate books (e.g.
Lih 1974) for a better understanding of the same. Here, we merely present
the solution.

The solution is of the form

f = c2J0(k[) + c3Y0(k[) (3.5-14)

where J0 is a Bessel function of the I kind

2

0 2
0

( 1)
2( )

( !)

r
r

k

k

J k
r

D

=

[ −  
 [ =∑

Y0 is a Weber’s Bessel function of the II kind

0 0 0
2

( ) ( ) (ln 2 ) ( )Y k Y k J k [ = [ − − * [ S

where 
1 1 1

lim 1 ln 0.57721
2 3n n

n→f
 * = + + +}+ − = } 
 

 (Euler’s constant),

and 0Y  is a Neumann’s Bessel function of the II kind.

0 0 2
0

( ) ( )
[ ( )]

d
Y k J k

J k

[[ = [
[ [∫

C3 = 0 (from BC 1; otherwise the term would not be finite since Y0(0)
= – f)
C2 J0 (k) = 0 (from BC 2).
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Now, C2 cannot be zero since that would result in a trivial solution,
(f = 0). Therefore

J0 (k) = 0

This happens multiple times when k = 2.4048... (= k1), 5.52009 (= k2),
8.6537... (= k3), and so on.

Thus, there are infinite solutions

fn = C2n J0 (kn[) n = 1, 2, 3,… f

This implies that

φtn = CcnJ0(kn[) exp (– k2
n W), n = 1, 2, 3,… f

where Ccn = C1C2n.
Using the principles of superimposition, orthogonality relationships, and

other relevant aspects of Bessel functions, the final solution is

2 20
31

1

( )
( , ) (1 ) 8 exp( )

( )
n

nn
n n

J k
k

k J k

f

=

[
φ [ W = − [ − − W∑ (3.5-15)

A representative plot of φ versus [ for various values of W is given in
Fig. 3.5-1.

3.6 Pulsatile Flow

In the earlier cases, we had considered a linear, time invariant pressure
gradient. However, flows in the body, e.g. blood flow through the vasculature

Fig. 3.5-1 Profiles of φ at a particular length position on the tube,
versus [ for various values of W
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are pulsatile in nature because of the pumping of the heart. In other words,
the pressure gradient varies with time.

Let us consider here a sinusoidal pressure gradient. Although not strictly
valid for blood flow, a time-varying sinusoidal pressure gradient does provide
valuable insights into the nature of pulsatile biological flows. Also, let us
assume that the axial velocity at a particular radial position does not change
with the length of the tube at any given time.

From Eq. C2 of Table 3.4-2 (the z component of the equation of
motion)

z z z z
r z

vv v v v
v v

t r r z
θ∂ ∂ ∂ ∂ ρ + + + ∂ ∂ ∂θ ∂ 

2 2

2 2 2

1 1z z z
z

v v vp
r g

z r r r r z

 ∂ ∂ ∂∂ ∂  = − + P + + + ρ  ∂ ∂ ∂  ∂θ ∂ 

Note that we have taken vz z f (z) at a particular time. Thus, the remaining
terms yield

( )z zv vp gz
r

t z r r r

∂ ∂∂ − ρ P ∂  ρ = − +  ∂ ∂ ∂ ∂ 
(3.6-1)

By the same arguments as in Section 3.5 that led to Eq. 3.5-2, we can write

sin
P P

A t
z L

∂ − ∆= + Z
∂

(3.6-2)

where 
P

L

− ∆
 is the average pressure gradient; A and Z are the frequency

and amplitude, respectively, of the periodic pressure function.

Since v
P =
ρ

, the equation of motion can be written as

1 1 ( )
sinz zv v P A

r t
v t r r r L

∂ ∂∂ − ∆ = + + Z ∂ ∂ ∂ P P 
(3.6-3)

We can guess that the solution for vz consists of a steady state part (average
value) and a periodic part (fluctuating value) corresponding to the average
and fluctuating pressure gradients, i.e.

vz (r, t) = –vz(r) + vcz (r, t) (3.6-4)

(vr = 0)
0

(vθ = 0)
0

(vz z f (z))
0

(vz z f (z))
0

vz z f (θ)
0
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Substituting Eq. 3.6-4 in Eq. 3.6-3, and using separation of variables as in
the Section 3.5 with the recognition that –vz(r) is not a function of t, gives
two equations

1 ( )
0 zdvd P

r
r dr dr L

−∆ = +  P 
(3.6-5)

1
sinz zv v A

r t
v t r r r

c c∂ ∂� ∂= + Z
∂ ∂ ∂ P

(3.6-6)

The solution of Eq. 3.6-5, as seen in an earlier section is

22( )
1

4z
P R r

v
L R

 −∆   = −   P    
(3.6-7)

Equation 3.6-6 can be solved by Laplace transforms through a lengthy
procedure, with the boundary conditions as

BC 1: At r = 0, zv

r

c∂
∂

 = 0

BC 2: At r = R, 
zvc  = 0

to yield the following as the other part of the solution – the first part being
the parabolic profile given by Eq. 3.6-7. Here we merely state the combined
solution as follows

22

2 20

4 2 4 21 21 2
4 4

( )
( , ) 1

4

exp( / )2 sin( )

( )

z

k

k

k kk k k

P R r
v r t

L R

r
J

vt RA tR
J v v

R R

f

=

 −∆   = −   P    

 D     Z −D Z − φ  + + ρ D D  D   D+ Z  + Z      

∑

(3.6-8)

Thus, the velocity profile at a cross-section varies with time from the basal
parabolic profile. The variation is cyclic, as can be expected from a cyclic
pressure gradient.

3.7 Solutions to Equations

As was evident in the Sections 3.5 and 3.6, the mathematical effort to solve
the formulated equations could be significant. An analytical solution is



reasonably complete, and capable of rendering itself to confident
interpretations due to the continuous nature of this approach. However, an
analytical solution may not be available for all situations. Thus, in many
research problems, it is common to take a numerical approach, such as the
finite element method, to solve the formulated equations. Some level of
expertise is needed for the appropriate use and interpretation of numerical
solutions. Even if one does not possess such expertise, one can team up
with a suitable expert for the solution.

In this section, let us see some formulations for simplifying the solutions
of the differential equations. Two of the common approaches are merely
mentioned in this section. The reader is referred to other texts (Bird et al.
2002) for the details on these approaches.

3.7.1 Stream Function Approach

Velocity is expressed as the gradient of a ‘stream function’ say, \. For
example

xv
y

∂\= −
∂

yv
x

∂\= +
∂

\ = constant (mathematical representation) indicates streamlines (physical
significance) i.e. the path traced by the particles of fluid under steady flow.

3.7.2 Boundary Layer Theory

The flow is split into two parts:

• Potential flow (away from the wall) (ρ = constant; P = 0; flow is

irrotational (∇
�

 × v
�

 = 0))
• Boundary layer flow (close to the wall)

3.8 Turbulent Flow

As seen in Section 3.2, above a certain Reynolds number that is dependent
on the system (4000 for pipe flow), the flow turns chaotic or turbulent.
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1
2
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,max
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,max

7
4

Laminar flowTurbulent flow

1 1

4 1

5 2

z

z

z

z

v r r

v R R

v

v

P Q Q

    # − = −    
    

# =

∆ v v

(3.8-1)

(3.8-2)

(3.8-3)

Many flows in the bio-industry occur in the turbulent regime. Turbulent
flow can also occur near artificial valves of the heart, which may result in
wasteful expenditure of pumping energy.

By careful measurements, it has been experimentally shown that for
turbulent flow in a pipe, the time-smoothed components (average quantities

at a point), zv  and ,avgzv  (these terms will become clearer soon) are related

as

Turbulent flow can be visualised as the random motion of packets of fluid
(eddies). For turbulent flow in a tube, the flow is entirely random at the
centre of the tube, i.e. far away from the wall. Near the wall, the fluctuations
of velocity in the axial direction is greater than the fluctuations in the radial
direction. At the wall, the fluctuations are zero.

Let us take a closer look at these fluctuations. We will focus our
attention on the fluid behaviour at one point in the tube (pipe) where
turbulent flow exists. As we are watching it, let us say that the mean
velocity decreases (probably due to a change in the pressure drop causing
the flow, by turning down the pump speed).

The variation of the axial component of the velocity, vz, at the point of
observation, would look like that given in Fig. 3.8-1.

zv  is called the time-smoothed velocity, i.e. the average of vz over a

time interval large enough with respect to the time of turbulent oscillation,
but small enough with respect to the time changes in the pressure drop
causing the flow.

1 at t

z z
ta

v v dt
t

+
= ∫ (3.8-4)

Thus

vz = –vz + vcz (average + fluctuation) (3.8-5)



The pressure at a point will also vary in a similar fashion

p = –p + pc (3.8-6)

If we take the average of the fluctuations, –vz, since the positive values will
balance the negative values

–vcz = 0 (3.8-7)

Thus, we cannot use –vcz as a measure of turbulence. However, the average

of the squares of the fluctuation values, 2
zvc , will not be zero and can be

used as a measure of turbulence. In fact

2

,avg

Intensity of turbulence z

z

v

v

c
{ (3.8-8)

The intensity of turbulence is typically between 0.01 and 0.1.
At the wall, since the fluctuations in the radial component will be

different from those in the axial direction, we need to differentiate between
the two. Researchers have found that near the wall

2 2

,avg ,avg

(Axial) (Radial)z r

z z

v v

v v

c c
!

At the centre of the tube the above values are comparable (isotropic
condition).

As long as the eddy size is greater than the mean free path of the
molecules (continuum holds), the

• equation of continuity (mass balance)
• equation of motion (momentum balance)

–vz

v z

ta

t

Fig. 3.8-1 Velocity (vz)
and time-smoothed
velocity ( –vz) at a point
in turbulent flow
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are applicable for turbulent flow. Let us consider the conservation equations
for turbulent flow, at a point and take the case for which we have an
intuitive feel, i.e. the equation in rectangular Cartesian coordinates. For
illustration, let us consider an incompressible flow.

Equation of Continuity

( ) ( ) ( ) 0x x y y z zv v v v v v
x y z

∂ ∂ ∂c c c+ + + + + =
∂ ∂ ∂

(3.8-9)

Equation of Motion

x direction

2

( ) ( ) ( )( ) ( )( )

( )( ) ( )

x x x x x x y y x x

z z x x x x x

v v p p v v v v v v v v
t x x y

v v v v v v g
z

∂ ∂ ∂ ∂c c c c c cρ + = − + − ρ + + + ρ + +∂ ∂ ∂ ∂

∂ c c c+ ρ + + +P∇ + + ρ∂ 
(3.8-10)

Taking the time average of the velocity components, i.e. 
0

1 at

a

v v dt
t

= ∫  over

tas that are large with respect to turbulent oscillations but small with respect
to macro variations, the time-smoothed equation of continuity can be written
as follows (note that the time averaged fluctuations will tend to zero)

0yx z
vv v

x y z

∂∂ ∂
+ + =

∂ ∂ ∂
(3.8-11)

Similarly, the time-smoothed equation of motion can be written as

2

x x x y x z x

x x y x z x x x

p
v v v v v v v

t x x y z

v v v v v v v g
x y z

∂ ∂ ∂ ∂ ∂ ρ = − − ρ + ρ + ρ ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ c c c c c c− ρ + ρ + ρ +P∇ + ρ ∂ ∂ ∂ 
(3.8-12)

The third term in brackets on the RHS of Eq. 3.8-12 is the only extra term
when compared to the equation of continuity for laminar flow.



Now, since ρ→v →v = momentum flux or stress, let us say that

( )t
xx x xv vc cW = ρ

( )t
xy x yv vc cW = ρ

and so on.

These are the components of the turbulent momentum flux tensor 
~( )tW .

The stresses are also known as Reynolds stresses.
In vector notation, the time-smoothed equation of continuity is

. 0v∇ =
� �

(3.8-13)

and the time-smoothed equation of motion is

( ) ( )~ ~
. .

l tDv
p g

Dt

   
   ρ = −∇ − ∇ W − ∇ W + ρ   

�

� � �

�

(3.8-14)

The above Eqs. (3.8-9) to (3.8-14) are valid for an incompressible flow.
Similarly, it can be shown that the earlier equations and the tables for
laminar flow are valid if we replace

vi by –vi

p by –p

and ( ) ( )by l t
ij ij ijW W + W

However, to get the velocity profile, we need a relationship between W and
the velocity gradient.

For laminar flow, we had a theoretical base in terms of constitutive
equations. For turbulent flow, we do not have that luxury. Nevertheless,
many expressions based on experimental observations have been proposed.
Two are given below.

The first is on the same lines as for the laminar case.

( ) ( )t t x
yx

d v

dy
W = − P (3.8-15)

where P(t) is termed as ‘eddy viscosity’ and its value could be hundreds of
times the molecular viscosity.

Another popular expression was formulated by Prandtl. For this
expression, it is assumed that the eddies in the fluid move around in a
fashion similar to that of the molecules in a gas. A ‘mixing length’, l, which
is a function of position represents an idea similar to the ‘mean free path’
in the kinetic theory of gases. The relationship is given as
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( ) 2t x x
yx

d v d v
l

dy dy
W = − ρ (3.8-16)

For flow in pipes/tubes, the relationship between velocity and distance
(velocity profile) in turbulent flow through Deissler’s empirical formulation
is as follows:

If we define

0

zv
v+ =

W
ρ

and

0s s+  W ρ=   ρ P 

where s = R – r i.e. the radial distance from the wall and W0 is wall shear
stress at s = 0.

For s+ > 26

1
ln 3.8

0.36
v s+ += + (3.8-17)

For 0 d s+ d 5

v+ = s+ (3.8-18)

And for 0 d s+ d 26

2 20 1 (1 exp{ })

s ds
v

n v s n v s

+ +
+

+ + + +=
+ − −∫ (3.8-19)

where n is Deissler’s constant for tube flow, near the wall. It was found
empirically to be equal to 0.124.

3.9 Macroscopic Aspects: The Engineering Bernoulli Equation

Although the understanding of fluid flow thus far was in good depth, the
mathematical effort was significant. If we can reduce the effort, but still get
acceptable answers, it may be good for engineering design and operation.
The ‘engineering Bernoulli equation’ is useful for this purpose.

To arrive at the engineering Bernoulli equation, one can begin with the
equation of motion, Eq. 3.4-4. The details of the lengthy and mathematically



involved derivation are indicated in different sections of Bird et al. (2002).
Some details are highlighted here.

First, the dot product of the velocity vector, v
�

, is taken with the
equation of motion, i.e. Eq. 3.4-4. Then, skilful rearrangement of terms, the
application of the equation of continuity, and representation of the acceleration
due to gravity term as the negative gradient of a scalar potential per unit
mass (we will do operations similar to some of the above, later in Chapter
4), followed by further rearrangement of terms, leads to an equation of
mechanical energy (the kinetic energy alone, the potential energy alone, and
the sum of kinetic and potential energies are examples of ‘mechanical
energy’), which is given below as Eq. 3.9-1. Please note that the mechanical
energy is not conserved.

2

2

1
12 · ( · ) ( · ) ( · ( · )) ( : )
2

v
v v pv p v v v

t

 ∂ ρ +ρφ      =− ∇ ρ +ρφ − ∇ − −∇ − ∇ W − −W ∇  ∂   

� � � � �� � � � �
� �

(3.9-1)

Equation 3.9-1 is a differential equation, which can be integrated over
the volume of the macroscopic system of interest. The integration procedure
needs the knowledge of the three-dimensional Leibniz formula, Gauss
divergence theorem, etc. After further rearrangement of terms, the integrated
equation can be written as

2

2

1
12 ( · ) ( : ) ( )
2

V
s

V V

d v
p

m v gz p v dV v dV W
dt

  ρ +ρφ        =−∆ + + + ∇ + W ∇ − −  ρ  

∫
∫ ∫

� �� �
� �

(3.9-2)

where the ∆ represents the difference in the relevant variables between the
two positions, say the ends of the volume of interest e.g. entry and exit
points of a pipe through which a fluid is flowing. Ws refers to the work
done on the fluid, say by a pump, and is the negative of the work done by
the system/control volume on the fluid. Also note that the LHS is the time
derivative of the sum of kinetic and potential energies that is obtained by
integrating Eq. 3.9-1 over the relevant volume.

The term ( · )
V

p v dV∇∫
�

�

 denotes compression or expansion experienced

by the fluid in the relevant volume of interest. It is zero for incompressible
fluids.

The term ( : )
V

v dVW ∇∫
� �

�  represents what can be simplistically said to be

energy loss due to viscous effects, or viscous dissipation. For Newtonian
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fluids, this term is negative, and thus, represents a loss. However, the same
cannot be generalised to all fluids.

Now, at steady state, the LHS of Eq. 3.9-2 is zero. Further, under the
assumption of a ‘representative streamline’ through the system, and for a

constant mass flow rate ( )m�  between the two positions of interest (say 1

and 2), the following combination of terms can be approximately made:

2

1

1
( · )

V

p
m p v dV m dp ∆ − ∇ | ρ ρ 

∫ ∫
� �

� � (3.9-3)

Further, with the assumption that

3
avg 2 2

avg
avg

( )
or say,

v
v v

v
| (3.9-4)

and by division throughout by m� , we can write Eq. 3.9-2, under all the
above assumptions, including that of an incompressible fluid as

� �
2

0
2 s

p v
g x FL W

∆ ∆+ + ∆ + + =
ρ

(3.9-5)

where

� 1
( : )FL v dV

m
= − W ∇∫

� �
�

�

� 1
s sW W

m
=

�

Equation 3.9-5 is a useful form of the engineering Bernoulli equation.
For design and operation, what is called the friction factor approach

would be the easiest, with an acceptable balance between rigour and ease
of usability. Let us use the friction factor approach for a few practical
situations. As can be seen in the following sections, we invoke the just
developed engineering Bernoulli equation quite extensively.

3.9.1 Friction Factor for Flow through a Straight Horizontal
Pipe

Let us consider a well-developed flow through a straight horizontal pipe
(Fig. 3.9.1-1).



0(v1 = v2) 0(z1 = z2) no shaft work

Let us apply the engineering Bernoulli equation between cross-sections
1 and 2

2
ˆ ˆ 0

2 L s
p v

g z F W
∆ ∆+ + ∆ + + =
ρ

Thus

� p
FL

∆= −
ρ (3.9.1-1)

Note that we have made no assumption regarding the nature of flow (i.e.
whether it is laminar or turbulent). Thus, the above is applicable to both
laminar and turbulent flows.

Let us consider a differential fluid volume which is disc-shaped of
radius R and thickness, ∆z, as shown in Fig. 3.9.1-2. Ww will be the wall
shear stress both in laminar and turbulent flows – this is because even in
turbulent flow, the flow closest to the wall is laminar.

A force balance on the differential fluid element yields

p(SR2) – (p + ∆p) (SR2) – WZ� (2SR∆z) = 0 (3.9.1-2)

1 2

Fig. 3.9.1-1 A section of
the straight horizontal
pipe taken for analysis

Fig. 3.9.1-2 Flow through a straight pipe, and a differential, disc-shaped
fluid element taken for analysis

R

Direction of flow ∆z Wws

Wws

(P + ∆P)A
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2 2( )( )

( )(2 )

p p R p R

z RZ
+ ∆ S − S− W =

∆ S

2

p R

zZ
∆ W = −  

 ∆ 

In the limit ∆z → 0

2

dp R

dzZ
 W = − 
 

2
0

dp

dz R
ZW+ = (3.9.1-3)

For a pipe of length L between points 1 and 2, Eq. 3.9.1-3 can be integrated
to yield

2 1 2
0

p p

L R
ZW− + =

or

2 1( ) ( )

2 4

p p R p D

L LZ
− − − ∆W = u = u

or

4L
p

D
ZW− ∆ =

Substituting this into Eq. 3.9.1-1, we get

� 4 L
FL

D
ZW=

ρ
(3.9.1-4)

Let us define a dimensionless parameter, f, as

( ) 1kF
f

A KE
= u

c
(3.9.1-5)

where f is the friction factor, Fk is the force exerted by a fluid due to its
motion on the body of interest, A is the appropriate area and KEc is the
kinetic energy per unit volume.

(A fluid exerts a force on a body in contact with it and of interest. That
force can be thought to consist of two parts, Fs and Fk. Fs is the force that
is exerted even when the fluid is stationary. Fk is the force exerted when
the fluid is in relative motion compared to the body of interest.)



In our case of tube flow, f can be conveniently defined as

222 avgavgavg

( )4
11 2
22

p D
p DLf

L vvv

Z

∆− uW −∆{ = =
  ρρρ 
 

(3.9.1-6)

Thus

2
avg

1

2
v fZW = ρ (3.9.1-7)

Substituting Eq. 3.9.1-7 in Eq. 3.9.1-4, we get

�

2
2avg
avg

1
4

2 4
2

v f L vL
FL f

D D

 ρ       = =  ρ   

(3.9.1-8)

This �FL  accounts for frictional losses at the pipe wall (skin friction).
Equation 3.9.1-8 can be written as

�

2
avg

2
4

vL
FL f

D

  
 =   

 
 

If we define a ‘hydraulic radius’, rH as

Cross-sectional area

Wetted perimeterHr = (3.9.1-9)

for our pipe

2

4
4H

D
D

r
D

 
S 
 = =
S

Thus

�

2
avg

2H

vL
FL f

r

  
 =    

(3.9.1-10)

This equation, in practice, can be extended to all cross-sectional geometries.
To find the above friction factor for pipe flow, a friction factor chart

(Fig. 3.9.1-3) can be used. The term ‘friction factor’ refers to the Fanning
friction factor, and not the Moody’s friction factor that is normally used in
other (e.g. civil engineering) applications.

• For the laminar regions, we can use 
Re

16
f

N
=
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• For the turbulent regime, we need to use the chart.
• For the intermediate regime (2100 < NRe < 4000), we usually avoid

design.

In the turbulent regime, the friction factor, f is a function of the
roughness factor, k/D (represented as different curves on the friction factor
chart), where k is the roughness length (effective thickness), and D is the
diameter of the pipe.

The laminar region is represented by 
Re

16
f

N
= . The turbulent region

has different curves that correspond to different k/D values of the pipes.
The lowest curve corresponds to a smooth pipe. The curve above that
corresponds to a k/D of 10–4 and the topmost curve corresponds to a k/D
value of 10–3. For values in between, interpolations can be done to obtain
estimates of f.

Example 3.9.1-1

A cleaning liquid used in many Bioprocess industries needs to be piped through
the pipeline system above the ground as shown in Fig. 3.9.1-4.

The pipeline system consists of 50 m of 12" nominal diameter pipe and 20 m
of 8" nominal diameter pipe. All elbows are standard and flanged, and the material
used for the piping is schedule 80 wrought iron pipe. Determine the pressure
drop needed between points 1 and 2 to maintain a flow rate of 0.05 m3s–1. What
is the pumping power that is needed to maintain the flow rate? The density of
the liquid is 870 kg m–3 and its viscosity is 1.375 × 10–3 Pa s.

1.000

0.100

0.010

0.001

Fr
ic

tio
n 

fa
ct

or
 (

f
)

102      103      104      105      106      107

Reynolds number (NRe)

k/D

Fig. 3.9.1-3 Friction
factor chart



Nominal diameter and schedule numbers are standard terminology used in
process industries. They have evolved for historical reasons of communications
between the different people working in the industry. The details of the terminology
are given in various handbooks (e.g. Perry’s Chemical Engineers’ Handbook
2007) and other books too (McCabe et al. 2004).

In brief, the schedule number refers to the working stress and equals

1000 max ,
p

S
 where pmax is allowable working pressure and S is allowable tensile

stress.
The correspondence between nominal diameter, internal diameter, and the

wall thickness is available in many sources, e.g. the references given above.

For a 12" nominal diameter

id = 0.2889 m
? cs area = 0.066 m2

For a 8" nominal diameter

id = 0.1937 m
? cs area = 0.0297 m2

Also, for wrought iron, roughness factor (k) = 4.6 × 10–5 m.

Let us apply the engineering Bernoulli equation between points 1 and 2 in
the piping network shown in Fig. 3.9.1-4.

2
ˆ ˆ 0

2 L s
P v

g z F W
∆ ∆+ + ∆ + + =
ρ

�
2 2

2 1 2 1
2 1

( )
( ) 0

2

p p v v
g z z FL

− −+ + − + =
ρ

We need to find p2 – p1.

0 (no shaft work)

1

2
5 m

Gate valve
4.5 m

Fig. 3.9.1-4 Details
of the pipeline for
Example 3.9.1-1
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We know that ρ = 870 kg m–3

12
2

2

0.05
1.7 m s

0.0297

V
v

A
−= = =

�

11
1

1

0.05
0.763 m s

0.066

V
v

A
−= = =

�

z2 = 4.5 m; z1 = 5 m

� ?FL =
For a pipe, and different pipe fittings (valves, etc., which are piping network

components), �FL  can be calculated as �
2
avg

2f

v
FL K=  for each fitting, and

added together to get the total �FL . Kf values for some common fittings are

given in brackets next to the fitting: straight pipe 4
L

f
D

 
 
 

; 180° bend (2.2);

90° elbow (0.9); 45° elbow (0.4); tee (1.8); wide open globe valve (15);
wide open gate valve (0.2). In addition, the Kf values for a sudden contraction
and a sudden expansion can be evaluated as follows

Sudden contraction: 0.4 1 b

a

A

A
 − 
 

Sudden expansion: 
2

1 b

a

A

A
 − 
 

where b is smaller diameter and a is larger diameter; vavg is taken at b.
Thus, depending on the fittings in the piping network

�

2
avg4
2f

vL
FL f K

D
 = + 
 ∑

In this case

�

2 2 2 2
avg avg avg avg

12" 12" pipe 8" pipe 8"
4 4

2 2 2 2f f

v v v vL L
FL K f f K

D D
= + + +∑ ∑

To find f, let us use the friction factor chart for which we need the
Reynolds numbers.

5
Re,12" pipe 3

870 0.763 0.289
1.39 10

1.375 10
avv D

N −
ρ u u= = = u
P u



5
Re,8" pipe 3

870 1.7 0.194
1.47 10

1.375 10
N −

u u= = u
u

Both are turbulent flows.
Now, for reading the appropriate curve on the friction factor chart in

the case of a turbulent flow, we need .
k

d

4

12"

0.000046
1.6 10

0.2889

k

d
−= = u

4

8"

0.000046
2.37 10

0.194

k

d
−= = u

From the friction factor chart, f12" = 0.0045; f8" = 0.00445.
Pipe fittings: 2(12", 90°) + 2(8", 45°) elbows, 1(12") gate valve, 1(8")

sudden contraction

12"
2 0.9 1 0.2 2.0fK = u + u =∑

8"

0.0297
2 0.4 0.4 1 1.02

0.066fK  = u + − = 
 

∑

Substituting the above in the engineering Bernoulli equation, we get

2 2 21.7 0.763 50 0.763
9.8(45 5) 4 0.0045

870 2 0.289 2

p  ∆ −+ + − + u u u 
 

 

2 2 220 1.7 0.763 1.7
4 0.0045 2 1.02 0

0.194 2 2 2

   
+ u u u + u + u =   

  

4.9 1.154 0.91 2.65 0.582 1.474
870

p∆ = − − − − −

∆p = – 1626.9 Pa or – 1.63 kPa

Pumping power required

= (– ∆p) × ·V

= 1626.9 × 0.05 = 81.3 W = 0.081 kW

Example 3.9.1-2

Stenosis or narrowing of the arteries can cause health difficulties especially
cardiac related ones. If the stenosis happens to be at the place of expansion in
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the arterial cross-section, other difficulties could arise. One of the difficulties is
due to “cavitation” or gas bubble formation followed by rupture. Rupture releases
an enormous amount of energy that can even destroy metallic surfaces. Develop
a criterion in terms of the flow velocities, pressure, and areas for the concept of
cavitation at the stenosis.

Let us apply the engineering Bernoulli equation between planes 1 and 2 in
Fig. 3.9.1-5. Upon cancelling the terms that are not relevant, we get

2 2
2,avg 1,avg2 1

( ) ˆ ˆ 0
2 L s

v vP P
g z F W

−− + + ∆ + + =
ρ

(3.9.1.2-1)

�FL here corresponds to the loss due to contraction. Approximating this
contraction to a sudden contraction, from Example 3.9.1-1 we get

2

1

0.4 1f
A

K
A

 = − 
 

where A is CS area.
Thus

�

2
2,avg2

1

0.4 1
2

vA
FL

A
 = − 
 

Note the velocity we use here to calculate �FL .

0 (no shaft work)(no change in
elevation)

0

1
Pre-stenosis

plane

2
Stenosis

plane

3
Post-stenosis

plane

Fig. 3.9.1-5 Stenosis
(narrowing) in an
artery



Thus

2 2 2
2,avg 1,avg 2,avg2 1 2

1

( )
0.4 1 0

2 2

v v vp p A

A

−−  + + − = ρ  
(3.9.1.2-2)

For cavitation to occur, bubbles of gas need to form or nucleation of gas
bubbles need to take place. To understand the conditions for gas bubble
formation, consider the case of boiling water. In boiling, bubbles begin to
appear when the pressure increases due to temperature increase, and finally
equals the saturated vapour pressure (note that this is not an equilibrium
situation, and thus we cannot apply the phase diagram to find the relevant
temperature-pressure relationship for the vapour and liquid phases). In the
case of cavitation, the approach is from the other direction; the pressure
decreases with increase in velocity of the fluid, and when the pressure
equals or becomes lower than the saturated vapour pressure, bubbles form
and cavitation occurs. Let us define the difference between the actual
pressure and the saturated vapour pressure as pg.

Thus

p2 – p1 = p2g – p1g (3.9.1.2-3)

Also for continuity

1
1 1 2 2 2 1

2

or
A

A v A v v v
A

= = (3.9.1.2-4)

Since the pressure and velocity are inversely related, and since v2 > v1, pg2
= 0 is the condition for the onset of cavitation.

Substituting the above in Eq. 3.9.1.2-2, we get

2 2
1 2 21 2 1

1,avg 1,avg2 2
12 2

1 0.4
1 1 0

2 2
gp A A A

v v
AA A

   − + − + − =    ρ   

2 2 2
1 1,avg 1 1 1

2 2
22 2

1 0.4 0.4 0
2

gp v A A A

AA A

 
− + − + − =  ρ  

                   
2

11 1
2

2 2 1,avg

2
1.4 0.4 1 gpA A

A A v

   − − = u    ρ   

2
11 1

2
2 2 1,avg

2
1.4 0.4 1 0gpA A

A A v

    − − + =      ρ     

The solution of this quadratic equation provides the condition in terms of
1

2

A

A
 for cavitation to occur, i.e.
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12
2
1,avg1

2

2
0.4 0.4 4 1.4 1

2 1.4

gp

vA

A

  
 r − u u − + u  ρ   =

u

1
2
1,avg

2
0.4 0.16 5.6 1

2.8

gp

v

  
 r + −   ρ  =

If 1

2

A

A
 t the above RHS, pg2 d 0, and cavitation will occur.

3.9.2 Friction Factor for Solids Moving Relative to a Fluid

For solids with a projected area, Ap (area projected on a plane that is normal
to the relative motion direction)

21
( )

2k pF A v ff
 = ρ 
 

(3.9.2-1)

where vf is the free stream velocity or the approach velocity at a large
distance from the object.

Fk is often referred to as the drag force, while f is usually represented
as CD, the drag coefficient. A plot of variation of CD with Reynolds number,
NRe, is available in handbooks, e.g. the one referred to in the earlier section.

When a sphere (Ap = SR2 = SD2/4) of density ρp falls through a fluid
of density ρ, at a terminal velocity of vt (= vf), a simple force balance
provides

3 34 4

3 3k pF R g R g   = S ρ − S ρ   
   

(3.9.2-2)

Using Eq. 3.9.2-1

2 21
( )

2k tF R v f = S ρ 
 

Equating the above two expressions, we can get an expression for the
friction factor for this case, as

2

4

3
p

t

gD
f

v

ρ −ρ 
=  ρ 

(3.9.2-3)



3.9.3 Friction Factor in Packed Beds

Packed beds are used in biological processes, especially in water and waste
water processing. Certain stages of such processes involve removing
undesirables by microorganisms or other agents in a packed bed.

A rigorous analysis of a packed bed is difficult, because even if an
effort leads to a representative set of mathematical equations, they may not
be easily solvable.

So, let us attempt a simpler analysis using the following assumptions:

• Replace the tortuous flow path inside the bed (Fig. 3.9.3-1) through the
voids by a set of identical parallel conduits of the same length as that
of the bed. Let the radius of each conduit be R, and the total cross-
sectional area of the conduits (number of conduits times the CS area
of each conduit) be S.

• Use a representative hydraulic radius to make the results somewhat
extendable to many cross-sectional geometries.

• Let the particles be uniform with point contacts between them.
• Assume laminar flow in the conduits.

Let us consider that the total drag force (FD) per unit total cross-sectional
area in the parallel conduits is the sum of viscous drag forces (FV), and
inertial drag forces (FI) per unit total CS area (S).

Now, let us focus our attention on each conduit with radius R, for a
while. From Eq. 3.4.2-17 the average velocity in the conduit is

2

avg
( )

8

P R
v

L

−∆=
P

(3.4.2-17)

v0,avg
Area = S0

Fig. 3.9.3-1 A packed bed.
v0,avg is average superficial
velocity; the average velocity
before the flow reaches the
bed when there are no
additional restrictions to flow
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We also know from the equation just before Eq. 3.9.1-4 that

, ,4 2
( ) orw V w VL L

P
D R

W W
−∆ =

The subscript V refers to the viscous component. Substituting the above
expression for (– ∆P) into Eq. 3.4.2-17, we get

2
,

avg

2

8
w VL R

v
R L

W 
=  
  P

Transposing, we get

avg
, ,

4
and we know that V

w V w V

v F

R S

P
W = W =

In terms of the hydraulic radius, rH (to generalise it to channels of any
cross-sectional shape)

avgV

H

k vF

S r

P
= (3.9.3-1)

Now, let us look at the inertial component. The inertial force per unit cross-
sectional area of the conduit

,
I

w I
F

S
= W

From Eq. 3.9.1-7, we get

2 2
, avg 2 avg

1

2w I v f k vW = ρ = ρ (3.9.3-2)

Thus, the total drag force per unit conduit area according to the summative
consideration of the viscous and inertial components, is

1 avg 2
2 avg

D

H

k vF
k v

S r

P
= + ρ (3.9.3-3)

Now, let us focus on the entire bed. Let us define

Volume of voids in the bed

Total bed volume
=� (3.9.3-4)

In other words

imaginary conduits

bed

CS area of imaginary conduits in bed ×

CS area of bed ×

L

L
=�



By one of our earlier assumptions

Limaginary conduits = Lbed

Thus

CS area of imaginary conduits in bed

CS area of bed
=� (3.9.3-5)

By mass conservation, since the mass flow rates through the conduits are
additive, and S = total number of conduits × cross-sectional area of each
conduit.

ρv0,avgS0 = ρvavgS

Since the density is a constant

0,avg

avg 0

v S

v S
= =�

or

0,avg
avg

v
v =

�
(3.9.3-6)

v0,avg i.e. ‘superficial’ or ‘empty tower’ velocity is much easier to measure
compared to vavg.

Now, let us relate the pressure drop across the bed to measurable
parameters. To do that let us focus on the particles in the bed for a while.
The aim is to express the relevant equations in terms of the measurable/
calculable particle parameters.

The total surface area of the particles is AS

As = Np sp (3.9.3-7)

where Np is total number of particles in the bed and sp is area of one
particle.

Assuming uniform particles

0 (1 )Volume of solids in bed
is also

Volume of one particlep
p

S L
N

v

−�
= = (3.9.3-8)

where S0 is cross-section of empty tower and L is bed length.
Substituting Eq. 3.9.3-7 in Eq. 3.9.3-8, we get

0 (1 )s

p p

A S L

s v

−�
=

   
0 (1 ) p

s
p

S L s
A

v

−�
= (3.9.3-9)
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Now

0( )CS area CS area ×

Wetted perimeter Wetted perimeter ×H
s s

S LL S L
r

L A A

�= = = =

(3.9.3-10)

In the equation above, since we have assumed point contacts between
particles, and hence there is no loss in surface area due to contact, the total
surface area of the particles will equal the total surface area of the conduits.

Substituting As from Eq. 3.9.3-9 into Eq. 3.9.3-10, we get

0

0 (1 ) (1 )
p

H
p p p

vS L
r

S L s v s

��
= =

−� −�
(3.9.3-11)

Substituting the above equation in Eq. 3.9.3-3, we get

0 1 0,avg 2
2 0,avg2

(1 ) (1 )p p
D

pp

S L s k v s
F k v

vv

ρ −� P −� 
= + ρ�   

(3.9.3-12)

We can also express the drag force as the product of (pressure drop) and
(effective area), i.e.

FD = (– ∆p)(S0�)

Equating the two expressions for the drag force, we get

1 0,avg 2
0 0 2 0,avg2

(1 )1
( ) p p

p p

s k v s
p S S L k v

v v

P −�   −� − ∆ �= ρ +      ρ �      

1 0,avg 2
2 0,avg3

(1 )( ) 1 p p

p p

s k v sp
k v

L v v

P −�   − ∆ −� = +     ρ ρ �      
(3.9.3-13)

For a sphere

2

3

6

6

p p

p p
p

s D

v DD

S
= =
S (3.9.3-14)

For any particle, let us define an equivalent diameter Dp as the diameter of
the sphere having the same volume as that of the particle.

Let us also define sphericity, φs as

Surface area of the equivalent sphere

Actual surface areasφ = (3.9.3-15)
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and therefore
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(3.9.3-16)

Values of φs for various commonly used particles are available in handbooks.
Ergun correlated experimental data and found that

1 2
150 1.75

and
36 6

k k= =

Thus, the pressure drop equation can be written as

3

2 2
0,avg 0,avg

( ) 150 1
. . 1.75

(1 ) /

s p

s p

Dp

L Dv v

φ− ∆ � −�= +
−� φρ ρ P

(3.9.3-17)

Equation 3.9.3-17 is called the Ergun equation. The above equation works
well for most packings – except for packings of extreme shape such as
needles, rings or saddles.

By comparison with the friction factor defined earlier, Eq. 3.9.1-6, we
can define the friction factor for a packed bed as

3

2
0,avg

( )

(1 )

s p
pb

p D
f

v L

− ∆ φ �
{
ρ −�

(3.9.3-18)

Substituting this back into Eq. 3.9.3-17, we get

Re,

150(1 )
1.75pb

s p

f
N

−�= +
φ (3.9.3-19)

At low NRe,p, 1.75 is negligible in comparison with the other term. Thus,
at low NRe,p

Re,

150(1 )
pb

s p

f
N

−�=
φ (3.9.3-20)

This implies that (through substitution of the expression for fpb back into
the above equation)

2 3

2
0,avg

( )
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s pp D
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− ∆ φ �
=

P −�
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2 3
0

2
0 0,avg

( ) 150
(1 )

s pS D
p

S v L

φ �
− ∆ =

P −�

where S0v0,avg is volumetric flow rate, Q. The above equation is called the
Kozeny-Carman equation.

If φs, Dp, and � are constants

1
( ) andQ p

L
v − ∆ v

P
(3.9.3-21)

This is known as Darcy’s law and has many applications.
At large NRe, the first term in the RHS in Eq. 3.9.3-19 becomes negligible.

Under such condition, we get the Blake-Plummer equation, i.e.

3

2
0,avg

( )
. . 1.75

(1 )
s pDp

Lv

φ− ∆ � =
−�ρ

(3.9.3-22)

The above equations can be used to predict pressure drop across beds.
Hence, the pumping requirements across packed beds can be estimated.

Exercises

1. Succinctly differentiate between

(a) Laminar and turbulent flows
(b) Pseudoplastic and dilatant fluids
(c) Pseudoplastic and viscoelastic fluids
(d) Bingham plastic and power law fluids
(e) Viscosity and kinematic viscosity

2. Which model is an applicable constitutive equation for blood?

3. How do the equation of continuity in Chapter 2 and the equations of motion
given in the tables in this chapter for laminar flow have to be modified so
that they become applicable for turbulent flow?

4. There exists a concept called ‘dynamic similarity’ that makes it possible to
use non-dimensional analysis for scale-up. Read up about the concept of
dynamic similarity.

5. In a micro-processing unit for biological analytes that is based on microfluidics,
multiple channels feed into a heating device that consists of a thin box-like
structure with top and bottom faces that can be heated to increase the
temperature of the fluid flowing through it. Even in the micro-dimensions,



the thickness of the box, d, or the space between the top and the bottom
faces can be considered very small compared to the length and breadth of
the heating box. An incompressible fluid of viscosity, P, is flowing through
it, and the heating is not turned on. If the pressure drop between the inlet
and outlet of the heating box is a constant, K, derive an expression for the
velocity profile of the fluid between the top and bottom faces of the boxes,
when the flow is well developed; ignore entrance and exit effects. In a
circular capillary section of the same set-up, what would be the flow rate,
if the pressure due to surface tension is the only driving force for bulk flow
in that section?

6. Two glass plates are placed horizontally at a distance of 3d from each other
with a fluid in between them. A third thin rigid sheet (of negligible mass) is
fixed between the plates, at a distance of d from the top plate – the sheet
cannot move. The top plate is moved at a velocity of v ms–1, and the bottom
plate at 2 v ms–1. Determine the velocity profiles at steady state when the
plates are moved (a) in the same direction, and (b) in opposite directions.

7. It is well known that skiing in the snow-filled mountains in the northern
regions of our country is possible because there is water formation from the
snow/ice under the ski, due to pressure. This thin water layer provides the
lubrication needed and makes skiing possible. Interestingly, it can be looked
at as a water layer with the top part being bounded by the ski, and the bottom
by the stationary solid ground (covered with snow/ice). Consider a person
weighing 60 kg skiing on a 15° slope at a speed of 30 km h–1. The ski bottom
surface can be approximated to a rectangle of dimensions 14 × 80 cm2. If the
viscosity of water in the water layer is 1.8 × 10–3 N s m–2, estimate the
thickness of the water layer.

8. Set up the differential equations to obtain the velocity profile of a Newtonian
fluid flowing in laminar flow, in a duct of square cross-section.

9. In one of our earlier studies in our lab that investigated the effects of a
physical stress on the metabolic and genetic responses of cells, we needed
to grow cells over extended periods at defined shear stress. We had used
a co-axial cylinder set-up, and grew cells in the thin annular space between
the cylinders. The outer cylinder was rotated at different rpms, thereby
providing different shear rates, and hence different shear stresses on the
cells. Develop expressions for the shear stress and the shear rate on the cells
in terms of operational parameters, and discuss the expressions developed.

10. A lab deals with a particularly shear sensitive cell line which needs to be
transported from one point to another in a pipe of length L, diameter, D. It
was decided to use laminar flow for transport. Let the critical shear stress
that the cells can tolerate be Wcrit, and the corresponding shear rate, assuming
that the fluid is Newtonian be ·Jcrit. Let the critical shear stress/rate be in the
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range of shear that occurs in the laminar flow regime. Derive an expression
for the maximum flow rate that can be used to transfer a uniform solution
of the cells, of viscosity, P, to ensure 80 % survival at the exit.

11. Semi-circular canals in the ear help the brain sense orientations of the head.
They are three half-circular, inter-connected tubes inside the ear which are
orthogonal (perpendicular) to each other. Each semi-circular canal is
approximately a torus with a radius of curvature, say R, and inner radius of
cross-section, a; a << R. Each canal is filled with a fluid called the endolymph,
and contains a gelatinous membrane called cupula, a motion sensor with hair
cells (cilia). The cilia move when the endolymph rushes past it and send a
signal to the brain. The movement in the endolymph is induced as a result
of twisting of the head. Hence a direct relation between angle of twist and
cupula movement helps the brain sense rotations. The endolymph and
cupula densities are constant and equal, under normal conditions, to avoid
the effect of gravity on the cupula. Assume the endolymph to be Newtonian,
with a density, r, and viscosity, n. Formulate a relationship between angular
acceleration of the head with the rotation axis vertically located through the
centre of the head, and cupula deflection in the corresponding semi-circular
canal.

12. Atherosclerosis is a disease caused by the rise in the level of cholesterol
in the body. The proteoglycans carried along the arteries are able to bind
to the lining in the arteries. This leads to plaque build-up in the arteries,
which results in the decrease of artery radius, and abnormal blood pressures.
In a patient with atherosclerosis, the pressure drop in the artery, by some
non-invasive method, was found to be ∆Pc, instead of ∆P under normal
conditions. What is the thickness of the plaque built-up on the inner wall
of the artery, if it can be assumed that the plaque covers the entire inner wall
at the relevant region of the artery. Further assume that blood can be
approximated to a Newtonian fluid for this purpose.

13. A student working on the SDS-page experiment prepared the required reagents
for a stacking gel and kept it for his/her partner to process further. When
the partner got to it after about 10 min, (s)he loaded the stacking gel into
the pipette. Due to the time lapsed, the fluid behaves as a Bingham plastic
now. Neglecting the tip of the pipette, find the steady state velocity profile
in the pipette and the mass flow rate of the gel for a given constant pressure
drop exerted by the mechanism in the pipette.

14. The lachrymal sac stores tears, and the tears flow through the lachrymal
duct to the eye. By assuming that the lachrymal duct is a straight pipe of
12 mm length and 1 mm diameter, and by neglecting gravity, estimate the
pressure needed to force the tears into the eyes through the larchrymal duct
at a flow rate of 1.2 mL min–1 in laminar flow. Take the viscosity of the tears
to be 4.4 Pa. s, and its density to be 1000 kg m–3.



15. Pulsatile drug delivery systems have been used to deliver a desired amount
of drug at the desired time and location. Develop an expression for the time
dependent velocity of the drug solution for a given pressure drop, and other
needed parameters.

Some of the exercise problems given above were suggested/formulated by
G. Shashank, G. Vivek Sathvik, D. Divya Vani, I. Pradeep Kumar (6, 8), Akhil Sai
Valluri (7), S. Kousik, Sagar Laygude, Utsav Saxena (10–12), Uma Maheswari,
Namrata Kamat, Kiran, Kemun Khimun, Rashmi Kumari (13, 15), P. Raghavendran,
P. Vivek, K. Ramasamy and M. Ashok (14).

Fully Open-ended Exercise

Estimate the power needed to overcome the frictional drag in the trachea. Use
this to determine the efficiency of the trachea in the respiratory circuit, and
propose an easily measurable physical parameter that can be used to decide
whether a person with respiratory difficulties needs ventilator support. This
problem was formulated by Akhil Sai Valluri, for his CFA exercise (CFA stands
for choose-focus-analyse exercise). See end of Chapter 1 for some details.
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Chapter 4
Thermal Energy Flux

As we already know, the total energy in the universe is conserved. Let us
now focus our attention on the transfer of energy as heat (thermal energy)
across system boundaries, with the clarity that the thermal energy, a form
of energy, is not conserved.

The transfer of heat due to molecular processes is called ‘conduction’.
We have seen in the earlier chapters that constitutive equations govern some
fluxes – Fick’s first law governs diffusion (mass flux) and Newton’s law
governs laminar flow (momentum flux). Similarly, a constitutive equation
known as ‘Fourier’s law’ governs conduction (energy flux).

In one dimension, Fourier’s law is written as

x
dT

q k
dx

= − (4-1)

where qx is heat flux in the x direction (units: J s–1 m–2), T is temperature
at position x (units: K) and k is thermal conductivity (units: J s–1 m–1 K).

The reader can learn about the methods to estimate thermal conductivity
of gases and liquids in books like Transport Phenomena, Bird et al. (2002).
In three dimensions, assuming an isotropic medium where the thermal
conductivity is not a function of position, i.e. k z f (x, y, z)

q k T= − ∇
�

� (4-2)

In a moving fluid, q
�

 represents the flux of thermal energy relative to the
local velocity. The equation for thermal energy flux in different coordinate
systems is presented in Table 4-1.

Thermal diffusivity, D can be defined as

P

k

C
D {

ρ (4-3)

Units of 
1 1 1J m s K −− −

D =
kg 3 1m J kg −− 1K −

2 1= m s− .
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Table 4-1 Thermal energy flux (when only conduction is involved)

Rectangular

T T T
q k

x y z

∂ ∂ ∂ = − + + ∂ ∂ ∂ 

�

(A)

Cylindrical

1T T T
q k

r r z

∂ ∂ ∂ = − + + ∂ ∂θ ∂ 

�

(B)

Spherical

1 1

sin

T T T
q k

r r r

∂ ∂ ∂ = − + + ∂ ∂θ θ ∂φ 

�

(C)

A comparison of D (heat) with D (mass) and Q = 
P
ρ  (momentum) will

show that all have the same units, and are comparable quantities in the three
modes of fluxes.

4.1 Other Modes of Heat Flux

Heat flux due to molecular processes, or conduction, is only one of the
modes for heat energy transport. For completeness, let us mention the other
modes of heat flux – convection and radiation – here, with the understanding
that we will learn about convection in detail in a later chapter. Radiation, on
the other hand, is a different concept, and since it is difficult to slot
radiation as a concept in the organisation of this book, let us discuss it in
some detail in this section.

Flow induced heat flux is called convection. Convection could be of
two kinds, forced convection and free convection. Forced convection occurs
when heat is transferred due to flow generated by an external means such
as a pressure gradient caused by a pump or a blower. Free convection
occurs when heat is transferred due to a flow, normally small in magnitude,
which is generated by a density differential, which in turn is caused by
heating/cooling.

Heat flux can also occur due to radiation, which is mediated by
electromagnetic waves. Simplistically speaking, as learnt in higher secondary
school physics, the transitions of electrons between various energy levels



in an atom result in emission of radiation. Thus, any substance at an
absolute temperature of T K > 0 K will emit radiation over a range of
wavelengths. Further, when any electromagnetic energy is incident on a
substance, because of its electronic transitions, the substance will absorb
the energy.

The Stefan-Boltzmann law that governs radiation states that the intensity
of radiation is proportional to the fourth power of the temperature in K of
the emitting body. When the energy is transferred as heat through radiation,
from say, a body to its surroundings, the radiative flux can be expressed as

� �4 4
body surrrq T T= V H − (4.1-1)

where V, the Stefan-Boltzmann constant = 5.67 × 10–8 W m–2 K–4, H is
emissivity of the body, and T is the absolute temperature. Radiative flux can
dominate the heat transfer processes at high temperatures such as the ones
that occur in steam-based heat exchangers in the bioprocess industries. An
exercise problem at the end of this chapter will help the reader to get an
idea of the relative contributions of conduction and radiation at physiological
temperatures.

An aspect that needs important consideration in biological systems is
that of phase change. If a phase change (e.g. evaporation of sweat) is
involved, latent heat needs to be considered although it does not result in
a temperature change.

We will consider some of the above concepts in the context of multiple
driving forces and fluxes in Chapter 6.

4.2 Equation of Energy

As seen for mass and momentum transfer, although shell balances provided
a physical feel for simple problems, the conservation equations were easier
to employ for complex problems/situations, especially in coordinate systems
other than rectangular.

Let us derive the equation of energy that can be applied in a heat
transfer situation.

Consider the flow of a pure fluid through a stationary volume (control
volume; the same as in Fig. 1.4.3-1). The various energies of relevance in
this situation include the following:

• Internal energy, which can be visualised as arising from the vibrational,
rotational, and potential energies of the molecules. Bird et al. (2002)
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elegantly show how internal energy arises at the molecular level from
the collision of two diatomic molecules, when the principle of energy
conservation is invoked for the collision process.

• Kinetic energy, which is associated with the observable (bulk) motion.
• Potential energy (to begin with, it is clubbed with the ‘work done’ term

because it can be interpreted as the work done against gravity).
• Other energies (say electrical, magnetic, surface, etc.), which we will

ignore now – they can be added to the total energy term in the final
equation by mere algebraic addition, if needed.

Let us also consider the other relevant terms that contribute to the
overall energy balance over a (in our case, microscopic) control volume.

• Energy that crosses the control volume boundaries as heat through
conduction.

• Energy that is generated as heat in the control volume by say, metabolic
activities.

• Work done against stresses (and other aspects, such as gravity).

Then the law of conservation of energy can be written as

Rate of accumulation of
Net rate of IE + KE

IE + KE in the system =
in by convection

or control volume

Net rate of heat addition

by conduction
+

Net rate of heat addition by
+

generation, say metabolic

 
  

   
  

 

  
  

   
 

 
 
 

Net work done by the system or

the control volume against

stress, gravity, etc.





 
 −  
 
 

(4.2-1)

where IE is internal energy and KE is kinetic energy.
Now, let us take one term at a time from Eq. 4.2-1. Rate of accumulation

of IE and KE is

21ˆ( )
2

x y z U v
t

∂  ∆ ∆ ∆ ρ + ρ ∂  

where Û  = IE per unit mass.



Net rate in of IE + KE by convection is

2 21 1ˆ ˆ
2 2x x

x x x

y z v U v v U v
+∆

    ∆ ∆ ρ + ρ − ρ + ρ     
    

2 21 1ˆ ˆ
2 2y y

y y y

x z v U v v U v
+∆

     +∆ ∆ ρ + ρ − ρ + ρ    
     

2 21 1ˆ ˆ
2 2z z

z z z

x y v U v v U v
+∆

    +∆ ∆ ρ + ρ − ρ + ρ    
    

Net rate in of Q by conduction is

{ | | } { | | } { | | }x x x x x y y y y y z z z z zy z q q x z q q x y q q+∆ +∆ +∆∆ ∆ − + ∆ ∆ − + ∆ ∆ −

where qx, qy and qz are the components of the heat flux vector, q
�

.

Work done by the fluid element against its surroundings = work done
against volume forces (gravity) + work done against surface forces (pressure,
viscous forces) + other relevant work

Rate of work done against gravity is

– ρ(∆x∆y∆z) (vx gx + vy gy + vz gz)

Note:

1. Rate of work = Force × Velocity = Mass × Acceleration × Velocity
2. andv g

� �

have opposite signs

Rate of work done against the static pressure at the six faces is

{ } { }
{ }

( ) | ( ) | ( ) | ( ) |

( ) | ( ) |

x x x x x y y y y y

z z z z z

y z pv pv x z pv pv

x y pv pv

+∆ +∆

+∆

∆ ∆ − + ∆ ∆ −

+ ∆ ∆ −

Rate of work done against viscous forces is

{ }( ) | ( ) |xx x xy y xz z x x xx x xy y xz z xy z v v v v v v+∆∆ ∆ W + W + W − W + W + W

{ }( ) | ( ) |yx x yy y yz z y y yx x yy y yz z yx z v v v v v v+∆+∆ ∆ W + W + W − W + W + W

{ }( ) | ( ) |zx x zy y zz z z z zx x zy y zz z zx y v v v v v v+∆+∆ ∆ W + W + W − W + W + W

Let otherW�  be the other work interactions.
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Substituting the above expressions into the energy balance (Eq. 4.2-1),
dividing it by ∆x∆y∆z and taking the limit as x → 0, ∆y → 0, ∆z → 0, we
get

2 2 21 1 1ˆ ˆ ˆ
2 2 2x yU v v U v v U v

t x y

∂  ∂ ∂     ρ + ρ = − ρ + ρ + ρ + ρ     ∂   ∂   ∂  
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yx z
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qq q
v U v

z x y z

∂ ∂ ∂∂  + ρ + ρ − + +   ∂   ∂ ∂ ∂  

( )x x y y z z x y zv g v g v g pv pv pv
x y z

∂ ∂ ∂ + ρ + + − + + ∂ ∂ ∂ 

( ) ( )xx x xy y xz z yx x yy y yz zv v v v v v
x y

∂ ∂− W + W + W + W + W + W ∂ ∂

( )zx x zy y zz zv v v
z

∂ + W + W + W ∂ 

say, other like metabolic heat otherQ W+ −� � (4.2-2)

In vector notation

2 21 1ˆ ˆ. ( . ) ( . )
2 2
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say, other like metabolic heat other

( . ) ( .[ . ])
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on the fluid puv byon the fluid puv by

viscous forcespressure forces

pv v

Q W

− ∇ − ∇ W

+ −

� �� �
�

� � (4.2-3)

where puv is per unit volume.
Now, let us consider the LHS of the above equation (by transposition)

as

2 21 1ˆ ˆ·
2 2

U v v U v
t

∂ρ     + + ∇ ρ +    ∂     

�

�



We know that (see Appendix 1)

rs r s s r∇ = ∇ + ∇
� � �

and

· · ·sv s v v s∇ = ∇ + ∇
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� � �

Therefore

· · ·rsv v rs rs v∇ = ∇ + ∇
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� � �

·( ) ·v r s s r rs v= ∇ + ∇ + ∇
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� �

Thus, the above expression can be written as
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The last term goes to zero according to the equation of continuity.
Thus, the expression becomes

2 2 21 1 1ˆ ˆ ˆ·
2 2 2

D
U v v U v U v

t Dt

 ∂        ρ + + ∇ + = ρ +        ∂         

�

�

Therefore, the energy equation can be written as

2
other other

1ˆ ( · ) ( · ) ( · ) ( ·[ · ])
2

D
U v q v g pv v Q W

Dt

  ρ + = − ∇ + ρ − ∇ − ∇ W + −  
  

� � �� � � � �
� ��

(4.2-4)

In the rate of heat term, otherQ� , the ‘other’ could refer to metabolic heat.
Earlier, to derive the equation of mechanical energy, we considered the

potential energy contribution in the ‘work done’ term. If the external force

per unit mass, g
�

, is expressible as a gradient of a scalar function, i.e.

0
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g = −∇φ
�

�

(4.2-5)

Then

( · ) ( · )v g vρ = − ρ ∇φ
�

� � �

From the identity

( · )
Ds ds

v s
Dt dt

= + ∇
�

�

we can write

( · )
D d

v
Dt dt

φ φ − ρ ∇φ = − ρ − 
 

�

�

If φ is time independent, as for all terrestrial cases, then, 
d

dt

φ
 = 0. However,

note that 
D

Dt

φ
 z 0 because it involves the variation with spatial variables too.

Thus

2
other

1ˆ ( · ) ( · ) ( ·[ · ])
2

D
U v q pv v Q W

Dt
 ρ + φ + = − ∇ − ∇ − ∇ W + − 
 

� � �� � � � ��

Note that the last term, the rate of work, W� , does not include the gravitational
work.

Many applications require the consideration of thermal energy alone –
let us focus more on that now. Note that thermal energy is not conserved.
However, a suitable expression can be developed in terms of thermal energy
alone.

To arrive at this useful expression involving only thermal energy, let us
begin with Eq. 4.2-4. We need to get rid of the kinetic energy term and be
left only with the internal energy (thermal) term in Eq. 4.2-4. To do that,
let us consider Eq. 3.4-5, the equation of motion.

[ · ]
D v

p g
Dt

ρ = − ∇ W −∇ + ρ
�

� � �
� (3.4-5)

If we take the dot product of every term in Eq. 3.4-5 with the velocity
vector, we get

· ( ·[ · ]) ( · ) ( · )
D v

v v v p v g
Dt

ρ = − ∇ W − ∇ + ρ
�

� �� � � � �
�

which can be written as

21
( ·[ · ]) ( · ) ( · )

2

D
v v v p v g

Dt
 ρ = − ∇ W − ∇ + ρ 
 

� �� � � �
� (4.2-6)



If we subtract Eq. 4.2-5 from Eq. 4.2-4, we get

other other
ˆ( ) ( · ) ( · ) ( · ) ( ·[ · ])

D
U q v g pv v Q W

Dt
ρ = − ∇ + ρ − ∇ − ∇ W + −

� � �� � � � � � ��

( ·[ · ]) ( · ) ( · )v v p v g+ ∇ W + ∇ − ρ
� �� � � �
� (4.2-7)

Using the chain rule, we can combine the third and the eighth terms on the
RHS as

( · ) ( · ) ( · )v p pv p v∇ − ∇ = − ∇
� � �

� � �

The second and the last terms in the RHS of Eq. 4.2-7 can be cancelled
with each other, and it can be shown (students are encouraged to show
this) that

( ·[ · ]) ( ·[ · ]) ( : )v v v∇ W − ∇ W = − W ∇
� � �� � �
� � �

where ‘:’ is a scalar product between two tensors or equivalents. For

example, the ‘:’ product between W�  and v∇
�

�

 (note that both have 9
components, each, in a 3-D system) is the scalar given by

x x x
xx xy xz

v v v

x y z

∂ ∂ ∂     W + W + W    ∂ ∂ ∂    

y y y
yx yy yz

v v v

x y z

∂ ∂ ∂     
+ W + W + W     ∂ ∂ ∂    

z z z
zx zy zz

v v v

x y z

∂ ∂ ∂     + W + W + W    ∂ ∂ ∂    

Thus, we can write Eq. 4.2-7 as

other other
ˆ( ) ( · ) ( · ) ( : )

D
U q p v v Q W

Dt
ρ = − ∇ − ∇ − W ∇ + −

� � �� � �
� �� (4.2-8)

Since Û  is not easily measurable, it may be preferable to rewrite the
expressions in terms of more easily measurable variables such as p, T, CV,

etc. We know from thermodynamics that when we consider ˆ ˆ( , )U f V T= ,

where Û  is the mass specific internal energy, and V̂  is the mass specific
volume (inverse of density), we can write

ˆ

ˆ ˆ
ˆ ˆ

ˆ VT

U U
dU dV dT

TV

   ∂ ∂= +   ∂ ∂ 
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We also know from thermodynamics that

ˆ

ˆ

ˆ VT

U p
p T

TV

 ∂  ∂  = − +    ∂ ∂   

Therefore

ˆ

ˆ ˆ
V

V

p
dU p T dV C dT

T

 ∂  = − + +  ∂  
(4.2-9)

If we take the substantial derivative of the above equation, and multiply
throughout by ρ, we get

ˆ

ˆ ˆ
V

V

DU p DV DT
p T C

Dt T Dt Dt

 ∂  ρ = − + ρ + ρ  ∂  
(4.2-10)

Now

1
ˆ 1

D
DV D

Dt Dt Dt

 
 ρ ρ  ρ = ρ = − ρ 

From the equation of continuity, Eq. 1.4.3-7, we can write

1
( · )

D
v

Dt

ρ − = ∇ ρ 

�

�

Thus, we can write Eq. 4.2-10 as

ˆ

ˆ
( · ) V

V

DU p DT
p T v C

Dt T Dt

 ∂  ρ = − + ∇ + ρ  ∂  

�

�

(4.2-11)

Substituting Eq. 4.2-11 into the LHS of Eq. 4.2-8, we get

other other
ˆ

( · ) ( · ) ( · ) ( : )V
V

p DT
p T v C q p v v Q W

T Dt

 ∂  − + ∇ +ρ = − ∇ − ∇ − W ∇ + −  ∂  

� � � �� � � �
� ��

Since the first part of the first term on the LHS of the above equation
cancels with the second term on the RHS of the same equation, the equation
can be rewritten as

other other
ˆ

( · ) ( · ) ( : )V
V

DT p
C q T v v Q W

Dt T

∂ ρ = − ∇ − ∇ − W ∇ + − ∂ 

� � �� � �
� �� (4.2-12)

The above equation, which is useful when thermal energy alone needs to
be considered (although it is not conserved), is given in Table 4.2-1 in
various coordinate systems.



Table 4.2-1 The equation of thermal energy

Rectangular coordinate system

V x y z
T T T T

C v v v
t x y z

∂ ∂ ∂ ∂ ρ + + + ∂ ∂ ∂ ∂ 

yx z
qq q

x y z

∂ ∂ ∂= − + + ∂ ∂ ∂ 

  
y yx z x z

xx yy zz

v vp v v v v
T

T x y z x y zρ

∂  ∂    ∂ ∂ ∂ ∂ ∂      − + + − W + W + W         ∂ ∂ ∂ ∂ ∂ ∂ ∂          

  
y yx x z z

xy xz yz

v vv v v v

y x z x z y

 ∂ ∂    ∂ ∂ ∂ ∂  − W + + W + + W +     ∂ ∂ ∂ ∂ ∂ ∂      

  other otherQ W+ −� � (A1)

For a Newtonian fluid, when ρ and k are constant

V x y z
T T T T

C v v v
t x y z

∂ ∂ ∂ ∂ ρ + + + ∂ ∂ ∂ ∂ 

22 22 2 2

2 2 2
2 yx z

vT T T v v
k

x y zx y z

 ∂    ∂ ∂ ∂ ∂ ∂   = + + + P + +       ∂ ∂ ∂   ∂ ∂ ∂      

2 22

other other
y yx x z z

v vv v v v
Q W

y x z x z y

 ∂ ∂    ∂ ∂ ∂ ∂ + P + + + + + + −     ∂ ∂ ∂ ∂ ∂ ∂      

� � (A2)

Cylindrical coordinate system

V r z
T T v T T

C v v
t r r z

θ∂ ∂ ∂ ∂ ρ + + + ∂ ∂ ∂θ ∂ 

1 1 1 1
( ) ( )z z

r r
q q p v v

rq T rv
r r r z T r r r z

θ θ

ρ

∂ ∂ ∂ ∂ ∂ ∂ ∂     = − + + − + +    ∂ ∂θ ∂ ∂ ∂ ∂θ ∂     

1r z
rr r zz

v v v
v

r r z
θ

θθ
 ∂ ∂ ∂  − W + W + + W  ∂ ∂θ ∂  

1 1r z r z
r rz z

v v v v v v
r

r r r r z r z
θ θ

θ θ
  ∂ ∂  ∂ ∂ ∂ ∂     − W + + W + + W +       ∂ ∂θ ∂ ∂ ∂θ ∂       

other otherQ W+ −� � (B1)

For a Newtonian fluid, when ρ and k are constant

V r z
T T v T T

C v v
t r r z

θ∂ ∂ ∂ ∂ ρ + + + ∂ ∂ ∂θ ∂ 

Contd…
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22 22 2

2 2 2

1 1 1
2 r z

r
T T T v v v

k r v
r r r r r zr z

θ
    ∂ ∂ ∂ ∂ ∂  ∂  ∂       
 = + + + P + + +          ∂ ∂ ∂ ∂θ ∂        ∂θ ∂    

22 21 1z z r rv v v v v v
r

z r r z r r r
θ θ

  ∂ ∂ ∂ ∂  ∂ ∂      
 + P + + + + +       ∂ ∂θ ∂ ∂ ∂θ ∂         

other otherQ W+ −� � (B2)

Spherical coordinate system

sinV r

vT T v T T
C v

t r r r
φθ ∂ ∂ ∂ ∂ρ + + + ∂ ∂ ∂θ θ ∂φ 

2
2

1 1 1
( ) ( sin )

sin sinr

q
r q q

r r rr
φ

θ
∂ ∂ ∂= − + θ + ∂ θ ∂θ θ ∂φ 

2
2

1 1 1
( ) ( sin )

sin sinr

vp
T r v v

T r r rr
φ

θ
ρ

∂ ∂ ∂ ∂ − + θ +   ∂ ∂ θ ∂θ θ ∂φ   

1 1 cot

sin
r r r

rr

vv v v v v

r r r r r r
φθ θ

θθ φφ
 ∂  ∂ ∂ θ  − W + W + + W + +    ∂ ∂θ θ ∂φ    

1 1

sin
r r

r r

v vv v v v

r r r r r r
φ φθ θ

θ φ
 ∂ ∂ ∂ ∂  − W + − + W + −    ∂ ∂θ ∂ θ ∂φ   

other other

cot1 1

sin

v vv
Q W

r r r
φ φθ

θφ
∂ θ  ∂ + W + − + − ∂θ θ ∂φ  

� � (C1)

For a Newtonian fluid, when ρ and k are constant

sinV r

vT T v T T
C v

t r r r
φθ ∂ ∂ ∂ ∂ρ + + + ∂ ∂ ∂θ θ ∂φ 

2
2

2 2 2 2 2

1 1 1
sin

sin sin

T T T
k r

r rr r r

 ∂ ∂ ∂ ∂ ∂   = + θ +    ∂ ∂ ∂θ ∂θ   θ θ ∂φ 

22 2
1 1 cot

2
sin

r r r
vv v v v v

r r r r r r
φθ θ

 ∂  ∂ ∂ θ   + P + + + + +     ∂ ∂θ θ ∂φ      

22
1 1

sin
r r vv v v

r r
r r r r r r

φθ
     ∂ ∂  ∂ ∂ 
+ P + + +     ∂ ∂θ θ ∂φ ∂      

2

other other
sin 1

sin sin

v v
Q W

r r
φ θ

   θ ∂ ∂
+ + + −  ∂θ θ θ ∂φ    

� � (C2)

Table 4.2-1 Continued



In many situations, it has been found that it is more convenient to work
with Cp rather than with CV. If Eq. 4.2-8 can be written in terms of specific
enthalpy, instead of in terms of specific internal energy, the use of Cp can
be facilitated. To do this, let us recognise that by definition

ˆ ˆ ˆ ˆ p
H U PV U= + = +

ρ

Thus, Eq. 4.2-8 can be written as

other other
ˆ ( · ) ( · ) ( : )

D p
H q p v v Q W

Dt
 ρ − = − ∇ − ∇ − W ∇ + − ρ 

� � �� � � � �� (4.2-13)

The LHS of Eq. 4.2-13 becomes

2

ˆ
Dp D

pDH Dt Dt
Dt

 ρ  ρ −   ρ −    ρ  

ˆDH Dp p D

Dt Dt Dt

ρ= ρ − +
ρ

(4.2-14)

On the same lines as we developed earlier, after Eq. 4.2-8, taking Ĥ  =
f (T, p), we can write

ˆ ˆ
ˆ

p T

H H
dH dT dp

T p

   ∂ ∂= +   
∂ ∂   

By substituting the relations we know from thermodynamics, we get

ˆ
ˆ ˆ

p
p

V
dH C dT V T dp

T

  ∂= + −  ∂   
(4.2-15)

If we take the substantial derivative, and multiply throughout by ρ, we get

ˆ ˆ
ˆ

p
p

DH DT V Dp
C V T

Dt Dt T Dt

  ∂ρ = ρ + ρ −  ∂   

  

1

1p
p

DT Dp
C T

Dt T Dt

   ∂   ρ   = ρ + −  
 ∂  

ln
1

lnp
p

DT Dp
C

Dt T Dt

 ∂ ρ  = ρ + −   ∂  
(4.2-16)
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Substituting Eq. 4.2-16 in Eq. 4.2-14 yields

ln
1

lnp
p

DT Dp Dp p D
C

Dt T Dt Dt Dt

 ∂ ρ  ρ ρ + − − +  ∂ ρ  

With the cancellation of equal terms, 
Dp

Dt
, in the above equation, we get

ln

lnp
p

DT Dp p D
C

Dt T Dt Dt

∂ ρ ρ ρ + + ∂ ρ 
(4.2-17)

From the equation of continuity, Eq. 1.4.3-8, we can write

1
( . )

D
v

Dt

ρ − = ∇ ρ 

�

�

Thus, Eq. 4.2-17 can be written as

ln
( . )

lnp
p

DT Dp
C p v

Dt T Dt

∂ ρ ρ + − ∇ ∂ 

�

�

(4.2-18)

which is the LHS of Eq. 4.2-13. Putting the terms back into the equation,
we get

other other
ln

( . ) ( . ) ( . ) ( : )
lnp

p

DT Dp
C p v q p v v Q W

Dt T Dt

∂ ρ ρ + − ∇ = − ∇ − ∇ − W ∇ + − ∂ 

� � � �� � � � � ��

Since the third term on the LHS and the second term on the RHS are the
same, we can write

other other
ln

( . ) ( : )
lnp

p

DT Dp
C q v Q W

Dt T Dt

∂ ρ ρ = − ∇ − W ∇ − + − ∂ 

� �� � � �� (4.2-19)

The above equation is the thermal energy equation in terms of Cp.

4.2.1 Temperature Profile in a Tissue

Let us consider the temperature profiles and the maximum temperature
attained in a tissue at steady state – heat is generated due to metabolism.
Let us assume that the tissue is a cylinder of radius R, the thermal conductivity

is k, and there is uniform and constant heat generation, mQ� . Let us also

assume that the conditions in the body are such that the surface of each
tissue is kept at a constant temperature, Ts, and that there is no heat flux



along the tissue length. Besides which, let us also assume that no other
work is done by the tissue.

Using Eq. B2 (cylindrical coordinates) from Table 4.2-1, in which we
can cancel the irrelevant terms

V r z
vT T T T

C v v
t r r z

θ∂ ∂ ∂ ∂ ρ + + + ∂ ∂ ∂θ ∂ 

22 22 2

2 2 2

1 1 1
2 r z

r
vv vT T T

k r v
r r r r r zr z

θ
     ∂ ∂ ∂∂ ∂ ∂ ∂      
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� �

(4.2.1-1)

If we take other mQ Q− =� �  metabolic heat rate, then

m
k d dT

r Q
r dr dr

 − = 
 

� (4.2.1-2)

The boundary conditions are

BC 1: At r = 0, T = finite or 
dT

dr
 = 0 (4.2.1-3)

BC 2: At r = R, T = Ts (4.2.1-4)

Integrating once with BC 1, we get

2
mQdT

r
dr k

= −
�

Integrating again with BC 2, we get

22

1
4
m

s
Q R r

T T
k R

  = + −  
  

�

(4.2.1-5)

Now, let us attempt to express the results in a more general fashion. If we
non-dimensionalise the variables

2

4

s

m

T T

Q R

k

−
θ =

�

All the velocities
are zero

No work

0, SS vr = 0 vθ = 0 vz = 0

T z f (θ) T z f (z) All the velocities
are zero
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and

r

R
[ =

the solution becomes

θ = 1 – [2 (4.2.1-6)

A plot of the variation of θ along the tissue length is shown in Fig. 4.2.1-1.
The rate of heat dissipation at the cylindrical surface, for the tissue

length, L is

        Area × Flux = 2SRL × qr_r=R (4.2.1-7)

22 m
r R

dT
RL k R LQ

dr =

 = S − = S 
 

� (4.2.1-8)

From Eq. 4.2.1-5, we can say that Tmax occurs when r = 0.
Thus

2

max 4
m

s
Q R

T T
k

= +
�

For R = 1 cm, mQ�  = 5 cal cm–3 h–1, k = 10–3 cal (cm.s.°C)–1 and Ts = 37 °C,
we get

2

max 3

5 1
37 37.3 °C

(4 10 )3600
T −

u= + =
u

The temperature at the centre of the tissue could be 0.3 °C higher than at
the surface.

θ

– 1             0              1
[

Fig. 4.2.1-1 Non-dimensionalised
temperature profile in the tissue



4.2.2 Unsteady State Heat Conduction

Let us discuss unsteady state heat conduction through an example.

Example 4.2.2-1

In a microanalysis system, to determine an analyte, the sample is first sprayed
as 10 Pl spherical droplets into a heating zone. The droplets need to be heated
to 60 °C to complete a reaction that is a necessary step for the analysis.
Assuming that the properties of a sample drop are the same as that of water
(since the sample is predominantly aqueous), estimate the time needed to reach
the steady state temperature in the droplet.

Since we are dealing with a sphere, it is most convenient to use spherical
coordinates. Thus, from Eq. C2 of Table 4.2-1, we get, after cancelling the
irrelevant terms

2
2

1

V

T k T
r

t C r rr

∂ ∂ ∂   =   ∂ ρ ∂ ∂  
(4.2.2-1)

Let us define 
V

k

C
  { V ρ 

.

We can consider the drop surface temperature being raised to 60 °C (Ts) at
the start of the cycle, t = 0.

Thus

IC: For 0 < r < R, t d 0, T = T0 (4.2.2-2)

BC 1: For r = 0, t t 0,
T

r

∂
∂

 = 0 (4.2.2-3)

BC 2: For r = R, t t 0, T = Ts (4.2.2-4)

If we use non-dimensional variables defined as

r

R
K =

0

0s

T T

T T

−
θ =

−

and

2

t

R

VW =

the DE, the IC and the BCs respectively, become
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2
2

1∂θ ∂ ∂θ = K ∂W ∂K ∂KK  
(4.2.2-5)

0 < K < 1, W�d 0, θ = 0 (4.2.2-6)

K = 0, W�t 0,
r

∂θ
∂  = 0 (4.2.2-7)

K = 1, W > 0, θ = 1 (4.2.2-8)

We cannot apply separation of variables to get the solution of the above
differential equation because for that the BCs need to be homogenous. Thus, let
us use the following transformation:

θc(K, W) = 1 – θ(K, W) (4.2.2-9)

The transformed problem is

2
2

' 1 '∂θ ∂ ∂θ = K ∂W ∂K ∂KK  
(4.2.2-10)

0 < K < 1, W�d 0, θc = 1 (4.2.2-11)

K = 0, W�t 0,
'

r

∂θ
∂

 = 0 (4.2.2-12)

K = 1, W�> 0, θc = 0 (4.2.2-13)

If we define f = θcK, then Eq. 4.2.2-10 becomes

2

2

f f∂ ∂=
∂W ∂K

(4.2.2-14)

The solution is

2' sin( ) cos( ) exp( )
A B θ = OK + OK − O W K K 

(4.2.2-15)

and

2 2

1

2( 1)
1 sin( )exp( )

( )

n

n
n n

n

f

=

−θ = + SK − S W
K S∑ (4.2.2-16)

The variation of the non-dimensional temperature with non-dimensional distance
at various values of non-dimensional time is given in Fig. 4.2.2-1.

The W needed for the T_r=0 to reach 99 % of Ts is about 0.5. Thus, W for steady
state condition = 0.5, or

2
0.5

t

R

V =

20.5
|ss

R
t =

V



Now for the spherical drop

R = 
1
33

4

V 
 S 

 = 

1
33 0.01

4

u 
 S 

 = 0.134 cm = 1.34 × 10–3 m

Vwater ~ 1.5 × 10–7 m2 s–1. Thus

3 2

7 2 1

0.5(1.34 10 )
| 6 s

(1.5 10 m s )
sst

−

− −
u= #

u

Exercises

1. Is thermal energy conserved? If not, why do we focus on thermal energy
in this chapter?

2. Show that

( ·[ · ]) ( ·[ · ]) ( : )v v v∇ W − ∇ W = − W ∇
� � �� � �
� � �

3. In forced convection, what is the driving force for the heat flux?

4. I had the privilege of contributing significantly to the setup of the new
Department of Biotechnology at IIT Madras as the head in its formative
years, 2005-2008. In 2006, when we moved into our new department building,
we had a difficult time cooling the conference room that was located on the
top floor with the available a/c capacity. One of the solutions suggested by
a consultant was to attach thermocol sheets to the ceiling surface inside the
room. If we were aiming at a temperature reduction of about 5 °C from the
room ceiling inner surface temperature of 42 °C so that the available a/c

1.0

0

θ

W

K 1.0

0.1

0.05 0.01
0.005

Fig. 4.2.2-1 Non-
dimensionalised profile
in the drop
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168 4 Thermal Energy Flux

system could handle the load, would a thermocol layer of 0.75 m thickness
have served our purpose, assuming that the walls and double-glazed windows
are insulating, i.e. no heat transfer occurs through them? The thermal
conductivity of thermocol is 0.03 W (m K)–1. The room dimensions are 12 m
× 10 m × 3 m. Based on the estimates of solar energy striking the ceiling top
surface, and that absorbed by it, as well as that reflected from it, the energy
rate into the room from the inner ceiling surface is 600 W m–2.

5. Humans maintain their body temperature at 37 °C through metabolic heat
generation. Consider a pleasant day when the ambient temperature is 25 °C.
Under still conditions (no breeze, etc.), estimate and compare the contribution
of heat loss rate from the human body by conduction to that by radiation.
The radiative heat flux (qr), as may be known, is given by Stefan-Boltzmann’s
law, with T in K, as

� �4 4
body surrrq T T= V� −

Take the area of the human body to be 2 m2, thermal conductivity of air =
5.7 × 10–5 cal (cm °C)–1, V, the Stefan-Boltzmann constant = 5.67 × 10–8 W
m–2 K–4, and H, emissivity of the human body = 0.97. Assume that the
temperature reaches the ambient air temperature at 5 cm distance from the
human skin.

6. The average thickness of the earth’s crust, the top-most layer is 25 km out
of a total of about 6300 km radius. The temperature just beneath the crust
is 400°C, and the average atmospheric temperature is 25 °C. If the thermal
conductivity of the crust is 2.5 W m–1 K–1, find the thermal energy lost by
the earth.

7. Significant damage of the skin cells due to heat (‘burn’) results when the
temperature on the cell/tissue surface reaches say 85 °C. When a person
comes into contact with the hot surface of a hot plate (at 250 °C) in the lab,
and takes say 0.3 s to react and move away, estimate the depth of the burn
caused. The physical properties of skin are: specific gravity: 1.2, conductivity:
0.21 W (m K)–1, specific heat capacity at constant pressure: 3.6 KJ (kg °C)–1.

8. In the first of the Harry Potter books, Stone, forgetful Neville’s grandmother
sent him a Remembrall. This is a spherical ball of radius 3 cm, which glows
red whenever he forgets something. To shoot those scenes in the movie, a
battery powered light that glows on a cue was probably used. Assume that
2 amps, 1.5 V is used as the power source, and the surface of the temperature
is 300 K. The glow of the light source dissipates heat radially outward in
the still air inside the Remembrall. Develop an expression for the temperature
profile as a function of radial distance inside the Remembrall.

9. People who live in the colder regions of our country, where the temperatures
can dip to a few degrees below the water freezing point, wear bulky coats.



These coats are usually more effective than thick woollen sweaters alone,
because they consist of multiple layers of materials with low heat conductivity,
which maximise heat retention by the body. Usually there are three layers
in such coats, two layers with feathers with a foam layer between them, in
a 2:1:3 thickness ratio with the foam layer thickness being 1 cm. If the thermal
conductivities of the feather and the foam layers are 6 × 10–5 and 1.3 × 10–4

W (m K)–1 respectively, evaluate whether the coat will be able to maintain
the body temperature of 37 °C when the outside temperature is 2 °C, under
no breeze conditions.

10. In fishes, typically, when cold blood passes through muscles, the blood
picks up the heat generated by the muscles and, thus, heat is not lost to
the surroundings. A muscle of interest in the fish can be assumed to be a
cylinder of length 10 cm, and radius, 3 cm. If the temperature at the core of
the muscle is 30 °C, and drops to 28 °C at its surface, where the blood
vessels pick up the heat from the muscle, find the rate of metabolic heat
generation in the muscle. The thermal conductivity of the muscle can be
taken to be 0.56 W m–1 K–1.

Some of the exercise problems given above were suggested/formulated by
S. Kousik, Sagar Laygude, Utsav Saxena (5), P. Raghavendran, P. Vivek, K. Ramasamy,
M. Ashok (6, 10), Shruthy Suresh and Purnima Padmanabhan (8, 9).

Fully Open-ended Exercise

Estimate the heat rate by conduction while preparing a dosa. This problem was
formulated by Indushri Gokak, for her CFA exercise on the heat transfer aspects
that are relevant when a dosa is prepared (CFA stands for choose-focus-analyse
exercise; see end of Chapter 1 for a relevant reference). Indushri’s report can be
found as a link from www.biotech.iitm.ac.in/GK_research.

Reference

Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena. Second Edition.
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Exercises 169



 

Part IV 
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Chapter 5
Charge Flux

Many fundamental biological entities carry charges. For example, from a
basic biochemistry course, we know that amino acids have a charge associated
with them and that the charge is pH dependent. Consequently, polymers of
amino acids, namely proteins, also carry charges and the net charge carried
by a protein is pH dependent. The genetically important molecule,
deoxyribonucleic acid (DNA), too, is charged. The third major class of bio
molecules, lipids, can also have charges associated with them. Since lipids
and proteins constitute cell membranes, the surface of cells have a net
charge. The charge is usually net negative.

It is only because of charges and their dynamics that we are able to
sense our environment through sight, smell, taste, touch and hearing. The
dynamics of charges are also essential for the functioning of our nervous
system, our brain and our heart.

Since charge is a fundamental physical quantity that is conserved, a
better understanding of the fundamental relationships related to electrical
charges and the consequent or parallel aspect, magnetism, can significantly
equip the manipulator of biology. The aspect of charge conservation is
inherent in the basic tenets of electromagnetism and Maxwell’s equations,
and thus, we need to study them first.

To understand the effects of electric and magnetic fields, the space
between interacting charges can be considered to be influenced by the
charges, as imagined first by Faraday. The forces between (say two) like
charges are transferred from one charge to the other through the space in
which they are located. Thus, electric and magnetic ‘fields’ exist at a point
in space even in the absence of charges at that particular point.

To be able to visualise the electromagnetic field better, let us first
consider the effect of this field on a charged particle, and the force
experienced by the particle.
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174 5 Charge Flux

5.1 Lorentz Force Law

The force F
�

 experienced by a test charge q that moves at a velocity v
�

in such a field is given by the Lorentz force law

( )oF q E v H= + uP
� � �

�

(5.1-1)

where E
�

 is the electric field density, H
�

 is the magnetic field intensity,

oHP
�

 is the magnetic flux density and Po is the permeability of free space

= 4S × 10–7 Henry m–1, Henry = Volts (amp)–1.
Vectorically it can be represented as shown in Fig. 5.1-1.

5.2 Charge Density and Flux

Useful quantities for further formulations are charge density and charge flux.
Charge flux is also called current density.

If we consider a small volume, ∆V with a net charge within, the charge
density, ρ, is defined as

3Net charge in
coulomb m

V

V
−∆ρ {

∆
(5.2-1)

qE
�

E
�

v
�

H
�

oq v HuP
�

�

qE
�

oqv HuP
�

�

F
�

Electrical Magnetic

Resultant
(electromagnetic)

Fig. 5.1-1 The vectorial
representation of the
combined effects of an
electrical and a magnetic
field – the forces that
result from them



∆V is usually chosen to be much smaller compared to the system dimensions,
but large enough to contain many charges to ensure continuum conditions.

Current is charge transport and is a measure of the rate of change of

charge with time. If a charge density ρ moves with a velocity v
�

, the charge

flux 'I
�

 is denoted as

2 1' in coulomb m sI v − −= ρ
�

� (5.2-2)

5.3 Maxwell’s Relations

The Lorentz force law (Section 5.1) expresses the effect of electromagnetic
fields on a charge. The effects of the charge (moving or stationary), and
its relationship to the fields created by it are described by Maxwell’s equations.
The aspect of charge conservation (total charge is a constant) is implicit in
these equations, and is obvious in Maxwell’s first relation.

5.3.1 How is the Electric Field Related to its Source?

The net charge enclosed by an arbitrary volume V which is enclosed by a
surface S is given by Maxwell’s (first) relation

.os V
E dA dV= ρ∫∫

��

� ε (5.3.1-1)

where εo is permittivity of free space = 8.854 × 10–12 Farad m–1. Further,

note that 
V

dV Qρ =∫ .

In other words, the net charge enclosed in a volume V, enclosed by a
surface S is related to the net electric flux through that surface. Equation
5.3.1-1 is also called Gauss’ law.

5.3.2 How is the Magnetic Field Intensity Related to its
Source, the Charge Flux?

Maxwell’s (second) relation shows how the magnetic field intensity is related
to its source, as follows

. '. .oC S S

d
H dS I dA E dA

dt
= +∫ ∫ ∫

� � �� � �

� ε (5.3.2-1)

This is also known as Ampere’s integral law.

5.2 Charge Density and Flux 175



176 5 Charge Flux

The LHS of Eq. 5.3.2-1 indicates a contour integral. A surface S having

a contour C is given in Fig. 5.3.2-1. The differential elements, dS
�

 and dA
�

,

are also indicated: dS
�

 is along the surface, whereas, dA
�

 is normal to the
surface.

In other words, the line integral (circulation) of the magnetic field

intensity H
�

 around a closed contour is equal to the sum of the net current
passing through the surface spanning the contour and the time rate of
change of the net displacement flux density (displacement current) through
the surface.

Alternatively, Eq. 5.3.2-1 can be written as

. E
o

d
H dS I

dt

φ
= +∫

��

� ε (5.3.2-2)

where φE is electric ‘flux’ (historically called flux – we use quotes here to
avoid confusion in our context) and I is current.

In other words, an electric current and a time-variant electric ‘flux’
produce a magnetic field.

5.3.3 How are Electric Field and Magnetic Flux Related?

The relationship between an electric field and the magnetic flux is given by
Maxwell’s (third) relationship

. .oC S

d
E dS H dA

dt
= − P∫ ∫

� �� �

� (5.3.3-1)

This is also known as Faraday’s integral law.

Edge = Contour

dA
�

(Normal to the surface)

dS
�

(Along the
surface)

Fig. 5.3.2-1 A surface
with two different area
vectors



In terms of the magnetic ‘flux’ (the term flux here is again, historical),
φB, this can also be written as

. Bd
E dS

dt

φ= −∫
��

� (5.3.3-2)

5.3.4 A Comment on the Net Magnetic Flux Out of Any Region

The net magnetic flux out of any region enclosed by a surface is zero. This
is Maxwell’s (fourth) relationship and is also known as Gauss’ integral law.

Mathematically, it can be expressed as

. 0oS
H dAP =∫

��

� (5.3.4-1)

5.4 An Expression for Charge Conservation

It is useful to obtain a relationship for charge conservation in terms of
charge and charge flux. The principle of charge conservation can be stated
as the net charge flowing out of the system, given by the rate of charge

leaving through the surface boundaries of the system, . ,
S

I dAc∫
��

 is equal to

the rate of decrease of charge within the system, – 
d

dt
. .oS

E dA∫
��

ε  In other

words, when there is no input, or generation, or consumption of charge,
the rate of output must equal the rate of (negative) accumulation in the
system. In the form of an equation, the above principle can be written as

. . 0oS S

d
I dA E dA

dt
c + =∫ ∫

� �� �

ε (5.4-1)

From Maxwell’s (first) relationship, Eq. 5.3.1-1, we can replace the second
term on the LHS of Eq. 5.4-1 as

. 0
S V

d
I dA dV

dt
c + ρ =∫ ∫

��

(5.4-2)
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5.5 Maxwell’s Equations in Differential Form

. o E∇ = ρ
� �

ε
(5.5-1)

o
d

H I E
dt

c∇ u = +
� � � �

ε (5.5-2)

o
d

E H
dt

∇u = − P
� � �

(5.5-3)

. 0oH∇ P =
� �

(5.5-4)

And the equation of charge conservation in differential form is

. ' 0 or . ' 0
d

I I
dt t

ρ ∂ρ∇ + = ∇ + =
∂

� � � �

(5.5-5)

In the above presentation of Maxwell’s equations, we had implicitly assumed
that there was no medium present, i.e. the processes were assumed to take
place in free space. Thus, the electrical properties of free space, εo and Po
were used. However, most biological processes take place in a medium,
typically a liquid because under physiological conditions, cells are in an
appropriate liquid. When electromagnetic fields interact with the medium (or
any material), the fields induce effects such as polarisation and magnetisation
in the medium.

Polarisation arises because of the nature of the biological media – they
contain molecules with positive and negative charge centres that are separated
by a distance, or in other words, they have permanent dipole moments.
Water, which is found in almost all biological systems, has a permanent
dipole moment, and so do biomolecules. The distribution of dipoles is
usually random in a biological material, but, when an electric field is applied,
there is an alignment, at least partial, of the dipoles with the field. Such an
alignment changes the electrical behaviour of the media and is called
polarisation. In a similar fashion, magnetisation arises due to the interaction
of the magnetic dipole moments with the magnetic field. Electrical and
magnetic effects are coupled.

The earlier mentioned Maxwell’s equations need to be improved when
written for biological systems in a media, or under non-free space conditions.
For example, in the presence of an electric field, there could be free and
polarised charges in the medium. Let us represent the charge densities as
ρfc (due to free charges) and ρpc (due to polarised charges). Thus, the
Gauss’ law for this system becomes

. fc pcE∇ = ρ + ρ
� �

ε



In fact, the form of Maxwell’s equations for isotropic media (uniform
media, or media in which its properties remain the same with space), remain
the same except for the replacement of the free space permittivity, εo, by
the medium permittivity, ε. Interestingly, the permeability of most biological
materials such as cells and tissues, can be approximated very well to Po.

Further, the wavelengths of the electromagnetic spectrum of relevance
to biological systems range from about 1012 m (low frequency waves or
‘infralow’ frequency waves) to about 10–4 m (microwaves or ‘superhigh’
frequency waves), whereas cells and many biologically important dimensions
such as microchannels, etc., are about 10–6 m. A rough representation is
given in Fig. 5.5-1. Therefore, the time of interaction of the wave with the
cell, which is two orders of magnitude less in size compared to its wavelength,
is two orders of magnitude less compared to the time the wave takes to
complete its variations with time. Comparing this situation with the
characteristic times of the various processes described in Chapter 2, when
we discussed the pseudo-steady state, we can say that the cell interaction
times are at pseudo-steady state compared to the wave times. In other
words, any fluctuation in the times associated with the cell interaction will
not be noticeable at the scales of time associated with the wave.

Thus, for most applications in biology, the electro-quasi-state (EQS)
and the magneto-quasi-state (MQS) approximations that hold good for
electromagnetic formulations at low enough frequencies, work well. The
steady-state approximations essentially set the time derivatives in Maxwell’s
equations to zero. The approximate Maxwell’s equations in differential form
are

. E∇ = ρ
� �

ε
(5.5-6)

H I c∇ u =
� � � (5.5-7)

0E∇u =
� � (5.5-8)

Biological
cell length

Wavelength

Fig. 5.5-1 Length scale
of a typical cell
compared with the
length scale of an
electromagnetic wave

5.5 Maxwell’s Equations in Differential Form 179



180 5 Charge Flux

. 0H∇ P =
� �

(5.5-9)

Also

E = − ∇
� �

V (5.5-10)

where V is the potential.
Therefore

. .( )E∇ = ∇ − ∇
� � � �

ε ε V

By substituting this in Eq. 5.5-6, we get

.( )∇ − ∇ = ρ
� �

ε V

Therefore

2 ρ∇ = −V
ε

(5.5-11)

which is known as the Poisson equation. In the region where no charges
are present (ρ = 0), the RHS of the Poisson equation becomes zero and we
get

2 0∇ =V (5.5-12)

which is known as the Laplace equation. These equations are useful in the
analysis of biological systems, e.g. certain marine organisms such as the
electric eel can be considered to be an electric dipole that satisfies the
Laplace equation.

5.5.1 Application of Maxwell’s Equations to Get Useful
Relationships

Maxwell’s equations are a complete description of the electromagnetic
phenomena, and hence we began our discussion with them. While dealing
with continuous systems, a manipulator of biology will never fall short, if
Maxwell’s equations are involved. However, they are not always easy to use
in certain situations, and special case derivations of the equation along with
constitutive equations such as Ohm’s law, that relates current and voltage
when certain types of materials are considered, are more useful.

In this section, we will demonstrate how Maxwell’s equation can be
used to derive the capacitor equation. It can be recalled that the biological
membrane consists of lipids, proteins and carbohydrates. The lipid molecule
consists of a hydrophilic, charged head and a hydrophobic tail. When the



lipid bilayer assembles together, energy considerations dictate that the
hydrophobic tails be close together and the hydrophilic parts be at opposite
ends of the bilayer membrane cross-section. The charged hydrophilic parts
face the internal part of the cell on one end and the cell surroundings on
the other end. Since the internal part of the cell and the cell surroundings
are usually made up of conducting solutions, the lipid bilayer separates two
conducting solutions by a thin insulating (hydrophilic part) layer. Thus, the
very nature of the bilayer and its surroundings makes it an electrical capacitor.

Let us consider a flat surface of area A of uniform charge density ρ
and uniform surface charge density ρc as shown in Fig. 5.5.1-1. Let us
consider a cuboidal control volume around it, which is shown in the figure
as a rectangle around the flat surface.

To draw the electric flux lines for the charged plate, the following
principle is used: an electric flux line always starts in a positive charge and
ends in a negative charge. If the charge is a point charge, Fig. 5.5.1-2
shows the flux lines.

Getting back to the flat surface, the charge contained in the control
volume is ρc(2A) since there are two surfaces, each of area A.

Let us now consider a capacitor of plate area A as shown in Fig. 5.5.1-3.
From Gauss’ law (Maxwell’s relation)

.
S

o

Q
E dA =∫

��

�
ε

E

Fig. 5.5.1-1 The electric
field due to a charged
plate, charged on both
surfaces
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In this case, since there are two surfaces each of area A

(2 )
(2 )

o

A
E A

cρ=
�

ε

(5.5.1-1)

Therefore

o

E
cρ=

�

ε

(5.5.1-2)

The integral of the electric field with respect to displacement gives the
potential difference

.E dl∆ = ∫
��

V (5.5.1-3)

Point charge

E

Fig. 5.5.1-2 The electric
field E due to a point
charge

Fig. 5.5.1-3 A typical
parallel plate capacitor



In this case, the integral yields

o

dcρ∆ =
ε

V (5.5.1-4)

where d is the distance between the capacitor plates.
Replacing ρc by Q/A, we get

o

Qd

A
∆ =

ε

V (5.5.1-5)

The capacitance C, defined as 
Q

V∆
 is, therefore

oA
C

d
= ε

(5.5.1-6)

which is a known relationship of a parallel plate capacitor.

5.5.2 Electroencephalogram (EEG)

An electroencephalogram is obtained by recording the voltage on the skull
surface. The voltage is caused by currents that are generated in the brain.
Although the natures of the currents in the brain are interesting by themselves,
for initial purposes, we can consider the brain to be a charge of a certain
density enclosed in a volume (skull). In fact, it can be considered as a non-
homogenous, finite volume of charges.

Starting from the fundamental equations presented in the earlier sections,
it has been shown (Malmivuo and Plonsey 1995) that for a non-homogenous,
finite volume conductor, the following equation holds:

,2 ,1
1 1

4 '· ( ) ·e e j e jV Sj
k I dV k k dS

r r
   S = ∇ + − ∇   
   

∑∫ ∫
��

V V (5.5.2-1)

where ke2 and ke1 are conductances at the limiting differential surfaces of
the inhomogenous conductor divided into differential regions.

The nature of the EEG gives an idea of the brain activity. Some limiting
cases are presented in Fig. 5.5.2-1.

5.6 Constitutive Equation

Let us recall that Fick’s first law, which provided a relationship between
diffusive flux and concentration gradient, is valid for a class of materials,
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and is thus, a constitutive equation. Similar to that relationship, for certain
materials, the charge flux is proportional to the potential gradient, i.e.

' e eI k k E= − ∇ =
� � �

V (5.6-1)

where ke is the electrical conductivity of the medium (typical unit: Siemens
cm–1).

This is a constitutive equation, which is valid for a class of materials,
and is known as the Ohm’s law.

5.7 Ions in Solutions

Let us now consider charged species (ions) in solution. Since most cells are
in an aqueous environment and their contents too are fluid, this aspect is
of great importance in biological systems.

5.7.1 Electro Neutrality

Although oppositely charged ions are present in a solution, the strong forces
of attraction between them results in electro neutrality (no net charge).
Thus, an electrolytic solution does not set up an electric field although it
contains charges.

Normal, awake

Deep sleep

Brain dead

100

0

µV

0 3  s

Fig. 5.5.2-1 EEG
traces under
some limiting
cases



5.7.2 Charge Relaxation Time

Let us consider an uniform initial charge density, ρo in the medium (say,
which is homogenous, isotropic, conducting, dielectric with no movement
of any charge). If there is no supply (source) of free charge, the initial
charge will decay to zero because the medium is conducting. To estimate
the time at which the decay to zero charge (charge relaxation) occurs, let
us consider the following:

The charge flux (current density), according to Ohm’s law is

' eI k E=
� �

(5.7.2-1)

where .E = − ∇
� �

V
Since we are considering the electrolytic solution to be a homogenous

conductor (ke is constant)

. ' .eI k E∇ = ∇
� � � �

(5.7.2-2)

From Gauss’ law, we know that

. E∇ = ρ
� �

ε
(5.7.2-3)

where ρ is charge density at any time t.
Therefore, by substituting Eq. 5.7.2-3 into 5.7.2-2, we get

. ' ek
I∇ = ρ

� �

ε

(5.7.2-4)

If we assume that upon application of ρo, the increase in charge density in
the solution is uniform, we can use Eq. 5.5-5, the charge conservation
(charge continuity) equation here, i.e.

. 'I
t

∂ρ∇ = −
∂

� �

(5.5-5)

Substituting the above equation in 5.7.2-4, we get

0ek

t

∂ρ + ρ =
∂ ε

(5.7.2-5)

The solution of the differential equation given in Eq. 5.7.2-5 is

expo
r

t− ρ = ρ  W 
(5.7.2-6)

where r
ek

W = ε

 is the charge relaxation time.
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For water with ke = 0.01 S cm–1, ε = 80 εo = 80 × 8.85 × 10–12 F
cm–1, Wr = 0.7 ns, charges can be relaxed rapidly. Charge relaxation needs
to be considered while designing systems in which the biological materials
– cells, biomolecules, etc. – interact with electrical fields such as in
electrophoresis.

5.7.3 Debye Length

Let us consider a specially made lipid layer with uniform surface charge
density stretched on a flat plate at x = 0. Let us also consider this lipid layer
to be bathed by an electrolytic solution with cations and anions. Mobile ions
whose charge is opposite to that of the fixed charge (counter ions) will be
attracted near the plate. Thus, near the plate, there is a regime where electro
neutrality does not hold – it will be charged with the charge of the counterions.
Debye length is the distance of such a regime where electro neutrality does
not hold. It can be derived (Weiss 1996) to be

2 22
D

RT

Z F c
O = ε

(5.7.3-1)

where ε is permittivity, Z is charge, F is Faraday’s constant and c is
concentration of positive or negative ions at ‘infinite’ distance in the solution
where electro neutrality holds.

A typical Debye length in aqueous solution is 10 Å.
Charge carrying biomolecules in a system do not generate an electric

field because they are shielded by counter ions. Nevertheless, if an electric
field is applied, the double-layer counter ion cloud surrounding the charged
biomolecule gets disturbed. Then, the charged biomolecule experiences the
presence of the field and moves in response to it.

Many electrically relevant phenomena occur in biological systems due
to charge transport across the biological membrane. The biological membrane,
simplistically speaking, is made up of a bilayer of lipids and proteins. Some
proteins act as ion channels for the transport of charged ions across the
membranes; it may be recalled that the charged species cannot permeate
through the lipid bilayer at reasonable rates. The dynamics of ion transport
across the cell is significantly responsible for the signal transmission in
nerves, functioning of heart cells, and the normal functioning of almost all
cells. When charge transport occurs across the biological membrane, at
least two driving forces are at play, namely the potential difference and the
concentration difference. Since we will consider the fluxes when more than
one driving force is at play, in the next chapter, there we will look at the
details of this fascinating phenomenon.



Exercises

1. Explain how the idea of charge conservation is embedded in Maxwell’s
equations.

2. Consider a bi-layered micelle. It can be taken as a capacitor consisting of
charged species on the surfaces of the outer and inner spheres (lipid heads)
with an insulator (lipid tails). What work would be needed to place a charge
+ Q on one surface and – Q on the other surface?

3. A careless student performs two experiments, side by side. In the first
experiment, (s)he is testing the reaction between blood and a sphere of a
new material for a pace-maker in the presence of an electric field of magnitude
E. Now (s)he accidently drops a small amount of NaCl in the blood, that
would completely ionise to give charges, which (s)he was supposed to add
to the second experiment. Develop an expression for the time the student
needs to wait after which (s)he can carry out the experiment again, without
changing any step.

4. In the scenario given in the previous problem, the student immediately
removes the sphere from the first experiment and puts it into the vessel
containing blood meant for the second experiment. (S)he observes the effect
of an electric field which appears even without switching on the external
electric field. Help the student make sense of the observations.

5. Consider a dog whose fur is rubbed with a glass rod, so that both the dog
and the glass rod acquire charges. For a first rough approximation, we can
assume that the electric field produced by the charges on the dog is
spherically symmetric. Let the field be E at a distance r from the centre.
Calculate the charge on the glass rod.

Some of the exercise problems given above were suggested/formulated by
Uma Maheswari, Namrata Kamat, Kiran, Kemun Khimun, Rashmi Kumari (2–4),
G. Shashank, G. Vivek Sathvik, D. Divya Vani and I. Pradeep Kumar (5).
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Chapter 6
Fluxes Under Simultaneous,
Multiple Driving Forces

In the previous chapters, we considered the fluxes of various quantities,
mostly conserved quantities under the effect of the corresponding primary
driving forces. We can summarise what we learnt in the table given below.

Flux of quantity

Mass
(conserved quantity)

Momentum
(conserved quantity)

Thermal energy
(not conserved)

Charge
(conserved quantity)

A constitutive equation

Fick’s I law

* A
A AB

dc
J D

dx
= −

Newton’s law

x
yx

dv

dy
W = − P

Fourier’s law

x
dT

q k
dx

= −

Ohm’s law

' e
d

I k
dx

= − V

Primary driving force

Concentration gradient

Velocity gradient

Temperature gradient

Electrical potential gradient

In most biologically relevant situations, many forces act simultaneously.
Thus, there could be simultaneous fluxes of mass, charge, momentum and
energy. Besides this, there could be significant interplay between the different
forces and different fluxes. For example, mass flux is caused predominantly
by a velocity gradient, as in the case of convection, or momentum and mass
fluxes could also result from a temperature difference, as in the case of free
convection. Let us look at examples of such situations in this chapter.

Now, let us first consider mass flux arising from multiple driving forces.
The driving force for mass flux could be one or a combination of many i.e.
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192 6 Fluxes Under Simultaneous, Multiple Driving Forces

a concentration gradient, an electrical voltage gradient, a pressure gradient,
or a temperature gradient, indicated by subscripts c, E, p and T, respectively.
When many forces act simultaneously, the total flux of the component i is
the vectorial sum of the individual fluxes resulting from each driving force.

* * * * *
, , , ,i i c i E i p i TJ J J J J= + + +

� � � � �

(6-1)

Such situations often arise in biological systems. For example, when DNA

or proteins are separated on gels, * *
, ,andi c i EJ J

� �

 would be relevant.

When multiple forces are simultaneously operational, the approach is to
simultaneously solve the relevant conservation equations, which could be
some or all of the following: equation of continuity (mass conservation),
equation of motion (momentum conservation), the thermal energy equations
(note that the thermal energy is not conserved), and the charge conservation
equation (along with Maxwell’s equations).

In many situations, the formulations and solutions can get highly
complicated. An alternative approach is to use a less rigorous, but useful
approach that involves transfer coefficients, i.e. conductances. For example

Mass flux = Mass transfer coefficient × (∆ Concentration)
Heat flux = Heat transfer coefficient × (∆ Temperature)

The above approach is useful for analysis, design and operation, and in
some cases, provides good insights too. We will follow this approach for
some complex situations that we will consider in this chapter.

6.1 Simultaneous Concentration Gradient and Electrical Potential
Gradient

6.1.1 Mobility of Ions in Solution

When a system consisting of charged species or ions is placed in an electric
field, the ions will experience a force due to the electric field and the force
will result in an ion flux. The species velocity of the ions can be represented
as the product of a force on a mole of ions (N mole–1), f, and a quantity

called the molar mechanical mobility (mole m (N s)–1), u. Thus, the flux *
EJ

due to the electric field is given, for one dimension, as

*
EJ c v c u f= = (6.1.1-1)



Now

• In mechanical terms, Work done = Force × Distance
• In electrical terms, Work done = Charge × Potential difference

Equating the above two terms for the work done, we get

Force per mole = Charge per mole × (Potential difference/Distance)
= Charge per mole × Potential gradient

If the particles are charged with valence z, and the electric field intensity
is E = – ∇

�

V where V is the electric potential, the force on a mole of
particles is given by

(in 1D)
d

f zF zF
dx

zFE

= − ∇ = −

=

� V
V (6.1.1-2)

where F is Faraday’s constant that establishes the equivalence between the
chemical and electrical bases of looking at a flow of electrons. From a
chemical point of view, a flow of electrons (particles) is considered as
current, and hence the flow of the number of moles of electrons per unit
time can be a unit of current. From an electrical point of view, the amount
of charge per unit time is taken to be current. Thus, the equivalence can
be worked out as

23 19

1

Electrons Charge
(6.023 10 ) (1.6 10 )

Mole Electron

96487 coulomb mole

F −

−

   = u = u u u   
   

=

From Eq. 6.1.1-1, in 1D

*
E

d
J cuzF

dx
= − V

The above is true only for the electrical driving force. Normal diffusion
would also be present because diffusion results from collision between
molecules by virtue of thermal energy. Diffusion causes a flux of the
charged species when there is an appropriate concentration gradient. Hence,
from Eq. 6-1, the flux for the nth ion can be written as

* * *
, ,n n c n E

n
n n n n

J J J

dc d
D c u z F

dx dx

= +

= − −

� � �

V
(6.1.1-3)

The net charge flux (current density), nI c  i.e. charge per time per unit area,
can be related to the net mass flux of the charged species, i.e. amount per
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time per unit area, *
nJ  (see explanation of Faraday’s constant above) as

follows

*
n n nI z F Jc = (6.1.1-4)

Substituting Eq. 6.1.1-3 into Eq. 6.1.1-4 gives

n
n n n n n n

dc d
I z F D c u z F

dx dx
 c = − + 
 

V
(6.1.1-5)

The above equation that gives the net ion flux when diffusion as well as
mobility in an electric field are operational, is called the Nernst-Planck
equation.

Einstein’s relation gives an expression for ion diffusivity in terms of
molar mechanical mobility as

Dn = unRT (6.1.1-6)

Therefore

n
n n n n n

n

dcRT d
I c u z F z F

c dx dx
 c = − + 
 

V

or

( ln )n n n n n n
d

I c u z F RT c z F
dx

c = − + V (6.1.1-7)

At electro-diffusive equilibrium, the net fluxes of all ions are zero. Hence nI c
= 0; if only the x direction is considered, we can write

2 2 ln 0n n n n
n

d RT
c u z F c

dx z F
 − + = 
 

V (6.1.1-8)

Now

cn z 0 (a zero value implies absence of particles)
un z 0 (a zero value implies that the particles are fixed and cannot

diffuse or move in an electric field)
zn z 0 (a zero value implies uncharged particles)

Thus

ln 0n
n

d RT
c

dx z F
 + = 
 

V

The whole derivative being zero implies that the terms inside the bracket
need to be a constant – a physically irrelevant situation with both cn and V
being constants. Therefore, let us see the situation as



ln n
n

d c d
z

dx dx
= − E V

(6.1.1-9)

where

F

RT
E =

Equation 6.1.1-9 can be integrated to give

cn = cn,o exp [– zn E (V – V0)] (6.1.1-10)

The subscript ‘o’ indicates the point of reference for the potential.
Thus

0
,

( ) ln n

n n o

cRT

z F c
− = −V V (6.1.1-11)

i.e. at electro-diffusive equilibrium, the spatial distribution of potential is
proportional to the logarithm of the solute concentration. Equation 6.1.1-11
is very useful, and is referred to as the Nernst equation.

6.1.2 Mobility of Ions Across a Membrane

As mentioned in Chapter 5, our senses work because of the mobility of ions
across neural cell membranes. Some proteins in the membrane act as ‘passive’
(not requiring energy) ion channels or ‘active’ (requiring energy) transporters
for the transport of charged ions across the membranes; the charged species,
due to their nature, cannot permeate through the non-polar lipid bilayer core
at reasonable rates, although they can permeate at low rates.

When ions move across the biological membrane (charge flux across
the membrane), at least two driving forces are at play, namely the potential
difference and the concentration difference of the ion under consideration.
The Nernst equation that we derived for ions in solution at electro-diffusive
equilibrium must be valid here since the presence of the membrane is not
expected to interfere with charge effects. If only one ion is being considered,
say K+, the Nernst equation applied to the membrane, i.e.

,int
int ext

,ext

( ) ln n

n n

cRT

z F c

 
− = −   

 
V V (6.1.2-1)

(subscript ‘int’ denotes intracellular and ‘ext’ denotes extracellular) can be
used to describe the equilibrium condition when there is no net transport of
K+, i.e. when the potential across the membrane is able to balance the
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driving force due to the concentration difference in K+ between the inside
and the outside of the cell. The K+ ions that traverse the membrane are
usually held on the other side of the membrane due to the charged head
groups on both the extremities of the membrane cross-section that attract
the ions to reside on the surface of the membrane. The difference in the
charges on both sides of the membrane causes a potential difference to be
set up across the membrane which is known as the membrane potential.

Example 6.1.2-1

A certain cell was found to have the following equilibrium concentrations of K+

when the experiment was conducted at 37 °C: intracellular: 120 mM; extracellular
2.5 mM. Assuming that the membrane is permeable only to K+, estimate the
equilibrium membrane potential.

Solution

From Eq. 6.1.2-1

,int
int ext

,ext

( ) ln n

n n

cRT

z F c

 
− = −   

 
V V

where the LHS gives the membrane potential.
Substituting the values given and known, we get

int ext
8.314 310 120

( ) ln
1 96487 2.5

u  − = −  u  
V V

(Vint – Vext) = – 0.1034 V = – 103.4 mV

Many ions move in and out of the cell through different channels, and contribute
to the establishment of the membrane potential. It can be shown (see Plonsey
and Barr, Bioelectricity: A Quantitative Approach on depletion) that a very small
fraction of the charge in the solution (1.7 × 10–4) is enough to set up a charge
across the membrane. Also, the movement of charges across the membrane to
set up the Nernst potential does not violate the electro neutrality principle in
solutions (extracellular and intracellular solutions) for most cases since the
number of charges involved is small, and they reside on the membrane side rather
than in the solution. In some cases, however, the electro neutrality principle
could be invalid, which may necessitate a more complex analysis.



The ions that are usually considered important are K+ and Na+ (and maybe
Ca2+ in some cells such as the muscle cell). The initial developments in the first
half of the 20th century considered only K+ and Na+ ions, and the results
predicted by the models proposed then were close to the experimental values for
the types of cells that were studied (Manchanda, personal communication).
Thus, the earlier models did not consider the other ions that could pass passively
across the cell membrane. For example, the chloride ion (Cl–) can passively transit
the cell membrane through its ion channel. However, usually the membrane
potential is close to the Nernst potential of Cl–. Thus, the Cl– ion current is so
small that it can be considered negligible. Also, note that the ions that cross the
membrane through active transport, such as H+, are not relevant for passive
transport models. Nevertheless, active transport can be considered as an additional
aspect to passive transport in appropriate models.

Hodgkin and Huxley were the first to assume that the fluxes of ions are
independent of each other. Under this assumption, in equilibrium conditions, no
net charge transport (by means of any ion) occurs across the membrane, and the
ions are each under equilibrium. Application of Eq. 6.2-1 individually to each ion
(say K+, Na+ and Ca2+) across the membrane under equilibrium conditions, and
the recognition that the membrane potential must be the same value even if
different ion fluxes are considered (since all ions contribute to the establishment
of the membrane potential), yields

K Na Ca

1 1 1

K,int Na,int Ca,int

K,ext Na,ext Ca,ext

z z zc c c

c c c

     
= =          

     

or

1

2K,int Na,int Ca,int

K,ext Na,ext Ca,ext

c c c

c c c

     
= =          

     
(6.1.2-2)

If chloride had been considered, the exponent for the ratio of intracellular to
extracellular chloride concentrations would have been – 1.

The above equilibrium condition is referred to as the Donnan equilibrium.
The membrane potential under Donnan equilibrium is called the resting potential.

Note that each ion would be at equilibrium across the membrane only at its
Nernst potential. Nevertheless, in biological systems, the Donnan equilibrium is
a very good approximation under most conditions. This is because the ion
currents that arise due to non-equilibrium situations under resting potential
conditions, and consequent charge loss/gain from/by the cell is reasonably small
for the time scales normally associated with the cell dynamics that are studied.
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6.1.3 Electrical Circuit Representation of a Membrane

The biological membrane, simplistically speaking, is made up of a bilayer of
lipids and proteins. Some proteins act as ion channels for the transport of
charged ions across the membranes; it may be recalled that charged species
cannot permeate through the lipid bilayer at reasonable rates, although they
do permeate at some small rates.

We also know that electrical phenomena result when charges are
separated or charges can move independently. Any flow of charges is called
a current (I) measured in amperes (Coulomb s–1), and the direction depends
on the charge sign: positive current in the direction of movement of positive
charges.

Potential difference (∆V) between the (+)ve and (–)ve poles, and the
conductance (g) (or the inverse of resistance R) between them are related
by the constitutive relationship, Ohm’s law, as

∆V = IR or I = g(∆V) (6.1.3-1)

Each ion channel can be considered as a conductor (resistor) that spans the
biological membrane. The total electrical conductance of the membrane is
the sum of the conductance of the individual ion channels, acting in parallel.

Let us now focus on the other major part of the membrane, namely the
lipid bilayer. As mentioned in Chapter 5, the nature of the bilayer and its
surroundings makes it an electrical capacitor.

The capacitance C, i.e. the amount of charge Q that needs to be
transferred from one conductor to another to result in a potential difference
∆V is given by

Q
C =

∆V
(6.1.3-2)

For a parallel plate capacitor formed by two parallel plates, each of area A
and separated by a distance d (this approximation is valid for a membrane
that is stretched out to form a flat surface)

ok A
C

d
= ε

(6.1.3-3)

where k is dielectric constant and εo is permittivity of free space = 8.85
× 10–12 C V–1m–1.

The typical value for the capacitance of a cell membrane bilayer is
about 1 PF cm–2, which is large compared to the normal capacitances that
are found in a typical electrical circuit.

Considering only the K+ and Na+ fluxes (independent of each other)
across the membrane, it can be represented by an electrical circuit, as given



in Fig. 6.1.3-1. In the circuit, NP refers to the Nernst potential of the
respective ions, Cm, the capacitance of the membrane, and ∆Vm, the
membrane potential. The polarities of the batteries indicate the relative
abundance of the ions at equilibrium for each ion across the membrane –
K+ concentration is higher in the intracellular space (say 120 mM) compared
to that in the extracellular space (say 2 mM), and for Na+, it is vice versa
(say 5 mM and 110 mM in the intracellular and extracellular spaces,
respectively).

The resting membrane potential is representative of a steady state, when
there is no net ion flux (ion current) across the membrane. There could,
however, be individual ion fluxes since the flux for a particular ion across
the membrane would be zero only at its Nernst potential. Since the Nernst
potential for each ion is different, there can be no common Nernst potential
when the fluxes of all ions across the membrane cease. Nevertheless, at the
resting membrane potential, there is no net ion flux across the membrane.
Also, note that active transport of ions across the membrane through the
transporter proteins, which occurs at much slower rates compared to that
through the ion channels, is not included in the representation (or the
model).

The ion currents (IK or INa, for example) can be represented by the
conductance, g, and the effective potential difference (∆Vm – NP).

IK = gK (∆Vm – NPK) (6.1.3-4)

INa = gNa (∆Vm – NPNa) (6.1.3-5)

The above ion currents would be present irrespective of the electrical
steady-state condition (resting potential) across the membrane.

NPK

gK gNa

NPNa

Cm

∆Vm = Vi – Vo

Intracellular

Extracellular

+

–

Fig. 6.1.3-1 Electrical
circuit representation
of a membrane
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Due to the capacitance, there would also be a capacitive current that
can be represented by

( )m
C m

d
I C

dt

∆
=

V
(6.1.3-6)

At steady state (when the resting membrane potential is achieved), however,
the capacitance current would be zero since the time derivative on the RHS
of Eq. 6.1.3-6 would be zero. The sum of the other currents would also
equal zero. Thus

gK (∆Vm,r – NPK) + gNa (∆Vm,r – NPNa) = 0

Therefore, the resting membrane potential can be calculated if the
conductances and Nernst potentials of the ions involved are known, as
follows

K K Na Na
,

K Na

NP NP
m r

g g

g g

+∆ =
+

V (6.1.3-7)

It can be expected that although ions are not permeable at significant rates
across the lipid bilayer of the membrane, small, non-zero permeabilities of
the ions do exist across the membrane due to the combined forces of the
concentration gradient and a membrane potential (that is away from the
Nernst potential of that ion). Thus, when the membrane is at rest, K+ ions
may move from the inside to the outside of the cell, and Na+, vice versa.
In addition, there is a protein called the Na+-K+ (sodium-potassium) pump
on the membrane that transports 2 K+ ions into the cell for every 3 Na+

simultaneously pumped out. Energy (ATP) is needed to activate this pump,
and hence it is an active transport; note that the active transport effects are
not included in the models presented thus far. Therefore, the cell, when at
rest, ‘actively’ maintains its distribution of K+ and Na+ ions across its
membrane.

Example 6.1.3-1

In an animal neuron, the ion conductances at resting state were determined to
be gK = 0.42 mS cm–2 and gNa = 0.01 mS cm–2. The Nernst potentials for K and
Na are respectively, – 74.7 mV and + 54.2 mV. Find the resting potential for the
neuron.



Solution

From Eq. 6.1.3-7, we know that the resting membrane potential is given by

K K Na Na
,

K Na

NP NP
m r

g g

g g

+
∆ =

+
V

Substituting the values given, we get

,
0.42 ( 74.7) 0.01 ( 54.2)

71.7 mV
(0.42 0.01)m r

u − + u +∆ = = −
+

V

6.1.4 Action Potential and Axial Current

Let us consider a cell (say a nerve cell) that is initially at the resting
membrane potential. When this cell is stimulated, either through a signal
received from another cell (say from eye neurons during the sight process
through neurotransmitters at places called the synapses), or by artificial
means through electrodes in an experimental set up, the sodium channels
open up. As a result, Na+ ions move from the outside to the inside of the
cell, causing the inside of the cell to become more positive. Thus, the
membrane potential moves away from its resting value of say, – 70 mV
(gets depolarised) and becomes more positive, as shown in Fig. 6.1.4-1. As
more sodium ions come into the cell, more number of Na+ channels open
up, and the membrane potential becomes more positive. When the membrane
potential reaches about – 20 mV, the potassium channels open, and the K+

ions move from the inside to the outside of the cell. Nevertheless, the rate
of Na+ entry is higher than the rate of K+ exit, and thus the membrane
potential continues to become more positive until a value of + 40 mV is
reached. At this value, the Na+ channels close, and the rate of K+ exit
becomes higher. This leads to a decrease in the membrane potential and it
moves toward its resting value (gets repolarised). When the membrane
potential reaches suitable values, the K+ and Na+ channels close, and the
membrane potential stabilises at its resting value of say, – 70 mV. This
dynamic response of the membrane potential when the cell is ‘stimulated’ is
called its action potential. A typical action potential is shown in Fig. 6.1.4-1.

The shape of the action potential curve is determined by many factors.
For example, the dynamics of a K+ channel opening and an Na+ channel
opening are different – the speed of the Na+ ion channel opening is faster.
Moreover, Na+ channels have two gates, one on the extracellular side and
the other on the intracellular side. While the outside gate opens when the
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depolarisation begins, the inside gate that is open even at the resting potential,
starts closing slowly with increasing depolarisation. At a value of about
+ 40 mV, the inside gate of the Na+ channel closes completely. While the
Na+ channel closes at + 40 mV due to the closure of its inside gate, the K+

channel that has only one outside gate (on the extracellular side) opens up.
The time over which the action potential occurs is a few milliseconds.

Further, the strength of the stimulus is important. If it is not high enough
to cause the movement of the membrane potential beyond a critical value,
say – 55 mV, then no action potential ensues. Beyond this magnitude of the
stimulus, any value, however high (within some broad limits), causes the
same magnitude of action potential. Thus, the action potential is a ‘all or
none’ phenomenon, depending on whether the stimulus is above or below
a certain value.

The Na+ ions which move in at a certain location on the nerve cell can
move intracellularly to other adjacent locations. Thus, they can activate the
Na+ channels in locations adjacent to the original location. Thus, action
potentials arise in adjacent locations. This, in turn, leads to action potentials
occurring in other adjacent locations along the length of the nerve cell.
Thus, the action potential gets propagated along the length of the nerve cell
– we can say that the original stimulus gets ‘transmitted’ along the nerve

During A: The Na+ channels open, and Na+ enters the cell.
During B: The Na+ channels slowly close (inner gate closes slowly), and
the K+ channels open, enabling the K+ ions to leave the cell. At the end
of the B period, the Na+ channels are completely closed.
During C: K+ channels close toward the later part of C, and the Na+

channels reset at the end of the C period.
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membrane ion
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cell. This transmission can also be viewed as an axial current along the
nerve cell and is known as the cable current.

6.1.5 Electrophoresis

Electrophoresis refers to the movement of charged particles/molecules in
medium, under the effect of an electric field. As a technique, electrophoresis
is widely used for the analysis of biological molecules such as DNA, RNA
and proteins. The electric field is usually taken to be uniform and the charge
is either naturally present on the molecules, or placed deliberately on them
for certain types of analysis, say, for example to equalise the charges on all
the molecules being analysed. The charged molecules of different sizes or
charges move with different ‘mobilities’ through a viscous gel that is specially
cast for the analysis – e.g. agarose gels are used for DNA analysis, and
polyacrylamide gels for protein analysis.

As seen in Chapter 5, in the neutral state, the charges in the medium
are surrounded by counter ions in the electrical double layer. When an
electric field is applied, the counter ions in the double layer get disturbed;
the charges respond to the applied electric field, and move toward the
oppositely charged end.

In addition, when electrically neutral particles, such as whole cells, are
subjected to a non-uniform electric field, the charge distribution in the
particles is altered, and charge dipoles are induced. One part of the cell is
charged differently from the other part, and hence an originally uncharged
cell moves in the non-uniform electric field due to the induced polarisation.
This process is called dielectrophoresis. The interested reader can refer to
other specialised texts such as Pohl (1978) or Bakewell (2009) for more
details on dielectrophoresis. In the remainder of this section, we will focus
on electrophoresis, i.e. the movement of charged particles/molecules when
the applied electric field is uniform.

In electrophoresis, both a concentration gradient and an electrical potential
gradient exist, and therefore, as seen in Section 6.1.1, the flux is due to both
diffusion and movement due to the electric field. However, the diffusivities
of the biomolecules of interest such as nucleic acids or proteins, through
a gel are negligibly small, compared to their electrical mobilities.

Therefore, let us consider only the movement due to the electric field
in our analysis. Also, note that nucleic acids and proteins are typically placed
as spots in the gel, and therefore, their movement can be treated as movement
of particles through the gel. Only the salient results of the analysis will be
directly presented in this section.
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For simplicity, let us first consider only the charged particle (without
the counter ions). Let the particle be spherical with a charge ze, and a radius
r. The motion of the particle under an electric field in a gel will typically be
slow enough for us to consider the motion to be in the Stokes’ regime.
When the particle moves at a terminal velocity, the forces due to the electric
field on the particle (ze) E, and the frictional force for a particle moving in
the Stokes’ regime, 6SPrv (where P is the medium (gel) viscosity) can be
balanced to obtain

(ze)E = 6SPrv (6.1.5-1)

The electrophoretic mobility mc which is the velocity per unit electric field
strength v/E, can be written from Eq. 6.1.5-1 as

( )

6

ze
m

r
c =

SP (6.1.5-2)

Now, let us consider the counter ion cloud that surrounds the charged
spherical particle. Let us assume that the cloud is a continuous (spherical)
distribution of charges which has a different distribution when the uniform
electric field is applied. Let the radius of the sphere in the presence of the
uniform electric field be a. The electrostatic potential V at a distance d (d
> a) in a medium of dielectric constant k (note that the dielectric constant
is the ratio of the permittivity of the substance to the permittivity of free
space, i.e. H/H0) is given as

ze

kd
=V (6.1.5-3)

Thus, there is a superposition of the fields and potentials from the modified
spherical distribution of charges around the charged bioparticle, and the
external source that is applied to cause movement. The solution of the
approximate form of the Poisson-Boltzmann equation for this situation yields
the modified potential Vc as

exp ( )

1

ze a d

kd a

N −   c =    + N   
V (6.1.5-4)

where N is the charge screening parameter that is also dependent on the
ionic strength of the medium. An approximate mobility in this situation is
given by

( ) ( )
6 1

ze f a
m

r a

N cc =  SP + N 
(6.1.5-5)

Different forms of the function f (Na) are available, e.g. the Henry function.
Interested readers can refer to specialised journal articles such as Ohshima
(2002).



6.2 Simultaneous Concentration Gradient and Velocity
Gradient: Blood Oxygenators

Blood oxygenators are extensively used in hospitals when blood is taken out
of a patient during surgical procedures and later returned to the patient. In
the falling film type blood oxygenator, a blood film flows downward on a
solid wall, while oxygen diffuses across the film and oxygenates the blood,
as schematically represented in Fig. 6.2-1. Let us derive an expression for
the rate of oxygen absorption into the blood film.

Usually, the rate of O2 transport in the z (vertical) direction due to bulk
flow is much higher than the diffusion in the same direction.

Thus

2

eff 2
A A

z
c c

D v
zz

∂ ∂
��

∂∂
Nevertheless, there is no convective transport in the x direction and only
diffusive transport occurs.

Thus, Eq. A2 from Table 2.3.2-1, the continuity equation, becomes

2

eff 2
A A

z
c c

v D
z x

∂ ∂
=

∂ ∂
(6.2-1)

We have also neglected the reaction term above, i.e. the reaction between
oxygen and haemoglobin has been assumed to be negligible.

The boundary conditions are

At x = 0, cA = cAi (oxygen concentration at the
gas-liquid interface) (6.2-2)

x
z

O2Wall

Blood film

Fig. 6.2-1 Falling film
blood oxygenation;
convective transport
of oxygen
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At x = G, Ac

x

∂
∂

 = 0 (at the wall, i.e. x = G, oxygen cannot

penetrate the wall) (6.2-3)
At z = 0, cA = cAo (oxygen concentration in the deoxygenated

blood entering at the top of the plate) (6.2-4)

Let us consider a thin uniform film. When we compare this with the flow
over the inclined surface (Bostwick viscometer) that we considered in
Chapter 3, we can assume

vz z f (z) = vo

Let us define some non-dimensional variables as

( , )
( , ) Ai A

Ai Ao

c c x z

c c

−4 K M =
− (6.2-5)

xK =
G (6.2-6)

eff
2

o

Z D

v
M =

G (6.2-7)

In terms of the non-dimensional variables, the differential equation and the
boundary conditions become

2

2

∂4 ∂ 4=
∂M ∂K (6.2-8)

Boundary conditions are

At K = 0, 4 = 0 (6.2-9)

At 1, 0
∂4K = =
∂[

(6.2-10)

At M = 0, 4 = 1 (6.2-11)

Invoking the separation of variables method, let us write

4 (K, M) = X(K) Y(M) (6.2-12)

Using a procedure similar to that employed in Chapter 3 for solving unsteady
state flow situations in a pipe, we get

Y = A exp (– b2M) (6.2-13)

and

X = B1sin b K + B2cos b K (6.2-14)



Using the boundary condition 1, Eq. 6.2-9, cosine term = 0; using the
boundary condition 2, Eq. 6.2-10

1

2
b n = − S 

 

where n = 0, r 1, r 2,…, for B1 to be non-zero. Otherwise, a trivial
equation, 0 = 0, would result.

Orthogonality: Two functions fm(x) and fn(x) are said to be orthogonal
over an interval (a, b) if

( ) ( ) 0
b

m n
a

f x f x dx =∫
For example

1

0
sin sin 0 when or 0

when , but 0

m x n x dx m n m n

m n

3 3 = z = =

= z
∫

Using the orthogonality relationship, we get

2
2
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4 1 1 1
( , ) sin exp

2 1 2 2n
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n

f

=

    
 4 K M = − SK − − S M   3 −     

∑ (6.2-15)

If L is the length of the film along the wall (longitudinal) and B is wall
width, the rate of oxygen absorbed WA in terms of the regular dimensional
variables is

*
00 0

B L

A Ax x
W J dz dy== ∫ ∫ (6.2-16)

where

*
effDiffusive flux A

Ax
c

J D
x

∂= = −
∂

Thus
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(6.2-17)

The average oxygen concentration cA,av

2 2
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, 2 2 21

8 1 1
( ) exp

2(2 1)
A av Ai Ai Ao n
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LD
c c c c n

n v

f

=

 3  = − − − −  
 3 − G  

∑

(6.2-18)
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The above model, however, falls short in agreement with experimental data.
This is because the reaction between oxygen and haemoglobin has not been
considered. Also, blood has been approximated as a Newtonian fluid.

6.2.1 The Transfer Coefficient Approach: Inter-phase Oxygen
Supply to Bioreactors

When mass or heat flux (or mass and heat flux) occur simultaneously with
momentum flux, the relevant balances (mass or/and energy and momentum)
are valid and need to be solved together. In many situations e.g. in a stirred
bioreactor, the flow fields are not clearly defined and this adds to the
complexity.

Thus, an alternative approach would be useful, especially for design and
operation. The transfer coefficient approach is one such method which
helps in designing and operating macro-systems, and allows for a certain
level of analysis/understanding.

In general, the following representation is used in the approach.

Flux = Transfer coefficient × Driving force (6.2.1-1)

i.e.

Mass flux = Mass transfer coefficient × Concentration difference
(6.2.1-2)

Heat flux = Heat transfer coefficient × Temperature difference
(6.2.1-3)

Different transfer coefficients (say, mass transfer coefficient) can be used
depending on the situation. For example

In a liquid phase

NA = kc(cA1 – cA2) (6.2.1-4)

    = kx(xA1 – xA2) (6.2.1-5)

In a gas phase

NA = kg( pA1 – pA2) (6.2.1-6)

    = ky( yA1 – yA2) (6.2.1-7)

We will look at heat transfer coefficient in a later section.
The mass transfer coefficients are especially useful when we quantify

mass transfer across phases. Recall from thermodynamics that for mass



transfer, it is the difference in chemical potentials that provides the actual
driving force. In single phase, we can approximate chemical potential
difference to concentration difference. But across phases (interphase), this
approximation becomes difficult. More importantly, chemical potentials are
not easy to measure, and use of a suitable concentration for chemical
potential becomes easier with the use of a mass transfer coefficient. There
are many methods, including experiments, correlations and theories, to find
the transfer coefficients.

Let us consider the transfer of a species A across two phases, 1 and
2, represented as 1/2. There are several possibilities. G|L represents the
transfer of A between a gas phase and a liquid phase; S|L represents the
transfer of A between a solid phase and a liquid phase; L|L represents the
transfer of A between two liquid phases that are immiscible, and so on.

Let us consider G|L for elaboration here (Fig. 6.2.1-1). The basal
representations remain the same whatever be the two phases under
consideration.

The flux of mass transfer of A in the gas phase

= ky(yAG – yAi) (6.2.1-8)

where ky is the gas phase mass transfer coefficient.
The flux in the liquid phase

= kx(xAi – xAL) (6.2.1-9)

Lewis and Whitman (1924) proposed that resistances to mass transfer
reside only in the phases – across the interface i there is no resistance for
mass transfer. Consequently, the concentrations, yAi and xAi are equilibrium
concentrations. This has been experimentally verified.

As interphase concentrations are not easy to measure, we use bulk
concentrations and an ‘overall mass transfer coefficient’.

However, x and y are concentrations in different phases (they are
different quantities and the denominator volumes are also different), and
hence algebraic operations cannot be done with them. The way around this
difficulty is to use the concentration in one phase that is supposed to be in
equilibrium with the bulk concentration in the other phase.

Fig. 6.2.1-1 The concentration
profiles in the gas and liquid
phases during gas-liquid
interphase transport of a
species (say oxygen)

yAG

yAi
xAi

xAL

Phase 1 (G) Phase 2 (L)
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For example, in one G|L transport case

*( )A y AG AN K y y= − (6.2.1-10)

where *
Ay  is the concentration in the gas phase that will be in equilibrium

when the liquid phase concentration is xAL; the corresponding gas phase

concentration is * .Ay

Ky = Overall mass transfer coefficient for transfer from G to L phases

NA can also be represented as

*( )A x A ALN K x x= − (6.2.1-11)

where *
Ax  is the liquid phase concentration in equilibrium with yAG.

At steady state, there should be no accumulation at the interface.
Therefore, the flux of A reaching the interface = flux of A leaving the
interface.

ky(yAG – yAi) = kx(xAi – xAL) = NA (6.2.1-12)

Also, the flux, NA, can be written in terms of the overall mass transfer
coefficients. The two expressions need to be the same because they represent
the same flux.

* *( ) ( )A y AG A x A ALN K y y K x x= − = − (6.2.1-13)

If the equilibrium curve is linear, or can be considered to be piece-wise
linear in the region of interest

yAi = m xAi (6.2.1-14)

*
A ALy m x= (6.2.1-15)

From Eq. 6.2.1-12

A
AG Ai

y

N
y y

k
− = (6.2.1-16)

A
Ai AL

x

N
x x

k
− = (6.2.1-17)

We can write Eq. 6.2.1-17 as

*
Ai A A

x

y y N

m k

− =

or

*
Ai A A

x

m
y y N

k
− = (6.2.1-18)



Adding Eqs. 6.2.1-16 and 6.2.1-18, we get

* 1
AG A A

y x

m
y y N

k k
 − = + 
 

(6.2.1-19)

Also, from Eq. 6.2.1-13, we get

* A
AG A

y

N
y y

K
− = (6.2.1-20)

Thus

1 1

y y x

m

K k k
= + (6.2.1-21)

Alternatively, if we consider the other overall coefficient, we can write

A
AG Ai

y

N
y y

k
− = (6.2.1-22)

Therefore

*( ) A
A Ai

y

N
m x x

k
− =

or

* A
A Ai

y

N
x x

mk
− = (6.2.1-23)

Also from Eq. 6.2.1-12, we get

A
Ai AL

x

N
x x

k
− = (6.2.1-24)

Adding Eqs. 6.2.1-22 and 6.2.1-23, we get

* 1 1
A AL A

y x

x x N
m k k

 − = + 
 

(6.2.1-25)

Also, from Eq. 6.2.1-13

* A
A AL

x

N
x x

K
− = (6.2.1-26)

From Eqs. 6.2.1-26 and 6.2.1-25, we get

1 1 1

x y xK mk k
= + (6.2.1-27)
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If m is large

1 1

x xK k
|

i.e. the overall resistance = resistance in the liquid phase. This implies that
the mass transfer flux is determined by the gas side mass transfer flux.

Now, using the overall mass transfer coefficient (Eq. 6.2.1-13)

*Moles transferred
Flux ( )

Area Time x A ALK x x= = −
−

Thus

*

Moles transferred
The mass transfer rate

Time

( )x A ALK A x x

=

= −

where A is interfacial area.
Also

*

*

Moles transferred
( )

Volume Time

( )

x A AL

x A AL

A
K x x

V

K a x x

= −
−

= − (6.2.1-28)

where a is interfacial area per unit volume.
Since the interfacial area cannot be easily measured, Kxa is measured

as a single variable. In bioreactors, the volumetric oxygen transfer coefficient
(Kxa for oxygen) is referred to as ‘Kla’. Kla is an important parameter that
is determined before bioreactor operation. It provides a measure of the
bioreactor’s volumetric oxygen transfer capacity.

Bioreactors use either surface aeration or submerged aeration to supply
oxygen to the culture in them (Fig. 6.2.1-2).

Submerged aeration
Surface
aeration

Headspace

Broth

Fig. 6.2.1-2 A schematic
of a stirred bioreactor



In surface aeration, the oxygen is transferred from the air in the
headspace to the liquid across the gas-liquid interface that separates the
broth from the headspace. In submerged aeration, the oxygen is transferred
across the bubble surface to the liquid. The rate of oxygen transfer possible
with submerged aeration is usually much larger than that possible with
headspace aeration. As seen in Chapter 1, the liquid phase oxygen supply
strategy (LPOS) can be used to improve the oxygen availability to bioreactors.

6.2.2 The Transfer Coefficient Approach: Immobilised Enzyme
Reaction Kinetics

In Chapter 2, we considered the case when diffusion played a major role
in determining the rate of a reaction that occurs inside a porous pellet. Let
us now consider a reaction on the surface of a non-porous surface in a fluid
when there is mass transport of reactants from the bulk fluid.

Take an enzyme immobilised on a slab that is non-porous (Fig. 6.2.2-1).
The intrinsic enzyme kinetics is Michaelis-Menten and the reaction occurs
on the surface of the slab. Let us derive an expression for the process rate
at steady state.

Since it is a slab, let us consider rectangular coordinates. Since the flow
condition could be undefined, let us take a transfer coefficient approach to
represent the flux. It can be written as

L_S film

Substrate

Product

Fig. 6.2.2-1 Reaction occurring
with the enzyme immobilised on
the surface of a slab. The
substrate transfers from the
liquid to the slab surface,
through the L_S film. The
product formed on the surface
due to the enzymatic reaction
gets transferred to the bulk
liquid
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NS = kcs (So – S) (6.2.2-1)

where NS is flux, kcs is mass transfer coefficient, So is bulk substrate
concentration and S is S_L interface substrate concentration. kcs can be
obtained through correlations that are found in literature.

At steady state, substrate cannot accumulate at the catalyst bulk interface.
The rate at which the substrate reaches the interface must equal the rate at
which it gets consumed. That is

max
app( )s o

m

v S
k S S v

K S

c
− = =

c + (6.2.2-2)

where ks is mass transfer coefficient on a volumetric basis, Kcm and vcmax
are Michaelis-Menten constants and vapp is apparent velocity of the process.

Let us define some non-dimensional variables as

o

S
x

S
= (6.2.2-3)

 max Mass reaction rate
Da Damköhler number

Maximum mass transfer rates o

v

k S

c
= = = (6.2.2-4)

If

• Da << 1, the reaction is slow, and the process is reaction limited.
• Da >> 1, the mass transfer is slow, and the process is mass transfer

limited.

m

o

K
K

S

c
c = (6.2.2-5)

Substituting the above variables in Eq. 6.2.2-2, we get

app

max

1

Da

vx x

K x v

− = =
c c+ (6.2.2-6)

Solving 
1

Da

x−
 = 

x

K xc +
, we get

2

4
1 1

2

K
x

 cE= − r +  E 
(6.2.2-7)

where E = Da + Kc – 1.
Inside the bracket in Eq. 6.2.2-7, we use + for E > 0 and – for E <

0. vapp is process rate and can be obtained by substituting x in Eq. 6.2.2-6.



An ‘effectiveness factor’ can be defined as

Observed reaction rate

Reaction rate in the absence of mass transfer resistance (i.e. )g
oS S

[ =
=

(6.2.2-8)

The effectiveness factor can be used to evaluate the effect of mass transfer
on process rates. By substituting S = So in Eq. 6.2.2-6 for the denominator,
we get

1
1

g

x

K x

K

c +[ =

c +
(6.2.2-9)

When Da → 0, x → 1 i.e. when the process is totally reaction limited,
[g → 1. This implies that

max
app

o

m o

v S
v

K S

c
=

c +

i.e. the process kinetics is the same as intrinsic kinetics. Mass transfer rate
does not affect the process rate.

On the other hand, when Da →�f, i.e. when the process is totally mass
transfer limited, by substituting Eq. 6.2.2-7 in the RHS of Eq. 6.2.2-6 (and
noting that Kc needs to be finite), we get

1

Dag
K c+[ →

and

vapp = ksSo

i.e. there is no trace of reaction kinetics in the process kinetics. It is totally
mass transfer limited.

6.3 Simultaneous Temperature Gradient and Velocity
Gradient: Heat Transfer to Fluid Flowing in a Long
Circular Tube Under Laminar Flow Conditions

A protein solution needs to be heated as part of a certain analysis in a small
scale. The micro-device utilised for the analysis uses a comparatively long,
horizontal, metal tube with a small diameter. The electrically heated tube
wall heats the solution that passes through it in laminar flow. The heat flux
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at the tube wall can be assumed to be constant. Find the temperature as a
function of distance along the tube.

Note that

vr = 0, vθ = 0, Qθ = 0

Also let us assume constancy of physical properties and neglect viscous
dissipation (negligible compared to heating effects).

The relevant equations are (from the appropriate tables in the earlier
chapters)

Equation of continuity

0zv

z

∂ =
∂

(6.3-1)

Equation of motion

2

2

1z z z
z

v v vp
v r

z z r r r z

 ∂ ∂ ∂∂ ∂  ρ = − + P +  ∂ ∂ ∂ ∂  ∂ 
(6.3-2)

Equation of energy

22

2

1 z
V z

vT T T
C v k r

z r r r rz

  ∂∂ ∂ ∂ ∂   ρ = + + P    ∂ ∂ ∂ ∂   ∂ 
(6.3-3)

Using Eq. 6.3-1 i.e. zv

z

∂
∂

 = 0, therefore zv

z z

∂∂  
 ∂ ∂ 

 = 0 and Eq. 6.3-2

becomes

1 zvp
r

z r r r

 ∂ ∂ ∂  = P   ∂ ∂ ∂  
(6.3-4)

We have seen in Chapter 3 that the solution of the above equation is

22( )
1

4
o L

z
p p R r

v
L R

 −  = −  P   
(6.3-5)

Note that in Chapter 3 we had considered laminar flow down a vertical
tube, and hence we needed to consider P = p – ρgh. The reader is encouraged
to derive the equation for a horizontal tube, and thus be convinced that
P = p for the case of laminar flow in a horizontal tube.

Substituting Eq. 6.3-5 into the energy Eq. 6.3-3, and differentiating
Eq. 6.3-5, we get
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2

( ) 1
1

4
o L z

V
p p R vr T T T

C k r
L R z r r r rz

   − ∂∂ ∂ ∂ ∂     ρ − = + + P       P   ∂ ∂ ∂ ∂     ∂ 
(6.3-6)

Usually, heat conduction in the z direction 
2

2
term containing

T

z

 ∂
 

∂ 
 is negligible

compared to the convective term terms containing
T

z

∂ 
 ∂ 

. Therefore, after

differentiating Eq. 6.3-5 to get the last term in terms of the relevant variables,
we can write

22 2
2

,max 4

( )1 1
1 4

4
o L

V z
p p Rr T T

C v k r r
R z r r r L R

   −∂ ∂ ∂   ρ − = +      
  ∂ ∂ ∂ P    

or

22
,max 2

,max 4

41
1 z

V z

vr T T
C v k r r

R z r r r R

  ∂ ∂ ∂   ρ − = +    
  ∂ ∂ ∂  

Now, viscous dissipation (the phenomenon that contributes to the last term
on the RHS of Eq. 6.3-6) is important only when the velocity gradients are

large. If the velocity gradients are not large, the term, 
2

zv

r

∂ P ∂ 
 can be

dropped, and the relevant equation becomes

2

,max
1

1V z
r T T

C v k r
R z r r r

  ∂ ∂ ∂   ρ − =    
  ∂ ∂ ∂  

(6.3-7)

Now, the boundary conditions are

At r = 0, T = finite (6.3-8)

At r = R, – k 
T

r

∂
∂  = Q1 (6.3-9)

At z = 0, T = To (for all r) (6.3-10)

Let us introduce some non-dimensional groups

1

oT T
R

Q
k

−
θ =

(6.3-11)

r

R
[ = (6.3-12)
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,maxV z

z k

C v R�] =
ρ (6.3-13)

Note that

,avg Re Pr

1 1

z V

z k z

R D v C R N N

P       ] = =          ρ P        

by expressing the Reynolds number in terms of the diameter and the average
velocity (the factor of 2 gets cancelled). The Reynolds number and the
Prandtl number appear in most forced convection situations.

Thus, Eq. 6.3-7 becomes

2 1
(1 )

∂θ ∂ ∂θ − [ = [ ∂] [ ∂[ ∂[ 
(6.3-14)

Boundary conditions are

At [ = 0, θ = finite (6.3-15)

At [ = 1, – 
∂θ
∂[

 = 1 (6.3-16)

At ] = 0, θ = 0 (6.3-17)

In the limiting case (for large ]), an analytical solution exists

2 41 7
4

4 24
θ = − ] − [ + [ + (6.3-18)

6.3.1 Momentum Flux Induced by Thermal Force:
Free Convection

A possible strategy to achieve the desired heating of temperature sensitive
food/solutions, under certain conditions, is to pass it and hold it for a certain
period of time in a thin box of rectangular cross section. The box is
vertically placed (Fig. 6.3.1-1). One of the two larger surfaces of the box
is held at T2 and the surface opposite to it is held at T1. The length of the
largest side is much greater than the distance (2b) between the surfaces. Let
us find the distributions of temperature and velocity in the food solution at
steady state.

Due to the temperature gradient, and the consequent density differences,
the fluid near the hotter wall will rise and the fluid near the colder wall will
descend. Let us assume that the volumetric flow rate in the upward moving
stream is the same as that in the downward moving stream.



Since it is given that the plates are held at constant temperatures, the
temperature does not vary in the z direction, and we can assume T = f (y)
alone. Let us also assume that the fluid is Newtonian.

It is preferable to use rectangular coordinates in this case.
From Table 4-1, Eq. A, we get

2

2
0

d T
k

dy
= (6.3.1-1)

Boundary conditions are

At y = – b, T = T2 (6.3.1-2)

At y = b, T = T1 (6.3.1-3)

Solving by integrating twice

1
dT

c
dy

=

T = c1y + c2

Using the boundary conditions, we can get

T2 = c1(– b) + c2

T1 = c1(b) + c2

2 1
2 say,

2 m
T T

c T
+

= =

T2 T1 l

z

l >> 2b
T2 > T1

y = – b y = by

Fig. 6.3.1-1 The set
up to heat temperature
sensitive substances
with two surfaces at
different temperatures
and a fluid in between
them
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1 1 1 2 1 2
1

2

2 2
mT T T T T T T

c
b b b

− − − −= = =

Therefore

1 2

2 m
T T

T y T
b

−= +

2m
T y

T T
b

∆  = −  
 

(6.3.1-4)

where ∆T = T2 – T1. Equation 6.3.1-4 gives the temperature profile.
To find the velocity profile, let us use Eq. C2 of Table 3.4-1. The

equation reduces to

2

2
zd v dp

g
dzdy

P = + ρ (6.3.1-5)

Here, we cannot ignore the dependence of ρ on T because it is the difference
in ρ that is causing the flow. To address the same, let us expand ρ in a
Taylor’s series in T about some reference temperature Tref .

ref

ref ref| ( )  Higher order terms (HOT)T
T

T T
T

∂ρ ρ = ρ + − + ∂ 

 = ρref + ρref Eref (T – Tref) + HOT (6.3.1-6)

where

1
ˆ1 1 1

ˆ 1p p p

V

T T TV

  ∂    ρ∂ ∂ρ   E = = = −     ∂ ∂ ρ ∂      
 ρ 

(6.3.1-7)

Eref is evaluated at Tref.
If we assume that HOT contribute negligibly, and substitute the first

two terms of Eq. 6.3.1-6 in Eq. 6.3.1-5, we get

2

ref ref ref ref2
( )zd v dp

g g T T
dzdy

P = + ρ −ρ E − (6.3.1-8)

The pressure gradient is solely due to the weight of the fluid in the slot (let
us assume that the temperature dependence of the pressure gradient can be
ignored for a first estimate). Therefore

ref
dp

g
dz

= − ρ



Thus

2

ref ref ref2
( )zd v

g T T
dy

P = − ρ E − (6.3.1-9)

By substituting the temperature distribution (Eq. 6.3.1-4) into Eq. 6.3.1-9
we get

2

ref ref ref2
( )

2
z

m
d v T y

g T T
bdy

 ∆  P = − ρ E − −   
  

(6.3.1-10)

The boundary conditions are

At y = – b, vz = 0

At y = b, vz = 0

The solution is

2
3 2ref ref [ ]

12z
g b T

v A A
ρ E ∆

= K − K − K +
P

(6.3.1-11)

where A = ref6( )mT T

T

−
∆

 and .
y

b
K =

We know that the net flow in the z direction = 0. Or in other words

1

1
0zv d

−
K =∫ (6.3.1-12)

Substituting Eq. 6.3.1-11 in Eq. 6.3.1-12, we get

2
2 0

3
A A− + =

� A = 0, or in other words

Tm = Tref (6.3.1-13)

Thus, the velocity distribution

2
3ref ref ( )

12z
g b T

v
ρ E ∆

= K − K
P

(6.3.1-14)

Let us define a dimensionless velocity

refzbv ρ
φ =

P

The profile (Fig. 6.3.1-2) can be expressed as

3
Gr

1
( )

12
Nφ = K − K (6.3.1-15)
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where

2 3
ref ref

Gr 2
Grashof number

gb T
N

ρ E ∆= =
P

Using a Taylor series expansion

ρ = ρref – ρrefEref (∆T)

Thus

ρrefEref (∆T) = ρref – ρ = ∆ρ

and

3
ref

Gr 2

gb
N

ρ ∆ρ
=

P

NGr typically arises in situations with free convection.

6.3.2 The Utility of Heat Transfer Coefficients: Design of
Heat Exchangers

A heat exchanger is an equipment that allows the manipulation of the
temperatures of two fluid streams by transferring heat from the stream at
a higher temperature to the one at a lower temperature without mixing the
streams. Schematics of a typical equipment for heat exchange between fluid
streams is given in Fig. 6.3.2-1.

z

y

Fig. 6.3.1-2 Velocity profile
that results from a
temperature difference



Let us design a heat exchanger for the following situation. The algal
broth after passing through the photo-section of a bioreactor significantly
increases in temperature due to heating by the sun. It needs to be cooled
before it passes through the photo-section again to prevent cell death. A heat
exchanger can be used to cool the broth.

The broth flows through the inner pipe of a double pipe heat exchanger,
and is cooled by water flowing in the jacket. The inner pipe is made of
25 mm, schedule 40 steel pipe. The thermal conductivity of steel is 45 W
m–1 °C–1. Under the given conditions, the heat transfer coefficients are:

(i) Broth: 1020 W m–1 °C–1

(ii) Water: 1700 W m–1 °C–1

What is the overall heat transfer coefficient based on the outside area of the
inner pipe? What is the rate of energy removed from the broth, if the broth
at entry is at 40 °C and cooling water is available at 20 °C?

The double pipe heat exchanger can be operated in:

• Co-current (parallel) mode: Direction of hot and cold fluids are the
same.

• Counter-current (anti-parallel) mode: Direction of hot and cold fluids
are opposite to each other.

Figure 6.3.2-2 shows the temperature profiles of the heat exchanger when
operated in both the above modes.

The desired scenario: Tcb | Tha i.e. cold fluid exit temperature = hot
fluid entry temperature (possible to attempt with counter-current operation).

It is more practical to solve this problem using the heat-transfer
coefficient approach.

( )Q h A T= ∆� (6.3.2-1)

Fluid through
(inner) pipe

Fluid through (outer) pipeFig. 6.3.2-1 A section of
the piping arrangement in
a double pipe heat
exchanger. The flow
shown is for the counter-
current mode. The
operation could also be in
a co-current flow mode,
where the inner pipe fluid
and the outer pipe fluid
move in the same direction
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where Q�  is heat transfer rate, h is heat transfer coefficient, A is area and
∆T is temperature difference.

Note that h is not defined for a specific situation until A and ∆T are
specified.

Let us consider the flow in tubes with heat being transferred through
the surface (Fig. 6.3.2-3).

Thb

Tca

Counter-current

∆T1

∆T2

Tha

Tcb

Te
m

pe
ra

tu
re

Tha

Tca

∆T1 ∆T2

Thb

Tcb

Distance from the cold fluid inlet

Co-current a: Inlet
b: Outlet

Fig. 6.3.2-2 Temperature
profiles in a co-current
and a counter-current
heat exchanger

Tw: Inner wall temperature
Tb: Temperature in the fluid bulk

Heated surface

D

L

Tb1

Tw1

Tb2

Tw2

Fig. 6.3.2-3 A tube
carrying a fluid
with the walls
heated



Three conventional definitions of the heat transfer coefficient are

1 1 1( )( )w bQ h DL T T= S −� (6.3.2-2)

where h1 is based on the initial temperature difference.

1 1 2 2( ) ( )
( )

2
w b w b

a
T T T T

Q h DL
− + − = S   

� (6.3.2-3)

where ha is based on the arithmetic mean of the temperature difference.

1 1 2 2
ln

1 1

2 2

( ) ( )
( )

ln

w b w b

w b

w b

T T T T
Q h DL

T T

T T

− + − = S  −   −   

�

(6.3.2-4)

where hln is based on the logarithmic mean of the temperature differences

(Tw1 – Tb1)ln. hln is typically preferred because it is less dependent on 
L

D
than the other two coefficients. Also, if the inside wall temperature is
unknown, or if the fluid properties change appreciably along the pipe, then
it becomes difficult to predict the heat transfer coefficient defined earlier.
Under these circumstances, a differential approach is taken wherein a force
balance is performed on a slice of the fluid (Fig. 6.3.2-4).

dQ = hlocal (SDdz) (Tw – Tb) (6.3.2-5)

Now, let us consider the heat transfer across the heat exchanger inner
pipe wall as detailed in Fig. 6.3.2-5.

The overall resistance to heat transfer (various resistances are in series)

Rwarm fluid + Rwall + Rcold fluid

For the inner (in this case, warm) fluid

( )i h wh
i

dQ
h T T

dA
= −

�

(6.3.2-6)

where hi is individual heat transfer coefficient for the inner fluid.

dzFig. 6.3.2-4 The slice of
fluid over which a force
balance is performed
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At the wall (conduction)

w w

dQ dT
k

dA dy
= −

�

(6.3.2-7)

For the outer (in this case, cold) fluid

( )o wc c
o

dQ
h T T

dA
= −

�

(6.3.2-8)

Now

∆T = Th – Tc = (Th – Twh) + (Twh – Twc) + (Twc – Tc) (6.3.2-9)

Now, let us take a slight detour and consider the conduction across cylinders,
to derive an expression for conductive heat rate across an annular cylinder
(Fig. 6.3.2-6) when the walls are maintained at different temperatures.

Cold fluid Warm fluid

Inner pipe wall

Inner pipeOuter pipe

Te
m

pe
ra

tu
re

Th

Twh
Twc

Tc

Fig. 6.3.2-5 The temperature
profile across the fluids and
the wall separating them in
the heat exchanger

r

ro

To

Fig. 6.3.2-6 The shell



(2 )
dT dT

Q k A k rL
dr dr

= − = − S� (6.3.2-10)

Upon integration

2o i

c o

r T

r T

dr Lk
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r Q
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(6.3.2-11)

( )L i o

o i

k A T T

r r
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(6.3.2-12)

where

(2 )( )
2
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i

L r r
A L r

r

r

S −= = S
 
 
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(6.3.2-13)

LA  is the logarithmic mean area, and Lr  is the logarithmic mean radius,
which is defined as

ln

o i
L

o

i

r r
r

r

r

−
=

 
 
 

(6.3.2-14)

Using the above for the heat exchanger wall

,

( )wh wc

wL w

k T TdQ

xd A

−=
�

(6.3.2-15)

Substituting Eq. 6.3.2-15 in Eq. 6.3.2-9, we get

w
h c

i i o oL

xdQ dQ dQ
T T

dA h k dA hd A
− = + +

� � �

(6.3.2-16)

Therefore

1 1
·

h c

o w oo

i i oL

T TdQ
dA x dAdA
dA h k hd A

−=
 + + 
 

�

(6.3.2-17)

We also know that

o o

i i

dA D

dA D
=
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and

o o

L L

dA D

d A D
=

Therefore

1 1
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i i oL

T TdQ
D x DdA
D h k hD

−
=
 + + 
 

�

(6.3.2-18)

We know that

 
Driving force

Flux =
Resistance

or

= Conductance × Driving force

Thus, the conductance

1

1 1o
o o w

i i oL

U
D D x

D h k hD

=
     + +     
    

(6.3.2-19)

Uo is overall heat transfer coefficient based on the outer area. Similarly, it
can be based on the inner area.

1
1 1i

o w i

i o oL

U
D x D

h k D hD

=
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(6.3.2-20)

Now, let us solve the original problem.
From the schedule number and the nominal diameter given, we can find

Di, Do using the relevant tables (as mentioned in Chapter 3). The following
can be calculated

ln

o i
L

o

i

D D
D

D

D

−
=

 
 
 

1
1 1o

o o w

i i oL

U
D D x

D h k hD

=
     + +     
    

and with A, Q�  (rate of energy removed) can be calculated.
But, how does one find hi and ho? Correlations are available in literature

(e.g. the correlation developed by Sieder and Tate).



First, let us consider a useful non-dimensional number.

NuNusselt number,
hD

N
k

= (6.3.2-21)

Thus

ln
Nu,ln

h D
N

k
=

Some approximate equations that can be used to find Nusselt number are
given below.

For highly turbulent flow, i.e. for 
L

D
 > 10, NRe,b > 20000 where the

subscript b represents bulk.

1
0.140.8 3

ln 0.026 p b

b w

Ch D DG

k k

P  P  =     P P    

(6.3.2-22)

where G is mass velocity = ρv, µb is viscosity of the bulk fluid and µw is
viscosity of the fluid at the wall temperature.

For laminar flow

1
0.14

3ln
Re, Pr,1.86 b

b b
w

h D D
N N

k L

P  =      P 
(6.3.2-23)

A number of correlations have been developed for a variety of situations:

• Free convection
• With phase change
• Condensing liquid
• Cooling liquid
• Others

A chart similar to the Moody’s chart can also be used when NRe,b > 10000.
In that chart available in handbooks

2

3
ln

2
p

h
p

Ch f
j

C G k

P   = |    

which is known as the Chilton-Colburn analogy.

The properties are calculated at the mean temperature .
2

b wT T+
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6.3.3 Some Other Useful Formulations

To represent radiative heat loss from a human body, a heat transfer coefficient
hr based on the first power of temperature of the emitting and receiving
bodies is used.

Q = hr (Ts – Tw) (6.3.3-1)

where Ts is temperature of the skin and Tw is temperature of the surrounding
walls (not ambient air).

A typical value for hr = 5
2

kcal
.

m h °C
When phase change is involved, a part of the heat flux goes toward the

latent heat needed for the phase change. For example, when perspiration is
considered on human skin

�
vQ L m= � (6.3.3-2)

where �
vL  is latent heat of vaporisation per unit mass of water and m�  is

mass rate of evaporation of water per unit surface area.

2 2 2H O H O ,skin H O, air( )m K= E ρ − ρ� (6.3.3-3)

where
2H OK is mass transfer coefficient of water vapour to the surrounding

air, E is fraction of skin covered by perspiration and 2H Oρ  is humidity
(partial density of water vapour).

6.3.4 The Unsteady State Bioheat Transfer Equation

Heat transfer in tissues under unsteady state can be studied using the
bioheat transfer equation developed by Pennes (1948). It is an unsteady
state equation that considers conduction, metabolic heat production and the
heat transfer due to blood flow to the tissue. The energy equation with the
above contributions alone can be written as

2
p m b

T
C k T Q Q

t

∂ρ = ∇ + +
∂

� � (6.3.4-1)

where mQ�  is the metabolic heat production rate and bQ�  is the net heat
generation due to blood flow.

The above equation has many applications including analysis of breast
cancer.



Exercises

1. Dialysis is a treatment used to provide an artificial replacement for kidney
function in people with renal failure. It works on the principle of diffusion
of solutes and ultrafiltration of a fluid across a semi-permeable membrane.
In an attempt to improve the procedure of dialysis, an electric field is applied
in addition to a difference in concentration. Assume that only one kind of
ions are present in the solution, and develop an expression for the steady
state movement of ions.

2. Abnormal electrical activity in the heart, called arrhythmia, can cause cardiac
arrest and consequent death. It is known that potassium chloride injected
into the body can cause death. Explain the above action of potassium
chloride.

3. It is reasonably well known that the transport of calcium ions across cells
is important in muscle contraction. Let us consider only the transport of
calcium and sodium across the cells. When the resting membrane potential
of the cell membrane with reference to the sodium ions is – 105 mV, and the
measured extracellular calcium ion concentration is 20 mM, estimate the
intracellular calcium concentration.

4. For a simplistic estimate under certain situations, only sodium and potassium
ion transports across a cell membrane are considered. The measured sodium
ion concentrations are 15 mM (intracellular) and 105 mM (extracellular). The
measured potassium ion concentrations are 115 mM (intracellular) and 3 mM
(extracellular). With the help of the data given in the relevant example
problems in the chapter, estimate the ion currents across the membrane
under the above conditions (needs changes to numbers).

5. The resting potential of a myocyte is known to be – 90 mV. The intracellular
and extracellular concentrations of potassium ion concentrations are found
to be 150 mM and 4 mM, respectively. The intracellular and extracellular
sodium ion concentrations are found to be 20 mM and 145 mM, respectively.
Find the potentials by individually considering K+ and Na+, and thus,
estimate the electrochemical driving forces in each case. If the extracellular
concentrations of both the ions are increased three fold, comment on the
effect of that change on the above estimated quantities.

6. For a typical neuron, under a certain set of conditions, the intracellular and
extracellular Na+ ion concentrations are 1 mM and 120 mM, respectively. At
the same time, the intracellular and extracellular K+ ion concentrations are
140 mM and 5 mM, respectively. The conductivity of Na+ ions across the
membrane is 100 pS cm–1 and that of K+ is 200 pS cm–1. The current flowing
through the membrane reduces to 0.63 of its initial value in 100 ms. Find the
current flowing initially through the membrane, and its capacitance.

Exercises 231
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7. In the Venus fly trap plant (remember the animated movie, Ice Age 3?), the
leaves are made of two flaps. When an insect sits on the leaves, the flaps
close to trap the insect inside, where it is digested by the plant. The closing
of the flap is a rapid process, and many theories have been propounded to
explain the same. According to one of the theories, when an insect sits on
the leaf, an action potential is created. The potential difference causes the
movement of H+ and Ca2+ ions across the cell membrane. The diffusion of
Ca2+ into the cell causes an influx of water into the cell (due to a decrease
in a quantity called the ‘water potential’ of the cell). Develop an expression
to relate the influx of water to the generated potential difference.

8. In Mimosa pudica (the touch-me-not plant), pulvinar movement, which
causes the closure of the leaves, is caused by the changes in the turgor
pressure. This is triggered by the efflux of potassium from the surrounding
cells, followed by an efflux of water, resulting in a sudden change in the
turgor pressure of the cells in the pulvinus. The membrane potential of the
cells that is observed during this process at 30 °C is 130 mV compared to
a resting potential of 105 mV. If the extracellular K+ ion concentration can
be assumed to be approximately constant during this process, at 5 mM, what
percent of the K+ ions are being transported out?

9. For an initial estimate, assume that the small intestine is a straight tube.
Develop an expression for the steady state concentration profile of a tonic
in the small intestine, if it is getting absorbed in the small intestine when the
contents move forward with a velocity, vz.

10. Pitcher pots (made of burnt clay with microscopic pores) cool water by
evaporative cooling – the water in the pot diffuses out through the pores
in the clay pot container, and when they evaporate from the surface into the
surrounding atmosphere, they use the internal energy of water to provide
the latent heat of vaporisation. The consequent reduction in the internal
energy of water, reduces its temperature to a comfortable value for a pleasant
drinking experience. A modification of the above, which was apparently
practised by ancient Jain monks, involves closing a container (not necessarily
a clay pot) filled with water with a thick cotton plug, and hanging the
container, inverted. The water seeps through the cotton at larger rates
compared to a regular clay surface, and cools the water inside faster through
evaporative cooling. Find an expression for the time taken for the water
inside to reach a desired temperature Tf. Take the water permeability across
the cotton plug as k, thickness of the plug d, water viscosity P, water
density ρ, water specific heat capacity s, vessel of cylindrical cross-section
of cross-sectional area A, and height h, initial water temperature Ti, latent
heat of vaporisation V. (Hint: Also use Darcy’s law.)

11. In a pilot-scale bioreactor, air is bubbled into a broth to provide oxygen to
the aerobic organisms growing in it. The overall oxygen transfer coefficient



is determined to be 2.7 × 10–5 cm s–1. Consider one bubble of diameter 5 mm
which rises up the broth (predominantly water) of 1.5 m, at a velocity of
1 ms–1. Estimate the amount of oxygen transferred from the bubble to the
broth when the bubble rises. Also, assume equilibrium conditions. The
density of air in the air bubble can be assumed to be 1.29 kg m–3.

12. Perspiration is the mechanism by which human bodies lose excess heat. On
a hot day, when the ambient temperature is 40 °C, assume that the thermal
energy gained by the body is only by conduction through its skin. Neglect
any metabolic heat generation. Estimate the needed rate of perspiration to
maintain the body temperature at 37 °C. Approximate a human body to a
cylinder of height 1.6 m, with a total skin area of 1.8 m2. The average thickness
of the skin is 4 mm, and its thermal conductivity is 0.3 W m–1 K–1.

Some of the exercise problems above were suggested/formulated by T. Avaneesh,
Sonia Chottani, Ramaganesh, Roopteja, Moutushi Das (1), Shruthy Suresh, Purnima
Padmanabhan (2), Bhavin Chandarana, Navya, Deepanjali, Vishal (3, 4), Chaitra
Prabhakar, Ashritha Durvasula, Pasupuleti Sai Shalini, K.M. Sandeep, Sattu
Kishore (5), Praneet Kumat, Mandati Kumar, Amarnath M. Bhat, B. Mohan
Santosh, Partha Sarathi Pati (6), Uma Maheswari, Namrata Kamat, Kiran, Kemun
Khimun, Rashmi Kumari (7, 9), P. Raghavendran, P. Vivek, K. Ramasamy,
M. Ashok (8, 12), Vinay Lathi, Vishnu Nair, Amit Agarwal and Pavan Kumar
Allada (10).
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Appendix 1
Background on Vectors and Tensors

We know from the knowledge gained in higher secondary school that
vectors are quantities that represent magnitude and direction. Thus, velocity,
acceleration, force, momentum, etc., are vector quantities. We need to
follow a set of rules that are different from those for numbers, to
mathematically manipulate vectors. In this appendix, we will discuss some
of these rules.

Consider a vector v
�

 in the rectangular coordinate system, which is
intuitive. Let the components of the vector (scalars) in the three directions
x, y, z be vx, vy, vz and the unit vectors (of magnitude 1) in the same three

directions be îx, îy, îz (which are sometimes represented as î, ĵ, k̂ ). We
know that we can represent the vector as

x x y y z zv v î v î v î= + +�

(A1-1)

We can express vector manipulations in compact mathematical forms by the
use of îx = î1, îy = î2, îz = î3. Similarly, for the magnitudes too. Thus, we
can write the vector as

3
1 1 2 2 3 3 1 k kk

v v î v î v î v î
=

= + + =∑
�

(A1-2)

Although we concern ourselves with a maximum of three dimensions in this
book, it can be appreciated that this notation is general enough to be used
even when the number of dimensions exceeds three, as in some areas of
physics and mathematics.

Addition

The addition of three vectors, u
�

, v
�

 and w
�

 (can be extended to any number
of vectors) can be represented in terms of its components as
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1 1 1 1 2 2 2 2 3 3 3 3( ) ( ) ( )u v w u v w î u v w î u v w î+ + = + + + + + + + +� � �

Thus, in a compact form

3

1
( )k k k kk

u v w u v w î
=

+ + = + +∑
� � �

(A1-3)

Scalar (Dot) Product

The dot product between two vectors u
�

, v
�

, can be represented as

1 1 2 2 3 3 1 1 2 2 3 3

1 1 1 1 1 2 1 2 1 3 1 3 2 1 2 1

· [ ] · [ ]

[ · ] [ · ] [ · ] [ · ]

u v u î u î u î v î v î v î

u v î î u v î î u v î î u v î î

= + + + +
= + + + +}

� �

Let us recall that the dot product between two vectors equals the product
of the magnitude of the two vectors and the cosine of the angle between
them. Thus, the dot product between two unit vectors in the Cartesian
coordinate system is either 1 or 0 depending on whether they are in the
same direction (cos 0° = 1) or perpendicular (cos 90° = 0) to each other,
respectively. Thus, the only terms that remain are

1 1 1 1 2 2 2 2 3 3 3 3· [ · ] [ · ] [ · ]u v u v î î u v î î u v î î= + +� �

In compact notation

3 3

1 1

3 3

1 1

3

1

· ·

[ · ]

k k j jk j

k j k jk j

k kk

u v u î v î

u v î î

u v

= =

= =

=

   =       

=

=

∑ ∑

∑ ∑

∑

� �

(A1-4)

The Kronecker delta kjG  which is defined as

1, if

0, if

kj

kj

k j

k j

G = =

G = z (A1-5)

can be used in compact representations. For example, it can be seen by
going through the indices, that

·k j kjî î = G (A1-6)

Thus

3 3 3

1 1 1
· k j kj k kk j k

u v u v u v
= = =

= G =∑ ∑ ∑
� �

(A1-7)
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Vector (Cross) Product

On the same lines as above (we need to write individual components until
we feel confident about the compact notation to do manipulations directly

with it), the cross product between two vectors, , ,u v
� �

 can be represented

as

3 3 3 3

1 1 1 1
[ ]k k j j k j k jk j k j

u v u î v î u v î î
= = = =

   u = u = u      ∑ ∑ ∑ ∑
� �

(A1-8)

Let us recall that the cross product between two unit vectors is the product
of their magnitudes and the sine of the angle between them – this could be
0 or 1 depending on whether they are in the same direction (sin 0° = 0)
or perpendicular (sin 90° = 1) to each other, respectively. The direction of
the resultant vector would be perpendicular to both the unit vectors, i.e. in
the direction of the third coordinate; +ve or –ve direction depends on the
order in which the cross product is taken. In a right-handed Cartesian
coordinate system, we know that

[ ] 0 ifk jî î k ju = =

and

1 2 3 2 3 1 3 1 2[ ] ; [ ] ; [ ]î î î î î î î î îu = u = u = (A1-9)

The alternating unit tensor �kjl which is defined as

�kjl = + 1 if jkl = 123, 231 or 312
�kjl = – 1 if jkl = 321, 213 or 132
�kjl = 0 if j = k, k = l or j = l (if any two indices are the same)

(A1-10)

can be used in compact notations too. For example

3

1
[ ]j k kjl ll
î î î

=
u = �∑ (A1-11)

One can expand the terms in Eq. A1-11 and check that it represents
Eq. A1-9 completely, in a more compact form.

Thus

      
3 3 3

1 1 1
[ ]k j k j k j kjl lk j l

u v u v î î u v î
= = =

u = u = �∑ ∑ ∑
� �

(A1-12)

Now, using the relations in Eq. A1-9, the terms that remain in the expansion
of Eq. A1-11 are

2 3 3 2 1 1 3 3 1 2 1 2 2 1 3( ) ( ) ( )u v u v u v î u v u v î u v u v îu = − − − + −� �

which can be conveniently evaluated as a determinant.
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1 2 3

1 2 3

1 2 3

î î î

u v u u u

v v v

u =� �

(A1-13)

Gradient

The gradient (also known as the differential operator) is a vector. The
gradient, by itself, has no physical meaning, but when it operates on a scalar

or a vector, it can be physically interpreted. A gradient is represented by ∇
�

and is defined in the rectangular Cartesian coordinate system as

3
1 2 3 1

1 2 3
kk

k

î î î î
x x x x=

∂ ∂ ∂ ∂∇ = + + =
∂ ∂ ∂ ∂∑

�

(A1-14)

The gradient of a scalar, say density ρ becomes

3

1 kk
k

î
x=

∂ρ∇ρ =
∂∑

�

(A1-15)

Since the gradient is a vector, it has to vectorially operate on another vector.
The dot product of the gradient on a vector v

�

 is called the divergence of
the vector .v

�

 It is represented as

3 3 3

1 1 1
· · k

k j jk j k
k k

v
v î v î

x x= = =

∂∂   ∇ = =    ∂ ∂ 
∑ ∑ ∑

�

�

(A1-16)

If the reader is uncomfortable at this stage with the compact notation
above, it is suggested that the terms be expanded completely, so that the
reader is convinced.

The gradient in cylindrical/spherical coordinate systems can be found
by appropriate transformations, as given in a later sub-section of this appendix.

Laplacian Operator

The Laplacian operator ∇2 is defined as ∇
�

·∇
�

 (note that the dot product
results in a scalar). It can be represented as

2
32

21
·

k
kx=

∂∇ = ∇ ∇ =
∂∑

� �

(A1-17)
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When the Laplacian operates on a scalar, say ρ

2
32

21k
kx=

∂ ρ∇ ρ =
∂∑ (A1-18)

When the Laplacian operates on a vector, say, v
�

 in rectangular Cartesian
coordinates, we get

22
3 3 32

2 21 1 1

j
jk k j

k k

vv
v î

x x= = =

∂∂∇ = =
∂ ∂∑ ∑ ∑

�

�

(A1-19)

For curvilinear coordinates (cylindrical, spherical), appropriate transformations,
as given in a later sub-section in the appendix, need to be used.

Tensors

We saw that a vector has three components. Some physical quantities such
as the stress that we saw in Chapter 3, need nine components. Another
quantity that also needs nine components is the dyadic product of two
vectors. We will introduce another concept now called order. The second
order tensor is a mathematical abstraction that can be used to represent
physical quantities that need nine components. Thus, a vector can be
considered a ‘first order tensor’ with three components.

The tensor quantities seen in Chapter 3 were the stress tensor

11 12 13

21 22 23

31 32 33

or

xx xy xz

yx yy yz

zx zy zz

W W W  W W W 
   W = W W W W W W   

   W W WW W W   

� (A1-20)

and the dyadic product of two vectors, v
�

 and w
�

 represented as

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

or

x x x y x z

y x y y y z

z x z y z z

v w v w v w v w v w v w

vw v w v w v w v w v w v w

v w v w v wv w v w v w

   
   =    

  
  

��

(A1-21)

Thus, the dyadic product of unit vectors can be expressed as

1 1

1 0 0

0 0 0

0 0 0

î î

 
 =  
 
 

(A1-22)
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1 2

0 1 0

0 0 0

0 0 0

î î

 
 =  
 
 

(A1-23)

1 3

0 0 1

0 0 0

0 0 0

î î

 
 =  
 
 

(A1-24)

and so on. These are called unit dyads.

There would be six other possible unit dyads for three dimensions: 2 1,î î

2 2 ,î î  2 3,î î  3 1,î î  3 2 ,î î  3 3.î î

Thus, the tensor W�  can be expressed in a compact form as the sum
of the products of its component with the unit dyads.

11 12 33

1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1

     
     W = W + W +}+ W     
     
     

�

In other words, the tensor can be expressed in a compact form as

3 3

1 1
( )jk j kj k

î î
= =

W = W∑ ∑� (A1-25)

Now, let us look at the components of some operations involving tensors.

Tensor Addition of Two Tensors �W  and �Z

11 11 12 12 13 13

21 21 22 22 23 23

31 31 32 32 33 33

W + Z W + Z W + Z 
 W + Z = W + Z W + Z W + Z 
 W + Z W + Z W + Z 

�� (A1-26)

3 3

1 1
( )jk jk j kj k

î î
= =

W + Z = W + Z∑ ∑�� (A1-27)

Multiplication of a Tensor �W  by a Scalar s

3 3

1 1
( )jk j kj k

s s î î
= =

W = W∑ ∑� (A1-28)

If the above compact form is not clear, it will be good to write down the
expansion, term wise, to see how the compact form captures the expansions.
Further, some identities given later, may be needed to arrive at the final
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forms starting from the compact expressions of the terms involved in the
operation. In this particular operation, essentially, each term in the tensor
components (in the matrix), gets multiplied by the scalar s. We will use the
compact forms from now on, and the reader who is not comfortable as yet
is recommended to expand each term in terms of the tensor components
and unit dyads, to understand better.

Scalar Product (Also Known as the Double Dot Product) of Two
Tensors �W  and �Z

The double dot product between two tensors results in a scalar whose value
is obtained as

3 3

1 1
: ( )jk kjj k= =

W Z = W Z∑ ∑�� (A1-29)

Tensor Product (Also Known as the Single Dot Product) of Two
Tensors �W  and �Z

The result of the tensor product between two tensors is a tensor. The
components of the resulting tensor are obtained as follows: the jkth element
of the resulting tensor is equal to the sum of the products of the corresponding

elements of the jth row of W�  and the kth column of .Z�

� �3 3 3

1 1 1
· jl lk j kj k l

î î
= = =

W Z = W Z∑ ∑ ∑�� (A1-30)

The dot product between a tensor W�  and a vector u
�

 (note that a vector
is a first order tensor) results in a vector whose components are obtained
as follows: the jth element in the resulting vector is equal to the sum of the

products of the corresponding elements of the jth row of W�  and the (say

the) column components of u
�

. In compact notation

3 3

1 1
· ( )jk k jj k
u u î

= =
W = W∑ ∑

�
� (A1-31)

Gradient of a Vector

We had earlier discussed the gradient of a scalar. The gradient of a vector
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is a dyadic product between the gradient (differential operator) and the

vector .v
�

 Thus

3 3

1 1 k j kj k
j

v v î î
x= =

∂ ∇ =  ∂ 
∑ ∑

�

�

(A1-32)

Properties and Identities

The following properties and identities involving vectors and tensors are
useful. The compact forms of the various vector and tensor operations
described above can be derived from the individual compact forms of the
tensors and vectors involved in the operations by using some of the identities
below.

· ·u v v u=
� � � � (A1-33)

( · ) ( · )u v w u v wz� � � � � � (A1-34)

· ( ) ( · ) ( · )u v w u v u w+ = +� � � � � � � (A1-35)

The reader can recognise that the laws applicable to normal algebraic
operations may not be applicable to vector operations. For example, the dot
product between vectors is commutative (Eq. A1-33) and distributive
(Eq. A1-35), but not associative (Eq. A1-34). On the other hand, the cross
product between vectors is neither commutative (Eq. A1-36) nor associative
(Eq. A1-37), but is distributive (Eq. A1-38). One can recall that addition of
vectors is commutative and associative; multiplication of a vector by a
scalar is commutative, associative and distributive.

but ( )u v v u v uu z u = − u� � � � � � (A1-36)

( ) ( )u v w u v wu u z u u� � � � � � (A1-37)

( ) ( ) ( )u v w u w v w+ u = u + u� � � � � � � (A1-38)

The gradient of a scalar is neither commutative nor associative, but is
distributive, as shown below. Note that r and s are scalars.

s s∇ z ∇
� � (A1-39)

( ) ( ) but ( ) ( )r s r s r s s r∇ z ∇ = ∇ + ∇
� � � �

(A1-40)

( )r s r s∇ + =∇ +∇
� � �

(A1-41)

The divergence of a vector is neither commutative nor associative, but
is distributive, as shown below.

· ·u u∇ z ∇
� �

� � (A1-42)
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· ·su s u∇ z ∇
� �

� � (A1-43)

· ( ) ( · ) ( · )u v u v∇ + = ∇ + ∇
� � �

� � � � (A1-44)

Dyadic multiplication is neither commutative nor associative, but is
distributive.

uv vuz
�� �� (A1-45)

· ( ) ( ) ·u vw uv wz� �� �� � (A1-46)

( ) ( ) ( )u v w uv uw+ = +� � � �� � � (A1-47)

Identities

( · )j k l j klî î î î= G (A1-48)

( · )j k l jk lî î î î= G (A1-49)

( · )j k l m kl j mî î î î î î= G (A1-50)

( : )j k l m jm klî î î î = G G (A1-51)

( · ) ( · )uv w u v w=�� � � � � (A1-52)

( · ) ( · )u vw u v w=� �� � � � (A1-53)

( ) ( · ) ( · )u v w v u w w u vu u = −� � � � � � � � � (A1-54)

· ( ) · ( )u v w v w uu = u� � � � � � (A1-55)

( : ) ( · )( · )uv wz u z v w=�� � � � �� � (A1-56)

( : ) ( · ) ·uv u vW = W�� � �
� � (A1-57)

( : ) · ( · )uv u vW = W�� � �
� � (A1-58)

     ( · ) ( · ) ( · ) ( ) ( )u v u v v u u v v u∇ = ∇ + ∇ + u ∇u + u ∇u
� � � � �

� � � � � � � � � � (A1-59)

· ( · ) ( · )su s u s u∇ = ∇ + ∇
� � �

� � �

(A1-60)

( ) ( )su s u s u∇u = ∇ u + ∇u
� � �

� � �

(A1-61)

0s∇u∇ =
� �

(A1-62)

( ) ( ) ( )u v u v∇u + = ∇u + ∇u
� � �

� � � �

(A1-63)

· ( ) · ( ) · ( )v w w v v w∇ u = ∇u − ∇u
� � �

� � � � � �

(A1-64)
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( ) ( · ) ( · ) ( · ) ( · )u v u v v u v u u v∇u u = ∇ − ∇ + ∇ − ∇
� � � � �

� � � � � � � � � �

(A1-65)

1
( ) ( · ) ( · )

2
u u u u u u∇u u = ∇ − ∇

� � �

� � � � � �

(A1-66)

· 0u∇ ∇u =
� �

�

(A1-67)

( · ) ( · ) ( · )vw v w w v∇ = ∇ + ∇
� � �

�� � � � �

(A1-68)

Transformation of Coordinates

Curvilinear coordinates such as cylindrical (r, θ, z) or spherical (r, θ, φ)
coordinates significantly simplify the formulation of the problem equation
and boundary conditions in many situations. How do we convert an equation
in Cartesian coordinates to curvilinear coordinates?

Let us first consider the cylindrical system. The relationship between
the coordinates of a point in Cartesian coordinate (x, y, z) and cylindrical
(r, θ, z) systems is given in Fig. A1-1.

From the right triangle, OBC, it can be written that

x = r cos θ (A1-69)

y = r sin θ (A1-70)

And, with the realisation that the z coordinate (effectively) remains the
same, we can write

z = z (A1-71)

θ
A

B

CO x

r

z

(x, y, z) or (r, θ, z)

Fig. A1-1 Geometrical
relationship between
coordinates of a point in
rectangular Cartesian
coordinate and cylindrical
systems
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The reverse transformation of the above, i.e. from cylindrical coordinates
to rectangular Cartesian coordinates, can also be written from the geometry
of the right triangle OBC or from the above three equations as

2 2r x y= + + (A1-72)

1tan
y

x
−  θ =  
 

(A1-73)

z = z (A1-74)

Now, let us do the same for the spherical coordinate system. The relationship
between the coordinates of a point in Cartesian coordinate (x, y, z) and
spherical (r, θ, φ) systems are given in Fig. A1-2. Note that θ is the angle
of the radius connecting the point to the origin from the z axis, and φ is
the angle between the projection of the same radius on the xy plane and the
x-axis.

From the right triangle OED we get

ED = r sin θ   which = OB (A1-75)

From the right triangle, OBC, we can see that

x = OB cos φ

From Eq. A1-75, we can write the above equation as

x = r sin θ cos φ (A1-76)

From the same right triangle OBC, we can also write that

y = r sin θ sin φ (A1-77)

O C x

A
Bθ

φ

D
Ey

z

(x, y, z) or (r, θ, φ)

r

Fig. A1-2 Geometrical
relationship between
coordinates of a point
in rectangular Cartesian
coordinate and
spherical systems
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And, from the right triangle OED, we get

z = r cos θ (A1-78)

The reverse transformation of the above, i.e. from spherical coordinates to
rectangular Cartesian coordinates, can also be written from the 3D geometry,
or from the above three equations as

2 2 2r x y z= + + + (A1-79)

2 2
1tan

x y

z
−
 +
 θ =
 

(A1-80)

1tan
y

x
−  φ =  
 

(A1-81)

Next, let us see the transformation of vectors. With that we would have
sufficient information to transform an equation, which is our objective.

Let us first consider the transformation to cylindrical coordinates. To
understand this better, let us consider transformation of the unit vectors
between the two coordinate systems. Once the unit vector transformation
is understood, it is trivial to transform any vector since a vector is written
in terms of the product of the unit vectors and components in the
corresponding directions, i.e.

x x y y z zv v î v î v î= + +�

 (in rectangular Cartesian coordinates) (A1-82)

       r r z zv v î v î v îθ θ= + +�

 (in cylindrical coordinates) (A1-83)

Figure A1-3 represents the unit vectors in the two coordinate systems at a
point in space.

Now, let us look at the plane, z = constant, that contains the unit
vectors rî  and .îθ  In other words, let us look at Fig. A1-3 from the top.
The unit vectors are related as given in Fig. A1-4.

Figure A1-5 shows how the parallelogram law of addition is used for
the relevant vectors in this context.

From the figure, we can write

(cos ) (sin )r x yî î î= θ + θ (A1-84)

If we consider the above in a 3D situation, since there is no contribution
from the z direction, we can represent the unit vectors, for completeness,
as

(cos ) (sin ) (0)r x y zî î î î= θ + θ + (A1-85)



Appendix 1: Background on Vectors and Tensors 247

Fig. A1-3 Relationship between
the unit vectors in rectangular
Cartesian coordinates and in
cylindrical coordinates. Note that
the unit vectors in the z-direction
in both the coordinate systems,
although distinct in meaning,
overlap each other

A
B

O C x
θ

z
zî

yî rî

xî
îθ

yî

rî

xî

îθ

θ

θ

Fig. A1-4 Top view
of Fig. A1-3

Fig. A1-5 Addition
of the relevant
vectors by
parallelogram law
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Similarly, we can write

( sin ) (cos ) (0)x y zî î î îθ = − θ + θ + (A1-86)

And from Fig. A1-3, it is clear that the unit vectors in the z direction are
similar, i.e.

(0) (0)z x y zî î î î= + + (A1-87)

Equations A1-85 to A1-87 provide the transformation equations to transform
vectors from rectangular Cartesian to cylindrical coordinates. A similar
geometrical exercise, but with the unit vectors in the cylindrical coordinates
as the base, would yield the reverse transformation for vectors from cylindrical
to rectangular Cartesian coordinates. The reverse transformation equations
are (the reader is encouraged to work out the details of the geometry on
the same lines as above)

(cos ) ( sin ) (0)x r zî î î îθ= θ + − θ + (A1-88)

(sin ) (cos ) (0)y r zî î î îθ= θ + θ + (A1-89)

(0) (0) (1)z r zî î î îθ= + + (A1-90)

Now, let us consider spherical coordinates. Unlike cylindrical coordinates,
which by its very nature allowed us to understand the transformation by
considering two effective dimensions (z was similar), we need to consider
manipulations in three dimensions for the transformation of a vector in
rectangular Cartesian coordinates to that in spherical coordinates. Let us
again consider a unit vector in the r direction, for illustration, and then
extend the same to the other two unit vectors (Fig. A1-6).

O C x

A
Bθ

φ

DEy

z
zî

yî rî

xî

Fig. A1-6 The unit
vector in the r direction
in spherical coordinates
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From Fig. A1-7, it can be seen that addition of the vectors OC,
����

 OA,
����

OE
����

 results in ,rî  according to the parallelepiped law.

OC = OB cos φ = ED cos φ = (OD sin θ) cos φ

OD is the magnitude of the unit vector rî  and, thus, equals 1.
Therefore OC = (sin θ) cos φ and

OC (sin )cos xî= θ φ
����

By similar trigonometric arguments

OA (sin )sin

OE cos

y

z

î

î

= θ φ

= θ

����

����

Thus

(sin )cos (sin )sin cosr x y zî î î î= θ φ + θ φ + θ (A1-91)

By similar geometric arguments, the other two unit vectors in spherical
coordinates can be written in terms of the unit vectors in the rectangular
Cartesian coordinates as

(cos ) cos (cos )sin ( sin )x y zî î î îθ = θ φ + θ φ + − θ (A1-92)

( sin ) cos (0)x y zî î î îφ = − φ + φ + (A1-93)

The reverse transformation from spherical coordinates to rectangular Cartesian
coordinates, through similar arguments, but by taking the unit vectors in the
spherical coordinates as the base, would yield

O C

A
B

θ

φ

D

E

zî

rî
yî

xî

Fig. A1-7 Addition of
the components in the
x, y and z directions
in three dimensions by
the parallelepiped law

to get rî
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(sin )cos (cos )cos ( sin )x rî î î îθ φ= θ φ + θ φ + − φ (A1-94)

(sin )sin (cos )sin (cos )y rî î î îθ φ= θ φ + θ φ + φ (A1-95)

(cos ) ( sin ) (0)z rî î î îθ φ= θ + − θ + (A1-96)

Let us recall that any vector can be written in terms of scalars (component
magnitudes) and the unit vectors in the relevant directions as shown in
Eq. A1-1 or Eq. A1-2.

So far, we have seen the transformation of position, and vectors between
coordinate systems; we considered only the rectangular Cartesian, cylindrical
and the spherical coordinate systems for transformation, all of which are
orthogonal systems, i.e. the unit vectors in each of these systems are
perpendicular to each other. For our purposes, with transformation of the
derivatives, we will have enough bases to attempt transformation of the
relevant equations.

To see the relevance better, let us choose to convert the equation of
continuity given in Cartesian coordinates to curvilinear coordinates. First,
we must write the equation in terms of its components, in which the
derivatives of scalar components are present. Our general strategy for the
transformation is to use the relevant expressions in the curvilinear coordinates,
for the corresponding terms in the Cartesian coordinate system.

We had derived the equation of continuity in terms of rectangular (x,
y, z) coordinates. To recall, in its expanded form (it is good to start with
expanded forms for our strategy given below to work well), it was

0x y zv v v
t x y z

∂ρ ∂ ∂ ∂ + ρ + ρ + ρ = ∂ ∂ ∂ ∂ 
(A1-97)

To transform the coordinates, the chain rule of partial differentiation can be
used.

For example, let us consider

vx = f (r, θ, z) (A1-98)

As seen earlier, each of the cylindrical coordinates (r, θ, z) can be considered
as a function of x, y, z. The actual functionality may not depend on all three,
i.e. x, y and z for each one of the cylindrical coordinates. In the interest of
a generalised approach which can also be applied to spherical coordinates,
it will be good to consider the complete functionality now. Later, the actual
functionality can be considered in detail to cancel the irrelevant terms.

Taking the partial derivative of vx w.r.t. x at constant y, z (see Eq. A1-98
for the dependence), we can write

  
, , , , , , ,

x x x x

y z z y z r z y z r y z

v v v vr z

x r x x z xθ θ

∂ ∂ ∂ ∂∂ ∂θ ∂            = + +             ∂ ∂ ∂ ∂θ ∂ ∂ ∂             
(A1-99)
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Since z in cylindrical coordinates is independent of x, the last term on the
RHS of the above equation is 0. Thus

, , , , ,

x x x

y z z y z r z y z

v v vr

x r x xθ

∂ ∂ ∂∂ ∂θ        = +         ∂ ∂ ∂ ∂θ ∂         
(A1-100)

Now, the above steps for vy and vz would yield

,, , , ,

y y y

r zx z z x z x z

v v vr

y y y yθ

∂ ∂ ∂     ∂ ∂θ   = +        ∂ ∂ ∂ ∂θ ∂        
(A1-101)

, , , , , , ,

z z z z

x y z x y r z x y r y z

v v v vr z

z r z z z zθ θ

∂ ∂ ∂ ∂∂ ∂θ ∂            = + +             ∂ ∂ ∂ ∂θ ∂ ∂ ∂             

As seen earlier, r and θ depend only on x and y, and if they are held

constant, 
,x y

r

z

∂ 
 ∂   = 0 and 

,x yz

∂θ 
 ∂   = 0.

Therefore

, ,

z z

x y r

v v

z z θ

∂ ∂   =   ∂ ∂   
(A1-102)

Now, let us consider a vector

x x y y z zv v î v î v î= + +�

 (in rectangular Cartesian coordinates) (A1-82)

r r z zv v î v î v îθ θ= + +�

 (in cylindrical coordinates) (A1-83)

Extending the arguments made earlier in this section for the unit vectors,

to the components of the vector ,v
�

 the relationships given in Fig. A1-8 can
be appreciated.

r r rv v î=�

v v îθ θ θ=�

θ

θ
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)
y
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v

v
î

θ
=

θ
�

(s
in

)
y

r
y

v
v

î
=

θ
�

(cos )x r xv v î= θ�

(sin )( )x xv v îθ= θ −�

Fig. A1-8 Relationship
between the vector
components in
rectangular Cartesian
coordinate and
cylindrical coordinate
systems (z direction
is irrelevant for the
current argument)
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From Fig. A1-8, it is clear that xv
�

 has contributions from both rv
�

 and

vθ
�

 and so does yv
�

.  It can also be appreciated that the magnitudes can be
expressed as

vx = vr cosθ – vθ sinθ (A1-103)

vy = vr sinθ – vθ cosθ (A1-104)

vz = vz (A1-105)

Substituting Eqs. A1-103 to A1-105 in the various terms in the RHS of
Eqs. A1-100 to A1-102 and differentiating, we get

,
cos sinx r

z

v vv

r r r
θ

θ

∂ ∂∂  = θ − θ ∂ ∂ ∂ 
(A1-106)

,
sin cos cos sinx r

r
r z

v vv
v v θ

θ
∂ ∂∂  = − θ+ θ− θ− θ ∂θ ∂θ ∂θ 

(A1-107)

,
sin cosy r

z

v vv

r r r
θ

θ

∂  ∂∂= θ + θ ∂ ∂ ∂ 
(A1-108)

,
cos sin sin cosy r

r
r z

v vv
v v θ

θ
∂  ∂∂= θ + θ − θ + θ ∂θ ∂θ ∂θ 

(A1-109)

For the remaining terms on the RHS of A1-100 to A1-102, let us use
Eqs. A1-72 to A1-73.

� �
� �

2 2

2 2, ,

1 2
cos

2y z y z

x yr x x

x x rx y

 ∂ +∂   = = = = θ   ∂ ∂    +
(A1-110)

1

2 22
, ,

tan
1 1 sin

1
y z y z

y
yx y

x x rx ry

x

−   ∂    ∂θ − θ      = = − = = −     ∂ ∂        +  
  

(A1-111)

� �
� �

2 2

2 2
, ,

1 2
sin

2x z x z

x yr y y

y y rx y

 ∂ +∂   = = = = θ   ∂ ∂    +
(A1-112)

1

22
, ,

tan
1 1 cos

1x z x z

y
xx

y y x rry

x

−   ∂    ∂θ θ      = = = =    ∂ ∂        +  
  

(A1-113)
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Now, we know that

. yx z
vv v

v
x y z

∂ ∂ ∂   ∇ = + +     ∂ ∂ ∂    

�

� (A1-114)

Writing Eq. A1-114 in terms of Eqs. A1-100 to A1-102, with terms substituted
from Eqs. A1-106 to A1-113, we get

,

. cos sin cos

sin
sin cos cos sin

sin cos sin

cos
cos sin sin cos

r

r
r

r

r
r

z

r

vv
v

r r

vv
v v

r

vv

r r

vv
v v

r

v

z

θ

θ
θ

θ

θ
θ

θ

 ∂∂ ∇ = θ − θ θ ∂ ∂ 

∂ ∂ − θ  + − θ + θ − θ − θ   ∂θ ∂θ    

 ∂∂ + θ + θ θ ∂ ∂ 

∂ ∂ θ  + θ + θ − θ + θ   ∂θ ∂θ    

 ∂  +   ∂ 

�

�




The RHS of the above equation, through cancellation of the +ve and –ve
terms, and grouping of the relevant terms, can be written as

2 2
2 2 2 2 (sin cos )

(cos sin ) (sin cos )r r zvv v v

r r r z
θ∂∂ ∂θ + θθ + θ + θ + θ + +

∂ ∂θ ∂
or

1r r zvv v v

r r r z
θ∂∂ ∂ + + + ∂ ∂θ ∂ 

or

( )1 1
. r zvr v v
v

r r r z
θ∂∂ ∂∇ = + +

∂ ∂θ ∂

�

� (A1-115)

A common error occurs with the user not realising that .v∇
�

�

 z 
( )rv

r

∂
∂

 +

vθ∂
∂θ

 + .zv

z

∂
∂

Thus, the equation of continuity in cylindrical coordinates is

( )( ) ( )1 1
0r zvr v v

t r r r z
θ∂∂ ρ ∂ ρ∂ρ + + + =

∂ ∂ ∂θ ∂
(A1-116)
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To obtain an expression for ∇
�

 in cylindrical coordinates, let us start with

x y zî î î
x y z

∂ ∂ ∂     ∇ = + +    ∂ ∂ ∂    

�

and write the various terms in the above equation in terms of the equivalent
terms in the cylindrical coordinate system, as done in the derivation for

. .v∇
�

�

 We get

1
r zî î î

r r zθ
∂ ∂ ∂     ∇ = + +     ∂ ∂θ ∂     

�

(A1-117)

Similar derivations as above (all three dimensions would be relevant here as
in the case of position), can be done for spherical coordinates with the
recognition that

vx = vr sinθcosφ + vθ� cosθcosφ – vφ� sinφ (A1-118)

vy = vr sinθsinφ + vθ� cosθsinφ + vφ� cosφ (A1-119)

vz = vr cosθ – vθ� sinθ (A1-120)

and

vr = vx sinθcosφ + vy sinθsinφ + vz cosθ (A1-121)

vθ = vx cosθcosφ + vy cosθsinφ – vz sinθ (A1-122)

vφ = – vx sinφ + vy cosφ (A1-123)

yields the following as the equation of continuity in spherical coordinates

2

2

( )( sin )( )1 1 1
0

sin sin
r vvr v

t r r rr

φθ ∂ ρ∂ ρ θ∂ ρ∂ρ + + + =
∂ ∂ θ ∂θ θ ∂φ

(A1-124)

and

1 1

sinrî î î
r r rθ φ
∂ ∂ ∂∇ = + +
∂ ∂θ θ ∂φ

�

(A1-125)



Appendix 2
Derivation of Fick’s First Law

Fick’s first law in one dimension (say x) can be derived as follows:
Let us consider an ideal gas at a particular absolute temperature T and

let us say that we are interested in the flux of the gas molecules across a
plane, a yz plane, located at z = 0. Flux, which is the amount of a substance,
or the number of molecules of the substance, transferred across a unit area
perpendicular to the direction of transfer, per unit time, can be given by

Number density × Velocity (A2-1)

or

Number of molecules
Velocity

Volume
u

or

3 2

Number m Number

sm m s

     u =    
    

Thus, the flux in the x direction for a population of molecules can be written
as

0
( )x x x xJ N v f v dv

f
= ∫ (A2-2)

where N is the number density function and f (vx) is the speed distribution
function, since in a population of molecules, each molecule would have a
different speed, and therefore there exists a distribution of speeds.

The Maxwell speed distribution (MSD) for an ideal gas, in one dimension
is given by

0.5 2

( ) exp
2 2

x
x

B B

mvm
f v

k T k T

 − =     S   
(A2-3)

where m is the mass of the molecule and kB is the Boltzmann constant.



Equation A2-3 is obtained from the Boltzmann distribution of energies
in an ideal gas at an absolute temperature T i.e.

( ) exp
E

f E A
RT

− =  
 

(A2-4)

Substitution of the MSD in Eq. A2-2 and further simplification yields

0.5

2
B

x
k T

J N
m

 =  S 
(A2-5)

In other words, from the kinetic theory of gases

avg

4x

v
J N= (A2-6)

where vavg is the average speed of the molecules.
Also, from the kinetic theory of gases, the mean free path of the gas

molecules O is the average distance travelled by a typical gas molecule in
between two sequential collisions with other gas molecules. Let us consider
two planes, parallel to the plane at x = 0, located at a distance of O from the
plane at x = 0. The x positions of the planes would be – O and + O, respectively.
The volume between these two planes is our system of interest, and we can
do a number balance on the molecules entering and leaving the system.

Thus, the net flux in the x direction would be the flux of molecules into
the system through the plane at x = – O and the flux of molecules exiting
the system through the plane at x = + O. Thus

Jx, net = Jx = –O – Jx = +O (A2-7)

Using Eq. A2-6 in Eq. A2-7 we can write

avg avg
, net 4 4

x xx

v v
J N N=−O =+O= − (A2-8)

Using a Taylor expansion for N, and ignoring the second and other higher
order terms in the expansion, we get

0
0

x x
x

dN
N N

dx
=+O =

=
= + O (A2-9)

0
0

x x
x

dN
N N

dx
=−O =

=
= − O (A2-10)

Substitution of Eqs. A2-10 and A2-9 in Eq. A2-8 yields

avg
, net avg

0 0

1
2

4 2x
x x

vdN dN
J v

dx dx= =
= − O = − O (A2-11)
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In the above, we assumed that all the molecules leaving the x = – O plane
arrive at the x = 0 plane. But, the thermal motion of gas molecules is
completely random. Hence, an orientation average of the mean free path
shows that only 2/3 of molecules leaving the x = – O plane will arrive at
the x = 0 plane. Thus

, net avg avg
0 0

2 1 1

3 2 3x
x x

dN dN
J v v

dx dx= =

      = − O = − O      
      

Thus

, net
0

x
x

dN
J D

dx =
= − (A2-12)

which is Fick’s first law with avg
1

.
3

D v = O 
 
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Appendix 3
Diffusivity in Concentrated Solutions

As mentioned in Chapter 2, the primary driving force for mass flux being
a concentration difference is only a first approximation which works well
as long as we are restricted to fluxes in a single phase (gas, liquid or solid)
at dilute concentrations. The actual driving force is the difference in the
chemical potential of the substance being transported.

Let us develop an expression in terms of the chemical potential gradient
in one dimension (1D), z, which can easily be extended to 3D.

In terms of the chemical potential gradient, one can write the mass flux
of species A as

A A
A AB

C d
J D

RT dz

P= − (A3-1)

Note that the units of chemical potential are energy per mole. From
thermodynamics, we know that the chemical potential of A, µA, can be
expressed as

# ln( )A A A ART xP = P + J (A3-2)

where #
AP  is a standard value, which is a function of temperature and

pressure; JA is the activity coefficient, which is a function of temperature,
pressure and composition; xA is the mole fraction.

Substituting Eq. A3-2 into Eq. A3-1, and recognising that #
AP  is not a

function of composition, we get

( ln( )) ( )

( )
A A A A A A

A AB AB
A A

C d RT x C d x
J D D

RT dz x dz

J J
= − = −

J (A3-3)

Differentiating using the chain rule, since JA is a function of composition xA,
we get



( )

1 1

A A A
A AB A A

A A

A A A
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A A A

C d dx
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d dx dx
D C

dx dz x dz
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J = − + J 

which can further be rearranged as
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(A3-4)

The term in the brackets can be written as
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Thus, Eq. A3-4 can be written as
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(A3-5)

where Deff is the effective diffusivity
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