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Prediction of glucose changes in type 1 Diabetes Mellitus has received a
considerable amount of scientific and commercial interest over the last decade. In
large, the driving force behind this surge in research can be explained by the recent
advances in sensor technology [101], and the thereto attached promises and hopes
of closed, or semi-closed, loop control of diabetic glucose dynamics. Predicting
models play a key role in many of these concepts—providing the essential sim-
ulation tool in MPC-oriented closed loop arrangements of an artificial pancreas
[20], or as a component in a decision support system—providing predictions
directly to the user [82].

However, insulin-dependent diabetic glucose dynamics are known to be subject
to time-shifting dynamics. Considering this, as well as the vast number of models
developed in the literature, it is unclear if a single model can be determined to be
optimal under every possible situation. This raises the question whether it is more
useful to use one of the models solely, or if it is possible to gain additional
prediction accuracy by combining their outcomes. Accuracy may be gained from
merging, due to mismodeling or to changing dynamics in the underlying data
creating process, where a single model capturing the system behavior may be
infeasible, e.g., for practical identification concerns. Thus, by an ensemble
approach, robustness and performance may be improved.

In this chapter, a novel merging approach—combining elements from both
switching and averaging techniques, forming a ‘soft’ switcher in a Bayesian
framework—is presented for the glucose prediction application.
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1 Related Research

In this section some related research to glucose prediction and model merging are
presented.

1.1 Models for Glucose Prediction

Models of glucose dynamics for predictive purposes can mainly be divided into
two categories; physiologically-oriented models and data-driven black-box
approaches. The latter sometimes incorporate physiological sub models of insulin
and glucose infusion following insulin administration and meal intake, but the
main part of the dynamics stem from the statistically derived relationships.

The development of physiological diabetic glucose modeling started with the
simple linear models of [2, 12], aiming at describing the relationship between
glucose and insulin utilization. Following these efforts, the slightly more complex,
and well-established, minimal model [10] was suggested as a means to estimate
insulin sensitivity from an intravenous glucose tolerance test (IVGTT). Detailed
models of the glucose metabolism; separating insulin and non-insulin dependent
glucose utilization, incorporating models of hepatic balance, renal clearance,
glucose rate of appearance following meal intake, insulin pharmacokinetics, and in
some cases pancreatic insulin synthesis and release, have surged since then.

The transport of rapid-acting insulin from the subcutaneous injection site to the
blood stream has been described in quite a few models of insulin pharmacoki-
netics. Most of these are linear compartment models, and reviews can be found in
[72, 104]. This phenomenon has generally been considered independent to the
metabolic interaction, and thus separated as a stand-alone model. In [104], 11
different models (10 compartment models and the model from [9] were fitted to
empirical meal test data from seven type 1 patients using rapid-acting bolus
insulin. A third-order compartment model, with local degradation of insulin at the
injection site (modeled as a Michaelis–Menten relationship), turned out to be the
best choice, according to the Akaike criterion [53], and this may serve as a typical
example of how the insulin kinetics have been be modeled.

The corresponding flux of glucose from the intestines following a meal intake,
has been modeled with different approaches. There is evidence that gastric emp-
tying, to some extent, is dependent on current glucose level, see, e.g., [94], but this
relationship has not been incorporated in any model so far. Thus, the digestive
process is also considered as a stand-alone model, without dependencies to the
glucose metabolism. Two models have been widely used; the models by [24, 62].
In [62], the model consists of single compartment with fixed limited gastric
emptying rate constant, and with a duration dependent on the meal size. Earlier
work on models of glucose rate of appearance during an OGTT [22] and mixed
meal test [21] formed the basis for the model in [24]. Here, a third-order nonlinear
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compartment model was used, and also in this case, the gastric emptying rate was
limited dependent upon the amount of ingested carbohydrates.

Turning to general models of glucose metabolism, a sparse fourth-order linear
model, with physiological interpretation of the state variables, was suggested in
[92], with six tunable parameters. The original model was validated on data from
intravenous experiments involving diabetic dogs. Thereafter, the model has been
both reduced, and extended to include exercise load, and to also consider oral
hyperglycaemic agents. The model order is still four, but the number of tunable
parameters has been reduced to five, and incorporated into a decision support
system (DSS) called KADIS [93].

In [62], a simulation model based on the insulin kinetics from [9], and including
hepatic balance (described by a look-up table), peripheral and insulin-independent
glucose utilization (Michaelis–Menten like relationship), renal clearance and the
meal digestion model from the same paper (described above), was presented.
Overall, the model contains only two tunable parameters, the rest are considered
patient invariant. Later, the freely downloadable educational simulation software
AIDA [61] was developed using this model. The system was validated on a set of
24 subjects with parameter convergence achieved in 80 % of the cases [60].

Another simulation model, that has been turned into an advisory system, is the
DIAS model [48]. Especially noteworthy of this model is the nonlinear model of the
hepatic balance [6], fitted to tracer literature data, and the model extension to include
the delayed hypoglycemic effect of alcohol intake [81]. The model was incorporated
into a prototype eHealth tool called DiasNet [52], with a central server-based web
service, which also communicates over the cellular network with the user’s mobile
application implemented on a smartphone. The system has been tested in a small
field trial, but was mainly evaluated on overall data acquisition, transmission and
application usability aspects, and not on results concerning model performance.

A large model with 19 tunable parameters was proposed in the Sorensen thesis
[95], a model often used as a verification tool to assess different control approa-
ches, e.g., [34]. The web-based educational simulation model GlucoSim [3] has
been developed based on another thesis [84]. Generally, these models are difficult
to fit to an individual person, and may lack structural identifiability. This makes
them unsuitable for predictive purposes, but synthetic subjects may be created for
simulation studies.

Currently, the most influential simulation model is the University of Virginia
and Padova University (UVa/Padova) model described in [23, 24], which has been
accepted by the Food and Drug Administration of the U.S. (FDA) to be used as a
substitute for animal trials in preclinical trials of closed-loop development [57]. To
this purpose, 300 artificial subjects have been derived from estimated parameters
from population studies, and used in, e.g., [59]. This model is based upon the
classical minimal model [10], and the glucose rate-of-appearance model in [21].
The population data for estimating the 300 artificial subjects were derived using
the triple-tracer protocol described in [8].

In [89], the minimal model was augmented with additional states to include the
dynamical interaction between free fatty acids and the insulin and glucose
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compartments. The model parameters were partly fixed, and partly identified using
experimental data, and showed reasonable resemblance to data. In [90], the model
was used, together with the gastric emptying function taken from [62], to fit the
model against data from one mixed meal consumed by normal subjects, with good
correspondence.

The limitation of the classical minimal model to provide consistent estimates of
insulin sensitivity, when different insulin concentrations arise during an IVGTT,
was addressed in [83]. Modifications to the model was suggested to incorporate the
saturation effect of insulin on insulin-dependent glucose utilization [69, 88], as
well as a saturation effect on insulin transport from the plasma to the interstitial
compartment. Generally, the saturation effect is not pronounced at insulin infusion
levels of most insulin-dependent diabetic patients. However, the critically ill may
often experience reduced insulin sensitivity, and are treated with intensive insulin
treatment with abnormal insulin levels to maintain normoglycemia, thereby
reducing mortality and morbidity outcome [102]. Thus, for the purpose of
improved glycemic control of the critically ill in Intensive Care Units (ICU), this
model was picked up in [64]. Thereafter, the table-based protocol SPRINT, which
acts as a decision support in the manual infusion control for the ICU personal, was
derived [18]. This approach has been successfully validated in a large study
covering 371 subjects, achieving a very tight glucose control [17].

Another extension of the minimal model was proposed in [28], by incorporating
effects of physical exercise by adding parameters, which increase insulin sensi-
tivity, insulin-independent glucose utilization and insulin clearance during
exercise, to the model. The model has not been evaluated empirically. Also the
UVa/Padova model has been extended to cover physical activity in [67], based on
the model in [15]. The model links elevated heart rate to increased insulin sen-
sitivity and insulin-independent glucose utilization. In [15], the model was fitted to
data from a hyper-insulinemic clamp test, including a 15-min exercise period
(50 % VO2max), for 21 type 1 subjects, with a weighted mean square estimation
error of 7.7 mg/dl (unclear how the weights were chosen).

Yet another ambitious extension with 19 parameters, whereof 10 are subject to
identification, and including modeling of the circadian rhythm was given in [37].
In [38], the model was validated by simulation comparisons on two data set of six
and nine type 1 patients with excellent results (RMSE about 1 mmol/L), however,
apparently without cross-validation.

Before leaving the minimal model, the work in [54] needs to be commented.
Here, the minimal model, extended with a simple pharmacokinetic compartment
model for the insulin kinetics and a compartment meal model of the same type as
in [105], was tested on closed-loop data from a trial involving 10 type 1 subjects.
Intraday variations of the model parameters related to the insulin sensitivity,
hepatic balance and insulin-independent glucose utilization was allowed over three
different sections of the day. Also in this case, the model was validated without
crossvalidation, but with an impressive average simulation prediction error (RMSE
about 16 mg/dl).
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A simpler model, with only five tunable parameters, is the Hovorka model [50],
later extended and altered for the critically ill in [51]. The former model has been
validated for predictive capacity on 15 subjects with a RMSE of 3.6 mg/dl for a
prediction horizon of 15 min. Parameter estimates were retrieved recursively from
a sliding data window using a Bayesian approach. This model is also used
extensively for MPC-oriented closed-loop validation in a simulation environment,
including a cohort of 18 virtual patients [103]. 8 out of the 18 parameter sets have
been derived from experimental data, and the rest from so-called informed prior
distributions. The model has also been used, e.g., in the evaluation of PID control
in [39], which also make use of the Sorensen [95] and the minimal model [10].

Data-driven models have been investigated on CGM time-series alone, or by
considering inputs as well. The meal sub models of [24, 62] are furthermore often
used as input generating components in data-driven models to approximate the
glucose flux input from the gut following a meal intake. Here, the focus has been
prediction for the purpose of early hypoglycemic detection, e.g., to be used for
alarm triggering in CGM devices, or temporary insulin pump shut-off, as well as
establishing models suitable for model-based control.

Time-series analysis by Auto-regressive (AR) models started with [14], who
evaluated the basic underlying assumptions concerning stationarity and auto-
covariance that AR modeling is based upon, concluding that diabetic data gen-
erally is non-stationary, but highly auto-correlated, thus recommending the models
to be recurrently re-estimated. Following this, AR and ARMA models were
developed in [97, 99] using glucose data from a recently diagnosed type 1 diabetic.
In [96], first-order recursive AR models were investigated for 28 subjects using a
low-pass filtered CGM signal from the GlucoDay CGM system. The results
indicate that hypoglycemia can be detected by the model 25 min before the CGM
signal passes the same threshold. Another example of recursive AR and ARMA
models of third order, incorporating a change detection feature for more rapid
parameter re-estimation when large changes in the dynamics are detected, is found
in [35]. The models were evaluated for 30 healthy, 7 glucose-intolerant and 25
type II diabetic subjects, with less than 4 % mean Relative Average Deviation
(RAD) and almost no values in D or E zones of the Clarke Error Grid [19] for the
30-min predictions in comparison to the CGM Medtronic Gold reference [68].
Contrary to the above, the authors of [42] claim that a generic patient- and time-
invariant AR model of order 30 can be identified from any patient and used for
glucose prediction for any other patient. Very promising results were achieved in
[41], where the model was evaluated for three different datasets, each utilizing a
different CGM device, and the patient cohorts included both type I and type II
diabetes. The prediction error was on average, in terms of RMSE, less than
3.6 mg/dl for a 30-min prediction, with negligible delay, and with 99 % of the
paired prediction-reference points in the A and B zones of the p-CGA. However,
these results were achieved by filtering the CGM signal in both training and test
data using a non-causal filter, removing the high frequency components. In [65]
the causality aspect of the input filtering was addressed. The AR model, here
reduced to order 8 after model complexity considerations, was reformulated as a
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linear model with a Kalman filter, and the filter parameters were adjusted to
account for the filtering of the CGM signal. For evaluation purposes, the reference
was however still filtered in the same non-causal way as before. Using this
approach on the same data set as in [41], yielded more moderate results with an
average prediction error of 16 mg/dl, and a 9-min lag for the 20-min prediction.

Algorithms specifically developed for hypoglycemic detection have also been
proposed. In [76], a Kalman filter approach was suggested, estimating the states
corresponding to the interstitial glucose level, and the first and second derivative
thereof, i.e., rate of glucose change and acceleration. In [75], this method was
evaluated for 13 hypoglycemic clamp data sets. Using a hypoglycemic threshold
of 70 mg/dl, the sensitivity and specificity were 90 and 79 %, respectively, with
unknown alarm time. Combining three different methods for hypoglycemic
detection with the ARMA model of [35], data from insulin-induced hypoglycemic
tests for 54 type 1 subjects were evaluated in [33]. With a hypoglycemic threshold
of 60 mg/dl, sensitivity of 89, 88, and 89 % and specificity of 67, 74, and 78 %
were reported for each method, respectively. Mean values for time to detection
were 30, 26, and 28 min.

A short-coming of the AR models and the algorithms above is the lack of input-
output relationship, excluding them from being used in a model-based control
framework. A natural extension to the AR concept is to include external inputs,
transforming the model to an ARX model. This type of model has been considered
in, e.g., [40], where both batch-wise and recursively identified patient-specific ARX
models have been analysed for nine patients with a mean 30-min prediction error
RMSE of 26 mg/dl. In [16] both ARX, ARMAX and state-space models were
investigated using different identification methods for 30-, 60-, 90- and 120-min
prediction for nine Montpellier patients from a trial in the DIAdvisor project [30].
The best performance was achieved with the ARX and the ARMAX models. The
ARX model gave a standard deviation of the prediction error of 17, 34, 46 and
56 mg/dl on average for the 30-, 60-, 90- and 120-min prediction, respectively. The
corresponding results for the ARMAX model were 16, 30, 39 and 44 mg/dl.

Another type of transfer function model, cast in the continuous domain, was
approached in [78], where it was evaluated for nine type I subjects on separated
meal and insulin intakes. Model parameters were determined both heuristically
and by least-squares estimation. The carbohydrate and insulin impacts of the
model, i.e., the steady-state rise and drop of glucose following these intakes, were
further compared to the corresponding practically used estimates of these factors.
No independent prediction validation was given. This model was later evaluated in
a control framework in [79], where two data sets were created by the Hovorka
(4 subjects) and Padova (10 subjects) simulation models. Here, the model could
approximate the simulated data very well, with a 3-h look-ahead prediction error
of 26 mg/dl reported. A very similar model structure was used in [55], the dif-
ference being a time delay changed into a time lag. In this chapter, breakfast
glucose excursion prediction was addressed for 10 patient datasets collected in the
DIAdvisor project [30]. For each patient, model parameters were determined by
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constrained least squares for two breakfast meals and cross-validated on a third
breakfast, with an average fit value of 42 %.

Neural network (NN) models have been shown to be a competitive approach in
[26], where a recurrent NN model was compared against an AR and an ARX model
on a 30 patient dataset, retrieved from the Padova simulation model. Here, the NN
clearly outperformed the competing models with an average RMSE of 4.9 mg/dl
versus 29 mg/dl (AR) and 26 mg/dl (ARX) for the 45-min prediction. Apart from
meal and insulin information, emotional factors, hypoglycemic/hyperglycemic
symptoms and lifestyle/ activities, were collected in an electric diary and used as
inputs in the NN model of [77]. Training was performed on a dataset from 17
patients, and performance was evaluated on 10 patient data sets not included in the
training set, with a RMSE of 44 mg/dl for the 45-min prediction.

A fully connected three-layer (5, 10, 1 neuron per layer) NN, with sigmoidal
transfer functions in the first two layers and a linear for the output block was used in
[80]. No insulin nor meal information were used, but the concurrent and previous
CGM values, up to 20 min back, acted as inputs. The model was evaluated on two
datasets with different CGM devices (Abbott Freestyle and MedTronic Guardian).
Three subject data sets were used for training for each patient group and were
thereafter excluded from the validation data. For the six Guardian patients and the
three Abbott Freestyle patients the performance was 10, 18 and 27 mg/dl for the 15,
30 and 45-min prediction, with a delay of around 4, 9, and 14 min for upward trends,
and 5, 15, and 26 min for downward trends. In [106], the linear predictor from [96]
worked in a cascade-like configuration with a NN model, which also used both
CGM and glucose flux from the meal model of [24] as inputs. Training and vali-
dation was done using 15 patient records from the 7-day free-living conditions set of
the DIAdvisor DAQ trial [30]. The NN was trained and validated on 25 time series,
each one of 3 days, selected so as to ensure a wide variety of glycemic dynamics.
Nine daily profiles, containing several hypo- and hyperglycemic events, were used
to test the NN with an average of 14 mg/dl and a 14 min delay for the 30-min
prediction. For an assessment on 20 simulated subjects using the UVa/Padova
model, the corresponding metrics were 9.4 mg/dl and 5 min. Both insulin and
carbohydrate digestion were considered by incorporating input-generating sub
models in the support vector machine of [45]. Additionally, exercise-induced glu-
cose and insulin absorption variations were also considered as inputs by processing a
metabolic equivalent (MET) estimate, derived from a SenseWear body monitoring
system (BodyMedia Inc.) used in the study, in a model by [91]. The NN was trained
individually for seven type 1 patients with RMSE of 9.5, 16, 25 and 36 mg/dl for the
15, 30, 60 and 120-min prediction.

Examples of other machine learning approaches that have been considered,
include, e.g., support vector regression [44] and random forests [46]. Both tech-
niques were evaluated on the same dataset of 27 type 1 patient records from free-
living conditions collected within the METABO project [43]. The recorded insulin
injections as well as the meal intakes were fed into compartment models to provide
estimated profiles of plasma insulin and glucose rate of appearance. Furthermore,
physical activity, estimated from a body monitoring system, and the time of the
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day were also added as input variables. The predictive performance of each
method was assessed for a 15-, 30-, 60- and 120-min ahead prediction horizon with
impressive results. The reported RMSE of the support vector regression for these
predictions horizons was 5.2, 6.0, 7.1 and 7.6 mg/dl, whereas the random forest
method managed slightly worse; 6.6, 8.2, 9.3 and 10.8 mg/dl.

Further reviews can be found in, e.g., [7, 45, 66].

1.2 Model Merging

Merging models for the purpose of prediction has been developed in different
research communities. In the meteorological and econometric communities
regression-oriented ensemble prediction has been a vivid research area since the
late 1960s, see, e.g., [31, 85].

Also in the machine learning community, the question of how different predictors
or classifiers can be used together for increased performance has been investigated,
and different algorithms have been developed, such as the bagging, boosting [13]
and weighted majority [63] algorithms, and online versions of these [56, 74].

In most approaches the merged prediction ŷe
k at time k is formed by a linear

weighted average of the individual predictors ŷk .

ŷe
k ¼ wT

k ŷk ð1Þ

It is also common to restrict the weights wk to [0,1]. The possible reasons for this
are several, where the interpretation of the weights as probabilities, or rather
Bayesian beliefs, is the dominating. Such restrictions are however not always
applicable, e.g. in the related optimal portfolio selection problem, where negative
weight (short selling) can reduce the portfolio risk [32].

A special case, considering distinct switches between different linear system
dynamics, has been studied mainly in the control community. The data stream and
the underlying dynamic system are modelled by pure switching between different
filters derived from these models, i.e., the weights wk can only take value 1 or 0. A
lot of attention has been given to reconstructing the switching sequence, see, e.g.,
[47, 73]. From a prediction viewpoint, the current dynamic mode is of primary
interest, and it may suffice to reconstruct the dynamic mode for a limited section of
the most recent time points in a receding horizon fashion [4].

Combinations of specifically adaptive filters has also stirred some interest in the
signal processing community. Typically, filters with different update pace are
merged, to benefit from each filter’s specific change responsiveness, respectively
steady state behaviour [5].

Finally, in fuzzy modeling, soft switching between multiple models is offered
using fuzzy membership rules in the Takagi–Sugeno systems [100].

Merging of predictions in the glucose prediction context has previously been
investigated in terms of hypo- or hyperglycemic warning systems. In [25], the
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glucose prediction from a so-called output corrected ARX predictor (see the ref-
erence for method details) was linearly combined with the prediction from an
adaptive recurrent neural network model. The balancing factor for the linear
combination was determined offline by optimizing a trade-off between hypo- and
hyperglycemic sensitivity, effective prediction horizon and the false alarm rate.
This factor was determined individually for each patient and the balance may be
different for hypo- and hyperglycemia. A different mechanism was used in [27].
Here, five different predictors were running simultaneously, and the hypoglycemic
alarm was based upon a voting scheme between the individual predictors. If a
number of the five predictors exceeded the predefined hypoglycemic threshold
value an alarm was raised. Both studies indicated an improvement in alarm
sensitivity compared to the individual predictors.

2 Problem Formulation

As seen from the review above, many different approaches to glucose modeling
and predicting have been established. These methods may each be more suitable to
specific conditions for the glucose dynamics, and improvements in robustness and
prediction performance may be achieved by combining their outcomes, as indi-
cated from the studies from the hypo-/hyperglycemic alarm systems. Such a
situation is depicted in Fig. 1, where two prediction models try to capture the true
glucose level. In different situations, each predictor is clearly outperforming the
other and is capable of providing good estimates of the true glucose level. How-
ever, as the conditions change the performance deteriorates, and instead the other
predictor is more suitable to rely upon. Given this informal background a more
formal problem formulation is now outlined.

A non-stationary data stream zk : fyk; ukg arrives with a fixed sample rate, set to 1
for notational convenience, at time tk 2 1; 2; . . .f g: The data stream contains a var-
iable of primary interest called yk 2 R and additional variables uk. The data stream
can be divided into different periods TSi of similar dynamics Si 2 S ¼ 1; . . .; n½ �; and
where sk [ S indicates the current dynamic mode at time tk. The system changes
between these different modes according to some unknown dynamics.

Given m number of expert q-steps-ahead predictions, ŷ j
kþqjk; j 2 1; . . .;mf g of

the variable of interest at time tk, each utilizing different methods, and/or different
training sets; how is an optimal q-steps-ahead prediction ŷe

kþqjk of the primary

variable, using a predefined norm and under time-varying conditions, determined?

3 Sliding Window Bayesian Model Averaging

Apart from conceptual differences between the different approaches to ensemble
prediction, the most important difference is how the weights are determined.
Numerous different methods exist, ranging from heuristic algorithms [5, 100] to
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theory based approaches, e.g., [49]. Specifically, in a Bayesian Model Averaging
framework [49], which will be adopted in this chapter, the weights are interpreted
as partial beliefs in each predictor Mi, and the merging is formulated as:

p ykþq

�
�Dk

� �

¼
X

i

p ykþq

�
�Mi;Dk

� �

p MijDkð Þ ð2Þ

where p ykþq

�
�Dk

� �

is the conditional probability of y at time tk+q given the data,
Dk : z1:kf g received up until time k, and if only point-estimates are available, one
can, e.g., use:

ŷe
kþqjk ¼ E ykþq

�
�Dk

� �

ð3Þ

¼
X

i

E MijDkð ÞE ykþq

�
�Mi; Dk

� �

ð4Þ

¼ wT
k ŷk ð5Þ

w
ið Þ

k ¼ E MijDkð Þ ð6Þ

p w
ið Þ

k

� �

¼ p MijDkð Þ ð7Þ

where ŷe
kþq is the combined prediction of ykþq using information available at time

k, and w
ið Þ

k indicates position i in the weight vector. The conditional probability of

G
lu

co
se

 L
ev

el

Time

Fig. 1 Example of when merging between different predictors may be beneficial. Initially the
model corresponding to the red dash-dotted prediction resembles the true reference (black solid
curve) best, but as the conditions change the prediction given by the other prediction model (blue
dashed curve) gradually takes the lead
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predictor Mi can be further expanded by introducing the latent variable
hk 2 H ¼ 1; . . .; p½ �:

p MijDkð Þ ¼
X

j

p Mijhk ¼ j; Dkð Þp hk ¼ jjDkð Þ ð8Þ

or in matrix notation

p wkð Þ ¼ p wkjhk ¼ 1ð Þ; . . .; p wkjhk ¼ pð Þ½ � p hk ¼ 1jDkð Þ; . . .; p hk ¼ pjDkð Þ½ �T ð9Þ

Here, H represents a predictor mode in a similar sense to the dynamic mode S,
and likewise hk represents the prediction mode at time k: p wkjhk ¼ jð Þ is a column
vector of the joint prior distribution of the conditional weights of each predictor
model given the predictor mode hk ¼ j. Generally, there is a one-to-one relationship
between the predictor modes and the corresponding dynamic modes, i.e., p = n.

Data for estimating the distribution for p wkjhk ¼ ið Þ is given based upon using
a constrained optimization on the training data. In cases of labelled training data
sets, the following applies:

wkjhk ¼ i

� �

TSi ¼ arg min
XkþN=2

m¼k�N=2

L y tmð Þ; wT
kjhk¼iŷi

� �

; k 2 TSi

s:t:
X

j

w
jð Þ

kjhk¼i ¼ 1

ð10Þ

where TSi represents the time points corresponding to dynamic mode Si, the tunable
parameter N determines the size of the evaluation window and L y; ŷð Þ is a cost
function. From these data sets, the prior distributions can be estimated by the Parzen
window method [11], giving mean w0jhk¼i and covariance matrix Rhk¼i. An alter-
native to the Parzen approximation is of course to estimate a more parsimoniously
parametrized probability density function (pdf) (e.g., Gaussian) for the extracted
data points. For unlabelled training data, with time points T, the corresponding
datasets wkjhk ¼ if gT are found by cluster analysis, e.g., using the k-means algo-
rithm or a Gaussian Mixture Model (GMM) [11]. A conceptual visualisation is
given in Fig. 2. Now, in each time step k, the wkjhk�1 is determined from the sliding
window optimization below, using the current active mode hk�1. For reasons soon
explained, only wkjhk�1 is thus calculated:

wkjhk�1
¼ arg min

Xk�1

j¼k�N

lk�jL yj; wT
kjhk�1

ŷj

� �

þ wkjhk�1
� w0jhk�1

� �

Khk�1 wkjhk�1
� w0jhk�1

� �T

s:t:
X

j

w jð Þ
kjhk�1
¼ 1

ð11Þ
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Here, lj is a forgetting factor, and Khk¼i is a regularization matrix. To infer the
posterior p hkjDkð Þ in (9), it would normally be natural to set this probability
function equal to the corresponding posterior pdf for the dynamic mode p SjDkð Þ.
However, problems arise if p SjDkð Þ is not directly possible to estimate from the
dataset Dk. This is circumvented by using the information provided by the p wkjhk

� �

estimated from the data retrieved from Eq. (10) above. The p wkjhk

� �

prior density
functions can be seen as defining the region of validity for each predictor mode. If
the wkjhk�1

estimate leaves the current active mode region hk�1 (in a sense that

p wkjhk�1

� �

is very low), it can thus be seen as an indication of that a mode switch
has taken place. A logical test is used to determine if a mode switch has occurred.
The predictor mode is switched to mode hk ¼ i, if:

p hk ¼ ijwk; Dkð Þ[ k ð12Þ

where

p hk ¼ ijwk; Dkð Þ ¼ p wkjhk ¼ i; Dkð Þp hk ¼ ijDkð Þ
P

j p wkjhk ¼ j; Dkð Þp hk ¼ jjDkð Þ ð13Þ

k+N/2

G
lu

co
se

 L
ev

el

Timek−N/2k

Fig. 2 Principle of finding the predictor modes for unlabelled data over the training data set time
period T. For every time point tk [ T, the optimal wk is determined by Eq. (10), where the optimal
prediction wk ŷ (light green dash-dotted curve) formed from the individual predictions ŷ (the blue
dashed and the red solid curves) is evaluating against the reference (black solid curve) using the
cost function L over a sliding data window between t = k - N/2 and t = k ? N/2. The
aggregated set {wk}T is thereafter subjected to clustering to find the different mode centers
w0jh¼i; i ¼ 1; . . .; p½ �
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A k somewhat larger than 0.5 gives a hysteresis effect to avoid chattering between
modes. Unless otherwise estimated from data, the conditional probability of each
prediction mode p hk ¼ ijDkð Þ is set equal for all possible modes, and thus cancels
in (13). The logical test is evaluated using the priors received from the pdf estimate
and the wk hkj received from (11). If a mode switch is considered to have occurred
(11) is rerun using the new predictor mode.

Now, since only one prediction mode hk is active; (9) reduces to
p wkð Þ ¼ p wkjhk

� �

. The predictor mode switching concept is visualised in Fig. 3.

3.1 Parameter Choice

The length N of the evaluation period is, together with the forgetting factor l, a
crucial parameter determining how fast the ensemble prediction reacts to sudden
changes in dynamics. A small forgetting factor will put much emphasis on recent
data, making it more agile to sudden changes. However, the drawback is of course
that the noise sensitivity increases.

Khk¼i should also be chosen, such that a sound balance between flexibility and
robustness is found, i.e., a too small kKhk¼ik2 may result in over-switching,
whereas a too large kKhk¼ik2 will give a stiff and inflexible predictor. Furthermore,
Khk¼i should force the weights to move within the perimeter defined by
p(w|hk = i). This is approximately accomplished by setting Khk¼i equal to the
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Fig. 3 Predictor mode switching for an example with three individual predictor models. Step I
At time instance tk the new wkjhk�1

is determined from Eq. (11) In this case, the data forces the
optimal weight away from the active prediction mode center. Step II The likelihood values
p wkjhk ¼ ið Þ; i ¼ 1; . . .; p½ � are calculated and if the condition according to Eq. (12) is fulfilled, a
predictor mode switch occurs. Step III Based on the new predictor mode, Eq. (11) is rerun and the
weight vector now gravitates towards the new mode center
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inverse of the covariance matrix Rhk¼i, thus representing the pdf as a Gaussian
distribution in the regularization.

Optimal values for N and l can be found by evaluating different choices for
some test data. However, from our experience we have seen that N = 10–20 and
l = 0.8 are suitable choices for this application.

3.2 Nominal Mode

Apart from the estimated prediction mode centres, an additional predictor mode
can be added, corresponding to a heuristic fall-back mode. In the case of sensor
failure, or other situations where loss of confidence in the estimated predictor
modes arises, each predictor may seem equally valid. In this case, a fall-back mode
to resort to may be the equal weighting. This is also a natural start for the algo-
rithm. For these reasons, a nominal mode hk = 0 : p(wk|hk = 0) [ N(1/m, I) is
added to the set of predictor modes.

Summary of algorithm

1. Estimate m numbers of predictors according to best practice.
2. Run the predictors and the constrained estimation (10) on labelled

training data and retrieve the sequence of wkjH¼i

� �

TSi
; 8i 2 1; . . .; nf g.

3. Classify different predictor modes, and determine density functions
p wkjH¼i

� �

for each mode H = i from the training results by supervised
learning. If possible; estimate p(H = i|D).

4. Initialize mode to the nominal mode.
5. For each time step; calculate wk according to (11).
6. Test if switching should take place by evaluating (12) and (13), and

switch predictor mode if necessary and recalculate new wk according to
(11).

7. Go to 5.

The ensemble engine outlined above will hereafter be referred to as Sliding
Window Bayesian Model Averaging (SW-BMA) Predictor.

4 Choice of Cost Function L

The cost function should be chosen with the specific application in mind. A natural
choice for interpolation is the 2-norm, but in certain situations asymmetric cost
functions are more appropriate. For the glucose prediction application, a suitable
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candidate for determining appropriate weights should take into account that the
consequences of acting on too high glucose predictions in the lower blood glucose
(G) region (\90 mg/dl) could possibly be life threatening. The margins to low
blood glucose levels, that may result in coma and death, are small, and blood
glucose levels may fall rapidly. Hence, much emphasis should be put on securing
small positive predictive errors and sufficient time margins for alarms to be raised
in due time in this region. In the normoglycemic region (here defined as
90–200 mg/dl), the predictive quality is of less importance. This is the glucose
range that healthy subjects normally experience, and thus can be considered, from
a clinical viewpoint in regards to possible complications, a safe region. However,
due to the possibility of rapid fluctuation of the glucose into unsafe regions, some
considerations of predictive quality should be maintained.

Based on the cost function in [58], the selected function incorporates these
features; asymmetrically increasing cost of the prediction error depending on the
absolute glucose value and the sign of the prediction error.

In Fig. 4 the cost function can be seen, plotted against relative prediction error
and absolute blood glucose value.

4.1 Correspondence to the Clarke Grid Error Plot

A de facto accepted standardized metric of measuring the performance of CGM
signals in relation to reference measurements, and often used to evaluate glucose
predictors, is the Clarke Grid Plot [19]. This metric meets the minimum criteria
raised earlier. However, other aspects makes it less suitable; no distinction
between prediction errors within error zones is made, switches in evaluation score
are instantaneous, etc.

In Fig. 5, the isometric contours of the chosen function for different prediction
errors at different G values has been plotted together with the Clarke Grid Plot.
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Fig. 4 Cost function of relative prediction error
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The boundaries of the A/B/C/D/E areas of the Clarke Grid can be regarded as lines
of isometric cost according to the Clarke metric. In the figure, the isometric value
of the cost function has been chosen to correspond to the lower edge, defined by
the intersection of the A and B Clarke areas at 70 mg/dl. Thus, the area enveloped
by the isometric border can be regarded as the corresponding A area of this cost
function.

Apparently, much tougher demands are imposed both in the lower and upper
glucose regions in comparison to the Clarke Plot.

5 Example I: The UVa/Padova Simulation Model

5.1 Data

Data were generated using the nonlinear metabolic simulation model, jointly
developed by the University of Padova, Italy and University of Virginia, U.S.
(UVa) and described in [24], with parameter values obtained from the authors. The
model consists of three parts that can be separated from each other. Two sub
models are related to the influx of insulin following an insulin injection and the
rate of appearance of glucose from the gastro-intestinal tract following meal
intake, respectively.
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The transport of rapid-acting insulin from the subcutaneous injection site to the
blood stream was based on the compartment model in [23, 24], as follows.

_Isc1 tð Þ ¼ � ka1 þ kdð Þ � Isc1 tð Þ þ D tð Þ ð14Þ

_Isc2 tð Þ ¼ kd � Isc1 tð Þ � ka2 � Isc2 tð Þ ð15Þ

_Ip tð Þ ¼ ka1 � Isc1 tð Þ þ ka2 � Isc2 tð Þ � m2 þ m4ð Þ � Ip tð Þ þ m1 � Il tð Þ ð16Þ

_Il tð Þ ¼ m2 � Ip tð Þ � m1 þ m3ð Þ � Il tð Þ ð17Þ

m2 ¼ 0:6
CL

HEb � Vi �MBW
ð18Þ

m3 ¼
HEb � m1

1� HEb
ð19Þ

m4 ¼ 0:4
CL

Vi �MBW
ð20Þ

Following the notation in [23, 24], Isc1 is the amount of non-monomeric insulin in
the subcutaneous space, Isc2 is the amount of monomeric insulin in the subcuta-
neous space, kd is the rate constant of insulin dissociation, ka1 and ka2 are the rate
constants of non-monomeric and monomeric insulin absorption, respectively,
D(t) is the insulin infusion rate, Ip is the level of plasma insulin, Il the level of
insulin in the liver, m3 is the rate of hepatic clearance, and m1, m2, m4 are rate
parameters. The parameters m2, m3, m4 are determined based on steady-state
assumptions—relating them to the constants in Table 1 and the body weight MBW.

The initial stages of glucose metabolism, describing the digestive process and
the flux of glucose from the intestines, have been modeled as follows:

qsto tð Þ ¼ qsto1 tð Þ þ qsto2 tð Þ ð21Þ

_qsto1 tð Þ ¼ �kgri � qsto1 tð Þ þ C tð Þ ð22Þ

_qsto2 tð Þ ¼ kgri � qsto1 tð Þ � kempt � qsto1 tð Þ � qsto2 tð Þ ð23Þ

_qgut tð Þ ¼ �kabs � qgut tð Þ þ kempt � qsto tð Þ � qsto2 ð24Þ

Ra tð Þ ¼ f � kabs � qgut tð Þ
MBW

ð25Þ

where, again following the notation in [21], qsto is the amount of glucose in the
stomach (qsto1 solid, and qsto2 liquid phase), qgut is the glucose mass in the
intestine, kgri the rate of grinding, kempt is the rate constant of gastric emptying, kabs

is the rate constant of intestinal absorption, f is the fraction of intestinal absorption
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which actually appears in the blood stream, C(t) is the amount of ingested car-
bohydrates and Ra(t) is the appearance rate of glucose in the blood. kempt is a
nonlinear function of qsto and C(t):

kempt qstoð Þ ¼ kmin þ k � tanh a qsto � b � G tð Þð Þ½ �þf ð26Þ

� tanh b qsto � d � G tð Þð Þ½ � þ 2g ð27Þ

With k ¼ kmax � kminð Þ=2; a ¼ 5=2D 1bð Þ; b ¼ 5=2Dc with parameters
kmax, kmin, b, and d

Both models were evaluated using generic population parameter values
according to Table 1.

The final part of the total model is concerned with the interaction of glucose and
insulin in the blood stream, organs and tissue, including renal extraction, endoge-
nous glucose production and insulin and non-insulin dependent glucose utilization.
The model equations are partly nonlinear and are found in [24].

Using a parameter set corresponding to a subject with type 1 diabetes (retrieved
from the authors of [24]), 20 datasets, each 8 days long, were generated. The
timing and size of meals were randomized for each dataset, according to Table 2.
The amount of insulin administered for each meal was based on a fixed carbo-
hydrate-to-insulin ratio, perturbed by normally distributed noise, with a 20 %
standard deviation.

Process noise was added by perturbing some crucial model parameters pi in each
simulation step; pi(t) = (1 ? d(t))p0

i , where p0
i represent nominal value and

d(t) [ N(0,0.2). The affected parameters were (again following the notation in [24] ))

Table 1 Generic parameter values used for the GSM and ISM

Parameter Value Unit Parameter Value Unit

kgri 0.0558 [min-1] ka1 0.004 [min-1]
kmax 0.0558 [min-1] ka2 0.0182 [min-1]
kmin 0.008 [min-1] kd 0.0164 [min-1]
kabs 0.0568 [min-1] kd 0.0164 [min-1]
b 0.82 [-] m1 0.1766 [min-1]
d 0.01 [-] Vi 0.05 [L/kg]
f 0.9 [-] CL 1.1069 [L/min]

Table 2 Meal amount and
timing randomization

Meal Time (30 min) Amount carbohydrates (g)

Breakfast 08:00 45 (5)
Lunch 12:30 70 (10)
Dinner 19:00 80 (10)

Standard deviation in parenthesis

54 F. Ståhl et al.



k1, k2, p2u, ki, m1, m30, m2, ksc, and represents natural intrapersonal variability in the
underlying physiological processes.

Two dynamic modes A and B were simulated by, after 4 days, changing four
model parameters (following the notation in [24] ) k1, ki, kp3 and p2u, related to the
endogenous glucose production and insulin and glucose utilization. This represents
an example of shift in the underlying patient dynamics, which may occur due to,
e.g., sudden changes in physical or mental stress levels.

A section of 4 days, including the period when the dynamic change took place,
of a data set can be seen in Fig. 6. One of the 20 datasets was used for training and
the others were considered test data.

5.2 Predictors

For prediction modeling purposes, the system was considered to consist of three
main parts in a similar sense as the simulation model was constructed. The
absorption models of glucose and insulin were adopted and considered known. The
outputs Ip(tk) and Ra(tk) from these models were fed into a linear state-space model
of the Glucose-Insulin Interaction (GIIM), generating the final output—the blood

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
100

150

200

250

300
Mode A

B
lo

od
 G

lu
co

se
 [m

g/
dl

]

6000 7000 8000 9000 10000 11000
100

150

200

250

300
Mode B

Time [min]

B
lo

od
 G

lu
co

se
 [m

g/
dl

]

Fig. 6 The training data set. The upper plot represents 4 days of dynamic mode A data and the
lower plot the corresponding last 4 days of dynamic mode B, where four model parameters have
been modified. Example I: UVa/Padova Model
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glucose G(k) at time tk [ (5, 10, …) min. Short-term predictions, p steps ahead,
were evaluated using the Kalman filter:

x̂ k þ 1ð Þ ¼ Ax̂ kð Þ þ Bu kð Þ þ K y kð Þ � Cx̂ kð Þð Þ ð28Þ

x̂ k þ pð Þ ¼ Ax̂ k þ p� 1ð Þ þ Bu k þ p� 1ð Þ ð29Þ

Ĝ k þ pð Þ ¼ Cx̂ k þ pð Þ ð30Þ

where meal and insulin announcements were assumed at least TPH minutes ahead,
implying that u(k ? 1) was known for all 0 \ l \ p.

Three models were identified using the N4SID algorithm of the Matlab System
Identification Toolbox. Model order (2–4) was determined by the Akaike criterion
[53]. The first model I was estimated using data from dynamic mode A in the
training data, and the second II from the mode B data, and the final model III from
the entire training data set. Thus, model I and II are each specialized, whereas III is
an average of the two dynamic modes. The models were evaluated for a prediction
horizon of 60 min.

5.3 Results

5.3.1 Training the Mode Switcher

The three predictors were used to create three sets of 60 min ahead predictions for
the training data. Using (10) with N = 10, the weights wk were determined. The
mode centers were found by k-means clustering, and the corresponding probability
distribution for each mode, projected onto the (w1, w2)-plane, was thereafter
estimated by Parzen window technique [11]. The densities are well concentrated to
the corners [1,0,0] and [0,0,1], with means w0j1 ¼ 0:96; 0:03; 0:01½ � and w0j2 ¼
0:03; 0:96; 0:01½ � defining the expected weights for each predictor mode. The

nominal mode probability density function was set to N 1
3

1
3

1
3 ; 0:1I

� �

. In Fig. 7 all
density functions, including the nominal mode, projected onto the (w1, w2)-plane,
can be seen together.

5.3.2 Ensemble Prediction Versus Individual Predictions

Using the estimated probability density functions and the expected weights w of
the identified predictor modes, the ensemble machine was run on the test data. An
example of the distribution of the weights for the two dynamic modes A and B can
be seen in Fig. 8.

An example of how switching between the different modes occurs over the test
period can be found in Fig 9.
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For evaluation purposes, all predictors were run individually. In Table 3, a
comparative summary of the predictive performance of the different approaches
over the test batches, in terms of mean Root Mean Square Error (RMSE), is given.
It was also noted that the merged prediction did not introduce any extra prediction
delay in comparison to the best individual prediction (not shown).
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Fig. 7 Estimated probability density functions for the weights in the training data, including
nominal mode. Example I: UVa/Padova model
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6 Example II: The DIAdvisor Data

6.1 Data

Data from the clinical part of the DAQ trial and the DIAdvisor I B and C trials,
conducted within the DIAdvisor project [30], were used. A number of patients
participated in all three trials. Based on data completeness, six of these were
selected for this study with population characteristics according to Table 4. All
selected data were collected at the Montpellier Hospital, and each trial ran over
three days. The patients received standardized meals where the amount of car-
bohydrates included in each meal was about 40 (45 in DAQ), 70 and 70 g,
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Fig. 9 Example of switching between different predictor modes in the test data. The transition
from dynamic mode B to mode A takes place at 6000 min (c:a 4 days). Mode 3 represents the
nominal mode. The late switch to predictor mode 2 in comparison to when the dynamic mode
switch takes place is due to that the excitation for the first hours of the fifth day is low until the
breakfast meal takes place, i.e., there is little incitement to switch predictor mode before that
point. Example I: UVa/Padova model

Table 3 Performance
evaluation by RMSE for the
60 min predictors using
different approaches

Predictor type RMSE [mg/dl]

Section A Section B A ? B

Predictor I 8.0 16.1 12.6
Predictor II 15.3 7.2 12.1
Predictor III 9.8 9.9 9.9
Merged prediction 8.4 7.6 8.1
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respectively. Additional snacks, in some cases related to counter-act hypoglyce-
mia, were also digested. No specific intervention on the usual diabetes treatment
was undertaken during the studies, since a truthful picture of normal blood glucose
fluctuation and insulin-glucose interaction was pursued. Meal and insulin admin-
istration were noted in a logbook, glucose was monitored by the Abbott Freestyle
[1] (DAQ) and the Dexcom Seven Plus [29] (DIAdvisor I) CGM systems, and
frequent blood glucose measurements ([37 samples a day) were collected for
calibration and as reference measurements. The CGM data were used for model
identification, whereas the spline-interpolated frequent blood glucose reference
measurements were used for validation purposes.

The first trial data (DAQ) were used to train the individual predictor models.
The second and third trial data (DIAdvisor I.B and C) were used to train and cross-
validate the SW-BMA, i.e., the SW-BMA was trained on B data and validated on
C data, and vice versa.

6.2 Predictors

Three different predictors of different structure were developed within the
DIAdvisor project, and used in this study; a state-space-based model (SS) [98], a
recursive ARX model [36] and a kernel-based predictor [70]. For all three models,
the CGM signal GCGM(t) was considered a proxy for the blood glucose G(t), i.e.,
the lag between the interstitial glucose and the blood glucose, described in e.g.
[87], was ignored.

The state-space model and the ARX model used the modeling approach
depicted in Fig. 10, with insulin and glucose sub models according to Eqs. (14)–
(27), and without interstitial and sensor dynamics modeling (M2). The state-space
model modeled the glucose-insulin interaction, and the glucose prediction,
according to Eqs. (28)–(30). The ARX predictor was recursively updated at each
time step with an adaptive update gain dependent upon the glucose level according
to [36].

The kernel-based predictor did not directly utilize the insulin or meal data
channels. Instead, the linear trend and offset parameters given by linear regression
of recent CGM data were used as meta features to switch between different

Table 4 Population
Statistics of data

Parameter Value

Gender 3 Men /3 Women
Therapy 3 Pump /3 Multi-dose injection
Age 54 [32–68]
HbA1c 7.9 [5.7–9.1]
BMI 25.8 [23.7–29.4]

Mean values and [min-max]
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predefined kernel-based prediction functions, see [71] for a full explanation.
Furthermore, this predictor was only trained on one patient data set and was thus
considered patient invariant.

6.3 Evaluation Criteria

The prediction results were compared to the interpolated blood glucose G in terms
of Clarke Grid Analysis [19] and the complementary Root Mean Square Error
(RMSE).
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Fig. 10 Overview of the modeling approach. Notation: Plasma Insulin Ip(t), Rate of Glucose
Appearance following a meal Ra(t), Blood glucose G(t), Capillary glucose GC(t), Interstitial
Glucose GI(t), CGM raw current signal GIraw(t) and CGM signal Gcgm(t). M1 represent the model
describing the glucose-insulin interaction in the blood and inner organs (GIIM), the M2 model
represents the diffusion-like relationship between blood and interstitial glucose and the CGM
sensor dynamics, and M3 is the joint model of M1 and M2
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6.4 Results

6.5 Training the Mode Switcher

6.5.1 Cluster Analysis: Finding the Modes

The three predictors were used to create 40 min ahead predictions for both training
data sets DTB Cð Þ . Using (10) with N = 20, the weights wkf gTB Cð Þ

were obtained;

example depicted in the (w1, w2) plane in Fig. 11. The weights received from the
training are easily visually recognized as belonging to different groups (true for all
patients, not shown). Attempts were made to find clusters using a Gaussian
Mixture Model (GMM) by the EM algorithm, but without viable outcome. This is
not totally surprising, considering, e.g., the constraints 0 C wi C 1 and Rw = 1. A
more suitable distribution, often used as a prior for the weights in a GMM, is the
Dirichlet distribution, but instead the simpler k-means algorithm was applied using
four clusters (number of clusters given by visual inspection of the distribution of

wkf gTB Cð Þ
, providing the cluster centers w0jHi

.

The corresponding probability distribution for each mode p wjHið Þ, projected
onto the (w1, w2)-plane, was estimated by Parzen window technique, and an
example can be seen in Fig. 12. Gaussian distributions were fitted to give the
covariance matrices RHi used in (11).

6.5.2 Feature Selection

The posterior mode probability p hkjDkð Þ is likely not dependent on the entire data
Dk, but only a few relevant data features, possible to extract from Dk. Features
related to the performance of a glucose predictor may include meal information,
insulin administration, level of activity, measures of the glucose dynamics, etc. By
plotting the training CGM data, colored according to the best mode at the pre-
diction horizon retrieved by the training, interesting correlations become apparent
(Fig. 13). The binary features in Table 5 were selected.

When extracting the features, meal timing and content were considered to be
known 30 min before the meal.

From the training data, the posterior mode probabilities p hk ¼ ijfj
� �

, given each
feature fj, were determined by the ratio of active time for each mode over the time
periods when each feature was present. Additionally, the overall prior
p(hk = i) was determined by the total ratio of active time per cluster over the entire
test period.

The different features are overlapping, and the combinations thereof could be
regarded as features by themselves. However, the data support for each such new
feature would be small and could potentially disrupt, rather than improve, the
switching performance. To resolve this issue, the features were not combined
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(apart from concurrent rising glucose and meal intake, which formed a new fea-
ture), and each feature was given different priority—only allowing only the feature
of highest priority, f �k to be present at each time step tk. The priority rank was
chosen to allow the more specific features to take precedence over the more
general features. At each cycle, p hk ¼ ijDkð Þ ¼ p hk ¼ ijf �k

� �

was determined, and
if no feature was active, p hk ¼ ijDkð Þ was approximated by the p(hk = i) estimate.
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Fig. 11 Example of distribution of weights in the training data by (10) and clusters given by the
k-means algorithm. The red ellipses represent the fitted Gaussian covariances of each cluster
(patient 0103, Trial B). Example II: DIAdvisor Data

Fig. 12 Example of estimated probability density functions for the different predictor mode
clusters in the training data (patient 0103, Trial B). Example II: DIAdvisor Data
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6.6 Prediction Performance on Test Data

Using the estimated mode clusters {w0|i, R0|i}, i = [1, …, M], and the estimated
posteriors p Hijf �ð Þ from Trial B (C), the ensemble machine was run on the Trial C
(B) data. The parameter l was set to 0.8 and N to 20 min. An example of the
distribution of the weights wk for the three predictors can be seen in Fig. 14.

Table 6 summarizes a comparison of predictive performance over the different
patient test data sets for the RMSE evaluation criteria, and in Table 7 the evalu-
ation in terms of Clarke Grid Analysis is given. The optimal switching approach,
here defined as using the non-causal fitting by Eq. (10), is used as a measure of
optimal performance of a linear combination of the different predictors.
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Fig. 13 Example of CGM coloured according to best predictor mode 40 min ahead, together
with active features at the moment the prediction was made (patient 0103, Trial B). Example II:
DIAdvisor Data

Table 5 Selected features

Feature Threshold Priority

Meal max (Rak, …, Rak+30) [ e 1
Rising G mean (DGk-10, …, DGk) [ 30 mg/(dl�h) 2
Falling G mean (DGk-10, …, DGk) \ -18 mg/(dl�h) 3
Meal and rising G See above 4
Meal onset max Ra(k - 30, …, k) \ e and max Ra(k, …, k ? 30) [ e 5

e corresponds to the maximum amplitude of glucose rate-of- appearance, Ra after digesting 10 g
CHO, and DG = Gk - Gk-5
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Fig. 14 Example of the distribution of weights in the test data using the estimated clusters and
feature correlations (patient 0108, Trial B). Example II: DIAdvisor Data

Table 6 Performance evaluation for the 40 min SW-BMA prediction compared to the optimal
switching and the individual predictors

Merging strategy Median RMSE/RMSEbest [min-max]

Trial B Trial C

SW-BMA 1.03 [0.75–1.04] 1.03 [0.94–1.05]
Optimal switching 0.97 [0.54–1.0] 0.94 [0.73–1.0]
2nd best individual pred. 1.16 [1.09–1.27] 1.21 [1.04–1.37]
Worst individual pred. 1.44 [1.25–1.73] 1.45 [1.18–1.83]

The metric is the Root Mean Square Error (RMSE), normalized against the best individual
predictor M1 - M3 for each patient

Table 7 Performance evaluation for the 40 min SW-BMA prediction compared to the optimal
switching and the best individual predictor by the amount of data (%) in the acceptable A/B zones
versus the dangerous D and E zones

Merging strategy Trial B Trial C

A/B D E A/B D E

SW-BMA 95.5 2.2 0 95.3 3.0 0.1
Optimal switching 96.2 1.7 0 96.9 1.3 0
Best individual pred. 94.8 2.6 0 95.0 3.4 0
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7 Discussion

Example I outlined how the technique may be applied to the specific example of
diabetes glucose prediction under sudden changes in the underlying physiological
dynamics. In this example, the merged prediction turned out to be the best choice.
In Example II, applying the algorithm to real-world data, the SW-BMA has, for
most patients, the same RMSE and Clarke Grid performance as the best individual
predictor. In one case, the merged prediction clearly outperformed also the best
predictor (RMSE/RMSEbest = 0.75). However, comparison to the optimal
switcher indicates that there is still further room for improvement. To fill this gap,
timely switching is most important. The prediction models in Example II were not
specifically designed for specialisation, but are diversified in terms of modeling
and parameter identification methods in relation to each other. The state-space
model is patient-specific, with fixed parameter values after training—making it
agile to interpersonal differences but more sensitive to time-variability. The model
is invariant to the absolute glucose level. The ARX model, on the other hand, is
recursively updated to capture time-variability, but the approach may be vulner-
able to fluctuating system excitation conditions. Both models utilize the insulin
and meal data inputs. The kernel-based predictor is generic over the patient cohort,
and considers the dynamics to be related to the glucose level rather than directly to
the inputs’ effects. Overall, the three models thereby complement each other in
these aspects. The posterior mode probabilities, conditioned on each selected
feature, show that some specialisation exists. For example, when feature 5 (meal
onset) was active, cluster 3, dominated by the SS predictor, was clearly favoured
an average (61 %). Exploiting these correlations may enhance timely switching,
and further specialisation and diversification amongst the prediction models can
thus be expected to further improve the added value of prediction merging.

The evaluation indicates that the proposed algorithm is robust to sudden
changes and in reducing the impact of modeling errors. Apart from that, in many
applications, transition between different dynamic modes is a gradual process
rather than an abrupt switch, making the pure switching assumption inappropriate.
The proposed algorithm can handle such smooth transitions by slowly sliding
along a trajectory in the weight plane of the different predictors, perhaps with a
weaker K if such properties are expected. Furthermore, any type of predictor may
be used, not restricting the user to a priori assumptions of the underlying process
structure.

In Takagi–Sugeno (TS) system, a technique that also gives soft switching, the
underlying assumption is that the switching dynamics can be observed directly
from the data. This assumption has been relaxed for the proposed algorithm,
extending the applicability beyond that of TS systems.

In [86], another interesting approach to online Bayesian Model Averaging is
suggested for changing dynamics. In this approach, the assumed transition
dynamics between the different modes are based on a Markov chain. However, in
our approach no such assumptions on the underlying switching dynamics are
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postulated. Instead, switching is based on recent performance in regards to the
applicable norm, and possibly on estimated correlations between predictor modes
and features of the data stream P hk ¼ ijDkð Þ, see Eq. (13).

8 Conclusions

A novel merging mechanism for multiple glucose predictors has been proposed for
time-varying and uncertain conditions. The approach was evaluated on both
artificial and real-world data sets, incorporating modeling errors in the individual
predictors and time-shifting dynamics.

The results show that the merged prediction has a predictive performance in
comparison with the best individual predictor in each case, and indicates that the
concept may prove useful when dealing with several individual (glucose) pre-
dictors of uncertain reliability—reducing the risk associated with definite a priori
model selection, or as a means to improve predictive quality if the predictions are
diverse enough.

Further research will be undertaken to investigate how interesting features
correlated to expected predictor mode changes should be extracted, and in regards
to the possibility of making the algorithm unsupervised.
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