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Preface

The motivation for this book is two-fold. On one hand, the book seeks to promote
the notion that mathematical and computational modeling is critically important in
advancing the scientific understanding of the physiological processes underpinning
the regulation of blood glucose and, therefore, can be valuable in medical/clinical
efforts to manage diabetes mellitus. On the other hand, the book advocates the
view that these modeling efforts must rely primarily on data-based approaches as
the scientific and methodological pathway leading to our ultimate objective in a
most efficient and expeditious manner. Although both aforementioned reasons for
the publication of this book are widely accepted by the peer community as being
valid and meritorious, they have not been given—in the view of the co-editors—
the requisite attention in the vast literature on glycemic regulation and the clinical
management of diabetes mellitus. Through the publication of this book, the
co-editors and the distinguished contributing co-authors aspire to make a contri-
bution in addressing this need for rigorous, reliable and effective methodological
tools that can be useful in achieving the goal of quantitative data-based modeling
of the physiological process of glycemic control in a practical context—thus
providing a valuable vehicle for the improved clinical management of diabetes
mellitus.

These modeling tools should take into account the intrinsic characteristics of
the human metabolic system, particularly in diabetic patients, which render the
problem of achieving reliable and robust automatic glucose regulation very
difficult. These include, but are not limited to, the patient-specific and time-varying
nature of glucose metabolism in diabetic patients, the presence of large, possibly
unpredictable and/or unobservable disturbances, and the incomplete information
that is available to the modeler due to the complex interplay between a large
number of physiological and behavioral factors that cannot be accounted for in a
practical setting. Due to the aforementioned characteristics, choosing the proper
model type, the estimation methodology and the control strategy are crucial for
achieving the desired result.

The contents of the book can be divided into two parts conceptually. The first
half (Chapters ‘‘Data-Driven and Minimal-Type Compartmental Insulin-Glucose
Models: Theory and Applications’’ to ‘‘Pitfalls in Model Identification: Examples
from Glucose-Insulin Modelling’’) focuses mostly on methodological consider-
ations related to modeling approaches in diabetes, whereas the second half
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(Chapters ‘‘Simulation Models for In-Silico Evaluation of Closed-Loop Insulin
Delivery Systems in Type 1 Diabetes’’ to ‘‘Nonlinear Modeling of the Dynamic
Effects of Free Fatty Acids on Insulin Sensitivity’’) focuses on the applications
aspect of such approaches. Specifically, the first chapter (Mitsis and Marmarelis)
demonstrates the relation between widely used compartmental differential equa-
tion models of glucose metabolism and input–output nonlinear Volterra-type
models in an analytical manner. It also illustrates the feasibility of obtaining
Volterra models from simulated data generated by these compartmental models as
well as from experimental animal data.

The second chapter (by Ståhl, Johansson and Renard) concerns the important
issue of whether a single optimal model may be identified for glucose prediction,
given the highly complex nature of metabolism outlined above. In this context, the
authors discuss the use of the model merging/switching approach to achieve robust
and reliable prediction.

The third chapter (by Bequette) considers the crucial, potentially life-threatening
occurrence of hypoglycemic events, particularly those occurring during the night.
Various predictive algorithms that may be used to detect such events and conse-
quently schedule the function of the insulin pump, as well as challenges linked to
their implementation, are discussed.

The fourth chapter (by Daskalaki, Diem and Mougiakakou) addresses ways to
handle the time-varying nature of glucose metabolism, which is one of the most
important challenges in designing reliable therapeutic schemes. These time-varying
characteristics may arise from intrinsic nonstationarities and/or the effect of
exogenous unobserved factors and the authors consider the use of adaptive algo-
rithms to perform on-line glucose regulation and detection of hypo/hyperglycemic
events.

The fifth chapter (by Panunzi and DeGaetano) discusses the possible pitfalls
that may arise when constructing parametric models of glucose-insulin interac-
tions, i.e., differential equation models that assume a specific structure for the
underlying system. They discuss the importance of examining the qualitative
behavior of a model (e.g., whether this behavior is physiologically plausible) and
investigate the presence of undesired noise in the input signal used to obtain
parameter estimates—an issue that is particularly important in closed-loop
systems, such as the glucose metabolism system.

The second, applications-oriented, half of the book commences with the sixth
chapter (by Wilinska and Hovorka), which reviews the use of realistic virtual
patient models to assess the performance of automated closed-loop glucose reg-
ulation systems. These models are beginning to constitute a crucial part of the
design process in the quest for an artificial pancreas, as they may accelerate the
design process and the transition to clinical trials, as demonstrated by their recent
approval as a substitute for pre-clinical trial test beds by regulatory bodies (e.g.,
the Food and Drug Administration of the USA).

The seventh chapter (by Tura and Pacini) presents applications of the oral
glucose tolerance test, as well as recently proposed mathematical models for the
analysis of such data, in order to quantify sex-related differences in glucose
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metabolism as well as glucose absorption in pregnant women with gestational
diabetes. The results demonstrate that rich information may be extracted when
models that are well suited to the experimental data at hand are designed.

The eighth chapter (by DeGaetano et al.) takes a longer-term perspective on the
effects of diabetes, presenting a model (Diabetes Progression Model) that aims to
quantify the evolution of the glucose–insulin system and particularly its com-
pensation to progressively worsening insulin resistance. This perspective is equally
important in the design of therapeutic interventions, such as metabolic surgery or
beta cell protection, as it provides a way to quantify the long-term effects of these
(or other) therapies.

The ninth chapter (by Cescon and Johansson) considers the use of widely used
systems identification techniques, such as autoregressive and state-space models,
in order to perform individualized short-term (up to 2 h) prediction of future
glucose values in a group of patients with Type 1 diabetes. While the overall
performance of these approaches was deemed reasonable, the prerequisites to
achieve this performance were partially met, suggesting room for improvement,
such as the design of optimized experimental protocols to perform system
identification.

Finally, the tenth chapter (by Marmarelis, Shin and Mitsis) considers the
application of a multivariate, data-driven approach to quantifying the dynamic
effects of spontaneous fluctuations of plasma insulin and free fatty acids on
glucose concentration in a fasting dog. The obtained dynamic, nonlinear,
data-driven models are then linked to more traditional measures of glucose
metabolism, such as insulin sensitivity and its interactions with free fatty acid
levels, illustrating the importance of obtaining models that are amenable to
physiological interpretation.

Concluding, we wish to extend our warm thanks to all contributors for
submitting high quality work to this research volume, which we hope will prove
useful in promoting further research on this important topic.

March 2014 Vasilis Marmarelis, Los Angeles, CA
Georgios Mitsis, Montreal, QC
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Data-Driven and Minimal-Type
Compartmental Insulin-Glucose Models:
Theory and Applications

Georgios D. Mitsis and Vasilis Z. Marmarelis

Abstract This chapter initially presents the results of a computational study that
compares simulated compartmental and Volterra models of the dynamic effects of
insulin on blood glucose concentration in humans. In this context, we employ the
general class of Volterra-type models that are estimated from input-output data,
and the widely used ‘‘minimal model’’ as well as an augmented form of it, which
incorporates the effect of insulin secretion by the pancreas. We demonstrate both
the equivalence between the two approaches analytically and the feasibility of
obtaining accurate Volterra models from insulin-glucose data generated from the
compartmental models. We also present results from applying the proposed
approach to quantifying the dynamic interactions between spontaneous insulin and
glucose fluctuations in a fasting dog. The results corroborate the proposition that it
may be feasible to obtain data-driven models in a more general and realistic
operating context, without resorting to the restrictive prior assumptions and sim-
plifications regarding model structure and/or experimental protocols (e.g. glucose
tolerance tests) that are necessary for the compartmental models proposed previ-
ously. These prior assumptions may lead to results that are improperly constrained
or biased by preconceived (and possibly erroneous) notions—a risk that is avoided
when we let the data guide the inductive selection of the appropriate model.
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1 Introduction

Diabetes mellitus represents an alarming threat to public health with rising trends
and severity in recent years worldwide and is characterized by multiple and often
not readily observable clinical effects [15]. Hence, there is urgent need for
improved diagnostic methods that provide more precise clinical assessments and
sensitive detection of symptoms at earlier stages of the disease [33]. This critical
task may be facilitated (or enabled) by the utilization of advanced mathematical
models that reliably describe the dynamic interrelationships among key physio-
logical variables implicated in the underlying physiology (i.e. blood glucose
concentration and various hormones such as insulin, glucagon, epinephrine, nor-
epinephrine, cortisol etc.) under a variety of metabolic and behavioral conditions
(e.g. pre-/post-prandial, exercise/rest, stress/relaxation). Such models would not
only provide a powerful diagnostic tool, but may also enable long-term glucose
regulation in diabetics through closed-loop model-reference control using frequent
insulin micro-infusions administered by implanted programmable micro-pumps.
This may prevent the onset of the pathologies caused by elevated blood glucose
over prolonged periods in diabetic patients [15].

The primary effect on blood glucose is exercised by insulin and most efforts to
date have focused on the study of this causal relationship. Prolonged hypergly-
cemia is usually caused by defects in insulin secretion by the pancreatic beta cells
or in the efficiency of insulin-facilitated glucose uptake by the cells. The exact
quantitative nature of the dependence between blood glucose concentration and the
action of the other hormones mentioned above, or factors such as diet, endocrine
cycles, exercise, stress etc. remains largely unknown—primarily because of lack of
appropriate data although the qualitative effect has been established. Thus, the
aggregate effect of all these other factors for modeling purposes is viewed as
random ‘‘disturbances’’, additive to the blood glucose level.

Starting from the initial work of Bolie [7] and Ackerman [1], most modeling
studies of the causal relationship between insulin and glucose (as the ‘‘input’’ and
‘‘output’’ of a system representing this relationship) have relied on the concept of
compartmental modeling [9]. In this context, the minimal model (MM) of glucose
disappearance, combined with the intravenous glucose tolerance test, has been the
most widely used method to study whole body glucose metabolism in vivo [3].
The MM postulates that insulin acts from a remote compartment and affects
glucose utilization, in addition to the insulin-independent utilization that depends
on the glucose level per se. These insulin-dependent and insulin-independent
effects on glucose utilization/kinetics are combined in a single compartment.
Certain parameters of the MM (i.e., insulin sensitivity SI and glucose effectiveness
SG) have been shown to be of clinical importance and can be estimated from
IVGTT data, using nonlinear least-squares methods [4, 34] or, more recently,
Bayesian estimation techniques [22, 23].

The accuracy of the estimates obtained from the MM has been questioned
because of the single-compartment assumption [10, 16, 34], and two-compartment
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models for glucose kinetics have been proposed [8,11]. Moreover, more complex
models that aim to capture the complexity of the underlying physiology under
more general operating conditions have been also proposed [13, 14, 38]. However,
models of this type cannot be identified from standard clinical tests and they
require the design of specialized experimental protocols. For instance, the model
proposed in [14] includes 12 differential equations and 35 parameters, and a
specialized triple-tracer experiment was designed in order to identify its parame-
ters in 204 healthy individuals and 58 pre-diabetic/diabetic patients [14]. Other
modeling approaches that have been explored—in the context of glucose control—
include artificial neural networks [43], probabilistic models [2] and linear/non-
linear impulse response and Volterra models [18, 27, 35]. In addition to modeling
insulin-glucose interactions, attempts have been made to take into account the
influence of additional relevant physiological signals, such as glucagon [13, 26]
and free fatty acids [37].

Most of the aforementioned compartmental models rely on a priori assumptions
and simplifications regarding the underlying physiological mechanisms and their
primary aim is often to extract clinically important parameters in conjunction with
specific experimental protocols (e.g., the IVGTT). Therefore, their ability to
quantify glucose metabolism under actual, more general operating conditions
remains limited. On the other hand, recent technological advances in the devel-
opment of reliable continuous glucose sensors and insulin micro-pumps [6, 19]
have provided time-series data that enable the application of data-driven modeling
approaches. These approaches offer new opportunities towards the goal of
obtaining reliable models of the insulin-glucose interrelationships in a more
general context. Using spontaneous or externally infused insulin and glucose data,
one can obtain data-driven models that are not constrained by a priori assumptions
regarding their structure.

In addition to the effects of external insulin or glucose stimuli, the interactions
between spontaneous fluctuations of plasma glucose and insulin are of great
interest. The precise characteristics of pulsatile insulin secretion patterns influence
blood glucose regulation and are altered in Type II diabetes [24, 36]. Furthermore,
insulin secretion is regulated in vivo by plasma glucose oscillations over various
time scales (from rapid to ultradian) and changes in this relation may be potentially
useful as an early marker of Type II diabetes development [36, 40].

Therefore, the purpose of the present chapter is twofold: First, we examine the
relation between existing compartmental (differential equation) and Volterra-type
models, both analytically and computationally. The results demonstrate the fea-
sibility of obtaining Volterra models of insulin-glucose dynamics that are equiv-
alent to widely accepted compartmental models, using data-records that are
practically obtainable. They also illustrate the physiological interpretation of
nonlinear Volterra models by providing direct links to a well-known parametric
model with parameters of clinical significance. Since the Volterra approach does
not require prior assumptions about model structure, it can provide the effective
means for obtaining accurate data-true, patient-specific and time-adaptive models
in a clinical context. Second, we showcase the application of the proposed data-
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driven approach to modeling the dynamic interrelationships between spontaneous
variations of plasma insulin and glucose in fasting dogs in the closed-loop context
of the problem. Specifically, we examine both causal directions of the loop—i.e.
considering first the insulin as input and the glucose as output, and vice versa. The
resulting Principal Dynamic Modes (PDM) models are equivalent to Volterra
models and have a modular form that facilitates physiological interpretation. The
analysis of the experimental data yields PDM models that are comprised of two
parallel branches in each causal direction, describing the primary physiological
mechanisms of slow and fast dynamic interactions between variations of plasma
insulin and glucose for each causal direction. Spectral analysis of the resulting
insulin and glucose residuals (representing internal secretions and systemic dis-
turbances) indicate the presence of oscillatory spontaneous variations of insulin
and glucose at preferred frequencies in agreement to previous reported observa-
tions. Overall, our results demonstrate the potential of the proposed black-box
modeling approach to advance our quantitative understanding of this system.

2 Insulin-Glucose Models

The present study concerns compartmental and Volterra-type nonlinear dynamic
models; among compartmental models, we select the minimal model of glucose
disappearance (MM), as well as an augmented version of it (AMM), which
incorporates an insulin secretion equation. The structure and parameter values of
these models are taken from the literature [3, 4, 20, 25, 41, 45]. The equivalent
Volterra models [30] are estimated using simulated input–output data from the
compartmental models in Sect. 3.

2.1 The Minimal Model of Glucose Disappearance

The MM of glucose disappearance is described by the following two differential
equations [3], which describe the nonlinear dynamics of the insulin-to-glucose
relationship during an IVGTT:

dg tð Þ
dt
¼ �p1g tð Þ � x tð Þ g tð Þ þ gb½ � ð1Þ

dg tð Þ
dt
¼ �p2x tð Þ þ p3i tð Þ ð2Þ

where g(t) is the deviation of glucose plasma concentration from its basal value gb

(in mg/dl), x(t) is the internal variable of insulin action (in min-1), i(t) is the
deviation of insulin plasma concentration from its basal value ib (in lU/ml), p1 and
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p2 are parameters describing the kinetics of glucose and insulin action respectively
(in min-1) and p3 is a parameter (in min-2ml/lU) that affects insulin sensitivity SI
(see below). The initial conditions for the simulations are: g(0) = 0 and x(0) = 0
(i.e. we assume that we start at basal conditions—which is a reasonable
assumption in the context of simulating the model for situations where the initial
‘‘transient’’ phase can be ignored). Note that the MM is nonlinear, due to the
presence of the bilinear term between the internal variable x(t) representing insulin
action and the variable g(t) + gb representing the plasma glucose concentration in
the first equation. This bilinear term describes the modulation of the effective
kinetic constant of the glucose utilization by insulin action (i.e. insulin concen-
tration increases cause faster disappearance of blood glucose).

The physiological interpretation of the MM parameters can be made in terms of
insulin-dependent and insulin-independent processes that enhance glucose uptake
and suppress net glucose output. The parameter p1, termed ‘‘glucose effectiveness’’
SG, represents the insulin-independent effect, while the insulin-dependent effect is
represented by the ratio p3/p2 (in min-1/lUml-1) and is termed ‘‘insulin sensi-
tivity’’ SI. The values of SG and SI are typically estimated from IVGTT data and
the MM has proven to be successful in a clinical context, requiring a relatively
simple test procedure [5]. Nonetheless, the accuracy and physiological interpre-
tation of the MM parameter estimates has been questioned because of the use of a
single compartment for glucose kinetics [10, 11].

The MM, as formulated in Eqs. (1) and (2), does not include an equation
describing the secretion of insulin from pancreatic beta cells in response to an
elevation in blood glucose concentration, i.e., it is an open-loop model, which may
be used along with properly designed experimental protocols (IVGTT) for
parameter estimation. However, the actual glucose metabolism process is a closed-
loop system, except in conditions of severe Type I diabetes where the pancreatic
beta cells are considered totally inactive. In order to account for this, an insulin
secretion equation may be included, as described below (closed loop MM or
AMM). Limitations of the MM (and the AMM) include the absence of an explicit
glucogenic component reflecting production of new glucose by the liver in
response to elevated plasma insulin and/or glucose (such as the model presented in
[26]) and the associated glucagon secretion process (from the alpha cells of the
pancreas) among others. The aggregate effect of these processes, as well as the
effect of other factors (free fatty acids, epinephrine etc.), can be incorporated by
‘‘disturbance’’ terms that are added to the glucose rate and insulin action equations.

2.2 Closed-Loop Compartmental Model: The Augmented
Minimal Model

The closed-loop nature of insulin-glucose interactions requires the incorporation of
an additional equation describing the insulin secretion dynamics by the pancreatic
beta cells. Of several equations that have been proposed [4, 39, 41, 42, 45], we
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select one that utilizes a threshold function, similar to the one reported in [42]. The
resulting closed-loop model becomes:

dg tð Þ
dt
¼ �p1g tð Þ � x tð Þ g tð Þ þ gb½ � ð3Þ

dx tð Þ
dt
¼ �p2x tð Þ þ p3 i tð Þ þ r tð Þ½ � ð4Þ

dr tð Þ
dt
¼ �ar tð Þ þ bTh g tð Þ½ � ð5Þ

where r(t) is the secreted insulin by the pancreatic beta cells in response to an
elevation in plasma glucose concentration and i(t) correspond to insulin concen-
tration changes due to externally administered insulin. The secretion is triggered
by elevated plasma glucose concentrations according to the threshold function
Th[g(t)] defined as:

Th g tð Þ½ � ¼ g tð Þ � h g tð Þ� h
0 otherwise

�
ð6Þ

where h corresponds to the glucose concentration value above which insulin is
secreted. The dynamics of this triggered secretion process and the kinetics of the
secreted insulin are described (in first approximation) by the kinetic constant a (in
min-1) in Eq. (5). The parameter b (in lU min-1/ml per mg/dl) determines the
rate of insulin secretion (i.e. the strength of the feedback pathway). Note that some
alternative similar models [4, 41] of insulin secretion include a time-varying term
that multiples the last term of Eq. (5) with t. This is based on the hypothesis that
the rate of insulin secretion in response to hyperglycemia increases linearly with
time. However, this term may not admit a steady-state solution but instead result in
unbounded state variable values for physiologically reasonable values of the model
parameters. This is not plausible; therefore, it should be taken into account when
constructing models that are intended to be physiologically realistic, as discussed
in more detail in the chapter by Panunzi and de Gaetano in the present volume.

2.3 Volterra-Type Models

The Volterra-Wiener framework has been employed extensively for modeling
nonlinear physiological systems [30]. In this context, the input-output dynamic
relationship of a causal, nonlinear system of order Q and memory M is described
by the Volterra functional expansion:

g tð Þ ¼
XQ

n¼0

Z M

0
. . .

Z M

O
kn s1; . . .; snð Þi t � s1ð Þ. . .i t � snð Þds1. . .dsn ð7Þ
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The Volterra model can be formulated in discrete-time as follows:

g tð Þ ¼
XQ

n¼0

XM

s1¼0

. . .
XM
sn¼0

kn s1; . . .; snð Þi t � s1ð Þ. . .i t � snð Þ ð8Þ

In both the above models (Eqs. 7 and 8), i(t) and g(t) are the input and output of
the system at time t (deviations of plasma insulin and glucose concentrations from
their basal values, respectively). The unknown quantities of the Volterra model
that are estimated from the input-output data are the Volterra kernels kn(s1,…, sn).
The first-order kernel (n = 1) is the linear component of the system dynamics,
while the higher order kernels (n[1) form a hierarchy of the nonlinear dynamics
of the system. The highest order Q defines the nonlinear order of the system. Many
physiological systems can be described adequately by Volterra models of rela-
tively low order (second or third) [30]. The Volterra-Wiener approach is well-
suited to the complexity of physiological systems since it yields data-true models,
without requiring a priori assumptions about system structure.

Among various methods that have been developed for the estimation of the
discrete-time Volterra kernels (Eq. 8), a Volterra-equivalent network in the form
of the Laguerre-Volterra Network (LVN) is selected because it has been proven to
be an efficient approach that yields accurate representations of high-order systems
in the presence of noise using short input-output records [31]. The LVN model
consists of an input layer of a Laguerre filter-bank and of a hidden layer with K
hidden units with polynomial activation functions (Fig. 1) [31]. At each discrete
time t, the input signal i(t) (insulin) is convolved with the Laguerre filter-bank and
weighted sums of the filter-bank outputs Vj (where vj = i * bj, * denotes convo-
lution and bj is the j-th order discrete-time Laguerre function) are transformed by
the hidden units through polynomial transformations.

The model output g(t) (glucose) is formed as the summation of the hidden unit
outputs zk and a constant corresponding to the glucose basal value gb:

uk tð Þ ¼
XL�1

j¼0

wk;jvj tð Þ ð9Þ

g tð Þ ¼
XK

k¼1

zk tð Þ þ gb ¼
XK

k¼1

XQ

n¼1

cn;kun
k tð Þ þ gb ð10Þ

where L is the number of functions in the filter bank and wk,j and cn,k are the
weighting and polynomial coefficients respectively. The insulin and glucose time-
series are used to train the LVN model parameters (wk,j, cn,k and the Laguerre
parameter which determines the Laguerre functions dynamic properties) with a
gradient-descent algorithm, as described in [31].
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The equivalent Volterra kernels are then obtained in terms of the LVN
parameters as:

kn s1; . . .; snð Þ ¼
XK

k¼1

cn;k

XL�1

j1¼0

. . .
XL�1

jn¼0

wk;j1 . . .wk;jn bj1 s1ð Þ. . .bjn snð Þ ð11Þ

The structural parameters of the LVN model (L, K, Q) are selected on the basis
of the normalized mean-square error (NMSE) of the output prediction achieved by
the model, defined as the sum of squares of the model residuals divided by the sum
of squares of the demeaned true output. The statistical significance of the NMSE
reduction achieved for model structures of increased order/complexity is assessed
by comparing the percentage NMSE reduction with the alpha-percentile value of a
chi-square distribution with p degrees of freedom (p is the increase of the number
of free parameters in the more complex model) at a significance level alpha,
typically set at 0.05.

The LVN representation is equivalent to a variant of the general Wiener-Bose
model termed the Principal Dynamic Mode (PDM) model. The PDM model consists
of a set of parallel branches, each one of which is the cascade of a linear dynamic
filter (PDM) followed by a static nonlinearity [29, 30]. Each of the K hidden units of
the LVN corresponds to a separate branch and defines the respective PDM pk(t) and
polynomial nonlinearity fk(.). This leads to model representations that allow
physiological interpretation, since the resulting number of branches is typically low

Fig. 1 The Laguerre-
Volterra network. The system
input i(t) is convolved with a
Laguerre filter bank with
impulse responses bj, the
outputs of which (vj(n)) are
fed into a layer of K hidden
units with polynomial
activation functions fK that
produce the system output
g(t)
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in practice. According to the PDM model form, the insulin input signal is convolved

with each of the PDMs pk(t), where k = 1, …, K and pk tð Þ ¼
PL�1

j¼0 wk;jbjðtÞ, and the
PDM outputs uk are subsequently transformed by the respective polynomial non-
linearities fk(.) to produce the model-predicted blood glucose output (the asterisk
denotes convolution) [30]:

g tð Þ ¼ gb þ f1 u1 tð Þ½ � þ . . .þ fK uK tð Þ½ �
¼ gb þ f1 p1 tð Þ � i tð Þ½ � þ . . .þ fK pK tð Þ � i tð Þ½ �

ð12Þ

Therefore, once an LVN model is trained based on input-output data, the PDMs
and their associated nonlinearities can be readily obtained using the final (trained)
values of the LVN parameters, i.e., weights wk,j, polynomial coefficients cn,k and
Laguerre parameter a. For more details, the reader is referred to [32] (Chap. 2).

3 Comparison Between Compartmental and Volterra
Models

3.1 Generalized Harmonic Balance Method

In order to examine the mathematical relationship between the aforementioned
compartmental and Volterra models, we employ the generalized harmonic balance
method to derive analytical relations between the two model forms, as outlined
below for the second-order case of the nonparametric model [28]. This procedure
can be extended to any order of interest.

By setting the input i(t) equal to 0, est and es1t þ es2t in the general Volterra
model of Eq. (7) successively, the output g(t) becomes equal to k0, k0 + estK1(s) +
e2stK2(s, s) + … and k0 þ es1tK1 s1ð Þ þ es2tK1 s2ð Þ þ es1tþs2tK2 s1; s2ð Þ þ � � � where
K1(s) and K2(s1, s2) are the Laplace transforms of k1(s) and k2(s1, s2) respectively.
If we substitute these three input-output pairs into the differential equations of the
compartmental models (Eqs. 1 and 2) for the open-loop model and (3–5) for the
closed-loop model) and equate the coefficients of the resulting exponentials of the
same kind, we can obtain analytical expressions for k0, K1(s) and K2(s1, s2), in
terms of the parameters of the respective compartmental model.

To define the computational equivalence between the two model forms, we
simulate the compartmental models with broadband input (insulin) data and we
then estimate the kernels of the equivalent Volterra model, from the simulated
input- output data. The accuracy of the estimated first and second-order Volterra
kernels is assessed by comparison with the exact kernels of the equivalent Volterra
model that is derived in analytical form from the differential equations of the
compartmental models. The accuracy and robustness of the kernel estimates is
evaluated under measurement noise conditions, in order to assess the performance
of the Volterra approach.
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3.2 Analytical Expressions of the Volterra Kernels
of the Compartmental Model: Open-Loop Case

The bilinear term between insulin action and glucose concentration in Eq. (1) of
the MM gives rise to an equivalent Volterra model of infinite order. However, for
parameter values within the physiological range, a second-order Volterra model
offers an adequate approximation for all practical purposes. Considering the
insulin and glucose deviations from the respective basal values i(t) and g(t) as the
input and the output respectively, we can derive analytically the Volterra kernels
of the open-loop MM by applying the procedure outlined in Sect. 3.1 to the
integro-differential equation:

_g tð Þ þ p1g tð Þ þ p3

Z 1
0

exp �p2sð Þi t � sð Þds ¼ �gbp3

Z 1
0

exp �p2sð Þi t � sð Þds

ð13Þ

The above equation is derived from the MM by substituting the convolutional
solution of Eq. (2):

x tð Þ ¼ p3

Z 1
0

exp �p2sð Þi t � sð Þds ð14Þ

into Eq. (1). Upon application of this method, we derive the following analytical
expressions in the Laplace domain for the first- and second-order Volterra kernels
of the MM (k0 = 0):

K1 sð Þ ¼ p3gb
1

sþ p1ð Þ sþ p2ð Þ ð15Þ

K2ðs1; s2Þ ¼
p2

3gb

2
1

s1 þ p1ð Þ s1 þ p2ð Þ
1

s2 þ p1ð Þ s2 þ p2ð Þ 1þ p2

s1 þ s2 þ p1

� ffl
: ð16Þ

The MM has, in principle, Volterra kernels of any order. However, it can be
shown that the magnitude of the n-th order kernel is proportional to the n-th power
of p3 and, subsequently, an adequate Volterra model may only include the first two
kernels (since the value of p3 is on the order of 10-5–10-4). The resulting
expressions for the first and second order kernels in the time domain are given in
Eqs. (17) and (18) respectively:

k1 sð Þ ¼ �gb
p3

p2 � p1
exp �p2s1ð Þ � exp �p2sð Þ½ � ð17Þ
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k2ðs1; s2Þ ¼
p2

3gb

2ðp2 � p1Þ2
�
½expð�p1s1Þ � expð�p2s1Þ�½expð�p1s2Þ � expð�p2s2Þ�

þ p2

��
1
p1

exp½�p1ðs1 þ s2Þ�:½expðp1 minðs1; s2Þ � 1Þ�
ffl

� 1
p2

exp½ð�p1s1 � p2s2Þ þ expð�p1s2 � p2s1Þ�ðexp½p2 minðs1; s2Þ� � 1Þ

þ expð�p2ðs1 � s2ÞÞ
2p2 � p1

ðexp½ð2p2 � p1Þminðs1; s2Þ� � 1Þ
fflffl

ð18Þ

These first and second-order Volterra kernels are plotted in Fig. 2 (top panel) for
typical MM parameter values within the physiological range [25, 34]: gb= 80 mg/dl,
p1= SG = 0.02 min-1, p2 = 0.028 min-1 and p3= 10-4 min-2ml/lU, which yield
S1= 0.0036 min-1/lU ml-1. Since the specific parameter values define the MM
description of insulin-glucose dynamics, they also define the form of the equivalent
Volterra kernels. The form of the first-order kernel in Fig. 2 (top left panel) indicates
that an 10 lU/ml insulin concentration increase will cause a first-order drop in
plasma glucose concentration that will reach a minimum of about -1.2 mg/dl about
36 min later, rising after that to half the drop in about 1 h and relaxing back to the
basal value about 4 h after the minimum. The positive values of the second-order
Volterra kernel indicate that the actual glucose drop caused by the insulin infusion
will be slightly less than the first-order prediction (sublinear response). For instance,
an insulin concentration increase of 100 lU/ml will not cause a maximum glucose
drop of 12 mg/dl (as predicted by its equivalent first-order kernel) but a drop of
about 10.5 mg/dl due to the antagonistic second-order kernel contribution.

Changes in these parameter values affect the form and the values of the kernels in
the precise manner described by Eqs. (17) and (18). The effects of changes in the
two MM parameters p1 and p2 on the equivalent first-order kernel are illustrated in
Fig. 2 (bottom panels) for a range of physiological values (p1 between 0.01 and
0.04 min-1 and p2 between 0.02 and 0.05 min-1 [34], keeping p3 = 10-4 min-2 ml/
lU constant). Note that changes in p3 simply scale the first-order kernel according to
Eq. (17) and do not alter its form (proportional dependence)—nor do they alter the
form of the second-order kernel (they scale it quadratically). A direct sense of the
effects of parameter changes is obtained by the waveforms of Fig. 2: for instance, as
p1(SG) increases, the maximum drop of the first-order kernel becomes smaller and
its dynamics (i.e. the drop to the minimum and the return to basal value) become
faster. Similar effects are observed when p2 increases (or SI decreases).
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3.3 Analytical Expressions of the Volterra Kernels
of the Compartmental Model: Closed-Loop Case

To derive the analytical expressions of the kernels in the closed-loop case, we
approximate the threshold function of Eq. (6) with a polynomial as indicated
below, assuming that h is equal to zero (i.e. insulin secretion is triggered when the
glucose concentration rises above its basal value):

bTh g tð Þ½ � � b1g tð Þ þ b1g2 tð Þ þ . . . ð19Þ

Fig. 2 Top panel The first-order (left) and second-order (right) Volterra kernels of the minimal
model for typical values of its parameters within the physiological range (SG = 0.02 min-1 and SI =
0.0036 min-1/lU ml-1). Bottom panel Effect of the two key parameters p1 and p2 of the open-loop
MM on the form of the equivalent first-order kernel. Note that the glucose effectiveness SG is equal
to p1 and the insulin sensitivity SI is inversely proportional to p2 (and proportional to p3). These plots
offer a visual understanding of the effects of changes in these parameters (p1 between 0.01 and
0.04 min-1, p2 between 0.02 and 0.05 min-1) on the first-order insulin-glucose dynamics (see text)
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where g(t) is the deviation of glucose plasma concentration from its basal value.
Equation (19) provides an accurate representation of (6) within a desired dynamic
range for glucose values g(t) (Weierstrass theorem), whereby the coefficients bi can
be estimated in a mean-square sense. However, note that the subsequent analysis is
valid for any values of these coefficients. Equation (5) can be rewritten as:

dr tð Þ
dt
¼ �ar tð Þ þ b1g tð Þ þ b2g2 tð Þ þ . . . ð20Þ

The solution of Eq. (20) is given by:

r tð Þ ¼ b1f tð Þ � g tð Þ þ b2f tð Þ � g2 tð Þ þ . . . ð21Þ

where the asterisk denotes convolution and f(t) = e-atu(t). Also, from Eq. (4) we
have

dx tð Þ
dt
¼ �p3h tð Þ � i tð Þ þ r tð Þ½ � ð22Þ

where hðtÞ ¼ e� p2 tuðtÞ. Then, Eq. (3) becomes:

dg tð Þ
dt
þ p1g tð Þ ¼ �p3g tð Þ h tð Þ � i tð Þ þ b1h tð Þ � f ðtÞ � g tð Þ þ b2h tð Þ � f ðtÞ � g2 tð Þ þ . . .

� �
:

ð23Þ

The above equation can be used to obtain the equivalent Volterra kernels of the
closed-loop model, following the procedure outlined before for the open-loop
model. The resulting expressions for the first-order and the second-order kernels in
the Laplace domain are given by Eqs. (24) and (25) respectively (k0 = 0):

K1 sð Þ ¼ �p3gb
H sð Þ

sþ p1 þ p3gbb1F sð ÞH sð Þð Þ ð24Þ

K2 s1; s2ð Þ ¼ � p3 b1 þ b2ð Þ½ �gb
H s1 þ s2ð ÞF s1 þ s2ð ÞK1 s1ð ÞK1 s2ð Þ

s1 þ s2 þ p1 þ p3gbb1H s1 þ s2ð ÞF s1 þ s2ð Þ

þ 1
2

H s1ð ÞK1 s2ð ÞH s2ð ÞK1 s1ð Þ
s1 þ s2 þ p1 þ p3gbb1H s1 þ s2ð ÞF s1 þ s2ð Þ

ð25Þ

where F(s), H(s) are the Laplace transforms of f(t), h(t) respectively, i.e.
F sð Þ ¼ 1

sþa ; H sð Þ ¼ 1
sþp2

.

The above relations were inverted numerically to yield the time-domain
expressions for the first-order kernel, which are shown in Fig. 3 for the following
parameter values: a varying between 0.1 and 0.3 min-1 with b remaining constant
at 0.05 lU-min-2/ml per mg/dl (left panel) and b varying between 0.0001 and 0.1
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lU-min-2/ml per mg/dl with a remaining constant at 0.13 min-1 (right panel).
The nominal value of a (0.13 min-1) was taken from [45], while the value of b
was set at 0.05 lU-min-2/ml, since the value reported in [45] (0.0054) resulted in
negligible effects of endogenous insulin secretion for the stimuli used in this study.
The decrease of a (slower insulin secretion dynamics) and increase of b (stronger
feedback) affect the AMM first-order kernel waveform similarly—i.e., they result
in faster dynamics with a small decrease of the negative peak value and the
appearance of an overshoot which is characteristic of closed-loop systems.

3.4 Simulation Results: Open-Loop Model

In order to demonstrate the feasibility of estimating the Volterra kernels of the
open-loop MM directly from input-output measurements, we simulate it by
numerical integration of Eqs. (1) and (2) for the following values of MM
parameters: p1= 0.020 min-1, p2 = 0.028 min-1, p3= 10-4 min-2 ml/lU, gb =
80 mg/dl that are around the middle of the physiological ranges reported in the
literature [4, 34]. The input signal for this simulation is a zero-mean Gaussian
white noise (GWN) sequence of insulin time-series (i.e. independent samples
every 5 min), with a standard deviation of 4 lU/ml, which may be viewed as
spontaneous fluctuations around its basal value or arising from step-wise contin-
uous infusions of insulin at random levels, changed every 5 min, superimposed on
a constant (positive) baseline infusion. Due to the low-pass dynamic characteristics
of the model, one sample every 5 min is sufficient for representing the input-output
data. An input-output record of 144 sample points (i.e., 12 h long) is used to
perform the training of the LVN and the estimation of the kernels of the equivalent
Volterra model.

Fig. 3 The first-order kernels of the AMM for a varying between 0.1 and 0.3 min-1 with
constant b = 0.05 (left panel) and for b varying between 0.0001 and 0.1 lU-min-2/ml per mg/dl
with constant a = 0.13 min-1 (right panel)
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In order to illustrate model structure selection, we show the obtained NMSEs
for various values of L, as well as for linear (Q = 1) and nonlinear (Q = 2) models
for three different values of p3, which determines the strength of the MM non-
linearity, in Table 1. For p3 = 5 � 10-5 min-2ml/lU the model is weakly nonlinear,
whereas for p3 = 5 � 10-4 min-2ml/lU the NMSE reduction achieved for Q = 2 is
over 20 %. The contribution of the n-th order Volterra term is proportional to the
n-th power of the product of parameter p3 with the power level of the input (i.e.,
this contribution increases for larger insulin variations); however, for the range of
values examined, a second-order model is found to be sufficient. Also, using L[5
reduces the NMSE minimally in all cases. Therefore, we select a second-order
LVN with one hidden unit and five Laguerre functions (i.e., L = 5, K = 1, Q = 2)
for the estimation of the equivalent Volterra model, with the resulting output
prediction NMSE being 0.09 % (p3 = 10-4 min-2ml/lU). The estimated kernels
of first (Fig. 4—dotted) and second order for the noise free case are almost
identical to the true kernels given by Eqs. (17) and (18) (Fig. 2—top panel).

In order to examine the effect of measurement noise on the kernel estimates, we
repeat the kernel estimation with the aforementioned input-output data after the
addition of 20 independent white-noise signals with maximum amplitude equal to
approximately 20 % of the basal glucose value (i.e., error range of ±16 mg/dl) to the
output [21]. This corresponds to an SNR of around 6.5 dB relative to the demeaned
glucose deviations output. The resulting kernel estimates are also shown in Fig. 4
(top panels) and demonstrate the robustness of this modeling approach in the
presence of measurement noise. The corresponding linear and nonlinear NMSEs are
equal to 24.0 ± 2.7 and 23.6 ± 2.7 % respectively (mean ± standard deviation),
i.e., the output additive noise is not accounted by the model. Also in Fig. 4 (bottom
panels), we present the kernel estimates obtained with an insulin input of the same
length (144 points) composed of a random sequence of impulses (representing
insulin concentration increases that could be due to insulin infusions), with a mean
frequency of 1 impulse every 2 h and a normally distributed random amplitude with

Table 1 Output prediction NMSEs for various LVN model structures and values of p3, GWN
input (open-loop case)

L p3 = 5 � 10-5 p3 = 5 � 10-4 p3 = 5 � 10-4

min-2ml/lU min-2ml/lU min-2ml/lU

Linear
NMSE

Nonlinear
NMSE

Linear
NMSE

Nonlinear
NMSE

Linear
NMSE

Nonlinear
NMSE

2 13.55 8.97 16.24 15.46 22.42 4.89
3 0.39 0.32 0.68 0.30 23.23 1.13
4 4.62 4.85 3.33 3.63 23.88 3.73
5 0.17 0.14 0.40 0.09 21.35 0.61
6 0.22 0.31 0.39 0.17 21.82 0.61

The value of p3 determines the relative contribution of the nonlinear terms: note that for p3 = 5 �
10-5 min-2 ml/lU the NMSE reduction achieved by nonlinear models is marginal, while for p3

= 5 � 10-4 min-2 ml/lU it is over 20 %. Using L [ 5 does not improve model performance
further
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standard deviation 20 lU/ml. The resulting kernel estimates are almost identical to
their GWN-input counterparts, demonstrating the feasibility of estimating accurate
Volterra models using sparser, infusion-like stimuli.

3.5 Simulation Results: Closed-Loop Model

The closed-loop AMM was simulated by numerical integration of Eqs. (3)–(5),
using the same GWN input used for the open-loop MM. The parameter values used
for this model were p1 = 0.020 min-1, p2 = 0.028 min-1, p3 = 10-4 min-2ml/lU
and parameter values of a = 0.13 min-1, b = 0.05 lU-min-2/ml per mg/dl, h =
80 mg/dl for the additional insulin-secretion equation. Representative time-series
data of the resulting insulin input, insulin secretion, insulin action and glucose,
used for training the equivalent LVN model, are shown in Fig. 5, where the effect

Fig. 4 Top panel The estimated first and second order Volterra kernels of the MM using a GWN
input of 144 points (12 h) when 20 different realizations of independent GWN signals are added
to the output for an SNR of 6.5 dB. The obtained first-order (left panel—solid mean value,
dashed ± one standard deviation, dotted noise-free estimate) and second-order kernel estimates
(middle panel—mean value, right panel standard deviation) are not affected significantly relative
to their exact counterparts (Fig. 1—top panel), demonstrating the robustness of this approach.
Bottom panel The estimated first and second order Volterra kernels of the MM for an insulin input
composed of 8 insulin infusions over 12 h. The timing and amplitude of each infusion are random
(see text). Note the similarity of these estimates to the estimates obtained from GWN inputs
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of insulin secretion, relative to the open-loop case, can be seen in the bottom right
panel (solid: closed-loop output, dashed: open-loop output).

An LVN with L = 5, K = 2 and Q = 3 was employed in this case—i.e., a more
complex structure of higher order is required relative to the open-loop case. In the
noise-free case, the obtained nonlinear model reduces the prediction NMSE con-
siderably, from 12.41 %—yielded by the linear model—to 2.18 % (Fig. 6, top left
panel). As before, we repeat the kernel estimation after adding 20 independent
white noise sample signals (with the same variance as above) to the output. Note
that the resulting SNR is now around 4.5 dB, i.e. lower than the open-loop case,
since the noise-free output (glucose deviations) has a smaller mean-square value in
the closed-loop case, due to the effect of the endogenous insulin secretion.
Therefore, the corresponding NMSEs are larger—i.e. 48.2 % for the linear model
and 34.2 ± 4.0 % for the nonlinear model—and correspond, for the nonlinear
model, to the noise present in the signal. This demonstrates the predictive capa-
bility of the obtained models in the presence of considerable output-additive noise
that emulates the observed errors in the measurements of current continuous
glucose monitors [21]. The kernel estimates for both cases are shown in Fig. 6,
illustrating the robustness of this approach. The first and second order kernels of
the closed-loop AMM exhibit biphasic characteristics (i.e., regions of positive and

Fig. 5 Representative realization of the closed-loop AMM time-series data for a GWN insulin
input used for LVN training (length: 12 h). The insulin time series represent deviations from its basal
value. The effect of the secretion equation is seen by comparing the two output waveforms of glucose
deviations shown in the bottom right panel (dashed open-loop, solid closed-loop for b = 0.05)
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negative response to a positive change in the input, and vice versa). The first-order
kernel contribution to the output remains dominant over the second-order kernel
contribution for impulsive inputs up to about 100 lU/ml.

3.6 Simulation Results: Principal Dynamic Mode Models

The obtained equivalent PDM models for both the open-loop and closed-loop
models are shown in Fig. 7. In the open-loop case (top panel), since we have used
K = 1 in the LVN model, the equivalent PDM model has one branch, with the

Fig. 6 Representative model predictions (noise-free output, top left) and estimated first and
second order Volterra kernels of the closed-loop AMM for a GWN input of 144 points (12 h) for
noise-free output (top right—dotted and bottom left) and when 20 different realizations of
independent GWN measurement noise are added to the output for an SNR of 4.5 dB (top right—
solid black mean, dashed black ± one standard deviation and bottom right—mean). Nonlinear
models achieve better predictions (over 10 % NMSE reduction). The obtained kernel estimates
are not affected significantly relative to their noise-free counterparts despite the low SNR
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PDM dynamics exhibiting similar characteristics to the open-loop first-order
kernel (Fig. 7) and the static nonlinearity being close to linear, due to the relatively
low value of p3 used in this particular case. In the closed-loop case (bottom panel),
we have used K = 2; therefore, the equivalent PDM model has two branches. The
lower PDM exhibits a clear biphasic response characteristic (corresponding to a
glucose decrease and increase respectively, in response to an insulin increase) that
is not present in the open-loop model. The upper PDM branch exhibits slower
dynamics (peak latency of about 80 min) than the open-loop PDM (peak latency at
40 min) and a strictly negative nonlinearity (i.e., always leading to a reduction of
glucose), while the nonlinearity of the open-loop model has both positive and
negative response regions. The PDM of the lower branch exhibits faster dynamics
(shorter latency of the first peak of about 30 min) and has a nonlinearity that
resembles a sigmoidal (soft saturating) characteristic.

3.7 Simulation Results: Sorensen Model

Finally, we present results from fitting the MM and LVN models to simulated data
obtained from the model proposed by Sorensen [38], which has been used as a
comprehensive representation of the metabolic system in several studies (e.g., [25,
35]) for insulin input signals considered above (i.e., random insulin variations
around a putative basal value). Note that we do not make claims about the uni-
versal validity of this particular model, but we use it as a third-party metabolic
simulator for comparative purposes. We considered two distinct cases of Sorensen
model parameters: one that corresponds to a healthy subject and another that
corresponds to a Type-1 diabetic subject, following the procedure described in
[26]. Briefly, Type 1 diabetes is characterized by complete failure of the pancreatic
beta cells, decreased (40–50 % of normal) insulin stimulated hepatic and periphery
glucose uptake and impaired, glucose-induced, endogenous glucagon production
(assumed 50 % of normal in this study). Therefore, the corresponding parameters
in Sorensen’s model were changed accordingly [26].

The MM parameters were obtained by using a nonlinear optimization method
(Levenberg-Marquardt method) in order to fit p1, p2 and p3 to the Sorensen model
generated data. We considered 10 different realizations of the insulin input signal
(of the same length considered above) and provide the results in Fig. 8. The results
show that the output prediction performance of the LVN model is superior in both
cases, particularly for the Type-1 diabetic case. Specifically, the average NMSEs
for the LVN approach were equal to 3.62 ± 1.92 % and 4.95 ± 4.90 % for the
healthy and Type-I diabetic cases respectively, while for the MM approach the
corresponding NMSEs were equal to 11.11 ± 7.52 % and 25.37 ± 10.73 %, i.e.,
considerably higher. We note that an LVN model structure with L = 5, K = 1 and
Q = 2 was deemed appropriate in this case.
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Fig. 7 The obtained PDM model for the open- and closed-loop models, which consist of one and
two branches (top and bottom panels respectively). The open-loop single PDM (top left panel)
exhibits a glucoleptic characteristic (reduces the glucose output) for positive insulin inputs in a
mildly sublinear manner. The closed-loop upper PDM branch exhibits a glucoleptic characteristic
for positive or negative insulin inputs in a mildly supralinear manner, unlike the single PDM
branch of the open-loop MM. Note that the latency of the peak response (about 80 min) is much
longer for this closed-loop PDM than for the open-loop PDM (about 40 min), and the slope of its
output nonlinearity is different for positive/negative input (about 4 to 1). The lower PDM is
biphasic with the first glucoleptic peak having a latency comparable to the open-loop PDM (about
30 min) and the second glucogenic peak being much smaller (about 15 %) and having a latency
of about 120 min. The nonlinearity of the lower PDM branch retains the biphasic response
characteristic (increase of insulin leads to glucose decrease and vice versa) and is mildly
sublinear (resembling a soft saturating characteristic)
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4 Insulin-Glucose Dynamics in a Fasting Dog

4.1 Experimental Data Collection and Analysis

Plasma glucose and insulin were measured in a healthy male mongrel dog every
3 min over a 10-h period (200 samples). The data were collected under conditions
of spontaneous activity (there were no insulin or glucose injections). The animal
was judged to be in good health by visual observation, weight stability, body
temperature, and hematocrit. The University of Southern California Institutional
Animal Care Committee approved all surgical and experimental procedures. The
dog was fed standard can food and had free access to standard dry chow and tap
water. A chronic catheter (Tygon, ID = 0.13 cm) was implanted one week prior to
the experiment. The catheter was placed into the femoral vein and advanced into
the inferior vena cava and tunneled subcutaneously to the neck and exteriorized.
The experiments were performed in the morning after a 12 h fast and the dog was
not fed during the experiment. One hour prior to the beginning of blood sampling,
an infusion of 500 ml 0.9 % saline was given to avoid dehydration of the animal
due to the extended fast. Arterial blood was sampled at 3-minute intervals for 10 h
from 6:00 a.m. till 4:00 p.m. Heart rate and blood pressure were monitored every
30 min over the entire experimental period. Samples were collected in tubes
containing EDTA and 0.275 mg/ml lipoprotein lipase inhibitor paraoxon to avoid
in vitro lipolysis. Samples were immediately centrifuged, and the plasma separated
and stored at -20 �C. Plasma glucose was analyzed by the glucose oxidase
method on an automated analyzer (model 23A, Yellow Springs Instruments).
Insulin was measured in singlicate by an enzyme-linked immunospecific assay
(ELISA, CV = 2 %) originally developed for human plasma by Novo-Nordisk
and adapted for dog plasma. The collected insulin/glucose time-series data are

Fig. 8 The predictions of the MM and LVN models for a representative Sorensen-model
simulated data set (healthy subject; left panel) and the average first-order kernel estimate of the
LVN model for 10 different insulin input realizations (right panel—solid black mean dashed line
± one standard deviation)
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shown in Fig. 9. All signals were demeaned prior to processing and the means
were considered to be the respective basal values.

The time-series data were analyzed using the LVN methodology outlined above
(Sect. 2.3) in both causal directions (i.e. when the spontaneous plasma insulin
variations are viewed as the input and the plasma glucose variations are viewed as
the output, and when the roles of input and output are reversed). The LVN model
contains the Laguerre parameter a (between 0 and 1), which determines the rate of
relaxation of the Laguerre functions. We utilized an LVN model with two filter-
banks with distinct a parameter values [31], in order to capture the identified fast
and slow dynamics between insulin and glucose [36] efficiently. The resulting
Volterra-equivalent model has predictive capability for all possible inputs within
the dynamic range of the data used for its estimation. The structural parameters of
the LVN model were selected through the search procedure described above
(Sect. 2.3). After training the LVN model with the insulin-glucose data, equivalent
PDM models (Eq. 12) were obtained in both causal directions.

4.2 Insulin-to-Glucose Branch

The mean and standard deviation of the plasma insulin and glucose data were
equal to 44.9 ± 13.8 pM and 81.1 ± 2.4 mg/d1 (mean ± standard deviation)
respectively. Figure 10 shows the estimated modular PDM model for the insulin-
to-glucose relationship. The structural parameters L, K and Q of the model were
selected as follows: two Laguerre functions for each filter bank (L1 = L2 = 2), two
parallel PDM branches (K = 2) and cubic nonlinearity (Q = 3). The abscissa of the

Fig. 9 Experimental time-
series data of plasma insulin
(top panel) and glucose
(bottom panel) collected from
a fasting dog over 10 h
(sampling interval is 3 min)
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k-th static nonlinearity fk is the output uk of the k-th PDM filter pk and the ordinate
is the respective additive component gk(t) of the model output. The input and
output signals (plasma insulin and glucose respectively) of this model represent
deviations from the respective mean values that were subtracted prior to model
estimation.

The obtained PDM model suggests the correspondence of the upper branch to
the primary effect of insulin on plasma glucose. Specifically, the PDM of this
branch exhibits an early glucoleptic phase, i.e. it causes reduction of glucose levels
in response to an increase of insulin that is due to insulin-facilitated uptake of
glucose by tissue cells and glycogen synthesis in the liver, over the first 20–25 min
(with a trough at 10 min). It also exhibits a subsequent glucogenic phase that
extends over about 150 min, which describes mainly the processes of production
and release in the blood of new glucose by the liver and other organs (gluco-
genesis) in response to insulin increases. In general, the biphasic form of this PDM
suggests there is counter-regulation of glucose changes in response to insulin
deflections due to the closed-loop nature of insulin-glucose interactions. The
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Fig. 10 The insulin-to-glucose model is composed of two branches, each of which is the cascade
of a linear filter (PDM) followed by a static nonlinearity (ANF). The upper branch consists of an
early glucoleptic response to insulin increases, followed by a subsequent glucogenic response,
while the lower branch produces non-zero responses to negative insulin deflections only, due to
the halfwave rectifying characteristic of the corresponding nonlinearity. The input signal (plasma
insulin) and the output signal (plasma glucose) represent deviations from the respective basal
values that are computed as the mean values of the recorded data and subtracted prior to
processing
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respective static nonlinearity (ANF#1) is odd-symmetric and it consists of a linear
part, as well as a soft saturating characteristic. The form of the second branch
suggests that it produces a glucose reduction in response to negative deflections of
insulin only, as its respective nonlinearity exhibits a negative half-wave rectifying
characteristic. The latter assures the reduction of plasma glucose in response to a
negative deflection of plasma insulin from the basal value, since this generates
a negative value in the output u2 of PDM#2, but no major change in glucose for a
positive deflection of plasma insulin from the basal value. Combined with the
characteristics of the upper branch, the characteristics of the lower branch suggest
that the response of the two model branches to insulin concentration reductions are
antagonistic and may serve to regulate the overall glucose response.

In order to illustrate the net effect of both branches to a simple insulin input, we
show the total model-predicted glucose response to an impulse of insulin with
amplitude of 10 pM, which corresponds to around 1 standard deviation of the
actual experimental insulin data, in Fig. 11. The overall response exhibits an early
reduction of blood glucose followed by an overshoot and settles to zero after
around 200 mins and it resembles in waveform the upper-branch PDM as
expected, since a positive insulin input will elicit no contribution from PDM#2
(Fig. 11).

The normalized mean-square error (NMSE) of the output prediction of this third-
order PDM model was 60.2 %, while the linear model prediction NMSE was
89.9 %—a fact that indicates the presence of strong nonlinearities in the causal
relation of insulin-to-glucose variations. The glucose variations not explained by
the model (i.e., not caused by prior insulin variations) are the residuals of the model
prediction, which are viewed as ‘‘glucose disturbances’’ caused by numerous
internal and external factors (hormonal, neural, metabolic) that are not insulin-
dependent. Moreover, the effect of measurement errors may be considerable; for
instance, the reader is referred to [12] for a quantitative description of the perfor-
mance of the glucose analyzer used in the present experiment. The relatively high
NMSE value of the overall output prediction indicates that the contributions of these
insulin-independent unobserved factors, as well as the effects of measurement errors
are significant.

4.3 Glucose-to-Insulin Branch

We next examine the reverse causal pathway, i.e. how variations of plasma glu-
cose (input) affect the variations of plasma insulin (output), using the same
experimental data. The obtained PDM model of the glucose-to-insulin causal
relationship is shown in Fig. 12 and has two PDM branches. The PDM of the
upper branch is almost monophasic (with the exception of the zero-lag value that
seems to counterbalance the zero-lag value of the lower-branch PDM) and causes a
co-directional change of insulin for a change of glucose, consistent with our
understanding of the function of pancreatic beta cells. The PDM-ANF cascade of
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Fig. 11 Prediction of the insulin-to-glucose model (Fig. 10) to an impulse insulin input with
amplitude 10 pM (around 1 standard deviation of the experimental data). The output waveform
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Fig. 12 The glucose-to-insulin model is composed of two PDM branches, the first of which
causes a co-directional change of insulin for a change of glucose, while the second is strictly
insulinoleptic, i.e. it causes reduction of insulin to either positive or negative change of glucose
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the lower branch is strictly insulinoleptic (i.e. it causes reduction of insulin to
either positive or negative change of glucose) and operates in two time-scales: one
fast over 10–15 min and the other slow over around 2 h.

Figure 13 shows the model-predicted insulin response to a positive impulse of
glucose with amplitude of 1 mg/dl (around half the standard deviation of the actual
experimental data). The model prediction resembles in waveform the upper-branch
PDM of Fig. 12, since an increase of glucose is expected to elicit an increase of
insulin by stimulating pancreatic secretion. In general, the second branch of both
the above models (Figs. 11 and 13) appears to have a counter-regulatory role,
balancing the effect of the respective first branch of each model. The model
prediction achieved by the PDM model of Fig. 12 is equal to 69.9 %, while the
corresponding linear NMSE is equal to 97.6 %. This implies a predominantly
nonlinear relationship between glucose and insulin. The large nonlinear NMSE
value suggests that spontaneous plasma glucose variations account for a fraction of
spontaneous insulin variations, and that interferences from other physiological
variables dominate in the formation of the insulin signal, along with the afore-
mentioned possible effects of measurement errors.

5 Discussion

In the present chapter, we have rigorously examined the relation between non-
linear compartmental and Volterra models of glucose metabolism. We have also
applied the proposed data-driven approach to investigating the spontaneous
dynamic interactions between insulin and glucose in a fasting dog. Two widely
used compartmental models, the minimal model (MM) of glucose disappearance
and its closed-loop extension (AMM), which includes the effects of insulin
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secretion, were formulated in the Volterra-Wiener framework and equivalent
descriptions, in the form of Volterra models, were derived analytically. The effect
of parametric model parameters of clinical importance on these descriptors
(Volterra kernels) was examined. Using simulated data generated from the
aforementioned compartmental models using both random-like and impulsive
insulin stimuli, as well as the experimental dog data, we have demonstrated the
feasibility of obtaining Volterra models that describe these data accurately. We
have also shown that these estimates are not affected significantly by output-
additive noise corresponding to measurement noise. The results provide evidence
that Volterra models, free of a priori assumptions, may be estimated reliably from
patient-specific data. These models may provide quantitative descriptions that
reflect the underlying physiological mechanisms under general operating condi-
tions and may prove useful in diagnostic or therapeutic [27] applications. We
should note that for model-based glucose control applications, additional factors,
such as the delay between plasma glucose and the sensor signal, should be taken
into account.

5.1 Comparison Between Compartmental and Volterra
Models

The parametric models examined herein are nonlinear due to the presence of a
bilinear term in Eqs. (1) and (3), which modulates the effective time constant of
glucose disappearance and depends on the action of plasma insulin (in the case of
MM) and both plasma and endogenous secreted insulin (in the case of AMM)
respectively. An additional nonlinearity is found in the endogenous insulin
secretion Eq. (5) of the AMM in the form of a nonlinear threshold operator.
The range of values for the MM and AMM parameters is taken from the literature
[3, 4, 20, 25, 41, 45]. The value of p3 was selected towards the upper limit of
previously reported values in order to increase the contribution of the bilinear
term, while the parameter b in Eq. (5), which determines feedback strength was
selected to be larger than the value reported in [45] since, for the stimuli examined
in the present paper, the effect of endogenous insulin was almost negligible for this
latter value (it corresponds to low tolerance, obese patients [45]). Note that in the
more general case, the value of b could be viewed as being dependent on g, in
order to account for the effect of blood glucose concentration on insulin secretion.
The value of the threshold b in the endogenous insulin secretion Eq. (5) was
selected equal to zero in order to simplify the analytical derivations. This threshold
can be generally set to a larger value, particularly when glucose disturbance terms
that are non-insulin dependent, are included. However, in the context of the
simulations presented herein, this value yielded reasonable patterns for the insulin
secretion profile (Fig. 5).
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Two types of inputs (variations of insulin concentration) were used in this
computational study for the simulation of the parametric models: GWN fluctua-
tions around a putative basal value (corresponding to the GWN mean) and random
sequences of sparse insulin increases (about one every 2 h on the average), which
may result from insulin/glucose infusions. It was shown that reliable and robust
nonparametric models can be obtained with both types of stimuli in the presence of
measurement noise. The GWN insulin fluctuations may also be viewed as internal
spontaneous fluctuations and, therefore, the applicability of this approach can be
extended to the case of spontaneous glucose/insulin measurements. The use of
random sequences of larger sparse impulsive insulin increases, although uncon-
ventional, was shown to be effective in terms of model estimation and may offer
clinical advantages as it is likely to mitigate the risk of induced hypoglycemia—an
issue that must be examined carefully in future studies.

The Volterra approach does not require specific prior postulates of compart-
mental model structures (e.g. it is not committed to any particular number of
compartments) and allows estimation of the model (i.e. the Volterra kernels)
directly from arbitrary input-output data. Therefore, it offers the advantage of
yielding models that are ‘‘true-to-the-data’’ and valid under all input conditions
within the range of the experimental data. Therefore, this fundamentally different
approach provides significant benefits relative to existing approaches in terms of
modeling flexibility and accuracy.

The robustness of the Volterra modeling approach (i.e. the effect of output-
additive noise on the obtained kernel estimates) was studied by selecting as noise
sample signals from a GWN process with variance consistent with what is known
about glucose measurement errors (i.e. a standard deviation equal to 14–20 % of
the glucose basal value [21]). However, we must make the distinction between
noise (which is primarily related to measurement errors) and systemic disturbance
(which is related to systemic perturbations that are not explicitly accounted for in
the model). The systemic disturbance signal may include the effect of meals [17],
the effect of circadian and ultradian endocrine cycles [44] and the effect of ran-
domly occurring events of accelerated metabolism (due to exercise or physical
exertion) as well as neuro-hormonal excretions (due to stress or mental exertion).
The amplitudes and the relative phases of these disturbance components will
generally vary among subjects and over time. Since the selection of such distur-
bance components is rather complex, the study of their effect on the robustness of
the model estimation is deferred to future studies.

The MM approach is based on the notion that estimates of the three model
parameters (p1, p2 and p3), obtained through a glucose tolerance test, provide the
necessary clinical information for diagnostic purposes in the form of the equivalent
indices of glucose effectiveness (SG) and insulin sensitivity (SI). Although this
proposition has merit and has proven to be useful so far, it is widely recognized
that it has serious limitations [10, 11]. To overcome some of these potential
limitations, our approach advances the notion that a Volterra-type model (in the
form of kernels or the PDM model) provides the requisite clinical information in a
more complete manner (i.e., no model constraints). In order to compare the
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relative utility of the Volterra approach with the conventional MM approach in a
clinical context, we must define clinically relevant attributes for the two approa-
ches that are directly comparable. For instance, if we are interested in deriving
quantitative descriptions/measures of how insulin affects the plasma glucose
concentration in specific subjects (i.e. based on collected data), we may use certain
features of the estimated first-order kernels, such as the integrated area, peak value
and initial slope, which determine the linear component of the overall effect of an
insulin injection, its maximum instantaneous effect and how fast this effect occurs
respectively, instead of the estimated MM parameters.

In this context, the combined effect of errors in the estimates of the three
parameters of the MM (p1, p2, p3) may be compared to estimation errors in the
integrated area of the first-order kernel, which is equal to the ratio SI/SG (i.e. p3/
(p1p2)), as a measure of how much a unitary insulin impulse will affect the plasma
glucose concentration. Also, since SG = p1 is the inverse of the long time-constant of
the kernel (providing a measure of the extent of the kernel), it follows that ‘‘insulin
sensitivity’’ SI is akin to the average kernel value. Thus, one may suggest that the
clinical index of ‘‘insulin sensitivity’’ may be defined alternatively by the average
kernel value and ‘‘glucose effectiveness’’ by the extent of the kernel in the data-
driven modeling context. It also stands to reason that the peak value of this kernel is
likely to have some clinical significance, since it quantifies the maximum effect of
an insulin injection on blood glucose in a given subject. Finally, the slope of the first-
order kernel at the origin (a measure of how rapidly glucose drops in response to an
insulin infusion) is equal to -(gbp3). Since the basal glucose value is known, a quick
estimate of p3 can be obtained from the slope of the first-order kernel. In the above
context, PDM models (Figs. 7, 8, 9, 10, 12) may prove very beneficial, since they
facilitate meaningful physiological interpretations relative to the general Volterra
formulation. Therefore, certain characteristics of the PDM branches (e.g., the
dynamics of the linear filters and the characteristics of the nonlinearities) may also
be associated to clinical indices that describe insulin action and its efficiency in
specific subjects.

Existing insulin-glucose models can be divided in two broad categories; the first
includes models that describe these dynamics in a simplified manner by using a
limited number of parameters of diagnostic importance, in order to make these
parameters identifiable from relatively simple experimental protocols (IVGTT,
OGTT, EHC) and the second category includes more complicated models that
capture the complexity of the underlying physiology under more general operating
conditions. Choosing the most appropriate model type depends strongly on the
particular application. For instance, minimal-type models have met with success
for diagnostic purposes; however, they do not describe the metabolic system
realistically. On the other hand, more complicated models achieve this but they are
typically not identifiable from experimental data that are available in practice,
requiring considerably more complicated protocols (such as multiple tracer
experiments).

It is worth noting that a recent large-scale model by Dalla Man et al. [14] has
been approved by the Food and Drug Administration Agency of the USA and the

Data-Driven and Minimal-Type Compartmental Insulin-Glucose Models 29



Juvenile Diabetes Research Foundation as a substitute for clinical trials for the pre-
clinical testing of glucose control algorithms, illustrating the importance of
mathematical modeling. In our view, data-driven models, such as the ones pre-
sented hereby, present an attractive alternative that lies between the two afore-
mentioned main model categories. Data-driven models are identifiable in practical
settings in a patient-specific and adaptive manner, and provide more flexibility
than minimal-type models. However, they are not based on physiological con-
siderations; therefore this flexibility should be exploited carefully and their com-
plexity should be selected judiciously in order to assure that they are accurately
describing the underlying phenomena without overfitting to particular data sets.

5.2 Insulin-Glucose Dynamics in a Fasting Dog

There are four salient issues that deserve further elaboration and discussion: (1) the
validity and utility of the obtained models; (2) the notion of ‘‘indirect effects’’
captured by the model of a closed-loop system; (3) the physiological interpretation
of the obtained PDMs and (4) the pivotal role of internal ‘‘disturbance’’ signals in
closed-loop systems. These issues are intertwined and their successful resolution
will determine the potential utility of the advocated approach.

The validity of the obtained model is based on its predictive capability and the
consistency of the modeling results across different experiments. Random-like
spontaneous variations enable us to perform broadband analysis of the input-
output data and obtain reliable models that are capable of predicting the output for
arbitrary inputs within the dynamic range of the available measurements,
removing the restrictive effect of specialized test inputs (such as impulses or
sinusoids). The significant reduction in the prediction NMSE achieved by non-
linear models (especially for the glucose-to-insulin branch) suggests the presence
of strong dynamic nonlinearities. This reduction is unlikely to be due to overfitting,
which is an issue that may arise when using nonlinear models to model short
experimental data records. The number of free parameters for the LVN approach
depends linearly on system order [31], and is much lower compared to alternative
approaches, such as standard function expansions or orthogonal based approaches,
for which the same dependence is exponential [30]. The free parameters of the
linear and nonlinear models examined herein were equal to 25 and 29 respectively,
i.e. third-order models required the estimation of 4 additional parameters only. The
availability of data from one dog, as well as the relatively limited dynamic range
of the experimental data limits our ability to generalize our findings; however, the
unique nature of the employed data yields novel insights regarding the dynamic
interactions between spontaneous insulin and glucose fluctuations.

The notion of indirect effects is fundamental in the context of closed-loop
physiological systems, which are observed under conditions of spontaneous
activity. Multiple physiological processes participate in the transition of the system
to the state of dynamic equilibrium (homeostasis). These processes are typically
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nonlinear, dynamic and interacting in a complex manner. Therefore, a change in
one of the implicated variables will generally cause some direct effects (immediate
consequences) and indirect effects (subsequent consequences of a chain of events).
The indirect effects are harder to notice/delineate experimentally and even harder
to analyze, since the number of overlapping effects from interacting factors
increases with system complexity. The advocated approach offers the practical
means for obtaining a unique glance of these indirect effects in a quantitative and
reliable manner, as illustrated in the cases of the glucogenic and insulinogenic
branches of the insulin- to-glucose and glucose-to-insulin models.

The physiological interpretation of the obtained PDM models attains critical
importance for the advancement of scientific understanding as well as their
potential use for improved clinical diagnosis. The ability to detect subtle early
defects in the complex cascade of metabolic events involved in insulin and glucose
regulation may prove crucial for the improved diagnosis of diseases such as Type
II diabetes [36]. The presented models quantify the relation between naturally
occurring insulin/glucose variations and may be used to identify changes in the
glucose effectiveness and insulin sensitivity of a subject—thus leading to
improved diagnostic methods. They may also disclose physiological deficiencies
(e.g. an undeveloped glucoleptic or insulinogenic component) in a quantitative
manner. The potential clinical utility can be expanded if additional physiological
variables are incorporated (e.g. free fatty acids). The dynamic characteristics of the
PDM model, which exhibit multiple time constants (Figs. 10 and 12), are in
agreement with the previously reported entrainment between insulin and glucose
patterns over different time scales (rapid to ultradian) [36, 40]. In these studies,
experimental impulsive or step stimuli were induced, whereas in the present study
we studied natural variations, an approach that removes the need for such
interventions.

The role of internal ‘‘disturbance’’ signals is pivotal for closed-loop physiological
systems seeking homeostasis. Although homeostasis is typically mediated through
multiple nested closed-loops, let us consider the case of two physiological variables
operating in a closed-loop configuration (e.g. insulin and glucose) as shown sche-
matically in Fig. 14. The two measured variables (spontaneous variations of plasma
insulin I(t) and plasma glucose G(t), are causally linked in a mutual interdependence
described by the general system operators A and B. Operator A transforms the insulin
signal I(t) into the causally linked (i.e. insulin-dependent) glucose component
Gc(t) in a dynamic and nonlinear fashion. Likewise, operator B transforms the glu-
cose signal G(t) into the causally linked (i.e. glucose-dependent) insulin component
Ic(t). Each of these nonlinear dynamic operators can be described by a Volterra-
equivalent model (such as the PDM models of Figs. 10 and 12) that is estimated
directly from spontaneous input-output data. The model residuals of the two oper-
ators (Figs. 11 and 13) are the ‘‘disturbance’’ signals, Gd(t) for glucose and Id(t) for
insulin, that represent the aggregate effects of multiple systemic factors (e.g. glu-
cagon, cortisol, epinephrine etc.) and external factors (e.g. meals, exercise, stress,
mental exertion etc.). These disturbance signals are added to the causally linked
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components, Gc(t) and Ic(t) (Figs. 11 and 13, left panels), to form the observed
variables G(t) and I(t), respectively.

Regarding the overall functional characteristics of the closed-loop configuration
of Fig. 14, we examine the closed-loop relation in operator notation:

G tð Þ ¼ A B G tð Þ½ � þ Id tð Þ½ � þ Gd tð Þ ð26Þ

where B[G(t)] denotes that the operator B (glucose-to-insulin PDM model) acts on
the glucose signal G(t). Equation (26) is equivalent to a nonlinear auto-regressive
model with exogenous input (NARX) with stochastic terms due to the interaction
of Id(t) with A.

6 Conclusion

Mathematical modeling has played a central role in the context of diabetes
diagnosis and treatment. The results of the present chapter demonstrate the relative
advantages and disadvantages of the Volterra modeling methodology versus the
compartmental approach for specific minimal-type parametric models (MM and
AMM). The Volterra approach is inductive (data-driven) and yields models with
minimum prior assumptions. The compartmental approach is deductive (hypoth-
esis-based) and yields models with the desired level of complexity that are directly
interpretable but not necessarily inclusive of all functional characteristics of the
system. The recent availability of continuous measurements of glucose (through
continuous glucose sensors) and the feasibility of frequent infusions of insulin
(through implantable insulin micro-pumps) make possible the realistic application
of data-driven modeling approaches in a subject-specific and adaptive context,
which does not require the prior postulates of compartmental models. The
potential benefits include: (i) the inherent completeness of the obtained models, in
the sense that they will include all functional characteristics of the system con-
tained within the data (ii) the robustness of their estimation in a practical context
(iii) their subject-specific customization and (iv) their time-dependent adaptability
when the system characteristics are changing slowly over time, allowing for

Fig. 14 The closed-loop configuration representing the plasma insulin-glucose dynamic
interactions (glucose-to-insulin and insulin-to-glucose models, B and A respectively). The
‘‘disturbance’’ signals Id and Gd are the residuals of the obtained causal models and represent the
aggregate effects of multiple internal (e.g. glucagon, epinephrine, norepinephrine, cortisol,
growth hormone, somatostatin etc.) and external factors (e.g. meals, exercise, stress, mental
exertion etc.)
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effective tracking of these changes in each subject. This could be achieved by
piecewise stationary models or by employing recursive estimation schemes, which
may be readily implemented for the LVN models employed hereby.

This is corroborated by the presented models of the inter-relationships between
spontaneous plasma insulin and glucose variations in a fasting dog, which offer
quantitative means for advancing our scientific understanding and potentially
improving clinical diagnosis and treatment of diabetes. This will depend on further
validating our findings and on assigning correct physiological meaning to the
various components of the obtained models. It is worth noting that data-driven
methods typically require richer stimulus patterns than simple compartmental
models. For instance, spontaneous physiological variability, such as the dog
insulin and glucose measurements examined above, exhibits broadband charac-
teristics that provide rich information for system operation over a wide dynamic
range. However, measuring plasma insulin with a high temporal resolution in
humans can not be performed easily and/or with a low cost with current tech-
nology, so developing such technologies deserves attention in future related
research. Concluding, in our view the aforementioned results illustrate that the
relation between data-driven and compartmental models deserves further attention
in the future in order to more effectively combine and exploit the advantages of
each approach in various clinical applications including diabetes diagnosis and
glucose regulation.
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Ensemble Glucose Prediction
in Insulin-Dependent Diabetes

Fredrik Ståhl, Rolf Johansson and Eric Renard

Prediction of glucose changes in type 1 Diabetes Mellitus has received a
considerable amount of scientific and commercial interest over the last decade. In
large, the driving force behind this surge in research can be explained by the recent
advances in sensor technology [101], and the thereto attached promises and hopes
of closed, or semi-closed, loop control of diabetic glucose dynamics. Predicting
models play a key role in many of these concepts—providing the essential sim-
ulation tool in MPC-oriented closed loop arrangements of an artificial pancreas
[20], or as a component in a decision support system—providing predictions
directly to the user [82].

However, insulin-dependent diabetic glucose dynamics are known to be subject
to time-shifting dynamics. Considering this, as well as the vast number of models
developed in the literature, it is unclear if a single model can be determined to be
optimal under every possible situation. This raises the question whether it is more
useful to use one of the models solely, or if it is possible to gain additional
prediction accuracy by combining their outcomes. Accuracy may be gained from
merging, due to mismodeling or to changing dynamics in the underlying data
creating process, where a single model capturing the system behavior may be
infeasible, e.g., for practical identification concerns. Thus, by an ensemble
approach, robustness and performance may be improved.

In this chapter, a novel merging approach—combining elements from both
switching and averaging techniques, forming a ‘soft’ switcher in a Bayesian
framework—is presented for the glucose prediction application.
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1 Related Research

In this section some related research to glucose prediction and model merging are
presented.

1.1 Models for Glucose Prediction

Models of glucose dynamics for predictive purposes can mainly be divided into
two categories; physiologically-oriented models and data-driven black-box
approaches. The latter sometimes incorporate physiological sub models of insulin
and glucose infusion following insulin administration and meal intake, but the
main part of the dynamics stem from the statistically derived relationships.

The development of physiological diabetic glucose modeling started with the
simple linear models of [2, 12], aiming at describing the relationship between
glucose and insulin utilization. Following these efforts, the slightly more complex,
and well-established, minimal model [10] was suggested as a means to estimate
insulin sensitivity from an intravenous glucose tolerance test (IVGTT). Detailed
models of the glucose metabolism; separating insulin and non-insulin dependent
glucose utilization, incorporating models of hepatic balance, renal clearance,
glucose rate of appearance following meal intake, insulin pharmacokinetics, and in
some cases pancreatic insulin synthesis and release, have surged since then.

The transport of rapid-acting insulin from the subcutaneous injection site to the
blood stream has been described in quite a few models of insulin pharmacoki-
netics. Most of these are linear compartment models, and reviews can be found in
[72, 104]. This phenomenon has generally been considered independent to the
metabolic interaction, and thus separated as a stand-alone model. In [104], 11
different models (10 compartment models and the model from [9] were fitted to
empirical meal test data from seven type 1 patients using rapid-acting bolus
insulin. A third-order compartment model, with local degradation of insulin at the
injection site (modeled as a Michaelis–Menten relationship), turned out to be the
best choice, according to the Akaike criterion [53], and this may serve as a typical
example of how the insulin kinetics have been be modeled.

The corresponding flux of glucose from the intestines following a meal intake,
has been modeled with different approaches. There is evidence that gastric emp-
tying, to some extent, is dependent on current glucose level, see, e.g., [94], but this
relationship has not been incorporated in any model so far. Thus, the digestive
process is also considered as a stand-alone model, without dependencies to the
glucose metabolism. Two models have been widely used; the models by [24, 62].
In [62], the model consists of single compartment with fixed limited gastric
emptying rate constant, and with a duration dependent on the meal size. Earlier
work on models of glucose rate of appearance during an OGTT [22] and mixed
meal test [21] formed the basis for the model in [24]. Here, a third-order nonlinear
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compartment model was used, and also in this case, the gastric emptying rate was
limited dependent upon the amount of ingested carbohydrates.

Turning to general models of glucose metabolism, a sparse fourth-order linear
model, with physiological interpretation of the state variables, was suggested in
[92], with six tunable parameters. The original model was validated on data from
intravenous experiments involving diabetic dogs. Thereafter, the model has been
both reduced, and extended to include exercise load, and to also consider oral
hyperglycaemic agents. The model order is still four, but the number of tunable
parameters has been reduced to five, and incorporated into a decision support
system (DSS) called KADIS [93].

In [62], a simulation model based on the insulin kinetics from [9], and including
hepatic balance (described by a look-up table), peripheral and insulin-independent
glucose utilization (Michaelis–Menten like relationship), renal clearance and the
meal digestion model from the same paper (described above), was presented.
Overall, the model contains only two tunable parameters, the rest are considered
patient invariant. Later, the freely downloadable educational simulation software
AIDA [61] was developed using this model. The system was validated on a set of
24 subjects with parameter convergence achieved in 80 % of the cases [60].

Another simulation model, that has been turned into an advisory system, is the
DIAS model [48]. Especially noteworthy of this model is the nonlinear model of the
hepatic balance [6], fitted to tracer literature data, and the model extension to include
the delayed hypoglycemic effect of alcohol intake [81]. The model was incorporated
into a prototype eHealth tool called DiasNet [52], with a central server-based web
service, which also communicates over the cellular network with the user’s mobile
application implemented on a smartphone. The system has been tested in a small
field trial, but was mainly evaluated on overall data acquisition, transmission and
application usability aspects, and not on results concerning model performance.

A large model with 19 tunable parameters was proposed in the Sorensen thesis
[95], a model often used as a verification tool to assess different control approa-
ches, e.g., [34]. The web-based educational simulation model GlucoSim [3] has
been developed based on another thesis [84]. Generally, these models are difficult
to fit to an individual person, and may lack structural identifiability. This makes
them unsuitable for predictive purposes, but synthetic subjects may be created for
simulation studies.

Currently, the most influential simulation model is the University of Virginia
and Padova University (UVa/Padova) model described in [23, 24], which has been
accepted by the Food and Drug Administration of the U.S. (FDA) to be used as a
substitute for animal trials in preclinical trials of closed-loop development [57]. To
this purpose, 300 artificial subjects have been derived from estimated parameters
from population studies, and used in, e.g., [59]. This model is based upon the
classical minimal model [10], and the glucose rate-of-appearance model in [21].
The population data for estimating the 300 artificial subjects were derived using
the triple-tracer protocol described in [8].

In [89], the minimal model was augmented with additional states to include the
dynamical interaction between free fatty acids and the insulin and glucose
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compartments. The model parameters were partly fixed, and partly identified using
experimental data, and showed reasonable resemblance to data. In [90], the model
was used, together with the gastric emptying function taken from [62], to fit the
model against data from one mixed meal consumed by normal subjects, with good
correspondence.

The limitation of the classical minimal model to provide consistent estimates of
insulin sensitivity, when different insulin concentrations arise during an IVGTT,
was addressed in [83]. Modifications to the model was suggested to incorporate the
saturation effect of insulin on insulin-dependent glucose utilization [69, 88], as
well as a saturation effect on insulin transport from the plasma to the interstitial
compartment. Generally, the saturation effect is not pronounced at insulin infusion
levels of most insulin-dependent diabetic patients. However, the critically ill may
often experience reduced insulin sensitivity, and are treated with intensive insulin
treatment with abnormal insulin levels to maintain normoglycemia, thereby
reducing mortality and morbidity outcome [102]. Thus, for the purpose of
improved glycemic control of the critically ill in Intensive Care Units (ICU), this
model was picked up in [64]. Thereafter, the table-based protocol SPRINT, which
acts as a decision support in the manual infusion control for the ICU personal, was
derived [18]. This approach has been successfully validated in a large study
covering 371 subjects, achieving a very tight glucose control [17].

Another extension of the minimal model was proposed in [28], by incorporating
effects of physical exercise by adding parameters, which increase insulin sensi-
tivity, insulin-independent glucose utilization and insulin clearance during
exercise, to the model. The model has not been evaluated empirically. Also the
UVa/Padova model has been extended to cover physical activity in [67], based on
the model in [15]. The model links elevated heart rate to increased insulin sen-
sitivity and insulin-independent glucose utilization. In [15], the model was fitted to
data from a hyper-insulinemic clamp test, including a 15-min exercise period
(50 % VO2max), for 21 type 1 subjects, with a weighted mean square estimation
error of 7.7 mg/dl (unclear how the weights were chosen).

Yet another ambitious extension with 19 parameters, whereof 10 are subject to
identification, and including modeling of the circadian rhythm was given in [37].
In [38], the model was validated by simulation comparisons on two data set of six
and nine type 1 patients with excellent results (RMSE about 1 mmol/L), however,
apparently without cross-validation.

Before leaving the minimal model, the work in [54] needs to be commented.
Here, the minimal model, extended with a simple pharmacokinetic compartment
model for the insulin kinetics and a compartment meal model of the same type as
in [105], was tested on closed-loop data from a trial involving 10 type 1 subjects.
Intraday variations of the model parameters related to the insulin sensitivity,
hepatic balance and insulin-independent glucose utilization was allowed over three
different sections of the day. Also in this case, the model was validated without
crossvalidation, but with an impressive average simulation prediction error (RMSE
about 16 mg/dl).
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A simpler model, with only five tunable parameters, is the Hovorka model [50],
later extended and altered for the critically ill in [51]. The former model has been
validated for predictive capacity on 15 subjects with a RMSE of 3.6 mg/dl for a
prediction horizon of 15 min. Parameter estimates were retrieved recursively from
a sliding data window using a Bayesian approach. This model is also used
extensively for MPC-oriented closed-loop validation in a simulation environment,
including a cohort of 18 virtual patients [103]. 8 out of the 18 parameter sets have
been derived from experimental data, and the rest from so-called informed prior
distributions. The model has also been used, e.g., in the evaluation of PID control
in [39], which also make use of the Sorensen [95] and the minimal model [10].

Data-driven models have been investigated on CGM time-series alone, or by
considering inputs as well. The meal sub models of [24, 62] are furthermore often
used as input generating components in data-driven models to approximate the
glucose flux input from the gut following a meal intake. Here, the focus has been
prediction for the purpose of early hypoglycemic detection, e.g., to be used for
alarm triggering in CGM devices, or temporary insulin pump shut-off, as well as
establishing models suitable for model-based control.

Time-series analysis by Auto-regressive (AR) models started with [14], who
evaluated the basic underlying assumptions concerning stationarity and auto-
covariance that AR modeling is based upon, concluding that diabetic data gen-
erally is non-stationary, but highly auto-correlated, thus recommending the models
to be recurrently re-estimated. Following this, AR and ARMA models were
developed in [97, 99] using glucose data from a recently diagnosed type 1 diabetic.
In [96], first-order recursive AR models were investigated for 28 subjects using a
low-pass filtered CGM signal from the GlucoDay CGM system. The results
indicate that hypoglycemia can be detected by the model 25 min before the CGM
signal passes the same threshold. Another example of recursive AR and ARMA
models of third order, incorporating a change detection feature for more rapid
parameter re-estimation when large changes in the dynamics are detected, is found
in [35]. The models were evaluated for 30 healthy, 7 glucose-intolerant and 25
type II diabetic subjects, with less than 4 % mean Relative Average Deviation
(RAD) and almost no values in D or E zones of the Clarke Error Grid [19] for the
30-min predictions in comparison to the CGM Medtronic Gold reference [68].
Contrary to the above, the authors of [42] claim that a generic patient- and time-
invariant AR model of order 30 can be identified from any patient and used for
glucose prediction for any other patient. Very promising results were achieved in
[41], where the model was evaluated for three different datasets, each utilizing a
different CGM device, and the patient cohorts included both type I and type II
diabetes. The prediction error was on average, in terms of RMSE, less than
3.6 mg/dl for a 30-min prediction, with negligible delay, and with 99 % of the
paired prediction-reference points in the A and B zones of the p-CGA. However,
these results were achieved by filtering the CGM signal in both training and test
data using a non-causal filter, removing the high frequency components. In [65]
the causality aspect of the input filtering was addressed. The AR model, here
reduced to order 8 after model complexity considerations, was reformulated as a
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linear model with a Kalman filter, and the filter parameters were adjusted to
account for the filtering of the CGM signal. For evaluation purposes, the reference
was however still filtered in the same non-causal way as before. Using this
approach on the same data set as in [41], yielded more moderate results with an
average prediction error of 16 mg/dl, and a 9-min lag for the 20-min prediction.

Algorithms specifically developed for hypoglycemic detection have also been
proposed. In [76], a Kalman filter approach was suggested, estimating the states
corresponding to the interstitial glucose level, and the first and second derivative
thereof, i.e., rate of glucose change and acceleration. In [75], this method was
evaluated for 13 hypoglycemic clamp data sets. Using a hypoglycemic threshold
of 70 mg/dl, the sensitivity and specificity were 90 and 79 %, respectively, with
unknown alarm time. Combining three different methods for hypoglycemic
detection with the ARMA model of [35], data from insulin-induced hypoglycemic
tests for 54 type 1 subjects were evaluated in [33]. With a hypoglycemic threshold
of 60 mg/dl, sensitivity of 89, 88, and 89 % and specificity of 67, 74, and 78 %
were reported for each method, respectively. Mean values for time to detection
were 30, 26, and 28 min.

A short-coming of the AR models and the algorithms above is the lack of input-
output relationship, excluding them from being used in a model-based control
framework. A natural extension to the AR concept is to include external inputs,
transforming the model to an ARX model. This type of model has been considered
in, e.g., [40], where both batch-wise and recursively identified patient-specific ARX
models have been analysed for nine patients with a mean 30-min prediction error
RMSE of 26 mg/dl. In [16] both ARX, ARMAX and state-space models were
investigated using different identification methods for 30-, 60-, 90- and 120-min
prediction for nine Montpellier patients from a trial in the DIAdvisor project [30].
The best performance was achieved with the ARX and the ARMAX models. The
ARX model gave a standard deviation of the prediction error of 17, 34, 46 and
56 mg/dl on average for the 30-, 60-, 90- and 120-min prediction, respectively. The
corresponding results for the ARMAX model were 16, 30, 39 and 44 mg/dl.

Another type of transfer function model, cast in the continuous domain, was
approached in [78], where it was evaluated for nine type I subjects on separated
meal and insulin intakes. Model parameters were determined both heuristically
and by least-squares estimation. The carbohydrate and insulin impacts of the
model, i.e., the steady-state rise and drop of glucose following these intakes, were
further compared to the corresponding practically used estimates of these factors.
No independent prediction validation was given. This model was later evaluated in
a control framework in [79], where two data sets were created by the Hovorka
(4 subjects) and Padova (10 subjects) simulation models. Here, the model could
approximate the simulated data very well, with a 3-h look-ahead prediction error
of 26 mg/dl reported. A very similar model structure was used in [55], the dif-
ference being a time delay changed into a time lag. In this chapter, breakfast
glucose excursion prediction was addressed for 10 patient datasets collected in the
DIAdvisor project [30]. For each patient, model parameters were determined by
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constrained least squares for two breakfast meals and cross-validated on a third
breakfast, with an average fit value of 42 %.

Neural network (NN) models have been shown to be a competitive approach in
[26], where a recurrent NN model was compared against an AR and an ARX model
on a 30 patient dataset, retrieved from the Padova simulation model. Here, the NN
clearly outperformed the competing models with an average RMSE of 4.9 mg/dl
versus 29 mg/dl (AR) and 26 mg/dl (ARX) for the 45-min prediction. Apart from
meal and insulin information, emotional factors, hypoglycemic/hyperglycemic
symptoms and lifestyle/ activities, were collected in an electric diary and used as
inputs in the NN model of [77]. Training was performed on a dataset from 17
patients, and performance was evaluated on 10 patient data sets not included in the
training set, with a RMSE of 44 mg/dl for the 45-min prediction.

A fully connected three-layer (5, 10, 1 neuron per layer) NN, with sigmoidal
transfer functions in the first two layers and a linear for the output block was used in
[80]. No insulin nor meal information were used, but the concurrent and previous
CGM values, up to 20 min back, acted as inputs. The model was evaluated on two
datasets with different CGM devices (Abbott Freestyle and MedTronic Guardian).
Three subject data sets were used for training for each patient group and were
thereafter excluded from the validation data. For the six Guardian patients and the
three Abbott Freestyle patients the performance was 10, 18 and 27 mg/dl for the 15,
30 and 45-min prediction, with a delay of around 4, 9, and 14 min for upward trends,
and 5, 15, and 26 min for downward trends. In [106], the linear predictor from [96]
worked in a cascade-like configuration with a NN model, which also used both
CGM and glucose flux from the meal model of [24] as inputs. Training and vali-
dation was done using 15 patient records from the 7-day free-living conditions set of
the DIAdvisor DAQ trial [30]. The NN was trained and validated on 25 time series,
each one of 3 days, selected so as to ensure a wide variety of glycemic dynamics.
Nine daily profiles, containing several hypo- and hyperglycemic events, were used
to test the NN with an average of 14 mg/dl and a 14 min delay for the 30-min
prediction. For an assessment on 20 simulated subjects using the UVa/Padova
model, the corresponding metrics were 9.4 mg/dl and 5 min. Both insulin and
carbohydrate digestion were considered by incorporating input-generating sub
models in the support vector machine of [45]. Additionally, exercise-induced glu-
cose and insulin absorption variations were also considered as inputs by processing a
metabolic equivalent (MET) estimate, derived from a SenseWear body monitoring
system (BodyMedia Inc.) used in the study, in a model by [91]. The NN was trained
individually for seven type 1 patients with RMSE of 9.5, 16, 25 and 36 mg/dl for the
15, 30, 60 and 120-min prediction.

Examples of other machine learning approaches that have been considered,
include, e.g., support vector regression [44] and random forests [46]. Both tech-
niques were evaluated on the same dataset of 27 type 1 patient records from free-
living conditions collected within the METABO project [43]. The recorded insulin
injections as well as the meal intakes were fed into compartment models to provide
estimated profiles of plasma insulin and glucose rate of appearance. Furthermore,
physical activity, estimated from a body monitoring system, and the time of the
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day were also added as input variables. The predictive performance of each
method was assessed for a 15-, 30-, 60- and 120-min ahead prediction horizon with
impressive results. The reported RMSE of the support vector regression for these
predictions horizons was 5.2, 6.0, 7.1 and 7.6 mg/dl, whereas the random forest
method managed slightly worse; 6.6, 8.2, 9.3 and 10.8 mg/dl.

Further reviews can be found in, e.g., [7, 45, 66].

1.2 Model Merging

Merging models for the purpose of prediction has been developed in different
research communities. In the meteorological and econometric communities
regression-oriented ensemble prediction has been a vivid research area since the
late 1960s, see, e.g., [31, 85].

Also in the machine learning community, the question of how different predictors
or classifiers can be used together for increased performance has been investigated,
and different algorithms have been developed, such as the bagging, boosting [13]
and weighted majority [63] algorithms, and online versions of these [56, 74].

In most approaches the merged prediction ŷe
k at time k is formed by a linear

weighted average of the individual predictors ŷk .

ŷe
k ¼ wT

k ŷk ð1Þ

It is also common to restrict the weights wk to [0,1]. The possible reasons for this
are several, where the interpretation of the weights as probabilities, or rather
Bayesian beliefs, is the dominating. Such restrictions are however not always
applicable, e.g. in the related optimal portfolio selection problem, where negative
weight (short selling) can reduce the portfolio risk [32].

A special case, considering distinct switches between different linear system
dynamics, has been studied mainly in the control community. The data stream and
the underlying dynamic system are modelled by pure switching between different
filters derived from these models, i.e., the weights wk can only take value 1 or 0. A
lot of attention has been given to reconstructing the switching sequence, see, e.g.,
[47, 73]. From a prediction viewpoint, the current dynamic mode is of primary
interest, and it may suffice to reconstruct the dynamic mode for a limited section of
the most recent time points in a receding horizon fashion [4].

Combinations of specifically adaptive filters has also stirred some interest in the
signal processing community. Typically, filters with different update pace are
merged, to benefit from each filter’s specific change responsiveness, respectively
steady state behaviour [5].

Finally, in fuzzy modeling, soft switching between multiple models is offered
using fuzzy membership rules in the Takagi–Sugeno systems [100].

Merging of predictions in the glucose prediction context has previously been
investigated in terms of hypo- or hyperglycemic warning systems. In [25], the
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glucose prediction from a so-called output corrected ARX predictor (see the ref-
erence for method details) was linearly combined with the prediction from an
adaptive recurrent neural network model. The balancing factor for the linear
combination was determined offline by optimizing a trade-off between hypo- and
hyperglycemic sensitivity, effective prediction horizon and the false alarm rate.
This factor was determined individually for each patient and the balance may be
different for hypo- and hyperglycemia. A different mechanism was used in [27].
Here, five different predictors were running simultaneously, and the hypoglycemic
alarm was based upon a voting scheme between the individual predictors. If a
number of the five predictors exceeded the predefined hypoglycemic threshold
value an alarm was raised. Both studies indicated an improvement in alarm
sensitivity compared to the individual predictors.

2 Problem Formulation

As seen from the review above, many different approaches to glucose modeling
and predicting have been established. These methods may each be more suitable to
specific conditions for the glucose dynamics, and improvements in robustness and
prediction performance may be achieved by combining their outcomes, as indi-
cated from the studies from the hypo-/hyperglycemic alarm systems. Such a
situation is depicted in Fig. 1, where two prediction models try to capture the true
glucose level. In different situations, each predictor is clearly outperforming the
other and is capable of providing good estimates of the true glucose level. How-
ever, as the conditions change the performance deteriorates, and instead the other
predictor is more suitable to rely upon. Given this informal background a more
formal problem formulation is now outlined.

A non-stationary data stream zk : fyk; ukg arrives with a fixed sample rate, set to 1
for notational convenience, at time tk 2 1; 2; . . .f g: The data stream contains a var-
iable of primary interest called yk 2 R and additional variables uk. The data stream
can be divided into different periods TSi of similar dynamics Si 2 S ¼ 1; . . .; n½ �; and
where sk [ S indicates the current dynamic mode at time tk. The system changes
between these different modes according to some unknown dynamics.

Given m number of expert q-steps-ahead predictions, ŷ j
kþqjk; j 2 1; . . .;mf g of

the variable of interest at time tk, each utilizing different methods, and/or different
training sets; how is an optimal q-steps-ahead prediction ŷe

kþqjk of the primary

variable, using a predefined norm and under time-varying conditions, determined?

3 Sliding Window Bayesian Model Averaging

Apart from conceptual differences between the different approaches to ensemble
prediction, the most important difference is how the weights are determined.
Numerous different methods exist, ranging from heuristic algorithms [5, 100] to
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theory based approaches, e.g., [49]. Specifically, in a Bayesian Model Averaging
framework [49], which will be adopted in this chapter, the weights are interpreted
as partial beliefs in each predictor Mi, and the merging is formulated as:

p ykþq

��Dk

� ffl
¼
X

i

p ykþq

��Mi;Dk

� ffl
p MijDkð Þ ð2Þ

where p ykþq

��Dk

� ffl
is the conditional probability of y at time tk+q given the data,

Dk : z1:kf g received up until time k, and if only point-estimates are available, one
can, e.g., use:

ŷe
kþqjk ¼ E ykþq

��Dk

� ffl
ð3Þ

¼
X

i

E MijDkð ÞE ykþq

��Mi; Dk

� ffl
ð4Þ

¼ wT
k ŷk ð5Þ

w
ið Þ

k ¼ E MijDkð Þ ð6Þ

p w
ið Þ

k

� �
¼ p MijDkð Þ ð7Þ

where ŷe
kþq is the combined prediction of ykþq using information available at time

k, and w
ið Þ

k indicates position i in the weight vector. The conditional probability of
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Fig. 1 Example of when merging between different predictors may be beneficial. Initially the
model corresponding to the red dash-dotted prediction resembles the true reference (black solid
curve) best, but as the conditions change the prediction given by the other prediction model (blue
dashed curve) gradually takes the lead
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predictor Mi can be further expanded by introducing the latent variable
hk 2 H ¼ 1; . . .; p½ �:

p MijDkð Þ ¼
X

j

p Mijhk ¼ j; Dkð Þp hk ¼ jjDkð Þ ð8Þ

or in matrix notation

p wkð Þ ¼ p wkjhk ¼ 1ð Þ; . . .; p wkjhk ¼ pð Þ½ � p hk ¼ 1jDkð Þ; . . .; p hk ¼ pjDkð Þ½ �T ð9Þ

Here, H represents a predictor mode in a similar sense to the dynamic mode S,
and likewise hk represents the prediction mode at time k: p wkjhk ¼ jð Þ is a column
vector of the joint prior distribution of the conditional weights of each predictor
model given the predictor mode hk ¼ j. Generally, there is a one-to-one relationship
between the predictor modes and the corresponding dynamic modes, i.e., p = n.

Data for estimating the distribution for p wkjhk ¼ ið Þ is given based upon using
a constrained optimization on the training data. In cases of labelled training data
sets, the following applies:

wkjhk ¼ i

� �
TSi ¼ arg min

XkþN=2

m¼k�N=2

L y tmð Þ; wT
kjhk¼iŷi

� �
; k 2 TSi

s:t:
X

j

w
jð Þ

kjhk¼i ¼ 1

ð10Þ

where TSi represents the time points corresponding to dynamic mode Si, the tunable
parameter N determines the size of the evaluation window and L y; ŷð Þ is a cost
function. From these data sets, the prior distributions can be estimated by the Parzen
window method [11], giving mean w0jhk¼i and covariance matrix Rhk¼i. An alter-
native to the Parzen approximation is of course to estimate a more parsimoniously
parametrized probability density function (pdf) (e.g., Gaussian) for the extracted
data points. For unlabelled training data, with time points T, the corresponding
datasets wkjhk ¼ if gT are found by cluster analysis, e.g., using the k-means algo-
rithm or a Gaussian Mixture Model (GMM) [11]. A conceptual visualisation is
given in Fig. 2. Now, in each time step k, the wkjhk�1 is determined from the sliding
window optimization below, using the current active mode hk�1. For reasons soon
explained, only wkjhk�1 is thus calculated:

wkjhk�1
¼ arg min

Xk�1

j¼k�N

lk�jL yj; wT
kjhk�1

ŷj

� �

þ wkjhk�1
� w0jhk�1

� ffl
Khk�1 wkjhk�1

� w0jhk�1

� fflT

s:t:
X

j

w jð Þ
kjhk�1
¼ 1

ð11Þ
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Here, lj is a forgetting factor, and Khk¼i is a regularization matrix. To infer the
posterior p hkjDkð Þ in (9), it would normally be natural to set this probability
function equal to the corresponding posterior pdf for the dynamic mode p SjDkð Þ.
However, problems arise if p SjDkð Þ is not directly possible to estimate from the
dataset Dk. This is circumvented by using the information provided by the p wkjhk

� ffl
estimated from the data retrieved from Eq. (10) above. The p wkjhk

� ffl
prior density

functions can be seen as defining the region of validity for each predictor mode. If
the wkjhk�1

estimate leaves the current active mode region hk�1 (in a sense that

p wkjhk�1

� ffl
is very low), it can thus be seen as an indication of that a mode switch

has taken place. A logical test is used to determine if a mode switch has occurred.
The predictor mode is switched to mode hk ¼ i, if:

p hk ¼ ijwk; Dkð Þ[ k ð12Þ

where

p hk ¼ ijwk; Dkð Þ ¼ p wkjhk ¼ i; Dkð Þp hk ¼ ijDkð ÞP
j p wkjhk ¼ j; Dkð Þp hk ¼ jjDkð Þ ð13Þ

k+N/2
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Timek−N/2k

Fig. 2 Principle of finding the predictor modes for unlabelled data over the training data set time
period T. For every time point tk [ T, the optimal wk is determined by Eq. (10), where the optimal
prediction wk ŷ (light green dash-dotted curve) formed from the individual predictions ŷ (the blue
dashed and the red solid curves) is evaluating against the reference (black solid curve) using the
cost function L over a sliding data window between t = k - N/2 and t = k ? N/2. The
aggregated set {wk}T is thereafter subjected to clustering to find the different mode centers
w0jh¼i; i ¼ 1; . . .; p½ �
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A k somewhat larger than 0.5 gives a hysteresis effect to avoid chattering between
modes. Unless otherwise estimated from data, the conditional probability of each
prediction mode p hk ¼ ijDkð Þ is set equal for all possible modes, and thus cancels
in (13). The logical test is evaluated using the priors received from the pdf estimate
and the wk hkj received from (11). If a mode switch is considered to have occurred
(11) is rerun using the new predictor mode.

Now, since only one prediction mode hk is active; (9) reduces to
p wkð Þ ¼ p wkjhk

� ffl
. The predictor mode switching concept is visualised in Fig. 3.

3.1 Parameter Choice

The length N of the evaluation period is, together with the forgetting factor l, a
crucial parameter determining how fast the ensemble prediction reacts to sudden
changes in dynamics. A small forgetting factor will put much emphasis on recent
data, making it more agile to sudden changes. However, the drawback is of course
that the noise sensitivity increases.

Khk¼i should also be chosen, such that a sound balance between flexibility and
robustness is found, i.e., a too small kKhk¼ik2 may result in over-switching,
whereas a too large kKhk¼ik2 will give a stiff and inflexible predictor. Furthermore,
Khk¼i should force the weights to move within the perimeter defined by
p(w|hk = i). This is approximately accomplished by setting Khk¼i equal to the
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Fig. 3 Predictor mode switching for an example with three individual predictor models. Step I
At time instance tk the new wkjhk�1

is determined from Eq. (11) In this case, the data forces the
optimal weight away from the active prediction mode center. Step II The likelihood values
p wkjhk ¼ ið Þ; i ¼ 1; . . .; p½ � are calculated and if the condition according to Eq. (12) is fulfilled, a
predictor mode switch occurs. Step III Based on the new predictor mode, Eq. (11) is rerun and the
weight vector now gravitates towards the new mode center
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inverse of the covariance matrix Rhk¼i, thus representing the pdf as a Gaussian
distribution in the regularization.

Optimal values for N and l can be found by evaluating different choices for
some test data. However, from our experience we have seen that N = 10–20 and
l = 0.8 are suitable choices for this application.

3.2 Nominal Mode

Apart from the estimated prediction mode centres, an additional predictor mode
can be added, corresponding to a heuristic fall-back mode. In the case of sensor
failure, or other situations where loss of confidence in the estimated predictor
modes arises, each predictor may seem equally valid. In this case, a fall-back mode
to resort to may be the equal weighting. This is also a natural start for the algo-
rithm. For these reasons, a nominal mode hk = 0 : p(wk|hk = 0) [ N(1/m, I) is
added to the set of predictor modes.

Summary of algorithm

1. Estimate m numbers of predictors according to best practice.
2. Run the predictors and the constrained estimation (10) on labelled

training data and retrieve the sequence of wkjH¼i

� �
TSi
; 8i 2 1; . . .; nf g.

3. Classify different predictor modes, and determine density functions
p wkjH¼i

� ffl
for each mode H = i from the training results by supervised

learning. If possible; estimate p(H = i|D).
4. Initialize mode to the nominal mode.
5. For each time step; calculate wk according to (11).
6. Test if switching should take place by evaluating (12) and (13), and

switch predictor mode if necessary and recalculate new wk according to
(11).

7. Go to 5.

The ensemble engine outlined above will hereafter be referred to as Sliding
Window Bayesian Model Averaging (SW-BMA) Predictor.

4 Choice of Cost Function L

The cost function should be chosen with the specific application in mind. A natural
choice for interpolation is the 2-norm, but in certain situations asymmetric cost
functions are more appropriate. For the glucose prediction application, a suitable
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candidate for determining appropriate weights should take into account that the
consequences of acting on too high glucose predictions in the lower blood glucose
(G) region (\90 mg/dl) could possibly be life threatening. The margins to low
blood glucose levels, that may result in coma and death, are small, and blood
glucose levels may fall rapidly. Hence, much emphasis should be put on securing
small positive predictive errors and sufficient time margins for alarms to be raised
in due time in this region. In the normoglycemic region (here defined as
90–200 mg/dl), the predictive quality is of less importance. This is the glucose
range that healthy subjects normally experience, and thus can be considered, from
a clinical viewpoint in regards to possible complications, a safe region. However,
due to the possibility of rapid fluctuation of the glucose into unsafe regions, some
considerations of predictive quality should be maintained.

Based on the cost function in [58], the selected function incorporates these
features; asymmetrically increasing cost of the prediction error depending on the
absolute glucose value and the sign of the prediction error.

In Fig. 4 the cost function can be seen, plotted against relative prediction error
and absolute blood glucose value.

4.1 Correspondence to the Clarke Grid Error Plot

A de facto accepted standardized metric of measuring the performance of CGM
signals in relation to reference measurements, and often used to evaluate glucose
predictors, is the Clarke Grid Plot [19]. This metric meets the minimum criteria
raised earlier. However, other aspects makes it less suitable; no distinction
between prediction errors within error zones is made, switches in evaluation score
are instantaneous, etc.

In Fig. 5, the isometric contours of the chosen function for different prediction
errors at different G values has been plotted together with the Clarke Grid Plot.
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Fig. 4 Cost function of relative prediction error
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The boundaries of the A/B/C/D/E areas of the Clarke Grid can be regarded as lines
of isometric cost according to the Clarke metric. In the figure, the isometric value
of the cost function has been chosen to correspond to the lower edge, defined by
the intersection of the A and B Clarke areas at 70 mg/dl. Thus, the area enveloped
by the isometric border can be regarded as the corresponding A area of this cost
function.

Apparently, much tougher demands are imposed both in the lower and upper
glucose regions in comparison to the Clarke Plot.

5 Example I: The UVa/Padova Simulation Model

5.1 Data

Data were generated using the nonlinear metabolic simulation model, jointly
developed by the University of Padova, Italy and University of Virginia, U.S.
(UVa) and described in [24], with parameter values obtained from the authors. The
model consists of three parts that can be separated from each other. Two sub
models are related to the influx of insulin following an insulin injection and the
rate of appearance of glucose from the gastro-intestinal tract following meal
intake, respectively.
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The transport of rapid-acting insulin from the subcutaneous injection site to the
blood stream was based on the compartment model in [23, 24], as follows.

_Isc1 tð Þ ¼ � ka1 þ kdð Þ � Isc1 tð Þ þ D tð Þ ð14Þ

_Isc2 tð Þ ¼ kd � Isc1 tð Þ � ka2 � Isc2 tð Þ ð15Þ

_Ip tð Þ ¼ ka1 � Isc1 tð Þ þ ka2 � Isc2 tð Þ � m2 þ m4ð Þ � Ip tð Þ þ m1 � Il tð Þ ð16Þ

_Il tð Þ ¼ m2 � Ip tð Þ � m1 þ m3ð Þ � Il tð Þ ð17Þ

m2 ¼ 0:6
CL

HEb � Vi �MBW
ð18Þ

m3 ¼
HEb � m1

1� HEb
ð19Þ

m4 ¼ 0:4
CL

Vi �MBW
ð20Þ

Following the notation in [23, 24], Isc1 is the amount of non-monomeric insulin in
the subcutaneous space, Isc2 is the amount of monomeric insulin in the subcuta-
neous space, kd is the rate constant of insulin dissociation, ka1 and ka2 are the rate
constants of non-monomeric and monomeric insulin absorption, respectively,
D(t) is the insulin infusion rate, Ip is the level of plasma insulin, Il the level of
insulin in the liver, m3 is the rate of hepatic clearance, and m1, m2, m4 are rate
parameters. The parameters m2, m3, m4 are determined based on steady-state
assumptions—relating them to the constants in Table 1 and the body weight MBW.

The initial stages of glucose metabolism, describing the digestive process and
the flux of glucose from the intestines, have been modeled as follows:

qsto tð Þ ¼ qsto1 tð Þ þ qsto2 tð Þ ð21Þ

_qsto1 tð Þ ¼ �kgri � qsto1 tð Þ þ C tð Þ ð22Þ

_qsto2 tð Þ ¼ kgri � qsto1 tð Þ � kempt � qsto1 tð Þ � qsto2 tð Þ ð23Þ

_qgut tð Þ ¼ �kabs � qgut tð Þ þ kempt � qsto tð Þ � qsto2 ð24Þ

Ra tð Þ ¼ f � kabs � qgut tð Þ
MBW

ð25Þ

where, again following the notation in [21], qsto is the amount of glucose in the
stomach (qsto1 solid, and qsto2 liquid phase), qgut is the glucose mass in the
intestine, kgri the rate of grinding, kempt is the rate constant of gastric emptying, kabs

is the rate constant of intestinal absorption, f is the fraction of intestinal absorption
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which actually appears in the blood stream, C(t) is the amount of ingested car-
bohydrates and Ra(t) is the appearance rate of glucose in the blood. kempt is a
nonlinear function of qsto and C(t):

kempt qstoð Þ ¼ kmin þ k � tanh a qsto � b � G tð Þð Þ½ �þf ð26Þ

� tanh b qsto � d � G tð Þð Þ½ � þ 2g ð27Þ

With k ¼ kmax � kminð Þ=2; a ¼ 5=2D 1bð Þ; b ¼ 5=2Dc with parameters
kmax, kmin, b, and d

Both models were evaluated using generic population parameter values
according to Table 1.

The final part of the total model is concerned with the interaction of glucose and
insulin in the blood stream, organs and tissue, including renal extraction, endoge-
nous glucose production and insulin and non-insulin dependent glucose utilization.
The model equations are partly nonlinear and are found in [24].

Using a parameter set corresponding to a subject with type 1 diabetes (retrieved
from the authors of [24]), 20 datasets, each 8 days long, were generated. The
timing and size of meals were randomized for each dataset, according to Table 2.
The amount of insulin administered for each meal was based on a fixed carbo-
hydrate-to-insulin ratio, perturbed by normally distributed noise, with a 20 %
standard deviation.

Process noise was added by perturbing some crucial model parameters pi in each
simulation step; pi(t) = (1 ? d(t))p0

i , where p0
i represent nominal value and

d(t) [ N(0,0.2). The affected parameters were (again following the notation in [24] ))

Table 1 Generic parameter values used for the GSM and ISM

Parameter Value Unit Parameter Value Unit

kgri 0.0558 [min-1] ka1 0.004 [min-1]
kmax 0.0558 [min-1] ka2 0.0182 [min-1]
kmin 0.008 [min-1] kd 0.0164 [min-1]
kabs 0.0568 [min-1] kd 0.0164 [min-1]
b 0.82 [-] m1 0.1766 [min-1]
d 0.01 [-] Vi 0.05 [L/kg]
f 0.9 [-] CL 1.1069 [L/min]

Table 2 Meal amount and
timing randomization

Meal Time (30 min) Amount carbohydrates (g)

Breakfast 08:00 45 (5)
Lunch 12:30 70 (10)
Dinner 19:00 80 (10)

Standard deviation in parenthesis
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k1, k2, p2u, ki, m1, m30, m2, ksc, and represents natural intrapersonal variability in the
underlying physiological processes.

Two dynamic modes A and B were simulated by, after 4 days, changing four
model parameters (following the notation in [24] ) k1, ki, kp3 and p2u, related to the
endogenous glucose production and insulin and glucose utilization. This represents
an example of shift in the underlying patient dynamics, which may occur due to,
e.g., sudden changes in physical or mental stress levels.

A section of 4 days, including the period when the dynamic change took place,
of a data set can be seen in Fig. 6. One of the 20 datasets was used for training and
the others were considered test data.

5.2 Predictors

For prediction modeling purposes, the system was considered to consist of three
main parts in a similar sense as the simulation model was constructed. The
absorption models of glucose and insulin were adopted and considered known. The
outputs Ip(tk) and Ra(tk) from these models were fed into a linear state-space model
of the Glucose-Insulin Interaction (GIIM), generating the final output—the blood
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Fig. 6 The training data set. The upper plot represents 4 days of dynamic mode A data and the
lower plot the corresponding last 4 days of dynamic mode B, where four model parameters have
been modified. Example I: UVa/Padova Model
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glucose G(k) at time tk [ (5, 10, …) min. Short-term predictions, p steps ahead,
were evaluated using the Kalman filter:

x̂ k þ 1ð Þ ¼ Ax̂ kð Þ þ Bu kð Þ þ K y kð Þ � Cx̂ kð Þð Þ ð28Þ

x̂ k þ pð Þ ¼ Ax̂ k þ p� 1ð Þ þ Bu k þ p� 1ð Þ ð29Þ

Ĝ k þ pð Þ ¼ Cx̂ k þ pð Þ ð30Þ

where meal and insulin announcements were assumed at least TPH minutes ahead,
implying that u(k ? 1) was known for all 0 \ l \ p.

Three models were identified using the N4SID algorithm of the Matlab System
Identification Toolbox. Model order (2–4) was determined by the Akaike criterion
[53]. The first model I was estimated using data from dynamic mode A in the
training data, and the second II from the mode B data, and the final model III from
the entire training data set. Thus, model I and II are each specialized, whereas III is
an average of the two dynamic modes. The models were evaluated for a prediction
horizon of 60 min.

5.3 Results

5.3.1 Training the Mode Switcher

The three predictors were used to create three sets of 60 min ahead predictions for
the training data. Using (10) with N = 10, the weights wk were determined. The
mode centers were found by k-means clustering, and the corresponding probability
distribution for each mode, projected onto the (w1, w2)-plane, was thereafter
estimated by Parzen window technique [11]. The densities are well concentrated to
the corners [1,0,0] and [0,0,1], with means w0j1 ¼ 0:96; 0:03; 0:01½ � and w0j2 ¼
0:03; 0:96; 0:01½ � defining the expected weights for each predictor mode. The

nominal mode probability density function was set to N 1
3

1
3

1
3 ; 0:1I

� ffl
. In Fig. 7 all

density functions, including the nominal mode, projected onto the (w1, w2)-plane,
can be seen together.

5.3.2 Ensemble Prediction Versus Individual Predictions

Using the estimated probability density functions and the expected weights w of
the identified predictor modes, the ensemble machine was run on the test data. An
example of the distribution of the weights for the two dynamic modes A and B can
be seen in Fig. 8.

An example of how switching between the different modes occurs over the test
period can be found in Fig 9.
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For evaluation purposes, all predictors were run individually. In Table 3, a
comparative summary of the predictive performance of the different approaches
over the test batches, in terms of mean Root Mean Square Error (RMSE), is given.
It was also noted that the merged prediction did not introduce any extra prediction
delay in comparison to the best individual prediction (not shown).
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Fig. 7 Estimated probability density functions for the weights in the training data, including
nominal mode. Example I: UVa/Padova model
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6 Example II: The DIAdvisor Data

6.1 Data

Data from the clinical part of the DAQ trial and the DIAdvisor I B and C trials,
conducted within the DIAdvisor project [30], were used. A number of patients
participated in all three trials. Based on data completeness, six of these were
selected for this study with population characteristics according to Table 4. All
selected data were collected at the Montpellier Hospital, and each trial ran over
three days. The patients received standardized meals where the amount of car-
bohydrates included in each meal was about 40 (45 in DAQ), 70 and 70 g,
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Fig. 9 Example of switching between different predictor modes in the test data. The transition
from dynamic mode B to mode A takes place at 6000 min (c:a 4 days). Mode 3 represents the
nominal mode. The late switch to predictor mode 2 in comparison to when the dynamic mode
switch takes place is due to that the excitation for the first hours of the fifth day is low until the
breakfast meal takes place, i.e., there is little incitement to switch predictor mode before that
point. Example I: UVa/Padova model

Table 3 Performance
evaluation by RMSE for the
60 min predictors using
different approaches

Predictor type RMSE [mg/dl]

Section A Section B A ? B

Predictor I 8.0 16.1 12.6
Predictor II 15.3 7.2 12.1
Predictor III 9.8 9.9 9.9
Merged prediction 8.4 7.6 8.1
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respectively. Additional snacks, in some cases related to counter-act hypoglyce-
mia, were also digested. No specific intervention on the usual diabetes treatment
was undertaken during the studies, since a truthful picture of normal blood glucose
fluctuation and insulin-glucose interaction was pursued. Meal and insulin admin-
istration were noted in a logbook, glucose was monitored by the Abbott Freestyle
[1] (DAQ) and the Dexcom Seven Plus [29] (DIAdvisor I) CGM systems, and
frequent blood glucose measurements ([37 samples a day) were collected for
calibration and as reference measurements. The CGM data were used for model
identification, whereas the spline-interpolated frequent blood glucose reference
measurements were used for validation purposes.

The first trial data (DAQ) were used to train the individual predictor models.
The second and third trial data (DIAdvisor I.B and C) were used to train and cross-
validate the SW-BMA, i.e., the SW-BMA was trained on B data and validated on
C data, and vice versa.

6.2 Predictors

Three different predictors of different structure were developed within the
DIAdvisor project, and used in this study; a state-space-based model (SS) [98], a
recursive ARX model [36] and a kernel-based predictor [70]. For all three models,
the CGM signal GCGM(t) was considered a proxy for the blood glucose G(t), i.e.,
the lag between the interstitial glucose and the blood glucose, described in e.g.
[87], was ignored.

The state-space model and the ARX model used the modeling approach
depicted in Fig. 10, with insulin and glucose sub models according to Eqs. (14)–
(27), and without interstitial and sensor dynamics modeling (M2). The state-space
model modeled the glucose-insulin interaction, and the glucose prediction,
according to Eqs. (28)–(30). The ARX predictor was recursively updated at each
time step with an adaptive update gain dependent upon the glucose level according
to [36].

The kernel-based predictor did not directly utilize the insulin or meal data
channels. Instead, the linear trend and offset parameters given by linear regression
of recent CGM data were used as meta features to switch between different

Table 4 Population
Statistics of data

Parameter Value

Gender 3 Men /3 Women
Therapy 3 Pump /3 Multi-dose injection
Age 54 [32–68]
HbA1c 7.9 [5.7–9.1]
BMI 25.8 [23.7–29.4]

Mean values and [min-max]
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predefined kernel-based prediction functions, see [71] for a full explanation.
Furthermore, this predictor was only trained on one patient data set and was thus
considered patient invariant.

6.3 Evaluation Criteria

The prediction results were compared to the interpolated blood glucose G in terms
of Clarke Grid Analysis [19] and the complementary Root Mean Square Error
(RMSE).
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Meal
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Insulin

Insulin

Dynamics
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Sensor
Filtering
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Dynamics
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Dynamics
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R (t)a I  (t)p
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Fig. 10 Overview of the modeling approach. Notation: Plasma Insulin Ip(t), Rate of Glucose
Appearance following a meal Ra(t), Blood glucose G(t), Capillary glucose GC(t), Interstitial
Glucose GI(t), CGM raw current signal GIraw(t) and CGM signal Gcgm(t). M1 represent the model
describing the glucose-insulin interaction in the blood and inner organs (GIIM), the M2 model
represents the diffusion-like relationship between blood and interstitial glucose and the CGM
sensor dynamics, and M3 is the joint model of M1 and M2
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6.4 Results

6.5 Training the Mode Switcher

6.5.1 Cluster Analysis: Finding the Modes

The three predictors were used to create 40 min ahead predictions for both training
data sets DTB Cð Þ . Using (10) with N = 20, the weights wkf gTB Cð Þ

were obtained;

example depicted in the (w1, w2) plane in Fig. 11. The weights received from the
training are easily visually recognized as belonging to different groups (true for all
patients, not shown). Attempts were made to find clusters using a Gaussian
Mixture Model (GMM) by the EM algorithm, but without viable outcome. This is
not totally surprising, considering, e.g., the constraints 0 C wi C 1 and Rw = 1. A
more suitable distribution, often used as a prior for the weights in a GMM, is the
Dirichlet distribution, but instead the simpler k-means algorithm was applied using
four clusters (number of clusters given by visual inspection of the distribution of

wkf gTB Cð Þ
, providing the cluster centers w0jHi

.

The corresponding probability distribution for each mode p wjHið Þ, projected
onto the (w1, w2)-plane, was estimated by Parzen window technique, and an
example can be seen in Fig. 12. Gaussian distributions were fitted to give the
covariance matrices RHi used in (11).

6.5.2 Feature Selection

The posterior mode probability p hkjDkð Þ is likely not dependent on the entire data
Dk, but only a few relevant data features, possible to extract from Dk. Features
related to the performance of a glucose predictor may include meal information,
insulin administration, level of activity, measures of the glucose dynamics, etc. By
plotting the training CGM data, colored according to the best mode at the pre-
diction horizon retrieved by the training, interesting correlations become apparent
(Fig. 13). The binary features in Table 5 were selected.

When extracting the features, meal timing and content were considered to be
known 30 min before the meal.

From the training data, the posterior mode probabilities p hk ¼ ijfj
� ffl

, given each
feature fj, were determined by the ratio of active time for each mode over the time
periods when each feature was present. Additionally, the overall prior
p(hk = i) was determined by the total ratio of active time per cluster over the entire
test period.

The different features are overlapping, and the combinations thereof could be
regarded as features by themselves. However, the data support for each such new
feature would be small and could potentially disrupt, rather than improve, the
switching performance. To resolve this issue, the features were not combined
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(apart from concurrent rising glucose and meal intake, which formed a new fea-
ture), and each feature was given different priority—only allowing only the feature
of highest priority, f �k to be present at each time step tk. The priority rank was
chosen to allow the more specific features to take precedence over the more
general features. At each cycle, p hk ¼ ijDkð Þ ¼ p hk ¼ ijf �k

� ffl
was determined, and

if no feature was active, p hk ¼ ijDkð Þ was approximated by the p(hk = i) estimate.
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Fig. 11 Example of distribution of weights in the training data by (10) and clusters given by the
k-means algorithm. The red ellipses represent the fitted Gaussian covariances of each cluster
(patient 0103, Trial B). Example II: DIAdvisor Data

Fig. 12 Example of estimated probability density functions for the different predictor mode
clusters in the training data (patient 0103, Trial B). Example II: DIAdvisor Data
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6.6 Prediction Performance on Test Data

Using the estimated mode clusters {w0|i, R0|i}, i = [1, …, M], and the estimated
posteriors p Hijf �ð Þ from Trial B (C), the ensemble machine was run on the Trial C
(B) data. The parameter l was set to 0.8 and N to 20 min. An example of the
distribution of the weights wk for the three predictors can be seen in Fig. 14.

Table 6 summarizes a comparison of predictive performance over the different
patient test data sets for the RMSE evaluation criteria, and in Table 7 the evalu-
ation in terms of Clarke Grid Analysis is given. The optimal switching approach,
here defined as using the non-causal fitting by Eq. (10), is used as a measure of
optimal performance of a linear combination of the different predictors.
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Fig. 13 Example of CGM coloured according to best predictor mode 40 min ahead, together
with active features at the moment the prediction was made (patient 0103, Trial B). Example II:
DIAdvisor Data

Table 5 Selected features

Feature Threshold Priority

Meal max (Rak, …, Rak+30) [ e 1
Rising G mean (DGk-10, …, DGk) [ 30 mg/(dl�h) 2
Falling G mean (DGk-10, …, DGk) \ -18 mg/(dl�h) 3
Meal and rising G See above 4
Meal onset max Ra(k - 30, …, k) \ e and max Ra(k, …, k ? 30) [ e 5

e corresponds to the maximum amplitude of glucose rate-of- appearance, Ra after digesting 10 g
CHO, and DG = Gk - Gk-5
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Fig. 14 Example of the distribution of weights in the test data using the estimated clusters and
feature correlations (patient 0108, Trial B). Example II: DIAdvisor Data

Table 6 Performance evaluation for the 40 min SW-BMA prediction compared to the optimal
switching and the individual predictors

Merging strategy Median RMSE/RMSEbest [min-max]

Trial B Trial C

SW-BMA 1.03 [0.75–1.04] 1.03 [0.94–1.05]
Optimal switching 0.97 [0.54–1.0] 0.94 [0.73–1.0]
2nd best individual pred. 1.16 [1.09–1.27] 1.21 [1.04–1.37]
Worst individual pred. 1.44 [1.25–1.73] 1.45 [1.18–1.83]

The metric is the Root Mean Square Error (RMSE), normalized against the best individual
predictor M1 - M3 for each patient

Table 7 Performance evaluation for the 40 min SW-BMA prediction compared to the optimal
switching and the best individual predictor by the amount of data (%) in the acceptable A/B zones
versus the dangerous D and E zones

Merging strategy Trial B Trial C

A/B D E A/B D E

SW-BMA 95.5 2.2 0 95.3 3.0 0.1
Optimal switching 96.2 1.7 0 96.9 1.3 0
Best individual pred. 94.8 2.6 0 95.0 3.4 0
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7 Discussion

Example I outlined how the technique may be applied to the specific example of
diabetes glucose prediction under sudden changes in the underlying physiological
dynamics. In this example, the merged prediction turned out to be the best choice.
In Example II, applying the algorithm to real-world data, the SW-BMA has, for
most patients, the same RMSE and Clarke Grid performance as the best individual
predictor. In one case, the merged prediction clearly outperformed also the best
predictor (RMSE/RMSEbest = 0.75). However, comparison to the optimal
switcher indicates that there is still further room for improvement. To fill this gap,
timely switching is most important. The prediction models in Example II were not
specifically designed for specialisation, but are diversified in terms of modeling
and parameter identification methods in relation to each other. The state-space
model is patient-specific, with fixed parameter values after training—making it
agile to interpersonal differences but more sensitive to time-variability. The model
is invariant to the absolute glucose level. The ARX model, on the other hand, is
recursively updated to capture time-variability, but the approach may be vulner-
able to fluctuating system excitation conditions. Both models utilize the insulin
and meal data inputs. The kernel-based predictor is generic over the patient cohort,
and considers the dynamics to be related to the glucose level rather than directly to
the inputs’ effects. Overall, the three models thereby complement each other in
these aspects. The posterior mode probabilities, conditioned on each selected
feature, show that some specialisation exists. For example, when feature 5 (meal
onset) was active, cluster 3, dominated by the SS predictor, was clearly favoured
an average (61 %). Exploiting these correlations may enhance timely switching,
and further specialisation and diversification amongst the prediction models can
thus be expected to further improve the added value of prediction merging.

The evaluation indicates that the proposed algorithm is robust to sudden
changes and in reducing the impact of modeling errors. Apart from that, in many
applications, transition between different dynamic modes is a gradual process
rather than an abrupt switch, making the pure switching assumption inappropriate.
The proposed algorithm can handle such smooth transitions by slowly sliding
along a trajectory in the weight plane of the different predictors, perhaps with a
weaker K if such properties are expected. Furthermore, any type of predictor may
be used, not restricting the user to a priori assumptions of the underlying process
structure.

In Takagi–Sugeno (TS) system, a technique that also gives soft switching, the
underlying assumption is that the switching dynamics can be observed directly
from the data. This assumption has been relaxed for the proposed algorithm,
extending the applicability beyond that of TS systems.

In [86], another interesting approach to online Bayesian Model Averaging is
suggested for changing dynamics. In this approach, the assumed transition
dynamics between the different modes are based on a Markov chain. However, in
our approach no such assumptions on the underlying switching dynamics are
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postulated. Instead, switching is based on recent performance in regards to the
applicable norm, and possibly on estimated correlations between predictor modes
and features of the data stream P hk ¼ ijDkð Þ, see Eq. (13).

8 Conclusions

A novel merging mechanism for multiple glucose predictors has been proposed for
time-varying and uncertain conditions. The approach was evaluated on both
artificial and real-world data sets, incorporating modeling errors in the individual
predictors and time-shifting dynamics.

The results show that the merged prediction has a predictive performance in
comparison with the best individual predictor in each case, and indicates that the
concept may prove useful when dealing with several individual (glucose) pre-
dictors of uncertain reliability—reducing the risk associated with definite a priori
model selection, or as a means to improve predictive quality if the predictions are
diverse enough.

Further research will be undertaken to investigate how interesting features
correlated to expected predictor mode changes should be extracted, and in regards
to the possibility of making the algorithm unsupervised.
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Hypoglycemia Prevention Using Low
Glucose Suspend Systems

B. Wayne Bequette

Abstract The fear of nocturnal hypoglycemia was one of the main motivations
behind the development of continuous glucose monitors (CGM) and hypoglycemic
alarms. Since many individuals do not awake to these alarms, the next step is to
implement a low glucose suspend (LGS) algorithm that shuts off the insulin
infusion pump to avoid hypoglycemia. A threshold-based LGS simply shuts off the
pump when the CGM signal has violated a lower limit on glucose. A predictive
LGS shuts off the pump when a glucose threshold is predicted to occur within a
specified time limit, or horizon. A review of algorithms hypoglycemic predictors/
alarms is followed by a presentation of threshold and predictive LGS algorithms.
Finally, an overview of the implementation challenges that remain is provided.

1 Motivation and Background

One of the greatest concerns of the parent of a child with type 1 diabetes is
overnight hypoglycemia. During the daytime it is reasonably easy to keep track of
when a child’s blood glucose may be going low, but using the current state of care
there is no way to keep track of blood glucose overnight. Parents live in fear of the
so-called ‘‘dead in bed’’ syndrome, where a person is in a severe state of hypo-
glycemia for an extended period of time, resulting in a diabetic coma and death;
among patients with type 1 diabetes, there is a 6 % lifetime risk of ‘‘dead in bed’’
[41]. One of the main motivations behind continuous glucose monitoring (CGM)
technology was to provide real-time alarms warning of overnight hypoglycemia.
Buckingham et al. [10] present reports of four subjects, wearing CGM devices, that
had low blood glucose (sensor values \60 mg/dL) for 2.25–4 h before a seizure

B. W. Bequette (&)
Department of Chemical and Biological Engineering, Rensselaer Polytechnic
Institute, Troy, NY 12180-3590, USA
e-mail: bequette@rpi.edu

V. Marmarelis and G. Mitsis (eds.), Data-driven Modeling for Diabetes,
Lecture Notes in Bioengineering, DOI: 10.1007/978-3-642-54464-4_3,
� Springer-Verlag Berlin Heidelberg 2014

73



occurred; a CGM-based alarm could possibly wake the individual or their care-
giver with adequate time to treat the hypoglycemia and avoid the seizure.
Unfortunately, people do not adequately respond to alarms and early devices had a
high false alarm rate [9].

An alternative to overnight hypoglycemic alarms is a low glucose suspend
(LGS) or pump shut-off (PSO) algorithm that automatically shuts-off the pump to
reduce the risk of extended periods of hypoglycemia. These devices can be either
be reactive and shut-off the pump once a glycemic threshold is violated, or pre-
dictive, shutting off the pump when it is predicted that a hypoglycemic threshold
will be violated within the near future (often 15–70 min). Note that either system
is an example of a feedback or closed-loop system, since a sensor signal is being
used to take a control action. In this example, the closed-loop algorithm is an on-
off algorithm, with the pump simply in one of two-states: either on or off. In
general, the application of feedback control to glucose regulation in individuals
with type 1 diabetes is referred to as a closed-loop artificial pancreas. For an
overview of recent developments towards a closed-loop artificial pancreas, see
Bequette [6].

The Juvenile Diabetes Research Foundation (JDRF) has outlined a natural
pathway towards an artificial pancreas, as shown in Fig. 1 [33]; each step requires
a more advanced system with a higher level of knowledge than the previous step.
A LGS system represents steps 1 or 2 (depending on whether it is reactive or
predictive) on this six-step JDRF pathway.

In this chapter we first review algorithms used for hypoglycemia prediction and
alarms, before covering low glucose suspend algorithms. In addition, we provide
an overview of the challenges related to implementing closed-loop control in
general, and LGS in specific. Finally, we provide an overview of current efforts to
also reduce hyperglycemia. Our focus is on overnight blood glucose control, as a
number of other chapters further develop fully closed-loop algorithms that can also
be used during the daytime.

2 Hypoglycemia Prevention Alarms

Glucose values from initial commercial versions of some CGMs could only be
analyzed retrospectively; the CGM would be downloaded by a clinician, who
would then review the results with the patient. Current devices present glucose
values in real-time, and can be set to alarm when the values are low (hypoglycemic)
or high (hyperglycemic). An example of the use of threshold alarms set at 80 (low)
and 200 mg/dL (high) are presented by Davey et al. [20]; hypoglycemia was
defined as blood glucose values less than 65 mg/dL.

There has been a significant effort to develop predictive alarms, to enable indi-
viduals to take corrective action and avoid low (or high) glucose values. Bequette [5]
provides a review of hypoglycemia prevention algorithms, which are concisely
summarized in this section.
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A number of methods can be used to predict future glucose levels. It is
undesirable to simply extrapolate linearly from the two most recent CGM mea-
surements, e.g. because of sensor noise. The most common methods include using
an autoregressive model and Kalman filtering using a state space model.

2.1 Auto-Regressive

An autoregressive (AR) model has the form

yk ¼
Xn

i¼1

aiyk�i þ wk ð1Þ

where yk is the glucose value at time step k, wk is a white noise sequence, and
there are n coefficients, ai (i.e. the model is n-th order). Bremer and Gough [7]
apply autoregressive models to blood glucose data available at 10 min sample
times, and compare predictions for 10, 20 and 30 min ahead. Reifman et al. [40]
use tenth-order AR model and compare the performance of a single, cross-subject
model with individual models, for 30-min prediction horizons. Gani et al. [26] use
a smoothing procedure and regularization to minimize changes in the glucose first-
derivatives. This approach, with a 30-th order model, is shown to reduce the
prediction lag compared to Reifman et al. [40]. An adaptive first-order model, with
the parameter updated at each time step, is used by Sparacino et al. [42]; results are
presented for a 3-min sample time, with a 30-min (10 step) prediction horizon.

An auto-regressive, moving average (ARMA) model has a more general form
than AR, with n ai coefficients and m ci coefficients

yk ¼
Xn

i¼1

aiyk�i þ
Xm�1

i¼0

ciwk�i ð2Þ

Fig. 1 Six steps on the pathway towards a closed-loop artificial pancreas [33]
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A tutorial overview of algorithms for CGM and glucose prediction for hypo- and
hyperglycemica alarms is presented by Sparacino et al. [43]. They note that a
limitation to the approach of Reifman et al. [40] is the substantial amount of
training data required for estimation of a large number of parameters in a fixed-
parameter formulation. Gani et al. [26] show, however, that a model based on data
from one individual could be successfully used on other individuals.

Eren-Oruklu et al. [22, 23] include real-time adaptation of parameters, and find
that the best model is second-order, with the form

yk ¼ a1yk�1 þ a2yk�1 þ wk þ c1wk�1 ð3Þ

where three parameters must be estimated. Sparacino et al. [42] use a first-order
model

yk ¼ a1yk�1 þ wk ð4Þ

where only one parameter must be estimated. In these studies the model coeffi-
cients are estimated recursively, using weighted least squares, where data further
in the past has less of an impact than more recent data.

2.2 Kalman Filtering

The Kalman filter is an optimal estimation technique that trades-off the probability
that a change in a measured output is due to sensor error versus the probability that
it is due to a real input change. For more background on Kalman filtering and
optimal estimation, see Stengel [44].

The underlying discrete-time model used in a Kalman filter has the form

xkþ1 ¼Uxk þ Cwwk

yk ¼Cxk þ vk
ð5Þ

where x is a vector of states and y is the measured output, wk is the process noise
(covariance Q), and vk is the measurement noise (covariance R). If it is assumed
that the process noise drives the first derivative of glucose with time, then the
following relationships result

gkþ1 ¼ gk þ dk

dkþ1 ¼ dk þ wk

yk ¼ gk þ vk

ð6Þ

where g and d represent the glucose and the change in glucose from step-to-step,
respectively. The state space model corresponding to Eq. (6) is

76 B. W. Bequette



g

d

� �
kþ1|fflfflfflffl{zfflfflfflffl}

xkþ1

¼
1 1

0 1

� �
|fflfflfflffl{zfflfflfflffl}

U

g

d

� �
k|fflffl{zfflffl}

xk

þ
0

1

� �
|ffl{zffl}

Cw

wk

yk ¼ 1 0½ �|fflfflffl{zfflfflffl}
C

g

d

� �
k|fflffl{zfflffl}

xk

þvk

ð7Þ

The process and measurement noise are considered stochastic processes, and
the process noise covariance (Q) is only approximately known and often used as a
tuning parameter. An implicit assumption out this 2-state model is that glucose
tends to change at a constant rate for significant periods of time. This is equivalent
to assuming that an automobile tends to maintain a constant velocity for periods of
time, subject to minor perturbations in the velocity. Note that this assumption also
holds for a case of glucose concentration being held relatively constant, which
means that the rate-of-change is constant at zero.

The states are estimated using the following equations
Predictor (time update):

x̂k k�1j ¼ Ux̂k�1 k�1j predictor time updateð Þ ð8Þ

State estimate covariance:

Pk ¼ UPk�1U
T þ CwQCwT � UPk�1CT CPk�1CT þ R

� ��1
CPk�1U

T ð9Þ

where the first two terms on the right-hand-side of the equals sign represent the
propagation of the state covariance and the process noise, while the third term
represents a correction due to the measurement update.

Kalman Gain

Lk ¼ PkCT CPkCT þ R
� ��1 ð10Þ

Corrector (measurement update)

x̂k kj ¼ x̂k k�1j þ Lk yk � Cx̂k k�1j
� �

ð11Þ

where x̂ represents an estimate of the states, and the subscript k|k - 1 means the
estimate at step k is based on measurements up (and including) step k - 1. Note
that a model is used to propagate the state estimate from the previous time step
(k - 1) to the current time step (k). The measurement at the current time step is
then used to update the state estimate, based on the Kalman Gain (Lk).

Future glucose predictions from the most recent measurement at time step k, to
step k + j, are given by

x̂kþj kj ¼ U jx̂k kj ð12Þ
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For the two-state model in Eq. (7), this is equivalent to assuming that the rate-
of-change of glucose is constant in the future. That is, for the jth future time step

ĝkþj kj ¼ ĝk kj þ jd̂k kj ð13Þ

where d̂k kj is the estimated change in glucose from step k - 1 to step k (the current
measurement). The uncertainty in the future grows as [Eq. (9) without the mea-
surement feedback term]

Pk ¼ UPk�1U
T þ CwQCwT ð14Þ

For this problem, the confidence interval grows with each step that is not
followed by a measurement update, since there are two ‘‘integrators’’ in the glu-
cose model; this behavior will be demonstrated in the simulations that follow.

Here we show how Kalman filtering is used to obtain glucose and rate-of-change
of glucose, in real-time, despite substantial measurement noise. The state vector
estimate is initialized with the measured glucose at t = -15 min, with an assumed
rate-of-change of 0 mg/dL/min. Figure 2 displays the real-time estimates of glu-
cose (top) and its rate-of-change (bottom), along with the uncertainty bounds of
each. Although the actual rate-of-change was -2 mg/dL/min, the Kalman filter
converges to this value within 15 min. Figure 3 shows the predicted glucose values
based on the measurements available until t = 0 min. Because of the uncertainty
about future rates-of-change, the confidence intervals of the glucose predictions
increase each step into the future; simulation details are provided in Bequette [5].

Facchinetti et al. [25] have presented a two-state Kalman filter, which Bequette
[5] has be shown to be identical to the 2-state model shown in Eq. (7).

The Kalman Filter estimates shown in Figs. 2 and 3 are based on a second-order
(2-state) model. On the other hand, if it is assumed that the process noise drives the
second derivative of glucose with time, the following third-order (3-state) model
can be used:

U ¼
1 1 0
0 1 1
0 0 1

2
4

3
5; Cw ¼

0
0
1

2
4
3
5; C ¼ 1 0 0½ �; x ¼

g
d
f

2
4
3
5; y ¼ G ð15Þ

where g, d, and f, represent the glucose, rate-of-change of glucose, and the second-
derivative of glucose with respect to time, respectively. In contrast to the two-state
model in Eq. (7), an implicit assumption of this three-state model is that glucose
rate-of-change tends to change at a constant rate for a period of time. This is
equivalent to assuming that an automobile tends to maintain a constant acceler-
ation for periods of time, subject to minor perturbations in the velocity. Naturally,
this assumption will only hold for brief periods of time, such as when accelerating
from, or braking before, a traffic light. The advantage of the 3-state model is that it
captures dynamics near the maximum (peak) and minimum (valley) values of
glucose. While the 3-state model yields better estimates for previous and current
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glucose estimates, Palerm and Bequette [37] found that the assumption of a
constant first-derivative (2-state) for the future predictions led to better perfor-
mance for multistep-ahead predictions on clinical data, than assuming a constant
second-derivative (3-state).

The Kalman filter equations can also be formulated in continuous-time, with
discrete measurement updates [34]. A major advantage of this formulation is that
non-constant sample times can be used, as well as nonlinear models.

2.3 Combinations and Other Methods for Glucose Prediction

Dassau et al. [19] incorporate (i) statistical prediction (ii) numerical logical (iii)
hybrid infinite impulse response (HIIR) filter (iv) Kalman filter, and (v) linear
prediction into a voting-based strategy to predict hypoglycemia. Retrospective
testing on 18 CGM datasets (with a 1-min sensor sample time) was performed for
different prediction horizons (35, 45 and 55 min) and alarm thresholds (70, 80 and
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Fig. 2 Glucose (top) and rate-of-change of glucose (bottom). Actual (black), Kalman filter
estimate (blue) and uncertainty bounds (–). The Kalman filter was initialized at t = -15 min,
with uncertainty in the glucose and rate-of-change states. The estimated error variance improves
with the measurement updates. Q = 0.01, R = 4. From Bequette [5]
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90 mg/dL). A 35 min horizon with an alarm threshold of 80 mg/dL, and a voting
threshold of 3 out of 5 votes, resulted in a prediction of 91 % of the hypoglycemic
events.

Harvey et al. [29] present a glucose prediction module as part of a health
monitoring system (HMS). First, a spike filter is used to reduce the effect of noise
spikes, then a low-pass, first-order filter is applied. The first-derivative of Lagrange
interpolation polynomial is then used to predict the glucose concentration 15 min
into the future. This method resulted in a 93.5 % detection rate with 2.9 false
alarms/day, in retrospective analysis of 393 days of clinical data.

Bayrak et al. [2] develop an autoregressive partial least squares algorithm to
model CGM data and predict future glucose concentrations. The models are
updated recursively using a moving window at each time step, where the mean and
variance are recalculated at each interval. The method is applied retrospectively to
data from 17 subjects, as well as in simulation studies using the UVa-Padova
simulator. A sensitivity of 86 %, with a false alarm rate of 0.42/day, was obtained
based on a 30-min prediction horizon. The average detection time was 25.25 min
before the hypoglycemic event.

The methods discussed thus far are based on CGM signals. Other information,
such as insulin infusion rate (or boluses), meal glucose amount, or activity can also
be used to improve glucose predictions. Zhao et al. [47] use a latent variable (LV)
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Fig. 3 Actual glucose (black), measured (+), estimated (blue) and uncertainty bounds (–). The
Kalman filter was initialized at t = -15 min. After t = 0 the estimated error variance grows
since there are no measurements to improve the estimates. From Bequette [5]
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based method to predict future CGM values from past glucose, and known meal
glucose and insulin boluses, and apply the technique to simulator (10 subjects) and
clinical data (seven subjects). They find that the LV-based method has a glucose
prediction accuracy at least as good as methods based on AR and ARX models.

Additional measurements, such as those available from accelerometry, can be
used to improve glucose predictions. Eren-Oruklu et al. [24] use a multi-sensor
body monitor that provided seven signals related to activity and emotional con-
ditions; they found that five of the seven signals provided a significant contribution
to glucose changes. Improved predictive performance is obtained using an
ARMAX model with the multiple inputs, compared to an ARMA model based
only on glucose signals from the CGM.

3 Threshold-Based Low Glucose Suspend Algorithms

Hypoglycemic alarms, based on continuous glucose monitoring (CGM) technol-
ogy have had limited success, because of a relatively high false alarm rate and the
reality that many patients (and caregivers) sleep through the alarms; Buckingham
et al. [9] found that 71 % of alarms were not responded to during sleep. In a
clinical trial with 176 subjects for 36,467 nights using CGM, there was an 8.5 %
incidence of nocturnal hypoglycemia, with a mean duration of 81 min [32];
hypoglycemia was defined as two consecutive CGM readings B60 mg/dL in
20 min. A pump shut-off or low glucose suspend (LGS) system, where an insulin
pump is shut-off in response to hypoglycemia, is an intermediate step between a
hypoglycemic alarm system and a fully closed-loop artificial pancreas. In this
section we present simple threshold-based low glucose suspend systems, while the
next section presents predictive low glucose suspend methods.

A threshold-based low glucose suspend system simply shuts off the insulin pump
when the CGM goes below a desired threshold. Once the pump is turned off,
different conditions could be used to turn the pump on. The method implemented in
the Medtronic Veo system is to first alarm if a low threshold (set by the user) is
violated; if there is no user response, then the pump is shut-off for 2 h (unless the
user intervenes to resume basal insulin delivery). Choudhary et al. [17] present
results for 31 adults tested for 3 week; the threshold to initiate LGS was individ-
ualized (ranging from 40 to 63, with a median of 43 mg/dL). Agrawal et al. [1]
studied 7 months of data from 935 patients, with the LGS threshold commonly set
between 50 and 60 mg/dL; most events were either \5 min or greater than
115 min. The shorter events tended to occur in the early afternoon, while the longer
events were in the late-night and early-morning hours. Danne et al. [18] studied 21
patients, with LGS enabled for 6 weeks, and found that 43 and 57 % of LGS
activations occurred during the night (10:00 p.m.–6:00 a.m.) and day (6:00 a.m.–
10 p.m.), respectively. Garg et al. [27] studied 50 subjects, who fasted overnight
and exercised until their blood glucose reached B85 mg/dL. The mean time for
hypoglycemia (\70 mg/dL) with the LGS-on was reduced from 170.5 to 138.5 min
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compared to LGS-off. Ly et al. [36] studied 24 patients and found that 25 % of
participants had one full 2-h suspension overnight at least once per week. There
were a total of 3128 LGS events during 2493 days, with a mean duration time of
11.2 min, and with 36 % of events occurring overnight.

It should be noted that algorithms other than on-off can be used to prevent/
reduce hypoglycemia. For examples, Cengiz et al. [16] and Elleri et al. [21] show
that PID and MPC algorithms, respectively, can result in pump suspension. A nice
summary of early LGS results is presented by Pickup [39].

4 Predictive Low Glucose Suspend Algorithms

Because of subcutaneous insulin pharmacodynamics and a time-lag between blood
glucose and the sensor signal, there is a limit to the performance of a threshold-
based system, where glucose will continue to drop past the threshold. It is desir-
able, then, to use a prediction of blood glucose to turn-off the pump before a
hypoglycemic threshold is violated, i.e. predictive low glucose suspend (PLGS).
Zecchin et al. [46] have demonstrated the improved performance of predictive
versus threshold low glucose suspend methods in simulation studies.

Buckingham et al. [11] report clinical pump shut-off results of 22 subjects using
a linear prediction algorithm and a 90-min pump suspension; they found that a
45-min horizon and a 80 mg/dL threshold prevented hypoglycemia 80 % of
the time. This approach was extended by Buckingham et al. [12], based on the
hypoglycemia prediction strategy by Dassau et al. [19] discussed in Sect. 2.3, to
incorporate (i) statistical prediction (ii) numerical logical (iii) hybrid infinite
impulse response (HIIR) filter (iv) Kalman filter, and (v) linear prediction into a
voting-based strategy that prevented 84 % of possible hypoglycemic events, in a
clinical study involving 40 subjects. Initial studies required that three of the five
algorithms agreed to suspend the pump, but better performance was achieved
when the scheme was changed to only require two algorithms to suspend the
pump.

The voting based strategy was based on a fixed sensor sample time of 1 min. To
develop a more general framework, where the sensor sample time could be variable,
the pump shut-off strategy developed by Cameron et al. [14] was based solely on
predictions from a two-state Kalman filter.

In the study by Cameron et al. [14], the initial values used for states x̂0, and
covariance, P0, used in Eqs. (8–11) were:

x̂0 ¼
140

0

� �
or x̂0 ¼

CGMð0Þ
0

� �
; P0 ¼

36000 0
0 1000

� �
ð16Þ

where CGM(0) refers to the first CGM reading, assuming it is available. The initial
values of P0 are largely chosen to encourage adherence to the first available
glucose values.
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Since q and R are scalars for this system model, q/R is a scalar tuning parameter
that adjusts the response of the estimates to a new sensor value. In these studies we
used a q/R ratio of 0.001 based on retrospective data and reflecting slowly changing
nocturnal glucose levels. They additionally provide a steady-state glucose uncer-
tainty of 10 mg/dL, ensuring somewhat reasonable uncertainty estimates. Future
work may include adapting this parameter to match the noise characteristics of the
sensor [25].

For brief periods where CGM measurements are not available, e.g. between
regular measurements, the state and covariance estimates are propagated as in
Eqs. (12) and (14). In the studies by Cameron et al. [14], estimates were propa-
gated at 1-min intervals and sensor signals were available at 5-min intervals.

The pump shut-off algorithm consisted of a set of prioritized rules to assure
patient safety. The pump is allowed to be off for a maximum of 120 min every
150 min. In addition, the pump can only be offfor a maximum of 180 min each night.
A 70-min prediction horizon and an 80 mg/dL threshold were used to shut-off the
pump. The pump is turned back on when the 70-min prediction of the blood glucose
rises above 100 mg/dL. The algorithm provides glucose (and rate-of-change)
predictions at 1-min intervals, which are updated when a new sensor signal is
available (typically at 5 min intervals). Indeed, the glucose predictions continue
during sensor signal dropouts. After 20 min of signal dropout the predictions are
gradually reset by assuming a 140 mg/dL sensor value in Eq. (11) and multiplying R
by a large scalar (1000) in Eq. (9).

Initial testing of the algorithm was conducted by retrospectively using data from
the studies by Buckingham et al. [12]; details are reported in the appendix of
Cameron et al. [14]. Clinical studies were then conducted using 16 subjects. On the
night of the CTRC admission visit, each participant ate dinner at 6:00 p.m. and
checked into the clinic at 7:00 p.m.. The physician initiated a systematic increase in
the basal insulin beginning at 9:00 p.m. to promote negative rate-of-change in the
blood glucose; this same protocol was used in Buckingham et al. [12]. The study
continued until 7:00 or 8:00 a.m., with the subjects in a recumbent position.
Reference blood glucose samples were taken every 15–30 min, with blood ketone
measurements at the study onset, after pump suspension and before breakfast. The
glucose values of one subject remained elevated throughout the study, so data
analysis was only performed on 15 subjects. Hypoglycemia was prevented in 11/15
subjects, that is, four subjects had reference glucose values below 60 mg/dL. It
should be noted, however, that only one subject had CGM readings below 60 mg/dL,
indicating that calibration and CGM accuracy is a problem. A successful example is
shown in Fig. 4. Detailed metrics are reported by Cameron et al. [14].

Based on the clinical results, out-patient studies were initiated and results for
375 nights were presented by Buckingham et al. [13]. Roughly 1/3 (123) were
‘‘control’’ nights (PLGS algorithm not activated), and 2/3 (252) were ‘‘interven-
tion’’ nights (PLGS algorithm activated). The prediction horizon 70 min for initial
studies, revised to 50 min for the next set, and finally adjusted to 30 min for the
final studies. The final tuning resulted in a reduction in nocturnal hypoglycemia of
almost 50 %.
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The predictive low glucose suspend studies reviewed above make use of a
minimum amount of information—simply real-time CGM signals. The use of
additional information, such as insulin-on-board can improve glucose predictions
and thus enhance low glucose suspend system performance. Hughes et al. [30]
include insulin infusion information to improve hypoglycemia prediction, and
incorporate an attenuation of insulin that does not necessarily fully shut-off the
pump. Hughes-Karvetski et al. [31] extend this approach by using historical
information to provide a time-dependent hypoglycemic risk, which enables a more
aggressive insulin attenuation that is patient-specific.

5 Related Challenges

The current state of CGM technology creates a number of challenges when
implementing hypo-hyperglycemic alarms and low glucose suspend systems.
Sometimes the signals are not available, either due to a communication disruption
or a error detected by the sensor that does not allow transmission of the signal. In
these cases it is desirable to provide a prediction based on recently available data,
using, for example, a Kalman filter without the measurement update.

Fig. 4 Results from an in-patient study of a predictive low glucose suspend (PLGS) algorithm.
Initially, the basal insulin rate is raised in steps, through 5:00 a.m., to force that subject’s CGM to
decrease. Then, the PLGS algorithm is switched on. The pump shut-off occurs in time to avoid
hypoglycemia. From Cameron et al. [14]
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A common artifact, particularly overnight, is when an individual rolls over on
their sensor, causing the signal to attenuate. We refer to this phenomenon as a
pressure-induced sensor attenuation (PISA). An example in the context of a pre-
dictive low glucose suspend system is shown in Fig. 5. While the first two pump
shut-offs are clearly desired, the third is obviously due to a PISA and is an unde-
sirable shut-off. In this case it is desirable to use a detection algorithm to declare the
CGM signal to be invalid, say based on the non-physiologic rate-of-change, and to
not allow the pump to be turned off; such a PISA detection algorithm has been
presented by Baysal et al. [3, 4]. Characteristic PISA behavior includes a sudden
non-physiologic rate-of-change, at least 15 min of signal degradation, followed by
a CGM increase. The CGM signal can be considered valid again when the second
derivative of the sensor signal begins to decrease.

Another anomaly, which can cause problems in open-loop, LGS, or fully
closed-loop, is infusion set failure, which can occur due to blocked or dislodged
sets, inflammation, or leakage back to the skin surface. Techniques for infusion set
failure detection are presented by Baysal et al. [3, 4].

6 Hypo- and Hyperglycemia Mitigation

An obvious extension of a low glucose suspend system is to combine it with
hyperglycemia mitigation, as in step three on the pathway shown in Fig. 1. If a
hyperglycemic threshold is violated, or predicted to be violated, the insulin infu-
sion rate can be increased from the current basal delivery rate. This approach is

Fig. 5 Example of a PISA that caused an unnecessary pump shut-off at around 7:00 a.m. [3, 4]
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more commonly called a ‘‘control-to-range’’ strategy. Kovatchev et al. [35] and
Patek et al. [38] present the modular architecture for this approach, while Breton
et al. [8] present clinical results for 38 subjects using two different incarnations of
the strategy. A similar strategy using zone model predictive control, is presented
by Grosman et al. [28] in simulation studies.

Cameron et al. [15] extend their low glucose suspend algorithm [14], to include
a prediction of hyperglycemia. When a hyperglycemic threshold (180 mg/dL, for
example) is predicted to be exceeded within a tunable prediction horizon (30 min,
for example), the algorithm provides a correction dose of insulin based on the
correction factor (which is based on the 1800 rule [45] if unknown) and knowledge
of the current insulin-on-board.

7 Conclusions

A low glucose suspend system is a natural early step on the route to a fully closed-
loop artificial pancreas. A threshold-based system suspends an insulin pump once
the threshold is violated, while a predictive system suspends the pump in advance.
Different conditions to turn the pump back on can be used, including simple timing
(such as a 2-h period) or a positive rate of change of glucose (either above a pre-
defined threshold or past a nadir).
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Adaptive Algorithms for Personalized
Diabetes Treatment

Elena Daskalaki, Peter Diem and Stavroula Mougiakakou

Abstract Dynamic systems, especially in real-life applications, are often deter-
mined by inter-/intra-variability, uncertainties and time-varying components.
Physiological systems are probably the most representative example in which
population variability, vital signal measurement noise and uncertain dynamics
render their explicit representation and optimization a rather difficult task. Systems
characterized by such challenges often require the use of adaptive algorithmic
solutions able to perform an iterative structural and/or parametrical update process
towards optimized behavior. Adaptive optimization presents the advantages of (i)
individualization through learning of basic system characteristics, (ii) ability to
follow time-varying dynamics and (iii) low computational cost. In this chapter, the
use of online adaptive algorithms is investigated in two basic research areas related
to diabetes management: (i) real-time glucose regulation and (ii) real-time pre-
diction of hypo-/hyperglycemia. The applicability of these methods is illustrated
through the design and development of an adaptive glucose control algorithm
based on reinforcement learning and optimal control and an adaptive, personalized
early-warning system for the recognition and alarm generation against hypo- and
hyperglycemic events.
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1 Introduction

Individuals with type 1 diabetes (T1D) are dependent on daily insulin adminis-
tration in order to maintain their glucose levels and reduce the risk for short-term
and long-term complications. The development of an external artificial pancreas
(AP) combining a continuous glucose monitor (CGM), a continuous insulin
infusion pump and an automatic control system for optimal insulin delivery is to
date in the forefront of research towards improved glycemic regulation. A control
system to be used within an AP comprises a number of algorithmic components
necessary for efficient, prompt and safe glucose regulation: (i) a control algorithm
for optimized insulin infusion, (ii) a safety mechanism for prediction, warning and
prevention against abnormal metabolic situations and (iii) various fault detection
modules for supervision of the well-functioning of all involved devices and alarm
generation in case of failure (e.g. wireless communication failures). All AP
components base their functionality on continuous access to the individual’s
glucose concentration, measured by the CGM, and possibly other inputs or vital
signals related to his/her daily activities such as meal intake and physical exercise.
The design of the algorithmic components of an AP faces the challenges of inter-
and intra-patient variability, glucose measurement and insulin action delays, sys-
tem uncertainties and strict safety constraints. The glucose and insulin infusion
profiles are tightly related to patient-specific characteristics (e.g. body mass index,
insulin sensitivity), lifestyle (e.g. meals, physical activity) and environmental
disturbances (e.g. stress, illness). In the presence of these challenges, adaptive and
personalized algorithmic solutions able to learn the individual’s dynamics and
perform high-level and real-time optimization are necessary towards efficient
diabetes management.

This chapter presents the basic characteristics of online adaptive algorithms and
their application in the field of diabetes management. Emphasis is given in the
research areas in which the Diabetes Technology Research Group (DTRG) of the
University of Bern is currently active. These involve the development of adaptive
control algorithms for insulin infusion and personalized prediction systems for
early recognition and warning against upcoming hypo- and hyperglycemias.

2 Adaptive Algorithms and Diabetes Management

The basic characteristic of adaptive algorithms is their ability to change their
structure and/or parameters over time according to the information received from
their environment. The primary scope of this change is to gradually improve their
performance, usually translated as the minimization of an appropriate cost equa-
tion. For this purpose an adaptive algorithm employs a learning process for the
structural and/or parametrical update as new information from the environment
becomes available.
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Development of adaptive algorithms has been initiated by the need to address
time-varying processes or systems characterized by uncertain dynamics. In recent
years, the increasing computational power of modern computers has permitted
research to focus on solutions of complex and computationally expensive opti-
mization problems. This fact led to drastic advancements in the fields of artificial
intelligence, machine learning and optimal control which have proved extremely
successful in learning and performance optimization mainly based on data and a
priori knowledge derived from the underlying processes. A step forward towards
extension of these methods to address time-varying problems has led to their
combination with online adaptive learning algorithms which are able to carry on
the optimization process in real-time. In the biomedical field, where the challenge
of complex and time-varying systems is crucial, adaptive algorithms have been
used and proved successful in a wide range of applications. Representative
examples can be found in:

• Control: Adaptive control algorithms have been extensively used in bioscience
in order to handle the continuously changing dynamics of physiological pro-
cesses such as internal organ motion or heart rate regulation [1, 2].

• Modeling: Adaptive models have been applied for the representation and/or
prediction of non-stationary processes. Important applications can be found in
the field of personalized risk assessment [3] and tumor tracking [4].

• Segmentation: Real-time segmentation is very crucial in medical image pro-
cessing and image guided surgery. Adaptive algorithms have been used in order
to segment moving elements such as vessels [5] and cells [6] or highly inho-
mogeneous magnetic resonance images [7].

Adaptive systems are now making their tentative appearance in diabetes
management. The high variability of the diabetic population has raised the need for
personalized diabetes treatment. Moreover, the intra-patient variability and the
high degree of uncertainty that characterizes the glucoregulatory system require
continuous learning and advanced optimization solutions. Within this framework,
adaptive solutions have been proposed for closed-loop glucose control and glucose
prediction in the near future.

Various control approaches have been developed for glucose regulation to be
used within an AP system. A few recent studies have presented control algorithms
with adaptive components. A Model Predictive Controller (MPC) using a non-
linear model for glucose prediction and adaptive techniques for individualized
tuning of its parameters has been developed in [8]. Furthermore, a MPC enhanced
with an individualized model and run-to-run tuning has been developed stressing
the importance of personalization of the control algorithms in the face of inter- and
intra- patient variability [9]. An algorithm for the automatic daily update of insulin
basal rate and insulin:carbohydrates (IC) ratio has been also presented based on
run-to-run techniques [10, 11]. Finally, a new algorithm based on MD-Logic
(MDL) has been proposed enhanced with adaptive components for performance
optimization [12].
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In glucose prediction very limited studies have presented online adaptive
modeling approaches. These include the development of online adaptive autore-
gressive (AR) models for prediction of glucose profile and specialization in
hypoglycemia prediction [13, 14].

The DTRG has been extensively working on the design and development of
online adaptive solutions for optimized and personalized diabetes management.
The work of the DTRG involves the development of an adaptive control algorithm
for glucose regulation based on reinforcement learning and optimal control and
more specifically on the Actor-Critic (AC) learning approach [15]. In the field of
glucose prediction, the current research efforts of the DTRG have resulted in
development of online adaptive and personalized AR and artificial neural network
(ANN) models for near future glucose prediction which have been further inte-
grated into an early-warning system for recognition of upcoming hypo- and
hyperglycemic events [16, 17].

3 Adaptive Glucose Control Based on Reinforcement
Learning

3.1 Reinforcement Learning

RL belongs to the general class of machine learning and involves adaptive agents
able to optimize their performance over time through interaction with the envi-
ronment, which may include partially known or unknown dynamics [18]. AC is a
RL-based algorithm which consists of two complementary adaptive agents: the
Critic and the Actor, with the former being responsible for the control policy
evaluation and the latter for the control policy optimization.

The system dynamics can be modeled as a Markov Decision Process (MDP)
with finite state space X and action space U. The transition from the current state
x to the next state y given an action u follows a transition probability matrix p(y|x,
u). The control policy is a deterministic or stochastic function l(u|x, h) which maps
an action u to a state x based on a policy parameter vector h 2 RK . A local cost c(x,
u) is associated with each state x and action u. The aim of the AC algorithm is to
minimize the average expected cost per state defined as

�aðhÞ ¼
X

x2X;u2U

cðx; uÞghðx; uÞ ð1Þ

where gh(x, u) is the stationary probability associated with the Markov chain {Xk,
Uk} dependent on h. In order to proceed to an iterative estimation of the optimal
control policy towards minimization of the above cost, a gradient method can be
used requiring the estimation of rha hð Þ. Define the value-function Vh(x) as the
long-term expected cost when starting from state x and following control policy
l(u|x, h). Function Vh(x) fulfills the following Poisson equation:
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�aðhÞ þ VhðxÞ ¼
X

u

lðujx; hÞ cðx; uÞ þ
X

y

pðyjx; uÞVhðyÞ
" #

ð2Þ

Similarly, define the action-value function Qh(x, u) as the long-term expected
cost starting at state x, taking control action u and following control policy l(u|x, h):

Qhðx; uÞ ¼ cðx; uÞ � �aðhÞ þ
X

y

pðyjx; uÞVhðyÞ ð3Þ

It has been proved in [19] that the gradient rha hð Þ can be estimated by the
following formula:

rhaðhÞ ¼
X
x;y

ghðx; uÞQhðx; uÞwhðx; uÞ ð4Þ

where whðx; uÞ ¼ r ln lðujx; hÞ½ �.
AC implementations may vary in the design of both the Actor and the Critic

part. In most cases, the Critic estimates the Q-value function based on a function
approximation method while the Actor follows a gradient descent approach for the
iterative optimization of the control policy. A comprehensive review of RL and
AC algorithms can be found in [20]. A scheme of a system controlled by an AC
algorithm is shown in Fig. 1.

Critic: Policy evaluation. The critic evaluates the current control policy through
the estimation of the Q-value function Qhðx; uÞ. As (3) cannot be analytically solved
in most cases, a function approximation method is usually employed in which
Qhðx; uÞ is commonly approximated as a linear parameterized function of the form

~Qr
hðx; uÞ ¼

XK

i¼1

ri/
i
hðx; uÞ ¼ rT/h ð5Þ

where r 2 RK , /h is a vector of basis functions dependent on the Actor’s
parameters h and rT denotes transpose. The method of Temporal Differences (TD)
[21] is used for the update of the Critic’s parameter vector r and has the following
general form

rkþ1 ¼ rk þ cc
kdk

Xk

i¼0

kk�i/hðxi; uiÞ ð6Þ

where the TD error dk, defined as the error between consecutive predictions, is
given by the following formula

dk ¼ cðxk; ukÞ � �ak þ rT
k /hk
ðxkþ1; ukþ1Þ � rT

k /hk
ðxk; ukÞ ð7Þ
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cc
k is a positive non-increasing function which defines the learning rate of the

Critic, 0 \ k\ 1 is constant which stands as a forgetting factor. It is suggested in
[21] that higher values of k may result in improved approximations of the value
function. A sequence of eligibility vectors zk is defined as

zk ¼
Xk

i¼0

kk�i/hðxi; uiÞ ð8Þ

in order to achieve the iterative form of the algorithm. The update rule for zk is
given by the following formula

zkþ1 ¼ kzk þ /hk
ðxkþ1; ukþ1Þ ð9Þ

Thus, the final update procedure for Critic is formulated as

rkþ1 ¼ rk þ cc
kdkzk ð10Þ

Finally, the average cost is updated as

�akþ1 ¼ �ak þ cc
k cðxkþ1; ukþ1Þ � �ak½ � ð11Þ

Actor: Policy improvement. The aim of the Actor is to minimize the average
cost a through the iterative update of the control policy parameter vector h based
on the gradient rh�aðhÞ

hkþ1 ¼ hk � ca
krh�aðhÞ ð12Þ

Fig. 1 System controlled by
an AC algorithm
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where ca
k is a positive non-increasing function which defines the learning rate of

the Actor. Based on (12), (4), and (5), the final update formula of the Actor policy
parameter vector becomes

hkþ1 ¼ hk � ca
krT

k /hk
ðxkþ1; ukþ1Þwhk

ðxkþ1; ukþ1Þ ð13Þ

3.2 AC-based Algorithm for Glucose Regulation

The AC algorithm implements a dual control policy for the optimization of the
average daily BR and the IC ratio defined as:

IC ¼ Ibolus=CHO ð14Þ

where Ibolus is the insulin bolus dose and CHO is the amount of carbohydrates
contained in a meal. The Critic estimates the Q-value function based on the TD
method as previously described while the Actor updates the two control policies on
a daily basis. The dynamics of the glucoregulatory system are represented as a
MDP where the state and control action reflect the system’s status of one day.
Define the glucose error EG as:

EGðtÞ ¼
G tð Þ if G [ Gh

G tð Þ if G\Gl

0 else

8<
: ð15Þ

where GðtÞ is the glucose value at time t and Gh ¼ 180 mg/dl, Gl ¼ 70 mg/dl are
the hyper- and hypoglycemia bounds respectively. The glycemic profile of day k is
described by two features related to the hyperglycemic and hypoglycemic status of
that day and more specifically to the average daily hypoglycemia and hypergly-
cemia error:

x1
k ¼

1
N1

X
t2 day k

HðEGðtÞÞ ð16Þ

x2
k ¼

1
N2

X
t2 day k

Hð�EGðtÞÞ ð17Þ

where Hð�Þ is the Heaviside function and Ni is the number of time samples above
the hyperglycemia (i = 1) or below the hypoglycemia (i = 2) threshold. First, the
features are normalized between [0 1]. The normalized features formulate the state
xk ¼ ½x1

k x2
k �

T of day k which is used by the algorithm for the estimation of the
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long-term expected costs and the control policies parameters. The control policy
for the average BR and the IC ratio is updated as:

lðukjxk; hS
kÞ ¼ Sk ¼ Sk�1 þ PS

kSk�1 ð18Þ

where S = {BR, IC}, Sk is the control policy for day k and PS
k is the rate of change

of Sk from day k - 1 to day k estimated as a linear combination of the features x:

PS
k ¼ xkh

S
k ð19Þ

with hS being the policy parameter vector of the respective control policy. The
policy parameter vectors hS are updated based on (13). A detailed description of
the design and implementation of the AC-based algorithm for glucose regulation
can be found in [15].

A major challenge during the design of adaptive algorithms, especially for
applications where safety matters, is to keep the learning period as short as pos-
sible. Furthermore, even during learning, the necessary safety constraints should
be guaranteed. One way to achieve this goal in designing an AC-based algorithm is
through the appropriate initialization of the policy parameter vectors hS, which
regulate the optimization of the control policy over time. The parameters hS can be
viewed intuitively as weights that define the percentage of change of the BR and
IC ratio according to the daily hypoglycemia and hyperglycemia status. Setting
these parameters away from their optimal values results in longer learning period,
which can be crucial for the safety of the patient. One would expect that the
percentage of change depends on the amount of information transfer (IT) from
insulin to glucose in the sense that for high IT small adaptations of the insulin
scheme may be sufficient whereas for low IT larger updates may be needed. Based
on this reasoning, the IT from insulin to glucose has been estimated and used for
the automatic, patient-specific initialization of hS.

3.2.1 Automatic Tuning of the AC-based Algorithm

Assessing causality and IT between signals has been extensively studied and
various measures have been proposed. A comprehensive review can be found in
[22]. Transfer entropy (TE) is a powerful measure of IT, mainly due to its non-
linear and directional structure [23, 24], and has found promising application in
biomedical signal analysis [25]. TE measures the information flow from a signal Y
(source) to a signal X (target) while it excludes redundant effects coming from
other signals. Let X = {xi, i = 1:n}, Y = {yi, i = 1:n} and Z = {zi, i = 1:n} be
three observed random processes of length n. TE estimates the IT from process Y
to X, which can be also translated as the amount of knowledge we gain about X
when we already know Y, based on the following formula:
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TY!X ¼
X

i

pðxi;yi; ziÞ log
pðxijyi; ziÞ

pðxijziÞ
ð20Þ

where pð�Þ denotes probability density function (pdf) and log is the basis two
logarithm. Division with the conditional probability of X to Z excludes the
redundant information coming from both Y and Z without excluding, though, the
possible synergistic contribution of the two signals on X [24]. Main challenge in
computing (9) is the estimation of the involved pdfs. Several approaches have been
proposed for this purpose [22]. One of the most commonly used methods is the
fixed data partitioning in which the time-series are partitioned into equi-sized bins
and the pdfs are approximated as histograms [26].

TE was estimated as the IT from a delayed active insulin value to the current
glucose excluding the dependence on the previous glucose value. In this case (20)
takes the following form:

TEIA!G ¼
X

t

pðGt; Gt�1; IAt�dÞ log
pðGtjGt�1; IAt�dÞ

pðGtjGt�1Þ
ð21Þ

where Gt is the current glucose value and IA is the insulin on board. The delay d in
insulin was introduced in order to compensate on the physiological delay in insulin
action due to absorption from the subcutaneous tissue to the blood and was chosen
as d = 20 min. Expecting that high TE is related to smaller rates of change in the
insulin scheme, the initial values of the policy parameter vectors hS are set to be
inversely proportional to the estimated TE per patient as:

hS
0ðpÞ ¼

W

TEðpÞ ð22Þ

where p denotes a specific patient and W is constant universally set as W ¼ þ1 for
the elements of hS

0 related to hyperglycemia and W ¼ �1 for elements related to
hypoglycemia.

3.3 Results and Discussion

3.3.1 Simulation Environment

The AC-based algorithm has been in silico evaluated on 28 virtual T1D patients (10
adults; 10 adolescents; 8 children) using the educational version of the FDA-
accepted University of Virginia (UVa) T1D simulator [27]. Two children have been
excluded due to excessive glucose responses. The simulator comprises a database
of in silico patients based on the meal simulation model of the glucose-insulin
subsystem [28], a simulated sensor that replicates the typical errors of continuous
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glucose monitoring, and a simulated insulin pump. It allows for the creation of meal
protocols and scenarios of varying insulin sensitivity (SI). Furthermore, the simu-
lator provides optimized values for the BR and IC ratio which can be assumed as the
standard SAP treatment of the patients as defined by his/her physician.

3.3.2 Meal Protocol

The meal protocol consisted of four kinds of meals: breakfast, lunch, dinner, and
snack. In order to simulate the daily variation in terms of meal quantity and timing,
the meal scenario per day was created in a randomized way as follows: each meal
kind was assigned a range of possible quantities of grams of CHO and a range of
timings as:

• Breakfast: [30–60] g of CHO at [07:00–11:00]
• Lunch: [70–100] g of CHO at [13:00–16:00]
• Dinner: [70–110] g of CHO at [20:00–22:00]
• Snack: [20–40] g of CHO at [23:00–00:00].

The accurate amount of grams of CHO and the timing for each meal and each
trial day were chosen randomly from the respective ranges. As a second step,
several dinners and snacks were omitted in order to represent the common case of
missing these meals. The missed meals were randomly distributed within the trial
days. The average duration of each meal was considered 15 min and the meals
were announced to the controller 30 min prior to intake.

In order to simulate the errors when real patients estimate the CHO content of
their meal, a random meal uncertainty uniformly distributed between -50 and
+50 % has been introduced. The total trial duration was 10 days. The initial
values of BR and IC ratio have been set equal to their optimized values as provided
by the UVa simulator. For adults and adolescents, these values are close to the
optimal ones, whereas in the case of children they are too high and, when applied
in an open-loop scenario, they lead to excessive insulin infusion and frequent
hypoglycemic events [15]. Consequently, the AC algorithm must perform sig-
nificant updates of the BR and IC ratio in order to optimize glucose regulation, a
fact that renders the duration of the learning period in children very challenging.

Three different initialization scenarios of the policy parameter vectors hS have
been investigated:

• S1. The policy parameter vectors hS are initialized to zero values.
• S2. The policy parameter vectors hS are initialized to random values with

magnitude ranging in (0, 1).
• S3. The policy parameter vectors hS are initialized based on the estimated

insulin-to-glucose transfer entropy per patient as in (22).

The Control Variability Grid Analysis (CVGA) [29] has been used for the
evaluation of the AC algorithm, while the risk of hypoglycemia has been estimated
based on the Low Blood Glucose Index (LBGI) [30].
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Figure 2 presents the CVGA plots for all patients and scenarios S1–S3. Table 1
presents the percentage of values within the A + B zones of the CVGA separately
for each age group and the three scenarios. Setting the maximum acceptable duration
of the learning period to five days, these results refer to the last five days of the trial.
Finally, the daily evolution of the LBGI for the three groups when following sce-
narios S1–S3 is presented in Fig. 3. This result refers to the total trial duration.

Figure 2 shows that, when the AC initialization is based on the patient-specific
TE (S3), the general performance of the algorithm after five days of learning is
increased with 89 % of the values in the A + B zones of the CVGA, compared to
78 % for scenario S1 and 73 % for S2. The same result can be observed from
Table 1, where the values are separately presented for each patient group. Fur-
thermore, from Table 1 it is clear that most of the hypoglycemic events present in

Fig. 2 CVGA plots for all patients and the last five trial days when AC initialization is based on
scenario (a) S1, (b) S2 and (c) S3

Table 1 Percentages (%) in
the A + B zones of the
CVGA for the three age
groups and scenarios S1, S2,
S3

Patient age group S1 S2 S3

Adults 93.00 95.00 98.00
Adolescents 88.00 78.00 90.00
Children 41.00 41.00 73.00
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Fig. 2 belong to the age group of children. This is expected since, as mentioned
earlier, the initial simulator-suggested values of BR and IC ratio are far from being
optimal. The contribution of the TE-based tuning especially in the case of children
is thus critical as it significantly reduces the duration of the learning period and
achieves increased overall performance. Figure 3 supports this above remark
presenting the evolution of the daily LBGI over the total trial duration. As
expected, children start from much higher LBGI values compared to adults and
adolescents. It can be further seen that the daily LBGI is kept to low and com-
parable values among the three scenarios for adults and adolescents, however, in
the case of children, LBGI reduces much faster when the AC algorithm is ini-
tialized based on the TE compared to the zero or random initialization.

3.3.3 Computational Cost

Due to the iterative process followed for the approximation of the optimal control
policy, the AC algorithm presented very low computational cost. Each update of
the BR and IC ratio needed less than one second. To this end, the AC algorithm
can be used for real time insulin infusion.

Fig. 3 Evolution of LBGI during the 10 days of the in silico trial for adults, adolescents and
children and scenarios S1 (blue), S2 (green) and S3 (red)
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3.4 Conclusions

An adaptive control algorithm for glucose regulation in T1D has been designed
and developed based on RL and more specifically on the AC learning approach.
The primary aim of the algorithm is the optimization of the daily insulin infusion
policy through iterative learning of important patient-specific characteristics
captured by his/her daily glucose profile. A novel method for the automatic and
personalized tuning of the algorithm was proposed based on the estimation of TE
from insulin to glucose time-series. The AC algorithm was evaluated in silico
using an FDA accepted T1D simulator under a complex meal protocol and meal
uncertainty. The results showed that AC is able to perform efficient and real-time
optimization of insulin infusion and achieve high percentages in the clinically
accepted range of the CVGA for all patient age groups with very low hypogly-
cemias. The performance of the AC algorithm was significantly improved when
the TE-based initialization was used. This study illustrates that RL methods are
able to provide online adaptive and optimized glucose regulation and compensate
on the inter-/intra-variability and the system’s uncertainties. Finally, the results
indicate that RL should be employed and extensively investigated in diabetes
control towards personalized insulin infusion treatment.

4 Adaptive Prediction of Hypo-/Hyperglycemic Events

4.1 System Modeling

System modeling refers to the design of a mathematical representation which cap-
tures the system’s properties and input–output responses. In recent years, data-
driven models have gained increased acceptance due to their simpler structure,
ability to process significant amount of data in real-time and ease of personalization.

Model development is a three-step process and includes the (i) data collection,
(ii) identification and (iii) evaluation phases. Model identification refers to the
estimation of the modeling mathematical functions and parameters for the optimal
representation of the system based on minimization of a pre-defined cost function
relative to real and model predicted data. For the identification phase, a part of the
collected dataset is used referred as the training dataset. Evaluation of the resulting
model is conducted on a different part of the dataset denoted as the testing or
evaluation dataset. It is important that both datasets are equivalent in the sense that
they express the same properties of the system.

During evaluation, the models may remain static using the optimal represen-
tation and parameter values identified during training, or continue to optimize their
performance based on the new coming information. When dynamic, time-varying
systems are considered, static models may not be adequate for the continuous
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representation of their changing dynamics. In these cases, online adaptive data-
driven models can be employed.

In order to illustrate the advantages of adaptive data-driven models for glucose
prediction, two types of modeling strategies able to perform real time glucose
predictions in prediction horizons (PH) up to 45 min are discussed; (i) linear
autoregressive (AR) models and (ii) nonlinear recurrent artificial neural networks
(RNN). Special emphasis is given to their personalized identification and online
adaptive ability. The developed models are subsequently integrated into an early-
warning system (EWS) for recognition and alarm generation against upcoming
hypo- and hyperglycemic events. The performance of the EWS is evaluated using
a dataset of individuals with T1D.

4.2 Autoregressive Models

AR models are statistical models for the representation of a random process as a
linear combination of its past values and possibly one or more external inputs
(ARX models). AR models assume that the value of a process y at time t can be
described by the following formula:

yðtÞ ¼
Xk

i¼1

aiyðt � iÞ þ eðtÞ ð23Þ

where k is the AR order signifying the length of the past period used for the esti-
mation of y(t), ai are the model’s parameters and e(t) is a stationary purely random
process that represents the one-step prediction error. In the case that external inputs
are also considered, the general representation of the ARX model is as follows:

yðtÞ ¼
Xk

i¼1

aiyðt � iÞ þ
Xf

j¼s

bjuðt � jÞ þ eðtÞ ð24Þ

where k, s and f are the ARX orders describing the range of past signal and external
input values, ai and bj are the model’s parameters and e(t) is the one-step pre-
diction error. As shown in (24), the external input may cover a different range of
past input values, from s to f, not necessarily starting from time t - 1. This is
significant in time-delay systems where the effect of an input may become active
after a certain time period.

Identification of AR and ARX models involves the estimation of the optimal
orders and parameters given a set of input-output training data. One of the most
commonly used methods for the selection of the optimal AR/ARX order is the
Minimum Description Length (MDL) criterion which combines the number of
model parameters (i.e. the model order) and the mean square prediction error as
shown below:
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MDLðqÞ ¼ 1þ q
log n

n

� �
r2

e ð25Þ

where q is the number of free parameters of the model to be identified (q = k for
AR and q = k + f - s for ARX), n is the number of samples used for the iden-
tification and r2

e is the mean sum of squares function of the one-step prediction
errors:

r2
e ¼

1
n

X
t

yðtÞ � /ðtÞhð Þ2¼ 1
n

X
t

eðtÞ2 ð26Þ

4.2.1 Online adaptive AR/ARX models

Let the training dataset be of size N. Rewriting (22) in a vector format, an AR
model can be represented by the following formula:

Y ¼ Uh ð27Þ

where Y ¼ yð1Þ yð2Þ . . .yðNÞ½ � is a vector containing all the time samples of the
process yðtÞ, U 2 <N�k is an array containing the past values of y so that each row
/ðtÞ ¼ yðt � 1Þ . . . yðt � kÞ½ � and h 2 <k is a vector of the parameters ai. Since
negative time values appear in this formulation, the first k time-steps for Y and U
should be omitted. Assuming that the AR order k is known, the parameter vector h
can be estimated using least-squares (LS) as:

h� ¼ arg min
h

Y � Uhk k2 ð28Þ

where �k k2 is the Euclidean norm and h� is the parameter vector which minimizes
the right-hand side of (27). A similar approach can be followed for the LS
parameter identification of the ARX model with UðtÞ ¼ ½yðt � 1Þ. . . yðt � kÞ uðt �
sÞ . . . uðt � f Þ� and h ¼ ½a1 . . . ak bs . . . bf �T . In this case the first maxðk; f Þ time-
steps should be omitted. Despite the high popularity of LS in optimization prob-
lems, they are not necessarily the most efficient way to go. LS may be inefficient
for time-varying problems and in these cases online adaptive approaches should be
explored. For this purpose, the recursive LS (RECLS) have been proposed as an
extension to the regular LS. In contrast to LS which perform a batch optimization
using the whole provided dataset and need to solve a matrix inversion problem,
RECLS optimize the target parameters h iteratively as new samples become
available. The advantage of RECLS is that they can be used in cases of time-
varying systems in order to provide online adaptive identification. The update
process is described in the following equations:
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eðt þ 1Þ ¼ yðt þ 1Þ � /ðt þ 1ÞhðtÞ ð29aÞ

Pðt þ 1Þ ¼ PðtÞ Im �
/Tðt þ 1Þ/ðt þ 1ÞPðtÞ

1þ /ðt þ 1ÞPðtÞ/Tðt þ 1Þ

ffl �
ð29bÞ

hðt þ 1Þ ¼ hðtÞ þ Pðt þ 1Þ/Tðt þ 1Þeðt þ 1Þ ð29cÞ

where hðtÞ ¼ ½a1ðtÞ . . . akðtÞ bsðtÞ . . . bf ðtÞ�T is the vector of the model’s parame-
ters, now time-varying, e(t) is the one-step prediction error and P(t) is the esti-
mation of the error covariance.

4.2.2 Output Correction Module

A novel module has been developed in order to provide correction of the AR/ARX
model’s output based on the estimated prediction error. The principle behind
model output correction lies on the development of a sub-model for the association
of the prediction error of a specified PH to current glucose features and the use of
this sub-model during evaluation to modify the respective model’s output [31].
After identification, the model was applied to predict glucose in the three PH on
the training dataset. Let Ĝðt þ PHjtpÞ be the prediction of glucose at time t + PH
by the model given the glucose and insulin information of the period tp ¼

t; . . . ; t � pf g where t - p is the oldest time-sample used and t is the time when
the prediction is performed. For each PH the prediction error EPH is computed as:

EPHðt þ PHÞ ¼ Gðt þ PHÞ � Ĝðt þ PHjtpÞ ð30Þ

where Gðt þ PHÞ is the real glucose value at time t + PH. The prediction error
was modeled as a linear combination of three glucose features: current glucose
GðtÞ value, first and second order glucose derivatives, DG(t) and D2G(t) respec-
tively as shown in (30). A different model was used for each PH.

Êðt þ PHjtÞ ¼ aPHGðtÞ þ bPHDGðtÞ þ cPHD2GðtÞ ð31Þ

where Êðt þ PHjtÞ is the estimation of the prediction error at time t + PH based
on the glucose features at time t when the prediction is performed. The parameters
aPH, bPH, cPH were identified in least-squares sense for each patient and each PH
based on the paired training glucose and prediction error values. The first order
glucose derivative was estimated as:

DGðtÞ ¼ GðtÞ � Gðt � sÞ
s

ð32Þ
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where s is the sampling time of glucose time-series. The second order derivative
was estimated similarly. During evaluation, the ARX model provides predictions
of glucose for the three PHs. Each prediction is subsequently corrected based on
the estimated expected prediction error ÊPH as:

Ĝcðt þ PHjtpÞ ¼ Ĝðt þ PHjtpÞ þ ÊPHðt þ PHjtÞ ð33Þ

and Ĝc is the corrected model output.

4.3 Artificial Neural Networks

ANNs are mathematical models used for the mapping of input to output data.
ANNs are inspired by the principles of biological neural networks and aim to
simulate the human brain function. One of their main advantages is that they can
be highly nonlinear and incorporate dynamic behaviour and thus they can capture
the structure and dynamics of intrinsically nonlinear processes.

4.3.1 Architecture

The architecture of an ANN model comprises a number of neurons, organized in
layers, and synaptic weights for the interconnection of the neurons. Usually, the
model consists of an input layer, one or more hidden layers and an output layer
each involving a different number of neurons. Each neuron is characterized by an
activation function which can be linear or nonlinear. The latter type of activation
functions is the source of nonlinearity of the ANN model. Common nonlinear
activation functions are the hyperbolic sigmoid and sigmoid tangent. ANN models
are mainly classified as feedforward (FFANN) and feedback or recurrent (RNN).
Other types of ANN include the radial basis function (RBF) network and Kohonen
self-organizing network. In FFANNs, the neurons of one layer are connected
through synaptic weights only with the neurons of the next layer, thus the signal is
travelling in one direction from the input to the output. In contrast, RNNs can
involve feedback loops through synaptic weights connecting neurons to previous
layers or themselves. For the choice of the optimal ANN architecture the following
parameters should be investigated:

• Type of ANN (FFANN, RNN, RBF etc.)
• Number of input neurons
• Number of hidden layers and neurons per layer
• Types of activation functions.

The ANN type is usually chosen empirically, depending on the problem and the
purpose of the application. The same holds for the choice of the activation
functions. Regarding the structural parameters (number of inputs, hidden layers
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and neurons per layer), several paths exist including rule of thumb methods,
exhaustive search and dynamical approaches such as the prune method. In recent
years, adaptive architecture schemes have also been proposed based on evolu-
tionary algorithms [32].

4.3.2 Dynamic Artificial Neural Networks

An important aspect in time-series analysis in general and in ANN design in
particular is the incorporation of time, in order to represent the dynamic behaviour
of the underlying process. This can be achieved by adding some kind of memory
which is the primary ingredient that transforms a static network into a dynamic one
[33]. Memory can be added by introducing time delays that is past values of the
input signal to the ANN. Yet, another way to introduce memory to the network is
by adding feedback. The first approach is used in order to incorporate dynamic
behaviour in a simple FFANN resulting in the time-lagged FFANN. The use of
feedback introduces the new category of RNN. In this study, a RNN based model
has been used for the prediction of glucose in the near future. To this end, the
analysis that follows is focused on the main principles and training algorithms of
RNN models.

A dynamic system with external input can be mathematically described by its
state-space representation as:

dyðt þ 1Þ
dt

¼ FðyðtÞ; uðtÞÞ ð34Þ

where y(t) is the current measured system output, dyðtþ1Þ
dt is the future signal change,

u(t) is the current value of the external input and F is a nonlinear continuous
function. A RNN able to perform highly nonlinear dynamic mapping can be
applied to model the above dynamic system by approximating the function F. The
one-step-ahead signal value is given by:

yðt þ 1Þ ¼ yðtÞ þ F̂ðyðtÞ; uðtÞÞ ð35Þ

where y(t + 1) and y(t) are the next and current signal values predicted by the
model, and F̂ is the approximation of F implemented by the RNN.

As in all types of ANN, identification of an RNN model involves the estimation
of the optimal architecture (number of hidden layers, number of neurons per layer,
activation functions) and synaptic weights. One of the most commonly used
approaches for the estimation of the weights is back-propagation through time
(BBTT) which is an extension of the common BP algorithm for RNN [34]. The
common BP algorithm cannot be directly used in RNN as it presupposes the
absence of cycles within the units of the network. For this reason, the BBTT
algorithm performs unfolding of the RNN by replacing it with identical copies and
redirecting the feedback loops in subsequent copies. Yet another successful
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approach is the real-time recurrent learning (RTRL) which is suitable for online
learning based on the continuous adaptation of the weights as new samples are fed
to the network. A detailed description of the teacher-forced real-time recurrent
learning algorithm can be found in [35, 36].

4.4 A Personalized System for the Early Recognition
of Hypo-/Hyperglycemic Events based on Adaptive
Glucose Prediction Models

An EWS for the prediction of hypo- and hyperglycemic events and the triggering
of respective warnings has been developed and evaluated using sensor glucose and
insulin pump data from a dataset of 23 individuals with T1D. The ultimate aim of
the EWS is to be integrated to the control algorithm in order to be used as a safety
mechanism. The EWS incorporates a glucose prediction model and a warning
algorithm for processing the model’s output and issuing an alert if an upcoming
hypo- or hyperglycemic event is expected to start in the near future. The EWS was
evaluated for its ability to predict upcoming hypoglycemic and hyperglycemic
events using the following criteria:

1. Percentage of correct warnings: A warning is defined as correct if it was
issued at most 45 min before the start of an event.

2. Event detection time: Refers only to correct warnings and denotes the time
between the issued warning and the start of the event.

3. Daily false alarms: A false alarm is a warning that could not be matched to a
real event within 45 min from its triggering time.

Four candidate models have been investigated within the EWS all able to
predict glucose in PH = 15, 30 and 45 min. Common base of all models is their
personalized architecture and online adaptive parameters.

i. ARX
An online adaptive ARX model was developed for each candidate T1D individual
using his/her glucose and insulin data. During training, the model was identified by
selection of the orders and the parameter vectors that best fit the actual to the one-
step-ahead predicted time series samples. First, the model order was chosen based
on the minimization of the MDL criterion defined in (25). The parameter s was
chosen to be equal to 45 (maximum PH) to enable only insulin information already
provided to be used. This did not influence the model’s accuracy as the PHs
investigated were short, and the maximum action of the insulin analogs takes place
between 30 and 120 min after infusion. For the parameter estimation, the Tik-
honov regularization approach [37] was used. During evaluation, the models
proceeded to continuous adaptation of their parameters based on the RECLS
algorithm (4.29a–c). The initial RECLS parameter vector was set to the optimal
parameter values estimated during training.
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ii. cARX
The ARX models where enhanced with the previously described output correction
module for each PH. The resulting ARX model with corrected output is referred
hereafter as cARX.

iii. RNN
A fully connected, multilayered RNN with two feedback loops was developed for
each T1D individual [38]. It consisted of one input layer with one external input
corresponding to the last insulin infusion value and one state variable. The RNN
has an output layer with one neuron and a different number of hidden layers and
neurons per layer for each patient. The feedback loops are formed by the one-to-
one connection from the network output to the state variable and the feedback of
the state variable into itself. The hyperbolic sigmoid and linear functions are used
as activation functions in the hidden and output layer, respectively. Before being
fed into the RNN, the input values were normalized in the range [-1.0, 1.0]. The
state variable was initialized as the first glucose value available, and the RNN’s
weight matrices were initially assigned to random values in the range [-0.5,
+0.5]. During training, the synaptic weights and biases were online updated based
on the teacher-forced RTRL algorithm for every new input of the RNN as
described above. The weights and biases update continued in the same way during
evaluation as in the case of the ARX models in order to provide individualized and
online adaptive predictions.

iv. Hybrid cARN
A hybrid model based on fusion of cARX and RNN models was investigated with
the aim to explore the improvement of the aforementioned evaluation criteria
when two different modeling strategies are combined. The fusion was imple-
mented as a linear combination of the two models’ outputs. The final output of the
fused model is formed as shown in (35).

ĜcARN¼aĜcARX þ ð1� aÞĜRNN ð36Þ

where 0� a� 1 is a balancing factor between the two outputs. Increasing the value
of a, moves the fused model closer to cARX and away from RNN. The balancing
factor a was chosen individually for each candidate patient based on the maxi-
mization of the following cost function:

J ¼ ðPercentage of Correct WarningsÞ2 þ ðEvent Detection TimeÞ2

1þ ðDaily False AlarmsÞ2
ð37Þ

All three values, before inserted in the cost function are normalized in [0 1].

110 E. Daskalaki et al.



4.4.1 Warning Algorithm

The prediction models naturally present errors and time-lags (TL) which cannot be
avoided neither neglected. The presence of noise in the sensor glucose measure-
ments is an important deteriorating factor of the models’ performance. It has been
further observed that increase in the PH results in higher prediction errors and TLs.
On the other hand, the higher accuracy of short PHs is counteracted by the
inadequately short-term notice for the patient, which may not leave enough time
for the needed actions (insulin injection or carbohydrate intake). To this end, in
order to enhance the reliability of the predictions and the prompt event detection,
the a rule-based warning algorithm is designed to issue warnings combining the
predictions of all three PH. Figure 4 presents the warning algorithm and the
flowchart of the hypoglycemia and hyperglycemia prediction process and warning
generation. More details regarding the warning algorithm can be found in [17].

Fig. 4 Flowchart of the hypo-/hyperglycemia prediction process with combination of glucose
prediction models and a warning algorithm
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4.5 Results and Discussion

Subject Data: Sensor glucose and insulin pump data from 23 T1D individuals
[age 17–70 years, HbA1c (%) 7.3 ± 0.7, BMI (kg/m2) 24.2 ± 3.0] under SAP
therapy were utilized in the study. All patients used Medtronic insulin pumps
(Medtronic MiniMed Inc., Northridge, CA, USA) combined with a real-time,
CGM system during everyday living conditions. The sensor glucose values were
equally sampled every 5 min. For each patient, half of the dataset was used as
training set for the identification of the models’ architecture and parameters. The
other half was used for the evaluation of the models. Table 2 presents the statis-
tical parameters of the dataset.

The EWS based on the each of the four modeling approaches (ARX, cARX,
RNN, cARN) has been evaluated using the aforementioned patient dataset. The
results are presented in Table 3 in median (5–95th percentiles) values.

From Table 3 it can be seen that the EWS based on all models presents high
accuracy and detection times and limited daily false alarms. The cARX model
presents lower TL, increased RMSE and comparable CC to the ARX model. The
correction module increased the responsiveness of the model especially to fast

Table 3 Performance of the ARX, cARX, RNN and fused cARN-based systems in median
(5–95th percentiles) for (A) hypoglycemia and (B) hyperglycemia event prediction

Evaluation criteria ARX cARX RNN cARN

(A) Hypoglycemia
Correct alarms (%) 100 (94.0–100) 100.00 (100–100) 100.00 (58.1–100) 100 (100–100)
Detection time (min) 10.0 (5.0–24.5) 17.5 (11.8–31.0) 8.4 (0.3–14.9) 16.7 (10.0–25.0)
Daily false alarms 0.7 (0.0–1.94) 1.5 (0.5–4.4) 0.1 (0.0–0.6) 0.8 (0.0–1.2)

(B) Hyperglycemia
Correct Alarms (%) 100 (90.1–100) 100 (93.8–100) 92.0 (70.5–100) 100 (95.3–100)
Detection time (min) 8.0 (1.7–13.9) 14.8 (8.8–20.6) 7.0 (4.7–15.2) 14.7 (5.1–19.25)
Daily false alarms 0.5 (0.0–1.2) 1.3 (0.4–3.2) 0.2 (0.0–0.7) 0.8 (0.0–1.4)

Table 2 Statistical parameters of the patient dataset in mean ± standard deviation values

Data statistics per patient Training set Evaluation set

Data collection time (days) 5.30 ± 1.40 4.83 ± 1.80
Number of hypoglycemic eventsa 7.43 ± 6.64 6.57 ± 5.66
Number of hyperglycemic eventsa 14.00 ± 9.22 13.22 ± 7.17
Hypoglycemic event duration (min) 51.55 ± 26.31 51.82 ± 36.16
Hyperglycemic event duration (min) 122.60 ± 55.86 137.73 ± 69.98
Data statistics total dataset
Data collection time (days) 122 111
# of hypoglycemic events in dataset 171 151
# of hyperglycemic events in dataset 322 304

a A hypoglycemic (hyperglycemic) event was defined as sensor glucose values below 70 mg/dl
(over 180 mg/dl) for at least 10 min (2 consecutive sensor glucose measurements)
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glucose changes which resulted in faster reactions but at the same time larger
fluctuations. This observation can be more easily illustrated in Fig. 5 where an
example of glucose prediction profile by the two models is plotted. The ARX- and
cARX-based EWS are more accurate than RNN-based as the later presents high
variability among the patients and cases where many hypo- and hyperglycemic
events were missed. In terms of detection time, the cARX-based EWS presents the
best performance while the RNN-based EWS outperforms the others with respect
to daily false alarms. These results show that the cARX- and RNN-based EWS
present complementary performances. The aim of the hybrid cARN-based EWS is
to combine the advantages of both approaches and achieve competent performance
in all evaluation criteria. Figure 5 presents an example of prediction profile for the
ARX and cARX models in PH = 30 min.

The performance of the cARN-based EWS is presented in the fourth column of
Table 3 for the optimal choice of the balancing factor a per patient. The cARN-
based EWS presents the highest accuracy of correct alarms, very good detection
times, approaching the performance of the cARX-based EWS, and very low daily
false alarms. Considering the pharmacokinetics of insulin and glucose, the
detection times achieved by the cARN-based EWS can be sufficient for the
avoidance of the upcoming hypo- or hyperglycemic event if the patient takes the
needed actions for each occasion. The above results clearly indicate that combi-
nation of complementary modeling strategies preserve the qualities of each
approach and achieve accurate and prompt prediction performance.

Fig. 5 Example of prediction profile from the ARX (red) and cARX (green) model in
PH = 30 min
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4.6 Conclusions

Combination of online adaptive ARX, cARX and RNN models with a warning
algorithm for the generation of hypo- and hyperglycemic alarms resulted in the
development of a personalized EWS. In all cases the EWS presented efficient and
prompt recognition of upcoming hypo- and hyperglycemic events for all patients.
The cARX-based and RNN-based EWS presented complementary qualities lead-
ing to the development of the hybrid cARN-based EWS. The hybrid system
managed to preserve the high accuracy and detection times of the cARX-based and
the low false alarms of the RNN-based EWS combining both safety and comfort.
The results indicate that online adaptive data-driven models can effectively rep-
resent the time-varying glucose process and detect future metabolic disturbances.
Furthermore, different modeling techniques should be extensively investigated and
comparatively assessed for the determination of complementary properties. Suc-
cessful combination of complementary approaches can lead to more accurate
representation of the glucose time-series and significant improvement of the pre-
diction performance.

5 Final Remarks and Future Trends

The applicability of adaptive algorithmic solutions in the study of complex systems
characterized by variability, uncertainties and time-varying dynamics has been
investigated in the two principle fields of diabetes management, namely in glucose
regulation and glucose prediction. To this aim, an online adaptive control algorithm
for optimized insulin infusion was designed and developed based on the principles of
reinforcement learning and more specifically of the AC learning approach. Fur-
thermore, two online adaptive glucose prediction models have been developed and
subsequently integrated into an EWS for the recognition of future hypo- and
hyperglycemic events. The results of the AC algorithm showed that personalized
insulin treatment through iterative learning of patient-specific characteristics can
lead to real-time improvement of glycemic regulation. The performance of the EWS
enhances this result showing that personalized and adaptive prediction models can
render the early recognition of abnormal metabolic situations accurate and safe.

This work offers significant room for improvement and future research devel-
opment. The direct next step is the integration of the EWS into the AC control
algorithm in order to function as a safety-supervision mechanism towards the
development of an adaptive control system for personalized and safe insulin
treatment. The control system will be clinically evaluated in order to reinforce the
significance of the in silico results and provide important feedback for future
improvement. On the algorithmic side, additional RL-based control approaches
and alternative adaptive prediction models will be investigated along with more
advanced fusion techniques for the optimal representation of glucose dynamics.
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Overall, the results of this chapter indicate the applicability and efficiency of
online adaptive algorithms towards optimization of diabetes management.
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Pitfalls in Model Identification: Examples
from Glucose-Insulin Modelling

Simona Panunzi and Andrea DeGaetano

Abstract Two important statistical parameter estimation pitfalls, examples of
which can be found in the literature, are here reviewed and discussed. The first
concerns the lack of model qualitative behaviour analysis before proceeding to the
actual parameter estimation phase: this may give rise in the worst cases to aberrant
model behaviour and to meaningless parameter estimates. The second concerns the
use of interpolated noisy observations taken to represent the real input or driving
variable into a model: this gives rise to the artifactual reproduction of meaningful
features of the output variables, based on data errors and hence inherently non-
reproducible. This is particularly dangerous when using noisy observations instead
of model predictions in coupled systems. Examples of these pitfalls are drawn
from existing glucose-insulin modelling literature and recommendations are made.

1 Introduction

Insulin Resistance (IR), the impaired metabolic response to circulating insulin
resulting in a decreased ability of the body to respond to the hormone by sup-
pressing Hepatic Glucose Output and enhancing tissue glucose uptake, plays a
central role in the development of Type 2 Diabetes Mellitus. It is therefore of
considerable interest to have an accurate measurement of the degree of IR by tests
that are objective and easy to perform.

While the Euglycemic Hyperinsulinemic Clamp (EHC) [1] is often considered
the ‘‘gold standard’’ for the determination of insulin resistance, the Intra-Venous
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Glucose Tolerance Test (IVGTT) is simpler to perform, carries no significant
associated risk and delivers potentially richer information content. What prevents
many experimental diabetologists from using the IVGTT is its interpretation, for
which it is necessary to apply a mathematical model of the status of the negative
feedback regulation of glucose and insulin on each other in the studied experi-
mental subject. A reliable mathematical model for the representation of the glu-
cose/insulin control system during the IVGTT is therefore necessary. Such a
model, like each model used to explain a physiological phenomenon, should be
simple enough to allow precise estimation of its structural parameters (in the
specific case it should allow precise estimation of insulin sensitivity on a single
patient), yet exhibit stable dynamics and reproduce accepted physiological
behavior. Further, the model formulation, while applicable to the standard IVGTT,
should logically and easily extend to model other often envisaged experimental
procedures, like repeated glucose boli, or infusions.

Due to its relatively simple structure and to its great clinical importance, the
glucose/insulin system has been the object of repeated mathematical modeling
attempts [2–20]. The mere observation that several models have been proposed
points to the fact that it is not trivial to satisfactorily integrate mathematical,
statistical and physiological aspects in order to realistically and reliably represent
the glucose/insulin system.

Moving from the need of modeling this concrete and relevant physiological
problem, the present chapter has the goal of discussing two important model
parameter estimation pitfalls, to which modellers should pay attention when
involved in the mathematical representation of a physiological system.

The first pitfall is to neglect to study the mathematical formulation of the
model, even before collecting or analyzing any data, in order to establish that the
physiological assumptions underlying the model formulation determine a quali-
tative behavior of its solutions which is coherent with known physiology and with
the expected behavior of the phenomenon under study. The consequence of this
pitfall is that estimated model parameter values refer in fact to a model structure
inconsistent with known physiology, and are therefore of limited usefulness for
quantifying and better understanding this physiology.

The second pitfall consists of using interpolated noisy observations of some
‘driving’ variable to represent the real input into a modeled system. The param-
eters obtained in this way, estimated by fitting model output to observed system
output, are apparently effective in capturing meaningful features of the output
variables, but do so by exploiting random errors in the input data: this strategy
gives rise therefore to a merely apparent, artifactual exhibition of some desired
model’s behavior, based on data errors and hence inherently non-reproducible. A
clear example of this pitfall can be seen in the artificial ‘decomposition’ of an
integrated feedback loop, where the parameters, separately estimated, determine
an integrated behavior that widely diverges from what is expected and from
recorded data.

While the points discussed are general and apply to general modeling practice,
both for what regards the necessary preliminary qualitative study of the model
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solutions and for what regards the incorrect use of interpolated noisy observations
as input function, the examples brought forward in the present chapter concern the
modeling of the Intra-Venous Glucose Tolerance Test (IVGTT). In particular the
Minimal Model [21], Bolie’s model [2] and the recently proposed Single Delay
Model [22] of the glucose-insulin system have been used as examples in this
discussion.

The chapter is structured as follows: the experimental procedure and the
physiological principles on which the IVGTT is based are briefly presented, then
each of the two statistical pitfalls is discussed, using the above published modeling
attempts of the IVGTT as example.

2 The IVGTT Experiment

The standard IVGTT (without either Tolbutamide or insulin injections) [21]
consists in a rapid injection (less than 3 min) at time 0 (00) of a 33 % glucose
solution (0.33 g Glucose /kg Body Weight) through one arm line. Blood samples
(3 ml each, in lithium heparin) are then obtained at frequent time intervals (typ-
ically at -300, -150, 00, 20, 40, 60, 80, 100, 120, 150, 200, 250, 300, 350, 400, 500, 600,
800, 1000, 1200, 1400, 1600 and 1800) through a contralateral arm vein. Each sample
is immediately centrifuged and plasma is separated. The plasma levels of glucose
and insulin obtained at -300, -150 and 00 are averaged to yield the baseline values
referred to 00.

In extreme synthesis, the sudden appearance of a large amount of glucose in
peripheral blood stimulates the pancreas to secrete insulin, which is in fact released
(in the normal subject) in two phases, an immediate first phase and a delayed
second phase, probably deriving, respectively, from insulin granules immediately
available for release at the b-cell membrane and to insulin that has to be trans-
ferred to the membrane and ‘docked’ before secretion. Peripheral tissues respond
to the insulin concentration increase by accelerating glucose extraction from
plasma, and glucose concentrations are brought back to normal. As the hyper-
glycaemic stimulus decays, so does insulin secretion, which also goes back to
normal. Pre-infusion steady state is then reached after approximately two to three
hours in the normal subject.

3 First Pitfall: Failing to Study the Qualitative Behaviour
of the Model’s Solutions

One of the very first attempts to understand and express mathematically the
determinants of glucose concentrations in blood dates back to 1961 with Bolie’s
model, which can be written as follows:
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dG tð Þ
dt
¼ �p1 G� p2 I tð Þ þ p3; G 0ð Þ ¼ G0s

where p1, p2 and p3 are three positive parameters. The model is very simple and
each term on the right-hand side would appear to make sense: variations of gly-
cemia are due, first, to the level of glycemia itself (the higher the glycemia, the
faster its decrease); second, to insulinemia (the higher the insulinemia, the faster
the decrease in glycemia); and, third, some necessary glucose production (say, by
the liver), which we may assume constant throughout a short experiment.

The qualitative analysis of the model reveals however that negative solutions
are permissible: at zero glycemia, its derivative may well be strictly negative,
depending on the level of insulinemia.

The fact that solutions of the model, i.e. predicted glycemia, can be negative is
evidently contrary to common sense. There are then at least two possible philo-
sophical stances, which the modeller can take in the face of such paradoxical
result. The first is to assert that the model has some limited validity in some
circumscribed region of its state space: in the present case, that the model is still
good, if insulin is not too high and glycemia is not too low. Oftentimes, modellers
subscribing to this philosophical position defend it by quoting G.E.P. Cox:
‘‘Essentially, all models are wrong, but some are useful’’ [23]. We believe this
position to be somewhat simplistic, and potentially misleading: it aggregates all
models, irrespective of their merits, into the class of ‘‘wrong’’ models, and elects a
model as ‘appropriate’ depending merely on contingent utility. We may offer a
two-tiered philosophical approach, by defining a model to be ‘‘inconsistent’’ when
it does not agree with irrefutable available data, and further by defining a model as
‘‘obsolete’’ when it is inconsistent and another model exists, which does explain
the irrefutable available data. If the qualitative behaviour of a model’s solutions
contradicts common knowledge, then the model’s construction must imply some
fundamental mistake: for example, from the very moment that Bolie’s model was
published, it was clear that it could predict glucose concentrations to become
negative, hence it was inconsistent from the very start. However, at the time it was
not obsolete, because no other model existing at the time (there were none) was
consistent: indeed, Bolie’s model spurred mathematical investigation of the Glu-
cose-Insulin system, and deserves our affection and respect for having been a
pioneer. The fundamental mistake of Bolie’s model concerns the form of the
second term, the decrement in glycemia depending on insulinemia. Figure 1
summarizes the problem: the model asserts that, no matter how little glucose there
is in blood (even zero), we would be able to make the tissues extract as much
glucose as we want, just by increasing insulin levels. Since we cannot take out of
plasma the glucose that is not there, the second term in Bolie’s model is wrong and
determines in fact the possible negativity of predicted glycemia.

A consequence of flawed model construction, as detectable by theoretical
behaviour inconsistent with basic observations, is that the parameters of the model
may well be devoid of meaning, in so far as they refer to phenomena which either
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do not exist or are incorrectly represented in the model. For example, the insulin-
dependent glucose elimination rate p2 in Bolie’s model, which would quantify the
number of mM/min of glycemia decrement per pM of insulin concentration, has no
meaning: insulin-stimulated glucose uptake has some value at high glycemia and
is in fact zero at zero glycemia, so that giving it a single value over the entire
allowable range of glycemias is, at a minimum, misleading.

It is clear that models capture only certain features of the phenomenon under
investigation, and that ultimately all models will fail to agree with data from
sufficiently advanced and detailed experiments. All models are simplifications of
reality, will eventually be proven inconsistent by further experimentation, and will
eventually be made obsolete by better models.

When designing a new model to interpret a physiological phenomenon,
studying the qualitative properties of the solutions ensures that the model is not
already inconsistent at the moment it is proposed. As another example from the
literature on the IVGTT we may mention the Minimal Model [21], which is still
the most widely employed model to assess insulin resistance, even in recent
research applications [24–31]. This model describes the time-course of glucose
plasma concentrations, depending upon serum insulin concentrations and on a
variable X, representing the ‘Insulin activity in a remote compartment’ [32]. While
in later years different versions of the Minimal Model appeared [33, 34], the
following discussion refers to the original formulation [21, 35] as presented in [36]
with detailed instructions on how to identify the model from data.

A formal, qualitative study of the solution of the model appeared in the year
2000 [37]. The model is non-autonomous, and it can be proven that, mainly
depending on the non-autonomous time term, when glucose concentrations are

Fig. 1 Schematic representation of Bolie’s model behaviour. Black arrows represent the
variation in blood glucose concentration as a result of glucose tissue uptake mediated by insulin
(red arrows), glucose produced by liver (green arrows) and spontaneous glucose elimination.
While the model works correctly around the point (G1, I1), when plasma glucose is low and serum
insulin is high (G2, I2) the model would predict negative glycemias, by still (incorrectly) allowing
arbitrarily high glucose extraction
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higher than a threshold value (lower than observed basal glycemia) the variable X
goes to infinity and the system does not admit an equilibrium. Proponents of the
model specifically state that the model is ‘valid’ only for the 3 h or so of duration
of a typical IVGTT: on the other hand the Insulin Sensitivity index, as derived
from the model, is defined for time that goes to infinity. Figure 2, panel b (dotted
lines) shows the anomalous behaviour in the insulinemia predictions which are
visibly increasing at the end of the observation period and which would be pre-
dicted to increase to extremely high levels within a few hours instead of tending to
the equilibrium value corresponding to basal insulin concentration IBb.

We find ourselves in essentially the same situation as with Bolie’s model: in
that case, solutions could become negative, in this case solutions can explode to
infinity. Limiting the operation domain of Bolie’s model to not-too-high insu-
linemias, or limiting the operation domain of the Minimal Model to ‘about three
hours’ does not address the issue, which is that if an abnormal behaviour is
produced by the model this means that the model’s construction incorporates
flawed assumptions. Both models therefore could have been diagnosed as incon-
sistent from the start. It remains to be seen if they are now obsolete.

Recent work [22] presented in fact an alternative model for the interpretation of
glucose and insulin concentrations observed during an IVGTT: the so-called
discrete Single Delay Model (SDM). In the context of the present discussion, the
relevant thing to notice is that this model has been proven to have solutions
mathematically consistent with expected behavior [38], admitting the fasting state
as its single equilibrium point and converging back to it from the perturbed state.
Moreover, the model aimed at being consistent with known physiology by
incorporating a limited pancreatic insulin secretion in response to increasing
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Fig. 2 Glucose and Insulin predictions with the SDM and MM models. Panels a and b
respectively show observed plasma glucose concentrations and observed plasma insulin
concentrations (asterisks) following an IVGTT experiment, along with predictions by the Single
Delay Model (continuous lines) and by the Minimal Model (dotted lines)
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glucose concentrations: Fig. 2 (continuous line) reports the fitting of the SDM over
an IVGTT experiment. While no claim is made as to the optimality of the SDM in
any sense (indeed, better models are expected to be formulated in the future), its
existence makes the other two models obsolete, in the sense defined above.

Model builders should therefore study the qualitative behaviour of the solutions
of their models in order to assure that these are capable of describing consistently
the relevant physiology, as a pre-condition to obtaining reliable quantitative
estimates of the parameters of interest.

4 Second Pitfall: Using Interpolated Noisy Observations
as Input Functions, Particularly When Fitting Coupled
Systems

The idea that interpolated observed data, used in place of theoretically recon-
structed curves, are a reliable approximation of the true signal for the purpose of
parameter estimation is rather widespread in the domain of insulin glucose model
(ex multis [36, 39]).

What is generally not considered is that, during an estimation process for
models depending on input or forcing functions, the optimizer algorithm attempts
to obtain the best possible reconstruction of the output signal changing the
parameter values conditional on the input signal. This determines, in particular,
the possible leverage of accidental data oscillations in the input signal, through ad-
hoc parameter values, in order to build an output signal that matches output
observations. The result is, indeed, an apparently good match to the observed
output, and what is sometimes not appreciated is that this apparently good fit is
contingent on finding parameter values exploiting accidental variations in input:
the result is artifactual because it does not build on the expected behavior of the
model but on stochastic realizations of the errors; it is inherently non-reproducible,
because the parameters found depend directly on such random variations in input;
and the corresponding parameters have a high variability, because different ran-
dom configurations of the input will produce in general different parameter values
attempting to reconcile the variable input with the output observations.

As a clear example of the misleading results that can be obtained when incurring
in the pitfall of using interpolated observations as input into the model, consider
once again the Minimal Model of glucose-insulin dynamics, in the form and with
the estimation procedure proposed in 1986 [36]. In this case, two sub-models are
used, one for glucose kinetics depending on insulinemia as driving function, and
one for insulin kinetics depending on glycemia as driving function: the proposed
estimation procedure consists of using observed insulinemias to represent the true
input for the purpose of estimating glucose kinetics and then using observed gly-
cemias for the estimation of insulin kinetics (instead of performing a single opti-
mization on both feedback control arms of the integrated glucose/insulin system).
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Following this approach, the estimated parameters are optimal in predicting
observed glucose assuming the erratic observed insulin as the true value of the
insulin concentration (and viceversa), but would not be optimal in describing the
modeled effects of expected glucose on expected insulin and viceversa. This fitting
strategy produces sets of estimated parameters such that the expected time course of
glucose using the expected time course of insulin as input may differ markedly from
both the actual glucose observations and from the expected glucose obtained using
the noisy insulin observations as input. In other words, this strategy produces
parameter values which do not make model predictions of glucose and insulin
consistent with each other. Furthermore, the exploitation of random variations in
input determines the very ability of the algorithm to reproduce characteristic fea-
tures of the output signal, which the model may have difficulty reproducing when
moving from the theoretical or expected input signal.

In order to concretely exemplify the general remarks made so far, Fig. 3 shows
four sets of model-reconstructed curves associated with the same data set (in all
four panels squares indicate observed insulin concentrations, while circles indicate
observed glucose concentrations; solid lines indicate model-predicted insuline-
mias, dotted lines indicate model-predicted glycemias).

In Fig. 3a the observed points are fitted with the SDM model mentioned above
(one-pass fitting, minimizing errors in glycemias and insulinemias simultaneously)
and the resulting SDM-predicted time courses are superimposed to the data. The
fitting, with six parameters, is reasonably good and the classical second-phase
insulin secretion ‘‘hump’’, characteristics of insulin secretion following an IVGTT,
is clearly visible.

In Fig. 3b the observed points are fitted with Minimal Model using the
‘decoupling approach’ [36] (two-pass fitting, using interpolated insulinemia as
input for the fit of glycemias, then interpolated glycemia as input for the fit of
insulinemia). The predicted curves lie close to the observations (in this set-up eight
parameters are free) and second-phase insulin secretion is readily apparent. So far,
it would seem that the Minimal Model and the SDM are approximately equivalent
in their ability to explain this dataset.

In Fig. 3c the observations are fitted with exactly the same Minimal Model
formulation, this time however using a simultaneous, one-pass procedure: glyce-
mias and insulinemias are simultaneously predicted from the model and parameters
are adjusted to provide the best overall weighted fit. While the predicted curves still
pass through the observed points, no second-phase insulin secretion hump is visible.
In fact, this exercise was repeated in 72 subjects [40] and in none of them second-
phase insulin secretion was reproduced by the model.

Finally, Fig. 3d shows the original observations and the curves obtained when
using simultaneously the classical MM parameter estimates (those obtained by
means of the decoupled procedure estimation). In other words, in Fig. 3d the same
parameter values obtained in the classical ‘decoupling’ Minimal Model fit of
Fig. 3b are employed; this time, however, instead of using the recorded noisy
observations to provide feedback regulation, the actual predictions of the model
are used, so that predicted glycemia influences the prediction of insulinemia and
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vice versa. It can be appreciated how, in this case, predicted curves not only still
do not exhibit secondary insulin secretion, but actually fail to approximate the
observations.

When fitting a model to observations it is required that the identified model be
consistent, i.e. that the functional form of the model, together with the estimated
parameter values, reproduce the dynamics actually observed. In this example it can
be appreciated that decoupling the feedback and estimating separately its two arms
from interpolated observations of the driving variable provides misleading results:
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Fig. 3 Comparison among SDM fitting, ‘decoupling approach’ and one-pass fit for MM. a This
part figure reports the observed points (circles for glycemia and squares for insulinemia) of a
single experimental subject, fitted with the Single Delay Model (dotted line for glucose
predictions and continuous line for insulin predictions) with one-pass fitting (minimizing errors in
glycemias and insulinemias simultaneously). b This part figure reports the same observed points
as in panel a, fitted with the Minimal Model using the ‘decoupling approach’ as suggested by the
original Authors (two-pass fitting, using interpolated insulinemia as input for the fit of glycemias,
and interpolated glycemia as input for the fit of insulinemia). c This part figure reports again the
observations fitted with the Minimal Model, this time using a simultaneous, one-pass procedure
(minimizing errors in glycemias and insulinemias simultaneously, similarly to what was done in
panel a for the Single Delay Model). d This part figure shows, along with the observations, the
curves obtained when using the Minimal Model with the parameter values obtained in the
‘decoupling approach’ of (b), using however, instead of the recorded noisy observations to
provide feedback regulation, the actual predictions of the Minimal Model itself (predicted
glycemia influences the prediction of insulinemia and vice versa), thereby showing the actual
dynamics expressed by the Minimal Model given the parameters of (b)
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while it would seem that the fit is good (like in Fig. 3b), such good fit actually
relies on the specific realization of chance occurrence of errors in the observations.
In this way parameters are obtained which can apparently reproduce features (like
in this case the second-phase insulin secretion hump), but can do so only by
exploiting that experiment’s specific observation errors. When these same
parameters are used to model the interaction of predicted glycemias and insu-
linemias on each other (as in Fig. 3d), no such features appear and indeed, actual
data fit is very poor, which indicates that we have not been able to identify the
dynamics underlying the observations.

In fact, two sources of estimate variability are simultaneously present in this
situation: the usual variability due to error in the observations of the modeled
(dependent) variable and an additional variability due to random variations of the
observations of the observations of the input or forcing function. Moreover, fea-
tures may appear from model predictions (e.g. in the present case, a secondary
insulin secretion hump), which would not appear if the input function were smooth
(as is the case in coupled estimation), and which may depend on chance peaks in
the input being translated (through unreliable parameter values) into the derived
features in output.

5 Conclusions

When attempting to mathematically explain a physiological phenomenon, the
numerical parameter estimation phase (easy to conduct by means of standard
software) should be preceded by a careful consideration of the qualitative behavior
of the model itself, from a purely theoretical, data-independent standpoint. It
should be required that the model exhibits behavior consistent with what is already
known of the phenomenon under study. For example, it should be checked whether
equilibrium points exist and what they are, that the solutions are limited and
positive and that they converge back to the equilibrium points from the perturbed
state, that oscillations are or are not present, that continuous dependence on
parameter values and on initial conditions exists, that the system exhibits the
degree of stability that is expected. Good data fitting, even of a plausible-looking
model (such as Bolie’s model above), is no guarantee that the estimated param-
eters have the desired meaning relative to the physiological phenomenon under
study, unless the model structure is shown to be consistent with that physiology.

The use of interpolated observation data as a substitute for the theoretical
driving function of a given model is a risky procedure, which may well mislead the
investigator into believing that the model equations themselves, and not accidental
error realizations, are able to reproduce characteristic features of the physiology
under study. Using interpolated observations in place of actually available model
predictions in a coupled system is particularly hazardous, because the decoupling
thus introduced will achieve misleadingly close empirical data fitting at the
expense of inconsistency of behavior of the (un)coupled variables relative to one
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another: one may indeed incorrectly believe to have identified the dynamics of
interest, while in fact the estimated parameter values determine another, different
system behavior.

A further consequence of using interpolated observations as input or forcing
function is the high variability of the parameter estimates obtained, since
parameters are chosen, with which the optimizer algorithm will seek to reproduce
expected output conditionally on random input.
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Simulation Models for In-Silico
Evaluation of Closed-Loop Insulin
Delivery Systems in Type 1 Diabetes

Malgorzata E. Wilinska and Roman Hovorka

Abstract This chapter presents simulation models created to support the devel-
opment of closed-loop insulin delivery systems in type 1 diabetes. Such models,
also known as ‘virtual patient’ models, represent an input-output relationship
between insulin delivery and other external inputs such as meals or exercise, and
the resulting glucose response. It is argued that these simulation models are an
essential prerequisite for an accelerated development of the artificial pancreas
systems in various populations of type 1 diabetes ranging from children to adults
and pregnancies. The present review provides a general introduction to the models
of glucose regulation in type 1 diabetes and then proceeds to discussing the
individual submodels of glucose kinetics and insulin action, subcutaneous insulin
kinetics, subcutaneous glucose kinetics, glucose absorption from the gut, and the
exercise effect on the glucose kinetics. Finally, several important virtual-patient
models used for in silico testing of glucose controllers are reviewed.

1 Introduction

Mathematical models of glucose regulation have been studied since 1960s [1]
utilising early experimental data to measure glucose production and glucose dis-
posal [2]. The complex dynamic behaviour of the pancreatic beta cell and the
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intricacy and efficiency of the glucose-insulin feedback loop inspired mathema-
ticians to describe, in a mathematical formalism, pathophysiological pathways and
their interactions, and to simulate the responses of the glucoregulatory system to
various stimuli. By 1980s, a wide range of models had been developed improving
our understanding of glucose homeostasis and supporting the diagnosis and
management of diabetes [3, 4].

Mathematical models in diabetes are found in a variety of applications. Many are
used for educational purposes. Interacting with the models, healthcare professionals,
physiologists but also subjects with diabetes, gain quantitative understanding of
glucose regulation. The AIDA educational package [5] or the KADIS system [6] are
typical examples of such models. The Diabetes Advisory System (DIAS) [7], or
long-term treatment/health policy outcomes such as the Archimedes model [8], have
been developed to support treatment decisions in diabetes, insulin-dosing decisions
in particular. Models have been used to estimate insulin sensitivity and beta cell
function. The widely used Bergman’s minimal model [9] is the most popular method
to estimate insulin sensitivity during the intravenous glucose tolerance test (IVGTT)
complementing the more experimentally demanding glucose clamp technique [10].
Models can also be used to support the development of new treatment targets and
new drugs for the management of diabetes [11].

Fuelled by the availability of continuous glucose monitors [12], a focused
research is underway to develop closed-loop insulin delivery systems also known
as the artificial pancreas [13, 14]. The artificial pancreas consists of three com-
ponents, a continuous glucose monitor (CGM), a control algorithm, and an insulin
pump. While the insulin pump technology is well advanced, and widely adopted,
the accuracy, reliability, and limited experience with currently available contin-
uous glucose monitors is still a potential roadblock for the commercialisation of
closed-loop systems [15]. Existing control algorithms also need to be refined to
allow reliable adaptation to an individual subject and to assure a safe operation
with a minimal risk of low and high glucose levels. The artificial pancreas has the
potential to revolutionise the treatment of type 1 diabetes within a decade [15–17].
However, substantial clinical testing has to be done before commercial closed-loop
systems are made available and become widespread.

The present review provides a general introduction to the glucoregulatory
models. This introduction is followed by a description of submodels of the
glucose kinetics and insulin action, subcutaneous insulin kinetics, subcutaneous
glucose kinetics, glucose absorption from the gut, and the exercise effect on the
glucose kinetics. Finally, several important simulation models used for in silico
testing of glucose controllers in type 1 diabetes are described. It is argued that
these simulation models are an essential prerequisite for an accelerated devel-
opment of the artificial pancreas in various populations of type 1 diabetes
ranging from children to adults and pregnancies.

For interested readers, models of glucose regulation have been reviewed pre-
viously by Mari [18] and Parker and Doyle [19], the latter focusing on control-
relevant models. Makroglou et al. [20] provided an interesting overview of
mathematical models of the glucose-insulin regulatory system from the point of
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view of their mathematical formulations and parameter estimation techniques. The
review also includes a survey of available software packages for the numerical
analysis and simulation. Readers interested in closed-loop control algorithms are
referred to reviews by Parker et al. [21], Bellazzi et al. [22], Steil et al. [23] and
Hovorka [13, 14].

2 Models and Virtual Patients

Mathematical models of glucose regulation can be broadly classified into two
categories, data-driven models and conceptual models, although the distinction is
not always clear cut. Generally, the data-driven models are simple. The number of
model equations is deduced and parameters are estimated on individual basis from
experimental data using the principle of parsimony. The conceptual models utilise
holistic knowledge of the physiology and metabolic processes. Each organ/tissues
can be treated as a separate compartment with its own mass-balance equations and
a detailed description of the metabolic and kinetic processes. These models are
more complex, numerically demanding, and the estimation of individual param-
eters from the experimental data is hindered by identifiability issues [3, 4].

A simulation model structure is usually motivated and constrained by physio-
logical considerations and a set of model parameters. The model parameters can be
determined in different ways influencing the capabilities of the simulation model. In
some cases, average population values have been derived from the literature as in
models by Bolie [1], Tiran et al. [24] or Sorensen [25] allowing population average
but not individual simulations to be carried out. In other cases such as the minimal
model [9] or the model by Hovorka et al. [26], the majority of individual parameters
are identified by fitting subject’s experimental data and selecting physiologically
feasible parameters that result in the best fit to the data. Such models allow indi-
vidual predictions to be made and population variability to be inferred.

In certain situations, such as when testing treatment concepts or representing
physiological knowledge, a prediction of an average subject with diabetes is
sufficient. Then, a single parameter set representing the average subject is required
as is often the case with conceptual models of glucose-insulin dynamics, see Tiran
and colleagues [24, 27], Guyton et al. [28], and Sorensen [25].

In order to estimate model parameters from individual data sets, models with a
lower complexity are required. Cramp and Carson [29] and then Cobelli et al. [30]
reduced the structural complexity by proposing lumped compartment models
utilising the principle of parsimony for model selection. Other models in the
spectrum represent a trade-off between the detailed physiological insights of
conceptual models and the relative ease of parameter estimation associated with
lower-order models.

More recently developed simulation models are built from smaller, already
existing submodels that represent subsystems of glucose regulation. At the core,
such simulation models often include a submodel of the glucose kinetics and
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insulin action, see Fig. 1. The number of other interacting submodels depends on
the input/output requirements. If the simulation model is to be used for evaluating
a closed-loop controller that drives a subcutaneous insulin infusion pump and is
informed by subcutaneous glucose measurements, the necessary submodels are a
model of the subcutaneous insulin kinetics and a model of the interstitial glucose
kinetics. Other submodels may include a meal model to represent glucose
absorption from the gastrointestinal tract and an exercise model to represent the
effect of physical activity on the glucose concentration.

A simulation model that represents an input-output relationship between insulin
delivery and other external inputs such as meals or exercise, and the resulting
glucose response is often referred to as a ‘virtual patient’. This type of a model
constitutes an essential part of a computer simulation environment referred to as
the simulator. A simulation model can utilise a single parameter set representing
an ‘average patient’ or a multiple parameter set representing a population of
‘virtual subjects’.

The concept of the ‘virtual population’ is illustrated in Fig. 2. The design is
driven by the simulator’s intended purpose, i.e. to predict an outcome of a clinical
trial conducted in a number of subjects with diabetes producing population-
relevant results.

glucose distribution

delay

insulin concentration

sensitivity of
production

sensitivity of
disposal

insulin action
     signals

glucose concentration

endogenous
glucose production

exogenous glucose glucose utilisation

sensitivity of
transport

insulin action

glucose kinetics

Fig. 1 Representation of the glucose-insulin system; dotted line arrows indicate insulin control;
adapted from [17] and [25]
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3 Models of Physiological Subsystems of Glucose
Regulation

3.1 Models of Glucose Kinetics and Insulin Action

The conceptual paradigm of models representing the glucose kinetics and insulin
action is illustrated in Fig. 1. The model describes the distribution, production and
utilisation of glucose, and the control by insulin. The model of insulin action
typically includes a remote compartment to represent the delay in insulin action.

One of the first models of the glucose-insulin system to be used in simulations
was a linear model developed by Ackerman et al. [31]. Although this four-
parameter, two ordinary differential equations model was a clear oversimplification
of the whole body glucose regulatory system, the strength of the model was that its
parameters could be identified from clinical data [32].

An early example of a low-order model is the minimal model by Bergman et al.
[9]. It was developed to estimate insulin sensitivity and glucose effectiveness but
the model has also found numerous applications in the domain of glucose control.
The structural simplicity and the ability to estimate significant physiological
parameters led to its popularity among the clinicians. The model is widely used to
estimate insulin sensitivity in clinical and epidemiological studies [33–36] and is
referred to in over 1,000 publications [37]. Its usefulness and popularity sparked
great interest in mathematical modelling of glucose regulation. This model with
two state variables describes plasma glucose dynamics based on plasma insulin
feeding into a remote insulin compartment. The original model was developed
using data obtained from the intravenous glucose tolerance test (IVGTT). The
model has two compartments representing plasma glucose and remote insulin. The
rate change of glucose in this model is the difference between the net hepatic
glucose balance and the disappearance of glucose into peripheral tissues.
A nonlinear regression analysis is applied to estimate four model parameters with

Fig. 2 A population of
‘virtual subjects’ with type 1
diabetes comprises a
simulation model of the
glucose regulation
accompanied by n parameter
sets representing n ‘virtual
subjects’; virtual populations
can be further subdivided into
subgroups of adults, children,
pregnant women etc. with
type 1 diabetes
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insulin sensitivity (SI) and glucose effectiveness (SG) being the main indices of
interest.

Several authors have documented the shortcomings of the minimal model
[38–41] such as its inability to separate glucose production from glucose disposal.
Only the net hepatic glucose balance can be described. As a consequence, the
metabolic indices SI and SG measure not only the effect of insulin and glucose on
glucose disposal but also their inhibitory effect on hepatic glucose production.
Other concerns regarding the minimal model include poor precision of parameter
estimates and unsatisfactory reproducibility of SI [41]. In order to overcome these
limitations, the labelled IVGTT has been devised and tracer minimal models
developed [42, 43]. The tracer models allowed the estimation of tissue sensitivity
to insulin and glucose effectiveness without distortion of glucose and insulin
effects on hepatic glucose production. Despite these improvements, Caumo and
Cobelli [44] observed that the minimal model gives a physiologically implausible
prediction of the hepatic glucose production. The source of the error is likely due
to under-modelling of the glucose kinetics by a single compartment [38].

From a simulation point of view, the glucose effectiveness of approximately
0.02 per min, as estimated in healthy subjects, results in an overestimated self-
regulatory capability of the glucoregulatory system especially when used in the
original formulation with basal glucose set at normoglycemia. Figure 3 illustrates
the exaggerated glucose self-regulation at this nominal value of glucose effective-
ness. When used to evaluate glucose controllers, the overestimated self-regulatory
capability provides an overoptimistic assessment of the controller as most of the
control is exerted through glucose effectiveness and not through the controller
directed insulin delivery. Glucose effectiveness at or below 0.01 per min is needed
to represent appropriately the self-regulatory capability of the glucoregulatory
system.

Glucose kinetic models with two glucose compartments have been proposed in
the last decade [44–46] to improve the minimal model. The total number of
parameters increased to six and the parameters could no longer be uniquely esti-
mated from the data. The problem can be solved by using tracer glucose bolus and
physiological constraints [44, 45] or by applying the Bayesian estimation [46]. The
estimation of the three insulin sensitivities of glucose uptake in the peripheral
tissues, the sensitivity of hepatic glucose production and the sensitivity of glucose
transport/distribution was first attempted by Ferranini et al. [47]. The partitioning
of the three sensitivities was fully accomplished by Hovorka et al. [26] using a
two-compartment glucose model for the dual-tracer IVGTT. The model described
the steady state as well as dynamic conditions and was validated in healthy
subjects.
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3.2 Models of Subcutaneous Insulin Kinetics

Subcutaneous insulin absorption is a complex process influenced by factors
including the associated state of insulin, its concentration, injected volume, injec-
tion site and depth, and tissue blood flow [48–51]. Several mostly compartmental
models have been proposed for various insulin preparations. A comprehensive
review of these models by Nucci and Cobelli [52] compares six models of the
subcutaneous insulin kinetics ranging from simple compartmental models [53–56]
through empirically derived [57] to complex conceptual models [58, 59]. In all
models except that by Hovorka et al. [60], plasma insulin is assumed to be a single
compartment. The compartmental models differ mainly in the way they consider
the absorption of subcutaneous insulin.

Kobayashi et al. [53] proposed a two-compartment plasma and subcutaneous
tissue model with a delay to represent insulin absorption. Kraegen et al. [54]
proposed a model with two subcutaneous compartments and five parameters
including the insulin degradation rate in the subcutaneous tissue. A simple three-
compartment model by Puckett et al. [55] is widely used. The model’s three
parameters were estimated from clinical data collected in subjects with diabetes.
All three models were identified for short acting soluble insulin. Rapid acting
insulin analogues were not available at the time of these publications. Few years
later, Shimoda et al. [56] proposed a three-compartment model of a soluble insulin
and monomeric insulin analogue to be used in the artificial pancreas. The model
was fitted using a 3-h block of data obtained from ten subjects with type 1 diabetes.

Fig. 3 Glucose concentration curve obtained using the minimal model with glucose effective-
ness of 0.02 min-1, starting glucose value of 10 mmol/l, basal glucose of 5 mmol/l, and a
constant insulin concentration at the basal insulin level. At this nominal value of glucose
effectiveness the minimal model predicts that elevated glucose rapidly returns, with a half time of
35 min, to the ‘basal glucose level’ without the need to increase the insulin concentration. This ill
fits with glucose concentration curves recorded in subjects with type 1 diabetes
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Contradictory to Kraegen et al. [54], the insulin degradation in the subcutaneous
tissue estimated by this model was not negligible. The effect of insulin degradation
was corroborated by Wilinska et al. [61] who evaluated ten alternative models of
the subcutaneous insulin kinetics of varying complexity. Model selection was
based on the principle of parsimony and physiological plausibility using data
collected in subjects with type 1 diabetes and rapid acting insulin analogue. The
selected model indicated the existence of a fast and slow absorption channel and
the presence of the local insulin degradation in the subcutaneous tissue.

3.3 Models of Subcutaneous Glucose Kinetics

Understanding subcutaneous glucose dynamics is important as CGM devices
employed in the closed-loop systems measure glucose concentration in the sub-
cutaneous tissue. The ability to describe the dynamics of the relationship between
the subcutaneous and plasma glucose depends on the understanding and quanti-
fication of the physiological processes in the interstitial fluid (ISF) surrounding the
adipose tissue. Plasma glucose is separated from the interstitial glucose by a
capillary wall, and hence changes in ISF glucose are related to changes in plasma
glucose by the rate of diffusion across the capillary wall and by the rate of glucose
removal from the ISF representing the glucose uptake by adipose tissue. Studies
with the microdialysis [62] and open-flow microperfusion [63] have demonstrated
the presence of a gradient between plasma and interstitial glucose of a varying
magnitude [64]. An equilibration time delay between plasma and ISF glucose has
been reported by a number of studies [65, 66]. Models of subcutaneous glucose
kinetics have been postulated by Bonnecaze and colleagues [67, 68]. Wilinska
et al. [69] postulated nine alternative models to account for the temporal variations
of the plasma to ISF glucose gradient. All models were fitted to experimental data
collected in subjects with type 1 diabetes. Model which best represented the
clinical data included zero-order glucose disposal from the ISF and an insulin
effect on the glucose transfer from the plasma to the interstitial fluid.

3.4 Models of Glucose Absorption from the Gut

Following a meal, glucose is absorbed in the upper gastrointestinal tract, trans-
ported to the splanchnic bed, mostly the liver, and then to the peripheral circu-
lation. Worthington [70] postulated a simple two-compartment model of glucose
absorption from the gut with identical transfer rate coefficients between the
compartments. The model was shown to be adequate in representing the glucose
rate of appearance from the gut. Arleth et al. [71] split the gut absorption into three
terms, each one corresponding to a class of carbohydrates with different absorption
rates: sugars, a fast absorbing starch, and a slow absorbing starch. More recently,
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Dalla Man et al. [72] proposed a three compartment non-linear model with two
compartments representing the stomach (solid and liquid phase) and the third
compartment representing the intestine. The model assumes a constant rate of the
intestinal absorption but describes gastric emptying rate to be dependent on the
total amount of nutrient in the stomach.

3.5 Models of Exercise Effect on Glucose Kinetics

Exercise has been associated with a transient increase in insulin sensitivity and
insulin-dependent glucose uptake in the muscle through augmented availability of
glucose transporters [73–75]. In type 1 diabetes, a higher glucose variability
associated with exercise can be difficult to manage leading to an increased risk of
hypoglycaemia [76]. This difficulty poses a major concern in the field of closed-
loop glucose control where mathematical models able to predict dynamic changes
of glucose during exercise could prove very useful.

To date very few system-level models have been proposed [77–81]. The two
models with identifiable parameters and a potential to be used in closed-loop
glucose control are those by Derouich et al. [78] and Breton [81]. Both models are
extensions of the minimal model of glucose kinetics [82]. Breton’s novel approach
was to detect and quantify exercise through changes in the heart rate. Hernandez–
Ordonez [79] extended the ability of a well-known Sorensen model [25] to
reproduce variations in the glucose concentration induced by exercise in type 1
diabetes. The extended model was verified using experimental data collected
during a light and moderate intensity exercise. The authors found a good agree-
ment with experimental data from the literature. The effect of high intensity
exercise was simulated by extrapolation. However, the physiological differences
between moderate versus intense exercise are still poorly understood [83]. Chassin
et al. [84] advocate a wider use of real-time continuous glucose monitoring devices
to improve current modelling efforts.

4 Simulation Models in Type 1 Diabetes

Recent technological advances in real-time continuous glucose monitoring fuel the
development of a wearable artificial pancreas [23, 85–87], which consists of a
CGM device to measure glucose concentration, a titrating control algorithm to
compute the amount of insulin to be delivered, and an insulin pump delivering the
advised insulin doses.

Algorithms for closed loop insulin delivery in subjects with type 1 diabetes can
be designed and tuned empirically, and evaluated during clinical testing. However,
a validated simulation model of glucose regulation in type 1 diabetes accelerates the
design and the evaluation process. Recent efforts focus around the development of a
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simulation environment based on a validated model of type 1 diabetes and designed
specifically for testing and evaluating closed-loop glucose controllers. Examples of
such simulation environments and their related models are presented below.

4.1 Hovorka Simulation Model

The European Commission funded Advanced Insulin Infusion using a Control
Loop (Adicol) Project which run from 2000 for 3 years and adopted an adaptive
nonlinear model predictive controller (MPC) to develop a minimally invasive
closed-loop system with meal announcement [88]. The development of the MPC-
based glucose controller was facilitated and greatly accelerated by a metabolic
simulator [89].

The simulation model described by Hovorka and colleagues [90] is based on a
compartment model of glucose kinetics and insulin action published by the same
author [26]. Other subsystems include two compartment models of the subcuta-
neous insulin and subcutaneous glucose kinetics as well as a two compartment
model of the glucose absorption from the gastro-intestinal tract. An important
property of this simulation environment is its ability to represent between and
within subject variability. The between subject variability is represented by a
population of 18 virtual subjects with type 1 diabetes. The model parameters were
obtained either from clinical studies in subjects with type 1 diabetes or from
informed probability distributions. The within individual variability of the gluc-
oregulatory system was implemented by superimposing sinusoidal oscillations on
a subset of model parameters. A possible weakness of Hovorka virtual patient
model is its simple representation of glucose absorption from the gut which may
need to be refined. In addition, the within subject variability may also require
further refinement. A clear strength of this virtual population of 18 subjects with
type 1 diabetes is that it was validated by comparing the simulation study pre-
dictions against a clinical study evaluating overnight closed-loop insulin delivery
in young people with T1D using a model predictive controller [91]. The simulation
model is being used by Hovorka’s group in the development of a prototype closed-
loop insulin delivery system for children and adolescents [92, 93], adults [94] and
pregnant women [95] with type 1 diabetes.

4.2 Medtronic Virtual Patient Model

Medtronic’s closed loop project adopts the proportional integral derivative (PID)
approach to develop an external physiological insulin delivery (ePID) system
based on the Guardian Real-Time Medtronic subcutaneous glucose monitor
(Medtronic Minimed Northridge CA, USA) [96] and subcutaneous delivery of a
rapid acting insulin analogue. Using data from previously completed closed-loop
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studies in subjects with type 1 diabetes, the Medtronic team derived a simulation
model such that the original study could be recreated using the computer simu-
lation alone [97]. The simulation model, referred to as the Identifiable Virtual
Patient (IVP) model, used Bergman’s minimal model at its core interacting with
two compartment models of the subcutaneous insulin kinetics and the meal
absorption. Diurnal variations of minimal model parameters such as SI (insulin
sensitivity), SG (glucose effectiveness at zero insulin concentration) and the
endogenous glucose production were introduced whenever the root mean square
error between the model-predicted and the measured glucose exceeded 222 mg/dl.
Ten glucose profiles fitted in this study were identified as the ‘virtual population‘.
Validation of the IVP model was carried out by simulating previously conducted
clinical trials in adults and children with type 1 diabetes (independent subjects)
and reproducing the outcomes of these studies [98]. Medtronic plans to use this
relatively small in size virtual population to evaluate and optimise new closed loop
insulin delivery algorithms. Although the time-variant parameters can be viewed
as the strength of this simulation model, it is limited by the rather simplistic
representation of the glucose kinetics by Bergman’s minimal model including a
short duration of insulin action and overestimation of glucose effectiveness.

4.3 Dalla Man Simulation Model

Cobelli’s group in Padova, Italy, developed a simulation model of glucose-insulin
interactions utilising data collected in 204 normal subjects who underwent a triple
tracer meal protocol [99]. The application of glucose tracers allowed glucose and
insulin fluxes during a meal to be calculated [100]. The simulation model is made
up of a number of parsimonious submodels describing the various unit processes
that have been identified using a forcing function strategy. There are two main
subsystems in the model. The glucose subsystem is described by a two compart-
ment model [101] as is the insulin subsystem [102]. The unit process models were
identified from average data with a forcing function strategy; 35 parameters of the
normal subject were estimated.

The simulation model has been employed to simulate a typical day of a normal
subject with three meals. To account for diurnal variations in insulin sensitivity
and beta cell responsiveness, it was assumed that insulin sensitivity is 25 % lower
during the evening meal compared to the breakfast and the lunch and beta-cell
responsiveness is 25 % lower during the lunch and the evening meal compared to
the breakfast. The main novelty of this simulation model is a more detailed rep-
resentation of glucose transit through the gastro-intestinal tract [72]. The main
weakness however is that the diurnal variations of certain model parameters have
not been modelled.

Although the original model was identified using data collected in normal
subjects, it is also being used to simulate subjects with type 1 diabetes [37]. In this
model, described by 26 parameters, the authors substituted the insulin secretion
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model with the model of subcutaneous insulin kinetics. In order to account for the
higher basal glucose in type 1 diabetes, the endogenous glucose production was
increased. Other parameters were kept identical. The virtual patient model, also
known as the UVA (University of Virginia) simulator, has been accepted by the
Federal Drug Administration to replace animal testing of glucose controllers.

4.4 Sorensen Model

Sorensen model [25] belongs to the class of complex physiologically-based
compartment models. The model, based on earlier work by Guyton et al. [28],
divides the body into six physiologic compartments: (1) the brain representing the
central nervous system (2) the heart and the lung, which represent the rapidly
mixing volumes of the heart, the lung and the arteries (3) the periphery, which
includes the skeletal muscle and adipose tissue (4) the gut (5) the liver and (6) the
kidneys, see Fig. 4. Glucose and insulin subsystems are considered separately,
with coupling through metabolic effects.

The model was originally developed to represent the healthy subject utilising 22
nonlinear differential equations including three equations to describe the endog-
enous insulin secretion. In order to simulate a subject with type 1 diabetes, the
insulin secretion term is omitted resulting in a model comprising 19 differential
equations and 44 parameters. The parameter values were derived from the

Fig. 4 A flow diagram of the
Sorensen model with its six
physiological compartments
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literature and hence could only represent a nominal ‘‘average’’ virtual subject with
type 1 diabetes. As all the parameters of this model are time-invariant the model
fails to represent the within subject variability. Sorensen model was further
developed by Parker et al. [103, 104] to test glucose controllers.

4.5 Fabietti Model

Another group from Italy based at the University of Perugia developed a model of
the insulin and glucose dynamics in type 1 diabetes to facilitate the design and
evaluation of control algorithms for external artificial pancreas using the subcu-
taneous route [105]. The model is based on a modified Bergman’s minimal model.
The endogenous insulin secretion is substituted by subcutaneously delivered
exogenous insulin and the glucose kinetics is represented by two instead of a single
compartment. External inputs of the model such as meals and intravenous glucose
boluses have been added together with the submodel of the glucose absorption
from the gastro-intestinal tract.

An interesting feature of the model is the sinusoidal representation of the
circadian variability of insulin sensitivity. The amplitude and the phase of
the circadian rhythm are estimated ‘off-line’ to characterise an individual subject.
The circadian variation is not considered if the model is to be used in a self-tuning
controller. Another 4 out of 14 model parameters are estimated from clinical data.
These include insulin sensitivity, a constant related to the plasma insulin distri-
bution volume, and a time constants of the insulin diffusion in the plasma and the
remote insulin compartments. Most of the remaining parameters are obtained from
the literature or by fitting published data. Although circadian variability of insulin
sensitivity can be viewed as the strength of this simulation model, the model is yet
another example of a nominal average virtual patient model.

4.6 Comparison of Virtual Patient Models

Five well known simulation models have been presented. The models vary in their
complexity and the parameter estimation methods. Two of the models represent
the ‘average virtual patient’ with type 1 diabetes while the remaining simulation
models comprise a population of ‘virtual patients’ with the ability to represent
between subject variability. Table 1 summarises parameter derivation methods and
identifies the time variant parameters of the five ‘virtual patient’ simulation
models.
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5 Summary

A variety of models have been proposed to describe the glucose and insulin
kinetics, and the glucose regulation in subjects with type 1 diabetes. Building on
this experience, research groups are developing ‘virtual patient’ models used to
support and accelerate the development of an artificial pancreas. Several models
exist but most are still being improved and refined. Further research is needed to
increase physiological understanding of and to describe more accurately in
mathematical terms within subject variability over a short (hours to a day) to
longer (days to weeks) time periods. Specific challenges include improving the
model of glucose appearance from the gut following ingestion of complex, slowly
and rapidly absorbed meals including day to day variability of gut absorption.
Validated virtual parameter sets, which characterise different subpopulations of
type 1 diabetes, such as children, adolescents, and diabetes pregnancies are also
needed. Finally, validation methods need to be clarified and adopted by all
research groups developing virtual patient models for the simulators to gain rec-
ognition by the clinical community.
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Simple Parameters Describing Gut
Absorption and Lipid Dynamics
in Relation to Glucose Metabolism
During a Routine Oral Glucose Test

Andrea Tura and Giovanni Pacini

Abstract The oral glucose tolerance test (OGTT) is a simple and physiological test
used for the diagnosis of diabetes and, more generally, for the assessment of the
metabolic condition of an individual. For a deep analysis of the OGTT data, the
exploitation of mathematical models for the interpretation of the test results is
necessary. The focus of this chapter is on some recent models based on OGTT data,
describing the glucose absorption from the gut, and the effects of insulin on the
dynamics of non-esterified free fatty acids (NEFA). As regards the glucose
absorption model, it requires measure of plasma glucose and insulin during the
OGTT. The model allows the estimation of absorption rates, the total glucose
absorbed, and half-life in the gastrointestinal tract. In fact, the increase of post-
prandial circulating plasma glucose over time is the result of gain from gut glucose
absorption and liver endogenous glucose production, and loss because of glucose
uptake, predominantly by skeletal muscle. Endogenous glucose production can be
assessed by some mathematical expressions depending on plasma insulin values,
whereas the glucose loss is calculated as a function of the endogenous glucose
production and of the insulin sensitivity in each individual. Once these variables
have been determined, glucose absorption can be determined by solving a nonlinear
least squares problem fitting the plasma glucose values during the OGTT. The
model was used to analyze sex related differences in OGTT glucose metabolism,
including gut absorption, in healthy humans. We found that, in the early phase of
the OGTT, males had markedly increased glucose absorption rates by approxi-
mately 200 mg/min from the gastrointestinal tract, whereas in the final phase of the
OGTT, females absorbed approximately 60 mg/min more glucose. In another
study, the model was used to assess glucose absorption in 15 pregnant women with
gestational diabetes. As regards the model of NEFA dynamics, it was postulated
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that NEFA kinetics could be described by first order (single compartment) kinetics,
with NEFA production controlled by insulin in remote compartment. It is assumed
that plasma insulin enters a remote compartment, before having an inhibitory effect
on NEFA production. Starting from basal production at basal insulin, NEFA pro-
duction decreases, for suprabasal increase in remote insulin up to a prescribed
value. The identification of the unknown parameters of the model was performed by
applying Genetic Algorithms. The model was used to study NEFA kinetics in a
group of women with a history of gestational diabetes (fGDM). The fGDM women
were divided into normal glucose tolerance group (NGT) and a impaired glucose
metabolism (IGM). We also studied 15 control (CNT) women. We found that,
while fasting NEFA were not different between groups, IGM exhibited slower
decline in plasma NEFA during the OGTT. We conclude that appropriate mathe-
matical modeling allows sophisticated analyses of the OGTT data, thus possibly
providing a comprehensive picture of the metabolic condition.

1 Introduction

The oral glucose tolerance test (OGTT) is the most commonly used dynamic test
in studies that deal with the metabolic assessment of an individual [1]. It is a
dynamic test, since the fasting steady state is perturbed with a glucose load and the
dynamics of the glucose concentration in the peripheral circulation provides
information on the ability of the subjects to dispose of the exogenously admin-
istered glucose. It is a simple test because it only requires a two-hour time after the
ingestion of the water solution containing usually 75 g of glucose, during which a
few blood samples are collected from an easily accessible brachial vein. No
particular setting is required and it could be even performed in the general prac-
titioner’s office. It is a physiological test, since it mimics how carbohydrates
contained within the food are normally ingested. It is a test accepted by the
diabetologists’ community as a diagnostic test, being used to assess the glucose
tolerance of a subject and to establish the presence of diabetes [2].

To achieve this goal, only glucose at fasting and after 2 h is measured.
However, this provides a limited amount of information; therefore, in order to
know more on the status of the subjects additional measurements are necessary. A
typical protocol is to collect a blood sample after an overnight (12 h) fast, give the
drink with the glucose solution and gather blood samples 30, 60, 90 and 120 min
afterwards. A minimum requirement is then to assess plasma concentration of
glucose and insulin at those specific time points. In such a way, a great deal of
indications can be achieved on the general metabolic picture of the individual.
However, a quite sophisticated analysis of the data is necessary to extract evi-
dences on those processes responsible for the maintenance or modification of the
clinical condition. To this aim the exploitation of mathematical models for the
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interpretation of the test results revealed necessary, if not mandatory, to extract
some of the facts hidden within the data-set.

This chapter illustrates mathematical models which describe the evolution of
the application of modeling to OGTT for the assessment of other physiological
processes strictly involved in the characterization of the glucose dynamics in
response to an oral glucose load.

2 Physiological Background and Existing Methods

Once glucose is given orally, it goes through the stomach and starts its intestinal
journey. Passaging through the early part of the gut (duodenum, jejunum, ileum), it
triggers the release of incretin hormones [3], which augment the sensitivity of
pancreatic beta cell to the glucose stimulus, leading to the production and release
of insulin. From the entire gut, in fact, the glucose is absorbed into the peripheral
blood circulation, where its concentration markedly increases; glucose spreads
through all peripheral tissues and organs, including the pancreatic beta cells from
which insulin, equimolarly with C-peptide, is secreted. Beta cell function defines
and quantifies the ability of the beta cells to release insulin in response to changes
in glucose concentration. After passing through the liver, where it is in part
degraded, insulin reaches muscle and adipose tissues; here it allows glucose
incorporation into these tissues, lowering circulating glucose concentration until it
reaches again the pre-load levels. Insulin sensitivity defines and quantifies the
ability of insulin to promote glucose disposal. In addition, other insulin effects are
those of inhibiting hepatic glucose production and lipolysis: i.e., the production of
non-esterified free fatty acids (NEFA) from precursors. A well-tuned performance
of these processes and a good balance among the levels of the various substances
keep the subject metabolically healthy.

Some of the above processes have already been mathematically described
during OGTT. In particular, the action of insulin of inhibiting liver glucose pro-
duction and promoting glucose uptake by peripheral tissues has been the main
component of a glucose kinetics model yielding a parameter (OGIS, oral glucose
insulin sensitivity index) of glucose clearance, strictly related to the degree of
insulin resistance [4]. A few composite models have been introduced [5, 6], but as
they require difficult implementation by skilled operators, complex calculus and
exhibit a limited validation, they have not been generally used. Simple empirical
formulas, basically usable by anyone with a spread sheet have been very suc-
cessful [e.g., 7, 8, 9], including the same OGIS [4]. These methods have been
tested and validated against the glucose clamp, which is the gold standard for
insulin sensitivity assessment. Other model-based assessments from OGTT of
insulin secretion and beta cell function, exploit again complex [6, 10, 11] or
simpler [12, 13] mathematical systems. For instance, insulin secretion has been
represented with a model that describes the three main components involved in the
insulin release process (first phase, dose response to glucose, potentiation) [11].
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This model yields parameters on beta cell function that are fundamental to the
understanding of possible impairments of the pancreatic release of insulin [14].
The most widely used technique for assessing beta cell function, however, relies
on a simple formula (insulinogenic index [15]). All the above models analyze the
relationships between the relative levels of insulin (and/or C-peptide) and glucose.
Another method includes in the analysis also the relative shapes of the concen-
tration time courses as a discriminant for impaired beta cell function [16], with
special reference to the C-peptide curve. In fact, C-peptide is more informative
than insulin for the assessment of real, pancreatic insulin secretion and beta-cell
function, since C-peptide does not undergo partial degradation by the liver (as
insulin does). Nonetheless, recently, methods have been proposed for the assess-
ment of insulin secretion directly from insulin [17]. For detailed descriptions on
methods and modeling for insulin sensitivity and insulin secretion, refer to specific
reviews [e.g., 18].

3 New Models for the Analysis of Other OGTT Aspects

As seen above, the OGTT comprises different processes which interact with each
other at different, but all important, levels. The most detailed possible analysis of
them will be very useful to characterize in full the metabolic status of a single
individual. To this aim, recently other models have been presented, and two more
pieces of this multifaceted puzzle are reported in the following, which focus on the
glucose absorption from the gut and on the effects of insulin on the dynamics of
NEFA.

3.1 Glucose Absorption

3.1.1 The Model

To assess glucose absorption, which in humans is not directly measurable, we
developed a novel approach, based on mathematical modeling to mimic absorptive
conditions at the intestine site. Our method allows the estimation of absorption
rates, the total glucose absorbed, and half-life in the gastrointestinal tract. The
validity of our novel model was checked by using manifold-labeled glucose
tracers, the gold standard of glucose absorption measurement [19]. The model
requires only the measurement of both glucose and insulin concentration during
the OGTT.

The increase of postprandial circulating plasma glucose (dGcirc) over time (dt)
is the result of gain from gut glucose absorption (ABS) and liver endogenous
glucose production (EGP), and loss because of glucose uptake (Rd), predominantly
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by skeletal muscle (Fig. 1). Thus, changes in glucose concentration during the
OGTT can be expressed as:

dGcirc=dt ¼ 1=VG � BW � EGP tð Þ� Rd tð Þð Þ þ ABS tð Þ½ � ð1Þ

with initial condition: G(0) = fasting glucose concentration; ABS(0) = 0 and
EGP(0) = Rd(0). BW is the body weight and VG is the oral glucose distribution
volume. VG is in deciliters, BW in kilograms; Gcirc is in mg/dl; EGP and Rd are in
mg min-1 kg-1, and ABS in mg min-1. VG is assumed as 9–15 % of BW,
according to previous investigations [20].

It was demonstrated that EGP and Rd are predominantly regulated by circu-
lating insulin concentrations [19]. During the OGTT, EGP in women can be
calculated using the following relationship:

EGP tð Þ ¼ 1:889� 0:342 � log insulin tð Þð Þ ð2Þ

while in men, the relationship is equal to:

EGP tð Þ ¼ 2:542� 0:496 � log insulin tð Þð Þ ð3Þ

The constants in Eqs. (2) and (3) have been fixed for insulin in lU/ml.
Rd is assessed in the single individual. Specifically, a logarithmical relationship

is computed between two points in the (Rd, insulin) space. The first point is (Rd(0),
insulin(0)), with Rd(0) calculated by the Eq. (2) (it should be reminded that
Rd(0) = EGP(0)), and insulin(0) equal to basal, fasting insulin. The second point is
(Rd(maximum), insulin(maximum)). Thus, it is assumed that Rd is maximum when
plasma insulin is maximum. Of course, the maximum value of insulin during the

Fig. 1 Schematics of the main processes of glucose homeostasis. Glucose is produced by the
liver (endogenous glucose production) and absorbed by the gut (glucose absorption); insulin is
produced by pancreatic beta-cells (insulin secretion); then, insulin inhibits endogenous glucose
production, and promotes glucose uptake by the muscles
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OGTT is easily identified. As regards Rd(maximum), it is assumed that it is equal to
the glucose disposal represented by the parameter M of an euglycemic-hyperins-
ulinemic clamp (that is, the glucose infusion rate during the last part of the clamp
[21]). Alternatively, when the clamp is not performed, the clamp-like index [9] is
used, or another OGTT insulin sensitivity index which can be considered a sur-
rogate of M. Figure 2 shows the described approach for calculating Rd: the loga-
rithmic function identified in each subject is used to assess Rd in each time sample
of the OGTT. Thus, since dGcirc/dt is calculated from the plasma glucose con-
centration during the OGTT, in Eq. (1) the only unknown is ABS. Once the model
(1) is integrated in time and ABS estimated, for each subject total glucose absorbed
is calculated by integrating glucose absorption rates over the OGTT duration.
Moreover, Glucose half-life (t�) in the gastrointestinal tract is individually
determined by linear curve interpolation of relative glucose retention during the
OGTT, by using the closest time points to cross the 50 % threshold [19].

In the original formulation [19], Eq. (1) was implemented using Simulink for
Matlab (MathWorks Inc., Boston, MA), and ABS was estimated by solving the
corresponding nonlinear least squares problem fitting the plasma glucose values
during the OGTT (MatLab function used LSQNONLIN with 10,000 iterations at
maximum). Every time sample of ABS was treated as an independent parameter to
be estimated. Common criteria of model performance (best fit, residuals, variance-
covariance Fisher’s matrix) were evaluated for accepting the final model’s
prediction.

3.1.2 Applications and Outcomes

In a first study [19], the model (1) was used to analyze sex related differences in
OGTT glucose metabolism, including gut absorption, in healthy humans. We
analyzed 48 females and 26 males, with comparable age and body mass index but
different height (males being taller). We found that, in the early phase of the OGTT,
males had markedly increased glucose absorption rates by approximately 200 mg/
min from the gastrointestinal tract, whereas in the final phase of the OGTT, females
absorbed approximately 60 mg/min more glucose. These differences in glucose
absorption were accompanied by an approximately 14 min longer gut glucose half-
life in women, which could explain the higher glucose levels at the end of the
OGTT in females. However, we also found that females have lower peripheral
insulin release during the first 60 min of the OGTT, and this may result in a lower
glucose disappearance rate after a time interval, given the known delay of insulin
action on peripheral tissues. In fact, the period of lower glucose disappearance rate
included the 2 h data sample, characterized by higher glucose level in females.
Therefore, impaired glucose tolerance (IGT) higher prevalence in women may
depend on a concomitant effect of insulin release and glucose absorption.

In another study [22], the model (1) was used to assess glucose absorption in 15
pregnant women with gestational diabetes mellitus (GDM), which were compared
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to 7 normal glucose tolerance women (NGT), matched for major anthropometric
characteristics. After delivery (6–7 months later), both groups were studied the
same way. It was found that in GDM gut glucose absorption rates were lower than
in NGT in the 30–120 min interval of the OGTT. In addition, in GDM glucose
absorption rates also were lower during pregnancy than after delivery (where all
the GDM women returned to non-diabetic glycemic levels). In contrast, glucose
absorption rates in NGT were comparable during and after pregnancy. Based on
these findings, it could be concluded that the hyperglycemia of the GDM women
cannot be ascribed to excessively rapid or increased glucose absorption.

3.2 NEFA Kinetic

3.2.1 The Model

We have developed a model of and non-esterified fatty acids (NEFA) kinetics. It
was postulated that NEFA kinetics could be described by first order (single
compartment) kinetics, with NEFA production controlled by insulin in remote
compartment [23]. In detail, the compartmental representation of NEFA kinetic
model is shown in Fig. 3. It is assumed that plasma insulin enters a remote
compartment, before having an inhibitory effect on NEFA production. The com-
partmental state variable Y(t) is a delayed profile of I(t), characterized by the
fractional clearance P2 in min-1. NEFA production was considered to be: (i)
linearly dependent on deviations from the basal value of remote insulin; (ii) with
saturable inhibition. Thus, starting from basal production at basal insulin, NEFA
production decreases with slope SNEFA, in ml/mU, for suprabasal increase in
remote insulin up to a value beyond which NEFA production becomes constant.
The maximum inhibitory capacity of insulin on NEFA production is expressed as a

Basal
insulin

Basal endogenous
glucose production

Insulin sensitivity
from the clamp(M)

Glucose uptake(Rd)

Maximum 
insulin

Insulin

Fig. 2 Schematics of the
method for the calculation of
rate of glucose disappearance
(glucose uptake, Rd)
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non-dimensional fraction (qNEFA) of the basal production. The differential equa-
tions modelling the NEFA kinetics can be written as

dNEFAðtÞ
dt

¼ �KNEFA � ðNEFAðtÞ � NEFAb �max 1� SNEFA � Y
0 ðtÞ; qNEFA

n o

NEFAð0Þ ¼ NEFAb

8<
:

ð4Þ

dY 0ðtÞ
dt
¼ �P2 � ½Y 0ðtÞ � ðIðtÞ � IbÞ�

Y 0ðtÞ ¼ YðtÞ � Ib

8<
: ð5Þ

The subscript b identifies the basal values of plasma NEFA and insulin, I, In
Eq. (5),the quantity Y0 is the remote insulin level above basal insulin
Y0(t) = Y(t) - Ib. Therefore, the value assumed by the quantity SNEFA in Eq. (1)
provides measure of the lipolysis inhibition due to suprabasal insulin variations,
whereas the quantity qNEFA accounts for circulating NEFA at complete HSL
inhibition, and it is related to the fraction of NEFA that, produced within the
intravascular system, escapes cellular uptake. The quantity KNEFA, in min-1,
represents the fractional turnover rate for NEFA concentration. For given values of
KNEFA and basal concentration NEFAb, the basal production rate of NEFA is
calculated as NEFAb 3 KNEFA in mmol/l/min.

The model identification process allows the determination of an unknown
parameter vector P = [NEFAb, KNEFA, SNEFA, qNEFA, P2]T, the identification of
which usually resorts to traditional gradient-based methods, in particular the
weighted nonlinear least squares approach, using the Levenberg-Marquardt algo-
rithm for the minimization procedure. However, the identification of the param-
eters P of the NEFA model of Eqs. (4) and (5) cannot be carried out by applying
gradient-based methods straightforward. In fact, in gradient-based deterministic
optimization methods, in every iteration step the calculation of the gradient of the
least-square functional, with respect to the parameters P, must be calculated. Thus,

NEFANEFA

Y
(remote ins.)

KNEFA
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SNEFA
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NEFA 
production

Fig. 3 Schematics of the
NEFA kinetics model and of
the insulin action on NEFA
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the differentiability of the least-square functional with respect to the parameters
P must be guaranteed. However, in this, case, this criterium is not satisfied by
Eq. (1), because it includes a maximum function, whose differentiability is not
guaranteed everywhere. Thus, the identification problem could be ill-posed.

For the reasons mentioned above, the identification of the unknown parameters
of the model was performed by applying Genetic Algorithms (GAs), which are
theoretically and empirically proven to provide a robust search in a complex space
[24, 25]. GAs are in fact derivative free random search algorithms for nonlinear
problems based on the rules of natural selection. Their implementation requires the
five components of vector P to be encoded through a proper representation method.
In the study, floating-point representation was chosen. Each individual was com-
posed by 5 genes, i.e., the 5 components of vector P. The limits of the parameters to
be estimated, defining the borders for the field of existence of the solution, were set
as:

NEFAb ¼ 200� 1200; KNEFA ¼ 0:0001� 1; SNEFA ¼ 0:0001� 0:1; qNEFA

¼ 0� 1; p2 ¼ 0� 1

To overcome the problem of the possible dependence of the identification
procedure on the initial values of the parameters, the genetic algorithm was ini-
tiated with 150 randomly generated individuals. An appropriate cost function, the
so-called ‘‘fitness function’’, was built to control the GA search progress in an
acceptable direction, and a possible solution P̂ is then reached. Afterwards, a new
generation of individuals (i.e., possible solutions) is constructed from the actual
population by applying three genetic operators: reproduction, mutation and
crossover), and the search for the best solution is repeated. The number of itera-
tions required for convergence to the desired solution was set at 2,000 after a
sensitivity study. Furthermore, to avoid converging to a local minimum, the cycle
was repeated 200 times, and the best solution was then finally chosen. Like in
previous investigations [25], the number of parameters to be estimated, together
with the specific genetic operators applied, made the choice adopted adequate for
the population size. The numerical implementation of the methodology described
above was performed using an in-house developed code written with MATLAB
programming language (The MathWorks, Natick, MA).

3.2.2 Applications and Outcomes

The model presented here was used to study NEFA kinetics in a group of women
with a history of gestational diabetes (fGDM) that underwent an oral glucose
tolerance test (OGTT) [26]. In fact, we studied a large group of fGDM immedi-
ately after partum, and a subgroup also one to two years afterwards, to test the
hypothesis that women with former GDM are characterized by impaired NEFA
dynamics. The fGDM women were divided into normal glucose tolerance group
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(NGT) and a group with impaired glucose metabolism (IGM), including subjects
with impaired glucose tolerance and/or impaired fasting glucose. We also studied
15 control (CNT) women without known risks for diabetes, and with normal
glucose tolerance during pregnancy and at the time of study. We found that, while
fasting NEFA were not different between groups, IGM exhibited slower decline in
plasma NEFA during the OGTT, with a corresponding area under the curve of
plasma NEFA, AUCNEFA, greater than in NGT and CNT during the OGTT.
Parameters of NEFA kinetics, i.e., inhibition of lipolysis (SNEFA) and the fractional
turnover rate (KNEFA), were typically lower in fGDM (P range 0.018-0.041);
parameters p2NEFA and qNEFA were not different among the groups. We also
analyzed the possible effect of obesity (BMI C 30 kg/m2) on NEFA variables.
Thus, we divided the fGDM in obese (n = 15) and non-obese (n = 57) subjects.
AUCNEFA was greater in obese than non-obese subjects (P = 0.006), but fasting
NEFA was not different. SNEFA and KNEFA tended to be lower in the obese group
but the difference did not reached statistical significance. As regards the subgroup
of 28 women that underwent a follow-up examination, they showed no differences
in the majority of the measurements and parameters analyzed in the study [26]. In
fact, glucose concentration values did not change from basal to follow-up condi-
tion, neither in terms of mean glucose (P = 0.75), nor in terms of the single OGTT
glucose samples (P range 0.23–0.90); similarly, NEFA concentration values were
very similar (P [ 0.3).

4 Conclusions

The OGTT is the test of choice for the determination of the metabolic state of an
individual due to the several advantages of its performance. Given its wide use, it
has also been the target for the development of mathematical models describing
the OGTT outcomes in different conditions and for describing the interrelation-
ships among different compounds which could be measured after an oral glucose
load. We and others have produced simple models that integrated in the main
glucose/insulin control the effect of other substances such as C-peptide [11, 12,
27], proinsulin [28], glucagon [29], amylin [30], incretins [31]. In this chapter, we
have presented two further recent developments of this broad description of the
OGTT, focusing on glucose appearance into the systemic circulation after the load
and on the macro processes regulating NEFA kinetics following changes in the
concentration of glucose and insulin. These two new models revealed very useful
to add further insights on the metabolic conditions of different subjects in par-
ticular pathophysiological situations.

OGTT is considered a test that mimics the normal way of assuming carbohy-
drates, and in addition, it is used for the diagnosis of type 2 diabetes [2]: these
aspects make OGTT extremely relevant. However, currently, also the meal test
(MTT) has become increasingly popular, since it is assumed to be the most
physiologically realistic test available. In fact, in addition to glucose also other
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nutrients (proteins, fats) are administered, so that it resembles a real meal: i.e., the
way humans naturally assume energy. Many of the existing models and empirical
formulas which were developed for the OGTT can be safely applied to MTT
[32–34], others have been developed on purpose [4, 10]. In relation to the two
models presented in this chapter, it is worth saying that it would be necessary
testing whether the integration of the role played by other nutrients such as pro-
teins and fats may indeed increase the information content of the models’ outcome.
This is particularly worthwhile for the NEFA model, since it is clear that exoge-
nously given fats are definitely interfering with those produced endogenously, in
terms of appearance and inhibition.

In conclusion, given all the advantages of performing an OGTT in a single
subject, this test must be progressively exploited to gather an increased amount of
information. The model presented here are two more steps ahead toward a widest
possible description of the OGTT results.
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Data-Driven Modeling of Diabetes
Progression
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Abstract A realistic representation of the long-term physiologic adaptation to
developing insulin resistance would facilitate the effective design of clinical trials
evaluating diabetes prevention or disease modification therapies. In the present
work, a realistic, robust description of the evolution of the compensation of
the glucose-insulin system in healthy and diabetic individuals, with particular
attention to the physiological compensation to worsening insulin resistance is
formulated, its physiological assumptions are presented, and its performance over
the span of a lifetime is simulated. Model-based simulations of the long-term
evolution of the disease and of its response to therapeutic interventions are con-
sistent with the transient benefits observed with conventional therapies, and with
promising effects of radical improvement of insulin sensitivity (as by metabolic
surgery) or of b-cell protection. The mechanistic Diabetes Progression Model
provides a credible tool by which long-term implications of anti-diabetic inter-
ventions can be evaluated.
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1 Introduction

The glucose-insulin system is a time-honored topic for the development of
mathematical models, starting from the early days of Bolie [1] and Ackerman et al.
[2]. Part of the attention devoted to this specific physiological system over the
years is due to its embodying, in its most skeletal interpretation, a relatively
simple, clear-cut feedback mechanism: when glycemia increases, the pancreas
secretes insulin which brings glycemia down. If the system were this simple,
however, mathematical physiologists would probably not have found material for
continuing scientific investigation for more than 50 years to date. In fact, the
control is complicated by internal nonlinearities and delays, by external influences
(notably through the link with energy consumption and lipid metabolism) and
by the superposition of different levels of neural and hormonal regulation
(e.g. through the sympathetic system and through the incretins mechanism).

Modeling the regulation of glycemia through its main controller, the hormone
insulin, may satisfy different purposes. On one hand, understanding short-term
(minutes to hours) regulation is relevant to the conduction of perturbation
experiments (such as the Intra-Venous Glucose Tolerance Test, IVGTT, or the
Oral Glucose Tolerance Test, OGTT), whose goal is to identify characteristics of
the experimental subject (e.g. insulin sensitivity), of direct interest to the clinician
or to the investigator; other Authors deal with modeling of short-term glucose-
insulin regulation within the context of the present volume. On the other hand,
understanding the long-term regulation of the system (months to years or decades)
should help devising therapeutic schemes, or assessing the likely impact and
ultimate benefit of drugs, for which only the short term effects are known. As will
be discussed at length in the present chapter, depending on the assumptions that
the physiologist is willing to accept, modeling may clarify quantitatively the
ultimate results, which can be expected if the assumptions hold true.

The present chapter is structured in the following way: in the continuation of
this Introduction, a brief survey of the physiology of the glucose-insulin system is
sketched, as is relevant to long-term diabetes progression. A model for long-term
glucose-insulin-betacell population dynamics, previously introduced and validated
by the present authors, is then briefly described. Relevant model features are then
discussed, with emphasis on the applicability of this kind of modeling to clinical
trial design and simulation.

1.1 Physiological Remarks

The short-term regulation of glycemia involves a hormonal response based on
glucagon and adrenalin (responding to hypoglycemia) as well as on insulin
(responding to hyperglycemia). In the context of a discussion on diabetes, the main
metabolic defect consists either in a failure of pancreatic b-cells to secrete
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sufficient insulin in response to hyperglycemia (Type 1 Diabetes Mellitus, T1DM)
or in a failure of the secreted insulin to determine an increase in tissue glucose
uptake (peripheral insulin resistance) and/or decreased liver gluconeogenesis and
glycogenolysis (central insulin resistance) [3].

There is evidence from rodents that another negative feedback loop acts over a
longer time-span: sustained or sub-acute hyperglycemia may increase the net rate
of b-cell replication (b-cell replication or differentiation from progenitor ductal
cells, minus b-cell apoptosis) [4–8], so that the active b-cell population increases,
the capacity for insulin secretion increases, and insulin resistance is somewhat
overcome.

However, when insulin resistance continues for a long time, it is common to
observe clinically the progressive ‘exhaustion’ of insulin secreting ability, the
establishment of a relative insufficiency of elevated circulating insulin levels to
compensate for insulin resistance, and the emergence of frank Type 2 Diabetes
Mellitus (T2DM). It has in fact been observed that after prolonged severe hyper-
glycemia b-cell replication rates may be depressed, possibly due to glucose toxicity
[9]. It is therefore the interplay of variations in insulin sensitivity and the resulting
changes in pancreatic b-cell responsiveness and b-cell population size that deter-
mines the development of T2DM. In most individuals, the development of insulin
resistance and the loss of b-cell function develops over many years and reflects
genetic and environmental influences that differ widely among affected individuals.

Whatever the genetic or environmental determinants, a progressively worsening
insulin resistance translates at first in a slowly increasing glycemia, due to the early
compensation by increased circulating insulin levels. This compensatory process is
known to involve an expansion of b-cell mass in rodents [4, 10], and similar
conclusions can be drawn from studies of human autopsy specimens [11]. If this
mechanism were able to continue indefinitely, higher and higher insulin concen-
trations would indefinitely compensate for lower and lower insulin sensitivity, but
what is observed clinically is that compensation is not complete, and indeed in the
later stages of the disease a deficit of b-cells develops: glucose toxicity on b-cell
replication/apoptosis rates has been strongly advocated as a possible cause of this
eventual failure [12]. As soon as the hyperinsulinemic compensation mechanisms
fails, glycemia increases rapidly and T2DM develops [13].

It is important to realize that the sequence of events described above appears to
underlie the progression from the normal state, to the pre-diabetic states of
Impaired Glucose Tolerance (IGT) or Impaired Fasting Glucose (IFG), to frank
T2DM. In fact, isolated insulin resistance, as can be seen in severely obese indi-
viduals and in pregnant women, or simply reduced b-cell mass, occurring for
instance in pre-clinical T1DM [14] and in pancreatectomized animals after islet
transplantation [15], do not lead to appreciable hyperglycemia by themselves.

Prompted by the clinical and experimental need to devise procedures for the
assessment of the degree of insulin sensitivity in a given subject, perturbation
protocols like the Intra-Venous Glucose Tolerance Test (IVGTT), the Oral Glucose
Tolerance Test (OGTT) or the Euglycemic Hyperinsulinemic Clamp (EHC) have
been devised. The glycemia and insulinemia observations during a perturbation
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study reflect of course the short-term control mechanisms, and mathematical
models have been proposed aiming at the quantitative understanding of such
mechanisms [1, 16–22]. If the short-term model is correct and the dataset is
sufficiently rich, statistical estimation of the model’s parameters allows the snap-
shot determination of the degree of insulin resistance or beta cell function at that
particular time in the life of the subject.

It is on the other hand very difficult to assess quantitatively the natural history
of the development of diabetes, since its progression is slow (over decades), it is
difficult to measure relevant variables (like b-cell mass) and variability (also due to
diverse lifestyle and therapeutic interventions) is high. In fact, we do not have
long-term studies of cohorts of individual subjects (beyond a few years). In this
context, a mathematical model of diabetes progression of the disease offers the
opportunity to simulate the evolution of the disease, depending on the assumptions
made, and to explore in silico different scenarios, with different primary defects
(in insulin sensitivity or secretion) associated with different therapeutic schemes.
In this as in other areas of physiology, the utility of a model is to force the
investigator to unambiguously specify the assumptions made, delivering quanti-
tative, verifiable predictions corresponding to those assumptions.

Different approaches to the long-tem forecasting of the evolution of Diabetes have
been pursued: Mechanistic models for the progression of diabetes [23, 24] attempt to
coherently integrate commonly accepted physiological mechanisms in order to
predict the long-range behavior of disease processes. Other models extend mass-
balance principles to long-term situations [25]. Discrete-state dynamical systems
with covariate-dependent transition probabilities among states [26–28] depict the
statistically observed evolutions over populations without depending on the identi-
fication of the underlying physiology. The quest for a good long-term model of
diabetes progression has practical implications: a valid disease and therapeutic
model could be used to inform clinical trial design, influencing decisions about study
population, sample size, and treatment duration through model simulations.

In the following we will describe a recently introduced [24] and validated [29]
model for the long-term progression of diabetes mellitus, based upon the interplay
of glycemia, insulinemia and b-cell mass. This model explicitly represents such
phenomena involved in glucose homeostasis as glucose-dependent insulin secre-
tion, insulin mediated glucose disposal, short-term stimulation and long-term
depression of insulin production by hyperglycemia (glucose toxicity), allowing the
simulation of progressive worsening of insulin resistance and of the resulting
changes in b-cell mass.

Based upon this model, sample life trajectories of subjects with different
combinations of primary defects will be explored: disease heterogeneity in T2DM
is manifest in multiple ways, including age of onset, relative contribution of insulin
resistance and b-cell dysfunction, rate of disease progression, risk of complica-
tions, and response to available therapies. Tailored therapeutics (TTx) involves
matching treatment options to individual patient characteristics with the goal of
maximizing the benefit/risk ratio. In this context, the DPM mechanistic mathe-
matical model of T2DM long-term evolution is used to explore TTx hypotheses.
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In the real world patients show variegated responses to different therapies due
to many interacting factors. The model allows us to define primary ‘pure’ defects
and well-defined combinations thereof: the main goal in the examples will be to
use model predictions to investigate the interaction between specific pathophysi-
ologies and specific therapies.

2 The Diabetes Progression Model

The main model equations are reported below. For a thorough description of the
structure of the model and a detailed report of the assumptions made in order to
assess model parameter values see De Gaetano et al. [24] and Hardy et al. [29]:

dB tð Þ
dt
¼ k Gð ÞB 1� B

Bmax

� �
; B t0ð Þ ¼ B0 ð1Þ

dg
dt
¼ �KgG Ggþ Tg; g t0ð Þ ¼ g0 ð2Þ

G ¼ c
qþ I

ð3Þ

I ¼ h Gð Þ Imax BB ð4Þ

h Gð Þ ¼ G=Ghð Þmh

1þ G=Ghð Þmh
¼ Gmh

ah þ Gmh
; letting ah ¼ Ghð Þmh ð5Þ

k Gð Þ ¼ kmin þ g
x3

1þ x3
; x Gð Þ ¼ x0

G

Gk
ð6Þ

Kxi tð Þ ¼ KxiStart þ
t� t0

tmax � t0

KxiEnd � KxiStartð Þ ð7Þ

d A

d t
¼ �KxaAþ KagG

ð100� AÞ
100

;A t0ð Þ ¼ A0 ð8Þ

with c ¼ Tgl

KxgI
; q ¼ Kxg

KxgI
; Imax B ¼ TigB

Kxi
; TigB ¼ KxiStart I0

h G0ð ÞB0
; Kag ¼ Kxa A0

G0
ð100�A0Þ

100

, and kmax

= kmin + g.
The definitions and units of all state variables and parameters are reported

respectively in Tables 1 and 2.
Equations 3 and 4 simply state that prevailing glycemias at any historical

moment are inversely related to the prevailing insulinemias, while prevailing in-
sulinemias are directly related to (an increasing function of) prevailing glycemias
as well as being directly related to available b-cell mass and secretory capacity.
The ‘‘prevailing’’ glycemia and insulinemia levels described in the model do not
strictly refer to either fasting or post-prandial values, but are in fact representative
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of daily steady-state blood concentrations, hourly oscillations being averaged out
when considering the evolution of the system over a time span of months or years.
Prevailing glycemia and insulinemia are derived as equilibrium values, given the
existing level of insulin sensitivity and the current functional b-cell mass available
for insulin secretion: they substantially reflect real-life post-absorptive values.

The model hypothesizes, in a straightforward population dynamics fashion, that
the variation in b-cell mass B (Eq. 1) is proportional to current mass in logistic
growth fashion, with carrying capacity Bmax, multiplied by a net-growth rate k.

In turn, k depends (Eq. 6) on prevailing glucose concentrations, in the sense
that it varies from a minimum negative value (kmin) to a maximum value that is
dependent both on the prevailing pancreatic reserve described below (i.e.
kmax = kmin ? g) and on glucose level according to a sigmoidal 3rd-degree Hill
function, with k = kmin when G = 0, and k tending to kmax as G tends to infinity.

The Hill function is normalized (it is a function of x rather than G) so as to have
maximum slope at the glycemia value Gk. If Gk is approximately equal to normal
fasting glycemia (e.g. around 5 mM), this is the same as assuming that the reg-
ulation mechanisms of the pancreas work optimally in a neighborhood of the target
fasting glycemia.

The term g represents the ‘pancreatic reserve’, i.e. the current ability of the
pancreas to increase its b-cell proliferation rate if sufficiently stimulated by the
ambient glucose concentration. Pancreatic reserve, however, is not a fixed quantity:
it varies with time (Eq. 2), in such a way that it always tends to an equilibrium level.
This equilibrium is the result of two competing forces: glucose-toxicity-induced
shrinkage of pancreatic reserve and spontaneous recovery of the pancreas. Pan-
creatic reserve (at equilibrium) is thus inversely proportional to prevailing

Table 1 Definition of state variables

State variables: symbol and meaning Units

t, time [mo]
B, b-cell mass as Millions of active b-cells [Mc]
I, fasting serum insulin concentration (monthly average) [pM]
G, fasting plasma glucose concentration (monthly average) [mM]
h, glucose effect on pancreas [#]
x, replaces Glucose variations with variations of a scale-free pure number [#]
k, net rate constant for b-cell growth (or decay), resulting from the difference

between production (replication) rate and mortality (apoptosis) rate
[mo-1]

g, possible lambda excursion, represents pancreatic replication ‘reserve’ [mo-1]
KxgI, second-order insulin-dependent glucose tissue uptake rate per pM

insulin, represents insulin sensitivity
[min-1/pM]

c, resistance to insulin as the number of mM of glucose at which glycemia
stabilizes for a single pM of insulinemia

[mM * pM]

kmax, maximum (positive) value of k, i.e. the maximum possible difference
between replication rate and apoptosis rate

[mo-1]

ImaxB, insulin attainable levels, expressed as the maximal contribution of a
million b-cells to fasting insulin plasma concentration

[pM/Mc]

A, glycosylated Haemoglobin, HbA1c (monthly average) [%]

170 A. DeGaetano et al.



glycemias. In other words, Eq. 6 prescribes that hyperglycemia will always acutely
stimulate pancreatic b-cell replication (to the extent that this is allowed by the
current pancreatic reserve level), while Eq. 2 prescribes that, chronically, sustained

Table 2 Definition of model parameters

Model parameters: symbol and meaning Units

B0 = B(t0): initial condition on b-cell mass [Mc]
Bmax: maximal size of b-cell mass [Mc]
I0: insulinema at age t0 [pM]
G0: glycemia at age t0 [mM]
Gk: the glycemia of maximal sensitivity of the regulation of b-cell population

dynamics
[mM]

Tgl: liver glucose output. This parameter can be considered as a constant
basal, insulin-independent glucose output, while insulin-dependent
glucose output (decreasing with increasing levels of insulin) is taken into
account through the action of KxgI

[mM/min]

Kxg (FAST): first-order insulin-independent glucose tissue uptake rate [min-1]
TigB (FAST): maximal pancreatic insulin secretion per million b-cells [pM/min/Mc]
Kxi (FAST): apparent first-order elimination rate constant for insulin [min-1]
KxiStart: apparent first-order elimination rate constant for insulin at baseline

(e.g. at age 18 years)
[min-1]

KxiEnd: Apparent first-order elimination rate constant for insulin at the end of
a normal life (e.g. at age 90 years)

[min-1]

KxgI0: value of KxgI at t0 [min-1/pM]
tI: time of midpoint JxgI decrease (time at 0.5 * KxgI0) [mo]
mI : exponent for the decrease in KxgI [#]
q: ratio of 1st order to 2nd order (Insulin Dependent) rate constants for tissue

glucose uptake from plasma
[min-1/(min-1

/pM)] = pM
ImaxB0: value of ImaxB at t0 [pM/Mc]
kmin: the minimum (negative) value of k, i.e. the maximum net apoptosis rate [mo-1]
g0: value of g at t0 (determined) [mo-1]
Tg: the spontaneous recovery rate of the pancreas [mo-2]
KgG: Rate constant expressing pancreatic glucose toxicity [mo-1mM-1]
Gh: centering glucose concentration for Hill-shaped glycemia effect on

pancreatic insulin release, set to 9 mM
[mM]

mh: power coefficient for Hill-shaped glycemia effect on pancreatic insulin
release, set to 4 in order to achieve linearity between 5 and 10 mM,
essentially zero before 3.5 mM, essentially saturated above 25 mM

[#]

h0: The value of the h(G) function at t0 (determined) [#]
n: the scaling factor for the X support variable, computed so as to center the

X sigmoid curve on the value k = 0
[#]

A0 = A(t0): initial condition on glycosylated Haemoglobin (HbA1c). [%]
Kag : the rate constant of production of glycosylated haemoglobin from

circulating glucose
[%/mo/mM]

Kxa: the spontaneous elimination rate constant of (glycosylated)
Haemoglobin

[mo-1]

t0: starting age, with system at equilibrium, in months [mo]
tg10, Half-life of Pancreatic reserve at 10 mM Glucose [mo]
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hyperglycemia will make pancreatic reserve decrease. Notice that, if pancreatic
reserve is sufficiently damaged, i.e. if g \ -kmin, then kmin + g \ 0 and b-cell
population would decline, in the absence of therapy, no matter what the prevailing
glucose concentration. It should be kept in mind that this effect could well stem both
from an anti-proliferative and from a pro-apoptotic original lesion.

Equations 3 and 4 derive, as hinted to above, from the equilibrium condition for
glycemia and insulinemia respectively, given that the model focuses on changes
over months or years. At each point in slow time, therefore, the fast dynamics of
glucose and insulin are assumed to be at equilibrium. This equilibrium may be
conceived as being the average glycemia produced by the average insulinemias
and by the current levels of insulin sensitivity. Conversely, average insulinemia is
determined by the prevailing glycemias, by the b-cell mass available at the time,
and by a coefficient of insulin production at maximal stimulation per b-cell mass
unit. It should be pointed out that using fasting or average glucose and insulin
concentrations amounts conceptually to the same thing, as we only need indicator
quantities for the prevailing state of the system over a period of a day or a week.

The function h (Eq. 5) captures the hypothesis that glycemia stimulates insulin
production by the pancreas in a sigmoidal fashion, starting at zero, sloping up
approximately linearly between 5 and 10 mM glycemia, and approaching
asymptotically a maximum as glycemia increases.

We found it necessary to stipulate that, as observed in the literature [30], the
apparent first order rate constant of elimination of insulin from plasma decreases
with age (Eq. 7): this allows the model to replicate the observed decline of insulin
secretory function, associated with preserved or even increased levels of serum
insulin, with advancing age [31].

The variable c (inversely related to the index of insulin sensitivity KxgI)
expresses resistance to insulin, as the concentration at which glucose stabilizes for
each pM of insulin concentration.

For the purposes of the present simulations, it has been assumed that the
insulin-independent glucose tissue uptake rate constant Kxg is small (within the
range of considered glycemias) compared to insulin-dependent glucose uptake
[19], and that consequently the ratio q is also approximately zero.

The variable ImaxB is the maximal contribution of a million b-cells to fasting
plasma insulin concentration. Its value is determined by the maximal insulin
secretion rate per million b-cells TigB (determined by equilibrium conditions at t0),
and by the actual first-order apparent rate of elimination of insulin from plasma, Kxi,
which is considered here to decrease with age (linearly, in first approximation), as
mentioned above. It should be kept in mind that TigB in our simulations is made to
decrease when supposing primary defects of insulin secretory function with
advancing age, and conversely it is made to increase in response to secretagogues.

In order to link observable glycated hemoglobin with the glucose dynamics, a
simple linear model of the kinetics of HbA1c (indicated as A in Eq. 8) is part of
DPM, with increase determined by prevailing glycemias and by the concentration
of native HbA0, and decrease linearly determined by the continuous destruction of
red blood cells.
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2.1 Parameter Assessment

Parameters for the model have been carefully assessed from literature data and from
the results of directed experiments, with the goal of maintaining consistency among
the several sources. Only human data have been used. Although limited information
was available for some parameters, most were based on empirical observations
derived using well-established methodologies. The majority of parameters were
obtained from in vivo studies but in a few cases only in vitro or post-mortem data
were available. Preference was generally given to studies with larger numbers of
subjects, but study quality and design were also considered (e.g. age range of study
population, level of validation of key measurements). For each parameter, we
sought to identify a typical value, reflecting a non-diseased population, keeping in
mind that the range of reasonable values for each parameter would include those
seen in diabetic individuals. Typical values and ranges at time = t0 were generally
taken from data obtained in young, healthy adults (age 18–30).

Parameter values used in this simulation were as reported in [29], with the
following specifications. Moderate secretion and sensitivity defects were assumed
to have a minimum reachable value of the corresponding coefficients at 15 %
normal, whereas severe defects were supposed to cause a decrease of the coeffi-
cient down to 2.5 % normal. In both cases the age at 50 % defect was assumed to
be 25 years. The threshold of glycemia for the diagnosis of diabetes was 7 mM.
Proportional improvement by classical sensitizers or secretagogues was assumed
to be 50 % with respect to the current ‘‘natural’’ value as determined by the
progression of disease. Definitive improvement of insulin sensitivity produced by
bariatric surgery was assumed to 7.5 % of normal (i.e. a small fraction of
supposedly perfect insulin sensitivity as seen in young age) above the current
‘‘natural’’ value due to age and disease. Definitive decrease of glucose toxicity
produced by b-cell protectors was assumed to be 20 % of normal.

The model’s numerical integration, starting with given parameter values, has
been implemented in a mixed Matlab (� 1994–2007 The MathWorks, Inc.) and
C/C++ (GCC, � Free Software Foundation, Inc.) environment, and is freely avail-
able as a service to academic users through the CNR IASI BioMatLab website [32].

3 Results

3.1 Qualitative Analysis of the Behavior of Solutions

The original published model [24] was proven to admit three equilibrium points: a
physiological steady-state, which is locally asymptotically stable, consisting of the
(normal) basal (i.e. ‘early-life’) values of glycemia and insulinemia Gb and Ib; a
pathological ‘severe diabetes’ steady-state, which is also locally asymptotically
stable, consisting of zero levels of b-cell mass and insulinemia, to which there
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corresponds a hyperglycemic state (Gh [ Gb); and an unstable saddle point, with
intermediate glycemia (Gb \ Gs \ Gh).

In hypoglycemic (G(t) \ Gb) or moderate hyperglycemic conditions
(Gb \ G(t) \ Gs), plasma glycemia tends to return to the physiological equilibrium
point, G(t) ? Gb. Imposing a moderate external increase in glycemia (as can
happen by prolonged inappropriate dietary behavior or by independently worsening
insulin sensitivity) pushes towards an increase in b-cell mass and insulinemia; when
the saddle point threshold is exceeded (G(t) [ Gs) glucose toxicity prevails and
b-cell mass eventually disappears, leading to the pathological steady-state with zero
insulin production.

Concerning the effects of parameter changes on model behavior, decreasing
insulin sensitivity does not change the existence (and stability properties) of the
three equilibrium points, nor does it change the relative equilibrium glycemias.
Conversely, a decrease in insulin sensitivity produces an increase of both equi-
librium b-cell mass and equilibrium insulinemia (needed to maintain the same
equilibrium glycemia).

Increasing glucose production does not change the existence (and stability
properties) of the three equilibria. While an increase in glucose production does
not increase the glycemia of the physiological steady-state (which is stabilized by
larger b-cell mass and corresponding insulinemia), it does increase the patholog-
ical (diabetic) glycemia (corresponding to the absence of b-cells and zero
insulinemia).

Further detailed qualitative analysis results are proven in the original paper [24].

3.2 Numerical Simulations

The evolution of fasting glycemia, fasting insulinemia and beta-cell mass were
simulated for virtual patients with a range of defects in insulin secretion, insulin
sensitivity, or both. For each hypothesized time course of the primary defects or
their combination, the natural history of the disease as well as the response to
several interventions or combinations of interventions were simulated. Among the
therapeutic approaches tested are pharmacologic interventions directed at
improving insulin sensitivity and insulin secretion proportionally (50 %) to
underlying metabolic status and secretory ability, as well as radical maneuvers
hypothetically restoring a fraction of normal sensitivity or secretion, such as
metabolic/bariatric surgery (sensitivity to at least 10 % normal) or partial pro-
tection from inhibition of b-cell replication (reduction of glucose toxicity by
20 %). Results from simulation are reported in Figs. 1, 2 and 3. Figure 1 depict the
evolution of the insulin sensitivity (Fig. 1a), beta-cell insulin secretory function
(Fig. 1b), as well as the corresponding model-derived time-courses of beta-cell
mass (Fig. 1c), insulinemia (Fig. 1d) and glycemia (Fig. 1e) for a patient with a
combined, moderate defect in insulin sensitivity and insulin secretion, undergoing
the four different type of therapeutic approaches.
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A ‘‘Moderate’’ defection, in the present simulation, means the eventual
development of an 85 % defect (i.e. sensitivity or secretion down to 15 % of
normal) which leads to the development of Diabetes Mellitus (DM, Glycemia [
7 mM) if no intervention is made (see Fig. 1e). It is to be noted that the effects of

Fig. 1 Combined moderate sensitivity and moderate secretion defects. Patient simulated metabolic
variable trends under ‘‘Moderate’’ defects in both insulin sensitivity and insulin secretion, that is an
eventual development of an 85 % defect (i.e. sensitivity or secretion down to 15 % of normal). Panel
a shows the assumed time courses of insulin sensitivity (KxgI); panel b shows the beta-cell insulin
secretory function (ImaxB,); Panel c shows the corresponding model-derived time-courses of
beta-cell mass (Bcel); Panel d shows the insulinemia time course (Insu) and Panel e shows glycemia
(Gluc). Each panel reports the time-course of the corresponding variable under no intervention,
that is the natural course of the disease (grey line), under treatment with an insulin sensitizer (cyan
line), under treatment with an insulin secretagogue (red line), under treatment with insulin sensitizer
plus secretagogue (green line), after bariatric surgery intervention (purple line) and after a
hypothetical radical treatment offering glucose toxicity protection (black line)
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conventional insulin sensitizer and secretagogue on glycemia, hence on b-cell
mass are identical: the cyan and red curves are superimposed and only the red one
is visible (see Fig. 1e and c). Figures 2a–c and 3a–c, report results related to a
severe isolated insulin sensitivity defect and to a severe isolated insulin secretion
defect respectively. The term ‘‘Severe’’, in the present simulation, means the
eventual development of a 97.5 % defect (i.e. sensitivity or secretion down to
2.5 % of normal). If no intervention has taken, either a severe isolated insulin
sensitivity defect (Fig. 2) or a severe isolated insulin secretion defect (Fig. 3) can
lead to the development of Diabetes Mellitus (DM, Glycemia[7 mM) by age 40
(Figs. 2c and 3c). The clear difference between the isolated sensitivity defect in
Fig. 2 and the isolated secretion defect in Fig. 3 consists in the respective ‘‘b’’
panels, insulin secretion being supra-normal in the first case and sub-normal in the
second. The time courses of glycemia and, correspondingly, of beta-cell mass do
not differ much in the two situations. If only isolated moderate defects in either
sensitivity or secretion are considered an increase of glycemia (which however
stabilizes at moderately hyperglycemic levels at steady state) (results are not
shown) is observed but it does not lead to the development of DM.

As can be seen from Figs. 1, 2 and 3, response to individual therapies is
influenced not only by the degree of insulin resistance or insulin secretion defects,

Fig. 2 Severe isolated insulin sensitivity defect. Patient simulated metabolic variable trends
under an isolated ‘‘Severe’’ defect of insulin sensitivity, which means an eventual development of
a 97.5 % defect (sensitivity down to 2.5 % of normal). Panel a shows the model-derived time-
courses of beta-cell mass (Bcel); Panel b shows the insulinemia time course (Insu) and Panel
c shows glycemia (Gluc)
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which are function of the type and stage of progression of the original abnormality,
but also by the accumulated injury to beta-cell replicating ability, which depends
on the duration and severity of the primary defect.

Therapy directed at proportional improvement of the current insulin sensitivity or
secretion levels has largely equivalent effects, independent of the nature of the
original defect. This effect lacks durability if started after development of hyper-
glycemia. On the other hand, combinations of these moderately effective interven-
tions, or single interventions with bariatric surgery or protection of beta cells from
glucose toxicity, are predicted to have much more pronounced and long-lived effects.

3.3 Model Use Scenarios

3.3.1 Scenario 1

As mentioned above, the importance of the modelling approach resides in the
ability of depict possible disease evolutions for a specific patient, under no
treatment or under one or a combination of treatments. In general, disease

Fig. 3 Severe isolated insulin secretion defect. Patient simulated metabolic variable trends under
an isolated ‘‘Severe’’ defect of insulin secretion, which means an eventual development of a
97.5 % defect (secretion down to 2.5 % of normal). Panel a shows the model-derived time-
courses of beta-cell mass (Bcel); Panel b shows the insulinemia time course (Insu) and Panel
c shows glycemia (Gluc)
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progression models require a measure of the ‘‘disease status’’ at the evaluation time
t, described by present and recent symptoms, by measurements of physiological and
biological conditions (in the specific case basal glucose and insulin plasma con-
centrations) as well as by measures of surrogate endpoints associated with or
predictive of the disease state (in this case, for example, short-term model-derived
indices of insulin sensitivity or insulin secretion). After the Baseline Disease State
description, the investigators have to make hypotheses about the evolution of the
disease, according to its natural history, for example hypotheses about the likely
time-course of insulin sensitivity or secretion under no treatment. The model can
then be used to simulate the effect of different treatments and the corresponding
responses under different scenarios (life style interventions, different disease
evolutions) and to compare the effectiveness of the different manoeuvres in order to
draw conclusions. Figure 4 schematically summarizes this scenario.

3.3.2 Scenario 2

The model presented here is a comprehensive model of the global functioning of
the insulin/glucose system. It includes in fact equations describing the evolution of
insulin secretion, b-cell mass dynamics and insulin sensitivity evolution, feedback

Fig. 4 DPM for tailored patient therapy. Schematic representation of the connection of
information items for the exploitation of the Diabetes Progression Model (DPM) towards
individually tailored diabetes therapy
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mechanisms describing the interaction between insulin and glucose plasma con-
centrations, as well as an equation describing HbA1c dynamics. Some of the
model equations and the evolution over time of a series of parameters (such as the
rate of increase of the b-cell mass or the first-order insulin elimination rate) enter
the model as forcing or input functions: their form is free and is the result of a
number of hypotheses, reflects literature information and current physiological
knowledge. The presence of freely modifiable input functions also allows the
modeler to represent different pathophysiological situations and different inter-
ventions and therapeutic maneuvers. This flexibility opens the possibility of
improvement of each single piece of the model, as a consequence of future specific
clinical trials, of clinical or in vitro experiments, of the use of advanced technical
devices for monitoring (calories intake, physical activity, glycemic control). In this
view the model acts as an ‘‘Output’’ into which an array of diverse ‘‘Inputs’’ can be
incorporated. On the other hand the model can be seen as representing one possible
‘‘Input’’ in the framework of a wider consideration of the constellation of clinical
issues affecting the presentation and outcome of diabetes mellitus. For example,
the Diabetes Progression Model can represent an input into further modeling of the
risks and complications of diabetes mellitus (neuropathy, stroke, peripheral arterial
disease, hypertension, in the sense that models for the risk of developing associ-
ated complications could taking in input the simulated evolution of glycemias as

Fig. 5 Mult-level modeling approach. Schematic representation of the Diabetes Progression
Model (DPM) in the framework of a multi-level approach
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predicted by the DPM. This approach is consistent with current frameworks for
multi-level modeling, such as those centering around the virtual physiological
patient (see for example http://www.mosaicproject.eu or http://www.vph-noe.eu),
or it could represent one important element of a future comprehensive diabetes
modelling project. Figure 5 summaries the concept.

4 Discussion

The need of a quantitative description of the likely long-term evolution of the
compensation state of the glucose-insulin system is a worthwhile goal for diabe-
tological research. Such a description would be very valuable, for instance, in the
design of trials testing the efficacy of drugs delaying or preventing the occurrence
of T2DM.

Obtaining accurate estimates of the parameters defining the long-term evolution
of this system is very difficult, due to the long time-scale of the phenomenon,
which makes comprehensive longitudinal studies impractical, to the ethical issues
connected with observing subjects with increasing severity of the disease without
intervening, and to the difficulty of obtaining serial measures of b-cell mass, which
is a key determinant of the compensation (even though imaging and functional
tests may deliver surrogate measures [33]).

Much of the information which we can use to estimate the b-cell population
response to chronic hyperglycemia stems from chronic glucose infusion studies
[34–36]. We have discussed elsewhere [24] at length the assessment of the relative
implications of b-cell apoptosis and replication rate changes in the overall adap-
tation to changes in (average) glycemia, but it seems clear that while short-term
hyperglycemia induces an increased net replication rate of b-cells (at the very least
in rodents [4]), long-term hyperglycemia impairs the same replication rate [9].
While the concept of ‘glucose toxicity’ may still have to be clarified, in its exact
mode of operation at the cellular and subcellular level, there do not seem to be any
substantial doubts that long-term hyperglycemia is associated with decreased
b-cell mass in humans. DPM successfully predicts this decline in beta cell mass by
introducing the term ‘‘pancreatic reserve’’ (g), which is assumed to decline with
chronic hyperglycemia.

It can be noticed that one physiologic implication of the present definition of
pancreatic reserve g is that persisting long-term hyperglycemia could in fact lead
to such a decrease in g that the net replication rate would be negative, and con-
sequently that pancreatic b-cell mass would decrease at a given moment (say,
when the subject comes to medical attention), no matter what normal glycemias
could be restored in the short term by aggressive therapy. This situation corre-
sponds to a terminal state of pancreatic insufficiency, and would naturally lead to a
clinical picture of frank diabetes, given an adequate time frame. However, in this
as well as in less dramatic pre-diabetic conditions, early administration of gly-
cemia normalizing therapy (whatever the approach, whether by insulin sensitizers,
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or secretagogues, or by important and persistent lifestyle changes) would be
conducive to the restoration of pancreatic reserve and to the delay or avoidance of
the final self-sustaining, positive-feedback deterioration of diabetes. Whether this
mathematical interpretation of events actually well represents physiological and
pharmacological changes is open to experimental verification, but as a first-line
approximation this definition of pancreatic reserve seems to conform well to
commonly accepted physiological notions.

Another point worth of notice is that the DPM predicts that, in the natural
course of the progression of the decompensation due to increasingly severe insulin
resistance (such as, for instance, that due to dietary intemperance and massive
increase in BMI), glycemias are maintained near normal levels for a long time,
before compensation fails and a rapidly increasing glycemia determines the clin-
ical picture of T2DM. It is such a common clinical experience to observe patients,
asymptomatic and well compensated for decades (possibly with modest increases
in glycemia), suddenly turning diabetic, that a concomitant pathologic cause is
often hypothesized, such as an infection, surgery, or some severe stress episode.
According to the DPM, no such concomitant cause is actually needed: it is the
natural behavior of the described compensation system to be able to maintain
normal or acceptable glycemia up to some late failure time, when the disease
becomes clinically manifested.

In the introduction of the present model, a very substantial effort has been made
to assess, if not to statistically estimate, typical parameter values which are
coherent with accepted physiology. To this end, the literature has been extensively
consulted and different sources of direct or indirect information on the same model
parameter have been critically reconciled. While, clearly, different opinions are
perfectly acceptable (indeed ameliorations are to be expected), it is felt that the
values obtained here represent, as far as possible, prudent and informed choices. In
fact, the end result of such choices is that the model now reproduces naturally such
time courses of glycemia and insulinemia over many years as are felt to be
compatible with the observed clinical history in representative cohorts of subjects
[29].

While we feel that this work represents an improvement in the direction of
Topp’s approach [23], we believe that there are substantial differences with respect
to another model recently proposed by de Winter et al. [25, 37].

The stated modeling goal of both the present approach and de Winter’s is to
represent the long-term variations in the ability of the individual to adapt to
glucose loads maintaining acceptable glycemias. However, de Winter’s approach
extends previous mass balance representations over a more extended period of
time. It is however questionable that mass balance concepts apply in the present
situation, where basal insulinemia and basal glycemia are sampled infrequently
(say, once a day), over a period of many years. The automatic transposition of the
formalism of mass balance, which is justified in the short term (e.g. 3 h), when
transiently elevated glucose concentrations may themselves be responsible for
their progressive decline due to insulin-dependent or insulin-independent mass
transfer out of the central compartment, is in fact unwarranted when modeling the

Modeling T2DM Progression 181



long run of basal glycemia. An in-depth discussion of this issue is presented
elsewhere [24]. It is of interest in this context that the Diabetes Progression Model
can be shown to be the slow equilibrium model for the fast models of a wide class,
including, by way of example, both de Winter’s mass balance formulation (con-
sidered in fast time) and Bergman’s Minimal Model [16].

That the model, as described, has a substantial degree of physiological plau-
sibility can be argued from the fact that DPM has been demonstrated [29] to
produce predictions in very good agreement with both the Diabetes Prevention
Program [38, 39] and the CANOE [40] trial results. One of the interesting uses to
which a robust model of diabetes progression may be put is the design of clinical
trials and the evaluation of therapeutic regimens. One fundamental question
regarding diabetes management and, possibly, prevention is whether there exists a
possibility to intervene early enough in the history of the disease, so that the
eventual crisis and the development of the frank clinical picture of diabetes
mellitus are averted. Judging from the Diabetes Progression Model, the answer
may be affirmative: if the interaction of glycemia, glucose toxicity and b-cell
replication is qualitatively similar to what has been expressed in the proposed
equations, a sufficiently early and effective intervention would spare pancreatic
reserve and actually prevent the positive-feedback chain of events leading to the
manifestation of the disease. The earlier the intervention, the less drastic it may
need to be: reasonable dietary habits and lifestyle since the early teens may be as
effective as drastic bariatric surgery later on.

In general, the advantage of using the model, in these circumstances, is that
once a quantitative estimate of the effect of a putative treatment is obtained from
short-term observations, its long-term effects may be forecast. These need not be,
and in general are not, naively proportional to the short-term gain, given the highly
nonlinear interplay of the several factors concurring in determining glucose
homeostasis. This can be well appreciated from Fig. 1 (Panels d and e), where the
model predicts that long-term glycemia and insulinemia eventually follow the
same time course (albeit somewhat delayed) in the presence or absence of what
seems to be, in the short term, a highly effective regimen (such as conventional
sensitizers or secretagogues). Over time, the natural progression of the disease
effectively overcomes short-term advantages and cancels the specific advantages
of one regimen over the others. This is consistent with clinical practice, where it is
common, in order to control glycemia, to administer progressively increasing
dosages of eventually multiple agent combinations. A major qualitative difference
is only obtained when the fundamental mechanisms of the progression of disease
are altered, for instance by guaranteeing maintenance of insulin sensitivity to a
sizeable fraction of normal, as could be the case of drastic fat tissue loss after
major metabolic surgery procedures, or by restoring b-cell replicating ability by
suppressing inflammation.

Supposing the model to be reliable, within the evident limits of such a sche-
matic representation of reality, it is of interest to use it in order to answer some
basic questions about disease evolution and effectiveness of therapy. Since this is a
theoretical model of disease evolution, which does not take into account a host of
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concurrent life events, in particular therapy, when the model is left to run freely for
many years in the life history of a virtual patient, state variables may assume
values that in real life would be prevented by medical intervention (or by death).
This applies particularly to glycemia, which the model may predict to increase to
more than 20 mM, while in reality the subject would come to medical attention
well before reaching these levels. In turn, such persistent high glycemias nega-
tively affect b-cell population (given the glucose toxicity mechanism incorporated
in the model) until potential disappearance of insulin secretion. Keeping in mind
therefore that the model depicts theoretical, unconstrained evolutions, it can be
seen from the simulations in Figs. 1, 2 and 3 how limited-impact pharmacological
or lifestyle interventions (directed to improving either insulin sensitivity or insulin
secretion), occurring at the moment of clinical evidence of the consequences of
long years of progressive homeostatic derangement, may offer only modest and
temporary slowing of the progression of the disease, while conversely the long-
term maintenance of even a modest fraction of the normal levels of insulin sen-
sitivity, or the suppression of a fraction of inflammation-mediated glucose toxicity,
could substantially alter the evolution of the clinical picture. In these simulations,
b-cell mass is predicted to eventually disappear if glycemia is left to soar
uncontrolled. It is conversely maintained if a new equilibrium at modest, but non-
vanishing, insulin sensitivity is reached, with compensating hyperinsulinemia and
modest, non-diabetic increase in glycemia. In this sense, the model supports the
use of early, preventive measures directed at limiting the occurrence of the dan-
gerous positive-feedback loop of high glycemia–glucose toxicity–diminished
pancreatic reserve–and still higher glycemia. The model seems also to indicate that
the existing compensation mechanisms are indeed rather effective in preventing
substantial hyperglycemia, and that either very severe insulin resistance, or a
combination of rather intense insulin resistance and insulin secretory defects must
be present in order for the subject to develop diabetes.

Tailored therapeutic approaches can be explored prospectively, for a given
patient, by the use of diabetes progression model simulations, detailing response to
interventions based on both the underlying pathology and the postulated thera-
peutic mechanism. For patients with advanced degrees of insulin sensitivity or
secretion defects, simulations are consistent with clinical observation in predicting
short-lived efficacy of conventional pharmacologic treatment. More articulate
tailored therapeutic schemes can however be designed and their likely efficacy
evaluated in silico over a realistically heterogeneous population of virtual subjects.
Promising approaches, with improved benefit/risk ratios, can thus be preliminarily
assessed and optimized employing an accurate mathematical model, in order to
then test them in real-world clinical trials. According to simulations performed
with the Diabetes Progression Model, durable improvements of the clinical picture
can only be obtained with drastic and permanent lifestyle changes or highly
effective therapies targeted at the underlying pathophysiology. The model suggests
that it is unlikely that permanent results can be obtained by administering
conventional therapy as soon as reasonable suspicion of deteriorating insulin
sensitivity or secretion is entertained.
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The model as formulated has of course some important limitations, which will
have to be addressed in future research on Diabetes Progression Modeling.

For example, in its description of long-term prevailing glycemia and insuli-
nemia adjustments it does not consider acute incidents such as the fast develop-
ment of (relative) insulin secretion impairment, which is seen during acute
hyperglycemia, in conditions like e.g. diabetic ketoacidosis. The excessive
hyperglycemia, which is present during these episodes, may block insulin secre-
tion from b-cells and determine a fast positive feedback loop resulting in the acute
clinical crisis of ketoacidosis. Insulin administration and rehydration are however
effective, in this case, in restoring euglycemia and normal b-cell function. These
events are however so fast, in the time-frame of the progressive establishment of
prediabetes and diabetes over decades, that from the point of view of the model
they may be considered instantaneous and therefore neglected.

A structural problem with the current version of the model is the lack of
separate mechanisms representing central and peripheral insulin sensitivity.
Associated with this, the current model does not track independently fasting and
post-prandial glycemias, FPG being more closely dependent on central and PPG
more dependent on peripheral insulin sensitivity. As a consequence, the model is
not able to discriminate between Impaired Fasting Glycemia (IFG) and Impaired
Glucose Tolerance (IGT) in the progression towards T2DM.

Yet, another limitation of the current model is the lack of an explicit repre-
sentation of renal glucose elimination. Indeed, the fact that simulated glycemias
may increase over the years to artificially high levels is due, in addition to the
absence of medical intervention, also to the absence of the linear glucose elimi-
nation with above-threshold plasma glycemia, which determines, together with
polyuria and polydipsia, the sweet taste of urine to which the disease owes its
name. On the other hand, the renal threshold for glucose (typically around 10 mM)
is substantially higher than the 7 mM threshold for the diagnosis of diabetes
considered here, so that significant departures of the model from correct physi-
ology should be expected to occur only when glycemias increase much above
diabetic levels.
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Linear Modeling and Prediction
in Diabetes Physiology

Marzia Cescon and Rolf Johansson

Abstract Diabetes Mellitus is a chronic disease characterized by the inability of
the organism to autonomously regulate the blood glucose level due to insulin
deficiency or resistance, leading to serious health damages. The therapy is
essentially based on insulin injections and depends strongly on patient daily
decisions, being mainly based upon empirical experience and rules of thumb. This
chapter presents work on data-driven glucose metabolism modeling and short-
term, that is, up to 120 min, blood-glucose prediction in Type 1 Diabetes Mellitus
(T1DM) subjects. Low-order, individualized, data-driven, stable, physiologically
relevant models were identified from a population of 9 datasets from T1DM
patients. Model structures include: autoregressive moving average with exogenous
inputs (ARMAX) models and state-space models. The performances of the model-
based predictors were compared to those achieved by the zero-order hold (ZOH).

1 Introduction

1.1 Context and Motivation

Both from quality of life and economic perspectives it is critical for diabetes
patients to regulate their blood glucose tightly, keeping its level within the target
range, i.e., 70–140 [mg/dL] [64], through intensive insulin therapy. The strategy
comprises test of blood glucose levels at least four times a day, taking insulin with
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every meal by injections or subcutaneous infusions by a pump and patient assis-
tance by health care team.

Although the standard tools in diabetes care improved significantly during the
last decades, including the availability of self-monitoring of blood glucose
(SMBG), insulin pen injectors, pumps and insulin analogues, insulin therapy
remains one of the most difficult to manage. As a matter of fact, the treatments still
strongly depend on the patient’s daily decisions about insulin delivery adaptations.
Many factors have to be considered in this decision process: health status, current
blood glucose level, blood glucose target, insulin sensitivity, diet, meal compo-
sition, foreseen activities and individual experience of insulin effects on blood
glucose level. Meanwhile, failure in management of insulin therapy has significant
impact on short-, medium- and long-term prospects.

The availability of a blood glucose predictor that would inform the patient on
the near future blood glucose and offer advices on how to modulate insulin therapy
in relation to food intake and out-of-target glucose deviations would therefore be
highly valuable.

1.2 The DIAdvisorTM Project

Against this background, the European FP7-IST research project DIAdvisorTM [22]
aimed at developing a personalized blood glucose predicting system and an advisory
control system, i.e., the DIAdvisorTM tool, to be used on the spot to assist the users
in different daily situations, predicting hyperglycemic deviations following meals
and stressful events, and giving them advices about how to adjust their treatments.
The DIAdvisorTM tool would constitute a mobile short-term blood glucose predictor
and treatment advisor. Figure 1 clarifies the concept. The predictor system would
need user input concerning patient characteristics (e.g., insulin sensitivity or resis-
tance), patient condition (e.g., fasting, meal time, rest or physical activity, illness,
stress), therapeutic mode (type of insulin delivery route, type of insulin prepara-
tions), time and size of meals, inputs from non-invasive glucose sensors, wearable
vital signs sensors and blood glucose meter measurements, and would be expected
to produce short-term blood glucose predictions to be graphically shown to the
patients and suggestions to the user from a decision support module. The users
would have the opportunity to accept or reject the advice, thereby assuring safety.

1.3 Statement of the Problem

The development of a safe predictive and advisory system, such as the DIAd-
visorTM tool, would require patient-specific dynamical models of the glucose
metabolism able to describe the blood glucose evolution based on the most sig-
nificant inputs, namely, meal carbohydrates, exogenous injected insulin and
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possibly energy expenditure due to physical activity [60] to be used in a model
predictive control setup [44]. Characteristics required in such models include a
good trade-off between simplicity and accuracy, stability, qualitative correct
responses to inputs and predictive capabilities with particular emphasis on hypo-
and hyperglycemia detection. In addition, predictors targeting blood glucose
forecasting need to be developed in parallel, as well.

Motivated by the above, this contribution addresses the questions of how to
identify personalized models from individual patient data and how to provide
individualized short-term blood glucose predictors.

1.4 Inherent Challenges in T1DM Modeling

Despite significant efforts devoted to the problem of blood glucose regulation in
type 1 diabetic patients over the last decades (see e.g. [15] for a comprehensive
review), many inherent challenges that must be overcome still remain. At the most
basic level, the disease can be viewed as a process having one output, namely,
glucose concentration in plasma, and two inputs, namely, meal carbohydrates and
administered insulin. The first and perhaps most crucial challenge to overcome in
modeling is that of poor data excitation: often the inputs are simultaneous and in
the same ratio, the so-called insulin-to-carbohydrate ratio, precluding the possi-
bility of distinguishing their relative effects. It is still an open issue how to strongly
excite the system in order to obtain data meaningful for identification purposes
preserving at the same time the patients from the risk of serious clinical events.
Second, the most widespread way of treating diabetes comprises a series of
impulse-like control actions, i.e., insulin injections and food intakes, applied

Fig. 1 DIAdvisorTM modeling and prediction [22]
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several times during the day at irregular sampling instants, typically at wake up,
meal and bed times, the decisions being based on scarce assays of the controlled
variable, i.e., blood glucose. This rises the problem of non-uniformly sampled and
infrequent data and, since the signals in play interact in the bloodstream, intro-
duces assumptions on the subcutaneous-to-intravenous insulin absorption and
gastro-intestinal carbohydrates absorption dynamics.

In the last ten years, advances in sensor technology saw the advent of contin-
uous glucose monitors (CGM), systems capable of measuring glucose concen-
tration frequently (e.g., every 5 min) for several days, providing the patient with
well-sampled data in real time. However, it is important to stress that together with
the benefits, they introduce yet another limitation. Indeed, those devices measure
glucose concentration in the interstitium and not in plasma. Interstitial glucose
(IG) fluctuations are related to BG presumably via diffusion process [37, 63]. This
leads to a number of issues, including distortion (which incorporates a time lag)
and calibration errors, and necessitates the development of methods for their
mitigation. In particular, it is necessary to consider that, since the BG-to-IG
kinetics act as a low-pass filter, the frequency content of interstitial glucose is
different from that of blood glucose [9, 47].

As for the inputs, when taking into account the appearance of insulin in the
bloodstream from subcutaneous delivery and that of glucose in plasma after a meal,
new time-lags and dynamics are introduced; further, subcutaneous insulin infusion
involves degradation at the site of delivery. In addition, meals must be recorded by
the patients, and the actual amount of carbohydrates must be estimated, a process
that is prone to errors. Also, in practice, the combination of simple and complex
carbohydrates, fats and proteins can affect the glucose absorption in the digestive
system. Unrepresented inputs, such as stress and illness constitute another chal-
lenge to diabetes modeling. Furthermore, it is a well known fact that physical
activity, apart from having a glycemia-lowering effect due to utilization of glucose
by the muscle cells, enhances insulin sensitivity, playing a substantial role in the
picture, but the magnitude and duration of such effects are hard to consider. Another
important aspect is the degree of variability of the overall system dynamics over the
day (the so-called ‘‘dawn phenomenon’’, for instance, is characterized by increased
insulin resistance during the morning hours [70]).

A priori knowledge of the diabetes process indicates two fundamental prop-
erties that should be satisfied by any sound and valid model:

• the gain associated with the insulin input should be negative (i.e., an increase in
insulin results in a decrease in glucose concentration)

• the gain associated with the meal input should be positive (i.e., a meal results in
an increase in glucose concentration).

However, the values of the above mentioned gains are related to age of the
subject, disease duration, body mass index (BMI), insulin sensitivity, b-cells
responsiveness and probably many more unknown factors so that it is not clear
how to take them into account in the modeling process.
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1.5 Models in Diabetes

In diabetes research and therapy, modeling of the glucose-insulin control system
has received significant attention for more than 40 years [15]. Several types of
models serving different purposes were proposed, most of these efforts being first-
principles based descriptions of the physiological relationships associated with
T1DM, and only to a lesser extent mathematical modeling by means of system
identification.

1.6 Physiological Models

The first pioneering work describing the relationships between insulin and glucose
utilization was that of Bolie [7], later modified by Ackerman and McGucking [2]
in order to provide a model of the glucose metabolism during an oral glucose
tolerance test (OGTT). Greater attention was received by the so-called minimal
model [5, 6], developed for the specific purpose of quantifying pancreatic
responsiveness and insulin sensitivity during an intravenous glucose-tolerance test
(IVGTT) in non-diabetic individuals. The model consists of three differential
equations describing plasma glucose and plasma insulin in a remote compartment,
accounting for neither the dynamics of subcutaneous insulin infusion nor the
dynamics of gut glucose absorption from a carbohydrates meal. In [40], a simu-
lation model was presented, and later validated on a set of 24 subjects [41].
Glucose-insulin pharmacokinetics/pharmacodynamics in non-diabetic subjects
was described by a 19-state model developed by Sorensen [57], the major short-
coming of this model being the failure in capturing the hyperglycemic events
characteristic of type 1 diabetes [43]. The nonlinear model proposed by Hovorka
et al. [35] describes glucose-insulin dynamics with several differential equations in
three subsystems: a glucose subsystem, an insulin subsystem and an insulin action
subsystem. Model inputs are the rate of subcutaneously infused fast acting insulin,
meal carbohydrates amount and time of ingestion and its outputs are plasma
glucose and insulin concentrations. The absorption kinetics associated with sub-
cutaneous insulin delivery of the above mentioned model was later modified [69],
the model replacing the original subcutaneous insulin subsystem consisting in two
parallel fast and slow channels for insulin absorption as well as a degree of insulin
degradation at the injection site, and integrated in a simulation environment
dedicated to closed-loop evaluation of insulin delivery systems [68]. The efforts by
Dalla Man and co-workers presented in [16–18, 20] lead to the meal simulation
model of the glucose-insulin system [19] which has been accepted by the Food and
Drug Administration (FDA) to be used as a substitute for animal trials in pre-
clinical tests of closed-loop development [38, 39]. Dalla Man and co-workers [19]
used a sophisticated triple tracer method to estimate important meal-related
quantities such as the rates of appearance of glucose in the blood from the meal,
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endogenous glucose production, utilization of glucose, and insulin secretion.
Reviews of physiological diabetes models include that of Nucci and Cobelli [49],
who specifically examined several models of subcutaneous-to-intravenous insulin
kinetics, Makroglou and co-workers [45] presenting an overview of existing
software packages specific to diabetes modeling and finally Cobelli and co-
workers [15], discussing the main contribution to both modeling and control in
diabetes from the early 1960s.

1.7 Predictive Models

Although seemingly simple in concept, the problem of glucose prediction in an
active individual has to date proved intractable. Currently, continuous glucose
monitoring (CGM) devices are the available technology able to provide high/low
glucose alarms when certain user specified preset threshold levels have been
crossed and to deliver warnings of events that are likely to occur if the current
trend continues. However, patients will benefit more from an early alarm that
predicts the hypoglycemic episode before it occurs. A review of hypoglycemia
prevention algorithms is reported in [4]. To date many studies have investigated
the possibility of predicting blood glucose concentration for the purpose of reg-
ulating glucose intervention, in order to enable individuals to take corrective
actions and avoid low or high glucose values. Bremer and Gough [8] originally
developed the idea of T1DM CGM time-series analysis using 10 min sampled
data from ambulatory T1DM patients to identify autoregressive (AR) models.
They explored 10, 20 and 30 min prediction horizons, and report that the 10 min
predictions are accurate and the 20 or 30 min predictions may also be acceptable
for a limited set of data only. However, no quantification of the accuracy of the
model predictions was provided. In [55] tenth-order autoregressive models were
identified from 5-days long glucose time-series belonging to a population of five
in-hospital subjects. Performances of a single, cross-subject model compared with
individual models were evaluated on 30 and 60 min prediction horizons. Gani
et al. [30] used a 30th-order AR model with data smoothing and a regularization
procedure to minimize the changes in the glucose first-derivative, reducing the
prediction lag for 60 and 90 min-ahead prediction compared to [55]. Sparacino
et al. [59] collected 48 h of continuous (3 min) glucose data from 28 T1DM
subjects in ambulatory conditions. In their retrospective analysis, they recursively
identified simple polynomial and AR models from the CGM time-series data,
prefiltered to removed noise spikes. They investigated prediction horizons of 10
and 15 steps (i.e., 30 and 45 min) and concluded that hypoglycemia can be
detected 25 min before the hypoglycemic threshold is passed. In [51] a Kalman
filter approach was proposed, which only used information on past CGM readings
by assuming a double integrated random walk as prior for glucose dynamics and
estimating the states corresponding to the interstitial glucose level, and the first
and second derivative thereof, i.e., rate of glucose change and acceleration.
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The method was evaluated for 13 hypoglycemic clamp data sets in [50]. Using a
hypoglycemic threshold of 70 [mg/dL], the sensitivity and specificity were 90 and
79 %, respectively, with unknown alarm time. A tutorial overview of algorithms
for CGM time series analysis to the purpose of alarm generation is provided in
[58]. Eren-Oruklu et al. [23] proposed a recursive second-order AR and ARMA
model identification strategy with an adjustable forgetting factor for healthy and
type II diabetics. Their models utilized only recent glucose history from a CGM
device, achieving 3–5 % error for 30 min ahead prediction. In [48] a kernel-based
regularization learning algorithm, in which the kernel and the regularization
parameter are adaptively chosen on the basis of previous similar learning tasks,
using past glucose information, was presented. The past few years witnessed the
investigation of neural networks (NN) models for short-term glucose prediction
proving it to be a competitive approach. Pappada et al. [54] created NN models
with variable predictive windows in the range 50–180 min, trained using 18
patients CGM datasets and evaluated on patient data not included in the neural
network formulation. They concluded that their models performed adequately in
the normo- and hyperglycemic ranges, whereas hypoglycemic events were
overestimated, a potential reason for that being due to the minimal occurrences of
hypoglycemia in the training data. In [25] a feed-forward NN whose inputs were
CGM samples in the previous 20 min and the current time instant, and whose
output was the glucose concentration 15, 30 and 45 min ahead was tested on 15
actual data sets. The root-mean-squared error (RMSE) was 10, 18 and 2 [mg/dL]
for the 15, 30 and 45 min prediction, with a delay of around 4, 9, and 14 min for
upward trends, and 5, 15, and 26 min for downward trends. Dassau and co-
workers [17] developed a real-time hypoglycemia prediction suite combining five
individual algorithms, namely, linear prediction, Kalman filtering, hybrid impulse
response (HIIR) filtering, statistical prediction and numerical logical into a vot-
ing-based system to predict hypoglycemia from 1 min sampled CGM data. A
35 min prediction horizon with an alarm threshold of 80 [mg/dL] and a voting
threshold of three to five algorithms to predict hypoglycemia resulted in a 91 %
correct predictions. A short-coming of the methods listed above is the lack of
exploitation of the dynamic interplay between previously injected insulin, meal
intake and eventually exercise to the purpose of improving glucose prediction.
Hovorka and his group [35] performed experiments with ten T1DM patients under
clinical conditions, using their physiological model to make predictions of glu-
cose data up to 60 min into the future. The glucose was measured intravenously,
but delayed by 30 min to mimic subcutaneous measurement. The model param-
eters were recursively estimated using a Bayesian method. The predictions of the
resulting models had RMSE values of 8.6, 13.0, and 17.3 [mg/dL] for 2, 3, and
4-step (i.e., 30, 45, and 60 min) predictions, respectively. Finan et al. [27] ana-
lyzed both batch-wise and recursively identified patient-specific ARX models for
9 patients with a mean 30 min prediction error RMSE of 26 [mg/dL]. An ARX
model with a nonlinear forgetting factor scaled according to the glucose range
was considered in [11, 12], and a 45 min prediction horizon showed good results.
Finally, in [31] it was asserted that a universal data-driven model identified from
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CGMS time-series from a patient applying the algorithm previously published by
the same authors in 2009 [30] could be used to make near-future glucose con-
centration predictions for other patients without any model customization pro-
cedure. They used regularization techniques to filter data from 34 subjects, then,
using the filtered data, they develop auto-regressive models of order 30 to the
purpose of making short-term, 30-min-ahead predictions. A feed forward NN was
also exploited in [54] and tested on 10 real datasets, incorporating, in addition to
CGM data, other inputs such as SMBG readings, information on insulin, meal,
hypo- and hyperglycemia symptoms, lifestyle, activity and emotions and predict
glucose values up to 75 min. In [71–73], 30-min-ahead prediction was performed
with a feed-forward NN in cascade with the first-order polynomial model in [59].
The inputs to the linear predictor were the past CGM values weighted using a
forgetting factor, while the inputs to the NN were current CGM and its trend,
information on the past error committed by the polynomial model and informa-
tion on meal, supplied as plasma glucose rate of appearance obtained from the
physiological model of [19]. Zhao et al. [74] used a latent variable-based
approach to predict future CGM values from past CGM and known carbohydrate
and insulin boluses, transformed into time-smoothed inputs using second-order
transfer functions. The method was applied to collected clinical data and simu-
lated data generated by the model described in [38, 39]. They concluded that their
LV-based method resulted in models whose prediction accuracy was as least as
good as the accuracies of standard AR/ARX models. In [24] a multi-sensor body
monitor providing seven signals related to activity and emotional conditions was
used in addition to a CGM monitor to improve glucose prediction. A multivariate
ARMAX model with weighted recursive least-squares estimation of the unknown
parameters using a variable forgetting factor was proposed. Results showed that
the prediction error is significantly reduced with the addition of the vital signs
measurements, as compared to an ARMA model based only on CGM signals.

2 Experimental Conditions and Clinical Data Acquisition

In the framework of DIAdvisorTM [22], acquisition of bioclinical data linked or
potentially involved in blood glucose control from insulin-treated diabetic sub-
jects was accomplished in a series of experimental sessions. The investigations
focused on a population of basal-bolus regimen treated subjects, either as com-
bination of multiple daily insulin injections (MDI) including long-acting and
fast-acting analogues or as continuous subcutaneous insulin infusion (CSII) of
fast-acting analogues from a pump. The clinical study was performed at the
Clinical Investigation Center CIC-CHU in Montpellier, France. Collected data
include: specific patient parameters (e.g., gender = male, age = 43 years old,
BMI = 23.7, weight = 67 kg), characteristics related to diabetes (e.g., disease
duration = 10 years, insulin delivery = external pump), associated health
conditions and therapies, food intakes and administered insulin doses registered
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in a logbook, capillary glucose strips, interstitial glucose levels, plasma glucose
and plasma insulin concentrations from drawn blood samples as well as vital
signs.

2.1 Equipment

For the whole duration of the study, the subjects were equipped with state-of-the-
art devices provided by the DIAdvisorTM Consortium complying with the study
protocol as explained in the following subsections.

2.1.1 HemoCueTM Glucose Analyzer

The HemoCueTM Glucose Analyzer [34] is a blood glucose meter based on a
glucose dehydrogenase method and consisting of a pocket size handheld analyzer
and a unique disposable microcuvette. The analyzer was factory calibrated and no
calibration was needed between cuvette batches. The device was used by each
patient as a reference glucose meter, assessing plasma glucose levels from finger-
stick samples.

2.1.2 Abbott Freestyle NavigatorTM

The Abbott Freestyle NavigatorTM [1] is a Continuous Glucose Monitoring System
(CGMS) consisting of an amperometric electrochemical sensor placed under the
skin, a wireless transmitter connected to the sensor and a wireless receiver col-
lecting the sensor signals. The subcutaneous sensor was inserted about 5 mm into
the subcutaneous tissues and could be worn for up to five days before replacement.
Calibration relative to capillary glucose was required at specific times, namely, 10,
12, 24 and 72 h after insertion. Using the WIRED ENZYMETM technology, the
sensor converted glucose concentration to electrical current. Once every minute
the transmitter sent the estimate of the interstitial glucose concentration to the
receiver, which displayed the final values once every 10 min.

2.2 Study Protocol and Experiments

The clinical study consisted of three visits: Visit 0 for patients screening, Visit 1 for
sensors initialization and Visit 2 for 75 h in-hospital tests. Figure 2 gives the flow
chart of the trial.
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2.2.1 Visit 0

Prior to any study-related procedure, the purpose of this visit was to perform a
screening examination of the patient, the outcome of it being recorded in the
clinician’s sheet.

2.2.2 Visit 1

Within 4 weeks of visit 0 the patient was admitted at the clinic to initialize the
Abbott Freestyle NavigatorTM device. The sensor was inserted subcutaneously into
the patient’s skin and calibrated against capillary glucose by a nurse. The subject
was hospitalized at best 48 h after sensor insertion, in order to begin the tests with
a well-calibrated device.

2.2.3 Visit 2

During the whole 3-days-long visit, the patient was permanently equipped with
the Abbott Freestyle NavigatorTM [1] device. Standard meals for breakfast
(8:00 a.m.), lunch (1:00 p.m.) and dinner (7:00 p.m.) were served, the amount of
administered carbohydrates being 42, 70 and 70 g, respectively. Blood samples
were collected by nurses to measure plasma glucose and plasma insulin con-
centrations: every hour during day, every 2 h during night, every 15 min after
meals for 2 h. A specific sampling scheduled was adopted after breakfasts:
30 min before, mealtime, 10, 20, 30, 60, 90, 120, 150, 180, 240 and 300 min after,
for a total of 37 blood samples per day. No specific intervention on usual diabetes
treatment was scheduled during the period. The patients decided their insulin
needs according to the HemoCueTM Glucose Analyzer [34] measurements as
usually in activities of daily life. Throughout the chapter, modeling results
obtained with visit 2 data will be presented.

Visit 1 2

-28 -2

0

0 3 Time [days]

Fig. 2 DIAdvisorTM Data Acquisition Trial. Visit 0 Screening visit (green box), Visit 1 sensor
initialization visit (blue box), Visit 2 in-hospital tests (red box)
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2.3 Patients Selection Criteria

A total of 30 diabetic subjects, male and female adults, were included in the study
to allow availability of data from a wide spectrum of patients under basal-bolus
regimen. Among these, a population of nine patients was chosen, the selection
criteria being the quantity of data collected during visit 2 ([80 % of the expected),
no sensor failures and logbook correctly filled in. Exclusion criteria were data
partially collected, laboratory results not available and/or patients not observant in
annotating insulin/meal intakes. Table 1 reports the characteristics of the selected
patients. Data from a representative patient are shown in Fig. 3.

3 Modeling of the Gluco-Regulatory System

The physiology of glucose metabolism in diabetes can be thought of as having one
output, i.e., glucose level in the bloodstream yBG, and two main inputs, i.e., car-
bohydrate intake ucarb and administered insulin Iir. Further, given that physical
activity has been proven to decrease plasma glucose levels due to increased glu-
cose uptake by the exercising muscles [70], the effect of exercise, i.e., increased
heart rate, respiration rate and body movements, is therefore to be regarded as an
additional input or load disturbance. Hence, for modeling purposes, based on
current knowledge of the overall physiological model, four subsystems have to be
considered (Fig. 4):

• the glucose subsystem (GS), describing glucose intestinal absorption following a
food intake;

• the insulin subsystem (IS), accounting for the pharmacokinetics of the exoge-
nously administered insulin;

• the physical activity and energy expenditure subsystem (EES), measuring the
rate of physical activity intensity;

• the glucose-insulin interaction subsystem (GIIS).

Table 1 Patient
characteristics

Patient ID Insulin therapy HBA1c [%] BMI

102 MDI 6.5 26.5
103 CSII 9.1 23.7
104 MDI 7.6 20
105 CSII 7.8 24.1
106 CSII 7.8 21.2
107 CSII 8.9 25.3
115 MDI 8.5 19.7
120 MDI 9 22.4
130 MDI 8.8 29.4
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Fig. 3 Patient CHU0102 data versus Time [min]. Top Glucose concentration [mg/dL]:
interstitial (blue), plasma (red), finger stick (cyan and black); Upper Center Meal intake [g]:
carbohydrates (blue), lipids (red), proteins (yellow); Lower Center Insulin doses [IU]: basal
(blue), bolus (red), correction (green); Bottom Blood insulin concentration [mIU/L]: basal (blue),
bolus (red), total (cyan)
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In this chapter, compartment models from the literature are exploited to
describe the GS and IS. Data-based system identification is used, instead, to model
the GIIS.

3.1 Glucose Subsystem

Glucose transit through the stomach and upper small intestine was described by a
nonlinear chain of three compartments, where the first two compartments represent
the stomach (solid and liquid phases) and the third one depicts the intestine. The
left plot in Fig. 5 illustrates the model. Equations are [16]:

qsto tð Þ ¼ qsto1 tð Þ þ qsto2 tð Þ
_qsto1 tð Þ ¼ �kgri � qsto1 tð Þ þ ucarb � d tð Þ; qsto1 0ð Þ ¼ 0

_qsto2 tð Þ ¼ �kempt � qsto2 tð Þ þ kgri � qsto1 tð Þ; qsto2 0ð Þ ¼ 0

_qgut tð Þ ¼ �kabs � qgut tð Þ þ kempt � qsto2 tð Þ; qgut 0ð Þ ¼ 0

ûg tð Þ ¼ f � kabs � qgut tð Þ
mb

; ug 0ð Þ ¼ 0

ð1Þ

where ûg [mg/kg/min] denotes the rate of appearance of glucose in plasma, qsto1

and qsto2 [mg] are the amounts of carbohydrates in the stomach (solid and liquid
phase, respectively), ucarb [mg] is the amount of ingested carbohydrates, qgut [mg]
is the carbohydrate mass in the intestine, kgri is the rate of grinding, kempt the rate of
gastric emptying, mb [kg] the subject’s body weight, kabs the rate of absorption and
f the fraction of intestinal absorption that actually appears in plasma. The rate of

Carbohydrates Insulin Activity

GS IS EES

yBG

GIIS

ûg ûi ûe

Fig. 4 Physiological model describing diabetic blood glucose dynamics. Notation: GS glucose
subsystem, IS insulin subsystem, EES energy expenditure subsystem, GIIS glucose insulin
interaction subsystem; ûg glucose rate of appearance following a meal, ûi insulin in plasma after
subcutaneous injection, ûe energy expenditure, yBG blood glucose
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gastric emptying was a non-linear function of the amount of carbohydrates in the
stomach qsto according to the following relationship:

kempt qstoð Þ ¼ kmin þ
kmax � kmin

2
: tanh a qsto � b � Dð Þ½ � � tanh b qsto � c � Dð Þ½ � þ 2f g

ð2Þ

a ¼ 5
2 � D � 1� bð Þ ; b ¼ 5

2 � D � c ð3Þ

Dalla Man and co-workers provided us with the mean population values for the
parameters appearing in Eqs. 1, 2, 3 used throughout the thesis. Table 2 reports
such values.

qsto1 qsto2

qgut

ucarb

kempt (qsto)

plasma

kgri

0 100 200 300
0

2

4

6

8

10

Time [min]
û g

[m
g/

kg
/m

in
]

Glucose rate of appearance

Fig. 5 Left Glucose intestinal absorption model [16]. Right Glucose rate of appearance ûg after
ingestion of 40 [g] carbohydrate by a patient with mb = 65 [kg] at time t = 0, simulated with the
model in Eq. (1) and parameters in Table 2

Table 2 Parameter values in
the glucose intestinal
absorption model

Parameter Value Measurement unit

kgri 0.055 [min-1]
kmax 0.055 [min-1]
kmin 0.008 [min-1]
kabs 0.056 [min-1]
b 0.82 dimensionless
c 0.01 dimensionless
f 0.9 dimensionless
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3.2 Insulin Subsystem

The insulin flow sðtÞ entering the bloodstream from the subcutaneous depots in the
diabetic subject is described by a subcutaneous insulin infusion model (Fig. 6),
whose model equations are:

_Isc1 tð Þ ¼ � kd þ ka1ð ÞIsc1 tð Þ þ Iir tð Þ; Isc1 0ð Þ ¼ Isc1b

_Isc2 tð Þ ¼ kdIsc1 tð Þ � ka2Isc2 tð Þ; Isc2 0ð Þ ¼ Isc2b

s tð Þ ¼ ka1Isc1 tð Þ þ ka2Isc2 tð Þ
ð4Þ

with Isc1; Isc2 pmol/kg the amount of nonmonomeric and monomeric insulin in the
subcutaneous space, respectively, kd [min-1] the rate constant of insulin dissocia-
tion, ka1 [min-1] and ka2 [min-1] the rate constants of nonmonomeric and mono-
meric insulin absorption, respectively, and Iir [pmol/kg/min] the exogenous insulin
infusion rate. The insulin flow sðtÞwhich entered the bloodstream is degraded in the
liver and the periphery according to the model equations [26]:

_Ip tð Þ ¼ � m2 þ m4ð ÞIp tð Þ þ m1I1 tð Þ þ s tð Þ; Ip 0ð Þ ¼ Iph

_Il tð Þ ¼ � m1 þ m3ð ÞIl tð Þ þ m2Ip tð Þ; Il 0ð Þ ¼ Ilb

ûi tð Þ ¼ Ip tð Þ
Vi

ð5Þ

where Ip [pmol/kg] and Il [pmol/kg] are insulin masses in plasma and liver,
respectively, Vi [L/kg] is the distribution volume of insulin, while ûi [pmol/L]
accounts for the total plasma insulin concentration. m1 is the rate of hepatic
clearance, m2, m3, m4 [min-1], instead, are rate parameters as follows:

m2 ¼
3
5

lCL

HEb Vimbð Þ

m3 ¼ m1
HEb

1� HEb

m4 ¼
2
5

ICL

Vimb

ð6Þ

where HEb [dimensionless] is the basal hepatic insulin extraction, while ICL

[L/min] is the insulin clearance. At steady-state

0 ¼ � kd þ ka1ð ÞIsc1b þ Iirb

0 ¼ kdIsc1b � ka2 Isc2b

sb ¼ ka1Isc1b þ ka2 Isc2b

ð7Þ
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so that the basal value of insulin in the subcutaneous compartments, i.e., Isc1b and
Isc2b

Isc1b ¼
Iirb

kd þ ka1

Isc2b ¼
kd

ka2
� Isc1b

ð8Þ

and sb = Iirb. Further,

0 ¼ � m2 þ m4ð ÞIpb þ m1Ilb þ sb

0 ¼ �ðm1 þ m3ÞIlb þ m2lpb
ð9Þ

leading to the expressions for the amount of insulin in the liver compartment at
basal state:

Ilb ¼ Ipb
m2

m1 þ m3
ð10Þ

and the amount of insulin in plasma at basal steady state:

Ipb ¼
Iirb

m2 þ m4 � m1m2
m1þm3

ð11Þ

Model parameters used in the thesis were provided by Dalla Man and co-workers
and are given in Table 3.

3.3 Data Analysis

Data analysis was performed in the following order [36]:

• autospectrum of inputs

Suu ixð Þ ¼F lim
T!1

1
2T

Z T

�T
u tð Þu� t � sð Þdt

� �

• cross spectrum between inputs and output

Suy ixð Þ ¼F lim
T!1

1
2T

Z T

�T
u tð Þy� t � sð Þdt

� �
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• quadratic coherence spectrum between inputs and output

c2
uy xð Þ ¼

Suy ixð Þ
fflffl fflffl2

Suu ixð ÞSyy ixð Þ

3.3.1 Data Pre-processing

For purposes of model identification, removal of the mean value of the data series
was done as part of standard data pre-processing [42]. In addition, originally non-
uniformly sampled, plasma glucose concentration and plasma total insulin con-
centration from laboratory results were linearly interpolated and uniformly
resampled, the resampling period being 1 min.

Table 3 Parameter values
for the subcutaneous insulin
infusion model

Parameter Fast insulin Slow insulin Unit

ka1 0.004 0.0002 [min-1]
ka2 0.0182 0.00091 [min-1]
kd 0.0164 0.00164 [min-1]
m1 0.1766 0.1766 [min-1]
Vi 0.05 0.05 [L/kg]
ICL 1.1069 1.1069 [L/min]
HEb 0.6 0.6 dimensionless

sc1 sc2

plasma periphery

Insulin intake
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0
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Fig. 6 Left Insulin pharmacokinetics model [38]. It accounts for both slow- and fast-acting
insulin. Compartments scl and sc2 represents the subcutaneous insulin infusion module. Plasma
insulin concentration: total ûi [lU/mL] (red), slow-acting (blue) and fast-acting (green) resulting
from a basal dose of 20 [IU] at t = 0 and a bolus of 5 [IU] at t = 240 min, taken by a patient with
mb = 65 kg, simulated with the model in Eqs. (4, 5) and parameters in Table 3
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3.4 Problem Formulation

Given the inputs:

• interpolated total plasma insulin concentration ui [mlU/L] from drawn blood
samples;

• plasma glucose rate of appearance ug [mg/kg/min] after carbohydrate intestinal
absorption;
and the output:

• interpolated blood glucose yBG [mg/dL] from drawn blood samples

the objective was to find an individual-specific and physiological relevant model of
the glucose-insulin interaction for each of the subjects in the selected population.
Minimum requirements on the model were:

• stability;
• white residuals;
• qualitative correct blood glucose responses to

– 1 [IU] fast-acting insulin;
– 10 [g] carbohydrates;

Performances were evaluated according to:

• Percentage FIT

FIT ¼ 1� yk � ŷkj j
yk � �ykj j

� �
� 100 %

• Percentage Variance Accounted For (VAF)

VAF ¼ 1�
E yk � ŷkð Þ yk � ŷkð ÞT
h i

E ykyT
k

� � � 100 %

so that additional requirement on the model were:

• FIT C 50 % on 60 min-ahead model-based prediction on validation data;
• VAF C 50 % on 60 min-ahead model-based prediction on validation data.

3.5 Model Estimation

The approach considered for modeling was system identification of discrete-time,
time invariant linear models [42]. The data belonging to each of the selected
patients records was equally divided into two parts: the first one for the calibration
procedure of obtaining the optimal model structure and model parameters, and the
second one for validation of the chosen configuration.
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Assuming that input-output data {uk, yk}, k = 1,…, N were available, model
structures describing the GII dynamical system were:

• autoregressive moving average with exogenous inputs (ARMAX) model

A z�1
	 


yk ¼ z�k1 B1 z�1
	 


u1
k þ � � � þ z�km Bm z�1

	 

um

k þ C z�1
	 


wk ð12Þ

where

A z�1
	 


¼ 1þ a1z�1 þ � � � þ ana z�na ð13Þ

Bi z�1
	 


¼ b0;I þ b1;iz
�1 þ . . .þ bnbm;i z

�nbm ð14Þ

C z�1
	 


¼ 1þ c1z�1 þ . . .þ cnc z
�nc ð15Þ

na, nbi, nc integers representing the orders of the polynomials, u1
k ; . . .; um

k , are the
inputs, yk is the output, wk denotes the coloured noise and z-1 is the backward shift
operator;
• state-space model in innovation form

xkþ1 ¼Axk þBuk þKek

yk ¼ Cxk þDuk þ ek

�
ð16Þ

denoting with n the dimension of the state-space, m the number of inputs, A 2
R

n�n; B 2 R
n�n; C 2 R

1�n; D 2 R
1�m; K 2 R

n�1 and {ek} the noise process,
i.e., the one-step-ahead prediction error, which is a zero-mean white noise.

For each of the calibration dataset different methods were used for the esti-
mation of the model parameters:
• prediction-error identification methods (PEM) [42] for identification of the

ARMAX structure
• subspace-based methods, namely:

– N4SID [65];
– PO-MOESP [67];
– PBSID [13, 14];

for the identification of the state-space model.
The identification procedure is outlined in Algorithm 1. Throughout the work

Matlab� System Identification Toolbox [46] and the SMI Toolbox [33] were used.

3.6 Model Evaluation and Selection Criteria

The system identification procedure provided a plethora of models for each of the
subjects in the population. However, to the purpose of model-based controller
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design, it suffices to select one model per patient only. Necessary requirements on
a model suitable for inclusion and exploitation in the DIAdvisorTM tool were:

• stability;
• uncorrelated (white) residuals;
• physiologically sensible responses to insulin and food intake, i.e., blood glucose

concentration should decrease in response to insulin and increase in response to
food intake.

In particular, in order to assess whether the model showed correct responses to
inputs, the simulated blood glucose reactions to a

• 1 [IU] fast insulin injection
• 10 [g] carbohydrates intake

were compared, the appearance of insulin in blood after subcutaneous injection
being obtained with Eqs. (4, 5, 8 and the parameters listed in Table 3, and simi-
larly, the glucose rate of appearance in plasma after an oral glucose ingestion being
calculated using Eq. (1) and parameters in Table 2.
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Each of the estimated models, i.e. the ARMAX models ranked in ascending
FPE, the N4SID, MOESP and PBSID models ranked in ascending model order,
were evaluated according to the diagram in Fig. 8. When a requirement was not
fulfilled, a model with higher FPE in the case of ARMAX models or higher order
in the case of the state-space models, was taken for evaluation.

Those models passing the tests depicted in Fig. 8 were compared on the basis of
their prediction performances on 30, 60, 90 and 120-min-ahead prediction. In
particular, the performances of model-based predictors obtained with the Matlab�

System Identification Toolbox [46] command predict.m were evaluated according
to:

• FIT [%]
• Prediction error variance

E yk � ŷkð Þ yk � ŷkð ÞT
n o

• VAF [%]
and compared to those achieved with the zero-order hold (ZOH) ŷkþsjk ¼ yk, with
s = 30, 60, 90, 120.

3.7 Results

3.7.1 Data Analysis

The autospectra (power spectra) of inputs and output showing the frequency
contents of the signals investigated as well as the coherence spectrum between the
inputs and the controlled variable are shown in Fig. 7 for the representative
patients 102 (Fig. 8).

3.7.2 Models

The methods failing to provide a model complying with the criteria in Sect. 3.6
were the subspace-based identified models. Figure 9 reports step and impulse
responses as well as the model output to 1 [IU] of insulin and 10 [g] carbohydrates.

Performances on short-term predictions, i.e., up to 120 min are displayed in
Fig. 10, while comparisons of the model-based predictors with the projection of
the current glucose value in the future, i.e., the ZOH, are reported in Fig. 12 and
quantitatively in Tables 4, 5, 6 (notice that the table were edited from Matlab
output, the number of decimal places not representing numerical accuracy or
significance) while the box plots in Fig. 11 show mean population performances.
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4 Discussion

4.1 Result of Experiments

This work exploited a unique dataset which has being collected within a major
European project [22]. Albeit being in a controlled environment, the subjects
participating in the study experienced both hypo- and hyperglycemic events,
proving glucose regulation hard to accomplish. The glucose curves showed diurnal
variations and wide excursions over the 75 h. When hypoglycemia occurred, this
situation being common to all the patients, extra carbohydrates apart from the
standard meals were given. Similarly, hyperglycemia was treated with extra
insulin intakes. As it is common practice, the majority of the subjects bloused just
before being served the meal. Since meal intake and the insulin injections have
opposite effects on the blood glucose level, the estimation of the contribution from
each of these inputs is difficult when both are active at the same time.

As for the sensor signals, the FreeStyle NavigatorTM continuous glucose
monitor traces resulted often in poor agreement with the blood glucose reference
obtained from the laboratory analysis. In particular, important offsets were present.
The system measures glucose in the interstitial fluid (ISF), i.e., in between the
body cells. Movements of nutrients, oxygen and glucose from the blood into the
cells happen across the ISF; therefore, during times of rapid change in blood
glucose, e.g. after eating, dosing insulin, or exercising, differences in glucose
measurement between interstitial fluid and finger-stick measurements are expected
to be observed. In the examined trial, however, it was noted that in 40–50 % of the
traces the sensor was accurate at low glucose levels but inaccurate at high levels, a
fact that cannot be explained by the plasma-to-interstitium dynamics only and may
be explained by poor/difficult device calibration. The manufacturer also made
available the intermediate signal calculated by the system at each minute. Whether
or not this may overcome the limitations introduced by the physiological inter-
stitium-to-plasma dynamics it is still unclear, since a model of how the signal
relates to plasma glucose is missing.

Finally, the rich collection of blood samples provided reference plasma glucose
values and plasma insulin values not available elsewhere.

b Fig. 7 Patient CHU0102. Top Panels Top Left Magnitude of Power spectrum of inputs: total
plasma insulin [(mIU/L)2/(Hz)] (blue), plasma glucose rate of appearance [(mg/kg/min)2/(Hz)]
(red), heart rate [(beats/min)2/(Hz)] (black), activity (a.u./(Hz)) (green); Top Right Magnitude of
Power spectrum of output: blood glucose [(mg/dL)2/(Hz)]; Bottom Left Magnitude of cross
spectrum: total plasma insulin, blood glucose [(mIU/L)2(mg/dL)2/(Hz)] (blue), plasma glucose
rate of appearance, blood glucose [(mg/kg/min)2(mg/dL)2/(Hz)] (red), heart rate, blood glucose
[(beats/min)2(mg/dL)2/(Hz)] (black), activity, blood glucose [(a.u.)(mg/dL)2 (Hz)] (green);
Bottom Right Phase of cross spectrum rad: total plasma insulin (blue), plasma glucose rate of
appearance (red), heart rate (black), activity (green). Bottom Panels Coherence spectra between
blood glucose and Top Left total plasma insulin; Top Right plasma glucose rate of appearance;
Bottom Left Heart Rate; Bottom Right Activity. All the spectra versus Frequency [Hz]
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4.2 Modeling

Over the last decades, models describing the insulin-to-glucose system dynamics
were developed for the purpose of simulation and glycemic control, the approach
being physiology based [19, 45, 56]. Recently the problem of identifying such a
model has been tackled from a data-driven perspective mainly using simulated
data from models in the literature [28, 52]. Indeed, fitting actual T1DM subject
data to the models has been treated to a much less extent (e.g., [29, 61, 62] ) given
the difficulties in gathering appropriate patient records.

The autospectra (power spectra) showing the frequency contents of the signals
investigated and the coherence spectra between the inputs and the controlled
variable were calculated [36], Recall that a coherence spectrum can be interpreted
as frequency-resolved correlation analysis (or signal-to-noise analysis). A large
absolute value close to 1 indicates that the input and output are correlated. A
coherence value of 0.5 denotes that half of the output variation may be explained
by variations in the stimulus input. As predictable, the data collected offered poor
model input excitation despite the careful selection of the subjects, because of the
correlation between food intake and consequent insulin injection.

Throughout the work, the glucose flux in the bloodstream after intestinal
absorption and the total, i.e., fast-acting and slow-acting, insulin flux in the
bloodstream were considered as input variables. As far as the glucose absorption
modeling is concerned, it is a well known fact that not only the size of the meal but
also the composition of the meal affects the digestion dynamics (see e.g. [10]).
Unfortunately, detailed quantitative information on meal composition was not
available in the data set considered for this chapter. In absence of such informa-
tion, all sources of carbohydrates were assumed to be equal. Population mean
values were used for the parameters appearing in the meal model and in the insulin
kinetics model thus disregarding the inter-personal variability. Given the fre-
quently drawn blood samples, it was decided to use the actual (interpolated and
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uniformly resampled) insulin assays for the identification of both models and
predictors, and to use the physiological insulin kinetics model at a later stage, to
test the blood glucose response to 1 [IU] of fast acting insulin.
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Individual-specific models of low-complexity were identified from the collected
data. Estimated model structures included autoregressive with exogenous inputs
(ARMAX) models and state-space models. As far as the ARMAX structure is
concerned, identification of the model parameters was accomplished by minimi-
zation of a quadratic prediction error criterion using the Matlab� System Identi-
fication Toolbox routine armax.m. The range of the orders na, nb, nc was
empirically set to the interval [1:10], while that of the inputs-output delays was
[1:3], Regarding the subspace identification techniques, two parameters having
substantial influence on the quality of the resulting model needed to be chosen,
namely the lengths of past and future horizons, representing the dimension of
certain Hankel matrices constructed with the data. There are no simple rules for
choosing them, however, the knowledge of the application, that is blood glucose
prediction up to 120 min ahead, provided an initial guess. The parameters were
then tuned empirically: p = f = 120 in the N4SID algorithm [65], s = 30 in the
PO-MOESP algorithm [67] and p = 60, f = 20 in PBSID [14],

The estimated models were tested according to various validation criteria.
Stability was the first requirement that a model needed to fulfill. Residual tests
with the purpose of finding remaining correlations which indicate whether the
model order is adequate were carried out. With adequate model order, the residual
process is white only and of sufficiently small magnitude. The residual autocor-
relation and cross correlation between the prediction errors and the input tests
needed to give significant (99 % confidence) validation with respect to changes of
sign, independence of residuals, normality, and independence between residuals
and input in order for the test to be passed. Finally, qualitatively correct responses
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to inputs were guaranteed. From a quantitative point of view, according to clini-
cians and their experience gained from clinical trials, the average lowering effect
of 1 [IU] of fast insulin falls within 25–60 [mg/dL], with peak time 60–240 [min],
depending upon the subject’s resistance or sensitivity to insulin, whereas an
ingestion of 10 [g] pure dextrose makes the blood glucose rising 15 [mg/dL], in 20
[min] at best. However, these requirements seemed hard to achieve and were not
fulfilled by all models.

Overall, the main difficulties encountered while carrying out the modeling task
were assuring white residuals and estimating physiologically correct inputs to
output transfer functions.
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4.3 Prediction

The quality of the predictors developed was assessed by mathematical metrics in
order to quantify the error between the predicted blood glucose profile versus the
actual ones. Specifically, predictions were evaluated with respect to

• FIT [%]
• prediction error variance [mg/dL]
• VAF [%]
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Table 4 Model-based predictor performance evaluation

Patient ID predictor 30 [min] 60 [min] 90 [min] 120 [min]

102 ARMAX 73.5358 49.4739 32.8066 20.7979
ZOH 60.6483 32.5733 9.0154 -10.1487

103 ARMAX 65.0763 33.7277 19.71 10.3026
ZOH 50.6296 20.8109 -1.3747 -21.3287

104 ARMAX 76.0065 54.1321 42.0296 34.4656
ZOH 52.1479 19.1685 -4.933 -22.7172

105 ARMAX 57.1568 27.7924 13.4519 7.264
ZOH 47.214 14.5802 -6.1496 -18.931

106 ARMAX 54.7189 8.3002 -25.1534 -48.6235
ZOH 44.0662 9.708 -8.2996 -15.4517

107 ARMAX 68.2954 48.3223 34.0031 26.5711
ZOH 52.2875 16.1428 -10.6265 -29.7901

115 ARMAX 79.7602 59.3186 42.1829 32.44
ZOH 63.6523 34.7217 12.3847 -3.4325

102 ARMAX 76.0582 49.3294 30.8174 21.5344
ZOH 58.4849 27.0355 4.3175 -12.5778

130 ARMAX 63.114 39.9365 20.9482 9.3143
ZOH 58.8014 29.0776 6.3448 -9.5646

Percentage FIT [%] versus Prediction Horizon [min] on validation data

Table 5 Model-based predictor performance evaluation

Patient ID predictor 30 [min] 60 [min] 90 [min] 120 [min]

102 ARMAX 0.1788 0.6462 1.1344 1.5641
ZOH 0.3981 1.1676 2.1253 3.1139

103 ARMAX 0.1654 0.5896 0.8474 1.0292
ZOH 0.3323 0.8545 1.3988 2.0007

104 ARMAX 0.2635 0.9593 1.529 1.9525
ZOH 1.0513 2.9976 5.047 6.8949

105 ARMAX 0.2842 0.8028 1.1445 1.2995
ZOH 0.4306 1.1233 1.7245 2.1461

106 ARMAX 0.5172 2.1103 3.9098 5.4791
ZOH 0.7973 2.0763 2.9834 3.3862

107 ARMAX 0.2433 0.6391 1.0343 1.2715
ZOH 0.5535 1.7088 2.9718 4.0885

115 ARMAX 0.07313 0.2834 0.5559 0.7294
ZOH 0.2423 0.7786 1.3951 1.9321

102 ARMAX 0.202 0.8952 1.6533 2.1069
ZOH 0.6141 1.8968 3.2605 4.5099

130 ARMAX 0.7108 1.8847 3.2648 4.2967
ZOH 0.8868 2.6279 4.5825 6.2708

Prediction Error Variance 103 [(mg/dL)2] versus Prediction Horizon [min] on validation data
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and qualitative assessments concerning glucose-trends detection. Indeed, in dia-
betes management, the perhaps most important feature for a predictor is the ability
of capturing hypoglycemias and hyperglycemias, rather than being correct in the
normo-glycemic range. The performances were compared to those achieved with
the zero-order-hold prediction.

5 Conclusions and Future Work

5.1 Conclusions

This contribution dealt with linear modeling and short-term prediction in diabetes
physiology. Specifically, data-driven techniques were investigated to the purpose
of the DIAdvisorTM tool application [22] and evaluated for type 1 diabetes mellitus
records belonging to a population of 9 subjects in hospital conditions.

5.1.1 Modeling

An individual-specific, physiologically relevant model of the glucose-insulin
interaction subsystem was identified from each of the subjects data using pre-
diction error methods and subspace-based methods. Inputs to the models were:

Table 6 Model-based predictor performance evaluation

Patient ID predictor 30 [min] 60 [min] 90 [min] 120 [min]

102 ARMAX 93.061 74.9189 55.9707 39.2934
ZOH 84.5496 54.6813 17.5108 -20.8571

103 ARMAX 87.864 56.7519 37.8332 24.4987
ZOH 75.6258 37.316 -2.6105 -46.7695

104 ARMAX 94.2616 79.1115 66.7055 57.4847
ZOH 77.1072 34.7272 -9.8982 -50.1352

105 ARMAX 81.6979 48.3 26.2977 16.3122
ZOH 72.2686 27.6622 -11.0544 -38.207

106 ARMAX 79.7178 17.2474 -53.3144 -114.8501
ZOH 68.734 18.5836 -16.9867 -32.7826

107 ARMAX 90.0062 73.7458 57.514 47.7695
ZOH 77.2643 29.8063 -22.0801 -67.9497

115 ARMAX 96.0871 84.8332 70.2528 60.9726
ZOH 87.0342 58.3385 25.3581 -3.3786

120 ARMAX 94.3313 74.8741 53.5968 40.8661
ZOH 82.7652 46.765 8.4905 -26.5775

130 ARMAX 86.3956 63.9289 37.5156 17.7668
ZOH 83.028 49.705 12.2986 -20.0131

Percentage VAF [%] versus Prediction Horizon [min] on validation data
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• interpolated total plasma insulin concentration ui [mIU/L] from drawn blood
samples;

• plasma glucose rate of appearance ûg [mg/kg/min] after carbohydrate intestinal
absorption;

and the output was:
• interpolated blood glucose yBG [mg/dL] from drawn blood samples

ARMAX models of order in the range [3:6] satisfied all the criteria required,
specifically:

• stability;
• uncorrelated (white) residuals;
• physiologically sensible responses to 1 [IU] of insulin and 10 [g] of

carbohydrates

and were therefore selected for inclusion in the advisory tool. However, the
additional requirements on model-based predictor performances were met only
partially. Indeed, whereas a value of VAF [ 50 % on 60 min-ahead model-based
prediction on validation data was achieved by all the models except the 5th-order
ARMAX model for patient 105 and the 6th-order ARMAX model for patient 106,
a value of FIT [ 50 % on 60 min-ahead model-based prediction on validation
data was achieved by the 3rd-order ARMAX model identified from patient 104
data and the 6th-order ARMAX model identified from patient 115 data, only.

5.2 Future Work

5.2.1 Experiment Design

Poor model input excitation and input signal correlation were reported giving rise
to the issue of ill-conditioning of the estimates. Whereas the importance of per-
sistency of excitation was well recognized in the consortium, it posed problems in
the ethical approval of the experimental protocol. Thus, further work is needed to
investigate optimal experimental conditions and protocols in order to obtain data
suitable for identification purposes without contributing to higher patient risk.

5.2.2 Modeling

Several topics call for attention:
First, in the meal simulation model, the development of new compartments
accounting also for proteins, fat and fiber content of a meal is needed. A feasible
alternative to that would be introducing the glycemic index Gi of each mixed meal
in the already existing meal models from the literature (e.g. [16, 19] ). Using the
patient’s diary and nutrition tables it is possible to estimate the Gi of each food
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intake. Hence, considering that lower Gi nutrients prolong the glucose rate of
appearance in plasma, the glucose intestinal absorption model could be modified,
e.g., making the parameters b, c, kmax and kabs functions of the Gi of the meal:

b ¼ 0:089 � log GIð Þ þ 0:43

c ¼ 0:3 � log GIð Þ � 0:61

kmax ¼ 0:02 � GI

30
� 0:013

kabs ¼ 0:013 � e0:02�GI

ð17Þ

In addition, since patient’s annotation on meal quantity and content are not always
reliable, the problem of meal estimation to cope with forgotten meals and mistaken
information needs to be addressed.

As far as the insulin modeling is concerned, grey-box identification of the
parameters describing insulin pharmacokinetics/pharmacodynamics could be
pursued, in order to fit the physiological models (e.g. [69]) to the patients data.

A first-principle-based model quantifying the impact of physical activity on
blood glucose excursion deserves future studies as well.

Further improvements of the state-of-the-art in identification, e.g., the ability of
handling non-uniformly sampled data, reduction of sensitivity to initial conditions
and automatic selections of model parameters, would be valuable. Most impor-
tantly, new identification methods tailored to the diabetes application need to be
developed: constrained optimization could be used, for instance, to obtain physi-
ologically correct responses to inputs. In doing so, it may be helpful to relate
patient data such as BMI, insulin sensitivity and/or resistance to the insulin and
glucose impulse responses.

Hybrid [53] or Linear-Parameter-Varying (LPV) models [3, 66] may capture
the circadian variation of glucose in a better way than Linear-Time-Invariant (LTI)
models, therefore this investigation is left to future work.

5.2.3 Prediction

Given the application, it is crucial that the predictors are correct in forecasting
hypo- and hyperglycemic excursions, rather than being precise in the euglycemic
range. A cost function similar to that presented in [32] could be an appropriate
choice to penalize out-of-range glucose deviations.

Last, it would be interesting to challenge linear model identification methods on
data collected from patients in ambulatory conditions.
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Nonlinear Modeling of the Dynamic
Effects of Free Fatty Acids on Insulin
Sensitivity

Vasilis Z. Marmarelis, Dae C. Shin and Georgios D. Mitsis

Abstract This chapter presents a nonlinear model of the combined dynamic
effects of spontaneous variations of plasma insulin and free fatty acids on glucose
concentration in a fasting dog. The model is based on the general nonparametric
modeling methodology that employs the concept of Principal Dynamic Modes
(PDMs) to obtain a Volterra-equivalent nonlinear dynamic model with two inputs
(insulin and free fatty acids) and one output (glucose) that are measured experi-
mentally every 3 min in a fasting dog as time-series data over 10 hr. This model is
deemed valid and predictive for all input waveforms within the experimental
dynamic range. The obtained model is composed of two PDMs for each input and
cubic Associated Nonlinear Functions (ANFs), in addition to two cross-terms. The
waveform of the obtained PDMs offers potentially valuable interpretation of the
implicated physiological mechanisms. The system nonlinearities are described, in
turn, by the obtained ANFs. The evaluation of the overall model performance is
facilitated by the use of specialized inputs, such as pulses or impulses. For
instance, the use of insulin input pulses can yield estimates of ‘‘dynamic insulin
sensitivity’’ (as the ratio of the steady-state glucose response to the input pulse
amplitude) for various levels of free fatty acids. The obtained result indicates (in a
quantitative manner) the widely held view that insulin sensitivity decreases with
rising levels of free fatty acids. Furthermore, it indicates that this effect depends on
the input insulin strength (dose-dependent insulin sensitivity). Drastic reduction of
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insulin sensitivity is predicted by the model above a critical level of free fatty acids
for low-to-moderate values of plasma insulin. This result demonstrates the
potential utility of the proposed modeling approach for advancing our quantitative
understanding of the processes underpinning obesity and Type II diabetes.

1 Introduction

The multiple effects (direct and indirect) of insulin on blood glucose have been
studied extensively in the context of diabetes mellitus, motivated by the need for
improved diagnostic procedures and effective treatment of diabetic patients.
Parametric/compartmental models (assuming the form of sets of differential and
algebraic equations) have been developed for this purpose and seek to describe the
causal effect of infused insulin on blood glucose concentration—typically in
connection with specific testing protocols, such as the Glucose Tolerance Test [1,
2]. More complex models that take into account the effects of glucagon and free-
fatty acids have also been proposed [3, 4]. Nonparametric data-based modeling has
also been suggested for this purpose using variants of the Volterra-Wiener
approach to input-output system modeling [5, 6]. Our group has pioneered the
Laguerre-Volterra network [5] and the Principal Dynamic Modes (PDMs)
approaches [6], which both utilize Laguerre expansions of the system kernels. The
nonparametric approach has the advantage of being true to the data and not
requiring a priori postulation of a specific model form (e.g. differential equations).
The PDM-based approach is used in the present study, which seeks to elucidate the
dynamic effects of free fatty acids (FFAs) on insulin-glucose interactions. This
subject is attracting increasing attention in the context of the relation between
obesity and diabetes [7, 8]. Elevated FFAs have been shown to increase plasma
glucose and hepatic glucose output, as well as increase peripheral and hepatic
insulin resistance in a dose-dependent manner [9–11].

Thus, FFAs are viewed as a major link between obesity and insulin resistance or
Type 2 diabetes. In the liver, FFAs cause insulin resistance by inhibiting insulin
suppression of glycogenolysis. FFAs also promote glucose-stimulated insulin
secretion by the pancreatic beta cells. The latter is viewed as a possible reason
preventing the development of Type 2 diabetes in most obese insulin-resistant
people. FFAs have also been shown to facilitate inflammatory processes and,
therefore, may contribute to the pathogenesis of coronary artery disease [8, 9].
Dysregulation of FFA metabolism may cause insulin resistance because of pref-
erential oxidation of FFA over glucose [10].

In the present study, we examine how spontaneous variations in plasma insulin
and FFA (viewed as the ‘‘input’’ variables) jointly affect the level of blood glucose
(viewed as the ‘‘output’’ variable) under fasting conditions. To achieve this goal,
we quantify the dynamic effects of changes in the two input variables upon the
output variable via the Volterra-equivalent PDM-based model estimated from
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actual experimental time-series data collected in a fasting dog. The obtained model
has predictive capability for arbitrary inputs that remain within the experimental
dynamic range. The model is dynamic (i.e. it predicts the present value of output
glucose concentration on the basis of the entire epoch of insulin and FFA input
values) and nonlinear (i.e. the effects of input changes upon the output are not
additive and do not scale proportionally). The employed modeling methodology is
generally applicable to nonlinear dynamic systems and robust in the presence of
measurement noise or systemic interference. In addition, this methodology is
applicable to short data-records, thereby rendering feasible the estimation of the
model with limited number of experimental measurements [12].

The objective of this chapter is to demonstrate the efficacy of the proposed
approach with experimental data from a fasting dog and to provide some novel
(albeit preliminary) physiological insight into the joint causal effects of plasma
insulin and FFA variations on plasma glucose. This insight is offered in the
quantitative form of a predictive model that may be used to test rigorously pos-
tulated hypotheses within the dynamic range of the available data. It is hoped that
the efficacy of this approach will enable fruitful applications in this physiological
domain.

2 Methods

Experimental time-series data of plasma glucose, insulin and free fatty acids
(FFAs) were collected in a healthy male mongrel dog every 3 minutes over a 10-
hour period (200 time-series samples). The data were collected under fasting
conditions of spontaneous activity and the animal was judged to be in good health.
The University of Southern California Institutional Animal Care Committee
approved all surgical and experimental procedures. Details of the experimental
procedures can be found in [6].

The collected time-series datasets are shown in the left panel of Fig. 1 and their
mean (standard deviation) values are: 81.14 (2.39) mg/dl for glucose; 44.85
(13.81) pM for insulin; and 0.52 (0.07) mM for FFA. Since we are interested in
studying the dynamics of this system over time horizons longer than 15 min, we
perform moving averaging with a five-point Hanning window (equivalent to low-
pass filtering below 0.1 cycles/min) that removes the very rapid variations of the
data. We analyze the de-meaned filtered data that have standard deviations (SDs)
of 1.84 mg/dl for glucose; 9.68 pM for insulin; and 0.06 mM for FFA, and are
shown in the right panel of Fig. 1. The SDs of the filtered data are smaller because
sharp peaks are smoothed, especially in the insulin data. We deem this acceptable
because we focus on capturing the system dynamics over cyclical changes with
periods longer than 10 min per cycle. The random and broadband nature of these
datasets is evident. It is difficult to discern visually any consistent correlation
between the fluctuations of these signals—a fact that motivates the use of dynamic
modeling of the data using our nonlinear methodology. The latter employs the
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concept of Principal Dynamic Modes (PDMs) to obtain a model with two inputs
(insulin and FFA) and one output (glucose). The obtained Volterra-equivalent
PDM-based nonlinear dynamic model of the input-output relationship does not
require a priori model postulates and yields data-based models that have general
predictive capability for arbitrary input waveforms within the experimental
dynamic range. The employed modeling methodology is summarized in Appendix
I. Details can be found in [12].

3 Results

Using the PDM-based modeling methodology outlined in Appendix I with three
Laguerre basis functions having alpha parameter 0.4 for the insulin input and 0.8
for the FFA input (determined via a search procedure minimizing the prediction
error), we obtain the model shown schematically in Fig. 2 that has two PDMs for
each input and two cross-terms (one between the 1st PDM of insulin and the 2nd
PDM of FFA, and the other between the 1st and 2nd PDM of FFA). The computed
PDMs are shown in Fig. 3 in the time-domain. Each PDM can be viewed as the
impulse response function of a linear filter that transforms the respective input
epoch into a state variable (the PDM output) that has a contemporaneous nonlinear
relationship with the output variable described by the respective ANF [12]. The
computed ANFs are shown in Fig. 4, plotted over the abscissa range of ±1 SD of

Fig. 1 Left the collected experimental time-series data of plasma glucose (top panel), insulin
(middle panel) and free fatty acids (FFAs) (bottom panel) from a fasting dog at rest over 10 hours
(sampling every 3 min). Right the time-series data after mean subtraction and low-pass filtering
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the PDM output that corresponds to the experimental data. The abscissa of the
ANF plot is the PDM output and the ordinate is the corresponding component of
the model output prediction (glucose) at the same time instant. Figure 5 shows the
PDM-based model prediction (after the initial transient of 120 min that is roughly
equal to the system memory), along with the actual glucose-output. The normal-
ized mean-square error of this model prediction is 21 %. We view this low pre-
diction error (relative to what can be achieved with other methods) as validating
the obtained model. The specific form of the obtained PDMs and ANFs is dis-
cussed in the following section with regard to plausible physiological
interpretations.

The output equation of this two-input PDM-based model is:

GðtÞ ¼G0 þ fI;1 PI;1 � IðtÞ
� �

þ fI;2 PI;2 � IðtÞ
� �

þ fF;1 PF;1 � FðtÞ
� �

þ fF;2 PF;2 � FðtÞ
� �

þ
X

j;k

Cj;kðtÞ

where * denotes the convolution operation, G(t), I(t) and F(t) denote the de-
meaned time-series data of glucose, insulin and FFA respectively, f denotes the
cubic ANF and P denotes the PDM for the input and rank indicated in the
respective subscript, G0 is the model constant, and Cj,k (t) denotes the significant
cross-terms of the model (products of PDM outputs that have statistically signif-
icant correlation with the glucose-output signal)—in this model, the following
cross-term combinations were found to be significant: (PI,1, PF,2) and (PF,1, PF,2).
This model has 15 free parameters (12 ANF coefficients, 2 cross-term coefficients

Fig. 2 Schematic of the PDM-based model, which is composed of two PDMs for each input
(insulin and FFA deviations from the respective mean values) that can be viewed as impulse
response functions of two linear filters receiving the respective input. Each PDM is followed by a
static nonlinearity, termed Associated Nonlinear Function (ANF), which transforms the PDM
output into an additive component of the model-predicted glucose output (deviation from its
mean value). The model also includes the significant cross-terms that are selected on the basis of
the statistical significance of their correlation with the output (see Appendix I). Two cross-terms
were found significant in this system: one between PDMs of the two inputs (1st of insulin and 2nd
of FFA) and the other between the two PDMs of the FFA input. The ordinate of the insulin PDMs
is in mg/dl per pM, and in mg/dl per mM for the FFA PDMs. The abscissa of the PDMs is in min.
The abscissa and ordinate of the ANFs are both in mg/dl
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and the constant G0). The PDMs are estimated separately from the kernel estimates
via the Laguerre expansion technique (see Appendix I) that requires in this case
the least-squares estimation of 28 free parameters (9 for the self-kernels of each of
the two inputs, 9 for the cross-kernel and the constant). The available data (200
samples) are deemed adequate for the estimation of these parameters without risk
of over-fitting.

Having obtained the PDM-based model, we can use it to advance our under-
standing of the dynamics of this system. Some discussion on plausible interpreta-
tions of the specific form of the obtained PDMs and the respective ANFs are
provided in the following section. In this section, we illustrate the model prediction
for specialized inputs (i.e. insulin impulse and FFA pulse) that can be evaluated
against known physiology. We also explore one important aspect of the system

Fig. 3 The computed two
PDMs for the insulin input
(left) and the FFA input
(right)
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Fig. 4 The computed ANFs for the insulin input (left) and the FFA input (right)

Fig. 5 The PDM-based model prediction of the output (dashed line) and the actual output-
glucose data (solid line) after de-meaning and low-pass filtering. The resulting Normalized Mean-
Square Error (NMSE) of this prediction is 21 %
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dynamics that pertains to the notion of ‘‘dynamic insulin sensitivity’’ (DIS) by
utilizing the predictive capability of the PDM-based model to compute the predicted
glucose response to an insulin pulse input for a given level of FFA. The insulin and
FFA values are deviations from the respective mean values of the experimental data
(i.e. relative to the observed operating point of the system). The model predictions
for three magnitudes of insulin impulses (0.5, 1 and 1.5 SD of the recorded insulin
data) and three levels of FFA impulses (0.5, 1 and 1.5 SD of the recorded FFA data)
are shown in Fig. 6 and suggest that glucose is reduced in a sub-linear manner in
response to an increase of insulin (consistent with current view), and the glucose
response to an FFA increase is biphasic exhibiting an early sub-linear reduction and a
later phase of counter-regulation (after about 2 hr) where glucose is increased. The
early phase of the glucose response to an FFA increase may be due to the reported
facilitation of pancreatic beta-cell secretion (leading to an increase of insulin and
subsequent reduction of glucose), whereas the late-phase counter-regulation may be
due to the known inhibition of FFA to the insulin facilitation of glucose uptake by
tissues and to the insulin inhibition of the processes of glycogenolysis and gluco-
neogenesis (both leading to glucose increase). It is posited from the different
dynamic time-scales that the latter effect takes longer than the former.

As an illustration of the nonlinear interaction between the two inputs as they
affect the glucose output, we show in Fig. 7 the model-predicted glucose responses
to an insulin pulse input with amplitude equal to 1 SD of the experimental insulin
data for four different levels of FFA equal to 0, 0.5, 1 and 1.5 SD of the

Fig. 6 Left panels, top to bottom the model-predicted glucose responses for three magnitudes of
insulin impulses (0.5, 1 and 1.5 SD of the recorded insulin data). Right panels, top to bottom the
model-predicted glucose responses for three levels of FFA impulses (0.5, 1 and 1.5 SD of the
recorded FFA data). The units of glucose are mg/dl. Evidently, the FFA effect is much larger
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experimental FFA data. It is evident that the steady-state value of the glucose
output (in response to the given insulin pulse input) is smaller for higher level of
FFA and, surprisingly, it is reversed from the normal (increase instead of decrease)
for high levels of FFA. This surprising result must be examined with controlled
experiments in the future. The observed early transient glucose response (reduc-
tion) to a non-zero FFA step input is consistent with the response profile presented
and discussed in Fig. 6.

The Dynamic Insulin Sensitivity (DIS) is defined as the ratio of the predicted
steady-state glucose response to the corresponding amplitude of an insulin pulse
input (for a given FFA level). The sign is inverted, so that normal DIS (i.e.
reduction of glucose for raised insulin) takes positive values. Since the model is
nonlinear (3rd order), the computed DIS values will generally follow a nonlinear
(cubic) function of the insulin pulse amplitude and of the respective FFA level.
These DIS nonlinear functions will be generally different for different operating
points of the system.

Fig. 7 The model-predicted glucose response in mg/dl to an insulin pulse input equal to 1 SD of
the experimental insulin data (9.7 pM) for four different levels of FFA: 0 (top left), 0.5 (top right),
1 (bottom left) and 1.5 (bottom right) SD of the experimental FFA data. We observe that the
glucose response to insulin is reversed from the normal (increase instead of decrease) for high
levels of FFA. The early transient glucose response (reduction) to a non-zero FFA step input (prior
to the application of the insulin pulse) is consistent with the response profile presented in Fig. 6
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The obtained results of computed DIS values are shown in Fig. 8 for three
amplitudes of the insulin input pulse (0.5, 1 and 1.5 SD of the experimental insulin
data), plotted over constant FFA levels ranging from -1.5 to +1.5 SD of the actual
FFA experimental data. It is evident in Fig. 8 that the DIS is reduced significantly
for high FFA levels, with a critical soft-threshold value seen around 0.05 mM.
This effect is sharper for lower insulin values. Additional discussion on this result
and the relation of DIS to the widely used ‘‘insulin sensitivity’’ (SI) parameter
associated with the ‘‘Minimal Model’’ of the Glucose Tolerance Test is provided in
the following section.

Using the model output equation, we can remove, in principle, the dependence
of the DIS estimate from the specific operating point of the experimental data (as
defined by the mean values) by replacing the deviations from the mean with the
data value prior to de-meaning. It can be shown that the 3rd-degree coefficients are
not affected, although the ANF coefficients of degree lower than 3rd and the
constant term are affected by the mean values. The PDMs remain the same.

As a final illustration of the capability of the predictive model in enhancing our
understanding of the system functional characteristics, we plot in Fig. 9 the steady-
state value of the glucose output in response to an insulin input pulse for various
amplitudes ranging from -2 to +2 SD of the experimental insulin data. This
steady-state insulin-glucose relationship is nonlinear and varies for different levels
of FFA, as demonstrated in Fig. 9 for five different levels of FFA. It is seen that the
insulin-glucose relation exhibits only small changes when the FFA levels remain
close to the baseline value (e.g. from -0.05 to 0.05 mM), but changes drastically
when the FFA levels take larger values (e.g. ±0.1 mM). In this regard—i.e. high
levels of FFA result in drastic reduction of insulin sensitivity (rise of insulin
resistance), as indicated by the slope of these curves. It is also seen that increased
levels of insulin generally improve the insulin sensitivity (by making the slope of

Fig. 8 The computed DIS
curves as a function of FFA
level for three amplitudes of
the insulin input pulse (0.5, 1
and 1.5 SD of the
experimental insulin data)
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these curves more negative) for all FFA levels. A critical value of insulin around
15 pM (i.e. about 1.5 SD of the experimental insulin data) emerges from the
results in this regard (see Fig. 9).

4 Discussion

The PDM-based model of Fig. 2 provides insights into the dynamic interrela-
tionships between insulin, FFA and glucose variations during spontaneous fasting
conditions in a dog. If analogies hold in human subjects, these insights may have
important implications for the in-vivo regulation of these variables in diabetics.

The waveforms of the obtained two PDMs and ANFs for the insulin input
indicate a ‘‘glucoleptic’’ effect (i.e. glucose reduction for insulin increase) for both
PDMs—with the 1st PDM exhibiting faster dynamics. The 1st ANF (see Fig. 4)
exhibits a symmetric and mildly supralinear response characteristic, but the 2nd
ANF is asymmetric indicating larger effect for negative PDM output. These
findings are consistent with existing qualitative physiological knowledge regarding
the process of insulin-facilitated glucose uptake by muscle, adipose and organ
tissues, as well as inhibition of the processes of glycogenolysis and lipolysis, all of
them leading to reduction in plasma glucose, as described quantitatively by the two
glucoleptic PDM-ANF cascades. However, it is not currently known which set of
those glucoleptic processes is faster and thus corresponds to the 1st PDM. This
question should be resolved with specialized experiments in the future.

The waveforms of the obtained two PDMs for the FFA input indicate mainly
glucogenic characteristics (i.e. positive PDM values), probably related to the
known inhibitory effects of FFA on insulin facilitation of glucose uptake and the
process of glycogenesis. Specifically, the 1st FFA PDM exhibits early positive
values indicating immediate rise of glucose in response to an impulsive rise of

Fig. 9 The computed
steady-state insulin-glucose
curves (over ±2 SD of the
experimental insulin data) for
various FFA levels. Insulin
resistance is highest for the
highest FFA level and is
generally reduced as the
insulin values increase
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FFA (as long as it is of adequate size to exceed the observed dead-zone—which is
not the case in the illustration of Fig. 6). The positive values of this PDM rapidly
diminish and become slightly negative between 10 and 30 min after input onset.
Subsequently, the values of this PDM rise to reach a peak in *70 min and remain
positive for over three hours. This late positive ‘‘hump’’ is responsible for the late-
phase counter-regulation observed in the illustration of Fig. 6 for large FFA pulse
input and explains the surprising result of reversed glucose response to insulin
(increase instead of decrease) for high levels of FFA that is shown in Fig. 7. This
intriguing finding ought to be examined with specialized experiments in the future
because, if confirmed, bears huge implications for the understanding of Type 2
diabetes. The 2nd FFA PDM starts positive and reaches a peak within *10 min
(although its respective ANF exhibits small negative values near the origin, which
accounts for the early negative glucose response to FFA pulse input in the illus-
tration of Fig. 6), diminishing afterwards and reaching near-zero levels around
60 min (see Fig. 3). The respective ANFs (see Fig. 4) have nearly symmetric
response characteristics with a central dead-zone (i.e. supralinear increase/
decrease of glucose for increase/decrease of FFA, as long as the latter has adequate
size to exceed the dead-zone). These findings are consistent with existing quali-
tative physiological knowledge regarding the inhibitory effects of FFA on insulin
facilitation of glucose uptake and on the process of glycogenesis. The precise time-
constants or the relative magnitudes of these physiological effects are not currently
known and, therefore, confirmation of the validity of the PDM analysis of this
system with specialized experiments in the future may provide valuable new
insights.

One interesting finding that was presented in the previous section is the relation
of ‘‘dynamic insulin sensitivity’’ (DIS) to the widely used ‘‘insulin sensitivity’’ (SI)
associated with the ‘‘Minimal Model’’ of the Glucose Tolerance Test [1], which is
defined as the ratio of two parameters of that model: SI = p3/p2. The computed DIS
values using the PDM-based model (see Fig. 8) suggest that DIS is reduced for
increasing levels of FFA—a finding consistent with previous observations
regarding the effect of elevated FFA on plasma glucose and insulin sensitivity
[7]—and this reduction becomes drastic when the FFA level exceeds a critical
value (*0.05 mM). Our findings also suggest that the induction of insulin resis-
tance by elevated FFA is insulin-dose dependent. When our definition of the DIS is
applied to the Minimal Model, the following expression is derived between DIS
and SI: DIS = (Gb*SI) / (p1 + A SI), where Gb denotes the basal glucose value, p1

is the glucose disappearance parameter of the Minimal Model and A is the
amplitude of the insulin input pulse. It is evident from this expression that the DIS
is dependent on the insulin dose A and the operating point (defined by Gb). We
note that the Minimal Model does not take into account the effects of FFA.

The presented modeling approach is data-driven and offers quantitative insights
into the causal inter-relationships between insulin, glucose and FFA. These
insights may prove useful in understanding these critical processes in patho-
physiological conditions such as obesity and Type 2 diabetes (with the eventual
promise of improved diagnosis and disease management). The presented results

234 V. Z. Marmarelis et al.



are preliminary and, since they are based on only one dataset, they are simply
illustrative of the PDM-based modeling approach and its potential in this field of
physiology. The obtained model is not proposed as the definitive dynamic relation
among these variables. Nonetheless, the presented results demonstrate the poten-
tial of the PDM-based modeling approach to advance our quantitative under-
standing of the subject system.
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Appendix I: Summary of PDM-Based Modeling
Methodology

We follow the general Volterra modeling approach which is applicable to all
finite-memory stationary dynamic nonlinear systems [12]. For the two-input sys-
tem of this study, we begin with the estimation of a 2nd order Volterra model using
Laguerre expansions of the kernels [12]:

GðtÞ ¼ k0 þ
Z 1

0
kIðsÞ Iðt � sÞ ds þ

Z 1
0

kFðsÞ Fðt � sÞ ds

þ
Z Z 1

0
kIIðs1; s2Þ Iðt � s1ÞIðt � s2Þ ds1ds2

þ
Z Z 1

0
kFFðs1; s2Þ Fðt � s1ÞFðt � s2Þ ds1ds2

þ
Z Z 1

0
kIFðs1; s2Þ Iðt � s1ÞFðt � s2Þ ds1ds2 þ eðtÞ

ðA1Þ

where, G(t) denotes the glucose output, I(t) denotes the insulin input, F(t) denotes
the FFA input and e(t) denotes the model prediction errors. The dynamic char-
acteristics of this system/model are described by the kernels: kI, kF, kII, kFF, kIF,
which are estimated from given input-output data by means of Laguerre expan-
sions and least-squares fitting as described below. A key step in the use of the
Laguerre expansion technique is the proper selection of the Laguerre parameter
‘‘alpha’’, which is accomplished through a search procedure minimizing the mean-
square prediction error. The Laguerre expansions of the 1st-order kernels using
L Laguerre basis functions {bj} are given by:

kiðsÞ ¼
X

j

aiðjÞ bjðsÞ ðA2Þ
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where the subscript i denotes the input (I or F), aj are the Laguerre expansion
coefficients and the summation is taken over j = 1,…, L. The Laguerre expansions
of the 2nd-order kernels are given by:

ki1;i2ðs1; s2Þ ¼
X

j1

X
j2

ai1;i2ðj1; j2Þ bj1ðs1Þ bj2ðs2Þ ðA3Þ

where the subscripts i1, i2 denote the inputs (I or F), ai1;i2 are the Laguerre
expansion coefficients and the double summation is taken over j1 and j2 from 1 to
L. The self-kernels correspond to the case when i1 and i2 denote the same input,
and the cross-kernel when i1 is different from i2. Then, we have the following
input-output relation which involves linearly the Laguerre coefficients:

yðtÞ ¼ a0 þ
X

i

X
j

aiðjÞ vj;iðsÞ þ
X
i1;i2

X
j1

X
j2

ai1;i2ðj1; j2Þ vj1;i1ðs1Þ vj2;i2ðs2Þ

ðA4Þ

where a0 is a baseline constant, and the signals vj,i(t) are the convolutions of the
Laguerre basis function bj with the respective input i. The fact that the Laguerre
expansion coefficients enter linearly in the nonlinear input-output model of
Eq. (A4) allows their estimation via least-squares fitting. Following estimation of
the Laguerre expansion coefficients, we can construct the Volterra kernel estimates
using Eqs. (A2) and (A3), which allows computation of the model prediction for
any given input using Eq. (A1) or (A4).

The concept of Principal Dynamic Modes (PDMs) aims at identifying an effi-
cient basis of functions distinct and characteristic for each system, which is
capable of representing adequately the system kernels. The computation of the
PDMs for each input is based on Singular Value Decomposition (SVD) of a
rectangular matrix composed of the 1st order kernel estimate (as a column vector)
and the 2nd order self-kernel estimate (as a block matrix) weighted by the standard
deviation of the respective input. The PDMs are defined for the significant singular
values (two for each input in this application). The resulting PDMs form a filter-
bank that receives the respective input signal and generates (via convolution)
signals that are subsequently transformed by the ‘‘Associated Nonlinear Function’’
(ANF), which represents the nonlinear characteristics of the system for the
respective PDM dynamics, to form additively the system output, as depicted
schematically in Fig. 2. Thus, the PDM-based model separates the dynamics
(PDMs) from the nonlinearities (ANFs). Since the ‘‘separability’’ of the system
nonlinearity cannot be generally assumed, we include ‘‘cross-terms’’ in the PDM-
based model that are properly selected on the basis of a statistical significance test
on the computed correlation coefficient between each cross-term (i.e. the pair
product of PDM outputs) and the output signal, using the w-statistic. Two cross-
terms were found to be adequate in this application.

The structure of the PDM-based model of the two-input/one-output system is
shown in Fig. 2. The employed PDMs represent a common ‘‘functional basis’’ for
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efficient representation of all kernels of the system. Upon selection of the PDMs
and the significant cross-terms, we estimate the Associated Nonlinear Functions
(ANFs), which are polynomial functions (cubic in this case) transforming the
output of the respective PDM into a variable that represents an additive component
of the model output, along with the other ANF outputs and the cross-terms:

yðtÞ ¼ c0 þ
X

fI uIðtÞ½ � þ
X

fF uFðtÞ½ � þ Cross -Terms þ eðtÞ ðA5Þ

where {uI} and {uF} are the PDM outputs for the inputs I and F respectively (i.e.
convolutions of each input with the respective PDM), and {fI} and {fF} are the
ANFs associated with each PDM. The ‘‘Cross-Terms’’ in Eq. (A5) are pair products
of {uI} and {uF} that have significant correlation with the output. The coefficients
of the cubic ANFs and of the selected Cross-Terms (pair products of PDM outputs
with significant correlation with the system output) are estimated, along with
baseline constant c0, via least-squares regression of the output Eq. (A5).
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