
Chapter 7
The Landscape of Agent-Oriented
Methodologies

Arnon Sturm and Onn Shehory

Abstract Agent-based systems have evolved during the last two decades.
To support the development of such systems, agent-oriented methodologies
have emerged. In general, most of the methodologies have originated from two
major research domains, namely software engineering and artificial intelligence,
and were adjusted to address the agent abstraction. It seems that many of the
methodologies share a common basis, an observation that calls for unification and
for standardization. In this chapter, we survey existing agent-oriented methodologies
and describe the support for agent-based concepts required in such methodologies.
We then analyze the most influential agent-oriented methodologies in light of the
required agent-based concepts as well as other criteria. We also examine alternatives
such as methodology integration and the support for developing a tailored agent-
oriented methodology. The main concern that arises from the survey and the analysis
is the lack of evaluation of agent-based methodologies, which may have negatively
affected, at least in part, the adoption of these methodologies for developing agent-
based systems. We also discuss the need to further extend the methodologies to
support the entire lifecycle.

Keywords Software Development • Agent-Oriented Methodologies •
Evaluation • Comparison

A. Sturm (�)
Department of Information Systems Engineering, Ben-Gurion University of the Negev,
Beer-Sheva, Israel
e-mail: sturm@bgu.ac.il

O. Shehory
IBM – Haifa Research Lab, Haifa, Israel
e-mail: onn@il.ibm.com

O. Shehory and A. Sturm (eds.), Agent-Oriented Software Engineering,
DOI 10.1007/978-3-642-54432-3__7, © Springer-Verlag Berlin Heidelberg 2014

137

mailto:sturm@bgu.ac.il
mailto:onn@il.ibm.com


138 A. Sturm and O. Shehory

1 Introduction

During the last 15 years, many methodologies for developing agent-based systems
have been developed. When referring to a methodology, we follow the definition of
[1], according to which a methodology should provide the following: a full lifecycle
process; a comprehensive set of concepts and models; a full set of techniques
(rules, guidelines, heuristics); a fully delineated set of deliverables; a modeling
language; a set of metrics; quality assurance; coding (and other) standards; reuse
advice; and guidelines for project management. Naturally, Agent-Oriented Software
Engineering (AOSE) methodologies adopt general software engineering concepts.
However, their coverage of activities required from a comprehensive methodology
is partial, as they mainly focus on technical issues and not on managerial ones.

Agent-oriented methodologies can be classified into two major classes: general-
purpose methodologies and domain-specific methodologies. In this chapter we
refer to the former. Methodologies of that kind have emerged from several dis-
ciplines, but mainly from the classical software engineering, in times influenced
by the knowledge engineering stream. When referring to software engineering,
these methodologies emphasize the way in which agent-based systems should be
constructed following software engineering principles (e.g., expressiveness, acces-
sibility, and reuse). When referring to knowledge engineering, these methodologies
emphasize implementation mechanisms of agents within the system (e.g., coopera-
tion, reasoning, negotiation) in terms of the knowledge perspective. Table 7.1 lists
most of the agent-oriented methodologies that were developed during the last two
decades. In that table, the methodologies are classified according to their domains
of origin.

This chapter aims to explore the plethora of AOSE methodologies and the way
these were evaluated. This should shed light on research and practice in this area
and present challenges in the field of AOSE methodologies.

The chapter is organized as follows. In Sect. 2, we introduce and define a set of
evaluation criteria. These are then used in Sect. 3, where we shortly introduce the
main methodologies and evaluate them. In Sect. 4, we discuss alternative approaches
for AOSE methodologies. Section 5 concludes, presenting major challenges in the
area of AOSE methodologies.

2 Criteria for Examining AOSE Methodologies

Several techniques for evaluating a methodology or comparing it to alternatives
exist. These include the following:

• Feature analysis, in which a set of features is determined before the evaluation
takes place followed by subjective grading of the features for each methodology.

• Survey, in which a methodology is evaluated by an individual, usually following
a questionnaire.



7 The Landscape of Agent-Oriented Methodologies 139

Table 7.1 AOSE methodologies

Methodology name Domain of origin Methodology name Domain of origin

AAII [2, 3] AI-KE MAS-CommonKADS [4] SECAI-KE
ADELFE [5] SE MASSIVE [6] SE
ADEM [7] SE MESSAGE [8] SE
ADEPT [9–11] AI-KE Nemo [12] SECAI-KE
AO [13] SE ODAC [14] SE
AOR [15] SE OPEN for MAS [16] SE
Cassiopeia [17] SE PASSI [18] SECAI-KE
CoMoMas [19] SECAI-KE Prometheus [20] SECAI-KE
DESIRE [21–23] AI-KE Roadmap [24] SECAI-KE
FAF [25–29] SE SADDE [30] SE
GAIA [31–33] SE SODA [34] SE
INGENIAS [35] SE Styx [36] SE
MASD [37] SECAI-KE Tropos [38] SECAI-KE
MaSE [39] SE

SE Software Engineering, AI-KE Artificial Intelligence and Knowledge Engineering

• Case study, in which the strengths of the methodology are demonstrated on a
case study. Usually, case studies are of limited extent and are within the context
of research projects.

• Field experiment, in which a methodology is examined in a real world environ-
ment, yet with some kind of control.

• Lab experiment, in which a methodology is examined in an artificial setting.
• Qualitative approach, in which the methodology is examined for understanding

phenomena that occur during its use. The approach may use techniques such as
observations, interviews, and think aloud techniques.

Many of the aforementioned evaluation techniques are difficult to apply.
Therefore, they are rarely used. Thus, in the area of AOSE methodologies,
evaluation is performed using case studies for specific methodologies, and
comparison is done using the feature analysis approach. The latter is also
used in this chapter. Multiple research efforts were allocated to feature-based
evaluation frameworks for agent-oriented methodologies. In [40], the authors
set a list of questions that a methodology should address. In [41], the authors
suggest a framework for evaluating agent-oriented methodologies referring to the
expressiveness of the methodologies. In [42], the authors perform an evaluation of
the modeling part within a methodology. In [43] and [44], a comparison of several
agent-oriented methodologies is presented. In [45], [46], and [47], the authors
also present alternative frameworks for evaluating agent-oriented methodologies;
the frameworks suggest different sets of criteria with partial overlaps. Due to the
proliferation of evaluation frameworks, in [48] the authors performed some meta-
analysis and proposed a profile-based approach to examiningAOSE methodologies.



140 A. Sturm and O. Shehory

In this chapter, we follow the set of characteristics that was adopted by [48] and
explain each of these.

2.1 Concepts and Properties

As mentioned within the first chapter of this book, agent-based systems are unique
in several characteristics. These are elaborated in the following:

1. Autonomy is the ability of an agent to operate without supervision.
2. Reactiveness is the ability of an agent to respond in a timely manner to changes

in the environment.
3. Proactiveness is the ability of an agent to pursue new goals.
4. Mental notions is the ability if an agent to refer to metal attitudes such as a

belief (which is a fact about the world), a desire (which is a fact an agent would
prefer that it be true), and an intention (which is a fact that represents the way of
realizing a desire).

5. Organization is a group of agents working together to achieve a common
purpose. An organization consists of roles that characterize the agents, which
are members of the organization.

6. Protocol is an ordered set of messages that together define the admissible
patterns of a particular type of interaction between entities.

2.2 Modeling and Notations

When examining a methodology that includes modeling capabilities, one should
look at the following issues:

1. Analyzability is a capability to check the internal consistency or implications of
models.

2. Complexity management (abstraction) is an ability to deal with various levels
of abstraction (i.e., various levels of detail).

3. Expressiveness is a capability of presenting system concepts that refer to:
the structure of the system; the knowledge encapsulated within the system; the
system’s ontology; the data flow within the system; the control flow within the
system; the concurrent activities within the system (and the agents); the resource
constraints within the system (e.g., time, CPU, and memory); the system’s
physical architecture; the agents’ mobility; the interaction of the system with
external systems; and the user interface definitions.

4. Accessibility is the ability that refers to the ease, or the simplicity, of understand-
ing and using a method.



7 The Landscape of Agent-Oriented Methodologies 141

2.3 Process

A development process is a series of actions, changes, and functions that, when
performed, result in a working computerized system. In particular, we refer to
the lifecycle coverage and the development stages that are supported by the
methodology.

2.4 Pragmatics

A methodology requires support for using it. Thus, from a pragmatic viewpoint it is
beneficial to examine the extent to which the methodology addresses the following.

1. Resources: What resources are available in order to support the methodology? Is
a textbook available? Are users’ groups established? Are training and consulting
offered by the vendor and/or third parties? In addition, are automated tools
(CASE tools) available in support of the methodology (e.g., graphical editors,
code generators, and checkers)? This issue should be examined in order to enable
a project/organization aiming at adopting a methodology to check the resources
(in terms of training and budget) required and the alternatives for acquiring these.

2. Domain applicability: Is the use of the methodology suitable for a particular
application domain (e.g., real-time and information systems)?

3. Scalability: Can the methodology, or subsets thereof, be used to handle various
application sizes? For example, can it provide a lightweight version for simpler
problems? This issue should be examined to check whether the methodol-
ogy is appropriate for handling the intended scale of applications within the
project/organization.

3 Analysis of Existing AOSE Methodologies

In this section, we review several methodologies selected from the list above and
discuss their evolution and their characteristics. The selection of these methodolo-
gies was motivated by the continuous flow of publications as well as their impact
on the AOSE methodologies field. As the purpose of this chapter is to provide an
overview of the field, we focus on evaluation criteria that are accessible to a wide
readership and can be objectively measured.

3.1 GAIA

GAIA is an agent-oriented methodology that is not coupled to a specific program-
ming language nor deals with implementation issues. GAIA [31, 33] provides a



142 A. Sturm and O. Shehory

set of models that are used at the analysis and design stages of the multi-agent
system development and evolve over that process. Following the (plain vanilla)
GAIA guidelines, the analysis of an agent-based system results in an environmental
model, a preliminary role model, a preliminary interaction model, and a set of
organizational rules.

• The environmental model is intended as an abstract, computational representa-
tion of the environment in which the multi-agent system will be situated.

• The preliminary role model is used for identifying the basic skills required
by the organization and contains only those roles, possibly not completely
defined, that can be identified without committing to the imposition of a specific
organizational structure. Also, the notion of roles, at this stage, is abstracted from
any mapping into agents.

• The preliminary interaction model specifies the basic interactions required
to accomplish the preliminary roles. This model must abstract away from the
organizational structure and can be left incomplete.

• The organizational rules that should be respected and enforced. These rules
express constraints on the execution activities of roles and protocols of the
organization.

In the architectural design stage, there are two main activities:

• The definition of the system’s organizational structure in terms of its topology
and control regime. This activity, which could also exploit catalogue organiza-
tional patterns, involves considering: (1) the organizational efficiency, (2) the
real-world organization in which the multi-agent system is situated, and (3) the
need to enforce the organizational rules.

• The completion of the preliminary role and interaction models.

Finally, in the detailed design stage the following activities are executed:

• The definition of the agent model. This identifies the agent classes that will
make up the system and the agent instances that will be instantiated from these
classes.

• The definition of the services model. This identifies the main services intended
as coherent blocks of activity, in which agents will engage, that are required to
realize the agent’s roles, and their properties.

Note that GAIA has many extensions and elaborations such as [24, 49–53]. These
include CASE tool development, additional models, moving towards implementa-
tion, case studies, etc.

Examining GAIA in light of the evaluation criteria, we found out that it supports
well all multi-agent concepts except for the mental notion (i.e., BDI). With respect
to the modeling and notation aspect, GAIA requires further attention, mainly in
analyzing the specification and in its scalability. As for the development lifecycle
coverage, although many extensions have been made to GAIA, further adjustments
are still required. From the pragmatic point of view, as there is no coordinating effort
of developing GAIA, its resources are limited.



7 The Landscape of Agent-Oriented Methodologies 143

3.2 INGENIAS

INGENIAS is a methodology for the development of multi-agent systems, which
is based on the well-known, well-established software development process, the
unified process. It is based on a definition of a set of meta-models that describe
the elements that form a multi-agent system from several viewpoints, and that
allow to define a specification language for MAS. There are five viewpoints within
INGENIAS: agent, interactions, organization, environment, and goals/tasks. In the
following, we elaborate on these views.

• The organization view consists of agents and their groups from the structural
point of view and the goals and workflows they should execute from the
behavioral point of view.

• The environment view consists of the elements that surround the systems and
the various stimuli, as well as the system resources.

• The tasks/goals view consists of a description of the agent mental states and the
way they change over time, the consequence of executing a task with respect to
the mental state of an agent, and how to achieve goals.

• The agent view consists of the primitives that describe a single agent. It can be
used to define the capabilities of an agent or its mental state.

• The interaction view consists of the description of two or more agents
interacting.

INGENIAS uses the Meta-Object Facility (MOF) standard to describe the five-
view metamodels, to enable easy change when required.

As for the development process, INGENIAS adopts the unified process concepts
and provides more than 70 activities to be performed during the development
process of a multi-agent system. In general, INGENIAS has two main workflows:
the analysis and the design. During the analysis workflow, it is expected to generate
use cases and identify their actors, sketch system architecture with an organization
model, and generate environment models. Next, there is a need to refine use cases
and the interactions associated with them, develop agent models that detail elements
of the system architecture, describe workflows and tasks in organization models,
and refine the environment model. During the design workflow, the first task is to
generate a prototype (out of the analysis results); then, refinements of the workflows
should be introduced; following, it is necessary to specify the interaction models,
to model tasks and goals, and to define the agent models. Finally, the social
relationships that regulate organizational behavior should be outlined. According
to INGENIAS, the implementation of MAS follows the Model-Driven Engineering
(MDE) approach. Also, note that INGENIAS supports an iterative approach in
which the workflows and activities are repeated during the development lifecycle.

Similarly to GAIA, INGENIAS supports well all multi-agent concepts except for
the mental notion (i.e., BDI). With respect to the modeling and notation aspect, it
seems that using INGENIAS requires more training. INGENIAS covers most of the
development lifecycle. From a pragmatic point of view, INGENIAS was applied in



144 A. Sturm and O. Shehory

many contexts and has a supporting IDE. A detailed description of INGENIAS and
its evolution is described in Chap. 10.

3.3 MaSE

Multi-agent Systems Engineering (MaSE) is a general-purpose methodology for
developing heterogeneous multi-agent systems [39, 54]. MaSE uses a number
of graphical models to describe system goals, behaviors, agent types, and agent
communication interfaces. It uses most of the Unified Modeling Language (UML)
diagrams and makes some enhancements to adjust them to the MAS domain. MaSE
also supplies a method (process) for developing MAS that consists of two major
phases: analysis and design.

The purpose of the analysis phase is to provide a set of roles whose tasks meet
the system’s requirements, i.e., specifying what the system should do. The analysis
phase consists of the following stages:

• Capturing goals, in which the system goals are elaborated and specified from
the system point of view in a hierarchical manner.

• Applying use cases, in which the system’s use cases are specified along with
their elaborating sequence diagrams.

• Refining roles, in which system functional decomposition is performed by
producing a set of roles and their associated tasks. This stage consists of two
sub-stages: building the role diagram and specifying the tasks’ behavior.

The purpose of the design phase is to specify the way according to which the
system-to-be should behave and be constructed. This means, specifying how the
system will achieve its goals. The design phase consists of the following stages:

• Creating agent classes, in which the overall multi-agent system architecture in
terms of agents and the conversations among them is determined

• Constructing conversations, in which the designer defines the coordination
protocols (i.e., conversations) between agent pairs. In particular, two commu-
nication class diagrams are defined for each conversation. One diagram specifies
the initiator’s behavior during that conversation and the other specifies the
responder’s behavior during that conversation

• Assembling agents, in which the internal architecture of the agents is specified
• System design, in which the physical system architecture and the distribution of

agent classes’ instances within that architecture is specified

MaSE is also supported by a CASE tool and was applied in various contexts
[55]. Recently, MaSE has shifted into the area of method engineering in which the
development process is further customized according to specific needs [54, 56] (see
Chap. 9).

MaSE supports all multi-agent concepts except for the mental notion (i.e., BDI).
With respect to the modeling and notation aspect, we found out that MaSE supports

http://dx.doi.org/10.1007/978-3-642-54432-3_10
http://dx.doi.org/10.1007/978-3-642-54432-3_9


7 The Landscape of Agent-Oriented Methodologies 145

well all of the criteria. MaSE also covers most of the development lifecycle. From a
pragmatic point of view, MaSE is also equipped with a CASE tool.

3.4 PASSI

PASSI (a Process for Agent Societies Specification and Implementation) is a
step-by-step requirement-to-code methodology for designing and developing multi-
agent societies, integrating design models and concepts from software engineering
approaches and using the UML notation [18].

PASSI consists of five models that should be built sequentially in an iterative
manner. In the following, we elaborate on these models and the activities that should
be done in order to achieve their purposes.

• The system requirements model aims at describing the system requirements in
terms of agents and their goals. It consists of the following:

– Domain description, in which the system functionalities are described using
the use case technique

– Agent identification, in which separation of concerns is done by identifying
agents using the UML stereotype mechanism. Each agent functionality is
represented as a package of use cases

– Role identification, in which each agent is specified by the roles it can
play. This is done using class diagram accompanied by the object constraint
language

– Task specification, in which the agent behavior is described using the activity
diagram of UML

• The agent society model aims at depicting agent interactions and dependencies.
It is achieved by performing the following tasks:

– Role identification, in which an elaboration of the previous outcomes is
performed by analyzing agent interactions to gather additional understanding
on the agent roles

– Ontology description, in which the knowledge that is used within the system
is modeled using class diagrams and the stereotype mechanism. In addition,
a communication ontology description is achieved within that activity and its
purpose is to identify the protocol, the content language, and the ontology
mapping

– Role description, in which the roles are described in the context of the agents
that play them

– Protocol description, in which protocols that were not defined by FIPA need
to be specified using sequence diagrams

• The agent implementation model captures the solution architecture in terms of
classes and methods. It is achieved by:



146 A. Sturm and O. Shehory

– Agent structure definition, in which one class diagram represents the MAS
as a whole, whereas attribute compartments can be used to represent the
knowledge of the agent and operations’ compartments are used to signify the
agent’s tasks. In addition, for each agent one class diagram is used to specify
the agent’s internal structure

– Agent behavior description, in which one or more activity diagrams are
drawn to show the flow of events between and within both the main agents’
classes and their inner classes (representing their tasks). In addition, the
internal behavior of an agent or a task can be specified using flowcharts,
activity diagrams, or statecharts

• The code model aims at describing the solution at the code level and consists of
the following activities:

– Code reuse library, in which special design patterns are gathered and applied
– Code completion baseline, in which the designer/programmer completes the

generate code

• The deployment model aims at specifying the distribution of the parts of the
system across hardware processing units, and their migration between processing
units. It is done via a deployment configuration diagram.

PASSI is supported by a CASE tool and continuously evolved over the years.
It made its progress through patterns [57], agility [58], and tools [59].

PASSI supports all multi-agent concepts except for the mental notion (i.e., BDI).
With respect to the modeling and notation aspect, we found that PASSI—as it uses
the common modeling language UML—supports well accessibility, expressiveness,
and complexity management; however, little information is provided regarding its
support for analysis. PASSI also covers most of the development lifecycle. From a
pragmatic point of view, PASSI is equipped with a CASE tool and has set plans for
continuous improvements.

3.5 Prometheus

The Prometheus methodology aims to provide a means for designing multi-agent
systems [20]. It is specifically aimed at building intelligent agents. The Prometheus
methodology consists of three phases: (1) the system specification phase that is
focused on identifying the basic functionalities of the system, its inputs, its outputs,
and its shared data sources; (2) the architectural design phase that is focused on
determining the system agents and their interactions; and (3) the detailed design
phase that is focused on the internals of each agent. In the following, we elaborate
on the activities required in each of the Prometheus phases:

• During the system specification phase, the designer is expected to identify the
system goals and assign them to roles. She should also spot the actions to be taken



7 The Landscape of Agent-Oriented Methodologies 147

and the precepts to be considered by the system and assign them to roles as well.
Finally, she should specify the system functionality using the use case technique;
the latter provides a set of scenarios to be associated with the identified roles.

• During the architectural design phase, the designer should identify the agent
types within the system. In addition, an analysis of the knowledge and data
coupling is done along with the agent acquaintance model. Moreover, the agents’
lifecycle and description are determined. Referring to the system behavior
(phase 1), the interaction protocols are identified in this phase. Finally, the system
overview is determined in terms of agents, protocols, events, actions, and shared
data.

• During the detailed design phase, the internals of the agents should be specified.
This should be done by identifying capabilities, plans, internal events, and data.
The capabilities can be defined in a hierarchal manner.

The Prometheus methodology also provides a CASE tool that makes it easy
to follow its guidelines [60]. The methodology has been integrated into a MAS
platform called JACK [61].

Prometheus supports all multi-agent concepts. It supports the modeling and
notation to some extent as it introduces additional concepts into the development
process. Prometheus also covers most of the development lifecycle. From a
pragmatic point of view, Prometheus is equipped with a CASE tool, is taught in
courses, is continuously refined [62] and examines additional software engineering
aspects to be supported. In Chap. 8, additional research directions of Prometheus
are elaborated.

3.6 Tropos

Tropos is an agent-oriented software development methodology founded on two key
features: (1) the notion of agent and the associated mentalistic notions (e.g., goals
and tasks), and (2) requirements analysis and specification of the system to-be is
analyzed with respect to its intended environment [38, 63]. Tropos consists of five
development stages:

1. Early requirements analysis focuses on the intentions of stakeholders. These
intentions are modeled as goals that, through some form of a goal-oriented
analysis, eventually lead to the functional and nonfunctional requirements of the
system-to-be. The modeling is performed using the i* modeling language, in
which stakeholders are represented as (social) actors who depend on each other
for goals to be achieved, tasks to be performed, and resources to be furnished.

2. Late requirements analysis results in a requirements specification that describes
all functional and non-functional requirements for the system-to-be. In Tropos,
the system is represented as one or more actors specified in the early requirement
stage.

http://dx.doi.org/10.1007/978-3-642-54432-3_8


148 A. Sturm and O. Shehory

3. Architectural design describes how system components work together. Tropos
defines organizational architectural styles for cooperative, dynamic, and dis-
tributed applications like multi-agent systems, to guide the design of the system
architecture. These styles are used to express assertions on the system organi-
zational structure and help match the MAS architecture to the organizational
context in which the system will operate.

4. Detailed design introduces additional details for each architectural component
of a system. In Tropos, one can define how the goals assigned to each actor are
fulfilled by agents with respect to pre-defined design patterns.

5. Implementation refers to the actual coding of the system-to-be.

Note that Tropos supports the transformational approach in which the transitions
from one stage to the next are done by following certain transformational guidelines.

Tropos supports all multi-agent concepts, yet integration with the mental notions
(i.e., BDI) requires further examination. It supports the modeling and notation to
some extent as it introduces several concepts into the development process that need
to be examined. Also, the transitions among the stages require further attention.
Tropos also covers most of the development lifecycle. From a pragmatic point of
view, Tropos is equipped with a set of tools that provide a suite for specifying,
analyzing, and implementing MAS applications. Also, Tropos is continuously
evaluated using various techniques.

3.7 ADEM

The agent-oriented development methodology (ADEM) aims at supporting the
development of agent-based systems [64]. In particular, ADEM focuses on
modeling aspects of agent-based systems using the Agent-Modeling Language
(AML) [7, 65]. Similarly to other newer methodologies, ADEM consists of method
fragments, techniques, artifacts, and guidelines for creating MAS models. As it
is based on RUP, ADEM mainly addresses the business modeling, requirements,
and analysis and design workflows. In the following, we list the method fragments
provided by ADEM.

Workflow Activity

Business modeling Define the business domain ontology
Model business goals
Detail a business actor
Identify business use case responsibility
Structure the extended identify business use case model
Model business organization structure
Model business interactions
Model business services

(continued)



7 The Landscape of Agent-Oriented Methodologies 149

Workflow Activity

Model business observations and affecting interactions
Model business deployment
Detail business architecture
Define the business domain ontology

Requirements Define the domain ontology
Model system goal-based requirements
Detail an actor
Identify use case responsibilities
Structure the extended use case model

Analysis and design Model society
Model interactions
Model interaction ontology
Model services
Model observations and effecting interactions
Detail an entity
Model mental attitudes
Structure behavior
Model deployment
Detail design

ADEM follows the situational method engineering approach, according to which
organizations may adapt their development processes to better fit in. ADEM was
developed based on industrial needs within Whitestein Technology, which might
position it as better suited for practitioners. However, no evidence is provided of
applying the methodology elsewhere. As AML is based on the UML profile, it has
several implementations and supporting tools.

It seems that ADEM addresses all multi-agent concepts. It supports the modeling
and notation to some extent as it requires the integration of multiple elements
and diagram types. Also, the model verification/validation/checking requires more
exploration. ADEM also covers most of the development lifecycle. From a prag-
matic point of view, ADEM is supported by tools and has been used in various
industrial projects.

4 Alternative AOSE Methodologies

With the proliferation of AOSE methodologies, the need to integrate these has
emerged. In [66] the authors analyzed the meta-models of six methods for develop-
ing agent-based systems and found that there is a wide agreement on the concepts
of agent-based systems. Following that finding, the authors proposed a unified
(and abstract) metamodel that captures the agent-based notions of the six methods.



150 A. Sturm and O. Shehory

The resulting metamodeling has many similarities with the metamodels of AML
[64] and OPM/MAS [67] in which various aspects of agent-based systems are
captured. Another similar effort results in FAML—a generic metamodel for MAS
development [68]. Following [69], in which the authors call for standardization of
AOSE methodology concepts that will serve as the basis for the next generation
methodology, similar to what has been achieved with UML, FAML is a potential
candidate for such an effort.

Nevertheless, there in a common understanding that one solution cannot fit
well for all cases. Thus, an alternative approach to handle the diversity in AOSE
methodologies has emerged, following the method engineering (ME) notions [70].
The approach refers to each of the AOSE methodologies as a set of method
fragments. For setting a specific method, one should select the relevant fragments
and glue these together. Note that some of the aforementioned methodologies have
already adopted that direction. These include INGENIAS, O-MaSE, and ADEM.
Akbari [71] also calls for the adoption of the ME approach. However, the ME-based
approaches may result in problems in integrating and gluing fragments into a single
coherent method. Thus, further examination of this approach is required.

5 Concluding Remarks

There are more than two dozen agent-oriented methodologies. Although differences
exist among them, there are many similarities as well. As a result of diversity with
similarities, the selection of a methodology for developing agent-based systems and
applications is nontrivial. This problem intensifies when industrial development
is sought, where specific requirements and constraints apply. Additionally, in
many cases insufficient resources are available for issues other than modeling,
notation, and development process. In particular, as suggested in [72], much work
is needed to allow the quantitative evaluation of the agent-based paradigm and
the associated methodologies. Such quantitative evaluation should facilitate better
assessment of the advantages of agent-based methodologies over existing paradigms
in software analysis, design, and maintenance. Additionally, it seems that existing
agent-oriented methodologies focus on the development of new systems and not
on other stages and aspects within the system lifecycle. Even with reference to
development process, not all phases are well supported (e.g., the testing phase is
hardly supported). An example of a non-supported aspect is system maintenance,
which is hardly dealt with in agent-oriented methodologies. Yet, another void is
the lack of support for a paradigm shift to agent orientation. We believe that
the latter is a grand challenge for agent-oriented methodologies. That is, it is
necessary—yet challenging—to justify the paradigm shift from existing paradigms
such as object-oriented, service-oriented, and business-process-oriented to the
agent-oriented paradigm.



7 The Landscape of Agent-Oriented Methodologies 151

References

1. Graham I, Hederson-Sellers B, Younessi H (1997) The OPEN process specification.
Addison-Wesley

2. Kinny D, Georgeff M (1996) Modelling and design of multi-agent systems. In: Proceedings
of the third international workshop on agent theories, architectures, and languages (ATAL).
Lecture notes in computer science 1193. Springer, pp 1–20

3. Kinny D, Georgeff M, Rao A (1996) A methodology and modelling technique for systems
of BDI agents. In: Proceedings of the seventh European workshop on modelling autonomous
agents in a multi-agent world. Lecture notes in computer science 1038. Springer, pp 56–71

4. Iglesias CA, Garrijo M, Gonzalez J, Velasco JR (1998) Analysis and design of multiagent
systems using MAS-CommonKADS. In: Proceedings of the fourth international workshop on
agent Theories, architectures and languages (ATAL). Lecture notes in computer science 1365.
Springer, pp 313–328

5. Bernon C, Gleizes MP, Picard G, Glize P (2002) The Adelfe methodology for an intranet
system design. In: Proceedings of the fourth international bi-conference workshop on agent-
oriented information systems (AOIS)

6. Lind J (2001) Iterative software engineering for multiagent systems - The MASSIVE method.
In: Lecture notes in computer science 1994. Springer

7. Trencanský I, Cervenka R (2005) Agent modeling language (AML): a comprehensive approach
to modeling MAS. Informatica (Slovenia) 29(4):391–400

8. Caire G, Leal F, Chainho P, Evans R, Garijo F, Gomez J, Pavon J, Kearney P, Stark J,
Massonet P (2002) Agent oriented analysis using MESSAGE/UML. In: Proceeding of the
second international workshop on agent-oriented software engineering May 2001. Lecture
notes in computer science 2222. Springer, pp 119–135

9. Jennings NR, Faratin P, Johnson MJ, O’Brien P, Wiegand ME (1996) Using intelligent agents
to manage business processes. In: Proceedings of first international conference and exhibition
on the practical application of intelligent agents and multiagents, pp 345–360

10. Jennings NR, Faratin P, Norman TJ, O’Brien P, Odgers B (2000) Autonomous agents for
business process management. Int J Appl AI 14(2):145–189

11. Jennings NR, Faratin P, Norman TJ, O’Brien P, Odgers B, Alty JL (2000) Implementing a
business process management system using ADEPT: a real-world case study. Int J of Appl AI
14(5):421–465

12. Huget M-P (2002) Nemo: an agent-oriented software engineering methodology. In: Proceed-
ings of the OOPSLA 2002 workshop on agent-oriented methodologies

13. Burmeister B (1996) Models and methodology for agent-oriented analysis and design. In:
Fischer K (ed) KI’96 Workshop on agent-oriented programming and distributed artificial
intelligence, DFKI document D-96-06, http://www.dfki.uni-kl.de/dfkidok/publications/D/96/
06/abstract.html

14. Gervais M-P (2003) ODAC: an agent-oriented methodology based on ODP. J Autonom Agent
Multi-Agent Syst 7(3); 199–228

15. Wagner G (2003) The agent-object-relationship metamodel: towards a unified view of state and
behaviour. Inform Syst 28(5):475–504

16. Debenham J, Henderson-Sellers B (2002) Full lifecycle methodologies for agent-oriented
systems - the extended open process framework. In: Proceedings of the fourth international
bi-conference workshop on agent-oriented information systems (AOIS)

17. Collinot A, Drogoul A (1998) Using the Cassiopeia method to design a Robot Soccer Team.
Appl Artif Intell 12(2–3):127–147

18. Cossentino M (2005) From requirements to CODE with the PASSI methodology. In:
Henderson-Sellers B, Giorgini P (eds) Agent-oriented methodologies. Idea Group Inc.,
Hershey, PA, USA

19. Glaser N (1996) Contribution to knowledge modelling in a multi-agent framework -the CoMo-
MAS approach- PhD Thesis, L’Universite Henri Poincare

http://www.dfki.uni-kl.de/dfkidok/publications/D/96/06/abstract.html
http://www.dfki.uni-kl.de/dfkidok/publications/D/96/06/abstract.html


152 A. Sturm and O. Shehory

20. Padgham L, Winikoff M (2005) Prometheus: a practical agent-oriented methodology. In:
Henderson-Sellers B, Giorgini P (eds) Agent-oriented methodologies. Idea Group Inc.,
Hershey, PA

21. Brazier FMT, Dunin-Keplicz B, Jennings NR, Treur J (1997) DESIRE: modelling multi-agent
systems in a compositional formal framework. Int J Cooperat Inform Syst 6:67–94

22. Brazier FMT, Dunin-Keplicz B, Treur J, Verbrugge LC (1999) Modeling internal dynamic
behaviour of BDI agents. In: Meyer JJCh, Schobbes PY (eds) Formal models of agents. Lecture
notes in computer science 1760. Springer, pp 36–56

23. Brazier FMT, Jonker CM, Treur J, Wijngaards NJE (1998) Compositional design of a generic
design agent. In: Luger G, Interrante L (eds) Proceedings of AAAI workshop on ai and
manufacturing: state of the art and state of practice. AAAI Press, pp 30–39

24. Juan T, Pearce A, Sterling L (2002) ROADMAP: extending the GAIA methodology for
complex OPEN systems. In: Proceedings of AAMAS ‘02. pp 3–10

25. d’Inverno M, Kinny D, Luck M, Wooldridge M (1997) A formal specification of dMARS. In:
Proceedings of the fourth international workshop on agent theories, architectures and languages
(ATAL). Lecture notes in computer science 1365. Springer, pp 155–176

26. d’Inverno M, Luck M (1997) Development and application of a formal agent framework.
In: Proceedings of the first IEEE international conference on formal engineering methods.
pp 222–231

27. d’Inverno M, Luck M (2004), Understanding agent systems. Springer
28. Luck M, d’Inverno M (1995) Structuring a Z specification to provide a formal framework for

autonomous agent systems. In: Proceedings. of ZUM ‘95. Lecture notes in computer science
967. Springer, pp 47–62

29. Luck M, Griffiths N, d’Inverno M (1996) From agent theory to agent construction: a case study.
In: Proceedings of third international workshop on agent theories, architectures and languages
(ATAL). Lecture notes in computer science 1193. Springer, pp 49–63

30. Sierra C, Sabater J, Agustí J, Garcia P (2002) Evolutionary programming in SADDE. In:
Proceedings of the first international joint conference on autonomous agents and multi agent
systems (AAMAS). pp 1270–1271

31. Wooldridge M, Jennings NR, Kinny D (2000) The Gaia methodology for agent-oriented
analysis and design. J Autonom Agent MAS 3(3):285–312

32. Zambonelli F, Jennings N, Wooldridge M (2001) Organizational rules as an abstraction for the
analysis and design of multiagent systems. Int J Software Eng Knowledge Eng 11(4):303–328

33. Zambonelli F, Jennings NR, Wooldridge M (2003) Developing multiagent systems: the Gaia
methodology. ACM Trans on Software Eng Methodol 12(3):317–370

34. Omicini A (2001) SODA: societies and infrastructures in the analysis and design of agent-
based systems. In: Proceedings of the first international workshop on agent-oriented software
engineering (AOSE). Lecture notes in computer science 1957. Springer, pp 185–194

35. Pavón JJ, Gómez-Sanz JJ, Fuentes R (2005) The INGENIAS methodology and tools.
In: Henderson-Sellers B, Giorgini P (eds) Agent-oriented methodologies. Idea Group Inc.,
Hershey, PA

36. Bush G, Cranefield S, Purvis M (2001) The Styx agent methodology, The Information Science
Discussion Paper Series 2001/02. Department of Information Science, University of Otago,
New Zealand

37. Abdelaziz T, Elammari M, Unland R, Branki C (2010) MASD: multi-agent systems develop-
ment methodology. Multiagent Grid Syst J 6(1):71–101

38. Bresciani P, Giorgini P, Giunchiglia F, Mylopoulos J, Perini A (2004) TROPOS: an
agent-oriented software development methodology. J Autonom Agent Multi-Agent Syst
8(3):203–236

39. DeLoach SA, Wood MF, Sparkman CH (2001) Multiagent systems engineering. Int J Software
Eng Knowledge Eng 11(3):231–258

40. Yu E, Cysneiros M (2002) Agent-oriented methodologies—towards a challenge Exemplar. In:
Proceedings of the 4th Intl. Workshop on agent-oriented information systems (AOIS’02)

http://www.informatik.uni-trier.de/~ley/db/conf/atal/aamas2002.html#SierraSAG02


7 The Landscape of Agent-Oriented Methodologies 153

41. Cernuzzi L, Rossi G (2002) On the evaluation of agent oriented methodologies. In: Proceedings
of the OOPSLA 2002 workshop on agent-oriented methodologies

42. Shehory O, Sturm A (2001) Evaluation of modeling techniques for agent-based systems.
Agents 2001:624–631

43. Dam HK, Winikoff M (2004) Comparing agent-oriented methodologies, AOIS 2003. Lect
Notes Comput Sci 3030:78–93

44. Sturm A, Shehory O (2003) A framework for evaluating agent-oriented methodologies, AOIS
2003. Lecture notes in computer science 3030. pp 94–109

45. Cuesta P, Gómez A, González JC, Rodríguez FJ (2003) a framework for evaluation of
agent oriented methodologies. In: The conference of the Spanish Association for Artificial
Intelligence (CAEPIA)

46. Garcia E, Giret A, Botti V (2011) Evaluating software engineering techniques for developing
complex systems with multiagent approaches. Inform Software Technol 53(5):494–506

47. Tran QN, Low G (2005) Comparison of ten agent-oriented methodologies. In:
Henderson-Sellers B, Giorgini P (eds) Agent-oriented methodologies, vol 12, Idea Group
Publishing., pp 341–367

48. Cernuzzi L, Zambonelli F (2011) Improving comparative analysis for the evaluation of AOSE
methodologies. IJAOSE 4(4):331–352

49. Cernuzzi L, Molesini A, Omicini A, Zambonelli F (2011) Adaptable multi-agent systems: the
case of the Gaia methodology. Int J Software Eng Knowledge Eng 21(4):491–521

50. Cernuzzi L, Zambonelli F (2009) Gaia4E: a tool supporting the design of MAS using Gaia.
ICEIS 4:82–88

51. García-Ojeda J, Arenas A, Pérez-Alcázar J (2005) Paving the way for implementing multiagent
systems: refining GAIA with AUML. In: Proceedings of the 6th international workshop
(AOSE2005). Lecture notes in computer science 3950. Springer, pp 179–189

52. Moraitis P, Spanoudakis N (2006) The GAIA2JADE process for multi-agent systems develop-
ment. Appl Artif Intell 20(2–4):251–273

53. Spanoudakis N, Moraitis P (2009) Gaia agents implementation through models transformation.
In: Proceedings of the 12th international conference on principles of practice in multi-agent
systems (PRIMA ‘09). Springer, pp 127–142

54. DeLoach SA, García-Ojeda JC (2010) O-MaSE: a customisable approach to designing and
building complex, adaptive multi-agent systems. IJAOSE 4(3):244–280

55. DeLoach SA, Wood M (2001) Developing multiagent systems with agentTool. In: Proceedings
of the seventh international workshop on agent theories, architectures, and languages (ATAL).
Lecture notes in computer science 1986. Springer, pp 46–60

56. Juan C. García-Ojeda, DeLoach SA, Robby: agentTool process editor: supporting the design
of tailored agent-based processes. In: Proceedings of SAC 2009. pp 707–714

57. Cossentino M, Sabatucci L, Sorace S, Chella A (2003) Patterns reuse in the PASSI methodol-
ogy. In: Fourth international workshop engineering societies in the agents World (ESAW ‘03)

58. Chella A, Cossentino M, Sabatucci L, Seidita V (2006) Agile PASSI: an agile process for
designing agents. Int J Comput Syst Sci Eng. Special issue on “Software Engineering for Multi-
Agent Systems” 21(2)

59. Chella A, Cossentino M, Sabatucci L (2004) Tools and patterns in designing multi-agent
systems with PASSI. WSEAS Trans Commun 3(1):352–358

60. Padgham L, Thangarajah J, Winikoff M (2007) The prometheus design tool - a conference
management system case study DOI:10.1007/978-3-540-79488-2_15. In: Agent-oriented soft-
ware engineering VIII DOI:10.1007/978-3-540-79488-2: 8th International Workshop, AOSE
2007. Lecture notes in computer science 4951. Springer, pp 197–211

61. Winikoff M (2005) JACK intelligent agents: an industrial strength platform. In: Multi-agent
programming: languages, platforms, and applications. Springer, pp 175–193

62. Khallouf J, Winikoff M (2009) Goal-oriented design of agent systems: a refinement of
prometheus and its evaluation. Int J Agent-Oriented Software Eng 3(1):88–112

63. Castro J, Kolp M, Mylopoulos J (2002) Towards requirements-driven information systems
engineering: the Tropos Project. Inform Syst 27(6):365–389

http://ma.ei.uvigo.es/framework/WSCaepia2003.pdf#_blank
http://www.informatik.uni-trier.de/~ley/pers/hd/g/Garc=iacute=a=Ojeda:Juan_C=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Robby:.html
http:www.informatik.uni-trier.de/~ley/db/conf/sac/sac2009.html#Garcia-OjedaDR09
http://dx.doi.org/10.1007/978-3-540-79488-2_15
http://dx.doi.org/10.1007/978-3-540-79488-2
http://www.springerlink.com/content/p8432m66851pltm0/


154 A. Sturm and O. Shehory

64. Cervenka R, Trencansky I (2007). The agent modeling language - AML: a comprehensive
approach to modeling multi-agent systems (Whitestein Series in Software Agent Technologies
and Autonomic Computing). Birkhäuser

65. Cervenka R (2012) Modeling multi-agent systems with AML. Software Agents, Agent Systems
and Their Applications 2012, NATO, pp 9–27

66. Bernon C, Cossentino M, Pavon J (2006) Agent-oriented software engineering. Knowledge
Eng Rev 20(2):99–116

67. Sturm A, Dori D, Shehory O, An object-process- based modeling language for multiagent
systems. IEEE Trans Syst Man and Cybern—Part C: Appl Rev 40(2);227–24

68. Beydoun G, Low G, Henderson-Sellers B, Mouratidis H, Gomez-Sanz J-J, Pavon J,
Gonzalez-Perez C (2009) FAML: a generic metamodel for MAS development. IEEE Trans
Software Eng 35(6):841–863

69. Dam HK, Winikoff M (2013) Towards a next-generation AOSE methodology. Sci Comput
Program 78(8):684–694

70. Henderson-Sellers B, Ralyte J (2010) Situational method engineering: state-of-the-art review.
J Universal Comput Sci 16(3):424–478

71. Akbari OZ (2010) A Survey of agent-oriented software engineering paradigm: towards its
industrial acceptance. J Comput Eng Res 1(2):14–28

72. Zambonelli F, Omicini A (2004) Challenges and research directions in agent-oriented software
engineering. J Autonom Agent Multi-Agent Syst 9(3):253–287


	7 The Landscape of Agent-Oriented Methodologies
	1 Introduction
	2 Criteria for Examining AOSE Methodologies
	2.1 Concepts and Properties
	2.2 Modeling and Notations
	2.3 Process
	2.4 Pragmatics

	3 Analysis of Existing AOSE Methodologies
	3.1 GAIA
	3.2 INGENIAS
	3.3 MaSE
	3.4 PASSI
	3.5 Prometheus
	3.6 Tropos
	3.7 ADEM

	4 Alternative AOSE Methodologies
	5 Concluding Remarks
	References


