Chapter 12
GOAL: A Multi-agent Programming Language
Applied to an Exploration Game

Koen V. Hindriks and Jiigen Dix

Abstract GOAL is a multi-agent programming language based on the BDI
paradigm. It is a logic-based language that supports modular agent design based
on established software engineering principles and interaction with environments
using an environment interface standard (EIS). GOAL recently won the multi-agent
programming contest (MAPC), where two teams consisting of ten agents play
against each other in order to explore and defend occupied territory on a distant
planet. The MAPC game is a complex and dynamic environment that supports
EIS and thus facilitates easy connection of a multi-agent system (MAS) to an
environment that is remotely run. We describe the design of the multi-agent solution
that won the competition, the EIS interface that was used, and the MAPC scenario.

Keywords Agent programming ¢ Environment interface * Multi-agent program-
ming contest * Testing

1 Introduction

The aim of this chapter is not to describe yet-another agent programming language
and claim that it is the best on the market. Developing good software for non-trivial
applications using the agent paradigm is a highly complex task depending not only
on the chosen programming language.

We strongly believe that documenting and discussing projects that use existing
agent platforms for software development is useful for a number of reasons. Only

K.V. Hindriks
Delft University of Technology, Mekelweg 4, Delft, The Netherlands
e-mail: k.v.hindriks @tudelft.nl

J. Dix (B<)
Clausthal University of Technology, Julius-Albert-Str. 4, Clausthal-Zellerfeld, Germany
e-mail: dix@tu-clausthal.de

O. Shehory and A. Sturm (eds.), Agent-Oriented Software Engineering, 235
DOI 10.1007/978-3-642-54432-3__12, © Springer-Verlag Berlin Heidelberg 2014

mailto:k.v.hindriks@tudelft.nl
mailto:dix@tu-clausthal.de

236 K.V. Hindriks and J. Dix

by actually using such platforms can we learn about the effectiveness and usability
of them as well as about the issues we are facing during such projects. Based
upon findings related to the development process itself, comments by software
developers, and facts derived from inspection of the agent software developed,
insights may be gained in how agent technology is best applied and how the
application of agent technology can be made more effective. We can learn new
lessons from how software developers or programmers actually used the tools and
technology at hand and the choices they made while doing so. We also gain more
insight into the needs of agent programmers.

In this chapter, we present an example project that, given the current state of
the art, represents one of the larger coding projects that used a logic-based agent
programming language for developing multiple software agents that control non-
player characters in a dynamic and real-time gaming environment. The language that
was used is the agent programming language GOAL [8,9, 16]. This agent platform
supports an environment interface standard (EIS) [2]. The gaming environment that
was used is the multi-agent programming contest (MAPC) made available for the
2011 contest. The MAPC game is what we call here an exploration game that
requires multiple vehicles to explore an unknown map, and compete with opponent
vehicles for resources. We discuss and analyse how the winning team of MAPC
2011 developed their code base, their approach and most important design decisions
and strategies, and discuss the testing strategies that were used by the team.

The chapter is organized as follows. Section 2 introduces the GOAL agent
programming language and provides the background necessary for understanding
the project that we discuss. In Sect.3, the MAPC is introduced. This section
also discusses the EIS that is supplied with the MAPC software to support easy
interaction between a multi-agent system (MAS) and the simulation environment.
Section 4 discusses the design and strategy for the MAS implemented in GOAL.
Finally, Sect. 5 presents lessons learned and concludes the chapter.

2 The Agent Programming Language GOAL

In this chapter, we present a project that has used the GOAL agent programming
language for programming a MAS. It is one of the many agent programming
languages that support the agent-oriented programming paradigm [3]. These lan-
guages explicitly aim for the construction of autonomous software agents. Most
agent programming languages are based on the concept of a cognitive agent, derived
from the belief-desire—intention (BDI) model of agency [7]. Such cognitive agents
maintain a mental state that typically consists of one or more variants of the BDI
components, including knowledge, beliefs, desires, goals, and/or intentions. These
mental states are used for representing an agent’s environment and for decision
making or planning. In rule-based agent programming languages, rule libraries
that are provided by a programmer are used by the agent to decide what to do
next. Agents typically execute a deliberation or reasoning cycle similar to the

12 GOAL: A Multi-agent Programming Language Applied to an Exploration Game 237

sense-plan-act cycle. Agent programming languages also provide support for agent
interaction by means of communication at the knowledge level [11], that is, in terms
of what they believe and desire to achieve.

We briefly introduce the main concepts of the agent programming language
GOAL that was used by the team to program their MAS for the MAPC 2011. Some
code snippets are provided in Sect.4. We refer the reader to [8, 9, 16] for more
detailed information about the language.

GOAL is a logic-based agent programming language for programming cognitive
agents. GOAL agents maintain a mental state that consists of beliefs and goals and
derive their choice of action from their beliefs and goals. GOAL agents also use a
knowledge base to represent conceptual and domain knowledge. The current version
of GOAL uses Prolog to represent the knowledge, beliefs, and goals of an agent.!
Prolog is a declarative programming language. A Prolog program consists of Horn
clauses, which are logical rules and simple facts [15]. These clauses represent what
is the case and what is desired; computation in Prolog is performed by evaluating
queries by means of an inferencing process. GOAL agents use Prolog for deriving
new conclusions from their beliefs about the environment and the goals they want
to achieve in combination with the knowledge that they have.

One of the main strengths of the language is that it facilitates the development of
high-level strategies for agents. GOAL is a rule-based language. The philosophy of
GOAL is that writing agent programs essentially means writing rules that determine
for each situation that the agent finds itself in what it should do in that situation.
Rules are ordered, which allows for imposing a priority on what needs to be done
first by an agent. On top of this design philosophy GOAL mainly adds two things: a
basic reasoning cycle and modular programming.

GOAL supports a basic reasoning cycle that consists of two phases. The purpose
of the first phase is to process all events such as percepts and messages and make
sure that the agent’s mental state is up-to-date. In this phase, the GOAL agent
retrieves and processes all perceptual information available from the environment.
Percepts received can be used to update the beliefs and goals of the agent. The idea
is that an agent should first make sure its mental state is up-to-date before it decides
on a choice of action. The second phase of the cycle is about decision making:
Agents decide what to do next. Typically, in this phase one environment action is
selected and sent to an environment (it is also possible to perform more than one
environment action in one cycle if needed). After completing the second phase, the
cycle is repeated.

The concept of a module is a key programming construct in GOAL for structuring
and writing larger agent programs. A GOAL agent is a set of modules. With each
of the phases of the reasoning cycle corresponds a built-in module. The event
module corresponds to the first phase and is designed to support event processing

The GOAL agent programming language does not commit to Prolog or any other computational
logic in particular (cf. [8]). In principle, other languages such as Answer Set Programming or
ontology languages such as OWL might also be used.

238 K.V. Hindriks and J. Dix

whereas the main module corresponds to the second phase and is designed to
support decision making. In addition, a special init module is available for
initialising the mental state and other components of an agent. More importantly,
however, a programmer can add and write its own set of modules for structuring and
organizing code. A module provides a container for a set of rules and thus provides
an abstraction mechanism: A module can be used for coding more abstract actions
as well as for programming roles of agents.

GOAL is a multi-agent programming language and supports communication
between agents. Both communication from agent-to-agent as well as broadcasting
information to all other or a selected set of agents is available. GOAL also supports
the distributed running of agents in a MAS on multiple machines.

The GOAL language is distributed with an Integrated Development Environment
for coding, testing, and debugging. It provides the usual program editing tools as
well as tools to analyse the code (e.g., creating an overview of predicates used in
a program). It also provides extensive debugging tools including introspectors for
inspecting agent states, stepping functionality, (conditional) breakpoints, runtime
querying and modification of agent states, tracing and logging functionality at dif-
ferent levels of granularity, and basic performance measurements of Prolog queries.

The GOAL platform, moreover, fully supports the EIS [2]. EIS provides an
elegant interface for interacting with environments. It facilitates the exchange of
actions from agents to an environment and the exchange of percepts from an
environment to agents. As we will discuss below in more detail, this allowed the
team to focus completely on the strategic aspects of the MAPC scenario and no
time needed to be spent on low-level details related to, for example, communicating
with the simulation server.

3 The MAPC

The MAPC has been annually organized by the CIG-group from Clausthal
University of Technology since 2005 [1]. The contest has been initiated with the
aim of putting agent programming frameworks to the test, gaining new insights
and detecting problems with these platforms that may stimulate research in the
area of MAS development and programming [18]. The focus of the contest has
shifted more and more toward coordinated action, which is perceived as a key issue
associated with MAS design and, therefore, should be an essential ingredient in
any scenario for evaluating multi-agent programming languages, platforms, and
tools. More pragmatically, the contest is also expected to be useful for debugging
existing agent platforms and tools and for identifying the strengths and weaknesses
of various platforms.

Since 2005 various scenarios have been used in the contest, including food
gathering (2005), gold mining (2006-2007), cows and cowboys (2008-2010), and
a Mars scenario (2011). Scenarios have been changed to focus the contest more and
more on coordinated action. All of the scenarios, however, have required agents to

12 GOAL: A Multi-agent Programming Language Applied to an Exploration Game 239

explore an unknown map. The maps used have been grids with obstacles except
for the Mars scenario which uses a graph as a map. In essence, therefore, all of
the contest environments can be classified as exploration games. In addition, all
scenarios are competitive and require two agent systems to compete for scarce
resources.

The performance of a system developed by a participating team is determined in
a series of matches where the systems contributed by various teams compete against
all other agent systems. A single match between two competing agent systems
consists of several simulations. Winning a simulation yields three points for a team,
a draw is worth one point and a loss zero points. The winner of the whole contest is
evaluated on the basis of the overall number of collected points in all the matches.
HactarV2, the MAS discussed in the next section, scored the highest possible score
of 72 points whereas the runner-up scored 60 points.

Technically, the contest is realized by means of a test-bed environment specifi-
cally designed for the MAPC called the MASSim (multi-agent systems simulation)
platform that provides the server infrastructure for running the contest. The contest
scenario is realized as a plug-in for the MASSim platform. Participating agent sys-
tems connect via TCP/IP to and exchange plain XML messages with the simulation
server. In other words, agents receive percepts encoded as XML messages from
the server and can act in the gaming environment by encoding their actions as
XML messages and transmitting them to the server. The MASSim test-bed supports
round-based game simulations where all agents are allowed to perform one action
in each round. Agents need to act in real time because the window for transmitting
a valid action to the server for each agent is fixed. In the 2011 scenario this time
window has been reduced from the 4 s it used to be to 2 s. Taking into account that
participating teams are located all over the world and connect via the Internet, which
introduces latency, this means that agents need to act well under 2 s to ensure they
submit an action to the server in time. After a finite number of steps the simulation
server stops and the agents that participated in a simulation receive a notification
about the end of that simulation.

3.1 The 2011 Mars Scenario

The Mars scenario used in the 2011 contest concerns an exploration game on the
planet Mars [19]. The game requires a set of vehicles to explore, locate and occupy
valuable zones on the planet Mars. At the start of a game, vehicles are placed
randomly on an unknown map. At first vehicles therefore need to individually
explore the map and exchange information. Vehicles need to coordinate their actions
to occupy a zone of the planet that is as large as possible.

Story The story of the scenario is that water wells have been discovered on planet
Mars. The objective of a team of vehicles is to identify locations with large water
wells and to occupy those places. Because multiple companies want to profit from

240 K.V. Hindriks and J. Dix

this discovery, a team will have to compete for the possession of water wells. A
graph is used to represent Mars, where nodes denote locations and have a value indi-
cating the amount of water that is present in a well. The graph is mirrored to provide
a fair symmetric map on which ten vehicles from each team can move around.

Roles Vehicles are each assigned one out of five different roles: explorer, sentinel,
inspector, saboteur, and repairer. Given that ten vehicles are available, each role is
evenly distributed and assigned exactly twice. Explorers can determine the amount
of water at nodes. Sentinels have a better vision to provide more information
about what happens on the planet. Inspectors can determine the roles and status
of opponent vehicles. Saboteurs have the ability to attack and disable opponent
vehicles. Repairers are able to restore disabled vehicles back to a working state.

Scoring Scheme Two teams play a match over three games each with a duration
of 750 steps. The final score of a game is the total of all the step scores in that
game. Each team starts the game with ten achievement points which can be spent on
upgrades. A team can collect more points by gaining achievement points for actions
like attacking enemies and exploring the map. A zone score is determined each step
by the nodes that are controlled/guarded by the agents of a team and is computed
as the sum of the values of all the nodes in the controlled area. This means that a
zone with higher valued nodes will provide a better score. The step score then is
determined by adding the number of unspent achievement points to the zone score
of that step. This scoring mechanism thus requires a team to weigh and balance
scoring achievement points by performing particular actions such as exploring a
node or maximizing the value of the occupied zone on the map. Typically, at the
start of a game vehicles are not “connected” yet and therefore do not occupy a zone.

3.2 Support for the Environment Interface Standard

The MAPC software provides an implementation of the EIS interface [2] to facilitate
easy connection to the MAPC server. This interface automatically establishes and
maintains connections to the MASSim-server. It provides support for configuring
some parameters of the simulation, registering agents, associating agents with the
vehicles in the game, starting a simulation, perceiving the simulation environment,
and acting in it. Because the GOAL platform fully supports EIS, a programmer does
not need to concern himself with low-level details of connecting to an environment
and the functionality that MAPC provides is made available without requiring any
effort from a programmer. In addition, the support for the EIS interface by GOAL
also ensures that a programmer does not need to concern himself with the low-level
details of the XML-format for percepts and actions that is used by the MASSim-
server. Instead, a programmer can concentrate completely on how to handle these
percepts. Similarly, a programmer can focus on coding a strategy for selecting
actions without any need to consider how the environment is able to process actions.

12 GOAL: A Multi-agent Programming Language Applied to an Exploration Game 241

Actions and Percepts We briefly describe some of the more important actions and
percepts out of the ten actions that can be performed and out of the 33 percepts that
may be received from the simulation environment. For more details, refer to [19].

Actions have a name and some of them have a parameter which identifies a
MAPC entity by its name. A saboteur can perform an attack on any vehicle that
is in the same location by attack (<Identifiers>) and the vehicle can use the
action parry to defend against an attack. Upgrades can be bought by performing
buy (<Identifiers). A vehicle moves to a neighbour vertex by performing
goto (<Identifiers), which has an energy cost equal to the weight associated
with the traversed edge. The actions probe and survey yield, respectively, the
amount of water present on the current vertex and the weights of visible edges.

An action may cost energy, health, and achievement points (money). These costs
vary depending on the success or failure of the action, and on whether the agent is
in a normal or disabled state. Actions may fail at random with a certain probability
and may yield achievement points for six different types of achievements that can be
realized. Achievement points can be scored by probing a specific number of nodes,
surveying a specific number of edges, inspecting a specific number of opponent
vehicles, performing a specific number of successful attacks, performing a specific
number of successful parries, and by obtaining points for a zone that is occupied.

Just like an action a percept consists of a name followed by a (possibly empty)
list of parameters. Besides names represented by <Identifiers a percept may
also provide numerical information represented by <Numerals. Percepts differ
per individual vehicle and depend on the location and range of sight of the vehicle.
Percepts are omitted with a certain probability by the server. The Mars simulation
environment provides a large number of different percepts to inform agents about
what is going on during the game. Agents are informed about their role, the
actual and maximal amounts of energy, health, and strength they can have, their
visibility range, whether an action was performed successfully or not, the amount
of money (achievement points) available to the team, the total number of vertices
and edges present in a simulation, the current round number, and the current (zone)
score. The percept achievement (<Identifiers) indicates an achievement
that has been realized. position(<Identifiers) provides the name of
the vertex the vehicle is on. probedvVertex (<Identifiers>, <Numerals>)
and surveyedEdge (<Identifier>,<Identifiers, <Numerals) yield,
respectively, the result of a probing and survey action. Several percepts such as
simStart, which indicates the start of a simulation, are available that inform
agents about the current state of the simulation and the server.

4 Developing a Multi-agent Program for MAPC

This section provides a detailed overview of the code development process of the
MAS HactarV2. HactarV2 performed exceptionally well during the contest and won
every single one of the 24 simulation games against eight other teams. The MAS

242 K.V. Hindriks and J. Dix

has been programmed completely in the agent programming languageGOAL. One
of the strengths of GOAL is that it facilitates the development of high-level strategies
for agents by providing a declarative way to represent and reason about an agent’s
beliefs and goals.

We provide some information and statistics about the project to indicate the
project’s size and effort that went into developing the MAS. The agent system has
been developed by a team of six students at the Delft University of Technology
(henceforth referred to as the team). All team members were familiar with GOAL
because it is being taught as a first year bachelor course in the Computer Science
curriculum at Delft University of Technology. The agile software development
approach Scrum [14], supported by the open-source platform iceScrum[17], has
been used to manage the project. The team decided not to use an agent-based
development methodology such as Prometheus[13] because of a lack of experience
with these methodologies. In total, the team spent roughly 500 man hours on the
project. About 60 % of the time was spent on implementing and debugging the
multi-agent strategy and the remaining 40 % was spent on system performance and
other problems. The final code base consists of 1,758 lines of code spread over 18
files.

The MAS has been run on a single high-end desktop computer consisting of an
Intel core i7-870 quad-core CPU running at 3.53 GHz, and 8 GB of DDR3 RAM
running at 1,600 MHz. The option of distributing the MAS on multiple machines
was considered as a possibility, mainly for performance reasons, but because the
MAS turned out to be efficient enough to run on a single machine this option was not
investigated any further. The team considered the development on a single machine
to be easier. This poses a challenge because the MAS needs to control ten nonplayer
characters that each individually need to act within a two second time frame. As
explained, because communication with the server over the Internet takes time as
well, in fact this means that each agent needs to decide on an action within about a
100 ms (given that agents take turns on a single machine).

In the remainder of this section, we discuss the design of the MAS (Sect.4.1),
the overall flow of control (Sect. 4.2), the ontology that was developed (Sect. 4.3),
the testing strategies of the team (Sect. 4.4), and briefly assess the code base against
a set of proposed design guidelines (Sect. 4.5).

4.1 Design of the HactarV2 MAS

The design of the HactarV2 MAS has been based on several observations related
to the game. Most importantly, two phases may be distinguished within the game:
a first phase in which agents do not yet act as a team (initially agents are randomly
placed on the map) and a second phase in which agents act as a team in order to
occupy valuable zones on the map. The 2011 MAPC map generator produces maps
that have a single cluster of higher valued nodes more or less at the center of the
map. Because of this, the two phases can be clearly distinguished from each other

12 GOAL: A Multi-agent Programming Language Applied to an Exploration Game 243

based upon the fact whether or not this zone has been identified. The main strategy
therefore consists of finding these nodes of highest value by means of explorer
vehicles and, when such a node (called the optimum by the team) is found, informing
all other agents about this node so they will start moving toward this node as well.
The second phase is called the swarming phase because agents are perceived as
being part of a swarm that aims at occupying a zone of valuable nodes that is as
large as possible.

Because the MAS identifies a single node as the “center” of the optimum zone
at most one swarm will be created. Agents that are part of this swarm identify the
highest valued node directly outside the zone occupied by the swarm and move
toward that node. By using this tactic the swarm will always expand in the direction
of the highest valued nodes that are not yet owned by the MAS.

Finally, in games where it is difficult to occupy a large, valuable zone, the points
that are obtained by achievements can determine the difference between winning
and losing. Based on the observation that attack and parry actions yield the most
achievement points it was decided to focus on these achievements. Of course,
inspections of opponent vehicles and probing nodes, for example, also need to be
performed to do well in the game.

It is clear that this general design of the MAS strategy completely depends on a
proper understanding of the MAPC simulation environment. Such an understanding
comes about only after running a MAS in the environment. This suggests that initial
experimentation with and testing of a MAS in an environment is a very important
aspect of designing a MAS.

Decentralized Coordination and Communication Strategy One of the main
challenges of the Agent Contest is to design a decentralized MAS that is able to
strategically compete with other agent teams. This excludes, for example, the design
of a MAS with a central manager that has access to all information available in the
MAS and sends instructions to individual agents what to do. The team decided to
address this challenge by designing a strategy of HactarV2 that is based on implicit
coordination between agents.

Another reason for choosing a decentralized design over a centralized design
that uses a managing agent is that a decentralized design may reduce the need
for communication if properly designed. A managing agent that coordinates the
activities of all other agents creates overhead because all information needs to be
made available to this manager agent and instructions need to be send back to these
agents, which can significantly impact performance.

In order to minimize the communication between agents, agents were designed
to base their decisions mainly on the information that is perceived by the agent
itself. The main exception concerns the information that is obtained by different
agents about the map. Map information is shared by communication between agents
because more knowledge about the map can be used to optimize the exploration
process and allows agents to prevent doing probe and survey actions twice. Sharing
this information may require each agent to process up to 90 messages that are
received from the other nine agents per round. Because all agents have to process

244 K.V. Hindriks and J. Dix

received map information, special attention has been paid to optimizing the updating
of an agent’s beliefs with this information. Although in a centralized design only the
central manager would maintain a map and need to perform such updates, this single
agent would still have to process all information received from all other agents.

In addition to messages about the map, messages with requests for repairs
are exchanged between disabled agents and repairer agents and messages with
information about the location of opponent agents are exchanged between non-
saboteur agents and saboteur agents. Communication has been optimized by making
sure that an agent will only send a message if it knows that the receiving agent does
not perceive this information itself (which can be deduced from local information
and previous messages).

One of the key issues that needs to be addressed in the design of a decentralized
MAS concerns the question how to avoid that agents perform the same action. Deci-
sions of agents on the action it will perform need to be coordinated to avoid doing the
same thing twice. To this end, agents in the HactarV2 MAS have been equipped with
the capability to predict what other agents will do. Using a simple agent ranking
principle each agent then can decide by itself which action to perform and rule
out conflicts. For example, this principle is used to decide which out of multiple
agents on the same edge of the occupied zone will perform a move to another node
to expand the zone. The basic idea is simple: Agents that are located on the same
node are ranked and assigned a unique number called the agent’s rank.> This rank is
used to arbitrate between multiple agents that are about to perform the same action.
This mechanism allows agents to divide tasks without having to communicate and
ensures that each agent performs a unique action whenever possible.

The design choice to develop a decentralized MAS for the MAPC environment
has raised some interesting issues that need to be taken into account. Two issues
stand out: The design needs to explicitly deal with minimizing communication
overhead and the prevention of the duplication of effort by agents. One mechanism
for dealing with the latter issue used in the HactarV2 team is prediction of what other
agents may do. An interesting topic for future research is the question whether, and
if so, which, alternative mechanisms may be employed to the same end.

Agent Roles and Strategies Apart from the overall MAS strategy discussed above,
various goals and strategies were designed and identified at the agent level including
strategies for specific agent roles, for defence, and for buying upgrades.

The main goal of explorer agents at the start of the game is to locate the highest
valued node on the map, called the optimum. Once this node has been found, it is the
task of the explorer agent to communicate the name of this node to the other agents
and start forming a swarm that occupies the zone around this node. The strategy
for finding the optimum consists of performing probe, survey and goto actions
according to a set of specific rules: Always probe a node if it has not been probed

2This can be done, for example, by using the fact that GOAL attaches numbers to names in order
to create unique names for each agent.

12 GOAL: A Multi-agent Programming Language Applied to an Exploration Game 245

yet and survey any edges that have not been surveyed yet. The agent then will go to
a node that has not been probed yet only if (a) this node is connected to the current
and last visited node and (b) the current node has a lower value then the last visited
one. If there is a neighboring node that has a higher value than the current one, the
agent will go there. The agent will also try to go to a neighbouring node that is not
close to a (potentially) dangerous opponent but the agent will take a chance in case
there is no such node. Otherwise, the agent will go back to the last visited node,
if unexplored options are available at that node. The agent will conclude that the
optimum has been found if no move can be made any more. This conclusion may
not always be right but turned out to work well in practice. Once the “optimum” has
been found, an explorer agent will team up with the other agents and start swarming
around this node. It will continue to probe nodes as doing so allows for finding even
higher valued nodes than the currently believed optimum.

The defensive strategy of an explorer is to move away from nodes it considers
unsafe. A node is considered to be unsafe if an opponent agent is located on that
node that is either a saboteur or its role is unknown.

A sentinel agent basically uses the same exploration strategy as explorer agents.
The defensive strategy of a sentinel is to parry opponent saboteurs. If successful,
parry achievements are gained. If the opponent’s role is unknown, a repairer will
also initially parry. However, if no attack was performed, with a 50 % chance, a
sentinel agent will ignore opponents with unknown roles on the same node.

An inspector agent also uses the same exploration strategy as explorer agents.
The difference is that an inspector agent gives priority to inspecting opponents
in order to identify saboteurs, to keeping track of the status of these agents
(by repeating inspection of these agents every 50 rounds), and to sharing this
information with all other agents. The defensive strategy of an inspector is to move
away only from known opponent saboteurs.

The main goal of repairer agents is to repair friendly disabled agents. Priority
is given to repairing a disabled repairer agent and repairs of other agents are
interrupted when a repairer is itself disabled or upon receiving a request from
another repairer agent. Disabled agents request a repairer agent for help and will
start moving toward the closest repairer. They send a path to the repairer they are
moving to which prevents the repairer from having to calculate the same path.
Repairers use the same defensive strategy as sentinels.

The main goal of saboteur agents is to disable opponent agents. These agents
move toward a nearest and last known location of an opponent agent to attack that
agent. Tests showed that this strategy reduced the effectiveness of opponent teams.
Saboteurs do not have a defensive strategy but are designed to be superior to any
opponent agent by means of HactarV2’s buying strategy to which we now turn.

Buying is an important aspect of the game but the team considered achievement
points (money) more important and they decided to try to spend less money than
the opponent does. The reason is that the amount of money available each round
has a high impact on the score for that round. Although the team experimented with
sentinels that buy sensors to increase visibility range, this performance gain was
considered insufficient compared to the costs and the team decided to only upgrade

246 K.V. Hindriks and J. Dix

Fig. 12.1 Scores HactarV2 «10°
(gray) vs TUB (black) 3
251 .
2} _ / |
g 150 : /]
1 _//’- 4
.-"/.
,-"/
05t // .
50 100 150 200 250 300 350 400

time

saboteur agents. Upgrades are bought right at the start of the game and throughout
when it is discovered that upgrades are needed to match opponent health or strength.
Upgrading is aimed at two things: (a) saboteurs have one health point more then the
maximal strength of opponent saboteurs and (b) the strength of saboteurs is at least
equal to the maximal health of opponent saboteurs. If both these goals are realized,
saboteur agents will survive opponent attacks while disabling opponents by a single
attack. The initial investment at the start of the game means that the score often is
lower than that of opponents in the first 100 or so steps but it starts to pay off in the
remainder of the match. See Fig. 12.1 for an example game illustrating this.

The fact that the exploration strategy is among the most complex strategies
matches the fact that the MAPC environment is what we have called an exploration
game. Itis obvious that in a game of competition that has entities with different roles
agent specific role and defensive strategies need to be designed. More interestingly,
however, is the fact that the design of the buying strategy is derived from the results
of extensive testing, which highlights again the importance of this activity.

4.2 Control Flow of the MAS

GOAL agents execute an Observe—Orient-Decide—Act (OODA) loop [5].> At the
start of a reasoning cycle of an agent, events including percepts and messages are
collected (Observe) and processed by means of so-called event rules (Orient). This

3Tn many areas of competitive activity, the theory is that if you can cycle through the OODA loop
faster than your opponent, you have the advantage.

12 GOAL: A Multi-agent Programming Language Applied to an Exploration Game 247

ensures that an agent can make a decision based on the most up-to-date information
available. A decision on what to do next (Decide) is made using so-called action
rules. Upon making a choice, the action selected is sent to the environment (Act).

The control flow of this cycle matches the general structure of a GOAL agent
program. More specifically, the event module of a GOAL agent corresponds to
the Observe—Orient part of the loop and its main module with the Decide—Act
part of the loop. A programmer can add additional structure to the agent’s cycle
by adding as many user-defined modules as needed. For example, code related to
percept handling, communication, navigation, and roles can be placed in separate
modules.

A more detailed overview of the structure and flow of control of the event module
is provided by the diagrams in Fig. 12.2a, b. Horizontal rectangular boxes in the
figures refer to particular modules and submodules, whereas vertical rectangular
boxes indicate the flow of control. The notation LA in the latter boxes indicates
that the order of rule evaluation in the corresponding module is Linear and that
All applicable rules need to be applied (in order). This linear-all style of rule
evaluation is the default mode for the init and event modules. In all other modules,
the default mode is a linear style mode of evaluation where only the first applicable
rule is applied. Using the order option the rule evaluation style of a module can be
changed. This explains the fact that the submodules such as selectPercepts,
etc. are also indicated in Fig. 12.2 to use linear-all style evaluation.

An agent starts a new cycle upon receiving information from the simulation
server that a new round has started. The commonPercepts module handles the
percepts that every agent uses. The surveyVertices module processes vertex-
related percepts and broadcasts this information to the other agents if a successful
survey action just was performed. Next role specific modules handle any role
specific percepts. The selectReceive module then processes messages, which
in a similar fashion uses various sub-modules. For example, a disabled agent uses
module disabledReceiveMail to handle messages specific to disabled agents.
The clearMailbox module finally cleans the mailbox of an agent by deleting all
received and sent messages.

After all events are processed and the mental state of the agent is made up-to-date
again, the agent decides what to do next in the main module. Instead of providing
a flow diagram for this module, we list the code in Fig. 12.3. As explained above,
the rule evaluation in this and user-defined modules is linear style. This means that
the action rules in these modules are evaluated one by one from top to bottom and
only the first applicable rule is actually applied. If no decision has been made yet
(not (doneAction)), first it is checked whether the agent is disabled and the
disabled module is entered in that case to ensure the agent gets itself fixed as
soon as possible. A special case where the MAS is in control of the entire map
(allMapAreBelongToUs®) because all opponent agents are disabled is checked
next which is handled by the superioritySelect module. Only if none of

4See http://nl.wikipedia.org/wiki/All_your_base_are_belong_to_us.

http://nl.wikipedia.org/wiki/All_your_base_are_belong_to_us

248

Fig. 12.2 Control flow of the

event module. (a) First part;
(b) second part

K.V. Hindriks and J. Dix

53

ginning_reasoning_cycle:
event module
i

selectPercepts

s

—_—

l
A

.
|
L |
A L

A ——= L
A

role specific
percept module

i
—— |L
A
- - '
| I

T

I
event module
(continued)
—

selectReiveMail

e

commonReceiveMail
S

L
A
|
|

I
role specific
receive mail

module

>r
>r

L
A
=
disabledReceiveMail

1

- > L

A

e
I

clearMailBox

_—

L
A
-
|

12 GOAL: A Multi-agent Programming Language Applied to an Exploration Game 249

main module{

program{
if bel (not (doneAction)) then {
if bel(disabled, not(role(’Repairer’))) then disabled.

if bel(allMapAreBelongToUs) then superioritySelect.

if bel(role(’Repairer’)) then repairerAction.
if bel(role(’Inspector’)) then inspectorAction.
if bel(role(’Explorer’)) then explorerAction.
if bel(role(’Saboteur’)) then saboteurAction.
if bel(role(’Sentinel’)) then sentinelAction.

if bel(true) then explore.

Fig. 12.3 Main module code

these cases apply enter agents their role specific modules. Finally, if there are no
role specific tasks that need to be performed these modules are exited and an agent
will try to swarm, or, if that is not an option explore the map.

The use of modules has several benefits. It facilitates programmers that are part of a
team to each focus on a specific part of code while at the same time maintaining a
clear structural overview of the MAS. It also reduces the chance of code duplication.
And last but not least, it facilitates structuring code of roles by means of a pattern
similar to the Strategy design pattern [6]. The agent program of every agent in our
MAS uses the same structure while still being able to handle agent specific roles due
to code that allows an agent to adapt to the particular role associated with a vehicle.

4.3 Ontology

Besides the 33 percept predicates that agents may receive from the environment, in
the HactarV2 MAS an additional 60+ Prolog predicates were defined that are used
throughout the agent program. In a team of programmers where each programmer
codes part of the MAS it is important to have easy access to such large numbers of
predicates and their intuitive meaning. Code in a sub-module of the main module,
for example, may depend on predicates in the belief base that are updated in a sub-
module of the event module. One lesson learned from a first year bachelor project
where student teams have to program a MAS for controlling bots in the real-time,
first-person shooter game UNREAL TOURNAMENT 2004 [10] is that the teams that
did a better job at maintaining an ontology outperformed other teams and obtained
better results in the final competition. For this reason, the team also maintained an
ontology for the HactarV2 MAS.

Ontology Structure An ontology for a GOAL MAS documents all predicates that
are used in the MAS code base. As Prolog is used, the ontology documents in the

250 K.V. Hindriks and J. Dix

usual Prolog format name /nr a predicate named name that has nr of arguments.
For example, enabledEnemy/2 means a predicate enabledEnemy with two
arguments is used. The ontology maintained by the HactarV2 team in the form of
a table also indicates the fype of a predicate label, that is, whether it is used for
representing a belief, goal, percept, or knowledge of an agent. It also briefly explains
the intuitive meaning of each predicate, how its parameters should be instantiated,
and the code base location where the predicate is defined (i.e., the file where it is
used).

Example Predicate Definitions In the remainder of this section, we briefly discuss
and illustrate two of the predicates used and their definitions. Important other
predicates that were defined were used, for example, for implementing the agent
ranking principle discussed above (Sect.4.1), path planning,> and for keeping track
of which vehicles that are part of the team can be relied upon.

The concept of an agent being connected to others is used in the swarming phase,

that is, the second phase of the game. It is an important concept for establishing that
nodes are owned by a group of agents. The nodes that connected agents are located
on are also called swarm positions. Informally, an agent is said to be connected if
that agent has links with at least two other agents it can depend on. A link between
two agents is said to exist if there are at most two edges that connect the nodes on
which these agents are located and these nodes are owned by the agent team. The
concept is implemented by the predicate connectedAgent/2; see Fig. 12.4).
Figure 12.4 also lists the most important predicates related to swarming.
Code explanation: the predicate connectedAgent /2 indicates whether the sec-
ond agent is connected to the first agent. This means the second agent must be one
or two edges apart from the first agent, and must not be considered an independent
agent (see below for the concept of independency); connectedPos/2 does the
same as connectedAgent but instead of reasoning from the position of the
first agent it reasons from any node position; edgeDest /1: finds a list of probed
nodes (and their corresponding values) that are not in the optimum zone but have
a direct edge to a node in the optimum zone; swarmPos/1: a vertex that is a
swarm position is a vertex that makes sure the agent is still connected to two other
agents; expandPos/1: checks if a node is neutral (has no vertex owner) and
is a swarming position; expandDest /2: finds all expanding destination (using
expandPos) from the agents current position; bestExpandDest/3: finds the
highest value expanding position to expand the swarm to from a certain node.

Recall that the map generator produces maps that have one cluster of higher
valued nodes at the center of the map. It is the goal of explorers to locate these high
valued nodes and identify the optimum node. Occupying a zone around this node is
very important during the game. Such a zone is called the optimum zone. In order

31t is often argued that path planning is better delegated to another software component that is not
programmed using a logic-based agent programming language. The HactarV2 agents, however,
use Prolog for path planning and implement variants of Dijkstra’s shortest path algorithm.

12 GOAL: A Multi-agent Programming Language Applied to an Exploration Game

connectedAgent (Agentl, Agent2) :- team(Team),
visibleEntity (Agentl, Posl, Team, normal),
visibleEntity (Agent2, Pos2, Team, normal),
visibleEdge (Posl, Pos2), not(independableAgent (Agent2)),
vertexOwner (Posl, Team), vertexOwner (Pos2, Team).

connectedAgent (Agentl, Agent2) :- team(Team),
visibleEntity (Agentl, Posl, Team, normal),
visibleEntity (Agent2, Pos2, Team, normal),
visibleEdge (Posl, Pos3), visibleEdge (Pos3, Pos2),
not (Posl == Pos2), not(independableAgent (Agent2)),
vertexOwner (Posl, Team), vertexOwner (Pos2, Team),
vertexOwner (Pos3, Team) .

connectedPos (X, Agent) :- currentPos(Agent, Y),

not (independableAgent (Agent)), visibleEdge (X, Y).
connectedPos (X, Agent) :- currentPos(Agent, Z),

not (independableAgent (Agent)), not (X == Z), visibleEdge(Z, Y),

team(Team), vertexOwner (Y, Team), visibleEdge(Y, X).

expandDest (List3, Pos):-

vertexValue (Neighbour,Value), not(Value==unknown)),List),
not (List == []), sort(List, List2), reverse(List2, List3).

edgeDest (List3) :- neighboursOfOptimumZone (F), !
findall ([Value, Vertex], (member (Vertex, F), vertexValue(Vertex, Value),
not (Value == unknown)), List),
not (List == []), sort(List, List2), reverse(List2, List3).
swarmPos (X) :—- connectedPos (X, Agentl), connectedPos (X, Agent2),
not (Agentl == Agent2), !.
expandPos (ID) :- vertexOwner (ID, none), swarmPos(ID).

findall ([Value,Neighbour], (neighbour (Pos,Neighbour), expandPos(Neighbour),

bestExpandDest (ID, Value, Pos):- expandDest (List,Pos), List=[[Value,ID]|_].

Fig. 12.4 Related predicates and predicate definition for connectedAgent /2

allInformationOptimumZone ([], [], []) :- not(optimum(_)), !.
allInformationOptimumZone (Agents, Nodes, Neighbours) :-
optimum(Opt), team(Team),

allInformationOptimumZone(([], _, [1, [1, [1, _).
allInformationOptimumZone
([First|ToConsider], Visited, [First|Nodes], Agents, Neighbours, Team)
vertexOwner (First, Team),

list_to_set (TempNodes, FoundNodes),
union (FoundNodes, ToConsider, NewToConsider),

allInformationOptimumZone (NewToConsider, [First|Visited], Nodes,
NewAgents, Neighbours, Team),

union (NewAgents, Agts, Agents).

allInformationOptimumZone ([First|ToConsider], Visited, Nodes, Agents,

[First |Neighbours], Team) :- not(vertexOwner (First, Team)),

allInformationOptimumZone (ToConsider, [First|Visited], Nodes,

Agents, Neighbours, Team).

inOptimumZone :- me(Id), agentsInOptimumZone (A), member ([Id,_], A).

allInformationOptimumZone ([Opt], [], Nodes, Agents, Neighbours, Team),!.

findall ([Agent, First], visibleEntity(Agent, First, Team, normal), Agts),
findall (Node, (e4 (First, Node, _), not (member (Node, Visited))), TempNodes),

251

Fig. 12.5 Related predicates and predicate definition for allInformationOptimumZone/3

to be able to reason about this important zone, various predicates related to this

concept have been defined; see Fig. 12.5.

Code explanation: allInformationOptimumZone/3: finds all nodes and
agents that are currently in the optimum zone. The definition uses the helper

252 K.V. Hindriks and J. Dix

predicate allInformationOptimumZone/6. Using a breadth first search
this latter predicate finds all nodes owned by the team that have a path to the
optimum node, using only nodes that are owned by the team. It also finds all the
agents that are currently on these nodes as well as all neutral and enemy owned
nodes that have an edge to these nodes; inOptimumZone/0 checks if the agent
is currently in the zone that contains the optimum.

Maintaining an ontology facilitates keeping track of what programmers that are
part of a team are doing. The HactarV2 team has reported that using an ontology
has saved them a lot of time. They found that it is important to pay special attention
to the predicates that are used for representing the environment. An ontology also
provides support for understanding the program code and communication between
team members. The GOAL platform provides some functionality for automatically
identifying the predicates that are used and warns if redundant predicates are present
in a MAS. Given the usefulness of an ontology it is worth while to consider
extending this functionality and provide more automated support for maintaining
an ontology.

4.4 Testing

The team has put a lot of effort into testing and analysing the results while
developing the MAPC MAS and reported that extensive testing was very important
for becoming familiar with the gaming environment. We briefly discuss the various
testing strategies that were used by the team.

The Use of Dummy Agents It is important to test whether the MAS has bugs
without other agents disturbing the environment. In order to do so, dummy agents
that do nothing were used as opponents. Problems such as agents getting stuck at a
certain point, or performing no operations at all are more easily detected and solved
this way. For example, if a vehicle controlled by an agent does not perform an action,
by stepping through the code of the agent in debugging mode it is often relatively
easy to determine what goes wrong in a set-up with dummy agents (other options
such as that an agent has been disabled cannot occur in this case).

Strategy Testing Testing is not only suitable for detecting and solving errors but
also needed for measuring the performance of a MAS. In a competitive setting, an
adequate and readily available way of measuring performance is by testing a current
version of the MAS against older versions. This yields insight into whether recent
code changes have improved performance. During these tests the team observed
suboptimal behavior that they believe could only have been found because the
strategy of the opposing MAS of an older version is still quite similar (assuming
testing is regularly performed). For the same reason why it is a good idea to test
against earlier versions it is also necessary to test against MAS written by other
teams, whenever the possibility is available. Only by doing so are issues detected
that occur only against MAS that have a very different strategy.

12 GOAL: A Multi-agent Programming Language Applied to an Exploration Game 253

Fig. 12.6 Example debug module debug[exit=noaction]{
module for the MAPC program{

if bel (debug(attack(X))) then attack(X).
if bel (debug(survey)) then survey.
if bel (debug(probe)) then probe.

bel (debug (moving (X)), currentPos (X))
then delete (debug(moving(X))) + explore.

Debug Modules In order to properly test agent behavior, it is necessary to create
particular situations in an environment to be able to observe the behavior that a
program produces in those situations. In order to create such situations, it can be
useful to “manually” assign each agent a new task at runtime. For example, it is
often quite useful in the MAPC environment to direct an agent to go to a particular
location and stay there.

It is useful to have support for setting up particular situations. In GOAL, the team
came up with the idea of using a combination of a what they called a debug module
and so-called debug facts. An example of such a module is provided in Fig. 12.6. A
debug module is a module like any other module with the name debug. The module
includes a set of simple action rules that are executed when a corresponding debug
fact is part of the agent’s belief base. A debug module is used in combination with
a feature in GOAL that allows to insert new beliefs in the belief base of a particular
agent while the MAS is running. Once an agent believes a “debug fact,” it will
deviate from its normal behavior and will immediately give full priority to the rules
in the corresponding debug module. The team reported that this proved to be a very
useful debugging tool. All agents can, for example, be instructed to line up in a
particular way to make it easy to test a strategy or situation in a controlled manner.

Real-Time Debugging An important problem with testing a MAS is that the
environment upon which the system acts is highly dynamic. Many different agents
perform actions in real time and continuously affect the state of the environment.

A more specific testing tactic that was used while debugging the MAPC MAS
involved the use of an edited XML configuration file for a simulation which granted
the agent team two million seconds for sending actions. According to official game
settings, all agents have only 2's to submit their actions. While stepping agents in
debugging mode, however, such a time limit is too strict and action would not be
submitted in time. In the MAPC environment, this would mean that agents that are
being debugged perform skip actions, while the opponent MAS is sending valid
actions. By raising the time limit for submitting an action, the server would “pause”
during that time and it is possible to complete debugging a simulation step. As a
result, bugs were found more easily.

Testing was performed at all levels distinguished in [12], including unit, agent,
integration, system, and acceptance testing. Acceptance testing in this context meant
testing the system in the environment provided by the MAPC organizers. This
required some creativity, as discussed above, from the team. Testing of MASs

254 K.V. Hindriks and J. Dix

may be differentiated from other types of software systems and is particularly
challenging due to the many interactions that need to be taken into account. Agents
run concurrently and interact with other agents, both by means of communication
as well as by interacting in a shared environment, and need to take into account how
to coordinate their actions or compete with other agents for resources. The metrics
that needed to be considered for the MAPC competition in particular were related
to real-time performance and the performance of the MAS in terms of the scoring
scheme of the competition. Other metrics related to code quality are discussed in
the next section.

Generally speaking, the lesson learned from this project is that the more a MAS is
being tested the better it is. As noted above, testing is very important to gain a proper
understanding of the environment a MAS needs to be programmed for. Interestingly,
some techniques were used by the team that can be reused in other cases. The idea
of putting an agent in “debug mode” by means of debug modules in order to create
specific testing conditions provides only one example. An issue that often arises
while debugging MAS for complex environments concerns real-time. Whereas
for the MAPC environment the real-time pace of the game could be controlled,
parameters for doing so are not available for all environments. It is therefore clear
that more effort is needed to improve the tooling for effective debugging and for
developing effective testing approaches for multi-agent programs [1].

4.5 A Look at the HactarV2 Code Base

Due to space limitations, we only discuss and illustrate a small but important part of
the code base related to the swarming behavior of agents that occupy a zone.

The swarming module shown in Fig. 12.7 is a key module during the second
phase of a game, when the objective of the MAS is to occupy a zone that is as large
as possible. To be more precise, the objective is to obtain a higher zone score than
the opponent team. In order to do so, the swarming agents sometimes will even
reduce the occupied zone in order to maintain a steady flow of score instead of
aiming for occupied territory that is easily disrupted by the opponent. Agents will
only enter this module when they do not have any more important role specific tasks
to perform, such as repairing a broken agent or destroying an enemy saboteur that
is disrupting one of the repairers.

The module heavily depends on several defined predicates, such as the
swarmPos predicate defined in Fig. 12.4. The module also uses the agent rank
system to efficiently distribute possible moves between agents. Two main cases are
distinguished in the module: the agent is (a) inside the occupied zone (dealt with by
the first rule) and (b) on a boundary node and has options available for expanding
the zone. Using the expandDest/1 predicate these options are retrieved, the
agent’s rank is determined, and using the expandDest /2 predicate options of
connected agents are retrieved. In case the agent is allowed to expand (it has more
options than other agents), it does so using the moveSplit /2 module.

12 GOAL: A Multi-agent Programming Language Applied to an Exploration Game 255

program{
if bel(insideZone, edgeDest (List), agentRankHere (Rank))
then moveSplit (Rank, List).

if bel(expandDest (List),List=[[Value,Vertex]|_],me(Id),agentRankHere (Rank))
then {
if bel(not((connectedAgent (Id, Agent), currentPos(Agent, Pos),
bestExpandDest (_, Value2, Pos), Value2 >= Value)))

then gotoSplit (Rank, List).
if bel(not (kingOfTheHill), Rank2 is Rank-1)
then gotoSplit (Rank2, List).
if bel(currentPos (Pos), not (swarmPos (Pos)), optimum(Opt),
path(Pos, Opt, [Here,Next|Path], _))
then advancedGoto (Next) .

}

if true then recharge.

}

Fig. 12.7 Program section of the swarming module

The code fragments discussed provide some indication of the quality of the
code produced but do not provide an overall perspective. More generally, we can
assess the code quality produced by the HactarV2 team by means of a set of
design guidelines that have been proposed for GOAL agent programs [16]. Part of
these guidelines also concern the earlier discussed topics of ontology and testing.
Table 12.1 provides an overview of these guidelines and indicates to what extent
they were followed.

It turns out that the HactarV2 team followed most of the design guidelines
for producing quality code but not all. Overall, rules were grouped according to
purpose (e.g., communication rules were grouped together) and a declarative style
of programming has been used. Percepts are not all handled in the event module,
however, and the deletion of facts was not always handled by the delete action. The
team explained that they did not follow these guidelines for reasons of performance
and preferred less expensive queries here instead of relatively expensive update
actions. Other items that stand out concern the high level of testing and the fact
that a project management tool was used at the start of the project but not used
actively any more later on.

5 Conclusion

The design and development of a MAS for an exploration game such as the MAPC
involves all challenges that will typically be encountered when developing a MAS
for controlling a complex and dynamic environment. We think that the Mars contest
scenario poses some interesting challenges with respect to coordinating agents. We
discussed the programming project and results of a team of six bachelor students
that coded a MAS they called HactarV2 that won the 2011 contest. The team had
to design a winning strategy for ten agents in a competitive environment facing ten
opponent agents, design a coordination strategy for coordinating the activities of

256 K.V. Hindriks and J. Dix

Table 12.1 Which design guidelines and best practices were followed?

Code quality and style

Predicate labels are declarative v
Beliefs represent current state v
Program does not contain redundant predicates v
Knowledge represents conceptual and domain logic v
Agent program uses goals v
Goals are declarative v
Goals are concrete v
Only action specifications for environment actions are present v
All environment actions are declared in the init module v
Specified action preconditions match environment constraints v
insert is used to add and delete is used to remove beliefs X
Action rules are only used in the main module or linked modules v
Percepts are only used in the event module X
Percepts are handled by forall rules X
Communication rules are located in the event module after percept handling code v
Rules for goal management are located at the end of the event module X
Unrelated modules are placed in separate files v
Comments (documentation)

% predicates in knowledge base that are explained in comments 100 %
% action specifications that are explained in comments 50 %
% of modules the use of which are explained in comments 90 %
% of program rule groups that are explained in comments 100 %
Ontology (documentation)

The ontology was kept up to date throughout the project v
Items in the ontology are properly explained v
The ontology was used by team members during the project v
Testing

Level of testing during project High

Team performed module tests
Team performed full MAS system tests v
Team performed systematic tests on domain configurations v

Project management
A project management tool was used during the project
The project management tool was kept up to date throughout the project

RN

these agents, develop a relatively large code base as a team, and perform extensive
tests to validate the performance and strategy of the MAS that was developed.

The code for the MAS that was developed has been completely written in the
logic-based agent programming language GOAL. This made the coding project a
useful object for our study to learn more about the actual use of such a language in a
relatively larger project. We discussed key aspects of the project including program

12 GOAL: A Multi-agent Programming Language Applied to an Exploration Game 257

and strategy design, the use of modules in a team programming effort, the ontology
used for reasoning and representing the gaming environment, strategies for testing a
MAS, and we briefly discussed whether code followed proposed design guidelines.

According to the team, the concept of a module for structuring code turned out to
be of great value. Modules were used to write code for specific roles that were used
by only some agents, as well as for shared functions such as navigating the map, for
communication, etc. The team reported that being able to structure code by means of
modules facilitated the division of coding tasks among team members. Furthermore,
writing code in a logic-based agent programming language as a team requires that
all team members are aware of the logical predicates that are used throughout the
code. We have called this the ontology used by the MAS. The team reported that
documenting and updating the ontology while developing code facilitated team
coordination and saved time. The team followed most but deviated also from some
of the proposed guidelines for quality code mainly for reasons of efficiency.

In conclusion, we have found that developing a MAS is far from trivial.
In particular, testing a MAS remains one of the key challenges that seems to
set development of such a system apart from other software systems. The key
differences are the potentially large number of agents that may have different roles
and the fact that the MAS is developed for controlling entities in and is connected to
an external environment that cannot be fully controlled. A development team needs
to become familiar with the external environment at the start of a project. This means
that different testing strategies may be useful at the beginning than toward the end
of a project. The team used some interesting techniques for debugging some of
which can be applied more generally to the development of other MASs as well. In
particular, in a gaming environment where bots compete for resources, at the start
of a project it may be more effective to use dummy opponents that pose little or no
challenge while testing initial versions of a MAS. A testing approach to evaluate
whether subsequent versions of the MAS improve the system’s performance is self-
play, that is, have a newer version play an older version.

In this chapter, we have made an attempt to gain insights from a coding project
that uses a logic-based agent programming language. We believe that we have been
able to identify and illustrate some useful strategies for making such a project a
success. Much, however, remains to be done and we believe it would be useful to
draw more lessons learned from other agent-oriented software engineering projects.
Analysis of such projects is useful for identifying coding (design) patterns, best
practices, improving agent-based development tools, and developing automated
testing tools, as well as evolve agent programming languages in a way that enhances
their use in real-world applications [20].

Acknowledgments We would like to recognize the effort the students put into developing the
HactarV2 MAS and their help in explaining their code while writing this chapter. The chapter is
partly based on the MAPC paper for the HactarV2 MAS [4].

258 K.V. Hindriks and J. Dix

References

1. Behrens T, Dastani M, Dix J, Koster M, Novék P (2010) The multi-agent programming contest
from 2005-2010. Ann Math Artif Intell 59(3):277-311
2. Behrens TM, Hindriks KV, Dix J (2011) Towards an environment interface standard for agent
platforms. Ann Math Artif Intell 61(4):261-295
3. Bordini R, Braubach L, Dastani M, Seghrouchni AEF, Gomez-Sanz J, Leite J, O’Hare G,
Pokahr A, Ricci A (2006) A survey of programming languages and platforms for multi-agent
systems. Informatica 30(1):33-44
4. Dekker M, Hameete P, Hegemans M, Leysen S, van den Oever J, Smits J, Hindriks KV (2012)
Hactarv2: an agent team strategy based on implicit coordination. In: Dennis L, Boissier O,
Bordini RH (eds) 9th International Workshop, ProMAS 2011, Taipei, Taiwan, 3 May 2011,
Revised Selected Papers. LNAI, vol 7217, pp 173-184
5. Eaton J, Redmayne J, Thordsen M (2007) Joint analysis handbook, 3rd edn. Joint Analysis and
Lessons Learned Centre, Lisbon. www.jallc.nato.int
6. Freeman E, Freeman E, Sierra K, Bates B (2004) Head first design patterns, 1st edn. O’Reilly
Media, Inc., Sebastopol
7. Georgeff MP, Pell B, Pollack ME, Tambe M, Wooldridge M (1999) The belief-desire-intention
model of agency. In: Proceedings of the 5th international workshop on intelligent agents, vol
V. Agent theories, architectures, and languages (ATAL ’98). Springer, Berlin, pp 1-10
8. Hindriks K (2009) Programming rational agents in goal. In: Multi-agent programming:
languages, tools and applications. Springer, Heidelberg, pp 119-157
9. Hindriks K, de Boer FS, van der Hoek W, Meyer J (2001) Agent programming with declarative
goals. In: Intelligent agents VII agent theories architectures and languages. Springer, Berlin,
pp 248-257
10. Hindriks K, van Riemsdijk B, Behrens T, Korstanje R, Kraayenbrink N, Pasman W, de Rijk L
(2011) UNREAL GOAL bots. In: Dignum F (ed) Agents for games and simulations, vol II.
Lecture notes in computer science, vol 6525. Springer, Berlin, pp 1-18. http://dx.doi.org/10.
1007/978-3-642-18181-8_1
11. Newell A (1981) The knowledge level. Al Mag 2(2):1-20
12. Nguyen C, Perini A, Bernon C, Pavn J, Thangarajah J (2011) Testing in multi-agent systems.
In: Gleizes MP, Gomez-Sanz J (eds) Agent-oriented software engineering, vol X. Lecture notes
in computer science, vol 6038. Springer, Berlin, pp 180-190
13. Padgham L, Winikoff M (2003) Prometheus: a methodology for developing intelligent agents.
In: Proceedings of the 3rd international conference on agent-oriented software engineering,
vol III (AOSE’02). Springer, Berlin, pp 174-185
14. Schwaber K (1995) Scrum development process. In: Proceedings of the 10th annual ACM
conference on object oriented programming systems, languages, and applications (OOPSLA),
pp 117-134
15. Shapiro L, Sterling E (1994) The art of prolog: advanced programming techniques. MIT Press,
Cambridge
16. The GOAL website (2012). http://ii.tudelft.nl/trac/goal
17. The iceScrum website (2012). http://www.icescrum.org/en/
18. The Multi-Agent Programming Contest website (2012). http://www.multi-agentcontest.org/
19. The Multi-Agent Programming Contest 2011 website (2012). http://www.multi-agentcontest.
org/2011
20. van Riemsdijk MB, Hindriks KV, Jonker CM (2012) An empirical study of cognitive agent
programs. Multiagent Grid Syst 8(2):187-222

www.jallc.nato.int
http://dx.doi.org/10.1007/978-3-642-18181-8_1
http://dx.doi.org/10.1007/978-3-642-18181-8_1
http://ii.tudelft.nl/trac/goal
http://www.icescrum.org/en/
http://www.multi-agentcontest.org/
http://www.multi-agentcontest.org/2011
http://www.multi-agentcontest.org/2011

	12 Goal: A Multi-agent Programming Language Applied to an Exploration Game
	1 Introduction
	2 The Agent Programming Language Goal
	3 The MAPC
	3.1 The 2011 Mars Scenario
	3.2 Support for the Environment Interface Standard

	4 Developing a Multi-agent Program for MAPC
	4.1 Design of the HactarV2 MAS
	4.2 Control Flow of the MAS
	4.3 Ontology
	4.4 Testing
	4.5 A Look at the HactarV2 Code Base

	5 Conclusion
	References

