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Abstract. We present a quantum-public-key identification protocol and
show that it is secure against a computationally-unbounded adversary.
This demonstrates for the first time that unconditionally-secure and
reusable public-key authentication is possible in principle with (pure-
state) public keys.

1 Introduction

Public-key cryptography has proved to be an indispensable tool in the mod-
ern information security infrastructure. Most notably, digital signature schemes
form the backbone of Internet commerce, allowing trust to be propagated across
the network in an efficient fashion. In turn, public-key encryption allows the
private communication of messages (or, more usually, the establishment of sym-
metric secret keys) among users who are authenticated via digital signatures.
The security of these classical public-key cryptosystems relies on assumptions
on the difficulty of certain mathematical problems [1]. Gottesman and Chuang
[2] initiated the study of quantum-public-key cryptography, where the public
keys are quantum systems, with the goal of obtaining the functionality and
efficiency of public-key cryptosystems but with information-theoretic security.
They presented a secure one-time digital signature scheme for signing classical
messages, based on Lamport’s classical scheme [3].

In a public-key framework, Alice chooses a random private key, creates copies
of the corresponding public key via some publicly-known algorithm, and distrib-
utes the copies in an authenticated fashion to all potential “Bobs”. In principle,
this asymmetric setup allows, e.g., any Bob to send encrypted messages to Alice
or to verify any signature for a message that Alice digitally signed. By eliminat-
ing the need for each Alice-Bob pair to establish a secret key (in large networks
where there may be many “Alices” and “Bobs”), the framework vastly simpli-
fies key distribution, which is often the most costly part of any cryptosystem,
compared to a framework that uses only symmetric keys.
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Some remarks about the quantum-public-key framework are in order. First,
we address the issue of purity of the quantum public keys. In principle, the quan-
tum public key can be either in a pure or mixed state from Alice’s point of view
(a mixed state is a fixed probabilistic distribution of pure states). Gottesman
and Chuang [2] assumed pure-state public keys. For digital signature schemes,
this purity is crucial; for, otherwise, Alice could cheat by sending different public
keys to different “Bobs”. Purity prevents Alice’s cheating in this case because
different “Bobs” can compare their copies of the public key via a “distributed
swap-test” [2] to check they are the same (with high probability), much like
can be done in the case of classical public keys. But any scheme can benefit
from an equality test, since an adversary who tries to substitute bad keys for
legitimate ones could thus be caught. There is no known equality test guaran-
teed to recognize when two mixed states are equal. Thus, having mixed-state
public keys seems to be at odds with what it means to be “public”, i.e., publicly
verifiable.1 Even though the scheme we present in this paper does not make
explicit use of the “distributed swap-test” (because we assume the public keys
have been securely distributed), it can do so in principle. We view this as anal-
ogous to how modern public-key protocols do not specify use of an equality test
among unsure “Bobs”, but how such a test is supported by the framework to
help thwart attempts to distribute fake keys.

Second, we address the issue of usability of quantum-public-key systems. The
states of two quantum public keys corresponding to two different private keys
always have overlap less than (1 − δ), for some positive and publicly known δ.
Thus, a striking aspect of the quantum-public-key framework is that the number
of copies of the public key in circulation must be limited (if we want information-
theoretic security). If this were not the case, then an adversary could collect an
arbitrarily large number of copies, measure them all, and determine the private
key. By adjusting protocol parameters, this limit on the number of copies of the
quantum public key can be increased in order to accommodate more users (or
uses; see next paragraph for a discussion on “reusability”). Thus, in practice,
there is no restriction on the usability of a quantum-public-key system as long
as an accurate estimate can be made of the maximum number of users/uses.

Presumably, adjusting the protocol parameters (as discussed above) in order
to increase the maximum number of copies of the quantum public key in cir-
culation would result in a less efficient protocol instance, and this is one kind
of tradeoff between efficiency and usability in the quantum-public-key setting.
Another kind concerns reusability. The abovementioned digital signature scheme
is “one-time” because only one message may be signed under a particular key-
value (even though many different users can verify that one signature). If a
second message needs to be signed, the signer must choose a new private key
and then distribute corresponding new public keys. One open problem is thus
whether there exist reusable digital signature schemes, where either the same
1 Other authors have defined the framework to include mixed public keys, and Ref. [4]

proposes an encryption scheme with mixed public keys that is reusable and uncon-
ditionally secure [5].
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copy of the public key can be used to verify many different message-signature
pairs securely, or where just the same key-values can be used to verify many
different message-signature pairs securely (but a fresh copy of the public key
is needed for each verification). The latter notion of “reusability” is what we
adopt here.

In this paper, we consider an identification scheme, which, like a digital sig-
nature scheme, is a type of authentication scheme. Authentication schemes seek
to ensure the integrity of information, rather than its privacy. While digital sig-
nature schemes ensure the integrity of origin of messages, identification schemes
ensure the integrity of origin of communication in real time [1]. Identification
protocols are said to ensure “aliveness”—that the entity proving its identity is
active at the time the protocol is executed; we describe them in more detail in
the next section.

We prove that an identification scheme based on the one in Ref. [6] is secure
against a computationally-unbounded adversary (only restricted by finite cheat-
ing strategies), demonstrating for the first time that unconditionally-secure and
reusable public-key authentication is possible in principle. We regard our result
more as a proof of concept than a (potentially) practical scheme. Still, we are
confident that an extension of the techniques used here may lead to more efficient
protocols.

We now proceed with a description of the protocol (Sect. 2) and the security
proof (Sect. 3).

2 Identification Protocol

In the following, Alice and Bob are always assumed to be honest players and
Eve is always assumed to be the adversary. Suppose Alice generates a private
key and authentically distributes copies of the corresponding public key to any
potential users of the scheme, including Bob.

Here is a description (adapted from Sect. 4.7.5.1 in Ref. [7]) of how a secure
public-key identification scheme works. When Alice wants to identify herself to
Bob (i.e. prove that it is she with whom he is communicating), she invokes
the identification protocol by first telling Bob that she is Alice, so that Bob
knows he should use the public key corresponding to Alice. The ensuing protocol
has the property that the prover Alice can convince the verifier Bob (except,
possibly, with negligible probability) that she is indeed Alice, but an adversary
Eve cannot fool Bob (except with negligible probability) into thinking that she
is Alice, even after having listened in on the protocol between Alice and Bob
or having participated as a (devious) verifier in the protocol with Alice several
times. Public-key identification schemes are used in smart-card systems (e.g.,
inside an automated teller machine (ATM) for access to a bank account, or
beside a doorway for access to a building); the smart card “proves” its identity
to the card reader.2

2 Note that it is not a user’s personal identification number (PIN) that functions as
the prover’s private key; the PIN only serves to authenticate the user to the smart
card (not the smart card to the card reader).
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Note that no identification protocol is secure against an attack where Eve
concurrently acts as a verifier with Alice and as a prover with Bob (but note also
that, in such a case, the “aliveness” property is still guaranteed). Note also that,
by our definition of “reusable,” an identification scheme is considered reusable
if Alice can prove her identity many times using the same key-values but the
verifier needs a fresh copy of the public key for each instance of the protocol.

Note also that public-key identification can be trivially achieved via a digital
signature scheme (Alice signs a random message presented by Bob), but we do
not know of an unconditionally-secure and reusable digital signature scheme.3

Similarly, public-key identification can be achieved with a public-key encryp-
tion scheme (Bob sends an encrypted random challenge to Alice, who returns
it decrypted), but we do not know of an unconditionally-secure and reusable
public-key encryption scheme (that uses pure-state public keys; though, see Ref.
[9] for a promising candidate).

2.1 Protocol Specification

The identification protocol takes the form of a typical “challenge-response” inter-
active proof system, consisting of a kernel (or subprotocol) that is repeated sev-
eral times in order to amplify the security, i.e., reduce the probability that Eve
can break the protocol. The following protocol is a simplification of the original
protocol from Ref. [6] (but our security proof applies to both protocols, with
only minor adjustments). We assume all quantum channels are perfect.

Parameters

– The security parameter s ∈ Z+

– � equals the number of kernel iterations.
– � The probability that Eve can break the protocol is exponentially small

in s.
– The reusability parameter r ∈ Z+

– � equals the maximum number of copies of the quantum public key in
circulation and

– � equals the maximum number of times the protocol may be executed
by Alice, before she needs to pick a new private key.

Keys

– The private key is

(x1, x2, . . . , xs), (1)

where Alice chooses each xj , j = 1, 2, . . . , s, independently and uniformly
randomly from {1, 2, . . . , 2r + 1}.

– � The value xj is used only in the jth kernel-iteration.
3 Pseudo-signature schemes, such as the one in Ref. [8], are information-theoretically

secure but assume broadcast channels.
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– One copy of the public key is an s-partite system in the state

⊗s
j=1|ψxj

〉, (2)

where (omitting normalization factors)

|ψxj
〉 := |0〉 + e2πixj/(2r+1)|1〉. (3)

– � Alice authentically distributes (e.g. via trusted courier) at most r copies
of the public key.

– � The jth subsystem of the public key (which is in the state |ψxj
〉) is

only used in the jth kernel-iteration.

Actions

– The kernel K(x) of the protocol is the following three steps, where we use the
shorthand

φx := 2πx/(r + 1), (4)

and where we have dropped the subscript “j” from “xj”:
– (1) Bob secretly chooses a uniformly random bit b and transforms the

state of his authentic copy of |ψx〉 into |0〉+(−1)beiφx |1〉. Bob sends this
qubit to Alice.

– (2) Alice performs the phase shift |1〉 �→ e−iφx |1〉 on the received qubit
and then measures the qubit in the basis {|0〉±|1〉} (in order to determine
Bob’s secret b above). If Alice gets the outcome corresponding to “+”,
she sends 0 to Bob; otherwise, Alice sends 1.

– (3) Bob receives Alice’s bit as b′ and tests whether b′ equals b.
– When Alice wants to identify herself to Bob, they take the following actions:

– (i) Alice checks that she has not yet engaged in the protocol r times
before with the current value of the private key; if she has, she aborts
(and refreshes the private and public keys).

– (ii) Alice sends Bob her purported identity (“Alice”), so that Bob may
retrieve the public keys corresponding to Alice.

– (iii) The kernel K(x) is repeated s times, for x = x1, x2, . . . , xs. Bob
“accepts” if he found that b′ equaled b in all the kernel iterations; oth-
erwise, Bob “rejects”.

2.2 Completeness of the Protocol

It is clear that the protocol is correct for honest players: Bob always “accepts”
when Alice is the prover. In the Appendix (“Sect. 3”), we prove that the protocol
is also secure against any adversary (only restricted by finite cheating strategies):
given r and ε > 0, there exists a value of s = s(r, ε) such that Bob “accepts”
with probability at most ε when Eve is the prover.
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3 Security

Let us clearly define what Eve is allowed to do in our attack model. Eve can

– passively monitor Alice’s and Bob’s interactions (which means that Eve
can read the classical bits sent by Alice, and read the bit that indicates
whether Bob “accepts” or “rejects”), and

– participate as the verifier in one or more complete instances of the protocol,
and

– participate as the prover, impersonating Alice, in one or more complete instan-
ces of the protocol.

Eve is assumed not to be able to actively interfere with Alice’s and Bob’s
communications during the protocol, as this would allow Eve to concurrently
act as verifier with Alice and as prover with Bob (thus trivially breaking any
such scheme4).

Evidently, Eve’s passive monitoring only gives her independent and random
bits (and the bit corresponding to “accept”), thus giving her no useful informa-
tion (in that she may as well generate random bits herself). So, we can ignore
the effects of her passive monitoring.

With regard to Eve acting as verifier, we will give Eve potentially more
power by assuming that Alice, instead of performing both the phase shift and
the measurement in Step 2 of the kernel K(x), only performs the phase shift
(Eve could perform Alice’s measurement herself, if she desired). Furthermore,
we will assume that the phase shift Alice performs is

uφx
=

[
1 0
0 eiφx

]
. (5)

Even though Alice actually performs the inverse phase shift u−φx
, note that the

two phase shifts are equivalent in the sense that Zuφx
Z equals u−φx

up to global
phase, where

Z =
[
1 0
0 −1

]
. (6)

Thus the protocol is unchanged had we assumed that Alice, instead of performing
u−φx

in Step 2 of the kernel K(x), performs Zuφx
Z. Since Eve can perform

4 For password-based identification in a symmetric-key model, as in Ref. [10], where
both Alice and Bob know something that Eve does not (i.e. the password), one
can define a nontrivial “man-in-the-middle” attack, where Eve’s goal is to learn the
password in order to impersonate Alice in a later instance of the protocol. However,
in public-key identification, Eve’s goal of learning the private key may, without loss of
generality, be accomplished by participating as a dishonest verifier and by obtaining
copies of the public key, since Bob does not perform any action that Eve cannot
perform herself given a copy of the public key.
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Z gates on her qubit immediately before and after she gives it to Alice, our
assumption indeed gives Eve at least as much power to cheat. Thus, Eve can
effectively extract up to r black boxes for uφx

from Alice (recall Alice only
participates in the protocol r times before refreshing her keys).

We will also give Eve potentially more power by giving her a black box
for uφx

in place of every copy of |ψx〉 that she obtained legitimately. For each
x ∈ {x1, x2 . . . , xs}, let t be the total number of black boxes for uφx

that Eve
has in her possession; that is, for simplicity, and without loss of generality, we
assume she has the same number of black boxes uφx

for each value of x. Note
that t ≤ (2r − 1), since we always assume that at least one copy of the public
key is left for Bob, so that Eve can carry out the protocol with him.

Therefore, to prove security in our setting, it suffices to consider attacks
where Eve first uses her st black boxes to create a reference system in some
(φx1 , φx2 , . . . , φxs

)-dependent state, denoted |ΨR(φx1 , φx2 , . . . , φxs
)〉, and

then she uses this system while she participates as a prover, impersonating Alice,
in one or many instances of the protocol in order to try to cause Bob to “accept”.
We use the following definition of “security”:

Definition 1 (Security). An identification protocol (for honest prover Alice
and honest verifier Bob) is secure with error ε if the probability that Bob “accepts”
when any adversary Eve participates in the protocol as a prover is less than ε.

The only assumption we make on Eve is that her cheating strategy is finite in
the sense that her quantum computations are restricted to a finite-dimensional
complex vector space; the dimension itself, though, is unbounded.

We will assume that Eve has always extracted the r black boxes for uφx
from

Alice (for all x = x1, x2, . . . , xs), and we define t′ to be the number black boxes
that Eve obtained legitimately (via copies of the public key):

t = r + t′. (7)

Note that Eve can make at most (r−t′) attempts at fooling Bob, i.e., causing Bob
to “accept”. Let E(a, b) denote the event that Eve fools Bob on her ath attempt
using b black boxes for uφx

for all x = x1, x2, . . . , xs. Most of the argument,
beginning in Sect. 3.1, is devoted to showing that

Pr[E(1, t)] ≤ (1 − c/(t + 2)2)s, (8)

for some positive constant c defined at the end of Sect. 3. In general, Eve learns
something from one attempt to the next; however, because Eve can simulate her
interaction with Bob at the cost of using one copy of |ψx〉 per simulated iteration
of K(x), we have, for � = 2, 3, . . . , (r − t′),

Pr[E(�, t)] ≤ Pr[E(1, t + � − 1)]. (9)
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Given this, we use the union bound:

Pr[Eve fools Bob at least once, using t black boxes for uφx
,∀x] (10)

≤
r−t′∑
�=1

Pr[E(�, t)] (11)

≤
r−t′∑
�=1

Pr[E(1, t + � − 1] (12)

≤
r−t′∑
�=1

(1 − c/(t + � + 1)2)s (13)

≤ (r − t′)(1 − c/(2r + 1)2)s, (14)

since t + � ≤ 2r. It follows that the probability that Eve can fool Bob at least
once, that is, break the protocol, is

Pbreak ≤ r(1 − c/(2r + 1)2)s, (15)

which, for fixed r, is exponentially small in s. Note that this bound is likely not
tight, since it ultimately assumes that all of Eve’s attempts are equally as pow-
erful. In particular, this bound assumes that Eve’s state |ΨR(φx1 , φx2 , . . . , φxs

)〉
does not degrade with use. A more detailed analysis using results about degra-
dation of quantum reference frames [11] may be possible.

From Eq. (15) follows our main theorem (see Appendix A.3 for the proof):

Theorem 1 (Security of the protocol). For any ε > 0 and any r ∈ Z+,
the identification protocol specified in Sect. 2.1 is secure with error ε according
to Definition 1 if

s > (2r + 1)2 log(r/ε)/c, (16)

for some positive constant c.

The theorem shows how the efficiency of the protocol scales with its reusability:
it suffices to have

s ∈ O(r2 log(r/ε)). (17)

The remainder of the paper establishes the bound in Line (8).

3.1 Sufficiency of Individual Attacks

At each iteration, we may assume Eve performs some measurement, in order to
get an answer to send back to Bob. Generally, Eve can mount a coherent attack,
whereby her actions during iteration j may involve systems that she used or will
use in previous or future iterations as well as systems created using black boxes
for uφxk

for any k—not just for k = j. Since each xj is independently selected
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from the set {1, 2, . . . , 2r + 1}, intuition suggests that Eve’s measurement at
iteration j may be assumed to be independent of her measurement at any other
iteration and in particular does not need to involve any black boxes other than
ones for uφxj

. In other words, it seems plausible that the optimal strategy for
Eve can consist of the “product” of identical optimal strategies for each iteration
individually. This intuition can indeed be shown to be correct by combining a
technique from Ref. [12], for expressing the maximum output probability in a
multiple-round quantum interactive protocol as a semidefinite program, with
a result in Ref. [13], which implies that the semidefinite program satisfies the
product rule that we need; see Appendix A.1 for a proof.

The remainder of Sect. 3 establishes the following proposition:

Proposition 2. The probability that Eve guesses correctly in any particular iter-
ation j, using t black boxes for uφxj

, is at most (1− c/(t+2)2) for some positive
constant c.

Assuming Proposition 2, the result proved in AppendixA.1 implies that the
probability of Eve’s guessing correctly in all s iterations, using t black boxes for
uφx

, for x = x1, x2, . . . , xs, is at most (1 − c/(t + 2)2)s, establishing the bound
in Line (8).

3.2 Equivalence of Discrete and Continuous Private Phases

To help us prove Proposition 2, we now show that, from Bob’s and Eve’s points of
view, Alice’s choosing the private phase angle φx from the discrete set {2πx/(2r+
1) : x = 1, 2, . . . , 2r + 1} is equivalent to her choosing the phase angle from the
continuous interval [0, 2π). We have argued that the only information that Eve
or Bob—or anyone but Alice—has about φx may be assumed to come from
a number of black boxes for uφx

that can be no greater than 2r (there are r
legitimate copies of the public key, and one can extract r more black boxes from
Alice); let this number be d, where 1 ≤ d ≤ 2r.

In order to access the information from the black boxes, they must, in general,
be used in a quantum circuit in order to create some state. Using the d black
boxes, the most general (purified) state that can be made is without loss of
generality of the form

|ψ(φx)〉 =
N−1∑
k=0

⎛
⎝ d∑

j=0

βj,keijφx

⎞
⎠ |ak〉, (18)

where {|ak〉 : k = 0, 1, ..., N − 1} is an orthonormal basis of arbitrary but finite
size (the assumption of finite N comes from our restricting Eve to using only
finite cheating strategies). In general, the numbers N and βj,k may depend on d.
Here we have followed Ref. [14] by noting that each amplitude is a polynomial
in eiφx of degree at most d; this fact follows from an inductive proof just as in
Ref. [15], where the polynomial method is applied to an oracle revealing one of
many Boolean variables.
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Averaging over Alice’s random choices of x, one would describe the previous
state by the density operator

1
2r + 1

2r+1∑
x=1

|ψ(φx)〉〈ψ(φx)|, (19)

since x is chosen uniformly randomly from {1, 2, . . . , 2r+1}. Had φx been chosen
uniformly from {2πx/(2r +1) : x ∈ [0, 2r +1)} = [0, 2π), one would describe the
state by

∫ 2π

0

dφ

2π
|ψ(φ)〉〈ψ(φ)|. (20)

It is straightforward to show5 that the above two density operators are both
equal to

N−1∑
k,k′=0

d∑
j=0

βj,kβ∗
j,k′ |ak〉〈ak′ |. (23)

Thus, without loss of generality, we may drop the subscript “x” on “φx”, write
“φ” for Alice’s private phase angle, and assume she did (somehow) choose φ
uniformly randomly from [0, 2π).6 We are now ready to prove Proposition 2.

3.3 Bound on Relative Phase Shift Estimation

Eve’s task of cheating in one iteration of the kernel may be phrased as follows.
Eve is to decide the difference between the relative phases encoded in two sub-
systems R and S, where S is a given one-qubit system and R is under her control.
The given subsystem S is in the state

|ψS(φ, θ)〉 = |0〉 + ei(φ+θ)|1〉, (24)
5 This requires the following two facts: (1) for any integer a,

1

2π

∫ 2π

0

eiaθdθ =

{
0 if a �= 0 ,
1 otherwise ;

(21)

and (2) for any integer p ≥ 2 and integer a:

1

p

p∑
k=1

e2πiak/p =

{
0 if a is not a multiple of p,
1 otherwise ,

(22)

where the second fact is applied at p = 2r + 1.
6 One way to interpret this result is that even if Alice encodes infinitely many bits into

φ, it is no better than if she encoded �log2(2r+1)� bits. Note that if Eve performs an
optimal phase estimation [16] in order to learn φ and then cheat Bob, she can only
learn at most �log2(2r − 1)� bits of φ (here, we assume Eve has 2r − 1 copies of the
public key, having left Bob one copy), whereas Alice actually encoded �log2(2r +1)�
bits into φ.
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where θ is unknown and uniformly random in {0, π}, and φ is unknown and
uniformly random in [0, 2π]. Eve can make the state |ψR(φ)〉 of subsystem R by
using arbitrary operations interleaved with at most t black boxes for the one-
qubit gate uφ. Note that the problem is nontrivial because φ is unknown and
uniformly random and the qubit S is given to Eve after she has used all her black
boxes. We seek the optimal success probability for Eve to guess θ correctly.

Eve’s estimation problem can be treated within the framework of quantum
estimation of group transformations [17]. As such, we regard her problem as
finding the optimal measurement (probability) to correctly distinguish the states
in the two-element orbit

{VθρV †
θ : θ ∈ {0, π}}, (25)

where Vθ = IR ⊗ (|0〉〈0| + eiθ|1〉〈1|) and

ρ =
∫

dφ

2π
|ψR(φ)〉〈ψR(φ)| ⊗ |ψS(φ, 0)〉〈ψS(φ, 0)|. (26)

The probabilities of her estimation procedure can be assumed to be generated
by a POVM {E0, Eπ}. In general, it is known how to solve for the POVM that
performs optimally on average when the unitarily-generated orbit consists of
pure states, but not when the orbit is generated from a mixed state (ρ, in our
case). Thus, we now effectively reduce the problem to several instances of an
estimation problem where the orbit is pure.

Indeed, suppose that |ψR(φ)〉 were a state on q qubits that satisfied the
property

|ψR(φ)〉〈ψR(φ)| = (uφ)⊗q|ψR(0)〉〈ψR(0)|(u†
φ)⊗q (27)

for all φ ∈ [0, 2π]. Then, letting Uφ ≡ (uφ)⊗(q+1) and |ψRS(φ, θ)〉 ≡ |ψR(φ)〉|ψS

(φ, θ)〉, we would have that

ρ =
∫

dφ

2π
Uφ|ψRS(0, 0)〉〈ψRS(0, 0)|U†

φ (28)

=
∑
w

Pw|ψRS(0, 0)〉〈ψRS(0, 0)|Pw (29)

=
∑
w

PwρPw, (30)

where Pw is the projection onto the subspace of Hamming weight w = 0, 1, . . . ,
q + 1, and we used the formulas Uφ =

∑
w Pweiwφ and δw,0 =

∫
(dφ/2π)eiwφ. In

other words, the state ρ would be block diagonal with respect to the direct-sum
decomposition of the total state space of R into subspaces of constant Hamming
weight w. Then we would have that the probability that Eve guesses θ = θ′ given
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that θ = θ′′ is

Pr[Eve guesses θ = θ′|θ = θ′′] = Tr
[
Eθ′

(
Vθ′′ρV †

θ′′

)]
(31)

= Tr

[
Eθ′Vθ′′

∑
w

PwρPwV †
θ′′

]
(32)

= Tr

[(⊕
w

Ew,θ′

)(
Vθ′′ρV †

θ′′

)]
, (33)

where Ew,θ′ ≡ PwEθ′Pw, and we used cyclicity of trace and the fact that Vθ

and Pw commute. Thus, the elements of Eve’s POVM {E0, Eπ} would without
loss of generality have the same block diagonal structure as ρ. In principle, this
would allow Eve to measure first (just) the Hamming weight of ρ in order to
find w, and then deal with the group transformation estimation problem with
respect to the pure orbit

Ow ≡ {Vθ|Ψw〉 : θ ∈ {0, π}}, (34)

where |Ψw〉 is the state such that |Ψw〉 ∝ Pw|ψRS(0, 0)〉; we note that |Ψw〉
is independent of φ (and θ). The following lemma shows that, without loss of
generality, we may assume that the situation just described is indeed the case:

Lemma 1. Without loss of generality, Eve’s state |ψR(φ)〉, which she prepares
with at most t black boxes for uφ, may be assumed to be on q = (2t + 1) qubits
and satisfy

|ψR(φ)〉〈ψR(φ)| = (uφ)⊗q|ψR(0)〉〈ψR(0)|(u†
φ)⊗q (35)

for all φ ∈ [0, 2π] .

Proof. As noted in the previous section, using the t black boxes, the most general
(purified) state of R that Eve can make is without loss of generality

N−1∑
k=0

⎛
⎝ t∑

j=0

βj,keijφ

⎞
⎠ |ak〉R, (36)

where, again, N is a priori unknown but finite (we use subscripts on the kets in
this proof to indicate the physical systems). Note that we can rewrite the state
in Eq. (36) by changing the order of the summations as

t∑
j=0

βje
ijφ|g̃j〉R, (37)

where we have defined the numbers βj and the not-necessarily-orthogonal set of
unit vectors {|g̃j〉 : j = 0, 1, ..., t} such that

βj |g̃j〉R =
N−1∑
k=0

βj,k|ak〉R. (38)
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Using the Gram-Schmidt orthonormalization procedure on {|g̃j〉}j to get the
orthonormal set {|gj〉}j , we can write

|g̃j〉R =
t∑

h=0

γj,h|gh〉R. (39)

Introduce a new system R′ consisting entirely of qubits and define U to be
any unitary map acting on R ⊗ R′ that takes |0〉R|ch〉R′ �→ |gh〉R|0〉R′ , where
{|ch〉R′}h=0,1,...,t is an orthonormal set of size t + 1 with elements that are com-
putational basis states whose labels have constant Hamming weight; note that
R′ needs only O(log(t + 1)) qubits whereas R is of unknown (but finite) size
(however, following this proof, we will construct R′ using t + 1 qubits, as this
makes things simpler). We first claim that, without loss of generality,

|ψR(φ)〉 =
∑
j,h

βjγj,heijφ|St
j〉A|ch〉R′ , (40)

where A is a t-qubit ancilla, and |St
j〉A is the symmetric state of weight j. To

see this, note that Eve’s optimal measurement can include the following pre-
processing operations (in sequence), so that she recovers the most general state
in Eq. (36) (and Eq. (37)) on R but for a different random value of φ:

– add an ancillary register R in state |0〉R in between the two registers A and
R′ and perform U on R ⊗ R′ to get (after throwing out system R′)

∑
j

βj

∑
h

γj,heijφ|St
j〉A|gh〉R =

∑
j

βje
ijφ|St

j〉A|g̃j〉R (41)

– on A, do the (t + 1)-dimensional inverse quantum Fourier transform in the
symmetric basis on A, i.e. mapping

|St
j〉A �→ 1√

t + 1

∑
y

e−i2πyj/(t+1)|St
y〉A, (42)

to get
∑

j

∑
y

βje
ij(φ−2πy/(t+1))|St

y〉A|g̃j〉R (43)

and measure the Hamming weight of A to get result y0, which leaves the state
(after throwing out system A)

∑
j

βje
ij(φ−2πy0/(t+1))|g̃j〉R (44)

– correct the relative phase on qubit S by 2πy0/(t + 1).
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Doing these operations does not change the estimation problem, since φ is
uniformly random anyway; these operations just change the unknown φ to
φ′ = φ − 2πy0/(t + 1).

Finally, note that Eq. (40) implies that |ψR(φ)〉 can be made from |ψR(0)〉
with at most t black boxes for uφ, by applying (uφ)⊗t on the t qubits of system
A, and note that |ψR(φ)〉 satisfies Eq. (27), since the states |ch〉 are of constant
Hamming weight.

Remark 1. (Quantum Fourier transform as analytical tool) Note that Eve’s opti-
mal strategy is not necessarily to measure R to get an estimate φ′ of φ first, then
apply u−φ′ on S, and then measure S to estimate θ. However, the operation
that is optimal for estimating φ (see Ref. [14]), i.e. the inverse quantum Fourier
transform applied above, is still useful as an analytical tool in order to derive (a
convenient form of) an optimal state for her estimation of θ.

Thus, by Lemma 1, we assume Eq. (40) holds, which allows us to derive the
following proposition. For convenience, we define

αj,h ≡ βjγj,h. (45)

Proposition 3. The elements of the POVM {E0, Eπ} are without loss of gen-
erality defined as

E0 = |Ξ0〉|0〉〈Ξ0|〈0| +
t+1∑
w=2

|w,+〉〈w,+| (46)

Eπ =
t+1∑
w=2

|w,−〉〈w,−| + |Ξt〉|1〉〈Ξt|〈1|, (47)

where

|w,±〉 ≡ 1√
2
(|Ξw−1〉|0〉 ± |Ξw−2〉|1〉), (48)

and |Ξw−1〉 and |Ξw−2〉 are states such that, for j = 0, 1, . . . , t,

|Ξj〉 ∝
∑

h

αj,h√
2

|St
j〉|ch〉. (49)

The proof of Proposition 3 is similar to the argument given in Ref. [11] and is
given in Appendix A.2 . The total success probability of Eve’s strategy can now
be computed as ∑

θ′∈{0,π}
Pr[Eve guesses θ = θ′|θ = θ′]Pr[θ = θ′] (50)

=
1
2

∑
θ′∈{0,π}

Tr(Eθ′Vθ′ρV †
θ′) (51)

=
1
2

∑
θ′∈{0,π}

Tr(Eθ′Vθ′ |ψRS(0, 0)〉〈ψRS(0, 0)|V †
θ′) (52)

=
1
2

+
1
4
〈ψR(0)|Mt|ψR(0)〉, (53)



Unconditionally-Secure and Reusable Public-Key Authentication 135

where

Mt ≡
t−1∑
j=0

|Ξj+1〉〈Ξj | + |Ξj〉〈Ξj+1|. (54)

As a last task, we now seek the value of |ψR(0)〉—i.e. the values of αj,h—such
that 〈ψR(0)|Mt|ψR(0)〉 is maximal. The proof of the following proposition is in
Appendix A.4:

Proposition 4. The state |ψR(0)〉 ∝ ∑t
j=0 sin

[
(j+1)π

t+2

]
|Ξj〉 achieves the maxi-

mum value in Eq. (53).

Thus (as in Ref. [11]—see Appendix A.4), we get a maximal success probability of

1
2

+
1
2

cos(π/(t + 2)) (55)

≤ 1
2

+
1
2

(
1 − (π/(t + 2))2

2!
+

(π/(t + 2))4

4!

)
(56)

= 1 − π2

4
1

(t + 2)2
+

π4

48
1

(t + 2)4
(57)

≤ 1 −
(

π2

4
− π4

48

)
1

(t + 2)2
(58)

= 1 − c/(t + 2)2, (59)

for the constant c = (π2/4 − π4/48) .= 0.438 and all t ≥ 1. This completes the
proof of Proposition 2 and thus the proof of Theorem 1.

A Appendices

A.1 Proof of Sufficiency of Individual Attacks

Consider the following non-cryptographic, (t + 1)-round interactive protocol (or
game) between Evelyn and Bobby (neither of whom is considered adversarial,
hence we distinguish these two players from Eve and Bob), denoted L = L(Φ),
where

Φ = (Φ1, Φ2, . . . , Φt+1) (60)

and the Φi are quantum operations (super-operators) that specify Evelyn’s
actions in the game (the quantities r and t are as defined previously):

– (1′) Bobby chooses a uniformly random x ∈ {1, 2, . . . , 2r + 1} and sends a
qubit in the state |0〉 to Evelyn (who can ignore this qubit—it carries no
significant information).

– (2′) For i = 1, 2, . . . , t {
� Evelyn performs the quantum operation Φi on her system, and then
sends one qubit to Bobby.
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� Bobby performs the unitary gate uφx
on the qubit received from Evelyn

and sends it back to Evelyn.}
– (3′) Bobby chooses a uniformly random b ∈ {0, 1} and sends a qubit in the

state |0〉 + (−1)beiφx |1〉 to Evelyn.
– (4′) Evelyn performs the quantum operation Φt+1 on her system, and then

sends one qubit to Bobby.
– (5′) Bobby measures the received qubit in the computational basis {|0〉, |1〉},

getting outcome 0 or 1 (corresponding to |0〉 and |1〉 respectively); he tests
whether this outcome equals b.

The following proposition is straightforward to prove:

Proposition 5. The probability that Eve, using t black boxes uφxj
, causes Bob’s

equality test to pass in a particular iteration j of the protocol in Sect. 2.1 is at
most

α: = max
Φ

Pr[Bobby′s equality test passes in L(Φ)], (61)

where Φ ranges over all (t + 1)-tuples of admissible quantum operations that
Evelyn can apply in the game L.

Now consider the parallel s-fold repetition of L, which we denote L‖s =
L‖s(Φ′), where now Φ′ denotes Evelyn’s quantum operation in L‖s. The
following proposition is also straightforward to prove:

Proposition 6. The probability that Eve fools Bob on the first attempt using t
black boxes per x-value in the protocol in Sect. 2.1 is at most

α′: = max
Φ′

Pr[all of Bobby′s equality tests pass in L‖s(Φ′)], (62)

where Φ′ ranges over all (t + 1)-tuples of admissible quantum operations that
Evelyn can apply in the game L‖s.

Therefore, in order to prove that it is sufficient to consider individual (as
opposed to coherent) attacks by Eve, it suffices to show that α′ = αs.

In Ref. [12], the above game is viewed as an interaction between a (t +
1)-round (non-measuring) strategy and a (compatible) measuring co-strategy ;
Evelyn’s operations Φ form the non-measuring strategy and Bobby’s actions
form the measuring co-strategy (technically, Steps (1′), (3′), and (4′) would have
to be slightly modified in order to fit the co-strategy formalism: in Steps (1′)
and (3′), Bobby should make his random choices in superposition and use the
quantum registers storing these choices as a control register whenever requiring
these random values subsequently; in Step (4′), Bobby should only make one
final measurement whose outcome indicates whether the equality test passes; we
assume that these modifications have been made).

For all i, let Xi and Yi be the input and output spaces, respectively, of
Evelyn’s quantum operation Φi in L, i.e. Φi : L (Xi) → L (Yi), where L (Xi) is the
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space of all linear operators from the complex Euclidean space Xi to itself (and
likewise for L (Yi)). Let Pos (Y ⊗ X ) denote the set of all positive semidefinite
operators in L (Y ⊗ X ), where Y = Y1 ⊗ Y2 ⊗ · · · ⊗ Yt+1 (and similarly for X ).
For any Euclidean space Z, let IZ denote the identity operator Z.

Reference [12] shows that Evelyn’s strategy can be equivalently expressed by
a single positive semidefinite operator in Pos (Y ⊗ X ) while Bobby’s measuring
co-strategy can be expressed by the collection {B0, B1} of two positive semi-
definite operators in Pos (Y ⊗ X ), where, without loss of generality, we assume
that B0 corresponds to the measurement outcome indicating that Bobby’s test
for equality in Step (5′) passes. We briefly note that these positive semidefi-
nite operators are the Choi-Jamio�lkowski representations of quantum operations
corresponding to the players’ actions. A more general version of the following
theorem is proved in Ref. [12]:

Theorem 7 (Interaction output probabilities [12]). For any non-measuring
strategy X ∈ Pos (Y ⊗ X ) of Evelyn, the probability that Bobby’s equality test
passes is Tr(B†

0X).

Using Theorem 7, it is shown, in the proof of Theorem 3.3 of Ref. [12], that the
maximal probability with which Bobby’s measuring co-strategy can be forced to
output the outcome corresponding to B0 by some (compatible) strategy of Eve-
lyn’s can be expressed as a semidefinite (optimization) program (see Ref. [18] for
a relevant review of semidefinite programming). Thus α and α′ can be expressed,
respectively, as solutions to the following semidefinite programs πα and πα′ :

πα πα′

maximize: Tr(B†
0X) maximize: Tr((B⊗s

0 )†X)
subject to: TrY(X) = IX , subject to: TrY′(X) = IX ′ ,

X ∈ Pos (Y ⊗ X ) X ∈ Pos (Y ′ ⊗ X ′) ,

where, for all i, X ′
i = X ⊗s

i and X ′ = X ′
1⊗X ′

2⊗· · ·⊗X ′
t+1 (and similarly for Y ′

i and
Y ′). We note that the first constraint in each semidefinite program above codi-
fies the property of trace-preservation for the quantum operation corresponding
to X, while the second constraint codifies the property of complete positivity
(see Ref. [18] for details). Furthermore, it is shown in Ref. [12] that such semi-
definite programs (arising from interactions between strategies and compatible
co-strategies) satisfy the condition of strong duality, which means that the solu-
tion to each semidefinite program above coincides with that of its dual.

In Ref. [13], the following theorem is proven:

Theorem 8 (Condition for product rule for semidefinite programs [13]).
Suppose that the following two semidefinite programs π1 and π2 satisfy strong dual-
ity:

π1 π2

maximize: Tr(J†
1W ) maximize: Tr(J†

2W )
subject to: Ψ1(W ) = C1, subject to: Ψ2(W ) = C2,

W ∈ Pos (W1) W ∈ Pos (W2) ,
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where Ψ1 : L (W1) → L (Z1) and Ψ2 : L (W2) → L (Z2), for complex Euclidean
spacesW1,Z1,W2,Z2, and J1 ∈ L (W1) and J2 ∈ L (W2) are Hermitian. Letα(π1)
and α(π2) denote the semidefinite programs’ solutions. If J1 and
J2 are positive semidefinite, then the solution to the following semidefinite pro-
gram, denoted π1 ⊗ π2, is α(π1 ⊗ π2) = α(π1)α(π2):

π1 ⊗ π2

maximize: Tr((J1 ⊗ J2)†W )
subject to: Ψ1 ⊗ Ψ2(W ) = C1 ⊗ C2,

W ∈ Pos (W1 ⊗ W2) .

Since B0 is positive semidefinite and πα′ = π⊗s
α (using the associativity of

⊗), Theorem 8 can be applied (s − 1) times in order to prove that α′ = αs as
required. See Ref. [12] for a similar approach, based on ideas in Ref. [19]. The
idea of expressing the acceptance probability of a quantum interactive proof
system as a semidefinite program first appeared in Ref. [20].

Note that this argument, combined with the arguments in the main body of
the paper, shows that both the serial and parallel versions of our identification
protocol are secure.

A.2 Proof of Proposition 3

Two facts hold without loss of generality:

– the POVMs {Ew,0, Ew,π}, for all w, may be assumed to be covariant, i.e.
Ew,π = VπEw,0V

†
π (to see this, note that any not-necessarily-covariant POVM

{Fw,0, Fw,π} gives the same average probability of successfully guessing θ,
given w, as the covariant POVM {Ew,0, Ew,π} defined by Ew,0 = (Fw,0 +
V †

π Fw,πVπ)/2);
– each Ew,0 has support only on sp(Ow) and thus Ew,0 + Ew,π = Isp(Ow),

where Isp(Ow) is the identity operator on sp(Ow).

To compute a basis of sp(Ow), we now further define the system R′ in the proof
of Lemma 1 to consist of exactly t + 1 qubits and the states |ch〉, h = 0, 1, . . . , t,
to be all those computational basis states whose labels have Hamming weight 1
(thus q = 2t + 1, which is larger than necessary, but simplifies the structure of
the POVMs). The total subspace

S ≡ sp
({|St

j〉}j=0,...,t ⊗ {|ch〉}h=0,1,...,t ⊗ {|0〉, |1〉}) (63)

supporting |ψRS(φ, θ)〉 breaks up into mutually orthogonal subspaces Sw of
weight w, i.e., spanned by computational basis states whose labels have Ham-
ming weight w:

S1 = sp
(|St

0〉 ⊗ {|ch〉}h ⊗ |0〉) (64)

Sk = sp
(|St

k−1〉 ⊗ {|ch〉}h ⊗ |0〉, |St
k−2〉 ⊗ {|ch〉}h ⊗ |1〉) , (65)

St+2 = sp
(|St

t〉 ⊗ {|ch〉}h ⊗ |1〉) , (66)

for k = 2, 3, . . . , t + 1. Thus, for each w, we will do the following:
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– write Pw in the basis in which Sw is expressed in Eqs. (64), (65), (66),
– derive an expression for Pw|ψRS(0, 0)〉 (which is proportional to |Ψw〉) in order

to find a basis for sp(Ow) = sp{|Ψw〉, Vπ|Ψw〉} (which fully supports Ew,0),
and

– derive the form of Ew,0 and thus, by covariance, the form of the POVM
{Ew,0, Ew,π} in each subspace Sw.

Recalling Eq. (40), it will be convenient to let αj,h ≡ bjgj,h and so

|ψR(0)〉 =
∑
j,h

αj,h|St
j〉|ch〉. (67)

w=1:
Writing

P1|ψRS(0, 0)〉 (68)

=

(∑
h

|St
0〉〈St

0| ⊗ |ch〉〈ch| ⊗ |0〉〈0|
)

|ψR(0)〉(|0〉 + |1〉)/
√

2 (69)

= |St
0〉

(∑
h

[(〈St
0|〈ch||ψR(0)〉)/

√
2]|ch〉

)
|0〉 (70)

= |St
0〉

(∑
h

[α0,h/
√

2]|ch〉
)

|0〉, (71)

we see that Vπ|Ψ1〉 = |Ψ1〉 so that E1,0 = E1,π = |Ξ0〉|0〉〈Ξ0|〈0|, where |Ξ0〉 is a
state such that

|Ξ0〉 ∝ |St
0〉

∑
h

[α0,h/
√

2]|ch〉. (72)

We note that getting the outcome corresponding to this POVM element does
not give any information about θ; we arbitrarily assign a guess of “θ = 0” to this
outcome, without affecting optimality (since θ is a priori uniformly distributed).
w ∈ {2, 3, . . . , t + 1} :

Similarly, we can write

Pw|ψRS(0, 0)〉 (73)

= |St
w−1〉

(∑
h

[αw−1,h/
√

2]|ch〉
)

|0〉+ (74)

|St
w−2〉

(∑
h

[αw−2,h/
√

2]|ch〉
)

|1〉. (75)

Chiribella et al. [17] show that Ew,0 may be assumed to have rank 1 without
loss of generality. Thus Ew,0 may be written |ηw〉〈ηw|, where

|ηw〉 = a|Ξw−1〉|0〉 + b|Ξw−2〉|1〉, (76)
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for some complex coefficients a and b, such that |a|2 + |b|2 = 1, where |Ξw−1〉
and |Ξw−2〉 are states such that, for j = 0, 1, . . . , t,

|Ξj〉 ∝
∑

h

αj,h√
2

|St
j〉|ch〉. (77)

We have (using covariance to get Ew,π)

Ew,0 + Ew,π (78)

= 2(|a|2|Ξw−1〉|0〉〈Ξw−1|〈0| + |b|2|Ξw−2〉|1〉〈Ξw−2|〈1|). (79)

But

Ew,0 + Ew,π (80)
= Isp(Ow) (81)
= |Ξw−1〉|0〉〈Ξw−1|〈0| + |Ξw−2〉|1〉〈Ξw−2|〈1|. (82)

Equating the two expressions implies that

|ηw〉 =
1√
2
(|Ξw−1〉|0〉 + eiϕw |Ξw−2〉|1〉), (83)

for some phase ϕw. But we must have ϕw = 0 since Ew,0 corresponds to the
guess “θ = 0”.
w = t + 2 :

Similar to the case w = 1 and using the definition from Eq. (77), we have
Et+2,0 = Et+2,π = |Ξt〉|1〉〈Ξt|〈1|. We assign the guess “θ = π” to getting the
outcome corresponding to this POVM element.

To summarize, the elements of the overall POVM {E0, Eπ} describing the
measuring-and-guessing strategy may be expressed

E0 = |Ξ0〉|0〉〈Ξ0|〈0| +
t+1∑
w=2

|w,+〉〈w,+| (84)

Eπ =
t+1∑
w=2

|w,−〉〈w,−| + |Ξt〉|1〉〈Ξt|〈1|, (85)

where

|w,±〉 ≡ 1√
2
(|Ξw−1〉|0〉 ± |Ξw−2〉|1〉). (86)

A.3 Proof of Theorem 1, Assuming Eq. (15)

For security with error ε, we require

r(1 − c/(2r + 1)2)s < ε, (87)

which, by taking the logarithm of both sides, is equivalent to

s > log(ε/r)/ log(1 − c/(2r + 1)2). (88)
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Using the series expansion log(1 − x) = −(x + x2/2 + x3/3 + · · · ), the right-
hand side of Eq. (88) is upper-bounded by

(2r + 1)2 log(r/ε)/c, (89)

from which the theorem follows.

A.4 Proof of Proposition 4

This maximization problem is very similar to that in Ref. [11], where it was
required to maximize 〈ζ|M ′

t |ζ〉 over all states |ζ〉 ∈ sp{|j〉 : j = 0, 1, . . . , t} for

M ′
t =

t−1∑
j=0

|j + 1〉〈j| + |j〉〈j + 1|. (90)

In fact, in light of Eq. (40), the phase estimation problem in Ref. [11] may be
viewed as the same as the one we consider, but where Eve does not have access to
the register R′. (Indeed, our optimal success probability cannot be less than that
in Ref. [11], since at the very least Eve can forgo the use of the ancillary register
R′.) Finally, below, we show that our optimal success probability is exactly equal
to that obtained in Ref. [11].

Let α	
j,h denote the optimal values for our maximization problem, and let

M	
t , |ψR(0)	〉, and |Ξ	

j 〉 denote the values of Mt, |ψR(0)〉, and |Ξj〉 at those
optimal values. Note that {|Ξj〉 : j = 0, 1, . . . , t} is orthonormal for all values
of αj,h, thus {|Ξ	

j 〉 : j = 0, 1, . . . , t} is orthonormal. Consider now optimizing
〈ψ|M	

t |ψ〉 over all unit vectors |ψ〉 ∈ sp{|Ξ	
j 〉 : j = 0, 1, . . . , t} for fixed M	

t ;
denote the optimal |ψ〉 as |ψ	〉. It must be that

〈ψ	|M	
t |ψ	〉 ≥ 〈ψR(0)	|M	

t |ψR(0)	〉, (91)

since |ψR(0)	〉 ∈ sp{|Ξ	
j 〉 : j = 0, 1, . . . , t} by inspecting Eqs. (67) and (77). Now

note that the coefficients of |ψ	〉 with respect to the basis {|Ξ	
j 〉 : j = 0, 1, . . . , t}

must be precisely those coefficients of the optimal |ζ〉 with respect to the standard
orthonormal basis {|j〉 : j = 0, 1, . . . , t} found in Ref. [11]; otherwise, substituting
the coefficients of |ψ	〉 would give a higher maximum than that in Ref. [11]. (The
argument works because, in both cases, the orthonormal basis is fixed for the
optimization.) Therefore, we have, as in Ref. [11],

|ψ	〉 ∝
t∑

j=0

sin
[
(j + 1)π

t + 2

]
|Ξj〉. (92)
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