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Abstract. The formula-evaluation problem is defined recursively. A for-
mula’s evaluation is the evaluation of a gate, the inputs of which are
themselves independent formulas. Despite this pure recursive structure,
the problem is combinatorially difficult for classical computers.

A quantum algorithm is given to evaluate formulas over any finite
boolean gate set. Provided that the complexities of the input subformu-
las to any gate differ by at most a constant factor, the algorithm has
optimal query complexity. After efficient preprocessing, it is nearly time
optimal. The algorithm is derived using the span program framework. It
corresponds to the composition of the individual span programs for each
gate in the formula. Thus the algorithm’s structure reflects the formula’s
recursive structure.

1 Introduction

A k-bit gate is a function f : {0, 1}k → {0, 1}. A formula ϕ over a set of gates S
is a rooted tree in which each node with k children is associated to a k-bit gate
from S, for k = 1, 2, . . .. Any such tree with n leaves naturally defines a function
ϕ : {0, 1}n → {0, 1}, by placing the input bits on the leaves in a fixed order and
evaluating the gates recursively toward the root. Such functions are often called
read-once formulas, as each input bit is associated to one leaf only.

The formula-evaluation problem is to evaluate a formula ϕ over S on an input
x ∈ {0, 1}n. The formula is given, but the input string x must be queried one bit
at a time. How many queries to x are needed to compute ϕ(x)? We would like
to understand this complexity as a function of S and asymptotic properties of
ϕ. Roughly, larger gate sets allow ϕ to have less structure, which increases the
complexity of evaluating ϕ. Another important factor is often the balancedness
of the tree ϕ. Unbalanced formulas often seem to be more difficult to evaluate.

For applications, the most important gate set consists of all AND and OR
gates. Formulas over this set are known as AND-OR formulas. Evaluating such
a formula solves the decision version of a MIN-MAX tree, also known as a two-
player game tree. Unfortunately, the complexity of evaluating formulas, even over
this limited gate set, is unknown, although important special cases have been
solved. The problem over much larger gate sets appears to be combinatorially
intractable. For some formulas, it is known that “non-directional” algorithms
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that do not work recursively on the structure of the formula perform better
than any recursive procedure.

In this article, we show that the formula-evaluation problem becomes dra-
matically simpler when we allow the algorithm to be a bounded-error quantum
algorithm, and allow it coherent query access to the input string x. Fix S to
be any finite set of gates. We give an optimal quantum algorithm for evaluating
“almost-balanced” formulas over S. The balance condition states that the com-
plexities of the input subformulas to any gate differ by at most a constant factor,
where complexity is measured by the general adversary bound Adv±. In gen-
eral, Adv± is the value of an exponentially large semi-definite program (SDP).
For a formula ϕ with constant-size gates, though, Adv±(ϕ) can be computed
efficiently by solving constant-size SDPs for each gate.

To place this work in context, some classical and quantum results for eval-
uating formulas are summarized in Table 1. The stated upper bounds are on
query complexity and not time complexity. However, for the ORn and balanced
AND2-OR2 formulas, the quantum algorithms’ running times are only slower
by a poly-logarithmic factor. For the other formulas, the quantum algorithms’
running times are slower by a poly-logarithmic factor provided that:

1. A polynomial-time classical preprocessing step, outputting a string s(ϕ), is
not charged for.

2. The algorithms are allowed unit-cost coherent access to s(ϕ).

Our algorithm is based on the framework relating span programs and quan-
tum algorithms from [Rei09]. Previous work has used span programs to develop
quantum algorithms for evaluating formulas [RŠ08]. Using this and the observa-
tion that the optimal span program witness size for a boolean function f equals
the general adversary bound Adv±(f), Ref. [Rei09] gives an optimal quantum
algorithm for evaluating “adversary-balanced” formulas over an arbitrary finite
gate set. The balance condition is that each gate’s input subformulas have equal
general adversary bounds.

In order to relax this strict balance requirement, we must maintain better
control in the recursive analysis. To help do so, we define a new span program
complexity measure, the “full witness size.” This complexity measure has impli-
cations for developing time- and query-efficient quantum algorithms based on
span programs. Essentially, using a second result from [Rei09], that properties of
eigenvalue-zero eigenvectors of certain bipartite graphs imply “effective” spectral
gaps around zero, it allows quantum algorithms to be based on span programs
with free inputs. This can simplify the implementation of a quantum walk on
the corresponding graph.

Besides allowing a relaxed balance requirement, our approach has the addi-
tional advantage of making the constants hidden in the big-O notation more
explicit. The formula-evaluation quantum algorithms in [RŠ08,Rei09] evalu-
ate certain formulas ϕ using O

(
Adv±(ϕ)

)
queries, where the hidden constant

depends on the gates in S in a complicated manner. It is not known how to
upper-bound the hidden constant in terms of, say, the maximum fan-in k of a
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Table 1. Comparison of some classical and quantum query complexity results for
formula evaluation. Here S is any fixed, finite gate set, and the exponent α is given by

α = log2(
1+

√
33

4
) ≈ 0.753. Under certain assumptions, the algorithms’ running times

are only poly-logarithmically slower.

Formula ϕ Randomized, zero-error
query complexity R(ϕ)

Quantum bounded-error
query complexity Q(ϕ)

ORn n Θ(
√

n) [Gro96,BBBV97]
Balanced AND2-OR2 Θ(nα) [SW86] Θ(

√
n) [FGG08,ACR+10]

Well-balanced AND-OR Tight recursion [SW86]
Approx.-balanced AND-OR Θ(

√
n) [ACR+10],

(Theorem 8)
Arbitrary AND-OR Ω(n0.51) [HW91] Ω(

√
n) [BS04]

O(
√

n log n) [Rei11]

Balanced MAJ3 (n = 3d) Ω
(
(7/3)d

)
, O(2.654d)

[JKS03]
Θ(2d) [RŠ08]

Balanced over S Θ(Adv±(ϕ))[Rei09]
Almost-balanced over S Θ(Adv±(ϕ)) (Theorem 7)

gate in S. In contrast, the approach we follow here allows bounding this constant
by an exponential in k.

It is known that the general adversary bound is a nearly tight lower bound
on quantum query complexity for any boolean function [Rei09], including in
particular boolean formulas. However, this comes with no guarantees on time
complexity. The main contribution of this paper is to give a nearly time-optimal
algorithm for formula evaluation. The algorithm is also tight for query complex-
ity, removing the extra logarithmic factor from the bound in [Rei09].

Additionally, we apply the same technique to study AND-OR formulas. For
this special case, special properties of span programs for AND and for OR gates
allow the almost-balance condition to be significantly weakened. Ambainis et
al. [ACR+10] have studied this case previously. By applying the span program
framework, we identify a slight weakness in their analysis. Tightening the analy-
sis extends the algorithm’s applicability to a broader class of AND-OR formulas.

A companion paper [Rei11] applies the span program framework to the
problem of evaluating arbitrary AND-OR formulas. By studying the full wit-
ness size for span programs constructed using a novel composition method, it
gives an O(

√
n log n)-query quantum algorithm to evaluate a formula of size n,

for which the time complexity is poly-logarithmically worse after preprocessing.
This nearly matches the Ω(

√
n) lower bound, and improves a

√
n2O(

√
log n)-query

quantum algorithm from [ACR+10]. Reference [Rei11] shares the broader moti-
vation of this paper, to study span program properties and design techniques
that lead to time-efficient quantum algorithms.

Sections 1.1 and 1.2 below give further background on the formula-evaluation
problem, for classical and quantum algorithms. Section 1.3 precisely states our
main theorem, the proof of which is given in Sect. 3 after some background on
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span programs. The theorem for approximately balanced AND-OR formulas is
stated in Sect. 1.4, and proved in Sect. 4.

1.1 History of the Formula-Evaluation Problem for Classical
Algorithms

For a function f : {0, 1}n → {0, 1}, let D(f) be the least number of input bit
queries sufficient to evaluate f on any input with zero error. D(f) is known as the
deterministic decision-tree complexity of f , or the deterministic query complexity
of f . Let the randomized decision-tree complexity of f , R(f) ≤ D(f), be the
least expected number of queries required to evaluate f with zero error (i.e., by a
Las Vegas randomized algorithm). Let the Monte Carlo decision-tree complexity,
R2(f) = O

(
R(f)

)
, be the least number of queries required to evaluate f with

error probability at most 1/3 (i.e., by a Monte Carlo randomized algorithm).
Classically, formulas over the gate set S = {NANDk : k ∈ N} have been stud-

ied most extensively, where NANDk(x1, . . . , xk) = 1−∏k
j=1 xj . By De Morgan’s

rules, any formula over NAND gates can also be written as a formula in which
the gates at an even distance from the formula’s root are AND gates and those
an odd distance away are OR gates, with some inputs or the output possibly
complemented. Thus formulas over S are also known as AND-OR formulas.

For any AND-OR formula ϕ of size n, i.e., on n inputs, D(ϕ) = n. However,
randomization gives a strict advantage; R(ϕ) and R2(ϕ) can be strictly smaller.
Indeed, let ϕd be the complete, binary AND-OR formula of depth d, correspond-
ing to the tree in which each internal vertex has two children and every leaf is at
distance d from the root, with alternating levels of AND and OR gates. Its size
is n = 2d. Snir [Sni85] has given a randomized algorithm for evaluating ϕd using
in expectation O(nα) queries, where α = log2(

1+
√
33

4 ) ≈ 0.753 [SW86]. This
algorithm, known as randomized alpha-beta pruning, evaluates a random sub-
formula recursively, and only evaluates the second subformula if necessary. Saks
and Wigderson [SW86] have given a matching lower bound on R(ϕd), which San-
tha has extended to hold for Monte Carlo algorithms, R2(ϕd) = Ω(nα) [San95].

Thus the query complexities have been characterized for the complete, binary
AND-OR formulas. In fact, the tight characterization works for a larger class of
formulas, called “well balanced” formulas by [San95]. This class includes, for
example, alternating AND2-OR2 formulas where for some d every leaf is at
depth d or d − 1, Fibonacci trees and binomial trees [SW86]. It also includes
skew trees, for which the depth is the maximal n − 1.

For arbitrary AND-OR formulas, on the other hand, little is known. It has
been conjectured that complete, binary AND-OR formulas are the easiest to
evaluate, and that in particular R(ϕ) = Ω(nα) for any size-n AND-OR formula
ϕ [SW86]. However, the best general lower bound is R(ϕ) = Ω(n0.51), due to
Heiman and Wigderson [HW91]. Reference [HW91] also extends the result of
[SW86] to allow for AND and OR gates with fan-in more than two.

It is perhaps not surprising that formulas over most other gate sets S are
even less well understood. For example, Boppana has asked the complexity of
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evaluating the complete ternary majority (MAJ3) formula of depth d [SW86],
and the best published bounds on its query complexity are Ω

(
(7/3)d

)
and

O
(
(2.6537 . . .)d

)
[JKS03]. In particular, the näıve, “directional,” generalization

of the randomized alpha-beta pruning algorithm is to evaluate recursively two
random immediate subformulas and, if they disagree, then also the third. This
algorithm uses O

(
(8/3)d

)
expected queries, and is suboptimal. This suggests

that the complete MAJ3 formulas are significantly different from the complete
AND-OR formulas.

Heiman, Newman and Wigderson have considered read-once threshold for-
mulas in an attempt to separate the complexity classes TC0 from NC1 [HNW93].
That is, they allow the gate set to be the set of Hamming-weight threshold gates
{T k

m : m, k ∈ N} defined by T k
m : {0, 1}k → {0, 1}, T k

m(x) = 1 if and only if the
Hamming weight of x is at least m. AND, OR and majority gates are all special
cases of threshold gates. Heiman et al. prove that R(ϕ) ≥ n/2d for ϕ a threshold
formula of depth d, and in fact their proof extends to gate sets in which every
gate “contains a flip” [HNW93]. This implies that a large depth is necessary for
the randomized complexity to be much lower than the deterministic complexity.

Of course there are some trivial gate sets for which the query complexity
is fully understood, for example, the set of parity gates. Overall, though, there
are many more open problems than results. Despite its structure, formula eval-
uation appears to be combinatorially complicated. However, there is another
approach, to try to leverage the power of quantum computers. Surprisingly,
the formula-evaluation problem simplifies considerably in this different model of
computation.

1.2 History of the Formula-Evaluation Problem for Quantum
Algorithms

In the quantum query model, the input bits can be queried coherently. That is,
the quantum algorithm is allowed unit-cost access to the unitary operator Ox,
called the input oracle, defined by

Ox : |ϕ〉 ⊗ |j〉 ⊗ |b〉 
→ |ϕ〉 ⊗ |j〉 ⊗ |b ⊕ xj〉 . (1.1)

Here |ϕ〉 is an arbitrary pure state, {|j〉 : j = 1, 2, . . . , n} is an orthonormal
basis for Cn, {|b〉 : b = 0, 1} is an orthonormal basis for C2, and ⊕ denotes
addition mod two. Ox can be implemented efficiently on a quantum computer
given a classical circuit that computes the function j 
→ xj [NC00]. For a function
f : {0, 1}n → {0, 1}, let Q(f) be the number of input queries required to evaluate
f with error probability at most 1/3. It is immediate that Q(f) ≤ R2(f).

Research on the formula-evaluation problem in the quantum model began
with the n-bit OR function, ORn. Grover gave a quantum algorithm for evaluat-
ing ORn with bounded one-sided error using O(

√
n) oracle queries and O(

√
n log

log n) time [Gro96,Gro02]. In the classical case, on the other hand, it is obvious
that R2(ORn), R(ORn) and D(ORn) are all Θ(n).

Grover’s algorithm can be applied recursively to speed up the evaluation
of more general AND-OR formulas. Call a formula layered if the gates at the
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same depth are the same. Buhrman, Cleve and Wigderson show that a lay-
ered, depth-d, size-n AND-OR formula can be evaluated using O(

√
n logd−1 n)

queries [BCW98]. The logarithmic factors come from using repetition at each
level to reduce the error probability from a constant to be polynomially small.

Høyer, Mosca and de Wolf [HMW03] consider the case of a unitary input
oracle Õx that maps

Õx : |ϕ〉⊗ |j〉⊗ |b〉⊗ |0〉 
→ |ϕ〉⊗ |j〉⊗ (|b ⊕ xj〉⊗ |ψx,j,xj
〉+ |b ⊕ xj〉⊗ |ψx,j,xj

〉) ,
(1.2)

where |ψx,j,xj
〉, |ψx,j,xj

〉 are pure states with ‖|ψx,j,xj
〉‖2 ≥ 2/3. Such an oracle

can be implemented when the function j 
→ xj is computed by a bounded-
error, randomized subroutine. Høyer et al. allow access to Õx and Õ−1

x , both at
unit cost, and show that ORn can still be evaluated using O(

√
n) queries. This

robustness result implies that the log n steps of repetition used by [BCW98]
are not necessary, and a depth-d layered AND-OR formula can be computed in
O(

√
n cd−1) queries, for some constant c > 1000. If the depth is constant, this

gives an O(
√

n)-query quantum algorithm, but the result is not useful for the
complete, binary AND-OR formula, for which d = log2 n.

In 2007, Farhi, Goldstone and Gutmann presented a quantum algorithm for
evaluating complete, binary AND-OR formulas [FGG08]. Their breakthrough
algorithm is not based on iterating Grover’s algorithm in any way, but instead
runs a quantum walk—analogous to a classical random walk—on a graph based
on the formula. The algorithm runs in time O(

√
n) in a certain continuous-time

query model.
Ambainis et al. discretized the [FGG08] algorithm by reinterpreting a corre-

spondence between (discrete-time) random and quantum walks due to Szegedy
[Sze04] as a correspondence between continuous-time and discrete-time quantum
walks [ACR+10]. Applying this correspondence to quantum walks on certain
weighted graphs, they gave an O(

√
n)-query quantum algorithm for evaluating

“approximately balanced” AND-OR formulas. For example, MAJ3(x1, x2, x3) =
(x1 ∧x2)∨(

(x1 ∨x2)∧x3

)
, so there is a size-5d AND-OR formula that computes

MAJ3d the complete ternary majority formula of depth d. Since the formula
is approximately balanced, Q(MAJ3d) = O(

√
5

d
), better than the Ω

(
(7/3)d

)

classical lower bound.
The [ACR+10] algorithm also applies to arbitrary AND-OR formulas. If ϕ

has size n and depth d, then the algorithm, applied directly, evaluates ϕ using
O(

√
n d) queries.1 This can be as bad as O(n3/2) if the depth is d = n. However,

Bshouty, Cleve and Eberly have given a formula rebalancing procedure that
takes AND-OR formula ϕ as input and outputs an equivalent AND-OR formula
ϕ′ with depth d′ = 2O(

√
log n) and size n′ = n 2O(

√
log n) [BCE91,BB94]. The

formula ϕ′ can then be evaluated using O(
√

n′ d′) =
√

n 2O(
√
log n) queries.

1 Actually, [ACR+10, Section 7] only shows a bound of O(
√

n d3/2) queries, but this
can be improved to O(

√
n d) using the bounds on σ±(ϕ) below [ACR+10, Defini-

tion 1].
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Our understanding of lower bounds for the formula-evaluation problem pro-
gressed in parallel to this progress on quantum algorithms. There are essen-
tially two techniques, the polynomial and adversary methods, for lower-bounding
quantum query complexity.

– The polynomial method, introduced in the quantum setting by Beals et al.
[BBC+01], is based on the observation that after making q oracle Ox queries,
the probability of any measurement result is a polynomial of degree at most
2q in the variables xj .

– Ambainis generalized the classical hybrid argument, to consider the system’s
entanglement when run on a superposition of inputs [Amb02]. A number of
variants of Ambainis’s bound were soon discovered, including weighted ver-
sions [HNS02,BS04,Amb06,Zha05], a spectral version [BSS03], and a version
based on Kolmogorov complexity [LM04]. These variants can be asymptoti-
cally stronger than Ambainis’s original unweighted bound, but are equivalent
to each other [ŠS06]. We therefore term it simply “the adversary bound,”
denoted by Adv.

The adversary bound is well-suited for lower-bounding the quantum query
complexity for evaluating formulas. For example, Barnum and Saks proved that
for any size-n AND-OR formula ϕ, Adv(ϕ) =

√
n, implying the lower bound

Q(ϕ) = Ω(
√

n) [BS04]. Thus the [ACR+10] algorithm is optimal for approxi-
mately balanced AND-OR formulas, and is nearly optimal for arbitrary AND-OR
formulas. This is a considerably more complete solution than is known classically.

It is then natural to consider formulas over larger gate sets. The adversary
bound continues to work well, because it transforms nicely under function com-
position:

Theorem 1 (Adversary bound composition [Amb06,LLS06,HLŠ05]).
Let f : {0, 1}k → {0, 1} and let fj : {0, 1}mj → {0, 1} for j = 1, 2, . . . , k.
Define g : {0, 1}m1 × · · · × {0, 1}mk → {0, 1} by g(x) = f

(
f1(x1), . . . , fk(xk)

)
.

Let s = (Adv(f1), . . . ,Adv(fk)). Then

Adv(g) = Advs(f). (1.3)

See Definition 3 for the definition of the adversary bound with “costs,” Advs.
The Adv bound equals Advs with uniform, unit costs s =

−→
1 . For a function f ,

Adv(f) can be computed using a semi-definite program in time polynomial in the
size of f ’s truth table. Therefore, Theorem 1 gives a polynomial-time procedure
for computing the adversary bound for a formula ϕ over an arbitrary finite gate
set: compute the bounds for subformulas, moving from the leaves toward the
root. At an internal node f , having computed the adversary bounds for the
input subformulas f1, . . . , fk, Eq. (1.3) says that the adversary bound for g, the
subformula rooted at f , equals the adversary bound for the gate f with certain
costs. Computing this requires 2O(k) time, which is a constant if k = O(1). For
example, if f is an ORk or ANDk gate, then Adv(s1,...,sk)(f) =

√∑
j s2j , from
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which follows immediately the [BS04] result Adv(ϕ) =
√

n for a size-n AND-OR
formula ϕ.

A special case of Theorem 1 is when the functions fj all have equal adver-
sary bounds, so Adv(g) = Adv(f)Adv(f1). In particular, for a function f :
{0, 1}k → {0, 1} and a natural number d ∈ N, let fd : {0, 1}kd → {0, 1}
denote the complete, depth-d formula over f . That is, f1 = f and fd(x) =
f
(
fd−1(x1, . . . , xkd−1), . . . , fd−1(xkd−kd−1+1, . . . , xkd)

)
for d>1. Then we obtain:

Corollary 1. For any function f : {0, 1}k → {0, 1},

Adv(fd) = Adv(f)d . (1.4)

In particular, Ambainis defined a boolean function f : {0, 1}4 → {0, 1} that
can be represented exactly by a polynomial of degee two, but for which Adv(f) =
5/2 [Amb06]. Thus fd can be represented exactly by a polynomial of degree 2d,
but by Corollary 1, Adv(fd) = (5/2)d. For this function, the adversary bound
is strictly stronger than any bound obtainable using the polynomial method.
Many similar examples are given in [HLŠ06]. However, for other functions, the
adversary bound is asymptotically worse than the polynomial method [ŠS06,
AS04,Amb05].

In 2007, though, Høyer et al. discovered a strict generalization of Adv that
also lower-bounds quantum query complexity [HLŠ06]. We call this new bound
the general adversary bound, or Adv±. For example, for Ambainis’s four-bit
function f , Adv±(f) ≥ 2.51 [HLŠ06]. Like the adversary bound, ADV±

s (f) can
be computed in time polynomial in the size of f ’s truth table, and also composes
nicely:

Theorem 2 ([HLŠ07,Rei09]). Under the conditions of Theorem 1,

Adv±(g) = ADV±
s (f) . (1.5)

In particular, if Adv±(f1) = · · · = Adv±(fk), then we have Adv±(g) = Adv±(f)
Adv±(f1).

Define a formula ϕ to be adversary balanced if at each internal node, the
general adversary bounds of the input subformulas are equal. In particular, by
Theorem 2 this implies that Adv±(ϕ) is equal to the product of the general
adversary bounds of the gates along any path from the root to a leaf. Complete,
layered formulas are an example of adversary-balanced formulas.

Returning to upper bounds, Reichardt and Špalek [RŠ08] generalized the
algorithmic approach started by [FGG08]. They gave an optimal quantum algo-
rithm for evaluating adversary-balanced formulas over a considerably extended
gate set, including in particular all functions {0, 1}k → {0, 1} for k ≤ 3, 69
inequivalent four-bit functions, and the gates ANDk, ORk, PARITYk and
EQUALk, for k = O(1). For example, Q(MAJ3d) = Θ(2d).
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The [RŠ08] result follows from a framework for developing formula-evaluation
quantum algorithms based on span programs. A span program, introduced by
Karchmer and Wigderson [KW93], is a certain linear-algebraic way of defining
a function, which corresponds closely to eigenvalue-zero eigenvectors of certain
bipartite graphs. [RŠ08] derived a quantum algorithm for evaluating certain
concatenated span programs, with a query complexity upper-bounded by the
span program witness size, denoted wsize. In particular, a special case of [RŠ08,
Theorem 4.7] is:

Theorem 3 ([RŠ08]). Fix a function f : {0, 1}k → {0, 1}. If span program P
computes f , then

Q(fd) = O
(
wsize(P )d)

. (1.6)

From Theorem 2, this result is optimal if wsize(P ) = Adv±(f). The question
therefore becomes how to find optimal span programs. Using an ad hoc search,
[RŠ08] found optimal span programs for a variety of functions with Adv± =
Adv. Further work automated the search, by giving a semi-definite program
(SDP) for the optimal span program witness size for any given function [Rei09].
Remarkably, the SDP’s value always equals the general adversary bound:

Theorem 4 ([Rei09]). For any function f : {0, 1}n → {0, 1},

inf
P

wsize(P ) = Adv±(f) , (1.7)

where the infimum is over span programs P computing f . Moreover, this infimum
is achieved.

This result greatly extends the gate set over which the formula-evaluation
algorithm of [RŠ08] works optimally. For example, combined with Theorem 3,
it implies that limd→∞ Q(fd)1/d = Adv±(f) for every boolean function f . More
generally, Theorem 4 allows the [RŠ08] algorithm to be run on formulas over any
finite gate set S. A factor is lost that depends on the gates in S, but it will be
a constant for S finite. Combining Theorem 4 with [RŠ08, Theorem 4.7] gives:

Theorem 5 ([Rei09]). Let S be a finite set of gates. Then there exists a quan-
tum algorithm that evaluates an adversary-balanced formula ϕ over S using
O

(
Adv±(ϕ)

)
input queries. After efficient classical preprocessing independent

of the input x, and assuming unit-time coherent access to the preprocessed clas-
sical string, the running time of the algorithm is Adv±(ϕ)

(
log Adv±(ϕ)

)O(1).

In the discussion so far, we have for simplicity focused on query complexity.
The query complexity is an information-theoretic quantity that does not charge
for operations independent of the input string, even though these operations
may require many elementary gates to implement. For practical algorithms, it
is important to be able to bound the algorithm’s running time, which counts
the cost of implementing the input-independent operations. Theorem 5 puts an
optimal bound on the query complexity, and also puts a nearly optimal bound



82 B.W. Reichardt

on the algorithm’s time complexity. In fact, all of the query-optimal algorithms
so far discussed are also nearly time optimal.

In general, though, an upper bound on the query complexity does not imply
an upper bound on the time complexity. Reference [Rei09] also generalized the
span program framework of [RŠ08] to apply to quantum algorithms not based
on formulas. The main result of [Rei09] is:

Theorem 6 ([Rei09]). For any function f : D → {1, 2, . . . ,m}, with D ⊆
{0, 1}n, Q(f) satisfies

Q(f) = Ω(Adv±(f)) (1.8)

and Q(f) = O

(
Adv±(f)

log Adv±(f)
log log Adv±(f)

log(m) log log m

)
. (1.9)

Theorem 6 in particular allows us to compute the query complexity of formu-
las, up to the logarithmic factor. It does not give any guarantees on running time.
However, the analysis required to prove Theorem 6 also leads to significantly sim-
pler proofs of Theorem 5 and the AND-OR formula results of [ACR+10,FGG08].
Moreover, we will see that it allows the formula-evaluation algorithms to be
extended to formulas that are not adversary balanced.

1.3 Quantum Algorithm for Evaluating Almost-Balanced Formulas

We give a formula-evaluation algorithm that is both query-optimal, without
a logarithmic overhead, and, after an efficient preprocessing step, nearly time
optimal. Define almost balance as follows:

Definition 1. Consider a formula ϕ over a gate set S. For a vertex v in the
corresponding tree, let ϕv denote the subformula of ϕ rooted at v, and, if v is an
internal vertex, let gv be the corresponding gate. The formula ϕ is β-balanced if
for every vertex v, with children c1, c2, . . . , ck,

maxjAdv±(ϕcj
)

minj Adv±(ϕcj
)

≤ β . (1.10)

(If cj is a leaf, Adv±(ϕcj
) = 1.) Formula ϕ is almost balanced if it is β-balanced

for some β = O(1).

In particular, an adversary-balanced formula is 1-balanced. We will show:

Theorem 7. Let S be a fixed, finite set of gates. Then there exists a quantum
algorithm that evaluates an almost-balanced formula ϕ over S using O

(
Adv±(ϕ)

)

input queries. After polynomial-time classical preprocessing independent of the
input, and assuming unit-time coherent access to the preprocessed string, the
running time of the algorithm is Adv±(ϕ)

(
log Adv±(ϕ)

)O(1).
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Theorem 7 is significantly stronger than Theorem 5, which requires exact
balance. There are important classes of exactly balanced formulas, such as com-
plete, layered formulas. In fact, it is sufficient that the multiset of gates along the
simple path from the root to a leaf not depend on the leaf. Moreover, sometimes
different gates have the same Adv± bound; see [HLŠ06] for examples. Even still,
exact adversary balance is a very strict condition.

The proof of Theorem 7 is based on the span program framework developed
in Ref. [Rei09]. In particular, [Rei09, Theorem 9.1] gives two quantum algo-
rithms for evaluating span programs. The first algorithm is based on a discrete-
time simulation of a continuous-time quantum walk. It applies to arbitrary span
programs, and is used, in combination with Theorem 4, to prove Theorem 6.
However, the simulation incurs a logarithmic query overhead and potentially
worse time complexity overhead, so this algorithm is not suitable for proving
Theorem 7.

The second algorithm in [Rei09] is based directly on a discrete-time quan-
tum walk, similar to previous optimal formula-evaluation algorithms [ACR+10,
RŠ08]. However, this algorithm does not apply to an arbitrary span program. A
bound is needed on the operator norm of the entry-wise absolute value of the
weighted adjacency matrix for a corresponding graph. Further graph sparsity
conditions are needed for the algorithm to be time efficient (see Theorem 9).

Unfortunately, the span program from Theorem 4 will not generally satisfy
these conditions. Theorem 4 gives a canonical span program ([Rei09, Defini-
tion 5.1]). Even for a simple formula, the optimal canonical span program will
typically correspond to a dense graph with large norm.

An example should clarify the problem. Consider the AND-OR formula
ψ(x) =

(
[(x1 ∧ x2) ∨ x3] ∧ x4

) ∨ (
x5 ∧ [x6 ∨ x7]

)
, and consider the two graphs

in Fig. 1. For an input x ∈ {0, 1}7, modify the graphs by attaching dangling
edges to every vertex j for which xj = 0. Observe then that each graph has an
eigenvalue-zero eigenvector supported on vertex 0—called a witness—if and only
if ψ(x) = 1. The graphs correspond to different span programs computing ψ, and
the quantum algorithm works essentially by running a quantum walk starting at
vertex 0 in order to detect the witness. The graph on the left is a significantly
simplified version of a canonical span program for ψ, and its density still makes
it difficult to implement the quantum walk.

We will be guided by the second, simpler graph. Instead of applying Theo-
rem 4 to ϕ as a whole, we apply it separately to every gate in the formula. We
then compose these span programs, one per gate, according to the formula, using
direct-sum composition (Definition 6). In terms of graphs, direct-sum composi-
tion attaches the output vertex of one span program’s graph to an input vertex
of the next [RŠ08]. This leads to a graph whose structure somewhat follows the
structure of the formula ϕ, as the graph in Fig. 1(b) follows the structure of
ψ. (However, the general case will be more complicated than shown, as we are
plugging together constant-size graph gadgets, and there may be duplication of
some subgraphs.)
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Fig. 1. Graphs corresponding to two span programs both computing the same function.

Direct-sum composition keeps the maximum degree and norm of the graph
under control—each is at most twice its value for the worst single gate. There-
fore the second [Rei09] algorithm applies. However, direct-sum composition also
leads to additional overhead. In particular, a witness in the first graph will be
supported only on numbered vertices (note that the graph is bipartite), whereas
a witness in the second graph will be supported on some of the internal vertices
as well. This means roughly that the second witness will be harder to detect,
because after normalization its overlap on vertex 0 will be smaller. Scale both
witnesses so that the amplitude on vertex 0 is one. The witness size (wsize) mea-
sures the squared length of the witness only on numbered vertices, whereas the
full witness size (fwsize) measures the squared length on all vertices. For [Rei09],
it was sufficient to consider only span program witness size, because for canon-
ical span programs like in Fig. 1(a) the two measures are equal. (For technical
reasons, we will actually define fwsize to be 1 + wsize even in this case.) For our
analysis, we will need to bound the full witness size in terms of the witness size.
We maintain this bound in a recursion from the formula’s leaves toward its root.

A span program is called strict if every vertex on one half of the bipartite
graph is either an input vertex (vertices 1–7 in the graphs of Fig. 1) or the output
vertex (vertex 0). Thus the first graph in the example above corresponds to a
strict span program, and the second does not. The original definition of span
programs, in [KW93], allowed for only strict span programs. This was sensible
because any other vertices on the input/output part of the graph’s bipartition
can always be projected away, yielding a strict span program that computes
the same function. For developing time-efficient quantum algorithms, though, it
seems important to consider span programs that are not strict. Unfortunately,
going backwards, e.g., from 1(a) to 1(b), is probably difficult in general.
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Theorem 7 does not follow from the formula-evaluation techniques of [RŠ08],
together with Theorem 3 from [Rei09]. This tempting approach falls into
intractable technical difficulties. In particular, the same span program can be
used at two vertices v and w in ϕ only if gv = gw and the general adversary
bounds of v’s input subformulas are the same as those for w’s inputs up to simul-
taneous scaling. In general, then, an almost-balanced formula will require an
unbounded number of different span programs. However, the analysis in [RŠ08]
loses a factor that depends badly on the individual span programs. Since the
dependence is not continuous, even showing that the span programs in use all
lie within a compact set would not be sufficient to obtain an O(1) upper bound.
In contrast, the approach we follow here allows bounding the lost factor by an
exponential in k, uniformly over different gate imbalances.

1.4 Quantum Algorithm to Evaluate Approximately Balanced
AND-OR Formulas

Ambainis et al. [ACR+10] use a weaker balance criterion for AND-OR formulas
than Definition 1. They define an AND-OR formula to be approximately bal-
anced if σ−(ϕ) = O(1) and σ+(ϕ) = O(n). Here n is the size of the formula, i.e.,
the number of leaves, and σ−(ϕ) and σ+(ϕ) are defined by:

Definition 2. For each vertex v in a formula ϕ, let

σ−(v) = max
ξ

∑

w∈ξ

1
Adv±(ϕw)

σ+(v) = max
ξ

∑

w∈ξ

Adv±(ϕw)2 , (1.11)

with each maximum taken over all simple paths ξ from v to a leaf. Let σ±(ϕ) =
σ±(r), where r is the root of ϕ.

Recall that Adv±(ϕ) = Adv(ϕ) =
√

n for an AND-OR formula. Definition
1 is a stricter balance criterion because β-balance of a formula ϕ implies (by
Lemma 3) that σ−(ϕ) and σ+(ϕ) are both dominated by geometric series. How-
ever, the same steps followed by the proof of Theorem 7 still suffice for proving
the [ACR+10] result, and, in fact, for strengthening it. We show:

Theorem 8. Let ϕ be an AND-OR formula of size n. Then after polynomial-
time classical preprocessing that does not depend on the input x, ϕ(x) can be
evaluated by a quantum algorithm with error at most 1/3 using O

(√
n σ−(ϕ)

)

input queries. The algorithm’s running time is
√

nσ−(ϕ) (log n)O(1) assuming
unit-cost coherent access to the preprocessed string.

For the special case of AND-OR formulas with σ−(ϕ) = O(1), Theorem 8
strengthens Theorem 7. The requirement that σ−(ϕ) = O(1) allows for
some gates in the formula to be very unbalanced. Theorem 8 also strengthens
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[ACR+10, Theorem 1] because it does not require that σ+(ϕ) = O(n). For exam-
ple, a formula that is biased near the root, but balanced at greater depths can
have σ−(ϕ) = O(1) and σ+(ϕ) = ω(n). By substituting the bound σ−(ϕ) =
O(

√
d) for a depth-d formula [ACR+10, Definition 3], a corollary of Theorem

8 is that a depth-d, size-n AND-OR formula can be evaluated using O(
√

nd)
queries. This improves the depth-dependence from [ACR+10], and matches the
dependence from an earlier version of that article [Amb07].

The essential reason that the Definition 1 balance condition can be weakened
is that for the specific gates AND and OR, by writing out the optimal span
programs explicitly we can prove that they satisfy stronger properties than are
necessarily true for other functions.

2 Span Programs

2.1 Definitions

We briefly recall some definitions from [Rei09, Section 2]. Additionally, we define
a span program complexity measure, the full witness size, that charges even for
the “free” inputs. This quantity is important for developing quantum algorithms
that are time efficient as well as query efficient.

For a natural number n, let [n] = {1, 2, . . . , n}. For a finite set X, let CX be
the inner product space C|X| with orthonormal basis {|x〉 : x ∈ X}. For vector
spaces V and W over C, let L(V,W ) be the set of linear transformations from
V into W , and let L(V ) = L(V, V ). For A ∈ L(V,W ), ‖A‖ is the operator norm
of A. For a string x ∈ {0, 1}n, let x̄ denote its bitwise complement.

Definition 3 ([HLŠ05,HLŠ07]). For finite sets C, E and D ⊆ Cn, let f :
D → E. An adversary matrix for f is a real, symmetric matrix Γ ∈ L(CD) that
satisfies 〈x|Γ |y〉 = 0 whenever f(x) = f(y).

The general adversary bound for f , with costs s ∈ [0,∞)n, is

ADV±
s (f) = max

adversary matricesΓ :
∀j∈[n], ‖Γ◦Δj‖≤sj

‖Γ‖ . (2.1)

Here Γ ◦ Δj denotes the entry-wise matrix product between Γ and Δj =∑
x,y:xj �=yj

|x〉〈y|. The (nonnegative-weight) adversary bound for f , with costs
s, is defined by the same maximization, except with Γ restricted to have nonneg-
ative entries. In particular, ADV±

s (f) ≥ Advs(f).

Letting
−→
1 = (1, 1, . . . , 1), the adversary bound for f is Adv(f) = Adv−→

1
(f)

and the general adversary bound for f is Adv±(f) = Adv±−→
1
(f). By [HLŠ07],

Q(f) = Ω(Adv±(f)).

Definition 4 (Span program [KW93]). A span program P consists of a nat-
ural number n, a finite-dimensional inner product space V over C, a “target”
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vector |t〉 ∈ V , disjoint sets Ifree and Ij,b for j ∈ [n], b ∈ {0, 1}, and “input
vectors” |vi〉 ∈ V for i ∈ Ifree ∪ ⋃

j∈[n],b∈{0,1} Ij,b.
To P corresponds a function fP : {0, 1}n → {0, 1}, defined on x ∈ {0, 1}n by

fP (x) =

{
1 if |t〉 ∈ Span({|vi〉 : i ∈ Ifree ∪ ⋃

j∈[n] Ij,xj
})

0 otherwise
(2.2)

Some additional notation is convenient. Fix a span program P . Let I =
Ifree ∪ ⋃

j∈[n],b∈{0,1} Ij,b. Let A ∈ L(CI , V ) be given by A =
∑

i∈I |vi〉〈i|. For
x ∈ {0, 1}n, let I(x) = Ifree ∪ ⋃

j∈[n] Ij,xj
and Π(x) =

∑
i∈I(x) |i〉〈i| ∈ L(CI).

Then fP (x) = 1 if |t〉 ∈ Range(AΠ(x)). A vector |w〉 ∈ CI is said to be a witness
for fP (x) = 1 if Π(x)|w〉 = |w〉 and A|w〉 = |t〉. A vector |w′〉 ∈ V is said to be
a witness for fP (x) = 0 if 〈t|w′〉 = 1 and Π(x)A†|w′〉 = 0.

Definition 5 (Witness size). Consider a span program P , and a vector s ∈
[0,∞)n of nonnegative “costs.” Let S =

∑
j∈[n],b∈{0,1},i∈Ij,b

√
sj |i〉〈i| ∈ L(CI).

For each input x ∈ {0, 1}n, define the witness size of P on x with costs s,
wsizes(P, x), as follows:

wsizes(P, x) =

⎧
⎨

⎩

min|w〉:AΠ(x)|w〉=|t〉 ‖S|w〉‖2 iffP (x) = 1
min |w′〉: 〈t|w′〉=1

Π(x)A†|w′〉=0

‖SA†|w′〉‖2 iffP (x) = 0 (2.3)

The witness size of P with costs s is

wsizes(P ) = max
x∈{0,1}n

wsizes(P, x) . (2.4)

Define the full witness size fwsizes(P ) by letting Sf = S +
∑

i∈Ifree
|i〉〈i| and

fwsizes(P, x) =

⎧
⎨

⎩

min|w〉:AΠ(x)|w〉=|t〉(1 + ‖Sf |w〉‖2) if fP (x) = 1
min |w′〉: 〈t|w′〉=1

Π(x)A†|w′〉=0

(‖|w′〉‖2 + ‖SA†|w′〉‖2) if fP (x) = 0 (2.5)

fwsizes(P ) = max
x∈{0,1}n

fwsizes(P, x) . (2.6)

When the subscript s is omitted, the costs are taken to be uniform, s =
−→
1 =

(1, 1, . . . , 1), e.g., fwsize(P ) = fwsize−→
1
(P ). The witness size is defined in [RŠ08].

The full witness size is defined in [Rei09, Section 8], but is not named there. A
strict span program has Ifree = ∅, so Sf = S, and a monotone span program
has Ij,0 = ∅ for all j [Rei09, Definition 4.9].

2.2 Quantum Algorithm to Evaluate a Span Program Based on Its
Full Witness Size

[Rei09, Theorem 9.3] gives a quantum query algorithm for evaluating span pro-
grams based on the full witness size. The algorithm is based on a quantum walk
on a certain graph. Provided that the degree of the graph is not too large, it can
actually be implemented efficiently.
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Theorem 9 ([Rei09, Theorem 9.3]). Let P be a span program. Then fP can
be evaluated using

T = O
(
fwsize(P ) ‖ abs(AGP

)‖)
(2.7)

quantum queries, with error probability at most 1/3. Moreover, if the maximum
degree of a vertex in GP is d, then the time complexity of the algorithm for
evaluating fP is at most a factor of (log d)

(
log(T log d)

)O(1) worse, after classical
preprocessing and assuming constant-time coherent access to the preprocessed
string.

Proof. (sketch) The query complexity claim is actually slightly weaker than
[Rei09, Theorem 9.3], which allows the target vector to be scaled downward
by a factor of

√
fwsize(P ).

The time-complexity claim will follow from the proof of[Rei09, Theorem 9.3],
in [Rei09, Prop. 9.4, Theorem 9.5]. The algorithm for evaluating fP (x) uses a
discrete-time quantum walk on the graph GP (x). If the maximum degree of a
vertex in GP is d, then each coin reflection can be implemented using O(log d)
single-qubit unitaries and queries to the preprocessed string [GR02,CNW10].
Finally, the

(
log(T log d)

)O(1) factor comes from applying the Solovay-Kitaev
Theorem [KSV02] to compile the single-qubit unitaries into products of elemen-
tary gates, to precision 1/O(T log d). �

We remark that together with [Rei09, Theorem 3.1], Theorem 9 gives a way
of transforming a one-sided-error quantum algorithm into a span program, and
back into a quantum algorithm, such that the time complexity is nearly pre-
served, after preprocessing. This is only a weak equivalence, because aside from
requiring preprocessing the algorithm from Theorem 9 also has two-sided error.
To some degree, though, it complements the equivalence results for best span
program witness size and bounded-error quantum query complexity [Rei09, The-
orem 7.1,Theorem 9.2].

2.3 Direct-Sum Span Program Composition

Let us study the full witness size of the direct-sum composition of span programs.
We begin by recalling the definition of direct-sum composition.

Let f : {0, 1}n → {0, 1} and S ⊆ [n]. For j ∈ [n], let mj be a natural
number, with mj = 1 for j /∈ S. For j ∈ S, let fj : {0, 1}mj → {0, 1}. Define
y : {0, 1}m1 × · · · × {0, 1}mn → {0, 1}n by

y(x)j =

{
fj(xj) if j ∈ S

xj if j /∈ S
(2.8)

Define g : {0, 1}m1 × · · · × {0, 1}mn → {0, 1} by g(x) = f(y(x)). For example, if
S = [n] � {1}, then

g(x) = f
(
x1, f2(x2), . . . , fn(xn)

)
. (2.9)
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Given span programs for the individual functions f and fj for j ∈ S, we will
construct a span program for g. We remark that although we are here requiring
that the inner functions fj act on disjoint sets of bits, this assumption is not
necessary for the definition. It simplifies the notation, though, for the cases
S �= [n], and will suffice for our applications.

Let P be a span program computing fP = f . Let P have inner product space
V , target vector |t〉 and input vectors |vi〉 indexed by Ifree and Ijc for j ∈ [n]
and c ∈ {0, 1}.

For j ∈ [n], let sj ∈ [0,∞)mj be a vector of costs, and let s ∈ [0,∞)
∑

mj

be the concatenation of the vectors sj . For j ∈ S, let P j0 and P j1 be span
programs computing fP j1 = fj : {0, 1}mj → {0, 1} and fP j0 = ¬fj , with rj =
wsizesj

(P j0) = wsizesj
(P j1). For c ∈ {0, 1}, let P jc have inner product space V jc

with target vector |tjc〉 and input vectors indexed by Ijc
free and Ijc

kb for k ∈ [mj ],
b ∈ {0, 1}. For j /∈ S, let rj = sj .

Let IS =
⋃

j∈S,c∈{0,1} Ijc. Define ς : IS → [n] × {0, 1} by ς(i) = (j, c) if
i ∈ Ijc. The idea is that ς maps i to the input span program that must evaluate
to 1 in order for |vi〉 to be available in P .

There are several ways of composing the span programs P and P jc to obtain
a span program Q computing the composed function fQ = g with wsizes(Q) ≤
wsizer(P ) [Rei09, Defs. 4.4, 4.5, 4.6]. We focus on direct-sum composition.

Definition 6 ([Rei09, Definition 4.5]). The direct-sum-composed span pro-
gram Q⊕ is defined by:

– The inner product space is V ⊕ = V ⊕ ⊕
j∈S,c∈{0,1}(C

Ijc ⊗ V jc). Any vector
in V ⊕ can be uniquely expressed as |u〉V +

∑
i∈IS

|i〉⊗ |ui〉, where |u〉 ∈ V and
|ui〉 ∈ V ς(i).

– The target vector is |t⊕〉 = |t〉V .
– The free input vectors are indexed by I⊕

free = Ifree∪IS ∪⋃
j∈S,c∈{0,1}(Ijc×Ijc

free)
with, for i ∈ I⊕

free,

|v⊕
i 〉 =

⎧
⎪⎨

⎪⎩

|vi〉V if i ∈ Ifree

|vi〉V − |i〉 ⊗ |tjc〉 if i ∈ Ijcandj ∈ S

|i′〉 ⊗ |vi′′〉 if i = (i′, i′′) ∈ Ijc × Ijc
free

(2.10)

– The other input vectors are indexed by I⊕
(jk)b for j ∈ [n], k ∈ [mj ], b ∈ {0, 1}.

For j /∈ S, I⊕
(j1)b = Ijb, with |v⊕

i 〉 = |vi〉V for i ∈ I⊕
(j1)b. For j ∈ S, let

I⊕
(jk)b =

⋃
c∈{0,1}(Ijc × Ijc

kb). For i ∈ Ijc and i′ ∈ Ijc
kb, let

|v⊕
ii′〉 = |i〉 ⊗ |vi′〉 . (2.11)

By [Rei09, Theorem 4.3], fQ⊕ = g and wsizes(Q⊕) ≤ wsizer(P ). (While that
theorem is stated only for the case S = [n], it is trivially extended to other
S ⊂ [n].) We give a bound on how quickly the full witness size can grow relative
to the witness size:
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Lemma 1. Under the above conditions, for each input x ∈ {0, 1}m1 × · · · ×
{0, 1}mn , with y = y(x),

– If g(x) = 1, let |w〉 be a witness to fP (y) = 1 such that
∑

j∈[n],i∈Ijyj

rj |wi|2 = wsizer(P, y).

Then

fwsizes(Q⊕, x)
wsizer(P, y)

≤ σ
(
y, |w〉) +

1 +
∑

i∈Ifree
|wi|2

wsizer(P, y)

where σ(y, |w〉) = max
j∈S:

∃i∈Ijyj
with〈i|w〉�=0

fwsizesj
(P jyj )

wsizesj
(P jyj )

. (2.12)

– If g(x) = 0, let |w′〉 be a witness to fP (y) = 0 such that
∑

j∈[n],i∈Ijȳj

rj |〈w′|vi〉|2 = wsizer(P, y).

Then

fwsizes(Q⊕, x)
wsizer(P, y)

≤ σ(ȳ, |w′〉) +
‖|w′〉‖2

wsizer(P, y)

where σ(ȳ, |w′〉) = max
j∈S:

∃i∈Ijȳj
with〈vi|w′〉�=0

fwsizesj
(P jȳj )

wsizesj
(P jȳj )

.

(2.13)

If S = ∅, then σ(y, |w〉) and σ(ȳ, |w′〉) should each be taken to be 1 in the above
equations.

Proof. We follow the proof of [Rei09, Theorem 4.3], except keeping track of the
full witness size. Note that if S = ∅, then Eqs. (2.12) and (2.13) are immediate
by definition of fwsizes(Q⊕, x).

Let I(y)′ = I(y) � Ifree =
⋃

j∈[n] Ijyj
.

In the first case, g(x) = 1, for j ∈ S let |wjyj 〉 ∈ CIjyj be a witness to

fP jyj (xj) = 1 such that fwsizes(P jyj , xj) = 1+
∑

i∈I
jyj
free

|wjyj

i |2+∑
k∈[mj ],i∈I

jyj
k(xj)k

(sj)k|wjyj

i |2. As in [Rei09, Theorem 4.3], let |w⊕〉 ∈ CI⊕(x) be given by

w⊕
i =

⎧
⎪⎨

⎪⎩

wi if i ∈ I(y)

wi′w
ς(i′)
i′′ if i = (i′, i′′) with i′ ∈ I(y)′ ∩ IS , i′′ ∈ Iς(i′)(x)

0 otherwise
(2.14)
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Then |w⊕〉 is a witness for fQ⊕(x) = 1, and we compute

fwsizes(Q⊕, x) ≤ 1 +
∑

i∈I⊕
free

|w⊕
i |2 +

∑

j∈[n],k∈[mj ],

i∈I⊕
(jk)(xj)k

(sj)k|w⊕
i |2

= 1 +
∑

i∈Ifree

|wi|2 +
∑

j∈[n]�S,i∈Ijxj

sj |wi|2 (2.15)

+
∑

j∈S,i∈Ijyj

|wi|2
(

1 +
∑

i′∈I
jyj
free

|wjyj

i′ |2

+
∑

k∈[mj ],i′∈I
jyj
k(xj)k

(sj)k|wjyj

i′ |2
)

= 1 +
∑

i∈Ifree

|wi|2 +
∑

j∈[n]�S,i∈Ijxj

sj |wi|2

+
∑

j∈S,i∈Ijyj

|wi|2 fwsizesj
(P jyj , xj) .

Equation (2.12) follows using the bound fwsizesj
(P jyj , xj) ≤ σ(y, |w〉)rj for

j ∈ S, and sj = rj for j /∈ S.
Next consider the case g(x) = 0. For j ∈ S, let |ujȳj 〉 ∈ V jȳj be a witness

for fP jȳj (xj) = 0 with fwsizes(P jȳj , xj) = ‖|ujȳj 〉‖2 +
∑

k∈[mj ],i∈I
jȳj

k(xj)k

(sj)k

|〈vi|ujȳj 〉|2. As in [Rei09, Theorem 4.3], let

|u⊕〉 = |w′〉V +
∑

i∈IS�I(y)

〈vi|w′〉|i〉 ⊗ |uς(i)〉 . (2.16)

Then |u⊕〉 is a witness for fQ⊕(x) = 0, and, moreover,

fwsizes(Q⊕, x) ≤ ‖|u⊕〉‖2 +
∑

j∈[n],k∈[mj ],i∈I⊕
(jk)(xj)k

(sj)k|〈v⊕
i |u⊕〉|2

= ‖|u⊕〉‖2 +
∑

j∈[n]�S
i∈Ijx̄j

sj |〈v⊕
i |u⊕〉|2

+
∑

j∈S,k∈[mj ],

i∈Ijȳj
,i′∈I

jȳj

k(xj)k

(sj)k|〈v⊕
ii′ |u⊕〉|2
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= ‖|w′〉‖2 +
∑

j∈[n]�S
i∈Ijx̄j

sj |〈vi|w′〉|2 (2.17)

+
∑

j∈S,i∈Ijȳj

|〈vi|w′〉|2
(

‖|ujȳj 〉‖2

+
∑

k∈[mj ],i′∈I
jȳj

k(xj)k

(sj)k|〈vi′ |ujȳj 〉|2
)

= ‖|w′〉‖2 +
∑

j∈[n]�S
i∈Ijx̄j

rj |〈vi|w′〉|2

+
∑

j∈S,i∈Ijȳj

|〈vi|w′〉|2 fwsizesj
(P jȳj , xj) .

Equation (2.13) follows using the bound fwsizesj
(P jȳj , xj) ≤ σ(ȳ, |w′〉)rj

for j ∈ S. �

Lemma 1 is a key step in the formula-evaluation results in this article
and [Rei11]. It is used to track the full witness size for span programs recur-
sively composed in a direct-sum manner along a formula. The proof of The-
orem 7 will require the lemma with the weaker bounds σ(y, |w〉), σ(ȳ, |w′〉) ≤
maxj∈S,c∈{0,1}fwsizesj

(P jc)/wsizesj
(P jc). Theorem 8 will use only the slightly

stronger bounds σ(y, |w〉) ≤ maxj∈Sfwsizesj
(P jyj )/wsizesj

(P jyj ), σ(ȳ, |w′〉) ≤
maxj∈Sfwsizesj

(P jȳj )/wsizesj
(P jȳj ). However, the proof of [Rei11, Theorem 1.1]

will require the bounds of Eqs. (2.12) and (2.13).

3 Evaluation of Almost-Balanced Formulas

In this section, we will apply the span program framework from [Rei09] to prove
Theorem 7. Our algorithm will be given by applying Theorem 9 to a certain
span program. Before beginning the proof, though, we will give two necessary
lemmas.

Consider a span program P with corresponding weighted graph GP , from
[Rei09, Definition 8.2]. We will need a bound on the operator norm of abs(AGPv

),
the entry-wise absolute value of the weighted adjacency matrix AGPv

. If P is
canonical [Rei09, Definition 5.1], then we can indeed obtain such a bound in
terms of the witness size of P :

Lemma 2. Let s ∈ (0,∞)k, and let P be a canonical span program computing
a function f : {0, 1}k → {0, 1} with input vectors indexed by the set I. Assume
that for each x ∈ {0, 1}k with f(x) = 0, an optimal witness to fP (x) = 0 is |x〉
itself. Then

‖ abs(AGP
)‖ ≤ 2k

(
1 +

wsizes(P )
minj∈[k] sj

)
+ |I| . (3.1)
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Proof. Recall from [Rei09, Definition 5.1], that P being in canonical form implies
that its target vector is |t〉 =

∑
x:f(x)=0 |x〉, and that the matrix A whose columns

are the input vectors of P can be expressed as

A =
∑

i∈I

|vi〉〈i| =
∑

j∈[k], x:f(x)=0

|x〉〈j, x̄j | ⊗ 〈vxj | . (3.2)

By assumption, for each x ∈ f−1(0),
∑

j∈[k]

sj‖|vxj〉‖2 = wsizes(P, x) ≤ wsizes(P ) . (3.3)

In particular, letting σ = minj∈[k] sj > 0, we can bound
∑

j∈[k]

‖|vxj〉‖2 ≤ 1
σ

∑

j∈[k]

sj‖|vxj〉‖2

≤ wsizes(P )
σ

. (3.4)

The rest of the argument follows from the definition of the weighted adja-
cency matrix AGP

. From [Rei09, Definition 8.1, Prop. 8.8], ‖ abs(AGP
)‖ ≤

‖ abs(BGP
)‖2, where BGP

is the biadjacency matrix corresponding to P ,

BGP
=

(|t〉 A
0 1

)
, (3.5)

and 1 is an |I| × |I| identity matrix. Now bound ‖ abs(BGP
)‖ by its Frobenius

norm:

‖ abs(AGP
)‖ ≤ ‖ abs(BGP

)‖2

≤ ‖ abs(BGP
)‖2F

= ‖|t〉‖2 +
∑

x:f(x)=0,
j∈[k]

‖|vxj〉‖2 + |I|

≤ 2k + 2k max
x:f(x)=0

∑

j∈[k]

‖|vxj〉‖2 + |I| . (3.6)

Equation (3.1) follows by substituting in Eq. (3.4). �
An important quantity in the proof of Theorem 7 will be σ−(ϕ), from Defi-

nition 2. For an almost-balanced formula ϕ, σ−(ϕ) = O(1).

Lemma 3. Consider a β-balanced formula ϕ over a gate set S in which every
gate depends on at least two input bits. Then for every vertex v, with children
c1, c2, . . . , ck,

Adv±(ϕv)
maxj Adv±(ϕcj

)
≥

√
1 +

1
β2

. (3.7)

In particular,
σ−(ϕ) ≤ (2 +

√
2)β2 . (3.8)
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Proof. Consider a vertex v with corresponding gate g = gv : {0, 1}k → {0, 1}.
By Theorem 2, Adv±(ϕv) = Adv±

s(g), where sj = Adv±(ϕcj
). It is immediate

from the definitions that ADV±
s (g) ≥ Advs(g). We will show that Advs(g) ≥√

1 + 1/β2(maxjsj), using that maxjsj/minj sj ≤ β.
Use the weighted minimax formulation of the adversary bound from [HLŠ07,

Theorem 18]:

Advs(g) = min
p

max
x,y∈{0,1}k

g(x) �=g(y)

1
∑

j:xj �=yj

√
px(j)py(j)/sj

, (3.9)

where the minimization is over all choices of probability distributions px over [k]
for x ∈ {0, 1}k.

Since the adversary bound is monotone increasing in each weight, the worst
case is when all but one of the weights are equal to maxjsj/β. Since for a scalar
c, Advcs(g) = cAdvs(g), we may scale so that one weight is β and all other
weights are 1. Assume that the first weight is s1 = β; the other k − 1 cases,
s2 = β and so on, are symmetrical. Assume also that g depends on the first bit;
otherwise Adv±

s (g) will not depend on s1 so one of the other cases will be worse.
Therefore, there exist inputs x, y ∈ {0, 1}k that differ only on the first bit, but
for which g(x) �= g(y).

Since the function g depends on at least two input bits, there also exists
a third input z ∈ {0, 1}k with x1 = z1 but g(z) = g(y) �= g(x). Indeed, if
g(z) = g(x) for every z with z1 = x1, and if g(z) = g(y) for every z with z1 = y1,
then g depends only on the first bit.

By Eq. (3.9),

ADV±
s (g) ≥ min

px,py,pz

max
{ 1

√
px(1)py(1)/s1

,
1

∑

j≥2
xj �=zj

√
px(j)pz(j)/sj

}
(3.10)

where the minimization is over only the three probability distributions px, py

and pz. In the above expression, we may clearly take py(1) = 1 and py(j) = 0
for j ≥ 2. We may also use the Cauchy-Schwarz inequality to bound the second
term above, and finally substitute s1 = β, sj = 1 for j ≥ 2 to obtain,

ADV±
s (g) ≥ min

px

max
{ β

√
px(1)

,
1

√∑
j≥2 px(j)

}
. (3.11)

The optimum is achieved for px(1) = β2/(1 + β2), so Adv±
s(g) ≥

√
1 + β2, as

claimed.
To derive Eq. (3.8), note that β ≥ 1 necessarily. Then the sum σ−(ϕ) is

dominated by the geometric series
∞∑

k=0

(
1 +

1
β2

)−k/2

, (3.12)

which is at most (2 +
√

2)β2, with equality at β = 1. �



Span-Program-Based Quantum Algorithm 95

Note that the 1-balanced formulas over S = {OR2} satisfy the inequal-
ity (3.7) with equality and come arbitrarily close to saturating the inequal-
ity (3.8).

With Lemmas 2 and 3 in hand, we are ready to prove Theorem 7.

Proof. (of Theorem 7) First of all, we may assume without loss of generality
that every gate in S depends on at least two input bits. Indeed, if a gate g :
{0, 1}k → {0, 1} depends on no input bits, i.e., is the constant 0 or constant 1
function, then g can be eliminated from any formula over S without changing the
adversary balance condition, since ADV±

s (g) = 0 for all cost vectors s ∈ [0,∞)k.
If a gate g : {0, 1}k → {0, 1} depends only on one input bit, say the first bit, then
ADV±

s (g) = s1 for all cost vectors s, and therefore similarly g can be eliminated
without affecting the adversary balance condition.

Consider ϕ an n-variable, β-balanced, read-once formula over the finite gate
set S. Let r be the root of ϕ. We begin by recursively constructing a span
program Pϕ that computes ϕ and has witness size wsize(Pϕ) = Adv±(ϕ). Pϕ is
constructed using direct-sum composition of span programs for each node in ϕ.
(Direct-sum composition is also the composition method used in [RŠ08].)

The construction works recursively, starting at the leaves of ϕ and mov-
ing toward the root. Consider an internal vertex v, with children c1, . . . , ck. Let
αj = Adv±(ϕcj

), where ϕcj
is the subformula of ϕ rooted at cj (Definition 1). In

particular, if cj is a leaf, then αj = 1. Assume that for j ∈ [k] we have inductively
constructed span programs Pϕcj

and P †
ϕcj

computing ϕcj
and ¬ϕcj

, respectively,

with wsize(Pϕcj
) = wsize(P †

ϕcj
) = αj . Apply [Rei09, Theorem 6.1], a generaliza-

tion of Theorem 4, twice to obtain span programs Pv and P †
v computing fPv

= gv

and fP †
v

= ¬gv, with wsizeα(Pv) = wsizeα(P †
v ) = ADV±

α (gv) = Adv±(ϕv).
Then let Pϕv

and P †
ϕv

be the direct-sum-composed span programs of Pv and
P †

v , respectively, with the span programs Pϕcj
, P †

ϕcj
according to the formula ϕ.

By definition of direct-sum composition, the graph GPϕv
is built by replacing

the input edges of GPv
with the graphs GPϕcj

or GP †
ϕcj

; and similarly for GP †
ϕv

.

Some examples are given in [Rei09, Appendix B] and in [RŠ08]. By [Rei09, The-
orem 4.3], Pϕv

(resp. P †
ϕv

) computes ϕv (¬ϕv) with wsize(Pϕv
) = wsize(P †

ϕv
) =

Adv±(ϕv).
Let Pϕ = Pϕr

. We wish to apply Theorem 9 to Pϕ to obtain a quantum
algorithm, but to do so will need some more properties of the span programs
Pv and P †

v . Recall from [Rei09, Theorem 5.2] that each Pv may be assumed to
be in canonical form, satisfying in particular that for any input y ∈ {0, 1}k with
gv(y) = 0 an optimal witness is |y〉 ∈ Cg−1

v (0) itself. Therefore, Lemma 2 applies,
and we obtain

‖ abs(AGPv
)‖ = 2k

(
1 +

wsizeα(Pv)
minj αj

)
+ |I| , (3.13)
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where |I| is the number of input vectors in Pv. Now use

wsizeα(Pv)
minj αj

=
maxjαj

minj αj

Adv±
α(gv)

maxjαj

≤ βk , (3.14)

where we have applied Eq. (1.10) and also ADV±
α (gv)/maxjαj ≤ Adv±(gv) ≤ k.

Additionally, by [Rei09, Lemma 6.6], we may assume that |I| ≤ 2k22k. Thus

‖ abs(AGPv
)‖ = β 2O(k) . (3.15)

By repeating this argument for the negated function ¬gv computed by a dual
span program P †

v ([Rei09, Lemma 4.1]), we also have ‖ abs(AG
P

†
v

)‖ = β 2O(k).
A consequence is that

‖ abs(AGPϕ
)‖ = β 2O(kmax) (3.16)

where kmax is the maximum fan-in of any gate used in ϕ. Indeed, GPϕ
is

built by “plugging together” the graphs GPv
and GP †

v
for the different ver-

tices v. Split the graph GPϕ
into two pieces, G0 and G1, comprising those

subgraphs GPv
and GP †

v
for which the distance of v from r is even or

odd, respectively. Then ‖ abs(AGPϕ
)‖ ≤ ‖ abs(AG0)‖ + ‖ abs(AG1)‖. Since

each Gb is the disconnected union of graphs GPv
and GP †

v
, ‖ abs(AGb

)‖ ≤
maxv max{‖ abs(AGPv

)‖, ‖ abs(AGP
†
v
)‖}.

Let us bound the full witness size of Pϕ.

Lemma 4. Let v be a vertex of ϕ. Then

max
{
fwsize(Pϕv

), fwsize(P †
ϕv

)
} ≤ σ−(v)Adv±(ϕv) . (3.17)

Proof. The proof is by induction in the maximum distance from v to a leaf. The
base case, that all of v’s inputs are themselves leaves is by definition of Pv and
P †

v , since then σ−(v) = 1 + 1/Adv±(gv).
Let v have children c1, . . . , ck. By Lemma 1 with s =

−→
1 and S = {j ∈ [k] :

cj is not a leaf},

fwsize(Pϕv
)

Adv±(ϕv)
≤ 1

Adv±(ϕv)
+ max

j∈S
max

{
fwsize(Pϕcj

)

Adv±(ϕcj
)

,
fwsize(P †

ϕcj
)

Adv±(ϕcj
)

}

. (3.18)

In the case ϕv(x) = 1, this follows since Pv is strict, so in Eq. (2.12) the sum
over Ifree is zero. In the case ϕv(x) = 0, this follows since Pv is in canonical form,
so in Eq. (2.13), ‖|w′〉‖2 = 1.

Now by induction, the right-hand side is at most Adv±(ϕv)−1 +
maxj∈Sσ−(ϕcj

) = σ−(v). �
In particular, applying Lemma 4 for the case v = r, we find

fwsize(Pϕ) ≤ σ−(ϕ)Adv±(ϕ) = O
(
β2Adv±(ϕ)

)
(3.19)
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since σ−(ϕ) = O(β2) by Lemma 3. Combining Eqs. (3.16) and (3.19) gives

fwsize(Pϕ) ‖ abs(AGPϕ
)‖ = β3 2O(kmax)Adv±(ϕ) . (3.20)

This is O(Adv±(ϕ)); since the gate set S is fixed and finite, kmax = O(1).
Theorem 7 now follows from Theorem 9. �

Note that the lost constant in the theorem grows cubically in the balance
parameter β and exponentially in the maximum fan-in kmax of a gate in S. It is
conceivable that this exponential dependence can be improved.

For future reference, we state separately the bound used above to derive
Eq. (3.16).

Lemma 5. If Pϕ is the direct-sum composition along a formula ϕ of span pro-
grams Pv and P †

v , then

‖ abs(AGP
)‖ ≤ 2max

v∈ϕ
max{‖ abs(AGPv

)‖, ‖ abs(AGP
†
v
)‖} . (3.21)

If the span programs Pv are monotone, then ‖ abs(AGP
)‖ ≤ 2max

v
‖ abs(AGPv

)‖.

The claim for monotone span programs follows because then the dual span
programs P †

v are not used in Pϕ.

4 Evaluation of Approximately Balanced AND-OR
Formulas

The proof of Theorem 8 will again be a consequence of Lemma 1 and Theorem
9.

We will use the following strict, monotone span programs for fan-in-two AND
and OR gates:

Definition 7. For s1, s2 > 0, define span programs PAND(s1, s2) and POR(s1, s2)
computing AND2 and OR2, {0, 1}2 → {0, 1}, respectively, by

PAND(s1, s2) :|t〉 =
(

α1

α2

)
, |v1〉 =

(
β1

0

)
, |v2〉 =

(
0
β2

)
(4.1)

POR(s1, s2) :|t〉 = δ, |v1〉 = ε1, |v2〉 = ε2 (4.2)

Both span programs have I1,1 = {1}, I2,1 = {2} and Ifree = I1,0 = I2,0 = ∅. Here
the parameters αj , βj , δ, εj , for j ∈ [2], are given by

αj = (sj/sp)1/4 βj = 1 (4.3)

δ = 1 εj = (sj/sp)1/4 , (4.4)

where sp = s1 + s2. Let α =
√

α2
1 + α2

2 and ε =
√

ε21 + ε22.
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Note that α, ε ∈ (1, 21/4]. They are largest when s1 = s2.

Claim. The span programs PAND(s1, s2) and POR(s1, s2) satisfy:

wsize(√s1,
√

s2)(PAND, x) =

{√
sp if x ∈ {11, 10, 01}√
sp

2 if x = 00

wsize(√s1,
√

s2)(POR, x) =

{√
sp if x ∈ {00, 10, 01}√
sp

2 if x = 11
(4.5)

Proof. These are calculations using Definition 5 for the witness size. Letting
σ = (

√
s1,

√
s2), Q = PAND(s1, s2) and R = POR(s1, s2), we have

wsizeσ(Q, 11) =
(α1

β1

)2√
s1 +

(α2

β2

)2√
s2 =

√
sp (4.6)

wsizeσ(Q, 10) =
(β2

α2

)2√
s2 =

√
sp (4.7)

wsizeσ(Q, 00) =
((α1

β1

)2 1√
s1

+
(α2

β2

)2 1√
s2

)−1

=
√

sp

2
(4.8)

wsizeσ(Q, 01) =
(β1

α1

)2√
s1 =

√
sp (4.9)

and

wsizeσ(R, 11) = δ2
( ε21√

s1
+

ε22√
s2

)−1

=
√

sp

2
(4.10)

wsizeσ(R, 10) =
( δ

ε1

)2√
s1 =

√
sp (4.11)

wsizeσ(R, 00) =
(ε1

δ

)2√
s1 +

(ε2
δ

)2√
s2 =

√
sp (4.12)

wsizeσ(R, 01) =
( δ

ε2

)2√
s2 =

√
sp . (4.13)

It is not a coincidence that wsizeσ(Q,x) = wsizeσ(R, x̄) for all x ∈ {0, 1}2. This
can be seen as a consequence of De Morgan’s laws and span program duality—
see [Rei09, Lemma 4.1]. �

Proof. (of Theorem 8) Let ϕ be an AND-OR formula of size n, i.e., on n input
bits.

First expand out the formula so that every AND gate and every OR gate
has fan-in two. This expansion can be carried out without increasing σ−(ϕ) by
more than a factor of 10:

Lemma 6 ([ACR+10, Lemma 8]) For any AND-OR formula ϕ, one can
efficiently construct an equivalent AND-OR formula ϕ′ of the same size, such
that all gates in ϕ′ have fan-in at most two, and σ−(ϕ′) = O(σ−(ϕ)).
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Therefore we may assume that ϕ is a formula over fan-in-two AND and OR
gates.

Now use direct-sum composition to compose the AND and OR gates accord-
ing to the formula ϕ, as in the proof of Theorem 7. Since the span programs for
AND and OR are monotone, direct-sum composition does not make use of dual
span programs computing NAND or NOR. Therefore there is no need to specify
these span programs. At a vertex v, set the weights s1 and s2 to equal the sizes of
v’s two input subformulas. Let Pv be the span program used at vertex v, Pϕv

be
the span program thus constructed for the subformula ϕv, and Pϕ be the span
program constructed computing ϕ. With this choice of weights, it follows from
Claim 4 and [Rei09, Theorem 4.3] that wsize(Pϕv

) = Adv±(ϕv) = Adv(ϕv).
Notice that for all s1, s2 ∈ [0,∞), ‖ abs(AGPAND(s1,s2))‖ = O(1) and

‖ abs(AGPOR(s1,s2))‖ = O(1). Therefore, by Lemma 5, we obtain that
‖ abs(AGPϕ

)‖ = O(1).
Thus to apply Theorem 9 we need only bound fwsize(Pϕ). Lemma 4 does

not apply, because for PAND(s1, s2), an optimal witness |w′〉 to fPAND(x) = 0
might have ‖|w′〉‖2 > 1, as each αj < 1. (Lemma 4 would apply had we set the
parameters to be α1 = α2 = 1, βj = (sp/sj)1/4, but then ‖AGPAND

‖ would not
necessarily be O(1).) However, analogous to Lemma 4, we will show:

Lemma 7. Let v be a vertex of ϕ. Then

fwsize(Pϕv
, x) ≤

{
σ−(v)Adv(ϕv) if ϕv(x) = 1
2σ−(v)Adv(ϕv) − 1 if ϕv(x) = 0

(4.14)

Proof. The proof is by induction in the maximum distance from v to a leaf. The
base case, that v’s two inputs are themselves leaves is by definition of Pv, since
then σ−(v) = 1 + 1/

√
2.

Let v have children c1 and c2. We will use Lemma 1 with s =
−→
1 , S = {j ∈

[2] : cj is not a leaf}.
If ϕv(x) = 1, then since Pv is a strict span program, i.e., Ifree = ∅, Eq. (2.12)

gives
fwsize(Pϕv

, x)
Adv(ϕv)

≤ 1
Adv(ϕv)

+ max
j∈S

fwsize(Pϕcj
)

Adv(ϕcj
)

. (4.15)

By induction, the right-hand side is at most 1/Adv(ϕv) + max
j

σ−(cj) = σ−(v).

If ϕv(x) = 0 and gv is an OR gate, then the unique witness |w′〉 for Pv has
‖|w′〉‖ = 1, from Definition 7. From Eq. (2.13) and the induction hypothesis,

fwsize(Pϕv
, x)

Adv±(ϕv)
≤ 1

Adv(ϕv)
+ max

j∈S

(
2σ−(cj) − 1

Adv(ϕcj
)

)

< 2σ−(v) − 1
Adv(ϕv)

, (4.16)

as claimed.
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Therefore assume that ϕv(x) = 0 and gv is an AND gate. Let s1 and s2
be the sizes of the two input subformulas to v, sp = s1 + s2 = Adv(ϕv)2,
and assume without loss of generality that ϕc1(x) = 0. If ϕc2(x) = 0 as well,
then assume without loss of generality that 2σ−(c1) − 1√

s1
≥ 2σ−(c2) − 1√

s2
,

so σ(ȳ) ≤ 2σ−(c1) − 1√
s1

. Then the witness |w′〉 may be taken to be |w′〉 =

(1/α1, 0) =
(
(sp/s1)1/4, 0

)
. From Eq. (2.13),

fwsize(Pϕv
, x)

Adv±(ϕv)
≤

√
sp/s1

Adv±(ϕv)
+ σ(ȳ)

≤ 1√
s1

+
(
2σ−(c1) − 1√

s1

)

< 2σ−(v) − 1√
sp

, (4.17)

as claimed. �
In particular, applying Lemma 7 for the case v = r, we find

fwsize(Pϕ) ≤ 2σ−(ϕ)Adv(ϕ) = 2σ−(ϕ)
√

n . (4.18)

Theorem 8 now follows from Theorem 9. �

5 Open Problems

In order to begin to relax the balance condition for general formulas, it seems that
we need a better understanding of the canonical span programs. For example,
can the norm bound Lemma 2 be improved?

Although the two-sided bounded-error quantum query complexity of eval-
uating formulas is beginning to be understood, the zero-error quantum query
complexity [BCWZ99] appears to be more complicated. For example, the exact
and zero-error quantum query complexities for ORn are both n [BBC+01]. On
the other hand, Ambainis et al. [ACGT10] use the [ACR+10] algorithm as a
subroutine in the construction of a self-certifying, zero-error quantum algorithm
that makes O(

√
n log2 n) queries to evaluate the balanced binary AND-OR for-

mula. It is not known how to relax the balance requirement or extend the gate
set.

Can we develop further methods for constructing span programs with small
full witness size, norm and maximum degree? A companion paper [Rei11] studies
reduced tensor-product span program composition in order to complement the
direct-sum composition that we have used here.

The case of formulas over non-boolean gates may be more complicated [Rei09],
but is still intriguing.
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