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Abstract. The Turaev-Viro invariants are scalar topological invariants
of three-dimensional manifolds. Here we show that the problem of esti-
mating the Fibonacci version of the Turaev-Viro invariant of a mapping
torus is a complete problem for the one clean qubit complexity class
(DQC1). This complements a previous result showing that estimating
the Turaev-Viro invariant for arbitrary manifolds presented as Heegaard
splittings is a complete problem for the standard quantum computa-
tion model (BQP). We also discuss a beautiful analogy between these
results and previously known results on the computational complexity
of approximating the Jones Polynomial.

1 Introduction

Classifying the power of quantum computers is a fundamental problem in quan-
tum information science. The computational power of a general-purpose
quantum computer is identified with the complexity class BQP (bounded-error
quantum polynomial time). The famous problems of factoring and discrete loga-
rithm, for instance, are in BQP. An essential ingredient of BQP computation is
the ability to initialize a large number of qubits into a specific pure state. In some
proposed physical implementations, however, this appears to be an extremely
difficult task. In 1998, Knill and Laflamme proposed that exponential speedups
over classical computers could still be possible, even if one can only initialize a
single qubit into a pure state, with the rest of the qubits in the maximally mixed
state [17]. The complexity class thus defined is called DQC1 (deterministic quan-
tum computation with one clean qubit), or simply “the one clean qubit class.”
This class contains several problems for which no efficient classical algorithms
are known. The most basic of these is the problem of estimating the trace of a
unitary operator. In fact, trace estimation is DQC1-complete: not only is it in
DQC1, but any other problem in DQC1 can be reduced to it.

Finding natural BQP-complete and DQC1-complete problems is essential to
our understanding of the computational power afforded by quantum comput-
ers. Remarkably, BQP-complete problems can be found in areas of mathematics
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without a priori close connection to quantum computation. In particular, approx-
imating the Jones polynomial, a famous invariant of links, is a BQP-complete
problem [1,2,12–14,29]. The input is an element of the braid group, and the
output is an estimate of the Jones polynomial of the so-called plat closure of
the braid. Estimating the Jones polynomial of the so-called trace closure of the
braid is DQC1-complete [16,25].

Recent work [3,15] showed that (the decision version of) approximating cer-
tain invariants of 3-manifolds is a BQP-complete problem. In this formulation,
the input is a so-called Heegaard splitting of a 3-manifold, specified as an ele-
ment of the mapping class group. The output is an estimate of the Turaev-Viro
invariant of the input manifold. In this article we show that approximating the
Turaev-Viro invariant of a 3-manifold specified as a mapping torus is a com-
plete problem for the one clean qubit class. In Sect. 5, we use the language of
Topological Quantum Field Theories (or TQFTs) to explain the mathematical
underpinnings of the relationship between approximating the Jones polynomial
of the plat and trace closures, and approximating the Turaev-Viro invariant of
Heegaard splittings and mapping tori.

We assume only a basic understanding of topology and quantum compu-
tation. Needed concepts in manifold invariants and one clean qubit computa-
tion are explained in Sect. 2. Our exposition focuses on the Witten-Reshetikhin-
Turaev (or WRT) invariant. This is only a matter of convenience, as it is known
that the Turaev-Viro invariant is equal to the absolute square of the WRT invari-
ant [23,26–28].

2 Background

2.1 Two-Manifolds and Three-Manifolds

We begin by setting down a few basic definitions from low-dimensional topol-
ogy. Recall that an n-manifold is a topological space1 whose every point has a
neighborhood that looks like (i.e., is homeomorphic to) an open subset of Rn.
Simple examples of one-dimensional manifolds include the line R and the circle
S1. Simple examples of two-dimensional manifolds include the the plane R

2, the
sphere S2, and the torus Σ1 = S1×S1, which we can visualize as the surface of a
donut. More generally, the surface of a donut with g holes is also a two-manifold,
which we call the surface of genus g and denote by Σg. The genus is a complete
invariant of surfaces2: homeomorphic surfaces have the same number of handles
(invariance), and non-homeomorphic surfaces have a different number of handles
(completeness).

The simplest example of a 3-manifold is R
3 itself. A nontrivial example is

found by taking the product of Σ1 with a third circle; the result is the three-
dimensional torus T 3 = S1×S1×S1. Given a surface Σg, the cylinder Σg × [0, 1]

1 More precisely, a second-countable Hausdorff space.
2 In this work, we implicitly assume that all surfaces are closed, compact, connected

and orientable.
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Fig. 1. A Dehn twist is a 2π rotation about a closed curve. The Dehn twists along the
3g − 1 curves illustrated here constitute a standard set of generators for the mapping
class group of the genus g surface.

is a 3-manifold whose boundary consists of two copies of Σg (specifically, the
bottom Σg × {0} and the top Σg × {1}.) We can turn the cylinder into a 3-
manifold without boundary by choosing a homeomorphism f : Σg → Σg and
gluing each point on the top to its image under f on the bottom. The result is
the mapping torus of f :

Tg,f =
Σg × [0, 1]

(x, 1) ∼ (f(x), 0)
.

For example, choosing g = 1 and f to be the identity map, we see that T1,1 = T 3.
A useful example of a nontrivial self-homeomorphism of Σg is the so-called Dehn
twist. To visualize a Dehn twist, imagine cutting the handle of Σ1 to get a tube,
performing a 2π twist on one end of the tube, and then gluing the handle back
together. In general, a Dehn twist can be performed around any noncontractible
closed curve.

The (homeomorphism class of) the mapping torus Tg,f depends only on
the isotopy class of f . The orientation-preserving self-homeomorphisms of Σg

form a group under composition. This group, taken modulo isotopy, is called
the mapping class group of Σg, and is denoted MCG(g). MCG(g) is generated
by the Dehn twists about the 3g − 1 canonical curves shown in Fig. 1. Any map-
ping torus Tg,f is thus described by a word in the Dehn twist generators of
MCG(g).

2.2 The Witten-Reshetikhin-Turaev Invariants

Recall that the genus is an invariant of surfaces because it assigns the same
number to homeomorphic surfaces. One can also define invariants of 3-manifolds,
although none are as simple and powerful as the genus. In the 1990s, Witten,
Reshetikhin, and Turaev discovered a family of 3-manifold invariants arising from
their work in Topological Quantum Field Theory. While these invariants can be
defined for arbitrary 3-manifolds, we only concern ourselves with the special case
of mapping tori, where the definitions are relatively straightforward. Specifically,
the Witten-Reshetikhin-Turaev (WRT) invariant of a mapping torus Tg,f is equal
to the trace of f in a certain projective representation of the mapping class group
MCG(g). Note that the WRT function is only a topological invariant up to a
phase (see [3]). In general, the WRT invariant is parametrized by a quantum
group, such as SU(N)k or SO(N)k. Although some of our results apply more
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Fig. 2. The dashed lines indicate a set of cuts that decomposes the surface into two
three-punctured-spheres (“pants”). Dual to this is a trivalent graph called the “spine,”
in red. The genus two and genus three cases are shown here.

1 10 1 1 1 1 00 0 0 0 0 01

Fig. 3. The Fibonacci model’s fusion rules allow five labelings of the standard spine
of the genus two surface. This means that the WRT representation of MCG(2) is five-
dimensional.

generally, we focus on the case of SO(3)3, sometimes called the Fibonacci model.
In this case, the description of the representation is particularly simple, and can
be understood with no background in quantum groups.

The Fibonacci representation is defined as follows. Any genus g surface (for
g > 1) can be cut into three-punctured spheres, resulting in a so-called pants
decomposition. Dual to such a decomposition is a trivalent graph on the surface,
called a spine. As illustrated in Fig. 2, the spine has one vertex for every pant
in the decomposition. Whenever two pants meet at a puncture, the spine has an
edge between the corresponding vertices. While a surface admits many spines
(and corresponding pants decompositions), we call the one shown in Fig. 2 the
standard spine. We label the edges of the standard spine by so-called anyon types,
with fusion rules enforced at each vertex. For the Fibonacci model, there are only
two anyon types: 0 and 1, and only one fusion rule: no vertex can have exactly
two edges labeled 0 incident on it. The case g = 2 is pictured in Fig. 3. The
formal span (over C) of all such labelings associates a finite-dimensional vector
space to the surface. Different spines yield different bases for this same space.
We can move between these spines (and the corresponding bases) by means of
two “moves,” the F-move:

=
∑
n

F ijm
kln

and the S-move:

=
∑
k

Si
jk
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For the Fibonacci model F def
abc is as follows
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with all other values equal to zero or one as dictated by the fusion rules. As one
can calculate using the prescription described in [3], Si

jk is given in the Fibonacci
model by

DS0
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(
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√
5

2

)2

and all other values of Si
jk equal to zero by the fusion

rules.
The space described above is the underlying vector space for the Fibonacci

representation of MCG(g). We define this representation in the basis correspond-
ing to the standard spine. Since the mapping class group is finitely-generated, it
suffices to describe the images of the Dehn twist generators. Any such generator
is a 2π twist along some canonical curve c from Fig. 1. It is not hard to check
that, by applying at most one F-move and one S-move, the standard spine can
be adjusted so that c is a cut in the corresponding pants decomposition. In this
basis, the Dehn twist about c induces a diagonal linear transformation. To each
labeling of the spine corresponds a basis vector, and this basis vector obtains
a phase determined by the label on the edge of the spine that intersects c. In
the Fibonacci model, edges labeled 0 obtain a phase of 1, and edges labeled 1
obtain a phase of ei3π/5. In the standard spine basis, the matrix corresponding
to the Dehn twist about c is thus simply a product of at most five matrices: at
most two of the moves pictured above, followed by a diagonal matrix, followed
by the inverse moves to return to the original basis. The WRT invariant of the
mapping torus Tg,f is now simply the trace of the Fibonacci representation,
evaluated at f .

2.3 One Clean Qubit

In some proposed implementations of quantum computers, such as nuclear mag-
netic resonance (NMR) the most difficult task is initializing qubits into a pure
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state. In 1998, Knill and Laflamme proposed that exponential speedups over
classical computation might be possible without pure state initialization. To
mathematically investigate this possibility, they introduced the one clean qubit
model [17]. In this model, one is given an initial state ρ with n qubits in the
maximally mixed state, and one qubit in the pure state |0〉.

ρ = |0〉 〈0| ⊗ 1

2n

One then applies any quantum circuit of poly(n) gates to this state, and mea-
sures the first qubit in the computational basis. Computational problems are
solved by performing polynomially many such experiments, each starting with
the initial state ρ, and recording the output statistics. The class of decision prob-
lems solvable with bounded probability of error using this procedure is called
DQC1.

DQC1 contains several computational problems not known to be solvable in
polynomial time on classical computers. Most fundamentally, given a descrip-
tion of a quantum circuit of T gates implementing the unitary transformation
U on n qubits, a one clean qubit computer can estimate the normalized trace
TrU
2n to within ±ε in time O(T/ε2) by means of the circuit shown in Fig. 4. Fur-

thermore, this problem of estimating the trace of a quantum circuit is DQC1-
hard [17,24,25]. Efficient one clean qubit algorithms have been discovered for
estimating certain quadratically signed weight enumerators [18] and estimating
certain Jones [25] and HOMFLY [16] polynomials. A version of the Jones polyno-
mial problem is DQC1-complete [25], and has been demonstrated experimentally
with NMR [20,22]. A certain problem of approximating partition functions for
quantum systems is also DQC1-hard [6].

In many ways, it is surprising that one clean qubit computers can do any non-
trivial computations at all. If all n+1 qubits were maximally mixed, the resulting
state would be invariant under all unitaries. Furthermore, DQC1 computations
involve very little entanglement [7–11,19]. Ambainis et al. give an impossibility
proof against a certain natural approach to simulating standard quantum com-
puters using one clean qubit computers, and on the other hand show that one
clean qubit computers can efficiently simulate classical logarithmic depth (NC1)
computations [4].

The DQC1 complexity class is robust against a variety of modifications
to the computational model. The class of computational problems solvable in
polynomial time with up to logarithmically many clean qubits is the same as

Fig. 4. By repeating this one clean qubit computation, and recording the fraction of 0
outcomes, one estimates the real part of Tr[U ]/2n. Similarly, by initializing the clean

qubit to 1√
2
(|0〉 − i |1〉), one obtains p0 = 1

2
+ Im(Tr[U ])

2n
.
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that solvable in polynomial time with one clean qubit [25]. If the clean qubit is
not pure, but has 1/poly(n) polarization, the set of efficiently solvable problems
also remains DQC1 [17]. As shown in Appendix A, the one clean qudit model
on d-dimensional qudits is equivalent in power to the one clean qubit model, for
any constant d.

3 Algorithm

In this section we construct an efficient one clean qubit algorithm for approxi-
mating the Fibonacci WRT invariant of a mapping torus. Generalizing to other
tensor categories such as SU(N)k and SO(N)k is straightforward. The main idea
of the algorithm is, given a word w in the Dehn twist generators of MCG(g),
to find a quantum circuit of poly(w, g) gates on poly(g) qubits whose trace is
equal to the WRT invariant of the 3-manifold Tg,w. This trace can then be
approximated by means of the circuit in Fig. 4. For this purpose, we encode the
allowed labelings of a spine of Σg into qubits, and then construct a quantum
circuit implementing the Fibonacci representation of MCG(g) on this encoding.
The most obvious encoding would be to directly assign one qubit to store the
particle type for each edge of the spine. However, a one clean qubit computer
yields the normalized trace over all 2n bitstrings, of which only an exponentially
small fraction represent valid spine labelings in this encoding.

We instead construct a many-to-one map

ϕ : {0, 1}β(3g−3) → {valid labelings}
with β = O(log |g|) such that the preimage of each spine-labeling consists of
approximately the same number of bitstrings. That is, |ϕ−1(x)| is approximately
independent of x. Thus, the normalized trace of the Fibonacci representation of
w ∈ MCG(g) acting on the ϕ-encoded labelings of the spine of Σg is approx-
imately equal to WRT(Tg,w). We construct ϕ following a method introduced
in [16]. We assign a register of β = O(log |g|) qubits to each edge of the spine.
The bitstring contained in register i is interpreted as an integer 0 ≤ xi ≤ 2β − 1.
We then assign a threshold Ti so that xi ≤ Ti encodes a zero label on edge i, and
xi > Ti encodes a one label. By carefully choosing the thresholds T1, . . . , T3g−3

we ensure that |ϕ−1(x)| is approximately independent of x.
Number the edges of the spine from one to 3g−3, left to right and top to bot-

tom, as illustrated in Fig. 5. Let s1, . . . , s3g−3 ∈ {0, 1}3g−3 be the labels of these
edges. The uniform probability distribution over all fusion-consistent labelings

8
1

2
3

4

5
6

7

...

Fig. 5. We number the edges of the standard spine from left to right, with ambiguities
resolved by ordering from top to bottom.
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of the spine induces a probability distribution pg(s1 . . . , s3g−3) over {0, 1}3g−3,
with zero probability for strings that violate fusion rules, and uniform probabil-
ity for the rest. For the genus-g standard spine, we define pg(si|s1, . . . , si−1) to
be the conditional probability that label i takes the value si given that labels 1
through i − 1 take the values s1, . . . , si−1. For a register representing a label si

we choose the threshold dependent on the values of s1, . . . , si−1 according to

Ti(g; s1, . . . , si−1) =
⌈
2βpg(0|s1, . . . , si−1)

⌋
. (1)

One can see that this choice ensures that a uniformly selected assignment of
bitstrings to the registers yields a uniform distribution over fusion-consistent
labelings, up to the errors induced by rounding. Hence, |ϕ−1(x)| is approximately
independent of x. More precisely, let

p̃g(0|s1, . . . , si−1) = Ti(g; s1, . . . , si−1)/2β

p̃g(1|s1, . . . , si−1) = 1 − p̃g(0|s1, . . . , si−1)

Thus,

|ϕ−1(s1, . . . , s3g−3)| =2β(3g−3)p̃g(s3g−3|s1, . . . , s3g−4)×
× p̃g(s3g−4|s1, . . . , s3g−5) × . . . × p(s1)

=2β(3g−3)
(
pg(s3g−3|s1, . . . , s3g−4) ± O(2−β)

) ×
× . . . × (

pg(s1) ± O(2−β)
)

=pg(s1, . . . , s3g−3) ± O(g2−β).

Thus it suffices to choose β = O(log g). Furthermore, by the locality of the
fusion rules, pg(si|s1, . . . , si−1) is always independent of s1, . . . , si−3. We may
thus write

pg(si|s1, . . . , si−1) = pg(si, si−1, si−2; i)
Ti(g; s1, . . . , si−1) = Ti(g; si, si−1, si−2). (2)

As illustrated in Fig. 6, the Fibonacci representation of a Dehn twist from
the standard generating set is a unitary transformation acting on at most five
spine labels. Because the encoding ϕ is many-to-one, the unitary transformation
on these spine labels does not uniquely define a unitary operation on the bit-
strings encoding them. We say that a pair of spine-labelings is connected if the
Fibonacci representation of a Dehn twist from the standard set of generators has
a nonzero matrix element between them. By choosing a bijection bx,y between
the encodings of each pair of connected spin-labelings we define a unitary trans-
formation on the encodings: if the matrix element between labeling x and y is
ρx,y then,

Ui,j =
{

ρx,y ifϕ(i) = x, ϕ(j) = y, and bx,y(i) = j
0 otherwise (3)

is a corresponding unitary representation on the encodings. Our choice of bijec-
tions does not matter. We may for concreteness match bitstrings by lexicographic
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a

b
c d

acts on a, b, c, d

a
acts on a

a

b

c

e

d

acts on a, b, c, d, e

Fig. 6. The Fibonacci representation of a Dehn twist (shown as a dashed line) from
the standard generating set is a unitary transformation acting on at most five spine
labels.

ordering. One can verify that U is a direct sum of many copies of the Fibonacci
representation ρ. (The rounding involved in (1) introduces a minor technical
complication, whose resolution may be found in [16].)

For any of the standard Dehn twist generators, Ui,j acts on at most 5β qubits,
which encode the spine-labels on which ρ acts. The matrix elements by which
U acts on these qubits depends on the corresponding thresholds. By (2), these
depend on at most two additional registers of qubits, which encode the two
spine labels to the left of those being acted upon. Thus, for any of the standard
Dehn twist generators, Ui,j is a controlled unitary acting on at most 5β target
qubits and 2β control qubits. Recalling that β = O(log |g|), we can apply the
standard construction from Section 4.5 of [21] to implement this unitary trans-
formation with poly(|g|) quantum gates, provided each matrix element of Ui,j

can be computed efficiently. By (3), one sees that the only potentially difficult
part of computing the matrix elements of 3 is the computation of the thresholds.
An efficient classical algorithm for this task is given in Appendix C.

4 Hardness

In this section we prove that the problem of estimating the normalized WRT
Fibonacci invariant of a mapping torus, given by a polynomial-length word in
the standard Dehn twist generators of the mapping class group, to within ±ε
is DQC1-hard for ε < 1/3900. Generalizing our hardness proof beyond the
Fibonacci model seems less straightforward than generalizing our algorithm.
However, we consider it likely to be possible. Extending hardness to larger val-
ues of ε we leave as an open problem. To prove hardness, we reduce from the
problem of estimating the absolute value of the normalized trace of a quan-
tum circuit. A proof of the hardness of absolute trace estimation is given in
Appendix B. We thus require an efficient procedure that, given a description
of a quantum circuit for implementing a unitary U , outputs a description of a
mapping torus (i.e., a word in the Dehn twist generators) whose WRT invariant
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is close to the trace of U . It turns out to be convenient to suppose that U is a
quantum circuit acting on a collection of 5-dimensional qudits (“qupents”). As
shown in Appendix A, this makes no difference: the one-clean-qubit model is
equivalent to the one-clean-qupent model.

Let U be a quantum circuit of G gates acting on n qupents arranged in a
line. Without loss of generality, we may assume that each gate acts either on
a single qupent or a pair of neighboring qupents. To prove hardness, we first
define a many-to-one encoding ψ : S3n → {0, 1, 2, 3, 4}n, where S3n is the set
of fusion-consistent labelings of the standard spine of the surface of genus 3n.
We divide the genus-3n surface into n segments, each having three handles.
The number of fusion-consistent labelings for a genus-three segment with two
punctures depends on the labels on the incoming and outgoing edges, as shown
below.

0 0

0 1

1 0

1 1

has 20 labelings

has 35 labelings

has 20 labelings

has 15 labelings

In all cases, the number of fusion-consistent labelings is a multiple of five. Thus,
in every case a qupent can be encoded in the space of labelings, together with a
“gauge” qudit, whose value we ignore, which has dimension 3, 4, or 7, depending
on the labels of the incoming edges. Thus the size |ψ−1(z)| of the preimage of
any z ∈ {0, 1, 2, 3, 4}n is exactly independent of z. Given any unitary U acting
on n qupents, there corresponds a unitary acting on the span of S3n which acts
as U on the encoded qupents, and as the identity on the gauge qudits. We call
this the ψ-encoding of U .

As shown in [14], the Fibonacci representation of the mapping class group
of the genus g > 1 surface is dense in the corresponding unitary group, modulo
phase. Thus, given any unitary operation on n qupents, we can find a sequence of
Dehn twists which approximates its ψ-encoding arbitrarily closely. The trace of
the ψ-encoding is thus equal to the trace of the original quantum circuit, up to a
phase. The remaining question is whether this reduction can be done efficiently.

Cutting the genus-3n surface into n equal segments yields n − 2 genus-3
doubly-punctured surfaces, and two genus-3 singly-punctured surfaces, as shown
below.

×(n − 2)

One can pants-decompose a punctured surface, thereby associating the surface
to a spine. The spine has one “external”edge for each puncture, which attaches
to the rest of the spine at only one vertex. Upon labeling the spine, we can
associate the label of any external edge with the corresponding puncture. The
Fibonacci representation may then be extended to the label-preserving mapping
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class group of the punctured surface. This group includes all the standard Dehn
twists, together with braiding of punctures with the other punctures of the same
label. In the Fibonacci representation, braiding of zero-labeled punctures has no
effect, thus a zero-labeled puncture is equivalent to the absence of a puncture.

Theorem 6.2 of [14] states that for any fixed labels on the punctures, the
Fibonacci representation of the label-preserving mapping class group of the r-
punctured genus-g surface is dense in the corresponding unitary group modulo
phase, provided g + r > 1. Thus, given any one-qupent gate, the Solovay-Kitaev
theorem [21] efficiently yields a sequence of Dehn twists and braid moves on
the corresponding genus-3 singly-punctured or doubly-punctured surface, whose
Fibonacci representation approximates the ψ-encoded gate arbitrarily closely.
Similarly, one efficiently approximates two-qupent gates by moves on genus-6
surfaces with one or two punctures.

We must modify the above construction so as not to use any braiding of
punctures. On the leftmost or rightmost qupents there is no problem; the cor-
responding surfaces have only one puncture, and therefore Theorem 6.2 implies
density without using any braiding moves. Similarly, on any of the central sur-
faces, Theorem 6.2 implies density without using any braiding moves if at least
one of the punctures has a zero label. We can ensure this prior to the application
of any given gate by adapting the “inchworm” technique from [25], as described
in Appendix D. In this method, we bring a pair of zero labels adjacent to the
target segment, then implement the desired gate there, and carry the zeros to the
segment where the next gate is to be implemented. At the end, we return these
zeroes to their original location among the leftmost six handles. As discussed in
Appendix D, the inchworm construction entails some overhead in ε, which gives
rise to the value 1/3900.

In the above construction, we need density on two-punctured segments in
which one puncture is guaranteed to be labeled zero, and the other puncture has
unknown label. Theorem 6.2 of [14] implies density separately in the subspace in
which the other label is zero and in which the other label is one. Because these
subspaces have different dimension (20 and 15, respectively) we may apply the
decoupling Lemma from [1], which shows that a sequence of Dehn twists can
be found to approximate arbitrary pairs of independent unitaries on these two
subspaces, as desired.

5 Analogy with Jones Polynomials

In this paper we have shown that estimating the Turaev-Viro invariant of a
mapping torus in the Fibonacci model is DQC1-complete. In [3], it was shown
that estimating the Turaev-Viro invariant of a general 3-manifold presented as a
Heegaard splitting is BQP-complete. Similarly, estimating the Jones polynomial
of the trace closure of a braid is DQC1-complete [16,25], while estimating the
Jones polynomial of the plat closure of a braid is BQP-complete [1,2,12,13,29].
This suggests a relationship between trace closures and mapping tori on one
hand, and between plat closures and Heegaard splittings on the other. Indeed,
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〈ψ| |ψ〉U Tr[U ]

Fig. 7. The problems of estimating the Jones polynomial of the plat closure of a braid
and the Turaev-Viro invariant of a Heegaard splitting (left) are BQP-complete. The
problems of estimating the Jones polynomial of the trace closure of a braid and the
Turaev-Viro invariant of a mapping torus (right) are DQC1-complete. These situations
are fundamentally analogous, as discussed in Sect. 5. We stress that the manifold figures
are illustrations of the topological ideas behind this analogy, and are not correct two-
dimensional projections of the manifolds themselves. In particular, after gluing, the
two manifolds shown do not in reality have any boundaries.

such a relationship can be understood in the framework of axiomatic topolog-
ical quantum field theory, and suggests further generalizations to, for instance,
topological invariants of higher dimensional manifolds.

A topological quantum field theory can be axiomatized as a functor T from
the category of cobordisms between n-manifolds to the category of linear trans-
formations between vector spaces [5,28]. That is, to each n-manifold the TQFT
associates a vector space, and to any (n + 1)-manifold whose boundary is the
union of two disjoint n-manifolds the TQFT associates a linear transformation
between the two associated vector spaces. The functorial property means that
gluing together two cobordisms and then applying T yields the same linear trans-
formation that is obtained by applying T to each of the two cobordisms and then
composing the resulting linear transformations; see Fig. 8. A TQFT maps the
empty n-manifold to the base field, which for the examples we consider is always
C. Hence, for M a manifold whose boundary ∂M has a single connected compo-
nent, T (M) is a map either from C to the vector space T (∂M), that is, a vector
in T (∂M), or a map from T (∂M) to C, that is, a dual vector. The choice between
these two possibilities is determined by the orientation of the cobordism.

Recall that the genus-g handlebody is the 3-manifold whose boundary is the
genus-g surface Σg. For example, the genus-1 handlebody is simply the solid
donut. After assigning an orientation, we may think of a handlebody as a cobor-
dism from the empty manifold to Σg, or as a cobordism from Σg to the empty
manifold. Hence, in the TQFT framework, genus-g handlebodies are associated
to vectors or dual vectors. We denote these as |ψg〉 and 〈ψg|, respectively. These
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M

( )

N

( )

C

C

C

1

2

1

C2

T(    )

T(N)

T(M)

1C

1C

Fig. 8. M can be viewed as a two-manifold with two boundaries: a circle and a pair
of circles. The TQFT associates a Hilbert space T (C2) to the pair of circles, a Hilbert
space T (C1) to the circle, and a linear transformation T (M) : T (C2) → T (C1) to M .
Similarly, T (N) is a linear transformation from T (C1) to itself. If we glue together M
and N along the circle as shown, we obtain a manifold MN with boundaries C2 and
C1. The corresponding linear transformation is T (NM) = T (N) ◦ T (M).

vectors live in the Hilbert space which the TQFT associates to Σg. In the case
of the Fibonacci model, this is precisely the vector space defined in Sect. 2.2.

In the Fibonacci model, a cobordism from a surface to itself is mapped to
a unitary linear transformation U on the associated Hilbert space3. If the sur-
face is Σg, then we may “cap” the cobordism with handlebodies on both ends.
The resulting 3-manifold has no boundary, and thus corresponds to a linear
map from C to itself, i.e., a complex number. In this case, this number is the
matrix element 〈ψg|U |ψg〉, as illustrated in Fig. 7. The problem of estimating
a matrix element of the unitary transformation induced by a quantum circuit
is BQP-complete, and this fact underlies the BQP-completeness proof for the
Turaev-Viro invariant of Heegaard splittings in [3]. Instead of “capping” the two
ends of the cobordism with handlebodies, we could have simply glued the two
ends together, resulting in a mapping torus. This is again a 3-manifold with-
out boundary, which thus also corresponds to a complex number. In a TQFT,
gluing the two ends of a cobordism corresponds to contracting the two indices
of the linear transformation. In other words, instead of a single matrix entry,
we now obtain the trace of U . Finding the trace of the unitary transformation
induced by a quantum circuit is DQC1-complete, and this fact underlies the
DQC1-completeness proof for the Turaev-Viro invariant of mapping tori given
in this paper.

The situation regarding Jones polynomials is directly analogous. A TQFT
gives us a unitary representation of the braid group. Gluing the two ends of a
braid together (i.e., taking the trace closure), as illustrated on the righthand
side of Fig. 7, corresponds to taking the trace of the unitary and yields a DQC1-
complete problem. Caps correspond to vectors and dual vectors depending on
orientation, hence capping a braid (taking the plat closure, as illustrated on
the lefthand side of Fig. 7) yields a matrix element of the associated unitary
transformation, and corresponds to a BQP-complete problem. The analogy can
3 We may think of the cobordism as describing a sort of spacetime evolution, while the

unitary transformation describes the corresponding quantum time evolution. Indeed,
this was one of the central motivating ideas behind the development of TQFTs.
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be tightened further by noting that the braid group Bn is simply the mapping
class group of the surface of genus zero and n + 1 punctures (that is, the n-
punctured disk), whereas in the case of 3-manifold invariants we consider the
mapping class group of the genus-g surface with no punctures. On the other
hand, it is worth bearing in mind that the notion of equivalence captured by the
Jones polynomial is ambient isotopy, in contrast to the Turaev-Viro and WRT
invariants, which capture homeomorphism.

The analogy presented here naturally suggests an extension of BQP-
completeness and DQC1-completeness results to n-manifold invariants arising
from TQFTs at higher n. More generally, one could attempt to isolate a prop-
erty of pairs, consisting of a group G and one of its representations U , such that
estimating matrix entries of U is BQP-complete while estimating the trace of
U is DQC1-complete. Perhaps one could find a general theorem encompassing
many such results. We leave this as an open problem.
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A Equivalence Between One Clean Qudit Models

Given a quantum circuit on a-dimensional qudits we wish to construct a quan-
tum circuit on b-dimensional qudits that has the same trace. If b = ca for some
integer c then this is easy. We just consider each b-dimensional qudit to be an a-
dimensional qudit plus a c-dimensional “gauge” qudit that we ignore. Similarly,
if bd = ca for some integers d, c then we can treat d-tuples of b-dimensional qubits
as an a-dimensional qudit plus a c-dimensional gauge qudit. For these encodings,
the encoded circuit is easy to construct gate by gate. Given a gate acting on n
a-dimensional qudits, we can write down a unitary acting on dn b-dimensional
qudits equal to the original gate tensored with the c-dimensional identity on
the gauge system. This dn-dimensional gate can be exactly decomposed into a
product of O(b2dn) 2-qudit gates using the standard construction from Section
4.5 of [21]. Because d and n are constants, this is sufficiently efficient. The nor-
malized trace of the encoded circuit is exactly equal to the normalized trace of
the original circuit.

The harder case is when there do not exist integers c and d such that bd = ca.
In this case we find c, d ∈ Z such that bd 
 ca. Specifically, suppose we achieve

ca

bd
= 1 − δ (4)

for some δ � 1. Then we can encode one a-dimensional qudit plus a c-dimensional
gauge qudit into d b-dimensional qudits with a few (namely δbd) noncoding states
left over. We can define our encoded gates to act as the identity on these non-
coding states. If we make sure the noncoding states are a small fraction of all
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bdn states, the normalized trace of the encoded circuit will approximately match
the normalized trace of the original circuit.

Let Ua be the original unitary acting on n a-dimensional qudits and let Ub

be the unitary acting on dn b-dimensional qudits, in which we encode Ua as
described above. Then, Ub acts on bdn states, of which (ca)n encode states of the
original circuit,

Tr[Ub]
bdn

=
cnTr[Ua] + (bdn − (ca)n)

bdn
.

The magnitude of the discrepancy Δ between the normalized traces of Ub and
Ua is thus

Δ =
∣∣∣∣cnTr[Ua] + (bdn − (ca)n)

bdn
− Tr[Ua]

an

∣∣∣∣
=

∣∣∣∣((ca

bd

)n

− 1
) Tr[Ua]

an
+ 1 −

(ca

bd

)n
∣∣∣∣

≤
∣∣∣(ca

bd

)n

− 1
∣∣∣ ·

∣∣∣∣Tr[Ua]
an

∣∣∣∣ +
∣∣∣1 −

(ca

bd

)n∣∣∣
≤

∣∣∣(ca

bd

)n

− 1
∣∣∣ +

∣∣∣1 −
(ca

bd

)n∣∣∣
= 2 |(1 − δ)n − 1| .

Thus if
δ =

ε

n
(5)

we have, for small ε,
lim

n→∞ Δ = 2
∣∣e−ε − 1

∣∣ 
 2ε. (6)

Comparing (4), (5), (6), we see that in the limit of large n and small ε, in order
to achieve error upper bounded by Δ it suffices to obtain

bd − ca

bd
≤ Δ

2n
.

For given b, d, a there always exists an integer c such that bd − c ≤ a. So we just
need to choose d sufficiently large that

a

bd
≤ Δ

2n
.

Equivalently,

d ≥ logb

(
2na

Δ

)
.

A k-qudit gate from Ua thus gets encoded as a dk-qudit gate in Ub.
This encoded gate acts on a bdk-dimensional space. We have just shown that
it suffices to choose d = logb

(
2na
Δ

)
. Thus the encoded k-qudit gate acts on a(

2na
Δ

)k-dimensional space. Using the construction from section 4.5 of [21], we
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can implement an arbitrary D-dimensional unitary exactly with O(D2) 2-qudit
gates. Thus each k-qudit gate in Ua gets encoded by O

((
2na
Δ

)2k
)

elementary
gates in Ub. By gate universality, we can assume k ≤ 2, so our encoding has an
overhead quartic in n and 1/Δ. This is perhaps not very efficient, but is never-
theless polynomial, and thus suffices to prove the equivalence of DQC1 defined
with qudits of any constant dimension.

B Estimating the Absolute Trace is DQC1-Hard

In this section we slightly adapt the proof from [24] to show that estimating the
absolute value of the trace of a quantum circuit to within ±1/24 is a DQC1-
complete problem. Consider an arbitrary DQC1 computation. We start with the
state |0〉 〈0| ⊗ 1

2n , apply an arbitrary quantum circuit U , and then measure the
first qubit in the |0〉 , |1〉 basis. Changing the initial state of the pure qubit, or
changing the measurement basis does not add generality, as these changes can
be subsumed into U . The probability of measurement outcome |0〉 is

p0 = Tr
[
(|0〉 〈0| ⊗ 1)U(|0〉 〈0| ⊗ 1/2n)U†] . (7)

Let U ′ be the unitary implemented by the following quantum circuit on n + 2
qubits.

Thus, p0 = 2TrU ′
2n+2 , as one can see by writing out the trace as a sum over diag-

onal matrix elements in the computational basis. Because p0 is real it is also true

that p0 = 2 |TrU ′|
2n+2 . Hence estimating the absolute value of the normalized trace

of quantum circuits to suffices to predict the outcome of any DQC1 experiment.
As is standard in the complexity theory of probabilistic computation, “yes”

instances of DQC1 are defined to have acceptance probability 2/3 and “no”
instances are defined to have acceptance probability 1/3. Thus, deciding DQC1
is equivalent to estimating the normalized trace of a quantum circuit to within
±1/6. The reduction here has a factor of four overhead in normalization, thus
estimating the absolute trace to within ±1/24 is DQC1-complete.

C Efficiently Computing Thresholds

Consider the standard spine of the genus-g surface, numbered as in Fig. 5. Sup-
pose edges 1 through i have been labeled in a fusion-consistent manner with
anyon types s1, . . . , si. We wish to compute how many completions there are to
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this partial labelling. That is, we wish to compute the number of fusion-consistent
strings of 3g − 3 labels, whose first i labels are given by s1, . . . , si.

Denote the horizontal edges of the standard spine from right to left by
e1, e2, . . ., as shown below.

e1e3 e2

...

Let Z
(k)
b be the number of completions in which the rightmost labeled edge is ek

and has label b ∈ {0, 1}. One sees that Z
(1)
0 = 2, and Z

(1)
1 = 1, by the following

enumeration of fusion-consistent diagrams.

0
0

1
1

0
1

Furthermore, we have the recurrence relations Z
(n+1)
0 = 2Z

(n)
0 + Z

(n)
1 and

Z
(n+1)
1 = 3Z

(n−1)
1 + Z

(n−1)
0 , by the following enumeration of fusion-consistent

diagrams.

0 0

0

0
1 1

0

1

1 1

1

1

0 1

1

1
1 0

1

1

0 0

1

1
1 1

1

0

Solving these recurrence relations yields[
Z

(n)
0

Z
(n)
1

]
=

[
2 1
1 3

]n−1 [
2
1

]
.

The other two cases—completions starting with an upper curved edge, or a
lower curved edge—can be solved similarly. The nth power of a matrix may be
computed using O(log n) operations, thus calculating the number of completions
for any i in O(log g) steps. The corresponding thresholds are then immediately
obtained by taking ratios of these.

D Inchworm

Suppose the spine-labeling contains a segment of the following form.

0
1

0

1

1 1 1

11

aa

1

a

(8)
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Here a can be 1 or 0. We call this configuration the inchworm. We may regard

the right instance of 0
1

1

1

1
as its head, and the left instance as its tail. We

next show a sequence of two reversible operations by which we can move the
inchworm one handle rightward. In the first step the head moves one handle to
the right, leaving the tail in place, and in the second step, the tail catches up,
hence the name “inchworm.”

1

d
b

d

1

1 1 1

11

1
0 d0a

c

1

0
1

d

1

1 b 1

1c

1
0 daa

1

c

0
1

0

1

1 1 1

11

b
a daa

1

Examination of the above diagram shows that if the fusion rules are obeyed
in the initial configuration, they are also obeyed in the intermediate and final
configurations. Furthermore, both steps are reversible (i.e. information preserv-
ing). Thus, they may be written as permutation matrices acting on the space
of allowed configurations, and are therefore unitary. The first unitary transfor-
mation can be implemented by local Dehn twists, because the zero in the tail
of the inchworm implies density of the Fibonacci representation on the segment
to the right of it. The second unitary transformation can be implemented by
local Dehn twists because the zero in the head of the inchworm implies density
on the segment to the left of it. (In both steps, we are applying density to the
twice-punctured genus-4 surface with one puncture labeled zero. There are 75
labelings in which the other puncture is labeled one and 50 labelings in which
the other puncture is labeled zero. Thus, the decoupling lemma of [1] implies
density jointly on these two subspaces.) Repeating this process and its reverse,
we may bring the inchworm to any location within the spine.

To use the inchworm construction, we need to ensure that a segment of the
form (8) exists in the first place. We may do this by implementing a reversible
operation on the leftmost six handles, so that if the configuration (8) is absent,
the matrix is strictly off-diagonal, and does not contribute to the trace. Specifi-
cally, we consider the leftmost two handles to be an ancilla system, and the next
four handles to be the starting location of the inchworm. If these four handles
do not take the form (8) we cyclically permute the (five) basis states of the
ancilla system. Because this is done on the leftmost six handles, the segment
is only singly-punctured, and thus Theorem 6.2 of [14] implies density without
braiding.
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The noncontributing labelings decrease the normalized WRT by a constant
factor, which correspondingly necessitates decreasing the precision parameter ε
by the same factor. More precisely, in the Fibonacci model, there are 325 fusion-
consistent labelings for the spine of the genus-four doubly-punctured surface.
Among these, there are two inchworm configurations (a = 0 and a = 1). Com-
pounding this 2/325 normalization cost with the precision ε = 1/24 obtained in
Appendix B for DQC1-hardness of absolute trace, we find that estimating the
normalized WRT invariant to within ±1/3900 is DQC1-hard.

As an aside, we note that the inchworm construction here is simpler than
that in [25], in the following sense. The inchworm construction of [25] involved
reversible operations on logarithmically large regions. Although the density the-
orems imply that arbitrary reversible operations can be implemented on these
regions, they do not imply that the decomposition into local moves is efficient.
Rather this had to be explicitly proven in Appendix D of [25]. In contrast the
inchworm construction here involves reversible operations only on O(1) handles,
thus no question of efficiency arises.
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