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Abstract. We introduce the telescopic relative entropy (TRE), which
is a new regularisation of the relative entropy related to smoothing, to
overcome the problem that the relative entropy between pure states is
either zero or infinity and therefore useless as a distance measure in this
case. We study basic properties of this quantity, and find interesting
relationships between the TRE and the trace norm distance. We then
exploit the same techniques to obtain a new and shorter proof of an
upper bound on the relative Tsallis entropies in terms of the trace norm
distance, 1 − Tr ρ1−pσp ≤ || ρ − σ ||1 /2.

1 Introduction

The quantum relative entropy between two quantum states ρ and σ, S(ρ ||σ) =
Tr ρ(log ρ − log σ), is a non-commutative generalisation of the Kullback-Leibler
distance between probability distributions. Because of its strong mathematical
connections with von Neumann entropy, and its interpretation as an optimal
asymptotic error rate in quantum hypothesis testing (in the context of Stein’s
lemma) relative entropy is widely used as a (non-symmetric) distance measure
between states [7].

One of its drawbacks, however, is that for non-faithful (rank-deficient) states
the relative entropy can be infinite. More precisely, the relative entropy is infinite
when there exists a pure state ψ such that 〈ψ |σ|ψ〉 is zero while 〈ψ |ρ|ψ〉 is not.
In particular, relative entropy is useless as a distance measure between pure
states, since it is infinite for pure ρ and σ, unless ρ and σ are exactly equal (in
which case it always gives 0).

There are various possibilities to overcome this deficiency. In [5], Lendi,
Farhadmotamed and van Wonderen proposed a regularised relative entropy as

R(ρ ||σ) = cd S

(
ρ + 11d

1 + d

∣∣∣∣∣
∣∣∣∣∣σ + 11d

1 + d

)
,

where d is the dimension, and cd is a normalisation constant. This only works
for finite-dimensional states.

Another possibility, also useful for infinite dimensional states, is to apply a
smoothing process. One can define the smooth relative entropy between states
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ρ and τ as the infimum of the ordinary relative entropy between ρ and another
state τ , where τ is constrained to be ε-close to σ in trace norm distance:

Sε(ρ ||σ) = inf
τ

{S(ρ || τ) : τ ≥ 0,Tr τ ≤ 1, || τ − σ ||1 ≤ ε} .

This form of smoothing has already been applied to Renyi entropies and max-
relative entropy [3,9], giving rise to a quantity with an operational interpretation,
but it could equally well be applied to ordinary relative entropy.

In the case of the ordinary relative entropy there is a simple canonical choice
for σ that achieves the same purpose of regularisation but without having to find
the exact minimiser. Namely, we can take that τ that is collinear with ρ and σ;
i.e. τ = aρ + (1 − a)σ (with a = ε/ || ρ − σ ||1).

By operator monotonicity of the logarithm, we have

log(τ) = log(aρ + (1 − a)σ) ≥ log(aρ),

and, therefore,

S(ρ || τ) = Tr ρ(log ρ − log τ)
≤ Tr ρ(log ρ − log(aρ))
= − log a.

Thus, S(ρ || τ) is bounded above by − log a, which is finite for 0 < a < 1. It
therefore makes perfect sense to normalise S(ρ || τ) by dividing it by − log a,
producing a quantity that is always between 0 and 1.

These observations led us to define what we call the telescopic relative entropy
(TRE), a particular regularisation of the ordinary relative entropy that is also
defined in Hilbert spaces of infinite dimension:

Definition 1. For fixed a ∈ (0, 1), the a-telescopic relative entropy between
states ρ and σ is given by

Sa(ρ ||σ) :=
1

− log(a)
S(ρ || aρ + (1 − a)σ). (1)

Furthermore, we define

S0(ρ ||σ) := lim
a→0

Sa(ρ ||σ) (2)

S1(ρ ||σ) := lim
a→1

Sa(ρ ||σ). (3)

We’ll show below that these limits exist.

The origin of the name is that the operation σ �→ aρ + (1 − a)σ acts like
a ‘telescope’ with ‘magnification factor’ 1/(1 − a), bringing the state σ closer
to the ‘vantage point’ ρ and bringing observed pairs of states σi closer to each
other.

The purpose of this paper is to initiate the study of this quantity. The tele-
scoping operation σ �→ aρ + (1 − a)σ and subsequent scaling of the relative
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entropy by 1/(− log a) may seem like a fairly innocuous operation, but has a
number of far-reaching and sometimes unexpected consequences. Because of the
linearity of the telescoping operation, the TRE inherits most of the desirable
properties of the ordinary relative entropy. However, a host of additional rela-
tions in the form of sharp inequalities may be derived that in the case of the
ordinary relative entropy simply make no sense, because the constants appearing
in the inequality would be infinite. At the end of this paper, we briefly consider
the telescoping operation in the context of the relative Tsallis entropies. We
exploit the same techniques used for the TRE to obtain a new and shorter proof
of a lower bound on the relative Tsallis entropies in terms of the trace norm
distance, 1 − Tr ρ1−pσp ≤ || ρ − σ ||1 /2 [1].

2 Preliminaries

For any self-adjoint operator X on a Hilbert space H, we denote by suppX the
support of X, i.e. the subspace of H which is the orthogonal complement of
ker X, the kernel of X. The projector on the support of X will be denoted by
{X}. We denote by PX the orthogonal projector from H onto suppX, so that P ∗

X

is the injection of suppX back into H. Thus P ∗
XPX = {X}. The compression of

A to the support of X, which we’ll denote by A|X , is the operator with domain
suppX given by

A|X = PXAP ∗
X .

By definition, for any positive operator X ≥ 0, we have X|X > 0, strictly.
Two quantum states are mutually orthogonal, denoted ρ ⊥ σ, iff Tr ρσ = 0.
For any self-adjoint operator X, X+ will denote the positive part X+ =

(X + |X|)/2. It features in an expression for the trace norm distance between
states:

T (ρ, σ) :=
1
2

|| ρ − σ ||1 = Tr (ρ − σ)+. (4)

The trace of the positive part has the variational characterisation TrX+ =
maxP Tr XP , where the maximisation is over all self-adjoint projectors. Hence,
for all such projectors P , Tr XP ≤ Tr X+.

The Pinsker bound is a lower bound on the ordinary relative entropy in terms
of trace norm distance [7].

S(ρ ||σ) ≥ 2T (ρ, σ)2. (5)

No upper bound in terms of the trace norm distance is possible, because the
relative entropy can be infinite.

We will also need the following integral representation of the logarithm: for
x > 0, we have

log x =
∫ ∞

0

ds

(
1

1 + s
− 1

x + s

)
. (6)
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This immediately provides an integral representation for the telescopic relative
entropy:

Sa(ρ ||σ)

=
1

log a

∫ ∞

0

ds Tr ρ[(ρ + s)−1 − (aρ + (1 − a)σ + s)−1] (7)

=
1

log a

∫ ∞

0

ds Tr ρ(ρ + s)−1 (1 − a)(σ − ρ) (aρ + (1 − a)σ + s)−1. (8)

Another integral we will encounter is
∫ ∞
0

ds x/(x + s)2. For x = 0, the
integral obviously gives 0. For x > 0 it gives 1. Hence∫ ∞

0

ds (ρ + s)−1 ρ (ρ + s)−1 = {ρ}. (9)

From integral representation (6) we get an expression for the Fréchet deriv-
ative of the matrix logarithm:

d

dt

∣∣∣∣∣
t=0

log(A + tΔ) =
∫ ∞

0

ds (A + s)−1Δ(A + s)−1.

It will be useful to introduce the following linear map, for A ≥ 0:

TA(Δ) =
∫ ∞

0

ds (A + s)−1Δ(A + s)−1. (10)

Thus
d

dt

∣∣∣∣∣
t=0

log(A + tΔ) = TA(Δ). (11)

It’s easy to check that for A ≥ 0, TA(A) = {A}. Thus, for A > 0, we have
TA(A) = 11.

From this integral representation it also follows that, for any self-adjoint A,
TA preserves the positive semidefinite order: if X ≤ Y , then TA(X) ≤ TA(Y ).
By cyclicity of the trace, we see that the map TA is self-adjoint: TrBTA(Δ) =
Tr ΔTA(B). Moreover, the map is positive semi-definite, in the sense that
Tr ΔTA(Δ) is positive for any self-adjoint Δ. This follows from the integral rep-
resentation and the fact that for positive X and self-adjoint Y , Tr XY XY =
Tr (X1/2Y X1/2)2 ≥ 0.

3 Basic Properties of Telescopic Relative Entropy

From the discussion in the Introduction, we recall that the value of the telescopic
relative entropy is always between 0 and 1, even for non-faithful states. Further-
more, it inherits many desirable properties from the ordinary relative entropy:
positivity, the fact that it is only zero when ρ and τ are equal (provided a > 0),
joint convexity in its arguments, and monotonicity under CPT maps.
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Fig. 1. (a) Telescopic relative entropy Sa(ρ || σ) between state ρ = |0〉〈0| and state
σ = x |0〉〈0|+(1−x) |1〉〈1|, with x ranging from 0 to 1, and for various values of a; (b)
same but for ρ = (2/3) |0〉〈0| + (1/3) |1〉〈1|.
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Fig. 2. (a) Telescopic relative entropy Sa(ρ || σ) between state ρ = 112/2 and state
σ = |1〉〈1|, with a ranging from 0 to 1; (b) same but for σ = (|0〉〈0| + 4 |1〉〈1|)/5.

As we do not restrict the arguments of the telescopic relative entropy to
states, the definition is also applicable (in a useful way) to non-negative scalars:

Sa(b || c) =
b(log b − log(ab + (1 − a)c))

− log a
. (12)

For illustrative purposes, we graph the telescopic relative entropy for a variety
of qubit state pairs, in Figs. 1 and 2.

3.1 S0 and S1

One might think that the 1-telescopic relative entropy would be quite useless,
because for a = 1, S(ρ || aρ + (1 − a)σ) = S(ρ || ρ) = 0. Nevertheless, it is a non-
trivial quantity due to the normalisation by 1/(− log a). Likewise, one might
mistakenly think S0 is essentially the ordinary relative entropy; it is far from it,
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and for the same reason. Indeed, for any pair of states with finite ordinary relative
entropy, e.g. when both states are faithful, S0 is 0, due to the normalisation. The
0-telescopic relative entropy shows its true colours exactly in those cases when
the ordinary relative entropy yields +∞.

In fact, for S0 and S1 we have the following closed form expressions:

Theorem 1. For any pair of states ρ, σ,

S0(ρ ||σ) = 1 − Tr ρ{σ} (13)
S1(ρ ||σ) = 1 − Tr σ{ρ}. (14)

In particular, when σ is pure, S0(ρ ||σ) = 1 − Tr ρσ, and when ρ is pure,
S1(ρ ||σ) = 1 − Tr ρσ. When σ is faithful, S0(ρ ||σ) = 0; when ρ is faithful,
S1(ρ ||σ) = 0.

Proof. Consider first the limit a → 1. Using de l’Hôpital’s rule we find

lim
a→1

1 − a

− log a
= 1.

Hence, by representation (8),

lim
a→1

Sa(ρ ||σ) = −
∫ ∞

0

ds Tr ρ(ρ + s)−1 (σ − ρ) (ρ + s)−1.

Therefore, from (9) we get the required

lim
a→1

Sa(ρ ||σ) = −Tr (σ − ρ){ρ} = 1 − Tr σ{ρ}.

For the limit a → 0 some more work is needed. Let us w.l.o.g. assume that
(ρ+σ)/2 is faithful; otherwise we take the compression of ρ and σ to the support
of (ρ+σ)/2. Again we use an integral representation, but in its more basic form
(7). To calculate the limit a → 0 we apply de l’Hôpital’s rule to the whole
expression and get

S0(ρ ||σ)

= lim
a→0

a
d

da

∫ ∞

0

ds Tr ρ[(ρ + s)−1 − (aρ + (1 − a)σ + s)−1]

= lim
a→0

∫ ∞

0

ds Tr aρ(aρ + (1 − a)σ + s)−1 (ρ − σ) (aρ + (1 − a)σ + s)−1

= lim
a→0

∫ ∞

0

ds Tr (ρ − σ)(aρ + (1 − a)σ + s)−1 aρ (aρ + (1 − a)σ + s)−1.

Here, the first factor a comes from the derivative of log a.
Because of our assumption that (ρ+σ)/2 is faithful, aρ+(1− a)σ is faithful

for any a ∈ (0, 1). Therefore, the integral∫ ∞

0

ds (aρ + (1 − a)σ + s)−1 (aρ + (1 − a)σ) (aρ + (1 − a)σ + s)−1
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yields the identity operator 11. Using this fact, we can rewrite our last expression
for S0 as

S0(ρ ||σ)

= lim
a→0

Tr (ρ − σ)[11 −
∫ ∞

0

ds

(aρ + (1 − a)σ + s)−1 (1 − a)σ (aρ + (1 − a)σ + s)−1]

= Tr (ρ − σ)[11 −
∫ ∞

0

ds (σ + s)−1 σ (σ + s)−1]

= Tr (ρ − σ)(11 − {σ})
= 1 − Tr ρ{σ},

as required. ��

3.2 Pure States

From Theorem 1 we can derive the equalities

S0(ρ ||σ) = S1(ρ ||σ) = T (ρ, σ)2, (15)

for pure ρ and σ.
In fact, when ρ and σ are pure, there is a one-to-one relation between

Sa(ρ ||σ) and T (ρ, σ) for any value of a ∈ [0, 1]. Although the relation is some-
what complicated, in practice it shows that Sa(ρ ||σ) is only slightly bigger than
T (ρ, σ)2 for a ∈ (0, 1).

Theorem 2. Let ρ, σ be two pure states with trace norm distance t = || ρ −
σ ||1 /2. Then, for a ∈ (0, 1),

Sa(ρ ||σ) =
1

−2 log a

(
− log

w

4
− 1 − w/(2a)√

1 − w
log

1 +
√

1 − w

1 −
√

1 − w

)
, (16)

where
w := 4a(1 − a)t2. (17)

Proof. By a suitable unitary transformation, the problem can be transformed
to a two-dimensional one, with in particular

ρ =
(

1 0
0 0

)
, σ =

(
1 − t

√
t(1 − t)√

t(1 − t) t

)
.

The telescopic relative entropy is then given by

Sa(ρ ||σ) =
1

− log a
(− log (aρ + (1 − a)σ))1,1

and after some basic calculations this reduces to the given formula. ��
For example, let ρ and σ be two pure two-level states, with the angle between

their respective Bloch vectors equal to θ. Since their trace norm distance is equal
to t = |sin(θ/2)|, we have w = 2a(1 − a)(1 − cos θ).
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4 Comparison to Trace Norm Distance

In this section, we provide bounds on the telescopic relative entropy in terms of
the trace norm distance.

It’s very easy to derive a lower bound from the Pinsker lower bound on the
ordinary relative entropy (5).

Theorem 3. For two quantum states ρ, σ,

Sa(ρ ||σ) ≥ (1 − a)2

− log(a)
2T (ρ, σ)2. (18)

Proof. Noting that T (ρ, τ) = (1 − a)T (ρ, σ), this is a trivial consequence of the
bound S(ρ || τ) ≥ 2T (ρ, τ)2. ��

While there is no upper bound on the ordinary relative entropy in terms of
the trace norm distance, we can find an upper bound on the telescopic relative
entropy. This bound has a very simple form, but is nevertheless the strongest
one possible.

Theorem 4. With τ = aρ + (1 − a)σ,

S(ρ || τ) ≤ − log(a)T (ρ, σ). (19)

This immediately gives our first important relation for the TRE.

Corollary 1. For any a ∈ (0, 1),

Sa(ρ ||σ) ≤ T (ρ, σ). (20)

Equality can be obtained for any value of t = T (ρ, σ) in dimension 3 and higher
by choosing ρ = Diag (t, 0, 1 − t) and σ = Diag (0, t, 1 − t).

A second and unsuspected corollary is a strengthening of a very well-known
inequality (see, e.g. [8], Theorem 3.7) for the entropy of an ensemble of two states:
for any two states ρ, σ and (p, 1 − p) a probability distribution,

S(pρ + (1 − p)σ) ≤ pS(ρ) + (1 − p)S(σ) + h(p), (21)

where h(p) = −p log p − (1 − p) log(1 − p) is the binary Shannon entropy. This
inequality is equivalent to subadditivity of the von Neumann entropy (w.r.t. ordi-
nary addition) for positive (non-normalised) operators: for any A,B ≥ 0

S(A + B) ≤ S(A) + S(B). (22)

Indeed, substituting A = pρ and B = (1 − p)σ yields (21).
The quantity S(pρ+(1−p)σ)− (pS(ρ)+(1−p)S(σ)) is known as the Holevo

quantity χ(E) for the ensemble E = {(p, ρ), (1 − p, σ)} (of cardinality 2). The
bound says that χ(E) ≤ h(p). Using Theorem 4, we get a sharper bound:
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Corollary 2. For any ensemble E = {(p, ρ), (1 − p, σ)} of cardinality 2,

χ(E) ≤ h(p) T (ρ, σ). (23)

Proof. Let τ = pρ + (1 − p)σ. Notice that S(τ) − (pS(ρ) + (1 − p)S(σ)) is
equal to pS(ρ || τ) + (1 − p)S(σ || τ). Applying inequality (19) to both terms
gives −p log(p)T (ρ, σ) − (1 − p) log(1 − p)T (ρ, σ) as an upper bound. ��

Question. As inequality (21) immediately generalises to ensembles of any car-
dinality ([6], Sect. 11.3.6), namely, χ(E) ≤ H(p) (where H(p) is the Shannon
entropy of the probability distribution of E), it is fair to ask for a similar gener-
alisation of the Corollary.

In [10], related upper bounds were studied. For cardinality 2, a bound was
found in terms of the probability p and the Uhlmann fidelity between ρ and
σ, F = ||√ρ

√
σ ||1. For cardinality 3, a generalisation was conjectured in [4].

For general cardinalities a bound was proven that is sharper than H(p) and is
expressed in terms of the so-called exchange entropy [10].

We now present the proof of Theorem 4. It relies on the properties of the
Fréchet derivative of the matrix logarithm given in Sect. 2.

Proof of Theorem 4.
Let ρ and σ be two given states, and τ = aρ + (1 − a)σ. Define s = (1 − a)/a,
which is a non-negative number. Thus τ = a(ρ + sσ). W.l.o.g. we will assume
that ρ + sσ is full rank.

Let Δ := ρ − σ, t := T (ρ, σ) = ||Δ ||1 /2 and ω := Δ/t. Obviously, ω has
trace 0 and trace norm 2. Let its Jordan decomposition be ω = ω+ − ω−. Thus
ω ≤ ω+ and Trω+ = Trω− = 1.

Now consider the expression sTr ωTρ+sσ(σ). Since Tρ+sσ(σ) ≥ 0, and ω ≤ ω+,
we have

sTr ωTρ+sσ(σ) = TrωTρ+sσ(sσ)
≤ Tr ω+Tρ+sσ(sσ)
≤ Tr ω+Tρ+sσ(ρ + sσ)
= Trω+11
= 1.

Then, noting that ρ = σ − tω,

(1 + s)Tr ρTρ+sσ(σ) = Tr (ρ + sρ)Tρ+sσ(σ)
= Tr (ρ + sσ − stω)Tρ+sσ(σ)
= Tr (ρ + sσ)Tρ+sσ(σ) − tsTr ωTρ+sσ(σ)
= TrσTρ+sσ(ρ + sσ) − tsTr ωTρ+sσ(σ)
= Trσ − tsTr ωTρ+sσ(σ)
≥ 1 − t.
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Therefore,

Tr ρTρ+sσ(σ) ≥ 1 − t

1 + s
.

Integrating over s from 0 to (1 − a)/a then yields

Tr ρ log(ρ + (1 − a)σ/a) − Tr ρ log(ρ) ≥ (1 − t) log(1/a),

which becomes, after adding log a to both sides,

Tr ρ log(aρ + (1 − a)σ) − Tr ρ log(ρ) ≥ t log(a),

which is equivalent to the statement of the theorem. ��

5 Cases of Maximality

The following theorem characterises those cases when the telescopic relative
entropy achieves its maximal value of 1.

Theorem 5. For any a ∈ (0, 1), Sa(ρ ||σ) = 1 iff ρ ⊥ σ.

Proof. We have Sa(ρ ||σ) = 1 iff Tr ρ log(aρ) = Tr ρ log(aρ+(1−a)σ) or, putting
X = aρ and Y = (1 − a)σ, iff Tr X log X = Tr X log(X + Y ). Since X,Y ≥ 0,
operator monotonicity of the logarithm gives TrX log(X +Y ) ≥ Tr X log X. We
want to characterise the cases of equality. One direction is obvious; if X and Y
are orthogonal, clearly we have equality.

To prove that there are no other possibilities, assume TrX(log(X + Y ) −
log X) = 0. Consider first the case X > 0. Define Z = log(X + Y ) − log X.
Because of monotonicity of the logarithm we have Z ≥ 0, hence the assumption,
Tr XZ = 0, implies Z = 0, i.e. log(X+Y ) = log X. As the logarithm is invertible
on the set of positive operators, this can only be true iff Y = 0.

Now consider the general case X ≥ 0, and assume X has a non-trivial
kernel. Then we can decompose the Hilbert space H as the direct sum H =
suppX ⊕ker X. We have X = X |X ⊕ 0 , with X |X > 0 . W.l.o.g. we can assume
that X + Y > 0, so that its logarithm is well-defined. By the convention to take
limx→0 x log x = 0, TrX log X is well-defined, too, and equal to TrX |X log X|X .
The assumption Tr X(log(X + Y ) − log X) = 0 can then be written as
Tr X |X(log(X + Y )|X − log(X |X)) = 0. Let us therefore define Z = log(X +
Y ) |X − log(X|X).

As can be expected, Z ≥ 0. To prove this, put X ′ = X |X ⊕ ε11 . By operator
monotonicity of the logarithm, log(X ′+Y )−log X ′ ≥ 0, for all ε > 0. In particular,
the compression to suppX is positive too: log(X ′ +Y ) |X − log(X ′)|X ≥ 0. Since
X ′ is defined as a direct sum of X and ε11, log(X ′) |X = log(X ′ |X) = log(X |X) .
Since limε→0 X ′ + Y = X + Y , we get, indeed, log(X + Y ) |X − log(X|X) ≥ 0.

The assumption reduces to Tr X |X Z = 0. Because X |X > 0 and Z ≥ 0,
this implies Z = 0.

This implies Y |X = 0, so that, indeed, Y must be orthogonal to X. ��
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6 Relative Tsallis Entropies

The relative Tsallis entropies are parameterised modifications of the relative
entropy given by

Qp(ρ ||σ) :=
1
p
(1 − Tr ρ1−pσp),

where p satisfies 0 ≤ p ≤ 1.
Just as we have done for the relative entropy, one can define the telescopic

relative Tsallis entropy, even though the problem of infinite values does not pose
itself here; indeed, Tr ρ1−pσp is always between 0 and 1. Nevertheless, some
interesting relationships occur when telescoping the relative Tsallis entropies. In
particular, by exploiting the methods used in Sect. 4 we obtain a shorter and
much simpler proof of an inequality already proven in [1].

Let us therefore consider the quantity Tr ρ1−p(aρ + (1 − a)σ)p. Firstly, let
us determine its extremal values for fixed values of a. Clearly, the maximum
is still 1, achieved when ρ = σ. The minimal value, however, is now ap. This
follows easily from operator monotonicity of the fractional power x �→ xp when
0 ≤ p ≤ 1. Indeed,

Tr ρ1−p(aρ + (1 − a)σ)p ≥ Tr ρ1−p(aρ)p

= apTr ρ1−pρp = apTr ρ = ap.

Equality can be achieved for orthogonal ρ and σ.
Hence, we define the telescopic relative Tsallis entropies (TRTE) as follows:

Definition 2.

Qp,a(ρ ||σ) =
1

1 − ap
(1 − Tr ρ1−p(aρ + (1 − a)σ)p). (24)

By the above, Qp,a takes values between 0 and 1. The limiting values for p → 0
and p → 1 are

lim
p→0+

Qp,a(ρ ||σ) = Sa(ρ ||σ), (25)

(easily checked using l’Hôpital’s rule) and

lim
p→1

Qp,a(ρ ||σ) = 1 − Tr {ρ}σ = S1(ρ ||σ),∀a. (26)

We now show that a sharper upper bound is given by the trace norm distance
between ρ and σ.

Theorem 6.
Qp,a(ρ ||σ) ≤ T (ρ, σ). (27)

By (25), the limiting case p → 0+ reduces to Corollary 1. The limiting case
a → 0 reduces to the inequality 1−Tr ρ1−pσp ≤ T (ρ, σ), which was instrumental
in proving optimality of the Chernoff bound in symmetric hypothesis testing and
which was proven by other means in [1].
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Just as we did for the operator logarithm, we can define a linear map based
on the Fréchet derivative of the fractional power function xp, via

d

dt

∣∣∣∣∣
t=0

(A + tΔ)p =: TA;p(Δ).

Since x �→ xp is a non-negative operator monotone function for 0 ≤ p ≤ 1, the
fractional power of a positive operator A can be written as the integral

Ap =
∫ ∞

0

dμp(s) (A + s)−1A,

where dμp(s) is a certain measure, parameterised by p, that is positive for 0 ≤
p ≤ 1. Its Fréchet derivative is therefore given by

d

dt

∣∣∣∣∣
t=0

(A + tΔ)p =
∫ ∞

0

dμp(s) ((A + s)−1Δ − (A + s)−1Δ(A + s)−1A)

=
∫ ∞

0

dμp(s) s(A + s)−1Δ(A + s)−1.

Therefore, TA;p has the integral representation

TA;p(Δ) =
∫ ∞

0

dμp(s) s(A + s)−1Δ(A + s)−1. (28)

From this representation we easily derive the following properties:

1. Tr XTA;p(Y ) = TrY TA;p(X) for any X and Y ;
2. the map TA;p preserves the positive definite ordering;
3. in particular, TA;p(B) is positive for positive B;
4. for 0 < p < 1, TA;p(A1−p) = p{A}.

The last property follows from

TA;p(A1−p) =
d

dt

∣∣∣∣∣
t=0

(A + tA1−p)p

= pAp−1A1−p = p{A}.

Here, negative fractional powers of A are defined in terms of the pseudoinverse A†

as A−s := (A†)s; thus A−sAs = (A†A)s = {A}s = {A}. Using these properties,
we can easily prove the theorem.

Proof of Theorem 6. Let Δ = ρ−σ, and t = T (ρ, σ) then Δ has Jordan decom-
position Δ = tω+ − tω−, where ω+ and ω− are orthogonal density operators.
Then

Tr (aρ)1−pTaρ+(1−a)σ;p(Δ) ≤ Tr (aρ)1−pTaρ+(1−a)σ;p(tω+)

≤ Tr (aρ + (1 − a)σ)1−pTaρ+(1−a)σ;p(tω+)

= Tr tω+Taρ+(1−a)σ;p((aρ + (1 − a)σ)1−p)
= Tr tω+p{aρ + (1 − a)σ}
≤ pt.
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In the first line we used the fact that Δ ≤ tω+ and property 2; in the second
line we used operator monotonicity of x1−p and property 3; in the third line we
used property 1, and in the fourth property 4. In the last line we used the fact
that TrXY ≤ 1 when X is a density operator and Y is a projector.

Exploiting the inequality just obtained yields

1 − Tr ρ1−p(aρ + (1 − a)σ)p = Tr ρ1−p(ρp − (aρ + (1 − a)σ)p)

=
∫ 1

a

da
d

da
Tr ρ1−p(aρ + (1 − a)σ)p

=
∫ 1

a

da Tr ρ1−pTaρ+(1−a)σ;p(ρ − σ)

≤
∫ 1

a

da ap−1pt = (1 − ap)t,

which is equivalent to the statement of the theorem. ��

7 Future Work

In forthcoming papers we will explore further properties of the telescopic relative
entropy. One other problem with the ordinary relative entropy is the absence of
a triangle inequality, in the sense that no useful upper bound exists on the
difference S(ρ ||σ1) − S(ρ ||σ2). Indeed, this difference can be infinite. It turns
out that such a bound does exist for the telescopic relative entropy. Together
with an upper bound on the difference S(ρ1 ||σ) − S(ρ2 ||σ) it will be presented
and proven in [2].

We will also study an interesting connection with Hamiltonian reconstruc-
tion. There is some evidence that the difference Sa(ρ ||σ1) − Sa(ρ ||σ2) might
provide non-trivial lower bounds on the time needed for state σ1 to evolve uni-
tarily into state σ2 under the influence of a Hamiltonian with bounded energy.
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