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Abstract. Device-independent cryptography represent the strongest
form of physical security: it is based on general physical laws and does not
require any detailed knowledge or control of the physical devices used in
the protocol. We discuss a general security proof valid for a large class of
device-independent quantum key distribution protocols. The proof relies
on the validity of Quantum Theory and requires that the events gener-
ating the raw key are causally disconnected. We then apply the proof to
the chained Bell inequalities and compute the corresponding secret-key
rates.

1 Introduction

Quantum Key Distribution (QKD), and more generally Quantum Cryptogra-
phy, implied a change of paradigm in security. Before the conception of QKD
in 1984 [1], most cryptographic applications based their security on reasonable
assumptions on the eavesdropper’s computational power plus unproven assump-
tions on the computational complexity of some problems. In QKD, however,
security is mainly based on a physically motivated assumption: the honest par-
ties, Alice and Bob, and the eavesdropper, Eve, are constrained by the laws of
quantum physics. Still, this is not the only assumption needed for security proofs
of QKD. First of all, the honest parties should have a good physical character-
ization and control of the devices used in the protocol. Moreover, the security
proof also requires a pair of minimal assumptions essential to make the crypto-
graphic scenario meaningful: no information leaks Alice and Bob’s laboratories,
and the honest parties have a source of trusted randomness and trusted devices
to process and store the information generated during the protocol execution.

The main goal of Device-Independent Quantum Key Distribution (DIQKD)
[2–4] is to design protocols whose security proof requires no detailed knowl-
edge of the physical devices used for generating correlations. That is, apart from
unavoidable assumptions on the security of the honest parties’ locations and the
reliability of the devices they use for information processing, which in a way
are inherent to the very definition of the cryptographic scenario, only the gen-
eral validity of quantum theory is needed for security. In this scenario, the only
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possible security certificate is the one proposed by Ekert [5], see also [2,6]: the
observation of a Bell inequality violation. There are three main motivations to
consider the device-independent scenario. First, from a purely theoretical point
of view, DIQKD involves fewer assumptions and, thus, implies a stronger secu-
rity. More generally, identifying the minimal set of physical assumptions needed
for secure key distribution is a fundamental problem in cryptography. Second,
from an applied point of view, the implementation of DIQKD schemes is more
robust to imperfections since their security proof is independent of the devices’
details. However, it requires a long-distance detection-loophole-free Bell inequal-
ity violation, which at present is an experimental challenge (see however [7]).
Finally, DIQKD, as the works on self testing techniques [8,9], opens Quantum
Cryptography to the unreliable, yet non-adversarial, provider scenario, as any
device compatible with the protocol requirements is secure.

In this work we discuss a general formalism to prove the security of DIQKD
protocols [10] (see also [11]). The security proof is completely general and can
be applied to any protocol associated to a Bell inequality. The key element
in the construction is a bound on the min-entropy of the raw key from the
estimated Bell inequality violation. Compared to previous approaches [12], the
proof exploits the constraints imposed by quantum theory, which significantly
increases the efficiency of the protocols. For instance, when applied to the proto-
col of Ref. [3], based on the Clauser-Horne-Shimony-Holt (CHSH) Bell inequal-
ity [13], security can be guaranteed up to a quantum-bit error rate (QBER) of
approximately 5 %.

The security proof, however, needs a requirement which limits its applicabil-
ity from a practical point of view: all the events generating the raw-key sym-
bols must be causally disconnected. There are different possibilities to meet this
requirement. First, one can relax the device-independent character of the pro-
tocol and assume that the measuring apparatuses have no internal memory. Of
course, the no-memory assumption is present in any of the security proofs for
standard QKD [1]. The requirement can also be fulfilled in a device-independent
manner if the honest parties have access to separated devices. For instance, if
all raw-key symbols are defined by space-like separated events, special relativity
warrants their causal independence. However, space-like separation is not nec-
essarily required for the generation of the raw-key symbols. It is sufficient that
the parties are able to shield each of these devices and prevent any unwanted
information exchange among them when generating the raw-key symbols. This
assumption is similar to the one that the honest parties are capable of preventing
information leakage from their laboratories, without which the the cryptographic
scenario would not make sense.

2 Bell Inequalities and DIQKD Protocols

The class of protocols we consider are variations of Ekert’s QKD protocol [5,14].
Alice and Bob share a quantum channel that distributes entangled states and
they both have a quantum apparatus to measure their incoming particles. These
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apparatuses take an input (the measurement setting) and produce an output
(the measurement outcome). We label the inputs and outputs x and a for Alice,
and y and b for Bob, and assume that they take a finite set of possible values.

The first step of the protocol consists in measuring the pairs of quantum
systems distributed to Alice and Bob. In most of the cases (say N), the inputs
are set to fixed values xi = xraw and yi = yraw and the corresponding outputs
a = (a1, . . . aN ) and b = (b1, . . . bN ) constitute the two versions of the raw
key. In the remaining systems, which represent a small random subset of all
measured pairs (of size say Nest ≈ √

N), the inputs x, y are chosen uniformly at
random. From these Nest pairs, Alice and Bob determine the relative frequencies
q(ab|xy) with which the outputs a and b are obtained when using inputs x and y.
These relative frequencies quantify the degree of non-local correlations between
Alice and Bob’s system through the violation of the Bell inequality associated
to the DIQKD protocol. This Bell inequality is defined by a linear function g of
the input-output correlations q(ab|xy):

g =
∑

a,b,x,y

gabxyq(ab|xy) ≤ gloc, (1)

where gabxy are the coefficients defining the Bell inequality and gloc is its local
bound. A particular example of a Bell inequality is the CHSH inequality [13]

gchsh =
∑

a,b,x,y

(−1)a+b+xyq(ab|xy) ≤ 2, (2)

where a, b, x, y ∈ {0, 1}.
After this initial “measure and estimate” phase, the rest of the protocol is

similar to any other QKD protocol. Alice publishes an Npub-bit message about
a, which is used by Bob to correct his errors b → b′, such that b′ = a with
arbitrarily high probability. Alice and Bob then generate their final secret key k
by applying a 2-universal random function to a and b′, respectively [15].

3 Generation of the Raw-Key Symbols

In the DIQDK approach, we do not assume that the devices behave according
to predetermined specifications. Yet, we must first specify how we model the
N pairs of systems used to generate the raw key. These N pairs are eventually
all measured using the inputs x = xraw and y = yraw, but since they where
initially selected at random and each of them could have been part of the Nest

pairs used to estimate the Bell violation, we must also consider what would
have happened for any other inputs x and y. Let therefore P (ab|xy) denote the
prior probability to obtain outcomes a and b if measurements x = (x1, . . . , xN )
and y = (y1, . . . , yN ) are made on these N pairs. This unknown probability
distribution characterizes the initial system at the beginning of the protocol.

In the theoretical model needed for the security proof of Ref. [10], the N bits
of the raw key are viewed as arising from N commuting measurements on a joint
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quantum system ρAB. That is, the probabilities P (ab|xy) can be written as

P (ab|xy) = tr[ρAB
N∏

i=1

Ai(ai|xi)Bi(bi|yi)], (3)

where Ai(ai|xi) are operators describing the measurements performed by Alice
on her ith system if she select input xi (they thus satisfy Ai(ai|xi) ≥ 0 and∑

ai
Ai(ai|xi) = 11), where, similarly, Bi(bi|yi) are operators describing the

measurements by Bob, and where these measurement operators satisfy the
commutation relations

[Ai(a|x), Bj(b|y)] = 0 (4)

and
[Ai(a|x), Aj(a′|x′)] = [Bi(b|y), Bj(b′|y′)] = 0 (5)

for all i, j and a, a′, b, b′, x, x′. Apart from the conditions (4) and (5), the state
ρAB and the operators Ai(ai|xi) and Bi(bi|yi) are arbitrary and unspecified. The
only constraint on them is that they should return measurement probabilities (3)
compatible with the statistics of the Nest randomly selected pairs, characterized
by the observed Bell-inequality violation g.

In quantum theory, measurement operators that commute represent compat-
ible measurements that do not influence each other and which can be performed
independently of each other. The commutation relations (4) between the opera-
tors Ai(ai|xi) describing Alice’s measurement devices and the operators Bi(bi|yi)
describing Bob’s measurement devices are thus a necessary part of any DIQDK
model; security cannot be guaranteed without them.

The commutation relations (5) between the operators Ai(ai|xi) within Alice’s
location, and the commutation relations between the operators Bi(bi|yi) within
Bob’s location, represent, on the other hand, additional constraints specific to
the model discussed here. As already mentioned these commutation relations are
satisfied in an implementation in which the N bits of the raw key are generated by
N separate and non-interacting pairs of devices used in parallel. Let’s elaborate
more on this point.

In the extreme adversarial scenario where the provider of the devices is not
trusted (e.g., if the provider is the eavesdropper itself), this independence condi-
tion can be guaranteed by shielding the N devices in such a way that no commu-
nication between them occurs during the measurement process. One could also
consider a setup where the measurements performed by the N devices define
space-like separated events. However, even in a space-like separated configura-
tion, the ability to shield the devices is required if the provider of the devices is
untrusted, as we cannot guarantee through other means that the devices do not
send directly unwanted information to the adversary. But, then, the ability to
shield the devices is already sufficient by itself to guarantee (5).

In a more practical implementation where the raw key is generated by repeat-
edly performing measurements in sequence on a single pair of devices, the com-
mutation relation (5) expresses the condition that the functioning of the devices
should not depend on any internal memory storing the quantum states and
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measurement results obtained in previous rounds. In the most general DIQKD
model, the quantum devices could possess a quantum memory such that the
state of the system after the ith measurement is passed to the successive round
i + 1 (this state could also contain classical information about the measurement
inputs and outputs of step i). If ρi

AB denotes the state of the system before
measurement i, the unormalised state passed to round i + 1 in the event that
Alice and Bob use inputs xi and yi and obtain outputs ai and bi would then be
Ã†

i (ai|xi)B̃
†
i (bi|yi)ρi

ABÃi(ai|xi)B̃i(bi|yi) where Ãi(a|x) and B̃i(bi|xi) are gener-
alized measurement operators describing Alice’s and Bob’s measurements and
satisfying

∑
a Ãi(a|x)Ã†

i (a|x) =
∑

b B̃i(b|y)B̃†
i (b|y) = I. In such a model, the

probabilities P (ab|xy) are then given by

P (ab|xy) = tr[
1∏

i=N

Ã†
i (ai|xi)B̃

†
i (bi|yi) × ρAB

N∏

i=1

Ãi(ai|xi)B̃i(bi|yi)], (6)

where ρAB denotes the initial state at the beginning of the protocol, and the
order in the products is relevant. Imposing commutation relations between all
operators pertaining to different rounds corresponds to neglect the causal order
in (6) due to memory effects. We then recover a model of the form (3) by defining
Ai(a|x) = Ãi(a|x)Ã†

i (a|x) and Bi(b|y) = B̃i(b|y)B̃†
i (b|y).

4 Security Proof

We are now in position to review the bound on the secret key rate derived
in [10]. This bound can be achieved against an unrestricted eavesdropper Eve
for any QKD protocol satisfying the description (3), (4) and (5). The information
available to Eve can be represented by a quantum system that is correlated with
the Alice and Bob’s systems. We denote by ρABE the corresponding (2N + 1)-
partite state, with trE ρABE = ρAB. This state describes the 2N + 1 systems at
the beginning of the protocol. After the N systems of Alice have been measured,
the joint state of Alice and Eve is described by the classical-quantum state

ρAE =
∑

a

P (a|xraw)|a〉〈a| ⊗ ρE|a, (7)

where ρE|a is the reduced state of Eve conditioned on Alice having observed the
outcomes a.

The length of the secret key k obtained by processing the raw key a with
an error correcting protocol and a 2-universal random function is, up to terms
of order

√
N , lower bounded by Hmin(a|E) − Npub, where Hmin(a|E) is the min-

entropy of a conditioned on Eve’s information for the state (7) and Npub is
the length of the message published by Alice in the error-correcting phase. It
is shown in [16] that the length of the public message necessary for correcting
Bob’s errors is Npub = NH(a|b), up to terms of order

√
N . The quantity H(a|b)

is the conditional Shannon entropy [16], defined by

H(a|b) =
∑

a,b

−P (a, b) log2 P (a|b), (8)
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where P (a, b) = 1/N
∑N

i=1

∑
ai,bi

P (ai = a, bi = b) is the average probability
with witch the pair of outcomes a and b are observed. Computing the key rate
of the DIQKD protocol, thus essentially amounts to determine the min-entropy
Hmin(a|E). A bound on this quantity can be derived as a function of the esti-
mated Bell violation g.

Consider first the simpler case of one pair of systems (N = 1) uncorrelated
to the adversary and characterized by the joint probabilities

P (ab|xy) = tr[ρA(a|x)B(b|y)]. (9)

If P (a|xraw) < 1 for all a, then the outcome of the measurement xraw cannot be
perfectly predicted. The degree of unpredictability of a can be quantified by the
probability to correctly guess a [17]. This guessing probability is equal to

Pguess(a) = max
a

P (a|xraw), (10)

since the best guess that one can make about a is to output the most probable
outcome. If Pguess(a) = 1 then the outcome of the measurement xraw can be
predicted with certainty, while lower values for Pguess(a) imply less predictability.

Let gexp =
∑

abxy gabxyP (ab|xy) = tr[ρG] denote the expected quantum
violation of the Bell inequality (1) for the pair of systems described by (9),
where

G =
∑

a,b,x,y

gabxyA(a|x)B(b|y), (11)

is the Bell operator associated to the inequality g and to the measurements
A(a|x) and B(b|y). Independently of the precise form of the state ρ and of the
measurement operators A(a|x) and B(b|y), the value of the Bell expectation gexp
imposes a constraint on the guessing probability (10). Formally, this constraint
can be expressed as a bound of the form

Pguess(a) ≤ f(gexp), (12)

satisfied by all quantum distributions (9). The optimal point-wise values f(g0)
(for any g0) correspond to the solution of the following maximization problem

max
ρ,A,B

tr[ρA(a|xraw)]

subject to tr[ρG] = g0,
(13)

which can be solved (or upper-bounded) using the semidefinite programming
(SDP) relaxations introduced in [18]. The resulting functions f (and in particu-
lar the optimal one) are then always concave and monotonically decreasing, as
follows from the convex nature of the problem (13) and of its associated SDP
relaxations. In the case of the CHSH inequality, the optimal function f is [10,19]

fchsh(g) =
1
2

+
1
2

√
2 − g2

4
, (14)
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for any of the two possible values xraw = 0 or 1 entering in the CHSH
definition (2).

As the function f is concave, it can be upper-bounded by its linearization
around any point g0

f(g) ≤ μ(g0) + ν(g0)g, (15)

where μ(g0) = f(g0) − f ′(g0)g0, ν(g0) = f ′(g0). From concavity, it also follows
that

f(g) = min
g0

[μ(g0) + ν(g0)g] . (16)

The bound (12) is thus equivalent to the family of inequalities P (a|xraw) ≤
μ(g0) + ν(g0), gexp for all a and g0. Since these inequalities are satisfied by any
quantum distribution (9), and thus in particular by any state ρ, they are equiv-
alent to the operator inequalities

A(a|xraw) ≤ μ(g0)11 + ν(g0)G, (17)

valid for all a, g0, and any set of measurements A(a|x) and B(b|y).
Moving to the case of N pairs of systems described by (3) and (7), the prob-

ability with which Eve can correctly guess the raw key a by measuring her side
information E can be computed as follows. Suppose thus that Eve performs some
measurement z on her system E and obtains an outcome e. Let P (a|xraw, ez)
denote the probability distribution of a conditioned on Eve’s information. On
average, her probability to correctly guess a is given by

∑
e P (e|z)maxa

P (a|xraw, ez), and her optimal correct-guessing probability (optimized over all
measurements z) is [17]:

Pguess(a|E) = max
z

∑

e

P (e|z)max
a

P (a|xraw, ez). (18)

Denote by ρAB|ez the 2N -partite state prepared when Eve measures z and
obtains the outcome e (with ρAB =

∑
e P (e|z)ρAB|ez), and write A(a|xraw) =∏N

i=1 Ai(ai|xraw), so that

P (a|xraw, ez) = tr
[
ρAB|ezA(a|xraw)

]
. (19)

Consider the following N -partite Bell operator

G(g0) =
N∏

i=1

[μ(g0)11 + ν(g0)Gi], (20)

where Gi =
∑

a,b,x,y gabxyAi(ai|xi)Bi(bi|yi). The single-copy operator inequality
(17) implies that for all a and g0

A(a|xraw) ≤ G(g0). (21)

To show this, write A′
i = Ai(ai|xraw) and G′

i = μ(g0)11 + ν(g0)Gi. We thus want
to establish that

∏N
i=1 G′

i − ∏N
i=1 A′

i ≥ 0. Inequality (17) implies that for all i,
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0 ≤ A′
i ≤ G′

i. Defining Zi = G′
i − A′

i ≥ 0, note then that
∏N

i=1 G′
i − ∏N

i=1 A′
i =∏N

i=1(Zi +A′
i)−∏N

i=1 A′
i =

∏N
i=1 Zi +Z1

∏N
i=2 A′

i + · · ·+∏N−1
i=1 A′

iZn. Inequality
(21) then follows from the fact that each term in this sum is positive since it is
the product of operators that are positive and, according to (5), commuting.

Using inequality (21) in (18), we find

Pguess(a|E) = max
z

∑

e

P (e|z) max
a

tr
[
ρAB|ezA(a|xraw)

]

≤ max
z

∑

e

P (e|z) min
g0

tr
[
ρAB|ezG(g0)

]
,

≤ min
g0

tr [ρAB G(g0)] (22)

where to deduce the first inequality we used, in addition to (21), the positivity
of ρAB|ez.

Note now that the quantity tr [ρAB,G(g0)] is a function of the marginal
distributions P (ab|xy) of Alice and Bob only and does not involve directly the
system of Eve. It is shown in [17], that Alice and Bob can estimate (with high
probability) this quantity from the Bell violation g observed on the randomly-
chosen Nest pairs. More precisely, Lemma 5 from reference [17] implies that the
inequality

tr [ρAB,G(g0)] ≤
[
μ(g0) + ν(g0)gest + N

−1/4
est

]N

(23)

holds except with probability exponentially small in Nest. This, (22), and (16)
imply that

Pguess(a|E) ≤
[
f(gest) + N

−1/4
est

]N

. (24)

Finally, it is shown in [17] that the (quantum) min-entropy Hmin(a|E) of a
state of the form (7) is given by

Hmin(a|E) = − log2Pguess(a|E), (25)

which implies the asymptotic secret key rate

R ≥ − log2f(gest) − H(a|b). (26)

As announced, the bound applies to any Bell inequality and the corresponding
DIQKD protocol.

5 Key Rates for the Chained Bell Inequality

As an illustration of the formalism, we explicitly compute the secret-key rates for
the chained Bell inequalities of Ref. [20]. These inequalities were initially intro-
duced in the scenario in which Alice and Bob perform M measurements of two
outcomes. Later, they were generalized to an arbitrary number of outcomes [21],
but we don’t consider this generalization here.
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Fig. 1. Key rates for the chained Bell inequalities for 2, 3 and 4 measurements. The
critical visibility such that the lower bound on the key rate is zero is approximately of
0.9. Increasing the number of settings up to 4 worsens this critical visibility.

The chained inequalities for two measurement outcomes read as follows. The
two outcomes of each measurement by Alice (Bob) are labeled by Ai = ±1
(Bi = ±1), with i = 1, . . . , M . Then, for any local model one has

M∑

i=1

〈AiBi〉 +
M−1∑

i=1

〈BiAi+1〉 − 〈BMA1〉 ≤ 2(M − 1), (27)

where 〈X〉 stands for the expectation value of the random variable X. The case
M = 2 corresponds to the standard CHSH inequality.

In Fig. 2 we depict the lower bound on the secret-key rates (26) for DIQKD
protocols based on the chained inequalities for M = 2, 3, 4. These rates have
been computed for the probability distribution resulting from applying the opti-
mal measurements for the maximal quantum violation of the chained inequality
on a mixture of a two-qubit maximally entangled state |Φ+〉 and white noise,
that is,

ρAB = v|Φ+〉〈Φ+| + (1 − v)11/4, (28)

where v is often known as the visibility. It is important to recall that, while the
rate is computed for a concrete set of states and measurements, the security
analysis is fully device independent (up to the requirement that measurement
outcomes are causally disconnected). Each value of the visibility defines a value
for the error rate between Alice and Bob, εAB = (1 + v)/2, which specifies the
amount of bits needed for error correction. The violation of the chained Bell
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inequality is just the maximal quantum violation multiplied by the visibility
v. Putting the two things together, one derives the rates given in Fig. 1. The
obtained critical values of the visibility such that the key rate is provably strictly
positive, are of approximately 0.9. They are then comparable to those of standard
QKD, which are around 0.78.
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