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Abstract. Graph states [5] are an elegant and powerful quantum
resource for measurement based quantum computation (MBQC). They
are also used for many quantum protocols (error correction, secret shar-
ing, etc.). The main focus of this paper is to provide a structural charac-
terisation of the graph states that can be used for quantum information
processing. The existence of a gflow (generalized flow) [8] is known to
be a requirement for open graphs (graph, input set and output set) to
perform uniformly and strongly deterministic computations. We weaken
the gflow conditions to define two new more general kinds of MBQC:
uniform equiprobability and constant probability. These classes can be
useful from a cryptographic and information point of view because even
though we cannot do a deterministic computation in general we can pre-
serve the information and transfer it perfectly from the inputs to the
outputs. We derive simple graph characterisations for these classes and
prove that the deterministic and uniform equiprobability classes collapse
when the cardinalities of inputs and outputs are the same. We also prove
the reversibility of gflow in that case. The new graphical characterisations
allow us to go from open graphs to graphs in general and to consider this
question: given a graph with no inputs or outputs fixed, which vertices
can be chosen as input and output for quantum information processing?
We present a characterisation of the sets of possible inputs and ouputs
for the equiprobability class, which is also valid for deterministic com-
putations with inputs and ouputs of the same cardinality.

1 Introduction

The graph state formalism [5] is an elegant and powerful formalism for quantum
information processing. Graph states form a subfamily of the stabiliser states [4].
They provide a graphical description of entangled states and they have multiple
applications in quantum information processing, in particular in measurement-
based quantum computation (MBQC) [9], but also in quantum error correct-
ing codes [4] and in quantum protocols like secret sharing [6,7]. They offer a
combinatorial approach to the characterisation of the fundamental properties
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of entangled states in quantum information processing. The invariance of the
entanglement by local complementation of a graph [10]; the use of measure of
entanglement based on the rank-width of a graph [11]; and the combinatorial flow
characterisation [1] of deterministic evolutions in measurement-based quantum
computation witness the import role of the graph state formalism in quantum
information processing.

In this paper, we focus on the application of graph states in MBQC and in
particular on the characterisation of graphs that can be used to perform quantum
information processing in this context. The existence of a graphical condition
which guarantees that a deterministic MBQC evolution can be driven despite
of the probabilistic behaviour of the measurements is a central point in MBQC.
It has already been proven that the existence of a certain kind of flow called
glfow characterises uniformly stepwise determinism [1]. In Sect. 3, we introduce
a simpler but equivalent combinatorial characterisation using focused gflow and
we provide a simple condition of existence of such a flow as the existence of a right
inverse to the adjacency matrix of the graph. We also prove additional properties
in the case where the number of input and output qubits of the computation
are the same: the gflow is then reversible and the stepwise condition [1] on
determinism is not required to guarantee the existence of a gflow.

The main contribution of this paper is the weakening of the determinism
condition in order to consider the more general class of information preserving
evolutions. Being information preserving is one of the most fundamental property
that can be required for an MBQC computation. Indeed, some non-deterministic
evolutions can be information preserving when one knows the classical outcomes
of the measurements produced by the computation. Such evolutions are called
equi-probabilistic – when each classical outcome occurs with probability 1/2 – or
constant-probabilistic in the general case. In Sect. 4, we introduce simple com-
binatorial conditions for equi-probabilistic and constant-probabilistic MBQC by
means of excluded violating sets of vertices. We show, in the particular case
where the number of input and output qubits are the same, that graphs guar-
anteeing equi-probabilism and determinism are the same. In Sect. 6, using this
graphical characterisation, we address the fundamental question of finding input
and output vertices in an arbitrary graph for guaranteeing an equi-probabilistic
(or deterministic) evolution. To this end, we show that the input and output
vertices of a graph must form transversals of the violating sets induced by the
equi-probabilistic characterisation. Finally, in the last section, we investigate
several properties of the most general and less understood class of constant
probabilistic evolutions.

2 Measurement-Based Quantum Computation

In this section, the main ingredients of measurement based quantum computa-
tion (MBQC) are described. More detailed introductions can be found in [2,3].
An MBQC is described by:
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(i) an open graph (G, I,O) (G is a simple undirected graph, I,O ⊆ V (G) are
called resp. input and output vertices);

(ii) a map α : OC → [0, 2π), where OC := V (G) \ O, which associates with
every non ouput vertex an angle; and

(iii) two maps x, z : OC → {0, 1}V (G) called corrective maps. A vertex
v ∈ supp(x(u)) ∪ supp(z(u)) is called a corrector of u, where supp(y) =
{u | yu = 1}.

The maps x, z should be extensive in the sense that there exists a (strict) partial
order ≺ over the vertices of the graph s.t. any corrector v of a vertex u is larger
than u, i.e. v ∈ supp(x(u)) ∪ supp(z(u)) implies u ≺ v.

In the following the semantics of a given MBQC is described. The evolution
can be decomposed into two steps: first the preparation of a large entangled
state described by the open graph (G, I,O); then a sequence of one-qubit mea-
surements (which basis are characterised by the map α) and Pauli operations
(described by the maps x and z).

Let N : C{0,1}I → C
{0,1}V (G)

be the preparation map which associates with
any arbitrary input state located on the input qubits the initial entangled state
of the MBQC:

N =
1√

2|IC |

∑

x∈{0,1}I ,y∈{0,1}IC

(−1)q(xy) |xy〉 〈x|

where xy denotes the concatenation of x and y, and q : {0, 1}V (G) → N::x 
→
|E(G)∩ (supp(x)× supp(x))| associates with every x the number of edges of the
subgraph Gx = (V (G) ∩ supp(x), E(G) ∩ (supp(x) × supp(x))) induced by x.

The one-qubit measurements, parametrized by an angle αu, of every non-
output qubit u are inducing the following projection Ps(α) : C

{0,1}V (G) →
C

{0,1}O

of the entangled state onto the subspace of the output qubits, where
s ∈ {0, 1}OC

stands for the classical outcomes of the one-qubit measurements:

Ps(α) =
1√

2|IC |

∑

x∈{0,1}OC ,y∈{0,1}O

eαx·s |y〉 〈xy|

with αx =
∑

u∈supp(x) α(u) and x · s is the bitwise conjonction of x and s.
Moreover, adaptative Pauli corrections depending on the classical outcomes

of the measurements and on the corrective maps, are applied during the compu-
tation leading, for any possible classical outcomes s ∈ {0, 1}OC

, to the following
overall (postselected) evolution χs : C{0,1}I → C

{0,1}O

:

χs = Ps(α)

⎛

⎝
∏

u∈V (G)

Xs·x(u)Zs·z(u)

⎞

⎠ N

where Xs and Zs are Pauli operators: Xs =
⊗

u∈supp(s) Xu and Zs =⊗
u∈supp(s) Zu.
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An MBQC is implementing the quantum operation {χs}s∈{0,1}OC . The evo-

lution is as follows: a classical outcome (also called branch) s ∈ {0, 1}OC

is pro-
duced and the input state |φ〉 ∈ C

{0,1}I

is mapped to the state χs |φ〉 ∈ C
{0,1}O

(up to a normalisation). The probability for an outcome s ∈ {0, 1}OC

to occur
is ps = ||χs |φ〉 ||2.

The overall evolution can be decomposed into several steps, corresponding
to a possible implementation of the MBQC model: first the input state |φ〉 is
encoded into the open graph state |φG〉 = N |φ〉, then the local measurements
(qubit u is measured according the observable cos(α(u))X + sin(α(u))Y ) and
the local Pauli corrections are performed. This sequence of local operations is
done according to the partial order induced by the correction maps x, z.

3 Determinism

Definition 1. An MBQC (G, I,O, α, x, z) is strongly deterministic if all the
branches are implementing the same map, i.e. ∃U s.t. ∀s ∈ {0, 1}OC

, χs =
1√

2|OC |
U .

Lemma 1. If an MBQC is strongly deterministic then it implements an
isometry.

Proof. Since
∑

s∈{0,1}OC χ†
sχs = I, U†U = I so U is an isometry and the MBQC

implements the super operator ρ 
→ UρU†. �
In order to point out the combinatorial properties of MBQC, the angles of

measurements and the corrective maps can be abstracted away in the following
way, keeping only the influence of the initial open graph.

Definition 2. An open graph (G, I,O) guarantees uniformly strong determin-
ism if ∃x, z s.t. ∀α, (G, I,O, α, x, z) is strongly deterministic.

An open graph is said to guarantee uniform stepwise strong determinism if
any partial computation is also strongly deterministic:

Definition 3. An open graph (G, I,O) guarantees uniformly stepwise strong
determinism if ∃x, z s.t. for any upward closed set O′ ⊇ O and for any α,
(G, I,O′, α, x, z) is strongly deterministic, where O′ is upward closed if ∀u ∈ O′,
u ≺ v ⇒ v ∈ O′ with ≺ the partial order induced by x and z.

The gflow of an open graph is defined as follows, based on the use of the odd
neighborhood of a set of vertices: for a given subset S of vertices in a graph G,
Odd(S) := {v ∈ V (G) s.t. |NG(v) ∩ S| = 1 mod 2}.

Definition 4. (g,≺) is a gflow of (G, I,O), where g : OC → 2Ic

, if for any u,
— if v ∈ g(u), then u ≺ v;
— u ∈ Odd(g(u));
— if v ∈ Odd(g(u)) and u �= v then u ≺ v.

Theorem 1. An open graph (G, I,O) guarantees uniform stepwise strong deter-
minism iff (G, I,O) has a gflow.
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3.1 Focused Gflow

Since the gflow is not unique we introduce a stronger version called focused
gflow, which is unique if the number of inputs and outputs are the same. The
focused gflow gives rise to a simpler characterisation of uniform stepwise strong
determinism. The focused gflow is based on the use of extensive maps.

Definition 5. g : OC → 2IC

is a focused gflow of (G, I,O) if g is extensive –
i.e. the transitive closure of the relation {(u, v) s.t. v ∈ g(u)} is a partial order
over V (G) – and ∀u ∈ OC , Odd(g(u)) ∩ OC = {u}
Theorem 2. An open graph (G, I,O) guarantees uniform stepwise strong deter-
minism iff (G, I,O) has a focused gflow.

Proof. We prove that (G, I,O) has a gflow iff it has a focused gflow. First, assume
g is a focused gflow, and let ≺ be the transitive closure of {(u, v) s.t. v ∈ g(u)}.
≺ is a partial order and by definition, if v ∈ g(u) then u ≺ v. Moreover u ∈
Odd(g(u)) = {u}. Finally, if v ∈ Odd(g(u)) and v �= u then v ∈ O, so there is
no element larger than v by definition of ≺. Thus (g,≺) is a gflow. Now, assume
(g,≺) is a gflow. We call the co-depth of a vertex u its distance to the output,
i.e. the length k of longest strictly increasing sequence u ≺ u1 ≺ .. ≺ uk s.t.
uk ∈ O. We construct a focus gflow gf by induction on the co-depth of the
vertices. If u is of co-depth 1 then gf (u) := g(u). If u is of co-depth larger than
2, let gf (u) := g(u)Δ

(
Δv∈Odd(g(u))∩OC ,v �=ugf (v)

)
, where Δ is the symmetric

difference: AΔB = (A ∪ B) \ (A ∩ B). Since Odd(AΔB) = Odd(A)ΔOdd(B),
Odd(gf (u)) ∩ OC =

(
Odd(g(u))Δ

(
Δv∈Odd(g(u))∩OC ,v �=uOdd(gf (v))

)) ∩ OC =
(Odd(g(u)) ∩ OC)Δ(Odd(g(u)) \ {u}) ∩ OC) = {u}. Moreover gf is extensive
since the relation R induced by gf is s.t. uRv =⇒ u ≺ v so the transitive
closure of R is a partial order. �

3.2 Induced Adjacency Matrix and Reversibility

We introduce the notion of induced adjacency matrix of an open graph and
show that an open graph has a gflow if and only if its induced matrix has a
DAG (Directed Acyclic Graph) as right inverse.

Definition 6. The induced adjacency matrix of an open graph (G, I,O) is the
submatrix AG|OC

IC of the adjacency matrix AG = {mu,v, (u, v) ∈ V (G)} of G

removing the rows of O and column of I, i.e. AG|OC

IC = {mu,v, (u, v) ∈ OC ×IC}.

The induced matrix AG|OC

IC is the matrix representation of the linear map
W 
→ Odd(W ) ∩ OC which domain is 2IC

and codomain is 2OC

.

Theorem 3. (G, I,O) has a gflow iff there exists a DAG F = (V (G), E) s.t.

AG|OC

IC .AF |IC

OC = I
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Proof. (only if ) Assume (G, I,O) has a gflow. Thanks to lemma 2 w.l.o.g.
(G, I,O) has a focused gflow gf . Let F = (V (G), E) be a directed graph s.t.
(u, v) ∈ E(F ) ⇐⇒ v ∈ gf (u). Notice that ∀u ∈ OC , AF |IC

OC1{u} = 1gf (u) where
1X is a binary vector s.t. (1X)u = 1 ⇐⇒ u ∈ X. Moreover, since gf is extensive,
F is a DAG. Thus AG|OC

IC AF |IC

OC1{u} = AG|OC

IC 1g(u) = 1Odd(gf (u))∩OC = 1{u}.
(if ) Assume F = (V (G), E) be a DAG s.t. AG|OC

IC .AF |IC

OC = I, then let g :
OC → 2IC

= u 
→ N+
F (u). Since F is a DAG, g is extensive, and 1Odd(g(u))∩OC =

AF |IC

OC (1g(u)) = AG|OC

IC AF |IC

OC1{u} = 1{u}, so Odd(g(u)) ∩ OC = {u}. �

Thus, according to Theorem 3, an open graph has a gflow if and only if it
has a DAG as right inverse. Notice that this DAG is nothing but the graphical
description of the focused gflow function: the set of successors of a vertex u is
the image of u by the focused gflow function.

As a corollary of Theorem 3, (G, I,O) has no gflow if |I| > |O|. Indeed, for
dimension reasons, if |I| > |O| the matrix AG|OC

IC has no right inverse. When
|I| = |O| the focused gflow is reversible in the following sense:

Theorem 4. When |I| = |O|, (G, I,O) has a gflow iff (G,O, I) has a gflow.

Proof. Assume (G, I,O) has a gflow. So it exists a DAG F s.t. AF |IC

OC is the
right inverse of AG|OC

IC . Notice that the induced adjacency matrix of (G,O, I)
is the transpose tAG|OC

IC of the one of (G, I,O). Moreover, since AG|OC

IC is
squared, AF |IC

OC is both right and left inverse of AG|OC

IC . Thus, AG|IC

OC .tAF |IC

OC =
t(AF |IC

OC .AG|OC

IC ) = I. As a consequence AG|OC

IC has a right inverse which is a
DAG since the transpose of a DAG is a DAG. �

4 Relaxing Uniform Determinism

Focused gflow guarantees uniformly stepwise strong determinism. We consider
here two more general classes of MBQC evolutions: the equi-probabilistic case
where all the branches occur with the same probability, independent of the input
state; and the constant probability case where all the branches occur with a
probability independent of the input state. We show that both equi-probabilitic
and constant probabilistic evolutions are information preserving and admit a
simple graphical characterisation by means of violating sets.

Definition 7. An MBQC (G, I,O, α, x, z) is:
— equi-probabilistic if for any input state |φ〉 ∈ C

2I and any branch s ∈
{0, 1}OC

, ps = ||χs |φ〉 ||2 = 1

2|OC | .

— constant-probabilistic if for any branch s ∈ {0, 1}OC

the probability ps =
||χs |φ〉 || that the branch s occurs does not depend on the input state |φ〉.

Constant probabilistic (and hence equi-probabilistic) evolutions are infor-
mation preserving in the sense that if one knows the branch s of the compu-
tation (i.e. the classical outcome) then he can recover the initial input state of
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the computation. Indeed, if an MBQC is constant probabilistic then the map
|φ〉 
→ ||χs |φ〉 || is constant, thus χ†

sχs = ps.I. If ps = 0 then the branch never
occurs, otherwise the branch s is implementing an isometry.

Remark: Notice that the knowledge of the branch s, which is necessary the case in
the MBQC model because of the corrective strategy, is essential to make an equi-
probabilistic evolution information preserving. Indeed, consider the quantum
one-time pad example with ∀s ∈ {0, 1}2, χs = σs/2 where σs is a Pauli operator
(σ00 = I, σ01 = X,σ10 = Y ,σ11 = Z). This evolution is equi-probabilistic but
if the information of the branch is not taken into account, the corresponding
super operator is ρ 
→ ∑

s∈{0,1}2 σsρσ†
s = I/2 which is clearly not information

preserving.
We prove that uniform equi- and constant probabilities have simple graph

characterisations by violating sets, where uniformity is defined similarly to the
determinism case:

Definition 8. An open graph (G, I,O) guarantees uniform constant (resp.
equi-) probabilisty if ∃x, z s.t. ∀α, (G, I,O, α, x, z) has a constant (resp.
equi-) probabilistic evolution.

Theorem 5. An open graph (G, I,O) guarantees uniform equiprobability iff

∀W ⊆ OC , Odd(W ) ⊆ W ∪ I =⇒ W = ∅

A nonempty set W ⊆ OC such that Odd(W ) ⊆ W ∪ I is called an internal set.
Theorem 5 says that an open graph (G, I,O) guarantees uniform equi-probability
if and only if it has no internal set.

Proof. (if ) First we assume that there is no internal set and we show that every
branch occurs with the same probability 1/2|OC |, independently of the input
state and the set of measurement angles. For a given open graph (G, I,O), a given
input state |φ〉 and a given set of measurement angles {αv}v∈OC , we consider
w.l.o.g. the 0-branch, i.e. the branch where all outcomes are 0 1. The probability
of this branch is p = ||∏v∈Oc 〈+αv

|φG〉 ||2 = 1

2|OC | ||
∑

x∈{0,1}OC eiαx〈x |φG〉 ||2
where αx =

∑
v∈OC αv.xv and |φG〉 = EG |+〉IC |φ〉I . As a consequence,

p = 1

2|OC |
∑

x,y∈{0,1}OC ei(αy−αx)〈φG |x〉 〈y |φG〉
= 1

2|OC |
∑

u∈{−1,0,1}OC eiαu
∑

x,y∈{0,1}OC s.t. x−y=u〈φG |x〉 〈y |φG〉
= 1

2|OC |
∑

u∈{−1,0,1}OC eiαu
∑

x∈{0,1}V C
u

〈φG |x〉V C
u

∣∣ 1+u
2

〉
Vu

〈x|V C
u

〈
1−u
2

∣∣
Vu

|φG〉
= 1

2|OC |
∑

u∈{−1,0,1}OC eiαu 〈φG| ∣∣ 1+u
2

〉
Vu

(∑
x∈{0,1}V C

u
|x〉 〈x|

) 〈
1−u
2

∣∣
Vu

|φG〉
= 1

2|OC |
∑

u∈{−1,0,1}OC eiαu 〈φG| ∣∣ 1+u
2

〉
Vu

〈
1−u
2

∣∣
Vu

|φG〉
= 1

2|OC |
∑

u∈{−1,0,1}OC eiαupu

1 The other branches are taken into account by considering a different set of measure-
ment angles e.g. the branch where all outcomes are 1 corresponds to the 0-branch
when the set of measurements is {αv + π}v∈OC .
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where Vu = {i ∈ OC | ui �= 0},
∣∣ 1±u

2

〉
Vu

=
⊗

i∈Vu

∣∣ 1±ui

2

〉
i
, and

pu = 〈φG| ∣∣ 1+u
2

〉
Vu

〈
1−u
2

∣∣
Vu

|φG〉. Notice that for any v ∈ IC ,

|φG〉 = 1√
2

∑
a∈{0,1} Za

NG(v)

∣∣φG\v

〉 ⊗ |a〉v. Thus for any u ∈ {−1, 0, 1}OC

s.t.
Vu �= ∅, there exists v ∈ IC ∩ V C

u ∩ Odd(Vu) (which is not empty by hypothesis)
such that:

pu = 〈φG| ∣∣ 1+u
2

〉
Vu

〈
1+u
2

∣∣
Vu

XVu
|φG〉

= 1
2

∑
a,b∈{0,1}

〈
φG\v

∣∣ 〈a|v Za
NG(v)

∣∣ 1+u
2

〉
Vu

〈
1+u
2

∣∣
Vu

XVu
Zb

NG(v)

∣∣φG\v

〉 |b〉v

= 1
2

∑
a∈{0,1}

〈
φG\v

∣∣ Za
NG(v)

∣∣ 1+u
2

〉
Vu

〈
1+u
2

∣∣
Vu

XVu
Za

NG(v)

∣∣φG\v

〉

= 1
2

∑
a∈{0,1}(−1)a

〈
φG\v

∣∣ Za
NG(v)

∣∣ 1+u
2

〉
Vu

〈
1+u
2

∣∣
Vu

Za
NG(v)XVu

∣∣φG\v

〉

= 1
2

∑
a∈{0,1}(−1)a

〈
φG\v

∣∣ ∣∣ 1+u
2

〉
Vu

〈
1+u
2

∣∣
Vu

XVu

∣∣φG\v

〉
= 0

where the factor (−1)a comes from the fact that XVu
and Za

NG(v) are commut-
ing when a = 0 and anticommuting when a = 1 since v ∈ Odd(Vu). As a conse-
quence, it remains in p only the case where Vu = ∅, so p = 1

2|OC | 〈φG |φG〉 = 1

2|OC | .
(only if ) Now we prove that the existence of an internal set implies that

there exists a particular input state and a particular set of measurement angles
such that some branches occur with probability 0. Let W0 ⊆ OC s.t. Odd(W0)∩
WC

0 ∩ IC = ∅ and P =
⊗

v∈V (G) Pv be a Pauli operator defined as follows:

∀v ∈ V (G), Pv =

⎧
⎪⎨

⎪⎩

X if v ∈ W0 and v /∈ Odd(W0)
Y if v ∈ W0 ∩ Odd(W0)
I otherwise

Let |φ0〉 = |+〉W0∩I ⊗ |0〉WC
0 ∩I be an input state. Notice that

PEG |+〉IC |φ0〉 = (−1)|E(W0)|EGXW0ZOdd(W0)∩WC
0

|+〉IC |φ0〉
= (−1)|E(W0)|EGXW0 |+〉IC∪W0

ZOdd(W0)∩WC
0

|0〉WC
0 ∩I

= (−1)|E(W0)|EG |+〉IC |φ0〉 ,

where E(W ) = E ∩ (W × W ) is the set of the internal edges of W .
Thus EG |+〉IC |φ〉0 is an the eigenvector of P associated with the eigenvalue
(−1)|E(W0)|, implying that if each qubit v ∈ W0 is individually measured accord-
ing to the observable Pv producing the classical outcome sv ∈ {0, 1}, then∑

v∈W0
sv = |E(W0)| mod 2. As a consequence, for the input |φ0〉 and any

set of measurements {αv}v∈OC s.t. αv = 0 if v ∈ W0 ∩ Odd(W0)C and αv = π/2
if v ∈ W0 ∩ Odd(W0), all the branches s s.t.

∑
v∈W0

sv = 1 + |E(W0)| mod 2
occur with probability 0. �

Theorem 6. An open graph (G, I,O) guarantees uniform constant probability
iff

∀W ⊆ OC , Odd(W ) ⊆ W ∪ I =⇒ L(W ) ∩ I = ∅
where L(W ) := Odd(W ) ∪ W .

A nonempty set W ⊆ OC such that Odd(W ) ⊆ W ∪ I and L(W ) ∩ I �= ∅
is called a strongly internal set. Theorem 6 says that an open graph (G, I,O)
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guarantees uniform constant probability if and only if it has no strongly internal
set, or equivalently if and only if all internal sets are ‘far enough’ from the inputs.

Proof. (if ) First we assume that there is no strongly internal set and we show
that every branch occurs with a probability independent of the input. Using
the notations of the proof of Theorem 5, it only remains to prove that pu is
independent of the input for any u �= 0 such that IC ∩ V C

u ∩ Odd(Vu) = ∅ and
L(Vu) ∩ I = ∅. Note that Odd(Vu) ⊆ Vu ⊆ IC so

pu = 〈φG| ∣∣ 1+u
2

〉
Vu

〈
1+u
2

∣∣
Vu

XVu
|φG〉

= (−1)|E(Vu)| 〈φG| ∣∣ 1+u
2

〉
Vu

〈
1+u
2

∣∣
Vu

EGZOdd(Vu)XVu
|+〉IC |φ〉I

= (−1)|E(Vu)| 〈φG| ∣∣ 1+u
2

〉
Vu

〈
1+u
2

∣∣
Vu

EGZOdd(Vu) |+〉IC |φ〉I

= (−1)|E(Vu)|+|Vu∩Odd(Vu)| 〈φG| ∣∣ 1+u
2

〉
Vu

〈
1+u
2

∣∣
Vu

|φG〉
Moreover, for any v ∈ Vu, since v ∈ IC , 〈φG| ∣∣ 1+u

2

〉
Vu

〈
1+u
2

∣∣
Vu

|φG〉
= 1

2

∑
a,b∈{0,1}

〈
φG\v

∣∣ 〈a|v Za
NG(v)

∣∣ 1+u
2

〉
Vu

〈
1+u
2

∣∣
Vu

Zb
NG(v) |b〉v

∣∣φG\v

〉

= 1
2

〈
φG\v

∣∣ Z
1+uv

2
NG(v)

∣∣ 1+u
2

〉
Vu\v

〈
1+u
2

∣∣
Vu\v

Z
1+uv

2
NG(v)

∣∣φG\v

〉

= 1
2

〈
φG\v

∣∣ ∣∣ 1+u
2

〉
Vu\v

〈
1+u
2

∣∣
Vu\v

∣∣φG\v

〉

So, by induction, 〈φG| ∣∣ 1+u
2

〉
Vu

〈
1+u
2

∣∣
Vu

|φG〉 = 1
2|Vu|

〈
φG\Vu

∣∣ ∣∣φG\Vu

〉
= 1

2|Vu| .
This shows that pu does not depend on the input state.

(only if ) Now we prove that the existence of a strongly internal set implies
that there exists a particular set of measurement angles such that some branches
occur with probability zero for some input state and with nonzero probability
for other inputs. Let W0 ⊆ OC s.t. Odd(W0) ∩ WC

0 ∩ IC = ∅, u0 ∈ L(W0) ∩ I,
and P =

⊗
v∈V Pv be a Pauli operator defined like in the proof of Theorem

5. We consider the following input states: |φa〉 = |+〉W0∩I ⊗ |0〉WC
0 ∩I\u0

⊗ |a〉u

for a ∈ {0, 1}. Notice that PEG |+〉IC |φa〉I = (−1)a+|E(W0)|EG |+〉IC |φa〉I . Let
αv = π/2 if v ∈ W0 ∩Odd(W0) and αv = 0 otherwise. We consider a branch s of
measurement which occurs with a nonzero probability if the input state is |φ0〉.
Notice that this branch satisfies

∑
v∈W0

sv = (−1)|E(W0)|. As a consequence, if
the input state is |φ1〉, this branch s occurs with probability 0. �

5 Uniform Equiprobability Versus Gflow Existence

Since the existence of a gflow implies uniform strong determinism it also implies
uniform equiprobability. In general uniform equiprobability does not imply gflow:

Lemma 2. When |I| �= |O|, there exists an open graph that satisfies uniform
equiprobability but that has no gflow.

Proof. Consider the graph depicted in Fig. 1. It is easy to see that it has no gflow,
as no subset of the outputs has a single vertex as its odd neighorhood. On the
other hand, all the subsets of OC have a nonempty external odd neighborhood
in IC . �
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v1

v2 v5

v3

v4v6

Fig. 1. Open graph (G, I, O) with I = {v1} and O = {v5, v6} satisfying the uniform
equiprobability condition but having no gflow.

However, in the particular case where |I| = |O|, the existence of a gflow
implies uniform equiprobability.

Theorem 7. When |I| = |O|, (G, I,O) guarantees uniform equiprobability iff it
has a gflow.

Proof. We only have to prove that uniform equiprobability implies the existence
of gflow (the other direction is obvious). We prove the existence of a gflow for
(G,O, I) which, according to Theorem 4, implies the existence of a gflow for
(G, I,O). Since (G, I,O) is uniformly equiprobable, the matrix AG|IC

OC is injec-
tive, so reversible. Indeed, for any W ⊆ OC , AG|IC

OC .1W = ∅ ⇐⇒ 1Odd(W )∩IC =

0 =⇒ Odd(W ) ⊆ I ⊆ W ∪ I so W = ∅. The matrix
(
AG|IC

OC

)−1

is the induced
matrix of a directed open graph (H,O, I), where H is chosen s.t. vertices in O
have no successor. In the following we show that H is a DAG. By contradiction,
let S ⊆ V (H) be the shortest cycle in H. Notice that S ⊆ OC since vertices in
O have no successor. AG|IC

OC .(AG|IC

OC )−1.1S = 1S ⇐⇒ AG|IC

OC .1OddH(S)∩OC =
1S ⇐⇒ OddG(OddH(S) ∩ OC) ∩ IC = S. Let W := OddH(S) ∩ OC . Since
S is the shortest cycle, S ⊆ OddH(S). Moreover S ⊆ OC so S ⊆ W . Thus
OddG(W ) ⊆ W ∪ IC which implies W = ∅, so S = ∅. Thus H is a DAG. �

Notice that thanks to Theorem 7 the stepwise condition in the characterisa-
tion of gflow can be removed, improving Theorem 1:

Corollary 1. When |I| = |O|, (G, I,O) guarantees uniform strong determinism
iff it has a gflow.

Proof. Uniform strong determinism implies equiprobability which ensures the
existence of gflow when |I| = |O|. �

6 Choosing Inputs and Outputs

The fact that the characterisation of uniform equi-probability is by excluded
internal sets allows us to have a better view of the following general problem:
given a graph, which vertices can be chosen as outputs and inputs for measure-
ment based quantum information processing.
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Definition 9. Given a graph G, for any A ⊆ V (G), let EA be the collection of
internal sets outside A: EA := {S ⊆ V (G), S �= ∅ ∧ Odd(S) ∩ SC ∩ AC = ∅}
A transversal of a collection C of sets is a set that intersects all the elements of C.
The set of all transversals of EA is T (EA) := {S′ ⊆ V (G), ∀S ∈ EA S′ ∩ S �= ∅}.

Lemma 3. If an open graph (G, I,O) guarantees uniform equiprobability then
O ∈ T (E∅).

Proof. By contradiction if W ∈ E∅ and W ∩ O = ∅, then Odd(W ) ∩ WC = ∅,
so Odd(W ) ⊆ W ∪ IC which implies W = ∅. It contradicts the fact that
W ∈ E∅. �

Theorem 8. An open graph (G, I,O) guarantees uniform equiprobability if and
only if O ∈ T (EI).

Proof. O ∈ T (EI) ⇐⇒ ∀W ∈ EI ,W ∩ O �= ∅ ⇐⇒ ∀W ⊆ OC ,W /∈ EI ⇐⇒
∀W ⊆ OC ,¬(Odd(W ) ∩ WC ∩ IC ∧ W �= ∅) ⇐⇒ ∀W ⊆ OC , (Odd(W ) ⊆
W ∪ I ⇒ W = ∅). �

Theorem 9. Given a graph G and two subsets of vertices I and O with |I| =
|O|, the open graph (G, I,O) guarantees equiprobability iff I ∈ T (E∅) and O ∈
T (EI).

Proof. When |I| = |O|, if (G, I,O) guarantees equiprobability then (G, I,O) has
a gflow (Theorem 7) and thus (G,O, I) has a gflow (Theorem 4) as well. As a
consequence (G, I,O) guarantees uniform equiprobability so I ∈ T (E∅). �

This observation allows a characterisation of the possible deterministic compu-
tations for small graphs. The main question is, given a graph G, how to find
I ⊆ V (G) and O ⊆ V (G) with |I| = |O| such that (G, I,O) has gflow.

Furthermore it is straightforward to see that :

Lemma 4. If an open graph (G, I,O) guarantees uniform equi-probability then
(G, I ′, O′) with I ′ ⊆ I and O ⊆ O′ also guarantees uniform equi-probability.

Notice that gflow and constant probability classes are also stable by adding new
outputs or removing inputs. Thus the interesting problem when choosing inputs
and outputs consists of minimizing |O| and maximizing |I|.

Thus one can take minimal elements in T (E∅) as inputs I and then look for
minimal elements in T (EI). If they have the same size then we can conclude that
they are a proper input/output pair for deterministic computation. This allows
one to characterise the possible deterministic computations for small graphs (as
it is not polynomial to compute the big transversal sets). For instance in the
case of the 2 × 3 grid, the test shows that the minimal number of outputs is 2
and that there are only 3 solutions up to symmetry (see Fig. 2).
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Fig. 2. Uniform deterministic choice of inputs for the 2× 3 grid – input (resp. output)
vertices are represented by squared (resp. white) vertices.

7 Uniform Constant Probability

The constant probability case is at the same time the most general case where
information is not lost during the measurement and the less understood case. In
this last section, we investigate some properties of the graph states that guar-
antee constant probability. We show a decomposition theorem into a gflow part
and an internal set and we characterise open graphs with constant probability
in the particular case of one input and one output. We also prove a reversibility
property in the considered cases.

Lemma 5. If an open graph (G, I,O) with |I| = |O| guarantees uniform con-
stant probability then there exists a subgraph G′ of G such that (G′, I, O) has a
gflow and V (G) \ V (G′) is an internal set.

Proof. Inductively removing the empty neighborhood subsets (W such that
Odd(W ) ∩ WC = ∅) leaves an open graph with gflow. �

Theorem 10. An open graph (G, I,O) with |I| = |O| = 1 guarantees uniformly
constant probability if and only if ∀u ∈ V (G),

d(u) = 1 mod 2 ⇐⇒ u ∈ IΔO

where d(u) = |NG(u)| is the degree of u.

Proof. Consider a constant probability open graph (G, {i}, {o}), by definition
there is no strongly internal set. We prove by contradiction that if i = o then
all the vertices have even degree and that if i �= o the input and output vertices
have odd degree and all the other vertices have an even degree. Indeed:

– if i = o then
– if d(i) = 1 mod 2 then V (G) \ {i} is a strongly internal set.
– if d(i) = 0 mod 2 and there exists u �= i, d(u) = 1 mod 2. Consider
the shortest path P between the output and a vertex of odd degree.
Odd(G \ P ) ∩ (G \ P )C = {i} thus V (G) \ P is a strongly internal set.

– if i �= o then
– if d(o) = 0 mod 2 then V (G) \ {o} is a strongly internal set.
– if d(o) = 1 mod 2, then if there exists u /∈ {i, o} with d(u) = 1 mod 2.
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Consider the shortest path P between the output and a non input vertex of
odd degree. If i /∈ P then Odd(G\P )∩(G\P )C = ∅ thus V (G)\P is a strongly
internal set. Otherwise, if d(i) = 1 mod 2 then Odd(G \ P ) ∩ (G \ P )C = {i}
thus V (G) \ P is a strongly internal set. Otherwise consider P ′ ⊂ P the part
of the path form o to i, Odd(G \ P ′) ∩ (G \ P ′)C = {i} thus V (G) \ P ′ is a
strongly internal set. If d(i) = 0 mod 2, then, as the sum of the degrees is
even, there exists u /∈ {i, o} with d(u) = 1 mod 2 and thus a strongly internal
set.

For the other direction, suppose that (G, {i}, {o}) satisfies that ∀u ∈ V (G),
d(u) = 1 mod 2 iff u ∈ {i}Δ{o}. For any subset S of V (G)\{i, o} as

∑
v∈S d(v)=

0 mod 2, |Odd(S)∩SC | = 0 mod 2 and thus there is no strongly internal set if
i = o. Furthermore, if i �= o, for any set S of V (G) \ {o} containing i, S contains
one vertex of odd degree thus |Odd(S) ∩ SC | = 1 mod 2 and therefore there is
no strongly internal set. �

8 Open Questions

This work raises several open questions, from the structural point of view.
For example, it is not known whether the uniform constant probability case
is reversible when |I| = |O|. From a complexity perspective: is it possible to
derive a polynomial algorithm to characterise the uniform equiprobability class
and the uniform constant probability class? Is it possible to derive an efficient
algorithm for finding inputs and ouputs?
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