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Abstract. Min-entropy sampling gives a bound on the min-entropy of
a randomly chosen subset of a string, given a bound on the min-entropy
of the whole string. König and Renner showed a min-entropy sampling
theorem that holds relative to quantum knowledge. Their result achieves
the optimal rate, but it can only be applied if the bits are sampled in
blocks, and only gives weak bounds for the non-smooth min-entropy.
We give two new quantum min-entropy sampling theorems that do not
have the above weaknesses. The first theorem shows that the result by
König and Renner also applies to bitwise sampling, and the second the-
orem gives a strong bound for the non-smooth min-entropy. Our results
imply a new lower bound for k-out-of-n random access codes: while previ-
ous results by Ben-Aroya, Regev, and de Wolf showed that the decoding
probability is exponentially small in k if the storage rate is smaller than
0.7, our results imply that this holds for any storage rate strictly smaller
than 1, which is optimal.

1 Introduction

Let two players share a long string x ∈ {0, 1}n, on which an adversary has
only partial knowledge. They would like to get a shared key, over which the
adversary has almost no knowledge. Since x is long, using a 2-universal hash
function or, more generally, a strong extractor would be inefficient and hence
impractical. Vadhan showed in [Vad04] that the two players can instead first
randomly sample a relatively small substring x′ ∈ {0, 1}k of x, and then apply
an extractor to x′. The main part of his proof is a sampling lemma, which shows
that with high probability, the string x′ will have almost t

n ·k bits of min-entropy,
if the min-entropy of x is at least t. König and Renner showed in [KR07] that
this lemma can be generalized1 to the setting where the adversary has quantum
information about x. Again, with high probability the string x′ will have almost
t
n · k bits of quantum min-entropy.

Related to these results are lower bounds for random access codes. A random
access code is an encoding of a message of n classical bits into m < n qubits,
such that from these m qubits, k uniformly chosen bits of the message can be
guessed with probability at least p. The first lower bound was given for the case
1 It is however important to note that the results in [KR07] do not converge as fast

as in [Vad04]. See also discussion in Sect. 3.

D. Bacon et al. (Eds.): TQC 2011, LNCS 6745, pp. 164–173, 2014.
DOI: 10.1007/978-3-642-54429-3 11, c© Springer-Verlag Berlin Heidelberg 2014



Bitwise Quantum Min-Entropy Sampling 165

where k = 1 by Ambainis, Nayak, Ta-Shma and Vazirani in [ANTSV99]. It was
later improved by Nayak in [Nay99] to m ≥ (1 − H(p))n, where H(·) is the
binary entropy function. For the general case where k ≥ 1, a lower bound was
presented by Ben-Aroya, Regev, and de Wolf in [BARdW08]. They showed that
for any η > 2 ln 2 there exists a constant Cη such that

p ≤ Cη

(
1
2

+
1
2

√
ηm

n

)k

.

This implies that if m ≤ 0.7n, then p ≤ 2−Ω(k). In the same work they also
showed lower bounds for a variant of random access codes called XOR random
access codes, where the decoder has to guess the XOR of a uniform subset of size
k. De and Vidick presented in [DV10] lower bounds for functional access codes.
They are generalizations of XOR random access codes where the decoder has to
guess the output of a function with binary output, where the function is chosen
uniformly from a given set.

The result in [Vad04] implies a classical lower bound for k-out-of-n random
access codes. In principle, this would also be possible in the quantum setting, as
the min-entropy is defined as minus the logarithm of the guessing probability.
Unfortunately, the results by König and Renner are not general enough to do
that, because they require the sampling to be done in blocks.

1.1 Contributions

In this work we give two new results for quantum min-entropy sampling.
First, we show in Theorems 4 and 5 in Sect. 3 that the bounds given in

Corollary 6.19 and Lemma 7.2 in [KR07] also apply to the case where the sample
is chosen bitwise, instead of (recursively) in blocks. This result simplifies some
protocols2 as it eliminates an artificial extra step in which the bits have to be
grouped in blocks.

Second, building on previous results given in [BARdW08] and [DV10], in
Sect. 4 we proof the following quantum sampling theorem.

Theorem 1. Let ρXQ be a state that is classical on X ∈ {0, 1}n. Let T be a
uniformly chosen subset of [n] of size k. Then3

Hmin(XT | TQ)ρ ≥ H−1

(
Hmin(X | Q)ρ

2n

)
k

6
− 5 .

Compared with the results in [KR07] and Theorems 4 and 5, Theorem 1 gives
stronger bounds for non-smooth min-entropy, but does not achieve the optimal
rate4. Also note that Theorem 1 only applies to the case where the sample is
chosen uniformly, which requires a lot of randomness.
2 For example in [KWW09].
3 Hmin is defined in Sect. 2.
4 Therefore, if we are interested in extracting a key, Theorem 1 only gives better

bounds if the sample size is small enough.
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Theorem 1 immediately implies the following bound for random access codes.

Corollary 1. Let 0 < ε < 1
2 . For any k-out-of-n random access code where the

code length is bounded by m ≤ (1 − 2H(ε))n, the success probability of decoding
is at most 2−εk/6+5.

As the results in [BARdW08], Corollary 1 generalizes the bound given by Nayak
to the case where k ≥ 1. But while the results in [BARdW08] require that
m < 0.7n, our results imply that the success probability decreases exponentially
in k even if m is close to n.

Note that together with Lemma 8 in [BARdW08], Corollary 1 implies a
strong lower bound for the one-way communication complexity of k independent
instances of the disjointness problem.

2 Preliminaries

The binary entropy function is defined as H(x) := −x log x−(1−x) log(1−x) for
x ∈ [0, 1], where we use the convention 0 log 0 = 0. For y ∈ [0, 1], let H−1(y) be
the value x ∈ [0, 1

2 ] such that H(x) = y. The Hamming distance dH(·, ·) between
two strings is defined as the number of bits where the two strings disagree. We
use the notion [n] := {1, . . . , n}. The substring of x ∈ {0, 1}n defined by the set
s ⊂ [n] is denoted by xs. We call a state ρXQ a cq-state if it is classical on X,
which means that it has the form ρXQ =

∑
x px|x〉〈x| ⊗ ρx

Q.
The conditional min-entropy of a cq-state ρXQ is defined as

Hmin(X | Q)ρ := − log Pguess(X | Q)ρ ,

where
Pguess(X | Q)ρ := max

E

∑
x∈X

PX(x) tr(Exρx
Q) .

The maximum is taken over all POVMs E = {Ex}x∈X on Q. Therefore, Pguess

(X | Q)ρ is the maximal probability to correctly guess X by measuring system
Q. The equivalence of this definition of Hmin with the definition used in [KR07]
has been shown in [KRS09] in Theorem 1.

The statistical distance D(ρ, φ) between two states ρ and φ is defined as5

D(ρ, φ) := max
E

| tr(E1ρ) − tr(E1φ)| ,

where we maximize over all POVMs E = {Ex}x∈{0,1}. D(ρ, φ) is therefore the
maximal probability to distinguish ρ and φ by a measurement. The following
lemma shows the connection between the statistical distance and the guessing
probability.

Lemma 1. Let ρXQ be a cq-state where X ∈ {0, 1} and let τX be the fully mixed
state. Then D(ρXQ, τX ⊗ ρQ) ≤ ε implies that Pguess(X | Q)ρ ≤ 1

2 + ε.

5 This definition is equivalent to D(ρ, φ) := 1
2
‖ρ − φ‖1 = 1

2
tr[
√

(ρ − φ)†(ρ − φ)].
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Proof. Let us assume that there exists a POVM E on Q which can guess X
with a probability bigger than 1

2 + ε. We define a POVM E ′ on X ⊗ Q in the
following way: we measure Q using E and XOR the output with X. We get
tr(E′

1ρXE) < 1
2−ε and tr(E′

1(τX⊗ρQ)) = 1
2 . It follows that D(ρXQ, τX⊗ρQ) > ε,

which contradicts the assumption. �

Lemma 2. (Chernoff/Hoeffding). Let PX0...Xn
= Pn

X be a product distribu-
tion with Xi ∈ [0, 1]. Let X := 1

n

∑n−1
i=0 Xi, and μ = E[X]. Then, for any ε > 0,

Pr [X ≤ μ − ε] ≤ e−2nε2
.

3 Bitwise Sampling from Blockwise Sampling

In this section we show that the min-entropy sampling results from [KR07], which
require blockwise sampling, also imply the same bounds for uniform bitwise
sampling.

The following theorem is the statement of Corollary 6.19 in [KR07] for uni-
form blockwise sampling. Here Hε

min is the smooth min-entropy, and H0 the
Rényi 0-entropy. The definitions of these entropies and their properties can be
found in Sect. 5 in [KR07] or Chap. 3 in [Ren05].

Theorem 2 ([KR07]). Let ρXQ be a cq-state where X = (X1, . . . , Xn) ∈ X n.
Let S ⊂ [n] be chosen uniformly at random among all subsets of size r. Assume
that κ = n

r log |X | ≤ 0.15. Then for any ξ ∈ [0, 1],

Hε
min(XS | SQ)

H0(XS)
≥ Hmin(X | Q)

H0(X)
− 3ξ − 2κ log 1/κ ,

where ε = 2 · 2−ξn log |X | + 3e−rξ2/8.

The statement says that with high probability, the min-entropy rate of a random
subset is almost as big as the min-entropy rate of the whole string.

If X is a bit-string, the required condition n ≤ 0.15 ·r log |X | can be achieved
by first grouping the bits into blocks. But as pointed out in [BARdW08], even
then we need the length of the sampled bit-string to be at least Ω(

√
n). To

overcome this problem, [KR07] proposed a recursive application of Theorem 2.
The following theorem is Lemma 7.2 in [KR07]. See Section 7 in [KR07] for the
definition of the sampling algorithm ReSamp(X, f, r, S).

Theorem 3 ([KR07]). Let ρXQ be a cq-state where X ∈ {0, 1}n. Let n, f and
r be such that n(3/4)f ≥ r4. Let S be a string of uniform random bits, and let
Z = ReSamp(X, f, r, S). Then Z is a n(3/4)f -bit substring of X, with

Hε
min(Z | SQ)

H0(Z)
≥ Hmin(X | Q)

H0(X)
− 5f

log r

r1/4
,

where ε = 5f · 2−√
r/8.
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Our results from this section, Theorems 4 and 5, will follow directly from the
following lemma.

Lemma 3. The bounds of Theorems 2 and 3 also apply if the sample is chosen
bitwise uniformly.

Proof. Let k, n ∈ N, were k < n. Let ρXQ be a cq-state where X ∈ {0, 1}n. Let
S ⊂ [n] be chosen uniformly at random from all subset of size k and let T ⊂ [n]
be a random subset of size k chosen according to a given distribution PT . Let Π
a permutation chosen uniformly at random, but such that it maps all elements
in S into T . Strong subadditivity (Theorem 3.2.12 in [Ren05]) implies

Hε
min(XS | SQ) ≥ Hε

min(XS | SΠQ)
= Hε

min(Π(X)T | TΠQ) .

Note that from (S,Π) it is possible to calculate (T,Π), and vice-versa. Further-
more, since Π is chosen independent of ρXQ, we have

Hε
min(Π(X) | ΠQ) = Hε

min(X | ΠQ) = Hε
min(X | Q) .

Since S was chosen uniformly and independent of T and ρXQ, Π is independent
of T and ρXQ. For Q′ := (Q,Π), we can apply Theorem 2 or 3 to the state
ρΠ(X)Q′ . We now choose PT as the particular sampling required by the theorem
and get a bound on Hε

min(Π(X)T | TΠQ), which then directly implies the same
bound for Hε

min(XS | SQ). �

Theorem 4. Let b, r ∈ N. Let ρXQ be a cq-state where X ∈ {0, 1}n. Let S ⊂ [n]
be chosen uniformly among all subsets of size k = rb. Assume that κ = n

kb ≤ 0.15.
Then for any constant ξ ∈ [0, 1],

Hε
min(XS | SQ)

H0(XS)
≥ Hmin(X | Q)

H0(X)
− 3ξ − 2κ log 1/κ ,

where ε = 2 · 2−ξn + 3e−kξ2/(8b).

Note that even though we sample bitwise in Theorem 4, the block-size para-
meter b is still present. It can be chosen depending on the required result: a
bigger value b gives a better rate, but results in a slower convergence of the error
ε. The best convergence of ε is achieved by choosing b = n

0.15k , where we get

ε = 2 · 2−ξn + 3e−kξ2/(8b) = 2 · 2−ξn + 3e−0.15k2ξ2/(8n) .

Hence, as mentioned before, we need k = Ω(
√

n).

Theorem 5. Let n, f and r ∈ N be such that n(3/4)f ≥ r4. Let ρXQ be a cq-state
where X ∈ {0, 1}n. Let S ⊂ [n] be chosen uniformly among all subsets of size
k = n(3/4)f . Then

Hε
min(XS | SQ)

H0(XS)
≥ Hmin(X | Q)

H0(X)
− 5f

log r

r1/4
,

where ε = 5f · 2−√
r/8.
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Theorem 5 can be applied even if k = o(
√

n), but the error converges rather
slow: since k ≥ r4, we have

ε = 5f · 2−√
r/8 ≥ 5f · 2− 8√

k/8 .

4 A Sampling Theorem from Quantum Bit Extractors

In this section we give a new min-entropy sampling theorem (Theorem 1) using
a completely different approach than [KR07]. Our proof has two steps. First,
we show a bound on the guessing probability of the XOR of a randomly chosen
substring of X using the same approach as [DV10], which is based on a result by
König and Terhal [KT08] on strong bit-extractors against quantum adversaries.
Second, we will show that this implies a bound on the guessing probability of a
randomly chosen substring of X. To show this we use a result from [BARdW08].

A function ext : {0, 1}n×{0, 1}d → {0, 1}m is a (�, ε)-strong extractor against
quantum adversaries, if for all cq-states ρXQ with Hmin(X | Q)ρ ≥ � and for a
uniform seed R, we have D(ρext(X,R)RQ, τU ⊗ρR ⊗ρQ) ≤ ε, where τU is the fully
mixed state. A strong classical extractor is the same, but with a trivial system
Q. If m = 1, we call it a bit-extractor. König and Terhal showed in [KT08] that
any classical bit-extractor is also a quantum bit-extractor.

Theorem 6 (Theorem III.1 in [KT08]). Any (�, ε)-strong bit-extractor is a
(� + log 1/ε, 3

√
ε)-strong bit-extractor against quantum adversaries.

One way to construct a strong bit-extractor is to use a ( ε, δ, L)-approximately
list-decodable code. This is a code C : {0, 1}n → {0, 1}m where for every c ∈
{0, 1}m there exist L strings x1, . . . , xL ∈ {0, 1}n, such that for any string x ∈
{0, 1}n satisfying dH(c, C(x)) < ( 12 − ε)m, there exists an i ∈ {1, . . . , L} such
that dH(xi, x) ≤ δm. From a code C : {0, 1}n → {0, 1}2t , we can build a bit-
extractor ext : {0, 1}n × {0, 1}t → {0, 1} as ext(x, y) := C(x)y, where C(x)y is
the yth position of the codeword C(x).

Lemma 4 (Claim 3.7 in [DV10]). Let δ ∈ [0, 1
2 ]. An extractor build from a

(ε, δ, L)-approximately list-decodable code C : {0, 1}n → {0, 1}2t is a (�, ε)-strong
classical bit-extractor for � > H(δ)n + log L + log 2/ε.

The (n, k)-XOR-code over strings of length n is the code where the string x
gets encoded into a string of size

(
n
k

)
where each bit is the XOR of a subset of

x of size k.

Lemma 5 (Lemma 42 in [IJK06], adapted to Lemma 3.11 in [DV10]).
For ε > 2k2/2n, the (n, k)-XOR-code is a (ε, 1

k ln 2
ε , 4/ε2)-approximately list-

decodable code.

Combining Lemmas 4 and 5 with Theorem 6, we get the following lemma.
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Lemma 6. Let ε > 2k2/2n and k ≥ 2 ln 2
ε . The extractor build from the (n, k)-

XOR-code implies a (�, 3
√

ε)-strong bit-extractor against quantum adversaries
for

� > H
(1

k
ln

2
ε

)
n + 4 log

1
ε

+ 3 .

Proof. Using Lemmas 4 and 5, the (n, k)-XOR-code implies a (�, ε)-strong clas-
sical bit-extractor for

� > H
(1

k
ln

2
ε

)
n + log

4
ε2

+ log
2
ε

= H
(1

k
ln

2
ε

)
n + 3 log

1
ε

+ 3 .

The statement follows from Theorem 6. �

From Lemmas 1 and 6 follows that if a string X can only be guessed from Q
with probability at most 2−�, i.e., Hmin(X | Q) ≥ �, then the XOR of a random
subset of size k can be guessed with probability at most 1/2+3

√
ε. The following

lemma gives a bound on the probability to guess a whole substring, given bounds
on the probability to guess the XOR of substrings. It has been proven as a part
of Theorem 2 in [BARdW08].

Lemma 7 (part of Theorem 2 in [BARdW08]). Let ρXQ be a cq-state
where X ∈ {0, 1}n and let pj > 0 for j ∈ {0, . . . , k} be upper bounds on the
probability to guess the XOR of a random subset of X of size j given Q and the
subset. Then the probability to guess a random subset of X of size k from Q and
the subset is at most

1
2k

k∑
j=0

(
k

j

)
(2pj − 1) .

We can now use Lemmas 6 and 7 to proof the following sampling lemma.

Lemma 8. Let a cq-state ρXQ be given, where X ∈ {0, 1}n. Let T be a uniformly
chosen subset of [n] of size k. If log 1

p ≤ k/12 − 5 and

Hmin(X | Q)ρ ≥ H

(
6
k

log
17
p

)
n + 8 log

12
p

+ 3 ,

then Hmin(XT | TQ)ρ ≥ log 1
p .

Proof. From log 1
p ≤ k/12 − 5 follows that

k ≥ 12 log
17
p

≥ 17 ln
17
p

. (1)

Since k ≤ n and 5k/12 + 5 ≥ log(17k), it follows also that

log
1
p

≤ k

12
− 5 =

k

2
− 5k

12
− 5 ≤ k

2
− log(17k) ≤ n

2
− log(17k)
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and hence p2 ≥ 288 ·k2/2n. For j ∈ {0, . . . , k}, let pj be the guessing probability
of the XOR for random subsets of size j. From Lemma 7 follows that

Pguess(XT | TQ)ρ ≤ 1
2k

k∑
j=0

(
k

j

)
(2pj − 1)

≤ 1
2k

k/4∑
j=0

(
k

j

)
+ max

j′∈[k/4+1,k]
(2pj′ − 1) · 1

2k

k∑
j=k/4+1

(
k

j

)

≤ 1
2k

k/4∑
j=0

(
k

j

)
+ max

j′∈[k/4+1,k]
(2pj′ − 1) .

We have
k/4∑
j=0

1
2k

(
k

j

)
= Pr

[
J ≤ k/4

]
,

where J =
∑

i∈[k] Ji and the random variables Ji are independent and uniform
on {0, 1}. From Lemma 2 follows that

Pr[J ≤ k/4] ≤ exp(−k/8) ≤ p/2 ,

since k ≥ 17 ln 17
p > 8 ln 2

p . Let ε := p2/144. From Eq. (1) follows that

1
2

≥ 6
k

log
17
p

≥ 17
2k

ln
17
p

≥ 4
k

ln
288
p2

=
4
k

ln
2
ε

≥ 1
j′ ln

2
ε

,

for any j′ ∈ [k/4 + 1, k]. Since 8 log(12/p) = 4 log(1/ε), we have

Hmin(X | Q)ρ ≥ H
( 1

j′ ln
2
ε

)
n + 4 log

1
ε

+ 3 .

From p2 ≥ 288 ·k2/2n follows that ε ≥ 2k2/2n ≥ 2j′2/2n. Lemmas 1 and 6 imply
that pj′ ≤ 1/2 + 3

√
ε, and hence

max
j′∈[k/4+1,k]

(2pj′ − 1) ≤ 6
√

ε = p/2 .

So Pguess(XT | TQ)ρ ≤ p. The statement follows from the definition of Hmin. �

Proof. (Theorem 1). Let m := Hmin(X | Q)ρ and p := 2−H−1(m/2n)k/6+5. We
have

log
1
p

=
H−1(m/2n)

6
k − 5 ,

which implies

m

2
= H

(
6
k

log
32
p

)
n ≥ H

(
6
k

log
17
p

)
n (2)
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and, since H−1(m/2n) ≤ 1
2 ,

log
1
p

=
H−1(m/2n)

6
k − 5 ≤ k

12
− 5 . (3)

From n ≥ k and 1
2 ≥ x/2 ≥ H−1(x) for any x ∈ [0, 1] follows

log
1
p

=
H−1(m/2n)

6
k − 5 ≤ H−1

( m

2n

)
· n

6
− 5 ≤ m

4n
· n

6
− 5 =

m

24
− 5 ,

which implies

8 log
12
p

+ 3 = 8 log
1
p

+ 8 log(12) + 3 ≤ m

3
− 40 + 32 + 3 ≤ m

2
.

Together with Eq. (2), we get

m ≥ H

(
6
k

log
17
p

)
n + 8 log

12
p

+ 3 . (4)

The statement follows from Lemma 8 and Eqs. (3) and (4). �

5 Lower Bounds for Random Access Codes

Corollary 1 directly implies a lower bound for k-out-of-n random access codes: if
we choose the string X ∈ {0, 1}n uniformly at random and the quantum system
Q has at most m ≤ (1 − 2H(ε))n qubits, then by Proposition 2’ in [KT08], we
have Hmin(X | Q) ≥ 2H(ε)n. Corollary 1 follows.

Note that in the same way Theorems 4 or 5 could be used to give a bound
for random access codes, since Hε

min(X | Q) ≥ � implies Pguess(X | Q) ≥ 2−� +ε.
But since the error ε converges slowly, we would only get a weak bound on the
guessing probability.

6 Open Problems

Our sampling results only apply to the case where the sample is chosen uniformly.
It would be interesting to know if they can be generalized to other sampling
strategies.
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