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Preface

The Conference on the Theory of Quantum Computation, Communication, and
Cryptography (TQC) is an annual meeting on theoretical aspects of quantum infor-
mation processing. The goal of the conference is to foster developments in this rapidly
growing, interdisciplinary field by providing a forum for the presentation and dis-
cussion of original research.

The sixth iteration of TQC was held during May 24-26, 2011, at the Universidad
Complutense de Madrid, Spain. It included invited talks, contributed talks, and a
poster session. Authors of selected contributed talks were invited to submit a paper to
these proceedings.

TQC 2011 would not have been possible without the contributions of numerous
individuals and organizations, and we sincerely thank them for their support.

In putting together the scientific program, we were very grateful for the hard work
and advice of the Program Committee, listed herein. We also appreciate the help of
the following additonal reviewers: Abolfazl Bayat, Dan Browne, Bill Coish, Greg
Kuperberg, Frédéric Magniez, Iman Marvian, Matthew McKague, Tomoyuki Mori-
mae, Daniel Nagaj, Varun Narasimhachar, Marcin Pawlowski, Jérémie Roland, Pra-
deep Sarvepalli, Tommaso Tufarelli, Thomas Vidick, Tsu-Chieh Wei, and Shigeru
Yamashita.

The logistics of the conference were expertly managed by the Organizing Com-
mittee, also listed herein. Special thanks goes to Inés Escribano and the local orga-
nization team from the Quantum Information Technologies in Madrid (QUITEMAD)
group for their efforts to make the conference a success.

We would like to thank the invited speakers for their contributions to the program.
The six invited talks delivered were on “Futures of Quantum Communication:
Device-Independent QKD, Quantum Networks and Bi-locality” by Nicolas Gisin,
“Structure of 2D Topological Stabilizer Codes” by Hector Bombin, “Quantum
Hamiltonian Complexity” by Umesh Vazirani, “Globalness of Unitary Operations on
Quantum Information” by Mio Murao, “Projected Simulation for Artificial Intelli-
gence” by Hans Briegel and “The Continuum Limit of a Quantum Circuit: Variational
Classes for Quantum Fields” by Tobias Osborne.

We would like to thank the members of the Conference Series Steering Committee,
Wim van Dam, Yasuhito Kawano, Michele Mosca, and Vlatko Vedral, for their
important advice.

TQC 2011 was made possible by financial support from the Consejeria de Edu-
cacion (Comunidad de Madrid), the European Union via the European Social Fund,
the Universidad Politecnica de Madrid, the Universidad Complutense de Madrid, the
Universidad Carlos III de Madrid, Telefonica, the Facultad de Ciencias Fisicas, the
Fundacién General Universidad (both at the Universidad Complutense de Madrid) and
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NEC Laboratories America; we thank these organizations for their important
contributions.

Finally, we would like to thank Springer for publishing the proceedings of TQC in
the Lecture Notes in Computer Science series.

December 2013 Dave Bacon
Miguel Martin-Delgado
Martin Roetteler
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Weak Coin Flipping in a
Device-Independent Setting
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Stefano Pironio”, and Jonathan Silman”(®)
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2 LIAFA, University of Paris 7, 75205 Paris, France
3 University of Paris-Sud, 91405 Orsay, France
4 Computer Science Division, UC Berkeley, Berkeley 94720, CA, USA
5 LIAFA, University of Paris 7 — CNRS, 75205 Paris, France
6 Centre for Quantum Technologies, National University of Singapore,
Singapore 117543, Singapore
7 Laboratoire d’Information Quantique, Université Libre de Bruxelles,
1050 Bruxelles, Belgium
jsilman@ulb.ac.be

Abstract. A protocol is said to be device-independent when the level
of its performance can be inferred without making any assumptions
regarding the inner workings of the apparatus used to implement it.
In this paper we introduce a device-independent weak coin flipping pro-
tocol based on a single GHZ test. Interestingly, the protocol calls for the
exchange of (quantum) systems between participants; a feature which
is not trivial to incorporate in a device-independent setting where a
system’s behavior may depend on the time, location, and its history.
Alice’s and Bob’s maximal cheating probabilities are given by ~ 0.974
and cos®(%) ~ 0.854.

1 Introduction

Cryptographic protocols, whether quantum or classical are always formulated
under a certain set of assumptions. In particular, quantum protocols rely on the
validity of quantum mechanics, but also on the security of each participant’s lab
and his having a trusted source of randomness to carry out random choices called
for by the protocol. The list, however, usually does not end here. Most protocols,
also make, for instance, assumptions as to the Hilbert space dimension of the
quantum information carriers, the measurements that are carried out, etc. Such
protocols are said to be device-dependent. Clearly, it is desirable to base security
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2 N. Aharon et al.

on a minimum number of assumptions, as this facilitates checking the reliability
of the protocol’s implementation. The aim of the device-independent approach to
quantum cryptography is to do just that by doing away with a maximal number
of assumptions regarding the apparatus used to implement the protocol.

More specifically, a quantum protocol is said to be device-independent if the
reliability of its implementation can be guaranteed without making any assump-
tions about the internal workings of the underlying apparatus. Remarkably, this
can be achieved by certifying a sufficient amount of nonlocality (quantified by
the degree of violation of a suitable Bell inequality) [1]. For example, in quan-
tum key-distribution a high violation of the CHSH inequality guarantees that an
eavesdropper will have no information about the (post-processed) key [2—6]. This
should be contrasted with the entanglement-based version of the BB84 protocol,
where if the source dispenses qudits instead of qubits then security can be utterly
compromised [7,8]. Indeed, recent hacking attacks on quantum key-distribution
systems, such as those of [9,10], exploit device-dependent modes of failure and
would not be successful against a device-independent set up.

In addition to quantum key-distribution, device-independent protocols have
been suggested for diverse tasks such as random number generation [11,12], self-
testing devices [7,13,14], and genuine multipartite entanglement witnesses [15].
However, until most recently we did not know whether the scope of the device-
independent approach also covers the class of cryptographic protocols, often
referred to as distrustful cryptography, in which the participants do not trust
each other and may have conflicting goals. In [16] we showed that (imperfect) bit-
commitment and coin flipping admit a device-independent formulation. Whether
these result extends to all protocols in the distrustful cryptography class remains
an open question.

In contrast to the majority of device-independent protocols, which are CHSH-
based, the bit-commitment protocol of [16] is GHZ-based [17,18]. Moreover, it
is single-shot and does not require the generation of statistics to guarantee the
presence of nonlocality. The security of the committing party relies on the no-
signaling principle, while the security of the other party relies on Tsirelson’s
bound. The coin flipping protocol is bit-commitment based.

In this paper we introduce a device-independent weak coin flipping protocol.
This protocol represents our first successful attempt at tackling the problem of
device-independence in the distrustful cryptography model (prior to [16]). The
protocol is similar to that of [16] in that it also makes use of a single GHZ state,
but is otherwise very different. In particular, it calls for the exchange of boxes
(thereby having different parties potentially act on the same box); a feature
that has yet to appear in the device-independent literature, but which is part
and parcel of device-dependent protocols. Specifically, it is used in Mochon’s
optimal weak coin flipping protocol [19] and the ensuing optimal strong coin
flipping [20] and bit-commitment [21] protocols. In a device-independent setting
the box’s behavior may depend on the time, location, and its history. Hence,
incorporating this feature is far from trivial.
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To prove security we make use of tools developed for CHSH-based device-
independent protocols, such as dimensional reduction techniques in which the
problem is effectively reduced to one of qubits, and help show how these can
be adapted to GHZ-based protocols. In the process we gain further insights into
the structure of GHZ correlations.

The paper is organized as follows. We begin in Sect. 2 by defining the problem
of coin flipping, making explicit exactly what we mean by device-independence,
and defining the GHZ paradox, which plays a central role in our protocol. Next,
in Sect. 3, we present the protocol, followed by the proofs of Alice’s and Bob’s
security in Sects.4 and 5.

2 Background

2.1 Coin Flipping

Coin flipping is a cryptographic primitive in which a pair of remote distrustful
parties wish to agree on a bit. It admits two variants: ‘strong’ coin flipping and
‘weak’ coin flipping. In the former no party is aware of the other’s preference
regarding the outcome of the coin, which may be identical to theirs, while in
the latter the preferences are known and opposite: If Alice prefers 0 then Bob
prefers 1 and vice-versa. Hence, in the weak variant it makes sense to speak of
a winner and a loser. The degree of security afforded by a protocol is quantified
by the biases e¢,; = P.; — 1/2 and €. = Pi. — 1/2, where P,; (P;) is Alice’s
(Bob’s) maximal probability of biasing the outcome to i. For strong coin flipping
€ = max {€px, €40, €1x, €1« is usually referred to as the bias of the protocol, while
for weak coin flipping, since we are only interested in each party’s maximal
probability of winning, € = max {e40, €1x} (where it is assumed that Alice wins
iff she obtains 0).

The problem of coin flipping was first introduced in classical settings by Blum
in 1981 [22]. It was subsequently shown that if there are no limitations on their
computational power, dishonest parties can always force whatever outcome they
desires. In contrast, in quantum settings the problem is not trivial [23]. Two
key results are of those Ambainis [24] and Kitaev [25]. The former states that
any protocol achieving a bias of € requires at least 2(logloge™!) rounds of
communication, while the latter states that it is impossible to devise a strong
coin flipping protocol satisfying P.; P« < 1/2 (¢ = 0, 1). Since the appearance of
[23] in 1999, the biases of both strong coin flipping and weak coin flipping have
been pushed increasingly lower [24,26-29]. These efforts culminated in Mochon’s
proof that weak coin flipping with an arbitrarily small bias is possible [19].
Building upon this result, Chailloux and Kerenidis have recently introduced a
strong coin flipping protocol saturating Kitaev’s bound [20]. Finally, we mention
that quantum coin flipping has also been extended to multi-party [30] and many-
outcome settings [31,32], as well as simultaneously to both [33,34].
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2.2 Device-Independence

Let us now make precise just what we mean by device-independence. We make
the following assumptions regarding the set up:

1. Each party has (‘black’) boxes with knobs to choose (classical) inputs s; and
registers for (classical) outputs r;. Entering an input always results in an
output (i.e. we do not consider losses).

2. The parties, in particular dishonest parties, are restricted by quantum
mechanics.

3. The parties can prevent the boxes from communicating with one another.

4. The parties have a trusted source of randomness to make random choices
called for by the protocol.

5. No information leaks out of an honest party’s lab.

Assumptions 2, and 3 imply that the probabilities of the outputs given the
inputs for an honest party can be expressed as

P(rl,...,rn|51,...,sn):Tr<p®H;i>, (1)

where p is some joint quantum state and II{? is the POVM element correspond-
ing to inputting s; into box ¢ and obtaining the outcome r;. Apart from this
constraint, we put no limitations on the boxes’ behavior. Specifically, we allow a
dishonest party to choose the state p and the POVM elements I as best suits
him. We also allow the boxes to have internal memories, clocks, gyroscopes, etc.
With such internal mechanisms, a dishonest party can program the boxes so
that their behavior depends on the trajectories they have followed in space, on
the time at which inputs are fed, or any other aspect of their past history.

Note that when we will talk about boxes being sent from one party to the
other, we will not mean by this that actual measurement devices have been sent
(though it is easier to present and formulate our results in this way). Instead, we
will simply mean that quantum states or classical information encoding instruc-
tions for the measurement devices are exchanged between the parties, such that
in an honest execution the state p and the POVM elements II]? characterizing
the behavior, say, of Alice’s box before the transmission of quantum information
now characterize the behavior of Bob’s box after receiving the transmission. Of
course, if Alice is dishonest then the state and POVM elements after the trans-
mission may be very different, i.e. p — p and IIJF — ]NY; with p and the f]:,;‘
chosen at will by Alice.

Finally, we wish to emphasize that spacelike related measurements are not
necessary to implement assumption 2. Indeed, spacelike related measurements
do not constitute the only way to prevent communication between quantum
boxes and one can instead ‘shield’ each box. For a discussion of this point see
[3,12]. This observation is important because (i) in our protocol some pairs of
measurements are not spacelike related as the former and the latter measure-
ments are separated by a step involving communication between the parties; (i7)
relativistic causality is by itself sufficient for perfect coin flipping [35] (albeit at
the cost of assigning each party two remote secure labs).
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2.3 The GHZ Paradox

The GHZ paradox [17,18] is another famous example of the nonlocal nature
of quantum mechanics. It is easy to explain in terms of a three-player game
[36]. The rules of the game state that before it starts the players may commu-
nicate, devise joint strategies and share classical and quantum resources, but
that communication must cease once it begins. The game begins with player ¢
receiving an input s; € {0, 1}. The players are guaranteed that the inputs satisfy
$1 @ s2 @ s3 = 1 and that each of the four possible combinations of inputs occurs
with probability i. Let r; € {0, 1} be the output of player i. The game is won if
the players output a combination satisfying rq @ ro @ r3 = s18983 @ 1. It is easy
to verify that classically the game can be won with probability % at most. The
‘paradox’ consists of the fact that using quantum resources the game can always
be won. This can be achieved if the players share a GHZ state % (]000) 4 [111)),

measure along o, (0,) when receiving the input 0 (1), and output the outcome.

3 Weak Coin Flipping in a Device-Independent Setting

The different steps of the protocol take place at fixed times tg < t1 < to < t3,
with the interval between succeeding times At being sufficient for communication
to take place between the parties. Let ¢ € {0, 1, L} denote the outcome of the
protocol (¢ =L is output if a party aborts). We assume that at the beginning of
the protocol Alice has a two-input two-output box, box 1, and Bob has a pair
of two-input two-output boxes, 2 and 3. We denote their inputs and outputs by
s; and r; respectively, where ¢ labels the box. The boxes are supposed to exhibit
GHZ correlations (i.e. satisfy the GHZ paradox). The protocol reads as follows
(see Fig. 1):

1. At t =tp:
Bob flips a (possibly unbalanced) coin to decide whether to test if the boxes
fail to exhibit GHZ correlations, such that its outcome is b = 0 with proba-
bility p. Bob informs Alice of the value of b.
2. At t=1ty:
I. If b = 0 Alice sends Bob her box (continue to step 3.I).
II. If b = 1 Alice uniformly at random picks an input s; and feeds it into
her box:
(a) If 74 = 0 she announces that she has won and informs Bob of the
value of s; (continue to step 3.I1.a).
(b) If r; = 1 she asks Bob to send her his boxes (continue to step 3.IL.b).
3. At t= tgl
I. Bob checks the three boxes for failure to satisfy GHZ correlations: He
picks uniformly at random, a triplet sy & s3 ® s3 = 1 and inputs s; into
box i. He then checks whether the outputs satisfy r ®ro®rs = s15283P1.
If they do, then he asks Alice to proceed with the protocol (continue to
step 4.I), else he aborts.
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Fig. 1. The protocol. At t = t2 boxes 2 and 3 do not know whether they are tested as
part of step 3.1 or step 3.11.a.

II. (a) Bob tests his two boxes to see whether the values of s; and r, = 0
fail to satisfy GHZ correlations: He picks uniformly at random, a
pair of inputs sy and s3 satisfying so @ s3 = 1 @ s; and feeds them
into boxes 2 and 3. He then checks whether the outputs o and r3
satisfy ro @ r3 = s18283 @ 1. If they do not, then he aborts.

(b) Bob sends Alice his two boxes (continue to step 4.IT).
4. At t= t32
I. Alice flips a balanced coin. If its outcome a equals 0 (1), then she
announces that she has won (lost).

IT. Alice tests the two boxes she received from Bob to see whether the values
of s; and r; = 1 fail to satisfy GHZ correlations: She picks uniformly at
random, a pair of inputs ss and s3 satisfying so @ s3 = 1 @ s; and feeds
them into boxes 2 and 3. She then checks whether the outputs ro and
rg satisfy ro @ r3 = s15283. If they do not, then she aborts. Otherwise,
Alice announces that Bob has won.

Note that if the parties are honest (and all devices are perfect) then the protocol

does not abort and the coin is balanced, i.e. P(c=0) = P(c=1) = § and

P(c=1) = 0. For the protocol to be secure, it is crucial that the (mutually
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exclusive) tests that Bob performs in step 3.I or 3.IL.a be carried out in such
a way that it is impossible for boxes 2 and 3 to know whether they are being
tested as part of step 3.I or 3.IL.a (see Fig.1). This means that: (i) Each of the
tests must be scheduled for the same time, i.e. 2. (ii) Each of the tests must
take place at the same location i.e. Bob’s lab. (iii) At the time of the test the
boxes should have the same history (at all times prior the test boxes 2 and 3 are
in Bob’s lab). On the other hand, boxes 2 and 3 may behave differently in step
4.I1, having now a different history (having been sent from Bob to Alice).

4 Alice’s Security

4.1 Bob’s Maximal Bias

Clearly, dishonest Bob will never ask Alice for her box to test for failure to
satisfy GHZ correlations, that is, in step 1 he will announce b = 1. Moreover,
he will program Alice’s box (box 1) such that it always outputs r1 = 1 in step
2.II (otherwise he loses). In order that Alice agree that he has won, and not
declare him a cheat, he must pass the test that she carries out on boxes 2 and
3 in step 4.I1. To facilitate the analysis, we switch to a notation in which the
outputs corresponding to inputting s; = 0 and s; = 1 are labeled by y; = (—1)"
and x; = (—1)"", respectively. Suppose now that Alice has input s; = 0, then

y1 = —1, and in step 4.II she will feed different inputs into boxes 2 and 3.
Therefore, Bob’s probability of winning equals % [P (yax3 = 1) + P (z2y3 = 1)],
since she is as likely to input so = 0 and s3 = 1 as so = 1 and s3 = 0.

Similarly, if she has input s; = 1, then 1 = —1, and in step 4.II she will feed
the same inputs into boxes 2 and 3. Bob’s probability of winning will then equal
to 3 [P (zox3 = —1) + P (y2y3 = 1)]. Since Alice’s choice of s; is fully random,
it follows that Bob’s maximal probability of winning is given by

1
P, = 1 maX[P (xoxs = —1)+P (yays = 1)+ P (yaz3 = 1)+ P (z2y3 = 1)}, (2)
where the maximization is carried out over all possible states and measurements
and the dimension of the Hilbert space. This is just the CHSH expression [37]
cast in terms of probabilities. The maximum is, therefore, given by Tsirelson’s

bound [38]. That is, P, = cos® (%).

4.2 Bob’s Optimal Cheating Strategy

Dishonest Bob’s cheating probability is bounded by Tsirelson’s bound. To achieve
the bound he simply has to prepare boxes 2 and 3 such that each contains one out
of a pair of maximally entangled qubits and such that the measurement settings
are optimal, i.e. give rise to a maximal violation of the CHSH inequality.
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5 Bob’s Security

5.1 Alice’s Maximal Bias

To maximize her probability of winning, dishonest Alice must take into account
both the possibility that Bob will decide to check that the GHZ correlations are
satisfied, i.e. the possibility that he obtains b = 0 in step 1, and the possibility
that he asks her to proceed with the protocol, i.e. that he obtains b= 1. If b =0
and Bob does not find a discrepancy with the GHZ correlations in step 3.1, she
announces ¢ = 0 in step 4.I and wins. If b = 1, then she announces r; = 0 in
step 2.I1. It then remains for her to pass Bob’s test on boxes 2 and 3 in step
3.II.a, where he checks whether the values of s; and ;1 = 0 are consistent with
GHZ correlations. To this end she carries out a measurement (which we label as
mq) on box 1, whose outcome ¢; € {0, 1} determines what value of the input s;
she tells Bob that she (supposedly) fed into box 1 in step 2.II. Alice’s maximal
winning probability is therefore given by

P, = max [E

{s1,52,53|s1Ps2Ps3=1}

X E P(ry1, 2, r3]s1, S2, s3)

{r1,72,r3|r1@®r2@r3=s15253P1}

1-p
Ay oy
a1 {s2,s3/q1DsaPsz=1}

x > P(q1, T2, r3lma, 2, 53)} (3)

{r2,r3|r2a®r3=q15253D1}

To compute P,o we first recall that the space of correlations arising via local
measurements is convex. Hence, the maximum will be attained by extremal
states, i.e. pure states, and by extremal measurements, i.e. projective measure-
ments. (This is in keeping with the maxims of device-independence, since we
do not restrict the dimension of the Hilbert space.) To proceed further, we once
again label the outputs corresponding to inputting s; = 0 (s; = 1) by y; = (—=1)""
(x; = (=1)""). Let Y; and X; be the corresponding operators, IT and I1, the
orthogonal projectors corresponding to obtaining ¢; = 1 and ¢; = 0, and let H;
denote the Hilbert space of box i. Since box 2 admits binary inputs and outputs,
there exists a basis in which Y5 and X5 are block diagonal with blocks of size 2 x 2
or less [39,40]. Of course the same holds true for box 3. Hence, it follows from
convexity that without loss of generality we can set dim Hs, dimHs < 2, where
dimH; is the dimension of H;, and consequently, making use of the Schmidt
decomposition theorem, it follows that dimH; < 4.
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P,o can be re-expressed as

1 1

—+ = max

2 8 {X:, Y5}, 1L, ¥
V1 ®Xo®Y; - Y1 ®Y2 ® X3 i)
+2(1—p) W[ ® (X2 ® X5 — Y2 ® Y3)

I, @ (X ®Ys + Yy ® X3) |¢>}7 (4)

Py — Pwxexex-Xeney

where |¢) € H; @ Ha ® H3 is the state of the three boxes. In terms of the
operators D = Xo ® X3 — Yo ®Ys and D' = — X, ® Y3 — Y5 ® X3, Py, assumes
a more compact form

1
Pe=375 X, +2(1—p) @D
’ 2+8{XrnYrir,li),(H,|¢) @[pX1+2(1-p)l]®

The freedom that we have in manipulating both the state and operators means
that we can always choose the axes such that for boxes 2 and 3 X; = o, and
Y, =1, - o, where 0i; is some arbitrary unit vector on the x y plane spanning an
angle 6; from the z axis. Now f1; - o0 = e~ %%:5,, so that

XY, = o, (cos 0,0, + sin Hiay) = cos ;1 + isin 0, = 7=, (6)

It is straightforward to verify that in the basis {|00), [01), |10), |11)} D and
D’ are block diagonal with blocks of size 2 x 2, corresponding to the subspaces
spanned by {|00), [11)} and {|01), |10)}. By noting that we can always flip the
coordinate system of one the qubits about the z axis, we see that it suffices to
maximize over states of the form ¢; [p1) ® |00) + c2 |¢2) ® [11). It follows that
we can set dimH; < 2.

It is easy to show that on the two-dimensional subspace spanned by |00) and
[11) D and D’ assume the form

D=-2 sin(% (02 + 93)) {— Sin(% (02 + 93))% + COS(% (02 + 93))%}7 (7)

D' = -2 cos(% (62 — 93)) {COS(% (02 + 93))% + sin(% (02 + 93))§y], (8)

where the ¢; denote Pauli operators on the subspace spanned by |00) and |11).
Without loss of generality, we can redefine the x and y axes such that D =
2sin (% (02 + 93)) ¢y and D' = 2cos (% (02 — 93)) . Equation (5) now simpli-
fies to

1 2! D 1—p
Py, = - , (79 9 )(fX —H)
0 2+X1,}I}1173§7w><¢|5m 2( o+ 03) 1 1+ 5 R Gy

+ COS(% (65 — 03)> (ng + 1%101_&) ® sz [¥) (9)
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with the maximum obtaining when both terms are positive. This implies that
we should set 0 = 03 = 5. Equation (9) can then be re-expressed as

1 p 1-p
Py = - [(Ex 711) 1
b= 3 e, WHG K @
( Y1+—H¢)®<Z}ll®<y ), (10)

and consequently

11
Py = -+~ T|ATA| "), 11
b0 = 5y, By 14T (11)

where A = (pX1+2(1 —p) II) @1 +i(pY14+2 (1 — p) 1) ®c. and |¢) is related
to 1) via [¢) = 1 ® g, [¢)

At A commutes with 1 ®¢,, therefore, its eigenstates have the form |u;) ® |0)
and |u;)®|1) . Suppose now that the maximum obtains for an eigenstate |u;)®|0)
and some specific choice of operators X7, Y7, and I, and consider now the choice
of operators X| = Y1, Y{ = Xy, and I’ = II, , then it is straightforward to verify
that

(0] @ (us] ATA |ug) @ |0) = (1] @ (u;| ATA |ug) @ |1), (12)

where A’ = (pX{ +2(1—p) ') @ 1 +i(pY{ +2(1 — p) II' ) ® .. Clearly, the
second choice of operators is just as valid. Hence, without loss of generality we
may assume that the maximum obtains for one of the eigenstates |u;) ® |0). The

problem then reduces to maximizing over the two-dimensional Hilbert space H.
That is,

1 1
Poo =5+ o (€|BTB|E), (13)

where B = (pX1 +2(1—p)II) +i(pY1 +2(1 —p)I1,) and |£) € H,.
Parameterizing X1 =a- -0, Y1 = b-oand 2l =1+¢&- o, we have

B'B = 2[p2+2(1—p)2+p(1—p) (é—l‘))-e}n
+2p{(1—p)(ﬁ+f))—i—(l—p)(é—l—f)) xé—péxf)} o
:2[p2+2(1—p)2+2p(1—p)sin,uf:'é}]l (14)
+4p [(1 —p)cosu8 + (1 — p) cos S x &+ peospsinpd x t] - o

where in the last line we have reparametrized & = cos 8 + sinut and b
é =

cos 8 — sin ut with p € [O, ’T] Clearly, the maximum obtains when t.

Setting § = Z and § x t = % we have to find the largest eigenvalue of
212 +2(1—p) +2p(1 —p)sin,u} 1 +4pcosu[1 —-p(l —sin,u)}om
+4p (1 — p) cos po . (15)
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This is given by

Amax (p; @) = 2p° (3—2q) —4p (2 — q) (16)
+4 [1+p\/(1 —¢®) (2—2p(2 — q) + 2p> — p? (Q*Q)Q)}

with ¢ = sin u, and can be analytically maximized for any value of p. For p = %
we get that P.o =~ 0.974. Numerics indicate that this result is optimal (or at
least very close to optimal), i.e. other values of p give rise to a higher winning
probability.

5.2 Alice’s Optimal Cheating Strategy

Having obtained the optimal values of p and u, we can use them to explicitly
determine the optimal X, Y7 and II. The optimal state is then obtained by
plugging these back into A 1 ® g, i.e. the operator appearing in Eq. (10), and
diagonalizing it. (Note that the eigenstates of At A need not correspond to those
of A1 ® g, since At A is doubly degenerate.) In this way we find that dishon-
est Alice optimal cheating strategy consists of preparing the entangled state
1h) = 0.43(1 — ) [0) ®]00) +0.60 [0) @ |11) +0.26(i — 1) [1) ® |00) +0.37 1) ® |11),
where [1) is the eigenvector corresponding to the largest eigenvalue of the oper-
ator appearing in Eq. (10). We see that while the optimal measurement settings
of boxes 2 and 3 are the same as those of the device-dependent scenario, i.e.
measurements along the z and y axes (X2 = X3 = 0, and Yy = Y3 = ), the
optimal measurement settings of box 1 are different and given by X; = a- o,
Yi=b o and IT = 3(1 — o), where & = cos pz — sin iy, b = cos uz + sin pg
and p ~ 0.73.

Acknowledgements. We acknowledge support from the BSF (grant no. 32/08)
(N.A.), the Inter-University Attraction Poles Programme (Belgian Science Policy)
under Project TAP-P6/10 (Photonics@be) (S.M., S.P., J.S), a BB2B grant of the
Brussels-Capital region (S.P.), the Fonds de la Recherche Scienitifique — FNRS (J.S.),
the projects ANR-09-JCJC-0067-01, ANR-~ 08-EMER-012 (A.C., I.K.), and the project
QCS (grant 255961) of the E.U. (A.C., LK., S.M., S.P., J.S.).

References

Barrett, J., et al.: Phys. Rev. Lett. 95, 010503 (2005)

Acin, A., et al.: Phys. Rev. Lett. 98, 230501 (2007)

Pironio, S., et al.: New J. Phys. 11, 045021 (2009)

McKague, M.: New J. Phys. 11, 103037 (2009)

Masanes, Ll., Pironio, S., Acin, A.: Nat. Commun. 2, 238 (2011)

Hanggi, E., Renner, R.: arXiv:1009.1833

Magniez, F., Mayers, D., Mosca, M., Ollivier, H.: Self-testing of quantum circuits.
In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, 1. (eds.) ICALP 2006. LNCS,
vol. 4051, pp. 72-83. Springer, Heidelberg (2006)

N T W=



12

15.

16.
17.

18.
19.
20.

21.

22.

23.

24.

25.
26.
27.
28.

29.
30.

31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

N. Aharon et al.

. Acin, A., Gisin, N., Masanes, Ll.: Phys. Rev. Lett. 97, 120405 (2006)

. Xu, F., et al.: New J. Phys. 12, 113026 (2010) arXiv:1005.2376 [quant-ph]
10.
11.
12.
13.
14.

Lydersen, L., et al.: Nat. Photonics 4, 686 (2010)

Colbeck, R., Kent, A.: J. Phys. A: Math. Theor. 44, 095305 (2011)

Pironio, S., et al.: Nature 464, 1021 (2010)

Mayers, D., Yao, A.: Quantum Inform. Comput. 4, 273 (2004)

McKague, M., Mosca, M.: Generalized self-testing and the security of the 6-state
protocol. In: van Dam, W., Kendon, V.M., Severini, S. (eds.) TQC 2010. LNCS,
vol. 6519, pp. 113-130. Springer, Heidelberg (2011)

Bancal, J.-D., et al.: Phys. Rev. Lett. 106, 250404 (2011) arXiv:1102.0197
[quant-ph]

Silman, J., et al.: Phys. Rev. Lett. 106, 220501 (2011)

Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going beyond Bell’s theorem. In:
Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory, and Conceptions of the Uni-
verse, p. 74. Kluwer, Dordrecht (1989)

Mermin, N.D.: Phys. Today 43, 9 (1990)

Mochon, C.: arXiv:0711.4114 [quant-ph]

Chailloux, A., Kerenidis, I.: In: Proceedings of the 50th Annual IEEE Symposium
on Foundations of Computer Science, p. 527. CS Press (2009)

Chailloux, A., Kerenidis, I.: In: Proceedings of the 52nd Annual IEEE Symposium
on Foundations of Computer Science, p. 354. CS Press (2011) arXiv:1102.1678v1
[quant-ph]

Blum, M.: In: Gersho, A., Santa Barbara, U.C. (eds.) Advances in Cryptology: a
report on CRYPTO 81. Department of Electrical and Computer Engineering, ECE
Report No. 82-04, 1982, p. 11

Aharonov, D., et al.: In: Proceedings of the 32nd Annual ACM Symposium on the
Theory of Computing, p. 705. ACM Press (2000)

Ambainis, A.: In: Proceedings of the 33rd Annual ACM Symposium on the Theory
of Computing, p. 134. ACM Press (2001)

Kitaev, A.: Unpublished. Proof reproduced in [29]

Spekkens, R.W., Rudolph, T.: Phys. Rev. A 65, 012310 (2001)

Spekkens, R.W., Rudolph, T.: Phys. Rev. Lett. 89, 227901 (2002)

Mochon, C.: In: Proceedings of the 45th Annual IEEE Symposium on the Foun-
dations of Computer Science, p. 2. CS Press (2004)

Mochon, C.: Phys. Rev. A 72, 022341 (2005)

Ambainis, A.; et al.: In: Proceedings of the 19th Annual IEEE Conference on
Computational Complexity, p. 250. CS Press (2004)

Barrett, J., Massar, S.: Phys. Rev. A 69, 022322 (2004)

Barrett, J., Massar, S.: Phys. Rev. A 70, 052310 (2004)

Aharon, N., Silman, J.: New J. Phys. 12, 033027 (2010)

Ganz, M.: arXiv:0910.4952 [quant-ph]

Kent, A.: Phys. Rev. Lett. 83, 5382 (1999)

Vaidman, L.: Found. Phys. 29, 615 (1999)

Clauser, J.F., et al.: Phys. Rev. Lett. 23, 830 (1969)

Cirel’son, B.S.: Lett. Math. Phys. 4, 93 (1980)

Tsirelson, B.: Hadronic J. Suppl. 8, 329 (1993)

Masanes, L1.: Phys. Rev. Lett. 97, 050503 (2006)



Security of Device-Independent Quantum Key
Distribution Protocols

Chirag Dhara', Lluis Masanes', Stefano Pironio?, and Antonio Acin®3(®)
1 ICFO-Institut de Ciencies Fotoniques, Castelldefels, 08860 Barcelona, Spain
2 Laboratoire d’Infomation Quantique, Université Libre de Bruxelles,
1050 Bruxelles, Belgium
3 ICREA-Institucié Catalana de Recerca i Estudis Avancats, 08010 Barcelona, Spain
antonio.acin@icfo.es

Abstract. Device-independent cryptography represent the strongest
form of physical security: it is based on general physical laws and does not
require any detailed knowledge or control of the physical devices used in
the protocol. We discuss a general security proof valid for a large class of
device-independent quantum key distribution protocols. The proof relies
on the validity of Quantum Theory and requires that the events gener-
ating the raw key are causally disconnected. We then apply the proof to
the chained Bell inequalities and compute the corresponding secret-key
rates.

1 Introduction

Quantum Key Distribution (QKD), and more generally Quantum Cryptogra-
phy, implied a change of paradigm in security. Before the conception of QKD
in 1984 [1], most cryptographic applications based their security on reasonable
assumptions on the eavesdropper’s computational power plus unproven assump-
tions on the computational complexity of some problems. In QKD, however,
security is mainly based on a physically motivated assumption: the honest par-
ties, Alice and Bob, and the eavesdropper, Eve, are constrained by the laws of
quantum physics. Still, this is not the only assumption needed for security proofs
of QKD. First of all, the honest parties should have a good physical character-
ization and control of the devices used in the protocol. Moreover, the security
proof also requires a pair of minimal assumptions essential to make the crypto-
graphic scenario meaningful: no information leaks Alice and Bob’s laboratories,
and the honest parties have a source of trusted randomness and trusted devices
to process and store the information generated during the protocol execution.
The main goal of Device-Independent Quantum Key Distribution (DIQKD)
[2-4] is to design protocols whose security proof requires no detailed knowl-
edge of the physical devices used for generating correlations. That is, apart from
unavoidable assumptions on the security of the honest parties’ locations and the
reliability of the devices they use for information processing, which in a way
are inherent to the very definition of the cryptographic scenario, only the gen-
eral validity of quantum theory is needed for security. In this scenario, the only

D. Bacon et al. (Eds.): TQC 2011, LNCS 6745, pp. 13-22, 2014.
DOI: 10.1007/978-3-642-54429-3_2, (© Springer-Verlag Berlin Heidelberg 2014
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possible security certificate is the one proposed by Ekert [5], see also [2,6]: the
observation of a Bell inequality violation. There are three main motivations to
consider the device-independent scenario. First, from a purely theoretical point
of view, DIQKD involves fewer assumptions and, thus, implies a stronger secu-
rity. More generally, identifying the minimal set of physical assumptions needed
for secure key distribution is a fundamental problem in cryptography. Second,
from an applied point of view, the implementation of DIQKD schemes is more
robust to imperfections since their security proof is independent of the devices’
details. However, it requires a long-distance detection-loophole-free Bell inequal-
ity violation, which at present is an experimental challenge (see however [7]).
Finally, DIQKD, as the works on self testing techniques [8,9], opens Quantum
Cryptography to the unreliable, yet non-adversarial, provider scenario, as any
device compatible with the protocol requirements is secure.

In this work we discuss a general formalism to prove the security of DIQKD
protocols [10] (see also [11]). The security proof is completely general and can
be applied to any protocol associated to a Bell inequality. The key element
in the construction is a bound on the min-entropy of the raw key from the
estimated Bell inequality violation. Compared to previous approaches [12], the
proof exploits the constraints imposed by quantum theory, which significantly
increases the efficiency of the protocols. For instance, when applied to the proto-
col of Ref. [3], based on the Clauser-Horne-Shimony-Holt (CHSH) Bell inequal-
ity [13], security can be guaranteed up to a quantum-bit error rate (QBER) of
approximately 5 %.

The security proof, however, needs a requirement which limits its applicabil-
ity from a practical point of view: all the events generating the raw-key sym-
bols must be causally disconnected. There are different possibilities to meet this
requirement. First, one can relax the device-independent character of the pro-
tocol and assume that the measuring apparatuses have no internal memory. Of
course, the no-memory assumption is present in any of the security proofs for
standard QKD [1]. The requirement can also be fulfilled in a device-independent
manner if the honest parties have access to separated devices. For instance, if
all raw-key symbols are defined by space-like separated events, special relativity
warrants their causal independence. However, space-like separation is not nec-
essarily required for the generation of the raw-key symbols. It is sufficient that
the parties are able to shield each of these devices and prevent any unwanted
information exchange among them when generating the raw-key symbols. This
assumption is similar to the one that the honest parties are capable of preventing
information leakage from their laboratories, without which the the cryptographic
scenario would not make sense.

2 Bell Inequalities and DIQKD Protocols

The class of protocols we consider are variations of Ekert’s QKD protocol [5,14].
Alice and Bob share a quantum channel that distributes entangled states and
they both have a quantum apparatus to measure their incoming particles. These
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apparatuses take an input (the measurement setting) and produce an output
(the measurement outcome). We label the inputs and outputs z and a for Alice,
and y and b for Bob, and assume that they take a finite set of possible values.

The first step of the protocol consists in measuring the pairs of quantum
systems distributed to Alice and Bob. In most of the cases (say N), the inputs
are set to fixed values x; = Tyaw and y; = Yraw and the corresponding outputs
a = (a1,...an) and b = (by,...by) constitute the two versions of the raw
key. In the remaining systems, which represent a small random subset of all
measured pairs (of size say Negt ~ VN ), the inputs x, y are chosen uniformly at
random. From these N pairs, Alice and Bob determine the relative frequencies
q(ablxy) with which the outputs a and b are obtained when using inputs z and y.
These relative frequencies quantify the degree of non-local correlations between
Alice and Bob’s system through the violation of the Bell inequality associated
to the DIQKD protocol. This Bell inequality is defined by a linear function g of
the input-output correlations g(ablzy):

g = Z gabry‘](ab‘xy) < Gloc, (1)
a,b,z,y

where gqpey are the coefficients defining the Bell inequality and gioc is its local
bound. A particular example of a Bell inequality is the CHSH inequality [13]

gensn = »_ (=1)* T q(ablay) < 2, (2)

a,b,z,y

where a,b,z,y € {0,1}.

After this initial “measure and estimate” phase, the rest of the protocol is
similar to any other QKD protocol. Alice publishes an Np,,-bit message about
a, which is used by Bob to correct his errors b — b’, such that b’ = a with
arbitrarily high probability. Alice and Bob then generate their final secret key k
by applying a 2-universal random function to a and b’, respectively [15].

3 Generation of the Raw-Key Symbols

In the DIQDK approach, we do not assume that the devices behave according
to predetermined specifications. Yet, we must first specify how we model the
N pairs of systems used to generate the raw key. These N pairs are eventually
all measured using the inputs * = Z;aw and y = Yraw, but since they where
initially selected at random and each of them could have been part of the Negt
pairs used to estimate the Bell violation, we must also consider what would
have happened for any other inputs  and y. Let therefore P(ab|xy) denote the
prior probability to obtain outcomes a and b if measurements x = (z1,...,zx)
and y = (y1,...,yn) are made on these N pairs. This unknown probability
distribution characterizes the initial system at the beginning of the protocol.
In the theoretical model needed for the security proof of Ref. [10], the N bits
of the raw key are viewed as arising from N commuting measurements on a joint
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quantum system p45. That is, the probabilities P(ab|xy) can be written as

N
P(ab|xy) = tr[pas HAi(ai|xi)Bi(bi|yi)]a (3)

i=1

where A;(a;|z;) are operators describing the measurements performed by Alice
on her ith system if she select input x; (they thus satisfy A;(a;|z;) > 0 and
> a, Ailailr;) = 1), where, similarly, B;(b;ly;) are operators describing the
measurements by Bob, and where these measurement operators satisfy the
commutation relations

[Ai(alz), Bj(bly)] = 0 (4)

and
[Ai(alz), A;(a’[2")] = [Bi(bly), B;(V'|y")] = 0 (5)

for all 4,j and a,a’,b,V/,x,2’. Apart from the conditions (4) and (5), the state
pap and the operators A;(a;|z;) and B;(b;]y;) are arbitrary and unspecified. The
only constraint on them is that they should return measurement probabilities (3)
compatible with the statistics of the Neg randomly selected pairs, characterized
by the observed Bell-inequality violation g.

In quantum theory, measurement operators that commute represent compat-
ible measurements that do not influence each other and which can be performed
independently of each other. The commutation relations (4) between the opera-
tors A;(a;|x;) describing Alice’s measurement devices and the operators B;(b;|y;)
describing Bob’s measurement devices are thus a necessary part of any DIQDK
model; security cannot be guaranteed without them.

The commutation relations (5) between the operators A;(a;|x;) within Alice’s
location, and the commutation relations between the operators B;(b;|y;) within
Bob’s location, represent, on the other hand, additional constraints specific to
the model discussed here. As already mentioned these commutation relations are
satisfied in an implementation in which the N bits of the raw key are generated by
N separate and non-interacting pairs of devices used in parallel. Let’s elaborate
more on this point.

In the extreme adversarial scenario where the provider of the devices is not
trusted (e.g., if the provider is the eavesdropper itself), this independence condi-
tion can be guaranteed by shielding the N devices in such a way that no commu-
nication between them occurs during the measurement process. One could also
consider a setup where the measurements performed by the N devices define
space-like separated events. However, even in a space-like separated configura-
tion, the ability to shield the devices is required if the provider of the devices is
untrusted, as we cannot guarantee through other means that the devices do not
send directly unwanted information to the adversary. But, then, the ability to
shield the devices is already sufficient by itself to guarantee (5).

In a more practical implementation where the raw key is generated by repeat-
edly performing measurements in sequence on a single pair of devices, the com-
mutation relation (5) expresses the condition that the functioning of the devices
should not depend on any internal memory storing the quantum states and
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measurement results obtained in previous rounds. In the most general DIQKD
model, the quantum devices could possess a quantum memory such that the
state of the system after the ith measurement is passed to the successive round
1+ 1 (this state could also contain classical information about the measurement
inputs and outputs of step i). If p’yz denotes the state of the system before
measurement ¢, the unormalised state passed to round 7 + 1 in the event that
Alice and Bob use inputs z; and y; and obtain outputs a; and b; would then be
Al(ai|z:)B] (bilys) pla s Ai (ailzi) Bi(bilyi) where A;(a|x) and B;(b;|z;) are gener-
alized measurement operators describing Alice’s and Bob’s measurements and
satisfying 3, Ai(alz)Al(alz) = > B;(bly)B] (bly) = I. In such a model, the
probabilities P(ab|xy) are then given by

1 N
P(ablxy) = tr[ [ [ Al(ailz:)B] (bilys) x pas [[ Ailailz:)Bi(bily:)],  (6)
i=N i=1
where p 45 denotes the initial state at the beginning of the protocol, and the
order in the products is relevant. Imposing commutation relations between all
operators pertaining to different rounds corresponds to neglect the causal order
in (6) due to memory effects. We then recover a model of the form (3) by defining
A;(ale) = A;(ala) Al (ala) and Bi(bly) = Bi(bly) BI (b]y).

4 Security Proof

We are now in position to review the bound on the secret key rate derived
in [10]. This bound can be achieved against an unrestricted eavesdropper Eve
for any QKD protocol satisfying the description (3), (4) and (5). The information
available to Eve can be represented by a quantum system that is correlated with
the Alice and Bob’s systems. We denote by page the corresponding (2N + 1)-
partite state, with trg pape = pan. This state describes the 2N + 1 systems at
the beginning of the protocol. After the N systems of Alice have been measured,
the joint state of Alice and Eve is described by the classical-quantum state

pAE = ZP(3|XraW)|a><a| ® pglas (7)
a
where pg|a is the reduced state of Eve conditioned on Alice having observed the
outcomes a.

The length of the secret key k obtained by processing the raw key a with
an error correcting protocol and a 2-universal random function is, up to terms
of order v/N, lower bounded by Hyin(al€) — Npub, where Hpin(al€) is the min-
entropy of a conditioned on Eve’s information for the state (7) and Npyp, is
the length of the message published by Alice in the error-correcting phase. It
is shown in [16] that the length of the public message necessary for correcting
Bob’s errors is Npu, = NH(alb), up to terms of order v/N. The quantity H (a|b)
is the conditional Shannon entropy [16], defined by

H(alb) = 3 —P(a,b) log, P(alb), (8)

a,b

)
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where P(a,b) = 1/N Ef\il > aip, Plai = a,b; = b) is the average probability
with witch the pair of outcomes a and b are observed. Computing the key rate
of the DIQKD protocol, thus essentially amounts to determine the min-entropy
Hin(alE). A bound on this quantity can be derived as a function of the esti-
mated Bell violation g.

Consider first the simpler case of one pair of systems (N = 1) uncorrelated
to the adversary and characterized by the joint probabilities

P(ablzy) = tr[p A(alz) B(bly)]. (9)

If P(a|zyaw) < 1 for all a, then the outcome of the measurement .y, cannot be
perfectly predicted. The degree of unpredictability of a can be quantified by the
probability to correctly guess a [17]. This guessing probability is equal to

Pguess(a) = max P(a|xraw)v (10)

since the best guess that one can make about a is to output the most probable
outcome. If Pyyess(@) = 1 then the outcome of the measurement z,,, can be
predicted with certainty, while lower values for Pyyess(a) imply less predictability.
Let gexp = D upay JabayP(ablzy) = tr[pG] denote the expected quantum
violation of the Bell inequality (1) for the pair of systems described by (9),

where
G= > GabayAlalz)B(bly), (11)

ab,z,y

is the Bell operator associated to the inequality g and to the measurements
A(alz) and B(bly). Independently of the precise form of the state p and of the
measurement operators A(a|z) and B(bly), the value of the Bell expectation gexp
imposes a constraint on the guessing probability (10). Formally, this constraint
can be expressed as a bound of the form

Pguess (a) < f(gexp)a (12)

satisfied by all quantum distributions (9). The optimal point-wise values f(go)
(for any gg) correspond to the solution of the following maximization problem

max  tr{p A(a|Zraw
% [P ( | )] (13)
subject to tr[p G] = go,

which can be solved (or upper-bounded) using the semidefinite programming
(SDP) relaxations introduced in [18]. The resulting functions f (and in particu-
lar the optimal one) are then always concave and monotonically decreasing, as
follows from the convex nature of the problem (13) and of its associated SDP
relaxations. In the case of the CHSH inequality, the optimal function f is [10,19]

1 9>
—“1/2— = 14
+5\ 2T (14)

N[ =

fchsh (g) =
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for any of the two possible values xy,w = 0 or 1 entering in the CHSH
definition (2).

As the function f is concave, it can be upper-bounded by its linearization
around any point gg

f(9) < n(go) +v(g0)9, (15)

where 1(g0) = f(g90) — f'(g0)go, ¥(g90) = f'(g0). From concavity, it also follows
that

f(g) = min [1(go) + v(g0)9] - (16)

9o

The bound (12) is thus equivalent to the family of inequalities P(a|Zyaw) <
1(g0) + v(go), gexp for all a and go. Since these inequalities are satisfied by any
quantum distribution (9), and thus in particular by any state p, they are equiv-
alent to the operator inequalities

A(a|xraw) < /,L(go)]l + V(go)G, (17)

valid for all a, gg, and any set of measurements A(a|x) and B(bly).

Moving to the case of N pairs of systems described by (3) and (7), the prob-
ability with which Eve can correctly guess the raw key a by measuring her side
information £ can be computed as follows. Suppose thus that Eve performs some
measurement z on her system £ and obtains an outcome e. Let P(a|X;aw, €2)
denote the probability distribution of a conditioned on Eve’s information. On
average, her probability to correctly guess a is given by ) P(e|z)maxy
P(a|Xraw, €z), and her optimal correct-guessing probability (optimized over all
measurements z) is [17]:

Piiess(al€) = max Z P(e|z) max P(a|Xyaw, €2). (18)

Denote by papje. the 2N-partite state prepared when Eve measures z and
obtains the outcome e (with pas = >°, P(e|2)pasje-), and write A(a|Xpaw) =

Hi]il Ai(a;|Traw), so that
P(a|Xraw, €2) =t [pap|e-AlalXraw)] - (19)
Consider the following N-partite Bell operator

G(go) = [ [I1(90)1 + v(90)Gil, (20)

=1

where G; =), . Y GabayAi(ailz;)Bi(biy;). The single-copy operator inequality
(17) implies that for all a and go

A (alxraw) < G(g0). (21)

To show this, write A, = A;(a;|Zraw) and G = p(go)1L + v(go)G;i. We thus want
to establish that Hf\il Gl — Hf\il Al > 0. Inequality (17) implies that for all i,



20 C. Dhara et al.

0 < A} < G,. Defining Z; = G, — A, > 0, note then that vazl Gl — Hf\il Al =

Hﬁil(Zi +Al)— Hfil Al = vazl Zi+ 74 Hf\; A+ -—I—Hf\;l AL Z,,. Inequality

(21) then follows from the fact that each term in this sum is positive since it is

the product of operators that are positive and, according to (5), commuting.
Using inequality (21) in (18), we find

Pguess(a|g) = mZaXZ P(elz) m{?‘X tr [pAB|ezA(a|Xraw)]

< mzaxz P(e|z) min tr [paBle=G(90)] »
< min tr [pas G(g0)] (22)

where to deduce the first inequality we used, in addition to (21), the positivity
of PAB|ez+

Note now that the quantity tr[pas, G(go)] is a function of the marginal
distributions P(abl|xy) of Alice and Bob only and does not involve directly the
system of Eve. It is shown in [17], that Alice and Bob can estimate (with high
probability) this quantity from the Bell violation g observed on the randomly-
chosen Neg pairs. More precisely, Lemma 5 from reference [17] implies that the
inequality

AN
tr[p.an, G(go)] < [u(go) +1(90) gest + Nowt! 4} (23)
holds except with probability exponentially small in Neg. This, (22), and (16)
imply that
est -1/4 N
Pauess(al€) < [£(9™) + N] (24)

Finally, it is shown in [17] that the (quantum) min-entropy Hpmin(al€) of a
state of the form (7) is given by

Hmin(a‘g) = - IOgQPguess(a‘g)a (25)
which implies the asymptotic secret key rate
R > —logy f(gest) — H(alb). (26)

As announced, the bound applies to any Bell inequality and the corresponding
DIQKD protocol.

5 Key Rates for the Chained Bell Inequality

As an illustration of the formalism, we explicitly compute the secret-key rates for
the chained Bell inequalities of Ref. [20]. These inequalities were initially intro-
duced in the scenario in which Alice and Bob perform M measurements of two
outcomes. Later, they were generalized to an arbitrary number of outcomes [21],
but we don’t consider this generalization here.
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Key rate
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Fig. 1. Key rates for the chained Bell inequalities for 2, 3 and 4 measurements. The
critical visibility such that the lower bound on the key rate is zero is approximately of
0.9. Increasing the number of settings up to 4 worsens this critical visibility.

The chained inequalities for two measurement outcomes read as follows. The
two outcomes of each measurement by Alice (Bob) are labeled by A; = +1
(B; ==£1), with i = 1,..., M. Then, for any local model one has

M M—-1
STHAB) + Y (Bidinr) — (BuAr) < 2(M - 1), (27)
=1 =1

where (X) stands for the expectation value of the random variable X. The case
M = 2 corresponds to the standard CHSH inequality.

In Fig.2 we depict the lower bound on the secret-key rates (26) for DIQKD
protocols based on the chained inequalities for M = 2,3,4. These rates have
been computed for the probability distribution resulting from applying the opti-
mal measurements for the maximal quantum violation of the chained inequality
on a mixture of a two-qubit maximally entangled state |®*) and white noise,
that is,

pan = VO @H| 4+ (1 - v)1/4, (28)

where v is often known as the visibility. It is important to recall that, while the
rate is computed for a concrete set of states and measurements, the security
analysis is fully device independent (up to the requirement that measurement
outcomes are causally disconnected). Each value of the visibility defines a value
for the error rate between Alice and Bob, eap = (1 4+ v)/2, which specifies the
amount of bits needed for error correction. The violation of the chained Bell
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inequality is just the maximal quantum violation multiplied by the visibility
v. Putting the two things together, one derives the rates given in Fig. 1. The
obtained critical values of the visibility such that the key rate is provably strictly
positive, are of approximately 0.9. They are then comparable to those of standard
QKD, which are around 0.78.
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Abstract. It is known that the maximum classical mutual informa-
tion that can be achieved between measurements on a pair of quantum
systems can drastically underestimate the quantum mutual informa-
tion between those systems. In this article, we quantify this distinction
between classical and quantum information by demonstrating that after
removing a logarithmic-sized quantum system from one half of a pair of
perfectly correlated bitstrings, even the most sensitive pair of measure-
ments might only yield outcomes essentially independent of each other.
This effect is a form of information locking but the definition we use
is strictly stronger than those used previously. Moreover, we find that
this property is generic, in the sense that it occurs when removing a
random subsystem. As such, the effect might be relevant to statistical
mechanics or black hole physics. Previous work on information locking
had always assumed a uniform message. In this article, we assume only a
min-entropy bound on the message and also explore the effect of entan-
glement. We find that classical information is strongly locked almost until
it can be completely decoded. As a cryptographic application of these
results, we exhibit a quantum key distribution protocol that is “secure”
if the eavesdropper’s information about the secret key is measured using
the accessible information but in which leakage of even a logarithmic
number of key bits compromises the secrecy of all the others.

Keywords: Information locking - Quantum information + Encryption -
Discord - Measure concentration - Black holes

1 Introduction

One of the most basic and intuitive properties of most information measures is
that the amount of information carried by a physical system must be bounded
by its size. For example, if one receives ten physical bits, then one’s information,
regardless of what that information is “about”, should not increase by more than
ten bits. While this is true for most information measures, in quantum mechanics
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there exist natural ways of measuring information that violate this principle by a
wide margin. In particular, this violation occurs when one defines the information
contained in a quantum system as the amount of classical information that can be
extracted by the best possible measurement. To construct examples of this effect,
we take a classical message and encode it into a two-part quantum message: a
cyphertext, which is roughly as large as the message, and a much smaller key.
Given both the cyphertext and the key, the message can be perfectly retrieved.
We can then look at the amount of information that can be extracted about the
message by a measurement given only access to the cyphertext. Locking occurs if
this amount of information is less than the amount of information in the message
minus the size of the key.

In previous work on locking [DHL+04, HLSWO04], this amount of informa-
tion was taken to be the accessible information, the maximum (classical) mutual
information between the message and the result of a measurement. In [DHL+04],
the authors constructed the first example of locking as follows: the cyphertext
consists of the uniformly random message, encoded in one of two mutually unbi-
ased bases, and the (one-bit) key reveals the basis in which the encoding was
done. In this example, given only the cyphertext, the classical mutual informa-
tion is only 7 for an n-bit message. Hence, the one-bit key can increase the
classical mutual information by another % bits. In [HLSW04], the authors con-
sidered a protocol in which one encodes a classical message using a fixed basis,
and then applies one of k fixed unitaries (where k& = O(polylog n + log%));
the classical key reveals which unitary was applied. If the unitaries are cho-
sen according to the Haar measure, then with high probability, the accessible
information was shown to be at most en when one only has the cyphertext.

In this paper, we present stronger and more general locking results, and show
that this effect is generic. Our results will be stronger in the sense that instead
of using the accessible information, we will define locking in terms of the trace
distance between measurement results on the real state and measurement results
on a state completely independent of the message (see Definition 4). Unlike
the accessible information, this has a very natural operational interpretation:
it bounds the largest probability with which we can guess, given a message
m and the result x of a measurement done on a cyphertext, whether  comes
from a valid cyphertext for m or from a cyphertext generated independently
of m. In other words, one could almost perfectly reproduce any measurement
results made on a valid cyphertext without having access to the cyphertext at
all. Moreover, we recover a strengthened version the earlier statements about the
accessible information. Whereas previously the accessible information was shown
to be at most 3 bits, our techniques show that the accessible information can
be made arbitrarily small. (A follow-up paper further strengthens the definition
and explores connections to low-distortion embeddings [FHS10].)

Despite this stronger definition, we will be able to show that the locking
phenomenon is generic. Instead of having a classical key reveal the basis in which
the information is encoded, as in [DHL+-04, HLSW04], we consider the case where
there is a single unitary, and the key is simply a small part of the quantum system
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after the unitary is applied. This means that we can make not only cryptographic
statements, but also statements about the dynamics of physical systems, where
the unitary represents the evolution of the system. In particular, we will be able
to show that locking occurs with high probability in physical systems whose
internal dynamics are sufficiently generic to be adequately modelled by a Haar-
distributed unitary. This can therefore give interesting results in the context of
thermodynamics, or of the black hole information problem.

In that vein, we will also allow the measuring device to share entanglement
with the cyphertext-key compound system. While this may not correspond to
a very meaningful cryptographic scenario, it allows us to study the behavior of
entanglement in physical systems, and to study the extent to which the presence
of entanglement interferes with this locking effect.

Finally, in contrast to previous studies, we will not limit the message (or
the entanglement) to be uniform; the size of the key will instead depend on the
min-entropy of the message. This assumption is easier to justify in cryptographic
applications. Indeed, while the locking results we present here can be interpreted
as demonstrating the possibility of encrypting classical messages in quantum
systems using only very small keys, care must be taking when composing such
encryption with other protocols. We use our results to exhibit a quantum key
distribution protocol, for example, that appears to be secure if the eavesdropper’s
information about the secret key is measured using the accessible information,
but in which leakage of a logarithmic amount of key causes the entire key to be
compromised.

1.1 Transmitting Information Through a Generic Unitary

To end the introduction, we introduce the physical scenario that will occupy us
throughout the article. The situation is depicted in Fig. 1.

E’ ; M — N
() - b A
v -
i_zv c
’ M 3 M

p

Fig.1. A quantum circuit depicting the physical scenario. The classical message M
gets encoded in N, and the unitary then mixes it with the F part of the shared
entanglement. If the information is locked, any joint measurement M on C and E’ will
yield a result X that is almost independent of the message. On the other hand, if C' is
large enough, there will be a joint measurement M reliably decoding M.
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Now, let {|1)s,) : 1 < m < | M|} be any orthonormal basis for N. The analysis
will focus on the properties of the states

|M]|
oMY= Z pm|m><m\M ® |¢m><wm|N and (1)
m=1

pMCDE' . (HME’ ® UNE—»CD) (O_MN ®wEE’> (HME’ ® UNE—»CD)T 2)

Our objective is to demonstrate that until C' is large enough that there exists
a measurement on C'E’ capable of revealing all the information about the mes-
sage M, no measurement will reveal any information about the message. This
can’t quite be true, of course, so what we will demonstrate is that the jump
from no information to complete information involves enlarging C' by a number
of qubits logarithmic in the size of the message M and the amount of entangle-
ment E.

Assume for simplicity both that M is uniformly distributed and that the
state wFE" is maximally entangled. As a first step, it is necessary to determine
how large C needs to be in order for there to exist a measurement on CE’ that
will reveal the message M. Begin by purifying the state o to

| M|

o) RMN Jllﬁl S [m)R @ [m)™ @ [ 3)

Even more demanding than performing a measurement to reveal m is the task
of transmitting the quantum information about RM through U, allowing the
decoder, who has access only to CE’, to recover a high fidelity copy of the state
|o) BMN Tf U is selected according to the Haar measure, then Theorem IV.1 of
[ADHWO09] implies that there is a quantum operation DCE'—N acting only on
CE’ such that

HD (TrD {UNEHCD (o BMN ®WEE'):|) _ URMNH1 < 2\/¥' (4)

Because the trace distance is monotonic under quantum operations, it will not
increase by taking the partial trace over R and measuring in the basis {|¢,)}
[NCO00]. If we let p(m’|m) be the probability of getting an outcome |t),,/) when
the message was in fact m, Eq. (4) therefore implies that

SN ) <4/ G )

m m'#m

In words, the probability of the measurement yielding the incorrect outcome,
averaged over all messages, is at most /M /C, so as soon as C is significantly
larger than M, a measurement on CE’ can be found that will reveal the message.
Our goal in this article will be to demonstrate that until this condition is met,
no measurement will reveal any significant information about the message.
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1.2 Structure and Notation

In Sect. 2 we define e-locking schemes in terms of (s,7n)-quasi-measurements,
a new tool which we use later to extend our results to general POVMs. In
Sect. 3 we present the main technical theorem (Theorem 5) for the existence of
e-locking schemes. The concentration of measure and union bound arguments
which constitute the proof of the theorem, as well as the proofs of all of the
remaining lemmas, corollaries, and theorems, can be found in [DFHL10]. In
Sect. 4, we calculate the minimum key size to securely lock against projective
measurement and in Sect. 5 we extend these results for POVMs. Finally, in
Sects. 6-8 we show the necessary argument for decoding, applications to the
security of quantum key distribution, and review the results.

All logarithms are taken base 2. |A| will denote the dimension of Hilbert
space A. However, we will often drop the | - |. For example, the dimension of
the composite system MCK is denoted by MCK (a scalar value). A®? will
denote two identical copies of A the second of which is denoted by A. 74 is the
maximally mixed state %. U(A) is the unitary group on A. Pos(A) is the subset
of Hermitian operators from A to A consisting of positive semidefinite matrices.
L(s,n) will denote the set of all (s,n)-quasi-measurements, see Definition 3.
We will use M - N to denote M NMT. The following three norms are defined:
|MA=B|, = T VMM, [[)ll, = /@0, and |[MA~E|, = /T[T M].
We will denote by ||M A—’BHOO the largest singular value of M. Hy(A), will be
the Renyi 2-entropy of A, defined as —log Tr[p?]. Hmin(A), will be the quantum
min-entropy of A, defined as —log minyer{\ : p* < AI'}. Hypax(A), will be the
quantum max-entropy of A, defined as 2 log Tr \/p7 . We will denote by I(A; B),
the mutual information of A and B, defined as H(A), + H(B), — H(AB),.

2 Definitions

This section will present the basic definitions needed to state our results. First,
it will be very convenient for us to represent measurements via superoperators
in the following manner:

Definition 1 (Measurement superoperator). We call a completely positive,
trace-preserving (CPTP) map M : B(A) — B(X) a measurement superop-
erator if it is of the form M(p) = Zf\il |4) (3| X Tr[M#p], where {|i)4 : i €
{1,...,N}} is an orthonormal basis for X, each M is positive semidefinite,
and YN MA = TA.

These play a central role in the definition of accessible information.

Definition 2 (Accessible information [Fuc96]). Let pAZ be a quantum state.
Then, the accessible information In..(A; B) is defined as

Lic(A; B), :==sup I(X; Y)(A@B)(

)
AB )
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p

Fig. 2. A quantum circuit depicting the physical scenario with the locking-specific
identifications N 2 C ® K and D =2 E ® K made.

where AA~X and BB~Y are measurement superoperators, and the supremum is
taken over all possible superoperators.

We also need to introduce the concept of quasi-measurements for our analysis.
They are, as their name indicates, almost measurements, but differ in three
ways: they only contain rank-one elements of equal weight, they have exactly n
outcomes, and the sum of all the elements does not necessarily equal the identity,
but is instead bounded by kI

Definition 3 (Quasi-measurement). We call a superoperator MA~E an
(s,m)-quasi-measurement if it is of the form

M) = LS 1)l

where the |i) index an orthonormal basis for B, and %Zle Ixi) (il < nl.
We call the set of all (s,m)-quasi-measurements on a given system, L(s,n).

The reason for introducing these, as will soon become apparent, is that they are
almost equivalent to POVMs for our purposes while being much easier to handle
mathematically. By definition projective measurements are simply (A, 1)-quasi-
measurements.

We now give the formal, strengthened definition of locking. The states in
question were introduced in Sect.1.1. However, because the cyphertext will
always be smaller than or equal to the message when locking occurs, certain
identifications become possible. In particular, we can assume without loss of
generality that N 2 C ® K and D = F ® K. Since the analysis will be per-
formed using only C, K and E, we reproduce the illustration of the physical
scenario with the identifications made in Fig. 2.

Definition 4 (e-locking scheme). Let M,C, K, E and E' be quantum sys-
tems. Let pMCEEE" be o quantum state of the form

’ ’ T
PMOKEE — 7 pruUKE (Jmpm|™ @ ) (1o | X @ o) (] EE) UOKET,

(6)
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where the |[1b,,) are orthogonal and UYKE is unitary. Then we call p an e-locking
scheme if for any measurement superoperator MCE =X we have that

HM (pMCE’) M (pM ®pCE’)H1 <e.

Note that this definition of locking is rather different from that used in previ-
ous work in the area [DHL+-04, HLSWO04]. Their definition involved the accessible
information between the cyphertext and the message. Our definition implies the
older one via a direct application of the Alicki-Fannes inequality [AF04].

Four quantities will be particularly useful for quantifying variations from
uniform messages and maximal entanglement,

Aproe i= 9108 M—Hunin (M) (7)
Apps = glog MfHQ(M)G’ (8)
Ap.o = 210gE—Hmi,,(E)w7 (9)
Ap =208 B (B (10)

The A terms are used in the calculations to provide more general statements
relating the entropy of the message and entanglement to the key size.

3 Concentration of the Distinguishability from
Independence

The full proof of the following theorem is found in [DFHL10].

Theorem 5. Given the quantum state pMCKEE" — yOKE (cMCK & wEE/)
where U s a random unitary operator chosen according to the Haar measure, o
is as defined in Eq. (1), E' 2 E, and wEE" is a bipartite pure state, the following
bound holds

Pr sup HM (pMCE,) -M (pM ®pCEl>H > €
v MEL(s,m) 1

40v/CE (CKE)? 405 o\ 2
< 2sCEn | =2\ /Ap2A S it A (S 7 .
eXP( S n( B M,2 E,2> 28772AM,00AE,00 £ 7d5)

In the above, Apfoo, Ani2, Ap2 and Ag o are as defined in Egs. (7), (8), (10)
and (9).

4 Locking Against Projective Measurements

In this section we will only consider projective measurements, in other words
(s,m) = (CE’,1). We will also state all of the subsequent theorems in terms of
qubits. For this reason we will identify C' = 2¢, K = 2* and E = E' = 2°,
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Corollary 6. Consider the locking scheme described in Definition 4 for a uni-

form message with mazimal entanglement available at the measurement. Choose
—2(CE)? ;

p and € such that € > 8\/1/KE andp > 2 . Then the scheme will be an

e-locking locking scheme except with probability p so long as the measurement

superoperators are restricted to projective measurements and

1 1
k>9+2logg+§log(c+e).

Corollary 6, and its extension to arbitrary POVM measurements in Corollary
9 is a mathematical expression that “generically, information is locked until it
can be completely decoded.” To arrive at this interpretation, recall from Eq. (4)
that to achieve a decoding error of €, the measurement must be supplied with
the entanglement through system E’ as well as a system C satisfying ¢ — n >
2log(1/e€). Of course, this condition could never be met if the constraint n = c¢+k
is assumed, but the constraint was only made for convenience to prove the locking
results. Using it to re-express Corollary 6, though, we find that the information
about the message is e-locked provided c =n —k <n—9 —2log(l/e) —1/2-
log(c + €). Therefore, regardless of the size of the message or the amount of
entanglement, the message goes from being e-locked to being decodable with
average probability of error at most € with the transfer of 9 + 4log(1/€) +1/2 -
log(c + e) qubits.

We also present the dependence of the minimum key size k£ on the various
entropies of the message M and the entanglement E.

Corollary 7. Consider the locking scheme described in Definition 4 for a mes-
sage of bounded entropy with entanglement of a bounded fidelity available at the
measurement. Choose € and p satisfying € > 8Ag oo/VKE and p > 2-2(CB)*
Then the scheme will be an e-locking locking scheme except with probability p so
long as the measurement superoperators are restricted to projective measurements
and

K+ %(n - Hmin(M)J) n %(e - Hmin(E)w) <k, (11)

where we’ve defined k' as the lower bound given in Corollary 6, i.e.: k' = 9 +
2log(1/e) +1/2 - log(c + e).

5 Locking Against Generalized Measurements

We show that the results of the previous section hold not only for projective
measurements, but also for general POVMs, up to very minor changes in the various
constants. The main difficulty at this point is that we cannot use Theorem 5 directly,
since it only gives bounds for (s, )-quasi-measurements. We must therefore show
that a general POVM behaves essentially like an (s, )-quasi-measurement for the
purposes of the theorem. Our strategy for the proof (see [DFHL10]) is probabilistic
in nature: we show that doing a general POVM M is mathematically equivalent
to randomly selecting a measurement constructed from possible sequences of
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s measurement results obtained from M. With overwhelming probability, the
sequence chosen is an (s,n)-quasi-measurement, and Theorem 5 then applies in
this case.

Theorem 8. Given the quantum state pMCKEE — UCKE . (GMCOK g ,FE")
where U is a random unitary operator chosen according to the Haar measure, o
is as defined in Eq. (1) and wEE" g bipartite pure state, then

ot ) o), -
@\/ AM,QAE,2>

_ (CKE)?  84p\’
210AM,OOAE,OO N \/ﬁ '

In the above, Anroo, Ani2, Ag2 and Ag o are as defined in Egs. (7), (8), (10)
and (9).

< exp <9(C’E)2 In(CE)In (

A minimum key size can then be extracted in similar fashion to the previous
section.

Corollary 9. Consider the locking scheme described in Definition 4 for a uni-
form message and maximal entanglement available at the measurement. Choose
p and € such that € > 161/1/KE and p > 2-9(CE)’ | Then the scheme will be an
e-locking locking scheme except with probability p so long as

1
11+210gg +log(c+e) < k.

Corollary 10. Consider the locking scheme described in Definition 4 for a mes-
sage of bounded entropy with entanglement of a bounded fidelity available at the
measurement. Choose p and € such that e > 16Ag o /VKE and p > 2-9(CE)?,
Then the scheme will be an e-locking locking scheme except with probability p so
long as

K + %(n - Hmin(M)a-> + %(e - Hrnin(E)w> <k, (12)

where we've defined k' as the lower bound given in Corollary 9, i.e.: k' = 11 +
2log(1/¢e) + log(c +e).

6 Locking Versus Decodability

The previous sections have shown that, under certain conditions, no classical
information is recoverable by the receiver. Here we aim to show that, in many
regimes, these results are essentially optimal. We do this by showing that if we
make the key only very slightly smaller, then with overwhelming probability,
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the classical message will be decodable with a negligible error probability. In
fact we prove even more: in this regime where the information is decodable,
the decoder can even decode a purification of the classical message. In other
words, in this generic scenario where U is chosen with no preferred basis, either
all classical information is locked away, or we can decode quantum information.
This is formalized in the next theorem.

In order to study decodability, we must discard the identifications made in
Fig. 2 to study locking and return to the original scenario described by Fig. 1.
Whereas k was previously the number of qubits in system K, there is no system
K in Fig.2. Instead, we define k = n — ¢, which is consistent with its earlier
definition. Now, however, it might be the case that k is negative since decoding
could require the cyphertext to be longer than the message.

The following theorem generalizes the discussion of Sect. 1.1 to nonuniform
messages and imperfect entanglement.

Theorem 11. IfU is chosen according to the Haar measure, then the informa-
tion in the scheme described in Fig. 1 is such that there exists a decoding CPTP
map DEE =N such that

HD (TrD [UNEHCD (URMN ®wE'E) (UNEHCD)T}> -~ O_RMNH <e
1

asymptotically almost surely, where o™ s a purification of o™V, as long as
1 1
k<5 (1= Huax(M)s) = 5 (e = Ha(E) ) — 2log(1/2) - 4

7 Implications for the Security of Quantum Protocols
Against Quantum Adversaries

When designing quantum cryptographic protocols, it is often necessary to show
that a quantum adversary (“Eve”) is left with only a negligible amount of infor-
mation on some secret string. An initial attempt at formalizing this idea is to say
that, at the end of the protocol, regardless of what measurement Eve makes on
her quantum system, the mutual information between her measurement result
and the secret string is at most € (in other words, her accessible information
about the message is at most €). This was often taken as the security defini-
tion for quantum key distribution, usually implicitly by simply not considering
that the adversary might keep quantum data at the end of the protocol [LC99,
SP00,NC00, GL03,LCAO05] (see also discussion in [BOHL+05, RK05, KRBMO07]).
In [KRBMOT7], it is shown that this definition of security is inadequate, pre-
cisely because of possible locking effects. Indeed, this security definition does
not exclude the possibility that Eve, upon gaining partial knowledge of S after
the end of the protocol, could then gain more by making a measurement on her
quantum register that depends on the partial information that she has learned.
In [KRBMOT7], the authors exhibit an admittedly contrived quantum key dis-
tribution protocol which generates a secret n-bit key such that, if Eve learns
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the first n — 1 bits, she can then learn the remaining bit by measuring her own
quantum register.

The locking scheme presented above allows us to demonstrate a much more
spectacular failure of this security definition. We will show that there exists a
quantum key distribution protocol that ensures that an adversary has negligible
accessible information about the final key, but with which an adversary can
recover the entire key upon learning only a very small fraction of it.

7.1 Description of the Protocol

We will derive this faulty protocol by starting with a protocol that is truly secure,
and then making Alice send a locked version of the secret string directly to Eve.
We will be able to prove that regardless of what measurement Eve makes on
her state, she will learn essentially no information on the string, but of course,
she only needs to learn a tiny amount of information to unlock what Alice sent
her. More precisely, let P be a quantum key distribution protocol such that, at
the end of its execution, Alice and Bob share an n-bit string, and Eve has a
quantum state representing everything that she has managed to learn about the
string. We will also assume that P is a truly secure protocol: the string together
with Eve’s quantum state can be represented as a quantum state o°F such that
|lo%F — 75 @ oF||; < e, where S is a quantum register holding the secret string,
and F is Eve’s quantum register. Now, we will define the protocol P’ to be
the following quantum key distribution protocol: Alice and Bob first run P to
generate a string s of length n, and then Alice splits s into two parts: the first
part s is of size O(logn), and the second part s. contains the rest of the key.
Alice then uses the classical key si to create a quantum state in register C' that
contains a locked version of s. and sends the system C to Eve.

How secure is P’? It is clearly very insecure, since, if Eve ever ends up learning
s (via a known plaintext attack, for instance), she can then completely recover
s.. However, the next theorem shows that, right after the execution of P’, Eve
cannot make any measurement that will reveal information about the key. In
particular, P’ satisfies the requirement that Eve’s accessible information on the
key be very low.

Theorem 12. Let P and P’ be quantum key distribution protocols as defined as
above, and let p©F° be the state at the end of the execution of P': S contains the
n-bit string s, E is Eve’s quantum register after the execution of P, and C' con-
tains the locked version of s. that Alice sent to Eve. Then, for any measurement
superoperator MEF=X there exists a state X such that

||M(pCES) _ SX ®ﬂ_SH1 < 2e.
This also entails that
Lice(S;CE) < 8en 4+ 2n(1 — 2¢) + 2n(2¢)

via the Alicki-Fannes inequality.
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Hence, we have shown that requiring that Eve’s accessible information on the
generated key be low is not an adequate definition of security for quantum key
distribution. We have exhibited a protocol P’ which guarantees low accessible
information and yet is clearly insecure due to locking effects.

8 Discussion

It is natural in physics to measure the “correlation” between two quantum phys-
ical systems using the correlation between the outcomes of measurements on
those two systems. Two-point correlation functions are but the most ubiquitous
examples. The results in this article demonstrate that this practice can some-
times be very misleading. The e-locking quantum states exhibited in this article
would reveal no correlations using any type of measurement, but enlarging one
of the two systems by a small number of qubits would expose near-perfect cor-
relation between the two systems. This is an important and counterintuitive
property of information in quantum mechanical systems: measurements can be
distressingly bad ways to detect correlation.

The extensive literature on quantum discord is essentially devoted to explor-
ing the relationship between accessible, or classical, and quantum mutual infor-
mation [OZ01,HV01,BKZ06]. Since the discord is defined as the gap between the
quantum and classical mutual informations, locking can be viewed as the extreme
case where classical mutual information doesn’t detect any of the very abundant
quantum mutual information. Previous work had demonstrated that transmit-
ting a constant number of physical qubits can cause the classical mutual infor-
mation to increase from a fixed small constant to an arbitrarily large value. In
this article, we have strengthened the definition of locking, replacing the mutual
information by the trace distance to a product distribution. Moreover, we have
shown that the locking effect still exists even when the trace distance (or the
classical mutual information) is made arbitrarily small. In light of these results,
claims that the discord is a robust measure of quantum correlation [WSFB09]
should treated with skepticism. While discord is certainly a signature of quan-
tumness, its susceptibility to locking means that it is in this important respect
not robust.

Previous studies of information locking had also always focused on the exam-
ple of sending classical information in one of a small number of different bases
unknown to the receiver. The intuition was that a receiver ignorant of the basis
could not do much better than guessing the basis and then measuring. Most of
the time, he would guess incorrectly and his measurement would then destroy the
information. Moving away from that paradigm, in this article we consider clas-
sical information encoded using a single generic unitary transformation mixing
the input information with half of an entangled state shared with the receiver.
The “key” then becomes a quantum system. While the original paradigm can
be recovered by eliminating the entanglement and encrypting the key quantum
system with a private quantum channel, the setting considered here is strictly
more general.
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Indeed, we find that, for an n-bit uniform message and maximal entangle-
ment, the information is generically e-locked until the receiver is within O(logn/e)
qubits of being able to completely decode the message. Our definition of lock-
ing is stronger than those previously studied and our results imply, for the first
time, that the classical mutual information can be made arbitrarily small. Our
method of proof in the case of projective measurements was a fairly standard
discretization argument but the extension to POVM measurements required a
new strategy exploiting the operator Chernoff bound. In contrast to previous
studies of locking, we do not require the message to be uniformly distributed,
working instead with a min-entropy bound on the distribution of messages. In
that case, we found that the key size was at most the gap between the max- and
min-entropies of the message, modulo the logarithmic terms that dominate in
the uniform situation.

For information theorists, this may appear reminiscent of a strong converse to
a channel capacity problem. Roughly, a strong converse theorem states that any
attempt to transmit above the channel capacity will result in the decoding error
probability approaching one. In our setting, the analog of the strong converse
would be a matching lower bound to Eq. (5) of the form

l—e< ﬁz > p(m'|m) (13)

m m'#m

whenever C' < M, indicating the the probability of incorrectly decoding the
message is at least 1 — e. What we prove here is much stronger. Equation (13)
doesn’t rule out the possibility of being able to pin the message down to some
relatively small set. More generally, it doesn’t imply a small mutual information
between the message and the measurement outcome. Information locking does
imply these stronger statements.

As such, information locking has a natural cryptographic interpretation even
if we haven’t emphasized it in this article. The special case of our scenario men-
tioned above, with no entanglement and a quantum key encrypted using a private
quantum channel, leads to a method for encrypting classical messages using a
secret key of size independent of the length of the message. Similarly, informa-
tion locking schemes can be used to construct string commitment protocols with
surprisingly good parameters [BCH-+06,BCH+08]. These cryptographic appli-
cations are emphasized in the companion article [FHS10].

To the extent that random unitary transformations provide good models of
black hole evaporation, our results might also have implications for that process.
Oppenheim and Smolin had previously suggested that information locking could
rescue the long-lived remnant hypothesis [SO06]. In essence, their idea was that
a remnant with a small number of states could lock all the information of a large
black hole, thereby evading the inconsistencies with low energy physics that arise
from having large numbers of remnant species [ACN87,CW87]. Their proposal,
however, relied on previously studied locking states that treated the encoded
message and the key very differently. Consequently, the proposal required that
the black hole keep hold of the key until the very last moments of its evaporation,
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implying some ad hoc dynamical distinction between encoded message and key
in the evaporation process. Our results imply that if the dynamics are well-
modeled by a Haar random unitary transformation, then any small portion of
the output system can be used as the key. No ad hoc distinction is necessary.

Ironically, the information locking effect is also perfectly compatible with the
rapid release of information from a black hole predicted in [HP07], assuming a
unitary evaporation process. That article observed that if a black hole is already
highly entangled with Hawking radiation from an earlier time, then messages
would be released from the black hole in the Hawking radiation once the black
hole dynamics had sufficiently “scrambled” the message with internal black hole
degrees of freedom. By virtue of the fact that we treat generic unitary transfor-
mations acting on a message and half of an entangled state, our results apply to
the setting of that paper and the followup [SS08]. Specifically, our results imply
that in the case of a larger message, no information about the message could
be obtained from the Hawking radiation until moments before it could all be
obtained. The conclusion depends, of course, on whether the random unitary
transformation is a good model of the evaporation process. While the generic
unitary transformations considered here would take exponential time to imple-
ment on a quantum computer, the follow-up article [FHS10] shows, at least, that
locking can be achieved with a quantum circuit of depth only slightly superlinear
in the number of qubits in the system. Other attempts to apply random unitary
transformations to the black hole information problem, such as [L1o06,BSZ09],
will be affected similarly by information locking.

To summarize, this article defined information locking more stringently than
previously and nonetheless found that this stronger form of locking is generic: if
information is encoded using a random unitary transformation, then it will either
be decodable or locked. Almost no middle ground occurs. This observation has
implications for cryptography and, potentially, for black hole physics.
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Abstract. We introduce the telescopic relative entropy (TRE), which
is a new regularisation of the relative entropy related to smoothing, to
overcome the problem that the relative entropy between pure states is
either zero or infinity and therefore useless as a distance measure in this
case. We study basic properties of this quantity, and find interesting
relationships between the TRE and the trace norm distance. We then
exploit the same techniques to obtain a new and shorter proof of an
upper bound on the relative Tsallis entropies in terms of the trace norm
distance, 1 — Trp'Pa®? <||p—o||, /2.

1 Introduction

The quantum relative entropy between two quantum states p and o, S(p||o) =
Tr p(log p — log o), is a non-commutative generalisation of the Kullback-Leibler
distance between probability distributions. Because of its strong mathematical
connections with von Neumann entropy, and its interpretation as an optimal
asymptotic error rate in quantum hypothesis testing (in the context of Stein’s
lemma) relative entropy is widely used as a (non-symmetric) distance measure
between states [7].

One of its drawbacks, however, is that for non-faithful (rank-deficient) states
the relative entropy can be infinite. More precisely, the relative entropy is infinite
when there exists a pure state ¢ such that (1 |o| ) is zero while (¢ |p| ¥) is not.
In particular, relative entropy is useless as a distance measure between pure
states, since it is infinite for pure p and o, unless p and o are exactly equal (in
which case it always gives 0).

There are various possibilities to overcome this deficiency. In [5], Lendi,
Farhadmotamed and van Wonderen proposed a regularised relative entropy as

p+1lq

. o+ 1y
R(PHU)—CdS(ler 1+d>’

where d is the dimension, and ¢y is a normalisation constant. This only works
for finite-dimensional states.

Another possibility, also useful for infinite dimensional states, is to apply a
smoothing process. One can define the smooth relative entropy between states
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p and 7 as the infimum of the ordinary relative entropy between p and another
state 7, where 7 is constrained to be e-close to ¢ in trace norm distance:

Sclpllo) =inf{S(pll7) : 7> 0, Tr7r < L|| 7 o], <}

This form of smoothing has already been applied to Renyi entropies and max-
relative entropy [3,9], giving rise to a quantity with an operational interpretation,
but it could equally well be applied to ordinary relative entropy.

In the case of the ordinary relative entropy there is a simple canonical choice
for o that achieves the same purpose of regularisation but without having to find
the exact minimiser. Namely, we can take that 7 that is collinear with p and o;
ie.T=ap+(1—a)o (witha=¢€/|[p—0ally).

By operator monotonicity of the logarithm, we have

log(7) = log(ap + (1 — a)o) > log(ap),

and, therefore,

S(p|l7) = Trp(log p —log 7)
< Trp(log p — log(ap))
= —loga.

Thus, S(p||7) is bounded above by —loga, which is finite for 0 < a < 1. Tt
therefore makes perfect sense to normalise S(p||7) by dividing it by —loga,
producing a quantity that is always between 0 and 1.

These observations led us to define what we call the telescopic relative entropy
(TRE), a particular regularisation of the ordinary relative entropy that is also
defined in Hilbert spaces of infinite dimension:

Definition 1. For fized a € (0,1), the a-telescopic relative entropy between
states p and o is given by

Su(p 1) =~ Slollap+ (1 =)o) 1)

Furthermore, we define
So(p|lo) := lim Sa(p|| o) (2)
Si(pllo) = lim Sa(p| o). (3)

We’ll show below that these limits exist.

The origin of the name is that the operation o — ap + (1 — a)o acts like
a ‘telescope’ with ‘magnification factor’ 1/(1 — a), bringing the state o closer
to the ‘vantage point’ p and bringing observed pairs of states o; closer to each
other.

The purpose of this paper is to initiate the study of this quantity. The tele-
scoping operation o — ap + (1 — a)o and subsequent scaling of the relative
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entropy by 1/(—loga) may seem like a fairly innocuous operation, but has a
number of far-reaching and sometimes unexpected consequences. Because of the
linearity of the telescoping operation, the TRE inherits most of the desirable
properties of the ordinary relative entropy. However, a host of additional rela-
tions in the form of sharp inequalities may be derived that in the case of the
ordinary relative entropy simply make no sense, because the constants appearing
in the inequality would be infinite. At the end of this paper, we briefly consider
the telescoping operation in the context of the relative Tsallis entropies. We
exploit the same techniques used for the TRE to obtain a new and shorter proof
of a lower bound on the relative Tsallis entropies in terms of the trace norm
distance, 1 — Trp'"Pa? < ||p—0c||, /2 [1].

2 Preliminaries

For any self-adjoint operator X on a Hilbert space H, we denote by supp X the
support of X, i.e. the subspace of ‘H which is the orthogonal complement of
ker X, the kernel of X. The projector on the support of X will be denoted by
{X}. We denote by Px the orthogonal projector from H onto supp X, so that P
is the injection of supp X back into H. Thus PxPx = {X}. The compression of
A to the support of X, which we’ll denote by A|x, is the operator with domain
supp X given by

Alx = PxAP%.

By definition, for any positive operator X > 0, we have X|x > 0, strictly.
Two quantum states are mutually orthogonal, denoted p L o, iff Tr po = 0.
For any self-adjoint operator X, X, will denote the positive part X; =
(X +|X|)/2. It features in an expression for the trace norm distance between
states:

T(p.0):= 5 llp—0lly = Tr(p o). (4)

The trace of the positive part has the variational characterisation Tr X, =
maxp Tr X P, where the maximisation is over all self-adjoint projectors. Hence,
for all such projectors P, Tr XP < Tr X,.

The Pinsker bound is a lower bound on the ordinary relative entropy in terms
of trace norm distance [7].

S(pllo) = 2T(p,0)*. (5)

No upper bound in terms of the trace norm distance is possible, because the
relative entropy can be infinite.
We will also need the following integral representation of the logarithm: for

z > 0, we have
lo x—/ocds LI (6)
&L= 0 1+s x+s/)’
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This immediately provides an integral representation for the telescopic relative
entropy:

Sa(pllo)
1
~loga
1
~ loga

/OOO dsTrp[(p+ )" = (ap+ (1 — a)o +5)7Y] (7)

/OOO dsTrp(p+s)" (L—a)(o—p) (ap+(1—a)o+5)"". (8)

Another integral we will encounter is [;*ds z/(x + s). For # = 0, the
integral obviously gives 0. For = > 0 it gives 1. Hence

| dstor st = (o) (9)

From integral representation (6) we get an expression for the Fréchet deriv-
ative of the matrix logarithm:

log(A + tA) = / ds (A+s) T A(A+5) L.
0
t=0

It will be useful to introduce the following linear map, for A > 0:

TA(A):/ ds (A+ ) A(A +5) 1. (10)
0
Thus
pn log(A +tA) = Ta(A). (11)
t=0
It’s easy to check that for A > 0, 74(A4) = {A}. Thus, for A > 0, we have
Ta(A) =1.

From this integral representation it also follows that, for any self-adjoint A,
T4 preserves the positive semidefinite order: if X <Y, then T4 (X) < T4(Y).
By cyclicity of the trace, we see that the map T4 is self-adjoint: Tr BT4(A) =
Tr AT4(B). Moreover, the map is positive semi-definite, in the sense that
Tr AT4(A) is positive for any self-adjoint A. This follows from the integral rep-
resentation and the fact that for positive X and self-adjoint Y, Tr XY XY =
Tr (XY2Yy X1/2)2 > 0.

3 Basic Properties of Telescopic Relative Entropy

From the discussion in the Introduction, we recall that the value of the telescopic
relative entropy is always between 0 and 1, even for non-faithful states. Further-
more, it inherits many desirable properties from the ordinary relative entropy:
positivity, the fact that it is only zero when p and 7 are equal (provided a > 0),
joint convexity in its arguments, and monotonicity under CPT maps.
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Fig. 1. (a) Telescopic relative entropy S.(p|| o) between state p = |0)(0| and state
o =z0){(0] + (1 — ) [1)(1], with z ranging from O to 1, and for various values of a; (b)
same but for p = (2/3)]0)(0] + (1/3) |1)(1].
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Fig. 2. (a) Telescopic relative entropy S.(p|| o) between state p = 12/2 and state
o = |1)(1|, with a ranging from 0 to 1; (b) same but for o = (]0){0| + 4 [1)(1])/5.

As we do not restrict the arguments of the telescopic relative entropy to
states, the definition is also applicable (in a useful way) to non-negative scalars:

b(logb — log(ab+ (1 — a)c)).

Salbllc) = e

(12)
For illustrative purposes, we graph the telescopic relative entropy for a variety
of qubit state pairs, in Figs.1 and 2.

3.1 Sp and S,

One might think that the 1-telescopic relative entropy would be quite useless,
because for a = 1, S(p||ap+ (1 —a)o) = S(p|| p) = 0. Nevertheless, it is a non-
trivial quantity due to the normalisation by 1/(—loga). Likewise, one might
mistakenly think Sy is essentially the ordinary relative entropy; it is far from it,
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and for the same reason. Indeed, for any pair of states with finite ordinary relative
entropy, e.g. when both states are faithful, Sy is 0, due to the normalisation. The
0-telescopic relative entropy shows its true colours exactly in those cases when
the ordinary relative entropy yields +oc0.

In fact, for Sy and S; we have the following closed form expressions:

Theorem 1. For any pair of states p, o,

So(pllo) =1—"Trp{o} (13)
Si(pllo) =1—Tro{p}. (14)
In particular, when o is pure, So(p||lo) = 1 — Trpo, and when p is pure,

Si(pllo) = 1 — Trpo. When o is faithful, Sy(p||o) = 0; when p is faithful,
Si(plle) = 0.

Proof. Consider first the limit a — 1. Using de I’'Hépital’s rule we find

l1—a

11m
a—1 —loga

Hence, by representation (8),

tim Su(pll o) = = [ dsTrp(p+5) (o= ) (p )7
a— 0
Therefore, from (9) we get the required

lim So(p[lo) = =Tr (o = p){p} =1 - Tro{p}.

For the limit ¢ — 0 some more work is needed. Let us w.l.o.g. assume that
(p+0)/2 is faithful; otherwise we take the compression of p and o to the support
of (p+0)/2. Again we use an integral representation, but in its more basic form
(7). To calculate the limit @ — 0 we apply de I'Hopital’s rule to the whole
expression and get

So(pll o)
d o

= lima — / dsTrpl(p+s)"t—(ap+ (1 —a)o+s)7 "]
a—0 da 0

= lir% dsTrap(ap+ (1 —a)o+5)" (p—0) (ap+ (1 —a)o+s)7"
a— 0

= lir% dsTr(p—o)ap+ (1 —a)o+s)"ap (ap+ (1 —a)o+ )7t
a— 0

Here, the first factor a comes from the derivative of log a.
Because of our assumption that (p+ 0)/2 is faithful, ap + (1 — a)o is faithful
for any a € (0,1). Therefore, the integral

/OOO ds(ap+ (1 —a)o+35)"! (ap+ (1 —a)o) (ap+ (1 —a)o+5)"!
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yields the identity operator 1. Using this fact, we can rewrite our last expression
for Sy as

So(pllo)

= lim Tr (p — o)[L —/ ds
0

a—0
(ap+(1—a)o+s)~" (1-a)o (ap+(1—a)o+s)7"]
=Tr(p—o)[L _/0 ds(oc+s) o (o+s)7Y
=Tr(p—o)(1 - {o})
=1 —TI‘p{O'},

as required. a

3.2 Pure States

From Theorem 1 we can derive the equalities

So(pllo) = Si(pllo) = T(p,0)?, (15)

for pure p and o.

In fact, when p and o are pure, there is a one-to-one relation between
Sa(p|| o) and T'(p, o) for any value of a € [0,1]. Although the relation is some-
what complicated, in practice it shows that S,(p || o) is only slightly bigger than
T(p,0)? for a € (0,1).

Theorem 2. Let p,o be two pure states with trace norm distance t = ||p —
o ||y /2. Then, fora € (0,1),

_ 1 w  1—w/(2a) 1+v1—w
5u(pl10) = —gioe (~towf - A2 g TVZE) )
where
w = 4a(1 — a)t?. (17)

Proof. By a suitable unitary transformation, the problem can be transformed
to a two-dimensional one, with in particular

() o (arta )

The telescopic relative entropy is then given by

1
Sulpll ) = e (< log(ap + (1 =)o),
and after some basic calculations this reduces to the given formula. a
For example, let p and o be two pure two-level states, with the angle between
their respective Bloch vectors equal to 6. Since their trace norm distance is equal
to t = [sin(#/2)|, we have w = 2a(1 — a)(1 — cos6).
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4 Comparison to Trace Norm Distance

In this section, we provide bounds on the telescopic relative entropy in terms of
the trace norm distance.

It’s very easy to derive a lower bound from the Pinsker lower bound on the
ordinary relative entropy (5).

Theorem 3. For two quantum states p,o,

Su(pllo) = S0 2T(p.0)" (1)

Proof. Noting that T'(p,7) = (1 — a)T(p, o), this is a trivial consequence of the
bound S(p||7) > 2T (p, 7). O

While there is no upper bound on the ordinary relative entropy in terms of
the trace norm distance, we can find an upper bound on the telescopic relative
entropy. This bound has a very simple form, but is nevertheless the strongest
one possible.

Theorem 4. With 7 =ap+ (1 — a)o,
S(p|| ) < —log(a) T(p,0). (19)
This immediately gives our first important relation for the TRE.
Corollary 1. For any a € (0,1),
Salpllo) <T(p, o). (20)

Equality can be obtained for any value of t = T'(p, o) in dimension 3 and higher
by choosing p = Diag (t,0,1 — t) and o = Diag (0,¢,1 — ¢).

A second and unsuspected corollary is a strengthening of a very well-known
inequality (see, e.g. [8], Theorem 3.7) for the entropy of an ensemble of two states:
for any two states p,o and (p,1 — p) a probability distribution,

S(pp+ (1 —p)o) <pS(p) + (1 —p)S(o) + h(p), (21)

where h(p) = —plogp — (1 — p)log(1l — p) is the binary Shannon entropy. This
inequality is equivalent to subadditivity of the von Neumann entropy (w.r.t. ordi-
nary addition) for positive (non-normalised) operators: for any A, B > 0

S(A+ B) < S(A) + S(B). (22)

Indeed, substituting A = pp and B = (1 — p)o yields (21).

The quantity S(pp+ (1 —p)o) — (pS(p)+ (1 —p)S(o)) is known as the Holevo
quantity x (&) for the ensemble & = {(p, p), (1 — p,0)} (of cardinality 2). The
bound says that x(£) < h(p). Using Theorem 4, we get a sharper bound:
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Corollary 2. For any ensemble € = {(p,p), (1 —p,0)} of cardinality 2,
X(€) < h(p) T(p,0). (23)

Proof. Let 7 = pp + (1 — p)o. Notice that S(7) — (pS(p) + (1 — p)S(o)) is
equal to pS(p||7) + (1 — p)S(c||7). Applying inequality (19) to both terms
gives —plog(p) T'(p,o) — (1 — p)log(1 — p) T'(p, o) as an upper bound. O

Question. As inequality (21) immediately generalises to ensembles of any car-
dinality ([6], Sect.11.3.6), namely, x(£) < H(p) (where H(p) is the Shannon
entropy of the probability distribution of £), it is fair to ask for a similar gener-
alisation of the Corollary.

In [10], related upper bounds were studied. For cardinality 2, a bound was
found in terms of the probability p and the Uhlmann fidelity between p and
o, F = |[\/py/c||,. For cardinality 3, a generalisation was conjectured in [4].
For general cardinalities a bound was proven that is sharper than H(p) and is
expressed in terms of the so-called exchange entropy [10].

We now present the proof of Theorem 4. It relies on the properties of the
Fréchet derivative of the matrix logarithm given in Sect. 2.

Proof of Theorem 4.
Let p and o be two given states, and 7 = ap + (1 — a)o. Define s = (1 — a)/a,
which is a non-negative number. Thus 7 = a(p + so). W.Lo.g. we will assume
that p + so is full rank.

Let A:=p—o0,t:=T(p,0) =||A]|]; /2 and w := A/t. Obviously, w has
trace 0 and trace norm 2. Let its Jordan decomposition be w = wy — w_. Thus
w<wyand Trwy =Trw- = 1.

Now consider the expression sTr w7, s, (0). Since 7,1 s,(0) > 0, and w < wy,
we have

sTrwT,1s5(0) = TrwT,1 45 (s0)
<TrwyT,ys0(s0)
< Trws Tpyon(p + 50)
=Trw;l
=1.

Then, noting that p = o — tw,

(L4 8)Tr pTpys0(0) = Tr (p+ 5p) Tpt50(0)
=Tr(p+ s0 — stw)T,155(0)
=Tr(p+ 50)Tpts0(0) —tsTrwT 50 (0)
=Tro7 so(p+50) —tsTrwT i (0)
=Tro —tsTrwT, s, (0)
>1-t.
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Therefore,
1—t

1+s
Integrating over s from 0 to (1 — a)/a then yields

Tr pTp150(0) 2

Trplog(p + (1 —a)o/a) — Tr plog(p) = (1 —t)log(1/a),
which becomes, after adding log a to both sides,
Trplog(ap + (1 — a)o) — Trplog(p) > tlog(a),

which is equivalent to the statement of the theorem. a

5 Cases of Maximality

The following theorem characterises those cases when the telescopic relative
entropy achieves its maximal value of 1.

Theorem 5. For any a € (0,1), Sa(pllo)=14fp Lo.

Proof. We have S, (p||o) = 1iff Tr plog(ap) = Tr plog(ap+(1—a)o) or, putting
X=agpand Y = (1 — a)o, iff Tr XlogX = Tr X log(X +Y). Since X,Y > 0,
operator monotonicity of the logarithm gives Tr X log(X +Y) > Tr X log X. We
want to characterise the cases of equality. One direction is obvious; if X and Y
are orthogonal, clearly we have equality.

To prove that there are no other possibilities, assume Tr X (log(X +Y) —
log X) = 0. Consider first the case X > 0. Define Z = log(X +Y) — log X.
Because of monotonicity of the logarithm we have Z > 0, hence the assumption,
Tr XZ = 0, implies Z = 0, i.e. log(X+Y) = log X. As the logarithm is invertible
on the set of positive operators, this can only be true iff Y = 0.

Now consider the general case X > 0, and assume X has a non-trivial
kernel. Then we can decompose the Hilbert space H as the direct sum H =
supp X dker X. We have X = X |x @ 0, with X |x > 0. W.Lo.g. we can assume
that X +Y > 0, so that its logarithm is well-defined. By the convention to take
lim, o zlogxz = 0, Tr X log X is well-defined, too, and equal to Tr X | x log X| .
The assumption Tr X(log(X + Y) — logX) = 0 can then be written as
Tr X |x(log(X +Y)|y —log(X |x)) =0. Let us therefore define Z = log(X +
Y)|x —log(X|x)-

As can be expected, Z > 0. To prove this, put X’ = X |x @ el . By operator
monotonicity of the logarithm, log(X'+Y ) —log X’ > 0, for alle > 0. In particular,
the compression to supp X is positive too: log(X'+7Y") |x —log(X’)| > 0. Since
X’ is defined as a direct sum of X and el log(X’) |x =log(X' |x) = log(X |x).
Since lime_o X' +Y = X +Y, we get, indeed, log(X +Y) |x —log(X|y) > 0.

The assumption reduces to Tr X |x Z =0. Because X |x >0 and Z > 0,
this implies Z = 0.

This implies Y |x = 0, so that, indeed, ¥ must be orthogonal to X. a
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6 Relative Tsallis Entropies

The relative Tsallis entropies are parameterised modifications of the relative
entropy given by

Qulpllo) = %(1 CTrptror),

where p satisfies 0 < p < 1.

Just as we have done for the relative entropy, one can define the telescopic
relative Tsallis entropy, even though the problem of infinite values does not pose
itself here; indeed, Tr p'PoP is always between 0 and 1. Nevertheless, some
interesting relationships occur when telescoping the relative Tsallis entropies. In
particular, by exploiting the methods used in Sect.4 we obtain a shorter and
much simpler proof of an inequality already proven in [1].

Let us therefore consider the quantity Tr p'=P(ap + (1 — a)o)P. Firstly, let
us determine its extremal values for fixed values of a. Clearly, the maximum
is still 1, achieved when p = ¢. The minimal value, however, is now aP. This
follows easily from operator monotonicity of the fractional power x +— zP when
0 <p <1 Indeed,

Trp'P(ap + (1 — a)o)? > Trp'~P(ap)”
= aPTrp' PpP = aPTrp = aP.

Equality can be achieved for orthogonal p and o.
Hence, we define the telescopic relative Tsallis entropies (TRTE) as follows:

Definition 2.

(1= Trp' 7 (ap + (1 - a)o)?). (24)

1
Qpalpllo) = ——

By the above, @), takes values between 0 and 1. The limiting values for p — 0
and p — 1 are

lim Qp,a(p||0) = Sa(p||0)’ (25)
p—0t
(easily checked using 'Hopital’s rule) and
T Qpa(pl|7) = 1= Tr{p}o = Si(p|0), Ya. (26)
We now show that a sharper upper bound is given by the trace norm distance
between p and o.

Theorem 6.
Qp,a(pH o) <T(p,0). (27)

By (25), the limiting case p — 07 reduces to Corollary 1. The limiting case
a — 0 reduces to the inequality 1—Tr p!~PoP? < T'(p, o), which was instrumental
in proving optimality of the Chernoff bound in symmetric hypothesis testing and
which was proven by other means in [1].
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Just as we did for the operator logarithm, we can define a linear map based
on the Fréchet derivative of the fractional power function zP, via

d

dt (A+1tA)P = Tap(4).

t=0

Since x — zP is a non-negative operator monotone function for 0 < p < 1, the
fractional power of a positive operator A can be written as the integral

W= [ dny (4974,

where dy,(s) is a certain measure, parameterised by p, that is positive for 0 <
p < 1. Its Fréchet derivative is therefore given by

d

dt

(A+tAP = /OO dpp(s) (A+s)"TA— (A+s) LA(A+s5)71A)
0

t=0
2/0 dip(s) s(A+s)"TA(A+ )7L

Therefore, 74,, has the integral representation
o0
Tap(d) = [ dyls) s(4+9) A+ 5) (28)
0

From this representation we easily derive the following properties:
1. Tr XTy,(Y) =TrYT4.,(X) for any X and Y;

2. the map 74, preserves the positive definite ordering;

3. in particular, T4.,(B) is positive for positive B;

4. for 0 < p < 1, Ty, (A'7P) = p{A}.

The last property follows from

d

TA;p(Al_p) = % (A + tAl_p)p

t=0
= pAPTIAYTP = p{A}.

Here, negative fractional powers of A are defined in terms of the pseudoinverse A*
as A7% := (A")%; thus A=%A4% = (ATA)® = {A}* = {A}. Using these properties,
we can easily prove the theorem.

Proof of Theorem 6. Let A = p—o, and t = T'(p, o) then A has Jordan decom-
position A = twy — tw_, where wy and w_ are orthogonal density operators.
Then

Tr (ap)l_p,]:ler(l*a)U;p(A) <Tr (ap)l_p’]:zpﬂlfa)a;p(tw-i-)
< Tr(ap+ (1= a)o) PTopi(1—a)op(tws)
= Trtws Topr (1-ayorp((ap + (1 — a)o) ' 7P)
=Trtwiplap+ (1 —a)o}
< pt.
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In the first line we used the fact that A < tw, and property 2; in the second
line we used operator monotonicity of ' =P and property 3; in the third line we
used property 1, and in the fourth property 4. In the last line we used the fact
that Tr XY < 1 when X is a density operator and Y is a projector.

Exploiting the inequality just obtained yields

L= Trp' P(ap+ (1 - a)o)? = Trp P(p" — (ap+ (1 — a)o)?)

1
= /a da %Trplfp(ap +(1—a)o)?

1
= / da Tr plip/]ﬂaer(lfa)a;p(p - 0)
1
< / da a? pt = (1 — aP)t,
a

which is equivalent to the statement of the theorem. a

7 Future Work

In forthcoming papers we will explore further properties of the telescopic relative
entropy. One other problem with the ordinary relative entropy is the absence of
a triangle inequality, in the sense that no useful upper bound exists on the
difference S(p||o1) — S(p|| o2). Indeed, this difference can be infinite. It turns
out that such a bound does exist for the telescopic relative entropy. Together
with an upper bound on the difference S(p;1 || o) — S(p2 || o) it will be presented
and proven in [2].

We will also study an interesting connection with Hamiltonian reconstruc-
tion. There is some evidence that the difference S,(p||o1) — Sa(p||o2) might
provide non-trivial lower bounds on the time needed for state o to evolve uni-
tarily into state o9 under the influence of a Hamiltonian with bounded energy.

Acknowledgments. The main part of this work was done at the Institut Mittag-
Leffler, Djursholm (Sweden), during an extended stay at its Fall 2010 Semester on
Quantum Information Theory.
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Abstract. The Turaev-Viro invariants are scalar topological invariants
of three-dimensional manifolds. Here we show that the problem of esti-
mating the Fibonacci version of the Turaev-Viro invariant of a mapping
torus is a complete problem for the one clean qubit complexity class
(DQC1). This complements a previous result showing that estimating
the Turaev-Viro invariant for arbitrary manifolds presented as Heegaard
splittings is a complete problem for the standard quantum computa-
tion model (BQP). We also discuss a beautiful analogy between these
results and previously known results on the computational complexity
of approximating the Jones Polynomial.

1 Introduction

Classifying the power of quantum computers is a fundamental problem in quan-
tum information science. The computational power of a general-purpose
quantum computer is identified with the complexity class BQP (bounded-error
quantum polynomial time). The famous problems of factoring and discrete loga-
rithm, for instance, are in BQP. An essential ingredient of BQP computation is
the ability to initialize a large number of qubits into a specific pure state. In some
proposed physical implementations, however, this appears to be an extremely
difficult task. In 1998, Knill and Laflamme proposed that exponential speedups
over classical computers could still be possible, even if one can only initialize a
single qubit into a pure state, with the rest of the qubits in the maximally mixed
state [17]. The complexity class thus defined is called DQC1 (deterministic quan-
tum computation with one clean qubit), or simply “the one clean qubit class.”
This class contains several problems for which no efficient classical algorithms
are known. The most basic of these is the problem of estimating the trace of a
unitary operator. In fact, trace estimation is DQC1-complete: not only is it in
DQCI1, but any other problem in DQC1 can be reduced to it.

Finding natural BQP-complete and DQC1-complete problems is essential to
our understanding of the computational power afforded by quantum comput-
ers. Remarkably, BQP-complete problems can be found in areas of mathematics

D. Bacon et al. (Eds.): TQC 2011, LNCS 6745, pp. 53-72, 2014.
DOI: 10.1007/978-3-642-54429-3_5, (© Springer-Verlag Berlin Heidelberg 2014
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without a priori close connection to quantum computation. In particular, approx-
imating the Jones polynomial, a famous invariant of links, is a BQP-complete
problem [1,2,12-14,29]. The input is an element of the braid group, and the
output is an estimate of the Jones polynomial of the so-called plat closure of
the braid. Estimating the Jones polynomial of the so-called trace closure of the
braid is DQC1-complete [16,25].

Recent work [3,15] showed that (the decision version of) approximating cer-
tain invariants of 3-manifolds is a BQP-complete problem. In this formulation,
the input is a so-called Heegaard splitting of a 3-manifold, specified as an ele-
ment of the mapping class group. The output is an estimate of the Turaev-Viro
invariant of the input manifold. In this article we show that approximating the
Turaev-Viro invariant of a 3-manifold specified as a mapping torus is a com-
plete problem for the one clean qubit class. In Sect. 5, we use the language of
Topological Quantum Field Theories (or TQFTSs) to explain the mathematical
underpinnings of the relationship between approximating the Jones polynomial
of the plat and trace closures, and approximating the Turaev-Viro invariant of
Heegaard splittings and mapping tori.

We assume only a basic understanding of topology and quantum compu-
tation. Needed concepts in manifold invariants and one clean qubit computa-
tion are explained in Sect. 2. Our exposition focuses on the Witten-Reshetikhin-
Turaev (or WRT) invariant. This is only a matter of convenience, as it is known
that the Turaev-Viro invariant is equal to the absolute square of the WRT invari-
ant [23,26-28].

2 Background

2.1 Two-Manifolds and Three-Manifolds

We begin by setting down a few basic definitions from low-dimensional topol-
ogy. Recall that an n-manifold is a topological space' whose every point has a
neighborhood that looks like (i.e., is homeomorphic to) an open subset of R™.
Simple examples of one-dimensional manifolds include the line R and the circle
S1. Simple examples of two-dimensional manifolds include the the plane R?, the
sphere S2, and the torus X; = S' x 8!, which we can visualize as the surface of a
donut. More generally, the surface of a donut with g holes is also a two-manifold,
which we call the surface of genus g and denote by X;. The genus is a complete
invariant of surfaces?: homeomorphic surfaces have the same number of handles
(invariance), and non-homeomorphic surfaces have a different number of handles
(completeness).

The simplest example of a 3-manifold is R? itself. A nontrivial example is
found by taking the product of X with a third circle; the result is the three-
dimensional torus 7% = S x S! x S*. Given a surface X, the cylinder X, x [0, 1]

! More precisely, a second-countable Hausdorff space.
2 In this work, we implicitly assume that all surfaces are closed, compact, connected
and orientable.
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Fig. 1. A Dehn twist is a 27 rotation about a closed curve. The Dehn twists along the
3g — 1 curves illustrated here constitute a standard set of generators for the mapping
class group of the genus g surface.

is a 3-manifold whose boundary consists of two copies of Xy (specifically, the
bottom ¥, x {0} and the top X, x {1}.) We can turn the cylinder into a 3-
manifold without boundary by choosing a homeomorphism f : ¥, — X and
gluing each point on the top to its image under f on the bottom. The result is
the mapping torus of f:

Yy x[0,1]
(Iv 1) ~ (f(:l?),O) .

For example, choosing g = 1 and f to be the identity map, we see that Ty 4 = T°.
A useful example of a nontrivial self-homeomorphism of X is the so-called Dehn
twist. To visualize a Dehn twist, imagine cutting the handle of X; to get a tube,
performing a 27 twist on one end of the tube, and then gluing the handle back
together. In general, a Dehn twist can be performed around any noncontractible
closed curve.

The (homeomorphism class of) the mapping torus T, ; depends only on
the isotopy class of f. The orientation-preserving self-homeomorphisms of X,
form a group under composition. This group, taken modulo isotopy, is called
the mapping class group of X, and is denoted MCG(g). MCG(g) is generated
by the Dehn twists about the 3g — 1 canonical curves shown in Fig. 1. Any map-
ping torus Ty ¢ is thus described by a word in the Dehn twist generators of
MCG(g).

Tyr=

2.2 The Witten-Reshetikhin-Turaev Invariants

Recall that the genus is an invariant of surfaces because it assigns the same
number to homeomorphic surfaces. One can also define invariants of 3-manifolds,
although none are as simple and powerful as the genus. In the 1990s, Witten,
Reshetikhin, and Turaev discovered a family of 3-manifold invariants arising from
their work in Topological Quantum Field Theory. While these invariants can be
defined for arbitrary 3-manifolds, we only concern ourselves with the special case
of mapping tori, where the definitions are relatively straightforward. Specifically,
the Witten-Reshetikhin-Turaev (WRT) invariant of a mapping torus Ty s is equal
to the trace of f in a certain projective representation of the mapping class group
MCG(g). Note that the WRT function is only a topological invariant up to a
phase (see [3]). In general, the WRT invariant is parametrized by a quantum
group, such as SU(N), or SO(NV)j. Although some of our results apply more
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Fig. 2. The dashed lines indicate a set of cuts that decomposes the surface into two
three-punctured-spheres (“pants”). Dual to this is a trivalent graph called the “spine,”
in red. The genus two and genus three cases are shown here.

Fig. 3. The Fibonacci model’s fusion rules allow five labelings of the standard spine
of the genus two surface. This means that the WRT representation of MCG(2) is five-
dimensional.

generally, we focus on the case of SO(3)3, sometimes called the Fibonacci model.
In this case, the description of the representation is particularly simple, and can
be understood with no background in quantum groups.

The Fibonacci representation is defined as follows. Any genus g surface (for
g > 1) can be cut into three-punctured spheres, resulting in a so-called pants
decomposition. Dual to such a decomposition is a trivalent graph on the surface,
called a spine. As illustrated in Fig. 2, the spine has one vertex for every pant
in the decomposition. Whenever two pants meet at a puncture, the spine has an
edge between the corresponding vertices. While a surface admits many spines
(and corresponding pants decompositions), we call the one shown in Fig.2 the
standard spine. We label the edges of the standard spine by so-called anyon types,
with fusion rules enforced at each vertex. For the Fibonacci model, there are only
two anyon types: 0 and 1, and only one fusion rule: no vertex can have exactly
two edges labeled 0 incident on it. The case g = 2 is pictured in Fig.3. The
formal span (over C) of all such labelings associates a finite-dimensional vector
space to the surface. Different spines yield different bases for this same space.
We can move between these spines (and the corresponding bases) by means of
two “moves,” the F-move:

and the S-move:
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For the Fibonacci model Fadbe Cf is as follows

1 1 1 1 L 1
2
g = 0 + /2 !
1+V5 1+V5 |
1 1 | | I
1 1 ) 1 1 1 1
1
— 2 -2
- = 0 + - = 1
1><1 ¢1+¢5 1><] 1+V5 IX
1

with all other values equal to zero or one as dictated by the fusion rules. As one
can calculate using the prescription described in [3], S; & 1s given in the Fibonacci
model by

[u—y

DS?O = DSgl =

DSY =1+

pst, =1/ LY (1-emre)

2 .
with D =4/1+ (#) and all other values of S7; equal to zero by the fusion

rules.

The space described above is the underlying vector space for the Fibonacci
representation of MCG(g). We define this representation in the basis correspond-
ing to the standard spine. Since the mapping class group is finitely-generated, it
suffices to describe the images of the Dehn twist generators. Any such generator
is a 27 twist along some canonical curve ¢ from Fig. 1. It is not hard to check
that, by applying at most one F-move and one S-move, the standard spine can
be adjusted so that c is a cut in the corresponding pants decomposition. In this
basis, the Dehn twist about ¢ induces a diagonal linear transformation. To each
labeling of the spine corresponds a basis vector, and this basis vector obtains
a phase determined by the label on the edge of the spine that intersects c. In
the Fibonacci model, edges labeled 0 obtain a phase of 1, and edges labeled 1
obtain a phase of €**™/5. In the standard spine basis, the matrix corresponding
to the Dehn twist about c¢ is thus simply a product of at most five matrices: at
most two of the moves pictured above, followed by a diagonal matrix, followed
by the inverse moves to return to the original basis. The WRT invariant of the
mapping torus Ty ; is now simply the trace of the Fibonacci representation,
evaluated at f.

2.3 One Clean Qubit

In some proposed implementations of quantum computers, such as nuclear mag-
netic resonance (NMR) the most difficult task is initializing qubits into a pure
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state. In 1998, Knill and Laflamme proposed that exponential speedups over
classical computation might be possible without pure state initialization. To
mathematically investigate this possibility, they introduced the one clean qubit
model [17]. In this model, one is given an initial state p with n qubits in the
maximally mixed state, and one qubit in the pure state |0).

1
p=10) (0] @ o

One then applies any quantum circuit of poly(n) gates to this state, and mea-
sures the first qubit in the computational basis. Computational problems are
solved by performing polynomially many such experiments, each starting with
the initial state p, and recording the output statistics. The class of decision prob-
lems solvable with bounded probability of error using this procedure is called
DQCI.

DQC1 contains several computational problems not known to be solvable in
polynomial time on classical computers. Most fundamentally, given a descrip-
tion of a quantum circuit of T gates implementing the unitary transformation
U on n qubits, a one clean qubit computer can estimate the normalized trace
DU to within +e in time O(T'/€?) by means of the circuit shown in Fig. 4. Fur-
thermore, this problem of estimating the trace of a quantum circuit is DQC1-
hard [17,24,25]. Efficient one clean qubit algorithms have been discovered for
estimating certain quadratically signed weight enumerators [18] and estimating
certain Jones [25] and HOMFLY [16] polynomials. A version of the Jones polyno-
mial problem is DQC1-complete [25], and has been demonstrated experimentally
with NMR [20,22]. A certain problem of approximating partition functions for
quantum systems is also DQC1-hard [6].

In many ways, it is surprising that one clean qubit computers can do any non-
trivial computations at all. If all n41 qubits were maximally mixed, the resulting
state would be invariant under all unitaries. Furthermore, DQC1 computations
involve very little entanglement [7-11,19]. Ambainis et al. give an impossibility
proof against a certain natural approach to simulating standard quantum com-
puters using one clean qubit computers, and on the other hand show that one
clean qubit computers can efficiently simulate classical logarithmic depth (NC1)
computations [4].

The DQC1 complexity class is robust against a variety of modifications
to the computational model. The class of computational problems solvable in
polynomial time with up to logarithmically many clean qubits is the same as

2:(10) + 1)) po =1 4 Re(TlUD

o

Fig. 4. By repeating this one clean qubit computation, and recording the fraction of 0
outcomes, one estimates the real part of Tr[U]/2". Similarly, by initializing the clean

qubit to %(|O) —i[1)), one obtains po = 3 + Im(g#
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that solvable in polynomial time with one clean qubit [25]. If the clean qubit is
not pure, but has 1/poly(n) polarization, the set of efficiently solvable problems
also remains DQC1 [17]. As shown in Appendix A, the one clean qudit model
on d-dimensional qudits is equivalent in power to the one clean qubit model, for
any constant d.

3 Algorithm

In this section we construct an efficient one clean qubit algorithm for approxi-
mating the Fibonacci WRT invariant of a mapping torus. Generalizing to other
tensor categories such as SU(N);, and SO(N)y, is straightforward. The main idea
of the algorithm is, given a word w in the Dehn twist generators of MCG(g),
to find a quantum circuit of poly(w, g) gates on poly(g) qubits whose trace is
equal to the WRT invariant of the 3-manifold T} .. This trace can then be
approximated by means of the circuit in Fig. 4. For this purpose, we encode the
allowed labelings of a spine of Yy into qubits, and then construct a quantum
circuit implementing the Fibonacci representation of MCG(g) on this encoding.
The most obvious encoding would be to directly assign one qubit to store the
particle type for each edge of the spine. However, a one clean qubit computer
yields the normalized trace over all 2™ bitstrings, of which only an exponentially
small fraction represent valid spine labelings in this encoding.
We instead construct a many-to-one map

¢ : {0,1}PB973) _, fyalid labelings}

with 8 = O(log|g|) such that the preimage of each spine-labeling consists of
approximately the same number of bitstrings. That is, [ ~!(x)| is approximately
independent of x. Thus, the normalized trace of the Fibonacci representation of
w € MCG(g) acting on the @-encoded labelings of the spine of X, is approx-
imately equal to WRT(Ty,.,). We construct ¢ following a method introduced
in [16]. We assign a register of 5 = O(log|g|) qubits to each edge of the spine.
The bitstring contained in register 7 is interpreted as an integer 0 < 2; < 2% — 1.
We then assign a threshold T; so that x; < T; encodes a zero label on edge ¢, and
x; > T; encodes a one label. By carefully choosing the thresholds 17, ..., T34_3
we ensure that [p~1(x)| is approximately independent of x.

Number the edges of the spine from one to 3g—3, left to right and top to bot-
tom, as illustrated in Fig. 5. Let s1,...,s35—3 € {0,1}3973 be the labels of these
edges. The uniform probability distribution over all fusion-consistent labelings

1 3 6
4 7

Fig. 5. We number the edges of the standard spine from left to right, with ambiguities
resolved by ordering from top to bottom.
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of the spine induces a probability distribution py(s; ..., s34—3) over {0,1}3973,
with zero probability for strings that violate fusion rules, and uniform probabil-
ity for the rest. For the genus-g standard spine, we define pg(s;|s1,...,8,-1) to
be the conditional probability that label ¢ takes the value s; given that labels 1
through ¢ — 1 take the values sq,...,s;_1. For a register representing a label s;
we choose the threshold dependent on the values of s1,...,s;_1 according to

’I‘Z(g7 S1y--y Sifl) = |725pg(0|81, ey Sifl)J . (1)

One can see that this choice ensures that a uniformly selected assignment of
bitstrings to the registers yields a uniform distribution over fusion-consistent
labelings, up to the errors induced by rounding. Hence, |¢ ()| is approximately
independent of . More precisely, let

Po(Olst, -y si1) = Ti(gs s1, -+, 5i-1) /2"
Dg(1]s1,...,8i-1) =1 —Pg(0]s1,...,8-1)
Thus,
lo~(s1,. .., $39-3)] :25(39_3)13g(33g,3|51, ey 83g-4)X
X Pg(S3g—als1,...,839-5) X ... x p(s1)
=20B973) (py (s39-3]51, ..., 839-4) £ O(277)) x
x ... % (pg(s1) £0(277))
=py(51,--,834-3) £0(g27P).

Thus it suffices to choose 8 = O(logg). Furthermore, by the locality of the

fusion rules, py(si|s1,...,s;—1) is always independent of s1,...,s;_3. We may
thus write

Dg(8ilS1,. .., 8i—1) = Dg(Si, Si—1,8i—2;1%)

Ti(g; 81, -5 8i—1) = T3(9; i, Si—1, Si—2)- (2)

As illustrated in Fig.6, the Fibonacci representation of a Dehn twist from
the standard generating set is a unitary transformation acting on at most five
spine labels. Because the encoding ¢ is many-to-one, the unitary transformation
on these spine labels does not uniquely define a unitary operation on the bit-
strings encoding them. We say that a pair of spine-labelings is connected if the
Fibonacci representation of a Dehn twist from the standard set of generators has
a nonzero matrix element between them. By choosing a bijection b, , between
the encodings of each pair of connected spin-labelings we define a unitary trans-
formation on the encodings: if the matrix element between labeling = and y is
P,y then,

_ J pay if(i) = 2,0(j) = y,and by (i) = j
Ui = {0 otherwise (3)

is a corresponding unitary representation on the encodings. Our choice of bijec-
tions does not matter. We may for concreteness match bitstrings by lexicographic
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acts on a, b, c,d

Fig. 6. The Fibonacci representation of a Dehn twist (shown as a dashed line) from
the standard generating set is a unitary transformation acting on at most five spine
labels.

ordering. One can verify that U is a direct sum of many copies of the Fibonacci
representation p. (The rounding involved in (1) introduces a minor technical
complication, whose resolution may be found in [16].)

For any of the standard Dehn twist generators, U; ; acts on at most 53 qubits,
which encode the spine-labels on which p acts. The matrix elements by which
U acts on these qubits depends on the corresponding thresholds. By (2), these
depend on at most two additional registers of qubits, which encode the two
spine labels to the left of those being acted upon. Thus, for any of the standard
Dehn twist generators, U; ; is a controlled unitary acting on at most 53 target
qubits and 28 control qubits. Recalling that § = O(log |g|), we can apply the
standard construction from Section 4.5 of [21] to implement this unitary trans-
formation with poly(|g|) quantum gates, provided each matrix element of U; ;
can be computed efficiently. By (3), one sees that the only potentially difficult
part of computing the matrix elements of 3 is the computation of the thresholds.
An efficient classical algorithm for this task is given in Appendix C.

4 Hardness

In this section we prove that the problem of estimating the normalized WRT
Fibonacci invariant of a mapping torus, given by a polynomial-length word in
the standard Dehn twist generators of the mapping class group, to within +e
is DQC1l-hard for ¢ < 1/3900. Generalizing our hardness proof beyond the
Fibonacci model seems less straightforward than generalizing our algorithm.
However, we consider it likely to be possible. Extending hardness to larger val-
ues of € we leave as an open problem. To prove hardness, we reduce from the
problem of estimating the absolute value of the normalized trace of a quan-
tum circuit. A proof of the hardness of absolute trace estimation is given in
Appendix B. We thus require an efficient procedure that, given a description
of a quantum circuit for implementing a unitary U, outputs a description of a
mapping torus (i.e., a word in the Dehn twist generators) whose WRT invariant
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is close to the trace of U. It turns out to be convenient to suppose that U is a
quantum circuit acting on a collection of 5-dimensional qudits (“qupents”). As
shown in Appendix A, this makes no difference: the one-clean-qubit model is
equivalent to the one-clean-qupent model.

Let U be a quantum circuit of G gates acting on n qupents arranged in a
line. Without loss of generality, we may assume that each gate acts either on
a single qupent or a pair of neighboring qupents. To prove hardness, we first
define a many-to-one encoding 1 : S3, — {0,1,2,3,4}™, where Ss, is the set
of fusion-consistent labelings of the standard spine of the surface of genus 3n.
We divide the genus-3n surface into n segments, each having three handles.
The number of fusion-consistent labelings for a genus-three segment with two
punctures depends on the labels on the incoming and outgoing edges, as shown

below.
0 {}QQO has 15 labelings
0 {}—Q—Gl has 20 labelings
1 C—Q—(}O has 20 labelings
1 MI has 35 labelings

In all cases, the number of fusion-consistent labelings is a multiple of five. Thus,
in every case a qupent can be encoded in the space of labelings, together with a
“gauge” qudit, whose value we ignore, which has dimension 3, 4, or 7, depending
on the labels of the incoming edges. Thus the size |y ~!(2)| of the preimage of
any z € {0,1,2,3,4}" is exactly independent of z. Given any unitary U acting
on n qupents, there corresponds a unitary acting on the span of S3, which acts
as U on the encoded qupents, and as the identity on the gauge qudits. We call
this the 1-encoding of U.

As shown in [14], the Fibonacci representation of the mapping class group
of the genus g > 1 surface is dense in the corresponding unitary group, modulo
phase. Thus, given any unitary operation on n qupents, we can find a sequence of
Dehn twists which approximates its ¥-encoding arbitrarily closely. The trace of
the ¢-encoding is thus equal to the trace of the original quantum circuit, up to a
phase. The remaining question is whether this reduction can be done efficiently.

Cutting the genus-3n surface into n equal segments yields n — 2 genus-3
doubly-punctured surfaces, and two genus-3 singly-punctured surfaces, as shown
below.

x(n—2)

=== =)

One can pants-decompose a punctured surface, thereby associating the surface
to a spine. The spine has one “external”edge for each puncture, which attaches
to the rest of the spine at only one vertex. Upon labeling the spine, we can
associate the label of any external edge with the corresponding puncture. The
Fibonacci representation may then be extended to the label-preserving mapping
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class group of the punctured surface. This group includes all the standard Dehn
twists, together with braiding of punctures with the other punctures of the same
label. In the Fibonacci representation, braiding of zero-labeled punctures has no
effect, thus a zero-labeled puncture is equivalent to the absence of a puncture.

Theorem 6.2 of [14] states that for any fixed labels on the punctures, the
Fibonacci representation of the label-preserving mapping class group of the r-
punctured genus-g surface is dense in the corresponding unitary group modulo
phase, provided g+ r > 1. Thus, given any one-qupent gate, the Solovay-Kitaev
theorem [21] efficiently yields a sequence of Dehn twists and braid moves on
the corresponding genus-3 singly-punctured or doubly-punctured surface, whose
Fibonacci representation approximates the ¥-encoded gate arbitrarily closely.
Similarly, one efficiently approximates two-qupent gates by moves on genus-6
surfaces with one or two punctures.

We must modify the above construction so as not to use any braiding of
punctures. On the leftmost or rightmost qupents there is no problem; the cor-
responding surfaces have only one puncture, and therefore Theorem 6.2 implies
density without using any braiding moves. Similarly, on any of the central sur-
faces, Theorem 6.2 implies density without using any braiding moves if at least
one of the punctures has a zero label. We can ensure this prior to the application
of any given gate by adapting the “inchworm” technique from [25], as described
in Appendix D. In this method, we bring a pair of zero labels adjacent to the
target segment, then implement the desired gate there, and carry the zeros to the
segment where the next gate is to be implemented. At the end, we return these
zeroes to their original location among the leftmost six handles. As discussed in
Appendix D, the inchworm construction entails some overhead in e, which gives
rise to the value 1/3900.

In the above construction, we need density on two-punctured segments in
which one puncture is guaranteed to be labeled zero, and the other puncture has
unknown label. Theorem 6.2 of [14] implies density separately in the subspace in
which the other label is zero and in which the other label is one. Because these
subspaces have different dimension (20 and 15, respectively) we may apply the
decoupling Lemma from [1], which shows that a sequence of Dehn twists can
be found to approximate arbitrary pairs of independent unitaries on these two
subspaces, as desired.

5 Analogy with Jones Polynomials

In this paper we have shown that estimating the Turaev-Viro invariant of a
mapping torus in the Fibonacci model is DQC1-complete. In [3], it was shown
that estimating the Turaev-Viro invariant of a general 3-manifold presented as a
Heegaard splitting is BQP-complete. Similarly, estimating the Jones polynomial
of the trace closure of a braid is DQC1l-complete [16,25], while estimating the
Jones polynomial of the plat closure of a braid is BQP-complete [1,2,12,13,29].
This suggests a relationship between trace closures and mapping tori on one
hand, and between plat closures and Heegaard splittings on the other. Indeed,
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Fig. 7. The problems of estimating the Jones polynomial of the plat closure of a braid
and the Turaev-Viro invariant of a Heegaard splitting (left) are BQP-complete. The
problems of estimating the Jones polynomial of the trace closure of a braid and the
Turaev-Viro invariant of a mapping torus (right) are DQC1-complete. These situations
are fundamentally analogous, as discussed in Sect. 5. We stress that the manifold figures
are illustrations of the topological ideas behind this analogy, and are not correct two-
dimensional projections of the manifolds themselves. In particular, after gluing, the
two manifolds shown do not in reality have any boundaries.

such a relationship can be understood in the framework of axiomatic topolog-
ical quantum field theory, and suggests further generalizations to, for instance,
topological invariants of higher dimensional manifolds.

A topological quantum field theory can be axiomatized as a functor 7' from
the category of cobordisms between n-manifolds to the category of linear trans-
formations between vector spaces [5,28]. That is, to each n-manifold the TQFT
associates a vector space, and to any (n + 1)-manifold whose boundary is the
union of two disjoint n-manifolds the TQFT associates a linear transformation
between the two associated vector spaces. The functorial property means that
gluing together two cobordisms and then applying T yields the same linear trans-
formation that is obtained by applying T to each of the two cobordisms and then
composing the resulting linear transformations; see Fig.8. A TQFT maps the
empty n-manifold to the base field, which for the examples we consider is always
C. Hence, for M a manifold whose boundary dM has a single connected compo-
nent, T(M) is a map either from C to the vector space T(9M), that is, a vector
in T(OM), or a map from T (OM) to C, that is, a dual vector. The choice between
these two possibilities is determined by the orientation of the cobordism.

Recall that the genus-g handlebody is the 3-manifold whose boundary is the
genus-g surface Y,. For example, the genus-1 handlebody is simply the solid
donut. After assigning an orientation, we may think of a handlebody as a cobor-
dism from the empty manifold to Yy, or as a cobordism from ¥, to the empty
manifold. Hence, in the TQFT framework, genus-¢g handlebodies are associated
to vectors or dual vectors. We denote these as |1)4) and (1)4|, respectively. These



Approximating the Turaev-Viro Invariant 65
(o S — T(C)
=]
C —— T(C))
5
C, T(Cy)

Fig. 8. M can be viewed as a two-manifold with two boundaries: a circle and a pair
of circles. The TQFT associates a Hilbert space T'(C2) to the pair of circles, a Hilbert
space T'(C1) to the circle, and a linear transformation T'(M) : T(C2) — T(C) to M.
Similarly, T'(N) is a linear transformation from 7'(C1) to itself. If we glue together M
and N along the circle as shown, we obtain a manifold M N with boundaries C'> and
C1. The corresponding linear transformation is T(NM) = T(N) o T'(M).

vectors live in the Hilbert space which the TQFT associates to Y. In the case
of the Fibonacci model, this is precisely the vector space defined in Sect. 2.2.

In the Fibonacci model, a cobordism from a surface to itself is mapped to
a unitary linear transformation U on the associated Hilbert space®. If the sur-
face is X'y, then we may “cap” the cobordism with handlebodies on both ends.
The resulting 3-manifold has no boundary, and thus corresponds to a linear
map from C to itself, i.e., a complex number. In this case, this number is the
matrix element (14| U [¢)g), as illustrated in Fig. 7. The problem of estimating
a matrix element of the unitary transformation induced by a quantum circuit
is BQP-complete, and this fact underlies the BQP-completeness proof for the
Turaev-Viro invariant of Heegaard splittings in [3]. Instead of “capping” the two
ends of the cobordism with handlebodies, we could have simply glued the two
ends together, resulting in a mapping torus. This is again a 3-manifold with-
out boundary, which thus also corresponds to a complex number. In a TQFT,
gluing the two ends of a cobordism corresponds to contracting the two indices
of the linear transformation. In other words, instead of a single matrix entry,
we now obtain the trace of U. Finding the trace of the unitary transformation
induced by a quantum circuit is DQC1-complete, and this fact underlies the
DQC1-completeness proof for the Turaev-Viro invariant of mapping tori given
in this paper.

The situation regarding Jones polynomials is directly analogous. A TQFT
gives us a unitary representation of the braid group. Gluing the two ends of a
braid together (i.e., taking the trace closure), as illustrated on the righthand
side of Fig. 7, corresponds to taking the trace of the unitary and yields a DQC1-
complete problem. Caps correspond to vectors and dual vectors depending on
orientation, hence capping a braid (taking the plat closure, as illustrated on
the lefthand side of Fig.7) yields a matrix element of the associated unitary
transformation, and corresponds to a BQP-complete problem. The analogy can

3 We may think of the cobordism as describing a sort of spacetime evolution, while the
unitary transformation describes the corresponding quantum time evolution. Indeed,
this was one of the central motivating ideas behind the development of TQFTs.
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be tightened further by noting that the braid group B, is simply the mapping
class group of the surface of genus zero and n + 1 punctures (that is, the n-
punctured disk), whereas in the case of 3-manifold invariants we consider the
mapping class group of the genus-¢g surface with no punctures. On the other
hand, it is worth bearing in mind that the notion of equivalence captured by the
Jones polynomial is ambient isotopy, in contrast to the Turaev-Viro and WRT
invariants, which capture homeomorphism.

The analogy presented here naturally suggests an extension of BQP-
completeness and DQC1-completeness results to n-manifold invariants arising
from TQFTs at higher n. More generally, one could attempt to isolate a prop-
erty of pairs, consisting of a group G and one of its representations U, such that
estimating matrix entries of U is BQP-complete while estimating the trace of
U is DQC1-complete. Perhaps one could find a general theorem encompassing
many such results. We leave this as an open problem.
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A Equivalence Between One Clean Qudit Models

Given a quantum circuit on a-dimensional qudits we wish to construct a quan-
tum circuit on b-dimensional qudits that has the same trace. If b = ca for some
integer ¢ then this is easy. We just consider each b-dimensional qudit to be an a-
dimensional qudit plus a c-dimensional “gauge” qudit that we ignore. Similarly,
if b = ca for some integers d, ¢ then we can treat d-tuples of b-dimensional qubits
as an a-dimensional qudit plus a c-dimensional gauge qudit. For these encodings,
the encoded circuit is easy to construct gate by gate. Given a gate acting on n
a-dimensional qudits, we can write down a unitary acting on dn b-dimensional
qudits equal to the original gate tensored with the c-dimensional identity on
the gauge system. This dn-dimensional gate can be exactly decomposed into a
product of O(b%4") 2-qudit gates using the standard construction from Section
4.5 of [21]. Because d and n are constants, this is sufficiently efficient. The nor-
malized trace of the encoded circuit is exactly equal to the normalized trace of
the original circuit.

The harder case is when there do not exist integers ¢ and d such that b¢ = ca.
In this case we find ¢, d € Z such that b% ~ ca. Specifically, suppose we achieve

ca

bl
for some § < 1. Then we can encode one a-dimensional qudit plus a c-dimensional
gauge qudit into d b-dimensional qudits with a few (namely 6b¢) noncoding states
left over. We can define our encoded gates to act as the identity on these non-
coding states. If we make sure the noncoding states are a small fraction of all

—1-6 (4)
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b states, the normalized trace of the encoded circuit will approximately match
the normalized trace of the original circuit.

Let U, be the original unitary acting on n a-dimensional qudits and let Uy
be the unitary acting on dn b-dimensional qudits, in which we encode U, as
described above. Then, U, acts on b*" states, of which (ca)™ encode states of the
original circuit,

Te[U,]  "Tr[U,] + (b9 — (ca)™)

bdn bdn

The magnitude of the discrepancy A between the normalized traces of U, and
U, is thus

A ATr[U,] + (09" — (ca)™) ~ Tr[U,]
- pdn an
= ()" ) e ()
<] 1 [P0 o ()
<|Ga) 1+l Ga)
—2|(1-8)" -1
Thus if .
5=< )
we have, for small ¢,
lim A=2e"— 1|~ 2 (6)

n—oo

Comparing (4), (5), (6), we see that in the limit of large n and small €, in order
to achieve error upper bounded by A it suffices to obtain

b — ca A

< —.
bd T 2n

For given b, d, a there always exists an integer ¢ such that b — ¢ < a. So we just
need to choose d sufficiently large that

a

bd

d > log, <22a> .

A k-qudit gate from U, thus gets encoded as a dk-qudit gate in Uy.

This encoded gate acts on a b%-dimensional space. We have just shown that
2na

it suffices to choose d = log, (7) Thus the encoded k-qudit gate acts on a

(Q”T“)k—dimensional space. Using the construction from section 4.5 of [21], we

IA

a
on’

Equivalently,
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can implement an arbitrary D-dimensional unitary exactly with O(D?) 2-qudit
gates. Thus each k-qudit gate in U, gets encoded by O ((2"7‘1)%) elementary

gates in Up. By gate universality, we can assume k£ < 2, so our encoding has an
overhead quartic in n and 1/A. This is perhaps not very efficient, but is never-
theless polynomial, and thus suffices to prove the equivalence of DQC1 defined
with qudits of any constant dimension.

B Estimating the Absolute Trace is DQC1-Hard

In this section we slightly adapt the proof from [24] to show that estimating the
absolute value of the trace of a quantum circuit to within £1/24 is a DQCI-
complete problem. Consider an arbitrary DQC1 computation. We start with the
state |0) (0] ® %, apply an arbitrary quantum circuit U, and then measure the
first qubit in the |0),|1) basis. Changing the initial state of the pure qubit, or
changing the measurement basis does not add generality, as these changes can
be subsumed into U. The probability of measurement outcome |0) is

po = Tr [(0) (0] ® 1)U (J0) (0] ® 1/2")UT] . (7)

Let U’ be the unitary implemented by the following quantum circuit on n + 2
qubits.

’ / Ut v
LT — / /

oy
L

-,
WL

/ g, .
Thus, po = 2%, as one can see by writing out the trace as a sum over diag-

onal matrix elements in the computational basis. Because pg is real it is also true

TeU’ . . .
that pg = 2%. Hence estimating the absolute value of the normalized trace

of quantum circuits to suffices to predict the outcome of any DQC1 experiment.

As is standard in the complexity theory of probabilistic computation, “yes”
instances of DQC1 are defined to have acceptance probability 2/3 and “no”
instances are defined to have acceptance probability 1/3. Thus, deciding DQC1
is equivalent to estimating the normalized trace of a quantum circuit to within
+1/6. The reduction here has a factor of four overhead in normalization, thus
estimating the absolute trace to within +1/24 is DQC1-complete.

C Efficiently Computing Thresholds

Consider the standard spine of the genus-g surface, numbered as in Fig. 5. Sup-
pose edges 1 through ¢ have been labeled in a fusion-consistent manner with
anyon types si,...,s;. We wish to compute how many completions there are to
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this partial labelling. That is, we wish to compute the number of fusion-consistent
strings of 3g — 3 labels, whose first i labels are given by s1,...,s;.

Denote the horizontal edges of the standard spine from right to left by
e1,€9,..., as shown below.

[ S

Let Zék) be the number of completions in which the rightmost labeled edge is ey,

and has label b € {0,1}. One sees that Z(()l) =2, and Zfl) =1, by the following
enumeration of fusion-consistent diagrams.

O 0 O
Furthermore, we have the recurrence relations ZS"H) = 2Zén) + an) and

ZmD = 371 707D by the following enumeration of fusion-consistent

diagrams.

1 1

1
1{)]
0
0
0( )0 1{ )1
1
1
1{}1
1

Solving these recurrence relations yields

(2112

|13 11

The other two cases—completions starting with an upper curved edge, or a
lower curved edge—can be solved similarly. The n*® power of a matrix may be
computed using O(logn) operations, thus calculating the number of completions

for any ¢ in O(log g) steps. The corresponding thresholds are then immediately
obtained by taking ratios of these.

AR
AR

D Inchworm

Suppose the spine-labeling contains a segment of the following form.
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Here a can be 1 or 0. We call this configuration the inchworm. We may regard
1 1

the right instance of Q—OQ as its head, and the left instance as its tail. We
1 1

next show a sequence of two reversible operations by which we can move the

inchworm one handle rightward. In the first step the head moves one handle to

the right, leaving the tail in place, and in the second step, the tail catches up,

hence the name “inchworm.”

Examination of the above diagram shows that if the fusion rules are obeyed
in the initial configuration, they are also obeyed in the intermediate and final
configurations. Furthermore, both steps are reversible (i.e. information preserv-
ing). Thus, they may be written as permutation matrices acting on the space
of allowed configurations, and are therefore unitary. The first unitary transfor-
mation can be implemented by local Dehn twists, because the zero in the tail
of the inchworm implies density of the Fibonacci representation on the segment
to the right of it. The second unitary transformation can be implemented by
local Dehn twists because the zero in the head of the inchworm implies density
on the segment to the left of it. (In both steps, we are applying density to the
twice-punctured genus-4 surface with one puncture labeled zero. There are 75
labelings in which the other puncture is labeled one and 50 labelings in which
the other puncture is labeled zero. Thus, the decoupling lemma of [1] implies
density jointly on these two subspaces.) Repeating this process and its reverse,
we may bring the inchworm to any location within the spine.

To use the inchworm construction, we need to ensure that a segment of the
form (8) exists in the first place. We may do this by implementing a reversible
operation on the leftmost six handles, so that if the configuration (8) is absent,
the matrix is strictly off-diagonal, and does not contribute to the trace. Specifi-
cally, we consider the leftmost two handles to be an ancilla system, and the next
four handles to be the starting location of the inchworm. If these four handles
do not take the form (8) we cyclically permute the (five) basis states of the
ancilla system. Because this is done on the leftmost six handles, the segment
is only singly-punctured, and thus Theorem 6.2 of [14] implies density without
braiding.
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The noncontributing labelings decrease the normalized WRT by a constant
factor, which correspondingly necessitates decreasing the precision parameter e
by the same factor. More precisely, in the Fibonacci model, there are 325 fusion-
consistent labelings for the spine of the genus-four doubly-punctured surface.
Among these, there are two inchworm configurations (a = 0 and a = 1). Com-
pounding this 2/325 normalization cost with the precision € = 1/24 obtained in
Appendix B for DQC1-hardness of absolute trace, we find that estimating the
normalized WRT invariant to within £1/3900 is DQC1-hard.

As an aside, we note that the inchworm construction here is simpler than
that in [25], in the following sense. The inchworm construction of [25] involved
reversible operations on logarithmically large regions. Although the density the-
orems imply that arbitrary reversible operations can be implemented on these
regions, they do not imply that the decomposition into local moves is efficient.
Rather this had to be explicitly proven in Appendix D of [25]. In contrast the
inchworm construction here involves reversible operations only on O(1) handles,
thus no question of efficiency arises.
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Span-Program-Based Quantum Algorithm
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Abstract. The formula-evaluation problem is defined recursively. A for-
mula’s evaluation is the evaluation of a gate, the inputs of which are
themselves independent formulas. Despite this pure recursive structure,
the problem is combinatorially difficult for classical computers.

A quantum algorithm is given to evaluate formulas over any finite
boolean gate set. Provided that the complexities of the input subformu-
las to any gate differ by at most a constant factor, the algorithm has
optimal query complexity. After efficient preprocessing, it is nearly time
optimal. The algorithm is derived using the span program framework. It
corresponds to the composition of the individual span programs for each
gate in the formula. Thus the algorithm’s structure reflects the formula’s
recursive structure.

1 Introduction

A k-bit gate is a function f : {0,1}* — {0,1}. A formula ¢ over a set of gates S
is a rooted tree in which each node with k children is associated to a k-bit gate
from S, for k =1,2,.... Any such tree with n leaves naturally defines a function
v :{0,1}™ — {0, 1}, by placing the input bits on the leaves in a fixed order and
evaluating the gates recursively toward the root. Such functions are often called
read-once formulas, as each input bit is associated to one leaf only.

The formula-evaluation problem is to evaluate a formula ¢ over S on an input
x € {0,1}™. The formula is given, but the input string  must be queried one bit
at a time. How many queries to x are needed to compute p(z)? We would like
to understand this complexity as a function of S and asymptotic properties of
. Roughly, larger gate sets allow ¢ to have less structure, which increases the
complexity of evaluating . Another important factor is often the balancedness
of the tree . Unbalanced formulas often seem to be more difficult to evaluate.

For applications, the most important gate set consists of all AND and OR
gates. Formulas over this set are known as AND-OR formulas. Evaluating such
a formula solves the decision version of a MIN-MAX tree, also known as a two-
player game tree. Unfortunately, the complexity of evaluating formulas, even over
this limited gate set, is unknown, although important special cases have been
solved. The problem over much larger gate sets appears to be combinatorially
intractable. For some formulas, it is known that “non-directional” algorithms

D. Bacon et al. (Eds.): TQC 2011, LNCS 6745, pp. 73-103, 2014.
DOI: 10.1007/978-3-642-54429-3_6, (© Springer-Verlag Berlin Heidelberg 2014
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that do not work recursively on the structure of the formula perform better
than any recursive procedure.

In this article, we show that the formula-evaluation problem becomes dra-
matically simpler when we allow the algorithm to be a bounded-error quantum
algorithm, and allow it coherent query access to the input string z. Fix S to
be any finite set of gates. We give an optimal quantum algorithm for evaluating
“almost-balanced” formulas over S. The balance condition states that the com-
plexities of the input subformulas to any gate differ by at most a constant factor,
where complexity is measured by the general adversary bound Adv*. In gen-
eral, Adv™ is the value of an exponentially large semi-definite program (SDP).
For a formula ¢ with constant-size gates, though, Advi(go) can be computed
efficiently by solving constant-size SDPs for each gate.

To place this work in context, some classical and quantum results for eval-
uating formulas are summarized in Table1l. The stated upper bounds are on
query complexity and not time complexity. However, for the OR,, and balanced
AND,-OR; formulas, the quantum algorithms’ running times are only slower
by a poly-logarithmic factor. For the other formulas, the quantum algorithms’
running times are slower by a poly-logarithmic factor provided that:

1. A polynomial-time classical preprocessing step, outputting a string s(¢p), is
not charged for.
2. The algorithms are allowed unit-cost coherent access to s(¢).

Our algorithm is based on the framework relating span programs and quan-
tum algorithms from [Rei09]. Previous work has used span programs to develop
quantum algorithms for evaluating formulas [RS08]. Using this and the observa-
tion that the optimal span program witness size for a boolean function f equals
the general adversary bound Advi( f), Ref. [Rei09] gives an optimal quantum
algorithm for evaluating “adversary-balanced” formulas over an arbitrary finite
gate set. The balance condition is that each gate’s input subformulas have equal
general adversary bounds.

In order to relax this strict balance requirement, we must maintain better
control in the recursive analysis. To help do so, we define a new span program
complexity measure, the “full witness size.” This complexity measure has impli-
cations for developing time- and query-efficient quantum algorithms based on
span programs. Essentially, using a second result from [Rei09], that properties of
eigenvalue-zero eigenvectors of certain bipartite graphs imply “effective” spectral
gaps around zero, it allows quantum algorithms to be based on span programs
with free inputs. This can simplify the implementation of a quantum walk on
the corresponding graph.

Besides allowing a relaxed balance requirement, our approach has the addi-
tional advantage of making the constants hidden in the big-O notation more
explicit. The formula-evaluation quantum algorithms in [RS08,Rei09] evalu-
ate certain formulas ¢ using O(Advi(gp)) queries, where the hidden constant
depends on the gates in S in a complicated manner. It is not known how to
upper-bound the hidden constant in terms of, say, the maximum fan-in k of a
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Table 1. Comparison of some classical and quantum query complexity results for
formula evaluation. Here S is any fixed, finite gate set, and the exponent « is given by
a= log2(1+jl/§) ~ 0.753. Under certain assumptions, the algorithms’ running times

are only poly-logarithmically slower.

Formula ¢ Randomized, zero-error ~ Quantum bounded-error
query complexity R(¢)  query complexity Q(p)

OR., n O(y/n) [Gro96,BBBV9I7]

Balanced AND2-OR2 O(n*) [SWS6] O6(y/n) [FGGO08,ACR™10]

Well-balanced AND-OR Tight recursion [SW86]

Approx.-balanced AND-OR O(y/n) [ACRT10],

(Theorem 8)
Arbitrary AND-OR 2(n®>1) [HWI1] 2(y/n) [BS04]

O(v/nlogn) [Reill]
Balanced MAJs (n =3%)  2((7/3)%), O(2.654%) 6(2%) [RS08]
[JKS03]
Balanced over S O(AdvE(p))[Rei09)]
Almost-balanced over S O(Adv*(¢)) (Theorem 7)

gate in S. In contrast, the approach we follow here allows bounding this constant
by an exponential in k.

It is known that the general adversary bound is a nearly tight lower bound
on quantum query complexity for any boolean function [Rei09], including in
particular boolean formulas. However, this comes with no guarantees on time
complexity. The main contribution of this paper is to give a nearly time-optimal
algorithm for formula evaluation. The algorithm is also tight for query complex-
ity, removing the extra logarithmic factor from the bound in [Rei09].

Additionally, we apply the same technique to study AND-OR formulas. For
this special case, special properties of span programs for AND and for OR gates
allow the almost-balance condition to be significantly weakened. Ambainis et
al. [ACR™10] have studied this case previously. By applying the span program
framework, we identify a slight weakness in their analysis. Tightening the analy-
sis extends the algorithm’s applicability to a broader class of AND-OR formulas.

A companion paper [Reill] applies the span program framework to the
problem of evaluating arbitrary AND-OR formulas. By studying the full wit-
ness size for span programs constructed using a novel composition method, it
gives an O(y/nlogn)-query quantum algorithm to evaluate a formula of size n,
for which the time complexity is poly-logarithmically worse after preprocessing.
This nearly matches the £2(y/n) lower bound, and improves a \/ﬁ2O(M)—query
quantum algorithm from [ACR*10]. Reference [Reill] shares the broader moti-
vation of this paper, to study span program properties and design techniques
that lead to time-efficient quantum algorithms.

Sections 1.1 and 1.2 below give further background on the formula-evaluation
problem, for classical and quantum algorithms. Section 1.3 precisely states our
main theorem, the proof of which is given in Sect.3 after some background on
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span programs. The theorem for approximately balanced AND-OR formulas is
stated in Sect. 1.4, and proved in Sect. 4.

1.1 History of the Formula-Evaluation Problem for Classical
Algorithms

For a function f : {0,1}™ — {0,1}, let D(f) be the least number of input bit
queries sufficient to evaluate f on any input with zero error. D(f) is known as the
deterministic decision-tree complexity of f, or the deterministic query complexity
of f. Let the randomized decision-tree complexity of f, R(f) < D(f), be the
least expected number of queries required to evaluate f with zero error (i.e., by a
Las Vegas randomized algorithm). Let the Monte Carlo decision-tree complexity,
Ra(f) = O(R(f)), be the least number of queries required to evaluate f with
error probability at most 1/3 (i.e., by a Monte Carlo randomized algorithm).

Classically, formulas over the gate set S = {NANDy, : k € N} have been stud-
ied most extensively, where NANDy (21, ...,25) = 1— H§:1 z;j. By De Morgan’s
rules, any formula over NAND gates can also be written as a formula in which
the gates at an even distance from the formula’s root are AND gates and those
an odd distance away are OR gates, with some inputs or the output possibly
complemented. Thus formulas over S are also known as AND-OR formulas.

For any AND-OR formula ¢ of size n, i.e., on n inputs, D(¢) = n. However,
randomization gives a strict advantage; R(¢) and Ra(p) can be strictly smaller.
Indeed, let ¢4 be the complete, binary AND-OR formula of depth d, correspond-
ing to the tree in which each internal vertex has two children and every leaf is at
distance d from the root, with alternating levels of AND and OR gates. Its size
is n = 2. Snir [Sni85] has given a randomized algorithm for evaluating ¢4 using
in expectation O(n®) queries, where o = logz(%) ~ 0.753 [SW86]. This
algorithm, known as randomized alpha-beta pruning, evaluates a random sub-
formula recursively, and only evaluates the second subformula if necessary. Saks
and Wigderson [SW86] have given a matching lower bound on R(pq4), which San-
tha has extended to hold for Monte Carlo algorithms, Ra(pq) = £2(n®) [San95].

Thus the query complexities have been characterized for the complete, binary
AND-OR formulas. In fact, the tight characterization works for a larger class of
formulas, called “well balanced” formulas by [San95]. This class includes, for
example, alternating AND5-ORy formulas where for some d every leaf is at
depth d or d — 1, Fibonacci trees and binomial trees [SW86]. It also includes
skew trees, for which the depth is the maximal n — 1.

For arbitrary AND-OR formulas, on the other hand, little is known. It has
been conjectured that complete, binary AND-OR formulas are the easiest to
evaluate, and that in particular R(p) = 2(n®) for any size-n AND-OR, formula
¢ [SW86]. However, the best general lower bound is R(p) = £2(n°®!), due to
Heiman and Wigderson [HW91]. Reference [HW91] also extends the result of
[SW86] to allow for AND and OR gates with fan-in more than two.

It is perhaps not surprising that formulas over most other gate sets S are
even less well understood. For example, Boppana has asked the complexity of
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evaluating the complete ternary majority (MAJs) formula of depth d [SW86],
and the best published bounds on its query complexity are 2((7/3)%) and
O((2.6537...)%) [JKS03]. In particular, the naive, “directional,” generalization
of the randomized alpha-beta pruning algorithm is to evaluate recursively two
random immediate subformulas and, if they disagree, then also the third. This
algorithm uses O((S/S)d) expected queries, and is suboptimal. This suggests
that the complete MAJ3 formulas are significantly different from the complete
AND-OR formulas.

Heiman, Newman and Wigderson have considered read-once threshold for-
mulas in an attempt to separate the complexity classes TC® from NC' [HNW93].
That is, they allow the gate set to be the set of Hamming-weight threshold gates
{TF : m,k € N} defined by T : {0,1}* — {0,1}, T% (z) = 1 if and only if the
Hamming weight of z is at least m. AND, OR and majority gates are all special
cases of threshold gates. Heiman et al. prove that R(p) > n/2? for ¢ a threshold
formula of depth d, and in fact their proof extends to gate sets in which every
gate “contains a flip” [HNW93]. This implies that a large depth is necessary for
the randomized complexity to be much lower than the deterministic complexity.

Of course there are some trivial gate sets for which the query complexity
is fully understood, for example, the set of parity gates. Overall, though, there
are many more open problems than results. Despite its structure, formula eval-
uation appears to be combinatorially complicated. However, there is another
approach, to try to leverage the power of quantum computers. Surprisingly,
the formula-evaluation problem simplifies considerably in this different model of
computation.

1.2 History of the Formula-Evaluation Problem for Quantum
Algorithms

In the quantum query model, the input bits can be queried coherently. That is,
the quantum algorithm is allowed unit-cost access to the unitary operator O,,
called the input oracle, defined by

Oz : [p) @ 7) @ |b) = @) @ 15) @ [bD z5) . (1.1)

Here |p) is an arbitrary pure state, {|j) : j = 1,2,...,n} is an orthonormal
basis for C", {|b) : b = 0,1} is an orthonormal basis for C?, and & denotes
addition mod two. O, can be implemented efficiently on a quantum computer
given a classical circuit that computes the function j — z; [NCO00]. For a function
f:4{0,1}™ — {0, 1}, let Q(f) be the number of input queries required to evaluate
f with error probability at most 1/3. It is immediate that Q(f) < Ra(f).

Research on the formula-evaluation problem in the quantum model began
with the n-bit OR function, OR,,. Grover gave a quantum algorithm for evaluat-
ing OR,, with bounded one-sided error using O(+/n) oracle queries and O(y/n log
logn) time [Gro96, Gro02]. In the classical case, on the other hand, it is obvious
that R2(OR,,), R(OR,,) and D(OR,,) are all ©(n).

Grover’s algorithm can be applied recursively to speed up the evaluation
of more general AND-OR formulas. Call a formula layered if the gates at the
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same depth are the same. Buhrman, Cleve and Wigderson show that a lay-
ered, depth-d, size-n AND-OR. formula can be evaluated using O(y/nlog? ! n)
queries [BCWO8]. The logarithmic factors come from using repetition at each
level to reduce the error probability from a constant to be polynomially small.

Hgyer, Mosca and de Wolf [HMWO03] consider the case of a unitary input
oracle O, that maps

Oz : ) ®15) @ D) ®10) = |0) @) @ (b ® ) ® [Ys,ja;) + D O T5) @ |wx,j,5](~>) ;

1.2
where [z j ¢, ), [¥e,jz,;) are pure states with ||| 5, I]>||2 > 2/3. Such an oracle
can be implemented when the function j — z; is computed by a bounded-
error, randomized subroutine. Hgyer et al. allow access to 0, and O L both at
unit cost, and show that OR,, can still be evaluated using O(y/n) querles. This
robustness result implies that the logn steps of repetition used by [BCW9S§]
are not necessary, and a depth-d layered AND-OR formula can be computed in
O(y/n c?=1) queries, for some constant ¢ > 1000. If the depth is constant, this
gives an O(y/n)-query quantum algorithm, but the result is not useful for the
complete, binary AND-OR formula, for which d = log, n.

In 2007, Farhi, Goldstone and Gutmann presented a quantum algorithm for
evaluating complete, binary AND-OR formulas [FGGOS8]. Their breakthrough
algorithm is not based on iterating Grover’s algorithm in any way, but instead
runs a quantum walk—analogous to a classical random walk—on a graph based
on the formula. The algorithm runs in time O(y/n) in a certain continuous-time
query model.

Ambainis et al. discretized the [FGGO08] algorithm by reinterpreting a corre-
spondence between (discrete-time) random and quantum walks due to Szegedy
[Sze04] as a correspondence between continuous-time and discrete-time quantum
walks [ACR™10]. Applying this correspondence to quantum walks on certain
weighted graphs, they gave an O(y/n)-query quantum algorithm for evaluating
“approximately balanced” AND-OR formulas. For example, MAJ3(x1, x2, x3) =
(z1Az2)V ((z1Va2) Aws), so there is a size-5Y AND-OR formula that computes

MAJ3? the complete ternary majority formula of depth d. Since the formula

is approximately balanced, Q(MAJ3%) = O(\/gd), better than the £2((7/3)%)
classical lower bound.

The [ACRT10] algorithm also applies to arbitrary AND-OR formulas. If ¢
has size n and depth d, then the algorithm, applied directly, evaluates ¢ using
O(y/nd) queries.” This can be as bad as O(n?/?) if the depth is d = n. However,
Bshouty, Cleve and Eberly have given a formula rebalancing procedure that
takes AND-OR formula ¢ as input and outputs an equivalent AND-OR formula
¢ with depth d’ = 200V18™) and size n' = n20(V1g™) [BCE91,BBY4]. The
formula ¢’ can then be evaluated using O(v/n' d') = /n2°00VI87) queries.

! Actually, [ACRT10, Section 7] only shows a bound of O(y/nd>*/?) queries, but this
can be improved to O(y/nd) using the bounds on o4 (p) below [ACR' 10, Defini-
tion 1].
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Our understanding of lower bounds for the formula-evaluation problem pro-
gressed in parallel to this progress on quantum algorithms. There are essen-
tially two techniques, the polynomial and adversary methods, for lower-bounding
quantum query complexity.

— The polynomial method, introduced in the quantum setting by Beals et al.
[BBCT01], is based on the observation that after making g oracle O, queries,
the probability of any measurement result is a polynomial of degree at most
2q in the variables ;.

— Ambainis generalized the classical hybrid argument, to consider the system’s
entanglement when run on a superposition of inputs [Amb02]. A number of
variants of Ambainis’s bound were soon discovered, including weighted ver-
sions [HNS02,BS04, Amb06,Zha05], a spectral version [BSS03], and a version
based on Kolmogorov complexity [LMO04]. These variants can be asymptoti-
cally stronger than Ambainis’s original unweighted bound, but are equivalent
to each other [SSOG]. We therefore term it simply “the adversary bound,”
denoted by Adv.

The adversary bound is well-suited for lower-bounding the quantum query
complexity for evaluating formulas. For example, Barnum and Saks proved that
for any size-n AND-OR formula ¢, Adv(p) = /n, implying the lower bound
Q(p) = 2(y/n) [BS04]. Thus the [ACRT10] algorithm is optimal for approxi-
mately balanced AND-OR formulas, and is nearly optimal for arbitrary AND-OR,
formulas. This is a considerably more complete solution than is known classically.

It is then natural to consider formulas over larger gate sets. The adversary
bound continues to work well, because it transforms nicely under function com-
position:

Theorem 1 (Adversary bound composition [Amb06,LLS06, HLS05]).
Let f : {0,1}F — {0,1} and let f; : {0,1}"™ — {0,1} for j = 1,2,... k.
Define g+ {0,11™ x - x {0, 1™ — {0.1} by g(z) = F(fr(@r)... felan))-
Let s = (Adv(f1),...,Adv(fx)). Then

Adv(g) = Adv,(f). (1.3)

See Definition 3 for the definition of the adversary bound with “costs,” Advg.
The Adv bound equals Adv, with uniform, unit costs s = 7. For a function f,
Adv(f) can be computed using a semi-definite program in time polynomial in the
size of f’s truth table. Therefore, Theorem 1 gives a polynomial-time procedure
for computing the adversary bound for a formula ¢ over an arbitrary finite gate
set: compute the bounds for subformulas, moving from the leaves toward the
root. At an internal node f, having computed the adversary bounds for the
input subformulas f1,..., fx, Eq. (1.3) says that the adversary bound for g, the
subformula rooted at f, equals the adversary bound for the gate f with certain
costs. Computing this requires 2°(®) time, which is a constant if k = O(1). For

example, if f is an ORy, or ANDy, gate, then Adv(,s, ) (f) = />, 5%, from
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which follows immediately the [BS04] result Adv(¢) = y/n for a size-n AND-OR
formula .

A special case of Theorem 1 is when the functions f; all have equal adver-
sary bounds, so Adv(g) = Adv(f)Adv(f1). In particular, for a function f :
{0,1}* — {0,1} and a natural number d € N, let f¢ : {0,1}¥" — {0,1}
denote the complete, depth-d formula over f. That is, f! = f and fé(z) =
F(fP @, wpar), .o f N (@pa_ga—14q, ..., Tga)) for d>1. Then we obtain:

Corollary 1. For any function f : {0,1}* — {0, 1},
Adv(f) = Adv(f)? . (1.4)

In particular, Ambainis defined a boolean function f : {0,1}* — {0,1} that
can be represented exactly by a polynomial of degee two, but for which Adv(f) =
5/2 [Amb06]. Thus f¢ can be represented exactly by a polynomial of degree 24,
but by Corollary 1, Adv(f?) = (5/2)%. For this function, the adversary bound
is strictly stronger than any bound obtainable using the polynomial method.
Many similar examples are given in [HLSOG]. However, for other functions, the
adversary bound is asymptotically worse than the polynomial method [SSO6,
AS04, Amb05].

In 2007, though, Hgyer et al. discovered a strict generalization of Adv that
also lower-bounds quantum query complexity [HLS06]. We call this new bound
the general adversary bound, or Adv™. For example, for Ambainis’s four-bit
function f, Adv®(f) > 2.51 [HLS06]. Like the adversary bound, ADVZ(f) can
be computed in time polynomial in the size of f’s truth table, and also composes
nicely:

Theorem 2 ([HLS07,Rei09]). Under the conditions of Theorem 1,
AdvE(g) = ADVE(f) | (15)

In particular, if AdvE(f1) = - = AdvE(fy), then we have AdvE(g) = AdvE ()
AdvE(fy).

Define a formula ¢ to be adversary balanced if at each internal node, the
general adversary bounds of the input subformulas are equal. In particular, by
Theorem 2 this implies that Advi(go) is equal to the product of the general
adversary bounds of the gates along any path from the root to a leaf. Complete,
layered formulas are an example of adversary-balanced formulas.

Returning to upper bounds, Reichardt and Spalek [RSOS] generalized the
algorithmic approach started by [FGGO8]. They gave an optimal quantum algo-
rithm for evaluating adversary-balanced formulas over a considerably extended
gate set, including in particular all functions {0,1}* — {0,1} for k < 3, 69
inequivalent four-bit functions, and the gates ANDj, ORy, PARITY, and
EQUAL,, for k = O(1). For example, Q(MAJ;%) = 9(24).
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The [RS08] result follows from a framework for developing formula-evaluation
quantum algorithms based on span programs. A span program, introduced by
Karchmer and Wigderson [KW93], is a certain linear-algebraic way of defining
a function, which corresponds closely to eigenvalue-zero eigenvectors of certain
bipartite graphs. [RSOS] derived a quantum algorithm for evaluating certain
concatenated span programs, with a query complexity upper-bounded by the
span program witness size, denoted wsize. In particular, a special case of [RSOB,
Theorem 4.7] is:

Theorem 3 ([RS08]). Fiz a function f : {0,1}* — {0,1}. If span program P
computes f, then

Q(f%) = O(wsize(P)?) . (1.6)

From Theorem 2, this result is optimal if wsize(P) = Adv®(f). The question
therefore becomes how to find optimal span programs. Using an ad hoc search,
[RS08] found optimal span programs for a variety of functions with Advt =
Adv. Further work automated the search, by giving a semi-definite program
(SDP) for the optimal span program witness size for any given function [Rei09].
Remarkably, the SDP’s value always equals the general adversary bound:

Theorem 4 ([Rei09]). For any function f:{0,1}"™ — {0,1},

inf wsize(P) = AdvE(S) (1.7)

where the infimum is over span programs P computing f. Moreover, this infimum
is achieved.

This result greatly extends the gate set over which the formula-evaluation
algorithm of [RSOS] works optimally. For example, combined with Theorem 3,
it implies that limg_, . Q(f4)/¢ = Adv* (f) for every boolean function f. More
generally, Theorem 4 allows the [RSO8] algorithm to be run on formulas over any
finite gate set S. A factor is lost that depends on the gates in S, but it will be
a constant for S finite. Combining Theorem 4 with [RS08, Theorem 4.7] gives:

Theorem 5 ([Rei09]). Let S be a finite set of gates. Then there exists a quan-
tum algorithm that evaluates an adversary-balanced formula ¢ over S using
O(Advi(go)) input queries. After efficient classical preprocessing independent
of the input x, and assuming unit-time coherent access to the preprocessed clas-
sical string, the running time of the algorithm is Advi(go)(log Adv* (g@))o(l).
In the discussion so far, we have for simplicity focused on query complexity.
The query complexity is an information-theoretic quantity that does not charge
for operations independent of the input string, even though these operations
may require many elementary gates to implement. For practical algorithms, it
is important to be able to bound the algorithm’s running time, which counts
the cost of implementing the input-independent operations. Theorem 5 puts an
optimal bound on the query complexity, and also puts a nearly optimal bound
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on the algorithm’s time complexity. In fact, all of the query-optimal algorithms
so far discussed are also nearly time optimal.

In general, though, an upper bound on the query complexity does not imply
an upper bound on the time complexity. Reference [Rei09] also generalized the
span program framework of [RSOS] to apply to quantum algorithms not based
on formulas. The main result of [Rei09] is:

Theorem 6 ([Rei09]). For any function f : D — {1,2,...,m}, with D C
{0,1}", Q(f) satisfies

Q(f) = 2(AdV=(f)) (1.8)
_ £y _logAdvE(S)
and Q(f) = O(Adv (f) og log Adv= (/) log(m) log log m). (1.9)

Theorem 6 in particular allows us to compute the query complexity of formu-
las, up to the logarithmic factor. It does not give any guarantees on running time.
However, the analysis required to prove Theorem 6 also leads to significantly sim-
pler proofs of Theorem 5 and the AND-OR formula results of [ACRT10,FGGO08].
Moreover, we will see that it allows the formula-evaluation algorithms to be
extended to formulas that are not adversary balanced.

1.3 Quantum Algorithm for Evaluating Almost-Balanced Formulas

We give a formula-evaluation algorithm that is both query-optimal, without
a logarithmic overhead, and, after an efficient preprocessing step, nearly time
optimal. Define almost balance as follows:

Definition 1. Consider a formula ¢ over a gate set S. For a vertex v in the
corresponding tree, let p, denote the subformula of ¢ rooted at v, and, if v is an
internal vertez, let g, be the corresponding gate. The formula ¢ is B-balanced if
for every vertex v, with children c1,ca, ..., ck,

AdvT (o,
max; Adv (pe) _ (1.10)
min; Adv= (¢, )

(If ¢; is a leaf, Advi(@cj) = 1.) Formula ¢ is almost balanced if it is §-balanced
for some 3 = O(1).

In particular, an adversary-balanced formula is 1-balanced. We will show:

Theorem 7. Let S be a fized, finite set of gates. Then there exists a quantum
algorithm that evaluates an almost-balanced formula ¢ over S using O(Advi(ap))
input queries. After polynomial-time classical preprocessing independent of the
input, and assuming unit-time coherent access to the preprocessed string, the

running time of the algorithm is Advi(ga)(log Adv* (4,0))0(1).
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Theorem 7 is significantly stronger than Theorem 5, which requires exact
balance. There are important classes of exactly balanced formulas, such as com-
plete, layered formulas. In fact, it is sufficient that the multiset of gates along the
simple path from the root to a leaf not depend on the leaf. Moreover, sometimes
different gates have the same Adv® bound; see [HLS06] for examples. Even still,
exact adversary balance is a very strict condition.

The proof of Theorem 7 is based on the span program framework developed
in Ref. [Rei09]. In particular, [Rei09, Theorem 9.1] gives two quantum algo-
rithms for evaluating span programs. The first algorithm is based on a discrete-
time simulation of a continuous-time quantum walk. It applies to arbitrary span
programs, and is used, in combination with Theorem 4, to prove Theorem 6.
However, the simulation incurs a logarithmic query overhead and potentially
worse time complexity overhead, so this algorithm is not suitable for proving
Theorem 7.

The second algorithm in [Rei09] is based directly on a discrete-time quan-
tum walk, similar to previous optimal formula-evaluation algorithms [ACR™ 10,
RSOS]. However, this algorithm does not apply to an arbitrary span program. A
bound is needed on the operator norm of the entry-wise absolute value of the
weighted adjacency matrix for a corresponding graph. Further graph sparsity
conditions are needed for the algorithm to be time efficient (see Theorem 9).

Unfortunately, the span program from Theorem 4 will not generally satisfy
these conditions. Theorem 4 gives a canonical span program ([Rei09, Defini-
tion 5.1]). Even for a simple formula, the optimal canonical span program will
typically correspond to a dense graph with large norm.

An example should clarify the problem. Consider the AND-OR formula
Y(z) = ([(#1 Aw2) Vas) Azy) V (25 A [z6 V 27]), and consider the two graphs
in Fig.1. For an input # € {0,1}", modify the graphs by attaching dangling
edges to every vertex j for which z; = 0. Observe then that each graph has an
eigenvalue-zero eigenvector supported on vertex 0—called a witness—if and only
if ¢»(z) = 1. The graphs correspond to different span programs computing v, and
the quantum algorithm works essentially by running a quantum walk starting at
vertex 0 in order to detect the witness. The graph on the left is a significantly
simplified version of a canonical span program for v, and its density still makes
it difficult to implement the quantum walk.

We will be guided by the second, simpler graph. Instead of applying Theo-
rem 4 to ¢ as a whole, we apply it separately to every gate in the formula. We
then compose these span programs, one per gate, according to the formula, using
direct-sum composition (Definition 6). In terms of graphs, direct-sum composi-
tion attaches the output vertex of one span program’s graph to an input vertex
of the next [RS08]. This leads to a graph whose structure somewhat follows the
structure of the formula ¢, as the graph in Fig. 1(b) follows the structure of
1. (However, the general case will be more complicated than shown, as we are
plugging together constant-size graph gadgets, and there may be duplication of
some subgraphs.)
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(a) (b)

Fig. 1. Graphs corresponding to two span programs both computing the same function.

Direct-sum composition keeps the maximum degree and norm of the graph
under control—each is at most twice its value for the worst single gate. There-
fore the second [Rei09] algorithm applies. However, direct-sum composition also
leads to additional overhead. In particular, a witness in the first graph will be
supported only on numbered vertices (note that the graph is bipartite), whereas
a witness in the second graph will be supported on some of the internal vertices
as well. This means roughly that the second witness will be harder to detect,
because after normalization its overlap on vertex 0 will be smaller. Scale both
witnesses so that the amplitude on vertex 0 is one. The witness size (wsize) mea-
sures the squared length of the witness only on numbered vertices, whereas the
full witness size (fwsize) measures the squared length on all vertices. For [Rei09],
it was sufficient to consider only span program witness size, because for canon-
ical span programs like in Fig. 1(a) the two measures are equal. (For technical
reasons, we will actually define fwsize to be 1 + wsize even in this case.) For our
analysis, we will need to bound the full witness size in terms of the witness size.
We maintain this bound in a recursion from the formula’s leaves toward its root.

A span program is called strict if every vertex on one half of the bipartite
graph is either an input vertex (vertices 1-7 in the graphs of Fig. 1) or the output
vertex (vertex 0). Thus the first graph in the example above corresponds to a
strict span program, and the second does not. The original definition of span
programs, in [KW93], allowed for only strict span programs. This was sensible
because any other vertices on the input/output part of the graph’s bipartition
can always be projected away, yielding a strict span program that computes
the same function. For developing time-efficient quantum algorithms, though, it
seems important to consider span programs that are not strict. Unfortunately,
going backwards, e.g., from 1(a) to 1(b), is probably difficult in general.
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Theorem 7 does not follow from the formula-evaluation techniques of [RS08],
together with Theorem 3 from [Rei09]. This tempting approach falls into
intractable technical difficulties. In particular, the same span program can be
used at two vertices v and w in ¢ only if g, = ¢, and the general adversary
bounds of v’s input subformulas are the same as those for w’s inputs up to simul-
taneous scaling. In general, then, an almost-balanced formula will require an
unbounded number of different span programs. However, the analysis in [RS08]
loses a factor that depends badly on the individual span programs. Since the
dependence is not continuous, even showing that the span programs in use all
lie within a compact set would not be sufficient to obtain an O(1) upper bound.
In contrast, the approach we follow here allows bounding the lost factor by an
exponential in k, uniformly over different gate imbalances.

1.4 Quantum Algorithm to Evaluate Approximately Balanced
AND-OR Formulas

Ambainis et al. [ACR™10] use a weaker balance criterion for AND-OR formulas
than Definition 1. They define an AND-OR formula to be approximately bal-
anced if o_(¢p) = O(1) and o (p) = O(n). Here n is the size of the formula, i.e.,
the number of leaves, and o_(¢) and o4 (p) are defined by:

Definition 2. For each vertex v in a formula ¢, let

1
0= T
o, (v) = max Adv*t w)? 1.11
o) = mpx 37 A ) (1.1)

with each mazimum taken over all simple paths £ from v to a leaf. Let o1 (p) =
o+(r), where r is the root of .

Recall that Adv®(p) = Adv(p) = \/n for an AND-OR formula. Definition
1 is a stricter balance criterion because [-balance of a formula ¢ implies (by
Lemma 3) that o_(¢) and o (p) are both dominated by geometric series. How-
ever, the same steps followed by the proof of Theorem 7 still suffice for proving
the [ACR™10] result, and, in fact, for strengthening it. We show:

Theorem 8. Let ¢ be an AND-OR formula of size n. Then after polynomial-
time classical preprocessing that does not depend on the input x, p(x) can be
evaluated by a quantum algorithm with error at most 1/3 using O(v/no_(p))
input queries. The algorithm’s running time is /no_(p) (logn)°M assuming
unit-cost coherent access to the preprocessed string.

For the special case of AND-OR formulas with o_(¢) = O(1), Theorem 8
strengthens Theorem 7. The requirement that o_(p) = O(1) allows for
some gates in the formula to be very unbalanced. Theorem 8 also strengthens
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[ACR 10, Theorem 1] because it does not require that o () = O(n). For exam-
ple, a formula that is biased near the root, but balanced at greater depths can
have o_(p) = O(1) and o4(¢) = w(n). By substituting the bound o_(p) =
O(Vd) for a depth-d formula [ACR*10, Definition 3], a corollary of Theorem
8 is that a depth-d, size-n AND-OR formula can be evaluated using O(v/nd)
queries. This improves the depth-dependence from [ACR'10], and matches the
dependence from an earlier version of that article [Amb07].

The essential reason that the Definition 1 balance condition can be weakened
is that for the specific gates AND and OR, by writing out the optimal span
programs explicitly we can prove that they satisfy stronger properties than are
necessarily true for other functions.

2 Span Programs

2.1 Definitions

We briefly recall some definitions from [Rei09, Section 2]. Additionally, we define
a span program complexity measure, the full witness size, that charges even for
the “free” inputs. This quantity is important for developing quantum algorithms
that are time efficient as well as query efficient.

For a natural number n, let [n] = {1,2,...,n}. For a finite set X, let C¥ be
the inner product space C!X! with orthonormal basis {|z) : z € X}. For vector
spaces V and W over C, let L(V, W) be the set of linear transformations from
V into W, and let £(V) = L(V, V). For A € L(V,W), || A|| is the operator norm
of A. For a string = € {0,1}", let T denote its bitwise complement.

Definition 3 ([HLS05,HLS07]). For finite sets C, E and D C C™, let f :
D — E. An adversary matriz for f is a real, symmetric matriz I' € L(CP) that
satisfies (x| |y) = 0 whenever f(x) = f(y).

The general adversary bound for f, with costs s € [0,00)", is

ADVE(f) = max I - (2.1)
adversary matricesl:
Vi€ln], [ToA;|<s;

Here I' o A; denotes the entry-wise matriz product between I and A; =
Z%y:xﬁéyj |xXy|. The (nonnéga'tz've‘—weight) advgrsary bou@d for f, with costs
s, is defined by the same mazimization, except with I" restricted to have nonneg-
ative entries. In particular, ADVE(f) > Adv,(f).

Letting 1= (1,1,...,1), the adversary bound for f is Adv(f) = Adv(f)
and the general adversary bound for f is Adv®(f) = AdviT(f). By [HLS07],
Q) = 2(Adv(f)).

Definition 4 (Span program [KW93]). A span program P consists of a nat-
ural number n, a finite-dimensional inner product space V' over C, a “target”
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vector |t) € V, disjoint sets Ipee and Ly, for j € [n], b € {0,1}, and “input
vectors” |vi) € V' for i € Iree U U peqo,1y Lib-
To P corresponds a function fp:{0,1}"™ — {0,1}, defined on z € {0,1}" by

fole) = {1 if 1t) € Span({[v:) i € Ivee UU, ) Loy }) 2

0 otherwise

Some additional notation is convenient. Fix a span program P. Let I =

Itvee U Ujepyeo.1y Tiv- Let A € L(CT, V) be given by A = 37, |vi)i]. For
z € {0,1}", let I(x) = Itree U U ey Lje; and II(x) = X oicp(y l0Xi] € £(Ch).
Then fp(z) = 1if [t) € Range(AII(x)). A vector |w) € C! is said to be a witness
for fp(x) =1 if II(z)|w) = |w) and Alw) = |t). A vector |w’) € V is said to be
a witness for fp(z) = 0 if (tjw’) = 1 and IT(x)Af|w’) = 0.
Definition 5 (Witness size). Consider a span program P, and a vector s €
[0,00)™ of nonnegative “costs.” Let S = Zje[n],be{o,l},ielj,b VS5liXil € £(CT).
For each input x € {0,1}"™, define the witness size of P on x with costs s,
wsizes (P, x), as follows:

, M) A1 () ) =1y [1ST)* iffp () = 1
wsizes (P, 2) = min . gunor [SATW)? iffp(z) =0 (2:3)
(z)At|w')=0
The witness size of P with costs s is

wsize (P) = xer?oaic}n wsizes (P, x) . (2.4)

Define the full witness size fwsizes(P) by letting S¥ = S + D ity i and

min| ) Arz(@)wy=le) (1 + 17 |w)]?) if fp(z) =1
min |y, guy—r ()% + |SAT W) |2) if fp(z) =0 (25)
I (x) At |w’)y=0

fwsizes(P) = I?Oai(} fwsizes (P, x) . (2.6)
z€0,1}™

twsizes (P, x) =

When the subscript s is omitted, the costs are taken to be uniform, s = 1=
(1,1,...,1), e.g., fwsize(P) = fwsizes (P). The witness size is defined in [RS08].
The full witness size is defined in [Rei09, Section 8], but is not named there. A
strict span program has Ipee = 0, so S = S, and a monotone span program

has I o = 0 for all j [Rei09, Definition 4.9].

2.2 Quantum Algorithm to Evaluate a Span Program Based on Its
Full Witness Size

[Rei09, Theorem 9.3] gives a quantum query algorithm for evaluating span pro-
grams based on the full witness size. The algorithm is based on a quantum walk
on a certain graph. Provided that the degree of the graph is not too large, it can
actually be implemented efficiently.
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Theorem 9 ([Rei09, Theorem 9.3]). Let P be a span program. Then fp can
be evaluated using

T = O(fwsize(P) || abs(Ag,.)||) (2.7)

quantum queries, with error probability at most 1/3. Moreover, if the mazimum
degree of a vertex in Gp is d, then the time complexity of the algorithm for

evaluating fp is at most a factor of (log d) ( log(T log d))o(l) worse, after classical
preprocessing and assuming constant-time coherent access to the preprocessed
string.

Proof. (sketch) The query complexity claim is actually slightly weaker than
[Rei09, Theorem 9.3], which allows the target vector to be scaled downward
by a factor of +/fwsize(P).

The time-complexity claim will follow from the proof of[Rei09, Theorem 9.3],
in [Rei09, Prop. 9.4, Theorem 9.5]. The algorithm for evaluating fp(z) uses a
discrete-time quantum walk on the graph Gp(z). If the maximum degree of a
vertex in Gp is d, then each coin reflection can be implemented using O(log d)
single-qubit unitaries and queries to the preprocessed string [GR02, CNW10].

Finally, the (log(T log d))o(l) factor comes from applying the Solovay-Kitaev
Theorem [KSV02] to compile the single-qubit unitaries into products of elemen-
tary gates, to precision 1/0(T logd). O

We remark that together with [Rei09, Theorem 3.1], Theorem 9 gives a way
of transforming a one-sided-error quantum algorithm into a span program, and
back into a quantum algorithm, such that the time complexity is nearly pre-
served, after preprocessing. This is only a weak equivalence, because aside from
requiring preprocessing the algorithm from Theorem 9 also has two-sided error.
To some degree, though, it complements the equivalence results for best span
program witness size and bounded-error quantum query complexity [Rei09, The-
orem 7.1,Theorem 9.2].

2.3 Direct-Sum Span Program Composition

Let us study the full witness size of the direct-sum composition of span programs.
We begin by recalling the definition of direct-sum composition.

Let f : {0,1}" — {0,1} and S C [n]. For j € [n], let m; be a natural
number, with m; =1 for j ¢ S. For j € S, let f; : {0,1}™ — {0,1}. Define
y:{0,1}™ x ... x {0,1}"" — {0,1}" by

- fj(l’j) lf] c S
(), = {xj s (28)

Define g : {0,1}™ x --- x {0,1}™ — {0,1} by g(z) = f(y(z)). For example, if
S = [n] ~ {1}, then

9(@) = f(z1, f2(22), - ful@n)) - (2.9)
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Given span programs for the individual functions f and f; for j € S, we will
construct a span program for g. We remark that although we are here requiring
that the inner functions f; act on disjoint sets of bits, this assumption is not
necessary for the definition. It simplifies the notation, though, for the cases
S # [n], and will suffice for our applications.

Let P be a span program computing fp = f. Let P have inner product space
V, target vector |t) and input vectors |v;) indexed by Inee and I, for j € [n]
and c € {0,1}.

For j € [n], let s; € [0,00)™ be a vector of costs, and let s € [0,00)%=™
be the concatenation of the vectors s;. For j € §, let P79 and P! be span
programs computing fpi1 = f; : {0,1}"™ — {0,1} and fpjo = —f;, with r; =
wsizes, (P7°) = wsize,, (P7'). For ¢ € {0, 1}, let P’¢ have inner product space V7¢
with target vector [¢/°) and input vectors indexed by IS, and I}; for k € [m;],
be{0,1}. For j ¢ S, let r; = s;.

Let Is = Ujes ceqoy Lje- Define ¢ : Is — [n] x {0,1} by <(i) = (j,¢) if
i € Ij.. The idea is that ¢ maps ¢ to the input span program that must evaluate
to 1 in order for |v;) to be available in P.

There are several ways of composing the span programs P and P’ to obtain
a span program () computing the composed function fg = g with wsize;(Q) <
wsize, (P) [Rei09, Defs. 4.4, 4.5, 4.6]. We focus on direct-sum composition.

Definition 6 ([Rei09, Definition 4.5]). The direct-sum-composed span pro-
gram QP is defined by:

— The inner product space is V® =V & @jES,CE{O,l}(Cch ® V). Any vector
in V& can be uniquely expressed as |u)y, 4+ ¢, 1) @ lug), where [u) € V and
|Uz> S Vg(z)

— The target vector is [t¥) = |t),,.

— The free input vectors are indexed by Ifefee = IfreeUISUUjES7C€{O,1}(IjC xI%.)
with, fori € I®

free’
|vi>v if © € Ifree
e =< vy — i) @ [7°)  if i € Ljcandj € S (2.10)
i) @ |virr) ifi=(i"d") € Lje X Iy,

— The other input vectors are indezed by I(?.k)b for j € [n], k € [m;], be {0,1}.
Forj ¢ S, 18’1)17 = Ip, with [v?) = |v;)y, for?' € I(?.l)b. For j € S, let
ng)b = Ueeqo1yLje X Iy). Fori € Ijc and i’ € Iy, let

o) = li) @ |vr) - (2.11)

By [Rei09, Theorem 4.3], foe = g and wsize,(Q%) < wsize,(P). (While that
theorem is stated only for the case S = [n], it is trivially extended to other

S C [n].) We give a bound on how quickly the full witness size can grow relative
to the witness size:
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Lemma 1. Under the above conditions, for each input x € {0,1}™ X --- x
10,1}, with y = y(z),

- If g(x) =1, let |w) be a witness to fp(y) =1 such that

Z rj\wi\Z = wsize, (P, y).

JE[n] i€y,
Then

2
I+ Zielfree |wl|
wsize, (P, y)

fwsize,s (Q®, x)
wsize, (P, y)

<o(y,|w)) +

fwsize,  (P7¥%)
h = ——0 . (2.12
whereo(plu)) = mex SR (212
HiGijjwith(i\u));éO

- If g(x) =0, let |w') be a witness to fp(y) =0 such that

Sl ) = wsize, (P,y).

jG{’n],iEIjgj
Then
fwsize, (Q®, _ w'||?
0Q%0) ()]
wsize, (P, y) wsize, (P, y)
fwsize,, (P7Yi
where o (g, |w')) = max fwsizey, (P7%)

jes: wsize, , (P795)
Jiel;y, with{v; |w")#0

(2.13)

If S =0, then o(y, |w)) and o(§, |w')) should each be taken to be 1 in the above
equations.

Proof. We follow the proof of [Rei09, Theorem 4.3], except keeping track of the
full witness size. Note that if S = (J, then Egs. (2.12) and (2.13) are immediate
by definition of fwsize,(Q%, x).

Let I(y) = I(y) \ Ifee = Uje[n] L.

In the first case, g(x) = 1, for j € S let |wi¥%) € C”’" be a witness to

. y . 1 i 2
Fpov; (25) = 1 such that fwsize,(P/%7, 25) = 1437, _ v, ™| +Zke[mj],ielifij>k

2
(s;)kJw!¥|". As in [Rei09, Theorem 4.3, let |w®) € CI¥) be given by
w; if 7 € I(y)
wP = L wpwl) i i = (i,4") with i € I(y)' N Is,i" € IO (x)  (2.14)

0 otherwise
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Then |w®) is a witness for fge(x) =1, and we compute

fwsize, (Q%,0) <1+ 3 [P+ 3 (sl

iel®. el helm,),
Ze[(yk)(zpk
=14+ > Jwl+ > sjlwl (2.15)
1€ free JEMINS i€z,
+ Z |w1|2 (1 + Z |w]yj 2
jES,iEijj i Elf]rye;
S RCRE TS
ke[mj],i/elifij)k
=1+ Z ‘U}i|2+ Z sj|wi|2
1€ free JEMINS i€z,
+ Z |w;|* fwsize, (P7%, 2;) .
JES €Ly,

Equation (2.12) follows using the bound fwsize,,(P7%,z;) < o(y,|w))r; for
je S, and s; =r; for j ¢ S.
Next consider the case g(x) = 0. For j € S, let [u/%) € VI% be a witness
for ij@j (.Z’]) = 0 with fwsizes(Pij,xj) = H|UJyJ>H2 + Zke[m 161“1] (Sj)k
k()

|(vi|u?¥)|2. As in [Rei09, Theorem 4.3], let

W®) =)y + D ()| @ [u®) (2.16)

i€lsg~I(y)

Then |u®) is a witness for foe (x) = 0, and, moreover,

fwsize, (Q, z) < |||[u®)| + > (55)kl (v [u®)?

k
jelmlhelmlicld,

=@+ D sl u®)?

JEnINS
ZGIJ’;;:J.

+ > (s5)kl (w5 [u®)[?

JES,k€E[my],

Y
1€y, Elk( S
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2
= [l I"+ Y sl vl (2.17)
j€n]NS
s

+ |<vi|w’>|2<|uf‘yf>2

JES i€y,

+ D <sj>k|<vif|ujw>|2>

1 e
ke[m;],i EIkm

="+ > il
JEM]INS
ieljij
+ > (i) fwsize,, (P77, z))
JES i€l g,

Equation (2.13) follows using the bound fwsize,, (P, z;) < o(y,|w')r;
for j € S. (]

Lemma 1 is a key step in the formula-evaluation results in this article
and [Reill]. It is used to track the full witness size for span programs recur-
sively composed in a direct-sum manner along a formula. The proof of The-
orem 7 will require the lemma with the weaker bounds o(y, |w)), o (g, |w")) <
max;eg ce 0,1} fwsize,, (PI¢) /wsize,, (P’¢). Theorem 8 will use only the slightly
stronger bounds o(y, |w)) < max;egfwsizes, (P7%)/wsize,,(P7¥7), o(j,|w’)) <
max;e sfwsize,, (P7%) /wsize,, (P7%7). However, the proof of [Reill, Theorem 1.1]
will require the bounds of Egs. (2.12) and (2.13).

3 Evaluation of Almost-Balanced Formulas

In this section, we will apply the span program framework from [Rei09] to prove
Theorem 7. Our algorithm will be given by applying Theorem 9 to a certain
span program. Before beginning the proof, though, we will give two necessary
lemmas.

Consider a span program P with corresponding weighted graph Gp, from
[Rei09, Definition 8.2]. We will need a bound on the operator norm of abs(Ag,, ),
the entry-wise absolute value of the weighted adjacency matrix Ag, . If P is
canonical [Rei09, Definition 5.1], then we can indeed obtain such a bound in
terms of the witness size of P:

Lemma 2. Let s € (0,00)%, and let P be a canonical span program computing
a function f: {0,1}* — {0,1} with input vectors indexed by the set I. Assume
that for each x € {0,1}* with f(z) = 0, an optimal witness to fp(x) = 0 is |z)
itself. Then
ize. (P
| abs(Ag,)l| < 2" (1+ M) +11] . (3.1)

mlnje[k] Sj
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Proof. Recall from [Rei09, Definition 5.1], that P being in canonical form implies
that its target vectoris [t) = >, ¢, [¢), and that the matrix A whose columns
are the input vectors of P can be expressed as

A=l = D @) E @ (vayl (32)
iel JE[k], z: f(z)=0
By assumption, for each z € f~1(0),
Z 5;||vas)||? = wsizes (P, ) < wsizey(P) . (3.3)
j€lk]
In particular, letting o = min;c) s; > 0, we can bound

2 1 2
D o) < = sillley)

JE[K] JE[K]
< wsizeg (P) .

g

(3.4)

The rest of the argument follows from the definition of the weighted adja-
cency matrix Ag,. From [Rei09, Definition 8.1, Prop. 8.8], ||abs(Ag,)| <
| abs(Bg, )||*, where Bg, is the biadjacency matrix corresponding to P,

Be, = (3 f) ; (3.5)

and 1 is an |I| x |I] identity matrix. Now bound || abs(Bg, )| by its Frobenius
norm:

| abs(Ac, )| < || abs(Bay)|?
< || abs(Be,)|I>

=11+ > llloe)I* + 111

z: f(x)=0,
J€lk]
<2"+2" max > Moa) I + 111 (3.6)
0 je
Equation (3.1) follows by substituting in Eq. (3.4). O

An important quantity in the proof of Theorem 7 will be o_(¢p), from Defi-
nition 2. For an almost-balanced formula ¢, o_(¢) = O(1).

Lemma 3. Consider a 8-balanced formula ¢ over a gate set S in which every
gate depends on at least two input bits. Then for every vertex v, with children

C1,C2,...,Ck, "
Adv™ (¢w) i .4
> /1+ = . 3.7
manAdVi(gocj) N B2 (37)

o (p) < (2+V2)5* . (3.8)

In particular,
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Proof. Consider a vertex v with corresponding gate g = g, : {0,1}* — {0,1}.
By Theorem 2, Adv*(p,) = Adv*,(g), where s; = Advi(cpcj). It is immediate
from the definitions that ADVE(g) > Adv,(g). We will show that Adv,(g) >
V1+1/p%(max;s;), using that max;s;/ min; s; < 3.

Use the weighted minimax formulation of the adversary bound from [HLS07,
Theorem 18]:

Advs(g) = min  max (3.9
PN D g,y VPP Dsi
g()#9(y)

where the minimization is over all choices of probability distributions p, over [k]
for z € {0,1}*.

Since the adversary bound is monotone increasing in each weight, the worst
case is when all but one of the weights are equal to max;s; /3. Since for a scalar
¢, Adves(g) = cAdvs(g), we may scale so that one weight is 8 and all other
weights are 1. Assume that the first weight is s; = (; the other & — 1 cases,

= (8 and so on, are symmetrical. Assume also that g depends on the first bit;
otherwise AdvgIE (g) will not depend on s7 so one of the other cases will be worse.
Therefore, there exist inputs z,y € {0,1}* that differ only on the first bit, but
for which g(z) # g(y).

Since the function g depends on at least two input bits, there also exists
a third input z € {0,1}* with ;1 = 2z, but g(z) = g(y) # g(x). Indeed, if
9(z) = g(x) for every z with z; = z1, and if g(z) = g(y) for every z with z; = y1,
then g depends only on the first bit.

By Eq. (3.9),

ADVZE(g) > min max

1 1
Pa Py { pe(Dpy(1)/s1° ;z px(j)pz(j)/sj}

$j752j

(3.10)

where the minimization is over only the three probability distributions p., p,
and p,. In the above expression, we may clearly take p,(1) = 1 and p,(j) =0
for j > 2. We may also use the Cauchy-Schwarz inequality to bound the second
term above, and finally substitute s; = 3, s; =1 for j > 2 to obtain,

B 1 }
\/px ’ \/ijgpx(j)

The optimum is achieved for p,(1) = 8%/(1 + 3?), so Advis(g) > +/1+ 32, as
claimed.

To derive Eq. (3.8), note that 5 > 1 necessarily. Then the sum o_(¢p) is
dominated by the geometric series

ADVZE(g) > mlnmax{ (3.11)

g‘a (1 + ;)m : (3.12)

which is at most (2 + v/2)3?, with equality at 8 = 1. O
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Note that the 1-balanced formulas over § = {ORgz} satisfy the inequal-
ity (3.7) with equality and come arbitrarily close to saturating the inequal-
ity (3.8).

With Lemmas 2 and 3 in hand, we are ready to prove Theorem 7.

Proof. (of Theorem 7) First of all, we may assume without loss of generality
that every gate in S depends on at least two input bits. Indeed, if a gate g :
{0,1}* — {0,1} depends on no input bits, i.e., is the constant 0 or constant 1
function, then g can be eliminated from any formula over S without changing the
adversary balance condition, since ADVSjE (g) = 0 for all cost vectors s € [0, 00)".
If a gate g : {0,1}* — {0, 1} depends only on one input bit, say the first bit, then
ADV? (g) = s1 for all cost vectors s, and therefore similarly g can be eliminated
without affecting the adversary balance condition.

Consider ¢ an n-variable, §-balanced, read-once formula over the finite gate
set S. Let r be the root of . We begin by recursively constructing a span
program P, that computes ¢ and has witness size wsize(P,) = Adv™(p). P, is
constructed using direct-sum composition of span programs for each node in .
(Direct-sum composition is also the composition method used in [RS08].)

The construction works recursively, starting at the leaves of ¢ and mov-
ing toward the root. Consider an internal vertex v, with children ¢y, ..., c. Let
a; = Adv* (¢, ), where ¢ is the subformula of ¢ rooted at c; (Definition 1). In
particular, if ¢; is a leaf, then a; = 1. Assume that for j € [k] we have inductively
constructed span programs P, e and P;Cj computing ¢, and —p.,, respectively,

with Wsize(P% )= WblZB(PT ) = ;. Apply [Rei09, Theorem 6.1], a generaliza-
tion of Theorem 4, twice to obtam span programs P, and PT computlng fp, = 9v
and fpr = gy, with wsize, (P,) = wsizeq (P, ) = ADVi(gU) AdvE(e,).
Then let P, and P;v be the direct-sum-composed span programs of P, and
PJ , respectively, with the span programs P%j , P;Cj according to the formula .
By definition of direct-sum composition, the graph Gp, is built by replacing

the input edges of Gp, with the graphs Gp, or Gpt ‘ and similarly for Gp| .

Some examples are given in [Rei09, Appendlx B] and i in [RS08]. By [Rei09, The—
orem 4.3], P, (resp. P;f,v) computes ¢, (—py) with wsize(P,,) = WSlze(PL)
Adv* ().

Let P, = P, . We wish to apply Theorem 9 to P, to obtain a quantum
algorithm, but to do so will need some more properties of the span programs
P, and P!. Recall from [Rei09, Theorem 5.2] that each P, may be assumed to
be in canonical form, satisfying in particular that for any input y € {0,1}* with
g»(y) = 0 an optimal witness is |y) € C9 (0 jtgelf. Therefore, Lemma 2 applies,
and we obtain

(3.13)

i « PU
J abs(Agy, )| = 2* (1 n W()) e

mlnj Olj
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where |I| is the number of input vectors in P,. Now use

wsizeq (P,)  maxj;a; Adv®,(g,)

ming o ming &;  Mmax;a;

< Bk, (3.14)

where we have applied Eq. (1.10) and also ADVZ(g,) /max;a; < Adv*(g,) < k.
Additionally, by [Rei09, Lemma 6.6], we may assume that |I| < 2k?2%. Thus

|abs(Agp, )| = B2°%) . (3.15)

By repeating this argument for the negated function —g, computed by a dual
span program Pj ([Rei09, Lemma 4.1]), we also have || abs(Aq )l = [20k),

A consequence is that
| abs(Ag, )| = 290 Fmas) (3.16)

where kpax is the maximum fan-in of any gate used in ¢. Indeed, Gp, is
built by “plugging together” the graphs Gp, and G pi for the different ver-
tices v. Split the graph Gp, into two pieces, Go and G'1, comprising those
subgraphs Gp, and G pi for which the distance of v from r is even or
odd, respectively. Then ||abs(AGP )| < |labs(Ag,)ll + | abs(Ag,)||. Since
each Gy is the disconnected union of graphs Gp, and Gps, [|abs(4g,)| <
max, max{ | abs(Ag, )|, || abs(Ag )| }-
Let us bound the full witness size of P,.

Lemma 4. Let v be a vertex of . Then
max{fwsize(P,, ), fwsize(P} )} < o_(v)Adv*(p,) - (3.17)

Proof. The proof is by induction in the maximum distance from v to a leaf. The
base case, that all of v’s inputs are themselves leaves is by definition of P, and
P} since then o_(v) = 1 + 1/Adv®(g,).

Let v have children ci, ..., c;. By Lemma 1 with s = 1 and § = ELE
¢;is not a leaf},

fwsize(P,,) _ 1 {fwsize(P%j) fwsize(PL.)} (3.18)

+ max max 2

Advi(p,) ~ Advi(p,) jes Advi(gocj) ’ Advi((pcj)

In the case ¢,(x) = 1, this follows since P, is strict, so in Eq. (2.12) the sum
over Ig.ee is zero. In the case ¢, (x) = 0, this follows since P, is in canonical form,
so in Eq. (2.13), |||w)||* = 1.
Now by induction, the right-hand side is at most Adv¥(p,)"! +
max;jeso—(pe;) = 0—(v). O
In particular, applying Lemma 4 for the case v = r, we find

fwsize(P,) < o_(p)Adv*(p) = O(BQAdvi(go)) (3.19)
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since o_(p) = O(8?) by Lemma 3. Combining Eqgs. (3.16) and (3.19) gives
fwsize(Py) || abs(Agy, )| = B° 20%m=) Adv™ () . (3.20)

This is O(AdvE(y)); since the gate set S is fixed and finite, kmax = O(1).
Theorem 7 now follows from Theorem 9. ]

Note that the lost constant in the theorem grows cubically in the balance
parameter § and exponentially in the maximum fan-in k., of a gate in S. It is
conceivable that this exponential dependence can be improved.

For future reference, we state separately the bound used above to derive
Eq. (3.16).

Lemma 5. If P, is the direct-sum composition along a formula ¢ of span pro-
grams P, and PJ, then

labs(Ac)[| < 2max max{|| abs(Ac,., )[I, | abs(Ac.p )} - (3.21)

If the span programs P, are monotone, then ||abs(Ag, )|l < 2max || abs(Ag,, ).
v

The claim for monotone span programs follows because then the dual span
programs P, are not used in P,.

4 Evaluation of Approximately Balanced AND-OR
Formulas

The proof of Theorem 8 will again be a consequence of Lemma 1 and Theorem
9.

We will use the following strict, monotone span programs for fan-in-two AND
and OR gates:

Definition 7. For sy, se > 0, define span programs Panp (s1, s2) and Por(s1, $2)
computing ANDo and ORg, {0,1}2 — {0, 1}, respectively, by

Ponrs 40 = (2). o= (). w=(5) @
Por(s1,s2) :[t) = 6, 1) = €1, v2) = €2 (4.2)

Both span programs have I 1 = {1}, Io1 = {2} and Ityee = I1,0 = I2,0 = (). Here
the parameters aj, B;,0,€;, for j € [2], are given by

a; = (sj/sp)"/* B =1 (4.3)
o=1 e = (s;/sp)"/* (4.4)

where s, = s1+ s2. Let a = \/a? + a3 and € = \/€3 + €5.
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Note that a, e € (1,2'/4]. They are largest when s; = so.

Claim. The span programs Panp(s1, $2) and Por(s1, s2) satisfy:

5, if x € {11,10,01}
size(yr, vz (Paps 7) = § Vol o
eizet/en e (P, ) {C if 2 = 00
. s, if x € {00,10,01
wsize( a7, ys) (POR, ) = {\/ﬁ ifx—{ll } (4:5)
T =

Proof. These are calculations using Definition 5 for the witness size. Letting
o= (y/51,1/52), @ = Pann(s1,52) and R = Pogr(s1, s2), we have

wsize, (Q, 11) :( ) \F—i—( ) V52 = \/5p (4.6)
) V5 (4.7)

(;2) \;>_1= @ (4.8)

CV1) V5p (4.9)

wsize, (Q, 10)

wsize, (Q, 00) (
wsize, (Q, 01) (

and

) g \/757 (4.10)
) Vel = /5 (4.11)
P e
) Ve = /5 - (4.13)

wsize, (R, 00) (

wsize, (R, 01) (

It is not a coincidence that wsize, (Q, x) = wsize, (R, ) for all x € {0,1}2. This
can be seen as a consequence of De Morgan’s laws and span program duality—
see [Rei09, Lemma 4.1]. O

Proof. (of Theorem 8) Let ¢ be an AND-OR formula of size n, i.e., on n input
bits.

First expand out the formula so that every AND gate and every OR gate
has fan-in two. This expansion can be carried out without increasing o_(p) by
more than a factor of 10:

Lemma 6 ([ACR'10, Lemma 8]) For any AND-OR formula ¢, one can
efficiently construct an equivalent AND-OR formula ¢’ of the same size, such
that all gates in ¢’ have fan-in at most two, and o_(¢") = O(o_(p)).
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Therefore we may assume that ¢ is a formula over fan-in-two AND and OR
gates.

Now use direct-sum composition to compose the AND and OR gates accord-
ing to the formula ¢, as in the proof of Theorem 7. Since the span programs for
AND and OR are monotone, direct-sum composition does not make use of dual
span programs computing NAND or NOR. Therefore there is no need to specify
these span programs. At a vertex v, set the weights s; and s, to equal the sizes of
v’s two input subformulas. Let P, be the span program used at vertex v, P, be
the span program thus constructed for the subformula ¢,, and P, be the span
program constructed computing ¢. With this choice of weights, it follows from
Claim 4 and [Rei09, Theorem 4.3] that wsize(P,,) = Adv¥(p,) = Adv(p,).

Notice that for all si,s5 € [0,00), [[abs(Ag,, . .,)I = O(1) and
|abs(Acp, ., )| = O(1). Therefore, by Lemma 5, we obtain that
Jabs(Aa, )| = O(1).

Thus to apply Theorem 9 we need only bound fwsize(P,). Lemma 4 does
not apply, because for PAnp(s1,$2), an optimal witness |w') to fp,p(x) =0
might have |[|w’)||* > 1, as each a; < 1. (Lemma 4 would apply had we set the
parameters to be a; = az = 1, 8; = (s,/s;)'/4, but then [AGp,\p | Would not
necessarily be O(1).) However, analogous to Lemma 4, we will show:

Lemma 7. Let v be a vertex of p. Then

fwsize(P,,,

x) < o— (U)Adv(%) if @v(z) 1 (4 14)
T | 20-(v)Adv(py) — 1 if pu(x) =0 '

Proof. The proof is by induction in the maximum distance from v to a leaf. The
base case, that v’s two inputs are themselves leaves is by definition of P,, since
then o_(v) = 1+ 1/V2.

Let v have children ¢; and ¢y;. We will use Lemma 1 with s = T, S={je
[2] : ¢jis not a leaf}.

If ¢, () = 1, then since P, is a strict span program, i.e., Ifee = 0, Eq. (2.12)
gives

twsize(P,,, ) 1 fwsize(P%j )

Adv(p,) = Advip,) 528 Advip,,)

(4.15)

By induction, the right-hand side is at most 1/Adv(p,) + maxo_(c;) = o_(v).
j

If ,(x) = 0 and g, is an OR gate, then the unique witness |w’) for P, has
ll|lw")]] =1, from Definition 7. From Eq. (2.13) and the induction hypothesis,

fwsize(P,, , )

+ max (20_ (¢j) — ﬁ)

Advi(%}) ~ Adv(py) Jjes (‘Pc]')
<20 (v) - m 7 (4.16)

as claimed.
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Therefore assume that ¢,(x) = 0 and g, is an AND gate. Let s; and sy
be the sizes of the two input subformulas to v, s, = s1 + s2 = Adv(p,)?,
and assume without loss of generality that ¢, () = 0. If ¢.,(z) = 0 as well,
then assume without loss of generality that 20_(c1) — \% > 20_(c2)

S1 s27

so 0(g) < 20_(c1) — \/IST Then the witness |w’) may be taken to be |w') =

(1/a1,0) = ((sp/s1)*/*,0). From Eq. (2.13),

fwsize(P,, ,x \/S8p,/S _
(i Pu ) :Ié/ 1 + O—(y)
Adv™ (o) Adv™ ()

1

IN

1 1
<zt (20-(e1) - 787)
1
20_(v) — — , 4.17
<20 ()~ —= (4.17)
as claimed. O

In particular, applying Lemma 7 for the case v = r, we find
fwsize(P,) < 20_(p)Adv(p) = 20_(p)V/n . (4.18)

Theorem 8 now follows from Theorem 9. O

5 Open Problems

In order to begin to relax the balance condition for general formulas, it seems that
we need a better understanding of the canonical span programs. For example,
can the norm bound Lemma 2 be improved?

Although the two-sided bounded-error quantum query complexity of eval-
uating formulas is beginning to be understood, the zero-error quantum query
complexity [BCWZ99] appears to be more complicated. For example, the exact
and zero-error quantum query complexities for OR,, are both n [BBCT01]. On
the other hand, Ambainis et al. [ACGT10] use the [ACR*10] algorithm as a
subroutine in the construction of a self-certifying, zero-error quantum algorithm
that makes O(y/nlog® n) queries to evaluate the balanced binary AND-OR for-
mula. It is not known how to relax the balance requirement or extend the gate
set.

Can we develop further methods for constructing span programs with small
full witness size, norm and maximum degree? A companion paper [Reill] studies
reduced tensor-product span program composition in order to complement the
direct-sum composition that we have used here.

The case of formulas over non-boolean gates may be more complicated [Rei09],
but is still intriguing.

Acknowledgements. I thank Andrew Landahl and Robert Spalek for helpful discus-
sions. Research supported by NSERC and ARO-DTO.
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Abstract. We give a construction for a self-test for any connected graph
state. In other words, for each connected graph state we give a set of
non-local correlations that can only be achieved (quantumly) by that
particular graph state and certain local measurements. The number of
correlations considered is small, being linear in the number of vertices in
the graph. We also prove robustness for the test.

1 Introduction

Self-testing is a process where a skeptical classical user attempts to verify the
operation of a collection of quantum devices without trusting any of them a
priori. Importantly, we wish to make as few assumptions as possible about the
operation of the devices and in particular we do not bound the dimension of the
state space for each device. However we do make the necessary assumption that
the quantum devices are not allowed to communicate with each other. Despite
these severe restrictions on our knowledge it is possible to devise self-tests for a
number of different situations.

Self-testing was first introduced by Mayers and Yao [MY04] who described a
self-test for a maximally entangled pair of qubits (EPR pair) along with a small
set of local measurements. Meanwhile, self-testing of gates was introduced by
van Dam et al. [vMMSO00] in the scenario of known Hilbert space dimensions.
These two results were extended to testing of circuits over a real Hilbert space by
Magniez et al.  [MMMOO06]. Most recently, McKague and Mosca [MM11] reproved
the Mayers-Yao result and extended it to allow for testing of a larger set of
measurements including measurements over the full complex Hilbert space.

In this paper we use proof techniques developed in [MM11] to define self-tests
for the graph state for any connected graph. This family of self-tests is efficient
in the number of measurement settings, requiring only two or three measurement
settings on each vertex, depending on the graph. As well the total number of
correlations tested is small, only one per vertex plus an additional 3 at most.
We also prove that the self-tests are robust.

1.1 Graph States and Notation

A graph G is composed of two sets: a set V' of vertices, and a set E C V xV
of edges. For our purposes we suppose that (v,v) ¢ E and (v,u) € E whenever

D. Bacon et al. (Eds.): TQC 2011, LNCS 6745, pp. 104-120, 2014.
DOI: 10.1007/978-3-642-54429-3_7, (© Springer-Verlag Berlin Heidelberg 2014
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(u,v) € E. Two vertices u,v are said to be adjacent if (u,v) € E. A cycle is a
sequence of vertices in which each vertex occurs at most once, each vertex in the
sequence is adjacent to the next vertex in the sequence, and the last vertex is
adjacent to the first. A subgraph G’ of G is a graph (E', V') with E' C E, V' C V.
An induced subgraph is a subgraph in which E' = {(u,v) € E |u,v € V'}, so the
subgraph contains all edges between vertices of V'’ in the original graph. The
neighbours N, C V of a vertex v are the vertices to which v is connected with
an edge, i.e. N, = {u € V| (u,v) € E}. A bipartite graph is a graph in which
the set of vertices may be partitioned into two sets S and T', each of which has
no edges within it. So the induced subgraphs on S and T have no edges. An
important property of bipartite graphs is that they are exactly the graphs which
contain no cycles with an odd number of vertices. A graph is connected if for
each pair of vertices u, v there is a sequence of adjacent vertices beginning with
u and ending in v. For more detail regarding graph theory see Diestel [Diel0].

A graph state consists of a set of qubits indexed by the set of vertices V,
each prepared in the state |+), = % (10y, +1),), followed by (CTRL — Z),
operations for each adjacent u,v € V . If the graph is not connected then the
graph state will be a product state of graph states on the separate components.
Hence connected graphs form the interesting case.

Graph states are also characterized by their stabilizer group. Let the oper-
ators X, and Z, be the Pauli operators X and Z applied to qubit v, tensor
product with I on all other qubits. If P is a Pauli and S C V' then

p =] P.. (1)
vES

The stabilizer group for a graph state on the graph G = (V, E) is generated by
Sy ={X,Z"wveV}. (2)

That is, for each vertex v there is a stabilizer generator with X operating on v
and Z operating on each of v’s neighbours. Note that there are n such generators,
they pairwise commute and are independent. Hence there is exactly one state
with this stabilizer group. That is to say, the graph state | ) is the unique state
for which S, | ) = |¢) for each v € V.

As one additional piece of notation, we will frequently need to deal with
products of stabilizers on a subset of vertices. For this case we define

ZNS =T 2™ (3)
veS

where the factor Z, appears in Z¥(%) if v has an odd number of neighbours in S.

1.2 Self-Testing Definitions

Consider the following black-box scenario: we are given a set of devices, each
with a knob labeled with a number of settings, a pair of lights labeled +1, and a
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button. After we select a setting and push the button one of the lights turns on.
We are told that the devices jointly share a state which is measured, according to
the knob setting, in a specified basis. Our goal is to determine if the black-boxes
are operating according to their specification using only the external controls
of the boxes. Additionally we may isolate the boxes to ensure that they do not
communicate.

We begin with a reference erperiment consisting of an n-partite system in
the state | 1) together with local measurement observables M; ,, on subsystem
J with measurement setting m € {0,1,...,k;}. The measurement setting m =
0 corresponds to no measurement, which we may represent with the identity.
The reference experiment represents the specification for how the black-boxes
supposedly operate. In particular, we assume that the state and observables
are known.

In addition, we have a physical experiment consisting of an n-partite physical
system in the state! |1’) together with local measurement observables M, on
subsystem j, with m € {0,1,...,k;}. Again we may take M, = I indicating
that we do not measure the subsystem. We place no bound on the dimension of
the Hilbert space of each subsystem, but assume that it is finite. The physical
experiment represents how the black-boxes actually operate.

If a physical and reference experiment have the same number of subsystems
and the same number of measurements on each subsystem, then we say that
they are compatible. Note that we will always deal with the case of two-outcome
measurements, so that all observables have eigenvalues 1. In principle, though,
the definitions can be extended to other types of measurements.

To be more specific about our task, we introduce two notions, simulation and
equivalence.

Definition 1. Let a physical experiment and a compatible reference experiment
be given as above. We say that the physical experiment simulates the reference

experiment if for each measurement setting m = (ma,...,my), m; € {0,...,k;}
we have . .
(W' 1 Q) M, |9 = (1| Q) Mim, ) (4)
j=1 j=1

For our purposes it will be sufficient to consider only a subset of possible mea-
surement settings. In this case we include the measurement settings of interest
in our description of the reference experiment.

Definition 2. Let a physical experiment and a compatible reference experiment
be given as above. We say that the physical experiment is equivalent to the ref-
erence experiment if there exists a local isometry

=P R - P, (5)

! We consider only pure states, but since the Hilbert space of the physical system has
unbounded dimension we may easily add a purification to mixed states.
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and a state | junk) such that, for each j, and m € {1,... k;}

O(|¥) = | junk) ® | ) (6)
D(Mj,, [¢')) = | junk) @ Mjm | 1)) (7)

where | junk) is in the same Hilbert space as |{').

When describing any physical system we must first fix a reference frame,
and decide which components to describe and which to leave out. Thus we may
take a description and apply local changes of basis, or add ancillas and arrive at
another, perfectly acceptable, description of the system. These two operations
are invisible from the perspective of classical interactions with devices so we can
never rule them out. This motivates our definition of equivalence, which takes
such ambiguities in quantum descriptions into account.

Throughout the remainder of this paper we will used primed (|¢), X', S,
etc.) to denote physical measurements and states and unprimed for reference
measurements and states. Note that S/, = X/ ®Z'V(*) and other derived physical
measurements are defined in terms of the local physical measurements. Also,
although we use the letters X and Z for the physical measurements, these need
not be Pauli matrices, and we assume nothing about them other than what we
mention explicitly.

1.3 Main Results

A self-testing theorem specifies a particular reference experiment and states that
if a physical experiment simulates the reference experiment, then it is equivalent
to it. That is to say, for a particular experiment simulation implies equivalence.
Our main result is to show that this is the case for the following two reference
experiments.

Definition 3 (Reference experiment 1: connected graph with an odd
induced cycle). Let G = (V, E) be a connected graph containing an odd induced
cycle C = (V',E"). Let |¢) be the corresponding graph state with stabilizers
Sy, v € V. The reference experiment consists of the state | ), the stabilizer
measurements S, and the measurement XV ZN(WV)

It is easy to show that a graph which contains an odd cycle also contains
an induced cycle. Thus reference experiment 1 applicable to all connected non-
bipartite graphs.

Definition 4 (Reference experiment 2: connected graph). Let G = (V, E)
be a connected graph with at least two vertices. Let | 1) be the corresponding graph
state with stabilizers S,,v € V. Choose a fized edge (u,v) € E and define

1

D,
V2

(Xu + Zu) (8)
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The reference experiment consists of the state | 1), the stabilizer measurements
Sy and the measurements

Z! 7'Nu (9)
D, ZNe (10)
Dy X, ZzNeMub (11)

In Appendix C we show that for a bipartite graph all measurements using
X and Z alone can be simulated using a classical hidden variable model, hence
our addition of the D measurements.

Theorem 1. If a physical experiment is compatible with reference experiment
1 (2), and simulates it, then the physical experiment is equivalent to reference
experiment 1(2).

2 Proof of Main Result

The proof consists of three sections. First we determine the expected values
for the measurements in the reference experiment. Next we show that if the
physical experiment simulates the reference experiment then the X’ and Z’
operators anti-commute. Finally we construct the local isometry and use the
anti-commuting property of the X’ and Z’ operators to show equivalence.

2.1 Probability Distribution from Graph States

We first derive the probability distributions that arise from a graph state with
trusted measurements. This establishes the conditions that a physical experiment
must meet in order to simulate the reference experiment.

Clearly, the stabilizer measurements all satisfy

(1S |9) =1. (12)
For reference experiment 1, we need one additional measurement.

Lemma 1. Let G = (V, E) be a graph and let |1) be the corresponding graph
state. Let V! CV and let G' = (V' E’) be the induced subgraph on V'. If each
v € V' has even degree then

()XY 2NV 14) = | 9) (13)
Proof. Consider the product

(H Sv> %) (14)

veV’
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First note that there will be an X, factor for each v € V’. As well, there will
be a Z, factor for each v € V' adjacent to u. Canceling pairs we see that there
will be an overall Z,, factor exactly when there are an odd number of neighbours
of u in V. Hence the Z factor will be ZN¥N(V). We only need to determine the
sign. Note that the Z,, u ¢ V' factor all commute so we need not consider them
any more.

The order of multiplication in Eq. (14) does not matter since the stabilizers
all commute. For convenience, then, we may write the product as the product
of the rows of a matrix with each column corresponding to a v € V’ and each
row a stabilizer. We choose the order of the rows so that the X's appear along
the diagonal®. For a 5-cycle, for instance, we have

XZI12
ZXZ 11
I Z2XZ1. (15)
I T1ZXZ
ZIT2ZX

The factor on each vertex equals the product of the entries in the correspond-
ing column. In each column there is one X and one Z for each neighbour. The
factor will be either X Z or +£X, depending on whether there is an odd or even
number of Zs. The sign depends on the number of Zs above the X, since we
must use the fact that XZ = —ZX once for each such Z. Combining the signs
from all vertices, there is a —1 factor for each Z above the diagonal, and hence
one for each edge in G’. The overall sign, then, is (—1)|E/|.

For reference experiment 1 we consider an odd cycle, and hence we obtain
(W] XV ZNV |y) = —1. (16)

Reference experiment 2 has three measurements other than the stabilizer.
First we have Z,ZN«. This is just S, with X, replaced by Z,. Since X and Z
anti-commute we have

W] ZyZN [ 9) = 0. (17)
From this, and linearity, we obtain
1
WDy 2N |9) = —=. (18)

V2

Finally, the operator D, X, ZNv\M4} is a linear combination of S, and S, with
Z,, replaced with X,. As above, then, we find

(46| Du Xy ZNA | ) = % (19)

2 The matrix may be constructed by taking the adjacency matrix of G’, which has a
1 in the u, v position when (u,v) € E’, replacing the diagonal with Xs, the 0s with
Is and the 1s with Z.
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2.2 Statistics Imply Anti-commuting Observables

We now suppose that the physical experiment simulates either reference exper-
iment 1 or 2 and show that this implies that the X’ and Z’ measurements on
each vertex anti-commute (on the support of |)).

First, note that (¢'|S)|¢') = 1 implies S, |¢') = [¢'), and similarly for
other measurements. This allows us to immediately drop probabilities and deal
with states directly.

As a first step towards our goal, we prove a type of induction lemma which
says that if the X’ and Z’ observables anti-commute for some vertex, then the
same is true for an adjacent vertex. Thus we need only show anti-commuting
observables on one vertex, and apply the lemma repeatedly along paths to all
other vertices (since G is connected.)

Lemma 2. Given a graph G with (u,v) € E. If observables X!, Z! X! Z! and
{Z!|lw € Ny UN,} and state |¢') satisfy

Sul¥') =S, = 1¢") (20)
(X'Z")u|Y") = =(Z'X")0 [Y') (21)

then
(X'ZN)u| ") = —(Z'X")u | ) (22)

Proof. From the fact that (u,v) € E we obtain
(Z2'X")u |9) = (Z'X")uS, 5,85, [ ¥) (23)
=(Z'X"NX.Z X Z! X Z! X! Z! | ") (24)
(XZ)( XNo(Z'X")y |4) (25)
—(X'ZNu(Z'X")o(X'Z")0 [ ¥) (26)
—(X'Z)u | ¥) (27)

For reference experiment 1 we show that the observables X’ and Z' anti-
commute for each vertex in the induced odd cycle.

Lemma 3. Let G = (E,V) be a connected graph and let C = (E', V') be an
induced odd cycle of G and let uw € V'. If observables X Z! for u € V',
{Z!,|w has a neighbour in C'} and state | ') satisfy

Syl =1¢) (28)

=XV 2N ) =14 (29)
Then (X'Z")y |¥) = —(Z'X")y | ¢) for each uw e V'.
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Proof. Number the vertices in the cycle 1 through & so 1 is adjacent to 2, etc..
Without loss of generality we may assume that u is vertex 1. We next consider
the following state:

k—1 kE—1
2 2

X"V NV I | Séj I | Séjq |9") = 1¢) (30)
j=1 j=1

Note that the factor Z’N(V") is cancelled by Z operations arising from the prod-
ucts of the S). We may write the product as the product of the rows of the
following matrix, where column j corresponds to vertex j in the cycle:

X' XXX X .. XXX
Z' X'z I 1...1 11
I 1 7277X' 7 ...1 1 1

I 11 11..2X27 (31)
X 7z 1 11..11Z
1 77X 721 ...1 I 1
I 1 172X ...1 11

z 1 11 1..127ZX

In each column there are two X' operators and two Z’ operators. Also, their
arrangement is such that, for every column except the first, the two X’ operators
are next to one another, so they cancel directly, and similarly for the Z’ operators.
Hence

—(X'ZNu(X'Z")u |0 = ) (32)
The desired result follows immediately.

For reference experiment 2, we have one additional measurement on a par-
ticular vertex u. We use this extra measurement to establish that the X’ and Z’
measurements on u anti-commute.

Lemma 4. Let G = (V, E) be a connected graph with (u,v) € E. If observables
D, X, Z X, 2!, {Z,lw € N, UN,} and state | ') satisfy

v

S0 = S, 1) = | ) (33)
W1 2,2 W) = 0 (34)

W | DLz |0 = — (35)

W | DX, 2 ) = (36)

then —(X'Z") |¢") = (Z'X")u | Y")
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Proof. Since (' | X! Z'Nu|4) = 1 we have X! |v¢/) = Z'Nu|4). Similarly,
Z! |9y = X! Z'No\e |, Along with (i | Z! Z'Ne |4} = 0 we find that X! |+’)
is orthogonal to Z/, | ¢"). We also obtain (¢’ | D, Z! | ') = % and (¢ | D), X!, |¢")
= % Since D}, |9’) has norm 1, we find

1
V2
Further, since (D;)2 == (Z;)2 = (X’l/l.)27 and

/ no_ / / /i ’

o) = (D) |¢') (38)
%D; (ZIN" +X1,Z/N”\u) ‘1/)/> (39)

_ % (2% + X, 2N\ (X, + Z0) | ) (40)

= LI+ (X' 2+ (X)) ) (41)

In order for this to be true, we must have
(X'Z)u ) = =(Z'X")u [¢') - (42)

We conclude with a technical lemma that allows us to exchange X/ operations
for Z! operations.

Lemma 5. Let G = (V, E) be a connected graph and let X, Z! forv € V and
|Y") (and D, for some u € V') be a physical experiment that simulates reference
test 1 (or 2). Let G' = (V', E") be an induced subgraph of G. Then

(—D)IEIXV |y = 2NV ) (43)

Proof. We use the previous lemmas to conclude that X! Z] |¢"y = —Z, X7 | ')
for each v. Then we repeat the argument used in the proof of Lemma 1. Essen-
tially, we look at the product

T1514). (44)

Writing this product out as a the product of rows of a symmetric matrix with
X's along the diagonal, we see that in order to get all the X’s together we must
use the anti-commuting relation once for each Z’ above the diagonal. Since there
is one Z' above the diagonal for each edge, we obtain the factor (—1)/Z'1.

2.3 Constructing the Isometry

The local isometry @ that we use to show equivalence between the physical
experiment and the reference experiment is the tensor product of isometries &,
for various v € V, is in the circuit shown in Fig. 1.
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o) —{@] (]

linput) @ [ x

Fig. 1. Circuit for &,

The circuit is based on the argument used by Mayers and Yao in their original
EPR test. It may be seen as a type of SWAP gate, decomposed into three CNOT
gates. Here the first CNOT gate is omitted since the ancilla is always initialized
in the state |0). The Hadamards and Controlled Z operation replace a CNOT
targeted on the ancilla. With these points in mind, we see that when Z! and X/
are indeed qubit Pauli operators the circuit defines a SWAP operation.

We will now calculate the result of ¢ applied to | ).

() Z@X'“ I+ (=1)"™Z)|¥) | ) (45)
r veV
with 2 = (2,)vev € {0,1}!V]. Applying the anti-commutation relation, this

simplifies to
1 xr
D= Y @z X
r veV

Using Lemma 5 and the fact that (I + Z))Z] = I + Z, we finally find

P(|Y")) = <f®1+2/ |w><ﬁn2 ”>|w> (47)

veV

COIEDR (46)

where e(x) is the number of edges in the induced subgraph on the set V,, = {v €
Vl0z, = 1}.

Set |¢) = \/127296(—1)5(‘”) | ). Consider S, |z) for some z. This will be
+ |z ® 1,) where 1, is the binary vector with 1 in position v and 0 everywhere
else. The sign may be computed as follows: for each Z, component of S,, if

= 1 a —1 factor will be introduced. This happens when (u,v) € E and
u is in V. We may see this as either removing or adding the vertex v and
adding a —1 factor for each edge between v and another vertex in V. Thus
Sp(—=1)@) | z) = (=1)¢®®1) | £ @ 1,). In other words, this exactly produces the
correct sign on each | z) so that S, | ¢) = |$) and in fact | @) = | ).

Now consider ¢(X | 1)) for some v. After anti-commuting the X’ operations
we have

P(X,, [v") 2n2® I+ 2) X7 X, ) | 2) - (48)
xz veV
In this equation, we may simply replace X/*» X/ with X/**®u where 1, is
the vector with Os everywhere, except position u. After applying Lemma 5 we
arrive at
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B(X, |0)) = <;n ® 1+ 7)1 >> S ) (49)

veV T

A change of variable, x — x @ 1,, and the fact that X, |z) = |z & 1,,) gives the
final result,

(X, [Y) = (\ﬁ® I+ 2}) |w>>X |9) . (50)

veV

A similar analysis shows that

B(Z,|9')) = (Wn@ (I+7,) |¢>>Z |¥). (51)

veV
Recall from the proof of Lemma 4 that D) |') may be written as D) |¢') =

% (X, + Z)|¢'). By linearity, then

(D), ') = <f(§ (I+2)) |¢>>Dq,|w> (52)

This concludes the proof of theorem 1.

3 Robustness

In this section we will show that the main theorems are both robust. First, we
modify the definitions of simulation and equivalence to allow for small deviations
from the reference experiment

Definition 5. Let a physical experiment and a compatible reference experiment
be given as above. We say that the physical experiment e -simulates the reference
experiment if for each measurement setting m = (ma, ..., My,), mj € {0,..., kj}
we have

¢|® ]mJ ¢|® JmJ 6 (53)

Definition 6. Let a physical experiment and a compatible reference experiment
be given as above. We say that the physical experiment is §-equivalent to the
reference experiment if there exists a local isometry

P=0,0 - @D, (54)
and a state | junk) such that, for each j, and m € {1,... k;}

12(]¢)) — | junk) @ | )|, < 8 (55)
|| (M, |0") — | junk) @ M |9)]|, < 6 (56)

where | junk) is in the same Hilbert space as |{').
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Using these definitions we are able to prove the following theorem.

Theorem 2. Let a graph G be given with |V| = n. If a compatible physical
experiment e-simulates reference experiment 1 (2) then it is J-equivalent to it
with

§ = (502 + 11n + 4)n2""2V/2¢(5 = n2"2 ((n +2)26€7 + (4n2 + 10n)\/%)).

The proof simply follows that of the exact case, applying estimations at
each step. Proofs for the two reference experiments are included in Appendix A
and B. Note that § may be improved for particular graphs or by adding additional
measurements, such as tests for more odd cycles, or more D type measurements.

4 Discussion

4.1 Estimating Expected Values

The main results concern expected values, rather than experimental outcomes.
So in order to make use of these results in any practical implementation we
must estimate the expected values using data collected from experimental out-
comes. The obvious approach of sampling the devices many times and applying
a Chernoff bound is problematic. In particular, we do not wish to assume that
separate uses of a device are independent and identically distributed since these
assumptions would be untestable and likely false in many practical experiments.

One approach to this problem is that used by Pironio et al. in [PAM*10].
There the authors construct a martingale, which is a sequence of random vari-
ables with certain properties. In particular, the random variables need not be
independent. This allows them to use Azuma’s inequality, which gives good
bounds for martingales on how far away a sample may lie from the expected
value without relying on independence assumptions. A similar approach is viable
here and a preliminary analysis suggests that good bounds are achievable.

4.2 Graph State Computation

Graph states are particularly interesting for their role in measurement based
quantum computation (MBQC, [RB01]). In this paradigm a graph state is mea-
sured, vertex by vertex, in particular bases. Each measurement may be inter-
preted as performing a unitary on a logical qubit. The composition of these
unitaries performs a logical circuit on the logical qubits.

A natural question to ask is whether a self-tested graph state could be used
for MBQC to allow for self-tested computation. Unfortunately MBQC depends
on measurements in the X-Y plane and the measurements tested here are all in
the X-Z plane. However, the techniques used in [MM11] could easily be adapted
to allow testing of X-Y plane measurements which would then allow self-tested
MBQC. In fact, in the exact case the techniques used in [MM11] can be used
with minimal changes. A preliminary analysis of robustness suggests that the
errors scale similarly to that of Lemma 4 here.
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A Proof of Robustness for Reference Experiment 1
First we note that if (¢ | M |¢) > 1 — € then

¥y — M| 9)|l, < V2e. (57)

Next, suppose that we have |||¢) — M |¢)|l, < o and |||¢) — N [¥)||, < .
Using the triangle inequality and the fact that [|[M|| = 1 we have

I[9) = MN[9)|l, < a+p. (58)

The remainder of the proof will use these estimates repeatedly, along with the
triangle inequality. We need only count the number of operators multiplied
together.

First, for Lemma 3 let ¢ be the size of the induced cycle. We multiply ¢+ 1
operators together. Thus we conclude that for a vertex u in the induced cycle

1X0 20, [9") + ZL X0 9], < (e + 1) V2 (59)
Next, for Lemma 2 we multiply four operators, then invoke the anti-commuting
property on one of the vertices. This gives

1X0Z0 |9) + Z0 X0 |9y < 4V2e + 8 (60)

u—u

where (3 is || X Z] | ") + Z, X |¢)")||5, v being neighbouring vertex. We may
apply Lemma 2 along paths from vertices in the induced cycle in G. Let [ be the
length (number of edges) of the longest path. Then for any vertex u we find, at
worst,

XL Z0 1) + ZL X, [0, < (4 + ¢+ 1)V2€. (61)

Lastly, for Lemma 5, we multiply |V’| operators, and apply the anti-
commuting relation |E’| times. Thus

H(71)|E’|X/V’ |w/> . Z/N(V’) |¢/>

L SAVI+@+e+ D)IE) VI (62)

We are now ready to analyze the proof of the main theorem for reference
experiment 1. To arrive at Eq.46 we apply the anti-commutation relation. This
happens once for each 1 appearing in x, for each possible z, for a total of n27~1
times. We may find this by pairing values = and = @ 111...1. There are 27!
such pairs and each pair contains n 1s all together. We find

B(|¢) = 5= > QU+ 2Z) X[ |¢) |2)|| < n2" (4l + e+ 1)V2e. (63)
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For Eq. 47 we use Lemma 5, once for each possible value of x. Again, the estimate
depends on the number of 1s in x, summed over all possible xs. As well, it depends
on the number of edges in the induced subgraph. An edge (u,v) will be counted
only when z,, = x,, = 1. This occurs for 1/4 of all xs. Summed over all possible
s and edges, then, the number of times edges are counted is 2"~ 2|E|. This gives
our final estimate:

1
o(1 ) - (z R+ 2) |«//>) > () [a) (64)
veV T 2
< (2" Wl e+ 1) +n2n 4 (4 + e+ 1)2"2|B]) V2e (65)
= 2" 2 ((4l 4+ ¢+ 1) (2n + | E|) + 2n) V2¢ (66)
where e(x) is the number of edges in the induced subgraph on the set V,, = {v €

Vi|x, =1}

Note that when calculating ¢ (X7, | ¢)) etc. we did not use any more estima-
tions, we simply rearrange when Lemma 5 is applied. Thus the same robustness
applies. For @ (Z! | ")) we use (I+(—=1)*Z!)Z! = —(I+(—1)**Z!), which does
not involve an estimation, so again the same robustness applies.

As a last estimation, we note that | and ¢ cannot be larger than n, and
|E| < n?. We may thus set § = (5n2 + 11n + 4)n2"~2y/2e.

Note that we may make much better estimates if some properties of the graph
are known. For example, if every vertex lies in a triangle and the max degree is
6, as in the case of a lattice of triangles, we may instead set § = 17n2"~1y/2¢.

B Proof of Robustness for Reference Experiment 2

Much of the same analysis may be used for experiment 2. Indeed, since the only
difference in the proofs for the non-robust results is how the anti-commuting
property is proved, we may simply replace the estimation for Lemma 3 with
that of Lemma 4.

We begin, then, with e-simulation and prove a robust version of Lemma 4.

First we wish to estimate o = HD; |y) — L\;%Z; ) H . Using techniques from
2
the previous section, we have
X0 1w = 2™ [9)], < 2ve (67)

|70 19) - iz )| < 2ve. (68)

.

These along with the triangle inequality give an upper bound for «a of

Z/Nu 4 X{)ZIN“\u
V2

2\/£+HD;|1/J>— )

2
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Expanding the second term, we get

7Ny + X7 ZINy\u
1+ || —————=— v’
\/ |

2

= V2 | D 2N [ !) + (7 | DL X, ZMNe\w ).
2
(70)

Since || Z, | 9') — X[, 2™\ | 4)]|, < 2y/€ and || 2"V« [¢')]], = 1 we find

< 2v/e (71)

By hypothesis, (¢ | 2N« Z], |¢')| < €, so [(' | Z"Nu X[ ZNN | 4)| < 2¢/e+ e
/Ny, ! I Ny \u 2

Meanwhile 52 = HZ Nu X[, 2NN | ') ’2 =1+ Re (/| Z’N“'X{}Z/N”\u "),

V2
so |1 —pB% <2ye+e
Finally, by hypothesis |(¢/| D, 2"V« |¢/) + (¢/ | D! X! Z'No\u |y — V2| <

2¢. Combining these facts we find a < 2v/2¢ + \/Q\E + (1 +2v2)e.

Now we wish to estimate

@1 2% 2 ') = (' | 2, 2 )

(X1, +2,)

5 |¥") (72)

‘(D;)2 |¥') =

2

Bythefact||D;|\oo:1vvehaveH( D29 — DXt )

|9')
these facts, the triangle inequality, and (D!)? = I, we obtain

’ < «. Similarly,
2
since || X, + Z,|| . < 2 we find (Xi+z) +Z ) < v/2a. Using

2

\D'“ )

)~ Fut B | =z ) + 2
2(1 +V2) (2\/Z+ \/2ﬁ+ (1+ 2\/5)6) < 26e7 (73)

with the last inequality valid for e < 1.
Using this estimate, and working through the estimations as in the previous
section, we find that we may set

§ = on-2 ((2n + | B])(26€F + 41v/2¢) + Qm/%) . (74)
For a simpler expression, we may use [ < n and |E| < n?, obtaining
§ = n2m? ((n +2)26¢t + (4n? + 10n)\/%) (75)

Again, we may find a better estimate with more information about the graph.
For cluster states, which have a square lattice graph, we have |E| < 4n. We may
also perform D, measurements on all vertices and set [ = 0. In this case we may

set § = n2" 2 (1566% + 2\/2)
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C Classical Hidden Variable Model for Bipartite Graph
States with X and Z Measurements

Let G be a bipartite graph and | ) the corresponding graph state. We give a
local hidden variable model that is consistent will all measurements which are
tensor products of X and Z on this state.

We construct a local hidden variable model by randomly choosing a value
+1 for Z] for each v in the graph. We then set X, to be

x,= 1] z. (76)

u€N,

Now we show that this is consistent with all possible tensor product X and
Z measurements on | ). Let M = X9Z7, SN T = ) be such a measurement.
First, suppose that =M can be written as a product of stabilizers of | ). Using
Lemma 1 we have

M =X9ZN®) = (~1)PEI T 3, (77)
€S

Note that, by assumption, M has only X and Z factors, so each v € S must
have an even number of neighbours in S. Then the induced subgraph on S is
Eulerian and we can partition the edges of the subgraph into cycles with no
common edges (see Diestel [Diel0] for a proof). Suppose that |E(S)| is odd.
Then there must be at least one odd cycle in this partition and then S has an
odd cycle and so does GG. Since G is bipartite this must not be the case and in
fact |E(S)| is even. Hence M = [[ ¢S, and (¢ | M [¢) = 1. By construction
M = X'Sz/NE) = [Toes X, Z"™M» =1 and the expected value of M’ matches
that of M.

Now suppose that M is not a product of stabilizers of |¢). Then M must
anti-commute with at least one stabilizer and hence (¢ | M | ) = 0. Meanwhile,
by construction

M = X/SZ/T _ Z/N(S) Z’T‘. (78)

If N(S) =T then M is in fact a product of stabilizers. This is not the case,
so there is at least one Z! in the above equation which is not cancelled. Since
all the Z!s are chosen randomly, the product of the Z)s not cancelled will also
be uniformly random. Thus the expected value of M’ is 0.
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Abstract. We present a quantum-public-key identification protocol and
show that it is secure against a computationally-unbounded adversary.
This demonstrates for the first time that unconditionally-secure and
reusable public-key authentication is possible in principle with (pure-
state) public keys.

1 Introduction

Public-key cryptography has proved to be an indispensable tool in the mod-
ern information security infrastructure. Most notably, digital signature schemes
form the backbone of Internet commerce, allowing trust to be propagated across
the network in an efficient fashion. In turn, public-key encryption allows the
private communication of messages (or, more usually, the establishment of sym-
metric secret keys) among users who are authenticated via digital signatures.
The security of these classical public-key cryptosystems relies on assumptions
on the difficulty of certain mathematical problems [1]. Gottesman and Chuang
[2] initiated the study of quantum-public-key cryptography, where the public
keys are quantum systems, with the goal of obtaining the functionality and
efficiency of public-key cryptosystems but with information-theoretic security.
They presented a secure one-time digital signature scheme for signing classical
messages, based on Lamport’s classical scheme [3].

In a public-key framework, Alice chooses a random private key, creates copies
of the corresponding public key via some publicly-known algorithm, and distrib-
utes the copies in an authenticated fashion to all potential “Bobs”. In principle,
this asymmetric setup allows, e.g., any Bob to send encrypted messages to Alice
or to verify any signature for a message that Alice digitally signed. By eliminat-
ing the need for each Alice-Bob pair to establish a secret key (in large networks
where there may be many “Alices” and “Bobs”), the framework vastly simpli-
fies key distribution, which is often the most costly part of any cryptosystem,
compared to a framework that uses only symmetric keys.

D. Bacon et al. (Eds.): TQC 2011, LNCS 6745, pp. 121-142, 2014.
DOI: 10.1007/978-3-642-54429-3_8, (© Springer-Verlag Berlin Heidelberg 2014
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Some remarks about the quantum-public-key framework are in order. First,
we address the issue of purity of the quantum public keys. In principle, the quan-
tum public key can be either in a pure or mixed state from Alice’s point of view
(a mixed state is a fixed probabilistic distribution of pure states). Gottesman
and Chuang [2] assumed pure-state public keys. For digital signature schemes,
this purity is crucial; for, otherwise, Alice could cheat by sending different public
keys to different “Bobs”. Purity prevents Alice’s cheating in this case because
different “Bobs” can compare their copies of the public key via a “distributed
SWAP-test” [2] to check they are the same (with high probability), much like
can be done in the case of classical public keys. But any scheme can benefit
from an equality test, since an adversary who tries to substitute bad keys for
legitimate ones could thus be caught. There is no known equality test guaran-
teed to recognize when two mixed states are equal. Thus, having mixed-state
public keys seems to be at odds with what it means to be “public”, i.e., publicly
verifiable.! Even though the scheme we present in this paper does not make
explicit use of the “distributed swaP-test” (because we assume the public keys
have been securely distributed), it can do so in principle. We view this as anal-
ogous to how modern public-key protocols do not specify use of an equality test
among unsure “Bobs”, but how such a test is supported by the framework to
help thwart attempts to distribute fake keys.

Second, we address the issue of usability of quantum-public-key systems. The
states of two quantum public keys corresponding to two different private keys
always have overlap less than (1 — §), for some positive and publicly known 4.
Thus, a striking aspect of the quantum-public-key framework is that the number
of copies of the public key in circulation must be limited (if we want information-
theoretic security). If this were not the case, then an adversary could collect an
arbitrarily large number of copies, measure them all, and determine the private
key. By adjusting protocol parameters, this limit on the number of copies of the
quantum public key can be increased in order to accommodate more u