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Preface

The Conference on the Theory of Quantum Computation, Communication, and
Cryptography (TQC) is an annual meeting on theoretical aspects of quantum infor-
mation processing. The goal of the conference is to foster developments in this rapidly
growing, interdisciplinary field by providing a forum for the presentation and dis-
cussion of original research.

The sixth iteration of TQC was held during May 24–26, 2011, at the Universidad
Complutense de Madrid, Spain. It included invited talks, contributed talks, and a
poster session. Authors of selected contributed talks were invited to submit a paper to
these proceedings.

TQC 2011 would not have been possible without the contributions of numerous
individuals and organizations, and we sincerely thank them for their support.

In putting together the scientific program, we were very grateful for the hard work
and advice of the Program Committee, listed herein. We also appreciate the help of
the following additonal reviewers: Abolfazl Bayat, Dan Browne, Bill Coish, Greg
Kuperberg, Frédéric Magniez, Iman Marvian, Matthew McKague, Tomoyuki Mori-
mae, Daniel Nagaj, Varun Narasimhachar, Marcin Pawlowski, Jérémie Roland, Pra-
deep Sarvepalli, Tommaso Tufarelli, Thomas Vidick, Tsu-Chieh Wei, and Shigeru
Yamashita.

The logistics of the conference were expertly managed by the Organizing Com-
mittee, also listed herein. Special thanks goes to Inés Escribano and the local orga-
nization team from the Quantum Information Technologies in Madrid (QUITEMAD)
group for their efforts to make the conference a success.

We would like to thank the invited speakers for their contributions to the program.
The six invited talks delivered were on ‘‘Futures of Quantum Communication:
Device-Independent QKD, Quantum Networks and Bi-locality’’ by Nicolas Gisin,
‘‘Structure of 2D Topological Stabilizer Codes’’ by Hector Bombín, ‘‘Quantum
Hamiltonian Complexity’’ by Umesh Vazirani, ‘‘Globalness of Unitary Operations on
Quantum Information’’ by Mio Murao, ‘‘Projected Simulation for Artificial Intelli-
gence’’ by Hans Briegel and ‘‘The Continuum Limit of a Quantum Circuit: Variational
Classes for Quantum Fields’’ by Tobias Osborne.

We would like to thank the members of the Conference Series Steering Committee,
Wim van Dam, Yasuhito Kawano, Michele Mosca, and Vlatko Vedral, for their
important advice.

TQC 2011 was made possible by financial support from the Consejería de Edu-
cacíon (Comunidad de Madrid), the European Union via the European Social Fund,
the Universidad Politecnica de Madrid, the Universidad Complutense de Madrid, the
Universidad Carlos III de Madrid, Telefónica, the Facultad de Ciencias Físicas, the
Fundación General Universidad (both at the Universidad Complutense de Madrid) and



NEC Laboratories America; we thank these organizations for their important
contributions.

Finally, we would like to thank Springer for publishing the proceedings of TQC in
the Lecture Notes in Computer Science series.

December 2013 Dave Bacon
Miguel Martin-Delgado

Martin Roetteler
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Weak Coin Flipping in a
Device-Independent Setting
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2 LIAFA, University of Paris 7, 75205 Paris, France
3 University of Paris-Sud, 91405 Orsay, France

4 Computer Science Division, UC Berkeley, Berkeley 94720, CA, USA
5 LIAFA, University of Paris 7 – CNRS, 75205 Paris, France

6 Centre for Quantum Technologies, National University of Singapore,
Singapore 117543, Singapore

7 Laboratoire d’Information Quantique, Université Libre de Bruxelles,
1050 Bruxelles, Belgium
jsilman@ulb.ac.be

Abstract. A protocol is said to be device-independent when the level
of its performance can be inferred without making any assumptions
regarding the inner workings of the apparatus used to implement it.
In this paper we introduce a device-independent weak coin flipping pro-
tocol based on a single GHZ test. Interestingly, the protocol calls for the
exchange of (quantum) systems between participants; a feature which
is not trivial to incorporate in a device-independent setting where a
system’s behavior may depend on the time, location, and its history.
Alice’s and Bob’s maximal cheating probabilities are given by � 0.974
and cos2(π

8
) � 0.854.

1 Introduction

Cryptographic protocols, whether quantum or classical are always formulated
under a certain set of assumptions. In particular, quantum protocols rely on the
validity of quantum mechanics, but also on the security of each participant’s lab
and his having a trusted source of randomness to carry out random choices called
for by the protocol. The list, however, usually does not end here. Most protocols,
also make, for instance, assumptions as to the Hilbert space dimension of the
quantum information carriers, the measurements that are carried out, etc. Such
protocols are said to be device-dependent. Clearly, it is desirable to base security

N. Aharon— Racah Institute of Physics, The Hebrew University of Jerusalem,
Jerusalem 91904, Israel
A. Chailloux— SECRET Project Team, INRIA Paris-Recquencourt, 78153 Le Ches-
nay Cedex, France
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2 N. Aharon et al.

on a minimum number of assumptions, as this facilitates checking the reliability
of the protocol’s implementation. The aim of the device-independent approach to
quantum cryptography is to do just that by doing away with a maximal number
of assumptions regarding the apparatus used to implement the protocol.

More specifically, a quantum protocol is said to be device-independent if the
reliability of its implementation can be guaranteed without making any assump-
tions about the internal workings of the underlying apparatus. Remarkably, this
can be achieved by certifying a sufficient amount of nonlocality (quantified by
the degree of violation of a suitable Bell inequality) [1]. For example, in quan-
tum key-distribution a high violation of the CHSH inequality guarantees that an
eavesdropper will have no information about the (post-processed) key [2–6]. This
should be contrasted with the entanglement-based version of the BB84 protocol,
where if the source dispenses qudits instead of qubits then security can be utterly
compromised [7,8]. Indeed, recent hacking attacks on quantum key-distribution
systems, such as those of [9,10], exploit device-dependent modes of failure and
would not be successful against a device-independent set up.

In addition to quantum key-distribution, device-independent protocols have
been suggested for diverse tasks such as random number generation [11,12], self-
testing devices [7,13,14], and genuine multipartite entanglement witnesses [15].
However, until most recently we did not know whether the scope of the device-
independent approach also covers the class of cryptographic protocols, often
referred to as distrustful cryptography, in which the participants do not trust
each other and may have conflicting goals. In [16] we showed that (imperfect) bit-
commitment and coin flipping admit a device-independent formulation. Whether
these result extends to all protocols in the distrustful cryptography class remains
an open question.

In contrast to the majority of device-independent protocols, which are CHSH-
based, the bit-commitment protocol of [16] is GHZ-based [17,18]. Moreover, it
is single-shot and does not require the generation of statistics to guarantee the
presence of nonlocality. The security of the committing party relies on the no-
signaling principle, while the security of the other party relies on Tsirelson’s
bound. The coin flipping protocol is bit-commitment based.

In this paper we introduce a device-independent weak coin flipping protocol.
This protocol represents our first successful attempt at tackling the problem of
device-independence in the distrustful cryptography model (prior to [16]). The
protocol is similar to that of [16] in that it also makes use of a single GHZ state,
but is otherwise very different. In particular, it calls for the exchange of boxes
(thereby having different parties potentially act on the same box); a feature
that has yet to appear in the device-independent literature, but which is part
and parcel of device-dependent protocols. Specifically, it is used in Mochon’s
optimal weak coin flipping protocol [19] and the ensuing optimal strong coin
flipping [20] and bit-commitment [21] protocols. In a device-independent setting
the box’s behavior may depend on the time, location, and its history. Hence,
incorporating this feature is far from trivial.
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To prove security we make use of tools developed for CHSH-based device-
independent protocols, such as dimensional reduction techniques in which the
problem is effectively reduced to one of qubits, and help show how these can
be adapted to GHZ-based protocols. In the process we gain further insights into
the structure of GHZ correlations.

The paper is organized as follows. We begin in Sect. 2 by defining the problem
of coin flipping, making explicit exactly what we mean by device-independence,
and defining the GHZ paradox, which plays a central role in our protocol. Next,
in Sect. 3, we present the protocol, followed by the proofs of Alice’s and Bob’s
security in Sects. 4 and 5.

2 Background

2.1 Coin Flipping

Coin flipping is a cryptographic primitive in which a pair of remote distrustful
parties wish to agree on a bit. It admits two variants: ‘strong’ coin flipping and
‘weak’ coin flipping. In the former no party is aware of the other’s preference
regarding the outcome of the coin, which may be identical to theirs, while in
the latter the preferences are known and opposite: If Alice prefers 0 then Bob
prefers 1 and vice-versa. Hence, in the weak variant it makes sense to speak of
a winner and a loser. The degree of security afforded by a protocol is quantified
by the biases ε∗i = P∗i − 1/2 and εi∗ = Pi∗ − 1/2, where P∗i (Pi∗) is Alice’s
(Bob’s) maximal probability of biasing the outcome to i. For strong coin flipping
ε = max {ε0∗, ε∗0, ε1∗, ε1∗} is usually referred to as the bias of the protocol, while
for weak coin flipping, since we are only interested in each party’s maximal
probability of winning, ε = max {ε∗0, ε1∗} (where it is assumed that Alice wins
iff she obtains 0).

The problem of coin flipping was first introduced in classical settings by Blum
in 1981 [22]. It was subsequently shown that if there are no limitations on their
computational power, dishonest parties can always force whatever outcome they
desires. In contrast, in quantum settings the problem is not trivial [23]. Two
key results are of those Ambainis [24] and Kitaev [25]. The former states that
any protocol achieving a bias of ε requires at least Ω(log log ε−1) rounds of
communication, while the latter states that it is impossible to devise a strong
coin flipping protocol satisfying P∗iPi∗ ≤ 1/2 (i = 0, 1). Since the appearance of
[23] in 1999, the biases of both strong coin flipping and weak coin flipping have
been pushed increasingly lower [24,26–29]. These efforts culminated in Mochon’s
proof that weak coin flipping with an arbitrarily small bias is possible [19].
Building upon this result, Chailloux and Kerenidis have recently introduced a
strong coin flipping protocol saturating Kitaev’s bound [20]. Finally, we mention
that quantum coin flipping has also been extended to multi-party [30] and many-
outcome settings [31,32], as well as simultaneously to both [33,34].
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2.2 Device-Independence

Let us now make precise just what we mean by device-independence. We make
the following assumptions regarding the set up:

1. Each party has (‘black’) boxes with knobs to choose (classical) inputs si and
registers for (classical) outputs ri. Entering an input always results in an
output (i.e. we do not consider losses).

2. The parties, in particular dishonest parties, are restricted by quantum
mechanics.

3. The parties can prevent the boxes from communicating with one another.
4. The parties have a trusted source of randomness to make random choices

called for by the protocol.
5. No information leaks out of an honest party’s lab.

Assumptions 2, and 3 imply that the probabilities of the outputs given the
inputs for an honest party can be expressed as

P (r1, . . . , rn | s1, . . . , sn) = Tr
(
ρ

⊗
i

Πri
si

)
, (1)

where ρ is some joint quantum state and Πri
si

is the POVM element correspond-
ing to inputting si into box i and obtaining the outcome ri. Apart from this
constraint, we put no limitations on the boxes’ behavior. Specifically, we allow a
dishonest party to choose the state ρ and the POVM elements Πri

si
as best suits

him. We also allow the boxes to have internal memories, clocks, gyroscopes, etc.
With such internal mechanisms, a dishonest party can program the boxes so
that their behavior depends on the trajectories they have followed in space, on
the time at which inputs are fed, or any other aspect of their past history.

Note that when we will talk about boxes being sent from one party to the
other, we will not mean by this that actual measurement devices have been sent
(though it is easier to present and formulate our results in this way). Instead, we
will simply mean that quantum states or classical information encoding instruc-
tions for the measurement devices are exchanged between the parties, such that
in an honest execution the state ρ and the POVM elements Πri

si
characterizing

the behavior, say, of Alice’s box before the transmission of quantum information
now characterize the behavior of Bob’s box after receiving the transmission. Of
course, if Alice is dishonest then the state and POVM elements after the trans-
mission may be very different, i.e. ρ → ρ̃ and Πri

si
→ Π̃ri

si
with ρ̃ and the Π̃ri

si

chosen at will by Alice.
Finally, we wish to emphasize that spacelike related measurements are not

necessary to implement assumption 2. Indeed, spacelike related measurements
do not constitute the only way to prevent communication between quantum
boxes and one can instead ‘shield’ each box. For a discussion of this point see
[3,12]. This observation is important because (i) in our protocol some pairs of
measurements are not spacelike related as the former and the latter measure-
ments are separated by a step involving communication between the parties; (ii)
relativistic causality is by itself sufficient for perfect coin flipping [35] (albeit at
the cost of assigning each party two remote secure labs).
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2.3 The GHZ Paradox

The GHZ paradox [17,18] is another famous example of the nonlocal nature
of quantum mechanics. It is easy to explain in terms of a three-player game
[36]. The rules of the game state that before it starts the players may commu-
nicate, devise joint strategies and share classical and quantum resources, but
that communication must cease once it begins. The game begins with player i
receiving an input si ∈ {0, 1}. The players are guaranteed that the inputs satisfy
s1 ⊕ s2 ⊕ s3 = 1 and that each of the four possible combinations of inputs occurs
with probability 1

4 . Let ri ∈ {0, 1} be the output of player i. The game is won if
the players output a combination satisfying r1 ⊕ r2 ⊕ r3 = s1s2s3 ⊕ 1. It is easy
to verify that classically the game can be won with probability 3

4 at most. The
‘paradox’ consists of the fact that using quantum resources the game can always
be won. This can be achieved if the players share a GHZ state 1√

2
(|000≺ + |111≺),

measure along σy (σx) when receiving the input 0 (1), and output the outcome.

3 Weak Coin Flipping in a Device-Independent Setting

The different steps of the protocol take place at fixed times t0 < t1 < t2 < t3,
with the interval between succeeding times Δt being sufficient for communication
to take place between the parties. Let c ∈ {0, 1, ⊥} denote the outcome of the
protocol (c =⊥ is output if a party aborts). We assume that at the beginning of
the protocol Alice has a two-input two-output box, box 1, and Bob has a pair
of two-input two-output boxes, 2 and 3. We denote their inputs and outputs by
si and ri respectively, where i labels the box. The boxes are supposed to exhibit
GHZ correlations (i.e. satisfy the GHZ paradox). The protocol reads as follows
(see Fig. 1):

1. At t = t0:
Bob flips a (possibly unbalanced) coin to decide whether to test if the boxes
fail to exhibit GHZ correlations, such that its outcome is b = 0 with proba-
bility p. Bob informs Alice of the value of b.

2. At t = t1:
I. If b = 0 Alice sends Bob her box (continue to step 3.I).

II. If b = 1 Alice uniformly at random picks an input s1 and feeds it into
her box:
(a) If r1 = 0 she announces that she has won and informs Bob of the

value of s1 (continue to step 3.II.a).
(b) If r1 = 1 she asks Bob to send her his boxes (continue to step 3.II.b).

3. At t = t2:
I. Bob checks the three boxes for failure to satisfy GHZ correlations: He

picks uniformly at random, a triplet s1 ⊕ s2 ⊕ s3 = 1 and inputs si into
box i. He then checks whether the outputs satisfy r1⊕r2⊕r3 = s1s2s3⊕1.
If they do, then he asks Alice to proceed with the protocol (continue to
step 4.I), else he aborts.
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Fig. 1. The protocol. At t = t2 boxes 2 and 3 do not know whether they are tested as
part of step 3.I or step 3.II.a.

II. (a) Bob tests his two boxes to see whether the values of s1 and r1 = 0
fail to satisfy GHZ correlations: He picks uniformly at random, a
pair of inputs s2 and s3 satisfying s2 ⊕ s3 = 1 ⊕ s1 and feeds them
into boxes 2 and 3. He then checks whether the outputs r2 and r3

satisfy r2 ⊕ r3 = s1s2s3 ⊕ 1. If they do not, then he aborts.
(b) Bob sends Alice his two boxes (continue to step 4.II).

4. At t = t3:
I. Alice flips a balanced coin. If its outcome a equals 0 (1), then she

announces that she has won (lost).
II. Alice tests the two boxes she received from Bob to see whether the values

of s1 and r1 = 1 fail to satisfy GHZ correlations: She picks uniformly at
random, a pair of inputs s2 and s3 satisfying s2 ⊕ s3 = 1 ⊕ s1 and feeds
them into boxes 2 and 3. She then checks whether the outputs r2 and
r3 satisfy r2 ⊕ r3 = s1s2s3. If they do not, then she aborts. Otherwise,
Alice announces that Bob has won.

Note that if the parties are honest (and all devices are perfect) then the protocol
does not abort and the coin is balanced, i.e. P (c = 0) = P (c = 1) = 1

2 and
P (c =⊥) = 0. For the protocol to be secure, it is crucial that the (mutually
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exclusive) tests that Bob performs in step 3.I or 3.II.a be carried out in such
a way that it is impossible for boxes 2 and 3 to know whether they are being
tested as part of step 3.I or 3.II.a (see Fig. 1). This means that: (i) Each of the
tests must be scheduled for the same time, i.e. t2. (ii) Each of the tests must
take place at the same location i.e. Bob’s lab. (iii) At the time of the test the
boxes should have the same history (at all times prior the test boxes 2 and 3 are
in Bob’s lab). On the other hand, boxes 2 and 3 may behave differently in step
4.II, having now a different history (having been sent from Bob to Alice).

4 Alice’s Security

4.1 Bob’s Maximal Bias

Clearly, dishonest Bob will never ask Alice for her box to test for failure to
satisfy GHZ correlations, that is, in step 1 he will announce b = 1. Moreover,
he will program Alice’s box (box 1) such that it always outputs r1 = 1 in step
2.II (otherwise he loses). In order that Alice agree that he has won, and not
declare him a cheat, he must pass the test that she carries out on boxes 2 and
3 in step 4.II. To facilitate the analysis, we switch to a notation in which the
outputs corresponding to inputting si = 0 and si = 1 are labeled by yi = (−1)ri

and xi = (−1)ri , respectively. Suppose now that Alice has input s1 = 0, then
y1 = −1, and in step 4.II she will feed different inputs into boxes 2 and 3.
Therefore, Bob’s probability of winning equals 1

2 [P (y2x3 = 1) + P (x2y3 = 1)],
since she is as likely to input s2 = 0 and s3 = 1 as s2 = 1 and s3 = 0.
Similarly, if she has input s1 = 1, then x1 = −1, and in step 4.II she will feed
the same inputs into boxes 2 and 3. Bob’s probability of winning will then equal
to 1

2 [P (x2x3 = −1) + P (y2y3 = 1)]. Since Alice’s choice of s1 is fully random,
it follows that Bob’s maximal probability of winning is given by

P1∗ =
1
4

max
[
P (x2x3 = −1)+P (y2y3 = 1)+P (y2x3 = 1)+P (x2y3 = 1)

]
, (2)

where the maximization is carried out over all possible states and measurements
and the dimension of the Hilbert space. This is just the CHSH expression [37]
cast in terms of probabilities. The maximum is, therefore, given by Tsirelson’s
bound [38]. That is, P1∗ = cos2

(
π
8

)
.

4.2 Bob’s Optimal Cheating Strategy

Dishonest Bob’s cheating probability is bounded by Tsirelson’s bound. To achieve
the bound he simply has to prepare boxes 2 and 3 such that each contains one out
of a pair of maximally entangled qubits and such that the measurement settings
are optimal, i.e. give rise to a maximal violation of the CHSH inequality.
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5 Bob’s Security

5.1 Alice’s Maximal Bias

To maximize her probability of winning, dishonest Alice must take into account
both the possibility that Bob will decide to check that the GHZ correlations are
satisfied, i.e. the possibility that he obtains b = 0 in step 1, and the possibility
that he asks her to proceed with the protocol, i.e. that he obtains b = 1. If b = 0
and Bob does not find a discrepancy with the GHZ correlations in step 3.I, she
announces c = 0 in step 4.I and wins. If b = 1, then she announces r1 = 0 in
step 2.II. It then remains for her to pass Bob’s test on boxes 2 and 3 in step
3.II.a, where he checks whether the values of s1 and r1 = 0 are consistent with
GHZ correlations. To this end she carries out a measurement (which we label as
m1) on box 1, whose outcome q1 ∈ {0, 1} determines what value of the input s1

she tells Bob that she (supposedly) fed into box 1 in step 2.II. Alice’s maximal
winning probability is therefore given by

P∗0 = max
[p

4

∑
{s1, s2, s3|s1⊕s2⊕s3=1}

×
∑

{r1, r2, r3|r1⊕r2⊕r3=s1s2s3⊕1}
P (r1, r2, r3|s1, s2, s3)

+
1 − p

2

∑
q1

∑
{s2, s3|q1⊕s2⊕s3=1}

×
∑

{r2, r3|r2⊕r3=q1s2s3⊕1}
P (q1, r2, r3|m1, s2, s3)

]
. (3)

To compute P∗0 we first recall that the space of correlations arising via local
measurements is convex. Hence, the maximum will be attained by extremal
states, i.e. pure states, and by extremal measurements, i.e. projective measure-
ments. (This is in keeping with the maxims of device-independence, since we
do not restrict the dimension of the Hilbert space.) To proceed further, we once
again label the outputs corresponding to inputting si = 0 (si = 1) by yi = (−1)ri

(xi = (−1)ri). Let Yi and Xi be the corresponding operators, Π and Π⊥ the
orthogonal projectors corresponding to obtaining q1 = 1 and q1 = 0, and let Hi

denote the Hilbert space of box i. Since box 2 admits binary inputs and outputs,
there exists a basis in which Y2 and X2 are block diagonal with blocks of size 2×2
or less [39,40]. Of course the same holds true for box 3. Hence, it follows from
convexity that without loss of generality we can set dimH2, dimH3 ≤ 2, where
dimHi is the dimension of Hi, and consequently, making use of the Schmidt
decomposition theorem, it follows that dimH1 ≤ 4.
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P∗0 can be re-expressed as

P∗0 =
1
2

+
1
8

max
{Xi, Yi,}i, Π, |ψ∞

[
p 〈ψ|X1 ⊗ X2 ⊗ X3 − X1 ⊗ Y2 ⊗ Y3

−Y1 ⊗ X2 ⊗ Y3 − Y1 ⊗ Y2 ⊗ X3 |ψ≺
+2 (1 − p) 〈ψ| Π ⊗ (X2 ⊗ X3 − Y2 ⊗ Y3)

−Π⊥ ⊗ (X2 ⊗ Y3 + Y2 ⊗ X3) |ψ≺
]
, (4)

where |ψ≺ ∈ H1 ⊗ H2 ⊗ H3 is the state of the three boxes. In terms of the
operators D = X2 ⊗ X3 − Y2 ⊗ Y3 and D∈ = −X2 ⊗ Y3 − Y2 ⊗ X3, P0∗ assumes
a more compact form

P0∗ =
1
2

+
1
8

max
{Xi, Yi,}i, Π, |ψ∞

〈ψ| [pX1 + 2 (1 − p) Π] ⊗ D

+ [pY1 + 2 (1 − p) Π⊥] ⊗ D∈ |ψ≺ (5)

The freedom that we have in manipulating both the state and operators means
that we can always choose the axes such that for boxes 2 and 3 Xi = σx and
Yi = n̂i · σ, where n̂i is some arbitrary unit vector on the x y plane spanning an
angle θi from the x axis. Now n̂i · σ = e−iθiσzσx, so that

XiYi = σx

(
cos θiσx + sin θiσy

)
= cos θi1 + i sin θiσz = eiθiσz . (6)

It is straightforward to verify that in the basis {|00≺ , |01≺ , |10≺ , |11≺} D and
D∈ are block diagonal with blocks of size 2 × 2, corresponding to the subspaces
spanned by {|00≺ , |11≺} and {|01≺ , |10≺}. By noting that we can always flip the
coordinate system of one the qubits about the z axis, we see that it suffices to
maximize over states of the form c1 |ϕ1≺ ⊗ |00≺ + c2 |ϕ2≺ ⊗ |11≺. It follows that
we can set dim H1 ≤ 2.

It is easy to show that on the two-dimensional subspace spanned by |00≺ and
|11≺ D and D∈ assume the form

D = −2 sin
(1

2
(θ2 + θ3)

)[
− sin

(1
2

(θ2 + θ3)
)
ςx + cos

(1
2

(θ2 + θ3)
)
ςy

]
, (7)

D∈ = −2 cos
(1

2
(θ2 − θ3)

)[
cos

(1
2

(θ2 + θ3)
)
ςx + sin

(1
2

(θ2 + θ3)
)
ςy

]
, (8)

where the ςi denote Pauli operators on the subspace spanned by |00≺ and |11≺.
Without loss of generality, we can redefine the x and y axes such that D =
2 sin

(
1
2 (θ2 + θ3)

)
ςy and D∈ = 2 cos

(
1
2 (θ2 − θ3)

)
ςx. Equation (5) now simpli-

fies to

P0∗ =
1
2

+ max
X1, Y1, Π, |ψ∞

〈ψ| sin
(1

2
(θ2 + θ3)

)(p

4
X1 +

1 − p

2
Π

)
⊗ ςy

+ cos
(1

2
(θ2 − θ3)

)(p

4
Y1 +

1 − p

2
Π⊥

)
⊗ ςx |ψ≺ , (9)



10 N. Aharon et al.

with the maximum obtaining when both terms are positive. This implies that
we should set θ2 = θ3 = π

2 . Equation (9) can then be re-expressed as

P0∗ =
1
2

+ max
X1, Y1, Π, |ψ∞

〈ψ|
[(p

4
X1 +

1 − p

2
Π

)
⊗ 1

+i
(p

4
Y1 +

1 − p

2
Π⊥

)
⊗ ςz

]
1 ⊗ ςy |ψ≺ , (10)

and consequently

P0∗ =
1
2

+
1
4

√
max

X1, Y1, Π, |ψ′∞
〈ψ∈ |A†A|ψ∈≺. (11)

where A =
(
pX1+2 (1 − p) Π

)⊗1+i
(
pY1+2 (1 − p)Π⊥

)⊗ςz and |ψ∈≺ is related
to |ψ≺ via |ψ∈≺ = 1 ⊗ ςy |ψ≺

A†A commutes with 1⊗ ςz, therefore, its eigenstates have the form |ui≺⊗ |0≺
and |ui≺⊗|1≺ . Suppose now that the maximum obtains for an eigenstate |ui≺⊗|0≺
and some specific choice of operators X1, Y1, and Π, and consider now the choice
of operators X ∈

1 = Y1, Y ∈
1 = X1, and Π ∈ = Π⊥, then it is straightforward to verify

that
〈0| ⊗ 〈ui|A†A |ui≺ ⊗ |0≺ = 〈1| ⊗ 〈ui|A∈†A∈ |ui≺ ⊗ |1≺ , (12)

where A∈ =
(
pX ∈

1 + 2 (1 − p) Π ∈) ⊗ 1 + i
(
pY ∈

1 + 2 (1 − p) Π ∈
⊥

) ⊗ ςz. Clearly, the
second choice of operators is just as valid. Hence, without loss of generality we
may assume that the maximum obtains for one of the eigenstates |ui≺⊗ |0≺. The
problem then reduces to maximizing over the two-dimensional Hilbert space H1.
That is,

P0∗ =
1
2

+
1
4

√
max

X1, Y1, Π, |ξ∞
〈ξ |B†B| ξ≺, (13)

where B =
(
pX1 + 2 (1 − p) Π

)
+ i

(
pY1 + 2 (1 − p) Π⊥

)
and |ξ≺ ∈ H1.

Parameterizing X1 = â · σ, Y1 = b̂ · σ and 2Π = 1 + ĉ · σ, we have

B†B = 2
[
p2 + 2 (1 − p)2 + p (1 − p)

(
â − b̂

) · ĉ
]
1

+ 2p
[
(1 − p)

(
â + b̂

)
+ (1 − p)

(
â + b̂

) × ĉ − pâ × b̂
]

· σ

= 2
[
p2 + 2 (1 − p)2 + 2p (1 − p) sinμt̂ · ĉ

]
1 (14)

+ 4p
[
(1 − p) cos μŝ + (1 − p) cos μŝ × ĉ + p cos μ sin μŝ × t̂

] · σ,

where in the last line we have reparametrized â = cos μŝ + sinμt̂ and b̂ =
cos μŝ − sinμt̂ with μ ∈ [

0, π
2

]
. Clearly, the maximum obtains when ĉ = t̂.

Setting ŝ = ẑ and ŝ × t̂ = x̂ we have to find the largest eigenvalue of

2
[
p2 + 2 (1 − p)2 + 2p (1 − p) sin μ

]
1 + 4p cos μ

[
1 − p (1 − sinμ)

]
σx

+4p (1 − p) cos μσz. (15)
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This is given by

λmax (p, q) = 2p2 (3 − 2q) − 4p (2 − q) (16)

+ 4
[
1 + p

√
(1 − q2) (2 − 2p(2 − q) + 2p2 − p2 (2 − q) q)

]

with q = sin μ, and can be analytically maximized for any value of p. For p = 3
5

we get that P∗0 ∼ 0.974. Numerics indicate that this result is optimal (or at
least very close to optimal), i.e. other values of p give rise to a higher winning
probability.

5.2 Alice’s Optimal Cheating Strategy

Having obtained the optimal values of p and μ, we can use them to explicitly
determine the optimal X1, Y1 and Π. The optimal state is then obtained by
plugging these back into A 1 ⊗ ςy, i.e. the operator appearing in Eq. (10), and
diagonalizing it. (Note that the eigenstates of A†A need not correspond to those
of A 1 ⊗ ςy since A†A is doubly degenerate.) In this way we find that dishon-
est Alice optimal cheating strategy consists of preparing the entangled state
|ψ≺ � 0.43(1− i) |0≺⊗ |00≺+0.60 |0≺⊗ |11≺+0.26(i−1) |1≺⊗ |00≺+0.37 |1≺⊗ |11≺,
where |ψ≺ is the eigenvector corresponding to the largest eigenvalue of the oper-
ator appearing in Eq. (10). We see that while the optimal measurement settings
of boxes 2 and 3 are the same as those of the device-dependent scenario, i.e.
measurements along the x and y axes (X2 = X3 = σx and Y2 = Y3 = σy), the
optimal measurement settings of box 1 are different and given by X1 = â · σ,
Y1 = b̂ · σ and Π = 1

2 (1 − σy), where â = cos μẑ − sinμŷ, b̂ = cos μẑ + sinμŷ
and μ ∼ 0.73.

Acknowledgements. We acknowledge support from the BSF (grant no. 32/08)
(N.A.), the Inter-University Attraction Poles Programme (Belgian Science Policy)
under Project IAP-P6/10 (Photonics@be) (S.M., S.P., J.S), a BB2B grant of the
Brussels-Capital region (S.P.), the Fonds de la Recherche Scienitifique – FNRS (J.S.),
the projects ANR-09-JCJC-0067-01, ANR- 08-EMER-012 (A.C., I.K.), and the project
QCS (grant 255961) of the E.U. (A.C., I.K., S.M., S.P., J.S.).

References

1. Barrett, J., et al.: Phys. Rev. Lett. 95, 010503 (2005)
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Abstract. Device-independent cryptography represent the strongest
form of physical security: it is based on general physical laws and does not
require any detailed knowledge or control of the physical devices used in
the protocol. We discuss a general security proof valid for a large class of
device-independent quantum key distribution protocols. The proof relies
on the validity of Quantum Theory and requires that the events gener-
ating the raw key are causally disconnected. We then apply the proof to
the chained Bell inequalities and compute the corresponding secret-key
rates.

1 Introduction

Quantum Key Distribution (QKD), and more generally Quantum Cryptogra-
phy, implied a change of paradigm in security. Before the conception of QKD
in 1984 [1], most cryptographic applications based their security on reasonable
assumptions on the eavesdropper’s computational power plus unproven assump-
tions on the computational complexity of some problems. In QKD, however,
security is mainly based on a physically motivated assumption: the honest par-
ties, Alice and Bob, and the eavesdropper, Eve, are constrained by the laws of
quantum physics. Still, this is not the only assumption needed for security proofs
of QKD. First of all, the honest parties should have a good physical character-
ization and control of the devices used in the protocol. Moreover, the security
proof also requires a pair of minimal assumptions essential to make the crypto-
graphic scenario meaningful: no information leaks Alice and Bob’s laboratories,
and the honest parties have a source of trusted randomness and trusted devices
to process and store the information generated during the protocol execution.

The main goal of Device-Independent Quantum Key Distribution (DIQKD)
[2–4] is to design protocols whose security proof requires no detailed knowl-
edge of the physical devices used for generating correlations. That is, apart from
unavoidable assumptions on the security of the honest parties’ locations and the
reliability of the devices they use for information processing, which in a way
are inherent to the very definition of the cryptographic scenario, only the gen-
eral validity of quantum theory is needed for security. In this scenario, the only

D. Bacon et al. (Eds.): TQC 2011, LNCS 6745, pp. 13–22, 2014.
DOI: 10.1007/978-3-642-54429-3 2, c© Springer-Verlag Berlin Heidelberg 2014
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possible security certificate is the one proposed by Ekert [5], see also [2,6]: the
observation of a Bell inequality violation. There are three main motivations to
consider the device-independent scenario. First, from a purely theoretical point
of view, DIQKD involves fewer assumptions and, thus, implies a stronger secu-
rity. More generally, identifying the minimal set of physical assumptions needed
for secure key distribution is a fundamental problem in cryptography. Second,
from an applied point of view, the implementation of DIQKD schemes is more
robust to imperfections since their security proof is independent of the devices’
details. However, it requires a long-distance detection-loophole-free Bell inequal-
ity violation, which at present is an experimental challenge (see however [7]).
Finally, DIQKD, as the works on self testing techniques [8,9], opens Quantum
Cryptography to the unreliable, yet non-adversarial, provider scenario, as any
device compatible with the protocol requirements is secure.

In this work we discuss a general formalism to prove the security of DIQKD
protocols [10] (see also [11]). The security proof is completely general and can
be applied to any protocol associated to a Bell inequality. The key element
in the construction is a bound on the min-entropy of the raw key from the
estimated Bell inequality violation. Compared to previous approaches [12], the
proof exploits the constraints imposed by quantum theory, which significantly
increases the efficiency of the protocols. For instance, when applied to the proto-
col of Ref. [3], based on the Clauser-Horne-Shimony-Holt (CHSH) Bell inequal-
ity [13], security can be guaranteed up to a quantum-bit error rate (QBER) of
approximately 5 %.

The security proof, however, needs a requirement which limits its applicabil-
ity from a practical point of view: all the events generating the raw-key sym-
bols must be causally disconnected. There are different possibilities to meet this
requirement. First, one can relax the device-independent character of the pro-
tocol and assume that the measuring apparatuses have no internal memory. Of
course, the no-memory assumption is present in any of the security proofs for
standard QKD [1]. The requirement can also be fulfilled in a device-independent
manner if the honest parties have access to separated devices. For instance, if
all raw-key symbols are defined by space-like separated events, special relativity
warrants their causal independence. However, space-like separation is not nec-
essarily required for the generation of the raw-key symbols. It is sufficient that
the parties are able to shield each of these devices and prevent any unwanted
information exchange among them when generating the raw-key symbols. This
assumption is similar to the one that the honest parties are capable of preventing
information leakage from their laboratories, without which the the cryptographic
scenario would not make sense.

2 Bell Inequalities and DIQKD Protocols

The class of protocols we consider are variations of Ekert’s QKD protocol [5,14].
Alice and Bob share a quantum channel that distributes entangled states and
they both have a quantum apparatus to measure their incoming particles. These
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apparatuses take an input (the measurement setting) and produce an output
(the measurement outcome). We label the inputs and outputs x and a for Alice,
and y and b for Bob, and assume that they take a finite set of possible values.

The first step of the protocol consists in measuring the pairs of quantum
systems distributed to Alice and Bob. In most of the cases (say N), the inputs
are set to fixed values xi = xraw and yi = yraw and the corresponding outputs
a = (a1, . . . aN ) and b = (b1, . . . bN ) constitute the two versions of the raw
key. In the remaining systems, which represent a small random subset of all
measured pairs (of size say Nest ≤ →

N), the inputs x, y are chosen uniformly at
random. From these Nest pairs, Alice and Bob determine the relative frequencies
q(ab|xy) with which the outputs a and b are obtained when using inputs x and y.
These relative frequencies quantify the degree of non-local correlations between
Alice and Bob’s system through the violation of the Bell inequality associated
to the DIQKD protocol. This Bell inequality is defined by a linear function g of
the input-output correlations q(ab|xy):

g =
∑

a,b,x,y

gabxyq(ab|xy) ∈ gloc, (1)

where gabxy are the coefficients defining the Bell inequality and gloc is its local
bound. A particular example of a Bell inequality is the CHSH inequality [13]

gchsh =
∑

a,b,x,y

(−1)a+b+xyq(ab|xy) ∈ 2, (2)

where a, b, x, y ⊕ {0, 1}.
After this initial “measure and estimate” phase, the rest of the protocol is

similar to any other QKD protocol. Alice publishes an Npub-bit message about
a, which is used by Bob to correct his errors b ≺ b∗, such that b∗ = a with
arbitrarily high probability. Alice and Bob then generate their final secret key k
by applying a 2-universal random function to a and b∗, respectively [15].

3 Generation of the Raw-Key Symbols

In the DIQDK approach, we do not assume that the devices behave according
to predetermined specifications. Yet, we must first specify how we model the
N pairs of systems used to generate the raw key. These N pairs are eventually
all measured using the inputs x = xraw and y = yraw, but since they where
initially selected at random and each of them could have been part of the Nest

pairs used to estimate the Bell violation, we must also consider what would
have happened for any other inputs x and y. Let therefore P (ab|xy) denote the
prior probability to obtain outcomes a and b if measurements x = (x1, . . . , xN )
and y = (y1, . . . , yN ) are made on these N pairs. This unknown probability
distribution characterizes the initial system at the beginning of the protocol.

In the theoretical model needed for the security proof of Ref. [10], the N bits
of the raw key are viewed as arising from N commuting measurements on a joint
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quantum system εAB. That is, the probabilities P (ab|xy) can be written as

P (ab|xy) = tr[εAB
N∏

i=1

Ai(ai|xi)Bi(bi|yi)], (3)

where Ai(ai|xi) are operators describing the measurements performed by Alice
on her ith system if she select input xi (they thus satisfy Ai(ai|xi) ⊥ 0 and∑

ai
Ai(ai|xi) = 11), where, similarly, Bi(bi|yi) are operators describing the

measurements by Bob, and where these measurement operators satisfy the
commutation relations

[Ai(a|x), Bj(b|y)] = 0 (4)

and
[Ai(a|x), Aj(a∗|x∗)] = [Bi(b|y), Bj(b∗|y∗)] = 0 (5)

for all i, j and a, a∗, b, b∗, x, x∗. Apart from the conditions (4) and (5), the state
εAB and the operators Ai(ai|xi) and Bi(bi|yi) are arbitrary and unspecified. The
only constraint on them is that they should return measurement probabilities (3)
compatible with the statistics of the Nest randomly selected pairs, characterized
by the observed Bell-inequality violation g.

In quantum theory, measurement operators that commute represent compat-
ible measurements that do not influence each other and which can be performed
independently of each other. The commutation relations (4) between the opera-
tors Ai(ai|xi) describing Alice’s measurement devices and the operators Bi(bi|yi)
describing Bob’s measurement devices are thus a necessary part of any DIQDK
model; security cannot be guaranteed without them.

The commutation relations (5) between the operators Ai(ai|xi) within Alice’s
location, and the commutation relations between the operators Bi(bi|yi) within
Bob’s location, represent, on the other hand, additional constraints specific to
the model discussed here. As already mentioned these commutation relations are
satisfied in an implementation in which the N bits of the raw key are generated by
N separate and non-interacting pairs of devices used in parallel. Let’s elaborate
more on this point.

In the extreme adversarial scenario where the provider of the devices is not
trusted (e.g., if the provider is the eavesdropper itself), this independence condi-
tion can be guaranteed by shielding the N devices in such a way that no commu-
nication between them occurs during the measurement process. One could also
consider a setup where the measurements performed by the N devices define
space-like separated events. However, even in a space-like separated configura-
tion, the ability to shield the devices is required if the provider of the devices is
untrusted, as we cannot guarantee through other means that the devices do not
send directly unwanted information to the adversary. But, then, the ability to
shield the devices is already sufficient by itself to guarantee (5).

In a more practical implementation where the raw key is generated by repeat-
edly performing measurements in sequence on a single pair of devices, the com-
mutation relation (5) expresses the condition that the functioning of the devices
should not depend on any internal memory storing the quantum states and
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measurement results obtained in previous rounds. In the most general DIQKD
model, the quantum devices could possess a quantum memory such that the
state of the system after the ith measurement is passed to the successive round
i + 1 (this state could also contain classical information about the measurement
inputs and outputs of step i). If εi

AB denotes the state of the system before
measurement i, the unormalised state passed to round i + 1 in the event that
Alice and Bob use inputs xi and yi and obtain outputs ai and bi would then be
Ã†

i (ai|xi)B̃
†
i (bi|yi)εi

ABÃi(ai|xi)B̃i(bi|yi) where Ãi(a|x) and B̃i(bi|xi) are gener-
alized measurement operators describing Alice’s and Bob’s measurements and
satisfying

∑
a Ãi(a|x)Ã†

i (a|x) =
∑

b B̃i(b|y)B̃†
i (b|y) = I. In such a model, the

probabilities P (ab|xy) are then given by

P (ab|xy) = tr[
1∏

i=N

Ã†
i (ai|xi)B̃

†
i (bi|yi) × εAB

N∏
i=1

Ãi(ai|xi)B̃i(bi|yi)], (6)

where εAB denotes the initial state at the beginning of the protocol, and the
order in the products is relevant. Imposing commutation relations between all
operators pertaining to different rounds corresponds to neglect the causal order
in (6) due to memory effects. We then recover a model of the form (3) by defining
Ai(a|x) = Ãi(a|x)Ã†

i (a|x) and Bi(b|y) = B̃i(b|y)B̃†
i (b|y).

4 Security Proof

We are now in position to review the bound on the secret key rate derived
in [10]. This bound can be achieved against an unrestricted eavesdropper Eve
for any QKD protocol satisfying the description (3), (4) and (5). The information
available to Eve can be represented by a quantum system that is correlated with
the Alice and Bob’s systems. We denote by εABE the corresponding (2N + 1)-
partite state, with trE εABE = εAB. This state describes the 2N + 1 systems at
the beginning of the protocol. After the N systems of Alice have been measured,
the joint state of Alice and Eve is described by the classical-quantum state

εAE =
∑
a

P (a|xraw)|a〉⊗a| ∼ εE|a, (7)

where εE|a is the reduced state of Eve conditioned on Alice having observed the
outcomes a.

The length of the secret key k obtained by processing the raw key a with
an error correcting protocol and a 2-universal random function is, up to terms
of order

→
N , lower bounded by Hmin(a|E) − Npub, where Hmin(a|E) is the min-

entropy of a conditioned on Eve’s information for the state (7) and Npub is
the length of the message published by Alice in the error-correcting phase. It
is shown in [16] that the length of the public message necessary for correcting
Bob’s errors is Npub = NH(a|b), up to terms of order

→
N . The quantity H(a|b)

is the conditional Shannon entropy [16], defined by

H(a|b) =
∑
a,b

−P (a, b) log2 P (a|b), (8)
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where P (a, b) = 1/N
∑N

i=1

∑
ai,bi

P (ai = a, bi = b) is the average probability
with witch the pair of outcomes a and b are observed. Computing the key rate
of the DIQKD protocol, thus essentially amounts to determine the min-entropy
Hmin(a|E). A bound on this quantity can be derived as a function of the esti-
mated Bell violation g.

Consider first the simpler case of one pair of systems (N = 1) uncorrelated
to the adversary and characterized by the joint probabilities

P (ab|xy) = tr[εA(a|x)B(b|y)]. (9)

If P (a|xraw) < 1 for all a, then the outcome of the measurement xraw cannot be
perfectly predicted. The degree of unpredictability of a can be quantified by the
probability to correctly guess a [17]. This guessing probability is equal to

Pguess(a) = max
a

P (a|xraw), (10)

since the best guess that one can make about a is to output the most probable
outcome. If Pguess(a) = 1 then the outcome of the measurement xraw can be
predicted with certainty, while lower values for Pguess(a) imply less predictability.

Let gexp =
∑

abxy gabxyP (ab|xy) = tr[εG] denote the expected quantum
violation of the Bell inequality (1) for the pair of systems described by (9),
where

G =
∑

a,b,x,y

gabxyA(a|x)B(b|y), (11)

is the Bell operator associated to the inequality g and to the measurements
A(a|x) and B(b|y). Independently of the precise form of the state ε and of the
measurement operators A(a|x) and B(b|y), the value of the Bell expectation gexp
imposes a constraint on the guessing probability (10). Formally, this constraint
can be expressed as a bound of the form

Pguess(a) ∈ f(gexp), (12)

satisfied by all quantum distributions (9). The optimal point-wise values f(g0)
(for any g0) correspond to the solution of the following maximization problem

max
ρ,A,B

tr[εA(a|xraw)]

subject to tr[εG] = g0,
(13)

which can be solved (or upper-bounded) using the semidefinite programming
(SDP) relaxations introduced in [18]. The resulting functions f (and in particu-
lar the optimal one) are then always concave and monotonically decreasing, as
follows from the convex nature of the problem (13) and of its associated SDP
relaxations. In the case of the CHSH inequality, the optimal function f is [10,19]

fchsh(g) =
1
2

+
1
2

√
2 − g2

4
, (14)
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for any of the two possible values xraw = 0 or 1 entering in the CHSH
definition (2).

As the function f is concave, it can be upper-bounded by its linearization
around any point g0

f(g) ∈ μ(g0) + Ω(g0)g, (15)

where μ(g0) = f(g0) − f ∗(g0)g0, Ω(g0) = f ∗(g0). From concavity, it also follows
that

f(g) = min
g0

[μ(g0) + Ω(g0)g] . (16)

The bound (12) is thus equivalent to the family of inequalities P (a|xraw) ∈
μ(g0) + Ω(g0), gexp for all a and g0. Since these inequalities are satisfied by any
quantum distribution (9), and thus in particular by any state ε, they are equiv-
alent to the operator inequalities

A(a|xraw) ∈ μ(g0)11 + Ω(g0)G, (17)

valid for all a, g0, and any set of measurements A(a|x) and B(b|y).
Moving to the case of N pairs of systems described by (3) and (7), the prob-

ability with which Eve can correctly guess the raw key a by measuring her side
information E can be computed as follows. Suppose thus that Eve performs some
measurement z on her system E and obtains an outcome e. Let P (a|xraw, ez)
denote the probability distribution of a conditioned on Eve’s information. On
average, her probability to correctly guess a is given by

∑
e P (e|z)maxa

P (a|xraw, ez), and her optimal correct-guessing probability (optimized over all
measurements z) is [17]:

Pguess(a|E) = max
z

∑
e

P (e|z)max
a

P (a|xraw, ez). (18)

Denote by εAB|ez the 2N -partite state prepared when Eve measures z and
obtains the outcome e (with εAB =

∑
e P (e|z)εAB|ez), and write A(a|xraw) =∏N

i=1 Ai(ai|xraw), so that

P (a|xraw, ez) = tr
[
εAB|ezA(a|xraw)

]
. (19)

Consider the following N -partite Bell operator

G(g0) =
N∏

i=1

[μ(g0)11 + Ω(g0)Gi], (20)

where Gi =
∑

a,b,x,y gabxyAi(ai|xi)Bi(bi|yi). The single-copy operator inequality
(17) implies that for all a and g0

A(a|xraw) ∈ G(g0). (21)

To show this, write A∗
i = Ai(ai|xraw) and G∗

i = μ(g0)11 + Ω(g0)Gi. We thus want
to establish that

∏N
i=1 G∗

i − ∏N
i=1 A∗

i ⊥ 0. Inequality (17) implies that for all i,
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0 ∈ A∗
i ∈ G∗

i. Defining Zi = G∗
i − A∗

i ⊥ 0, note then that
∏N

i=1 G∗
i − ∏N

i=1 A∗
i =∏N

i=1(Zi +A∗
i)−∏N

i=1 A∗
i =

∏N
i=1 Zi +Z1

∏N
i=2 A∗

i + · · ·+∏N−1
i=1 A∗

iZn. Inequality
(21) then follows from the fact that each term in this sum is positive since it is
the product of operators that are positive and, according to (5), commuting.

Using inequality (21) in (18), we find

Pguess(a|E) = max
z

∑
e

P (e|z) max
a

tr
[
εAB|ezA(a|xraw)

]

∈ max
z

∑
e

P (e|z) min
g0

tr
[
εAB|ezG(g0)

]
,

∈ min
g0

tr [εAB G(g0)] (22)

where to deduce the first inequality we used, in addition to (21), the positivity
of εAB|ez.

Note now that the quantity tr [εAB,G(g0)] is a function of the marginal
distributions P (ab|xy) of Alice and Bob only and does not involve directly the
system of Eve. It is shown in [17], that Alice and Bob can estimate (with high
probability) this quantity from the Bell violation g observed on the randomly-
chosen Nest pairs. More precisely, Lemma 5 from reference [17] implies that the
inequality

tr [εAB,G(g0)] ∈
[
μ(g0) + Ω(g0)gest + N

−1/4
est

]N

(23)

holds except with probability exponentially small in Nest. This, (22), and (16)
imply that

Pguess(a|E) ∈
[
f(gest) + N

−1/4
est

]N

. (24)

Finally, it is shown in [17] that the (quantum) min-entropy Hmin(a|E) of a
state of the form (7) is given by

Hmin(a|E) = − log2Pguess(a|E), (25)

which implies the asymptotic secret key rate

R ⊥ − log2f(gest) − H(a|b). (26)

As announced, the bound applies to any Bell inequality and the corresponding
DIQKD protocol.

5 Key Rates for the Chained Bell Inequality

As an illustration of the formalism, we explicitly compute the secret-key rates for
the chained Bell inequalities of Ref. [20]. These inequalities were initially intro-
duced in the scenario in which Alice and Bob perform M measurements of two
outcomes. Later, they were generalized to an arbitrary number of outcomes [21],
but we don’t consider this generalization here.
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Fig. 1. Key rates for the chained Bell inequalities for 2, 3 and 4 measurements. The
critical visibility such that the lower bound on the key rate is zero is approximately of
0.9. Increasing the number of settings up to 4 worsens this critical visibility.

The chained inequalities for two measurement outcomes read as follows. The
two outcomes of each measurement by Alice (Bob) are labeled by Ai = ±1
(Bi = ±1), with i = 1, . . . , M . Then, for any local model one has

M∑
i=1

⊗AiBi〉 +
M−1∑
i=1

⊗BiAi+1〉 − ⊗BMA1〉 ∈ 2(M − 1), (27)

where ⊗X〉 stands for the expectation value of the random variable X. The case
M = 2 corresponds to the standard CHSH inequality.

In Fig. 2 we depict the lower bound on the secret-key rates (26) for DIQKD
protocols based on the chained inequalities for M = 2, 3, 4. These rates have
been computed for the probability distribution resulting from applying the opti-
mal measurements for the maximal quantum violation of the chained inequality
on a mixture of a two-qubit maximally entangled state |Φ+〉 and white noise,
that is,

εAB = v|Φ+〉⊗Φ+| + (1 − v)11/4, (28)

where v is often known as the visibility. It is important to recall that, while the
rate is computed for a concrete set of states and measurements, the security
analysis is fully device independent (up to the requirement that measurement
outcomes are causally disconnected). Each value of the visibility defines a value
for the error rate between Alice and Bob, ρAB = (1 + v)/2, which specifies the
amount of bits needed for error correction. The violation of the chained Bell
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inequality is just the maximal quantum violation multiplied by the visibility
v. Putting the two things together, one derives the rates given in Fig. 1. The
obtained critical values of the visibility such that the key rate is provably strictly
positive, are of approximately 0.9. They are then comparable to those of standard
QKD, which are around 0.78.
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Abstract. It is known that the maximum classical mutual informa-
tion that can be achieved between measurements on a pair of quantum
systems can drastically underestimate the quantum mutual informa-
tion between those systems. In this article, we quantify this distinction
between classical and quantum information by demonstrating that after
removing a logarithmic-sized quantum system from one half of a pair of
perfectly correlated bitstrings, even the most sensitive pair of measure-
ments might only yield outcomes essentially independent of each other.
This effect is a form of information locking but the definition we use
is strictly stronger than those used previously. Moreover, we find that
this property is generic, in the sense that it occurs when removing a
random subsystem. As such, the effect might be relevant to statistical
mechanics or black hole physics. Previous work on information locking
had always assumed a uniform message. In this article, we assume only a
min-entropy bound on the message and also explore the effect of entan-
glement. We find that classical information is strongly locked almost until
it can be completely decoded. As a cryptographic application of these
results, we exhibit a quantum key distribution protocol that is “secure”
if the eavesdropper’s information about the secret key is measured using
the accessible information but in which leakage of even a logarithmic
number of key bits compromises the secrecy of all the others.

Keywords: Information locking · Quantum information · Encryption ·
Discord · Measure concentration · Black holes

1 Introduction

One of the most basic and intuitive properties of most information measures is
that the amount of information carried by a physical system must be bounded
by its size. For example, if one receives ten physical bits, then one’s information,
regardless of what that information is “about”, should not increase by more than
ten bits. While this is true for most information measures, in quantum mechanics
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there exist natural ways of measuring information that violate this principle by a
wide margin. In particular, this violation occurs when one defines the information
contained in a quantum system as the amount of classical information that can be
extracted by the best possible measurement. To construct examples of this effect,
we take a classical message and encode it into a two-part quantum message: a
cyphertext, which is roughly as large as the message, and a much smaller key.
Given both the cyphertext and the key, the message can be perfectly retrieved.
We can then look at the amount of information that can be extracted about the
message by a measurement given only access to the cyphertext. Locking occurs if
this amount of information is less than the amount of information in the message
minus the size of the key.

In previous work on locking [DHL+04,HLSW04], this amount of informa-
tion was taken to be the accessible information, the maximum (classical) mutual
information between the message and the result of a measurement. In [DHL+04],
the authors constructed the first example of locking as follows: the cyphertext
consists of the uniformly random message, encoded in one of two mutually unbi-
ased bases, and the (one-bit) key reveals the basis in which the encoding was
done. In this example, given only the cyphertext, the classical mutual informa-
tion is only n

2 for an n-bit message. Hence, the one-bit key can increase the
classical mutual information by another n

2 bits. In [HLSW04], the authors con-
sidered a protocol in which one encodes a classical message using a fixed basis,
and then applies one of k fixed unitaries (where k = O(polylog n + log 1

ε ));
the classical key reveals which unitary was applied. If the unitaries are cho-
sen according to the Haar measure, then with high probability, the accessible
information was shown to be at most εn when one only has the cyphertext.

In this paper, we present stronger and more general locking results, and show
that this effect is generic. Our results will be stronger in the sense that instead
of using the accessible information, we will define locking in terms of the trace
distance between measurement results on the real state and measurement results
on a state completely independent of the message (see Definition 4). Unlike
the accessible information, this has a very natural operational interpretation:
it bounds the largest probability with which we can guess, given a message
m and the result x of a measurement done on a cyphertext, whether x comes
from a valid cyphertext for m or from a cyphertext generated independently
of m. In other words, one could almost perfectly reproduce any measurement
results made on a valid cyphertext without having access to the cyphertext at
all. Moreover, we recover a strengthened version the earlier statements about the
accessible information. Whereas previously the accessible information was shown
to be at most 3 bits, our techniques show that the accessible information can
be made arbitrarily small. (A follow-up paper further strengthens the definition
and explores connections to low-distortion embeddings [FHS10].)

Despite this stronger definition, we will be able to show that the locking
phenomenon is generic. Instead of having a classical key reveal the basis in which
the information is encoded, as in [DHL+04,HLSW04], we consider the case where
there is a single unitary, and the key is simply a small part of the quantum system
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after the unitary is applied. This means that we can make not only cryptographic
statements, but also statements about the dynamics of physical systems, where
the unitary represents the evolution of the system. In particular, we will be able
to show that locking occurs with high probability in physical systems whose
internal dynamics are sufficiently generic to be adequately modelled by a Haar-
distributed unitary. This can therefore give interesting results in the context of
thermodynamics, or of the black hole information problem.

In that vein, we will also allow the measuring device to share entanglement
with the cyphertext-key compound system. While this may not correspond to
a very meaningful cryptographic scenario, it allows us to study the behavior of
entanglement in physical systems, and to study the extent to which the presence
of entanglement interferes with this locking effect.

Finally, in contrast to previous studies, we will not limit the message (or
the entanglement) to be uniform; the size of the key will instead depend on the
min-entropy of the message. This assumption is easier to justify in cryptographic
applications. Indeed, while the locking results we present here can be interpreted
as demonstrating the possibility of encrypting classical messages in quantum
systems using only very small keys, care must be taking when composing such
encryption with other protocols. We use our results to exhibit a quantum key
distribution protocol, for example, that appears to be secure if the eavesdropper’s
information about the secret key is measured using the accessible information,
but in which leakage of a logarithmic amount of key causes the entire key to be
compromised.

1.1 Transmitting Information Through a Generic Unitary

To end the introduction, we introduce the physical scenario that will occupy us
throughout the article. The situation is depicted in Fig. 1.

E

E’

N

M M

X
D

C
U

ω

σ

ρ

Fig. 1. A quantum circuit depicting the physical scenario. The classical message M
gets encoded in N , and the unitary then mixes it with the E part of the shared
entanglement. If the information is locked, any joint measurement M on C and E′ will
yield a result X that is almost independent of the message. On the other hand, if C is
large enough, there will be a joint measurement M reliably decoding M .
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Now, let {|Ωm≤ : 1 � m � |M |} be any orthonormal basis for N . The analysis
will focus on the properties of the states

ρMN :=
|M |∑
m=1

pm|m≤→m|M ∈ |Ωm≤→Ωm|N and (1)

ΠMCDE′
:=

(
I
ME′ ∈ UNE∗CD

) (
ρMN ∈ σEE′) (

I
ME′ ∈ UNE∗CD

)†
(2)

Our objective is to demonstrate that until C is large enough that there exists
a measurement on CE√ capable of revealing all the information about the mes-
sage M , no measurement will reveal any information about the message. This
can’t quite be true, of course, so what we will demonstrate is that the jump
from no information to complete information involves enlarging C by a number
of qubits logarithmic in the size of the message M and the amount of entangle-
ment E.

Assume for simplicity both that M is uniformly distributed and that the
state σEE′

is maximally entangled. As a first step, it is necessary to determine
how large C needs to be in order for there to exist a measurement on CE√ that
will reveal the message M . Begin by purifying the state ρ to

|ρ≤RMN =
1√|M |

|M |∑
m=1

|m≤R ∈ |m≤M ∈ |Ωm≤N . (3)

Even more demanding than performing a measurement to reveal m is the task
of transmitting the quantum information about RM through U , allowing the
decoder, who has access only to CE√, to recover a high fidelity copy of the state
|ρ≤RMN . If U is selected according to the Haar measure, then Theorem IV.1 of
[ADHW09] implies that there is a quantum operation DCE′∗N acting only on
CE√ such that

∥∥∥D
(
TrD

[
UNE∗CD · (ρRMN ∈ σEE′

)
])

− ρRMN
∥∥∥
1

⊕ 2

√
M

C
. (4)

Because the trace distance is monotonic under quantum operations, it will not
increase by taking the partial trace over R and measuring in the basis {|Ωm≤}
[NC00]. If we let p(m√|m) be the probability of getting an outcome |Ωm′≤ when
the message was in fact m, Eq. (4) therefore implies that

1
M

∑
m

∑
m′ ⊕=m

p(m√|m) ⊕
√

M

C
. (5)

In words, the probability of the measurement yielding the incorrect outcome,
averaged over all messages, is at most

√
M/C, so as soon as C is significantly

larger than M , a measurement on CE√ can be found that will reveal the message.
Our goal in this article will be to demonstrate that until this condition is met,
no measurement will reveal any significant information about the message.
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1.2 Structure and Notation

In Sect. 2 we define ε-locking schemes in terms of (s, Δ)-quasi-measurements,
a new tool which we use later to extend our results to general POVMs. In
Sect. 3 we present the main technical theorem (Theorem 5) for the existence of
ε-locking schemes. The concentration of measure and union bound arguments
which constitute the proof of the theorem, as well as the proofs of all of the
remaining lemmas, corollaries, and theorems, can be found in [DFHL10]. In
Sect. 4, we calculate the minimum key size to securely lock against projective
measurement and in Sect. 5 we extend these results for POVMs. Finally, in
Sects. 6–8 we show the necessary argument for decoding, applications to the
security of quantum key distribution, and review the results.

All logarithms are taken base 2. |A| will denote the dimension of Hilbert
space A. However, we will often drop the | · |. For example, the dimension of
the composite system MCK is denoted by MCK (a scalar value). A⊥2 will
denote two identical copies of A the second of which is denoted by A. ψA is the
maximally mixed state I

A

|A| . U(A) is the unitary group on A. Pos(A) is the subset
of Hermitian operators from A to A consisting of positive semidefinite matrices.
L(s, Δ) will denote the set of all (s, Δ)-quasi-measurements, see Definition 3.
We will use M · N to denote MNM†. The following three norms are defined:∥∥MA∗B

∥∥
1

= Tr
≺

M†M , ⊥|Ω≤⊥2 =
√|→Ω|Ω≤|, and

∥∥MA∗B
∥∥
2

=
√

Tr[M†M ].
We will denote by

∥∥MA∗B
∥∥

∞ the largest singular value of M . H2(A)ρ will be
the Renyi 2-entropy of A, defined as − log Tr[Π2]. Hmin(A)ρ will be the quantum
min-entropy of A, defined as − log minλ∈R{θ : ΠA � θIA}. Hmax(A)ρ will be the
quantum max-entropy of A, defined as 2 log Tr

√
ΠA. We will denote by I(A;B)ρ

the mutual information of A and B, defined as H(A)ρ + H(B)ρ − H(AB)ρ.

2 Definitions

This section will present the basic definitions needed to state our results. First,
it will be very convenient for us to represent measurements via superoperators
in the following manner:

Definition 1 (Measurement superoperator). We call a completely positive,
trace-preserving (CPTP) map M : B(A) → B(X) a measurement superop-
erator if it is of the form M(Π) =

∑N
i=1 |i≤→i|X Tr[MA

i Π], where {|i≤A : i ⊗
{1, . . . , N}} is an orthonormal basis for X, each MA

i is positive semidefinite,
and

∑N
i=1 MA

i = I
A.

These play a central role in the definition of accessible information.

Definition 2 (Accessible information [Fuc96]). Let ΠAB be a quantum state.
Then, the accessible information Iacc(A;B) is defined as

Iacc(A;B)ρ := sup
A,B

I(X;Y )(A⊥B)(ρ),
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CK

M M

X
EK

C
U

ω

σ

ρ

Fig. 2. A quantum circuit depicting the physical scenario with the locking-specific
identifications N ∼= C ⊗ K and D ∼= E ⊗ K made.

where AA∗X and BB∗Y are measurement superoperators, and the supremum is
taken over all possible superoperators.

We also need to introduce the concept of quasi-measurements for our analysis.
They are, as their name indicates, almost measurements, but differ in three
ways: they only contain rank-one elements of equal weight, they have exactly n
outcomes, and the sum of all the elements does not necessarily equal the identity,
but is instead bounded by kI:

Definition 3 (Quasi-measurement). We call a superoperator MA∗B an
(s, Δ)-quasi-measurement if it is of the form

M(Π) =
|A|
s

s∑
i=1

|i≤→ϕi|Π|ϕi≤→i|

where the |i≤ index an orthonormal basis for B, and |A|
s

∑s
i=1 |ϕi≤→ϕi| � ΔIA.

We call the set of all (s, Δ)-quasi-measurements on a given system, L(s, Δ).

The reason for introducing these, as will soon become apparent, is that they are
almost equivalent to POVMs for our purposes while being much easier to handle
mathematically. By definition projective measurements are simply (A, 1)-quasi-
measurements.

We now give the formal, strengthened definition of locking. The states in
question were introduced in Sect. 1.1. However, because the cyphertext will
always be smaller than or equal to the message when locking occurs, certain
identifications become possible. In particular, we can assume without loss of
generality that N ∼= C ∈ K and D ∼= E ∈ K. Since the analysis will be per-
formed using only C, K and E, we reproduce the illustration of the physical
scenario with the identifications made in Fig. 2.

Definition 4 (ε-locking scheme). Let M,C,K,E and E√ be quantum sys-
tems. Let ΠMCKEE′

be a quantum state of the form

ΠMCKEE′
=

∑
m

pmUCKE
(
|m≤→m|M ∈ |Ωm≤→Ωm|CK ∈ |σ≤→σ|EE′)

UCKE†
,

(6)
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where the |Ωm≤ are orthogonal and UCKE is unitary. Then we call Π an ε-locking
scheme if for any measurement superoperator MCE′∗X , we have that

∥∥∥M
(
ΠMCE′) − M

(
ΠM ∈ ΠCE′)∥∥∥

1
� ε.

Note that this definition of locking is rather different from that used in previ-
ous work in the area [DHL+04,HLSW04]. Their definition involved the accessible
information between the cyphertext and the message. Our definition implies the
older one via a direct application of the Alicki-Fannes inequality [AF04].

Four quantities will be particularly useful for quantifying variations from
uniform messages and maximal entanglement,

ςM,∞ := 2log M−Hmin(M)σ , (7)

ςM,2 := 2log M−H2(M)σ , (8)

ςE,∞ := 2log E−Hmin(E)ω , (9)

ςE,2 := 2log E−H2(E)ω . (10)

The ς terms are used in the calculations to provide more general statements
relating the entropy of the message and entanglement to the key size.

3 Concentration of the Distinguishability from
Independence

The full proof of the following theorem is found in [DFHL10].

Theorem 5. Given the quantum state ΠMCKEE′
= UCKE · (ρMCK ∈ σEE′

)
where U is a random unitary operator chosen according to the Haar measure, ρ
is as defined in Eq. (1), E√ ∼= E, and σEE′

is a bipartite pure state, the following
bound holds

Pr
U

{
sup

M∈L(s,η)

∥∥∥M
(
ΠMCE′) − M

(
ΠM ∈ ΠCE′)∥∥∥

1
> ε

}

�exp

(
2sCE ln

(
40

≺
CE

ε

√
ςM,2ςE,2

)
− (CKE)2

28Δ2ςM,∞ςE,∞

(
ε − 4ςE,∞≺

KE

)2
)

.

In the above, ςM,∞, ςM,2, ςE,2 and ςE,∞ are as defined in Eqs. (7), (8), (10)
and (9).

4 Locking Against Projective Measurements

In this section we will only consider projective measurements, in other words
(s, Δ) = (CE√, 1). We will also state all of the subsequent theorems in terms of
qubits. For this reason we will identify C = 2c, K = 2k and E = E√ = 2e.
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Corollary 6. Consider the locking scheme described in Definition 4 for a uni-
form message with maximal entanglement available at the measurement. Choose
p and ξ such that ε > 8

√
1/KE and p > 2−2(CE)2 . Then the scheme will be an

ε-locking locking scheme except with probability p so long as the measurement
superoperators are restricted to projective measurements and

k > 9 + 2 log
1
ε

+
1
2

log(c + e).

Corollary 6, and its extension to arbitrary POVM measurements in Corollary
9 is a mathematical expression that “generically, information is locked until it
can be completely decoded.” To arrive at this interpretation, recall from Eq. (4)
that to achieve a decoding error of ξ, the measurement must be supplied with
the entanglement through system E√ as well as a system C satisfying c − n >
2 log(1/ξ). Of course, this condition could never be met if the constraint n = c+k
is assumed, but the constraint was only made for convenience to prove the locking
results. Using it to re-express Corollary 6, though, we find that the information
about the message is ξ-locked provided c = n − k < n − 9 − 2 log(1/ξ) − 1/2 ·
log(c + e). Therefore, regardless of the size of the message or the amount of
entanglement, the message goes from being ξ-locked to being decodable with
average probability of error at most ξ with the transfer of 9 + 4 log(1/ξ) + 1/2 ·
log(c + e) qubits.

We also present the dependence of the minimum key size k on the various
entropies of the message M and the entanglement E.

Corollary 7. Consider the locking scheme described in Definition 4 for a mes-
sage of bounded entropy with entanglement of a bounded fidelity available at the
measurement. Choose ε and p satisfying ε > 8ςE,∞/

≺
KE and p > 2−2(CE)2 .

Then the scheme will be an ε-locking locking scheme except with probability p so
long as the measurement superoperators are restricted to projective measurements
and

k√ +
1
2

(
n − Hmin(M)σ

)
+

1
2

(
e − Hmin(E)ω

)
< k, (11)

where we’ve defined k√ as the lower bound given in Corollary 6, i.e.: k√ = 9 +
2 log(1/ε) + 1/2 · log(c + e).

5 Locking Against Generalized Measurements

We show that the results of the previous section hold not only for projective
measurements, but also for generalPOVMs,up toveryminor changes in thevarious
constants.Themaindifficultyat thispoint is thatwecannotuseTheorem 5directly,
since it only gives bounds for (s, Δ)-quasi-measurements. We must therefore show
that a general POVM behaves essentially like an (s, Δ)-quasi-measurement for the
purposes of the theorem. Our strategy for the proof (see [DFHL10]) is probabilistic
in nature: we show that doing a general POVM M is mathematically equivalent
to randomly selecting a measurement constructed from possible sequences of



The Locking-Decoding Frontier for Generic Dynamics 31

s measurement results obtained from M. With overwhelming probability, the
sequence chosen is an (s, Δ)-quasi-measurement, and Theorem 5 then applies in
this case.

Theorem 8. Given the quantum state ΠMCKEE′
= UCKE · (ρMCK ∈ σEE′

)
where U is a random unitary operator chosen according to the Haar measure, ρ
is as defined in Eq. (1) and σEE′

a bipartite pure state, then

Pr
U

{
sup
M

∥∥∥M
(
ΠMCE′) − M

(
ΠM ∈ ΠCE′)∥∥∥

1
> ε

}

� exp

(
9(CE)2 ln(CE) ln

(
40

≺
CE

ε

√
ςM,2ςE,2

)

− (CKE)2

210ςM,∞ςE,∞

(
ε − 8ςE,∞≺

KE

)2
)

.

In the above, ςM,∞, ςM,2, ςE,2 and ςE,∞ are as defined in Eqs. (7), (8), (10)
and (9).

A minimum key size can then be extracted in similar fashion to the previous
section.

Corollary 9. Consider the locking scheme described in Definition 4 for a uni-
form message and maximal entanglement available at the measurement. Choose
p and ξ such that ε > 16

√
1/KE and p > 2−9(CE)2 . Then the scheme will be an

ε-locking locking scheme except with probability p so long as

11 + 2 log
1
ε

+ log(c + e) < k.

Corollary 10. Consider the locking scheme described in Definition 4 for a mes-
sage of bounded entropy with entanglement of a bounded fidelity available at the
measurement. Choose p and ξ such that ε > 16ςE,∞/

≺
KE and p > 2−9(CE)2 .

Then the scheme will be an ε-locking locking scheme except with probability p so
long as

k√ +
1
2

(
n − Hmin(M)σ

)
+

1
2

(
e − Hmin(E)ω

)
< k, (12)

where we’ve defined k√ as the lower bound given in Corollary 9, i.e.: k√ = 11 +
2 log(1/ε) + log(c + e).

6 Locking Versus Decodability

The previous sections have shown that, under certain conditions, no classical
information is recoverable by the receiver. Here we aim to show that, in many
regimes, these results are essentially optimal. We do this by showing that if we
make the key only very slightly smaller, then with overwhelming probability,
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the classical message will be decodable with a negligible error probability. In
fact we prove even more: in this regime where the information is decodable,
the decoder can even decode a purification of the classical message. In other
words, in this generic scenario where U is chosen with no preferred basis, either
all classical information is locked away, or we can decode quantum information.
This is formalized in the next theorem.

In order to study decodability, we must discard the identifications made in
Fig. 2 to study locking and return to the original scenario described by Fig. 1.
Whereas k was previously the number of qubits in system K, there is no system
K in Fig. 2. Instead, we define k = n − c, which is consistent with its earlier
definition. Now, however, it might be the case that k is negative since decoding
could require the cyphertext to be longer than the message.

The following theorem generalizes the discussion of Sect. 1.1 to nonuniform
messages and imperfect entanglement.

Theorem 11. If U is chosen according to the Haar measure, then the informa-
tion in the scheme described in Fig. 1 is such that there exists a decoding CPTP
map DCE′∗N such that

∥∥∥D
(
TrD

[
UNE∗CD

(
ρRMN ∈ σE′E

)
(UNE∗CD)†

])
− ρRMN

∥∥∥
1

� ε

asymptotically almost surely, where ρRMN is a purification of ρMN , as long as

k � 1
2

(
n − Hmax(M)σ

)
− 1

2

(
e − H2(E)ω

)
− 2 log(1/ε) − 4

7 Implications for the Security of Quantum Protocols
Against Quantum Adversaries

When designing quantum cryptographic protocols, it is often necessary to show
that a quantum adversary (“Eve”) is left with only a negligible amount of infor-
mation on some secret string. An initial attempt at formalizing this idea is to say
that, at the end of the protocol, regardless of what measurement Eve makes on
her quantum system, the mutual information between her measurement result
and the secret string is at most ε (in other words, her accessible information
about the message is at most ε). This was often taken as the security defini-
tion for quantum key distribution, usually implicitly by simply not considering
that the adversary might keep quantum data at the end of the protocol [LC99,
SP00,NC00,GL03,LCA05] (see also discussion in [BOHL+05,RK05,KRBM07]).
In [KRBM07], it is shown that this definition of security is inadequate, pre-
cisely because of possible locking effects. Indeed, this security definition does
not exclude the possibility that Eve, upon gaining partial knowledge of S after
the end of the protocol, could then gain more by making a measurement on her
quantum register that depends on the partial information that she has learned.
In [KRBM07], the authors exhibit an admittedly contrived quantum key dis-
tribution protocol which generates a secret n-bit key such that, if Eve learns
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the first n − 1 bits, she can then learn the remaining bit by measuring her own
quantum register.

The locking scheme presented above allows us to demonstrate a much more
spectacular failure of this security definition. We will show that there exists a
quantum key distribution protocol that ensures that an adversary has negligible
accessible information about the final key, but with which an adversary can
recover the entire key upon learning only a very small fraction of it.

7.1 Description of the Protocol

We will derive this faulty protocol by starting with a protocol that is truly secure,
and then making Alice send a locked version of the secret string directly to Eve.
We will be able to prove that regardless of what measurement Eve makes on
her state, she will learn essentially no information on the string, but of course,
she only needs to learn a tiny amount of information to unlock what Alice sent
her. More precisely, let P be a quantum key distribution protocol such that, at
the end of its execution, Alice and Bob share an n-bit string, and Eve has a
quantum state representing everything that she has managed to learn about the
string. We will also assume that P is a truly secure protocol: the string together
with Eve’s quantum state can be represented as a quantum state ρSE such that
⊥ρSE − ψS ∈ ρE⊥1 � ε, where S is a quantum register holding the secret string,
and E is Eve’s quantum register. Now, we will define the protocol P √ to be
the following quantum key distribution protocol: Alice and Bob first run P to
generate a string s of length n, and then Alice splits s into two parts: the first
part sk is of size O(log n), and the second part sc contains the rest of the key.
Alice then uses the classical key sk to create a quantum state in register C that
contains a locked version of sc and sends the system C to Eve.

How secure is P √? It is clearly very insecure, since, if Eve ever ends up learning
sk (via a known plaintext attack, for instance), she can then completely recover
sc. However, the next theorem shows that, right after the execution of P √, Eve
cannot make any measurement that will reveal information about the key. In
particular, P √ satisfies the requirement that Eve’s accessible information on the
key be very low.

Theorem 12. Let P and P √ be quantum key distribution protocols as defined as
above, and let ΠCES be the state at the end of the execution of P √: S contains the
n-bit string s, E is Eve’s quantum register after the execution of P , and C con-
tains the locked version of sc that Alice sent to Eve. Then, for any measurement
superoperator MCE∗X , there exists a state λX such that

∥∥M(ΠCES) − λX ∈ ψS
∥∥
1

� 2ε.

This also entails that

Iacc(S;CE) � 8εn + 2Δ(1 − 2ε) + 2Δ(2ε)

via the Alicki-Fannes inequality.
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Hence, we have shown that requiring that Eve’s accessible information on the
generated key be low is not an adequate definition of security for quantum key
distribution. We have exhibited a protocol P √ which guarantees low accessible
information and yet is clearly insecure due to locking effects.

8 Discussion

It is natural in physics to measure the “correlation” between two quantum phys-
ical systems using the correlation between the outcomes of measurements on
those two systems. Two-point correlation functions are but the most ubiquitous
examples. The results in this article demonstrate that this practice can some-
times be very misleading. The ξ-locking quantum states exhibited in this article
would reveal no correlations using any type of measurement, but enlarging one
of the two systems by a small number of qubits would expose near-perfect cor-
relation between the two systems. This is an important and counterintuitive
property of information in quantum mechanical systems: measurements can be
distressingly bad ways to detect correlation.

The extensive literature on quantum discord is essentially devoted to explor-
ing the relationship between accessible, or classical, and quantum mutual infor-
mation [OZ01,HV01,BKZ06]. Since the discord is defined as the gap between the
quantum and classical mutual informations, locking can be viewed as the extreme
case where classical mutual information doesn’t detect any of the very abundant
quantum mutual information. Previous work had demonstrated that transmit-
ting a constant number of physical qubits can cause the classical mutual infor-
mation to increase from a fixed small constant to an arbitrarily large value. In
this article, we have strengthened the definition of locking, replacing the mutual
information by the trace distance to a product distribution. Moreover, we have
shown that the locking effect still exists even when the trace distance (or the
classical mutual information) is made arbitrarily small. In light of these results,
claims that the discord is a robust measure of quantum correlation [WSFB09]
should treated with skepticism. While discord is certainly a signature of quan-
tumness, its susceptibility to locking means that it is in this important respect
not robust.

Previous studies of information locking had also always focused on the exam-
ple of sending classical information in one of a small number of different bases
unknown to the receiver. The intuition was that a receiver ignorant of the basis
could not do much better than guessing the basis and then measuring. Most of
the time, he would guess incorrectly and his measurement would then destroy the
information. Moving away from that paradigm, in this article we consider clas-
sical information encoded using a single generic unitary transformation mixing
the input information with half of an entangled state shared with the receiver.
The “key” then becomes a quantum system. While the original paradigm can
be recovered by eliminating the entanglement and encrypting the key quantum
system with a private quantum channel, the setting considered here is strictly
more general.
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Indeed, we find that, for an n-bit uniform message and maximal entangle-
ment, the information is generically ξ-locked until the receiver is within O(log n/ξ)
qubits of being able to completely decode the message. Our definition of lock-
ing is stronger than those previously studied and our results imply, for the first
time, that the classical mutual information can be made arbitrarily small. Our
method of proof in the case of projective measurements was a fairly standard
discretization argument but the extension to POVM measurements required a
new strategy exploiting the operator Chernoff bound. In contrast to previous
studies of locking, we do not require the message to be uniformly distributed,
working instead with a min-entropy bound on the distribution of messages. In
that case, we found that the key size was at most the gap between the max- and
min-entropies of the message, modulo the logarithmic terms that dominate in
the uniform situation.

For information theorists, this may appear reminiscent of a strong converse to
a channel capacity problem. Roughly, a strong converse theorem states that any
attempt to transmit above the channel capacity will result in the decoding error
probability approaching one. In our setting, the analog of the strong converse
would be a matching lower bound to Eq. (5) of the form

1 − ξ <
1
M

∑
m

∑
m′ ⊕=m

p(m√|m) (13)

whenever C < M , indicating the the probability of incorrectly decoding the
message is at least 1 − ξ. What we prove here is much stronger. Equation (13)
doesn’t rule out the possibility of being able to pin the message down to some
relatively small set. More generally, it doesn’t imply a small mutual information
between the message and the measurement outcome. Information locking does
imply these stronger statements.

As such, information locking has a natural cryptographic interpretation even
if we haven’t emphasized it in this article. The special case of our scenario men-
tioned above, with no entanglement and a quantum key encrypted using a private
quantum channel, leads to a method for encrypting classical messages using a
secret key of size independent of the length of the message. Similarly, informa-
tion locking schemes can be used to construct string commitment protocols with
surprisingly good parameters [BCH+06,BCH+08]. These cryptographic appli-
cations are emphasized in the companion article [FHS10].

To the extent that random unitary transformations provide good models of
black hole evaporation, our results might also have implications for that process.
Oppenheim and Smolin had previously suggested that information locking could
rescue the long-lived remnant hypothesis [SO06]. In essence, their idea was that
a remnant with a small number of states could lock all the information of a large
black hole, thereby evading the inconsistencies with low energy physics that arise
from having large numbers of remnant species [ACN87,CW87]. Their proposal,
however, relied on previously studied locking states that treated the encoded
message and the key very differently. Consequently, the proposal required that
the black hole keep hold of the key until the very last moments of its evaporation,
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implying some ad hoc dynamical distinction between encoded message and key
in the evaporation process. Our results imply that if the dynamics are well-
modeled by a Haar random unitary transformation, then any small portion of
the output system can be used as the key. No ad hoc distinction is necessary.

Ironically, the information locking effect is also perfectly compatible with the
rapid release of information from a black hole predicted in [HP07], assuming a
unitary evaporation process. That article observed that if a black hole is already
highly entangled with Hawking radiation from an earlier time, then messages
would be released from the black hole in the Hawking radiation once the black
hole dynamics had sufficiently “scrambled” the message with internal black hole
degrees of freedom. By virtue of the fact that we treat generic unitary transfor-
mations acting on a message and half of an entangled state, our results apply to
the setting of that paper and the followup [SS08]. Specifically, our results imply
that in the case of a larger message, no information about the message could
be obtained from the Hawking radiation until moments before it could all be
obtained. The conclusion depends, of course, on whether the random unitary
transformation is a good model of the evaporation process. While the generic
unitary transformations considered here would take exponential time to imple-
ment on a quantum computer, the follow-up article [FHS10] shows, at least, that
locking can be achieved with a quantum circuit of depth only slightly superlinear
in the number of qubits in the system. Other attempts to apply random unitary
transformations to the black hole information problem, such as [Llo06,BSZ09],
will be affected similarly by information locking.

To summarize, this article defined information locking more stringently than
previously and nonetheless found that this stronger form of locking is generic: if
information is encoded using a random unitary transformation, then it will either
be decodable or locked. Almost no middle ground occurs. This observation has
implications for cryptography and, potentially, for black hole physics.
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Abstract. We introduce the telescopic relative entropy (TRE), which
is a new regularisation of the relative entropy related to smoothing, to
overcome the problem that the relative entropy between pure states is
either zero or infinity and therefore useless as a distance measure in this
case. We study basic properties of this quantity, and find interesting
relationships between the TRE and the trace norm distance. We then
exploit the same techniques to obtain a new and shorter proof of an
upper bound on the relative Tsallis entropies in terms of the trace norm
distance, 1 − Tr ρ1−pσp ∼ || ρ − σ ||1 /2.

1 Introduction

The quantum relative entropy between two quantum states ε and Ω, S(ε ||Ω) =
Tr ε(log ε − log Ω), is a non-commutative generalisation of the Kullback-Leibler
distance between probability distributions. Because of its strong mathematical
connections with von Neumann entropy, and its interpretation as an optimal
asymptotic error rate in quantum hypothesis testing (in the context of Stein’s
lemma) relative entropy is widely used as a (non-symmetric) distance measure
between states [7].

One of its drawbacks, however, is that for non-faithful (rank-deficient) states
the relative entropy can be infinite. More precisely, the relative entropy is infinite
when there exists a pure state ρ such that ≤ρ |Ω|ρ→ is zero while ≤ρ |ε|ρ→ is not.
In particular, relative entropy is useless as a distance measure between pure
states, since it is infinite for pure ε and Ω, unless ε and Ω are exactly equal (in
which case it always gives 0).

There are various possibilities to overcome this deficiency. In [5], Lendi,
Farhadmotamed and van Wonderen proposed a regularised relative entropy as

R(ε ||Ω) = cd S

(
ε + 11d

1 + d

∣∣∣∣∣

∣∣∣∣∣
Ω + 11d

1 + d

)
,

where d is the dimension, and cd is a normalisation constant. This only works
for finite-dimensional states.

Another possibility, also useful for infinite dimensional states, is to apply a
smoothing process. One can define the smooth relative entropy between states
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ε and Π as the infimum of the ordinary relative entropy between ε and another
state Π , where Π is constrained to be σ-close to Ω in trace norm distance:

Sπ(ε ||Ω) = inf
ψ

{S(ε || Π) : Π ∈ 0,Tr Π ⊕ 1, || Π − Ω ||1 ⊕ σ} .

This form of smoothing has already been applied to Renyi entropies and max-
relative entropy [3,9], giving rise to a quantity with an operational interpretation,
but it could equally well be applied to ordinary relative entropy.

In the case of the ordinary relative entropy there is a simple canonical choice
for Ω that achieves the same purpose of regularisation but without having to find
the exact minimiser. Namely, we can take that Π that is collinear with ε and Ω;
i.e. Π = aε + (1 − a)Ω (with a = σ/ || ε − Ω ||1).

By operator monotonicity of the logarithm, we have

log(Π) = log(aε + (1 − a)Ω) ∈ log(aε),

and, therefore,

S(ε || Π) = Tr ε(log ε − log Π)
⊕ Tr ε(log ε − log(aε))
= − log a.

Thus, S(ε || Π) is bounded above by − log a, which is finite for 0 < a < 1. It
therefore makes perfect sense to normalise S(ε || Π) by dividing it by − log a,
producing a quantity that is always between 0 and 1.

These observations led us to define what we call the telescopic relative entropy
(TRE), a particular regularisation of the ordinary relative entropy that is also
defined in Hilbert spaces of infinite dimension:

Definition 1. For fixed a ≺ (0, 1), the a-telescopic relative entropy between
states ε and Ω is given by

Sa(ε ||Ω) :=
1

− log(a)
S(ε || aε + (1 − a)Ω). (1)

Furthermore, we define

S0(ε ||Ω) := lim
a∗0

Sa(ε ||Ω) (2)

S1(ε ||Ω) := lim
a∗1

Sa(ε ||Ω). (3)

We’ll show below that these limits exist.

The origin of the name is that the operation Ω ⊥→ aε + (1 − a)Ω acts like
a ‘telescope’ with ‘magnification factor’ 1/(1 − a), bringing the state Ω closer
to the ‘vantage point’ ε and bringing observed pairs of states Ωi closer to each
other.

The purpose of this paper is to initiate the study of this quantity. The tele-
scoping operation Ω ⊥→ aε + (1 − a)Ω and subsequent scaling of the relative
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entropy by 1/(− log a) may seem like a fairly innocuous operation, but has a
number of far-reaching and sometimes unexpected consequences. Because of the
linearity of the telescoping operation, the TRE inherits most of the desirable
properties of the ordinary relative entropy. However, a host of additional rela-
tions in the form of sharp inequalities may be derived that in the case of the
ordinary relative entropy simply make no sense, because the constants appearing
in the inequality would be infinite. At the end of this paper, we briefly consider
the telescoping operation in the context of the relative Tsallis entropies. We
exploit the same techniques used for the TRE to obtain a new and shorter proof
of a lower bound on the relative Tsallis entropies in terms of the trace norm
distance, 1 − Tr ε1−pΩp ⊕ || ε − Ω ||1 /2 [1].

2 Preliminaries

For any self-adjoint operator X on a Hilbert space H, we denote by suppX the
support of X, i.e. the subspace of H which is the orthogonal complement of
ker X, the kernel of X. The projector on the support of X will be denoted by
{X}. We denote by PX the orthogonal projector from H onto suppX, so that P √

X

is the injection of suppX back into H. Thus P √
XPX = {X}. The compression of

A to the support of X, which we’ll denote by A|X , is the operator with domain
suppX given by

A|X = PXAP √
X .

By definition, for any positive operator X ∈ 0, we have X|X > 0, strictly.
Two quantum states are mutually orthogonal, denoted ε ⊗ Ω, iff Tr εΩ = 0.
For any self-adjoint operator X, X+ will denote the positive part X+ =

(X + |X|)/2. It features in an expression for the trace norm distance between
states:

T (ε, Ω) :=
1
2

|| ε − Ω ||1 = Tr (ε − Ω)+. (4)

The trace of the positive part has the variational characterisation TrX+ =
maxP Tr XP , where the maximisation is over all self-adjoint projectors. Hence,
for all such projectors P , Tr XP ⊕ Tr X+.

The Pinsker bound is a lower bound on the ordinary relative entropy in terms
of trace norm distance [7].

S(ε ||Ω) ∈ 2T (ε, Ω)2. (5)

No upper bound in terms of the trace norm distance is possible, because the
relative entropy can be infinite.

We will also need the following integral representation of the logarithm: for
x > 0, we have

log x =
∫ ⊕

0

ds

(
1

1 + s
− 1

x + s

)
. (6)
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This immediately provides an integral representation for the telescopic relative
entropy:

Sa(ε ||Ω)

=
1

log a

∫ ⊕

0

ds Tr ε[(ε + s)−1 − (aε + (1 − a)Ω + s)−1] (7)

=
1

log a

∫ ⊕

0

ds Tr ε(ε + s)−1 (1 − a)(Ω − ε) (aε + (1 − a)Ω + s)−1. (8)

Another integral we will encounter is
∫ ⊕
0

ds x/(x + s)2. For x = 0, the
integral obviously gives 0. For x > 0 it gives 1. Hence

∫ ⊕

0

ds (ε + s)−1 ε (ε + s)−1 = {ε}. (9)

From integral representation (6) we get an expression for the Fréchet deriv-
ative of the matrix logarithm:

d

dt

∣∣∣∣∣
t=0

log(A + tΔ) =
∫ ⊕

0

ds (A + s)−1Δ(A + s)−1.

It will be useful to introduce the following linear map, for A ∈ 0:

TA(Δ) =
∫ ⊕

0

ds (A + s)−1Δ(A + s)−1. (10)

Thus
d

dt

∣∣∣∣∣
t=0

log(A + tΔ) = TA(Δ). (11)

It’s easy to check that for A ∈ 0, TA(A) = {A}. Thus, for A > 0, we have
TA(A) = 11.

From this integral representation it also follows that, for any self-adjoint A,
TA preserves the positive semidefinite order: if X ⊕ Y , then TA(X) ⊕ TA(Y ).
By cyclicity of the trace, we see that the map TA is self-adjoint: TrBTA(Δ) =
Tr ΔTA(B). Moreover, the map is positive semi-definite, in the sense that
Tr ΔTA(Δ) is positive for any self-adjoint Δ. This follows from the integral rep-
resentation and the fact that for positive X and self-adjoint Y , Tr XY XY =
Tr (X1/2Y X1/2)2 ∈ 0.

3 Basic Properties of Telescopic Relative Entropy

From the discussion in the Introduction, we recall that the value of the telescopic
relative entropy is always between 0 and 1, even for non-faithful states. Further-
more, it inherits many desirable properties from the ordinary relative entropy:
positivity, the fact that it is only zero when ε and Π are equal (provided a > 0),
joint convexity in its arguments, and monotonicity under CPT maps.
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Fig. 1. (a) Telescopic relative entropy Sa(ρ || σ) between state ρ = |0⊗◦0| and state
σ = x |0⊗◦0|+(1−x) |1⊗◦1|, with x ranging from 0 to 1, and for various values of a; (b)
same but for ρ = (2/3) |0⊗◦0| + (1/3) |1⊗◦1|.
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Fig. 2. (a) Telescopic relative entropy Sa(ρ || σ) between state ρ = 112/2 and state
σ = |1⊗◦1|, with a ranging from 0 to 1; (b) same but for σ = (|0⊗◦0| + 4 |1⊗◦1|)/5.

As we do not restrict the arguments of the telescopic relative entropy to
states, the definition is also applicable (in a useful way) to non-negative scalars:

Sa(b || c) =
b(log b − log(ab + (1 − a)c))

− log a
. (12)

For illustrative purposes, we graph the telescopic relative entropy for a variety
of qubit state pairs, in Figs. 1 and 2.

3.1 S0 and S1

One might think that the 1-telescopic relative entropy would be quite useless,
because for a = 1, S(ε || aε + (1 − a)Ω) = S(ε || ε) = 0. Nevertheless, it is a non-
trivial quantity due to the normalisation by 1/(− log a). Likewise, one might
mistakenly think S0 is essentially the ordinary relative entropy; it is far from it,
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and for the same reason. Indeed, for any pair of states with finite ordinary relative
entropy, e.g. when both states are faithful, S0 is 0, due to the normalisation. The
0-telescopic relative entropy shows its true colours exactly in those cases when
the ordinary relative entropy yields +∼.

In fact, for S0 and S1 we have the following closed form expressions:

Theorem 1. For any pair of states ε, Ω,

S0(ε ||Ω) = 1 − Tr ε{Ω} (13)
S1(ε ||Ω) = 1 − Tr Ω{ε}. (14)

In particular, when Ω is pure, S0(ε ||Ω) = 1 − Tr εΩ, and when ε is pure,
S1(ε ||Ω) = 1 − Tr εΩ. When Ω is faithful, S0(ε ||Ω) = 0; when ε is faithful,
S1(ε ||Ω) = 0.

Proof. Consider first the limit a → 1. Using de l’Hôpital’s rule we find

lim
a∗1

1 − a

− log a
= 1.

Hence, by representation (8),

lim
a∗1

Sa(ε ||Ω) = −
∫ ⊕

0

ds Tr ε(ε + s)−1 (Ω − ε) (ε + s)−1.

Therefore, from (9) we get the required

lim
a∗1

Sa(ε ||Ω) = −Tr (Ω − ε){ε} = 1 − Tr Ω{ε}.

For the limit a → 0 some more work is needed. Let us w.l.o.g. assume that
(ε+Ω)/2 is faithful; otherwise we take the compression of ε and Ω to the support
of (ε+Ω)/2. Again we use an integral representation, but in its more basic form
(7). To calculate the limit a → 0 we apply de l’Hôpital’s rule to the whole
expression and get

S0(ε ||Ω)

= lim
a∗0

a
d

da

∫ ⊕

0

ds Tr ε[(ε + s)−1 − (aε + (1 − a)Ω + s)−1]

= lim
a∗0

∫ ⊕

0

ds Tr aε(aε + (1 − a)Ω + s)−1 (ε − Ω) (aε + (1 − a)Ω + s)−1

= lim
a∗0

∫ ⊕

0

ds Tr (ε − Ω)(aε + (1 − a)Ω + s)−1 aε (aε + (1 − a)Ω + s)−1.

Here, the first factor a comes from the derivative of log a.
Because of our assumption that (ε+Ω)/2 is faithful, aε+(1− a)Ω is faithful

for any a ≺ (0, 1). Therefore, the integral
∫ ⊕

0

ds (aε + (1 − a)Ω + s)−1 (aε + (1 − a)Ω) (aε + (1 − a)Ω + s)−1
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yields the identity operator 11. Using this fact, we can rewrite our last expression
for S0 as

S0(ε ||Ω)

= lim
a∗0

Tr (ε − Ω)[11 −
∫ ⊕

0

ds

(aε + (1 − a)Ω + s)−1 (1 − a)Ω (aε + (1 − a)Ω + s)−1]

= Tr (ε − Ω)[11 −
∫ ⊕

0

ds (Ω + s)−1 Ω (Ω + s)−1]

= Tr (ε − Ω)(11 − {Ω})
= 1 − Tr ε{Ω},

as required. ≡∝

3.2 Pure States

From Theorem 1 we can derive the equalities

S0(ε ||Ω) = S1(ε ||Ω) = T (ε, Ω)2, (15)

for pure ε and Ω.
In fact, when ε and Ω are pure, there is a one-to-one relation between

Sa(ε ||Ω) and T (ε, Ω) for any value of a ≺ [0, 1]. Although the relation is some-
what complicated, in practice it shows that Sa(ε ||Ω) is only slightly bigger than
T (ε, Ω)2 for a ≺ (0, 1).

Theorem 2. Let ε, Ω be two pure states with trace norm distance t = || ε −
Ω ||1 /2. Then, for a ≺ (0, 1),

Sa(ε ||Ω) =
1

−2 log a

(
− log

w

4
− 1 − w/(2a)∧

1 − w
log

1 +
∧

1 − w

1 − ∧
1 − w

)
, (16)

where
w := 4a(1 − a)t2. (17)

Proof. By a suitable unitary transformation, the problem can be transformed
to a two-dimensional one, with in particular

ε =
(

1 0
0 0

)
, Ω =

(
1 − t

√
t(1 − t)√

t(1 − t) t

)
.

The telescopic relative entropy is then given by

Sa(ε ||Ω) =
1

− log a
(− log (aε + (1 − a)Ω))1,1

and after some basic calculations this reduces to the given formula. ≡∝
For example, let ε and Ω be two pure two-level states, with the angle between

their respective Bloch vectors equal to ψ. Since their trace norm distance is equal
to t = |sin(ψ/2)|, we have w = 2a(1 − a)(1 − cos ψ).
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4 Comparison to Trace Norm Distance

In this section, we provide bounds on the telescopic relative entropy in terms of
the trace norm distance.

It’s very easy to derive a lower bound from the Pinsker lower bound on the
ordinary relative entropy (5).

Theorem 3. For two quantum states ε, Ω,

Sa(ε ||Ω) ∈ (1 − a)2

− log(a)
2T (ε, Ω)2. (18)

Proof. Noting that T (ε, Π) = (1 − a)T (ε, Ω), this is a trivial consequence of the
bound S(ε || Π) ∈ 2T (ε, Π)2. ≡∝

While there is no upper bound on the ordinary relative entropy in terms of
the trace norm distance, we can find an upper bound on the telescopic relative
entropy. This bound has a very simple form, but is nevertheless the strongest
one possible.

Theorem 4. With Π = aε + (1 − a)Ω,

S(ε || Π) ⊕ − log(a)T (ε, Ω). (19)

This immediately gives our first important relation for the TRE.

Corollary 1. For any a ≺ (0, 1),

Sa(ε ||Ω) ⊕ T (ε, Ω). (20)

Equality can be obtained for any value of t = T (ε, Ω) in dimension 3 and higher
by choosing ε = Diag (t, 0, 1 − t) and Ω = Diag (0, t, 1 − t).

A second and unsuspected corollary is a strengthening of a very well-known
inequality (see, e.g. [8], Theorem 3.7) for the entropy of an ensemble of two states:
for any two states ε, Ω and (p, 1 − p) a probability distribution,

S(pε + (1 − p)Ω) ⊕ pS(ε) + (1 − p)S(Ω) + h(p), (21)

where h(p) = −p log p − (1 − p) log(1 − p) is the binary Shannon entropy. This
inequality is equivalent to subadditivity of the von Neumann entropy (w.r.t. ordi-
nary addition) for positive (non-normalised) operators: for any A,B ∈ 0

S(A + B) ⊕ S(A) + S(B). (22)

Indeed, substituting A = pε and B = (1 − p)Ω yields (21).
The quantity S(pε+(1−p)Ω)− (pS(ε)+(1−p)S(Ω)) is known as the Holevo

quantity θ(E) for the ensemble E = {(p, ε), (1 − p, Ω)} (of cardinality 2). The
bound says that θ(E) ⊕ h(p). Using Theorem 4, we get a sharper bound:
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Corollary 2. For any ensemble E = {(p, ε), (1 − p, Ω)} of cardinality 2,

θ(E) ⊕ h(p) T (ε, Ω). (23)

Proof. Let Π = pε + (1 − p)Ω. Notice that S(Π) − (pS(ε) + (1 − p)S(Ω)) is
equal to pS(ε || Π) + (1 − p)S(Ω || Π). Applying inequality (19) to both terms
gives −p log(p)T (ε, Ω) − (1 − p) log(1 − p)T (ε, Ω) as an upper bound. ≡∝

Question. As inequality (21) immediately generalises to ensembles of any car-
dinality ([6], Sect. 11.3.6), namely, θ(E) ⊕ H(p) (where H(p) is the Shannon
entropy of the probability distribution of E), it is fair to ask for a similar gener-
alisation of the Corollary.

In [10], related upper bounds were studied. For cardinality 2, a bound was
found in terms of the probability p and the Uhlmann fidelity between ε and
Ω, F = ||∧ε

∧
Ω ||1. For cardinality 3, a generalisation was conjectured in [4].

For general cardinalities a bound was proven that is sharper than H(p) and is
expressed in terms of the so-called exchange entropy [10].

We now present the proof of Theorem 4. It relies on the properties of the
Fréchet derivative of the matrix logarithm given in Sect. 2.

Proof of Theorem 4.
Let ε and Ω be two given states, and Π = aε + (1 − a)Ω. Define s = (1 − a)/a,
which is a non-negative number. Thus Π = a(ε + sΩ). W.l.o.g. we will assume
that ε + sΩ is full rank.

Let Δ := ε − Ω, t := T (ε, Ω) = ||Δ ||1 /2 and ϕ := Δ/t. Obviously, ϕ has
trace 0 and trace norm 2. Let its Jordan decomposition be ϕ = ϕ+ − ϕ−. Thus
ϕ ⊕ ϕ+ and Trϕ+ = Trϕ− = 1.

Now consider the expression sTr ϕTθ+sσ(Ω). Since Tθ+sσ(Ω) ∈ 0, and ϕ ⊕ ϕ+,
we have

sTr ϕTθ+sσ(Ω) = TrϕTθ+sσ(sΩ)
⊕ Tr ϕ+Tθ+sσ(sΩ)
⊕ Tr ϕ+Tθ+sσ(ε + sΩ)
= Trϕ+11
= 1.

Then, noting that ε = Ω − tϕ,

(1 + s)Tr εTθ+sσ(Ω) = Tr (ε + sε)Tθ+sσ(Ω)
= Tr (ε + sΩ − stϕ)Tθ+sσ(Ω)
= Tr (ε + sΩ)Tθ+sσ(Ω) − tsTr ϕTθ+sσ(Ω)
= TrΩTθ+sσ(ε + sΩ) − tsTr ϕTθ+sσ(Ω)
= TrΩ − tsTr ϕTθ+sσ(Ω)
∈ 1 − t.
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Therefore,

Tr εTθ+sσ(Ω) ∈ 1 − t

1 + s
.

Integrating over s from 0 to (1 − a)/a then yields

Tr ε log(ε + (1 − a)Ω/a) − Tr ε log(ε) ∈ (1 − t) log(1/a),

which becomes, after adding log a to both sides,

Tr ε log(aε + (1 − a)Ω) − Tr ε log(ε) ∈ t log(a),

which is equivalent to the statement of the theorem. ≡∝

5 Cases of Maximality

The following theorem characterises those cases when the telescopic relative
entropy achieves its maximal value of 1.

Theorem 5. For any a ≺ (0, 1), Sa(ε ||Ω) = 1 iff ε ⊗ Ω.

Proof. We have Sa(ε ||Ω) = 1 iff Tr ε log(aε) = Tr ε log(aε+(1−a)Ω) or, putting
X = aε and Y = (1 − a)Ω, iff Tr X log X = Tr X log(X + Y ). Since X,Y ∈ 0,
operator monotonicity of the logarithm gives TrX log(X +Y ) ∈ Tr X log X. We
want to characterise the cases of equality. One direction is obvious; if X and Y
are orthogonal, clearly we have equality.

To prove that there are no other possibilities, assume TrX(log(X + Y ) −
log X) = 0. Consider first the case X > 0. Define Z = log(X + Y ) − log X.
Because of monotonicity of the logarithm we have Z ∈ 0, hence the assumption,
Tr XZ = 0, implies Z = 0, i.e. log(X+Y ) = log X. As the logarithm is invertible
on the set of positive operators, this can only be true iff Y = 0.

Now consider the general case X ∈ 0, and assume X has a non-trivial
kernel. Then we can decompose the Hilbert space H as the direct sum H =
suppX ∨ker X. We have X = X |X ∨ 0 , with X |X > 0 . W.l.o.g. we can assume
that X + Y > 0, so that its logarithm is well-defined. By the convention to take
limx∗0 x log x = 0, TrX log X is well-defined, too, and equal to TrX |X log X|X .
The assumption Tr X(log(X + Y ) − log X) = 0 can then be written as
Tr X |X(log(X + Y )|X − log(X |X)) = 0. Let us therefore define Z = log(X +
Y ) |X − log(X|X).

As can be expected, Z ∈ 0. To prove this, put X ⊥ = X |X ∨ σ11 . By operator
monotonicity of the logarithm, log(X ⊥+Y )−log X ⊥ ∈ 0, for all σ > 0. In particular,
the compression to suppX is positive too: log(X ⊥ +Y ) |X − log(X ⊥)|X ∈ 0. Since
X ⊥ is defined as a direct sum of X and σ11, log(X ⊥) |X = log(X ⊥ |X) = log(X |X) .
Since limπ∗0 X ⊥ + Y = X + Y , we get, indeed, log(X + Y ) |X − log(X|X) ∈ 0.

The assumption reduces to Tr X |X Z = 0. Because X |X > 0 and Z ∈ 0,
this implies Z = 0.

This implies Y |X = 0, so that, indeed, Y must be orthogonal to X. ≡∝
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6 Relative Tsallis Entropies

The relative Tsallis entropies are parameterised modifications of the relative
entropy given by

Qp(ε ||Ω) :=
1
p
(1 − Tr ε1−pΩp),

where p satisfies 0 ⊕ p ⊕ 1.
Just as we have done for the relative entropy, one can define the telescopic

relative Tsallis entropy, even though the problem of infinite values does not pose
itself here; indeed, Tr ε1−pΩp is always between 0 and 1. Nevertheless, some
interesting relationships occur when telescoping the relative Tsallis entropies. In
particular, by exploiting the methods used in Sect. 4 we obtain a shorter and
much simpler proof of an inequality already proven in [1].

Let us therefore consider the quantity Tr ε1−p(aε + (1 − a)Ω)p. Firstly, let
us determine its extremal values for fixed values of a. Clearly, the maximum
is still 1, achieved when ε = Ω. The minimal value, however, is now ap. This
follows easily from operator monotonicity of the fractional power x ⊥→ xp when
0 ⊕ p ⊕ 1. Indeed,

Tr ε1−p(aε + (1 − a)Ω)p ∈ Tr ε1−p(aε)p

= apTr ε1−pεp = apTr ε = ap.

Equality can be achieved for orthogonal ε and Ω.
Hence, we define the telescopic relative Tsallis entropies (TRTE) as follows:

Definition 2.

Qp,a(ε ||Ω) =
1

1 − ap
(1 − Tr ε1−p(aε + (1 − a)Ω)p). (24)

By the above, Qp,a takes values between 0 and 1. The limiting values for p → 0
and p → 1 are

lim
p∗0+

Qp,a(ε ||Ω) = Sa(ε ||Ω), (25)

(easily checked using l’Hôpital’s rule) and

lim
p∗1

Qp,a(ε ||Ω) = 1 − Tr {ε}Ω = S1(ε ||Ω),∀a. (26)

We now show that a sharper upper bound is given by the trace norm distance
between ε and Ω.

Theorem 6.
Qp,a(ε ||Ω) ⊕ T (ε, Ω). (27)

By (25), the limiting case p → 0+ reduces to Corollary 1. The limiting case
a → 0 reduces to the inequality 1−Tr ε1−pΩp ⊕ T (ε, Ω), which was instrumental
in proving optimality of the Chernoff bound in symmetric hypothesis testing and
which was proven by other means in [1].
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Just as we did for the operator logarithm, we can define a linear map based
on the Fréchet derivative of the fractional power function xp, via

d

dt

∣∣∣∣∣
t=0

(A + tΔ)p =: TA;p(Δ).

Since x ⊥→ xp is a non-negative operator monotone function for 0 ⊕ p ⊕ 1, the
fractional power of a positive operator A can be written as the integral

Ap =
∫ ⊕

0

dμp(s) (A + s)−1A,

where dμp(s) is a certain measure, parameterised by p, that is positive for 0 ⊕
p ⊕ 1. Its Fréchet derivative is therefore given by

d

dt

∣∣∣∣∣
t=0

(A + tΔ)p =
∫ ⊕

0

dμp(s) ((A + s)−1Δ − (A + s)−1Δ(A + s)−1A)

=
∫ ⊕

0

dμp(s) s(A + s)−1Δ(A + s)−1.

Therefore, TA;p has the integral representation

TA;p(Δ) =
∫ ⊕

0

dμp(s) s(A + s)−1Δ(A + s)−1. (28)

From this representation we easily derive the following properties:

1. Tr XTA;p(Y ) = TrY TA;p(X) for any X and Y ;
2. the map TA;p preserves the positive definite ordering;
3. in particular, TA;p(B) is positive for positive B;
4. for 0 < p < 1, TA;p(A1−p) = p{A}.

The last property follows from

TA;p(A1−p) =
d

dt

∣∣∣∣∣
t=0

(A + tA1−p)p

= pAp−1A1−p = p{A}.

Here, negative fractional powers of A are defined in terms of the pseudoinverse A†

as A−s := (A†)s; thus A−sAs = (A†A)s = {A}s = {A}. Using these properties,
we can easily prove the theorem.

Proof of Theorem 6. Let Δ = ε−Ω, and t = T (ε, Ω) then Δ has Jordan decom-
position Δ = tϕ+ − tϕ−, where ϕ+ and ϕ− are orthogonal density operators.
Then

Tr (aε)1−pTaθ+(1−a)σ;p(Δ) ⊕ Tr (aε)1−pTaθ+(1−a)σ;p(tϕ+)

⊕ Tr (aε + (1 − a)Ω)1−pTaθ+(1−a)σ;p(tϕ+)

= Tr tϕ+Taθ+(1−a)σ;p((aε + (1 − a)Ω)1−p)
= Tr tϕ+p{aε + (1 − a)Ω}
⊕ pt.
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In the first line we used the fact that Δ ⊕ tϕ+ and property 2; in the second
line we used operator monotonicity of x1−p and property 3; in the third line we
used property 1, and in the fourth property 4. In the last line we used the fact
that TrXY ⊕ 1 when X is a density operator and Y is a projector.

Exploiting the inequality just obtained yields

1 − Tr ε1−p(aε + (1 − a)Ω)p = Tr ε1−p(εp − (aε + (1 − a)Ω)p)

=
∫ 1

a

da
d

da
Tr ε1−p(aε + (1 − a)Ω)p

=
∫ 1

a

da Tr ε1−pTaθ+(1−a)σ;p(ε − Ω)

⊕
∫ 1

a

da ap−1pt = (1 − ap)t,

which is equivalent to the statement of the theorem. ≡∝

7 Future Work

In forthcoming papers we will explore further properties of the telescopic relative
entropy. One other problem with the ordinary relative entropy is the absence of
a triangle inequality, in the sense that no useful upper bound exists on the
difference S(ε ||Ω1) − S(ε ||Ω2). Indeed, this difference can be infinite. It turns
out that such a bound does exist for the telescopic relative entropy. Together
with an upper bound on the difference S(ε1 ||Ω) − S(ε2 ||Ω) it will be presented
and proven in [2].

We will also study an interesting connection with Hamiltonian reconstruc-
tion. There is some evidence that the difference Sa(ε ||Ω1) − Sa(ε ||Ω2) might
provide non-trivial lower bounds on the time needed for state Ω1 to evolve uni-
tarily into state Ω2 under the influence of a Hamiltonian with bounded energy.

Acknowledgments. The main part of this work was done at the Institut Mittag-
Leffer, Djursholm (Sweden), during an extended stay at its Fall 2010 Semester on
Quantum Information Theory.

References

1. Audenaert, K.M.R., Nussbaum, M., Szkofflla, A., Verstraete, F.: Commun. Math.
Phys. 279, 251–283 (2008)

2. Audenaert, K.M.R.: Telescopic Relative Entropy – II: Triangle Inequalities.
arxiv:1102:3041 (2011)

3. Datta, N.: Min- and max-relative entropies and a new entanglement monotone.
IEEE Trans. Inf. Theory 55, 2816–2826 (2009)
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Abstract. The Turaev-Viro invariants are scalar topological invariants
of three-dimensional manifolds. Here we show that the problem of esti-
mating the Fibonacci version of the Turaev-Viro invariant of a mapping
torus is a complete problem for the one clean qubit complexity class
(DQC1). This complements a previous result showing that estimating
the Turaev-Viro invariant for arbitrary manifolds presented as Heegaard
splittings is a complete problem for the standard quantum computa-
tion model (BQP). We also discuss a beautiful analogy between these
results and previously known results on the computational complexity
of approximating the Jones Polynomial.

1 Introduction

Classifying the power of quantum computers is a fundamental problem in quan-
tum information science. The computational power of a general-purpose
quantum computer is identified with the complexity class BQP (bounded-error
quantum polynomial time). The famous problems of factoring and discrete loga-
rithm, for instance, are in BQP. An essential ingredient of BQP computation is
the ability to initialize a large number of qubits into a specific pure state. In some
proposed physical implementations, however, this appears to be an extremely
difficult task. In 1998, Knill and Laflamme proposed that exponential speedups
over classical computers could still be possible, even if one can only initialize a
single qubit into a pure state, with the rest of the qubits in the maximally mixed
state [17]. The complexity class thus defined is called DQC1 (deterministic quan-
tum computation with one clean qubit), or simply “the one clean qubit class.”
This class contains several problems for which no efficient classical algorithms
are known. The most basic of these is the problem of estimating the trace of a
unitary operator. In fact, trace estimation is DQC1-complete: not only is it in
DQC1, but any other problem in DQC1 can be reduced to it.

Finding natural BQP-complete and DQC1-complete problems is essential to
our understanding of the computational power afforded by quantum comput-
ers. Remarkably, BQP-complete problems can be found in areas of mathematics
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without a priori close connection to quantum computation. In particular, approx-
imating the Jones polynomial, a famous invariant of links, is a BQP-complete
problem [1,2,12–14,29]. The input is an element of the braid group, and the
output is an estimate of the Jones polynomial of the so-called plat closure of
the braid. Estimating the Jones polynomial of the so-called trace closure of the
braid is DQC1-complete [16,25].

Recent work [3,15] showed that (the decision version of) approximating cer-
tain invariants of 3-manifolds is a BQP-complete problem. In this formulation,
the input is a so-called Heegaard splitting of a 3-manifold, specified as an ele-
ment of the mapping class group. The output is an estimate of the Turaev-Viro
invariant of the input manifold. In this article we show that approximating the
Turaev-Viro invariant of a 3-manifold specified as a mapping torus is a com-
plete problem for the one clean qubit class. In Sect. 5, we use the language of
Topological Quantum Field Theories (or TQFTs) to explain the mathematical
underpinnings of the relationship between approximating the Jones polynomial
of the plat and trace closures, and approximating the Turaev-Viro invariant of
Heegaard splittings and mapping tori.

We assume only a basic understanding of topology and quantum compu-
tation. Needed concepts in manifold invariants and one clean qubit computa-
tion are explained in Sect. 2. Our exposition focuses on the Witten-Reshetikhin-
Turaev (or WRT) invariant. This is only a matter of convenience, as it is known
that the Turaev-Viro invariant is equal to the absolute square of the WRT invari-
ant [23,26–28].

2 Background

2.1 Two-Manifolds and Three-Manifolds

We begin by setting down a few basic definitions from low-dimensional topol-
ogy. Recall that an n-manifold is a topological space1 whose every point has a
neighborhood that looks like (i.e., is homeomorphic to) an open subset of Rn.
Simple examples of one-dimensional manifolds include the line R and the circle
S1. Simple examples of two-dimensional manifolds include the the plane R

2, the
sphere S2, and the torus ε1 = S1×S1, which we can visualize as the surface of a
donut. More generally, the surface of a donut with g holes is also a two-manifold,
which we call the surface of genus g and denote by εg. The genus is a complete
invariant of surfaces2: homeomorphic surfaces have the same number of handles
(invariance), and non-homeomorphic surfaces have a different number of handles
(completeness).

The simplest example of a 3-manifold is R
3 itself. A nontrivial example is

found by taking the product of ε1 with a third circle; the result is the three-
dimensional torus T 3 = S1×S1×S1. Given a surface εg, the cylinder εg × [0, 1]

1 More precisely, a second-countable Hausdorff space.
2 In this work, we implicitly assume that all surfaces are closed, compact, connected

and orientable.
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Fig. 1. A Dehn twist is a 2π rotation about a closed curve. The Dehn twists along the
3g − 1 curves illustrated here constitute a standard set of generators for the mapping
class group of the genus g surface.

is a 3-manifold whose boundary consists of two copies of εg (specifically, the
bottom εg × {0} and the top εg × {1}.) We can turn the cylinder into a 3-
manifold without boundary by choosing a homeomorphism f : εg ≤ εg and
gluing each point on the top to its image under f on the bottom. The result is
the mapping torus of f :

Tg,f =
εg × [0, 1]

(x, 1) → (f(x), 0)
.

For example, choosing g = 1 and f to be the identity map, we see that T1,1 = T 3.
A useful example of a nontrivial self-homeomorphism of εg is the so-called Dehn
twist. To visualize a Dehn twist, imagine cutting the handle of ε1 to get a tube,
performing a 2Ω twist on one end of the tube, and then gluing the handle back
together. In general, a Dehn twist can be performed around any noncontractible
closed curve.

The (homeomorphism class of) the mapping torus Tg,f depends only on
the isotopy class of f . The orientation-preserving self-homeomorphisms of εg

form a group under composition. This group, taken modulo isotopy, is called
the mapping class group of εg, and is denoted MCG(g). MCG(g) is generated
by the Dehn twists about the 3g − 1 canonical curves shown in Fig. 1. Any map-
ping torus Tg,f is thus described by a word in the Dehn twist generators of
MCG(g).

2.2 The Witten-Reshetikhin-Turaev Invariants

Recall that the genus is an invariant of surfaces because it assigns the same
number to homeomorphic surfaces. One can also define invariants of 3-manifolds,
although none are as simple and powerful as the genus. In the 1990s, Witten,
Reshetikhin, and Turaev discovered a family of 3-manifold invariants arising from
their work in Topological Quantum Field Theory. While these invariants can be
defined for arbitrary 3-manifolds, we only concern ourselves with the special case
of mapping tori, where the definitions are relatively straightforward. Specifically,
the Witten-Reshetikhin-Turaev (WRT) invariant of a mapping torus Tg,f is equal
to the trace of f in a certain projective representation of the mapping class group
MCG(g). Note that the WRT function is only a topological invariant up to a
phase (see [3]). In general, the WRT invariant is parametrized by a quantum
group, such as SU(N)k or SO(N)k. Although some of our results apply more
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Fig. 2. The dashed lines indicate a set of cuts that decomposes the surface into two
three-punctured-spheres (“pants”). Dual to this is a trivalent graph called the “spine,”
in red. The genus two and genus three cases are shown here.

1 10 1 1 1 1 00 0 0 0 0 01

Fig. 3. The Fibonacci model’s fusion rules allow five labelings of the standard spine
of the genus two surface. This means that the WRT representation of MCG(2) is five-
dimensional.

generally, we focus on the case of SO(3)3, sometimes called the Fibonacci model.
In this case, the description of the representation is particularly simple, and can
be understood with no background in quantum groups.

The Fibonacci representation is defined as follows. Any genus g surface (for
g > 1) can be cut into three-punctured spheres, resulting in a so-called pants
decomposition. Dual to such a decomposition is a trivalent graph on the surface,
called a spine. As illustrated in Fig. 2, the spine has one vertex for every pant
in the decomposition. Whenever two pants meet at a puncture, the spine has an
edge between the corresponding vertices. While a surface admits many spines
(and corresponding pants decompositions), we call the one shown in Fig. 2 the
standard spine. We label the edges of the standard spine by so-called anyon types,
with fusion rules enforced at each vertex. For the Fibonacci model, there are only
two anyon types: 0 and 1, and only one fusion rule: no vertex can have exactly
two edges labeled 0 incident on it. The case g = 2 is pictured in Fig. 3. The
formal span (over C) of all such labelings associates a finite-dimensional vector
space to the surface. Different spines yield different bases for this same space.
We can move between these spines (and the corresponding bases) by means of
two “moves,” the F-move:

=
∑
n

F ijm
kln

and the S-move:

=
∑
k

Si
jk
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For the Fibonacci model F def
abc is as follows

√
2

1 +
∈

5

−2
1 +

∈
5

2
1 +

∈
5

√
2

1 +
∈

5

= +

= +

0

0
0

1 1

11

1 1

1 1

1 1

1 1

1

1 1

11

1

11

1 1

1 1
1

1 1

with all other values equal to zero or one as dictated by the fusion rules. As one
can calculate using the prescription described in [3], Si

jk is given in the Fibonacci
model by

DS0
00 = 1

DS0
10 = DS0

01 =
1 +

∈
5

2

DS0
11 = 1 +

1 +
∈

5
2

ei4π/5

DS1
11 =

√
1 +

∈
5

2

(
1 − ei4π/5

)

with D =

√
1 +

(
1+

∗
5

2

)2

and all other values of Si
jk equal to zero by the fusion

rules.
The space described above is the underlying vector space for the Fibonacci

representation of MCG(g). We define this representation in the basis correspond-
ing to the standard spine. Since the mapping class group is finitely-generated, it
suffices to describe the images of the Dehn twist generators. Any such generator
is a 2Ω twist along some canonical curve c from Fig. 1. It is not hard to check
that, by applying at most one F-move and one S-move, the standard spine can
be adjusted so that c is a cut in the corresponding pants decomposition. In this
basis, the Dehn twist about c induces a diagonal linear transformation. To each
labeling of the spine corresponds a basis vector, and this basis vector obtains
a phase determined by the label on the edge of the spine that intersects c. In
the Fibonacci model, edges labeled 0 obtain a phase of 1, and edges labeled 1
obtain a phase of ei3π/5. In the standard spine basis, the matrix corresponding
to the Dehn twist about c is thus simply a product of at most five matrices: at
most two of the moves pictured above, followed by a diagonal matrix, followed
by the inverse moves to return to the original basis. The WRT invariant of the
mapping torus Tg,f is now simply the trace of the Fibonacci representation,
evaluated at f .

2.3 One Clean Qubit

In some proposed implementations of quantum computers, such as nuclear mag-
netic resonance (NMR) the most difficult task is initializing qubits into a pure
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state. In 1998, Knill and Laflamme proposed that exponential speedups over
classical computation might be possible without pure state initialization. To
mathematically investigate this possibility, they introduced the one clean qubit
model [17]. In this model, one is given an initial state ρ with n qubits in the
maximally mixed state, and one qubit in the pure state |0⊕.

ρ = |0⊕ ≺0| ⊥ 1

2n

One then applies any quantum circuit of poly(n) gates to this state, and mea-
sures the first qubit in the computational basis. Computational problems are
solved by performing polynomially many such experiments, each starting with
the initial state ρ, and recording the output statistics. The class of decision prob-
lems solvable with bounded probability of error using this procedure is called
DQC1.

DQC1 contains several computational problems not known to be solvable in
polynomial time on classical computers. Most fundamentally, given a descrip-
tion of a quantum circuit of T gates implementing the unitary transformation
U on n qubits, a one clean qubit computer can estimate the normalized trace
TrU
2n to within ±Π in time O(T/Π2) by means of the circuit shown in Fig. 4. Fur-

thermore, this problem of estimating the trace of a quantum circuit is DQC1-
hard [17,24,25]. Efficient one clean qubit algorithms have been discovered for
estimating certain quadratically signed weight enumerators [18] and estimating
certain Jones [25] and HOMFLY [16] polynomials. A version of the Jones polyno-
mial problem is DQC1-complete [25], and has been demonstrated experimentally
with NMR [20,22]. A certain problem of approximating partition functions for
quantum systems is also DQC1-hard [6].

In many ways, it is surprising that one clean qubit computers can do any non-
trivial computations at all. If all n+1 qubits were maximally mixed, the resulting
state would be invariant under all unitaries. Furthermore, DQC1 computations
involve very little entanglement [7–11,19]. Ambainis et al. give an impossibility
proof against a certain natural approach to simulating standard quantum com-
puters using one clean qubit computers, and on the other hand show that one
clean qubit computers can efficiently simulate classical logarithmic depth (NC1)
computations [4].

The DQC1 complexity class is robust against a variety of modifications
to the computational model. The class of computational problems solvable in
polynomial time with up to logarithmically many clean qubits is the same as

Fig. 4. By repeating this one clean qubit computation, and recording the fraction of 0
outcomes, one estimates the real part of Tr[U ]/2n. Similarly, by initializing the clean

qubit to 1√
2
(|0∼ − i |1∼), one obtains p0 = 1

2
+ Im(Tr[U ])

2n
.
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that solvable in polynomial time with one clean qubit [25]. If the clean qubit is
not pure, but has 1/poly(n) polarization, the set of efficiently solvable problems
also remains DQC1 [17]. As shown in Appendix A, the one clean qudit model
on d-dimensional qudits is equivalent in power to the one clean qubit model, for
any constant d.

3 Algorithm

In this section we construct an efficient one clean qubit algorithm for approxi-
mating the Fibonacci WRT invariant of a mapping torus. Generalizing to other
tensor categories such as SU(N)k and SO(N)k is straightforward. The main idea
of the algorithm is, given a word w in the Dehn twist generators of MCG(g),
to find a quantum circuit of poly(w, g) gates on poly(g) qubits whose trace is
equal to the WRT invariant of the 3-manifold Tg,w. This trace can then be
approximated by means of the circuit in Fig. 4. For this purpose, we encode the
allowed labelings of a spine of εg into qubits, and then construct a quantum
circuit implementing the Fibonacci representation of MCG(g) on this encoding.
The most obvious encoding would be to directly assign one qubit to store the
particle type for each edge of the spine. However, a one clean qubit computer
yields the normalized trace over all 2n bitstrings, of which only an exponentially
small fraction represent valid spine labelings in this encoding.

We instead construct a many-to-one map

σ : {0, 1}ψ(3g−3) ≤ {valid labelings}
with Δ = O(log |g|) such that the preimage of each spine-labeling consists of
approximately the same number of bitstrings. That is, |σ−1(x)| is approximately
independent of x. Thus, the normalized trace of the Fibonacci representation of
w ∈ MCG(g) acting on the σ-encoded labelings of the spine of εg is approx-
imately equal to WRT(Tg,w). We construct σ following a method introduced
in [16]. We assign a register of Δ = O(log |g|) qubits to each edge of the spine.
The bitstring contained in register i is interpreted as an integer 0 ⊗ xi ⊗ 2ψ − 1.
We then assign a threshold Ti so that xi ⊗ Ti encodes a zero label on edge i, and
xi > Ti encodes a one label. By carefully choosing the thresholds T1, . . . , T3g−3

we ensure that |σ−1(x)| is approximately independent of x.
Number the edges of the spine from one to 3g−3, left to right and top to bot-

tom, as illustrated in Fig. 5. Let s1, . . . , s3g−3 ∈ {0, 1}3g−3 be the labels of these
edges. The uniform probability distribution over all fusion-consistent labelings

8
1

2
3

4

5
6

7

...

Fig. 5. We number the edges of the standard spine from left to right, with ambiguities
resolved by ordering from top to bottom.
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of the spine induces a probability distribution pg(s1 . . . , s3g−3) over {0, 1}3g−3,
with zero probability for strings that violate fusion rules, and uniform probabil-
ity for the rest. For the genus-g standard spine, we define pg(si|s1, . . . , si−1) to
be the conditional probability that label i takes the value si given that labels 1
through i − 1 take the values s1, . . . , si−1. For a register representing a label si

we choose the threshold dependent on the values of s1, . . . , si−1 according to

Ti(g; s1, . . . , si−1) =
⌈
2ψpg(0|s1, . . . , si−1)

⌋
. (1)

One can see that this choice ensures that a uniformly selected assignment of
bitstrings to the registers yields a uniform distribution over fusion-consistent
labelings, up to the errors induced by rounding. Hence, |σ−1(x)| is approximately
independent of x. More precisely, let

p̃g(0|s1, . . . , si−1) = Ti(g; s1, . . . , si−1)/2ψ

p̃g(1|s1, . . . , si−1) = 1 − p̃g(0|s1, . . . , si−1)

Thus,

|σ−1(s1, . . . , s3g−3)| =2ψ(3g−3)p̃g(s3g−3|s1, . . . , s3g−4)×
× p̃g(s3g−4|s1, . . . , s3g−5) × . . . × p(s1)

=2ψ(3g−3)
(
pg(s3g−3|s1, . . . , s3g−4) ± O(2−ψ)

) ×
× . . . × (

pg(s1) ± O(2−ψ)
)

=pg(s1, . . . , s3g−3) ± O(g2−ψ).

Thus it suffices to choose Δ = O(log g). Furthermore, by the locality of the
fusion rules, pg(si|s1, . . . , si−1) is always independent of s1, . . . , si−3. We may
thus write

pg(si|s1, . . . , si−1) = pg(si, si−1, si−2; i)
Ti(g; s1, . . . , si−1) = Ti(g; si, si−1, si−2). (2)

As illustrated in Fig. 6, the Fibonacci representation of a Dehn twist from
the standard generating set is a unitary transformation acting on at most five
spine labels. Because the encoding σ is many-to-one, the unitary transformation
on these spine labels does not uniquely define a unitary operation on the bit-
strings encoding them. We say that a pair of spine-labelings is connected if the
Fibonacci representation of a Dehn twist from the standard set of generators has
a nonzero matrix element between them. By choosing a bijection bx,y between
the encodings of each pair of connected spin-labelings we define a unitary trans-
formation on the encodings: if the matrix element between labeling x and y is
ρx,y then,

Ui,j =
{

ρx,y ifσ(i) = x, σ(j) = y, and bx,y(i) = j
0 otherwise (3)

is a corresponding unitary representation on the encodings. Our choice of bijec-
tions does not matter. We may for concreteness match bitstrings by lexicographic
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a

b
c d

acts on a, b, c, d

a
acts on a

a

b

c

e

d

acts on a, b, c, d, e

Fig. 6. The Fibonacci representation of a Dehn twist (shown as a dashed line) from
the standard generating set is a unitary transformation acting on at most five spine
labels.

ordering. One can verify that U is a direct sum of many copies of the Fibonacci
representation ρ. (The rounding involved in (1) introduces a minor technical
complication, whose resolution may be found in [16].)

For any of the standard Dehn twist generators, Ui,j acts on at most 5Δ qubits,
which encode the spine-labels on which ρ acts. The matrix elements by which
U acts on these qubits depends on the corresponding thresholds. By (2), these
depend on at most two additional registers of qubits, which encode the two
spine labels to the left of those being acted upon. Thus, for any of the standard
Dehn twist generators, Ui,j is a controlled unitary acting on at most 5Δ target
qubits and 2Δ control qubits. Recalling that Δ = O(log |g|), we can apply the
standard construction from Section 4.5 of [21] to implement this unitary trans-
formation with poly(|g|) quantum gates, provided each matrix element of Ui,j

can be computed efficiently. By (3), one sees that the only potentially difficult
part of computing the matrix elements of 3 is the computation of the thresholds.
An efficient classical algorithm for this task is given in Appendix C.

4 Hardness

In this section we prove that the problem of estimating the normalized WRT
Fibonacci invariant of a mapping torus, given by a polynomial-length word in
the standard Dehn twist generators of the mapping class group, to within ±Π
is DQC1-hard for Π < 1/3900. Generalizing our hardness proof beyond the
Fibonacci model seems less straightforward than generalizing our algorithm.
However, we consider it likely to be possible. Extending hardness to larger val-
ues of Π we leave as an open problem. To prove hardness, we reduce from the
problem of estimating the absolute value of the normalized trace of a quan-
tum circuit. A proof of the hardness of absolute trace estimation is given in
Appendix B. We thus require an efficient procedure that, given a description
of a quantum circuit for implementing a unitary U , outputs a description of a
mapping torus (i.e., a word in the Dehn twist generators) whose WRT invariant
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is close to the trace of U . It turns out to be convenient to suppose that U is a
quantum circuit acting on a collection of 5-dimensional qudits (“qupents”). As
shown in Appendix A, this makes no difference: the one-clean-qubit model is
equivalent to the one-clean-qupent model.

Let U be a quantum circuit of G gates acting on n qupents arranged in a
line. Without loss of generality, we may assume that each gate acts either on
a single qupent or a pair of neighboring qupents. To prove hardness, we first
define a many-to-one encoding ψ : S3n ≤ {0, 1, 2, 3, 4}n, where S3n is the set
of fusion-consistent labelings of the standard spine of the surface of genus 3n.
We divide the genus-3n surface into n segments, each having three handles.
The number of fusion-consistent labelings for a genus-three segment with two
punctures depends on the labels on the incoming and outgoing edges, as shown
below.

0 0

0 1

1 0

1 1

has 20 labelings

has 35 labelings

has 20 labelings

has 15 labelings

In all cases, the number of fusion-consistent labelings is a multiple of five. Thus,
in every case a qupent can be encoded in the space of labelings, together with a
“gauge” qudit, whose value we ignore, which has dimension 3, 4, or 7, depending
on the labels of the incoming edges. Thus the size |ψ−1(z)| of the preimage of
any z ∈ {0, 1, 2, 3, 4}n is exactly independent of z. Given any unitary U acting
on n qupents, there corresponds a unitary acting on the span of S3n which acts
as U on the encoded qupents, and as the identity on the gauge qudits. We call
this the ψ-encoding of U .

As shown in [14], the Fibonacci representation of the mapping class group
of the genus g > 1 surface is dense in the corresponding unitary group, modulo
phase. Thus, given any unitary operation on n qupents, we can find a sequence of
Dehn twists which approximates its ψ-encoding arbitrarily closely. The trace of
the ψ-encoding is thus equal to the trace of the original quantum circuit, up to a
phase. The remaining question is whether this reduction can be done efficiently.

Cutting the genus-3n surface into n equal segments yields n − 2 genus-3
doubly-punctured surfaces, and two genus-3 singly-punctured surfaces, as shown
below.

×(n − 2)

One can pants-decompose a punctured surface, thereby associating the surface
to a spine. The spine has one “external”edge for each puncture, which attaches
to the rest of the spine at only one vertex. Upon labeling the spine, we can
associate the label of any external edge with the corresponding puncture. The
Fibonacci representation may then be extended to the label-preserving mapping
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class group of the punctured surface. This group includes all the standard Dehn
twists, together with braiding of punctures with the other punctures of the same
label. In the Fibonacci representation, braiding of zero-labeled punctures has no
effect, thus a zero-labeled puncture is equivalent to the absence of a puncture.

Theorem 6.2 of [14] states that for any fixed labels on the punctures, the
Fibonacci representation of the label-preserving mapping class group of the r-
punctured genus-g surface is dense in the corresponding unitary group modulo
phase, provided g + r > 1. Thus, given any one-qupent gate, the Solovay-Kitaev
theorem [21] efficiently yields a sequence of Dehn twists and braid moves on
the corresponding genus-3 singly-punctured or doubly-punctured surface, whose
Fibonacci representation approximates the ψ-encoded gate arbitrarily closely.
Similarly, one efficiently approximates two-qupent gates by moves on genus-6
surfaces with one or two punctures.

We must modify the above construction so as not to use any braiding of
punctures. On the leftmost or rightmost qupents there is no problem; the cor-
responding surfaces have only one puncture, and therefore Theorem 6.2 implies
density without using any braiding moves. Similarly, on any of the central sur-
faces, Theorem 6.2 implies density without using any braiding moves if at least
one of the punctures has a zero label. We can ensure this prior to the application
of any given gate by adapting the “inchworm” technique from [25], as described
in Appendix D. In this method, we bring a pair of zero labels adjacent to the
target segment, then implement the desired gate there, and carry the zeros to the
segment where the next gate is to be implemented. At the end, we return these
zeroes to their original location among the leftmost six handles. As discussed in
Appendix D, the inchworm construction entails some overhead in Π, which gives
rise to the value 1/3900.

In the above construction, we need density on two-punctured segments in
which one puncture is guaranteed to be labeled zero, and the other puncture has
unknown label. Theorem 6.2 of [14] implies density separately in the subspace in
which the other label is zero and in which the other label is one. Because these
subspaces have different dimension (20 and 15, respectively) we may apply the
decoupling Lemma from [1], which shows that a sequence of Dehn twists can
be found to approximate arbitrary pairs of independent unitaries on these two
subspaces, as desired.

5 Analogy with Jones Polynomials

In this paper we have shown that estimating the Turaev-Viro invariant of a
mapping torus in the Fibonacci model is DQC1-complete. In [3], it was shown
that estimating the Turaev-Viro invariant of a general 3-manifold presented as a
Heegaard splitting is BQP-complete. Similarly, estimating the Jones polynomial
of the trace closure of a braid is DQC1-complete [16,25], while estimating the
Jones polynomial of the plat closure of a braid is BQP-complete [1,2,12,13,29].
This suggests a relationship between trace closures and mapping tori on one
hand, and between plat closures and Heegaard splittings on the other. Indeed,
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≺ψ| |ψ⊕U Tr[U ]

Fig. 7. The problems of estimating the Jones polynomial of the plat closure of a braid
and the Turaev-Viro invariant of a Heegaard splitting (left) are BQP-complete. The
problems of estimating the Jones polynomial of the trace closure of a braid and the
Turaev-Viro invariant of a mapping torus (right) are DQC1-complete. These situations
are fundamentally analogous, as discussed in Sect. 5. We stress that the manifold figures
are illustrations of the topological ideas behind this analogy, and are not correct two-
dimensional projections of the manifolds themselves. In particular, after gluing, the
two manifolds shown do not in reality have any boundaries.

such a relationship can be understood in the framework of axiomatic topolog-
ical quantum field theory, and suggests further generalizations to, for instance,
topological invariants of higher dimensional manifolds.

A topological quantum field theory can be axiomatized as a functor T from
the category of cobordisms between n-manifolds to the category of linear trans-
formations between vector spaces [5,28]. That is, to each n-manifold the TQFT
associates a vector space, and to any (n + 1)-manifold whose boundary is the
union of two disjoint n-manifolds the TQFT associates a linear transformation
between the two associated vector spaces. The functorial property means that
gluing together two cobordisms and then applying T yields the same linear trans-
formation that is obtained by applying T to each of the two cobordisms and then
composing the resulting linear transformations; see Fig. 8. A TQFT maps the
empty n-manifold to the base field, which for the examples we consider is always
C. Hence, for M a manifold whose boundary θM has a single connected compo-
nent, T (M) is a map either from C to the vector space T (θM), that is, a vector
in T (θM), or a map from T (θM) to C, that is, a dual vector. The choice between
these two possibilities is determined by the orientation of the cobordism.

Recall that the genus-g handlebody is the 3-manifold whose boundary is the
genus-g surface εg. For example, the genus-1 handlebody is simply the solid
donut. After assigning an orientation, we may think of a handlebody as a cobor-
dism from the empty manifold to εg, or as a cobordism from εg to the empty
manifold. Hence, in the TQFT framework, genus-g handlebodies are associated
to vectors or dual vectors. We denote these as |ψg⊕ and ≺ψg|, respectively. These
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M
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N
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C

C

1

2

1

C2

T(    )

T(N)

T(M)

1C

1C

Fig. 8. M can be viewed as a two-manifold with two boundaries: a circle and a pair
of circles. The TQFT associates a Hilbert space T (C2) to the pair of circles, a Hilbert
space T (C1) to the circle, and a linear transformation T (M) : T (C2) ⊗ T (C1) to M .
Similarly, T (N) is a linear transformation from T (C1) to itself. If we glue together M
and N along the circle as shown, we obtain a manifold MN with boundaries C2 and
C1. The corresponding linear transformation is T (NM) = T (N) ◦ T (M).

vectors live in the Hilbert space which the TQFT associates to εg. In the case
of the Fibonacci model, this is precisely the vector space defined in Sect. 2.2.

In the Fibonacci model, a cobordism from a surface to itself is mapped to
a unitary linear transformation U on the associated Hilbert space3. If the sur-
face is εg, then we may “cap” the cobordism with handlebodies on both ends.
The resulting 3-manifold has no boundary, and thus corresponds to a linear
map from C to itself, i.e., a complex number. In this case, this number is the
matrix element ≺ψg|U |ψg⊕, as illustrated in Fig. 7. The problem of estimating
a matrix element of the unitary transformation induced by a quantum circuit
is BQP-complete, and this fact underlies the BQP-completeness proof for the
Turaev-Viro invariant of Heegaard splittings in [3]. Instead of “capping” the two
ends of the cobordism with handlebodies, we could have simply glued the two
ends together, resulting in a mapping torus. This is again a 3-manifold with-
out boundary, which thus also corresponds to a complex number. In a TQFT,
gluing the two ends of a cobordism corresponds to contracting the two indices
of the linear transformation. In other words, instead of a single matrix entry,
we now obtain the trace of U . Finding the trace of the unitary transformation
induced by a quantum circuit is DQC1-complete, and this fact underlies the
DQC1-completeness proof for the Turaev-Viro invariant of mapping tori given
in this paper.

The situation regarding Jones polynomials is directly analogous. A TQFT
gives us a unitary representation of the braid group. Gluing the two ends of a
braid together (i.e., taking the trace closure), as illustrated on the righthand
side of Fig. 7, corresponds to taking the trace of the unitary and yields a DQC1-
complete problem. Caps correspond to vectors and dual vectors depending on
orientation, hence capping a braid (taking the plat closure, as illustrated on
the lefthand side of Fig. 7) yields a matrix element of the associated unitary
transformation, and corresponds to a BQP-complete problem. The analogy can
3 We may think of the cobordism as describing a sort of spacetime evolution, while the

unitary transformation describes the corresponding quantum time evolution. Indeed,
this was one of the central motivating ideas behind the development of TQFTs.
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be tightened further by noting that the braid group Bn is simply the mapping
class group of the surface of genus zero and n + 1 punctures (that is, the n-
punctured disk), whereas in the case of 3-manifold invariants we consider the
mapping class group of the genus-g surface with no punctures. On the other
hand, it is worth bearing in mind that the notion of equivalence captured by the
Jones polynomial is ambient isotopy, in contrast to the Turaev-Viro and WRT
invariants, which capture homeomorphism.

The analogy presented here naturally suggests an extension of BQP-
completeness and DQC1-completeness results to n-manifold invariants arising
from TQFTs at higher n. More generally, one could attempt to isolate a prop-
erty of pairs, consisting of a group G and one of its representations U , such that
estimating matrix entries of U is BQP-complete while estimating the trace of
U is DQC1-complete. Perhaps one could find a general theorem encompassing
many such results. We leave this as an open problem.
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A Equivalence Between One Clean Qudit Models

Given a quantum circuit on a-dimensional qudits we wish to construct a quan-
tum circuit on b-dimensional qudits that has the same trace. If b = ca for some
integer c then this is easy. We just consider each b-dimensional qudit to be an a-
dimensional qudit plus a c-dimensional “gauge” qudit that we ignore. Similarly,
if bd = ca for some integers d, c then we can treat d-tuples of b-dimensional qubits
as an a-dimensional qudit plus a c-dimensional gauge qudit. For these encodings,
the encoded circuit is easy to construct gate by gate. Given a gate acting on n
a-dimensional qudits, we can write down a unitary acting on dn b-dimensional
qudits equal to the original gate tensored with the c-dimensional identity on
the gauge system. This dn-dimensional gate can be exactly decomposed into a
product of O(b2dn) 2-qudit gates using the standard construction from Section
4.5 of [21]. Because d and n are constants, this is sufficiently efficient. The nor-
malized trace of the encoded circuit is exactly equal to the normalized trace of
the original circuit.

The harder case is when there do not exist integers c and d such that bd = ca.
In this case we find c, d ∈ Z such that bd ∼ ca. Specifically, suppose we achieve

ca

bd
= 1 − ϕ (4)

for some ϕ ≡ 1. Then we can encode one a-dimensional qudit plus a c-dimensional
gauge qudit into d b-dimensional qudits with a few (namely ϕbd) noncoding states
left over. We can define our encoded gates to act as the identity on these non-
coding states. If we make sure the noncoding states are a small fraction of all



Approximating the Turaev-Viro Invariant 67

bdn states, the normalized trace of the encoded circuit will approximately match
the normalized trace of the original circuit.

Let Ua be the original unitary acting on n a-dimensional qudits and let Ub

be the unitary acting on dn b-dimensional qudits, in which we encode Ua as
described above. Then, Ub acts on bdn states, of which (ca)n encode states of the
original circuit,

Tr[Ub]
bdn

=
cnTr[Ua] + (bdn − (ca)n)

bdn
.

The magnitude of the discrepancy ς between the normalized traces of Ub and
Ua is thus

ς =
∣∣∣∣
cnTr[Ua] + (bdn − (ca)n)

bdn
− Tr[Ua]

an

∣∣∣∣

=
∣∣∣∣
((ca

bd

)n

− 1
) Tr[Ua]

an
+ 1 −

(ca

bd

)n
∣∣∣∣

⊗
∣∣∣
(ca

bd

)n

− 1
∣∣∣ ·

∣∣∣∣
Tr[Ua]

an

∣∣∣∣ +
∣∣∣1 −

(ca

bd

)n∣∣∣

⊗
∣∣∣
(ca

bd

)n

− 1
∣∣∣ +

∣∣∣1 −
(ca

bd

)n∣∣∣
= 2 |(1 − ϕ)n − 1| .

Thus if
ϕ =

Π

n
(5)

we have, for small Π,
lim

n√⊕ ς = 2
∣∣e−θ − 1

∣∣ ∼ 2Π. (6)

Comparing (4), (5), (6), we see that in the limit of large n and small Π, in order
to achieve error upper bounded by ς it suffices to obtain

bd − ca

bd
⊗ ς

2n
.

For given b, d, a there always exists an integer c such that bd − c ⊗ a. So we just
need to choose d sufficiently large that

a

bd
⊗ ς

2n
.

Equivalently,

d ∝ logb

(
2na

ς

)
.

A k-qudit gate from Ua thus gets encoded as a dk-qudit gate in Ub.
This encoded gate acts on a bdk-dimensional space. We have just shown that
it suffices to choose d = logb

(
2na
σ

)
. Thus the encoded k-qudit gate acts on a(

2na
σ

)k-dimensional space. Using the construction from section 4.5 of [21], we
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can implement an arbitrary D-dimensional unitary exactly with O(D2) 2-qudit
gates. Thus each k-qudit gate in Ua gets encoded by O

((
2na
σ

)2k
)

elementary
gates in Ub. By gate universality, we can assume k ⊗ 2, so our encoding has an
overhead quartic in n and 1/ς. This is perhaps not very efficient, but is never-
theless polynomial, and thus suffices to prove the equivalence of DQC1 defined
with qudits of any constant dimension.

B Estimating the Absolute Trace is DQC1-Hard

In this section we slightly adapt the proof from [24] to show that estimating the
absolute value of the trace of a quantum circuit to within ±1/24 is a DQC1-
complete problem. Consider an arbitrary DQC1 computation. We start with the
state |0⊕ ≺0| ⊥ 1

2n , apply an arbitrary quantum circuit U , and then measure the
first qubit in the |0⊕ , |1⊕ basis. Changing the initial state of the pure qubit, or
changing the measurement basis does not add generality, as these changes can
be subsumed into U . The probability of measurement outcome |0⊕ is

p0 = Tr
[
(|0⊕ ≺0| ⊥ 1)U(|0⊕ ≺0| ⊥ 1/2n)U†] . (7)

Let U ⊥ be the unitary implemented by the following quantum circuit on n + 2
qubits.

Thus, p0 = 2TrU ′
2n+2 , as one can see by writing out the trace as a sum over diag-

onal matrix elements in the computational basis. Because p0 is real it is also true

that p0 = 2 |TrU ′|
2n+2 . Hence estimating the absolute value of the normalized trace

of quantum circuits to suffices to predict the outcome of any DQC1 experiment.
As is standard in the complexity theory of probabilistic computation, “yes”

instances of DQC1 are defined to have acceptance probability 2/3 and “no”
instances are defined to have acceptance probability 1/3. Thus, deciding DQC1
is equivalent to estimating the normalized trace of a quantum circuit to within
±1/6. The reduction here has a factor of four overhead in normalization, thus
estimating the absolute trace to within ±1/24 is DQC1-complete.

C Efficiently Computing Thresholds

Consider the standard spine of the genus-g surface, numbered as in Fig. 5. Sup-
pose edges 1 through i have been labeled in a fusion-consistent manner with
anyon types s1, . . . , si. We wish to compute how many completions there are to
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this partial labelling. That is, we wish to compute the number of fusion-consistent
strings of 3g − 3 labels, whose first i labels are given by s1, . . . , si.

Denote the horizontal edges of the standard spine from right to left by
e1, e2, . . ., as shown below.

e1e3 e2

...

Let Z
(k)
b be the number of completions in which the rightmost labeled edge is ek

and has label b ∈ {0, 1}. One sees that Z
(1)
0 = 2, and Z

(1)
1 = 1, by the following

enumeration of fusion-consistent diagrams.

0
0

1
1

0
1

Furthermore, we have the recurrence relations Z
(n+1)
0 = 2Z

(n)
0 + Z

(n)
1 and

Z
(n+1)
1 = 3Z

(n−1)
1 + Z

(n−1)
0 , by the following enumeration of fusion-consistent

diagrams.

0 0

0

0
1 1

0

1

1 1

1

1

0 1

1

1
1 0

1

1

0 0

1

1
1 1

1

0

Solving these recurrence relations yields
[

Z
(n)
0

Z
(n)
1

]
=

[
2 1
1 3

]n−1 [
2
1

]
.

The other two cases—completions starting with an upper curved edge, or a
lower curved edge—can be solved similarly. The nth power of a matrix may be
computed using O(log n) operations, thus calculating the number of completions
for any i in O(log g) steps. The corresponding thresholds are then immediately
obtained by taking ratios of these.

D Inchworm

Suppose the spine-labeling contains a segment of the following form.

0
1

0

1

1 1 1

11

aa

1

a

(8)
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Here a can be 1 or 0. We call this configuration the inchworm. We may regard

the right instance of 0
1

1

1

1
as its head, and the left instance as its tail. We

next show a sequence of two reversible operations by which we can move the
inchworm one handle rightward. In the first step the head moves one handle to
the right, leaving the tail in place, and in the second step, the tail catches up,
hence the name “inchworm.”

1

d
b

d

1

1 1 1

11

1
0 d0a

c

1

0
1

d

1

1 b 1

1c

1
0 daa

1

c

0
1

0

1

1 1 1

11

b
a daa

1

Examination of the above diagram shows that if the fusion rules are obeyed
in the initial configuration, they are also obeyed in the intermediate and final
configurations. Furthermore, both steps are reversible (i.e. information preserv-
ing). Thus, they may be written as permutation matrices acting on the space
of allowed configurations, and are therefore unitary. The first unitary transfor-
mation can be implemented by local Dehn twists, because the zero in the tail
of the inchworm implies density of the Fibonacci representation on the segment
to the right of it. The second unitary transformation can be implemented by
local Dehn twists because the zero in the head of the inchworm implies density
on the segment to the left of it. (In both steps, we are applying density to the
twice-punctured genus-4 surface with one puncture labeled zero. There are 75
labelings in which the other puncture is labeled one and 50 labelings in which
the other puncture is labeled zero. Thus, the decoupling lemma of [1] implies
density jointly on these two subspaces.) Repeating this process and its reverse,
we may bring the inchworm to any location within the spine.

To use the inchworm construction, we need to ensure that a segment of the
form (8) exists in the first place. We may do this by implementing a reversible
operation on the leftmost six handles, so that if the configuration (8) is absent,
the matrix is strictly off-diagonal, and does not contribute to the trace. Specifi-
cally, we consider the leftmost two handles to be an ancilla system, and the next
four handles to be the starting location of the inchworm. If these four handles
do not take the form (8) we cyclically permute the (five) basis states of the
ancilla system. Because this is done on the leftmost six handles, the segment
is only singly-punctured, and thus Theorem 6.2 of [14] implies density without
braiding.
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The noncontributing labelings decrease the normalized WRT by a constant
factor, which correspondingly necessitates decreasing the precision parameter Π
by the same factor. More precisely, in the Fibonacci model, there are 325 fusion-
consistent labelings for the spine of the genus-four doubly-punctured surface.
Among these, there are two inchworm configurations (a = 0 and a = 1). Com-
pounding this 2/325 normalization cost with the precision Π = 1/24 obtained in
Appendix B for DQC1-hardness of absolute trace, we find that estimating the
normalized WRT invariant to within ±1/3900 is DQC1-hard.

As an aside, we note that the inchworm construction here is simpler than
that in [25], in the following sense. The inchworm construction of [25] involved
reversible operations on logarithmically large regions. Although the density the-
orems imply that arbitrary reversible operations can be implemented on these
regions, they do not imply that the decomposition into local moves is efficient.
Rather this had to be explicitly proven in Appendix D of [25]. In contrast the
inchworm construction here involves reversible operations only on O(1) handles,
thus no question of efficiency arises.
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l’IHÉS 68, 175–186 (1988)

6. Brandão, F.: Entanglement theory and the quantum simulation of many-body
physics. Ph.D thesis, Imperial College London (2008). arXiv:0810.0026

7. Datta, A.: Studies on the role of entanglement in mixed-state quantum computa-
tion. Ph.D thesis, University of New Mexico (2008). arXiv:0807.4490

8. Datta, A., Flammia, S.T., Caves, C.M.: Entanglement and the power of one qubit.
Phys. Rev. A 72, 042316 (2005). arXiv:quant-ph/0505213

9. Datta, A., Gharibian, S.: Signatures of non-classicality in mixed-state quantum
computation. Phys. Rev. A 79, 042325 (2009). arXiv:0811.4003

10. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit.
Phys. Rev. Lett. 100, 050502 (2008). arXiv:0709.0548

11. Datta, A., Vidal, G.: On the role of entanglement and correlations in mixed-state
quantum computation. Phys. Rev. A 75, 042310 (2007). arXiv:quant-ph/0611157

12. Freedman, M., Kitaev, A., Wang, Z.: Simulation of topological field theories by
quantum computers. Commun. Math. Phys. 227, 587–603 (2002). arXiv:quant-
ph/0001071

13. Freedman, M., Larsen, M., Wang, Z.: A modular functor which is universal for
quantum computation. Commun. Math. Phys. 227, 605 (2002). arXiv:quant-
ph/0001108



72 S. P. Jordan and G. Alagic

14. Freedman, Michael H., Larsen, Michael J., Wang, Zhenghan: The two-eigenvalue
problem and density of Jones representation of braid groups. Commun. Math.
Phys. 228, 177–199 (2002)

15. Garnerone, S., Marzuoli, A., Rasetti, M.: Efficient quantum processing of three-
manifold topological invariants. Adv. Theor. Math. Phys. 13(6), 1601–1652 (2009).
arXiv:quant-ph/0703037

16. Jordan, S.P., Wocjan, P.: Estimating Jones and HOMFLY polynomials with one
clean qubit. Quantum Inf. Comput. 9, 264–289 (2009)

17. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett.
81(25), 5672–5675 (1998). arXiv:quant-ph/9802037

18. Knill, E., Laflamme, R.: Quantum computation and quadratically signed weight
enumerators. Inf. Process. Lett. 79(4), 173–179 (2001). arXiv:quant-ph/9909094

19. Luo, Shunlong: Using measurement-induced disturbance to correlations as classical
or quantum. Physi. Rev. A 77, 022301 (2008)

20. Marx, R., Fahmy, A., Kauffman, L., Lomonaco, S., Spörl, A., Pomplun, N., Myers,
J., Glaser, S.J.: NMR quantum calculations of the Jones polynomial (2009).
arxiv:0909.1080

21. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

22. Passante, G., Moussa, O., Ryan, C.A., Laflamme, R.: Experimental approximation
of the Jones polynomial with DQC1. Phys. Rev. Lett. 103, 250501 (2009)

23. Roberts, Justin D.: Skein theory and Turaev-Viro invariants. Topology 34, 771–787
(1995)

24. Shepherd, D.: Computation with unitaries and one pure qubit (2006). arXiv:quant-
ph/0608132

25. Shor, P.W., Jordan, S.P.: Estimating Jones polynomials is complete for one clean
qubit. Quantum Inf. Comput. 8(8/9), 681–714 (2008)

26. Turaev, V.G.: Topology of shadows. preprint (1991)
27. Turaev, V.G.: Quantum Invariants of Knots and 3-manifolds. de Gruyter Studies

in Mathematics, vol. 18. de Gruyter, New York (1994)
28. Walker, K.: On Witten’s 3-manifold invariants. http://canyon23.net/math/

1991TQFTNotes.pdf (1991)
29. Wocjan, P., Yard, J.: The Jones polynomial: quantum algorithms and applica-

tions in quantum complexity theory. Quantum Inf. Comput. 8, 147–180 (2008).
arXiv:quant-ph/0603069

http://canyon23.net/math/1991TQFTNotes.pdf
http://canyon23.net/math/1991TQFTNotes.pdf


Span-Program-Based Quantum Algorithm
for Evaluating Unbalanced Formulas

Ben W. Reichardt(B)

Institute for Quantum Computing, University of Waterloo, Waterloo, Canada
breic@iqc.ca

Abstract. The formula-evaluation problem is defined recursively. A for-
mula’s evaluation is the evaluation of a gate, the inputs of which are
themselves independent formulas. Despite this pure recursive structure,
the problem is combinatorially difficult for classical computers.

A quantum algorithm is given to evaluate formulas over any finite
boolean gate set. Provided that the complexities of the input subformu-
las to any gate differ by at most a constant factor, the algorithm has
optimal query complexity. After efficient preprocessing, it is nearly time
optimal. The algorithm is derived using the span program framework. It
corresponds to the composition of the individual span programs for each
gate in the formula. Thus the algorithm’s structure reflects the formula’s
recursive structure.

1 Introduction

A k-bit gate is a function f : {0, 1}k ≤ {0, 1}. A formula ε over a set of gates S
is a rooted tree in which each node with k children is associated to a k-bit gate
from S, for k = 1, 2, . . .. Any such tree with n leaves naturally defines a function
ε : {0, 1}n ≤ {0, 1}, by placing the input bits on the leaves in a fixed order and
evaluating the gates recursively toward the root. Such functions are often called
read-once formulas, as each input bit is associated to one leaf only.

The formula-evaluation problem is to evaluate a formula ε over S on an input
x → {0, 1}n. The formula is given, but the input string x must be queried one bit
at a time. How many queries to x are needed to compute ε(x)? We would like
to understand this complexity as a function of S and asymptotic properties of
ε. Roughly, larger gate sets allow ε to have less structure, which increases the
complexity of evaluating ε. Another important factor is often the balancedness
of the tree ε. Unbalanced formulas often seem to be more difficult to evaluate.

For applications, the most important gate set consists of all AND and OR
gates. Formulas over this set are known as AND-OR formulas. Evaluating such
a formula solves the decision version of a MIN-MAX tree, also known as a two-
player game tree. Unfortunately, the complexity of evaluating formulas, even over
this limited gate set, is unknown, although important special cases have been
solved. The problem over much larger gate sets appears to be combinatorially
intractable. For some formulas, it is known that “non-directional” algorithms
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that do not work recursively on the structure of the formula perform better
than any recursive procedure.

In this article, we show that the formula-evaluation problem becomes dra-
matically simpler when we allow the algorithm to be a bounded-error quantum
algorithm, and allow it coherent query access to the input string x. Fix S to
be any finite set of gates. We give an optimal quantum algorithm for evaluating
“almost-balanced” formulas over S. The balance condition states that the com-
plexities of the input subformulas to any gate differ by at most a constant factor,
where complexity is measured by the general adversary bound Adv±. In gen-
eral, Adv± is the value of an exponentially large semi-definite program (SDP).
For a formula ε with constant-size gates, though, Adv±(ε) can be computed
efficiently by solving constant-size SDPs for each gate.

To place this work in context, some classical and quantum results for eval-
uating formulas are summarized in Table 1. The stated upper bounds are on
query complexity and not time complexity. However, for the ORn and balanced
AND2-OR2 formulas, the quantum algorithms’ running times are only slower
by a poly-logarithmic factor. For the other formulas, the quantum algorithms’
running times are slower by a poly-logarithmic factor provided that:

1. A polynomial-time classical preprocessing step, outputting a string s(ε), is
not charged for.

2. The algorithms are allowed unit-cost coherent access to s(ε).

Our algorithm is based on the framework relating span programs and quan-
tum algorithms from [Rei09]. Previous work has used span programs to develop
quantum algorithms for evaluating formulas [RŠ08]. Using this and the observa-
tion that the optimal span program witness size for a boolean function f equals
the general adversary bound Adv±(f), Ref. [Rei09] gives an optimal quantum
algorithm for evaluating “adversary-balanced” formulas over an arbitrary finite
gate set. The balance condition is that each gate’s input subformulas have equal
general adversary bounds.

In order to relax this strict balance requirement, we must maintain better
control in the recursive analysis. To help do so, we define a new span program
complexity measure, the “full witness size.” This complexity measure has impli-
cations for developing time- and query-efficient quantum algorithms based on
span programs. Essentially, using a second result from [Rei09], that properties of
eigenvalue-zero eigenvectors of certain bipartite graphs imply “effective” spectral
gaps around zero, it allows quantum algorithms to be based on span programs
with free inputs. This can simplify the implementation of a quantum walk on
the corresponding graph.

Besides allowing a relaxed balance requirement, our approach has the addi-
tional advantage of making the constants hidden in the big-O notation more
explicit. The formula-evaluation quantum algorithms in [RŠ08,Rei09] evalu-
ate certain formulas ε using O

(
Adv±(ε)

)
queries, where the hidden constant

depends on the gates in S in a complicated manner. It is not known how to
upper-bound the hidden constant in terms of, say, the maximum fan-in k of a
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Table 1. Comparison of some classical and quantum query complexity results for
formula evaluation. Here S is any fixed, finite gate set, and the exponent α is given by

α = log2(
1+

√
33

4
) ≈ 0.753. Under certain assumptions, the algorithms’ running times

are only poly-logarithmically slower.

Formula ϕ Randomized, zero-error
query complexity R(ϕ)

Quantum bounded-error
query complexity Q(ϕ)

ORn n Θ(
√

n) [Gro96,BBBV97]
Balanced AND2-OR2 Θ(nα) [SW86] Θ(

√
n) [FGG08,ACR+10]

Well-balanced AND-OR Tight recursion [SW86]
Approx.-balanced AND-OR Θ(

√
n) [ACR+10],

(Theorem 8)
Arbitrary AND-OR Ω(n0.51) [HW91] Ω(

√
n) [BS04]

O(
√

n log n) [Rei11]

Balanced MAJ3 (n = 3d) Ω
(
(7/3)d

)
, O(2.654d)

[JKS03]
Θ(2d) [RŠ08]

Balanced over S Θ(Adv±(ϕ))[Rei09]
Almost-balanced over S Θ(Adv±(ϕ)) (Theorem 7)

gate in S. In contrast, the approach we follow here allows bounding this constant
by an exponential in k.

It is known that the general adversary bound is a nearly tight lower bound
on quantum query complexity for any boolean function [Rei09], including in
particular boolean formulas. However, this comes with no guarantees on time
complexity. The main contribution of this paper is to give a nearly time-optimal
algorithm for formula evaluation. The algorithm is also tight for query complex-
ity, removing the extra logarithmic factor from the bound in [Rei09].

Additionally, we apply the same technique to study AND-OR formulas. For
this special case, special properties of span programs for AND and for OR gates
allow the almost-balance condition to be significantly weakened. Ambainis et
al. [ACR+10] have studied this case previously. By applying the span program
framework, we identify a slight weakness in their analysis. Tightening the analy-
sis extends the algorithm’s applicability to a broader class of AND-OR formulas.

A companion paper [Rei11] applies the span program framework to the
problem of evaluating arbitrary AND-OR formulas. By studying the full wit-
ness size for span programs constructed using a novel composition method, it
gives an O(

∈
n log n)-query quantum algorithm to evaluate a formula of size n,

for which the time complexity is poly-logarithmically worse after preprocessing.
This nearly matches the Ω(

∈
n) lower bound, and improves a

∈
n2O(

∗
log n)-query

quantum algorithm from [ACR+10]. Reference [Rei11] shares the broader moti-
vation of this paper, to study span program properties and design techniques
that lead to time-efficient quantum algorithms.

Sections 1.1 and 1.2 below give further background on the formula-evaluation
problem, for classical and quantum algorithms. Section 1.3 precisely states our
main theorem, the proof of which is given in Sect. 3 after some background on
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span programs. The theorem for approximately balanced AND-OR formulas is
stated in Sect. 1.4, and proved in Sect. 4.

1.1 History of the Formula-Evaluation Problem for Classical
Algorithms

For a function f : {0, 1}n ≤ {0, 1}, let D(f) be the least number of input bit
queries sufficient to evaluate f on any input with zero error. D(f) is known as the
deterministic decision-tree complexity of f , or the deterministic query complexity
of f . Let the randomized decision-tree complexity of f , R(f) ⊕ D(f), be the
least expected number of queries required to evaluate f with zero error (i.e., by a
Las Vegas randomized algorithm). Let the Monte Carlo decision-tree complexity,
R2(f) = O

(
R(f)

)
, be the least number of queries required to evaluate f with

error probability at most 1/3 (i.e., by a Monte Carlo randomized algorithm).
Classically, formulas over the gate set S = {NANDk : k → N} have been stud-

ied most extensively, where NANDk(x1, . . . , xk) = 1−∏k
j=1 xj . By De Morgan’s

rules, any formula over NAND gates can also be written as a formula in which
the gates at an even distance from the formula’s root are AND gates and those
an odd distance away are OR gates, with some inputs or the output possibly
complemented. Thus formulas over S are also known as AND-OR formulas.

For any AND-OR formula ε of size n, i.e., on n inputs, D(ε) = n. However,
randomization gives a strict advantage; R(ε) and R2(ε) can be strictly smaller.
Indeed, let εd be the complete, binary AND-OR formula of depth d, correspond-
ing to the tree in which each internal vertex has two children and every leaf is at
distance d from the root, with alternating levels of AND and OR gates. Its size
is n = 2d. Snir [Sni85] has given a randomized algorithm for evaluating εd using
in expectation O(nα) queries, where ρ = log2(

1+
∗
33

4 ) ≺ 0.753 [SW86]. This
algorithm, known as randomized alpha-beta pruning, evaluates a random sub-
formula recursively, and only evaluates the second subformula if necessary. Saks
and Wigderson [SW86] have given a matching lower bound on R(εd), which San-
tha has extended to hold for Monte Carlo algorithms, R2(εd) = Ω(nα) [San95].

Thus the query complexities have been characterized for the complete, binary
AND-OR formulas. In fact, the tight characterization works for a larger class of
formulas, called “well balanced” formulas by [San95]. This class includes, for
example, alternating AND2-OR2 formulas where for some d every leaf is at
depth d or d − 1, Fibonacci trees and binomial trees [SW86]. It also includes
skew trees, for which the depth is the maximal n − 1.

For arbitrary AND-OR formulas, on the other hand, little is known. It has
been conjectured that complete, binary AND-OR formulas are the easiest to
evaluate, and that in particular R(ε) = Ω(nα) for any size-n AND-OR formula
ε [SW86]. However, the best general lower bound is R(ε) = Ω(n0.51), due to
Heiman and Wigderson [HW91]. Reference [HW91] also extends the result of
[SW86] to allow for AND and OR gates with fan-in more than two.

It is perhaps not surprising that formulas over most other gate sets S are
even less well understood. For example, Boppana has asked the complexity of
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evaluating the complete ternary majority (MAJ3) formula of depth d [SW86],
and the best published bounds on its query complexity are Ω

(
(7/3)d

)
and

O
(
(2.6537 . . .)d

)
[JKS03]. In particular, the näıve, “directional,” generalization

of the randomized alpha-beta pruning algorithm is to evaluate recursively two
random immediate subformulas and, if they disagree, then also the third. This
algorithm uses O

(
(8/3)d

)
expected queries, and is suboptimal. This suggests

that the complete MAJ3 formulas are significantly different from the complete
AND-OR formulas.

Heiman, Newman and Wigderson have considered read-once threshold for-
mulas in an attempt to separate the complexity classes TC0 from NC1 [HNW93].
That is, they allow the gate set to be the set of Hamming-weight threshold gates
{T k

m : m, k → N} defined by T k
m : {0, 1}k ≤ {0, 1}, T k

m(x) = 1 if and only if the
Hamming weight of x is at least m. AND, OR and majority gates are all special
cases of threshold gates. Heiman et al. prove that R(ε) ⊥ n/2d for ε a threshold
formula of depth d, and in fact their proof extends to gate sets in which every
gate “contains a flip” [HNW93]. This implies that a large depth is necessary for
the randomized complexity to be much lower than the deterministic complexity.

Of course there are some trivial gate sets for which the query complexity
is fully understood, for example, the set of parity gates. Overall, though, there
are many more open problems than results. Despite its structure, formula eval-
uation appears to be combinatorially complicated. However, there is another
approach, to try to leverage the power of quantum computers. Surprisingly,
the formula-evaluation problem simplifies considerably in this different model of
computation.

1.2 History of the Formula-Evaluation Problem for Quantum
Algorithms

In the quantum query model, the input bits can be queried coherently. That is,
the quantum algorithm is allowed unit-cost access to the unitary operator Ox,
called the input oracle, defined by

Ox : |ε〉 ⊗ |j〉 ⊗ |b〉 ∼≤ |ε〉 ⊗ |j〉 ⊗ |b ≡ xj〉 . (1.1)

Here |ε〉 is an arbitrary pure state, {|j〉 : j = 1, 2, . . . , n} is an orthonormal
basis for Cn, {|b〉 : b = 0, 1} is an orthonormal basis for C2, and ≡ denotes
addition mod two. Ox can be implemented efficiently on a quantum computer
given a classical circuit that computes the function j ∼≤ xj [NC00]. For a function
f : {0, 1}n ≤ {0, 1}, let Q(f) be the number of input queries required to evaluate
f with error probability at most 1/3. It is immediate that Q(f) ⊕ R2(f).

Research on the formula-evaluation problem in the quantum model began
with the n-bit OR function, ORn. Grover gave a quantum algorithm for evaluat-
ing ORn with bounded one-sided error using O(

∈
n) oracle queries and O(

∈
n log

log n) time [Gro96,Gro02]. In the classical case, on the other hand, it is obvious
that R2(ORn), R(ORn) and D(ORn) are all Π(n).

Grover’s algorithm can be applied recursively to speed up the evaluation
of more general AND-OR formulas. Call a formula layered if the gates at the
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same depth are the same. Buhrman, Cleve and Wigderson show that a lay-
ered, depth-d, size-n AND-OR formula can be evaluated using O(

∈
n logd−1 n)

queries [BCW98]. The logarithmic factors come from using repetition at each
level to reduce the error probability from a constant to be polynomially small.

Høyer, Mosca and de Wolf [HMW03] consider the case of a unitary input
oracle Õx that maps

Õx : |ε〉⊗ |j〉⊗ |b〉⊗ |0〉 ∼≤ |ε〉⊗ |j〉⊗ (|b ≡ xj〉⊗ |σx,j,xj
〉+ |b ≡ xj〉⊗ |σx,j,xj

〉) ,
(1.2)

where |σx,j,xj
〉, |σx,j,xj

〉 are pure states with ∝|σx,j,xj
〉∝2 ⊥ 2/3. Such an oracle

can be implemented when the function j ∼≤ xj is computed by a bounded-
error, randomized subroutine. Høyer et al. allow access to Õx and Õ−1

x , both at
unit cost, and show that ORn can still be evaluated using O(

∈
n) queries. This

robustness result implies that the log n steps of repetition used by [BCW98]
are not necessary, and a depth-d layered AND-OR formula can be computed in
O(

∈
n cd−1) queries, for some constant c > 1000. If the depth is constant, this

gives an O(
∈

n)-query quantum algorithm, but the result is not useful for the
complete, binary AND-OR formula, for which d = log2 n.

In 2007, Farhi, Goldstone and Gutmann presented a quantum algorithm for
evaluating complete, binary AND-OR formulas [FGG08]. Their breakthrough
algorithm is not based on iterating Grover’s algorithm in any way, but instead
runs a quantum walk—analogous to a classical random walk—on a graph based
on the formula. The algorithm runs in time O(

∈
n) in a certain continuous-time

query model.
Ambainis et al. discretized the [FGG08] algorithm by reinterpreting a corre-

spondence between (discrete-time) random and quantum walks due to Szegedy
[Sze04] as a correspondence between continuous-time and discrete-time quantum
walks [ACR+10]. Applying this correspondence to quantum walks on certain
weighted graphs, they gave an O(

∈
n)-query quantum algorithm for evaluating

“approximately balanced” AND-OR formulas. For example, MAJ3(x1, x2, x3) =
(x1 ∧x2)∨(

(x1 ∨x2)∧x3

)
, so there is a size-5d AND-OR formula that computes

MAJ3d the complete ternary majority formula of depth d. Since the formula
is approximately balanced, Q(MAJ3d) = O(

∈
5

d
), better than the Ω

(
(7/3)d

)
classical lower bound.

The [ACR+10] algorithm also applies to arbitrary AND-OR formulas. If ε
has size n and depth d, then the algorithm, applied directly, evaluates ε using
O(

∈
n d) queries.1 This can be as bad as O(n3/2) if the depth is d = n. However,

Bshouty, Cleve and Eberly have given a formula rebalancing procedure that
takes AND-OR formula ε as input and outputs an equivalent AND-OR formula
ε√ with depth d√ = 2O(

∗
log n) and size n√ = n 2O(

∗
log n) [BCE91,BB94]. The

formula ε√ can then be evaluated using O(
∈

n√ d√) =
∈

n 2O(
∗
log n) queries.

1 Actually, [ACR+10, Section 7] only shows a bound of O(
√

n d3/2) queries, but this
can be improved to O(

√
n d) using the bounds on σ±(ϕ) below [ACR+10, Defini-

tion 1].
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Our understanding of lower bounds for the formula-evaluation problem pro-
gressed in parallel to this progress on quantum algorithms. There are essen-
tially two techniques, the polynomial and adversary methods, for lower-bounding
quantum query complexity.

– The polynomial method, introduced in the quantum setting by Beals et al.
[BBC+01], is based on the observation that after making q oracle Ox queries,
the probability of any measurement result is a polynomial of degree at most
2q in the variables xj .

– Ambainis generalized the classical hybrid argument, to consider the system’s
entanglement when run on a superposition of inputs [Amb02]. A number of
variants of Ambainis’s bound were soon discovered, including weighted ver-
sions [HNS02,BS04,Amb06,Zha05], a spectral version [BSS03], and a version
based on Kolmogorov complexity [LM04]. These variants can be asymptoti-
cally stronger than Ambainis’s original unweighted bound, but are equivalent
to each other [ŠS06]. We therefore term it simply “the adversary bound,”
denoted by Adv.

The adversary bound is well-suited for lower-bounding the quantum query
complexity for evaluating formulas. For example, Barnum and Saks proved that
for any size-n AND-OR formula ε, Adv(ε) =

∈
n, implying the lower bound

Q(ε) = Ω(
∈

n) [BS04]. Thus the [ACR+10] algorithm is optimal for approxi-
mately balanced AND-OR formulas, and is nearly optimal for arbitrary AND-OR
formulas. This is a considerably more complete solution than is known classically.

It is then natural to consider formulas over larger gate sets. The adversary
bound continues to work well, because it transforms nicely under function com-
position:

Theorem 1 (Adversary bound composition [Amb06,LLS06,HLŠ05]).
Let f : {0, 1}k ≤ {0, 1} and let fj : {0, 1}mj ≤ {0, 1} for j = 1, 2, . . . , k.
Define g : {0, 1}m1 × · · · × {0, 1}mk ≤ {0, 1} by g(x) = f

(
f1(x1), . . . , fk(xk)

)
.

Let s = (Adv(f1), . . . ,Adv(fk)). Then

Adv(g) = Advs(f). (1.3)

See Definition 3 for the definition of the adversary bound with “costs,” Advs.
The Adv bound equals Advs with uniform, unit costs s =

−≤
1 . For a function f ,

Adv(f) can be computed using a semi-definite program in time polynomial in the
size of f ’s truth table. Therefore, Theorem 1 gives a polynomial-time procedure
for computing the adversary bound for a formula ε over an arbitrary finite gate
set: compute the bounds for subformulas, moving from the leaves toward the
root. At an internal node f , having computed the adversary bounds for the
input subformulas f1, . . . , fk, Eq. (1.3) says that the adversary bound for g, the
subformula rooted at f , equals the adversary bound for the gate f with certain
costs. Computing this requires 2O(k) time, which is a constant if k = O(1). For
example, if f is an ORk or ANDk gate, then Adv(s1,...,sk)(f) =

⎛⎝
j s2j , from
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which follows immediately the [BS04] result Adv(ε) =
∈

n for a size-n AND-OR
formula ε.

A special case of Theorem 1 is when the functions fj all have equal adver-
sary bounds, so Adv(g) = Adv(f)Adv(f1). In particular, for a function f :
{0, 1}k ≤ {0, 1} and a natural number d → N, let fd : {0, 1}kd ≤ {0, 1}
denote the complete, depth-d formula over f . That is, f1 = f and fd(x) =
f
(
fd−1(x1, . . . , xkd−1), . . . , fd−1(xkd−kd−1+1, . . . , xkd)

)
for d>1. Then we obtain:

Corollary 1. For any function f : {0, 1}k ≤ {0, 1},

Adv(fd) = Adv(f)d . (1.4)

In particular, Ambainis defined a boolean function f : {0, 1}4 ≤ {0, 1} that
can be represented exactly by a polynomial of degee two, but for which Adv(f) =
5/2 [Amb06]. Thus fd can be represented exactly by a polynomial of degree 2d,
but by Corollary 1, Adv(fd) = (5/2)d. For this function, the adversary bound
is strictly stronger than any bound obtainable using the polynomial method.
Many similar examples are given in [HLŠ06]. However, for other functions, the
adversary bound is asymptotically worse than the polynomial method [ŠS06,
AS04,Amb05].

In 2007, though, Høyer et al. discovered a strict generalization of Adv that
also lower-bounds quantum query complexity [HLŠ06]. We call this new bound
the general adversary bound, or Adv±. For example, for Ambainis’s four-bit
function f , Adv±(f) ⊥ 2.51 [HLŠ06]. Like the adversary bound, ADV±

s (f) can
be computed in time polynomial in the size of f ’s truth table, and also composes
nicely:

Theorem 2 ([HLŠ07,Rei09]). Under the conditions of Theorem 1,

Adv±(g) = ADV±
s (f) . (1.5)

In particular, if Adv±(f1) = · · · = Adv±(fk), then we have Adv±(g) = Adv±(f)
Adv±(f1).

Define a formula ε to be adversary balanced if at each internal node, the
general adversary bounds of the input subformulas are equal. In particular, by
Theorem 2 this implies that Adv±(ε) is equal to the product of the general
adversary bounds of the gates along any path from the root to a leaf. Complete,
layered formulas are an example of adversary-balanced formulas.

Returning to upper bounds, Reichardt and Špalek [RŠ08] generalized the
algorithmic approach started by [FGG08]. They gave an optimal quantum algo-
rithm for evaluating adversary-balanced formulas over a considerably extended
gate set, including in particular all functions {0, 1}k ≤ {0, 1} for k ⊕ 3, 69
inequivalent four-bit functions, and the gates ANDk, ORk, PARITYk and
EQUALk, for k = O(1). For example, Q(MAJ3d) = Π(2d).
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The [RŠ08] result follows from a framework for developing formula-evaluation
quantum algorithms based on span programs. A span program, introduced by
Karchmer and Wigderson [KW93], is a certain linear-algebraic way of defining
a function, which corresponds closely to eigenvalue-zero eigenvectors of certain
bipartite graphs. [RŠ08] derived a quantum algorithm for evaluating certain
concatenated span programs, with a query complexity upper-bounded by the
span program witness size, denoted wsize. In particular, a special case of [RŠ08,
Theorem 4.7] is:

Theorem 3 ([RŠ08]). Fix a function f : {0, 1}k ≤ {0, 1}. If span program P
computes f , then

Q(fd) = O
(
wsize(P )d)

. (1.6)

From Theorem 2, this result is optimal if wsize(P ) = Adv±(f). The question
therefore becomes how to find optimal span programs. Using an ad hoc search,
[RŠ08] found optimal span programs for a variety of functions with Adv± =
Adv. Further work automated the search, by giving a semi-definite program
(SDP) for the optimal span program witness size for any given function [Rei09].
Remarkably, the SDP’s value always equals the general adversary bound:

Theorem 4 ([Rei09]). For any function f : {0, 1}n ≤ {0, 1},

inf
P

wsize(P ) = Adv±(f) , (1.7)

where the infimum is over span programs P computing f . Moreover, this infimum
is achieved.

This result greatly extends the gate set over which the formula-evaluation
algorithm of [RŠ08] works optimally. For example, combined with Theorem 3,
it implies that limd⊕⊥ Q(fd)1/d = Adv±(f) for every boolean function f . More
generally, Theorem 4 allows the [RŠ08] algorithm to be run on formulas over any
finite gate set S. A factor is lost that depends on the gates in S, but it will be
a constant for S finite. Combining Theorem 4 with [RŠ08, Theorem 4.7] gives:

Theorem 5 ([Rei09]). Let S be a finite set of gates. Then there exists a quan-
tum algorithm that evaluates an adversary-balanced formula ε over S using
O

(
Adv±(ε)

)
input queries. After efficient classical preprocessing independent

of the input x, and assuming unit-time coherent access to the preprocessed clas-
sical string, the running time of the algorithm is Adv±(ε)

(
log Adv±(ε)

)O(1).

In the discussion so far, we have for simplicity focused on query complexity.
The query complexity is an information-theoretic quantity that does not charge
for operations independent of the input string, even though these operations
may require many elementary gates to implement. For practical algorithms, it
is important to be able to bound the algorithm’s running time, which counts
the cost of implementing the input-independent operations. Theorem 5 puts an
optimal bound on the query complexity, and also puts a nearly optimal bound
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on the algorithm’s time complexity. In fact, all of the query-optimal algorithms
so far discussed are also nearly time optimal.

In general, though, an upper bound on the query complexity does not imply
an upper bound on the time complexity. Reference [Rei09] also generalized the
span program framework of [RŠ08] to apply to quantum algorithms not based
on formulas. The main result of [Rei09] is:

Theorem 6 ([Rei09]). For any function f : D ≤ {1, 2, . . . ,m}, with D ∀
{0, 1}n, Q(f) satisfies

Q(f) = Ω(Adv±(f)) (1.8)

and Q(f) = O

⎞
Adv±(f)

log Adv±(f)
log log Adv±(f)

log(m) log log m

⎠
. (1.9)

Theorem 6 in particular allows us to compute the query complexity of formu-
las, up to the logarithmic factor. It does not give any guarantees on running time.
However, the analysis required to prove Theorem 6 also leads to significantly sim-
pler proofs of Theorem 5 and the AND-OR formula results of [ACR+10,FGG08].
Moreover, we will see that it allows the formula-evaluation algorithms to be
extended to formulas that are not adversary balanced.

1.3 Quantum Algorithm for Evaluating Almost-Balanced Formulas

We give a formula-evaluation algorithm that is both query-optimal, without
a logarithmic overhead, and, after an efficient preprocessing step, nearly time
optimal. Define almost balance as follows:

Definition 1. Consider a formula ε over a gate set S. For a vertex v in the
corresponding tree, let εv denote the subformula of ε rooted at v, and, if v is an
internal vertex, let gv be the corresponding gate. The formula ε is Δ-balanced if
for every vertex v, with children c1, c2, . . . , ck,

maxjAdv±(εcj
)

minj Adv±(εcj
)

⊕ Δ . (1.10)

(If cj is a leaf, Adv±(εcj
) = 1.) Formula ε is almost balanced if it is Δ-balanced

for some Δ = O(1).

In particular, an adversary-balanced formula is 1-balanced. We will show:

Theorem 7. Let S be a fixed, finite set of gates. Then there exists a quantum
algorithm that evaluates an almost-balanced formula ε over S using O

(
Adv±(ε)

)
input queries. After polynomial-time classical preprocessing independent of the
input, and assuming unit-time coherent access to the preprocessed string, the
running time of the algorithm is Adv±(ε)

(
log Adv±(ε)

)O(1).
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Theorem 7 is significantly stronger than Theorem 5, which requires exact
balance. There are important classes of exactly balanced formulas, such as com-
plete, layered formulas. In fact, it is sufficient that the multiset of gates along the
simple path from the root to a leaf not depend on the leaf. Moreover, sometimes
different gates have the same Adv± bound; see [HLŠ06] for examples. Even still,
exact adversary balance is a very strict condition.

The proof of Theorem 7 is based on the span program framework developed
in Ref. [Rei09]. In particular, [Rei09, Theorem 9.1] gives two quantum algo-
rithms for evaluating span programs. The first algorithm is based on a discrete-
time simulation of a continuous-time quantum walk. It applies to arbitrary span
programs, and is used, in combination with Theorem 4, to prove Theorem 6.
However, the simulation incurs a logarithmic query overhead and potentially
worse time complexity overhead, so this algorithm is not suitable for proving
Theorem 7.

The second algorithm in [Rei09] is based directly on a discrete-time quan-
tum walk, similar to previous optimal formula-evaluation algorithms [ACR+10,
RŠ08]. However, this algorithm does not apply to an arbitrary span program. A
bound is needed on the operator norm of the entry-wise absolute value of the
weighted adjacency matrix for a corresponding graph. Further graph sparsity
conditions are needed for the algorithm to be time efficient (see Theorem 9).

Unfortunately, the span program from Theorem 4 will not generally satisfy
these conditions. Theorem 4 gives a canonical span program ([Rei09, Defini-
tion 5.1]). Even for a simple formula, the optimal canonical span program will
typically correspond to a dense graph with large norm.

An example should clarify the problem. Consider the AND-OR formula
σ(x) =

(
[(x1 ∧ x2) ∨ x3] ∧ x4

) ∨ (
x5 ∧ [x6 ∨ x7]

)
, and consider the two graphs

in Fig. 1. For an input x → {0, 1}7, modify the graphs by attaching dangling
edges to every vertex j for which xj = 0. Observe then that each graph has an
eigenvalue-zero eigenvector supported on vertex 0—called a witness—if and only
if σ(x) = 1. The graphs correspond to different span programs computing σ, and
the quantum algorithm works essentially by running a quantum walk starting at
vertex 0 in order to detect the witness. The graph on the left is a significantly
simplified version of a canonical span program for σ, and its density still makes
it difficult to implement the quantum walk.

We will be guided by the second, simpler graph. Instead of applying Theo-
rem 4 to ε as a whole, we apply it separately to every gate in the formula. We
then compose these span programs, one per gate, according to the formula, using
direct-sum composition (Definition 6). In terms of graphs, direct-sum composi-
tion attaches the output vertex of one span program’s graph to an input vertex
of the next [RŠ08]. This leads to a graph whose structure somewhat follows the
structure of the formula ε, as the graph in Fig. 1(b) follows the structure of
σ. (However, the general case will be more complicated than shown, as we are
plugging together constant-size graph gadgets, and there may be duplication of
some subgraphs.)
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Fig. 1. Graphs corresponding to two span programs both computing the same function.

Direct-sum composition keeps the maximum degree and norm of the graph
under control—each is at most twice its value for the worst single gate. There-
fore the second [Rei09] algorithm applies. However, direct-sum composition also
leads to additional overhead. In particular, a witness in the first graph will be
supported only on numbered vertices (note that the graph is bipartite), whereas
a witness in the second graph will be supported on some of the internal vertices
as well. This means roughly that the second witness will be harder to detect,
because after normalization its overlap on vertex 0 will be smaller. Scale both
witnesses so that the amplitude on vertex 0 is one. The witness size (wsize) mea-
sures the squared length of the witness only on numbered vertices, whereas the
full witness size (fwsize) measures the squared length on all vertices. For [Rei09],
it was sufficient to consider only span program witness size, because for canon-
ical span programs like in Fig. 1(a) the two measures are equal. (For technical
reasons, we will actually define fwsize to be 1 + wsize even in this case.) For our
analysis, we will need to bound the full witness size in terms of the witness size.
We maintain this bound in a recursion from the formula’s leaves toward its root.

A span program is called strict if every vertex on one half of the bipartite
graph is either an input vertex (vertices 1–7 in the graphs of Fig. 1) or the output
vertex (vertex 0). Thus the first graph in the example above corresponds to a
strict span program, and the second does not. The original definition of span
programs, in [KW93], allowed for only strict span programs. This was sensible
because any other vertices on the input/output part of the graph’s bipartition
can always be projected away, yielding a strict span program that computes
the same function. For developing time-efficient quantum algorithms, though, it
seems important to consider span programs that are not strict. Unfortunately,
going backwards, e.g., from 1(a) to 1(b), is probably difficult in general.
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Theorem 7 does not follow from the formula-evaluation techniques of [RŠ08],
together with Theorem 3 from [Rei09]. This tempting approach falls into
intractable technical difficulties. In particular, the same span program can be
used at two vertices v and w in ε only if gv = gw and the general adversary
bounds of v’s input subformulas are the same as those for w’s inputs up to simul-
taneous scaling. In general, then, an almost-balanced formula will require an
unbounded number of different span programs. However, the analysis in [RŠ08]
loses a factor that depends badly on the individual span programs. Since the
dependence is not continuous, even showing that the span programs in use all
lie within a compact set would not be sufficient to obtain an O(1) upper bound.
In contrast, the approach we follow here allows bounding the lost factor by an
exponential in k, uniformly over different gate imbalances.

1.4 Quantum Algorithm to Evaluate Approximately Balanced
AND-OR Formulas

Ambainis et al. [ACR+10] use a weaker balance criterion for AND-OR formulas
than Definition 1. They define an AND-OR formula to be approximately bal-
anced if ψ−(ε) = O(1) and ψ+(ε) = O(n). Here n is the size of the formula, i.e.,
the number of leaves, and ψ−(ε) and ψ+(ε) are defined by:

Definition 2. For each vertex v in a formula ε, let

ψ−(v) = max
ξ

∑
w∞ξ

1
Adv±(εw)

ψ+(v) = max
ξ

∑
w∞ξ

Adv±(εw)2 , (1.11)

with each maximum taken over all simple paths θ from v to a leaf. Let ψ±(ε) =
ψ±(r), where r is the root of ε.

Recall that Adv±(ε) = Adv(ε) =
∈

n for an AND-OR formula. Definition
1 is a stricter balance criterion because Δ-balance of a formula ε implies (by
Lemma 3) that ψ−(ε) and ψ+(ε) are both dominated by geometric series. How-
ever, the same steps followed by the proof of Theorem 7 still suffice for proving
the [ACR+10] result, and, in fact, for strengthening it. We show:

Theorem 8. Let ε be an AND-OR formula of size n. Then after polynomial-
time classical preprocessing that does not depend on the input x, ε(x) can be
evaluated by a quantum algorithm with error at most 1/3 using O

(∈
n ψ−(ε)

)
input queries. The algorithm’s running time is

∈
nψ−(ε) (log n)O(1) assuming

unit-cost coherent access to the preprocessed string.

For the special case of AND-OR formulas with ψ−(ε) = O(1), Theorem 8
strengthens Theorem 7. The requirement that ψ−(ε) = O(1) allows for
some gates in the formula to be very unbalanced. Theorem 8 also strengthens
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[ACR+10, Theorem 1] because it does not require that ψ+(ε) = O(n). For exam-
ple, a formula that is biased near the root, but balanced at greater depths can
have ψ−(ε) = O(1) and ψ+(ε) = ϕ(n). By substituting the bound ψ−(ε) =
O(

∈
d) for a depth-d formula [ACR+10, Definition 3], a corollary of Theorem

8 is that a depth-d, size-n AND-OR formula can be evaluated using O(
∈

nd)
queries. This improves the depth-dependence from [ACR+10], and matches the
dependence from an earlier version of that article [Amb07].

The essential reason that the Definition 1 balance condition can be weakened
is that for the specific gates AND and OR, by writing out the optimal span
programs explicitly we can prove that they satisfy stronger properties than are
necessarily true for other functions.

2 Span Programs

2.1 Definitions

We briefly recall some definitions from [Rei09, Section 2]. Additionally, we define
a span program complexity measure, the full witness size, that charges even for
the “free” inputs. This quantity is important for developing quantum algorithms
that are time efficient as well as query efficient.

For a natural number n, let [n] = {1, 2, . . . , n}. For a finite set X, let CX be
the inner product space C|X| with orthonormal basis {|x〉 : x → X}. For vector
spaces V and W over C, let L(V,W ) be the set of linear transformations from
V into W , and let L(V ) = L(V, V ). For A → L(V,W ), ∝A∝ is the operator norm
of A. For a string x → {0, 1}n, let x̄ denote its bitwise complement.

Definition 3 ([HLŠ05,HLŠ07]). For finite sets C, E and D ∀ Cn, let f :
D ≤ E. An adversary matrix for f is a real, symmetric matrix ς → L(CD) that
satisfies 〈x|ς |y〉 = 0 whenever f(x) = f(y).

The general adversary bound for f , with costs s → [0,⇐)n, is

ADV±
s (f) = max

adversary matricesς :
∀j→[n], ∝ς◦ξj∝⊕sj

∝ς∝ . (2.1)

Here ς ◦ ξj denotes the entry-wise matrix product between ς and ξj =⎝
x,y:xj ∈=yj

|x〉〈y|. The (nonnegative-weight) adversary bound for f , with costs
s, is defined by the same maximization, except with ς restricted to have nonneg-
ative entries. In particular, ADV±

s (f) ⊥ Advs(f).

Letting
−≤
1 = (1, 1, . . . , 1), the adversary bound for f is Adv(f) = Adv−⊕

1
(f)

and the general adversary bound for f is Adv±(f) = Adv±−⊕
1
(f). By [HLŠ07],

Q(f) = Ω(Adv±(f)).

Definition 4 (Span program [KW93]). A span program P consists of a nat-
ural number n, a finite-dimensional inner product space V over C, a “target”
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vector |t〉 → V , disjoint sets Ifree and Ij,b for j → [n], b → {0, 1}, and “input
vectors” |vi〉 → V for i → Ifree ∪ ⋃

j∞[n],b∞{0,1} Ij,b.
To P corresponds a function fP : {0, 1}n ≤ {0, 1}, defined on x → {0, 1}n by

fP (x) =

{
1 if |t〉 → Span({|vi〉 : i → Ifree ∪ ⋃

j∞[n] Ij,xj
})

0 otherwise
(2.2)

Some additional notation is convenient. Fix a span program P . Let I =
Ifree ∪ ⋃

j∞[n],b∞{0,1} Ij,b. Let A → L(CI , V ) be given by A =
⎝

i∞I |vi〉〈i|. For
x → {0, 1}n, let I(x) = Ifree ∪ ⋃

j∞[n] Ij,xj
and λ(x) =

⎝
i∞I(x) |i〉〈i| → L(CI).

Then fP (x) = 1 if |t〉 → Range(Aλ(x)). A vector |w〉 → CI is said to be a witness
for fP (x) = 1 if λ(x)|w〉 = |w〉 and A|w〉 = |t〉. A vector |w√〉 → V is said to be
a witness for fP (x) = 0 if 〈t|w√〉 = 1 and λ(x)A†|w√〉 = 0.

Definition 5 (Witness size). Consider a span program P , and a vector s →
[0,⇐)n of nonnegative “costs.” Let S =

⎝
j∞[n],b∞{0,1},i∞Ij,b

∈
sj |i〉〈i| → L(CI).

For each input x → {0, 1}n, define the witness size of P on x with costs s,
wsizes(P, x), as follows:

wsizes(P, x) =

⎧
⎨
⎩

min|w∀:AΠ(x)|w∀=|t∀ ∝S|w〉∝2 iffP (x) = 1
min |w′∀: ∅t|w′∀=1

Π(x)A†|w′∀=0

∝SA†|w√〉∝2 iffP (x) = 0 (2.3)

The witness size of P with costs s is

wsizes(P ) = max
x∞{0,1}n

wsizes(P, x) . (2.4)

Define the full witness size fwsizes(P ) by letting Sf = S +
⎝

i∞Ifree
|i〉〈i| and

fwsizes(P, x) =

⎧
⎨
⎩

min|w∀:AΠ(x)|w∀=|t∀(1 + ∝Sf |w〉∝2) if fP (x) = 1
min |w′∀: ∅t|w′∀=1

Π(x)A†|w′∀=0

(∝|w√〉∝2 + ∝SA†|w√〉∝2) if fP (x) = 0 (2.5)

fwsizes(P ) = max
x∞{0,1}n

fwsizes(P, x) . (2.6)

When the subscript s is omitted, the costs are taken to be uniform, s =
−≤
1 =

(1, 1, . . . , 1), e.g., fwsize(P ) = fwsize−⊕
1
(P ). The witness size is defined in [RŠ08].

The full witness size is defined in [Rei09, Section 8], but is not named there. A
strict span program has Ifree = ∅, so Sf = S, and a monotone span program
has Ij,0 = ∅ for all j [Rei09, Definition 4.9].

2.2 Quantum Algorithm to Evaluate a Span Program Based on Its
Full Witness Size

[Rei09, Theorem 9.3] gives a quantum query algorithm for evaluating span pro-
grams based on the full witness size. The algorithm is based on a quantum walk
on a certain graph. Provided that the degree of the graph is not too large, it can
actually be implemented efficiently.
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Theorem 9 ([Rei09, Theorem 9.3]). Let P be a span program. Then fP can
be evaluated using

T = O
(
fwsize(P ) ∝ abs(AGP

)∝)
(2.7)

quantum queries, with error probability at most 1/3. Moreover, if the maximum
degree of a vertex in GP is d, then the time complexity of the algorithm for
evaluating fP is at most a factor of (log d)

(
log(T log d)

)O(1) worse, after classical
preprocessing and assuming constant-time coherent access to the preprocessed
string.

Proof. (sketch) The query complexity claim is actually slightly weaker than
[Rei09, Theorem 9.3], which allows the target vector to be scaled downward
by a factor of

√
fwsize(P ).

The time-complexity claim will follow from the proof of[Rei09, Theorem 9.3],
in [Rei09, Prop. 9.4, Theorem 9.5]. The algorithm for evaluating fP (x) uses a
discrete-time quantum walk on the graph GP (x). If the maximum degree of a
vertex in GP is d, then each coin reflection can be implemented using O(log d)
single-qubit unitaries and queries to the preprocessed string [GR02,CNW10].
Finally, the

(
log(T log d)

)O(1) factor comes from applying the Solovay-Kitaev
Theorem [KSV02] to compile the single-qubit unitaries into products of elemen-
tary gates, to precision 1/O(T log d). �

We remark that together with [Rei09, Theorem 3.1], Theorem 9 gives a way
of transforming a one-sided-error quantum algorithm into a span program, and
back into a quantum algorithm, such that the time complexity is nearly pre-
served, after preprocessing. This is only a weak equivalence, because aside from
requiring preprocessing the algorithm from Theorem 9 also has two-sided error.
To some degree, though, it complements the equivalence results for best span
program witness size and bounded-error quantum query complexity [Rei09, The-
orem 7.1,Theorem 9.2].

2.3 Direct-Sum Span Program Composition

Let us study the full witness size of the direct-sum composition of span programs.
We begin by recalling the definition of direct-sum composition.

Let f : {0, 1}n ≤ {0, 1} and S ∀ [n]. For j → [n], let mj be a natural
number, with mj = 1 for j /→ S. For j → S, let fj : {0, 1}mj ≤ {0, 1}. Define
y : {0, 1}m1 × · · · × {0, 1}mn ≤ {0, 1}n by

y(x)j =

{
fj(xj) if j → S

xj if j /→ S
(2.8)

Define g : {0, 1}m1 × · · · × {0, 1}mn ≤ {0, 1} by g(x) = f(y(x)). For example, if
S = [n] � {1}, then

g(x) = f
(
x1, f2(x2), . . . , fn(xn)

)
. (2.9)
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Given span programs for the individual functions f and fj for j → S, we will
construct a span program for g. We remark that although we are here requiring
that the inner functions fj act on disjoint sets of bits, this assumption is not
necessary for the definition. It simplifies the notation, though, for the cases
S �= [n], and will suffice for our applications.

Let P be a span program computing fP = f . Let P have inner product space
V , target vector |t〉 and input vectors |vi〉 indexed by Ifree and Ijc for j → [n]
and c → {0, 1}.

For j → [n], let sj → [0,⇐)mj be a vector of costs, and let s → [0,⇐)
∑

mj

be the concatenation of the vectors sj . For j → S, let P j0 and P j1 be span
programs computing fP j1 = fj : {0, 1}mj ≤ {0, 1} and fP j0 = ¬fj , with rj =
wsizesj

(P j0) = wsizesj
(P j1). For c → {0, 1}, let P jc have inner product space V jc

with target vector |tjc〉 and input vectors indexed by Ijc
free and Ijc

kb for k → [mj ],
b → {0, 1}. For j /→ S, let rj = sj .

Let IS =
⋃

j∞S,c∞{0,1} Ijc. Define Ξ : IS ≤ [n] × {0, 1} by Ξ(i) = (j, c) if
i → Ijc. The idea is that Ξ maps i to the input span program that must evaluate
to 1 in order for |vi〉 to be available in P .

There are several ways of composing the span programs P and P jc to obtain
a span program Q computing the composed function fQ = g with wsizes(Q) ⊕
wsizer(P ) [Rei09, Defs. 4.4, 4.5, 4.6]. We focus on direct-sum composition.

Definition 6 ([Rei09, Definition 4.5]). The direct-sum-composed span pro-
gram Q⊕ is defined by:

– The inner product space is V ⊕ = V ≡ ⊕
j∞S,c∞{0,1}(C

Ijc ⊗ V jc). Any vector
in V ⊕ can be uniquely expressed as |u〉V +

⎝
i∞IS

|i〉⊗ |ui〉, where |u〉 → V and
|ui〉 → V ς(i).

– The target vector is |t⊕〉 = |t〉V .
– The free input vectors are indexed by I⊕

free = Ifree∪IS ∪⋃
j∞S,c∞{0,1}(Ijc×Ijc

free)
with, for i → I⊕

free,

|v⊕
i 〉 =

⎧
⎪⎨
⎪⎩

|vi〉V if i → Ifree

|vi〉V − |i〉 ⊗ |tjc〉 if i → Ijcandj → S

|i√〉 ⊗ |vi′′〉 if i = (i√, i√√) → Ijc × Ijc
free

(2.10)

– The other input vectors are indexed by I⊕
(jk)b for j → [n], k → [mj ], b → {0, 1}.

For j /→ S, I⊕
(j1)b = Ijb, with |v⊕

i 〉 = |vi〉V for i → I⊕
(j1)b. For j → S, let

I⊕
(jk)b =

⋃
c∞{0,1}(Ijc × Ijc

kb). For i → Ijc and i√ → Ijc
kb, let

|v⊕
ii′〉 = |i〉 ⊗ |vi′〉 . (2.11)

By [Rei09, Theorem 4.3], fQ⊕ = g and wsizes(Q⊕) ⊕ wsizer(P ). (While that
theorem is stated only for the case S = [n], it is trivially extended to other
S ⊂ [n].) We give a bound on how quickly the full witness size can grow relative
to the witness size:
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Lemma 1. Under the above conditions, for each input x → {0, 1}m1 × · · · ×
{0, 1}mn , with y = y(x),

– If g(x) = 1, let |w〉 be a witness to fP (y) = 1 such that
∑

j∞[n],i∞Ijyj

rj |wi|2 = wsizer(P, y).

Then

fwsizes(Q⊕, x)
wsizer(P, y)

⊕ ψ
(
y, |w〉) +

1 +
⎝

i∞Ifree
|wi|2

wsizer(P, y)

where ψ(y, |w〉) = max
j∞S:

∃i∞Ijyj
with∅i|w∀∈=0

fwsizesj
(P jyj )

wsizesj
(P jyj )

. (2.12)

– If g(x) = 0, let |w√〉 be a witness to fP (y) = 0 such that
∑

j∞[n],i∞Ijȳj

rj |〈w√|vi〉|2 = wsizer(P, y).

Then

fwsizes(Q⊕, x)
wsizer(P, y)

⊕ ψ(ȳ, |w√〉) +
∝|w√〉∝2

wsizer(P, y)

where ψ(ȳ, |w√〉) = max
j∞S:

∃i∞Ijȳj
with∅vi|w′∀∈=0

fwsizesj
(P jȳj )

wsizesj
(P jȳj )

.

(2.13)

If S = ∅, then ψ(y, |w〉) and ψ(ȳ, |w√〉) should each be taken to be 1 in the above
equations.

Proof. We follow the proof of [Rei09, Theorem 4.3], except keeping track of the
full witness size. Note that if S = ∅, then Eqs. (2.12) and (2.13) are immediate
by definition of fwsizes(Q⊕, x).

Let I(y)√ = I(y) � Ifree =
⋃

j∞[n] Ijyj
.

In the first case, g(x) = 1, for j → S let |wjyj 〉 → CIjyj be a witness to

fP jyj (xj) = 1 such that fwsizes(P jyj , xj) = 1+
⎝

i∞I
jyj
free

|wjyj

i |2+⎝
k∞[mj ],i∞I

jyj
k(xj)k

(sj)k|wjyj

i |2. As in [Rei09, Theorem 4.3], let |w⊕〉 → CI⊕(x) be given by

w⊕
i =

⎧
⎪⎨
⎪⎩

wi if i → I(y)

wi′w
ς(i′)
i′′ if i = (i√, i√√) with i√ → I(y)√ ∩ IS , i√√ → Iς(i′)(x)

0 otherwise
(2.14)
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Then |w⊕〉 is a witness for fQ⊕(x) = 1, and we compute

fwsizes(Q⊕, x) ⊕ 1 +
∑

i∞I⊕
free

|w⊕
i |2 +

∑
j∞[n],k∞[mj ],

i∞I⊕
(jk)(xj)k

(sj)k|w⊕
i |2

= 1 +
∑

i∞Ifree

|wi|2 +
∑

j∞[n]�S,i∞Ijxj

sj |wi|2 (2.15)

+
∑

j∞S,i∞Ijyj

|wi|2
(

1 +
∑

i′∞I
jyj
free

|wjyj

i′ |2

+
∑

k∞[mj ],i′∞I
jyj
k(xj)k

(sj)k|wjyj

i′ |2
)

= 1 +
∑

i∞Ifree

|wi|2 +
∑

j∞[n]�S,i∞Ijxj

sj |wi|2

+
∑

j∞S,i∞Ijyj

|wi|2 fwsizesj
(P jyj , xj) .

Equation (2.12) follows using the bound fwsizesj
(P jyj , xj) ⊕ ψ(y, |w〉)rj for

j → S, and sj = rj for j /→ S.
Next consider the case g(x) = 0. For j → S, let |ujȳj 〉 → V jȳj be a witness

for fP jȳj (xj) = 0 with fwsizes(P jȳj , xj) = ∝|ujȳj 〉∝2 +
⎝

k∞[mj ],i∞I
jȳj

k(xj)k

(sj)k

|〈vi|ujȳj 〉|2. As in [Rei09, Theorem 4.3], let

|u⊕〉 = |w√〉V +
∑

i∞IS�I(y)

〈vi|w√〉|i〉 ⊗ |uς(i)〉 . (2.16)

Then |u⊕〉 is a witness for fQ⊕(x) = 0, and, moreover,

fwsizes(Q⊕, x) ⊕ ∝|u⊕〉∝2 +
∑

j∞[n],k∞[mj ],i∞I⊕
(jk)(xj)k

(sj)k|〈v⊕
i |u⊕〉|2

= ∝|u⊕〉∝2 +
∑

j∞[n]�S
i∞Ijx̄j

sj |〈v⊕
i |u⊕〉|2

+
∑

j∞S,k∞[mj ],

i∞Ijȳj
,i′∞I

jȳj

k(xj)k

(sj)k|〈v⊕
ii′ |u⊕〉|2
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= ∝|w√〉∝2 +
∑

j∞[n]�S
i∞Ijx̄j

sj |〈vi|w√〉|2 (2.17)

+
∑

j∞S,i∞Ijȳj

|〈vi|w√〉|2
(

∝|ujȳj 〉∝2

+
∑

k∞[mj ],i′∞I
jȳj

k(xj)k

(sj)k|〈vi′ |ujȳj 〉|2
)

= ∝|w√〉∝2 +
∑

j∞[n]�S
i∞Ijx̄j

rj |〈vi|w√〉|2

+
∑

j∞S,i∞Ijȳj

|〈vi|w√〉|2 fwsizesj
(P jȳj , xj) .

Equation (2.13) follows using the bound fwsizesj
(P jȳj , xj) ⊕ ψ(ȳ, |w√〉)rj

for j → S. �

Lemma 1 is a key step in the formula-evaluation results in this article
and [Rei11]. It is used to track the full witness size for span programs recur-
sively composed in a direct-sum manner along a formula. The proof of The-
orem 7 will require the lemma with the weaker bounds ψ(y, |w〉), ψ(ȳ, |w√〉) ⊕
maxj∞S,c∞{0,1}fwsizesj

(P jc)/wsizesj
(P jc). Theorem 8 will use only the slightly

stronger bounds ψ(y, |w〉) ⊕ maxj∞Sfwsizesj
(P jyj )/wsizesj

(P jyj ), ψ(ȳ, |w√〉) ⊕
maxj∞Sfwsizesj

(P jȳj )/wsizesj
(P jȳj ). However, the proof of [Rei11, Theorem 1.1]

will require the bounds of Eqs. (2.12) and (2.13).

3 Evaluation of Almost-Balanced Formulas

In this section, we will apply the span program framework from [Rei09] to prove
Theorem 7. Our algorithm will be given by applying Theorem 9 to a certain
span program. Before beginning the proof, though, we will give two necessary
lemmas.

Consider a span program P with corresponding weighted graph GP , from
[Rei09, Definition 8.2]. We will need a bound on the operator norm of abs(AGPv

),
the entry-wise absolute value of the weighted adjacency matrix AGPv

. If P is
canonical [Rei09, Definition 5.1], then we can indeed obtain such a bound in
terms of the witness size of P :

Lemma 2. Let s → (0,⇐)k, and let P be a canonical span program computing
a function f : {0, 1}k ≤ {0, 1} with input vectors indexed by the set I. Assume
that for each x → {0, 1}k with f(x) = 0, an optimal witness to fP (x) = 0 is |x〉
itself. Then

∝ abs(AGP
)∝ ⊕ 2k

(
1 +

wsizes(P )
minj∞[k] sj

)
+ |I| . (3.1)
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Proof. Recall from [Rei09, Definition 5.1], that P being in canonical form implies
that its target vector is |t〉 =

⎝
x:f(x)=0 |x〉, and that the matrix A whose columns

are the input vectors of P can be expressed as

A =
∑
i∞I

|vi〉〈i| =
∑

j∞[k], x:f(x)=0

|x〉〈j, x̄j | ⊗ 〈vxj | . (3.2)

By assumption, for each x → f−1(0),
∑
j∞[k]

sj∝|vxj〉∝2 = wsizes(P, x) ⊕ wsizes(P ) . (3.3)

In particular, letting ψ = minj∞[k] sj > 0, we can bound
∑
j∞[k]

∝|vxj〉∝2 ⊕ 1
ψ

∑
j∞[k]

sj∝|vxj〉∝2

⊕ wsizes(P )
ψ

. (3.4)

The rest of the argument follows from the definition of the weighted adja-
cency matrix AGP

. From [Rei09, Definition 8.1, Prop. 8.8], ∝ abs(AGP
)∝ ⊕

∝ abs(BGP
)∝2, where BGP

is the biadjacency matrix corresponding to P ,

BGP
=

⎞|t〉 A
0 1

⎠
, (3.5)

and 1 is an |I| × |I| identity matrix. Now bound ∝ abs(BGP
)∝ by its Frobenius

norm:

∝ abs(AGP
)∝ ⊕ ∝ abs(BGP

)∝2

⊕ ∝ abs(BGP
)∝2F

= ∝|t〉∝2 +
∑

x:f(x)=0,
j∞[k]

∝|vxj〉∝2 + |I|

⊕ 2k + 2k max
x:f(x)=0

∑
j∞[k]

∝|vxj〉∝2 + |I| . (3.6)

Equation (3.1) follows by substituting in Eq. (3.4). �
An important quantity in the proof of Theorem 7 will be ψ−(ε), from Defi-

nition 2. For an almost-balanced formula ε, ψ−(ε) = O(1).

Lemma 3. Consider a Δ-balanced formula ε over a gate set S in which every
gate depends on at least two input bits. Then for every vertex v, with children
c1, c2, . . . , ck,

Adv±(εv)
maxj Adv±(εcj

)
⊥

√
1 +

1
Δ2

. (3.7)

In particular,
ψ−(ε) ⊕ (2 +

∈
2)Δ2 . (3.8)
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Proof. Consider a vertex v with corresponding gate g = gv : {0, 1}k ≤ {0, 1}.
By Theorem 2, Adv±(εv) = Adv±

s(g), where sj = Adv±(εcj
). It is immediate

from the definitions that ADV±
s (g) ⊥ Advs(g). We will show that Advs(g) ⊥√

1 + 1/Δ2(maxjsj), using that maxjsj/minj sj ⊕ Δ.
Use the weighted minimax formulation of the adversary bound from [HLŠ07,

Theorem 18]:

Advs(g) = min
p

max
x,y∞{0,1}k

g(x) ∈=g(y)

1⎝
j:xj ∈=yj

√
px(j)py(j)/sj

, (3.9)

where the minimization is over all choices of probability distributions px over [k]
for x → {0, 1}k.

Since the adversary bound is monotone increasing in each weight, the worst
case is when all but one of the weights are equal to maxjsj/Δ. Since for a scalar
c, Advcs(g) = cAdvs(g), we may scale so that one weight is Δ and all other
weights are 1. Assume that the first weight is s1 = Δ; the other k − 1 cases,
s2 = Δ and so on, are symmetrical. Assume also that g depends on the first bit;
otherwise Adv±

s (g) will not depend on s1 so one of the other cases will be worse.
Therefore, there exist inputs x, y → {0, 1}k that differ only on the first bit, but
for which g(x) �= g(y).

Since the function g depends on at least two input bits, there also exists
a third input z → {0, 1}k with x1 = z1 but g(z) = g(y) �= g(x). Indeed, if
g(z) = g(x) for every z with z1 = x1, and if g(z) = g(y) for every z with z1 = y1,
then g depends only on the first bit.

By Eq. (3.9),

ADV±
s (g) ⊥ min

px,py,pz

max
{ 1√

px(1)py(1)/s1
,

1⎝
j≥2

xj ∈=zj

√
px(j)pz(j)/sj

}
(3.10)

where the minimization is over only the three probability distributions px, py

and pz. In the above expression, we may clearly take py(1) = 1 and py(j) = 0
for j ⊥ 2. We may also use the Cauchy-Schwarz inequality to bound the second
term above, and finally substitute s1 = Δ, sj = 1 for j ⊥ 2 to obtain,

ADV±
s (g) ⊥ min

px

max
{ Δ√

px(1)
,

1⎛⎝
j≥2 px(j)

}
. (3.11)

The optimum is achieved for px(1) = Δ2/(1 + Δ2), so Adv±
s(g) ⊥

√
1 + Δ2, as

claimed.
To derive Eq. (3.8), note that Δ ⊥ 1 necessarily. Then the sum ψ−(ε) is

dominated by the geometric series
⊥∑

k=0

(
1 +

1
Δ2

)−k/2

, (3.12)

which is at most (2 +
∈

2)Δ2, with equality at Δ = 1. �
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Note that the 1-balanced formulas over S = {OR2} satisfy the inequal-
ity (3.7) with equality and come arbitrarily close to saturating the inequal-
ity (3.8).

With Lemmas 2 and 3 in hand, we are ready to prove Theorem 7.

Proof. (of Theorem 7) First of all, we may assume without loss of generality
that every gate in S depends on at least two input bits. Indeed, if a gate g :
{0, 1}k ≤ {0, 1} depends on no input bits, i.e., is the constant 0 or constant 1
function, then g can be eliminated from any formula over S without changing the
adversary balance condition, since ADV±

s (g) = 0 for all cost vectors s → [0,⇐)k.
If a gate g : {0, 1}k ≤ {0, 1} depends only on one input bit, say the first bit, then
ADV±

s (g) = s1 for all cost vectors s, and therefore similarly g can be eliminated
without affecting the adversary balance condition.

Consider ε an n-variable, Δ-balanced, read-once formula over the finite gate
set S. Let r be the root of ε. We begin by recursively constructing a span
program Pϕ that computes ε and has witness size wsize(Pϕ) = Adv±(ε). Pϕ is
constructed using direct-sum composition of span programs for each node in ε.
(Direct-sum composition is also the composition method used in [RŠ08].)

The construction works recursively, starting at the leaves of ε and mov-
ing toward the root. Consider an internal vertex v, with children c1, . . . , ck. Let
ρj = Adv±(εcj

), where εcj
is the subformula of ε rooted at cj (Definition 1). In

particular, if cj is a leaf, then ρj = 1. Assume that for j → [k] we have inductively
constructed span programs Pϕcj

and P †
ϕcj

computing εcj
and ¬εcj

, respectively,

with wsize(Pϕcj
) = wsize(P †

ϕcj
) = ρj . Apply [Rei09, Theorem 6.1], a generaliza-

tion of Theorem 4, twice to obtain span programs Pv and P †
v computing fPv

= gv

and fP †
v

= ¬gv, with wsizeα(Pv) = wsizeα(P †
v ) = ADV±

α (gv) = Adv±(εv).
Then let Pϕv

and P †
ϕv

be the direct-sum-composed span programs of Pv and
P †

v , respectively, with the span programs Pϕcj
, P †

ϕcj
according to the formula ε.

By definition of direct-sum composition, the graph GPϕv
is built by replacing

the input edges of GPv
with the graphs GPϕcj

or GP †
ϕcj

; and similarly for GP †
ϕv

.

Some examples are given in [Rei09, Appendix B] and in [RŠ08]. By [Rei09, The-
orem 4.3], Pϕv

(resp. P †
ϕv

) computes εv (¬εv) with wsize(Pϕv
) = wsize(P †

ϕv
) =

Adv±(εv).
Let Pϕ = Pϕr

. We wish to apply Theorem 9 to Pϕ to obtain a quantum
algorithm, but to do so will need some more properties of the span programs
Pv and P †

v . Recall from [Rei09, Theorem 5.2] that each Pv may be assumed to
be in canonical form, satisfying in particular that for any input y → {0, 1}k with
gv(y) = 0 an optimal witness is |y〉 → Cg−1

v (0) itself. Therefore, Lemma 2 applies,
and we obtain

∝ abs(AGPv
)∝ = 2k

⎞
1 +

wsizeα(Pv)
minj ρj

⎠
+ |I| , (3.13)
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where |I| is the number of input vectors in Pv. Now use

wsizeα(Pv)
minj ρj

=
maxjρj

minj ρj

Adv±
α(gv)

maxjρj

⊕ Δk , (3.14)

where we have applied Eq. (1.10) and also ADV±
α (gv)/maxjρj ⊕ Adv±(gv) ⊕ k.

Additionally, by [Rei09, Lemma 6.6], we may assume that |I| ⊕ 2k22k. Thus

∝ abs(AGPv
)∝ = Δ 2O(k) . (3.15)

By repeating this argument for the negated function ¬gv computed by a dual
span program P †

v ([Rei09, Lemma 4.1]), we also have ∝ abs(AG
P

†
v

)∝ = Δ 2O(k).
A consequence is that

∝ abs(AGPϕ
)∝ = Δ 2O(kmax) (3.16)

where kmax is the maximum fan-in of any gate used in ε. Indeed, GPϕ
is

built by “plugging together” the graphs GPv
and GP †

v
for the different ver-

tices v. Split the graph GPϕ
into two pieces, G0 and G1, comprising those

subgraphs GPv
and GP †

v
for which the distance of v from r is even or

odd, respectively. Then ∝ abs(AGPϕ
)∝ ⊕ ∝ abs(AG0)∝ + ∝ abs(AG1)∝. Since

each Gb is the disconnected union of graphs GPv
and GP †

v
, ∝ abs(AGb

)∝ ⊕
maxv max{∝ abs(AGPv

)∝, ∝ abs(AGP
†
v
)∝}.

Let us bound the full witness size of Pϕ.

Lemma 4. Let v be a vertex of ε. Then

max
{
fwsize(Pϕv

), fwsize(P †
ϕv

)
} ⊕ ψ−(v)Adv±(εv) . (3.17)

Proof. The proof is by induction in the maximum distance from v to a leaf. The
base case, that all of v’s inputs are themselves leaves is by definition of Pv and
P †

v , since then ψ−(v) = 1 + 1/Adv±(gv).
Let v have children c1, . . . , ck. By Lemma 1 with s =

−≤
1 and S = {j → [k] :

cj is not a leaf},

fwsize(Pϕv
)

Adv±(εv)
⊕ 1

Adv±(εv)
+ max

j∞S
max

{
fwsize(Pϕcj

)

Adv±(εcj
)

,
fwsize(P †

ϕcj
)

Adv±(εcj
)

}
. (3.18)

In the case εv(x) = 1, this follows since Pv is strict, so in Eq. (2.12) the sum
over Ifree is zero. In the case εv(x) = 0, this follows since Pv is in canonical form,
so in Eq. (2.13), ∝|w√〉∝2 = 1.

Now by induction, the right-hand side is at most Adv±(εv)−1 +
maxj∞Sψ−(εcj

) = ψ−(v). �
In particular, applying Lemma 4 for the case v = r, we find

fwsize(Pϕ) ⊕ ψ−(ε)Adv±(ε) = O
(
Δ2Adv±(ε)

)
(3.19)
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since ψ−(ε) = O(Δ2) by Lemma 3. Combining Eqs. (3.16) and (3.19) gives

fwsize(Pϕ) ∝ abs(AGPϕ
)∝ = Δ3 2O(kmax)Adv±(ε) . (3.20)

This is O(Adv±(ε)); since the gate set S is fixed and finite, kmax = O(1).
Theorem 7 now follows from Theorem 9. �

Note that the lost constant in the theorem grows cubically in the balance
parameter Δ and exponentially in the maximum fan-in kmax of a gate in S. It is
conceivable that this exponential dependence can be improved.

For future reference, we state separately the bound used above to derive
Eq. (3.16).

Lemma 5. If Pϕ is the direct-sum composition along a formula ε of span pro-
grams Pv and P †

v , then

∝ abs(AGP
)∝ ⊕ 2max

v∞ϕ
max{∝ abs(AGPv

)∝, ∝ abs(AGP
†
v
)∝} . (3.21)

If the span programs Pv are monotone, then ∝ abs(AGP
)∝ ⊕ 2max

v
∝ abs(AGPv

)∝.

The claim for monotone span programs follows because then the dual span
programs P †

v are not used in Pϕ.

4 Evaluation of Approximately Balanced AND-OR
Formulas

The proof of Theorem 8 will again be a consequence of Lemma 1 and Theorem
9.

We will use the following strict, monotone span programs for fan-in-two AND
and OR gates:

Definition 7. For s1, s2 > 0, define span programs PAND(s1, s2) and POR(s1, s2)
computing AND2 and OR2, {0, 1}2 ≤ {0, 1}, respectively, by

PAND(s1, s2) :|t〉 =
⎞

ρ1

ρ2

⎠
, |v1〉 =

⎞
Δ1

0

⎠
, |v2〉 =

⎞
0
Δ2

⎠
(4.1)

POR(s1, s2) :|t〉 = δ, |v1〉 = ε1, |v2〉 = ε2 (4.2)

Both span programs have I1,1 = {1}, I2,1 = {2} and Ifree = I1,0 = I2,0 = ∅. Here
the parameters ρj , Δj , δ, εj , for j → [2], are given by

ρj = (sj/sp)1/4 Δj = 1 (4.3)

δ = 1 εj = (sj/sp)1/4 , (4.4)

where sp = s1 + s2. Let ρ =
√

ρ2
1 + ρ2

2 and ε =
√

ε21 + ε22.
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Note that ρ, ε → (1, 21/4]. They are largest when s1 = s2.

Claim. The span programs PAND(s1, s2) and POR(s1, s2) satisfy:

wsize(∗s1,
∗

s2)(PAND, x) =

{∈
sp if x → {11, 10, 01}∗
sp

2 if x = 00

wsize(∗s1,
∗

s2)(POR, x) =

{∈
sp if x → {00, 10, 01}∗
sp

2 if x = 11
(4.5)

Proof. These are calculations using Definition 5 for the witness size. Letting
ψ = (

∈
s1,

∈
s2), Q = PAND(s1, s2) and R = POR(s1, s2), we have

wsizeσ(Q, 11) =
(ρ1

Δ1

)2∈
s1 +

(ρ2

Δ2

)2∈
s2 =

∈
sp (4.6)

wsizeσ(Q, 10) =
(Δ2

ρ2

)2∈
s2 =

∈
sp (4.7)

wsizeσ(Q, 00) =
⎞(ρ1

Δ1

)2 1∈
s1

+
(ρ2

Δ2

)2 1∈
s2

⎠−1

=
∈

sp

2
(4.8)

wsizeσ(Q, 01) =
(Δ1

ρ1

)2∈
s1 =

∈
sp (4.9)

and

wsizeσ(R, 11) = δ2
( ε21∈

s1
+

ε22∈
s2

)−1

=
∈

sp

2
(4.10)

wsizeσ(R, 10) =
( δ

ε1

)2∈
s1 =

∈
sp (4.11)

wsizeσ(R, 00) =
(ε1

δ

)2∈
s1 +

(ε2
δ

)2∈
s2 =

∈
sp (4.12)

wsizeσ(R, 01) =
( δ

ε2

)2∈
s2 =

∈
sp . (4.13)

It is not a coincidence that wsizeσ(Q,x) = wsizeσ(R, x̄) for all x → {0, 1}2. This
can be seen as a consequence of De Morgan’s laws and span program duality—
see [Rei09, Lemma 4.1]. �

Proof. (of Theorem 8) Let ε be an AND-OR formula of size n, i.e., on n input
bits.

First expand out the formula so that every AND gate and every OR gate
has fan-in two. This expansion can be carried out without increasing ψ−(ε) by
more than a factor of 10:

Lemma 6 ([ACR+10, Lemma 8]) For any AND-OR formula ε, one can
efficiently construct an equivalent AND-OR formula ε√ of the same size, such
that all gates in ε√ have fan-in at most two, and ψ−(ε√) = O(ψ−(ε)).
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Therefore we may assume that ε is a formula over fan-in-two AND and OR
gates.

Now use direct-sum composition to compose the AND and OR gates accord-
ing to the formula ε, as in the proof of Theorem 7. Since the span programs for
AND and OR are monotone, direct-sum composition does not make use of dual
span programs computing NAND or NOR. Therefore there is no need to specify
these span programs. At a vertex v, set the weights s1 and s2 to equal the sizes of
v’s two input subformulas. Let Pv be the span program used at vertex v, Pϕv

be
the span program thus constructed for the subformula εv, and Pϕ be the span
program constructed computing ε. With this choice of weights, it follows from
Claim 4 and [Rei09, Theorem 4.3] that wsize(Pϕv

) = Adv±(εv) = Adv(εv).
Notice that for all s1, s2 → [0,⇐), ∝ abs(AGPAND(s1,s2))∝ = O(1) and

∝ abs(AGPOR(s1,s2))∝ = O(1). Therefore, by Lemma 5, we obtain that
∝ abs(AGPϕ

)∝ = O(1).
Thus to apply Theorem 9 we need only bound fwsize(Pϕ). Lemma 4 does

not apply, because for PAND(s1, s2), an optimal witness |w√〉 to fPAND(x) = 0
might have ∝|w√〉∝2 > 1, as each ρj < 1. (Lemma 4 would apply had we set the
parameters to be ρ1 = ρ2 = 1, Δj = (sp/sj)1/4, but then ∝AGPAND

∝ would not
necessarily be O(1).) However, analogous to Lemma 4, we will show:

Lemma 7. Let v be a vertex of ε. Then

fwsize(Pϕv
, x) ⊕

{
ψ−(v)Adv(εv) if εv(x) = 1
2ψ−(v)Adv(εv) − 1 if εv(x) = 0

(4.14)

Proof. The proof is by induction in the maximum distance from v to a leaf. The
base case, that v’s two inputs are themselves leaves is by definition of Pv, since
then ψ−(v) = 1 + 1/

∈
2.

Let v have children c1 and c2. We will use Lemma 1 with s =
−≤
1 , S = {j →

[2] : cj is not a leaf}.
If εv(x) = 1, then since Pv is a strict span program, i.e., Ifree = ∅, Eq. (2.12)

gives
fwsize(Pϕv

, x)
Adv(εv)

⊕ 1
Adv(εv)

+ max
j∞S

fwsize(Pϕcj
)

Adv(εcj
)

. (4.15)

By induction, the right-hand side is at most 1/Adv(εv) + max
j

ψ−(cj) = ψ−(v).

If εv(x) = 0 and gv is an OR gate, then the unique witness |w√〉 for Pv has
∝|w√〉∝ = 1, from Definition 7. From Eq. (2.13) and the induction hypothesis,

fwsize(Pϕv
, x)

Adv±(εv)
⊕ 1

Adv(εv)
+ max

j∞S

(
2ψ−(cj) − 1

Adv(εcj
)

)

< 2ψ−(v) − 1
Adv(εv)

, (4.16)

as claimed.
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Therefore assume that εv(x) = 0 and gv is an AND gate. Let s1 and s2
be the sizes of the two input subformulas to v, sp = s1 + s2 = Adv(εv)2,
and assume without loss of generality that εc1(x) = 0. If εc2(x) = 0 as well,
then assume without loss of generality that 2ψ−(c1) − 1∗

s1
⊥ 2ψ−(c2) − 1∗

s2
,

so ψ(ȳ) ⊕ 2ψ−(c1) − 1∗
s1

. Then the witness |w√〉 may be taken to be |w√〉 =

(1/ρ1, 0) =
(
(sp/s1)1/4, 0

)
. From Eq. (2.13),

fwsize(Pϕv
, x)

Adv±(εv)
⊕

√
sp/s1

Adv±(εv)
+ ψ(ȳ)

⊕ 1∈
s1

+
(
2ψ−(c1) − 1∈

s1

)

< 2ψ−(v) − 1∈
sp

, (4.17)

as claimed. �
In particular, applying Lemma 7 for the case v = r, we find

fwsize(Pϕ) ⊕ 2ψ−(ε)Adv(ε) = 2ψ−(ε)
∈

n . (4.18)

Theorem 8 now follows from Theorem 9. �

5 Open Problems

In order to begin to relax the balance condition for general formulas, it seems that
we need a better understanding of the canonical span programs. For example,
can the norm bound Lemma 2 be improved?

Although the two-sided bounded-error quantum query complexity of eval-
uating formulas is beginning to be understood, the zero-error quantum query
complexity [BCWZ99] appears to be more complicated. For example, the exact
and zero-error quantum query complexities for ORn are both n [BBC+01]. On
the other hand, Ambainis et al. [ACGT10] use the [ACR+10] algorithm as a
subroutine in the construction of a self-certifying, zero-error quantum algorithm
that makes O(

∈
n log2 n) queries to evaluate the balanced binary AND-OR for-

mula. It is not known how to relax the balance requirement or extend the gate
set.

Can we develop further methods for constructing span programs with small
full witness size, norm and maximum degree? A companion paper [Rei11] studies
reduced tensor-product span program composition in order to complement the
direct-sum composition that we have used here.

The case of formulas over non-boolean gates may be more complicated [Rei09],
but is still intriguing.

Acknowledgements. I thank Andrew Landahl and Robert Špalek for helpful discus-
sions. Research supported by NSERC and ARO-DTO.
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Abstract. We give a construction for a self-test for any connected graph
state. In other words, for each connected graph state we give a set of
non-local correlations that can only be achieved (quantumly) by that
particular graph state and certain local measurements. The number of
correlations considered is small, being linear in the number of vertices in
the graph. We also prove robustness for the test.

1 Introduction

Self-testing is a process where a skeptical classical user attempts to verify the
operation of a collection of quantum devices without trusting any of them a
priori. Importantly, we wish to make as few assumptions as possible about the
operation of the devices and in particular we do not bound the dimension of the
state space for each device. However we do make the necessary assumption that
the quantum devices are not allowed to communicate with each other. Despite
these severe restrictions on our knowledge it is possible to devise self-tests for a
number of different situations.

Self-testing was first introduced by Mayers and Yao [MY04] who described a
self-test for a maximally entangled pair of qubits (EPR pair) along with a small
set of local measurements. Meanwhile, self-testing of gates was introduced by
van Dam et al. [vMMS00] in the scenario of known Hilbert space dimensions.
These two results were extended to testing of circuits over a real Hilbert space by
Magniez et al. [MMMO06]. Most recently, McKague and Mosca [MM11] reproved
the Mayers-Yao result and extended it to allow for testing of a larger set of
measurements including measurements over the full complex Hilbert space.

In this paper we use proof techniques developed in [MM11] to define self-tests
for the graph state for any connected graph. This family of self-tests is efficient
in the number of measurement settings, requiring only two or three measurement
settings on each vertex, depending on the graph. As well the total number of
correlations tested is small, only one per vertex plus an additional 3 at most.
We also prove that the self-tests are robust.

1.1 Graph States and Notation

A graph G is composed of two sets: a set V of vertices, and a set E ≤ V × V
of edges. For our purposes we suppose that (v, v) /→ E and (v, u) → E whenever

D. Bacon et al. (Eds.): TQC 2011, LNCS 6745, pp. 104–120, 2014.
DOI: 10.1007/978-3-642-54429-3 7, c© Springer-Verlag Berlin Heidelberg 2014
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(u, v) → E. Two vertices u, v are said to be adjacent if (u, v) → E. A cycle is a
sequence of vertices in which each vertex occurs at most once, each vertex in the
sequence is adjacent to the next vertex in the sequence, and the last vertex is
adjacent to the first. A subgraph G∗ of G is a graph (E∗, V ∗) with E∗ ∈ E, V ∗ ∈ V .
An induced subgraph is a subgraph in which E∗ = {(u, v) → E |u, v → V ∗}, so the
subgraph contains all edges between vertices of V ∗ in the original graph. The
neighbours Nv ∈ V of a vertex v are the vertices to which v is connected with
an edge, i.e. Nv = {u → V | (u, v) → E}. A bipartite graph is a graph in which
the set of vertices may be partitioned into two sets S and T , each of which has
no edges within it. So the induced subgraphs on S and T have no edges. An
important property of bipartite graphs is that they are exactly the graphs which
contain no cycles with an odd number of vertices. A graph is connected if for
each pair of vertices u, v there is a sequence of adjacent vertices beginning with
u and ending in v. For more detail regarding graph theory see Diestel [Die10].

A graph state consists of a set of qubits indexed by the set of vertices V ,
each prepared in the state | +⊕v = 1√

2
(| 0⊕v + | 1⊕v), followed by (CTRL − Z)uv

operations for each adjacent u, v → V . If the graph is not connected then the
graph state will be a product state of graph states on the separate components.
Hence connected graphs form the interesting case.

Graph states are also characterized by their stabilizer group. Let the oper-
ators Xv and Zv be the Pauli operators X and Z applied to qubit v, tensor
product with I on all other qubits. If P is a Pauli and S ∈ V then

PS =
∏
v⊕S

Pv. (1)

The stabilizer group for a graph state on the graph G = (V,E) is generated by

Sv =
{
XvZ

Nv |v → V
}

. (2)

That is, for each vertex v there is a stabilizer generator with X operating on v
and Z operating on each of v’s neighbours. Note that there are n such generators,
they pairwise commute and are independent. Hence there is exactly one state
with this stabilizer group. That is to say, the graph state |ε⊕ is the unique state
for which Sv |ε⊕ = |ε⊕ for each v → V .

As one additional piece of notation, we will frequently need to deal with
products of stabilizers on a subset of vertices. For this case we define

ZN(S) =
∏
v⊕S

ZNv (3)

where the factor Zv appears in ZN(S) if v has an odd number of neighbours in S.

1.2 Self-Testing Definitions

Consider the following black-box scenario: we are given a set of devices, each
with a knob labeled with a number of settings, a pair of lights labeled ±1, and a
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button. After we select a setting and push the button one of the lights turns on.
We are told that the devices jointly share a state which is measured, according to
the knob setting, in a specified basis. Our goal is to determine if the black-boxes
are operating according to their specification using only the external controls
of the boxes. Additionally we may isolate the boxes to ensure that they do not
communicate.

We begin with a reference experiment consisting of an n-partite system in
the state |ε⊕ together with local measurement observables Mj,m on subsystem
j with measurement setting m → {0, 1, . . . , kj}. The measurement setting m =
0 corresponds to no measurement, which we may represent with the identity.
The reference experiment represents the specification for how the black-boxes
supposedly operate. In particular, we assume that the state and observables
are known.

In addition, we have a physical experiment consisting of an n-partite physical
system in the state1 |ε∗⊕ together with local measurement observables M ∗

j,m on
subsystem j, with m → {0, 1, . . . , kj}. Again we may take M ∗

j,0 = I indicating
that we do not measure the subsystem. We place no bound on the dimension of
the Hilbert space of each subsystem, but assume that it is finite. The physical
experiment represents how the black-boxes actually operate.

If a physical and reference experiment have the same number of subsystems
and the same number of measurements on each subsystem, then we say that
they are compatible. Note that we will always deal with the case of two-outcome
measurements, so that all observables have eigenvalues ±1. In principle, though,
the definitions can be extended to other types of measurements.

To be more specific about our task, we introduce two notions, simulation and
equivalence.

Definition 1. Let a physical experiment and a compatible reference experiment
be given as above. We say that the physical experiment simulates the reference
experiment if for each measurement setting m = (m1, . . . ,mn), mj → {0, . . . , kj}
we have

≺ε∗ |
n⊗

j=1

M ∗
j,mj

|ε∗⊕ = ≺ε |
n⊗

j=1

Mj,mj
|ε⊕ . (4)

For our purposes it will be sufficient to consider only a subset of possible mea-
surement settings. In this case we include the measurement settings of interest
in our description of the reference experiment.

Definition 2. Let a physical experiment and a compatible reference experiment
be given as above. We say that the physical experiment is equivalent to the ref-
erence experiment if there exists a local isometry

Ω = Ω1 ⊥ · · · ⊥ Ωn (5)

1 We consider only pure states, but since the Hilbert space of the physical system has
unbounded dimension we may easily add a purification to mixed states.
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and a state | junk⊕ such that, for each j, and m → {1, . . . , kj}

Ω(|ε∗⊕) = | junk⊕ ⊥ |ε⊕ (6)
Ω(M ∗

j,m |ε∗⊕) = | junk⊕ ⊥ Mj,m |ε⊕ (7)

where | junk⊕ is in the same Hilbert space as |ε∗⊕.
When describing any physical system we must first fix a reference frame,

and decide which components to describe and which to leave out. Thus we may
take a description and apply local changes of basis, or add ancillas and arrive at
another, perfectly acceptable, description of the system. These two operations
are invisible from the perspective of classical interactions with devices so we can
never rule them out. This motivates our definition of equivalence, which takes
such ambiguities in quantum descriptions into account.

Throughout the remainder of this paper we will used primed (|ε∗⊕, X ∗, S∗
v

etc.) to denote physical measurements and states and unprimed for reference
measurements and states. Note that S∗

v = X ∗
v⊥Z ∗N(v) and other derived physical

measurements are defined in terms of the local physical measurements. Also,
although we use the letters X and Z for the physical measurements, these need
not be Pauli matrices, and we assume nothing about them other than what we
mention explicitly.

1.3 Main Results

A self-testing theorem specifies a particular reference experiment and states that
if a physical experiment simulates the reference experiment, then it is equivalent
to it. That is to say, for a particular experiment simulation implies equivalence.
Our main result is to show that this is the case for the following two reference
experiments.

Definition 3 (Reference experiment 1: connected graph with an odd
induced cycle). Let G = (V,E) be a connected graph containing an odd induced
cycle C = (V ∗, E∗). Let |ε⊕ be the corresponding graph state with stabilizers
Sv, v → V . The reference experiment consists of the state |ε⊕, the stabilizer
measurements Sv and the measurement XV ′

ZN(V ′).

It is easy to show that a graph which contains an odd cycle also contains
an induced cycle. Thus reference experiment 1 applicable to all connected non-
bipartite graphs.

Definition 4 (Reference experiment 2: connected graph). Let G = (V,E)
be a connected graph with at least two vertices. Let |ε⊕ be the corresponding graph
state with stabilizers Sv, v → V . Choose a fixed edge (u, v) → E and define

Du =
1√
2

(Xu + Zu) (8)
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The reference experiment consists of the state |ε⊕, the stabilizer measurements
Sv and the measurements

Z ∗
uZ ∗Nu (9)

DuZNu (10)

DuXvZ
Nv\{u} (11)

In Appendix C we show that for a bipartite graph all measurements using
X and Z alone can be simulated using a classical hidden variable model, hence
our addition of the D measurements.

Theorem 1. If a physical experiment is compatible with reference experiment
1 (2), and simulates it, then the physical experiment is equivalent to reference
experiment 1(2).

2 Proof of Main Result

The proof consists of three sections. First we determine the expected values
for the measurements in the reference experiment. Next we show that if the
physical experiment simulates the reference experiment then the X ∗ and Z ∗

operators anti-commute. Finally we construct the local isometry and use the
anti-commuting property of the X ∗ and Z ∗ operators to show equivalence.

2.1 Probability Distribution from Graph States

We first derive the probability distributions that arise from a graph state with
trusted measurements. This establishes the conditions that a physical experiment
must meet in order to simulate the reference experiment.

Clearly, the stabilizer measurements all satisfy

≺ε |Sv |ε⊕ = 1. (12)

For reference experiment 1, we need one additional measurement.

Lemma 1. Let G = (V,E) be a graph and let |ε⊕ be the corresponding graph
state. Let V ∗ ∈ V and let G∗ = (V ∗, E∗) be the induced subgraph on V ∗. If each
v → V ∗ has even degree then

(−1)|E′|XV ′
ZN(V ′) |ε⊕ = |ε⊕ (13)

Proof. Consider the product
( ∏

v⊕V ′
Sv

)
|ε⊕ (14)
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First note that there will be an Xv factor for each v → V ∗. As well, there will
be a Zu factor for each v → V ∗ adjacent to u. Canceling pairs we see that there
will be an overall Zu factor exactly when there are an odd number of neighbours
of u in V ∗. Hence the Z factor will be ZN(V ′). We only need to determine the
sign. Note that the Zu, u /→ V ∗ factor all commute so we need not consider them
any more.

The order of multiplication in Eq. (14) does not matter since the stabilizers
all commute. For convenience, then, we may write the product as the product
of the rows of a matrix with each column corresponding to a v → V ∗ and each
row a stabilizer. We choose the order of the rows so that the Xs appear along
the diagonal2. For a 5-cycle, for instance, we have

X Z I I Z
Z X Z I I
I Z X Z I
I I Z X Z
Z I I Z X

. (15)

The factor on each vertex equals the product of the entries in the correspond-
ing column. In each column there is one X and one Z for each neighbour. The
factor will be either ±XZ or ±X, depending on whether there is an odd or even
number of Zs. The sign depends on the number of Zs above the X, since we
must use the fact that XZ = −ZX once for each such Z. Combining the signs
from all vertices, there is a −1 factor for each Z above the diagonal, and hence
one for each edge in G∗. The overall sign, then, is (−1)|E′|.

For reference experiment 1 we consider an odd cycle, and hence we obtain

≺ε |XV ′
ZN(V )′ |ε⊕ = −1. (16)

Reference experiment 2 has three measurements other than the stabilizer.
First we have ZuZNu . This is just Su with Xu replaced by Zu. Since X and Z
anti-commute we have

≺ε |ZuZNu |ε⊕ = 0. (17)

From this, and linearity, we obtain

≺ε |DuZNu |ε⊕ =
1√
2
. (18)

Finally, the operator DuXvZ
Nv\{u} is a linear combination of Sv and Sv with

Zu replaced with Xu. As above, then, we find

≺ε |DuXvZ
Nv\{u} |ε⊕ =

1√
2
. (19)

2 The matrix may be constructed by taking the adjacency matrix of G∼, which has a
1 in the u, v position when (u, v) ∼ E∼, replacing the diagonal with Xs, the 0s with
Is and the 1s with Z.
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2.2 Statistics Imply Anti-commuting Observables

We now suppose that the physical experiment simulates either reference exper-
iment 1 or 2 and show that this implies that the X ∗ and Z ∗ measurements on
each vertex anti-commute (on the support of |ε⊕).

First, note that ≺ε∗ |S∗
v |ε∗⊕ = 1 implies S∗

v |ε∗⊕ = |ε∗⊕, and similarly for
other measurements. This allows us to immediately drop probabilities and deal
with states directly.

As a first step towards our goal, we prove a type of induction lemma which
says that if the X ∗ and Z ∗ observables anti-commute for some vertex, then the
same is true for an adjacent vertex. Thus we need only show anti-commuting
observables on one vertex, and apply the lemma repeatedly along paths to all
other vertices (since G is connected.)

Lemma 2. Given a graph G with (u, v) → E. If observables X ∗
v, Z

∗
v,X

∗
u, Z ∗

u, and
{Z ∗

w|w → Nu ⊗ Nv} and state |ε∗⊕ satisfy

S∗
u |ε∗⊕ = S∗

v |ε∗⊕ = |ε∗⊕ (20)

(X ∗Z ∗)v |ε∗⊕ = −(Z ∗X ∗)v |ε∗⊕ (21)

then
(X ∗Z ∗)u |ε∗⊕ = −(Z ∗X ∗)u |ε∗⊕ (22)

Proof. From the fact that (u, v) → E we obtain

(Z ∗X ∗)u |ε∗⊕ = (Z ∗X ∗)uS∗
uS∗

vS
∗
uS∗

v |ε∗⊕ (23)
= (Z ∗X ∗)uX ∗

uZ ∗
vX

∗
vZ

∗
uX ∗

uZ ∗
vX

∗
vZ

∗
u |ε∗⊕ (24)

= (X ∗Z ∗)u(Z ∗X ∗)v(Z ∗X ∗)v |ε∗⊕ (25)
= −(X ∗Z ∗)u(Z ∗X ∗)v(X ∗Z ∗)v |ε∗⊕ (26)
= −(X ∗Z ∗)u |ε∗⊕ (27)

For reference experiment 1 we show that the observables X ∗ and Z ∗ anti-
commute for each vertex in the induced odd cycle.

Lemma 3. Let G = (E, V ) be a connected graph and let C = (E∗, V ∗) be an
induced odd cycle of G and let u → V ∗. If observables X ∗

u, Z ∗
u for u → V ∗,

{Z ∗
w|w has a neighbour in C} and state |ε∗⊕ satisfy

S∗
u |ε∗⊕ = |ε∗⊕ (28)

−X
′V ′

Z ∗N(V ′) |ε∗⊕ = |ε∗⊕ (29)

Then (X ∗Z ∗)u |ε⊕ = −(Z ∗X ∗)u |ε⊕ for each u → V ∗.
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Proof. Number the vertices in the cycle 1 through k so 1 is adjacent to 2, etc..
Without loss of generality we may assume that u is vertex 1. We next consider
the following state:

−X ∗V ′
Z ∗N(V ′)

k−1
2∏

j=1

S∗
2j

k−1
2∏

j=1

S∗
2j−1 |ε∗⊕ = |ε∗⊕ (30)

Note that the factor Z ∗N(V ′) is cancelled by Z operations arising from the prod-
ucts of the S∗

v. We may write the product as the product of the rows of the
following matrix, where column j corresponds to vertex j in the cycle:

−X ∗ X ∗ X ∗ X ∗ X ∗ . . . X ∗ X ∗ X ∗

Z ∗ X ∗ Z ∗ I I . . . I I I
I I Z ∗ X ∗ Z ∗ . . . I I I

...
I I I I I . . . Z∗ X ∗ Z ∗

X ∗ Z ∗ I I I . . . I I Z∗

I Z ∗ X ∗ Z ∗ I . . . I I I
I I I Z ∗ X ∗ . . . I I I

...
Z ∗ I I I I . . . I Z∗ X ∗

(31)

In each column there are two X ∗ operators and two Z ∗ operators. Also, their
arrangement is such that, for every column except the first, the two X ∗ operators
are next to one another, so they cancel directly, and similarly for the Z ∗ operators.
Hence

−(X ∗Z ∗)u(X ∗Z ∗)u |ε∗⊕ = |ε∗⊕ (32)

The desired result follows immediately.

For reference experiment 2, we have one additional measurement on a par-
ticular vertex u. We use this extra measurement to establish that the X ∗ and Z ∗

measurements on u anti-commute.

Lemma 4. Let G = (V,E) be a connected graph with (u, v) → E. If observables
D∗

u,X ∗
v, Z

∗
v,X

∗
u, Z ∗

u, {Z ∗
w|w → Nu ⊗ Nv} and state |ε∗⊕ satisfy

S∗
u |ε∗⊕ = S∗

v |ε∗⊕ = |ε∗⊕ (33)

≺ε∗ |Z ∗
uZ ∗Nu |ε∗⊕ = 0 (34)

≺ε∗ |D∗
uZ ∗Nu |ε∗⊕ =

1√
2

(35)

≺ε∗ |D∗
uXvZ

∗Nv\u |ε∗⊕ =
1√
2

(36)

then −(X ∗Z ∗)u |ε∗⊕ = (Z ∗X ∗)u |ε∗⊕
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Proof. Since ≺ε∗ |X ∗
uZ ∗Nu |ε⊕ = 1 we have X ∗

u |ε∗⊕ = Z ∗Nu |ε⊕. Similarly,
Z ∗
u |ε∗⊕ = X ∗

vZ
∗Nv\u |ε∗⊕. Along with ≺ε∗ |Z ∗

uZ ∗Nu |ε∗⊕ = 0 we find that X ∗
u |ε∗⊕

is orthogonal to Z ∗
u |ε∗⊕. We also obtain ≺ε∗ |D∗

uZ ∗
u |ε∗⊕ = 1√

2
and ≺ε∗ |D∗

uX ∗
u |ε∗⊕

= 1√
2
. Since D∗

u |ε∗⊕ has norm 1, we find

D∗
u |ε∗⊕ =

1√
2
X ∗

u |ε∗⊕ + Z ∗
u

1√
2

|ε∗⊕ (37)

Further, since (D∗
u)2 = I = (Z ∗

u)2 = (X ∗
u)2, and

|ε∗⊕ = (D∗
u)2 |ε∗⊕ (38)

=
1√
2
D∗

u

(
Z ∗Nu + XvZ

∗Nv\u
)

|ε∗⊕ (39)

=
1
2

(
Z ∗Nu + XvZ

∗Nv\u
)

(X ∗
u + Z ∗

u) |ε∗⊕ (40)

=
1
2

(2I + (X ∗Z ∗)u + (Z ∗X ∗)u) |ε∗⊕ (41)

In order for this to be true, we must have

(X ∗Z ∗)u |ε∗⊕ = −(Z ∗X ∗)u |ε∗⊕ . (42)

We conclude with a technical lemma that allows us to exchange X ∗
v operations

for Z ∗
v operations.

Lemma 5. Let G = (V,E) be a connected graph and let X ∗
v, Z

∗
v for v → V and

|ε∗⊕ (and Du for some u → V ) be a physical experiment that simulates reference
test 1 (or 2). Let G∗ = (V ∗, E∗) be an induced subgraph of G. Then

(−1)|E′|X ∗V ′ |ε∗⊕ = Z ∗N(V ′) |ε∗⊕ (43)

Proof. We use the previous lemmas to conclude that X ∗
vZ

∗
v |ε∗⊕ = −Z ∗

vX
∗
v |ε∗⊕

for each v. Then we repeat the argument used in the proof of Lemma 1. Essen-
tially, we look at the product ∏

v

S∗
v |ε∗⊕ . (44)

Writing this product out as a the product of rows of a symmetric matrix with
X ∗s along the diagonal, we see that in order to get all the X ∗s together we must
use the anti-commuting relation once for each Z ∗ above the diagonal. Since there
is one Z ∗ above the diagonal for each edge, we obtain the factor (−1)|E′|.

2.3 Constructing the Isometry

The local isometry Ω that we use to show equivalence between the physical
experiment and the reference experiment is the tensor product of isometries Ωv

for various v → V , is in the circuit shown in Fig. 1.
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Fig. 1. Circuit for Φv

The circuit is based on the argument used by Mayers and Yao in their original
EPR test. It may be seen as a type of SWAP gate, decomposed into three CNOT
gates. Here the first CNOT gate is omitted since the ancilla is always initialized
in the state | 0⊕. The Hadamards and Controlled Z operation replace a CNOT
targeted on the ancilla. With these points in mind, we see that when Z ∗

v and X ∗
v

are indeed qubit Pauli operators the circuit defines a SWAP operation.
We will now calculate the result of Ω applied to |ε∗⊕.

Ω(| ε∗⊕) =
1
2n

∑
x

⊗
v⊕V

X ∗xv
v (I + (−1)xvZ ∗

v) |ε∗⊕ |x⊕ (45)

with x = (xv)v⊕V → {0, 1}|V |. Applying the anti-commutation relation, this
simplifies to

Ω(| ε∗⊕) =
1
2n

∑
x

⊗
v⊕V

(I + Z ∗
v) X ∗xv

v |ε∗⊕ |x⊕ . (46)

Using Lemma 5 and the fact that (I + Z ∗
v)Z

∗
v = I + Z ∗

v we finally find

Ω(|ε∗⊕) =

(
1√
2n

⊗
v⊕V

(I + Z ∗
v) |ε∗⊕

)(
1√
2n

∑
x

(−1)e(x) |x⊕
)

(47)

where e(x) is the number of edges in the induced subgraph on the set Vx = {v →
V |xv = 1}.

Set |ρ⊕ = 1√
2n

∑
x(−1)e(x) |x⊕. Consider Sv |x⊕ for some x. This will be

± |x ∼ 1v⊕ where 1v is the binary vector with 1 in position v and 0 everywhere
else. The sign may be computed as follows: for each Zu component of Sv, if
xu = 1 a −1 factor will be introduced. This happens when (u, v) → E and
u is in Vx. We may see this as either removing or adding the vertex v and
adding a −1 factor for each edge between v and another vertex in Vx. Thus
Sv(−1)e(x) |x⊕ = (−1)e(x⊥1v) |x ∼ 1v⊕. In other words, this exactly produces the
correct sign on each |x⊕ so that Sv |ρ⊕ = |ρ⊕ and in fact |ρ⊕ = |ε⊕.

Now consider Ω(X ∗
v |ε∗⊕) for some v. After anti-commuting the X ∗ operations

we have
Ω(X ∗

u |ε∗⊕) =
1
2n

∑
x

⊗
v⊕V

(I + Z ∗
v) X ∗xv

v X
′
u |ε∗⊕ |x⊕ . (48)

In this equation, we may simply replace X ∗xv
v X

′
u with X ∗xv⊥1u

v , where 1u is
the vector with 0s everywhere, except position u. After applying Lemma 5 we
arrive at
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Ω(X ∗
u |ε∗⊕) =

(
1
2n

⊗
v⊕V

(I + Z ∗
v) |ε∗⊕

)∑
x

(−1)e(x⊥1u) |x⊕ . (49)

A change of variable, x ≡∝ x ∼ 1u, and the fact that Xu |x⊕ = |x ∼ 1u⊕ gives the
final result,

Ω(X ∗
v |ε∗⊕) =

(
1√
2n

⊗
v⊕V

(I + Z ∗
v) |ε∗⊕

)
Xv |ε⊕ . (50)

A similar analysis shows that

Ω(Z ∗
v |ε∗⊕) =

(
1√
2n

⊗
v⊕V

(I + Z ∗
v) |ε∗⊕

)
Zv |ε⊕ . (51)

Recall from the proof of Lemma 4 that D∗
v |ε∗⊕ may be written as D∗

v |ε∗⊕ =
1√
2

(X ∗
v + Z ∗

v) |ε∗⊕. By linearity, then

Ω(D∗
v |ε∗⊕) =

(
1√
2n

⊗
v⊕V

(I + Z ∗
v) |ε∗⊕

)
Dv |ε⊕ . (52)

This concludes the proof of theorem1.

3 Robustness

In this section we will show that the main theorems are both robust. First, we
modify the definitions of simulation and equivalence to allow for small deviations
from the reference experiment

Definition 5. Let a physical experiment and a compatible reference experiment
be given as above. We say that the physical experiment Π -simulates the reference
experiment if for each measurement setting m = (m2, . . . ,mn), mj → {0, . . . , kj}
we have ∣∣∣∣∣∣

≺ε∗ |
n⊗

j=1

M ∗
j,mj

|ε∗⊕ − ≺ε |
n⊗

j=1

Mj,mj
|ε⊕

∣∣∣∣∣∣
∧ Π. (53)

Definition 6. Let a physical experiment and a compatible reference experiment
be given as above. We say that the physical experiment is σ-equivalent to the
reference experiment if there exists a local isometry

Ω = Ω2 ⊥ · · · ⊥ Ωn (54)

and a state | junk⊕ such that, for each j, and m → {1, . . . , kj}
||Ω(|ε∗⊕) − | junk⊕ ⊥ |ε⊕||2 ∧ σ (55)∣∣∣∣Ω(M ∗

j,m |ε∗⊕) − | junk⊕ ⊥ Mj,m |ε⊕∣∣∣∣
2

∧ σ (56)

where | junk⊕ is in the same Hilbert space as |ε∗⊕.



Self-Testing Graph States 115

Using these definitions we are able to prove the following theorem.

Theorem 2. Let a graph G be given with |V | = n. If a compatible physical
experiment Π-simulates reference experiment 1 (2) then it is σ-equivalent to it
with

σ = (5n2 + 11n + 4)n2n−2
√

2Π(σ = n2n−2
(
(n + 2)26Π

1
4 + (4n2 + 10n)

√
2Π

)
).

The proof simply follows that of the exact case, applying estimations at
each step. Proofs for the two reference experiments are included in Appendix A
and B. Note that σ may be improved for particular graphs or by adding additional
measurements, such as tests for more odd cycles, or more D type measurements.

4 Discussion

4.1 Estimating Expected Values

The main results concern expected values, rather than experimental outcomes.
So in order to make use of these results in any practical implementation we
must estimate the expected values using data collected from experimental out-
comes. The obvious approach of sampling the devices many times and applying
a Chernoff bound is problematic. In particular, we do not wish to assume that
separate uses of a device are independent and identically distributed since these
assumptions would be untestable and likely false in many practical experiments.

One approach to this problem is that used by Pironio et al. in [PAM+10].
There the authors construct a martingale, which is a sequence of random vari-
ables with certain properties. In particular, the random variables need not be
independent. This allows them to use Azuma’s inequality, which gives good
bounds for martingales on how far away a sample may lie from the expected
value without relying on independence assumptions. A similar approach is viable
here and a preliminary analysis suggests that good bounds are achievable.

4.2 Graph State Computation

Graph states are particularly interesting for their role in measurement based
quantum computation (MBQC, [RB01]). In this paradigm a graph state is mea-
sured, vertex by vertex, in particular bases. Each measurement may be inter-
preted as performing a unitary on a logical qubit. The composition of these
unitaries performs a logical circuit on the logical qubits.

A natural question to ask is whether a self-tested graph state could be used
for MBQC to allow for self-tested computation. Unfortunately MBQC depends
on measurements in the X-Y plane and the measurements tested here are all in
the X-Z plane. However, the techniques used in [MM11] could easily be adapted
to allow testing of X-Y plane measurements which would then allow self-tested
MBQC. In fact, in the exact case the techniques used in [MM11] can be used
with minimal changes. A preliminary analysis of robustness suggests that the
errors scale similarly to that of Lemma 4 here.
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A Proof of Robustness for Reference Experiment 1

First we note that if ≺ε |M |ε⊕ ∨ 1 − Π then

|||ε⊕ − M |ε⊕||2 ∧
√

2Π. (57)

Next, suppose that we have |||ε⊕ − M |ε⊕||2 ∧ Δ and |||ε⊕ − N |ε⊕||2 ∧ ψ.
Using the triangle inequality and the fact that ||M ||∞ = 1 we have

|||ε⊕ − MN |ε⊕||2 ∧ Δ + ψ. (58)

The remainder of the proof will use these estimates repeatedly, along with the
triangle inequality. We need only count the number of operators multiplied
together.

First, for Lemma 3 let c be the size of the induced cycle. We multiply c + 1
operators together. Thus we conclude that for a vertex u in the induced cycle

||X ∗
uZ ∗

u |ε∗⊕ + Z ∗
uX ∗

u |ε∗⊕||2 ∧ (c + 1)
√

2Π. (59)

Next, for Lemma 2 we multiply four operators, then invoke the anti-commuting
property on one of the vertices. This gives

||X ∗
uZ ∗

u |ε∗⊕ + Z ∗
uX ∗

u |ε∗⊕||2 ∧ 4
√

2Π + ψ (60)

where ψ is ||X ∗
vZ

∗
v |ε∗⊕ + Z ∗

vX
∗
v |ε∗⊕||2, v being neighbouring vertex. We may

apply Lemma 2 along paths from vertices in the induced cycle in G. Let l be the
length (number of edges) of the longest path. Then for any vertex u we find, at
worst,

||X ∗
uZ ∗

u |ε∗⊕ + Z ∗
uX ∗

u |ε∗⊕||2 ∧ (4l + c + 1)
√

2Π. (61)

Lastly, for Lemma 5, we multiply |V ∗| operators, and apply the anti-
commuting relation |E∗| times. Thus

∣∣∣
∣∣∣(−1)|E′|X ∗V ′ |ε∗⊕ − Z ∗N(V ′) |ε∗⊕

∣∣∣
∣∣∣
2

∧ (|V ∗| + (4l + c + 1)|E∗|)
√

2Π. (62)

We are now ready to analyze the proof of the main theorem for reference
experiment 1. To arrive at Eq. 46 we apply the anti-commutation relation. This
happens once for each 1 appearing in x, for each possible x, for a total of n2n−1

times. We may find this by pairing values x and x ∼ 111 . . . 1. There are 2n−1

such pairs and each pair contains n 1s all together. We find
∣∣∣∣∣

∣∣∣∣∣Ω(| ε∗⊕) − 1
2n

∑
x

⊗
v⊕V

(I + Z ∗
v) X ∗xv

v |ε∗⊕ |x⊕
∣∣∣∣∣

∣∣∣∣∣ ∧ n2n−1(4l + c + 1)
√

2Π. (63)



Self-Testing Graph States 117

For Eq. 47 we use Lemma 5, once for each possible value of x. Again, the estimate
depends on the number of 1s in x, summed over all possible xs. As well, it depends
on the number of edges in the induced subgraph. An edge (u, v) will be counted
only when xu = xv = 1. This occurs for 1/4 of all xs. Summed over all possible
xs and edges, then, the number of times edges are counted is 2n−2|E|. This gives
our final estimate:

∣∣∣∣∣

∣∣∣∣∣Ω(| ε∗⊕) −
(

1
2n

⊗
v⊕V

(I + Z ∗
v) |ε∗⊕

)∑
x

(−1)e(x) |x⊕
∣∣∣∣∣

∣∣∣∣∣
2

(64)

∧ (
n2n−1(4l + c + 1) + n2n−1 + (4l + c + 1)2n−2|E|) √

2Π (65)

= 2n−2 ((4l + c + 1) (2n + |E|) + 2n)
√

2Π (66)

where e(x) is the number of edges in the induced subgraph on the set Vx = {v →
V |xv = 1}.

Note that when calculating Ω (X ∗
u |ε∗⊕) etc. we did not use any more estima-

tions, we simply rearrange when Lemma 5 is applied. Thus the same robustness
applies. For Ω (Z ∗

v |ε∗⊕) we use (I +(−1)xvZ ∗
v)Z

∗
v = −(I +(−1)xvZ ∗

v), which does
not involve an estimation, so again the same robustness applies.

As a last estimation, we note that l and c cannot be larger than n, and
|E| ∧ n2. We may thus set σ = (5n2 + 11n + 4)n2n−2

√
2Π.

Note that we may make much better estimates if some properties of the graph
are known. For example, if every vertex lies in a triangle and the max degree is
6, as in the case of a lattice of triangles, we may instead set σ = 17n2n−1

√
2Π.

B Proof of Robustness for Reference Experiment 2

Much of the same analysis may be used for experiment 2. Indeed, since the only
difference in the proofs for the non-robust results is how the anti-commuting
property is proved, we may simply replace the estimation for Lemma 3 with
that of Lemma 4.

We begin, then, with Π-simulation and prove a robust version of Lemma 4.
First we wish to estimate Δ =

∣∣∣
∣∣∣D∗

u |ε⊕ − X′
u+Z′

u√
2

|ε⊕
∣∣∣
∣∣∣
2
. Using techniques from

the previous section, we have
∣∣∣∣X ∗

u |ε∗⊕ − Z ∗Nu |ε⊕∣∣∣∣
2

∧ 2
√

Π (67)∣∣∣
∣∣∣Z ∗

u |ε∗⊕ − X ∗
vZ

∗Nv\u |ε∗⊕
∣∣∣
∣∣∣
2

∧ 2
√

Π. (68)

These along with the triangle inequality give an upper bound for Δ of

2
√

2Π +
∣∣∣∣
∣∣∣∣D∗

u |ε⊕ − Z ∗Nu + X ∗
vZ

∗Nv\u
√

2
|ε⊕

∣∣∣∣
∣∣∣∣
2

(69)
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Expanding the second term, we get
√

1 +

∣
∣∣
∣

∣
∣∣
∣
Z∼Nu + X ∼

vZ∼Nv\u
⊗
2

| ψ∼◦
∣
∣∣
∣

∣
∣∣
∣

2

2

−
⊗
2 (〈ψ∼ | D∼

uZ∼Nu | ψ∼◦ + 〈ψ∼ | D∼
uX ∼

vZ∼Nv\u | ψ∼◦).
(70)

Since
∣∣∣∣Z ∗

u |ε∗⊕ − X ∗
vZ

∗Nv\u |ε∗⊕∣∣∣∣
2

∧ 2
√

Π and
∣∣∣∣Z ∗Nu |ε∗⊕∣∣∣∣

2
= 1 we find

∣∣∣≺ε∗ |Z ∗NuZ ∗
u |ε∗⊕ − ≺ε∗ |Z ∗NuX ∗

vZ
∗Nv\u |ε∗⊕

∣∣∣ ∧ 2
√

Π. (71)

By hypothesis,
∣∣≺ε∗ |Z ∗NuZ ∗

u |ε∗⊕∣∣ ∧ Π, so
∣∣≺ε∗ |Z ∗NuX ∗

vZ
∗Nv\u |ε∗⊕∣∣ ∧ 2

√
Π + Π.

Meanwhile ψ2 =
∣∣∣
∣∣∣Z′Nu+X′

vZ
′Nv\u

√
2

|ε∗⊕
∣∣∣
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2

2
= 1 + Re ≺ε∗ |Z ∗NuX ∗

vZ
∗Nv\u |ε∗⊕,

so |1 − ψ2| ∧ 2
√

Π + Π.
Finally, by hypothesis

∣∣≺ε∗ |D∗
uZ ∗Nu |ε∗⊕ + ≺ε∗ |D∗

uX ∗
vZ

∗Nv\u |ε∗⊕ − √
2
∣∣ ∧

2Π. Combining these facts we find Δ ∧ 2
√

2Π +
√

2
√

Π + (1 + 2
√

2)Π.
Now we wish to estimate∣∣∣∣∣

∣∣∣∣∣(D
∗
u)2 |ε∗⊕ − (X ∗

u + Z ∗
u)2

2
|ε∗⊕

∣∣∣∣∣

∣∣∣∣∣
2

(72)

By the fact ||D∗
u||∞ = 1 we have
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∣∣∣(D∗
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u
X′
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u√

2
|ε∗⊕
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∣∣∣
2

∧ Δ. Similarly,

since ||X ∗
u + Z ∗

u||∞ ∧ 2 we find
∣∣∣∣
∣∣∣∣D∗

u
X′

uZ
′
u√

2
|ε∗⊕ − (X′

u+Z′
u)

2

2 |ε∗⊕
∣∣∣∣
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2

∧ √
2Δ. Using

these facts, the triangle inequality, and (D∗
u)2 = I, we obtain

2
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u)2

2
|ε∗⊕

∣∣∣∣∣
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2

= ||X ∗
uZ ∗

u |ε∗⊕ + Z ∗
uX ∗

u |ε∗⊕||2
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√

2)
(

2
√

2Π +
√

2
√
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√

2)Π
)

∧ 26Π
1
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with the last inequality valid for Π ∧ 1.
Using this estimate, and working through the estimations as in the previous

section, we find that we may set

σ = 2n−2
(
(2n + |E|)(26Π

1
4 + 4l

√
2Π) + 2n

√
2Π

)
. (74)

For a simpler expression, we may use l ∧ n and |E| ∧ n2, obtaining

σ = n2n−2
(
(n + 2)26Π

1
4 + (4n2 + 10n)

√
2Π

)
(75)

Again, we may find a better estimate with more information about the graph.
For cluster states, which have a square lattice graph, we have |E| ∧ 4n. We may
also perform Du measurements on all vertices and set l = 0. In this case we may
set σ = n2n−2

(
156Π

1
4 + 2

√
2Π

)
.
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C Classical Hidden Variable Model for Bipartite Graph
States with X and Z Measurements

Let G be a bipartite graph and |ε⊕ the corresponding graph state. We give a
local hidden variable model that is consistent will all measurements which are
tensor products of X and Z on this state.

We construct a local hidden variable model by randomly choosing a value
±1 for Z ∗

v for each v in the graph. We then set X ∗
v to be

X ∗
v =

∏
u⊕Nv

Z ∗
u. (76)

Now we show that this is consistent with all possible tensor product X and
Z measurements on |ε⊕. Let M = XSZT , S ∀ T = ∅ be such a measurement.
First, suppose that ±M can be written as a product of stabilizers of |ε⊕. Using
Lemma 1 we have

M = XSZN(S) = (−1)|E(S)| ∏
x⊕S

Sv. (77)

Note that, by assumption, M has only X and Z factors, so each v → S must
have an even number of neighbours in S. Then the induced subgraph on S is
Eulerian and we can partition the edges of the subgraph into cycles with no
common edges (see Diestel [Die10] for a proof). Suppose that |E(S)| is odd.
Then there must be at least one odd cycle in this partition and then S has an
odd cycle and so does G. Since G is bipartite this must not be the case and in
fact |E(S)| is even. Hence M =

∏
x⊕S Sv and ≺ε |M |ε⊕ = 1. By construction

M ∗ = X ∗SZ ∗N(S) =
∏

v⊕S X ∗
vZ

∗Nv = 1 and the expected value of M ∗ matches
that of M .

Now suppose that M is not a product of stabilizers of |ε⊕. Then M must
anti-commute with at least one stabilizer and hence ≺ε |M |ε⊕ = 0. Meanwhile,
by construction

M ∗ = X ∗SZ ∗T = Z ∗N(S)Z ∗T.. (78)

If N(S) = T then M is in fact a product of stabilizers. This is not the case,
so there is at least one Z ∗

v in the above equation which is not cancelled. Since
all the Z ∗

vs are chosen randomly, the product of the Z ∗
vs not cancelled will also

be uniformly random. Thus the expected value of M ∗ is 0.

References

[Die10] Diestel, R.: Graph theory. In: Graduate Texts in Mathematics, vol. 173,
4th edn. Springer, Heidelberg. http://diestel-graph-theory.com/ (2010)

[MM11] McKague, M., Mosca, M.: Generalized self-testing and the security of the
6-state protocol. In: van Dam, W., Kendon, V.M., Severini, S. (eds.) TQC
2010. LNCS, vol. 6519, pp. 113–130. Springer, Heidelberg (2011)

http://diestel-graph-theory.com/


120 M. McKague

[MMMO06] Magniez, F., Mayers, D., Mosca, M., Ollivier, H.: Self-testing of quan-
tum circuits. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4051, pp. 72–83. Springer, Heidelberg (2006)

[MY04] Mayers, D., Yao, A.: Self testing quantum apparatus. Quantum Inf.
Comput. 4(4), 273–286 (2004). (http://arxiv.org/abs/quant-ph/0307205,
http://www.rintonpress.com/journals/qiconline.html#v4n4)

[PAM+10] Pironio, S., Acin, A., Massar, S., Boyer de la Giroday, A., Matsukevich,
D.N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T.A., Mon-
roe, C.: Random numbers certified by bell’s theorem. Nature 464(7291),
1021–1024 (2010). doi:10.1038/nature09008. (EPRINT aXiv:0911.3427)

[RB01] Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys.
Rev. Lett. 86(22), 5188–5191 (2001). doi:10.1103/PhysRevLett.86.5188.
(EPRINT arxiv:quant-ph/0010033)

[vMMS00] van Dam,W., Magniez, F., Mosca, M., Santha, M.: Self-testing of universal
and fault-tolerant sets of quantum gates. In: STOC ’00: Proceedings of the
Thirty-Second Annual ACM Symposium on Theory of Computing, pp.
688–696. ACM, New York. (2000). doi:10.1145/335305.335402. (EPRINT
arxiv:quant-ph/9904108)

http://dx.doi.org/10.1038/nature09008
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1145/335305.335402


Unconditionally-Secure and Reusable
Public-Key Authentication

Lawrence M. Ioannou1,2(B) and Michele Mosca1,2,3

1 Institute for Quantum Computing, University of Waterloo, 200 University Avenue,
Waterloo, ON N2L 3G1, Canada

2 Department of Combinatorics and Optimization, University of Waterloo, 200
University Avenue, Waterloo, ON N2L 3G1, Canada

lmioannou@gmail.com
3 Perimeter Institute for Theoretical Physics, 31 Caroline Street North,

Waterloo, ON N2L 2Y5, Canada

Abstract. We present a quantum-public-key identification protocol and
show that it is secure against a computationally-unbounded adversary.
This demonstrates for the first time that unconditionally-secure and
reusable public-key authentication is possible in principle with (pure-
state) public keys.

1 Introduction

Public-key cryptography has proved to be an indispensable tool in the mod-
ern information security infrastructure. Most notably, digital signature schemes
form the backbone of Internet commerce, allowing trust to be propagated across
the network in an efficient fashion. In turn, public-key encryption allows the
private communication of messages (or, more usually, the establishment of sym-
metric secret keys) among users who are authenticated via digital signatures.
The security of these classical public-key cryptosystems relies on assumptions
on the difficulty of certain mathematical problems [1]. Gottesman and Chuang
[2] initiated the study of quantum-public-key cryptography, where the public
keys are quantum systems, with the goal of obtaining the functionality and
efficiency of public-key cryptosystems but with information-theoretic security.
They presented a secure one-time digital signature scheme for signing classical
messages, based on Lamport’s classical scheme [3].

In a public-key framework, Alice chooses a random private key, creates copies
of the corresponding public key via some publicly-known algorithm, and distrib-
utes the copies in an authenticated fashion to all potential “Bobs”. In principle,
this asymmetric setup allows, e.g., any Bob to send encrypted messages to Alice
or to verify any signature for a message that Alice digitally signed. By eliminat-
ing the need for each Alice-Bob pair to establish a secret key (in large networks
where there may be many “Alices” and “Bobs”), the framework vastly simpli-
fies key distribution, which is often the most costly part of any cryptosystem,
compared to a framework that uses only symmetric keys.
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Some remarks about the quantum-public-key framework are in order. First,
we address the issue of purity of the quantum public keys. In principle, the quan-
tum public key can be either in a pure or mixed state from Alice’s point of view
(a mixed state is a fixed probabilistic distribution of pure states). Gottesman
and Chuang [2] assumed pure-state public keys. For digital signature schemes,
this purity is crucial; for, otherwise, Alice could cheat by sending different public
keys to different “Bobs”. Purity prevents Alice’s cheating in this case because
different “Bobs” can compare their copies of the public key via a “distributed
swap-test” [2] to check they are the same (with high probability), much like
can be done in the case of classical public keys. But any scheme can benefit
from an equality test, since an adversary who tries to substitute bad keys for
legitimate ones could thus be caught. There is no known equality test guaran-
teed to recognize when two mixed states are equal. Thus, having mixed-state
public keys seems to be at odds with what it means to be “public”, i.e., publicly
verifiable.1 Even though the scheme we present in this paper does not make
explicit use of the “distributed swap-test” (because we assume the public keys
have been securely distributed), it can do so in principle. We view this as anal-
ogous to how modern public-key protocols do not specify use of an equality test
among unsure “Bobs”, but how such a test is supported by the framework to
help thwart attempts to distribute fake keys.

Second, we address the issue of usability of quantum-public-key systems. The
states of two quantum public keys corresponding to two different private keys
always have overlap less than (1 − ε), for some positive and publicly known ε.
Thus, a striking aspect of the quantum-public-key framework is that the number
of copies of the public key in circulation must be limited (if we want information-
theoretic security). If this were not the case, then an adversary could collect an
arbitrarily large number of copies, measure them all, and determine the private
key. By adjusting protocol parameters, this limit on the number of copies of the
quantum public key can be increased in order to accommodate more users (or
uses; see next paragraph for a discussion on “reusability”). Thus, in practice,
there is no restriction on the usability of a quantum-public-key system as long
as an accurate estimate can be made of the maximum number of users/uses.

Presumably, adjusting the protocol parameters (as discussed above) in order
to increase the maximum number of copies of the quantum public key in cir-
culation would result in a less efficient protocol instance, and this is one kind
of tradeoff between efficiency and usability in the quantum-public-key setting.
Another kind concerns reusability. The abovementioned digital signature scheme
is “one-time” because only one message may be signed under a particular key-
value (even though many different users can verify that one signature). If a
second message needs to be signed, the signer must choose a new private key
and then distribute corresponding new public keys. One open problem is thus
whether there exist reusable digital signature schemes, where either the same
1 Other authors have defined the framework to include mixed public keys, and Ref. [4]

proposes an encryption scheme with mixed public keys that is reusable and uncon-
ditionally secure [5].
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copy of the public key can be used to verify many different message-signature
pairs securely, or where just the same key-values can be used to verify many
different message-signature pairs securely (but a fresh copy of the public key
is needed for each verification). The latter notion of “reusability” is what we
adopt here.

In this paper, we consider an identification scheme, which, like a digital sig-
nature scheme, is a type of authentication scheme. Authentication schemes seek
to ensure the integrity of information, rather than its privacy. While digital sig-
nature schemes ensure the integrity of origin of messages, identification schemes
ensure the integrity of origin of communication in real time [1]. Identification
protocols are said to ensure “aliveness”—that the entity proving its identity is
active at the time the protocol is executed; we describe them in more detail in
the next section.

We prove that an identification scheme based on the one in Ref. [6] is secure
against a computationally-unbounded adversary (only restricted by finite cheat-
ing strategies), demonstrating for the first time that unconditionally-secure and
reusable public-key authentication is possible in principle. We regard our result
more as a proof of concept than a (potentially) practical scheme. Still, we are
confident that an extension of the techniques used here may lead to more efficient
protocols.

We now proceed with a description of the protocol (Sect. 2) and the security
proof (Sect. 3).

2 Identification Protocol

In the following, Alice and Bob are always assumed to be honest players and
Eve is always assumed to be the adversary. Suppose Alice generates a private
key and authentically distributes copies of the corresponding public key to any
potential users of the scheme, including Bob.

Here is a description (adapted from Sect. 4.7.5.1 in Ref. [7]) of how a secure
public-key identification scheme works. When Alice wants to identify herself to
Bob (i.e. prove that it is she with whom he is communicating), she invokes
the identification protocol by first telling Bob that she is Alice, so that Bob
knows he should use the public key corresponding to Alice. The ensuing protocol
has the property that the prover Alice can convince the verifier Bob (except,
possibly, with negligible probability) that she is indeed Alice, but an adversary
Eve cannot fool Bob (except with negligible probability) into thinking that she
is Alice, even after having listened in on the protocol between Alice and Bob
or having participated as a (devious) verifier in the protocol with Alice several
times. Public-key identification schemes are used in smart-card systems (e.g.,
inside an automated teller machine (ATM) for access to a bank account, or
beside a doorway for access to a building); the smart card “proves” its identity
to the card reader.2

2 Note that it is not a user’s personal identification number (PIN) that functions as
the prover’s private key; the PIN only serves to authenticate the user to the smart
card (not the smart card to the card reader).
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Note that no identification protocol is secure against an attack where Eve
concurrently acts as a verifier with Alice and as a prover with Bob (but note also
that, in such a case, the “aliveness” property is still guaranteed). Note also that,
by our definition of “reusable,” an identification scheme is considered reusable
if Alice can prove her identity many times using the same key-values but the
verifier needs a fresh copy of the public key for each instance of the protocol.

Note also that public-key identification can be trivially achieved via a digital
signature scheme (Alice signs a random message presented by Bob), but we do
not know of an unconditionally-secure and reusable digital signature scheme.3

Similarly, public-key identification can be achieved with a public-key encryp-
tion scheme (Bob sends an encrypted random challenge to Alice, who returns
it decrypted), but we do not know of an unconditionally-secure and reusable
public-key encryption scheme (that uses pure-state public keys; though, see Ref.
[9] for a promising candidate).

2.1 Protocol Specification

The identification protocol takes the form of a typical “challenge-response” inter-
active proof system, consisting of a kernel (or subprotocol) that is repeated sev-
eral times in order to amplify the security, i.e., reduce the probability that Eve
can break the protocol. The following protocol is a simplification of the original
protocol from Ref. [6] (but our security proof applies to both protocols, with
only minor adjustments). We assume all quantum channels are perfect.

Parameters

– The security parameter s ≤ Z+

– → equals the number of kernel iterations.
– → The probability that Eve can break the protocol is exponentially small

in s.
– The reusability parameter r ≤ Z+

– → equals the maximum number of copies of the quantum public key in
circulation and

– → equals the maximum number of times the protocol may be executed
by Alice, before she needs to pick a new private key.

Keys

– The private key is

(x1, x2, . . . , xs), (1)

where Alice chooses each xj , j = 1, 2, . . . , s, independently and uniformly
randomly from {1, 2, . . . , 2r + 1}.

– → The value xj is used only in the jth kernel-iteration.
3 Pseudo-signature schemes, such as the one in Ref. [8], are information-theoretically

secure but assume broadcast channels.



Unconditionally-Secure and Reusable Public-Key Authentication 125

– One copy of the public key is an s-partite system in the state

∈s
j=1|Ωxj

⊕, (2)

where (omitting normalization factors)

|Ωxj
⊕ := |0⊕ + e2πixj/(2r+1)|1⊕. (3)

– → Alice authentically distributes (e.g. via trusted courier) at most r copies
of the public key.

– → The jth subsystem of the public key (which is in the state |Ωxj
⊕) is

only used in the jth kernel-iteration.

Actions

– The kernel K(x) of the protocol is the following three steps, where we use the
shorthand

ρx := 2Πx/(r + 1), (4)

and where we have dropped the subscript “j” from “xj”:
– (1) Bob secretly chooses a uniformly random bit b and transforms the

state of his authentic copy of |Ωx⊕ into |0⊕+(−1)beiψx |1⊕. Bob sends this
qubit to Alice.

– (2) Alice performs the phase shift |1⊕ ≺⊥ e−iψx |1⊕ on the received qubit
and then measures the qubit in the basis {|0⊕±|1⊕} (in order to determine
Bob’s secret b above). If Alice gets the outcome corresponding to “+”,
she sends 0 to Bob; otherwise, Alice sends 1.

– (3) Bob receives Alice’s bit as b∗ and tests whether b∗ equals b.
– When Alice wants to identify herself to Bob, they take the following actions:

– (i) Alice checks that she has not yet engaged in the protocol r times
before with the current value of the private key; if she has, she aborts
(and refreshes the private and public keys).

– (ii) Alice sends Bob her purported identity (“Alice”), so that Bob may
retrieve the public keys corresponding to Alice.

– (iii) The kernel K(x) is repeated s times, for x = x1, x2, . . . , xs. Bob
“accepts” if he found that b∗ equaled b in all the kernel iterations; oth-
erwise, Bob “rejects”.

2.2 Completeness of the Protocol

It is clear that the protocol is correct for honest players: Bob always “accepts”
when Alice is the prover. In the Appendix (“Sect. 3”), we prove that the protocol
is also secure against any adversary (only restricted by finite cheating strategies):
given r and σ > 0, there exists a value of s = s(r, σ) such that Bob “accepts”
with probability at most σ when Eve is the prover.
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3 Security

Let us clearly define what Eve is allowed to do in our attack model. Eve can

– passively monitor Alice’s and Bob’s interactions (which means that Eve
can read the classical bits sent by Alice, and read the bit that indicates
whether Bob “accepts” or “rejects”), and

– participate as the verifier in one or more complete instances of the protocol,
and

– participate as the prover, impersonating Alice, in one or more complete instan-
ces of the protocol.

Eve is assumed not to be able to actively interfere with Alice’s and Bob’s
communications during the protocol, as this would allow Eve to concurrently
act as verifier with Alice and as prover with Bob (thus trivially breaking any
such scheme4).

Evidently, Eve’s passive monitoring only gives her independent and random
bits (and the bit corresponding to “accept”), thus giving her no useful informa-
tion (in that she may as well generate random bits herself). So, we can ignore
the effects of her passive monitoring.

With regard to Eve acting as verifier, we will give Eve potentially more
power by assuming that Alice, instead of performing both the phase shift and
the measurement in Step 2 of the kernel K(x), only performs the phase shift
(Eve could perform Alice’s measurement herself, if she desired). Furthermore,
we will assume that the phase shift Alice performs is

uψx
=

[
1 0
0 eiψx

]
. (5)

Even though Alice actually performs the inverse phase shift u−ψx
, note that the

two phase shifts are equivalent in the sense that Zuψx
Z equals u−ψx

up to global
phase, where

Z =
[
1 0
0 −1

]
. (6)

Thus the protocol is unchanged had we assumed that Alice, instead of performing
u−ψx

in Step 2 of the kernel K(x), performs Zuψx
Z. Since Eve can perform

4 For password-based identification in a symmetric-key model, as in Ref. [10], where
both Alice and Bob know something that Eve does not (i.e. the password), one
can define a nontrivial “man-in-the-middle” attack, where Eve’s goal is to learn the
password in order to impersonate Alice in a later instance of the protocol. However,
in public-key identification, Eve’s goal of learning the private key may, without loss of
generality, be accomplished by participating as a dishonest verifier and by obtaining
copies of the public key, since Bob does not perform any action that Eve cannot
perform herself given a copy of the public key.
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Z gates on her qubit immediately before and after she gives it to Alice, our
assumption indeed gives Eve at least as much power to cheat. Thus, Eve can
effectively extract up to r black boxes for uψx

from Alice (recall Alice only
participates in the protocol r times before refreshing her keys).

We will also give Eve potentially more power by giving her a black box
for uψx

in place of every copy of |Ωx⊕ that she obtained legitimately. For each
x ≤ {x1, x2 . . . , xs}, let t be the total number of black boxes for uψx

that Eve
has in her possession; that is, for simplicity, and without loss of generality, we
assume she has the same number of black boxes uψx

for each value of x. Note
that t ≤ (2r − 1), since we always assume that at least one copy of the public
key is left for Bob, so that Eve can carry out the protocol with him.

Therefore, to prove security in our setting, it suffices to consider attacks
where Eve first uses her st black boxes to create a reference system in some
(ρx1 , ρx2 , . . . , ρxs

)-dependent state, denoted |ΔR(ρx1 , ρx2 , . . . , ρxs
)⊕, and

then she uses this system while she participates as a prover, impersonating Alice,
in one or many instances of the protocol in order to try to cause Bob to “accept”.
We use the following definition of “security”:

Definition 1 (Security). An identification protocol (for honest prover Alice
and honest verifier Bob) is secure with error σ if the probability that Bob “accepts”
when any adversary Eve participates in the protocol as a prover is less than σ.

The only assumption we make on Eve is that her cheating strategy is finite in
the sense that her quantum computations are restricted to a finite-dimensional
complex vector space; the dimension itself, though, is unbounded.

We will assume that Eve has always extracted the r black boxes for uψx
from

Alice (for all x = x1, x2, . . . , xs), and we define t∗ to be the number black boxes
that Eve obtained legitimately (via copies of the public key):

t = r + t∗. (7)

Note that Eve can make at most (r−t∗) attempts at fooling Bob, i.e., causing Bob
to “accept”. Let E(a, b) denote the event that Eve fools Bob on her ath attempt
using b black boxes for uψx

for all x = x1, x2, . . . , xs. Most of the argument,
beginning in Sect. 3.1, is devoted to showing that

Pr[E(1, t)] ≤ (1 − c/(t + 2)2)s, (8)

for some positive constant c defined at the end of Sect. 3. In general, Eve learns
something from one attempt to the next; however, because Eve can simulate her
interaction with Bob at the cost of using one copy of |Ωx⊕ per simulated iteration
of K(x), we have, for ψ = 2, 3, . . . , (r − t∗),

Pr[E(ψ, t)] ≤ Pr[E(1, t + ψ − 1)]. (9)
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Given this, we use the union bound:

Pr[Eve fools Bob at least once, using t black boxes for uψx
,⊗x] (10)

≤
r−t′∑
θ=1

Pr[E(ψ, t)] (11)

≤
r−t′∑
θ=1

Pr[E(1, t + ψ − 1] (12)

≤
r−t′∑
θ=1

(1 − c/(t + ψ + 1)2)s (13)

≤ (r − t∗)(1 − c/(2r + 1)2)s, (14)

since t + ψ ≤ 2r. It follows that the probability that Eve can fool Bob at least
once, that is, break the protocol, is

Pbreak ≤ r(1 − c/(2r + 1)2)s, (15)

which, for fixed r, is exponentially small in s. Note that this bound is likely not
tight, since it ultimately assumes that all of Eve’s attempts are equally as pow-
erful. In particular, this bound assumes that Eve’s state |ΔR(ρx1 , ρx2 , . . . , ρxs

)⊕
does not degrade with use. A more detailed analysis using results about degra-
dation of quantum reference frames [11] may be possible.

From Eq. (15) follows our main theorem (see Appendix A.3 for the proof):

Theorem 1 (Security of the protocol). For any σ > 0 and any r ≤ Z+,
the identification protocol specified in Sect. 2.1 is secure with error σ according
to Definition 1 if

s > (2r + 1)2 log(r/σ)/c, (16)

for some positive constant c.

The theorem shows how the efficiency of the protocol scales with its reusability:
it suffices to have

s ≤ O(r2 log(r/σ)). (17)

The remainder of the paper establishes the bound in Line (8).

3.1 Sufficiency of Individual Attacks

At each iteration, we may assume Eve performs some measurement, in order to
get an answer to send back to Bob. Generally, Eve can mount a coherent attack,
whereby her actions during iteration j may involve systems that she used or will
use in previous or future iterations as well as systems created using black boxes
for uψxk

for any k—not just for k = j. Since each xj is independently selected
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from the set {1, 2, . . . , 2r + 1}, intuition suggests that Eve’s measurement at
iteration j may be assumed to be independent of her measurement at any other
iteration and in particular does not need to involve any black boxes other than
ones for uψxj

. In other words, it seems plausible that the optimal strategy for
Eve can consist of the “product” of identical optimal strategies for each iteration
individually. This intuition can indeed be shown to be correct by combining a
technique from Ref. [12], for expressing the maximum output probability in a
multiple-round quantum interactive protocol as a semidefinite program, with
a result in Ref. [13], which implies that the semidefinite program satisfies the
product rule that we need; see Appendix A.1 for a proof.

The remainder of Sect. 3 establishes the following proposition:

Proposition 2. The probability that Eve guesses correctly in any particular iter-
ation j, using t black boxes for uψxj

, is at most (1− c/(t+2)2) for some positive
constant c.

Assuming Proposition 2, the result proved in AppendixA.1 implies that the
probability of Eve’s guessing correctly in all s iterations, using t black boxes for
uψx

, for x = x1, x2, . . . , xs, is at most (1 − c/(t + 2)2)s, establishing the bound
in Line (8).

3.2 Equivalence of Discrete and Continuous Private Phases

To help us prove Proposition 2, we now show that, from Bob’s and Eve’s points of
view, Alice’s choosing the private phase angle ρx from the discrete set {2Πx/(2r+
1) : x = 1, 2, . . . , 2r + 1} is equivalent to her choosing the phase angle from the
continuous interval [0, 2Π). We have argued that the only information that Eve
or Bob—or anyone but Alice—has about ρx may be assumed to come from
a number of black boxes for uψx

that can be no greater than 2r (there are r
legitimate copies of the public key, and one can extract r more black boxes from
Alice); let this number be d, where 1 ≤ d ≤ 2r.

In order to access the information from the black boxes, they must, in general,
be used in a quantum circuit in order to create some state. Using the d black
boxes, the most general (purified) state that can be made is without loss of
generality of the form

|Ω(ρx)⊕ =
N−1∑
k=0

⎛
⎝

d∑
j=0

θj,keijψx

⎞
⎠ |ak⊕, (18)

where {|ak⊕ : k = 0, 1, ..., N − 1} is an orthonormal basis of arbitrary but finite
size (the assumption of finite N comes from our restricting Eve to using only
finite cheating strategies). In general, the numbers N and θj,k may depend on d.
Here we have followed Ref. [14] by noting that each amplitude is a polynomial
in eiψx of degree at most d; this fact follows from an inductive proof just as in
Ref. [15], where the polynomial method is applied to an oracle revealing one of
many Boolean variables.
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Averaging over Alice’s random choices of x, one would describe the previous
state by the density operator

1
2r + 1

2r+1∑
x=1

|Ω(ρx)⊕∼Ω(ρx)|, (19)

since x is chosen uniformly randomly from {1, 2, . . . , 2r+1}. Had ρx been chosen
uniformly from {2Πx/(2r +1) : x ≤ [0, 2r +1)} = [0, 2Π), one would describe the
state by

∫ 2π

0

dρ

2Π
|Ω(ρ)⊕∼Ω(ρ)|. (20)

It is straightforward to show5 that the above two density operators are both
equal to

N−1∑
k,k′=0

d∑
j=0

θj,kθ√
j,k′ |ak⊕∼ak′ |. (23)

Thus, without loss of generality, we may drop the subscript “x” on “ρx”, write
“ρ” for Alice’s private phase angle, and assume she did (somehow) choose ρ
uniformly randomly from [0, 2Π).6 We are now ready to prove Proposition 2.

3.3 Bound on Relative Phase Shift Estimation

Eve’s task of cheating in one iteration of the kernel may be phrased as follows.
Eve is to decide the difference between the relative phases encoded in two sub-
systems R and S, where S is a given one-qubit system and R is under her control.
The given subsystem S is in the state

|ΩS(ρ, ϕ)⊕ = |0⊕ + ei(ψ+σ)|1⊕, (24)
5 This requires the following two facts: (1) for any integer a,

1

2π

∫ 2π

0

eiaθdθ =

{
0 if a ∼= 0 ,
1 otherwise ;

(21)

and (2) for any integer p ⊗ 2 and integer a:

1

p

p∑

k=1

e2πiak/p =

{
0 if a is not a multiple of p,
1 otherwise ,

(22)

where the second fact is applied at p = 2r + 1.
6 One way to interpret this result is that even if Alice encodes infinitely many bits into

φ, it is no better than if she encoded ◦log2(2r+1)� bits. Note that if Eve performs an
optimal phase estimation [16] in order to learn φ and then cheat Bob, she can only
learn at most �log2(2r − 1)� bits of φ (here, we assume Eve has 2r − 1 copies of the
public key, having left Bob one copy), whereas Alice actually encoded ◦log2(2r +1)�
bits into φ.
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where ϕ is unknown and uniformly random in {0, Π}, and ρ is unknown and
uniformly random in [0, 2Π]. Eve can make the state |ΩR(ρ)⊕ of subsystem R by
using arbitrary operations interleaved with at most t black boxes for the one-
qubit gate uψ. Note that the problem is nontrivial because ρ is unknown and
uniformly random and the qubit S is given to Eve after she has used all her black
boxes. We seek the optimal success probability for Eve to guess ϕ correctly.

Eve’s estimation problem can be treated within the framework of quantum
estimation of group transformations [17]. As such, we regard her problem as
finding the optimal measurement (probability) to correctly distinguish the states
in the two-element orbit

{VσςV †
σ : ϕ ≤ {0, Π}}, (25)

where Vσ = IR ∈ (|0⊕∼0| + eiσ|1⊕∼1|) and

ς =
∫

dρ

2Π
|ΩR(ρ)⊕∼ΩR(ρ)| ∈ |ΩS(ρ, 0)⊕∼ΩS(ρ, 0)|. (26)

The probabilities of her estimation procedure can be assumed to be generated
by a POVM {E0, Eπ}. In general, it is known how to solve for the POVM that
performs optimally on average when the unitarily-generated orbit consists of
pure states, but not when the orbit is generated from a mixed state (ς, in our
case). Thus, we now effectively reduce the problem to several instances of an
estimation problem where the orbit is pure.

Indeed, suppose that |ΩR(ρ)⊕ were a state on q qubits that satisfied the
property

|ΩR(ρ)⊕∼ΩR(ρ)| = (uψ)⊕q|ΩR(0)⊕∼ΩR(0)|(u†
ψ)⊕q (27)

for all ρ ≤ [0, 2Π]. Then, letting Uψ ≡ (uψ)⊕(q+1) and |ΩRS(ρ, ϕ)⊕ ≡ |ΩR(ρ)⊕|ΩS

(ρ, ϕ)⊕, we would have that

ς =
∫

dρ

2Π
Uψ|ΩRS(0, 0)⊕∼ΩRS(0, 0)|U†

ψ (28)

=
∑
w

Pw|ΩRS(0, 0)⊕∼ΩRS(0, 0)|Pw (29)

=
∑
w

PwςPw, (30)

where Pw is the projection onto the subspace of Hamming weight w = 0, 1, . . . ,
q + 1, and we used the formulas Uψ =

∑
w Pweiwψ and εw,0 =

∫
(dρ/2Π)eiwψ. In

other words, the state ς would be block diagonal with respect to the direct-sum
decomposition of the total state space of R into subspaces of constant Hamming
weight w. Then we would have that the probability that Eve guesses ϕ = ϕ∗ given
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that ϕ = ϕ∗∗ is

Pr[Eve guesses ϕ = ϕ∗|ϕ = ϕ∗∗] = Tr
⎧
Eσ′

⎨
Vσ′′ςV †

σ′′

⎩]
(31)

= Tr

[
Eσ′Vσ′′

∑
w

PwςPwV †
σ′′

⎪
(32)

= Tr

[(⊕
w

Ew,σ′

)⎨
Vσ′′ςV †

σ′′

⎩⎪
, (33)

where Ew,σ′ ≡ PwEσ′Pw, and we used cyclicity of trace and the fact that Vσ

and Pw commute. Thus, the elements of Eve’s POVM {E0, Eπ} would without
loss of generality have the same block diagonal structure as ς. In principle, this
would allow Eve to measure first (just) the Hamming weight of ς in order to
find w, and then deal with the group transformation estimation problem with
respect to the pure orbit

Ow ≡ {Vσ|Δw⊕ : ϕ ≤ {0, Π}}, (34)

where |Δw⊕ is the state such that |Δw⊕ ∝ Pw|ΩRS(0, 0)⊕; we note that |Δw⊕
is independent of ρ (and ϕ). The following lemma shows that, without loss of
generality, we may assume that the situation just described is indeed the case:

Lemma 1. Without loss of generality, Eve’s state |ΩR(ρ)⊕, which she prepares
with at most t black boxes for uψ, may be assumed to be on q = (2t + 1) qubits
and satisfy

|ΩR(ρ)⊕∼ΩR(ρ)| = (uψ)⊕q|ΩR(0)⊕∼ΩR(0)|(u†
ψ)⊕q (35)

for all ρ ≤ [0, 2Π] .

Proof. As noted in the previous section, using the t black boxes, the most general
(purified) state of R that Eve can make is without loss of generality

N−1∑
k=0

⎛
⎝

t∑
j=0

θj,keijψ

⎞
⎠ |ak⊕R, (36)

where, again, N is a priori unknown but finite (we use subscripts on the kets in
this proof to indicate the physical systems). Note that we can rewrite the state
in Eq. (36) by changing the order of the summations as

t∑
j=0

θje
ijψ|g̃j⊕R, (37)

where we have defined the numbers θj and the not-necessarily-orthogonal set of
unit vectors {|g̃j⊕ : j = 0, 1, ..., t} such that

θj |g̃j⊕R =
N−1∑
k=0

θj,k|ak⊕R. (38)
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Using the Gram-Schmidt orthonormalization procedure on {|g̃j⊕}j to get the
orthonormal set {|gj⊕}j , we can write

|g̃j⊕R =
t∑

h=0

ξj,h|gh⊕R. (39)

Introduce a new system R∗ consisting entirely of qubits and define U to be
any unitary map acting on R ∈ R∗ that takes |0⊕R|ch⊕R′ ≺⊥ |gh⊕R|0⊕R′ , where
{|ch⊕R′}h=0,1,...,t is an orthonormal set of size t + 1 with elements that are com-
putational basis states whose labels have constant Hamming weight; note that
R∗ needs only O(log(t + 1)) qubits whereas R is of unknown (but finite) size
(however, following this proof, we will construct R∗ using t + 1 qubits, as this
makes things simpler). We first claim that, without loss of generality,

|ΩR(ρ)⊕ =
∑
j,h

θjξj,heijψ|St
j⊕A|ch⊕R′ , (40)

where A is a t-qubit ancilla, and |St
j⊕A is the symmetric state of weight j. To

see this, note that Eve’s optimal measurement can include the following pre-
processing operations (in sequence), so that she recovers the most general state
in Eq. (36) (and Eq. (37)) on R but for a different random value of ρ:

– add an ancillary register R in state |0⊕R in between the two registers A and
R∗ and perform U on R ∈ R∗ to get (after throwing out system R∗)

∑
j

θj

∑
h

ξj,heijψ|St
j⊕A|gh⊕R =

∑
j

θje
ijψ|St

j⊕A|g̃j⊕R (41)

– on A, do the (t + 1)-dimensional inverse quantum Fourier transform in the
symmetric basis on A, i.e. mapping

|St
j⊕A ≺⊥ 1∧

t + 1

∑
y

e−i2πyj/(t+1)|St
y⊕A, (42)

to get
∑

j

∑
y

θje
ij(ψ−2πy/(t+1))|St

y⊕A|g̃j⊕R (43)

and measure the Hamming weight of A to get result y0, which leaves the state
(after throwing out system A)

∑
j

θje
ij(ψ−2πy0/(t+1))|g̃j⊕R (44)

– correct the relative phase on qubit S by 2Πy0/(t + 1).
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Doing these operations does not change the estimation problem, since ρ is
uniformly random anyway; these operations just change the unknown ρ to
ρ∗ = ρ − 2Πy0/(t + 1).

Finally, note that Eq. (40) implies that |ΩR(ρ)⊕ can be made from |ΩR(0)⊕
with at most t black boxes for uψ, by applying (uψ)⊕t on the t qubits of system
A, and note that |ΩR(ρ)⊕ satisfies Eq. (27), since the states |ch⊕ are of constant
Hamming weight.

Remark 1. (Quantum Fourier transform as analytical tool) Note that Eve’s opti-
mal strategy is not necessarily to measure R to get an estimate ρ∗ of ρ first, then
apply u−ψ′ on S, and then measure S to estimate ϕ. However, the operation
that is optimal for estimating ρ (see Ref. [14]), i.e. the inverse quantum Fourier
transform applied above, is still useful as an analytical tool in order to derive (a
convenient form of) an optimal state for her estimation of ϕ.

Thus, by Lemma 1, we assume Eq. (40) holds, which allows us to derive the
following proposition. For convenience, we define

λj,h ≡ θjξj,h. (45)

Proposition 3. The elements of the POVM {E0, Eπ} are without loss of gen-
erality defined as

E0 = |Ξ0⊕|0⊕∼Ξ0|∼0| +
t+1∑
w=2

|w,+⊕∼w,+| (46)

Eπ =
t+1∑
w=2

|w,−⊕∼w,−| + |Ξt⊕|1⊕∼Ξt|∼1|, (47)

where

|w,±⊕ ≡ 1∧
2
(|Ξw−1⊕|0⊕ ± |Ξw−2⊕|1⊕), (48)

and |Ξw−1⊕ and |Ξw−2⊕ are states such that, for j = 0, 1, . . . , t,

|Ξj⊕ ∝
∑

h

λj,h∧
2

|St
j⊕|ch⊕. (49)

The proof of Proposition 3 is similar to the argument given in Ref. [11] and is
given in Appendix A.2 . The total success probability of Eve’s strategy can now
be computed as ∑

σ′⊥{0,π}
Pr[Eve guesses ϕ = ϕ∗|ϕ = ϕ∗]Pr[ϕ = ϕ∗] (50)

=
1
2

∑
σ′⊥{0,π}

Tr(Eσ′Vσ′ςV †
σ′) (51)

=
1
2

∑
σ′⊥{0,π}

Tr(Eσ′Vσ′ |ΩRS(0, 0)⊕∼ΩRS(0, 0)|V †
σ′) (52)

=
1
2

+
1
4
∼ΩR(0)|Mt|ΩR(0)⊕, (53)
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where

Mt ≡
t−1∑
j=0

|Ξj+1⊕∼Ξj | + |Ξj⊕∼Ξj+1|. (54)

As a last task, we now seek the value of |ΩR(0)⊕—i.e. the values of λj,h—such
that ∼ΩR(0)|Mt|ΩR(0)⊕ is maximal. The proof of the following proposition is in
Appendix A.4:

Proposition 4. The state |ΩR(0)⊕ ∝ ∑t
j=0 sin

⎧
(j+1)π

t+2

]
|Ξj⊕ achieves the maxi-

mum value in Eq. (53).

Thus (as in Ref. [11]—see Appendix A.4), we get a maximal success probability of

1
2

+
1
2

cos(Π/(t + 2)) (55)

≤ 1
2

+
1
2

(
1 − (Π/(t + 2))2

2!
+

(Π/(t + 2))4

4!

)
(56)

= 1 − Π2

4
1

(t + 2)2
+

Π4

48
1

(t + 2)4
(57)

≤ 1 −
(

Π2

4
− Π4

48

)
1

(t + 2)2
(58)

= 1 − c/(t + 2)2, (59)

for the constant c = (Π2/4 − Π4/48) .= 0.438 and all t ∨ 1. This completes the
proof of Proposition 2 and thus the proof of Theorem 1.

A Appendices

A.1 Proof of Sufficiency of Individual Attacks

Consider the following non-cryptographic, (t + 1)-round interactive protocol (or
game) between Evelyn and Bobby (neither of whom is considered adversarial,
hence we distinguish these two players from Eve and Bob), denoted L = L(Φ),
where

Φ = (Φ1, Φ2, . . . , Φt+1) (60)

and the Φi are quantum operations (super-operators) that specify Evelyn’s
actions in the game (the quantities r and t are as defined previously):

– (1∗) Bobby chooses a uniformly random x ≤ {1, 2, . . . , 2r + 1} and sends a
qubit in the state |0⊕ to Evelyn (who can ignore this qubit—it carries no
significant information).

– (2∗) For i = 1, 2, . . . , t {
→ Evelyn performs the quantum operation Φi on her system, and then
sends one qubit to Bobby.



136 L. Ioannou and M. Mosca

→ Bobby performs the unitary gate uψx
on the qubit received from Evelyn

and sends it back to Evelyn.}
– (3∗) Bobby chooses a uniformly random b ≤ {0, 1} and sends a qubit in the

state |0⊕ + (−1)beiψx |1⊕ to Evelyn.
– (4∗) Evelyn performs the quantum operation Φt+1 on her system, and then

sends one qubit to Bobby.
– (5∗) Bobby measures the received qubit in the computational basis {|0⊕, |1⊕},

getting outcome 0 or 1 (corresponding to |0⊕ and |1⊕ respectively); he tests
whether this outcome equals b.

The following proposition is straightforward to prove:

Proposition 5. The probability that Eve, using t black boxes uψxj
, causes Bob’s

equality test to pass in a particular iteration j of the protocol in Sect. 2.1 is at
most

λ: = max
ξ

Pr[Bobby∗s equality test passes in L(Φ)], (61)

where Φ ranges over all (t + 1)-tuples of admissible quantum operations that
Evelyn can apply in the game L.

Now consider the parallel s-fold repetition of L, which we denote L∞s =
L∞s(Φ∗), where now Φ∗ denotes Evelyn’s quantum operation in L∞s. The
following proposition is also straightforward to prove:

Proposition 6. The probability that Eve fools Bob on the first attempt using t
black boxes per x-value in the protocol in Sect. 2.1 is at most

λ∗: = max
ξ′

Pr[all of Bobby∗s equality tests pass in L∞s(Φ∗)], (62)

where Φ∗ ranges over all (t + 1)-tuples of admissible quantum operations that
Evelyn can apply in the game L∞s.

Therefore, in order to prove that it is sufficient to consider individual (as
opposed to coherent) attacks by Eve, it suffices to show that λ∗ = λs.

In Ref. [12], the above game is viewed as an interaction between a (t +
1)-round (non-measuring) strategy and a (compatible) measuring co-strategy ;
Evelyn’s operations Φ form the non-measuring strategy and Bobby’s actions
form the measuring co-strategy (technically, Steps (1∗), (3∗), and (4∗) would have
to be slightly modified in order to fit the co-strategy formalism: in Steps (1∗)
and (3∗), Bobby should make his random choices in superposition and use the
quantum registers storing these choices as a control register whenever requiring
these random values subsequently; in Step (4∗), Bobby should only make one
final measurement whose outcome indicates whether the equality test passes; we
assume that these modifications have been made).

For all i, let Xi and Yi be the input and output spaces, respectively, of
Evelyn’s quantum operation Φi in L, i.e. Φi : L (Xi) ⊥ L (Yi), where L (Xi) is the
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space of all linear operators from the complex Euclidean space Xi to itself (and
likewise for L (Yi)). Let Pos (Y ∈ X ) denote the set of all positive semidefinite
operators in L (Y ∈ X ), where Y = Y1 ∈ Y2 ∈ · · · ∈ Yt+1 (and similarly for X ).
For any Euclidean space Z, let IZ denote the identity operator Z.

Reference [12] shows that Evelyn’s strategy can be equivalently expressed by
a single positive semidefinite operator in Pos (Y ∈ X ) while Bobby’s measuring
co-strategy can be expressed by the collection {B0, B1} of two positive semi-
definite operators in Pos (Y ∈ X ), where, without loss of generality, we assume
that B0 corresponds to the measurement outcome indicating that Bobby’s test
for equality in Step (5∗) passes. We briefly note that these positive semidefi-
nite operators are the Choi-JamioΠlkowski representations of quantum operations
corresponding to the players’ actions. A more general version of the following
theorem is proved in Ref. [12]:

Theorem 7 (Interaction output probabilities [12]). For any non-measuring
strategy X ≤ Pos (Y ∈ X ) of Evelyn, the probability that Bobby’s equality test
passes is Tr(B†

0X).

Using Theorem 7, it is shown, in the proof of Theorem 3.3 of Ref. [12], that the
maximal probability with which Bobby’s measuring co-strategy can be forced to
output the outcome corresponding to B0 by some (compatible) strategy of Eve-
lyn’s can be expressed as a semidefinite (optimization) program (see Ref. [18] for
a relevant review of semidefinite programming). Thus λ and λ∗ can be expressed,
respectively, as solutions to the following semidefinite programs Πω and Πω′ :

Πω Πω′

maximize: Tr(B†
0X) maximize: Tr((B⊕s

0 )†X)
subject to: TrY(X) = IX , subject to: TrY′(X) = IX ′ ,

X ≤ Pos (Y ∈ X ) X ≤ Pos (Y ∗ ∈ X ∗) ,

where, for all i, X ∗
i = X ⊕s

i and X ∗ = X ∗
1∈X ∗

2∈· · ·∈X ∗
t+1 (and similarly for Y ∗

i and
Y ∗). We note that the first constraint in each semidefinite program above codi-
fies the property of trace-preservation for the quantum operation corresponding
to X, while the second constraint codifies the property of complete positivity
(see Ref. [18] for details). Furthermore, it is shown in Ref. [12] that such semi-
definite programs (arising from interactions between strategies and compatible
co-strategies) satisfy the condition of strong duality, which means that the solu-
tion to each semidefinite program above coincides with that of its dual.

In Ref. [13], the following theorem is proven:

Theorem 8 (Condition for product rule for semidefinite programs [13]).
Suppose that the following two semidefinite programs Π1 and Π2 satisfy strong dual-
ity:

Π1 Π2

maximize: Tr(J†
1W ) maximize: Tr(J†

2W )
subject to: Δ1(W ) = C1, subject to: Δ2(W ) = C2,

W ≤ Pos (W1) W ≤ Pos (W2) ,
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where Δ1 : L (W1) ⊥ L (Z1) and Δ2 : L (W2) ⊥ L (Z2), for complex Euclidean
spacesW1,Z1,W2,Z2, and J1 ≤ L (W1) and J2 ≤ L (W2) are Hermitian. Letλ(Π1)
and λ(Π2) denote the semidefinite programs’ solutions. If J1 and
J2 are positive semidefinite, then the solution to the following semidefinite pro-
gram, denoted Π1 ∈ Π2, is λ(Π1 ∈ Π2) = λ(Π1)λ(Π2):

Π1 ∈ Π2

maximize: Tr((J1 ∈ J2)†W )
subject to: Δ1 ∈ Δ2(W ) = C1 ∈ C2,

W ≤ Pos (W1 ∈ W2) .

Since B0 is positive semidefinite and Πω′ = Π⊕s
ω (using the associativity of

∈), Theorem 8 can be applied (s − 1) times in order to prove that λ∗ = λs as
required. See Ref. [12] for a similar approach, based on ideas in Ref. [19]. The
idea of expressing the acceptance probability of a quantum interactive proof
system as a semidefinite program first appeared in Ref. [20].

Note that this argument, combined with the arguments in the main body of
the paper, shows that both the serial and parallel versions of our identification
protocol are secure.

A.2 Proof of Proposition 3

Two facts hold without loss of generality:

– the POVMs {Ew,0, Ew,π}, for all w, may be assumed to be covariant, i.e.
Ew,π = VπEw,0V

†
π (to see this, note that any not-necessarily-covariant POVM

{Fw,0, Fw,π} gives the same average probability of successfully guessing ϕ,
given w, as the covariant POVM {Ew,0, Ew,π} defined by Ew,0 = (Fw,0 +
V †

π Fw,πVπ)/2);
– each Ew,0 has support only on sp(Ow) and thus Ew,0 + Ew,π = Isp(Ow),

where Isp(Ow) is the identity operator on sp(Ow).

To compute a basis of sp(Ow), we now further define the system R∗ in the proof
of Lemma 1 to consist of exactly t + 1 qubits and the states |ch⊕, h = 0, 1, . . . , t,
to be all those computational basis states whose labels have Hamming weight 1
(thus q = 2t + 1, which is larger than necessary, but simplifies the structure of
the POVMs). The total subspace

S ≡ sp
({|St

j⊕}j=0,...,t ∈ {|ch⊕}h=0,1,...,t ∈ {|0⊕, |1⊕}) (63)

supporting |ΩRS(ρ, ϕ)⊕ breaks up into mutually orthogonal subspaces Sw of
weight w, i.e., spanned by computational basis states whose labels have Ham-
ming weight w:

S1 = sp
(|St

0⊕ ∈ {|ch⊕}h ∈ |0⊕) (64)

Sk = sp
(|St

k−1⊕ ∈ {|ch⊕}h ∈ |0⊕, |St
k−2⊕ ∈ {|ch⊕}h ∈ |1⊕) , (65)

St+2 = sp
(|St

t⊕ ∈ {|ch⊕}h ∈ |1⊕) , (66)

for k = 2, 3, . . . , t + 1. Thus, for each w, we will do the following:
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– write Pw in the basis in which Sw is expressed in Eqs. (64), (65), (66),
– derive an expression for Pw|ΩRS(0, 0)⊕ (which is proportional to |Δw⊕) in order

to find a basis for sp(Ow) = sp{|Δw⊕, Vπ|Δw⊕} (which fully supports Ew,0),
and

– derive the form of Ew,0 and thus, by covariance, the form of the POVM
{Ew,0, Ew,π} in each subspace Sw.

Recalling Eq. (40), it will be convenient to let λj,h ≡ bjgj,h and so

|ΩR(0)⊕ =
∑
j,h

λj,h|St
j⊕|ch⊕. (67)

w=1:
Writing

P1|ΩRS(0, 0)⊕ (68)

=

(∑
h

|St
0⊕∼St

0| ∈ |ch⊕∼ch| ∈ |0⊕∼0|
)

|ΩR(0)⊕(|0⊕ + |1⊕)/
∧

2 (69)

= |St
0⊕

(∑
h

[(∼St
0|∼ch||ΩR(0)⊕)/

∧
2]|ch⊕

)
|0⊕ (70)

= |St
0⊕

(∑
h

[λ0,h/
∧

2]|ch⊕
)

|0⊕, (71)

we see that Vπ|Δ1⊕ = |Δ1⊕ so that E1,0 = E1,π = |Ξ0⊕|0⊕∼Ξ0|∼0|, where |Ξ0⊕ is a
state such that

|Ξ0⊕ ∝ |St
0⊕

∑
h

[λ0,h/
∧

2]|ch⊕. (72)

We note that getting the outcome corresponding to this POVM element does
not give any information about ϕ; we arbitrarily assign a guess of “ϕ = 0” to this
outcome, without affecting optimality (since ϕ is a priori uniformly distributed).
w ≤ {2, 3, . . . , t + 1} :

Similarly, we can write

Pw|ΩRS(0, 0)⊕ (73)

= |St
w−1⊕

(∑
h

[λw−1,h/
∧

2]|ch⊕
)

|0⊕+ (74)

|St
w−2⊕

(∑
h

[λw−2,h/
∧

2]|ch⊕
)

|1⊕. (75)

Chiribella et al. [17] show that Ew,0 may be assumed to have rank 1 without
loss of generality. Thus Ew,0 may be written |ηw⊕∼ηw|, where

|ηw⊕ = a|Ξw−1⊕|0⊕ + b|Ξw−2⊕|1⊕, (76)
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for some complex coefficients a and b, such that |a|2 + |b|2 = 1, where |Ξw−1⊕
and |Ξw−2⊕ are states such that, for j = 0, 1, . . . , t,

|Ξj⊕ ∝
∑

h

λj,h∧
2

|St
j⊕|ch⊕. (77)

We have (using covariance to get Ew,π)

Ew,0 + Ew,π (78)

= 2(|a|2|Ξw−1⊕|0⊕∼Ξw−1|∼0| + |b|2|Ξw−2⊕|1⊕∼Ξw−2|∼1|). (79)

But

Ew,0 + Ew,π (80)
= Isp(Ow) (81)
= |Ξw−1⊕|0⊕∼Ξw−1|∼0| + |Ξw−2⊕|1⊕∼Ξw−2|∼1|. (82)

Equating the two expressions implies that

|ηw⊕ =
1∧
2
(|Ξw−1⊕|0⊕ + eiϕw |Ξw−2⊕|1⊕), (83)

for some phase ϕw. But we must have ϕw = 0 since Ew,0 corresponds to the
guess “ϕ = 0”.
w = t + 2 :

Similar to the case w = 1 and using the definition from Eq. (77), we have
Et+2,0 = Et+2,π = |Ξt⊕|1⊕∼Ξt|∼1|. We assign the guess “ϕ = Π” to getting the
outcome corresponding to this POVM element.

To summarize, the elements of the overall POVM {E0, Eπ} describing the
measuring-and-guessing strategy may be expressed

E0 = |Ξ0⊕|0⊕∼Ξ0|∼0| +
t+1∑
w=2

|w,+⊕∼w,+| (84)

Eπ =
t+1∑
w=2

|w,−⊕∼w,−| + |Ξt⊕|1⊕∼Ξt|∼1|, (85)

where

|w,±⊕ ≡ 1∧
2
(|Ξw−1⊕|0⊕ ± |Ξw−2⊕|1⊕). (86)

A.3 Proof of Theorem 1, Assuming Eq. (15)

For security with error σ, we require

r(1 − c/(2r + 1)2)s < σ, (87)

which, by taking the logarithm of both sides, is equivalent to

s > log(σ/r)/ log(1 − c/(2r + 1)2). (88)
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Using the series expansion log(1 − x) = −(x + x2/2 + x3/3 + · · · ), the right-
hand side of Eq. (88) is upper-bounded by

(2r + 1)2 log(r/σ)/c, (89)

from which the theorem follows.

A.4 Proof of Proposition 4

This maximization problem is very similar to that in Ref. [11], where it was
required to maximize ∼ζ|M ∗

t |ζ⊕ over all states |ζ⊕ ≤ sp{|j⊕ : j = 0, 1, . . . , t} for

M ∗
t =

t−1∑
j=0

|j + 1⊕∼j| + |j⊕∼j + 1|. (90)

In fact, in light of Eq. (40), the phase estimation problem in Ref. [11] may be
viewed as the same as the one we consider, but where Eve does not have access to
the register R∗. (Indeed, our optimal success probability cannot be less than that
in Ref. [11], since at the very least Eve can forgo the use of the ancillary register
R∗.) Finally, below, we show that our optimal success probability is exactly equal
to that obtained in Ref. [11].

Let λ	
j,h denote the optimal values for our maximization problem, and let

M	
t , |ΩR(0)	⊕, and |Ξ	

j ⊕ denote the values of Mt, |ΩR(0)⊕, and |Ξj⊕ at those
optimal values. Note that {|Ξj⊕ : j = 0, 1, . . . , t} is orthonormal for all values
of λj,h, thus {|Ξ	

j ⊕ : j = 0, 1, . . . , t} is orthonormal. Consider now optimizing
∼Ω|M	

t |Ω⊕ over all unit vectors |Ω⊕ ≤ sp{|Ξ	
j ⊕ : j = 0, 1, . . . , t} for fixed M	

t ;
denote the optimal |Ω⊕ as |Ω	⊕. It must be that

∼Ω	|M	
t |Ω	⊕ ∨ ∼ΩR(0)	|M	

t |ΩR(0)	⊕, (91)

since |ΩR(0)	⊕ ≤ sp{|Ξ	
j ⊕ : j = 0, 1, . . . , t} by inspecting Eqs. (67) and (77). Now

note that the coefficients of |Ω	⊕ with respect to the basis {|Ξ	
j ⊕ : j = 0, 1, . . . , t}

must be precisely those coefficients of the optimal |ζ⊕ with respect to the standard
orthonormal basis {|j⊕ : j = 0, 1, . . . , t} found in Ref. [11]; otherwise, substituting
the coefficients of |Ω	⊕ would give a higher maximum than that in Ref. [11]. (The
argument works because, in both cases, the orthonormal basis is fixed for the
optimization.) Therefore, we have, as in Ref. [11],

|Ω	⊕ ∝
t∑

j=0

sin
[
(j + 1)Π

t + 2

]
|Ξj⊕. (92)
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Abstract. We present a continuous-variable quantum key distribution
protocol combining a continuous but slightly non-Gaussian modulation
together with a efficient reverse reconciliation scheme. We establish the
security of this protocol against collective attacks which correspond to
a linear quantum channel. In particular, all Gaussian attacks are con-
sidered in our framework. We show that this protocol outperforms all
known practical protocols, even taking into account finite size effects.

1 Introduction

Quantum key distribution (QKD) is a cryptographic primitive allowing two dis-
tant parties, Alice and Bob, to establish a secret key in an untrusted environment
controlled by some eavesdropper, Eve [1]. One of the great interests of QKD is
that it can be implemented with present day technology, at least for reasonable
distances.

Whereas discrete-variable protocols, such as BB84 [2], are quite resistant to
losses (experiments over more than 200 km have been achieved [3]), continuous-
variable protocols do not seem to display the same quality: the present experi-
mental record is around 25 km [4–7], although recent theoretical results suggest
than 100 km should be achievable [8,9]. On the other hand, continuous-variable
(CV) QKD does not require specific equipment such as single-photon counters
and can be implemented with off-the-shelf telecom components. For this reason,
it is of great importance to find the protocols with the highest resistance to
losses. In this paper we introduce such a protocol.

Before describing the new protocol, let us first recall the main ideas of
CVQKD, and explain the origin of its sensitivity to losses. The basic idea is to
encode information on continuous variables in phase space to perform QKD [10].
This can be achieved with coherent states: the information is simply encoded
in their displacement vectors and can be recovered by Bob thanks to homo-
dyne or heterodyne detection (homodyne corresponds to the case where one
random quadrature is measured, heterodyne means that both quadratures are

D. Bacon et al. (Eds.): TQC 2011, LNCS 6745, pp. 143–152, 2014.
DOI: 10.1007/978-3-642-54429-3 9, c© Springer-Verlag Berlin Heidelberg 2014
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measured). Two main categories of modulation have been considered in the liter-
ature: a continuous Gaussian modulation, which maximizes the mutual informa-
tion IAB between Alice and Bob, and discrete modulations (mainly consisting of
either 2 or 4 states) allowing for a simpler reconciliation procedure. In the case
where the data are not postselected, both modulation schemes have been proved
secure against collective attacks (Refs. [11–13] for a Gaussian modulation, and
Refs. [8,9] for discrete modulations in the case where the quantum channel is
linear). Finally, thanks to a de Finetti theorem in infinite-dimensional Hilbert
spaces, it is enough to consider collective attacks to prove the general security
of a CVQKD scheme [14].

The typical outline of a CV QKD protocol is the following. Alice prepares N
coherent states |qk + ipk≤ where qk and pk are real random variables following
the appropriate probability distribution: qk, pk can be either centered normal
random variables or Bernoulli random variables depending on the modulation
of the protocol. Bob measures each state with a homodyne or a heterodyne
detection (in the first case, he needs to inform Alice of his choice of quadrature).
At this point, Alice and Bob possess N (or 2N) couples of correlated data
(xk, yk). These data are related through: yk = txk + zk where t is an unknown
constant and zk is a centered random variable with unknown variance ε2. Alice
and Bob then proceed with the parameter estimation procedure whose goal is to
estimate both t and ε2 by publicly revealing part of their data [15,16]. Note that
this estimation can never be perfect in practice. The remaining data (xk, yk) for
k → {1, · · · , n} are used to distill a secret key. This is done by first applying a
reverse reconciliation technique [17] where Bob sends some side information to
Alice to help her guess the value of (y1, · · · , yn). The side information is typically
composed of continuous data, for instance the absolute value |yk| of Bob’s data,
as well as of the syndrome of a linear error correcting code (for instance of a
Low-density Parity-check (LDPC) code [18,19]). The reconciliation procedure
is characterized by its efficiency Ω which is the ratio between the length of the
bit-string Alice and Bob manage to agree on and the mutual information I(x; y)
they initially shared. Finally the privacy amplification allows them to transform
this partially unsecure bit-string into a secret key of length l = nK where the
asymptotic key rate K is given by:

K = ΩI(x; y) − ρ(y;E). (1)

Taking into account finite size effects leads to a more complicated expression
which can be found elsewhere [15,16,20] (see also discussion below). The quan-
tity ρ(y;E) refers to the Holevo information between the eavesdropper and Bob’s
data. Note that the main contribution to finite size effects comes from the inac-
curacy in the parameter estimation: one should indeed consider for ρ(y;E) the
maximal value compatible with the estimation except for some small probability
ΠPE , say 10−10.

The main limitation in terms of range for CV QKD stems from the finite
reconciliation efficiency, especially for a Gaussian modulation in the low signal-
to-noise ratio (SNR) regime. Using a discrete quaternary modulation improves
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the performances significantly as one is now able to perform an efficient reconcili-
ation, even for arbitrarily low SNR [8,9]. On the other hand, upper bounding the
Holevo quantity is more challenging in this scenario, and tight bounds are only
available when the modulation variance is small. The reason for it is that the
bounds are obtained from an optimality property of Gaussian states [11,21], and
that the four-state protocol is close to a Gaussian protocol for low modulation
variance only (typically the optimal variance corresponds to sending coherent
states with a mean photon number between 0.2 and 0.5). While this is per-
fectly fine in theory, it certainly makes the experimental implementation more
challenging.

In this paper, we introduce a new continuous-variable QKD protocol combin-
ing an efficient reconciliation procedure and a much tighter bound on ρ(y;E).
This protocol outperforms all known practical CV QKD protocols, both in terms
of rate and achievable range. It also allows for larger modulation variances, hence
significantly simplifying the experimental implementation for long distances. We
will establish the security of this protocol against linear attacks (for instance
Gaussian attacks) in the asymptotic regime. By definition, a linear attack cor-
responds to any action of the eavesdropper compatible with a linear quantum
channel between Alice and Bob (see Appendix A for details concerning linear
channels). The general case of collective attacks will be treated elsewhere [22].
In order to show the robustness of the protocol, we will also present its perfor-
mances in a non-asymptotic regime, where the imperfect parameter estimation
is taken into account using the techniques described in Refs. [15,16].

2 A New Modulation Scheme

Let us first say a few words concerning the reconciliation procedure. A necessary
condition in order to achieve long distances is to be able to have an efficient
reconciliation at low SNR. The main difficulty here lies in the fact that we need
a reverse reconciliation. Indeed, the side information sent by Bob must help
Alice without giving Eve any relevant information. The only schemes where side
information seems to have these properties are the Gaussian modulation where
side information describes rotations in R8 [23] and the binary and quaternary
modulations where side information consists of the absolute value of Bob’s mea-
surement result [8].

In order to increase the secret key rate, one needs to find the best possible
balance between a large value of ΩI(x; y) and a small value of ρ(y;E). From
this perspective, the protocol with a Gaussian modulation and the four-state
protocol appear to be at the two ends of the spectrum. A Gaussian modulation,
on one hand, insures the lowest possible value for the upper bound on ρ(y;E),
but unfortunately, the quantity ΩI(x; y) is also quite small, and one cannot distill
secret keys over large distances with this protocol. The 4-state protocol, on the
other hand, is designed specifically to maximize the quantity ΩI(x; y) at the
cost of increasing the provable upper-bound on ρ(y;E), which is a consequence
of the fact that a quaternary modulation only roughly approximates a genuine
Gaussian modulation for low modulation variances.
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The idea of the protocol presented here is to combine these two solutions to
find a better trade-off. The modulation scheme now consists in generating points
centered on an 7-dimensional sphere in R

8 (this is done by considering together
4 successive coherent states in phase space). Then, using the same technique as
in Ref. [23], one can reduce the reconciliation problem to the discrete case, which
can be efficiently solved as in Ref. [8]. However, because the continuous modu-
lation on a sphere in R

8 approximates a Gaussian modulation quite accurately,
the bound on ρ(y;E) becomes much tighter than for the four-state protocol.

We now give a detailed description of our new protocol. Alice sends 4N
coherent states to Bob such that the coordinates of all quadruples {|σ4k≤, |σ4k+1≤,
|σ4k+2≤, |σ4k+3≤} for k → {1, · · · , N} are drawn with the uniform probability on
the seven-dimensional sphere of radius 2σ in phase space1:

S7 ∈ {(σ4k, σ4k+1, σ4k+2, σ4k+3) → C
4 such that

|σ4k|2 + |σ4k+1|2 + |σ4k+2|2 + |σ4k+3|2 = 4σ2}. (2)

σ is related to Alice’s modulation variance VA through VA = 2σ2 (expressed
in shot noise units). Then Bob proceeds with an heterodyne measurement (as in
Ref. [24] for instance). Here, it is crucial that both quadratures are measured
in order to use the property of Eq. 2. The parameter estimation procedure now
consists in revealing N −n quadruples in order to estimate the parameters t and
ε2 as before. Then, the reconciliation procedure is a mix between the reconcil-
iation using the octonions presented in Ref. [23] and the one described in Ref.
[8] using the concatenation of good error correcting codes with a repetition code
in order to be able to work at very low SNR. It goes at follows. Bob first puts
together his n 8-dimensional real vectors yk = (yk

1 , · · · , yk
8 ) and chooses ran-

domly n 8-bit strings (uk
1 , · · · , uk

8). These 8-bit strings are mapped on points on
a hypercube in R

8 with coordinates uk = ((−1)uk
1

||yk||
2
∗
2

, · · · , (−1)uk
1

||yk||
2
∗
2

) where
||yk||2 = (yk

1 )2+ · · ·+(yk
8 )2. He then computes the n rotations in R

8 mapping yk

to uk as described in Ref. [23] and sends them, together with the value of ||yk||
to Alice on the authenticated classical channel. Alice applies the same n rota-
tions to her data. At this point, Bob computes the syndrome of his 8n-bit string
for a code C he and Alice agreed on beforehand and sends this syndrome to
Alice. This syndrome defines a subset of the 8n-dimensional hypercube contain-
ing the point (u1, · · · ,un). If the code C is well chosen, with high probability,
Alice recovers the value of (uk

1 , u
k
2 , · · · , uk

n). The efficiency of this procedure is
the same as the one of the reconciliation of 4-state protocol. Alice and Bob can
then proceed with privacy amplification to obtain their secret key.

3 Performance and Security of the Protocol

Our goal here is to evaluate the secret key rate K. The first term ΩI(x; y) is
rather easy to estimate. Because of the specific reconciliation procedure, Ω is the
1 This can be done quite simply: Alice only needs to draw eight random variable with a

normal probability distribution and then to normalize this eight dimensional vector
so that it belongs to the sphere S7 of radius 2ρ in R

8.
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same as for the discrete-modulation protocol, and can be assumed to be at least
0.8 for any SNR lower than 1 [8]. The mutual information between Alice and
Bob corresponds to the capacity of a binary input additive white Gaussian noise
channel, which is a function of the SNR.

In order to upper bound ρ(y;E), one needs to consider the entanglement-
based version of the protocol. Such a “virtual entanglement” does not have to
be implemented, but it is formally equivalent to the used prepare-and-measure
protocol. In this version, Alice starts by preparing n bipartite states

|Δ≤ = e−2α2
√∑

k=0

(2σ)k

⊕
k!

|ψ4
k≤, (3)

where
|ψ4

k≤ =
1√(
k+3
3

)
∑

∑
i ki=k

|k1, k2, k3, k4≤|k1, k2, k3, k4≤

and performs a POVM on the first half of her state which projects the second
half on the coherent states with the right modulation. These coherent states are
then sent to Bob. The covariance matrices of this state |Δ≤ respectively before
and after the transmission through a linear channel of transmission T and excess
noise θ are noted ϕ 0 ≺ 14 and ϕ ≺ 14 with

ϕ 0=
(
(VA + 1)12 Z εz

Z εz (VA + 1)12

)
, ϕ =

(
(VA + 1)12

⊕
T Z εz⊕

T Z εz (1 + TVA + Tθ)12

)

where VA = 2σ2 is Alice’s modulation variance in the Prepare and Measure
version of the protocol. The parameter Z characterizes the level of correlation
in phase space between the two halves of the states. The maximal value of
Z compatible with quantum mechanics is obtained in the case of a two-mode
squeezed state and reads ZTMS =

√
V 2

A + 2VA. This is therefore the relevant
value when considering the QKD protocol with a Gaussian modulation. In the
case of the continuous-modulation protocol introduced here, one has [16]:

Z =
1
2
e−2VA

√∑
k=0

⊕
k + 4
k!

V
k+ 1

2
A . (4)

The fact that Z < ZTMS leads to an increase of the upper bound on ρ(y;E)
one can derive from a Gaussian optimality argument. In particular, the value of
ρ(y;E) one obtains corresponds to the value one would obtain for a Gaussian
modulation protocol with a quantum channel characterized by a transmission
TG = T/F ⊥ T , and an excess noise θG = Fθ+(F −1)VA ⊥ θ+(F −1)VA, where
F ∈ (ZTMS/Z)2. Since one has F ⊥ 1 for reasonable values of VA, the main effect
of the non-Gaussian modulation is the equivalent excess noise ςθ = (F − 1)VA.
Figure 1 displays this equivalent excess noise in the case of the protocol presented
here, as well as for the 4-state protocol introduced in [8]. In state-of-the-art
implementation, the excess noise is typically less than a few percent of the shot
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Fig. 1. Equivalent excess noise due to the non-Gaussian modulation. Upper curve refers
to the 4-state protocol [8], lower curve to the new continuous-modulation protocol. An
excess noise of one unit of shot noise corresponds to an entanglement-breaking channel,
therefore no security is possible with such a level of noise.
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Fig. 2. Asymptotic secret key rate for the new protocol and the four-state protocol
(heterodyne detection) for a distance of 50 km, as a function of Alice’s modulation
variance. The various parameters are an excess noise of 0.01 and quantum efficiency
of the detectors is σ = 60%. Reconciliation efficiency is supposed to be a conservative
80 % on the left figure, and an optimistic 90% on the right figure.

noise. This gives a approximate limit for the value of the equivalent excess noise
that is acceptable. In particular, for the 4-state protocol, one needs to work with
modulation variances below 0.5 units of shot noise. On the contrary, it becomes
possible to work with much higher variances in the case of our new protocol.

This can be seen on Fig. 2 where we display the asymptotic secret key rate
for a distance of 50 km for the new protocol as well as for the 4-state protocol
as a function of Alice’s modulation variance. The various parameters are chosen
conservatively: a quantum efficiency of 60% and an excess noise of 0.01. Both
plots correspond respectively to a reconciliation efficiency of 80% and a more
optimistic value of 90%. The superiority of the new protocol is quite clear: the
secret key rate is higher by nearly an order of magnitude, and one can work with
significantly larger modulation variances.

In order to confirm the robustness of the new protocol, we display on Fig. 3
the secret key rate when finite size effects are taken into account. The secret key
rate is computed against collective attacks, as detailed in Ref. [15]. Among vari-
ous finite size effects [20], the most crucial ones for continuous-variable protocols
are clearly the imperfect reconciliation efficiency (which prevents the protocol
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with a Gaussian modulation to achieve key distribution over large distances)
and the parameter estimation. While the reconciliation efficiency is taken care
of by the 8-dimensional continuous modulation, the parameter estimation is quite
sensitive for continuous-variable protocols. In fact, the real problem lies in the
estimation of the excess noise θ, which is very small compared to the shot noise,
and thus hard to evaluate accurately.

0 50 100 150
10 6

10 5

10 4

0.001

0.01

0.1

distance km

K

Fig. 3. Non-asymptotic secret key rate for the new protocol, obtained for realistic
values: excess noise φ = 0.005, security parameter ΩPE = 10−10, quantum efficiency of
the detectors σ = 60 %, reconciliation efficiency 80% for the bi-AWGN channel. Half
the samples are used for parameter estimation. From left to right, the block length is
equal to 108, 1010, 1012 and 1014.

In Fig. 3, all such finite size effects are taken into account [15]. The results are
rather pessimistic, but remember that this is also true for all discrete-variable
protocols [25], and our protocol performs relatively quite well. While exchanging
1014 quantum signals is rather unrealistic, exchanging 108 or even 1010 signals
can be done with today’s technology. Hence, our new protocol allows for the
distribution of secret keys over distances of the order of 50 km, taking into
account all finite-size effects.

4 Perspectives

As a conclusion, we presented a new continuous-variable QKD protocol based on
a continuous but non-Gaussian modulation and established its security against
collective attacks, provided that the quantum channel is linear. The use of a
specific reconciliation procedure allows for the distribution of secrets keys over
long distances, which was impossible with a Gaussian modulation. Moreover,
this protocol clearly outperforms all known practical continuous-variable, with
a secret key rate an order of magnitude higher than for the four-state protocol.
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An important question at that stage is how to avoid the extra hypothesis that
the channel should be linear. As shown in Ref. [22], this can be done by using
decoy states, in order to embed the non-Gaussian modulation into an overall
gaussian modulation. It is then safe to evaluate the values of T and θ from a
gaussian probe beam, and then to use them as described in the present paper.
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SECOQC (IST-2002-506813) and the ERC Starting grant PERCENT, and from Agence
Nationale de la Recherche under projects PROSPIQ (ANR-06-NANO-041-05) and
SEQURE (ANR-07-SESU-011-01).

A Appendix: Linear Quantum Channels

We shall define a linear quantum channel by the input-output relations of the
quadrature operators in Heisenberg representation :

Xout = gXXin + BX

Pout = gP Pin + BP (5)

where the added noises BX , BP are uncorrelated with the input quadratures
Xin, Pin. Such relations have been extensively used for instance in the context
of Quantum Non-Demolition (QND) measurements of continuous variables [26],
and they are closely related to the linearized approximation commonly used
in quantum optics. Gaussian channels (channels that preserve the Gaussianity
of the states) are usual examples of linear quantum channels. However, linear
quantum channels may also be non-Gaussian, this will be the case for instance
if the added noises BX , BP are non-Gaussian.

For our purpose, the main advantage of a linear quantum channel is that it
will be characterized by transmission coefficients TX = g2X , TP = g2P , and by
the variances of the added noises BX and BP . These quantities can be deter-
mined even if the modulation used by Alice is non-Gaussian, with the same
measured values as when the modulation is Gaussian (because these values are
intrinsic properties of the channel). The relevant covariance matrix can then be
easily determined, and Eve’s information can be bounded by using the Gaussian
optimality theorem.
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Abstract. Parity is the problem of determining the parity of a string
f of n bits given access to an oracle that responds to a query x ∼
{0, 1, . . . , n−1} with the xth bit of the string, f(x). Classically, n queries
are required to succeed with probability greater than 1/2 (assuming equal
prior probabilities for all length n bitstrings), but only ⊗n/2◦ quantum
queries suffice to determine the parity with probability 1. We consider a
generalization to strings f of n elements of Zk and the problem of deter-
mining

∑
f(x). By constructing an explicit algorithm, we show that n−r

(n ≥ r ∼ N) entangled quantum queries suffice to compute the sum cor-
rectly with worst case probability min{�n/r�/k, 1}. This quantum algo-
rithm utilizes the n− r queries sequentially and adaptively, like Grover’s
algorithm, but in a different way that is not amplitude amplification.

1 Introduction

Parity is the oracle (or black-box) problem of determining the parity of an
n-bit string by querying positions in the string. Since even a single unqueried
bit can change the parity, n classical queries are required to solve this problem
with probability 1, assuming all n-bit strings are possible.

When n = 2, this is Deutsch’s problem [1], for which a single quantum query,
used properly, suffices [2]. Beals et al. show that in general ≤n/2→ quantum queries
suffice by applying the solution to Deutsch’s problem to the bits in pairs [3]. In
their algorithm the quantum queries are independent of one another—they can
be asked in parallel since none depends on the responses of the oracle to the
others—and they are also incoherent—after each query is processed, the state
is measured and the resulting information (the parity of a pair of the bits) is
combined classically at the end of the algorithm.

This same independence of multiple queries is a feature of existing multi-
query quantum algorithms for abelian [4,5] and non-abelian (e.g., [6–8]) hidden
subgroup problems, which range from incoherent [4,5] through partially [6,7] to
completely [8] coherent. Grover’s quantum search algorithm [9,10], and quantum
(random walk) search algorithms on graphs [11–13] more generally, however,
utilize coherent sequences of adapted queries—the quantum state is modified by
each oracle response before it is returned to the oracle for the next query, so the

D. Bacon et al. (Eds.): TQC 2011, LNCS 6745, pp. 153–163, 2014.
DOI: 10.1007/978-3-642-54429-3 10, c© Springer-Verlag Berlin Heidelberg 2014
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queries are not independent. These algorithms all use amplitude amplification
[14] to adapt their sequential queries.

But amplitude amplification, which identifies an element in the preimage of 1
for some bit-valued function, does not apply to Parity, nor to its generalization:

Sum. Let f : Zn ∈ Zk, where f is accessed via an oracle that responds with
f(x) when queried about x ⊕ Zn. Find

∑
x∗Zn

f(x) (modulo k).

As they are for Parity, n − 1 classical queries are useless for Sum when f
is chosen uniformly at random, i.e., the 1/k prior probability of each possible
sum is unchanged after the oracle responds to the queries [15]. Our Uselessness
Theorem: if 2q classical queries are useless, then q quantum queries are useless
[15], implies that ≺(n − 1)/2⊥ quantum queries are therefore useless for Sum.
This raises the question of how well we can do using more than a useless number
of queries; to answer it we construct an n − r quantum query algorithm that
computes the sum correctly with worst case probability min{≺n/r⊥/k, 1}, for
each 1 ≤ r ⊕ N, and that returns a result that is within ≺kr/2n⊥ of the sum
with probability at least 4/ε2. This quantum algorithm utilizes the n−r queries
sequentially and adaptively, like quantum search algorithms, but in a different
way that is not amplitude amplification.

We motivate the development of our algorithm in the next section by con-
sidering the simplest new instances of Sum, computing the sum of 2 or 3 trits.
In Sect. 3 we state and prove two basic lemmas and combine them to construct
the general algorithm in Sect. 4. We conclude in Sect. 5 by recalling the result
of van Dam that strings of n bits can be identified with high probability using
n/2 + O(

⊗
n) queries, and hence any function of them can be computed with at

least the same probability [16]. We generalize this result to k > 2 and show that,
unsurprisingly—since it is designed to do more than just compute the sum of
the string values, it gives success probabilities less than those of our algorithm.

2 Sums of Trits

The simplest generalization of Deutsch’s problem is to add two trits rather than
two bits, i.e., the n = 2 and k = 3 version of Sum. As with Deutsch’s problem,
if all possible functions f : Z2 ∈ Z3 are equally likely, a single classical query is
useless—the prior probabilities of 1/3 for each value of

∑
f(x) are unchanged

after a single query—while two classical queries suffice to determine the sum with
probability 1. Thus the goal of a quantum algorithm for this problem should be
to determine the sum with a single quantum query with probability greater
than 1/3.

Proposition 1. Using a single quantum query the sum of two trits can be deter-
mined with worst case probability 2/3.

Before giving the proof we recall some standard notation: We will work in
the Hilbert space C

n ∼ C
k, with computational basis

{|x≡|y≡ ∣∣ x ⊕ Zn, y ⊕ Zk

⎛
.

The shift operator acts by X : |z≡ ∝∈ |z +1≡ and the oracle acts by Of : |x≡|y≡ ∝∈
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|x≡|y + f(x)≡ = |x≡Xf(x)|y≡. Finally, Ω = e2πi/k, and the Fourier transform on
C

k acts by

F : |y≡ ∝∈ 1⊗
k

k−1⎝
ψ=0

Ωψy|ρ≡ =: |Ω−y≡, (1)

since X|Ω−y≡ = Ω−y|Ω−y≡. These “Fourier” (or “character”) basis states will be
used to implement the widely useful generalization to dimensions greater than
2 [17–19] of the “phase kickback trick” [2].

To use these states in a quantum algorithm for the two trit problem we might
expect simply to query the oracle with a state of the form

1⊗
2

⎞|0≡ + |1≡⎠ ∼ |Π≡,

where Π = Ω−y for some y ⊕ {1, 2} ∧ Z3, as if we were solving Deutsch’s
problem. Notice, however, that the relative phase of the two components in the
state returned by the oracle would be Πf(0)−f(1), so it would not encode the sum
f(0) + f(1), unlike the two bit case in which −f(1) ∨ f(1) (mod 2). A different
query state is required:

Proof (of Proposition 1). It suffices to exhibit a single query algorithm that
succeeds with probability 2/3.

0. Initialize to the state
1⊗
2

⎞|1≡|Ω1≡ + |0≡|Ω−1≡⎠. (2)

1. Call the oracle Of to obtain the state

1⊗
2

⎞
Ωf(1)|1≡|Ω1≡ + Ω−f(0)|0≡|Ω−1≡⎠.

Notice that the relative phase of the two terms is Ωf(0)+f(1). We could argue
at this point that there is a POVM that identifies which of the three possible
states we have with probability 2/3 [20], but as a simple sequence of unitary
transformations avoids the necessity for anything beyond a complete von
Neumann measurement in the computational basis, we describe it explicitly
in the following steps.

2. Act by X ∼ I to obtain the state

1⊗
2

⎞
Ωf(1)|0≡|Ω1≡ + Ω−f(0)|1≡|Ω−1≡⎠.

3. Act by K to obtain the state

1⊗
2
|0≡⎞Ωf(1)|Ω1≡ + Ω−f(0)|Ω0≡⎠, (3)
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where K acts on C
n ∼ C

k by

K : |x≡|Ωy≡ =





|0≡|Ω0≡ if x = n − 1 and y = k − 1;
|n − 1≡|Ωk−1≡ if x = 0 and y = 0;
|x≡|Ωy≡ otherwise.

Note that while K is a complicated unitary operation, it is independent of f ,
i.e., it does not call the oracle.

The C
3 tensor factor in the final state (3) can be rewritten as:

1⊗
2

⎞
Ωf(1)|Ω1≡ + Ω−f(0)|Ω0≡⎠

= Ω−f(0) 1⊗
2

⎞
Ωθf |Ω1≡ + |Ω0≡⎠ (4)

= Ω−f(0) 1⊗
6

⎧⎞
1 + Ωθf

⎠|0≡ +
⎞
1 + Ωθf−1

⎠|1≡ +
⎞
1 + Ωθf−2

⎠|2≡
⎨
,

using the Definition (1), so now measurement of the C
3 tensor factor will return∑

f(x) with probability 2/3. �

To obtain this probability our initial query (2) was an entangled state, rather
than the usual tensor product state; this is the first innovation in the algorithm
up to which we are building. The next step is to consider adding n = 3 trits. In
this case two classical queries are useless, so one quantum query is useless [15],
and we must consider algorithms with two coherent quantum queries.

Proposition 2. Two quantum queries suffice to solve Sum with probability 1
when n = k = 3.

Proof. It suffices to exhibit a two query algorithm that succeeds with probabil-
ity 1.

0. Initialize to the entangled state

1⊗
3

⎞|1≡|Ω1≡ + |0≡|Ω−1≡ + |0≡|Ω−2≡⎠.

1. Call the oracle Of to obtain the state

1⊗
3

⎞
Ωf(1)|1≡|Ω1≡ + Ω−f(0)|0≡|Ω−1≡ + Ω−2f(0)|0≡|Ω−2≡⎠.

2. Act by X ∼ I to obtain the state

1⊗
3

⎞
Ωf(1)|2≡|Ω1≡ + Ω−f(0)|1≡|Ω−1≡ + Ω−2f(0)|1≡|Ω−2≡⎠.
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3. Act by J1 to obtain the state

1⊗
3

⎞
Ωf(1)|2≡|Ω2≡ + Ω−f(0)|2≡|Ω1≡ + Ω−2f(0)|1≡|Ω−1≡⎠, (5)

where Jr acts on C
n ∼ C

k by

Jr : |x≡|Ωy≡ =


⎩
⎩

|x≡|Ω0≡ if y = 0;
|x + r≡|Ω1≡ if y = −1;
|x≡|Ωy+1≡ otherwise.

Note that like K, while Jr is a complicated unitary operation, it is indepen-
dent of f , i.e., it does not call the oracle.

4. Call the oracle Of a second time to obtain the state

1⊗
3

⎞
Ωf(1)+2f(2)|2≡|Ω2≡ + Ω−f(0)+f(2)|2≡|Ω1≡ + Ω−2f(0)−f(1)|1≡|Ω−1≡⎠.

5. Act by X ∼ I again to obtain the state

1⊗
3

⎞
Ωf(1)+2f(2)|0≡|Ω2≡ + Ω−f(0)+f(2)|0≡|Ω1≡ + Ω−2f(0)−f(1)|2≡|Ω−1≡⎠.

6. Act by K to obtain the state

1⊗
3
|0≡⎞Ωf(1)+2f(2)|Ω2≡ + Ω−f(0)+f(2)|Ω1≡ + Ω−2f(0)−f(1)|Ω0≡⎠. (6)

The C
3 tensor factor in the final state (6) can be rewritten as:

1⊗
3

⎞
Ωf(1)+2f(2)|Ω2≡ + Ω−f(0)+f(2)|Ω1≡ + Ω−2f(0)−f(1)|Ω0≡⎠

=
1⊗
3
Ωf(0)+2f(1)

⎞
Ω−θf |Ω2≡ + Ω−2θf |Ω1≡ + Ω−3θf |Ω0≡⎠ (7)

= Ωf(0)+2f(1)|σ f≡,
using the Definition (1), so now measurement of this tensor factor will return∑

f(x) with probability 1. �
The key piece of algebra is that the phases of the terms in (6), each a linear

combination of two values of f , are also linear combinations of all three values
of f , with a coefficient of 0 in front of the third value: (0, 1, 2) · f , (−1, 0, 1) · f =
(2, 0, 1) · f , and (−2,−1, 0) · f = (1, 2, 0) · f , where f =

⎞
f(0), f(1), f(2)

⎠
. Written

this way it is clear that the coefficient vectors are successive cyclic shifts Δ of
(0, 1, 2), so if we factor out the last phase factor the other two become:

(0, 1, 2) · f − Δ2(0, 1, 2) · f = (2, 2, 2) · f = −
⎝

f

Δ(0, 1, 2) · f − Δ2(0, 1, 2) · f = Δ(1, 1, 1) · f = −2
⎝

f,

the phases of the first two terms in (7).
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This algorithm is optimal since it uses only one more than the useless number
of quantum queries. Notice that its two coherent quantum queries are sequential
rather than parallel, and that the second query is adapted in the sense that
the state (5) that is passed to the oracle as the second query depends on the
response of the oracle to the first query, unitarily transformed by J(X ∼I). This
adaptation differs from amplitude amplification [14] and is the second innovation
in our quantum summation algorithm.

3 Two Basic Lemmas

To generalize the quantum algorithms given in the previous section for summing
trits, it is convenient first to state two basic lemmas.

Lemma 3. For A⊕ Zk and k∀ s⊕ N, let

|As≡ =
1⊗
s

s⎝
ψ=1

Ω−ψA|Ωs−ψ≡ ⊕ C
k. (8)

Measurement of |As≡ in the computational basis returns |y≡, y ⊕ Zk, with proba-
bility ∣∣〈y|As≡

∣∣2 =
1
sk

⎧ sinεs(y − A)/k

sin ε(y − A)/k

⎨2

, (9)

defined to be a continuous function of y − A. The probability
∣∣〈y|As≡

∣∣2 takes its
maximum value, s/k, at y = A, and the probability that the measurement is
within ±≺k/2s⊥ of A is at least 4/ε2.

Proof. This is an elementary (and familiar from phase estimation; see, e.g., [2])
calculation using the Definition (1):

〈y|As≡ =
1⊗
sk

s⎝
ψ=1

Ω−ψA−(s−ψ)y

=
1⊗
sk

Ω−sy
s⎝

ψ=1

Ωψ(y−A)

=
1⊗
sk

Ω(1−s)y−A 1 − Ωs(y−A)

1 − Ωy−A
.

Taking the norm squared of this expression gives (9), which by continuity takes
the value s/k when y = A. That this is the maximum follows from the fact that
in this case all the terms in the sum above are 1.

Writing d = y−A, |d| ≤ k/2s implies | sin εsd/k| ∀ |εsd/k|/(ε/2) = 2s|d|/k,
since the argument of sin has absolute value no more than ε/2. Also, | sin εd/k| ≤
|εd/k|. Using these bounds in (9) gives

∣∣〈A + d|As≡
∣∣2 ∀ 1

sk

⎧2s|d|/k

|εd/k|
⎨2

=
4
ε2

s

k
,
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so ⎝
|d|√k/2s

4
ε2

s

k
∀

⌈k

s

⌉
· 4
ε2

s

k
∀ 4

ε2
. �

When k = 3 = s and A =
∑

f(x), the state (8) is equal to the C
3 tensor

factor in the final state of the algorithm in Proposition 2, up to an overall phase.
Similarly, in the algorithm of Proposition 1, if rather than factoring out the
phase Ω−f(0) in (4), we factor out Ωf(0)+2f(1), we obtain (8) with k = 3, s = 2,
and A =

∑
f(x). The success probabilities of 1 and 2/3 in these two algorithms

are the values s/k given by Lemma 3.
When A =

∑
x∗Zn

f(x), each component of the state (8) depends on all of
the n values of f . The next lemma says that, up to an overall phase, this state
is equivalent to one in which each component depends on fewer than n values
of f .

Lemma 4. Let 1 ≤ r ⊕ N, let r|n, and let s = n/r. Then

Ωθs
m=1m[f((m−1)r)+···+f(mr−1)] 1⊗

s

s⎝
ψ=1

Ω−ψθf |Ωs−ψ≡

=
1⊗
s

s⎝
ψ=1

Ωθs
m=1(m−ψ)[f((m−1)r)+···+f(mr−1)]|Ωs−ψ≡.

For each value of ρ, namely for each component, in the sum on the right
hand side of this equation, there is a term in the sum in the exponent which
vanishes because m = ρ. Since each of these terms depends on r values of f ,
each component depends on sr − r = n − r values of f . In the algorithm of
Proposition 1, n = 2 and r = 1 so s = n/r = 2, and each component of the
final state (3) depends on n − r = 2 − 1 = 1 value of f . In the algorithm of
Proposition 2, n = 3 and r = 1 so s = n/r = 3, and each component of the final
state (6) depends on n − r = 3 − 1 = 2 values of f .

4 The General Sum Problem

Summing two and three trits are special cases of the general Sum problem that
motivate the two innovations in our general algorithm. Propositions 1 and 2 are
special cases of the following theorem.

Theorem 5. Let f : Zn ∈ Zk. Using n−r quantum queries the sum
∑

x∗Zk
f(x)

can be computed correctly with worst case probability min{≺n/r⊥/k, 1}, for each
n ∀ r ⊕ N. Furthermore, the same algorithm outputs a result within ≺kr/2n⊥ of
the correct sum with probability at least 4/ε2.

Proof. First consider the case r|n and let s = n/r ⊕ N. If s ≤ k and we can
construct the state

1⊗
s

s⎝
ψ=1

Ω−ψθf |Ωs−ψ≡,
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then by Lemma 3 we can find
∑

f(x) with probability s/k = n/(rk), and even
when the output is wrong, it is likely to be close—within ≺rk/2n⊥ with proba-
bility at least 4/ε2. By Lemma 4 we need only construct the state

1⊗
s

s⎝
ψ=1

Ωθs
m=1(m−ψ)[f((m−1)r)+···+f(mr−1)]|Ωs−ψ≡,

in which each component depends on n − r values of f . The following algorithm
does so, using n − r quantum queries:

0. Initialize to the entangled state

1⊗
s

⎞|r≡|Ω1≡ + |0≡|Ω−1≡ + · · · + |0≡|Ω−(s−1)≡⎠.

1. Apply K
⎞⎞

(X ∼ I)Of

⎠r⎠⎞
Jr

⎞
(X ∼ I)Of

⎠r⎠s−2 to obtain the state

1⊗
s
|0≡

s⎝
ψ=1

Ωθs
m=1(m−ψ)[f((m−1)r)+···+f(mr−1)]|Ωs−ψ≡.

2. Measure the C
k tensor factor in the computational basis.

Notice that when n = k and r = 1, i.e., using k − 1 quantum queries, this
algorithm returns

∑
f(x) with probability 1.

If s > k, or equivalently, if r < n/k, then n = uk + v with u ∀ r and
0 ≤ v < k, so we can use k − 1 queries in this algorithm applied to each block
of length k, using a total of uk − u = n − v − u queries, leaving v + u − r ∀ v
queries to identify the last v values of f . Thus when s > k, we can find

∑
f(x)

with probability 1.
Second, and similarly, if r⇐ | n, let s = ≺n/r⊥. Then n = rs+w with 0 < w < r.

Using the algorithm applied to the first n − w values of f , we can compute

rs−1⎝
x=0

f(x), with probability min
{
1, ≺n/r⊥/k

⎛
,

using n − w − r queries, leaving w queries to identify the last w values of f .
Thus in all cases, this algorithm uses n−r quantum queries to return

∑
f(x)

with probability min
{
1, ≺n/r⊥/k

⎛
, and a value within ≺kr/2n⊥ of the sum with

probability at least 4/ε2. �
We believe this algorithm is optimal, but we have only proved it to be so for

r = n − 1, i.e., a single query [21].

5 Conclusion

Since the number of queries n−r ∀ 0, the success probability of our algorithm is
always at least 1/k, as it should be. Furthermore, since ≺n/r⊥ = 1 until r ≤ n/2,
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Fig. 1. Success probabilities of the algorithms from Theorems 5 (steps) and 6 (smooth).

fewer than n/2 quantum queries in this algorithm are useless, as they must be
according to the Uselessness Theorem [15]. When k = 2, Theorem 5 says that for
r ≤ n/2 the success probability is 1, as we know from the solution to Parity [3].

For k > 2 we know of no algorithms to which to compare ours. Van Dam’s
quantum algorithm for obtaining all the information about a function Zn ∈ Z2

with high probability using n/2+O(
⊗

n) queries [16], however, can be generalized
to functions f : Zn ∈ Zk:

Theorem 6. Let f : Zn ∈ Zk. There is a quantum algorithm using q queries
that correctly identifies the function with worst case probability

pq =
1
kn

q⎝
j=0

⎪
n

j

)
(k − 1)j . (10)

The cumulative distribution function (10) for this binomial probability distri-
bution is greater than 0.95 (almost 0.98) provided q > n(k−1)/k+2

√
n(k − 1)/k,

namely the mean plus two standard deviations. Thus with this many queries we
can determine the oracle correctly with probability more than 0.95, and thus
compute the sum of its values correctly. More precisely, using this algorithm
with q queries, we can compute

∑
f(x) with probability less than pq +(1−pq)/k

(obtained by bounding the probability of computing the sum correctly by 1/k
when the algorithm fails to output the correct f). Figure 1 plots this upper bound
on the success probability as a function of the number of queries, along with the
success probability of the algorithm of Theorem 5.

The success probability of the algorithm of Theorem 5 is greater than or equal
to that of the generalized van Dam algorithm of Theorem 6, for any number of
queries, an unsurprising result since the latter is using those queries to try to
determine the whole function, not just its sum. To succeed with probability
greater than a constant, the former requires a fraction of n approaching 1 like
1/k quantum queries, while the latter requires this many plus O(

⊗
n).
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Abstract. Min-entropy sampling gives a bound on the min-entropy of
a randomly chosen subset of a string, given a bound on the min-entropy
of the whole string. König and Renner showed a min-entropy sampling
theorem that holds relative to quantum knowledge. Their result achieves
the optimal rate, but it can only be applied if the bits are sampled in
blocks, and only gives weak bounds for the non-smooth min-entropy.
We give two new quantum min-entropy sampling theorems that do not
have the above weaknesses. The first theorem shows that the result by
König and Renner also applies to bitwise sampling, and the second the-
orem gives a strong bound for the non-smooth min-entropy. Our results
imply a new lower bound for k-out-of-n random access codes: while previ-
ous results by Ben-Aroya, Regev, and de Wolf showed that the decoding
probability is exponentially small in k if the storage rate is smaller than
0.7, our results imply that this holds for any storage rate strictly smaller
than 1, which is optimal.

1 Introduction

Let two players share a long string x ≤ {0, 1}n, on which an adversary has
only partial knowledge. They would like to get a shared key, over which the
adversary has almost no knowledge. Since x is long, using a 2-universal hash
function or, more generally, a strong extractor would be inefficient and hence
impractical. Vadhan showed in [Vad04] that the two players can instead first
randomly sample a relatively small substring x′ ≤ {0, 1}k of x, and then apply
an extractor to x′. The main part of his proof is a sampling lemma, which shows
that with high probability, the string x′ will have almost t

n ·k bits of min-entropy,
if the min-entropy of x is at least t. König and Renner showed in [KR07] that
this lemma can be generalized1 to the setting where the adversary has quantum
information about x. Again, with high probability the string x′ will have almost
t
n · k bits of quantum min-entropy.

Related to these results are lower bounds for random access codes. A random
access code is an encoding of a message of n classical bits into m < n qubits,
such that from these m qubits, k uniformly chosen bits of the message can be
guessed with probability at least p. The first lower bound was given for the case
1 It is however important to note that the results in [KR07] do not converge as fast

as in [Vad04]. See also discussion in Sect. 3.

D. Bacon et al. (Eds.): TQC 2011, LNCS 6745, pp. 164–173, 2014.
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where k = 1 by Ambainis, Nayak, Ta-Shma and Vazirani in [ANTSV99]. It was
later improved by Nayak in [Nay99] to m → (1 − H(p))n, where H(·) is the
binary entropy function. For the general case where k → 1, a lower bound was
presented by Ben-Aroya, Regev, and de Wolf in [BARdW08]. They showed that
for any ε > 2 ln 2 there exists a constant Cπ such that

p ∈ Cπ

(
1
2

+
1
2

√
εm

n

)k

.

This implies that if m ∈ 0.7n, then p ∈ 2−ψ(k). In the same work they also
showed lower bounds for a variant of random access codes called XOR random
access codes, where the decoder has to guess the XOR of a uniform subset of size
k. De and Vidick presented in [DV10] lower bounds for functional access codes.
They are generalizations of XOR random access codes where the decoder has to
guess the output of a function with binary output, where the function is chosen
uniformly from a given set.

The result in [Vad04] implies a classical lower bound for k-out-of-n random
access codes. In principle, this would also be possible in the quantum setting, as
the min-entropy is defined as minus the logarithm of the guessing probability.
Unfortunately, the results by König and Renner are not general enough to do
that, because they require the sampling to be done in blocks.

1.1 Contributions

In this work we give two new results for quantum min-entropy sampling.
First, we show in Theorems 4 and 5 in Sect. 3 that the bounds given in

Corollary 6.19 and Lemma 7.2 in [KR07] also apply to the case where the sample
is chosen bitwise, instead of (recursively) in blocks. This result simplifies some
protocols2 as it eliminates an artificial extra step in which the bits have to be
grouped in blocks.

Second, building on previous results given in [BARdW08] and [DV10], in
Sect. 4 we proof the following quantum sampling theorem.

Theorem 1. Let ΩXQ be a state that is classical on X ≤ {0, 1}n. Let T be a
uniformly chosen subset of [n] of size k. Then3

Hmin(XT | TQ)θ → H−1

(
Hmin(X | Q)θ

2n

)
k

6
− 5 .

Compared with the results in [KR07] and Theorems 4 and 5, Theorem 1 gives
stronger bounds for non-smooth min-entropy, but does not achieve the optimal
rate4. Also note that Theorem 1 only applies to the case where the sample is
chosen uniformly, which requires a lot of randomness.
2 For example in [KWW09].
3 Hmin is defined in Sect. 2.
4 Therefore, if we are interested in extracting a key, Theorem 1 only gives better

bounds if the sample size is small enough.
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Theorem 1 immediately implies the following bound for random access codes.

Corollary 1. Let 0 < ρ < 1
2 . For any k-out-of-n random access code where the

code length is bounded by m ∈ (1 − 2H(ρ))n, the success probability of decoding
is at most 2−σk/6+5.

As the results in [BARdW08], Corollary 1 generalizes the bound given by Nayak
to the case where k → 1. But while the results in [BARdW08] require that
m < 0.7n, our results imply that the success probability decreases exponentially
in k even if m is close to n.

Note that together with Lemma 8 in [BARdW08], Corollary 1 implies a
strong lower bound for the one-way communication complexity of k independent
instances of the disjointness problem.

2 Preliminaries

The binary entropy function is defined as H(x) := −x log x−(1−x) log(1−x) for
x ≤ [0, 1], where we use the convention 0 log 0 = 0. For y ≤ [0, 1], let H−1(y) be
the value x ≤ [0, 1

2 ] such that H(x) = y. The Hamming distance dH(·, ·) between
two strings is defined as the number of bits where the two strings disagree. We
use the notion [n] := {1, . . . , n}. The substring of x ≤ {0, 1}n defined by the set
s ⊕ [n] is denoted by xs. We call a state ΩXQ a cq-state if it is classical on X,
which means that it has the form ΩXQ =

∑
x px|x≺⊥x| ⊗ Ωx

Q.
The conditional min-entropy of a cq-state ΩXQ is defined as

Hmin(X | Q)θ := − log Pguess(X | Q)θ ,

where
Pguess(X | Q)θ := max

E

∑
x√X

PX(x) tr(ExΩx
Q) .

The maximum is taken over all POVMs E = {Ex}x√X on Q. Therefore, Pguess

(X | Q)θ is the maximal probability to correctly guess X by measuring system
Q. The equivalence of this definition of Hmin with the definition used in [KR07]
has been shown in [KRS09] in Theorem 1.

The statistical distance D(Ω, Π) between two states Ω and Π is defined as5

D(Ω, Π) := max
E

| tr(E1Ω) − tr(E1Π)| ,

where we maximize over all POVMs E = {Ex}x√{0,1}. D(Ω, Π) is therefore the
maximal probability to distinguish Ω and Π by a measurement. The following
lemma shows the connection between the statistical distance and the guessing
probability.

Lemma 1. Let ΩXQ be a cq-state where X ≤ {0, 1} and let σX be the fully mixed
state. Then D(ΩXQ, σX ⊗ ΩQ) ∈ ρ implies that Pguess(X | Q)θ ∈ 1

2 + ρ.

5 This definition is equivalent to D(ρ, φ) := 1
2
∼ρ − φ∼1 = 1

2
tr[
√

(ρ − φ)†(ρ − φ)].
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Proof. Let us assume that there exists a POVM E on Q which can guess X
with a probability bigger than 1

2 + ρ. We define a POVM E ′ on X ⊗ Q in the
following way: we measure Q using E and XOR the output with X. We get
tr(E′

1ΩXE) < 1
2−ρ and tr(E′

1(σX⊗ΩQ)) = 1
2 . It follows that D(ΩXQ, σX⊗ΩQ) > ρ,

which contradicts the assumption. �

Lemma 2. (Chernoff/Hoeffding). Let PX0...Xn
= Pn

X be a product distribu-
tion with Xi ≤ [0, 1]. Let X := 1

n

∑n−1
i=0 Xi, and μ = E[X]. Then, for any ρ > 0,

Pr [X ∈ μ − ρ] ∈ e−2nσ2
.

3 Bitwise Sampling from Blockwise Sampling

In this section we show that the min-entropy sampling results from [KR07], which
require blockwise sampling, also imply the same bounds for uniform bitwise
sampling.

The following theorem is the statement of Corollary 6.19 in [KR07] for uni-
form blockwise sampling. Here Hσ

min is the smooth min-entropy, and H0 the
Rényi 0-entropy. The definitions of these entropies and their properties can be
found in Sect. 5 in [KR07] or Chap. 3 in [Ren05].

Theorem 2 ([KR07]). Let ΩXQ be a cq-state where X = (X1, . . . , Xn) ≤ X n.
Let S ⊕ [n] be chosen uniformly at random among all subsets of size r. Assume
that Δ = n

r log |X | ∈ 0.15. Then for any ψ ≤ [0, 1],

Hσ
min(XS | SQ)

H0(XS)
→ Hmin(X | Q)

H0(X)
− 3ψ − 2Δ log 1/Δ ,

where ρ = 2 · 2−ξn log |X | + 3e−rξ2/8.

The statement says that with high probability, the min-entropy rate of a random
subset is almost as big as the min-entropy rate of the whole string.

If X is a bit-string, the required condition n ∈ 0.15 ·r log |X | can be achieved
by first grouping the bits into blocks. But as pointed out in [BARdW08], even
then we need the length of the sampled bit-string to be at least θ(

⊗
n). To

overcome this problem, [KR07] proposed a recursive application of Theorem 2.
The following theorem is Lemma 7.2 in [KR07]. See Section 7 in [KR07] for the
definition of the sampling algorithm ReSamp(X, f, r, S).

Theorem 3 ([KR07]). Let ΩXQ be a cq-state where X ≤ {0, 1}n. Let n, f and
r be such that n(3/4)f → r4. Let S be a string of uniform random bits, and let
Z = ReSamp(X, f, r, S). Then Z is a n(3/4)f -bit substring of X, with

Hσ
min(Z | SQ)

H0(Z)
→ Hmin(X | Q)

H0(X)
− 5f

log r

r1/4
,

where ρ = 5f · 2−⊕
r/8.
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Our results from this section, Theorems 4 and 5, will follow directly from the
following lemma.

Lemma 3. The bounds of Theorems 2 and 3 also apply if the sample is chosen
bitwise uniformly.

Proof. Let k, n ≤ N, were k < n. Let ΩXQ be a cq-state where X ≤ {0, 1}n. Let
S ⊕ [n] be chosen uniformly at random from all subset of size k and let T ⊕ [n]
be a random subset of size k chosen according to a given distribution PT . Let ϕ
a permutation chosen uniformly at random, but such that it maps all elements
in S into T . Strong subadditivity (Theorem 3.2.12 in [Ren05]) implies

Hσ
min(XS | SQ) → Hσ

min(XS | SϕQ)
= Hσ

min(ϕ(X)T | TϕQ) .

Note that from (S,ϕ) it is possible to calculate (T,ϕ), and vice-versa. Further-
more, since ϕ is chosen independent of ΩXQ, we have

Hσ
min(ϕ(X) | ϕQ) = Hσ

min(X | ϕQ) = Hσ
min(X | Q) .

Since S was chosen uniformly and independent of T and ΩXQ, ϕ is independent
of T and ΩXQ. For Q′ := (Q,ϕ), we can apply Theorem 2 or 3 to the state
Ωω(X)Q′ . We now choose PT as the particular sampling required by the theorem
and get a bound on Hσ

min(ϕ(X)T | TϕQ), which then directly implies the same
bound for Hσ

min(XS | SQ). �

Theorem 4. Let b, r ≤ N. Let ΩXQ be a cq-state where X ≤ {0, 1}n. Let S ⊕ [n]
be chosen uniformly among all subsets of size k = rb. Assume that Δ = n

kb ∈ 0.15.
Then for any constant ψ ≤ [0, 1],

Hσ
min(XS | SQ)

H0(XS)
→ Hmin(X | Q)

H0(X)
− 3ψ − 2Δ log 1/Δ ,

where ρ = 2 · 2−ξn + 3e−kξ2/(8b).

Note that even though we sample bitwise in Theorem 4, the block-size para-
meter b is still present. It can be chosen depending on the required result: a
bigger value b gives a better rate, but results in a slower convergence of the error
ρ. The best convergence of ρ is achieved by choosing b = n

0.15k , where we get

ρ = 2 · 2−ξn + 3e−kξ2/(8b) = 2 · 2−ξn + 3e−0.15k2ξ2/(8n) .

Hence, as mentioned before, we need k = θ(
⊗

n).

Theorem 5. Let n, f and r ≤ N be such that n(3/4)f → r4. Let ΩXQ be a cq-state
where X ≤ {0, 1}n. Let S ⊕ [n] be chosen uniformly among all subsets of size
k = n(3/4)f . Then

Hσ
min(XS | SQ)

H0(XS)
→ Hmin(X | Q)

H0(X)
− 5f

log r

r1/4
,

where ρ = 5f · 2−⊕
r/8.
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Theorem 5 can be applied even if k = o(
⊗

n), but the error converges rather
slow: since k → r4, we have

ρ = 5f · 2−⊕
r/8 → 5f · 2− 8⊕

k/8 .

4 A Sampling Theorem from Quantum Bit Extractors

In this section we give a new min-entropy sampling theorem (Theorem 1) using
a completely different approach than [KR07]. Our proof has two steps. First,
we show a bound on the guessing probability of the XOR of a randomly chosen
substring of X using the same approach as [DV10], which is based on a result by
König and Terhal [KT08] on strong bit-extractors against quantum adversaries.
Second, we will show that this implies a bound on the guessing probability of a
randomly chosen substring of X. To show this we use a result from [BARdW08].

A function ext : {0, 1}n×{0, 1}d ∼ {0, 1}m is a (ς, ρ)-strong extractor against
quantum adversaries, if for all cq-states ΩXQ with Hmin(X | Q)θ → ς and for a
uniform seed R, we have D(Ωext(X,R)RQ, σU ⊗ΩR ⊗ΩQ) ∈ ρ, where σU is the fully
mixed state. A strong classical extractor is the same, but with a trivial system
Q. If m = 1, we call it a bit-extractor. König and Terhal showed in [KT08] that
any classical bit-extractor is also a quantum bit-extractor.

Theorem 6 (Theorem III.1 in [KT08]). Any (ς, ρ)-strong bit-extractor is a
(ς + log 1/ρ, 3

⊗
ρ)-strong bit-extractor against quantum adversaries.

One way to construct a strong bit-extractor is to use a ( ρ, ξ, L)-approximately
list-decodable code. This is a code C : {0, 1}n ∼ {0, 1}m where for every c ≤
{0, 1}m there exist L strings x1, . . . , xL ≤ {0, 1}n, such that for any string x ≤
{0, 1}n satisfying dH(c, C(x)) < ( 12 − ρ)m, there exists an i ≤ {1, . . . , L} such
that dH(xi, x) ∈ ξm. From a code C : {0, 1}n ∼ {0, 1}2t , we can build a bit-
extractor ext : {0, 1}n × {0, 1}t ∼ {0, 1} as ext(x, y) := C(x)y, where C(x)y is
the yth position of the codeword C(x).

Lemma 4 (Claim 3.7 in [DV10]). Let ξ ≤ [0, 1
2 ]. An extractor build from a

(ρ, ξ, L)-approximately list-decodable code C : {0, 1}n ∼ {0, 1}2t is a (ς, ρ)-strong
classical bit-extractor for ς > H(ξ)n + log L + log 2/ρ.

The (n, k)-XOR-code over strings of length n is the code where the string x
gets encoded into a string of size

(
n
k

)
where each bit is the XOR of a subset of

x of size k.

Lemma 5 (Lemma 42 in [IJK06], adapted to Lemma 3.11 in [DV10]).
For ρ > 2k2/2n, the (n, k)-XOR-code is a (ρ, 1

k ln 2
σ , 4/ρ2)-approximately list-

decodable code.

Combining Lemmas 4 and 5 with Theorem 6, we get the following lemma.
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Lemma 6. Let ρ > 2k2/2n and k → 2 ln 2
σ . The extractor build from the (n, k)-

XOR-code implies a (ς, 3
⊗

ρ)-strong bit-extractor against quantum adversaries
for

ς > H
(1

k
ln

2
ρ

)
n + 4 log

1
ρ

+ 3 .

Proof. Using Lemmas 4 and 5, the (n, k)-XOR-code implies a (ς, ρ)-strong clas-
sical bit-extractor for

ς > H
(1

k
ln

2
ρ

)
n + log

4
ρ2

+ log
2
ρ

= H
(1

k
ln

2
ρ

)
n + 3 log

1
ρ

+ 3 .

The statement follows from Theorem 6. �

From Lemmas 1 and 6 follows that if a string X can only be guessed from Q
with probability at most 2−�, i.e., Hmin(X | Q) → ς, then the XOR of a random
subset of size k can be guessed with probability at most 1/2+3

⊗
ρ. The following

lemma gives a bound on the probability to guess a whole substring, given bounds
on the probability to guess the XOR of substrings. It has been proven as a part
of Theorem 2 in [BARdW08].

Lemma 7 (part of Theorem 2 in [BARdW08]). Let ΩXQ be a cq-state
where X ≤ {0, 1}n and let pj > 0 for j ≤ {0, . . . , k} be upper bounds on the
probability to guess the XOR of a random subset of X of size j given Q and the
subset. Then the probability to guess a random subset of X of size k from Q and
the subset is at most

1
2k

k∑
j=0

(
k

j

)
(2pj − 1) .

We can now use Lemmas 6 and 7 to proof the following sampling lemma.

Lemma 8. Let a cq-state ΩXQ be given, where X ≤ {0, 1}n. Let T be a uniformly
chosen subset of [n] of size k. If log 1

p ∈ k/12 − 5 and

Hmin(X | Q)θ → H

(
6
k

log
17
p

)
n + 8 log

12
p

+ 3 ,

then Hmin(XT | TQ)θ → log 1
p .

Proof. From log 1
p ∈ k/12 − 5 follows that

k → 12 log
17
p

→ 17 ln
17
p

. (1)

Since k ∈ n and 5k/12 + 5 → log(17k), it follows also that

log
1
p

∈ k

12
− 5 =

k

2
− 5k

12
− 5 ∈ k

2
− log(17k) ∈ n

2
− log(17k)
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and hence p2 → 288 ·k2/2n. For j ≤ {0, . . . , k}, let pj be the guessing probability
of the XOR for random subsets of size j. From Lemma 7 follows that

Pguess(XT | TQ)θ ∈ 1
2k

k∑
j=0

(
k

j

)
(2pj − 1)

∈ 1
2k

k/4∑
j=0

(
k

j

)
+ max

j′√[k/4+1,k]
(2pj′ − 1) · 1

2k

k∑
j=k/4+1

(
k

j

)

∈ 1
2k

k/4∑
j=0

(
k

j

)
+ max

j′√[k/4+1,k]
(2pj′ − 1) .

We have
k/4∑
j=0

1
2k

(
k

j

)
= Pr

[
J ∈ k/4

]
,

where J =
∑

i√[k] Ji and the random variables Ji are independent and uniform
on {0, 1}. From Lemma 2 follows that

Pr[J ∈ k/4] ∈ exp(−k/8) ∈ p/2 ,

since k → 17 ln 17
p > 8 ln 2

p . Let ρ := p2/144. From Eq. (1) follows that

1
2

→ 6
k

log
17
p

→ 17
2k

ln
17
p

→ 4
k

ln
288
p2

=
4
k

ln
2
ρ

→ 1
j′ ln

2
ρ

,

for any j′ ≤ [k/4 + 1, k]. Since 8 log(12/p) = 4 log(1/ρ), we have

Hmin(X | Q)θ → H
( 1

j′ ln
2
ρ

)
n + 4 log

1
ρ

+ 3 .

From p2 → 288 ·k2/2n follows that ρ → 2k2/2n → 2j′2/2n. Lemmas 1 and 6 imply
that pj′ ∈ 1/2 + 3

⊗
ρ, and hence

max
j′√[k/4+1,k]

(2pj′ − 1) ∈ 6
⊗

ρ = p/2 .

So Pguess(XT | TQ)θ ∈ p. The statement follows from the definition of Hmin. �

Proof. (Theorem 1). Let m := Hmin(X | Q)θ and p := 2−H−1(m/2n)k/6+5. We
have

log
1
p

=
H−1(m/2n)

6
k − 5 ,

which implies

m

2
= H

(
6
k

log
32
p

)
n → H

(
6
k

log
17
p

)
n (2)



172 J. Wullschleger

and, since H−1(m/2n) ∈ 1
2 ,

log
1
p

=
H−1(m/2n)

6
k − 5 ∈ k

12
− 5 . (3)

From n → k and 1
2 → x/2 → H−1(x) for any x ≤ [0, 1] follows

log
1
p

=
H−1(m/2n)

6
k − 5 ∈ H−1

( m

2n

)
· n

6
− 5 ∈ m

4n
· n

6
− 5 =

m

24
− 5 ,

which implies

8 log
12
p

+ 3 = 8 log
1
p

+ 8 log(12) + 3 ∈ m

3
− 40 + 32 + 3 ∈ m

2
.

Together with Eq. (2), we get

m → H

(
6
k

log
17
p

)
n + 8 log

12
p

+ 3 . (4)

The statement follows from Lemma 8 and Eqs. (3) and (4). �

5 Lower Bounds for Random Access Codes

Corollary 1 directly implies a lower bound for k-out-of-n random access codes: if
we choose the string X ≤ {0, 1}n uniformly at random and the quantum system
Q has at most m ∈ (1 − 2H(ρ))n qubits, then by Proposition 2’ in [KT08], we
have Hmin(X | Q) → 2H(ρ)n. Corollary 1 follows.

Note that in the same way Theorems 4 or 5 could be used to give a bound
for random access codes, since Hσ

min(X | Q) → ς implies Pguess(X | Q) → 2−� +ρ.
But since the error ρ converges slowly, we would only get a weak bound on the
guessing probability.

6 Open Problems

Our sampling results only apply to the case where the sample is chosen uniformly.
It would be interesting to know if they can be generalized to other sampling
strategies.
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Zürich, Switzerland. arXiv:quant-ph/0512258 (2005)

Vad04. Vadhan, S.: Constructing locally computable extractors and cryptosys-
tems in the bounded-storage model. J. Cryptol. 17, 2004 (2004)



Which Graph States are Useful for Quantum
Information Processing?

Mehdi Mhalla1(B), Mio Murao2,3, Simon Perdrix1, Masato Someya2,
and Peter S. Turner2
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Abstract. Graph states [5] are an elegant and powerful quantum
resource for measurement based quantum computation (MBQC). They
are also used for many quantum protocols (error correction, secret shar-
ing, etc.). The main focus of this paper is to provide a structural charac-
terisation of the graph states that can be used for quantum information
processing. The existence of a gflow (generalized flow) [8] is known to
be a requirement for open graphs (graph, input set and output set) to
perform uniformly and strongly deterministic computations. We weaken
the gflow conditions to define two new more general kinds of MBQC:
uniform equiprobability and constant probability. These classes can be
useful from a cryptographic and information point of view because even
though we cannot do a deterministic computation in general we can pre-
serve the information and transfer it perfectly from the inputs to the
outputs. We derive simple graph characterisations for these classes and
prove that the deterministic and uniform equiprobability classes collapse
when the cardinalities of inputs and outputs are the same. We also prove
the reversibility of gflow in that case. The new graphical characterisations
allow us to go from open graphs to graphs in general and to consider this
question: given a graph with no inputs or outputs fixed, which vertices
can be chosen as input and output for quantum information processing?
We present a characterisation of the sets of possible inputs and ouputs
for the equiprobability class, which is also valid for deterministic com-
putations with inputs and ouputs of the same cardinality.

1 Introduction

The graph state formalism [5] is an elegant and powerful formalism for quantum
information processing. Graph states form a subfamily of the stabiliser states [4].
They provide a graphical description of entangled states and they have multiple
applications in quantum information processing, in particular in measurement-
based quantum computation (MBQC) [9], but also in quantum error correct-
ing codes [4] and in quantum protocols like secret sharing [6,7]. They offer a
combinatorial approach to the characterisation of the fundamental properties
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of entangled states in quantum information processing. The invariance of the
entanglement by local complementation of a graph [10]; the use of measure of
entanglement based on the rank-width of a graph [11]; and the combinatorial flow
characterisation [1] of deterministic evolutions in measurement-based quantum
computation witness the import role of the graph state formalism in quantum
information processing.

In this paper, we focus on the application of graph states in MBQC and in
particular on the characterisation of graphs that can be used to perform quantum
information processing in this context. The existence of a graphical condition
which guarantees that a deterministic MBQC evolution can be driven despite
of the probabilistic behaviour of the measurements is a central point in MBQC.
It has already been proven that the existence of a certain kind of flow called
glfow characterises uniformly stepwise determinism [1]. In Sect. 3, we introduce
a simpler but equivalent combinatorial characterisation using focused gflow and
we provide a simple condition of existence of such a flow as the existence of a right
inverse to the adjacency matrix of the graph. We also prove additional properties
in the case where the number of input and output qubits of the computation
are the same: the gflow is then reversible and the stepwise condition [1] on
determinism is not required to guarantee the existence of a gflow.

The main contribution of this paper is the weakening of the determinism
condition in order to consider the more general class of information preserving
evolutions. Being information preserving is one of the most fundamental property
that can be required for an MBQC computation. Indeed, some non-deterministic
evolutions can be information preserving when one knows the classical outcomes
of the measurements produced by the computation. Such evolutions are called
equi-probabilistic – when each classical outcome occurs with probability 1/2 – or
constant-probabilistic in the general case. In Sect. 4, we introduce simple com-
binatorial conditions for equi-probabilistic and constant-probabilistic MBQC by
means of excluded violating sets of vertices. We show, in the particular case
where the number of input and output qubits are the same, that graphs guar-
anteeing equi-probabilism and determinism are the same. In Sect. 6, using this
graphical characterisation, we address the fundamental question of finding input
and output vertices in an arbitrary graph for guaranteeing an equi-probabilistic
(or deterministic) evolution. To this end, we show that the input and output
vertices of a graph must form transversals of the violating sets induced by the
equi-probabilistic characterisation. Finally, in the last section, we investigate
several properties of the most general and less understood class of constant
probabilistic evolutions.

2 Measurement-Based Quantum Computation

In this section, the main ingredients of measurement based quantum computa-
tion (MBQC) are described. More detailed introductions can be found in [2,3].
An MBQC is described by:
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(i) an open graph (G, I,O) (G is a simple undirected graph, I,O ≤ V (G) are
called resp. input and output vertices);

(ii) a map α : OC → [0, 2π), where OC := V (G) \ O, which associates with
every non ouput vertex an angle; and

(iii) two maps x, z : OC → {0, 1}V (G) called corrective maps. A vertex
v ∈ supp(x(u)) ⊕ supp(z(u)) is called a corrector of u, where supp(y) =
{u | yu = 1}.

The maps x, z should be extensive in the sense that there exists a (strict) partial
order ≺ over the vertices of the graph s.t. any corrector v of a vertex u is larger
than u, i.e. v ∈ supp(x(u)) ⊕ supp(z(u)) implies u ≺ v.

In the following the semantics of a given MBQC is described. The evolution
can be decomposed into two steps: first the preparation of a large entangled
state described by the open graph (G, I,O); then a sequence of one-qubit mea-
surements (which basis are characterised by the map α) and Pauli operations
(described by the maps x and z).

Let N : C{0,1}I → C
{0,1}V (G)

be the preparation map which associates with
any arbitrary input state located on the input qubits the initial entangled state
of the MBQC:

N =
1⊥

2|IC |

∑

x∗{0,1}I ,y∗{0,1}IC

(−1)q(xy) |xy〉 ⊗x|

where xy denotes the concatenation of x and y, and q : {0, 1}V (G) → N::x ∼→
|E(G)≡ (supp(x)× supp(x))| associates with every x the number of edges of the
subgraph Gx = (V (G) ≡ supp(x), E(G) ≡ (supp(x) × supp(x))) induced by x.

The one-qubit measurements, parametrized by an angle αu, of every non-
output qubit u are inducing the following projection Ps(α) : C

{0,1}V (G) →
C

{0,1}O

of the entangled state onto the subspace of the output qubits, where
s ∈ {0, 1}OC

stands for the classical outcomes of the one-qubit measurements:

Ps(α) =
1⊥

2|IC |

∑

x∗{0,1}OC ,y∗{0,1}O

eαx·s |y〉 ⊗xy|

with αx =
∑

u∗supp(x) α(u) and x · s is the bitwise conjonction of x and s.
Moreover, adaptative Pauli corrections depending on the classical outcomes

of the measurements and on the corrective maps, are applied during the compu-
tation leading, for any possible classical outcomes s ∈ {0, 1}OC

, to the following
overall (postselected) evolution χs : C{0,1}I → C

{0,1}O

:

χs = Ps(α)


⎛ ⎝

u∗V (G)

Xs·x(u)Zs·z(u)

⎞
⎠ N

where Xs and Zs are Pauli operators: Xs =
⊗

u∗supp(s) Xu and Zs =⊗
u∗supp(s) Zu.
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An MBQC is implementing the quantum operation {χs}s∗{0,1}OC . The evo-

lution is as follows: a classical outcome (also called branch) s ∈ {0, 1}OC

is pro-
duced and the input state |φ〉 ∈ C

{0,1}I

is mapped to the state χs |φ〉 ∈ C
{0,1}O

(up to a normalisation). The probability for an outcome s ∈ {0, 1}OC

to occur
is ps = ||χs |φ〉 ||2.

The overall evolution can be decomposed into several steps, corresponding
to a possible implementation of the MBQC model: first the input state |φ〉 is
encoded into the open graph state |φG〉 = N |φ〉, then the local measurements
(qubit u is measured according the observable cos(α(u))X + sin(α(u))Y ) and
the local Pauli corrections are performed. This sequence of local operations is
done according to the partial order induced by the correction maps x, z.

3 Determinism

Definition 1. An MBQC (G, I,O, α, x, z) is strongly deterministic if all the
branches are implementing the same map, i.e. ∝U s.t. ∧s ∈ {0, 1}OC

, χs =
1⊥

2|OC |
U .

Lemma 1. If an MBQC is strongly deterministic then it implements an
isometry.

Proof. Since
∑

s∗{0,1}OC χ†
sχs = I, U†U = I so U is an isometry and the MBQC

implements the super operator ρ ∼→ UρU†. �
In order to point out the combinatorial properties of MBQC, the angles of

measurements and the corrective maps can be abstracted away in the following
way, keeping only the influence of the initial open graph.

Definition 2. An open graph (G, I,O) guarantees uniformly strong determin-
ism if ∝x, z s.t. ∧α, (G, I,O, α, x, z) is strongly deterministic.

An open graph is said to guarantee uniform stepwise strong determinism if
any partial computation is also strongly deterministic:

Definition 3. An open graph (G, I,O) guarantees uniformly stepwise strong
determinism if ∝x, z s.t. for any upward closed set O√ ∨ O and for any α,
(G, I,O√, α, x, z) is strongly deterministic, where O√ is upward closed if ∧u ∈ O√,
u ≺ v ∀ v ∈ O√ with ≺ the partial order induced by x and z.

The gflow of an open graph is defined as follows, based on the use of the odd
neighborhood of a set of vertices: for a given subset S of vertices in a graph G,
Odd(S) := {v ∈ V (G) s.t. |NG(v) ≡ S| = 1 mod 2}.

Definition 4. (g,≺) is a gflow of (G, I,O), where g : OC → 2Ic

, if for any u,
— if v ∈ g(u), then u ≺ v;
— u ∈ Odd(g(u));
— if v ∈ Odd(g(u)) and u �= v then u ≺ v.

Theorem 1. An open graph (G, I,O) guarantees uniform stepwise strong deter-
minism iff (G, I,O) has a gflow.
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3.1 Focused Gflow

Since the gflow is not unique we introduce a stronger version called focused
gflow, which is unique if the number of inputs and outputs are the same. The
focused gflow gives rise to a simpler characterisation of uniform stepwise strong
determinism. The focused gflow is based on the use of extensive maps.

Definition 5. g : OC → 2IC

is a focused gflow of (G, I,O) if g is extensive –
i.e. the transitive closure of the relation {(u, v) s.t. v ∈ g(u)} is a partial order
over V (G) – and ∧u ∈ OC , Odd(g(u)) ≡ OC = {u}
Theorem 2. An open graph (G, I,O) guarantees uniform stepwise strong deter-
minism iff (G, I,O) has a focused gflow.

Proof. We prove that (G, I,O) has a gflow iff it has a focused gflow. First, assume
g is a focused gflow, and let ≺ be the transitive closure of {(u, v) s.t. v ∈ g(u)}.
≺ is a partial order and by definition, if v ∈ g(u) then u ≺ v. Moreover u ∈
Odd(g(u)) = {u}. Finally, if v ∈ Odd(g(u)) and v �= u then v ∈ O, so there is
no element larger than v by definition of ≺. Thus (g,≺) is a gflow. Now, assume
(g,≺) is a gflow. We call the co-depth of a vertex u its distance to the output,
i.e. the length k of longest strictly increasing sequence u ≺ u1 ≺ .. ≺ uk s.t.
uk ∈ O. We construct a focus gflow gf by induction on the co-depth of the
vertices. If u is of co-depth 1 then gf (u) := g(u). If u is of co-depth larger than
2, let gf (u) := g(u)Δ

(
Δv∗Odd(g(u))⊕OC ,v ⊥=ugf (v)

)
, where Δ is the symmetric

difference: AΔB = (A ⊕ B) \ (A ≡ B). Since Odd(AΔB) = Odd(A)ΔOdd(B),
Odd(gf (u)) ≡ OC =

(
Odd(g(u))Δ

(
Δv∗Odd(g(u))⊕OC ,v ⊥=uOdd(gf (v))

)) ≡ OC =
(Odd(g(u)) ≡ OC)Δ(Odd(g(u)) \ {u}) ≡ OC) = {u}. Moreover gf is extensive
since the relation R induced by gf is s.t. uRv =∀ u ≺ v so the transitive
closure of R is a partial order. �

3.2 Induced Adjacency Matrix and Reversibility

We introduce the notion of induced adjacency matrix of an open graph and
show that an open graph has a gflow if and only if its induced matrix has a
DAG (Directed Acyclic Graph) as right inverse.

Definition 6. The induced adjacency matrix of an open graph (G, I,O) is the
submatrix AG|OC

IC of the adjacency matrix AG = {mu,v, (u, v) ∈ V (G)} of G

removing the rows of O and column of I, i.e. AG|OC

IC = {mu,v, (u, v) ∈ OC ×IC}.

The induced matrix AG|OC

IC is the matrix representation of the linear map
W ∼→ Odd(W ) ≡ OC which domain is 2IC

and codomain is 2OC

.

Theorem 3. (G, I,O) has a gflow iff there exists a DAG F = (V (G), E) s.t.

AG|OC

IC .AF |IC

OC = I
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Proof. (only if ) Assume (G, I,O) has a gflow. Thanks to lemma 2 w.l.o.g.
(G, I,O) has a focused gflow gf . Let F = (V (G), E) be a directed graph s.t.
(u, v) ∈ E(F ) ⇐∀ v ∈ gf (u). Notice that ∧u ∈ OC , AF |IC

OC1{u} = 1gf (u) where
1X is a binary vector s.t. (1X)u = 1 ⇐∀ u ∈ X. Moreover, since gf is extensive,
F is a DAG. Thus AG|OC

IC AF |IC

OC1{u} = AG|OC

IC 1g(u) = 1Odd(gf (u))⊕OC = 1{u}.
(if ) Assume F = (V (G), E) be a DAG s.t. AG|OC

IC .AF |IC

OC = I, then let g :
OC → 2IC

= u ∼→ N+
F (u). Since F is a DAG, g is extensive, and 1Odd(g(u))⊕OC =

AF |IC

OC (1g(u)) = AG|OC

IC AF |IC

OC1{u} = 1{u}, so Odd(g(u)) ≡ OC = {u}. �

Thus, according to Theorem 3, an open graph has a gflow if and only if it
has a DAG as right inverse. Notice that this DAG is nothing but the graphical
description of the focused gflow function: the set of successors of a vertex u is
the image of u by the focused gflow function.

As a corollary of Theorem 3, (G, I,O) has no gflow if |I| > |O|. Indeed, for
dimension reasons, if |I| > |O| the matrix AG|OC

IC has no right inverse. When
|I| = |O| the focused gflow is reversible in the following sense:

Theorem 4. When |I| = |O|, (G, I,O) has a gflow iff (G,O, I) has a gflow.

Proof. Assume (G, I,O) has a gflow. So it exists a DAG F s.t. AF |IC

OC is the
right inverse of AG|OC

IC . Notice that the induced adjacency matrix of (G,O, I)
is the transpose tAG|OC

IC of the one of (G, I,O). Moreover, since AG|OC

IC is
squared, AF |IC

OC is both right and left inverse of AG|OC

IC . Thus, AG|IC

OC .tAF |IC

OC =
t(AF |IC

OC .AG|OC

IC ) = I. As a consequence AG|OC

IC has a right inverse which is a
DAG since the transpose of a DAG is a DAG. �

4 Relaxing Uniform Determinism

Focused gflow guarantees uniformly stepwise strong determinism. We consider
here two more general classes of MBQC evolutions: the equi-probabilistic case
where all the branches occur with the same probability, independent of the input
state; and the constant probability case where all the branches occur with a
probability independent of the input state. We show that both equi-probabilitic
and constant probabilistic evolutions are information preserving and admit a
simple graphical characterisation by means of violating sets.

Definition 7. An MBQC (G, I,O, α, x, z) is:
— equi-probabilistic if for any input state |φ〉 ∈ C

2I and any branch s ∈
{0, 1}OC

, ps = ||χs |φ〉 ||2 = 1

2|OC | .

— constant-probabilistic if for any branch s ∈ {0, 1}OC

the probability ps =
||χs |φ〉 || that the branch s occurs does not depend on the input state |φ〉.

Constant probabilistic (and hence equi-probabilistic) evolutions are infor-
mation preserving in the sense that if one knows the branch s of the compu-
tation (i.e. the classical outcome) then he can recover the initial input state of
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the computation. Indeed, if an MBQC is constant probabilistic then the map
|φ〉 ∼→ ||χs |φ〉 || is constant, thus χ†

sχs = ps.I. If ps = 0 then the branch never
occurs, otherwise the branch s is implementing an isometry.

Remark: Notice that the knowledge of the branch s, which is necessary the case in
the MBQC model because of the corrective strategy, is essential to make an equi-
probabilistic evolution information preserving. Indeed, consider the quantum
one-time pad example with ∧s ∈ {0, 1}2, χs = σs/2 where σs is a Pauli operator
(σ00 = I, σ01 = X,σ10 = Y ,σ11 = Z). This evolution is equi-probabilistic but
if the information of the branch is not taken into account, the corresponding
super operator is ρ ∼→ ∑

s∗{0,1}2 σsρσ†
s = I/2 which is clearly not information

preserving.
We prove that uniform equi- and constant probabilities have simple graph

characterisations by violating sets, where uniformity is defined similarly to the
determinism case:

Definition 8. An open graph (G, I,O) guarantees uniform constant (resp.
equi-) probabilisty if ∝x, z s.t. ∧α, (G, I,O, α, x, z) has a constant (resp.
equi-) probabilistic evolution.

Theorem 5. An open graph (G, I,O) guarantees uniform equiprobability iff

∧W ≤ OC , Odd(W ) ≤ W ⊕ I =∀ W = ∅

A nonempty set W ≤ OC such that Odd(W ) ≤ W ⊕ I is called an internal set.
Theorem 5 says that an open graph (G, I,O) guarantees uniform equi-probability
if and only if it has no internal set.

Proof. (if ) First we assume that there is no internal set and we show that every
branch occurs with the same probability 1/2|OC |, independently of the input
state and the set of measurement angles. For a given open graph (G, I,O), a given
input state |φ〉 and a given set of measurement angles {αv}v∗OC , we consider
w.l.o.g. the 0-branch, i.e. the branch where all outcomes are 0 1. The probability
of this branch is p = ||⎧v∗Oc ⊗+αv

|φG〉 ||2 = 1

2|OC | ||
∑

x∗{0,1}OC eiαx⊗x |φG〉 ||2
where αx =

∑
v∗OC αv.xv and |φG〉 = EG |+〉IC |φ〉I . As a consequence,

p = 1

2|OC |
∑

x,y∗{0,1}OC ei(αy−αx)⊗φG |x〉 ⊗y |φG〉
= 1

2|OC |
∑

u∗{−1,0,1}OC eiαu
∑

x,y∗{0,1}OC s.t. x−y=u⊗φG |x〉 ⊗y |φG〉
= 1

2|OC |
∑

u∗{−1,0,1}OC eiαu
∑

x∗{0,1}V C
u

⊗φG |x〉V C
u

⎨⎨ 1+u
2

⎩
Vu

⊗x|V C
u

〈
1−u
2

⎨⎨
Vu

|φG〉
= 1

2|OC |
∑

u∗{−1,0,1}OC eiαu ⊗φG| ⎨⎨ 1+u
2

⎩
Vu

(∑
x∗{0,1}V C

u
|x〉 ⊗x|

⎪ 〈
1−u
2

⎨⎨
Vu

|φG〉
= 1

2|OC |
∑

u∗{−1,0,1}OC eiαu ⊗φG| ⎨⎨ 1+u
2

⎩
Vu

〈
1−u
2

⎨⎨
Vu

|φG〉
= 1

2|OC |
∑

u∗{−1,0,1}OC eiαupu

1 The other branches are taken into account by considering a different set of measure-
ment angles e.g. the branch where all outcomes are 1 corresponds to the 0-branch
when the set of measurements is {αv + π}v∈OC .
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where Vu = {i ∈ OC | ui �= 0},
⎨⎨ 1±u

2

⎩
Vu

=
⊗

i∗Vu

⎨⎨ 1±ui

2

⎩
i
, and

pu = ⊗φG| ⎨⎨ 1+u
2

⎩
Vu

〈
1−u
2

⎨⎨
Vu

|φG〉. Notice that for any v ∈ IC ,

|φG〉 = 1∞
2

∑
a∗{0,1} Za

NG(v)

⎨⎨φG\v

⎩ ◦ |a〉v. Thus for any u ∈ {−1, 0, 1}OC

s.t.
Vu �= ∅, there exists v ∈ IC ≡ V C

u ≡ Odd(Vu) (which is not empty by hypothesis)
such that:

pu = ⊗φG| ⎨⎨ 1+u
2

⎩
Vu

〈
1+u
2

⎨⎨
Vu

XVu
|φG〉

= 1
2

∑
a,b∗{0,1}

〈
φG\v

⎨⎨ ⊗a|v Za
NG(v)

⎨⎨ 1+u
2

⎩
Vu

〈
1+u
2

⎨⎨
Vu

XVu
Zb

NG(v)

⎨⎨φG\v

⎩ |b〉v

= 1
2

∑
a∗{0,1}

〈
φG\v

⎨⎨ Za
NG(v)

⎨⎨ 1+u
2

⎩
Vu

〈
1+u
2

⎨⎨
Vu

XVu
Za

NG(v)

⎨⎨φG\v

⎩
= 1

2

∑
a∗{0,1}(−1)a

〈
φG\v

⎨⎨ Za
NG(v)

⎨⎨ 1+u
2

⎩
Vu

〈
1+u
2

⎨⎨
Vu

Za
NG(v)XVu

⎨⎨φG\v

⎩
= 1

2

∑
a∗{0,1}(−1)a

〈
φG\v

⎨⎨ ⎨⎨ 1+u
2

⎩
Vu

〈
1+u
2

⎨⎨
Vu

XVu

⎨⎨φG\v

⎩
= 0

where the factor (−1)a comes from the fact that XVu
and Za

NG(v) are commut-
ing when a = 0 and anticommuting when a = 1 since v ∈ Odd(Vu). As a conse-
quence, it remains in p only the case where Vu = ∅, so p = 1

2|OC | ⊗φG |φG〉 = 1

2|OC | .
(only if ) Now we prove that the existence of an internal set implies that

there exists a particular input state and a particular set of measurement angles
such that some branches occur with probability 0. Let W0 ≤ OC s.t. Odd(W0)≡
WC

0 ≡ IC = ∅ and P =
⊗

v∗V (G) Pv be a Pauli operator defined as follows:

∧v ∈ V (G), Pv =





X if v ∈ W0 and v /∈ Odd(W0)
Y if v ∈ W0 ≡ Odd(W0)
I otherwise

Let |φ0〉 = |+〉W0⊕I ◦ |0〉WC
0 ⊕I be an input state. Notice that

PEG |+〉IC |φ0〉 = (−1)|E(W0)|EGXW0ZOdd(W0)⊕WC
0

|+〉IC |φ0〉
= (−1)|E(W0)|EGXW0 |+〉IC∈W0

ZOdd(W0)⊕WC
0

|0〉WC
0 ⊕I

= (−1)|E(W0)|EG |+〉IC |φ0〉 ,

where E(W ) = E ≡ (W × W ) is the set of the internal edges of W .
Thus EG |+〉IC |φ〉0 is an the eigenvector of P associated with the eigenvalue
(−1)|E(W0)|, implying that if each qubit v ∈ W0 is individually measured accord-
ing to the observable Pv producing the classical outcome sv ∈ {0, 1}, then∑

v∗W0
sv = |E(W0)| mod 2. As a consequence, for the input |φ0〉 and any

set of measurements {αv}v∗OC s.t. αv = 0 if v ∈ W0 ≡ Odd(W0)C and αv = π/2
if v ∈ W0 ≡ Odd(W0), all the branches s s.t.

∑
v∗W0

sv = 1 + |E(W0)| mod 2
occur with probability 0. �

Theorem 6. An open graph (G, I,O) guarantees uniform constant probability
iff

∧W ≤ OC , Odd(W ) ≤ W ⊕ I =∀ L(W ) ≡ I = ∅
where L(W ) := Odd(W ) ⊕ W .

A nonempty set W ≤ OC such that Odd(W ) ≤ W ⊕ I and L(W ) ≡ I �= ∅
is called a strongly internal set. Theorem 6 says that an open graph (G, I,O)
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guarantees uniform constant probability if and only if it has no strongly internal
set, or equivalently if and only if all internal sets are ‘far enough’ from the inputs.

Proof. (if ) First we assume that there is no strongly internal set and we show
that every branch occurs with a probability independent of the input. Using
the notations of the proof of Theorem 5, it only remains to prove that pu is
independent of the input for any u �= 0 such that IC ≡ V C

u ≡ Odd(Vu) = ∅ and
L(Vu) ≡ I = ∅. Note that Odd(Vu) ≤ Vu ≤ IC so

pu = ⊗φG| ⎨⎨ 1+u
2

⎩
Vu

〈
1+u
2

⎨⎨
Vu

XVu
|φG〉

= (−1)|E(Vu)| ⊗φG| ⎨⎨ 1+u
2

⎩
Vu

〈
1+u
2

⎨⎨
Vu

EGZOdd(Vu)XVu
|+〉IC |φ〉I

= (−1)|E(Vu)| ⊗φG| ⎨⎨ 1+u
2

⎩
Vu

〈
1+u
2

⎨⎨
Vu

EGZOdd(Vu) |+〉IC |φ〉I

= (−1)|E(Vu)|+|Vu⊕Odd(Vu)| ⊗φG| ⎨⎨ 1+u
2

⎩
Vu

〈
1+u
2

⎨⎨
Vu

|φG〉
Moreover, for any v ∈ Vu, since v ∈ IC , ⊗φG| ⎨⎨ 1+u

2

⎩
Vu

〈
1+u
2

⎨⎨
Vu

|φG〉
= 1

2

∑
a,b∗{0,1}

〈
φG\v

⎨⎨ ⊗a|v Za
NG(v)

⎨⎨ 1+u
2

⎩
Vu

〈
1+u
2

⎨⎨
Vu

Zb
NG(v) |b〉v

⎨⎨φG\v

⎩

= 1
2

〈
φG\v

⎨⎨ Z
1+uv

2
NG(v)

⎨⎨ 1+u
2

⎩
Vu\v

〈
1+u
2

⎨⎨
Vu\v

Z
1+uv

2
NG(v)

⎨⎨φG\v

⎩
= 1

2

〈
φG\v

⎨⎨ ⎨⎨ 1+u
2

⎩
Vu\v

〈
1+u
2

⎨⎨
Vu\v

⎨⎨φG\v

⎩

So, by induction, ⊗φG| ⎨⎨ 1+u
2

⎩
Vu

〈
1+u
2

⎨⎨
Vu

|φG〉 = 1
2|Vu|

〈
φG\Vu

⎨⎨ ⎨⎨φG\Vu

⎩
= 1

2|Vu| .
This shows that pu does not depend on the input state.

(only if ) Now we prove that the existence of a strongly internal set implies
that there exists a particular set of measurement angles such that some branches
occur with probability zero for some input state and with nonzero probability
for other inputs. Let W0 ≤ OC s.t. Odd(W0) ≡ WC

0 ≡ IC = ∅, u0 ∈ L(W0) ≡ I,
and P =

⊗
v∗V Pv be a Pauli operator defined like in the proof of Theorem

5. We consider the following input states: |φa〉 = |+〉W0⊕I ◦ |0〉WC
0 ⊕I\u0

◦ |a〉u

for a ∈ {0, 1}. Notice that PEG |+〉IC |φa〉I = (−1)a+|E(W0)|EG |+〉IC |φa〉I . Let
αv = π/2 if v ∈ W0 ≡Odd(W0) and αv = 0 otherwise. We consider a branch s of
measurement which occurs with a nonzero probability if the input state is |φ0〉.
Notice that this branch satisfies

∑
v∗W0

sv = (−1)|E(W0)|. As a consequence, if
the input state is |φ1〉, this branch s occurs with probability 0. �

5 Uniform Equiprobability Versus Gflow Existence

Since the existence of a gflow implies uniform strong determinism it also implies
uniform equiprobability. In general uniform equiprobability does not imply gflow:

Lemma 2. When |I| �= |O|, there exists an open graph that satisfies uniform
equiprobability but that has no gflow.

Proof. Consider the graph depicted in Fig. 1. It is easy to see that it has no gflow,
as no subset of the outputs has a single vertex as its odd neighorhood. On the
other hand, all the subsets of OC have a nonempty external odd neighborhood
in IC . �
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v1

v2 v5

v3

v4v6

Fig. 1. Open graph (G, I, O) with I = {v1} and O = {v5, v6} satisfying the uniform
equiprobability condition but having no gflow.

However, in the particular case where |I| = |O|, the existence of a gflow
implies uniform equiprobability.

Theorem 7. When |I| = |O|, (G, I,O) guarantees uniform equiprobability iff it
has a gflow.

Proof. We only have to prove that uniform equiprobability implies the existence
of gflow (the other direction is obvious). We prove the existence of a gflow for
(G,O, I) which, according to Theorem 4, implies the existence of a gflow for
(G, I,O). Since (G, I,O) is uniformly equiprobable, the matrix AG|IC

OC is injec-
tive, so reversible. Indeed, for any W ≤ OC , AG|IC

OC .1W = ∅ ⇐∀ 1Odd(W )⊕IC =

0 =∀ Odd(W ) ≤ I ≤ W ⊕ I so W = ∅. The matrix
(
AG|IC

OC

⎪−1

is the induced
matrix of a directed open graph (H,O, I), where H is chosen s.t. vertices in O
have no successor. In the following we show that H is a DAG. By contradiction,
let S ≤ V (H) be the shortest cycle in H. Notice that S ≤ OC since vertices in
O have no successor. AG|IC

OC .(AG|IC

OC )−1.1S = 1S ⇐∀ AG|IC

OC .1OddH(S)⊕OC =
1S ⇐∀ OddG(OddH(S) ≡ OC) ≡ IC = S. Let W := OddH(S) ≡ OC . Since
S is the shortest cycle, S ≤ OddH(S). Moreover S ≤ OC so S ≤ W . Thus
OddG(W ) ≤ W ⊕ IC which implies W = ∅, so S = ∅. Thus H is a DAG. �

Notice that thanks to Theorem 7 the stepwise condition in the characterisa-
tion of gflow can be removed, improving Theorem 1:

Corollary 1. When |I| = |O|, (G, I,O) guarantees uniform strong determinism
iff it has a gflow.

Proof. Uniform strong determinism implies equiprobability which ensures the
existence of gflow when |I| = |O|. �

6 Choosing Inputs and Outputs

The fact that the characterisation of uniform equi-probability is by excluded
internal sets allows us to have a better view of the following general problem:
given a graph, which vertices can be chosen as outputs and inputs for measure-
ment based quantum information processing.
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Definition 9. Given a graph G, for any A ≤ V (G), let EA be the collection of
internal sets outside A: EA := {S ≤ V (G), S �= ∅ ∪ Odd(S) ≡ SC ≡ AC = ∅}
A transversal of a collection C of sets is a set that intersects all the elements of C.
The set of all transversals of EA is T (EA) := {S√ ≤ V (G), ∀S ∈ EA S√ ≡ S �= ∅}.

Lemma 3. If an open graph (G, I,O) guarantees uniform equiprobability then
O ∈ T (E∅).

Proof. By contradiction if W ∈ E∅ and W ≡ O = ∅, then Odd(W ) ≡ WC = ∅,
so Odd(W ) ≤ W ⊕ IC which implies W = ∅. It contradicts the fact that
W ∈ E∅. �

Theorem 8. An open graph (G, I,O) guarantees uniform equiprobability if and
only if O ∈ T (EI).

Proof. O ∈ T (EI) ⇐∀ ∧W ∈ EI ,W ≡ O �= ∅ ⇐∀ ∧W ≤ OC ,W /∈ EI ⇐∀
∧W ≤ OC ,¬(Odd(W ) ≡ WC ≡ IC ∪ W �= ∅) ⇐∀ ∧W ≤ OC , (Odd(W ) ≤
W ⊕ I ∀ W = ∅). �

Theorem 9. Given a graph G and two subsets of vertices I and O with |I| =
|O|, the open graph (G, I,O) guarantees equiprobability iff I ∈ T (E∅) and O ∈
T (EI).

Proof. When |I| = |O|, if (G, I,O) guarantees equiprobability then (G, I,O) has
a gflow (Theorem 7) and thus (G,O, I) has a gflow (Theorem 4) as well. As a
consequence (G, I,O) guarantees uniform equiprobability so I ∈ T (E∅). �

This observation allows a characterisation of the possible deterministic compu-
tations for small graphs. The main question is, given a graph G, how to find
I ≤ V (G) and O ≤ V (G) with |I| = |O| such that (G, I,O) has gflow.

Furthermore it is straightforward to see that :

Lemma 4. If an open graph (G, I,O) guarantees uniform equi-probability then
(G, I √, O√) with I √ ≤ I and O ≤ O√ also guarantees uniform equi-probability.

Notice that gflow and constant probability classes are also stable by adding new
outputs or removing inputs. Thus the interesting problem when choosing inputs
and outputs consists of minimizing |O| and maximizing |I|.

Thus one can take minimal elements in T (E∅) as inputs I and then look for
minimal elements in T (EI). If they have the same size then we can conclude that
they are a proper input/output pair for deterministic computation. This allows
one to characterise the possible deterministic computations for small graphs (as
it is not polynomial to compute the big transversal sets). For instance in the
case of the 2 × 3 grid, the test shows that the minimal number of outputs is 2
and that there are only 3 solutions up to symmetry (see Fig. 2).
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Fig. 2. Uniform deterministic choice of inputs for the 2× 3 grid – input (resp. output)
vertices are represented by squared (resp. white) vertices.

7 Uniform Constant Probability

The constant probability case is at the same time the most general case where
information is not lost during the measurement and the less understood case. In
this last section, we investigate some properties of the graph states that guar-
antee constant probability. We show a decomposition theorem into a gflow part
and an internal set and we characterise open graphs with constant probability
in the particular case of one input and one output. We also prove a reversibility
property in the considered cases.

Lemma 5. If an open graph (G, I,O) with |I| = |O| guarantees uniform con-
stant probability then there exists a subgraph G√ of G such that (G√, I, O) has a
gflow and V (G) \ V (G√) is an internal set.

Proof. Inductively removing the empty neighborhood subsets (W such that
Odd(W ) ≡ WC = ∅) leaves an open graph with gflow. �

Theorem 10. An open graph (G, I,O) with |I| = |O| = 1 guarantees uniformly
constant probability if and only if ∧u ∈ V (G),

d(u) = 1 mod 2 ⇐∀ u ∈ IΔO

where d(u) = |NG(u)| is the degree of u.

Proof. Consider a constant probability open graph (G, {i}, {o}), by definition
there is no strongly internal set. We prove by contradiction that if i = o then
all the vertices have even degree and that if i �= o the input and output vertices
have odd degree and all the other vertices have an even degree. Indeed:

– if i = o then
– if d(i) = 1 mod 2 then V (G) \ {i} is a strongly internal set.
– if d(i) = 0 mod 2 and there exists u �= i, d(u) = 1 mod 2. Consider
the shortest path P between the output and a vertex of odd degree.
Odd(G \ P ) ≡ (G \ P )C = {i} thus V (G) \ P is a strongly internal set.

– if i �= o then
– if d(o) = 0 mod 2 then V (G) \ {o} is a strongly internal set.
– if d(o) = 1 mod 2, then if there exists u /∈ {i, o} with d(u) = 1 mod 2.
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Consider the shortest path P between the output and a non input vertex of
odd degree. If i /∈ P then Odd(G\P )≡(G\P )C = ∅ thus V (G)\P is a strongly
internal set. Otherwise, if d(i) = 1 mod 2 then Odd(G \ P ) ≡ (G \ P )C = {i}
thus V (G) \ P is a strongly internal set. Otherwise consider P √ ∅ P the part
of the path form o to i, Odd(G \ P √) ≡ (G \ P √)C = {i} thus V (G) \ P √ is a
strongly internal set. If d(i) = 0 mod 2, then, as the sum of the degrees is
even, there exists u /∈ {i, o} with d(u) = 1 mod 2 and thus a strongly internal
set.

For the other direction, suppose that (G, {i}, {o}) satisfies that ∧u ∈ V (G),
d(u) = 1 mod 2 iff u ∈ {i}Δ{o}. For any subset S of V (G)\{i, o} as

∑
v∗S d(v)=

0 mod 2, |Odd(S)≡SC | = 0 mod 2 and thus there is no strongly internal set if
i = o. Furthermore, if i �= o, for any set S of V (G) \ {o} containing i, S contains
one vertex of odd degree thus |Odd(S) ≡ SC | = 1 mod 2 and therefore there is
no strongly internal set. �

8 Open Questions

This work raises several open questions, from the structural point of view.
For example, it is not known whether the uniform constant probability case
is reversible when |I| = |O|. From a complexity perspective: is it possible to
derive a polynomial algorithm to characterise the uniform equiprobability class
and the uniform constant probability class? Is it possible to derive an efficient
algorithm for finding inputs and ouputs?
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Abstract. Positivity of quantum discord is shown to be equivalent to
the strong sub additivity of the von Neumann entropy. This leads to a
connection between the mother protocol of quantum information the-
ory [17] and quantum discord. We exploit this to show that discord is a
measure coherence in the performance of the mother protocol. Since the
mother protocol is a unification of an important class of problems (those
that are bipartite, unidirectional and memoryless), we show discord to be
a measure of coherence in these protocols. Our work generalizes an ear-
lier operational interpretation of discord provided in terms of quantum
state merging [10].

1 Introduction

Why quantum mechanics provides enhancements and speedups over best known
classical procedures forms one of themost fundamental questions in quantum infor-
mation science. This has canonically been answered in terms of quantum entangle-
ment [1,2]. This is however far from complete. There are quantum processes which
provide an exponential advantage in the presence of little or no entanglement [3,4].
In the realm of mixed-state quantum computation, quantum discord [5,6] has been
proposed as resource [8] and there are already some formal proofs in that direc-
tion [9]. The role of quantum discord in quantum information theory, however,
still remains unclear. Recently, operational interpretations for quantum discord
have been provided in terms of the quantum state merging protocol [10,11]. In this
paper, we go beyond this by exhibiting the role of quantum discord in essentially
all quantum information processing protocols.

Quantum discord aims at capturing all quantum correlations in a quan-
tum state, including entanglement [5–7]. Quantum mutual information is gen-
erally taken to be the measure of total correlations, classical and quantum,
in a quantum state. For two systems, A and B, it is defined as I(A : B) =
S(A)+S(B)−S(A,B), where S(·) stands for the von Neumann entropy, S(ρ) ≤
−Tr(ρ log ρ). In our paper, all logarithms are taken to base 2. For a classical prob-
ability distribution, Bayes’ rule leads to an equivalent definition of the mutual
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information as I(A : B) = S(A)−S(A|B), where the conditional entropy S(A|B)
is an average of the Shannon entropies of A, conditioned on the alternatives of
B. It captures the ignorance in A once the state of B has been determined.
For a quantum system, this depends on the measurements that are made on
B. For a POVM given by the set {Πi}, the state of A after the measurement
corresponding to the outcome i is given by

ρA|i = TrB(ΠiρAB)/pi, pi = TrA,B(ΠiρAB). (1)

A quantum analogue of the conditional entropy can then be defined as S̃{Πi}(A|B)
≤ ∑

i piS(ρA|i), and an alternative version of the quantum mutual information
can now be defined as J{Πi}(A : B) = S(A) − S̃{Πi}(A|B). The above quantity
depends on the chosen set of measurements {Πi}. To capture all the classical cor-
relations present in ρAB , we maximize J{Πi}(A : B) over all {Πi}, arriving at a
measurement independent quantity J (A : B) = max{Πi}(S(A)− S̃{Πi}(A|B)) ≤
S(A) − S̃(A|B), where S̃(A|B) = min{Πi} S̃{Πi}(A|B). Since the conditional
entropy is concave over the set of POVMs, which is convex, the minimum is
attained on the extreme points of the set of POVMs, which are rank 1 [12].
Then, quantum discord is finally defined as

D(A : B) = I(A : B) − J (A : B) (2)
= S(A) − S(A : B) + min

{Πi}
S̃{Πi}(A|B),

where {Πi} are now, and henceforth in the paper, rank 1 POVMs. It is well
known that the quantum discord is non-negative for all quantum states [6,12].

Our endeavour in this paper shall be to clarify the role of quantum discord
in quantum information theory. We shall show how discord quantifies the coher-
ence in a large class of quantum resource inequalities, beginning with the so-
called ‘mother protocol’. Our way into the heart of quantum information theory
will be though strong sub-additivity (SSA) of von Neumann entropy. SSA is one
of the most fundamental inequalities in information theory, quantum and clas-
sical. We shall use a simple proof of SSA provided by quantum state merging
protocol [15,16], to lead us onto the mother protocol of quantum information
theory [17]. The mother protocol which can be thought of as the fully quantum
Slepian-Wolf protocol, achieving quantum communication-assisted entanglement
distillation, and state transfer from the sender to the receiver. It also has as its
children several important and common protocols like quantum teleportation
and entanglement distillation. We shall discuss the role of quantum discord in
the performance of the noisy versions these protocols in the final section of our
paper.

2 Quantum Discord and Strong Subadditivity

We begin by providing a new proof of the positivity of quantum discord [6] by
casting it in terms of the SSA of von Neumann entropy.
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Theorem 1. Strong subadditivity of the von Neumann entropy implies nonneg-
ativity of the quantum discord.

Proof: Consider the joint state ρAB subject to one dimensional orthogonal mea-
surements Πj = |ej→∈ej | on B, extended to arbitrary (at most dim(B)2) dimen-
sions. Then

pj ρA|j = TrB(ρABΠj) = ∈ej |ρAB |ej→, pj = TrB(ρBΠj) = ∈ej |ρB |ej→.
Note that the measurement is made on the system B, while in the definition
of discord, it was on A. Discord is not symmetric under the exchange of the
subsystems, but this is not a concern as we just as well have proved the result
for D(B,A).

Suppose now that a system C interacts with B so as to make the desired
measurement (U |ej→ ⊕ |0→ = |ej→ ⊕ |fj→), leaving the state

ρ∗
ABC =

∑
j,k

∈ej |ρAB |ek→ ⊕ |ej→∈ek| ⊕ |fj→∈fk|. (3)

If the eigendecomposition of ρAB =
∑

l λl|rl→∈rl|, then

ρ∗
ABC =

∑
j,k,l

λl∈IA, ej |rl→∈rl|IA, ek→ ⊕ |ej→∈ek| ⊕ |fj→∈fk| =
∑

l

λl|el, rl, fl→∈el, rl, fl|

whereby
S(ρ∗

ABC) = S(ρAB).

Also, from Eq. (3),

ρ∗
AB =

∑
j

pjρA|j ⊕ |ej→∈ej |, so S(ρ∗
AB) = S(p) +

∑
j

pjS(A|j), (4a)

ρ∗
BC =

∑
j,k

|ej→∈ej |ρB |ek→∈ek| ⊕ |fj→∈fk|, so S(ρ∗
BC) = S(ρB), (4b)

ρ∗
B =

∑
j

pj |ej→∈ej |, so S(ρ∗
B) = S(p). (4c)

Now use the strong subadditivity of the von Neumann entropy [13] which is

S(ρ∗
ABC) + S(ρ∗

B) ≺ S(ρ∗
AB) + S(ρ∗

BC). (5)

Equations (4a–4c) reduce this to

S(ρAB) + S(p) ≺ S(p) +
∑

j

pjS(A|j) + S(ρB), (6)

whereby

S̃{Πj}(A|B) ≤
∑

j

pjS(A|j) ⊥ S(ρAB) − S(ρB) ≤ S(A|B). (7)
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This, being true for all measurements, also holds for the minimum. So

D(A,B) = min
{Πj}

S̃{Πj}(A|B) − S(A|B) ⊥ 0.

�⊗
This theorem shows that quantum discord and SSA are intimately connected,

in that the existence of the former is guaranteed by the validity of the latter, and
the nullity of the former is guaranteed by the saturation of the latter. We have
shown that for any bipartite state, we can introduce a third system that executes
a measurement on one of the subsystems, and the resulting tripartite system
allows us to investigate the role of quantum discord in quantum information
theory.

3 Interpreting Quantum Discord Through Quantum
State Merging via SSA

Quantum state merging protocol is the extension of the classical Slepian-Wolf
protocol [14] into the quantum domain where Alice and Bob share the quantum
state ρ√n

AB , with each party having the marginal density operators ρ√n
A and ρ√n

B

respectively. Let |ΨABC→ be a purification of ρAB . Assume, without loss of gen-
erality, that Bob holds C. The quantum state merging protocol quantifies the
minimum amount of quantum information which Alice must send to Bob so that
he ends up with a state arbitrarily close to |Ψ→√n

B′BC , B∗ being a register at Bob’s
end to store the qubits received from Alice. It was shown that in the limit of
n ∼ ≡, and asymptotically vanishing errors, the answer is given by the quan-
tum conditional entropy [15,16]: S(A|B) = S(A,B) − S(B). When S(A|B) is
negative, Bob obtains the full state with just local operations and classical com-
munication, and distill −S(A|B) ebits with Alice, which can be used to transfer
additional quantum information in the future.

That quantum discord has an operational interpretation in terms of quantum
state merging was shown in [10,11]. In [10], it was shown that discord is the
markup in the cost of quantum communication in the process of quantum state
merging, if one discards relevant prior information. SSA served as a crucial link
in this exercise. An intuitive argument for the above interpretation of quantum
discord can be made through strong subadditivity, which can also be written
as [15,16]

S(A|B,C) ≺ S(A|B). (8)

From the point of view of the state merging protocol, the above has a very
clear interpretation: having more prior information makes state merging cheaper.
Or in other words, throwing away information will make state merging more
expensive. Thus, if Bob discards system C, it will increase the cost of quantum
communication needed by Alice in order to merge her state with Bob. Our goal
now is to take these results a step further. In particular, we show that we can
interpret discord in terms of the mother protocol [17] and thus elucidate its
connection to all the children protocols that can be derived from the mother.
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4 The Mother Protocol

We begin by briefly describing the Mother protocol and its generalization to the
fully quantum Slepian Wolf (FQSW) protocol. The mother protocol [17] is a
transformation of a quantum state (|ΨABR→)√n. At the start, Alice holds the A
shares and Bob the B shares. The reference system R is purifying the AB system
and does not actively participate in the protocol. The Mother protocol can be
viewed as an entanglement distillation between A and B when the only type of
communication permitted is the ability to send qubits from Alice to Bob. The
transformation can be expressed concisely in the resource inequality formalism
as [18]

∈ΨAB→ +
1
2
I(A : R)[q ∼ q] ⊥ 1

2
I(A : B)[qq]. (9)

The above inequality means that n copies of the state Ψ can be converted to
1
2I(A : B) EPR pairs ([qq]) per copy, provided Alice is allowed to communicate
with Bob by sending him qubits at the rate 1

2I(A : R) ([q ∼ q]) per copy.
One can generalize the mother protocol to a stronger inequality known as the

FQSW protocol. This inequality states that starting from the state (|ΨABR→)√n,
and using 1

2I(A : R) bits of quantum communication from Alice to Bob, they
can distill 1

2I(A : B) EPR pairs per copy, and in addition Alice can accomplish
merging her state with Bob. In the process of accomplishing state merging, they
create the state (|ΦB̂R→)√n, where B̂ is a register held with B and ΨR = ΦR.
Since all purifications are equivalent up to local unitaries, Bob can convert ΦB̂

to ΨAB at his end and thus complete the state merging with Alice. Hence in the
state merging task, as described above, Alice is able to successfully transfer her
entanglement with the reference system R to Bob. Writing the FQSW in terms
of a resource inequality

∈WS⊕AB : ΨS→ +
1
2
I(A : R)[q ∼ q] ⊥ 1

2
I(A : B)[qq] + ∈idS⊕B̂ : ΨS→. (10)

The above inequality is another way of expressing the FQSW protocol, where
we accomplish state merging as well as entanglement distillation. The state S on
the left-hand side of the inequality, is distributes to Alice and Bob, while on the
right-hand side, that same state is given to Bob alone. WS⊕AB is an isometry
taking the system S to AB [17]. The FQSW protocol is valid asymptotically in
the limit of a large number of copies and this is denoted by the symbol ⊥.

4.1 Quantum State Merging Primitive from FQSW

We start by expressing the quantum state merging protocol [15,16] as a resource
inequality

∈ΨAB→ + S(A|B)[q ∼ q] + I(A : B)ψ[c ∼ c] ⊥ ∈idS⊕B̂ : ΨS→. (11)
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This accomplishes state merging from Alice to Bob at the cost of S(A|B) bits
of quantum communication. In the case when S(A|B) is negative, Alice and
Bob can distill this amount of entanglement in the form of Bell pairs. Quantum
state merging this provides an operational interpretation of S(A|B), assuming we
ignore the amount of classical communication needed to accomplish the required
state merging.

We can derive quantum state merging from the FQSW if the entanglement
produced at the end of the FQSW protocol, can be used to perform teleporta-
tion. We can see this through simple manipulation of the resource inequalities
described above. We start by describing quantum teleportation as

[qq] + 2[c ∼ c] ∝ [q ∼ q]. (12)

It means that one requires a shared ebit and two bits of classical communication
to accomplish teleportation of a quantum state. The symbol ∝ is used to denote
exact attainability as compared to ⊥ which is to denote asymptotic attainability.
From the FQSW protocol (Eq. 2.3), using the entanglement produced at the
end for quantum communication (Eq. 2.5), one gets the quantum state merging
primitive (Eq. 2.4).

5 Discord as a Measure of the Coherence of the Mother
Protocol

In this section we present our main result, that quantum discord is a measure
of how coherently the mother protocol is performed between two parties, Alice
and Bob. More specifically, we will study the loss of information and coherence
at Bob’s end. To that end, we consider arbitrary quantum operations to model
decoherence. We also consider a quantum operation where quantum measure-
ments are made at Bob’s end and the results are discarded. In practice, such a
pre-measurement state can be due to the environment assisted decoherence.

To begin, expand the size of the Hilbert space so that an arbitrary pre-
measurement (or any other quantum operation) can be modeled by coupling to
the auxiliary subsystem and then discarding it. We assume C to initially be in
a pure state |0→, and a unitary interaction U between B and C. Letting primes
denote the state of the system after U has acted, we have S(A,B) = S(A,BC) as
C starts out in a product state with AB. We also have I(A : BC) = I(A∗ : B∗C ∗).
As discarding quantum systems cannot increase the mutual information, we get
I(A∗ : B∗) ≺ I(A∗ : B∗C ∗). Now consider the FQSW protocol between A and
B in the presence of C. We have S(A|B) = S(A) − I(A : B) = S(A) − I(A :
BC) = S(A|BC). After the application of the unitary U , but before discarding
the subsystem C, the cost of merging is still given by S(A∗|B∗C ∗) = S(A|B).
This implies that one can always view the cost of merging the state of system A
with B, as the cost of merging A with the system BC, where C is some ancilla
(initially in a pure state) with which B interacts coherently through a unitary
U . Such a scheme does not change the cost of state merging, as shown, but helps
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us in counting resources. Discarding system C yields

I(A∗ : B∗) ≺ I(A∗ : B∗C ∗) = I(A : BC) = I(A : B), (13)

or alternatively,
S(A∗|B∗) ⊥ S(A∗|B∗C ∗) = S(A|B). (14)

Now consider a protocol which we call as FQSWDB , (Fully Quantum Slepian
Wolf after decoherence) where the subscript refers to the decoherence at B. The
resource inequality for FQSWDB is

∈US⊕A′B′
: ΨS→ +

1
2
I(A∗ : R∗)[q ∼ q] ⊥ 1

2
I(A∗ : B∗)[qq] + ∈idS⊕B̂ : ΨS→. (15)

As in the fully coherent version, Alice is able to transfer her entanglement with
the reference system R∗, and is able to distill 1

2I(A∗ : B∗) EPR pairs ([qq])
with Bob. The net gain, G, for the fully coherent protocol is 1

2I(A : B) −
1
2I(A : R) = −S(A|B). This is the difference between the yield obtained and
the cost of quantum communication incurred. Likewise, the net gain, GD, for
the protocol suffering from decoherence at B is 1

2I(A∗ : B∗) − 1
2I(A∗ : R∗) =

−S(A∗|B∗). Therefore, the net advantage, G−GD, of the coherent protocol over
the decohered one is given by D = S(A∗|B∗) − S(A|B).

We now show that the minimum of D over all possible measurements is
the quantum discord D. The state ρAB , under measurement of subsystem B,
changes to ρ

′
AB =

∑
j pjρA|j ⊕ πj , where {πj} are orthogonal projectors result-

ing from a Neumark extension of the POVM elements. The unconditioned post
measurement states of A and B are

ρ∗
A =

∑
j

pjρA|j = ρA, ρ∗
B =

∑
j

pjπj .

Computing the value of I(A∗ : B∗), we get

I(A∗ : B∗) = S(A∗) + S(B∗) − S(A∗, B∗),

= S(A∗) + H(p) − {
H(p) +

∑
j

pjS(ρA|j)
}
,

= S(A) −
∑

j

pjS(ρA|j). (16)

After maximization, it reduces to J (ρAB), as defined earlier as is the reduction
to rank 1 POVMs. One might consider reverting to Zurek’s original definition
of quantum discord, which incidentally first appeared in [5]. Then one does not
have to throw in the maximization; discord quantifies the increase in quantum
state merging due to environmental projection, and hence the quantity D serves
as a valid measure for the net loss in the number of EPR pairs in the mother
protocol due to the environment. The above connection between discord and the
mother protocol suggests that discord can also serve as a measure of coherence
in accomplishing any of the children protocols that can be derived from the
mother. We illustrate this in the next section.
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6 Role of Discord in the Children Protocols

In this section we see that by connecting quantum discord with the FQSW
protocol, we can interpret discord as the advantage of quantum coherence in
various scenarios. There in lies the power of our approach.

6.1 Discord as the Mark Up in the Cost of Quantum
Communication to State Merging

We can easily derive the results of [10] from the previous section. In particu-
lar, consider the QSMDB (Quantum state merging protocol with decoherence
at party B). One can get QSMDB from FQSWDB if one recycles the entan-
glement produced at the end of the FQSWDB protocol to perform quantum
teleportation. We start by expressing QSMDB in the form of a resource inequal-
ity,

∈ΨA′B′→ + S(A∗|B∗)[q ∼ q] + I(A∗ : B∗)ψ[c ∼ c] ⊥ ∈idS⊕B̂ : ΨS→. (17)

The optimal cost of quantum communication in this case is S(A∗|B∗). Thus
the mark up in this cost is S(A∗B∗) − S(A|B), which is equal to the quantum
discord of the original state. It is to be noted that we will always have this mark
up, regardless of the cost of classical communication incurred.

6.2 Quantum Discord and Noisy Super-Dense Coding

The noisy super-dense coding can be derived by combining the mother with
super-dense coding [19]. It can be expressed in the form of the resource
inequality as,

∈ΨAB→ + S(A)[q ∼ q] ⊥ I(A : B)[c ∼ c]. (18)

When the party B is undergoing decoherence, the noisy superdense coding can
be expressed as,

∈ΨA′B′→ + S(A∗)[q ∼ q] ⊥ I(A∗ : B∗)[c ∼ c]. (19)

We note that S(A) = S(A∗). Thus, due to decoherence, the number of classical
bits communicated through this protocol gets reduced by the amount I(A :
B) − I(A∗ : B∗), which is equal to the discord of the original state.

6.3 Quantum Discord and Entanglement Distillation

The one way entanglement distillation can be expressed as [20,21],

∈ΨAB→ + I(A : R)[c ∼ c] ⊥ I(A→B)[qq]. (20)
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In the above equation, I(A→B)[qq] = −S(A|B), and is also known as the coherent
information [22,23]. When the party B is undergoing decoherence we get,

∈ΨA′B′→ + I(A∗ : R∗)[c ∼ c] ⊥ I(A∗→B∗)[qq]. (21)

The net loss in entanglement distillation is equal to S(A∗|B∗) − S(A|B) which
again is the quantum discord of the original state. As is well known, classi-
cal communication between parties cannot enhance entanglement, and we can
neglect the difference in I(A : R) − I(A∗ : R∗) classical bits required.

7 Conclusion

Our work elucidates the role non classical correlations, those captured by quan-
tum discord, play in quantum information processing tasks. For an important
class of problems described above, quantum discord is shown to be a measure
of how coherently the protocol was performed. We have quantified the cost due
to decoherence we suffer in quantum communication protocols and this is aptly
captured by discord. We hope that this work places quantum discord at the
heart of quantum information theory, and demonstrates the vital role it plays in
quantifying the cost of decoherence in almost all quantum information processing
protocols.
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Abstract. We refine recent local unitary entanglement classification for
symmetric pure states of n qubits (that is, states invariant under permu-
tations of qubits) using local unitary stabilizer subgroups and Majorana
configurations.

1 Introduction

The question of when a given multiparty state can be converted to another by
local operations and measurements of subsystems is crucial in quantum informa-
tion science [1]. The fact that entangled states play a role as resources in com-
putation and communication protocols motivates problems of measurement and
classification of entanglement. In general, these are difficult problems, already
rich for the case of pure states of n-qubits, where the number of real parameters
necessary for classifying entanglement types grows exponentially in n.

A promising special case for the general problem of entanglement measure-
ment and classification is that of the symmetric states, that is, states of compos-
ite systems that are invariant under permutation of the subsystems. Symmetric
states admit simplified analyses, and they are of interest in their own right.
Examples of recent work in which permutation invariance has made possible
results where the general case remains intractable include: geometric measure
of entanglement [2–4], efficient tomography [5], classification of states equivalent
under stochastic local operations and classical communication (SLOCC) [6,7],
and our own work on classification of states equivalent under local unitary (LU)
transformations [8].

The main result of this paper (Theorem 3 below) is a classification of LU
equivalence classes of n-qubit symmetric states that refines our own previous
work [8], which is based on the following idea. Suppose states ε, ε′ are local uni-
tary equivalent via some LU transformation U , that is, we have ε′ = UεU†. If a
local unitary operator V stabilizes ε, then UV U† stabilizes ε′. The consequence
is that stabilizer subgroups of locally equivalent states are isomorphic via con-
jugation. Thus the isomorphism class of the stabilizer is an LU invariant. This
inspires a two-stage classification program.

D. Bacon et al. (Eds.): TQC 2011, LNCS 6745, pp. 198–207, 2014.
DOI: 10.1007/978-3-642-54429-3 14, c∗ Springer-Verlag Berlin Heidelberg 2014
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1. Classify LU stabilizer subgroup conjugacy classes.
2. Classify LU classes of states, that is, distinct entanglement types of states,

for each of the stabilizer classes from stage 1.

Analysis of both stages 1 and 2 for symmetric states makes use of the Majo-
rana representation for pure symmetric states: Given a collection |Ω1≤ , . . . , |Ωn≤
of 1-qubit states, we can symmetrize to form the state

|Ω≤ = ρ
∑

π

∣∣Ωπ(1)

〉 ∣∣Ωπ(2)

〉 · · · ∣∣Ωπ(n)

〉

where Π ranges over all n! permutations of the n-qubits, and ρ is a normaliza-
tion factor. It is a fact (see [6]) that any symmetric pure state can be written as
such a symmetrization, and further, that the set of n 1-qubit states whose sym-
metrization is |Ω≤ is unique up to phase factors. Thus the set of symmetric pure
states is in one-to-one correspondence with configurations of multisets (one or
more of the 1-qubit states may be repeated) of n of points on the Bloch sphere.

Using the fact that a rotation of the Bloch sphere corresponds to unitary oper-
ation on 1-qubit states, it is a simple observation that a rotation of the Majorana
configuration of points representing a state |Ω≤ results in an LU equivalent state
|Ω′≤ = V √n |Ω≤, where V is the 2 × 2 unitary operator corresponding to the
given rotation of the sphere. Not obvious, but true nonetheless, is that given
any LU operation U = U1 → U2 → · · · → Un that transforms a symmetric state
|Ω≤ to another symmetric state |Ω′≤, there is a 1-qubit operation V such that
|Ω′≤ = V √n |Ω≤. This was proved by Mathonet et al. [14] for SLOCC operations
on pure symmetric states. We show in Theorem 1 below that this holds more
generally for LU operations on mixed symmetric states. A consequence (Theo-
rem 2) is that ε, ε′ are LU equivalent if and only if their Majorana configurations
can be interchanged by a rotation of the Bloch sphere.

In previous work [8–13], we have exploited the Lie algebra structure of the
tangent space of infinitesimal LU transformations, which is a linearization of the
stabilizer subgroup, to achieve results in both of these stages for various classes
of states. A strength of this method is that linear Lie algebra computations
are more tractable than the corresponding nonlinear Lie group computations.
The drawback is that a Lie algebra detects only the connected component at
the identity element of the corresponding Lie group. A stabilizer subalgebra
does not “see” the discrete part of the stabilizer subgroup. For example, the
Lie stabilizer subalgebra is the zero vector space for most stabilizer states, that
is, states stabilized by the full n-qubit Pauli group. Group level information is
necessary to capture the local unitary stabilizer properties of such states.

In Theorems 1 and 2 of [8], we classify four infinite families and 1 discrete
family (that is, the zero vector space) of stabilizer subalgebras for pure sym-
metric states, and identify LU classes of pure symmetric states that have those
stabilizers. The main result of this paper, Theorem 3 below, advances this pre-
vious subalgebra classification to the group level. We show there are six classes
of infinite LU stabilizer groups, inequivalent under isomorphism by local unitary
conjugation, and classify their corresponding LU-inequivalent states. Discrete
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LU stabilizer subgroups are isomorphic to finite subgroups of SO(3). These are
the cyclic groups, the dihedral groups, and the symmetry groups of the five
Platonic solids.

2 Preliminaries

We take n-qubit state space to be the set of 2n × 2n density matrices (posi-
tive semidefinite matrices with trace 1). Pure states are represented by density
matrices of rank 1. We write

∣∣∣D(k)
n

〉
to denote the Dicke state with k excitations.

We take the local unitary group to be PU(2)n, where PU(2) = U(2)/{σ Id :
σ ∈ C|σ| = 1}, called the projective unitary group, is the set of projective
equivalence classes of matrices in U(2). That is, matrices g, h in U(2) represent
the same element in PU(2) if and only if g = σh for complex number σ. The
projective unitary group PU(2) is isomorphic to the group SO(3) of rotations
of 3-dimensional Euclidean space via

σ exp (−iΔ/2v · ψ) ⊕ rotation by Δ radians about axis v

where σ is a norm 1 complex number, Δ is a real number, v = (v1, v2, v3) is a
unit vector in R

3, and ψ = (ψx, ψy, ψz) is the vector of Pauli matrices (see [1]
Ex. 4.5.).

We will denote elements of PU(2) and the local unitary group PU(2)n by
their representatives g in U(2) and U = (g1, . . . , gn) in U(2)n, and will write
g ≺ h or U ≺ V to denote equality in PU(2) and PU(2)n, and will use the equals
sign to indicate equality in U(2) and U(2)n. Similarly, we will write |Ω≤ ≺ |θ≤ to
indicate that two state vectors are equal up to phase.

The local unitary group element U = (g1, . . . , gn) acts on the density
matrix ε by

ε ⊥ UεU† = (g1 → · · · → gn) ε (g1 → · · · → gn)†.

We denote by Stabψ the local unitary stabilizer subgroup for ε

Stabψ = {U ∈ PU(2)n : UεU† = ε}.

3 Main Results

Theorem 1. Let ε, ε′ be n-qubit symmetric states, pure or mixed, with n ≥ 3.
Then ε, ε′ are LU equivalent if and only if there exists an element g in U(2)
such that

ε′ = (g√n)ε(g√n)†.

Proof of Theorem1. We only need to prove the “only if” direction. Let ε′ =
UεU†, where

U = (g1, g2, . . . , gn) =
n∏

j=1

g
(j)
j
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is an LU transformation. Suppose there exist k, ϕ with gk ⊗≺ gθ. Transposing the
k-th and l-th coordinates of U , let

V = g
(k)
θ g

(θ)
k

∏
j ⊕=k,θ

g
(j)
j

By symmetry, we have ε′ = V εV †, and therefore we have ε = (V †U)ε(U†V ).
Let h = g†

θgk so that we have

V †U = h(k)(h†)(θ),

and choose u in U(2) to diagonalize h, so that we have

uhu† ≺
[

eit

e−it

]

for some t. Let us call this diagonal matrix d, and let ς = (u√n)ε(u√n)†, so that
we have

ς = d(k)(d†)(θ) ς (d†)(k)d(θ).

Let ς =
∑

IJ cIJ |I≤ ∼J | be the expansion of ς in the computational basis,
where I = i1 . . . in, J = j1 . . . jn denote binary strings of length n and the cIJ

are complex coefficients. We claim that if cIJ ⊗= 0, then J = I or J = Ic, where
Ic denotes the bit string obtained by taking the mod 2 complement of each bit in
the string I. Suppose, on the other hand, that there exists a pair I, J such that
cIJ ⊗= 0 and J ⊗= I and J ⊗= Ic. Then there exist two qubit labels k, ϕ such that
jkjθ ⊗= ikiθ and jkjθ ⊗= (ikiθ)c. Without loss of generality, suppose (ikiθ) = 00
and (jkjθ) = 01. Since

d(k)(d†)(θ) |00≤ ∼01| (d†)(k)d(θ) = e−2it |00≤ ∼01|

we must have t = mΠ for some integer m. Then d ≺ Id, and so h ≺ Id, and
therefore gk ≺ gθ, contradicting our assumption. We conclude that

ς = a |I≤ ∼I| + b |I≤ ∼Ic| + b |Ic≤ ∼I| + (1 − a) |Ic≤ ∼Ic| (1)

for some coefficients a, b and some bit string I.
Next we claim that we may assume I = 0 · · · 0 or I = 1 · · · 1. Suppose contrary

that there are two qubit positions k, ϕ such that ik ⊗= iθ. Choose any third qubit
position r (this is where we use the hypothesis that n ≥ 3). We must have ir = ik
or ir = iθ. Without loss of generality, suppose ir = ik. Now transpose qubits
ϕ, r. This produces a state ς̃ with nonzero coefficient for the term |I ′≤ ∼I ′|, where
i′k = i′θ. But this contradicts the fact that ς̃ = ς because ς is symmetric. This
establishes the claim.

Next we claim that we may take b to be real and nonnegative in (1). If b is
not real, let θ = arg(b)/n if I = 0 · · · 0 and let θ = − arg(b)/n if I = 1 · · · 1.
Replacing ς by

(
diag(1, eiσ)

)√n
ς

(
diag(1, e−iσ)

)√n establishes the claim.
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Now apply the preceding argument to ε′ to construct a sequence of LU trans-
formations that are the same in each qubit to obtain

ς ′ = a′ |I ′≤ ∼I ′| + b′ |I ′≤ ∼(I ′)c| + b′ |(I ′)c≤ ∼I ′| + (1 − a′) |(I ′)c≤ ∼(I ′)c|
for some real and nonnegative coefficients a′, b′ and some bit string I ′ = 0 · · · 0 or
I ′ = 1 · · · 1. Comparing 1-qubit reduced density matrices for ς, ς ′ yields a = a′

or a = 1 − a′. If the latter, replace ς ′ by (X, . . . , X) ς ′ (X, . . . , X). Finally,
comparing eigenvalues of ς, ς ′, we conclude that b = b′. Thus we have constructed
a chain of symmetric local unitary operations that transform ε to ε′, as desired.
This concludes the proof of Theorem1. �

Theorem 2. Let |Ω≤ , |Ω′≤ be n-qubit symmetric states with Majorana configu-
rations Cξ, Cξ′ . Then |Ω≤ , |Ω′≤ are local unitary equivalent if and only if there
exists an element g in U(2) such that

Cξ′ = gCξ.

Proof of Theorem2. Let |Ω≤ , |Ω′≤ be symmetric states with Majorana configura-
tions Cξ = {|Ω1≤ , . . . , |Ωn≤} and Cξ′ = {|Ω′

1≤ , . . . , |Ω′
n≤}. If there is a rotation of

the Bloch sphere given by g in U(2) that takes Cξ to Cξ′ , then (possibly after
renumbering) we have g |Ωj≤ ≺ ∣∣Ω′

j

〉
for 1 ≡ j ≡ n, and hence |Ω′≤ ≺ g√n |Ω≤.

Conversely, if |Ω′≤ = U |Ω≤ for some local unitary U , then by Theorem 1, there
is a g in U(2) such that |Ω′≤ = g√n |Ω≤. We can interpret this g as a rotation of
the Bloch sphere, and it is clear that we have Cξ′ = gCξ. �

Theorem 3. Let ε be an n-qubit symmetric pure state whose local unitary sta-
bilizer Stabψ is infinite. Then one of the following holds.

(i) The state ε is LU equivalent to the product state ς = |Ω≤ ∼Ω|, where |Ω≤ =
|0 · · · 0≤ and Stabψ is isomorphic to U(1)n, where (eit1 , . . . , eitn) in U(1)n

corresponds to
(exp(−it1Z/2), . . . , exp(−itnZ/2))

in Stabω . There is one LU equivalence class of this type.
(iia) The state ε is LU equivalent to the GHZ state ς = |Ω≤ ∼Ω|, where |Ω≤ =

(1/
∝

2)(|0 · · · 0≤ + |1 · · · 1≤) for some n ≥ 3 and Stabψ is isomorphic to
U(1)n−1

� Z2, where (eit1 , . . . , eitn−1 , b) in U(1)n−1
� Z2 corresponds to

(
exp(−it1Z/2), . . . , exp(−itn−1Z/2), exp(i

(∑
k

tk

)
Z/2)

)
· (X, . . . , X)b

in Stabω . There is one LU equivalence class of this type.
(iib) The state ε is LU equivalent to the generalized GHZ state ς = |Ω≤ ∼Ω|,

where |Ω≤ = a |0 · · · 0≤ + b |1 · · · 1≤ for some n ≥ 3 with |a| ⊗= |b|, and Stabψ

is isomorphic to U(1)n−1, where (eit1 , . . . , eitn−1) in U(1)n−1 corresponds
to (

exp(−it1Z/2), . . . , exp(−itn−1Z/2), exp(−i

(∑
k

tk

)
Z/2)

)
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in Stabω . We may take a and b to both be positive and real with a > b.
The LU equivalence classes of this type are parameterized by the interval
0 < t < 1 by a = cos π

4 t, b = sin π
4 t.

(iii) The state Ω is LU equivalent to the singlet state ς = |Ω≤ ∼Ω|, where |Ω≤ =
|01≤−|10≤ and Stabψ is isomorphic to PU(2), where g in PU(2) corresponds
to

(g, g)

in Stabω . There is one LU equivalence class of this type.
(iva) The state Ω is LU equivalent to the Dicke state ς = |Ω≤ ∼Ω|, where |Ω≤ =∣∣∣Dn/2

n

〉
for some even n ≥ 4, and Stabψ is isomorphic to U(1)� Z2, where

(eit, b) in U(1) � Z2 corresponds to

(exp(−itZ/2), . . . , exp(−itZ/2)) · (X, . . . , X)b

in Stabω . There is one LU equivalent class of this type.
(ivb) The state Ω is LU equivalent to the Dicke state ς = |Ω≤ ∼Ω|, where |Ω≤ =∣∣Dk

n

〉
for some n ≥ 3 and some k in the range 0 < k < n and k ⊗= n/2,

and Stabψ is isomorphic to U(1), where (eit) in U(1) corresponds to

(exp(−itZ/2), . . . , exp(−itZ/2))

in Stabω . There are ∧n/2∨ LU equivalence classes of this type, with repre-
sentatives ∣∣∣D(1)

n

〉
,
∣∣∣D(2)

n

〉
, . . . ,

∣∣∣D(⊥n/2∞−1)
n

〉
.

Proof of Theorem3. We show in [8] that an arbitrary pure symmetric state ε is
LU equivalent to one of the states ς listed in (i)–(ivb). Theorem 1 of that paper
identifies 4 families of nonzero stabilizer Lie subalgebras, which exponentiate
to stabilizer subgroup elements of the forms given in (i)–(ivb). In each case, it
is easy to see that the given correspondences are one-to-one. To establish the
claimed isomorphisms, it remains to be shown that the groups

(i) U(1)n

(iia) U(1)n−1
� Z2

(iib) U(1)n−1

(iii) PU(2)
(iva) U(1) � Z2

(ivb) U(1)

given in (i)–(ivb) above map surjectively onto the full stabilizer subgroups of the
corresponding states given in (i)–(ivb).

Below we give the proof for (iia) and (iva). The other proofs are both similar
and easier. The proofs that the homomorphisms in (iia) and (iva) are onto share
the following outline. We consider an arbitrary element U = (g1, . . . , gn) in
Stabω , and we wish to show that U is in the image of the given homomorphism.
First, we show that it suffices to show that that either all gk are diagonal, or all
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gk are antidiagonal. Then we consider two cases. The first case is where gk ≺ gθ

for all k, ϕ, so that U has the form U ≺ (g1, . . . , g1) for some g1 in U(2). The
second case with where there exists a pair of qubits k, ϕ such that gk ⊗≺ gθ. We
show that both cases lead to the conclusion that either all the gk are diagonal,
or all the gk are antidiagonal. By the earlier reduction, this completes the proof.

Proof of surjectivity in Theorem3 (iia). Let ε = |Ω≤ ∼Ω| be the n-qubit GHZ
state, where |Ω≤ = |0 · · · 0≤+ |1 · · · 1≤ for some n ≥ 3, and let U = (g1, . . . , gn) be
an element of Stabψ. We aim to prove that U can be written in the form

(
exp(−it1Z/2), . . . , exp(−itn−1Z/2), exp(i

(∑
k

tk

)
Z/2)

)
· (X, . . . , X)b

for some real t1, . . . , tn−1 and some b = 0, 1.
We begin with the claim that it suffices to show that either gk is diagonal for

all k, or gk is antidiagonal for all k. Indeed, if every gk is diagonal, say gk ≺ eitkZ ,
then from

U |0 · · · 0≤ ∼1 · · · 1|U† = exp(2i(
∑

tk)) |0 · · · 0≤ ∼1 · · · 1|

we conclude that
∑

tk is an integer multiple of Π, and so
∑

tk may be taken to
be zero (because we are working projectively, we have eiπZ = −Id ≺ Id). Hence
U is the image of the element (e−it1/2, . . . , e−itn−1/2) in U(1)n−1. If every gk is
antidiagonal, then we can write

gk ≺
[

0 eitk

e−itk 0

]
=

[
eitk 0
0 e−itk

]
X. (2)

Then from

U |0 · · · 0≤ ∼1 · · · 1|U† = exp(−2i
∑

tk) |1 · · · 1≤ ∼0 · · · 0|

we have
∑

tk is Π times and integer, U is projectively equivalent to the image
of (e−it1/2, . . . , e−itn−1/2, 1) in U(1)n−1

� Z2. This establishes the claim.
Next we show that either all gk are diagonal, or all gk are antidiagonal.
Case a. Suppose that gk ≺ gθ for all k, ϕ. Then U has the form U ≺ (h, . . . , h)

for some h in U(2). As in the proof of Theorem2, we can read h, and therefore U ,
as a rigid motion of the Bloch sphere, and conclude that U takes the Majorana
configuration for the GHZ state into itself. Thus U is a symmetry of the regular
n-gon in the equatorial plane, and is therefore either a rotation about the Z-
axis, or a 180-degree-rotation about the X-axis followed by a rotation about the
Z-axis. Thus h is either diagonal or antidiagonal.

Case b. Suppose there exist qubits k, ϕ such that gk ⊗≺ gθ. As in the proof of
Theorem 1, let V = g

(k)
θ g

(θ)
k

∏
j ⊕=k,θ g

(j)
j , let h = g†

θgk, so that

V †U = h(k)(h†)(θ)
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is in Stabψ. Choose u in U(2) to diagonalize h, and let ς = u√n ε (u√n)†,
so that we have d(k)(d†)(θ) in Stabω , where d = eitZ ≺ uhu†, for some real t.
Continuing to follow the proof of Theorem1, considering the action of d(k)(d†)(θ)

on qubits k, ϕ, the presence of a standard nonzero coefficient cIJ in the expansion
of ς in the computational basis with J ⊗= I and J ⊗= Ic in qubits k, ϕ leads
to the contradiction that gk ≺ gθ, so we conclude that ς = |Ω′≤ ∼Ω′| where
|Ω′≤ = a |0 · · · 0≤ + b |1 · · · 1≤ is an LU-equivalent GHZ state with |a| = |b|. The
Majorana configuration for ς is a regular n-gon in the equatorial plane, so we
may conclude that u is a rigid motion of the Bloch sphere that must be of the
form eiσZ or eiσZX, so u is diagonal or antidiagonal. From this we have that h
is diagonal, so gk = gθdθk for some diagonal matrix dθk. It follows that U is of
the form

U ≺ (g1, g1d12, . . . , g1d1n) = (g1, . . . , g1)(1, Id, d12, . . . , d1n).

Since the action of (Id, d12, . . . , d1n) is a rotation about the Z-axis, and U takes
the Majorana configuration of ς to itself, it must be that g1 is a rigid motion
of the Bloch sphere coming from either a diagonal or antidiagonal matrix as in
case a, so we conclude that all gk are diagonal or all gk are antidiagonal, as
desired.

Proof of surjectivity in Theorem3 (iva). Let ε be the Dicke state ε = |Ω≤ ∼Ω|,
where |Ω≤ =

∣∣∣D(n/2)
n

〉
for some even n ≥ 4, and let U = (eit, g1, . . . , gn) be an

element of Stabψ. We aim to prove that U can be written in the form

(exp(−itZ/2), . . . , exp(−itZ/2)) · (X, . . . , X)b

for real t and some b = 0, 1.
We begin with the claim that it suffices to show that either gk is diagonal

for all k, or gk is antidiagonal for all k. Suppose that all gk are diagonal, say
gk ≺ eitkZ . Choose two qubit labels k, ϕ, choose a weight n/2 multiindex I =
i1i2 . . . in such that ik = 0, iθ = 1, and let J = j1j2 . . . jn denote the multiindex
that is formed by complementing the k-th and ϕ-th bits of I. Then from

U |I≤ ∼J | U† = exp(2i(tk − tθ)) |I≤ ∼J |
we conclude that tk − tθ is an integer multiple of Π. This holds for all k, ϕ, so we
have gk ≺ g1 for all k, so that U ≺ (g1, . . . , g1). Thus U is the image of (e−t1/2, 0)
in U(1)�Z2. If every gk is antidiagonal, then again we may write gk in the form
of Eq. (2). Considering the action of U on |I≤ ∼J | above, the same argument goes
through with minor changes, and we have that U is the image of (e−t1/2, 1) in
U(1) � Z2. This establishes the claim.

Next we show that either all gk are diagonal, or all gk are antidiagonal.
Case a. Suppose that gk ≺ gθ for all k, ϕ. Then U has the form U = (h, . . . , h)

for some h in SU(2). We can read h as a rotation of the Bloch sphere that must
take the Majorana configuration for |Ω≤ into itself. Thus h is a rotation about
the Z-axis, or h is a 180-degree-rotation about the X-axis followed by a Z-axis
rotation. In the first case, h is diagonal. In the second case, h is antidiagonal.
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Case b. Suppose there exist qubits k, ϕ such that gk ⊗≺ gθ. By the same
argument as for case b in the previous proof of surjectivity for (iia), we conclude
that |Ω≤ is LU equivalent to a state of the form a |0 · · · 0≤ + b |1 · · · 1≤, which is
either a product state or a generalized GHZ state. But this violates the known
LU classification (Theorem 1 of [8]) for symmetric states. We conclude that
case b cannot hold, and this ends the proof. �

4 Conclusion

We have completely classified LU equivalence classes of LU stabilizer subgroups
for pure symmetric states. For infinite stabilizer subgroups, we have given a
complete classification of LU equivalence classes of symmetric states. For each
finite stabilizer subgroup, there are an infinite number of LU equivalence classes
of symmetric states. Each family is characterized by a Majorana configuration,
and the LU equivalent states are precisely those whose Majorana configurations
are obtained by rotating the Bloch sphere.

In future work we hope to extend these results to mixed symmetric states.
We are encouraged by the success of recent work [7] by Bastin et al., in which
they extend to mixed symmetric states their own SLOCC classification [6] for
pure symmetric states.
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