
Enabling a Package Query Paradigm on
the Semantic Web: Model and Algorithms

Matthew Sessoms(B) and Kemafor Anyanwu

Semantic Computing Research Lab, Department of Computer Science,
North Carolina State University, Raleigh, NC, USA

{mwsessom,kogan}@ncsu.edu
http://www.ncsu.edu

Abstract. The traditional search model of finding links on the Web is
unsatisfactory for the increasingly complex tasks that seek to leverage
the diverse, increasingly structured and semantically annotated data on
the Web. A good example is when users seek to find collections or pack-
ages of resources that meet some constraints e.g., a collection of learning
resources that cover some topics and have a good average rating or a
collection of tourist attractions in a city such that total cost and total
travel time for visiting all attractions meet the given constraints. For
such queries, the goal is the return a set of constraint-qualifying collec-
tions or packages. However, using the traditional “set of links” query
paradigm, such queries can only be satisfied by issuing multiple queries,
reviewing answer lists and manually assembling packages to suit a user’s
desired constraints.

In this article, we introduce the concept of a Package Query for
querying for resource combinations on the Semantic Web. In particular,
we consider a frequent subclass of such queries Skyline Package Queries,
in which multiple competing criteria are specified in the query so that
the pareto-optimal set or skyline of packages are returned. In contrast to
a few recent efforts on package queries on single relational models, fine-
grained data models such as RDF include the challenge of computing
the package skyline over multiple joins of ternary relations. We present
four evaluation strategies involving different combinations of relational
query operators and a new operator for Skyline Package Queries and
different storage models for RDF data. A comparative evaluation of the
algorithms over real world and synthetic-benchmark RDF datasets is
presented.

Keywords: RDF · Package Skyline queries · Performance

1 Introduction

The Web has become a dominant knowledge source that informs a wide variety
of technical and non-technical decisions. An increasing number of decision tasks
being supported by Web data require more complex search paradigms than the

A. Hameurlain et al. (Eds.): TLDKS XIII, LNCS 8420, pp. 1–32, 2014.
DOI: 10.1007/978-3-642-54426-2 1, c© Springer-Verlag Berlin Heidelberg 2014

2 M. Sessoms and K. Anyanwu

mainstream “list of url matches” paradigm on the Web. Although there may
be limitations to the degree of search complexity that is possible over unstruc-
tured content, the growing success of the Semantic Web offers the potential of
leveraging its large amount of structured knowledge content for answering com-
plex questions. An interesting querying use case that has broad applications is
one where satisfying a user’s query can be achieved only with combinations or
“packages” of resources and not individual resources. Therefore, a query result
is a list of resource combinations and not simply a list of resources. As a more
concrete example, consider the following scenario.

Motivating Example (e-learning). A student would like to find e-learning
resources from a collection of semantically annotated e-learning resources, e.g.,
[37], covering a set of topics on an upcoming test: relational model, algebra and
calculus. Since creators of resources have the flexibility to modularize their con-
tent as they see fit, these topics may be covered by a single resource by one
author, or by multiple resources by a different author, e.g., splitting content into
two units: “data modeling” which covers the relational model, and then “query-
ing” which covers relational algebra and calculus. Yet another content creator
has a seperate content resource for each of the three topics. The implication is
that in order to satisfy the user’s query, some results, which match only portions
of the answer, will need to be “packaged” into combinations that completely
satisfy the query. Further, assuming that individual resources have ratings from
reviews and maybe subscription charges, the user may have package preferences
e.g., average rating resources of resource combination is maximized while total
cost is minimized. It is not difficult to imagine many other applications of such
queries. As another example consider a tourist interested in finding a number of
tourist attractions at a destination where total distance traveling between them
and total prices are minimized.

Since traditional querying models focus on finding list of items rather than a
list of item combinations, the current strategy for arriving at such results is for
users to review answer lists of items for possibly multiple queries and assemble
and compare packages manually. In this article, we consider the idea of skyline
package queries over RDF data which compute a pareto-optimal set of packages
over RDF data, given multiple global or package preference criteria. There are
three key fundamental challenges to be addressed: first is finding “relevant ele-
mentary or partial matches” i.e., items that meet some part of the description
e.g., resources on just relational algebra, which can be combined with other par-
tial matches to form complete results; second, is the number of joins required to
stitch together the fine-grained (binary relations) representation of data in an
RDF model to find matches; third is the computation of the skyline of combina-
tions from elementary matches given package preferences. Depending on whether
these tasks are done independently or holistically, query evaluation could be very
expensive. The combination of these three challenges distinguish this from the
few recent efforts on skyline [48] or top-k [23,44,45] package queries over single
relations requiring no joins and in the latter case consider only a single prefer-
ence criteria. While our previous work addresses the challenge of computing item

Enabling a Package Query Paradigm on the Semantic Web 3

skylines over RDF data models, the introduction of the packaging requirement
in package queries limits the possibility of adapting the previously proposed
approach in an efficient manner. Other work on skylining over joins in relational
models [32,43,47] consider very restricted join patterns (single join [43], star-like
schemas [47]) that are not applicable to RDF and also do not consider packages.

In this article, we present an efficient algebraic interpretation of package sky-
line queries over RDF in terms of a special operator and storage model. We also
consider alternative interpretations that rely mostly on existing query operators
and the mainstream vertical partitioned storage model for RDF. Specifically,
we contribute the following: (1) a formalization of the logical query operator,
SkyPackage, for package skyline queries over an RDF data model, (2) two fam-
ilies of query processing algorithms for physical operator implementation based
on the traditional vertical partitioned storage model and a novel storage model
here called target descriptive, target qualifying (TDTQ), and (3) an evaluation
of the four algorithms proposed over synthetic and real world data. Specifi-
cally, we extend a previous paper [36] by proposing a more efficient algorithm,
SkyPackage, for solving the skyline package problem and provide a more rigor-
ous evaluation on the four algorithms. The rest of this article is organized as
follows. The background and formalization of our problem is given in Sect. 2.
Section 3 introduces the two algorithms based on the vertical partitioned storage
model, and Sect. 4 presents an algorithm based on our TDTQ storage model. An
empirical evaluation study is reported in Sect. 5, and related work is described
in Sect. 6. The article is concluded in Sect. 7.

2 Background and Problem Definition

Consider a scenario where stores publish Semantic Web-enabled catalogs over
which users can search based on products and some preferences. For example,
a customer wishes to purchase milk, eggs, and bread from any combination of
stores as long as the combination (package) offers an overall minimized total cost
and overall maximized store ratings. Figure 1 shows an example ontology and
data about stores and their ratings, items sold by each store and their prices.
Here, one possible package is aee (i.e., buying milk from store a, eggs from store
e and bread also from store e). Another possibility is bee (i.e., milk from store b,
eggs and bread from store e as in the previous case). The bottom right of Fig. 1
shows the total price and average rating for packages aee, bee and bge. We see
that aee is a better package than bee because it has a smaller total price and the
same average rating. On the other hand, bge and aee are incomparable because
although bge’s total price is worse than aee’s, its average rating is better.

Problem Definition. To contextualize the interpretation of such queries on
RDF data, we build its algebraic interpretation on top of existing operators
for interpretating SPARQL graph pattern queries. Observe that the example
description contains some key components: a base graph pattern structure (the
SPARQL queries in the figure). Graph pattern queries have return clauses (the

4 M. Sessoms and K. Anyanwu

Fig. 1. Data For E-commerce example

SELECT clause) which denote the variables (return variables) whose bindings
we are interested in including in the result. One of those variables, the (target
variable - ?store) captures the targets of the query (stores) while the rest are
part of the subquery structure that qualifies valid targets e.g., stores should
sell milk and are called target qualifing constraints - (?item, hasName, “milk”).
There are analogous graph patterns for qualifiers “selling bread andeggs”. The
second component of the query specification defines combinations or packages
which can interpreted as a Fig. 2 of the results of above queries. The third
component is pruning packages based on preferences,e.g., minimizing the total
price of package. It is important to note that the preferences here are specified
over aggregates of datatype properties (i.e., attributes) that are part of the
description for targets (e.g., maximizing the average over store ratings) or target
qualifiers, e.g., minimizing total price. The base graph patterns and crossproduct
operations can be expressed using SPARQL’s algebra or high-level language.
The expression of preferences and item skyline queries are not supported by
SPARQL although there have been some proposals for algebraic extensions to
the SPARQL algebra. Our goal here, is to extend the SPARQL algebra to include
operators that allow the algebraic expression of package skyline queries. We do
not address SPARQL language grammar extensions here. The new operators
to be introduced can be seen as a generalization the item skyline operators
which when combined with operators for expressing graph pattern queries can
express package skyline queries. In other words, in our framework, traditional
item skyline queries will be viewed as package skyline queries where the package
size is 1.

More formally, let D be a dataset with property relations P1, P2, . . . , Pm and
GP be a graph pattern with triple patterns TPi, TPj , . . . , TPk (TPx means triple

Enabling a Package Query Paradigm on the Semantic Web 5

Fig. 2. Dataflow for the SkyPackage problem in terms of traditional query operators

pattern with property Px). [[GP]]D denotes the answer relation for GP over D,
i.e., [[GP]]D = Pi �� Pj �� . . . �� Pk. Let var(TPx) and var(GP) denote the
variables in the triple and graph pattern respectively and r ∈ var(GP) denote
the target variable. Note that the rest of the graph pattern is used to define the
target i.e target description and relationship between qualifiers and targets.

For preference specification, we begin by reviewing the formalization for pref-
erences given in [32]. Let Dom(a1), . . . , Dom(ad) be the domains for the columns
a1, . . . , ad in a d-dimensional tuple t ∈ [[GP]]D. Given a set of attributes B ⊆ A′,
a preference PF over the set of tuples [[GP]]D is then defined as PF := (B;≺PF),
where ≺PF is a strict partial order on the domain of B. Given a set of prefer-
ences PF1, . . . , PFm, their combined Pareto preference PF is defined as a set of
equally important preferences.

For a set of d-dimensional tuples R and preference P = (B;≺P) over R, a
tuple ri ∈ R dominates tuple rj ∈ R based on the preference P (denoted as
ri≺P rj), iff (∀(ak ∈ B)(ri[ak] � rj [ak]) ∧ ∃(al ∈ B)(ri[al] ≺ rj [al])).

Definition 1 (Skyline Query). To adapt preferences to graph patterns, we
associate a preference with the property (assumed to be a datatype property)
on whose object the preference is defined or the preference property e.g., the
property rating. Let PFi denote a preference with preference property as Pi.
Then, for a graph pattern GP = TP1, . . . , TPm and a set of preferences PF =
PFi, PFj , . . . , PFk, a skyline query SKY LINE[[[GP]]D, PF] returns the set of
tuples from the answer of GP such that no other tuples dominate them with
respect to PF and they do not dominate each other. The extension of the skyline
operator to packages is based on two functions Map and Generalized Projection.

Definition 2. Let F = {f1, f2, . . . , fk} be a set of k mapping functions such
that each function fj(B) takes a subset of attributes B ⊆ A of a tuple t, and
returns a value x.

Map μ̂[F,X] (adapted from [32]) applies a set of k mapping functions F
and transforms each d-dimensional tuple t into a k-dimensional output tuple t′

6 M. Sessoms and K. Anyanwu

defined by the set of attributes X = {x1, x2, . . . , xk} with xi generated by the
function fi in F .

Generalized Projection
∏

colrx,colry,colrz,µ̂[F,X]
(R) returns the relation

R′(colrx, colry, colrz, . . . , x1, x2, . . . , xk). In other words, the generalized pro-
jection outputs a relation that appends the columns produced by the map function
to the projection of R on the attributes listed, i.e., colrx, colry, colrz.

Definition 3 (SkyPackage Graph Pattern). A SkyPackage graph pattern
query is graph pattern GP[r,{c1,c2,...,cN},F={f1,f2,...,fk},{PFi,PFj ,...,PFk}] such that:

1. ci is a triple pattern specifying a target qualifying constraint.
2. GP{c1,c2,...,cN} is the set of graph patterns GPc1 , GPc2 , . . . , GPcN associated

with target qualifying constraints c1, . . . , cN e.g., each of the three graph pat-
terns in Fig. 1 represent a GPci .

3. r is a set of return variables such that ri ∈ r implies ri ∈ var(GPi) is called
the target of the query, e.g., stores.

4. PFi is the preference specified on the property Pi whose mapping function is
fi or more specifically, PFi = (fi(Pi); ≺PFi

).

The answer to a SkyPackage graph pattern query RSKY can be described
algebraically as the result of a sequence of operators in the following manner:

1. Rproduct = [[GPc1]]× [[GPc2]]×· · ·×[[GPcN]] such that [[GPcx]] is the result of
evaluating the branch of the union query with constraint cx. Figure 2b shows
the partial result of the crossproduct of the three subqueries in (a) based on
the 3 constraints on milk, bread and eggs.

2. Rproject =
∏

r1,r2,...rN ,µ̂[F={f1,f2,...fk},X={x1,x2,...xk}]
(Rproduct) where

ri is the column for the target variable in subquery i’s result, f1 : (domc1(o1)×
domc2(o1) × · · · × domcN (o1)) → R where domc1(o1) is the domain of val-
ues for the column representing the object of P1, e.g., column for object of
hasPrice, in [[GPc1]]. The functions in our example would be totalhasPrice,
averagehasRating. The output of this step is shown in Fig. 2c.

3. SKYLINE [Rproject, {PFP ′
i
, PFP ′

j
, . . . , PFP ′

k
}] such that PFP ′

i
is the prefer-

ence defined on the aggregated columns produced by the map function (denoted
by P ′

i), e.g., minimizing total price.

Our example in this model is GP[r,X,F,PF], where

• r = ?store
• X = {(?item, hasName, “milk”), (?item, hasName, “bread”),

(?item, hasName, “eggs”) }
• F = {SP = sum()price, SR = average()rating}
• PF = {(SP ;≺min), (SR;≺max)}

Enabling a Package Query Paradigm on the Semantic Web 7

2.1 Related Work

Although much research has been done in the area of traditional skyline queries,
package skyline queries have not received a generous amount of attention. Our
contribution is unique from previous work in that we provide algorithms whose
(package) skyline result contains elements of cardinality greater than one. In this
section, we present previous work related to our study of skyline packages. We
begin with a historical perspective of how the skyline query came about and an
overview of some of the earlier solutions proposed outside of a database context.
Then we provide an overview of solutions within a database context and their
correspondence to single-relations, multi-relations, and composite top-k queries.

The skyline query problem originally arose in the theory field in the 1960s,
and the skyline set was coined as the Pareto set. This problem became known
as the maximal vector problem [28,34], whose solution (e.g., skyline) is called
maximal vectors [6] or admissible points [2], and is similar to the contour problem
[31] and convex hull problem. Solutions to the maximal vector problem were
proposed in [5,6,28]; however, these solutions cannot scale to large databases
because they require all data to be in memory.

Single-relation Skyline Algorithms. The first proposed method of applying
the maximal vector problem to databases was [10] and the term skyline queries
was coined. Since then, the skyline query problem has often been referred to as
a secondary/external storage version of the maximal vector problem [24]. [10]
originally introduced and provided a block nested loops, divide-and-conquer, and
B-tree-based algorithms. Later, [18] introduced a sort-filter-skyline algorithm
that is based on the same intuition as BNL, but uses a monotone sorting function
to allow for early termination. Unlike [10,18,41], which has to read the whole
database at least once, index-based algorithms [26,33] allow one to access only
a part.

Multi-relation Skyline Algorithms. All of the previous algorithms are
designed to work on a single relation. As the Semantic Web matures and RDF
data is populated, there has been an increase in research involving multi-
relational skyline queries. When queries involve aggregations, multiple relations
must be joined before any of the above techniques can be used. Implicitly, the
first work that deals with the problem of skyline over multiple relations via
joins is [27]. Given a query that joins two relations and filters the result using a
WHERE clause, the authors propose a method to overcome empty results known
as query relaxation, which relaxes the join selection thus making the query more
flexible. Unlike our work, they do not focus on preference queries.

Vlachou et al. [43] proposed a novel algorithm called SFSJ (sort-first skyline-
join) that computes the complete skyline. Given two relations, access to the
two relations are alternated using a pulling strategy, known as adaptive pulling,
that prioritizes each relation based on the number of mismatched join values.
SFSJ takes advantage of its early termination condition, which gives rise to its
performance, when the two regions from each relation meet a certain condition,

8 M. Sessoms and K. Anyanwu

Although the algorithm has no limitations on the number of skyline attributes,
it is limited by two relations.

Recently, [16] introduced three skyline algorithms that are based on the con-
cept of a header point, which allows some nonskyline tuples to be discarded
before proceeding to the skyline processing phase. Raghavan and Rundensteiner
[32] introduced a sky-join operator that gives the join phase a small knowledge
of a skyline. An index-based, non-join skyline algorithm was proposed in [48].
Khabbaz and Lakshmanan [23] proposes a framework for collaborative filtering
using a variation of top-k. However, their set of results do not contain packages
but single items.

Composite Top-k Algorithms. Up until now, very little research has been
conducted in the area of package, or composite, queries. Such previous work
mostly aims at providing composite results in a recommendation system [44,45].
Xie [45] uses top-k techniques to provide a composite recommendation for travel
planning. Since finding packages is complex and time consuming, most have
oriented their work towards approximating the desired packages [44]. Unlike
our goal, which is to provide the user with all correct results, this approach
limits the user from seeing the complete results. Top-k is useful when ranking
objects is desired. However, top-k is prone to discard tuples that have a ’bad’
value in one of the dimensions, whereas a skyline algorithm will include this
object if it is not dominated.

3 Algorithms for Package Skyline Queries over Vertical
Partitioned Tables

We present in this section two approaches: Join, Cartesian Product, Skyline
(JCPS) and RDFSkyJoinWithFullHeader-Cartesian Product, Skyline (RSJFH-
CPS), for solving the package skyline problem. These approaches assume data
is stored in vertically partitioned tables (VPTs) [1].

3.1 JCPS Algorithm

The formulation of the package skyline problem suggests a relatively straight-
forward algorithm involving multiple joins, followed by a Cartesian product to
produce all combinations, followed by a single-table skyline algorithm (e.g.,
block-nested loop), called JCPS.

Consider the VPTs hasIName, hasSName, hasItem, hasPrice, and
hasRating obtained from Fig. 1. Solving the skyline package problem using JCPS
involves the following steps. First, we join all tables and perform a Cartesian prod-
uct twice on I to obtain all store packages of size 3, as shown in Fig. 3a. As the
product is being computed, the price and rating attributes are aggregated, as
shown in Fig. 3b. Afterwards, a single-table skyline algorithm is performed to dis-
card all dominated packages with respect to total price and average rating.

Algorithm 1 contains the pseudocode for such an algorithm. Solving the
skyline package problem using JCPS requires all VPTs to be joined together

Enabling a Package Query Paradigm on the Semantic Web 9

(line 2), denoted as I. To obtain all possible combinations (i.e., packages) of
targets, multiple specialized Cartesian products are performed on I (lines 3–6).
A modified Cartesian product, denoted as ⊗, is implemented as a subroutine
to ensure no duplicate target constraints (e.g., milk) are inlcuded. Afterwards,
equivalent skyline attributes are aggregated (lines 7–10). Equivalent skyline
attributes, for example, of the e-commerce motivating example would be price
and rating attributes. Aggregation for the price of milk, eggs, and bread would
be performed to obtain a total price. Finally, line 11 applies a single-table skyline
algorithm to remove all dominated packages.

The limitations of such an algorithm are fairly obvious. First, many unnec-
essary joins are performed. Furthermore, if the result of joins is large, the input
to the Cartesian product operation will be very large even though it is likely

10 M. Sessoms and K. Anyanwu

item1 item2 item3 store1 store2 store3 total
price

average
rating

milk eggs bread A B C 10 5
milk eggs bread B B A 7 5

Fig. 3. Resulting tables of JCPS

that only a small fraction of the combinations produced will be relevant to the
skyline. The exponential increase of tuples after the Cartesian product phase
will result in a large number of tuple-pair comparisons while performing a sky-
line algorithm. In addition, duplicates will have to be eliminated. To gain better
performance, it is crucial that some tuples be pruned before entering into the
Cartesian product phase, which is discussed next.

3.2 RSJFH-CPS Algorithm

A pruning strategy that prunes the input size of the Cartesian product opera-
tion is crucial to achieving efficiency. One possibility is to exploit the following
observation: skyline packages can be made up of only target resources that are in
the skyline result when only one constraint (e.g., milk) is considered (note that
a query with only one constraint is equivalent to an item skyline query).

Lemma 1. Let ρ = {p1p2 . . . pn} be a package of size n (i.e., containing n target
resources), P be the set of all skyline packages, and p′

1, p
′
2, . . . , p

′
n be other target

resources with respect to a qualifying constraint C1, C2, . . . Cn. If ρ ∈ P, then
pm �Cm

p′
m for all 1 ≤ m ≤ n.

Proof. Let ρ′ = {p1p2 . . . p′
n}, where pn �Cn

p′
n, and let x1, x2, . . . , xm be the

preference attributes for pn and p′
n. Since pn �Cn

p′
n, pn[xj] � p′

n[xj] for some
1 ≤ j ≤ n. Therefore, A1≤i≤n(pi[xj]) � A1≤i≤n(p′

i[xj]), where A is a monotonic
aggregation function and p′

i ∈ ρ′. Since for any 1 ≤ k ≤ n, where k �= j,
A1≤i≤n(pi[xk]) = A1≤i≤n(p′

i[xk]). This implies that ρ � ρ′. Thus, ρ′ is not a
skyline package. �

As an example, let ρ = {p1p2} and ρ′ = {p1p
′
2} and x1, x2 be the preference

attributes for p1, p2, p
′
2. We define the attribute values as follows: p1 = (3, 4), p2 =

(3, 5), and p′
2 = (4, 5). Assuming the lowest values are preferred, p2 � p′

2 and

Enabling a Package Query Paradigm on the Semantic Web 11

p2[x1] � p′
2[x1]. Therefore, A1≤i≤2(pi[x1]) � A1≤i≤2(p′

i[x1]). In other words,
(p1[x1] + p2[x1]) � (p1[x1] + p′

2[x1]), i.e., (3 + 3 = 6 � 7 = 3 + 4). Since all
attribute values except p′

2[x1] remained unchanged, by definition of skyline we
conclude ρ � ρ′.

This lemma suggests that the skyline phase can be pushed ahead of the
Cartesian product step as a way to prune the input of the JCPS. Even greater
performance can be obtained by using a skyline-over-join algorithm, RSJFH
[16], that combines the skyline and join phase together. RSJFH takes as input
two VPTs sorted on the skyline attributes. We call this algorithm RSJFH-CPS.
This lemma suggests that skylining can be done in a divide-and-conquer manner
where a skyline phase is introduced for each constraint, e.g., milk, (requiring 3
phases for our example) to find all potential members of skyline packages which
may then be fed to the Cartesian product operation.

Given the VPTs hasIName, hasSName, hasItem, hasPrice, and hasRating
obtained from Fig. 1, solving the skyline package problem using RSJFH-CPS
involves the following steps:

1. I2 ← hasSName �� hasItem �� hasRating
2. For each target t (e.g., milk)

(a) I1t ← σt(hasIName) �� hasPrice
(b) St ← RSJFH(I1t , I2)

3. Perform a Cartesian product on all tables resulting from step 2b
4. Aggregate the necessary attributes (e.g., price and rating)
5. Perform a single-table skyline algorithm

Figure 4a shows two tables, where the left one, for example, depicts step (a)
for milk, and the right table represents I2 from step 1. These two tables are
sent as input to RSJFH, which outputs the table in Fig. 4b. These steps are
done for each target, and so in our example, we have to repeat the steps for
eggs and bread. After steps 1 and 2 are completed (yielding three tables, e.g.,
milk, eggs, and bread), a Cartesian product is performed on these tables, as
shown in Fig. 4c, which produces a table similar to the one in Fig. 3b. Finally,
a single-table skyline algorithm is performed to discard all dominated packages.

Algorithm 2 shows the pseudocode for RSJFH-CPS The main difference
between JCPS and RSJFH-CPS appears in line 5–8. For each target, a select
operation is done to obtain all like targets, which is then joined with another
VPT containing a skyline attribute of the targets. This step produces a table for
each target. After the remaining tables are joined, denoted as I2 (line 4), each
target table I1i along with I2 is sent as input to RSJFH for a skyline-over-join
operation. The resulting target tables undergo a Cartesian product phase (line
9) to produce all possible combinations, and then all equivalent attributes are
aggregated (lines 10–12). Lastly, a single-table skyline algorithm is performed to
discard non-skyline packages (line 13). Since a skyline phase is introduced early
in the algorithm, the input size of the Cartesian product phase is decreased,
which significantly improves execution time compared to JCPS.

12 M. Sessoms and K. Anyanwu

&I1 milk &I1 2

&I4 milk &I4 3

&S1 A &S1 &I1 &S1 5

&S1 A &S1 &I2 &S1 5

item price store rating
milk 2 A 5
milk 3 B 5

item price store rating

milk 2 A 5

item price store rating

eggs 3 B 5

item price store rating

bread 5 A 4

Fig. 4. Resulting tables of RSJFH

Algorithm 2: RSJFH-CPS
Input: V PT1, V PT2, . . . V PTx containing skyline attributes s1, s2, . . . , sy, and

corresponding aggregation functions As1(T), As2(T), . . . , Asy (T) on table T
Output: Package Skyline P
1: n ← package size
2: t1, t2, . . . , tn ← targets of the package
3: V PT1 contains targets and V PT2 contains a skyline attribute of the targets
4: I2 ← V PT3 �� · · · �� V PTx

5: for all i ∈ [1, n] do
6: I1

i ← σti(V PT1) �� V PT2

7: Si ← RSJFH(I1
i , I2)

8: end for
9: T ← S1 × S2 × · · · × Sn

10: M1 ← A(Ts1)
11: for all i ∈ [2, y] do
12: Mi ← A(M(i−1)si

)
13: end for
14: P ← skyline(My)
15: return P

Enabling a Package Query Paradigm on the Semantic Web 13

store price store price store price store value
a 2 g 5 e 3 e 5
b 3 a 7 b 4 i 5
f 3 c 8 a 5 c 12
e 4 e 8 i 8 f 13
g 6 h 9 g 5 h 14
e 9 b 10 f 6 g 18
h 9 d 10 h 6 a 20
d 10 d 10 d 21

b 22

RATINGMILK EGGS BREAD

Fig. 5. Target qualifying (milk, eggs, bread) and target descriptive (rating) tables for
E-commerce example

4 Algorithms for Package Skyline Queries over the
TDTQ Storage Model

4.1 The TDTQ Storage Model

While the previous two approaches, JCPS and RSJFH-CPS, rely on VPTs, the
next approach is a multistage approach in which the first phase is analogous to
the build phase of a hash-join. In our approach, we construct two types of tables:
target qualifying tables and target descriptive tables, called TDTQ. Target qual-
ifying tables are constructed from the target qualifying triple patterns (?item
hasIName “milk”) and the triple patterns that associate them with the targets
(?store sells ?item). In addition to these two types of triple patterns, a triple
pattern that describes the target qualifier that is associated with a preference is
also used to derive the target qualifying table. In summary, these three types of
triple patterns are joined per given constraint and a table with the target and
preference attribute columns are produced. The left three tables in Fig. 5 show
the the target qualifying tables for our example (one for each constraint). The
target descriptive tables are constructed per target attribute that is associated
with a preference, in our example rating for stores. These tables are constructed
by joining the triple patterns linking the required attributes and produce a com-
bination of attributes and preference attributes (store name and store rating
produced by joining hasRating and hasSName). The rightmost table in Fig. 5
shows the target descriptive table for our example.

We begin by giving some notations that will aid in understanding of the
TDTQ storage model. In general, the build phase produces a set of partitioned
tables T1, . . . , Tn, Tn+1, . . . , Tm, where each table Ti consists of two attributes,
denoted by T 1

i and T 2
i . We omit the subscript if the context is understood or if

the identification of the table is irrelevant. T1, . . . , Tn are the target qualifying
tables where n is the number of qualifying constraints. Tn+1, . . . , Tm are the
target descriptive tables, where m− (n+1)+1 = m−n is the number of target
attributes involved in the preference conditions.

14 M. Sessoms and K. Anyanwu

4.2 CPJS and SkyJCPS Algorithms

Given the TDTQ storage model presented previously, one option for computing
the package skyline would be to perform a Cartesian product on the target
qualifying tables, and then joining the result with the target descriptive tables.
We call this approach CPJS (Cartesian product, Join, Skyline), which results in
exponential time and space complexity. Given n targets and m target qualifiers,
nm possible combinations exist as an intermediate result prior to performing a
skyline algorithm. Each of these combinations is needed since we are looking for
a set of packages rather than a set of points. Depending on the preferences given,
additional computations such as aggregations are required to be computed at
query time. Our objective is to find all package skylines efficiently by eliminating
unwanted tuples before we perform a Cartesian product. Algorithm 3 shows the
CPJS algorithm for determining package skylines.

Algorithm 3: CPJS
Input: T1, T2, . . . Tn, Tn+1, . . . , Tm

Output: Package Skyline P
1: I ← T1 × T2 × · · · × Tn

2: for all i ∈ [n + 1, m] do
3: I ← I �� Ti

4: end for
5: P ← skyline(I)
6: return P

CPJS begins by finding all combinations of targets by performing a Cartesian
product on the target qualifying tables (line 1). This resulting table is then joined
with each target descriptive table, yielding a single table (line 3). Finally, a single-
table skyline algorithm is performed to eliminate dominated packages (line 5).

Applying this approach to the data in Fig. 5, one would have to compute all
448 possible combinations before performing a skyline algorithm. The number
of combinations produced from the Cartesian product phase can be reduced
by initially introducing a skyline phase on each target, e.g., milk, as we did
in for RSJFH-CPS. We call this algorithm SkyJCPS. Although similarities to
RSJFH-CPS can be observed, SkyJCPS yields better performance due to the
reduced number of joins. Figure 4a clearly illustrates that RSJFH-CPS requires
four joins before an initial skyline algorithm can be performed. All but one of
these joins can be eliminated by using the TDTQ storage model. To illustrate
SkyJCPS, given the TDTQ tables in Fig. 5, solving the skyline package problem
involves the following steps:

1. For each target qualifying table TQi (e.g., milk)
(a) ITQi

← (TQi) �� rating
(b) I ′

TQi
← skyline(ITQi

)
2. CPJS(I ′

TQ1
, . . . , I ′

TQi
, rating)

Enabling a Package Query Paradigm on the Semantic Web 15

12

14

16

18

20

22

8 10 12 14 16 18
R
at
in
g

Price

1/16 1/14 1/12 1/10 1

(age)

abbb)

Fig. 6. Skyline region

Since the dominating cost of answering skyline package queries is the Carte-
sian product phase, the input size of the Cartesian product can be reduced by
performing a single-table skyline algorithm over each target.

4.3 SkyPackage Algorithm

Our algorithm attempts to discern the skyline set by stepping through sorted
sub-lists in a way that guarantees we move towards the skyline set. This strategy
relies on being able to discover the best package in one dimension, which means
we are guaranteed that no future packages will be dominated by this one. From
Fig. 5, the package consisting of the first tuple from each of the target qualifying
tables (age) constitutes a package skyline. Also, the package that has the best
rating can be found by looking at the rating table for the highest rating, which
is b. Thus, package (bbb) is a package skyline. To illustrate this, consider the
two packages in Fig. 6, {(age),$10,14} and {(bbb), $17,22}. All future package
skylines must fall between these two packages. We depict this in the shaded
area. Any package that does not lie within this region can be immediately dis-
carded. However, candidate packages may fall within this area and will need to
be checked for membership in the skyline package.

Pruning and Early Termination. Since performing a Cartesian product is
expensive and its output size to the number of package skylines ratio is very
large, it is desirable to decrease this intermediate result. Therefore, we have to
eliminate targets that cannot possibly be in the skyline set when packaged with
any other available targets. While the naive approach would have to compose the
packages and then perform a skyline to filter out unwanted tuples, our pruning
technique offers local prunability that prunes tuples, i.e., targets, from individual
target qualifiers before we form the packages.

To illustrate the concept of local pruning, consider the milk and rating tables
in Fig. 5. We present in Fig. 7 four iterations where each iteration indicates a
new tuple being examined. As we look at each store in the milk table, we probe

16 M. Sessoms and K. Anyanwu

store value
b 5
a 5
c 12
f 13
h 14
g 18
i 20
d 21
e 22

RATING
store price

a 2
f 3
b 3
e 4
g 6
e 9
h 9
d 10

MILK
store value

b 5
a 5
c 12
f 13
h 14
g 18
i 20
d 21
e 22

RATING

store price
a 2
f 3
b 3
e 4
g 6
e 9
h 9
d 10

MILK
store value

b 5
a 5
c 12
f 13
h 14
g 18
i 20
d 21
e 22

RATING

store price
a 2
f 3
b 3
e 4
g 6
e 9
h 9
d 10

MILK

store price
a 2
f 3
b 3
e 4
g 6
e 9
h 9
d 10

MILK
store value

b 5
a 5
c 12
f 13
h 14
g 18
i 20
d 21
e 22

RATING

Iteration 1 Iteration 2

Iteration 3 Iteration 4

k
k k

k

k-1

k-1k-1 k

k
k

k

Fig. 7. Pruning example

the rating table and keep a pointer at its value. The first tuple examined, i.e.,
first iteration, in the milk table is (a, 2). We probe the rating table to locate
store a, and keep a pointer there for the next iteration(s). In the second iteration,
we examine the next tuple (f, 3) and probe the rating table again. We compare
its value against the previous pointer, denoted as k−1. Since the current store is
better than the previous store, we remove the pointer from store a and continue
to the third iteration. As usual, the current tuple (b, 3) is used to probe the
rating table. In this case, the current pointer k (b, 5) is worse than the previous
pointer k − 1 (f, 13), and thus we prune the tuple (b, 3). Because the current
pointer that points to (f, 13) is no better than the previous pointer, we save this
pointer and examine the next tuple as shown in iteration 4.

The concept of local prunability is formalized in the following lemma.

Lemma 2 (Pruning). Let Tj [k] be the value of object k in table Tj, then ∀k ∈
Ti

1, i ∈ [1, n], if ∃j ∈ [n+ 1,m] such that Tj [k − 1] ≺ Tj [k], and Ti[k − 1] � Ti[k]
then object k does not produce a package skyline and can be pruned from Ti.

Proof. Since Ti is sorted in the preprocessing phase of our database, we know
Ti[k − 1] � Ti[k]. Assume that k produces a package skyline (is part of the
combination). Then, if Tj [k] � Tj [k−1], object k−1 dominates k, thus k cannot
be part of the package skyline. �

Lemma 2 ensures that any combination where k appears is not a package
skyline. If we denote the size of each table T as |T |, then for each tuple pruned
in Ti, the size of the resulting Cartesian product is reduce to |T1| × |T2| × · · · ×

Enabling a Package Query Paradigm on the Semantic Web 17

store price store price store price
a 2 g 5 e 3
b 3 a 7 b 4

b 10

MILK EGGS BREAD

Fig. 8. Pruning and early termination result

package price rating
age 10 14.3
agb 11 20
bgb 12 20.7
bab 14 21.3
bbb 17 22

Fig. 9. Skyline package result

(|Ti| − 1) × · · · × |Tn|. To illustrate this, after tuple (b, 3) is pruned in Fig. 4, the
Cartesian product size is reduced from 448 to 392 tuples.

We define the previous object to be a pointer to the best last seen object
and the pointer is updated when a better object is examined. In Lemma 2, we
denote the current object as k and the previous object as k − 1. If Lemma 2 is
not satisfied, the pointer that once pointed to k − 1 is updated to point to k.

To increase performance of our algorithm, we utilize the following early ter-
mination strategy for each resource.

Lemma 3 (Early Termination). If k is the current object in Ti and for all
j ∈ [n + 1,m], Tj [k] is the best in Tj, then stop examining Ti and continue to
Ti+1, i + 1 ≤ n.

Proof. Assume there exists an object k + 1 in Ti that has not been examined.
Then Ti[k] � Ti[k + 1], and Tj [k] � Tj [k + 1]. If Tj [k + 1] �= Tj [k], then Tj [k] ≺
Tj [k+1]. Then for any object after k, Ti[k] � Ti[k+1] � Ti[k+2] · · · . Therefore,
every object after k is dominated. �

Lemma 3 allows us to stop examining tuples in a given table when the best
object is seen in the target descriptive tables , i.e., rating table. For example,
in Fig. 7, since b has the highest rating, we stop scanning the milk table once b
is examined and prune all tuples below it. If a target qualifying table does not
contain the best object from the target descriptive table, we choose the next
best object such that the target qualifying table contains this object.

After pruning, our next phase is performing a Cartesian product. As the
product is produced, if there exist any tuples that do not satisfy (local) hard
constraints, we discard these. Figure 8 shows the resulting tables after pruning.

After the pruning phase is complete, a Cartesian product is performed among
the target qualifying tables and joined with the target descriptive table(s) for

18 M. Sessoms and K. Anyanwu

aggregation. In Fig. 8, a Cartesian product involving the milk, eggs, and bread
tables is performed to find (1) all packages and (2) total price. The intermediate
result is then joined with the rating table to find the average rating. If there
exists any tuples that do not satisfy (global) hard constraints, we discard these.
A skyline algorithm is performed to remove any packages that are not skyline
packages. The final skyline package set is shown in Fig. 9.

Discussion. Now that we have provided a concrete example of the SkyPackage
algorithm, we will now explain the pseudocode in Algorithm 4. Lines 1–3 of
the algorithm explain some notations that are used within the algorithm. Once
the query is issued, we examine each of the n tables (line 4) one row at time (line
6), keeping a pointer p that points to the n + 1 table that has the best value.
With each iteration, we initialize ptr (line 5) to the first object in Ti mapped to
Tn+1. Then we check whether Lemma 2 holds (line 7). Lines 8–14 handles the
case when two consecutive objects have the same value in Ti. In this case, the
tuple with the worse value in Tn+1 is pruned. Lines 15–17 are similar to lines
8–14 except the equality checks are done on Tn+1 rather than Ti. That is if two
objects have the same value in Tn+1, we prune the tuple that has the smallest
value in Ti. In line 18, we reach our early termination check, Lemma 3. We can
safely stop examining the current table when we access an object that has the
lowest value in tn+1. It can easily be showed that any tuple after this one cannot
be in the skyline set. At this point, ptr can no longer be updated since any
subsequent tuple will have a higher value in tn+1. If local constraints are given,
we perform a check in line 19 to determine whether the current tuple satisfies the
constraints. If the current tuple is not satisfied, all tuples below and including
this one are pruned. We then join the tables, removing any tuples that do not
satisfy any global constraints. Lastly, any known skyline algorithm is performed.

5 Sesame Integration Framework

5.1 Sesame

Sesame [14] is an open-source RDF database implemented in Java whose archi-
tecture allows for persistent storage of RDF data and querying of that data. We
chose Sesame as our RDF engine for a number of reasons. First, since Sesame is
a server-based application, it allowed us to store and query data on the Seman-
tic Web remotely. Second, Sesame does not require a specific communication
protocol or storage mechanism to be used.

5.2 Framework

The data that was used in the framework was the MovieLens1 dataset, which
was converted to RDF format using the Jena API [15]. Its ontology is depicted
in Fig. 10. We used a server with Linux and an Apache Tomcat Web container.
1 http://www.grouplens.org/node/73/

http://www.grouplens.org/node/73/

Enabling a Package Query Paradigm on the Semantic Web 19

Algorithm 4: SkyPackage
Input: T1, T2, . . . Tn, Tn+1, . . . , Tm

Output: Package Skyline P
1: vk(i) ← the value of object k in table i
2: k ← the current object (i.e., row)
3: ptr ← the best object
4: for all i ∈ [1, n] do
5: ptr ← vx(n + 1), x ← first tuple in i
6: for all k ∈ ti do
7: check whether Lemma 2 holds
8: if vk(i) = vk−1(i) then
9: if vk(n + 1) > vk−1(n + 1) then

10: prune (k, vk(i))
11: else
12: prune (k − 1, vk−1(i))
13: end if
14: end if
15: if vk(n + 1) = vk−1(n + 1) then
16: prune max {(k, vk(i)), (k − 1, vk−1(i))}
17: end if
18: check whether Lemma 3 holds
19: check k against local constraints
20: end for
21: end for
22: cross product, remove tuples not satisfying global constraints
23: skyline

A Web-based interface was designed to allow users to query a subset of the
MovieLens dataset. Although any package-related query can be supported, for
the purpose of this article, we chose to support a query of the following form.

Query 1. Given n movie-raters, find packages of n movies such that the average
rating of all the movies is high and each movie-rater has rated at least one of the
movies.

When the user provides preferences using the Web-based interface, the infor-
mation is sent to the SPARQL adapter that dynamically creates a SPARQL
query. After the SPARQL query is executed and results of this query is avail-
able, the SkyPackage algorithm finds and presents the skyline package(s) that
meet the user’s preferences.

Data Storage. One option of storing RDF triples is to store them in a text file.
However, this is inefficient for large numbers of triples and a solution involving
indexing (e.g., database management system) is more appropriate. Relational
databases, such as MySQL and Oracle, can be used to store such data, but are
usually not optimized for such. Databases that are optimized for storage of RDF
triples are called triplestores.

20 M. Sessoms and K. Anyanwu

stringinteger

hasRating hasUName

hasRated

string

integer hasDate

hasMName

MOVIE USER

Fig. 10. MovieLens ontology

Sesame triplestore stores RDF triples in a repository. Sesame abstracts from
any particular storage mechanism allowing a variety of repositories to be han-
dled, including RDF triplestores and relational databases. Sesame offers several
repositories in which to store data and all differs in where the data is stored. Two
popular repositories are memory store and native store, corresponding to stor-
age in-memory and on-disk, respectively. We used the native store configuration
in our framework since it offers a better scalability solution for larger data sets
as it is not limited to size of available memory. For native store, Sesame provides
B-tree indexes on any combination of the subjects, properties, and objects. The
index key(s) consist of subject (s), predicate (p), object (o), and context (c).
The order in which these fields are listed determines the usability of the index.
We chose to have as the index keys: spoc and opsc.

Data Retrieval. In order to retrieve data from Sesame’s repository, we devised
a skyline package operator, whose ultimate goal is to form queries that when
executed will construct the TQ and TD tables. A description is given on how
the queries for the TQ tables are constructed, followed by a similar description
on how to construct the TD table.

We define SP(C, A, PF) as the skyline package operator that takes as argu-
ments a list of constraints C, a list of properties A, and a list of preferences
PF . In addition, we assume that the following VPTs exist: vpt1, vpt2, . . . , vptm,
vptm+1, . . . , vptn. Moreover, for the purpose of illustration, we assume vpt1, . . . ,
vptm and vptm+1, . . . vptn are sufficient to construct the TQ and TD tables,
respectively. The arguments for the SP operator are defined as follows:

• C = (c1, c2, . . . , cm), where ci are target qualifying constraints
• A = (A1 = (a1, a2), A2 = (a′

1, a
′
2)), where ai and a′

i are variables

A query is constructed for each target qualifying constraint (i.e., m queries)
where the SELECT clause is formed by using variables in A1 (e.g., SELECT
?a1?a2). Within each query, the constraint ci ∈ C can be mapped to a FILTER
clause or to a constraint in a WHERE clause of a SPARQL query. In order to
map the constraints to a WHERE clause, a target qualifying triple pattern is con-
structed for each constraint. Assuming vpt1 contains data to which a constraint
can be applied, the target qualifying triple pattern is specified as (?var :vpt1 ci),

Enabling a Package Query Paradigm on the Semantic Web 21

Fig. 11. Queries used to construct TD and TQ tables

where ?var is some variable. Moreover, the remaining tables vpt2 . . . vptm are
joined together and with the intermediate result of the target qualifying triple
pattern. A similar method can be applied if a FILTER clause is preferred. Instead
of providing a constraint in the target qualifying triple pattern, a new variable is
introduced, as in (?var :vpt1 ?constraint). This constraint variable is then used
in the FILTER clause along with the actual constraint to filter out unwanted
results. An example FILTER clause is FILTER regex(?constraint, c1).

To illustrate this process, consider Query 1 and the ontology depicted in
Fig. 18. Suppose the person issuing the query is interested in the following movie-
raters: user8 and user34. Since the query is requesting movies (i.e., the name of
the movies) whose rating is maximized, we define A = (?movieName, ?rating)
because rating depends on the movie and the movie-rater. In addition, by exam-
ining Fig. 18, we have the following VPTs: hasName, hasRated, hasMName, has-
Rating. Since vpt1 is hasName, we apply each constraint to this table by using
a target qualifying triple pattern, such as (?user hasName “user8”). Therefore,
given C and A1, the two queries in Fig. 12a are constructed, which produces the
TQ tables.

A similiar approach is used to form the TD table. Since no target qualifying
constraints are needed in this case, no FILTER condition is required and the
only argument of interest is A2, which contains variables that will be listed in
the SELECT clause. The WHERE claused is formed by joining vptm+1, . . . vptn.
Continuing from the previous example, we have the following VPTs: hasName,
hasDate, and A2 = (?movieName, ?date). Therefore, the query in Fig. 12b is
constructed.

In order to retrieve data from Sesame’s repository, we implemented a server-
side SPARQL adapter whose primary task is issuing SPARQL queries and serves
as an intermediary between Sesame and SkyPackage. The adapter utilizes
Sesame’s HTTPRepsoitory component to execute the three queries and to
retrieve the results. The results of each query are then stored in a data struc-
ture for processing and sent to SkyPackage along with the list of preferences
PF . After SkyPackage is performed on the data returned from the adapter,
the results are presented to the user. Figure 11 provides a high-level overview
indicating the main components of our framework.

22 M. Sessoms and K. Anyanwu

Sesame

Server

Application
Client

Execute Query Query
Results as Ti

C, A, PF sent
to Adapter Formatted results

SkyPackage

Skyline

Cross
Product

Prune

SPARQL Adapter

For each
ci C

Create
query

using ci
and A

T1

T2

Tm

…

GPTQ

Create
query

using A

GPTD

Format
results

PF

Fig. 12. Framework with SPARQL adapter

6 Evaluation

The main goal of this evaluation was to compare the performance of the proposed
algorithms using both synthetic and real datasets with respect to package size
scalability. In addition we compared the the feasibility of answering the skyline
package problem using the VPT storage model and the TDTQ storage model.

6.1 Setup

All experiments were conducted on a Linux machine with a 2.33GHz Intel Xeon
processor and 40GB memory, and all algorithms were implemented in Java SE
6. All data used was converted to RDF format using the Jena API and stored
in Oracle Berkeley DB.

We compared four algorithms, JCPS, SkyJCPS, RSJFH-CPS, and
SkyPackage. During the skyline phase of each of these algorithms, we used

Enabling a Package Query Paradigm on the Semantic Web 23

the block-nested-loops (BNL) [10] algorithm. The package size metric was used
for the scalability study of the algorithms. Since the Cartesian product phase is
likely to be the dominant cost in skyline package queries, it is important to ana-
lyze how the algorithms perform when the package size grows, which increases
the input size of the Cartesian product phase.

6.2 Synthetic Data

Dataset. Since we are unaware of any RDF data generators that allow genera-
tion of different data distributions, the data used in the evaluations were gener-
ated using a synthetic data generator [2]. The data generator produces relational
data in different distributions, which was converted to RDF using the Jena API.
We generated three types of data distributions: correlated, anti-correlated, and
normal distributions. For each type of data distribution, we generated datasets
of different sizes and dimensions.

Data Size Scalability. The first evaluation was performed to compare execu-
tion time among the three algorithms within the same package size using the
three data distributions. The data consisted of triple sizes ranging from 450 to
635 and package sizes ranging from 2 to 5. While this may appear to be orders of
magnitudes smaller than traditional evaluation corpora, it is important to note
that the search space for package queries grows more aggressively than that of
traditional pattern matching. We chose this triple size range to ensure that pack-
ages of different sizes can easily be compared and also to ensure that evaluation
results would come in a reasonable time for larger package sizes. An increase in
package size implies an increase in the number of tables, which also implies more
Cartesian products. To ensure that the triple size remained approximately the
same across different package sizes, we reduced the number of tuples in each table
as the package size increased. Figure 13 shows the triple size and the number of
tuples in each table for each package size as well as the approximate Cartesian
product size.

While a triple size of 635 may seem small, Fig. 13 indicates that this triple
size yields approximately 52.5 M tuples for a package size of 5 after a Cartesian
product is performed. We were unable to obtain any results for triple size 635
using a package size of 5 for JCPS, as it ran for hours on this dataset. Figures 14
and 15 show the results and are plotted using a logarithmic scale. No anomalies
were found within packages of the same size.

Package Size Scalability. In Fig. 16, we show how the algorithms perform
across packages of size 2 to 5 for the a triple size of approximately 635 triples.
Due to the exponential increase of the Cartesian product phase, this triple size is
the largest possible in order to evaluate all three algorithms. For all package sizes,
SkyJCPS performs better than JCPS because of the initial skyline algorithm
performed to reduce the input size of the Cartesian product phase. RSJFH
outperformed SkyJCPS for packages of size 5. We argue that SkyJCPS may
perform slightly slower than RSJFH on small datasets distributed among many
tables. In this scenario, SkyJCPS has six tables to examine, while RSJFH has

24 M. Sessoms and K. Anyanwu

Fig. 13. Synthetic data triple sizes

0.01

0.1

1

450 500 545 600 635

Ex
ec

uti
on

 T
im

e
(s

ec
)

Triple Size

Normal (package size 2)
SkyPackage RSJFH SkyJCPS JCPS

0.01

0.1

1

10

450 500 545 600 635

Ex
ec

uti
on

 T
im

e
(s

ec
)

Triple Size

Correlated (package size 3)
SkyPackage RSJFH SkyJCPS JCPS

0.01

0.1

1

450 500 545 600 635

Ex
ec

uti
on

 T
im

e
(s

ec
)

Triple Size

Correlated (package size 2)
SkyPackage RSJFH SkyJCPS JCPS

0.01

0.1

1

10

450 500 545 600 635

Ex
ec

uti
on

 T
im

e
(s

ec
)

Triple Size

Normal (package size 3)
SkyPackage RSJFH SkyJCPS JCPS

0.01

0.1

1

10

450 500 545 600 635

Ex
ec

uti
on

 T
im

e
(s

ec
)

Triple Size

Anti-Correlated (package size 3)
SkyPackage RSJFH SkyJCPS JCPS

0.01

0.1

1

450 500 545 600 635

Ex
ec

uti
on

 T
im

e
(s

ec
)

Triple Size

Anti-Correlated (package size 2)
SkyPackage RSJFH SkyJCPS JCPS

Fig. 14. Evaluation results for package sizes 2 and 3

Enabling a Package Query Paradigm on the Semantic Web 25

0.01

0.1

1

10

100

450 500 545 600 635

Ex
ec

uti
on

 T
im

e
(s

ec
)

Triple Size

Correlated (package size 4)
SkyPackage RSJFH SkyJCPS JCPS

0.01

0.1

1

10

100

450 500 545 600 635

Ex
ec

uti
on

 T
im

e
(s

ec
)

Triple Size

Normal (package size 4)
SkyPackage RSJFH SkyJCPS JCPS

0.01

0.1

1

10

100

450 500 545 600 635

Ex
ec

uti
on

 T
im

e
(s

ec
)

Triple Size

Anti-Correlated (package size 4)
SkyPackage RSJFH SkyJCPS JCPS

0.01

0.1

1

10

100

1000

450 500 545 600 635

Ex
ec

uti
on

 T
im

e
(s

ec
)

Triple Size

Correlated (package size 5)
SkyPackage RSJFH SkyJCPS JCPS

0.01

0.1

1

10

100

1000

10000

450 500 545 600 635
Ex

ec
uti

on
 T

im
e

(s
ec

)

Triple Size

Normal (package size 5)
SkyPackage RSJFH SkyJCPS JCPS

0.01

0.1

1

10

100

1000

450 500 545 600 635

Ex
ec

uti
on

 T
im

e
(s

ec
)

Triple Size

Anti-Correlated (package size 5)
SkyPackage RSJFH SkyJCPS JCPS

Fig. 15. Evaluation results for package sizes 4 and 5

only two tables. Evaluation results from the real datasets, which is discussed
next, ensure us that SkyJCPS significantly outperforms RSJFH when the
dataset is large and distributed among many tables. Due to the logarithmic scale
used, it may seem that some of the algorithms have the same execution time for
equal sized packages. This is not the case, and since BNL was the single-table
skyline algorithm used, the algorithms performed best using correlated data and
worst using anti-correlated data.

Average Prunability. To evaluate SkyPackage’s prunability, we collected the
number of tuples that entered the Cartesian product phase and compared it to
the total number of initial tuples for each data distribution and triple size. We
then took the average over the three data distributions. The average prunability
results can be seen in Fig. 17. As the package size increases, a larger percentage
of tuples enters the Cartesian product phase. Even though the triple size remains
approximately the same in all packages, the total number of tuples increases as
the package size grows. For example, a triple size of 635 for a package of size 2
consists of 140 tuples, whereas a package of size 5 has 175 tuples (a 25 % increase).

26 M. Sessoms and K. Anyanwu

Fig. 16. Scalability for package sizes 2–5

From our experiment, we discovered that as the number of tuples increases, the
percentage of skyline packages decreases. Also, while performing SkyJCPS, we
found that the number of skyline tuples in the initial skyline phase increased as
the number of tuples increased. Although the skyline size increased, the ratio
between the skyline size and the number of tuples decreased, yielding a lower
percentage. We argue that this is also the case with SkyPackage.

6.3 MovieLens Dataset

The first real-world dataset evaluated was MovieLens2, which consisted of 10
million ratings and 10,000 movies.

Package-size Scalability and Prunability. We randomly chose a subset of
users, with partiality to those who have rated a large number of movies, from
the dataset for use in our package-size evaluations. The users consisted of those
with IDs 8, 34, 36, 65, and 215, who rated 800, 639, 479, 569, and 1,242 movies,
respectively. We used Query 1, where n = 3, 4, 5 for evaluation. The packages
of size 3 consisted of users with IDs 8, 34, and 36, packages of size 4 included
those three as well as the user with ID 65, and packages of size 5 included all
five users. In formal notation, the query where n = 3 (a similar query is used for
n = 4, 5) is GP[r,X,F,PF], where

2 http://www.grouplens.org/node/73/

http://www.grouplens.org/node/73/

Enabling a Package Query Paradigm on the Semantic Web 27

84

86

88

90

92

94

2 3 4 5

Pe
rc

en
t P

ru
ne

d
Package Size

Average Prunability
SkyPackage

Fig. 17. Prunability of synthetic data

0.01

0.1

1

10

100

3 4 5

Ex
ec

u
on

 T
im

e
(s

ec
)

Package Size

MovieLens
SkyPackage SkyJCPS RSJFH JCPS

Fig. 18. Package size scalability for MovieLens

• r = ?movie
• X = {(?movieRater, hasName, “8”), (?movieRater, hasName, “34”),

(?movieRater, hasName, “36”) }
• F = {SR = average()rating}
• PF = {(SR;≺max)}

The results of this experiment can be seen in Fig. 18. It is easily observed
that SkyPackage performed better in all cases. We were unable to obtain any
results from JCPS as it ran for hours. The next worst performing algorithm
was RSJFH, followed by SkyJCPS. Due to the number of joins required to
construct the tables in the format required by RSJFH, most of its time was
spent during the initial phase, i.e., before the Cartesian product phase. Figure 19
shows the percent of tuples pruned by SkyPackage. In all three package sizes,
approximately 99 % of the tuples were pruned.

6.4 Book-Crossing Dataset

The next real dataset used for evaluations was Book-Crossing3, which consists
of approximately 271,000 books rated by approximately 278,000 users.

Package-size Scalability and Prunability. Using a similar approach as we
did with the MovieLens dataset, we randomly chose a subset of users for eval-
uating packages of different sizes. The users consisted of those with IDs 11601,
3 http://www.informatik.uni-freiburg.de/∼cziegler/BX/dataset

http://www.informatik.uni-freiburg.de/~cziegler/BX/dataset

28 M. Sessoms and K. Anyanwu

90

92

94

96

98

100

3 4 5

Pe
rc

en
t P

ru
ne

d

Package Size

MovieLens Prunability
SkyPackage

Fig. 19. Prunability of MovieLens dataset

11676, 16795, 23768, and 23902, who rated 1,571, 13,602, 2,948, 1,708, and
1,503 books, respectively. The target descriptive table contained approximately
271,000 tuples, i.e., all the books. We used Query 2, where n = 3, 4, 5 for evalu-
ation.

Query 2. Given n book-raters, find packages of n books such that the average
rating of all the books is high and each book-rater has rated at least one of the
books.

In formal notation, the query where n = 3 (a similar query is used for n =
4, 5) is GP[r,X,F,PF], where

• r = ?book
• X = {(?bookRater, hasName, “11601”), (?bookRater, hasName, “11676”),

(?bookRater, hasName, “16795”) }
• F = {SR = average()rating}
• PF = {(SR;≺max)}

The packages of size 3 consisted of users with IDs 11601, 11676, and 16795,
packages of size 4 included those three as well as the user with ID 23768, and
packages of size 5 included all five users. The results of this experiment can
be seen in Fig. 20. The Book-Crossing dataset followed the same performance
pattern as the MovieLens datasets, i.e., SkyPackage performed the best while
RSJFH performed the worst. Although the overall execution time of the Book-
Crossing dataset was longer than the MovieLens dataset, the data we used from
the Book-Crossing dataset consisted of more tuples. Fig. 21 shows the percent
of tuples pruned by SkyPackage from the Book-Crossing dataset.

6.5 Storage Model Evaluation

For each of the above experiments, we evaluated our storage model by comparing
the time it took to load the RDF file into the database using our storage model
versus using VPTs. All data was indexed using a B-trees.

For the synthetic data, we took the average time over the three data distri-
butions of the same package size. Figure 22a shows the results for packages of

Enabling a Package Query Paradigm on the Semantic Web 29

0.1

1

10

100

1000

10000

3 4 5

Ex
ec

uti
on

 T
im

e
(s

ec
)

Package Size

Book-Crossing
SkyPackage SkyJCPS RSJFH JCPS

Fig. 20. Package size scalability for Book-Crossing

78

80

82

84

86

88

3 4 5

Pe
rc

en
t P

ru
ne

d

Package Size

Book-Crossing Prunability
SkyPackage

Fig. 21. Prunability of Book-Crossing dataset

0

0.1

0.2

0.3

0.4

0.5

0.6

2 3 4 5

Ex
ec

uti
on

 T
im

e
(s

ec
)

Package Size

Synthetic Data Loading
SkyPackage VPT

25.5
26

26.5
27

27.5
28

28.5
29

29.5

3 4 5

Ex
ec

uti
on

 T
im

e
(s

ec
)

Package Size

Book-Crossing Data Loading
SkyPackage VPT

0

1

2

3

4

5

3 4 5

Ex
ec

uti
on

 T
im

e
(s

ec
)

Package Size

MovieLens Data Loading
SkyPackage VPT

Fig. 22. Database build

30 M. Sessoms and K. Anyanwu

size 2, 3, 4, and 5. In Fig. 22b, c, we show the time of inserting the MovieLens
and the Book-Crossing datasets, respectively, for packages of size 3, 4, and 5.

For both the synthetic and MovieLens datasets, loading the data using our
storage model took longer than using VPTs. The number of tables created using
both approaches are not always equal, and either approach could have more
tables than the other. Since the time to load the data is roughly the same for
each package size, the number of tables created does not necessarily have that
much effect on the total time. Our approach imposes additional time because of
the triple patterns that must be matched, as explained in Sect. 4.1. Since the
time difference between the two is small and the database only has to be built
once, it is more efficient to use our storage model with SkyPackage than using
VPTs.

7 Conclusion and Future Work

This article addressed the problem of answering package skyline queries. We
have formalized and described what constitutes a “package” and have defined
the term skyline packages. Package querying is especially useful for cases where a
user requires multiple objects to satisfy certain constraints. We introduced three
algorithms for solving the package skyline problem. Future work will consider
the use of additional optimization techniques such as prefetching to achieve
additional performance benefits as well as the integration of top-k techniques to
provide ranking of the results when the size of query result is large.

Acknowledgment. The work presented in this article is partially funded by NSF
grant IIS-0915865.

References

1. Abadi, D., Marcus, A., Madded, S., Hollenbach, K.: Scalable semantic web data
management using vertical partitioning. In: VLDB, Vienna (2007)

2. Barndorff-Nielsen, O., Sobel, M.: On the distribution of the number of admissable
points in a vector random sample. Theor. Probab. Appl. 11(2), 249–269 (1996)

3. Beckett, D.: RDFXML syntax specification. Recommendation, World Wide Web
Consortium (2004). See http://www.w3.org/TR/rdf-syntax-grammar/

4. Beckett, D., Berners-Lee, T.: Turtle - Terse RDF triple language. World Wide Web
Consortium (2011). See http://www.w3.org/TeamSubmission/turtle/

5. Bentley, J.L., Clarkson, K.L., Levine, D.B.: Fast linear expected-time algorithms
for computing maxima and convex hulls. In: SODA, pp. 179–187 (1990)

6. Bentley, J.L., Kung, H.T., Schkolnick, M., Thompson, C.D.: On the average num-
ber of maxima in a set of vectors and applications, pp. 536–543. ACM (1978)

7. Berners-Lee, T., Fielding, R., Irvine, U.C., Masinter, L.: Uniform resource identi-
fiers. (URI), Generic Syntax. IETF (1998)

8. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientif. Am. 284(5),
34–43 (2001)

http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TeamSubmission/turtle/

Enabling a Package Query Paradigm on the Semantic Web 31

9. Boag, S., Chamberlin, D., Fernandez, M.F., Florescu, D., Robie, J., Simeon, J.:
XQuery 1.0: An XML Query Language, 2nd edn. Recommendation, World Wide
Web Consortium (2010). See http://www.w3.org/TR/xquery/

10. Borzsonyi, S., Kossmann, D., Stocker, K.: The Skyline operator. In: ICDE, Heidel-
berg, pp. 421–430 (2001)

11. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible
Markup Language (XML) 1.0. Recommendation, World Wide Web Consortium
(2000). See http://www.w3.org/TR/2008/REC-xml-20081126/

12. Brickley, D., Guha, R.V.: Resource Description Framework (RDF) Schema Speci-
fication 1.0 Canditate Recommendation, World Wide Web Consortium (2000). See
http://www.w3.org/TR/2000/CR-rdf-schema-20000327

13. Broekstra, J.: SeRQL: Sesame RDF query language. SWAD-Europe, pp. 55–68
(2003)

14. Broekstra, J., Kampman, A., Harmelen, F.V.: Sesame: A generic architecture for
storing and querying RDF and RDF schema. In: ISWC, pp. 54–68 (2012)

15. Carrol, J., McBride, B.: The Jena semantic web toolkit. Public API, HP-Labs,
Bristol (2001). See http://www.hpl.hp.com/semweb/jena-top.html

16. Chen, L., Gao, S., Anyanwu, K.: Efficiently evaluating skyline queries on RDF
databases. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis,
D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp.
123–138. Springer, Heidelberg (2011)

17. Chomicki, J.: Preference formulas in relational queries. TODS 28(4), 427–466
(2003)

18. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE,
pp. 717–719 (2003)

19. Grant, J., Beckett, D.: RDF test cases. Recommendation, World Wide Web Con-
sortium (2004). See http://www.w3.org/TR/rdf-testcases/#ntriples

20. Deng, T., Fan, W., Geerts, F.: On the complexity of package recommendation
problems. PODS, pp. 261–272 (2012)

21. Feigenbaum, L., Williams, G.T., Clark, K.G., Torress Hayes, E.: SPARQL 1.1
Protocol. Working draft. World Wide Web Consortium (2001). See http://www.
w3.org/TR/sparql11-protocol/

22. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.:
RQL: A declarative query language for RDF. World Wide Web, pp. 592–603 (2002)

23. Khabbaz, M., Lakshmanan, L.V.S.: TopRecs: Top-k algorithms for item-based col-
laborative filtering. EDBT, 213–224 (2011)

24. Khalefa, M.E., Mokbel, M.F., Levandoski, J.J.: Skyline query processing for incom-
plete data (2008)

25. KieBling, W.: Foundations of preferences in database systems. In: VLDB, pp. 311–
322 (2002)

26. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: An online algorithm
for skyline queries. In: VLDB, pp. 275–286 (2002)

27. Koudas, N., Li, C., Tung, A.K.H., Vernica, R.: Relaxing join and selection queries.
In: VLDB (2006)

28. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.
JACM 22(4), 469–476 (1975)

29. Lassila, O., Swick, R.R.: Resource description framework (RDF): Model and syntax
specification. Recommendation, World Wide Web Consortium (1999). See http://
www.w3.org/TR/REC-rdf-syntax/

30. Berners-Lee, T., Connolly, D.: Notation3 (N3): A readable RDF syntax. World
Wide Web Consortium (2011). See http://www.w3.org/TeamSubmission/n3/

http://www.w3.org/TR/xquery/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2000/CR-rdf-schema-20000327
http://www.hpl.hp.com/semweb/jena-top.html
http://www.w3.org/TR/rdf-testcases/#ntriples
http://www.w3.org/TR/sparql11-protocol/
http://www.w3.org/TR/sparql11-protocol/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TeamSubmission/n3/

32 M. Sessoms and K. Anyanwu

31. McLain, D.H.: Drawing contours from arbitrary data points. Comput. J. 17(4),
318–324 (1974)

32. Raghavan, V., Rundensteiner, E.: SkyDB: Skyline aware query evaluation frame-
work. In: IDAR (2009)

33. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in data-
base systems. TODS 24(2), 41–82 (2005)

34. Preparata, F., Shamos, M.: Computational Geometry: An Introduction. Springer,
Heidelberg (1985)

35. Seaborne, A.: RDQL - A query language for RDF. World Wide Web Consortium
(2004). See http://www.w3.org/Submission/RDQL/

36. Sessoms, M., Anyanwu, K.: SkyPackage: From finding items to finding a skyline of
packages on the semantic web. Proceedings of the JIST (to appear), (2012)

37. Shah, K., Gadge, J.: Semantic web services for E learning: Engineering and tech-
nology domain. In: IJCTE 2001, pp. 727–731 (2001)

38. Siberski, W., Pan, J.Z., Thaden, U.: Querying the semantic web with preferences.
In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold,
M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 612–624. Springer, Hei-
delberg (2006)

39. Sintek, M., Decker, S.: TRIPLE–A query, inference, and transformation language
for the semantic web. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol.
2342, p. 364. Springer, Heidelberg (2002)

40. Souzis, A.: RxPath specification proposal. See http://rx4rdf.liminalzone.org/
RxPathSpec

41. Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient progressive skyline computation. In:
VLDB, pp. 301–310 (2001)

42. Uschold, M., Gruninger, M.: Ontologies: principles, methods and applications.
Knowl. Eng. Rev. 11(2), 93–136 (1996)

43. Vlachou, A., Doulkeridis, C., Polyzotis,N.: Skyline query processing over joins. In:
SIGMOD, pp. 73–84 (2011)

44. Xie, M. Lakshmanan, L.V.S., Wood, P.T.: Breaking out of the box of recommen-
dations: from items to packages. In: RecSys, pp. 151–158 (2010)

45. Xie, M. Lakshmanan, L.V.S., Wood, P.T.: CompRec-Trip: a composite recommen-
dation system for travel planning. In: ICDE, pp. 1352–1355 (2011)

46. Yiu, M.L., Mamoulis, N.: Efficient processing of top-k dominating queries on multi-
dimensional data. In: VLDB, pp. 483–494 (2007)

47. Jin, W., Ester, M., Hu, Z., Han, J.: The Multi-relational skyline operator. In:
ICDE, pp. 1276–1280 (2007)

48. Guo, X., Xiao, C., Ishikawa, Y.: Combination skyline queries. In: Hameurlain, A.,
Küng, J., Wagner, R., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) Transactions
on Large-Scale Data- and Knowledge-Centered Systems VI. LNCS, vol. 7600, pp.
1–30. Springer, Heidelberg (2012)

http://www.w3.org/Submission/RDQL/
http://rx4rdf.liminalzone.org/RxPathSpec
http://rx4rdf.liminalzone.org/RxPathSpec

	Enabling a Package Query Paradigm on the Semantic Web: Model and Algorithms
	1 Introduction
	2 Background and Problem Definition
	2.1 Related Work

	3 Algorithms for Package Skyline Queries over Vertical Partitioned Tables
	3.1 JCPS Algorithm
	3.2 RSJFH-CPS Algorithm

	4 Algorithms for Package Skyline Queries over the TDTQ Storage Model
	4.1 The TDTQ Storage Model
	4.2 CPJS and SkyJCPS Algorithms
	4.3 SkyPackage Algorithm

	5 Sesame Integration Framework
	5.1 Sesame
	5.2 Framework

	6 Evaluation
	6.1 Setup
	6.2 Synthetic Data
	6.3 MovieLens Dataset
	6.4 Book-Crossing Dataset
	6.5 Storage Model Evaluation

	7 Conclusion and Future Work
	References

