
Transactions on Large-Scale Data- and Know
ledge-Centered System

s XIII

 123

Transactions on
Large-Scale
Data- and Knowledge-
Centered Systems XIIILN

CS
 8

42
0

Abdelkader Hameurlain • Josef Küng • Roland Wagner
Editors-in-Chief

Jo
ur

na
l S

ub
lin

eHam
eurlain · Küng · W

agner Editors-in-Chief

Lecture Notes in Computer Science 8420

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

For further volumes:
http://www.springer.com/series/8637

http://www.springer.com/series/8637

Abdelkader Hameurlain • Josef Küng
Roland Wagner (Eds.)

Transactions on Large-Scale
Data- and Knowledge-Centered
Systems XIII

123

Editors-in-Chief
Abdelkader Hameurlain
IRIT
Paul Sabatier University
Toulouse
France

Josef Küng
Roland Wagner
FAW
University of Linz
Linz
Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-642-54425-5 ISBN 978-3-642-54426-2 (eBook)
DOI 10.1007/978-3-642-54426-2
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014933393

� Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

In the last decade, we have witnessed a continuing data explosion generated by
multiple data sources. These can be material (e.g., sensors), human (e.g., scientific
activities), commercial, etc… The variety of data sources, the huge volumes of data
and their high heterogeneity create new problems at two levels: methodological and
engineering. In large-scale environments, data modelling, knowledge discovery,
information filtering and efficient querying of data sources present an important and
challenging issue.

This volume contains 6 fully revised selected regular papers. Its content covers a
wide range of different hot topics in the field of data management, mainly: federated
data sources, information filtering, web data clouding, query reformulation, package
skyline queries, and SPARQL query processing over a LaV (Local-as-View) inte-
gration system.

We would like to express our thanks to the Editorial Board for thoroughly refer-
eeing the submitted papers and ensuring the high quality of this volume. Special
thanks go to Gabriela Wagner for her availability and her valuable work in the
realization of this TLDKS volume.

January 2014 Abdelkader Hameurlain
Josef Küng

Roland Wagner

Editorial Board

Reza Akbarinia INRIA, France
Stéphane Bressan National University of Singapore, Singapore
Francesco Buccafurri Università Mediterranea di Reggio Calabria, Italy
Yuhan Cai A9.com, USA
Qiming Chen HP-Lab, USA
Tommaso Di Noia Politecnico di Bari, Italy
Dirk Draheim University of Innsbruck, Austria
Johann Eder Alpen Adria University Klagenfurt, Austria
Stefan Fenz Vienna University of Technology, Austria
Georg Gottlob Oxford University, UK
Anastasios Gounaris Aristotle University of Thessaloniki, Greece
Theo Härder Technical University of Kaiserslautern, Germany
Dieter Kranzlmüller Ludwig-Maximilians-Universität München, Germany
Philippe Lamarre University of Nantes, France
Lenka Lhotská Technical University of Prague, Czech Republic
Vladimir Marik Technical University of Prague, Czech Republic
Mukesh Mohania IBM India, India
Tetsuya Murai Hokkaido University, Japan
Gultekin Ozsoyoglu Case Western Reserve University, USA
Torben Bach Pedersen Aalborg University, Denmark
Günther Pernul University of Regensburg, Germany
Klaus-Dieter Schewe University of Linz, Austria
Makoto Takizawa Seikei University Tokyo, Japan
David Taniar Monash University, Australia
A Min Tjoa Vienna University of Technology, Austria
Chao Wang Oak Ridge National Laboratory, USA

Contents

Enabling a Package Query Paradigm on the Semantic Web:
Model and Algorithms. 1

Matthew Sessoms and Kemafor Anyanwu

SemLAV: Local-As-View Mediation for SPARQL Queries 33
Gabriela Montoya, Luis-Daniel Ibáñez, Hala Skaf-Molli, Pascal Molli,
and Maria-Esther Vidal

Query Reformulation in PDMS Based on Social Relevance 59
Angela Bonifati, Gianvito Summa, Esther Pacitti, and Fady Draidi

Distributed Large-Scale Information Filtering. 91
Christos Tryfonopoulos, Stratos Idreos, Manolis Koubarakis,
and Paraskevi Raftopoulou

RUBIK: Proactive, Entity-Centric and Personalized Situational
Web Application Design . 123

Devis Bianchini, Silvana Castano, Valeria De Antonellis,
Alfio Ferrara, Elisa Quintarelli, and Letizia Tanca

Mining Multiple Related Data Sources Using Object-Oriented Model 158
C. I. Ezeife and Dan Zhang

Author Index . 187

http://dx.doi.org/10.1007/978-3-642-54426-2_1
http://dx.doi.org/10.1007/978-3-642-54426-2_1
http://dx.doi.org/10.1007/978-3-642-54426-2_2
http://dx.doi.org/10.1007/978-3-642-54426-2_3
http://dx.doi.org/10.1007/978-3-642-54426-2_4
http://dx.doi.org/10.1007/978-3-642-54426-2_5
http://dx.doi.org/10.1007/978-3-642-54426-2_5
http://dx.doi.org/10.1007/978-3-642-54426-2_6

Enabling a Package Query Paradigm on
the Semantic Web: Model and Algorithms

Matthew Sessoms(B) and Kemafor Anyanwu

Semantic Computing Research Lab, Department of Computer Science,
North Carolina State University, Raleigh, NC, USA

{mwsessom,kogan}@ncsu.edu
http://www.ncsu.edu

Abstract. The traditional search model of finding links on the Web is
unsatisfactory for the increasingly complex tasks that seek to leverage
the diverse, increasingly structured and semantically annotated data on
the Web. A good example is when users seek to find collections or pack-
ages of resources that meet some constraints e.g., a collection of learning
resources that cover some topics and have a good average rating or a
collection of tourist attractions in a city such that total cost and total
travel time for visiting all attractions meet the given constraints. For
such queries, the goal is the return a set of constraint-qualifying collec-
tions or packages. However, using the traditional “set of links” query
paradigm, such queries can only be satisfied by issuing multiple queries,
reviewing answer lists and manually assembling packages to suit a user’s
desired constraints.

In this article, we introduce the concept of a Package Query for
querying for resource combinations on the Semantic Web. In particular,
we consider a frequent subclass of such queries Skyline Package Queries,
in which multiple competing criteria are specified in the query so that
the pareto-optimal set or skyline of packages are returned. In contrast to
a few recent efforts on package queries on single relational models, fine-
grained data models such as RDF include the challenge of computing
the package skyline over multiple joins of ternary relations. We present
four evaluation strategies involving different combinations of relational
query operators and a new operator for Skyline Package Queries and
different storage models for RDF data. A comparative evaluation of the
algorithms over real world and synthetic-benchmark RDF datasets is
presented.

Keywords: RDF · Package Skyline queries · Performance

1 Introduction

The Web has become a dominant knowledge source that informs a wide variety
of technical and non-technical decisions. An increasing number of decision tasks
being supported by Web data require more complex search paradigms than the

A. Hameurlain et al. (Eds.): TLDKS XIII, LNCS 8420, pp. 1–32, 2014.
DOI: 10.1007/978-3-642-54426-2 1, c© Springer-Verlag Berlin Heidelberg 2014

2 M. Sessoms and K. Anyanwu

mainstream “list of url matches” paradigm on the Web. Although there may
be limitations to the degree of search complexity that is possible over unstruc-
tured content, the growing success of the Semantic Web offers the potential of
leveraging its large amount of structured knowledge content for answering com-
plex questions. An interesting querying use case that has broad applications is
one where satisfying a user’s query can be achieved only with combinations or
“packages” of resources and not individual resources. Therefore, a query result
is a list of resource combinations and not simply a list of resources. As a more
concrete example, consider the following scenario.

Motivating Example (e-learning). A student would like to find e-learning
resources from a collection of semantically annotated e-learning resources, e.g.,
[37], covering a set of topics on an upcoming test: relational model, algebra and
calculus. Since creators of resources have the flexibility to modularize their con-
tent as they see fit, these topics may be covered by a single resource by one
author, or by multiple resources by a different author, e.g., splitting content into
two units: “data modeling” which covers the relational model, and then “query-
ing” which covers relational algebra and calculus. Yet another content creator
has a seperate content resource for each of the three topics. The implication is
that in order to satisfy the user’s query, some results, which match only portions
of the answer, will need to be “packaged” into combinations that completely
satisfy the query. Further, assuming that individual resources have ratings from
reviews and maybe subscription charges, the user may have package preferences
e.g., average rating resources of resource combination is maximized while total
cost is minimized. It is not difficult to imagine many other applications of such
queries. As another example consider a tourist interested in finding a number of
tourist attractions at a destination where total distance traveling between them
and total prices are minimized.

Since traditional querying models focus on finding list of items rather than a
list of item combinations, the current strategy for arriving at such results is for
users to review answer lists of items for possibly multiple queries and assemble
and compare packages manually. In this article, we consider the idea of skyline
package queries over RDF data which compute a pareto-optimal set of packages
over RDF data, given multiple global or package preference criteria. There are
three key fundamental challenges to be addressed: first is finding “relevant ele-
mentary or partial matches” i.e., items that meet some part of the description
e.g., resources on just relational algebra, which can be combined with other par-
tial matches to form complete results; second, is the number of joins required to
stitch together the fine-grained (binary relations) representation of data in an
RDF model to find matches; third is the computation of the skyline of combina-
tions from elementary matches given package preferences. Depending on whether
these tasks are done independently or holistically, query evaluation could be very
expensive. The combination of these three challenges distinguish this from the
few recent efforts on skyline [48] or top-k [23,44,45] package queries over single
relations requiring no joins and in the latter case consider only a single prefer-
ence criteria. While our previous work addresses the challenge of computing item

Enabling a Package Query Paradigm on the Semantic Web 3

skylines over RDF data models, the introduction of the packaging requirement
in package queries limits the possibility of adapting the previously proposed
approach in an efficient manner. Other work on skylining over joins in relational
models [32,43,47] consider very restricted join patterns (single join [43], star-like
schemas [47]) that are not applicable to RDF and also do not consider packages.

In this article, we present an efficient algebraic interpretation of package sky-
line queries over RDF in terms of a special operator and storage model. We also
consider alternative interpretations that rely mostly on existing query operators
and the mainstream vertical partitioned storage model for RDF. Specifically,
we contribute the following: (1) a formalization of the logical query operator,
SkyPackage, for package skyline queries over an RDF data model, (2) two fam-
ilies of query processing algorithms for physical operator implementation based
on the traditional vertical partitioned storage model and a novel storage model
here called target descriptive, target qualifying (TDTQ), and (3) an evaluation
of the four algorithms proposed over synthetic and real world data. Specifi-
cally, we extend a previous paper [36] by proposing a more efficient algorithm,
SkyPackage, for solving the skyline package problem and provide a more rigor-
ous evaluation on the four algorithms. The rest of this article is organized as
follows. The background and formalization of our problem is given in Sect. 2.
Section 3 introduces the two algorithms based on the vertical partitioned storage
model, and Sect. 4 presents an algorithm based on our TDTQ storage model. An
empirical evaluation study is reported in Sect. 5, and related work is described
in Sect. 6. The article is concluded in Sect. 7.

2 Background and Problem Definition

Consider a scenario where stores publish Semantic Web-enabled catalogs over
which users can search based on products and some preferences. For example,
a customer wishes to purchase milk, eggs, and bread from any combination of
stores as long as the combination (package) offers an overall minimized total cost
and overall maximized store ratings. Figure 1 shows an example ontology and
data about stores and their ratings, items sold by each store and their prices.
Here, one possible package is aee (i.e., buying milk from store a, eggs from store
e and bread also from store e). Another possibility is bee (i.e., milk from store b,
eggs and bread from store e as in the previous case). The bottom right of Fig. 1
shows the total price and average rating for packages aee, bee and bge. We see
that aee is a better package than bee because it has a smaller total price and the
same average rating. On the other hand, bge and aee are incomparable because
although bge’s total price is worse than aee’s, its average rating is better.

Problem Definition. To contextualize the interpretation of such queries on
RDF data, we build its algebraic interpretation on top of existing operators
for interpretating SPARQL graph pattern queries. Observe that the example
description contains some key components: a base graph pattern structure (the
SPARQL queries in the figure). Graph pattern queries have return clauses (the

4 M. Sessoms and K. Anyanwu

Fig. 1. Data For E-commerce example

SELECT clause) which denote the variables (return variables) whose bindings
we are interested in including in the result. One of those variables, the (target
variable - ?store) captures the targets of the query (stores) while the rest are
part of the subquery structure that qualifies valid targets e.g., stores should
sell milk and are called target qualifing constraints - (?item, hasName, “milk”).
There are analogous graph patterns for qualifiers “selling bread andeggs”. The
second component of the query specification defines combinations or packages
which can interpreted as a Fig. 2 of the results of above queries. The third
component is pruning packages based on preferences,e.g., minimizing the total
price of package. It is important to note that the preferences here are specified
over aggregates of datatype properties (i.e., attributes) that are part of the
description for targets (e.g., maximizing the average over store ratings) or target
qualifiers, e.g., minimizing total price. The base graph patterns and crossproduct
operations can be expressed using SPARQL’s algebra or high-level language.
The expression of preferences and item skyline queries are not supported by
SPARQL although there have been some proposals for algebraic extensions to
the SPARQL algebra. Our goal here, is to extend the SPARQL algebra to include
operators that allow the algebraic expression of package skyline queries. We do
not address SPARQL language grammar extensions here. The new operators
to be introduced can be seen as a generalization the item skyline operators
which when combined with operators for expressing graph pattern queries can
express package skyline queries. In other words, in our framework, traditional
item skyline queries will be viewed as package skyline queries where the package
size is 1.

More formally, let D be a dataset with property relations P1, P2, . . . , Pm and
GP be a graph pattern with triple patterns TPi, TPj , . . . , TPk (TPx means triple

Enabling a Package Query Paradigm on the Semantic Web 5

Fig. 2. Dataflow for the SkyPackage problem in terms of traditional query operators

pattern with property Px). [[GP]]D denotes the answer relation for GP over D,
i.e., [[GP]]D = Pi �� Pj �� . . . �� Pk. Let var(TPx) and var(GP) denote the
variables in the triple and graph pattern respectively and r ∈ var(GP) denote
the target variable. Note that the rest of the graph pattern is used to define the
target i.e target description and relationship between qualifiers and targets.

For preference specification, we begin by reviewing the formalization for pref-
erences given in [32]. Let Dom(a1), . . . , Dom(ad) be the domains for the columns
a1, . . . , ad in a d-dimensional tuple t ∈ [[GP]]D. Given a set of attributes B ⊆ A′,
a preference PF over the set of tuples [[GP]]D is then defined as PF := (B;≺PF),
where ≺PF is a strict partial order on the domain of B. Given a set of prefer-
ences PF1, . . . , PFm, their combined Pareto preference PF is defined as a set of
equally important preferences.

For a set of d-dimensional tuples R and preference P = (B;≺P) over R, a
tuple ri ∈ R dominates tuple rj ∈ R based on the preference P (denoted as
ri≺P rj), iff (∀(ak ∈ B)(ri[ak] ∩ rj [ak]) ∧ ∃(al ∈ B)(ri[al] ≺ rj [al])).

Definition 1 (Skyline Query). To adapt preferences to graph patterns, we
associate a preference with the property (assumed to be a datatype property)
on whose object the preference is defined or the preference property e.g., the
property rating. Let PFi denote a preference with preference property as Pi.
Then, for a graph pattern GP = TP1, . . . , TPm and a set of preferences PF =
PFi, PFj , . . . , PFk, a skyline query SKY LINE[[[GP]]D, PF] returns the set of
tuples from the answer of GP such that no other tuples dominate them with
respect to PF and they do not dominate each other. The extension of the skyline
operator to packages is based on two functions Map and Generalized Projection.

Definition 2. Let F = {f1, f2, . . . , fk} be a set of k mapping functions such
that each function fj(B) takes a subset of attributes B ⊆ A of a tuple t, and
returns a value x.

Map μ̂[F,X] (adapted from [32]) applies a set of k mapping functions F
and transforms each d-dimensional tuple t into a k-dimensional output tuple t′

6 M. Sessoms and K. Anyanwu

defined by the set of attributes X = {x1, x2, . . . , xk} with xi generated by the
function fi in F .

Generalized Projection
∏

colrx,colry,colrz,µ̂[F,X]
(R) returns the relation

R′(colrx, colry, colrz, . . . , x1, x2, . . . , xk). In other words, the generalized pro-
jection outputs a relation that appends the columns produced by the map function
to the projection of R on the attributes listed, i.e., colrx, colry, colrz.

Definition 3 (SkyPackage Graph Pattern). A SkyPackage graph pattern
query is graph pattern GP[r,{c1,c2,...,cN},F={f1,f2,...,fk},{PFi,PFj ,...,PFk}] such that:

1. ci is a triple pattern specifying a target qualifying constraint.
2. GP{c1,c2,...,cN} is the set of graph patterns GPc1 , GPc2 , . . . , GPcN associated

with target qualifying constraints c1, . . . , cN e.g., each of the three graph pat-
terns in Fig. 1 represent a GPci .

3. r is a set of return variables such that ri ∈ r implies ri ∈ var(GPi) is called
the target of the query, e.g., stores.

4. PFi is the preference specified on the property Pi whose mapping function is
fi or more specifically, PFi = (fi(Pi); ≺PFi

).

The answer to a SkyPackage graph pattern query RSKY can be described
algebraically as the result of a sequence of operators in the following manner:

1. Rproduct = [[GPc1]]× [[GPc2]]×· · ·×[[GPcN]] such that [[GPcx]] is the result of
evaluating the branch of the union query with constraint cx. Figure 2b shows
the partial result of the crossproduct of the three subqueries in (a) based on
the 3 constraints on milk, bread and eggs.

2. Rproject =
∏

r1,r2,...rN ,µ̂[F={f1,f2,...fk},X={x1,x2,...xk}]
(Rproduct) where

ri is the column for the target variable in subquery i’s result, f1 : (domc1(o1)×
domc2(o1) × · · · × domcN (o1)) → R where domc1(o1) is the domain of val-
ues for the column representing the object of P1, e.g., column for object of
hasPrice, in [[GPc1]]. The functions in our example would be totalhasPrice,
averagehasRating. The output of this step is shown in Fig. 2c.

3. SKYLINE [Rproject, {PFP ∗
i
, PFP ∗

j
, . . . , PFP ∗

k
}] such that PFP ∗

i
is the prefer-

ence defined on the aggregated columns produced by the map function (denoted
by P ′

i), e.g., minimizing total price.

Our example in this model is GP[r,X,F,PF], where

• r = ?store
• X = {(?item, hasName, “milk”), (?item, hasName, “bread”),

(?item, hasName, “eggs”) }
• F = {SP = sum()price, SR = average()rating}
• PF = {(SP ;≺min), (SR;≺max)}

Enabling a Package Query Paradigm on the Semantic Web 7

2.1 Related Work

Although much research has been done in the area of traditional skyline queries,
package skyline queries have not received a generous amount of attention. Our
contribution is unique from previous work in that we provide algorithms whose
(package) skyline result contains elements of cardinality greater than one. In this
section, we present previous work related to our study of skyline packages. We
begin with a historical perspective of how the skyline query came about and an
overview of some of the earlier solutions proposed outside of a database context.
Then we provide an overview of solutions within a database context and their
correspondence to single-relations, multi-relations, and composite top-k queries.

The skyline query problem originally arose in the theory field in the 1960s,
and the skyline set was coined as the Pareto set. This problem became known
as the maximal vector problem [28,34], whose solution (e.g., skyline) is called
maximal vectors [6] or admissible points [2], and is similar to the contour problem
[31] and convex hull problem. Solutions to the maximal vector problem were
proposed in [5,6,28]; however, these solutions cannot scale to large databases
because they require all data to be in memory.

Single-relation Skyline Algorithms. The first proposed method of applying
the maximal vector problem to databases was [10] and the term skyline queries
was coined. Since then, the skyline query problem has often been referred to as
a secondary/external storage version of the maximal vector problem [24]. [10]
originally introduced and provided a block nested loops, divide-and-conquer, and
B-tree-based algorithms. Later, [18] introduced a sort-filter-skyline algorithm
that is based on the same intuition as BNL, but uses a monotone sorting function
to allow for early termination. Unlike [10,18,41], which has to read the whole
database at least once, index-based algorithms [26,33] allow one to access only
a part.

Multi-relation Skyline Algorithms. All of the previous algorithms are
designed to work on a single relation. As the Semantic Web matures and RDF
data is populated, there has been an increase in research involving multi-
relational skyline queries. When queries involve aggregations, multiple relations
must be joined before any of the above techniques can be used. Implicitly, the
first work that deals with the problem of skyline over multiple relations via
joins is [27]. Given a query that joins two relations and filters the result using a
WHERE clause, the authors propose a method to overcome empty results known
as query relaxation, which relaxes the join selection thus making the query more
flexible. Unlike our work, they do not focus on preference queries.

Vlachou et al. [43] proposed a novel algorithm called SFSJ (sort-first skyline-
join) that computes the complete skyline. Given two relations, access to the
two relations are alternated using a pulling strategy, known as adaptive pulling,
that prioritizes each relation based on the number of mismatched join values.
SFSJ takes advantage of its early termination condition, which gives rise to its
performance, when the two regions from each relation meet a certain condition,

8 M. Sessoms and K. Anyanwu

Although the algorithm has no limitations on the number of skyline attributes,
it is limited by two relations.

Recently, [16] introduced three skyline algorithms that are based on the con-
cept of a header point, which allows some nonskyline tuples to be discarded
before proceeding to the skyline processing phase. Raghavan and Rundensteiner
[32] introduced a sky-join operator that gives the join phase a small knowledge
of a skyline. An index-based, non-join skyline algorithm was proposed in [48].
Khabbaz and Lakshmanan [23] proposes a framework for collaborative filtering
using a variation of top-k. However, their set of results do not contain packages
but single items.

Composite Top-k Algorithms. Up until now, very little research has been
conducted in the area of package, or composite, queries. Such previous work
mostly aims at providing composite results in a recommendation system [44,45].
Xie [45] uses top-k techniques to provide a composite recommendation for travel
planning. Since finding packages is complex and time consuming, most have
oriented their work towards approximating the desired packages [44]. Unlike
our goal, which is to provide the user with all correct results, this approach
limits the user from seeing the complete results. Top-k is useful when ranking
objects is desired. However, top-k is prone to discard tuples that have a ’bad’
value in one of the dimensions, whereas a skyline algorithm will include this
object if it is not dominated.

3 Algorithms for Package Skyline Queries over Vertical
Partitioned Tables

We present in this section two approaches: Join, Cartesian Product, Skyline
(JCPS) and RDFSkyJoinWithFullHeader-Cartesian Product, Skyline (RSJFH-
CPS), for solving the package skyline problem. These approaches assume data
is stored in vertically partitioned tables (VPTs) [1].

3.1 JCPS Algorithm

The formulation of the package skyline problem suggests a relatively straight-
forward algorithm involving multiple joins, followed by a Cartesian product to
produce all combinations, followed by a single-table skyline algorithm (e.g.,
block-nested loop), called JCPS.

Consider the VPTs hasIName, hasSName, hasItem, hasPrice, and
hasRating obtained from Fig. 1. Solving the skyline package problem using JCPS
involves the following steps. First, we join all tables and perform a Cartesian prod-
uct twice on I to obtain all store packages of size 3, as shown in Fig. 3a. As the
product is being computed, the price and rating attributes are aggregated, as
shown in Fig. 3b. Afterwards, a single-table skyline algorithm is performed to dis-
card all dominated packages with respect to total price and average rating.

Algorithm 1 contains the pseudocode for such an algorithm. Solving the
skyline package problem using JCPS requires all VPTs to be joined together

Enabling a Package Query Paradigm on the Semantic Web 9

(line 2), denoted as I. To obtain all possible combinations (i.e., packages) of
targets, multiple specialized Cartesian products are performed on I (lines 3–6).
A modified Cartesian product, denoted as ⊗, is implemented as a subroutine
to ensure no duplicate target constraints (e.g., milk) are inlcuded. Afterwards,
equivalent skyline attributes are aggregated (lines 7–10). Equivalent skyline
attributes, for example, of the e-commerce motivating example would be price
and rating attributes. Aggregation for the price of milk, eggs, and bread would
be performed to obtain a total price. Finally, line 11 applies a single-table skyline
algorithm to remove all dominated packages.

The limitations of such an algorithm are fairly obvious. First, many unnec-
essary joins are performed. Furthermore, if the result of joins is large, the input
to the Cartesian product operation will be very large even though it is likely

10 M. Sessoms and K. Anyanwu

item1 item2 item3 store1 store2 store3 total
price

average
rating

milk eggs bread A B C 10 5
milk eggs bread B B A 7 5

Fig. 3. Resulting tables of JCPS

that only a small fraction of the combinations produced will be relevant to the
skyline. The exponential increase of tuples after the Cartesian product phase
will result in a large number of tuple-pair comparisons while performing a sky-
line algorithm. In addition, duplicates will have to be eliminated. To gain better
performance, it is crucial that some tuples be pruned before entering into the
Cartesian product phase, which is discussed next.

3.2 RSJFH-CPS Algorithm

A pruning strategy that prunes the input size of the Cartesian product opera-
tion is crucial to achieving efficiency. One possibility is to exploit the following
observation: skyline packages can be made up of only target resources that are in
the skyline result when only one constraint (e.g., milk) is considered (note that
a query with only one constraint is equivalent to an item skyline query).

Lemma 1. Let ρ = {p1p2 . . . pn} be a package of size n (i.e., containing n target
resources), P be the set of all skyline packages, and p′

1, p
′
2, . . . , p

′
n be other target

resources with respect to a qualifying constraint C1, C2, . . . Cn. If ρ ∈ P, then
pm ∩Cm

p′
m for all 1 ≤ m ≤ n.

Proof. Let ρ′ = {p1p2 . . . p′
n}, where pn ∩Cn

p′
n, and let x1, x2, . . . , xm be the

preference attributes for pn and p′
n. Since pn ∩Cn

p′
n, pn[xj] ∩ p′

n[xj] for some
1 ≤ j ≤ n. Therefore, A1≤i≤n(pi[xj]) ∩ A1≤i≤n(p′

i[xj]), where A is a monotonic
aggregation function and p′

i ∈ ρ′. Since for any 1 ≤ k ≤ n, where k ∪= j,
A1≤i≤n(pi[xk]) = A1≤i≤n(p′

i[xk]). This implies that ρ ∩ ρ′. Thus, ρ′ is not a
skyline package. �

As an example, let ρ = {p1p2} and ρ′ = {p1p
′
2} and x1, x2 be the preference

attributes for p1, p2, p
′
2. We define the attribute values as follows: p1 = (3, 4), p2 =

(3, 5), and p′
2 = (4, 5). Assuming the lowest values are preferred, p2 ∩ p′

2 and

Enabling a Package Query Paradigm on the Semantic Web 11

p2[x1] ∩ p′
2[x1]. Therefore, A1≤i≤2(pi[x1]) ∩ A1≤i≤2(p′

i[x1]). In other words,
(p1[x1] + p2[x1]) ∩ (p1[x1] + p′

2[x1]), i.e., (3 + 3 = 6 ∩ 7 = 3 + 4). Since all
attribute values except p′

2[x1] remained unchanged, by definition of skyline we
conclude ρ ∩ ρ′.

This lemma suggests that the skyline phase can be pushed ahead of the
Cartesian product step as a way to prune the input of the JCPS. Even greater
performance can be obtained by using a skyline-over-join algorithm, RSJFH
[16], that combines the skyline and join phase together. RSJFH takes as input
two VPTs sorted on the skyline attributes. We call this algorithm RSJFH-CPS.
This lemma suggests that skylining can be done in a divide-and-conquer manner
where a skyline phase is introduced for each constraint, e.g., milk, (requiring 3
phases for our example) to find all potential members of skyline packages which
may then be fed to the Cartesian product operation.

Given the VPTs hasIName, hasSName, hasItem, hasPrice, and hasRating
obtained from Fig. 1, solving the skyline package problem using RSJFH-CPS
involves the following steps:

1. I2 ← hasSName �� hasItem �� hasRating
2. For each target t (e.g., milk)

(a) I1t ← σt(hasIName) �� hasPrice
(b) St ← RSJFH(I1t , I2)

3. Perform a Cartesian product on all tables resulting from step 2b
4. Aggregate the necessary attributes (e.g., price and rating)
5. Perform a single-table skyline algorithm

Figure 4a shows two tables, where the left one, for example, depicts step (a)
for milk, and the right table represents I2 from step 1. These two tables are
sent as input to RSJFH, which outputs the table in Fig. 4b. These steps are
done for each target, and so in our example, we have to repeat the steps for
eggs and bread. After steps 1 and 2 are completed (yielding three tables, e.g.,
milk, eggs, and bread), a Cartesian product is performed on these tables, as
shown in Fig. 4c, which produces a table similar to the one in Fig. 3b. Finally,
a single-table skyline algorithm is performed to discard all dominated packages.

Algorithm 2 shows the pseudocode for RSJFH-CPS The main difference
between JCPS and RSJFH-CPS appears in line 5–8. For each target, a select
operation is done to obtain all like targets, which is then joined with another
VPT containing a skyline attribute of the targets. This step produces a table for
each target. After the remaining tables are joined, denoted as I2 (line 4), each
target table I1i along with I2 is sent as input to RSJFH for a skyline-over-join
operation. The resulting target tables undergo a Cartesian product phase (line
9) to produce all possible combinations, and then all equivalent attributes are
aggregated (lines 10–12). Lastly, a single-table skyline algorithm is performed to
discard non-skyline packages (line 13). Since a skyline phase is introduced early
in the algorithm, the input size of the Cartesian product phase is decreased,
which significantly improves execution time compared to JCPS.

12 M. Sessoms and K. Anyanwu

&I1 milk &I1 2

&I4 milk &I4 3

&S1 A &S1 &I1 &S1 5

&S1 A &S1 &I2 &S1 5

item price store rating
milk 2 A 5
milk 3 B 5

item price store rating

milk 2 A 5

item price store rating

eggs 3 B 5

item price store rating

bread 5 A 4

Fig. 4. Resulting tables of RSJFH

Algorithm 2: RSJFH-CPS
Input: V PT1, V PT2, . . . V PTx containing skyline attributes s1, s2, . . . , sy, and

corresponding aggregation functions As1(T), As2(T), . . . , Asy (T) on table T
Output: Package Skyline P
1: n ← package size
2: t1, t2, . . . , tn ← targets of the package
3: V PT1 contains targets and V PT2 contains a skyline attribute of the targets
4: I2 ← V PT3 �� · · · �� V PTx

5: for all i ∈ [1, n] do
6: I1

i ← σti(V PT1) �� V PT2

7: Si ← RSJFH(I1
i , I2)

8: end for
9: T ← S1 × S2 × · · · × Sn

10: M1 ← A(Ts1)
11: for all i ∈ [2, y] do
12: Mi ← A(M(i−1)si

)
13: end for
14: P ← skyline(My)
15: return P

Enabling a Package Query Paradigm on the Semantic Web 13

store price store price store price store value
a 2 g 5 e 3 e 5
b 3 a 7 b 4 i 5
f 3 c 8 a 5 c 12
e 4 e 8 i 8 f 13
g 6 h 9 g 5 h 14
e 9 b 10 f 6 g 18
h 9 d 10 h 6 a 20
d 10 d 10 d 21

b 22

RATINGMILK EGGS BREAD

Fig. 5. Target qualifying (milk, eggs, bread) and target descriptive (rating) tables for
E-commerce example

4 Algorithms for Package Skyline Queries over the
TDTQ Storage Model

4.1 The TDTQ Storage Model

While the previous two approaches, JCPS and RSJFH-CPS, rely on VPTs, the
next approach is a multistage approach in which the first phase is analogous to
the build phase of a hash-join. In our approach, we construct two types of tables:
target qualifying tables and target descriptive tables, called TDTQ. Target qual-
ifying tables are constructed from the target qualifying triple patterns (?item
hasIName “milk”) and the triple patterns that associate them with the targets
(?store sells ?item). In addition to these two types of triple patterns, a triple
pattern that describes the target qualifier that is associated with a preference is
also used to derive the target qualifying table. In summary, these three types of
triple patterns are joined per given constraint and a table with the target and
preference attribute columns are produced. The left three tables in Fig. 5 show
the the target qualifying tables for our example (one for each constraint). The
target descriptive tables are constructed per target attribute that is associated
with a preference, in our example rating for stores. These tables are constructed
by joining the triple patterns linking the required attributes and produce a com-
bination of attributes and preference attributes (store name and store rating
produced by joining hasRating and hasSName). The rightmost table in Fig. 5
shows the target descriptive table for our example.

We begin by giving some notations that will aid in understanding of the
TDTQ storage model. In general, the build phase produces a set of partitioned
tables T1, . . . , Tn, Tn+1, . . . , Tm, where each table Ti consists of two attributes,
denoted by T 1

i and T 2
i . We omit the subscript if the context is understood or if

the identification of the table is irrelevant. T1, . . . , Tn are the target qualifying
tables where n is the number of qualifying constraints. Tn+1, . . . , Tm are the
target descriptive tables, where m− (n+1)+1 = m−n is the number of target
attributes involved in the preference conditions.

14 M. Sessoms and K. Anyanwu

4.2 CPJS and SkyJCPS Algorithms

Given the TDTQ storage model presented previously, one option for computing
the package skyline would be to perform a Cartesian product on the target
qualifying tables, and then joining the result with the target descriptive tables.
We call this approach CPJS (Cartesian product, Join, Skyline), which results in
exponential time and space complexity. Given n targets and m target qualifiers,
nm possible combinations exist as an intermediate result prior to performing a
skyline algorithm. Each of these combinations is needed since we are looking for
a set of packages rather than a set of points. Depending on the preferences given,
additional computations such as aggregations are required to be computed at
query time. Our objective is to find all package skylines efficiently by eliminating
unwanted tuples before we perform a Cartesian product. Algorithm 3 shows the
CPJS algorithm for determining package skylines.

Algorithm 3: CPJS
Input: T1, T2, . . . Tn, Tn+1, . . . , Tm

Output: Package Skyline P
1: I ← T1 × T2 × · · · × Tn

2: for all i ∈ [n + 1, m] do
3: I ← I �� Ti

4: end for
5: P ← skyline(I)
6: return P

CPJS begins by finding all combinations of targets by performing a Cartesian
product on the target qualifying tables (line 1). This resulting table is then joined
with each target descriptive table, yielding a single table (line 3). Finally, a single-
table skyline algorithm is performed to eliminate dominated packages (line 5).

Applying this approach to the data in Fig. 5, one would have to compute all
448 possible combinations before performing a skyline algorithm. The number
of combinations produced from the Cartesian product phase can be reduced
by initially introducing a skyline phase on each target, e.g., milk, as we did
in for RSJFH-CPS. We call this algorithm SkyJCPS. Although similarities to
RSJFH-CPS can be observed, SkyJCPS yields better performance due to the
reduced number of joins. Figure 4a clearly illustrates that RSJFH-CPS requires
four joins before an initial skyline algorithm can be performed. All but one of
these joins can be eliminated by using the TDTQ storage model. To illustrate
SkyJCPS, given the TDTQ tables in Fig. 5, solving the skyline package problem
involves the following steps:

1. For each target qualifying table TQi (e.g., milk)
(a) ITQi

← (TQi) �� rating
(b) I ′

TQi
← skyline(ITQi

)
2. CPJS(I ′

TQ1
, . . . , I ′

TQi
, rating)

Enabling a Package Query Paradigm on the Semantic Web 15

12

14

16

18

20

22

8 10 12 14 16 18
R

at
in

g

Price

1/16 1/14 1/12 1/10 1

(age)

abbb)

Fig. 6. Skyline region

Since the dominating cost of answering skyline package queries is the Carte-
sian product phase, the input size of the Cartesian product can be reduced by
performing a single-table skyline algorithm over each target.

4.3 SkyPackage Algorithm

Our algorithm attempts to discern the skyline set by stepping through sorted
sub-lists in a way that guarantees we move towards the skyline set. This strategy
relies on being able to discover the best package in one dimension, which means
we are guaranteed that no future packages will be dominated by this one. From
Fig. 5, the package consisting of the first tuple from each of the target qualifying
tables (age) constitutes a package skyline. Also, the package that has the best
rating can be found by looking at the rating table for the highest rating, which
is b. Thus, package (bbb) is a package skyline. To illustrate this, consider the
two packages in Fig. 6, {(age),$10,14} and {(bbb), $17,22}. All future package
skylines must fall between these two packages. We depict this in the shaded
area. Any package that does not lie within this region can be immediately dis-
carded. However, candidate packages may fall within this area and will need to
be checked for membership in the skyline package.

Pruning and Early Termination. Since performing a Cartesian product is
expensive and its output size to the number of package skylines ratio is very
large, it is desirable to decrease this intermediate result. Therefore, we have to
eliminate targets that cannot possibly be in the skyline set when packaged with
any other available targets. While the naive approach would have to compose the
packages and then perform a skyline to filter out unwanted tuples, our pruning
technique offers local prunability that prunes tuples, i.e., targets, from individual
target qualifiers before we form the packages.

To illustrate the concept of local pruning, consider the milk and rating tables
in Fig. 5. We present in Fig. 7 four iterations where each iteration indicates a
new tuple being examined. As we look at each store in the milk table, we probe

16 M. Sessoms and K. Anyanwu

store value
b 5
a 5
c 12
f 13
h 14
g 18
i 20
d 21
e 22

RATING
store price

a 2
f 3
b 3
e 4
g 6
e 9
h 9
d 10

MILK
store value

b 5
a 5
c 12
f 13
h 14
g 18
i 20
d 21
e 22

RATING

store price
a 2
f 3
b 3
e 4
g 6
e 9
h 9
d 10

MILK
store value

b 5
a 5
c 12
f 13
h 14
g 18
i 20
d 21
e 22

RATING

store price
a 2
f 3
b 3
e 4
g 6
e 9
h 9
d 10

MILK

store price
a 2
f 3
b 3
e 4
g 6
e 9
h 9
d 10

MILK
store value

b 5
a 5
c 12
f 13
h 14
g 18
i 20
d 21
e 22

RATING

Iteration 1 Iteration 2

Iteration 3 Iteration 4

k
k k

k

k-1

k-1k-1 k

k
k

k

Fig. 7. Pruning example

the rating table and keep a pointer at its value. The first tuple examined, i.e.,
first iteration, in the milk table is (a, 2). We probe the rating table to locate
store a, and keep a pointer there for the next iteration(s). In the second iteration,
we examine the next tuple (f, 3) and probe the rating table again. We compare
its value against the previous pointer, denoted as k−1. Since the current store is
better than the previous store, we remove the pointer from store a and continue
to the third iteration. As usual, the current tuple (b, 3) is used to probe the
rating table. In this case, the current pointer k (b, 5) is worse than the previous
pointer k − 1 (f, 13), and thus we prune the tuple (b, 3). Because the current
pointer that points to (f, 13) is no better than the previous pointer, we save this
pointer and examine the next tuple as shown in iteration 4.

The concept of local prunability is formalized in the following lemma.

Lemma 2 (Pruning). Let Tj [k] be the value of object k in table Tj, then ∀k ∈
Ti

1, i ∈ [1, n], if ∃j ∈ [n+ 1,m] such that Tj [k − 1] ≺ Tj [k], and Ti[k − 1] ∩ Ti[k]
then object k does not produce a package skyline and can be pruned from Ti.

Proof. Since Ti is sorted in the preprocessing phase of our database, we know
Ti[k − 1] ∩ Ti[k]. Assume that k produces a package skyline (is part of the
combination). Then, if Tj [k] ∩ Tj [k−1], object k−1 dominates k, thus k cannot
be part of the package skyline. �

Lemma 2 ensures that any combination where k appears is not a package
skyline. If we denote the size of each table T as |T |, then for each tuple pruned
in Ti, the size of the resulting Cartesian product is reduce to |T1| × |T2| × · · · ×

Enabling a Package Query Paradigm on the Semantic Web 17

store price store price store price
a 2 g 5 e 3
b 3 a 7 b 4

b 10

MILK EGGS BREAD

Fig. 8. Pruning and early termination result

package price rating
age 10 14.3
agb 11 20
bgb 12 20.7
bab 14 21.3
bbb 17 22

Fig. 9. Skyline package result

(|Ti| − 1) × · · · × |Tn|. To illustrate this, after tuple (b, 3) is pruned in Fig. 4, the
Cartesian product size is reduced from 448 to 392 tuples.

We define the previous object to be a pointer to the best last seen object
and the pointer is updated when a better object is examined. In Lemma 2, we
denote the current object as k and the previous object as k − 1. If Lemma 2 is
not satisfied, the pointer that once pointed to k − 1 is updated to point to k.

To increase performance of our algorithm, we utilize the following early ter-
mination strategy for each resource.

Lemma 3 (Early Termination). If k is the current object in Ti and for all
j ∈ [n + 1,m], Tj [k] is the best in Tj, then stop examining Ti and continue to
Ti+1, i + 1 ≤ n.

Proof. Assume there exists an object k + 1 in Ti that has not been examined.
Then Ti[k] ∩ Ti[k + 1], and Tj [k] ∩ Tj [k + 1]. If Tj [k + 1] ∪= Tj [k], then Tj [k] ≺
Tj [k+1]. Then for any object after k, Ti[k] ∩ Ti[k+1] ∩ Ti[k+2] · · · . Therefore,
every object after k is dominated. �

Lemma 3 allows us to stop examining tuples in a given table when the best
object is seen in the target descriptive tables , i.e., rating table. For example,
in Fig. 7, since b has the highest rating, we stop scanning the milk table once b
is examined and prune all tuples below it. If a target qualifying table does not
contain the best object from the target descriptive table, we choose the next
best object such that the target qualifying table contains this object.

After pruning, our next phase is performing a Cartesian product. As the
product is produced, if there exist any tuples that do not satisfy (local) hard
constraints, we discard these. Figure 8 shows the resulting tables after pruning.

After the pruning phase is complete, a Cartesian product is performed among
the target qualifying tables and joined with the target descriptive table(s) for

18 M. Sessoms and K. Anyanwu

aggregation. In Fig. 8, a Cartesian product involving the milk, eggs, and bread
tables is performed to find (1) all packages and (2) total price. The intermediate
result is then joined with the rating table to find the average rating. If there
exists any tuples that do not satisfy (global) hard constraints, we discard these.
A skyline algorithm is performed to remove any packages that are not skyline
packages. The final skyline package set is shown in Fig. 9.

Discussion. Now that we have provided a concrete example of the SkyPackage
algorithm, we will now explain the pseudocode in Algorithm 4. Lines 1–3 of
the algorithm explain some notations that are used within the algorithm. Once
the query is issued, we examine each of the n tables (line 4) one row at time (line
6), keeping a pointer p that points to the n + 1 table that has the best value.
With each iteration, we initialize ptr (line 5) to the first object in Ti mapped to
Tn+1. Then we check whether Lemma 2 holds (line 7). Lines 8–14 handles the
case when two consecutive objects have the same value in Ti. In this case, the
tuple with the worse value in Tn+1 is pruned. Lines 15–17 are similar to lines
8–14 except the equality checks are done on Tn+1 rather than Ti. That is if two
objects have the same value in Tn+1, we prune the tuple that has the smallest
value in Ti. In line 18, we reach our early termination check, Lemma 3. We can
safely stop examining the current table when we access an object that has the
lowest value in tn+1. It can easily be showed that any tuple after this one cannot
be in the skyline set. At this point, ptr can no longer be updated since any
subsequent tuple will have a higher value in tn+1. If local constraints are given,
we perform a check in line 19 to determine whether the current tuple satisfies the
constraints. If the current tuple is not satisfied, all tuples below and including
this one are pruned. We then join the tables, removing any tuples that do not
satisfy any global constraints. Lastly, any known skyline algorithm is performed.

5 Sesame Integration Framework

5.1 Sesame

Sesame [14] is an open-source RDF database implemented in Java whose archi-
tecture allows for persistent storage of RDF data and querying of that data. We
chose Sesame as our RDF engine for a number of reasons. First, since Sesame is
a server-based application, it allowed us to store and query data on the Seman-
tic Web remotely. Second, Sesame does not require a specific communication
protocol or storage mechanism to be used.

5.2 Framework

The data that was used in the framework was the MovieLens1 dataset, which
was converted to RDF format using the Jena API [15]. Its ontology is depicted
in Fig. 10. We used a server with Linux and an Apache Tomcat Web container.
1 http://www.grouplens.org/node/73/

http://www.grouplens.org/node/73/

Enabling a Package Query Paradigm on the Semantic Web 19

Algorithm 4: SkyPackage
Input: T1, T2, . . . Tn, Tn+1, . . . , Tm

Output: Package Skyline P
1: vk(i) ← the value of object k in table i
2: k ← the current object (i.e., row)
3: ptr ← the best object
4: for all i ∈ [1, n] do
5: ptr ← vx(n + 1), x ← first tuple in i
6: for all k ∈ ti do
7: check whether Lemma 2 holds
8: if vk(i) = vk−1(i) then
9: if vk(n + 1) > vk−1(n + 1) then

10: prune (k, vk(i))
11: else
12: prune (k − 1, vk−1(i))
13: end if
14: end if
15: if vk(n + 1) = vk−1(n + 1) then
16: prune max {(k, vk(i)), (k − 1, vk−1(i))}
17: end if
18: check whether Lemma 3 holds
19: check k against local constraints
20: end for
21: end for
22: cross product, remove tuples not satisfying global constraints
23: skyline

A Web-based interface was designed to allow users to query a subset of the
MovieLens dataset. Although any package-related query can be supported, for
the purpose of this article, we chose to support a query of the following form.

Query 1. Given n movie-raters, find packages of n movies such that the average
rating of all the movies is high and each movie-rater has rated at least one of the
movies.

When the user provides preferences using the Web-based interface, the infor-
mation is sent to the SPARQL adapter that dynamically creates a SPARQL
query. After the SPARQL query is executed and results of this query is avail-
able, the SkyPackage algorithm finds and presents the skyline package(s) that
meet the user’s preferences.

Data Storage. One option of storing RDF triples is to store them in a text file.
However, this is inefficient for large numbers of triples and a solution involving
indexing (e.g., database management system) is more appropriate. Relational
databases, such as MySQL and Oracle, can be used to store such data, but are
usually not optimized for such. Databases that are optimized for storage of RDF
triples are called triplestores.

20 M. Sessoms and K. Anyanwu

stringinteger

hasRating hasUName

hasRated

string

integer hasDate

hasMName

MOVIE USER

Fig. 10. MovieLens ontology

Sesame triplestore stores RDF triples in a repository. Sesame abstracts from
any particular storage mechanism allowing a variety of repositories to be han-
dled, including RDF triplestores and relational databases. Sesame offers several
repositories in which to store data and all differs in where the data is stored. Two
popular repositories are memory store and native store, corresponding to stor-
age in-memory and on-disk, respectively. We used the native store configuration
in our framework since it offers a better scalability solution for larger data sets
as it is not limited to size of available memory. For native store, Sesame provides
B-tree indexes on any combination of the subjects, properties, and objects. The
index key(s) consist of subject (s), predicate (p), object (o), and context (c).
The order in which these fields are listed determines the usability of the index.
We chose to have as the index keys: spoc and opsc.

Data Retrieval. In order to retrieve data from Sesame’s repository, we devised
a skyline package operator, whose ultimate goal is to form queries that when
executed will construct the TQ and TD tables. A description is given on how
the queries for the TQ tables are constructed, followed by a similar description
on how to construct the TD table.

We define SP(C, A, PF) as the skyline package operator that takes as argu-
ments a list of constraints C, a list of properties A, and a list of preferences
PF . In addition, we assume that the following VPTs exist: vpt1, vpt2, . . . , vptm,
vptm+1, . . . , vptn. Moreover, for the purpose of illustration, we assume vpt1, . . . ,
vptm and vptm+1, . . . vptn are sufficient to construct the TQ and TD tables,
respectively. The arguments for the SP operator are defined as follows:

• C = (c1, c2, . . . , cm), where ci are target qualifying constraints
• A = (A1 = (a1, a2), A2 = (a′

1, a
′
2)), where ai and a′

i are variables

A query is constructed for each target qualifying constraint (i.e., m queries)
where the SELECT clause is formed by using variables in A1 (e.g., SELECT
?a1?a2). Within each query, the constraint ci ∈ C can be mapped to a FILTER
clause or to a constraint in a WHERE clause of a SPARQL query. In order to
map the constraints to a WHERE clause, a target qualifying triple pattern is con-
structed for each constraint. Assuming vpt1 contains data to which a constraint
can be applied, the target qualifying triple pattern is specified as (?var :vpt1 ci),

Enabling a Package Query Paradigm on the Semantic Web 21

Fig. 11. Queries used to construct TD and TQ tables

where ?var is some variable. Moreover, the remaining tables vpt2 . . . vptm are
joined together and with the intermediate result of the target qualifying triple
pattern. A similar method can be applied if a FILTER clause is preferred. Instead
of providing a constraint in the target qualifying triple pattern, a new variable is
introduced, as in (?var :vpt1 ?constraint). This constraint variable is then used
in the FILTER clause along with the actual constraint to filter out unwanted
results. An example FILTER clause is FILTER regex(?constraint, c1).

To illustrate this process, consider Query 1 and the ontology depicted in
Fig. 18. Suppose the person issuing the query is interested in the following movie-
raters: user8 and user34. Since the query is requesting movies (i.e., the name of
the movies) whose rating is maximized, we define A = (?movieName, ?rating)
because rating depends on the movie and the movie-rater. In addition, by exam-
ining Fig. 18, we have the following VPTs: hasName, hasRated, hasMName, has-
Rating. Since vpt1 is hasName, we apply each constraint to this table by using
a target qualifying triple pattern, such as (?user hasName “user8”). Therefore,
given C and A1, the two queries in Fig. 12a are constructed, which produces the
TQ tables.

A similiar approach is used to form the TD table. Since no target qualifying
constraints are needed in this case, no FILTER condition is required and the
only argument of interest is A2, which contains variables that will be listed in
the SELECT clause. The WHERE claused is formed by joining vptm+1, . . . vptn.
Continuing from the previous example, we have the following VPTs: hasName,
hasDate, and A2 = (?movieName, ?date). Therefore, the query in Fig. 12b is
constructed.

In order to retrieve data from Sesame’s repository, we implemented a server-
side SPARQL adapter whose primary task is issuing SPARQL queries and serves
as an intermediary between Sesame and SkyPackage. The adapter utilizes
Sesame’s HTTPRepsoitory component to execute the three queries and to
retrieve the results. The results of each query are then stored in a data struc-
ture for processing and sent to SkyPackage along with the list of preferences
PF . After SkyPackage is performed on the data returned from the adapter,
the results are presented to the user. Figure 11 provides a high-level overview
indicating the main components of our framework.

22 M. Sessoms and K. Anyanwu

Sesame

Server

Application
Client

Execute Query Query
Results as Ti

C, A, PF sent
to Adapter Formatted results

SkyPackage

Skyline

Cross
Product

Prune

SPARQL Adapter

For each
ci C

Create
query

using ci
and A

T1

T2

Tm

…

GPTQ

Create
query

using A

GPTD

Format
results

PF

Fig. 12. Framework with SPARQL adapter

6 Evaluation

The main goal of this evaluation was to compare the performance of the proposed
algorithms using both synthetic and real datasets with respect to package size
scalability. In addition we compared the the feasibility of answering the skyline
package problem using the VPT storage model and the TDTQ storage model.

6.1 Setup

All experiments were conducted on a Linux machine with a 2.33GHz Intel Xeon
processor and 40GB memory, and all algorithms were implemented in Java SE
6. All data used was converted to RDF format using the Jena API and stored
in Oracle Berkeley DB.

We compared four algorithms, JCPS, SkyJCPS, RSJFH-CPS, and
SkyPackage. During the skyline phase of each of these algorithms, we used

Enabling a Package Query Paradigm on the Semantic Web 23

the block-nested-loops (BNL) [10] algorithm. The package size metric was used
for the scalability study of the algorithms. Since the Cartesian product phase is
likely to be the dominant cost in skyline package queries, it is important to ana-
lyze how the algorithms perform when the package size grows, which increases
the input size of the Cartesian product phase.

6.2 Synthetic Data

Dataset. Since we are unaware of any RDF data generators that allow genera-
tion of different data distributions, the data used in the evaluations were gener-
ated using a synthetic data generator [2]. The data generator produces relational
data in different distributions, which was converted to RDF using the Jena API.
We generated three types of data distributions: correlated, anti-correlated, and
normal distributions. For each type of data distribution, we generated datasets
of different sizes and dimensions.

Data Size Scalability. The first evaluation was performed to compare execu-
tion time among the three algorithms within the same package size using the
three data distributions. The data consisted of triple sizes ranging from 450 to
635 and package sizes ranging from 2 to 5. While this may appear to be orders of
magnitudes smaller than traditional evaluation corpora, it is important to note
that the search space for package queries grows more aggressively than that of
traditional pattern matching. We chose this triple size range to ensure that pack-
ages of different sizes can easily be compared and also to ensure that evaluation
results would come in a reasonable time for larger package sizes. An increase in
package size implies an increase in the number of tables, which also implies more
Cartesian products. To ensure that the triple size remained approximately the
same across different package sizes, we reduced the number of tuples in each table
as the package size increased. Figure 13 shows the triple size and the number of
tuples in each table for each package size as well as the approximate Cartesian
product size.

While a triple size of 635 may seem small, Fig. 13 indicates that this triple
size yields approximately 52.5 M tuples for a package size of 5 after a Cartesian
product is performed. We were unable to obtain any results for triple size 635
using a package size of 5 for JCPS, as it ran for hours on this dataset. Figures 14
and 15 show the results and are plotted using a logarithmic scale. No anomalies
were found within packages of the same size.

Package Size Scalability. In Fig. 16, we show how the algorithms perform
across packages of size 2 to 5 for the a triple size of approximately 635 triples.
Due to the exponential increase of the Cartesian product phase, this triple size is
the largest possible in order to evaluate all three algorithms. For all package sizes,
SkyJCPS performs better than JCPS because of the initial skyline algorithm
performed to reduce the input size of the Cartesian product phase. RSJFH
outperformed SkyJCPS for packages of size 5. We argue that SkyJCPS may
perform slightly slower than RSJFH on small datasets distributed among many
tables. In this scenario, SkyJCPS has six tables to examine, while RSJFH has

24 M. Sessoms and K. Anyanwu

Fig. 13. Synthetic data triple sizes

0.01

0.1

1

450 500 545 600 635

Ex
ec

uti
on

 T
im

e
(s

ec
)

Triple Size

Normal (package size 2)
SkyPackage RSJFH SkyJCPS JCPS

0.01

0.1

1

10

450 500 545 600 635

Ex
ec

uti
on

 T
im

e
(s

ec
)

Triple Size

Correlated (package size 3)
SkyPackage RSJFH SkyJCPS JCPS

0.01

0.1

1

450 500 545 600 635

Ex
ec

uti
on

 T
im

e
(s

ec
)

Triple Size

Correlated (package size 2)
SkyPackage RSJFH SkyJCPS JCPS

0.01

0.1

1

10

450 500 545 600 635

Ex
ec

uti
on

 T
im

e
(s

ec
)

Triple Size

Normal (package size 3)
SkyPackage RSJFH SkyJCPS JCPS

0.01

0.1

1

10

450 500 545 600 635

Ex
ec

uti
on

 T
im

e
(s

ec
)

Triple Size

Anti-Correlated (package size 3)
SkyPackage RSJFH SkyJCPS JCPS

0.01

0.1

1

450 500 545 600 635

Ex
ec

uti
on

 T
im

e
(s

ec
)

Triple Size

Anti-Correlated (package size 2)
SkyPackage RSJFH SkyJCPS JCPS

Fig. 14. Evaluation results for package sizes 2 and 3

Enabling a Package Query Paradigm on the Semantic Web 25

0.01

0.1

1

10

100

450 500 545 600 635

Ex
ec

uti
on

 T
im

e
(s

ec
)

Triple Size

Correlated (package size 4)
SkyPackage RSJFH SkyJCPS JCPS

0.01

0.1

1

10

100

450 500 545 600 635

Ex
ec

uti
on

 T
im

e
(s

ec
)

Triple Size

Normal (package size 4)
SkyPackage RSJFH SkyJCPS JCPS

0.01

0.1

1

10

100

450 500 545 600 635

Ex
ec

uti
on

 T
im

e
(s

ec
)

Triple Size

Anti-Correlated (package size 4)
SkyPackage RSJFH SkyJCPS JCPS

0.01

0.1

1

10

100

1000

450 500 545 600 635

Ex
ec

uti
on

 T
im

e
(s

ec
)

Triple Size

Correlated (package size 5)
SkyPackage RSJFH SkyJCPS JCPS

0.01

0.1

1

10

100

1000

10000

450 500 545 600 635
Ex

ec
uti

on
 T

im
e

(s
ec

)

Triple Size

Normal (package size 5)
SkyPackage RSJFH SkyJCPS JCPS

0.01

0.1

1

10

100

1000

450 500 545 600 635

Ex
ec

uti
on

 T
im

e
(s

ec
)

Triple Size

Anti-Correlated (package size 5)
SkyPackage RSJFH SkyJCPS JCPS

Fig. 15. Evaluation results for package sizes 4 and 5

only two tables. Evaluation results from the real datasets, which is discussed
next, ensure us that SkyJCPS significantly outperforms RSJFH when the
dataset is large and distributed among many tables. Due to the logarithmic scale
used, it may seem that some of the algorithms have the same execution time for
equal sized packages. This is not the case, and since BNL was the single-table
skyline algorithm used, the algorithms performed best using correlated data and
worst using anti-correlated data.

Average Prunability. To evaluate SkyPackage’s prunability, we collected the
number of tuples that entered the Cartesian product phase and compared it to
the total number of initial tuples for each data distribution and triple size. We
then took the average over the three data distributions. The average prunability
results can be seen in Fig. 17. As the package size increases, a larger percentage
of tuples enters the Cartesian product phase. Even though the triple size remains
approximately the same in all packages, the total number of tuples increases as
the package size grows. For example, a triple size of 635 for a package of size 2
consists of 140 tuples, whereas a package of size 5 has 175 tuples (a 25 % increase).

26 M. Sessoms and K. Anyanwu

Fig. 16. Scalability for package sizes 2–5

From our experiment, we discovered that as the number of tuples increases, the
percentage of skyline packages decreases. Also, while performing SkyJCPS, we
found that the number of skyline tuples in the initial skyline phase increased as
the number of tuples increased. Although the skyline size increased, the ratio
between the skyline size and the number of tuples decreased, yielding a lower
percentage. We argue that this is also the case with SkyPackage.

6.3 MovieLens Dataset

The first real-world dataset evaluated was MovieLens2, which consisted of 10
million ratings and 10,000 movies.

Package-size Scalability and Prunability. We randomly chose a subset of
users, with partiality to those who have rated a large number of movies, from
the dataset for use in our package-size evaluations. The users consisted of those
with IDs 8, 34, 36, 65, and 215, who rated 800, 639, 479, 569, and 1,242 movies,
respectively. We used Query 1, where n = 3, 4, 5 for evaluation. The packages
of size 3 consisted of users with IDs 8, 34, and 36, packages of size 4 included
those three as well as the user with ID 65, and packages of size 5 included all
five users. In formal notation, the query where n = 3 (a similar query is used for
n = 4, 5) is GP[r,X,F,PF], where

2 http://www.grouplens.org/node/73/

http://www.grouplens.org/node/73/

Enabling a Package Query Paradigm on the Semantic Web 27

84

86

88

90

92

94

2 3 4 5

Pe
rc

en
t P

ru
ne

d
Package Size

Average Prunability
SkyPackage

Fig. 17. Prunability of synthetic data

0.01

0.1

1

10

100

3 4 5

Ex
ec

u
on

 T
im

e
(s

ec
)

Package Size

MovieLens
SkyPackage SkyJCPS RSJFH JCPS

Fig. 18. Package size scalability for MovieLens

• r = ?movie
• X = {(?movieRater, hasName, “8”), (?movieRater, hasName, “34”),

(?movieRater, hasName, “36”) }
• F = {SR = average()rating}
• PF = {(SR;≺max)}

The results of this experiment can be seen in Fig. 18. It is easily observed
that SkyPackage performed better in all cases. We were unable to obtain any
results from JCPS as it ran for hours. The next worst performing algorithm
was RSJFH, followed by SkyJCPS. Due to the number of joins required to
construct the tables in the format required by RSJFH, most of its time was
spent during the initial phase, i.e., before the Cartesian product phase. Figure 19
shows the percent of tuples pruned by SkyPackage. In all three package sizes,
approximately 99 % of the tuples were pruned.

6.4 Book-Crossing Dataset

The next real dataset used for evaluations was Book-Crossing3, which consists
of approximately 271,000 books rated by approximately 278,000 users.

Package-size Scalability and Prunability. Using a similar approach as we
did with the MovieLens dataset, we randomly chose a subset of users for eval-
uating packages of different sizes. The users consisted of those with IDs 11601,
3 http://www.informatik.uni-freiburg.de/∼cziegler/BX/dataset

http://www.informatik.uni-freiburg.de/~cziegler/BX/dataset

28 M. Sessoms and K. Anyanwu

90

92

94

96

98

100

3 4 5

Pe
rc

en
t P

ru
ne

d

Package Size

MovieLens Prunability
SkyPackage

Fig. 19. Prunability of MovieLens dataset

11676, 16795, 23768, and 23902, who rated 1,571, 13,602, 2,948, 1,708, and
1,503 books, respectively. The target descriptive table contained approximately
271,000 tuples, i.e., all the books. We used Query 2, where n = 3, 4, 5 for evalu-
ation.

Query 2. Given n book-raters, find packages of n books such that the average
rating of all the books is high and each book-rater has rated at least one of the
books.

In formal notation, the query where n = 3 (a similar query is used for n =
4, 5) is GP[r,X,F,PF], where

• r = ?book
• X = {(?bookRater, hasName, “11601”), (?bookRater, hasName, “11676”),

(?bookRater, hasName, “16795”) }
• F = {SR = average()rating}
• PF = {(SR;≺max)}

The packages of size 3 consisted of users with IDs 11601, 11676, and 16795,
packages of size 4 included those three as well as the user with ID 23768, and
packages of size 5 included all five users. The results of this experiment can
be seen in Fig. 20. The Book-Crossing dataset followed the same performance
pattern as the MovieLens datasets, i.e., SkyPackage performed the best while
RSJFH performed the worst. Although the overall execution time of the Book-
Crossing dataset was longer than the MovieLens dataset, the data we used from
the Book-Crossing dataset consisted of more tuples. Fig. 21 shows the percent
of tuples pruned by SkyPackage from the Book-Crossing dataset.

6.5 Storage Model Evaluation

For each of the above experiments, we evaluated our storage model by comparing
the time it took to load the RDF file into the database using our storage model
versus using VPTs. All data was indexed using a B-trees.

For the synthetic data, we took the average time over the three data distri-
butions of the same package size. Figure 22a shows the results for packages of

Enabling a Package Query Paradigm on the Semantic Web 29

0.1

1

10

100

1000

10000

3 4 5

Ex
ec

uti
on

 T
im

e
(s

ec
)

Package Size

Book-Crossing
SkyPackage SkyJCPS RSJFH JCPS

Fig. 20. Package size scalability for Book-Crossing

78

80

82

84

86

88

3 4 5

Pe
rc

en
t P

ru
ne

d

Package Size

Book-Crossing Prunability
SkyPackage

Fig. 21. Prunability of Book-Crossing dataset

0

0.1

0.2

0.3

0.4

0.5

0.6

2 3 4 5

Ex
ec

uti
on

 T
im

e
(s

ec
)

Package Size

Synthetic Data Loading
SkyPackage VPT

25.5
26

26.5
27

27.5
28

28.5
29

29.5

3 4 5

Ex
ec

uti
on

 T
im

e
(s

ec
)

Package Size

Book-Crossing Data Loading
SkyPackage VPT

0

1

2

3

4

5

3 4 5

Ex
ec

uti
on

 T
im

e
(s

ec
)

Package Size

MovieLens Data Loading
SkyPackage VPT

Fig. 22. Database build

30 M. Sessoms and K. Anyanwu

size 2, 3, 4, and 5. In Fig. 22b, c, we show the time of inserting the MovieLens
and the Book-Crossing datasets, respectively, for packages of size 3, 4, and 5.

For both the synthetic and MovieLens datasets, loading the data using our
storage model took longer than using VPTs. The number of tables created using
both approaches are not always equal, and either approach could have more
tables than the other. Since the time to load the data is roughly the same for
each package size, the number of tables created does not necessarily have that
much effect on the total time. Our approach imposes additional time because of
the triple patterns that must be matched, as explained in Sect. 4.1. Since the
time difference between the two is small and the database only has to be built
once, it is more efficient to use our storage model with SkyPackage than using
VPTs.

7 Conclusion and Future Work

This article addressed the problem of answering package skyline queries. We
have formalized and described what constitutes a “package” and have defined
the term skyline packages. Package querying is especially useful for cases where a
user requires multiple objects to satisfy certain constraints. We introduced three
algorithms for solving the package skyline problem. Future work will consider
the use of additional optimization techniques such as prefetching to achieve
additional performance benefits as well as the integration of top-k techniques to
provide ranking of the results when the size of query result is large.

Acknowledgment. The work presented in this article is partially funded by NSF
grant IIS-0915865.

References

1. Abadi, D., Marcus, A., Madded, S., Hollenbach, K.: Scalable semantic web data
management using vertical partitioning. In: VLDB, Vienna (2007)

2. Barndorff-Nielsen, O., Sobel, M.: On the distribution of the number of admissable
points in a vector random sample. Theor. Probab. Appl. 11(2), 249–269 (1996)

3. Beckett, D.: RDFXML syntax specification. Recommendation, World Wide Web
Consortium (2004). See http://www.w3.org/TR/rdf-syntax-grammar/

4. Beckett, D., Berners-Lee, T.: Turtle - Terse RDF triple language. World Wide Web
Consortium (2011). See http://www.w3.org/TeamSubmission/turtle/

5. Bentley, J.L., Clarkson, K.L., Levine, D.B.: Fast linear expected-time algorithms
for computing maxima and convex hulls. In: SODA, pp. 179–187 (1990)

6. Bentley, J.L., Kung, H.T., Schkolnick, M., Thompson, C.D.: On the average num-
ber of maxima in a set of vectors and applications, pp. 536–543. ACM (1978)

7. Berners-Lee, T., Fielding, R., Irvine, U.C., Masinter, L.: Uniform resource identi-
fiers. (URI), Generic Syntax. IETF (1998)

8. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientif. Am. 284(5),
34–43 (2001)

http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TeamSubmission/turtle/

Enabling a Package Query Paradigm on the Semantic Web 31

9. Boag, S., Chamberlin, D., Fernandez, M.F., Florescu, D., Robie, J., Simeon, J.:
XQuery 1.0: An XML Query Language, 2nd edn. Recommendation, World Wide
Web Consortium (2010). See http://www.w3.org/TR/xquery/

10. Borzsonyi, S., Kossmann, D., Stocker, K.: The Skyline operator. In: ICDE, Heidel-
berg, pp. 421–430 (2001)

11. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible
Markup Language (XML) 1.0. Recommendation, World Wide Web Consortium
(2000). See http://www.w3.org/TR/2008/REC-xml-20081126/

12. Brickley, D., Guha, R.V.: Resource Description Framework (RDF) Schema Speci-
fication 1.0 Canditate Recommendation, World Wide Web Consortium (2000). See
http://www.w3.org/TR/2000/CR-rdf-schema-20000327

13. Broekstra, J.: SeRQL: Sesame RDF query language. SWAD-Europe, pp. 55–68
(2003)

14. Broekstra, J., Kampman, A., Harmelen, F.V.: Sesame: A generic architecture for
storing and querying RDF and RDF schema. In: ISWC, pp. 54–68 (2012)

15. Carrol, J., McBride, B.: The Jena semantic web toolkit. Public API, HP-Labs,
Bristol (2001). See http://www.hpl.hp.com/semweb/jena-top.html

16. Chen, L., Gao, S., Anyanwu, K.: Efficiently evaluating skyline queries on RDF
databases. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis,
D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp.
123–138. Springer, Heidelberg (2011)

17. Chomicki, J.: Preference formulas in relational queries. TODS 28(4), 427–466
(2003)

18. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE,
pp. 717–719 (2003)

19. Grant, J., Beckett, D.: RDF test cases. Recommendation, World Wide Web Con-
sortium (2004). See http://www.w3.org/TR/rdf-testcases/#ntriples

20. Deng, T., Fan, W., Geerts, F.: On the complexity of package recommendation
problems. PODS, pp. 261–272 (2012)

21. Feigenbaum, L., Williams, G.T., Clark, K.G., Torress Hayes, E.: SPARQL 1.1
Protocol. Working draft. World Wide Web Consortium (2001). See http://www.
w3.org/TR/sparql11-protocol/

22. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.:
RQL: A declarative query language for RDF. World Wide Web, pp. 592–603 (2002)

23. Khabbaz, M., Lakshmanan, L.V.S.: TopRecs: Top-k algorithms for item-based col-
laborative filtering. EDBT, 213–224 (2011)

24. Khalefa, M.E., Mokbel, M.F., Levandoski, J.J.: Skyline query processing for incom-
plete data (2008)

25. KieBling, W.: Foundations of preferences in database systems. In: VLDB, pp. 311–
322 (2002)

26. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: An online algorithm
for skyline queries. In: VLDB, pp. 275–286 (2002)

27. Koudas, N., Li, C., Tung, A.K.H., Vernica, R.: Relaxing join and selection queries.
In: VLDB (2006)

28. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.
JACM 22(4), 469–476 (1975)

29. Lassila, O., Swick, R.R.: Resource description framework (RDF): Model and syntax
specification. Recommendation, World Wide Web Consortium (1999). See http://
www.w3.org/TR/REC-rdf-syntax/

30. Berners-Lee, T., Connolly, D.: Notation3 (N3): A readable RDF syntax. World
Wide Web Consortium (2011). See http://www.w3.org/TeamSubmission/n3/

http://www.w3.org/TR/xquery/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2000/CR-rdf-schema-20000327
http://www.hpl.hp.com/semweb/jena-top.html
http://www.w3.org/TR/rdf-testcases/#ntriples
http://www.w3.org/TR/sparql11-protocol/
http://www.w3.org/TR/sparql11-protocol/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TeamSubmission/n3/

32 M. Sessoms and K. Anyanwu

31. McLain, D.H.: Drawing contours from arbitrary data points. Comput. J. 17(4),
318–324 (1974)

32. Raghavan, V., Rundensteiner, E.: SkyDB: Skyline aware query evaluation frame-
work. In: IDAR (2009)

33. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in data-
base systems. TODS 24(2), 41–82 (2005)

34. Preparata, F., Shamos, M.: Computational Geometry: An Introduction. Springer,
Heidelberg (1985)

35. Seaborne, A.: RDQL - A query language for RDF. World Wide Web Consortium
(2004). See http://www.w3.org/Submission/RDQL/

36. Sessoms, M., Anyanwu, K.: SkyPackage: From finding items to finding a skyline of
packages on the semantic web. Proceedings of the JIST (to appear), (2012)

37. Shah, K., Gadge, J.: Semantic web services for E learning: Engineering and tech-
nology domain. In: IJCTE 2001, pp. 727–731 (2001)

38. Siberski, W., Pan, J.Z., Thaden, U.: Querying the semantic web with preferences.
In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold,
M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 612–624. Springer, Hei-
delberg (2006)

39. Sintek, M., Decker, S.: TRIPLE–A query, inference, and transformation language
for the semantic web. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol.
2342, p. 364. Springer, Heidelberg (2002)

40. Souzis, A.: RxPath specification proposal. See http://rx4rdf.liminalzone.org/
RxPathSpec

41. Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient progressive skyline computation. In:
VLDB, pp. 301–310 (2001)

42. Uschold, M., Gruninger, M.: Ontologies: principles, methods and applications.
Knowl. Eng. Rev. 11(2), 93–136 (1996)

43. Vlachou, A., Doulkeridis, C., Polyzotis,N.: Skyline query processing over joins. In:
SIGMOD, pp. 73–84 (2011)

44. Xie, M. Lakshmanan, L.V.S., Wood, P.T.: Breaking out of the box of recommen-
dations: from items to packages. In: RecSys, pp. 151–158 (2010)

45. Xie, M. Lakshmanan, L.V.S., Wood, P.T.: CompRec-Trip: a composite recommen-
dation system for travel planning. In: ICDE, pp. 1352–1355 (2011)

46. Yiu, M.L., Mamoulis, N.: Efficient processing of top-k dominating queries on multi-
dimensional data. In: VLDB, pp. 483–494 (2007)

47. Jin, W., Ester, M., Hu, Z., Han, J.: The Multi-relational skyline operator. In:
ICDE, pp. 1276–1280 (2007)

48. Guo, X., Xiao, C., Ishikawa, Y.: Combination skyline queries. In: Hameurlain, A.,
Küng, J., Wagner, R., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) Transactions
on Large-Scale Data- and Knowledge-Centered Systems VI. LNCS, vol. 7600, pp.
1–30. Springer, Heidelberg (2012)

http://www.w3.org/Submission/RDQL/
http://rx4rdf.liminalzone.org/RxPathSpec
http://rx4rdf.liminalzone.org/RxPathSpec

SemLAV: Local-As-View Mediation
for SPARQL Queries

Gabriela Montoya1(B), Luis-Daniel Ibáñez1, Hala Skaf-Molli1, Pascal Molli1,
and Maria-Esther Vidal2

1 LINA– Nantes University, Nantes, France
{gabriela.montoya,luis.ibanez,hala.skaf,pascal.molli}@univ-nantes.fr

2 Universidad Simón Boĺıvar, Caracas, Venezuela
mvidal@ldc.usb.ve

Abstract. The Local-As-View (LAV) integration approach aims at
querying heterogeneous data in dynamic environments. In LAV, data
sources are described as views over a global schema which is used to
pose queries. Query processing requires to generate and execute query
rewritings, but for SPARQL queries, the LAV query rewritings may not
be generated or executed in a reasonable time.

In this paper, we present SemLAV, an alternative technique to process
SPARQL queries over a LAV integration system without generating
rewritings. SemLAV executes the query against a partial instance of the
global schema which is built on-the-fly with data from the relevant views.
The paper presents an experimental study for SemLAV, and compares
its performance with traditional LAV-based query processing techniques.
The results suggest that SemLAV scales up to SPARQL queries even over
a large number of views, while it significantly outperforms traditional
solutions.

Keywords: Semantic Web · Data integration · Local-as-view · SPARQL
query

1 Introduction

Processing queries over a set of autonomous and semantically heterogeneous data
sources is a challenging problem. Particularly, a great effort has been done by
the Semantic Web community to integrate datasets into the Linked Open Data
(LOD) cloud [1] and make these data accessible through SPARQL endpoints
which can be queried by federated query engines. However, there are still a large
number of data sources and Web APIs that are not part of the LOD cloud. As
consequence, existing federated query engines cannot be used to integrate these
data sources and Web APIs. Supporting SPARQL query processing over these
environments would extend federated query engines into the deep Web.

Gabriela Montoya—Unit UMR6241 of the Centre National de la Recherche Scien-
tifique (CNRS).

A. Hameurlain et al. (Eds.): TLDKS XIII, LNCS 8420, pp. 33–58, 2014.
DOI: 10.1007/978-3-642-54426-2 2, c© Springer-Verlag Berlin Heidelberg 2014

34 G. Montoya et al.

Two main approaches exist for data integration: data warehousing and medi-
ators. In data warehousing, data are transformed and loaded into a repository;
this approach may suffer from freshness problem [2]. In the mediator approach,
there is a global schema over which the queries are posed and views describe data
sources. Three main paradigms are proposed: Global-As-View (GAV), Local-As-
View (LAV) and Global-Local-As-View (GLAV). In GAV mediators, entities of
the global schema are described using views over the data sources, including
or updating data sources may require the modification of a large number of
views [3]. Whereas, in LAV mediators, the sources are described as views over the
global schema, adding new data sources can be easily done [3]. Finally, GLAV is
a hybrid approach that combines both LAV and GAV approaches. GAV is appro-
priate for query processing in stable environments. A LAV mediator relies on a
query rewriter to translate a mediator query into the union of queries against
the views. Therefore, it is more suitable for environments where data sources
frequently change. Despite of its expressiveness and flexibility, LAV suffers from
well-known drawbacks: (i) existing LAV query rewriters only manage conjunctive
queries, (ii) the query rewriting problem is NP-complete for conjunctive queries,
and (iii) the number of rewritings may be exponential.

SPARQL queries exacerbate LAV limitations, even in presence of conjunc-
tions of triple patterns. For example, in a traditional database system, a LAV
mediator with 140 conjunctive views can generate 10,000 rewritings for a con-
junctive query with eight subgoals [4]. In contrast, the number of rewritings for a
SPARQL query can be much larger. SPARQL queries are commonly comprised of
a large number of triple patterns and some may be bound to general predicates of
the RDFS or OWL vocabularies, e.g., rdf:type, owl:sameAs or rdfs:label, which
are usually used in the majority of the data sources. Additionally, queries can
be comprised of several star-shaped sub-queries [5]. Finally, a large number of
variables can be projected out. All these properties impact the complexity of the
query rewriting problem, even enumerating query rewritings can be unfeasible.
For example, a SPARQL query with 12 triple patterns that comprises three star-
shaped sub-queries can be rewritten using 476 views in billions of rewritings. This
problem is even more challenging considering that statistics may be unavailable,
and there are no clear criteria to rank or prune the generated rewritings [6]. It
is important to note that for conjunctive queries, GLAV query processing tasks
are at least as complex as LAV tasks [7].

In this paper, we focus on the LAV approach, and propose SemLAV, the first
scalable LAV-based approach for SPARQL query processing. Given a SPARQL
query Q on a set M of LAV views, SemLAV selects relevant views for Q and ranks
them in order to maximize query results. Next, data collected from selected views
are included into a partial instance of the global schema, where Q can be executed
whenever new data is included; and thus, SemLAV incrementally produces query
answers. Compared to a traditional LAV approach, SemLAV avoids generating
rewritings which is the main cause of the combinatorial explosion in traditional
rewriting-based approaches; SemLAV also supports the execution of SPARQL
queries. The performance of SemLAV is no more dependent on the number of

SemLAV: Local-As-View Mediation for SPARQL Queries 35

rewritings, but it does depend on the number and size of relevant views. Space
required to temporarily include relevant views in the global schema instance
may be considerably larger than the space required to execute all the query
rewritings one by one. Nevertheless, executing the query once on the partial
instance of the global schema could produce the answers obtained by executing
all the rewritings.

To empirically evaluate the properties of SemLAV, we conducted an exper-
imental study using the Berlin Benchmark [8] and queries and views designed
by Castillo-Espinola [9]. Results suggest that SemLAV outperforms traditional
LAV-based approaches with respect to answers produced per time unit, and
provides a scalable LAV-based solution to the problem of executing SPARQL
queries over heterogeneous and autonomous data sources.

The contributions of this paper are the following:

– Formalization of the problem of finding the set of relevant LAV views that
maximize query results; we call this problem MaxCov.

– A solution to the MaxCov problem.
– A scalable and effective LAV-based query processing engine to execute

SPARQL queries, and to produce answers incrementally.

The paper is organized as follows: Sect. 2 presents basic concepts, definitions
and a motivating example. Section 3 defines the MaxCov problem, SemLAV
query execution approach and algorithms. Section 4 reports our experimental
study. Section 5 summarizes related work. Finally, conclusions and future work
are outlined in Sect. 6.

2 Preliminaries

Mediators are components of the mediator-wrapper architecture [10]. They pro-
vide an uniform interface to autonomous and heterogeneous data sources. Medi-
ators also rewrite an input query into queries against the data sources, and
merge data collected from the selected sources. Wrappers are software compo-
nents that solve interoperability between sources and mediators by translating
data collected from the sources into the schema and format understood by the
mediators; the schema exposed by the wrappers is part of the schema exposed
by its corresponding mediator.

The problem of processing a query Q over a set of heterogeneous data sources
corresponds to answer Q using the instances of these sources. Although this
problem has been extensively studied by the Database community [11], it has
not been addressed for SPARQL queries. The following definitions are taken from
Database existing solutions. Many of them are given for conjunctive queries. A
conjunctive query has the form: Q(X̄) :- p1(X̄1), . . . , pn(X̄n), where pi is a
predicate, X̄i is a list of variables and constants, Q(X̄) is the head of the query,
p1(X̄1), . . . , pn(X̄n) is the body of the query, and each element of the body is a
query subgoal. In a conjunctive query, distinguished variables are variables that
appear in the head, they should also appear in the body. Variables that appear
in the body, but not in the head are existential variables.

36 G. Montoya et al.

Definition 1 (LAV Integration System [12]). A LAV integration system is
a triple IS=< G,S,M > where G is a global schema, S is a set of sources or
source schema, and M is a set of views that map sources in S into the global
schema G.

For the rest of the paper, we assume that views in M are limited to conjunctive
queries. Both views and mediator queries are defined over predicates in G.

Definition 2 (Sound LAV View [12]). Given IS=< G,S,M > a LAV inte-
gration system, and a view vi in M. The view vi is sound if for all instance
I(vi) of vi, and all D virtual database instance of G, I(vi) is contained in the
evaluation of view vi over D, i.e., I(vi) ∈ vi(D).

Definition 3 (Query Containment and Equivalence [13]). Given two
queries Q1 and Q2 with the same number of arguments in their heads, Q1 is
contained in Q2, Q1 ⊆ Q2, if for any database instance D the answer of Q1
over D is contained in the answer to Q2 over D, Q1(D) ∈ Q2(D). Q1 is equiv-
alent to Q2 if Q1 ⊆ Q2 and Q2 ⊆ Q1.

Definition 4 (Containment Mapping [13]). Given two queries Q1 and Q2,
X̄ and Ȳ the head variables of Q1 and Q2 respectively, and ψ a variable mapping
from Q1 to Q2, ψ is a containment mapping if ψ(X̄) = Ȳ and for every query
subgoal g(X̄i) in the body of Q1, ψ(g(X̄i)) is a subgoal of Q2.

Theorem 1 (Containment [13]). Let Q1 and Q2 be two conjunctive queries,
then there is a containment mapping from Q1 to Q2 if and only if Q2 ⊆ Q1.

Definition 5 (Query Unfolding [13]). Given a query Q and a query subgoal
gi(X̄i), gi(X̄i) ≺ body(Q), where gi corresponds to a view: gi(Ȳ) :-s1(Ȳ1), . . . ,
sn(Ȳn), the unfolding of gi in Q is done using a mapping τ from variables in Ȳ
to variables in X̄i, replacing gi(X̄i) by s1(τ(Ȳ1)), . . . , sn(τ(Ȳn)) in Q. Variables
that occur in the body of gi but not in X̄i are replaced by fresh (unused) variables
by mapping τ .

Definition 6 (Equivalent Rewriting [11]). Let Q be a query and M =
{v1, . . . , vm} be a set of views definitions. The query Q′ is an equivalent rewriting
of Q using M if:

– Q′ refers only to views in M , and
– Q′ is equivalent to Q.

Definition 7 (Maximally-Contained Rewriting [11]). Let Q be a query,
M = {v1, . . . , vm} be a set of views definitions, and L be a query language1. The
query Q′ is a maximally-contained rewriting of Q using M with respect to L if:

– Q′ is a query in L that refers only to the views in M ,
1 L is a query language defined over the alphabet composed of the global and source

schema.

SemLAV: Local-As-View Mediation for SPARQL Queries 37

– Q′ is contained in Q, and
– there is no rewriting Q1 ≺ L, such that Q′ ⊆ Q1 ⊆ Q and Q1 is not equivalent

to Q′.

Theorem 2 (Number of Candidate Rewritings [2]). Let N , O and M be
the number of query subgoals, the maximal number of views subgoals, and the set
of views, respectively. The number of candidate rewritings in the worst case is:
(O × |M |)N .

Theorem 3 (Complexity of Finding Rewritings [11]). The problem of
finding an equivalent rewriting is NP-complete.

Consider L in Definition 7 as the union of conjunctive queries, then view v
would be used to answer query Q if there is one conjunctive query r ≺ Q′ such
that v appears as the relation of one of r query subgoals. As Q′ ⊆ Q, then r ⊆ Q.
View v is called a relevant view atom. The next definition formalizes this notion.

Definition 8 (Relevant View Atom [13]). A view atom v is relevant for a
query atom g if one of its subgoals can play the role of g in the rewriting. To do
that, several conditions must be satisfied: (1) the view subgoal should be over the
same predicate as g, and (2) if g includes a distinguished variable of the query,
then the corresponding variable in v must be a distinguished variable in the view
definition.

The concepts of relevant view and coverage have been widely used in the
literature [11,13]; nevertheless, they have been introduced in an informal way.
The following definitions precise the properties that are assumed in this paper.

Definition 9 (Relevant Views). Let Q be a conjunctive query, M = {v1, . . . ,
vm} be a set of view definitions, and q be a query subgoal, i.e., q ≺ body(Q).
The set of relevant views for q corresponds to the set of relevant view atoms for
the query subgoal q, i.e., RV (M, q) = {τ(v) : v ≺ M ∀ w ≺ body(v) ∀ ψ(q) =
τ(w)∀ (∩x : x ≺ V ars(q)∀distinguished(x,Q) : distinguished(x, v))}2. The set
of relevant views for Q corresponds to the views that are relevant for at least one
query subgoal, i.e., RV (M,Q) = {τ(v) : q ≺ body(Q) ∀ v ≺ M ∀ w ≺ body(v) ∀
ψ(q) = τ(w) ∀ (∩x : x ≺ V ars(q) ∀ distinguished(x,Q) : distinguished(x, v))}.
Definition 10 (Coverage). Let Q be a conjunctive query, v be a view defini-
tion, q be a query subgoal, and w be a view subgoal. The predicate covers(w, q)
holds if and only if w can play the role of q in a query rewriting.

We illustrate some of the given definitions for the LAV-based query rewriting
approach using SPARQL queries. This will provide evidence of the approach
limitations even for simple queries. In the following example, the global schema
G is defined over the Berlin Benchmark [8] vocabulary. Consider a SPARQL
query Q on G; Q has seven subgoals and returns information about products as
2 ψ(q) corresponds to the application of ψ to the variables of q (idem for τ(w)).

38 G. Montoya et al.

shown in Listing 1.1. Listing 1.3 presents Q as a conjunctive query, where triple
patterns are represented as query subgoals.

SELECT *
WHERE {
?X1 rdfs:label ?X2 .
?X1 rdfs:comment ?X3 .
?X1 bsbm:productPropertyTextual1 ?X8 .
?X1 bsbm:productPropertyTextual2 ?X9 .
?X1 bsbm:productPropertyTextual3 ?X10 .
?X1 bsbm:productPropertyNumeric1 ?X11 .
?X1 bsbm:productPropertyNumeric2 ?X12 .

}

Listing 1.1. SPARQL query Q

SELECT *
WHERE {
?X1 rdfs{:}label ?X2 .
?X1 rdf{:}type ?X3 .
?X1 bsbm{:}productFeature ?X4

.
}

Listing 1.2. SPARQL View s1

Q(X1, X2, X3, X8, X9, X10, X11, X12) :- label(X1, X2), comment(X1, X3),
productPropertyTextual1(X1, X8), productPropertyTextual2(X1, X9),
productPropertyTextual3(X1, X10), productPropertyNumeric1(X1, X11),
productPropertyNumeric2(X1, X12)

Listing 1.3. Q expressed as a conjunctive query

s1(X1,X2,X3,X4):-label(X1,X2),type(X1,X3),productfeature(X1,X4)
s2(X1,X2,X3):-type(X1,X2),productfeature(X1,X3)
s3(X1,X2,X3,X4):-producer(X1,X2),label(X2,X3),publisher(X1,X2),

productfeature(X1,X4)
s4(X1,X2,X3):-productfeature(X1,X2),label(X2,X3)
s5(X1,X2,X3,X4,X5,X6,X7):-label(X1,X2),comment(X1,X3),producer(X1,X4),

label(X4,X5),publisher(X1,X4),productpropertytextual1(X1,X6),
productpropertynumeric1(X1,X7)

s6(X1,X2,X3,X4,X5):-label(X1,X2),product(X3,X1),price(X3,X4),vendor(X3,X5)
s7(X1,X2,X3,X4,X5,X6):-label(X1,X2),reviewfor(X3,X1),reviewer(X3,X4),

name(X4,X5),title(X3,X6)
s9(X1,X2,X3,X4):-reviewfor(X1,X2),title(X1,X3),text(X1,X4)
s10(X1,X2,X3):-reviewfor(X1,X2),rating1(X1,X3)
s11(X1,X2,X3,X4,X5,X6,X7):-label(X1,X2),comment(X1,X3),producer(X1,X4),

label(X4,X5),publisher(X1,X4),productpropertytextual2(X1,X6),
productpropertynumeric2(X1,X7)

s12(X1,X2,X3,X4,X5,X6,X7):-label(X1,X2),comment(X1,X3),producer(X1,X4),
label(X4,X5),publisher(X1,X4),productpropertytextual3(X1,X6),
productpropertynumeric3(X1,X7)

s13(X1,X2,X3,X4,X5,X6,X7):-label(X1,X2),product(X3,X1),price(X3,X4),
vendor(X3,X5),offerwebpage(X3,X6),homepage(X5,X7)

s14(X1,X2,X3,X4,X5,X6,X7):-label(X1,X2),product(X3,X1),price(X3,X4),
vendor(X3,X5),deliverydays(X3,X6),validto(X3,X7)

s15(X1,X2,X3,X4,X5,X6,X7,X8,X9):-product(X1,X2),price(X1,X3),vendor(X1,X4),
label(X4,X5),country(X4,X6),publisher(X1,X4),reviewfor(X7,X2),
reviewer(X7,X8),name(X8,X9)

Listing 1.4. Views s1-s10 from [9]

Consider M composed of 14 data sources defined as conjunctive views over
the global schema G as in Listing 1.4; the Berlin Benchmark [8] vocabulary terms
are represented as binary predicates in the conjunctive queries that define the
data sources. Source s1 can be defined as in Listing 1.2; note that we have done
just a syntactic translation from this SPARQL query to the conjunctive query
presented in Listing 1.4.

SemLAV: Local-As-View Mediation for SPARQL Queries 39

For instance, s1 retrieves information about product type, label and product
feature. The rdfs:label predicate is a general predicate. Commonly, general
predicates are part of the definition of many data sources, and the number of
rewritings of SPARQL queries that comprise triple patterns bound to general
predicates can be very large. The general predicate rdfs:label in query Q can
be mapped to views s1, s3-s7, s11-s15.

r(X1,X2,X3,X8,X9,X10,X11,X12) :- s6(X1,X2,_0,_1,_2),
s5(X1,_3,X3,_4,_5,_6,_7), s5(X1,_8,_9,_10,_11,X8,_12),
s11(X1,_13,_14,_15,_16,X9,_17), s12(X1,_18,_19,_20,_21,X10,_22),
s5(X1,_23,_24,_25,_26,_27,X11), s11(X1,_28,_29,_30,_31,_32,X12)

Listing 1.5. A query rewriting for Q

Listing 1.5 presents a query rewriting for Q, its subgoals cover each of
the query subgoals of Q, e.g., s6(X1,X2, 0, 1, 2) covers the first query sub-
goal of Q, label(X1,X2). ψ(label(X1,X2)) = τ(label(X1,X2)); the mapping
τ from view variables to rewriting variables is: τ(X1) = X1, τ(X2) = X2,
τ(X3) = 0, τ(X4) = 1, τ(X5) = 2, and the mapping ψ from query variables
to rewriting variables is: ψ(Xi) = Xi, for all Xi in the query head. Then, view
s6(X1,X2, 0, 1, 2) is relevant for answering the first query subgoal of Q. Notice
that third, fourth and fifth projected variables of s6 correspond to existential
variables because they are not relevant to cover the first query subgoal of Q
with s6.

To illustrate how the number of rewritings for Q can be affected by the
number of data sources that use the general predicate rdfs:label, we run the
LAV query rewriter MCDSAT [14].3 First, if 14 data sources are considered, Q
can be rewritten in 42 rewritings. For 28 data sources, there are 5,376 rewritings,
and 1.12743e+10 rewritings are generated for 224 sources.4 With one simple
query, we can illustrate that the number of rewritings can be extremely large,
being in the worst case exponential in the number of query subgoals and views. In
addition to the problem of enumerating this large number of query rewritings, the
time needed to compute them may be excessively large. Even using reasonable
timeouts, only a small number of rewritings may be produced.

Table 1 shows the number of rewritings obtained by the state-of-the-art LAV
rewriters GQR [4], MCDSAT [14] and MiniCon [15], when 224 views are con-
sidered for Q and timeouts are set up to 5, 10 and 20 min. Note that all these
rewriters are able to produce only empty results or a small number of rewritings.

In summary, even if the LAV approach constitutes a flexible approach to
integrate data from heterogeneous data sources, query rewriting and processing
tasks may be unfeasible in the context of SPARQL queries. Either the number of
query rewritings is too large to be enumerated or executed in a reasonable time.
3 MCDSAT [14] is the only query rewriting tool publicly available that counts the

number of rewritings without enumerating all of them.
4 The 14 data sources setup is defined as in Listing 1.4, the one with 28 data sources

has two views for each of the views in Listing 1.4, and the one with 224 sources has
16 views for each of the views in Listing 1.4

40 G. Montoya et al.

Table 1. Number of rewritings obtained from the rewriters GQR, MCDSAT and Mini-
Con with timeouts of 5, 10 and 20 min. Using 224 views and query Q

Rewriter 5 min 10 min 20 min

GQR 0 0 0
MCDSAT 211,125 440,308 898,766
MiniCon 0 0 0

To overcome these limitations and make feasible the LAV approach for SPARQL
queries, we propose a novel approach named SemLAV. SemLAV identifies and
ranks the relevant views of a query, and executes the query over the data collected
from the relevant views; thus, SemLAV is able to output a high proportion of
the answer in a short time.

3 The SemLAV Approach

SemLAV is a scalable LAV-based approach for processing SPARQL queries.
It is able to produce answers even for SPARQL queries against large inte-
gration systems with no statistics. SemLAV follows the traditional mediator-
wrapper architecture [10]. Schemas exposed by the mediators and wrappers are
expressed as RDF vocabularies. Given a SPARQL query Q over a global schema
G and a set of sound views M = {v1, . . . , vm}, SemLAV executes the original
query Q rather than generating and executing rewritings as in traditional LAV
approaches. SemLAV builds an instance of the global schema on-the-fly with
data collected from the relevant views. The relevant views are considered in an
order that enables to produce results as soon as the query Q is executed against
this instance.

Contrary to traditional wrappers which populate structures that represent
the heads of the corresponding views, SemLAV wrappers return RDF Graphs
composed of the triples that match the triple patterns in the definition of the
views. SemLAV wrappers could be more expensive in space than the traditional
ones. However, they ensure that original queries are executable even for full
SPARQL queries and they make query execution dependent on the number of
views rather than on the number of rewritings.

To illustrate the SemLAV approach, consider a SPARQL query Q with four
subgoals:

SELECT *
WHERE {

?Offer bsbm:vendor ?Vendor .
?Vendor rdfs:label ?Label .
?Offer bsbm:product ?Product .
?Product bsbm:productFeature ?ProductFeature .

}

SemLAV: Local-As-View Mediation for SPARQL Queries 41

and a set M of five views:

v1(P,L,T,F):-label(P,L),type(P,T),productfeature(P,F)
v2(P,R,L,B,F):-producer(P,R),label(R,L),publisher(P,B),productfeature(P,F)
v3(P,L,O,R,V):-label(P,L),product(O,P),price(O,R),vendor(O,V)
v4(P,O,R,V,L,U,H):-product(O,P),price(O,R),vendor(O,V),label(V,L),

offerwebpage(O,U),homepage(V,H)
v5(O,V,L,C):-vendor(O,V),label(V,L),country(V,C)

In the traditional LAV approach, 60 rewritings are generated and the exe-
cution of all these rewritings will produce all possible answers. However, this
is time-consuming and uses a non-negligible amount of memory to store data
collected from views present in the rewritings. In case there are not enough
resources to execute all these rewritings, as many rewritings as possible would
be executed. We apply a similar idea in SemLAV, if it is not possible to consider
the whole global schema instance to ensure a complete answer, then a partial
instance will be built. The partial instance will include data collected from as
many relevant views as the available resources allow.

The execution of the query over this partial schema instance will cover the
results of executing a number of rewritings. The number of rewritings covered
by the execution of Q over the partial schema instance could be exponential in
the number of views included in the instance. Therefore, the size of the set of
covered rewritings may be even greater than the number of rewritings executable
in the same amount of time.

The order in which views are included in the partial global schema instance
impacts the number of covered rewritings. Consider two different orders for
including the views of the above example: v5, v1, v3, v2, v4 and v4, v2, v3,
v1, v5. Table 2 considers partial global schema instances of different sizes. For
each partial global schema instance, the included views and the number of cov-
ered rewritings are presented. Executing Q over the growing instances corre-
sponds to the execution of a quite different number of rewritings. For instance,
if only four views could be included with the available resources, one order cor-
responds to the execution of 32 rewritings while the another one corresponds to
the execution of only eight rewritings. If all relevant views for query Q could
be included, then a complete answer will be produced. However, the number of

Table 2. Impact of the different views ordering on the number of covered rewritings

Included Order one Order two
views (k) Included views (Vk) # Covered Included views (Vk) # Covered

rewritings rewritings

1 v5 0 v4 0
2 v5, v1 0 v4, v2 2
3 v5, v1, v3 6 v4, v2, v3 12
4 v5, v1, v3, v2 8 v4, v2, v3, v1 32
5 v5, v1, v3, v2, v4 60 v4, v2, v3, v1, v5 60

42 G. Montoya et al.

relevant views could be considerably large, therefore, if we only have resources
to consider k relevant views, Vk, we should consider the ones that increase the
chances of obtaining answers. With no knowledge about data distribution, we
can only suppose that each rewriting has nearly the same chances of producing
answers. Thus, the chances of obtaining answers are proportional to the num-
ber of rewritings covered by the execution of Q over an instance that includes
views in Vk.

Maximal Coverage Problem (MaxCov). Given an integer k > 0, a query Q
on a global schema G, a set M of sound views over G, and a set R of conjunctive
queries whose union is a maximally-contained rewriting of Q in M . The Maximal
Coverage Problem is to find a subset Vk of M comprised of k relevant views for
Q, Vk ∈ M ∀ (∩v : v ≺ Vk : v ≺ RV (Q,M)) ∀ |Vk| = k, such that the set of
rewritings covered by Vk, Coverage(Vk, R), is maximal for all subsets of M of
size k, i.e., there is no other set of k views that can cover more rewritings than
Vk. Coverage(Vk, R) is defined as:

Coverage(Vk, R) = {r : r ≺ R ∀ (∩p : p ≺ body(r) : p ≺ Vk)} (1)

The MaxCov problem has as an input a solution to the Maximally-Contained
Rewriting problem. Nevertheless, using this for building a MaxCov solution
would be unreasonable since it makes the MaxCov solution at least as expensive
as the rewriting generation. Instead of generating the rewritings, we define a
formula that estimates the number of covered rewritings when Q is executed
over a global schema instance that includes a set of views. It is the product
of the number of ways each query subgoal can be covered by the set of views.
For a query Q(X̄) :- p1(X̄1), . . . pn(X̄n) using only views in Vk this formula is
expressed as:

NumberOfCoveredRewritings(Q,Vk) = Π1≤i≤n|Use(Vk, pi(X̄i))|, (2)

where Use(Vk, p) = Σv∈Vk
Σw∈body(v)∧covers(w,p)1. This formula computes the

exact number of covered rewritings when all the view variables are distinguished;
this is because the coverage of each query subgoal by a given view can be con-
sidered in isolation. Otherwise, this expression corresponds to an upper bound
of the number of covered rewritings of Q with respect to Vk.

Consider the second proposed ordering of the views in the above example,
the numbers of views in V4 that cover each query subgoal are:

– two for the first query subgoal (v4 and v3),
– four for the second query subgoal (v4, v2, v3 and v1),
– two for the third query subgoal (v4 and v3), and
– two for the fourth query subgoal (v2 and v1).

Thus, the number of covered rewritings is 32 (2 × 4 × 2 × 2).
Next, we detail a solution to the MaxCov problem under the assumption that

views only contain distinguished variables.

SemLAV: Local-As-View Mediation for SPARQL Queries 43

3.1 The SemLAV Relevant View Selection and Ranking Algorithm

The relevant view selection and ranking algorithm finds the views that cover
each subgoal of a query. This algorithm creates a bucket for each query subgoal
q, where a bucket is a set of relevant views; this resembles the first step of
the Bucket algorithm [11]. Additionally, the algorithm sorts the buckets views
according to the number of covered subgoals. Hence, the views that are more
likely to contribute to the answer will be considered first. This algorithm is
defined in Algorithm 1.

Algorithm 1 The Relevant View Selection and Ranking
Input: Q : SPARQL Query; M : Set of Views defined as conjunctive queries
Output: Buckets: Predicate → List<View>

for all q ∈ body(Q) do
buckets(q) ← ∅

end for
for all q ∈ body(Q) do

b ← buckets(q)
for all v ∈ M do

for all w ∈ body(v) do
if There are mappings τ , ψ, such that ψ(q) = τ(w) then

vi ← λ(v) {λ(v) replaces all variables ai in the head of v by τ(ai)}
insert(b, vi) {add vi to the bucket if it is not redundant}

end if
end for

end for
end for
for all q ∈ body(Q) do

b ← buckets(q)
sortBucket(buckets,b) {MergeSort with key (#covered buckets,#views subgoals)}

end for

The mapping τ relates view variables to query variables as stated in
Definition 9.

The sortBucket(buckets, b, q) procedure decreasingly sorts the views of
bucket b according to the number of covered subgoals. Views covering the same
number of subgoals are sorted decreasingly according to their number of sub-
goals. Intuitively, this second sort criterion prioritizes the more selective views,
reducing the size of the global schema instance. The sorting is implemented as
a classical MergeSort algorithm with a complexity of O(|M| × log(|M|).
Proposition 1. The complexity of Algorithm 1 is Max(O(N × |M| × P),O(N
× |M| × log(|M|))) where N is the number of query subgoals, M is the set of
views and P is the maximal number of view subgoals.

To illustrate Algorithm 1, consider the SPARQL query Q and the previously
defined views v1-v5.

Algorithm 1 creates a bucket for each subgoal in Q as shown in Table 3a.
For instance, the bucket of subgoal vendor(O, V) contains v3, v4 and v5:

all the views having a subgoal covering vendor(O, V). The final output after
executing the sortBucket procedure is described in Table 3b.

Views v3 and v4 cover three subgoals, but since v4 definition has more sub-
goals, i.e., it is more selective, v4 is placed before v3 in all the buckets.

44 G. Montoya et al.

Table 3. For query Q, buckets produced by Algorithm 1 when k views have been
included. Vk is obtained by Algorithm 2 and the number of covered rewritings

(a) Unsorted buckets

vendor(O,V) label(V,L) product(O,P) productfeature(P,F)

v3(P,L,O,R,V) v1(P,L,T,F) v3(P,L,O,R,V) v1(P,L,T,F)
v4(P,O,R,V,L,U,H) v2(P,R,L,B,F) v4(P,O,R,V,L,U,H) v2(P,R,L,B,F)
v5(O,V,L,C) v3(P,L,O,R,V)

v4(P,O,R,V,L,U,H)
v5(O,V,L,C)

(b) Sorted buckets

vendor(O,V) label(V,L) product(O,P) productfeature(P,F)

v4(P,O,R,V,L,U,H) v4(P,O,R,V,L,U,H) v4(P,O,R,V,L,U,H) v2(P,R,L,B,F)
v3(P,L,O,R,V) v3(P,L,O,R,V) v3(P,L,O,R,V) v1(P,L,T,F)
v5(O,V,L,C) v2(P,R,L,B,F)

v1(P,L,T,F)
v5(O,V,L,C)

(c) Included views

Included views (k) Included views (Vk) # Covered rewritings

1 v4 1 × 1 × 1 × 0 = 0
2 v4, v2 1 × 2 × 1 × 1 = 2
3 v4, v2, v3 2 × 3 × 2 × 1 = 12
4 v4, v2, v3, v1 2 × 4 × 2 × 2 = 32
5 v4, v2, v3, v1, v5 3 × 5 × 2 × 2 = 60

3.2 Global Schema Instance Construction and Query Execution

Each bucket is considered as a stack of views, having on the top the view that
covers more query subgoals. A global schema instance is constructed as described
in Algorithm 2 by iteratively popping one view from each bucket and loading its
data into the instance.

Table 3c shows how the number of covered rewritings increases as views are
included into the global schema instance. Each Vk in this table is a solution
to the MaxCov problem, i.e., the number of covered rewritings for each Vk is
maximal. There are two possible options regarding query execution. Query can
be executed each time a new view is included into the schema instance and partial
results will be produced incrementally; or, it can be executed after including the
k views. The first option prioritizes the time for obtaining the first answer,
while the second one favors the total time to receive all the answers of Q over
Vk. The first option produces results as soon as possible; however, in case of
non-monotonic queries, i.e., queries where partial results may not be part of the
query answer, this query processing approach should not be applied. Among non-
monotonic queries, there are queries with modifiers like SORT BY or constraints
like a FILTER that includes the negation of a bound expression. The execution

SemLAV: Local-As-View Mediation for SPARQL Queries 45

of non-monotonic queries requires all the relevant views to be included in the
global schema instance in order to produce the correct results.

Algorithm 2 The Global Schema Instance Construction and Query Execution
Input: Q : Query
Input: Buckets: Predicate → List<View> {The buckets are produced by Algorithm 1}
Input: k : Int
Output: A: Set<Answer>

Stacks : Predicate → Stack<View>
Vk : Set<View>
G : RDFGraph
for all p ∈ domain(Buckets) do

Stacks(p) ← toStack(Buckets(p))
end for
while (∃p| : ¬empty(Stacks(p))) ∧ |Vk| < k do

for all p ∈ domain(Stacks) ∧ ¬empty(Stacks(p)) do
v ← pop(Stack(p))
if v /∈ Vk then

load v into G {only if is not redundant}
A ← A ∪ exec(Q, G) {Option 1: Execute Q after each successful load}
Vk ← Vk ∪ {v}

end if
end for

end while
A ← exec(Q, G) {Option 2: execute before exit}

Proposition 2. Considering conjunctive queries, the time complexity of Algo-
rithm 2 in option 1 is O(k × N × I), while the time complexity is O(N × I) for
option 2. Where k is the number of relevant views included in the instance, N
the number of query subgoals, and I is the size of the constructed global schema
instance.

Proposition 3. Algorithm 2 finds a solution to the MaxCov problem.

Proof. By contradiction, suppose that the set Vk is not maximal in terms of the
number of covered rewritings, then there is another set V ′

k of size k that covers
more rewritings than Vk. By construction, Vk includes the first views of each
bucket, i.e., the views that cover more query subgoals. There should exist at
least one view in Vk that is not in V ′

k, and vice-versa. Suppose w is the first view
in Vk that is not in V ′

k (w ≺ Vk ∀w ∧≺ V ′
k) , v is the first one in V ′

k and is not in Vk

(v ≺ V ′
k ∀v ∧≺ Vk) , and w belongs to the bucket of the query subgoal q. If v covers

q, then it belongs to the bucket of q. Because Vk includes the views that cover
more subgoals, if v was not included in Vk is because it covers less rewritings
than w; thus, the contribution of v to the number of covered rewritings is inferior
to the contribution of w. This generalizes to all the views in V ′

k and not in Vk;
thus, the number of rewritings covered by V ′

k should be less than the number of
rewritings covered by Vk. If v covers another query subgoal q ′ and all the query
subgoals are covered at least once by views in Vk; thus, Algorithm 2 should have
included it before including w and v should belong to Vk.

46 G. Montoya et al.

3.3 The SemLAV Properties

Given a SPARQL query Q over a global schema G, a set M of views over G,
the set RV of views in M relevant for Q, a set R of conjunctive queries whose
union is a maximally-contained rewriting of Q using M , and Vk a solution to
the MaxCov problem produced by SemLAV.

– Answer Completeness: If SemLAV executes Q over a global schema instance
I that includes all the data collected from views in RV , then it produces
the complete answer. SemLAV outputs the same answers as a traditional
rewriting-based query processing approach:

⋃

r∈R

r(I(M)) = Q(
⋃

v∈RV

I(v)). (3)

– Effectiveness: the Effectiveness of SemLAV is proportional to the number of
covered rewritings, it is defined as:

Effectiveness(Vk) =
|Coverage(Vk, R)|

|R| . (4)

For an execution constrained by time or space, Vk could be smaller than RV .
– Execution Time depends on |RV |: The load and execution time of SemLAV lin-

early depends on the size of the views included in the global schema instance.
– No memory blocking: SemLAV guarantees to obtain a complete answer when⋃

v∈RV I(v) fits into memory. If not, it is necessary to divide the set RV of
relevant views into several subsets RVi, such that each subset fits into memory
and for any rewriting r ≺ R all views v ≺ body(r) are contained in one of these
subsets.

4 Experimental Evaluation

We compare the SemLAV approach with a traditional rewriting-based approach
and analyze the SemLAV effectiveness, memory consumption and throughput. In
order to decide which rewriting engine will be use to compare with SemLAV, we
run some preliminary experiments to compare existing state-of-the-art rewriting
engines. We consider GQR [4], MCDSAT [14], MiniCon [15], and SSDSAT [16].
We execute these engines for 10 min and measure execution time and the number
of rewritings generated by each engine. Additionally, we use these values to com-
pute the throughput; throughput corresponds to number of answers obtained per
second. Time is expressed in seconds; the total number of rewritings is computed
for each query. Table 5 reports on all these metrics. The GQR performance is
very good when the number of query rewritings is low, and it outperforms all
the other engines. It also performs pretty well when the number of query rewrit-
ings is relatively low and views can cover more than a query subgoal. That is,
this situation allows to speeds up the preprocessing time consumed by GQR to

SemLAV: Local-As-View Mediation for SPARQL Queries 47

Table 4. Queries and their answer size, number of subgoals, and views size

(a) Query information

Query Answer size # Subgoals

Q1 6.68E+07 5
Q2 5.99E+05 12
Q4 2.87E+02 2
Q5 5.64E+05 4
Q6 1.97E+05 3
Q8 5.64E+05 3
Q9 2.82E+04 1
Q10 2.99E+06 3
Q11 2.99E+06 2
Q12 5.99E+05 4
Q13 5.99E+05 2
Q14 5.64E+05 3
Q15 2.82E+05 5
Q16 2.82E+05 3
Q17 1.97E+05 2
Q18 5.64E+05 4

(b) Views size

Views Size

V1-V34 201,250
V35-V68 153,523
V69-V102 53,370
V103-V136 26,572
V137-V170 5,402
V171-V204 66,047
V205-V238 40,146
V239-V272 113,756
V273-V306 24,891
V307-V340 11,594
V341-V374 5,402
V375-V408 5,402
V409-V442 78,594
V443-V476 99,237
V477-V510 1,087,281

build the structures required to generate the query rewritings. The MCDSAT
performance is good in a larger number of queries; it can produce rewritings
for more queries than the other engines, particularly in queries which a large
number of triple patterns and in presence of general predicates. However, MCD-
SAT does not outperform the others engines when they are able to produce the
rewritings. This is because, there is an overhead in translating the problem into
a logical theory which is solved using a SAT solver. The MiniCon performance
is pretty good in general, but it only produces query rewritings when the space

48 G. Montoya et al.

Table 5. Comparison of state-of-the-art LAV rewriting engines for 16 queries without
existential variables and nine (plus five) views defined in [9]. The five additional views
allows to cover all the queries subgoals

Query Metric GQR MCDSAT MiniCon SSDSAT Total number
of rewritings

Q1 Execution time (s) 600.00 600.00 600.00 600.00
Number of rewritings 0 247,304 0 0 2.04E+10
Throughput (answers/s) 0.00 412.17 0.00 0.00

Q2 Execution time (s) 600.00 600.00 600.00 600.00
Number of rewritings 0 0 0 0 1.57E+24
Throughput (answers/s) 0.00 0.00 0.00 0.00

Q4 Execution time (s) 25.71 84.20 5.47 600.00
Number of rewritings 16,184 16,184 16,184 0 1.62E+04
Throughput (answers/s) 629.38 192.22 2,957.60 0.00

Q5 Execution time (s) 600.00 600.00 600.00 600.00
Number of rewritings 0 513,629 0 0 7.48E+07
Throughput (answers/s) 0.00 856.05 0.00 0.00

Q6 Execution time (s) 600.00 251.51 430.10 600.00
Number of rewritings 0 314,432 314,432 0 3.14E+05
Throughput (answers/s) 0.00 1,250.18 731.07 0.00

Q8 Execution time (s) 555.49 191.69 142.63 600.00
Number of rewritings 157,216 157,216 157,216 0 1.57E+05
Throughput (answers/s) 283.02 820.16 1,102.30 0.00

Q9 Execution time (s) 0.88 32.24 0.34 49.83
Number of rewritings 34 34 34 34 3.40E+01
Throughput (answers/s) 38.51 1.05 101.49 0.68

Q10 Execution time (s) 600.00 600.00 600.00 600.00
Number of rewritings 0 656,140 0 0 4.40E+06
Throughput (answers/sec) 0.00 1,093.57 0.00 0.00

Q11 Execution time (s) 12.99 67.03 2.06 600.00
Number of rewritings 9,248 9,248 9,248 0 9.25E+03
Throughput (answers/s) 712.15 137.96 4,487.14 0.00

Q12 Execution time (s) 600.00 600.00 600.00 600.00
Number of rewritings 0 440,059 0 0 1.50E+09
Throughput (answers/s) 0.00 733.43 0.00 0.00

Q13 Execution time (s) 600.00 98.43 22.40 600.00
Number of rewritings 0 64,736 64,736 0 6.47E+04
Throughput (answers/s) 0.00 657.69 2,890.52 0.00

Q14 Execution time (s) 600.00 600.00 600.00 600.00
Number of rewritings 0 913,807 0 0 2.52E+06
Throughput (answers/s) 0.00 1,523.01 0.00 0.00

Q15 Execution time (s) 600.00 600.00 600.00 600.00
Number of rewritings 0 308,903 0 0 2.04E+10
Throughput (answers/s) 0.00 514.84 0.00 0.00

Q16 Execution time (s) 600.00 233.47 380.81 600.00
Number of rewritings 0 314,432 314,432 0 3.14E+05
Throughput (answers/s) 0.00 1,346.81 825.68 0.00

continued

SemLAV: Local-As-View Mediation for SPARQL Queries 49

Table 5. continued

Query Metric GQR MCDSAT MiniCon SSDSAT Total number
of rewritings

Q17 Execution time (s) 3.97 67.25 1.29 600.00
Number of rewritings 4,624 4,624 4,624 0 4.62E+03
Throughput (answers/s) 1,165.62 68.76 3,576.18 0.00

Q18 Execution time (s) 600.00 600.00 600.00 600.00
Number of rewritings 0 463,754 0 0 1.20E+09
Throughput (answers/s) 0.00 772.92 0.00 0.00

of rewritings is relatively small. Finally, SSDSAT is able to handle constants;
however, this feature severely impacts its performance, being able to produce
rewritings only for simple cases.

4.1 Hypothesis of Our Experimentations

The hypotheses of our experimentation are:

– SemLAV loads the more relevant views of a query first, the SemLAV effec-
tiveness should be considerably high and should produce more answers than
the rest of the engines in the same amount of time.

– SemLAV builds a global schema instance using data collected from the relevant
views, SemLAV may consume more space than a traditional rewriting-based
approach.

– SemLAV produces results incrementally, it is able to produce answers sooner
than a traditional rewriting-based approach.

4.2 Experimental Configuration

The Berlin SPARQL Benchmark (BSBM) [8] is used to generate a dataset of
10,000,736 triples using a scale factor of 28,211 products. Additionally, third-
party queries and views are used to provide an unbiased evaluation of our
approach. In our experiments, the goal is to study SemLAV as a solution to
the MaxCov problem, and we compute the number of rewritings generated by
three state-of-the-art query rewriters. From the 18 queries and 10 views defined
in [9], we leave out the ones using constants (literals) because the state-of-the-
art query rewriters are unable to handle constants either in the query or in
the views. In total, we use 16 out of 18 queries and nine out of 10 the defined
views. The query triple patterns can be grouped into chained connected star-
shaped sub-queries, that have between one and twelve subgoals with only dis-
tinguished variables, i.e., queries are free of existential variable. We define five
additional views to cover all the predicates in the queries. From these 14 views,
we produce 476 views by horizontally partitioning each original view into 34
parts, such that each part produces 1/34 of the answers given by the original
view.

50 G. Montoya et al.

Table 6. The SemLAV Effectiveness. For 10 min of execution, we report the number of
relevant views included in the global schema instance, the number of covered rewritings
and the achieved effectiveness. Also values for total number of views and rewritings are
shown

Query Included views # Relevant views # Covered rewritings # Rewritings Effectiveness

Q1 30 408 2.28E+06 2.04E+10 0.000112
Q2 194 408 2.05E+23 1.57E+24 0.130135
Q4 156 374 8.77E+03 1.62E+04 0.542017
Q5 52 374 3.13E+06 7.48E+07 0.041770
Q6 44 136 2.13E+04 3.14E+05 0.067728
Q8 81 136 9.36E+04 1.57E+05 0.595588
Q9 34 34 3.40E+01 3.40E+01 1.000000
Q10 88 408 3.20E+05 4.40E+06 0.072766
Q11 77 136 5.24E+03 9.25E+03 0.566176
Q12 238 408 7.70E+08 1.50E+09 0.514286
Q13 245 408 4.26E+04 6.47E+04 0.657563
Q14 46 272 1.22E+04 2.52E+06 0.004837
Q15 70 442 5.12E+08 2.04E+10 0.025144
Q16 82 136 1.90E+05 3.14E+05 0.602941
Q17 56 136 1.90E+03 4.62E+03 0.411765
Q18 23 374 2.80E+05 1.20E+09 0.000234

Queries and views are described in Table 4a and 4b. The size of the complete
answer is computed by including all the views into an RDF-Store (Jena) and
executing the queries against this centralized RDF dataset. Query definitions
are included in Appendix A.

We implement wrappers as simple file readers. For executing rewritings, we
use one named graph per subgoal as done in [17]. The Jena 2.7.45 library with
main memory setup is used to store and query the graphs. The SemLAV algo-
rithms are implemented in Java, using different threads for bucket construction,
view inclusion and query execution to improve performance. The implementation
is available in the project website6.

4.3 Experimental Results

The analysis of our results focus on three main aspects: the SemLAV effective-
ness, memory consumption and throughput.

To demonstrate the SemLAV effectiveness, we execute SemLAV with a time-
out of 10 min. During this execution, the SemLAV algorithms select and include
a subset of the relevant views; this set corresponds to Vk as a solution to the
MaxCov problem. Then, we use these views to compute the number of covered
rewritings using the formula given in Sect. 3. Table 6 shows the number of rel-
evant views considered by SemLAV, the covered rewritings and the achieved
effectiveness. Effectiveness is greater than or equal to 0.5 (out of 1) for almost

5 http://jena.apache.org/
6 https://sites.google.com/site/semanticlav/

http://jena.apache.org/
https://sites.google.com/site/semanticlav/

SemLAV: Local-As-View Mediation for SPARQL Queries 51

Table 7. Execution of Queries Q1, Q2, Q4-Q6, Q8-Q18 using SemLAV, MCDSAT,
GQR and MiniCon, using 20 GB of RAM and a timeout of 10 min. It is reported the
number of answers obtained, wrapper time (WT), graph creation time (GCT), plan
execution time (PET), total time (TT), time of first answer (TFA), number of times
original query is executed (#EQ), maximal graph size (MGS) in terms of number of
triples and throughput (number of answers obtained per millisecond)

Query Approach Answer Time (ms) #EQ MGS Throughput
Size % WT GCT PET TT TFA (answers/ms)

Q1 SemLAV 22,660,216 33 45,434 8,322 547,310 606,697 6,370 15 810,638 37.3501
MCDSAT 290 0 13,688 202 299,546 609,381 309,952 810,409 0.0005
GQR 0 0 0 0 0 600,415 >600,000 0 0.0000
MiniCon 0 0 0 0 0 600,136 >600,000 0 0.0000

Q2 SemLAV 590,000 98 177,020 30,676 392,439 600,656 260,333 66 1,040,373 0.9823
MCDSAT 0 0 15,519 105 7,058 681,246 >600,000 848,276 0.0000
GQR 0 0 0 0 0 654,483 >600,000 0 0.0000
MiniCon 0 0 0 0 0 600,054 >600,000 0 0.0000

Q4 SemLAV 287 100 555,528 73,771 327 660,938 104,501 47 3,659,707 0.0004
MCDSAT 0 0 154,451 371 181,387 601,590 >600,000 279,896 0.0000
GQR 0 0 557,125 1,181 11,784 600,665 >600,000 84,046 0.0000
MiniCon 0 0 413,871 650 91,136 601,750 >600,000 177,838 0.0000

Q5 SemLAV 564,220 100 523,084 65,333 44,102 632,809 116,037 28 3,396,134 0.8916
MCDSAT 0 0 398,517 384 26,287 601,731 >600,000 424,431 0.0000
GQR 0 0 0 0 0 600,481 >600,000 0 0.0000
MiniCon 0 0 0 0 0 600,132 >600,000 0 0.0000

Q6 SemLAV 118,258 59 547,763 62,896 13,291 625,173 43,306 24 2,931,316 0.1892
MCDSAT 5,776 2 401,026 1,029 55,684 601,678 105,752 91,900 0.0096
GQR 0 0 0 0 0 600,510 >600,000 0 0.0000
MiniCon 3,697 1 193,817 248 51,300 637,514 418,169 2,184,680 0.0058

Q8 SemLAV 564,220 100 428,745 66,383 132,373 627,612 5,393 42 4,489,016 0.8990
MCDSAT 16,595 2 403,133 576 65,935 603,297 113,211 256,382 0.0275
GQR 1,706 0 330,065 194 31,587 607,594 272,737 1,264,385 0.0028
MiniCon 467 0 198,384 349 271,398 616,114 166,776 1,265,295 0.0008

Q9 SemLAV 28,211 100 2,938 697 1,338 5,107 1,235 18 169,839 5.5240
MCDSAT 28,211 100 5,609 445 1,643 41,505 34,392 5,417 0.6797
GQR 28,211 100 3,310 132 1,281 5,709 1,435 5,417 4.9415
MiniCon 28,211 100 3,086 129 1,362 5,004 862 5,417 5.6377

Q10 SemLAV 2,993,175 100 161,047 25,659 417,234 607,841 9,810 44 869,340 4.9243
MCDSAT 332,488 11 19,801 67 383,421 600,000 207,191 603,769 0.5541
GQR 0 0 0 0 0 600,639 >600,000 0 0.0000
MiniCon 0 0 0 0 0 600,138 >600,000 0 0.0000

Q11 SemLAV 2,993,175 100 195,950 27,442 377,255 601,042 8,352 43 816,308 4.9800
MCDSAT 1,943,141 64 141,876 389 391,852 600,000 72,939 402,528 3.2386
GQR 1,442,134 48 248,275 689 340,937 600,000 14,435 307,089 2.4036
MiniCon 1,956,539 65 217,321 415 385,019 605,021 6,832 402,539 3.2338

Q12 SemLAV 598,635 100 258,097 41,062 303,023 609,509 5,784 121 1,041,369 0.9822
MCDSAT 0 0 424,369 498 15,271 607,408 >600,000 509,271 0.0000
GQR 0 0 0 0 0 600,418 >600,000 0 0.0000
MiniCon 0 0 0 0 0 600,189 >600,000 0 0.0000

Q13 SemLAV 598,635 100 452,288 65,043 126,345 671,893 183,844 124 3,509,975 0.8910
MCDSAT 0 0 250,542 312 141,728 610,452 >600,000 402,531 0.0000
GQR 0 0 36,563 344 19,757 600,376 >600,000 31,948 0.0000
MiniCon 0 0 143,879 625 219,882 605,727 >600,000 206,689 0.0000

Q14 SemLAV 344,885 61 544,919 58,563 32,752 636,387 29,201 24 2,921,646 0.5419
MCDSAT 10,308 1 382,674 587 63,689 614,123 133,200 1,206,075 0.0168
GQR 0 0 0 0 0 600,714 >600,000 0 0.0000
MiniCon 0 0 0 0 0 600,319 >600,000 0 0.0000

Q15 SemLAV 282,110 100 471,609 63,548 109,762 645,172 2,911 37 3,255,223 0.4373
MCDSAT 8,298 2 90,061 271 168,041 622,474 217,445 361,882 0.0133
GQR 0 0 0 0 0 819,679 >600,000 0 0.0000
MiniCon 0 0 0 0 0 600,171 >600,000 0 0.0000

Q16 SemLAV 282,110 100 407,107 53,611 187,986 648,826 2,531 46 3,356,755 0.4348
MCDSAT 8,298 2 437,590 852 32,015 601,584 103,641 74,682 0.0138
GQR 1 0 26,460 79 94 619,761 619,702 1,136,305 0.0000
MiniCon 252 0 110,366 181 122,022 603,821 400,416 1,151,769 0.0004

52 G. Montoya et al.

Table 7. continued

Query Approach Answer Time (ms) #EQ MGS Throughput
Size % WT GCT PET TT TFA (answers/ms)

Q17 SemLAV 197,112 100 547,255 67,857 28,783 644,090 1,504 32 3,002,144 0.3060
MCDSAT 156,533 79 412,525 1,727 60,858 600,067 70,476 23,192 0.2609
GQR 45,037 22 245,953 177 350,406 600,000 27,178 1,098,117 0.0751
MiniCon 5,779 2 262,608 361 334,810 600,001 26,952 1,099,508 0.0096

Q18 SemLAV 0 0 582,334 65,083 3,543 651,094 >600,000 12 2,806,533 0.0000
MCDSAT 0 0 256,304 257 100,820 607,091 >600,000 411,901 0.0000
GQR 0 0 0 0 0 600,791 >600,000 0 0.0000
MiniCon 0 0 0 0 0 600,186 >600,000 0 0.0000

half of the queries. SemLAV maximizes the number of covered rewritings by
considering views that cover more subgoals first.

The observed results confirm that the SemLAV effectiveness is considerably
high. Effectiveness depends on the number of relevant views, but this number
is bounded to the number of relevant views that can be stored in memory.
As expected, the SemLAV approach could require more space than the tradi-
tional rewriting-based approach. SemLAV builds a global schema instance that
includes all the relevant views in Vk, whereas a traditional rewriting-based app-
roach includes only the views in one rewriting at the time. Table 7 shows the
maximal graph size in both approaches. SemLAV can use up to 129 times more
memory than the traditional rewriting-based approach (for Q17). SemLAV can
use less memory than the traditional rewriting-based approach (for Q1) for rel-
evant views with overlapped data.

We calculate the throughput as the number of answers divided by the total
execution time. For SemLAV, this time includes view selection and ranking, con-
tacting data sources using the wrappers, including data into the global schema
instance, and query execution time. For the traditional rewriting-based app-
roach, this time includes rewriting time, instead of view selection and ranking.
Table 7 shows for each query: number of answers, execution time, number of
times the query is executed and throughput. Notice that SemLAV executes the
query whenever a new relevant view has been included in the global schema
instance and the query execution thread is active.

The difference in the answer size and throughput is impressive, e.g., for Q1
SemLAV produces 37.3501 answers/ms, while the other approach produces up
to 0.0005 answers/ms. This huge difference is caused by the differences between
the complexity of the rewriting generation and the SemLAV view selection and
ranking algorithm, and between the number of rewritings and number of relevant
views. This makes possible to generate answers sooner. Column TFA of Table 7
shows the time for the first answer; TFA is impacted by executing the query
as soon as possible, according to option 1 given in Algorithm 2. Only for query
Q18 SemLAV does not produce any answer in 10 min. This is because the views
included in the global schema instance are large (around one million triples
per view) and do not contribute to the answer; consequently, almost all the
execution time is spent in transferring data from the relevant views. SemLAV
produces answers sooner in all the other cases. Moreover, SemLAV also achieves
complete answer in 11 of 16 queries in only 10 min.

SemLAV: Local-As-View Mediation for SPARQL Queries 53

In summary, the results show that SemLAV is effective and efficient and pro-
duces more answers sooner than a traditional rewriting-based approach. SemLAV
makes the LAV approach feasible for processing SPARQL queries.

5 State of the Art

In recent years, several approaches have been proposed for querying the Web
of Data [18–22]. Some tools address the problem of choosing the sources that
can be used to execute a query [21,22]; others have developed techniques to
adapt query processing to source availability [18,21]. Finally, frameworks to
retrieve and manage Linked Data have been defined [19,21], as well as strate-
gies for decomposing SPARQL queries against federations of endpoints [6]. All
these approaches assume that queries are expressed in terms of RDF vocabu-
laries used to describe the data in the RDF sources; thus, their main challenge
is to effectively select the sources, and efficiently execute the queries on the
data retrieved from the selected sources. In contrast, SemLAV attempts to inte-
grate data sources, and relies on a global schema to describe data sources and
to provide a unified interface to the users. As a consequence, in addition to
collecting and processing data transferred from the selected sources, SemLAV
decides which of these sources need to be contacted first, to quickly answer the
query.

Three main paradigms have been proposed to integrate dissimilar data
sources. In GAV mediators, entities in the global schema are semantically
described using views in terms of the data sources. In consequence, including
or updating data sources may require the modification of a large number of
mappings [3]. In contrast, the LAV approach, new data sources can be eas-
ily integrated [3]; further, data sources that publish entities of several concepts
in the global schema, can be naturally defined as LAV views. Thus, the LAV
approach is best suited for applications with a stable global schema but with
changing data sources; contrary, the GAV approach is more suitable for appli-
cations with stable data sources and a changing global schema. Finally, a more
general approach named Global-Local-As-View (GLAV) allows the definition of
mappings where views on the global schema are mapped to views of the data
sources. Recently, Knoblock et al. [23] and Taheriyan et al. [24] proposed Karma,
a system to semi-automatically generate source descriptions as GLAV views on
a given ontology. Karma makes GLAV views a solution to consume open data
as well as to integrate and populate these sources into the LOD cloud.

GLAV views are suitable not only to describe sources, but also to provide
the basis for the dynamic integration of open data and Web APIs into the LOD
cloud. Further, theoretical results presented by Calvanese et al. [7] establish that
for conjunctive queries against relational schemas, GLAV query processing tech-
niques can be implemented as the combination of the resolution of the query
processing tasks with respect to the LAV component of the GLAV views fol-
lowed by query unfolding tasks on the GAV component. Thus, SemLAV can

54 G. Montoya et al.

be easily extended to manage GLAV query processing tasks, and provides the
basis to integrate existing GLAV views. Additionally, SemLAV can be used to
develop SPARQL endpoints that dynamically access up-to-date data from the
data sources or Web APIs defined by the generated GLAV views.

The problem of rewriting a query into queries on the data sources is a rele-
vant problem in integration systems [25]. A great effort has been made to provide
solutions able to produce query rewritings in the least time possible and to scale
up to a large number of views. Several approaches have been defined, e.g., MCD-
SAT [14], GQR [4], Bucket Algorithm [25], and MiniCon [11]. Recently, Le et
al. [17] propose a solution to identify and combine GAV SPARQL views that
rewrite SPARQL queries against a global vocabulary, and Izquierdo et al. [16]
extend the MCDSAT rewriter with preferences to identify the combination of
semantic services that rewrite a user request. Recently, Montoya et al. propose
GUN [26], a strategy to maximize the number of answers obtained from a given
set of k rewritings; GUN aggregates the data obtained from the relevant views
present in those k rewritings and executes the query over it. Even if GUN could
maximize the number of obtained answers, it would still depend on query rewrit-
ings as input, and has no criteria to order the relevant views.

We address this problem and propose SemLAV, a query processing technique
for RDF store architectures that provides a uniform interface to data sources
that have been defined using the LAV paradigm [27]. SemLAV gets rid of the
query rewriter, and focuses on selecting relevant views for each subgoal of the
query. Moreover, SemLAV decides which relevant views will be contacted first,
and includes the retrieved data into a global schema instance where the query
is executed. At the cost of memory consumption, SemLAV is able to quickly
produce answers first, and compute a more complete answer when the rest of
the engines fail. Since the number of valid query rewritings can be exponential
in the number of views, providing an effective and efficient semantic data man-
agement technique as SemLAV is a relevant contribution to the implementation
of integration systems, and provides the basis for feasible and dynamic semantic
integration architectures in the Web of Data.

An alternative approach for data integration is Data Warehousing [28], where
data is retrieved from the sources and stored in a repository. In this context,
query optimization relies on materialized views that allows to speed up the exe-
cution time. Selecting the best set of views to be materialized is a complex
problem that has been deeply studied in the literature [9,29–32]. Commonly
approaches attempt to select this set of views according to an expected work-
load and available resources. Recently, Castillo-Espinola [9] propose an approach
where materialized views correspond to indexes for SPARQL queries that allow
to speed up query execution time. Although these approaches may considerably
improve performance in average, only queries that can be rewritten using the
materialized views will be benefited. Further, the cost of the view maintainabil-
ity process can be very high if data frequently changes and it needs to be kept
up-to-date to ensure answer correctness.

SemLAV: Local-As-View Mediation for SPARQL Queries 55

SemLAV also relies on view definitions, but views are temporally included in
the global schema instance during query execution; thus, data is always up-to-
date. Furthermore, the number of views to be considered is not limited. The only
limitation depends on the physical resources available to perform a particular
query. Nevertheless, it is important to highlight that the number of relevant
views for answering one query is, in the general case, considerably smaller than
the total number of views in the integration system.

6 Conclusions and Future Work

In this paper, we presented SemLAV, a Local-As-View mediation technique
that allows to perform SPARQL queries over views without facing problems
of NP-completeness, exponential number of rewritings or restriction to conjunc-
tive SPARQL queries. This is obtained at the price of including relevant views
into a global schema instance which is space consuming. However, we demon-
strated that, even if only a subset of relevant views is included, we obtain more
results than traditional rewriting-based techniques. Chances of producing results
are higher, if the number of covered rewritings is maximized as defined in the
MaxCov problem. We proved that our ranking strategy maximizes the number
of covered rewritings.

SemLAV opens a new way to execute SPARQL queries for LAV mediators
that is tractable. As perspectives, the performance of SemLAV can be greatly
improved by parallelizing views inclusion. Currently, SemLAV includes views
sequentially due to Jena restrictions. If views were included in parallel, time
to get first results would be greatly improved. Additionally, the strategy of
producing results as soon as possible, can deteriorate the overall throughput.
If users want to improve overall throughput, then the query should be exe-
cuted once after all the views in Vk have been included. It could be also inter-
esting to design an execution strategy where SemLAV would execute under
constrained space. In this case, the problem would be to find the minimum
set of relevant views that would fit in the available space and produce the
maximal number of answers. All these problems will be part of our future
works.

Acknowledgments. We thank C. Li for providing his MiniCon code, and J. L. Ambite
and G. Konstantinidis for sharing the GQR code for the evaluation. This work is par-
tially supported by the French National Research agency (ANR) through the KolFlow
project (code: ANR-10-CONTINT-025), part of the CONTINT research program, and
by USB-DID.

A Queries

In our experimental study, we evaluate the SPARQL queries proposed by
Castillo-Espinola [9]. We only consider the SPARQL queries without constants
or literals due to limitations of state-of-the-art rewriters.

56 G. Montoya et al.

SELECT ∗
WHERE {

?X1 r d f s : l a b e l ?X2 .
?X1 r d f : t ype ?X3 .
?X1 bsbm : p roduc tFea tu r e ?X4 .
?X1 bsbm : p roduc tFea tu r e ?X5 .
?X1 bsbm : p roduc tPrope r tyNumer i c1 ?X6 .

}

Listing 1.6. Q1

SELECT ∗
WHERE {

?X1 r d f s : l a b e l ?X2 .
?X1 r d f s : comment ?X3 .
?X1 bsbm : p roduce r ?X4 .
?X4 r d f s : l a b e l ?X5 .
?X1 dc : p u b l i s h e r ?X4 .
?X1 bsbm : p roduc tFea tu r e ?X6 .
?X6 r d f s : l a b e l ?X7 .
?X1 bsbm : p r oduc tP rope r t yTex tua l 1 ?X8 .
?X1 bsbm : p r oduc tP rope r t yTex tua l 2 ?X9 .
?X1 bsbm : p r oduc tP rope r t yTex tua l 3 ?X10 .
?X1 bsbm : p roduc tPrope r tyNumer i c1 ?X11 .
?X1 bsbm : p roduc tPrope r tyNumer i c2 ?X12 .

}

Listing 1.7. Q2

SELECT ∗
WHERE {

?X1 r d f s : l a b e l ?X2 .
?X1 f o a f : homepage ?X3 .

}

Listing 1.8. Q4

SELECT ∗
WHERE {

?X1 bsbm : vendor ?X2 .
?X1 bsbm : of fe rWebpage ?X3 .
?X2 r d f s : l a b e l ?X4 .
?X2 f o a f : homepage ?X5 .

}

Listing 1.9. Q5

SELECT ∗
WHERE {

?X1 bsbm : r e v i ewFo r ?X2 .
?X1 r e v : r e v i ew e r ?X3 .
?X1 bsbm : r a t i n g 1 ?X4 .

}

Listing 1.10. Q6

SELECT ∗
WHERE {

?X1 bsbm : of fe rWebpage ?X2 .
?X1 bsbm : p r i c e ?X3 .
?X1 bsbm : d e l i v e r yDa y s ?X4 .

}

Listing 1.11. Q8

SELECT ∗
WHERE {

?X1 bsbm : p roduc tPrope r tyNumer i c1 ?X2 .
}

Listing 1.12. Q9

SELECT ∗
WHERE {

?X1 r d f s : l a b e l ?X2 .
?X1 r d f : t ype ?X3 .
?X1 bsbm : p roduc tFea tu r e ?X4 .

}

Listing 1.13. Q10

SELECT ∗
WHERE {

?X1 r d f : t ype ?X2 .
?X1 bsbm : p roduc tFea tu r e ?X3 .

}

Listing 1.14. Q11

SELECT ∗
WHERE {

?X1 bsbm : p roduce r ?X2 .
?X2 r d f s : l a b e l ?X3 .
?X1 dc : p u b l i s h e r ?X2 .
?X1 bsbm : p roduc tFea tu r e ?X4 .

}

Listing 1.15. Q12

SELECT ∗
WHERE {

?X1 bsbm : p roduc tFea tu r e ?X2 .
?X2 r d f s : l a b e l ?X3 .

}

Listing 1.16. Q13

SELECT ∗
WHERE {

?X1 bsbm : p roduce r ?X2 .
?X3 bsbm : p roduc t ?X1 .
?X3 bsbm : vendor ?X4 .

}

Listing 1.17. Q14

SELECT ∗
WHERE {

?X1 r d f s : l a b e l ?X2 .
?X3 bsbm : r e v i ewFo r ?X1 .
?X3 r e v : r e v i ew e r ?X4 .
?X4 f o a f : name ?X5 .
?X3 dc : t i t l e ?X6 .

}

Listing 1.18. Q15

SELECT ∗
WHERE {

?X1 bsbm : r e v i ewFo r ?X2 .
?X1 dc : t i t l e ?X3 .
?X1 r e v : t e x t ?X4 .

}

Listing 1.19. Q16

SemLAV: Local-As-View Mediation for SPARQL Queries 57

SELECT ∗
WHERE {

?X1 bsbm : r e v i ewFo r ?X2 .
?X1 bsbm : r a t i n g 1 ?X3 .

}

Listing 1.20. Q17

SELECT ∗
WHERE {

?X1 bsbm : p roduc t ?X2 .
?X2 r d f s : l a b e l ?X3 .
?X1 bsbm : vendor ?X4 .
?X1 bsbm : p r i c e ?X5 .

}

Listing 1.21. Q18

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semant.
Web Inf. Syst. 5, 1–22 (2009)

2. Abiteboul, S., Manolescu, I., Rigaux, P., Rousset, M.C., Senellart, P.: Web Data
Management. Cambridge University Press, New York (2011)

3. Ullman, J.D.: Information integration using logical views. Theor. Comput. Sci.
239, 189–210 (2000)

4. Konstantinidis, G., Ambite, J.L.: Scalable query rewriting: a graph-based app-
roach. In: Sellis, T.K., Miller, R.J., Kementsietsidis, A., Velegrakis, Y., (eds.):
SIGMOD Conference, pp. 97–108. ACM (2011)

5. Vidal, M.-E., Ruckhaus, E., Lampo, T., Mart́ınez, A., Sierra, J., Polleres, A.: Effi-
ciently joining group patterns in SPARQL queries. In: Aroyo, L., Antoniou, G.,
Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.)
ESWC 2010, Part I. LNCS, vol. 6088, pp. 228–242. Springer, Heidelberg (2010)

6. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: Fedx: Optimization
techniques for federated query processing on linked data. In: [33] 601–616

7. Calvanese, D., Giacomo, G.D., Lenzerini, M., Vardi, M.Y.: Query processing under
glav mappings for relational and graph databases. PVLDB 6, 61–72 (2012)

8. Bizer, C., Schultz, A.: The berlin sparql benchmark. Int. J. Semant. Web Inf. Syst.
5, 1–24 (2009)

9. Castillo-Espinola, R.: Indexing RDF data using materialized SPARQL queries.
Ph.D. thesis, Humboldt-Universität zu Berlin (2012)

10. Wiederhold, G.: Mediators in the architecture of future information systems. IEEE
Comput. 25, 38–49 (1992)

11. Halevy, A.Y.: Answering queries using views: a survey. VLDB J. 10, 270–294 (2001)
12. Lenzerini, M.: Data integration: a theoretical perspective. In: Popa, L., Abiteboul,

S., Kolaitis, P.G., (eds.) PODS, pp. 233–246. ACM (2002)
13. Doan, A., Halevy, A.Y., Ives, Z.G.: Principles of Data Integration. Morgan Kauf-

mann, Waltham (2012)
14. Arvelo, Y., Bonet, B., Vidal, M.E.: Compilation of query-rewriting problems into

tractable fragments of propositional logic. In: AAAI, pp. 225–230. AAAI Press
(2006)

15. Pottinger, R., Halevy, A.Y.: Minicon: a scalable algorithm for answering queries
using views. VLDB J. 10, 182–198 (2001)

16. Izquierdo, D., Vidal, M.-E., Bonet, B.: An expressive and efficient solution to the
service selection problem. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P.,
Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS,
vol. 6496, pp. 386–401. Springer, Heidelberg (2010)

17. Le, W., Duan, S., Kementsietsidis, A., Li, F., Wang, M.: Rewriting queries on
sparql views. In: Srinivasan, S., Ramamritham, K., Kumar, A., Ravindra, M.P.,
Bertino, E., Kumar, R. (eds.) WWW, pp. 655–664. ACM (2011)

58 G. Montoya et al.

18. Acosta, M., Vidal, M.E., Lampo, T., Castillo, J., Ruckhaus, E.: Anapsid: an adap-
tive query processing engine for sparql endpoints. In: [33] 8–34

19. Basca, C., Bernstein, A.: Avalanche: putting the spirit of the web back into seman-
tic web querying. In: Polleres, A., Chen, H. (eds.) ISWC Posters & Demos, Volume
658 of CEUR Workshop Proceedings. http://CEUR-WS.org (2010)

20. Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K.U., Umbrich, J.: Data
summaries for on-demand queries over linked data. In: Rappa, M., Jones, P., Freire,
J., Chakrabarti, S. (eds.): WWW, pp. 411–420. ACM (2010)

21. Hartig, O.: Zero-knowledge query planning for an iterator implementation of link
traversal based query execution. [34] 154–169

22. Ladwig, G., Tran, T.: Sihjoin: querying remote and local linked data. [34] 139–153
23. Knoblock, C.A., Szekely, P.A., Ambite, J.L., Gupta, S., Goel, A., Muslea, M.,

Lerman, K., Mallick, P.: Interactively mapping data sources into the semantic
web. In: Kauppinen, T., Pouchard, L.C., Keßler, C. (eds.): LISC, CEUR Workshop
Proceedings, vol. 783, CEUR-WS.org (2011)

24. Taheriyan, M., Knoblock, C.A., Szekely, P., Ambite, J.: Rapidly integrating services
into the linked data cloud. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part
I. LNCS, vol. 7649, pp. 559–574. Springer, Heidelberg (2012)

25. Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying heterogeneous information
sources using source descriptions. In: Vijayaraman, T.M., Buchmann, A.P., Mohan,
C., Sarda, N.L. (eds.): VLDB, pp. 251–262. Morgan Kaufmann (1996)

26. Montoya, G., Ibáñez, L.-D., Skaf-Molli, H., Molli, P., Vidal, M.-E.: GUN: an effi-
cient execution strategy for querying the web of data. In: Decker, H., Lhotská, L.,
Link, S., Basl, J., Tjoa, A.M. (eds.) DEXA 2013, Part I. LNCS, vol. 8055, pp.
180–194. Springer, Heidelberg (2013)

27. Levy, A.Y., Mendelzon, A.O., Sagiv, Y., Srivastava, D.: Answering queries using
views. In: Yannakakis, M. (ed.): PODS, pp. 95–104. ACM Press (1995)

28. Theodoratos, D., Sellis, T.K.: Data warehouse configuration. In: Jarke, M., Carey,
M.J., Dittrich, K.R., Lochovsky, F.H., Loucopoulos, P., Jeusfeld, M.A. (eds.):
VLDB, pp. 126–135. Morgan Kaufmann (1997)

29. Gupta, H.: Selection of views to materialize in a data warehouse. In: Afrati, F.N.,
Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 98–112. Springer, Heidelberg
(1997)

30. Chirkova, R., Halevy, A.Y., Suciu, D.: A formal perspective on the view selection
problem. VLDB J. 11, 216–237 (2002)

31. Karloff, H.J., Mihail, M.: On the complexity of the view-selection problem. In:
Vianu, V., Papadimitriou, C.H. (eds.): PODS, pp. 167–173. ACM Press (1999)

32. Goasdoué, F., Karanasos, K., Leblay, J., Manolescu, I.: View selection in semantic
web databases. PVLDB 5, 97–108 (2011)

33. Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N.F.,
Blomqvist, E. (eds.): ISWC 2011, Part I. LNCS, vol. 7031. Springer, Heidelberg
(2011)

34. Antoniou, G., Grobelnik, M., Simperl, E.P.B., Parsia, B., Plexousakis, D., Leen-
heer, P.D., Pan, J.Z. (eds.): ESWC 2011, Part I. LNCS, vol. 6643. Springer, Hei-
delberg (2011)

http://CEUR-WS.org

Query Reformulation in PDMS Based on Social
Relevance

Angela Bonifati1, Gianvito Summa2(B), Esther Pacitti3, and Fady Draidi4

1 University of Lille 1, Cité Scientifique, Lille, France
angela.bonifati@gmail.com

2 University of Basilicata, Viale dell’Ateneo Lucano, Potenza, Italy
gianvito.summa@gmail.com

3 LIRMM - University of Montpellier II, Rue Ada, Montpellier, France
esther.pacitti@lirmm.fr

4 An Najah National University, Nablus, Palestine
draif@najah.edu

Abstract. We consider peer-to-peer data management systems (PDMS),
where each peer maintains mappings between its schema and some
acquaintances, along with social links with peer friends. In this context,
we deal with reformulating conjunctive queries from a peer’s schema into
other peer’s schemas. Precisely, queries against a peer node are rewritten
into queries against other nodes using schema mappings thus obtaining
query rewritings. Unfortunately, not all the obtained rewritings are rel-
evant to a given query, as the information gain may be negligible or the
peer is not worth exploring. On the other hand, the existence of social
links with peer friends might be useful to get relevant rewritings. There-
fore, we propose a new notion of ‘relevance’ of a query with respect to
a mapping that encompasses both a local relevance (the relevance of the
query w.r.t. the mapping) and a global relevance (the relevance of the
query w.r.t. the entire network). Based on this notion, we have conceived
a new query reformulation approach for social PDMS which achieves great
accuracy and flexibility. To this purpose, we combine several techniques:
(i) social links are expressed as FOAF (Friend of a Friend) links to charac-
terize peer’s friendship; (ii) concise mapping summaries are used to obtain
mapping descriptions; (iii) local semantic views (LSV) are special views
that contain information about mappings captured from the network by
using gossiping techniques. Our experimental evaluation, based on a pro-
totype on top of PeerSim and a simulated network demonstrate that our
solution yields greater recall, compared to traditional query translation
approaches proposed in the literature.

Keywords: Query reformulation · Mapping evaluation · Social PDMS ·
AF-IMF measure

1 Introduction

In the last decade, we have witnessed a dramatic shift in the scale of distributed
and heterogeneous databases [7,17]: they have become larger, more dispersed

A. Hameurlain et al. (Eds.): TLDKS XIII, LNCS 8420, pp. 59–90, 2014.
DOI: 10.1007/978-3-642-54426-2 3, c© Springer-Verlag Berlin Heidelberg 2014

60 A. Bonifati et al.

and semantically interconnected networks of peers, exhibiting varied schemas
and instances. A P2P data management system (PDMS) [16] is an ad-hoc col-
lection of independent peers that have formed a network in order to map and
share their data. For example, consider an online scientific community1, that
uses an underlying P2P infrastructure for data sharing. In particular, each peer
embodies a medical doctor or a physician, who enters the community to share
her clinical data (yet hiding sensitive patient record data) with a subset of her
colleagues (for instance, she may share data about clinical trials, diseases, treat-
ments, patients’ histories, drug doses, opportunity of grants and so on). In such
a way, for example, if she has doubts about a treatment or a patient’s history,
she may consult her previous cases by querying her data (the ones she knows)
and, if no useful results are given as output, she could query her colleagues’ data
that, unfortunatly, have been structured according to their own peer’s schema.

In fact, peers in such example typically have heterogeneous schemas, with no
mediated or centralized schema. Still, to process a query over the PDMS, the
data needs to be translated from one peer’s schema to another peer’s schema.
To address this problem, PDMS maintains a set of mappings or correspondences
between a peer schema and a sufficiently small number of other peer schemas,
called acquaintances. The mappings between the local schema and the acquain-
tance schema can be manually provided, or, alternatively, computed via an exter-
nal schema matching tool [9,26,29].

Each doctor likes to exchange specific data about treatments and patients
with the peers she trusts, and/or she is friend with. Additionally, she may not
find the information within her set of acquaintances, and may need to look for
colleagues she has never met before.

In order to cope with data heterogeneity in PDMS, queries are formulated
against a local peer schema, and translated against each schema of the peer
acquaintances, and transitively on: from the schema of peer acquaintances
towards the schema of the acquaintances of the acquaintances. Notice that the
translation can be done according or against the mapping direction, as detailed
in the following section.

This problem, called query reformulation, has been addressed in the literature
by schema mappings tools [6,26,29], and proved to be effective in PDMS [18].
However, a fundamental limitation of the above tools is the fact that query
translation is essentially enacted on every peer by tracking all the mappings,
whereas in a realistic scenario, only semantically relevant mappings must be
exploited2. E.g. in our online community, each doctor would like to exchange
specific data about treatments and patients only with the peers that provide
relevant information (members of the same lab or former university mates),
rather than with every peer. Similarly, she may be willing to know who else,
1 This example has been inspired by a web-based online trusted physician network,

https://www.ozmosis.com/home, ‘where good doctors go to become great doctors’.
2 Notice that the relevance of a mapping is useful to discriminate the importance of

such mapping wrt other mappings. Indeed, the relevance is a criterion to rank map-
pings in order to choose the best ones towards which the query has to be translated.

https://www.ozmosis.com/home

Query Reformulation in PDMS Based on Social Relevance 61

among the doctors in her community, or among her friend doctors, has worked
on similar cases.

As the above example (typical of professional social networking) suggests,
social relationships (or friendships) between community members are also crucial
to locate relevant information. Similarly, in order to identify relevant mappings,
we exploit friendship links between peers, in addition to acquaintances, in what
we call social PDMS3. As in social networks, by establishing a friendship link,
a peer pi can become friend with a peer pj and share peer information. In our
case, the peer information we are interested in is local semantic mappings, i.e.
the mappings of that peer towards its acquaintances. They express meaningful
semantic relationships between elements in heterogeneous schemas on different
peers. In addition, to capture peer friendship, we adopt the Friend of a Friend
(FOAF) vocabularies [4]. FOAF is a way to provide a detailed description of
users, i.e. peers in our context, and their relationships using RDF syntax. We
have adapted the FOAF files to PDMS and extended the FOAF syntax to also
point to the mapping summaries of a peer’s friends.

In this paper, we tackle the problem of query reformulation for conjunctive
queries in social PDMS. Based on a new notion of relevance of a query with
respect to a mapping, we propose a query reformulation approach, using both
semantic mappings and friendship links, thus biasing the query translation only
towards relevant peers, according to a novel relevance metric.

To precisely define the notion of relevance of a query with respect to a map-
ping, we propose a novel metric called AF-IMF measure, which takes into account
the semantic proximity between the query and the mappings which have to be
taken into account. However, the above metric would need to be computed dis-
tributively, and to do so, would have to theoretically contact every peer in the
network. To address this difficulty, we store on each peer a local semantic view
(LSV), that offers a synthetic description of the mapping components of external
peers in the network. To feed and keep updated such views, we adopt

These techniques refer to the probabilistic exchange of mappings between
two peers, thus leading to the endless process of making two random peers com-
municate among each other. We adapt gossiping to our context by periodically
refreshing the local semantic view on each peer, based on gossiped atoms; by
means of such semantic views, promising semantic paths can be undertaken in
the network, such that, for a given query, the most relevant mappings can be
located and/or the most relevant peer friends can be reached.

Contributions. To sum up, the main contributions of this paper are threefold:
(i) We propose a novel notion of relevance of query with respect to a mapping,

along with that of a relevant rewriting; we characterize each mapping in the
entire collection of mappings present in the network with a new metric, the AF-
IMF measure, which precisely identifies the most interesting mappings, towards
which query translation should be directed.
3 Notice that a friendship link between two peers is a symmetric relationship and does

not imply that such peers have to be acquaintances with each other.

62 A. Bonifati et al.

Source Target

Fig. 1. A Schema Mapping Example

(ii) We propose algorithms that, given an input query Q, and a set of map-
pings between peers schemas, do the following: translate the query into Qt only
against the relevant mappings by adopting our new evaluation metric; exploit
friendship links among peers to possible enlarge the set of mappings and bias
the search towards interesting peers; exploit semantic gossiping to discover new
relevant mappings and friends, thus increasing the number of query rewritings.
To the best of our knowledge, these algorithms advance the state of art of query
reformulation in PDMS (more details in Sect. 6).

(iii) We provide an extensive experimental evaluation by running our algo-
rithms on a simulated network built on top of PeerSim, which demonstrates
that our solution yields greater recall, compared to traditional query translation
approaches.

The paper is organized as follows. Section 2 presents the background and
the problem definition. Section 3 introduces our framework, while Sect. 4 and
Sect. 5 describe our algorithms and the experimental assessment that has been
conducted. Finally, Sect. 6 discusses the related work and Sect. 7 concludes the
paper.

2 Problem Definition

In this section, we first present the background of schema mappings and P2P
networks, and then we detail the problem statement.

2.1 Schema Mapping Model

Data exchange systems [12] rely on dependencies to specify mappings. Given two
schemas, S and T, a source-to-target tuple–generating dependency (also called
a s-t tgd or, equivalently, a tgd) is a first-order formula of the form ∈x̄(φ(x) ⊆
≺ȳ(ψ(x̄, ȳ)), where x̄ and ȳ are vectors of variables, x̄ are universally quantified
variables and ȳ are existentially quantified variables. The body φ is a conjunctive
query (CQ) over S and the head ψ is a CQ over T.

Query Reformulation in PDMS Based on Social Relevance 63

Example 1. Consider Fig. 1 in which two schemas describing two scientists’ local
data are depicted. A set of correspondences v1, v2 and v3 connects elements in
the two schemas.

We report below two examples of s-t tgds for the two schemas above:

Source-to-Target Tgds

m1. ∈n, l : Hospital(n, l) ⊆ ≺I: HealthCareInst(n, I)
m2. ∈n, s, a, pi, l : Doctor(n, s) ∀ Grant(a, pi, n) ∀ Hospital(pi, l)

⊆ ≺I: HealthCareInst(pi, I) ∀ Grant(a, n, I)

A schema mapping is a triple M = (S,T, μst) (Mst, in short), where S is a
source schema, T is a target schema, μst is a set of source-to-target tgds. If I is
an instance of S and J is an instance of T, then the pair ∩I, J∧ is an instance of
∩S,T∧. A target instance J is a solution of M and a source instance I (denoted
J ∃ Sol(M, I)) iff ∩I, J∧ |= μst, i.e., I and J together satisfy the dependencies.

We distinguish between specific forms of s-t tgds, which are GAV (global-as-
view) and LAV (local-as-view). A GAV tgd is a formula ∈x̄(φ(x) ⊆ A(x̄)), where
the head is a single atom A(x̄). Similarly, a LAV tgd is a formula ∈x̄(A(x) ⊆
≺ȳ(ψ(x̄, ȳ)), where the body is a single atom A(x̄). GAV tgds are special cases of
more general tgds, called GLAV, that contains conjunctions of atoms and exis-
tential variables in the head. Here and henceforth, we focus on GLAV mappings,
thus expressed by means of GLAV s-t tgds in μst, as the others represent more
restrictive cases. We denote such GLAV mappings with M.

Example 2 (cont’d). Continuing with the above example, we define a schema
mapping by the triple M = (S,T, μst), where S is the source schema, T is the
target schema and μst = {m1,m2}. Moreover, M is a GLAV mapping.

We assume as customary that mappings among schemas are either provided
by the users or by using external schema mapping tools.

We build on prior work [6,29] to define the semantics of query translation.
Precisely, we denote with inst(S) (inst(T)) the set of instances I (instances J ,
respectively).

Definition 1 (Semantics of query translation). Suppose Qi is a query posed
against S, and Qj is a query posed against T, j →= i. Let Qt

i denote a translation
of Qi against T and Qt

j denote a translation of Qj against S. Then, Qt
j is correct

provided ∈Ds ∃ inst(S) : Qt
j(Ds) = Qj(M(Ds)). The translation Qt

i is correct
provided ∈Dt ∃ inst(T) : Qt

i(Dt) =
⋂

Dk
s :M(Dk

s)=Dt
Qi(Dk

s)).

In other words, the translation Qt
j is correct provided Qj applied to the

transformed instance M(Ds) and Qt
j applied to Ds both yield the same results,

for all Ds ∃ inst(S). Notice that there may exist multiple solutions (there are so
many solutions as there are instances Ds), but the semantics of certan answers
adopt the intersection of all these solutions.

Also note that in this case, the direction of translation is against that of the
mapping M. As in [6], we henceforth call it backward query translation. This
direction of translation is similar to view expansion, with M being the view

64 A. Bonifati et al.

definition. Translating a query Qi posed against S to the schema T of peer pj is
aligned with the direction of the mapping M, and represents the forward query
translation [6]. The forward direction is more tricky, as the mapping M may not
be invertible. In fact, there are two alternative strategies to make sense of this
direction of translation: (i) obtaining the reverse schema mapping M−1 [3,11],
such that the query rewriting semantics is the same as the backward direction;
this strategy applies to the case in which one would like to recover the exchanged
data, i.e. to find the source instance I from which the target instance J has been
derived; (ii) focusing on the computation of a rewriting of a conjunctive query
Q1 over the source schema, assuming that a source instance I (Ds) is already
available and adopting the semantics based on certain answers of all possible
pre-images Dk

s ; in such a case, it is possible to reuse the work done in the area
of query answering using views for data integration [23,24].

Moreover, observe that in our setting we focus on query answering rather than
on data exchange and on materializing a target instance. In fact, by following
the semantics given in [6,13], we adopt the second strategy (ii), that lets us
translate the query rather than the data and lets us realize query rewriting
along the mappings4. This strategy is more natural in a P2P setting in which we
do not need to reverse the mappings, and lets us avoid bringing the exchanged
data back to the peers.

2.2 Network Model

We assume a heterogeneous network of peers p1, . . . , pn, each peer having a
distinct relational schema S1, . . . , Sn. Let Mij be a generic GLAV mapping
between a pair of schemas Si, Sj , from peer pi to peer pj

5. We assume that
each peer has only one local schema, along with data defined according to the
schema itself. Furthermore, for simplicity we ignore schema constraints in the
query translation process.

We do not assume a symmetric distribution of the mappings, i.e. with a
mapping Mij , we expect that either pi (resp. pj) stores the mapping or both of
them. We have designed ad-hoc data structures to store mappings on each peer.
Details on such data structures will be provided in Sect. 3.2.

2.3 Problem Statement

Given a mapping M from a peer pi to a peer pj , which we denote with Mij ,
Mij is also called an outward mapping for pi. The peer pj is also called the target
peer for this mapping. By opposite, a mapping Mji from peer pj to pi is called
an inward mapping for pi (outward for pj , resp.). Similarly, pi is the target peer
in such a case.
4 Notice that we do not tackle the problem of merging results after applying the query

rewriting to the acquaintance’s database, but we take the union of these results.
5 Notice that we do not also assume the existence of the mapping Mji, from peer pj

to peer pi.

Query Reformulation in PDMS Based on Social Relevance 65

Let Qi be an input query formulated at a peer in the network against an
arbitrary schema Si, and a direct outward mapping Mij = Si ⊆ Sj (from Si

to Sj) and a direct inward mapping Mki = Sk ⊆ Si (from Sk to Si) and, in
addition, transitively from Sj (resp. Sk) to any other reachable schema Sl (resp.
Sm) for which it exists, without loss of generality, at least an outward mapping
Mjl (resp. an inward mapping Mmk) and so on, continuing from Sl and Sm

to any other reachable schema through inward or outward mappings, then, the
problem can be stated as:

– finding the relevant rewritings of Qi along and against the direction of the
mappings Mij (Mki, resp.) and Mjl (Mmk, resp.) and so on, by following
the mappings which connect the schemas. All the relevant rewritings have to
be computed by avoiding useless mapping paths from Si to Sj , from Sk to
Si, from Sj to Sl, from Sm to Sk and so on, from any reached schema to any
reachable schema connected by mappings.

Notice that the propagation of the input query Qi to all peers in the network
leads to collect as many rewritings as possible for that query. In fact, the input
query Qi can be certainly evaluated on the originating peer that hosts the schema
Si (upon which the query itself has been formulated) but may not be pertinent
for all the schemas of other peers, unless relevant rewritings can be located.
Moreover, the chosen strategy by which the results of the rewritten queries are
conveyed towards the originating peer is a simple one, i.e. the results are unioned
and possible duplicates are discarded. Alternatively, mapping composition could
have been used here, but it falls beyond the scope of this paper.

The rewritings of Qi follow the semantics given in Definition 1, whose cor-
rectness is proven in [6]. In this paper, we propose a query rewriting strategy
different from the ones used in previous work [6,18] in which all possible trans-
lations are pursued, since we only exploit relevant translations. To this purpose,
Sect. 3 introduces the notion of relevance of a query with respect to a mapping,
and that of a relevant rewriting.

3 A Framework for Query Reformulation

In this section, we develop a novel framework for query reformulation in PDMS
based on the notizion of social relevance. This framework relies on several contri-
butions: a precise definition of relevance of a query wrt. a mapping; a new metric
(AF-IMF) for computing such relevance and its supporting data structures; and
a distributed method for computing AF-IMF in a P2P network.

3.1 Relevance of a Query wrt. a Mapping

To define such relevance, we consider a schema mapping scenario M = (S,T, μst),
where S is a source schema, T is a target schema, μst is a set of source-to-target
tgds that express the GLAV mapping.

66 A. Bonifati et al.

Notice that here and henceforth we use mapping rule and s-t tgd as synonyms.
Let m ∃ μst be a s-t tgd of the form ∈x̄(φ(x) ⊆ ≺ȳ(ψ(x̄, ȳ)), with φ and ψ as
CQ queries, containing the atoms a1(X1), · · · , an(Xn), with each Xi being an
ordered set of parameters (xi1 ,xi2 , · · · , xim), and each parameter being a variable
$vik (k=1,2,...,m) where $vi1 is the variable for the paramenter xi1 and so on.

Let Q be a CQ containing the atoms a1(X1), · · · , an(Xn), with each Xi

being an ordered set of parameters (xi1 ,xi2 , · · · , xim), and each parameter being
a constant value cik or a variable $vik (k=1,2,...,m) where ci1 is the constant
value for the paramenter xi1 or where $vi1 is the variable for the paramenter xi1

and so on.
A query atom ai(Xi) in φ (ψ, resp.) is unifiable with a query atom aj(Xj)

in Q if a unifying substitution of variables and constant symbols exists. More
precisely, a unification occurs if:

– (i) label(ai) = label(aj), i.e. both atoms have the same name;
– (ii) ∈xik ∃ Xi, $vik matches the variable symbol $vjk ∀(i = j) or $vik matches

the constant symbol cjk ∀ (i = j);
– (iii) variable bindings are consistent, i.e. ∈xik ∃ Xi, if vik matches a variable

symbol vjk , it cannot match other variables or constants.

In other words, each query atom ai(Xi) must match an atom in the body
(head, resp.) of a tgd with both its label and its set ordered of parameters (xi1 ,
· · · , xim). Such a match follows the rules for atoms unification in Datalog (i.e.
constant and variable unification).

Example 3. Consider again Fig. 1 and the mapping rules m1 and m2 specified
in Sect. 2.

If we consider as a query Q = Hospital($v1,
′ SanFrancisco′), this query being

posed against the source schema of Fig. 1, returns the names of all hospitals in
San Francisco. Q consists of only one atom (Hospital) which has two parameters,
a variable (i.e. $v1) plus a constant value (i.e. ′SanFrancisco′).

We can now define the relevance of a query with respect to a mapping rule,
as follows.

Definition 2 (Relevance Forward). Given a schema mapping Mij that maps
elements of the schema Si into elements of Sj and let m be a mapping rule in
μij, a conjunctive query Q posed against Si along the direction of the mapping
rule is relevant to m iff each atom appearing in Q can be unified with an atom
in the body of m.

Definition 3 (Relevance Backward). Given a schema mapping Mij that
maps elements of the schema Si into elements of Sj and let m be a mapping
rule in μij, a conjunctive query Q posed against Sj against the direction of the
mapping rule is relevant to m iff each atom appearing in Q can be unified with
an atom which only contains universally quantified variables in the head of m.

Consequently, we can now define the relevance of a query wrt. the whole
mapping, as follows.

Query Reformulation in PDMS Based on Social Relevance 67

Definition 4 (Mapping Relevance). Let M = (S,T, μst) be a mapping,
where S is a source schema, T is a target schema and μst be the set of s-t tgds
and let m ∃ μst be a mapping rule of such mapping. A query Q posed against
the mapping M is relevant if there exists at least one mapping rule m ∃ μst so
that m is forward or backward relevant for Q.

Example 4 (cont’d). Continuing with the example above, shown in Fig. 1, it is
easy to check that the query Q above is forward relevant to both m1 and m2,
according to the above definition. If we consider a query Q′ = Grant($x, $y, $z)
and a query Q′′ = HealthCareInst($y, $z), neither Q′ nor Q′′ are backward rele-
vant to either mapping rule.

Here and henceforth, we will use the term relevance to denote mapping rel-
evance, unless otherwise specified. It follows that, if a query Q is relevant to a
mapping Mij , its translation Qt

i is also relevant to that mapping.

Proposition 1. If a query Q formulated against Si is relevant to a mapping
Mij, its translation Qt formulated against Sj is also relevant to Mij, and
viceversa.

Proof. To prove the above proposition, we have to consider both directions of
translations, i.e. forward and backward and apply the corresponding definition
of relevance. We start with the forward direction of translation and the forward
relevance. Being the mapping μij a tgd of the form ∈x̄(φ(x) ⊆ ≺ȳ(ψ(x̄, ȳ)), by
applying Definition 2, the query Q must contain all constants and variables,
that by substitution can be matched to at least one variable in the vector of
variables x. It follows that the query translation from Q to Qt brings at least
one variable to the head (ψ(x̄, ȳ)), thus yielding at least an atom in Qt, that
contains that variable. This implies that Qt exists (as the set of certain answers
to the query Q is not empty) and is also relevant to the mapping μij since
it contains at least one atom in ψ. We now show that the same holds for the
backward direction of translation and backward relevance. In such a case, we
assume that the query Q is posed against the source schema Sj , thus, being
the mapping μij , by applying Definition 3, the query must contain all constants
and variables that by substitution can be matched to at least one variable v in
the vector of variables x̄, ȳ. There are two possible cases: (1) v ∃ x̄; (2) v ∃ ȳ.
Case (1) implies that Qt exists and the view expansion is not empty. Henceforth,
Qt is also relevant to the mapping μij since it contains at least one atom in φ.
Case (2) leads to an empty query translation, thus Qt = ⊗, which is trivially not
contained in φ, as it contradicts the definition of backward relevance. �

The above query Q entails a relevant rewriting, according to the next
definition.

Definition 5 (Relevant Rewriting of a Query). Given a query Q relevant
to a mapping Mij = Si ⊆ Sj, its translation Qt is a relevant rewriting of Q

against Sj. We say that Mij rewrites Q into Qt, denoted by Q
Mij⊆ Qt.

68 A. Bonifati et al.

Fig. 2. (a) Useless rewriting sequence, (b) alternative rewriting sequences and relevant
mappings (in bold).

Based on the above definition, we can now define a rewriting sequence, as
follows.

Definition 6 (Rewriting Sequence). For a query Q, if Q0
M01⊆ Q0

t = Q1
M12⊆

Q1
t = Q2 · · · M(n−1)n⊆ Qn−1

t = Qn, we say that Q rewrites into Qn
t. The map-

pings M01, · · · ,M(n−1)n are called the rewriting sequence.

An example of rewriting sequence starting from the peer p0 to the peer p7 is
highlighted in bold in Fig. 2 (b).

According to our problem definition, we need to find all the possible rewrit-
ing sequences of a given input query Q0 on the initiating peer p0. However, a
rewriting sequence might not always exist between p0 and an arbitrary peer pn,
since there might be an intermediate mapping that does not entail a relevant
rewriting of the query. We denote such mapping as a useless mapping and the
entire sequence a useless rewriting sequence. An example of such a sequence is
depicted in Figure 2 (a), from p0 to p3, where the mapping from peer p1 to p2

is not relevant. Avoiding useless sequences is quite straightforward because they
can be detected by adopting a local metric to assess whether the target of the
current peer is able to handle the query, before actually shipping the query itself
to that target. Such evaluation can be done by using the mapping rules them-
selves, as they are locally stored on the current peer and can be easily inquired
to that purpose.

Another issue that often occurs is that of alternative rewriting sequences, as
depicted in Fig. 2 (b). Indeed, the current peer may have multiple alternative
paths to rewrite a given query, and may have to choose the most appropriate
one. E.g. in Fig. 2 (b), p0 could choose among three possible alternatives p1, p4

and p5. Exhaustively pursuing all possible rewritings is obviously not feasible,
due to the great number of destination peers and rewriting sequences. Moreover,
only fews rewritings along the sequences may happen to be the most relevant
ones, which is always preferable to pursue. To this purpose, we need a relevance
score for each possible rewriting sequence (described next) in order to be able

Query Reformulation in PDMS Based on Social Relevance 69

to rank the possible rewriting alternatives. Consequently, it becomes feasible to
rewrite the queries along the most relevant paths (e.g. represented by the bold
arrows in Fig. 2 (b)).

Remark. We observe that one could apply Definition 4 in a straightfoward man-
ner to address the previous problems. However, a relevance score solely based
on a local metric would not be sufficient as it would only check one mapping at
a time. Conversely, one needs to check an entire rewriting sequence among the
possible alternatives. Thus, a global metric is needed to assess the relevance of
queries with respect to the mappings in a rewriting sequence.

Moreover, the above definitions only handle the cases of mappings that con-
tain all the atoms of a query Q in their body or in their head, whereas the total
number of remaining non-relevant atoms in the mapping body or head is also
important, as we show in the following example.

Example 5 (cont’d). If we consider the query Q of Example 3, the mappings m1

and m2 of Example 1 present a different degree of relevance with respect to Q. In
particular, m1 is more relevant to the query than m2 itself, as the query atoms
exactly coincide with the atoms in the body of the mapping m1.

To make the above example more general, let us assume that for a given
query Q triggered on a peer there are n distinct mappings (m1, · · · , mn) with as
many distinct peer friends (p1, · · · , pn). In order to avoid useless query transla-
tions, the triggering peer has to choose which among m1 · · · mn is (are) the best
mapping(s) to exploit for query translation. This simple example already moti-
vates the importance of establishing a degree of relevance for a set of candidate
mappings with respect to a given query.

3.2 Relevance Metric

In this section, we present our novel relevance metric to quantify the degree
of relevance of mappings in the network and the data structures that allow
computing it. We highlight that the metric we are introducing is able to take
into account both the specificity of a mapping rule w.r.t. a query Q and the
overall importance of the query atoms in the network.

AF-IMF Metric. Our metric which we call AF-IMF, i.e. atom frequency,
inverse mapping frequence, is an adaptation of the classical information retrieval
metric TF-IDF to schema mapping. Variations of the TF-IDF weighting scheme
are often used by search engines as a central tool for scoring and ranking a doc-
ument’s relevance given a user query. Similarly, AF-IMF is a statistical measure
to evaluate how important a query atom is to a mapping in the entire collection.
The importance increases proportionally to the number of times an atom appears
in the mapping but is offset by the frequency of the atom in the collection.

In the following, we first define the AF-IMF for an individual mapping rule,
then we extend it to entire mappings.

70 A. Bonifati et al.

We introduce the atom count in the given mapping rule m, as the number of
times a given query atom aq fully appears in m by using constant and variable
unifications. This count is usually normalized by the number of occurrences of
all atoms in m. We assume that each atom can only appear once in a mapping
rule, thus implying that the atom frequency can be approximated to 1.

AFi,j = ni,j∑
k nk,j

≤ 1
k

where ni,j is the number of occurrences of the considered atom ai in mj , and
the denominator is the sum of number of occurrences of all k atoms occurring in
the body (head, resp.) of mj , where ai respectively appears. Notice that having
two separate AF on the body and head according to where the atom ai appears
in the mapping rule mj is crucial to characterize the forward from backward
relevance, respectively.

The inverse mapping frequency is a measure of the general importance of the
atom, obtained by dividing the total number of mapping rules by the number of
mapping rules containing the atom in the body (head, resp.), and then taking
the logarithm of that quotient.

IMFi = log |M |
|{mj :ai≤mj}|

with |M | = | ∪i=1...n μst| being the total number of mapping rules in the
network, which amounts to the union (without duplicates) of all the source-to-
target tgds; and |{mj : ai ∃ mj}| being the number of mapping rules where the
atom ai appears (that is ni,j →= 0) in the body (head, resp.). If the atom is not
in the network, this will lead to a division-by-zero, thus it is common to use
1 + |{mj : ai ∃ mj}| instead.

Notice that the computation of AF depends on both the current query atom
ai and the current mapping rule mj . Differently, the IMF computation does not
depend on the current mapping rule mj but only on the current query atom ai.

Then,
(AF-IMF)i,j = AFi,j × IMFi ≤ 1

k × IMFi

The above formula implies that the mapping rules with less atoms are pre-
ferred with respect to those with more atoms. Therefore, a high weight in AF-
IMF is reached by mapping rules with low total number of atoms, and low
frequency in the global collection of mapping rules.

What has been already observed above on forward from backward relevance
implies that a different value of the AF-IMF is computed for atoms appearing
in the body (head, resp.) of the mapping rules in a similar fashion.

A further step would lead to extend the above metric for the query atoms aq

altogether so that it is possible to assign a comprehensive value of relevance the
entire query Q with respect to the mapping rule mj (as opposed to the previous
case, when only an individual query atom ai was considered). Such step implies
a simple measure (e.g. the sum) to put together the AF-IMF scores separately
obtained by the query atoms aq of Q.

Query Reformulation in PDMS Based on Social Relevance 71

After applying the composition of the above scores, we obtain the overall
score for the mapping rule mj , as in the following:

(AF-IMF)j =
∑

i (AF-IMF)i,j

After defining the notion of AF-IMF for an individual mapping rule m, we
now extend the definition to the entire mapping M. We recall that the final goal
of our metric is to assign a relevance value to those mappings that the current
peer is about to evaluate in order to realize the query translation of Q.

Being a mapping scenario M = (S,T, μst) defined by means of a set of K
(K > 0) mapping rules in μst, we compute the overall AF-IMF score for M as
the sum of the AF-IMF scores obtained by each mapping rule m ∃ μst (according
to the forward or backward definition of relevance).

In other words, if the relevance is backward the query Q matches the head
side of the mapping rule mj (see Definition 3), the AF-IMF computation is done
as shown below:

(AF-IMF)M,head =
Kh∑

j=1

(AF-IMF)j

where Kh ← K is the number of rules mj ∃ μst, such that Q matches their
head side.

Instead, if the relevance is forward the query Q matches the body side of the
mapping rule mj (see Definition 2), the AF-IMF computation is done as shown
below:

(AF-IMF)M,body =
Kb∑

j=1

(AF-IMF)j

where Kb ← K is the number of rules mj ∃ μst, such that Q matches their
body side.

The overall relevance of the query Q with respect to the entire mapping M
is the maximum value between the two formulas above:

(AF-IMF)M = max((AF-IMF)M,head, (AF-IMF)M,body)

In such a way, given a query Q as input, the AF-IMF metric assigns a score
of relevance to each inward and outward mapping of the peer, to let it choose the
most relevant paths for query translation, i.e. the ones with the highest scores.

Example 6. Consider Fig. 3 that is a slightly different version of Fig. 1. A set of
correspondences v1, v2, v3, v4 and v5 connects elements in the two schemas.
Assume that the set of corresponding s-t tgds is the one reported below:

Source-to-Target Tgds

m1. ∈n, l : Hospital(n, l) ⊆ ≺I: HealthCareInst(n, I)
m2. ∈n, s, d, dw, da, a, pi, l : Doctor(n, s, d) ∀ Grant(a, pi, n)

∀Department(d, dw, da) ∀ Hospital(pi, l)
⊆ ≺I, g: HealthCareInst(pi, I) ∀ Grant(a, n, I, d)
∀Dept(d, g, dw)

m3. ∈n,w, a : Department(n,w, a) ⊆ ≺g: Dept(n, g, w)

72 A. Bonifati et al.

Source Target

Fig. 3. A Schema Mapping Example

The mapping M among source S and target T includes all the above three
mapping rules.

Now, let us imagine that the source peer S is connected to other target peers
(T1, T2 and T3) all having, for simplicity, an identical target schema T with sets
of different mappings. Such mappings (M1, M2 and M3) are simply variants of
M, i.e. mappings derived from M by including a different subset of the mapping
rules of μst, as specified in the following:

– M1 : μst = {m1,m2}
– M2 : μst = {m1,m3}
– M3 : μst = {m2,m3}

If we compute the AF-IMF scores for all the mappings above, i.e. M, M1, M2

and M3, it is easy to check that M will always get the highest score, since it is the
most complete mapping. Therefore the peer T, that is connected to S through M,
represents the most relevant peer to follow in the query reformulation process.

Nevertheless, a further complication arises since IMF cannot be exactly com-
puted as the size of the entire collection of mapping rules at a given time is not
known, due to the fact that the network is dynamically changing.

To address this problem, each peer is equipped with a set of semantic data
structures, that summarizes the local and external mappings of a peer (see next
Section for details). Thus, by exploiting such data structures, we can compute
an approximation of IMF for the distributed case, as discussed in Sect. 3.2.

Semantic Data Structures. In this section, we first introduce the local seman-
tic data structures stored on each peer. Then, in Sect. 3.2, we present how they
can be exploited to approximate the IMF values.

Query Reformulation in PDMS Based on Social Relevance 73

Peer Age

p1

p3

p4

40

0

1

View

Atom Count(m)

Hospital 2

Grant 1

Mapping Summary

.....

Mapping−content

Local Semantic View (LSV)

....

MappingAtom
SHA−1(m1)

SHA−1(m2)

SHA−1(m2)

SHA−1(m2)Grant

Hospital

Hospital

Hospital

....

SrcP TgtP Peer

p1 p3

p3 p4

p3 p4

p3 p4
....

p5

p6

p6

p6

Local Data Structures on a peer

FK

Fig. 4. Local data structures on a peer.

Figure 4 represents the local data structures on each peer. Each peer main-
tains a set of local or internal mapping rules6, i.e. mapping rules from its local
schema to the schema of each of its acquaintances, the latter being a selected sub-
set of the peer’s neighbors [16,20]. Moreover, it also stores a Local Semantic View
(LSV in short), that encloses information about external mapping rules (distinct
from the local ones), selected uniformly at random from the network. This view
is used to compute the relevance values. Precisely, an LSV for each peer consists
of: a five-column table Mapping-content (Atom, Mapping, SrcPeer, TgtPeer,
Peer), and of a two-column table View (Peer, Age), with a foreign key constraint
between View.Peer and Mapping-content.Peer. The Mapping-content relation
has a column Atom containing the atom of a mapping rule in the network; a
column Mapping containing the ID of the mapping rule in which Atom appears;
a column SrcPeer containing the ID of the external source peer to which Map-
ping is an outward mapping; a column TgtPeer containing the ID of the external
target peer to which Mapping is an inward mapping; a column Peer containing
the ID of the peer in the network that has provided the current tuple in a gossip
cycle. The View relation has a column Peer containing the ID of a peer in the
network; a column Age containing a numeric field that denotes the age of the
mapping rules since the time in which they have been included within the View.
Figure 4 shows an example of a LSV on a peer.

To uniquely identify each mapping rule in the PDMS, we assign an ID to
each mapping, using cryptographic hash functions (e.g. SHA-1) to reduce the
probability of collision7.
6 The mapping statements have been omitted from Fig. 4 to avoid clutter.
7 In DHTs or structured P2P networks, on which PDMS are based, a unique key

identifier is assigned to each peer and object. IDs associated with objects are mapped
through the DHT protocol to the peer responsible for that object. In our setting,
each object is a mapping.

74 A. Bonifati et al.

As the size of the LSV is limited, it implies that the view entries need to be
replaced, based on their age information. In order to maintain each LSV on the
peers, we adopt classical thread-based gossiping mechanisms, aiming at updating
the LSV with newly incoming tuples from the outside. In Sect. 4.4 we provide
the details of such maintenance.

Besides local mappings, each peer also maintains an additional descriptive
data structure of such mappings, called Mapping Summary, which is imple-
mented as a local Bloom filter [5]. A Bloom filter is a method for representing a
set A = {a1, a2, · · · , an} of n elements (also called keys) to check the membership
of any element in A. In the Mapping Summary, a bit vector v of m bits, initially
set to 0, represents the positions of k independent hash functions, h1, h2, · · · , hk,
each with range {1, · · · ,m}. In the Mapping Summary, a key is built as follows:
for each mapping rule, the conjunction of all atoms in the body φ (in the head
ψ, resp.) is a key; each individual atom ai in the body φ (in the head ψ, resp.) is
a key; each subset a1, . . . , an of the atoms in the body φ (in the head ψ, resp.),
such that it exists at least one joined variable in each atom ai and ai+1, is a key.
By enumerating the above keys, each body (head, resp.) of the mapping rule has
a total of n(n+1)

2 entries in a Mapping Summary. Such a combination of atoms
and/or individual atoms may appear in several distinct local mapping rules on
that peer. For each atom (or combination of atoms thereof) a ∃ A, the bits at
positions h1(a), h2(a), · · · , hk(a) in v are set to 1. A membership query checks
the bits at the positions h1(a), h2(a), · · · , hk(a). If any of them is 0, the atom a
is not in the set. Otherwise, we conjecture that a is in the set, although this may
lead to a false positive. The aim is to tune k and m so as to have an acceptable
probability of false positives. The advantage of using Bloom filters resides in the
fact that they require very little storage, at the slight risk of false positives. Such
probability is quite small already for a total of 4 different hash functions [15].
Figure 4 shows an example of a Mapping Summary on a peer.

Similarly to the LSV, the Mapping Summary needs to be maintained in the
presence of changes of the atoms within the mapping rules, and/or additions
and deletions of the mapping rules themselves. This is done by maintaining in
each location l in the bit vector v, a count c(l) of the number of times that the
bit is set to 1. The counts are initially all set to 0. When insertions or deletions
take place, the counts are incremented or decremented accordingly.

Finally, to allow friendship linking among peers, a peer mantains a third
structure, that is basically a local FOAF file containing the URIs of its friends
FOAF files. Whenever a user (or a peer) generates its FOAF file, it can obtain
an identity for that file in the form of a URI. This URI could point to a reference
in a friend’s FOAF file. URIs correspond to unique peer and object identifiers
in a PDMS. In particular, a peer p1 may need to store into its FOAF file: (1)
the list of other peers he knows and he is friend with, as a link to its friend’s
FOAF file (e.g. P3.rdf in the example); (2) possibly, the link to its friend’s
Mapping Summary (e.g. P3 MapSum in the example below).

Query Reformulation in PDMS Based on Social Relevance 75

<foaf:knows>
<foaf:Peer>

<foaf:peerID> P3</foaf:peerID>
<rdfs: seeAlso rdf: resource =

‘http://www.mirospthree.com/P3.rdf’/>
<rdfs: seeAlso rdf: resource =

‘http://www.mirospthree.com/P3_MapSum’/>
</foaf:Peer>

</foaf:knows>

The main goal of FOAF files is to maintain the current friendship links of
a given peer. During query translation, the FOAF file is expanded by adding
new friends, by invoking the Algorithm FindDirectFOAFFriends, described in
Sect. 4. Notice that adopting and exploiting the friendship links of a given peer
during the query translation process is complementary to exploiting the semantic
mappings towards the peer’s acquaintances. In fact, the friendship links are
especially useful in the presence of network churn, as they act as a background
network regardless of the peer’s acquaintances and its direct inward/outward
mappings. A more detailed experiment about network churn, scalability and the
usefulness of FOAF links is provided in Sect. 5.

In our model, no peer can access the other peer’s mapping summary until
an explicit friendship link has been established between such peers, thus leading
to modify their respective FOAF files accordingly. This mechanism gracefully
replaces an explicit negotiation and coordination among peers for accessing their
respective data structures. An additional access control mechanism, e.g. [8], can
be adopted on top of FOAF files to further strenghten the security of the network.
More sophisticated privacy and security mechanisms are beyond the scope of
our paper.

In the remainder of this discussion and in Sect. 4, we denote the peers indexed
in a FOAF file as ‘friends’. These represent the peers whose mapping summary
can be accessed, in order to widen the scope of the queries. In particular, in
Sect. 4, we will discuss how to enlarge the set of simple friends of a peer by
exploiting friendship links in its FOAF file.

Distributed Computation of AF-IMF. Using the local semantic view and
the local mapping rules, we can compute IMFi distributively, as follows. Let
k be the number of distinct local mapping rules entries and let t the number
of distinct mapping rules in the LSV. We know by definition that the k entries
and t entries are not overlapping, thus we may say that locally we have k + t
mapping rules. Then, we have to determine what is the approximation of |M |,
the total number of mapping rules in the collection, possibly without duplicates.
We may think of computing N , the total number of peers in the network and
multiplying it by k + t, thus obtaining |M | = (k + t) × N . Moreover, we observe
that N can be easily computed if we know the network topology. For instance,
for DHTs it suffices to record the size of the routing table, which is r = log(N),
and by taking the inverse as 2r = N . For super-peer networks, we may have an
entry point that registers the total number of peers N . For unstructured P2P
networks, we may rely on flooding to count the total number of peers in the

76 A. Bonifati et al.

network. In a similar way, the |{mij : ai ∃ mij}| can be computed by selecting
among the k and t local mappings, those that contain the atom ai, thus obtaining
|{mij : ai ∃ mij}| = (ki + ti) × N .

However, we need to avoid duplicate mapping rules in the previous computa-
tion. In order to do this, we need to uniquely identify a mapping in the entire
network. A simple and effective way to do this is to couple each mapping with
its signature, using a cryptographic hash function (e.g. SHA-1). We present in
Sect. 4 an algorithm to compute AF-IMF distributively, that avoids duplicate
mappings by using signatures.

Remark. As a final observation, we underline that the problems illustrated in
Fig. 2 are both overcome, since the useless sequences do not affect the AF-IMF
metric. Moreover, AF-IMF enables the search of the most relevant rewriting
sequences in a global fashion, as expected by our previous reasoning. In the
experimental analysis (Sect. 5), we show the effectiveness of this metric, also
when compared to a local metric (e.g. by adopting the sole AF as a local metric).

4 Algorithms

In this section, we illustrate our algorithm: the core algorithm that translates
a query based on relevance; an algorithm for seeking new friends that contain
relevant mappings for the query; a distributed algorithm to compute the rele-
vance of mappings, that is used by the two former algorithms. Finally, we briefly
discuss the gossiping algorithm for updating semantic views.

4.1 Distributed Computation of the Relevance

Algorithm 1 computes a measure of the relevance of a set of mapping rules on
a given peer with respect to an input query, with the aim of getting an ordered
top-k list of mappings to be exploited (by Algorithm 2) and the aim of finding
new friends by (Algorithm 3).

The algorithm has two main parts. Lines 1-14 aim at computing the IMF
values for each query atom, and this entails a separate computation, depending
on which side of the mapping rule the query atom belongs. Therefore, two vectors
BodyIMF and HeadIMF are built to store the IMF values of each atom in the
query Q.

Then, the second part of the Algorithm (lines 15-32) computes the denomi-
nator of AF values as the total number of atoms appearing in the matched side
of the mapping rule, and the complete value of AF-IMF is then returned. The
final relevance value (line 32) for the whole mapping rule is taken by applying a
suitable ranking function to the values in the above vectors (e.g. sum).

Let us observe that the computation of the IMF only depends on the atom
ai in the query Q, and not on the current mapping rule. For this reason, we also
make sure that the computation at lines 1-14 is done only once for the same
query, by saving intermediate results.

Query Reformulation in PDMS Based on Social Relevance 77

Fig. 5. An example of ComputeRelevance (Algoritm 1).

Indeed, the computation is done by asking each known peer (both destination
peers through mappings and new discovered peer friends in the FOAF file f).
The maximum number of inquiries is given by the REQS threshold. Observe
that if REQS = 0 no external inquiries have been done, and only the entries of
the current peer’s LSV have been inspected, whereas a value of REQS greater
than 0 leads to also inspect the LSV of external peers. Also note that such
inquiries are done by discarding duplicates through the asynchronous method
GetDistinctMappingRules, that checks the signatures of the mapping rules. We
omit the pseudo-code of this method for space reasons.

Figure 5 shows an example of how Algorithm 1 computes the relevance. A
query Q is initially posed against the peer p0, which in turn chooses among
three alternative target peers (also called acquaintances). Also, note that from
p0 toward p7 there is no direct mapping, but rather a FOAF link depicted by a
dotted blue arrow. Thus, mappings M01 (from p0 to p1), M40 (from p4 to p0)
and M05 (from p0 to p5) must be evaluated aiming at finding the top-k relevant
ones for the input query (in this example, we assume for simplicity that k = 1).
By inspecting p0’s LSV, Algorithm 1 performs the computation of the relevance
metric for each mapping rule m of each mapping involved (M01,M40,M05),
by assigning an AF-IMF value to each involved atom, as previously discussed.
At the end, the mapping M01 (from p0 to p1) gets the highest relevance score
amongst all the other mappings, thus becoming the top-1 step in the rewriting
sequence of query Q.

4.2 Translating Queries Based on Relevance

Algorithm 2 translates a query initiated at a peer, first against its set of local
mappings and then by exploiting local friendship links at that peer.

Notice that the core of the algorithm (lines 10-30) is essentially the translation
algorithm reported in [6] that we have extended and improved by considering
our relevance metric and by exploiting FOAF friendships. Thus, a formal proof
of correctness of Algorithm 2 directly follows from the proof of correctness of

78 A. Bonifati et al.

Algorithm 1: ComputeRelevance - computes the relevance according to the gossiped information in
the local semantic view

Input : A query Q as set of atoms AQ, a list of k mapping rules mk,
a peer p with its LSV and FOAF file f
Output: The vector of relevance values RV for the input list of k mapping rules
foreach atom ai in AQ do1

//Compute the IMF value according to the matchedSide
n = total nr. of mapping rules in the LSV;2
nBi = total nr. of mapping rules in the LSV containing ai in the body;3
nHi = total nr. of mapping rules in the LSV containing ai in the head;4
Let countreqs = 0;5

foreach p∗ in the View of LSV and in the FOAF file f do6
if countreqs >= REQS then7

break;8

n += GetDistinctMappingRules(p∗);9

nBi += GetDistinctMappingRules(p∗, ”Body”, ai);10

nHi += GetDistinctMappingRules(p∗, ”Head”, ai);11
countreqs++;12

BodyIMF [i] = log(n / (1 + nBi));13
HeadIMF [i] = log(n / (1 + nHi));14

foreach mapping rule mk in the list of input mapping rules do15
if all atoms ai in AQ are in the body of mk then16

matchedSide = ”Body”;17
else18

if all atoms ai in AQ are in the head of μk then19
matchedSide = ”Head”;20

else21
//No relevance
RV [k] = 0;22
continue;23

BodyAFi = total nr. of atoms in the body of mk24
HeadAFi = total nr. of atoms in the head of mk25
foreach atom ai in AQ do26

AF − IMF [i] = 0;27
//Compute the AF-IMF value for ai according to the matchedSide
if matchedSide == ”Body” then28

AF − IMF [i] = (1 / BodyAFi) * BodyIMF [i];29
else30

AF − IMF [i] = (1 / HeadAFi) * HeadIMF [i];31

//Compute the final relevance value RV for the whole mapping rule mk

RV [k] = RankFn(AF − IMF [i])32

return RV ;33

the translation algorithm in [6] (cfr. Theorem 1) that we omit for the sake
of conciseness.

The algorithm is inherently recursive, and at each iteration increases the
number of query hops, until a given threshold α is reached. This avoids exploring
the entire network, by conveying the query toward a limited number of peers.
By exploiting the notion of relevance for the input query Q, new friends are
discovered and added to the FOAF friend list.

By invoking the method FindDirectFOAFFriends (line 4), the current peer
enlarges the list of its friends in its local FOAF file. Therefore, new relevant
friends might be discovered, similarly to real-life friendship mechanisms, and
to friend-bases game applications (e.g. Farmville) in modern social platforms
(e.g. Facebook). Lines 6-8 invoke the method ComputeRelevance for each local

Query Reformulation in PDMS Based on Social Relevance 79

Algorithm 2: TranslateQuery - Query translation based on relevance

Input : Query Q as set of atoms AQ and a peer p with its list MList of local mappings Σ1≤i≤nMi,
and its FOAF file f

Output: Query results res of the query Q against the peer p exploiting both the set of local relevant
mappings Σ1≤i≤nμi and new relevant peer friends

if Q.query-hops ∈ α then1
return res;2

increase Q.query-hops by 1;3
Call FindDirectFOAFFriends(Q, p);4
Let L be a list of mappings ordered by relevance;5
foreach local mapping Mi in MList do6

RV = Call ComputeRelevance(Q, Mi.MappingRules());7
mapscore[i] = SumValuesFromVector(RV);8

L = Order MList according to mapping relevance values in mapscore;9
foreach top-k ordered mapping Mi in L do10

if Mi has been already processed then11
continue;12
//To avoid cycles

Let destPeer the destination peer through mapping Mi;13
if Q is relevant to the body of Mi then14

Translate Q along Mi obtaining Q∗15
if Mi is outward then16

res = res ∧ Eval(Q);17

res = res ∧ TranslateQuery(Q∗, destPeer);18
else19

res = res ∧ Eval(Q∗);20
res = res ∧ TranslateQuery(Q, destPeer);21

else22
if Q is relevant to the head of Mi then23

Translate Q against Mi obtaining Q∗24
if Mi is outward then25

res = res ∧ Eval(Q∗);26
res = res ∧ TranslateQuery(Q, destPeer);27

else28
res = res ∧ Eval(Q);29

res = res ∧ TranslateQuery(Q∗, destPeer);30

Let F be a list of friends;31
F = Call ComputeFriendsWithGreatestCount(Q, f);32
foreach top-k ordered friend pFoaf in F do33

//To exploit new interesting peer friends
res = res ∧ TranslateQuery(Q, pFoaf);34

return res;35

mapping Mi of the peer, in order to get the relevance scores for such local
mappings. Then, at line 9, the list of local mappings is ordered according to the
calculated relevance scores with respect to the input query Q.

Mapping identity is checked in lines 10-11, in order to avoid using the same
mappings more than once in different iterations. The query rewriting proceeds
by taking into account the direction of the mapping (cfr. Definition 1) and then
can take place along (line 12) or against (line 21) the mapping, thus obtain-
ing the translated query Q′. Then, according to the type of the mapping con-
sidered - if inward or outward, the input query Q and the translated one Q′

are executed against the current peer or instead used in the recursive call of
the Algorithm. Next, the query translation task is pushed towards the new

80 A. Bonifati et al.

Fig. 6. An example of TranslateQuery (Algorithm 2).

interesting peer friends encoded in the FOAF file f (lines 31-34). This search
exploits the peer friends’ Mapping Summary to check whether there is a high
number of mappings that contains atoms of the input query Q (via the method
ComputeFriendsWithGreatestCount). Finally, all the query results res are
returned (line 34) as the union of all the results harvested throughout the recur-
sive invocations of the algorithm.

Figure 6 shows an example of execution of Algorithm 2. A query Q is posed
against the peer p0. In trying to choose the most relevant rewriting sequence
(lines 5-30), p0 applies Algorithm 1 (for simplicity, we assume that top-k = 1).
This way, the query Q is rewritten and traslated transitively until p6 is reached.
No translation is further possible, since p6 is a terminal node. However, FOAF
links found in line 4 of the Algorithm 2 are also exploited in this example. Indeed,
they allow to traverse disconnected subsets of the nodes in the graph of Fig. 6
(lines 31-34). If the friend reachable through the link is able to treat the query,
the query can be further propagated to that friend and its subgraph. In the
figure, one can see that p7 and p11 receive the queries Q and Q3 respectively
from p0 and p3. By contrary, p14 is not able to treat the query that p9 holds,
thus such a query is not propagated further. Obviously, each friend would further
spread the query, thus increasing the total number of relevant rewritings.

The following proposition holds.

Proposition 2. If |AQ| is the size (number of atoms) of an input query Q and
|Mr| the number of the relevant mappings in the PDMS then the number of
rewritings generated by TranslateQuery is O(|Mr||AQ|).

The upper bound of the above proposition is essentially due to the recoursive
callings triggered by the second loop (lines 10-30) and the third loop (lines 33-
34), while the first loop (lines 6-8) is negligible. Also notice that the second loop
only triggers one recoursive call per mapping Mi, according to the body (or
head) relevance of the query Q with respect to the current mapping Mi.

Query Reformulation in PDMS Based on Social Relevance 81

Algorithm 3: FindDirectFOAFFriends - Finds the top-k relevant ”Simple Friends” and adds their
entries in the FOAF file

Input : A query Q as set of atoms AQ and a peer p with its list LSV List of mappings Σ1≤i≤nMi

in the peer’s local semantic view (LSV) and a FOAF file f
Output: The updated FOAF file f
Let L be a list of mappings ordered by relevance;1
foreach mapping Mi in LSV List do2

RV = Call ComputeRelevance(Q, Mi.MappingRules());3
mapscore[i] = SumValuesFromVector(RV);4

L = Order LSV List according to mapping relevance values in mapscore;5
foreach top-k mapping Mi in the ordered list L do6

Let p∗ the target peer through Mi;7

if p∗ is not in the FOAF f then8
Call InvitePeer(p, p∗);9
//Asynchronous method
if the previous invitation has been accepted then10

Insert p∗ in the FOAF file f ;11

return the updated FOAF file f ;12

4.3 Seeking New Friends

Algorithm 3 updates the FOAF file of a given peer, by adding new friends,
discovered after an exhaustive inspection of the content of the local semantic
view of a peer. Before adding a peer p′ to the FOAF file of the current peer, a
formal invitation is sent and must be accepted. A simple extension of Algorithm 3
can be thought, in which an external peer, which is not friend of a friend, is added
to the FOAF file. We omit its pseudocode for the sake of conciseness.

4.4 Gossiping Mapping Entries

To conclude this section, we discuss the gossip behavior of each peer. An active
thread describes how a peer p initiates a periodic gossip exchange, while the
passive thread takes care of a gossip exchange initiated by some other content
peer p′′.

The active behavior is triggered after each time interval TGossip. After incre-
menting the age of its view entries by 1, the peer p selects from its view: (a) a
peer p′, being the oldest contact via select oldest() and (b) a viewSubset, being
a random subset of Mapping-content within the local semantic view of LGossip
size (where 0 < LGossip <= V Gossip). Then, peer p send to p′ a gossip mes-
sage, a message that contains the viewSubset. Recall that each peer keeps in its
LSV a set of the mappings containing a specific atom (see Fig. 4).

The peer p receives in exchange gossipMsg′ containing similar information
from p′, and creates a viewEntry related to p′, with age 0. Next, peer p discards
duplicates view entries through using Merge. This lets taking care of the problem
of redundant rewriting sequences.

The passive behavior is triggered when peer p receives a gossip message con-
taining Mapping-content and view entries from some peer p′′. Peer p answers by
sending back a gossip message with its own Mapping-content and view informa-
tion, and updates its local view with via merge() and select recent(), and finally

82 A. Bonifati et al.

updates the local Mapping-content with respect to the new view as described
previously.

We omit the pseudocode of the Gossiping mapping entries Algorithm for lack
of space.

5 Experimental Evaluation

We first describe in Sect. 5.1 the system setup. In Sect. 5.2, we assess the quality
and efficiency of our rewriting technique, also with respect to traditional query
reformulation approaches. We then focus on the scalability of our algorithms
and their robustness with respect to network churn in Sect. 5.3.

5.1 Experimental Setup

Dataset and mapping generation. We have conducted our evaluation in
PeerSim [25], an open source simulator for P2P protocols. In order to tweak
our system at best, we implemented a pseudo-randomized generator of rela-
tional schemas. Indeed, none of the available relational datasets could provide
us enough heterogeneity to distribute on a large number of nodes in the network.
Thanks to this generator, no peer’s schema is identical to any other and, as a
consequence, mappings are all distinct. Moreover, every peer has at least one
acquaintance, connected to it via a mapping. This ensures that there are not
semantically disconnected peers in the PDMS.

The generator leverages a dictionary of about 40 names, ranging from table
names to attribute names. We have designed a total of 10 scenarios (outlined in
Table 1), by varying the number of peers in the PDMS, the number of mappings
and the number of acquaintances, the latter ranging from a minimum of 1 to a
21, which is compatible with the diversity of the randomized schemas.

In the above scenarios, the number of mappings from a peer to each of its
acquaintances ranges from 1 to 6, whereas each mapping has at most 3 atoms in
the body/head. Moreover, each peer’s schema has been randomly generated to
contain at most 6 tables with at most 3 attributes each. The queries used in the
experiments have been randomly generated to match the atoms in the body/head

Table 1. Heterogeneous scenarios used for experiments.

Scen. # of Peers # of Mappings #Min Acq. #Max Acq.

1 500 2767 3 12
2 1000 6202 2 14
3 1500 9941 2 15
4 2000 13814 2 16
5 2500 17893 2 17
6 3000 22037 1 18
7 3500 26394 1 18
8 4000 30696 1 20
9 4500 34941 1 21

10 5000 39261 1 21

Query Reformulation in PDMS Based on Social Relevance 83

of the mappings, thus may contain in turn from 1 to 3 atoms. Finally, the FOAF
files are initially empty in all experiments, and are incrementally filled, as soon
as query reformulation starts.

Qualitative measures and protocols for comparison. In each of the sce-
nario depicted in Table 1, one or more queries are formulated on initiating peers
and they fire a certain number of relevant rewritings, which represent all the
rewritings for which the AF-IMF measure is greater than 0. To evaluate the
quality of the top-k mappings, we run our query reformulation algorithms in a
centralized implementation of our protocol, and take the returned results for each
query as relevant rewritings. We have measured the recall, which is computed as
follows:

RecallAF−IMF = NumberofRetrievedRelevantRewritings
TotalNumberofRelevantRewritings

Moreover, we have measured the time (in ms) taken to retrieve such relevant
rewritings.

In order to gauge the effectiveness of our techniques and also to provide a
yardstick for comparison, we have implemented the following protocols, that
have been used throughout the experimental assessment:

Full The query gets translated against the relevant (using AF-IMF) rewriting
sequences, by exploiting LSV, gossiping and FOAF links.

Full- The query gets translated against the relevant (using AF-IMF) rewriting
sequences, by exploiting LSV, gossiping (i.e. the protocol Full without FOAF
links).

Baseline# The query gets translated against the relevant (using AF only)
rewriting sequences.

Baseline+ The original query gets translated against the mappings found in
the traversal, and all its rewritings (relevant and non relevant) get propagated.

Baseline The original query gets translated against the mappings found in
the traversal, and gets propagated as it is (i.e. rewritings are not propagated).

With Baseline and Baseline+, we have reimplemented the propagation strat-
egy of existing approaches [6,16], adopting, however, the bidirectional translation
semantics of our system.

Initial System Setup. We have executed an initial set of experiments, aiming
at determining the gossip thresholds V Gossip and LGossip. The former indi-
cated the size of the Mapping-content table in the LSV, while the latter allows
to control the size of a gossip message within each gossip cycle. Both parame-
ters directly impact the effectiveness of the gossip protocol, since they indicate
of what size an LSV and its buffer should be to harvest the highest number of
relevant content in the network.

From the experiments, that we omit for conciseness, we observe that a
V Gossip size of 500 entries is a good trade-off between number relevant rewrit-
ings retrieved and time, while varying the gossip cycles from 1 to 10. We also
observe that, if we keep LGossip of the same size as V Gossip (in other words,
we disseminate the entire LSV in gossip messages) or smaller, the results in

84 A. Bonifati et al.

terms of rewritings are not affected much. Therefore, we opted for a value of
LGossip = 100 throughout the analysis.

Moreover, as the ranking function to use in the TranslateQuery algorithm, we
have adopted the harmonic mean, which overcomes by 0.5% the other ranking
functions (averaged on 10 gossip cycles).

Finally, we have also empirically determined the maximum number of rel-
evant requests REQS. We observed in a batch of initial experiments that the
number of rewritings is affected by a value of REQS greater than 0 only dur-
ing the initial gossip cycles, whereas REQS = 0 becomes the most preferable
choice, when the number of gossip cycles increases. From these experiments, we
could infer that REQS should be used as a dynamic threshold, and should have
values slightly greater than 0 when gossiping starts and drop to 0 as long as
gossip cycles reach 4.

Also, we have set the threshold α of the number of query hops to unbounded,
to be able to observe the behavior of our algorithms in the most general case.
Our prototype has been implemented in Java and all experiments have been
performed on a 2.7 Ghz Intel Corei5 machine with 4GB RAM, running Windows
7 and JDK 6. For all experiments (unless otherwise specified), we have used a
PDMS of 2000 peers with a configuration as in scenario 4 of Table 1.

5.2 Qualitative Evaluation

Recall and Comparison with previous approaches. As described above,
we have measured the recall of our approach and compared it with the protocols
Baseline and Baseline+. From Fig. 7 (a), we can observe that our protocol Full
has the greatest recall along all the values of top-k mappings, if compared with
all other protocols. In particular, the contribution of FOAF links to the recall
is noticeable, since such links enable to connect network areas which would be
otherwise unexplored in the query translation process, as shown by the trend of
Full and Full-. Baseline, Baseline+ and Baseline# have a lower recall, as they
do not exploit the relevance measure AF-IMF, thus the mappings that they
exploit during query translation are in most cases not relevant. As long as more
mappings are traversed, their recall improves, until Baseline# reaches the same
recall of Full-, while it never reaches 100% recall. The latter is only achieved by
the Full protocol, by exploiting the FOAF links. Interestingly, this experiment
showed the effectiveness of AF-IMF, LSV and gossiping (from Baseline up to
Full-) and the utility of FOAF links (from Full- to Full). In particular, it can
be observed that adopting a local metric for evaluating mappings (like the AF
metric of the Baseline# protocol) works better than using no metric at all (Base-
line and Baseline+). However, it performs worse than using the AF-IMF global
metric (like in Full- and Full), which has the most desirable behavior amongst
all scenarios.

Similarly, in terms of the number of relevant rewritings, as shown in Fig. 7 (b),
the Full protocol is the one that can harvest the highest number at any value of
the top-k mappings. Finally, we have quantified the cost incurred by the Full and
Full- protocols with respect to the Baseline protocols. The results are reported

Query Reformulation in PDMS Based on Social Relevance 85

Fig. 7. (a) Recall, (b) # of Relevant Rewritings, (c) Total Time (ms) and (d) Network
Churn from 2000 peers down to 1100 peers; 10 queries.

in Fig. 7 (c), which reports the time averaged on 10 queries. We can observe that
the times undertake a certain increase, due mainly to the gossiping active and
passive threads, and to the computation of relevance for Full- and, additionally,
to the FOAF linking for Full. However, these times are still reasonable as the
latter protocols allow a significant increase of the recall (as shown in Fig. 7 (a)).

Precision of distributed IMF. Next, we conducted another experiment to
gauge the effectiveness of our distributed technique to compute AF-IMF. We
have defined the precision of distributed IMF as follows:

PrecisionIMF = ComputedIMFV alue
ExpectedIMFV alue

We recall that IMF only depends on the query and not on the mappings,
whereas AF depends on the mappings. There are no false positives in the query
reformulation process, therefore the precision of AF cannot be determined. For
such a reason, the precision we have measured is defined on IMF.

By measuring such precision while varying the gossip cycles, we indirectly
measure the effectiveness of the LSV. We can observe that in about 3 gossip
cycles, the number of inquiries converges to REQS = 0, meaning that the LSV
has fetched enough relevant tuples from the outside and is self-contained. The
backward precision has a similar trend, and is omitted for lack of space.

86 A. Bonifati et al.

Fig. 8. (a) Distributed IMF Relevance Forward Precision, (b) Impact of REQS on
FOAF Links, (c) Scalability wrt. # of Peers (Time) and (d) Scalability wrt. # of Peers
(Nr. of Rewritings); 10 queries.

Effectiveness of FOAF links. Figure 8 (b) shows another experiment we have
conducted to gauge the increase of the number of FOAF links as the number of
gossip cycles grows. Such increase is not affected much by the threshold REQS,
thus confirming that the converging value of REQS = 0 already conveys enough
FOAF links.

5.3 Scalability and Churn

We now assess the robustness of our techniques in large-scale PDMS, by varying
the number of peers (spanning all scenarios in Table 1). In Fig. 8 (c) and (d),
both the average time and # of relevant rewritings have a linear growth as the
number of peers increases. This confirms that our techniques are scalable.

In the next experiment, we have simulated the network churn, by starting
from an initial configuration of 2000 peers, and forcing 100 peers at a time
to leave the network. The aim of this experiment was twofold, to measure the
robustness of our PDMS to churn, and to show the utility of FOAF links in a
situation in which acquantainces of the peers (along with their mappings) quit
the network.

Query Reformulation in PDMS Based on Social Relevance 87

Figure 7 (d) shows that the Full- protocol (without FOAF) gets a few relevant
rewritings after a cutoff point, i.e. when the # of peers drops to 1500; indeed,
the useful acquaintances have left, and no FOAF link can be exploited to get
new rewritings. Conversely, the Full protocol scales gracefully as the # of peers
decreases and exhibit a linearly decreasing number of rewritings, thus showing
the utility of FOAF links.

6 Related Work

There has been a great deal of work on data management in P2P databases on
issues ranging from schema mediation [16] to mapping data values [20], query
processing [22] and query translation [6,16].

Kementsietsidis et al. [20] describes a set of algorithms for exchanging data
among peers, by only leveraging constraints on such exchange under the form
of mapping tables, that comprise data values of the local peer and of external
peers. Constraints on the content of peers under the form of logical rules are
also studied in theoretical work on data integration [23].

The only previous work that considered query reformulation in this context
is [6,16]. In Piazza [16], each peer is equipped with inclusion and equality map-
pings and a set of local storage descriptions. Query answering is done by eval-
uating the containment of any arbitrary external conjunctive query against the
mappings and the storage descriptions. However, no approximation of the local
peer mappings with suitable data structures is adopted. Moreover, [16] relies
on a centralized index rather than on a distributed one. A schema mapping
and query translation framework for XML databases is presented in both [6,29],
which disregards the problem of ranking mappings based on relevance, as we do
in this paper.

We focus on individual rewritings in this work and adopt the query rewriting
semantics of [6,14]. Query rewriting with respect to a set of views is addressed in
Minicon [27], where views are joined to return the maximally contained rewrit-
ings for LAV data integration.

Data integration in the presence of a global mediated ontology, relational
data sources and GAV mappings is also addressed in [10].

Efficient XML query processing in P2P [22], leveraged multi-level Bloom-
filters. However, we are not focusing on query optimization for XML, thus they
are not directly comparable to our approach. Koloniari and Pitoura [22] study
the problem of content-based routing by multi-level Bloom-filters, that works
on XML data. However, they address XPath queries, and do not consider query
reformulation.

Finally, Kantere et al. [19] consider the problem of clustering peers based on
their common interests in unstructured networks. Contrarily to our approach,
they utilize metrics to compare a query and its rewritings, that are applied after
the rewritings have been computed and not beforehand, as in our approach.
Moreover, our global AF-IMF metric is the first to take into account the entire
collection of mappings in the network. Furthermore, we leverage individual map-
pings components, i.e. the atoms, to identify the most relevant mappings in the

88 A. Bonifati et al.

network, and assume that mappings are expressed as logical formulas (tgds),
rather than being queries. Our definition of relevance relies on this assumption.
The idea of quantifying the information transfer of individual schema mappings
with local metrics is the subject of recent work [2]. However, no global metrics in
a social and distributed context are considered. Although the previous metrics
can be considered local, it would be interesting to see how they can combined
with AF-IMF and deployed in a large-scale scenario, such as PDMS.

Gossiping [21] has been used for P2P network maintenance, and information
dissemination.

A recent work [28] studies a collaborative tagging system, in which gossiping
helps to personalize query processing, while computing the proximity between
users tagging profiles. Being a collaborative tagging system, it deals with a dif-
ferent problem other than semantic heterogeneity. Gossiping as a mean to enter
diverse semantic domains is used in [1], where basically mappings between peers
may not be correct or simply not be aligned with a given domain. Therefore,
the paper shows how local mappings can be used to establish a global semantic
agreement among the peers.

7 Conclusions and Future Work

To conclude, in this paper we have studied the problem of reformulating conjunc-
tive queries (CQs) in peer-to-peer data management systems by adopting the
notion of social relevance. We have presented a new notion of relevance of a query
with respect to a mapping, thus introducing a novel metric to rank mappings
which have to be considered in the query translation process. By means of an
extensive experimental analysis, we have proven the robustness of our approach
by also exploiting the FOAF social network.

Our approach assumes the existence of mappings among peers but we do not
require symmetric mappings (i.e. the existence of inverted mappings). Moreover,
such mappings are currently settled among peers’ relational schemas but we plan
to extend our approach to both nested relational schemas and OWL ontologies
in order to catch more semantics in the query reformulation process.

We also plan to cope with some limitations of our backward relevance assump-
tion. Indeed, we currently consider a query Q to be backward relevant with
respect to a mapping m if, and only if, each atom appearing in the query Q can
be unified with an atom only containing universally quantified variables in the
head of the mapping m. In the future work we will address this limitation by
considering the adoption of unknown markers so that we will able to also capture
those rewritings that, however, are relevant in a sense of information gain.

Finally, we will focus on studying the impact of query personalization, the
combination with other quality metrics (both globals and locals) and the exten-
sion to unions of conjunctive queries (UCQs) also keeping into account peers’
schemas with relational constraints.

Query Reformulation in PDMS Based on Social Relevance 89

References

1. Aberer, K., Cudré-Mauroux, P., Hauswirth, M.: The chatty web: emergent seman-
tics through gossiping. In: WWW (2003)

2. Arenas, M., Pérez J, Reutter, J.L., Riveros, C.: Foundations of schema mapping
management. In: PODS, pp. 227–238. ACM, New York (2010)

3. Arenas, M., PTrez, J., Riveros, C.: The Recovery of a Schema Mapping: Bringing
Exchanged Data Back. In: ACM PODS, pp. 13–22 (2008)

4. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic
Web Inf. Syst. 5(3), 1–22 (2009)

5. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

6. Bonifati, A., Chang, E.Q., Ho, T., Lakshmanan, L.V.S., Pottinger, R., Chung, Y.:
Schema mapping and query translation in heterogeneous P2P XML databases.
VLDB J. 19(2), 231–256 (2010)

7. Bonifati, A., Chrysanthis, P.K., Ouksel, A.M., Sattler, K.: Distributed databases
and peer-to-peer databases: past and present. SIGMOD Record 37(1), 5–11 (2008)

8. Bonifati, A., Liu, R., Wang, H(.W).: Distributed and secure access control in P2P
databases. In: Foresti, S., Jajodia, S. (eds.) Data and Applications Security and
Privacy XXIV. LNCS, vol. 6166, pp. 113–129. Springer, Heidelberg (2010)

9. Bonifati, A., Mecca, G., Pappalardo, A., Raunich, S., Summa, G.: Schema mapping
verification: the spicy way. In: EDBT, pp. 85–96 (2008)

10. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R.,
Ruzzi, M.: Data integration through DL− LiteA ontologies. In: Schewe, K.-D.,
Thalheim, B. (eds.) SDKB 2008. LNCS, vol. 4925, pp. 26–47. Springer, Heidelberg
(2008)

11. Fagin, R.: Inverting Schema Mappings. ACM TODS 32(4), 25:1–25:53 (2007)
12. Fagin, R., Haas, L.M., Hernández, M., Miller, R., Popa, L., Velegrakis, Y.: Clio:

schema mapping creation and data exchange. In: Borgida, A.T., Chaudhri, V.K.,
Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications.
LNCS, vol. 5600, pp. 198–236. Springer, Heidelberg (2009)

13. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. TCS 336(1), 89–124 (2005)

14. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)

15. Fan, L., Cao, P., Almeida, J.M., Broder, A.Z.: Summary cache: a scalable wide-area
web cache sharing protocol. In: SIGCOMM, pp. 254–265 (1998)

16. Halevy, A.Y., Ives, Z.G., Suciu, D., Tatarinov, I.: Schema mediation for large-scale
semantic data sharing. VLDB J. 14(1), 68–83 (2005)

17. Hose, K., Roth, A., Zeitz, A., Sattler, K., Naumann, F.: A research agenda for
query processing in large-scale peer data management systems. Inf. Syst. 33(7–8),
597–610 (2008)

18. Ives, Z.G., Halevy, A.Y., Mork, P., Tatarinov, I.: Piazza: mediation and integration
infrastructure for Semantic Web data. J. Web Sem. 1(2), 155–175 (2004)

19. Kantere, V., Tsoumakos, D., Sellis, T.K., Roussopoulos, N.: GrouPeer: Dynamic
clustering of P2P databases. Inf. Syst. 34(1), 62–86 (2009)

20. Kementsietsidis, A., Arenas, M., Miller, R.J.: Mapping data in peer-to-peer sys-
tems: semantics and algorithmic issues. In: SIGMOD, pp. 325–336 (2003)

21. Kermarrec, A., van Steen, M.: Gossiping in distributed systems. Operating Systems
Review 41(5), 2–7 (2007)

90 A. Bonifati et al.

22. Koloniari, G., Pitoura, E.: Content-based routing of path queries in peer-to-
peer systems. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides,
V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 29–47.
Springer, Heidelberg (2004)

23. Lenzerini, M.: Data integration: a theoretical perspective. In: ACM PODS, pp.
233–246 (2002)

24. Levy, A.Y., Mendelzon, A.O., Sagiv, Y., Srivastava, D.: Answering queries using
views. In: PODS (1995)

25. The Peersim simulator. http://peersim.sf.net
26. Popa, L., Velegrakis, Y., Miller, R.J., Hernandez, M.A., Fagin, R.: Translating web

data. In: VLDB (2002)
27. Pottinger, R., Halevy, A.Y.: Minicon: a scalable algorithm for answering queries

using views. VLDB J. 10(2–3), 182–198 (2001)
28. Bai X., Bertier, M., Guerraoui, R., Kermarrec, A.M., Leroy, V.: Gossiping person-

alized queries. In: EDBT, pp. 87–98 (2010)
29. Yu, C., Popa, L.: Constraint-based XML query rewriting for data integration. In:

SIGMOD (2004)

http://peersim.sf.net

Distributed Large-Scale Information Filtering

Christos Tryfonopoulos1(B), Stratos Idreos2, Manolis Koubarakis3,
and Paraskevi Raftopoulou1

1 University of Peloponnese, Tripoli, Greece
{trifon,praftop}@uop.gr

2 Harvard University, Cambridge, MA, USA
stratos@seas.harvard.edu

3 National and Kapodistrian University of Athens, Athens, Greece
koubarak@di.uoa.gr

Abstract. We study the problem of distributed resource sharing in
peer-to-peer networks and focus on the problem of information filter-
ing. In our setting, subscriptions and publications are specified using an
expressive attribute-value representation that supports both the Boolean
and Vector Space models. We use an extension of the distributed hash
table Chord to organise the nodes and store user subscriptions, and utilise
efficient publication protocols that keep the network traffic and latency
low at filtering time. To verify our approach, we evaluate the proposed
protocols experimentally using thousands of nodes, millions of user sub-
scriptions, and two different real-life corpora. We also study three impor-
tant facets of the load-balancing problem in such a scenario and present
a novel algorithm that manages to distribute the load evenly among the
nodes. Our results show that the designed protocols are scalable and
efficient: they achieve expressive information filtering functionality with
low message traffic and latency.

Keywords: Publish/subscribe · Distributed hash tables · Information
management

1 Introduction

Peer-to-peer (P2P) computing has been around for more than a decade, con-
tributing a vast amount of research results and deployed prototypes. In this
context applications that scale to millions of users and resources have been
developed in domains like file-sharing (e.g., bitTorrent and Kazaa), voice and
video distribution (e.g., Skype and P2PTV), distributed search engines (e.g.,
FAROO, YaCy, and the scientific search engine Sciencenet), and even project
management (e.g., Collanos workplace).

Apart from the traditional applications discussed above, the techniques, tools
and architectures introduced by the P2P paradigm have found new, interesting

Part of this work was performed while the authors were with the Technical University
of Crete, Chania, Greece. C. Tryfonopoulos was partially supported by programme
Heraclitus of the Greek Ministry of Education.

A. Hameurlain et al. (Eds.): TLDKS XIII, LNCS 8420, pp. 91–122, 2014.
DOI: 10.1007/978-3-642-54426-2 4, c© Springer-Verlag Berlin Heidelberg 2014

92 C. Tryfonopoulos et al.

and useful applications also in other domains. Lately, P2P concepts are also being
introduced in the –clearly different– cloud paradigm (e.g., in P2P-assisted cloud
provisioning [1–3], or in hybrid architectures [4] with a backbone of super-peers
that provides access to cloud users and serves queries by executing distributed
protocols), in an effort to exploit the benefits of both technologies. Additionally,
P2P architectures and protocols have also been proposed in the context of dis-
tributed online social networking [5–7], aiming at solving content ownership and
scalability issues, while minimising deployment and maintenance costs.

In this article, we present P2P protocols to support content and/or service
lookup by utilising structured overlays, aiming at content-based filtering func-
tionality in distributed environments.

Targeted Functionality. In the P2P architecture that we envision, resources
are annotated using attribute-value pairs, where value is of type text and queried
using constructs from Information Retrieval (IR) models. There are two kinds of
basic functionality that we expect this architecture to offer: information retrieval
and information filtering (IF). In an IR scenario a user poses an one-time query
and the system returns a list of pointers to matching resources. In an IF scenario,
also known as publish/subscribe (pub/sub), a user posts a subscription (or pro-
file or continuous query) to the system to receive notifications whenever certain
events of interest take place. In this article, we concentrate on the latter kind
of functionality (i.e., IF) and show how to provide it by extending the distrib-
uted hash table Chord [8]. We assume that publications and subscriptions will
be expressed using a well-understood attribute-value model, called AWPS [9].
AWPS is based on named attributes with value free text interpreted under the
Boolean and vector space (VSM), or latent semantic indexing (LSI) models.

Our architecture and protocols target dynamic information dissemination
applications, such as news alerts, digital libraries, weather monitoring, and stock
quotes, consisting of large, open, and dynamic user communities. Especially for
cases like news alerts and digital libraries –where the data of interest is mostly
textual and users express their needs using IR languages (for example, keywords
or pieces of text)– our architecture is well-suited as an implementation technol-
ogy. It can handle huge amounts of information in a highly distributed, self-
organising way, while offering benefits in terms of openness, scalability, and effi-
ciency. Following our approach users, or services that act on users’ behalf, would
specify continuous queries for information, thus subscribing to newly appearing
documents that satisfy the query conditions. The system would then notify the
subscribed users automatically whenever a new matching document is published.
Publishers in such a setting could be news feeds, digital libraries, or users, who
post new items to blogs or other Internet communities.

Contributions. The contributions of this article are the following. We present
a set of novel protocols, collectively called DHTrie, that extend the Chord pro-
tocols with pub/sub functionality assuming that publications and subscriptions
are expressed in the model AWPS. In a distributed pub/sub environment, pub-
lications typically involve contacting a large set of nodes, where matching with
stored subscriptions takes place. To do this effectively, we have designed and
implemented four methods that target low network traffic and low latency. In
combination with these methods, we introduce a simple routing table that uses

Distributed Large-Scale Information Filtering 93

only local information and manages to significantly reduce network traffic. To
justify our solution, we evaluate the DHTrie protocols experimentally in a dis-
tributed digital library scenario with hundreds of thousands of nodes and millions
of user profiles. Our experiments show that the DHTrie protocols are scalable:
the number of messages needed to publish a document and notify interested sub-
scribers remains almost constant as the network grows, while latency is kept low.
As probability distributions associated with words in publications and queries
are skewed, balancing the node load becomes an important issue. We study three
cases of load balancing for DHTrie, namely query, routing and filtering load bal-
ancing, and present a new algorithm that tackles the load balancing issues.

Preliminary results of this research have appeared in [10]. The current article
revises [10] and presents the following extensions and additional contributions.
We consider the issue of latency in addition to that of network traffic and iden-
tify the relevant tradeoff in our experimental evaluation. To tackle this tradeoff,
we introduce two novel methods (called hybrid and continuous splitting) for
resource publication. The new approaches, although very different in philoso-
phy and design, manage to keep publication latency low while performing well
in terms of network traffic. The hybrid method is a family of novel tunable
alternatives that allow a per-node parameter setting aiming at adaptability. The
continuous splitting method is automatic and parameterless, which makes it easy
to deploy; it has proven to be efficient to many different settings and goals.

In addition to the above novel contributions, we also include more detailed
descriptions of the DHTrie protocols and their respective data structures (see
Sect. 3), and extend the experimental work (Sect. 4) with measurements of the
new methods and comparison with the ones presented in [10], comparison under
two different corpora, and experiments for publication latency and network
dynamics. Finally, we redesign and apply the algorithm presented in [10] to
query load balancing, and study its effects on message traffic (Sect. 4.9).

Organisation. The organisation of the article is as follows. Section 2 positions
our work with respect to related research, while Sect. 3 presents the DHTrie
protocols. The experimental evaluation of DHTrie and a study of load balancing
issues are presented in Sect. 4, followed by Sect. 5 that concludes the article.

2 Related Work and Background

In this section, we survey related work in the area of pub/sub and IF in P2P
networks. Naturally, this paper is also relevant with the broad area of distributed
query processing, with studies on different query models in distributed settings
(i.e., one-time, relational, and RDF query processing), and with the area of IR
in P2P networks as it shares many common goals and techniques with IF.

2.1 P2P Pub/Sub and Information Filtering

Work on pub/sub in distributed systems has contributed some fundamental ideas
that have also been utilised in the P2P domain. Researchers in this area have
developed various data models based on channels, topics, and attribute-value
pairs to represent publications and subscriptions. Pub/sub systems based on

94 C. Tryfonopoulos et al.

attribute-value models are called content-based, as attribute-value data models
are flexible enough to express the content of publications. The query languages of
content-based pub/sub systems are based on Boolean combinations of arithmetic
and string operations. Work in this area has concentrated not only on distributed
pub/sub architectures, but also on filtering protocols.

SIENA [11] is probably the most elegant example of a system to be devel-
oped in this area. A very important contribution of SIENA is the adoption of a
P2P model of interaction among servers and the exploitation of traditional net-
work algorithms based on shortest paths and minimum-weight spanning trees
for routing messages. The core ideas of SIENA have been used in the early P2P
pub/sub system P2P-DIET [12].

With the advent of DHTs such as CAN, Chord, and Pastry a new wave
of pub/sub systems has appeared. Scribe [13] is a topic-based pub/sub system
based on Pastry. Hermes [14] is similar to Scribe since it uses the same underlying
DHT but it allows more expressive subscriptions by supporting the notion of an
event type with attributes.Related ideas appear later in [15,16] and in PeerCQ
[17], a notable pub/sub system implemented on top of a DHT infrastructure
designed to cope with peer heterogeneity by extending consistent hashing [18].

The study in [19] is mainly concerned with scalability of current designs and
proposes two methods that allow to restrict the overall costs.Both these methods
can improve general purpose P2P protocols and can be applied on top of our work
as well. Triantafillou and Aekaterinidis [20] study the problem of content-based
pub/sub functionality on top of Chord, allowing for range-based subscriptions,
i.e., one can define a range for a given attribute as opposed to a single value.Such
ideas can readily be adopted by our protocols as well. Meghdoot [21] is another
pub/sub proposal in the area of DHTs that uses ideas such as hashing of sub-
scriptions and events to facilitate matching.The difference of Meghdoot from our
work is that it is built on top of CAN, whose characteristics are heavily exploited
in the system design (e.g., it uses zone splitting/replication).

Research on processing subscriptions using string attributes in DHT-based
pub/sub systems is also related to our work. PastryStrings [22] utilises prefix-
based routing to facilitate processing of publications that are strings, and sub-
scriptions that are string predicates. Additionally, the DHTStrings system [23]
utilises a DHT-agnostic architecture to support prefix and suffix queries in string
attributes. More recent works on P2P pub/sub systems have focused on various
issues such as new routing protocols [24–26], combination of IR and IF [27], web
services [28], load balancing [29], security [30] and preference awareness [31].

Similarly to the pub/sub strand of research, approaches that use a DHT as
the routing infrastructure to build filtering functionality for IR-based models
and languages have also been introduced. Closer to our work are the systems
pFilter [32] and Ferry [33].The main qualitative difference of our work is that we
support a different and more expressive query model, requiring more complex
protocols. In addition, from a quantitative point of view our work provides a
more in depth analysis by stressing the system to millions of queries and tens
of thousands of nodes as opposed to only thousands of queries and thousands
of nodes in [32,33]. Below we discuss these works in more detail, and compare
them against our approach.

Distributed Large-Scale Information Filtering 95

pFilter [32] is the closest system to the ideas presented in this work. It uses a
hierarchical extension of CAN [34] to store user queries and relies on multi-cast
trees to notify subscribers. Compared to pFilter, our work uses a more expressive
data model and query language, while there is no need to maintain multi-cast
trees to notify subscribers. However, the multi-cast trees of pFilter take into
account physical network distance something that we do not consider at all in
this work, but rather we consider publication latency and load balancing issues.

Ferry [33] is another proposal to support IF functionality on top of DHTs.
The main difference of our work is the support of a more expressive and com-
plex data and query model. The main novelty of Ferry is that it exploits the
DHT links, e.g., the contents of the Chord finger table, to disseminate informa-
tion in the network. In our work, we exploit similar ideas by extensively taking
advantage of DHT links, trying to group messages based on the Chord finger
table, and piggy-backing information on maintenance messages. In addition, we
provide further routing flexibility with the addition of a routing table, called
FCache (see Sect. 3.5), that consists of a low cost and best effort cache of IP
addresses that allows us to bypass the DHT protocol whenever this is possible.
Essentially, this comes at zero network cost as it is a process piggy-backed on
the normal DHT messages.

2.2 Other Related Areas

Distributed query processing relies on distributed protocols that dictate where
data meets queries. Depending on the network design and properties, and on the
query model utilised, different query processing algorithms are needed. The first
systems to cope with distributed query processing were mainly based on strictly
structured designs and focused on relational query processing [35].

Mariposa [36], one of the most well-known distributed database systems and
probably the most ambitious attempt to scale to thousands of nodes, proposes
node interaction protocols based on economic models.Another well known dis-
tributed database system is LH* [37], where the authors introduce the notion of
the scalable distributed data structure (SDDS).

The early P2P designs in the area tried to remove all the restrictions of
the classic distributed systems.However, the more demanding nature of applica-
tions enforced structure in P2P networks, appearing in the form of DHTs and
hypercubes [38]. Essentially, these architectures provide functionality so as data
items or queries can be mapped to certain node(s) given a set of properties and
functions.In this way, structured networks provide a non-centralised but still
controllable design pattern.

These network designs can be seen as a hybrid between the early distributed
systems and the early P2P networks, trying to balance the various tradeoffs and
thus, offering extensive flexibility and adaptability to build any kind of applica-
tion over it. Thus, there has been a tremendous amount of research over struc-
tured P2P networks, e.g., there is work on relational one-time and continuous
query processing [17,39–43] and RDF query processing [44–47].

Information retrieval is the dual problem of information filtering, often
referred to the other side of the same coin [48]. Although many of the underly-
ing issues are similar as both IR and IF share the common goal of information

96 C. Tryfonopoulos et al.

delivery to information seekers, the design issues (e.g., timeliness of data, identi-
fication and representation of user needs), and also the techniques and protocols
to satisfy these information needs differ significantly.

In [40], one of the early works that considered how to process IR queries on
top of DHTs, the authors discuss issues involved in building IR functionality over
text databases on top of structured overlays.In a similar spirit, [49] discusses the
feasibility of Web search in a P2P environment and estimates the difficulty of
the problem.A straightforward approach to support Boolean searching in P2P
networks is presented in [50], where each node in the network is responsible for a
specific keyword through the DHT hash function and the focus is put on multiple
keyword queries.

Many works have studied how to support document querying based on VSM
on top of structured overlays. Meteorograph [51], one of the early works that deal
with similarity search over structured P2P networks, describes how to support
similarity and ranked search in a linear hash addressing space overlay. In another
approach, LibraRing [52] proposes a two-tier architecture for a digital library
environment aiming to unify IR and IF in a single framework.While most of
related papers utilise a DHT to route the queries to appropriate peers, in Minerva
[53] a global distributed directory for IR-style statistics and quality of service
information is built at indexing time, to be then exploited at query time.

Finally, cloud/grid computing and social networking have emerged over the
last couple of years as new paradigms and application areas for distributed data
management. Our research is also related to works in this domain, as researchers
exploit and extend ideas from the distributed/P2P domain to provide new data
management functionality as in [1,5,6,54,55].

3 The DHTrie Protocols

We implement pub/sub functionality by a set of protocols called DHTrie (from
the words DHT and trie). The DHTrie protocols use two levels of indexing to
store submitted queries.

The first level corresponds to the partitioning of the global query index to dif-
ferent nodes using DHTs as the underlying infrastructure. Each node is respon-
sible for a fraction of the submitted queries through a mapping of attribute
values to node identifiers. The DHT infrastructure is used to define the mapping
scheme and also manages the routing of messages between different nodes. We
use an extension of the Chord DHT [56] to implement our network. The set of
protocols that regulate node interactions are described in the next sections.

The second level of our indexing mechanism is managed locally by each node
and is used for indexing the user queries the node is responsible for. Each node
uses a trie-like data structure to perform query clustering and improve filtering
performance. The details of local indexing are presented in [57].

3.1 The Subscription Protocol

Let us assume that a node P wants to subscribe with a query q composed as a
conjunction of atomic queries:

Distributed Large-Scale Information Filtering 97

A1 = s1 ∈ ... ∈ Am = sm ∈
Am+1 ⊆ wpm+1 ∈ ... ∈ An ⊆ wpn ∈ (1)
An+1 ≺an+1 sn+1 ∈ ... ∈ Ak ≺ak

sk

where Ai is an attribute, si is a text value, wpi is a conjunction of words and
proximity formulas1, and ai is a similarity threshold, i.e., a real number in the
interval [0, 1]. For a query q of the above form, the atomic queries with equality
(=) and containment (⊆) operators will be called its Boolean part, while the
atomic queries with similarity (≺) operators will be called its vector space part.

To perform the subscription, P randomly selects a single word w contained in
any of the text values s1, . . . , sm or word patterns wpm+1, . . . , wpn and computes
H(w), where H() is a consistent hash function used to map identifiers in the iden-
tifier circle of Chord [56], to obtain the identifier of the node that will be respon-
sible for query q. Then P creates message FwdQuery(id(P), ip(P), qid(q), q),
where id(P) is the identifier of node P computed by hashing a piece of informa-
tion that identifies P (e.g., its IP address and port, or a unique identifier given
to it the first time it joins the network), ip(P) is the IP address of P , and qid(q)
is a unique query identifier assigned to q by P . This message is then forwarded in
O(logN) steps to the node with identifier H(w). Since only one node has to be
contacted, this forwarding is done using the Chord lookup() function to locate
successor(H(w)), i.e., the first node which is equal or follows H(w) clockwise
in the identifier space and is called the successor node of identifier H(w). Once
successor(H(w)) is located, it is directly contacted by P . In this way, queries
of this type are always indexed under their Boolean part to save message traf-
fic, since they need to be stored at a single node. Notice also that both id(P)
and ip(P) need to be sent to the node that will store the query to facilitate
notification delivery.

When P wants to submit a query q of the form An+1 ≺a1 s1 ∈ ... ∈ An ≺an
sn

(i.e., with a VSM part only), it sends q to all nodes in the list L = {H(wj) : wj ∀
D1 ∩ · · · ∩ Dn}, where D1, . . . , Dn are the sets of distinct words in text values
s1, . . . , sn. In contrast to queries with a Boolean part described above, queries
with only a VSM part need to be stored in all the nodes involved (computed as
above) in order to ensure correctness of the filtering process. Sending the same
message to more than one recipients is discussed in detail in the next section,
where the same problem is posed again by the publication forwarding process.

When a node P ′ receives a message FwdQuery containing q, it stores q using
the second level of our indexing mechanism. P ′ uses a hash table to index all the
atomic queries of q using as key the attributes A1, . . . , Ak. To index each atomic
query, three different data structures are also used: (i) a hash table for text values
s1, . . . , sm, (ii) a trie-like structure that exploits common words in word patterns
wpm+1, . . . , wpn, and (iii) an inverted index for the most “significant” words in
text values sn+1, . . . , sk. P ′ utilises these data structures at filtering time to find
quickly all queries q that match an incoming publication p. This is done using a
1 A proximity formula is an expression of the form w1 ≺ξ1 · · · ≺ξk wk, where wi is a

word and ξi is a distance interval of the form {[l, u]: l, u ∈ N, l ≥ 0 and l ≤ u}∪{[l, ∞):
l ∈ N and l ≥ 0}. The proximity operator ≺ξ is used to capture the concepts of order
and distance between words in a text document using intervals that impose lower
and upper bounds on distances between words.

98 C. Tryfonopoulos et al.

method that combines algorithms BestFitTrie [57] and SQI [58]. The details of
local storage and indexing using BestFitTrie are discussed thoroughly in [57].

3.2 The Publication Protocol

Publication of a resource involves sending the same message to a group of nodes
that is not known a priori. To tackle this problem, we have designed and imple-
mented four methods: (i) the iterative method, which is the standard way to con-
tact a number of different nodes over Chord, (ii) the recursive method, which
creates a single message with all the recipients contained in a sorted list and
works its way around the identifier space until all recipients have been contacted,
(iii) the hybrid method which uses machinery from the two previous methods
to provide a tunable alternative between the two extremes, and (iv) the contin-
uous splitting method, which exploits the finger tables of all message recipients
to split the message at every forwarding node, aiming at the optimisation of
network traffic and latency.

The publication protocol essentially involves sending the same message to
the group of nodes that are responsible for the distinct words contained in
the text values of the different attributes of p. In this way, when a node P
wants to publish a resource, it first constructs a publication of the form p =
{(A1, s1), (A2, s2), . . . , (An, sn)} (i.e., a set of attribute-value pairs (Ai, si), where
Ai is a named attribute, si is a text value, and all attributes are distinct) that
is the resource description. Let D1, . . . , Dn be the sets of distinct words in
s1, . . . , sn. Then, publication p has to be propagated to all nodes with iden-
tifiers in the list L = {H(wj) : wj ∀ D1 ∩ · · · ∩ Dn}. The subscription protocol
guarantees that L is a superset of the set of identifiers responsible for queries that
match p. To propagate publication p in the DHT, P removes duplicates from
L and sorts it in ascending order clockwise starting from id(P). In this way,
we obtain at most as many identifiers as the distinct words in D1 ∩ · · · ∩ Dn,
since a node may be responsible for more than one of the words contained in the
document.

3.3 Methods for Subscription and Publication

In this section, we describe four different methods to implement the subscription
and publication protocols and present their advantages and disadvantages.

The Iterative Method. Each node P , that uses the iterative method (It) to
contact the recipients in list L, constructs a FwdResource(id(P), pid(p), p,
id(P ′)) message for each identifier id(P ′) contained in L, where pid(p) is a
unique metadata identifier assigned to publication p by node P . Then, it utilises
the lookup() procedure provided by Chord to locate node P ′ and sends it the
FwdResource message. This is repeated for all the identifiers in L in an iter-
ative way. Using this method, P needs O(h log N) messages, where h is the
number of different nodes to be contacted. Figure 1 illustrates graphically the
publication of a resource to three recipients under Chord using the iterative
method and shows a message graph for a general case of resource publication
under It.

Distributed Large-Scale Information Filtering 99

Fig. 1. Message routing and message graph for the It (left) and Re (right) methods

The Recursive Method. Using the iterative method has an obvious disad-
vantage; the same node may participate in many lookup() requests for nodes
responsible for identifiers in list L causing increased network traffic. This is the
reason for designing the recursive method (Re). The idea behind method Re is
to pack messages together to reduce network traffic as follows.

Having obtained L, P creates a message FwdResource (id(P), pid(p), p, L),
where pid(p) is a unique metadata identifier assigned to p by P , and sends it to
node with identifier equal to head(L) (the first element of L). This forwarding is
done by the following recursive way: message FwdResource is sent to a node
P ′, where id(P ′) is the greatest identifier contained in the finger table of P , for
which id(P ′) ∧ head(L) holds.

Upon reception of a message FwdResource by a node P ′, head(L) is
checked. If id(P ′) < head(L) then P ′ just forwards the message as described
in the previous paragraph. If id(P ′) ∃ head(L) then P ′ makes a copy of the
message, since this means that P ′ is one of the intended recipients contained
in list L (in other words P ′ is responsible for key head(L)). Subsequently, the
publication part of this message is matched with the node’s local query database
using the algorithms described in detail in [57] and the appropriate subscribers
are notified. Additionally, P ′ modifies list L to L′ by deleting all elements of
L that are smaller than id(P ′) starting from head(L), since all these elements
have P ′ as their intended recipient. For the new list L′, id(P ′) < head(L′) holds.
Finally, P ′ forwards the message to node with identifier head(L′). Figure 1 illus-
trates graphically the publication of a resource to three recipients under Chord
using the recursive method and shows a message graph for a general case of
resource publication under Re.

The Hybrid Methods. The idea behind the recursive method is to pack
messages together to reduce network traffic. This however, comes at the cost
of high latency; if the recipients list is long then the last recipient has to wait

100 C. Tryfonopoulos et al.

for a long time until it is notified about the publication, which in turn causes
delays in the notification of the interested subscribers. The iterative method on
the other hand, tries to optimise latency since no recipients lists are used and
the delay to deliver a message is logarithmic in the size of the network. This of
course comes at the price of high network traffic.

To tackle this tradeoff, we designed and implemented a family of hybrid
approaches that combine the benefits of the two previous methods. The idea
behind the hybrid methods is to design tunable alternatives that will provide fast
delivery of messages at low network cost. To achieve this, the message originator
splits the initial recipients list to smaller ones and each recipients list is sent
in an iterative way, while the message is forwarded in the network recursively.
The family of hybrid methods is designed to provide variations with different
objectives, while the difference between the three variants presented below lies
in the initial splitting of the recipients list. Finally, notice that the parameters
in the hybrid methods are not global, but may be set in a per-node fashion, thus
adapting to node specifics regarding publication size.

The fixHy method. The fixed hybrid (fixHy) method requires fixing a
value for the desired recipients list size σ. Parameter setting in the fixHy
method, although adhoc, allows the manual tuning of the system according
to document and vocabulary size, but requires expertise in setting this value.
Notice that, if the average document length published in the system is changed,
the method may create too short or even useless recipients lists. The fixHy
method works as follows.

Having obtained L, node P uses it to create h = →|L|/σ⊗ recipients lists,
of size σ. In our experiments, we used σ = 10 and σ = 50 as baseline values
depending on the tested corpus, and showed the effect of the desired recipients
list size in the message traffic and latency observed in the network. Notice that
the fixHy method will degenerate to the recursive method for σ = |L| and to
the iterative method for σ = 1. Thus, using a high value for σ will make the
protocol behave similarly to the recursive method, while using a low value for σ
will make the protocol behave similarly to the iterative method.

The perHy method. The percentage hybrid (perHy) method requires the
tuning of parameter π, which controls the percentage of the initial recipients
list that will be used to create each new list. This method is less flexible than
fixHy in setting the size of the recipients list, but requires less expertise and
is adaptable to changes in the document size published in the network. Setting
the recipient list size as a percentage of the initial recipients list allows coping
with both large and small documents, whereas in the fixHy method this is not
possible. The perHy method works as follows.

Having obtained L, node P uses it to create h = →1/π⊗ recipients lists of
size |L| ≤ π, where 0 < π ∧ 1. In our experiments, we used π=4% and also
showed the effect of π in the message traffic and latency observed in the network.
Notice that the perHy method will degenerate to the recursive method for π = 1
and to the iterative method for very small values of π.

The medHy method. The median hybrid (medHy) method is an auto-
matic method that requires no parameter tuning, since the recipients lists are
split according to the median of the differences between consecutive intended

Distributed Large-Scale Information Filtering 101

recipients. This method identifies the large “gaps” in the intended recipients list
and splits it accordingly. Since no parameter setting is required, this is a method
best suited for general purpose applications with published documents of vary-
ing size; no expertise is needed, since the recipients list is split according to its
special characteristics. The medHy method works as follows.

Having obtained L = {l1, l2, . . . , l|L|}, node P traverses it starting at head(L)
= l1 and calculates all differences δi = li − li+1, 1 ∧ i ∧ |L| − 1, between
consecutive intended recipients in L. Subsequently, P calculates the median δmed

of these differences and uses it to split L in the following way. P traverses L once
more starting at head(L), and when δk > δmed, 1 ∧ k ∧ |L| − 1, it creates a
new list L1 = {l1, . . . , lk}. Subsequently, L becomes L \ L1, while element lk+1

is now head(L), and the process continues until L is empty. Notice that there
is no way to tune this method to behave similarly to either the iterative or
the recursive method, since the splitting of the initial intended recipients list is
done automatically according to the keys in L. The medHy method provides an
automatic way to utilise the hybrid protocol, without the need for performance
tuning, or any knowledge of the underlying document properties.

For each one of the lists L1, . . . , Lh created by any of the variations (fixHy,
perHy, medHy) of the hybrid method presented above, a message of the form
FwdResource(id(P),pid(p),p, Li), with 1 ∧ i ∧ h, is constructed and is iter-
atively sent to head(Li). Since each message contains a list of recipients, the
recursive method is utilised to forward the message to the rest of the nodes in
list Li. When a node P ′ receives a FwdResource message, it removes all ele-
ments in L that have P ′ as their intended recipient and forwards the message in
a recursive way. Notice that only the message originator may split the message
into smaller lists, while the rest of the nodes receiving it are responsible just for
forwarding it. The usage of many recipients lists with smaller size together with
the iterative way of sending these lists justifies the hybrid nature of the protocol.
As we will show in Sect. 4, this method manages to achieve lower latencies than
the recursive method while keeping message traffic relatively low. Figure 2 illus-
trates graphically the publication of a resource to three recipients under Chord
using any of the hybrid methods and shows a message graph for a general case
of resource publication under fixHy, perHy, or medHy.

The Continuous Splitting Method. All the variations of the hybrid method
split the initial recipients list only once at the message originator and then, all
the subsequent recipients of the messages are forced to perform the routing task
based on these lists. This makes the protocol simpler, but also adds inefficiencies,
since the recipients of the messages are not allowed to optimise the routing by
splitting the message further. The continuous splitting (Spl) method overcomes
this limitation by allowing each message recipient to split the message into sub-
lists, according to information in its finger table. In this way, the message is split
several times at each recipient before it is forwarded to other intended recipients,
causing an adaptive execution of the forwarding process.

The Spl method tries to exploit each node’s view of the network (in con-
trast to the hybrid methods that exploit only the originators’ view), by splitting
the intended recipients lists according to finger table entries of all the nodes
participating at the forwarding of the message. The drawbacks of this method

102 C. Tryfonopoulos et al.

Fig. 2. Message routing and message graph for the fixHy/perHy/medHy (left) and
Spl (right) methods

include the need to access the finger table of each node, which may result in poor
splitting of the intended recipients list if the finger table entries are outdated,
or the message is too small. The Spl method works as follows.

Each finger table entry fP [i] in the finger table of P is used to create one
or more lists in the following way. Consider two consecutive entries in the finger
table of P , say fP [i] and fP [i + 1]. Starting from the identifier id(fP [i]) stored
at this entry, P scans L = {l1, l2, . . . , l|L|}, and collects all the recipients with
identifier greater than id(fP [i]) and smaller than id(fP [i + 1]) to create list
L1 = {l1, . . . , lk}, 1 ∧ k ∧ |L|−1. Subsequently, L becomes L\L1, while element
lk+1 is now head(L) and the process continues for all the intended recipients in
the list L, until L is empty. Typically, finger entries with higher index number
have longer lists associated with them (remember that entries in the finger table
of a node point to exponentially increasing distances away from the node), which
means that typically the distance between the identifiers of entries fP [i− 1] and
fP [i] is shorter than the distance between those of entries fP [i] and fP [i + 1].

For each one of the lists L1, . . . , Lh created by the continuous splitting
method, a message FwdResource(id(P), pid(p), p, Li), with 1 ∧ i ∧ h, is
constructed and is iteratively sent to head(Li). When a node P ′ receives a
FwdResource message, it removes all elements in L that have P ′ as their
intended recipient and repeats the procedure described above to split list Li

further according to its own finger table. As we will show in Sect. 4, this method
manages to achieve latency as low as that of the iterative method while keeping
message traffic low. Figure 2 illustrates graphically the publication of a resource
to three recipients under Chord using the continuous splitting method and shows
a message graph for a general case of resource publication under Spl.

The reader may have noticed that the publication (and also the subscription)
protocol in all the proposed methods indexes queries that consist of a single
equality of the form A = s using a single word contained in the text value s,

Distributed Large-Scale Information Filtering 103

contrary to the standard way that would index the entire text value s in the DHT.
This is done to avoid sending extra network messages for each publication to
discover matching equalities. False positives that may occur are resolved locally
at each node, thus relieving the network of significant message overhead.

Independently of [10], where we originally presented the iterative and recur-
sive methods, the technical report [59] presented an approach that shares ideas
with these two methods by discussing how to implement multicast functionality
at different levels of a DHT architecture. However, [59] aimed at multicast from
a physical network viewpoint and focused on the comparison of these techniques
across the CAN and Chord DHTs.

3.4 The Notification Protocol

When a message FwdResource containing a publication p arrives at a node
P , the queries matching p are found by utilising its local index structures and
using the algorithms described in detail in [57] for queries with a Boolean part
only. The extension to AWPS queries involves the calculation of the cosine of
the angle of two vectors corresponding to text values from a publication and a
query, and follows straight-forward IR techniques.

Once all the matching queries have been retrieved from the database, P
creates notification messages of the form Notification(ip(P), pid(p), qid(q)),
where P is the provider that published the matching resource, and sends them
to all the nodes that their queries were matched against p using their IP addresses
associated with the query they submitted. If a node P ′ is not online when P
tries to notify it about the published resource, the notification message is sent
to the successor(P ′). In this way P ′ will be notified the next time it logs on the
network. To utilise the network in a more efficient way, notifications can also be
batched and sent to the subscribers when traffic is expected to be low.

3.5 Frequency Cache

In this section, we introduce an additional routing table that is maintained in
each node. This table, called frequency cache (FCache), is used to reduce the
cost of publishing a resource. Using the protocols described earlier, each node is
responsible for handling queries that contain a specific word. When a resource
r with h distinct words is published by node P , P needs to contact at most
h other nodes which will match the incoming resource against their local query
databases. This procedure costs O(h log N) messages for each resource published
at P . Since some of the words will be used more often at published resources, it
is useful to store the IP addresses of the nodes that are responsible for queries
containing these words. This allows P to reach in a single hop the nodes that
are contacted more often (proxying).

Specifically, FCache is a hash table used to associate each word that appears
in a published document with a node’s IP address. It uses a word w as a key and
each FCache entry is a data structure that holds an IP address. Thus, whenever
P needs to contact another node P ′ that is responsible for queries containing w,
it searches its FCache. If FCache contains an entry for w, P can directly contact
P ′ using the IP stored in its FCache. If w is not contained in FCache, P uses the

104 C. Tryfonopoulos et al.

standard DHT lookup protocol to locate P ′ and stores contact information in
FCache for further reference. Using FCache, the cost of processing a published
resource p is reduced to O(v + (h − v) log N), where v is the number of words of
p contained in FCache. Notice that the construction and maintenance of FCache
comes at no extra message cost and node routing information is discovered only
when needed. In the experiments presented in the next section we discuss good
choices for FCache size (see Sect. 4.4).

The only extra cost involved with FCache is due to possible cache misses
because of network dynamicity. In an FCache miss, the node needs to utilise
the routing infrastructure at the cost of O(logN) messages to locate a node.
However, the new contact information is used to update the FCache entry for
future reference. Misses are most likely to occur for infrequent words, since nodes
responsible for storing queries with frequent words will be contacted repeatedly.

3.6 Network Dynamicity and Fault Tolerance

The issues introduced by the dynamic nature of P2P systems may be distin-
guished in two general categories: (i) topology changes as nodes move in and out
of the system and (ii) content changes as users shift their interests to new topics
while losing interest in others.

In a dynamic network, nodes may join, leave, or fail at any time (referred to
as node churn in the literature). The main challenge in dealing with these situa-
tions in a DHT is preserving the ability to locate every key in the network. The
stabilisation protocol provided by Chord aggressively maintains the finger tables
of all nodes as the network evolves, by relying on successor pointers to ?under-
take correctness of lookups and finger table repairs. This stabilisation scheme
guarantees to offer reachability of existing nodes even at the face of concurrent
joins, leaves, or fails and allows lookups to be both fast and correct. Since all
nodes are uniquely identified in the network, and the Chord identifier calculated
is the same for each reconnection, a node is naturally mapped at the same loca-
tion on the Chord ring every time. This is exploited by the DHTrie protocols
to store notifications for a node at its successor and to deliver them upon node
reconnection. Naturally, successor nodes are also used for data handover when
a node departs normally from the network. To cope with data loss due to node
failures and accelerate lookups further, replication [60–62] and caching [63,64]
algorithms may be utilised. Finally, note that changes in network topology will
also lead to FCache misses (remember that misses do not affect the correctness
of the protocols) and hence, increase message traffic, as shown in Sect. 4.8.

Naturally, the interests of the nodes evolve over time resulting in creating,
modifying, or deleting queries from the network, or even changing the topic and
rate of their publications. These changes will cause an increase in message traffic
as long as the network tries to cope with the content shift. Newly introduced
topics or topics that have suddenly gained increasing interest will introduce new
terms, which in turn will be infrequent at the beginning, but their frequency
of occurrence will increase with user publications. These changes in content are
expected to initially generate FCache misses (i.e., increase network traffic), but
as specific terms become popular FCache will be gradually updated.

Distributed Large-Scale Information Filtering 105

Table 1. Some key characteristics of the two corpora used for the evaluation

Description NN corpus DBP corpus

Collection size compressed (uncompressed) 99.6 MB (346.2 GB) 548.8 MB (2 GB)
Number of documents 10,426 3,144,265
Document vocabulary size in words 379,484 2,902,491
Maximum document size in words (KB) 104,500 (595.5 KB) 15,815 (150.3 KB)
Minimum document size in words (KB) 26 (0.2 KB) 1 (0.002 KB)
Average document size in words (KB) 5,415 (32.9 KB) 91 (0.5 KB)

4 Experimental Evaluation

To carry out the experimental evaluation of the protocols described in the previ-
ous section, we needed metadata for incoming resources, as well as user queries.
For the model AWPS considered in this work there are various document sources
that one could consider: TREC corpora, metadata for papers on various pub-
lisher Web sites (e.g., ACM or IEEE), electronic newspaper articles, articles from
news alerts on the Web (http://www.cnn.com/EMAIL), and others. However, it
is rather difficult to find user queries except by obtaining proprietary data (e.g.,
from CNN’s news or Springer’s journal alert system). Additionally, notice that
using query logs of one-time queries as continuous queries does not create realis-
tic query databases. One-time queries are in general short and focused, as they
express one-time information needs, while continuous queries tend to be longer,
more complex and more general, in order to satisfy long-term information needs.

4.1 Experimental Setup

In this section, we describe the document and query sets used to evaluate our
methods, and present the performance criteria and setup of our evaluation.

Document Corpora. For our experiments, we used two sets of real-life docu-
ments and queries. The first set is composed of 10,426 documents downloaded
from CiteSeer (http://citeseer.ist.psu.edu), originally compiled in [65], and used
also in [10,52,57]. These documents are research papers in the area of Neural
Networks; we will refer to them as the NN corpus. To assess the generality of
our approach, we have also conducted experiments with a larger and more var-
ied corpus. The dbpedia (http://dbpedia.org) corpus –we will refer to it as DBP
corpus– consists of more than 3 million documents that are extended abstracts
from the Wikipedia website. The DBP corpus was chosen due to its differences to
the NN corpus (smaller average document size, larger diversity in topics, wider
vocabulary) and is used to demonstrate the performance of our protocols under a
different setting. Table 1 summarises some key characteristics of the two corpora
used in the evaluation.

All the experiments shown in this section were carried out using both docu-
ment corpora. However, due to space considerations we report graphs for both
corpora only when there exists a notable difference between the two experiments.

Query Sets. Since no database of continuous queries was available to us, we used
two different methodologies to create continuous queries under model AWPS.

http://www.cnn.com/EMAIL
http://citeseer.ist.psu.edu
http://dbpedia.org

106 C. Tryfonopoulos et al.

The queries for the NN corpus are synthetically generated and consist of two
parts: (i) a Boolean part containing atomic Boolean queries of the form A ⊆ wp
and (ii) a VSM part containing atomic queries of the form A ≺k s, where s
is a text value. We set A to be title, authors, abstract, or body with
some probability. Subsequently, each atomic Boolean query of the form A ⊆ wp
is generated using words and technical terms extracted automatically from the
NN corpus using the C-value/NC-value approach of [66]. For more details of the
methodology the interested reader can refer to [10,52,57]. An example of a user
query created synthetically from the methodology briefly sketched above is:

(author ⊆ Darwen) ∈
(title ⊆ implementation ∈ (RBF ∪[0,3] networks)) ∈

abstract ≺0.6 “Most work on the evolutionary approach to the iterated . . . ”

Since there is no publicly available database of continuous queries for the
DBP corpus, we used 20.2 million Wikipedia article titles and categories (mod-
ified appropriately to fit our query language) as user queries. Each title or cat-
egory represents one continuous query q that contains either a Boolean or a
VSM part. For the case of the DBP corpus, we avoided synthetic creation of
more complex queries (as done before for the case of the NN corpus) in order to
demonstrate the performance of our methods under a different query setting.

Setup. We have implemented and experimented with eight variations of the
DHTrie protocols: the iterative method It, the recursive method Re, the hybrid
method fixHy, and the continuous splitting method Spl, which do not employ
an FCache, and their counterparts that utilise an FCache (ItC, ReC, fixHyC,
and SplC respectively). The experiments with both corpora were conducted
using the same machinery to enable the comparison across the different settings.
All the methods and the DHTrie simulator were implemented in C/C++.

To carry out each experiment described in this section, we execute the fol-
lowing steps. Initially the network is set up by assigning keys to nodes. These
keys are calculated using the SHA-1 cryptographic hash function and randomly
created IP addresses and ports. After the network set up, we create 5M user
queries and distribute them among the nodes using the protocol described in
Sect. 3.1. According to the publication protocol, the number of posted queries
does not affect the cost for publishing a document in the network; it only affects
the matching time for the local filtering algorithms and the number of match-
ing notifications produced (i.e., the higher the number of posted queries is, the
higher the number of matching notifications produced). Table 2 summarises the
parameters and the baseline values used for the experiments.

Evaluation Metrics. We are mainly interested in the performance of the eight
different protocols in terms of network traffic and latency to publish a document
or subscribe a query. To measure network traffic, we publish the corpus docu-
ments at different nodes and record the network activity. In our network, we
can distinguish between two types of messages: messages sent through the DHT
infrastructure and messages sent to a node using directly its IP address (FCache

Distributed Large-Scale Information Filtering 107

Table 2. Parameters varied in experiments, their descriptions, and their baseline values

Parameter Description Baseline value

N # of nodes in the system 10 K–100 K
Q # of queries assigned to nodes 5 M
Cs # of entries in FCache 30 K
Ct # of publications used to train FCache 10 K
W Average # of words per published document 5415 (NN), 91 (DBP)
SF Split factor (used for load balancing) 1, 10, 20, 30
T Split threshold (used for load balancing) 10
σ Size of recipients list (fixHy method) 50 (NN), 10 (DBP))
π Percentage of recipients list (perHy method) 4 %

messages). In our experiments, we record and present the effects of both types of
messages. Latency is measured in number of hops as follows. For each message
(either publication or subscription) initiated by node P , we record the longest
chain of messages needed until the message reaches all the intended recipients.

4.2 Varying the Type of Queries

The first set of experiments investigates the cost of indexing a query in the
network. For this setup we used two types of queries: (i) queries including only
vector space atomic parts and (ii) queries with both Boolean and vector space
parts. Indexing the second type of queries is the same as indexing queries with
Boolean atomic parts only (see Sect. 3.1).

Each bar in Fig. 3 shows the average message traffic recorded when indexing
500 K queries of each type in a network of 50 K nodes for both corpora. The
most important observation in these graphs is that, regardless of the protocol
and corpus applied on, vector space queries are more expensive to index than
Boolean or mixed type queries. This happens because vector space queries are
indexed at all nodes responsible for the distinct words in the query, contrary to
other query types that are indexed under only one node (see Sect. 3.1). Notice
the important role of FCache, the use of which manages the forwarding to the
intended recipients of more than 1/3 of the total network traffic, thus relieving
the DHT infrastructure of substantial messaging effort. It is clear that ReC and
fixHyC are the best performing protocols for vector space query indexing in
terms of message traffic. The difference in the message traffic induced by the
queries of the two corpora is attributed to the different query lengths.

Figure 4 presents the publication latency achieved by all our protocols when
indexing 500 K (vector space or mixed) queries in a network of 50 K or 100 K
nodes for both corpora. As we can see in this figure, latency in the indexing of
Boolean or mixed type queries is invariant since they are indexed under only
one node. For the vector space queries however, one important observation is
the low latency of the iterative and the continuous splitting methods, and the
high latency of the recursive ones. This is due to the routing infrastructure used
and the specifics of each method. The iterative methods use a single lookup mes-
sage for each one of the intended recipients of the query, thus parallelising the
subscription process. The continuous splitting methods split the recipient lists

108 C. Tryfonopoulos et al.

 0

 50

 100

 150

 200

 250

It ItC Re ReC fixHy fixHyC Spl SplC

#
 o

f
m

es
sa

g
es

/q
u

er
y

algorithm

FCache messages (VSM)
DHT messages (VSM)

FCache messages (Boolean & VSM)
DHT messages (Boolean & VSM)

(a) NN corpus

 0

 5

 10

 15

 20

 25

 30

It ItC Re ReC fixHy fixHyC Spl SplC

#
 o

f
m

es
sa

g
es

/q
u

er
y

algorithm

FCache messages (VSM)
DHT messages (VSM)

FCache messages (Boolean)
DHT messages (Boolean)

(b) DBP corpus

Fig. 3. Message traffic for indexing a query in the network

 0

 20

 40

 60

 80

 100

 120

 140

It ItC Re ReC fixHy fixHyC Spl SplC

la
te

n
cy

 (
h

o
p

s)

algorithm

VSM (50K nodes)
VSM (100K nodes)

Boolean & VSM (50K nodes)
Boolean & VSM (100K nodes)

(a) NN corpus

 0

 5

 10

 15

 20

 25

It ItC Re ReC fixHy fixHyC Spl SplC

la
te

n
cy

 (
h

o
p

s)

algorithm

VSM (50K nodes)
VSM (100K nodes)

Boolean (50K nodes)
Boolean (100K nodes)

(b) DBP corpus

Fig. 4. Latency for indexing a query in the network

and adapt the subscription process to the finger tables of the forwarding nodes.
On the other hand, the recursive method uses long recipients lists and con-
tacts them in a recursive way, thus increasing subscription latency. Additionally,
protocol fixHy seems to behave similarly to Re in terms of latency, which is
explained by the fact that in this experiment the two protocols have roughly the
same size of recipients lists. This happens because Re creates small recipients
lists (due to the size of the query) and thus, the size of the list is similar to the
size we use for protocol fixHy. FCache, similarly to message traffic, plays an
important role by reducing latency (up to 60 %) for all the protocols.

4.3 Varying Network Size

Although query indexing performance is important, in an IF scenario resource
publication is the time critical component. This second set of experiments tar-
gets the performance of the protocols in terms of message traffic and publication
latency for different network sizes. In this experiment, we randomly selected 100
documents from the NN and the DBP corpus and used them as publications by
randomly assigning each one to a different publisher node for each of the 10 dif-

Distributed Large-Scale Information Filtering 109

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 10 20 30 40 50 60 70 80 90 100

#
 o

f
D

H
T

 m
es

sa
g
es

/d
o
cu

m
en

t

of nodes (x1000)

It/4
ItC

Re
ReC

fixHy
fixHyC

Spl/4
SplC

(a) NN corpus

 0

 50

 100

 150

 200

 250

 300

 350

 10 20 30 40 50 60 70 80 90 100

#
 o

f
D

H
T

 m
es

sa
g
es

/d
o
cu

m
en

t

of nodes (x1000)

It/4
ItC

Re
ReC

fixHy
fixHyC

Spl/4
SplC

(b) DBP corpus

Fig. 5. Message traffic for various network sizes

ferent runs used for averaging measurements. Having published the documents,
we recorded the total number of DHTrie messages generated by the network in
order to match these documents against the indexed user queries.

In Fig. 5, the performance of the protocols in terms of DHTrie messages/
document for both corpora is shown. The main observation is that the number
of messages generated by all protocols grows at a logarithmic scale mainly due to
the routing infrastructure used. A second observation emerging from the graph
is the effectiveness of the FCache independently of the message routing protocol
used and the corpus it is applied at. The use of FCache results in the reduction
of messages sent using the routing infrastructure by more than 6 times for NN
corpus (resp. 7 times for the DBP corpus) in the recursive, the hybrid and
the continuous splitting method, and by 8 times for the NN corpus (resp. 4
times for the DBP) in the iterative method. Notice that the improvement in
the performance of the protocols when using the FCache is slightly lower for
the DBP corpus (compared to the NN corpus) due to the significantly smaller
document size and the wider vocabulary (because of lower FCache utilisation
and thus higher DHT traffic). Finally, notice that the number of DHT messages
needed to index a document from the DBP corpus is significantly lower than
that of the NN corpus, due to the significantly smaller average document size.

In Fig. 6, the performance of the different protocols in terms of publication
latency for both corpora is shown. Similarly to the previous set of experiments,
low latency is observed when using the iterative or the continuous splitting meth-
ods, whereas high latency is caused by the recursive ones. The use of the FCache
reduces publication latency for both corpora by shortening the intended recip-
ients lists of ReC and fixHyC. Additionally, it is worth pointing out that the
smaller document size of the DBP corpus results in lower publication latency
compared to that of the NN corpus, due to the smaller recipients lists.

Finally, in our measurements (graph not shown due to space reasons) the
lowest processing cost per document for a network size of 100 K nodes for the
NN corpus (resp. DBP corpus) is presented for method ReC with about 1,300
(resp. 42) messages in total, with about 65 % of them being FCache messages, as
opposed to 40 % for method SplC, and 55 % for method ItC for both corpora.

110 C. Tryfonopoulos et al.

 0

 100

 200

 300

 400

 500

 10 20 30 40 50 60 70 80 90 100

la
te

n
cy

 (
h
o
p
s)

of nodes (x1000)

It
ItC

Re/6
ReC

fixHy
fixHyC

Spl
SplC

(a) NN corpus

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10 20 30 40 50 60 70 80 90 100

la
te

n
cy

 (
h
o
p
s)

of nodes (x1000)

It
ItC

Re/6
ReC

fixHy
fixHyC

Spl
SplC

(b) DBP corpus

Fig. 6. Latency for various network sizes

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 5 10 15 20 25 30

#
 o

f
D

H
T

 m
es

sa
g
es

/d
o
cu

m
en

t

FCache size (x1000)

ItC (50K nodes)
ItC (100K nodes)
ReC (50K nodes)

ReC (100K nodes)

fixHyC (50K nodes)
fixHyC (100K nodes)

SplC (50K nodes)
SplC (100K nodes)

(a) NN corpus

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30

#
 o

f
D

H
T

 m
es

sa
g
es

/d
o
cu

m
en

t

FCache size (x1000)

ItC (50K nodes)
ItC (100K nodes)
ReC (50K nodes)

ReC (100K nodes)

fixHyC (50K nodes)
fixHyC (100K nodes)

SplC (50K nodes)
SplC (100K nodes)

(b) DBP corpus

Fig. 7. Message traffic for different FCache sizes

4.4 Varying the FCache Size

The third set of experiments targeted the performance of the protocols under
different FCache sizes, and studied the effect of FCache in message traffic and
publication latency. Initially, we used (a part of) the document corpora as train-
ing sets for populating the FCache of the different nodes; a randomly chosen node
P publishes 10 K documents and populates its FCache with the IP addresses of
the nodes that are responsible for the most frequent words contained in the
published documents. Then, another 100 documents are published by P and the
size of the FCache is limited to different values. Subsequently, the total number
of messages used to match these documents against the stored user queries is
recorded and averaged over 10 runs with different nodes. Figure 7 shows the
messages traffic per document for the two corpora as the size of the FCache
grows.

As shown in Fig. 7, the number of messages sent using the DHTrie routing
infrastructure reduces quickly for both corpora as the size of FCache increases,
and the decrease rate depends on FCache size due to the skewness in the corpus
vocabulary. This results in reaching an FCache size after which no significant

Distributed Large-Scale Information Filtering 111

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20 25 30

la
te

n
cy

 (
h

o
p

s)

FCache size (x1000)

ItC (50K nodes)
ItC (100K nodes)

ReC (50K nodes)/5
ReC (100K nodes)/5

fixHyC (50K nodes)
fixHyC (100K nodes)

SplC (50K nodes)
SplC (100K nodes)

(a) NN corpus

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30

la
te

n
cy

 (
h

o
p

s)

FCache size (x1000)

ItC (50K nodes)
ItC (100K nodes)

ReC (50K nodes)/3
ReC (100K nodes)/3

fixHyC (50K nodes)
fixHyC (100K nodes)

SplC (50K nodes)
SplC (100K nodes)

(b) DBP corpus

Fig. 8. Latency for different FCache sizes

effect is observed in message traffic reduction (around 30 K entries, the rightmost
point on the x-axis). Additionally, the reduction factor for all methods and
for both corpora is similar: 40–50 % (resp. 10–15 %) reduction in message costs
depending on the method for small (resp. large) FCache sizes. Notice also that
for protocols ReC, HyC, and SplC the performance of FCache remains almost
constant for different network sizes, whereas for protocol ItC 50 % more DHTrie
messages/document are needed for an 100 % increase in network size. Finally,
notice that the number of DHT messages needed to index a document from
the DBP corpus is significantly lower than that of the NN corpus due to the
significant difference in average document size.

In Fig. 8, we show the publication latency for the different protocols and the
way it is affected by the variation of the FCache size. As expected, the reduction
in the latency for all the protocols is lower as the FCache size increases due to the
skewness of the vocabulary entries used for populating the FCache. Additionally,
not all protocols are affected in the same way from FCache increase in size. ItC
and SplC remain relatively unaffected for both corpora by the increase both
in FCache size and in network size, something that is also verified from the
graphs of the previous section. This is due to the routing infrastructure and the
parallel way of publishing the incoming documents. Contrary, protocols ReC
and fixHyC seem to perform better when the size of the FCache increases,
since this causes reduction in the size of recipients lists. Moreover, the reduction
factor across corpora is similar: low for methods ItC and SplC, while it reaches
35–45 % (resp. 5–15 %) for small (resp. large) FCache sizes for methods ReC
and fixHyC. Finally, FCache is equally utilised by all methods (graph omitted
due to space reasons), as the number of FCache messages/document is similar
for all methods and reaches up to 900 (resp. 19) FCache messages/document for
the NN corpus (resp. DBP corpus) for 30 K entries.

4.5 Effect of FCache Training

In this set of experiments, we measure the effect of FCache training on message
cost and publication latency in the NN corpus (results for the DBP corpus are
similar and are omitted due to space reasons). To do so, we randomly selected

112 C. Tryfonopoulos et al.

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

 0 10 20 30 40 50 60 70 80 90 100

#
 o

f
D

H
T

 m
es

sa
g
es

/d
o
cu

m
en

t

of documents (x100) published per node

ItC (50K nodes)/2
ItC (100K nodes)/2

ReC (50K nodes)
ReC (100K nodes)

fixHyC (50K nodes)
fixHyC (100K nodes)

SplC (50K nodes)
SplC (100K nodes)

(a) Message traffic

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80 90 100

la
te

n
v
y
 (

h
o
p
s)

of documents (x100) published per node

ItC (50K nodes)
ItC (100K nodes)

ReC (50K nodes)/5
ReC (100K nodes)/5

fixHyC (50K nodes)
fixHyC (100K nodes)

SplC (50K nodes)
SplC (100K nodes)

(b) Latency

Fig. 9. Performance for different levels of FCache training

a node P and trained its FCache with a varying number of documents. In this
way, the node was able to collect statistics about frequent words used in docu-
ment publications and populate its FCache with pointers to frequently contacted
nodes. Subsequently, we published 100 documents to P and recorded the average
message cost and publication latency. The results shown in Fig. 9 are averaged
over 100 runs for different nodes to eliminate network topology effects.

Figure 9(a) shows that the performance of all protocols improves as more
documents get published. Methods ReC and fixHyC are less sensitive in this
parameter, as the difference in the number of messages observed is about 100
messages for 50 times more documents (the leftmost and rightmost point in the
x-axis). Additionally, ReC and SplC show less sensitivity with respect to the
network size, contrary to ItC that needs about 50 % more messages. Finally, all
methods show a similar behaviour for the two network sizes tested.

Figure 9(b) shows the effect of the number of publications in latency. We
observe that method ReC is the most affected by the training level of the FCache,
as it is heavily dependent on the FCache information to reduce long recipients
lists. Method fixHyC is less affected as it produces shorter recipient lists than
ReC, while methods SplC and ItC remain unaffected due to the protocol design.
Additionally, all methods present a slight increase in message traffic when dou-
bling the network size due to the logarithmic routing.

Finally, the number of FCache hits for the NN corpus (resp. DBP corpus)
and for all methods is between 830 and 875 (resp. 12 and 20) messages/document
for a network of 50 K nodes. This shows that FCache hits are only affected by
the size and skewness of the published data, not by the protocol used.

4.6 Varying the Document Size

Document (i.e., publication) size is an important parameter in the performance
of our protocols. This set of experiments targeted the performance of the pro-
tocols under various document sizes. Due to space reasons we show only the
experiments on the NN corpus that has a larger variation in document size. The
findings for the DBP corpus are briefly summarised in the text and are in line
with the ones presented here. Figure 10 shows the message cost and latency for

Distributed Large-Scale Information Filtering 113

 0

 1000

 2000

 3000

 4000

 5000

1412 5415 20755

#
 o

f
D

H
T

 m
es

sa
g
es

/d
o
cu

m
en

t

average document size (words)

It
ItC

Re
ReC

fixHy
fixHyC

Spl
SplC

(a) Message traffic

 0

 100

 200

 300

 400

 500

 600

1412 5415 20755

la
te

n
cy

 (
h
o
p
s)

average document size (words)

It
ItC

Re/10
ReC/10

fixHy
fixHyC

Spl
SplC

(b) Latency

Fig. 10. Performance for documents of different size

publishing documents of varying size for all protocols. Each bar is an average
of the message cost and latency (appropriately truncated to show the best per-
forming methods) for 100 documents, published by 1,000 different nodes (in a
network of 50 K nodes in total) to normalise network topology effects.

Figure 10(a) shows that for small documents, methods Re, fixHy, and Spl
achieve 50 % less message traffic than It, while all FCache variations of the
protocols perform similarly. This happens because in smaller documents there
will be less infrequent words that may result in FCache misses. However, as
document size increases the importance of the message forwarding method is
more obvious (i.e., notice that ReC is able to process documents of 21 K words
by using only 1,000 messages). Note also that although protocols ReC, fixHyC,
and SplC perform similarly in terms of message traffic, as discussed later in this
section, SplC handles latency better than its counterparts. Our findings for the
DBP corpus are similar, but, since the average document size is significantly
smaller, message traffic is about 10 times lower (see also Fig. 5).

Figure 10(b) shows how document size affects latency for the different pro-
tocols. The most important observation is the inefficient performance of the Re
and ReC protocols (notice that measurements are reduced by a factor of 10 for
readability), which shows the dependence of both methods on document size
(that increases the size of recipients lists). Contrary, the rest of the protocols are
insensitive to document size, for different reasons each: It and ItC because of the
lack of recipient lists, fixHy and fixHyC because of document size-independent
recipient lists, and Spc and SplC because of the adaptivity of the forwarding
process. The measurements for the DBP corpus showed a similar behaviour for
all methods due to the small average document size and thus recipient list size.

We also examined the relative increase in message traffic and latency for
three groups of documents, D1, D2, and D3, where D2 is 3 times larger and D3

is 14 times larger on average than D1. Initially, 100 random nodes were chosen
to publish documents from group D1, and the message traffic and latency were
recorded. Then, the other two document groups were published in the same
way, and the measurements were recorded and compared to those of group D1.
Figure 11 shows the factor of increase in message traffic and latency for each
protocol when publishing the two different groups of documents. Our findings on

114 C. Tryfonopoulos et al.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

It ItC Re ReC fixHy fixHyC Spl SplC

fa
ct

o
r

o
f

in
cr

ea
se

 i
n

 m
es

sa
g

e
tr

af
fi

c

algorithm

3x larger document
14x larger document

(a) Message traffic

 0

 1

 2

 3

 4

 5

 6

It ItC Re ReC fixHy fixHyC Spl SplC

fa
ct

o
r

o
f

in
cr

ea
se

 i
n

 l
at

en
cy

algorithm

3x larger document
14x larger document

(b) Latency

Fig. 11. Increase rate for different document sizes

 400

 450

 500

 550

 600

 650

 700

 750

 800

 0 100 200 300 400 500 600 700

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

#
 o

f
D

H
T

 m
es

sa
g

es
/d

o
cu

m
en

t

desired recipient list

% of initial recipient list

fixHy (50K nodes)/5
fixHyC (50K nodes)

fixHy (100K nodes)/5
fixHyC (100K nodes)

perHy (50K nodes)/5
perHyC (50K nodes)

perHy (100K nodes)/5
perHyC (100K nodes)

(a) Message traffic

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500 600 700

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

la
te

n
cy

 (
h

o
p

s)

% of initial recipient list

% of initial recipient list

fixHy (50K nodes)/5
fixHyC (50K nodes)

fixHy (100K nodes)/5
fixHyC (100 nodes)

perHy (50K nodes)/5
perHyC (50K nodes)

perHy (100K nodes)/5
perHyC (100 nodes)

(b) Latency

Fig. 12. Performance when varying σ (fixHy) and π (perHy)

the sensitivity of the methods to document size are aligned with those of Fig. 10:
in terms of message traffic ReC, fixHyC, and SplC show low sensitivity to
document size, while in terms of latency Re and ReC are highly sensitive.

4.7 Comparison of the Hybrid Methods

This set of experiments aims at comparing message overhead and publication
latency of the hybrid method variants by examining the correlations between
the parameters σ and π of methods fixHy and perHy, and the performance of
the parameterless method medHy. Figure 12 demonstrates the performance of
the fixHy and perHy methods for two different network sizes (50 K and 100 K
nodes). Each point is averaged over 10 runs, and 100 NN corpus documents,
randomly assigned to publisher nodes, were used as incoming publications. The
findings for the DBP corpus are similar and are omitted for space reasons.

Figure 12(a) shows the average number of DHT messages needed to pub-
lish a large document as the desired recipient list size increases for the hybrid
methods. To interpret the results of this graph the reader is reminded that the
hybrid protocols try to combine the iterative and recursive protocols: the shorter

Distributed Large-Scale Information Filtering 115

 300

 400

 500

 600

 700

 800

 900

 10 20 30 40 50 60 70 80 90 100

#
 o

f
D

H
T

 m
es

sa
g

es
/d

o
cu

m
en

t

of nodes (x1000)

fixHy/5
fixHyC

perHy/5
perHyC

medHy/5
medHyC

(a) Message traffic

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 10 20 30 40 50 60 70 80 90 100

la
te

n
cy

 (
h

o
p

s)

of nodes (x1000)

fixHy
fixHyC

perHy
perHyC

medHy
medHyC

(b) Latency

Fig. 13. Performance of the hybrid methods for various network sizes

the recipients list size is, the closer the protocol is to the iterative counterpart
(notice network traffic reduction as the recipient list size increases). Addition-
ally, FCache reduces network traffic and the effect of network size significantly,
while making the methods less sensitive to parameter changes. Finally, notice
that although the splitting of the recipients list is performed in a different way
by fixHy and perHy, parameters σ and π have a similar effect since they relate
through the average publication size (i.e., it is possible to adjust π so that in
the average case it will split the message in pieces of average size σ). Notice
however, that π is easier to set than σ as it does not require any knowledge on
the specifics of the published documents.

Publication latency is linear to the increase in the recipient list size (Fig. 12(b))
for both methods, while FCache manages to keep latency low.

Finally in Fig. 13(a) and (b), we demonstrate message traffic and latency for
all hybrid variations. Message traffic for all methods grows logarithmically due
to the routing infrastructure, while the introduction of FCache results in a sig-
nificant decrement in message traffic. As the medHy method is by design aimed
towards optimising latency (due to the way of splitting recipients lists), fixHyC
and perHyC have also been set with latency in mind (σ = 50, π = 0.04) for
comparison reasons. Finally, notice that the fixHy and perHy methods perform
similarly in terms of message traffic, but differ in latency, which demonstrates
the importance of optimising this tradeoff and constituted the main driver for
the introduction of Spl and SplC methods.

4.8 Effect of Node Churn

In this section, we target the performance of the protocols in terms of message
traffic and publication latency under node churn by introducing a short life span
for a varying percentage of nodes in the network.

In Fig. 14, our measurements show that when 5 % of the nodes are off-line
during a lookup, the message cost increase is no more than 8 % for the NN corpus
(12 % for the DBP corpus), showing that FCache is able to cope up with misses.
On the other hand, when 30 % of the nodes are off-line, the message cost increases
significantly for both corpora, since for each FCache miss several DHT messages

116 C. Tryfonopoulos et al.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

#
 o

f
D

H
T

 m
es

sa
g
es

/d
o
cu

m
en

t ItC ReC fixHyC SplC

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 5 10 15 20 25 30

la
te

n
cy

 (
h
o
p
s)

off-line peers (%)

(a) NN corpus

 50

 100

 150

 200

 250

#
 o

f
D

H
T

 m
es

sa
g
es

/d
o
cu

m
en

t ItC ReC fixHyC SplC

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30

la
te

n
cy

 (
h
o
p
s)

off-line peers (%)

(b) DBP corpus

Fig. 14. Message traffic and latency for 100 K nodes under churn

have to be issued. Remember though, that FCache misses affect only network
traffic and not the correctness of the protocols. Additionally, all methods, apart
from ReC (that packs messages together and increases the recipients list size),
present a good overall performance in terms of latency.

To deal with node failures for methods that do not rely on FCache (i.e.,
It, Re, fixHy, and Spl) we reside on DHT mechanisms, which can guarantee
correctness of lookups and finger table repairs. All measurements for node churn
in Chord [56] carry over to our setting; for more details the reader is referred to
[56] due to space reasons.

4.9 Skewed Data Distributions and Load Balancing

In typical IR scenarios the word distributions associated with documents and
queries are typically skewed. In a pub/sub setting, load balancing becomes a key
issue when trying to partition the query space among the different nodes of a
DHT. We can distinguish three types of node load: query load (i.e., the number
of queries stored at a node), routing load (i.e., the number of messages a node
forwards due to the protocols), and filtering load (i.e., the number of publications
a node has to filter against the stored queries).

Balancing the Filtering Load. In the DHT literature, work on load balanc-
ing has concentrated on two particular problems: (i) address-space load balancing
concerning how to partition the address-space of a DHT “evenly” among keys;
it is typically solved by relying on consistent hashing and constructions such as
virtual servers [8] or potential nodes [67] and (ii) item load balancing addressing
how to balance load in the presence of data items with arbitrary load distribu-
tions [67,68] as in our case.

We have implemented and evaluated a simple algorithm based on the well-
known concept of load-shedding (LS), where an overloaded node attempts to off-
load work to less loaded nodes. Once a node P understands that it has become
overloaded, it chooses the most frequent word w it is responsible for and a
small integer k. Then P contacts the nodes responsible for words wj for all
j, 1 ∧ j ∧ k, where wj is the concatenation of strings w and j, and asks

Distributed Large-Scale Information Filtering 117

 0

 5

 10

 15

 20

 25

 30

 35
#

 o
f

fi
lt

er
in

g
 r

eq
u

es
ts

/n
o

d
e No LS

With LS (SF=10)
With LS (SF=20)
With LS (SF=30)

 0

 5

 10

 15

 20

 0 2000 4000 6000 8000 10000

#
 o

f
D

H
T

 m
es

sa
g

es
/n

o
d

e

ranked nodes

(a) Filtering and routing load

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2000 4000 6000 8000 10000

#
 o

f
st

o
re

d
 q

u
er

ie
s/

n
o

d
e

ranked nodes

RWI LFWI LFWI+LS

(b) Query load

Fig. 15. Load distribution for the 10 K most loaded nodes

them to be its replicas. Then P notifies the rest of the network about this
change in responsibilities by piggy-backing the necessary information in DHTrie
maintenance messages. Each node M that receives this message notes down
the word w. Later on, if M has a new publication containing w, it divides the
filtering responsibility for w among P and k other nodes by concatenating a
random number from 1 to k to the end of w and using DHTrie to find the node
responsible for the concatenated word. In this way, the filtering responsibility of
w for P is reduced by k + 1 times (node P and k new nodes). We call k + 1 the
split factor (SF) in subsequent experiments.

Figure 15(a) shows the average number of filtering requests (top part) received
by each node in a time window T for a period of 100*T. SF was varied between
10 and 30 nodes and T was set to 10 filtering requests. We also varied T but did
not observe significant differences in the load distribution.

Balancing the Routing Load. Balancing the filtering load causes an increase
in message traffic due to FCache misses and thus, the overall routing load of the
system is increased. Figure 15(a) shows the number of routing requests (bottom
part) received by the 10 K most loaded nodes in the network. The number of
DHT messages/document increases after the load balancing algorithm is run
(80 % for SF=10, 180 % for SF=20, and 240 % for SF=30), but the new load
imposed on the network is well distributed among the nodes and does not cause
overloading in any specific group of nodes.

Balancing the Query Load. Even query distribution among nodes is a hard
task to achieve since typically queries follow a skewed word distribution. To
distribute the queries to the nodes responsible, we utilised two different query
indexing methods. The first method, coined RWI (Random Word Index), fol-
lows the subscription protocol of Sect. 3.1, where a node P indexes a query q
to the node responsible for a randomly selected word w contained in any of the
text values s1, . . . , sm or word patterns wpm+1, . . . , wpn of q. Contrary, the sec-
ond method, coined LFWI (Least Frequent Word Index), takes into account
the document frequency of the words contained in q and indexes q to the node
responsible for the least frequent word w contained in it.

118 C. Tryfonopoulos et al.

Notice that the methods described above are orthogonal to the routing method
utilised by P to forward the query, since they are only used to select under which
word q will be indexed in the network. The intuition behind method LFWI is
to index the query under the node responsible for the least frequent word in it,
thus avoiding the overload of nodes responsible for popular terms. Figure 15(b)
shows the results for the 10 K most loaded nodes and 1 M queries indexed in a
network of 50 K nodes and each graph is produced as an average over 10 runs.
Method LFWI+LS, i.e., the combination of the LFWI and LS methods (for
with SF=10), achieves the most uniform load distribution of all approaches.

4.10 Summing Up

In all experiments, the methods with the FCache (ItC, ReC, fixHyC, SplC)
outperformed (both in message traffic/latency) their counterparts without the
FCache (It, Re, fixHy, Spl) showing the usefulness of the proxying mechanism.

When message traffic is the optimisation metric (at the expense of latency),
method ReC is the best candidate, as it is less sensitive to network and publica-
tion size. Contrary, when latency is the optimisation metric (at the expense of
message traffic), method ItC presents the best alternative, as it is less affected
by network size, FCache size/training, and publication size. Hybrid methods
fixHyC and perHyC are tunable alternatives to the ItC and ReC methods,
adjustable to publication size, and offer a good tradeoff between message traffic
and latency, while method medHyC is the parameterless variation of the hybrid
family that slightly favors latency over message traffic.Finally, method SplC is
slightly more expensive than ReC in network traffic, but its latency is as low
as the best performing method ItC. Moreover, SplC is less sensitive than the
hybrid methods to changes in network size and FCache size/training.

Overall, perHyC and SplC are the two most versatile and well-performing
protocols that put emphasis both on optimising message traffic and latency.
Method perHyC may be adjusted in a per-node fashion, however parameter
setting may require background knowledge of publication characteristics. On
the other hand, SplC is an adaptable and versatile method that performs well
under many different scenarios (including node churn) and can be deployed off-
the-shelf, without any need for parameter setting.

5 Conclusions and Outlook

In this work, we have presented and evaluated a set of protocols that efficiently
extend Chord with pub/sub functionality and introduced proxying and load bal-
ancing mechanisms to cope with message traffic, latency, and skewness of data.
The results of the earlier version of this paper [10] have influenced most of our
work on P2P computing over the last years, inspiring us to develop IF function-
ality [27] in the Minerva system [53], study IF in an XML context [69], design
DHT-based digital libraries [52], and implement Web/Grid service registries [70]
for the EU projects OntoGrid and SemsorGrid4Env.The deployment of these
ideas on various domains demonstrates the generality of the problem and shows
that our protocols may be applied beyond the adopted scenario.

Distributed Large-Scale Information Filtering 119

Lately, MapReduce [71] is widely used as the programming paradigm to
achieve distributed data analysis, load balancing, and fault tolerance by paral-
lelising map and reduce operations in the cloud.We plan to port our work to the
MapReduce paradigm (e.g., following the philosophy of Memcached for a generic
distributed service) to allow the deployment of our protocols in a well-known
computing paradigm aiming for higher penetration in domains other than P2P.
Additionally, such an implementation will encourage the usage and evaluation of
the protocols in real-life scenarios and allow us to get usage data involving per-
formance measurements, real user profiles, and publishing behaviour patterns.

Furthermore, the deployment of our protocols in large-scale distributed social
networks would allow novel data management functionality, like subscriptions
over content/tags with aggregation (e.g., notify me when a published document
matches my continuous query and k of my friends have tagged it as interesting).

References

1. Hameurlain, A., Hussain, F.K., Morvan, F., Tjoa, A.M. (eds.): Globe 2012, vol.
7450. Springer, Heidelberg (2012)

2. Sinha, V., Gupta, A., Kohli, G.S.: Comparative study of P2P and cloud computing
paradigm usage in research purposes. In: Das, V.V., Stephen, J., Chaba, Y. (eds.)
CNC 2011. CCIS, vol. 142, pp. 341–347. Springer, Heidelberg (2011)

3. Kavalionak, H., Montresor, A.: P2P and cloud: a marriage of convenience for replica
management. In: Kuipers, F.A., Heegaard, P.E. (eds.) IWSOS 2012. LNCS, vol.
7166, pp. 60–71. Springer, Heidelberg (2012)

4. Trajkovska, I., Salvachua Rodriguez, J., Mozo Velasco, A.: A novel P2P and cloud
computing hybrid architecture for multimedia streaming with QoS cost functions.
In: ACM Multimedia (2010)

5. Kontominas, D., Raftopoulou, P., Tryfonopoulos, C., Petrakis, E.G.: DS4: a dis-
tributed social and semantic search system. In: ECIR (2013)

6. Loupasakis, A., Ntarmos, N., Triantafillou, P.: eXO: decentralized autonomous
scalable social networking. In: CIDR (2011)

7. Graffi, K., Gross, C., Mukherjee, P., Kovacevic, A., Steinmetz, R.: LifeSocial.KOM:
a P2P-based platform for secure online social networks. In: P2P (2010)

8. Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.: Chord: a scal-
able peer-to-peer lookup service for internet applications. In: ACM SIGCOMM
(2001)

9. Koubarakis, M., Skiadopoulos, S., Tryfonopoulos, C.: Logic and computational
complexity for boolean information retrieval. IEEE TKDE 18(12), 1659–1666
(2006)

10. Tryfonopoulos, C., Idreos, S., Koubarakis, M.: Publish/Subscribe functionality in
IR environments using structured overlay networks. In: ACM SIGIR (2005)

11. Carzaniga, A., Rosenblum, D.S., Wolf, A.: Design and evaluation of a wide-area
event notification service. ACM TOCS 19(3), 332–383 (2001)

12. Koubarakis, M., Tryfonopoulos, C., Idreos, S., Drougas, Y.: Selective information
dissemination in P2P networks: problems and solutions. SIGMOD Rec. 32(3), 71–
76 (2003)

13. Rowstron, A., Kermarrec, A.-M., Druschel, P.: SCRIBE: the design of a large-scale
event notification infrastructure. In: Crowcroft, J., Hofmann, M. (eds.) NGC 2001.
LNCS, vol. 2233, pp. 30–43. Springer, Heidelberg (2001)

14. Pietzuch, P., Bacon, J.: Hermes: a distributed event-based middleware architecture.
In: DEBS (2002)

120 C. Tryfonopoulos et al.

15. Tam, D., Azimi, R., Jacobsen, H.-A.: Building content-based publish/subscribe
systems with distributed hash tables. In: Aberer, K., Koubarakis, M., Kaloger-
aki, V. (eds.) DBISP2P 2003. LNCS, vol. 2944, pp. 138–152. Springer, Heidelberg
(2004)

16. Terpstra, W., Behnel, S., Fiege, L., Zeidler, A., Buchmann, A.: A peer-to-peer
approach to content-based publish/subscribe. In: DEBS (2003)

17. Gedik, B., Liu, L.: PeerCQ: a decentralized and self-configuring peer-to-peer infor-
mation monitoring system. In: ICDCS (2003)

18. Karger, D., Lehman, E., Leighton, T., Levine, M., Lewin, D., Panigrahy, R.: Con-
sistent hashing and random trees: distributed caching protocols for relieving hot
spots on the World Wide Web. In: ACM STOC (1997)

19. Bender, M., Bender, M., Michel, S., Michel, S., Parkitny, S., Parkitny, S., Weikum,
G., Weikum, G.: A comparative study of pub/sub methods in structured P2P
networks. In: Moro, G. (ed.) DBISP2P 2005 and DBISP2P 2006. LNCS, vol. 4125,
pp. 385–396. Springer, Heidelberg (2007)

20. Triantafillou, P., Aekaterinidis, I.: Content-based publish-subscribe over structured
P2P networks. In: DEBS (2004)

21. Gupta, A., Sahin, O.D., Agrawal, D.P., El Abbadi, A.: Meghdoot: content-based
publish/subscribe over P2P networks. In: Jacobsen, H.-A. (ed.) Middleware 2004.
LNCS, vol. 3231, pp. 254–273. Springer, Heidelberg (2004)

22. Aekaterinidis, I., Triantafillou, P.: PastryStrings: a comprehensive content-based
publish/subscribe DHT network. In: ICDCS (2006)

23. Aekaterinidis, I., Triantafillou, P.: Internet scale string attribute publish/subscribe
data networks. In: CIKM (2005)

24. Tran, D., Pham, C.: Enabling content-based publish/subscribe services in cooper-
ative P2P networks. Comput. Netw. 54(11), 1739–1749 (2010)

25. Lo, S.C., Chiu, Y.T.: Design of content-based publish/subscribe systems over struc-
tured overlay networks. IEICE Trans. E91–D(5), 1504–1511 (2008)

26. Liau, C.Y., Ng, W.S., Shu, Y., Tan, K.-L., Bressan, S.: Efficient range queries and
fast lookup services for scalable P2P networks. In: Ng, W.S., Ooi, B.-C., Ouksel,
A.M., Sartori, C. (eds.) DBISP2P 2004. LNCS, vol. 3367, pp. 93–106. Springer,
Heidelberg (2005)

27. Tryfonopoulos, C., Zimmer, C., Koubarakis, M., Weikum, G.: Architectural alter-
natives for information filtering in structured overlay networks. IEEE Internet
Comput. 11(4), 24–34 (2007)

28. Zheng, X., Luo, J., Cao, J.: Pat: a P2P based publish/subscribe system for QoS
information dissemination of web services. In: ICWS (2009)

29. Cheung, A.Y., Jacobsen, H.A.: Load balancing content-based publish/subscribe
systems. ACM TOCS 28(4), 46–100 (2010)

30. Bernard, S., Potop-Butucaru, M.G., Tixeuil, S.: A framework for secure and private
P2P publish/subscribe. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS
2010. LNCS, vol. 6366, pp. 531–545. Springer, Heidelberg (2010)

31. Drosou, M., Stefanidis, K., Pitoura, E.: Preference-aware publish/subscribe deliv-
ery with diversity. In: DEBS (2009)

32. Tang, C., Xu, Z.: pFilter: global information filtering and dissemination using
structured overlays. In: FTDCS (2003)

33. Zhu, Y., Hu, Y.: Ferry: a P2P-based architecture for content-based pub-
lish/subscribe services. IEEE TPDS 18(5), 672–685 (2007)

34. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: ACM SIGCOMM (2001)

35. Kossmann, D.: The state of the art in distributed query processing. ACM Comput.
Surv. 32(4), 422–469 (2000)

Distributed Large-Scale Information Filtering 121

36. Stonebraker, M., Aoki, P., Litwin, W., Pfeffer, A., Sah, A., Sidell, J., Staelin, C.,
Yu, A.: Mariposa: a wide-area distributed database system. VLDB J. 5(1), 48–63
(1996)

37. Litwin, W., Neimat, M.A., Schneider, D.A.: LH* - a scalable, distributed data
structure. ACM TODS 21(4), 480–525 (1996)

38. Balakrishnan, H., Kaashoek, M., Karger, D., Morris, R., Stoica, I.: Looking up
data in P2P systems. CACM 46(2), 43–48 (2003)

39. Huebsch, R., Hellerstein, J., Lanham, N., Loo, B., Shenker, S., Stoica, I.: Querying
the internet with PIER. In: VLDB (2003)

40. Harren, M., Hellerstein, J.M., Huebsch, R., Loo, B.T., Shenker, S., Stoica, I.: Com-
plex queries in DHT-based peer-to-peer networks. In: Druschel, P., Kaashoek, F.,
Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 242–250. Springer, Heidel-
berg (2002)

41. Idreos, S., Tryfonopoulos, C., Koubarakis, M.: Distributed evaluation of continuous
Equi-join queries over large structured overlay networks. In: ICDE (2006)

42. Palma, W., Akbarinia, R., Pacitti, E., Valduriez, P.: DHTJoin: processing contin-
uous join queries using DHT networks. DPD 26(2–3), 291–317 (2009)

43. Dédzoé, W.K., Lamarre, P., Akbarinia, R., Valduriez, P.: Efficient early top-k query
processing in overloaded P2P systems. In: Hameurlain, A., Liddle, S.W., Schewe,
K.-D., Zhou, X. (eds.) DEXA 2011, Part I. LNCS, vol. 6860, pp. 140–155. Springer,
Heidelberg (2011)

44. Cai, M., Frank, M., Yan, B., MacGregor, R.: A subscribable peer-to-peer RDF
repository for distributed metadata management. J. Web Semant. 2(2), 109–130
(2004)

45. Liarou, E., Idreos, S., Koubarakis, M.: Continuous RDF query processing over
DHTs. In: ISWC (2007)

46. Lohrmann, B., Battré, D., Kao, O.: Towards parallel processing of RDF queries
in DHTs. In: Hameurlain, A., Tjoa, A.M. (eds.) Globe 2009. LNCS, vol. 5697, pp.
36–47. Springer, Heidelberg (2009)

47. Battré, D., Heine, F., Höing, A., Hovestadt, M., Kao, O., Liebetruth, C.: Dynamic
knowledge in DHT based RDF stores. In: SWWS (2008)

48. Belkin, N., Croft, W.: Information filtering and information retrieval: two sides of
the same coin? CACM 35(12), 29–38 (1992)

49. Li, J., Loo, B., Hellerstein, J., Kaashoek, M., Karger, D., Morris, R.: On the feasi-
bility of peer-to-peer web indexing and search. In: Frans Kaashoek, M., Stoica, I.
(eds.) IPTPS 2003, vol. 2735, pp. 207–215. Springer, Heidelberg (2003)

50. Reynolds, P., Vahdat, A.: Efficient peer-to-peer keyword searching. In: Endler, M.,
Schmidt, D. (eds.) Middleware 2003, vol. 2672, pp. 21–40. Springer, Heidelberg
(2003)

51. Hsiao, H.C., King, C.T.: Similarity discovery in structured P2P overlays. In: ICPP
(2003)

52. Tryfonopoulos, C., Idreos, S., Koubarakis, M.: LibraRing: an architecture for dis-
tributed digital libraries based on DHTs. In: Rauber, A., Christodoulakis, S., Tjoa,
A.M. (eds.) ECDL 2005. LNCS, vol. 3652, pp. 25–36. Springer, Heidelberg (2005)

53. Bender, M., Michel, S., Triantafillou, P., Weikum, G., Zimmer, C.: MINERVA:
collaborative P2P search (Demo). In: VLDB (2005)

54. Gounaris, A., Fernandes, A., Papadopoulos, A., C. Yfoulis: Parallel query process-
ing on the grid. In: Advances in Parallel Computing (2009)

55. Narendula, R., Papaioannou, T., Aberer, K.: My3: a highly-available P2P-based
online social network. In: P2P (2011)

56. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek, M.F., Dabek, F.,
Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet appli-
cations. IEEE/ACM TON 11(1), 17–32 (2003)

122 C. Tryfonopoulos et al.

57. Tryfonopoulos, C., Koubarakis, M., Drougas, Y.: Information filtering and query
indexing for an information retrieval model. ACM TOIS 27(2), 1–47 (2009)

58. Yan, T., Garcia-Molina, H.: The SIFT information dissemination system. ACM
TODS 24(4), 529–565 (1999)

59. Huebsch, R.: Content-based multicast: comparison of implementation options.
Technical Report UCB//CSD-03-1229, UC Berkeley (2003)

60. Pitoura, T., Ntarmos, N., Triantafillou, P.: Replication, load balancing and efficient
range query processing in DHTs. In: Ioannidis, Y. (ed.) EDBT 2006. LNCS, vol.
3896, pp. 131–148. Springer, Heidelberg (2006)

61. Gopalakrishnan, V., Silaghi, B., Bhattacharjee, B., Keleher, P.: Adaptive replica-
tion in peer-to-peer systems. In: ICDCS (2004)

62. Shen, H.: Efficient and effective file replication in structured P2P file sharing sys-
tems. In: P2P (2009)

63. Deb, S., Linga, P., Rastogi, R., Srinivasan, A.: Accelerating lookups in P2P systems
using peer caching. In: ICDE (2008)

64. Bhattacharjee, B., Chawathe, S., Gopalakrishnan, V., Keleher, P., Silaghi, B.: Effi-
cient peer-to-peer searches using result-caching. In: Frans Kaashoek, M., Stoica, I.
(eds.) IPTPS 2003, vol. 2735, pp. 225–236. Springer, Heidelberg (2003)

65. Dong, L.: Automatic term extraction and similarity assessment in a domain specific
document corpus. Master’s thesis, Department of Computer Science, Dalhousie
University (2002)

66. Frantzi, K., Ananiadou, S., Mima, H.: Automatic recognition of multi-word terms:
the C-value/NC-value method. IJDL 3(2), 115–130 (2000)

67. Karger, D.R., Ruhl, M.: Simple efficient load balancing algorithms for peer-to-peer
systems. In: SPAA (2004)

68. Datta, A., Schmidt, R., Aberer, K.: Query-load balancing in structured overlays.
In: CCGRID (2007)

69. Miliaraki, I., Kaoudi, Z., Koubarakis, M.: XML data dissemination using automata
on top of structured overlay networks. In: WWW (2008)

70. Kaoudi, Z., Koubarakis, M., Kyzirakos, K., Miliaraki, I., Magiridou, M., Papadakis-
Pesaresi, A.: Atlas: storing, updating and querying RDF(S) data on top of DHTs.
J. Web Sem. 8(4), 271–277 (2010)

71. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: OSDI (2004)

RUBIK: Proactive, Entity-Centric and
Personalized Situational Web Application Design

Devis Bianchini1(B), Silvana Castano2, Valeria De Antonellis1, Alfio Ferrara2,
Elisa Quintarelli3, and Letizia Tanca3

1 Department of Information Engineering, University of Brescia, via Branze 38,
25123 Brescia, Italy

{bianchin,deantone}@ing.unibs.it
2 Department of Computer Science, Università degli Studi di Milano,

via Comelico 39, 20135 Milan, Italy
{silvana.castano,alfio.ferrara}@di.unimi.it

3 Department of Electronics and Information, Politecnico of Milan, via Ponzio 34/5,
20133 Milan, Italy

{quintare,tanca}@elet.polimi.it

Abstract. Over the last years many efforts have been invested in devel-
oping Situational Web Applications (SWAs), that is, applications tar-
geted at users’ specific requirements. A specific category of SWAs are
personalized portals which collect data from documental, social and
Semantic Web repositories, often accessed by means of appropriate Web
APIs, and present the collected resources tailored on users’ needs. Given
the growing number and heterogeneity of existing web resources and
of the Web APIs to access them, SWA design should be supported by
advanced techniques to collect and compose data and Web APIs which
are most appropriate for the target users. In light of these considerations,
an integrated approach specifically conceived for SWA design should be:
(i) entity-centric, by clouding data coming from multiple sources related
to a given topic of interest; (ii) personalized, by filtering data for target
users, according to their situations and contexts; (iii) proactive, by sug-
gesting Web APIs used to access data of interest in order to ease their
composition in the SWAs. In this paper we describe the RUBIK app-
roach, specifically conceived for entity-centric, personalized and proactive
composition of SWAs.

Keywords: Web data clouding · Context-aware systems · Personaliza-
tion · Social web · Linked data · Web APIs · Situational web applications

1 Introduction

Nowadays, the increasing engagement of users in the new generations of webs –
like Semantic Web, Web 2.0, Social Web – as both consumers and producers of
web resources, has a relevant impact also on the development of Situational Web

A. Hameurlain et al. (Eds.): TLDKS XIII, LNCS 8420, pp. 123–157, 2014.
DOI: 10.1007/978-3-642-54426-2 5, c© Springer-Verlag Berlin Heidelberg 2014

124 D. Bianchini et al.

Applications [1] (SWAs). SWAs are particular applications targeted at users’ spe-
cific requirements, like personalized portals which collect data from documental,
social and Semantic Web repositories, often accessed by means of suitable Web
APIs, and present the collected resources tailored on needs of users acting as
resource consumers. Noticeably, the variety of available web resources is the
growing, steadily, along with the number and heterogeneity of Web APIs used
to access them. On the one hand, unstructured messages, posts, tags, structured
data and ontological knowledge are provided and shared among web users. On
the other hand, different kinds of domain-specific or general-purpose Web APIs
are independently provided by third parties, e.g., to check the availability of hotel
rooms, to buy tickets on-line, to display data on a map (e.g., GoogleMaps), to
access web resources for Deep-Web-data sharing [2] such as Wikipedia (http://
www.mediawiki.org).

In light of these considerations, SWA design should be supported by advanced
techniques to collect and compose data and Web APIs which are most appropri-
ate for the target users. For instance, in recent approaches to Web API selection
and composition, specifically applied in the context of mashups (which share
some features with SWAs), a component is selected on the basis of its past his-
tory (e.g., number and type of mashups it has been used in, or co-occurrence
with other relevant Web APIs in the same mashups) [3] and on the collective
knowledge of other designers who already used, tagged and rated the component
on the basis of its use in a particular mashup [4].

These approaches cannot be applied in a straightforward way for modern
SWA development. We advocate that a mechanism to identify the topic of inter-
est around which the SWA must be designed and filtering of data according
to target users, their situation and context, should support the SWA designer
during his/her task. The contribution of this paper is an integrated approach,
called RUBIK, overshooting traditional concepts and techniques conceived for
SWA design in order to be: (i) entity-centric, by clouding data coming from
multiple sources related to a given topic of interest; (ii) personalized, by filtering
data for target users, according to their situations and contexts; (iii) proactive,
by suggesting Web APIs used to access data of interest in order to ease their
composition in the SWAs. In particular, RUBIK applies: (i) web data cloud-
ing techniques to support the identification of resources related to the topics of
interest; such resources are used to better focus the selection of the Web APIs
that should be aggregated; (ii) context-aware and personalized filtering of the
resources identified in the previous phase, exploiting on-the-fly the knowledge
about the target users and their context; (iii) Web API selection and aggregation
strategies, adopted to enable the fast composition of Web APIs used to access
resources related to the topics of interest.

1.1 Motivating Example

As a motivating example, consider the case of a web designer, who works for a
multimedia and entertainment publishing company and is in charge of design-
ing a personalized portal about the famous movie director Woody Allen. The

http://www.mediawiki.org
http://www.mediawiki.org

RUBIK: Proactive, Entity-Centric and Personalized SWA Design 125

designer has to collect any kind of data about Allen, using APIs to access various
web sources, and to compose them. For instance, the designer may rely on the
data already available in various public databases and repositories, like the Inter-
net Movie Database (IMDb), Freebase or Wikipedia. However, once the designer
has found these resources, he needs to be supported by a system that can take
advantage of all the however shaped information in the web and of its semantics
(e.g., ontology knowledge, RSS feeds, news, micro-blogging, SOAP services), to
build personalized views over data accessed through available Web APIs. Fur-
thermore, the portal on Woody Allen could be designed for different target users:
for a movie critic, who needs a very specialized web site with fresh information
for intellectuals and cultivated persons, or for a specialized movie festival orga-
nizer, who needs a web site with APIs to find movie theaters and their locations
on a map. In both cases, the portal leverages overlapping contents, with common
data and Web APIs. The Situational Web Application Designer (hereafter, the
SWADler) needs a support system which minimizes the effort spent to design the
portal, by working on a common collection of relevant Web APIs and data, and
properly filtering them to present only the most suitable/pertinent portion(s)
for a specific target user.

Modern approaches on Web API selection and composition implement
advanced recommendation strategies based on collective knowledge on Web API
use in the past [3], combined with semantic tagging and search techniques [4],
properly weighting the expertise of other designers in Web application develop-
ment [5]. These approaches provide relevant results from which our research may
start. Nevertheless, these solutions do not enable the SWADler to:

– perform Web API and resource selection starting from a cloud-link scheme;
tag clouds are an effective visual mean, widely applied in the Social Web
context, to display any possible kind of data and data relationships follow-
ing a folksonomy-like style; a tag cloud-link scheme can be used to gather
data related to a topic of interest, coming from multiple webs and browsing
them according to an exploratory perspective, that best fits the condition of a
SWADler, who may have not exactly in mind what are the contents more suit-
able to be included in the application being developed; existing approaches do
not provide more than a keyword-based search or a search based on semantic
tagging, using the “page view” access style of search engines and focusing on
Web API descriptions, not considering also web data on which the Web APIs
provide access; moreover, data clouds may provide keyword expansion which
increases the recall of Web API and web resource searching process;

– filter the available data, given a topic of interest, on the basis of the knowledge
of the target users and their current situation; this can be performed tailoring
the cloud-link scheme on users’ contents and needs; existing context-aware
Web application design methodologies [6] are not devoted to the selection of
third-party Web APIs and do not start from available data clouds; never-
theless, context-aware filtering may significantly increase the precision of the
Web API and web resource searching process.

126 D. Bianchini et al.

In the following, we will discuss how the distinctive features of the RUBIK
approach, that is, the joint application of data clouding, context-aware
web resource filtering and Web API selection, may be exploited to meet the
SWADler’s requirements introduced above.

1.2 Paper Organization

This paper is organized as follows. The next section describes the reference
methodology and the support tool components characterizing the RUBIK app-
roach. Sections 3, 4, 5 and 6 are the core sections of the paper, devoted to
describe in details the RUBIK phases. Section 7 is devoted to evaluation issues
while Sect. 8 reviews the state-of-the-art to highlight the cutting-edge elements
of RUBIK. Finally, Sect. 9 closes the paper.

2 The RUBIK Approach

The RUBIK approach for SWA design fosters a reference methodology together
with envisaged versions of tool support workflows to help the SWA designer
during his/her task where API should be realized.

2.1 The Proposed RUBIK Methodology

The RUBIK methodology is shown in Fig. 1.
Web data clouding is the first phase, to identify, classify and organize relevant

web resources into web data clouds. Starting from a target of interest which
synthesizes in form of keyword(s) the goal of the SWA to be designed, the web
data clouding phase produces a large collection of web resources about the target,
extracted from documental, social and Semantic Web repositories. Extracted
resources are organized into a web data cloud graph structure, where each node
represents a cluster of similar web resources and an edge represents a relation
of proximity between clusters. Clusters are associated with Web APIs used to
access the underlying web resources. Techniques for the construction of the web
data cloud will be described in Sect. 3.

The second phase of the SWA design concerns the context-driven filtering
of the web data cloud. The goal is to identify possible personalizations within
the web data cloud (for subsequent selection of web resources and APIs) for
the construction of different SWAs depending on the needs of their target users.
To this aim, the RUBIK system builds an internal model of the target users’
contexts in order to prune the web data cloud to produce contextual data clouds.
A contextual data cloud is actually a different facet on the web data cloud –
therefore the name RUBIK for our system, suggesting a cube with several faces
on the relevant contents. The internal context model captures all the possible
contexts the target users of the SWA might be acting in, by means of a set of
dimensions such as: the main topics of interest, the position, the current user
role such as movie critic or movie festival organizer. The detailed description of

RUBIK: Proactive, Entity-Centric and Personalized SWA Design 127

Web data
clouding

Keyword(s)

Context-driven

Web API
selection

Interactive
composition

Web
resources

Public
semantic/
social/web
repositories

Web data
cloud

Contextual
data cloud

Public web API
repository

Selected
Web APIs

Situational Web
application

Web API
descriptors

filtering

Fig. 1. The RUBIK methodology for SWA design.

the context model on which this phase relies and its exploitation for personalized
SWA design will be described in Sect. 4.

The third and fourth phases rely on advanced techniques to select Web APIs
apt to access data for the target of interest and to proactively support the
SWADler during an incremental SWA composition by highlighting: (i) APIs
that are similar each other and can be included as alternatives in the SWA
under construction; or (ii) APIs that can be easily included together in the SWA
being developed. Each time the SWADler inserts a new Web API, the system
suggests APIs similar to those already included in the SWA and additional APIs
that can be easily coupled with other APIs already included in the application.
This interactive Web API composition is performed by relying on similarity
between Web APIs extracted from the ProgrammableWeb repository and their
co-occurrences in past Web mashups, which can also be inferred from the same
repository. We chose the ProgrammableWeb repository since, to the best of our
knowledge, it is the most popular and updated Web API repository available
on-line. Section 5 will detail the way the Web APIs are properly selected start-
ing from the contextual data cloud. Web API interactive composition will be
described in Sect. 6.

128 D. Bianchini et al.

SWADler

Data Acquisition Data Clouding

Cloud-DB repository

Tagged Resources

Microdata Resources

Semantic Web Resources WDIs

Web data cloud

Cloud Filtering

Web API selection

Current contextual cloud

Public Web API Repository
(ProgrammableWeb)

Situational
web data & API

composition

Current contextual cloud

Selected
Web APIs

Final Situational Web Application

Hannah and Her Sisters

Hannah and Her Sisters is
a 1986 American comedy-

intertwined stories of an
extended family over two
years that begin and end
with a family Thanksgiving
dinne

Set of keywords

answers to context questionnaire

SWA composition

Fig. 2. The functional modules of the general-purpose version of RUBIK.

The four phases ensure the three innovative aspects of the RUBIK approach:
web data clouding enables entity-centric collection of web resources and related
APIs around a given topic of interest; context-driven filtering ensures personal-
ization of SWA contents; finally, the last two phases enable proactive exploration
and selection of available data and Web APIs from huge and heterogeneous API
repositories.

2.2 RUBIK Versions

The proposed methodology is implemented by the functional modules depicted
in Figs. 2 and 3, corresponding to two different versions of the RUBIK system.
Each version captures a typical situation of SWA design, as follows:

– a general-purpose version (see Fig. 2), which is domain-independent, in that
it supports entity-centric, personalized and proactive SWA design in differ-
ent application domains of interest; working with this version, keyword(s)
specified by the SWADler for the topic of interest are used to lookup all
the repositories of the various webs in order to extract relevant resources to
build the web data cloud through the Data Acquisition module; moreover, the
SWADler defines the context of the target users of the SWA by answering a
predefined questionnaire to assign values to the contextual dimensions; such
values refer to generic contextual perspectives as they are not related to a
specific application domain;

RUBIK: Proactive, Entity-Centric and Personalized SWA Design 129

SWADler

Data
Acquisition

Data Clouding

Cloud-DB repository

Tagged Resources

Microdata Resources

Semantic Web Resources

WDIs

Cloud Filtering

Web API selection

Current contextual cloud

Public Web API Repository
(ProgrammableWeb)

Situational
Web data & API

composition

Selected Web APIs

Final Situational
Web Application

Hannah and Her Sisters

Hannah and Her Sisters is
a 1986 American comedy-

intertwined stories of an
extended family over two
years that begin and end
with a family Thanksgiving
dinne

Domain
Designer

Web data cloud

Local
Application

RUBIK
Service

Requirement

Keywords

Publishing
Company

SWA composition

Current
contextual cloud

keywords and answers to contextual questionnaire

Fig. 3. The functional modules of the customized version of RUBIK.

– a customized version (see Fig. 3), which is domain-focused, in that it supports
SWADlers during the SWA design activities within a certain domain of interest
(e.g., movies from the 1970s to the 1990s); the customized version comes with
a pre-defined web data cloud built at the setup stage with the help of a
specialized domain designer; the domain designer is a domain expert who
interacts with the SWADler to gather all information about the application
domain the SWADler is interested in, in order to setup a comprehensive web
data cloud and a focused context schema; working with the customized version
means that the SWADLer keyword(s), specifying the target of interest (i.e.,
Woody Allen), are directly applied to the pre-defined domain web data cloud
(i.e., the movies from the 1970s to the 1990s), thus making the definition of
the web data cloud for the target much more efficient than in the case of
the general-purpose version; in the pre-defined web data cloud, all potentially
useful resources have been included by the domain designer, such as the copies
of the movies themselves, the biographies of their actors and directors, the
books that inspired them and similar; moreover, the contextual dimensions
instantiated by the SWADler have been also defined by the domain designer
having in mind the specific application domain, thus they are more focused
than in the general-purpose version.

In both versions, Web API selection and interactive composition over the contex-
tual data cloud proceed in a similar way. The Web API selection module supports
the extraction of available Web APIs from the ProgrammableWeb repository, after
which the Situational web data & API composition module proactively supports
the SWADler in the aggregation of the selected APIs to obtain the final person-
alized SWA. Using the customized version, the SWADler is able to build more
precise and customized SWAs, by acting on the pre-defined web data cloud and

130 D. Bianchini et al.

by adopting the ad-hoc context schema. The customized version of RUBIK is
recommended in all situations where it is known that the SWA design will take
place in the same application domain. The general-purpose version is generic,
comes without any setup and thus can be used in many SWA design situations,
not bound to a specific application domain. Using the general-purpose version,
the SWADler accepts the trade-off between lower cost of the tool, higher versa-
tility and lower precision (and sometimes also lower recall) in finding relevant
Web contents and APIs.

3 Web Data Clouding

The web data clouding phase produces a large collection of web data about the
target of interest, organized by similarity levels into data clouds to be exploited
in subsequent steps for API indexing and context-aware personalization and
filtering.

3.1 Data Acquisition

RUBIK works on different kinds of web resources: (i) tagged resources, that are
web resources coming from bookmarking and social annotation systems, includ-
ing annotated web pages, images and videos; (ii) microdata resources, that are
web resources coming from microblogging systems and news feeds; (iii) semantic
web resources, that are web resources coming from RDF(S) knowledge reposito-
ries, Linked Data sources and/or OWL ontologies.

The goal of data acquisition is to represent and store each acquired web
resource in a homogeneous way, based on the notion of web data item (WDI
in the following). A web data item wdii is a metadata representation of a web
resource i, such as for example a single annotated web page, an RSS news item,
or an RDF/OWL individual. WDIs represent also properties and types in the
case of semantic web resources (e.g., RDF/OWL properties and classes, Freebase
types). A WDI is denoted by a unique identifier, a human-readable name and
a resource type, whose values, either I, P, or C, denote the fact that the WDI
represents an individual, a property, or a class/type, respectively. WDIs are
associated with a collection of terms extracted from the original web resource
(called terminological equipment). In particular, the terminological equipment
is extracted from tags in case of tagged resources, from the textual content of
microdata resources and from the property values of semantic web resources.
Moreover, in case of semantic web resources, WDIs are associated with a set of
types, taken from the classification of the resource in the original datasource,
and with a set of predicates, which represent the properties of the resources and
their values.

WDIs are stored into the cloud-DB repository, namely a relational database
designed according to the schema shown in Fig. 4. The cloud-DB repository is
conceptually divided into three main sections: (i) data collection, storing WDI
representations of all the web resources collected for a target of interest; (ii) data

RUBIK: Proactive, Entity-Centric and Personalized SWA Design 131

data clouding

data collection

Fig. 4. Schema of the cloud-DB repository.

classification, storing the output of the classification process in terms of similarity
results; (iii) data clouding, storing the data cloud structure. In particular, for
what concerns data collection, the cloud-DB provides a main table (wdi), which
contains WDIs featured by their readable name (a label) and the resource type.
Each WDI is then associated with its terminological equipment (terminological

equipment table). Each term in the terminological equipment is associated with
the number of times the term appears in the original resource (i.e., frequency). The
type equipment of a WDI is represented through the type table. When we acquire
a resource that has a type (e.g., an ontological instance, an RDF description),
we create in the wdi table a WDI of type instance for the resource and other
WDIs of type class for representing the original types/classes of the resource.
Then, the type table is used in order to store the association between instances
and types. Moreover, a WDI is also associated with one or more predicates
(predicate), that are featured by a property, a concrete value and an abstract
value. The property is another WDI used to present properties of the original
datasource. The concrete value is used to store original property values consisting
in strings, dates, numbers. The abstract value is used to store the property value
when it consists of a reference to another WDI.

Data are acquired by means of specific wrappers designed on top of the
structure of the web data sources selected for the acquisition process, by using the
APIs provided by the web source at hand, when available. In the general-purpose
version of RUBIK, pre-defined wrappers are available for a set of web sources,
which actually include Twitter (http://twitter.com), Delicious (http://delicious.
com/), a generalized wrapper for the RSS 2.0 standard, Freebase (http://www.
freebase.com/) and DBpedia (http://dbpedia.org). In the customized version
of RUBIK, when new specific web sources are required for SWA design, the
corresponding wrappers can be added to the data acquisition module according
to a modularized architecture, which requires only to create the wrapper and
connect it to the cloud-DB for storing the WDIs acquired from the web source
at hand.

http://twitter.com
http://delicious.com/
http://delicious.com/
http://www.freebase.com/
http://www.freebase.com/
http://dbpedia.org

132 D. Bianchini et al.

Data acquisition (a) WDI representation (b)

Query
http://delicious.com/search?p=woody+allen

Example of results
Woody Allen Returns to New York
in ’Whatever Works’ – New York Magazine
39 saves
http://nymag.com/movies/features/56930/

film – woodyallen – humor – movies
larrydavid – interview – comedy
article – funny – humour

wdi
id label res. type
...?p=woody+allen Woody Allen... I

terminological equipment
wdi term frequency
...search?p=woody+allen humor 2
...search?p=woody+allen film 1
...

Fig. 5. Example of data acquisition from Delicious (a) and corresponding WDI repre-
sentation (b).

In order to provide examples of data acquisition supported in RUBIK, we
consider the Delicious repository, the IMDb movie web site and Freebase.

An example of data acquired from Delicious by submitting the query “Woody
Allen”1 is shown in Fig. 5, together with its corresponding WDI representation.

As shown in the example, a WDI is created for each entry of Delicious,
reporting the URL of the tag list and the entry title as label. Then, each tag
is associated with the newly created WDI in the terminological equipment table,
together with the number of occurrences of each tag.

An example of data acquisition from the IMDb RSS channel about Allen is
shown in Fig. 6. WDI representation of an RSS news item (and, in general, of
microdata resources) is characterized by a set of properties featuring the resource
itself. The set of properties is extracted from the flat structure of microdata
resources, such as, in the case of RSS news items, the title and the publication
date. These properties are represented in RUBIK as predicates associated with
the WDI. The terminological equipment is built by extracting a list of featuring
terms from the textual content of the resource.

Data acquisition from Freebase is performed by first retrieving the Freebase
ID /en/woody allen corresponding to Woody Allen and subsequently running a
set of queries expressed through the MQL query language used in Freebase, such
as the one shown in Fig. 7. The MQL query shown in Fig. 7 searches for all the
movies directed by Woody Allen. The WDI representation extracted from the
query answer is defined according to the RDF graph that can be derived from
the model (e.g., RDF(S)/OWL) associated with the resource. The terminological
equipment is defined as the set of all the terms appearing in the nodes and edges
of the RDF graph such as concept names, property names, URI labels, comments
and literals. Predicates are built by adding a new WDI predicate for each edge of
the RDF graph. WDI types are defined by taking into account the classification
of the resource in the RDF graph, by adding a new type for each RDFS class
associated with the resource at hand.
1 http://delicious.com/search?p=woody+allen

http://delicious.com/search?p=woody+allen

RUBIK: Proactive, Entity-Centric and Personalized SWA Design 133

Data acquisition (a) WDI representation (b)

Query
http://www.imdb.com/news/ni26786922/

Example of results
Film Review: ’To Rome with Love’
22 April 2012 3:36 PM, PDT

Having outstayed his welcome in London
before a brief and pleasant sojourn in Paris,
Woody Allen continues his European tour,
this time landing in Rome with a heavy
(handed) bump courtesy of latest release
To Rome with Love (2012)...

wdi
id label res. type
...ni26786922/ Film Review: ’To Rome... I
title title P
pubDate date P

terminological equipment
wdi term frequency
...ni26786922/ european 1
...ni26786922/ rome 2
...

predicate
id subject predicate object value
149 ...ni26786922/ title NULL Film Rev...
150 ...ni26786922/ pubDate NULL 22/04/2012
...

Fig. 6. Example of data acquisition from IMDb news (a) and corresponding WDI
representation (b).

3.2 Data Clouding

A web data cloud is defined as a graph G = (N , E), where a node ni ∈ N
represents a cluster of web resources and an edge ej(ni, nk) ∈ E represents a
relation of proximity between clusters ni and nk, respectively.

The construction of a web data cloud is based on a classification process,
which has the goal of clustering similar web resources by exploiting information
in their WDI representations. A cluster in a web data cloud contains a set of
similar web resources among those collected for the target. A web data cloud
cluster is associated with an essential, that is a synthetic and representative
description of the cluster contents. The essential of a cluster cli is composed of a
set Ki of keywords and a set Ti of types extracted from terminological and type
equipments of the WDIs belonging to cli, respectively. In particular, Ki contains
the most relevant terms in the terminological equipments of WDIs belonging to
cli, while Ti contains the most relevant types in the type equipments of WDIs
belonging to cli. Term and type relevance values for a cluster cli are calculated
using conventional TF/IDF Information Retrieval measures [7].

A proximity relation between two clusters denotes the fact that resources
therein contained are in some way related. Proximity relations are labeled with
a degree of proximity, that is a measure of the strength of the relation holding
between involved clusters. In particular, given two clusters cli and clj , their
proximity relation represents a relation of content-based similarity between cli
and clj and it is associated with a proximity degree Xij which is proportional
to the number of similar WDIs between cli and clj over the number of all the
WDIs in cli.

Finally, a cluster cli in a web data cloud is characterized by a degree of
prominence which measures the relative relevance of cli in the web data cloud
considering the number and strength of proximity relations holding between cli

134 D. Bianchini et al.

Data acquisition (a) WDI representation (b)

Query
[{ ‘id’: ‘/en/woody allen’,
‘type’: ‘/film/director’,
‘/film/director/film’: []}]

Example of results
{
‘‘code’’: ‘‘/api/status/ok’’,
‘‘result’’: [{

‘‘/film/director/film’’: [
‘‘A Midsummer Night’s Sex Comedy’’,
‘‘Annie Hall’’,
...],

‘‘id’’: ‘‘/en/woody allen’’,
‘‘type’’: ‘‘/film/director’’
}

wdi
id label res. type
/en/woody allen Woody Allen I
/film/director/film film director P
/film/director director C
/en/a midsummer ... A Midsummer... I
/en/annie hall Annie Hall I
...

terminological equipment
wdi term frequency
/en/woody allen director 1
/en/woody allen film 1
...

predicate
id subject predicate ...
187 /en/woody allen /film/director/film ...
188 /en/woody allen /film/director/film ...
...

predicate
... object value
... /en/a midsummer... A Midsummer Night’s...
... /en/annie hall Annie Hall
...

type
instance class
/en/woody allen /film/director

Fig. 7. Example of data acquisition from Freebase (a) and corresponding WDI repre-
sentation (b).

and the other clusters of the web data cloud. In RUBIK, prominence is computed
on the basis of the random walks procedure that has been proposed in [8]. This
measure is calculated by counting how often a cluster cli is traversed by a random
walk between two other clusters, using proximity relations between clusters as
paths in the web data cloud.

An example of web data cloud about the target “Woody Allen” is shown
in Fig. 8. In the example, clusters are represented as circles whose diameter is
proportional to the cluster prominence. Proximity relations between clusters are
represented as lines whose thickness is proportional to the degree of proxim-
ity. Clusters are associated with their corresponding essentials, represented as
squares. Finally, each cluster is also associated with a sample of web resources
it contains, shown in a dashed squares.

To construct the web data cloud, we employ matching techniques to evalu-
ate the level of similarity between the WDIs stored in the cloud-DB repository.
The choice of the matching techniques to use has to comply with the differ-
ent complexity which characterizes the various web resources, and consequently,
their corresponding WDI representations. We note that the terminological equip-
ment is the only equipment always defined, despite of the kind of web resource.
Moreover, for a tagged or a microdata resource, the terminological equipment

RUBIK: Proactive, Entity-Centric and Personalized SWA Design 135

Web data Cloud of Woody Allen (/en/woody_allen)

Essential

Cluster-related web resource

Proximity relation

Cluster
/time/event

/award/ranked_item

/location/uk_statistical_location

/meteorology/
cyclone_affected_area

/visual_art/art_subject

/base/movietheatres

/celebrities/celebrity

...

/en/bananas
/en/manhattan
...

/en/match_point
/en/hannah_and_her_sisters

/en/england
/en/united_kingdom

/en/united_states
/en/mexico

/en/paramount_theater
/en/los_angeles_theatre

/en/united_kingdom
/en/italy
/en/spain

/en/mia_farrow
/en/diane_keaton

/en/diane_keaton
/en/meryl_streep
/en/anne_byrne
...

Fig. 8. Graphical representation of the ten most prominent clusters in the web data
cloud for Woody Allen.

captures most of the informative content of the whole resource. For this reason,
term matching techniques play a crucial role for similarity evaluation. More-
over, term matching techniques are exploited by more articulated matching tech-
niques to evaluate type and structural measures of semantic similarity between
web resources. WDI similarity evaluation is performed by exploiting the match-
ing library of HMatch 2.0 matching system [9,10], where a wide set of string
matching functions are available to accommodate different matching require-
ments and cases.

On the basis of similarity coefficients resulting from matching, a hierarchical
clustering technique of agglomerative type is employed to perform WDIs clas-
sification [11,12]. “Agglomerative” refers to the property of the technique to
proceed by a series of successive merging of similar WDIs into groups. “Hierar-
chical” refers to the property of the technique to classify WDIs into groups at
different levels of similarity to form a similarity tree, where leaves represent WDIs
and internal nodes correspond to virtual elements (called “centroids”). Given a
similarity tree, clusters of similar WDIs are selected according to a threshold-
based mechanism. In particular, given a threshold t, each cluster cli selected
for clouding corresponds to the largest subtree of T whose root node (i.e., the
similarity coefficient of cli) is greater than or equal to t. With respect to the
web data cloud about Woody Allen shown in Fig. 8 the agglomerative clustering
process produces several clusters representing movies, actors and other subjects
related to the activity of Allen as a director. As an example, we can focus on
clusters representing movies and actors working in Allen movies (i.e., clusters 10

136 D. Bianchini et al.

and 17, respectively). The cluster containing movies is then related to another
cluster (i.e., cluster 9) which is about those movies that received awards and
nominations, such as for example the movie “Match Point”. In this case, movies
have been aggregated in two groups because those winning an award are more
mutually similar than other Allen movies. Similarly, cluster 17 about the actors
in the Allen movies crew is strictly related to cluster 19 through a proximity
relation, in that cluster 19 represents a subset of actors which are considered as
celebrities.

4 Context-Driven Cloud Filtering

In this section we show how the knowledge about the user’s context is used to
prune the web data cloud. For this purpose we have developed an early-tailoring
approach, equally applicable to the two versions of RUBIK.

Context Model. In this work we adopt the Context Dimension Model, for-
mally presented in [13], to capture all the possible contexts the user might be
acting in. This model is general, provides multiple abstraction levels (describing
the contexts with different levels of granularity), is readable (to serve as design
documentation) and expressive (allowing querying, reasoning or constraint spec-
ification on the contexts) [14,15]. The Context Dimension Model provides the
constructs to design the context schema (or Context Dimension Tree – CDT)
by means of a hierarchical structure. Figure 9 shows (a) the CDT built by the
domain designer for the customized version of RUBIK, in the case of our run-
ning example, and (b) the generic CDT, built-in into the general-purpose version
of RUBIK. The CDT consists of (i) context dimensions (black nodes), model-
ing the context variables, that is the different perspectives through which the
user perceives the application domain (e.g., situation, interest topic) and (ii) the
allowed dimension values (white nodes), i.e., the possible values based on which
the contexts are to be instantiated.

The CDT of Fig. 9(a) has as dimensions the situation, the current interest-
topic, the event and the genre of movies the user is interested in, the time and
location. Each dimension node has as children the possible values the domain
designer considers relevant for the specific target domains. For example,
the interest-topic values are: movie, actor, director. Each of such values has
a parameter which can be instantiated at run-time in case the SWADler wants
to choose a specific movie (e.g., mID), actor (e.g., aID) or director of interest
(e.g., dID).

The CDT of Fig. 9(b) has not been defined by the domain designer. Each of
the dimensions domain and interest topic assumes as value a set of keywords:
these are used, together with spatial and temporal information (the two other
dimensions), to filter the web data cloud.

Any set of dimension values from the CDT can be thus used to filter the
web data cloud information. According to a formal point of view, a context
is defined as a conjunction of context elements, i.e., statements of the form

RUBIK: Proactive, Entity-Centric and Personalized SWA Design 137

situation

re
vi

ew

time

se
ar

ch
 fo

r
in

fo
rm

at
io

n

tr
an

ge

ts
ta

m
p

interest-topic

location

ad
dr

es
s

global cloud

genre

gI
D

ra
ng

e

m
ID

event

movie

dI
D

actor

aI
D

director

domain time

tr
an

ge

tim
es

ta
m

p

interest-topic location

ad
dr

es
s

global cloud

ra
ng

e

se
t o

f c
on

te
xt

ua
l

ke
yw

or
ds

se
t o

f d
om

ai
ns

(b)

festival award
showing

(a)

Fig. 9. The Context Dimension Trees for the running example, in the customized
version (a) and general-purpose version (b) of RUBIK.

dimension=value, and represents a possible point of view we used to regard the
relevant cloud portion.

Let us consider the customized version of RUBIK for our running scenario
related to movies from the 1970s to the 1990s. The SWADler wants to create a
SWA to look for information about awards related to dramatic movies directed
by Woody Allen. His target context, derived from the CDT of Fig. 9(a), is:
C1 ≡genre=(gID=“dramatic”) ∧event=“award”∧ interest topic= director(dID=
“Woody Allen”) .

In the general-purpose version of RUBIK, instead, the SWADler has to
develop a SWA for a movie critic writing a review about movies by Woody Allen.
The target context derived from the CDT of Fig. 9(b) is C2 ≡set of domains=
“movies” ∧ set of contextual keywords=“Woody Allen”. Note that, in this case,
the SWADler needs to specify the domain “movies”, which is implicit in the
customized version of RUBIK because of the preparatory work of the domain
designer.

The adoption of a hierarchical structure allows us to employ different abstrac-
tion levels to specify and represent contexts. Indeed, even if this is not highlighted
in our running example, a dimension value can be further refined by using (sub-
)dimensions. It is also possible to define appropriate constraints on the schema,
which prevent meaningless combinations of context elements for the current
application scenario. Moreover, the CDT provides support to context evolution.
We do not delve into details here; for a formal and complete description refer
to [16].

The SWADler, who wants to build a personalized SWA, fills out a predefined
questionnaire to determine the context of the target users of the application.
By focusing the attention on relevant information for the possible active con-
texts, the semi-automatic tailoring of web data cloud can be performed. In the
customized version of RUBIK, at design time the SWADler must associate to
each context a view over the web data cloud. In the general-purpose version, this
association is also hard-wired in RUBIK. In both cases, the association remains
virtual, and will be applied to the whole cloud, so that the SWADler will be

138 D. Bianchini et al.

CREATE VIEW CRubik.wdi AS
SELECT wi.id AS id, wi.label AS label, wi.resource type AS resource type
FROM Rubik.wdi AS wi JOIN Rubik.terminological equipment AS te

ON wi.id=te.wdi
WHERE (te.term like S(VALUE2) OR ... OR te.term like S(VALUEn))

AND (wi.label like S(VALUE1) OR wi.id in
SELECT t.instance
FROM Rubik.type t
WHERE t.class like S(VALUE1))

UNION
SELECT wi.id AS id, wi.label AS label, wi.resource type AS resource type
FROM Rubik.wdi AS wi JOIN Rubik.terminological equipment AS te

ON wi.id=te.wdi
WHERE (te.term like S(VALUE1) OR ... OR te.term like S(VALUEn))

AND (wi.label like S(VALUE2) OR wi.id in
SELECT t.instance
FROM Rubik.type t
WHERE t.class like S(VALUE2))

UNION
...

Fig. 10. The generic SQL view to tailor the wdi relation.

provided access only to Web APIs useful to build the SWA coherent with the
target context.

Definition of the contextual views. Once the CDT for the specific applica-
tion domain has been defined, to associate the various possible contexts with the
context-relevant portions of the web data cloud, the SWADler specifies contex-
tual views over the cloud-DB database (see the schema in Fig. 4). The contextual
view for each context C is defined as a set of SQL views, one for each relation
Ri of the database, that can be used to: (i) pick the entire relation Ri, (ii) filter
some tuples by specifying a selection condition and/or by using only the join
operator with other relations, (iii) combine different expressions on Ri by means
of the intersection or union operators.

In previous work [13] the context-aware view on a database for a context C
is manually written as a set of relational algebra expressions over the database
schema. In RUBIK, where the cloud-DB database is known, contextual views
are defined by using the SQL language in an almost automatic way, since the
conditions for the WHERE clause of SQL queries can be extracted from the
keywords and the context specification is obtained from the questionnaire.

Specifically, given a generic context

C ≡ (dim1 = VALUE1) ∧ · · · ∧ (dimn = VALUEn) (1)

a contextual view filters the data collection part of the cloud-DB database, and
in particular the wdi relation (see Fig. 10).

As shown in Fig. 10, this SQL view is composed as the union of n subqueries,
where n is the number of context elements composing the context C. The query
contains the operator S(keyword)={k1, . . . , kn}, which is the synset (that is,
the set of synonyms) for the concept “keyword” returned by WordNet lexical
system [17]. The values VALUEi are obtained from Eq. (1), further automation

RUBIK: Proactive, Entity-Centric and Personalized SWA Design 139

CREATE VIEW CRubik.wdi AS
SELECT wi.id AS id, wi.label AS label, wi.resource type AS resource type
FROM Rubik.wdi AS wi JOIN Rubik.terminological equipment AS te

ON wi.id=te.wdi
WHERE (te.term LIKE S(“award”) OR te.term LIKE S(“ Woody Allen”))

AND (wi.label LIKE S(“dramatic”) OR wi.id in
SELECT t.instance
FROM Rubik.type t
WHERE t.class LIKE S(“dramatic”))

UNION
SELECT wi.id AS id, wi.label AS label, wi.resource type AS resource type
FROM Rubik.wdi AS wi JOIN Rubik.terminological equipment AS te

ON wi.id=te.wdi
WHERE (te.term LIKE S(“dramatic”) OR te.term LIKE S(“Woody Allen”))

AND (wi.label LIKE S(“award”) OR wi.id in
SELECT t.instance
FROM Rubik.type t
WHERE t.class LIKE S(“award”))

UNION
SELECT wi.id AS id, wi.label AS label, wi.resource type AS resource type
FROM Rubik.wdi AS wi JOIN Rubik.terminological equipment AS te

ON wi.id=te.wdi
WHERE (te.term LIKE S(“dramatic”) OR te.term LIKE S(“award”))

AND (wi.label LIKE S(“Woody Allen”) OR wi.id in
SELECT t.instance
FROM Rubik.type t
WHERE t.class LIKE S(“ Woody Allen”))

Fig. 11. The SQL view to tailor the wdi relation for context C1.

can be achieved by using the dimension values extended with their synsets.
Each subquery in Fig. 10 applies the join operator between the relations wdi
and terminological equipment. The subquery extracts from the wdi relation:
(a) the tuples having the value of the label attribute that matches one of the
words in the synset of VALUEi and contains a term that matches one of the
other dimension values; or (b) the tuples related to a tuple in the type relation
having the value of the class attribute that matches the same condition.

For example, to build a SWA for the context C1, the system will impose a
filter on the table wdi based on the synsets of the genre “dramatic” and the
interest topic value “award”, then on the synset of the director “Woody Allen”.
The resulting SQL query is shown in Fig. 11.

Cloud filtering: generation of the contextual data clouds. A contextual
data cloud for a target context C is obtained by considering, from the original
web data cloud, only those clusters that are related to the WDIs in the contextual
view CRubik.wdi, that is:

CREATE VIEW C1Rubik.cluster AS
SELECT wi.id AS id, wi.label AS label, wi.resource type AS resource type
FROM Rubik.cluster AS c , Rubik.essential type AS et,

C1Rubik.wdi AS wi
WHERE cr.cluster id=c.id AND c.id=et.cluster

AND c.id=et.cluster id AND et.type=wi.id

140 D. Bianchini et al.

At this point, the RUBIK system uses the contextual data cloud to provide
the SWADler only with the APIs related to the contextual data cloud essentials.
In the customized version of RUBIK, during the process of virtual tailoring,
the SWADler might judge that, for certain contexts, the contextual data clouds
produced automatically by RUBIK are not satisfactory. For example, they might
be “too large”. RUBIK provides the SWADler with the possibility to modify
the automatically produced views. In this case, in order to further reduce the
number of clusters and consider only those that are really important, he/she
restricts the view on the relation cluster on the basis of the centrality value
stored in the contextual relevance relation. For context C1 the contextual
view becomes:

CREATE VIEW C1Rubik.cluster as
SELECT wi.id AS id, wi.label AS label, wi.resource type AS resource type
FROM Rubik.cluster AS c , Rubik.essential type AS et,

C1Rubik.wdi AS wi, Rubik.contextual relevance AS cr
WHERE cr.context=C 1 AND cr.centrality> µ AND cr.cluster id=c.id

AND c.id=et.cluster AND c.id=et.cluster id AND et.type=wi.id

In this way, the contextual data cloud for the context C1 contains only the
clusters that are both related to WDIs selected for C1 and in the context C1

have a centrality value greater than a threshold µ. Note that these design choices
make the contextualization of the customized version much more accurate than
in the general-purpose case.

The contextual data cloud generated from the views for the context C1 is
shown in Fig. 12. Note that some clusters of the original web data cloud have been
excluded: only 25 clusters out of 53 have been selected in the tailoring process.
In this case, no filter has been applied to the centrality value. For example,
in John’s contextual data cloud the cluster number 2 describing the locations
where movies are shown is not present, since this information is not relevant in
the current context. The tuples in the wdi relation are 332 (they were 12546
in the original table) because only WDIs related to the “award” concept have
been selected. Globally, the contextual data cloud is reduced to 25% of the
original web data cloud; the tailoring process has improved both the focus of
the clusters and related WDIs and their quality; indeed, also a great number of
numeric values not related to terms mentioning the concept “award” (or one of
the concepts in its synset) are not included in the contextual data cloud.

It is interesting to note that the use of context can be coupled with that of
the SWADlers’ personal preferences, thus allowing for a finer personalisation.
In general, contextual preferences determine a ranking of the data based on
the actual interests and needs of a user when she is in a particular context [18].
Adopting this technique here would induce a ranking on web cloud data as well as
the set of recommended APIs. However, since asking the SWADlers to manually
specify all their preferences seems unrealistic, it is possible to automatically infer
their interests through data mining, adopting the technique described in [19]. The
inference step can be performed by collecting a log of the SWADlers’ choices (in
terms of querying and other activity) when they act in each of the possible

RUBIK: Proactive, Entity-Centric and Personalized SWA Design 141

Essential

Cluster-related web resource

Proximity relation

Cluster

Web data cloud contextual view

/en/diane_keaton
/en/meryl_streep
/en/anne_byrne
...

/en/bananas
/en/manhattan
...

/time/event

...

/celebrities/celebrity

/en/mia_farrow
/en/diane_keaton

Fig. 12. Graphical representation of the clusters in the contextual data cloud of C1.

contexts, and learn from these choices in order to (dynamically) configure a
ranked list of web data (and APIs) to be offered next time the same context
arises.

5 Web API Selection

The RUBIK system provides advanced functionalities to collect Web API
descriptions, link them to the contextual data cloud elements, and evaluate
their similarity to enable more effective, cloud-driven Web API selection and
aggregation. The Web API selection module relies on Web API records within
the ProgrammableWeb repository, which provides the proper methods to retrieve
them2.

The goal of Web API collection is to represent and store Web API Descriptors
(WADs). A WAD Wi is a metadata representation of a Web API in terms of a
name, one or more categories (CWi

), a Uniform Resource Identifier (URI) and
a human-readable description. The WAD is also associated with a collection of
tags {tWi

} (Web API terminological equipment). Moreover, the WAD is related
to a set MWi

of one or more existing mashups, which include the Web API
represented by the WAD. Each mashup is in turn described by a name, a URI, a
2 api.programmableweb.com/.

142 D. Bianchini et al.

Fig. 13. An example of information used to extract Web API Descriptors (WADs)
from the ProgrammableWeb repository.

human-readable description and the set of WADs of Web APIs which the mashup
is composed of. All the information about the WADs and the related mashups are
extracted from the ProgrammableWeb repository. In order to provide an example
of Web API Descriptor, we may take into account the Rotten Tomatoes Web
API to retrieve information about movies (see Fig. 13); its WAD is the following:

W1 = [name: Rotten Tomatoes API;

uri: http://developer.rottentomatoes.com/;

description: Rotten Tomatoes is a website containing information about movies...;

categories: {Recommendations};
terminological equipment: {movies, recommendations, reviews};
mashups: MW1]

According to the ProgrammableWeb repository, the Rotten Tomatoes API has
been used in eight mashups. Among them, the MovieGram application is designed
for finding informations, trailers and ratings on movies, directors and actors and
contains also the Trailer Addict and YouTube API; the InstantPlex appli-
cation is designed to watch trailers, movies and TV shows and contains eight
Web APIs:

m1
1∈MW1 = [name: MovieGram;

uri: http://moviegr.am/;

description: A quick and easy way to find movies, watch trailers and share with friends!;

wads: {Rotten Tomatoes, Trailer Addict, YouTube}]

RUBIK: Proactive, Entity-Centric and Personalized SWA Design 143

m1
2∈MW1 = [name: InstantPlex;

uri: http://instantplex.com/;

description: Discover, queue and watch trailers, movies and TV shows...;

wads: {Facebook, Freebase, GetGlue, Netflix, Rotten Tomatoes, The Movie DB, Twitter, YouTube}]

The activity of linking Web APIs to the contextual data cloud is performed
through the identification of matching between the set Ki of keywords and
the set Ti of types of the essential of each cluster cli in the contextual data
cloud and the terminological equipment of each Web API as extracted from the
ProgrammableWeb repository. The matching between the terminological equip-
ment of Web API descriptors and the features of essentials in the contextual
data cloud is evaluated by applying state-of-the-art term matching techniques
also used for web data clouding acquisition and classification during the cloud
construction [9].

5.1 Web API Similarity Evaluation

Web API similarity is evaluated on the WADs. Specifically, similarity between
WADs can be exploited during web application development to substitute a Web
API already included in the application with a similar one as described in the
next section. Web APIs can be substituted because: (i) they become unavailable;
(ii) application requirements have been changed; (iii) the application context is
changed. Similarity between WADs is evaluated by considering different aspects,
namely the category similarity Simc(), the tag similarity Simt() and the mashup
similarity Simm(). We will explain them with the help of the following example.
Let us consider the MoviePilot Web API, to retrieve information about movies,
whose WAD is the following one:

W2 = [name: MoviePilot;

uri: http://code.google.com/p/moviepilot-api/;

description: Moviepilot is a site which shows the latest news about movies...;

categories: {Recommendations};
terminological equipment: {search, related, recommendations, movies};
mashups: MW2]

According to the ProgrammableWeb repository, the MoviePilot Web API has
been used in the following mashup only:

m2
1∈MW2 = [name: VIDVIDOO;

uri: http://vidvidoo.com/;

description: VIDVIDOO New Releases and Classics Movie Reviews...;

wads: {Amazon eCommerce, MoviePilot, Netflix, Rotten Tomatoes, The Movie DB, YouTube}]

Category similarity. The similarity between two categories ci and cj is inferred
from the ProgrammableWeb repository. Since no hierarchies are defined among
the available categories, advanced semantic-driven techniques (such as category

144 D. Bianchini et al.

subsumption checking) can not be used. Nevertheless, we consider the two cate-
gories as more similar as the number of Web APIs that are categorized in both
the categories increases with respect to the overall number of Web APIs classified
in ci and cj . The average similarity between two WADs W1 and W2 based on
their categories, denoted with Simc(W1,W2)∈[0, 1], is computed, through the
application of the Dice formula [7], as the average similarity between pairs of
categories, one from CW1 and one from CW2 . Pairs of categories to be consid-
ered in the Simc computation are selected according to a maximization function
relying on the assignment in bipartite graphs, which has been introduced in [20].
This function ensures that each category from CW1 participates in at most one
pair with one of the categories from CW2 and viceversa and the pairs are selected
in order to maximize the overall Simc.

For instance, let us consider the Rotten Tomatoes and MoviePilot APIs,
whose WADs have been described above. They are classified in only one category,
Recommendations, which is the same for both of them and contributes to the
category similarity between W1 and W2 with 1.0. According to the Dice formula,
the category similarity is therefore computed as:

Simc(W1,W2) =
2 · (1.0)

2
= 1.0 (2)

where the numerator is doubled since we are comparing two WADs and the
denominator in the formula represents the total number of categories in CW1

and CW2 .

Tag similarity. The similarity between two WADs W1 and W2 based on their
tags, denoted with Simt(W1,W2)∈[0, 1], is computed by evaluating the term
affinity between pairs of tags, one from the terminological equipment of W1 and
one from the terminological equipment of W2, and by combining them through
the Dice formula. Also in this case, pairs are selected according to the same
maximization function used for category similarity evaluation. The term affin-
ity between two tags t1 and t2 belongs to the range [0, 1] and is computed as
extensively described in [20], based on WordNet. In WordNet, synsets are related
by eighteen different kinds of relationships. In particular, hyponymy/hypernymy
relations are used to represent the specialization/generalization relationship
between two terms: for instance, movie is a more specific term with respect
to show; this means that there is a semantic affinity between movie and show.
According to this viewpoint, the affinity between two tags t1 and t2 is maxi-
mum (that is, equal to 1.0) if the tags belong to the same synset or coincide;
otherwise, if they belong to different synsets, a path of hyponymy/hypernymy
relations which connects the two synsets is searched: the highest the number of
relationships in this path, the lowest the term affinity.

For instance, if we consider the terminological equipment of Rotten Tomatoes
and MoviePilot APIs, whose WADs have been described above, there are two
common tags (movies and recommendations) which contribute to the tag sim-
ilarity between W1 and W2 with 1.0 + 1.0 (out of 3 + 4 = 7 tags in the two
terminological equipments). The tag similarity is therefore computed as:

RUBIK: Proactive, Entity-Centric and Personalized SWA Design 145

Simt(W1,W2) =
2 · (1.0 + 1.0)

7
= 0.571 (3)

where the total term affinity is doubled since we are comparing two WADs.

Mashup similarity. Similarity between two mashups, denoted with MashSim(),
is computed as the number of common Web APIs used in both mashups with
respect to the overall number of Web APIs used in the two mashups. For instance,
if we consider the mashups m2

1 and m1
2 in the running example, we have:

MashSim(m2
1,m1

2) =
2 · 4
8 + 6

= 0.571 (4)

since the two mashups share Netflix, Rotten Tomatoes, The Movie DB and
YouTube APIs out of 8 + 6 = 14 Web APIs. Similarly, MashSim(m1

1,m1
2) =

0.444. The average similarity between two WADs W1 and W2 based on the
mashups where they have been included, denoted with Simm(W1,W2)∈[0, 1], is
computed by applying the Dice formula to the values of MashSim() between
pairs of mashups, one from MW1 and one from MW2 , using the same maximiza-
tion function adopted for the other kinds of similarity evaluation. For instance,
in the running example, since MashSim(m1

1,m1
2) < MashSim(m2

1,m1
2), we

select the second pair3. W1 has been included in eight mashups, while W2 has
been included in only one mashup, therefore

Simm(W1,W2) =
2 · 0.571
8 + 1

= 0.127 (5)

6 Interactive Composition

Coming now to the SWA design, the SWADler starts his interaction by introduc-
ing the keyword “Woody Allen” and some information about the target context,
by means of the ad-hoc questionnaire. Then, RUBIK presents the SWADLer not
only with the portion of web data cloud filtered on the basis of keyword ”Woody
Allen” and current context information, but also with the available Web APIs
related to this fragment of cloud, gathered by using the introduced keyword and
context information, and the elements contained in the cloud about Allen. The
APIs can be of different nature. There could be search APIs to obtain informa-
tion about Allen’s books (e.g., Amazon.com) or movies (e.g., IMDb), or blogs
collecting discussions, comments and opinions about books or movies. Now the
SWADler can drag&drop the proposed Web APIs in the design canvas area and
build its SWA. Figure 14 shows the interface presented to a SWADler.

The RUBIK system proactively suggests step-by-step the Web APIs to select
and to aggregate in the application being developed. We distinguish between
completion suggestions and substitution suggestions. In the former, the SWADler
looks for other Web APIs that could be added to the ones already put in the
3 In this example, we did not show the mashup closeness of the other mashups in MW1

with respect to m2
1 because they are all below the MashSim(m2

1,m1
2) value.

146 D. Bianchini et al.

Annie Hall
http://www.freebase.com/
view/en/annie_hall

RUBIK Design Tool

Canvas

Web contents

Web APIs

Woody Allen Search

Movies

Alice
http://www.freebase.com/
view/en/alice_1990

Celebrity

Maps

Movie theaters
booking

Calendar

Annie Hall (1977)
Woody Allen - Diane Keaton, Woody Allen

Annie Hall is a 1977 American romantic comedy
directed by Woody Allen from a screenplay co-written
with Marshall Brickman and co-starring Diane Keaton.

was not found in the farces and comedies that were his
work to that point.

Send

Selection Area

Drag&Drop

Web
resource
clusters

APIs

Fig. 14. The RUBIK interface.

canvas. In the latter, the SWADler looks for Web APIs that are similar to one
of the Web APIs already put in the canvas, that we denote with Ws, properly
selected by the SWADler on the canvas, in order to replace it.

For the Web API completion suggestions, the RUBIK system considers all
the mashups that include at least one of the Web APIs already put in the canvas.
RUBIK evaluates, for each available WAD Wi included in those mashups and
not yet selected for the composition, the percentage of mashups that include Wi.
This percentage is used to rank the Web APIs proposed to the SWADler. For
instance, let us consider the design of a SWA where the Rotten Tomatoes API
only has been selected and put in the canvas. The Netflix Web API has been
used in five out of eight mashups, where the Rotten Tomatoes API has been
used4 (see Fig. 15). Therefore, Netflix is proposed as a first suggestion to the
designer.

For the Web API substitution suggestions, the Web API similarity evalua-
tion described in the previous section is taken into account. In particular, we
distinguish two cases: (1) the SWADler has just started the development of a
new situational application, that is, the canvas only contains the Web API Ws

to be substituted; (2) the canvas contains more than one Web API (and, among
them, it contains Ws). If we are in the first case, the problem is to find Web APIs
Wi in the repository such that the linear combination of their category, tag and
4 For a complete list of these mashups, see http://www.programmableweb.com/api/

rotten-tomatoes/mashups.

http://www.programmableweb.com/api/rotten-tomatoes/mashups
http://www.programmableweb.com/api/rotten-tomatoes/mashups

RUBIK: Proactive, Entity-Centric and Personalized SWA Design 147

Web APIs Mashups where it has been used together with
the Rotten Tomatoes API

YouTube 4 of 8
Rovi Cloud Services, Freebase, 2 of 8
The Movie DB, Trailer Addict

Netflix 5 of 8
Facebook, GetGlue, 1 of 8
Twitter, Last.fm,
Kynetx, Amazon eCommerce,
MoviePilot, Fb Social Plugins

Fig. 15. List of APIs used in one of the eight mashups that include also the Rotten

Tomatoes API.

Compared APIs Simc Simt Simm Average similarity
W1 and W2 1.0 0.571 0.127 0.566
W1 and W3 1.0 1.0 0.0 0.667

Fig. 16. Similarity values to suggest the substitution of the Rotten Tomatoes API
(W1) with the MoviePilot API (W2) or the Filmaster API (W3) when the canvas
only contains Rotten Tomatoes.

mashup similarity with Ws, equally weighted, is different from zero. In this case,
such a linear combination is also used to rank the suggested Web APIs Wi. For
instance, let us imagine to have the W1 Web API only on the canvas. Moreover,
let’s consider the W2 Web API in the example above and the following Web API
Descriptor:

W3 = [name: Filmaster;

uri: http://filmaster.org/display/DEV/API;

description: Movie review and recommendation service;

categories: {Recommendations};
terminological equipment: {movies, recommendations, reviews};
mashups: MW3]

According to the ProgrammableWeb repository, the Filmaster API has not been
used in any other mashup. In this example, the similarity values are shown in
Fig. 16. Therefore, the W3 API is suggested first to the SWADler.

If we are in the second case, the suggestion of an alternative Web API Wi

must take into account the category, tag and mashup similarity of Wi with
Ws, but also the number of times the other Web APIs in the canvas have been
used in the same mashups where Wi has been included. For instance, let us
suppose now that the canvas contains the Rotten Tomatoes and Netflix APIs
and the MoviePilot and Filmaster APIs are considered for substituting the
Rotten Tomatoes API. According to the ProgrammableWeb repository, when
MoviePilot is used, also Netflix API is included in the same mashup, while
the Netflix API and the Filmaster API have not been ever used in the same
mashup. Therefore, the similarity values and percentages shown in Fig. 17 follow
and the MoviePilot API is ranked first.

148 D. Bianchini et al.

Compared APIs Simc Simt Simm % of times the Linear combination
second Web API of values
has been used
together with Netflix

W1 and W2 1.0 0.571 0.127 1.0 (100%) 0.674
W1 and W3 1.0 1.0 0.0 0.0 (0%) 0.5

Fig. 17. Similarity values to suggest the substitution of the Rotten Tomatoes API
(W1) with the MoviePilot API (W2) or the Filmaster API (W3) when the canvas
contains Rotten Tomatoes and the Netflix API.

7 Evaluation Issues

The RUBIK approach merges two fundamental aspects, namely (i) web data
filtering by means of web data clouding and context-aware pruning, and (ii)
proactive Web API selection and aggregation. In this respect, there are neither
benchmarks to compare the RUBIK system with similar efforts nor universally
accepted evaluation parameters on which the comparison can be based. As a con-
sequence, we have chosen to rely on generally agreed-upon information retrieval
and software engineering metrics to evaluate:

1. the scalability of the web data filtering step to find only relevant data for a
given context (aspect (i));

2. the effectiveness and scalability of the Web API selection step to find relevant
Web APIs (aspect (ii));

3. the quality of the RUBIK system perceived by different kinds of users who
are supported during the construction of a personalized SWA (aspect (ii)).

All the experiments have been performed on an Intel laptop, with a 2.53 GHz
Core 2 Due CPU, 2GB RAM and Linux operating system. Each experiment was
run ten times and the experimental results show the average. In all cases, the
highest deviation from the average was not more than 3 %.

7.1 Web Data Filtering

The web data clouding activity naturally raises some scalability issues, also tak-
ing into account that the way the data clouds are built differs in the two versions
of RUBIK. In particular, the keyword-driven approach to data acquisition can
potentially lead to the extraction of large collections of web data items. Working
with the general-purpose version, such large collections must be managed on-
line by the SWADLer, thus affecting system performance and scalability. In the
case of the customized version, large pre-defined domain data clouds are built
off-line, thus data clouding scalability is not a big concern for system perfor-
mance. For scalability evaluation in data cloud construction, we observe that
scalability is mainly affected by the employed clustering techniques. In fact,
matching, that is the other time-consuming activity for data cloud construc-
tion, has been optimized in our matching system HMatch [10] by relying on a

RUBIK: Proactive, Entity-Centric and Personalized SWA Design 149

state-of-the-art technique for comparison reduction in case of large collections of
items to match [21]. Concerning clustering and its scalability, we executed tests
with the hierarchical clustering algorithm, and we run a set of experimental tests
on different datasets in the movie domain extracted from Delicious, IMDb and
Freebase, containing a growing number of web data items, ranging from 30 up
to 5000. Time complexity of hierarchical and agglomerative clustering is O(n2),
where n is the number of items to be clustered, and problems of scalability
of this approach are well known. However, our experimental results show that
the approach scales quite well when the number of items involved is lower than
5000, by requiring an average execution time lower than 1s. This is a reasonable
result for many kinds of user requests, considering that data extraction queries
can be configured to acquire a focused number of items in order to achieve a
faster computation of the web data cloud. However, also when large collections
of data items are extracted, scalability can be achieved through strategies where
matching and clustering are performed off-line (e.g., in a batch manner), like in
the customized version, or through caching mechanisms to exploit previous data
clouding results.

The contribution of the contextualization (tailoring) phase affects scalability
and performance as much as any relational database query. This phase works
on-line in both versions of RUBIK, when the SWADler composes the applica-
tion. Contextual views automatically generated, as shown in Sect. 4, are Unions
of Conjunctive Queries (UCQs), which are known to have LOGSPACE com-
plexity [22]. The cloud filtering described in the same section presents the same
complexity. However, just as in traditional databases, the most frequently used
views – corresponding to the most incurred contexts – can be pre-computed
off-line, thus yielding shorter or null on-line waiting time.

7.2 Web API Selection and Aggregation

To evaluate the effectiveness and scalability of the RUBIK system for Web APIs
suggestion, we ran a set of experiments focusing on the application domain of
the running example. In the experiments, we compared different systems and
different kinds of search: (i) keyword-based Web API search performed on the
ProgrammableWeb repository; (ii) keyword-based Web API search performed
on the ProgrammableWeb repository after the expansion of keyword set through
the application of the web data clouding; (iii) Web API search performed with
the support of the RUBIK system. Results are presented in Fig. 18. To eval-
uate the precision (i.e., the fraction of suggested Web APIs that are relevant)
and recall of the search results (i.e., the fraction of relevant Web APIs that are
suggested by the system), a domain expert manually selected a set of 124 rel-
evant Web APIs out of the ProgrammableWeb repository, classified within the
Entertainment, Events, Mapping, Media Management, Recommendations and
Video categories. Manual Web API selection has been performed by analysing
WADs and, starting from them, by analysing all the Web APIs included in
the related mashups. This enables to identify the most common functionali-
ties/features included in existing applications for the considered domain. For

150 D. Bianchini et al.

example, starting from the Rotten Tomatoes Web API, the associated mashups
(such as MovieGram and InstantPlex) have been analysed to identify other
Web APIs commonly included in this kind of applications. Figure 18(a) shows
the precision and recall values when no Web APIs have been selected and put in
the canvas yet, but a single keyword has been specified (e.g., movie, director
or actor in the running example). As expected, the recall increases, due to the
keyword expansion given by the web data clouding. Moreover, also precision
increases, due to the application of the context-aware filtering. Precision and
recall values for experiments performed in the substitution scenario, when only
one Web API has been put in the canvas and must be substituted, are very
similar to the ones shown in Fig. 18(a); in particular, in this test we performed
search on the ProgrammableWeb repository using as keywords the tags in the ter-
minological equipment of the Web API to be substituted. Precision and recall
values change significantly on the ProgrammableWeb repository when more than
one API have been put in the canvas and one of them has to be substituted
(see Fig. 18(b)), while the behavior of RUBIK remains almost unchanged. In
Fig. 18(b) we compared our system also against ApiHut [23], which relies on
a classification of Web APIs based also on other features extracted from the
ProgrammableWeb repository, such as the protocol used by the Web APIs or
the data format. The ApiHut solution presents good precision, but recall values
decrease with respect to RUBIK due to the absence of keyword set expansion
performed in our system through the web data clouding phase. Figure 18(c)
shows the precision and recall values for experiments performed in the comple-
tion scenario. In this case, we did not compare RUBIK against keyword-based
search performed on the ProgrammableWeb repository and against the ApiHut
approach, since they have not been designed for proactive suggestions in this
kind of scenario. On the other hand, we compared RUBIK against MatchUp [3],
whose suggestions rely on existing Web mashups stored in the ProgrammableWeb
repository. The precision of MatchUp decreases with respect to our system, since
we considered a wider range of similarity evaluations which makes the RUBIK
suggestions more effective, while the MatchUp system relies on existing mashups
only. The recall values are comparable.

We also ran an additional set of tests, where we used the keyword “Woody
Allen” (that is, a keyword representing an instance in the domain of inter-
est) to start the Web data clouding. The use of this keyword directly on the
ProgrammableWeb repository does not produce any result. The web data cloud-
ing enables the retrieval of the set Ki of keywords and the set Ti of types of the
essentials in the (contextual) data cloud that increases the precision and recall
of both the search with the expanded set of keywords on the ProgrammableWeb
repository and of the search performed on the RUBIK system (see Fig. 18(d)).

In the RUBIK approach, scalability issues can also be due to Web API
similarity evaluation during Web API selection phase. We extracted WADs from
the ProgrammableWeb repository and we plotted similarity evaluation response
time with respect to the number n of WADs (Fig. 19). The time required for the
Web API linking anf the computation of similarities as shown in Eqs. (2)–(5) is

RUBIK: Proactive, Entity-Centric and Personalized SWA Design 151

On Prog.Web Expanded keyword set (on Prog.Web) RUBIK
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%
(a)

Precision
Recall

On Prog.Web Expanded keywords (on Prog.Web) RUBIK ApiHut
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%
(b)

Precision
Recall

RUBIK MatchUp
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%
(c)

Precision
Recall

On Prog.Web Expanded keyword set (on Prog.Web) RUBIK
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%
(d)

Precision
Recall

Fig. 18. Precision and recall values during Web API selection with RUBIK system
compared against other approaches.

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of extracted WADs

R
es

po
ns

e
tim

e
(m

se
c)

With web data filtering
Without web data filtering

Fig. 19. Scalability of the Web API similarity evaluation for Web API selection and
aggregation purposes.

negligible due to the application of optimized term matching techniques defined
in [9] between small sets of tags from the Web API terminological equipments
and due to the optimized computation of the Dice formula as shown in [20].
Therefore, the complexity of Web API similarity evaluation is dominated by the
number n of Web APIs to be compared against the request. Specifically, the
complexity increases almost linearly with respect to n (see Fig. 19). The web
data clouding phase and the subsequent context-aware filtering phase enable to
filter out not relevant Web APIs, considering only Web APIs that are related to
the target of interest. This makes the Web API selection phase more scalable.

152 D. Bianchini et al.

7.3 Perceived Quality

We ran a set of experiments to assess the quality of personalized SWA develop-
ment with the support of the RUBIK system. In particular, we monitored six
users for building new SWA with Web APIs of the running example considered in
this paper. Users 1, 4 and 6 have middle-level web application development skill,
while users 2, 3 and 5 present high-level web application development skill. It is
worth mentioning that using a small number of participants can be motivated as
in [24,25], where the authors propose a mathematical model about the effective-
ness of usability experiments and demonstrate that running multiple tests with
a small number of users is more effective than running a single test with a large
number of users. We performed ten Web API selection and aggregation tests for
each user, by increasing both the number of available Web APIs (from 10 to
500) and the complexity of the application to build, in terms of the number of
Web APIs to select (from 2 to 5), for a total of 60 experiments.

In each experiment, we considered a set of Web APIs for the domain of inter-
est, whose WADs have been extracted from the ProgrammableWeb repository
(see Sect. 7.2), as well as not relevant Web APIs and we asked users to build a
new SWA for different purposes (for instance, a movie critic or a movie festi-
val organizer, according to the motivating example). We compared the number
of correct and wrong answers of six users with and without the support of the
RUBIK system (CS , WS , CN , WN) with respect to the best Web APIs indicated
by the domain expert, computing the quality of answers Q(x) = Cx

Cx+Wx
.

The average results are shown in Fig. 20, distinguishing among experimental
results when the users are asked to search in a repository of 250 and 500 Web
APIs. We note that the quality of the web application development increases with
the support of the RUBIK system, in particular for less skilled users and when

User 1 User 2 User 3 User 4 User 5 User 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Users

Q
(x

)

With RUBIK − 250 Web APIs
Without RUBIK − 250 Web APIs
With RUBIK − 500 Web APIs
Without RUBIK − 500 Web APIs

Fig. 20. Average quality of personalized SWA development with and without RUBIK
support.

RUBIK: Proactive, Entity-Centric and Personalized SWA Design 153

User 1 User 2 User 3 User 4 User 5 User 6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Users

P
(x

)

With RUBIK − 250 Web APIs
Without RUBIK − 250 Web APIs
With RUBIK − 500 Web APIs
Without RUBIK − 500 Web APIs

Fig. 21. Average productivity of personalized SWA development with and without
RUBIK support.

the number of available APIs is high, thus requiring much effort for selecting the
right ones. Even when the quality without RUBIK strongly decreases – with 500
available APIs with respect to the case of 250 available APIs (see, for instance,
users 1 and 4) – the support of RUBIK enables to reach high quality levels.

If we consider the productivity to develop a personalized SWA, defined as
P (x) = Cx

tx
, where tx is the time (in seconds) taken for answering, we obtain a

more detailed measure of how much the RUBIK support impacts on the tasks
of SWADlers. Figure 21 displays the average productivity to build personalized
SWAs, starting from 250 and from 500 available APIs.

8 Related Work

Recent efforts to support fast development of web applications underline the
importance of mitigating the burden of Web API selection and aggregation.
Specifically, in [23] a faceted classification of Web APIs and a ranking algorithm
to improve their retrieval are proposed, based on IR techniques that are applied
to Web API information only, as published on the ProgrammableWeb reposi-
tory. The approach described in [3] relies on existing web mashups stored in the
repository. In [26] semantic annotations have been proposed to enrich Web API
modeling and proper metrics based on such annotations have been defined to
improve recommendations on Web API retrieval and aggregation. Exploratory
search is applied directly on Web API registry browsing in [27–30]. In partic-
ular, in [27] a tag-based navigation technique for composing data mashups is
proposed. The MashMaker system [28] suggests Web APIs that might assist in
handling data currently managed by the web designer (for instance, the tool
might suggest adding “map” location or “distance” APIs if the designer cur-
rently views a list of addresses). The MashupAdvisor system [29] computes an

154 D. Bianchini et al.

extension of a specific mashup under construction in order to achieve a set of
possible outputs. Finally, in sMash [30] a web-based interface which supports
mashup of semantic-enriched Web APIs is proposed. A review of the literature
showed a lack of attention for the proposal of techniques to identify the target of
interest on which the Web APIs composing the SWA must be selected. Recent
efforts devoted to the identification of concepts/tags associated with the Web
API descriptions rely on keyword-based search or IR techniques [23], possibly
enriched with techniques dealing with semantic tags [4] in order to make Web
API search more efficient and effective. Nevertheless, such techniques are not
designed for an explorative search, which takes advantage from our thematic
view on the webs of data, and are always focused on Web API descriptions,
instead of targeting at data on which Web APIs operate.

With respect to recent approaches to graph summarization [31], we do not
aim at providing efficient graph compression techniques for potentially huge
graphs. On the contrary, we aim at aggregating graph nodes on the basis of
their mutual relations and their similarity. The ultimate goal of our approach is
to aggregate graph nodes with respect to a theme, in order to simplify the explo-
ration of the linked data cloud, up to a final, intuitive, and easy-understandable
data cloud made of few essentials equipped with prominence and proximity
information. For what concerns approaches for search and retrieval of infor-
mation coming from the different webs, their goal is moving from traditional
information lookup to exploratory search. Here exploratory search is defined as
the activity of finding and understanding knowledge about a topic of interest by
exploiting aggregation and learning of information in a social context [32]. With
respect to these approaches, we stress the role of data similarity, proximity and
prominence as basic techniques. Therefore, our approach constitutes a step for-
ward with respect to, for example, Sig.ma (Semantic Information MAshup) [33],
which retrieves and integrates linked data, starting from a single URI, by query-
ing the Web of Data and applying machine learning to the data found. Moreover,
in RUBIK we go beyond these solutions by providing a linking towards avail-
able Web APIs to be selected and aggregated on top of the ProgrammableWeb
repository.

On the top of the thematic clusters, the current designer’s context works as
a viewpoint mechanism which takes into account implicit or explicit background
knowledge. This prunes the available data and APIs coming from the web, thus
enabling personalization in SWA development. Sophisticated and general context
models have been proposed [6,14], to support Web service retrieval [34] or knowl-
edge chunks, determining the set of situation-relevant information [35,36] and
services [37,38]. In this case, context-aware modeling aims at completing exist-
ing models for Web API selection and aggregation, which are mainly focused
on the representation of the Web APIs and of their composition [39,40], tak-
ing into account semantic annotation of Web API elements for their effective
retrieval [41]. Moreover, in RUBIK the data structures employed for cloud rep-
resentation and the strong semantic grounding of the approach allow to push
the automatization of the tailoring of the contextual data cloud further than in

RUBIK: Proactive, Entity-Centric and Personalized SWA Design 155

previous work [36], which needed a heavier intervention of the designer. In fact,
for the generation of the possible contexts, in RUBIK the domain designer inter-
venes in the case of the customized version, while the general-purpose version
relies on a set of generic context dimensions whose values are derived from the
SWADler’s answers to the questionnaire. For what concerns the generation of
contextual data clouds, the stable nature of the internal relational schema stor-
ing the cloud data suggests a fixed, generic structure for the contextual chunks,
whose design does not require the domain designer intervention.

9 Conclusions

In this work we introduced the RUBIK approach for the personalized compo-
sition of webs to satisfy information and resource-delivery application require-
ments in different contexts. An experimental evaluation related to the movie
domain has also been presented, showing the effectiveness of the approach. The
practical impact of the functionalities provided by the RUBIK system is rel-
evant in different domains. Besides the web design purpose discussed above,
another situation that would immediately benefit from the same on-the-fly inte-
gration approach is data integration for life-science researchers, mostly based on
web resource discovery and integration. Existing data integration systems (e.g.,
Swiss Prot) are very complex and do not have the flexibility of accepting requests
for heterogeneous resources. Hence the community has still the need to access
constantly varying sources (dynamicity), potentially on a large scale, therefore
becoming an ideal target of the RUBIK system.

References

1. Kraiem, N., Selmi, S., Ghezala, H.: A situational approach for web applications
design. Int. J. Comput. Sci. Issues 7, 37–51 (2010)

2. Wright, A.: Exploring a ’Deep Web’ That Google Can’t Grasp, http://www.
nytimes.com/2009/02/23/technology/internet/23search.html?pagewanted=all.
Accessed: May 2012. The New York Time (February 2009)

3. Greenshpan, O., Milo, T., Polyzotis, N.: Autocompletion for mashups. In: Proceed-
ings of the 35th International Conference on Very Large DataBases (VLDB’09),
Lyon, France, pp. 538–549 (2009)

4. Bianchini, D., De Antonellis, V., Melchiori, M.: Semantic collaborative tagging for
web APIs sharing and reuse. In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.)
ICWE 2012. LNCS, vol. 7387, pp. 76–90. Springer, Heidelberg (2012)

5. Bianchini, D., De Antonellis, V., Melchiori, M.: A multi-perspective framework for
web API search in enterprise mashup design. In: Salinesi, C., Norrie, M.C., Pastor,
Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 353–368. Springer, Heidelberg (2013)

6. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int.
J. Ad Hoc Ubiquit. Comput. 2(4), 263–277 (2007)

7. van Rijsbergen, C.J.: Information Retrieval. Butterworth, London (1979)
8. Newman, M.J.: A Measure of betweenness centrality based on random walks. Soc.

Netw. 27(1), 39–54 (2005)

http://www.nytimes.com/2009/02/23/technology/internet/23search.html?pagewanted=all
http://www.nytimes.com/2009/02/23/technology/internet/23search.html?pagewanted=all

156 D. Bianchini et al.

9. Castano, S., Ferrara, A., Montanelli, S., Varese, G.: Ontology and instance match-
ing. In: Paliouras, G., Spyropoulos, C.D., Tsatsaronis, G. (eds.) Multimedia Infor-
mation Extraction. LNCS, vol. 6050, pp. 167–195. Springer, Heidelberg (2011)

10. Castano, S., Ferrara, A., Montanelli, S.: Matching ontologies in open networked
systems: techniques and applications. In: Spaccapietra, S., Atzeni, P., Chu, W.W.,
Catarci, T., Sycara, K. (eds.) Journal on Data Semantics V. LNCS, vol. 3870, pp.
25–63. Springer, Heidelberg (2006)

11. Castano, S., De Antonellis, V., De Capitani di Vemercati, S.: Global viewing of
heterogeneous data sources. IEEE Trans. on Knowl. Data Eng. 13(2), 277–297
(2001)

12. Castano, S., Ferrara, A., Montanelli, S.: Structured data clouding across multiple
webs. Inf. Syst. 37(4), 352–371 (2012)

13. Bolchini, C., Quintarelli, E., Tanca, L.: CARVE: context-aware automatic view
definition over relational databases. Inf. Syst. 38, 45–67 (2013)

14. Bolchini, C., Curino, C.A., Quintarelli, E., Schreiber, F.A., Tanca, L.: A data-
oriented survey of context models. SIGMOD Rec. 36(4), 19–26 (2007)

15. Mileo, A., Merico, D., Bisiani, R.: Support for context-aware monitoring in home
healthcare. In: Intelligent Environments (Workshops), pp. 177–184 (2009)

16. Quintarelli, E., Rabosio, E., Tanca, L.: Context schema evolution in context-aware
data management. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011.
LNCS, vol. 6998, pp. 290–303. Springer, Heidelberg (2011)

17. Fellbaum, C.: Wordnet: An Electronic Lexical Database. MIT Press, Cambridge
(1998)

18. Miele, A., Quintarelli, E., Tanca, L.: A methodology for preference-based person-
alization of contextual data. In: Proceedings of EDBT 2009, 12th International
Conference on Extending Database Technology, pp. 287–298 (2009)

19. Miele, A., Quintarelli, E., Rabosio, E., Tanca, L.: A data-mining approach to
preference-based data ranking founded on contextual information. Inf. Syst. 38(4),
524–544 (2013)

20. Bianchini, D., Antonellis, V.D., Melchiori, M.: Flexible semantic-based service
matchmaking and discovery. World Wide Web J. 11(2), 227–251 (2008)

21. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
22. Vardi, M.Y.: The complexity of relational query languages (extended abstract). In:

STOC, pp. 137–146 (1982)
23. Gomadam, K., Ranabahu, A., Nagarajan, M., Sheth, A., Verma, K.: A faceted

classification based approach to search and rank web APIs. In: Proceedings of
International Conference on Web Services (ICWS 2008), Beijing, China, pp. 177–
184 (2008)

24. Nielsen, J.: Why You Only Need to Test with 5 Users (2000), http://www.useit.
com/alertbox/20000319.html Accessed: May 2012

25. Nielsen, J., Landauer, T.: A mathematical model of the finding of usability prob-
lems. In: Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human
Factors in Computing Systems, pp. 206–213 (1993)

26. Bianchini, D., Antonellis, V.D., Melchiori, M.: Semantic-driven mashup design.
In: Proceedings of 12th International Conference on Information Integration and
Web-based Applications and Services (iiWAS’10), pp. 245–252 (2010)

27. Riabov, A., Boillet, E., Feblowitz, M., Liu, Z., Ranganathan, A.: Wishful search:
interactive composition of data mashups. In: Proceedings of the 19th International
World Wide Web Conference (WWW’08), Beijin, China, pp. 775–784 (2008)

http://www.useit.com/alertbox/20000319.html
http://www.useit.com/alertbox/20000319.html

RUBIK: Proactive, Entity-Centric and Personalized SWA Design 157

28. Ennals, R., Garofalakis, M.: MashMaker: Mashups for the Masses. In: Proceedings
of the 27th ACM SIGMOD International Conference on Management of Data, pp.
1116–1118 (2007)

29. Elmeleegy, H., Ivan, A., Akkiraju, R., Goodwin, R.: MashupAdvisor: a recommen-
dation tool for mashup development. In: Proceedings of 6th International Confer-
ence on Web Services (ICWS’08), Beijin, China, pp. 337–344 (2008)

30. Lu, B., Wu, Z., Ni, Y., Xie, G., Zhou, C., Chen, H.: sMash: semantic-based mashup
navigation for data API network. In: Proceedings of the 18th International World
Wide Web Conference, pp. 1133–1134 (2009)

31. Tian, Y., Hankins, R., Patel, J.: Efficient aggregation for graph summarization. In:
Proceedings of the 2008 ACM SIGMOD International Conference on Management
of Data, pp. 567–580. ACM (2008)

32. Marchionini, G.: Exploratory search: from finding to understanding. Commun.
ACM 49(4), 41–46 (2006)

33. Tummarello, G., et al.: Sig. ma: live views on the web of data. Web Semant.: Sci.,
Serv. Agents World Wide Web 8(4), 355–364 (2010)

34. Raverdy, P.-G., Riva, O., de La Chapelle, A., Chibout, R., Issarny, V.: Effi-
cient context-aware service discovery in multi-protocol pervasive environments. In:
Mobile Data Management, p. 3. IEEE Computer Society (2006)

35. Roussos, Y., Stavrakas, Y., Pavlaki, V.: Towards a context-aware relational model.
In: Proceedings of 1st International Context Representation and Reasoning, Work,
pp. 7.1–7.12 (2005)

36. Bolchini, C., Curino, C.A., Quintarelli, E., Schreiber, F.A., Tanca, L.: Context
information for knowledge reshaping. Intl J. Web Eng. Technol. 5(1), 88–103 (2009)

37. Raverdy, P., Riva, O., de La Chapelle, A., Chibout, R., Issarny, V.: Efficient
context-aware service discovery in multi-protocol pervasive environments. In: Pro-
ceedings of 7th International Conference on Mobile Data Management, pp. 3–11
(2006)

38. Gu, T., Pung, H.K., Zhang, D.Q.: A service-oriented middleware for building
context-aware services. J. Netw. Comput. Appl. 28(1), 1–18 (2005)

39. Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo, D., Francalanci, C.:
DashMash: a mashup environment for end user development. In: Auer, S., Dı́az, O.,
Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 152–166. Springer,
Heidelberg (2011)

40. Abiteboul, S., Greenshpan, O., Milo, T.: Modeling the mashup space. In: Pro-
ceedings of the Workshop on Web Information and Data Management, pp. 87–94
(2008)

41. Bianchini, D., De Antonellis, V., Melchiori, M.: Semantics-enabled web API orga-
nization and recommendation. In: De Troyer, O., Bauzer Medeiros, C., Billen, R.,
Hallot, P., Simitsis, A., Van Mingroot, H. (eds.) ER 2011 Workshops. LNCS, vol.
6999, pp. 34–43. Springer, Heidelberg (2011)

Mining Multiple Related Data Sources
Using Object-Oriented Model

C.I. Ezeife(B) and Dan Zhang

School of Computer Science, University of Windsor, Windsor, ON N9B 3P4, Canada
{cezeife,woddlab}@uwindsor.ca

http://cezeife.myweb.cs.uwindsor.ca/

Abstract. An object-oriented database is represented by a set of classes
connected by their class inheritance hierarchy through superclass and
subclass relationships. An object-oriented database is suitable for cap-
turing more comprehensive and detailed complexity of real world data
such as capturing multiple related tables representing data schemas of
a retail store web site, or capturing multiple databases such as several
retail store web sites. Modeling web and other data as a number of object
database schemas would enable derived, historical, and comparative min-
ing of multiple databases and tables.

This paper proposes an object-oriented class model and database
schema, and a series of class methods including that for object-oriented
join (OOJoin) for mining multiple data sources through object oriented
model. The OOJoin procedure joins superclass and subclass tables by
matching their type and super type relationships. Mining Hierarchical
Frequent Patterns (MineHFPs) from multiple integrated databases is
done by applying an extended TidFP technique which specifies the object
class hierarchy by traversing the multiple database inheritance hierarchy.
This paper also extends map-gen join method used in TidFP algorithm
to oomap-gen join for generating k-itemset object candidate patterns.
The oomap-gen join reduces the number of candidate itemsets gener-
ated through indexing of the (k-1)-itemset candidate pattern with start
and end position codes for the inheritance hierarchy level. Experimental
results show that the proposed MineHFPs algorithm for mining hierar-
chical frequent patterns is effective and efficient for complex queries.

Keywords: Object-oriented database · Mining frequent patterns · Inher-
itance hierarchy · Multiple data sources · Hierarchical frequent patterns

1 Introduction

Real world data are complex and good to be presented or modeled as objects.
An object-oriented database is suitable for capturing more comprehensive and

This research was supported by the Natural Science and Engineering Research Coun-
cil (NSERC) of Canada under an operating grant (OGP-0194134) and a University
of Windsor grant.

A. Hameurlain et al. (Eds.): TLDKS XIII, LNCS 8420, pp. 158–186, 2014.
DOI: 10.1007/978-3-642-54426-2 6, c© Springer-Verlag Berlin Heidelberg 2014

http://cezeife.myweb.cs.uwindsor.ca/

Mining Multiple Related Data Sources Using Object-Oriented Model 159

detailed complexity of real world data, such as different products on a Business
to Customer (B2C) website, their histories, versions, price, images. Changes in
contents or structure of a website may cause changes in the schema of the data-
base that stores the web content. For example, a new product demonstrated on
a B2C website which has its own specifications will need a different class object
schema to store it [2,4,5,11]. Since the object-oriented database allows values of
its attributes to be of complex types such as another database object, tables hav-
ing attributes with type of new product do not need to change in structure, but
only the new product object schema is also created. The attribute “new product”
can be a set of new product classes whereby members of this set can take on any
newly created product class schema as their type. An example schema represen-
tation for such a B2C web site is B2C(Webid:string, Products:set of products,
NewProducts: set of products). With relational database system, values of all
attributes of a table are single-valued such that the same B2C database schema
above can be represented as B2C(Webid:string, product1:string, product2:string,
newproduct1:string). If the web site gets new products, the B2C schema together
with other schemas in the database need to be updated. The object oriented
model presents a data structure for more clearly establishing complex relation-
ships (e.g., superclass, subclass, part-of) between different data entities (e.g.,
classes and tables) so that mining of multiple tables, classes and databases on
historical, derived and other data can be accomplished. The object schemas of
the complex data types can be used to define version, histories, derived and
other features of the products and new products so that when there are changes,
only the relevant class structure needs to change in the object oriented data-
base. Therefore, there is a great advantage in using an object-oriented database
model to represent contents captured from web sites for comparative analysis
as it presents a clear conceptual model that enables diverse, scalable mining of
multiple databases which can still be implemented with the relational database
management system (DBMS). Some recent work that also used a more realistic
conceptual model such as the object oriented model being proposed in this paper
to implement analysis of XML data (not multiple databases) include [21]. In an
object-oriented database model, the same type of product (e.g., laptop) will
be classified in the same class which inherits the properties (attributes) from its
superclass (e.g., computer) and also has its own attributes. When a new product
joins, a new class (e.g., pad) will be created for this type of product. For example,
in a B2C website that sells computers and laptops, an object-oriented database
to store the contents of this website has two classes, Computer and Laptop.
The class “Computer” has the attributes “CPU”, “RAM”, “Hard drive” while
the class “Laptop” inherits the above three attributes of its superclass, “Com-
puter” and also has its own attributes “Screen size” and “Battery life”. If a new
product, Pad which is a subtype of laptop comes to the website, a new class
“Pad” will be created and it inherits the attributes of “Laptop” class and would
also have its own attributes “3G device” or “Touch screen”. An object-oriented
database is a database management system in which information is represented
in the form of encapsulated objects (possibly active) rather than static data

160 C.I. Ezeife and D. Zhang

values [8,18,22]. Due to the first normal form (1NF) requiring only single valued
attributes, relational databases do not allow complex values, such as sets, lists,
or other data structures. On the other hand, the attributes of an object-oriented
database model can be a complex collection of types, such as, sets, lists, or
some other data structure such as another class object. When implemented with
an object-oriented database management system, the object oriented database
model does not need additional tables to store the data represented in a collec-
tion type. In a relational database model, procedures (that is, transactions for
manipulating the static data) must be maintained outside of the relational data
model itself through mechanisms for querying and manipulating the data. How-
ever, in an object-oriented database model, these procedures can be considered
as behaviors of the objects and can be maintained as methods of the classes.

2 Object-Oriented Database Schema

An object-oriented database model is represented by a set of classes connected
by their class inheritance hierarchy through superclass and subclass relation-
ships [9,18]. An object-oriented database consists of a set of classes, Ci, with
a class inheritance hierarchy H which is used to depict superclass and subclass
relationships between classes in the object-oriented database and can be repre-
sented as a set of pairs of class and superclass in the form of (class, superclass).
A superclass (e.g., Computer) of a class (e.g., Laptop), is a generalization of the
class such that a class inherits all the attributes and methods of its superclass.
Each class is defined as an ordered relation Ci = (K,T, S,A,M,O), where K is
the class identifier (e.g., computer id), T is the class type (e.g., Computer), S is
the super type (superclass) of the class (e.g., Root), A is a set of attributes of the
class (e.g., CPU, RAM, Hard drive) [9]. M is a set of methods of the class (e.g.,
get Number of Computer, get Number ofSalesof Computer). O is a set of encap-
sulated instance objects (equivalent to tuples) of the class which have instances
of the class attributes and methods (e.g., computers with specific CPU, RAM,
Hard drive and have instances of class methods). For example, a computer retail
store object-oriented database consists of four classes (Root, computer, laptop,
desktop), which are related through class inheritance hierarchy, H. H is specified
in the format of all pairs of (class, superclass) relationships where H={(Root,
Computer), (Laptop, Computer), (Desktop, Computer)}. Root class is the spe-
cial class which exists in every database and is the only class with no superclass.
Database schema for this database is provided as:

C1 = (K1, Type, Super, {oid, CPU, RAM, Hard drive, computer name}, o1, o2,
. . ., on);
C2 = (K2, Type, Super, {oid, Screen size, Battery life}, o1, o2, . . ., on);
C3 = (K3, Type, Super, {oid, Graphic}, o1, o2, . . ., on);

Multiple object-oriented databases and classes can also be connected by their
class inheritance hierarchy through superclass and subclass relationships with
a multiple object-oriented database inheritance hierarchy MH which is used to

Mining Multiple Related Data Sources Using Object-Oriented Model 161

Fig. 1. The Multiple databases inheritance hierarchy Tree (MHTree) for 3 databases

depict superclass and subclass relationship between classes and object-oriented
databases, and can be represented as a set of pairs of class and superclass in the
form of (class, superclass). For example, the inheritance hierarchy in the multiple
databases, MH for three computer object databases for IBM, Dell, and HP com-
puters, has every database consisting of four classes (Root, computer, laptop,
desktop). Note that when more than one database is integrated in the object
schema, the Root class of each database becomes the name of the database.
For example, the Root for the IBM database is now IBM since the integrated
schema has only one global Root class. This MH is represented with the set of
(subclass, superclass) relationships as follows. MH={(IBM, Root), (Dell, Root),
(HP, Root), (Computer, IBM), (Computer, Dell), (Computer, HP), (Laptop,
Computer), (Desktop, Computer)}.

Definition 2.01. Tree structure of a multiple database class inheritance hier-
archy (MHTree): is the tree structure representation of multiple databases inher-
itance hierarchy. For example, the MHTree for three object-oriented computer
databases for IBM, Dell, and HP is shown in Fig. 1. �

In a multiple database, inheritance hierarchy as shown in Fig. 1, there is a
Root class. The database schema of the Root class is defined as Root(K, T, S, A,
M, O). The Root class table is a transaction table which records the transactions
on the classes in the multiple database. For example, sales transactions from dif-
ferent object databases can be recorded in the Root table. K in this Root table
is the transaction id. T is the class type of the transaction (name of the database
where the transaction comes from). S is the super type of the transaction. A is
a set of attributes consisting of the set of super type attributes of Ci class in T
called superi (the number of superi depends on the levels of the hierarchy of Ci)
and all attributes A of Ci. M is the set of class methods which are behaviors of
the Root class, such as those for updating the Root table and mining patterns
in the Root table. O is the set of instance objects of the transactions (one object
stands for one transaction). For example, a sales transaction of a purchased lap-
top from IBM database recorded in the Root table (sales transaction table) has
object id as an instance of K for transaction id (an integer number), class type T

162 C.I. Ezeife and D. Zhang

which indicates the database or the most senior ancestor class of the path where
the transaction comes from (database is “IBM” in this case), super type S of the
T class of the transaction, which is “Root”, the attributes A of the transaction
class path (IBM/Computer/Laptop) includes two super types of the transaction
class (IBM/Computer/Laptop). The super type S of a transaction class consists
of class hierarchy from the Root to the class the transaction is on. Thus, super1
is Computer and super2 is Laptop. In the computer object database, there are
two levels of the hierarchy and thus, the number of possible superi’s in the
Root table corresponds to the length of the inheritance hierarchy. If a transac-
tion record of the Root table concerns a desktop computer, then, the class path
of this transaction is IBM/Computer/Desktop and in that case, the super1 (is
Computer) and super2 (is Desktop). The attributes of all classes in the hierarchy
make up the attributes of the Root class, A and in this case, they are: Ci, CPU,
RAM, Hard drive, Screen size, battery life and Graphic. In an object-oriented
database model, the instantiated objects (instances) are referenced (retrieved)
by following their object pointers. The relational model has the advantage of
availability for its database management system for implementation purposes.
Thus, we have chosen to have the current implementation of our object oriented
mining (OOMining) model with the readily available relational DBMS. The rela-
tional database model also provides a clear visual conceptual representation of
table schemas showing all attributes of a table (a relational table can be used
to represent an object oriented class), including the information on the class
inheritance hierarchy. However, converting the object-oriented database model
into a relational model poses some challenges with regards to extensions needed
for such operations as join operation between objects of different classes. In an
object-oriented database model, there is no specific join operation, because the
instantiated objects are referenced by the object pointers. We will provide the
solution to address the problem of the object join operation in Sect. 4.1. We can
also define the object-oriented database as a relational database represented with
a set of tables (relations) as classes connected through foreign key relationships
as inheritance hierarchy. The foreign keys in our object-oriented database model
of object database ODB = a set of classes Ci including the Root class, where each
Ci = (K, T, S, A, M, O) and Root(K, T, S, A, M, O) are realized through the
inheritance hierarchy using the subclass and superclass relationships as defined
in the class type T, supertype S attributes of each object class. For example, a
relational database schema that represents the computer world object database
and its Root class is shown below:

Computer (comp id: string, type: string, super type: string, cpu: string, ram:
string, hard drive: string);
Laptop (laptid: string, type: string, super type: string, screen size: string, bat-
tery life: string);
Desktop (deskid: string, type: string, super type: string, graphic: string);
Root (transactionid: integer, type: string, super type: string, super1: string,
super2: string, cpu: string, ram: string, hard drive: string, screen size: string,
battery life: string, graphic: string);

http://dx.doi.org/10.1007/978-3-642-54426-2_4

Mining Multiple Related Data Sources Using Object-Oriented Model 163

Table 1. Object table of computer class

Comp id Type Super type CPU RAM Hard drive

Comp1 Laptop Computer 2 GHz 2 GB 250 GB
Comp2 Laptop Computer 2 GHz 2 GB 320 GB
Comp3 Laptop Computer 3 GHz 4 GB 350 GB
Comp4 Desktop Computer 3 GHz 4 GB 500 GB
Comp5 Desktop Computer 3 GHz 4 GB 500 GB
Comp6 Desktop Computer 3 GHz 4 GB 500 GB

Table 2. Object table of laptop class

Lap id Type Super type Screen size Battery life

Lapt1 Ideapad laptop Laptop 15” 3 h
Lapt2 Ideapad laptop Laptop 15” 3 h
Lapt3 Thinkpad laptop Laptop 17” 3.5 h

In the above relational database schema, compid is the primary key of the com-
puter table, laptid is the primary key of laptop table, deskid is the primary key
of the desktop table, and transactionid is the primary key of Root table. All class
tables have the composite foreign keys consisting of the two attributes “type”
and “super type” in each table. A computer object database for the respective
classes of Computer, Laptop and Desktop is shown in Tables 1, 2, and 3.

Table 1 is the Computer class table that stores the specifications of comput-
ers and contains all instances of all computer types. Tables 2 and 3 store the
specifications of laptops and desktops which inherit from the computer class.
An example of the Root class table that records all computers purchased from
different databases, such as IBM, Dell, or HP is shown in Table 4. Table 4 is a
sales transactions table containing eight Root class instance objects where every
object indicates one transaction of computer purchased from database specified
in ‘Type’. In the schema of the Root(K, T, S, A, M, O),“Oid” is the object id for
each transaction. Of course, “oid” is an instance of K (transaction id), which is
represented by an integer number. “Type” is the class type T of the transaction
which indicates the database or the full inheritance path for the class involved
in the transaction. For example, in transaction 1 of the Root table, it can be
seen that the full class path for this transaction is “IBM/computer/laptop”.
Although in Type, the most senior ancestor class (IBM) in the path is recorded,
the attributes of super1 and super2 will record the other classes of “computer”
and “laptop” along this inheritance hierarchy of the transaction. Thus, “Types”
are recorded as “IBM”, “Dell”, or “HP”. The “Super type” is the Root class
in this case. The set of attributes (A) of the Root class, includes: (1) super1
(computer) and super2 (laptop or desktop) for the class of the transaction. In
this example, computer class has subclasses laptop and desktop. There are two
levels of the hierarchy and so there are 2 “super” attributes and for each superi
attribute (e.g., at Computer class level), the domain (number of possible values)

164 C.I. Ezeife and D. Zhang

Table 3. Object table of desktop class

Desk id Type Super type Graphic

Desk1 Work station Desktop 256M
Desk2 Work station Desktop 256M
Desk3 Desktop Desktop 512M

Table 4. An instance of the root class table

Oid Type Super Super1 Super2 CPU RAM Hard Screen Battery Graphic
type drive size life

1 IBM Root Computer Laptop 2 GHz 2 GB 250 GB 15” 3 h
2 IBM Root Computer Laptop 2 GHz 4 GB 320 GB 15” 3 h
3 Dell Root Computer Laptop 2 GHz 2 GB 350 GB 17” 3.5 h
4 HP Root Computer Desktop 3 GHz 4 GB 500 GB 256M
5 HP Root Computer Desktop 3 GHz 4 GB 500 GB 256M
6 Dell Root Computer Desktop 3 GHz 4 GB 500 GB 512M
7 IBM Root Computer Laptop 2 GHz 2 GB 320 GB 15” 3 h
8 HP Root Computer Laptop 3 GHz 4 GB 350 GB 17” 3.5 h

consists of its number of breadth-wise sibling classes itself included (e.g., it is
one for class computer), while for superi class at the laptop level, the number
of possible values is two consisting of the two sibling classes, laptop and desk-
top. Thus, with the example database, the Root class has two superi classes as
super1 (computer) and super2 (laptop or desktop). If there are n levels of hierar-
chy, there will be super1, . . ., supern. (2) CPU, RAM, Hard driver, Screen size,
Battery life, Graphic are all attributes of all the classes in the hierarchy consist-
ing of computer, laptop, and desktop classes.

2.1 Frequent Pattern Mining in Object-Oriented Model

Frequent patterns are itemsets that appear in a data set with frequency (also
called support) not less than a user-specified threshold (also called minimum
support). Frequent pattern mining is the task of discovering frequent patterns
from transactional databases. Frequent pattern mining is the essential step of
association rule mining. Association rule is an implication of the form X ∈ Yi,
where X is a set of some items in the set of all items Y, and Yi is a single
item in Y that is not present in X. Frequent pattern mining in a single relational
database table is used to find the itemsets whose frequencies over all transactions
in the database table are no less than a user-specified threshold (also called
minimum support). Therefore, frequent patterns in traditional database system
consist of items or combination of items (itemsets). In an object database table,
every object can be considered as one row (tuple) of a relational database table.
The attributes of the object can be considered as object itemsets (patterns).
Mining frequent patterns in object table is used to discover object attributes
or combinations of object attributes that appear frequently in all objects of

Mining Multiple Related Data Sources Using Object-Oriented Model 165

the class (or table) [15,20]. In Table 1, a computer class table has attributes
“CPU”, “RAM”, “Hard drive”. The objects in Table 1 have attributes, such as
< 2GHz >, < 3GHz >, < 2GB >, < 4GB >, or < 500GB >. These attributes
can be considered as itemsets. Based on Table 1 (sample of computer objects
table), some frequent pattern mining queries that can be answered are:

Query 1: What are the most frequently used hardware components (CPU, RAM,
hard drive) in IBM computer model products with a minimum support of 50%?
Query 1 can be answered by applying one of the frequent pattern mining algo-
rithms, such as TidFP [12] on Table 1.
Query 2: What are the most frequently used hardware components (CPU, RAM,
Screen size) in IBM laptop model products with a minimum support of 50%?.
Query 2 cannot be answered by applying TidFP algorithm on only computer
class Table 1 or only on laptop class Table 1, because laptop IS-A-TYPE of
computer and the computer class does not contain the specialization features of
a laptop. Similarly, the laptop class alone does not contain the generalization
features of a computer. Thus, to answer Query 2, there is need to involve the two
tables, Tables 1 and 2. Tables 1 and 2 for classes computer and laptop need to
be joined first, then we need to apply frequent pattern mining algorithms on the
joined table. If we want to mine frequent patterns of the hardware specifications
of computers that have been sold, we need to mine sales transaction table (shown
in the Root Table 4). Assume that we want to answer the query such as:
Query 3: What are the most popular hardware component specifications (CPU,
RAM, Hard drive, screen size, battery life, and Graphics card) among the com-
puter systems that have been sold with a minimum support of 50%? If we apply
TidFP algorithm on Table 4, we can only obtain the patterns in a format of
transaction id list and itemset, <Tidlist, itemset >, <1,2,3,7, 2 GHz>, <4,5,6,8,
3 GHz>, <1,3,7, 2 GB>, <2,4,5,6,8, 4 GB>, <1,3,7, 2 GHz,2 GB>, and <4,5,6,8,
3 GHz,4 GB>. However, query 3 is not good enough to discover patterns in differ-
ent hierarchies in an integrated multiple database table such as the Root Table
4. This table integrates information of hierarchy from multiple class tables in
different databases using the object oriented data model. Therefore, we need the
queries that can not only mine the frequent patterns, but also specify at which
hierarchy level the pattern is frequent. For example, the queries such as:
Query 4: What are the most popular hardware component specifications (CPU,
RAM, Hard drive, screen size, battery life, and Graphics card) among the com-
puter systems that have been sold by a particular company like Dell with a
minimum support of 50%?
Query 5: What are the most popular hardware component specifications (CPU,
RAM, Hard drive, screen size, and battery life) among a computer system sub-
group such as laptops that are sold by a particular company like Dell with a min-
imum support of 50%? To answer queries labeled as query 4 and query 5 (queries
mining frequent patterns in transactional table), the algorithm is required to
mine the attributes of computer, laptop, or desktop classes (computer, laptop,
or desktop specifications) and also specify if the pattern is frequent at which
hierarchy level.

166 C.I. Ezeife and D. Zhang

Hierarchical Frequent Pattern. The TidFP algorithm [12] proposes a method
that mines frequent patterns with transaction IDs to enable mining frequent
patterns from more than one database table. With its technique, the resultant
frequent patterns from more than one table are found by performing appropri-
ate set operations of intersection, union and others on frequent patterns from
different tables aided by common transaction ids from those tables as the tables
were not pre-joined before mining. Thus, in TidFP, the frequent patterns are
combinations of itemsets and their transaction id sets in the format of <Tidlist;
itemsets>. Example queries such as Query 4 and Query 5 are looking for patterns
that are frequent in different class hierarchy levels, and need to specify which
hierarchy levels the pattern belongs to. Therefore, a new term, called hierarchical
frequent pattern is defined.

Definition 2.11. Frequent patterns specifying class hierarchy: Hierarchical Fre-
quent Pattern, HFP: is represented in the format of <Tidlist; itemset; classi >
and is used to indicate in which transactions and in which class hierarchy that
a frequent pattern (itemset) appears. For example, a pattern <1,3,4; 2GHz,2G;
laptop/computer/IBM> where 1,3,4 are transaction IDs(Tidlist), 2GHz, 2G are
itemsets, and laptop/computer/IBM is the class hierarchy of the class starting
from the class to the Root. �
Contributions and Outlines. The contributions of this paper are as follows.
1. In order to enable mining diverse data from more than one database and table
(e.g., representing different B2C product web sites like CompUSA and BestBuy),
we define an object-oriented class model where each database is represented by
a set of object classes, their class inheritance hierarchy and the Root transaction
class (Sect. 2). The inheritance hierarchy is specified as a set of type, supertype
pairs. The database schema is defined as a set of object classes Ci, where Ci =
(K, T, S, A, M, O) for K its class id, T its class type, S its set of superclass types,
A its set of attributes, M its set of methods and O its set of instance objects.
2. In Sect. 4, we define proposed techniques including: the method called Object-
Oriented Join (OOJoin) which joins superclass table Csuper and sub class table
Csub by selecting the tuples which have distinct object id, Csuper.K and Csub.K
from the result of Csuper ρσ Csub, that is, selected tuples with distinct object ids
occur where Csuper.T = Csub.T or Csuper.T = Csub.S.
3. We define the new term, hierarchical frequent pattern, HFP, formed as <Tidlist;
Itemset; Hierarchy>, where Tidlist is a set of object ids drawn from the set of
instances of K. Itemset is a set of class attributes drawn from the set A, and Hierar-
chy is a sequence of classes from Root to class, Ci (called in the pattern as classi).
Hierarchical frequent pattern specifies at which hierarchy level the pattern is fre-
quent and is an extension of the TidFP’s pattern <Tidlist; itemset>.
4. We propose an algorithm called MineHFPs that mines hierarchical frequent
patterns to answer frequent pattern mining queries and specify at which hierar-
chy level the pattern is frequent by traversing the multiple database hierarchy
tree (MHTree) with the 1-itemset candidate patterns and transaction IDs.
5. We extend the map-gen join used in TidFP algorithm to oomap-gen join
for generating k-itemsets candidate patterns during the process of MineHFPs

Mining Multiple Related Data Sources Using Object-Oriented Model 167

algorithm to reduce the number of k-itemsets candidate patterns and avoid
unnecessary intersecting of transaction ids by indexing the patterns using two
position codes according to inheritance hierarchy, start position and end position
and checking the position code before generating k-itemsets candidate
patterns.

Section 3 has other related work, Sect. 5 has comparative analysis while con-
clusions and future work are presented in Sect. 6.

3 Other Related Work

Frequent pattern mining algorithms, such as Apriori [1,3,23] and FP-tree [16],
can only mine frequent patterns from one single database table. They cannot
discover frequent patterns from multiple tables and multiple data sources. And
also they cannot discover patterns in different class hierarchies, as the inputs of
these algorithms are simple transactional database tables with no class inheri-
tance hierarchies. These frequent pattern mining algorithms such as Apriori and
FR-tree, and TidFP algorithm take one database table as input. The database
table contains a number of transactions (or tuples) to be mined. Each transac-
tion contains one transaction id and the patterns (or attributes involved in the
transaction such as tv, laptop, desktop). For example, in one transaction <1,a,
b, c, d>, “1” represents transaction id while the items purchased by the trans-
action id are represented as “a”, “b”, “c”, “d” represent patterns. The TidFP
algorithm [12] mines frequent patterns first, generating frequent patterns with
their transaction ids (called TidFp), then applying set operations on the TidFps
to answer frequent pattern related queries across multiple database tables. The
TidFp algorithm represents each frequent i-itemset as an m-attribute tuple of
the form < Fi1 ; T1i1 , T2i1, . . . , Tmi1 >, where Fi1 is the first frequent i-itemset,
and Tmi1 is the mth transaction id of the first frequent i-itemset. For example,
given the minimum support of 50% and a table with only 4 transactions with
transaction ids D1 . . . D4 where each transaction has a list of itemsets drawn
from the list 1, 2, 3, 4, 5. The TidFp algorithm would find the list of frequent
1-itemsets as F1 ={< 1, D1, D3 >, < 2, D2, D3, D4 >, < 3, D1, D2, D3 >,
< 5, D2, D3, D4 >}. This means that the 1-itemset 1 is frequent because it can
be found in 2 database transactions D1, and D3. To find the 2-candidate item-
sets, the algorithm would obtain the 2-itemset list by joining the same way the
Apriori-gen would obtain those, but would now obtain the resulting transaction
id list as the intersection of the transaction id list of the two joined patterns.
Thus, a mapgen-join of the two 1-itemset patterns < 1, D1, D3 > and < 2, D2,
D3, D4 > will yield the resulting 2-itemset pattern < 1, 2, D3 >. The TidFP
algorithm does not mine frequent patterns in integrated object-oriented multi-
ple databases with inheritance hierarchies, nor specify the hierarchy levels that
patterns belong to and carries the extra overhead of using set operations to
integrate discovered patterns from individual related tables. Existing work, such
as in Mining Multi-level Association Rule [14], mining in distributed databases
[6,7,13,17] replace the patterns by another pattern in higher or lower hierarchy

168 C.I. Ezeife and D. Zhang

Fig. 2. The itemset concept hierarchy Tree

level and discover frequent patterns in different concept hierarchy level. However,
these algorithms do not take object databases as inputs and do not consider the
objects or object attributes as patterns.

For example (in Fig. 2), “2 % Foremost milk” is encoded as “112”. Following
the concept hierarchy, the digit “1” represents milk at level one, the second digit
“1” represents 2 % milk at level 2, and the third digit “2” represents “Foremost”
milk product at level three. For example, the transaction 1 in the transaction
table is encoded as <1,111, 112, 211, 212>. In this transaction, the pattern “111”
represents 2% Dairyland milk, the pattern “112” represents 2 % Foremost milk,
the pattern “211” represents white OldMills bread, the pattern “212” represents
white Wonder bread. Although the concept hierarchy provides some encoding of
hierarchical semantic information about individual items (attributes), it is not
the same as an object schema for representing the entire set of tables (classes) and
the relationships between them. The OR-FP algorithm [19] takes object-oriented
database as input and mines objects and attributes of objects as frequent pat-
terns. However, it does not mine multiple object databases and does not specify
at which hierarchy level patterns are frequent. The data in their object-oriented
database is represented as: oi: class = {attribute1, attribute2, . . ., attributen}.
For example, parts of the sample data used by this system are: o1: Person =
{Smith, Canada, 16000}; o2: Actor = {John, Canada, 12000}.

4 Mining Multiple Object-Oriented Databases

In this section, we define the object-oriented class model and a set of class
methods in different classes. These class methods are able to integrate multiple
data sources (by updating the Root class table), join object tables, and answer
frequent pattern mining queries. The object-oriented database model consists of
(1) a Root transactional class, Root (2) a set of object classes, Ci . . . Cn, and
(3) the inheritance hierarchy that defines the superclass-subclass relationships
between the object classes, HTree. The structures of the three components are
given as Algorithm 4.01 for the object database model.

Mining Multiple Related Data Sources Using Object-Oriented Model 169

Algorithm 4.01 (The Object Database Model)

OOModel()
begin
Root{
a set of transaction attributes Ai

//including super type and all physical attributes of Ci

private void InsertTransactions;
private set MineRootFPs;
public set OOJoin;
}
Set of Classes Ci . . . Cn where for each Ci{
a set of physical attributes Ai

private set MineClassFPs;
}
Class Inheritance Hierarchy HTree in the form (subclass,superclass){
a set of (subclass,superclass) relationships
}
end

Class Ci has a set of physical attributes which are the properties of the
class Ci. In the example of computer object database, physical attributes are
“CPU”, “RAM”, and “Hard drive” of a “Computer” class, or “Screen size” and
“Battery life” of a “Laptop” class. Class Root has a set of transaction attributes.
The transaction’s attributes include a set of superi which consists of all the
hierarchical super types of the leaf class Ci and all physical attributes of classes
Ci of the database. Private method InsertTransactions of Root class is used to
insert transactions into the Root table and is only called in the class Root.

4.1 Object-Oriented Join (OOJoin)

To answer query 2 in Sect. 2.1, the computer class Table 1 and laptop class
Table 2 need to be joined first. In the object database schema we defined in
Algorithm 4.01, classes are connected by superclass and subclass relationships
in the object-oriented database. Object-Oriented Join (OOJoin) is defined as a
method which joins superclass and subclass tables on their type and super type
foreign keys. The main algorithm of OOJoin is shown as Algorithm 4.11.

Algorithm 4.11 (OOJoin Algorithm)

Algorithm OOJoin()
Input: Super class table Csuper, sub class table Csub,

superclass primary key K1, the superclass foreign keys T1 and S1,
subclass primary key K2, the subclass foreign keys T2 and S2.

Output: A set of tuples of objects on Table Td

Other Variables: Table Tc to hold result of cross product of
two class tables, initialized as empty
Table Tt for tuples of Csuper.T1 = Csub.T2 or

170 C.I. Ezeife and D. Zhang

Csuper.T1 = Csub.S2, initialized as empty
List1: set of IDs of super class table, initialized as empty.
List2: set of IDs of sub class table, initialized as empty.

Begin
1.0 Tc = Csuper × Csub. // cross product of tables
2.0 Tt = select from Tc where
(Csuper.T1 = Csub.T2 or Csuper.T1 = Csub.S2)
3.0 select a set of distinct tuples Td from Tt;
3.1 insert the first tuple t1 of Tt into Td;
3.2 insert object id of superclass part in t1 into List1;
3.3 insert object id of subclass part in t1 into List2;
3.4 For each tuple tx left in the Tt

3.4.1 If (K1 does not exist in List1 and K2 in t1 does not exist in List2)
3.4.1.1 Insert tx into Td;
3.4.1.2 Insert K1 in tx into List1;
3.4.1.2 Insert K2 in tx into List2;

end

Description of the OOJoin Algorithm
The objective of the OOJoin algorithm is to join a class (e.g., laptop) with its
superclass (e.g., computer) so that all inherited attributes of the class stored
with the superclass can be obtained for queries of the class involving the inher-
ited attributes as well. The OOJoin algorithm cascades from the class to the
most senior ancestor class. Step 1.0 of the OOJoin algorithm finds the cross
product of the super class and the sub class tables and stores the result in a
temporary table Tc. The resulting tuples from the cross product operation con-
tain all the attributes of the superclass (e.g., computer) and the subclass (e.g.,
laptop) including their primary and foreign keys. The subclass (laptop) keys
consist of its primary key (K2 such as laptid), its first foreign key which is the
type for the subclass (T2 such as laptop), and the second foreign key which is
the super type for the subclass (S2 such as computer). Similarly, the joining
superclass (computer) keys consist of computer class primary key (K1 such as
computer id), first foreign key type (T1 such as computer), and second foreign
key for super type (S1 such as Root) are also in the attributes of this table,
Tc. Step 2.0 of the OOJoin operation discards certain tuples from the result
of the cross product operation according to the following conditions. For each
tuple, the foreign key T1 is compared with foreign key T2. If T1 matches T2,
or T1 matches S2 then the tuple will be kept, else the tuple will be discarded.
Step 3.0 in the algorithm further prunes the list of tuples to keep only distinct
tuples. The first tuple is always kept. Two lists are created, each list is a list of
primary keys. The first list will be referred to as List1 and it is used to store
the K1 primary keys and the other list is referred to as List2 and it is used to
store the K2 primary keys. For each tuple, starting with the second tuple, we
first check if K1 of the current tuple is already in List1. If it is, then this tuple
will be discarded. Else, if K1 is not already in List1, then we check if K2 is
already in List2. If it is, then the tuple will be discarded, else the tuple is kept.

Mining Multiple Related Data Sources Using Object-Oriented Model 171

Table 5. Result of OOJoin of Computer (C) class with Laptop(L) class

ID Type Super CPU RAM Hard Comp ID Type Super Screen Battery
drive name size life

Comp1 L C 2GHz 2G 250G I. laptop Lapt1 Ideapad L 15” 3 h
Comp2 L C 2GHz 2G 320G I. laptop Lapt2 Ideapad L 15” 3 h
Comp3 L C 3GHz 4G 350G T. laptop Lapt3 Thinkpad L 17” 3.5 h

For example, OOJoin operation of Tables 1 and 2 will result in Table 5. The three
tuples (comp1, comp2, comp3) of Table 5 join the computer class with laptop
class to select all laptop instances with their inherited attributes specified in
the join operation to select joined tuple from the cross product if class1.type
= class2.supertype or class1.supertype = class2.supertype. With this join, if
class1.type = class2.supertype or Table 2. supertype, then the two tuples of
Tables 1 and 2 are joined. For example, for tuple comp1, comp1.Type = Laptop
in Table 1 and lapt1.supertype = Laptop in Table 2 and these two tuples are
joined to obtain tuple comp1 of Table 5. Other results are obtained in similar
fashion.

4.2 Mining Frequent Patterns in One Class

The MineClassFPs algorithm is used to mine frequent patterns of any class.
This it does by using the OOJoin algorithm to obtain all inherited attributes
and methods of the class from its superclasses before it applies either the TidFp
algorithm for mining the frequent patterns at different hierarchy levels of the
inheritance hierarchy. As shown in the class model, every class Ci has a private
method MineClassFPs which mines frequent patterns in the class and outputs a
set of class attributes as frequent patterns. The algorithm for MineClassFPs is
provided as Algorithm 4.21.

Algorithm 4.21 (MineClassFPs Algorithm)

Algorithm MineClassFPs()
Input: class table C to be mined, super class tables (CSi) of class C

where CSk is superclass of CSk−1, minimum support s%
Other Variables: Joined class table T
Output: A set of frequent patterns FPs.
Begin
1.0 // Call JoinClasses (C, CSi) to join classes as in step 1.x below

1.1 T = C;
1.2 if (CSi ←= NULL) // C has super classes.

1.2.1 For each superclass table CSi

1.2.1.1 T = OOJoin(CSi , T); // call OOJoin to join
//subclass and superclass

2.0 TidFP(T, s%); // Call TidFP on Joined table T
end

172 C.I. Ezeife and D. Zhang

Description of the MineClassFPs Method
Step 1.0 of the algorithm joins the class and all super classes using the OOJoin
algorithm. Step 2.0 applies TidFP algorithm which takes resulting table from
Step 1.0 and the minimum support to mine the frequent patterns. This private
method MineClassFPs can answer queries such as query 2 in Sect. 2.1.

4.3 Mining Hierarchical Frequent Patterns in the Root Class

As shown in the class model (Algorithm 4.01), the Root class has a private
method MineRootFPs (as given in the formal algorithm 4.51). This method
mines frequent patterns in the class and outputs a set of frequent patterns spec-
ifying the levels of the inheritance hierarchy. The hierarchical frequent patterns
are mined from a Root table of transactions on classes (tables) in the inheritance
hierarchy such as Table 4. The inheritance hierarchies exist in the transaction
in the Root table. The algorithm for mining hierarchical frequent patterns first
creates multiple database inheritance hierarchy tree (MHTree), such as Fig. 1.
Then, the transaction ids of the Root table are stored in the MHTree node
according to the inheritance hierarchy of each transaction in the Root table.
Then, the algorithm traverses the MHTree through the linkage table to access
every node and intersect the transaction ids in every node with transaction
ids of 1-itemset candidate patterns to obtain 1-itemset frequent patterns with
the hierarchy information. A modified version of map-gen join algorithm in the
TidFP algorithm is used to generate 2-itemset candidate pattern, and it then
traverses the MHTree to obtain 2-itemset frequent patterns. Finally, it obtains
the n-itemset frequent patterns. The process of mining the hierarchical FP from
the Root table is given in algorithm 4.51 which starts by obtaining the mul-
tiple inheritance tree (MHTree) and this calls the OOJoin algorithm to join
each such subclass (e.g., laptop) with its superclass (e.g., computer) so that all
inherited attributes of the class stored with the superclass can be obtained. The
MineClassFP algorithm 4.21 for mining frequent patterns of any class also uses
the OOjoin algorithm to obtain inherited attributes of all superclasses of this
class. To mine only class FP, the algorithm would use OOJoin to obtain the full
class information before applying the TidFP algorithm to obtain the class FPs
with Tids. To mine the Root FPs, the OOJoin is used to create the MHTree
before calling the MineHFPs with inheritance hierarchy information about each
transaction to generate hierarchical FPs where each iteration involves oomap
gen join of frequent Fk with itself.

4.4 Position Coding Method

In the PLWAPLong algorithm [10], two position codes, start position and end
position (two integer numbers) are assigned to every node of the tree to dis-
tinguish the position of the nodes in the tree. Position codes are assigned by
pre-order traversal of the tree (in the order visit node, left subtree and right
subtree) and starting with the root node of the tree having the start position
code of 0. The idea of position coding method can be used to represent the

Mining Multiple Related Data Sources Using Object-Oriented Model 173

Fig. 3. The position code assigned HTree

level of inheritance hierarchy. As shown in Fig. 1, multiple database inheritance
hierarchy can be represented in a tree structure called MHTree, inheritance hier-
archy in one database can also be represented in a tree structure called HTree.
Position coding method can be used to assign two position codes, start position
and end position to each node of the HTree/MHTree by pre-order traversal in
order to represent the levels of inheritance hierarchy. The position code assigned
HTree of the example computer database is shown in Fig. 3.

In Fig. 3, two position codes are assigned to every node of the HTree. The
start position of the Computer class (root parent class) is “0” which is less than
the start position of the laptop class (child class) and the desktop class (child
class). The end position of the computer class is “5” which is greater than the
start positions of the child classes. The laptop class and the desktop class are
the sibling classes. The start position and end position of one sibling class are
both smaller than those of the other sibling class or the start position and end
position of one sibling class are both greater than those of the other sibling class.

The oomap-gen Join Method
Like in the Apriori-gen join, the purpose of the oomap-gen is to obtain the
extended (i + 1)-itemsets from the frequent i-itemsets (Fi) by joining Fi with
itself oomap-gen fashion. The map-gen join method used in the TidFP algorithm
avoids multiple database scanning by intersecting transaction id lists of two
patterns being joined to get the resulting transaction id list. The resulting itemset
is obtained as the union of the two joined itemsets. However, map-gen join still
suffers from large candidate generation and intersecting transaction id lists of
every candidate patterns and unable to apply to object hierarchy. When the
number of transactions is large, intersecting transaction id lists is an expensive
process. Figure 4 provides an example application of the map-gen join of patterns
from the example sales transaction table (Root table) shown in Table 4. The
patterns in map-gen join are in the slightly reordered format (where Tidlist comes
before the itemset list) of <Tidlist; itemset>. In that Fig. 4, it can be seen that
the computer feature attribute 1-itemset of <15”>, <3 h>, and <256M> are all
1-frequent items where <15”>, and <3h>, are both frequent in the Root table
transactions with ids 1, 2 and 7. However, the 1-itemset <256M> is frequent in
Root table transaction ids 4 and 5. The goal of the map-gen join of these three
frequent 1-itemsets < (1, 2, 7); (15′′) >, < (1, 2, 7); (3 h) >, < (4, 5); (256M) >

174 C.I. Ezeife and D. Zhang

with themselves, is to obtain the frequent 2-itemsets of < (1, 2, 7); (15′′, 3h) >,
< (None); (15′′, 256M) >, < (None); (3h, 256M) >. The 1-itemsets in the map-
gen join above are 15′′, 3 h, 256M while <1,2,7> and <4,5> are the transaction
id lists. This step is similar to the ap-gen join used in Apriori algorithm. The
transaction id lists will be intersected to get the resulting transaction id list.

The oomap-gen join method applies a modification of the map-gen join
function. The oomap-gen method can join a set of frequent i-itemsets Fi with
itself, where itemsets are from an object oriented class inheritance hierarchy, to
obtain the candidate (i+1)-itemsets. Thus, the candidate (i+1)-itemsets Ci+1 is
obtained from the frequent i-itemsets for i ⊆ 1, by joining frequent i-itemsets Fi

with itself oomapgen way such that Ci+1 = Fi ρσ Fi. To join oomapgen way, for
each pair of itemsets M and P ≺ Fi where each Fi itemset is in the format “<
transaction id list, itemset, (class start position code, class end position code)
>”, the following three conditions have to be satisfied: M joins with P to get
itemset M ∀ P if the following conditions are satisfied.
(a) itemset M comes before itemset P in Fi,
(b) the first i-1 items in M and P (excluding just the last item) are the same,
(c) the transaction id list of the new itemset M ∀ P represented as TidM≤P is
obtained as the intersection of the Tid lists of the two joined i-itemsets M and
P and thus, TidM≤P = TidM ∩ TidP .
(d) To speed up processing, ignore non-joinable patterns by applying the oomap
pattern joinable rule which states that only patterns belonging to the same class
or classes with ancestor-descendant relationships determined using the start and
end position codes of the patterns are joinable.

Definition 4.41. Ancestor-Descendant Nodes (a,b): Node a of a tree is an ances-
tor of node b of the tree iff the start position code of node a is less than the start
position code of node b, but the end position code of node a is greater than the end
position code of node b. For example, in the Htree of Fig. 3, the node Computer with
(start,end)codes of (0, 5) is an ancestor of the node Laptop with codes (1, 2). �

Definition 4.42. Sibling Nodes (a,b): Node a of a tree is a sibling of node b of
the tree iff both the start and end position codes of node a are either less than
or greater than the start and end codes of node b. For example, in the Htree of
Fig. 3, the node Laptop node with (start,end)codes of (1, 2) is a sibling of the
node Desktop with codes (3, 4). �

Definition 4.43. The oomap pattern Join Rule: If two patterns belong to the
same class or belong to two different classes but have an ascendant-descendant
relationship as can be determined with Ancestor-Descendant Node definition,
they can be joined. If two patterns belong to different classes which have a non
ascendant-descendant relationship, they cannot be joined. For example, using
this rule for < (1, 2, 7)(15′′) > (1, 2) oomap-gen join < (4, 5)(15′′) > (3, 4)
patterns will yield no join since from the ancestor-descendant rule the start and
end position codes of the first pattern are all less than those of the second pattern
showing that they are not from joinable classes. �

Mining Multiple Related Data Sources Using Object-Oriented Model 175

Fig. 4. The map-gen join

Fig. 5. The OOmap-gen join

From Fig. 4, it can be seen that applying map-gen join on three 1-itemset
patterns will result in three 2-itemset candidate patterns. The transaction id
lists of newly generated 2-itemset patterns <15”, 256M> and <3h, 256M> are
None, because the patterns <15”> and <3h> belong to the laptop class, but
the pattern <256M> belongs to the desktop class, they cannot appear in the
same transaction in the sales transaction table. Therefore, the position coding
method introduced in the previous section will be used to reduce the candidate
pattern generation. With the position codes involved, patterns will be checked
for their inheritance hierarchy relationships before generating the new candidate
patterns. The start position and end position can be used to distinguish the
ascendant-descendant or sibling relationships of classes. As given in the oomap-
gen pattern join rule, if two patterns belong to the same class or belong to
two different classes but have an ascendant-descendant relationship as can be
determined with Ancestor-Descendant Node definition, they can be joined. If
two patterns belong to different classes which have a non ascendant-descendant
relationship, they cannot be joined. Figure 5 shows the result of the oomap-gen
join where the start and end position codes may be used to more quickly identify
the non-joinable patterns such as < (None); (15′′, 256M > that appeared in the
result of the map-gen join of Fig. 4 and to exclude them in the result of the
oomap-gen join as shown in Fig. 5.

From Fig. 5, it can be seen that patterns are in the format of <Tidlist;
itemset>(start, end).

176 C.I. Ezeife and D. Zhang

4.5 The MineRootFPs Method

The main algorithm of MineRootFPs method is used for answering comparative
queries involving transactions of many classes in the object database which can
also include an integration of multiple databases such as computers from sev-
eral vendors like IBM, Dell, HP as shown in the multiple inheritance hierarchy
of Fig. 6. The formal algorithm for MineRootFPs(MH, s%, Root) is given as
Algorithm 4.51.

Algorithm 4.51 (MineRootFPs Algorithm)

Algorithm MineRootFPs()
Input: multiple database inheritance hierarchy MH,

Root table, minimum support s%
Other variables: multiple database inheritance hierarchy Tree MHTree,

TMHTree, //Transaction ids stored MHTree
LTMHTree //Linkage built TMHTree,
set of k-itemset frequent pattern Fk;
set of k-itemset candidate pattern Ck;

Output: hierarchical frequent patterns HFPs in the format of
<Tidlist; itemsets; classi >.

Begin
1.0 CreateMHTree(MH);
//create multiple database inheritance hierarchy tree, MHTree
2.0 StoreTidMHTree(MHTree, Root);
//store transaction ids into MHTree and Obtain TMHtree
3.0 GenOneCand(Root); //generate 1-itemset candidate patterns
4.0 BuildLinkage(TMHTree); //build linkage of TMHTree and obtain TMHTree
5.0 MineHFPs(LTMHTree, Ck, s%)
5.1 Ck = 1-itemset candidate patterns
5.2 Fk = CheckMinS(MHTree, Ck, s%);
5.3 if (Fk is not empty)

5.3.1 Ck+1 = oomap-gen-join(Fk);
5.3.2 k = k + 1
5.3.2 go to step 5.2

End

Description of MineRootFPs Algorithm of the Root Class
Step 1.0 is creates a multiple database inheritance hierarchy tree (MHTree) as
shown in Fig. 6. Step 2.0 scans the entire transaction Table 4 and stores the
transaction ids into the nodes (class) of the MHTree to create a MHTree with
transaction ids stored which is called TMHTree. For example, from Fig. 6, it
can be seen that transactions 1, 2, 7 of the Root transaction Table 4 are on
IBM laptop computers. Concurrently with steps 2.0, step 3.0, it generates the
1-itemset candidate patterns in the format of <Tidlist; itemset>(start, end).
This step is similar to the step of generating 1-itemset candidate patterns in the
TidFP algorithm. Step 4.0 is building the header linkage to TMHTree to create a
LTMHTree, so that nodes of the tree can be easily accessed. The header linkage

Mining Multiple Related Data Sources Using Object-Oriented Model 177

Fig. 6. The LTMHTree:linkage tree multiple inheritance tree

is built such that every unique class in a database (e.g., Computer, Laptop,
Desktop) has an entry and using the preorder traversal, all similar classes across
multiple databases are linked in a queue. In the computer object database, there
are three object tables, “Computer”, “Laptop”, and “Desktop”. Therefore, there
will be three entries in the link header table. It builds linkage queue for each
entry. Finally, it uses pre-order traversal (visit node, visit left subtree, visit right
subtree) to access every node of the tree and store the node into the appropriate
queue. An LTMHTree with transaction ids stored and linkage built is shown in
Fig. 6. Step 4.0 is for mining the hierarchical frequent patterns in the Root table
by calling the MineHFPs algorithm.

Algorithm 4.52 (MineHFPs Algorithm)

Algorithm MineHFPs()
Input: linkage built, transaction ids multiple database

inheritance hierarchy LTMHTree, minimum support s%,
a set of 1-itemset candidate pattern C1, in the format of <Tidlist, itemset>

Output: a set of hierarchical frequent patterns Fk

in the format of <Tidlist, itemsets, classi >
Other variable: a set of candidate patterns Ck

Begin
1.0 Ck = C1

2.0 Fk = CheckSupp(LTMHTree, Ck, s%);
3.0 if (Fk is not empty)
3.1 Ck+1 = oomap-gen-join(Fk);
3.2 k = k+1
3.3 go to step 2.0
end

178 C.I. Ezeife and D. Zhang

Description of the MineHFPs Algorithm
The MineHFPs algorithm takes as an input the LTMHTree (with transaction
IDs stored and linkage built), a set of 1-itemset candidate patterns with transac-
tion IDs, and a minimum support value s%. The algorithm MineHFPs calls the
algorithm CheckSupp which uses every 1-itemset candidate pattern to traverse
LTMHTree in order to check the support of each 1-itemset candidate pattern. If
the support is greater than or equal to the minimum support of s% at any level in
the hierarchy, then the 1-itemset candidate pattern counts as a 1-itemset frequent
pattern. If 1-itemset frequent pattern(s) already exists, it uses oomap-gen-join
algorithm to generate 2-itemset candidate patterns. The CheckSupp algorithm
is utilized to check the support level of the newly generated 2-itemset candidate
patterns and to generate 2-itemset frequent pattern(s) if the support level is suf-
ficient. If 2-itemset frequent patterns exist, it uses algorithm oomap-gen-join to
generate 3-itemset candidate patterns. By the same process, k-itemset frequent
patterns can be generated. The CheckSupp algorithm is given as Algorithm 4.53.

Algorithm 4.53 (CheckSupp Algorithm)

Algorithm CheckSupp()
Algorithm CheckSupp(LTMHTree, Ck, s%);
Input: MHTree, k-itemset candidate pattern with transaction IDs Ck,

in the format of <Tidlist, itemsets, classi >, k = 1; initially, minimum support s%.
Output: Frequent k-itemsets Fk, in the format of <Tidlist, itemsets, classi >.
Other variables: intersected transaction id list intersectTidlist, unioned Transaction

id list UTidlist, Pointer nodePtr, Frequent pattern f, Boolean Flag=false,
linkage queue of LTMHTree qi, Hierarchy of every node classi

Begin // Check supports of generated patterns
1.0 For each element cx in Ck do

1.1 Flag = false;
1.2 For each queue qi do

1.2.1 For each element eij in the queue qi do
1.2.1.1 intersectTidlist = cx.T idlist ∩ eij .T idlist;
1.2.1.2 if((number of IDs in intersectTidlist)/(number of
IDs in eij .T idlist) >= s%)

1.2.1.2.1 f = cx; 1.2.1.2.2 insert f into Fk;
1.2.1.2.3 f = f append eij .classi; 1.2.1.2.4 Flag = true;

1.2.1.3 UTidlist = UTidlist ∪eij .T idlist;
1.2.2 intersectTidlist = cx.T idlist∩ UTidlist;
1.2.3 if((number of IDs in intersectTidlist)/(number of IDs in UTidlist) >= s%)

1.2.3.1 insert f into Fk; 1.2.3.2 f = cx concatenate eij .classi;
1.2.3.3 Flag = true;

1.3 if(Flag = true) Insert cx into Fk;
end

Application of the CheckSupp Algorithm
To serve as an example, the MineHFPs algorithm uses the inputs LTMHTree
(Fig. 6), two 1-itemset candidate patterns: <1, 3, 7, 2 GHz> (0,5) and <1, 3,
7, 2 G> (0,5), and a minimum support value of 50%. Step 1.0 and 2.0 of the
MineHFPs algorithm use the transaction id list (Tidlist) of every 1-itemset can-
didate pattern to intersect the Tidlist of every node in every linkage queue of the
LTMHTree in order to discover the 1-itemset frequent patterns. The MineHFPs

Mining Multiple Related Data Sources Using Object-Oriented Model 179

algorithm starts from the first 1-itemset candidate pattern <1, 3, 7, 2 GHz>. The
Tidlist of the candidate pattern <1, 3, 7, 2 GHz> is <1, 3, 7>. The first node
of linkage queue of “Computer <1, 2, 7>” is <1, 2, 7> (according to Fig. 3.13).
Intersecting <1, 3, 7, 2> and <1, 2, 7> obtains <1, 7>. There are two transac-
tion ids in <1, 7>. The number of ids in <1, 2, 7> is 3. The frequency is 2/3
which is greater than 50%. Hierarchy of node “Computer <1, 2, 7>” is node
“computer/IBM”. Therefore, we obtain the hierarchical frequent pattern <1, 7,
2GHz, computer/IBM>. We also insert the candidate pattern <1, 3, 7, 2 GHz>
into frequent pattern set F1. In the same way of processing the candidate pattern
<1, 3, 7, 2 GHz> and node “Computer <3,6,9>” is intersected, and pattern <1,
3, 7, 2 GHz> and node “Computer <4,5,8>” is intersected. We find out that pat-
tern <1, 3, 7, 2 GHz> is not frequent at node “Computer <3,6,9>” nor at node
“Computer <4,5,8>”. We also need to union the Tidlists of all three nodes in the
“Computer” linkage queue. Union of Tidlists <1,2,7>, <3,6,9>, and <4,5,8> is
<1, 2, 7, 3, 6, 9, 4, 5, 8>. Intersecting Tidlist of pattern <1, 3, 7, 2, 2 GHz>
and <1, 2, 7, 3, 6, 9, 4, 5, 8> is <1, 3, 7, 2>. The frequency is 4/9 which is less
than the minimum support of 50%. Therefore the pattern <1, 3, 7, 2, 2 GHz>
is not frequent at the hierarchy “Computer”. The Tidlist of candidate pattern
<1, 3, 7, 2, 2 GHz> will intersect Tidlist of nodes in “Laptop” linkage queue
and “Desktop” linkage queue. The 1-itemset candidate pattern <1, 3, 7, 2 G>
will be processed by the same procedure as above and will obtain patterns as:
<1, 7, 2 G, computer/IBM>, <1, 2, 2 G, laptop/computer/IBM>. Patterns <1,
3, 7, 2 GHz>(0,5) and <1, 3, 7, 2 G> (0,5) will use oomap-gen join to generate
2-itemset candidate pattern <1,3,7, 2 GHz, 2 G>(0,5). This 2-itemset pattern
will serve as inputs to the CheckSupp algorithm and 2-itemset frequent patterns
are generated. Then the 2-itemset frequent patterns will be used to generate
3-itemset candidate patterns by oomap-gen join. By the same process we obtain
all k-itemsets hierarchical frequent patterns, until there are no frequent patterns
generated.

5 Implementation and Experimentation

One of the most important contributions of the paper is proposing an object
oriented model for representing and mining data from multiple databases while
maintaining the class inheritance hierarchy for purposes of answering more com-
plex, historical, derived queries across such integrated multiple database data.
The experiments below serve to show both the effectiveness of the proposed
algorithms in performing such object oriented mining while remaining reason-
ably efficient in comparison with existing system such as the TidFP that cannot
handle all tasks that can be handled by the proposed approach. To test the
performance of our proposed method for mining hierarchical frequent patterns
in table Root (transaction table), we use the IBM quest synthetic data genera-
tor to generate three datasets for the three databases. There are three datasets
(class object table Ci) in every database, the first one represents the “Computer”
objects table, the second for the “Laptop” objects table, and the third for the
“Desktop” objects table.

http://dx.doi.org/10.1007/978-3-642-54426-2_3

180 C.I. Ezeife and D. Zhang

5.1 Generating the Class Table Ci

The IBM quest synthetic data generator generates integer numbers to represent
patterns (attributes of objects in the case of object-oriented databases). If we
specify the number of items, ∧N∧, as “15”, it means that the patterns will be rep-
resented by the integer numbers from “1” to “15”. When we use the IBM quest
synthetic data generator to generate the dataset which represents the Computer
class table, we specify ∧N∧ as “15”. This means that the integer numbers from
“1” to “15” will represent the patterns of the Computer class table. When we
generate the dataset for the Laptop class table, we specify ∧N∧ as “60”. How-
ever, the integer numbers from “1” to “15” have already been used to represent
the patterns for the Computer class table. We need to eliminate the numbers
“1” to “15” so that the dataset generated will only contain the integer numbers
from “16” to “60”. Therefore, the integer number from “16” to “60” will be used
to represent patterns for the Laptop class table. When we generate the dataset
for the Desktop class table, we specify ∧N∧ as “120”. Since the numbers from
“1” to “15” have already been used to represent the patterns for the Computer
class table and the integer numbers from “15” to “60” have already been used to
represent the patterns for the Laptop class table, we need to eliminate the num-
bers from “1” to “60” so that the dataset generated will only contain the integer
numbers from “60” to “120”. Therefore, the integer numbers from “60” to “120”
will be used to represent patterns for the Desktop class table. Each transaction
of the dataset represents one instantiated object. The transaction id of a trans-
action record will represent the object id of one instantiated object and a set
of items in a transaction record will represent a set of object attributes in one
instantiated object. We generate three datasets (Computer, Laptop, Desktop)
for each of the three databases (IBM, Dell, and HP). We use an integer number
to represent a particular database (the database name) and an integer number to
represent a particular class object table. For example, “1” represents the “IBM”
database, “2” represents the “Dell” database, “3” represents the “HP” data-
base, “4” represents the “Computer” class, “5” represents the “Laptop” class,
and “6” represents the “Desktop” class. The “Computer” class is inherited by
the “Laptop” and the “Desktop” class. As discussed in Sect. 1.2, the database
schema of Ci is Ci (K, T, S, A, M, O). T is the type and S is the super type.
The dataset that stands for the “Computer” class will be assigned a number “4”
as S (super type), and randomly assigned “5” or “6” as T (type). With regards
to the “Laptop” class, S(super type) will be assigned as “5”, and T (type) will
be randomly assigned as “5”,“7” or “8” (which represent different subclasses of
the “Laptop” class). With regards to the dataset that stands for the “Desktop”
class, S(super type) will be assigned as the number “6”, and T (type) will be
randomly assigned as “6”,“9” or “10” (which represent different subclasses of
the “Desktop” class).

5.2 Generate the Root Table

The Root table is a transaction table that has transaction id K as a primary key,
T and S as foreign keys (which represent type and super type of the transactions

http://dx.doi.org/10.1007/978-3-642-54426-2_1

Mining Multiple Related Data Sources Using Object-Oriented Model 181

in Root table). K is the transaction id which is an integer number from 1 to
∧D∧ sequentially. ∧D∧ is the number of transactions in the Root table. Type,
T, is used to represent the name of the database where the transactions come
from. We randomly generate an integer number among “1”, “2”, “3” for type,
T, for every transaction to represent the name of a database (such as IBM, Dell,
and HP). Then we apply OOJoin algorithm to join all class tables Ci in every
database to obtain an object joined table. Finally, randomly select the objects
from object joined table in each database to fill in the attributes A in the Root
Table.

5.3 Performance Comparison

The proposed algorithm MineHFPs is compared with the TidFP algorithm with
respect to CPU execution time and memory usage because it is the algorithm
that is closest to being able to answer the types of mining queries involving mul-
tiple tables and databases which the proposed algorithm and model is designed
for. The most important contribution of work is providing a model that can
mine multiple database tables and answer such complex queries involving his-
tory and derived data. It should also be mentioned that while the proposed
approach mines frequent patterns in integrated or joined tables (classes), the
TidFP mines FPs from individual tables and integrates the FPs to answer the
query through relevant set operations. Thus, this could also be a reason for
slower execution time for the TidFP in comparison with the MineHFP in some
of the reported experiments.

MineHFP and TidFP are both implemented in C++ with the same data
structures and can run on both windows and UNIX platforms. In a UNIX
environment, the programs are compiled with “g++ filename” and executed
with “a.out”. The class object table Ci, inheritance hierarchy H, and multiple
database inheritance hierarchy MH are all stored in text files. If we separate
the integrated Root table by class hierarchy, the TidFP algorithm can also be
applied to each separated part to answer those queries. For example, using the
TidFP algorithm to answer “Query 4: What are the most popular hardware
component specifications (CPU, RAM, Hard drive, screen size, and battery life)
among a computer system subgroup such as laptops and sold by a particular
company like Dell (with a minimum support of 50%)?”. We will select trans-
actions having type as “3” (transaction comes from Dell database), and also
have super1 “4” and super2 “5” to represent “Computer” and “Laptop”, respec-
tively. In this section, we compare the performance of our proposed algorithm
MineHFPs and the TidFP algorithm. Both the CPU execution times and the
memory usages are measured for each algorithm. The MineHFPs algorithm per-
formance measures include the tasks of creating the MHTree, storing transaction
ids in the MHTree, generating 1-itemset candidate patterns, building linkage,
and executing the MineHFPs algorithm. We generate the Root tables of size
125K, 250 K, 500K, and 1M. The characteristics of the generated datasets are
described in Table 6. Table 7 describes the execution times for the MineHFPs
and the TidFP algorithm on 125K dataset with low minimum support (20%,

182 C.I. Ezeife and D. Zhang

Table 6. The characteristics of the generated dataset

Root Computer Laptop Desktop

Table Class Class Class
125K C7.S4.N20.D125K C15.S4.N60.D63K C25.S4.N120.D62K
250K C7.S54.N20.D250K C15.S4.N60.D125K C25.S4.N20.D125K
500K C7.S4.N20.D500K C15.S4.N60.D250K C25.S4.N20.D250K
1M C7.S4.N20.D1000K C15.S4.N60.D500K C25.S4.N20.D500K

Table 7. CPU execution time on 125K dataset with varying minimum support

Algorithms Execution times (secs) at varying minimum supports
(minimum Support) 20 % 10 % 9 % 8 % 7 %

MineHFPs 290 4186 6356 9606 17785
TidFP 279 12327 23083 40097 74046

Table 8. Memory usage on 100K dataset with varying minimum support

Algorithms Memory usage (in MB) at varying minimum supports
(minimum support) 20 % 10 % 9 % 8 % 7 %

MineHFPs 62 430 590 774 1070
TidFP 26 158 214 266 350

10%, 9%, 8%, and 7%). Table 8 describes the memory usage of the MineHFPs
and the TidFP algorithm on 125K dataset with low minimum support (20%,
10%, 9%, 8%, and 7%). Table 9 gives the execution time of the MineHFPs and
the TidFP algorithm on 250K dataset with low minimum support (20%, 10%,
9%, 8%, and 7%). Table 10 gives the memory usage of the MineHFPs and the
TidFP algorithm on 250K dataset with low minimum support (20%, 10%, 9%,
8%, and 7%). Table 11 is the execution time of the MineHFPs and the TidFP
algorithm on 500K dataset with low minimum support (20%, 10%, 9%, 8%,
and 7%). Table 12 is the memory usage of the MineHFPs and the TidFP algo-
rithm on 500K dataset with the low minimum support (20%, 10%, 9%, 8%,
and 7%).

From Tables 9, 10, 11, we can see that the MineHFPs algorithm outperforms
the TidFP at the low minimum support thresholds. The MineHFPs algorithm
is approximately 3.5 times faster than the TidFP algorithm for a 125K dataset,
3.9 times faster for a 250K dataset, and 4.4 times faster for a 500K dataset
when the minimum support is lower than 20%. As the size of the dataset is
increased, the performance margin between the MineHFPs and the TidFP algo-
rithm increases in favor of the MineHFPs algorithm. From these tables, we can
see that the MineHFPs algorithm has greater memory usage compared with the
TidFP algorithm. The memory usage of the MineHFPs algorithm is approxi-
mately 2.8 times, 2.5 times, and 2.6 times greater than the TidFp algorithm
for respective dataset sizes of 125K, 250K, and 500K (at the minimum supports

Mining Multiple Related Data Sources Using Object-Oriented Model 183

Table 9. CPU execution time on 250K dataset with varying minimum support

Algorithms Runtime (in Seconds) at different supports)
(minimum support) 20 % 10 % 9 % 8 % 7 %

MineHFPs 584 8321 12382 19241 35281
TidFP 577 24008 43584 74432 Crashed

Table 10. Memory usage on 250K dataset with varying minimum support

Algorithms Memory usage (in MB) at varying minimum supports
(minimum support) 20 % 10 % 9 % 8 % 7 %

MineHFPs 114 814 1098 1145 2001
TidFP 46 282 422 490 Crashed

Table 11. CPU execution time on 500K dataset with varying minimum support

Algorithms Runtime (in Seconds) at different supports
(minimum support) 20 % 10 % 9 % 8 % 7 %

MineHFPs 1180 16233 24679 37514 68143
TidFP 1150 48077 85027 Crashed Crashed

Table 12. Memory usage on 500K dataset with varying minimum support

Algorithms Memory usage (in MB) at varying minimum supports
(minimum support) 20 % 10 % 9 % 8 % 7 %

MineHFPs 222 1150 2130 2770 3839
TidFP 78 530 722 crashed crashed

Table 13. CPU execution time at minimum support of 10 % on varying sizes of
dataset

Algorithms Runtime (in Seconds) at different dataset sizes
(dataset size) 125K 250K 500K 1M

MineHFPs 3311 8321 16233 34089
TidFP 10264 24008 48077 98858

of 20 %, 10%, 9%, 8%, and 7%). Table 13 describes the execution time of the
MineHFPs and the TidFP algorithm at the minimum support of 10% on dataset
sizes of 125K, 250K, 500K, and 1M.

6 Conclusions and Future Work

More comprehensive and detailed real world data, such as different products on
a Business to Customer (B2C) website, their histories, versions, price, images,

184 C.I. Ezeife and D. Zhang

or specifications are more suitable to be represented in an object-oriented data-
base model. This paper proposes an object-oriented class model and database
schema, and a series of class methods for mining multiple data sources. This
paper also provides mechanisms that allow the flexibility of implementing this
model with the popularly used relational DBMS. The methods can mine frequent
patterns on each local object database and also mine the Hierarchical Frequent
Pattern (MineHFPs) which specify at which hierarchy level the pattern is fre-
quent in a global integrated table by extending Apriori-based TidFP algorithm.
This paper also proposes object-oriented join (OOJoin) which joins superclass
and subclass tables by matching their type and super type relationships. Thus,
to implement the OO database model proposed using a relational DBMS, each
relational database table corresponds to an OO class, each relation DB tuple cor-
responds to an OO class instance object. Each relational foreign key attribute
is implemented with both the class type and supertype value of the class with
the defined OOJoin condition. To improve the performance of the MineHFPs
algorithm, this paper also extends map-gen join method used in TidFP algo-
rithm to oomap-gen join for generating k-itemset candidate pattern to reduce
the candidate generation and avoid unnecessary support counting by indexing
the (k-1)-itemset candidate pattern using two position codes, start position and
end position tied to inheritance hierarchy. The experimental results show that
the proposed MineHFPs algorithm for mining hierarchical frequent patterns is
approximately 3 to 4 times faster than the TidFP algorithm to mine the same
patterns but have the trade off of costing 2 to 3 times more memory usage.
However, the MineHFPs algorithm can discover the frequent pattern at differ-
ent hierarchy levels in the format of <Tidlist, itemsets, classi >. The TidFP
algorithm can only discover the patterns in the format of <Tidlist, itemsets>.
Our proposed object-oriented class model and database schema can be applied to
other application domains, such as a Student Information System. Every depart-
ment or faculty has its own database tables Ci. The Root table can be the class
enrolment table and it may store the class and students enrolment information.
The database tables Ci and Root do not include any historical attribute such
as a time stamp (which may include date, month and year). Future work may
include extending this model for representing and comparative analysis of non-
structured multiple data sources such as documents, their derived forms (e.g.,
summaries), historical data sources (data warehouses), derived data (e.g., data
warehouse materialized views). The historical attribute can display the history
of the products and the history of sales transactions. Although the proposed
object oriented data model representation of a database as presented in Sect. 2
currently focuses on a set of classes Ci connected by their class inheritance hier-
archy H that is used to depict the superclass and subclass relationships between
classes, this model is easily extendible to accommodate as well complex object
type or attribute hierarchy where attributes are of type of another existing class.
Current implementation and discussions assume all class attributes to be of sim-
ple type (e.g., string) and if attributes are of complex types (e.g., CPU is of
type computer), they can be accommodated by having those complex attributes

Mining Multiple Related Data Sources Using Object-Oriented Model 185

(e.g. CPU) as nested list of attributes (having all attributes of its complex type
computer) and applying the process on all attributes including those inherited
from the complex type (e.g., computer). Future work should extend the Mine-
HFP algorithm to handle nested objects in the model definition such that as the
model definition of inheritance hierarchy is provided, that of complex attribute
hierarchy is also provided and an equivalent of OOJoin function for obtaining
all inherited attributes of a complex attribute defined and used during both
MineClassFP and MineRootFP methods.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: 20th International Conference on Very Large Databases, Santiago,
pp. 487–499. Morgan Kaufmann (1994)

2. Annoni, E., Ezeife, C.I.: Modeling web documents as objects for automatic web
content extraction. In: ACM Sponsored 11th International Conference on Enter-
prise Information Systems (ICEIS), Milan, Italy, p. 91100. LNCS, Springer (2009)

3. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential patterns mining using a
bitmap representation. In: ACM SIGKDD Conference, Edmonton, Canada, pp.
429–435. ACM (2002)

4. Ceci, M., Malerba, D.: Classifying web documents in a hierarchy of categories: a
comprehensive study. J. Intell. Inf. Syst. 28(1), 37–78 (2007)

5. Cheng, H., Zhou, Y., Yu, J.X.: Clustering large attributed graphs: a balance
between structural and attribute similarities. ACM Trans. Knowl. Disc. Data 5(2),
1–3 (2011)

6. Cheung, D., Ng, V., Fu, A., Fu, Y.: Efficient mining of association rules in distrib-
uted databases. IEEE Trans. Knowl. Data Eng. 8(6), 911–922 (1996)

7. Dai, H.: An Object-oriented Approach to Schema Integration and Data Mining in
Multiple Databases, pp. 294–303. IEEE Computer Society (1998)

8. Ezeife, C.I., Barker, K.: A comprehensive approach to horizontal class fragmen-
tation in a distributed object based system. Int. J. Distrib. Parallel Databases
(DPDS) 3(3), 247–273 (1995)

9. Ezeife, C.I., Barker, K.: Distributed object based design: vertical fragmentation of
classes. Int. J. Distrib. Parallel Databases (DPDS) 6(4), 327–360 (1998)

10. Ezeife, C.I., Saeed, K., Zhang, D.: Mining very long sequences in large databases
with PLWAPLong. In: 13th ACM Sponsored International Database Engineering
and Applications Symposium, pp. 234–241. ACM (2009)

11. Ezeife, C.I., Mutsuddy, T.: Towards comparative mining of web document objects
with NFA: WebOMiner system. J. Data Warehouse. Mining (IJDWM) 8(4), 121
(2012)

12. Ezeife, C.I., Zhang, D.: TidFP: mining frequent patterns in different databases
with transaction ID. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK
2009. LNCS, vol. 5691, pp. 125–137. Springer, Heidelberg (2009)

13. Fortin, S., Liu, L.: An object-oriented approach to multi-level association rule
mining. In: International Conference on Information and Knowledge Management,
pp. 12–16. ACM (1996)

14. Han, J., Fu, Y.: Discovery of multiple-level association rules from large databases.
In: 21st International Conference on very Large Databases, Zurich, Switzerland,
pp. 420–431. Morgan Kaufmann (1995)

186 C.I. Ezeife and D. Zhang

15. Han, J., Nishio, S., Kawano, H., Wang, W.: Generalization-based data mining in
object-oriented databases using an object cube model. Int. J. Data Knowl. Eng.
25(1), 55–97 (1998)

16. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate
generation: a frequent-pattern tree approach. Int. J. Data Mining Knowl. Discov.
8(1), 53–87 (2004)

17. Jin, Y., Murali, T.M., Ramakrishnan, N.: Compositional mining of multirelational
biological datasets. ACM Trans. Knowl. Discov. Data 2(1), 1–35 (2008)

18. Kemper, A., Moerkotte, G.: Object-oriented Database Management. Prentice-Hall
Inc., Upper Saddle River (1994). ISBN: 0-13-629239-9

19. Kuba, P., Popelinsky, L.: Mining frequent patterns in object-oriented data. In:
Proceedings of the 2nd International Workship on Mining Graphs, Trees and
Sequences, ECML/PKDD, Pisa, pp. 15–25. University of Pisa (2004)

20. Satheesh, A., Patel, R.: Use of object-oriented concept in database for effective
mining. Int. J. Comput. Sci. Eng. 1(3), 206–216 (2009)

21. Sengupta, A.: On the feasibility of using conceptual modeling constructs for the
design and analysis of XML Data. ACM Trans. Knowl. Discov. Data 72, 219–238
(2012)

22. Wikepedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Object database
23. Zaki, M.: SPADE: an efficient algorithm for mining frequent sequences. Mach.

Learn. J., Special Issue on Unsupervised Learning 42(1), 31–60 (2001)

http://en.wikipedia.org/wiki/Object_database

Author Index

Anyanwu, Kemafor 1

Bianchini, Devis 123
Bonifati, Angela 59

Castano, Silvana 123

De Antonellis, Valeria 123
Draidi, Fady 59

Ezeife, C.I. 158

Ferrara, Alfio 123

Ibáñez, Luis-Daniel 33
Idreos, Stratos 91

Koubarakis, Manolis 91

Molli, Pascal 33
Montoya, Gabriela 33

Pacitti, Esther 59

Quintarelli, Elisa 123

Raftopoulou, Paraskevi 91

Sessoms, Matthew 1
Skaf-Molli, Hala 33
Summa, Gianvito 59

Tanca, Letizia 123
Tryfonopoulos, Christos 91

Vidal, Maria-Esther 33

Zhang, Dan 158

	Preface
	Editorial Board
	Contents
	Enabling a Package Query Paradigm on the Semantic Web: Model and Algorithms
	1 Introduction
	2 Background and Problem Definition
	2.1 Related Work

	3 Algorithms for Package Skyline Queries over Vertical Partitioned Tables
	3.1 JCPS Algorithm
	3.2 RSJFH-CPS Algorithm

	4 Algorithms for Package Skyline Queries over the TDTQ Storage Model
	4.1 The TDTQ Storage Model
	4.2 CPJS and SkyJCPS Algorithms
	4.3 SkyPackage Algorithm

	5 Sesame Integration Framework
	5.1 Sesame
	5.2 Framework

	6 Evaluation
	6.1 Setup
	6.2 Synthetic Data
	6.3 MovieLens Dataset
	6.4 Book-Crossing Dataset
	6.5 Storage Model Evaluation

	7 Conclusion and Future Work
	References

	SemLAV: Local-As-View Mediation for SPARQL Queries
	1 Introduction
	2 Preliminaries
	3 The SemLAV Approach
	3.1 The SemLAV Relevant View Selection and Ranking Algorithm
	3.2 Global Schema Instance Construction and Query Execution
	3.3 The SemLAV Properties

	4 Experimental Evaluation
	4.1 Hypothesis of Our Experimentations
	4.2 Experimental Configuration
	4.3 Experimental Results

	5 State of the Art
	6 Conclusions and Future Work
	A Queries
	References

	Query Reformulation in PDMS Based on Social Relevance
	1 Introduction
	2 Problem Definition
	2.1 Schema Mapping Model
	2.2 Network Model
	2.3 Problem Statement

	3 A Framework for Query Reformulation
	3.1 Relevance of a Query wrt. a Mapping
	3.2 Relevance Metric

	4 Algorithms
	4.1 Distributed Computation of the Relevance
	4.2 Translating Queries Based on Relevance
	4.3 Seeking New Friends
	4.4 Gossiping Mapping Entries

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Qualitative Evaluation
	5.3 Scalability and Churn

	6 Related Work
	7 Conclusions and Future Work
	References

	Distributed Large-Scale Information Filtering
	1 Introduction
	2 Related Work and Background
	2.1 P2P Pub/Sub and Information Filtering
	2.2 Other Related Areas

	3 The DHTrie Protocols
	3.1 The Subscription Protocol
	3.2 The Publication Protocol
	3.3 Methods for Subscription and Publication
	3.4 The Notification Protocol
	3.5 Frequency Cache
	3.6 Network Dynamicity and Fault Tolerance

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Varying the Type of Queries
	4.3 Varying Network Size
	4.4 Varying the FCache Size
	4.5 Effect of FCache Training
	4.6 Varying the Document Size
	4.7 Comparison of the Hybrid Methods
	4.8 Effect of Node Churn
	4.9 Skewed Data Distributions and Load Balancing
	4.10 Summing Up

	5 Conclusions and Outlook
	References

	RUBIK: Proactive, Entity-Centric and Personalized Situational Web Application Design
	1 Introduction
	1.1 Motivating Example
	1.2 Paper Organization

	2 The RUBIK Approach
	2.1 The Proposed RUBIK Methodology
	2.2 RUBIK Versions

	3 Web Data Clouding
	3.1 Data Acquisition
	3.2 Data Clouding

	4 Context-Driven Cloud Filtering
	5 Web API Selection
	5.1 Web API Similarity Evaluation

	6 Interactive Composition
	7 Evaluation Issues
	7.1 Web Data Filtering
	7.2 Web API Selection and Aggregation
	7.3 Perceived Quality

	8 Related Work
	9 Conclusions
	References

	Mining Multiple Related Data Sources Using Object-Oriented Model
	1 Introduction
	2 Object-Oriented Database Schema
	2.1 Frequent Pattern Mining in Object-Oriented Model

	3 Other Related Work
	4 Mining Multiple Object-Oriented Databases
	4.1 Object-Oriented Join (OOJoin)
	4.2 Mining Frequent Patterns in One Class
	4.3 Mining Hierarchical Frequent Patterns in the Root Class
	4.4 Position Coding Method
	4.5 The MineRootFPs Method

	5 Implementation and Experimentation
	5.1 Generating the Class Table Ci
	5.2 Generate the Root Table
	5.3 Performance Comparison

	6 Conclusions and Future Work
	References

	Author Index

