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Abstract. We address the following problem: Given two subsets Γ and
Φ of the plane, find the minimum enclosing circle of Γ whose center is
constrained to lie on Φ. We first study the case when Γ is a set of n
points and Φ is either a set of points, a set of segments (lines) or a sim-
ple polygon. We propose several algorithms, the first solves the problem
when Φ is a set of m segments (or m points) in expected Θ((n+m) log ω)
time, where ω = min{n,m}. Surprisingly, when Φ is a simple m-gon, we
can improve the expected running time to Θ(m + n log n). Moreover, if
Γ is the set of vertices of a convex n-gon and Φ is a simple m-gon, we
can solve the problem in expected Θ(n+m) time. We provide matching
lower bounds in the algebraic computation tree model for all the algo-
rithms presented in this paper. While proving these results, we obtained
a Ω(n logm) lower bound for the following problem: Given two sets A
and B in R of sizes m and n, respectively, decide if A is a subset of B.

Keywords: minimum enclosing circle, facility location problems.

1 Introduction

Let P be a set of n points in the plane. The minimum enclosing circle problem,
originally posed by Sylvester in 1857 [17], asks to identify the center and radius
of the minimum enclosing circle of P . For ease of notation we say that every circle
containing P is a P -circle. Several independent solutions were proposed to solve
the problem in O(n log n) time [10,15,16]. Megiddo [14] settled the complexity
of this problem and presented a Θ(n)-time algorithm using prune and search.

Finding the minimum P -circle is also known as the 1-center facility location
problem: Given the position of a set of clients (represented by P ), compute the
optimal location for a facility such that the maximum distance between a client
and its closest facility is minimized. The aforementioned algorithms provide so-
lutions to this problem. However, in most situations the location of the facility is
constrained by external factors such as the geography and features of the terrain.
Therefore, the study of constrained versions of the 1-center problem is of impor-
tance and has received great attention from the research community [3,4,5,8].
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Megiddo [14] proposed a linear time algorithm to find the minimum P -circle
whose center is constrained to lie on a given line. Extending these ideas, Hurtado
et al. [8] presented a Θ(n + m)-time algorithm to find the minimum P -circle
whose center is constrained to lie inside a convex m-gon. Bose and Toussaint [4]
generalized this result by restricting the center of the P -circle to lie inside a
simple m-gon Q. They proposed an O((n +m) log(n+m) + k)-time algorithm,
where k is the number of intersections of Q with the farthest-point Voronoi
diagram of P . The dependency on k was later removed from the running time [5].

Bose et al. [3] addressed the query version of the problem and proposed an
O(n log n)-time preprocessing on P , that allows them to find the minimum P -
circle with center on a given query line in O(log n) time. Using this result, they
showed how to compute the minimum P -circle, whose center is constrained to lie
on a set of m segments, in O((n+m) log n) time. However, when m = O(1), the
problem can be solved in O(n) time by using Megiddo’s algorithm [14] a constant
number of times. Moreover, when n = O(1), the problem can be solved in O(m)
time by finding the farthest point of P from every given segment. Therefore, one
would expect an algorithm that behaves like the algorithm presented in [3] when
m = O(n) but that converges to a linear running time as the difference between
n and m increases (either to O(n) or to O(m)). In this paper we show that such
an algorithm exists and prove its optimality. When constraining the center on a
simple m-gon however, the order of the vertices along its boundary allows us to
further speed up our algorithm, provided that m is larger than n.

Let M be a set of m points, let S be a set of m segments and let Q be a simple
polygon on m vertices. We say that a P -circle C has its center on M , on S or
on Q if the center of C is either a point of M , lies on a segment of S or belongs
to Q, respectively. The (P,M)-optimization problem asks to find the minimum
P -circle with center on M . Given a radius r, the (P,M)r-decision problem asks
if there is a P -circle of radius r with center on M . Analogous problems exist for
S and Q. In Section 2, we show a Θ((n+m) log ω)-time algorithm for the (P, S)r-
decision problem where ω = min{n,m}. In Section 3 we transform it to solve the
(P, S)-optimization problem with the same running time. In Section 4, we show
a matching lower bound in the algebraic computation tree model provided that
n ≤ m and the restriction is on a set of points, lines, segments or even on a
simple polygon. When m > n however, we only prove a matching lower bound
when the center is restricted to be on a set of points, segments or lines, yet the
lower bound breaks down when the restriction is on a simple polygon. Indeed,
given a simple m-gon Q, we show an Θ(m + n logn)-time algorithm for the
(P,Q)-optimization problem. To put this in perspective, note that whenever
m = Ω(n logn), the algorithm runs in Θ(m) time. Since the bottleneck of this
algorithm is the computation of the farthest-point Voronoi diagram, if we assume
that P is the set of vertices of a given convex n-gon we can reduce the running
time to Θ(m + n) [1,11]. Finally, we show a matching lower bound for these
algorithms, thereby solving the problem for all ranges of n and m and all possible
restrictions on points, lines, segments and simple polygons.
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As a side note, while proving these lower bounds, we stumbled upon the
following problem: Given two sets A and B of R of sizes m and n, respectively,
is A ⊆ B? While a lower bound of Ω(n log n) is known in the case where n = m
[2], no lower bounds were known whenm and n differ. Using a method of Yao [18]
and the topology of affine subspace families, we were able to prove an Ω(n logm)
lower bound, even when A is restricted to be a sorted set of m real numbers.

Although the main techniques used in this paper have been around for a
while [7,12], they are put together in a different way in this paper, showing the
potential of several tools that were not specifically designed for this purpose.
Furthermore, these results provide significant improvements over previous algo-
rithms when n and m differ widely as it is the case in most applications. Due to
space constraints, in this extended abstract we provide only proof sketches. The
full version of this paper is included as an appendix.

Preliminaries. Given a subset X of the plane, the interior and convex hull of
X are denoted by int(X) and ch(X), respectively. A point x is enclosed by a
circle C if x ∈ ch(C); otherwise we say that x is excluded by C. An X-circle is
a circle that encloses every point of X .

Given a point x ∈ R
2, let �r(x) be the circle with radius r and center on x.

Let P be a set of n points in R
2. Given W ⊆ P , let Λr(W ) = ∩p∈Wch(�r(p)),

i.e., the intersection of every disk of radius r with center on a point of W . Notice
that Λr(W ) is a convex set whose boundary is composed of circular arcs each
with the same curvature. A point p ∈ W contributes to Λr(W ) if there is an
arc of the circle �r(p) on the boundary of Λr(W ). We refer to this arc as the
contribution of p to Λr(W ). As the curvature of all circles is the same, a point
contributes with at most one arc to the boundary of Λr(W ).

Given two subsets X and Y of the plane, let BX (Y ) be the minimum X-circle
with center on Y and let bX(Y ) denote its center. If X = P , we let ρ(Y ) denote
the radius of BP (Y ), i.e., ρ(Y ) is the radius of the minimum P -circle with center
on Y . Let CP be the minimum P -circle, cP be its center and let rP be its radius.

Observation 1. Given a point x ∈ R
2 and a real number r ≥ rP , ρ(x) ≤ r if

and only if x ∈ Λr(P ).

2 Solving the Decision Problem on a Set of Segments

Let S be a set of m segments and let r > rP . In this section we present an
O((n + m) logω) time algorithm to solve the (P, S)r-decision problem for the
given radius r, where ω = min{n,m}. Notice that by Observation 1, if we could
compute Λr(P ), we could decide if there is a P -circle of radius r with center on S
by checking if there is a segment of S that intersects Λr(P ). However, we cannot
compute Λr(P ) explicitly as this requires Ω(n logn) time. Thus, we approximate
it using ε-nets and use it to split both S and P into a constant number of
subsets each representing a subproblem of smaller size. Using divide and conquer
we determine if there is an intersection between S and Λr(P ) by solving the
decision problem recursively for each of the subproblems. The algorithm runs in
O(min{logn, logm}) phases and on each of them we spend O(n+m) time.
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The Algorithm. Initially, compute the minimum P -circle CP , its center cP
and its radius rP in O(n) time [14]. In O(m) time we can verify if cP lies on
a segment of S. If it does, then CP is the minimum P -circle with center on S.
Otherwise, as we assume from now on, the radius of BP (S) is greater than rP .

Consider a family of convex sets G defined as follows. A setG ∈ G is the intersec-
tion of A1∩ . . .∩A6, where eachAi is either the interior of a circle or an open half-
plane supported by a straight line (Ai may be equal to Aj for some i �= j). Given
a family Y of geometric objects in the plane (segments, lines or points), we define
a set of ranges on Y as follows. For each G ∈ G, let GY = {y ∈ Y : G ∩ y �= ∅}
and let GY = {GY : G ∈ G} be the family of subsets of Y induced by G.

Fix a constant 0 < ε ≤ 1 and consider the range space defined by S and GS .
As the VC-dimension of this range space is finite, we can compute an ε-net NS of
(S,GS) of size O(1) in O(m) time [13], i.e., any convex set G ∈ G that intersects
more than εm segments of S must intersect at least one segment of NS.

For each segment s of NS , compute BP (s) in O(n) time [14] and mark three
points of P that uniquely define this circle by lying on its boundary. Let rmin

be the radius of the minimum circle among the computed P -circles. If rmin ≤ r,
then there is a positive answer to the (P, S)r-decision problem and the decision
algorithm finishes. Otherwise, let P 0 ⊂ P be the set of marked points and note
that |P 0| ≤ 3|NS| = O(1). By the minimality of rmin, any point in the interior
of Λrmin(P

0) is at distance at least rmin from the segments of NS . That is, the
interior of Λrmin(P

0) intersects no segment of NS. As rmin > r, we know that
Λr(P

0) ⊂ Λrmin(P
0) and hence Λr(P

0) intersects no segment of NS .
We refine this intersection using another ε-net. Let C = {�r(p) : p ∈ P} be

the set of circles of radius r centered at the points of P . Compute an ε-net NP

of the range space (C,GC) in O(n) time [13]. That is, if a convex set G ∈ G
intersects more than εn circles of C, then G intersects at least one circle of NP .

Let P 1 = {p ∈ P : �r(p) ∈ NP } i.e., P 1 is the subset of P defining NP where
|P 1| = O(1). Notice that for every p ∈ P 1, Λr(P

1) is enclosed by �r(p), i.e.
the circle �r(p) does not intersect the open set Λr(P

1). Let P+ = P 0 ∪ P 1, as
Λr(P

+) is contained in both Λr(P
0) and Λr(P

1), we observe the following.

Lemma 1. No segment of NS and no circle of NP intersects int(Λr(P
+)).

cP

Λr(Π)
Δ1

Δ2

Δ3Δ4

R2

Fig. 1. The set Π ⊂ P is shown
in red. The vertex set of Λr(Π)
is used to split the plane into
cones Δ1, . . . , Δ4 by shooting
rays from cP . The “slice” R2 is
the portion of Λr(Π) inside Δ2.

We assume the existence of a set of points Π ⊃
P+ of constant size such that Π inherits the
properties of P+. This set and its properties will
be described later.

Because r > rP , cP is enclosed by �r(p) for
every p ∈ P and hence, cP lies in the interior
of Λr(Π). Therefore, we can consider k = O(1)
rays with apex at cP that pass through some
of the vertices along the boundary of Λr(Π).
These rays split the plane into k cones D =
{Δ1, . . . , Δk}.

For every 1 ≤ i ≤ k, let Ri = Δi ∩ Λr(Π) be
a “slice” of Λr(Π); see Fig. 1. By constructing
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these cones such that each contains at most four vertices of Λr(Π), we guarantee
that each element in R = {R1, . . . , Rk} is a convex region of the family G used to
define the ε-nets. Because P+ ⊂ Π , we know that Λr(Π) ⊂ Λr(P

+). Therefore,
by Lemma 1 the interior of each region Ri intersects no segment of NS and no
circle of NP . Because NS and NP are both ε-nets, we obtain the following.

Lemma 2. For each 1 ≤ i ≤ k, at most εm segments of S intersect the region
Ri and at most εn circles of C intersect Ri.

Due to space constraints, we omit a full description of Π . However, we provide
a summary of its properties and a sketch of its construction.

Lemma 3. We can construct Π⊃P+ and the partition cones D={Δ1, . . . , Δk}
in O(n) time such that: (1) for every s ∈ S, if s intersects Λr(Π), then s∩Λr(Π)
is contained in exactly one cone of D, and (2) for any point p ∈ P , if p contributes
to Λr(P ), then its contribution is contained in exactly one cone of D.

Proof sketch. For a given direction, we can shoot a ray from cP in that direction
and compute the first circle from C that this ray intersects. Thus, this circle
defines an actual arc of the boundary of Λr(P ) in the direction of the ray.
Moreover, we can compute its neighboring arc along this boundary, i.e., we can
find an actual vertex of Λr(P ) and the points of P that define it. By doing this
for a constant number of directions, given by the vertices of Λr(P

+), we obtain
a constant size subset Y of the vertices of Λr(P ). Using this vertices to shoot
the rays from cP , we construct D and ensure that a point p ∈ P will contribute
to Λr(P ) inside only one of these cones. Moreover, the segments of S cannot
cross the segment connecting a vertex of Y with cP . Therefore, using convexity
arguments we show that if a segment s ∈ S intersects Λr(Π), then it can do it
in at most one cone of D. �
The idea is to use divide and conquer using Lemma 2. That is, we split both
P and S into k subsets according to their intersection with the elements of R,
where each pair represents a subproblem. Finally, we prove that the (P, S)r-
decision problem has a positive answer if and only if some subproblem has a
positive answer.

Lemma 4. We can compute sets S1, . . . , Sk ⊂ S in O(m) time such that |Si| <
εm and

∑k
i=1 |Si| ≤ m. Moreover, Si contains all segments of S that intersect

Λr(Π) inside Ri.

Proof sketch. Let Si be the set of segments of S that intersect Ri. The construc-
tion of S1, . . . , Sk can be performed in O(m) time since the size of Ri is constant.
By Lemma 3, a segment of S belongs to at most one set of the partition and
hence,

∑k
i=1 mi ≤ m. Moreover, for any 1 ≤ i ≤ k at most εm segments of S

intersect Ri by Lemma 2. Consequently, |Si| < εm. �
Lemma 5. We can compute sets P1, . . . Pk ⊂ P in O(n) time such that |Pi| <
εn,

∑k
i=1 |Pi| ≤ n and Λr(P ) = Λr(P1 ∪ . . . ∪ Pk). Moreover, if a point p ∈ Pi

contributes to Λr(P ), then this contribution intersects Ri.
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Proof sketch. Let Pi = {p ∈ P : �r(p) intersects Ri}. This partition of P can be
computed in O(n) time as the size of Ri is constant. For each point p ∈ P that
contributes to Λr(P ), �r(p) has to intersect Λr(Π). Hence, the contribution of
p to Λr(P ) intersects at least one region of R. By Lemma 3, a point of P con-
tributes to Λr(Π) inside only one cone of D, i.e., a point of P belongs to at most
one of the computed sets. By Lemma 2, at most εn circles of C intersect Ri, i.e.,
|Pi| < εn. �
Theorem 2. The (P, S)r-decision problem has positive answer if and only if
there is a Pi-circle of radius r with center on Si for some 1 ≤ i ≤ k.

Proof sketch. Let C be a P -circle of radius r with center c lying on a segment
s ∈ S. Since the cones of D partition the plane, c belongs to some cone Δi for
some 1 ≤ i ≤ k, i.e., s intersects the cone Δi. By Observation 1, s intersects
Λr(P ) ⊂ Λr(Π). Consequently, by Lemma 4, s belongs to Si. Assume that c lies
on the arc being the contribution of some point p ∈ P . Because c is in Δi and on
the boundary of Λr(P ) ⊂ Λr(Π), �r(p) intersects Λr(Π) ∩Δi = Ri. Thus, by
Lemma 5 p belongs to Pi, i.e., C is a Pi-circle of radius r with center on Si. The
other implication is similar and can be found in the full version of the paper. �
By Lemmas 4 and 5, in O(n + m) time we can either give a positive answer
to the decision algorithm, or compute sets P1, . . . , Pk and S1, . . . , Sk in order
to define k decision subproblems each stated as follows: Decide if there is a
Pi-circle of radius r with center on Si. Because Theorem 2 allows us to solve
each subproblem independently, we proceed until we find a positive answer on
some branch of the recursion, or until either Pi or Si reaches O(1) size and can
be solved in linear time. Since |Si| < εm and |Pi| < εn by Lemmas 4 and 5,
the number of recursion steps needed is O(min{logn, logm}). Furthermore, by
Lemmas 4 and 5, the size of all subproblems at the i-th level of the recursion is
bounded above by n+m.

Lemma 6. Given sets P of n points and S of m segments and r > 0, the (P, S)r-
decision problem can be solved in O((n+m) log ω) time, where ω = min{n,m}.

3 Converting Decision to Optimization

In the previous section, we showed an algorithm for the (P, S)r-decision prob-
lem. However, our main objective is to solve its optimization version. To do
that, we use the technique presented by Chan [6]. This technique requires an
efficient algorithm to partition the problem into smaller subproblems, where
the global solution is the minimum among the subproblems solutions. By pre-
senting an O(n + m)-time partition algorithm, we obtain a randomized algo-
rithm for the (P, S)-optimization problem having an expected running time of
O((n+m) logω), where ω = min{n,m}. As the partition of the plane into cones
used in the previous section has no correlation with the structure of Λr(P ) as
r changes, the partition of P used in this section requires a different approach.
However, the partition of S is very similar.
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Lemma 7. We can compute sets P ′
1, . . . , P

′
h ⊂ P and S′

1, . . . , S
′
h ⊂ S in O(n+

m) time such that |P ′
i | < εn, |S′

i| < εm and BP (S) is the circle of minimum
radius among the elements in the set {BP ′

1
(S′

1), . . . , BP ′
h
(S′

h)}.

Proof sketch. Given any subset of R2, it can be embedded into R
3 by identifying

R
2 with the plane Z0 = {(x, y, z) ∈ R

3 : z = 0}. As a first step embed P into R
3.

Given a point p ∈ P , let γp be the boundary of the 3-dimensional cone, lying
above p, with apex on p and 45 ◦ slope with respect to the plane Z0.

Consider an O(1) size sample P+ of P whose properties will be specified
later and let Γ = {γp : p ∈ P+}. Construct the farthest-point Voronoi diagram
of P+ and triangulate it. Then, compute Λr(P

+) and pseudo-triangulate it by
joining cP with every vertex on its boundary. By choosing P+ carefully, we can
guarantee that at most εm segments of S intersect each of the pseudo-triangles.

Let T be the geometric graph obtained as the union of the triangulation of the
farthest-point Voronoi diagram of P+ and the pseudo-triangulation of Λr(P

+).
Then, we embed T in the plane Z0. Since |P+| = O(1), the size of T is also
constant. Recall that the furthest-point Voronoi diagram of P+ is the upper
envelope U of Γ when projected onto the plane Z0. That is, a point x ∈ Z0 is
farther from p if and only if γp is the last cone intersected by a ray shooting
upwards, orthogonally to the plane Z0, from x. Let U+ be the set of points lying
strictly above U .

Consider the vertical lifting of T , which is simply the union of the vertical
lines passing through the points on every edge of this triangulation. This vertical
lifting partitions R3 into O(1) solid prisms each defined by the intersection of at
most three vertical halfspaces or cylinders. Finally, intersect each of these prisms
with U+ to obtain a family of convex regions Y = {Y1, . . . , Yh} for some h ∈ O(1).
Since U+ intersects no cone of Γ , no region of Y intersects the boundary of a
cone in Γ . By choosing P+ carefully, we can guarantee that for each 1 ≤ i ≤ h,
at most εn cones of Γ intersect Yi. Moreover, we can also guarantee that the
vertical lifting of at most εm segments of S intersect each Yi. For every 1 ≤ i ≤ h,
let P ′

i = {p ∈ P : γp ∩ Yi �= ∅} and note that P ′
i can be computed in O(n) time.

Let S′
i = {s ∈ S : the vertical lifting of s intersects Yi} and note that S′

i can be
computed in O(m) time. Moreover, we have that |P ′

i | < εn and |Si| < εm.
Recall that bP (S) is the center of the minimum P -circle BP (S) with center

on S. Let s∗ ∈ S be the segment where bP (S) lies and let p ∈ P be a point on the
boundary of BP (S). We claim that s∗ and p belong to the same subproblem, i.e.,
belong to S′

j and P ′
j , respectively, for some 1 ≤ j ≤ k. Notice that if this claim is

true, then all the points of P through which BP (S) passes belong to P ′
j . That is,

BP ′
j
(S′

j) and BP (S) are defined as the circles with center on s∗ passing through

the same set of points, i.e., BP ′
j
(S′

j) = BP (S). Thus, by computing BP ′
i
(S′

i) for

each 1 ≤ i ≤ k, the minimum P -circle with center on S can be obtained by
choosing the minimum among BP ′

1
(S′

1), . . . , BP ′
h
(S′

j).
We proceed to prove that s∗ and p belong to the same subproblem. Since

BP (S) contains every point in P+, bP (S) lies in Λr(P
+). Therefore, bP (S) lies

inside the projection of Yj for some 1 ≤ j ≤ h. i.e, s∗ ∈ S′
j . Consider the ray σ

shooting upwards (perpendicular to Z0) from bP (S). Since p lies on the boundary
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Q

R Q

cP cPVis

VQ

a) b)

Fig. 2. a) A simple polygon Q and a rectangle R enclosing both cP and Q. By removing
Q from R we obtain a polygon with one hole. b) The simple polygon Q obtained by
connecting the hole with the boundary of R. In red, the visible chain VQ of Q from cP .

ofBP (S), p is farther away from bP (S) than any other point of P . That is, γp is the
last cone intersected by σ. Therefore, γp intersects Yj and consequently p ∈ P ′

j . �
By Lemmas 6 and 7, we can use Chan’s technique [6] to obtain the following.

Theorem 3. Given a set P of n points and a set S of m segments in the plane,
the (P, S)-optimization problem can be solved in expected O((n+m) logω) time
where ω = min{n,m}.
When constraining to a simple m-gon, the sequence of points along its boundary
allows us to improve upon Theorem 3 provided that m ≥ n.

Theorem 4. Given a set P of n points and a simple polygon Q of m vertices,
the (P,Q)-optimization problem can be solved in expected O(m+ n logn) time.

Proof sketch. If cP lie inside Q, then CP is the solution to our problem. Therefore,
we assume that cP lies outside Q. In this case, we allow ourselves to compute
the farthest-point Voronoi diagram of P explicitly in O(n logn) time. Using this
structure, we can compute Λr(P ) in O(n) time for any given value of r > rP

which is key to the speed up of the (P,Q)r-decision algorithm.
In O(m) time, compute a rectangle R sufficiently large to enclose Q and cP in

its interior. Let Q = R− int(Q) which is a polygon with one hole. This polygon
can be turned into a simple polygon by adding a thin corridor connecting the
hole with the exterior in such a way that no point on this corridor is visible
from cP . In this way, cP lies in the interior of Q; see Fig. 3 for an illustration.

Compute the visibility polygon Vis of Q from cP in O(m) time using the algo-
rithm from Joe and Simpson [9]. Finally, let VQ be the polygonal chain obtained
by removing the edges of the boundary of Vis that have an endpoint lying on the
boundary of the rectangleR (there may be none). Because the boundary of Λr(P )
is a Jordan curve, Λr(P ) intersects Q if and only if Λr(P ) intersects VQ.

A polygonal chain is star-shaped if there exists a set of points called its kernel
such that every point on this chain is visible from every point in its kernel. Note
that VQ is a star-shaped polygonal chain with cP in its kernel. Thus, since Λr(P )
can be computed in O(n) time from the Voronoi diagram of P , we can decide if
VQ intersect Λr(P ) in O(n +m) time. Hence, we can solve the (P,Q)r-decision
problem in linear time. By considering the set of segments along the boundary
of Q, we can use Lemma 7 to construct O(1) subproblems such that the solution
to the (P,Q)-optimization problem is the minimum among the subproblems so-
lutions. Consequently, we can use Chan’s technique [6] to obtain our result. �
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Because the bottleneck of this algorithm is the construction of the farthest-point
Voronoi diagram, whenever P is the set of vertices of a convex polygon, we can
compute its farthest-point Voronoi diagram in linear time [11,1].

Corollary 1. Let N be a convex n-gon and let Q be a simple m-gon. The mini-
mum enclosing circle of N , whose center is constrained to lie on Q, can be found
in expected Θ(m + n) time.

4 Lower Bounds

We prove lower bounds for the decision problems: We show inputs where the
decision problem is equivalent to answering a membership query in a set with
“many” disjoint components. We then use Ben-Or’s Theorem [2] to obtain lower
bounds for any decision algorithm that solves this membership problem.

Lemma 8. Let P be a set of n points and a let M be a set of m points (m
segments or m lines). Given a radius r, the (P,M)r-decision problem has a
lower bound of Ω(m logn) in the algebraic computation tree model.

Proof sketch. We construct a set of points P such that for any point set M , with
certain constraints, the (P,M)r-decision problemhas a lower bound ofΩ(m log n).

Let r > 0 and let r′ be a number such that 0 < r′ < r. Let P be the set of
vertices of a regular n-gon circumscribed on a circle of radius r′. Because r > r′,
Λr(P ) is a non-empty convex region whose boundary is composed of circular arcs.
Notice that by Observation 1, the decision algorithm has an affirmative answer
if and only if there is a point of M lying in Λr(P ). Let C be the circumcircle of
the vertices of Λr(P ). Partition this circle into ϕ1 = C∩Λr(P ) and ϕ0 = C−ϕ1.
Because ϕ1 consists of exactly n points being the vertices of Λr(P ), ϕ0 consists
of n disconnected open arcs all lying outside of Λr(P ); see Fig. 3(a). Moreover,
a point on C supports a P -circle of radius r if and only if it lies on ϕ1.

Consider the restriction of the decision problem where M is constrained to lie
onC. Notice that any lower bound for this restricted problem is also a lower bound
for the general decision problem. Because an input on m points for this restricted
problem can be seen as a point in R

2m, its input space defines a subspace Cm =
C × . . .×C of R2m. Moreover, this set of points can be split into two regions, the
“yes” and the “no” region (with respect to the decision problem), where the “no”
region is equal to ϕm

0 . That is, a point (x1, y1, x2, y2, . . . , xm, ym) lies in the “no”
region ϕm

0 if for every index 1 ≤ j ≤ m, the point (xj , yj) lies inside ϕ0 ⊂ C.
Because ϕ0 contains n disjoint components, ϕm

0 contains O(nm) disjoint com-
ponents being the product-space of m copies of ϕ0. Recall that the (P,M)r-
decision problem is equivalent to answering if the input, seen as a point in R

2m,
lies in the “no” region. Therefore, by Ben-Or’s Theorem [2] we obtain a lower
bound of Ω(m logn) for every decision algorithm in the algebraic computation
tree model. �
Lemma 9. Let P be a set of n points and a let Q be a simple polygon on m
vertices such that m ≥ n. Given a radius r, the (P,Q)r-decision problem has a
lower bound of Ω(m+ n logn) in the algebraic computation tree model.
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Proof sketch. In this proof, we construct a simplem-gonQ such that for any input
P on n points, the (P,Q)r-decision problem has a lower bound of Ω(m+n logn).

Let r > 0 and let N = {p1, . . . , pn} be the set of vertices of a regular n-gon
whose circumcircle C has radius smaller than r and center on c. Let ε > 0 and
let rε = r+ ε. Because rε is greater than the radius of C, Λrε(N) is non-empty.
Consider the middle points of every arc along Λrε(N) and label them so that mi

is the middle point on the arc opposite to pi. Let C′ be any circle with center
on c and radius greater than rε. For every 1 ≤ i ≤ n, let qi be the intersection
point of C′ with the ray shooting from c that passes through pi. Let Q′ be a
star-shaped polygon with vertex set {m1, . . . ,mn} ∪ {q1, . . . , qn} where edges
connect consecutive vertices in the radial order around c; see Fig. 3(b).

Let R be a sufficiently large rectangle to enclose Q′ and let Q = R \ int(Q′).
Remove the star-shaped hole of Q by connecting the boundary of R with an
edge of Q using a small corridor; see Fig. 3(c) for an illustration.
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Fig. 3. a) The construction presented in Lemma 8. b) The construction of the star-
shaped polygon Q′ used in Lemma 9. c) The polygon Q constructed in Lemma 9 being
disjoint from Λr(P ). The arc α1 (in red) is the arc of C excluded by �rε(m1).

Consider the restriction of the decision problem where every point of P is
constrained to lie on C. Note that any lower bound for this restricted problem is
also a lower bound for the general problem. Recall that every input on n points
constrained to lie on C can be indistinctly seen as a point in Cn ⊂ R

2n and vice
versa. Let γ0 be a subset of Cn such that (x1, y1, . . . , xn, yn) ∈ γ0 if and only if
the decision problem on Q with input {(x1, y1), . . . , (xn, yn)} and radius r has
a negative answer. Let γ1 = Cn − γ0. Because r < rε, Λr(N) doesn’t intersect
Q, i.e., N ∈ γ0. Note that every point of N lies inside �r(mi) except for pi, i.e.,
there is a portion of C excluded by �r(mi). For every 1 ≤ i ≤ n, let αi be the
arc of C excluded by the circle �r(mi) where pi lies on αi.

By letting ε sufficiently small, αi is disjoint from αj for any i �= j. Moreover,
every point lying on C \ αi is enclosed by �r(mi). Therefore, if an input P on
n points has no point lying on αi for some 1 ≤ i ≤ n, then �r(mi) is a P -circle
of radius r, i.e., P belongs to γ1. Notice that every permutation of the same
input of n points induces a different point in R

2n. That is, a set of n points in
the plane can be represented by n! different points in R

2n. Recall that each arc
αi has exactly one point of N (say pi) on it. Because Q is disjoint from Λr(N),
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every one of the n! points representing N in R
2n lies in γ0. In the full version of

the paper, we show that if P0 and P1 are two points in Cn representing different
permutations of P , then they are in disjoint connected components of γ0. The
idea is that any continuous transformation from P0 to P1 will reach a state in
which an arc αi is empty of input points, meaning that the it belongs to γ1.
Thus, as there are n! permutations of N and each of them belongs to a different
connected component in γ0, γ0 contains at least n! disjoint connected regions. By
Ben-Or’s Theorem [2] we obtain a lower bound of Ω(n logn) for the restricted
(P,M)r-decision problem in the algebraic computation tree model. To obtain
this lower bound, the m-gon Q needs to have at least n vertices, i.e., m ≥ n.

Finally, notice that any decision algorithm has also a lower bound of Ω(m)
since every vertex of Q has to be considered. Otherwise, an adversary could
perturb a vertex so that the solution switches to from a negative to a positive
answer without affecting the execution of the algorithm. �
4.1 Another Lower Bound When Constraining to Sets of Points

Let A and B be two sets of m and n numbers in [0, 1] such that m ≤ n and A is
sorted in increasing order. The A-B-subset problem asks if A is a subset of B.

In the extended version of this paper, we show that any A-B-subset problem
can be reduced in linear time to a (P,Q)r-decision problem for some simple
polygon Q. Hence, any lower bound for the A-B-subset problem is a lower bound
for the (P,Q)r-decision problem. In fact, the lower bound for the A-B-subset
problem considers arbitrary sets of real numbers. Furthermore, the lower bound
holds when A is given as a fixed sorted set prior to the design of the algorithm.
Note that a set of n numbers can be represented by a point in R

n and vice versa.

Lemma 10. Let n,m be two integers such that n ≥ m. For any A ∈ R
m such

that A is given in sorted order, there is a lower bound of Ω(n logm) in the
algebraic computation tree model for the A-B-subset problem given any B ∈ R

n.

Proof sketch. Let A = {a1, . . . , am} be a sorted set of m real numbers and
think of it as a point in R

m. Let γ1 be the subspace of Rn containing all points
representing a set B such that A ⊆ B, i.e., the “yes” region.

An A-constraint is an equation of the form (xi = aj) for some 1 ≤ i ≤ n,
1 ≤ j ≤ m. Two A-constraints (xi = aj) and (xh = ak) are compatible if i �= h (j
may be equal to k). A point X ∈ R

n satisfies an A-constraint (xi = aj) if its i-th
coordinate is equal to aj . A set ϕ of pairwise compatible A-constraints is complete
if it contains exactly one A-constraint of the form (xj = ai) for every ai ∈ A, i.e.,
it contains exactly m A-constraints, one for each element of A. Given a complete
set ϕ of A-constraints, let Kϕ = {X ∈ R

n : X satisfies every A-constraint in ϕ}.
Notice that dim(Kϕ) = n−m and codim(Kϕ) = m. Moreover, if a point B be-
longs to Kϕ, then A ⊆ B, i.e., every point in Kϕ belongs to γ1. Additionally, if
A ⊆ B, then B belongs to some Kϕ′ for some complete set ϕ′ of A-constraints.
Therefore, if we let A = {Kϕ : ϕ is a complete set of A-constraints}, then
γ1 = ∪A . In the full version of this paper, we study the topological structure of
∪A and obtain an Ω(n logm) lower bound for the membership problem in γ1.



Optimal Algorithms for Constrained 1-Center Problems 95

We consider the poset induced by the intersection semilattice of A ordered by
the reverse inclusion. We then consider the Möebius function on the elements of
this poset and use result (16) of [18] to obtain our lower bound. �
Corollary 2. Given a set P of n points and a simple polygon Q on m vertices
(or a set of m segments or a set of m points), the (P,Q)r-decision problem has
a lower bound of Ω(n logm) in the algebraic computation tree model.
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